| \quad ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB |
| :--- | :--- | :--- |

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:
PURPOSE: ELIGIBILITY	CHECKER:	DRUARK	DATE:
CAVEAT:		QA/QC:	REF/FILE \# AUGUST
NOTES:			WSIP APPLICATION
PAGE:	1		

ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB

	Q. 6 Does the proposed project affect groundwater basins, as defined by Water Code section 10722 et seq.? If not, enter "Not Applicable"; if so, identify the affected groundwater basins and describe how the project would be integrated with future GSP(s). Explain how the project would reduce, eliminate, or have an effect on undesirable results (as defined in regulations section 6001(a)(85)) within the affected groundwater basin(s). Describe how the applicant would work with GSA(s) or adjudicated participants of the basin. See regulations section 6003(a)(1)(K). Sites Reservoir would help alleviate undesirable conditions in the Colusa Groundwater Basin. Desert Water Agency and the Coachella Valley Water Agency would use water from Sites for groundwater replenishment to address undesirable results in their basins. See Sites_A6C Groundwater Basins under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB.
	A. 1 Attach the executive summary (max 20 pages). See regulations section 6003(a)(1)(A). Attached filename: Sites_A3 Project Description under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB.
	A. 2 Attach the Resolution, as required by regulations section 6003(a)(1)(C). See Program website for an example resolution. Attached filename: Sites_A2 Resolution under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB.
	A. 3 Project Description. Attach a description of the project that meets the requirements of section 3.3 of the TR. If a full project description is included in another attachment, identify the attachment name and beginning page number in this attachment. Attached filename: Sites_A3 Project Description under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB.
	A. 4 Attach maps, schematics and engineering design drawings that support the project description, if not already available in other attached documents. See section 6003(a)(1)(B) of the regulations. Attached filename: Sites_A4_Drawings under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB. Also See Federal Feasibility Report (https://www.sitesproject.org/information/FeasibilityReport) Appendix B
	A. 5 Attach a statement, under penalty of perjury pursuant to the laws of the State of California, attesting that the information provided in the full application is true and correct to the best of the applicant's knowledge. Scanned uploaded documents containing a scanned signature are sufficient. See section 6003(a)(1)(Y) of the regulations. Refer to filename: Sites_A2 Resolution- contains both A. 2 and A. 5 under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB.
	A. 6 OPTIONAL: Attach any other information that would support the application which does not fit easily in another category: for example, other studies or an index of the submitted application documents. - Attached filename: Sites_A6A Application Index under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB - Attached filename: Sites_A6B_WMPs (status of water management plans) under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB - Attached filename: Sites_A6C_Groundwater Basins under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1
PURPOSE:	ELIGIBILITY	CHECKER:	DRUARK	DATE:
CAVEAT:		QA/QC:	REF/FILE \#:	WSIP APGUST
NOTES:			PAGE:	2

APPLICANT INFORMATION TAB

APPLICANT INFORMATION

	Organization Name*: Provide the name of the Agency/Organization responsible for submitting the application. Should the application be successful, this Agency/Organization will be the funding recipient. Sites Project Authority
	Tax ID: Provide the federal tax ID number of the Agency/Organization submitting the application. $90-0635251$
	Point of Contact*: - Select "Add New User" to add an unregistered user. Please select Division (address will be auto populated) and type the First Name, Last Name, E-mail, and Phone (Direct) of the new user. Please note that the e-mail address will be the new user's login name. - Select "Existing Register Users" to select the registered user associated with the organization specified above. The rest of the contact information (Division, Address, e-mail, etc.) are auto populated once the above registered user is selected. Jim Watson, PE
	Point of Contact Position Title*: Provide the title of the point of contact. General Manager, Sites Project Authority
	Proposal Name*: Provide the title of the project. Sites Project
	Proposal Objective*: Briefly describe the proposed project's objectives. This application is submitted by the Sites Project Authority to secure investment funding as authorized under voter approved Proposition 1 in exchange for providing the State of California with eligible public benefits. The Sites Project will be an offstream reservoir independently owned, constructed, governed, and operated by the Authority under its own water rights and other regulatory requirements; but in cooperation with the U.S. Bureau of Reclamation and California Department of Water Resources in their operation of the Central Valley Project (CVP) and State Water Project (SWP), respectively. The summary objective of the Sites Project is to make California's water system more efficient, flexible, and reliable, which will provide local, statewide, and national benefits. The project helps to achieve the objectives of the California Water Action Plan by providing a substantial supply of high-quality water to support the economy and enhance the environment, particularly in the face of climate change. The public benefits for the Sites Project are to improve the survival of anadromous fish and other aquatic species, provide incremental Level 4 refuge water supply, provide opportunities for recreation, and reduce flood damage reduction. Non-Proposition 1 eligible benefits include water supply and hydropower generation. The Authority offers the State of California the first right of refusal for 710,000 AF (40\% capacity) for public benefits provided by the project. If the State accepts full responsibility for the public benefits, this would provide a long-term average of 195 TAF of water for public benefits. The submittals in this application assume the State would instead prefer federal participation with shared investment in public benefits at a level that reduces capital costs for the Water Storage Investment Program (WSIP) program. This anticipates future federal funding under the Water Infrastructure for Improvements to the Nation (WIIN) Act.
BUDGET - all amounts in 2015 dollars	
	Other Contribution: If capital costs are allocated to another State program enter the amount here. If none, enter zero. \$0
	Local Contribution: Provide the total local funding that will be committed to the project's capital costs exclusive of in-
Status:	FINAL PREPARER: J HERRIN PHASE: 1 VERSION: A
PURPOSE:	APPLICANT CHECKER: N CARLSON DATE: 2017 AUGUST
caveat:	QA/QC: J WATSON REF/FILE \#: WSIP APPLICATION
notes:	PAGE: 1 OF 3

APPLICANT INFORMATION TAB	
	kind contributions. $\$ 2,720,000,000$
	Federal Contribution: Enter the portion of total capital costs to be provided from federal funds. If none, enter zero. $\$ 730,000,000$
	In-kind Contribution: Provide the total amount of in-kind services in dollars. In-kind contribution refers to work performed by the funding recipient, the cost of which is considered funding match instead of, or in addition to, actual funds from the funding recipient being used as cost match. If there is no in-kind contribution, enter zero. $\$ 64,000,000$
	Amount Requested*: Provide the amount of total capital costs requested from the Program. $\$ 1,662,000,000$
	Total Proposal Cost*: Total project capital cost is automatically calculated based on the contribution amounts entered above. Total project capital costs must be in 2015 dollars. $\$ 5,176,000,000$
GEOGRAPHIC INFORMATION	
Latitude and longitude in degrees, minutes, and seconds. You may use converters on the Web, such as http://transition.fcc.gov/mb/audio/bickel/DDDMMSS-decimal.html.	
	Latitude*: Enter the latitude that best represents the center of the project or main point of access. $\text { . } 39.308721 \text { or } 39^{\circ} 18^{\prime} 31.395 "$
	Longitude*: Enter the longitude that best represents the center of the project or main point of access. $\text { -122.338131 or } 122^{\circ} 20^{\prime} 17.2716{ }^{\prime \prime}$
	Longitude/Latitude Clarification: Only use if necessary. The latitude and longitude correspond to the intersection of Sites and Huffmaster Roads, the current point of access to Antelope Valley. Sites Reservoir is a large project with a main reservoir of over 14,000 acres and approx. 13 miles of pipelines.
	Location: Identify the approximate location. Character Limit: 100 New reservoir in Colusa and Glenn Counties. New pipeline to the Sacramento River.
	County*: Provide the county in which the project is located. If the project is located in more than one county, hold down the Ctrl key and select all that apply. Colusa and Glenn Counties
	Groundwater Basin: Provide the groundwater basin(s) as listed in the current version of DWR Bulletin 118 (http://www.water.ca.gov/groundwater/bulletin118/gwbasins.cfm), in which your project is located. For projects covering multiple groundwater basins, hold down the Ctrl key and select all that apply. Sacramento Valley (5-92) and Colusa (5.21-52)
	Hydrologic Region: Provide the hydrologic region in which your project is located. For projects covering multiple hydrologic regions, hold down the Ctrl key and select all that apply. Sacramento River

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	APPLICANT	CHECKER:	N CARLSON	DATE:	2017 AUGUST	
CAVEAT:		QA/QC: J WATSON	REF/FILE \#: WSIP APPLICATION			
NOTES:				PAGE:	2	OF

APPLICANT INFORMATION TAB

Watershed: Provide the name of the watershed in which the project is located (maximum character limit: 250). A map of California watersheds can be found at the following link:
http://www.conservation.ca.gov/dlrp/wp/Documents/CALFED Watershed Map[1].pdf. If your project covers multiple watersheds, you may only provide one "Unique Watershed Number" as listed on the watershed map

Colusa Basin (80)

LEGISLATIVE INFORMATION

Enter the State Assembly*, State Senate*, and U.S. Congressional Districts* in which the project is located (use district numbers only, not the name of the Legislator). For projects that include more than one district, hold the Ctrl key down and select all that apply.

CA Assembly District 03
CA Senate District 04
US Congressional District 03

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	APPLICANT	CHECKER:	N CARLSON	DATE:	2017 A		
CAVEAT:		QA/QC:	J WATSON	REF/FILE \#:	WSIP	ICATION	
NOTES:				PAGE:	3	OF	3

EARLY FUNDING REQUEST TAB

	Q. 1 Is early funding for completing environmental documentation and/or permits requested? If yes, answer the following question and provide the requested information. See regulations section 6003(a)(1)(X). Yes
	Q. 2 What is the requested amount? Requesting $\mathbf{5 0 \%}$ of $\mathbf{\$ 1 0 3 , 3 5 1 , 0 0 0}$ or $\$ 51,675,500$.
	A.1 Attach a schedule, scope of work, and budget. Keep in mind that the applicant must provide a 50 percent cost share and reimbursable costs can only go back to November 4, 2014. Scope of work must include an explanation of why early funding is critical to the project, the viability of the project in the absence of this funding and how the project will proceed once early funding isexpended. The scope of work cannot include work performed prior to submittal ofthe application. The tasks in the schedule, scope of work and budget shouldmatch. See Sites_A1 Scope under the EARLY FUNDING REQUEST TAB

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	EARLY FUNDING	CHECKER:	M OLIVER	DATE:	2017 A	UST	
CAVEAT:		QA/QC:		REF/FILE \#:	WSIP A	CATION	
NOTES:				PAGE:	1	OF	1

FEASIBILITY \& IMPLEMENTATION RISK TAB

A. 1 Attach feasibility studies or documentation that demonstrates the proposed project's engineering, environmental, economic, and financial feasibility as described in TR section 3.5. See also regulations section 6003(a)(1)(0).

See Sites_A1 Feasibility under the FEASIBILITY AND IMPLEMENTATION RISK TAB.
A. 2 Provide a listing and status of all local, state, and federal permits, certifications, and other approval necessary for the construction and operation of the project. See section 6003(a)(1)(W) of the regulations.

See Sites_A2 Permits under the FEASIBILITY AND IMPLEMENTATION RISK TAB.
A. 3 Attach an estimated schedule for the proposed project until the first year of operation. If the schedule is included in another attachment, identify the location. See section 6003(a)(1)(G) of the regulations.

See Sites_A3 Schedule under the FEASIBILITY AND IMPLEMENTATION RISK TAB.
A. 4 Attach the most recent publicly available environmental document for the proposed project. If the document is available on a website, provide a link to the document(s). See section 6003(a)(1)(S) of the regulations.

Posted at http://sitesproject.org/information/DraftEIR-EIS
A. 5 Summarize the project's impacts on environmental or cultural resources and how the project will mitigate or minimize impacts to those resources, or identify where in the CEQA document this information can be found. If any environmental or cultural impacts will not be fully mitigated, explain. See regulations section 6003(a)(1)(T).

If applicable, identify whether Tribal consultation has been initiated for the project. If it has, provide supporting documentation, or identify the location in the CEQA document. If consultation has not been initiated, state whether consultation is expected and when consultation is expected to be initiated. See regulations section 6003(a)(1)(U).

See Sites_A5 Tribal Impacts under the FEASIBILITY AND IMPLEMENTATION RISK TAB.

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:
PURPOSE:	FEASIBILITY AND IMPLEMENTATION RISK	CHECKER:	D RUARK	DATE:	2017 AUGUST
CAVEAT:		QA/QC:	REF/FILE \#: WSIP APPLICATION		
NOTES:				PAGE:	1

BENEFIT CALCULATION, MONETIZATION, and RESILIENCY TAB

Q. 1 Did the applicant use the model products and assumptions described in section 6004(a)(1) of the regulations? See regulations section $6003(a)(1)(C C)$. If no, provide a description of the models and assumptions used to determine the without- project future conditions for years 2030 and 2070.

The analyses conducted for the Sites Reservoir Project utilized the model products and assumptions described in section 6004(a)(1). This includes the 2030 and 2070 future conditions CalSim II and DSM2 models provided by the California Water Commission on November 2, 2016. The models provided by the commission were modified to include the facilities and operation of the Sites Project as described in the Project Description and Assumptions section.

For the analysis of the Relative Environmental Values, the with- and without-project current conditions analyses were based on the DWR State Water Project Delivery Capability Report 2015 (DCR 2015) CalSim II base scenario. The DCR 2015 base scenario, provided by DWR, was modified to include the facilities and operation of the Sites Project. The project description and assumptions for the with-project current condition are the same as for the 2030 and 2070 with-project conditions.

The analyses also included the use of other analytical tools that were updated for future 2030 and 2070 conditions. These tools include:

- USRDOM - Upper Sacramento River Daily Operations Model
- Sacramento River HEC5Q model
- SALMOD
- American River CE-QUAL-W2 Model
- CWEST
- SWAP
- LTGEN
- SWP Power
- NODOS Power
A. 1 Attach description and assumptions of with-project conditions for years 2030 and 2070, as defined in section 6004(a)(2) of the regulations, as well as a description of the with- and without-project current conditions. See also regulations section 6003(a)(1)(BB).

Attached filename: Sites_A1 Modeling under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB
A. 2 Attach the preliminary operations plan for the proposed project. See regulations section 6003(a)(1)(H) for details. If the preliminary operations plan is located in another attachment, identify the attachment and provide the location.

Attached filename: Sites_A2 Operations under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB
A. 3 Attach the analysis of all public and non-public monetized benefits. Identify at least one Program ecosystem or water quality priority for any ecosystem or water quality public benefit quantified. For each public and non-public benefit, describe the methods used to derive the physical and economic benefits and impacts at a level of detail that allows reviewers to verify your analysis.

Description must include:

- The physical changes that are being monetized, consistent with information requested in the Physical Public Benefits Tab, and describing linkages between physical benefits and monetized benefits. See regulations sections 6004(a)(3) and 6004(a)(4); and
- The monetization method and sources for data used. See regulations section 6004(a)(4).

Attached filename: Sites_A3 Physical Monetized under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB
A. 4 For each net public benefit claimed, where applicable, identify any existing environmental mitigation or compliance obligations that are accounted for in each net public benefit as of the date of the CalSim-II model product in section 6004(a)(1).

- Applicants that use the CalSim-II and DSM2 models to analyze their projects can indicate "within models" for any existing environmental mitigation and compliance obligations contained in those models.
- If applicable to their claimed net public benefit such projects shall also list and account for the non-flow related mitigation and compliance obligations of the State Water Project and Central Valley Project.

BENEFIT CALCULATION, MONETIZATION, and RESILIENCY TAB
Attached filename: Sites_A4 Mitigation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB
A. 5 Provide additional information that supports the physical and monetary quantification of the public and nonpublic benefits and impacts of the project as required by subsection 6004(a)(4) of the regulations. This includes data, assumptions, analytical methods and modeling results, calculations and relevant sources of information. For reference documents or studies relied upon, applicants may provide links to an existing website in lieu of attaching those documents to the application. Attached filename: Sites_A5 Documentation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB
A. 6 Attach a table displaying each future economic benefit in 2015 dollars for each year of the planning horizon as required by section 6004(a)(4)(A) of the regulations. Attached filename: Sites_A6 Annual Benefits Table under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB
A. 7 If applicable, provide a summary of public benefits that cannot be monetized. Provide the following information for each non-monetized benefit. - Justification why benefit cannot be monetized, - Qualitative description of importance of benefit (who is affected, how and how often), - Evidence to show how the physical change is beneficial and important to Californians. Attached Filename: Sites_A7 Non Monetized under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB
A. 8 Attach an estimate of the total project costs that includes construction cost, interest during construction, land acquisition, monitoring, environmental mitigation or compliance obligations, operations and maintenance, repair, and replacement costs during the planning horizon using methods described in TR section 6 . If the project costs are located in another attachment, identify the location. The project cost estimates must be reviewed, approved and signed by an engineer licensed by the California Board for Professional Engineers, Land Surveyors, and Geologists. Attached filename: Sites_A8 Estimate under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB
A. 9 Attach the benefit and cost analysis for the proposed project. If the analysis is located in another document, identify the location. See regulations section 6004(a)(6). Attached filename: Sites_A9 BCA Results under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB
A. 10 Provide a proposed allocation of total project costs to all project beneficiaries, including the Program, and an explanation of how the allocation was calculated, consistent with TR section 8 and section 6004(a)(7) of the regulations. If this information is included in another attachment, identify the location. Attached filename: Sites_A10 Allocation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB
A. 11 Attach the Physical and Economic Benefits Summary tables. These tables can be downloaded from the Commission website and uploaded with the application. See regulations section 6003(a)(1)(N). Attached filename: Sites_A11 Benefits Table under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB
A. 12 Attach the uncertainty analysis. See regulations section 6004(a)(8). Attached filename: Sites_A12 Uncertainty under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB

STATUS:	FINAL		PREPARER: J HERRIN	PHASE:
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1	CHECKER:	D RUARK	DATE:
CAVEAT:		QA/QC:		2017 AUGUST
NOTES:			REF/FILE \#:	WSIP APPLICATION
PAGE:	2	OF	2	

PROJECTS TAB

This section contains information about the project or projects contained in an application. Budget, Geographic Information and Legislative information can be copied from the Applicant Information Tab.

PROJECT INFORMATION

	Project Name*: Provide the same name that was used in the Applicant Information Tab. Sites Project
	Implementing Organization: Select the applicant from the drop down list. Sites Project Authority
	Secondary Implementing Organization: Leave blank.
	Proposed Start and End Dates: Leave blank.
	Scope of Work, Project Description, and Project Objective: Leave blank.

PROJECT BENEFITS INFORMATION
Please do not enter any information into GRanTS for the following Project Benefits Questions. The questions are standard GRanTS questions that cannot be removed, and will not be used for the Program benefits analysis.

	Benefit Level: Leave blank.
	Benefit Type: Leave blank.
	Benefit: Leave blank.
	Description: Leave blank.
	Measurement: Leave blank.

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1
PURPOSE:	PROJECTS	CHECKER:	DATE:	2017 AUGUST
CAVEAT:		QA/QC:	REF/FILE \#:	WSIP APPLICATION
NOTES:			PAGE:	1

PHYSICAL PUBLIC BENEFITS TAB

ECOSYSTEM BENEFITS	
	A. 1 Attach completed Ecosystem Priorities worksheets. Be sure to include the general information worksheet as well as worksheets for each priority being claimed for which funds are being requested. Identify at least one Program ecosystem priority for any ecosystem public benefit quantified. See section 6003(a)(1)(Q) of the regulations. See filename: Sites_A1 Ecosystem General Information under the PHYSICAL PUBLIC BENEFITS TAB.
	A. 2 Attach supporting documentation requested in Ecosystem Priorities worksheets such as maps or other information not already provided elsewhere in the application. See filename: Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB.
WATER QUALITY BENEFITS	
	A. 1 Attach completed Water Quality Priorities table(s). If the project is claiming water quality benefits that meet the water quality priorities, be sure to include the general application questions table as well as tables for each priority being claimed for which funds are being requested. Identify at least one Program water quality priority for any water quality public benefit quantified See section 6003(a)(1)(Q) of the regulations. See filename: Sites_A1 Ecosystem Priority under the PHYSICAL PUBLIC BENEFITS TAB.
	A. 2 Attach supporting documentation requested in Water Quality Priorities tables such as maps or other information not already provided elsewhere in the application. See filename: Sites_A2_Documentation WQ Priority under the PHYSICAL PUBLIC BENEFITS TAB.
FLOOD CONTROL BENEFITS If the proposed project is not claiming flood control benefits, leave the following questions blank	
	Q. 1 If applicable, how will the project provide flood control benefits? If some project operations will be for flood control purposes, explain. Are the flood control benefits realized locally and/or throughout the larger flood control system? (TR section 4.9.2.1) Describe any negative impacts of providing the flood control benefit. (TR section 4.9.2.4) The proposed project is located in the Colusa Basin watershed in Colusa and Glenn counties. It consists of constructing two main dams, Golden State Dam on Funks Creek and Sites Dam on Stone Corral Creek, and nine saddle dams on the northern end of the reservoir between the Funks Creek and Hunter Creek watersheds along the Glenn-Colusa county line. The existing Funks Dam is located on Funks Creek would be replaced with a new, larger Holthouse Reservoir. As an offstream reservoir, Sites Reservoir does not have a large, upstream watershed. Sites Reservoir can, nevertheless, be operated to provide local flood control benefits by capturing and attenuating flood flows associated with Stone Corral and Funks Creeks and the other local ephemeral watersheds. By capturing flows from extreme storm events, the project will reduce flood damages, such as the February 18, 2017 event that flooded the community of Maxwell and temporarily closed Interstate 5.
	What methods were used to calculate flood damage reduction? Identify which of the following methods was used to quantify physical flood control benefits: 1. Modeling provided with feasibility study 2. New modeling using historical flood events or historicalhydrology 3. New modeling using the climate change hydrology data setprovided If 1 or 2 is used, explain how benefits might be different under the provided future climate and sea levels projections. Provide justification for any methods not identified in section 5.4.3 of the TR. See also regulations section 6004(a)(1)(F). New modeling using historical flood events or historical hydrology was used to determine physical flood damage reduction benefits. Flooding in the watershed currently occurs between October and April due to rainfall-runoff. If rainfall run-off timing and duration are affected by climate change, it is anticipated that the project will provide additional flood damage reduction benefits. Additional information is provided in Attachment A1 (Sites_A1 Flood Control under the PHYSICAL PUBLIC BENEFITS TAB).
	A. 1 Attach any relevant flood damage reduction supporting documentation, such as hydraulic and hydrologic modeling studies, and property flood damage analysis (TR section 4.9.4). If information to support this question is located in another attachment, provide the location. See filename: Sites_A1 Flood Control under the PHYSICAL PUBLIC BENEFITS TAB.

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	DATE:	2017 A		
CAVEAT:		QA/QC:	REF/FILE \#:	WSIP	ICATION	
NOTES:			PAGE:	1	OF	2

EMERGENCY RESPONSE BENEFITS If the proposed project is not claiming emergency response benefits, leave the following questions blank.

> Q. 1 If applicable, how will the project be operated to provide emergency response benefits? Identify the types of emergency benefits the proposed project could provide. (TR section 4.11.1). If additional information to support this question is located in another attachment, provide the location.
> The Authority is committed to working with the state and federal water managers and emergency personnel to provide water to support emergency events such as, but not limited to, firefighting, drought relief, and Delta levee failures. Instead of dedicating a volume of water that may not be called upon by the state until at least a one-in-ten year event (or longer) occurs, the Authority proposes that should water from Sites Reservoir be used to aid in responding to or recovery from an emergency, that repayment would occur through a mutuallyacceptable exchange or transfer of water. As such, this benefit was not monetized and the Authority is not requesting Proposition 1 funding for this purpose.
> Should the Water Commission be interested in acquiring water to reserve storage for a qualifying Proposition-1 emergency event, the Sites Project Authority will work with the Water Commission to evaluate the concept and, if appropriate, prepare an amendment to this application for the Water Commission's consideration.

	A. 1 Attach a description of the amount or share of stored water to be provided for the emergency benefits and define the conditions under which water would be made available. Describe how the applicant can commit to the conditions under which the emergency benefits would be made available. (TR section 4.11.2) Not Applicable
RECREATION BENEFITS If the proposed project is not claiming recreation benefits, leave the following questions blank.	
	Q. 1 If applicable, how will the project be operated to provide recreation benefits? If additional information to support this question is located in another attachment, provide the location. Sites Reservoir will provide new opportunities for surface-water recreation, such as boating, fishing, and swimming. New shoreline facilities at the reservoir will be constructed to support camping, hiking, horseback riding, mountain biking, picnicking, and sightseeing. The project includes two new recreation areas, Stone Corral and Peninsula Hills. Two boat ramps would provide access to the reservoir. Day-use and overnight camping facilities would be constructed on the shore. Sites Reservoir operations would also support the maintenance of higher water levels at Shasta and Folsom Lakes. Beneficial effects were noted in some instances where additional storage in existing facilities resulting from the operation of Sites Reservoir would provide more frequent access to boat ramps at these facilities. Additional recreational benefits will be provided for fishermen in the Sacramento and American River watersheds as a result of increased populations of Chinook salmon and steelhead. Additional information is provided in Sites_A2 Recreation under the PHYSICAL PUBLIC BENEFITS TAB.
	Q. 2 By providing new recreation benefits, does the proposed project negatively affect any existing recreation activities either at the proposed project site, at another facility, or nearby recreation area? (TR section 4.10.1.1) Recreational impacts are evaluated in Chapter 21 of the Draft EIR/EIS (Posted at http://sitesproject.org/information/DraftEIR-EIS). No potentially significant impacts were identified. There are no existing recreational activities in the project footprint. Beneficial effects were noted in some instances where additional storage at nearby recreation areas (e.g., Shasta Lake) will result from the operation of Sites Reservoir, providing more frequent access to boat ramps at these facilities.
	Q. 3 Attach an assessment of the proposed recreation physical benefits. Include the size of the facility, recreation activities allowed, recreation facilities associated with these activities, and their capacities and seasonal closures and conditions in which facilities are not usable or activities cannot occur. (TR section 4.10.1.2). Sites_A2 Recreation under the PHYSICAL PUBLIC BENEFITS TAB contains a description of the proposed recreation facilities.
	A. 1 Attach recreation visitation estimates including documentation of estimation methodology. See filename: Sites_A1 Recreation Visitation under the PHYSICAL PUBLIC BENEFITS TAB
	A. 2 Attach or provide links to any relevant recreation studies associated with the proposed project. See filename: Sites_A2 Recreation under the PHYSICAL PUBLIC BENEFITS TAB

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	DATE:	2017 AUGUST		
CAVEAT:	QA/QC:	REF/FILE \#:	WSIP APPLICATION			
NOTES:			PAGE:	2	OF	2

PROGRAM REQUIREMENTS TAB

Q. 1 Describe how the project improves the operation of the state water system. See regulations section 6003(a)(1)(M).

Sites Reservoir would improve operational flexibility and reliability of the state water system, especially within the service areas of both the SWP and CVP, in addition to allowing California resource agencies to purposely allocate water for the benefit of environmental uses. CALSIM modeling results indicate that average long-term end of May storage in Lake Oroville would increase by 26 TAF in 2030 and further increase by an additional 31 TAF in 2070 through exchanges with Sites Reservoir. This demonstrates the resiliency of the improvement in the SWP. Likewise, long-term average storage in CVP reservoirs would also increase. End-of-May storage in Shasta Lake would increase by 59 TAF in 2030 and then increase by an additional 80 TAF in 2070. Storage in existing reservoirs that are cooperatively managed with the Sites Project would increase in all year types. This additional storage would provide the state water system greater flexibility in operating the overall system without negative impacts to water supplies and providing California resource agencies with a water supply dedicated to the environment.

Sites Reservoir would be operated collaboratively with the SWP and CVP. The SWP and CVP would make their annual allocations and deliveries as normal. Exchanges with water stored in Sites Reservoir would help to maintain supplies in the existing reservoirs and produce the public benefits described for the project. Sites Reservoir would provide supplemental water that is much needed when allocations are low.

Sites Reservoir Project would provide augment deliveries for both water supply and public benefits, especially during drought years. Sites Reservoir is beneficially located where it can support the operations of existing reservoirs north of the Delta, provide water to the Yolo Bypass for ecosystem restoration, deliver water to be picked up at the North Bay Aqueduct, and export water to the San Joaquin Valley and Southern California. In addition to preserving water in existing SWP and CVP reservoirs through exchange, Sites Reservoir would facilitate water transfers, one of the initiatives in the California Water Action Plan. Water from Sites could be moved south of the Delta to fill Diamond Valley Reservoir or provided for groundwater recharge to Coachella Valley Water District and Desert Water Agency.
This topic is further discussed in the Executive Summary (Sites_A1 ExecSum under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB).
Q. 2 Describe how the project provides a net improvement in ecosystem and water quality conditions required by Water Code section 79750.

Sites Reservoir would deliver an average of 125 TAF/yr from $\mathbf{2 0 3 0}$ to $\mathbf{2 0 7 0}$ for improving ecosystem and water quality conditions. This is an unprecedented amount of water that the State resources agencies will be able to directly manage for environmental benefit. Furthermore, cooperatively managing the operation of Sites Reservoir with State and Federal facilities will preserve higher water levels in the existing reservoirs and thereby protect the coldwater pools, improve temperature conditions downstream for existing reservoirs, and provide flows to support the migration of aquatic species in a variety of life stages.

The potential benefits of the project for fish were modeled using SALMOD. Modeling results predict net improvements in fish populations for Chinook salmon (including endangered winter-run) under 2015, 2030, and 2070 conditions. By providing releases to the Yolo Bypass, Sites Reservoir Project can also benefit Delta smelt, however, there are insufficient studies to characterize the magnitude of this benefit at this time.

Sites Reservoir Project would excel in providing opportunities for in lieu use of surface water, thereby reducing the chronic lowering of groundwater levels, an undesirable result under SGMA. Sites Reservoir will also support the delivery of water for basic human needs to disadvantaged communities.

See Sites_A4 Mitigation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB and Sites_A5 Documentation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB for further analysis.
Q. 3 If applicable, summarize how the applicant is coordinating with the owners and operators of water system facilities not owned or operated by the applicant or project partners that may be affected by the project. See regulations section 6003(a)(1)(P).

The Authority is coordinating the development of operations with the Department of Water Resources and the U.S. Bureau of Reclamation. This coordination includes the future development of Principles of Agreement governing operations. See Sites_A6 Annual Benefits Table under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB. A list of project partners is provided in Sites_A1 Feasibility under the FEASIBILITY AND IMPLEMENTATION RISK TAB.

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1
PURPOSE:	PROGRAM REQUIREMENT	CHECKER:	D RUARK	DATE:
CAVEAT:		QA/QC:	REF/FILE \#:	WSSIP APPLICATION
NOTES:			PAGE:	1

PROGRAM REQUIREMENTS TAB

	Q. 4 Describe how the project advances the long-term objectives of restoring the ecological health and improving water management for beneficial uses of the Delta. See regulations section 6003(a)(1)(R). The operations proposed for Sites Reservoir Project were developed with the intent of contributing to the attainment of the co-equal goals for the Delta of ecological health and improving water management for beneficial use. As a result, the annual yield from the Sites Project is divided between environmental and water supply purposes. The Sites Project would provide a unique opportunity to allocate reservoir storage and establish the first firm asset Ecosystem Enhancement Account in California. Based on the operations assumptions included in this application, the allocated storage would deliver approximately 125 TAF/yr (in 2030 through 2070 (with deliveries of up to 200 TAF/yr in critically dry years) that would be managed by the State (CDFW, SWRCB, and DWR) and Federal government to perform restoration actions beyond existing regulatory requirements. Conceptually, this account would use Sites Reservoir project assets to support modified operations that facilitate habitat enhancement actions. A Sites Reservoir Ecosystem Enhancement Governance Board would be created to manage the water account. The water account would be managed to adaptively support operational actions and respond to changing future conditions throughout the Sacramento River watershed and Delta. Sites Reservoir would also provide water for beneficial uses throughout the State, including water for agriculture and M\&I purposes, and State and Federal wildlife refuges. Project participants include agencies in the Sacramento River Valley, Bay Area, San Joaquin Valley, Southern Desert, and South Coast regions of California.
	Q. 5 Describe how the applicant will ensure that the proposed project will comply with and be consistent with all applicable local, state, and federal laws and regulations, including existing environmental mitigation or compliance obligation requirements. See regulations section 6003(a)(1)(V). The Authority has initiated pre-applications discussions with several of the critical resource management and regulatory agencies in order to expedite compliance with all required laws and regulations. This early and diligent effort to understand the evolving concerns for regulatory compliance will reduce the overall compliance schedule and help ensure compliance with all applicable local, state, and federal laws in the planning, construction, and operation of Sites Reservoir, including mitigation requirements. The EIR/EIS (attached at http://sitesproject.org/information/DraftEIR-EIS) describes the impacts and mitigation measures that when implemented would reduce or avoid impacts and support compliance with all applicable laws, regulations, and statutes. This includes all applicable regulations regarding water operations on the Sacramento River. Regulations are identified in Sites_A2 Permits under the FEASIBILITY AND IMPLEMENTATION RISK TAB. The Authority's commitment to mitigation is further described under Sites_A4 Mitigation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB.
	A. 1 What measurable improvements to the Delta ecosystem or tributary to the Delta does the project provide? Where is the location of the improvement? If the project is not within the watershed of the Delta, what specific water rights or water contracts would be created or amended to ensure public benefits to the Delta ecosystem? Provide supporting documentation of the willingness of these water right or water contract holders to enter into such contracts or amendments. Explain how these changes would assure measurable improvements to the Delta ecosystem. See regulations section 6003(a)(1)(L). See Sites_A1 Measurable Benefits under the PROGRAM REQUIREMENTS TAB.
	A. 2 Provide documentation indicating the proposed project is cost-effective. If there is at least one feasible alternative means of providing the same amount or more of the total public and non-public physical benefits as provided by the proposed project, calculate, display and document the least-cost of these alternative means and justify the proposed project by comparison. See Sites_A2 Cost Effectiveness under the PROGRAM REQUIREMENTS TAB.

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1
PURPOSE:	PROGRAM REQUIREMENT	CHECKER:	D RUARK	DATE:
CAVEAT:		QA/QC:	REF/FILE \#:	WSSIP APPLICATION
NOTES:			PAGE:	2

BEFORE THE BOARD OF DIRECTORS OF THE SITES PROJECT AUTHORITY

Resolution No. 2017-001

Abstract

In the Matter of: Authorizing Filing Application to California Water Commission under Water Storage Investment Program for the Sites Project.

WHEREAS, the Water Storage Investment Program ("WSIP") is provided for at Chapter 8 (commencing at Section 79750) of Division 26.7, of the California Water Code, which is part of the November 2014 voter-approved Proposition 1, the process for which is specified in regulations promulgated by the California Water Commission at California Code of Regulations, Title 23, Division 7, Chapter 1 ("WSIP Regulation"); and

WHEREAS, the Sites Project Authority ("Authority") is a joint powers authority formed by and existing among various irrigation districts and other local water districts and local governments within the Sacramento River hydrologic region pursuant to a Joint Exercise of Powers Agreement as last amended February 13, 2017, and through a Reservoir Committee established by the Authority has partners that are not located within said hydrologic region, participating with development of the Sites Project, all as authorized by Water Code Section 79759 of the WSIP authorizing act; and

WHEREAS, the Sites Project, very generally and as described in detail in the application authorize to be filed by this Resolution and its attachments, is a proposed off-stream reservoir to store unregulated water within the Sacramento River watershed when this outflow is not meeting critical environmental, water quality and water supply needs, and to subsequently release such store water from the reservoir for beneficial uses for consumptive and in-stream flow purposes; and

WHEREAS, the Sites Project is among the surface storage projects identified in the CALFED Bay-Delta Program Record of Decision, date August 28, 2000, and is therefore eligible for funding under Water Code Section 79751(a); and

WHEREAS, this Board is familiar with and concurs in the draft of the application authorized to be filed by this Resolution;

NOW, THEREFORE, BE IT RESOLVED by this Board of Directors as follows:

1. The foregoing recitals are true and correct;
2. The General Manager is authorized and directed to timely file an application for the Sites Project with the California Water Commission pursuant to WSIP and its implementing regulations referenced above; and
3. The Authority's officers and General Manager are authorized to do all things necessary and proper to carry out and implement filing the above referenced application with the California Water Commission.

PASSED, APPROVED AND ADOPTED by the Board of Directors of the Sites Project Authority this $31^{\text {st }}$ day of July, 2017, by the following vote:

Ayes: Colusa County, Reclamation District 108, Westside Water District, GlennColusa Irrigation District, Tehama-Colusa Canal Authority, Maxwell Irrigation District, Colusa County Water District, Orland Artois Water District, Placer County Water Agency/City of Roseville, Proberta Water District/TC 6 Districts and Western Canal Water District.

Nays: None.
Absent: Glenn County.
Abstain: None.

Kim Dolbow Vann, Chair
Sites Project Authority Board

ATTEST: Ann Nordyke
Clerk to the Board of Directors

APPROVED AS TO FORM:

Secretary's Certificate
I, Jamie Traynham, Secretary of the Sites Project Authority Board, do hereby certify that the resolution set forth above, is a true and accurate copy of a resolution adopted by the board of directors of the Sites Project Authority at a duly called meeting of the board on July 31, 2017. I further certify that said resolution has not been rescinded, amended, or modified and is in full force and effect as of the date hereof.

In witness whereof, I have executed this certificate this 2 nd day of August 2017.

Jamie Traynham, Sedretary
Sites Project Authority

Physical Public Benefits Tab

Attachment 1: Ecosystem Priorities Worksheets

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1
PURPOSE:	BENEFITS CALCULATION A2	CHECKER:	DATE:	2017 AUGUST
CAVEAT:		QAVQ:	REF/FILE \#:	WSIP APPLICATION
NOTES:			PAGE:	1

Table of Contents

Attachment 1: Ecosystem Priorities Worksheets 1
General Information 5
Ecosystem Priority 1 9
Ecosystem Priority 2 15
Ecosystem Priority 3 20
Ecosystem Priority 4 25
Ecosystem Priority 5. 31
Ecosystem Priority 10 36
Ecosystem Priority 11 40
Ecosystem Priority 14 45
Ecosystem Priority 15 53
Ecosystem Priority 16 56

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST
CAVEAT:		QAVQC:	REF/FILE \#:	WSIP APPLICATION	
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	2	OF

Acronyms and Abbreviations

WHEP
WUA

Waterbird Habitat Enhancement Program
Weighted Usable Area

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST
CAVEAT:		QAVQC:	REF/FILE \#:	WSIP APPLICATION	
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	4	OF

General Information

General Info: Ecosystem Priorities and Relative Environmental Value Criteria

Project Description (Summary)

The Sites Reservoir Project is composed of a new off-stream reservoir, new diversion, pumping and conveyance facilities and modification to existing facilities and operations to increase the flexibility and reliability of the California water management system. Sites Reservoir, located approximately 10 miles west of the town of Maxwell, would be filled by diversion of water from the Sacramento River from the existing diversions facilities in Red Bluff and Hamilton City, and the new diversion near Delevan when Sacramento River flows that originate from unregulated tributaries to the Sacramento River downstream from Keswick Dam meet specific regulatory and water rights criteria.
The operation of Sites Reservoir Project would allow for the development and administration of an ecosystem enhancement storage account (EESA) that could be managed by the State to provide water for ecosystem and water quality purposes of its choosing. As described elsewhere in this application, such an account could provide a pool of dedicated storage to manage in cooperation with existing operations to improve coldwater conservation storage, stabilize river flows during critical fisheries periods, increase flows through certain watercourses and/or facilities (such as, Yolo Bypass), increase availability of wetlands in wildlife refuges, and/or enhance habitat conditions or other ecosystem enhancement actions.
Sites Reservoir Project is most beneficial when it is operated in cooperation with CVP and SWP operations to coordinate releases from Shasta Lake, Lake Oroville, and Folsom Lake. Releases from Sites Reservoir would allow the preservation of storage in these other reservoirs while still meeting requirements for minimum instream flow objectives, Sacramento River temperature requirements, and Delta salinity control assigned to the CVP and SWP. Through the use of water stored in Sites Reservoir in substitution for releases from these other reservoirs, storage could be conserved in Shasta Lake, Lake Oroville, and Folsom Lake to significantly increase operational flexibility to improve river water temperatures for fish survival, and Delta ecosystem food-web enhancement. The Sites Reservoir would also provide independent flood control and recreation benefits.

Identify the current conditions date (i.e., year) that will be used within the application.

2015 using CALSIM model furnished by the CWC

Ecosystem improvement application instructions:

To complete the ecosystem improvement section of the Water Storage Investment Program application review the 16 ecosystem priorities listed above, determine which priorities will be addressed by your project's ecosystem improvements, and answer all questions for each priority you will address. In addition to answering the priority-specific questions, answer the general questions listed on this worksheet which apply to all priorities addressed by your project. The final relative environmental value of each project will be based on a technical review of each ecosystem priority using relative environmental criteria (REV) 2-10 and the total number of priorities claimed by a project (REV 1).
For the purpose of this application the Current Conditions date will be based on the existing conditions of an applicant's CEQA document. If specific data requested in this application is not available in the CEQA document, the applicant will use the demarcation date of the existing conditions in the CEQA document. An applicant must use the demarcation date of the existing conditions from their CEQA document consistently within the application when identifying current conditions.

REV 1: Number of ecosystem priorities targeted by the project

Briefly explain which ecosystem priorities will be met by this project.
Ecosystem priorities 1, 2, 3, 4, 5, 10, 11, 14, 15, and 16
REV 4: Inclusion of an adaptive management and monitoring program that includes measurable objectives, performance measures, thresholds, and triggers to achieve ecosystem benefits.
Describe the process through which an adaptive management and monitoring program will be developed for approval by the responsible agency.
The adaptive management program would be developed by the Sites Project Authority in partnership with the National Marine Fisheries Service (NMFS), U.S. Fish and Wildlife Service (USFWS), California Department of Fish and Game (CDFW) as well as concerned and knowledgeable non-governmental organizations. Specific adaptive management investigations will be developed to build on the best available science on the range of issues listed above. Adaptive management would be implemented within a framework that is transparent, collaborative, and responsive to changes in scientific understanding.
The Sites Project monitoring plan will be developed in coordination with other similar efforts in the Sacramento River watershed, including studies by the Interagency Ecological Program and ongoing studies by USFW, NMFS and CDFW in the Sacramento River Watershed. Design and implementation of Sites Project monitoring will also be coordinated with ongoing and proposed survey and monitoring efforts along the Sacramento River and within the Delta to share and build on available data.

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST	
CAVEAT:		QAVQ:	REF/FILE \#:	WSIP APPLICATION		
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	6	OF	61

General Info: Ecosystem Priorities and Relative Environmental Value Criteria

Describe the framework you will use to develop measurable objectives, performance measures, thresholds, and triggers for your adaptive management and monitoring program.
Monitoring efforts would be guided by the specific Sites Project objectives and desired outcomes for ecosystem priorities. The Project's objectives are to meet its primary goal to improve environmental conditions in the Sacramento River and Delta system and improve water supply reliability in the State water supply system. What is measured (indicator), how well it is measured, and how often it is measured are design features that would be defined by the members of the development team who are a part of the Water Operations Committee (refer to Operations Plan). Examples of measurable objectives and performance measures for selected ecosystem priorities are provided under Sites_A2 Operations under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB. Performance measures would be elements of a monitoring framework which would provide data to assess progress towards achieving Sites project objectives and ecosystem priorities, and which would inform adaptive management decision-making for operations. The proposed operations prioritize certain ecosystem priorities listed for the Water Storage Investment Program. Key scientific information for further monitoring and adaptive management activities related to those prioritized operations is:

- Quantification of the improvement in temperature for salmonids above that which would have been available absent Sites.
- Benefits provided by river flow stabilization using Sites Reservoir Project water
- The amount of productivity increase in the Cache Slough area and increases in Delta smelt abundance in this area and Lower Sacramento River
- The amount of additional water provided to Level 4 refuges.

How will operational decisions be made if physical parameters and biological responses fall outside the range of anticipated benefits?

The Authority Board of Directors holds the final decision-making authority for all actions pertaining to the Sites Reservoir Project. The Authority Board has, and expects to continue to delegated certain responsibilities to standing committees that do (or will) report to the Board. This Adaptive Management Plan, and its annual updates, will be approved by the Board following public comment.

Recognizing the many sources of uncertainty in predicting future environmental conditions, particularly in light of climate change and sea level rise, and knowledge gaps regarding factors controlling fish population dynamics and abundance, an adaptive management approach will be required to make informed decisions about operation management for the Sites Project. The adaptive management concept will be implemented to reduce operational uncertainty, enhance scientific knowledge, comply with the permit requirements of the Sites Project, and improve project performance in a constantly changing natural system. As with other adaptive management plans associated with major water management facilities in California, adaptive management will provide recommended operations intended to test operational hypotheses and provide input to the periodic operational reviews of the Sites Project, and will be developed with the best available science in collaboration with CDFW, NMFS, USFWS, and others.

It is expected that all agencies and organizations participating in the Sites Reservoir Project will adopt an adaptive management approach to reduce operational uncertainty associated with the operation of the Sites Project. At this time the participating agencies include the Authority, Reclamation, and the California Resources Agency (as the coordinating agency for the State with regard to WSIP participation). As the Site Project proceeds through WSIP, water right acquisition, and permitting processes, it is anticipated that other agencies (including DWR, CDFW, NMFS and USFWS) will be active participants in the adaptive management process. Together, this adaptive management organization will identify investments in related research, monitoring and other endeavors to support the Sites Project. Additional groups may be added to the adaptive management organization to support the decision-making process.

What funding sources and financial commitments do you intend to utilize for the formation and implementation of an adaptive management and monitoring program over the duration of the claimed benefits?
Funding sources include revenue generated from water delivery contracts to all who contract and receive water from the Sites Project. The formation and implementation of an adaptive management and monitoring program is one of several administrative requirements of the Sites Reservoir Project. The Sites Project is founded on a beneficiary pays basis.

Funding sources to support the ESSA deliveries could include funds generated from recaptured water used for environmental benefits when those environmental services are complete. A portion of water released from Shasta to provide Proposition-1 eligible benefits could be recaptured (when Delta outflow is greater than $5,000 \mathrm{cfs}$ and all other operational conditions are met), stored in Sites (or directly delivered downstream to a water user) and later released for non-Proposition-1 eligible benefits (i.e.; water supply) to raise funds to cover O,M\&R costs. Other potential funding sources for ESSA deliveries include revenue from hydropower generation associated with releases of water for Proposition-1 eligible environmental purposes (such

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST
CAVEAT:		QA/QC:	REF/FILE \#:	WSIP APPLICATION	
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	7	OF

General Info: Ecosystem Priorities and Relative Environmental Value Criteria

as releases to the Yolo Bypass).
Explain what environmental uncertainties are relevant to your claimed benefit(s) and will be included in your adaptive management and monitoring program (i.e. climate change, sea level rise, earthquakes, variation in snow pack, forest fires, landslides/erosion etc.).

Uncertainties are described in detail under the Sites_A12 Uncertainty under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB. The WSIP model for project performance included specific climate change and sea level rise assumptions. These assumptions are detailed in Sites_A1 Modeling under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB. Earthquake, forest fire, landslides/erosion are not expected to have significant effects on the project benefits. The benefits described for the Sites Project are generally not subject to other environmental uncertainties (earthquakes, variation in snow pack, forest fires, landslides/erosion, land subsidence).

REV 9: Efficient use of water to achieve multiple ecosystem benefits

Will the same unit of water benefit multiple priorities? If so, explain which priorities will benefit, and the anticipated differences in project water availability between priorities.
Water stored in Shasta Lake or Lake Oroville for coldwater purposes is released over time for flow augmentation to benefit redds and juvenile salmonids. This water addresses multiple ecosystem priorities to provide an interrelated benefit to anadromous fish. Some of the water released from Shasta Lake for environmental benefits can be recaptured downstream and used again to provide further environmental benefits. It is intended that this water (after it has been used to provide at least one Proposition-1 eligible benefit) be recaptured and used to provide funding for the $O \& M$ share for public benefits.

How will hydrologic connections among priorities be measured and guaranteed?
The Sites Project operations will be based on operations agreements with Reclamation and DWR for the use and coordinated operations of facilities and on detailed written agreements with project participants for Proposition 1-eligible public benefits and non- Proposition 1-eligible benefits (generally water supply augmentation contracts). These agreements will define the amount of Sites Reservoir storage allocated to the organization seeking the specific benefits, the associated deliveries, and the cost associated with those deliveries. Water delivery contracts will also define the delivery request process, facilities repayment and OM\&R charges (pro-rated by acre-foot of delivery). Since the WSIP contributions would cover facilities construction cost, costs associated with Proposition-1 eligible public benefit water delivery contracts would not include facilities repayment costs. Hydrologic connection to the Sacramento River will be maintained by the Tehama Colusa Canal, Glenn-Colusa Canal and the new Delevan pipeline and other new Project facilities (e.g.; turnout to the Colusa Basin Drain). The connection to each of the existing facilities would be part of the operation agreement described above (see Sites_A2 Operations under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB).

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST	
CAVEAT:		QALQ:	REF/FILE \#:	WSIP APPLICATION		
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	8	OF	61

Ecosystem Priority 1

Priority 1: Provide cold water at times and locations to increase the survival of salmonid eggs and fry.

Species Information

What salmonid species are you targeting?
Winter-run Chinook Salmon (Oncorhynchus tshawytscha; Sacramento River evolutionarily significant unit [ESU]); Spring-run Chinook Salmon (O. tshawytscha; Central Valley ESU); Fall-run and late Fall-run Chinook Salmon (O. tshawytscha; Central Valley ESU); Steelhead (O. mykiss; Central Valley distinct population segment [DPS]); and resident native Rainbow Trout (O. mykiss).

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the temperature needs of each species are described.

Draft EIR/EIS (https://www.sitesproject.org/information/DraftEIR-EIS) Appendix 12A: Aquatic Species Life Histories:

- Sacramento River Winter-run Chinook salmon: page numbers: 12A-2 to 12A-9 Status, adult migration and holding, spawning and egg incubation, juvenile rearing and migration, and Delta and estuarine rearing; Table 12A-1 Life stage occurrence in the Sacramento River and Table 12A-2 Migration and timing at monitoring stations on the Sacramento River; Figure 12A-1 Current and historical distribution, and critical habitat designation.
- Central Valley Spring-run Chinook salmon: page numbers: 12A-9 to 12A-14 Status, adult migration and holding, spawning and egg incubation, juvenile rearing and migration, and Delta and estuarine rearing; Table 12A-1 Life stage occurrence in the Sacramento River and Table 12A-2 Migration and timing at monitoring stations on the Sacramento River; Figure 12A-2 Current and historical distribution, and critical habitat designation.
- Central Valley fall-run and Late fall-run Chinook salmon: page numbers: 12A-15 to 12A-18 Status, adult migration and holding, spawning and egg incubation, juvenile rearing and migration, and Delta and estuarine rearing; Table 12A-1 Life stage occurrence in the Sacramento River and Table 12A-2 Migration and timing at monitoring stations on the Sacramento River; Figure 12A-3 Current and historical distribution.
- Central Valley steelhead: page numbers: 12A-19 to 12A-24 Status, adult migration and holding, spawning and egg incubation, juvenile rearing and migration, and Delta and estuarine rearing; Table 12A-1 Life stage occurrence in the Sacramento River; Figure 12A-4 Current and historical distribution, and critical habitat designation.
The Draft EIR/EIS has a different without Project condition and operation than was used for Water Storage Investment Program (WSIP); however, there is discussion in the Draft EIR/EIS Appendix 12C: Fisheries Impacts Summary concerning thermal and flow-related benefits to fish: Sacramento River Winter-run Chinook salmon, pages 12C-116 to 12C-117; Spring-run Chinook salmon, pages $12 \mathrm{C}-117$ to $12 \mathrm{C}-118$; Fall-run Chinook salmon, pages 12C-118 to 12C-119; Late fall-run Chinook salmon, pages $12 \mathrm{C}-119$ to 12C-120; and Steelhead, pages 12C-120 to 12C-121.

REV 2: Magnitude of ecosystem improvements

What is the expected magnitude of the ecosystem improvement that will address this priority? Magnitude should be expressed as: a) the change from current conditions without the project to current conditions with the project, and b) the change from 2030 conditions without the project to 2030 conditions with the project. How did you estimate this value?
If the ecosystem improvement will benefit multiple salmonid species or runs, provide the magnitude of the ecosystem improvement for each species or run separately.

Temperature improvements are the result of the conservation of water (primarily in Shasta Lake) facilitated by cooperative operations with Sites Reservoir. Under current conditions, end-of-September carryover storage in Shasta is increased by 4.7\% on average and up to 16.3% in Critical water years. Temperature improvements were estimated using Upper Sacramento River HEC5 model, the American River CE QUAL-W2 Model and SALMOD results (see Sites_A6D Modeling Results Compendium under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB).
The Project would increase coldwater pool conservation in Shasta Lake, Lake Oroville, and Folsom Lake and improve temperatures in the Sacramento and American Rivers during certain months at specific compliance points, particularly in Below Normal, Dry, and Critical water years. The areas of temperature improvement for these waterways are shown on Figures A2-1 and A2-2 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB.
Approximately 59 river miles of the Sacramento River would be improved with the implementation of the Sites Reservoir Project downstream from Keswick Dam (River Mile [RM] 302.0) to the Red Bluff Pumping Plant (RM 243.0; Figure 1). Sites Project operations emphasize providing Sacramento River cold water releases during the months of July through September

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 A	UST	
CAVEAT:		QA/QC:		REF/FILE \#:	WSIP A	ICATION	
NOTES:	ECOSYSTEM PRIORITIES A1			PAGE:	9	OF	61

Priority 1: Provide cold water at times and locations to increase the survival of salmonid eggs and fry.

when it's most difficult to achieve temperatures targets.
Temperature modeling results for current and 2030 conditions are provided Table A2-1 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB. The temperature reduction with the Project at Bend Bridge is $0.6^{\circ} \mathrm{F}$ in July through September for Critical water years in 2030, but improves to $1.4^{\circ} \mathrm{F}$ in 2070 . The reason these results fluctuate is primarily due to an increase in Shasta storage assumed in the 2070 WSIP model than to the effects of climate change (there is no indication that Reclamation will actually operate Shasta differently in 2070). This suggests that the temperature reduction benefits are relatively sustainable in this portion of the Sacramento River.

Fall-run, late fall-run, and winter-run Chinook salmon would greatly benefit from more suitable water temperatures in the Sacramento River below Keswick Dam and at Bonnyview Bridge, specifically during the egg incubation period in the month of September in critical water years.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the magnitude of the ecosystem improvement is described and quantified.
"Sacramento River Flows for Temperature Control," page 4 of the Performance Scorecard in Sites_A6D Modeling Results Compendium under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB

REV 3: Spatial and temporal scale of ecosystem improvements.

What is the geographical extent (e.g., river miles, acres) of the ecosystem improvement that will address this priority?
The spawning distribution of winter-run Chinook Salmon in the mainstem Sacramento River defines the spatial distribution of incubating eggs, alevins, and swim-up fry. Historical spawning data indicate that winter-run spawning occurred from Keswick Dam (RM 302.0) downstream to the site of Red Bluff Diversion Dam (RM 243.0), a distance of 59 river miles. More recent data, however, indicate that the spawning distribution has substantially changed. Aerial redd survey data on winter-run Chinook Salmon in-river spawning from 2003 to 2015 indicate that virtually all spawning occurs from Keswick Dam downstream to Clear Creek (RM 289.3), a short distance of only 12.7 miles (U.S. Bureau of Reclamation 2016, page 7). Over the 12-year monitoring period, 88.7 percent of redds were observed upstream of the State Route 44 Bridge (RM 296.5), only 5.5 miles downstream of Keswick Dam, and 11.3 percent were observed between the State Route 44 Bridge and Clear Creek. No redds were observed downstream of Clear Creek.
These data indicate that approximately 12.7 miles (rounded to 13 miles) of the Sacramento River downstream of Keswick Dam are used by winter-run Chinook Salmon for spawning and most spawning is concentrated in the uppermost approximately 5.5 miles (rounded to 6 miles) of the river downstream of Keswick Dam. Therefore, cold water is required for successful egg incubation and alevin rearing in approximately 13 miles of the Sacramento River downstream of Keswick Dam. Water temperatures with and without the Project were modeled and analyzed for this 13-mile river reach.

Egg incubation typically occurs between late April and mid-October and alevin rearing in spawning redds occurs between midJune through November for winter-run Chinook Salmon (Draft EIR/EIS, Appendix 12A, Table 12A-1, page 12A-3; National Marine Fisheries Service 2014, page 15). Incubation of pre-emergent fry (alevins) occurs from mid-June through November. The upper limit of the optimal range for water temperature during egg incubation is $56^{\circ} \mathrm{F}$ and for pre-emergent fry is $58^{\circ} \mathrm{F}$. At higher water temperatures, mortality of eggs and alevins begins to increase (Draft EIR/EIS, Appendix 12D, Table 12D-2, page 12D-5; Vogel 2015, Table 3, page 10).

Mean monthly modeled water temperatures in 2030 with and without the Project, using data from an 82-year simulation period, were examined within the mainstem Sacramento River from April through October for different water year types for various locations within the 26-mile reach downstream of Keswick Dam to the Balls Ferry (RM 276), given the optimum water temperature of $56^{\circ} \mathrm{F}$ for eggs and $58^{\circ} \mathrm{F}$ for alevins (CH 2 MHill River Temperature and Modeling Summary Tables and Bar Charts 2030). Note that the water temperature model used was the Upper Sacramento River HEC5 model. The estimated percent reduction in mortality due to thermal benefits of the Project to salmonid eggs and fry are reported and discussed in Sites_A2 Ecosystem Documentation.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) where the geographical extent of the ecosystem improvement is documented or mapped.
"Sacramento River Flows for Temperature Control," page 4 of the Performance Scorecard in Sites_A6D Modeling Results Compendium under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB; Ecosystem Priority 1 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB

When during the year will the project provide cold water for salmonid eggs and fry? How is the amount of cold water provided

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST
CAVEAT:		QAVQC:	REF/FILE \#:	WSIP APPLICATION	
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	10	OF

Priority 1: Provide cold water at times and locations to increase the survival of salmonid eggs and fry.
to salmonid eggs and fry likely to vary with hydrologic conditions (i.e., among water year types) a) under current conditions with and without the project, and b) in 2030 with and without the project?

If the ecosystem improvement will benefit multiple salmonid species or runs, provide the timing of ecosystem improvements for each species or run separately.

For the mainstem Sacramento River from Keswick Dam to Balls Ferry, the Project in 2030 will reduce the percentage of winterrun Chinook salmon egg and fry mortality in September and October of critically dry water years from 7 to 25 percent. The greatest temperature improvements to increase survival of salmonid eggs and fry will occur in dry and critical years, specifically. Temperature conditions are relatively unchanged in wet and above normal precipitation years.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the timing of ecosystem improvements that address this priority are described and quantified.

Ecosystem Priority 1 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB

Bell, M. C. 1991. Fisheries handbook of engineering requirements and biological criteria. Third edition. U.S., Army Corps of Engineers, Office of the Chief of Engineers, Fish Passage Development and Evaluation Program, North Pacific Division, Portland Oregon.

Carter, K. 2005. The Effects of Temperature on Steelhead Trout, Coho Salmon, and Chinook salmon Biology and Function by Life Stage. Implications for Klamath Basin TMDLs. California Regional Water Quality Control Board, North Coast Region August 2005. Available online at :
http://www.swrcb.ca.gov/northcoast/water issues/programs/tmdls/shasta river/060707/28appendixaetheeffectsoftemp eratureonsteelheadtroutcohosalmonandchinooksalmonbiologyandfunction.pdf

CDFW (California Department of Fish and Wildlife). 1998. A Status Review of the Spring-run Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento River Drainage. Report to the Fish and Game Commission. Candidate Species Status Report 98-01. June 1998. Available online at: http://www.swrcb.ca.gov/waterrights/water issues/programs/bay delta/deltaflow/docs/exhibits/nmfs/spprt docs/nmfs exh4 dfg report 98 1.pdf
CDFW (California Department of Fish and Wildlife). 2004. Sacramento River Spring-run Chinook Salmon. 2002-2003 Biennial Report, Prepared for the Fish and Game Commission by CDFW Habitat Conservation Division, Native Anadromous Fish and Watershed Branch, June 2004. Available online at: https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=3502\&inline
CDFW (California Department of Fish and Wildlife). 2015. Chinook Salmon Populations of the Upper Sacramento River Basin in 2015. Red Bluff Fisheries Office Technical Report No. 03-2016. Available online at: http://www.calfish.org/ProgramsData/ConservationandManagement/CDFWUpperSacRiverBasinSalmonidMonitoring.aspx
CDFW (California Department of Fish and Wildlife). 2017. GrandTab: California Central Valley Chinook Population Database Report. CDFW, Fisheries Branch, Anadromous Resources Assessment, California Central Valley, Sacramento and San Joaquin River Systems, Chinook Salmon Escapement, Hatcheries and Natural Areas. Available online at: https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=84381\&inline=1

CDFW (California Department of Fish and Wildlife). 2017. Central Valley Steelhead Monitoring. Information about the monitoring can be found at: https://www.wildlife.ca.gov/Drought/Projects/Central-Valley-Steelhead
McEwan, D. and T. A. Jackson. 1996. Steelhead Restoration and management Plan for California. State of California, The Resources Agency Department of Fish and Game. Available online at:
https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=3490
Moyle, P. B. 2002. Salmon and Trout, Salmonidae - Chinook Salmon (Oncorhynchus tshawytscha) in Inland Fishes of California University of California Press, Berkeley California.
REV 4: Inclusion of an adaptive management and monitoring program that includes measurable objectives, performance measures, thresholds, and triggers to achieve ecosystem benefits.
Provide additional information on how this ecosystem improvement will be incorporated into the adaptive management and monitoring program. If available, provide examples of objectives, performance measures, thresholds, or triggers that could be used to manage benefits associated with this priority.

After completion of Sites Reservoir, winter-run, spring-run, fall-run, and late fall-run Chinook salmon and steelhead are expected to begin rebuilding with the assumption that the environment stays constant.
Measurable objectives include temperatures in the upper reaches of the Sacramento River. Temperature data could be

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST
CAVEAT:		QA/QC:	REF/FILE \#:	WSIP APPLICATION	
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	11	OF

Priority 1: Provide cold water at times and locations to increase the survival of salmonid eggs and fry.

provided through monitoring programs (e.g., Mainstem Sacramento River Mark-recapture Program, Upper Sacramento River Tributary Escapement Monitoring, Sacramento River Tributary Mark-Recapture Monitoring, Hatchery Broodstock and Angler Harvest Sampling) currently proposed by the California Department of Fish and Wildlife in the Sacramento River as well as existing Delta monitoring programs (e.g., Interagency Ecological Program, Delta Juvenile Fish Monitoring Program, Anadromous Fish Restoration Program). The Sites Project adaptive management program will leverage existing data and collaborate with established monitoring programs, where possible, to secure monitoring results to inform operational decisions. Performance measures will include the development of carryover storage targets, flow release schedules, and real-time adjustment of temperature control points.

REV 5: Immediacy of ecosystem improvement actions and realization of benefits

Immediacy of ecosystem improvement: Number of months from grant encumbrance until the proposed ecosystem improvement is completed (i.e., the expected timeframe until the improvement is implemented or construction is completed).

Initial benefits are expected in year 2028 (6 years after investment encumbrance for construction) at a lower level than when the Project is complete. Full benefits are expected in 2030 (8 years after investment encumbrance).

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the immediacy timeframe is described and quantified.

Sites_A3 Schedule under the FEASIBILITY AND IMPLEMENTATION RISK TAB.
Realization of ecosystem improvement: Number of months from the time the ecosystem improvement is completed (i.e. project is implemented or construction is complete), until the benefit associated with this priority can be observed (i.e. when measurable improvements can be observed and quantified)

Providing cooler water temperatures for steelhead spawning and improvements in all four runs of Chinook salmon in the Sacramento River could potentially be quantified approximately three to four years later (2033 to 2034) when 2030 cohort return to spawn. Improvement should be readily apparent by 2036 to 2038.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the realization timeframe is described and quantified.

NA

REV 6: Duration of ecosystem improvements

How long (number of years) after realization (as calculated under REV 5 above) is the ecosystem improvement expected to address this priority? Maximum is 100 years. Explain how this value was determined and whether the magnitude of the ecosystem improvement is anticipated to change over time.

Anticipated duration is 100 years. The magnitude is expected to change over time. The flows that will result in cooler water temperatures were determined using CALSIM modeling and HEC5 temperature model results provided for years 2030 and 2070.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the duration of the ecosystem improvement is described and quantified.

Sites_A5 Documentation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB

REV 7: Consistency with species recovery plans and strategies, initiatives, and conservation plans

Does the ecosystem improvement meet any goals or objectives established in existing species recovery plans, initiatives, or conservation plans including but not limited to the National Oceanic and Atmospheric Administration (NOAA) Fisheries Recovery Plan for Sacramento River winter-run Chinook salmon, Central Valley spring-run Chinook salmon, and Central Valley steelhead; State Wildlife Action Plan; Central Valley Joint Venture Implementation Plan, San Joaquin County Multi-Species Habitat Conservation Plan and Open Space Plan, Draft Solano Multi-Species Habitat Conservation Plan, East Contra Costa County Habitat Conservation Plan/Natural Community Conservation Plan, Draft Recovery Plan for the Giant Garter Snake, and California Water Action Plan? If so which goals, objectives, or actions will be met? Why?

The Project will address the following recovery plan action directly: Action SAR 1.4 Develop and implement a river flow management plan for the Sacramento River downstream of Shasta and Keswick dams that considers the effects of climate change and balances beneficial uses with the flow and water temperature needs of winter-run Chinook salmon, spring-run

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 A	UST	
CAVEAT:		QA/QC:		REF/FILE \#:	WSIP A	CATION	
NOTES:	ECOSYSTEM PRIORITIES A1			PAGE:	12	OF	61

Priority 1: Provide cold water at times and locations to increase the survival of salmonid eggs and fry.

Chinook salmon, and steelhead.
The ecosystem improvement is also consistent with three of the proposed actions listed in the Sacramento Valley Salmon Resiliency Strategy. These actions are: (1) increase productivity by improving spawning and incubation conditions (habitat and water quality); (2) increase productivity by increasing juvenile salmonid survival; and (3) support the full range of juvenile and adult migration conditions to maintain life history diversity. The Project will meet these actions by providing a more suitable temperature regime as well as increased flows and management of intake diversions to benefit salmonids in the Sacramento River below Keswick Dam. The Project will also enhance and improve the quality of Essential Fish Habitat (EFH) for Pacific Coast Salmon (all four runs of Chinook included; however steelhead is not part of EFH).

Additional locations in the application, supporting documentation or attachments (page number, table number, other) where the consistency with goals, objectives, or actions from recovery plans, initiative, or conservation plans are discussed.

Ecosystem Priority 1 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB
REV 8: Location of ecosystem improvements and connectivity to areas already being protected or managed for conservation values

Provide a map that shows the extent of the ecosystem improvement that will be address by this priority (e.g., river miles that meet the temperature benefits). Provide additional instructions or clarification to reviewers who will be viewing this map (i.e., describe the color and/or label that identifies the spatial extent of the ecosystem improvement). If available, also submit supporting electronic files such as a .kmz file or ArcGIS layer associated with the maps provided.

Figures A2-1 and A2-2 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB show the area of temperature improvement for the Sacramento River and the American River, respectively.

Explain why this location was selected. How is the location beneficial to the targeted species in the context of local environmental conditions and the target species' needs?

Locations are downstream from dams that have known salmonid populations downstream (Shasta, Oroville, and Folsom). Water from Sites Reservoir can be exchanged to develop more cold water storage behind these reservoirs. Downstream from each of these dams are salmonid species natal habitat.

Is the ecosystem improvement location adjacent to, or near, other areas already being protected or managed for conservation values? Explain the proximity of the ecosystem improvement to other areas already being protected or managed for conservation values and any hydrologic connectivity that may occur between these locations.

The Project-related ecosystem improvements are adjacent or hydrologically-connected to Turtle Bay Exploration Park East Bechelli and Anderson River Park.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe and quantify the spatial extent of the ecosystem improvement, the proximity of the ecosystem improvement to other areas already being protected or managed for conservation value, and the degree to which hydrologic connections (if any) occur between the ecosystem improvement and areas already being protected or managed for conservation value.

NA

REV 9: Efficient use of water to achieve multiple ecosystem benefits

How will water provided to address this priority be managed? Explain design efficiencies and operational strategies intended to maximize the efficiency of water allocated to ecosystem improvements that address this priority.

Water released for this priority will be subsequently contributed to Delta outflow requirements or will be recaptured using the Delevan Intake Pumping Plant and re-stored in Sites Ecosystem Enhancement Storage Account (EESA) storage. The re-stored water could also be marketed to provide funds for operation and maintenance associated with the public benefits.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe the design efficiencies and operational strategies used to maximize water efficiency under this priority.

NA

| STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSION: | A |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| PURPOSE: | PHYSICAL PUBLIC BENEFITS | CHECKER: | N PONFERRADA | DATE: | 2017 AUGUST | |
| CAVEAT: | | QA/QC: | REF/FILE\#: | WSIP APPLICATION | | |
| NOTES: | ECOSYSTEM PRIORITIES A1 | | PAGE: | 13 | OF | 61 |

Priority 1: Provide cold water at times and locations to increase the survival of salmonid eggs and fry.

REV 10: Resilience of ecosystem improvements to the effects of changing environmental conditions, including hydrologic variability and climate change.

Which environmental uncertainties associated with this priority were considered in the project siting, design, and operation? How were these uncertainties incorporated into project siting, design, or operation? Examples of environmental uncertainties include, but are not limited to: sea level rise, temperature changes, changes in precipitation, landslides, erosion, earthquakes, wildfires, drought events, and flooding events.

The primary uncertainty is climate change. Results for years 2030 and 2070 were developed using the California Water Commission climate assumptions.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe and quantify the environmental uncertainties considered in the project siting, design, and operation.

Draft EIR/EIS - posted at (https://www.sitesproject.org/information/DraftEIR-EIS)
Null, S. E., and J. H. Viers. 2013. In bad waters: Water year classification in nonstationary climates, Water Resources Research, 49, doi:10.1002/wrcr. 20097.

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST
CAVEAT:		QAVQC:	REF/FILE \#:	WSIP APPLICATION	
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	14	OF

Ecosystem Priority 2

Priority 2: Provide flows to improve habitat conditions for in-river rearing and downstream migration of juvenile salmonids.

Species Information
What salmonid species are you targeting?
Winter-run Chinook salmon (Oncorhynchus tshawytscha; Sacramento River evolutionarily significant unit [ESU]); Spring-run Chinook salmon (O. tshawytscha; Central Valley ESU); Fall-run and Late fall-run Chinook salmon (O. tshawytscha; Central Valley ESU); steelhead (O. mykiss; Central Valley distinct population segment); and resident native rainbow trout (O. mykiss).

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the flow related habitat needs of each species are described.

Draft EIR/EIS - posted at (https://www.sitesproject.org/information/DraftEIR-EIS) Appendix 12A: Aquatic Species Life Histories:

- Sacramento River Winter-run Chinook salmon: page numbers: 12A-2 to 12A-9 Status, adult migration and holding, spawning and egg incubation, juvenile rearing and migration, and Delta and estuarine rearing; Table 12A-1 Life stage occurrence in the Sacramento River and Table 12A-2 Migration and timing at monitoring stations on the Sacramento River; Figure 12A-1 Current and historical distribution, and critical habitat designation.
- Central Valley Spring-run Chinook salmon: page numbers: 12A-9 to 12A-14 Status, adult migration and holding, spawning and egg incubation, juvenile rearing and migration, and Delta and estuarine rearing; Table 12A-1 Life stage occurrence in the Sacramento River and Table 12A-2 Migration and timing at monitoring stations on the Sacramento River; Figure 12A-2 Current and historical distribution, and critical habitat designation.
- Central Valley Fall-run and Late fall-run Chinook salmon: page numbers: 12A-15 to 12A-18 Status, adult migration and holding, spawning and egg incubation, juvenile rearing and migration, and Delta and estuarine rearing; Table 12A-1 Life stage occurrence in the Sacramento River and Table 12A-2 Migration and timing at monitoring stations on the Sacramento River; Figure 12A-3 Current and historical distribution.
- Central Valley steelhead: page numbers: 12A-19 to 12A-24 Status, adult migration and holding, spawning and egg incubation, juvenile rearing and migration, and Delta and estuarine rearing; Table 12A-1 Life stage occurrence in the Sacramento River; Figure 12A-4 Current and historical distribution, and critical habitat designation.

The Draft EIR/EIS has a different without Project conditions and operation than was used for WSIP; however, there is discussion in the Draft EIR/EIS Appendix 12C: Fisheries Impacts Summary concerning thermal and flow-related benefits to fish: Sacramento River Winter-run Chinook salmon, pages 12C-116 to 12C-117; Spring-run Chinook salmon, pages 12C-117 to 12C-118; Fall-run Chinook salmon, pages 12C-118 to 12C-119; Late fall-run Chinook salmon, pages 12C-119 to 12C-120; and Steelhead, pages 12C-120 to 12C-121.

REV 2: Magnitude of ecosystem improvements

What is the expected magnitude of the ecosystem improvement that will address this priority? Magnitude should be expressed as: a) the change from current conditions without the project to current conditions with the project, and b) the change from 2030 conditions without the project to 2030 conditions with the project. How did you estimate this value?
If the ecosystem improvement will benefit multiple salmonid species or runs, provide the magnitude of the ecosystem improvement for each species or run separately.

Water conserved in Shasta Lake would be released to augment flows in the Sacramento River between Keswick Dam and the Red Bluff Pumping Plant. More suitable flow would result in improved conditions for rearing juvenile salmonid species, particularly Fall-run and Late fall-run Chinook salmon. The increase in flows downstream from Keswick Dam (November through February) over the without Project conditions range from an average of 338 cubic feet per second (cfs) under current conditions to 209 cfs in 2030 to 93 cfs in 2070. The greatest benefits occur during dry years (Table A2-4 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB). This flow augmentation was estimated using the WSIP-provided CALSIM model. SALMOD results show principal benefits to Fall and Late-fall run Chinook salmon (Table A2-5 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB). Although not included in the SALMOD model runs, juvenile winter-run Chinook salmon also rear in and migrate through the Sacramento River system between July and March (Draft EIR/EIS: Appendix 12A: Aquatic Species Life Histories: Table 12A-1 Life stage occurrence in the Sacramento River) and would therefore benefit from the flow augmentation associated with the Project.

Additional locations in the application, supporting documentation or attachments (document name, page number, table

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST	
CAVEAT:		QAVQ:	REF/FILE \#:	WSIP APPLICATION		
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	15	OF	61

Priority 2: Provide flows to improve habitat conditions for in-river rearing and downstream migration of juvenile salmonids. number, other) where the magnitude of the ecosystem improvement is described and quantified.

Ecosystem Priority 2 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB; Sites_A6D Modeling Results Compendium under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB; Stabilize Sacramento River Fall Flows and Mitigation Measure Fish-1 in the Draft EIR/EIS Appendix 12C: Fisheries Impacts Summary.

REV 3: Spatial and temporal scale of ecosystem improvements.

What is the geographical extent (e.g., river miles, acres) of the ecosystem improvement that will address this priority?
Approximately 59 river-miles (RM) of the Sacramento River from Keswick Dam (RM 302.0) down to Red Bluff (RM 243.0) was modeled for current (2015) and 2030 conditions using SALMOD with and without the Project to identify and predict spatial and temporal improvements to habitat that can be quantified for suitability for in-river rearing and downstream migration of salmonids. The benefit to salmonid redds would occur in the uppermost part of mainstem Sacramento River since greater than 90 percent of spawning (specifically winter-run Chinook Salmon) occurs approximately 10.2 river miles between Keswick Dam and Bonnyview Bridge. There could be additional benefits to salmonids that may occur downstream of Red Bluff but this was not modeled; similarly, benefits are also expected in the Feather River downstream from Oroville Dam but this was also not modeled.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) where the geographical extent of the ecosystem improvement is documented or mapped.

Ecosystem Priority 2 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB; Increased Juvenile Production Compared to Without Project (SALMOD 2030)

When during the year will the project provide flows to improve habitat conditions for in-river rearing and downstream migration of juvenile salmonids? How are flows likely to vary with hydrologic conditions (i.e., among water year types) a) under current conditions with and without the project, and b) in 2030 with and without the project?
If the ecosystem improvement will benefit multiple salmonid species or runs, provide the timing of ecosystem improvements for each species or run separately.

Improved flows below Keswick Dam are provided from November through March with the greatest increase in November through February. Improved flows and additional water would improve habitat conditions for in-river rearing of Fall- and Late fall-runs of juvenile Chinook salmon and steelhead. Table A2-4 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB shows how flows would vary with water year types.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the timing of ecosystem improvements that address this priority are described and quantified.

Ecosystem Priority 2 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB
REV 4: Inclusion of an adaptive management and monitoring program that includes measurable objectives, performance measures, thresholds, and triggers to achieve ecosystem benefits.
Provide additional information on how this ecosystem improvement will be incorporated into the adaptive management and monitoring program. If available, provide examples of objectives, performance measures, thresholds, or triggers that could be used to manage benefits associated with this priority.

Chinook salmon are anadromous species that spend the majority of their adult life in the ocean before returning to their natal streams in 2 to 5 years (typical average of returning adult is 3 years). Monitoring for 12 years is recommended to assess increase in spawning by quantifying increasing trends of the first four consecutive cohorts. Monitoring would begin immediately after completion of Sites Reservoir. Winter-run, Spring-run, Fall-run, and Late fall-run Chinook salmon and steelhead are expected to begin rebuilding with the assumption that the environment stays constant.
Measurable objectives include flows delivered and outmigrant numbers. These objectives could be monitored using programs currently proposed by the California Department of Fish and Wildlife (e.g., Mainstem Sacramento River Mark-recapture Program, Upper Sacramento River Tributary Escapement Monitoring, Sacramento River Tributary Mark-Recapture Monitoring, Hatchery Broodstock and Angler Harvest Sampling). Existing Delta monitoring programs (e.g., Interagency Ecological Program, Delta Juvenile Fish Monitoring Program, Anadromous Fish Restoration Program) can also be incorporated in the adaptive management program for the Project. Performance measures include the timing of water releases from Shasta, Oroville, and Folsom to maximize benefits of the Project to salmonid fish species. The Sites Project adaptive management program will leverage existing data and collaborate with established monitoring programs, where possible, to secure monitoring results to

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST
CAVEAT:		QA/QC:	REF/FILE \#:	WSIP APPLICATION	
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	16	OF

Priority 2: Provide flows to improve habitat conditions for in-river rearing and downstream migration of juvenile salmonids.

inform operational decisions. Performance measures will include the development flow release schedules and real-time adjustment of flow control points.

REV 5: Immediacy of ecosystem improvement actions and realization of benefits

Immediacy of ecosystem improvement: Number of months from grant encumbrance until the proposed ecosystem improvement is completed (i.e., the expected timeframe until the improvement is implemented or construction is completed).

Initial benefits are expected in year 2028 (6 years after grant encumbrance for construction) at a lower level than when the Project is complete. Full benefits are expected in 2030 (8 years after grant encumbrance).

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the immediacy timeframe is described and quantified.

Sites_A3 Schedule under the FEASIBILITY AND IMPLEMENTATION RISK TAB.
Realization of ecosystem improvement: Number of months from the time the ecosystem improvement is completed (i.e. project is implemented or construction is complete), until the benefit associated with this priority can be observed (i.e. when measurable improvements can be observed and quantified)

Providing cooler water temperatures for steelhead spawning, improvements in Fall- and Late fall-runs of Chinook salmon in the Sacramento River could potentially be quantified approximately three to four years later (2033 to 2034) when 2030 cohort return to spawn. Improvement should be readily apparent by 2036 to 2038.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the realization timeframe is described and quantified.

NA

REV 6: Duration of ecosystem improvements

How long (number of years) after realization (as calculated under REV 5 above) is the ecosystem improvement expected to address this priority? Maximum is 100 years. Explain how this value was determined and whether the magnitude of the ecosystem improvement is anticipated to change over time.

Anticipated duration is 100 years. The magnitude of flow augmentation is expected to change over time. The flows were determined using CALSIM modeling. Compared to current conditions, the long-term average flow will increase by 228 thousand acre feet (TAF) by 2030 and by 157 TAF by 2070.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the duration of the ecosystem improvement is described and quantified.

Sites_A5 Documentation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB.

REV 7: Consistency with species recovery plans and strategies, initiatives, and conservation plans

Does the ecosystem improvement meet any goals or objectives established in existing species recovery plans, initiatives, or conservation plans including but not limited to the NOAA Fisheries Recovery Plan for Sacramento River winter-run Chinook salmon, Central Valley spring-run Chinook salmon, and Central Valley steelhead; State Wildlife Action Plan; Central Valley Joint Venture Implementation Plan, San Joaquin County Multi-Species Habitat Conservation Plan and Open Space Plan, Draft Solano Multi-Species Habitat Conservation Plan, East Contra Costa County Habitat Conservation Plan/Natural Community Conservation Plan, Draft Recovery Plan for the Giant Garter Snake, and California Water Action Plan? If so which goals, objectives, or actions will be met? Why?

The Project will address the following recovery plan action directly: Action SAR 1.4 Develop and implement a river flow management plan for the Sacramento River downstream of Shasta and Keswick dams that considers the effects of climate change and balances beneficial uses with the flow and water temperature needs of winter-run Chinook salmon, spring-run Chinook salmon, and steelhead.
The ecosystem improvement is also consistent with three of the proposed actions listed in the Sacramento Valley Salmon Resiliency Strategy. These actions are: (1) increase productivity by improving spawning and incubation conditions (habitat and water quality); (2) increase productivity by increasing juvenile salmonid survival; and (3) support the full range of juvenile and adult migration conditions to maintain life history diversity. The Project will meet these actions by providing increased flows

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST
CAVEAT:		QAVQ:	REF/FILE \#:	WSIP APPLICATION	
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	17	OF

Priority 2: Provide flows to improve habitat conditions for in-river rearing and downstream migration of juvenile salmonids.

and management of intake diversions to benefit salmonids in the Sacramento River below Keswick Dam. The Project will also enhance and improve the quality of Essential Fish Habitat (EFH) for Pacific Coast Salmon (all four runs of Chinook included; however steelhead is not part of EFH).

Additional locations in the application, supporting documentation or attachments (page number, table number, other) where the consistency with goals, objectives, or actions from recovery plans, initiative, or conservation plans are discussed.

Ecosystem Priority 1 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB
NMFS. 2014. California Central Valley Salmon \& Steelhead Recovery Plan. Available online at:
http://www.westcoast.fisheries.noaa.gov/protected species/salmon steelhead/recovery planning and implementation/ california central valley/california central valley recovery plan documents.html

58 FR 33212. Endangered and Threatened Species: Winter-run Chinook Salmon. Final Rule, Vol. 58, No. 114. Federal Register 33212. Wednesday, June 16, 1993, Rules and Regulations. Available online at:
http://ecos.fws.gov/docs/federal register/fr2311.pdf
70 FR 52488. Endangered and Threatened Species: Designation of Critical Habitat for Seven Evolutionarily Significant Units of Pacific Salmon and Steelhead in California. Final Rule, Vol. 70, No. 170. Federal Register 52488. Friday, September 2, 2005, Rules and Regulations. Available online at: http://www.fws.gov/carlsbad/SpeciesStatusList/CH/20050902 fch SCSH.pdf

REV 8: Location of ecosystem improvements and connectivity to areas already being protected or managed for conservation values

Provide a map that shows the extent of the ecosystem improvement that will address this priority (e.g. river miles that meet the temperature benefits). Provide additional instructions or clarification to reviewers who will be viewing this map (i.e. describe the color and/or label that identifies the spatial extent of the ecosystem improvement). If available, also submit supporting electronic files such as a .kmz file or ArcGIS layer associated with the maps provided.

Figures A2-1 and A2-2 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB show the area of temperature improvement for the Sacramento River and the American River, respectively.

Explain why this location was selected. How is the location beneficial to the targeted species in the context of local environmental conditions and the target species' needs?

Locations are downstream from dams that have known salmonid populations downstream (Shasta, Oroville, and Folsom). Water from Sites Reservoir can be exchanged to develop more storage behind these reservoirs. Downstream from each of these dams are salmonid species natal habitat.

Is the ecosystem improvement location adjacent to, or near, other areas already being protected or managed for conservation values? Explain the proximity of the ecosystem improvement to other areas already being protected or managed for conservation values and any hydrologic connectivity that may occur between these locations.

Rivers below Dams (Keswick, Oroville, Folsom) are managed to maintain habitat for fish populations. Water from the Sites Project can be exchanged with water in the reservoir to enhance the reservoir operators' ability to provide quality habitat.
Location of the ecosystem improvement are adjacent to conservation areas or are hydrologically connected to Sacramento River Wildlife Area, Nimbus and American River Hatcheries, American River Parkway, and Colusa-Sacramento River State Recreation Area.

Are the flows provided physically accessible by the targeted species in all year types? If not, explain barriers that may exist between the targeted species and ecosystem improvements.

Flows would be physically accessible in all water year types (greater in above normal, below normal, and dry years). There would be no barriers between the targeted species and ecosystem improvements.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe and quantify the spatial extent of the ecosystem improvement, the proximity of the ecosystem improvement to other areas already being protected or managed for conservation value, and the degree to which hydrologic connections (if any) occur between the ecosystem improvement and areas already being protected or managed for conservation value.

Draft EIR/EIS Appendix 12A; Ecosystem Priority 2 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST	
CAVEAT:		QAQC:	REF/FILE \#:	WSIP APPLICATION		
NOTES:	ECOSYSTEM PRIORITIES A1			PAGE:	18	OF

Priority 2: Provide flows to improve habitat conditions for in-river rearing and downstream migration of juvenile salmonids.
TAB

REV 9: Efficient use of water to achieve multiple ecosystem benefits

How will water provided to address this priority be managed? Explain design efficiencies and operational strategies intended to maximize the efficiency of water allocated to ecosystem improvements that address this priority.

Water released for this purpose will be subsequently released as Delta outflow or be recaptured using the Delevan Intake Pumping Plant and stored in Sites Ecosystem Enhancement Storage Account (EESA) storage. It could also be marketed to cover long-term operations and maintenance costs associated with public benefits.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe the design efficiencies and operational strategies used to maximize water efficiency under this priority.

NA
REV 10: Resilience of ecosystem improvements to the effects of changing environmental conditions, including hydrologic variability and climate change.

Which environmental uncertainties associated with this priority were considered in the project siting, design, and operation? How were these uncertainties incorporated into project siting, design, or operation? Examples of environmental uncertainties include, but are not limited to: sea level rise, temperature changes, changes in precipitation, landslides, erosion, earthquakes, wildfires, drought events, and flooding events.

The primary uncertainty is climate change. Results for years 2030 and 2070 were developed using the California Water Commission climate assumptions.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe and quantify the environmental uncertainties considered in the project siting, design, and operation.

Draft EIR/EIS - posted at (https://www.sitesproject.org/information/DraftEIR-EIS)
Null, S. E., and J. H. Viers. 2013. In bad waters: Water year classification in nonstationary climates, Water Resources Research, 49, doi:10.1002/wrcr. 20097.

| STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSION: | A |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| PURPOSE: | PHYSICAL PUBLIC BENEFITS | CHECKER: | N PONFERRADA | DATE: | 2017 AUGUST | |
| CAVEAT: | | QAVQC: | REF/FILE\#: | WSIP APPLICATION | | |
| NOTES: | ECOSYSTEM PRIORITIES A1 | | PAGE: | 19 | OF | 61 |

Ecosystem Priority 3

Priority 3: Maintain flows and appropriate ramping rates at times and locations that will minimize dewatering of salmonid redds and prevent stranding of juvenile salmonids in side channel habitat

Species Information

What salmonid species are you targeting?
Winter-run Chinook salmon (O. tshawytscha; Sacramento River evolutionarily significant unit [ESU]); Spring-run Chinook salmon (O. tshawytscha; Central Valley ESU); Fall-run and Late fall-run Chinook salmon (O. tshawytscha; Central Valley ESU); steelhead (O. mykiss; Central Valley distinct population segment); and resident native rainbow trout (O. mykiss).

Exact location (document name, page number, table number, other) where the flow and ramping rates needed for this species are described.

Draft EIR/EIS (https://www.sitesproject.org/information/DraftEIR-EIS) Appendix 12A: Aquatic Species Life Histories:

- Sacramento River Winter-run Chinook salmon: page numbers: 12A-2 to 12A-9 Status, adult migration and holding, spawning and egg incubation, juvenile rearing and migration, and Delta and estuarine rearing; Table 12A-1 Life stage occurrence in the Sacramento River and Table 12A-2 Migration and timing at monitoring stations on the Sacramento River; Figure 12A-1 Current and historical distribution, and critical habitat designation.
- Central Valley Spring-run Chinook salmon: page numbers: 12A-9 to 12A-14 Status, adult migration and holding, spawning and egg incubation, juvenile rearing and migration, and Delta and estuarine rearing; Table 12A-1 Life stage occurrence in the Sacramento River and Table 12A-2 Migration and timing at monitoring stations on the Sacramento River; Figure 12A-2 Current and historical distribution, and critical habitat designation.
- Central Valley Fall-run and Late fall-run Chinook salmon: page numbers: 12A-15 to 12A-18 Status, adult migration and holding, spawning and egg incubation, juvenile rearing and migration, and Delta and estuarine rearing; Table 12A-1 Life stage occurrence in the Sacramento River and Table 12A-2 Migration and timing at monitoring stations on the Sacramento River; Figure 12A-3 Current and historical distribution.
- Central Valley steelhead: page numbers: 12A-19 to 12A-24 Status, adult migration and holding, spawning and egg incubation, juvenile rearing and migration, and Delta and estuarine rearing; Table 12A-1 Life stage occurrence in the Sacramento River; Figure 12A-4 Current and historical distribution, and critical habitat designation.

The Draft EIR/EIS has a different without Project condition and operation than was used for Water Storage Investment Program (WSIP); however, there is discussion in the Draft EIR/EIS Appendix 12C: Fisheries Impacts Summary concerning thermal and flow-related benefits to fish: Sacramento River Winter-run Chinook salmon, pages 12C-116 to 12C-117; Spring-run Chinook salmon, pages 12C-117 to 12C-118; Fall-run Chinook salmon, pages 12C-118 to 12C-119; Late fall-run Chinook salmon, pages 12C-119 to 12C-120; and Steelhead, pages 12C-120 to 12C-121.

REV 2: Magnitude of ecosystem improvements

What is the expected magnitude of the ecosystem improvement that will address this priority? Magnitude should be expressed as: a) the change from current conditions without the project to current conditions with the project, and b) the change from 2030 conditions without the project to 2030 conditions with the project. How did you estimate this value?

If the ecosystem improvement will benefit multiple salmonid species or runs, provide the magnitude of the ecosystem improvement for each species or run separately.

Flow releases of coldwater stored in Shasta Reservoir would provide an overall benefit to Chinook salmon eggs in redds and juveniles rearing in side channel habitats in the Sacramento River between Keswick Dam and Battle Creek. These increased flow releases will be beneficial during egg incubation by preventing dewatering of redds and juvenile stranding while rearing in side channel habitats.
Water conserved in Shasta Lake (by exchange for deliveries made from water stored in Sites Reservoir) would be released to augment flows in the Sacramento River between Keswick Dam and the Red Bluff Pumping Plant. More suitable flow would result in improved conditions for rearing juvenile salmonid species, particularly Fall-run and Late fall-run Chinook salmon. The increase in flows downstream from Keswick Dam (November through February) over the without Project conditions range from an average of 338 cubic feet per second (cfs) under current conditions to 209 cfs in 2030 to 93 cfs in 2070. The greatest benefits occur during dry years (Table A2-4 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB). This flow augmentation was estimated using the WSIP provided CALSIM model. SALMOD results show principal benefits to Fall and Latefall run Chinook salmon (Table A2-5 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB).

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST
CAVEAT:		QAQC:	REF/FILE \#:	WSIP APPLICATION	
NOTES:	ECOSYSTEM PRIORITIESA1		PAGE:	20	OF

Priority 3: Maintain flows and appropriate ramping rates at times and locations that will minimize dewatering of salmonid redds and prevent stranding of juvenile salmonids in side channel habitat

Although not included in the SALMOD model runs, juvenile winter-run Chinook salmon also rear in and migrate through the Sacramento River system between July and March (Draft EIR/EIS: Appendix 12A: Aquatic Species Life Histories: Table 12A-1 Life stage occurrence in the Sacramento River) and would therefore benefit from the flow augmentation associated with the Project.
Similar to Shasta Reservoir operations, water conserved in Lake Oroville and Folsom Lake by exchange for deliveries from Sites Reservoir will also be released to benefit side channel habitat conditions for juvenile salmon in the Feather and American rivers.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the magnitude of the ecosystem improvement is described and quantified.

Ecosystem Priority 2 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB

REV 3: Spatial and temporal scale of ecosystem improvements.

What is the geographical extent (e.g. river miles, acres) of the ecosystem improvement that will address this priority?
Approximately 59 river-miles (RM) of the Sacramento River from Keswick Dam (RM 302.0) down to Red Bluff (RM 243.0) was modeled for current (2015) and 2030 conditions using SALMOD with and without the Project to identify and predict spatial and temporal improvements to habitat that can be quantified for suitability for in-river rearing and downstream migration of salmonids. The benefit to salmonid redds would occur in the uppermost part of mainstem Sacramento River since greater than 90 percent of spawning (specifically winter-run Chinook Salmon) occurs approximately 10.2 river miles between Keswick Dam and Bonnyview Bridge. There could potentially be additional benefits to salmonids that may occur downstream of Red Bluff but this was not modeled; similarly, benefits are also expected in the Feather River downstream from Oroville Dam but this was also not modeled.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) where the geographical extent of the ecosystem improvement is documented or mapped.

Ecosystem Priority 2 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB
When during the year will the project maintain flows and appropriate ramping rates to minimize dewatering of salmonid redds and prevent stranding of juvenile salmonids in side channel habitat? How are flows and ramping rates likely to vary with hydrological conditions (i.e., among water year types) a) under current conditions with and without the project, and b) in 2030 with and without the project?
If the ecosystem improvement will benefit multiple salmonid species or runs, provide the timing of ecosystem improvements for each species or run separately.

Improved flows below Keswick Dam are provided from November through March with the greatest increase in November through February. The average flows for dry years are higher than the long-term average, with increases of 9% under current conditions and 11.9% in 2030. These improved flows and additional water in 2030 would provide the greatest value by preventing redd dewatering during egg incubation of Fall-run, Late-fall-run, and Spring-run Chinook salmon and steelhead; and prevention of side channel ponding that could potentially strand all four runs of juvenile Chinook salmon and steelhead.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the timing of ecosystem improvements that address this priority are described and quantified.

Ecosystem Priority 2 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB

REV 4: Inclusion of an adaptive management and monitoring program that includes measurable objectives, performance measures, thresholds, and triggers to achieve ecosystem benefits.
Provide additional information on how this ecosystem improvement will be incorporated into the adaptive management and monitoring program. If available, provide examples of objectives, performance measures, thresholds, or triggers that could be used to manage benefits associated with this priority.

Chinook salmon are anadromous species that spend the majority of their adult life in the ocean before returning to their natal streams in 2 to 5 years (typical average of returning adult is 3 years). Monitoring for 12 years is recommended to assess increase in spawning by quantifying increasing trends of the first four consecutive cohorts. Monitoring would begin immediately after completion of Sites Reservoir. Winter-run, Spring-run, Fall-run, and Late fall-run Chinook salmon and

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST
CAVEAT:		QAQC:	REF/FILE \#:	WSIP APPLICATION	
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	21	OF

Priority 3: Maintain flows and appropriate ramping rates at times and locations that will minimize dewatering of salmonid redds and prevent stranding of juvenile salmonids in side channel habitat

steelhead are expected to begin rebuilding with the assumption that the environment stays constant.
Measurable objectives include flows delivered in the Upper Reaches of the Sacramento River. This objective could be monitored using programs currently proposed by the California Department of Fish and Wildlife (e.g., Mainstem Sacramento River Mark-recapture Program, Upper Sacramento River Tributary Escapement Monitoring, Sacramento River Tributary MarkRecapture Monitoring, Hatchery Broodstock and Angler Harvest Sampling). Existing Delta monitoring programs (e.g., Interagency Ecological Program, Delta Juvenile Fish Monitoring Program, Anadromous Fish Restoration Program) can also be incorporated in the adaptive management program for the Project. Performance measures include the timing water releases from Shasta, Oroville, and Folsom to maximize benefits of the Project to salmonid fish species.

REV 5: Immediacy of ecosystem improvement actions and realization of benefits

Immediacy of ecosystem improvement: Number of months from grant encumbrance until the proposed ecosystem improvement is completed (i.e. the expected timeframe until the improvement is implemented or construction is completed).

Initial benefits are expected in year 2028 (6 years after grant encumbrance for construction) at a lower level than when the Project is complete. Full benefits are expected in 2030 (8 years after grant encumbrance).

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the immediacy timeframe is described and quantified.

Sites_A3 Schedule under the FEASIBILITY AND IMPLEMENTATION RISK TAB.

Realization of ecosystem improvement: Number of months from the time the ecosystem improvement is completed (i.e. project is implemented or construction is complete), until the benefit associated with this priority can be observed (i.e. when measurable improvements can be observed and quantified)

Ecosystem improvement would occur after the first full spawning season (2030). The improvement in returning adult population of all four runs of Chinook salmon and steelhead would be seen approximately three to four years later (2033 to 2034) when 2030 cohort return to spawn.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the realization timeframe is described and quantified.

NA

REV 6: Duration of ecosystem improvements

How long (number of years) after realization (as calculated under REV 5 above) is the ecosystem improvement expected to address this priority? Maximum is 100 years. Explain how this value was determined and whether the magnitude of the ecosystem improvement is anticipated to change over time.

Anticipated duration is 100 years. The magnitude of flow augmentation is expected to change over time. The flows were determined using CALSIM modeling. Compared to current conditions, the long-term average flow will increase by 228 thousand acre feet (TAF) by 2030 and by 157 TAF by 2070.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the duration of the ecosystem improvement is described and quantified.

Sites_A5 Documentation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB

REV 7: Consistency with species recovery plans and strategies, initiatives, and conservation plans

Does the ecosystem improvement meet any goals or objectives established in existing species recovery plans, initiatives, or conservation plans including but not limited to the NOAA Fisheries Recovery Plan for Sacramento River winter-run Chinook salmon, Central Valley spring-run Chinook salmon, and Central Valley steelhead; State Wildlife Action Plan; Central Valley Joint Venture Implementation Plan, San Joaquin County Multi-Species Habitat Conservation Plan and Open Space Plan, Draft Solano Multi-Species Habitat Conservation Plan, East Contra Costa County Habitat Conservation Plan/Natural Community Conservation Plan, Draft Recovery Plan for the Giant Garter Snake, and California Water Action Plan? If so which goals, objectives, or actions will be met? Why?

The Project will address the following recovery plan action directly: Action SAR 1.4 Develop and implement a river flow

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST
CAVEAT:		QA/QC:	REF/FILE \#:	WSIP APPLICATION	
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	22	OF

Priority 3: Maintain flows and appropriate ramping rates at times and locations that will minimize dewatering of salmonid redds and prevent stranding of juvenile salmonids in side channel habitat

management plan for the Sacramento River downstream of Shasta and Keswick dams that considers the effects of climate change and balances beneficial uses with the flow and water temperature needs of winter-run Chinook salmon, spring-run Chinook salmon, and steelhead.

The ecosystem improvement is also consistent with three of the proposed actions listed in the Sacramento Valley Salmon Resiliency Strategy. These actions are: (1) increase productivity by improving spawning and incubation conditions (habitat and water quality); (2) increase productivity by increasing juvenile salmonid survival; and (3) support the full range of juvenile and adult migration conditions to maintain life history diversity. The Project will meet these actions by providing increased flows and management of intake diversions to benefit salmonids in the Sacramento River below Keswick Dam. The Project will also enhance and improve the quality of Essential Fish Habitat (EFH) for Pacific Coast Salmon (all four runs of Chinook included; however steelhead is not part of EFH).

Additional locations in the application, supporting documentation or attachments (page number, table number, other) where the consistency with goals, objectives, or actions from recovery plans, initiative, or conservation plans are discussed.

Ecosystem Priority 1 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB

NMFS. 2014a. California Central Valley Salmon \& Steelhead Recovery Plan. Available online at:
http://www.westcoast.fisheries.noaa.gov/protected species/salmon steelhead/recovery planning and implementation/ california central valley/california central valley recovery plan documents.html
58 FR 33212. Endangered and Threatened Species: Winter-run Chinook Salmon. Final Rule, Vol. 58, No. 114. Federal Register 33212. Wednesday, June 16, 1993, Rules and Regulations. Available online at:
http://ecos.fws.gov/docs/federal register/fr2311.pdf
70 FR 52488. Endangered and Threatened Species: Designation of Critical Habitat for Seven Evolutionarily Significant Units of Pacific Salmon and Steelhead in California. Final Rule, Vol. 70, No. 170. Federal Register 52488. Friday, September 2, 2005, Rules and Regulations. Available online at: http://www.fws.gov/carlsbad/SpeciesStatusList/CH/20050902 fch SCSH.pdf

REV 8: Location of ecosystem improvements and connectivity to areas already being protected or managed for conservation

 valuesProvide a map that shows the extent of the ecosystem improvement that will address this priority (e.g. river miles that meet the temperature benefits). Provide additional instructions or clarification to reviewers who will be viewing this map (i.e. describe the color and/or label that identifies the spatial extent of the ecosystem improvement). If available, also submit supporting electronic files such as a .kmz file or ArcGIS layer associated with the maps provided.

Figures A2-1 and A2-2 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB show the area of temperature improvement for the Sacramento River and the American River, respectively.

Explain why this location was selected. How is the location beneficial to the targeted species in the context of local environmental conditions and the target species' needs?

Locations are downstream from dams that have known salmonid populations downstream (Shasta, Oroville, and Folsom). Water from Sites Reservoir can be exchanged to develop more storage behind these reservoirs. Downstream from each of these dams are salmonid species natal habitat.

Is the ecosystem improvement location adjacent to, or near, other areas already being protected or managed for conservation values? Explain the proximity of the ecosystem improvement to other areas already being protected or managed for conservation values and any hydrologic connectivity that may occur between these locations.

Rivers below Dams (Keswick, Oroville, Folsom) are managed to maintain habitat for fish populations. Water from the Sites Project can be exchanged with water in the reservoir to enhance the reservoir operators' ability to provide quality habitat.
Locations of the ecosystem improvements are adjacent to conservation areas or are hydrologically connected to Sacramento River Wildlife Area, Nimbus and American River Hatcheries, and Colusa-Sacramento River State Recreation Area.

Are the flows provided physically accessible by the targeted species in all year types? If not, explain barriers that may exist between the targeted species and ecosystem improvements.

The augmented flows provided by the Project would be physically accessible in all water year types (greater in above normal, below normal, and dry years). There would be no barriers between the targeted species and ecosystem improvements.

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:
CAVEAT:		QAQC:	REF/FILE \#:	WSIP APPLICATION
NOTES:	ECOSYSTEM PRIORITIES A1			PAGE:

Priority 3: Maintain flows and appropriate ramping rates at times and locations that will minimize dewatering of salmonid redds and prevent stranding of juvenile salmonids in side channel habitat

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe and quantify the spatial extent of the ecosystem improvement, the proximity of the ecosystem improvement to other areas already being protected or managed for conservation value, and the degree to which hydrologic connections (if any) occur between the ecosystem improvement and areas already being protected or managed for conservation value.

Draft EIR/EIS Appendix 12A; Ecosystem Priority 2 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB

REV 9: Efficient use of water to achieve multiple ecosystem benefits

How will water provided to address this priority be managed? Explain design efficiencies and operational strategies intended to maximize the efficiency of water allocated to ecosystem improvements that address this priority.

Water released for this purpose will be subsequently released as Delta outflow or will be recaptured using the Delevan Intake Pumping and stored in Ecosystem Enhancement Storage Account (EESA) storage in Sites. It could also be marketed to cover long-term operations and maintenance costs associated with public benefits.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe the design efficiencies and operational strategies used to maximize water efficiency under this priority.

NA
REV 10: Resilience of ecosystem improvements to the effects of changing environmental conditions, including hydrologic variability and climate change.
Which environmental uncertainties associated with this priority were considered in the project siting, design, and operation? How were these uncertainties incorporated into project siting, design, or operation? Examples of environmental uncertainties include, but are not limited to: sea level rise, temperature changes, changes in precipitation, landslides, erosion, earthquakes, wildfires, drought events, and flooding events.

The primary uncertainty is climate change. Results for years 2030 and 2070 were developed using the California Water Commission climate assumptions.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe and quantify the environmental uncertainties considered in the project siting, design, and operation.

Draft EIR/EIS - posted at (https://www.sitesproject.org/information/DraftEIR-EIS)
Null, S. E., and J. H. Viers. 2013. In bad waters: Water year classification in nonstationary climates, Water Resources Research, 49, doi:10.1002/wrcr. 20097.

| STATUS: | FINAL | PREPARER: | J HERRIN | PHASE: | 1 | VERSION: | A |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PURPOSE: | PHYSICAL PUBLIC BENEFITS | CHECKER: | N PONFERRADA | DATE: | 2017 AUGUST | | |
| CAVEAT: | | QAVQ: | REF/FILE\#: | WSIP APPLICATION | | | |
| NOTES: | ECOSYSTEM PRIORITIES A1 | | PAGE: | 24 | OF | 61 | |

Ecosystem Priority 4

Priority 4: Improve ecosystem water quality

Constituent Information

What ecosystem water quality constituent(s) are you targeting?
Temperature: A physical water quality parameter important to survival of salmonid species. See Sites_A1 Water Quality Priority 1 under the PHYSICAL PUBLIC BENEFITS TAB for additional information on water quality targets for temperature.

Summarize how the proposed actions will improve the ecosystem water quality in relation to the target constituent.
The proposed action will provide more suitable temperatures during rearing and spawning months for targeted fish species in the mainstem of the Sacramento River below Keswick Dam by increasing storage and preserving the coldwater pool at Shasta Lake. For a summary of the benefits to salmonid eggs and fry due to thermal improvements of this project, see Table A2-3 in Ecosystem Priority 1 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB.

Does the proposed ecosystem water quality improvement benefit habitats or species life stages? How?
The proposed ecosystem water quality improvement (i.e., temperature) increases the quality of habitat for winter-run Chinook Salmon spawning adults to yield an increased percentage of egg and fry survival below Keswick Dam as described in Ecosystem Priority 1.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the chemistry, toxicity, and negative effects constituents are described (i.e. Material Safety Data Sheets).

EIR/EIS Appendix 12C: Fisheries Impact Summary; Figures A2-1 and A2-2 in Ecosystem Priority 1 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB; Sites_A1 Water Quality Priority 1 under the PHYSICAL PUBLIC BENEFITS TAB; Sites_A6D Modeling Results Compendium under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB

REV 2: Magnitude of ecosystem improvements

What is the expected magnitude of the ecosystem improvement that will address this priority? Magnitude should be expressed as: a) the change from current conditions without the project to current conditions with the project, and b) the change from 2030 conditions without the project to 2030 conditions with the project. How did you estimate this value?

If the project intends to benefit multiple constituents, the magnitude of the change in each constituent needs to be provided.
Temperature improvements are the result of the conservation of water (primarily in Shasta Lake). Under current conditions, end-of-September carryover storage in Shasta is increased by 4.7% on average and up to 16.3% in critical years. Temperature improvements were estimated using the Upper Sacramento River HEC5Q model and the American River CE QUAL-W2 Model (see Sites_A6D Modeling Results Compendium under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB).

The project would increase coldwater pool conservation in Shasta Lake, Lake Oroville, and Folsom Lake and improve temperatures in the Sacramento and American Rivers during certain months at specific compliance points, particularly in Below Normal, Dry, and Critical water years. The areas of temperature improvement for these waterways are shown on Figures A2-1 and A2-2 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB.
Approximately 59 river miles of the Sacramento River would be improved with the implementation of the Sites Reservoir Project downstream from Keswick Dam (River Mile 302) to the Red Bluff Pumping Plant (River Mile 243). Figure A2-1 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB shows the improvement area for the Sacramento River. Sites Project operations emphasize providing Sacramento River cold water releases during the months of July through September when it's most difficult to achieve temperatures targets.

Temperature modeling results show improvement for current conditions and 2030 (see Table A2-1 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB).

The temperature reduction with the Project at Bend Bridge is $0.6^{\circ} \mathrm{F}$ in July through September for critical years) in 2030, but improves to $1.4^{\circ} \mathrm{F}$ in 2070. The reason these results fluctuate is more due to an increase in Shasta storage assumed in the 2030 WSIP model than to the effects of climate change (there is no indication that Reclamation will actually operate Shasta differently in 2030). This suggests that the temperature reduction benefits are relatively sustainable in this portion of the Sacramento River.

Fall-run, late fall-run, and winter-run Chinook salmon would greatly benefit from more suitable water temperatures in the

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST	
CAVEAT:		QAVQ:	REF/FILE \#:	WSIP APPLICATION		
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	25	OF	61

Priority 4: Improve ecosystem water quality

Sacramento River below Keswick Dam and at Bonnyview Bridge specifically during egg incubation period in the month of September in critical years.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the magnitude of the ecosystem improvement is described and quantified.

Sites_A6D Modeling Results Compendium under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB
REV 3: Spatial and temporal scale of ecosystem improvements.
What is the geographical extent (e.g. river miles, acres) of the ecosystem improvement that will address this priority?
The spawning distribution of winter-run Chinook Salmon in the mainstem Sacramento River defines the spatial distribution of incubating eggs, alevins, and swim-up fry. Historical spawning data indicate that winter-run spawning occurred from Keswick Dam (River Mile [RM] 302.0) downstream to the site of Red Bluff Diversion Dam (RM 243.0), a distance of 59 miles. More recent data, however, indicate that the spawning distribution has substantially changed. Aerial redd survey data on winter-run Chinook Salmon in-river spawning from 2003 to 2015 indicate that virtually all spawning occurs from Keswick Dam downstream to Clear Creek (RM 289.3), a short distance of only 12.7 miles (U.S. Bureau of Reclamation 2016, page 7). Over the 12-year monitoring period 88.7 percent of redds were observed upstream of the State Route 44 Bridge (RM 296.5), only 5.5 miles downstream of Keswick Dam, and 11.3 percent were observed between the State Route 44 Bridge and Clear Creek. No redds were observed downstream of Clear Creek.

These data indicate that approximately 12.7 miles (rounded to 13 miles) of the Sacramento River downstream of Keswick Dam are used by winter-run for spawning and most spawning is concentrated in the uppermost approximately 5.5 miles (rounded to 6 miles) of the river downstream of Keswick Dam. Therefore, cold water is required for successful egg incubation and alevin rearing in approximately 13 miles of the Sacramento River downstream of Keswick Dam. Water temperatures with and without the proposed project can be modeled and analyzed for this 13-mile river reach.
Egg incubation typically occurs between late April and mid-October and alevin rearing in spawning redds occurs between midJune through November for winter run (Draft EIR/EIS, Appendix 12A, Table 12A-1, page 12A-3; National Marine Fisheries Service 2014, page 15). Incubation of pre-emergent fry (alevins) occurs from mid-June through November. The upper limit of the optimal range for water temperature during egg incubation is $56^{\circ} \mathrm{F}$ and for pre-emergent fry is $58^{\circ} \mathrm{F}$. At higher water temperatures mortality of eggs and alevins begins to increase (Draft EIR/EIS, Appendix 12D, Table 12D-2, page 12D-5; Vogel 2015, Table 3, page 10).

Mean monthly modeled water temperatures in 2030 with and without the project, using data from an 82-year simulation period, were examined within the mainstem Sacramento River from April through November for different water year types for various locations within the 26 -mile reach downstream of Keswick Dam to the Balls Ferry (RM 276), given the optimum water temperature of $56^{\circ} \mathrm{F}$ for eggs and $58^{\circ} \mathrm{F}$ for alevins (CH2MHill River Temperature and Modeling Summary Tables and Bar Charts 2030).

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) where the geographical extent of the ecosystem improvement is documented or mapped.

Figures A2-1 and A2-2 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB show the area of temperature improvement for the Sacramento River and the American River, respectively and River Temperature Modeling Summary Tables and Bar Charts

When during the year will ecosystem water quality improvements be provided? How is ecosystem water quality likely to vary with hydrologic conditions (i.e. among water year types) a) under current conditions with and without the project, and b) in 2030 with and without the project?
If the project intends to benefit multiple constituents, provide the timing of water quality improvements for each constituent separately.

For the mainstem Sacramento River from Keswick Dam to Clear Creek, the proposed project in 2030 will reduce the percentage of winter-run Chinook salmon egg and fry mortality in September and October of critically dry water years from 7 to 25 percent depending on location.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the timing of ecosystem water quality improvements are documented.

EIR/EIS Appendix 12C: Fisheries Impact Summary

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:
CAVEAT:		QA/QC:	REF/FILE \#:	WSIP APPLICATION
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	26

Priority 4: Improve ecosystem water quality

Ecosystem Priority 1 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB
Bell, M.C. 1991. Fisheries handbook of engineering requirements and biological criteria. Third edition. U.S., Army Corps of Engineers, Office of the Chief of Engineers, Fish Passage Development and Evaluation Program, North Pacific Division, Portland Oregon.
Carter, K. 2005. The Effects of Temperature on Steelhead Trout, Coho Salmon, and Chinook salmon Biology and Function by Life Stage. Implications for Klamath Basin TMDLs. California Regional Water Quality Control Board, North Coast Region August 2005. Available online at :
http://www.swrcb.ca.gov/northcoast/water issues/programs/tmdls/shasta river/060707/28appendixaetheeffectsoftemp eratureonsteelheadtroutcohosalmonandchinooksalmonbiologyandfunction.pdf
CDFW (California Department of Fish and Wildlife). 1998. A Status Review of the Spring-run Chinook Salmon (Oncorhynchus tshawytscha) in the Sacramento River Drainage. Report to the Fish and Game Commission. Candidate Species Status Report 98-01. June 1998. Available online at:
http://www.swrcb.ca.gov/waterrights/water issues/programs/bay delta/deltaflow/docs/exhibits/nmfs/spprt docs/nmfs exh4 dfg report 98 1.pdf
CDFW (California Department of Fish and Wildlife). 2004. Sacramento River Spring-run Chinook Salmon. 2002-2003 Biennial Report, Prepared for the Fish and Game Commission by CDFW Habitat Conservation Division, Native Anadromous Fish and Watershed Branch, June 2004. Available online at: https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=3502\&inline
CDFW (California Department of Fish and Wildlife). 2015. Chinook Salmon Populations of the Upper Sacramento River Basin in 2015. Red Bluff Fisheries Office Technical Report No. 03-2016. Available online at:
http://www.calfish.org/ProgramsData/ConservationandManagement/CDFWUpperSacRiverBasinSalmonidMonitoring.aspx
CDFW (California Department of Fish and Wildlife). 2017. GrandTab: California Central Valley Chinook Population Database Report. CDFW, Fisheries Branch, Anadromous Resources Assessment, California Central Valley, Sacramento and San Joaquin River Systems, Chinook Salmon Escapement, Hatcheries and Natural Areas. Available online at: https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=84381\&inline=1
CDFW (California Department of Fish and Wildlife). 2017. Central Valley Steelhead Monitoring. Information about the monitoring can be found at: https://www.wildlife.ca.gov/Drought/Projects/Central-Valley-Steelhead

McEwan, D. and T.A. Jackson. 1996. Steelhead Restoration and management Plan for California. State of California, The Resources Agency Department of Fish and Game. Available online at: https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=3490

Moyle, P.B. 2002. Salmon and Trout, Salmonidae - Chinook Salmon (Oncorhynchus tshawytscha) in Inland Fishes of California University of California Press, Berkeley California.

REV 4: Inclusion of an adaptive management and monitoring program that includes measurable objectives, performance measures, thresholds, and triggers to achieve ecosystem benefits.
Provide additional information on how this ecosystem improvement will be incorporated into the adaptive management and monitoring program. If available, provide examples of objectives, performance measures, thresholds, or triggers that could be used to manage benefits associated with this priority.

Since water temperatures have direct effects on salmon egg and fry survival; temperature monitoring between Keswick and Red Bluff would begin immediately after completion of Sites Reservoir as a measurable objective and performance measure. After completion of Sites Reservoir, winter-run, spring-run, fall-run, and late fall-run Chinook salmon; and steelhead are expected to begin rebuilding with the assumption that the environment stays constant.
Other measurable objectives include temperatures delivered and the use of information developed by the California Department of Fish and Wildlife monitoring programs in the Sacramento River (e.g., Mainstem Sacramento River Markrecapture Program, Upper Sacramento River Tributary Escapement Monitoring, Sacramento River Tributary Mark-Recapture Monitoring, Hatchery Broodstock and Angler Harvest Sampling). Existing Delta monitoring programs (e.g., Interagency Ecological Program, Delta Juvenile Fish Monitoring Program, Anadromous Fish Restoration Program). The Sites Project adaptive management program will leverage existing data and collaborate with established monitoring programs, where possible, to secure monitoring results to inform operational decisions. Performance measures will include the development of carryover storage targets, flow release schedules, and real-time adjustment of temperature control points.

REV 5: Immediacy of ecosystem improvement actions and realization of benefits

Immediacy of ecosystem improvement: Number of months from grant encumbrance until the proposed ecosystem

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST	
CAVEAT:		QAQC:	REF/FILE \#:	WSIP APPLICATION		
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	27	OF	61

Priority 4: Improve ecosystem water quality

improvement is completed (i.e. the expected timeframe until the improvement is implemented or construction is completed).
Initial benefits are expected in year 2028 (6 years after investment encumbrance for construction) at a lower level than when the project is complete. Full benefits are expected in 2030 (8 years after investment encumbrance).

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the immediacy timeframe is described and quantified.

Sites_A3 Schedule under the FEASIBILITY AND IMPLEMENTATION RISK TAB.
Realization of ecosystem improvement: Number of months from the time the ecosystem improvement is completed (i.e. project is implemented or construction is complete), until the benefit associated with this priority can be observed (i.e. when measurable improvements can be observed and quantified)

NA
Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the realization timeframe is described and quantified.

NA

REV 6: Duration of ecosystem improvements

How long (number of years) after realization (as calculated under REV 5 above) is the ecosystem improvement expected to address this priority? Maximum is 100 years. Explain how this value was determined and whether the magnitude of the ecosystem improvement is anticipated to change over time.

Anticipated duration is 100 years. The magnitude is expected to change over time. The flows were determined using CALSIM modeling and results are provided for years 2030 and 2070.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the duration of the ecosystem improvement is described and quantified.

Sites_A5 Documentation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB

REV 7: Consistency with species recovery plans and strategies, initiatives, and conservation plans

Does the ecosystem improvement meet any goals or objectives established in existing species recovery plans, initiatives, or conservation plans including but not limited to the NOAA Fisheries Recovery Plan for Sacramento River winter-run Chinook salmon, Central Valley spring-run Chinook salmon, and Central Valley steelhead; State Wildlife Action Plan; Central Valley Joint Venture Implementation Plan, San Joaquin County Multi-Species Habitat Conservation Plan and Open Space Plan, Draft Solano Multi-Species Habitat Conservation Plan, East Contra Costa County Habitat Conservation Plan/Natural Community Conservation Plan, Draft Recovery Plan for the Giant Garter Snake, and California Water Action Plan? If so which goals, objectives, or actions will be met? Why?

It addresses the following recovery plan action directly: Action SAR 1.4 Develop and implement a river flow management plan for the Sacramento River downstream of Shasta and Keswick dams that considers the effects of climate change and balances beneficial uses with the flow and water temperature needs of winter-run Chinook salmon, spring-run Chinook salmon, and steelhead.
The ecosystem improvement is also consistent with three of the proposed actions listed in the Sacramento Valley Salmon Resiliency Strategy. These actions are: (1) increase productivity by improving spawning and incubation conditions (habitat and water quality); (2) increase productivity by increasing juvenile salmonid survival; and (3) support the full range of juvenile and adult migration conditions to maintain life history diversity. The project will meet these actions by providing increased flows and management of intake diversions to benefit salmonids in the Sacramento River below Keswick Dam. The project will also enhance and improve the quality of Essential Fish Habitat (EFH) for Pacific Coast Salmon (all four runs of Chinook included; however steelhead is not part of EFH).

Additional locations in the application, supporting documentation or attachments (page number, table number, other) where the consistency with goals, objectives, or actions from recovery plans, initiative, or conservation plans are discussed.

Ecosystem Priority 1 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST
CAVEAT:		QAQQ:	REF/FILE \#:	WSIP APPLICATION	
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	28	OF

Priority 4: Improve ecosystem water quality

REV 8: Location of ecosystem improvements and connectivity to areas already being protected or managed for conservation values

Provide a map that shows the extent of the ecosystem improvement that will address this priority (e.g. river miles that meet the temperature benefits). Provide additional instructions or clarification to reviewers who will be viewing this map (i.e. describe the color and/or label that identifies the spatial extent of the ecosystem improvement). If available, also submit supporting electronic files such as a .kmz file or ArcGIS layer associated with the maps provided.

Figures A2-1 and A2-2 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB show the area of temperature improvement for the Sacramento River and the American River, respectively.

Explain why this location was selected in the context of local environmental conditions and the target constituent(s). Why was this location selected over other potential locations?

Locations are downstream from dams that have known salmonid populations downstream (Shasta, Oroville, and Folsom). Water from Sites Reservoir can be exchanged to develop more storage behind these reservoirs. Downstream from each of these dams are salmonid species natal habitat.

Is the ecosystem water quality improvement location adjacent to, or near, other areas already being protected or managed for conservation values? Explain the proximity of the ecosystem water quality improvement to other areas already being protected or managed for conservation values and any hydrologic connectivity that may occur between these locations.

The Project-related ecosystem improvements are adjacent or hydrologically-connected to Turtle Bay Exploration Park East Bechelli and Anderson River Park. Location of the ecosystem improvement are adjacent to conservation areas or are hydrologically connected to Sacramento River Wildlife Area, Nimbus and American River Hatcheries, American River Parkway Effie Yeaw Nature Center, and Colusa-Sacramento River State Recreation Area.

Additional locations in the application (document name, page number, figure name or number, other) that describe the extent of the ecosystem water quality improvements, the proximity of claimed improvements to other areas already being protected or managed for conservation value, and the degree to which hydrologic connections (if any) occur between claimed improvements and areas already being protected or managed for conservation value.

NA
REV 9: Efficient use of water to achieve multiple ecosystem benefits
If applicable, how will water provided to address this priority be managed? Explain design efficiencies and operational strategies intended to maximize the efficiency of water allocated to ecosystem improvements that address this priority.

Water released for this purpose will be subsequently released out the Delta or will be recaptured using the Delevan Intake Pumping Plant and stored in Sites EESA storage. It could also be marketed to provide funds for operation and maintenance associated with the public benefits.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe the design efficiencies and operational strategies used to maximize water efficiency under this priority.

Ecosystem Priority 1 in Sites_A2_Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB
REV 10: Resilience of ecosystem improvements to the effects of changing environmental conditions, including hydrologic variability and climate change.
Which environmental uncertainties associated with this priority were considered in the project siting, design, and operation? How were these uncertainties incorporated into project siting, design, or operation? Examples of environmental uncertainties include, but are not limited to: sea level rise, temperature changes, changes in precipitation, landslides, erosion, earthquakes, wildfires, drought events, and flooding events.

The primary uncertainty is climate change. Results for years 2030 and 2070 using the California Water Commission climate assumptions.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe and quantify the environmental uncertainties considered in the project siting, design, and

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST
CAVEAT:		QA/QC:	REF/FILE \#:	WSIP APPLICATION	
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	29	OF

Priority 4: Improve ecosystem water quality

operation.

Draft EIR/EIS - posted at (https://www.sitesproject.org/information/DraftEIR-EIS)
Null, S. E., and J. H. Viers. 2013. In bad waters: Water year classification in nonstationary climates, Water Resources Research, 49, doi:10.1002/wrcr. 20097.

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST
CAVEAT:		QA/QC:	REF/FILE \#:	WSIP APPLICATION	
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	30	OF

Ecosystem Priority 5

Priority 5: Provide flows that increase dissolved oxygen and lower water temperatures to support anadromous fish passage
Species Information
What anadromous fish species are you targeting?
Winter-run Chinook salmon (O. tshawytscha; Sacramento River evolutionarily significant unit [ESU]); Spring-run Chinook salmon (O. tshawytscha; Central Valley ESU); Fall-run and Late fall-run Chinook salmon (O. tshawytscha; Central Valley ESU); steelhead (O. mykiss; Central Valley distinct population segment); resident native rainbow trout (O. mykiss), and other California native fish species.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the flow and dissolved oxygen needs of this species are described.

Draft EIR/EIS (http://www.sitesproject.org/information/DraftEIR-EIS) Appendix 12A: Aquatic Species Life Histories:

- Sacramento River Winter-run Chinook salmon: page numbers: 12A-2 to 12A-9 Status, adult migration and holding, spawning and egg incubation, juvenile rearing and migration, and Delta and estuarine rearing; Table 12A-1 Life stage occurrence in the Sacramento River and Table 12A-2 Migration and timing at monitoring stations on the Sacramento River; Figure 12A-1 Current and historical distribution, and critical habitat designation.
- Central Valley Spring-run Chinook salmon: page numbers: 12A-9 to 12A-14 Status, adult migration and holding, spawning and egg incubation, juvenile rearing and migration, and Delta and estuarine rearing; Table 12A-1 Life stage occurrence in the Sacramento River and Table 12A-2 Migration and timing at monitoring stations on the Sacramento River; Figure 12A-2 Current and historical distribution, and critical habitat designation.
- Central Valley Fall-run and Late fall-run Chinook salmon: page numbers: 12A-15 to 12A-18 Status, adult migration and holding, spawning and egg incubation, juvenile rearing and migration, and Delta and estuarine rearing; Table 12A-1 Life stage occurrence in the Sacramento River and Table 12A-2 Migration and timing at monitoring stations on the Sacramento River; Figure 12A-3 Current and historical distribution.
- Central Valley steelhead: page numbers: 12A-19 to 12A-24 Status, adult migration and holding, spawning and egg incubation, juvenile rearing and migration, and Delta and estuarine rearing; Table 12A-1 Life stage occurrence in the Sacramento River; Figure 12A-4 Current and historical distribution, and critical habitat designation.

The Draft EIR/EIS has a different without Project conditions and operation than was used for WSIP; however, there is discussion in the Draft EIR/EIS Appendix 12C: Fisheries Impacts Summary concerning thermal and flow-related benefits to fish: Sacramento River Winter-run Chinook salmon, pages 12C-116 to 12C-117; Spring-run Chinook salmon, pages 12C-117 to 12C-118; Fall-run Chinook salmon, pages 12C-118 to 12C-119; Late fall-run Chinook salmon, pages 12C-119 to 12C-120; and Steelhead, pages 12C-120 to 12C-121.

REV 2: Magnitude of ecosystem improvements

What is the expected magnitude of the ecosystem improvement that will address this priority? Magnitude should be expressed as: a) the change from current conditions without the project to current conditions with the project, and b) the change from 2030 conditions without the project to 2030 conditions with the project. How did you estimate this value?

If the project will benefit multiple anadromous fish species, the magnitude of the ecosystem improvement for each species needs to be provided.

Temperature improvements were estimated using Upper Sacramento River HEC5Q model and the American RiverCE QUAL-W2 Model, Long-term average temperatures generally dropped from $0.1^{\circ} \mathrm{F}$ to $0.5^{\circ} \mathrm{F}$ between Keswick Dam and Bend Bridge.

The proposed project's improved flow management will promote more suitable water temperatures and provide an increased dissolved oxygen levels for rearing juvenile Winter-run, Fall-run, and Late fall-run Chinook salmon in the mainstem of the Sacramento River below Keswick Dam by increasing the coldwater pool at Shasta Lake.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the magnitude of the ecosystem improvement is described and quantified.

Ecosystem Priority 1 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST	
CAVEAT:		QAVC:	REF/FILE \#:	WSIP APPLICATION		
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	31	OF	61

Priority 5: Provide flows that increase dissolved oxygen and lower water temperatures to support anadromous fish passage

REV 3: Spatial and temporal scale of ecosystem improvements.

What is the geographical extent (e.g., river miles, acres) of the ecosystem improvement that will address this priority?
An approximately 59 river-miles (RM) of the Sacramento River from Keswick Dam (RM 302.0) down to Red Bluff (RM 243.0) was modeled for current (2015) and 2030 conditions using SALMOD with and without the project to identify and predict spatial and temporal improvements to habitat that can be quantified for suitability for in-river rearing and downstream migration of salmonids. The benefit to salmonid redds would occur in the uppermost part of mainstem Sacramento River since greater than 90 percent of spawning (specifically winter-run Chinook Salmon) occurs approximately 10.2 river miles between Keswick Dam and Bonnyview Bridge. There could potentially be additional benefits to salmonids that may occur downstream of Red Bluff but this was not modeled; similarly, benefits are also expected in the Feather River downstream from Oroville Dam but this was also not modeled.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) where the geographical extent of the ecosystem improvement is documented or mapped.

Ecosystem Priority 1 and 2 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB
When during the year will flows that increase dissolved oxygen and lower water temperatures to support anadromous fish passage be provided? How are dissolved oxygen and water temperature likely to vary with hydrologic conditions (i.e. among water year types) a) under current conditions with and without the project, and b) in 2030 with and without the project?
If the ecosystem improvement will benefit multiple anadromous species, provide the timing of ecosystem improvements for each species separately.

Chemical composition of water varies greatly depending on season, time of day, location and depth (Dowling and Wiley 1986). Dissolved oxygen in streams is closely correlated with temperature fluctuations and varying flow conditions. Studies of large rivers and small streams show that high temperature and slow flowing water holds less oxygen. Based on results of these studies, the Project's improved flow management will promote more suitable water temperatures and provide increased dissolved oxygen levels for rearing juvenile Winter-run, Fall-run, and Late fall-run Chinook salmon in the mainstem of the Sacramento River below Keswick Dam by releasing the increased coldwater from Shasta Lake in the mainstem Sacramento River used by spawning winter-run Chinook Salmon from Keswick Dam to Clear Creek. By 2030, the Project will increase flows from October through March with the greatest increase in the fall. The average flows for dry years are higher than the longterm average, with increases of 9% under current conditions and 11.9\% in 2030.
Dowling, D.C. and M.J. Wiley. 1986. The effects of dissolved oxygen, temperature, and low stream flow on fishes: A literature review. Aquatic Biological Section Technical Report. Springfield City Water, Light, and Power Company.

Additional locations in the application (document name, page number, table number, other) where the timing of flow releases associated with this benefit are documented.

Draft EIR/EIS Appendix 12C: Fisheries Impacts Summary

REV 4: Inclusion of an adaptive management and monitoring program that includes measurable objectives, performance measures, thresholds, and triggers to achieve ecosystem benefits.

Provide additional information on how this ecosystem improvement will be incorporated into the adaptive management and monitoring program. If available, provide examples of objectives, performance measures, thresholds, or triggers that could be used to manage benefits associated with this priority.

After completion of Sites Reservoir, Winter-run, Spring-run, Fall-run, and Late fall-run Chinook salmon and steelhead are expected to begin rebuilding with the assumption that the environment stays constant.
Measurable objectives include reduced temperatures, increased dissolved oxygen levels, and increased numbers of eggs and rearing juveniles in the Upper Reaches of the Sacramento River. Temperature and dissolved oxygen level data from monitoring programs (e.g., Mainstem Sacramento River Mark-recapture Program, Upper Sacramento River Tributary Escapement Monitoring, Sacramento River Tributary Mark-Recapture Monitoring, Hatchery Broodstock and Angler Harvest Sampling) currently proposed by the California Department of Fish and Wildlife in the Sacramento River as well as existing Delta monitoring programs (e.g., Interagency Ecological Program, Delta Juvenile Fish Monitoring Program, Anadromous Fish Restoration Program) can also be incorporated in the adaptive management program for the Project. Performance measures include the timing water releases from Shasta, Oroville, and Folsom to maximize benefits of the project to salmonid fish species.

| STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSION: | A |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| PURPOSE: | PHYSICAL PUBLIC BENEFITS | CHECKER: | N PONFERRADA | DATE: | 2017 AUGUST | |
| CAVEAT: | | QAVQ: | REF/FILE\#: | WSIP APPLICATION | | |
| NOTES: | ECOSYSTEM PRIORITIES A1 | | PAGE: | 32 | OF | 61 |

Priority 5: Provide flows that increase dissolved oxygen and lower water temperatures to support anadromous fish passage

REV 5: Immediacy of ecosystem improvement actions and realization of benefits

Immediacy of ecosystem improvement: Number of months from grant encumbrance until the proposed ecosystem improvement is completed (i.e. the expected timeframe until the improvement is implemented or construction is completed).

Initial benefits are expected in year 2028 (6 years after grant encumbrance for construction) at a lower level than when the project is complete. Full benefits are expected in 2030 (8 years after grant encumbrance).

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the immediacy timeframe is described and quantified.

Sites_A3 Schedule under the FEASIBILITY AND IMPLEMENTATION RISK TAB.

Realization of ecosystem improvement: Number of months from the time the ecosystem improvement is completed (i.e. project is implemented or construction is complete), until the benefit associated with this priority can be observed (i.e. when measurable improvements can be observed and quantified)

After the first full spawning season (2030), a quantifiable improvement in the Sacramento River from Keswick to Battle Creek would benefit all four runs of Chinook salmon and steelhead approximately three to four years later (2033 to 2034) when the 2030 cohort returns to spawn.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the realization timeframe is described and quantified.

NA

REV 6: Duration of ecosystem improvements

How long (number of years) after realization (as calculated under REV 5 above) is the ecosystem improvement expected to address this priority? Maximum is 100 years. Explain how this value was determined and whether the magnitude of the ecosystem improvement is anticipated to change over time.

Anticipated duration is 100 years. The magnitude of flow augmentation is expected to change over time. The flows were determined using CALSIM modeling and Upper Sacramento River HEC5 temperature model. Compared to current conditions, the long-term average flow will increase by 228 thousand acre feet (TAF) by 2030 and by 157 TAF by 2070.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the duration of the ecosystem improvement is described and quantified.

Sites_A5 Documentation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB

REV 7: Consistency with species recovery plans and strategies, initiatives, and conservation plans

Does the ecosystem improvement meet any goals or objectives established in existing species recovery plans, initiatives, or conservation plans including but not limited to the NOAA Fisheries Recovery Plan for Sacramento River winter-run Chinook salmon, Central Valley spring-run Chinook salmon, and Central Valley steelhead; State Wildlife Action Plan; Central Valley Joint Venture Implementation Plan, San Joaquin County Multi-Species Habitat Conservation Plan and Open Space Plan, Draft Solano Multi-Species Habitat Conservation Plan, East Contra Costa County Habitat Conservation Plan/Natural Community Conservation Plan, Draft Recovery Plan for the Giant Garter Snake, and California Water Action Plan? If so which goals, objectives, or actions will be met? Why?

The Project will address the following recovery plan action directly: Action SAR 1.4 Develop and implement a river flow management plan for the Sacramento River downstream of Shasta and Keswick dams that considers the effects of climate change and balances beneficial uses with the flow and water temperature needs of winter-run Chinook salmon, spring-run Chinook salmon, and steelhead.

The ecosystem improvement is also consistent with three of the proposed actions listed in the Sacramento Valley Salmon Resiliency Strategy. These actions are:

- increase productivity by improving spawning and incubation conditions (habitat and water quality)
- increase productivity by increasing juvenile salmonid survival
- support the full range of juvenile and adult migration conditions to maintain life history diversity.

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST
CAVEAT:		QAVQC:	REF/FILE \#:	WSIP APPLICATION	
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	33	OF

Priority 5: Provide flows that increase dissolved oxygen and lower water temperatures to support anadromous fish passage
The Project will meet these actions by providing increased flows and management of intake diversions to benefit salmonids in the Sacramento River below Keswick Dam. The Project will also enhance and improve the quality of Essential Fish Habitat (EFH) for Pacific Coast Salmon (all four runs of Chinook).

Additional locations in the application, supporting documentation or attachments (page number, table number, other) where the consistency with goals, objectives, or actions from recovery plans, initiative, or conservation plans are discussed.

Ecosystem Priority 1 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB
NMFS. 2014a. California Central Valley Salmon \& Steelhead Recovery Plan. Available online at:
http://www.westcoast.fisheries.noaa.gov/protected species/salmon steelhead/recovery planning and implementation/ california central valley/california central valley recovery plan documents.html
58 FR 33212. Endangered and Threatened Species: Winter-run Chinook Salmon. Final Rule, Vol. 58, No. 114. Federal Register 33212. Wednesday, June 16, 1993, Rules and Regulations. Available online at:
http://ecos.fws.gov/docs/federal register/fr2311.pdf
70 FR 52488. Endangered and Threatened Species: Designation of Critical Habitat for Seven Evolutionarily Significant Units of Pacific Salmon and Steelhead in California. Final Rule, Vol. 70, No. 170. Federal Register 52488. Friday, September 2, 2005, Rules and Regulations. Available online at: http://www.fws.gov/carlsbad/SpeciesStatusList/CH/20050902 fch SCSH.pdf
REV 8: Location of ecosystem improvements and connectivity to areas already being protected or managed for conservation values
Provide a map that shows the extent of the ecosystem improvement that will address this priority (e.g. river miles that meet the temperature benefits). Provide additional instructions or clarification to reviewers who will be viewing this map (i.e. describe the color and/or label that identifies the spatial extent of the ecosystem improvement). If available, also submit supporting electronic files such as a .kmz file or ArcGIS layer associated with the maps provided.

Figures A2-1 and A2-2 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB show the area of temperature improvement for the Sacramento River and the American River, respectively.

Explain why this location was selected. How is the location beneficial to the targeted species in the context of local environmental conditions and the target species' needs?

Locations are downstream from dams that have known salmonid populations downstream (Shasta, Oroville, and Folsom). Water from Sites Reservoir can be exchanged to develop more storage behind these reservoirs. Downstream from each of these dams are salmonid species natal habitat.

Does the improvement location occur adjacent to or near any other areas already being protected or managed for conservation values? Explain the proximity of improvements to other areas already being protected or managed for conservation values and the distance between them and your claimed improvements. Explain any hydrologic connectivity that may occur between these locations (if any).

Location of the ecosystem improvement are adjacent to conservation areas or are hydrologically connected to Sacramento River Wildlife Area, Nimbus and American River Hatcheries, American River Parkway, Stone Lakes National Wildlife Refuge, Vic Fazio Yolo Wildlife Area, Bidwell-Sacramento River State Park, Colusa-Sacramento River State Recreation Area, Brannan Island State Recreation Area and Delta Meadows.

Will flows provided allow full passage to the targeted species in all year types?
Flows would be physically accessible in all water year types (greater in above normal, below normal, and dry years). There would be no barriers between the targeted species and ecosystem improvements.

Additional locations in the application (document name, page number, figure name or number, other) that describe the extent of the flow benefits, the proximity of claimed improvements to other areas already being protected or managed for conservation value, and the degree to which hydrologic connections (if any) occur between claimed improvements and areas already being protected or managed for conservation value.

Draft EIR/EIS Appendix 12A; Ecosystem Priority 2 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB

| STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSION: | A |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| PURPOSE: | PHYSICAL PUBLIC BENEFITS | CHECKER: | N PONFERRADA | DATE: | 2017 AUGUST | |
| CAVEAT: | | QAVQ: | REF/FILE \#: | WSIP APPLICATION | | |
| NOTES: | ECOSYSTEM PRIORITIES A1 | | PAGE: | 34 | OF | 61 |

Priority 5: Provide flows that increase dissolved oxygen and lower water temperatures to support anadromous fish passage
REV 9: Efficient use of water to achieve multiple ecosystem benefits
How will water provided to address this priority be managed? Explain design efficiencies and operational strategies intended to maximize the efficiency of water allocated to ecosystem improvements that address this priority.

Water released for this purpose will be subsequently released as Delta outflow or will be recaptured using the Delevan Intake Pumping Plant and stored in Sites Ecosystem Enhancement Storage Account (EESA) storage. It may also be marketed to cover long-term operations and maintenance costs associated with public benefits.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe the design efficiencies and operational strategies used to maximize water efficiency under this priority.

NA
REV 10: Resilience of ecosystem improvements to the effects of changing environmental conditions, including hydrologic variability and climate change.
Which environmental uncertainties associated with this priority were considered in the project siting, design, and operation? How were these uncertainties incorporated into project siting, design, or operation? Examples of environmental uncertainties include, but are not limited to: sea level rise, temperature changes, changes in precipitation, landslides, erosion, earthquakes, wildfires, drought events, and flooding events.

The primary uncertainty is climate change. Results for years 2030 and 2070 were developed using the California Water Commission climate assumptions.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe and quantify the environmental uncertainties considered in the project siting, design, and operation.

Draft EIR/EIS - posted at (https://www.sitesproject.org/information/DraftEIR-EIS)
Null, S. E., and J. H. Viers. 2013. In bad waters: Water year classification in nonstationary climates, Water Resources Research, 49, doi:10.1002/wrcr. 20097.

| STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSION: | A |
| :--- | :--- | :---: | :--- | :---: | :---: | :---: | :---: |
| PURPOSE: | PHYSICAL PUBLIC BENEFITS | CHECKER: | N PONFERRADA | DATE: | 2017 AUGUST | |
| CAVEAT: | | QAQQC: | REF/FILE\#: | WSIP APPLICATION | | |
| NOTES: | ECOSYSTEM PRIORITIES A1 | | PAGE: | 35 | OF | 61 |

Ecosystem Priority 10

Priority 10: Enhance the frequency, magnitude, and duration of floodplain inundation to enhance primary and secondary productivity and the growth and survival of fish

REV 2: Magnitude of ecosystem improvements

What is the expected magnitude of the ecosystem improvement that will address this priority? Magnitude should be expressed as: a) the change from current conditions without the project to current conditions with the project, and b) the change from 2030 conditions without the project to 2030 conditions with the project. How did you estimate this value?

Benefits would be provided in the Yolo Bypass. In 2030, releases from Sites Reservoir through the Colusa Basin Drain and into the Yolo Bypass would increase the flow by a long-term average of 40 thousand acre-feet, a 163% increase in flows from August through October. Additionally, rearing habitat in the Yolo Bypass represents key habitat areas that allows for better growth rates of native fish due to increased food availability. Furthermore, seasonal hydrology of the floodplain provides a more competitive advantage to native fish thus preventing nonnative fish species to dominate. Enhanced frequency, magnitude, and duration in the Yolo Bypass would also increase primary production and therefore food availability (secondary production) for native fish, leading to better survival rates (Sommer et. al 2001).

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the magnitude of the ecosystem improvement is described and quantified.

Sommer, T., Harrell, B., Nobriga, M.L., Schemel, L. 2001. California's Yolo Bypass: Evidence that flood control can be compatible with fisheries, wetlands, wildlife, and agriculture. Fisheries 26(8):6-16.

REV 3: Spatial and temporal scale of ecosystem improvements.

What is the geographical extent (e.g. river miles, acres) of the ecosystem improvement that will address this priority?
Benefits to food production would occur in the Yolo Bypass Toe Drain, Cache Slough Complex, Liberty island, and into the Lower Sacramento River a little upstream (tidal effects) and below where it enters the Sacramento. Benefits are anticipated at least to the confluence with the San Joaquin River at the tip of Sherman Island.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) where the geographical extent of the ecosystem improvement is documented or mapped.

Draft EIR/EIS (https://www.sitesproject.org/information/DraftEIR-EIS) Appendix 12N: Yolo Bypass Flow and Fremont Weir Spill Analysis and Appendix 12: Aquatic Biological Resources; Ecosystem Priority 10 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB

When during the year will the frequency, magnitude and duration of floodplain inundation be enhanced for primary and secondary productivity and the growth and survival of fish? How is floodplain inundation likely to vary with hydrologic conditions (i.e. among water year types) a) under current conditions with and without the project, and b) in 2030 with and without the project?

Releases would be provided in August through October.
Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the timing of floodplain enhancements are described and quantified.

NA
REV 4: Inclusion of an adaptive management and monitoring program that includes measurable objectives, performance measures, thresholds, and triggers to achieve ecosystem benefits.
Provide additional information on how this ecosystem improvement will be incorporated into the adaptive management and monitoring program. If available, provide examples of objectives, performance measures, thresholds, or triggers that could be used to manage benefits associated with this priority.

The primary objectives and triggers would be the phytoplankton/zooplankton populations and the Delta smelt population response. Results in August through October time period should be highly reproducible. Monitoring for the amount of water released and phytoplankton/zooplankton.

Program would rely on existing Delta smelt monitoring programs to track smelt population including actions consistent with

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST	
CAVEAT:		QAVQ:	REF/FILE \#:	WSIP APPLICATION		
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	36	OF	61

Priority 10: Enhance the frequency, magnitude, and duration of floodplain inundation to enhance primary and secondary productivity and the growth and survival of fish

Delta Smelt Resiliency Strategy (California Natural Resources Agency, July, 2016) as well as adaptive measures would include changes in the timing of releases, the duration and magnitude of the pulse, and the magnitude of the pulse (in cfs).

REV 5: Immediacy of ecosystem improvement actions and realization of benefits

Immediacy of ecosystem improvement: Number of months from grant encumbrance until the proposed ecosystem improvement is completed (i.e. the expected timeframe until the improvement is implemented or construction is completed).

Improvement is expected to begin in 2026 with initial pulse through the Colusa Basin Drain (48 months after grant encumbrance). Full scale operations expected in 2030.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the immediacy timeframe is described and quantified.

Sites_A3 Schedule under the FEASIBILITY AND IMPLEMENTATION RISK TAB.

Realization of ecosystem improvement: Number of months from the time the ecosystem improvement is completed (i.e. project is implemented or construction is complete), until the benefit associated with this priority can be observed (i.e. when measurable improvements can be observed and quantified)

Full realization of phytoplankton and zooplankton population improvements are anticipated in 2030, and then 2031 for improvements of Delta smelt population because of their annual life history strategy.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the realization timeframe is described and quantified.

Ecosystem Priority 10 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB

REV 6: Duration of ecosystem improvements

How long (number of years) after realization (as calculated under REV 5 above) is the ecosystem improvement expected to address this priority? Maximum is 100 years. Explain how this value was determined and whether the magnitude of the ecosystem improvement is anticipated to change over time.

The duration of the improvement is expected to be 90 years (Operations and Maintenance period for the project per the planning horizon used in the application).

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the duration of the ecosystem improvement is described and quantified.

NA

REV 7: Consistency with species recovery plans and strategies, initiatives, and conservation plans

Does the ecosystem improvement meet any goals or objectives established in existing species recovery plans, initiatives, or conservation plans including but not limited to the NOAA Fisheries Recovery Plan for Sacramento River winter-run Chinook salmon, Central Valley spring-run Chinook salmon, and Central Valley steelhead; State Wildlife Action Plan; Central Valley Joint Venture Implementation Plan, San Joaquin County Multi-Species Habitat Conservation Plan and Open Space Plan, Draft Solano Multi-Species Habitat Conservation Plan, East Contra Costa County Habitat Conservation Plan/Natural Community Conservation Plan, Draft Recovery Plan for the Giant Garter Snake, and California Water Action Plan? If so which goals, objectives, or actions will be met? Why?

Action is consistent with Delta Smelt Resiliency Strategy (California Natural Resources Agency, July, 2016), specifically the north Delta foodweb adaptive management projects juvenile and sub-adult Delta Smelt and their habitats including food availability and quantity.

Additional locations in the application, supporting documentation or attachments (page number, table number, other) where the consistency with goals, objectives, or actions from recovery plans, initiative, or conservation plans are discussed.

California Natural Resources. 2016. Delta Smelt Resiliency Strategy. July 2016.

| STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSION: | A |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| PURPOSE: | PHYSICAL PUBLIC BENEFITS | CHECKER: | N PONFERRADA | DATE: | 2017 AUGUST | |
| CAVEAT: | | QAVQ: | REF/FILE \#: | WSIP APPLICATION | | |
| NOTES: | ECOSYSTEM PRIORITIES A1 | | PAGE: | 37 | OF | 61 |

Priority 10: Enhance the frequency, magnitude, and duration of floodplain inundation to enhance primary and secondary productivity and the growth and survival of fish

REV 8: Location of ecosystem improvements and connectivity to areas already being protected or managed for conservation values

Provide a map that shows the extent of the ecosystem improvement that will address this priority (e.g. river miles that meet the temperature benefits). Provide additional instructions or clarification to reviewers who will be viewing this map (i.e. describe the color and/or label that identifies the spatial extent of the ecosystem improvement). If available, also submit supporting electronic files such as a .kmz file or ArcGIS layer associated with the maps provided.

Ecosystem Priority 10 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB

Explain why the floodplain inundation location was selected. How is this location beneficial to secondary productivity and the growth and survival of fish in the context of local environmental conditions?

This action was developed to save Delta Smelt, an indicator species of environmental health of the Sacramento-San Joaquin Delta. Floodplain inundation of the Yolo Bypass Wildlife Area would greatly benefit Delta Smelt productivity in the lower Cache Creek and lower Sacramento River, production of desirable food sources within this region in the late-summer and early-fall will be enriched. Stimulating the delta food web and pushing water high in phytoplankton (e.g., chlorophyll, diatoms) and zooplankton (e.g., copepod eggs) directly to Delta Smelt suitable habitats would aid in their growth and condition, thereby potentially increasing abundance over time.

Is the ecosystem improvement location adjacent to, or near, other areas already being protected or managed for conservation values? Explain the proximity of the ecosystem improvement to other areas already being protected or managed for conservation values and any hydrologic connectivity that may occur between these locations.

Liberty Island Ecological Reserve, Miner Slough Wildlife Area, Prospect Island, Brannan Island State Recreation Area.
Additional locations in the application (document name, page number, figure name or number, other) that describe the extent of the floodplain inundation benefits, the proximity of claimed improvements to other areas already being protected or managed for conservation value, and the degree to which hydrologic connections (if any) occur between claimed improvements and areas already being protected or managed for conservation value.

NA

REV 9: Efficient use of water to achieve multiple ecosystem benefits

How will water provided to address this priority be managed? Explain design efficiencies and operational strategies intended to maximize the efficiency of water allocated to ecosystem improvements that address this priority.

Conceptually, two pulses of flow at a minimum of 400 cubic feet per second each over a 2-3 week period into the Yolo Bypass from the Colusa Basin Drain past the Wallace Weir and Ridge Cut into the Tule Drain and flow through the Yolo Bypass Toe Drain and out to the Sacramento River (Pers. comm. Jerry Robbins, 2017). With losses each flow pulse made into the Colusa Basin Drain would total about 24 thousand acre feet (TAF) over each 2-3 week period for a total flow need of about 50 TAF in any one year. This management strategy may not be able to occur annually due to varying water year types, however most years would be desirable.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe the design efficiencies and operational strategies used to maximize water efficiency under this priority.

NA
REV 10: Resilience of ecosystem improvements to the effects of changing environmental conditions, including hydrologic variability and climate change.
Which environmental uncertainties associated with this priority were considered in the project siting, design, and operation? How were these uncertainties incorporated into project siting, design, or operation? Examples of environmental uncertainties include, but are not limited to: sea level rise, temperature changes, changes in precipitation, landslides, erosion, earthquakes, wildfires, drought events, and flooding events.

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST	
CAVEAT:		QAVQC:	REF/FILE \#:	WSIP APPLICATION		
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	38	OF	61

Priority 10: Enhance the frequency, magnitude, and duration of floodplain inundation to enhance primary and secondary productivity and the growth and survival of fish

The primary uncertainty is climate change. Results for years 2030 and 2070 using the California Water Commission climate assumptions.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe and quantify the environmental uncertainties considered in the project siting, design, and operation.

Draft EIR/EIS (https://www.sitesproject.org/information/DraftEIR-EIS): Appendices 12G Smelt analysis and 12N Yolo Bypass Flow and Fremont Weir Spill Analysis.

Null, S. E., and J. H. Viers. 2013. In bad waters: Water year classification in nonstationary climates, Water Resources Research, 49, doi:10.1002/wrcr. 20097.

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AU	UST	
CAVEAT:		QAQC:		REF/FILE \#:	WSIP AP	ICATION	
NOTES:	ECOSYSTEM PRIORITIES A1			PAGE:	39	of	61

Ecosystem Priority 11

Priority 11: Enhance the temporal and spatial distribution and diversity of habitats to support all life stages of fish and wildlife species

REV 2: Magnitude of ecosystem improvements
What is the expected magnitude of the ecosystem improvement that will address this priority? Magnitude should be expressed as: a) the change from current conditions without the project to current conditions with the project, and b) the change from 2030 conditions without the project to 2030 conditions with the project. How did you estimate this value?

Magnitude of temporal and spatial distribution and diversity of habitats will support native fishes in the Sacramento River and Yolo Bypass as described in sections below and throughout this worksheet:

In the Sacramento River, temperature improvements were estimated using Upper Sacramento River HEC5Q model and the American River CE QUAL-W2 Model Sites Reservoir would provide a 4.4\% (372 cubic feet per second [cfs]) long term average increase in flows in the Sacramento River at the point of diversion near Colusa that will provide habitat diversity to support fish south of the spawning area. Model results using different water year types show that there is a 7.4% (376 cfs) increase in flows in below normal years and 9\% (343 cfs) increase in flows in dry years. In 2030, there is a 2.5% (228 cfs) long term average increase in flows and an 11.9% (474 cfs) increase in dry year flows. These increased flows would provide beneficial results such as a more suitable water temperature for egg incubation and fry (alevin) rearing would lead to higher survival rates of eggs and fry. Typically development of flow management standards include establishment of suitable water temperatures for fish; therefore, flow releases are managed and adjusted to improve conditions for salmon and steelhead by maintaining sufficiently low water temperatures suitable for egg incubation and fry development.

Fall-run, late fall-run and winter-run Chinook salmon would greatly benefit from more flows and suitable water temperatures in the Sacramento River below Keswick Dam and at Bonnyview Bridge specifically during egg incubation period in the month of September in critical years. Spatial and temporal distribution of habitats in the Yolo Bypass in 2030 will be enhanced from 163% increase in average flows from August through October totaling 40 thousand acre-feet. Additionally, rearing habitat in the Yolo Bypass represents key habitat areas that allows for better growth rates of native fish due to increased food availability.
Furthermore, seasonal hydrology of the floodplain provides a more competitive advantage to native fish thus preventing nonnative fish species to dominate. Enhanced frequency, magnitude, and duration in the Yolo Bypass would also increase primary production and therefore food availability (secondary production) for native fish, leading to better survival rates (Sommer et. al 2001).

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the magnitude of the ecosystem improvement is described and quantified.

Sommer, T., Harrell, B., Nobriga, M. L., Schemel, L. 2001. California's Yolo Bypass: Evidence that flood control can be compatible with fisheries, wetlands, wildlife, and agriculture. Fisheries 26(8):6-16.

REV 3: Spatial and temporal scale of ecosystem improvements.

What is the geographical extent (e.g., river miles, acres) of the ecosystem improvement that will address this priority?

The spawning distribution of winter-run Chinook Salmon in the mainstem Sacramento River defines the spatial distribution of incubating eggs, alevins, and swim-up fry. Historical spawning data indicate that winter-run spawning occurred from Keswick Dam (River Mile [RM] 302.0) downstream to the site of Red Bluff Diversion Dam (RM 243.0), a distance of 59 miles. More recent data, however, indicate that the spawning distribution has substantially changed. Aerial redd survey data on winter-run Chinook Salmon in-river spawning from 2003 to 2015 indicate that virtually all spawning occurs from Keswick Dam downstream to Clear Creek (RM 289.3), a short distance of only 12.7 miles (U.S. Bureau of Reclamation 2016 , page 7). Over the 12 -year monitoring period 88.7 percent of redds were observed upstream of the State Route 44 Bridge (RM 296.5), only 5.5 miles downstream of Keswick Dam, and 11.3 percent were observed between the State Route 44 Bridge and Clear Creek. No redds were observed downstream of Clear Creek.

These data indicate that approximately 12.7 miles (rounded to 13 miles) of the Sacramento River downstream of Keswick Dam are used by winter-run for spawning and most spawning is concentrated in the uppermost approximately 5.5 miles (rounded to 6 miles) of the river downstream of Keswick Dam. Therefore, cold water is required for successful egg incubation and alevin rearing in approximately 13 miles of the Sacramento River downstream of Keswick Dam. Water temperatures with and without the proposed project can be modeled and analyzed for this 13 -mile river reach.
Mean monthly modeled water temperatures in 2030 with and without the project, using data from an 82-year simulation period, were examined within the mainstem Sacramento River from April through November for different water year types for various locations within the 26-mile reach downstream of Keswick Dam to the Balls Ferry Bridge (RM 276.2), given the optimum

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 A	UST	
CAVEAT:		QA/QC:		REF/FILE \#:	WSIP A	CATION	
NOTES:	ECOSYSTEM PRIORITIES A1			PAGE:	40	OF	61

Priority 11: Enhance the temporal and spatial distribution and diversity of habitats to support all life stages of fish and wildlife species

water temperature of $56^{\circ} \mathrm{F}$ for eggs and $58^{\circ} \mathrm{F}$ for alevins (CH 2 MHill River Temperature and Modeling Summary Tables and Bar Charts 2030). Note that the water temperature models used were the Upper Sacramento River HEC5 Model. This model has a calculation uncertainty (i.e., precision) of $0.5^{\circ} \mathrm{F}$ for mean monthly water temperature estimates. In the present analysis, decimals of a degree Fahrenheit are rounded up or down to whole degrees Fahrenheit to match the presentation of results from Richardson and Harrison (1990) presented in Vogel (2015).
In the Yolo Bypass Toe Drain, enhancement of frequency, magnitude, and duration of habitat would occur. Benefits to food production would occur in the Cache Slough Complex and into the Lower Sacramento River a little upstream (tidal effects) and below where it enters the Sacramento River. Benefits are anticipated at least to the confluence with the San Joaquin River at the tip of Sherman Island.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) where the geographical extent of the ecosystem improvement is documented or mapped.

Figure A2-1 in Ecosystem Priority 1 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB; Ecosystem Priority 10 under the PHYSICAL PUBLIC BENEFITS TAB

When during the year will the spatial distribution and diversity of habitats be enhanced to support life stages of fish and wildlife species? How is the temporal and spatial distribution and diversity of habitats likely to vary with hydrologic conditions (i.e. among water year types) a) under current conditions with and without the project, and b) in 2030 with and without the project?

For the mainstem Sacramento River from Keswick Dam to Clear Creek, the proposed project in 2030 will reduce the percentage of winter-run Chinook salmon egg and fry mortality in September and October of critically dry water years from 7 to 25 percent. The greatest temperature improvements to increase survival of salmonid eggs and fry will occur in dry and critical years, specifically. Temperature conditions are relatively unchanged in wet and above normal precipitation years.
Over the long term, average flows in the Yolo Bypass from August to October would increase compared to long term conditions without the project, this is due to flow releases from Sites Reservoir.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the timing of habitat enhancements are described and quantified.

Ecosystem Priority 1 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB
REV 4: Inclusion of an adaptive management and monitoring program that includes measurable objectives, performance measures, thresholds, and triggers to achieve ecosystem benefits.
Provide additional information on how this ecosystem improvement will be incorporated into the adaptive management and monitoring program. If available, provide examples of objectives, performance measures, thresholds, or triggers that could be used to manage benefits associated with this priority.

After completion of Sites Reservoir, winter-run, spring-run, fall-run, and late fall-run Chinook salmon; and steelhead are expected to begin rebuilding in the Sacramento River with the assumption that the environment stays constant.
Measurable objectives include temperatures produced in the Upper Reaches of the Sacramento River. Temperature data from monitoring programs (e.g., Mainstem Sacramento River Mark-recapture Program, Upper Sacramento River Tributary Escapement Monitoring, Sacramento River Tributary Mark-Recapture Monitoring, Hatchery Broodstock and Angler Harvest Sampling) currently proposed by the California Department of Fish and Wildlife in the Sacramento River as well as existing Delta monitoring programs (e.g., Interagency Ecological Program, Delta Juvenile Fish Monitoring Program, Anadromous Fish Restoration Program) can also be incorporated in the adaptive management program for Sites. Performance measures include the timing of coldwater releases from Shasta, Oroville, and Folsom to maximize benefits of the project to salmonid fish species.
In the Yolo Bypass, the primary objectives and triggers would be the phytoplankton/zooplankton populations. Results in August through October time period should be highly reproducible. Monitoring for the amount of water released, nutrients, and phytoplankton/zooplankton as well as Delta smelt population.
The Program will rely on existing Delta smelt monitoring programs to track smelt population including actions consistent with Delta Smelt Resiliency Strategy (California Natural Resources Agency, July, 2016) as well as adaptive measures that would include changes in the timing of releases, the duration and magnitude of the pulse (in cfs) to enhance overall habitat.

REV 5: Immediacy of ecosystem improvement actions and realization of benefits

Immediacy of ecosystem improvement: Number of months from grant encumbrance until the proposed ecosystem

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST	
CAVEAT:		QAVC:	REF/FILE \#:	WSIP APPLICATION		
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	41	OF	61

Priority 11: Enhance the temporal and spatial distribution and diversity of habitats to support all life stages of fish and

 wildlife speciesimprovement is completed (i.e., the expected timeframe until the improvement is implemented or construction is completed).
Initial benefits in the Sacramento River are expected in year 2028 (6 years after investment encumbrance for construction) at a lower level than when the project is complete. Full benefits are expected in 2030 (8 years after investment encumbrance).

Improvement in the Yolo Bypass is expected to begin in 2026 with initial pulse through the Colusa Basin Drain (48 months after grant encumbrance). Full scale operations expected in 2030.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the immediacy timeframe is described and quantified.

Sites_A3 Schedule under the FEASIBILITY AND IMPLEMENTATION RISK TAB.
Realization of ecosystem improvement: Number of months from the time the ecosystem improvement is completed (i.e. project is implemented or construction is complete), until the benefit associated with this priority can be observed (i.e. when measurable improvements can be observed and quantified)

In the Yolo Bypass, full realization of phytoplankton and zooplankton population improvements are anticipated in 2030, and 2031 for improvements of Delta smelt population because of their annual life history strategy.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the realization timeframe is described and quantified.

Ecosystem Priority 1 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB

REV 6: Duration of ecosystem improvements

How long (number of years) after realization (as calculated under REV 5 above) is the ecosystem improvement expected to address this priority? Maximum is 100 years. Explain how this value was determined and whether the magnitude of the ecosystem improvement is anticipated to change over time.

Anticipated duration is 100 years in the Sacramento River system. The magnitude is expected to change over time. The flows were determined using CALSIM modeling and results are provided for years 2030 and 2070. In the Yolo Bypass, the duration of the improvement is expected to be 90 years (Operations \& Maintenance [O\&M] period for the project per the planning horizon used in the application).

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the duration of the ecosystem improvement is described and quantified.

Sites_A5 Documentation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB

REV 7: Consistency with species recovery plans and strategies, initiatives, and conservation plans

Does the ecosystem improvement meet any goals or objectives established in existing species recovery plans, initiatives, or conservation plans including but not limited to the National Oceanic and Atmospheric Administration (NOAA) Fisheries Recovery Plan for Sacramento River winter-run Chinook salmon, Central Valley spring-run Chinook salmon, and Central Valley steelhead; State Wildlife Action Plan; Central Valley Joint Venture Implementation Plan, San Joaquin County Multi-Species Habitat Conservation Plan and Open Space Plan, Draft Solano Multi-Species Habitat Conservation Plan, East Contra Costa County Habitat Conservation Plan/Natural Community Conservation Plan, Draft Recovery Plan for the Giant Garter Snake, and California Water Action Plan? If so which goals, objectives, or actions will be met? Why?

The ecosystem improvement in the Sacramento River is consistent with two recovery actions of NOAA Fisheries Recovery Plan for Winter-run Chinook salmon, Spring-run Chinook salmon, and Central Valley steelhead in the mainstem Sacramento River (NMFS 2014). The actions in the NOAA Fisheries that will be met are: (1) to develop and apply alternative diversion technologies that reduce entrainment, and (2) evaluate and reduce stranding of juvenile chinook salmon in the channels from Keswick Dam to Colusa, due to flow reductions from Keswick Reservoir, by increasing or stabilizing releases from the reservoir. The ecosystem improvement is also consistent with three of the proposed actions listed in the Sacramento Valley Salmon Resiliency Strategy. These actions are: (1) increase productivity by improving spawning and incubation conditions (habitat and water quality); (2) increase productivity by increasing juvenile salmonid survival; and (3) support the full range of juvenile and adult migration conditions to maintain life history diversity. The project will meet these actions by providing increased flows and management of intake diversions to benefit salmonids in the Sacramento River below Keswick Dam. The project will also enhance and improve the quality of Essential Fish Habitat (EFH) for Pacific Coast Salmon (all four runs of Chinook included;

| STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSION: | A |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| PURPOSE: | PHYSICAL PUBLIC BENEFITS | CHECKER: | N PONFERRADA | DATE: | 2017 AUGUST | |
| CAVEAT: | | QAVQ: | REF/FILE \#: | WSIP APPLICATION | | |
| NOTES: | ECOSYSTEM PRIORITIES A1 | | PAGE: | 42 | OF | 61 |

Priority 11: Enhance the temporal and spatial distribution and diversity of habitats to support all life stages of fish and wildlife species

however steelhead is not part of EFH).
In the Yolo Bypass, the action is consistent with Delta Smelt Resiliency Strategy (California Natural Resources Agency, July, 2016), specifically the north Delta foodweb adaptive management projects juvenile and sub-adult Delta Smelt and their habitats including food availability and quantity.

Additional locations in the application, supporting documentation or attachments (page number, table number, other) where the consistency with goals, objectives, or actions from recovery plans, initiative, or conservation plans are discussed.

Ecosystem Priority 1 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB
California Natural Resources. 2016. Delta Smelt Resiliency Strategy. July 2016.
REV 8: Location of ecosystem improvements and connectivity to areas already being protected or managed for conservation values

Provide a map that shows the extent of the ecosystem improvement that will address this priority (e.g., river miles that meet the temperature benefits). Provide additional instructions or clarification to reviewers who will be viewing this map (i.e., describe the color and/or label that identifies the spatial extent of the ecosystem improvement). If available, also submit supporting electronic files such as a .kmz file or ArcGIS layer associated with the maps provided.

Figures A2-1 and A2-2 in Ecosystem Priority 1 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB
Explain why this location was selected. How is this location beneficial to life stages of fish and wildlife species in the context of local environmental conditions?

Locations are downstream from dams that have known salmonid populations downstream (Shasta, Oroville, and Folsom). Water from Sites Reservoir can be exchanged to develop more storage behind these reservoirs. Downstream from each of these dams are salmonid species natal habitat.

Yolo Bypass was selected to save Delta Smelt, an indicator species of environmental health of the Sacramento-San Joaquin Delta. Additional pulse flows in the Yolo Bypass Wildlife Area would greatly benefit Delta Smelt productivity in the lower Cache Creek and lower Sacramento River, production of desirable food sources within this region in the late-summer and early-fall will be enriched. Stimulating the delta food web and pushing water high in phytoplankton (e.g., chlorophyll, diatoms) and zooplankton (e.g., copepod eggs) directly to Delta Smelt suitable habitats would aid in their growth and condition, thereby potentially increasing abundance over time.

Is the ecosystem improvement location adjacent to, or near, other areas already being protected or managed for conservation values? Explain the proximity of the ecosystem improvement to other areas already being protected or managed for conservation values and any hydrologic connectivity that may occur between these locations.

Location of the ecosystem improvement are adjacent to conservation areas or are hydrologically connected to Sacramento River Wildlife Area, Nimbus and American River Hatcheries, American River Parkway Effie Yeaw Nature Center, Folsom lake State Recreation Area, Mather Regional Park, Isenberg Crane Service, Cosumnes River Preserve, Stone Lakes National Wildlife Refuge, Laguna Creek Parkway, Vic Fazio Yolo Wildlife Area, Grizzly Island Wildlife Area, Gray Lodge Wildlife Area, Bobelaine Audubon Sanctuary, Bidwell Mansion State Historic Park, Butte City project, Clay Pit State Vehicular Recreation Area, Lake Oroville State Recreation Area, Bidwell-Sacramento River State Park, Colusa-Sacramento River State Recreation Area, Brannan Island State Recreation Area, and Delta Meadows.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) that describe and quantify the extent of habitat benefits, the proximity of claimed improvements to other areas already being protected or managed for conservation value, and the degree to which hydrologic connections (if any) occur between claimed improvements and areas already being protected or managed for conservation value.

NA

REV 9: Efficient use of water to achieve multiple ecosystem benefits

If applicable, how will water provided to address this priority be managed? Explain design efficiencies and operational strategies intended to maximize the efficiency of water allocated to ecosystem improvements that address this priority.

Water released for this purpose will be subsequently released as Delta outflow or will be recaptured using the Delevan Intake Pumping Plant and stored in Sites EESA storage.

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:
CAVEAT:		QAVQC:	REF/FILE \#:	WSIP APGUSLICATION
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	43

Priority 11: Enhance the temporal and spatial distribution and diversity of habitats to support all life stages of fish and wildlife species

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe the design efficiencies and operational strategies used to maximize water efficiency under this priority.

NA
REV 10: Resilience of ecosystem improvements to the effects of changing environmental conditions, including hydrologic variability and climate change.
Which environmental uncertainties associated with this priority were considered in the project siting, design, and operation? How were these uncertainties incorporated into project siting, design, or operation? Examples of environmental uncertainties include, but are not limited to: sea level rise, temperature changes, changes in precipitation, landslides, erosion, earthquakes, wildfires, drought events, and flooding events.

The primary uncertainty is climate change. Results for years 2030 and 2070 using the California Water Commission climate assumptions.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe and quantify the environmental uncertainties considered in the project siting, design, and operation.

- Null, S. E., and J. H. Viers. 2013. In bad waters: Water year classification in nonstationary climates, Water Resources Research, 49, doi:10.1002/wrcr. 20097.

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AU	UST	
caveat:		QAQC:		REF/FILE \#:	WSIP AP	ICATION	
NOTES:	ECOSYSTEM PRIORITIES A1			PAGE:	44	of	61

Ecosystem Priority 14

Priority 14: Provide water to enhance seasonal wetlands, permanent wetlands, and riparian habitat for aquatic and terrestrial species on State and Federal wildlife refuges and on other public and private lands

REV 2: Magnitude of ecosystem improvements

What is the expected magnitude of the ecosystem improvement that will address this priority? Magnitude should be expressed as: a) the change from current conditions without the project to current conditions with the project, and b) the change from 2030 conditions without the project to 2030 conditions with the project. How did you estimate this value?

The Sites Project will provide ecosystem benefits to terrestrial species using State and Federal wildlife refuges and private ricelands of the Central Valley. These benefits are described below.

Refuges

Under current conditions, dry and critically dry years pose significant challenges to managing habitat for terrestrial wildlife dependent on wetlands and riparian habitat in Central Valley refuges within the Central Valley Project Improvement Act (CVPIA) Refuge Water Supply Program (RWSP) The RWSP wetland habitat areas include 12 federal National Wildlife Refuges (NWRs), six State Wildlife Areas, and one privately managed refuge (CDFW 2017). These 19 refuges in the RWSP currently receive approximately 433 thousand acre feet (TAF) Level 2 water supplies, and incremental Level 4 water supplies of an additional 133 TAF (CDFW 2017). From 2005 - 2014 only 43% of Incremental Level 4 allocations were acquired and delivered each year to refuges (CDFW 2017).

Refuges of the Sacramento NWR Complex, including the Sacramento, Colusa, and Delevan NWRs, provide critical managed wetland habitat for many water-dependent wildlife species (USFWS 2009). Drought contingency actions for the Sacramento, Colusa and Delevan NWRs during dry and critically dry years vary depending on the severity of the reduced water allocations, as well as the timing within the water year when the cutback is finalized (USFWS 2011a, 2011b, 2011c). If water allocations are reduced to 25% of normal deliveries at Sacramento, Colusa and Delevan NWRs during dry or critically dry years, the drought contingency plans for all three refuges call for adjustments to wetland management practices, with the substantial impacts on wetland habitat and wetland dependent species (USFWS 2011a, 2011b, 2011c). Attachment A provides details on the impacts of reduced water deliveries on habitat and wildlife at these refuges.

The project would provide additional water in dry and critically dry years to avoid these adverse impacts to seasonal and permanent wetlands and to wetland-dependent wildlife on refuges. The amount of water allocated to the Sacramento, Colusa, and Delevan NWRs and the other refuges in the RWSP is uncertain, but as shown in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB, additional Level 2 and Level 4 water would be available with the highest deliveries in wet, above normal, and below normal years. Attachment 2 summarizes CalSim II Model Runs conducted on June 21, 2017 and shows the net increase in water supply available for all refuges with implementation of the project, and describes how refuges in in the Mendota Pool and the Tulare Basin could also benefit from additional deliveries from the Sites Project.
Deliveries of additional Level 2 and Level 4 water during dry and critically dry years would avoid loss of up to 10,867 acres of wetland habitat on the Sacramento, Colusa, and Delevan NWRs, and the other direct and indirect impacts of reduced water availability described above.

Ricelands

Surface water delivered by the Central Valley Project (CVP) and State Water Project (SWP) provide much of the water for rice and other agricultural uses, and for management of wetlands in the Central Valley; water supply shortages from the CVP and SWP during dry and critically dry years negatively affect waterfowl and waterbird habitats, reduce food resources, and lower the carrying capacity of the Central Valley for wintering waterfowl (Petrie et al. 2016). Attachment A provides additional information about the value of ricelands to waterfowl and waterbirds.

Decisions by rice producers about how many acres to plant in rice are complex and based on a number of variables, but in dry and critical years more water would likely increase acreage of rice planted (Buttner 2017 personal communication). In the drought year of 2014, rice acreage in California was reduced by 133,000 acres, falling 24\% from an average of 567,000 acres in 2010-13 to just 434,000 acres in 2014 (PPIC 2015, U.S. Department of Agriculture (USDA), National Agricultural Statistics Service, California Acreage Reports), reducing the acreage of foraging habitat for wintering waterfowl.

The Sites Project would provide additional water in dry and critically dry years to reduce adverse impacts to waterfowl and other waterbirds dependent associated with reduced acreage of ricelands. As shown in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB, additional water would be available to support rice plantings in dry and critically dry years with implementation of the project.
Deliveries of additional agricultural water to rice producers during dry and critically dry years could avoid reductions in acreage of ricelands in the Central Valley. The extent of the increase would depend on many factors, but in dry and critically dry years

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST	
CAVEAT:		QA/QC:	REF/FILE \#:	WSIP APPLICATION		
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	45	OF	61

Priority 14: Provide water to enhance seasonal wetlands, permanent wetlands, and riparian habitat for aquatic and terrestrial species on State and Federal wildlife refuges and on other public and private lands
could exceed 100,000 acres, based on the decrease in acreage of rice during the drought year of 2014.
Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the magnitude of the ecosystem improvement is described and quantified.

- CalSim II Model Runs for WSIP 2030 Sites Reservoir Regional_Deliveries_WSIP_2030_With_Project_vs_Without_Project. Updated June 21, 2017
- CDFW 2017. Refuge Water Supply Program Overview. Available at: https://www.wildlife.ca.gov/Conservation/Watersheds/Refuge-Water/Overview. Accessed June 29, 2017
- USFWS 2009. Sacramento, Delevan, Colusa, and Sutter National Wildlife Refuges. Final Comprehensive Conservation Plan and Environmental Assessment. Vol. 1
- USFWS 2011a. Sacramento National Wildlife Refuge Water Management Plan
- USFWS 2011b. Colusa National Wildlife Refuge Water Management Plan
- USFWS 2011c. Delevan National Wildlife Refuge Water Management Plan
- US Department of Agriculture, National Agricultural Statistics Service, California Acreage Reports. USDA Cropland Database https://watershed.ucdavis.edu/files/biblio/Final Drought\%20Report 08182015 Full Report WithAppendices.pdf page 13, page 28
- Migratory Bird Partnership 2014 - Waterbird Habitat Enhancement Program, Figure 2, page 6

REV 3: Spatial and temporal scale of ecosystem improvements.
What is the geographical extent (e.g., river miles, acres) of the ecosystem improvement that will address this priority?

Refuges

- Sacramento National Wildlife Refuge - 10,819 acres
- Colusa National Wildlife Refuge - 4,686 acres
- Delevan National Wildlife Refuge - 5,877 acres.

Ricelands

- In 2015 421,000 acres or rice were harvested in California (CDFA 2016), most of which occurred in the Sacramento Valley, with Colusa, Sutter, Butte, and Glenn as the primary rice-producing counties in the state (Geisseler \& Horwath 2013). https://www.cdfa.ca.gov/statistics/PDFs/2016Report.pdf.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) where the geographical extent of the ecosystem improvement is documented or mapped.

Refuges

USFWS 2009

- Overview map of refuges, page 1
- Table 4. Acreage and habitats of Sacramento National Refuge Complex, page 51
- Figure 6. Sacramento Refuge Habitat Management, page 52
- Figure 7. Delevan Refuge Habitat Management, page 53
- Figure 8. Colusa Refuge Habitat Management, page 54

Ricelands

- CDFA 2016, p. 13
- Geisseler \& Horwath 2013 Fig 2. Page 2
- Migratory Bird Partnership 2014 - Waterbird Habitat Enhancement Program, Figure 2, page 6

When during the year will water be provided for seasonal wetlands, permanent wetlands, and riparian habitat? How are seasonal wetlands, permanent wetlands, and riparian habitat likely to vary with hydrologic conditions (i.e. among water year types) a) under current conditions with and without the project, and b) in 2030 with and without the project?

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST		
CAVEAT:		QANQ:	REF/FILE \#:	WSIP APPLICATION			
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	46	OF	61	

Priority 14: Provide water to enhance seasonal wetlands, permanent wetlands, and riparian habitat for aquatic and terrestrial species on State and Federal wildlife refuges and on other public and private lands

Refuges

Water is applied to seasonal and permanent wetlands in all months of the year except February, for a total of 12,850 af, 5,987 af, and 5,000 af for Sacramento, Delevan, and Colusa, respectively. Peak seasonal water use for wetlands on the refuges peaks in late fall in dry and critically dry years. Refuge managers and biologists strategize constantly for the optimal use of water to continue to meet the refuges' conservation goals. Typically staff is flexible with water usage so water conserved early in the season can be used later in the season to support migratory bird populations and meet management objectives to the extent possible.

Ricelands

In dry and critically dry years additional water supply from the project would typically be provided in April and May to flood up rice fields.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the timing of water releases for seasonal wetlands, permanent wetlands, or riparian habitat improvements are described and quantified.

Refuges

USFWS 2011a - Sacramento National Wildlife Refuge Water Management Plan: Drought Contingency Plan

- Table 3. 50\% Anticipated Water Use Schedule
- Table 4. 25\% Anticipated Water Use Schedule

USFWS 2011b. Colusa National Wildlife Refuge Water Management Plan: Drought Contingency Plan

- Table 3. 50\% Anticipated Water Use Schedule
- Table 4. 25\% Anticipated Water Use Schedule

USFWS 2011c. Delevan National Wildlife Refuge Water Management Plan: Drought Contingency Plan

- Table 3. 50\% Anticipated Water Use Schedule
- Table 4. 25% Anticipated Water Use Schedule

Ricelands

CalSim II Model Runs for WSIP 2030 Sites Reservoir Regional_Deliveries_WSIP_2030_With_Project_vs_Without_Project. Updated June 21, 2017

REV 4: Inclusion of an adaptive management and monitoring program that includes measurable objectives, performance measures, thresholds, and triggers to achieve ecosystem benefits.
Provide additional information on how this ecosystem improvement will be incorporated into the adaptive management and monitoring program. If available, provide examples of objectives, performance measures, thresholds, or triggers that could be used to manage benefits associated with this priority.

Refuges

Measurable objectives include an annual assessment of the acreage of seasonal and permanent wetlands and waterfowl numbers at the refuges. The NWR System has a legal mandate to monitor the status and trends of fish, wildlife, and plant populations on refuges. Every year Refuge Managers at the Sacramento NWR Complex review the outcome of the previous year's habitat management plan and compile data on the extent of wetlands and other habitat types on each refuge. This process also involves a planning team visiting each habitat unit on each refuge to document the previous year's accomplishments, establish needs and develop plans for the upcoming year. In addition, waterfowl surveys are usually conducted monthly by refuge biologists from October through February, including counts of birds that may be affected by disease. These findings are compiled to produce the current year's habitat management plan for each refuge.

Ricelands

Measurable objectives include an annual assessment of the acreage of rice planted in the Central Valley in dry and critically dry years.

REV 5: Immediacy of ecosystem improvement actions and realization of benefits
Immediacy of ecosystem improvement: Number of months from grant encumbrance until the proposed ecosystem

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:
CAVEAT:		QA/QC:	REF/FILE \#:	WSIP APSPLICATION
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	47

Priority 14: Provide water to enhance seasonal wetlands, permanent wetlands, and riparian habitat for aquatic and terrestrial species on State and Federal wildlife refuges and on other public and private lands
improvement is completed (i.e., the expected timeframe until the improvement is implemented or construction is completed).
Initial benefits are expected during dry and critically dry years starting in year 2028 (6 years after grant encumbrance for construction). Full benefits are expected in 2030 (8 years after grant encumbrance).

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the immediacy timeframe is described and quantified.

Sites_A3 Schedule under the FEASIBILITY AND IMPLEMENTATION RISK TAB

Realization of ecosystem improvement: Number of months from the time the ecosystem improvement is completed (i.e. project is implemented or construction is complete), until the benefit associated with this priority can be observed (i.e. when measurable improvements can be observed and quantified)

Benefits of additional water supply will be observed and quantified during dry and critically dry years.
Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the realization timeframe is described and quantified.

- CalSim II Model Runs for WSIP 2030 Sites Reservoir Regional_Deliveries_WSIP_2030_With_Project_vs_Without_Project. Updated June 21, 2017
- CDFW 2017. Refuge Water Supply Program Overview. Available at:
https://www.wildlife.ca.gov/Conservation/Watersheds/Refuge-Water/Overview. Accessed June 29, 2017
- USFWS 2009. Sacramento, Delevan, Colusa, and Sutter National Wildlife Refuges. Final Comprehensive Conservation Plan and Environmental Assessment. Vol. 1
- USFWS 2011a. Sacramento National Wildlife Refuge Water Management Plan
- USFWS 2011b. Colusa National Wildlife Refuge Water Management Plan
- USFWS 2011c. Delevan National Wildlife Refuge Water Management Plan

REV 6: Duration of ecosystem improvements

How long (number of years) after realization (as calculated under REV 5 above) is the ecosystem improvement expected to address this priority? Maximum is 100 years. Explain how this value was determined and whether the magnitude of the ecosystem improvement is anticipated to change over time.

Refuges

Benefits of additional water supply for wetlands and wildlife dependent on wetlands will be observed for the duration of the Sacramento, Colusa, and Delevan NWRs's existence in dry and critically dry years.

Ricelands

Benefits of additional water supply for ricelands, and the waterbirds and waterfowl dependent on them, would be observed for the duration of the project as long as rice production occurs in the Central Valley.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the duration of the ecosystem improvement is described and quantified.

- CalSim II Model Runs for WSIP 2030 Sites Reservoir Regional_Deliveries_WSIP_2030_With_Project_vs_Without_Project. Updated June 21, 2017
- CDFW 2017. Refuge Water Supply Program Overview. Available at:
https://www.wildlife.ca.gov/Conservation/Watersheds/Refuge-Water/Overview. Accessed June 29, 2017
- USFWS 2009. Sacramento, Delevan, Colusa, and Sutter National Wildlife Refuges. Final Comprehensive Conservation Plan and Environmental Assessment. Vol. 1
- USFWS 2011a. Sacramento National Wildlife Refuge Water Management Plan
- USFWS 2011b. Colusa National Wildlife Refuge Water Management Plan
- USFWS 2011c. Delevan National Wildlife Refuge Water Management Plan

REV 7: Consistency with species recovery plans and strategies, initiatives, and conservation plans

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST	
CAVEAT:		QAQC:	REF/FILE \#:	WSIP APPLICATION		
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	48	OF	61

Priority 14: Provide water to enhance seasonal wetlands, permanent wetlands, and riparian habitat for aquatic and

 terrestrial species on State and Federal wildlife refuges and on other public and private landsDoes the ecosystem improvement meet any goals or objectives established in existing species recovery plans, initiatives, or conservation plans including but not limited to the National Oceanic and Atmospheric Administration (NOAA) Fisheries Recovery Plan for Sacramento River winter-run Chinook salmon, Central Valley spring-run Chinook salmon, and Central Valley steelhead; State Wildlife Action Plan; Central Valley Joint Venture Implementation Plan, San Joaquin County Multi-Species Habitat Conservation Plan and Open Space Plan, Draft Solano Multi-Species Habitat Conservation Plan, East Contra Costa County Habitat Conservation Plan/Natural Community Conservation Plan, Draft Recovery Plan for the Giant Garter Snake, and California Water Action Plan? If so which goals, objectives, or actions will be met? Why?

Improving water supply to refuges during dry years to enhance habitat and support waterfowl, shorebirds, and other wildlife dependent on seasonal and permanent wetlands is consistent with goals and objectives described in the following conservation plans

- Migratory Habitat Enhancement Plan - 2014
- North American Waterfowl Management Plan - 2012
- U.S. Shorebird Conservation Plan - 2001
- Central Valley Joint Venture Implementation Plan - Conserving Bird Habitat
- California Wildlife Action Plan

Improving water supply to refuges during dry years is also consistent with recovery goals described in

- Draft Recovery Plan for the Giant Garter Snake
- Conservation Plan for the Tricolored Blackbird

Additional locations in the application, supporting documentation or attachments (page number, table number, other) where the consistency with goals, objectives, or actions from recovery plans, initiative, or conservation plans are discussed.

Refuges

Improving water supply to refuges during dry years is also consistent with conservation and recovery goals described in

- North American Waterfowl Management Plan - 2012 (page 2)
- U.S. Shorebird Conservation Plan - 2001 (page 30)
- Central Valley Joint Venture Implementation Plan - Conserving Bird Habitat (Chapter 10)
- California Wildlife Action Plan (Executive Summary page 2)
- Draft Recovery Plan for the Giant Garter Snake (page 9)
- Conservation Plan for the Tricolored Blackbird (page 11)

Ricelands

Improving water supply to ricelands during dry years is also consistent with conservation and recovery goals described in

- Migratory Habitat Enhancement Plan 2014 - (Figure 2, page 6)
- North American Waterfowl Management Plan - 2012 (page 2)
- U.S. Shorebird Conservation Plan - 2001 (page 30)
- Central Valley Joint Venture Implementation Plan - Conserving Bird Habitat (Chapter 10)
- California Wildlife Action Plan (Executive Summary page 2)
- Draft Recovery Plan for the Giant Garter Snake (page 40)
- Conservation Plan for the Tricolored Blackbird (page 27)

REV 8: Location of ecosystem improvements and connectivity to areas already being protected or managed for conservation

 valuesProvide a map that shows the extent of the ecosystem improvement that will address this priority (e.g., river miles that meet the temperature benefits). Provide additional instructions or clarification to reviewers who will be viewing this map (i.e., describe the color and/or label that identifies the spatial extent of the ecosystem improvement). If available, also submit supporting electronic files such as a .kmz file or ArcGIS layer associated with the maps provided.

| STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSION: | A |
| :--- | :--- | ---: | :--- | ---: | :---: | :---: | :---: |
| PURPOSE: | PHYSICAL PUBLIC BENEFITS | CHECKER: | N PONFERRADA | DATE: | 2017 AUGUST | |
| CAVEAT: | | QAVC: | | REF/FILE \#: | WSIP APPLICATION | |
| NOTES: | ECOSYSTEM PRIORITIES A1 | | PAGE: | 49 | OF | 61 |

Priority 14: Provide water to enhance seasonal wetlands, permanent wetlands, and riparian habitat for aquatic and terrestrial species on State and Federal wildlife refuges and on other public and private lands

Refuges

USFWS 2009

- Overview map of refuges, page 1
- Table 4. Acreage and habitats of Sacramento National Refuge Complex, page 51
- Figure 6. Sacramento Refuge Habitat Management, page 52
- Figure 7. Delevan Refuge Habitat Management, page 53
- Figure 8. Colusa Refuge Habitat Management, page 54

Ricelands

- Migratory Habitat Enhancement Plan 2014 - (Figure 2, page 6)

Explain why this location was selected. How does this location enhance seasonal wetlands, permanent wetlands, and riparian habitat for aquatic and terrestrial species in the context of local environmental conditions?

Refuges

Seasonal and permanent wetlands in the Sacramento NW are managed specifically for enhancement of seasonal and permanent wetland habitat for the benefit of waterfowl, shorebirds, and special-status wildlife species

Ricelands

The ricelands of California were selected as a target for ecosystem priority because they provide crucial wintering habitat for waterfowl and waterbirds on the Pacific Flyway, supporting the majority of Flyway population in some years (Migratory Bird Partnership 2014). Ricelands are indispensable components of waterbird habitat; residual rice, weed seeds, and invertebrates provide food for many avian species during fall and winter (Eadie et al. 2008). Ricelands also provide breeding habitat for a variety of birds, and rice fields that are flooded after harvest (i.e., winter flooded) to decompose rice straw provide many of the same habitat values for waterfowl as the wetlands that they replaced.

Is the ecosystem improvement location adjacent to, within, or near, other areas already being protected or managed for conservation values? Explain the proximity of the ecosystem improvement to other areas already being protected or managed for conservation values and any hydrologic connectivity that may occur between these locations.

Refuges

The refuges in the Sacramento NWR complex are all protected and managed by the USFWS for conservation values.

Ricelands

The Sacramento, Delevan, Colusa, and Sutter National Wildlife Refuges (collectively, the Sacramento NWFs) are generally surrounded by irrigated rice lands (USFWS 2009) and originally the refuges were established to manage land and provide lure crops for ducks that depredated neighboring rice fields. Migratory birds and a number of other wildlife commonly spend time both on refuges and nearby privately owned rice fields, often on a daily basis. The Sacramento NWR and adjacent ricelands are often hydrologically connected by the networks of canals that supply water to both.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe and quantify the spatial extent of the ecosystem improvement, the proximity of the ecosystem improvement to other areas already being protected or managed for conservation value, and the degree to which hydrologic connections (if any) occur between the ecosystem improvement and areas already being protected or managed for conservation value.

Refuges

- USFWS 2009. Sacramento, Delevan, Colusa, and Sutter National Wildlife Refuges. Final Comprehensive Conservation Plan and Environmental Assessment. Vol. 1

Ricelands

- Migratory Habitat Enhancement Plan 2014 - (Figure 2, page 6)
- North American Waterfowl Management Plan - 2012 (page 2)
- U.S. Shorebird Conservation Plan - 2001 (page 30)

| STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSION: | A |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| PURPOSE: | PHYSICAL PUBLIC BENEFITS | CHECKER: | N PONFERRADA | DATE: | 2017 AUGUST | |
| CAVEAT: | | QAIQC: | REF/FILE \#: | WSIP APPLICATION | | |
| NOTES: | ECOSYSTEM PRIORITIES A1 | | PAGE: | 50 | OF | 61 |

Priority 14: Provide water to enhance seasonal wetlands, permanent wetlands, and riparian habitat for aquatic and terrestrial species on State and Federal wildlife refuges and on other public and private lands

- Central Valley Joint Venture Implementation Plan - Conserving Bird Habitat (Chapter 10)
- California Wildlife Action Plan (Executive Summary page 2)
- Draft Recovery Plan for the Giant Garter Snake (page 40)
- Conservation Plan for the Tricolored Blackbird (page 27)

REV 9: Efficient use of water to achieve multiple ecosystem benefits

How will water provided to address this priority be managed? Explain design efficiencies and operational strategies intended to maximize the efficiency of water allocated to ecosystem improvements that address this priority.

Refuges

Refuge managers and biologists strategize constantly for the optimal use of water to continue to meet the refuges' conservation goals. Typically staff is flexible with water usage so water conserved early in the season can be used later in the season to support migratory bird populations and meet management objectives to the extent possible.

Ricelands

Funding and agreements to foster ecosystem and wildlife benefits of ricelands is currently available through the US Department of Agriculture's Natural Resources Conservation Service (NRCS) Waterbird Habitat Enhancement Program (WHEP). The goal of WHEP is to enhance habitat on 100,000 acres of California ricelands, and has been supported by $\$ 10$ million of federal funds (Migratory Bird Conservation Partnership 2014). The WHEP has successfully enrolled nearly 20 percent of California's 550,000 acres of rice in bird-friendly farming practices. WHEP relies on short-term funding sources, and to secure a more sustainable funding source, the California Rice Commission, Audubon California, Point Blue Conservation Science and The Nature Conservancy are working with NRCS and other parties to develop sustainable conservation programs to continue to incentive the kind of bird-friendly farming practices such as those supported by WHEP.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe the design efficiencies and operational strategies used to maximize water efficiency under this priority.

Refuges

- USFWS 2009. Sacramento, Delevan, Colusa, and Sutter National Wildlife Refuges. Final Comprehensive Conservation Plan and Environmental Assessment. Vol. 1
- USFWS 2011a. Sacramento National Wildlife Refuge Water Management Plan
- USFWS 2011b. Colusa National Wildlife Refuge Water Management Plan
- USFWS 2011c. Delevan National Wildlife Refuge Water Management Plan

Ricelands

- Migratory Habitat Enhancement Plan 2014-(pages 1-6)

REV 10: Resilience of ecosystem improvements to the effects of changing environmental conditions, including hydrologic variability and climate change.
Which environmental uncertainties associated with this priority were considered in the project siting, design, and operation? How were these uncertainties incorporated into project siting, design, or operation? Examples of environmental uncertainties include, but are not limited to: sea level rise, temperature changes, changes in precipitation, landslides, erosion, earthquakes, wildfires, drought events, and flooding events.

Climate change and associated increased frequency of dry and critically dry years is the primary source of uncertainty. Long term modeling of climate change suggests that 34-38\% of years may be classified as dry and critically dry years in the Sacramento Valley, and 66-69\% may be classified as dry and critically dry years in the San Joaquin Valley by the end of the 21st century (Null and Viers 2013).

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe and quantify the environmental uncertainties considered in the project siting, design, and operation.

- Null, S. E., and J. H. Viers (2013), In bad waters: Water year classification in nonstationary climates, Water Resources

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST	
CAVEAT:		QAVQ:	REF/FILE \#:	WSIP APPLICATION		
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	51	OF	61

Priority 14: Provide water to enhance seasonal wetlands, permanent wetlands, and riparian habitat for aquatic and terrestrial species on State and Federal wildlife refuges and on other public and private lands Research, 49, doi:10.1002/wrcr. 20097.

| STATUS: | FINAL | PREPARER: | J HERRIN | PHASE: | 1 | VERSION: | A |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PURPOSE: | PHYSICAL PUBLIC BENEFITS | CHECKER: | N PONFERRADA | DATE: | 2017 AUGUST | | |
| CAVEAT: | | QAVQC: | REF/FILE \#: | WSIP APPLICATION | | | |
| NOTES: | ECOSYSTEM PRIORITIES A1 | | PAGE: | 52 | OF | 61 | |

Ecosystem Priority 15

Priority 15: Develop and implement invasive species management plans utilizing techniques that are supported by best available science to enhance habitat and increase the survival of native species

Species Information

What invasive species are you targeting?

Yellow star thistle (Centaurea solstitialis)

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the biology of the invasive species and their impacts on native fish and wildlife are described and quantified.

Ecosystem Priority 15 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB

REV 2: Magnitude of ecosystem improvements

When implemented what is the expected magnitude of habitat enhancement and increased survival of native species? Magnitude should be expressed as: a) the change from current conditions without the project to current conditions with the project, and b) the change from 2030 conditions without the project to 2030 conditions with the project. How did you estimate this value?
If the project intends to target multiple invasive species, the magnitude of the ecosystem improvement for each species needs to be provided.

The approximate acreage of the valley extending from Golden Gate Dam to Funks Reservoir was determined. Except for vegetation on the shore of Funks Creek, this area is covered in star thistle. Habitat enhancement would be accomplished between 2028 and 2030. Once the habitat is established it will be maintained for the 100 year planning horizon.
The restoration of native prairie would increase the value to native species, including providing forage habitat for golden eagles.
Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the magnitude of the ecosystem improvement is described and quantified.

Ecosystem Priority 15 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB
REV 3: Spatial and temporal scale of ecosystem improvements.
What is the geographical extent (e.g., river miles, acres) of the ecosystem improvement that will address this priority?

90 Acres

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) where the geographical extent of the ecosystem improvement is documented or mapped.

Ecosystem Priority 15 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB
When during the year will the project manage invasive species for the benefit of native species? How is the distribution of invasive species likely to vary with hydrologic conditions (i.e., among water year types) a) under current conditions with and without the project, and b) in 2030 with and without the project?
If the project intends to target multiple invasive species, provide the timing of management actions for each invasive species separately.

Year round improvement regardless of hydrologic conditions.
Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the timing of ecosystem improvements that address this priority are described and quantified.

Ecosystem Priority 15 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB

REV 4: Inclusion of an adaptive management and monitoring program that includes measurable objectives, performance measures, thresholds, and triggers to achieve ecosystem benefits.

Provide additional information on how this ecosystem improvement will be incorporated into the adaptive management and monitoring program. If available, provide examples of objectives, performance measures, thresholds, or triggers that could be

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST
CAVEAT:		QA/QC:	REF/FILE \#:	WSIP APPLICATION	
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	53	OF

> | Priority 15: Develop and implement invasive species management plans utilizing techniques that are supported by best |
| :--- |
| available science to enhance habitat and increase the survival of native species |
| used to manage benefits associated with this priority. |
| $\begin{array}{l}\text { The restored area will be surveyed monthly during the initial establishment of native prairie and then surveyed annually. } \\ \text { Adaptive management will consist of removing any invasive plants and reseeding with native species. }\end{array}$ |

REV 5: Immediacy of ecosystem improvement actions and realization of benefits

Immediacy of ecosystem improvement: Number of months from grant encumbrance until the proposed ecosystem improvement is completed (i.e., the expected timeframe until the improvement is implemented or construction is completed).

Approximately 108 months.
Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the immediacy timeframe is described and quantified.

Ecosystem Priority 15 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB

Realization of ecosystem improvement: Number of months from the time the ecosystem improvement is completed (i.e. project is implemented or construction is complete), until the benefit associated with this priority can be observed (i.e. when measurable improvements can be observed and quantified)

Once the area is reseeded the benefit is immediate.
Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the realization timeframe is described and quantified.

Ecosystem Priority 15 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB

REV 6: Duration of ecosystem improvements

How long (number of years) after realization (as calculated under REV 5 above) is the ecosystem improvement expected to address this priority? Maximum is 100 years. Explain how this value was determined and whether the magnitude of the ecosystem improvement is anticipated to change over time.

100 years. The Authority has budgeted mitigation funds that can be used for this purpose. Future funding may also be obtained through grants.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the duration of the ecosystem improvement is described and quantified.

Ecosystem Priority 15 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB

REV 7: Consistency with species recovery plans and strategies, initiatives, and conservation plans

Does the ecosystem improvement meet any goals or objectives established in existing species recovery plans, initiatives, or conservation plans including but not limited to the National Oceanic and Atmospheric Administration (NOAA) Fisheries Recovery Plan for Sacramento River winter-run Chinook salmon, Central Valley spring-run Chinook salmon, and Central Valley steelhead; State Wildlife Action Plan; Central Valley Joint Venture Implementation Plan, San Joaquin County Multi-Species Habitat Conservation Plan and Open Space Plan, Draft Solano Multi-Species Habitat Conservation Plan, East Contra Costa County Habitat Conservation Plan/Natural Community Conservation Plan, Draft Recovery Plan for the Giant Garter Snake, and California Water Action Plan? If so which goals, objectives, or actions will be met? Why?

No
Additional locations in the application, supporting documentation or attachments (page number, table number, other) where the consistency with goals, objectives, or actions from recovery plans, initiative, or conservation plans are discussed.

NA
REV 8: Location of ecosystem improvements and connectivity to areas already being protected or managed for conservation values

Provide a map that shows the extent of the ecosystem improvement that will address this priority (e.g., river miles that meet the temperature benefits). Provide additional instructions or clarification to reviewers who will be viewing this map (i.e., describe the

| STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSION: | A |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| PURPOSE: | PHYSICAL PUBLIC BENEFITS | CHECKER: | N PONFERRADA | DATE: | 2017 AUGUST | |
| CAVEAT: | | QAQC: | REF/FILE\#: | WSIP APPLICATION | | |
| NOTES: | ECOSYSTEM PRIORITIES A1 | | PAGE: | 54 | OF | 61 |

Priority 15: Develop and implement invasive species management plans utilizing techniques that are supported by best available science to enhance habitat and increase the survival of native species

color and/or label that identifies the spatial extent of the ecosystem improvement). If available, also submit supporting electronic files such as a .kmz file or ArcGIS layer associated with the maps provided.

The map is provided in Ecosystem Priority 15 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB
Explain why the location of invasive species management was selected. How is the location beneficial to the survival of native species in the context of local environmental conditions and species' needs?

The location is on property that will be acquired for construction of project facilities and will remain in the control of the Authority. The property is currently overrun with yellow star thistle.

Is the ecosystem improvement location adjacent to, or near, other areas already being protected or managed for conservation values? Explain the proximity of the ecosystem improvement to other areas already being protected or managed for conservation values and any hydrologic connectivity that may occur between these locations.

This area is near the proposed Stone Corral recreation area that will be managed for conservation values; however, the area to be restored as prairie will not be accessible to the general public.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the timing of ecosystem improvements that address this priority are described and quantified.

Ecosystem Priority 15 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB

REV 9: Efficient use of water to achieve multiple ecosystem benefits

If applicable, how will water be efficiently managed to implement invasive species management?
Water for establishing native vegetation will most likely be taken from Holthouse Reservoir, a project facility.
Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe the design efficiencies and operational strategies used to maximize water efficiency under this priority.

NA
REV 10: Resilience of ecosystem improvements to the effects of changing environmental conditions, including hydrologic variability and climate change.
Which environmental uncertainties associated with this priority were considered in the project siting, design, and operation? How were these uncertainties incorporated into project siting, design, or operation? Examples of environmental uncertainties include, but are not limited to: sea level rise, temperature changes, changes in precipitation, landslides, erosion, earthquakes, wildfires, drought events, and flooding events.

Affects choice of native species for re-seeding.
Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe and quantify the environmental uncertainties considered in the project siting, design, and operation.

Ecosystem Priority 15 in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST	
CAVEAT:		QANQ:	REF/FILE \#:	WSIP APPLICATION		
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	55	OF	61

Ecosystem Priority 16

Priority 16: Enhance habitat for native species that have commercial, recreational, scientific, or educational uses

REV 2: Magnitude of ecosystem improvements

What is the expected magnitude of the ecosystem improvement that will address this priority? Magnitude should be expressed as: a) the change from current conditions without the project to current conditions with the project, and b) the change from 2030 conditions without the project to 2030 conditions with the project. How did you estimate this value?

Under current conditions, dry and critically dry years pose significant challenges to managing habitat for terrestrial wildlife dependent on wetlands and riparian habitat in Central Valley refuges within the Central Valley Project Improvement Act (CVPIA) Refuge Water Supply Program (RWSP) The RWSP wetland habitat areas include 12 federal National Wildlife Refuges (NWRs), six State Wildlife Areas, and one privately managed refuge (CDFW 2017). These 19 refuges in the RWSP currently receive approximately 433 thousand acre feet (TAF) Level 2 water supplies, and incremental Level 4 water supplies of an additional 133 TAF (CDFW 2017). From 2005-2014 only 43\% of Incremental Level 4 allocations were acquired and delivered each year to refuges (CDFW 2017).

Refuges of the Sacramento NWR Complex , including the Sacramento, Colusa, and Delevan NWRs, provide critical managed wetland habitat for many water-dependent wildlife species, including snow geese, northern pintail, white-faced ibis, sandhill crane, and giant-garter snake (USFWS 2009). Drought contingency actions for the Sacramento, Colusa and Delevan NWRs during dry and critically dry years vary depending on the severity of the reduced water allocations, as well as the timing within the water year when the cutback is finalized (USFWS 2011a, 2011b, 2011c). If water allocations are reduced to 25% of normal deliveries at Sacramento, Colusa and Delevan NWRs during dry or critically dry years, the drought contingency plans for all three refuges call for adjustments to wetland management practices, with the following impacts on wetland habitat and wetland dependent species (USFWS 2011a, 2011b, 2011c):
For 50% of normal deliveries, wetland acreage at the three refuges would be reduced by $30-50 \%$. Composite acreages of seasonal and permanent wetlands at all three refuges totals 15,525 acres (based on 2010 data), which includes 13,722 acres of seasonal wetlands (timothy grass and water grass) and 1,803 acres of permanent and semi-permanent wetland/brood ponds. A 30-50\% reduction for permanent and seasonal wetlands would amount to a loss of 4,658 to 7,762 acres. For 25\% of normal deliveries, total wetland acreage at the three refuges would be reduced by $60-70 \%$, amounting to loss of 9,315 to 10,867 acres. In addition to the direct loss of wetlands, longer term impacts would also occur to future wetland habitat quality throughout the refuges. Loss of permanent pond acreage would be 80% for both the 50% and 25% reductions of normal deliveries. Other impacts on habitat and wildlife of reductions to 50 to 25% of normal deliveries include:

- Very early spring draw-downs of wetlands which severely limits shorebird habitat and results in poor germination for important wildlife and waterfowl plants.
- Loss of permanent pond acreage adversely affects habitat for special-status species such as giant garter snakes, tricolored blackbirds, western pond turtles, and for duck broods.
- Complete elimination of irrigation for annual food plants and control of invasive species such as cocklebur, resulting in increased mowing/diesel fuel consumption to mitigate.
- Flood-ups delayed on remaining acreage, resulting in widespread crop depredation in nearby agricultural lands.
- Extreme waterfowl crowding and disease risk (avian botulism (Type C) and avian cholera).
- Reduced public use on all refuge habitats reduced (or eliminated for 25% of water delivery scenario) other than having the Sacramento NWR visitor center open, and visitor use would decrease to a fraction of normal.

The project would provide additional water, with the highest deliveries in wet, above normal, and below normal years to reduce adverse impacts to seasonal and permanent wetlands and to wetland-dependent wildlife on refuges. The amount of water allocated to the Sacramento, Colusa, and Delevan NWRs and the other refuges in the RWSP is uncertain, but as shown in Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB, additional Level 2 and Level 4 water would be available in dry and critically dry years. Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB summarizes CalSim II Model Runs conducted on June 21, 2017 and shows the net increase in water supply available for all refuges with implementation of the project.

Deliveries of additional Level 2 and Level 4 water during dry and critically dry years would avoid loss of up to 10,867 acres of wetland habitat on the Sacramento, Colusa, and Delevan NWRs, and the other direct and indirect impacts of reduced water availability described above.
Sites_A2 Ecosystem Documentation under the PHYSICAL PUBLIC BENEFITS TAB lists the native species that occur on the Sacramento NWR Complex refuges and which have commercial, recreational, scientific, or educational uses and values, and

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AU	UST	
CAVEAT:		QAIQC:		REF/FILE \#:	WSIP AP	ICATION	
NOTES:	ECOSYSTEM PRIORITIES A1			PAGE:	56	OF	61

Priority 16: Enhance habitat for native species that have commercial, recreational, scientific, or educational uses

would benefit from implementation of the project.
Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the magnitude of the ecosystem improvement is described and quantified.

CalSim II Model Runs for WSIP 2030 Sites Reservoir Regional_Deliveries_WSIP_2030_With_Project_vs_Without_Project. Updated June 21, 2017

CDFW 2017. Refuge Water Supply Program Overview. Available at:
https://www.wildlife.ca.gov/Conservation/Watersheds/Refuge-Water/Overview. Accessed June 29, 2017
USFWS 2009. Sacramento, Delevan, Colusa, and Sutter National Wildlife Refuges. Final Comprehensive Conservation Plan and Environmental Assessment. Vol. 1
USFWS 2011a. Sacramento National Wildlife Refuge Water Management Plan
USFWS 2011b. Colusa National Wildlife Refuge Water Management Plan
USFWS 2011c. Delevan National Wildlife Refuge Water Management Plan
REV 3: Spatial and temporal scale of ecosystem improvements.
What is the geographical extent (e.g., river miles, acres) of the ecosystem improvement that will address this priority?

- Sacramento National Wildlife Refuge - 10,819 acres
- Colusa National Wildlife Refuge - 4,686 acres
- Delevan National Wildlife Refuge - 5,877 acres.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) where the geographical extent of the ecosystem improvement is documented or mapped.

USFWS 2009

- Overview map of refuges, page 1
- Table 4. Acreage and habitats of Sacramento National Refuge Complex, page 51
- Figure 6. Sacramento Refuge Habitat Management, page 52
- Figure 7. Delevan Refuge Habitat Management, page 53
- Figure 8. Colusa Refuge Habitat Management, page 54

When during the year will the project enhance habitat for native species that have commercial, recreational, scientific or educational uses? How is habitat for native species likely to vary with hydrologic conditions (i.e., among water year types) a) under current conditions with and without the project, and b) in 2030 with and without the project?

In dry years, with 25% of water allocations, water is applied to seasonal and permanent wetlands in all months of the year except February, for a total of 12,850 acre feet (af), 5,987 af, and 5,000 af for Sacramento, Delevan, and Colusa, respectively. Peak seasonal water use for wetlands on the refuges peaks in late fall in dry and critically dry years. Refuge managers and biologists strategize constantly for the optimal use of water to continue to meet the refuges' conservation goals. Typically staff is flexible with water usage so water conserved early in the season can be used later in the season to support migratory bird populations and meet management objectives to the extent possible.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the magnitude of the ecosystem improvement is described and quantified.

USFWS 2011a - Sacramento National Wildlife Refuge Water Management Plan: Drought Contingency Plan

- Table 3. 50\% Anticipated Water Use Schedule
- Table 4. 25% Anticipated Water Use Schedule

USFWS 2011b. Colusa National Wildlife Refuge Water Management Plan: Drought Contingency Plan

- Table 3. 50\% Anticipated Water Use Schedule
- Table 4. 25% Anticipated Water Use Schedule

| STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSION: | A |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| PURPOSE: | PHYSICAL PUBLIC BENEFITS | CHECKER: | N PONFERRADA | DATE: | 2017 AUGUST | |
| CAVEAT: | | QAQC: | REF/FLE \#: | WSIP APPLICATION | | |
| NOTES: | ECOSYSTEM PRIORITIES A1 | | PAGE: | 57 | OF | 61 |

Priority 16: Enhance habitat for native species that have commercial, recreational, scientific, or educational uses

USFWS 2011c. Delevan National Wildlife Refuge Water Management Plan: Drought Contingency Plan

- Table 3. 50\% Anticipated Water Use Schedule
- Table 4. 25% Anticipated Water Use Schedule

REV 4: Inclusion of an adaptive management and monitoring program that includes measurable objectives, performance measures, thresholds, and triggers to achieve ecosystem benefits.
Provide additional information on how this ecosystem improvement will be incorporated into the adaptive management and monitoring program. If available, provide examples of objectives, performance measures, thresholds, or triggers that could be used to manage benefits associated with this priority.

Every year Refuge Managers at the Sacramento NWR Complex review the outcome of the previous year's habitat management plan, a process that involves a planning team visiting each habitat unit on each refuge to document the previous year's accomplishments, establish needs and develop plans for the upcoming year. These findings are compiled to produce the current year's habitat management plan for each refuge. Waterfowl surveys are usually conducted monthly by refuge biologists from October through February.

REV 5: Immediacy of ecosystem improvement actions and realization of benefits

Immediacy of ecosystem improvement: Number of months from grant encumbrance until the proposed ecosystem improvement is completed (i.e., the expected timeframe until the improvement is implemented or construction is completed).

Initial benefits are expected during dry and critically dry years starting in year 2028 (6 years after grant encumbrance for construction). Full benefits are expected in 2030 (8 years after grant encumbrance).

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the immediacy timeframe is described and quantified.

Sites_A3 Schedule under the FEASIBILITY AND IMPLEMENTATION RISK TAB

Realization of ecosystem improvement: Number of months from the time the ecosystem improvement is completed (i.e., project is implemented or construction is complete), until the benefit associated with this priority can be observed (i.e., when measurable improvements can be observed and quantified)

Benefits of additional water supply will be observed and quantified during dry and critically dry years.
Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the realization timeframe is described and quantified.

CalSim II Model Runs for WSIP 2030 Sites Reservoir Regional_Deliveries_WSIP_2030_With_Project_vs_Without_Project. Updated June 21, 2017

CDFW 2017. Refuge Water Supply Program Overview. Available at:
https://www.wildlife.ca.gov/Conservation/Watersheds/Refuge-Water/Overview. Accessed June 29, 2017
USFWS 2009. Sacramento, Delevan, Colusa, and Sutter National Wildlife Refuges. Final Comprehensive Conservation Plan and Environmental Assessment. Vol. 1

USFWS 2011a. Sacramento National Wildlife Refuge Water Management Plan
USFWS 2011b. Colusa National Wildlife Refuge Water Management Plan
USFWS 2011c. Delevan National Wildlife Refuge Water Management Plan

REV 6: Duration of ecosystem improvements

How long (number of years) after realization (as calculated under REV 5 above) is the ecosystem improvement expected to address this priority? Maximum is 100 years. Explain how this value was determined and whether the magnitude of the ecosystem improvement is anticipated to change over time.

Benefits of additional water supply for wetlands and wildlife dependent on wetlands will be observed for the duration of the refuge's existence in dry and critically dry years.

Additional locations in the application, supporting documentation or attachments (document name, page number, table number, other) where the duration of the ecosystem improvement is described and quantified.

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AU		
CAVEAT:		QA/QC:		REF/FILE \#:	WSIP AP	CATION	
NOTES:	ECOSYSTEM PRIORITIES A1			PAGE:	58	OF	61

Priority 16: Enhance habitat for native species that have commercial, recreational, scientific, or educational uses

CalSim II Model Runs for WSIP 2030 Sites Reservoir Regional_Deliveries_WSIP_2030_With_Project_vs_Without_Project. Updated June 21, 2017

CDFW 2017. Refuge Water Supply Program Overview. Available at:
https://www.wildlife.ca.gov/Conservation/Watersheds/Refuge-Water/Overview. Accessed June 29, 2017
USFWS 2009. Sacramento, Delevan, Colusa, and Sutter National Wildlife Refuges. Final Comprehensive Conservation Plan and Environmental Assessment. Vol. 1

USFWS 2011a. Sacramento National Wildlife Refuge Water Management Plan
USFWS 2011b. Colusa National Wildlife Refuge Water Management Plan
USFWS 2011c. Delevan National Wildlife Refuge Water Management Plan

REV 7: Consistency with species recovery plans and strategies, initiatives, and conservation plans

Does the ecosystem improvement meet any goals or objectives established in existing species recovery plans, initiatives, or conservation plans including but not limited to the National Oceanic and Atmospheric Administration (NOAA) Fisheries Recovery Plan for Sacramento River winter-run Chinook salmon, Central Valley spring-run Chinook salmon, and Central Valley steelhead; State Wildlife Action Plan; Central Valley Joint Venture Implementation Plan, San Joaquin County Multi-Species Habitat Conservation Plan and Open Space Plan, Draft Solano Multi-Species Habitat Conservation Plan, East Contra Costa County Habitat Conservation Plan/Natural Community Conservation Plan, Draft Recovery Plan for the Giant Garter Snake, and California Water Action Plan? If so which goals, objectives, or actions will be met? Why?

Improving water supply to refuges during dry years to support waterfowl, shorebirds, and other wildlife dependent on seasonal and permanent wetlands is consistent with goals and objectives described in the following conservation plans

- North American Waterfowl Management Plan
- U.S. Shorebird Conservation Plan
- North American Waterbird Conservation Plan
- Central Valley Joint Venture Implementation Plan - Conserving Bird Habitat

Improving water supply to refuges during dry years is also consistent with recovery goals described in

- Draft Recovery Plan for the Giant Garter Snake
- Conservation Plan for the Tricolored Blackbird

Additional locations in the application, supporting documentation or attachments (page number, table number, other) where the consistency with goals, objectives, or actions from recovery plans, initiative, or conservation plans are discussed.

- North American Waterfowl Management Plan - 2012 (page 2)
- U.S. Shorebird Conservation Plan - 2001 (page 30)
- Central Valley Joint Venture Implementation Plan - Conserving Bird Habitat (Chapter 10)
- California Wildlife Action Plan (Executive Summary page 2)
- Draft Recovery Plan for the Giant Garter Snake (page 9)
- Conservation Plan for the Tricolored Blackbird (page 11)

REV 8: Location of ecosystem improvements and connectivity to areas already being protected or managed for conservation

 valuesProvide a map that shows the extent of the ecosystem improvement that will address this priority (e.g., river miles that meet the temperature benefits). Provide additional instructions or clarification to reviewers who will be viewing this map (i.e., describe the color and/or label that identifies the spatial extent of the ecosystem improvement). If available, also submit supporting electronic files such as a .kmz file or ArcGIS layer associated with the maps provided.

USFWS 2009

- Overview map of refuges, page 1
- Table 4. Acreage and habitats of Sacramento National Refuge Complex, page 51
- Figure 6. Sacramento Refuge Habitat Management, page 52

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:	2017 AUGUST	
CAVEAT:		QAVC:	REF/FILE \#:	WSIP APPLICATION		
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	59	OF	61

Priority 16: Enhance habitat for native species that have commercial, recreational, scientific, or educational uses

- Figure 7. Delevan Refuge Habitat Management, page 53
- Figure 8. Colusa Refuge Habitat Management, page 54

Explain why this location was selected. How is the location of enhanced habitat beneficial in the context of local environmental conditions?

Seasonal and permanent wetlands in the Sacramento NW are managed specifically for enhancement of seasonal and permanent wetland habitat for the benefit of native species that have commercial, recreational, scientific, or educational uses, including waterfowl, shorebirds, and special-status wildlife species.

Is the ecosystem improvement location adjacent to, or near, other areas already being protected or managed for conservation values? Explain the proximity of the ecosystem improvement to other areas already being protected or managed for conservation values and any hydrologic connectivity that may occur between these locations.

Seasonal and permanent wetlands in the Sacramento NWR are managed specifically for the benefit of native species that have commercial, recreational, scientific, or educational uses enhancement of seasonal and permanent wetland habitat for the benefit of waterfowl, shorebirds, and special-status wildlife species.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe and quantify the spatial extent of the ecosystem improvement, the proximity of the ecosystem improvement to other areas already being protected or managed for conservation value, and the degree to which hydrologic connections (if any) occur between the ecosystem improvement and areas already being protected or managed for conservation value.

- USFWS 2009. Sacramento, Delevan, Colusa, and Sutter National Wildlife Refuges. Final Comprehensive Conservation Plan and Environmental Assessment. Vol. 1

REV 9: Efficient use of water to achieve multiple ecosystem benefits

If applicable, how will water provided to address this priority be managed? Explain design efficiencies and operational strategies intended to maximize the efficiency of water allocated to ecosystem improvements that address this priority.

Refuge managers and biologists strategize constantly for the optimal use of water to continue to meet the refuges' conservation goals. Typically staff is flexible with water usage so water conserved early in the season can be used later in the season to support migratory bird populations and meet management objectives to the extent possible.

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name or number, other) that describe the design efficiencies and operational strategies used to maximize water efficiency under this priority.

USFWS 2009. Sacramento, Delevan, Colusa, and Sutter National Wildlife Refuges. Final Comprehensive Conservation Plan and Environmental Assessment. Vol. 1
USFWS 2011a. Sacramento National Wildlife Refuge Water Management Plan
USFWS 2011b. Colusa National Wildlife Refuge Water Management Plan
USFWS 2011c. Delevan National Wildlife Refuge Water Management Plan
REV 10: Resilience of ecosystem improvements to the effects of changing environmental conditions, including hydrologic variability and climate change.
Which environmental uncertainties associated with this priority were considered in the project siting, design, and operation? How were these uncertainties incorporated into project siting, design, or operation? Examples of environmental uncertainties include, but are not limited to: sea level rise, temperature changes, changes in precipitation, landslides, erosion, earthquakes, wildfires, drought events, and flooding events.

Climate change and associated increased frequency of dry and critically dry years is the primary source of uncertainty. Long term modeling of climate change suggests that $34-38 \%$ of years may be classified as dry and critically dry years in the Sacramento Valley, and 66-69\% may be classified as dry and critically dry years in the San Joaquin Valley by the end of the 21st century (Null and Viers 2013).

Additional locations in the application, supporting documentation or attachments (document name, page number, figure name

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1
PURPOSE:	PHYSICAL PUBLIC BENEFITS	CHECKER:	N PONFERRADA	DATE:
CAVEAT:		QA/QC:	REF/FILE \#:	WSIP APSPLICATION
NOTES:	ECOSYSTEM PRIORITIES A1		PAGE:	60

Priority 16: Enhance habitat for native species that have commercial, recreational, scientific, or educational uses
or number, other) that describe and quantify the environmental uncertainties considered in the project siting, design, and operation.

Null, S. E., and J. H. Viers (2013), In bad waters: Water year classification in nonstationary climates, Water Resources Research, 49, doi:10.1002/wrcr. 20097.

| STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSION: | A |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| PURPOSE: | PHYSICAL PUBLIC BENEFITS | CHECKER: | N PONFERRADA | DATE: | 2017 AUGUST | |
| CAVEAT: | | QA/QC: | REF/FILE \#: | WSIP APPLICATION | | |
| NOTES: | ECOSYSTEM PRIORITIES A1 | | PAGE: | 61 | OF | 61 |

Sites Project Executive Summary

FOR CALIFORNIA'S WATER STORAGE INVESTMENT PROGRAM

Providing high-quality water to enhance the environment, the economy and quality of life for Californians

Sites is an innovative, environmentally sound solution to California's toughest water challenges.

With broad statewide support, the Sites Project fulfills the clear Proposition 1 mandate from the People of California, who overwhelmingly said the state needs public benefits from new water storage.

Sites Project Executive Summary

This document summarizes how the Sites Project Authority (Authority) has addressed the California Water Commission's requirements of the Water Storage Investment Program (WSIP), to provide water supply and eligible public benefits.

The Sites Project will make California's water system more efficient, flexible and reliable, which will provide local, statewide and national benefits.

The project:

- Helps achieve the objectives of the California Water Action Plan
- Reflects the innovative approach mandated by the people of California under Proposition 1
- Provides a substantial supply of high-quality water to support the economy and enhance the environment, particularly in the face of climate change
- Better captures, stores and provides water for the environment, the economy and quality of life for families, farms and businesses
- Is being developed in accordance with the beneficiary-pays-principle

The Sites Project offers the State of California a significant supply of water to improve conditions for salmon and smelt and to comply with the will of California voters.
The Sites Reservoir
Delivers about 441,000 acre-
feet of water per year to
California's water system for...

The time is NOW to implement bold and strategic water storage options, in order to capture and deliver water for use where and when it's needed most for the environment, families, farms and businesses.

By investing in Sites, the California Water Commission has a unique opportunity to invest in the ecological health of the Sacramento River and Sacramento-
San Joaquin Delta (Delta) and fulfill the will of California Voters.
Sites Works for California and Goes Above and Beyond California

Relative

Environmental Values
Sites provides substantial ecosystem benefits.

The project includes several critical environmental enhancements

Learn more about the project's Relative Environmental Values on page 15.

Resiliency
Sites is resilient.
Sites provides dedicated water storage that can be adaptively managed to meet the changing needs of the Sacramento watershed and Delta, constituting significant benefits under anticipated future climate conditions

Learn more about the project's resiliency on page 17.

Implementation Risk
Sites Project is feasible. The real risk lies in not implementing the Sites Project.

The project meets the California Water Commission criteria for technical, economic, financial, and environmental feasibility.
The Bureau of Reclamation's Feasibility Report independently validates the feasibility of implementing the Sites Project.

Learn more about the project's implementation risk on page 16 .

Overview

California has grappled with serious water supply reliability and ecosystem challenges for decades. Voters overwhelmingly approved Proposition 1 in anticipation of more frequent drought conditions, a smaller snowpack, heavier rain and flashier storms, aging water infrastructure and declining ecosystem conditions. The Sites Project offers the best opportunity for meeting the will of the voters by providing a reliable source of high-quality water to benefit the ecosystem and provide needed water storage.

The Sites Project Authority (Authority) proposes to provide the state with 710,000 acre-feet (40\%) of the usable capacity in Sites Reservoir for ecosystem benefits. When this water is managed according to California Water Commission requirements, the resulting long-term annualized water deliveries would provide:

Proposed 2030-2070 Average Ecosystem Benefits (Acre-Feet)		
Species Benefiting	Drier Years	Average Years
Chinook Salmon	190,000	125,000
Delta Smelt	29,000	39,000
Level 4 Refuge Supplies	19,000	33,000

The proposed operations intentionally provide substantial carry-over storage. This produces larger ecosystem benefits in dry and critical years. Additional benefits for the Water Commission's consideration include:

- Flexibility: Should future hydrologic and/or environmental conditions result in a need to provide different benefits than have been assumed in today's Relative Environmental Values (REVs), state's resource managers could reallocate the water to align with new priorities.
- Partnership: Through an effective partnership between the Authority and the state resource agencies managing the state's investment, even greater benefits can be achieved.
- Management: The Sites Project is being developed in accordance with the beneficiary-pays principle, which enables the state to retain management control over its investment for the life of the Sites Reservoir.
- Federal Participation: The Bureau of Reclamation (Reclamation) has been preparing studies to advance the Sites Reservoir. Their congressionally-mandated Draft Feasibility Report demonstrates a strong interest
to invest in the Sites Project, which would strengthen and enhance the state's investment. The federal level of participation will only be determined after the Authority has received a decision on the Water Commission's level of investment.

Sites Project Authority

Sites is being developed by several Northern California public agencies who are motivated to sustainably build a local water management project that helps the state meet its overall water system needs. The Authority was formed on August 26, 2010 and is governed by a 12-member Board of Directors representing Sacramento Valley leadership in government and water management.

The Authority's Board of Directors is the lead agency working with regional stakeholders and water agencies statewide to advance the construction of the Sites Project. In January 2017, the Authority assumed lead agency responsibilities for ensuring compliance with the California Environmental Quality Act (CEQA) and is working with Reclamation, the federal lead agency, to ensure compliance with the National Environmental Policy Act (NEPA).

Together, the Authority, Reclamation and the California Department of Water Resources (DWR) are working in partnership to improve the operation of the state's interdependent water system.

Should the state or federal government elect to invest in the project's construction, in exchange for acquiring water which they would manage for environmental benefits, the Authority intends that the appropriate state and/or federal resource agency would become a partner. This agency would then have the same or equivalent status as the water agencies who participate and fund their share of the project's costs to improve their water supplies.

Sites Eligibility for Proposition 1 Funding

The Sites Project complies with all eligibility requirements for WSIP funding and achieves California's co-equal goals of water supply reliability and ecosystem improvement.

Sites Project Compliance \quad| A Joint Powers Authority will own, govern, manage |
| :--- |
| and operate the Sites Project (CWC 79759) |

"Sites Reservoir offers a remarkable opportunity to reoperate California's longest and largest river, the Sacramento, to provide multiple benefits for fish, farms and cities in an innovative manner. By partnering with the Sites Project Authority in the development of the Reservoir, the state would acquire water storage capacity and have management control over the resulting releases to ensure environmental benefits are achieved."

- Senator Dianne Feinstein
"North and South, rural and urban, Republican and Democrat, California's leaders agree on one thing: our state needs to invest in Sites Reservoir to meet the water supply challenges of today and the future. Sites provides more water per dollar invested than any other proposed project in the state, enough to supply millions of Californians for an entire year, while also creating environmental benefits and allowing smart recapture and reuse of water released from other reservoirs. Investing in Sites will fulfill the will of the 67\% of Californians who supported Proposition 1 funding for water storage infrastructure, and I hope the California Water Commission recognizes the project's diverse benefits."
- Congressman LaMalfa
"Sites Reservoir is one of the most useful, cost-effective water infrastructure projects California could build. It is an ideal project that can provide water for agriculture, urban uses and the environment. The support for the Sites Project from a majority of the California Congressional delegation speaks to the statewide benefits of the project."

> - Congressman Garamendi
"As water and environmental managers have been forced to operate under a constant regulatory threat, Sites Reservoir will provide a critical tool for them to solve California's toughest water problems collaboratively and productively."

- Senator Nielsen
"Sites is an incredibly important project for the State of California that meets many of the public benefits required by the Water Bond. "
- Assemblymember Gallagher
"Building Sites Reservoir is an imperative part of the solution to help California meet our water supply challenges of today and the future. The operational flexibility provided by the unique project offers reliable long-term assistance to California's complex water system."
- Assemblymember Dahle

Project Location

Ideally located in California's largest watershed, Sites includes a new 1.8 million acre-foot (MAF) reservoir offstream of the Sacramento River. The Sites Project will be situated on the west side of the Sacramento Valley, approximately 10 miles west of the rural town of Maxwell, in historic Colusa County. The Sacramento Valley is a unique region, known for it's farming community, rich agricultural benefits, and natural beauty. The region has been considered ideal for offstream water storage since the 1950's. Today, with climate change creating a new normal of changing future conditions (less snow-pack and flashier rainfall), Sites is ideally located to maximize the diversion and storage of excess storm event flows in the Sacramento River.

Sites is widely supported by local community leaders, residents, as well as state water managers and agencies from the Bay Area to Southern California. There is bipartisan support for the Sites Project, including the 43 members of California's Congressional Delegation, 12 State Senators and 18 State Assemblymembers who have signed letters of support.

Participants in the Sites Project represent 39 of California's 51 congressional districts. A full list of supporters of the Sites Project can be found in Attachment 6E to the Eligibility Tab of the WSIP application.

Sites Statewide Project Participation

Sites is locally-led in partnership with the state and federal government, and is widely supported by water agencies and stakeholders from across the state.

Sites Project Facilities

Sites is the modern infrastructure upgrade California needs to meet 21st century water challenges

Sites Creates Jobs and will Enhance Region-Wide Economic Growth and Stability

Annual Employment	Approximate \# of Jobs Added
Short Term Employment	
Direct Jobs: Construction	315
Indirect and Induced Jobs: Construction	505
Total Direct, Indirect, and Induced Employment	
Long-Term Employment: Direct Jobs	30
Operations and Maintenance	15
Recreation	45
Total Direct Jobs	
Long-Term Employment: Indirect and Induced Jobs	10
Operations and Maintenance	2
Recreation	12
Total Long-Term Indirect and Induced Jobs	57
Long-Term Total Direct, Indirect and Induced Employment	

As an offstream reservoir, Sites avoids environmental impacts to aquatic species common with in-stream dam construction. Sites combines the public benefits of water storage with the ecosystem benefits of increased environmental flows in the Sacramento River during droughts, when water for the environment has the highest value. It ensures cold water is available during the late summer months to benefit fish. With the construction of Sites Reservoir, the combined storage capacity of large reservoirs in the Sacramento Valley increases by about 15%.

Sites Project Facilities

Water managers have long acknowledged that by creating a new source of water and adding more flexibility in the system, Sites can help California succeed in implementing 21st century water solutions - to meet human AND environmental needs. To achieve this, the project includes the following facilities:

Sites Reservoir

The 1.8 MAF offstream reservoir will require two main dams (Sites and Golden Gate) and nine saddle dams. The resulting reservoir covers 14,200 acres. This reservoir will also improve local flood protection as witnessed by the February 18, 2017 storm event that flooded part of Maxwell and temporarily closed Interstate 5.

(2) Regulating Reservoirs

2a. Holthouse is an expansion of the existing Funks Reservoir, which provides flow equalization for the Tehama-Colusa Canal. Holthouse Reservoir is sized to allow pump-storage operations to generate renewable energy. Water entering Holthouse Reservoir will be pumped into Sites.

2b. The Terminal Regulating Reservoir will be constructed at the Glenn-Colusa Irrigation District Canal for flow equalization with flows pumped into Holthouse.

(3) Diversions

Water from the Sacramento River will be diverted for conveyance to Sites Reservoir from three locations:

3a. The existing Red Bluff Pumping Plant will divert water and convey it through the Tehama-Colusa Canal.

3b. The existing Glenn-Colusa Irrigation District Pumping Plant will divert water and convey it through the Glenn-Colusa Canal.

3c. A new Delevan Intake Pumping/Generating Plant will divert water into a new pipeline that will convey water into Holthouse Reservoir.

Both the Glenn-Colusa and Tehama-Colusa diversions currently utilize state-of-the-art fish screens and the Delevan Intake will include state-of-the-art fish screens to ensure fish friendly diversions.

(4) Sites Pumping/Generating Plant

This facility will have a capacity of $\mathbf{5 , 9 0 0}$ cubicfeet per second to fill Sites Reservoir.
Water released from the reservoir will flow in the reverse direction through the plant and generate seasonal hydropower and daily pumped-storage to contribute to the state's renewable energy goals.

(5) Conveyance

Water from Sites can be delivered throughout much of California. Releases from Sites include the following:

5a. The existing Tehama-Colusa Canal conveys water from the Red Bluff Diversion to Holthouse and deliver releases from Sites to local users south of the reservoir.
5b. The existing Glenn-Colusa Canal conveys water from the Hamilton City Diversion to the Terminal Regulating Reservoir and deliver releases from Sites to local users south of the reservoir.

5c. The new 13.5 mile Delevan Pipeline connects the new Sacramento River intake with Holthouse to convey water in either direction.
5d. To the Colusa Basin Drain and either to the Sacramento River or into the Yolo Bypass through Knights Landing Ridge Cut.

Integrating local infrastructure reduces costs and ensures the project complements the Sacramento Valley water system.

(6) Recreation Areas

The project will include the construction of two new recreation areas on the shore of Sites Reservoir for camping, picnicking, hiking, horseback riding, boating and fishing, among other activities. A separate boat ramp will also be included.

(7) Powerlines

Overhead powerlines will connect the three pumping/generating plants located at: Holthouse (Sites), the Terminal Regulating Reservoir, and Delevan to the state's electrical grid.

Sites Project Operations

Sites Reservoir will be filled by diverting excess Sacramento River flows originating from unregulated upstream tributaries. Diversions can potentially occur in any month or water year type, but would be greatest in the winter months with an emphasis on capturing flows from storm events. If Sites existed during 2017's rainy spring, and had been completely empty, 1.8 million acre-feet (AF) of water could have been stored as of May 3, 2017 (DWR).

The Sites Project will operate in cooperation with Central Valley Project (CVP) and State Water Project (SWP) system facilities to produce a wide range of public and ecosystem benefits that can be flexibly managed to adapt to future changes, depending on need and priority. Up to 710,000 AF of capacity supports the storage and then release of critical water supplies dedicated to environmental needs.

Sites Reservoir will provide water benefits through two primary mechanisms: (1) water stored in Sites Reservoir can be released directly to the Colusa Basin Drain and Sacramento River, and (2) water stored in Sites Reservoir could be exchanged for water stored in Shasta Lake, Folsom Lake, or Lake Oroville and Clair Engle Lake (Trinity).

> Had Sites been operational during the 2017 rainy spring season, an additional 1.8 million acre-feet of water could have been stored as of May 3, 2017.

Sites Reservoir can be used to reduce releases and increase storage in other reservoirs with downstream habitat critical to fish, while still meeting requirements for minimum instream flow objectives, Sacramento River temperature requirements, and Delta salinity control assigned to the SWP and CVP. Through this reduction in releases, storage can be conserved in Trinity Lake, Shasta Lake, Lake Oroville and Folsom Lake to significantly increase regional and system-wide operational flexibility.

Sites provides significant environmental benefits during dry and critical water year types, and especially during extended drought periods, to benefit coldwater releases for salmon. This benefit also applies to Folsom and Oroville coldwater pools.

Diversion of excess Sacramento River flows to Sites Reservoir will only take place when flow monitoring indicates that sufficient bypass flows are present in the Sacramento River due to storm event flows.

Sites will capture high, excess runoff in a future with less snowpack and higher temperatures. Approximately 210,000 AF of Sites water will be available annually for environmental use as a long-term average supply.

Sites Benefits to Salmon and Smelt

 Sites Ensures Climate Change ResiliencySites promotes salmon outmigration, enhances habitat, and improves summer/fall water temperatures, as well as water volumes and food for Delta smelt.

Sites will be operated to provide a variety of environmental benefits that will be managed by the state to provide water for ecosystem and water quality purposes. This pool of dedicated water will be managed to improve coldwater conservation storage, augment river flows during critical periods for fish migration, increase flows through certain watercourses and/or facilities (such as the Yolo Bypass), improve water quality and/or enhance habitat restoration. Collectively, the state and the Authority will manage a sizable supply of water to address real-time needs and achieve both intermediate and long-term goals.

Sites Reservoir water will also be used to supplement existing municipal and agricultural supplies for use in the Sacramento Valley and south of the Delta. These operations will be conducted in cooperation with CVP and SWP operations.

Sites is particularly beneficial during dry and critical years and extended drought periods, increasing overall water supplies despite climate change impacts.

Proposition 1-Eligible Public Benefits

Proposition 1 allows taxpayer resources to be used for specific public benefits the state can invest in. The state's investment in the Sites Reservoir can be used to achieve the following Proposition 1-eligible benefits.

Ecosystem Improvements

The Authority will partner with the California Department of Fish and Wildlife (CDFW) and State Water Resources Control Board (SWRCB) to deliver an annual supply of water that would be directed to meet the highest priority water needs in the state.

The greatest ecosystem benefit will be improved temperatures and flows in the Sacramento River between Keswick Dam and Bend Bridge. This portion of the Sacramento River is critical habitat for Chinook salmon (including the endangered Winter Run) and Steelhead. Water released from Sites Reservoir will meet existing SWP and CVP obligations to enable additional coldwater Storage at Shasta and Oroville above critical fish habitat. This storage will provide better temperature control and supplemental flows to support fish migration and reduce egg mortality (i.e. redds).

Sites will allow for increased coldwater pool storage levels and more reliable coldwater pool storage in existing reservoirs later into the summer months, improving conditions for native fish in several ways:

- Increased Shasta Lake storage levels provide additional coldwater pool storage in below normal, dry, and critical water-year types.
- Improved water temperature suitability in Lake Oroville for juvenile steelhead and spring-run Chinook salmon over-summer rearing and fall-run Chinook salmon spawning in the lower Feather River and augmented flows in the lower Feather River to minimize redd dewatering, juvenile stranding and isolation of anadromous salmonids.
- Additional coldwater pool storage in Folsom Lake benefits juvenile steelhead summer rearing and fall-run Chinook salmon spawning in the lower American River.

In a distinctly unique ecosystem action, Sites Reservoir will provide two pulse flows of at least 400 cubic feet per second over a two to three week period into the Yolo Bypass. These pulses will be adaptively managed by the state's designated resource agencies to push water high in phytoplankton and zooplankton directly into the Cache Slough area, the only place in the Delta where the endangered Delta smelt population is increasing. The resulting increase in desirable food sources should improve Delta smelt growth and populations as they mature into adults.

For reference only.* upstream of the Delta, Sites helps support
 Thete their lif
正

Sites water will enhance ecosystems for bird populations utilizing the Pacific Flyway during annual migration periods. Additionally, up to 50,000 AF of water will be provided to assist in meeting incremental Level 4 wildlife refuge water needs north and south of the Delta. This water will improve habitat conditions for a number of species, including giant garter snake, tricolored blackbird, and migrating waterfowl.

Additional Ecosystem Improvements (not monetized)

The Sites Project will provide additional benefits that have not been monetized due to lack of sufficient, tangible data and generally-accepted models that could reasonably estimate benefits to specific species. The benefits for Chinook Salmon in the Sacramento River watershed between Keswick Dam and Red Bluff (the area captured in SALMOD models) were monetized, but benefits to salmonids in the Feather River and American River were not monetized. Coldwater and additional flows made possible by Sites will also benefit other species of fish in the Sacramento River watershed, including steelhead and sturgeon. Therefore, the net environmental benefits Sites can provide are even greater than those provided in the WSIP application criteria.

Additional Proposition 1-Eligible Public Benefits

Water Quality (Not Monetized). The Sites Project meets SWRCB water quality priorities by providing improved temperature and groundwater conditions. The project will also provide additional water supply to agencies serving disadvantaged communities. These benefits have not been monetized as water quality benefits. However, the temperature improvements benefit anadromous fish and are included in our analysis of coldwater pool benefits. Further, participants in Sites Reservoir are expected to use their water to address the undesirable effects by complying with the Sustainable Groundwater Management Act (SGMA), but the magnitude of these improvements is still being defined.

Flood. The local area downstream from the project is prone to floods, including portions of Maxwell, Williams and Colusa. Even though these are seasonal streams, the Funks Creek and Stone Corral Creek watersheds are a key source of flooding during major storms. Construction of the Sites and Golden Gate Dams will reduce the frequency of flooding, reduce river levels to avoid flood events and relieve pressure on local levees. Had Sites been operational during the 2017 spring rainy season, runoff from local creeks and streams could have been captured and stored, reducing high flows, preventing overtopping and avoiding flood waters that caused significant economic damage in

> The Sites Project advances California's objectives of restoring ecological health in the Delta and improving water management for beneficial uses.

Colusa County and temporarily closed Interstate 5, which is a critical artery for commerce.

Emergency Response (not monetized). The Authority is committed to working with state and federal water managers and emergency personnel to provide water to support emergency events such as, but not limited to, firefighting, drought relief and Delta levee failures. Instead of dedicating a volume of water that may not be called upon by the state until at least a one in ten-year event (or longer) occurs, the Authority proposes that should water from Sites Reservoir be used to aid in responding to or recovery from an emergency, that repayment would occur through a mutually-acceptable exchange or transfer of water. As such, this benefit was not monetized and the Authority is not requesting Proposition 1 funding for this purpose.

Recreation. Two new recreation areas and a boat ramp will be created on the shore of Sites Reservoir. These areas will provide opportunities for boating, camping, hiking and equestrian use and have been monetized. Sites Reservoir will also improve water levels in existing reservoirs (e.g. Shasta, Oroville and Folsom) to support water-based recreational activities, but these benefits have not been monetized.

Additional Considerations

Operational Flexibility (not monetized). Sites Reservoir can be operated to achieve a wide variety of environmental and water quality objectives by operating to different strategies or priorities. This application proposes an operational strategy that aligns with the Water Commission's regulations by focusing on specific ecologic improvements in the Delta by providing benefits to native anadromous fish and in-Delta fish species. In the future, this operational strategy may be changed to reflect new or higher priorities.

Further, Sites reservoir will increase today's storage capacity in the largest reservoirs in the Sacramento Valley by 15%. Once the reservoir is operable, the state's water managers have the ability to operate differently - for both environmental and human uses - knowing there is additional capacity in the system. The ability to adaptively manage the reservoir releases to achieve different benefits and the benefits associated with the increase in system-wide storage capacity have not been monetized.

State's Operational Control (not monetized). The Authority proposes that the agencies with delegated authority to manage the state's investment would also have management control. This would be in the planning and also in the day-to-day releases needed to adapt to current and forecast conditions.

Net Benefits. The resulting ecosystem benefits were developed using the CalSim-II model as provided by the Water Commission for use in preparing this application. This model incorporates environmental, water quality, and water rights compliance obligations. Further, the Authority has added a simulated pulse flow criterion to be more protective of migrating juvenile salmonids and a criterion to ensure in-Delta water quality compliance requirements are achieved. The benefits presented in this application represent the difference between the "with project" from the "without project" to reflect the project's net benefits.

Sites Economic Benefits

Benefit-Cost Ratio: The Sites Project has been evaluated using two different and independent perspectives in conformity with the Water Commission's WSIP regulations and in accordance with Reclamation's federal procedures required for congressional authorizations. Their resulting Benefit-Cost Ratios are 1.52 and 1.72 , respectively, which are both well above the minimum 1.0 threshold used as the conventional investment decision-making criterion. The difference is attributable to their different future climate change scenarios and use of different unit benefit values reflecting different value propositions.

Public Benefit Ratio (PBR): The state's investment in the Sites Project has been evaluated using two different WISP regulation approved monetization approaches - the alternative cost method and adjusted WISP provided unit benefit values. Each approach was applied to only the project's readily monetizable benefits under both "with" and "without" federal participation scenarios. Their corresponding resulting PBRs results are provided in the following figure:

Range of Public Benefit Ratio Results

Public Benefit Ratio Using Two Different Benefit Monetization Methods

The higher range PBRs reflects the high cost and scarcity of feasible major infrastructure development projects to obtain new water supplies. The alternative cost method also does not fully account for potential economies of scale benefits that large-scale and multi-purpose storage projects such as Sites can achieve. Using more conservative adjusted WSIP unit benefit values (based on the water transfer market) the resulting PBRs are correspondingly lower. Neither of these methods included the nonmonetized benefits, some of which are significant.

Proposition	ligible Benefit (in \$M)	Annual Benefits (\$M)
	Ecosystem Improvement	\$111
(1)	Water Quality	N/A
00°	Recreation	\$7
\%	Flood Damage Reduction	\$4
(1)	Emergency Response	N/A
Proposition 1 Non-Eligible Benefits (in \$M)		
运	Water Supply	\$175
ζ	Hydropower	\$19
Total Monetized Benefit Annually		\$317
PUBLIC BENEFIT RATIO: 2.1 to 4.5		

Beneficiary-Pays-Principle: Each participant pays their proportionate cost-share based on their assigned share of the reservoir's capacity over the project's life using their storage. Each participant decides how to use their storage - hold it, release it and/or exchange it - within the parameters established by Agreements. To accomplish this:

> The benefits of the Sites Project far outweigh the costs. Sites is projected to cost $\$ 4.7$ billion (2015 dollars), with an estimated $\$ 317$ million in benefits as an annual return on investment.

Continues on page 16 »

Relative Environmental Values

Benefits delivered by the Sites Project address the Ecosystem and
Water Quality Priorities identified by CDFW and the SWRCB. Summary of Priorities:

Cold water for salmonid eggs and fry | Improved temperature downstream of Shasta, Oroville and Folsom |
| :--- |

Bold type = Public benefits offered by the Sites Project

Beneficiary-Pays-Principle (con’t)

- Capital costs: The participating water agencies will finance their proportionate shares of capacity and Proposition 1 funds will cover the state's share of the initial capital.
- Annual Costs (Operations, Maintenance and Replacement): The participating water agencies will pay their proportionate share based on releases either at Holthouse or Delevan as appropriate. The state's share of these costs can be provided from revenues generated from at least two sources: (1) after water has been released from a reservoir to provide at least one Proposition 1-eligible benefit, a small portion of this water could be recaptured and then sold under a long-term contract and/or (2) the state's share of water stored in the reservoir could be used to generate electricity for third annual party sales through the pumped-storage operations. Should the state's revenue exceed the applicable annual costs, the surplus could be used to provide additional public benefits within the Sacramento Valley and/or Delta.

Implementation Risk

The implementation risk of the Sites Project has been characterized in accordance with the WSIP methodology in this application. Further, an independent analysis of the Project's feasibility using federal guidelines is available in the Draft NODOS Feasibility Report. Although the federal methodology differs from the WSIP methodology (e.g., different climate change assumptions), the results of the two studies are generally consistent. This independent analysis of the project by Reclamation found the project to be feasible based on available information.

Sites offers essential benefits under future conditions.

Technical Feasibility: Reclamation, DWR and the Authority have independently reviewed the engineering for the Sites Project facilities and considered them all feasible for construction. The development of cooperative operations that cause "no harm" to SWP or CVP operations or senior water rights is currently underway in a collaborative process. The operations modeled in this application are restricted to the diversion of excess Sacramento River flows. Additional protection for migrating salmonids that restricts diversions during pulse flow periods are also included in the modeling to ensure that the public benefits result in net ecosystem improvement.

Economic Feasibility: The annualized benefits provided by the project significantly exceed the annualized total project costs - even when only those benefits that could be monetized are included and even when conservative estimates of unit values are applied (refer to economics section).

Financial Feasibility: There are currently 32 water agencies throughout the state that are participating in the development of the Sites Project. Of this, 28 agencies have requested to participate at a level that would allow them to receive water supply benefits. For planning purposes, the Authority has been using 500,000 acre-feet as the average long-term annualized volume the Sites Reservoir could produce. To date, these participants have requested 404,411 acre-feet (80\%). Should the state elect to participate in the 710,000 acre-feet of reservoir capacity (40\%), the participant's requests will be reduced proportionately (i.e. currently, there is a waiting list to receive water supply benefits).

Congress has authorized federal participation in up to 50% of a locally-sponsored water storage project in exchange for acquiring water benefits for the environment and water quality. Reclamation's Draft Feasibility Report, determines there is a federal interest in participation for up to 14% of the project's cost. A water storage project, having local, state, and federal participation demonstrates a strong level of financial backing and solid financial feasibility.

> Operational flexibility and adaptive management are key components of the Sites Project, contributing to environmental benefits and ecosystem protection.

Environmental Feasibility: When filled, Sites Reservoir will convert what has predominately been lands used for livestock grazing to create a new aquatic ecosystem. Sites will provide a significant new source of water to support existing and struggling aquatic and riparian ecosystems, conserve coldwater pools in upstream reservoirs for salmon and increase plankton for native estuarine fish. The Sites Project will minimally impact existing rivers and channels and where environmental impacts do exist a scientifically-based adaptive management program and mitigation and monitoring strategy will be implemented to protect the ecosystem.

As the CEQA and NEPA lead agencies, respectively, the Authority and Reclamation released a Draft Environmental Impact Report/Environmental Impact Statement (EIR/EIS) that describes the impacts to environmental and cultural resources that would be reasonably expected to occur with the development of the Sites Project. Impacts that are significant and unavoidable are described within the EIR/EIS. While the project creates substantial ecosystem benefits, some significant and unavoidable impacts will remain after mitigation. These impacts include impacts to the community of Sites, existing golden eagle habitat, historical and cultural resources, disturbance of a dedicated cemetery, and conversion of prime farmland and native rangeland. The Authority is working with landowners, communities, Tribes, and government agencies to develop relocation and mitigation plans to mitigate these impacts.

> Sites creates and protects aquatic and riparian habitat, improves ecosystem conditions, provides additional flows during critical periods for fish, and secures water for consumptive use.

Sustainable Groundwater Management

In the DWR SGMA Program's Water Available for Replenishment Report (2017), it is estimated that 48\% of the water that could be used to replenish California's groundwater will need to come out of the Sacramento River. Both the storage and the conveyance systems associated with Sites Reservoir are well suited to staging and conveying water to areas where groundwater depletion is producing undesirable effects. Providing surface water at a controlled rate and in seasons where the opportunity for in lieu of use and infiltration can be maximized is essential to SGMA compliance. In addition, Sites participants include agencies that are deeply invested in groundwater management in the Sacramento Valley, Bay Area, Central Valley, and Southern California. For example, Colusa County is investing in 10 TAF/year specifically to support SGMA compliance.

Resiliency

Because of climate change, some public benefits decline slightly and others increase between 2030 and 2070 for the operations modeled under current WSIP application
requirements. One of the most beneficial features of Sites is that it provides dedicated storage of water for environmental purposes that can be repurposed for the highest priority public benefit as future conditions change.

The benefits to anadromous fish from the Sites Project become even more valuable over time. Without Sites, the population of Chinook salmon would decline drastically due to climate change. Modeling results for Sites Reservoir demonstrate the ability of the project to offset some of the decline in population due to rising temperatures, improving the resiliency of salmon populations in the face of climate change.

Integration with the State's Water System

The Authority is working with Reclamation and DWR to develop cooperative operations between Sites Reservoir, the SWP and the CVP that will improve water supply reliability throughout the state's integrated water system.

The operational scenarios are designed to concurrently:

- maximize water supply reliability
- improve Delta water quality
- provide seasonal flexible hydropower storage and daily pumped-storage
- increase survival of anadromous fish that migrate through the Delta. Provide seasonal nutrient-rich food for Delta smelt.

Sites Reservoir is also an important regional initiative and was identified as a long-term regional priority in the Sacramento Valley Integrated Water Management Plan due to its water supply reliability and flood protection benefits.

Finally, the Sites Project will also increase the value of projects that may be implemented in the future. One example is the River Arc Project on the American River under consideration by Authority members Placer County Water Agency and the City of Roseville, in coordination with the Sacramento County Water Agency and City of Sacramento. The River Arc Project will improve water supply reliability and groundwater quality in the lower American River watershed. Constructing Sites Reservoir can considerably enhance the potential benefits of this project and other future groundwater storage projects that improve groundwater sustainability in the Sacramento Valley.

Potential for Expansion

The Sites Project can be expanded to provide additional public and non-Proposition 1 eligible benefits. The most likely near-term expansion includes the ability to divert floodwaters into storage from the Colusa Basin Drain. This will provide water managers with the ability to divert an additional 40 TAF annually of excess river flows.

The Draft NODOS Feasibility Report, which evaluated the development of the "Colusa Basin Complex" could include raising the Sites Reservoir dams and constructing dams with Sites Reservoir to increase storage in existing SWP and CVP reservoirs and also improve the conditions downstream from these reservoirs for fish.

Engineered for Growth, Flexibility, and Reliability

Storage

Potential expansions of the Sites storage and delivery infrastructure will

environment and human use.

$$
\begin{aligned}
& \text { Sites is a smart water storage investment for } \\
& \text { California's future. The California Water Commission } \\
& \text { has an opportunity to improve the Delta ecosystem, } \\
& \text { enhance the flexible operation of our state's water } \\
& \text { system and fulfill the will of California voters. }
\end{aligned}
$$

Sites Project Schedule

WSIP Application Reference Guide

Executive Summary Section	You Can Find More Information At
Eligibility for Proposition 1 Funding	Eligibility Tab and Program Requirements Tab
Letters of Support	Eligibility Tab - Attachment A6E Support Letters
Project Facilities	Eligibility Tab - Attachment A3 Project Description and Attachment A4 Drawing Package
Project Operations	Benefit Calculation, Monetization and Resiliency Tab - Attachment A2 Operations Plan
Benefits	Benefit Calculation, Monetization and Resiliency Tab - Attachment A3 Physical and Monetized Benefits and Attachment A5 Documentation
Costs	Benefit Calculation, Monetization and Resiliency Tab - Attachment A8 Basis of Estimate Report
Public Benefit Ratio and Benefit Cost Ratio	Benefit Calculation, Monetization and Resiliency Tab - Attachment A9 Benefit Cost Ratio
	Physical Public Benefits Tab - Attachment A1 and A2 Ecosystem Priorities
Ecosystem Improvements	Benefit Calculation, Monetization and Resiliency Tab - Attachment A3 Physical and Monetized Benefits
Other Proposition 1 Benefits	Physical Public Benefits Tab
Unmonetized Benefits	Benefit Calculation, Monetization and Resiliency Tab - A7 Non-Monetized Benefits
Relative Environmental Values	Physical Public Benefits Tab - Attachment A1 and A2 Ecosystem Priorities, Attachment A1 and A2 Water Quality
	Feasibility and Implementation Risk Tab
Implementation Risk	Draft Environmental Impact Report/Environmental Impact Statement: http://sitesproject.org/information/DraftEIR-EIS
	Feasibility Report: https://www.sitesproject.org/information/FeasibilityReport
Sustainable Groundwater Management	Eligibility Tab - Attachment A6C Groundwater
Resiliency	Benefit Calculation, Monetization and Resiliency Tab - Attachment A12 Uncertainty Analysis
Integration with State Water System	Benefit Calculation, Monetization and Resiliency Tab - Attachment A2 Operations Plan
Schedule	Eligibility Tab - Attachment 3 Schedule

Sites Works for California by providing a solid return on the investment of public dollars for both the state to produce environmental benefits beyond what is achievable today and for public water agencies seeking to improve their water supply reliability.

Sites Reservoir will give California its first major reservoir that dedicates a significant capacity (710,000 acre-feet or 40%) to ensure the Proposition 1-eligible benefits that were approved by the voters are achieved. This innovative new partnership will ensure that water for environmental purposes is directed to the most critical needs and highest priorities - both today and into an uncertain future.

Sites:

- Is a feasible and cost-effective project that will advance the long-term objectives of restoring ecological health and improving water management for beneficial uses of the Delta.
- Is resilient by providing long-term operational flexibility for both environmental and water supply reliability purposes, that will also improve the overall operation of the state's water system.
- Will be operated to provide additional water during droughts by diverting stormgenerated runoff in the Sacramento River, when there is minimal impact to the environment, to then provide reservoir releases into the Sacramento, Feather and Lower American Rivers at times that are critical to the survival of native fish species.

Project Benefits

Ecosystem improvements

Climate change resiliency

Improved environmental flows

Potential new renewable energy resources

Flood management

Increased water supply reliability

New recreation opportunities

Enhanced water quality

Feasibility and Implementation Risk Tab

Attachment 1: WSIP Feasibility Study for Sites Reservoir

Attach feasibility studies or documentation that demonstrates the proposed project's engineering, environmental, economic, and financial feasibility as described in TR section 3.5. See also regulations section 6003(a)(1)(0).

WSIP Application Instructions, March 2017

Response

This attachment contains the feasibility study for Sites Project specific to the WSIP application in compliance with the Technical Reference (TR) Section 3.5 and regulations section 6003(a)(1)(0).

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1
PURPOSE:	FEASIBILITY AND IMPLEMENTATION RISK A.1	CHECKER:	P PENINGER	DATE:	2017 AUGUST
CAVEAT:		QAQC:	N CARLSON	REF/FILE \#:	WSIP APPLICATION
NOTES:				PAGE:	1

Table of Contents

Attachment 1: WSIP Feasibility Study for Sites Reservoir. 1
Introduction 4
WSIP Feasibility Requirements 4
Project Objectives 4
Project Description 4
Project Costs 5
Project Benefits 5
Cost Allocation 5
Technical Feasibility 5
Environmental Feasibility. 6
Economic Feasibility 6
Financial Feasibility 6
Constructability 14
Appendix 1: Financial Feasibility - Research Foundation Definitions of Water Infrastructure Financing Types 15
Appendix 2: Water Balance of CalSim II Simulation Results for Current Conditions, WSIP 2030, and WSIP 2070 17
Tables
Table A1-1. Sites Reservoir Capital Development Sources and Uses (2015\$; \$Millions) 7
Table A1-2. Current JPA Investors by Type and Class 7
Table A1-3. Annual Bond Repayment and O\&M, 40-year Term (2015\$; \$Millions) 11
Table A1-4. Sites Reservoir Public Benefits Cash Flow (2015\$; \$Millions, TAF) 12
Table A1-5. Sites Reservoir Water Supply Financial Pro Forma (2015\$; \$Millions; TAF) 13
Table A1-6. Top 10 Global Investors in Water Infrastructure, North America 16

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	version:	C
PURPOSE:	FEASIBILITY AND IMPLEMENTATION RISK A. 1	CHECKER: P PENINGER	DATE:	2017	GUST	
CAVEAT:		QAQC: N CARLSON	REF/FILE \#:	WSIP	LICATION	
NOTES:			PAGE:	2	OF 29	

Acronyms and Abbreviations

AACE	Association for the Advancement of Cost Engineering
AB	Assembly Bill
CVP	Central Valley Project
CWC	California Water Commission
DEC	Design, estimate, and constructability
DSR	Debt Service Reserve
DSRF	debt service reserve fund
DWR	California Department of Water Resources
EIR	Environmental Impact Report
EIS	Environmental Impact Statement
IDC	interest during construction
JPA	Joint Power Authority
M\&1	Municipal and Industrial
NED	National Economic Development
NODOS	North-of-the-Delta Offstream Storage
NOI	Net Operating Income
O\&M	operations and maintenance
P3s	public-private partnerships
Reclamation	U.S. Bureau of Reclamation
SRF	State Revolving Loan Fund
SWP	State Water Project
SWRCB	State Water Resources Control Board
TAF	thousand acre-feet
TAF/yr	thousand acre-feet per year
USBR	U.S. Bureau of Reclamation
WSIP	Water Storage Investment Program

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1
PURPOSE:	FEASIBILITY AND IMPLEMENTATION RISK A.1	CHECKER:	P PENINGER	DATE:	2017 AUGUST
CAVEAT:		QAQC:	N CARLSON	REF/FILE \#:	WSIP APPLICATION
NOTES:				PAGE:	3

Introduction

This WSIP Feasibility Study responds to the specific requirements of WSIP. Extensive studies have been prepared by the U.S. Bureau of Reclamation (Reclamation) and the California Department of Water Resources (DWR). Key publications by these agencies include the following:

- Draft North-of-the-Delta Offstream Storage (NODOS) Investigation Feasibility Report, Reclamation, 2017.

https://www.sitesproject.org/information/FeasibilityReport

- North-of-the-Delta Offstream Storage Investigation Highlights, DWR, 2014.
http://www.water.ca.gov/storage/docs/Highlights/NODOS\ Highlights\ Booklet\ 28May 14.pdf

This WSIP Feasibility Study addresses all requirements of Section 3.5 of the TR (California Water Commission [CWC], 2017); however, there are some fundamental differences between this attachment and the U.S. Bureau of Reclamation (Reclamation) Feasibility Report. The most significant is a different climate change assumption for the evaluation of economic feasibility. The Reclamation Feasibility Report uses current conditions while this application evaluates 2030 and 2070 under changed climate conditions.

WSIP Feasibility Requirements

The WSIP application for Sites Reservoir includes the following information, consistent with Section 3.5 of the Technical Reference (CWC, 2017).

Project Objectives

The project objectives, including all public and non-public benefits the proposed project is designed to provide, are as follows:

- Improve water supply and water supply reliability
- Provide Incremental Level 4 water supply
- Improve the survival of anadromous fish and other aquatic species
- Improve Delta environmental and export water quality

The secondary objectives are:

- Provide sustainable hydropower generation
- Provide opportunities for recreation
- Provide flood-damage reduction

Project Description

A description of the proposed project, including facilities, operations, and relationships with existing facilities and operations is provided in Sites_A3 Project Description under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB. A detailed operations plan is provided in Sites_A2 Operations under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB.

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSI ON:	C
PURPOSE:	FEASIBILITY AND IMPLEMENTATION RISK A.1	CHECKER:	P PENINGER	DATE:	2017 AUGUST	
CAVEAT:		QAQC:	N CARLSON	REF/FILE \#:	WSIP APPLICATION	
NOTES:				PAGE:	4	OF 29

Project Costs

The Basis of Estimate Report is in Sites_A8 Estimate under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB. It documents all project costs, including construction costs, interest during construction, replacement costs, operations and maintenance costs consistent with the operations plan, and costs of mitigation for adverse environmental consequences identified in the draft environmental documentation.

Project Benefits

Sites_A5 Documentation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB describes and quantifies all project benefits, consistent with the operations plan. Public benefits and non-public benefits are quantified using physical metrics and, where possible, monetized. Proposed project benefits are displayed as expected average annual values for each year of the planning horizon is in Sites_A6 Annual Benefits Table under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB. The benefits analysis addresses specific water year types (such as dry and critical).

Cost Allocation

A benefits-based cost allocation is provided in Sites_A10 Allocation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB.

Technical Feasibility

The Modeling Summary and Operations Plan (Sites_A1 Modeling under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB and Sites_A2 Operations under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB) demonstrates that the project is technically feasible consistent with the operations plan, including a description of data and analytical methods, the hydrologic period, development conditions, and hydrologic time step. A water balance analysis showing, for the with- and without-project condition, all flows and water supplies relevant to the benefits analysis is provided in Appendix 1 at the end of this attachment.

The ability of the project to achieve the level of benefits identified in this application depends on collaborative operation of Sites Reservoir with the Central Valley Project (CVP) and State Water Project (SWP). The Authority is coordinating an Operations Working Group with participation from Reclamation and DWR to develop Principles of Agreement to coordinate the operations in a way that will deliver the expected benefits. The Authority has coordinated with the California State Water Resources Control Board (SWRCB) staff with regard to water rights and is developing a strategy to secure the water rights required for project implementation.

The engineering design for most facilities has been developed to support a Class 3 (a higher level than is required in the WSIP Technical Reference) estimate (Association for the Advancement of Cost Engineering [AACE] International) of the construction costs; however, some facilities are currently developed to a Class 4 (less rigorous) level. Design, estimate, and constructability (DEC) reviews were performed by Reclamation in July 2007 and May 2014. A special assessment was performed in March 2017.

Sites Reservoir is constructible and can be operated and maintained. The construction would be similar to that of existing CVP and SWP facilities. Construction would result in changes in operations for the CVP and SWP systems. Considerable effort would be needed to cooperatively operate Sites Reservoir with the existing CVP and SWP facilities in a manner that would fully realize the benefits.

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:	C
PURPOSE:	FEASIBILITY AND IMPLEMENTATION RISK A. 1	CHECKER:	P PENINGER	DATE:	2017	GUST	
CAVEAT:		QA/QC:	N CARLSON	REF/FILE \#:	WSIP	LICATION	
NOTES:				PAGE:	5	OF 29	

Environmental Feasibility

The environmental effects of the project are evaluated in Reclamation and Authority, Sites Project Draft Environmental Impact Report (EIR)/Environmental Impact Statement (EIS) (2017). Constructing Sites Project would affect environmental resources in the Primary, Secondary, and Extended Study Areas. Beneficial effects correspond to the following resource areas: water management, agricultural resources, fisheries and aquatic resources, socioeconomics, power and energy, and recreation. Some adverse effects would be temporary, construction-related effects that would be reduced to less-thansignificant levels through mitigation. Other adverse effects would be significant, including the effects on aquatic, botanical, terrestrial, wetlands, cultural/tribal, paleontological, land use, and air quality in Alternative D (the Authority's proposed project). The proposed mitigation is identified in the Mitigation Monitoring Plan (Appendix A1 in the Draft EIR/EIS). The URL for the Draft EIR/EIS is https://www.sitesproject.org/information/DraftEIR-EIS.

Economic Feasibility

The expected benefits of the project exceed the expected costs, considering all benefits and costs related to or caused by the project. This analysis is presented in the Physical Monetized Benefits attachment, Sites_A3 Physical Monetized under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB.

Financial Feasibility

Pursuant to WSIP Regulation 6003(a)(1)(O) and the Water Storage Investment Program (WSIP) Technical Reference Document (Technical Reference) (California Water Commission, November 2016), the purpose of the Funding Strategy is to demonstrate that the Sites Reservoir project will be able to obtain sufficient funding from public (including the requested WSIP funds) and private sources to cover the construction and operation and maintenance costs of the project over the planning horizon. This section outlines a funding strategy based on the assumption that long-term, tax-exempt bond financing will be utilized to fund the Municipal and Industrial (M\&I) and Agricultural Water Supply portions of the project costs.

As described in other sections of this application, the requested WSIP funding in conjunction with separately requested Federal funding will support the provision of significant public benefits that would not otherwise be financeable through conventional means. In addition, the WSIP and Federal funding will help to offset interest carrying costs during the project's construction phase, thus significantly lowering overall development costs and delivering multiple public and water supply benefits to the citizens of California.

Project Costs

As detailed in Section A10 (Allocation of Total Costs) and shown below in Table A1-1, the total development costs for the project are estimated at $\$ 5,176$ million, including both construction costs and interest during construction (IDC). Assuming Federal funding of $\$ 730$ million in combination with the requested $\$ 1,662$ million in funding from WSIP for the public benefits portions of the project, the remaining portion of the project's costs would be approximately $\$ 2,784$ million, including $\$ 509$ million for hydropower. The total amount of project's cost attributed to M\&I and Agricultural water supply would be $\$ 2,276$ million. This is the portion of the project for which the Sites Joint Power Authority (JPA) would need to seek financing, either from conventional sources such as tax-exempt revenue bonds, or through alternative project delivery approaches.

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSI ON:
PURPOSE:	FEASIBILITY AND IMPLEMENTATION RISK A.1	CHECKER:	P PENINGER	DATE:	2017 AUGUST	
CAVEAT:		QAQC:	N CARLSON	REF/FILE \#:	WSIP APPLICATION	
NOTES:				PAGE:	6	OF

Table A1-1. Sites Reservoir Capital Development Sources and Uses (2015\$; \$Millions)

Sources	Uses (Costs)		Sources of Funding					
			Federal Non-Reimbursable		WSIP		Other Public \& Private	
Water Supply	\$2,276	44\%	\$0	0\%	\$0	0\%	\$2,276	100\%
Hydropower	\$509	10\%	\$0	0\%	\$0	0\%	\$509	100\%
Public Benefits	\$2,392	46\%	\$730	31\%	\$1,662	69\%	\$0	0\%
Total Project Costs	\$5,176	100\%	\$730	14\%	\$1,662	32\%	\$2,784	54\%

Current Investors and Committed Funding Sources

Current investors for the project include the JPA investors listed below in Table A1-2. In addition to directly funding the preparation of early feasibility analysis, preparation of funding applications and other activities during the first phase of project development, these investors are providing the necessary commitments for purchasing water resources from the project to ensure a stable long-term revenue stream to support the repayment of debt for the construction of the project as well as the longterm payment of water conveyance and operations and maintenance costs.

Although the below listed agencies have invested in the development of the WSIP application, they are not currently under a formal agreement to fund design, construction, or ongoing operations and maintenance (O\&M). The initial distribution of investors displayed in Table A1-2 is not final, and water could be allocated differently between these investors or new investors could be added prior to construction. Even if these agencies became the investors responsible for M\&I and agricultural water supply, it is unlikely that they would be the sole water users.

Table A1-2. Current JPA Investors by Type and Class

Agency	Class 1 (TAF/yr)	Class 2 (Waiting List) (TAF/yr)	Grand Total
American Canyon, City of	2,000.0	2,000.0	4,000.0
Antelope Valley-East Kern Water Agency	1,427.0	573.0	2,000.0
California Water Service		35,000.0	35,000.0
Carter MWC		1,000.0	1,000.0
Castaic Lake Water Agency	3,567.0	1,433.0	5,000.0
Coachella Valley Water District	18,906.0	7,594.0	26,500.0
Colusa County	10,000.0		10,000.0
Colusa County Water District	32,111.0		32,111.0
Desert Water Agency	4,637.0	1,863.0	6,500.0
Garden Highway MWC		4,000.0	4,000.0
Glenn-Colusa Irrigation District	20,000.0		20,000.0
Metropolitan Water District of S. CA		50,000.0	50,000.0
Orland-Artois Water District	20,000.0		20,000.0
Pacific Resources MWC		20,000.0	20,000.0
Reclamation District 108	20,000.0		20,000.0
San Bernardino Valley Municipal Water District	21,403.0	8,597.0	30,000.0
San Gorgonio Pass Water Agency	9,988.0	4,012.0	14,000.0
Santa Clara Valley Water District	17,123.0	6,877.0	24,000.0
TC6: 4M Water District	500.0		500.0
TC6: Cortina Water District	300.0		300.0
TC6: Davis Water District	2,000.0		2,000.0
TC6: Dunnigan Water District	5,000.0		5,000.0
TC6: LaGrande Water District	1,000.0		1,000.0
TC6: Proberta Water District	3,000.0		3,000.0
Western Canal Water District	3,500.0		3,500.0
Westside Water District	25,000.0		25,000.0
Wheeler Ridge-Maricopa Water Storage District	14,269.0	5,731.0	20,000.0
Zone 7 Water Agency	14,269.0	5,731.0	20,000.0
Grand Total	250,000.0	154,411.0	404,411.0

Key:
TAF/yr = thousand acre-feet per year

- = not applicable

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:
PURPOSE:	FEASIBILITY AND IMPLEMENTATION RISK A.1	CHECKER:	P PENINGER	DATE:	2017 AUGUST	
CAVEAT:		QAQC:	N CARLSON	REF/FILE \#:	WSIP APPLICATION	
NOTES:				PAGE:	7	OF

Funding Strategy

Traditional capital financing strategies for major water infrastructure projects like the Sites Reservoir typically include both short- and long-term debt, such as revenue bonds, general obligation bonds, and state revolving loan funds. After an extensive review of the available options, and given the relatively large size of the proposed project, the funding strategy that appears most viable would rely on:

1. a combination of public grant funding (Federal and WSIP) for the project's public benefit purposes;
2. short-term debt during the design and construction phase; and
3. long-term tax exempt revenue bond debt, to be repaid over the course of 40 years from M\&I and agricultural water supply revenues.

The funding structure for each project component is discussed below.

Public Benefits

As described in detail in Sites_A10 Allocation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB, federal funding in combination with WSIP would fund the project's public benefit purposes (e.g., ecosystem improvements). This funding would also result in significant overall capital cost saving for the project as a result of reduced interest costs during the construction phase of the project. Federal non-reimbursable construction funding of up to $\$ 730$ million would be provided as funding for Anadromous Fish ($\$ 488$ million), Incremental Level 4 Refuge ($\$ 201$ million) and Flood Reduction ($\$ 41$ million) purposes. The federal government would also provide $\$ 1.3$ million per year as its 50 percent cost share of the Incremental Level 4 Refuge's allocated $\$ 2.6$ million annual O\&M cost (see Table A10-1).
If granted, the $\$ 1,662$ million in WSIP funding would provide sufficient matching funds to fully cover the capital cost for all the project's public benefit categories. WSIP would provide 100 percent funding for the capital cost assignments for Oroville Coldwater Pool, Yolo Bypass and recreation. The WSIP funding would also provide the necessary 56 percent remaining capital needed by the other public benefit purposes receiving federal funding (i.e., Incremental Level 4 Refuge, Anadromous Fish and Flood Reduction).
WSIP funding is not available to pay for the future O\&M costs assigned to the public benefit purposes. Although these annual O\&M costs are relatively minor compared to the public benefits' capital costs, future funding will needed to cover their respective assigned O\&M costs. Except for Incremental Level 4 Refuge which could receive a 50% O\&M cost-share contribution, it is expected that non-federal partners (e.g. California Fish and Game) and/or the JPA would be responsible for repaying the majority of the public benefits' estimated future O\&M costs of $\$ 12.2$ million per year.

It is expected that some O\&M funding may be obtained for recreation from user fees. Preliminary analysis suggests that $\$ 1.1$ million in fee revenues could potentially be obtained from reservoir visitors. In addition, flood protection beneficiaries could perhaps be willing to contribute some minor share towards the public benefit purpose's future annual O\&M expenses.

In addition to its planned water supply deliveries for agricultural and M\&I users, Sites Reservoir will collect limited quantities of "recaptured" water that will be assigned for JPA use. The quantity of future recaptured water is expected to average approximately 11 TAF per year. The JPA plans to sell the recaptured water predominantly to south-of-the-Delta water contractors and use the sale revenues to pay the public benefits' cost share of the project's annual O\&M expenses. At a $\$ 700$ to $\$ 800$ per acre foot water price, the JPA would be able to contribute $\$ 7.7$ million to $\$ 8.8$ million annually.

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1
PURPOSE:	FEASIBILITY AND IMPLEMENTATION RISK A.1	CHECKER:	P PENINGER	DATE:	2017 AUGUST
CAVEAT:		QAQC:	N CARLSON	REF/FILE \#:	WSIP APPLICATION
NOTES:				PAGE:	8

The JPA also proposes to use its hydropower operation's net revenues as another supplemental funding source for the public benefit purpose's O\&M costs. In accordance with the JPA's general "beneficiary pays' approach, to the extent possible revenue sharing would be made between purposes based on their corresponding water allocation. As a result, water supply beneficiaries would also receive a commensurate share of the hydropower operation's net benefits as that for the public benefit purposes.

However, in absence of securing any other public agency funding support for the project's ecosystem benefit purposes, future O\&M funding shortfall could occur. In which case, any such shortfall would mostly likely be re-assigned to the project's water supply users. Based on an average total water supply deliveries of 275 TAF, a potential $\$ 1$ million shortfall would correspond to approximately an additional $\$ 3.65$ per acre foot cost surcharge to the JPA water contractors.

Hydropower Benefits

As discussed in the Cost Allocation analysis (Sites_A10 Allocation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB), the capital costs for the project's Hydropower facilities would be $\$ 509$ million. This portion of the project would be financed during phases 1 through 3 through shortterm debt in the form of loans from commercial banks or other financial institutions.

As with the project's water supply purpose described below, the primary long-term financing for hydropower would be obtained from revenue bonds to be repaid from energy purchasing agreement and sales to utilities. The hydropower revenues would be expected to include compensation for the facility's ancillary and system-wide capacity benefits. Preliminary analysis suggests there is both ample demand for this type of energy resource, and strong financial capacity among relevant California energy utilities to ensure long-term demand for the project's hydropower energy resources.

Sites Reservoir water contractors would also be a potential funding source for the project's hydropower operations. The water contractors provide an additional guarantee of potential O\&M funding in the unlikely event of a funding shortfall in any given year since if necessary, the required revenues could be obtained through increased operating cost surcharges. Depending on their future O\&M funding sources, there may or may not also be some opportunities for cost recapture from increased operating cost surcharges to some of the project's public benefit purposes.

Water Supply Benefits

A total of $\$ 2,276$ million in development costs are attributed to water supply. These costs would be funded through short-term debt from commercial banks or other financial institutions during Phase 1 through 3 of the project. After which long-term, tax-exempt revenue bonds would be used for the project's expected 40 year repayment phase. Under this structure, payment of principal and interest on the bonds would be secured by a pledge of gross revenues derived from payment obligations under water supply contracts with JPA participating contractors.

Water Supply for State Water Contractors

As currently planned approximately 44 percent of the water supply quantities from the Sites Reservoir will likely be delivered to California SWP contractors. Based on preliminary discussions with DWR staff, there may be future partnership or cooperative agreements opportunities with DWR to assist the JPA with both future administration and management of the water supply payments but also participate with underwriting and financing assistance for a major portion of the project's water supply capital cost.

DWR could most readily provide this assistance through its SWP program. The SWP has existing legal authority, regulatory mechanisms, contractual agreements and administrative capacity to partner with the JPA's future water supply program. Furthermore DWR's technical expertise and longstanding

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1
PURPOSE:	FEASIBILITY AND IMPLEMENTATION RISK A.1	CHECKER:	P PENINGER	DATE:	2017 AUGUST
CAVEAT:		QAQC:	N CARLSON	REF/FILE \#:	WSIP APPLICATION
NOTES:				PAGE:	9

working relationships with the state water contractors would be major assets for both funding and managing the project's future water supply program.

The JPA and DWR could coordinate future billing, payment and operations through a series of operational and trust agreements. SWP contractors and DWR have several options for reaching agreement that ensure: (1) JPA participating contractors receive their Sites Reservoir entitled deliveries independently from other SWP deliveries; and (2) DWR collects the contractors' payments.

Currently, it is envisioned that new $\mathrm{I}(\mathrm{h}) 4(\mathrm{a})$ agreements would likely be the preferred regulatory approach for establishing the necessary new SWP-contractors agreements. This authorizing regulation allows separate new "side agreements" mutually agreed upon between the SWP and individual water contractors in support of the development of new capital facilities.

Alternatively, amendments or Yuba Accord approaches could be used to develop the necessary agreements and arrangements. However, these approaches will likely involve more extensive and timeconsuming negotiation and approvals.

There are numerous potential major benefits for future partnership arrangements between the JPA, DWR and participating SWP contractors. By partnering with the SWP, the JPA and its participating SWP contractors would be able to take advantage of highly favorable administrative and financing mechanisms that allow for the SWP to collect contractor payments, qualify and secure bond financing, and subsequently manage the debt administration and repayment through State Water Project backed bond financing.

Capital funds raised on behalf of the SWP contractors through SWP bond financing would likely be obtained at lower overall interest rates and have more favorable financing terms than capital funding raised by non-SWP contractors.

Water Supply for Other Water Agencies (Non-SWP Contractors)

It is currently expected that other JPA water contractors would be ineligible to participate under the SWP partnership program. As currently planned, these contactors would account for approximately 56 percent of total water supply deliveries and would have to obtain revenue bond financing through other means, including but not limited to traditional municipal bond markets and private placements.

The feasibility of financing all or part of the Sites Reservoir project with revenue bonds was evaluated by Citigroup Municipal Securities in March, 2014 at the request of the Glenn-Colusa irrigation district. The Citigroup analysis found that financing up to $\$ 4.2 \mathrm{~B}$ in total development costs would be feasible through a series of revenue bonds issued with a coupon rate of 5 percent. This analysis has not been subsequently updated, but for the purposes of this application it provides important and external verification that both SWP and non-SWP contractors would be able to access adequate sources of debt financing to underwrite the capital costs to develop Sites Reservoir's future water storage and supply facilities.

For the purposes of the debt repayment capacity analysis which follows below, it is assumed that the interest rate, debt service reserve and other terms reflect a generalized and blended bond financing approach taking into account both SWP and non-SWP financing. Note that this analysis also includes the annual O\&M costs that would also have to be paid by the water contractors.

Capacity for Repayment of Debt Plus Operations and Maintenance

Table A1-3 below provides a simplified presentation of one bond repayment scenario. This funding scenario is based on the revenue bond assumptions listed below, and incorporates water supply revenues estimated from other sections of this application.

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1	VERSI ON:
PURPOSE:	FEASIBILITY AND IMPLEMENTATION RISK A.1	CHECKER:	P PENINGER	DATE:	2017 AUGUST
CAVEAT:		QALQC:	N CARLSON	REF/FILE \#: WSIP APPLICATION	
NOTES:				PAGE:	10

As shown below in Table A1-3, the anticipated annual water supply revenues would be more than sufficient to cover both the repayment of a 40 -year bond of $\$ 2,276$ million and the future ongoing $0 \& M$ costs. A full operating pro forma for the water supply portion of the project is included as an attachment to this section.

Project financing, bond amortization and interest cost assumptions are as follows:

1. Coupon interest rate assumed to be 3%, as adjusted to reflect 2015 terms.
2. No interest is paid on bonds during the construction phase.
3. Each bond series is assumed to be issued with a 5 percent debt service reserve fund ("DSRF").
4. The project bonds are scheduled to amortize over the course of 40 years.
5. Bonds would be issued either by municipal utilities, or under a partnership agreement with a State of California agency.

Table A1-3 shows a "static" or average year pro-forma for the Sites Reservoir's water supply operations. Under this simplified pro-forma, the JPA's annual revenue requirements are met by an estimated average water supply price of $\$ 422$ per acre foot over a 40 year repayment period. The analysis assumes a real (i.e., without inflation) interest repayment rate of 3 percent and is also based on averaged total water supply quantities of 274 TAF per year.

Table A1-3. Annual Bond Repayment and O\&M, 40-year Term (2015\$; \$Millions)

Annual Water Supply Expenses	2030-2069		2070-2122		2030-2122	
	$\begin{gathered} \text { Total Cost } \\ \$ \mathrm{M} \\ \hline \end{gathered}$	\$/AF	Total Cost \$M	\$/AF	$\begin{gathered} \text { Total Cost } \\ \$ \mathrm{M} \\ \hline \end{gathered}$	\$/AF
Annual Bond Repayment	\$98.4	\$374	\$0	\$0	\$42.3	\$154
Annual O\&M	\$12.6	\$48	\$12.6	\$44	\$12.6	\$46
Total Annual Debt and O\&M	\$111.1	\$422	\$12.6	\$44	\$55.0	\$200
JPA Gross Operating Income						
M\&I	\$77.1	\$693	\$8.8	\$75	\$38.2	\$333
Agricultural	\$33.9	\$224	\$3.9	\$23	\$16.8	\$105
Water Supply Annual Income	\$111.1	\$422	\$12.6	\$44	\$55.0	\$200
Net Operating Revenue	\$0		\$0		\$0	

Table A1-4 shows the public benefits cash flow on an annual basis over the full study period. This analysis assumes $\$ 750$ per acre foot for recaptured water supply sales and $\$ 1.1$ million in recreation fee revenues. These revenues would not fully cover the total WSIP public benefits O\&M ($\$ 12.2$ million per year) and would be expected to result in a $\$ 2.8$ million per year revenue shortfall. However, it is possible the State government may assist with the public benefits' O\&M costs. Alternatively, the State could potentially reduce its water deliveries (particularly in wetter years) to sell some of its water allocation to generate revenues to cover any remaining or accumulated O\&M funding shortfalls.

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1
PURPOSE:	FEASIBILITY AND IMPLEMENTATION RISK A.1	CHECKER:	P PENINGER	DATE:	2017 AUGUST
CAVEAT:		QAQC:	N CARLSON	REF/FILE \#:	WSIP APPLICATION
NOTES:				PAGE:	11

Table A1-4. Sites Reservoir Public Benefits Cash Flow (2015\$; \$Millions, TAF)

Factor	Total Period 2030-2122 (93 Yrs)						
	2030	2031	2122	Total	Average
Recaptured Water Supply	11	11	11	1,023	11
Recaptured Water Supply Sales	\$8	\$8	\$8	\$767	\$8
Recreation Fees	\$1.1	\$1.1	\$1.1	\$103	\$1
Subtotal Authority Admin Operations	\$9	\$9	\$9	\$870	\$9
WSIP Public Benefits O\&M	(\$12)	(\$12)	(\$12)	$(\$ 1,127)$	(\$12)
Subtotal Authority Admin Operations	(\$2.8)	(\$2.8)	(\$2.8)	(\$257)	(\$2.8)

Assumptions:

Water Supply Prices	$2030-$ 2122
Recaptured Sales Price \$/Acre Foot	$\$ 750$

Table A1-5 shows the pro forma on an annual basis over the full study period. This more detailed pro forma includes the projected future annual water supply quantities (which are expected to increase between 2030 and 2070). The base water supply cost has also been adjusted to factor in both: (1) an additional 5 percent cost surcharge for a debt service reserve fund; and (2) a 3 percent net operating income surcharge to provide the additional JPA revenues to ensure that project is net revenue positive (when the debt service reserve fund is included) during its early operating years.

As shown in Table A1-5, at a water supply cost of $\$ 456$ per acre foot, the project's water supply program would be expected to operate in 2030 with a net operating income deficit of $\$ 4.0$ million. However, if the $\$ 5.7$ million debt service reserve contribution is included, the overall net operating income for the JPA's water supply program would be positive at $\$ 1.6$ million. As future water supply quantities increase, the JPA's water supply program's net operating income would improve to near break-even by 2040 (and would also make its full $\$ 5.7$ million debt service reserve contribution).

In subsequent years, the JPA water supply program would operate with an increasing net operating income (NOI) surplus. By 2069 its NOI surplus would total $\$ 10.3$ million per year. Over the 40 year repayment period, the JPA water supply program would be expected to result in a of $\$ 125$ million cumulative NOI surplus. Although perhaps unlikely, in the absence of any required reserve draw downs, the JPA water supply program would also accumulate debt service reserve funds of $\$ 240$ million. If unused, both these cumulative funds could be used to pre-pay the remaining principal prior the end of the 40 year repayment period. The size of these cumulative reserves indicates the extent of the financial buffer that the debt reserve fund would provide during the project's repayment period.

Table A1-5 also shows that from 2070 onwards, the annual water supply cost would decrease to only $\$ 44$ per acre foot in order to cover the JPA water supply program's assigned O\&M costs.

STATUS:	FINAL	PREPARER: J HERRIN	PHASE:	1 VERSION:	C
PURPOSE:	FEASIBILITY AND IMPLEMENTATION RISK A. 1	CHECKER: P PENINGER	DATE:	2017 AUGUST	
CAVEAT:		QAQC: N CARLSON	REF/FILE \#:	WSIP APPLICATION	
NOTES:			PAGE:	12 OF 29	

Table A1-5. Sites Reservoir Water Supply Financial Pro Forma (2015\$; \$Millions; TAF)

Factor	Capital Repayment Period 2030-2069 (40 Yrs)																		Post Repayment Period 2070-2122 (53 Yrs)						Total Period 2030-2122 (93 Yrs)	
	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2069	Total	Average	2070	2122	Total	Average	Total	Average
Supply (TAF/Year) - Long Term Average Deliveries for Average Water Year Type																										
M\&I Water Supply	106	106	107	107	107	107	108	108	108	109	109	109	109	117	4,455	111	117	117	6,195	117	10,649	115
Ag Water Supply	137	138	138	139	140	141	141	142	143	144	145	145	146	167	6,071	152	167	167	8,873	167	14,944	161
Water Supply Total	243	244	245	246	247	248	249	250	251	252	253	254	255	283	10,525	263	284	284	15,067	284	25,593	275
Gross Revenues (\$M)																										
M\&1 Supply	\$80	\$80	\$80	\$80	\$80	\$81	\$81	\$81	\$81	\$81	\$82	\$82	\$82	\$87	\$3,339	\$83	\$9'	\$9	\$465	\$9	\$3,804	\$41
Ag supply	\$33	\$33	\$34	\$34	\$34	\$34	\$34	\$34	\$35	\$35	\$35	\$35	\$35	\$40	\$1,471	\$37	\$4	\$4	\$205	\$4	\$1,676	\$18
Total Water Supply Revenues	\$113	\$113	\$113	\$114	\$114	\$115	\$115	\$115	\$116	\$116	\$117	\$117	\$117	\$128	\$4,809	\$120	\$13	\$13	\$670	\$13	\$5,479	\$59
Operating Expenses (Before Debt)																										
O\&M	(\$13)	(\$13)	(\$13)	(\$13)	(\$13)	(\$13)	(\$13)	(\$13)	(\$13)	(\$13)	(\$13)	(\$13)	(\$13)	(\$13)	(\$506)	(\$13)	(\$13)	(\$13)	(\$670)	(\$13)	(\$1,176)	(\$13)
Debt Repayment																										
Principal	(\$30)	(\$31)	(\$32)	(\$33)	(\$34)	(\$35)	(\$36)	(\$37)	(\$38)	(\$39)	(\$41)	(\$42)	(\$43)	(\$96)	($\$ 2,275)$	(\$57)		...						
Interest	(\$68)	(\$67)	(\$66)	(\$65)	(\$64)	(\$63)	(\$62)	(\$61)	(\$60)	(\$59)	(\$58)	(\$57)	(\$55)	(\$3)	(\$1,62)	(\$42)						
Annual Fixed Debt Payment	(\$98)	(\$98)	(\$98)	(\$98)	(\$98)	(\$98)	(\$98)	(\$98)	(\$98)	(\$98)	(\$98)	(\$98)	(\$98)	(\$98)	($\$ 3,938$)	(\$98)	\$0	\$0	\$0	\$0	(53,938)	(\$42)
Debt Service Reserve (DSR)	(\$6)	(\$6)	(\$6)	(\$6)	(\$6)	(\$6)	(\$6)	(\$6)	(\$6)	(\$6)	(\$6)	(\$6)	(\$6)	(\$6)	(\$240)	(\$6)			\$0	\$0	(\$240)	(\$3)
Total	(\$104)	(\$104)	(\$104)	(\$104)	(\$104)	(\$104)	(\$104)	(\$104)	(\$104)	(\$104)	(\$104)	(\$104)	(\$104)	(\$105)	($\$ 4,178)$	(\$104)	\$0	\$0	\$0	so	(54,178)	(\$45)
Cumulative Balances																										
Principle Balance	\$2,275	\$2,245	\$2,214	\$2,182	\$2,149	\$2,115	\$2,080	\$2,044	\$2,007	\$1,969	\$1,930	\$1,889	\$1,847	\$96	\$0	\$1,385	\$0					
Debt Service Reserve Balance	\$0	\$6	\$11	\$17	\$23	\$28	\$34	\$40	\$46	\$51	\$57	\$63	\$69			\$234	\$240	\$6	\$0							
Net Operating Income																										
Nol Water Supply (w/o DSR)	\$1.6	\$2.0	\$2.4	\$2.8	\$3.2	${ }^{\text {\$3.5 }}$	\$3.9	\$4.3	\$4.7	\$5.1	\$5.5	\$5.9	\$6.2	\$16.7	\$366	\$9.1	\$3.9	\$3.9	\$205.0	\$4	\$571	\$6.1
Total Net Operating Income (w/ DSR)	(\$4.0)	(\$3.7)	(\$3.3)	(\$2.9)	(\$2.6)	(\$2.2)	(\$1.8)	(\$1.5)	(\$1.1)	(\$0.7)	(\$0.4)	\$0.0	\$0.4	\$10.3	\$125.4	\$3.1	\$3.9	\$3.9	\$205.0	\$4	\$330	\$3.6

Assumptions:				
Water Supply Prices	2030-2069			2070+
	Before	Adjus	nents	
	Adjust	NOI (a)	DSR (b)	
M 1 //Acre Foot	\$693	\$714	\$749	\$75
AG $\$ /$ /Acre Foot	\$224	\$231	\$242	\$23
Supply \$/AF	\$422	\$435	\$456	\$44
Interest Rate (Real - w/o Inflation)				
		3.0\%		
(a) Adjust for Net Operating Income (NOI)		3.0\%		
(b) Adjust for Debt Service Reserve (DSR)		5.0\%		

Status:	FINAL	PREPARER: J HERRIN	PHASE:	Version:	c
PURPOSE:	FEASIBILITY AND IMPLEMENTATION RISK A. 1	CHECKER: P PENINGER	DATE:	2017 AUGUST	
CAVEAT:		QAQC: N CARLSON	REFFFLLE \#:	WSIP APPLICATION	
notes:			PagE:	13 OF 29	

Alternative Delivery Financing

Give the large size of the Sites Reservoir Project and the strong existing appetite in the financial markets for stable, long-term investments in major infrastructure assets, there are several "alternative delivery" financing approaches that would also likely prove feasible for this project. These include primarily various forms of public-private partnerships ("P3s"). As defined by the Water Research Foundation, these typically "involve a contractual arrangement whereby the resources, risks and rewards of both the public agency and private entity are combined to provide greater efficiency, better access to capital, and improved compliance with government regulations". ${ }^{1}$ Under Assembly Bill (AB) 2551 adopted in August 2016, California has relatively broad authorizing legislation allowing alternative delivery methods for water storage projects. Additional details on alternative delivery are provided below as Appendix 1 to this Section.

Conclusion

In accordance with the WSIP Technical Guidance, the analysis period for the Site Reservoir project was 93 years from its start of operations in 2030 through to the end of the study period in 2122 . Over the course of this period the project will deliver significant new public benefits, clean hydroelectric energy and major new water deliveries for California's M\&I and agricultural water users. The above analysis provides a conservative approach to financing the construction costs for the project over the course of 40-years, assuming relatively low-risk financing approaches that are commonly utilized by water contractors and authorities across the United States, and for which there is currently considered to be ample demand from investors.

Although this low-risk approach would be feasible, there are also other potential approaches that could be leveraged over the long-run to deliver water supply resources at rates lower than those assumed for the purposes of this financing strategy. The full range of options has not been explored here, but will be analyzed in greater detail in the future as public funding commitments for the project, including WSIP, are confirmed.

Constructability

At the current feasibility level of design for the Sites Reservoir Project, detailed construction plans and specifications are not yet available. However, the concepts for all of the major facilities comprising the project are at a level that supports developing a Class 4 cost estimate and a preliminary implementation schedule for construction. The constructability review for the current level of design is a high level review that focuses on identifying design concept and construction schedule issues that could introduce significant cost estimating and planning risk

The constructability review findings include the following:

1. The conceptual designs represent proven technology. Rapidly evolving, new concepts have not been adopted, although these concepts may allow for improved designs and cost savings based on further evaluation in future design phases for the project.
[^0]1-Central Valley Project (CVP) Allocation

Long-term Average and Average by Water Year Type

Analysis Period	Ag Service Allocation (EO May)	SOD Ag Service Allocation (EO May)	M\&l Service Allocation (EO May)	SOD M\&I Service Allocation (EO May)	Settlement Contract Allocation (EO May)	Exchange Contract Allocation (EO May)	Refuge Level 2 Contract Allocation (EO May)
Long-term							
Full Simulation Period ${ }^{1}$	0\%	0\%	0\%	0\%	0\%	0\%	0\%
Water Year Types ${ }^{2}$							
Wet (30\%)	0\%	0\%	0\%	0\%	0\%	0\%	0\%
Above Normal (15\%)	0\%	-1\%	1\%	0\%	0\%	0\%	0\%
Below Normal (21\%)	0\%	-1\%	0\%	0\%	0\%	0\%	0\%
Dry (20\%)	1\%	1\%	0\%	0\%	0\%	0\%	0\%
Critical (15\%)	0\%	0\%	0\%	0\%	0\%	0\%	0\%

2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

Difference: WSIP 2030 With Project minus WSIP 2030 Without Project 2-Central Valley Project (CVP) Contract Deliveries Long-term Average and Average by Water Year Type						Difference: WSIP 2030 With Project minus WSIP 2030 Without Project 3-Refuge Water Supplies (CVP Contract, Sites and Acquisitions Supplies) Long-term Average and Average by Water Year Type		
Analysis Period	Ag Service Deliveries (Mar-Feb, TAF)	M\&l Service Deliveries (Mar-Feb, TAF)	Total Ag and M\&I Service Deliveries (Mar-Feb, TAF)	Total Settlement and Exchange Deliveries (MarFeb, TAF)	Total Refuge Level 2 and 4 Supplies (Mar-Feb, TAF)	Analysis Period	Total Refuge Level 2 Supplies (Mar-Feb, TAF)	Total Refuge Level 4 Sites Supplies (Mar-Feb, TAF)
Long-term							Long-term	
$\overline{\text { Full Simulation Period }{ }^{1}}$	-8	-2	-10	4	8	Full Simulation Period ${ }^{1}$	8	35
Water Year Types ${ }^{2}$						Water Year Types ${ }^{2}$		
Wet (30\%)	-9	-1	-10	-1	3	Wet (30\%)	3	53
Above Normal (15\%)	-20	0	-20	1	3	Above Normal (15\%)	3	47
Below Normal (21\%)	-27	-2	-30	1	9	Below Normal (21\%)	9	38
Dry (20\%)	12	-1	11	-2	14	Dry (20\%)	14	21
Critical (15\%)	5	-4	2	26	12	Critical (15\%)	12	1
1 Based on the 82 -year simulation period						period		
2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)						2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)		
WSIP 2030 Without P								

Difference: WSIP 2030 With Project minus WSIP 2030 Without Project 4-Central Valley Project (CVP) Contract Deliveries Long-term Average and Average by Water Year Type									
	Sacramento River Hydrologic Region			San Joaquin River Hydrologic Region			San Francisco Bay Hydrologic Region		Tulare Lake Hydrologic Region
Analysis Period	Ag Service (Mar-Feb, TAF)	M\&l Service (Mar-Feb, TAF)	Settlement (Mar-Feb, TAF)	Ag Service (Mar-Feb, TAF)	M\&l Service (Mar-Feb, TAF)	Exchange (Mar-Feb, TAF)	Ag Service (Mar-Feb, TAF)	M\&I Service (Mar-Feb, TAF)	Ag Service (Mar-Feb, TAF)
Long-term									
Full Simulation Period ${ }^{1}$	0	-1	3	-2	0	0	0	0	-6
Water Year Types ${ }^{2}$									
Wet (30\%)	-1	-1	-1	-1	0	0	0	0	-6
Above Normal (15\%)	-1	0	1	-7	0	0	-1	0	-12
Below Normal (21\%)	-1	-2	1	-7	0	0	-1	-1	-19
Dry (20\%)	2	-1	-2	4	0	0	0	0	5
Critical (15\%)	1	-4	26	1	0	0	0	0	4

1 Based on the 82 -year simulation period
2 As defined by the Sacramento Valley $40-30-30$ Index Water Year Hydrologic Classiifation (SWRCB D-1641, 1999)

Difference: WSIP 2030 With Project minus WSIP 2030 Without Project 5 -Refuge Water Supplies (CVP Contract, Sites and Acquisitions Supplies)

Long-term Average and Average by Water Year Type

Analysis Period	Sacramento River Hydrologic Region		San Joaquin River Hydrologic Region		Tulare Lake Hydrologic Region	
	Refuge L2 (Mar-Feb, TAF)	Refuge L4-Sites (MarFeb, TAF)	Refuge L2 (Mar-Feb, TAF)	Refuge L4-Sites (MarFeb, TAF)	Refuge L2 (Mar-Feb, TAF)	Refuge L4-Sites (Mar-Feb, TAF)
Long-term						
Full Simulation Period ${ }^{1}$	8	1	0	28	0	6
Water Year Types ${ }^{2}$						
Wet (30\%)	3	1	0	42	0	10
Above Normal (15\%)	4	1	-1	37	0	9
Below Normal (21\%)	9	1	0	30	0	7
Dry (20\%)	14	0	0	17	0	4
Critical (15\%)	11	0	1	1	0	0

$\frac{\text { Critical (} 15 \% \text {) }}{1 \text { Based on the } 82 \text {-year simulation period }}$
2 As defined by the Sacramento Valley $40-30-30$ Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

Sites Reservoir Benefits

Difference: WSIP 2030 With Project minus WSIP 2030 Without Project
 1-Sites Deliveries to Sacramento Valley Members
 Long-term Average and Average by Water Year Type

Analysis Period	Sacramento Valley (Mar-Feb, TAF)	
Long-term		
Full Simulation Period ${ }^{1}$	129	
	Water Year Types 2	
Wet (30\%)	62	
Above Normal (15\%)	118	
Below Normal (21\%)	155	
Dry (20\%)	186	
Critical (15\%)	165	

$\frac{\text { Critical }(15 \%)}{1 \text { Based on the } 82 \text {-year simulation period }}$
2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)
3 Includes Sites delivery to TCCA members, GCID, RD108, County of Colusa, and Western Canal WD

Difference: WSIP 2030 With Project minus WSIP 2030 Without Project
2-Sites Deliveries to South of Delta Members
ong-term Average and Average by Water Year Typ
Analysis Period \quad M\&l (Jan-Dec, TAF) \quad Ag (Jan-Dec, TAF) \quad Total (Jan-Dec, TAF)

	Long-term		
Full Simulation Period ${ }^{1}$	76	23	99
	Water Year Types 2		
Wet (30%)	6	2	8
Above Normal (15\%)	-2	-1	-2
Below Normal (21\%)	77	23	100
Dry (20\%)	171	52	223
Critical (15\%)	163	50	213

1 Based on the 82 -year simulation period
2 As defined by the Sacramento Valley $40-30-30$ Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)
3 Accounts for 18% deduction for carriage water for Delta Export

1 Based on the 82 -year simulation petiod
2As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

Long-term Average and Average by Water Year Typ			
Analysis Period	SWP Table A Delivery (w/o Art 56) (Jan-Dec, TAF)	SWP Article 56 Deli Dec, TAF)	icle 21 Delivery (Jan Dec, TAF)
Long-term			
Full Simulation Period ${ }^{1}$	2,262	63	72
Water Year Types ${ }^{2}$			
Wet (32\%)	3,165	66	159
Above Normal (13\%)	2,834	53	81
Below Normal (16\%)	2,268	94	33
Dry (24\%)	1,534	60	17
Critical (15\%)	819	29	12

Based on the 82 -vear simulation period

WSIP 2070 Without Project

3-State Water Project (SWP) Contract Deliveries
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type			
Analysis Period	Ag Service Deliveries (Jan-Dec, TAF)	M\&I Service Deliveries (Jan-Dec, TAF)	Total Ag and M\& Service Deliveries (Jan-Dec, TAF)
Long-term			
Full Simulation Period ${ }^{1}$	597	1,801	2,398
Water Year Types ${ }^{2}$			
Wet (32\%)	894	2,496	3,390
Above Norma (13\%)	741	2,227	2,968
Below Normal (16\%)	564	1,831	2,395
Dry (240)	370	1,241	1,611
Critical (15\%)	195	666	861
1 Based on the 8 -year simul			

4-State Water Project (SWP) Contract Deliveries
Long-term Average and Average by Water Year Type

Analysis Period	FRSA Settlement (Jan-Dec, TAF)

Long-term	
Full Simulation Period ${ }^{2}$	

Water Year Types ${ }^{2}$	
Wet (32\%)	975
Above Normal (13\%)	983
Below Norma (16\%)	934
Dry (24\%)	887
Critical (15\%)	680
1 Based on the 82 -vear simulation period	
2 As defined by the Sacramento Valley $00.30-30$ Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)	

WSIP 2070 Without Project
5-State Water Project (SWP) Contract Deliveries

Long-term Average and Average by Water Year Type

Sacramento River Hydrologic Region M\&1 Service (Jan-Dec, TAF)	San Joaquin River Hydrologic Region	San Francisco Bay Hydrologic Region
Ag Service (Jan-Dec, TAF)	M\&1 Service (Jan-Dec, TAF)	

entral Coast Hydrologic
Region
Tulare Lake Hydrologic Region
South Lahonton Hydrologic
Region
South Coast Hydrologic Region
M\&l Service (Jan-Dec, TAF) Ag Service (Jan-Dec, TAF) M\&l Service (Jan-Dec, TAF) M\&l Service (Jan-Dec, TAF) Ag Service (Jan-Dec, TAF) M\&l Service (Jan-Dec, TAF) M\&l Service (Jan-Dec, TAF) Ag Service (Jan-Dec, TAF) M\&l Service (Jan-Dec, TAF)

Long-term									
Full Simulation Period ${ }^{1}$	29	3	198	39	586	75	248	7	1,211
Water Year Types ${ }^{2}$									
Wet (32\%)	37	5	269	57	878	108	349	11	1,676
Above Normal (13\%)	36	4	247	51	728	97	308	9	1,488
Below Normal (16\%)	31	3	199	38	554	74	249	7	1,240
Dry (24\%)	22	2	142	25	363	49	168	5	834
Critical (15\%)	12	1	78	13	191	26	89	2	448

1 Based on the 82 -year simulation period
2As defined by the Sacramentio valley $40-30$-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)
With Project deliveries and allocation to SWP would be similar to Without Project

CVP Deliveries - Without Project (WSIP 2070)

WSIP 2070 Without Project
1-Central Valley Project (CVP) Allocation
Long-term Average and Average by Water Year Type

Analysis Period	Ag Service Allocation (EO May)	SOD Ag Service Allocation (EO May)	M\&I Service Allocation (EO May)	SOD M\&I Service Allocation (EO May)	Settlement Contract Allocation (EO May)	Exchange Contract Allocation (EO May)	Refuge Level 2 Contract Allocation (EO May)
Long-term							
Full Simulation Period ${ }^{1}$	30\%	29\%	71\%	71\%	98\%	98\%	98\%
Water Year Types ${ }^{2}$							
Wet (32\%)	52\%	52\%	83\%	83\%	100\%	100\%	100\%
Below Normal (16\%)	38\%	37\%	75\%	75\%	100\%	100\%	100\%
Below Normal (16\%)	25\%	24\%	71\%	71\%	100\%	100\%	100\%
Dry (24\%)	14\%	14\%	63\%	63\%	100\%	100\%	100\%
Critical (15\%)	4\%	4\%	54\%	54\%	88\%	88\%	88\%

WSIP 2070 Without Project
2-Central Valley Project (CVP) Contract Deliveries
Long-term Average and Average by Water Year Type

Analysis Period	Ag Service Deliveries (Mar-Feb, TAF)	M\&I Service Deliveries (Mar-Feb, TAF)	Total Ag and M\&I Service Deliveries (Mar-Feb, TAF)	Total Settlement and Exchange Deliveries (MarFeb, TAF)	Total Refuge Level 2 and 4 Supplies (Mar-Feb, TAF)
Long-term					
Full Simulation Period ${ }^{1}$	662	452	1,115	2,799	563
Water Year Types ${ }^{2}$					
Wet (32\%)	1,171	465	1,636	2,802	585
Above Normal (13%)	842	449	1,291	2,832	585
Below Normal (16\%)	531	449	981	2,840	581
Dry (24\%)	317	448	765	2,871	565
Critical (15\%)	83	439	523	2,612	472
1 Based on the 82-year simulation period					
2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)					

WSIP 2070 Without Projec

3-Refuge Water Supplies (CVP Contract, Sites and Acquisitions Supplies) Long-term Average and Average by Water Year Type

	$\begin{array}{c}\text { Total Refuge Level 2 } \\ \text { Analysis Period }\end{array}$	$\begin{array}{c}\text { Total Refuge Level 4 Sites } \\ \text { Supplies (Mar-Feb, TAF) }\end{array}$
Supplies (Mar-Feb, TAF)		

WSIP 2070 Without Project

4-Central Valley Project (CVP) Contract Deliveries

Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type									
	Sacramento River Hydrologic Region			San Joaquin River Hydrologic Region			San Francisco Bay Hydrologic Region		Tulare Lake Hydrologic Region
Analysis Period	Ag Service (Mar-Feb, TAF)	$\begin{aligned} & \text { M\&l Service (Mar-Feb, } \\ & \text { TAF) } \end{aligned}$	Settlement (Mar-Feb, TAF)	$\begin{gathered} \text { Ag Service (Mar-Feb, } \\ \text { TAF) } \end{gathered}$	M\&l Service (Mar-Feb, TAF)	Exchange (Mar-Feb, TAF)	Ag Service (Mar-Feb, TAF)	M\&I Service (Mar-Feb, TAF)	Ag Service (Mar-Feb, TAF)
Long-term									
Full Simulation Period ${ }^{1}$	105	172	1,941	176	14	859	21	267	360
Water Year Types ${ }^{2}$									
Wet (32\%)	181	195	1,928	311	17	874	38	254	641
Above Normal (13\%)	134	185	1,958	224	15	874	27	249	458
Below Normal (16\%)	90	173	1,967	141	14	873	17	262	284
Dry (24\%)	50	155	1,997	84	13	874	10	280	173
Critical (15\%)	13	130	1,839	22	10	773	3	299	46

1 Based on the 8 -year simulation period
2 As defined by the Sacramento Valley 40 -30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

WSIP 2070 Without Project
5-Refuge Water Supplies (CVP Contract, Sites and Acquisitions Supplies) Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type						
	Sacramento River Hydrologic Region		San Joaquin River Hydrologic Region		Tulare Lake Hydrologic Region	
Analysis Period	Refuge L2 (Mar-Feb, TAF)	Refuge L4-Sites (MarFeb, TAF)	Refuge L2 (Mar-Feb, TAF)	Refuge L4-Sites (MarFeb, TAF)	Refuge L2 (Mar-Feb, TAF)	Refuge L4-Sites (Mar-Feb, TAF)
Long-term						
Full Simulation Period ${ }^{1}$	156	0	261	0	12	0
Water Year Types ${ }^{2}$						
Wet (32\%)	168	0	267	0	12	0
Above Normal (13\%)	167	0	268	0	12	0
Below Normal (16\%)	165	0	266	0	12	0
Dry (24\%)	151	0	265	0	12	0
Critical (15\%)	115	0	226	0	10	0

1 Based on the 82 -year simulation period
2 As defined by the Sacramento Valley $40-30-30$ Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

Long-term Average and Average by Water Year Type							
Analysis Period	Ag Service Allocation (EO May)	SOD Ag Service Allocation (EO May)	M\&I Service Allocation (EO May)	SOD M\&I Service Allocation (EO May)	Settlement Contract Allocation (EO May)	Exchange Contract Allocation (EO May)	Refuge Level 2 Contract Allocation (EO May)
Long-term							
Full Simulation Period ${ }^{1}$	30\%	29\%	71\%	71\%	98\%	98\%	98\%
Water Year Types ${ }^{2}$							
Wet (32\%)	52\%	52\%	84\%	84\%	100\%	100\%	100\%
Above Normal (13\%)	37\%	37\%	75\%	75\%	100\%	100\%	100\%
Below Normal (16\%)	26\%	24\%	72\%	71\%	100\%	100\%	100\%
Dry (24\%)	14\%	13\%	63\%	62\%	100\%	100\%	100\%
Critical (15\%)	4\%	4\%	54\%	54\%	88\%	88\%	88\%

1 Based on the 82 -year simulation period
2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

WSIP 2070 With Project
2-Central Valley Project (CVP) Contract Deliveries Long-term Average and Average by Water Year Typ

Long-term Average and Average by Water Year Type					
Analysis Period	Ag Service Deliveries (Mar-Feb, TAF)	M\&I Service Deliveries (Mar-Feb, TAF)	Total Ag and M\&l Service Deliveries (Mar-Feb, TAF)	Total Settlement and Exchange Deliveries (MarFeb, TAF)	Total Refuge Level 2 and 4 Supplies (Mar-Feb, TAF)
Long-term					
Full Simulation Period ${ }^{1}$	664	452	1,117	2,800	573
Water Year Types ${ }^{2}$					
Wet (32\%)	1,183	467	1,650	2,799	590
Above Normal (13\%)	835	448	1,283	2,829	590
Below Normal (16\%)	542	449	990	2,835	592
Dry (24\%)	301	445	746	2,867	579
Critical (15\%)	85	442	526	2,635	484

1 Based on the 82 -year simulation period
2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

WSIP 2070 With Project
3-Refuge Water Supplies (CVP Contract, Sites and Acquisitions Supplies) Long-term Average and Average by Water Year Type

	Total Refuge Level 2 Analysis Period Supplies (Mar-Feb, TAF)	Total Refuge Level 4 Sites Supplies (Mar-Feb, TAF)
Long-term		
Full Simulation Period ${ }^{1}$	438	31
	Water Year Types ${ }^{2}$	
Wet (32\%)	452	51
Above Normal (13\%)	452	41
Below Normal (16\%)	455	30
Dry (24\%)	441	17
Critical (15\%)	364	1
1 Based on the 82-year simulation period		
As defined by the Sacramento Valley 40-30-30 1999)		

WSIP 2070 With Project

4-Central Valley Project (CVP) Contract Deliveries

Long-term Average and Average by Water Year Type

g-term Average and Average by Water Year									
	Sacramento River Hydrologic Region			San Joaquin River Hydrologic Region			San Francisco Bay Hydrologic Region		Tulare Lake Hydrologic Region
Analysis Period	Ag Service (Mar-Feb, TAF)	M\&I Service (Mar-Feb, TAF)	Settlement (Mar-Feb, TAF)	Ag Service (Mar-Feb, TAF)	M\&l Service (Mar-Feb, TAF)	Exchange (Mar-Feb, TAF)	Ag Service (Mar-Feb, TAF)	M\&I Service (Mar-Feb, TAF)	Ag Service (Mar-Feb, TAF)
Long-term									
Full Simulation Period ${ }^{1}$	105	171	1,940	176	14	859	22	268	361
Water Year Types ${ }^{2}$									
Wet (32\%)	182	196	1,924	315	17	874	39	255	648
Above Normal (13\%)	133	183	1,955	222	15	874	27	250	454
Below Normal (16\%)	92	173	1,961	143	14	874	18	262	289
Dry (24\%)	49	153	1,993	81	12	874	10	280	162
Critical (15\%)	13	130	1,861	22	11	773	3	301	47

1 Based on the 8 -year simulation period
2 As defined by the Sacramento Valley 40 -30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

WSIP 2070 With Project
5-Refuge Water Supplies (CVP Contract, Sites and Acquisitions Supplies)
Long-term Average and Average by Water Year Type

Analysis Period	Sacramento River Hydrologic Region		San Joaquin River Hydrologic Region		Tulare Lake Hydrologic Region	
	Refuge L2 (Mar-Feb, TAF)	Refuge L4-Sites (MarFeb, TAF)	Refuge L2 (Mar-Feb, TAF)	Refuge L4-Sites (MarFeb, TAF)	Refuge L2 (Mar-Feb, TAF)	Refuge L4-Sites (Mar-Feb, TAF)
Long-term						
Full Simulation Period ${ }^{1}$	164	1	261	25	12	6
Water Year Types ${ }^{2}$						
Wet (32\%)	172	1	268	41	12	9
Above Normal (13\%)	172	1	268	33	12	7
Below Normal (16\%)	176	1	267	24	12	5
Dry (24\%)	164	0	265	14	12	3
Critical (15\%)	125	0	229	1	11	0

1 Based on the 82 -year simulation period
2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

CVP Deliveries - Comparison

 Difference: WSIP 2070 With Project minus WSIP 2070 Without Project

 Difference: WSIP 2070 With Project minus WSIP 2070 Without Project}

1-Central Valley Project (CVP) Allocation

Long-term Average and Average by Water Year Type

Analysis Period	Ag Service Allocation (EO May)	SOD Ag Service Allocation (EO May)	M\&l Service Allocation (EO May)	SOD M\&I Service Allocation (EO May)	Settlement Contract Allocation (EO May)	Exchange Contract Allocation (EO May)	Refuge Level 2 Contract Allocation (EO May)
Long-term							
Full Simulation Period ${ }^{1}$	0\%	0\%	0\%	0\%	0\%	0\%	0\%
Water Year Types ${ }^{2}$							
Wet (32\%)	1\%	1\%	1\%	1\%	0\%	0\%	0\%
Above Normal (13\%)	0\%	0\%	0\%	0\%	0\%	0\%	0\%
Below Normal (16\%)	1\%	0\%	0\%	0\%	0\%	0\%	0\%
Dry (24\%)	0\%	-1\%	0\%	-1\%	0\%	0\%	0\%
Critical (15\%)	0\%	0\%	0\%	0\%	0\%	0\%	0\%

2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

Difference: WSIP 2070 With Project minus WSIP 2070 Without Project 2-Central Valley Project (CVP) Contract Deliveries Long-term Average and Average by Water Year Type						Difference: WSIP 2070 With Project minus WSIP 2070 Without Project 3-Refuge Water Supplies (CVP Contract, Sites and Acquisitions Supplies) Long-term Average and Average by Water Year Type		
Analysis Period	Ag Service Deliveries (Mar-Feb, TAF)	M\&l Service Deliveries (Mar-Feb, TAF)	Total Ag and M\&I Service Deliveries (Mar-Feb, TAF)	Total Settlement and Exchange Deliveries (MarFeb, TAF)	Total Refuge Level 2 and 4 Supplies (Mar-Feb, TAF)	Analysis Period	Total Refuge Level 2 Supplies (Mar-Feb, TAF)	Total Refuge Level 4 Sites Supplies (Mar-Feb, TAF)
Long-term							Long-term	
$\overline{\text { Full Simulation Period }{ }^{1}}$	2	0	2	0	9	Full Simulation Period ${ }^{1}$	9	31
Water Year Types ${ }^{2}$						Water Year Types ${ }^{2}$		
Wet (32\%)	12	2	14	-3	5	Wet (32\%)	5	51
Above Normal (13\%)	-7	-1	-8	-3	5	Above Normal (13\%)	5	41
Below Normal (16\%)	10	-1	10	-5	12	Below Normal (16\%)	12	30
Dry (24\%)	-15	-3	-19	-4	14	Dry (24\%)	14	17
Critical (15\%)	1	2	4	23	13	Critical (15\%)	13	1
1 Based on the 82 -year simulation period						period		
2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)						2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)		
WSIP 2070 Without P								

Difference: WSIP 2070 With Project minus WSIP 2070 Without Project 4-Central Valley Project (CVP) Contract Deliveries Long-term Average and Average by Water Year Type									
	Sacramento River Hydrologic Region			San Joaquin River Hydrologic Region			San Francisco Bay Hydrologic Region		Tulare Lake Hydrologic Region
Analysis Period	Ag Service (Mar-Feb, TAF)	M\&l Service (Mar-Feb, TAF)	Settlement (Mar-Feb, TAF)	Ag Service (Mar-Feb, TAF)	M\&l Service (Mar-Feb, TAF)	Exchange (Mar-Feb, TAF)	Ag Service (Mar-Feb, TAF)	M\&I Service (Mar-Feb, TAF)	Ag Service (Mar-Feb, TAF)
Long-term									
Full Simulation Period ${ }^{1}$	0	-1	0	1	0	0	0	1	1
Water Year Types ${ }^{2}$									
Wet (32\%)	1	1	-4	4	0	0	1	1	7
Above Normal (13\%)	-1	-1	-3	-3	0	0	0	1	-4
Below Normal (16\%)	2	-1	-5	3	0	1	0	0	5
Dry (24\%)	-1	-3	-4	-3	0	0	0	0	-11
Critical (15\%)	0	-1	23	0	0	0	0	2	1

1 Based on the 82 -year simulation period
2 As defined by the Sacramento Valley $40-30-30$ Index Water Year Hydrologic Classiifation (SWRCB D-1641, 1999)

Difference: WSIP 2070 With Project minus WSIP 2070 Without Project 5 -Refuge Water Supplies (CVP Contract, Sites and Acquisitions Supplies)

Long-term Average and Average by Water Year Type

Analysis Period	Sacramento River Hydrologic Region		San Joaquin River Hydrologic Region		Tulare Lake Hydrologic Region	
	Refuge L2 (Mar-Feb, TAF)	Refuge L4-Sites (MarFeb, TAF)	Refuge L2 (Mar-Feb, TAF)	Refuge L4-Sites (MarFeb, TAF)	Refuge L2 (Mar-Feb, TAF)	Refuge L4-Sites (Mar-Feb, TAF)
Long-term						
Full Simulation Period ${ }^{1}$	8	1	1	25	0	6
Water Year Types ${ }^{2}$						
Wet (32\%)	4	1	0	41	0	9
Above Normal (13\%)	5	1	0	33	0	7
Below Normal (16\%)	11	1	0	24	0	5
Dry (24\%)	13	0	0	14	0	3
Critical (15\%)	10	0	3	1	0	0

1 Based on the 82 -year simulation period
2 As defined by the Sacramento Valley $40-30-30$ Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

Sites Reservoir Benefits

Difference: WSIP 2070 With Project minus WSIP 2070 Without Project	
1-Sites Deliveries to Sacramento Valley Members	
Long-term Average and Average by Water Year Type	
Analysis Period	(Mar-Feb, TAF)
Long-term	
Full Simulation Period ${ }^{1}$	155
Water Year Types ${ }^{2}$	
Wet (32\%)	110
Above Normal (13\%)	178
Below Normal (16\%)	182
Dry (24\%)	190
Critical (15\%)	143
1 Based on the 82 -year sin	lation period

1 Based on the 82 -year simulation period
2 As defined by the Sacramento Valley $40-30$-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)
3 Includes Sites delivery to TCCA members, GCID, RD108, County of Colusa, and Western Canal WD

Difference: WSIP 2070 With Project minus WSIP 2070 Without Project
2-Sites Deliveries to South of Delta Members
Long-term Average and Average by Water Year Type

Analysis Period	M\&1 (Jan-Dec, TAF)	Ag (Jan-Dec, TAF)	Total (Jan-Dec, TAF)
Long-term			
Full Simulation Period ${ }^{1}$	85	26	112
Water Year Types ${ }^{2}$			
Wet (32\%)	1	0	1
Above Normal (13\%)	22	7	29
Below Normal (16\%)	56	17	73
Dry (24\%)	226	69	295
Critical (15\%)	119	36	155

1 Based on the 82 -year simulation period
2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)
Accounts for 18% deduction for carriage water for Detta Export

Sites Reservoir Project Operations Summary Tables and Bar Charts

Tehama Colusa Canal Intake at Red Bluff, Monthly Diversion

Analysis Period	Monthly Diversion (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulation Period'												
DCR 2015 Wiftout Project	112	6	0	0	2	13	153	412	758	821	669	151
DCR 2015 W Wh Project	103	101	759	1,123	1,242	1,027	395	465	652	605	561	84
Difference	-9	95	759	1,123	1,239	1,014	242	53	-105	-216	-108	-67
Percent Difference ${ }^{\text {a }}$	-8.0\%							12.9\%	-13.9\%	-26.3\%	-16.2\%	-44.2\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 W Witout Project	146	7	0	0	0	10	162	613	1,083	1,209	959	227
DCR 2015 WWit Project	143	93	836	1,066	1,065	800	314	703	1,076	1,071	908	107
Difference	-3	86	836	1,066	1,065	790	152	90	-7	-139	-51	-121
Percent Difference	-1.8\%						94.0\%	14.7\%	-0.6\%	-11.5\%	-5.3\%	-53.1\%
Above Nomal (14.6\%)												
DCR 2015 Without Projet	116	4	0	0	0	6	196	579	1,055	1,134	885	206
DCR 2015 WWit Project	108	188	1,573	1,725	1,656	1,420	816	757	785	541	591	48
Difference	-8	184	1,573	1.725	1,656	1,413	619	178	-270	-592	-294	-158
Percent Difference	-6.6\%							30.7\%	-25.6\%	-52.3\%	-33.2\%	-76.6\%
Below Normal (17. \%\%)												
DCR 2015 WWithut Project	103	4	0	0	1	23	161	352	648	708	558	99
DCR 2015 W Wif Project	81	87	606	1,483	1,181	1,388	491	390	526	401	357	85
Difference	-22	82	606	1,483	1,180	1,365	331	37	-123	-308	-201	-14
Percent ifference	-21.6\%							10.6\%	-18.9\%	-43.4\%	-36.0\%	-13.9\%
Dry (22\%)												
DCR 2015 Without Proeat	97	6	0	0	4	12	149	233	508	491	400	99
DCR 2015 W Wit Project	84	118	471	883	1,368	1,121	346	185	323	350	326	85
Difference	-12	112	471	883	1,364	1,110	198	-48	-185	-141	-74	-14
Percent Difference	-12.9\%						133.0\%	-20.6\%	-36.3\%	-28.8\%	-18.5\%	-14.2\%
Critical (14.6\%)												
DCR 2015 Wiftout Project	66	11	0	0	6	16	89	148	258	296	359	71
DCR 2015 Wwit Project	63	23	388	584	1,091	565	112	165	243	283	369	71
Difference	-3	12	388	584	1,084	548	23	17	-15	-13	10	0
Percent Difference	4.4\%						25.4\%	11.3\%	-6.0\%	-4.5\%	2.7\%	0.2\%

1 Based on the 82 2vear simulution period
3 Realive difference of the monthly verage

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Diversion (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulation Period'												
DCR 2015 Without Project	767	446	211	83	68	40	2,190	2,085	2,903	2,798	2,066	545
DCR 2015 With Project	713	461	504	207	271	612	2,274	2,004	2,567	2,509	2,010	556
Difference	-54	15	293	123	204	572	84	-81	-336	-288	-56	11
Percent Difference	-7.0\%	3.3\%	138.9\%				3.8\%	-3.9\%	-11.6\%	-10.3\%	-2.7\%	2.0\%
Water Year Typess ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 Wiftout Project	793	461	228	80	67	31	2,022	2,122	2,969	2,870	2,139	569
DCR 2015 With Project	802	490	361	216	270	496	2,193	2,308	2,965	2,911	2,417	591
Difference	9	29	133	135	202	465	170	186	-4	41	278	22
Percent Difference	1.2\%	6.4\%	58.1\%				8.4\%	8.8\%	-0.1\%	1.4\%	13.0\%	3.9\%
Above Normal (14.6\%)												
DCR 2015 Wiftout Project	779	453	207	73	65	26	2,160	2,078	2,984	2,868	2,146	573
DCR 2015 W.th Project	862	536	824	296	352	899	2,561	2,345	2,640	2,577	2,140	568
Difference	83	83	617	223	287	873	401	268	-344	-291	-7	-5
Pereent Difference	10.7\%	18.3\%					18.6\%	12.9\%	-11.5\%	-10.1\%	-0.3\%	-0.8\%
Below Normal (17.1\%)												
DCR 2015 WWithut Project	780	461	201	89	68	45	2,302	2,182	2,952	2,874	2,152	564
DCR 2015 Wiff Project	649	430	612	231	286	734	2,669	2,168	2,404	2,429	1,798	544
Difference	-131	-31	411	142	218	689	367	-14	-548	-445	-354	-20
Pereent Difference	-16.8\%	-6.7\%					15.9\%	-0.7\%	-18.6\%	-15.5\%	-16.5\%	-3.6\%
Dry (22\%)												
DCR 2015 Without Proedt	784	430	223	86	69	43	2,317	2,145	2,958	2,859	2,103	539
DCR 2015 With Projed	625	450	543	147	273	698	2,250	1,721	2,347	2,363	1,973	587
Difference	-159	19	320	61	204	655	-66	-424	-611	-495	-130	48
Percent Difference	-20.3\%	4.5\%	143.3\%				-2.9\%	-19.8\%	-20.7\%	-17.3\%	-6.2\%	9.0\%
Critical (14.6\%)												
DCR 2015 Wiftout Project	660	415	170	89	68	64	2,264	1,811	2,541	2,392	1,672	455
DCR 2015 Wwit Project	580	377	307	160	174	305	1,741	1,239	2,153	1,886	1,302	438
Differene	-80	-38	137	71	106	241	-524	-571	-388	-506	-370	-17
Percent Difference	-12.1\%	-9.1\%	80.6\%				-23.1\%	-31.6\%	-15.3\%	-21.2\%	-22.1\%	-3.8\%

TBased on the 8 -vearar smuluaion perioc
3 Realive difference of the monthy verasa

Table OP-03-a
and Pipeline, Mo
Delevan Intake and Pipeline, Monthly Diversion

Delevan Intake and Pipeline, Monthly Diversion Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Diversion (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulaion Period'												
DCR 2015 W Withut Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 W Wif Project	11	72	289	651	744	346	0	0	74	32	5	2
Difference	11	72	289	651	744	346	0	0	74	32	5	2
Percent Difference?												
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 Without Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	15	42	175	770	732	288	0	0	103	75	7	0
Difference	15	42	175	770	732	288	0	0	103	75	7	0
Percent Difference												
Above Norma (14.6\%)												
DCR 2015 Without Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	31	301	723	1,044	1,160	623	0	0	180	0	16	0
Differene	31	301	723	1,044	1,160	623	0	0	180	0	16	0
Percent Difference												
Below Normal (17.1\%)												
DCR 2015 Wiftout Priject	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	0	14	432	777	652	332	0	0	81	0	0	0
Difference	0	14	432	777	652	332	0	0	81	0	0	0
Percent Difference												
Dry (22\%)												
DCR 2015 Wiftout Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	10	44	145	346	790	310	0	0	0	22	0	11
Difference	10	44	145	346	790	310	0	0	0	22	0	11
Percent ifference												
Critical (14.6\%)												
DCR 2015 Without Proeat	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	0	17	156	312	392	267	0	0	10	25	0	0
Difference	0	17	156	312	392	267	0	0	10	25	0	0
Percent Difference												

1 Based on the 82 -year sinulution period
3 Realive difference of fte monthly verage

Table OP-04-a
Sites Reservoir
Funks Reservoir to Sites Reservoir, Monthly Diversion
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Diversion (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulation Period'												
DCR 2015 Without Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Projet	47	208	1,339	1,891	2,179	1,916	491	215	129	46	98	24
Difference	47	208	1,339	1,891	2,179	1,916	491	215	129	46	98	24
Percent Difference ${ }^{\text {a }}$												
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
DCR 2015 W Withut Project	-	0	0	0	0	,	0	0	0	0	0	0
DCR 2015 W Wit Project	80	172	1,155	1,962	1,987	1,529	388	288	137	96	244	13
Difference	80	172	1,155	1,962	1,987	1.529	388	288	137	96	244	13
Percent Difference												
Above Nomal (14.6\%)												
DCR 2015 Without Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 W Wit Project	133	581	2,894	2,980	3,088	2,882	1,032	589	333	0	107	0
Differene	133	581	2,894	2,980	3,088	2,882	1,032	589	333	0	107	0
Percent ififeerce												
Below Normal (17.1\%)												
DCR 2015 W Witout Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 W Wit Project	0	89	1,435	2,392	2,037	2,368	745	219	201	0	0	0
Difference	0	89	1,435	2,392	2,037	2,368	745	219	201	0	0	0
Percont ifference												
Dry (22\%)												
DCR 2015 Wiftout Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 W Wit Project	10	223	925	1,289	2,350	2,055	402	0	0	50	21	81
Difference	10	223	925	1,289	2,350	2,055	402	0	0	50	21	81
Percent 1 fifience												
Critical (14.6\%)												
DCR 2015 W Witout Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	0	28	689	965	1,594	1,052	10	0	19	32	2	12
Difference	0	28	689	965	1,594	1,052	10	0	19	32	2	12
Percent Diffeence												

1 Based on the 82 -vear simulation period
3 Realive difference of the monthy averas

Funks Reservoir to Tehama Colusa and Glenn Colusa Canals, Monthly Flow
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
$\overline{\text { Full Simulation Period' }}$												
DCR 2015 Without Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	369	24	6	0	2	20	291	447	741	785	692	456
Difference	369	24	6	0	2	20	291	447	741	785	692	456
Percent ifiference												
Water Year Typess ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 Without Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	438	9	13	1	0	3	76	83	136	219	286	513
Differene	438	9	13	1	0	3	76	83	136	219	286	513
Percent Difference												
Above Nomal (14.6\%)												
DCR 2015 WWithout Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	350	18	0	0	0	4	85	243	858	1,019	877	644
Difference	350	18	0	0	0	4	85	243	858	1,019	877	644
Percent Difierence												
Below Normal (17.7\%)												
DCR 2015 WWithout Priject	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	415	18	0	0	5	17	155	444	1,085	1,081	1,118	463
Difference	415	18	0	0	5	17	155	444	1,085	1,081	1,118	463
Pereentifiference												
Dry (22\%)												
DCR 2015 Without Priject	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	392	44	0	0	1	19	451	775	1,216	1,126	820	408
Difference	392	44	0	0	1	19	451	775	1,216	1,126	820	408
Percent Diffeence												
Critical (14.6\%)												
DCR 2015 Without Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	150	38	12	0	6	77	881	949	821	918	701	208
Differene	150	38	12	0	6	77	881	949	821	918	701	208
Percent Difference												

1 Based on the 82 -vear simulation period
3 Realive difference of the monhly veras

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulition Period ${ }^{\text {d }}$												
DCR 2015 W Without Proed	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	435	232	47	10	18	52	33	90	897	860	575	613
Difference	435	232	47	10	18	52	33	90	897	860	575	613
Percent Difference												
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 Without Priject	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	183	190	45	33	17	${ }^{23}$	0	0	290	359	34	441
Differene	183	190	45	${ }_{3}$	17	23	0	0	290	359	34	441
Percent Difference												
Above Nomal (14.6\%)												
DCR 2015 WWithout Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 Witi Project	114	125	12	0	0	12	0	0	883	822	395	760
Difference	114	125	12	0	0	12	0	0	883	822	395	760
Peceent Diffeence												
Below Normal (17.1\%)												
DCR 2015 WWithout Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	510	129	0	0	38	0	0	0	1,337	1,393	1,018	607
Difference	510	129	0	0	38	0	0	0	1,337	1,393	1,018	607
Percent Differene												
Dry (22\%)												
DCR 2015 WWithout Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	867	377	112	0	0	0	16	22	1,486	1,333	1,015	807
Differene	867	377	112	0	0	0	16	22	1,486	1,333	1,015	807
Pereentifference												
Critical (14.6\%)												
DCR 2015 W Witout Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	565	332	43	0	40	294	202	578	830	652	752	552
Difference	565	332	43	0	40	294	202	578	830	652	752	552

1 Based on the 82 -vear simulition period
3 Realive difference of the monthy veray

Sites Reservoir to Funks Reservoir, Monthly Flow
Sites Reservoir to funks Reservoir, Monthy Flow
Long-erm Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulaion Period'												
DCR 2015 W Witout Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	804	255	53	11	20	72	324	536	1,638	1,645	1,268	1,069
Difference	804	255	53	11	20	72	324	536	1,638	1,645	1,268	1,069
Percent Difference ${ }^{\text {a }}$												
Water Year Types ${ }^{2}$												
Wet (3.7\%)												
DCR 2015 Witrout Projed	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	621	199	58	34	18	26	76	83	427	578	320	954
Difference	621	199	58	34	18	26	76	83	427	578	320	954
Percent Difference												
Above Nomal (14.6\%)												
DCR 2015 WWithut Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	464	143	12	0	0	16	85	243	1,741	1,842	1,272	1,404
Difference	464	143	12	0	0	16	85	243	1,741	1,842	1,272	1,404
Percent Difference												
Below Norma (17.1\%)												
DCR 2015 WWithut Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	926	147	0	0	42	17	155	444	2,422	2,474	2,136	1,070
Difference	926	147	0	0	42	17	155	444	2,422	2,474	2,136	1,070
Percent Difference												
Dry (22\%)												
DCR 2015 Without Projet	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Projet	1,259	420	112	0	1	19	466	797	2,702	2,459	1,835	1,215
Difference	1,259	420	112	0	1	19	466	797	2,702	2,459	1,835	1,215
Percent Difference												
Critical (14.6\%)												
DCR 2015 Wiftout Priject	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	716	369	55	0	46	371	1,082	1,528	1,651	1,570	1,452	761
Difference	716	369	55	0	46	371	1,082	1,528	1,651	1,570	1,452	761
Percent Difference												

1 Based on the 82 -vear simulition period
3 Realive difference of the monthly wera

Table OP-09-a
Sites Reservoir, End of Month Storage

Long-term Average and Average by Water Year Type												
Analysis Period	End of Month Storage (TAF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulation Period'												
DCR 2015 W Wituot Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 Win Priject	1,043	1,041	1,122	1,240	1,363	1,476	1,475	1,449	1,351	1,243	1,164	1,096
Difference	1,043	1,041	1,122	1,240	1,363	1,476	1.475	1,449	1,351	1,243	1,164	1,096
Percent Difference ${ }^{\text {a }}$												
Water Year Types ${ }^{2}$												
Wet (3.7\%)												
DCR 2015 W Wituot Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	1,614	1,613	1,683	1,572	1,684	1,777	1,787	1,793	1,767	1,727	1,713	1,650
Diffeence	1,614	1,613	1,683	1,572	1,684	1,777	1,787	1,793	1,767	1,727	1,713	1,650
Percent Difference												
Above Nomal (14.6\%)												
DCR 2015 W Witutip Prject	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	1,220	1,246	1,427	1,252	1,429	1,605	1,640	1,655	1,563	1,439	1,359	1,269
Diffeence	1,220	1,246	1,427	1,252	1.429	1,605	1,640	1,655	1,563	1,439	1,359	1,269
Percent Difference												
Below Norma (17.1\%)												
DCR 2015 W Whtout Prject	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	848	845	936	1,149	1,262	1,405	1,436	1,416	1,276	1,114	976	907
Difference	848	845	936	1,149	1,262	1.405	1,436	1,416	1,276	1,114	976	907
Percent Difference												
Dry (22\%)												
DCR 2015 W Wrout Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Priject	710	699	751	1,120	1,252	1,377	1,361	1,306	1,137	980	861	789
Difference	710	699	751	1,120	1,252	1,377	1,361	1,306	1,137	980	861	789
Percent Difference												
Critical (14.6\%)												
DCR 2015 Without Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 W Wh Project	356	336	376	796	884	924	847	748	646	544	450	402
Difference	356	336	376	796	884	924	847	748	646	544	450	402
Percent Difference												

1 Based on the 82 -vear simuluation period
3 Realive difference of the montily verenge

$\frac{1 \text { Pased on the } 82 \text {-vear simuludion period }}{}$
3 Realitive difference of the montliy average

Table OP-11-a Sites Reservoir, End of Month Area												
						d of Month	Area (AC					
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\stackrel{\square}{\text { Full Simuation Period }}$ '												
DCR 2015 WWithout Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Prijet	10,725	10,713	11,112	11,727	12,291	12,800	12,786	12,641	12,213	11,723	11,306	11,001
Difference	10,725	10,713	11,112	11,727	12,291	12,800	12,786	12,641	12,213	11,723	11,306	11,001
Percent Difference ${ }^{\text {a }}$												
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 WWithout Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	13,500	13,498	13,723	13,307	13,717	14,030	14,063	14,083	14,001	13,871	13,825	13,620
Difference	13,500	13,498	13,723	13,307	13,717	14,030	14,063	14,083	14,001	13,871	13,825	13,620
Percent Difference												
Above Normal (14.6\%)												
DCR 2015 WWithout Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	12,044	12,140	12,821	11,844	12,653	13,395	13,544	13,613	13,312	12,884	12,582	12,238
Difference	12,044	12,140	12,821	11,844	12,653	13,395	13,544	13,613	13,312	12,884	12,582	12,238
Percent Difiemee												
Below Norma (17.1\%)												
DCR 2015 WWithut Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	10,204	10,199	10,694	11,312	11,840	12,572	12,766	12,716	12,189	11,508	10,847	10,498
Difference	10,204	10,199	10,694	11,312	11,840	12,572	12,766	12,716	12,189	11,508	10,847	10,498
Percent ifference												
Dry $\left(22^{2} /{ }^{\text {a }}\right.$												
DCR 2015 Wiftout Project	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	9,237	9,209	9,495	11,240	11,909	12,468	12,425	12,178	11,451	10,717	10,067	9,693
Difference	9,237	9,209	9,495	11,240	11,909	12,468	12,425	12,178	11,451	10,717	10,067	9,693
Percent Difference												
Critical (14.6\%)												
DCR 2015 Wiftout Priject	0	0	0	0	0	0	0	0	0	0	0	0
DCR 2015 With Project	6,232	6,111	6,660	9,403	9,939	10,304	9,827	9,153	8,410	7,667	6,963	6,641
Difference	6,232	6,111	6,660	9,403	9,939	10,304	9,827	9,153	8,410	7,667	6,963	6,641
Percent Difference												

Sites Reservoir Project Operations Exceedance Probability Charts and Tables

Tehama Colusa Canal Intake at Red Bluff, Monthly Diversion

Table OP-01-b
Tehama Colusas Canal hablate ap-01-b Red Buff, Monthy Diversion

Table OP-01-b

		February		
$\underset{\substack{\text { Pereent } \\ \text { Excedance }}}{\text { enem }}$	DCR 2015 \%ritout	DCR 2015 With Project		Relative
Probability	Monthly \mathbf{i} version	Monthly Civersion	Difference	Difference (\%)
(\%)	(CFFS)	(CFF)	12	
			2,042	
2.5\%	11	2121	2,111	
3.7\%	3	${ }_{2,121}$	${ }_{2}, 118$	
4.9\%	3	2,121	2,119	
	0	2,121	2,121	
7.4\%	0	2,121	2,121	
	0	2,121	2,121	
${ }^{9.9 \%}$	0	${ }_{2,121}^{2,121}$	${ }_{\text {2,121 }}$	
11.19\%	0	2,121	${ }_{2}^{2,121}$	
${ }^{12.3 \%}$	0	${ }^{2,121}$	${ }^{2,121}$	
13.6\%	0	2,121	${ }^{2,121}$	
14.8\%	O	2,121		
17.3\%	0	${ }_{2,121}$	${ }_{2,121}^{2,121}$	
18.5\%	0	${ }_{2,121}^{2,121}$	${ }_{2}^{2,121}$	
19.8\%	0	2,121		
21.0\%	0	${ }^{2,121}$	2,121	
${ }_{2}^{22.5 \%}$	0	2,121 2,121 1	2,121 2,121 1	
${ }^{24.7 \%}$	0	${ }_{2,121}$	${ }_{2,121}$	
25.9\%		${ }_{2,121}$	${ }_{2121}$	
27.2\%	0	${ }_{2,121}^{2,121}$	${ }_{2,121}^{2,121}$	
28.4\%	0	2,121	2,121	
29.6\%	0	2,121	2,121	
30.9\%	0	2,121	${ }^{2,121}$	
32.1\%	0	2,121	${ }^{2,121}$	
33.3\%	0	${ }_{\text {2,121 }}^{2,121}$	2,121	
34.6\%	0	${ }_{\text {2,121 }}$	2,121	
35.8\%	0	${ }_{\text {2,121 }}^{2,121}$	2,121	
- ${ }^{37.0 \% \%}$	0	2,121	${ }_{\text {2,121 }}^{2,121}$	
30.5\%	0	${ }_{\substack{2,121}}^{2,121}$	2,121 2121 1	
40.7\%	0	2.121	2.121	
42.0\%	0	${ }^{2,121}$	${ }_{2}^{2,121}$	
44.4\%	0	${ }_{2}^{2,121}$	${ }_{2}^{2,121}$	
45.7\%	0	2,121	${ }_{2}^{2,121}$	
46.9\%	0	2,121	2,121	
${ }_{4}^{48.19 \%}$	0	${ }_{2,121}^{2,121}$	${ }_{2,121}^{2,121}$	
50.6\%	0	${ }_{2,031}^{2,012}$	2,031	
51.9\%	0	1,815	1,815	
53.1\%	0	1.475	1.475	
54.3\%	0	${ }_{1}^{1,370}$	${ }^{1,370}$	
55.6\%	0	1,190	1,190	
56.8\%	0	1,180	1,180	
58.0\% ${ }_{\text {593\% }}$	0	${ }_{782} 78$	${ }_{789} 78$	
60.5\%		${ }_{707}^{780}$	${ }_{707}^{780}$	
61.7\%	0	602	602	
63.0\%	0	530	530	
64.2\%	\bigcirc	${ }_{433}^{483}$	${ }_{433}^{483}$	
${ }_{66.7 \%}$	0	410	410	
679\%	0	385	385	
69.1\%	0	268	268	
70.4\%	0	${ }_{65}^{75}$	${ }_{65}^{75}$	
72.8\%	0	36	36	
74.1\%	0	${ }^{26}$	${ }^{26}$	
75.3\%	0	25	${ }^{25}$	
76.5% 77.8%	0	20	20	
779.8\%	0	${ }_{3}^{11}$	${ }_{3}^{11}$	
80.2\%	0	2	2	
81.5\%	0	0	0	
- ${ }_{\text {822, }}^{8.7 \%}$	0	0	0	
85.2\%	0	0	0	
86.4\%	0	0	0	
-87.7\%	0	0	0	
90.1\%	0	0	0	
91.4\%	0	0	0	
${ }_{93.8 \%}^{92.6 \%}$	0	0	0	
95.1\%	0	0	0	
96.3\%	0	0	0	
988.8\%	0	0	0	
100.0\%	0	0	0	

Table OP-01-b

$\begin{gathered} \text { Percent } \\ \left.\hline \begin{array}{c} \text { Exceeance } \\ \text { Probabaility } \\ \text { Dill } \end{array}\right] \end{gathered}$	June			
	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	Absolute	Relative
	Montly Piversion	Monthly Piversion	difierence	Difference (\%)
0.0\%	(CFS)	${ }^{\text {CCFFS }}$)		
12\%	1315			
2.5\%	${ }_{1,311}^{1,315}$	${ }^{2,554}$	${ }_{263}$	
3.7\%	${ }_{1}, 290$	${ }_{1}^{1,354}$	${ }^{63}$	
4.9\%	${ }_{1,274}$	${ }_{1,353}$	79	6.2\%
6.2\%	1,272	${ }^{1,328}$	56	4.4\%
7.4\%	1,272	1,325	53	
8.6\%	1,227	1,321	64	
9.9\%	1,230	1,311	81	
11.1\%	1,202	1,293	91	7.6\%
12.3\%	1,200	1,290	90	
13.6\%	1,182	1,202	20	1.7\%
14.8\%	1,171	1,200	29	2.5\%
16.0\%	1,148	1,148	0	0.0\%
17.3\%	${ }^{1,144}$	${ }^{1,127}$	-17	${ }^{-1.55}$
18.5\%	${ }^{1,127}$	${ }^{1,1211}$	-6	-0.5\%
19.8\%	1,121	${ }^{1,115}$	-6	-0.5\%
21.0\%	${ }^{1,115}$	${ }^{1} 1,100$	-15	-1.4\%
${ }_{2}^{22.2 .5 \%}$	1,100 1089 1	1,084 1081 1	-16	-1.4\%
${ }^{24.7 \%}$	${ }_{1}^{1,084}$	${ }_{1}^{1,068}$	${ }_{-17}^{-8}$	-1.6\%
25.9\%\%	1,073	1,060	-13	-1.2\%
27.2\%	${ }^{1,066}$	992		
29.6\%	${ }_{1}^{1,057}$	${ }_{933}$	${ }_{-124}$	-11.8\%
30.9\%	1,055	${ }^{913}$	-142	-13.4
32.1\%	1,008	${ }^{733}$	275	-27.3\%
33.3\%	943	674	269	-28.6\%
34.6\%	943	640	-303	
35.7\%	${ }_{938}$	607	${ }^{331}$	-35.3\%
37.0\%	${ }_{936}^{937}$	597	-341	-36.4\%
38.3\%	${ }_{936} 938$	556	-370	-39.5\%
39.5\%	${ }_{933} 9$	559 555	-375	-40.1\%
${ }^{40.7 \%} 4$	917	555	-392	-42.7\%
43.2\%	875	502 499	${ }^{-404}$	${ }^{-44.6 \%}$
44.4\%	870	486	-384	-44.1\%
45.7\%	865 865	474	-391	-45.2\%
46.9\%	865	459	-060	-46.9\%
48.19\%	${ }_{836} 83$	${ }_{442}^{457}$	-394	-46.1\%
50.6\%	${ }_{821} 836$	${ }_{4}^{425}$	-3964	-47.2\%
51.9\%	820	435	-384	-46.9\%
53.1\%	798	423	-375	
54.3\%	796	418	-378	
55.6\%	778	415	-362	-46.6\%
${ }_{\text {cken }}^{56.3 \%}$	${ }^{276}$	${ }^{412}$	-314	-43.2\%
55.0\%\%	691	409	282	-40.8\%
60.5\%	${ }_{660}^{670}$	389 389	-279	-41.7\%
61.7\%	614	383	-231	-37.6\%
63.0\%	${ }_{607}^{607}$	382	-225	-37.0\%
64.2% 654%	603 541	${ }_{3}^{378}$	${ }^{-225}$	-37.4\%
65.4% 667%	541	378	-164	-30.2\%
-66.7\%	509	370	-139	-27.3\%
69.1\%	449	369	${ }_{-80}$	-17.8\%
70.4\%	445	${ }^{338}$		-24.0\%
71.6\%	${ }^{420}$	${ }^{330}$	91	${ }^{-21.6 \%}$
74.1\%	404	${ }_{302}^{329}$	-191	-
75.3\%	391	300	-91	
76.5\%	384	300	-85	0\%
77.8\%	379	298	-81	.3\%
790\%	${ }_{377}^{379}$	297	82	-21.5\%
81.5\%	370	${ }_{285}^{298}$	-84	-22.9\%
82.7\%	369	285	84	-22.9\%
84.0\%	350	284	${ }^{66}$	18.9\%
85.2\%	${ }^{328}$	${ }^{276}$	-52	15.9\%
${ }^{86.4 \%}$	${ }^{321}$	${ }^{273}$	${ }^{48}$	-15.1\%
87.7% 88.9%	306 289	${ }_{263}^{272}$	${ }^{-33}$	-10.9\%
88.9% 90.1%	${ }^{289}$	263	${ }^{26}$	-9.1\%
${ }^{90.14 \%}$	268 268	${ }_{249}^{256}$	${ }^{-33}$	-11.3\%
${ }^{91.46}$	${ }_{222}^{268}$	${ }^{249}$	-19	${ }^{6.9 \%}$
- ${ }_{\text {923.8\% }}$	${ }_{197}^{222}$	${ }_{2}^{237}$	15	7.0\%
95.1\%	197	${ }_{105}$	${ }_{-1}$	-0.5\%
-96.3\%	191	143	${ }^{-48}$	-25.3\%
998.8\%\%	114 47	116 54	2	2.1\%
100.0\%	0	26	26	

Glenn Colusa Canal Intake at Hamilton City, Monthly Diversion

Table OP－02－b

Percent $\begin{array}{c}\text { Exceedance } \\ \text { Probability }\end{array}$	October			
	DCR 2015 Without Proiect	DCR 2015 With Project	Absolute	Relative
	Monntly Diversion	Monthly Diversion	（CFS）	Difference（\％）
0．0\％	（CF5）			
0．0\％	${ }_{828}^{829}$	${ }_{\substack{2,230 \\ 2166}}$	${ }^{1,4,401}$	109．0\％
1．2\％\％	888	${ }^{2,160}$	${ }^{1,338}$	111．6\％
－${ }_{\text {2．7\％}}$	${ }_{825}^{826}$	${ }_{872}$	${ }_{47}$	，
4．9\％	${ }_{825}$	${ }_{839}$	14	${ }^{\text {1．7\％}}$
6．2\％	823	828	4	0．5\％
7．4\％	823	826	3	
8．6\％	${ }^{823}$	822	－1	
9．9\％	822	821	－1	
11．1\％	822	820	－2	－0．2
${ }^{12.3 \%}$	${ }_{822}$	816	－6	－0．7\％
13．6\％	821	812	－9	
14．8\％	${ }^{821}$	${ }^{803}$	18	－2．2\％
16．0\％ 17.3%	${ }^{821}$	799	－22	－2．7\％
17．3\％	820	796	－24	
18．5\％	819	796	${ }^{23}$	
19．8\％	819	${ }_{794} 9$	${ }^{25}$	
21．0\％	819	${ }_{791} 79$	－27	－3．4\％
${ }^{22.25 \%}$	818	${ }_{797} 78$	－28	－3．4\％
${ }^{23.75 \%}$	816	${ }_{782}$	${ }^{29}$	－3．6\％
25．9\％	${ }_{815}$	${ }_{780}$	${ }_{-35}$	
27．2\％	815	777	－38	
28．4\％	814	775	${ }^{39}$	－4．8\％
－${ }^{29.9 \% \%}$	813 812	770 771	${ }_{-51}^{42}$	
32．1\％	811	759	－52	－6．4\％
33．3\％	809	750	－60	－7．4\％
34．6\％	809	749	－59	
35．8\％	807	748	－59	－7．3\％
年37．0\％	806	747	－59	－7．3\％
38．5\％	805	${ }_{7} 77$	－58	－7．2\％
40．7\％	802	743	－59	－7．3\％
42．0\％	799	741	－57	－7．2\％
43．2\％	${ }_{796} 7$	${ }^{739}$	－57	－7．7\％
${ }^{44.4 \%}$	${ }_{795}^{796}$	738 735	－58	－7．7\％
45．9\％	${ }_{794}$	${ }_{735}$	－60	
${ }^{46.9 .1 \%}$	${ }_{793}^{794}$	${ }_{738} 7$	－64	－7．0\％
49．4\％	${ }_{792}$	${ }_{726}$	－65	－8．2\％
	791	${ }_{7} 714$	－67	－8．5\％
年 51.9%				
54．3\％	787	711	－76	－9．7\％
55．\％\％	787	709	－78	
56．8\％	787	701	86	－10．9
年58．0\％	${ }_{781}$	699	－82	－10．5
59．3\％ 6．5\％	779	696	－83	－10．6
笛60．5\％	778	695	${ }^{-83}$	－10．7\％
－${ }_{\text {61．7\％}}^{63.0 \%}$	777	693	－84	－10．8\％
	${ }_{772}^{773}$	688 678	－85	－-1.12%
65．4\％	768			－11．8\％
${ }^{66.7 \%}$	${ }_{767} 767$	${ }_{669}^{672}$	－96	－12．5\％
67．9\％	${ }_{765}^{767}$	${ }_{667}^{669}$	－98	－12．8\％
－ 70.4%	${ }_{764}^{765}$	${ }_{657}^{667}$	－98	－${ }^{-128.8 \%}$
71．4\％	761	602	－159	－20．9\％
72．8\％	760 754	${ }_{5} 60$	－159	－20．9\％
74．1\％ 75.3%	${ }_{7}^{754}$	${ }_{596}$	－158	－21．0\％
76．5\％	743	${ }_{589}^{593}$	－154	－20．8\％
77．8\％	${ }_{743}$	587	－156	2．0\％
79.0% 802%	742	${ }_{554}^{598}$	－158	－21．3\％
81．5\％	741	${ }_{527}$	－214	－28．29\％
82．7\％	739	518	－221	－29．9\％
84．0\％	${ }^{738}$	513	${ }^{225}$	－30．5\％
85．2\％	${ }^{734}$	504	－230	－31．3\％
86.4% 88.7%	${ }^{727}$	495	232	－32．0\％
－ 87.7%	${ }^{722}$	481	－241	－33．4\％
88．9\％	693	474	219	－31．6\％
90．4\％	607 602	${ }_{458}^{461}$	－146	－24．19\％
92．6\％	601	452	－149	－24．8\％
93．8\％	596	448	148	－24．9\％
95．1\％${ }_{9} 9$	593	${ }_{415}^{447}$	－176	－24．6\％
${ }^{96.75 \%}$	－	415	172	－29．3\％
98．8\％	${ }_{553}$	284	－269	－48．6\％
100．0\％	532	253	－279	－52．5\％

		November					December		
$\begin{gathered} \text { Percenn } \\ \text { Exceedance } \end{gathered}$	DCR 2015 Without Proiect	DCR 2015 With Project	${ }_{\text {Absolute }}$		$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	Absolute	Relative
Probabilily	${ }_{\text {Monthy }}^{\substack{\text { Cicsers }}}$	Monthy Diversion	Difference （CFS）	Difference（\％）	Probability	Monthy Civersion	Monthy Diversion	（itarence	Difference（\％）
0．0\％	586	1.609	${ }_{1}^{1.023}$	174．8\％	－ 0.0%	${ }_{318}$	${ }_{\text {（1，7）}}^{1,702}$	${ }_{1}^{1.385}$	435．9\％
1．2\％	577	1.590	1.013	175．4\％	1．2\％	316	1.663	1.347	426．2\％
2．5\％	572	1511	940	164．4\％	2．5\％	314	1.655	1341	
3．7\％	571	${ }_{5} 57$	6	1．0\％	3．7\％	310	1,651	${ }_{1,341}$	432．0\％
4．9\％	571	571	0	0．0\％	4．9\％	306	1，649	${ }_{1}^{1,343}$	439．4\％
6．2\％	571	569	－2	－0．4\％	6．2\％	304	1.620	${ }_{1,316}$	43．5\％
7．4\％	571	567	－4	－0．7\％	7．4\％	${ }^{298}$	1.619	1，321	443．9\％
8．6\％	${ }_{569}$	563	－ 6	－1．1\％	8．6\％	292	1，614	${ }^{1,322}$	452．0\％
9．9\％\％	$\begin{array}{r}566 \\ 564 \\ \hline\end{array}$	$\begin{array}{r}562 \\ 553 \\ \hline\end{array}$	${ }_{-11}^{4}$	－0．7\％	${ }^{\text {9．9\％}}$	284 284	1，604	1,320 1313	${ }_{46423 \%}^{464.2 \%}$
－ 11.19	564 560	553 552	-11 -8	－2．0\％	111．19\％	284 283	1，597	＋1，313	462．3\％
（12．3\％	560 555	545 545	－8	－1．5\％	＋12．3\％	${ }_{282}^{283}$	1，597	1,314 1,315 1	${ }_{4655 \%}^{464 \%}$
（13．6\％	555 551	545 542	${ }_{-10}{ }_{-8}$	－-1.8%	13.6% 14.8%	${ }_{281}^{282}$	－1．597	1,315 1,316	465．5\％
（14．8\％	551 550	542 540	-8 -10	－1．5\％	14.8% 16.0%	281 287	${ }_{\text {1，597 }}^{1.597}$	－${ }_{1,3120}^{1,361}$	468．3\％
17．3\％	548	${ }_{537}$	－11	－2．0\％	17．3\％	272	${ }_{1,558}^{1,59}$	${ }_{1,286}^{1,28}$	472．1\％
18．5\％	546	${ }_{5}^{536}$	－10	－1．8\％	18．5\％	271	1，410	1，139	${ }^{420.0 \%}$
19．8\％	546	536	－10	－1．7\％	19．8\％	220	613		${ }^{126.9 \%}$
22，	545	55	－	－2．60\％	21．20	${ }^{2088}$	559	301	
${ }^{22.25 \%}$	5494	524	－	－3．6\％	${ }^{22.25 \%}$	${ }_{268}^{268}$	559		
24．7\％	${ }_{533}$	${ }_{521}$	－12	${ }_{-2.2 \%}$	24．7\％	${ }_{263} 28$	387	124	47．2\％
25．9\％	529	514	－15	－2．9\％	25．9\％	259	318	59	22．6\％
27．2\％	529	501	－29	－5．4\％	27．2\％	255	316	61	23．9\％
28．4\％	${ }_{5}^{522}$	${ }_{500}$	${ }^{-23}$	－4．4\％	28．4\％	${ }^{254}$	${ }_{314}^{314}$	${ }_{50}^{60}$	23．6\％
29．6\％	516 508	${ }_{474}^{498}$	－-34	－3．4\％	29．6\％	${ }_{25}^{253}$	${ }_{3}^{310}$	${ }_{66}^{57}$	22．6\％
30．9\％	508 507	${ }_{474}^{474}$	－34	－6．8\％	30．9\％	240 239	$\begin{array}{r}306 \\ \\ \\ \\ \hline 98\end{array}$	66 59 5	27．4\％
32．1\％	507	473	－34	－6．8\％	32．1\％	239	298	59	24．5\％
33．3\％	${ }_{501}^{501}$	440	$\begin{array}{r}-34 \\ -34 \\ \hline\end{array}$	－6．0\％	33．3\％	${ }_{237}^{239}$	292 284	$\begin{array}{r}54 \\ 48 \\ \hline\end{array}$	22．5\％
34．6\％	${ }_{481}^{501}$	${ }_{466}^{466}$	－34	－6．8\％	34．6\％	${ }_{235}^{237}$	284 284	48 49	20．1\％
${ }_{\text {3 }} 3$ 37．8\％\％	${ }_{481}^{482}$	${ }_{466}^{466}$	－16	－3．3\％	35．8．${ }^{3}$	${ }_{231}^{235}$	${ }_{272}^{284}$	${ }_{41}^{49}$	20．8\％
38．3\％	479	465	－18	－2．8\％	38．3\％	${ }^{225}$	${ }^{271}$	${ }_{4}^{46}$	20．7\％
39．5\％	475	457	－18	－3．8\％	39．5\％	${ }^{224}$	${ }^{268}$	44	19．9\％
40．7\％	474	450		－5．1\％	40．7\％	${ }^{222}$			
4．3．2\％	465	${ }_{444}^{449}$	－21	${ }^{-5.5 \%}$	43．2\％	${ }_{216}^{222}$	${ }_{263}^{265}$	${ }_{47}^{43}$	19．4．4\％
44．4\％	458	442	－15	－3．4\％	44．4\％	212	259	47	22．1\％
45．7\％	457	438	－19	－4．2\％	45．7\％	${ }^{212}$	255	43	4\％
46．9\％	457	437	－20	－4．4\％		209	254	45	21．4\％
48．19\％	450	435	－15	－3．4\％	48．1\％	${ }^{204}$	${ }^{253}$	49	${ }^{23.9 \%}$
49．4\％${ }^{\text {5．}}$ \％	${ }^{433}$	429	－14	－3．1\％	49．4\％	${ }^{201}$	${ }^{239}$	${ }^{38}$	18．7\％
51．9\％	438	426	-12	－2．8\％	51．9\％	194	${ }_{237} 23$	43	22．1\％
53．1\％	436	426	－11	－2．4\％	53．1\％	193	236	42	21．8\％
54．3\％	435	415	－21	－4．7\％	54．3\％	189	${ }^{231}$	42	22．5\％
55．6\％	${ }^{428}$	${ }^{412}$	－16	－3．7\％	55．6\％	${ }_{185}$	${ }^{229}$	45	24．3\％
56．8\％	${ }_{421}^{426}$	${ }_{405}^{412}$	－14	－3．2\％		184 183	${ }_{222}^{225}$	${ }_{31}^{41}$	${ }_{\text {cke }}^{22.2 \%}$
	${ }_{420}^{421}$	${ }_{402}^{405}$	-16 -18	－3．8\％	58．0\％	183 181	222 215	39 34	${ }^{21.6 \%}$ 18．8\％
60．5\％	420	401	－19	－4．6\％	60．5\％	188	${ }_{212}^{212}$	${ }_{31}$	17．6\％
61．7\％	417	400	－17	－4．1\％	61．7\％	179	210	31	17．1\％
－63．0\％	411	${ }_{387}^{400}$	－11	${ }_{-2.7 \%}$	63．0\％	179	${ }^{204}$	${ }^{26}$	14．4\％
64．2\％	${ }_{405}^{408}$	387 381	-21 -24	－5．5\％	64.2% $6.4 .4 \%$	175 172	201 199	26 27	15．1\％\％ 15.9%
${ }_{65.7 \%}^{65.4 \%}$	${ }_{401}$	378	${ }_{-23}$	－5．8\％	${ }_{66.7 \%}^{65.4 \%}$	171	199 197	${ }_{26}^{27}$	155．\％
67．9\％	400	368	－33	－8．1\％	67．9\％	171	194	22	13．1\％
69．1\％		$\begin{array}{r}362 \\ 361 \\ \hline\end{array}$	－36	－9．1\％	69．1\％	${ }_{161}^{161}$	${ }_{189}^{193}$		
71．6\％	${ }_{386}$	357	－29	－7．4\％	71．6\％	159	185	${ }_{26}$	16．4\％
72．8\％	379	356	－23	－6．0\％	72．8\％	158	183	25	15．7\％
74．1．\％	${ }_{3}^{376}$	${ }_{349}$	－25	－7．1\％	74．19\％	158 158	188	${ }^{22}$	14．2\％
75．3\％	369 364	${ }^{344}$	－25	－6．8\％	－75．3\％	158 158	172	14	8．8\％
77．8\％	357	${ }_{339}$	${ }^{-22}$	${ }^{-5.1 \%}$	76．8．8\％	158 158	171	${ }_{14}^{14}$	${ }^{8.6 \% \%}$
79．0\％	353	338	－15	－4．3\％	79．0\％	158	161	4	2．4\％
80．2\％	${ }^{351}$	${ }^{331}$	－20	－5．6\％	80．2\％	158 158	${ }_{161} 15$	${ }^{3}$	2．0\％
81．5\％	349 346	${ }_{323}^{325}$	－24	－6．9\％	81．5\％	158 158	159 158 1	1	0．5\％
84．0\％	346 33	${ }_{323}^{323}$	－${ }^{-23}$	${ }_{-3.1 \%}^{-6.7 \%}$	822．7\％	＋1588	＋1588	\bigcirc	0．0\％
85．2\％	331	322	－9	－2．7\％	85．2\％	158	158	0	0．0\％
86．4\％	${ }^{331}$	${ }^{318}$	－13	－3．8\％	86．4\％	158	158	0	0．0\％
－ 88.78%	330 330	313 304	-17 -27	－5．8\％	－ 88.7%	＋158	1588 158	\bigcirc	－ 0.0%
90．1\％	329	298	－31	－9．4\％	90．1\％	${ }^{158}$	${ }^{158}$	0	0．0\％
91．4\％	${ }^{322}$	${ }_{2}^{277}$	－45	－14．0\％	${ }^{91.44 \%}$	158	152	－6	－3．7\％
923．6\％	318 318	269 269	${ }_{-48}^{-45}$	－14．1．2\％	${ }_{9}^{92.8 \%}$	158 152	145 138 1	－14	－7．9\％
95．1\％	${ }^{306}$	${ }^{257}$	－49	－16．0\％	95．1\％	${ }_{1}^{138}$	${ }_{111}^{131}$	－7	－5．0\％
${ }^{96.36 \%}$	298 298	${ }_{216}^{229}$	－70	－	97．5\％	119 119	119	0	0．0\％
98．8\％	285	213	－72	－25．2\％	98．8\％	119	119	0	0．0\％
100．0\％	278	185	－92	－33．3\％	100．0\％	119	86	－33	27．5\％

Table OP-02-b

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Prohahility } \end{gathered}$	Fobruary			
	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	Absolut	
	Montily Diversion	Monthly Diversion	Difference (CFS)	Difference (\%)
\% \%	(cFs)	(cFs)		
1.2\%	107	55	406	380.9\%
${ }^{1.25 \%}$	${ }_{83}^{103}$	513	${ }_{430}$	${ }_{5}^{4020.0 \%}$
3.7\%	81	513	432	534.2\%
4.9\%	80	513	433	541.7\%
6.2\%	74	${ }_{5} 513$	439	590.2\%
7.4\%	68	513	445	
8.6\%	${ }^{68}$	513	445	
9.9\%\%	68	513	445	
12.3\%		513 513	${ }_{445}^{445}$	
13.6\%	${ }_{68}$	${ }_{513}$	${ }_{445}^{45}$	650.0\%
14.8\%	68	513	445	
- 16.0%	68	513	445	
17.3\%	68		445	0.0\%
- $18.8 .8 \%$	-68 ${ }_{68}$	513 513	${ }_{445}^{445}$	650.0\%
21.0\%	68	513	445	650.0\%
22.2\%	68	513	445	
23.5\%	${ }^{68}$	513	445	
24.7\%	${ }^{68}$	513	445	
25.9\%	${ }_{68}^{68}$	513	445	650.0
27.2\%	${ }^{68}$	496	${ }^{428}$	${ }^{625.5 \%}$
${ }^{28.49 \%}$	${ }^{68}$	496	${ }^{428}$	${ }^{625.5 \%}$
30.9\%	${ }_{68}^{68}$	${ }_{496}^{496}$	${ }_{428}^{428}$	${ }_{\text {cke }}^{625.5 \%}$
32.1\%	68	495	427	624.1\%
33.3\%	68	495	${ }^{427}$	624.1\%
34.6\%	${ }^{68}$	495	${ }^{427}$	624.1
		495	${ }_{427}^{427}$	624
38.3\%	${ }_{68}^{68}$	${ }_{495}^{495}$	${ }_{4}^{27}$	
39.5\%	68	479	411	600.5\%
40.7\%	68	471	402	
42.0\%	68	471	402	
${ }^{43.2 \%}$	68	471		587.8\%
${ }_{4}^{44.75 \%}$	${ }_{68}^{68}$	${ }_{471}^{471}$	${ }_{402}^{402}$	5877.8\%
46.9\%	68	230	161	235.8\%
48.1\%	68	165	97	141.6\%
49.4\%	${ }^{68}$	164	${ }^{96}$	1397%
	${ }^{68}$	100	32	46.7\%
53.1\%	${ }^{68}$	${ }^{94}$	${ }^{26}$	${ }^{38.0 \%}$
54.3\%	68	80	12	16.9\%
55.6\%	${ }^{68}$	80	11	16.5\%
56.8% 58.0%	${ }_{68}^{68}$	74 68	${ }_{6}$	- 8.7%
年58.0\%	${ }_{68}^{68}$	${ }_{68}^{68}$		
60.5\%	${ }_{68}^{68}$	㐌 68	0	- 0.0%
61.7\%	68	68	0	0.0\%
-63.0\%	${ }_{68}^{68}$	${ }_{68}^{68}$	0	0.0\%
- $6.5 .4 \%$	${ }_{68}^{68}$	${ }_{68}^{68}$	\bigcirc	-0.0\%
66.7\%	68	68	0	0.0\%
-67.9\%	68	68	0	0\%
	6^{68}	${ }^{68}$	0	0.0\%
71.6\%	66	68	2	3.6\%
72.8\%	66	68	2	3.6\%
74.19\%	${ }_{66}^{66}$	${ }_{68}^{68}$	2	3.6\%
75.3\%	${ }_{66}^{66}$	${ }^{68}$	2	3.6\%
76.5\%	66	${ }^{68}$	2	${ }^{3.6 \%}$
79.0\%	${ }_{66}^{66}$	${ }_{68}^{68}$	${ }_{2}^{2}$	3.6\%
80.2\%	${ }_{66} 6$	${ }^{68}$		3.6\%
81.5% 827%	${ }_{66}^{66}$	66 66	0	0.0\%
-	66 66	66 66	\bigcirc	0.0\%
84.0\%	${ }_{66}^{66}$	${ }_{66}^{66}$	0	0.0\%
86.4\%	66	66	0	0.0\%
87.7% 880%	${ }_{66}$	${ }^{66}$	0	0.0\%
${ }^{90.1 \%}$	${ }_{52}$	${ }_{66}$	14	27.8\%
91.4\%	52	54	3	5.1\%
${ }_{9}^{92.85 \%}$	52 52 5	${ }_{31}^{52}$	0	0.0\%
${ }_{95.1 \%}$	${ }_{52}^{52}$	${ }_{27}{ }^{21}$	-25	- $4.8 .5 \%$
96.3\%	52	26	-26	-50,
97.5\%	52	${ }^{26}$	-26	-50.2\%
98.8\%	50 50	${ }_{19}^{26}$	- ${ }_{-24}$	- $-6.8 .0 \%$ \%

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

		June		
Percent Exceedance	$\underset{\substack{\text { DCR } 2015 \text { Without } \\ \text { Proiet }}}{ }$	DCR 2015 With Project	Absolute	Reative
Probability	Monthly Diversion	Montly Diversion	Difiteence	Difference (\%)
(\%)	(CFS)	(cFs)	(CFS)	
0.0\%	3,000	3,000	0	0.0\%
1.2\%	3,000	3,000	0	0.0\%
2.5\%	3,000	3,000	0	0.0\%
3.7\%	3,000	3,000	0	0.0\%
4.9\%	3,000	3,000	0	0.0\%
${ }^{6.2 \%}$	3,000	3,000	0	0.0\%
7.4\%	3,000	3,000	0	0.0\%
8.6\%	- $\begin{array}{r}3,000 \\ 3 \\ 3\end{array}$	退3.000	0	0.0\%
- 11.9%	3,000 3,000	3,000 3.000	\bigcirc	0.0\%
12.3\%	${ }_{3,000}$	3,000	0	0.0\%
13.6\%	3,000	3,000	0	
14.8\%	3,000	3.000	0	0.0\%
	3,000	3,000	0	0.0\%
17.3\%	3,000 3,000	3,000 3,000	\bigcirc	0.0\%
19.8\%	3,000	3,000	0	0.0\%
21.0\%	3,000	3,000	0	0.0\%
22.2\%	3,000	3,000	0	0.0\%
23.5\%	3,000 3	3,000	0	0.0\%
24.7\%	3,000	3,000	0	0.0\%
25.9\%	3,000	3,000	0	0.0\%
${ }^{277.2 \%}$ 28.4\%	3,000 3.000 3,	3,000 3	0	0.0\%
28.4\% ${ }^{29.6 \%}$	3,000 3.000	3,000 3.000	0	0.0\%
- ${ }^{29.9 \%}$	3,000 3,000	3,000 3.000	\bigcirc	0.0\%
32.1\%	3,000	3.000	0	0.0\%
	3,000	3,000	0	0.0\%
34.6% 35.8%	3,000 3,000	3,000 3,000	\bigcirc	0.0\%
37.0\%	3,000	${ }_{3,000}$	0	0.0\%
38.3\%	3,000	2,998	-2	-0.19\%
40.7\%	3,000	${ }_{2,996}^{2,998}$	-4	-0.1\%
42.0\%	3,000	2,985	-15	-0.5\%
43.2\%	3,000	2,979	-21	-0.7\%
4.4.4\%	3,000	2,973	-27	-0.9\%
45.7\%	3,000	2,924	-76	-2.5\%
${ }^{46.9 \%}$	3,000	${ }_{\text {2,905 }}^{2,912}$	-98	- ${ }_{-2.2 \%}$
49.4\%	3,000	${ }_{2,891}^{2,905}$	-109	-3.6\%
50.6\%	3,000	2,852	-148	-4.9\%
51.9\%	3,000	2,785	-215	-7.2\%
53.19\% 54.3%	3,000 3.000	${ }_{2.565}^{2.627}$	- ${ }_{-135}^{-37}$	- ${ }^{-12.4 \%}$
55.6\%	3,000	${ }_{2,554}^{2,565}$	-446	- -14.5%
56.8\%	3,000	2,544	-456	-15.2\%
	退3,000	2,496	-504	-16.8\%
59.5\%	3,000	2,417	-583	-19.4\%
${ }_{6} 6.17 \%$	3,000	${ }_{2,324}^{2,330}$	-670	-
63.0\%	3.000	2,261	-739	-24.6\%
	2,998	2,236 $\substack{2300}$	-762	-25.4\%
${ }_{66.7 \%}$	${ }_{2,996}$	${ }_{2,199}^{2,200}$	-797	-26.6\%
67.9\%	2,996	2.191	-805	-26.9\%
69.1\%	2,988	2,185	${ }^{-802}$	-26.9\%
70.4\%	2,985	2,159	-826	-277\%
71.2.8\%	${ }_{2,953}^{2,964}$	$\xrightarrow{2,151}$	-812	-27.4\%
74.1\%	2,953	2,076	-877	-29.7\%
75.3\%	2,953	2,044	-999	-30.8\%
76.5\%	2,950	2,040	-910	-30.8\%
77.8\%	2,918	2.037	-881	-30.2\%
79.0\%	2,915	2.037	-879	-30.1\%
-	2,905	2.037 2037 2037	-868	-29.9\%
${ }^{8.2 .7 \%}$	${ }_{2,840}^{2,865}$	${ }_{2,036}^{2,037}$	-884	${ }_{-28.3 \%}^{-28.9 \%}$
84.0\%	2,827	${ }_{2}^{2,033}$	-794	-28.19\%
-	${ }_{\text {2,787 }}^{2,792}$	2,031 2,029	-761	-
877.7	${ }_{\substack{2,776 \\ \hline 2.755}}^{\text {2, }}$	${ }_{2}^{2,021}$	-756	-27.2\%
${ }^{88.9 \%} 9$	${ }_{\text {2,439 }}^{2,685}$	${ }_{1,986}^{2,002}$	- ${ }_{-154}$	- ${ }_{\text {- }}$
91.4\%	2,434	1,964	-470	-19.3\%
92.6\%	2,338	1.920	-418	-17.9\%
933.8\%	2,326	1,905 1.869 1	-425	-
96.3\%	${ }_{2,315}^{2,3}$	1,734	-581	-25.1\%
97.5\%	2,310	1,706	-605	-26.2\%
98.8\%	2,296	1,697	-600	-26.1\%
100.0\%	2,236	1.539	-697	-31.2\%

Figure OP-03-b
Delevan Intake and Pipeline, Monthly Diversion

Table OP.03-b

PercentExceedance	November			-	December				
	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	Absolute		Percent Exceedance	${ }^{\text {DCR } 2015 \text { Without }}$	DCR 2015 With Project	Absolute	Relative
Probability (\%)	$\begin{aligned} & \text { Monthly Diversion } \\ & \text { (CFS) } \end{aligned}$	Monthly Diversion (CFS)	(iffers)	Difference (\%)	Probabaility (\%)	$\begin{aligned} & \text { Monthly Diversion } \\ & \text { (CFS) } \end{aligned}$	Monthly Diversion (CFS)	difference	Difference (\%)
0.0\%	0	2,000	2,000		0.0\%	0	2000	2000	
1.2\%	0	607	607		12\%	O	44		
2.5\%	0	200	200		2.5\%	0	1.644		
3.7\%		200	200		3.7\%	0			
4.9\%	0	200	200		4.9\%	0			
6.2\%	0	179	179		6.2\%	0	${ }^{1,467}$	467	
7.4\%	0	179	179		7.4\%	0			
- ${ }_{\text {8.9\%\% }}$	0	179	179		8.9\%	0	1,289	1,289	
11.1\%	0	179	179		${ }^{\text {191.1\% }}$	0	1111	${ }_{1111}$	
12.3\%	0	179	179		12.3\%	0	1,098	1.098	
13.6\%	0	179	179		13.6\%	0	933	933	
14.8\%	0	179	179		14.8\%	0	578	578	
16.0\%	0	179	179		16.0\%	0	544	544	
17.3\%	0	179	179		17.3\%	0	${ }^{221}$	${ }^{221}$	
18.5\%	0	179	179		18.5\%	0	194	194	
21.0\%	0	179	179		19.8\%	0	194	194	
22.2\%	0	179	179		21.0\%	0	194	194	
23.5\%	0	179	179		${ }_{2}^{22.5 \%}$	0	${ }_{194}^{194}$	194	
24.7\%	0	0	0		24.7\%	0	194	194	
22.9\%\%	0	0	0		25.9\%	\bigcirc	194 194 1	194	
28.4\%	0	0	0		28.4\%	0	194	194	
29.6\%	0	0	0		29.6	0	194		
30.9\%	0	0	0		30.9\%	0			
32.1\%	0	0	0		32.1\%	0	194	94	
33.3\%	0	0	0		33.3\%	0	194	194	
35.8\%	0	0	\bigcirc		${ }^{34.6 \%}$ 35.8\%	\bigcirc	${ }_{194}^{194}$	${ }_{194}^{194}$	
37.0\%	0	0	0		37.0\%	0	194	194	
	0	0	0		38.3\%	0	194	194	
39.5\%	0	0	0		39.5\%	0	194	194	
42.7\%\%	0	0	0		40.7\%	0	194	194	
43.2\%	0	\bigcirc	0		43.2\%	\bigcirc	${ }_{194}^{194}$	${ }_{194}^{194}$	
44.4\%	0	0	0		44.4\%	0	194	194	
${ }^{45.7 \%}$	0	0	0		45.7\%	0	194 178	194	
48.1\%	0	0	0		46.9\%	0	178	178	
49.4\%	0	0	0		49.4\%	0	178	178	
50.9\%	0	0	0		- 50.0% \%	0	178 178 178	178 178 1	
53.1\%	0	0	0		53.1\%	0	178	178	
54.3\%	0	0	0		54.3\%	0	0	0	
55.8\%	0	0	0		55.\%	0	0	0	
58.0\%	0	0	0		56.0\%	0	0	0	
59.3\%	0	0	0		59.3\%	0	0	0	
60.5\%	0	0	0		60.5\%	0	0	0	
61.7\%	0	0	0		61.7\%	0	0	0	
${ }^{63.0 \%}$	0	0	0		63.0\%	0	0	0	
66.4\% 6	0	0	0		64.2\%	0	0	0	
66.7\%	0	0	0		${ }_{66.7 \%}^{654 \%}$	\bigcirc	0	:	
69.9\%	0	0			679\%		0	0	
70.4\%	0	0	0		69.1\%	0	0	0	
71.6\%	0	0	0		70.1.6\%	0	0	0	
774\%	0	0	0		72.8\%	0	0	0	
74.3\%	0	0	\bigcirc		74.1\% ${ }^{75.3 \%}$	\bigcirc	0	0	
76.5\%	0	0	0		76.5\%	0	0	0	
77.8.\%	0	0	0		77.8\%	0	0	0	
890.2\%	0	0	\bigcirc		79.0\%	0	0	0	
81.5\%	0	0	0		${ }_{81.5 \%}$	0	0	0	
82.7\%	0	0	0		82.7\%	0	0	0	
885.2\%	0	0	0		84.0\%	0	0	0	
88.4\%	0	0	0		85.2\%	0	0	0	
887.7\%	0	0	0		86.4\%	0	0	0	
887.9\%	0	0	0		877\%\%	0	0	0	
90.1\%	0				90.1\%	0	0	0	
91.4\%	0	0	0		91.4\%	0	0	0	
92.6\%	0	0	0		92.6\%	0	0	0	
99.8.1\%	0	0	0		933.8\%	0	0	0	
${ }^{99.3 \% \%}$	0	0	0		96.3\%	0	0	0	
${ }_{98.8 \%}^{97.5 \%}$	0	0	0		975.5\%	0	\bigcirc	0	
100.0\%	0	0	0		100.0\%	0	0	0	

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	January			
	DCR 2015 Without Proiect	DCR 2015 With Project	Absolute	Relative
	Monthly Diversion	Monthly Diversion	ditiferce ${ }_{\text {(CFS) }}$	Difference (\%)
0.0\%	0	2000	2000	
1.2\%	0	2000	2000	
2.5\%	0	2,000		
3.7\%	0	2.000		
4.9\%	0	2,000		
6.2\%	0	2,000		
7.4\%	0	1,902		
8.6\%	0	1,902		
9.9\%	0	1,758		
11.1\%	0	1,758	1,758	
${ }^{12.3 \%}$	0	1,758	1,758	
13.6\%	0	1,758	1,75	
14.8\%	0	1,758	1,758	
16.0\%	0	1,693	1,693	
17.3\%	0	${ }^{1,615}$	${ }^{1,6615}$	
18.5\%	0	1,615	1,615	
19.8\%	0	1,615	${ }^{1,665}$	
21.0\%	0	${ }_{1}^{1.615}$	1,615	
${ }^{22.25 \%}$	0	${ }_{1}^{1,471}$	1,471	
24.7\%	0	${ }_{1,328}^{1,471}$	${ }_{1}^{1,328}$	
225.9\%	0	${ }_{1}^{1,328}$	1,328	
29.6\%	0	${ }_{1}^{1,165}$	${ }_{1}^{1,165}$	
30.9\%	0	1,054	${ }^{1.054}$	
32.1\%	0	983	983	
33.3\%	0	975	975	
34.6\%	0	898	898	
年35.8\%	0	898	898	
- ${ }^{37.0 \%}$ 38.3\%	0	754	754	
- 38.38.	0	432	432	
39.5\%	0	383	${ }^{383}$	
422.0\%	0	194 194 1	194	
43.2\%	0	194	194	
44.4\%	0	194	194	
${ }^{45.79 \%}$	0	194 194 194	194 194 19	
48.1\%		194	194	
49.4\%	0	194	194	
	0	194	194	
		94	194	
54.3\%	0	${ }_{194}^{194}$	${ }_{194}^{194}$	
55.6\%	0	194	194	
56.8\%	0	194	194	
䰲 58.0%	0	194	194	
69.3\%\%	0	194	194	
661.7\%	0	194 194 1	194 194	
63.0\%	0	143	143	
64.2\%	0	143	143	
${ }^{65.4 \%}$	0	$\begin{array}{r}143 \\ 143 \\ \hline\end{array}$	143 143	
66.7\% 679%	0	143	143	
67.1\%	0	$\begin{array}{r}143 \\ 143 \\ \hline\end{array}$	143 143	
70.4\%	0		143	
71.6\%	0	${ }_{143}^{143}$	143	
-72.8\%	0	143 ${ }_{98}$	(143	
75.3\%	0			
76.5\%	0	0	0	
77.8\%	0	0	0	
79.0\%	0	0	0	
-80.2\%	0	-	0	
82.7\%	0	0	0	
84.0\%	0	0	0	
85.2\%	0	0	0	
86.4\%	0	0	0	
87.7\%	0	0	0	
${ }^{88.9 \%}$	0	0	0	
91.4\%	0	0	0	
92.6\%		0	0	
93.8\%	0	0	0	
${ }_{9}^{95.19 \%}$	0	0	0	
97.5\%	0		0	
98.8\%	0	0	0	
-100.0\%	0	0	0	

Table op.03.b

	February			
	DCR 2015 Without	DCR 2015 With Project	Absolute	
	Montily Diversion	Montily Diversion	Difierence	Difference (\%)
	(CFF)	(CFF)		
0.0\%	0	2,000	2,000	
1.2\%	0	${ }^{2}, 000$	2,000	
3.7\%	0	${ }_{2}^{2,000}$	2,000	
4.9\%	0	${ }_{2,000}$	${ }_{2} 0000$	
6.2\%	0	2,000	2000	
7.4\%	0	${ }_{1,880}^{2,800}$	${ }_{1}^{2,880}$	
8.6\%	0	1,852	${ }^{1,852}$	
9.9\%	0	1,852	1,852	
11.1\%	0	1,850	1,850	
${ }^{12.3 \%}$	0	1,807	1,807	
13.6\%	0	1,689	1,689	
14.8\%	0	1,689	1,689	
16.0\%	0	1,689	1,689	
17.3\%	0	+1,689	1,689	
18.3\%	0	1.638	1.658	
21.0\%		${ }_{1}^{1,547}$	${ }_{1}^{1,544}$	
22.2\%	0	${ }_{1,527}^{1.527}$	${ }_{1,527}^{1,527}$	
23.5\%	0	${ }^{1,527}$	1,527	
24.7\%	0	1,463	1,463	
252\%	0	${ }_{1}^{1,436}$	${ }_{1}^{1,436}$	
28.4\%	0	${ }_{1}^{1,388}$	1.388	
29.6\%	0	${ }_{1}^{1,364}$	1,364	
30.9\%	0	1,364	1,364	
32.1\%	0	1,364	1,364	
33.3\%	0	1,364	1,364	
34.6\%	0	${ }^{1,364}$	1,364	
${ }^{35.8 \%}$	0	${ }^{1,075}$	${ }^{1,075}$	
37.0\%	0	${ }^{1,039}$	${ }_{\text {1,039 }}$	
38.3\%	0	877	877	
${ }^{3} \mathbf{4 . 7 \%}$	0	${ }_{787} 87$	877	
42.0\%	0	714	714	
43.2\%	0	678	678	
${ }^{44.4 \%}$	\bigcirc	606 464	606 464	
45.9\%	0	${ }_{376}$	${ }_{376}$	
48.1\%	0	304	304	
49.4\%	0	${ }_{214}^{227}$	${ }_{214}^{227}$	
51.9\%	0	214	214	
53.1\%	0	214	214	
54.3\%	0	214	214	
55.6\%	0	214	214	
年56.8\%	0	214	214	
年58.3\%	0	${ }_{214}$	214	
${ }^{50.5 \%}$	0	214	214	
${ }^{60.5 \%} 6$	0	214	214	
63.0\%	0		214	
64.2\%	0	214	214	
65.4\%	0	${ }^{207}$	207	
66.7\%	0	207	207	
67.9\%	0	${ }_{207}^{207}$	${ }_{207} 207$	
69.1\%	\bigcirc	207 192	${ }_{192}^{207}$	
70.4.	0	${ }_{175}^{192}$	${ }_{175}^{192}$	
72.8\%	0	169	169	
74.1\%	0	163	163	
75.3\%	0	${ }^{156}$	156	
76.5\%	0	139	139	
77.8\%	0	135	135	
-	0	89	89	
81.5\%	0			
82.7\%	0	0	0	
84.0\%	0	0	0	
85.2\%	0	0	0	
${ }^{86.4 \%}$	0	0	0	
877.7\%	0	0	0	
${ }^{88.9 .1 \%}$	0	0	0	
91.4\%	0	0	0	
92.6\%	0		0	
${ }_{\text {c }}^{93.8 .1 \%}$	\bigcirc	\bigcirc	\bigcirc	
95.3\%	0	-	0	
97.5\%	0			
98.8\%	0	\bigcirc	\bigcirc	

Table OP-03-b
ake and Pipeline,, onnthly Diversion
robability of exeedance

Figure OP-04-b
Funks Reservoir to Sites Reservoir, Monthly Diversion

Table OP-04-b

Table OP－04－b
Funks Reservoir to Stites Resesvoir，Wonthy Diversion

PercentExceedanceProbability	February			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	${ }^{\text {DCR 2015 Without }}$ Proiet	DCR 2015 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (CFSS) } \end{aligned}$	
	Montlil Diversion	Monthly Diversion		
$\frac{(\%)}{0.0 \%}$	（cFs）	（CFS）		
\％．0\％		4，536	4，536	
1．2\％	0	4，536	4，536	
2．5\％	0	4，536	4，536	
3．7\％	0	4，521	4．521	
4．9\％	0	4，521	4，521	
6．2\％	0	4．521	4，521	
7．4\％	0	4.416	4.416	
8．6\％	0	4，388	4，388	
9．9\％\％	0	4，388	4，388	
${ }^{19.12 \%}$	0	${ }_{4}^{4,386}$	4，386	
${ }^{13.6 \%}$	0	${ }_{4}^{4.225}$	4,343 4.225	
14．8\％	0	4，225	4,225	
16．0\％	0	4，225	4.225	
17．3\％	0	4，225	4，225	
18．5\％	0	4，065	4，065	
19．8\％	0	4，063	4.063	
21．0\％	0	4，063	4，063	
${ }_{\text {2 }}^{22.2 \%}$	0	4，063	4，063	
${ }_{\text {2 }}^{23.50 \%}$	0	3，999	3，999	
24．7\％	0	3，978	3，978	
25．9\％	0	3，972	3，972	
27．2\％	\bigcirc	3，938	3，938	
－ $28.4 .4 \%$	0	3，909	3，909	
－	0	3，900	3，900	
－ $30.9 .9 \%$	0	${ }^{3,900}$	3，900	
－ 32.15%	0	3，900	3，900	
	0	3，900	3，900	
隹34．6\％	0	3，900	3，900	
375．0\％	0	${ }_{\text {3，596 }}$		
38．3\％	0	${ }_{3,413}^{3.575}$	（3，413	
39．5\％	0	3，413	3.413	
40．7\％ 420%	0	${ }_{3,323}$		
${ }^{4.32 \%}$	\bigcirc	3，250	${ }_{\text {3，250 }}^{3,214}$	
44．4\％	0	${ }_{3,127}^{3,124}$	${ }_{\substack{3,127 \\ 3,127}}$	
45．7\％	0	3，000	3，000	
46．9\％	0	2，840	2，840	
48．1\％	0	2.426	2.426	
49．4\％	0	2，305	2，305	
	0	${ }_{2}^{2,225}$	2，225	
年51．9\％	0	2，079	2，079	
年 53.1 \％	0	${ }^{1,869}$	1，869	
${ }^{54.3 \%} 5$	0	${ }^{1,675}$	1，675	
55．6\％	0	1，457	1，457	
	0	${ }_{1}^{1,375}$	${ }_{1}^{1,375}$	
年58．0\％\％	0	$\xrightarrow{1,131}$	1，137	
${ }^{50.5 \%}$	0	914	${ }_{914}$	
61．7\％	0	739	739	
63．0\％	0	${ }_{6} 732$	732	
	0		686	
${ }^{65.7 \%}$	0	620	${ }_{620} 6$	
67．9\％	0	588	588	
69．1\％	0	480	480	
70．4\％	0	192	192	
71．6\％	0	175	175	
72．8\％	0	169	169	
74．1\％	0	163	${ }^{163}$	
75．5\％	0	${ }^{156}$	156	
77．8\％	0	139	139	
77．8\％	0	135 89	135 89	
80．2\％	0	67	67	
81．5\％	0	64	64	
82．7\％	0	${ }^{35}$	35	
－ $\begin{aligned} & 84.0 \% \\ & 88.2 \%\end{aligned}$	\bigcirc	${ }_{25}^{26}$	${ }_{25}^{26}$	
${ }_{\text {86．4\％}}$	0	${ }_{20}^{25}$	${ }_{20}^{25}$	
87．7\％	0		0	
88．9\％	0	0	0	
90．19\％	0		0	
${ }^{91.4 \%} 9$	0	0	0	
${ }_{93}^{92.6 \%}$	0	0	－	
95．1\％	0	0	0	
96．3\％	0	0	0	
97．5\％	0	0	0	
98.8% 100．0\％	0	0	0	
100．0\％				

Table OP-04-b
Funks Reservoir to Stites Reservori, Monthy Diversion

Figure OP-05-b
Funks Reservoir to Tehama Colusa and Glenn Colusa Canals, Monthly Flow

Ociober				
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	$\underset{\substack{\text { DCR 2015 } \\ \text { Proiethout }}}{\text { and }}$	DCR 2015 With Project	Absolute Difference	Relative
Probability	Monthly Fow（cFs）	Monthy Flow（CFFs）	（CFFS）	
0．0\％	0	${ }^{825}$	825	
1．2\％	0	${ }^{824}$	824	
2．5\％	0	${ }^{821}$	${ }^{821}$	
3．7\％	0	811	811	
4．9\％	0	${ }_{805}^{805}$	${ }_{805}^{805}$	
－6．2\％ 74%	0	${ }_{761}^{805}$	${ }_{761}^{805}$	
8．6\％	0	725	725	
9．9\％	0	${ }_{681}^{681}$	${ }_{681}^{681}$	
12．3\％	0	626	626	
	0	585		
${ }^{14.8 .8 \%}$	0	585 582		
17．3\％	0	580	580	
18．5\％	0	563	563 563	
19．8\％	0	${ }_{569} 5$	553	
21．0\％	0	549 537	549	
22．2\％	0	537	537	
－ 2.35%	0	536 532	536 532	
－ 24.79%	0	${ }_{531}^{532}$	${ }_{531}^{532}$	
－27．2\％	0	530	530	
－ $\begin{aligned} & 28.4 \% \\ & 29.6 \%\end{aligned}$	0	530 519	530 519	
30．9\％	0	515	515	
32．1\％	0	${ }_{513}$	${ }_{513}$	
退33．3\％	0	512 510 10	512 510	
35．8\％	0	505	505	
退37．0\％	0	504 501	55	
39．5\％	0	501	501	
40．7\％	0	${ }^{500}$	500	
42．0\％	0	496	496	
43．2\％	0	491	491	
44．4\％	0	490	490	
－ 4.57%	0	489	489	
－ $4.9 .9 \%$	0	${ }_{4}^{484}$	${ }_{474}^{484}$	
49．4\％	0	471	471	
50．6\％	0	462	462	
51．9\％	0	460 455	460 455	
55．1\％\％	0	${ }_{451}^{455}$	${ }_{451}^{455}$	
年56．8\％\％	0	${ }_{444}^{444}$	${ }_{414}^{444}$	
58．0\％	0	377	377	
59．3\％	0	375 360	375 360	
61.7%	0	359	359	
63．0\％	0	319	319	
64．2\％	0	261	261	
${ }_{6}^{65.4 \%}$	0	205 178	205 178	
67．9\％	0	173	173	
69．1\％	0	170	170	
70．4\％	0	${ }_{9}^{122}$	${ }_{9}^{122}$	
71．6\％${ }_{\text {72．8\％}}$	0	${ }_{91}^{92}$	${ }_{91}^{92}$	
74．1\％	0	87	87	
75．3\％	0	76	76	
76．5\％	\bigcirc	${ }_{47}^{53}$	${ }_{4}^{53}$	
79．0\％	0	46	46	
80．2\％	0	${ }_{31}^{43}$	${ }_{31}^{43}$	
－${ }_{\text {812．7\％}}$	0	31 23	31 23	
84．0\％	0	14	14	
85．2\％	0	0	0	
${ }^{86.4 \%}$	0	0	0	
88．9\％	0	0	0	
90．1\％	0	0	0	
91．4\％	0	0	0	
92．6\％	0	0	0	
93．8\％	0	0	0	
－9．1\％	0	0	0	
97．5\％	0	0	0	
988．8\％ 1000%	0	0	\bigcirc	

Table OP-05-b

		June		
Percent Exceedance	DCR 2015 Without Proiect	DCR 2015 With Project	$\begin{array}{\|l\|l} \hline \text { Absolute } \\ \text { Difference } \end{array}$	
$\xrightarrow{\text { Probability }}$	Monthy Fow (CFS)	Monthly fow (CFFs)	(CFFS)	
${ }^{1.2 \%}$	\bigcirc	${ }_{1}^{1,606}$	${ }_{1}^{1,606}$	
3.7\%	0	1,593	${ }_{1}^{1,593}$	
4.9\%	0	${ }_{1,577}^{1,503}$	${ }_{1}^{1,577}$	
6.2\%	0	1.564	${ }_{1}^{1,564}$	
7.4\%	0	$\xrightarrow{1,562}$	${ }^{1,562}$	
8.6\%	0	1,555	${ }^{1,555}$	
9.9\%	0	1.550	${ }^{1,555}$	
11.1\%	0	${ }^{1,541}$	${ }^{1,541}$	
${ }^{12.3 \%}$	0	${ }_{1,527}^{1.527}$	${ }^{1,527}$	
13.6\% 14.8%	0	+1,522	1.522 1.493	
14.8\%	0	${ }_{1}^{1,493}$	${ }^{1,493}$	
16.0\%	0	${ }_{1}^{1,486}$	${ }^{1,486}$	
18.5\%	0	${ }_{1}^{1,460}$	${ }^{1,447}$	
19.8\%	0	1,412	1,412	
${ }_{2}^{21.0 \%}$	\bigcirc	1,404 1.371 1	1,404 1,371	
23.5\%	0	1.368	${ }^{1,368}$	
24.7\%	0	${ }^{1,3366}$	${ }^{1,356}$	
${ }^{25.9 \%}$	0	1,329 1,309	${ }_{1}^{1,3,399}$	
28.4\%	0	1,293	1,293	
29.6\%	0	${ }_{1}^{1,280}$	${ }^{1,288}$	
30.9\%	0	1,246	1,246	
32.1\%	0	1,227	1,227	
${ }^{33} \times 1.5 \%$	0	1,206 1181 1	${ }^{1,206}$	
35.8\%	O	${ }^{1,133}$	${ }^{1,133}$	
37.0\%	0	1,114	1,114	
38.3\%	0	1,106 1041	${ }^{1,1061}$	
39.5\% 40.7	0	$\underset{854}{1,041}$	1,041 8.54	
4.2.7\%	\bigcirc	${ }_{834}^{854}$	854 834	
43.2\%	0	${ }_{755}$	755	
${ }_{4}^{44.4 \%}$	0	753 750	${ }_{753}^{753}$	
46.9\%	0	${ }_{720}$	720	
48.1\%	0	708	708	
49.4\%	\bigcirc	679 672	679 672	
51.9\%	0	631	631	
	0	625 616	625 616	
55.6\%		599	599	
56.8\%	0	585	585	
58.0\%		549 513	549	
59.5\%	0	513	513	
60.1.7\%	0	477	477	
63.0\%		418	418	
64.2\%	O	${ }^{381}$	${ }_{3}^{381}$	
${ }_{66.7 \%}^{654 \%}$	0	${ }_{294}^{296}$	${ }_{294}^{296}$	
67.9\%	0	281 281	${ }_{281}^{281}$	
69.19\%	0	${ }_{213}^{244}$	${ }_{213}^{244}$	
70.4\%	0	218 180	2183 180	
72.8\%	0	176	176	
74.3\%	0	${ }_{57}^{96}$	${ }_{57}^{96}$	
76.5\%	0	42	42	
79.0\%	0	${ }_{36}^{42}$	${ }_{36}^{42}$	
80.2\%	0	35	35	
81.5\%	0	${ }^{34}$	${ }_{31}^{34}$	
82.7% 840%	0	31 0	${ }^{31}$	
${ }^{845.0 \%}$	0	0	\bigcirc	
86.4\%	0	0	0	
- 87.7%	0	0	\bigcirc	
90.1\%	0	0	0	
914.4\%	0	0	0	
92.6\% ${ }_{93.8 \%}$	0	\bigcirc	\bigcirc	
95.1\%	0	0	0	
${ }_{\text {c }} 96.56 \%$	\bigcirc	0	0	
98.8\%	0	0	0	

Figure OP-06-b
funks Reservoir to Deleven Pipeline, Monthly Flow

Table OP-06-b

Table OP-06-b

(exceedance		${ }_{\text {DCR }} \mathbf{2 0 1 5}$ With Project	(ces)	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$			${ }^{\text {DCR } 2015 \text { With Project }}$	Difiference	Relative Difference (\%)
Proababity	Monthy Flow (CFS)	Montly Flow (CFs)			Probability	Monthy Flow (CFS)	Monthy Flow (cFs)	${ }_{\substack{\text { (CFS) } \\ 948}}$	
1.2\%	0	1.500	1.500		1.2\%	0	516	516	
2.5\%	0	379	379		2.5\%	0	286	286	
3.7\%	0	168	168		3.7\%	0	182	182	
4.9\%	0	145	145		4.9\%	0	167	167	
6.2\%	0	145	145		6.2\%	0	158	158	
7.4\%	0	145	145		7.4\%	0	${ }^{150}$	150	
8.6\%	0	145	145 145		8.9\%	0	150 150 15	150 150 15	
9.9\%	0	145	145		9.9\%	0	150	150	
- 11.14%	0	0	0		11.19\%	0	0	0	
(12.3\%	0	0	0		12.3\%	0	0	0	
	0	0	\bigcirc		-	0	0	0	
${ }^{16.0 \%}$	0	0	0		16.0\%	0	0	0	
17.3% 18.5%	0	0	\bigcirc		17.3\% 18.5\%	0	\bigcirc	${ }_{0}$	
19.8\%	0	0	0		19.8\%	0	0	0	
${ }_{2}^{21.0 \%}$	0	0	0		21.0\%	0	0	0	
${ }^{22.2 \% \%}$	\bigcirc	0	\bigcirc		${ }_{\text {22, }}^{22.2 \%}$	0	0	0	
24.7\%	0	0	0		${ }_{24.7 \%}$	0	0	0	
25.9\%	0	0	0		25.9\%	0	0	0	
27.2\%	0	0	0		27.2\%	0	0	0	
28,4\%	0	0	0		28.4\%	0	0	0	
29.6\%	0	0	0		29.6\%	0	0	0	
30.9\%	0	0	0		30.9\%	0	0	0	
32.1\%	0	0	0		32.1\%	0	0	0	
33.3\%	0	0	0		-33.3\%	0	0	0	
34.6% 35.8%	0	0	0		34.6\%	0	0	0	
35.8\%	0	0	0		355.8\%	0	0	0	
	0	0	0		38.3\%	0	0	0	
39.5\%	0	0	\bigcirc		39.5\%	0	0	0	
42.0\%	0	0	0		42.0\%	0	0	0	
${ }^{43.2 \%} 4$	0	0	0		43.2\%	0	0	0	
4.7\%	0	0	0		4.5.7\%	0	0	0	
46.9\%	0	0	0		46.9\%	0	0	0	
48.19\%	0	0	0		48.1\%	0	0	0	
40.6\%	\bigcirc	\bigcirc	\bigcirc		49.4\%	0	0	\bigcirc	
51.9\%	0	0	0		51.9\%	0	0	0	
53.1\%	0	0	0		53.1\%	0	0	0	
54.3\%	0	0	0		54.3\%	0	0	0	
55.6\%	0	0	0		-55.6\%	0	0	0	
56.8\%	\bigcirc	\bigcirc	\bigcirc		- 56.8 \% ${ }^{\text {5.0\% }}$	\bigcirc	\bigcirc	0	
59.3\%	0	0	0		59.3\%	0	0	0	
60.5\%	0	0	0		${ }^{60.5 \%}$	0	0	0	
617\% 6	0	0	0		61.7\%	0	0	0	
64.2\%	0	0	0		${ }_{6}^{63.2 \%}$	0	0	0	
65.4\%	0	0	0		65.4\%	0	0	0	
-66.7\%	\bigcirc	\bigcirc	\bigcirc		66.7\%\% 67.9%	\bigcirc	0	\bigcirc	
(69.1\%	0	0	0		69.1\%	0	0	0	
70.4\%	0	0	0		70.4\%	0	0	0	
71.28\%	\bigcirc	\bigcirc	\bigcirc		-71.2\%	\bigcirc	\bigcirc	0	
74.1\%	0	0	0		74.1\%	0	0	0	
75.3\%	0	0	0		75.3\%	0	0	0	
76.5\% ${ }_{77}$	0	0	0		76.5\%	0	0	0	
77.8\%	0	0	0		77.8\%	0	0	0	
79.0\% 80.2%	0	0	\bigcirc		(79.0\%	0	0	0	
81.5\%	0	0	0		-81.5\%	0	0	0	
882.7\%	0	0	0		-82.7\%	0	0	0	
8.5.2\%	0	0	0		- 8 84.2\%	0	0	\bigcirc	
86.4\%	0	0	\bigcirc		${ }_{\substack{86.4 \% \\ 87.7 \%}}$	\bigcirc	\bigcirc	0	
88.9\%	0	0	0		88.9\%	0	0	0	
${ }^{90.14 \%}$	0	0	0		${ }_{9}^{90.14 \%}$	0	0	0	
92.6\%	0	0	0		92.6\%	0	0	0	
${ }^{93.3 \%} 9$	0	0	0		933.8\%	0	0	0	
${ }_{96.3 \%} 95.1{ }^{\text {a }}$	0	0	0		96.3\%	0	0	0	
97.5\%	0	0			97.5\%	0	0	0	
98.8\% 100.\%	\bigcirc	0	\bigcirc		988.\% 1000%	\bigcirc	0	0	

Table OP-06-b

		June		
Percent Exceedance	${ }^{\text {DCR } 2015 \text { Without }}$ Proiect	DCR 2015 With Project	Absolute Difference	
Probability	Montly Fow (CFS)	Monthly fow (CFFs)	(CFF)	
${ }^{1.2 \%}$	0	1,500 1.500	${ }^{1,500}$	
3.7\%	0	1,500	1.500	
4.9\%	0		1,500	
6.2\%	0	1,500	1,500	
7.4\%	0	1,500	1,500	
8.9\%	0	1,500	1,500	
9.9\%	0	1,500	1,500	
11.11\%	0	1,500	1,500	
12.3\%	0	${ }^{1,500}$	1,500	
13.6% 14.8%	0	1,500 $\begin{array}{r}1500\end{array}$ 15	1,500	
14.8\% 16.0%	0	1,500	1,500	
- 16.0%	0	1,500	1,500	
(17.3\%	\bigcirc	1,500 1.500	1,500 1.500 1	
18.9\%	0	$\begin{array}{r}1,500 \\ 1.500 \\ \hline\end{array}$	+1,500	
21.0\%	0	${ }_{1}^{1,500}$	1,500 1,500	
${ }_{22.5 \%}^{22.2 \%}$	\bigcirc	1,500 1.500	1,500 1.500	
24.7\%	0	${ }_{1}^{1,500}$	${ }_{1,500}^{1,500}$	
25.9\%	0	$\begin{array}{r}1,500 \\ \mathbf{1} 500 \\ \hline\end{array}$	1,500 1.500	
28.4\%	0	${ }_{1}^{1,500}$	1,500	
29.6\%	0	1.500	1,500	
30.9\%	0	1,500	1,500	
32.1\%	0	1,500	1,5	
334.6\%	0	1,500 1.500	1,500 1.500 1	
34.8\%	0	1.500 1.500	${ }_{1}^{1,5000}$	
37.\%	0	1,500	1,500	
- 38.3%	0	$\begin{array}{r}1.500 \\ 1.500 \\ \hline\end{array}$	$\begin{array}{r}1,500 \\ 1,500 \\ \hline\end{array}$	
39.5\% 40.7	0	1,500 1.500 1	1,500 1500	
${ }^{40.7 \%}$	0	1.500 1.500 1	1,500 1.500	
${ }^{42.2 \%}$	0	1,500 1.500	1,500 1 1500	
44.4\%	0	1,500	1.500	
${ }_{46.9 \%}^{45.7 \%}$	0	1,500 1.466	1,500 1.466	
48.1\%	0	${ }_{1.465}$	${ }_{1}^{1,465}$	
49.4\%	0	1,396	1,396	
${ }^{50.6 \%}$	\bigcirc	${ }_{1}^{1,238}$	${ }_{1}^{1,238}$	
	0	1,211	1,211	
54.3\%	\bigcirc	1,124 1.042 1	${ }^{1,124}$	
56.8\%	0	${ }_{919}$	${ }_{919}^{1,042}$	
58.0\%	0	875	875	
(59.3\%	0	${ }_{711}^{715}$	${ }_{711} 71$	
60.5\%	0	711	711	
61.7% 630%	0	${ }_{681}^{705}$	${ }_{681}^{705}$	
-63.0\%	\bigcirc	${ }_{644}^{681}$	681 644	
64.2\% ${ }^{64.4 \%}$	\bigcirc	${ }_{389}^{644}$	644 389	
${ }^{66.7 \%}$	0	180	180	
67.9\%	\bigcirc	150 150	150 150 1	
70.4\%	0	150	150	
71.6\%	0	0	0	
74.1\%	0	\bigcirc	0	
75.3\%	0	0	0	
76.5\%	0	0	0	
79.0\%	0	0	\bigcirc	
80.2\%	0	0	0	
81.5\%	0	0	0	
- 82.78%	0	0	0	
84.0\%	0	0	0	
86.4\%	0	0	0	
87.7% 880%	0	0	0	
${ }^{88.9 \%}$	0	0	\bigcirc	
91.4\%	0	0	0	
92.6\%	0	0	0	
${ }_{\text {c }}^{935.1 \%}$	\bigcirc	\bigcirc	\bigcirc	
96.3\% ${ }^{97.5 \%}$:	:	0	
978.5\%	\bigcirc	\bigcirc	0	
100.0\%	0	0	0	

Figure OP-07-b
Sites Reservoir to Funks Reservoir, Monthly Flow

Table OP.07-b

		January		
Percent Exceedance	DCR 2015 Without Proiect	DCR 2015 With Project	Absolute	Relative
Probability	Monthly Fow (Monthly Fow)		
0.0\%	0	149	149	
${ }_{2.5 \%}^{1.2 \%}$	0	149 149	149 149	
3.7\%	0	148	148	
4.9\%	0	144	144	
6.2\%	0	135		
7.4\%	0	0	0	
8.9\%	0	0	0	
9.9\% ${ }^{\text {11.1\% }}$	0	0	0	
${ }^{11.19 \%} 1$	0	0	0	
${ }^{12.3 \%} \times 1.6 \%$	\bigcirc	\bigcirc	\bigcirc	
14.8\%	0	0	0	
16.0\%	0	0	0	
17.3\%	0	0	0	
19.8\%	0	0	0	
21.0\%	0	0	0	
${ }_{22}^{22.2 \%}$	\bigcirc	0	0	
${ }^{234.5 \%}$	\bigcirc	0	0	
- 25.59%	0	0	0	
${ }^{27.2 \%} \times$	0	0	0	
29.6\%	0	0	0	
30.9\%	0	0	0	
32.1\%	0	0	0	
334.6\%	0	0	0	
边 $\begin{aligned} & 34.6 \% \\ & 35.8 \%\end{aligned}$	-	-	\bigcirc	
37.0\%	0	0	0	
38.3\%	0	0	0	
39.5\%	0	0	0	
40.7\% 4	0	0	0	
43.2\%	0	0	0	
${ }_{\text {4 }}^{4.4 .4 \%}$	0	0	0	
${ }^{46.9 \%}$	0	0	0	
4.9.4\%	0	0	0	
年50.9\%	0	0	-	
53.1\%	0	0	0	
54.3\%	0	0	0	
55.6\%	0	0	0	
58.0\%	0	0	0	
come	0	0	0	
		0	0	
61.7\%	0	0	0	
64.2\%	\bigcirc	\bigcirc	0	
65.4\%	0	0	0	
- $66.7 .9 \%$	0	0	0	
69.1\%	0	0	0	
70.4\%	0	0	0	
72.8\%	0	0	0	
-74.1\%	0	0	\bigcirc	
76.5\%	0	0	0	
77.8\%	0	0	0	
79.0\% 80.2%	0	0	0	
80.2\%	0	0	0	
82.7\%	0	0	0	
84.0\%	0	0	0	
-	0	0	0	
87,7\%			0	
88.9\%	0	0	\bigcirc	
90.1\% 9	0	0	0	
-91.4\% ${ }_{\text {92.6\% }}$	\bigcirc	0	0	
93.8\%	0	0	0	
${ }_{9}^{95.19 \%}$	0	0	0	
97.5\%	0	0	0	
98.8\% 100\%	0	0	0	

Table OP-07-b
zoir to Funks Resenvoir, Monthly Flow

		February		
Percent Exceedance	DCR 2015 Without Proiect	DCR 2015 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difference () } \end{gathered}$	Relative Difference (\%)
Probability	Monthly Flow (
0.0\%	0	${ }^{553}$	${ }_{5}^{53}$	
2.5\%	0	327 164	${ }_{164}^{327}$	
3.7\%	0	164	164	
4.9\%	0	162	162	
6.2\%	0	135	135	
7.4\%	0	90	90	
8.9\%	0	14	14	
9.9\%	0	12	12	
${ }^{11.11 \%}$	0	0	0	
12.3\%	0	0	0	
13.6\%	0	0	0	
14.8\%	0	0	0	
- 16.0%	0	0	0	
(17.3\%	0	0	0	
19.8\%	0	0	0	
21.0\%	0	0	0	
${ }_{\text {22, }}^{22.2 \%}$	0	0	0	
${ }_{2}{ }_{24.7 \%}^{23.5 \%}$	0	0	0	
25.9\%	0	0	0	
${ }^{27} 27.2 \%$	0	0	0	
	0	0	0	
30.9\%	0	0	0	
32.1\%	0	0	0	
33.3\%	0	0	0	
34.6\%	0	0	0	
	0	0	0	
37.0\%	0	0	0	
${ }^{38.3 \%}$	0	0	0	
${ }^{39.7 \%}$	0	0	0	
42.0\%	0	0	0	
43.2\%	0	0	0	
${ }^{44.4 \%}$	0	0	0	
46.9\%	0			
${ }^{48.1 \%}$	0	0	O	
49.4\%	0	0	0	
${ }^{50.6 \%}$	0	0	0	
53.1\%	0	0	0	
54.3\%	0	0	0	
年5.6\%	0	0	0	
年56.8\%	0	0	0	
	0	0	0	
59.3\%	0	0	0	
60.5\%	0	0	0	
-61.7\%	0	0	0	
-63.0\%	0	0	0	
64.2\% ${ }^{65.4 \%}$	0	0	0	
${ }_{6}^{65.4 \%}$ 6.7\%	0	0	0	
67.9\%				
69.1\%	0	0	0	
70.4\%	0	0	0	
72.8\%	0	0	0	
74.1\%	0	0	0	
75.3\%	0	0	0	
76.5\%	0	0	0	
79.0\%	0	0	0	
80.2\%	0	0	0	
81.5\%	0	0	0	
82.7% 840%	0	0	0	
84.0\%	0	0	0	
85.2\%	0	0	0	
${ }^{86.4 \%}$	0	0	0	
- ${ }_{\text {87,7\% }}^{88.9 \%}$	0	0	0	
90.1\%	0		0	
91.4\%	0	0	0	
92.8.8\%	\bigcirc	0	\bigcirc	
${ }^{935.1 \%}$	\bigcirc	0	0	
96.3\%	0	0	0	
${ }_{98.8 \%}^{97.5 \%}$	\bigcirc	0	0	

		June		
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	Absolute	Relative Difference Difference（\％）
Probabaility	Monthly Fow（）	Monthly Fow（		
0．0\％	0	${ }^{3,129}$	${ }^{3,129}$	
1．2\％	0	3，106	3，106	
2．5\％	0	3，104	3，104	
3．7\％	0	3，093	3，093	
4．9\％	0	3，064	3，064	
6．2\％	0	3，055	3，055	
7．4\％	0	${ }^{3.050}$	${ }^{3}, 005$	
8．6\％	0	3，041	3，041	
9．9\％	0	${ }^{3,027}$		
12．3\％	0	－	3,022 2093	
13．6\％	0	${ }_{2}^{2,986}$	${ }_{2,986}$	
14．8\％	0	2，960		
16．0\％	0	2，912		
17．3\％	0	2，904	2，904	
18．5\％	0	2，871	2，871	
19．8\％	0	2，868	2，868	
21．0\％	0	2，829	2，829	
${ }^{22.2 \%}$	0	2，809	2，809	
${ }^{23.55 \%}$	0	${ }^{2,793}$	2，793	
24．7\％	0	2，780	2，780	
25．9\％	0	${ }^{2,746}$	${ }^{2,746}$	
27．2\％	0	${ }_{2}^{2,727}$	${ }_{2}^{2,727}$	
－	0	${ }_{2}^{2,706}$	2，706	
－	0	${ }^{2,681}$	${ }_{2}^{2,681}$	
30．9\％	0	${ }_{2}^{2,633}$	2，633	
－${ }_{\text {32，}}$	0	${ }_{2}^{2,614}$	2，614	
34．6\％	0	2，606	${ }_{2}^{2.006}$	
35．8\％	0	2,354	354	
37．0\％	0	2，273		
	0	2，250	2，250	
42．0\％	0	2，131 2，179	${ }_{\substack{2,131}}^{2,179}$	
43．2\％	0	2.125	2,125	
${ }^{44.4 \%}$	0	2，092	2，092	
45．7\％	0	2，085	2，085	
46．9\％	0	2,065	2,065	
48．1\％ 4.4 \％	0	2.044	2，044	
49．4\％	0	2，037	2，037	
年50．6\％	0	2，013	2，013	
年51．9\％	0	1，999	1，999	
${ }^{53.10 \%} 5$	0	1，977	1，977	
	0	1,953	1.953	
55．8\％	0	1.918	1,978	
	0	1，740	1,140	
${ }^{58.0 \%}$	0	${ }_{1}^{1,640}$	${ }_{1}^{1,624}$	
60．5\％	0	${ }_{1}^{1,397}$	${ }_{1,397}^{1,1027}$	
61．7\％	0	1，256	1，256	
－63．0\％	0	＋1，255	1，255	
${ }^{64.4 .4 \%}$		${ }_{1}^{1,225}$	${ }^{1,254}$	
66．7\％	0	${ }_{895}$	895	
67．9\％	0	672	672	
69．1\％	0	670	670	
70．4\％	0	444	444	
71．6\％	0	${ }^{296}$	296	
74．1\％	0	246 176 1	${ }_{176}^{246}$	
75．3\％	0	57	57	
76．5\％	0	42	42	
77．8\％	0	${ }^{42}$	${ }^{42}$	
89．0\％	0	${ }^{36}$	${ }^{36}$	
${ }^{81.5 \%}$	0	35 34	${ }_{34}$	
82．7\％				
84．0\％	0	0	0	
${ }_{\text {8 }}^{8.4 \%}$	0	0	0	
87．7\％	0		0	
88．9\％	0		0	
90．1\％ 9	0	0	0	
${ }_{9} 9.26 \%$	0	0	0	
93．8\％	0	0	0	
95．1\％	0	0	0	
${ }^{963 \%}$	0	0	0	
975\％ 98	0	0	0	
100．0\％		0	0	

$\begin{gathered} \text { Percenn } \\ \text { Exceee } \\ \text { Probabability } \end{gathered}$	$\begin{gathered} \hline \text { DCR } 2015 \text { Without } \\ \text { Proiect } \\ \hline \text { Monthly Flow () } \\ \hline \end{gathered}$	DCR 2015 With Project Monthly Fowo 0	$\begin{gathered} \text { Absolute } \\ \text { Difference () } \end{gathered}$	$\begin{gathered} \text { Repative } \\ \text { Difference }(\%) \end{gathered}$	$\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{aligned}$		$\frac{\text { DCR } 2015 \text { With Project }}{\text { Monthly Fow 0 }}$	$\begin{aligned} & \text { Difsolute } \\ & \text { Diferene e } \end{aligned}$	Relative Difference（\％）
1．2\％	0	3，107	3，107		1．2\％		2，996	2,996	
2．5\％	0	3，098	${ }^{3}, 098$		2．5\％	0	2，990	2，990	
3．7\％	0	3，089	3，089		3．7\％	0	2，938	2，938	
4．9\％	0	3，073	3，073		4．9\％	0	2，934	2，934	
6．2\％	0	3，059	3，059		6．2\％	0	2.876	2.876	
7．4\％	0	3，025	3，025		7．4\％	0	2.812	2.812	
8．6\％	0	3，016	3，016		8．6\％	0	2，802	2，802	
9．9\％${ }^{\text {11．1\％}}$	0	3.010 3.006	3，010		9．9\％	0	2，615	2，615	
$\xrightarrow{11.1 \%} \times$	0	－	3，006		－11．19\％	0	${ }_{\text {2，}}^{2.525}$	2，525	
${ }^{1.3 .3 \%}$ 13．6\％	0	${ }_{2,949}^{2,964}$	${ }_{2,949}^{2,964}$		${ }^{12.36 \%}$	\bigcirc	${ }_{2,385}^{2,462}$	${ }_{2,385}^{2,462}$	
14．8\％	0	2，899	2,899		14．8\％	0	${ }_{2,377}^{2,}$	${ }_{2,377}^{2,3}$	
－ 16.0% \％	0	${ }_{2}^{2,855}$	$\stackrel{2,855}{2,775}$		16．0\％	0	2，134	2，134	
${ }^{18.5 \%}$	\bigcirc	2，767 2763 271	${ }_{\substack{2,767 \\ 2,763}}^{\text {2，6］}}$		－${ }^{17.35 \%}$	\bigcirc	2，096 2，095	2，096 2095	
19．8\％	0	2，713	2,713		19．8\％	0	2，091	2，091	
21．0\％	0	2，711	2，711		21.				
22．2\％	0	2，661	2.661		22．2\％	0	2，070	2.0	
${ }^{234.5 \%}$	0	2,651 2.616	2,651 2.616		23．3\％	0	${ }_{2}^{2.062}$	${ }_{2}^{2,062}$	
25．9\％	0	${ }_{2,585}^{2,56}$	${ }_{2,585}^{2,56}$		25．9\％	0	${ }_{2,051}$	2,051	
27．2\％	0	2.574	2.574		27．2\％	0	2,023	2,023	
28．4\％	0	2，561	2，561		28．4\％	0	2，010	2，010	
29．6\％	0	2,465	2，465		29．6\％	0	2，010	2，010	
30．9\％	0	2，462	2，462		30．9\％	0	${ }^{1,996}$	1，996	
32．1\％${ }^{3}$	0	2，398	2，398		32．1\％	0	1，983	${ }^{1,983}$	
334．6\％	0	${ }_{\text {2，385 }}^{2,385}$	2，385		33．3\％	0	1，979	1，979	
34.6% 358%	0	${ }_{\text {2，328 }}$	2，328		34．6\％	0	${ }^{1,968}$	${ }^{1,968}$	
35．8\％	0	$\begin{array}{r}2,310 \\ 2280 \\ \hline 280\end{array}$	2,310 2280 280		年35．8\％	0	1，900	1，900	
38．3\％	0	${ }_{2}^{2,266}$	${ }_{\substack{2,266}}^{\text {2，280 }}$		38．3\％	0	${ }_{\text {1 }}^{1,7801}$	1，761	
39．5\％	0	2，265	${ }^{2,265}$		39．5\％	0	1，759	1，759	
${ }^{40.7 \%}$	0	$\underset{\substack{2,256}}{2,257}$	${ }_{\substack{2,256}}^{2,257}$		40．7\％ 42.0	0	1,745 1.697	1,745 1,697 1	
43．2\％	0	${ }^{2,255}$	2，255		43．2\％	0	1.573	1，573	
${ }^{44.4 .7 \%}$	0	${ }_{2,033}^{2,232}$	${ }_{2,033}^{2,232}$		${ }^{44.47 \%}$	0	$\xrightarrow{1,4857}$	${ }_{1}^{1,487}$	
46．9\％	0	2,024	2,024		46．9\％	0	1.377	1，377	
48．19\％	0	2,019 1,795	${ }_{\text {2，795 }}^{2,1919}$		48．19\％	0	＋1，306	${ }_{1}^{1,306}$	
50．6\％	0	1,718	1，718		50．6\％	0	${ }_{1,243}^{1,260}$	${ }_{1,243}^{1,268}$	
51．9\％	0	1，666	1，666		51．9\％	0	1，199	1，199	
53．1\％	0	＋1，632	－1，632		53．1\％	0	1，156	1，156	
54．3\％	0	${ }^{1,552}$	${ }^{1,552}$		54．3\％	0	${ }^{1,077}$	1，077	
55．8\％	0	1，504	1，504		55．6\％	0	990	970	
56．8．8\％	\bigcirc	${ }_{1}^{1,4950}$	${ }_{1}^{1,4950}$		年56．8\％	0	${ }_{937}^{958}$	${ }_{937}^{938}$	
59．3\％	0	1,455	1，455		59．3\％	0	922	922	
60．5\％	0	1，431	1，431		60．5\％	0	855	855	
61.7% 630%	0	1,419 1.414	1,419 1,414 1		61.7% 630%	0	836 729	836 729	
${ }^{63.2 \% \%}$	0	${ }_{1}^{1,3,372}$	${ }_{1,372}^{1,414}$		6．4．2\％	0	${ }_{721}^{729}$	${ }_{721}^{729}$	
析 $6.4 .4 \%$	0	1，201	1，201		${ }^{65.4 \%}$	0	${ }_{6}^{627}$	627	
－ 66.7%	\bigcirc	1，084	（1，084		－66．7\％\％	0	593 516	年 $\begin{array}{r}516 \\ 515\end{array}$	
69．1\％	0	814	814		69．1\％	0	513	513	
70．4\％	0	${ }_{672}$	${ }_{672}$		70．1．4\％	0	${ }_{429}^{509}$	${ }_{429}$	
72．8\％	0	650	650		72．8\％	0	286	286	
74．1\％	0	631	631		74．1\％	0	180	180	
75．3\％	0	587	587		75．3\％	0	170	170	
76．5\％	0	566 555	㐌 555		76．5\％${ }^{778 \%}$	0	167 162 16	167	
79．0\％	0	551	551		79．0\％	0	122	122	
－	0	480 184	480 184		80．2\％	0	${ }_{41}^{86}$	${ }_{41}^{86}$	
${ }^{81.5 \%}$ 827\％	0	184	184		81．5\％	0	41	41	
84．0\％	0	${ }_{41}^{41}$	${ }_{41}^{41}$		882．${ }^{82.7 \%}$	0	${ }_{33}^{35}$	${ }_{33}^{35}$	
85．2\％	0	41	41		85．2\％	0	32	32	
86．4\％	0	${ }_{38}^{40}$	－${ }_{38}^{40}$		86．4\％	\bigcirc	${ }_{25}^{26}$	${ }_{25}^{26}$	
88．9\％	0	30	30		88．9\％	0	${ }_{0}^{25}$	${ }_{0}$	
${ }_{9}^{90.14 \%}$	0	0	0		90．1\％ 91.4	0	0	0	
92．6\％	0	0	0		92．6\％	0	0	0	
${ }_{95.1 \%}^{93.8 \%}$	\bigcirc	\bigcirc	0		${ }_{9}^{93.8 .1 \%}$	0	0	\bigcirc	
96．3\％${ }_{\text {975 }}$	0	0	0		96．3\％	0	0	0	
－97．5\％	0	0	0		－97．5\％${ }_{\text {988\％}}$	0	0	0	
100．0\％	0	0	0		100．0\％	0	0	0	

$\begin{gathered} \text { Percent } \\ \hline \text { Exceedance } \\ \text { Probability } \end{gathered}$		September		RelativeDifference（\％）
		DCR 2015 With Project	Absolute Difference	
	Monthy Fow（	Monthly Fow ）		
	0	2，032	2，032	
1．2\％	0	1，992	1，992	
2．5\％\％	0	1，992	1，992	
3．7\％	0	1，980	1，980	
4．9\％	0	1，980	1，980	
7．4．4\％	0	1，970	1，970	
8．6\％	0	${ }_{1}^{1,930}$	${ }_{1}^{1,930}$	
9．9\％	0	1，920	1，920	
12．3\％	0	${ }_{1,998}^{1,968}$	${ }_{1}^{1,998}$	
13．6\％	0	${ }_{1}^{1.836}$	${ }_{1,836}$	
14．8\％	0	1，784	1，789	
16．0\％	0	1，780	1，78	
17．3\％	0	1，762	1，762	
18．5\％	0	1，744	1，744	
19．8\％	0	1，741	1，741	
${ }^{211.0 \%}$	0	1，717	1，771	
${ }_{2}^{22.2 \%}$	0	1，715	1，715	
${ }^{224.7 \%}$	0	1，715	1，715	
25．9\％	0	${ }_{1}^{1,674}$	${ }_{1}^{1,674}$	
27．2\％	0	1，645	1，645	
	0	1,629 1.599 1 1	1,629 1.599	
30．9\％	0	${ }_{1,587}$	1，587	
永．19\％	0		${ }^{1,574}$	
33．6\％	0	${ }_{1}^{1.544}$	${ }_{1}^{1.544}$	
35．8\％	0	${ }_{1}^{1,478}$	${ }^{1,478}$	
	0	1，477	1，477	
年3．3\％\％	0	1，443	${ }^{1,443}$	
40．7\％	0	1，417	1，417	
42．0\％	0	${ }_{1}^{1,369}$	${ }_{1}^{1,369}$	
43．2\％	0	1，359	1，359	
44．4\％	0	1，345	1，345	
${ }^{45.7 \%}$	0	－1，278	${ }^{1,2278}$	
48．1\％	0	${ }_{1}^{1,211}$	${ }_{1}^{1,211}$	
49．4\％	0	1，114	1，114	
50．6\％	0	＋1，110	1,110 1,103	
${ }_{5}^{53.1 \%}$	0	${ }_{1}^{1,103}$	lita	
54．3\％	0	1.088	1，088	
	0			
55．0\％	0	${ }_{925}$	${ }_{925}$	
59．3\％	0	886	886	
60．5\％	0	881	881	
61．7\％	0	${ }^{835}$	${ }^{835}$	
63．0\％	0	796	796	
64．2\％	0	787	787	
66．7\％	0	${ }_{778}^{778}$	${ }_{778}^{778}$	
67．9\％	0	758	758	
69．1\％	0	694	694	
70．4\％	0	6977	6977	
72．8\％	0	${ }_{641}^{677}$	${ }_{641}^{677}$	
74．1\％	0	589	589	
75．3\％	0	527	527	
76．5\％	\bigcirc	361 355	361 355	
79．0\％	0	${ }_{267}$	267	
80．2\％	0	250 250	250 250	
82．7\％	0	220	220	
84．0\％	0	154	154	
85．2\％	0	109	109	
86．4\％	0	${ }^{34}$	${ }^{34}$	
87．7\％	0	${ }^{25}$	${ }^{25}$	
90．1\％	0	0	0	
91．4\％	0	0	0	
92．6\％	0	0	0	
${ }_{95.1 \%}^{93.8 \%}$	0	0	0	
96．3\％	0	0	0	
97．5\％	0	0	0	
98．8\％	\bigcirc	0	\bigcirc	

Figure OP-08-b
Delevan Intake and Pipeline (to Local Use), Monthly Diversion

Table OP.08-b

$\begin{aligned} & \hline \text { Percent } \\ & \hline \begin{array}{c} \text { Exceedance } \\ \text { Probabibity } \\ \text { (\%oif } \end{array} \end{aligned}$	February			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	DCR 2015 Without	DCR 2015 With Project	$\begin{gathered} \text { Absolute } \\ \text { Differee } \\ \text { (Cfss) } \end{gathered}$	
	Monthly Diversion	Monthly Diversion		
	(cFs)	(crs)		
1.2\%	-	-		
2.5\%	0	0	0	
3.7\%	0	0	0	
4.9\%	0	0	0	
${ }^{6.2 \%}$	0	0	0	
7.4\%\%	0	0	0	
8.9\%\%	0	0	0	
9, 91.1%	${ }_{0}^{0}$	\bigcirc	\bigcirc	
12.3\%	0	0	0	
- ${ }^{13.6 \%}$	0	\bigcirc	0	
16.0\%	0	0	0	
17.3\%	0	0	0	
18.5\%\% 1988%	0	0	0	
19.8\%	0	0	0	
221.0\%	0	0	0	
- 22.2%	0	0	0	
	0	0	0	
${ }_{25.9 \%}^{24.7 \%}$	0	0	0	
${ }_{27}^{25.9 \%}$	0	0	0	
27.4\%	0	0	0	
229.6\%	0	0	0	
30.9\%	0	0	0	
32.1\%	0	0	0	
334.3\%	0	0	0	
33.6\% ${ }^{34.8 \%}$	0	\bigcirc	\bigcirc	
37.0\%	0	0	0	
年3.3\%\%	0	0	0	
30.5\%\%	0	0	0	
${ }_{420.0 \%}^{40.7}$	\bigcirc	0	0	
43.2\%	0	0	0	
44.4\%	0	0	0	
${ }^{45.7 \%}$	0	0	0	
46.9\%	0	0	0	
${ }_{4}^{49.4 \%}$	0	0	0	
49.4\%	0	0	0	
	0	0	0	
年51.9\%	0	0	0	
53.3\%	0	0	0	
55.6\%	${ }_{0}^{0}$	\bigcirc	\bigcirc	
55.8\%\%	0	0	0	
59.0\%\%	\bigcirc	0	0	
60.5\%		0	0	
61.7\%	0	0	0	
63.0\%\%	0	0	0	
66.2\%\%	0	0	0	
${ }_{66.7 \%}^{65.4 \%}$	0	0	\bigcirc	
${ }^{679 \%}$	0	0	0	
69.1\%	0	0	0	
70.4\%\%	0	0	0	
771.8\%	0	0	0	
72.8\%	0	0	0	
74.1\%	0	0	0	
75.3\%		0	0	
77.8\%	0	0	0	
779.0\%			0	
890\%	${ }_{0}^{0}$	0	0	
81.5\%	0	0	0	
82.7\%	0	0	0	
85.2\%	0	0	0	
88.7\%	0	0	0	
888.9\%	0	\bigcirc	0	
${ }_{90.1 \%}$	0	0	0	
91.4\%	0	0	0	
92.6\%	0	0	0	
93.8\%	0	0	0	
${ }_{9}^{95.19 \%}$	0	0	0	
997.5\%	0	0	0	
998.8\%	0	0	0	
98.8\% 100.0%	0	0	0	
100.0\%				

Sites Reservoir, End of Month Storage

		February		
Percent	${ }_{\substack{\text { DCR } 2015 \text { Without } \\ \text { Proiet }}}^{\text {a }}$	DCR 2015 With Project	Absolute	
Probability	End of Montent storage	End of Monts Storage	Difleerenc	Difference (\%)
(\%)	(TAF)	(TAF)	(TAF)	
${ }^{0.0 \%}$	0	${ }_{1}^{1,810}$	1.810	
1.2\%	0	${ }_{1}^{1.810}$	1,8	
2.5\%	0	1,810	1,810	
3.7\%	0	1.810	1,8	
4.9\%	0	1,810	1,810	
${ }^{6.2 \%}$	0	1.810	1.810	
7.4\%	0	1,810	1,8	
${ }_{\text {9.9\% }}^{\text {8.9\% }}$	0	${ }_{1}^{1,810}$	1,8	
19.1\%	0			
12.3\%	0	1,810 1,810	1810	
13.6\%	0	${ }_{1}^{1.810}$	1.810	
14.8\%	0	1,8		
	0	1,810		
(17.3\%	0	1,810 1,810	1,810 1,810	
19.8\%	0	${ }_{1,810}$	${ }_{1,810}$	
21.0\%	0	1.810	1.810	
22.2\%	0	1,810		
23.5\%	0	1.810	1,810	
${ }^{24.79 \%}$	0	1.810	1,88	
${ }^{25.7 .2 \%}$	0	1,810 1.810	${ }_{1}^{1,810}$	
28.4\%	0	${ }_{1,806}$	${ }_{1,806}$	
29.\%	0	1,805	1,805	
30.9\%	0	1,805	1,805	
32.1\%	0	1,801	1,801	
${ }^{33} 4.5 \%$	0	+1.801	${ }_{1}^{1,801}$	
35.8\%	0	1,782	1,782	
37.0% 38.3%	\bigcirc	1,718 17717	$\underset{\substack{1,718 \\ 1717}}{ }$	
38.5\%	0	${ }_{1,693}^{17,17}$	${ }_{1,693}$	
40.7\%	0	1,679	1.679	
- ${ }_{4}^{42.2 \%}$	0	${ }^{1,654}$	${ }^{1,654}$	
44.4\%	0	${ }_{1}^{1,622}$	${ }_{1}^{1,622}$	
45.7\%	0	${ }^{1,608}$	1,608	
46.9\%	0	1,597	1,597	
48.1\% 4.4%	0	${ }^{1,588}$	${ }^{1,588}$	
50.6\%	0	1,579 1,59 159	1,579 1,599	
51.9\%	0	1.547	1,547	
年53.19\%	0	1,531	1,531	
54.6\%	0	${ }^{1,4855}$	${ }^{1,4855}$	
56.8\%	0	${ }_{1}^{1,455}$	${ }_{1}^{1,455}$	
年58.0\%	0	-1,424	1,424	
59.5\%	0	1,421 1.328 1	+1,421	
61.7\%	0	${ }_{1}^{1,258}$	${ }_{1,258}^{1,228}$	
- 63.0%	0	1,252	1,252	
- ${ }_{\text {64.2\% }}^{6.4 \%}$	\bigcirc	1,241 1,215 1	$\xrightarrow{1,241}$1,215	
${ }^{66.7 \%}$	0	${ }_{1}^{1,202}$	1,202	
${ }^{67.9 \%}$	-	1,121 1,112	${ }_{1}^{1,1121}$	
70.4\%	0	1,071	1,071	
71.6\%	0	1,070	1,070	
72.8.1\%	0	${ }^{1,062}$	${ }^{1,062}$	
74.1\%	0	${ }^{1,061}$	1,061	
76.5\%	0	1,002	${ }_{1}^{1,002}$	
77.8\%		${ }_{864} 931$	${ }_{864}^{931}$	
79.0\%	0	${ }_{8}^{864}$	864	
80.15\%	\bigcirc	841 889	${ }_{841}^{859}$	
827\%		828	828	
- $\begin{aligned} & 84.0 \% \\ & 88.2 \%\end{aligned}$	\bigcirc	${ }_{774}^{797}$	797 774	
${ }_{86.4 \%}$	0	${ }_{743} 7$	743	
887.7\%	0	609	609	
${ }^{80.1 \%}$	\bigcirc	${ }_{591}^{604}$	${ }_{691}^{604}$	
91.4\%	0	533	533	
92.6\%	0	512	512	
${ }^{93.85 \%}$	\bigcirc	${ }_{3}^{427}$	${ }^{427}$	
96.3\%	0	355	355	
975\%	0	${ }_{339}^{337}$	${ }_{3}^{337}$	
98.8\%	0	${ }_{3}^{330}$	${ }_{3}^{330}$	
100.0\%	0	211	211	

		June		
Percent Exceedance	DCC 2015 Without Proiect	DCR 2015 With Project	Absolute	
Probability	End of Moonts storage	End of Month Storage	Difference (TAF)	Difference (\%)
${ }^{\text {0.0. }}$ (\%)	(TAF)	(TAF)		
${ }^{0.0 \%}$	0	${ }^{1,810}$	${ }^{1,810}$	
1.2\%\%	0	${ }^{1.810}$	1,81	
2.5\%	0	${ }^{1.810}$	${ }^{1,810}$	
3.9\%	0	${ }_{1}^{1,810}$	${ }_{1810}^{1,810}$	
6.2\%	0	1.810	${ }_{1,810}$	
7.4\%	0	1,810	1.810	
${ }_{9.9 \%}^{8.9 \%}$	0	${ }_{1.810}^{1,810}$	${ }_{1,810}^{1,810}$	
11.1\%	0	1.810	1	
12.3\%	0	1.810		
13.6% 14.8%	0	1.810		
14.8% 16.0%	0	${ }^{1.810}$	1,810	
110.0\%	0	${ }^{1,810}$	1,810	
18.5\%	0	${ }_{1,810}$	${ }_{1,810}$	
19.8\%	0	1.810	1.810	
21.0\%	0	1.810	1.810	
${ }_{\text {22, }}^{\text {22\% }}$	0	1,810	${ }^{1.810}$	
224.5\%\%	0	-1,797	1,797	
24.7\% 25.9%	0	${ }^{1,773}$	1,773	
${ }_{27}^{27.2 \%}$	0	$\begin{array}{r}1,751 \\ 1773 \\ \hline\end{array}$	+1,751	
27.4\%\%	0	1,736	1,736	
20.4\%\%	0	1,704 1.686 1	+1,704	
20.6\% ${ }^{29.9 \%}$	0	${ }_{\substack{1,686 \\ 1.671}}^{1,680}$	(1,686	
32.1\%	0	${ }_{1}^{1,6670}$	${ }_{1}^{1,671}$	
33.3\%	0	${ }^{1,643}$	${ }^{1,643}$	
33.6\% ${ }^{35.8 \%}$	0	${ }_{1}^{1,633}$	${ }_{1}^{1,634}$	
37.0\%	0	1.632	${ }_{1}^{1,632}$	
38.3\%\%	0	1.616	${ }^{1,616}$	
40.7\%	0	1,609	1,609	
42.0\%	0	${ }_{1,580}^{10,509}$	${ }_{1,580}$	
43.2\%	0	${ }^{1,572}$	1,572	
44.4\%	0	${ }^{1,572}$	${ }^{1,572}$	
45.7\%	0	1,570	1,570	
${ }_{48.1 \%}^{46.9 \%}$	0	1.568 1565	${ }^{1,568}$	
49.4\%	0	${ }_{1}^{1,560}$	${ }_{1}^{1,5650}$	
	0	1.560 1.544 1	1,560	
年53.9\%\%	0	1,554 1.55 1	1.554 1.55 1	
55.3\% ${ }_{\text {53, }}$	0	${ }_{1}^{1,552}$	(1,552	
55.6\%	0	${ }^{1,551}$	${ }_{1}^{1,554} 1$	
56.8\%	0	${ }^{1,540}$	${ }^{1,540}$	
55.3\%	0	${ }_{1,404}^{1,538}$	${ }_{1}^{1,504}$	
60.5\%	0	1.402	1,402	
61.7\% 6	0	${ }^{1,373}$	1,373	
64.2\%	0	${ }_{1,337}^{1,342}$	${ }_{\text {1,337 }}^{1,342}$	
6.4.\%	0	1,296	${ }_{1}^{1,296}$	
66.7\% 67.9%	0	1,176	1,176	
67.9\%	\bigcirc	(1,175	+1,175	
${ }^{70.4 \%}$	0	1,160	1,160	
771.6\%	0	1,157 1 1085	1,157	
72.8.1\%	0	1,085 1.084 1	(1,085	
75.3\%		${ }_{1}^{1,082}$	1,082	
76.5\%	0	1,035	1,035	
779.8\%	\bigcirc	${ }_{908}^{954}$	${ }_{908}^{954}$	
890.2\%	0	${ }_{903}^{908}$	${ }_{903}^{908}$	
(8.5.7\% ${ }^{88.5 \%}$:	881 826	881 826	
- 82.78%	0	826 752	${ }_{752}^{826}$	
85.2\%	0	749	721	
88.7\%	\bigcirc	${ }_{688} 72$	${ }^{721}$	
88.9\%	0	662	662	
${ }_{90.14 \%}$	0	647	${ }_{647}^{647}$	
991.4\% ${ }_{\text {92.6\% }}$	0	640	640	
92.8.8\%	0	397	397	
${ }_{95.1 \%}^{93.8 \%}$	0	355 29	355 289	
${ }_{96.3 \%} 9$	0	${ }_{261}^{269}$	${ }_{261} 26$	
97.5\%	0	251	${ }^{251}$	
98.8\%	0	142	142	
100.0\%	0	138	138	

Table OP-10-b
servoi, End of Month Elevation

Table OP-10-b
servoi, End of Month Elevation
Resenouir End of Wonth Elevation
Probability of Exceadance

Figure OP-11-b
Sites Reservoir, End of Month Area

	October			
	DCR 2015 Without	DCR 2015 With Project	Absolute	
	End of Month Area	End of Month Area	Difierence (ACRE)	Difference (\%)
(0)	(ACRE	${ }^{\text {(ACRE }} 14$	14137	
			14, 37	
- 1.2%	0	14,137	14,137	
2.5\%	0	${ }^{14,873}$	4	
3.9\%	0	+13,804	${ }_{13,804}^{13,804}$	
6.2\%	0	13, 782	13,8782	
7.4\%	0	${ }^{13,692}$	${ }_{13,692}$	
8.6\%	0	${ }_{13,685}^{13,602}$	13.685	
9.9\%	0	13,662	13,662	
11.1\%	0	13,659	${ }^{13,659}$	
12.3\%	0		13,614	
13.6\%	0	13,602	13,602	
14.8\%	0	${ }^{13,586}$	${ }^{13,5866}$	
16.0\%	0	13,567 13,564	13.567 1354	
17.3\%	0	113,564	13,56	
(18.5\%	0	13,454 13,386	13,45	
21.0\%	0	${ }_{\text {cke }}$		
22.2\%	0	${ }_{13,362}$	${ }_{13,362}$	
23.5\%	0	13,271 13,247	13,271	
24.7\%	0		${ }^{13,247}$	
257.2\%	0	${ }_{\text {13,061 }}^{13,202}$	$\underset{\substack{\text { li, } \\ 13,061}}{ }$	
28.4\%	0	${ }^{12,946}$	${ }^{12,946}$	
29.6\%	0	12,900	12,900	
30.9\%	0	${ }^{12,767}$	${ }^{12,7867}$	
32.1\%	0	${ }^{12,653}$	12,653	
33.3\%	0	${ }^{12,649}$	12,649	
34.6\%	0	${ }^{12,627}$	12,627	
35.8\%	0	${ }^{12,585}$	${ }^{12,585}$	
37.0\%	0	${ }^{12,555}$	${ }^{12,555}$	
38.3\%	0	${ }_{1}^{12,124}$	12,124	
39.5\%	0	${ }^{12,011}$	12,011	
${ }_{4}^{40.7 \%}$	0	${ }^{12,007}$	12,007 11837	
43.2\%	0	${ }^{11,559}$	${ }^{\text {H1, }} 11.5597$	
44.4\%	0	11,552	11,552	
45.7\%	0	${ }^{11,552}$	${ }_{11,552}$	
49.4\%	0	${ }^{111.443}$	(11,464	
50.6\%	0	11,418	${ }_{111,418}$	
51.9\%	0	11	360	
53.1\%	0	11,307	07	
54.3\%	0	11,248	11,248	
55.6\%	0	11,204	11,204	
年56.8\%	0	11,169	11,169	
	0	${ }^{11,157}$	11,157	
59.3\%	0	11,153	11,153	
年 60.5%	0	${ }^{11,022}$	11,022	
61.7\%	0	10.899	10,899	
-63.0\%	0	${ }^{10,543}$	10,543	
	0	10,377	10,377	
${ }_{66.7 \%}^{65.4 \%}$	0	10,335	10,335	
- 6 6.7.9\%	0	10,198	10,198	
679.1\%	0	${ }_{9} 9.994$	9,994	
70.4\%	0	${ }_{9,678}^{9,963}$	${ }_{\substack{9,963 \\ 9678}}$	
71.6\%	0	${ }_{9,558}^{\text {9,68 }}$	${ }_{9,558}^{\text {9,678 }}$	
72.8% 74.10	0	${ }_{9}^{9.541}$	9,541	
75.3\%	0			
76.5\%	0	${ }_{8,828}$	${ }_{8,828}$	
77.8\%	0	8.805	8.805	
79.0\%	0	${ }^{8,785}$	${ }_{8}^{8,785}$	
80.2\%	0	${ }^{8.699}$	${ }^{8.699}$	
81.5\%	0	8.644	${ }^{8.644}$	
- 82.	0	${ }_{8}^{8,486}$	${ }_{8}^{8,486}$	
-84.0\%	0	${ }_{7,315}$	${ }_{7}^{7,315}$	
85.2\%	0	7,313	7,313	
${ }^{867.4 \%}$	\bigcirc	7,149 6887	7,149 6.817	
88.9\%	0	${ }_{6,492}$	6,492	
90.1\%		6,171	6,171	
91.4\%	0	6,138	6,138	
92.6\%	0	5,127	5,127	
93.8\%	0		4,832	
96.3\%	0	${ }_{3,701}$	${ }_{3,701}^{4,702}$	
97.5\%	0	${ }^{3,473}$	${ }^{3,473}$	
100.0\%	0	3,460 2.710	3,460 2,710	
		2,70	2,70	

Table OP-11-b

		February		
Percent Exceedanc	DCR 2015 Without	DCR 2015 With Project		Reative
Probability	End of Moont Area	End of Month Area	Difference	Herence (\%)
${ }_{\text {cos }}$	(ACRE)	(ACRE)	141	
			4,37	
2.5\%	0	14,137	14,	
3.7\%	0	14,137	14,137	
4.9\%	0	14,137	14,137	
6.2\%	0	14,137	14,137	
7.4\%	0	14,137	14,137	
8.6\%	0	14,137	14,137	
${ }^{\text {9.9.9\% }}$	0	14,137	14,137	
11.1\%	0	14,137 11437	14,137 14.137	
${ }^{12.3 \%}$	0	14,137	14,137	
13.4\%\%	0	${ }^{14.137}$	14,1	
-1.0.0\%	0	14,137 14.137	14,137 14.137	
17.3\%	0	14,137	14,137	
18.5\%	0	14,137	14,137	
19.8\%	0	14,137	14,	
21.0\%	0	14,137	14,137	
22.2\%	0	14,137	14,137	
23.5\%	0	14,137	14,137	
24.7\%	0	14,137	14,137	
25.9\%	0	14,137	14,137	
27.2\%	0	14,137	14,137	
28.4\%	0	${ }^{14,126}$	14,126	
29.6\%	0	${ }^{14,122}$	14,122	
年30.9\%	0	${ }^{14.12121}$	14.121	
32.1\%	0	14,110	14,110	
隹 33.3%	0	14.1110	14,110	
34.8\%	0	${ }^{14,0,077}$	14.077	
37.\%	0	${ }_{13,842}^{14,4048}$	${ }_{13,842}^{14,048}$	
38.3\%	0	13.839	13,839	
39.5\%	0	${ }^{13,761}$	${ }^{13,761}$	
42.0\%	0	-	13,718 13,638 1	
43.2\%	0	13,549	13,549	
44.4\%	0	13,534	13,534	
45.7\%	0	13,489	13,489	
46.9\%	0	13,454	13,454	
48.19\%	0	${ }^{13,427}$	13,427	
49.4\%	0	13,395	13,395	
50.6\%	0	13,322	13,332	
${ }^{51.9 \%}$	0	${ }^{13,394}$	13,294	
54.3\%	0	13,077	- ${ }_{13,027}^{13,242}$	
55.\%	0	12,972	12.972	
56.8\%	0	12,967	12,967	
	0	12,855 12847	12,885 12.887	
${ }^{50.5 \%}$	\bigcirc	12,887 12.510	12,847 $\begin{array}{l}12,510 \\ 12,510\end{array}$ 1	
61.7\%	0	${ }_{1}^{12,246}$		
63.0\%	0	12,219	12,219	
64.2% 654.4	0	${ }^{12,172}$	${ }^{12,172}$	
${ }_{6}^{65.7 \%}$	\bigcirc	(12.06312.006 12.006 18	(12,063	
679\%	0	11.661	11,661	
	\bigcirc	11,625 11.149	${ }^{111,625}$	
71.6\%	0	${ }^{11.444}$	11.444	
72.8\%	0	11,410	${ }_{11,410}$	
74.1\%	0	11,406	11,406	
75.3\%	0	11,279	11,279	
76.5\%	0	11,133	111,733	
778.8\%		${ }^{10,785}$	${ }^{10,785}$	
79.0\%	0	10,460	10,460	
- ${ }_{\text {80, }}^{80.2 \%}$	0	10,434 10,345	co,434 10,345	
82.7\%	0	10,281	10,281	
84.0\%	0	10,101	10,101	
85.2\%	0	9,964	9,964	
86.4\%	0	9,785 8.930	${ }_{8}^{9,7835}$	
88.9\%	0	${ }_{8,888}^{8,980}$	${ }_{8,888}^{8,930}$	
90.1\%	0	${ }_{8}^{8,783}$	${ }^{8,783}$	
${ }^{91.4 \%} 9$		${ }_{8,298}$	8,298	
93.8\%	0	${ }_{7} / 411$	${ }_{7}^{8,1111}$	
95.1\%	0	7.051	7.051	
${ }^{96.75 \%}$	0	6.805 6.731	¢,6,805 6,731	
98.8\%	0	6,592	${ }_{6}^{6,592}$	
100.0\%	0	5,365	${ }_{5,365}$	

Table OP-11-b
Resenoir, End of Month Are

		June		
Percent Exceedance		DCR 2015 With Project	${ }^{\text {Absolute }}$	Relative
Probability	End of Month Area	End of Month Area	Difference (ACRE)	Difference (\%)
0.0\%	${ }_{\text {(ACRE) }}^{0}$	${ }_{\text {(14.137 }}^{14}$	14.137	
1.2\%	0	14,137	14,137	
2.5\%	0	14,137	14,137	
3.7\%	0	14,137	14,137	
4.9\%	0	14,137	14,137	
${ }^{6.2 \%}$	0	${ }^{14.137}$	${ }^{14,137}$	
7.4% 8.6%	\bigcirc	14,137 14.137	14,137 14.137	
9.9\%	0	${ }_{1}^{14,137}$	14,137 14.137	
11.1.\%	0	14,137	14,13	
12.3\% 13.6%	0	14,137		
13.6\% 14.8\%	0	14,137 14,137	14, 4137 14,137	
16.0\%	0	14,137	14,137	
17.3\%	0	14,137	14,137	
18.5\%	0	14,137	14,137	
19.8\%	0	14,137	14,137	
21.0\%	0	14,137	14,137	
22.2\%	0	14,137	14,137	
23.5\%	0	14,097	14,097	
24.7% 25.9%	0	14,018	14,018	
${ }_{2}^{25.9 \%}$	0	13.949 13.900	13,949 13900	
28.4\%		13,3909 13,799	13,900 13,799	
29.6\%	0	13,740	13,740	
30.9\%	0	13,692 13.690	13,692 13,690 1	
33.3\%	0	13.601	13,601	
34.6% 35.8%	0	${ }^{13,584} 13.574$	13,584 13,574	
37.0\%	0	${ }^{13,566}$	${ }_{13,566}$	
38.3\%	0	- 13.516	${ }^{13,516}$	
40.7\%	0	${ }^{113,410}$	-13,410	
42.0\%	0	13,401	13,401	
43.2\%	0	13,375	${ }^{13,375}$	
44.4.\%	0	13,373	13,373 13,377	
${ }_{\text {4 }} 4.5 .7 \%$	0	13,367	13,367	
46.9\%	0	13,362 13,353	13,362	
48.19\%	0	13,353	13,353	
49.4\%	0	-13,336	13,336	
50.9\%	0	$\substack{13,335 \\ 13,315}$ 1	(13,335	
53.1\%	0	13,310	${ }_{13,310}$	
54.3\%	0	${ }^{13,308}$	${ }^{13,308}$	
${ }_{\text {c }}^{55.8 \%}$	0	- $\begin{aligned} & 13,293 \\ & 13,272\end{aligned}$	13,293 13,272	
58.0\%	0	${ }^{13,264}$	13,264	
${ }^{50.5 \%}$	\bigcirc	(12,785	- $\begin{aligned} & \text { 12,785 } \\ & 12.788\end{aligned}$	
61.7\%	0	12,674	12,674	
63.0\%	0	12.560	12.560	
${ }^{64.2 \%}$ 6.4\%	0	-12,544		
66.7\%	0	11,897	${ }_{11,897}$	
67.9\%	0	11,890	11,890	
69.1\%	0	${ }^{11,846}$	${ }^{11,846}$	
70.4\%	0	${ }^{11,1827}$	111,827	
71.6\%	0	11.814	111,814	
72.8\%	0	11,509 11.502	+11.509	
75.3\%	0	11,496	${ }^{11,496}$	
76.5\%	0	11,292	11,292	
778.8\%	0	(10,897	-	
80.2\%	\bigcirc	10,674 10,650	- $\begin{aligned} & 10,674 \\ & 10,650\end{aligned}$	
815\%	0	10,444	10,444	
-	0	10,272 0,835	10,272	
${ }^{845.2 \%}$	0	${ }_{9,818}$	${ }_{9,818}$	
86.4\%	0	9,654	9,654	
877.7\%	0	9,456	9,456	
${ }^{80.1 \%}$	0	${ }_{9,214}^{9.303}$	${ }_{9,214}^{9,303}$	
91.4\%	0	9,171	9,171	
92.6\%	0	7,150 6801	7,150	
${ }_{\text {95, }}^{93.8 \%}$	0	${ }^{6.801}$	${ }^{6.801}$	
${ }_{9} 95.13 \%$	0	${ }_{\substack{6,183 \\ 5,893}}^{6,39}$		
97.5\%	0	5.788	5.788	
98.8\%	0	4,309	4,309	
100.0\%	0	4,242	4,242	

Sites Reservoir Project Operations Summary Tables and Bar Charts

Tehama Colusa Canal Intake at Red Bluff, Monthly Diversion

Analysis Period	Monthly Diversion (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\overline{\text { Full Simulaion Period' }}$												
WSIP 2030 Without Proed	100	6	0	0	2	10	97	296	614	646	520	101
WSIP 2030 With Prioet	171	174	772	1,235	1,346	1,054	340	275	540	505	453	62
Difference	72	167	772	1,235	1,344	1,044	243	-21	-75	-141	-67	-39
Percent Difference	71.7\%							-7.2\%	-12.1\%	-21.8\%	-12.8\%	-38.5\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 Without Proed	130	7	0	0	0	6	86	441	900	997	793	154
WSIP 2030 With Project	139	168	946	1,359	1,178	809	452	357	886	885	763	88
Difference	9	162	946	1,359	1,178	802	366	-84	-13	-112	-30	-66
Percent Difference	7.3\%							-19.0\%	-1.5\%	-11.3\%	-3.7\%	-42.9\%
Above Nomal (14.6\%)												
WSIP 2030 Without Proeet	107	4	0	0	0	5	148	415	843	889	687	144
WSIP 2030 With Proeet	276	484	1,408	1,537	1,736	1,127	372	401	643	460	508	55
Difference	169	480	1,408	1,537	1,736	1,123	224	-14	-200	-429	-180	-89
Percent Difference								-3.3\%	-23.7\%	-48.2\%	-26.2\%	-61.9\%
Below Norma (20.7\%)												
WSIP 2030 Without Project	99	5	0	0	0	11	115	266	549	570	449	67
WSIP 2030 with Projet	80	10	125	1,349	1,125	1,281	533	297	405	362	327	55
Difference	-19	4	125	1,349	1,125	1,269	418	31	-145	-208	-122	-12
Percent Difference	-19.1\%							11.6\%	-26.4\%	-36.5\%	-27.2\%	-17.9\%
Dry (19.5\%)												
WSIP 2030 Without Proed	74	4	0	0	5	6	77	142	356	304	241	47
WSIP 2030 Witit Proect	326	185	663	1,147	1,797	1,319	127	122	296	292	217	45
Difference	251	181	663	1,147	1,793	1,313	50	-20	-60	-12	-25	-2
Percent Difference							65.1\%	-14.4\%	-16.9\%	-3.8\%	-10.2\%	-4.0\%
Critical (14.0\%)												
WSIP 2030 Without Proeet	65	12	0	0	6	27	72	124	229	238	256	67
WSIP 2030 With Projet	57	92	838	627	1,016	817	85	150	232	247	247	48
Differene	-8	80	838	627	1,010	790	14	26	4	9	-9	-19
Percent Difference	-12.7\%						18.9\%	20.8\%	1.5\%	3.8\%	-3.5\%	-28.70

$\frac{1}{1 \text { Basedod on the } 82 \text { 2.ver simuliaion period }}$
3 Realive difference of the monthly verage

Glenn Colusa Canal Intake at Hamilton City, Monthly Diversion
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Diversion (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\overline{\text { Full Simulaion Period' }}$												
WSIP 2030 Without Proed	775	450	212	85	68	40	2,213	2,099	2,927	2,830	2,071	553
WSIP 2303 With Priject	708	456	576	232	301	578	2,236	1,879	2,620	2,454	2,057	536
Difference	-67	5	364	147	233	538	23	-221	-308	-375	-15	-17
Percent Difference	-8.6\%	1.2\%					1.0\%	-10.5\%	-10.5\%	-13.3\%	-0.7\%	-3.1\%
Water Year Types ${ }^{2}$												
Wet (3.55\%)												
WSIP 2030 Without Prijet	793	453	219	78	67	31	2,025	2,090	2,964	2,879	2,122	570
WSIP 2303 With Priject	798	448	570	245	278	522	2,168	2,066	2,986	2,892	2,399	570
Difference	5	-4	351	167	210	492	144	-24	21	13	277	-1
Pereen Difference	0.6\%	-1.0\%					7.1\%	-1.2\%	0.7\%	0.4\%	13.1\%	-0.1\%
Above Normal (14.6\%)												
WSIP 2030 Without Project	784	466	219	84	66	27	2,181	2,105	2,983	2,898	2,134	588
WSIP 2303 With Project	722	568	807	298	333	585	2,366	1,952	2,475	2,205	1,904	580
Difference	-62	101	588	214	267	558	185	-153	-508	-693	-230	-8
Peacent Difference	-8.0\%	21.7\%					8.5\%	-7.3\%	-17.0\%	-23.9\%	-10.8\%	-1.3\%
Below Normal (20.7\%)												
WSSP 2030 W Withot Project	790	460	214	89	68	43	2,258	2,162	2,970	2,870	2,151	541
WSIP 2303 with Projet	612	416	299	241	293	684	2,617	2,006	2,524	2,161	2,129	508
Difference	-177	-44	84	152	225	640	359	-156	-445	-709	-22	-33
Percent Difference	-22.5\%	-9.5\%	39.3\%				15.9\%	-7.2\%	-15.0\%	-24.7\%	-1.0\%	-6.1\%
Dry (19.5\%)												
WSIP 2030 Without Proed	784	440	218	86	69	44	2,366	2,203	2,997	2,881	2,155	569
WSIP 23030 Wit Project	779	466	666	206	382	726	2,168	1,879	2,557	2,455	1,962	547
Difference	-5	27	449	120	312	681	-198	-325	-440	-426	-193	-22
Percent Difference	-0.6\%	6.0\%					-8.4\%	-14.7\%	-14.7\%	-14.8\%	-8.9\%	-3.9\%
Critical (14.6\%)												
WSIP 2030 Without Proedt	695	429	176	92	69	64	2,367	1,886	2,643	2,532	1,678	479
WSIP 2330 With Project	550	401	628	161	219	341	1,794	1,238	2,220	2,206	1,519	447
Differene	-145	-28	452	69	150	277	-573	-649	-423	-326	-160	-31
Percent Difference	-20.9\%	-6.6\%					-24.2\%	-34.4\%	-16.0\%	-12.9\%	-9.5\%	-6.6\%

Based on the 8 2-year simulation pefinod
3 Realive difference of the monthy averag

Table OP-03-a
and Pipeline, Mo
Delevan Intake and Pipeline, Monthly Diversion

Delevan Intake and Pipeline, Monthly Diversion Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Diversion (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
${\text { Full Simulion Period }{ }^{\prime} \text { ' }}^{\text {a }}$												
WSIP 2030 Without Projed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Prioet	24	69	339	758	794	386	0	0	57	28	16	12
Difference	24	69	339	758	794	386	0	0	57	28	16	12
Percent Difference ${ }^{\text {a }}$												
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 Witrout Projed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2303 With Priject	15	40	318	923	827	362	0	0	40	41	23	16
Difierence	15	40	318	923	827	362	0	0	40	41	23	16
Percent Difference												
Above Normal (14.6\%)												
WSIP 2030 Without Projed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2303 With Project	0	263	644	1,050	889	487	0	0	130	0	0	0
Difference	0	263	644	1,050	889	487	0	0	130	0	0	0
Percent iffifeence												
Below Norma (20.7\%)												
WSIP 2030 Without Projed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Project	0	0	118	710	668	374	0	0	33	10	45	0
Difference	0	0	118	710	668	374	0	0	33	10	45	0
Percent Difference												
Dr (19.5\%)												
WSIP 2030 Without Projed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2330 Wit Project	98	70	387	656	1,042	404	0	0	69	33	0	12
Difference	98	70	387	656	1,042	404	0	0	69	33	0	12
Percent Difference												
Critical (14.6\%)												
WSIP 2030 W Whtout Proed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2330 Wit Project	0	33	325	327	479	326	0	0	34	48	0	33
Difference	0	33	325	327	479	326	0	0	34	48	0	${ }^{3}$
Percent Difference												

1 Based on the 82 -vear sinulation period

3 Realive difference of the montily averge

Table OP-04-a
Sites Reservoir
Funks Reservoir to Sites Reservoir, Monthly Diversion
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Diversion (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period'												
WSIP 2030 Without Priject	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Project	155	265	1,466	2,134	2,362	1,952	467	120	119	40	117	19
Difference	155	265	1,466	2,134	2,362	1,952	467	120	119	40	117	19
Percent Differences												
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 W Witout Prijet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 WWit Projet	87	206	1,601	2,438	2,203	1,642	624	125	103	56	226	16
Difference	87	206	1,601	2,438	2,203	1,642	624	125	103	56	226	16
Percent Difference												
Above Noma (14.6\%)												
WSIP 2030 Without Priject	0	0	0	0	0	0	0	0	0	0	0	0
wSIP 2030 With Project	185	837	2,638	2,789	2,877	2,151	458	240	282	0	96	0
Diffeence	185	837	2,638	2,789	2,877	2,151	458	240	282	0	96	0
Percent ififeeree												
Below Normal(20.7\%)												
WSIP 2030 Without Project	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Project	0	0	324	2,204	2,011	2,267	865	221	91	11	162	0
Difference	0	0	324	2,204	2,011	2,267	865	221	91	11	162	0
Percent Difference												
Dry (19.5\%)												
WSIP 2030 Without Project	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Project	521	325	1,484	1,924	3,132	2,378	152	0	99	61	1	50
Difference	521	325	1,484	1,924	3,132	2,378	152	0	99	61	1	50
Percent Difference												
Critical (14.6\%)												
WSIP 2030 W Witout Projet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Project	0	113	1,607	1,024	1,647	1,385	3	6	59	60	0	33
Diffeence	0	113	1,607	1,024	1,647	1,385	3	6	59	60	0	33

1 Based on the 82 vever simulation period
3 Realive difference of the monthy averag

Funks Reservoir to Tehama Colusa and Glenn Colusa Canals, Monthly Flow
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulion Period'												
WSIP 2030 Without Prjeed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Priject	423	27	5	1	2	23	344	612	794	886	722	482
Difference	423	27	5	1	2	23	344	612	794	886	722	482
Percent Difierences												
Water Year Typess ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 Without Projed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 Witit Proeet	446	11	1	3	0	6	155	372	285	349	395	530
Difference	446	11	1	3	0	6	155	372	285	349	395	530
Percent Difference												
Above Nomal (14.6\%)												
WSIP 2030 Without Projed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Proeet	493	0	24	1	0	4	149	580	1,058	1,330	1,047	679
Difference	493	0	24	1	0	4	149	580	1,058	1,330	1,047	679
Percent Difierence												
Below Norma (20.7\%)												
WSIP 2030 W Withot Project	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 Witip Priect	528	44	1	0	6	24	227	618	1,019	1,282	861	525
Difference	528	44	1	0	6	24	227	618	1,019	1,282	861	525
Percent Difference												
Dry (19.5\%)												
WSIP 2030 Withot Project	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 Wit Project	405	52	1	0	0	24	478	701	1,035	1,029	900	428
Difference	405	52	1	0	0	24	478	701	1,035	1,029	900	428
Percent Difference												
Critical (14.6\%)												
WSSIP 2030 W Whtout Proed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 Witit Proeet	185	30	2	0	6	74	921	1,014	949	811	646	196
Difference	185	30	2	0	6	74	921	1,014	949	811	646	196
Percent Difference												

1 Based on the 82 -vear simulation period
3 Realive difference of the monthy werare

Table OP-06-a
Funks Reservoir to Deleven Pipeline, Monthly Flow
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
$\overline{\text { Full Simulition Period' }}$												
WSIP 2030 Without Prijet	O	0	0	0	0	0	0	0	0	0	0	0
WSIP 2330 With Project	530	250	35	11	77	43	40	71	835	866	555	695
Difference	530	250	35	11	77	43	40	71	835	866	555	695
Percent Difference ${ }^{\text {a }}$												
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 W Witout Projet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Project	194	70	29	24	18	33	0	0	385	389	54	392
Difference	194	70	29	24	18	33	0	0	385	389	54	392
Percent Difference												
Above Nomal (14.6\%)												
WSIP 2030 Without Priject	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Project	338	125	12	23	0	39	0	0	1,133	1,126	455	932
Difference	338	125	12	23	0	39	0	0	1,133	1,126	455	932
Percent Difference												
Below Norma (20.7\%)												
WSIP 2030 W Witout Projed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Project	671	192	9	0	175	16	0	0	1,221	1,272	730	851
Difference	671	192	9	0	175	16	0	0	1,221	1,272	730	851
Percent Difference												
Dry (19.5\%)												
WSIP 2030 W Witout Projet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Project	858	528	57	0	0	18	0	0	844	1,219	1,024	900
Differene	858	528	57	0	0	18	0	0	844	1,219	1,024	900
Percent Difference												
Cifital (14.6\%)												
WSIP 2030 W Witout Prijet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 Wint Project	786	461	78	0	241	140	271	483	914	555	824	592
Difference	786	461	78	0	241	140	271	483	914	555	824	592

1 Based on the 82 -vear simulition period
3 Realive difference of the monthy verag

Table OP-07-a
o Funks Reserv
Sites Reservoir to Funks Reservoir, Monthly Flow

Sites Reservoir to Funks Reservoir, Monthly Flow Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulation Period'												
WSIP 2303 Without Proed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Priject	954	277	40	12	79	66	384	682	1,628	1,753	1,277	1,176
Difference	954	277	40	12	79	66	384	682	1,628	1,753	1,277	1,176
Percent Difference ${ }^{\text {a }}$												
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 Without Proed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Projet	640	81	30	27	18	39	155	372	670	738	449	921
Difference	640	81	30	27	18	39	155	372	670	738	449	921
Pecrent Difference												
Above Nomal (14.6\%)												
WSIP 2030 Without Proeet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 with Proeet	831	125	36	24	0	43	149	580	2,191	2,456	1,502	1,611
Differene	831	125	36	24	0	43	149	580	2,191	2,456	1,502	1,611
Perean Dififenence												
Below Normal (20.7\%)												
WSIP 2030 Without Proeet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 Witit Proedt	1,199	236	9	0	180	40	227	618	2,240	2,554	1,592	1,376
Difference	1,199	236	9	0	180	40	227	618	2,240	2,554	1,592	1,376
Percent Difference												
Dry (19.5\%)												
WSIP 2030 Without Priect	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 Witit Proect	1,263	579	59	0	0	41	478	701	1,879	2,248	1,924	1,327
Difference	1,263	579	59	0	0	41	478	701	1,879	2,248	1,924	1,327
Percent Difference												
Critical (14.6\%)												
WSIP 2030 W Whtout Proed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Project	970	490	80	0	247	213	1,192	1,498	1,863	1,366	1,470	788
Difference	970	490	80	0	247	213	1,192	1,498	1,863	1,366	1,470	788
Percent Difierence												

1 Based on the 82 -year simulition period

3 Realive difference of the monthly average

Table OP-08-a Delevan Intake and Pipeline (to Local Use), Monthly Diversion Long-term Average and Average by Water Year Type												
	Monthly Diversion (CFS)											
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulation Period'												
WSIP 2303 W Witrout Projed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Projet	0	0	0	0	0	0	0	0	0	0	0	0
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference?												
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 Without Projed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With riject	0	0	0	0	0	0	0	0	0	0	0	0
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference												
Above Norma (14.6\%)												
WSIP 2030 W Whtrout Proed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Priject	0	0	0	0	0	0	0	0	0	0	0	0
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference												
Below Normal (20.7\%)												
WSIP 2030 W Witrout Proed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With riject	0	0	0	0	0	0	0	0	0	0	0	0
Difference	0	0	0	0	0	-	0	0	0	0	0	0
Percent Difference												
Dry (19.5\%)												
WSIP 2030 W Witrout Prjedt	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Project	0	0	0	0	0	0	0	0	0	0	0	0
Difference	0	0	0	-	0	,	0	0	0	0	0	0
Percent Difference												
Critical (14.6\%)												
WSIP 2303 W Without Projed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2330 Witit Proeet	0	0	0	0	0	0	0	0	0	0	0	0
Difference	0	0	0	0	0	0	0	0	0	0	0	,
Percent Difference												

1 Based on the 82 vever simulation pericod

3 Realivive difference of the montily average
Delevan Intake and Pipeline (tot Local Use), Monthly Diversion
Full Simulation Period

Wet Water Year Types (32\%) WSIP 2030 With Project

Below Normal Water Year Types (17\%)
-WSIP 2030 Without Project \quad WSIP 2030 With Project

Delevan Intake and Pipeline (to
Dry Water Year Types (22%)
-WSIP 2030 Without Project \quad WSIP 2030 With Project

Critical Water Ye

Table OP-09-a
Sites Reservoir, End of Month Storage

Long-term Average and Average by Water Year Type												
Analysis Period	End of Month Storage (TAF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simultion Period ${ }^{\text {a }}$												
WSIP 2030 Without Project	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2 230 With Project	1,038	1,038	1,128	1,261	1,391	1,506	1,500	1,459	1,361	1,246	1,167	1,093
Difference	1,038	1,038	1,128	1,261	1,391	1,506	1,500	1,459	1,361	1,246	1,167	1,093
Pereent Difference ${ }^{\text {a }}$												
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2303 Without Prjeet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2330 With Prject	1.515	1,523	1,623	1,517	1,641	1,740	1,751	1,730	1,688	1,636	1,613	1,552
Difference	1,515	1,523	1,623	1,517	1,641	1,740	1,751	1,730	1,688	1,636	1,613	1,552
Percent Difference												
Above Noma (14.6\%)												
WSIP 2030 Without Prjeet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2330 Wit Project	1,136	1,178	1,341	1,398	1,563	1,692	1,707	1,680	1,558	1,397	1,302	1,200
Difference	1,136	1,178	1,341	1,398	1,563	1,692	1,707	1,680	1,558	1,397	1,302	1,200
Pereent Difference												
Below Normal (20.7\%)												
WSIP 2030 Without Project	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2303 with Priject	943	929	951	1,266	1,369	1,506	1,535	1,504	1,368	1,202	1,106	1,019
Difference	943	929	951	1,266	1,369	1,506	1.535	1,504	1,368	1,202	1,106	1.019
Percent Difference												
Dr (19.5\%)												
WSIP 2030 Without Project	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Project	797	783	873	1,068	1,245	1,388	1,358	1,309	1,195	1,052	926	845
Difference	797	783	873	1,068	1,245	1,388	1,358	1,309	1,195	1,052	926	845
Percent Difference												
Critical (14.6\%)												
WSIP 2330 W Withut Project	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Project	402	379	475	842	921	992	906	810	696	608	512	464
Difference	402	379	475	842	921	992	906	810	696	608	512	464
Percent Difference												

$\frac{\text { Percent bifferencee }}{1 \text { Based of the } 82 \text {-year simulution period }}$
3 Reative difference of the monthly verage

	Long-term Average and Average by Water Year Type											
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulation Period ${ }^{\text {a }}$												
WSIP 2030 Without Prjeet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2383 With Project	455	454	463	475	486	496	495	492	484	474	466	460
Differene	455	454	463	475	486	496	495	492	484	474	466	460
Pereent Difference ${ }^{\text {a }}$												
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 Without Proed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2330 With Project	498	499	506	497	507	515	516	514	511	507	506	501
Difference	498	499	506	497	507	515	516	514	511	507	506	501
Percent ifiference												
Above Noma (14.6\%)												
WSIP 2030 Without Proeet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2330 Wit Project	468	471	484	487	501	511	512	511	502	489	481	473
Difference	468	471	484	487	501	511	512	511	502	489	481	473
Pereent Difference												
Below Normal (20.7\%)												
WSIP 2030 W Withot Proed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 23030 wit Priject	449	448	450	475	483	495	499	496	486	472	464	456
Difference	449	448	450	475	483	495	499	496	486	472	464	456
Percent Difierence												
Dry (19.5\%)												
WSIP 2030 Withot Proect	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2380 With Project	434	432	442	459	475	487	484	480	470	458	445	438
Difference	434	432	442	459	475	487	484	480	470	458	445	438
Pereent Difference												
Critical (14.6\%)												
WSIP 2030 W Whtout Prjeed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2303 With Project	386	384	399	438	446	454	446	436	423	413	400	394
Difference	386	384	399	438	446	454	446	436	423	413	400	394
Pereent Difference												

$\frac{\text { Percent bifferencee }}{1 \text { Based of the } 82 \text {-year simulution period }}$
3 3Reative difference of ithenontly yurearge
3 Realive difference of the monthly vereage

Table OP-11-a

Table OP-11-a Sites Reservoir, End of Month Area												
						of Month	Area (AC					
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulatio Period'												
WSIP 2030 Without Proedt	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Proed	10,844	10,824	11,293	11,918	12,474	12,981	12,951	12,774	12,365	11,868	11,451	11,105
Difference	10,844	10,824	11,293	11,918	12,474	12,981	12,951	12,774	12,365	11,868	11,451	11,105
$\xlongequal{\text { Percent Difference? }}$												
				Water	ear Types ${ }^{2}$							
Wet (30.5\%)												
WSIP 2030 Without Proedt	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 Witit Proeet	13,160	13,187	13,512	13,071	13,547	13,903	13,948	13,878	13,740	13,567	13,491	13,288
Difference	13,160	13,187	13,512	13,071	13,547	13,903	13,948	13,878	13,740	13,567	13,491	13,288
Percent Difference												
Above Nomal (14.6\%)												
WSIP 2030 Without Project	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Proeet	11,676	11,847	12,492	12,563	13,223	13,718	13,780	13,706	13,306	12,731	12,359	11,944
Difference	11,676	11,847	12,492	12,563	13,223	13,718	13,780	13,706	13,306	12,731	12,359	11,944
Percent Difference												
Below Normal (20.7\%)												
WSIP 2030 Without Project	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Proeet	10,686	10,624	10,719	11,867	12,275	12,945	13,120	13,029	12,547	11,875	11,432	11,048
Difference	10,686	10,624	10,719	11,867	12,275	12,945	13,120	13,029	12,547	11,875	11,432	11,048
Pereent Difference												
Dry (19.5\%)												
WSIP 2030 Without Project	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Project	9,761	9,658	10,202	11,105	11,964	12,564	12,450	12,240	11,731	11,044	10,384	9,956
Difference	9,761	9,658	10,202	11,105	11,964	12,564	12,450	12,240	11,731	11,044	10,384	9,956
Percent Difierence												
Critical (14.6\%)												
WSIP 2030 W Whtout Prjeed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2030 With Priject	6,857	6,716	7,735	10,029	10,454	10,932	10,473	9,893	9,149	8,553	7,741	7,332
Difference	6,857	6,716	7,735	10,029	10,454	10,932	10,473	9,893	9,149	8,553	7,741	7,332
Percent Difference												

$\frac{\text { Percent Differernce }}{1 \text { Based on the } 82 \text {-vear simuludion period }}$
2As defined by the Sacramentio valley $40-30.301$ ndex Waler Year Hydrologic Classification (SWRCB D-164, 1999)
3 Realive difference of the monthly vereage

Sites Reservoir Project Operations Exceedance Probability Charts and Tables

Tehama Colusa Canal Intake at Red Bluff, Monthly Diversion

Table OP-01-b

Table OP-01-b

$\underset{\substack{\text { Pexceent } \\ \text { Probabaility }}}{\text { P. }}$	Febray			
	WSIP Prosowithout	WSIP 203 With Project	Absolute	Relative
	Monthly Diversion	Monthly Diversion	Difference	Difference (\%)
O20	(CFs)	[CFFS)		
	${ }^{78}$	2,121	2,043	
1.2\%	57	2,121	2.065	
2.5\%	11	2,121	2,110	
3.7\%	4	${ }^{2,121}$	2,117	
4.9\%	2	2,121	2,119	
6.2\%	0	2,121	2,121	
7.4\%	0	${ }^{2,121}$	2,121	
8.6\%	0	2,121	${ }_{2,121}$	
9.9\%	0	${ }_{2,121}^{2,121}$	${ }_{2,121}$	
11.19\%	0	2,121	${ }^{2,121}$	
${ }^{12.3 \%}$	0	${ }^{2,121}$	2,121	
13.6\%	0	2,121	${ }^{2,121}$	
14.8\%	O	${ }^{2,121}$		
17.3\%	0	${ }_{\substack{2,121 \\ 2,121}}^{2}$		
18.5\%	0	${ }_{2,121}$	${ }_{2,121}$	
19.8\%	0	2,121	2,121	
21.0\%	0	2,121	2,121	
22.2\%	0	2,121		
${ }^{23.5 \%}$	0	2,121	2,121	
24.7\%	0	2,121	2,121	
25.9\%	0	2,121	2,121	
27.2\%	0	2,121	2,121	
28.4\%	0	${ }^{2,121}$	2,121	
29.6\%	0	${ }_{2,121}$	${ }^{2,121}$	
- 3 30.9\%	0	${ }^{2,121}$	${ }^{2,121}$	
32.1\%	0	${ }_{2}^{2,121}$	2,121	
33.3\%	0	2,121	${ }_{2,121}^{2,121}$	
34.6\%	0	${ }_{2}^{2,121}$	2,121	
${ }^{35.78 \%}$	0	2,121	2,121	
- 37.0%	0	2,121	${ }_{\text {2,121 }}$	
38.3\%	0	2,121	${ }^{2,121}$	
${ }^{3} \mathbf{4 . 7 \%}$	0	${ }_{2,112}^{2,121}$		
42.0\%	0	${ }_{2,121}^{2,121}$	${ }_{2,121}$	
43.2\%	0	2,121	2,121	
44.4\%	0	2,121		
45.7\%	0	2,121	2,121	
46.9\%	0	2,121	2,121	
48.1\%	0	2,121	2,121	
49.4\%	0	2,121	2,121	
50.6\%	0	2,121	2,121	
51.9\%	0	2,121	2,121	
53.19\% 54.36	0	2,121	2,121	
年 54.3%	0	${ }^{1,935}$	${ }^{1,935}$	
55.6\%	0	1,932	1,932	
${ }_{\text {ckem }}^{56.8 \%}$	0	1,918	1,918	
${ }_{\text {5 }}^{58.3 \%}$	0	1,905	1,905	
${ }^{59.3 \%}$	0	1,735	1,735	
${ }^{60.5 \%}$	0	${ }_{1}^{1,438}$	${ }^{1} 1,4388$	
61.7\%	O	${ }_{1}^{1298}$	${ }_{1}^{1,298}$	
${ }^{63.0 \%}$	0	1,192	${ }^{1,1,192}$	
${ }^{64.24 \%}$	0	${ }^{1} 11084$	${ }_{\text {l }}$	
${ }_{66.7 \%}^{65.4 \%}$	0	${ }_{968}^{1,108}$	${ }_{968}^{1,108}$	
67.9\%	0	182	182	
9.1\%	0	79	79	
70.4\%	0	65	65	
1.6\%	0	${ }^{36}$	${ }^{36}$	
72.8\%	0	${ }_{28}^{26}$	${ }^{26}$	
74.1\%	0	㤑	18	
75.3\%	0	${ }^{18}$	18	
76.5\%	0	12	12	
77.8\%	0	10	10	
79.0\%	0	4	${ }_{4}^{4}$	
80.2\%	0	2	2	
81.5\%	0	0	0	
${ }^{82.7 \%}$	0	0	0	
85.2\%	0	0	0	
86.4\%	0	0	0	
87.7\%	0	0	0	
90.1\%	0	0	0	
91.4\%	0	0	0	
92.6\%	0	0	0	
93.8\% ${ }_{\text {9, }}$	0	0	0	
956.1\%	0	0	0	
97.5\%	0	0	0	
98.8\%	0	0	0	
100.0\%	0	0	0	

Table OP-01-b

PercentExceedanceProbability	June			
	WSIP 2 230 Proiet Without	WSIP 2030 With Project	Absolute	
	Monthly Diversion	Monthly Diversion	Difierence	Difference (\%)
${ }^{\text {0.0\% }}$	(CFFS)	Cras		
1.2\%	${ }_{1}^{1,287}$	${ }_{1}^{2,288}$	550	${ }_{4}$
2.5\%	(1,285	${ }^{\text {l, }} 1.468$	${ }_{181}^{550}$	${ }_{1410 \%}^{42.7 \%}$
3.7\%	1235	${ }^{1,444}$	210	
4.9\%	1,230	${ }_{1} 1,338$	108	\%
6.2\%	1,198	${ }_{1,290}$	93	7\%
7.4\%	1,121	1,289	168	15.0\%
${ }_{\text {9.9\% }}^{\text {8.9\% }}$	${ }_{\substack{1,1,05}}^{1,020}$		${ }_{75}^{92}$	
111\%	${ }_{1}^{1,055}$	${ }_{1}^{1127}$	74	
12.3\%	${ }_{1}^{1,022}$	${ }_{1,076}^{1,07}$	53	5.2\%
13.6\%	1.017	980		
14.8\%	945	938	-7	-0.8\%
16.0\%	938	937	-1	-0.19
17.3\%	${ }^{931}$	882	49	-5.3\%
18.5\%	925	847	-79	-8.5\%
19.8\%	905	845	-60	${ }^{6.6}$
21.0\%	884	${ }_{785}$	-99	-11.2\%
${ }^{22.2 \%}$	872	771	-101	-11.5
23.5\%	802	696	-106	-13.28
24.7\%	7780	618	162	-20.8
${ }^{25.7 .2 \%}$	${ }_{771}^{773}$	610 596	-175	-21.1\%
28.4\%	769	560	-209	${ }^{-2.7 .1 \%}$
29.6\%	771	548	${ }^{213}$	-28.0\%
332.1\%	${ }_{739}$	54	-197	-26.6\%
33.3\%	${ }^{728}$	479	-248	
34.6\%	714	464	249	
35.8\%	711	456	256	-35.9\%
- $\begin{aligned} & 37.0 \% \\ & 38.3 \%\end{aligned}$	704	450	254	-36.1\%
38.5\%	695 693	${ }_{423}^{441}$	-270	
40.7\%	690	414	-276	-40.0\%
42.0\%	684	409	276	-40.3\%
43.2\%	681	405	276	-40.5\%
44.4\%	670	${ }^{390}$	281	-41.9\%
45.9\%	${ }_{653}^{661}$	${ }^{385}$	-276	-41.8\%
48.1\%	653	377	-276	-42.3\%
49.4\%	642	373	-269	-41.9\%
	641 596	373 369	-269	-419\%
${ }^{5} 51.9 \%$	596	369	-227	
${ }^{53.43 \%}$	年5188	364	-224	
55.6\%	565	${ }_{358}$	-206	3.65\%
56.8\%	${ }_{560} 5$	355	205	
	559 558	345	-214	-38.3\%
${ }_{60.5 \%}^{55.5 \%}$	${ }_{551}^{558}$	340	-211	-38.3\%
61.7\%	539	337	-201	-37.4\%
63.0\%	${ }_{5}^{536}$	${ }^{337}$	200	-37.2\%
${ }^{64.2 \%}$	530	${ }^{336}$	194	-36.6\%
65.4\%	508	335	172	-33.9\%
${ }^{66.7 \%}$	504	335	169	-33.5\%
-67.9\%	471	334	-137	-29.1\%
69.1\%	461	${ }^{322}$	138	-30.0\%
70.4\%	449	311	138	-30.7\%
71.6\%	407	306	101	${ }^{24.9 \%}$
72.4.1\%	374 361	${ }_{304}^{305}$	-69	-18.3\%
74.1.3\%	361	304	-57	5.9\%
76.5\%	${ }_{322} 32$	300	${ }^{-28}$	5\%
77.8\%	322	284	-36	-
79.0\%	303	${ }_{281}^{284}$	-22	-7.3\%
80.2\%	${ }_{263}^{270}$	${ }^{280}$	10	3.8\%
${ }^{81.5 \%}$	263	${ }^{271}$	8	3.0\%
84.0\%	${ }_{251}^{260}$	${ }_{267} 21$	16	${ }_{\text {6.3\% }}^{4.4 \%}$
85.2\%	242	257	15	6.2\%
86.4\%	209	${ }^{255}$	46	22.0\%
877\%\%	${ }_{171}^{204}$	251	47	23.3
88.9\%	171	${ }^{247}$	76	44.6\%
${ }^{90.11 \%}$	148	${ }^{241}$	${ }^{93}$	63.1\%
91.4\%	146	${ }^{241}$	95	65.2\%
92.6\% ${ }_{938 \%}$	142	${ }^{240}$	98	69.0\%
93.8\%	${ }^{120}$	${ }_{218}^{228}$	109	90.9\%
${ }_{96.3 \%}^{95.3 \%}$	116	114	${ }^{-31}$	${ }^{-2.2 \%}$
97.5\%	${ }_{48}$	${ }_{54}^{93}$	${ }^{21}$	18.1\% 12.4%
${ }^{98.8 \%}$	34	48	14	40.8\%
100.0\%	0	0	0	

Figure OP-02-b
Glenn Colusa Canal Intake at Hamilton City, Monthly Diversion

Table OP-02-b

				Octo
$\begin{gathered} \text { Percent } \\ \text { Exceenance } \\ \text { Probobaility } \end{gathered}$	WSIP 2030 W.thout Monthily i iversision	WSIP 2033 With Project	Abslute	
		Montily Diversion		Difference (\%)
${ }_{\text {cos }}^{\text {(\%) }}$	${ }_{8}^{\text {(CFSS }}$	${ }_{\text {(CFSS) }}^{2257}$	${ }^{1,428}$	172.3\%
1.2\%	828	${ }_{2} 2,230$	${ }_{1,402}$	169.4\%
2.5\%	826	2,201	${ }_{1}^{1,375}$	166.4\%
3.7\%	825	916	90	11.0\%
4.9\%	825	872	47	5.7\%
6.2\%	825	839	14	1.7\%
7.4\%	823	826	3	0.4\%
8.6\%	823	823	0	0.0\%
9.9\%	${ }^{823}$	${ }^{821}$	-2	-0.2\%
11.19\%	${ }_{822} 8$	${ }^{806}$	-16	-2.0\%
	822 822	${ }_{8}^{803}$	-19	-2.3\%
13.6% 148%	${ }_{821}^{822}$	803 799	-19 -23	-2.3\%
14.8\%	${ }_{821}^{821}$	${ }_{799} 7$	${ }^{23}$	-2.7\%
-	${ }_{821}^{821}$	799 798	$\begin{array}{r}\text {-23 } \\ -25 \\ \hline\end{array}$	--2.8\%
18.5\%	820	795	-25	-3.1\%
19.8\%	819	794	${ }_{-25}$	-3.0\%
21.0\%	819	791	${ }^{28}$	-3.4\%
	819 818	787 785	- -33 -32	- -3.9%
24.7\%	816	780	-36	4.4\%
25.9\%	816	779	-37	-4.5\%
-27.2\%	${ }_{815} 815$	${ }_{776} 77$	-39	4.8\%
28.4\%\%	815	770	-44	-5.4\%
30.9\%	814 813	7488 7788	${ }_{-64}^{-46}$	${ }_{-7.9 \%}^{-5.7 \%}$
32.1\%	812	743	-69	-8.5\%
33.3\%	809	${ }_{742}$	-67	-8.3\%
34.6\%	${ }_{809}^{809}$	${ }_{741}^{742}$	${ }_{-66} 67$	-8.3\%
35.8\%	${ }_{807}^{807}$	${ }_{741}^{741}$	${ }_{-66}$	-8.2\%
俍37.0\%\%	${ }_{806} 80$	${ }_{738}^{741}$	${ }_{-68} 68$	-8.1\%
38.5\%\%	${ }_{806} 805$	7388 737	${ }^{-68}$	-8.4\%
39.5\%	${ }_{805}^{805}$	737 736	-68	-8.5\%
${ }^{40.7 \%}$	${ }_{802}^{803}$	729 77	- -73	-8.3\%
43.2\%	799	727	-72	-9.0\%
44.4\%	799	${ }^{727}$	-72	-9.0\%
	${ }_{796} 7$	${ }_{715}^{721}$	-76	-9.9\%
48.1\%	${ }_{795}$	714	-81	-10.2\%
49.4\%	795	712	${ }_{-82}$	-10.3\%
50.6\%	794	709	-85	-107\%
51.9\%	793	709	${ }^{85}$	
53.19\% 54.3%	792	707	-85	-10.7\%
	791	688	103	-13.0\%
	791	688	-103	-13.0\%
55.8\% ${ }_{\text {58.0\% }}$	790	680	-110	-13.9\%
559.3\%	${ }_{787}^{787}$	679	-108	-13.7\%
69.3\%\%	${ }_{787}^{787}$	674	-113	-14.3\%
60.7\% 6	787 781	656 648	-130	-16.6\%
61.7\% 6	${ }_{771}^{781}$	${ }_{648} 6$	-133	-17.1\%
64.2\% 6	779	${ }_{6}^{626}$	-153	-19.7\%
66.2\%\%	${ }_{777} 77$	619	-179	
-65.4\%	${ }_{773}^{777}$	${ }_{601}^{602}$	-176	--22.6\%
67.9\%	772	596	-176	-22.8\%
${ }_{70.4 \%}^{69.1 \%}$	${ }_{767} 78$	579	-189	-24.6\%
71.6\%	767	${ }_{533}^{574}$	${ }_{-234}$	-30.5\%
72.8\%	765	531	-234	-30.5\%
74.1\%	764	527	-237	-31.0\%
75.3\%	${ }_{7} 71$	506	-255	-33.5\%
76.5\%	760	504	256	-33.7\%
778.8	${ }_{7} 54$	504	-250	-33.
79.0\%	749	497	${ }^{253}$	-33.7\%
-	${ }_{7}^{743}$	493	-250	-33.7\%
- ${ }_{\text {815.5\% }}^{8.7 \%}$	${ }^{743}$	${ }^{481}$	-262	-35.2\%
827\%	${ }_{741} 7$	468	-274	-36.9\%
-84.0\%	${ }_{741} 71$	464	${ }^{-277}$	-37.4\%
	${ }_{739} 7$	${ }_{461}^{462}$	-279	隹 -37.6%
87.7\%	${ }_{7} 788$	452	-286	-38.7\%
88.9\%	${ }_{7}^{734}$	450	283	-38.6\%
${ }^{90.1 \%}$	${ }_{722} 72$	${ }^{443}$	-284	-39.1\%
${ }^{99.4 \% \%}$	${ }^{22}$	${ }_{4} 4$	-280	-38.7\%
93.8\%	${ }_{602}$	${ }_{434}^{436}$	-168	-27.9\%
95.1\%	601	424	-177	-29.4\%
96.3\%	596	410	-187	-31.3\%
98.8\%	553	${ }_{335}$	-192	-3.3.5\%
100.0\%	532	253	-279	-52.5\%

Table OP-02-b

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Prohahility } \end{gathered}$	Fobruary			
	WSP 2 2030 Without	WSIP 2030 With Project	Absolute	
	Monthly Divesion	Montly Diversion	(iffers)	Difference (\%)
\% \%	(CFF)	(cFs)		
1.2\%	107	5	406	380.9\%
${ }^{1.25 \%}$	${ }_{81}^{103}$	513	${ }_{432}$	${ }_{5}^{40342 \%}$
3.7\%	80	513	433	541.7\%
4.9\%	74	513	439	590.2\%
6.2\%	68	513	445	650.0\%
7.4\%	68	513	445	650.0\%
8.6\%	${ }^{68}$	513	445	650.0\%
9.9\%\%	68	513	445	
19.1\%\%	${ }_{68}^{68}$	${ }_{513}$	445	
(12.6\%	${ }_{68}^{68}$	513 513	${ }_{445}^{445}$	${ }_{6}^{6550.0 \%}$
14.8\%	68	513	${ }_{445}^{445}$	650.0\%
16.0\%	68	513	445	
- 17.3%	68	513	445	650.0\%
18.9\% ${ }^{19.8 \%}$	68	513	445	6550.0\%
-19.8\%	68	513	445	650.0\%
${ }^{21.2 .2 \%}$	${ }_{68}^{68}$	${ }_{513}^{513}$	${ }_{445}^{445}$	650.0\%
23.5\%	68	513	445	650.0\%
24.7\%	68	${ }^{513}$	445	650.0\%
25.7.2\%	${ }^{68}$	513	445	650
27.2\%	${ }^{68}$	513	${ }^{445}$	650.0%
${ }^{28.4 \%}$ 29.6\%	${ }^{68}$	${ }_{513}$	445	650.0\%
30.9\%	${ }_{68}^{68}$	513 496	${ }_{428}^{445}$	6525.5\%
32.1\%	68	496	428	625.5\%
33.3\%	68	496	428	625.5\%
34.6\%	${ }_{68}^{68}$	${ }_{495}^{495}$	${ }_{427}^{427}$	${ }^{624.1 \%}$
375.0\%	${ }_{68}^{68}$	495	${ }^{427}$	624
38.3\%	${ }_{68}^{68}$	${ }_{495}^{495}$	${ }_{427}^{427}$	624.1\%
39.5\%	68	495	427	624,
40.7\%	${ }^{68}$	495	427	
42.0\%	68	495	427	
${ }^{43.2 \%}$	68	479	${ }^{411}$	600.5\%
${ }_{4}^{44.7 \% \%}$	${ }_{68}^{68}$	${ }_{471}^{471}$	${ }_{402}^{402}$	
46.9\%	68	471	402	587.8\%
48.1\%	68	471	402	587.8\%
49.4\%	${ }^{68}$	471	402	587.8\%
50.6\%	${ }_{68}^{68}$	471	${ }^{402}$	587.8\%
53.1\%	${ }^{68}$	471	${ }^{402}$	587.8\%
54.3\%	${ }_{68}^{68}$	${ }_{186}^{318}$	${ }_{118}^{251}$	367.4\%
55.6\%	${ }^{68}$	${ }^{159}$	91	132.9\%
56.8\%	${ }^{68}$	157	89	129.9\%
年58.0\%	${ }_{68}^{68}$	135 100	${ }_{32}$	${ }_{4}^{97.2 \%}$
60.5\%	碞 68	100	${ }_{12}$	+16.9\%
61.7\%	68	74	6	8.7\%
63.0% 64.2%	${ }^{68}$	${ }^{68}$	0	0.0\%
- $6.5 .4 \%$		68 68	\bigcirc	-0.0\%
66.7\%	68	68	0	0.0\%
-67.9\%	68	68		
	68	${ }^{68}$	0	0.0\%
71.6\%	68	68	0	0.0\%
72.8\%	68	68	0	0.0\%
74.19\%	${ }_{66}^{66}$	${ }_{68}^{68}$	2	3.6\%
75.3\%	${ }_{66}^{66}$	${ }^{68}$	2	3.6\%
76.5\%	66	${ }^{68}$	2	3.6\%
77.8\%		${ }_{68}^{68}$	2	3.6\%
80.2\%	66	${ }_{68}$	2	3.6\%
81.5\%	${ }^{66}$	68	2	3.6\%
82.7% 840%	${ }_{66}^{66}$		2	
84.0\%	${ }_{66}^{66}$	68 66	${ }_{0}^{2}$	${ }^{3.6 \%}$
${ }_{\text {c }}^{\text {85.4\% }}$	${ }_{66}^{66}$	${ }_{66}^{66}$	\bigcirc	0.0\%
87.7\%	${ }_{66}^{66}$	${ }^{66}$	0	0\%
88.9\%	${ }_{66}^{66}$	${ }^{66}$	0	0.0\%
90.4\%	66 66	${ }_{63}^{66}$	${ }_{-3}$	-0.0\%
92.6\%	66	${ }^{62}$	4	-5.5\%
${ }^{955.1 \%}$	${ }_{52}^{62}$	54	-8	-12.9\%
96.3\%	52	26	-26	.50.2\%
97.5\%	52	${ }^{26}$	-26	-50.2\%
98.8\% 100.0	50 50	${ }_{26}^{26}$	-24	-48.5\%
100.0\%	50	26	-24	-48.7\%

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	June			
	WSIP 2 230 Proiet Without	WSII 2030 With Project	Absolut	
	Montlil Diversion	Montly Diversion	difierence	Difference ${ }^{(\%)}$
${ }^{\text {0.0. }}$ (\%)	(CFFS)	(CFF)		0.0\%
0.0\%	3,000	${ }^{3.000}$	0	${ }^{0.0 \%}$
1.2\%	${ }^{3.000}$	3,000		
2.5\%	3,000	${ }^{3}, 000$	0	
3.7\%	3,000	3,000	O	
4.9\%	${ }^{3,000}$	3,000		
${ }^{6.4 \%}$	3,000	${ }^{3,000}$		\%
8.6\%	3,000	3,000	0	0.0\%
9.9\%	3,000	3,000	0	00\%
11.1\%	3,000	3,000	0	
${ }^{12.3 \%}$	3,000	3,000	0	
+13.6\%	3,000	3,000	0	0.0\%
14.8\% 16.0%	3,000	${ }^{3,000}$	0	0.0\%
-	3,000	3,000 3,000	0	- 0.0%
18.5\%	3,000	3,000	0	0.0\%
19.8\%	3,000	3,000	0	0.0\%
21.0\%	3,000	3.000	0	0.0\%
${ }_{\text {22, }}^{\text {22\% }}$	3,000	3,000	0	0.0\%
23.5\%	3,000	3,000	0	0.0\%
22.7\% ${ }^{24.9 \%}$	3,000	3,000	0	0.0\%
227.2\%	3,000	3,000	0	0.0\%
27.4\%\%	3,000	3,000	0	0.0\%
28.4\% ${ }^{29.6 \%}$	3.000 3	3.000 3	0	0.0\%
20.6\% ${ }^{29.9 \%}$	3,000 3,000	3,000 3,000	\bigcirc	0.0\%
32.1\%	${ }_{3,000}^{3.000}$	${ }_{3}^{3.000}$	0	0.0\%
33.3\%	3,000	3.000	0	0.0\%
33.6\%	3,000	3,000	0	0.0\%
	3.000 3.000	3.000 3.000	0	0.0\%
38.3\%	3,000	3,000	0	0.0\%
39.5\%	3,000	3,000	0	0.0\%
40.7\%	3,000	2,998	2	-0.1\%
42.0\%	3,000	${ }_{2}^{2,998}$	-2	-0.1\%
年4.4.4\%	${ }^{3.000}$	2,996	4	-0.1\%
${ }_{45.7 \%}^{44.4 \%}$	3,000	${ }_{\text {2,974 }}^{2,978}$	${ }_{-26}$	${ }^{-0.9 \%}$
46.9\%	3,000	2,973	-27	-0.9\%
48.19\%	3,000	$\begin{array}{r}2,961 \\ \text { 2935 } \\ \hline\end{array}$	- -65	-1.3\%
49.4\% 50.6\%	3,000 3,000	2,935	-65	${ }_{-2.2 \%}$
50.9\%	3,000 3.000	2.916 2.915	$\begin{array}{r}-84 \\ -85 \\ \hline\end{array}$	-2.8\%
55.9\%	${ }^{3.000}$	2,915	-85	-2.8\%
${ }^{534.3 \%}$	3.000 3.000	${ }_{2,871}^{2,882}$	-118	- ${ }_{-4.3 \%}$
55.6\%	3,000	2,860	-140	-4.7\%
	3,000	${ }^{2}, 785$	-215	-7.2\%
59.3\%	3,000	${ }_{\substack{2,731}}^{2,752}$	-269	-9.0\%
60.5\%	3,000	${ }_{2}^{2,646}$	-354	-11.8\%
61.7\%	3,000	2.576	424	14.1\%
	3.000 3.000	2.564 2.555	- ${ }_{-4}^{-436}$	- -14.5%
65.4\%	3,000	${ }_{2,512}^{2,545}$	-488	-16.3\%
${ }^{66.7 \%}$	3,000	${ }_{2}^{2,492}$	-508	-16.9\%
67.9\%\%	2,998	2.490	-508	-16.9\%
69.1\%	2,996	${ }_{2,358}$		-21.3\%
	2,988	${ }_{2,347}$	-641	-21.4\%
71.6\%	${ }_{\text {2,985 }}$	${ }_{2}^{2,342}$	-643	-21.5\%
72.8\%	2,982 2,977	2,312 2,235	-670	-22.9\%
75.3\%	${ }_{2}^{2,974}$	${ }_{2}$	-843	-28.4\%
76.5\%	2,953	2,037	-916	-31.0\%
778\%	${ }_{2}^{2,953}$	2.037 2037	-916	-31.0\%
79.0\%	${ }_{\text {2,950 }}^{2,953}$	2,037 2.036	-916	-31.0\%
81.5\%	${ }_{2,940}$	${ }_{2,036}$	-904	-30.7\%
82.7\%	2,940	2,034	-906	-30.8\%
84.0% 852%	${ }_{2}^{2,918}$	2,031	-87	-30.4\%
${ }_{\text {cke }}^{85.2 \%}$	${ }_{2,851}^{2,915}$	${ }_{\text {2,015 }}^{2,023}$	-892	-
87.7\%	2,840	1,985	855	-30.1\%
88.9\%	2,827	1,966	862	30.5\%
90.1\%	2,792	1,960	-832	-29.8\%
91.4\%	2,787	1,954	833	-29.9\%
- 92.6%	2,610	${ }^{1,920}$	-690	-26.4\%
${ }^{93.8 \%}$	2,434	1,907	-527	-21.7\%
${ }^{95.1 \%}$	${ }_{2}^{2,338}$	1,734	-604	-25.8\%
96.3% 975%	${ }_{2}^{2,326}$	1,589	-737	-31.7\%
${ }_{98.8 \%}^{97.5 \%}$	2,296 2029	1,551	-745	-32.4\%
100.0\%	2,236	1,392	-844	-37.7\%

Figure OP-03-b
Delevan Intake and Pipeline, Monthly Diversion

Table OP.03.b

Table OP.03-b

		Febrrary		
Percent	WSIP 2030 Weithout	WSIP 2030 With Project		Relative
Probability	Montly Diversion	Monthly Diversion	Difference	Difference (\%)
\% \%	(cFs)	(CFS)		
	0	2,000	2,000	
1.2\%	0	2,000		
2.5\%	0	2.000	2,000	
3.7\%	0	2,000		
4.9\%	0	2.000		
6.2\%	0	2.000	2,000	
7.4\%	0	2.000	2,000	
8.6\%	0	2,000	2,0	
${ }^{9.9 \%}$	0	${ }^{1,887}$	1,87	
11.1\%	0	1,873	1,873	
${ }^{12.36 \%}$	0	${ }^{1,7735}$	1,735	
14.8\%\%	0	1701		
16.0\%	0	${ }_{1}^{1,701}$		
17.3\%	0	${ }_{1}^{1,689}$	${ }^{1,7699}$	
18.5\%	0	1,689	1,66	
19.8\%	0	1.689		
21.0\%	0	1.689		
${ }^{22.2 \%}$	0	1,689		
${ }^{23.5 \%}$ 24.7\%	0	1.654	1,65	
2. ${ }^{24.9 \%}$	0	${ }_{1}^{1,527}$	${ }^{1,5.527}$	
27.2\%	0	${ }_{1,527}$	1,527	
28.4\%	0	${ }_{1}^{1,407}$	${ }^{1,407}$	
29.6\%	0	${ }^{1,364}$	${ }^{1,364}$	
30.9\%	0	1,364	1,364	
- 3 32.1\%	0	1,364	${ }_{1}^{1,364}$	
33.3\%	0	1,364	1,364	
34.8\%	0	${ }^{1,202}$	${ }^{1,202}$	
37.0\%	0	${ }_{1}^{1,174}$	${ }_{1}^{1,174}$	
38.3\%	0	1,075	1,075	
39.5\%	0	${ }^{1,039}$	1,039	
42.0\%	0			
43.2\%	0	${ }_{936}$	${ }_{936}$	
44.4\%	0	877	877	
45.7\%	0	714		
46.9\%	0	617	617	
48.19\%	0	606	606	
49.4\%	0	${ }_{462}^{530}$	530 462	
51.9\%	0	425	425	
53.1\%	0	389	389	
54.3\%	0	${ }^{354}$	354	
55.6\%	0	214	214	
56.8.8\%	0	214	214	
59.3\%	0	${ }_{214}^{214}$	${ }_{214}$	
60.5\%	0	214	214	
61.7\%	0	${ }_{214}^{214}$	214	
	0	214 214	214 214	
析 $6.2 .2 \%$	0	214 214	214 214	
66.7\%	0	208 208	208	
67.9\%	0	207	207	
69.1\%	0	207	207	
70.4\%	0	177	177	
71.6\%	0	163	${ }^{163}$	
72.4.1\%	0	+163	163 150 150	
75.3\%	0	131	131	
76.5\%	0	128	128	
77.8\%	0	0	0	
79.0\% 80.2%	0	0	0	
80.5\%	0	0	0	
82.7\%	0	0	0	
84.0\%	0	0	0	
	0	0	0	
86.4\%	0	0	0	
88.9\%	0	0	0	
90.1\%	0	0	0	
91.4\%		0	0	
-92.6\%	0	0	0	
${ }^{93.85 \%}$	\%	0	\bigcirc	
96.3\%	0	0	0	
975\%	0	0	0	
98.8\%\%	0	0	\bigcirc	

Table OP.03-b

Figure OP-04-b
Funks Reservoir to Sites Reservoir, Monthly Diversion

Table OP-O4-b
Tat

	Monthly Diversion (CFS)	Monthly Diversion	Difference (CFS)	Difference (\%)
$\xrightarrow{\text { O.0\% }}$	${ }_{0}$	${ }_{4}^{\text {Clisf }}$	4,171	
1.2\%	0	4,171	4,171	
2.5\%	0	2.013	2.013	
3.7\%	0	1.441	1,441	
4.9\%	0	${ }^{411}$	411	
- 7.2%	0	363 174	363 174	
8.6\%	0	174	174	
9.9\%	0	0	0	
11.1\%	0	0	0	
	\bigcirc	0	0	
14.8\%	0	0	0	
16.0\%	0	0	0	
17.3\%	0	0	0	
18.5\%	0	0	0	
19.8\%	0	0	0	
220.2\%	0	0	0	
22.5\% ${ }_{\text {22, }}$	0	0	0	
224.7\%	0	\bigcirc	0	
25.9\%	0	0	0	
27.2\%	0	0	0	
28.4\%	0	0	0	
330.9\%	0	0	0	
32.1\%	0	0	0	
	0	0	0	
年34.6\%	0	0	\bigcirc	
357.0\%	0	\bigcirc	0	
38.3\%	0	0	0	
5\%	0	0	0	
40.7\%	0	0	0	
43.2\%	0	0	0	
44.4\%	0	0	0	
${ }^{45.79 \%}$	0	0	0	
${ }^{48.9 \%}$	0	0	0	
48.4\%	0	0	0	
50.6\%	0	0	0	
51.9\%	0	0	0	
	0	0	0	
55.3\%	0	0	0	
56.8\%	0	0	0	
55.3\%\%	${ }_{0}^{0}$	0	0	
${ }_{60.5 \%}^{59.3 \%}$	0	0	0	
${ }^{661.7 \%}$	0	0	0	
664.2\%	0	0	0	
65.4\%	0	0	0	
${ }^{66.7 \%}$	0	0	0	
67.9\%	0	0	0	
69.1\% 70	0	0	0	
70.6\%	0	0	0	
772.8\%	0	\bigcirc	0	
74.1\%	0	0	0	
75.3\%\%	0	0	0	
76.5% 778%	0	0	0	
779.0\%	0	0	0	
80.2\%	0	0	0	
81.5\%	0	0	0	
88.7\% ${ }^{82.0 \%}$	0	0	0	
${ }^{855.2 \%}$	0	0	0	
${ }^{86.4 \%}$	0	0	0	
-87.7\%	0	0	0	
${ }^{80.1 \%}$	0	0	0	
91.4\%	0	0	0	
92.6\%	0	0	0	
93.8\% ${ }_{\text {931\% }}$	0	0	0	
${ }_{96.3 \%}^{95.1 \%}$	0	0	0	
997.5\%	-	0	0	
98.8\%	0	0	0	
100.0\%	0	0	0	

Table OP-04-b

Table OP-04-b
To Sites Reseroniti Monthy Diversion

Figure OP-05-b
Funks Reservoir to Tehama Colusa and Glenn Colusa Canals, Monthly Flow

Table OP-05-b

$\begin{gathered} \hline \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	October			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	WSIP 2030 Without Proiect	WSIP 2030 With Project	Absolute Difference	
	Monthl Fow (cFs)	Monthly Flow (CFS)	${ }_{\text {cless }}$	
	0	${ }_{8}^{844}$	844	
${ }^{1.2 \%}$	0	839		
2.5\%	0	${ }_{834}^{835}$	${ }_{8}^{834}$	
3.7\%	0	${ }^{825}$		
4.9\%	0	821	821	
6.2\%	0	818 810		
7.4\%	-	${ }_{810}^{810}$		
9.9\%	0	807	807	
11.1\%	0	806	806	
123\%	0	805		
13.6\%	0	801		
14.8\%	0	762		
16.0\%	0	761	761	
17.3\%	0	${ }^{741}$		
18.5\%	0	680	680	
19.8\%	0	674	674	
21.0\%	0	641	641	
${ }^{22.2 \%}$	0	597	597	
23.55\%	0	577	577	
${ }^{24579 \%}$	0	572	572	
${ }^{25.7 .2 \%}$	0	564 541	564 541	
28.4\%				
29.6\%	0	529	529	
${ }^{30.9 \%}$	0	${ }_{526} 5$	526	
33.3\%	0	520	520	
34.6\%	0	517	517	
	0	517	517	
38.3\%		5	516	
39.5\%	0	512	512	
40.7\%	0	512	512	
42.0\%	0	509	509	
43.2\%	0	498	498	
44.4\%	0	497	497	
45.7\%	0	497	497	
46.9\%	0	495	495	
48.19\%	0	491	491	
	0	${ }_{488}^{498}$	490	
50.9\%	0	${ }_{479}^{488}$	479	
53.1\%		472	472	
54.3\%	0	456	456	
${ }_{\text {5 }}^{56.86 \%}$	0	${ }_{453}^{454}$	${ }_{453}^{454}$	
58.0\%	0	451	451	
59.3\%	0	444	444	
60.5\%	0	411	411	
61.7% 6.30%	0	410	410	
- 63.0%	0	379	${ }_{377}^{379}$	
65.4\%	0	377	377	
66.7\%	0	374	374	
67.9\%	0	364	364	
69.1\%	0	${ }^{356}$	${ }^{356}$	
70.4\%	0	351 319	${ }_{319} 319$	
72.8\%	0	213	213	
74.1\%	0	171	171	
75.3\%	0	128	128	
76.5\% ${ }_{778 \%}$	0	125 87	125 87 8	
779.\%	0	87 87	87 87	
80.2\%	0	76	76	
81.5\%	\bigcirc	70 58	70 52	
84.0\%	0	51	51	
85.2\%	0	${ }^{43}$	${ }^{43}$	
86.4\%	0	${ }^{36}$	${ }^{36}$	
877.7\%	0	28	28	
88.9\%	0	5	5	
90.19\%	0	2	2	
91.4\%	0	1	1	
92.6\%	0	0	0	
${ }^{93.85 \%}$	0	0	0	
${ }_{96.3 \%}^{95.1 \%}$	0	0	0	
97.5\%	0	0	0	
98.8\%	0	0	0	
100.0\%	0		0	

Table OP．05－b

		WSII 2030 With Project	Absolute Difference Difference （CFS）	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	Percent Exceedance		Wsip 2030 With Project	Absolute Difference Differenc	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
Probability	Monthly Flow（CFS）	Monthly Flow（CFS）	${ }_{\text {（CFFS }}^{1718}$		Probability	Monthly Flow（CFS）	Monthly Flow（CFS）	$\frac{(C F 5)}{1069}$	
		1.678	1.678		1．2\％		1.947	947	
	0	1，658	1，658		2．5\％	0			
3．7\％	0	1，654	1，654		3．7\％	0	1，862	，362	
4．9\％	0	1，653	1，653		4．9\％	0	17	1，817	
6．2\％	0	1，620	1.620		6．2\％	0	1，784	1，784	
7．4\％	0	1，612	1，612		7．4\％	0	1，689		
8．6\％	0	1，609	1，609		8．6\％	0	1，568	1，568	
9．9\％	0	1，600	1，600		9．9\％	0	117		
11．1\％	0	1，593	1，593		11．1\％	0	1，375	${ }^{1,375}$	
12．3\％	0	${ }^{1,583}$	${ }^{1,583}$		12．3\％	0	1，322	322	
13．6\％	0	${ }^{1,582}$	1，582		13．6\％	0	1，304	1，304	
14．8\％	0	${ }^{1,558}$	1，558		14．8\％	0	1，253	253	
－16．0\％	0	1，548	1，548		16．0\％	0	1，189	1，189	
178．5\％	0	1，542	${ }^{1,542}$		17．3\％	0	${ }^{1,1113}$	1，113	
18．9\％	0	1，540	${ }^{1,540}$		18．5\％	0	${ }^{1,083}$	1，083	
－${ }^{19.8 .8 \%}$	0	1，534	1，534		19．8\％	0	${ }^{1,079}$	${ }^{1.079}$	
${ }^{21.2 .2 \%}$	0	${ }^{1,4666}$	${ }^{1,466}$		21．0\％	0	1,051	1，051	
${ }_{2}^{22.5 \%}$	0	${ }^{1,454}$	${ }^{1,454}$		${ }^{22.2 \%}$	O	1,046		
${ }^{23.75 \%}$	0	${ }_{1}^{1,448}$	${ }_{\text {1，448 }}^{1.4}$		23．5\％\％	O	${ }_{1}^{1,043}$		
24．9\％					22．7\％				
27．2\％	0	＋1，424	${ }^{1}$		27．2\％	0	${ }_{1}^{1,026}$		
28．4\％	0	${ }_{1,402}$	${ }_{1,402}$		28．4\％	0	1.000	1000	
29．6\％	0	1，287	1，287		29．6\％	0	995	995	
30．9\％	0	1，274	1，274		30．9\％	0	975	975	
32.1% 33.3%	0	1，262	1，262		32．1\％	0	937	${ }^{937}$	
334．6\％	0	1，260	1，260		33．3\％	0	925	925	
34.6% 35.8%	0	1，254	1，254		34．6\％	0	877	877	
退35．7．9\％	0	1，233	1，233		35．8\％	0	874	874	
37．0\％	0	1，133	1，133		37．0\％	0	873	873	
38．3\％	0	1，098	1，098		38．3\％	0	864	864	
39．5\％	0	${ }^{1,082}$	1,082		39．5\％	0	796	796	
4．${ }_{4}^{40.7 \%}$	0	1.018	1.017		40．7\％	0	793	${ }^{793}$	
${ }^{4.32 \%}$	0	977	97		42．0\％	0	688	${ }_{688}$	
${ }^{432.4 \%}$	0	906	906		43．2\％		667	661	
${ }^{44.57 \%}$	0	878	878		4．4．7\％	0	${ }^{637}$	637	
45．9\％	0	846	846		45．7\％		${ }^{634}$	634	
${ }^{46.9 .1 \%}$	0	845	845		46．9\％	0	${ }^{620}$	620	
49．4\％	0	813 757	813 757		49．4\％	0	620 604	620 604	
	0	756	756		50．6\％	0	595	595	
年 51.9%	0	750	750			0	586	586	
	0	${ }^{741}$	741		53．1\％	0	585	585	
54．3\％	0	${ }^{737}$	${ }^{737}$		54．3\％	0	584	584	
55．6\％	0	734	${ }^{734}$		55．6\％	0	583	583	
56．8\％	0	${ }^{722}$	722		56．8\％	0	567	567	
58．0\％	0	714	714		58．0\％	0	561	561	
59．3\％	0	697	697		59．3\％	0	555	555	
60．5\％	0	692	692		60．5\％	0	538	538	
－61．7\％	0	677	677		61．7\％	0	463	463	
－ $63.4 .2 \%$	0	656	656		63．0\％	0	457	457	
－ $\begin{aligned} & 64.2 \% \\ & 6.4 .4 \%\end{aligned}$	0	630	630		64．2\％	0	453	453	
	0	612	${ }_{6}^{612}$		65．4\％	0	452	452	
－ 66.7%	0	${ }_{5}^{562}$	562		${ }_{\text {cke }}^{66.7 \%}$	0	452	452	
69．1\％	0	年	554		67．9\％	0	${ }_{321}$	${ }_{320}$	
77．4\％			520			0	364	364	
71．6\％	0	509	509		71．6\％	0	355	355	
74．1\％	0	501	501		72．8\％	0	${ }_{342}^{353}$	${ }^{353}$	
7．3\％	0	${ }_{472}$	472		75．3\％	0	${ }_{342}$		
${ }^{76.5 \%}$	0	441	441		76．5\％	0	339	339	
	0	433	433		77．8\％	0	319	319	
79．0\％ 88.2%	0	423	423		79．0\％	0	308	308	
－	0	417	417		80．2\％	0	308	308	
－${ }^{81.5 \%}$ 827\％	0	406	406		81．5\％	0	291	291	
－ 82.78%	0	389	389		${ }^{82.7 \%}$	0	${ }^{283}$	283	
85．2\％	0	379	379		84．0\％	0	${ }^{257}$	257	
85．2\％	0	350 274	${ }_{274}^{350}$		85．2\％	0	${ }_{219}^{241}$	${ }_{219}^{241}$	
87．7\％	0	212	212		${ }^{87.7 \%}$	0	152	152	
88．9\％	0	${ }^{188}$	188		88．9\％	0	90	90	
90．1\％	0	${ }^{135}$	135		90．1\％	0	41	41	
－9．4．4\％	0	41	41		99．4\％\％	0	41	41	
92．6\％	0	${ }_{41}^{41}$	${ }_{41}^{41}$		${ }_{93,8 \%}^{92.6 \%}$	0	39 26	39 26	
${ }_{99.3 \%}^{95 \%}$	0	38	38		95．1\％	0	9	9	
997．5\％	0	0	0		99．3\％${ }^{975 \%}$	0	${ }^{3}$	${ }^{3}$	
98．8\％	0	0	0		98．8\％	0	0	0	
100．0\％	0	0	0		100．0\％	0	0	0	

Figure OP-06-b
funks Reservoir to Deleven Pipeline, Monthly Flow

Table OP-06-b

Proobaility	Monthy foiew (CFS)	Monthly Fiow (CFS)	(CFF)	Difference (1)
0.0\%	0	.500		
1.2\%		1,500	1,50	
${ }^{2.5 \%}$		${ }_{1}^{1,500}$		
4.9\%	0	${ }_{1}^{1,500}$	${ }_{1}^{1.500}$	
6.2\%	0	${ }_{1,500}$	1.500	
7.4\%	0	1,500	1.50	
8.6\%	0	1,500	1,500	
9.9\%	0	1,500	1,500	
11.1\%	0	1,177	1,177	
12.3\%	0	1,030	1,030	
13.6\%	0	881	881	
14.8\%	0	770	770	
16.0\%	0	572	572	
17.3\%	0	524	524	
18.5\%	0	499	499	
19.8\%	0	392	392	
${ }_{2}^{21.2 .2 \%}$	0	374	374	
22.5\%	0	324 150 10	(150	
24.7\%	0	150	150	
25.9\%\%	0	149	149	
27.2% 28.4%	0	0	0	
29.6\%	0	0	0	
30.9\%	0	0	0	
32.1\%	0	0	0	
33.3\%	0	0	0	
34.6\%	0	0	0	
退35.8\%	0	0	0	
- $\begin{aligned} & 37.0 \% \\ & 38.3 \%\end{aligned}$	0	0	0	
38.3\%	0	0	0	
30.7\%	0	0	0	
${ }_{42.0 \%}^{40.7 \%}$	0	0	0	
${ }_{43.2 \%}$	0	0	0	
44.4\%	0	0	0	
45.7\%	0	0	0	
${ }^{46.9 \%}$	\bigcirc	0	\bigcirc	
49.4\%	0	0	0	
50.6\%	0	0	0	
51.9\%	0	0	0	
源54.3\%	0	0	0	
54.3\%	0	0	0	
56.8\%	0	0	0	
58.0\%	0	0	0	
59.3\%	0	0	0	
60.5\%	0	0	0	
61.7\%	0	0	0	
64.2\%	0	0	0	
65.4\%	0	0	0	
66.7\%	0	0	0	
67.9\%			0	
${ }^{69.9 \%}$	0	0	\bigcirc	
771.6\%	\bigcirc	\bigcirc	0	
72.8\%			0	
74.1\%	0	0	0	
75.3\%	0	0	0	
76.5% 778%	0	0	0	
778.8\%	0	0	0	
79.0\% 88.2%	0	0	0	
80.2\%	0	0	0	
- ${ }^{81.5 \%}$ 827\%	0	0	0	
- 82.78%	0	0	0	
84.0\%	0	0	0	
85.2\%	0	0	0	
887.7\%	0	0	0	
88.9\%	0	0	0	
90.1\%	0	0	0	
91.4\%	0	0	0	
${ }_{93.8 \%}^{92.6 \%}$	0	0	0	
99.8.1\%	0	0	0	
96.3\%	0	0	0	
998.5\%	0	0	0	
100.0\%	0	0	0	

Table OP-06-b

Sabilit	Onthly Fow (CFS)	Monthly Fow (CFSS)	(CFF)	
${ }^{0.0 \% \%}$	0	${ }_{463}^{1,500}$	1,500 463	
2.5\%	0	463	463	
3.7\%	0	280	280	
4.9\%	0	268	268	
6.2\%	0	186	186	
7.4\%	0	179	179	
8.6\%	0	174	174	
9.9\%	0	0	0	
11.1\%	0	0	0	
12.3\%	0	0	0	
13.6\%	0	0	0	
14.8\%	0	0	0	
16.0\%	0	0		
18.5\%	0	O	O	
19.8\%	0	0	0	
22.0\%	0	0	0	
22.5\%	0	0		
24.7\%	0	0		
25.9\%	0	0	0	
27.2\%	0	0	0	
28.4\%	0	0	0	
29.6\%	0	0	0	
30.9\%	0	0	0	
32.1\%	0	0	0	
33.3\%	0	0	0	
34.6\%	0	0	0	
35.8\%	0	0	0	
37.0\%	0	0	0	
38.3\%	0	0	0	
39.5\%	0	0	0	
${ }_{4}^{40.7 \%}$				
43.2\%	0			
44.4\%	0	0	0	
45.7\%	0		0	
46.9\%	0	0	0	
48.1\%	0		0	
49.4\%	0	0	0	
50.6\%	0	0	0	
51.9\%	0	0	0	
53.1\%	0	0	0	
54.3\%	0	0	0	
55.6\%	0	0	0	
56.8\%	0	0	0	
58.0\%	0	0	0	
59.3\%	0	0	0	
			0	
661.7\%	0	0	0	
64.2\%	0	0	0	
65.4\%	0	0	0	
	0	0	0	
69.1\%	0	0	0	
70.4\%	0		0	
71.6\%	0	0	0	
72.8\%	0	0	0	
74.1\%	0	0	0	
75.3\%	0	0	0	
76.5\%	0	0	0	
77.8\%	0	0	0	
79.0\%	0	0	0	
80.2\%	0	0	0	
81.5\%	0	0	0	
82.7\%	0	0	0	
年年.0\%	0	0	0	
- 8.5	0	0	0	
${ }^{887.7 \%}$	O	O		
88.9\%	0	0	0	
90.1\%	0		0	
91.4\%	0	0	0	
${ }^{92.6 \%}$	0		0	
95.1\%	0	0	0	
96.3\%	0	0	0	
97.5\%	0	0	0	
98.8\%	0	0	0	

Table OP-06-b

	August			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
Percent Exceedance	WSIP 2030 Without Proiet	WSIP 2030 With Project	Absolute Difference	
Probability	Monthy Fow ((FFS)	Monthy Fiow (CFS)	(crs)	
0.0\%		1.500		
1.2\%	0	1,500	1,5	
${ }_{3}^{2.5 \%}$	0	1,500		
3.7\%	O	1,500		
4.9\%\%	0	1,500		
7.4\%	0	${ }_{1}^{1.500}$	${ }_{1.500}^{1+500}$	
8.6\%	0	1,500	1,500	
9.9\%	0	1,500		
123\%	0	1.500 1.500 1		
${ }^{13.6 \%}$	0	${ }_{1}^{1,459}$	${ }_{1}^{1,459}$	
14.8\%	0	1,454	1,454	
16.0\%	0	${ }_{1}^{1,395}$	${ }_{1}^{1,395}$	
17.3\%	0	1,238	1,238	
18.5\%	0	1,147	1,147	
19.8\%	0	1,147	1,147	
21.0\%	0	1.072	1,072	
22.2\%	0	1,051	1,051	
23.5\%	0	${ }_{1}^{1,051}$	1,051	
24.7% 259%	0	1,051 1051 1	1,051	
${ }^{25.7 .9 \%}$	0	1,051	${ }^{1,051}$	
28.4\%	0	1,051	1,051	
29.6\%	\bigcirc	1,051 1,051	${ }_{1}^{1,051} 1$	
32.1\%	0	1.051	1,051	
	0	${ }_{1,051}^{1,051}$	${ }_{1}^{1,051}$	
35.8\%	0	918	918	
37.0\%	0	906	906	
${ }^{38.3 \%}$	0	${ }_{845}^{859}$	${ }_{845}^{859}$	
40.7\%	0	731	731	
42.0\%	0	656	656	
- 43.2%	0	${ }^{630}$	${ }_{6}^{630}$	
- 44.4%	0	459	459	
45.7\%		${ }^{426}$	${ }^{426}$	
46.9\%	0	314 355	314 25	
-48.1\%	0	${ }_{243}^{255}$	${ }_{245}^{255}$	
50.6\%	0	243 215	243 215	
51.9\%	0	145	145	
($\begin{aligned} & 53.1 \% \\ & 54.3 \%\end{aligned}$	0	145 145 1	145 145	
55.6\%	0	145	145	
	\bigcirc	91 59	91 59	
59.3\%	0	58	58	
60.5\%		54	54	
61.7\%	0	54	54	
63.0\%	0	$\begin{array}{r}53 \\ \hline 35 \\ \hline\end{array}$	${ }_{5}^{53}$	
${ }^{64.2 \%}$ 6.4\%	\bigcirc	35 32	${ }_{32}^{35}$	
66.7\%	0	32	32	
67.9\%	0	0	0	
69.1\%	0	0	0	
70.4\%	0	0	0	
	0	0	0	
74.1\%	0	0	0	
-75.3\%	0	0	0	
76.5\%	0	0	\bigcirc	
79.0\%	0	0	0	
- ${ }^{80.2 \%}$ 81.5\%	0	0	0	
82.7\%	0	0	0	
84.0\%	0	0	0	
- 85.2%	0	0	0	
${ }^{87} 7 \%$	0	0	0	
88.9\%	0	0	0	
90.1\%	0	0	0	
91.4\%	0	0	0	
92.6\%	0	0	0	
93.8\%	0	0	0	
-95.1\%	0	0	0	
97.5\%	0	0	0	
98.8\% 100\%	\bigcirc	0	\bigcirc	

Figure OP-07-b
Sites Reservoir to Funks Reservoir, Monthly Flow

0.0\%	0	${ }_{1,724}$	1,724
1.2\%	0	${ }^{1,723}$	1,723
2.5\%	0	1,681	1,681
3.7\%	0	1,671	1,671
4.9\%	0	1.624	1,624
6.2\%	0	1.543	${ }_{1}^{1,543}$
7.4\%	0	1.503	1.503
8.6\%	0	1.500	1.500
9.9\%	0	1,500	1,500
11.1\%	0	1,379	1,379
${ }^{12.3 \%}$	0	1.040	1,040
13.8\%\%	0	${ }^{1.036}$	${ }^{1,036}$
14.8% 16.0%	0	956 675	956 675
17.3\%	0	527	527
18.5\%	0	500	500
19.8\%	0	500	500
21.0\%	0	500	500
${ }^{222.2 \%}$	0	${ }^{500}$	砛
${ }^{23.5 \%}$	0	291 155	291 155
25.9\%	0	153	153
27.2\%	0	3	3
28.4\%	0	3	3
29.6\%	0	1	1
30.9\%	0	1	1
32.1\%	0	O	0
334.6\%	0	0	0
34.6\%	0	0	0
37.\%	0	0	0
38.3\%	0	0	0
39.5\%	0	0	0
42.0\%	0	0	0
43.2\%	0	0	0
44.4\%	0	0	0
45.7\%	0	0	0
46.9\%	0	0	O
48.4\%	0	\bigcirc	0
50.6\%	0	0	
51.9\%	0	0	0
53.1\%	0	0	0
54.3\%	0	0	0
55.6\%	0	0	0
56.8% 58.0%	0	0	0
58.3\%	0	\bigcirc	0
60.5\%	0	0	0
61.7% 630%	0	0	0
㐌64.2\%	0	0	0
65.4\%	0	0	0
66.7\% 679%	0	0	0
-67.9\%	0	\bigcirc	\bigcirc
70.4\%	0	0	0
71.6\%	0	0	0
72.8\%	0	0	0
74.1\%	0	0	0
76.5\%	0	0	0
77.8\%	0	0	0
79.0\%	0	0	0
80.2\%	0	0	0
${ }^{81.5 \%}$	\bigcirc	0	0
827\%	0	0	0
85.2\%	0		0
-	0	\bigcirc	\bigcirc
887.9\%	0	\bigcirc	0
90.1\%	0	0	0
${ }_{\text {92.6\% }}^{91.4 \%}$	\bigcirc	\bigcirc	\bigcirc
93.8\%	0	0	0
95.1\%	0	0	0
96.3\%	0	0	0
97.5\%\%	0		0
		0	0

Percent Exceedance	$\begin{aligned} & \text { WSIP } 2030 \text { Without } \\ & \text { Proiect } \end{aligned}$	WSIP 2030 With Project	$\left.\begin{array}{c}\text { Absolute } \\ \text { Difference }\end{array}\right)$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
		484	484	
1.2\%	0	482	482	
2.5\%	0	453	453	
3.7\%	0	333	333	
4.9\%	0	162	162	
6.2\%	0	154	154	
7.4\%	0	154	154	
8.6\%	0	${ }^{152}$	152	
9.9\%	0	${ }_{151}^{151}$	${ }_{151}^{151}$	
11.1\%	0	151 150	151 150	
12.3\%	0	150	150	
13.6% 14.8%	0	144	${ }_{143}^{143}$	
14.8% 16.0%	0	143 133	143 133	
17.3\%	0	0	,	
- 18.5%	0	0	\bigcirc	
21.0\%		0	0	
22.2\%	0	0	0	
${ }^{23.5 \%}$	0	0	0	
24.7\%	0	0	0	
25.9\%	O	0	0	
27.2\%	0	0	0	
28.4\%	0	0	0	
29.6\%	0	0	0	
30.9\%	0	0	0	
32.1\%	0	0	0	
33.3\%	0	0	0	
34.6\%	0	0	0	
	0	0	0	
38.3\%	0	0	0	
39.5\%	0	0	0	
40.7\% 4	0	0	\bigcirc	
43.2\%	O	0	0	
44.4\%	0	0	0	
46.9\%	0	0	0	
48.1\%	0	0	0	
49.4\%	0	0	0	
50.6\%	O	0	0	
51.9\%	0	0	0	
53.1\%	0	0	0	
54.3\%			0	
55.6\%	0	0	0	
	0	0	\bigcirc	
55.0\%	0	0	0	
60.5\%	0	0	0	
61.7\%	0	0	0	
	0	0	0	
65.4\%	0	\bigcirc	\bigcirc	
66.7\% 67.9%	0	0	\bigcirc	
69.1\%	0	0	0	
70.4\%	0	0	0	
71.28\%	\bigcirc	0	\bigcirc	
74.1\%	0	0	0	
75.3\%	0	0	0	
76.5\%	0	0	0	
77.8\%	0	0	0	
79.0\%	0	0	0	
80.2\%	0	0	0	
81.5\%	0	0	0	
82.7% 840%	0	0	0	
845.2\%	0	0	0	
86.4\%	0	0	0	
87.7\%	0	0	0	
90.1\%	0	0	0	
91.4\% ${ }_{\text {926\% }}$	\bigcirc	0	0	
${ }_{93}^{92.6 \%}$	0	0	0	
95.1\%	0	0	0	
96.3\%		0	0	
998.8\%	\bigcirc	0	0	
100.0\%	0	0	0	

Table OP-07-b
bir to tunks Resenvoir, Monthy Flow

 $\begin{array}{llll}2.5 \% & 0 & 484 & 484 \\ 3.7 \% & 0 & 355 & 355 \\ 4.96 & 0 & 349 & 349 \\ 6.2 \% & 0 & 215 \\ 7.4 \% & 0 & 215 & 215 \\ 8.6 \% & 0 & 206 & 206\end{array}$

 $\begin{array}{ll}11.1 \% & 0 \\ 12.3 \% & 0 \\ 13.6 \% & 0\end{array}$ \begin{tabular}{cccc}
\& 189 \& 189

$\begin{array}{ll}13.6 \% & 0 \\
14.8 \% & 0\end{array}$ \& 173 \& 183

\hline 173

\hline

14.8% \& 0 \& 129 \& 173

16.0% \& 0 \& 85 \& 129

17.3% \& 0 \& 82 \& 82

18.5% \& 0 \& 77 \& 77

\hline 10% \& 0 \& \&

\hline

19.8% \& 0 \& 54 \& 54

21.0% \& 0 \& 54 \& 54

\hline

21.0% \& 0 \& 54 \& 54

22.2% \& 0 \& 44 \& 44

23.5% \& 0 \& 30 \& 30

\hline

23.5% \& 0 \& 30 \& 30

24.7% \& 0 \& 21 \& 21

25.9% \& 0 \& 21 \& 21

27.2% \& 0 \& 20 \& 20

28.4% \& 0 \& 18 \& 18

2.96% \& 0 \& 17 \& 17

\hline 9.6 \& \& \&

 $\begin{array}{llll}22.4 \% & 0 & 17 & 17 \\ 29.6 \% & 0 & 12 & 12 \\ 30.9 \% & 0 & 0 & \end{array}$ $\begin{array}{llll}30.9 \% & 0 & 12 & 12 \\ \text { 33.1\% } \\ 33.35 \% & 0 & 9 & 9 \\ 34.5 \% & 0 & 9 & 9\end{array}$

$\begin{array}{ll}33.5 \% \% \\
35.8 \% & 0\end{array}$ \& 9 \& 9 \& 8

\hline 5.8 \& 0 \& 8 \& 9

 $\begin{array}{llll}35.7 \% & 0 & 8 & 8 \\ 37.0 \% & 0 & 7 & 7 \\ 38.3 \% \% & 0 & 6 & 7 \\ 39.5 \% & 0 & 6 & 5\end{array}$

$40.5 \% \%$ \& 0 \& 6 \& 6

42.0% \& 0 \& 6 \& 6

\hline 40 \& 0 \& 5

\hline

$\begin{array}{l}42.0 \% \\
43.2 \% \\
44.4 \%\end{array}$ \& 0 \& 5 \& 5

\hline
\end{tabular}

 $\begin{array}{llll}\text { 46.9\% } & 0 & 1 & 1 \\ 48.1 \% & 0 & 0 & 0 \\ 49.4 \% & 0 & 0 & 0\end{array}$ $\begin{array}{llll}49.4 \% & 0 & 0 & 0 \\ 50.0 \% & 0 & 0 & 0 \\ 51.9 \% & 0 & 0 & 0\end{array}$ $\begin{array}{llll}51.9 \% & 0 & 0 & 0 \\ 55.1 \% & 0 & 0 & 0 \\ 54.3 \% & 0 & 0 & 0\end{array}$ $\begin{array}{cccc}7.4 \% & 0 & 0 & 0 \\ 7.1 .6 \% & 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$ $\begin{array}{llll}7.12 \% & 0 & 0 & 0 \\ 72.8 \% & 0 & 0 & 0 \\ 74.1 \% & 0 & 0 & 0 \\ 75.3 \% & 0 & 0 & 0\end{array}$ $\begin{array}{llll}7.14 .1 \% & 0 & 0 & 0 \\ \begin{array}{l}75.3 \% \\ 76.5 \%\end{array} & 0 & 0 & 0\end{array}$ $\begin{array}{llll}77.5 \% & 0 & 0 & 0 \\ 77.8 \% & 0 & 0 & 0 \\ 79.0 \% & 0 & 0 & 0\end{array}$ $\begin{array}{llll}7.0 \% & 0 & 0 & 0 \\ 80.2 \% & 0 & 0 & 0 \\ 81.5 \% & 0 & 0 & 0\end{array}$ $\begin{array}{llll}81.5 \% & 0 & 0 & 0 \\ 82.7 \% & 0 & 0 & 0 \\ 84.0 \% & 0 & 0 & 0 \\ 85.2 \% & 0 & 0 & 0 \\ 864 \% & 0 & 0\end{array}$ \begin{tabular}{llll}
$\begin{array}{l}8.2 .4 \% \\
88.7 \% \\
88.9 \% \\
88.9 \%\end{array}$ \& 0 \& 0 \& 0

\hline

 $\begin{array}{llll}89.9 \% & 0 & 0 & 0 \\ 90.1 \% & 0 & 0 & 0\end{array}$

$99.1 \% \%$ \& 0 \& 0 \& 0

92.5\%

933.8% \& 0 \& 0 \& 0

\hline 0.9%
\end{tabular} $\begin{array}{llll}93.8 \% & 0 & 0 & 0 \\ 95.1 \% & 0 & 0 & 0 \\ 96.3 \% & 0 & 0 & 0 \\ 99.5 \% & 0 & 0 & 0 \\ 98.8 \% & 0 & 0 & 0 \\ 108 \% & 0\end{array}$

98.8%
100.0%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \\ \hline \end{gathered}$	WSIP 2030 Without Proiect Monthly Flow ()	WSIP 2030 With Project Monthly Flow ()	$\begin{aligned} & \text { Absolute } \\ & \text { Difference (0 } \end{aligned}$	Difference (\%)
Probability				
0.0\%		${ }_{1}^{2,300}$	2,300	
1.2\%	0	${ }^{1.865}$	${ }_{1,86}$	
2.5\%\%	0	1,850	1,85	
3.7\%		1,545	1,545	
4.9\%\%	0	${ }_{1}^{1.314}$	${ }_{1}^{1,314}$	
6.2\%		1,112	1,16	
8.6\%	0	${ }_{1}^{1,156}$	1156	
9.9\%	0	1,138	1,138	
11.1\%	0	1,08		
12.3\%	0	1,004		
13.6\%	0	928	928	
14.8\%	0	885	885	
16.0\%	0	832	832	
17.3\%	0	815	815	
18.5\%	0	670	670	
19.8\%	0	655	655	
21.0\%	0	647	647	
${ }^{22.2 \%}$	0	587	587	
23.5\%	0	574	574	
25.9\%	0	571	551	
${ }^{25.7 .2 \%}$	0	${ }_{460}$	546	
28.4\%	0	425	425	
	0		${ }^{412}$	
${ }^{30.9 \%}$	0		336	
33,3\%	0	325	${ }_{325}$	
34.6\%	0	296	296	
35.8\%	0	284	284	
37.\%	0	279	279	
38.3\%	0	${ }^{276}$	276	
39.5\%	0	274	${ }^{274}$	
40.7\%	0	${ }^{248}$	${ }^{248}$	
42.0\%	0	${ }^{227}$	${ }^{227}$	
${ }^{43.2 \%}$	0	205	205	
4.5.7\%	0	${ }_{194}$	${ }^{204}$	
46.9\%	0	188	188	
48.19\%	0	168 168 188	168	
49.4\%	0	168	${ }^{168}$	
年50.6\%	0	162	162	
53.1\%	0	${ }_{137}^{137}$	137	
54.3\%	0	${ }_{1}^{128}$	128	
56.8\%	0	119	119	
58.0\%	0	118	118	
59.3\%	0	117	117	
60.5\%	0	117	117	
61.7% 6.0%	0	114	114	
64.2\%	0	1108	113 108	
65.4\%	0	106	106	
66.7\%	0	98	98	
67.9\%	0	${ }_{98} 9$	98	
69.1\%	0	97	97	
70.1.\%	0	${ }_{86}^{93}$	93 86	
72.8\%		${ }_{82}$	${ }_{82}$	
74.1\%	\bigcirc	78	${ }_{78}^{78}$	
75.3\%	0	73	73	
76.5\%	0	${ }_{69}^{69}$	${ }_{69}^{69}$	
79.0\%	0	63 57	57	
80.2\%	0	54	54	
81.5\%	0	${ }_{47}^{48}$	48	
-82.7\%	0	${ }_{44}^{47}$	${ }_{44}^{47}$	
85.2\%	0	27	27	
86.4\%	0	21	21	
877\%	0	16	16	
88.9\%	0	14	14	
90.1\%	0	11	11	
91.4\%	0	6	6	
92.6\%	0	6	6	
93.8\%	0	6	6	
${ }_{96.3 \%}^{95.1 \%}$	0	0	0	
97.5\%	0	0	0	
988.8\% 100.0\%	0		\bigcirc	

Exceedance	Proiect	$\frac{\text { WSI P2030 With Projet }}{\text { Monthly Fow })}$	Absolute Difference	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	Exceedance	Proiect	WSIP 2030 With Project Monthly Fow 0	Absolute Difference（）	${ }^{\text {Rifference（ive }}$（\％）
0．0\％	O	${ }^{\text {a }}$	3，218		$\xrightarrow{0.0}$	0	${ }_{\text {Mornhy }}^{3,200}$	3，020	
1．2\％	0	3，178	3，178		1．2\％	0	2，998	2,998	
2．5\％	0	3，158	3，158		2．5\％	0	2，971	2，971	
3．7\％	0	3，154	3，154		3．7\％	0	2，965	2，965	
4．9\％	0	3，153	3，153		4．9\％	0	2，932	2，932	
6．2\％	0	3，120	3，120		6．2\％	0	2.917	2,917	
7.4% 8.6%	0	年， $\begin{aligned} & \text { 3，122 } \\ & 3\end{aligned}$	3，112		7．4\％	0	2，913	2，913	
9．9\％\％	0	3,100 3 3，033	3,100 3 3		8．6\％	0	2，875	2，875	
9．9\％\％	0	3，093	－ $\begin{aligned} & \text { 3，093 } \\ & 3\end{aligned}$		${ }^{\text {9，9\％}}$	0	2，689	${ }_{\text {2，689 }}$	
$\xrightarrow{11.1 \%} \times 1.3 \%$	0	3,083 3,082	3,083 3.082		－ 11.12%	\bigcirc	2,613 2.506	2,613 2.506	
13．6\％	0	3，058	3，058		13．6\％	0	2.421	2.421	
14．8\％	0	${ }^{3}, 048$	${ }^{3}, 048$		14．8\％	0	${ }^{2,379}$	2，379	
${ }^{16.0 \%}$	0	3.042 3,040	3.042 3.040		16.0% 17.3%	0		${ }_{\substack{2,135}}^{2,233}$	
18．5\％	0	2，966	${ }_{2,966}$		18．5\％	0	2，115	2.115	
19．8\％	0	2，924	2，924		19．8\％	0	2，102	2，102	
21．0\％	0	2，912	2，912		21．0\％	0	2，086		
${ }^{22.2 \%}$	0	2，902	2，902		22．2\％	0	2，084		
${ }^{23.4 .7 \%}$	0	${ }^{2,787}$	${ }^{2,787}$		23．5\％	0	2，084	2,08	
24．7\％	0	${ }^{2,774}$	${ }^{2,774}$		24．7\％	0	${ }^{2}, 083$	2，083	
25．7．2\％	0	2，762	${ }_{2}^{2,762}$		25．9\％	0	2，067	2，067	
${ }^{27.2 \%}$ 27．4\％	0	${ }^{2,760}$	${ }^{2,760}$		27．2\％	0	${ }_{2}^{2,063}$	2，063	
${ }^{28.4 .9 \%}$	0	${ }_{2}^{2,754}$	${ }_{\text {2，734 }}$		28．4\％	0	2，038	2，038	
－${ }^{29.9 \%}$	0	${ }_{2}^{2,733}$	${ }_{\text {2，}}^{2}$		29．6\％	0	1，993	1，993	
30．2．1\％	0	2，633	2，633		30．9\％	0	1，988	1，988	
32．19\％	0	${ }^{2.5988}$	${ }_{2}^{2.598}$		32．1\％	0	1，953	1，953	
34．6\％	0	${ }_{2,477}^{2.518}$	${ }_{2,547}^{2.518}$			0	＋1，925	${ }_{\text {1，925 }}^{1,985}$	
35．8\％	0	2，378	${ }_{2}, 378$		35．8\％	0	1，881	1.881	
年37．0\％	0	${ }_{\text {2，313 }}$	${ }_{2}^{2,313}$		37．0\％	0	${ }^{1,835}$	1，835	
30．5\％	0	${ }_{2,237}^{2,250}$	$\underset{\substack{2,237}}{\substack{2,250}}$		30．5\％	0	${ }_{1,757}^{1.157}$	${ }_{1}^{1,757}$	
40．7\％	0	2.234	2，234		40．7\％		1．539	1，539	
42．0\％	0	2，229	2，229		42．\％	0	1，519	1，519	
43．2\％ 44.4	0	2，222	2，222		43．2\％	0	1，508	1，508	
${ }^{44.4 \%}$	0	2，214	2，214		44．4\％	0	1，459	1，459	
45．7\％	0	2，197	2，197		45．7\％	0	1，406	1，406	
${ }^{46.9 \%}$	0	$\begin{array}{r}1,972 \\ \hline 1,908 \\ \hline\end{array}$	1，972		46．9\％	0	${ }_{1}^{1,381}$	1，381	
49．4\％	0	${ }_{1,889}$	1，889		49．4\％	0	1，019	1，019	
50．6\％	0	1，821	1.821		50．6\％	0	937	937	
51．9\％	0	1，809	1，809		51．9\％	0	934	934	
年53．1\％	0	1，754	＋1，754		53．19\％	0	887	887	
55．6\％	0	（1，633	1,723 1.635		54．3\％	0	－ 859	－ 889	
56．8\％	0	1，599	1，599		56．8\％	0	${ }^{828}$	${ }^{828}$	
	0	＋1，593	${ }^{1,593}$		58．0\％	0	782	${ }_{782}$	
50．5\％	0	1，582	1，582		59．3\％	0	${ }_{7}^{720}$	${ }_{721} 7$	
${ }_{61.7 \%}$	0	${ }_{1}^{1,572}$	${ }_{1}^{1,574}$		60．5\％	0		694	
－ $6.1 .7 \%$	0	${ }_{1,262}^{1,26}$	${ }_{1}^{1,262}$		63．0\％	0	${ }_{688}^{694}$	${ }_{688}^{694}$	
64．2\％	0	1，106	1，106		64．2\％	0	604	604	
	0	$\underset{\substack{1,020 \\ \hline 96}}{128}$	${ }_{\text {1，020 }}^{1,026}$		${ }^{65.4 \%}$	0	555	555	
67．9\％	0	${ }_{846}$	${ }_{846}$		6．7．9\％	0	510	510	
69．1\％	0	834	834		69．1\％	0	506	506	
70．4\％	0	806	806		70．4\％	0	453	453	
71．6\％	0	758 756	758 751		71．6\％	0	${ }^{420}$	${ }^{420}$	
72．8\％	0	${ }_{7} 76$	${ }_{7} 76$		72．8\％	0	${ }^{391}$	391	
74．1．3\％	0	${ }_{6} 747$	${ }_{677} 71$		74．1\％	0	364 355	－ 364	
76．5\％	0	670	670		76．5\％	0	353	353	
77．8\％	0	654	654		77．8\％	0	342	342	
89．0\％	0	${ }_{6}^{630}$	630		79．0\％	0	${ }^{342}$	${ }_{339} 3$	
81．5\％	0	486	${ }_{486}$		81．5\％	0	${ }_{319} 3$	${ }_{319} 319$	
82．7\％	0	${ }^{474}$	474		82．7\％	0	${ }^{308}$	${ }^{308}$	
84．0\％	0	${ }_{423}$	${ }^{423}$		84．0\％	0	${ }^{308}$	${ }^{308}$	
80．4\％	0	406	406		－${ }_{\text {85．4\％}}$	0	${ }_{283}^{291}$	${ }_{283}^{291}$	
87．7\％	0	379	379		87．7\％	0	241	241	
－ 88.9%	0	357	357		88．9\％	0	219	219	
90．14\％	0	350	350		90．1\％	0	152	152	
92．4．6\％	0	188	188		914．4\％	0	90	90	
93．8\％	0	41	41		${ }^{92.88 \%}$	0	${ }_{41}^{41}$	${ }_{41}^{41}$	
95．1\％	0	41	41		95．1\％	0	26	26	
${ }^{96.3 \%} 9$	0	${ }^{38}$	${ }_{38}^{38}$		96．3\％	0	9	9	
98．8\％	0	0	0		98．8\％	0	0	0	
00．0\％									

Figure OP-08-b
Delevan Intake and Pipeline (to Local Use), Monthly Diversion

Table OP.08-b

		Ociober		
Percent		WSIP 2303 With Project	Absolute	Relative
Probability	Monthly Diversion	Montly Diversion	Difference (CFS)	Difference (\%)
(\%)	(cfs)	(CFF)		
			0	
1.2\%	0	0	0	
2.5\%	0	0	0	
3.7\%	0	0	0	
4.9\%	0	0	0	
6.2\%	0	0	0	
7.4\%	0	0	0	
8.9\%	0	0	0	
9.9\%\%	0	0	0	
11.12\%	0	0	0	
12.3\% 13.6%	0	0	\bigcirc	
+13.6% 14.8\%	\bigcirc	0	0	
- 10.0%	0	\bigcirc	0	
-18.5\%	0	0	0	
19.8\%	0	0	0	
${ }_{21}^{21.0 \%}$	0	0	0	
${ }_{\text {22, }}^{22.2 \%}$	0	0	\bigcirc	
24.7\%	0	0	0	
25.9\%	0	0	0	
27.2\%	0	0	0	
28.4\%	0	0	0	
29.6\%	0	0	0	
30.9\%	0	0	0	
32.1\%	0	0	0	
33.3\%	0	0	0	
34.6% 35.8%	0	0	0	
357.8\%	0	\bigcirc	0	
38.3\%	0	0	0	
39.5\%	\bigcirc	\bigcirc	\bigcirc	
42.0\%	0	0	0	
43.2\%	0			
${ }^{44.4 .7 \%}$	0	0	0	
46.9\%	0	0	0	
48.19\%	0	0	0	
49.4\%	0	0	0	
50.6\%	0	0	0	
${ }^{51.9 \%}$	0	0	0	
54.3\%	0	0	0	
55.6\%	0	0	0	
56.8\%	0	0	0	
	0	0	0	
${ }^{59.5 \%}$	0	0	0	
61.7\%	0	0	0	
63.0\%	0	0	0	
64.2\%	0	0	0	
${ }_{656.7 \%}$	\bigcirc	0	0	
${ }^{679.9 \%}$	0	0		
	0	0	0	
70.4\%	0	\bigcirc	0	
72.8\%	0	0	0	
74.1\%	0	0	0	
75.3\%	0	0	0	
76.5\%	0	0	0	
778.8\%	0		0	
79.0\%	0	0	0	
- 80.2%	0		0	
${ }^{81.5 \%}$	0	0	0	
822.7\%	0	0	0	
85.2\%	${ }_{0}$	0	0	
86.4\%	0	0	0	
- 88.78%	0	0	0	
90.1\%	0	0	0	
9, $9.4 .4 \%$	0	0	0	
${ }_{\text {93, }}^{92.6 \%}$	0	0	0	
95.1\%	0	0	0	
96.3\%	0	0	0	
${ }_{98}^{97.5 \%}$	0	0	0	
98.8\% 100.0\%	\bigcirc	\bigcirc	0	

Table OP.08-b

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	February			Relative
		WSIP 2030 With Project	$\begin{gathered} \text { Absolute } \\ \text { Differee } \\ \text { (Cfs) } \end{gathered}$	
	Monthly Diversion	Montly Diversion		
	(CFF)	(CFS)		
0.0\%	0	0	0	
- ${ }^{1.2 \%}$	\bigcirc	0	0	
3.7\%	0	0	0	
4.9\%	0	0	0	
6.2\%	0	0	0	
7.4.9\%	0	0	0	
9.9\%	0	0	0	
11.1\%	0	0	0	
12.3\%	0	0	0	
13.6\%	0	0	0	
14.8\% 16.0%	0	0	0	
(16.0\%\%	0	0	0	
- ${ }^{178.5 \%}$	0	0	0	
19.8\%\%	0	0	0	
21.0\%	0	0	0	
22.2\%	0	0	0	
22.5\%\%	0	0	0	
25.9\%	0	0	0	
27.2\%	0	0	0	
22.4\%\%	0	0	0	
330.9\%	\bigcirc	0	-	
32.1\%	0	0	0	
33.3\%	0	0	0	
	0	0	0	
35.8\%	0	0	0	
仿38.3\%	0	0	0	
38.5\%	0	0	0	
30.7\%	0	0	0	
${ }^{42.70 \%}$	0	0	0	
${ }_{43.2 \%}^{42.2 \%}$	0	0	0	
44.4\%	0	0	0	
45.7\%	0	0	0	
	0		0	
49.4\%	0	0	O	
50.6\%	0	0	0	
51.9\%	0	0	0	
55.3\%	0	0	0	
55.6\%	0	0	0	
55.8\%	0	0	0	
年58.0\%	0	0	0	
($\begin{aligned} & \text { 59.3\% } \\ & 6.5 \%\end{aligned}$	0	0	0	
- 60.5%	0	0	0	
61.7\% 630%	0	0	0	
64.2\%	0	0	0	
65.4\%	0	\bigcirc	0	
66.7\%	0	0	0	
67.9\%	0	0	0	
69.1\%	0	0	0	
71.6\%	0	0	0	
72.8\%	0	0	0	
74.1\% ${ }^{753 \%}$	0	0	0	
76.5\%	0	0	0	
77.8\%	0	0	0	
79.0\%	0	0	0	
80.2\%	0	0	0	
81.5\%	0	0	0	
82.7\%	0	0	0	
84.0\%	0	0	0	
${ }^{85.2 \%}$	0	0	0	
${ }^{86.4 \%}$	0	0	0	
877\%\%	0	0	0	
88.9\%	0	0	0	
990.4\%	0	0	0	
92.6\%	0			
93.8\%	0	0	0	
95.1\%	0	0	0	
96.5\%	0	0	0	
98.8\%	0	0	0	
100.0\%	0	0	0	

Table OP.08-b

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	June			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
		WSIP 2030 With Project	$\begin{gathered} \text { Absolute } \\ \text { Differee } \\ \text { (Cfs) } \end{gathered}$	
	Monthly Diversion	Monthly Diversion		
	(CFF)	(CFS)		
0.0\%	0	0	0	
- ${ }^{1.2 \%}$	\bigcirc	0	0	
3.7\%	0	0	0	
4.9\%	0	0	0	
6.2\%	0	0	0	
7.4.9\%	0	0	0	
9.9\%	0	0	0	
11.1\%	0	0	0	
12.3\%	0	0	0	
13.6\%	0	0	0	
14.8% 16.0%	0	0	0	
- 16.0%	0	0	0	
(17.3\%	0	0	0	
18.9\%	0	0	0	
21.0\%	0	0	0	
22.2\%	0	0	0	
- 23.5%	0	0	0	
24.7\%	0	0	0	
${ }^{25.7 .2 \%}$	0	0	0	
28.4\%	0	0	0	
29.6\%	0	0	0	
${ }^{30.9 \%}$ 32.1\%	0	0	0	
323.3\%	0	0	0	
34.6\%	0	0	0	
35.8\%	0	0	0	
	0	0	0	
	0	0	0	
39.5\%	0	0	0	
${ }^{40.7 \%} 4$	0	0	0	
${ }^{42.2 \%}$	0	0	0	
44.4\%	0	0	0	
45.7% 469%	0	0	0	
	0	0	0	
48.4\%	0	0	0	
50.6\%	0	0	0	
	0	0	0	
${ }^{53.13 \%}$	0	0	0	
5.5\%	0	0	0	
56.9\%	0	0	0	
㐌5.0\%\%	0	0	0	
${ }^{59.35 \%}$	0	0	0	
61.7\%	0	0	0	
63.0\%	0	0	0	
64.2\%	0	0	0	
65.4\%	0	0	0	
66.7\% 67.9%	0	0	0	
${ }^{67.9 \%}$	0	0	0	
70.4\%				
71.6\%	0	0	0	
72.8.1\%	0	0	0	
75.3\%	0		0	
76.5\%	0	0	0	
778.8	0	0	0	
89.2\%	0	\bigcirc	\bigcirc	
81.5\%	0	0	0	
82.7\%	0	0	0	
84.0\%	0	0	0	
85.2\%	0	0	0	
86.4\%	0	0	0	
87.7\%	0	0	0	
-	0	0	0	
90.14\%	0	0	0	
92.6\%			0	
93.8\%	0	0	0	
	\bigcirc	0	0	
-9.7.5\%	0	0	\bigcirc	
98.8\%	0	0	0	
100.0\%	0	0	0	

Figure OP-09-b
Sites Reservoir, End of Month Storage

		October		
Percent Exceedance	${ }_{\substack{\text { a }}}^{\substack{\text { WSIP 2330 Wethout } \\ \text { Proiet }}}$	WSII 2030 With Project	Absolute	
Probability	End of Montert storage	End of Monts Storage	Difleerence	Difference (\%)
(\%)	(TAF)	(TAF)	(TAF)	
0.0\%	0	${ }^{1,718}$	${ }^{1,7178}$	
1.2\%	0	${ }^{1,683}$	${ }^{1,683}$	
2.5\%	0	1,659	1,659	
3.7\%	0	1,655	1,655	
4.9\%	0	1,641	1,641	
6.2\%	0	1.624	1,624	
7.4\%	0	1,620	1,620	
8.9\%	0	${ }_{1}^{1,618}$	1,618	
9.9\%	0	1,607 1.595	1,607 1,595 1	
111.19\%	0	+1,595	+1,595	
- $\begin{aligned} & 12.3 \% \\ & 13.6 \%\end{aligned}$	\bigcirc	1,580 1,568	1,580 1.568	
13.6\% 14.8%	\bigcirc	${ }_{1.557}^{1.568}$	${ }_{1}^{1.5657}$	
16.0\%	0	${ }_{1}^{1,545}$	1,545	
17.3% 18.5%	0	1,534		
${ }^{18.5 \%}$ 19.8\%	\bigcirc	${ }_{1,483}^{1,532}$	$\xrightarrow{1,4832}$	
21.0\%	0	1,445	1,445	
22.2\%	0	1,422	1,422	
${ }^{23.5 \%}$	0	1,420	1,420	
24.7\%	0	1,406	1,406	
25.9\%	0	${ }^{1,343}$	1,343	
27.2\%	0	${ }^{1,333}$	1,333	
28.4\%	0	1,330	1,330	
29.6\%	0	${ }^{1,283}$	1,283	
30.9\%	0	(1,281	(1,281	
32.1\% ${ }^{33.3 \%}$	0	1,277	1,277	
33.3\%	0	1,261 1.246 1	1,261 1,246 1	
34.6% 35.8%	0	+1,246	${ }_{1}^{1,246}$	
357.8\%	0	${ }_{1}^{1,242}$	${ }_{1}^{1,242}$	
38.3\%	0	1,190	1.190	
39.5\%	\bigcirc	1,183 1171	1,183 1,171 1	
420.\%	0	${ }_{1}^{1,166}$	${ }_{1}^{1,1766}$	
43.2\%	0	1,165	${ }^{1,165}$	
44.4\%	0	1,164	1,164	
455.7\%	0	1,149 1,146 1	+1,149	
48.1\%	0	1,108	1,108	
49.4\%	0	1,106	1,106	
50.6\%	0	${ }^{1,082}$	1,082	
51.9\%	0	${ }^{1,078}$	1,078	
${ }^{53.1 \%}$ 54.3\%	0	1,067 1.056 10.0	-	
55.\% \%	0	1,050	1,050	
56.8% 580%	0	${ }^{1,030}$	1,030	
年58.3\%	0	1,020 10020	1,020	
${ }_{\text {c }}^{59.5 \%}$	0	1,020 1,013	${ }_{1}^{1,020}$	
61.7\%	0	1,006	1,006	
-63.0\%	0	979	979	
64.2\%	\bigcirc	${ }_{963}^{974}$	974 9	
${ }^{66.7 \%}$	0	932	932	
${ }^{67.9 \%}$	\bigcirc	${ }_{865}^{912}$	${ }_{865}^{912}$	
70.4\%	0	${ }^{842}$	842	
71.6\%	0	${ }_{7}^{788}$	${ }_{7}^{788}$	
-72.8\%	0	${ }_{742} 7$	${ }_{742} 7$	
74.1\% 7	0	${ }_{727}^{742}$	${ }_{727}^{742}$	
76.5\%	0	725	725	
77.8\%		${ }_{626}$	${ }_{626}^{626}$	
79.0\%	\bigcirc	612 578	612 578	
80.2\%	0	551 551	578 551	
82.7\%	0	547	${ }_{547}^{54}$	
84.0\%	0	505	505	
-	0	${ }_{429}^{478}$	${ }_{429}^{478}$	
87,7\%	0	409	409	
${ }^{88.9 \%} 9$	0	${ }^{351}$	${ }^{351}$	
91.4\%	0	${ }_{333}$	333	
92.6\%	0	${ }^{302}$	${ }^{302}$	
${ }^{935.8 \%}$	0	${ }_{265}^{287}$	${ }_{265}^{287}$	
96.3\%	0	210	210	
97.5\%	0	137	137	
98.8\% 100.0	0	${ }_{112}^{128}$	${ }_{110}^{128}$	
100.0\%		110		

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceenace } \\ \text { Probabaility } \end{array} \\ \text { lof } \end{gathered}$	February			
	$\begin{gathered} \text { WSIP } 2030 \text { Without } \\ \text { Propiect } \\ \hline \end{gathered}$	WSIP 2030 With Project	${ }^{\text {Absoute }}$	Reative
	End of Month Storage	End of Month Storage	Difference (TAF)	Difference (\%)
${ }^{\frac{1}{2} .0}$	$\frac{\text { (TAF) }}{0}$	${ }_{\text {(TAF) }}^{1,810}$	${ }_{1,810}$	
1.2\%	0	1.810	1.810	
2.5\%	0	1.810	1,810	
3.7\%	0	1.810	1.810	
4.9\%	0	1,810	1.810	
6.2\%	0	1.810	1.810	
7.4\%	0	1.810	1.810	
8.9\%	0	1,810	1,810	
9.9\%	0	1.810	1,810	
- 11.14%	0	1.810 1880 1 1	(1,810	
(12.3\%	\bigcirc	1,810 1.810 180	1.810 1.810	
- 13.8%	0	${ }_{1,810}^{1.810}$	${ }_{1,810}^{1,810}$	
16.0\%	0	1.810	1.810	
3\%	0	1,810		
18.5\%	0	1.810		
19.8\%	0	1.810	1.810	
${ }_{2}^{21.0 \%}$	0	1.810	1,810	
${ }^{22.2 .5 \%}$	0	1,810 1,810	${ }_{1}^{1,810}$	
24.7\%	0	1,807	1,807	
25.9\%	0	${ }^{1,805}$	${ }^{1,805}$	
27.2\%	0	1.804	${ }^{1,804}$	
28.4\%	0	(1,801	1,801	
29.6\%	0	1.801	1.801	
${ }^{30.9 \%}$	0	1,790	1,790	
32.1\% ${ }^{33.3 \%}$	0	1,784	1,784	
33.3\%	0	${ }^{1,780}$	1,780	
34.6% 35.8%	0	${ }^{1,773}$	${ }_{1}^{1,773}$	
35.8\%	0	- 1,747	1,747 1,722	
- $\begin{aligned} & 37.0 \% \\ & 38.3 \%\end{aligned}$	0	- ${ }_{1}^{1,722}$	- ${ }_{1}^{1,722}$	
30.5\%	0	${ }_{1,707}^{1,712}$	${ }_{1}^{1,707}$	
40.7\%	0	${ }^{1,694}$	1694	
42.0\%	0	1,674		
43.2\%	0	1.666		
44.4\%	0	1.653	1,653	
45.7\%	0	1,646	1,646	
46.9\%	0	${ }^{1,579}$	${ }^{1,579}$	
${ }^{48.19 \%}$	0	${ }^{1,542}$	${ }_{\text {1,542 }}^{1,540}$	
50.6\%	0	1.531	1.531	
51.9\%	0	${ }_{1,507}^{1,495}$	1,507	
年 53.1 \% \%	0	1,495	${ }^{1,495}$	
54.3\%	0	${ }_{1}^{1,486}$	1,486	
${ }_{5}^{56.8 \%}$	0	+1,480	$\begin{array}{r}1,480 \\ 1,453 \\ \hline\end{array}$	
56.8\%	0	${ }_{1}^{1,453}$	${ }_{1}^{1,453}$	
	0	+1,427	+1,427	
59.5\%	0	1,409 1,383 1	1,409 1,383 1	
61.7\%	0	${ }_{1}^{1,370}$	${ }_{1}^{1,370}$	
63.0\%	0	${ }^{1,365}$	1,365	
64.2% 65.4%	0	${ }_{1}^{1,252}$	1,252	
${ }_{66.7 \%}^{65.4 \%}$	0	${ }_{\substack{1,242 \\ 1,241}}^{1,29}$	${ }_{1}^{1,241}$	
${ }^{67.9 \%}$	0	${ }_{\text {1,266 }}^{1,24}$	${ }^{1,226}$	
69.19\%	0	1,213	1,213	
70.4\%	0	+1,192	+1,192	
72.8\%	0	1,188 1,148 1	+1,188 $\begin{aligned} & 1,148 \\ & 1\end{aligned}$	
74.1\%	0	1,115	1,115	
75.3\%		${ }_{1}^{1,077}$	1,077	
76.5\%	0	1,005	1,005	
77.8\%		${ }_{887}^{889}$	889	
79.0\%	0	887 884	887 884	
-	0	${ }_{871}^{884}$	${ }_{871}^{884}$	
- 82.78%	0	${ }_{831}^{852}$	${ }_{831}^{852}$	
85.2\%	\bigcirc	${ }_{796}^{831}$	831 796	
86.4\%	0	739	739	
	0	735 707	${ }_{707}^{735}$	
${ }^{80.1 \%}$	0	${ }_{666}$	666	
91.4\%	0	634	634	
92.6\%	0	605	605	
${ }^{935.8 \%}$	0	${ }_{534}^{575}$	${ }_{534}^{554}$	
96.3\%	0	462	462	
${ }_{9}^{97.5 \%}$	0	${ }_{453}^{455}$	${ }^{455}$	
-	0	${ }_{417}^{445}$	447	

		June		
Percent Exceedance	${ }_{\substack{\text { a }}}^{\substack{\text { WSIP 2330 Wethout } \\ \text { Proiet }}}$	WSII 2030 With Project	Absolute	
Probability	End of Month Storage	End of Montt Storage	Difleerence	Difference (\%)
(\%)	(TAF)	(TAF)		
0.0\%	0	${ }_{1}^{1,810}$	1,810	
1.2\%\%	0	${ }_{1}^{1.810}$	1.810	
2.5\%	0	1,810	1,810	
3.7\%	0	1,810	1,8	
4.9\%	0	1,810	1,810	
${ }^{6.2 \%}$	0	${ }^{1.806}$	${ }^{1,806}$	
7.4\%	0	1.801	1,801	
${ }_{\text {9.9\% }}^{\text {8.9\% }}$	0	1,801	1,801	
19.1\%	0			
12.3\%	0	${ }_{1}^{1,766}$	1,766	
13.6\%	0	1,737	1,737	
14.8\%	0	1,720		
16.0\%	0	1,721		
- ${ }_{\text {17.3\% }}^{17.3 \%}$	\bigcirc	1,719 1,709	1,719 1,779 109	
19.8\%	0	1,701	1,701	
21.0\%	0	1.695	1,695	
22.2\%	0	1,694		
23.5\%	0	${ }^{1,693}$	1,693	
${ }^{24.79 \%}$	0	${ }^{1,688}$	1,68	
${ }^{27.2 \%}$	0	${ }_{1}^{1,689}$	${ }_{1}^{1,667}$	
28.4\%	0	1,669	1,669	
29.\%	0	1,665	1,665	
30.9\%	0	1,640	1,640	
32.1\%	0	1,619	1,619	
${ }^{33} 4.5 \%$	0	${ }_{1}^{1.615}$	${ }_{1}^{1,615}$	
35.8\%	0	${ }_{1}^{1,608}$	1,608	
37.0% 38.3%	\bigcirc	1,588 1.581	1,588 1.581	
38.5\%	0	${ }_{1}^{1,575}$	${ }_{1}^{1,575}$	
40.7\%	0	${ }^{1.574}$	1574	
	0		${ }^{1,572}$	
4.4.4\%	0	${ }_{1,565}^{1,51}$	${ }_{1,565}$	
45.7\%	0	1,564	${ }^{1,564}$	
46.9\%	0	${ }^{1,563}$	${ }^{1,563}$	
48.1\% 4.4%	0	1,559	1,559	
50.6\%	0	${ }_{1}^{1,554}$	${ }_{1}^{1,554}$	
51.9\%	0	${ }^{1,553}$	${ }^{1,553}$	
年53.1\%	0	+1,537	1,537	
54.6\%	0	${ }_{1}^{1,532}$	${ }_{1}^{1,5152}$	
56.8\%	0	${ }_{1}^{1,493}$	${ }_{1,493}$	
年58.0\%	0	+1,476	- $\begin{array}{r}1,476 \\ 1.468 \\ \hline\end{array}$	
59.5\%	0	1,468 ${ }_{1}^{1,463}$	1,468 $\begin{aligned} & \text { 1,463 } \\ & 1\end{aligned}$	
61.7\%	0	${ }_{1}^{1,443}$	${ }_{1,443}^{1,463}$	
- 63.0%	0	1,433	1,433	
- ${ }^{64.2 \%}$ 6.4\%	\bigcirc	+1,425 ${ }_{1,412}^{1,4}$	(1,425	
${ }^{66.7 \%}$	0	1398	908	
${ }^{67.9 \%}$	0	1,307	1,307	
70.4\%	0	1,270 1,192 1	${ }_{\substack{1,192 \\ 1,192}}^{1 / 13}$	
71.6\%	0	1,182	1,182	
72.8\%	0	1,1130	1,1130	
74.1\%	0	${ }^{1,1115}$	1,115	
75.3\%	\bigcirc	${ }_{1}^{1,052}$	${ }_{1}^{1,0092}$	
77.8\%		${ }^{936}$	936	
79.0\%	0	908 889	${ }_{808}^{908}$	
-	0	889	889	
${ }^{8} 8.27 \%$	0	889 819	889 889	
84.0\%	0	811	811	
-	0	745 724	745 724	
87.7\%	0	777	717	
${ }^{88.9 \%} 9$	0	702	702	
91.4\%	0	645	645	
92.6\%	0	604	604	
${ }_{\text {9 }} 93.8 .1 \%$	\%	${ }_{528}^{576}$	${ }_{528}^{576}$	
96.3\%	0	437	437	
975\%	0	358 338	${ }_{3}^{338}$	
988.8\% 100.0\%	0	${ }_{327}^{333}$	${ }_{327}^{333}$	

Sites Reservoir, End of Month Elevation

Table OP-10-b
servoi, End of Month Elevation

Figure OP-11-b
Sites Reservoir, End of Month Area

		Ocrober		
Percent Exceedance	$\begin{aligned} & \text { WSIP } 2030 \text { Without } \\ & \hline \text { Proiect } \\ & \hline \end{aligned}$	WSIP 2030 With Project	Absolute	Reative
Probability	End of Month Area	End of Month Area	（iflerence	Difference（\％）
0．0\％	（ACRE	（ACRE）	13842	
1．2\％	0	${ }^{13,730}$	${ }_{13730}$	
2．5\％	0	13.654	13.64	
3．7\％	0	13.640	136	
4．9\％	0	13,597	13，597	
6．2\％	0	13，541	13，541	
7．4\％	0	${ }^{13,527}$	${ }^{13,527}$	
8．6\％	0	${ }^{13,521}$	13，521	
${ }^{9.9 .1 \%}$	0	${ }^{13,4866}$		
－12．13\％	0	13,447 13,399	13,447 13,399	
13．6\％	0	13，361	13，361	
14．8\％ 16.0%	0	13，366	13,326 13,289	
17．3\％	0	13，252	13，252	
18．5\％	0	13，246	${ }_{13,246}$	
19．8\％	0	${ }^{13,070}$		
${ }_{2}^{21.0 \%}$	0	${ }^{12,2931}$	12，931	
${ }_{2}^{22.5 \%}$	0	${ }^{12,842}$	${ }_{12,842}$	
24．7\％	0	${ }^{12,790}$	${ }^{12,790}$	
${ }^{25.59 \%}$	0	${ }^{12,563}$	${ }^{12,563}$	
${ }^{277.2 \%}$ 284\％	0	${ }^{12,527}$	${ }^{12,527}$	
${ }^{28.4 \%}$ 29．6\％	0	＋12，516	＋12．516	
30．9\％	0	112,342 12,32 1	${ }_{12,342}^{12,347}$	
32．1\％	0	${ }^{12,328}$	${ }^{12,328}$	
33．3\％	0	12，257		
34.6% 35.8%	\bigcirc	12,192 12179	12，192	
357．8\％	0	12,179 12,007	12，179 12,007	
38．3\％	0	${ }^{11,956}$	11，956	
	0	${ }^{11,927}$	${ }^{11,927}$	
42．0\％	0	${ }^{11,853}$	11，853	
43．2\％	0	11.849	11,849	
${ }_{4}^{44.4 \%}$	0	${ }^{11,843}$	11，843	
45．7\％	0	${ }^{11,782}$	11，782	
48．1\％	0	11，604	11，604	
49．4\％	0	11.599	11,599	
	0	${ }^{11,496}$	1114967	
${ }^{51.9 \%} 5$	0	11，477	11，477	
54．3\％	0	11，384	11，384	
㐌56．8\％	0	11,360 11265 12	11,360 11265	
年56．8\％	\bigcirc	11,265 11217	111，265	
${ }_{50.3 \%}^{58.0 \%}$	0	${ }^{11,217}$	（11，217	
㐌 $6 . .5 \%$	0	11，184	11，184	
－ 61.7%	0	${ }^{11,152}$		
64．2\％	0	10，995	110,929 10,95	
${ }^{654.4 \%}$	0	10，942	10，942	
－ 66.7%	\bigcirc	10,789 10,691	－	
69．1\％	0	10，464	10，464	
70．4\％	0	10，350	10，350	
71．2\％\％	\bigcirc	$\xrightarrow{\substack{10.095 \\ 0,906}}$	$\xrightarrow{\text { 10，0062 }}$	
74．1\％	0	9,775	9,775	
75．3\％	0	${ }_{9}^{9,690}$	9，690	
76．5\％	0	9，674	9，674	
77．8\％	0	${ }_{8}^{9.075}$	${ }^{9,075}$	
79．0\％	\bigcirc	－${ }_{8}^{8,963}$	－${ }_{8,963}^{8,960}$	
81．5\％	0	8.449	8,449	
82.7% 840%	0	8,410 8058	8,410 8058	
－ $\begin{aligned} & 84.0 \% \\ & 88.2 \%\end{aligned}$	\bigcirc	8,058 7885 8.8	${ }_{\substack{8,058 \\ 7 \\ 7 \\ \hline 855}}$	
86．4\％	0	7,422	77.422	
	0	¢，7,768 6,768	（7，2567,768	
90．1\％	0	6，684	6，684	
${ }_{\text {92，}} 91.4 \%$	0	¢，6，318	${ }_{\substack{6,618 \\ 6,316}}^{\text {c，}}$	
93．8\％	0	6，164	6，164	
95．19\％	0	${ }_{5}^{5.926}$	5.926	
${ }^{96.75 \%}$	\bigcirc	${ }^{5.353}$	5，353	
98．8\％	0	4，080	4.080	
100．0\％	0	3，783	3，783	

Table OP.1-b

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{$$
\begin{gathered}
\text { Percent } \\
\left.\hline \begin{array}{c}
\text { Exeedance } \\
\text { Probobability }
\end{array}\right)
\end{gathered}
$$} \& \multicolumn{4}{|c|}{February}

\hline \& ${ }_{\text {WSIP }}^{\text {2030 }}$ Proithout \& WSIP 2030 With Project \& Absolute \&

\hline \& End of Month Area \& End of Month Area \& Difference
(ACRE) \& Difference (\%)

\hline (\%) \& (ACRE) \& (ACRE) \& \&

\hline 0.0\% \& 0 \& 14,137 \& 14,137 \&

\hline 1.2\% \& 0 \& 14,137 \& 14,137 \&

\hline 2.5\% \& 0 \& 14,137 \& 14,137 \&

\hline 3.7\% \& 0 \& 14,137 \& 14,137 \&

\hline 4.9\% \& 0 \& 14,137 \& 14,137 \&

\hline 6.2\% \& 0 \& 14,137 \& 14,137 \&

\hline 7.4\% \& 0 \& 14,137 \& 14,137 \&

\hline 8.6\% \& 0 \& 14,137 \& 14,137 \&

\hline 9.9\%\% \& 0 \& ${ }^{14,137}$ \& ${ }^{14,1437}$ \&

\hline ${ }^{119.1 \% \%}$ \& 0 \& ${ }_{\text {1 }}^{14,137}$ \& 14, \&

\hline 13.6\% \& 0 \& 14,137 \& 14,137 \&

\hline 14.8\% \& 0 \& 14,137 \& 14,137 \&

\hline 16.0\% \& 0 \& 14,137 \& \&

\hline 3\% \& 0 \& 14,137 \& 14,137 \&

\hline 18.5\% \& 0 \& 14,137 \& 137 \&

\hline 19.8\% \& 0 \& 14,137 \& \&

\hline 21.0\% \& 0 \& 14,137 \& 14,137 \&

\hline 22.2\% \& 0 \& 14,137 \& \&

\hline 23.5\% \& 0 \& 14,137 \& 14,137 \&

\hline 24.7\% \& 0 \& 14,129 \& 14,121 \&

\hline 25.9\% \& 0 \& ${ }^{14,123}$ \& 14,123 \&

\hline 27.2\% \& 0 \& 14,118 \& 14,118 \&

\hline 28.4\% \& 0 \& 14.1110 \& 14.1110 \&

\hline 29.6\% \& 0 \& 14,110 \& 14,110 \&

\hline 30.9\% \& 0 \& 14,073 \& 14,073 \&

\hline 32.1\% \& 0 \& 14.055 \& 14,055 \&

\hline 33.3\% \& 0 \& ${ }^{14.042}$ \& 14,042 \&

\hline ${ }^{34.6 \%}$ 35.8\% \& 0 \& ${ }^{14,020}$ \& 14,020 \&

\hline 37.0\% \& 0 \& ${ }_{\text {13,857 }}$ \& - \&

\hline 38.3\% \& 0 \& 13,825 \& ${ }^{13,825}$ \&

\hline \& 0 \& ${ }^{13,807}$ \& ${ }^{13,807}$ \&

\hline 42.0\% \& 0 \& ${ }_{\text {ckis }}^{13,703}$ \& (13,703 \&

\hline 43.2\% \& 0 \& 13,674 \& 13,674 \&

\hline 44.4\% \& 0 \& 13,634 \& ${ }^{13,634}$ \&

\hline 45.7\% \& 0 \& 13,612 \& 13,612 \&

\hline 46.9\% \& 0 \& 13,398 \& 13,398 \&

\hline 48.19\% \& 0 \& 13,278 \& 13,278 \&

\hline 49.4\% \& 0 \& 13,272 \& 13,272 \&

\hline 50.6\% \& 0 \& ${ }^{13,240}$ \& ${ }^{13,240}$ \&

\hline 51.9\% \& 0 \& ${ }^{13,155}$ \& 13,155 \&

\hline 53.19\% \& 0 \& ${ }^{13,112}$ \& 13,112 \&

\hline 54.3\%
5
5
5 \& 0 \& 13,080 \& 13,080 \&

\hline 55.6\% \& 0 \& ${ }^{13,058}$ \& ${ }^{13,058}$ \&

\hline \& 0 \& 12,959 \& 12,959 \&

\hline 年58.0\%\% \& 0 \& ${ }^{12,866}$ \& ${ }^{12,866}$ \&

\hline 60.5\% \& 0 \& +12,803 \& +12,803 \&

\hline 61.7\% \& 0 \& ${ }_{\substack{12,768 \\ 12,662}}^{12,}$ \& \&

\hline 63.0\% \& 0 \& ${ }^{12,642}$ \& 12,642 \&

\hline 64.2\% \& 0 \& \& 12,221 \&

\hline ${ }^{654.4 \%}$ \& 0 \& \& ${ }_{\text {l }}$ \&

\hline 67.9\% \& 0 \& ${ }_{1}^{12,110}$ \& ${ }_{12,110}$ \&

\hline 69.1\% \& 0 \& 12,055 \& 12,055 \&

\hline 70.4\% \& 0 \& ${ }^{11,1963}$ \& ${ }^{111,963}$ \&

\hline 71.6\% ${ }^{72.8 \%}$ \& 0 \& ${ }^{11,946}$ \& 11,946
11775 \&

\hline 74.1\% \& 0 \& ${ }^{11,638}$ \& ${ }_{111,638}$ \&

\hline 75.3\% \& 0 \& 11,475 \& 11,475 \&

\hline 76.5\% \& 0 \& 11,145 \& 11,145 \&

\hline 778.8 \& 0 \& 10.578
10.571 \& 10,578

10.571 \&

\hline 79.0\% \& 0 \& 10.571
10.555 \& 10.571
10.55
1 \&

\hline - \& 0 \& 10,555 \& 10.555 \&

\hline ${ }^{8} 8.2 .7 \%$ \& : \& | 10,492 |
| :--- |
| 10,398 |
| 10.0 | \& \&

\hline 84.0\% \& 0 \& 10,297 \& 10,297 \&

\hline 85.2\% \& \& (10.097 \& 10,097 \&

\hline ${ }^{86.4 \%}$ \& 0 \& 9,761 \& 9,761 \&

\hline 88.9\% \& 0 \& ${ }_{9.572}^{9.756}$ \& ${ }_{9,572}^{9,736}$ \&

\hline 90.1\% \& 0 \& ${ }_{9,325}$ \& ${ }_{9,325}$ \&

\hline 91.4\% \& 0 \& 9,136 \& 9,136 \&

\hline 92.6\% \& 0 \& ${ }^{8,898}$ \& ${ }^{8,898}$ \&

\hline 93.8\% \& 0 \& ${ }^{8.646}$ \& ${ }_{8,646}$ \&

\hline ${ }_{9}^{95.3 \%}$ \& 0 \& 8.304
7
7 \& 8,304
7
7 \&

\hline 97.5\% \& 0 \& 7.643 \& 7.643 \&

\hline 9.8\% \& 0 \& 7,628 \& 7,628 \&

\hline 100.0\% \& 0 \& 7,318 \& 7,318 \&

\hline
\end{tabular}

Table OP.1-b

$\begin{gathered} \text { Perceent } \\ \text { Exreadabe } \\ \text { Probability } \end{gathered}$	June			RelativeDifference (\%)
		WSII 2030 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difterence } \\ \text { (ACREE }) \end{gathered}$	
	End of Month Area	End of Month Area		
- 0 \% 0	(ACRE)	${ }^{\text {(ACRE) }} 14137$		
1.2\%	0	${ }^{14.137}$	14.137	
2.5\%	0	14,137	14.137	
3.7\%	0	14,137	14.137	
4.9\%	0	14,137	14,137	
6.2\%	0	14,126	14,126	
7.4\%	0	14,108	14,108	
8.6\%	0	14,108	14,108	
9.9\%\%	0	14,107	14,107	
11.1\%	0	14,062	14,0	
${ }^{1}$	0	13,996 13,905	13,9965	
14.8\%	0	${ }^{13,879}$	${ }^{13,879}$	
16.0\%	0	13,851		
3\%	0	13,845		
18.5\%	0	13,814	13,814	
19.8\%	0	13,789		
21.0\%	0	13,770 13765	13,770	
22.2\%	0	${ }^{13,765}$	${ }^{13,765}$	
23.5\%	0	${ }^{13,762}$	13,762	
24.7\%	0	${ }^{13,745}$	13,745	
25.9\%	0	${ }^{13,737}$	${ }_{13,737}^{13,781}$	
27.2\%	0	${ }^{13,718}$	13,778	
28.4\%	0	13,687	13,687	
29.6\%	0	${ }^{13,672}$	13,672	
30.9\%	0	13,552	13,59	
32.1\%	0	${ }^{13,524}$	13,524	
33.3\%	0	${ }^{13,513}$	13,513	
35.8\%	0	13,493		
37.0\%	0	${ }_{\text {13,426 }}^{113,48}$	(13,426	
38.3\%	0	13,402	${ }^{13,402}$	
39.5\%	0		13,385	
42.0\%	0	${ }_{13,375}^{13,380}$	${ }_{13,375}^{13,380}$	
43.2\%	0	13,371	${ }^{13,371}$	
44.4\%	0	13,351	13,351	
45.7\%	0	13,349	13,349	
${ }^{46.9 \%}$	0	13,345	13,345	
48.1\% 4.4%	0	13,333	13,333	
49.4\%	0	13,317	13,317	
年 50.19%	0	${ }^{13,316}$	13,316	
51.9\%	0	${ }^{13,314}$	13,314	
	0	${ }^{13,263}$	13,263	
${ }_{\text {cke }}^{54.3 \%}$	0	13,244	13,244	
${ }_{\text {56.8\% }} 5$	0	-	13,174 13106	
58.0\%	0	${ }^{13,042}$	13,042	
59.3\%	0	${ }^{13,015}$	${ }^{13,015}$	
年6.5\%	0	${ }_{\substack{12,997 \\ 12.224}}^{12029}$	12,997 12.924	
63.0\%	0	12,889		
64.2\%	0	59		
${ }^{654.4 \%}$	0	${ }^{12,814}$		
${ }^{66.7 \%}$	0	12,764		
69.1\%	0	-12,424 12,296 18	(12,434	
70.4\%	0	${ }^{111,965}$	${ }_{111,965}$	
71.6\%	0	${ }^{11,924}$	11,924	
72.8\%	0	${ }^{11,698}$	${ }^{111,698}$	
74.1\%	0	11,635	11,635	
75.3\%	0	11,559	11,559	
76.5% 778%	0	${ }^{11,365}$	11,365	
779.8\%	0	10,808	10,808	
79.0\%	0	10,674	10,674	
${ }^{801.5 \%}$	0	${ }^{10.582}$	10,582 10.580	
82.7\%	0	10,232	10,232	
84.0\%	0	10,188	10,188	
- 8 85.2\% ${ }^{86.4 \%}$	0	${ }_{9}^{9,794}$		
87.7\%	0	${ }_{9} 9,628$	${ }_{9} 9628$	
	0	${ }^{9,537}$	${ }^{9,537}$	
	0	${ }_{9,203}^{9,373}$	${ }_{9}^{9,203}$	
92.6\%	0	8,895	${ }^{8.895}$	
93.8\%	0	${ }_{8,658}$	8,658	
95.1\%	0	8,254	${ }^{8,254}$	
96.3\%	0	7,487	7,487	
97.5\% ${ }_{\text {988\% }}$	0	6,830	${ }_{6}^{6.830}$	
98.8\%	\bigcirc	${ }_{6.5658}^{6,618}$	${ }_{6}^{6.6618}$	

Sites Reservoir Project Operations Summary Tables and Bar Charts

Tehama Colusa Canal Intake at Red Bluff, Monthly Diversion

	Monthly Diversion (CFS)											
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
$\overline{\text { Full Sinulition Period' }}$												
WSIP 207 W Without Prijet	83	6	0	0	1	5	80	153	422	417	340	58
WSIP 2070 With Project	132	142	799	1,276	1,420	981	368	184	391	412	330	39
Difference	49	136	799	1,276	1,419	977	288	31	-31	-5	-10	-19
Percent Difference ${ }^{\text {a }}$	59.1\%							20.0\%	-7.3\%	-1.2\%	-2.9\%	-33.3\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
WSIP 207 W Witrout Priject	107	6	0	0	0	3	86	252	650	690	549	96
WSIP 2070 With Project	100	173	1,147	1,493	1,170	825	508	255	529	701	540	45
Difference	-6	167	1,147	1,493	1,170	821	421	3	-121	11	-9	-51
Pereent ifference	-5.8\%							1.2\%	-18.7\%	1.6\%	-1.7\%	-53.4\%
Above Nomal (1.4.4\%)												
WSIP 207 W Without Priject	85	4	0	0	0	3	116	202	540	567	433	43
WSIP 2070 With Project	324	322	965	1,682	1,887	1,382	641	269	546	378	395	31
Difference	238	318	965	1,682	1,887	1,379	525	67	7	-189	-38	-12
Perenen ifference								33.3\%	1.2\%	-33.3\%	-8.7\%	-27.7\%
Below Norma (15.9\%)												
WSIP 207 W Without Projet	78	5	0	0	1	4	89	104	363	322	253	49
WSIP 2070 With Project	63	11	326	1,670	1,497	1,280	457	164	407	301	241	40
Difference	-16	6	326	1,670	1,497	1,276	367	60	44	-20	-12	-9
Percent ifference	-20.0\%							57.9\%	12.1\%	-6.4\%	-4.6\%	-18.1\%
Dr (24.4\%)												
WSIP 2070 Witrout Priject	70	4	0	0	2	3	72	79	262	214	170	38
WSIP 2070 Wint Project	162	164	530	923	1,697	1,187	176	103	263	274	164	38
Difference	92	159	530	923	1,694	1,184	104	25	0	61	-5	0
Pereentifference	132.1\%						143.6\%	31.3\%	0.1\%	28.3\%	-3.1\%	-0.7\%
Critical (14.6\%)												
WSIP 207 W Without Prijet	58	11	0	0	3	13	34	72	149	128	178	34
WSIP 2070 With Project	52	13	853	598	991	289	39	107	149	163	187	34
Difference	-6	2	853	598	987	276	5	35	0	35	9	0
Percent ifference	-10.1\%	13.5\%					15.6\%	48.5\%	-0.2\%	27.6\%	5.2\%	-1.2\%

3 Reative difference of the monthy verage

Glenn Colusa Canal Intake at Hamilton City, Monthly Diversion
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Diversion (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulatio Period'												
WSIP 2070 Without Projed	775	451	212	85	68	40	2,215	2,106	2,928	2,806	2,067	551
WSIP 2070 with Project	651	471	631	249	318	645	2,295	1,819	2,597	2,449	2,116	509
Difference	-124	20	419	164	250	605	80	-288	-331	-357	49	-42
Percent Difference	-16.0\%	4.4\%					3.6\%	-13.7\%	-11.3\%	-12.7\%	2.4\%	-7.7\%
Water Year Types ${ }^{2}$												
Wet (3.17\%)												
WSIP 2070 Without Proed	795	458	222	78	67	30	2,011	2,088	2,968	2,890	2,121	569
WSIP 2070 With Project	731	540	784	265	302	586	2,329	1,910	2,979	2,923	2,442	509
Difference	-64	81	562	187	234	556	317	-178	11	33	321	-60
Pereent Difference	-8.0\%	17.7\%					15.8\%	-8.5\%	0.4\%	1.1\%	15.1\%	-10.5\%
Above Nomal (13.4\%)												
WSIP 2070 Without Proeet	780	464	226	80	66	27	2,171	2,116	2,967	2,897	2,113	587
WSIP 2070 with Project	636	535	616	324	383	748	2,402	2,001	2,404	2,087	2,213	490
Difference	-144	71	390	243	317	721	231	-115	-563	-810	99	-97
Pereent Difference	-18.5\%	15.3\%					10.6\%	-5.4\%	-19.0\%	-28.0\%	4.7\%	-16.6\%
Below Normal (15.9\%)												
WSIP 2070 Without Project	787	443	192	87	69	48	2,351	2,190	2,974	2,865	2,137	554
WSIP 2070 with Projet	611	377	405	321	308	665	2,609	2,005	2,310	2,168	2,186	522
Difference	-176	-66	213	234	239	617	258	-185	-664	-697	49	-31
Percent Differene	-22.4\%	-14.9\%	110.7\%				11.0\%	-8.5\%	-22.3\%	-24.3\%	2.3\%	-5.7\%
Dry (24.4\%)												
WSIP 2070 Without Project	787	452	225	90	69	42	2,324	2,198	2,995	2,880	2,159	546
WSIP 2070 with Project	658	446	575	191	355	919	2,276	1,789	2,565	2,502	2,062	543
Difference	-129	-6	350	101	286	877	-49	-409	-430	-378	-97	-4
Percent Difference	-16.4\%	-1.3\%					-2.1\%	-18.6\%	-14.4\%	-13.1\%	-4.5\%	-0.7\%
Critical (14.6\%)												
WSIP 2070 Without Proedt	695	430	176	92	69	64	2,369	1,893	2,643	2,354	1,675	482
WSIP 2070 With Project	526	406	654	165	245	201	1,814	1,299	2,311	1,970	1,333	452
Difference	-169	-24	477	73	175	138	-555	-594	-332	-384	-342	-30
Peacent Difference	-24.3\%	-5.5\%					-23.4\%	-31.4\%	-12.6\%	-16.3\%	-20.4\%	-6.3\%

$\frac{\text { Percent Differencee }}{1 \text { Basedo on the } 82 \text { veear simulation period }}$
3 Reative difference of the monthy verage

Table OP-03-a
and Pipeline, Mo
Delevan Intake and Pipeline, Monthly Diversion

Delevan Intake and Pipeline, Monthly Diversion Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Diversion (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulation Period ${ }^{\text {a }}$												
WSIP 2070 without Proed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 with Proeet	17	55	388	844	844	493	0	0	41	37	21	2
Difference	17	55	388	844	844	493	0	0	41	37	21	2
Percent Difference												
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
WSIP 2070 Without Prjed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Priject	0	51	521	1,034	896	585	0	0	28	59	22	0
Difference	0	51	521	1,034	896	585	0	0	28	59	22	0
Percent ifference												
Above Nomal (13.4\%)												
WSIP 2070 Weithot Projed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Priject	0	151	500	1,123	1,178	514	0	0	18	0	35	0
Differene	0	151	500	1,123	1,178	514	0	0	18	0	35	0
Percent Difference												
Below Normal (15.9\%)												
WSIP 2070 Without Projed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 with Projet	0	0	239	1,111	770	391	0	0	39	15	44	0
Difference	0	0	239	1,111	770	391	0	0	39	15	44	0
Percent Difference												
Dry (24.4%)												
WSIP 2070 Without Prject	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Priject	61	57	270	566	898	549	0	0	69	39	10	0
Difference	61	57	270	566	898	549	0	0	69	39	10	0
Pereat Difference												
Critical (14.6\%)												
WSIP 2070 W Whtout Proed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 witit Proect	14	32	354	351	416	292	0	0	42	48	0	16
Difference	14	32	354	351	416	292	0	0	42	48	0	16
Percent Difference												

1 Based on the 82 y.jear simulation period

3 Realive difference of the monthly average

Table OP-04-a
Tites Reservoir,
Funks Reservoir to Sites Reservoir, Monthly Diversion
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Diversion (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulition Period'												
WSIP 207 W Without Projet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	93	247	1,598	2,274	2,502	2,059	573	111	106	82	159	16
Difference	${ }_{9}$	247	1,598	2,274	2,502	2,059	573	111	106	82	159	16
Percent Difference?												
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
WSIP 207 W Without Prijet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	0	310	2,217	2,698	2,287	1,947	799	134	58	149	246	0
Difference	0	310	2,217	2,698	2,287	1,947	799	134	58	149	246	0
Percent Difference												
Above Noma (13.4\%)												
WSIP 2070 Without Priject	0	0	0	0	0	0	0	0	0	0	0	0
wSIP 2070 With Project	261	575	1,840	3,036	3,361	2,591	850	211	196	0	247	0
Diffeence	261	575	1,840	3,036	3,361	2,591	850	211	196	0	247	0
Percent Difierence												
Below Normal(15.9\%)												
WSIP 207 W Without Priject	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 with Project	0	0	779	2,997	2,490	2,266	781	191	181	24	212	0
Difference	0	0	779	2,997	2,490	2,266	781	191	181	24	212	0
Percent Differene												
Dry (24.4\%)												
WSIP 2070 Without Project	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	231	275	1,148	1,586	2,868	2,590	322	35	98	83	29	56
Difference	231	275	1,148	1,586	2,868	2,590	322	35	98	83	29	56
Percent Difference												
Critical (14.6\%)												
WSIP 207 W Without Projet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	14	32	1,669	1,019	1,587	705	23	8	57	75	50	16
Diffeence	14	32	1,669	1,019	1,587	705	23	8	57	75	50	16

1 Based on the 82 vever simulation period
3 Realive difference of the monthy averas

Table OP-05-a
Colusa and Glenn
Funks Reservoir to Tehama Colusa and Glenn Colusa Canals, Monthly Flow
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simultion Period'												
WSIP 2070 without Prject	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 with Project	443	39	6	0	3	25	348	696	883	877	706	461
Difference	443	39	6	0	3	25	348	696	883	877	706	461
Percent Difference												
Water Year Typess ${ }^{2}$												
Wet (3.7\%\%)												
WSIP 2070 Without Proed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 with Project	505	11	3	0	0	6	143	550	545	504	613	551
Differene	505	11	3	0	0	6	143	550	545	504	613	551
Percent Difference												
Above Normal (13.4\%)												
WSIP 2070 Without Proeet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 wit Project	480	42	2	0	0	4	197	582	1,123	1,436	790	565
Difference	480	42	2	0	0	4	197	582	1,123	1,436	790	565
Percent Difiference												
Below Normal (15.9\%)												
WSIP 2070 Without Project	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	536	61	9	0	5	29	282	677	1,251	1,246	784	539
Difference	536	61	9	0	5	29	282	677	1,251	1,246	784	539
Percent Difference												
Dry (24.4\%)												
WSIP 2070 Without Project	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	421	67	13	0	2	26	424	804	1,010	896	779	390
Difference	421	67	13	0	2	26	424	804	1,010	896	779	390
Pereent Difference												
Critical (14.6\%)												
WSIP 2070 Withut Project	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	208	22	0	0	11	77	878	956	784	741	626	205
Differene	208	22	0	0	11	77	878	956	784	741	626	205
Percent Difiterence												

1 Based on the 82 -vear simulation period
3 Realive difference of the monhly veras

Table $0 P-06-a$
to Deleven Pipel
Funks Reservoir to Deleven Pipeline, Monthly Flow
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\stackrel{\square}{\text { Full Simulation Period }}$ '												
WSIP 207 W Without Prijet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 Winf Project	610	345	85	11	75	66	27	46	939	859	610	759
Difference	610	345	85	11	75	66	27	46	939	859	610	759
Percent Difference												
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
WSIP 207 W Witrout Priject	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	256	82	11	17	15	23	0	0	935	620	173	487
Differene	256	82	11	17	15	23	0	0	935	620	173	487
Percen Difference												
Above Norma (13.4\%)												
WSIP 2070 Without Projed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	787	241	13	0	0	42	0	0	1,298	1,500	382	1,342
Difference	787	241	13	0	0	42	0	0	1,298	1,500	382	1,342
Percent Difference												
Below Normal (15.9\%)												
WSIP 2070 W Without Projed	0	0	0	0	0	0	0	0	0	0	0	0
Wsip 2070 With Project	569	398	73	0	122	23	0	0	1,154	1,240	748	784
Difference	569	398	73	0	122	23	0	0	1,154	1,240	748	784
Percent Difference												
Dry (24.4\%)												
WSIP 207 W Without Projet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	1,068	652	203	0	16	110	0	0	825	825	1,098	783
Difference	1,068	652	203	0	16	110	0	0	825	825	1,098	783
Percent Difference												
Cifital (14.6\%)												
WSIP 2070 W Without Projet	0	0	0	0	0	0	0	0	0	0	0	0
wSIP 2070 Wint Project	499	439	125	40	324	158	187	312	575	432	805	746
Difference	499	439	125	40	324	158	187	312	575	432	805	746

$\frac{1 \text { Based on the } 82 \text {-vear simulution period }}{}$

3 Realive difference of the monthly average

Page 652 of 1488

Table OP-07-a
o Funks Reserv
Sites Reservoir to Funks Reservoir, Monthly Flow
Long-term Average and Average by Water Year Type

	Long-term Average and Average by Water Year Type											
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulation Period'												
WSIP 207 W Without Prijet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	1,053	383	90	11	78	91	376	741	1,821	1,736	1,317	1,220
Difference	1,053	383	90	11	78	91	376	741	1,821	1,736	1,317	1,220
Percent Difference?												
Water Year Types ${ }^{2}$												
Wet (3.7\%)												
WSIP 207 W Without Prijet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 Wint Project	761	93	14	17	15	28	143	550	1,479	1,124	786	1,037
Difference	761	93	14	17	15	28	143	550	1,479	1,124	786	1,037
Percent Difference												
Above Nomal (13.4\%)												
WSIP 2070 Witrout Project	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	1,266	283	16	0	0	46	197	582	2,421	2,936	1,173	1,907
Difference	1,266	283	16	0	0	46	197	582	2,421	2,936	1,173	1,907
Percent Difference												
Below Normal (15.9\%)												
WSIP 207 W Without Projet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	1,105	459	81	0	127	52	282	677	2,405	2,486	1,532	1,323
Difference	1,105	459	81	0	127	52	282	677	2,405	2,486	1,532	1,323
Percent Difference												
Dry (24.4\%)												
WSIP 207 W Without Projet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 Wint Project	1,489	719	217	0	17	136	424	804	1,835	1,721	1,877	1,173
Difference	1,489	719	217	0	17	136	424	804	1,835	1,721	1,877	1,173
Percent Difference												
Cinital (14.6\%)												
WSIP 2070 W Without Projet	0	0	0	0	0	0	0	0	0	0	0	0
wSIP 2070 Wint Project	707	461	125	40	336	236	1,065	1,267	1,358	1,173	1,431	950
Difference	707	461	125	40	336	236	1,065	1,267	1,358	1,173	1,431	950

1 Based on the 82 -vear simulution period
3 Realive difference of the monthy veras

Table OP-09-a
Sites Reservoir, End of Month Storage

Sites Reservoir, End of Month Storage Long-term Average and Average by Water Year Type												
Analysis Period	End of Month Storage (TAF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulation Period'												
WSIP 2070 Without Proed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 with Project	949	942	1,037	1,178	1,316	1,436	1,435	1,390	1,280	1,169	1,090	1,013
Difference	949	942	1,037	1,178	1,316	1,436	1,435	1,390	1,280	1,169	1,090	1,013
Percent Difference ${ }^{\text {a }}$												
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
WSIP 2070 Without Proed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	1,386	1,400	1,539	1,464	1,593	1,712	1,742	1,710	1,617	1,547	1,505	1,436
Difference	1,386	1,400	1,539	1,464	1,593	1,712	1,742	1,710	1,617	1,547	1,505	1,436
Percent Difference												
Above Normal (13.4\%)												
WSIP 2070 Without Proed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	1,021	1,039	1,153	1,286	1,479	1,634	1,651	1,622	1,482	1,291	1,226	1,107
Difference	1,021	1,039	1,153	1,286	1,479	1,634	1,651	1,622	1,482	1,291	1,226	1,107
Percent Difference												
Below Norma (15.9\%)												
WSSP 2070 W Withot Project	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 with Project	878	852	898	1,181	1,314	1.449	1,459	1,423	1,282	1,121	1,033	948
Difference	878	852	898	1,181	1,314	1,449	1,459	1,423	1,282	1,121	1,033	948
Percent Difiference												
Dry (24.4\%)												
WSIP 2070 Without Proedt	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	783	757	817	1,033	1,193	1,344	1,329	1,276	1,165	1,055	934	862
Difference	783	757	817	1,033	1,193	1,344	1,329	1,276	1,165	1,055	934	862
Percent Difference												
Critical (14.6\%)												
WSIP 2070 Without Proedt	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 with Project	288	262	358	700	770	798	719	637	555	481	391	332
Difference	288	262	358	700	770	798	719	637	555	481	391	332
Percent Difference												

$\frac{\text { Percentifiference }}{1 \text { 1sased on the } 8 \text { 2-year simuludion period }}$
3 Realive difference of the monthly vereage

Long-term Average and Average by Water Year Type													
Analysis Period	End of Month Elevation (FEET)												
	Long.term												
$\overline{\text { Full Simulaion Period' }}$													
WSIP 2070 Without Proed	0	0	0	0	0	0	0	0	0	0	0	0	
WSIP 2070 with Priject	446	445	454	467	479	490	489	485	476	467	459	452	
Difference	446	445	454	467	479	490	489	485	476	467	459	452	
Percent Difference													
Water Year Types ${ }^{2}$													
Wet(31.7\%)													
WSIP 2070 Without Priject	0	0	0	0	0	0	0	0	0	0	0	0	
WSIP 2070 with Project	488	489	500	493	503	513	515	513	506	501	497	492	
Difference	488	489	500	493	503	513	515	513	506	501	497	492	
Percent Diffeence													
Above Nomal (13.4\%)													
WSIP 2070 Without Proect	0	0	0	0	0	0	0	0	0	0	0	0	
WSIP 2070 with Project	457	459	468	478	494	507	508	506	495	480	475	465	
Difference	457	459	468	478	494	507	508	506	495	480	475	465	
Percent Difference													
Below Normal (15.9\%)													
WSIP 2070 Without Project	0	0	0	0	0	0	0	0	0	0	0	0	
WSIP 2070 with Projet	443	440	445	467	478	491	492	490	479	465	457	449	
Difference	443	440	445	467	478	491	492	490	479	465	457	449	
Pecrent Difference													
Dry (24.4\%)													
WSIP 2070 Without Project	0	0	0	0	0	0	0	0	0	0	0	0	
WSIP 2070 with Project	433	431	436	456	471	483	482	478	468	459	448	442	
Difference	433	431	436	456	471	483	482	478	468	459	448	442	
Percent Difference													
Critical (14.0\%)													
WSIP 2070 Without Proeet	0	0	0	0	0	0	0	0	0	0	0	0	
WSIP 2070 with Project	369	366	383	421	430	434	425	415	406	397	383	375	
Difference	369	366	383	421	430	434	425	415	406	397	383	375	
Percent Difference													

$\frac{\text { Percent Difference }}{1 \text { Based on the } 82 \text { year simulation period }}$
3 Reative differenco on itemonthly yureage
3 Realive difference of the monthly vereage

Table OP-11

Sites Reservoir, End of Month Area

Sites Reservoir, End of Month Area term Average and Average by Water Year												
Analysis Period	End of Month Area (ACRE)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Sinulation Period'												
WSIP 2070 Weithot Projed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	10,364	10,299	10,798	11,499	12,132	12,651	12,637	12,423	11,987	11,515	11,091	10,708
Difference	10,364	10,299	10,798	11,499	12,132	12,651	12,637	12,423	11,987	11,515	11,091	10,708
Percent Difference ${ }^{\text {a }}$												
Water Year Types ${ }^{2}$												
Wet(31.7\%)												
WSIP 2070 Without Proed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	12,694	12,738	13,217	12,846	13,368	13,807	13,913	13,810	13,506	13,265	13,119	12,878
Difference	12,694	12,738	13,217	12,846	13,368	13,807	13,913	13,810	13,506	13,265	13,119	12,878
Pereent Difference												
Above Norma (13.4\%)												
WSIP 2070 Without Projed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	11,135	11,203	11,651	12,075	12,884	13,505	13,581	13,486	13,020	12,307	12,054	11,531
Difference	11,135	11,203	11,651	12,075	12,884	13,505	13,581	13,486	13,020	12,307	12,054	11,531
Percent Difference												
Below Norma (15.9\%)												
WSSP 2070 W Witrout Prjeet	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	10,279	10,147	10,487	11,442	12,025	12,719	12,831	12,706	12,180	11,500	11,067	10,640
Difference	10,279	10,147	10,487	11,442	12,025	12,719	12,831	12,706	12,180	11,500	11,067	10,640
Percent Difference												
Dry (24.4% \%												
WSIP 2070 Without Pried	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	9,747	9,599	9,885	10,970	11,744	12,368	12,345	12,125	11,663	11,202	10,597	10,242
Difference	9,747	9,599	9,885	10,970	11,744	12,368	12,345	12,125	11,663	11,202	10,597	10,242
Percent Difference												
Critical (14.6\%)												
WSIP 2070 W Whtout Proed	0	0	0	0	0	0	0	0	0	0	0	0
WSIP 2070 With Project	5,730	5,516	6,634	8,997	9,524	9,759	9,281	8,632	8,076	7,536	6,665	6,103
Difference	5,730	5,516	6,634	8,997	9,524	9,759	9,281	8,632	8,076	7,536	6,665	6,103
Percent Difference												

$\frac{\text { Percent Difference }}{1 \text { Based on the } 82 \text { 2year simulation period }}$
3Reative differene of ite
3 Realive difference of the montilly vereage

Sites Reservoir Project Operations Exceedance Probability Charts and Tables

Tehama Colusa Canal Intake at Red Bluff, Monthly Diversion

Table OP-01-b

Table OP－01－b

		February		
${ }_{\text {Pereent }}^{\text {Exceedance }}$	$\begin{aligned} & \text { WSIP } 2070 \text { Without } \\ & \text { Proiect } \end{aligned}$	WSIP 2070 With Project	${ }^{\substack{\text { Absolute } \\ \text { Difference }}}$	Reative
Probability	Montlil Diversion	Montly Diversion	（iffers）	Difference（\％）
0．0\％	（c）	（chs）	2073	
		2，12	，	
1．2\％\％	34	${ }^{2,121}$		
2．5\％${ }_{\text {3．7\％}}$	7	${ }_{2}^{2,121}$	2,1	
	${ }_{1}^{4}$	2,121 2,121 1	2，118	
6．2\％	0	2,121	2,121	
	0	2，121	2，121	
8．6\％	0	2，121	2,121	
9．9\％	0	${ }_{2,121}^{2,121}$	${ }_{\text {2，121 }}$	
11．1\％	0	2，121	${ }_{2,121}$	
${ }^{12.3 \%}$	0	${ }^{2,121}$	${ }^{2,121}$	
13．6\％	0	2，121	2，121	
14．8\％	0	${ }^{2,121}$	2，121	
－17．3\％	0	${ }_{2,121}^{2,121}$	${ }_{\substack{2,121}}^{2,121}$	
18．5\％	0	2,121	${ }_{2,121}$	
19．8\％	0	2,12		
21．0\％	0	2，121	2,1	
${ }_{2}^{22.2 \%}$	0	2，121		
${ }^{23.7 \%}$	0	${ }^{2,121}$	${ }_{2}^{2,121}$	
25．9\％	0	${ }_{2,121}^{2,121}$	${ }_{2,121}^{2,121}$	
27．2\％	0	2,121	2，121	
28．4\％	0	2，121	2,121	
29．6\％	0	2，121	2，121	
30．9\％	0	2，121	${ }_{\text {2，121 }}$	
32．1\％	0	${ }^{2,121}$	2，121	
年33．3\％	0	2，121	2，121	
34.6% 358%	0	${ }_{2}^{2,121}$	2，121	
边 $\begin{aligned} & 35.8 \% \\ & 37.0 \%\end{aligned}$	0	2，121	${ }_{2,121}^{2,121}$	
	0	${ }^{2,121}$	${ }^{2,121}$	
38．5\％	0	2，121	${ }^{2,121}$	
39．5\％	0	${ }^{2,121}$	${ }^{2,121}$	
420．0	0	${ }_{2,121}^{2,121}$	${ }_{\substack{2,121}}^{2,121}$	
43．2\％	0	2.121	2，121	
${ }^{44.4 .4}$	0	2，121	2，121	
45．7\％	0	${ }_{\substack{2,121 \\ 2,121}}^{2,121}$	${ }_{\substack{2,121 \\ 2,121}}^{2,121}$	
48．1\％	0	2.121	2,121	
49．4\％	0	2，121		
	0	2，121	2，121	
年 51.9%	0	2，121	2，121	
54．3\％	0	2，121	2，121	
54．3\％	0	2，121	${ }^{2,121}$	
56．8\％	0	1，939	${ }_{1}^{1,939}$	
58．0\％	0	1.878	1,878	
（59．3\％	0	1,819 1614 1,14	${ }^{1,819} 1$	
－ 60.5%	0	－1，614	1，614	
61．7\％	0	1，571	1，571	
68．2\％	0	1．449	1，449	
${ }^{64.54 \%}$	0	${ }_{1}^{1,336}$	${ }_{1}^{1,336}$	
	0	${ }_{\substack{1,276}}^{1,273}$	${ }_{1}^{1,3276}$	
${ }^{67.9 \%}$	0	1，173	1，173	
69．1\％ 7	0	${ }^{1.045}$	1,045	
71．6\％	0	656	656	
72．8\％	0	${ }_{530}$	${ }_{530} 6$	
74．1\％	0	174	174	
75．3\％	0	120	120	
76．5\％	0	75	75	
778．8\％	0	61	61	
790\％	0	52	${ }^{52}$	
－	0	${ }^{36}$	${ }^{36}$	
81．5\％	0	${ }^{32}$	${ }^{32}$	
－	0	12	12	
－${ }_{\text {84．0\％}}^{8.2 \%}$	0	10	10	
85．4\％	0	${ }_{0}^{4}$	${ }^{4}$	
87．7\％			0	
88．9\％	0	0	0	
90．14\％	0	0	0	
92．6\％	0		0	
93．8\％	0	0	0	
${ }_{96.3 \%}^{95.1 \%}$	0	0	0	
97．5\％	0	0	0	
98．8\％	0	0	0	
100．0\％	0	0	0	

Table OP－01－b

		June		
$\xrightarrow{\text { Percent }}$	WSIP 2070 Without Proiet	WSIP 2070 With Project	Absolute	
Probability	Monthly Diversion	Monthly Diversion	ditiference ${ }_{\text {（CFS）}}$	Difference（\％）
0．0\％	（CFS）	（crs）		
1．2\％	${ }_{1}^{1,170}$		1， 72	
2．5\％	1，169	${ }^{2,2043} 1$	${ }_{33} 8$	${ }^{\text {2．8\％}}$
3．7\％	1，110	1，151	41	3．7\％
4．9\％	1，001	1，009	8	0．8\％
－ 7.4%	899 840	998 896	49 56	${ }^{5.5 \%}$
8．6\％	${ }_{805}$	${ }_{849}$	${ }_{43}$	5．4\％
9．9\％	779	773	6	
11．1\％	759	673	${ }^{86}$	
12．3\％	${ }^{750}$	669	81	10．7\％
13．6\％ 14.8%	702	639	${ }^{62}$	－8．9\％
14.8% 16.0%	655	464	－191	
117．3\％	615	452	－163	－26．5\％
${ }^{17.3 \%}$ 18．5\％	562	${ }_{438}^{438}$	${ }_{-}^{-124}$	－22．1\％
19．8\％	558	425	－133	－23．8\％
21．0\％	551 530	410 383	－141	－25．6\％
${ }^{22.2 \%}$	${ }_{530}^{530}$	383 349	－147	－27．7\％
23．5\％	530 528	349 346	－181	－34．2\％
24．7\％	${ }_{522}^{528}$	${ }_{346}^{346}$	－182	－34．5\％
25．7．2\％	522	342 340	－180	－34．5\％
－ 27.2 2．4\％	${ }_{513}^{522}$	340 339	－182	－34．9\％
28．4\％${ }^{29.6 \%}$	513 496	339 339	－174	－33．9\％
29．6\％	${ }_{491}^{496}$	333 330	－163	－32．8\％
32．1\％	485	321	－164	－33．8\％
－33．3\％	489	320	－164	－33．8\％
第34．5\％\％	${ }_{454}^{459}$	320 319	－139	
37．\％\％	452	314	－138	－30．6\％
38．3\％	449	309	－140	－3110
39．5\％	448	309	－139	
40.7% 420%	439	308	－132	－30．0\％
${ }^{42.0 \%}$	437	307	－130	－29．7
43．2\％ 4.4	429	305	－124	－28．9\％
${ }^{44.4 .7 \%}$	419	${ }^{302}$	－117	－27．8\％
${ }^{45.75 \%}$	${ }_{403}^{407}$	299 299	－105	－26．4\％
48．1\％	394	298	－96	－24．3\％
4．9．4\％	380 377	${ }_{295}^{298}$	${ }^{-83}$	－21．7\％
年 50.0% \％	377 376	${ }_{293}^{295}$	${ }_{-83}$	－21．9\％
51．9\％	${ }_{373}^{376}$	${ }_{290}^{293}$	${ }^{-82}$	－21．9\％
	373 369	298 288	－82	－-22.2 \％
55．6\％	368	281	${ }_{-87}$	－223．6\％
5．8．8\％	361	276	－85	－23．6\％
年58．0\％	360 360	275	${ }^{-85}$	－23．5\％
	360 360	${ }_{271}^{275}$	－89	－23．6\％
61.7%	${ }_{337}$	270	${ }_{-67}$	－19．9\％
63．0\％	${ }_{332}^{332}$	270	－63	－18．8\％
64.2% 65.4%	${ }^{332}$	270	－62	－18．8\％
	329 326	269	－61	－18．4\％
67．9\％	321	266	－55	－17．2\％
69．1\％	316	265	－50	－15．9\％
70．4\％	$\begin{array}{r}302 \\ \\ \\ \\ \hline\end{array}$	260 28	－42	－13．9\％
71．6\％	${ }_{274}^{279}$	258 288	－－21	－7．5\％
72．8\％			－17	
74．1\％	${ }_{250}^{267}$	${ }_{257}^{257}$	－10	－3．7\％
76．5\％	${ }_{220}^{220}$	${ }_{255}$	35	15．9\％
778\％	218	250	33	15．1\％
79．0\％	189	${ }^{243}$	54	28．7\％
－	188 154	${ }_{241}^{241}$	53 87	28．3\％
827\％	148	241	${ }^{93}$	63．1\％
84.0% 85%	148	${ }^{241}$	${ }^{93}$	${ }^{63.1 \%}$
－85．4\％	1488	${ }_{217}^{241}$	93 87	63．1\％ 670.0%
87．7\％	116	190	73	63．0\％
88．9\％	${ }^{114}$	190	76	66．4\％
${ }^{90.14 \%}$	83	147	64	76．7\％
992．4\％	83	147	64	76．9\％
93．8\％	73	93	${ }_{20}^{40}$	23．7．0\％
95．1\％	62	54	－8	－13．1\％
96．3\％	${ }_{48}^{48}$	54 53	${ }_{5}^{6}$	12．4\％
${ }_{98.8 \%}^{97.5 \%}$	${ }_{34}^{48}$	53 48	$\begin{array}{r}5 \\ 14 \\ \hline\end{array}$	11．0\％
100．0\％	${ }_{0}$	${ }_{0}^{48}$	${ }^{14}$	

Figure OP-02-b
Glenn Colusa Canal Intake at Hamilton City, Monthly Diversion

Table OP-02-b

Percent Exceedanc	WSII 2070 Wethout Proiet	WSIP 2070 With Project	Abslute	
Proababiliy	Monthly (iversion	Monthy Diversion	Difference	Difference (
(\%)	(CFFS)	${ }_{\text {(CFFS) }}^{2.166}$	${ }_{1,337}$	${ }^{161.3 \%}$
1.2\%	${ }_{828}$	${ }_{828}$, 0	
2.5\%	826	819	-7	-0.9\%
3.7\%	825	807	-18	-2.2\%
4.9\%	825	805	-20	-2.5\%
6.2\%	${ }_{825}^{825}$	${ }^{803}$	${ }^{23}$	-2.7\%
7.4\%	823	799	-25	-3.0\%
8.6\%	${ }_{8}^{823}$	${ }_{799} 7$	-25	-3.0\%
9.9\%	${ }^{823}$	799	-24	-3.0\%
11.1\%	822	${ }_{796} 7$	-26	-3.2\%
12.3\%	822	796	-26	-3.1\%
13.6\%	822	794	-27	-3.3\%
14.8\%	${ }_{821} 82$	${ }_{791} 9$	-30	-3.6\%
- 16.0%	${ }_{821}^{821}$	790 788	-32 -32	-3.3\%
18.5\%	820	779	-41	-5.0\%
19.8\%	819	772	-47	-5.8\%
21.0\%	819	767	-52	-6.3\%
${ }_{23.5 \%}^{22.2 \%}$	819 818	762 761	-56	${ }_{-6.9 \%}^{-6.9 \%}$
24.7\%	816	760	-56	-6.8\%
25.9\%	816	${ }_{757} 7$	-59	-7.2\%
27.2\%	815	749	-66	-8.1\%
20.4\%\%	815	${ }_{748} 7$	-66	-8.1\%
30.9\%	${ }_{813}^{814}$	${ }_{741} 7$	-71	-8.9\%
${ }^{32.1 \%}$	812 812	${ }_{741}^{741}$	-71	-8.8\%
33.3\%	809	${ }_{7}^{740}$	-70	-8.6\%
34.6\%	${ }_{809}^{809}$	738 736	-71	-8.7\%
35.8\%	${ }_{807}^{806}$	736 735	-71	-8.8\%
38.3\%	806 806	735 730	-71 -76	-8.8\%
38.5\%\%	${ }_{806} 805$	730 729	-76	-9.4\%
39.5\%	${ }_{805}^{805}$	${ }_{727}^{729}$	-76 -75	-9.9\%
40.7\%	803 802	${ }_{722}^{727}$	-75 -79	-9.9\%
${ }_{43.2 \%}^{42.2 \%}$	${ }_{799}$	${ }_{721} 7$	-78	-9.8\%
44.4\%	799	709	-89	112
${ }^{45.7 \%}$	${ }_{796} 796$	698	-98	-12.3\%
48.1\%	${ }_{795}$	679	-116	
49.4\%	795	677	-117	-14.8\%
50.6\%	794	674	-120	-15.19
51.9\%	${ }_{793}$	654	-139	
53.19\% 54.3%	792	647	144	-18.2\%
54.3\% $5.5 .6 \%$	791	636	-155	-19.6\%
55.6\%	791	606	-185	-23.4\%
56.8\%	790	603	-187	-23.6\%
58.0\%	${ }_{787} 78$	603	-185	-23.5\%
59.3\%	${ }_{787}^{787}$	${ }_{6}^{601}$	-186	-23.6\%
	${ }_{781}^{787}$		-191	-24.3\%
61.7\% 6	781 779	${ }_{588} 5$	-193	-24.7\%
64.2\% 6	7778		-195	-25.0\%
64.2% 6.54%	${ }_{777} 77$	560 553	-218	-28
65.4\%	${ }_{777}^{773}$	553 531	-225	-28.9\%
	772	531 530	${ }_{-241}^{-242}$	隹
69.1\%	${ }_{768} 7$	527	-240	-31.3\%
70.4\%	${ }_{767} 78$	511	-257	-33.4\%
71.2.8\%	${ }_{765}$	509 507	-258	-
74.1\%	764	506	-258	-33.8\%
75.3\%	${ }_{761}^{760}$	494	${ }^{-267}$	-35.1\%
76.5\%	760	493	267	35.18
778.8	754	493	-261	-34.6\%
80.2\%	749	484	${ }^{266}$	
80.2\%\%	${ }_{743} 7$	481	-262	-35.2\%
${ }^{81.5 \%}$	${ }_{742} 7$	487	-262	-35.2\%
84.0\%	741	${ }_{464}$	- ${ }_{-277}$	-357.7\%
85.2\%	${ }_{7}^{741}$	461	-280	-37.8\%
${ }^{86.4 \%}$	${ }_{739} 73$	455	283	-38.3\%
-87.7\%	738 734	${ }_{450}^{452}$	-283	-38.7\%
- ${ }^{88.9 \%}$	${ }_{727}^{734}$	445 445	${ }_{-282}^{283}$	-38.6\%
${ }^{91.4 \%}$	722	${ }_{443}$	-280	${ }_{-38.7 \%}$
92.6\%	693	441	-252	-36.4\%
93.8\%	${ }^{602}$	435	-167	${ }_{-27.7 \%}$
96.3\%	596	412	-184	-30.9\%
975\%	596 553	${ }^{411}$	-185	-31.1\%
年 $98.8 \% \%$	${ }_{532}^{553}$	363 335	-199	-34.2\%
				\%

Table OP-02-b

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Prohahility } \end{gathered}$	Fobruary			
	WSIP 2070 Without	WSIP 2070 With Project	Absolute	
	Montly Diversion	Monthy Diversion	Difierence	Difference (\%)
(\%)	(cFs)	(CFF)		
0.0\%	107	${ }^{513}$	406	380.9\%
1.2\%	103	513	411	400
2.5\%	81	${ }_{5} 513$	432	${ }^{534.2 \%}$
3.7\%	80	513	${ }^{433}$	${ }^{541.7 \%}$
4.9\%	74	513	439	590
${ }^{6.2 \%}$	${ }^{68}$	55	445	${ }^{650.0 \%}$
7.4\%	68	513	445	
8.6\%	${ }^{68}$	513	445	
9.9\%\%	68	513	445	
19.1\%\%	${ }_{68}^{68}$	${ }_{513}$	445	
13.6\%	${ }_{68}^{68}$	${ }_{5}^{513}$	${ }_{445}^{445}$	${ }_{6}^{6550.0 \%}$
-14.8\%	${ }_{68}^{68}$	513	445	
16.0\%	68	513	445	
17.3\%	68	513	445	
18.5\%	68	513	445	
19.8\%	68	513	445	
21.0\%	${ }^{68}$	513	445	650.0\%
22.2\%	68	513	445	
23.5\%	68	513	445	
24.7\%	68	513	445	
25.9\%	${ }^{68}$	513	445	650.
27.2\%	${ }^{68}$	513	${ }^{445}$	650.0\%
28.4\%	68	553	445	${ }^{650.0 \%}$
29.6\%	68	513	445	650
30.9\%	${ }^{68}$	513	445	650
32.1\%	68	513	445	650
33.3\%	${ }^{68}$	513	445	${ }^{650.0 \%}$
34.6% 3588%	${ }_{68}^{68}$	496	${ }^{428}$	${ }_{6}^{625.5 \%}$
37.0\%	${ }_{68}^{68}$	496	${ }_{428}^{428}$	625.5\%
	${ }_{68}^{68}$	495	${ }^{427}$	624.1\%
39.7\%	${ }_{68} 8$	495	4	
42.0\%	68	495	427	624.1\%
43.2\%	68	495	427	624
44.4\%	68	495	427	
45.7\%	${ }^{68}$	495	427	624.1\%
46.9\%	68	495	${ }^{427}$	${ }^{624.1 \%}$
48.1\% 4.4%	${ }^{68}$	479	411	600.5\%
50.6\%	68	471	${ }_{402}$	587.8\%
51.9\%	68	471	402	587.8\%
53.1\%	${ }^{68}$	471	402	5878\%
54.3\%	${ }_{68}^{68}$	471	${ }_{317}^{402}$	${ }^{587.8 \%}$
55.6\%	${ }^{68}$	385	317	${ }^{462.7 \%}$
56.8\%	68	${ }^{265}$	196	${ }^{286.6 \%}$
年58.0\%\%	${ }_{68} 8$	252	184	269.0\%
60.5\%	${ }_{68}^{68}$	213 133	$\begin{array}{r}145 \\ 65 \\ \hline\end{array}$	212.1\%
61.7\%	${ }_{68}$	${ }_{130}$	${ }_{62}$	90.0\%
63.0\%	68	${ }^{123}$	54	79.3\%
	${ }^{68}$	118	50	72.5\%
${ }_{6}^{65.7 \%}$	${ }_{68}^{68}$	80	32	16.9\%
67.9\%	68	74	6	8.7\%
69.1\%	68	73	4	4\%
70.4\%	68	68	0	0.0\%
71.6\%	${ }^{68}$	68	0	\%
72.8\%	${ }_{68}^{68}$	${ }_{68}^{68}$	0	0.0\%
74.19\%	${ }_{66}$	${ }^{68}$	${ }_{2}$	3.6\%
75.5\%	${ }_{66}^{66}$	${ }_{68}^{68}$	${ }_{2}$	3.6\%
77.8\%	66		2	3.6\%
79.0\%	66	68	2	3.6\%
- 80.2%	${ }_{66}^{66}$	${ }_{68}^{68}$	2	3.6\%
- $\begin{aligned} & 81.5 \% \\ & 88.7 \%\end{aligned}$	${ }_{66}$	${ }^{68}$	2	6\%
84.0\%	${ }_{66}^{66}$	${ }^{68}$	2	\%\%
85.2\%	${ }_{66}^{66}$	${ }_{68}^{68}$	2	3.6\%
86.4\%	${ }_{66}^{66}$	${ }_{68}^{68}$	2	3.6\%
-87.7\%	${ }_{66} 66$	${ }_{66} 6$	0	0.0\%
${ }_{90.1 \%}$	${ }_{66} 6$	${ }_{66}$	0	0.0\%
91.4\%	66	66	0	0.0\%
92.6\%	${ }_{62} 6$	${ }^{66}$	0	0.0\%
955.1\%	${ }_{52}^{62}$	${ }_{6}^{62}$	0	
96.3\%	52	26	-26	-50.2\%
97.5\%	52	${ }^{26}$	-26	-50.2\%
98.8\% 100.0	50 50	${ }_{26}^{26}$	-24	-48.5\%
		26	-24	-48.8\%

		June		
Percent Exceedance	WSIP 2070 W. Without Proiet	WSIP 2070 With Project	${ }^{\text {Absolute }}$	Relative
Probability	Monthly Diversion	Montly Diversion		Difference (\%)
(\%)	(CFS)	(CFS)		
0.0\%	3,000	3,000	0	0.0\%
${ }^{1.2 \%}$	3,000	3,000	0	0.0\%
2.5\%	3,000	3,000	0	0.0\%
3.7\%	${ }^{3.000}$	${ }^{3.000}$	0	
4.9\%	3,000	${ }^{3,000}$	0	
${ }^{6.2 \%}$	${ }^{3.000}$	${ }^{3,000}$	0	0.0\%
7.4\%	${ }^{3,000}$	${ }^{3,000}$	0	
8.6\%	${ }^{3}, 000$	${ }^{3,000}$		
9.9\%	3,000	${ }^{3,000}$		0.0\%
${ }_{1} 1.23 \%$	${ }_{3,000}^{3}$	${ }_{3,000}^{3.000}$	0	0.0\%
13.6\%	3,000	3,000		
14.8\%	3,000	3,000	0	0.0\%
16.0\%	3,000	3,000	0	
17.3\%	3,000	3,000	0	
18.5\%	3,000	${ }^{3,000}$	0	0.0\%
19.8\%	3,000	3,000	0	0.0\%
21.0\%	3,000	3,000	0	0.0\%
${ }^{22.2 \%}$	3,000	3,000	0	0.0\%
${ }^{23.55 \%}$	${ }^{3.000}$	3,000	0	0.0\%
24.7\%	${ }^{3,000}$	3,000	0	0.0\%
25.9\%	3,000	${ }^{3,000}$	0	0.0\%
27.2\%	${ }^{3,000}$	3,000	0	0.0\%
- ${ }_{\text {28.4.6\% }}$	${ }^{3.000}$	${ }^{3,000}$	0	0.0\%
	3,000	${ }^{3,000}$	0	0.0\%
${ }^{30.9 \%}$	-	${ }^{3,000}$	0	
32.19\%	3,000	3,000	0	
34.6\%	3,000	3,000		0.0\%
35.8\%	3,000	3,000	0	0.0\%
	${ }^{3,000}$	${ }^{3.000}$	0	0.0\%
30.5\%	${ }_{3}^{3} \mathbf{3} 0000$	${ }_{2,998}^{2,998}$	-2	${ }_{\text {- }}$
40.7\%	3,000	2.972	${ }^{28}$	-0.9\%
42.0\%	3,000	2,967	${ }^{33}$	-1.1\%
43.2\%	3,000	2,962	${ }^{38}$	-1.3\%
44.4\%	3,000	2,944	${ }^{56}$	-1.9\%
45.7\%	3,000	2,940	-60	-2.0\%
46.9\%	${ }^{3,000}$	2,927	-73	-2.4\%
48.19\%	${ }^{3.000}$	2,920	-80	-2.7\%
49.4\%	${ }^{3,000}$	2,917	-83	-2.8\%
年 50.0%	3,000	2,916	-84	-2.8\%
年 51.9%	3,000	2,915	-85	-2.8\%
	${ }^{3,000}$	2,915	${ }^{-85}$	-2.8.0\%
55.6\%	3,000 3 3	2,884	-116	-3.9\%
56.8\%	3,000	${ }_{2}^{2,840}$	-160	-5.3\%
	3.000 3 3	2,730	${ }^{-270}$	-9.0\%
- ${ }^{59.5 \%}$				
61.7\%	${ }_{3,000}^{3}$	${ }_{2,522}^{2,532}$	${ }_{-478}$	-15.9\%
63.0\% 6.02%	3.000	2,355	-645	-21.5\%
64.2\% 6.54%	3,000	2,307 2029	-693	- ${ }_{-23.14 \%}$
${ }^{6.7 \%}$	3,000	${ }_{2,296}$	-704	${ }^{-23.5 \%}$
67.9\%	2,998	2,222	-776	-25.9\%
69.1\%	2,998	2,207	-791	-26.4\%
70.4\%	2,996	2,162	-834	-27.8\%
71.2\%	2,988 2,985	2,108 2,066	-879	
74.1\%	2,979	${ }_{2,041}^{2,060}$	-939	-31.5\%
75.3\%	2,977	2,037	-940	-31.6\%
76.5\%	2,974	2,037	-937	-31.5\%
77.8\%	2,961 2.953	2,037	-924	-31.2\%
80.2\%	${ }_{\text {2,953 }}$	${ }_{2,037}^{2,037}$	-916	-31.0\%
81.5\%	2,950	2,036	-914	-31.0\%
- 82.78	$\begin{array}{r}2,940 \\ 2,940 \\ \hline 290\end{array}$	2,034	-906	-30.8\%
	2,940	2,029	-911	-31.0\%
88.4\%	${ }_{2}^{2,951}$	${ }_{2}^{2,015}$	-836	
887.7\%	${ }_{2}^{2,54}$	2,015	-	
88.9\%	${ }_{2,827}^{2,84}$	${ }_{1}^{2,988}$	-839	\%
90.1\%	2,792	1,960	-832	-29.8\%
91.4\%	2,712	1,954	-758	-28.0\%
92.6\%	2,610	1,920	-690	-26.4\%
93.8\%	2,434	1,894	-540	\%
95.1\%	${ }_{2}^{2,338}$	-1,870	- ${ }_{-688}$	20.0\%
96.3\%	${ }_{2}^{2,326}$	${ }^{1,773}$	-553	-23.8\%
97.5\%	+2,296	1,710	-586	-25.5\%
98.8\% 100.0%	${ }_{\substack{2,236}}^{2,292}$	${ }_{1,543}^{1,677}$	-693	-

Delevan Intake and Pipeline, Monthly Diversion

Table OP.03.b

Probability	Monthly Diversion (CFS)	Monthly Diversion (Cfs) che	Difference (CFS)	Difference $\%$)
0.0\%	O	1,230	1,230	
1.2\%	0	174	174	
2.5\%	0	0	0	
3.7\%	0	0	0	
4.9\%	0	0	0	
7.4\%	0	\bigcirc	0	
8.6\%	0	\bigcirc	0	
${ }^{9.9 \%}$	0	0	0	
- ${ }_{\text {11.2\% }}$	${ }_{0}^{0}$	0	0	
13.6\%	0	0	0	
14.8\%\%	0	0	0	
17.3\%	0	0	0	
18.5\%	0	0	0	
19.8\%	0	0	0	
221.0\%	0	0	0	
22.5\%	0	0	0	
24.7\%	0	0	0	
${ }^{25.9 \%}$	0	0	0	
27.2\%	0	0	0	
229.6\%	0	0	0	
30.9\%	0	0	0	
32.1\%	0	0	0	
334.6\%	0	0	0	
35.8\%	0	0	\bigcirc	
38.0\%\%	0	\bigcirc	0	
39.5\%	0	0	0	
${ }_{420.0 \%}^{40.7}$	\bigcirc	0	0	
43.2\%	0	0	0	
44.4\%	0	0	0	
$45.7 \% \%$ 46.9%	0	0	0	
48.9\%	0	0	0	
48.4\%	0	0	0	
	0	0	0	
51.9\%	0	0	0	
53.3\%	0	0	0	
55.6\%	0	0	\bigcirc	
	\bigcirc	0	\bigcirc	
559.3\%	${ }_{0}^{0}$	0	0	
	0 0	0	0	
63.0\%	0	0	0	
64.4\%	0	0	0	
66.7\%	0	0	0	
69.9\%	0	0	0	
70.4\%	0	0	\bigcirc	
71.6\%	0	0	0	
72.8\%	0	0	0	
74.1\% ${ }^{75.3 \%}$	0	0	0	
77.5\%	0	0	0	
77.8\%			0	
87.0\%	0	0	0	
${ }_{\text {812.5\% }}{ }^{80.2 \%}$	${ }_{0}^{0}$	0	0	
82.7\%	0	0	0	
88.0\%	\bigcirc	\bigcirc	0	
${ }^{88.4 \%}$	0	0	0	
888.9\%	0	0	0	
90.1\%	0	0	0	
92.4\%\%	0	0	0	
93.8\%	0	0	0	
${ }^{95.1 \%}$	0	0	0	
99.3\%\%	0	0	0	
98.8\%\%	0	0	\bigcirc	
100.0\%	0	0	0	

Table OP.03-b

		February		
Percent Exceedance	WSIP 2070 Without Proiet	WSIP 2070 With Project	Absolute	Relative
Probability	Monthly Diversion	Monthly Diversion	${ }^{\text {(CFS) }}$	Difference (\%)
0.0\%	(c)	2,000	2,000	
1.2\%	0	2,000	2,000	
2.5\%	0	2,000	2,000	
3.7\% 4.9%	0	2,000 2,000	${ }_{2}^{2,000}$	
6.2\%	0	2,000	2.000	
7.4\%	0	2.00		
8.6\%	0	2,000		
9.9\%	0	2,000		
+11.1\%	0	2,000		
- ${ }^{12.36 \%}$	0	2,000		
	0	${ }^{1,852}$	${ }^{1,852}$	
- ${ }^{14.8 .0 \%}$	0	(1,852 ${ }_{1}^{1,785}$	${ }^{1,1,785}$	
17.3\%	0	1,705	1,705	
18.5\%	0	1,701	${ }^{1,701}$	
19.8\%	0	1,701	1,701	
21.0\%	0	1,689	1,689	
${ }^{22.2 \%}$	0	1,689	${ }^{1,689}$	
${ }^{23.5 \%}$	0	-1,689	${ }^{1} 1.6899$	
${ }^{24.9 \%}$	0	${ }_{1}^{1,689}$	${ }_{1}^{1,689}$	
- 27.2%	0	1,689	1,689	
- $28.4 .4 \%$	0	${ }^{1,6688}$	1,668	
30.9\%	0	${ }_{1}^{1,527}$	${ }_{1}^{1,527}$	
32.1\%	0	${ }_{1,364}^{1,32}$	1,364	
33.3\%	0	${ }^{1,364}$	${ }^{1,364}$	
34.6\%	0	1,364	1,364	
35.8\%	0	1,202	1,202	
37.0\%	\bigcirc	+1,075	${ }^{1,2075}$	
3.5\%	0	1,075	1,075	
40.7\%	0	1,056	1,056	
42.0\%	0	1,039	1,039	
${ }^{43.4 \%}$	0	${ }^{1.031}$	${ }^{1.031}$	
45.7\%	0	877	877	
46.9\%	0	763	763	
48.1\% 4 \%	0	${ }_{642}^{714}$	${ }_{6414}^{714}$	
49.4\% 50.6\%	\bigcirc	642 455	642 455	
51.9\%	0	418	418	
	0	389 389	389 389	
55.6\%	0	${ }_{364}$	${ }_{364} 36$	
56.8\%	0	229	229	
58.0\%	0	214	214	
59.5\%	0	214	214	
	0	214	214 214	
63.\%	0	214	214	
64.2\%	0	214	214	
${ }^{65.4 \%}$	0	214	${ }_{214} 1$	
66.7\% 67.9%	0	${ }_{214}^{214}$	214 214	
69.1\%	0	${ }_{214}^{214}$	214 214	
70.4\%	0	${ }^{207}$	207	
71.6\%	\bigcirc	${ }_{207}^{207}$	${ }_{207}^{207}$	
74.1\%	0	${ }_{207}^{207}$	${ }_{207}^{207}$	
75.3\%		${ }^{207}$	207	
${ }^{76.5 \%}$	0	207	207	
79.0\%	0	154	${ }_{154}^{153}$	
80.2\%	0	${ }^{133}$	133	
81.5\%	0	0	0	
- 8 82.7\%	0	0	0	
84.0\%	\bigcirc	0	\bigcirc	
86.4\%	0	0	0	
877\%	0	0	0	
${ }^{88.9 \%}$	0	0	0	
91.4\%	0	0	0	
92.6\%	0	0	0	
93.8\%	0	0	0	
${ }_{96.3 \%}$	0	0	0	
975.5\%	0	0	0	
98.8\% 100.0\%	\bigcirc	\bigcirc	\bigcirc	

Table op.0.3.b

Figure OP-04-b
Funks Reservoir to Sites Reservoir, Monthly Diversion

Table OP-04-b

Table OP-04-b

Table P-0.4.b

Io Sites Reservoit Monthy Diversion

Figure OP-05-b
Funks Reservoir to Tehama Colusa and Glenn Colusa Canals, Monthly Flow

Table op.05-b

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& Ociober \& \& \\
\hline Percent
Exceedance \& \begin{tabular}{l}
WSIP 2070 Without \\
Proiet \\
\hline
\end{tabular} \& WSIP 2070 With Project \& Absolute
Difference \& Relative \\
\hline Probabiliy \& Monthy fow (CFS) \& Montliy Flow (CFS) \& (CFF) \& \\
\hline 0.0\% \& 0 \& 905 \& 905 \& \\
\hline 1.2\% \& 0 \& 884 \& 884 \& \\
\hline 2.5\% \& 0 \& \({ }^{846}\) \& \({ }^{846}\) \& \\
\hline 3.7\% \& 0 \& \({ }^{843}\) \& \({ }^{843}\) \& \\
\hline 4.9\% \& 0 \& \({ }_{821}^{833}\) \& \({ }^{833}\) \& \\
\hline 6.2\% 74 \& \(\bigcirc\) \& 821
812 \& 821
812 \& \\
\hline 8.6\% \& 0 \& \({ }_{809}\) \& \({ }_{809}^{812}\) \& \\
\hline 9.9\% \& 0 \& 807 \& 807 \& \\
\hline 11.19\% \& 0 \& 806 \& 806 \& \\
\hline \(12.3 \%\)
\(13.6 \%\)

12, \& 0 \& ${ }^{804}$ \& 804 \&

\hline 14.8\% \& 0 \& 750 \& 750 \&

\hline 16.0\% \& 0 \& 729 \& 729 \&

\hline 17.3\% \& 0 \& ${ }_{718} 7$ \& ${ }_{711} 7$ \&

\hline 18.5\% \& 0 \& 711 \& 711 \&

\hline 19.8\% \& 0 \& 677 \& ${ }_{6}^{677}$ \&

\hline 21.0\% \& 0 \& 673 \& ${ }_{6}^{673}$ \&

\hline 22.2\% \& 0 \& 663 \& 663 \&

\hline ${ }_{24.7}^{23.5 \%}$ \& 0 \& 654
652 \& 654
652 \&

\hline 24.7\% \& O \& ${ }_{652}^{632}$ \& ${ }_{6}^{63}$ \&

\hline 27.2\% \& 0 \& 630 \& 630 \&

\hline \& 0 \& 575
571 \& ${ }_{571}^{575}$ \&

\hline 29.6\% \& 0 \& ${ }_{565}^{571}$ \& 565
565 \&

\hline 32.1\% \& 0 \& 565 \& 565 \&

\hline - ${ }_{\text {33, }}$ \& 0 \& | 564 |
| :--- |
| 562 | \& \&

\hline 35.8\% \& 0 \& 560 \& 560 \&

\hline 退37.0\% \& 0 \& ${ }_{557}^{555}$ \& 555 \&

\hline 30.5\% \& 0 \& ${ }_{528} 5$ \& ${ }_{528} 5$ \&

\hline 40.7\% \& 0 \& 522 \& 522 \&

\hline 42.0\% \& 0 \& 517 \& ${ }_{515}^{517}$ \&

\hline 43.2\% \& 0 \& 515
511 \& 515
511 \&

\hline 44.4.\% \& 0 \& 511 \& 511 \&

\hline 45.7\% \& O \& 502 \& 502 \&

\hline ${ }^{46.9 \%}$ \& 0 \& 501 \& 501 \&

\hline 48.19\% \& \bigcirc \& ${ }_{400}^{597}$ \& 590
497 \&

\hline 50.6\% \& 0 \& 489 \& 489 \&

\hline 51.9\% \& 0 \& 480 \& 480 \&

\hline 53.19\%
54.3% \& 0 \& ${ }_{462}^{465}$ \& ${ }_{462}^{465}$ \&

\hline 55.6\% \& 0 \& 453 \& 453 \&

\hline 56.8\% 5 \& \bigcirc \& ${ }_{450}^{451}$ \& ${ }_{450}^{451}$ \&

\hline 59.3\% \& 0 \& 445 \& 445 \&

\hline 60.5\% \& 0 \& 413 \& ${ }^{413}$ \&

\hline - 61.7% \& 0 \& 381 \& 381 \&

\hline 64.2\% \& 0 \& 377 \& 377 \&

\hline 65.4\% \& 0 \& 375 \& 375 \&

\hline 66.7\% \& 0 \& 374 \& 374 \&

\hline 67.9\% \& O \& ${ }^{365}$ \& ${ }^{365}$ \&

\hline 69.19\% \& 0 \& - ${ }_{351}^{358}$ \& 358
351 \&

\hline 71.6\% \& 0 \& 312 \& 312 \&

\hline 72.8\% \& 0 \& 250
248 \& 250
248 \&

\hline 75.3\% \& 0 \& ${ }_{238}^{248}$ \& ${ }_{238}^{248}$ \&

\hline 76.5\% \& 0 \& 168 \& 168 \&

\hline 778.8\% \& 0 \& ${ }_{1}^{125}$ \& 147
125
125 \&

\hline 80.2\% \& 0 \& 111 \& 111 \&

\hline 81.5\% \& 0 \& 87 \& 87 \&

\hline 822.7\% \& 0 \& 82
81 \& 82
81 \&

\hline 85.2\% \& 0 \& 80 \& 80 \&

\hline 86.4\% \& 0 \& 59 \& 59 \&

\hline 87.7\% \& 0 \& 44 \& 44 \&

\hline ${ }^{88.9 \%}$ \& 0 \& 41 \& ${ }^{41}$ \&

\hline 90.14\% \& 0 \& ${ }_{4}^{32}$ \& ${ }_{4}^{32}$ \&

\hline 92.6\% \& 0 \& 2 \& 2 \&

\hline 93.\% \& 0 \& 0 \& 0 \&

\hline 95.1\% \& 0 \& 0 \& 0 \&

\hline 96.3\% ${ }^{97.5 \%}$ \& 0 \& 0 \& 0 \&

\hline 98.8\% \& 0 \& 0 \& 0 \&

\hline 100.0\% \& 0 \& 0 \& 0 \&

\hline
\end{tabular}

Table op．05．b

Exceecant	$\begin{aligned} & \text { WSIP } 2070 \text { Without } \\ & \text { Proiect } \end{aligned}$	WSIP 2070 With Project	${ }_{\text {dita }}^{\substack{\text { Absoutue } \\ \text { Difence }}}$	
$\xrightarrow{\text { Probability }}$	Montly Fow（C）	Monthly Flow（cFs）	（CFSS）	
${ }_{12 \%}^{0.0 \%}$	0	${ }_{1}^{1,635}$	1,105	
2．5\％	0	${ }_{1}^{1,623}$	${ }_{1,623}$	
3．7\％	0	1,607	${ }_{1}^{1,607}$	
4．9\％	0	1，605	1，605	
6．2\％	0	1，595	1，595	
7．4\％	0	${ }^{1,586}$	1，586	
8．6\％	0	1，579	1，579	
${ }^{9.9 \%}$	0	1,576 1554 154	1，576	
17．19\％	0	1，554	1，554	
隹	0	${ }_{1,540}^{1.545}$	${ }_{1}^{1,545}$	
14．8\％	0	${ }_{1,537}^{1,540}$	${ }_{1,537}^{1 / 54}$	
－ $\begin{aligned} & \text { 16．0\％} \\ & 173\end{aligned}$	0	${ }^{1,528}$	${ }^{1,528}$	
18．5\％	0	${ }_{1,513}^{1.515}$	${ }_{1,513}^{1.515}$	
19．8\％	0	1.512	1，512	
21．0\％	0	1.472		
22．2\％	0	${ }_{1}^{1,417}$	1，417	
23．5\％	0	1，405	1，405	
24．7\％	0	1，404	1，404	
${ }^{25.9 \%}$	0	1，353	1，353	
27．2\％	0	${ }^{1,318}$	1，318	
${ }^{28.49 \%}$	0	${ }_{\substack{1,262 \\ 1,197}}^{\substack{1 / 2}}$	${ }_{\substack { \text { a } \\ \begin{subarray}{c}{1,262 \\ 1,197{ \text { a } \\ \begin{subarray} { c } { 1 , 2 6 2 \\ 1 , 1 9 7 } }\end{subarray}}$	
30．9\％	0	1，160	1，160	
32．1\％	0	1，144	1，144	
33．3\％	0	＋1，133	${ }_{1}^{1,133}$	
	0	1，120	1，120	
	0	1，064	1.064	
边 $\begin{aligned} & 37.0 \% \\ & 383 \%\end{aligned}$	0	${ }_{\text {1，080 }}^{1,033}$	${ }_{9}^{1.033}$	
3．9\％\％	0	${ }_{890} 898$	890	
40．7\％	0		${ }^{803}$	
42．0\％	0	${ }_{779} 78$	789	
$4.4 .4 \%$	0	${ }_{756}$	${ }_{756}$	
45．7\％	0	753	753	
46．9\％	0	${ }^{741}$	${ }^{741}$	
48．1\％	0	732	${ }^{732}$	
49．4\％	0	${ }^{722}$	${ }^{722}$	
年50．9\％\％	0	${ }_{721}$	${ }^{721}$	
	0	705	705	
53．13\％	0	702 698	${ }_{698}^{702}$	
55．6\％	0	681	681	
56．8\％	0	${ }_{680}^{680}$	${ }_{6}^{680}$	
58．0\％	0	679	679	
59．3\％	\bigcirc	669 663	669 663	
${ }^{60.5 \%}$				
63．0\％	0	${ }_{656}^{659}$	${ }_{656}^{659}$	
64.2%	0	656	656	
${ }^{65.4 \%}$	0	654 652	654	
－ 66.79%	0		52	
69．1\％	0	${ }_{642}$	${ }_{642}$	
70．4\％	0	636	636	
71．6\％	0	635	635	
72．8\％	0	607	607	
74．1\％\％	0	603	603	
76．5\％	0	${ }_{512}^{527}$	${ }_{512}^{527}$	
77．8\％	0	470	470	
79．0\％	0	462	462	
80．2\％	0	439	459	
${ }^{81.5 \%}$ 827\％	0	${ }_{422}^{434}$	${ }_{4}^{432}$	
84．0\％	0	415	415	
85．2\％	0	${ }_{308}^{408}$	408	
${ }^{86.47 \%}$	0	395	${ }_{3}^{395}$	
888．9\％	0	398	${ }_{378}$	
90．1\％	0	372	372	
91．4\％	0	${ }^{327}$	${ }^{327}$	
92．6\％	0	292	292	
93．5\％	0	219	219	
${ }_{965.3 \%}^{95.1 \%}$	0	${ }_{211} 11$	211	
97．5\％	0	${ }_{115}^{117}$	${ }_{115}^{117}$	
98．8\％	0	107	107	
100．0\％	0	0	0	

Figure OP-06-b
Funks Reservoir to Deleven Pipeline, Monthly Flow

Table OP-06-b

Exceedanc		WSIP 2070 With Project	Absolute Differenc	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	Percent Exceedance	$\begin{aligned} & \text { WSIP } 2070 \text { Without } \\ & \text { Proiect } \end{aligned}$	WSIP 2070 With Project	Absolute Difference Differen	$\begin{gathered} \hline \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
0.0\%	Monthy Fow (cFs)		${ }_{1,500}$		0.0\%	Monthy Fow (cFs)	Monthy Flow (CFs)	(CFS)	
1.2\%	0	${ }^{1,500}$	1,500		1.2\%	0	1.500	1.500	
2.5\%	0	1.500	1500		25\%	0	1259	1259	
3.7\%	0	1,500	1,500		3.7\%	0	945	945	
4.9\%	0	1,500	1,500		4.9\%	0	610	610	
6.2\%	0	1,500	1,500		6.2\%	0	362	362	
7.4\%	0	1,500	1,550		7.4\%	0	${ }^{333}$	${ }^{333}$	
6.9\%	0	1.500 1.500	${ }_{1}^{1,500}$		-	0	${ }_{145}^{145}$	${ }_{145}^{145}$	
11.1\%	0	1.500	1.500		11.1\%	0	145	145	
12.3\%	0	1,225	${ }^{1,225}$		12.3\%	0	0	0	
13.6\%	0	1,205	${ }^{1,205}$		13.6\%	0	0	0	
14.8\%	0	1,157	1,157		14.8\%	0	0	0	
16.0\%	0	1,148	1,148		16.0\%	0	0	0	
17.3\%	0	1.042	1,042		17.3\%	0	0	0	
18.5\%	0	982	982		18.5\%	0	0	0	
19.8\%	0	812	${ }^{812}$		19.8\%	0	0	0	
21.0\%	0	806	806		21.0\%	0	0	0	
${ }^{22.2 \%}$	0	669	669		22.2\%	0	0	0	
23.5\%	0	609	${ }_{6}^{699}$		23.5\%	0	0	0	
24.7\%	0	501	501		24.7\%	0	0	0	
27.2\%	0	500	500		25.9\%	0	0	0	
28.4\%	0	403	${ }_{403}$		28.4\%	0	0	0	
29.9\%	0	366	366		29.6\%	0	0	0	
		${ }^{34}$	${ }^{34}$						
${ }^{32.15 \%}$	0	${ }_{316}^{338}$	${ }_{316}^{338}$		- $\begin{aligned} & 32.1 \% \\ & 33.36\end{aligned}$	0	0	0	
34.6\%	0	177	177		34.6\%	0	0	0	
35.8\%	0	164	164		35.\%	0	0	0	
37.0\%	0	0	0		37.\%	0	0	0	
	0	0	0		38.3\%	0	0	0	
39.5\%	0	0	0		39.5\%	0	0	0	
40.7\%	0	0	0		40.7\%	0	0	0	
${ }^{42.0 \%}$	0	0	0		42.0\%	0	0	0	
43.4\%\%	0	0	0		43.2\%	0	0	0	
${ }^{44.7 .7 \%}$	0	0	0		${ }_{4}^{44.7 \%}$	0	0	\bigcirc	
46.9\%	0	0	0		46.9\%	0	0	0	
48.1\%	0	0	0		48.1\%	0	0	0	
4.9.4\%	0	0	0		49.4\%	0	0	0	
51.9\%	O	0	0		50.6\%	0	0	0	
53.1\%	0		0		53.1\%			0	
54.3\%	0	0	0		54.3\%	0	0	0	
56.8\%	0	0	\bigcirc		年55.8\%	0	\bigcirc	0	
58.0\%	0		0		58.0\%	0	0	0	
59.3\%	0	0	0		59.3\%	0	0	0	
60.5\%	0	0	0		60.5\%	0	0	0	
61.7\%	0	0	0		61.7\%	0	0	0	
- 63.0%		0	0				0	0	
㐌6.5\%\%	0	0	0		64.2\%	\bigcirc	0	0	
66.7%	0	0	0		66.7%	0	0	0	
67.9\%	0	0	0		67.9\%	0	0	0	
69.1\%	0	0	0		69.1\%	0	0	0	
71.6\%	0	0	0		70.4\%	0	0	0	
${ }^{71.26 \%}$	0	0	0		71.6\%	0	0	0	
74.1\%	0	0	0		728\%	0	0	0	
75.3\%	0	0	0		75.3\%	0	0	0	
76.5\%	0	0	0		76.5\%	0	0	0	
77.9\%\%	0	0	0		777.8\%	0	0	0	
80.2\%	0	0	0		80.2\%	0	0	0	
81.5\%	0	0	0		81.5\%	0	0	0	
-	0	0	0		82.7\%	0	0	0	
84.0\%	\bigcirc	0	\bigcirc		885.2\%	0	0	0	
86.4\%	0	0	0		86.4\%	0	0	0	
87.7\%	0	0	0		87.7\%	0	0	0	
88.9\%	0	0	0		88.9\%	0	0	0	
90.1\%	0	0	0		90.1\%	0	0	0	
91.4\% ${ }_{\text {92.6\% }}$	0	0	0		91.4\%	0	0	0	
932.8\%	0	0	0		92.6\%	0	0	0	
95.1\%	0	0	0		95.1\%	0	0	0	
96.3\%	0	0	0		${ }^{99.3 \% \%}$	0	0	0	
${ }_{9}^{98.8 \%}$	0	\bigcirc	\bigcirc		998.8\%	\bigcirc	0	0	

Table OP-06-b

Exceedanc Exceedanc		$\frac{\text { WSIP } 2070 \text { With Project }}{\text { Monthly Flow (CFs) }}$	Difference	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	Percent Exceedance		WSIP 2070 With Project	Absolute Differen	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
0.0\%	Monthy Fow (CFS)		${ }_{1,500}$		Probablity	Monthy fow (CFF)	Montily Fow (6 CFS)		
1.2\%	0	1.434	1.434		12\%	0	624	624	
2.5\%	0	463	463		2.5\%	0	432	432	
3.7\%	0	300	300		3.7\%	0	215	215	
4.9\%	0	296	296		4.9\%	0	150	150	
${ }^{6.2 \%}$	0	286	286		6.2\%	0	138	138	
7.4\%	0	${ }^{265}$	${ }^{265}$		7.4\%	0	0	0	
9.9\%	0	150	150		9.9\%	0	0	0	
11.1\%	0	146	146		11.1\%	0	0	0	
12.3\%	0	145	145		12.3\%	0	0	0	
13.6\%	0	145	145		13.6	0	0	0	
14.8\%	0	145	145		14.8\%	0	0	0	
16.0\%	0	0	0		16.0\%	0	0	0	
17.3\%	0	0	0		17.3\%	0	0	0	
18.5\%	0	0	0		18.5\%	0	0	0	
19.8\%	0	0	0		19.8\%	0	0	0	
210\%	0	0	0		21.0\%		0	0	
${ }^{22.2 \%}$	0	0	0		${ }^{22.2 \%}$	0	0	0	
23.5\%	0	0	0		23.5\%	0	0	0	
- 24.75%	0	0	0		24.7\%	0	0	0	
${ }^{25.7 .2 \%}$	0	0	0		25.9\%	0	0	0	
28.4\%	0	0	0		${ }^{27.48 \%}$	0	0		
29.6\%	0	0	0		29.6\%	0	0	0	
30.9\%	0	0	0		30.9\%		0	0	
32.1% 33.3%	0	0	\bigcirc		32.1% 33.3%	0	0	\bigcirc	
34.6\%	0	0	0		34.6\%	0	0	0	
35.8\%	0	0	0		35.8\%		0	0	
37.0\%	0	0	0		37.\%	0	0	0	
	0	0	0		38.3\%	0	0	0	
39.5\%	0	0	0		39.5\%	0	0	0	
${ }^{40.7 \%}$	0	0	0		40.7\%	0	0	0	
${ }^{42.0 \%}$	0	0	0		42.0\%	0	0	0	
${ }^{43.2 \%}$	0	0	0		43.2\%	0	0	0	
${ }^{44.4 \%}$	0	0	0		44.4\%	0	0	0	
45.7\%	0	0	0		45.7\%	0	0	0	
${ }_{48.1 \%}^{46.9 \%}$	0	0	0		${ }^{46.9 \%}$	0	0	0	
49.4\%	0	0	0		49.4\%	0	0	0	
50.6\%	0	0	0		50.6\%	0	0	0	
53.1\%	0	0	0		51.9\%	0	0	0	
${ }^{534.3 \%}$	0	0	0		年 53.13%	0	0	0	
55.6\%	0							0	
56.8% 58.0%	0	0	0		56.8\%	0	0	0	
58.0\%	0	0	0		58.0\%	0	0	0	
60.5\%	0	0	0		60.5\%		0	0	
61.7% 630%	0	0	0		61.7\%	0	0	0	
-63.0\%									
64.2\%	0	0	0		64.2\%	0	0	0	
- 65.4%	0	0	0		65.4\%	0	0	0	
66.7\% 67.9%	0	0	0		66.7\%	0	0	0	
67.9\%	0	0	0		67.9\%	0	0	0	
70.4\%	0	0	0		69.1\%	0	0	0	
70.4.4\%	0	0	0		70.4\%	0	0	0	
71.8\%	0	0	0		71.6\%	0	0	0	
74.1\%	0	0	0		74.1\%	0	0	0	
75.3\%	0				75.3\%	0	0	0	
76.5\%	0	0	0		76.5\%	0	0	0	
79.9\%	0	0	\bigcirc		77.8\%	0	0	0	
-	0	0	0		80.2\%	0	0	0	
81.5\%	0	0	0		81.5\%	0	0	0	
822.7\%	0	0	0		82.7% 84.0%	0	0	0	
${ }^{85.2 \%}$	0	0	0		${ }^{8.5 .2 \%}$	0	0	0	
86.4\%	0	0	0		86.4\%	0	0	0	
- 87.7%	0	0	0		87.7\%	0	0	0	
${ }^{88.9 \%}$	0	0	0		88.9\%	0	0	0	
${ }^{90.14 \%}$	0	0	0		90.1\%	0	0	0	
914.4\%	0	0	0		91.4\%	0	0	0	
932.8\%	0	0	0		92.6\%	0	0	0	
95.1\%	0	0	0		95.1\%	0	0	0	
96.3\%	0	0	0		${ }^{96.3 \%}$	0	0	0	
97.5\%	0	0	0		97.5\%	0	0	0	

Table OP-06-b

$\begin{gathered} \text { Percent } \\ \substack{\text { Execeance } \\ \text { Probababily }} \\ \hline \end{gathered}$	August			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	WSII 2070 Without	WSIP 2070 With Projet	Absolute Difference	
	Monthy flow (CFS)	Montly Flow (CFS)	CFs)	
	0	1,500	1,500	
1.2\%	0	1,500	1,500	
2.5\%	0	1,500	${ }^{1,500}$	
3.7\%	0	1.500	1,500	
4.9\%	0	1,500	1.500	
6.2\%	0	1,500	1,500	
7.4\%	0	1,500	1,500	
8.9\%	0	1,500	1,500	
${ }^{\text {9,9\% }}$	\bigcirc	1,500	1,500 1,500	
- ${ }_{\text {12.12\% }}$	0	1.500 1.500	1,500 1.500	
${ }_{13.6 \%}$		1.500	${ }_{1}^{1,500}$	
14.8\%	0	1,500	${ }^{1,500}$	
- 16.0%	0	1.500 1.500	1,500 1,500	
18.5\%	0	${ }_{1}^{1,376}$	${ }_{1,376}^{1,1,000}$	
19.8\%	0	1,217	1,1217	
21.0\%	-	${ }^{1,135}$	1,135	
${ }^{222 \% \%}$	0	${ }^{1,088}$	1,088	
${ }^{23.5 \%}$	0	${ }^{1,051}$	${ }^{1,051}$	
24.9\%	0	${ }_{1,051}^{1051}$	${ }_{1}^{1,051}$	
27.2\%	0	1,051	1,051	
28.4\%	0	${ }^{1,051}$	${ }^{1,051}$	
29.6\%	0	${ }_{1}^{1,051} 1$	${ }_{1}^{1,051}$	
30.9\%	0	${ }^{1,051}$	1,051	
32.1\%	0	${ }_{1}^{1,051}$	${ }_{1}^{1,051}$	
- $\begin{aligned} & 33.3 \% \\ & 346 \%\end{aligned}$	0	-	-1,051	
34.6\%	0	1,051 1,051	${ }_{1}^{1,051} 1$	
37.0\%	0	1,051	1,051	
边 38.3%	0	${ }^{1,051}$	${ }^{1,051}$	
39.5\%	\bigcirc	${ }_{1}^{1,051}$	${ }_{1}^{1,051}$	
42.0\%	0	1,051	1,051	
${ }_{4}^{43.4 \%}$	0	${ }_{824} 9$	${ }_{824}^{900}$	
45.7\%	0	724	724	
46.9\%	0	${ }_{568}^{688}$	${ }_{551}^{688}$	
48.1\%	0	551	551	
4.9.4\%	0	404	404	
- $\begin{aligned} & \text { 50.6\% } \\ & 51.9 \%\end{aligned}$	0	${ }_{392} 39$	392	
53.1\%	0	${ }_{291}^{293}$	${ }_{291}^{293}$	
54.3\%	0	146	146	
55.6\%	0	145	145	
	\bigcirc	119 113	119 113	
59.3\%	0	59	59	
${ }^{60.5 \%}$	O	59	59	
-61.7\%	\bigcirc	56 50	56 50	
64.2\%	0	${ }^{35}$	${ }^{35}$	
-65.4\%	0	33 32	${ }_{32}$	
- 66.7%	0	${ }^{32}$	${ }_{0}^{32}$	
69.1\%	0	0	0	
-7.4\%	0	0	0	
${ }^{71.6 \%}$	0	0	0	
72.8\%	0	0	\bigcirc	
75.3\%	0	0	\bigcirc	
76.5\%	0	0	0	
77.8\%	0	0	0	
-79.0\%	0	0	0	
81.5\%	0	0	0	
82.7\%	0	0	0	
84.0\%	0	0	\bigcirc	
86.4\%	0	0	0	
-877\%	0	0	0	
90.1\%	0	0	0	
91.4\%	0	0	0	
${ }_{\text {938.8\% }}^{92.6 \%}$	0	0	0	
95.1\%	0	0	0	
96.3\%	0	0	0	
975\%	0	0	0	
98.8\%	0	0	0	

Figure OP-07-b
Sites Reservoir to Funks Reservoir, Monthly Flow

Table $O P$ - 07 -b
ben

$\underset{\substack{\text { Perceent } \\ \text { Exeedance } \\ \text { Probabily }}}{ }$		$\frac{\text { WSIP } 2070 \text { With Prject }}{\text { Monthy Fow }}$	Absolute Difference ()	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	Exceedance		WsIP 2070 With Project	Absolute Difference	Relative Difference $(\%)$
${ }_{\text {Probability }}^{0.0 \%}$		Monthly Fow (1,730	1.730				Monthy Fow 0	1,500	
1.2\%	0	1,723	1,723		1.2\%	0	${ }_{1,500}$		
2.5\%	0	1,723	1,723		2.5\%	0	${ }_{1}^{1,402}$	1,402	
3.7\%	0	1,711	1,711		3.7\%	0	945	945	
4.9\%	0	1.681	1,681		4.9\%	0	724	724	
6.2\%	0	1,671	1,671		6.2\%	0	484	484	
7.4\%	0	${ }_{1,642}^{1,64}$	${ }_{1,642}^{1,61}$		7.4\%	0	333	${ }_{333}$	
8.6\%	0	1.624	1.624		8.6\%	0	206	206	
9.9\%	0	1.500	1,500		9.9\%	0	172	172	
11.1\%	0	1.500	1.500		11.1\%	0	151	151	
12.3\%	0	${ }_{1}^{1,271}$	${ }_{1}^{1,271}$		123\%	0	0	0	
13.6\%	0	${ }^{1,225}$	1,225		13.6\%	0	0	0	
14.8\%	0	${ }_{1}^{1,205}$	${ }_{1}^{1,205}$		14.8\%	0	0	0	
16.0\%	0	1,150	1,150 1,145		16.0\%	0	0	0	
年年.5\%	0	1,145 1,042 1	1,145 1,042 1		(17.3\%	0	0	\bigcirc	
19.8\%	0	1,037	1.037		19.8\%	0	0	0	
21.0\%	0	1,007	1,007		21.0\%	0	0	0	
${ }_{2}^{22.5 \%}$	0	837 709	837 709		${ }_{2}^{22.2 \%}$	\bigcirc	\bigcirc	\bigcirc	
24.7\%	0	588	588		24.7\%	0	0	0	
25.7.2\%	0	501 500	501 500		${ }^{25.59 \%}$	0	0	0	
28.4\%	0	500	500		28.4\%	0	0	0	
29.6\%	0	500	500		29.6\%	0	0	0	
30.9\%	0	500	500		30.9\%	0	0	0	
32.1\%	0	500	500		32.1\%	0	0	0	
33.3\%	0	338 177	338 177		33.3\%	0	0	0	
34.4% 35.8%	0	177	177		34.6\%	0	0	0	
37.0\%	0	${ }^{166}$	${ }^{166}$		35.8\% 37.0\%	0	\bigcirc	0	
38.3\%	0	4	4		38.3\%	0	0	0	
39.5\%	0	${ }_{2}^{4}$	${ }_{2}$		39.5\%	0	0	0	
40.7\%	0	${ }_{1}^{2}$	${ }_{1}$		40.7\% 4	0	\bigcirc	0	
$4.3 .2 \%$ 44.4%	0	1	1		43.2\%	0	0	0	
44.7.7\%	\bigcirc	1	1		${ }^{44.4 .7 \%}$	0	0	0	
46.9\%	0	0	0		46.9\%	0	0	0	
48.4\% 4	0	0	0		${ }_{4}^{48.4 \%}$	0	0	0	
50.6\%	0	0	0		50.6\%	0	0	0	
51.9\%	0	0	0		51.9\%	0	0	0	
53.1\%	0	0	0		53.1\%	0	0	0	
5.4 .4 55.6%	0		0		54.3\%	0	0	0	
55.6\%	0	0	0		55.6\%	0	0	0	
58.0\%	0	0	O		58.0\%	0	0	0	
${ }_{\text {cosem }}^{59.3 \%}$	0	0	0		59.3\%	0	0	0	
661.7\%	0	0	0		60.5\%	0	0	0	
63.0\%	0	0	0		-63.0\%	0	0	0	
66.4\%	\bigcirc	0	0		64.2\%	\bigcirc	\bigcirc	\bigcirc	
66.7\%	0	0	0		66.7\%	0	0	\bigcirc	
69.1\%	0	O	0		69.1\%	0	0	0	
70.1.6\%	0	0	0		70.4\%	0	0	0	
72.8\%	0	0			72.8\%	0	0	0	
74.1% 75.3%	0	0	0		74.19\%	0	0	0	
76.5\%	0	0			76.5\%	0	0	0	
77.8\%	0	0			77.8\%	0	0	0	
7.9.\%	0	0	0		79.0\%	0	0	0	
${ }^{80.2 \%}$	0	0	0		80.2\%	0	0	0	
82.7\%	0	0	0		${ }^{81.5 \%}$	0	-	0	
84.0\%	0	0	-		84.0\%	0	0	0	
	0	0	0		-85.2\%	0	:	0	
87.7\%	0	0	0		887.7\%	0	0	0	
90.1\%	0	0	0		88.9\%	\bigcirc	\bigcirc	\bigcirc	
91.4\%	0	0	0		91.4\% ${ }_{\text {926\% }}$	\bigcirc	\bigcirc	0	
93.8\%	0	0	0		93.8\%	0	0	0	
95.1\% ${ }_{96.3 \%}$	0	0	0		${ }_{96.3 \%}^{95.1 \%}$	0	\bigcirc	\bigcirc	
97.5\%	0	0	0		97.5\%	0	0	0	
98.8\%	0	0	0		98.8\%	0	0	0	

Exceedance Probability	$\begin{gathered} \text { Proiect } \\ \text { Monthly Flow () } \end{gathered}$	Mip 207 W With Project	Absolute Difference ()	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	Exceedance	$\begin{aligned} & \text { Proiect } \\ & \text { Monthly Flow () } \end{aligned}$	WSIP 2070 With Project Monthly Flow $)$	Absolute Difference ()	
Probability		${ }_{\text {Montly }}^{1,534}$	1.534				${ }_{\text {Montly }}^{1,936}$	1,936	
1.2\%	0	1,520	1.520		1.2\%	0	${ }^{1,733}$	1,733	
2.5\%	0	484	484		2.5\%	0	1,680	1,680	
3.7\%	0	418	418		3.7\%	0	1,314	1,314	
4.9\%	0	417	417		4.9\%	0	1,156	1,156	
6.2\%	0	354	354		6.2\%	0	1,153	1,153	
7.4\%	0	350	350		7.4\%	0	1,078	1.078	
8.9\%	0	${ }_{3}^{338}$	${ }^{333}$		8.9\%	0	1,039	${ }^{1.039}$	
9.9\%	0	264	${ }^{264}$		9.9\%	0	${ }_{849}^{849}$	${ }_{849} 84$	
11.19\%	0	${ }_{2}^{206}$	${ }^{206}$		11.1\%	0	${ }_{847}^{847}$	${ }_{841}^{847}$	
12.3\%	0	${ }_{181}^{201}$	${ }_{181}^{201}$		12.3\%	0	${ }_{8}^{841}$	${ }_{881}^{848}$	
- $13.4 .8 \%$	0	181 173	181 173		- $\begin{aligned} & 13.6 \% \\ & 14.8 \%\end{aligned}$	0	808 778	808 778	
16.0\%	0	146	146		-16.0\%	0	702	702	
17.3\%	0	146	146		17.3\%	0	630	630	
18.5\%	0	146	146		-18.5\%	0	628		
- ${ }^{19.8 \%}$ 21.0\%	\bigcirc	85 77	85 77		21.0\%	0	697 598	697 597	
22.2\%	0	54	54		22.2\%	0	578	578	
${ }^{23.5 \%}$	0	54	54		23.5\%	0	544	544	
24.7\%	0	52	52		24.7\%	0	455	455	
25.9\%	0	50	50		25.9\%	0	419	419	
- 27.2%	0	35 39 29	$\begin{array}{r}35 \\ \hline\end{array}$		27.2\%	0	417	417	
28.4\%	0	29	29		28.4\%	0	${ }^{406}$	${ }^{406}$	
29.6\%	0	${ }^{26}$	${ }^{26}$		29.6\%	0	${ }^{393}$	${ }^{393}$	
30.9\%	0	21	21		30.9\%	0	${ }^{363}$	${ }^{363}$	
32.1\%	0	17	17		32.1\%	0	${ }_{351}^{351}$	${ }^{351}$	
33.3% 34.6%	0	15	15		33.3\%	0	346 335	${ }_{3}^{336}$	
34.6% 35.8%	\bigcirc	13 13	13 13		34.6% 35.8%	0	335 332	335 332	
37.\%	0	9	9		37.\%	0	321	321	
38.3\%	0	${ }_{7}^{8}$	${ }_{7}^{8}$		38.3\%	0	308 301	308 301	
40.7\%	0	6	6		40.7\%	0	289	${ }_{2} 89$	
${ }^{42.2 \%}$	\bigcirc	${ }_{3}^{6}$	${ }_{3}^{6}$		42.0\%	${ }_{0}^{0}$	${ }_{271}^{283}$	283 271	
44.4\%	0	2	2		44.4\%	0	259	259	
45.7\%		1	1		45.7\%	0	257	${ }^{257}$	
46.9\%	0	1	1		46.9\%	0	${ }_{2} 245$	245	
${ }^{48.19 \%}$	0	1	1		48.19\%	0	${ }_{234}^{234}$	${ }_{234}^{234}$	
50.6\%	0	0	0		50.6\%	0	232	232	
51.9\%	0		0		51.9\%	0	${ }^{230}$	${ }^{230}$	
53.1\%	0		0		53.1\%	0	${ }^{222}$	${ }_{2}^{222}$	
54.3\%	0	\bigcirc	\bigcirc			0	205 190	${ }^{205}$	
56.8\%	0	0	0		56.8\%	0	190	190	
58.0\%	0	0	0		58.0\%		187	187	
㐌69.5\%	0	0	0		59.3\%	0	176 170	176 170 1	
${ }^{60.17 \%}$	0	0	0		${ }_{6}^{60.17 \%}$	0	${ }_{165}^{170}$	${ }_{165}^{170}$	
- 63.0%	0	0			63.0\%		${ }_{1}^{161}$	161	
${ }^{64.2 \%} 6$	0	0	0		64.2\%	\bigcirc	157 156 1	157 156	
${ }^{66.7 \%}$	0	0	0		${ }^{66.7 \%}$	0	143	143	
67.9\%	0	0	0		67.9\%	0	134 129	134 129	
70.4\%	0	0	0		70.4\%	0	${ }_{1}^{128}$	128	
71.6\%	0	0	0		71.6\%	0	125 123 129	${ }_{125}^{125}$	
74.1\%	0	0	0		74.1\%	0	${ }_{123}^{123}$	${ }_{123}^{123}$	
75.3\%	0	0	O		75.3\%	0	118	118	
76.5\%	0	0	0		76.5\%	0	118	118	
77.8\%	0	0	0		77.8\%	0	118 111	118 111	
80.2\%	0	0			80.2\%	0	93	93	
815.5\%	0	0	0		81.5\%	0	77	77	
- 82.7%	0	0	0		- $\begin{aligned} & 82.7 \% \\ & 840 \%\end{aligned}$	0	59 54	59 54	
85.2\%	0				85.2\%	0	54 54	${ }_{54}^{54}$	
-	0	\bigcirc	\bigcirc		86.4\%	\bigcirc	50 47	50 47	
88.9\%	0	0	0		88.9\%	0	46	46	
${ }^{90.14 \%}$	0	0	0		90.19\%	0	${ }^{43}$	${ }^{43}$	
${ }_{\text {c }}^{\text {92.4. }}$ 9\%\%	\bigcirc	0	0		${ }^{91.4 \%} 9$	0	35 26	35 26	
93.8\%	0	0	0		93.8\%	0	${ }^{26}$	${ }^{26}$	
${ }_{9}^{95.3 \%}$	0	0	0		${ }_{96.3 \%}^{95.1 \%}$	0	${ }_{21}^{24}$	${ }_{21}^{24}$	
97.5\%	0		0		97.5\%	0	19	19	
988.8\% 100.0\%	0	0	0		98.8\% 100.0\%	0	0	0	

$\underbrace{\text { Premen }}_{\substack{\text { Exceedance } \\ \text { Probability }}}$	Proiect	MIP 2070 With Project	Absolute Difference	Relative Difference (\%)	Exceedance	Proiect	$\frac{\text { WSIP } 2070 \text { With Project }}{\text { Monthly Flow) }}$	Absolute Difference ()	Difference (\%)
0.0\%	0	${ }^{3}$	3,202		Probomily	Mon	${ }^{\text {Monthy }}$ (068)	3,068	
1.2\%	0	3,176	3,176		1.2\%	0	3,020	3.020	
2.5\%	0	3,167	3,167		2.5\%	0	2,977	2,977	
3.7\%	0	3,164	3,164		3.7\%	0	2.914	2.914	
4.9\%	0	3,131	3,131		4.9\%	0	2,911	2,911	
6.2\%	0	3,110	3,110		6.2\%	0	2.870	2.870	
7.4% 8.6%	0	3,106	3,106		7.4\%	0	2,542	2,542	
9.9\%\%	0	- $\begin{aligned} & 3,097 \\ & 3,093\end{aligned}$	3,097 3 3		8.6\%	0	2,492	${ }_{2}^{2,492}$	
9.9\%	0	3,093	- ${ }_{\text {3,093 }}$		${ }^{\text {919\% }}$	0	${ }_{2}^{2,477}$	${ }_{2,417}$	
$\xrightarrow{11.1 \%} \times 1.3 \%$	0	3,087 3,087	3,087 3,087		- 11.12%	\bigcirc	${ }_{2}^{2,289}$	${ }_{2,289}^{2,372}$	
13.6\%	0	3,083	3,083		13.6\%	0	${ }_{2,248}$	${ }_{2,248}$	
14.8\%	0	3,079	3,079		14.8\%	0	2,181		
16.0\%	0	3,049	3,049		16.0\%	0			
17.3\%	0	3,045	3,045		17.3\%	0	2,123		
18.5\%	0	3,021	3,021		18.5\%	0	2,120	2,120	
19.8\%	0	3,015	3,015		19.8\%	0	2,098		
${ }^{21.0 \%}$	0	3,009	3,009		21.0\%	0	2,095		
${ }_{2}^{22.2 \%}$	0	3,001	3,001		22.2\%	0	2,086		
${ }^{23.4 .7 \%}$	0	2,991	2,991		23.5\%	0	2,078	2,078	
2.4.7\%	0	2,950	2,950		24.7\%	0	2,039	2,039	
25.7.2\%	0	2,909	2,909		25.9\%	0	2,027	2,027	
${ }^{27.2 \%}$ 2.4\%	0	${ }^{2,809}$	${ }^{2,809}$		27.2\%	0	${ }_{2}^{2,021}$	2,021	
29.6\%	0	2,784	2,784		28.4\%	0	${ }_{2}^{2,016}$	2,016	
-	0	${ }_{2}^{2,769}$			29.6\%	0	1,964	1,964	
30.1\%	0	${ }^{2,745}$	${ }^{2,745}$		30.9\%	0	1,949	1,949	
32.1\% ${ }_{\text {3 }}$	0	2,743 2 2	${ }^{2,743}$		32.1\%	0	1,913	1,913	
34.6\%	0	2,679 2609	2,679 2,609			0	${ }_{1}^{1,792}$	1,910	
35.8\%	0	2,355	2,355		35.8\%	0	1,778	1,778	
37.0\%	0	${ }^{2,245}$	${ }^{2,245}$		37.0\%	0	1,760	1,760	
30.5\%	0	${ }_{2,236}^{2,241}$	${ }_{\substack{2,236}}^{2,241}$		39.5\%	0	${ }^{1,680}$	${ }^{1,680}$	
40.7\%	0	${ }_{2,217}^{2,213}$	${ }_{2}^{2,217}$		40.7\%	0	${ }^{1,542}$	${ }^{1,542}$	
42.0\%	\bigcirc	2,213	${ }_{\text {2,213 }}$		42.0\%	0	${ }^{1,529}$	1,529	
44.4\%	0	${ }_{2,189}^{2,189}$	${ }_{2,189}$		44.4\%	0	${ }_{1}^{1,451}$	${ }_{1}^{1,451}$	
45.7\%	0	2,137	2,137		45.7\%	0	1,442	1,442	
46.9\%	0	2,123	2,123		46.9\%	0	1,390	1,390	
48.1\%	0	2,088	2,088		48.1\%	0	1,335	1,335	
49.4\%	0	1,991	1,991		49.4\%	0	1,214	1,214	
年50.9\%	0	1,879	1,879		50.6\%	0	${ }^{1,168}$	1,168	
${ }^{53.9 .1 \%}$	0	1,667	1,667		51.9\%	0	1,091	1,091	
54.3\%	0	${ }_{1,341}^{1,29}$	${ }_{1,341}$		54.3\%	0	1,044	1,044	
55.6\%	0	${ }_{1,325}^{1,26}$	${ }_{1}^{1,225}$		55.6\%	0	982	982	
56.8\%	0	1,264	1,264		56.8\%	0	972	972	
59.3\%	0	${ }_{\substack{1,126}}^{1,128}$	${ }_{\substack{1,126}}^{1.148}$		5993\%	0	${ }_{824}^{964}$	${ }_{824}^{964}$	
60.5\%	0	1,084	1.084		60.5\%	0	785	785	
61.7% 630%	0	${ }^{1,0055}$	${ }^{1,055}$		61.7\%	0	${ }_{773}^{763}$	${ }_{7}^{767}$	
年 63.0%	0	1.041	${ }^{1,041}$		-63.0\%				
${ }^{64.4 .4 \%}$	0	${ }_{859}$	${ }_{859}$		6.5.4\%	0	${ }_{688}^{724}$	${ }_{688}^{724}$	
${ }^{66.7 \%}$	0	846	846		66.7\%	0	651	651	
-67.9\%	0	838 803	838 803		-67.9\%	0	550 549	550	
70.4\%	0	779	779		70.4\%	0	532	532	
71.6\%	0	775	775		71.6\%	0	518	518	
72.8\%	0	${ }^{773}$	773		72.8\%	0	514	514	
74.1\%	0	768	768		74.1\%	0	512	512	
75.3\%	0	766	766		75.3\%	0	510	510	
76.7.8\%	0	765	765		76.5\%	0	508	508	
79.9\%	0	703 677	703 677		778.8\%	0	504	505 504	
80.2\%	0	637	637		80.2\%	0	492	492	
81.5\%	0	${ }_{506} 0$	${ }_{506}$		81.5\%	0	489	489	
- 82.7%	0	592	592		82.7\%	0	${ }^{886}$	${ }_{4}^{486}$	
84.2\%	0	520	536 520		-85.2\%	0	${ }_{471}^{45}$	${ }_{471}^{475}$	
86.4\%	0	489	489		86.4%	0	460	460	
87.7\%	0	349	349		87.7\%		454	454	
${ }^{88.9 \%} 9$	0	${ }^{317}$	317		${ }^{88.9 \%}$	0	${ }_{451}^{451}$	452	
91.4\%	0	184	184		91.4\%	0	${ }_{442}$	${ }_{442}$	
92.6\%	0	41	41		92.6\%	0	390	390	
93.8\%	0	41	41		93.8\%	0	195	195	
${ }^{95.19 \%}$	0	41	${ }_{41}^{41}$		95.1\%	0	41	${ }_{11}$	
97.5\%	0	39	39			0	1	1	
98.8\%	0	0	0		98.8\%	0	0	0	

Figure OP-08-b
Delevan Intake and Pipeline (to Local Use), Monthly Diversion

Table OP.08-b

		Ociober		
Percent	WSIP 2070 Without	WSIP 2070 With Project	Absolute	
Probability	Monthly Diversion	Montly Diversion		Difference (\%)
(\%)		CFS)		
		O		
1.2\%	0	0	0	
2.5\% ${ }_{\text {3.7\% }}$	0	0	0	
3.9\%	0	0	0	
6.2\%	0	0	0	
7.4\%	0	0	0	
8.9\%	0	0	0	
9.9\% 11.1	0	0	0	
11.13\%	0	0	0	
-	0	0	0	
14.8\%	\bigcirc	0	0	
1.6.0\%	0	0	0	
\%	0	0	0	
18.5% 1988% 1	0	0	0	
19.8\%	0	0	0	
${ }^{212.2 \%}$	0	0	0	
23.5\%	0	0	0	
24.7\%	0	0	0	
25.9\%	0	0	0	
27.2\%	0	0	0	
28.4\%	0	0	0	
29.6\%	0	0	0	
年30.9\%	0	0	0	
32.1\%	0	0	0	
${ }^{33} \mathbf{3} \times 1.3 \%$	0	0	0	
34.6\%	0	0	0	
37.0\%	0	0	0	
38.3\%				
39.5\%	0	0	0	
${ }_{4}^{40.7 \%}$	\bigcirc	0	0	
43.2\%	0			
44.4\%	0	0	0	
45.7\%	0	0	0	
48.1\%	0	0	0	
49.4\%	0	0	0	
	0	0	0	
51.9\%	0	0	0	
53.19\% 54.36	0	0	0	
54.3\%	0	0	0	
55.6\%	0	0	0	
56.8\%	0	0	0	
${ }^{58.0 \%}$	0	0	0	
60.5\%	0	0		
61.7\%	0	0	0	
63.0% 64.2%	0	0	0	
- ${ }_{\text {64.2\% }}^{6.4 \%}$	0	0	0	
${ }_{6}^{65.7 \%}$	0	0	0	
${ }^{679 \%}$	0		0	
69.1\%	0	0	0	
71.6\%	0	0	0	
72.8\%		0	0	
74.19\%	0	0	0	
75.3\%	0	0	0	
76.5\%	0	0	0	
77.8\%	0	0	0	
89.0\%	0	0	0	
-	0	0	0	
${ }^{81.5 \%}$	0	0	0	
822.7\%	0	0	0	
85.2\%	0			
86.4\%	0	0	0	
- ${ }_{\text {87,7\% }}^{88.9 \%}$	0	0	0	
90.1\%	0	0	0	
${ }^{91.44 \%}$	0	0	0	
${ }_{9}^{92.86 \%}$	0	0	0	
95.1\%	0	0	0	
96.3\%	0	0	0	
97.5\%	0	0	0	
98.8\% 1000%	0	0	0	
100.0\%	0	0	0	

Table OP.08-b

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	February			$\begin{aligned} & \text { Relative } \\ & \text { Difference }{ }_{2} \end{aligned}$
		WSIP 2070 With Project	$\begin{gathered} \text { Absolute } \\ \text { Differee } \\ \text { (Cfs) } \end{gathered}$	
	Monthly Diversion	Montly Diversion		
	(CFF)	(CFS)		
0.0\%	0	0	0	
- ${ }^{1.2 \%}$	\bigcirc	\bigcirc	0	
3.7\%	0	0	0	
4.9\%	0	0	0	
6.2\%	0	0	0	
7.4.9\%	0	0	0	
9.9\%	0	0	0	
11.1\%	0	0	0	
12.3\%	0	0	0	
13.6\%	0	0	0	
14.8\%	0	0	0	
16.0\%	0	0	0	
17.3\%	0	0	0	
	0	0	0	
21.0\%	0	0	0	
${ }^{22.2 \%}$	0	0	0	
- 23.5%	0	0	0	
- ${ }^{24.7 .9 \%}$	0	0	0	
27.2\%	0	0	0	
28.4\%	0		0	
29.6\%	\bigcirc	0	-	
32.1\%	0	0	0	
33.3\%	0	0	0	
34.6\%	0	0	0	
35.8\%	0	0	0	
37.0\%	0	0	0	
	0	0	0	
39.5\%	0	0	0	
${ }^{40.7 \%} 4$	0	0	0	
${ }^{4.2 .2 \%}$	0	0	0	
44.4\%	0	0	0	
45.7% 469%	0	0	0	
	0	0	0	
48.4\%	0	0	O	
50.6\%	0	0	0	
51.9\%	0	0	0	
	0	0	0	
55.6\%	0	0	0	
56.8\%	0	0	0	
年58.0\%	0	0	0	
(59.3%	0	0	0	
- 60.5%	0	0	0	
61.7% 630%	0	0	0	
63.0\%	0	0	0	
- 64.2%	0	0	0	
65.4\%	0	0	0	
- 66.7%	0	0	0	
${ }^{67.9 \%}$	0	0	0	
70.4\%				
71.6\%	0	0	0	
72.8.1\%	0	0	0	
75.3\%	0		0	
76.5\%	0	0	0	
77.8\%	0	0	0	
79.0\%	0	0	0	
80.2\%	0	0	0	
81.5\%	0	0	0	
82.7\%	0	0	0	
84.0\%	0	0	0	
85.2\%	0	0	0	
86.4\%	0	0	0	
87.7\%	0	0	0	
88.9\%	0	0	0	
${ }_{9}^{90.14 \%}$	0	0	0	
92.6\%	0			
93.8\%	0	0	0	
	0	0	0	
-9.7.5\%	0	\bigcirc	0	
98.8\%	0	0	0	
100.0\%	0	0	0	

Table OP.08-b

$\begin{gathered} \text { Percent } \\ \hline \text { Excedance } \\ \text { Probobaility } \end{gathered}$	June			RelativeDifference (\%)
	WSIP 2070 Without	WSIP 2070 With Project	$\begin{gathered} \text { Absolute } \\ \text { difterence } \\ \text { (CFSS) } \end{gathered}$	
	Montly Diversion	Montly Diversion		
	(CFF)	(CFS)		
0.0\%	0	0	0	
2.5\%	0	0	0	
3.7\%	0	0	0	
4.9\%	0	0	0	
7.2\%	0	0	0	
7.4\%\%	0	0	0	
9.9\%	0	0	0	
11.1\%	0	0	0	
${ }^{12.3 \%}$	0	0	0	
- $13.4 .8 \%$	0	0	0	
- ${ }^{14.8 \%} \times$	0	0	0	
17.3\%	0	0	0	
18.5\%	0	0	0	
19.8\%	0	0	0	
${ }_{2120 \%}^{22.0 \%}$	0	0	0	
${ }_{2}^{22.2 \%}$	0	0	0	
${ }_{24.7 \%}^{23.5 \%}$	\bigcirc	0	0	
25.9\%	0	0	0	
27.2\%	0	0	0	
${ }^{28.4 .6 \%}$	0	0	0	
30.9\%	0	0	0	
32.1\%	0	0	0	
334.6\%	0	0	0	
34.6% 35.8%	0	0	0	
35.8\%	0	0	0	
38.3\%	0	0	0	
39.5\%	0	0	0	
40.7\%	0	0	0	
	0	0	0	
	0	0	0	
45.7\%	0	0	0	
46.9\%	0	0	0	
${ }_{48.4 \%}$	0	0	0	
50.6\%	0	0	\bigcirc	
551.9\%	0	0	0	
		0		
55.3\%\%	0	0	0	
55.8\%\%	0	0	0	
58.0\%	0	0	0	
59.3\%	0	0	0	
	0	0	0	
661.7\% 63.0%	0	0	0	
68.0\%\%	0	0	0	
㐌6.2\%\%	0	0	0	
65.4\%	0	0	0	
66.7\% 67.9%	0	0	0	
67.9\% 6	0	0	0	
69.1\%	0	0	0	
77.6\%	0	0	0	
77.8.1\%	0	0	0	
74.3\%	0	0	0	
7.5.5\%	0	0	\bigcirc	
77.8\%	0	0	0	
79.0\%	0	0	0	
80.2\%\%	0	0	0	
882.7\%	0	0	0	
84.0\%	0	0	0	
85.2\%	0	0	0	
86.4\%	0	0	0	
887.7\%	0		0	
${ }^{88.9 \%}$	0	0	0	
90.14\%	0	0	0	
914.4\%	0	0	0	
${ }_{\text {9, }} 92.8 \%$	0	0	0	
95.1\%	0		0	
99.3\%\%	0	0	0	
98.8\% ${ }^{97.5 \%}$	0	0	0	
- ${ }^{\text {90.8.0\% }}$	0	\bigcirc	\bigcirc	

Figure OP-09-b
Sites Reservoir, End of Month Storage

		October		
Exceedance	Proiect	WSIP 2070 With Project	${ }_{\substack{\text { Absolute } \\ \text { Difference }}}^{\substack{\text { a }}}$	Relative
$\underset{\substack{\text { Probability } \\ \text { (\%) }}}{ }$	Month St	End of Montry Storage	(1af)	Difference (\%)
-	(TAF)	1 IAF)	1622	
		${ }_{1,600}^{1,622}$	1,020	
2.5\%	0	1.581	1.5	
3.7\%		1570	1570	
4.9\%	0	1,550		
6.2\%	0	1.524	1,524	
7.4\%	0	1,511	1	
${ }_{9.9 \%}^{8.9 \%}$	0	${ }_{1}^{1,481}$	-	
11.1\%	0	1.456	1,456	
12.3\%	0	1,453		
13.6\%	0	1,450		
14.8\%	0	1,447		
-16.0\%	0	1,431	1,431	
17.3\%	0	1,431		
18.5\%	0	1,420	1,422	
19.8\%	0	${ }^{1,3866}$	${ }^{1,3866}$	
${ }^{21.0 \%}$	0	${ }_{1}^{1,355}$	${ }_{1}^{1,355}$	
${ }^{22.52 \%}$	0	(1,233	${ }_{1}^{1,279}$	
24.7\%	0	1.266	1,266	
25.9\%	0	(1,235	+1,235	
${ }^{27.2 \%}$ 28.4\%	0	${ }_{1}^{1,229}$		
29.9\%	0	${ }_{1,202}^{1,271}$	${ }_{1,202}^{1,29}$	
30.9\%	\bigcirc	1,179 1,178 1	1,179 1,178 1,17	
33.3\%	0	1.177	1.177	
34.6\%	\bigcirc		-1,172	
37.0\%	0	1,136	1,136	
	0	1,132	1,132	
39.5\%	0			
42.2\%	0	${ }^{1,106}$	1,106 1,105	
43.2\%	0	1,101	1,101	
44.4\%	0	1,080	1,080	
45.7\%	0	1,072	1,072	
${ }^{46.9 \%}$	0	${ }^{1,036}$	${ }^{1,036}$	
48.19\%	0	1,034	${ }^{1,034}$	
50.6\%	0	${ }_{1}^{1,010}$	${ }_{1}^{1,0025}$	
51.9\%	0	${ }^{1,002}$	1,002	
㐌53.3\%	0	${ }_{9}^{994}$	${ }_{994}^{997}$	
55.6\%	0	${ }_{982}^{984}$	988	
56.8\%	0	966	966	
59.3\%	0	${ }_{925}^{933}$	${ }_{925}^{933}$	
${ }^{\text {60.5\% }}$	0	923	923	
61.7\%	0	914	914	
- 63.0%	0	912	${ }^{912}$	
${ }^{6.54 .4 \%}$	0	${ }_{828} 8$	${ }_{828} 8$	
66.7\%	0	826	${ }^{826}$	
67.9\%	0	${ }^{823}$	${ }^{823}$	
69.1\%	0	798	798	
70.4\%	0	${ }_{6}^{683}$	${ }_{6}^{683}$	
71.6\%	0	-652	${ }_{642}^{652}$	
74.1\%	0	528	528	
75.3\%	0	517 512	517 512	
76.5\%	0	512	512	
79.0\%	0	509 504	509 504	
80.2\%	0	484	484	
81.5\%	0	478	478	
84.0\%	0	${ }_{448}^{461}$	${ }_{448}^{461}$	
${ }^{8.5} 8.2 \%$	0	444	444	
86.4\%	0	${ }^{438}$	${ }^{438}$	
-87.7\%	0	416	416	
90.1\%	0	${ }_{372}$	${ }_{372}$	
91.4\%	0	313	313	
92.6\%	0	${ }_{229}^{229}$	${ }_{229}^{229}$	
93.8\%	0	${ }^{224}$	${ }^{224}$	
${ }_{9}^{95.3 \%}$	0	${ }^{131}$	151	
97.5\%	0	$\begin{array}{r}100 \\ \hline 1\end{array}$	137 100	
98.8\%	0	80	80	
100.0\%	0	60	60	

		February		
$\underset{\substack{\text { Percent } \\ \text { Exceadance }}}{ }$	WSIP 2070 W.thout Proiet	WSIP 2070 With Project	Absolute	
Probability	End of Mornt storage	End of Montrt Storage	Difference (TAF)	Difference (\%)
(\%)	(TAF)	(TAF)		
${ }_{\text {en }}$	0	(1,810	(1,810	
	0	${ }_{1}^{1.810}$	1,810	
2.5\%	0	1.810	1,810	
3.7% 4.9%	0	(1,810	(1,810	
4.9\%	0	${ }_{1}^{1,810}$	1,810	
6.2\%	0	1,810	+1,810	
7.4\%\%	\bigcirc	1,810 1.810	1,810 1.810	
${ }_{\text {9.9\% }}$	0	${ }_{1,810}^{1,810}$	${ }_{1,810}^{1,810}$	
11.1\%	0	1.810	1,8	
12.3% 13.6%	0	1,810		
13.6% 14.8%	\bigcirc	${ }_{1,810}^{1,810}$	${ }_{1,810}^{1,810}$	
16.0\%	0	1.810	1,810	
17.3\%	0	1,810	1,810	
18.5\%	0	${ }^{1,807}$	1,807	
19.8\%	0	1.807	1.807	
21.0\%	0	(1,803	(1,803	
${ }^{22.25 \%}$	0	+1,801	1,801 1785 1	
24.7\%	0	${ }_{1}^{1,775}$	${ }_{1}^{1,775}$	
25.9\%	0	+1,769	1,769	
27.2\%	\bigcirc	-1,766 1,757	${ }^{1,766}$	
${ }^{28.4 .6 \%}$	0	1,757 1,734	-1,757	
30.9\%	0	1,724	1,724	
32.1% 3.3%	0			
34.6\%	0	${ }_{1,673}^{1,682}$	${ }_{1,673}^{1,682}$	
35.8\%	0	1.649	1,649	
37.0\%	0			
38.3\%	0	1,619 1,609	1,619 1,609	
40.7\%	0	1.608	1,608	
42.0\%	0	${ }^{1,545}$	1.545	
43.2\% 44.4%	0	1,530	1,530	
44.4\%	0	1,513	${ }^{1,513}$	
${ }^{45.7 \%}$	0	+1,478 ${ }_{1}^{1,47}$	+1,4781,478 1.47 1	
48.1\%	0	1,413	1,413	
4.9.4\%	0	1,408	1,408	
年 50.0% \%	0	$\begin{array}{r}1,399 \\ 1,376 \\ \hline\end{array}$	1,399 1,376 1	
${ }^{51.9 \%}$	0	+1,376 ${ }_{1}^{1372}$	+1,376	
54.3\%	0	${ }_{1,371}$	1,371	
55.6\%	\bigcirc	1,344 1.320	1,344 1,320	
58.0\%	0	1,310	1,310	
59.3\%	0	1,295	1,295	
	0	+1,236	1,236	
61.7\%	0	1,209 1,201	1,209 1,201	
64.2\%	0	1,190	1,190	
65.4\%	0	${ }^{1,185}$	${ }^{1,182}$	
66.7\% ${ }_{\text {67, }}$	0	1,155	1,155	
- 67.9%	0	1,151 1,131 1	+1,151	
70.4\%	0	1,118	1.118	
71.6\%	0	${ }_{9}^{990}$	997	
72.8\%	0	994 964	${ }_{964}^{974}$	
75.3\%	\bigcirc	${ }_{959}^{964}$	${ }_{959}^{964}$	
76.5\%	0	867	867	
778.8\%		${ }_{849}^{858}$	858 849	
79.0\%	\bigcirc	849 835	849 835	
${ }^{8.15 .5 \%}$:	763 763	778 763	
84.0\%	0	771	761	
85.2\%	0	740	740	
${ }_{87} 80$	0	732	732	
88.9\%	0	${ }^{716}$	${ }^{716}$	
${ }_{9}^{90.14 \%}$	0	606 596	606 596	
	\bigcirc	596	596	
93.8\%	0	${ }_{443}^{44}$	${ }_{443}$	
95.1\%	0	${ }_{381}^{404}$	${ }_{381}^{404}$	
${ }_{\text {97.5\% }}^{96.3 \%}$	\bigcirc	381 355	381 355	
998.5\%	0	355 307	307 307	
100.0\%	0	260	260	

sites Reservoir, End of Month Elevation

Resenviit End of Ponth Elevation
Probobablity of Exceedance

Figure OP-11-b
Sites Reservoir, End of Month Area

$\begin{aligned} & \hline \text { Percent } \\ & \substack{\text { Excedance } \\ \text { Probabilily }} \end{aligned}$	October			
	Wsip Prouewthout	WSIP 2070 With Project		Relative
	of Moont Area	End of Month Area	Difierence	Difference (\%)
(\%)	(ACRE)	(ACRE)		
0.0\%	0	${ }^{13,535}$	${ }^{13,535}$	
1.2\%	0	13,465	${ }^{13,465}$	
2.5\%	0	${ }^{13,403}$	${ }^{13,403}$	
3.7\%	0	13,368	13,368	
4.9\%	0	${ }_{13,302}$	13,302	
${ }^{6.2 \%}$	0	13,217	13,217	
7.4\%	0	13,171	13,771	
8.9\%	0	${ }^{13,061}$	13,061	
9.9\%\%	0	13,001	13,001	
19.1\%\%	0	${ }_{1}^{12,971}$	12,91	
(12.6\%	0	${ }^{12,2961}$		
14.8\%	0	${ }_{12,941}$	${ }_{12,941}$	
16.0\%	0	${ }^{12,883}$	12,883	
17.3\%	0	12,880		
18.5\%	0	${ }^{12,842}$	12,842	
19.8\%	0	12,721	12,721	
21.0\%	0	12,607	12,607	
${ }_{\text {2 }}^{22.2 \%}$	0	12,599	12.599	
${ }_{\text {2 }}^{23.50 \%}$	0	12,335	12,335	
24.7\%	0	12,280	12,280	
25.9\%	0	${ }^{12,148}$	${ }^{12,148}$	
27.2\%	0	${ }^{12,123}$	12,123	
- $28.4 .4 \%$	0	${ }^{12,2045}$	12,045	
-	0	${ }^{12,007}$	12,007	
- $30.9 .9 \%$	0	${ }^{11,907}$	11,907	
32.1\%	0	11.905	11,905	
	0	${ }^{11,902}$	11,902	
隹34.6\%	0	${ }^{11,1778}$	11.878	
375.0\%	0	${ }^{11,1728}$	111,728	
38.3\%	0	${ }^{11,71710}$		
39.5\%	0	${ }^{111,703}$	11.703	
40.7\%	0	11,599	11,599	
42.0\%	0	11,594	11,594	
43.2\%	0	11,578	11,578	
${ }^{44.4 \%}$	0	11,485	11,485	
45.7\%	0	11,454	11,454	
${ }^{46.9 \%}$	0	11,297	11,297	
48.19\%	0	11,285	11,285	
49.4\%	0	${ }^{11,241}$	11,241	
年 50.19%	0	${ }^{11,173}$	11,173	
531.9\%	0	11,132	11,132	
	0	${ }^{111,106}$	111,106	
54.6\%	0	${ }^{11,041}$	111,041	
55.8\%	0	11,033	${ }^{11,033}$	
58.0\%	0	${ }^{10,9796}$	${ }_{10,796}^{10,955}$	
59.3\%	0	10,753	10,753	
60.5\%	0	10,743	10,743	
6.3.0\%				
63.4.2\%	0	10,693 10.546	- ${ }_{\text {10,693 }}^{10,546}$	
${ }^{65.4 \%}$	0	10,281	10,281	
${ }^{66.77 \%}$	0	10,270		
69.1\%	0	${ }^{10,256}$	10,109	
70.4\%	0	${ }_{9,428}$	${ }_{9}^{9,428}$	
71.6\%	0	9,242	9,242	
72.8\%	0	${ }^{9,185}$	9,185	
74.1% 753%	0	8,256	${ }^{8,256}$	
75.5\%	0	8,159	8,159	
-76.8\%	0	8,121	8,121	
79.9\%	0	8.094 8.049	8.094 8.049 8	
80.2\%	0	7.881	${ }_{7,881}$	
81.5\%	0	7,831	${ }^{7,831}$	
82.7\%	0	7,691	7.691	
- $\begin{aligned} & 84.0 \% \\ & 88.2 \%\end{aligned}$	\bigcirc	7,585 7.549	7,585 7.549	
${ }^{86.46 \%}$	0	$\begin{array}{r}7,502 \\ 7,502 \\ \hline\end{array}$	${ }_{7}^{7,502}$	
87.7% 880%	0	7,316	7,316 7.217	
90.1\%	0	¢,945		
91.4\%	0	6.435	6,435	
92.6\%	0	${ }_{5}^{5.557}$	5,557	
${ }^{955.1 \%}$	0	${ }_{\text {¢ }}^{5.453}$	${ }_{\text {, }}^{4}$,567	
96.3\%	0	4,226	${ }_{4}^{4,226}$	
97.5\%	0	3,550	${ }^{3,550}$	
98.8\%	0	3,067	${ }^{3}, 0.067$	
100.0\%	0	2,617	2.617	

Table OP－11－b

		Febuary		
Percent Exceedanc	WSIP 2070 W．thout Proiet	WSIP 2070 With Project	Absolute	
Probability	End of Month Area	End of Month Area	Difference	Difference（\％）
（\％）\％	（ACRE）	${ }_{1}^{\text {（ACRE）}} 14.137$	${ }_{14,137}$	
1．2\％	0	14.137	${ }^{14.137}$	
2．5\％	0	14，137	14，137	
3．7\％	0	14，137	14，137	
4．9\％	0	14，137	14，137	
${ }^{6.2 \%}$	0	14，137	14，137	
7.4% 8.6%	0	14,137 14.137	14,137 14.137	
8．6\％	0	14,137 14.137	14,137 14137	
9．9\％	0	14，137	14,137 14.137	
11．19\％	0	14，137	14,137 14137	
退 $\begin{aligned} & 12.3 \% \\ & 13.6 \%\end{aligned}$	\bigcirc	14,137 14,137	14,137 14.137	
14．8\％	0	14，137	14，137	
－ 14.0%	\bigcirc	14,137 14,137	14,137 14.137	
18．5\％	0	${ }^{14.129}$	14.129	
19．8\％	0	14，127	14，127	
${ }_{22}^{21.0 \%}$	0	${ }^{14,115}$	14.115	
22．5\％	0	14，058	14，058	
24．7\％	0	14，027	14，027	
25．9\％	0	14，007	14，007	
27．2\％	0	13,997	${ }^{13,997}$	
28．4\％	0	${ }^{13,967}$	${ }^{13,967}$	
29．6\％	0	${ }^{13,893}$	13，893	
${ }_{3}^{32.9 \%}$	0		$\begin{array}{r}13.862 \\ 13842 \\ \hline 1\end{array}$	
33．3\％	0	${ }_{\substack{13,842 \\ 13,728 \\ \hline}}$	13,842 13,728	
34．6\％	0	${ }^{13,699}$	13，699	
年35．8\％	0	13，620 13.551	13,620 13.551	
38．3\％	0	${ }_{\text {l }}^{13,524}$	－	
39．5\％	0	13，493	${ }^{13,493}$	
${ }^{40.7 \%}$	0	－	13,489 13.287 18	
43．2\％	0	13，237		
44．4\％	0	13，175	${ }^{13,175}$	
455．7\％	0	13,050 12832 1823	13，050	
48．1\％	0	${ }_{112,815}^{12,32}$	${ }_{12,815}$	
49．4\％	0	12，798	12,798	
年50．6\％	0	${ }^{12,766}$	${ }^{12,766}$	
51．9\％	0	${ }^{12,682}$	${ }^{12,682}$	
	0	${ }^{12,670}$	${ }^{12,670}$	
54．3\％	0	12,684 12,569	12,664 12.569 12.6	
56．8\％	0	${ }^{12,481}$	${ }^{12,481}$	
58．0\％	0	${ }^{12,447}$	${ }^{12,447}$	
59．3\％	\bigcirc	（12，392	＋12．392	
61．7\％	0	12,036	12,036	
64．2\％	0	＋12．000	＋12，000	
65．4\％	0	${ }^{11,923}$	11，923	
－ 66.7%	0	11，807	11,807 11,791	
69．1\％	0	111，704	11，704	
70．4\％	0	${ }^{11,648}$	${ }_{111,648}^{11,083}$	
71．6\％${ }^{72.8 \%}$	0	${ }^{11,073}$	11,073	
72．1\％	0	－10，995	＋10，949	
75．3\％	0	10，919	10，919	
76．5\％	0	10，472	10，472	
77．8\％	0	${ }^{10.4288}$	10，428	
790\％	0	10，384	${ }^{10,384}$	
81．5\％	0	¢ ${ }_{\text {c，988 }}$	$\underset{\substack{10,988}}{10,38}$	
82．7\％	0	9，903	9，903	
84．0\％	0	${ }_{\substack{9,889 \\ 9,767}}$	9，0899	
86．4\％	0	9.764	9,764	
－87．7\％	－	${ }_{9}^{9,7621}$	${ }_{9,621}^{9,718}$	
90．1\％	0	${ }^{8,912}$	${ }_{8}^{8,912}$	
${ }_{\text {92，}} 91.4 \%$	0	7，822 7	－${ }_{7,895}^{8,822}$	
93．8\％	0	7，538	7．538	
95．1\％	0	7，212	7，212	
${ }_{\text {c }}^{\text {96．5\％}}$ 96．3\％	0	7,016 6,803	7,016 6.803	
98．8\％	0	${ }_{6.365}$	${ }_{6.365}$	
100．0\％	0	5.882	5.882	

		June		
Percent Exceedance	${ }^{\text {WSIP }}$ Provo Wethout	WSIP 2070 With Project	Absolute	
Proababiliy	End of Month Area	End of Month Area	Differen	Difference (\%)
0.0\%	(ACRE)	${ }^{\text {(ACRE) }} 14137$	14.137	
1.2\%	0	14.137	${ }_{14,137}$	
2.5\%	0	14,050	14.050	
3.7\%	0	14,003	14,003	
4.9\%	0	13,970	13,970	
6.2\%	0	13,962	${ }^{13,962}$	
7.4\%	0	13,935	13,935	
8.6\%	0	13,865 13851 1		
9.9\%\%	0	13,851	13,851	
${ }^{11.12 \%} 1$	0	13,783 13,706	(13,783 $\begin{aligned} & 13,706 \\ & 13\end{aligned}$	
13.6\%	0	13,701	${ }_{13,701}$	
14.8% 16.0%	0		${ }^{13,653}$	
- 17.3 \%	0	${ }^{13,564}$	-	
18.5\%	0	${ }^{13,542}$	${ }_{13,542}$	
19.8\%	0	${ }^{13,528}$	13,528	
21.0\%	0	13,505	13,505	
22.2\%	0	13,481	13,481	
23.5\%	0	13,471	13,471	
24.7\%	0	13,470	13,47	
25.9\%	0	13,469	${ }^{13,469}$	
27.2\%	0	${ }^{13,466}$	${ }^{13,466}$	
- $28.4 .4 \%$	0	13,453	13,453	
39.9\%	0	13,427	+13,427	
32.1\%	0	13,394	13,394	
33.3\%	0	13,367	13,367	
34.6\%	0	${ }^{13,3661}$	${ }^{13,3666}$	
	0	13,341 13,340	13,34	
38.3\%	0	${ }_{\text {13,336 }}^{13,363}$	(13,346	
39.5\%	0	13,330	13,330	
${ }^{40.7 \%}$	0	${ }_{\text {13,318 }}^{13,368}$	${ }^{13,3188}$	
${ }_{4}{ }^{4.2 \%}$	0	${ }_{13,300}$	${ }_{13,300}$	
44.4\%	0	13,286	${ }_{13,286}$	
45.7\%	0	-13,226	${ }^{13,226}$	
46.9\%	0	13,224	13,224	
48.1\%	0	13,169	13,169	
50.6\%	0	13,104 13.041	13,104	
51.9\%	0	${ }^{12,971}$	${ }^{12,971}$	
53.1\%	0	12,877	12,877	
54.3\%	0	${ }^{12,872}$	${ }^{12,872}$	
55.6\%	0	12,819 128804 128	12,819 12889 128	
58.0\%		$12,8,84$ 12,779	(12, $\begin{gathered}12,789 \\ 12,79\end{gathered}$	
59.3\%	0	${ }^{12,395}$	${ }^{12,395}$	
60.5\%	0	12,394 12379	12,394 12379	
${ }^{61.7 \%}$				
${ }^{63.0 \%}$	0	(12,2091	(12,	
${ }^{65.4 \%}$	0	12,023	12,023	
66.7\% 67.9%	\bigcirc		${ }^{111,998}$	
69.1\%	0	${ }^{111,661}$	${ }_{111,631}$	
70.4\%	0	${ }^{11,588}$	${ }^{11,588}$	
71.6\%	0	11,352	11,352	
72.8\%	0	${ }^{11,091}$	11,091	
74.3\%	0	10.968	10,968	
76.5\%	0	10,882	10,882	
77.8\%	0	10,732	10,732	
79.0\%	0	10,438	10,438	
- 80.2%	0	10,400 10,363	10,400	
${ }_{8} 8.27 \%$	0	${ }^{10,0363}$		
84.0\%	0	9,545	9,545	
85.2\%	0	${ }_{9,523}^{9,517}$	${ }_{9,517}^{9,523}$	
- 86.46	0	${ }_{9}^{9.517}$	${ }^{9,5517}$	
88.9\%	0	${ }_{9,075}^{9,210}$	${ }_{9,075}^{9,210}$	
90.1\%	0	${ }_{8,949}$	8,949	
91.4\%	0	${ }^{8,898}$	8,898	
92.6\%	0	${ }^{8,603}$	${ }^{8.603}$	
${ }_{\text {9 }} 93.8 .1 \%$	\bigcirc	7,409	7,409	
96.3\%	0	6,492	\%,492	
97.5\%	0	5.655	5,655	
98.8\%	0	${ }_{\text {5,025 }}$	5.025	
100.0\%		4,146	4,146	

Trinity and Sacramento River Basin Operations Summary Tables and Bar Charts

Table SW-01-a
Trinity Lake, End of Month Storag

,												
Analysis Period	End of Month Storage (TAF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulion Period'												
DCR 2015 W Wrout Project	1,336	1,345	1,396	1,459	1,569	1,693	1,842	1,835	1,798	1,660	1,522	1,401
DCR 2015 W Wh Project	1,336	1,347	1,401	1,465	1,573	1,699	1,850	1,845	1,809	1,668	1,522	1,397
Difference	1	2	5	7	4	7	9	10	11	8	0	-4
Percent Difference ${ }^{\text {a }}$	0.0\%	0.1\%	0.3\%	0.5\%	0.2\%	0.4\%	0.5\%	0.6\%	0.6\%	0.5\%	0.0\%	-0.3\%
Water Year Typess ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 W Wrtout Project	1,737	1,743	1,760	1,763	1,925	2,062	2,239	2,273	2,250	2,120	1,999	1,844
DCR 2015 Wwit Project	1,721	1,726	1,750	1,759	1,914	2,060	2,239	2,273	2,249	2,116	1,984	1,828
Difference	-16	-16	-10	-4	-12	-3	0	0	-1	-4	-15	-16
Percent Difierence	-0.9\%	-0.9\%	-0.6\%	-0.2\%	-0.6\%	-0.1\%	0.0\%	0.0\%	0.0\%	-0.2\%	-0.7\%	-0.9\%
Above Nomal (14.6\%)												
DCR 2015 Without Project	1,572	1,563	1,589	1,559	1,712	1,882	2,052	2,057	2,029	1,909	1,770	1,633
DCR 2015 W Wif Project	1,576	1,572	1,603	1,590	1,743	1,915	2,086	2,091	2,056	1,936	1,770	1,628
Difference	4	9	14	31	31	33	34	34	27	27	0	-4
Percent Difference	0.3\%	0.6\%	0.9\%	2.0\%	1.8\%	1.8\%	1.6\%	1.6\%	1.3\%	1.4\%	0.0\%	-0.3\%
Below Normal (17.1\%)												
DCR 2015 W Witout Project	1,241	1,273	1,356	1,360	1,434	1,530	1,704	1,687	1,646	1,511	1,370	1,267
DCR 2015 W Wif Project	1,250	1,287	1,371	1,370	1,444	1,539	1,717	1,700	1,661	1,529	1,394	1,275
Difference	9	14	15	11	10	9	13	13	15	18	24	8
Pecrent Difiemence	0.7\%	1.1\%	1.1\%	0.8\%	0.7\%	0.6\%	0.8\%	0.8\%	0.9\%	1.2\%	1.8\%	0.7\%
Dry (22%)												
DCR 2015 Without Project	1,102	1,114	1,221	1,349	1,430	1,560	1,697	1,646	1,579	1,414	1,257	1,150
DCR 2015 W Wh Project	1,098	1,113	1,222	1,353	1,432	1,561	1,698	1,649	1,591	1,418	1,257	1,146
Difference	-4	0	1	4	3	1	2	,	12	3	0	-4
Percent Difierence	-0.4\%	0.0\%	0.1\%	0.3\%	0.2\%	0.1\%	0.1\%	0.2\%	0.8\%	0.2\%	0.0\%	-0.3\%
Critical (14.6\%)												
DCR 2015 Without Proeat	691	697	725	980	1,021	1,091	1,149	1,119	1,091	957	814	741
DCR 2015 With Project	721	721	747	985	1,025	1,096	1,158	1,135	1,105	967	817	749
Difference	31	24	22	5	4	5	9	16	14	10	2	8
Percent Difference	4.5\%	3.4\%	3.1\%	0.5\%	0.4\%	0.5\%	0.8\%	1.4\%	1.3\%	1.0\%	0.3\%	1.1\%

1 Basedo on the 82 v.ear simulition period
3 Realive difference of the monthly verage

Long-term Average and Averan by Warion

Long-term Average and Average by Water Year Type												
Analysis Period	End of Month Elevation (FEET)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simultion Period'												
DCR 2015 Wiftout Projet	2,283	2,284	2,289	2,295	2,305	2,316	2,327	2,326	2,323	2,312	2,300	2,290
DCR 2015 With Project	2,284	2,285	2,290	2,296	2,306	2,317	2,328	2,327	2,324	2,313	2,300	2,290
Difference	1	1	1	1	1	1	1	1	1	1	0	0
Percent Difference ${ }^{\text {a }}$	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
DCR 2015 Wiftout Project	2,323	2,323	2,325	2,325	2,338	2,348	2,358	2,360	2,358	2,350	2,342	2,332
DCR 2015 W Wit Project	2,321	2,322	2,324	2,325	2,338	2,348	2,358	2,360	2,358	2,350	2,341	2,330
Difference	-1	-1	-1	0	-1	0	0	0	0	0	-1	-1
Percent Difference	-0.1\%	-0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.1\%
Above Norma (14.6\%)												
DCR 2015 Without Project	2,309	2,308	2,310	2,305	2,319	2,333	2,345	2,346	2,344	2,335	2,325	2,314
DCR 2015 With Project	2,309	2,309	2,311	2,309	2,323	2,336	2,347	2,348	2,346	2,338	2,325	2,313
Differene	0	1	1	4	4	3	3	3	3	2	0	0
Percent Difference	0.0\%	0.0\%	0.1\%	0.2\%	0.2\%	0.1\%	0.1\%	0.1\%	0.1\%	0.1\%	0.0\%	0.0\%
Below Normal (17.1\%)												
DCR 2015 WWithut Project	2,277	2,280	2,287	2,286	2,293	2,301	2,317	2,316	2,313	2,302	2,289	2,279
DCR 2015 With Project	2,278	2,281	2,289	2,287	2,294	2,303	2,318	2,317	2,315	2,304	2,292	2,280
Difference	1	1	1	1	1	1	1	1	1	2	2	1
Percent Difference	0.0\%	0.1\%	0.1\%	0.1\%	0.1\%	0.1\%	0.1\%	0.1\%	0.1\%	0.1\%	0.1\%	0.0\%
Dry (22\%)												
DCR 2015 Without Project	2,264	2,265	2,275	2,285	2,293	2,306	2,318	2,314	2,308	2,293	2,279	2,269
DCR 2015 With Project	2,264	2,265	2,275	2,286	2,294	2,307	2,319	2,314	2,310	2,294	2,279	2,269
Difference	0	0	0	1	1	0	0	1	1	1	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	0.0\%	0.0\%	0.0\%
Critical (14.6\%)												
DCR 2015 Wiltout Project	2,211	2,212	2,217	2,248	2,253	2,262	2,268	2,265	2,263	2,248	2,229	2,219
DCR 2015 W Wit Project	2,217	2,217	2,221	2,248	2,253	2,262	2,269	2,267	2,264	2,249	2,230	2,221
Difference	6	4	3	0	0	1	1	2	1	1	1	1
Percent Difference	0.3\%	0.2\%	0.2\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	0.1\%	0.1\%	0.0\%	0.1\%

1 Based on the 82 -vear sinulation period
3 Realive difference of the monthly verage

Trinity River below Lewiston Reservoir, Monthly Flow
Long-term Average and Average by Water Year Type

Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
$\mathrm{Feull} \mathrm{Simulion} \mathrm{Period'}^{\prime}$												
DCR 2015 Wiftout Project	373	360	499	654	636	587	559	3,779	2,091	923	450	450
DCR 2015 With Project	373	354	464	629	639	543	550	3,779	2,091	923	450	450
Differene	0	-6	-34	-26	3	-44	-9	0	0	0	0	0
Percent Difference	0.0\%	-1.7\%	-6.9\%	-3.9\%	0.4\%	-7.5%	-1.6\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Water Year Types ${ }^{2}$												
Wet (3.7\%)												
DCR 2015 W Witout Project	373	300	778	1,411	1,030	1,131	642	4,636	3,318	1,289	450	450
DCR 2015 With Project	373	300	670	1,337	1,053	993	614	4,636	3,318	1,289	450	450
Difference	0	0	-108	-74	22	-139	-28	0	0	0	0	0
Pereen Difference	0.0\%	0.0\%	-13.9\%	-5.2\%	2.2\%	-12.3\%	-4.3\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Above Nomal (14.6\%)												
DCR 2015 Without Priject	373	713	621	316	760	436	469	4,462	2,488	1,048	450	450
DCR 2015 W.th Project	373	670	621	300	731	436	469	4,462	2,488	1,048	450	450
Difference	0	-43	0	-16	-29	0	0	0	0	0	0	0
Percent Difference	0.0\%	-6.0\%	0.0\%	-4.9\%	-3.8\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Below Normal (17. \%\%)												
DCR 2015 WWithout Priject	373	300	300	300	517	319	507	3,774	1,672	869	450	450
DCR 2015 With Project	373	300	300	300	517	319	507	3,774	1,672	869	450	450
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Dry (22%)												
DCR 2015 Without Proet	373	300	300	300	300	300	529	3,216	1,251	667	450	450
DCR 2015 With Projet	373	300	300	300	300	300	529	3,216	1,251	667	450	450
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Critical (14.6\%)												
DCR 2015 Without Priject	373	300	300	300	300	300	575	2,092	783	450	450	450
DCR 2015 With Project	373	300	300	300	300	300	575	2,092	783	450	450	450
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%

$2 A$ s defined by the Sacramentio Valley $00-30 \cdot 30$ Index Waier Year Hyyrologic Classification (SWRCB D-1644, 1999
3 Realive difference of the monthy average

Table SW-05-a
Clear Creek Tunnel, Monthly Flow
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simultion Period'												
DCR 2015 W Withut Project	964	353	292	446	92	274	409	190	563	1,795	1,888	1,659
DCR 2015 With Project	898	336	280	442	141	272	380	168	552	1,842	2,019	1,723
Difference	-66	-17	-13	-4	49	-2	-30	-23	-11	47	131	64
Percent Difference?	-6.8\%	-4.9\%	-4.4\%	-0.8\%	52.6\%	-0.7\%	-7.3\%	-11.9\%	-1.9\%	2.6\%	6.9\%	3.8\%
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
DCR 2015 W Wituout Project	1,554	548	582	435	81	353	493	285	422	1,783	1,693	2,236
DCR 2015 With Project	1,551	547	587	431	197	342	479	281	444	1,836	1,867	2,261
Difference	-3	-1	5	-4	115	-11	-14	-4	22	53	174	25
Pereen Difference	-0.2\%	-0.2\%	0.8\%	-0.9\%		-3.0\%	-2.9\%	-1.5\%	5.2\%	3.0\%	10.3\%	1.1\%
Above Normal (14.6\%)												
DCR 2015 W Wituout Proet	1,095	497	324	269	58	302	581	0	163	1,356	1,875	1,958
DCR 2015 With Project	1,014	454	253	231	79	274	571	0	273	1,348	2,313	2,038
Difference	-82	-43	-71	-39	21	-28	-10	0	109	-8	438	80
Percent Difference	-7.4\%	-8.6\%	-21.8\%	-14.4\%		-9.1\%	-1.7%		67.1\%	-0.6\%	23.3\%	4.1\%
Below Normal (17.1\%)												
DCR 2015 WWithut Project	536	186	83	328	76	400	304	68	559	1,609	1,912	1,342
DCR 2015 Wit Project	532	104	64	359	91	417	232	68	528	1,559	1,804	1,607
Difference	-3	-82	-19	30	15	18	-72	0	-32	-50	-108	265
Pereent Difference	-0.6\%	-44.2\%	-22.6\%	9.2\%	19.2\%	4.4\%	-23.7\%	0.0\%	-5.7\%	-3.1\%	-5.7\%	19.7\%
Dry (22\%)												
DCR 2015 WWithout Priject	614	303	109	418	153	110	244	231	1,024	2,193	2,146	1,409
DCR 2015 Wit Project	619	241	89	402	175	130	238	209	872	2,332	2,203	1,474
Difference	5	-62	-20	-17	22	19	-5	-22	-152	139	56	65
Peacent Difference	0.8\%	-20.4\%	-17.9\%	-4.0\%	14.1\%	17.5\%	-2.2\%	-9.6\%	-14.9\%	6.3\%	2.6\%	4.6\%
Critical (14.6\%)												
DCR 2015 Wiftout Project	579	60	152	823	78	172	427	257	578	1,879	1,908	856
DCR 2015 With Project	216	175	177	836	90	159	358	144	613	1,943	2,032	750
Difference	-363	115	24	12	13	-12	-69	-112	35	64	124	-106
Percent Difference	-62.7\%		16.1\%	1.5\%	16.0\%	-7.3\%	-16.2\%	-43.8\%	6.1\%	3.4\%	6.5\%	-12.3%

1 Based on the 82 -vear sinulation neriod
3 Realive difference of the monthy veras

Clear Creek below Whiskeytown Reservoir, Monthly Flow Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period'												
DCR 2015 Without Proect	187	187	189	197	197	191	191	265	181	85	85	148
DCR 2015 With Project	187	187	189	197	230	193	191	265	181	85	85	148
Difference	0	0	0	0	33	2	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	16.5\%	0.9\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 W Witout Project	200	200	200	220	220	200	200	277	200	85	85	150
DCR 2015 With Priject	200	200	200	220	327	205	200	277	200	85	85	150
Difference	0	0	0	0	108	5	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	49.0\%	2.7\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Above Nomal (14.6\%)												
DCR 2015 Without Project	200	200	200	192	196	196	196	277	200	85	85	150
DCR 2015 With Project	200	200	200	192	196	196	196	277	200	85	85	150
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Below Normal (17.1\%)												
DCR 2015 WWithout Project	193	193	193	189	189	189	189	269	186	85	85	150
DCR 2015 With Priject	193	193	193	189	189	189	189	269	186	85	85	150
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Dry (22\%)												
DCR 2015 Without Project	181	182	182	192	192	192	192	264	180	85	85	150
DCR 2015 With Project	181	182	182	192	184	192	192	264	180	85	85	150
Difference	0	0	0	0	-7	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	-3.8\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Critical (14.6\%)												
DCR 2015 Without Project	146	149	163	168	168	168	168	224	120	85	85	133
DCR 2015 With Project	146	149	163	168	168	168	168	224	120	85	85	133
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%

1 Based on the 82 yeera simulation period
$\begin{array}{lllll}0.0 \% & 0.0 \% & 0.0 \% & 0.0 \% & 0.0 \% \\ \text { dex Water Year Hydrologic Classification (SWRCB } & \text { D-1641, 1999) }\end{array}$
3 Realive difference of the monthly verage

Table SW-07-a Shasta Lake, End of Month Storage												
						of Mont	Storage					
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$F_{\text {Ful S Simulation Period' }}$												
DCR 2015 W Withut Project	2,575	2,532	2,706	2,981	3,259	3,622	3,921	3,952	3,648	3,166	2,847	2,655
DCR 2015 With Project	2,698	2,639	2,790	3,053	3,301	3,676	3,983	4,023	3,762	3,292	2,986	2,779
Difference	123	108	84	72	42	53	61	71	115	126	139	124
Percent Difference ${ }^{\text {a }}$	4.8\%	4.3\%	3.1\%	2.4\%	1.3\%	1.5\%	1.6\%	1.8\%	3.1\%	4.0\%	4.9\%	4.7\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 Without Project	3,015	2,863	3,038	3,413	3,638	3,860	4,317	4,474	4,291	3,877	3,530	3,104
DCR 2015 With Project	3,041	2,870	3,041	3,428	3,593	3,851	4,318	4,473	4,278	3,852	3,530	3,113
Difference	26	7	4	15	-45	-10	1	-1	-13	-25	0	9
Percent Difference	0.9\%	0.2\%	0.1\%	0.4\%	-1.2\%	-0.2\%	0.0\%	0.0\%	-0.3\%	-0.6\%	0.0\%	0.3\%
Above Norma (14.6\%)												
DCR 2015 Without Project	2,916	2,741	2,948	3,102	3,381	3,960	4,405	4,478	4,121	3,538	3,208	3,014
DCR 2015 W.th Project	3,067	2,895	3,013	3,173	3,418	3,996	4,437	4,482	4,201	3,649	3,374	3,201
Difference	151	154	65	71	36	37	31	4	79	111	166	187
Percent Difference	5.2\%	5.6\%	2.2\%	2.3\%	1.1\%	0.9\%	0.7\%	0.1\%	1.9\%	3.2\%	5.2\%	6.2\%
Below Norma (17.1\%)												
DCR 2015 Without Prijet	2,809	2,886	2,970	2,933	3,285	3,684	4,056	4,075	3,733	3,235	2,918	2,848
DCR 2015 With Project	2,957	2,986	3,036	3,015	3,343	3,743	4,114	4,148	3,902	3,412	3,115	3,031
Difference	148	100	65	83	58	58	59	73	169	177	196	183
Percent Difference	5.3\%	3.5\%	2.2\%	2.8\%	1.8\%	1.6\%	1.4\%	1.8\%	4.5\%	5.5\%	6.7\%	6.4\%
Dry (22\%)												
DCR 2015 Without Proedt	2,405	2,485	2,728	2,815	3,183	3,663	3,812	3,730	3,352	2,829	2,530	2,490
DCR 2015 With Projet	2,563	2,621	2,843	2,889	3,247	3,732	3,888	3,822	3,521	3,030	2,719	2,630
Difference	158	136	115	74	64	69	76	92	170	202	189	140
Percent Difference	6.6\%	5.5\%	4.2\%	2.6\%	2.0\%	1.9\%	2.0\%	2.5\%	5.1\%	7.1\%	7.5\%	5.6\%
Cinital (14.6\%)												
DCR 2015 Wiftout Priject	1,261	1,261	1,403	2,230	2,400	2,636	2,588	2,486	2,126	1,677	1,398	1,343
DCR 2015 With Projed	1,483	1,507	1,657	2,412	2,587	2,814	2,792	2,744	2,406	1,971	1,666	1,562
Difference	222	245	255	183	187	178	204	258	280	294	268	219
Percent Difference	17.6\%	19.5\%	18.2\%	8.2\%	7.8\%	6.7\%	7.9\%	10.4\%	13.1\%	17.5\%	19.1\%	16.3\%

1 Based on the 82 veear simulation period
3Realive difference of the monntly yerage

Table SW-08-a Shasta Lake, End of Month Elevation term Average and Average by Water Year Type												
	End of Month Elevation (FEET)											
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Ful Simulion Period'												
DCR 2015 Without Project	982	980	989	1,003	1,015	1,031	1,042	1,043	1,031	1,010	995	986
DCR 2015 W Wh Project	989	987	994	1,007	1,018	1,033	1,045	1,046	1,036	1,017	1,003	993
Difference	7	7	5	4	3	2	3	3	5	7	8	7
Percent Difference ${ }^{\text {a }}$	0.7\%	0.7\%	0.6\%	0.4\%	0.2\%	0.2\%	0.3\%	0.3\%	0.5\%	0.7\%	0.8\%	0.7\%
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
DCR 2015 Wiftout Project	1,006	1,000	1,008	1,024	1,033	1,042	1,059	1,064	1,058	1,042	1,029	1,010
DCR 2015 With Project	1,008	1,000	1,008	1,025	1,031	1,041	1,059	1,064	1,057	1,041	1,029	1,011
Difierence	1	0	0	1	-2	0	0	0	0	-1	0	0
Percent Difference	0.1\%	0.0\%	0.0\%	0.1\%	-0.2\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.1\%	0.0\%	0.0\%
Above Norma (14.6\%)												
DCR 2015 W Witout Project	1,002	994	1,004	1,009	1,022	1,046	1,062	1,064	1,052	1,029	1,015	1,007
DCR 2015 W Wh Project	1,009	1,001	1,006	1,013	1,024	1,047	1,063	1,064	1,054	1,034	1,022	1,015
Difference	7	7	3	4	2	1	1	0	3	5	7	8
Percent Difference	0.7\%	0.7\%	0.3\%	0.4\%	0.2\%	0.1\%	0.1\%	0.0\%	0.3\%	0.4\%	0.7\%	0.8\%
Below Normal (17.1\%)												
DCR 2015 WWithut Project	997	1,000	1,004	1,000	1,016	1,033	1,049	1,050	1,037	1,016	1,002	999
DCR 2015 Wit Project	1,004	1,005	1,007	1,004	1,019	1,036	1,051	1,052	1,043	1,024	1,011	1,007
Difference	7	5	4	4	3	2	2	3	6	8	9	8
Percent Difference	0.7\%	0.5\%	0.4\%	0.4\%	0.3\%	0.2\%	0.2\%	0.3\%	0.6\%	0.8\%	0.9\%	0.8\%
Dry (22\%)												
DCR 2015 Without Proeat	977	981	992	995	1,012	1,033	1,039	1,036	1,020	998	983	981
DCR 2015 WWH Project	985	988	998	999	1,015	1,036	1,042	1,040	1,028	1,007	993	988
Difference	8	7	6	4	3	3	3	4	7	9	9	7
Percent Difference	0.9\%	0.7\%	0.6\%	0.4\%	0.3\%	0.3\%	0.3\%	0.4\%	0.7\%	0.9\%	0.9\%	0.7\%
Critical (14.6\%)												
DCR 2015 Wiltout Project	897	898	910	964	974	988	985	980	960	931	909	904
DCR 2015 With Project	916	918	931	975	984	997	996	993	976	952	931	922
Difference	19	21	21	11	11	9	10	14	16	21	22	19
Percent Difference	2.1\%	2.3\%	2.3\%	1.2\%	1.1\%	0.9\%	1.0\%	1.4\%	1.7\%	2.3\%	2.4\%	2.1\%

1 Based on the 82 vever simulation pericod
3 Realive difference of the monthly average

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
$F_{\text {Ful S Simulation Period' }}$												
DCR 2015 Without Project	6,230	6,943	6,597	8,246	10,204	8,424	6,927	7,893	10,762	13,122	10,243	8,208
DCR 2015 With Project	6,163	7,181	6,967	8,427	10,768	8,245	6,759	7,712	10,010	12,990	10,138	8,501
Difference	-67	238	370	181	563	-180	-168	-181	-753	-132	-105	293
Percent Difference	-1.1\%	3.4\%	5.6\%	2.2\%	5.5\%	-2.1\%	-2.4\%	-2.3\%	-7.0\%	-1.0\%	-1.0\%	3.6\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 Without Project	7,343	9,448	7,089	15,821	18,354	16,192	9,474	9,467	10,493	12,868	11,030	13,191
DCR 2015 With Project	7,064	9,762	7,151	16,271	19,444	15,608	9,272	9,493	10,711	13,123	10,791	13,071
Difference	-279	314	62	450	1,090	-584	-202	26	218	255	-239	-121
Percent Difference	-3.8\%	3.3\%	0.9\%	2.8\%	5.9\%	-3.6\%	-2.1\%	0.3\%	2.1\%	2.0\%	-2.2\%	-0.9\%
Above Normal (14.6\%)												
DCR 2015 Wiftout Project	6,382	10,153	6,306	7,449	14,219	7,944	6,079	7,764	11,277	14,391	10,473	8,699
DCR 2015 With Project	6,760	10,057	7,673	7,228	14,858	7,905	6,163	8,198	10,126	13,853	10,008	8,422
Difference	378	-96	1,367	-221	639	-40	84	434	-1,151	-538	-464	-277
Percent Difference	5.9\%	-0.9\%	21.7\%	-3.0\%	4.5\%	-0.5\%	1.4\%	5.6\%	-10.2\%	-3.7\%	-4.4\%	-3.2\%
Below Normal (17.1\%)												
DCR 2015 W Wituout Proet	5,784	5,085	7,943	4,082	5,800	4,675	5,219	7,087	10,773	12,876	10,000	5,600
DCR 2015 With Project	6,345	5,801	8,489	4,387	6,279	4,693	5,148	6,847	9,121	12,688	9,562	6,082
Difference	561	716	546	305	479	18	-71	-240	-1,652	-188	-438	482
Percent Difference	9.7\%	14.1\%	6.9\%	7.5\%	8.3\%	0.4\%	-1.4\%	-3.4\%	-15.3\%	-1.5\%	-4.4\%	8.6\%
Dry (22\%)												
DCR 2015 Without Proedt	5,573	4,576	7,104	3,881	3,624	3,770	5,581	7,176	11,252	13,672	9,834	5,051
DCR 2015 With Projed	5,270	4,888	7,428	4,182	3,865	3,714	5,454	6,882	9,792	13,333	10,017	5,939
Difference	-303	313	324	300	241	-56	-127	-294	-1,460	-339	183	889
Percent Difference	-5.4\%	6.8\%	4.6\%	7.7\%	6.7\%	-1.5\%	-2.3%	-4.1\%	-13.0\%	-2.5\%	1.9\%	17.6\%
Critical (14.6\%)												
DCR 2015 W Witout Project	5,173	4,022	3,491	4,036	3,539	3,428	6,269	6,625	10,083	11,865	9,206	4,697
DCR 2015 With Project	4,743	3,761	3,395	3,713	3,468	3,569	5,750	5,620	9,738	11,674	9,706	5,345
Difference	-430	-260	-96	-323	-71	140	-518	-1,005	-346	-191	499	649
Percent Difference	-8.3\%	-6.5\%	-2.7\%	-8.0\%	-2.0\%	4.1\%	-8.3\%	-15.2\%	-3.4\%	-1.6\%	5.4\%	13.8\%

1 Based on the 82 -year simulation period
3 Realive difference of the monthy veras

Table SW-11-a
ver at Bend Bridg
Sacramento River at Bend Bridge, Monthly Flow
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
$\mathrm{Full} \mathrm{S} \mathrm{Simulation} \mathrm{Period'}^{\prime}$												
DCR 2015 Without Project	7,166	9,176	11,373	15,073	17,893	14,411	10,654	9,955	11,733	13,365	10,432	8,648
DCR 2015 With Project	7,096	9,416	11,741	15,253	18,489	14,231	10,489	9,776	10,983	13,236	10,325	8,940
Difference	-70	240	369	179	596	-179	-165	-179	-750	-129	-107	291
Percent Difference	-1.0\%	2.6\%	3.2\%	1.2\%	3.3\%	-1.2\%	-1.6\%	-1.8\%	-6.4\%	-1.0\%	-1.0\%	3.4\%
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
DCR 2015 Without Project	8,310	11,946	11,741	27,358	30,060	25,038	15,283	12,540	12,060	13,367	11,308	13,684
DCR 2015 With Project	8,033	12,263	11,800	27,807	31,256	24,457	15,087	12,567	12,282	13,622	11,068	13,565
Difference	-277	317	60	448	1,196	-581	-196	28	222	254	-240	-119
Percent Difference	-3.3\%	2.7\%	0.5\%	1.6\%	4.0\%	-2.3\%	-1.3\%	0.2\%	1.8\%	1.9\%	-2.1\%	-0.9\%
Above Normal (14.6\%)												
DCR 2015 Wiftout Project	7,437	12,453	11,219	15,887	23,338	15,455	10,427	10,110	12,162	14,490	10,633	9,149
DCR 2015 With Project	7,815	12,353	12,588	15,666	23,979	15,413	10,512	10,544	11,009	13,958	10,169	8,872
Difference	378	-100	1,368	-221	642	-42	85	434	$-1,153$	-532	-463	-277
Percent Difference	5.1\%	-0.8\%	12.2\%	-1.4\%	2.8\%	-0.3\%	0.8\%	4.3\%	-9.5\%	-3.7\%	-4.4\%	-3.0\%
Below Normal (17.1\%)												
DCR 2015 WWithut Project	6,958	7,388	13,017	9,016	11,855	8,849	8,563	8,735	11,544	12,975	10,115	5,975
DCR 2015 With Project	7.512	8,100	13,559	9,319	12,332	8,866	8,493	8,495	9,893	12,796	9,672	6,456
Difference	554	711	542	303	478	17	-70	-240	-1,651	-179	-443	481
Percent Difference	8.0\%	9.6\%	4.2\%	3.4\%	4.0\%	0.2\%	-0.8\%	-2.7\%	-14.3\%	-1.4\%	-4.4\%	8.0\%
Dry (22\%)												
DCR 2015 Without Proedt	6,409	6,815	12,881	7,042	8,923	8,298	7,782	8,557	11,859	13,785	9,996	5,514
DCR 2015 With Projet	6,096	7,131	13,202	7,338	9,156	8,243	7,656	8,264	10,400	13,452	10,175	6,397
Difference	-312	317	321	296	233	-56	-125	-293	-1,459	-332	180	883
Percent Difference	-4.9\%	4.6\%	2.5\%	4.2\%	2.6\%	-0.7\%	-1.6\%	-3.4\%	-12.3\%	-2.4\%	1.8\%	16.0\%
Critical (14.6\%)												
DCR 2015 Without Proeat	5,798	5,525	6,548	6,757	6,586	5,996	7,600	7,723	10,630	12,063	9,361	5,056
DCR 2015 With Project	5,363	5,270	6,455	6,433	6,518	6,136	7,079	6,722	10,291	11,870	9,857	5,697
Difference	-435	-255	-93	-324	-67	140	-520	-1,001	-338	-193	496	641
Percent Difference	-7.5\%	-4.6\%	-1.4\%	-4.8\%	-1.0\%	2.3\%	-6.8\%	-13.0\%	-3.2\%	-1.6\%	5.3\%	12.7\%

aco on he 82 -year smumaion neriod
3 Realive difference of the monthy verage

Table SW-12-a
Sacramento River below Red Bluff Diversion Dam, Monthly Flow
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
DCR 2015 Without Priject	7,055	9,194	11,427	15,241	18,024	14,498	10,547	9,551	10,977	12,544	9,763	8,497
DCR 2015 With Projet	6,994	9,339	11,037	14,297	17,381	13,305	10,140	9,318	10,332	12,631	9,764	8,855
Difference	-61	145	-390	-944	-643	-1,194	-407	-232	-645	87	1	358
Percent Differences	-0.9\%	1.6\%	-3.4\%	-6.2\%	-3.6\%	-8.2\%	-3.9\%	-2.4\%	-5.9\%	0.7\%	0.0\%	4.2\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 Wiftout Project	8,164	11,971	11,795	27,643	30,275	25,194	15,200	11,940	10,981	12,158	10,349	13,457
DCR 2015 With Project	7,889	12,202	11,019	27,024	30,407	23,822	14,852	11,877	11,209	12,551	10,160	13,458
Difference	-275	231	-776	-618	131	-1,371	-348	-62	228	393	-189	1
Percent Difference	-3.4\%	1.9\%	-6.6\%	-2.2\%	0.4\%	-5.4\%	-2.3\%	-0.5\%	2.1\%	3.2\%	-1.8\%	0.0\%
Above Norma (14.6\%)												
DCR 2015 Wiftout Project	7,321	12,466	11,267	16,133	23,534	15,575	10,289	9,539	11,109	13,357	9,748	8,943
DCR 2015 W.th Project	7,707	12,182	11,062	14,187	22,520	14,120	9,754	9,795	10,226	13,417	9,579	8,824
Difference	386	-284	-205	-1,946	-1,014	-1,456	-534	256	-883	60	-169	-119
Percent Difference	5.3\%	-2.3\%	-1.8\%	-12.1\%	-4.3\%	-9.3\%	-5.2\%	2.7\%	-8.0\%	0.5\%	-1.7\%	-1.3%
Below Normal (17.1\%)												
DCR 2015 WWithut Project	6,856	7,416	13,075	9,131	11,942	8,876	8,429	8,386	10,896	12,267	9,556	5,876
DCR 2015 With Project	7,432	8,045	13,011	7,951	11,240	7,528	8,029	8,109	9,368	12,395	9,315	6,371
Difference	576	629	-64	-1,180	-702	-1,348	-401	-277	-1,528	128	-242	494
Percent Difference	8.4\%	8.5\%	-0.5\%	-12.9\%	-5.9\%	-15.2\%	-4.8\%	-3.3\%	-14.0\%	1.0\%	-2.5\%	8.4\%
Dry (22\%)												
DCR 2015 Without Project	6,312	6,830	12,955	7,115	8,991	8,357	7,658	8,328	11,351	13,294	9,595	5,415
DCR 2015 Wit Project	6,013	7,034	12,805	6,529	7,861	7,192	7,335	8,083	10,077	13,102	9,849	6,312
Difference	-300	204	-150	-587	-1,130	-1,165	-323	-245	-1,275	-191	254	897
Percent Difference	-4.7\%	3.0\%	-1.2\%	-8.2\%	-12.6\%	-13.9\%	-4.2\%	-2.9\%	-11.2\%	-1.4\%	2.6\%	16.6\%
Critical (14.6\%)												
DCR 2015 Wiftout Priject	5,732	5,525	6,576	6,799	6,615	6,020	7,527	7,578	10,372	11,767	9,002	4,985
DCR 2015 With Priject	5,300	5,258	6,095	5,891	5,463	5,611	6,984	6,560	10,049	11,587	9,489	5,626
Difference	-432	-267	-481	-908	-1,151	-409	-543	-1,017	-323	-180	487	641
Percent Difference	-7.5\%	-4.8\%	-7.3\%	-13.4\%	-17.4\%	-6.8\%	-7.2\%	-13.4\%	-3.1\%	-1.5\%	5.4\%	12.9\%

1 Based on the 82 -year simulation period
3 Realive difference of the monthy veras

Table SW-14-a
Sacramento River below Delevan Intake and Pipeline, Monthly Flow
Long-term Average and Average by Water Year Type

	Monthly Flow (CFS)											
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period' $^{\prime}$												
DCR 2015 Wiftout Project	6,264	9,435	14,437	21,225	25,500	19,836	11,643	8,435	7,795	8,701	6,989	8,235
DCR 2015 With Projed	6,678	9,726	13,513	19,540	23,792	17,796	11,164	8,368	8,303	9,908	7,608	9,195
Difference	414	291	-924	-1,684	-1,708	-2,040	-479	-67	509	1,207	620	961
Percent Difference	6.6\%	3.1\%	-6.4\%	-7.9\%	-6.7\%	-10.3\%	-4.1\%	-0.8\%	6.5\%	13.9\%	8.9\%	11.7\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 Without Project	7,467	12,234	15,050	38,385	42,965	33,011	19,226	12,216	8,795	8,543	7,566	13,359
DCR 2015 With Project	7,362	12,592	14,038	36,959	41,725	30,953	18,628	11,965	9,210	9,172	7,123	13,794
Difference	-105	358	-1,012	-1,426	-1,240	$-2,058$	-598	-251	415	629	-443	436
Percent Difference	-1.4\%	2.9\%	-6.7\%	-3.7\%	-2.9\%	-6.2\%	-3.1\%	-2.1\%	4.7\%	7.4\%	-5.9\%	3.3\%
Above Norma (14.6\%)												
DCR 2015 Without Project	6,641	12,896	14,268	24,306	32,498	23,457	11,952	9,002	7,828	9,225	6,924	8,689
DCR 2015 With Project	7,010	12,342	12,74	21,120	30,057	20,519	11,030	8,984	7,983	10,404	7,132	9,340
Difference	369	-554	-1,524	-3,186	-2,441	-2,938	-922	-18	155	1,180	208	651
Percent Difference	5.6\%	-4.3\%	-10.7\%	-13.1\%	-7.5\%	-12.5\%	-7.7\%	-0.2\%	2.0\%	12.8\%	3.0\%	7.5\%
Below Norma (17.1\%)												
DCR 2015 WWithut Project	6,286	8,086	16,610	12,766	17,286	12,107	8,835	6,944	7,305	8,156	6,573	5,521
DCR 2015 With Project	7,496	8,839	15,674	10,669	15,750	9,739	8,066	6,675	7,571	10,136	7,687	6,642
Difference	1,210	753	-936	-2,098	-1,536	$-2,368$	-768	-269	266	1,980	1,114	1,121
Pereent Difference	19.3\%	9.3\%	-5.6\%	-16.4\%	-8.9\%	-19.6\%	-8.7\%	-3.9\%	3.6\%	24.3\%	16.9\%	20.3\%
Dry $\left(22^{\%} /\right)$												
DCR 2015 Wiftout Project	5,274	6,973	16,252	9,452	13,280	12,094	6,627	5,867	7,352	9,295	6,620	5,037
DCR 2015 W.it Project	5,981	7,498	15,732	8,453	11,174	9,982	6,401	6,061	8,165	10,923	8,010	6,679
Difference	707	525	-520	-999	-2,106	$-2,113$	-226	194	813	1,628	1,390	1,642
Percent Difference	13.4\%	7.5\%	-3.2\%	-10.6\%	-15.9\%	-17.5\%	-3.4\%	3.3\%	11.1\%	17.5\%	21.0\%	32.6\%
Cifital (14.6\%)												
DCR 2015 Without Proeat	4,742	5,174	8,018	8,490	8,570	8,299	5,703	5,267	6,830	8,265	6,842	4,640
DCR 2015 With Project	4,955	5,279	7,295	7,202	6,979	7,691	5,883	5,394	7,721	9,215	8,444	5,841
Difference	213	105	-723	-1,288	-1,590	-608	181	126	891	951	1,603	1,200
Percent Difference	4.5\%	2.0\%	-9.0\%	-15.2\%	-18.6\%	-7.3\%	3.2\%	2.4\%	13.0\%	11.5\%	23.4\%	25.9\%

3 Realive difference of the monthy y veras

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulation Period'												
DCR 2015 W Wifout Project	6,038	9,041	11,300	13,726	15,307	14,065	8,693	6,889	5,666	6,631	5,440	7,929
DCR 2015 With Projed	6,442	9,314	10,756	12,752	14,298	12,659	8,413	6,839	6,166	7,818	6,028	8,890
Difference	405	274	-544	-973	-1,009	-1,406	-280	-50	500	1,187	588	961
Percent Differences	6.7\%	3.0\%	-4.8\%	-7.1\%	-6.6\%	-10.0\%	-3.2\%	-0.7\%	8.8\%	17.9\%	10.8\%	12.1\%
Water Year Types ${ }^{2}$												
Wet(31.7\%)												
DCR 2015 Without Proedt	7,126	11,971	11,547	19,102	19,835	18,274	13,408	10,373	6,439	6,542	6,081	13,056
DCR 2015 With Project	7,017	12,235	11,092	18,591	19,491	17,405	13,209	10,211	6,858	7,157	5,625	13,521
Difference	-109	264	-456	-511	-344	-869	-199	-162	419	615	-456	465
Percent Difference	-1.5\%	2.2\%	-3.9\%	-2.7\%	-1.7\%	-4.8\%	-1.5\%	-1.6\%	6.5\%	9.4\%	-7.5\%	3.6\%
Above Nomal (14.6\%)												
DCR 2015 Without Project	6,398	11,234	12,089	16,397	19,083	17,496	10,180	7,341	5,803	7,161	5,372	8,394
DCR 2015 With Project	6,761	10,941	10,802	15,348	17,964	15,537	9,539	7,340	5,943	8,330	5,546	9,057
Difference	363	-293	-1,287	-1,049	-1,120	-1,958	-642	-1	141	1,169	174	663
Percent Difference	5.7\%	-2.6\%	-10.6\%	-6.4\%	-5.9\%	-11.2\%	-6.3\%	0.0\%	2.4\%	16.3\%	3.2\%	7.9\%
Below Normal (17.1\%)												
DCR 2015 Without Prijet	6,128	7,992	12,665	12,208	14,406	11,950	7,080	5,589	5,303	6,057	5,017	5,221
DCR 2015 With Project	7,329	8,606	12,198	10,462	13,313	9,593	6,551	5,304	5,557	8,018	6,068	6,332
Difference	1,201	614	-467	-1,746	-1,092	$-2,357$	-529	-286	254	1,961	1,051	1,111
Percent Difference	19.6\%	7.7\%	-3.7\%	-14.3\%	-7.6\%	-19.7\%	-7.5\%	-5.1\%	4.8\%	32.4\%	20.9\%	21.3\%
Dry $\left(22^{\%} /\right)$												
DCR 2015 Without Proedt	5,126	6,800	11,579	8,872	11,534	11,316	5,200	4,543	5,302	7,168	5,008	4,748
DCR 2015 With Project	5,812	7,295	11,450	8,074	10,035	9,684	4,992	4,721	6,097	8,768	6,356	6,372
Difference	686	495	-129	-798	-1,500	-1,632	-208	179	795	1,600	1,348	1,623
Percent Difference	13.4\%	7.3\%	-1.1\%	-9.0\%	-13.0\%	-14.4\%	-4.0\%	3.9\%	15.0\%	22.3\%	26.9\%	34.2\%
Critical (14.6\%)												
DCR 2015 Wiftout Priject	4,584	5,082	7,966	8,456	8.429	8,108	4,111	3,922	4,825	6,157	5,261	4,284
DCR 2015 With Project	4,791	5,215	7,260	7,194	6,925	7,535	4,201	4,000	5,707	7,078	6,847	5,452
Difference	207	133	-706	-1,262	-1,504	-573	90	78	882	922	1,586	1,168
Percent Difference	4.5\%	2.6\%	-8.9\%	-14.9\%	-17.8\%	-7.1\%	2.2\%	2.0\%	18.3\%	15.0\%	30.1\%	27.3\%

3 Reative difference of the monthy verage

Table SW-18-a Lake Oroville, End of Month Storage												
						of Mont	Storage					
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\mathrm{Full} \mathrm{S} \mathrm{Simulation} \mathrm{Period'}^{\text {a }}$												
DCR 2015 W Witout Project	1,552	1,528	1,649	1,867	2,144	2,394	2,674	2,814	2,707	2,257	1,982	1,677
DCR 2015 W Wif Project	1,631	1,601	1,709	1,923	2,186	2,428	2,707	2,849	2,761	2,336	2,068	1,763
Difference	79	73	60	56	42	34	33	35	54	78	86	86
Percent Difference ${ }^{\text {a }}$	5.1\%	4.8\%	3.6\%	3.0\%	2.0\%	1.4\%	1.2\%	1.2\%	2.0\%	3.5\%	4.3\%	5.1\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 Without Project	2,211	2,161	2,200	2,499	2,816	2,936	3,302	3,507	3,484	3,117	2,899	2,398
DCR 2015 W Wit Project	2,255	2,204	2,233	2,560	2,843	2,945	3,303	3,507	3,485	3,149	2,913	2,441
Difference	44	43	33	60	27	8	2	0	1	32	14	43
Percent Diffeence	2.0\%	2.0\%	1.5\%	2.4\%	1.0\%	0.3\%	0.1\%	0.0\%	0.0\%	1.0\%	0.5\%	1.8\%
Above Normal (14.6\%)												
DCR 2015 Without Project	1,773	1,717	1,780	1,981	2,403	2,888	3,263	3,479	3,375	2,802	2,377	1,921
DCR 2015 With Project	1,821	1,764	1,821	2,037	2,427	2,890	3,269	3,483	3,383	2,834	2,424	1,976
Difference	48	47	41	56	24	2	6	4	8	32	47	55
Percent iffiemee	2.7\%	2.7\%	2.3\%	2.8\%	1.0\%	0.1\%	0.2\%	0.1\%	0.3\%	1.1\%	2.0\%	2.9\%
Below Normal (17.1\%)												
DCR 2015 Without Proet	1,346	1,330	1,526	1,726	2,032	2,321	2,699	2,915	2,796	2,205	1,741	1,468
DCR 2015 WWit Project	1,522	1,500	1,693	1,730	2,043	2,335	2,713	2,939	2,843	2,298	1,905	1,652
Difference	176	170	168	4	11	14	14	24	47	93	164	183
Percent Difference	13.1\%	12.8\%	11.0\%	0.2\%	0.6\%	0.6\%	0.5\%	0.8\%	1.7\%	4.2\%	9.4\%	12.5\%
Dry (22\%)												
DCR 2015 Without Project	1,068	1,079	1,329	1,420	1,639	1,962	2,160	2,204	1,998	1,489	1,270	1,153
DCR 2015 W Wh Project	1,160	1,159	1,378	1,515	1,736	2,061	2,262	2,304	2,149	1,643	1,415	1,258
Difference	93	80	50	95	97	99	102	100	151	154	145	104
Percent Difference	8.7\%	7.4\%	3.7\%	6.7\%	5.9\%	5.0\%	4.7\%	4.5\%	7.6\%	10.4\%	11.4\%	9.0\%
Critical (14.6\%)												
DCR 2015 Wiftout Project	868	870	951	1,217	1,317	1,456	1,468	1,444	1,315	1,064	948	898
DCR 2015 With Project	922	908	977	1,264	1,364	1,503	1,517	1,502	1,393	1,158	1,050	967
Difference	54	38	26	48	47	47	49	58	78	95	102	69
Percent Difference	6.2\%	4.4\%	2.8\%	3.9\%	3.6\%	3.2\%	3.3\%	4.0\%	5.9\%	8.9\%	10.8\%	7.7\%

2 As defined by the Sacamenento Valley $40.30-30$ Index Waier Year Hydrologic Classificition (SWRCB D-1641, 1999)
3 Realive differenceo of the monthly vereage

Table SW-19-a
Lake Oroville, End of Month Elevation

Long-term Average and Average by Water Year Type												
Analysis Period	End of Month Elevation (FEET)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\overline{\text { Full Simulion Perioad' }}$												
DCR 2015 W Witutit Proed	727	725	738	762	789	811	833	843	834	795	769	740
DCR 2015 Wint Proiect	737	734	745	768	793	815	836	846	839	803	779	751
Difference	10	9	7	6	4	3	3	3	5	8	10	11
Percent Difference?	1.4\%	1.3\%	1.0\%	0.8\%	0.5\%	0.4\%	0.4\%	0.4\%	0.6\%	1.0\%	1.3\%	1.4\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 W Witrout Projet	799	795	797	824	851	859	884	898	896	871	856	816
DCR 21015 Witit Priject	804	800	801	830	853	859	884	898	896	873	857	820
Difference	5	5	4	6	2	1	0	0	0	2	1	5
Percent Difference	0.7\%	0.7\%	0.5\%	0.7\%	0.2\%	0.1\%	0.0\%	0.0\%	0.0\%	0.2\%	0.1\%	0.6\%
Above Norma (14.6\%)												
DCR 2015 W Witrout Projet	758	751	757	778	819	856	881	896	889	850	817	774
DCR 2015 Witit Proed	763	756	761	783	820	856	882	896	889	852	822	780
Difference	5	5	5	5	1	0	0	0	1	2	5	6
Percent Difference	0.7\%	0.7\%	0.6\%	0.6\%	0.2\%	0.0\%	0.0\%	0.0\%	0.1\%	0.3\%	0.6\%	0.8\%
Below Normal (17.1\%)												
DCR 2015 W Wrout Project	709	707	728	749	781	808	842	857	849	802	755	724
DCR 2015 With Project	730	727	746	750	782	809	842	859	852	811	773	745
Difference	21	20	18	1	1	1	,	2	3	9	18	21
Percent Difference	3.0\%	2.8\%	2.5\%	0.1\%	0.1\%	0.1\%	0.1\%	0.2\%	0.4\%	1.1\%	2.4\%	3.0\%
Dry 22% \%												
DCR 2015 Wertout Project	674	674	702	717	743	777	796	801	781	726	699	685
DCR 2015 With Projet	686	684	708	728	753	786	805	809	795	743	717	698
Difference	12	10	7	11	10	9	9	9	14	17	18	13
Percent Difiterence	1.8\%	1.5\%	0.9\%	1.6\%	1.4\%	1.2\%	1.1\%	1.1\%	1.8\%	2.4\%	2.6\%	1.9\%
Critical (14.6\%)												
DCR 2015 Without Proedt	641	642	655	691	703	720	721	719	703	671	653	646
DCR 2015 With Priject	650	649	660	697	709	726	727	726	713	684	670	657
Difference	9	7	4	6	6	6	6	7	9	13	16	12
Percent Difference	1.4\%	1.0\%	0.7\%	0.9\%	0.8\%	0.8\%	0.8\%	1.0\%	1.3\%	1.9\%	2.5\%	1.8\%

1 Based on the 82 2year sinulation period
3 Realive difference of the monntly yerage

Table SW-21-a
alito Low Flow C
Feather River at Thermalito Low Flow Channel, Monthly Flow
Long-term Average and Average by Water Year Type

Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\overline{\text { Full Simulition Period }}$												
DCR 2015 W Wrout Project	800	800	800	800	800	800	700	700	700	700	700	773
DCR 2015 W Wit Project	800	800	800	800	800	800	700	700	700	700	700	773
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference ${ }^{\text {a }}$	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 Without Project	800	800	800	800	800	800	700	700	700	700	700	773
DCR 2015 With Project	800	800	800	800	800	800	700	700	700	700	700	773
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Diffeence	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Above Nomal (14.6\%)												
DCR 2015 Without Projet	800	800	800	800	800	800	700	700	700	700	700	773
DCR 2015 With Project	800	800	800	800	800	800	700	700	700	700	700	773
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent ifiference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Below Normal (17.1\%)												
DCR 2015 WWithut Project	800	800	800	800	800	800	700	700	700	700	700	773
DCR 2015 W Whi Project	800	800	800	800	800	800	700	700	700	700	700	773
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Dry (22\%)												
DCR 2015 Without Priject	800	800	800	800	800	800	700	700	700	700	700	773
DCR 2015 W With Project	800	800	800	800	800	800	700	700	700	700	700	773
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Critical (14.6\%)												
DCR 2015 Wiftout Priject	800	800	800	800	800	800	700	700	700	700	700	773
DCR 2015 W Wit Project	800	800	800	800	800	800	700	700	700	700	700	773
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%

$\begin{array}{lllll}0.0 \% & 0.0 \% & 0.0 \% & 0.0 \% & 0.0 \% \\ \text { Index Water Year Hyytrologic Classification SWRCB } & 0.1641,199\end{array}$
3 Realive difference of the monthly vereage

Feather River below Thermalito, Monthly Flow Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulition Period'												
DCR 2015 W Wrtout Project	2,678	2,046	2,758	3,990	4,280	5,211	2,984	3,607	3,657	7,171	4,534	5,448
DCR 2015 Win Priject	2,749	2,073	2,900	4,062	4,526	5,360	2,984	3,553	3,293	6,762	4,400	5,397
Difference	71	27	142	73	246	150	0	-54	-365	-409	-134	-50
Percent Difference?	2.7\%	1.3\%	5.1\%	1.8\%	5.7\%	2.9\%	0.0\%	-1.5\%	-10.0\%	-5.7\%	-3.0\%	-0.9\%
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
DCR 2015 Wiftout Project	3,903	3,152	4,490	9,268	9,094	11,800	6,397	7,501	5,113	6,892	4,254	9,158
DCR 2015 With Priect	3,885	3,166	4,635	9,331	9,688	12,106	6,501	7,525	5,077	6,368	4,541	8,659
Difference	-18	14	146	63	594	306	104	23	-36	-524	288	-500
Percent Difference	-0.5\%	0.4\%	3.2\%	0.7\%	6.5\%	2.6\%	1.6\%	0.3\%	-0.7\%	-7.6\%	6.8\%	-5.5\%
Above Nomal (14.6\%)												
DCR 2015 W Withut Projet	3,671	2,357	2,898	2,181	3,649	4,328	2,022	3,059	3,352	9,102	6,987	7,999
DCR 2015 With Priject	3,789	2,423	2,992	2,534	4,207	4,680	1,955	3,069	3,270	8,713	6,721	7,860
Difference	118	65	95	353	558	352	-67	10	-83	-388	-265	-139
Percent Difference	3.2\%	2.8\%	3.3\%	16.2\%	15.3\%	8.1\%	-3.3\%	0.3\%	-2.5\%	-4.3\%	-3.8\%	-1.7\%
Below Norma (17.1\%)												
DCR 2015 W Witrut Project	2,511	1,686	1,634	1,464	1,830	1,796	1,119	1,249	2,988	9,035	7,311	4,420
DCR 2015 With Project	2,644	1,708	1,710	1,464	1,689	1,759	1,119	1,069	2,579	8,285	6,145	3,989
Difference	133	22	76	0	-141	-37	0	-180	-409	-750	-1,166	-431
Percent Difference	5.3\%	1.3\%	4.7\%	0.0\%	-7.7\%	-2.1\%	0.0\%	-14.4\%	-13.7\%	-8.3\%	-15.9\%	-9.7\%
Dry (22%)												
DCR 2015 Without Prieet	1,411	1,239	1,772	1,395	1,566	1,455	1,259	1,582	3,282	7,305	3,086	1,937
DCR 2015 With Project	1,538	1,292	2,088	1,394	1,566	1,464	1,197	1,596	2,349	7,120	3,221	2,525
Difference	127	53	316	0	0	9	-62	14	-933	-186	135	588
Percent Difference	9.0\%	4.3\%	17.9\%	0.0\%	0.0\%	0.6\%	-4.9\%	0.9\%	-28.4\%	-2.5\%	4.4\%	30.3\%
Critical (14.6\%)												
DCR 2015 Without Project	1,122	968	1,660	1,202	1,409	1,435	1,311	1,508	2,153	3,469	1,620	1,323
DCR 2015 W Wh Project	1,184	955	1,655	1,210	1,409	1,472	1,249	1,266	1,699	3,353	1,507	1,821
Difference	62	-13	-5	8	0	37	-62	-242	-454	-116	-114	498
Percent Difference	5.5\%	-1.4\%	-0.3\%	0.7\%	0.0\%	2.5\%	-4.7\%	-16.0\%	-21.1\%	-3.4\%	-7.0\%	37.7\%

1 Based on the 82 2.year sinulation period
3 Realive difference of the monthy verag

Table SW-23-a Feather River at Mouth, Monthly Flow term Average and Average by Water Year Type												
Analysis Period						Monthly	ow (CFS)					
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Sinulition Period'												
DCR 2015 Without Priject	3,169	2,943	5,097	10,694	11,729	12,312	8,719	7,637	6,212	7,797	5,486	7,192
DCR 2015 With Project	3,241	2,971	5,238	10,766	11,974	12,464	8,720	7,584	5,850	7,392	5,354	7,138
Difference	72	28	141	72	245	152	1	-53	-361	-405	-133	-54
Percent Differences	2.3\%	1.0\%	2.8\%	0.7\%	2.1\%	1.2\%	0.0\%	-0.7\%	-5.8\%	-5.2\%	-2.4\%	-0.8\%
Water Year Types ${ }^{2}$												
Wet (3.7\%)												
DCR 2015 WWithout Project	4,324	3,931	7,705	21,606	23,705	23,138	15,840	14,346	10,242	8,525	5,791	11,261
DCR 2015 With Project	4,309	3,946	7,851	21,668	24,300	23,442	15,943	14,371	10,210	8,007	6,079	10,757
Difference	-15	14	146	62	596	305	103	24	-32	-518	288	-505
Percent Difference	-0.3\%	0.4\%	1.9\%	0.3\%	2.5\%	1.3\%	0.7\%	0.2\%	-0.3\%	-6.1\%	5.0\%	-4.5\%
Above Nomal (14.6\%)												
DCR 2015 Without Project	4,163	3,293	4,190	10,203	11,094	16,633	9,626	7,785	6,420	9,643	7,992	9,944
DCR 2015 With Project	4,282	3,358	4,285	10,555	11,652	16,986	9,559	7,797	6,339	9,250	7,721	9,809
Difference	119	65	95	353	558	352	-66	12	-81	-393	-272	-136
Percent Difference	2.9\%	2.0\%	2.3\%	3.5\%	5.0\%	2.1\%	-0.7\%	0.2\%	-1.3\%	-4.1\%	-3.4\%	-1.4\%
Below Norma (17.1\%)												
DCR 2015 Without Project	3,624	3,237	5,762	5,361	7,108	6,627	5,332	4,744	4,761	9,420	8,206	6,221
DCR 2015 With Project	3,758	3,257	5,834	5,362	6,968	6,591	5,332	4,564	4,355	8,659	7,036	5,789
Differene	134	21	72	1	-140	-36	0	-180	-406	-761	-1,170	-432
Percent Difference	3.7\%	0.6\%	1.2\%	0.0\%	-2.0\%	-0.5\%	0.0\%	-3.8\%	-8.5\%	-8.1\%	-14.3\%	-6.9\%
Dry (22\%)												
DCR 2015 Without Priject	1,775	2,214	3,663	4,248	4,210	4,595	4,134	3,641	3,988	7,267	3,713	3,763
DCR 2015 With Projet	1,900	2,270	3,975	4,250	4,213	4,619	4,073	3,658	3,057	7,087	3,843	4,352
Difference	126	55	312	2	3	24	-60	17	-931	-180	130	588
Percent Difference	7.1\%	2.5\%	8.5\%	0.0\%	0.1\%	0.5\%	-1.5\%	0.5\%	-23.3\%	-2.5\%	3.5\%	15.6\%
Critical (14.6\%)												
DCR 2015 Without Priject	1,233	1,202	1,730	3,435	3,085	2,743	3,216	2,321	2,299	3,275	1,807	1,898
DCR 2015 With Project	1,294	1,192	1,726	3,438	3,072	2,774	3,157	2,082	1,850	3,181	1,717	2,379
Difference	60	-10	-4	3	-13	31	-59	-239	-449	-95	-89	481
Percent Difference	4.9\%	-0.8\%	-0.2\%	0.1\%	-0.4\%	1.1\%	-1.8\%	-10.3\%	-19.5\%	-2.9\%	-4.9\%	25.4\%

3 Realive difference of the monthly vereage

Table SW-24-a
Folsom Lake, End of Month Storage

Long-term Average and Average by Water Year Type												
Analysis Period	End of Month Storage (TAF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
${\mathrm{Full} \mathrm{S} \mathrm{Simulation} \mathrm{Period}{ }^{\text {d }} \text { ' }}^{\text {a }}$												
DCR 2015 Without Priject	456	426	454	472	493	592	718	838	804	653	579	505
DCR 2015 With Projed	479	441	463	478	498	596	722	841	804	684	602	532
Difference	23	15	9	6	6	4	4	3	0	31	23	27
Percent Differences	5.0\%	3.5\%	2.0\%	1.2\%	1.2\%	0.6\%	0.5\%	0.4\%	0.0\%	4.7\%	3.9\%	5.3\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 Without Project	561	482	501	525	515	631	787	959	956	863	758	620
DCR 2015 With Project	566	484	502	525	515	631	787	959	956	867	756	635
Difference	4	3	1	0	0	0	0	0	0	4	-2	15
Percent Difference	0.8\%	0.6\%	0.3\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.5\%	-0.3\%	2.4\%
Above Normal (14.6\%)												
DCR 2015 Without Project	483	444	479	507	532	642	787	955	923	718	643	532
DCR 2015 With Project	529	477	498	507	531	642	787	955	929	751	677	586
Difference	46	33	19	0	0	0	0	0	6	33	34	54
Percent Difference	9.6\%	7.4\%	3.9\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.6\%	4.6\%	5.3\%	10.2\%
Below Normal (17.1\%)												
DCR 2015 WWithut Project	519	494	502	492	539	625	780	913	889	661	611	577
DCR 2015 With Project	547	502	506	495	542	628	779	910	871	707	637	599
Differene	28	8	4	3	3	3	-1	-3	-18	47	26	22
Percent Difference	5.4\%	1.7\%	0.8\%	0.6\%	0.6\%	0.5\%	-0.1\%	-0.3\%	-2.0\%	7.1\%	4.2\%	3.8\%
Dry (22\%)												
DCR 2015 Without Priject	380	395	423	440	483	590	693	765	686	517	450	426
DCR 2015 Wit Project	417	426	443	451	495	595	703	775	689	567	491	465
Difference	37	31	19	12	12	5	9	10	3	50	41	39
Percent Difference	9.6\%	7.9\%	4.6\%	2.7\%	2.5\%	0.9\%	1.3\%	1.3\%	0.4\%	9.7\%	9.2\%	9.1\%
Critical (14.6\%)												
DCR 2015 Wiftout Priject	241	253	315	348	367	425	465	480	431	327	284	265
DCR 2015 With Project	253	260	321	367	385	440	479	489	442	366	316	278
Difference	12	7	6	19	18	15	14	9	11	39	32	13
Peacent Difference	5.0\%	2.8\%	2.0\%	5.4\%	4.8\%	3.4\%	3.0\%	1.9\%	2.6\%	11.8\%	11.3\%	4.7\%

Tasedornimez-versmualon pentiod
3 Realive difference of the montly y veras

Table SW-25-a Folsom Lake, End of Month Elevation												
						Month	evation					
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period'												
DCR 2015 Without Proedt	407	404	408	411	414	426	440	451	448	431	422	414
DCR 2015 W Wh Project	411	406	410	412	414	427	440	452	448	435	426	418
Difference	3	2	1	1	1	0	0	0	0	4	3	4
Percent Difference?	0.8\%	0.6\%	0.3\%	0.2\%	0.2\%	0.1\%	0.1\%	0.1\%	0.0\%	0.9\%	0.8\%	0.9\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 Without Priject	422	413	415	418	417	431	448	464	464	45	445	429
DCR 2015 With Project	423	413	415	418	417	431	448	464	464	455	444	431
Difference	1	0	0	0	0	0	0	0	0	0	0	2
Percent Difference	0.1\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	0.0\%	0.4\%
Above Nomal (14.6\%)												
DCR 2015 Without Projet	413	408	412	416	419	433	448	464	461	440	432	419
DCR 2015 With Project	419	412	415	416	419	433	448	464	461	444	436	426
Difference	6	4	2	0	0	0	0	0	1	4	4	7
Percent Difference	1.4\%	1.0\%	0.6\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	0.8\%	0.9\%	1.6\%
Below Normal (17.7\%)												
DCR 2015 Wiftout Priject	417	414	415	414	420	430	447	460	457	434	428	424
DCR 2015 With Project	421	415	415	414	420	431	447	459	456	439	431	427
Difference	4	1	1	0	0	0	0	0	-2	5	3	3
Percent Difference	0.9\%	0.2\%	0.1\%	0.1\%	0.1\%	0.1\%	0.0\%	-0.1\%	-0.4\%	1.1\%	0.7\%	0.6\%
Dry (22\%)												
DCR 2015 Wiftout Project	399	401	405	407	413	426	437	445	436	416	408	405
DCR 2015 W Wh Project	404	405	407	408	414	427	438	446	437	423	413	410
Difference	5	4	3	2	1	1	1	1	0	6	6	5
Percent Difference	1.3\%	1.0\%	0.6\%	0.4\%	0.4\%	0.2\%	0.2\%	0.2\%	0.1\%	1.5\%	1.4\%	1.3\%
Critical (14.6\%)												
DCR 2015 Wiftout Proeat	372	375	388	393	396	404	409	411	405	388	380	377
DCR 2015 With Project	376	378	389	396	398	406	411	412	406	395	387	381
Difference	4	3	1	3	3	2	1	1	1	7	7	4
Percent Difference	1.0\%	0.7\%	0.3\%	0.7\%	0.7\%	0.4\%	0.3\%	0.1\%	0.2\%	1.7\%	1.9\%	1.0\%

2 As defined by the Sacamenento Valley $40.30-30$ Index Waier Year Hydrologic Classificition (SWRCB D-1641, 1999)
3 Realive differenceo of the monthly vereage

Table SW-26-a Folsom Lake, End of Month Area												
	End of Month Area (ACRE)											
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period'												
DCR 2015 Without Project	7,222	6,970	7,269	7,461	7,667	8,602	9,499	10,234	9,982	8,846	8,286	7,698
DCR 2015 W Wh Project	7,464	7,127	7,361	7,521	7,724	8,637	9,530	10,252	9,984	9,118	8,518	7,958
Difference	242	157	92	60	57	35	31	18	1	271	233	260
Percent Difference ${ }^{\text {a }}$	3.3\%	2.2\%	1.3\%	0.8\%	0.7\%	0.4\%	0.3\%	0.2\%	0.0\%	3.1\%	2.8\%	3.4\%
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
DCR 2015 Without Project	8,306	7,594	7,772	7,994	7,902	8,977	10,057	11,075	11,058	10,483	9,849	8,823
DCR 2015 WWith Project	8,346	7,619	7,782	7,992	7,902	8,977	10,057	11,075	11,057	10,508	9,835	8,947
Difference	40	25	10	-1	0	0	0	0	-1	24	-14	124
Percent Difference	0.5\%	0.3\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.2\%	-0.1\%	1.4\%
Above Nomal (14.6\%)												
DCR 2015 Without Projet	7,591	7,229	7,559	7,830	8,058	9,072	10,053	11,052	10,864	9,523	8,983	8,060
DCR 2015 W Wh Project	8,032	7,546	7,735	7,832	8,056	9,072	10,053	11,052	10,898	9,768	9,270	8,547
Difference	441	317	176	2	-2	0	0	0	34	244	287	487
Percent Difference	5.8\%	4.4\%	2.3\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.3\%	2.6\%	3.2\%	6.0\%
Below Norma (17.1\%)												
DCR 2015 W Witrut Priject	7,908	7,687	7,740	7,660	8,122	8,916	10,011	10,801	10,659	9,091	8,711	8,436
DCR 2015 Wit Project	8,171	7,764	7,778	7,686	8,154	8,945	10,006	10,784	10,544	9,421	8,920	8,626
Difference	263	76	38	26	31	29	-5	-17	-114	331	208	190
Percent Difference	3.3\%	1.0\%	0.5\%	0.3\%	0.4\%	0.3\%	0.0\%	-0.2\%	-1.1\%	3.6\%	2.4\%	2.3\%
Dry (22%)												
DCR 2015 Without Priject	6,554	6,723	6,999	7,154	7.599	8,594	9,361	9,860	9,295	7,852	7,227	7,027
DCR 2015 W With Project	6,947	7,034	7,187	7,270	7,709	8,643	9,436	9,922	9,318	8,306	7,639	7,403
Difference	393	312	188	116	110	49	75	61	24	454	412	375
Percent Difference	6.0\%	4.6\%	2.7\%	1.6\%	1.5\%	0.6\%	0.8\%	0.6\%	0.3\%	5.8\%	5.7\%	5.3\%
Critical (14.6\%)												
DCR 2015 Wiftrut Project	4,705	4,896	5,747	6,166	6,338	6,968	7,350	7,489	7,012	5,830	5,294	5,043
DCR 2015 With Project	4,933	5,039	5,849	6,371	6,526	7,098	7,452	7,541	7,088	6,319	5,765	5,279
Difference	228	143	102	206	188	130	102	51	77	489	471	236
Percent Difference	4.8\%	2.9\%	1.8\%	3.3\%	3.0\%	1.9\%	1.4\%	0.7\%	1.1\%	8.4\%	8.9\%	4.7\%

Esed of the 82 2year simulution period
3 Realive difference of the monthly verage

Table SW-27-a
American River below Nimbus Reservoir, Monthly Flow
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulation Period'												
DCR 2015 Without Project	1,659	2,670	3,317	4,509	5,207	4,040	3,398	3,365	3,192	3,578	2,143	2,244
DCR 2015 Win Project	1,712	2,799	3,415	4,560	5,207	4,071	3,396	3,378	3,243	3,077	2,275	2,166
Difference	53	129	98	52	0	31	-2	12	51	-501	132	-78
Percent Difference ${ }^{\text {a }}$	3.2\%	4.8\%	3.0\%	1.1\%	0.0\%	0.8\%	-0.1\%	0.4\%	1.6\%	-14.0\%	6.2\%	${ }^{-3.5 \%}$
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
DCR 2015 W Witout Project	1,962	3,879	3,721	9,092	9,612	6,886	5,451	5,703	5,149	3,769	3,069	3,594
DCR 2015 With Project	2,136	3,906	3,745	9,129	9,609	6,886	5,450	5,703	5,153	3,698	3,169	3,307
Difference	174	27	24	36	-3	0	0	0	4	-72	100	-287
Percent Difference	8.9\%	0.7\%	0.6\%	0.4\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	-1.9\%	3.3\%	-8.0\%
Above Nomal (14.6\%)												
DCR 2015 Without Project	1,507	2,647	2,875	4,709	6,173	5,795	3,559	3,516	2,973	4,415	2,277	2,910
DCR 2015 With Project	1,579	2,871	3,112	4,851	6,179	5,791	3,559	3,516	2,877	3,967	2,255	2,575
Differene	72	224	237	142	7	-4	0	0	-96	-448	-22	-335
Percent Difference	4.8\%	8.5\%	8.2\%	3.0\%	0.1\%	-0.1\%	0.0\%	0.0\%	-3.2\%	-10.1\%	-1.0\%	-11.5\%
Below Norma (17.1\%)												
DCR 2015 W Wtrout Project	2,051	3,173	4,087	2,337	3,956	2,584	3,206	2,962	2,415	4,692	1,771	1,582
DCR 2015 With Project	1,945	3,507	4,157	2,434	3,943	2,586	3,272	2,993	2,665	3,643	2,112	1,638
Difference	-105	334	70	96	-12	3	66	31	250	-1,049	340	56
Percent Difference	-5.1\%	10.5\%	1.7\%	4.1\%	-0.3\%	0.1\%	2.1\%	1.0\%	10.3\%	-22.3\%	19.2\%	3.6\%
Dry (22%)												
DCR 2015 Wiftout Project	1,475	1,759	4,061	1,621	1,973	1,966	2,031	1,687	2,257	3,035	1,746	1,328
DCR 2015 W Wh Project	1,512	1,858	4,248	1,610	1,967	2,073	1,962	1,670	2,373	2,262	1,870	1,360
Difference	37	99	187	-10	-5	107	-69	-18	116	-773	124	31
Percent Difference	2.5\%	5.6\%	4.6\%	-0.6\%	-0.3\%	5.4\%	-3.4\%	-1.1\%	5.1\%	-25.5\%	7.1\%	2.4\%
Critical (14.6\%)												
DCR 2015 W Witout Project	973	852	870	1,242	1,010	930	1,067	1,138	1,481	1,841	1,030	798
DCR 2015 With Project	953	916	888	1,278	1,030	982	1,080	1,211	1,451	1,402	1,155	1,110
Difference	-20	63	18	36	21	52	13	74	-30	-440	124	312
Percent Difference	-2.1\%	7.4\%	2.1\%	2.9\%	2.1\%	5.6\%	1.2\%	6.5\%	-2.0\%	-23.9\%	12.1\%	39.1\%

$\frac{1 \text { Based on the } 82 \text {-vear sinulation pericicd }}{}$
3 Realive difference of the monthy veras

Table SW-28-a
rat Watt Avenue
American River at Watt Avenue, Monthly Flow

American River at Watt Avenue, Monthly Flow Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\mathrm{Full} \mathrm{S} \mathrm{Simulation} \mathrm{Period'}^{\text {d }}$												
DCR 2015 Wiftout Project	1,593	2,606	3,247	4,433	5,114	3,950	3,315	3,290	3,114	3,503	2,064	2,176
DCR 2015 With Projed	1,646	2,735	3,343	4,484	5,114	3,981	3,313	3,302	3,164	3,001	2,200	2,097
Difference	53	129	97	51	-1	31	-2	12	50	-502	136	-80
Percent Difference	3.3\%	4.9\%	3.0\%	1.1\%	0.0\%	0.8\%	-0.1\%	0.4\%	1.6\%	-14.3\%	6.6\%	-3.7%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 Without Proedt	1,883	3,812	3,640	8,994	9,475	6,757	5,340	5,608	5,048	3,677	2,989	3,517
DCR 2015 With Prijet	2,059	3,837	3,663	9,029	9,471	6,757	5,339	5,608	5,052	3,605	3,089	3,229
Difference	177	25	24	35	-3	0	0	0	4	-72	101	-288
Percent Difference	9.4\%	0.7\%	0.7\%	0.4\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	-2.0\%	3.4\%	-8.2%
Above Normal (14.6\%)												
DCR 2015 Without Project	1,436	2,584	2,805	4,640	6,081	5,700	3,466	3,442	2,894	4,341	2,191	2,841
DCR 2015 With Prijet	1,511	2,808	3,040	4,781	6,087	5,696	3,466	3,442	2,798	3,895	2,17	2,506
Difference	75	223	235	141	6	-4	0	0	-96	-447	-18	-335
Percent Difference	5.2\%	8.6\%	8.4\%	3.0\%	0.1\%	-0.1\%	0.0\%	0.0\%	-3.3\%	-10.3\%	-0.8\%	-11.8\%
Below Normal (17.1\%)												
DCR 2015 WWiftutit Prjeet	1,990	3,105	4,011	2,268	3,884	2,506	3,137	2,890	2,340	4,623	1,683	1,517
DCR 2015 With Prijet	1,884	3,440	4,078	2,363	3,871	2,509	3,203	2,919	2,589	3,573	2,032	1,570
Difference	-106	335	67	95	-13	3	66	30	249	-1,051	349	53
Percent Difference	-5.3\%	10.8\%	1.7\%	4.2\%	-0.3\%	0.1\%	2.1\%	1.0\%	10.6\%	-22.7\%	20.8\%	3.5\%
Dry (22\%)												
DCR 2015 Wiftout Priject	1,417	1,697	3,999	1,558	1,906	1,902	1,965	1,623	2,193	2,967	1,672	1,264
DCR 2015 With Project	1,453	1,795	4,185	1,549	1,901	2,009	1,895	1,605	2,309	2,193	1,802	1,294
Difference	36	98	186	-10	-5	107	-70	-18	116	-774	131	29
Percent Difference	2.6\%	5.8\%	4.7\%	-0.6\%	-0.3\%	5.6\%	-3.6\%	-1.1\%	5.3\%	-26.1\%	7.8\%	2.3\%
Critical (14.6\%)												
DCR 2015 Without Proeat	922	797	818	1,182	947	877	1,012	1,084	1,425	1,783	969	744
DCR 2015 With Project	897	860	835	1,217	968	928	1,024	1,156	1,392	1,343	1,096	1,052
Difference	-25	64	17	35	21	51	12	72	-32	-440	127	308
Differen	2.7\%	8.0\%	. 1%	2.9\%	2.2\%	5.9\%	1.1\%	6.7\%	-2.3\%	24.7\%	13.1\%	41.49

1 Based on the 82 years simulation period
3 Reative difference of the monthy verage

American River at H Street, Monthly Flow Long-term Average and Average by Water Yea												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\mathrm{Full} \mathrm{S} \mathrm{Simulation} \mathrm{Period'}^{\text {d }}$												
DCR 2015 Wiftout Priject	1,479	2,504	3,177	4,352	5,018	3,847	3,116	3,026	2,811	2,991	1,767	1,944
DCR 2015 With Prijet	1,530	2,631	3,273	4,402	5,017	3,877	3,115	3,038	2,843	2,529	1,899	1,870
Difference	51	127	96	50	-2	31	-1	12	32	-462	132	-75
Percent Difference?	3.4\%	5.1\%	3.0\%	1.2\%	0.0\%	0.8\%	0.0\%	0.4\%	1.1\%	-15.5\%	7.4\%	-3.8\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 Without Project	1,747	3,678	3,557	8,910	9,352	6,643	5,114	5,242	4,606	3,126	2,598	3,154
DCR 2015 With Project	1,908	3,700	3,581	8,945	9,349	6,643	5,114	5,242	4,609	3,038	2,674	2,884
Difference	161	22	24	35	-3	0	0	0	4	-88	76	-270
Percent Difference	9.2\%	0.6\%	0.7\%	0.4\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	-2.8\%	2.9\%	-8.6\%
Above Normal (14.6\%)												
DCR 2015 Without Project	1,342	2,465	2,740	4,581	6,004	5,585	3,218	3,179	2,621	3,781	1,881	2,553
DCR 2015 With Projet	1,417	2,688	2,970	4,722	6,010	5,580	3,218	3,179	2,525	3,335	1,890	2,202
Difference	75	223	229	141	6	-4	0	0	-96	-447	9	-350
Percent Difference	5.6\%	9.0\%	8.4\%	3.1\%	0.1\%	-0.1\%	0.0\%	0.0\%	-3.7\%	-11.8\%	0.5\%	-13.7\%
Below Normal (17.1\%)												
DCR 2015 Wiftout Priject	1,866	3,013	3,923	2,183	3,784	2,398	2,910	2,570	2,049	4,066	1,435	1,368
DCR 2015 With Projed	1,776	3,342	3,990	2,275	3,770	2,401	2,976	2,600	2,270	3,015	1,740	1,421
Difference	-91	330	67	91	-13	3	66	30	221	-1,051	305	53
Percent Difference	-4.9\%	10.9\%	1.7\%	4.2\%	-0.3\%	0.1\%	2.3\%	1.2\%	10.8\%	-25.8\%	21.2\%	3.9\%
Dry (22\%)												
DCR 2015 WWithout Project	1,312	1,625	3,932	1,474	1,827	1,818	1,806	1,457	1,973	2,436	1,411	1,120
DCR 2015 Wit Project	1,349	1,723	4,118	1,464	1,818	1,925	1,743	1,440	2,027	1,785	1,557	1,162
Difference	36	98	186	-10	-9	107	-63	-18	54	-652	146	42
Percent Difference	2.8\%	6.0\%	4.7\%	-0.7\%	-0.5\%	5.9\%	-3.5%	-1.2\%	2.7\%	-26.7\%	10.3\%	3.7\%
Critical (14.6\%)												
DCR 2015 Without Proeat	835	725	791	1,093	869	782	887	960	1,258	1,487	776	623
DCR 2015 With Priject	810	789	808	1,128	890	834	898	1,032	1,225	1,169	928	924
Difference	-25	64	17	35	21	51	12	72	-32	-318	152	301
Percent Difference	-3.0\%	8.8\%	2.1\%	3.2\%	2.4\%	6.6\%	1.3\%	7.5\%	-2.6\%	-21.4\%	19.6\%	48.2\%

$\frac{1}{1 \text { Based on onte } 82 \text { 2.eear simulation period }}$
3 Realive dffiference of the montly average

Feather River at Shanghai Bend, Monthly Flow Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\mathrm{Full} \mathrm{S} \mathrm{Simulation} \mathrm{Period'}^{\text {d }}$												
DCR 2015 Wiftout Priject	3,244	3,093	4,996	7,358	7,741	8,578	5,565	6,362	5,785	8,179	5,469	6,012
DCR 2015 With Prijet	3,315	3,121	5,135	7,430	7,985	8,730	5,566	6,308	5,421	7,770	5,338	5,959
Difference	71	28	139	72	244	152	0	-54	-365	-409	-131	-53
Percent Difference?	2.2\%	0.9\%	2.8\%	1.0\%	3.2\%	1.8\%	0.0\%	-0.9\%	-6.3\%	-5.0\%	-2.4\%	-0.9\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 Without Project	4,478	4,218	6,809	15,748	15,159	17,674	10,606	12,665	9,189	8,702	5,674	9,873
DCR 2015 With Project	4,460	4,232	6,955	15,811	15,753	17,980	10,710	12,688	9,154	8,178	5,961	9,374
Difference	-18	14	146	63	594	306	104	23	-36	-524	288	-500
Percent Difference	-0.4\%	0.3\%	2.1\%	0.4\%	3.9\%	1.7\%	1.0\%	0.2\%	-0.4\%	-6.0\%	5.1\%	-5.1\%
Above Nomal (14.6\%)												
DCR 2015 Without Project	4,217	3,437	4,737	5,993	7,723	8,940	5,225	6,231	5,881	10,176	8,011	8,634
DCR 2015 With Project	4,335	3,502	4,831	6,346	8,281	9,292	5,158	6,240	5,798	9,788	7,746	8,495
Difference	118	65	95	353	558	352	-67	10	-83	-388	-265	-139
Percent Difference	2.8\%	1.9\%	2.0\%	5.9\%	7.2\%	3.9\%	-1.3\%	0.2\%	-1.4\%	-3.8\%	-3.3\%	-1.6\%
Below Normal (17.1\%)												
DCR 2015 Wiftout Priject	3,305	3,098	4,341	3,514	4,457	3,628	3,451	3,227	4,479	9,803	8,367	4,991
DCR 2015 With Projed	3,438	3,120	4,413	3,514	4,316	3,591	3,451	3,046	4,070	9,053	7,202	4,560
Difference	133	22	72	0	-141	-37	0	-180	-409	-750	-1,166	-431
Percent Difference	4.0\%	0.7\%	1.6\%	0.0\%	-3.2\%	-1.0\%	0.0\%	-5.6\%	-9.1\%	-7.7\%	-13.9\%	-8.6%
Dry (22\%)												
DCR 2015 Wiftout Project	1,906	2,237	4,689	2,564	3,152	3,167	2,582	2,619	4,011	7,794	3,631	2,401
DCR 2015 Wit Project	2,033	2,290	4,997	2,566	3,153	3,190	2,520	2,633	3,078	7,608	3,766	2,989
Difference	127	53	308	2	2	23	-62	14	-933	-186	134	588
Percent Difference	6.7\%	2.4\%	6.6\%	0.1\%	0.0\%	0.7\%	-2.4\%	0.5\%	-23.3\%	-2.4%	3.7\%	24.5\%
Critical (14.6\%)												
DCR 2015 Without Proeat	1,535	1,587	2,549	2,222	2,402	2,402	1,925	2,112	2,500	3,732	1,856	1,632
DCR 2015 With Priject	1,597	1,577	2,544	2,223	2,387	2,431	1,863	1,870	2,045	3,615	1,764	2,111
Difference	62	-10	-5	1	-15	29	-62	-242	-454	-117	-93	480
Percent Difference	4.0\%	-0.6\%	-0.2\%	0.0\%	-0.6\%	1.2\%	-3.2\%	-11.5\%	-18.2\%	-3.1\%	-5.0\%	29.4\%

aron the 82 -year simulation perif
3 Reative difference of the monthy verage

American River at Mouth, Monthly Flow -term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Ful Simulion Period'												
DCR 2015 W Witout Project	1,479	2,504	3,177	4,352	5,018	3,847	3,116	3,026	2,811	2,991	1,767	1,944
DCR 2015 Witit Project	1,530	2,631	3,273	4,402	5,017	3,877	3,115	3,038	2,843	2,529	1,899	1,870
Difference	51	127	96	50	-2	31	-1	12	32	-462	132	-75
Percent Difference ${ }^{\text {a }}$	3.4\%	5.1\%	3.0\%	1.2\%	0.0\%	0.8\%	0.0\%	0.4\%	1.1\%	-15.5\%	7.4\%	-3.8\%
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
DCR 2015 Without Project	1,747	3,678	3,557	8,910	9,352	6,643	5,114	5,242	4,606	3,126	2,598	3,154
DCR 2015 With Project	1,908	3,700	3,581	8,945	9,349	6,643	5,114	5,242	4,609	3,038	2,674	2,884
Difference	161	22	24	35	-3	0	0	0	4	-88	76	-270
Percent Difference	9.2\%	0.6\%	0.7\%	0.4\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	-2.8\%	2.9\%	-8.6\%
Above Nomal (14.6\%)												
DCR 2015 Without Projet	1,342	2,465	2,740	4,581	6,004	5,585	3,218	3,179	2,621	3,781	1,881	2,553
DCR 2015 With Project	1,417	2,688	2,970	4,722	6,010	5,580	3,218	3,179	2,525	3,335	1,890	2,202
Difference	75	223	229	141	6	-4	0	0	-96	-447	9	-350
Percent Difference	5.6\%	9.0\%	8.4\%	3.1\%	0.1\%	-0.1\%	0.0\%	0.0\%	-3.7\%	-11.8\%	0.5\%	-13.7\%
Below Norma (17.1\%)												
DCR 2015 W Witout Project	1,866	3,013	3,923	2,183	3,784	2,398	2,910	2,570	2,049	4,066	1,435	1,368
DCR 2015 Wint Priject	1,776	3,342	3,990	2,275	3,770	2,401	2,976	2,600	2,270	3,015	1,740	1,421
Difference	-91	330	67	91	-13	3	66	30	221	-1,051	305	53
Percent Difference	-4.9\%	10.9\%	1.7\%	4.2\%	-0.3\%	0.1\%	2.3\%	1.2\%	10.8\%	-25.8\%	21.2\%	3.9\%
Dry (22%)												
DCR 2015 Without Project	1,312	1,625	3,932	1,474	1,827	1,818	1,806	1,457	1,973	2,436	1,411	1,120
DCR 2015 W Wh Project	1,349	1,723	4,118	1,464	1,818	1,925	1,743	1,440	2,027	1,785	1,557	1,162
Difference	36	98	186	-10	-9	107	-63	-18	54	-652	146	42
Percent Difference	2.8\%	6.0\%	4.7\%	-0.7\%	-0.5\%	5.9\%	-3.5\%	-1.2\%	2.7\%	-26.7\%	10.3\%	3.7\%
Cifital (14.6\%)												
DCR 2015 Without Project	835	725	791	1,093	869	782	887	960	1,258	1,487	776	623
DCR 2015 With Project	810	789	808	1,128	890	834	898	1,032	1,225	1,169	928	924
Difference	-25	64	17	35	21	51	12	72	-32	-318	152	301
Percent Difference	-3.0\%	8.8\%	2.1\%	3.2\%	2.4\%	6.6\%	1.3\%	7.5\%	-2.6\%	-21.4%	19.6\%	48.2\%

$\frac{P}{1 \text { Based on onte } 82 \text { 2.eear simulation period }}$
3 Realive difference of the monthly verage

Table SW-53-a

1 Based on the 82 -year sinulation period
3 Realive difference of the montily veras

2As defined by the Sacaranent Valley $40.30-30$ Io ndex Waier Year Hydrologic Classificaion (SWRCB $D-1641$, 1999)
3 Realive difference of the monthly verage

Table SW-56-a Sacramento River at Wilkins Slough, Monthly Stage Long-term Average and Average by Water Year Type												
	Monthly Stage (FT)											
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulition Period'												
DCR 2015 Wiftout Priject	29	32	34	37	38	37	32	30	29	30	29	31
DCR 2015 With Project	30	33	34	36	37	36	31	30	29	31	29	32
Difference	0	0	0	-1	-1	-1	0	0	1	1	1	1
Percent Difference	1.6\%	0.9\%	-1.5\%	-2.6\%	-2.5\%	-3.6%	-0.8\%	-0.1\%	2.0\%	4.3\%	2.4\%	3.5\%
Water Year Types ${ }^{2}$												
Wet(31.7\%)												
DCR 2015 Without Project	30	35	35	42	42	41	36	34	30	30	29	36
DCR 2015 With Project	30	36	34	41	42	40	36	33	30	30	29	37
Difference	0	0	0	0	0	-1	0	0	0	1	-1	0
Percent Difference	-0.4\%	0.7\%	-1.2\%	-1.2%	-0.8\%	-2.0%	-0.5\%	-0.5\%	1.6\%	2.3\%	-1.7\%	1.2\%
Above Nomal (14.6\%)												
DCR 2015 Without Project	30	35	35	39	42	40	33	30	29	30	28	32
DCR 2015 With Project	30	34	34	38	41	38	33	30	29	32	29	32
Difference	0	0	-1	-1	-1	-2	-1	0	0	1	0	1
Percent Difference	1.3\%	-0.9\%	-3.5\%	-2.6\%	-2.5\%	-4.6%	-1.8\%	0.0\%	0.6\%	4.0\%	0.7\%	2.2\%
Below Norma (17.1\%)												
DCR 2015 WWithut Project	29	31	36	35	37	35	30	29	28	29	28	28
DCR 2015 With Project	31	32	35	34	36	33	30	28	29	31	29	30
Difference	1	1	0	-2	-1	-2	-1	0	0	2	1	1
Percent Difference	4.3\%	2.0\%	-1.1\%	-4.6\%	-2.7\%	-6.7\%	-1.7\%	-0.9\%	1.0\%	7.2\%	4.3\%	4.5\%
Dry $\left(22^{2}\right)$												
DCR 2015 Without Priject	28	30	35	32	35	34	28	27	28	30	28	28
DCR 2015 With Project	29	30	34	31	33	33	28	28	29	32	30	30
Difference	1	1	0	-1	-1	-2	0	0	1	2	2	2
Percent Difference	2.9\%	1.9\%	-0.2\%	-2.5\%	-4.3\%	-4.6\%	-0.8\%	0.8\%	3.2\%	5.6\%	5.7\%	6.9\%
Cinitical (14.6\%)												
DCR 2015 Without Proeat	27	28	31	32	32	31	27	27	28	29	28	27
DCR 2015 With Project	28	28	31	30	30	31	27	27	29	30	30	29
Difference	0	0	-1	-1	-2	0	0	0	1	1	2	1
Percent Difference	0.9\%	0.6\%	-2.2\%	-4.0\%	-4.8\%	-1.5\%	0.4\%	0.4\%	3.9\%	3.7\%	6.6\%	5.2\%

3 Realive difference of the monthly verage

Table SW-57-a Feather River near Gridley, Monthly Stage Long-term Average and Average by Water Year Type												
Analysis Period						Monthly	tage (FT)					
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
$F_{\text {Full Simulition Period' }}$ '												
DCR 2015 W Witout Project	74	74	74	75	75	75	74	74	75	77	75	76
DCR 2015 With Projed	74	74	74	75	75	75	74	74	75	76	75	76
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Differences	0.1\%	0.0\%	0.1\%	0.0\%	0.1\%	0.1\%	0.0\%	-0.1\%	-0.3\%	-0.2\%	0.0\%	0.1\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
DCR 2015 Without Project	75	75	75	77	77	78	76	76	76	76	75	78
DCR 2015 With Project	75	75	75	77	77	78	76	76	76	76	75	77
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.1\%	0.0\%	0.3\%	0.2\%	0.1\%	0.0\%	0.0\%	-0.3\%	0.3\%	-0.3\%
Above Normal (14.6\%)												
DCR 2015 Without Project	75	74	74	74	75	75	74	74	75	77	77	77
DCR 2015 With Project	75	74	75	74	75	75	74	74	75	77	76	77
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.1\%	0.1\%	0.1\%	0.2\%	0.3\%	0.2\%	-0.1\%	0.0\%	0.1\%	-0.2\%	-0.2\%	-0.1\%
Below Normal (17.1\%)												
DCR 2015 WWithut Project	74	74	74	73	74	74	73	73	74	77	77	75
DCR 2015 With Project	74	74	74	73	74	74	73	73	74	77	76	75
Differene	0	0	0	0	0	0	0	0	0	0	-1	0
Percent Difference	0.1\%	0.0\%	0.1\%	0.0\%	-0.1\%	0.0\%	0.0\%	-0.2\%	-0.2\%	-0.4\%	-0.7\%	-0.2\%
Dry (22\%)												
DCR 2015 Wiftout Project	73	73	74	73	74	73	73	74	75	77	75	74
DCR 2015 Wit Project	74	73	74	73	74	73	73	74	74	77	75	74
Difference	0	0	0	0	0	0	0	0	-1	0	0	0
Percent Difference	0.1\%	0.1\%	0.2\%	0.0\%	0.0\%	0.0\%	-0.1\%	0.0\%	-0.8\%	-0.1\%	0.1\%	0.6\%
Critical (14.6\%)												
DCR 2015 Wiftout Priject	73	73	74	73	73	73	73	73	74	75	74	73
DCR 2015 With Priject	73	73	74	73	73	73	73	73	74	75	73	74
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.1\%	-0.3\%	-0.5\%	-0.1\%	-0.2\%	0.6\%
1 Based on the 82 -jeara simulition period												

Trinity and Sacramento River Basin Operations Exceedance Probability Charts and Tables

Figure SW-01-b
Trinity Lake, End of Month Storage

		Octobe		
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	$0 C R 2015$ Without Proiet	DCR 2015 With Project	Abss	Relative
Probability $(\%)$	End of Month Storage (TAF)	End of Month Storage (TAF)	(ifter)	Difference (\%)
0.0\%	1850	${ }_{1}^{1850}$	0	0.0\%
	${ }_{1,850}$	1850	0	0.0\%
2.5\%	1,850	1,850	0	
3.7\%	1,850	1,850	0	
4.9\%	1,850	1,850	0	
6.2\%	1,850	1,850	0	0.0\%
7.4\%	1,850	1,850	0	
8.6\%	1,850	1,850	0	
9.9\%	1,850	1,850	0	
11.1\%	1,850	1,850	0	0.0\%
12.3\%	1,850	1,850	0	
13.6\%	1,850	1,850	0	0.0\%
14.8\%	1,850	1,850	0	0.0\%
16.0\%	${ }^{1,850}$	${ }^{1,850}$	0	0.0\%
17.3\%	${ }^{1,8550}$	${ }^{1,831}$	-19	-1.0\%
18.5\%	${ }^{1,850}$	1,809	41	-2.2\%
19.8\%	1,850	${ }^{1,804}$	-46	-2.5\%
22.0\%	${ }_{1,822}^{1,82}$	${ }_{1}^{1.801}$	-21	-1.2\%
${ }^{22.52 \%}$	1.810	1,781	${ }_{-28}$	-1.6\%
224.7\%	${ }^{1,755}$	${ }_{1}^{1,724}$	-57 -53	-3.3\%
25.9\%	1,732	1,684	-48	
27.2\%	1,714	${ }^{1,656}$	-59	
22.6\%	${ }_{1}^{1,703}$	${ }_{1}^{1.643}$	-50	-3.5\%
30.9\%	1,642	1,599	43	-2.6
32.1\%	1,619	1,588		-1.9\%
33.3\%	1.605	1.572	-32	-2.0\%
34.6\%	1,603	1,567	-36	-2.3\%
35.8\%	1,594	1,564	-30	-1.9\%
37.0\%	${ }^{1,547}$	${ }^{1,540}$	-7	-0.5\%
38.3\%	+1,545	${ }_{1}^{1,527}$	-18	-1.2\%
39.5\%	${ }^{1,457}$	${ }^{1,522}$	65	4.5\%
40.7\%	1,446	${ }_{1}^{1,511}$	${ }^{65}$	4.5\%
42.0\%	${ }_{1}^{1,446}$	${ }_{1}^{1,445}$	-2	-0.1\%
43.2\%	1,423 1400	${ }^{1,415}$		-0.5\%
44.4\%\%	${ }_{1}^{1,400}$	1,400	0	
46.9\%		+1,394	12	-0.8\%
48.1\%	${ }_{1}^{1,368}$	${ }^{1,368}$	-1	0.0\%
49.4\%	${ }_{1}^{1,3681}$	1,364	4	-0.3\%
551.9\%	+1,353	, ${ }_{1}^{1,363}$	9	0.7\%
53.1\%	1,342	1.351	9	
54.3\%	${ }^{1,322}$	${ }^{1,346}$	24	1.8\%
55.8.8\%	1,319	${ }^{1,306}$	-13	-1.0\%
55.0\%	${ }_{1}^{1,312}$	${ }_{1}^{1,290}$	${ }_{-22}$	${ }_{-1}$
59.3\%	1,253	1,287	33	2.6\%
	1,253	1,266	13	1.0\%
61.7\%	1,241	1,255	13	1.1\%
63.2.2\%	${ }^{1,225}$	1,240	14	1.2\%
66.4\%\%	1,207	${ }_{1}^{1,233}$	${ }^{26}$	${ }_{\text {2.1\% }}$
66.7\%	1,179	${ }_{1}^{1,164}$	-15	-1.3\%
67.9\%	1,166	1,158		-0.7\%
69.1\%	1,161	1,1137	-24	-2.1\%
70.4\%	1,156 1,126	1,122 1,120 109	-33 -6 -8	-
72.8\%	+1,	1,120 1,109	${ }_{11}$	-0.5\%
74.1\%	${ }_{1}^{1,076}$	${ }_{1}^{1,093}$	17	1.6\%
75.3\%	${ }^{1,020}$	1.076	${ }^{56}$	5.4\%
76.5\%	981	1,005	24	2.4\%
797.0\%	${ }_{971}^{981}$	${ }_{985}^{994}$	13 14	- ${ }_{\text {1.5\% }}^{1.5 \%}$
80.2\%	959	95	1	0.1\%
${ }^{81.5 \%}$	${ }_{9} 91$	${ }^{938}$	-13	-1.4
82.7\%	916	918	2	0.2\%
885.2\%	${ }_{8}^{886}$	${ }_{828}^{916}$	${ }^{30}$	${ }^{3.3 \%}$
86.4\%	847	805	${ }_{-41}$	-4.9\%
87.7\%	818	803	-15	-1.8\%
88.9\%	${ }^{729}$	${ }_{793}$	65	8.9\%
${ }^{99.1 \% \%}$	623 622	748 642	125	20.1\%
${ }^{92.46 \%}$		${ }_{6}^{642}$		年,
993.8\%	604	610	${ }_{6}$	1.0\%
95.1\%	507	560	52	10.3\%
96.3\%	500	541	41	8.2\%
998.8\%	${ }_{377}^{437}$	${ }_{484}$	54 107	12.15% 28.3%
100.0\%	376	445	68	18.2\%

| |
| :--- | :--- | :--- | :--- |

		June		
${ }_{\text {Percent }}^{\text {Exceedance }}$	DCR 2015 Without Proiect	DCR 2015 With Project	Absolute	Rela
Probability	End of Morth Storage	End of Month Storage	（tar）	Difference（\％）
（6）	［tar）	（tar）		
0．0\％	${ }_{2}^{2,447}$	2，47		${ }^{0.0 \%}$
1．25\％	${ }_{2}^{2447}$	2447		
2．9\％	2，447	， 14		
4．9\％	${ }_{2}^{2431}$	${ }_{2}$	1	
6．2\％	2.430	2.429	－1	0．0\％
7．4\％	2.401	2.399	－2	－0．1\％
8．6\％	2，397	2，397	0	0．0\％
9．9\％	${ }_{2}^{2,384}$	${ }^{2,367}$	${ }^{-17}$	－0．7\％
11．1\％	${ }_{2,367}^{2,367}$	2，354	－14	－0．6\％
${ }^{12.3 \%}$	2，354	2，342	－12	－0．5\％
13．6\％	2，340	2，340	0	0．0\％
14．8\％	${ }_{2,315}^{2,315}$	${ }_{2}^{2,315}$	0	0\％
16．0\％	2，315	2，314	1	
17．3\％	2，306	2，306	O	
19．8\％	2，285	2，288	2	0．1\％
21．0\％	2，284	2,265	19	－0．9\％
${ }^{22.2 \%}$	2，265	2，264	－1	
23．7\％	${ }^{2,264}$	${ }_{2,248}^{2,288}$	－17	－0．7\％
25．9\％	${ }_{2,211}^{2,226}$	${ }_{2,204}^{2,220}$	${ }_{-8}$	－0．3\％
27．2\％	${ }_{2,204}^{2,28}$	${ }_{2,196}$	－8	－0．4\％
28．4\％	${ }_{2,187}^{2,187}$	2,187	0	0．0\％
29．6\％	2，151	2，149	2	－0．1\％
30．9\％	2，124	2，124	0	0．0\％
32．1\％	2，114	2，114	0	0．0\％
33．3\％	2，113	${ }^{2,113}$	0	0．0\％
34．6\％	2，100	2，100	0	0．0\％
35．8\％	${ }_{2}^{2,073}$	${ }_{2}^{2,066}$	${ }^{-6}$	－0．3\％
37．0\％	${ }^{2,043}$	${ }^{2,055}$	12	0．6\％
38．3\％	2，036	2，053	17	0．8\％
39．5\％	${ }_{1}^{2,013}$	${ }^{2}, 016$	3	0．1\％
40．7\％	1，971	1，971	0	
${ }^{42.0 \%}$	1，948	1，965	17	
44．4\％	${ }_{1}^{1,990}$	${ }_{1}^{1,929}$	18	1．1\％
45．7\％	1，900	1，917	17	
46．9\％	1，888	1，890	2	1\％
48．1\％	1，873	1，859	－14	－0．7\％
4．4．4\％	1，864	1，854	－10	0．5\％
50．6\％	1，861	1，852	－9	－0．5\％
51．9\％	${ }^{1,834}$	1，845	11	0．6\％
年产．19\％	1，795	1，844	49	2．7\％
	1，787	1，807	20	1．1\％
55．6\％	1，772	1，788	17	0．9\％
	1，764	1，785	20	1．2\％
年58．3\％	1，759	1，772	13	0．7\％
	1，734	1，753	19	1．1\％
㐌60．7\％	＋1，731	＋1，743	${ }_{16}^{12}$	0．7\％
63．0\％	1.710	${ }^{1.698}$		－0．7\％
64．2\％	1，703	1.698	－5	－0．3\％
65．4\％	${ }^{1,680}$	${ }^{1,694}$	14	0．8\％
66．7\％ 679%	1,636 1.629 1	＋1，688	${ }_{37}^{52}$	3．2\％
69．1\％	${ }_{1,623}^{10,029}$	${ }_{1,646}^{1,060}$	${ }_{23}$	${ }_{1.4 \%}$
70．4\％	${ }^{1,581}$	${ }^{1,629}$	48	\％
71．6\％	${ }^{1,572}$	${ }^{1,612}$	40	2．6\％
－ $72.8 .1 \%$	$\begin{array}{r}1.567 \\ \hline 1556 \\ \hline\end{array}$	1，609	41	2．6\％
75．3\％	${ }_{1}^{1,486}$	${ }_{1,527}^{1,547}$	${ }_{40}$	${ }_{\text {2．7\％}}^{-0.6 \%}$
76．5\％	1，456	1，456	0	0．0\％
778\％	${ }^{1.368}$	1，431	62	4．6\％
79．0\％ 80.2%	1，315	1，372	57	4．3\％
－	1，308	1，371	${ }^{63}$	4．8\％
－${ }^{81.5 \%}$ 827\％	1，287	1，317	31	2．4\％
827\％	${ }^{1,273}$	${ }^{1,316}$	${ }^{43}$	3．4\％\％
84．0\％	${ }_{1}^{1,263}$	${ }_{1,308}$	46	3．6\％
－${ }_{\text {85．4\％}}$	${ }_{1}^{1,233}$	${ }_{1}^{1,1218}$	${ }^{15}$	－1．2\％
－	1，173	${ }^{1,165}$	－8	－0．6\％
887．9\％	1，170	＋1，143	${ }^{27}$	－2．3\％
－${ }^{88.1 \%}$	${ }_{1}^{1,095}$	${ }_{1}$	${ }^{10}$	0．9\％
91．4\％	${ }_{944}$	${ }_{984}$	40	4．2\％
92．6\％	900	934		3．7\％
93．8\％	900	903	3	0．3\％
${ }_{96.3 \%}$	${ }_{857}$	${ }_{852}^{865}$	${ }_{-6}{ }^{-6}$	－0．7\％
97．5\％	854	845	-9	1．1\％
98．8\％	791	843	52	6．6\％
100．0\％	712	815	104	14．6\％

Figure SW-02-b
Trinity Lake, End of Month Elevation

Figure SW-03-b

Trinity Lake, End of Month Are

Table SW-03-b

PercentExceedance	$\begin{gathered} \text { DCR } 2015 \text { Without } \\ \text { Proiect } \\ \text { End of Month Area } \end{gathered}$	DCR 2015 Wwith Project End of Month Area		
			$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (ACREE) } \end{aligned}$	$\begin{aligned} & \text { Relative } \\ & \text { Difference }(\%) \end{aligned}$
${ }^{\text {0.0. }}$ ((ACRE)	(ACRE)		
		${ }^{13,625}$	O	0.0\%
1.2\%	13,625	${ }^{13,625}$	0	
2.5\%	${ }^{13,625}$	${ }^{13,625}$	0	
3.7\%	${ }^{13,625}$	${ }^{13,625}$	0	
4.9\%	${ }^{13,625}$	${ }^{13,625}$	0	
${ }^{6.2 \%}$	${ }^{13,625}$	${ }^{13,625}$	0	
7.4\%	${ }^{13,625}$	${ }^{13,625}$	0	
8.6\%	${ }^{13,625}$	${ }^{13,625}$	0	
11.1\%	${ }^{13,625}$	${ }^{13,625}$	0	0\%
12.3\%	${ }_{\text {13, }}^{1325}$	${ }^{13,625}$	\bigcirc	.0\%
13.6\%	13,625	13,625	0	0.0\%
14.8% 16.0%	13,625 13.625 1	13,625 13.625 1	-	
17.3\%	${ }_{\text {l }}^{13.625}$	${ }^{13.025}$	${ }_{-87}$	-0.6\%
18.5\%	${ }^{13,625}$	13.440	-185	-1.4\%
19.8\%	13,625	13,416	209	
21.0\%	13,498	13,403	-95	-0.7
22.2\%	13,444	13,316	-128	
23.5\%	13,316	13,060	${ }^{256}$	-1.9\%
- 24.75%	${ }^{13,198}$	${ }^{12,962}$	${ }^{-237}$	-1.7\%
${ }^{25.7 .2 \%}$	$\xrightarrow{13,095}$ 13,015	12,878 12.750 185	-216	${ }_{-2.0 \%}^{-1.7 \%}$
28.4\%	${ }_{12,968}$	12,736	${ }_{-23}$	-1.8\%
29.\%	12,964	12,692	-272	-2.1\%
- 3 30.9\%		$\begin{array}{r}12,496 \\ 12.233 \\ \hline 1\end{array}$	-192	-1.5\%
32.1\%	${ }^{12,584}$	${ }_{12,433}$	-152	
) 33.3%	${ }_{\text {12, }}^{12513}$	${ }^{12,345}$	-177	-1.4\%
35.8\%	${ }^{12,513}$	${ }_{1}^{12,312}$	-201	${ }_{-13 \%}^{-1.6 \%}$
37.0\%	12,202	12,162	-40	-0.3\%
38.3\%	${ }^{12,190}$	${ }^{12,089}$	-101	
	${ }^{11,1636}$	${ }_{112000}$		
42.0\%	11.635	11.626	-9	-0.1\%
43.2\%	${ }^{11,502}$	11,462	-40	
44.4\%	${ }^{11,375}$	${ }^{11,377}$	2	
45.7\%	${ }^{11,273}$	${ }^{11,339}$	66	6\%
${ }^{46.9 \%}$	${ }^{11,246}$	${ }^{11,240}$	${ }^{-6}$	-0.1\%
48.19\%	11,197 11,196	11,193 11,173	$\stackrel{-3}{-23}$	-0.0\%
50.6\%	${ }^{11,157}$	11,166	8	0.1\%
51.9\%	${ }^{11,112}$	11,164	53 53	0.5\%
53.1\%	${ }^{11,046}$	11,099	53	0.5\%
54.3\%	10,934	11,070	${ }^{136}$	1.2\%
55.8\%	10,922 10,921	10.849 10,760	-731	-
58.0\%	10,879	10,756	-123	-1.1\%
59.3\%	10,536	10,737	202	1.9\%
- 60.5%	10.532 10.461	10,613 10.543	${ }_{81}^{81}$	- 0.8%
63.0\%	10,362	10.451	89	0.9\%
	10,251	10.410	159	
${ }_{6}^{65.7 \%}$	10,074	${ }_{9,979}^{10.078}$	-95	${ }^{-0.9 \%}$
67.9\%	9,993	9,946	-47	
69.1\%	9,964	9,815	149	
70.4\%	9,929	9,725	${ }^{-205}$	-2.1\%
72.8\%	9,575	${ }_{9,644}^{9,799}$	${ }_{68}$	0.7\%
74.1\%	9,435	9,543	108	1.1\%
75.3\%	9,067	9,434	368 157	4.1\%
76.5\%	${ }_{8}^{8.807}$	${ }^{8,965}$	${ }^{157}$	1.8\%
77.8\%	8,806	8,891	${ }^{85}$	1.0\%
79.0\% 80.2%	${ }^{8,738}$	${ }_{8}^{8,832}$	94	1.1\%
-	${ }_{8,605}^{8,660}$	${ }_{\text {8, }}^{8.564}$	${ }_{-88}$	-10\%
82.7\%	${ }_{8,375}^{8,175}$	${ }_{8,390}^{0.59}$	15	0.2\%
84.0\%	${ }^{8,174}$	${ }_{7}^{8,371}$	197	2.4\%
- $\begin{aligned} & 85.2 \% \\ & 86.4 \%\end{aligned}$	7,939 7,909	7,785 7,630	-154	--1.5\%
87.7\%	7.714	7.615	-100	-1.3\%
88.9\%	7,109	${ }_{7}^{7,548}$	${ }^{439}$	${ }^{6.2 \%}$
91.4\%	6,383	-	136	2.1\%
92.6\%	${ }_{6}^{6,263}$	${ }_{6}^{6.420}$	157	2.5\%
${ }^{955.1 \%}$		6,304 504 5	${ }_{42}^{42}$	${ }^{0.7 \% \%}$
96.3\%	5,471	5,795	324	5.9\%
97.5\%	5,058	5,484	426	8.4\%
98.8\%	4,507	¢, 5,935	${ }_{537}^{838}$	18.6\%
100.0\%	4,499	5,036	537	11.9\%

Table SW-. 3 -b
Lake, End of Month Area

Percent $\begin{array}{c}\text { Exceedance } \\ \text { Probability }\end{array}$	February			
	DCR 2015 Without	DCR 2015 With Project	Absolute	Reatit
	End of Month Area	End of Month Area	(AARE)	Difference (\%)
(0)	(ACRE)	Ache)	- 32	
. 20			-632	-2\%
1.2\%\%	14,300	14,300		
	14,300	14,300	0	
	${ }_{1}^{14,300}$	${ }_{14,300}^{14,300}$		
6.2\%	14300	14300		
7.4\%	14,300	${ }^{14,3000}$	0	
8.6\%	14,300	14,300	0	0.0\%
9.9\%	14,300	14,300	0	0.0\%
11.1\%	14,300	14,300	0	0.0\%
12.3\%	14,300	14,300	0	0.0\%
13.6\%	14,300	14,300	0	0.0\%
14.8\%	14,300	14,300	0	\%\%
16.0\%	14,300	14,300	0	0.0\%
17.3\%	14,300	14,300	0	0.0\%
-18.5\%	${ }_{1}^{14,3300}$	(14,300	0	-
21.0\%	14,300	14,300	0	0.0\%
${ }^{22.2 \%}$	14,268	14,259	-9	-0.1\%
22.5\%	14,205	14,244	-27	
2.5.70			-23	
257.2\%	${ }_{\text {14,232 }}^{14,24}$	${ }_{\text {14, } 14,173}$	-59	-0.4\%
28.4\%	14,106	14,040	-65	-0.5\%
29.6\%	14,100	14,039	-61	-0.4\%
30.9\%	14,070	13,980	90	-0.6\%
32.1\%	14,049	13,948	-101	-0.7\%
33.3\%	${ }^{13,993}$	13,879	${ }^{-35}$	-0.2\%
34.6\%	${ }^{13,896}$	${ }^{13,659}$	-237	-1.7\%
35.8\%	${ }^{13,800}$	${ }_{\text {13,648 }}^{13,}$	-152	-1.1\%
37.0\%	${ }^{13,619}$	${ }^{13,627}$	8	0.1\%
38.3\%	${ }^{13,589}$	${ }^{13,614}$	${ }^{25}$	0.2\%
39.5\%	${ }^{13,585}$	13,440	145	-1.1\%
40.7\%	${ }^{13,568}$	${ }_{\text {13,378 }}^{13,360}$	190	
42.0\%	${ }^{13,440}$	13,260	-149	-1.1\%
43.2\%	13,387	13,184	-203	
44.4\%	${ }_{\text {a }}$	13,162	年0	
46.9\%	13,236	13,128	-108	-0.8\%
48.1\%	${ }^{13,175}$	13.069	-106	-0.8\%
49.4\%	13,129	12,964	-165	
50.6\%	${ }^{12,2837}$	${ }_{12,832}$	6	
53.1\%	${ }_{12,776}^{12,076}$			
54.3\%	${ }_{12,586}$	${ }_{\text {12,657 }}$	70	0.6\%
55.6\%	12,480	12,546	66	0.5\%
56.8\%	12,461	12.514	53	0.4\%
58.0\%	${ }_{1}^{12,403}$	${ }^{12,501}$	98	0.8\%
59.3\%	12,107	${ }^{12,445}$	${ }^{338}$	2.8\%
年 60.5%	${ }^{12,061}$	${ }^{12,405}$	345	2.9\%
61.7\%	12,018	12,181	164	1.4\%
-63.0\%	${ }^{11,1730}$	${ }^{12,157}$	227	-1.9\%
- ${ }_{\text {64.2\% }}^{6.4 \%}$	${ }^{11,193}$	${ }^{11,669}$	${ }^{-124}$	-1.1\%
${ }_{6}^{65.7 \%}$	${ }^{11,677}$	${ }^{11,645}$	${ }^{32}$	-0.3\%
67.9\%	${ }^{11,568}$	${ }^{111,544}$	76 145 148	(13\%
69.1\%	111,324	11,485	161	1.4\%
70.4\%	${ }^{11,297}$	${ }^{11,479}$	182	1.6\%
71.6\%	${ }^{11,237}$	${ }^{11,323}$	${ }_{8}^{86}$	0.8\%\%
74.1\%	${ }^{111,101}$	11150	49	\%
76.5\%	10,486	10,809	324	3.1\%
77.8\%	10,166	10,538	372	3.7\%
79.0\%	9,923	10,073	150	5\%
80.2\%	9,765	10,060	295	3.0\%
81.5\%	${ }^{9.633}$	9,944	311	3.2\%
82.7\%	${ }_{9}^{9,323}$	9,130	-214	-2.3\%
84.0\%	9,227	9,054	-173	-1.9\%
85.2\%	8.944	8,959	15	0.2\%
86.4\%	8.875	8.951	76	0.9\%
87.7\%	8.605	8,949	344	4.0\%
88.9\%	${ }^{8,085}$	8.468	${ }_{383}$	${ }^{4.5 \%}$
${ }^{901.4 \%}$	7,968 7,630	${ }_{7815}^{8.007}$	39 185	${ }^{0.5 \%}$
92.6\%	7,7298	7.350	52	0.7\%
93.8\%	7,274	7,303	30	0.4\%
95.1\%	7,094	7,257	163	2.3\%
96.5\%	${ }_{6}^{6,173}$	${ }_{6,418}$	-141	${ }_{3}^{2.7 \%}$
99.8\%	5,187	${ }_{5,889}$	672	13.0\%
100.0\%	4,914	5,330	416	8.5\%

Table SW-.03-b
Lake, End of Month Area

	June			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	${ }_{\text {Promer }}$	DCR 2015 With Project	Absolute	
	of Moont A	Id of Month A	(ACRE)	
(.0\%		${ }_{\text {(ACRE }}{ }_{16,088}$	0	0.0\%
1.2\%	16.088	16,088	0	0.0\%
2.5\%	16,088	16,088	0	0.0\%
3.7\%	16,088	16,088	0	0.0\%
4.9\%	16,026	16,021	-5	0.0\%
6.2\%	${ }^{16,021}$	16.017	4	0.0\%
7.4\%	${ }^{15,903}$	${ }^{15,895}$	-8	-0.1\%
8.6\%	15.588 15888 1	15.888 15770	${ }_{-68}$	-0.0\%
9.9\%	${ }^{15,888}$	15,770	-68	-0.4\%
11.19\%	15.770 15775	15,715 15659	-54	-0.3\%
	15.715 15.661	15.669 15661	${ }^{-46}$	-0.3\%
14.8\%	${ }_{1}^{15.561}$	${ }^{15.5651}$	0	0.0\%
16.0\%	${ }^{15.559}$	${ }^{15,556}$	-3	0.0\%
- ${ }_{\text {18.5\% }}$	15.526 15.518	${ }^{15,526}$	0	0.0\%
19.8\%	15,442	15,451	9	0.1\%
21.0\%	15.436	15,358	78	-0.5\%
22.2\%	${ }^{15,358}$	${ }^{15,356}$	-2	0.0\%
-	15,356	15,290	-66	-0.4\%
24.7\%	15,203	15,203	0	0.0\%
25.9\%	15.146 15116	15.116 15083	-30	-0.2\%
28.4\%\%	${ }^{15,049}$	${ }^{15,049}$	0	-0.0\%
29.\%	14,904	14,898	-6	0.0\%
30.9\%	14,797	14,797	0	
32.1\%	14,755	14,755	0	0.0\%
33.3\%	14.751	14.751	0	0.0\%
34.6\%	14,700	14,700	0	0.0\%
35.8\%	14,590	14,565	-26	-0.2\%
37.0% 38.3%	14.472 14.445	14.518 14.512	46 67	0.3\% 0
39.5\%	14,352	14,362	10	0.1\%
40.7\%	14,170	14,170		
- ${ }_{4}^{42.2 \%}$		14,141	${ }_{76}$	0.5\%
4.4.4\%	13,852	13,950	97	0.7\%
45.7\%	13,851	${ }^{13,926}$	75	0.5\%
46.9\%	13,795	${ }^{13,803}$	8	0.1\%
48.19\%	${ }^{13,727}$	${ }^{13,665}$	-62	-0.5\%
49.4\%	${ }_{\substack{13,688 \\ 13,673}}$	li, 13,644 13.634 1	${ }_{-45}$	${ }_{\text {- }}^{\text {-0.3\% }}$
51.9\%	13,554	13,603	48	0.4\%
53.1\%	13,379	13,600	221	1.7\%
54.3\%	13,342	13,431	89	0.7\%
55.6\%	13,273 13.239	13,348 13,31 1	$\begin{array}{r}75 \\ 92 \\ \hline\end{array}$	0.7\%
56.0\%\%	13,239 13,215	-	$\stackrel{92}{92}$	0.74\%
59.3\%	13,104	${ }^{13,189}$	85	0.6\%
60.5\%	13,091 13.050	13,144	${ }_{72}$	0.4\%
61.7\% 6	${ }^{13,050}$	${ }^{13,122}$		0.5\%
63.4.2\%	+12,995	(12.942	- -21	-0.0.2\%
65.4\%	12,860	12,923	63	0.5\%
66.7\% 679%	${ }^{12,662}$	${ }^{12,898}$	${ }^{236}$	1.9\%
${ }^{67.9 \%}$	(12,629		${ }_{104}^{168}$	-
70.4\%	12,393	12,630	${ }_{23} 2$	1.9\%
71.6\%	12,340	12,552	212	1.7\%
728\%	12,317	12.538	222	1.8\%
74.19\%	12,252	${ }^{12,203}$	-49	-0.4\%
75.3\%	${ }^{11,860}$	${ }^{12,087}$	227	1.9\%
76.5\%	11,689 11,197	${ }^{111,688}{ }^{11,548}$	-1	${ }^{0.0 \%}$
79.0\%	10,898	11,220	322	3.0\%
80.2\%	10,858	11,214	356	3.3\%
81.5\%	10,738	10,911	173	1.6\%
- 8 82.7\%	10,659 10.592	$10,9,93$ 10.860	244 268	2.3\%
85.2\%	10,592 10.409	10.860 10,316	268 -92	-
864\%	10,035	9,988	-47	-0.5\%
-887.7\%	- $\begin{aligned} & 10.016 \\ & 0.570\end{aligned}$	${ }_{9,635}^{9,852}$	-164	-1.7\%
- ${ }_{\text {80.9.9\% }}$	${ }_{9,272}^{9,570}$	${ }_{9,230}^{9,635}$	64 -43	-0.5\%
91.4\%	8,560	8.825	266	3.1\%
92.6\%	${ }_{8,270}$	${ }_{8,492}$	222	2.7\%
${ }_{\text {9 }} 93.8 .1 \%$	8,069 8,068	8,288 8,031	-38	-0.5\%
96.3\%	7,981	7,943	${ }_{-38}$	${ }^{-0.5 \%}$
97.5\%	7,957	7,896	-61	-0.8\%
98.8\%	7,529	77.884	${ }^{355}$	4.7\%
100.0\%	6,993	7,697	703	10.1\%

Trinity River below Lewiston Reservoir, Monthly Flow

		December		
Percent Exceedance	${ }_{\substack{\text { DCR } \\ \text { Proiect }}}^{\mathrm{DO} \text { Whout }}$	DCR 2015 With Project	Absolue Difference	Relative
Probabality	Monthy fow (CFS)	Monthy Flow (CFS)	(CFS)	
0.0\%	5,139	4,627	-513	-10.0\%
1.2\%	4.922	4,150	-772	-15.7\%
2.5\%	4,150	4,133	-17	-0.4\%
3.7\%	2,557	1,106	-1,451	-56.8\%
4.9\%	${ }_{394}^{994}$	964	0	-0.0\%
6.2\%	349 300	300 300	-49	-
8.6\%	300	300	0	0.0\%
9.9\%	300	300	0	0.0\%
11.1\%	300	300	0	
12.3\%	300	300	0	0.0\%
13.6\%	300	300	0	
14.8\%	300	300	0	0.0\%
16.0\%	300	300	0	0.0\%
17.3\%	300	300	0	0.0\%
18.5\%	300	300	0	0.0\%
19.8\%	300	300	0	0.0\%
21.0\%	300	300	0	0.0\%
${ }^{22.2 \%}$	300	300	0	0.0\%
23.5\%	300	300	0	0.0
24.7\%	300	300	0	0.0\%
25.9\%	${ }_{300}$	${ }^{300}$	0	
27.2\%	300	300	0	
29.6\%	300	300 300	0	0.0\%\%
30.9\%	300	300	0	0.0\%
32.1\%	300	300	0	0.0\%
	300	300	0	0.0\%
34.6\%	300	300	0	0.0\%
37.0\%	300	300	0	0.0\%
38.3\%	300	300	0	0.0\%
39.5\%	300	300	0	0.0\%
40.7\%	300	300	0	0.0\%
42.0\%	300	300	0	0.0\%
43.2\%	300	300	0	0.0\%
44.4.\%	300	300	0	0.0\%
45.7\%	300	300	0	0.0\%
46.9\%	${ }^{300}$	300	0	0.0\%
48.19\%	300	300	0	0.0\%
49.4\%	300	300	0	0.0\%
50.6\%	${ }^{300}$	300	0	
51.9\%	300	300	0	
54.3\%	300	300	0	0.0\%
55.6\%	300		0	
56.8\%		300	0	0.0\%
59.3\%	300	300	0	0.0\%
60.5\%	300	300	0	0.0\%
61.7\%	300	300	0	0.0\%
63.0\%	300	300	0	0\%
64.2\%	300	300	0	0.0\%
65.4\%	300	300	0	0.0\%
66.7\%	300	300	0	0.0\%
67.9\%	300	300	0	0.0\%
69.1\%	300 300	300 300	0	0.0\%
70.4\%	300 300	300 300	0	0.0\%
71.6\%	300 300	300 300	0	0.0\%
74.1\%	300	300	0	0.0\%
75.3\%	300	300	0	0.0\%
76.5\%	300	300	0	0.0\%
77.8\%	300	300	0	0.0\%
79.0\%	300	300	0	0.0\%
80.15\%	300	300	0	0.0\%
82.7\%	300	300	0	0.0\%
84.0\%	300	300	0	0.0\%
85.2\%	300	300	0	0.0\%
86.4\%	300	300	0	0.0\%
877\%\%	300 300	300	0	0.0\%
${ }^{88.9 \%} 9$	300 300	300 300	0	0.0\%
91.4\%	300	300	0	0.0\%
92.6\%	300	300	0	0.0\%
93.8\%	300	300	0	0.0\%
95.1\%	300 300	300 300	0	0.0\%
99.5\%	300 300	300 300	0	0.0\%
98.8\%	300	300	0	
100.0\%	300	300	0	0.0\%

		Fobruary		
Percent Exceedance	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	Absolute Difference	Relative
	${ }_{\text {Monthly Frow }}^{\text {Prow (cFs) }}$	Monthly Flow (CFS)	(cFs)	Difference (\%)
0.0\%	6,000	6,000	0	0.0\%
1.2\%	4.884	4.484	0	0.0\%
2.5\%	${ }^{3,335}$	${ }^{3,335}$	0	0.0\%
3.7\%	3,238	3,238	0	0.0\%
4.9\%	2,931	3,123	191	6.5\%
${ }^{6.2 \%}$	2,542	2,931 2047	389	15.3\%
7.4\%	2,407	2,407	0	0.0\%
- $\begin{aligned} & \text { 8.9\%\% } \\ & \text { 9.9\% }\end{aligned}$	2,347 1,194 1	2,347 1,194 1	0	0.0\%
9.9\% 11.1	+1,194	1,194	${ }^{0}$	- 0.0%
${ }^{11.12 \%}$	${ }_{\substack{1,138 \\ 942}}^{1,188}$	992 92	$\xrightarrow{-190}$	-17.0\%
13.6\%	583	583	0	0.0\%
14.8\%	300	300	0	
16.0\%	${ }^{300}$	300	0	
17.3\%	300	300	0	
18.5\%	300	300	0	
19.8\%	300	300	0	0.0\%
21.0\%	300	300	0	
22.2\%	300	300	0	
23.5\%	300	300	0	0.0\%
24.7\%	300	300	0	0.0
25.9\%	300	300	0	0.0\%
27.2\%	300	300	0	
${ }_{\text {29.6\% }}$	300	300	0	0.0\%
30.9\%	300	300	0	0.0\%
32.1\%	${ }^{300}$	300	0	0.0\%
33.3\%	300	300	0	0.0\%
34.6\%	300	300	0	0.0\%
35.7.\%	300	300	0	0.0\%
38.3\%	300	300	0	
39.5\%	300	300	0	
40.7\%	300	300	0	
42.0\%	300	300	0	0.0\%
${ }_{4}^{43.2 \%}$	300 300	300 300	0	0.0\% 0
45.7\%	300	300	0	0.0\%
46.9\%	${ }^{300}$	${ }^{300}$	0	0.0
48.1\%	300	300	0	0.0\%
49.4\%	300	300	0	0.0\%
${ }^{50.6 \%}$	300	300	0	0.0\%
53.1\%	300	300 300	\bigcirc	0.0\%
54.3\%	300	300	0	0.0\%
55.6\%	300	300	0	0.0\%
	300	300	0	0.0\%
59.3\%	300	300	0	0.0\%
60.5\%	300	300		0.0\%
61.7\%	300	300	0	0.0\%
6.4.2\%	300	300	0	0.0\%
65.4\%	300	300	0	
${ }^{66.7 \%}$	${ }^{300}$	300	0	0.0\%
- 67.9%	300	300	0	0.0\%
70.4\%	300	300	0	0.0\%
71.6\%	300	300	0	0.0\%
72.8\%	300	${ }^{300}$	0	0.0\%
74.1\% ${ }^{753 \%}$	${ }^{300}$	${ }^{300}$	0	0.0\%
75.3\%	300	300	0	0.0\%
76.5\% ${ }_{77}$	300	300	0	0.0\%
77.8\%	300 300	300 300	\bigcirc	0.0\%
80.2\%	${ }^{300}$	300		0.0\%
${ }^{81.5 \%}$	300	300	0	0.0\%
884.0\%	300 300	300 300	0	0.0.0\%
85.2\%	300	300	0	0.0\%
${ }^{86.4 \%}$	${ }^{300}$	${ }^{300}$	0	0.0\%
88.9\%	300	300	0	0.0\%
90.1\%	300	300	0	0.0\%
91.4\%	300	300	0	0.0\%
${ }_{9}^{92.8 .8 \%}$	${ }^{300}$	${ }^{300}$	0	0.0\%
95.1\%	300	300	0	0.0\%
96.3\%	300	300	0	0.0\%
97.5\%	300	300	0	0.0\%
988.8\% 1000%	300 300	300 300	\bigcirc	0.0\%

		$\frac{\text { DCR } 2015 \text { With Project }}{\text { Monthy Fow (CFs) }}$	Absolute Difference (CFS)	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
${ }^{\text {Probabay }}$	Monnly fow (crs)	Monthy Flow (cFs)		00\%
1.2\%	450	450	0	
2.5\%	450	450	0	
3.7\%	450	450	0	0.0\%
4.9\%	450	450	0	0.0\%
-6.2\%	450	450	0	0.0\%
7.4\%	450	450		
-6\%	450	450		
11\%	450	450		
1236	450	450		0.0\%
13.6\%	450	450		0.0\%
14.8\%	450	450		00\%
16.0\%	450	450		00\%
17.3\%	450	450	0	0.0\%
18.5\%	450	450	0	0.0\%
19.8\%	450	450	0	0.0\%
21.0\%	450	450	0	0.0\%
22.2\%	450	450	0	0.0\%
23.5\%	450	450	0	\%
${ }^{24.79 \%}$	450	450	0	00\%
25.9\%	450	450		
27.2\%	450	450	O	
29.6\%	${ }_{450}$	${ }_{450}$	0	${ }^{\text {0.0\% }}$
30.9\%	450	450	0	0.0\%
32.1\%	450	450	0	
			0	
34.6\%	450	450	0	
35.8\%	450	450	0	
37.0\%	450	450	0	0.0\%
38.3\%	450	450	0	
39.5\%	450	450	0	0.0\%
40.7\%	450	450	0	0.0\%
42.0\%	450	450	0	0.0\%
43.2\%	450	450	0	0.0\%
44.4\%	450	450	0	0.0\%
45.7\%	450	450	0	0.0\%
46.9\%	450	450	0	0.0\%
48.19\%	450	450	0	0.0\%
49.4\%	450	450	0	0.0\%
50.6\%	450	450	O	
51.9\%	450	450	0	
54.3\%	450	${ }_{450}$	0	0.0\%
			0	
56.8\%	450	450	0	0.0\%
58.0\%	450	450	0	0\%
59.3\%	450	450	0	0.0\%
60.5\%	450	450	0	0.0\%
61.7\%	450	450	0	0.0\%
63.0\%	450	450	0	0.0\%
64.2\%	450	450	0	0.0\%
${ }^{65.4 \%}$	450	${ }^{450}$	0	0.0\%
${ }^{66.7 \%}$	450	450	0	0.0\%
67.9\%	450	450	0	0.0\%
69.1\%	450	450	0	0.0\%
70.4\%	450	450		0.0\%
71.6\%	450	450	0	0.0\%
(74.19\%	${ }_{450}^{450}$	${ }_{450}$		
75.3\%	${ }_{450}$	${ }_{450}^{450}$	0	0.0\%
76.5\%	450	450	0	.0\%
77.8\%	450	450	0	0.0\%
79.0\%	450	450	0	0.0\%
9,2\%	450	450	0	
81.5\%	450	450	0	0.0\%
82.7\%	450	450	0	0.0\%
84.0\%	450	450	0	0.0\%
${ }^{85.2 \%}$	450	450	0	0.0\%
${ }^{86.4 \%}$	450	450	0	0.0\%
877\%	450	450	0	0.0\%
88.9\%	450	450	0	0.0\%
90.1\%	450	450	0	0.0\%
914.4\%	450	450	0	0.0\%
92.6\%	450	450	0	0.0\%
${ }^{93.8 \%}$	450	450	0	0.0\%
95.1\%	450	450	0	0.0\%
-96.3\%	${ }_{450}$	${ }_{450}$	-	0.0\%
9988\%	${ }_{4} 50$	450		0.0\%
100.0\%	450	${ }_{450}$		0.0\%

Figure SW-05-b
clear Creek Tunnel, Monthly Flow

$\xrightarrow{\text { Table SW-05-b }}$ Creek Tunnel, Monthy Flow

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Execent } \\
\text { Exxeade }
\end{gathered}
\]} \& \& Octob \& \& \multirow[b]{3}{*}{\[
\begin{gathered}
\text { Relative } \\
\text { Difference (\%) }
\end{gathered}
\]} \\
\hline \& \({ }^{\text {DCR } 20155 \text { Without }}\) Proiet \& DCR 2015 With Project \& Absolute
Difference \& \\
\hline \& Monthly Foio (3 (CFS) \& Monthly Fiow (CFS) \& (CFS) \& \\
\hline 1.2\% \& \({ }_{2,286}^{3,300}\) \& 3,300
250 \& 214 \& 9.4\% \\
\hline 2.5\% \& 2,019 \& \({ }_{2,019}\) \& 0 \& \\
\hline 3.7\% \& 1,969 \& 1,969 \& 0 \& \\
\hline 4.9\% \& 1,956 \& 1,956 \& 0 \& \\
\hline 6.2\% \& 1,870 \& 1,897 \& 27 \& 1.4\% \\
\hline 7.4\% \& 1,825 \& 1,870 \& 45 \& 2.5\% \\
\hline 8.6\% \& \({ }^{1,883}\) \& \({ }_{1}^{1,873}\) \& 0 \& \\
\hline 9.9\% \& +1.787 \& 1,787 \& - \& \\
\hline 12.3\% \& \({ }^{1,772}\) \& \({ }_{1}^{1,770}\) \& \(\stackrel{14}{-2}\) \& \({ }^{-0.1 \%}\) \\
\hline 13.6\% \& 1,770 \& 1,758 \& -12 \& -0.7\% \\
\hline 14.8\% \& 1,758
1,749 \& 1,749 \& -9 \& -0.5\% \\
\hline 17.3\% \& (1,747 \& \({ }_{1}^{1,500}\) \& -24 \& 14.1\% \\
\hline 18.5\% \& 1,744 \& \({ }_{1,500}\) \& \(-244\) \& 14.0\% \\
\hline 19.8\% \& 1,577 \& 1,458 \& -119 \& -7.6\% \\
\hline 21.0\% \& 1.498 \& \({ }^{1,344}\) \& 154 \& -10.3\% \\
\hline 22.2\% \& 1,483 \& 1,250 \& 233 \& 86\% \\
\hline 23.5\% \& \({ }^{1,368}\) \& 1,250 \& -118 \& -8.6\% \\
\hline 24.7\% \& \({ }_{1}^{1,334}\) \& 1,250 \& -84 \& -6.3\% \\
\hline 225.9\% \& +1,266 \& 1,250 \& \(-16\) \& -1.2\% \\
\hline 27.2\% \& +1,250 \& 1,250 \& 0 \& 0.0\% \\
\hline \({ }^{28.4 .4}\) \& 1,250 \& 1,250 \& 0 \& 0.0\% \\
\hline 330.9\% \& +1,250 \& 1,250 \& 0 \& \\
\hline 32.1\% \& \(\xrightarrow{1,250}\) \& \({ }^{1,250}\) \& 0 \& 0.0\% \\
\hline 33.3\% \& 1,250 \& 1,250 \& 0 \& 0.0\% \\
\hline 34.5\% \& \({ }_{1}^{1,250}\) \& 1,250 \& 0 \& 0.0\% \\
\hline 37.0\% \& \({ }_{\substack{1,197}}^{1,1293}\) \& \({ }^{1,250}\) \& 37
53 \& \({ }^{3.4 .4 \%}\) \\
\hline 38.3\% \& 1,053 \& 1,242 \& 188 \& 17.9\% \\
\hline .5\% \& 1,050 \& 1,169 \& 119 \& \\
\hline 40.7\% \& 1.000 \& 1,000 \& \& \\
\hline 42.2\% \& 946
829 \& 1,000
1
1 \& 54
171
171 \& 5.7\% \\
\hline 44.4\% \& 750 \& \({ }_{1}^{1,000}\) \& 250 \& 33.3\% \\
\hline 45.7\% \& 750 \& 1,000 \& 250 \& 33.3\% \\
\hline 46.9\% \& \({ }_{750}\) \& 1,000 \& 250 \& 33.3\% \\
\hline 48.1\% \& \({ }^{750}\) \& 1.000 \& 250 \& 33.3\% \\
\hline 4.4.9\% \& \({ }^{750}\) \& 761 \& 11 \& 1.4\% \\
\hline 551.9\% \& \begin{tabular}{l}
750 \\
750 \\
\hline 7
\end{tabular} \& 750
750 \& 0 \& 0.0\% \\
\hline 53.1\% \& \({ }^{750}\) \& \({ }^{750}\) \& 0 \& 0.0\% \\
\hline 54.3\% \& 750 \& 750 \& 0 \& 0.0\% \\
\hline \& 750
750 \& 750
750 \& 0 \& -0.0\% \\
\hline \& 750
750 \& 750
750 \& 0 \& \({ }_{\text {en }} 0.0 \%\) \\
\hline 59.3\% \& 750 \& 750 \& 0 \& 0.0\% \\
\hline 60.5\% \& 750
750 \& \({ }_{7} 750\) \& 0 \& 0.0\% \\
\hline 661.7\% \& 750
750 \& \({ }_{7}^{226}\) \& \& -3.2\% \\
\hline 6.4.2\% \& 750 \& 433 \& -317 \& -4.3\% \\
\hline \({ }^{65.4 \%}\) \& \({ }^{750}\) \& 433 \& -317 \& -42.3\% \\
\hline 667.9\% \& 750
750 \& 320

250 \& -430 \& -

\hline 69.1\% \& 750 \& ${ }_{250}$ \& -500 \& -66.7\%

\hline 70.4\% \& 750 \& 250 \& -500 \& -66.7\%

\hline 71.6\% \& 750 \& 250 \& . 500 \& -66.7\%

\hline 72.8\% \& 750
750 \& $\begin{array}{r}250 \\ 250 \\ \hline\end{array}$ \& -500 \& -6.7.7\%

\hline 74.1\% \& ${ }_{750}^{750}$ \& ${ }^{250}$ \& -500 \& -66.7\%

\hline 75.3\% \& 750 \& ${ }^{250}$ \& 500 \& -66.7\%

\hline 77.5\%\% \& $\begin{array}{r}343 \\ \hline 20 \\ \hline\end{array}$ \& 250 \& ${ }^{-93}$ \& -27.1\%

\hline 79.0\% \& 250
250 \& $\begin{array}{r}250 \\ 250 \\ \hline\end{array}$ \& 0 \& -0.0\%

\hline 80.2\% \& ${ }_{250}$ \& ${ }_{250}^{250}$ \& 0 \& 0.0\%

\hline 81.5\% \& 250 \& $\begin{array}{r}250 \\ \hline 25 \\ \hline\end{array}$ \& 0 \& 0.0\%

\hline 82.7\% \& 250 \& 250

250 \& 0 \& 0.0\%

\hline 84.0\% \& 250 \& 250 \& 0 \& 0.0\%

\hline 85.2\% \& 250 \& 227 \& 23 \& 0.0\%

\hline ${ }^{86.4 \%} 8$ \& ${ }_{250}^{250}$ \& ${ }_{124}^{224}$ \& -238 \& -4.5.5\%

\hline 88.9\% \& 250 \& 66 \& 184 \& -73.6\%

\hline 90.1\% \& 250 \& 0 \& 250 \& 100.0\%

\hline 91.4\% \& 250 \& 0 \& 250 \& 100.0\%

\hline 92.6\% \& 250 \& 0 \& 250 \& 100.0\%

\hline 93.8\% \& 250 \& 0 \& 250 \& 100.0\%

\hline 95.1\% \& 0 \& 0 \& 0 \&

\hline ${ }^{99.3 \% \%}$ \& 0 \& 0 \& 0 \&

\hline 997.8\% \& 0 \& 0 \& 0 \&

\hline -98.8\% \& 0 \& \bigcirc \& \bigcirc \&

\hline
\end{tabular}

$\xrightarrow{\text { Table SW-05-b }}$ Creek Tunnel, Monthy Flow

$\xrightarrow{\text { Table SW－05－b }}$ Creek Tunnel，Monthy Flow

June				
Percent Exceedance	${ }^{\text {DCR } 2015 \text { Without }}$	DCR 2015 With Project	Absolute Difference	
Probabaility		Moonthy Fiow（cFs）	（CFS）	
0．0\％	3，203	3，203	0	0．0\％
1．2\％	${ }^{3.023}$	${ }_{3,023}$	－	0．0\％
${ }_{37 \%}$	${ }^{3} \mathbf{3} 718$	${ }^{2,1957}$	${ }_{-761}$	
3．7\％	2，70	1，957	析	\％
4．9\％	1，799	${ }^{1}, 677$	－136	
6．2\％	${ }_{1}^{1,374}$	${ }_{1}^{1.547}$	73	5
8．6\％	${ }_{1,318}$	1，374	56	4．2\％
9．9\％	1，250	1，374	124	90\％
11．1\％	1，250	1，374	124	9．9\％
12．3\％	1，250	1，250	0	0.0
13．6\％	1，250	1，250	0	0．0\％
14．8\％	1，250	1，250	0	0．0\％
16．0\％	${ }^{1,250}$	1，250	0	0．0\％
17．3\％	${ }^{1,092}$	1，250	${ }^{158}$	14．4\％
18．5\％	1，092	1，250	158	14．5\％
19．8\％	750	${ }^{1,255}$	500	66．7\％
${ }_{2}^{21.0 \%}$	750 750	1，250	500	66．7\％
${ }_{2}^{22.5 \%}$	750 750	$\begin{array}{r}1,049 \\ 7 \\ 7 \\ \hline\end{array}$	299	${ }^{39.8 \%}$
${ }_{24.7 \%}^{22.5 \%}$	750	750	0	0．0\％
25．9\％	${ }_{750}^{750}$	${ }^{750}$	0	0．0\％
27．2\％	${ }^{750}$	750	0	
28．4\％	750	750	0	0．0\％
20．6\％${ }^{29.9 \%}$	750	750	0	0．0\％
30．9\％	750 750	750 750	0	－
33．3\％	750	750	0	0．0\％
34．6\％	${ }^{750}$	705	－45	－5．9\％
35．8\％	${ }_{7}^{750}$	610	140	－18．7\％
37．0\％	${ }^{750}$	464	286	－38．2\％
38．3\％	${ }_{621}^{623}$	349	－275	－44．1\％
39．5\％	610	${ }^{321}$	－289	－47．4\％
40．7\％	${ }_{321}^{464}$	291	－173	－37．2\％
${ }^{42.0 \%}$	${ }^{321}$	${ }^{270}$	－51	－16．0\％
43．2\％	${ }_{2}^{289}$	250 250 20	－39	－13．5\％
${ }_{4}^{4.57 \%}$	${ }_{2}^{275}$	250 250	${ }^{-25}$	－7．2\％
46．9\％	250	250	0	0．0\％
48．1\％	${ }^{250}$	${ }^{250}$	0	
	250	250		
51．9\％	${ }_{250}$	${ }_{250}^{250}$	0	${ }^{0.00 \%}$
53．1\％	250	${ }_{250}$	0	0．0\％
54．3\％	250	250	0	0．0\％
	${ }^{250}$	${ }^{245}$	－5	－2．2\％
58．0\％	250 250	223 182 1	－${ }_{-68}^{-27}$	－
59．3\％	245	167	－78	－31．8\％
60．5\％	182	147	－35	－19．2\％
	167	143	－24	14．1\％
－63．0\％	147	141	－7	－4．6\％
	${ }_{141}^{143}$	${ }^{133}$	－11	${ }^{-7.3 \%}$
66．7\％	${ }_{107}^{141}$	125 107	－16	－11．1\％
67．9\％	106	106	0	0．0\％
69．1\％	93 59	937	0	0．0\％
70．4\％\％	59 57	${ }_{47}^{57}$	$\stackrel{-2}{-11}$	－3．9\％${ }^{-3.95 \%}$
72．8\％	47	43	4	
74．1\％	${ }^{43}$	${ }^{42}$	1	
75．3\％	42	37	5	
76．5\％	${ }^{36}$	36	0	0．0\％
77．0\％	${ }_{34}^{35}$	35 34	0	0．0\％
80．2\％	8	${ }_{34}$	26	
81．5\％	0	8	8	
－ 82.7%	0	0	0	
84．0\％	0	0	0	
88．4\％	0	0	0	
${ }^{87.7 \%}$	0	0	0	
88．9\％	0	0	0	
90．19\％	0	0	0	
－914．4\％${ }_{\text {926\％}}$	0	0	0	
9，${ }_{\text {9，3\％}}$	0	0	0	
${ }^{95.1 \%}$	0	0	0	
96．3\％${ }_{\text {97．5\％}}$	0	0	0	
（e） $\begin{aligned} & \text { 98．8\％} \\ & \text { 10．0\％}\end{aligned}$	0	0	0	

		${ }^{\text {DCR } 2015}$ With Project	Absolute Difference				${ }^{\text {OCR } 2015 \text { With Projet }}$ Mothy	Absolute Difference	$\begin{aligned} & \text { Relative } \\ & \text { Difference } \% \end{aligned}$
Probability	Monthl Feow（cFs）	Monthly Fow（CFS）					Monthly Flow（CFS）	（CFS）	
－${ }_{\text {1．2\％}}^{\text {1．2\％}}$	3，300		0	0．0\％	${ }^{0.0 \%}$	3.300 3300	3300	0	0．0\％
	${ }^{3,300}$	${ }^{3,300}$	0	0．0\％	1．2\％	3.300 3.300	3.300 3 3	0	${ }^{0.0 \%}$
3．7\％	${ }_{3,300}$	3，300	0	0．0\％	3．7\％	3，300	${ }_{3,250}$	－50	－1．5\％
4．9\％	3，300	3，300	0	0．0\％	4．9\％	3，300	3．082	218	－6．6\％
${ }^{6.2 \%}$	3，300	3，300	0	0．0\％	${ }^{6.2 \%}$	3，300	${ }^{2,750}$	550	
	${ }^{3,300}$		0	0．0\％	7．4\％	3，300	2，750	550	
	3，300	通	－	0．0\％	8．9\％	3，231	2，750	481	
9．9\％\％	－	${ }_{\substack{3,250 \\ 3 \\ 3}}$	－53	－1．5\％	9，9\％\％	2， 2750	2，	－	
12．3\％	2，846	${ }_{2,846}$	0	0．0\％	12．3\％	${ }_{2,750}$	${ }_{2,750}$	0	0．0\％
13．6\％	2，808	2，808	0	0．0\％	13．6\％	${ }_{2,725}$	2，750	25	0．9\％
14．8\％	2，750	${ }_{\text {2，783 }}^{2,785}$	${ }^{33}$	1．2\％	14．8\％	2，723	2，725	1	\％
16．0\％	2，500	2，750	250	10．0\％	16．0\％	2，507	2．500	－7	
17．3\％	2，500	2，500	0	0．0\％	17．3\％	2．500	2，500	0	0．0\％
18．5\％	2，500	2，500	0	0．0\％	18．5\％	2，500	${ }^{2}, 500$	0	0．0\％
19．8\％	2，400	2，500	100	4．2\％	19．8\％	${ }^{2,250}$	2，500	250	11.10
210\％	${ }_{2}^{2,065}$	2，500	${ }^{435}$	21．1\％	21．0\％	${ }^{2,250}$	${ }^{2,550}$	250	11.18
${ }^{22.2 \%}$	2，000	${ }_{2}^{2,365}$	${ }^{365}$	${ }^{18.2 \%}$	${ }^{22.2 \%}$	${ }^{2,250}$	2，500	250	11.18
23．5\％	2，000	2，361	${ }^{361}$	18．1\％	23．5\％	2，250	2，500	250	11．1\％
${ }^{24.59 \%}$	2，000	2，250	250	${ }^{12.55 \%}$	${ }^{24.79 \%}$	${ }^{2} 2.008$	2，500	492	
25．9\％	2，000	2，250	250	${ }^{12.55 \%}$	25．9\％	2.000	2，500	500	
27．2\％	2,000	2，250	250	12．5\％	27．2\％	${ }^{2}, 000$	2，500	500	
${ }^{28.46}$	${ }_{2}^{2,000}$	2,000	0	0．0\％	28．4\％	2，000	2，500	500	${ }^{25.0 \%}$
30．9\％	2，000	2，000	0	0．0\％	30．9\％	2，000	2，500	500	25．0\％
32．1\％	2，000	，000	0	0．0\％	32．1\％	2．000	2．250	250	
33．3\％	1，896		104	5．5\％	33．3\％	2，000	2，250		
34．6\％	1，770	2，000	230	13．0\％	34．6\％	2，000	2，008	8	
35．7\％	1，750	2，000	250	14．3\％	35．8\％	2，000	2，000	0	
37．\％	1，750	2，000	250	14．3\％	37．\％	2，000	2,000	0	
38．3\％	1，750	1，864	114	6．5\％	38．3\％	2，000	2，000	0	
39．5\％	1，750	${ }^{1,849}$	99	5．6\％	39．5\％	2，000	2，000	0	0．0\％
40．7\％	1，750	1，770	20	1．1\％	40．7\％	2.000	2.000	0	0．0\％
42．0\％	1，500	1，750	250	16．7\％	42．0\％	2，000	2，000	0	0．0\％
43．2\％	1，500	＋1，750	250	${ }^{16.7 \%}$	43．2\％	2，000	2，000	0	0．0\％
44．4\％	1，500	${ }^{1.672}$	172	11．5\％	44．4\％	${ }^{1,949}$	${ }_{2}^{2,000}$	51	2．6\％
45．7\％	1，500	1，615	115	7．7\％	45．7\％	${ }^{1,821}$	2.000	179	9．8\％
${ }^{46.1 \%}$	1，500	1，516	16	1．1\％	46．9\％\％	＋1，752	2.000	248 240 250	14．2\％
49．4\％	${ }_{1}^{1,500}$	1.500 1.500	0	0．0\％	48．4\％	${ }^{1} 1.750$	${ }_{2,000}^{2.000}$	250	${ }_{14.3 \%}^{14.3 \%}$
50．6\％	1，500	1.500	0	0．0\％	50．6\％	1，750	2,000	250	14．3\％
51．9\％	${ }^{1,500}$	${ }^{1,500}$	0	0．0\％	51．9\％	${ }^{1,734}$	2，000	266	15．3\％
年53．1\％	1，500	1，500	0	0．0\％	53．19\％	1，692	2，000	308	
						${ }^{1,677}$			
56．8\％	${ }_{1}^{1,500}$	${ }_{1,500}^{1.500}$	0	0．0\％	55．8\％\％	${ }_{1}^{1,656}$	${ }_{1}^{2,049}$	${ }_{2} 223$	1177\％
58．0\％	1，500	1，500	0	0．0\％	58．\％	1.613	1，821	207	
59．3\％	1，500	1，500	0	0．0\％	59．3\％	1，500	1，752	252	16.8
60．5\％	1，500	1，500	0	0．0\％	60．5\％	1，500	1，750	250	16．7\％
61．7\％	1，500	1，500	0	0．0\％	61．7\％	1，500	1，750	250	
63．0\％	1，500	1，500	0	0．0\％	63．0\％	1，500	1，734	234	
64.2% 654%	1，500	1，500	0	0．0\％	64．2\％	1，500	1，692	192	12.8
${ }^{65.4 \%}$	1，500	1，500	0	0．0\％	65．4\％	1，500	${ }^{1,676}$	176	11．7\％
－ $6.6 .7 \%$	1，500	1，500	0	0．0\％	66．7\％	1，500	1，656	156	10．4\％
69．1\％	${ }^{1,500}$	1，500	0	0．0\％	67．9\％	1，500	${ }^{1,654}$	154	${ }^{10.3 \%}$
－ 70.49%	1，500	1，500	0	0．0\％	69．1\％	${ }^{1,500}$	1，613	113	70\％
71．6\％	1，500	1，500	0	0．0\％	70．4\％	1，500	1，500		\％
71．2\％\％	（1，500	1,500 1.500	\bigcirc	0．0\％	71．6\％	1.500 1.500	＋1，500	\bigcirc	0．0\％
74．1\％	${ }_{1}^{1,500}$	${ }_{1}^{1,500}$	0	0．0\％	74．1\％	1，500	1，500	0	0．0\％
75．3\％	1，500	1，500	0	0．0\％	75．3\％	1，500	1，500	0	0．0\％
76．5\％	1，500	1，500	0	0．0\％	76．5\％	1，500	1，500	0	0．0\％
79．0\％	1.500 1.500	1.500 1.500	0	0．0\％	79．0\％	${ }_{1,500}^{1.500}$	${ }_{1,500}^{1.500}$	\bigcirc	0．0\％
80．2\％	1，500	${ }_{1,500}$	0	0．0\％	80．2\％	${ }_{1,500}$	${ }_{1,500}$	0	
81．5\％	1，500	1，500	0	0．0\％	81．5\％	1，500	1，500	0	
${ }^{82.7 \%}$	1，500	1，500	0	0．0\％	82．7\％	1，500	1，500	0	
－${ }_{\text {84．0\％}} 8.5$	1，500	1，500		0．0\％	84．0\％	${ }^{1,500}$	1，500	0	0．0\％
－${ }_{\text {85．4\％}}$	${ }_{1}^{1,481}$	1,500 1,500	${ }_{19}$	1．3\％	85．2\％	${ }^{1,500}$	${ }_{1}^{1,500}$	0	0．0\％
87．7\％	1.363	1.474	111	8．1\％	87．7\％	1，500	1，500		0．0\％
88．9\％	1，250	1，250	0	0．0\％	88．9\％	1，250	1，500	250	20．0\％
90．1\％	1，250	1，137	－113	－9．0\％	90．1\％	1，250	1，500	250	20．0\％
91．4\％	1，130	1，111	-18	－1．6\％	91．4\％	1，250	${ }^{1,500}$	250	20．0\％
92．6\％	${ }^{1,0655}$	${ }^{1.073}$	8	0．8\％	92．6\％	${ }^{1,250}$	${ }^{1,500}$	250	20．0\％
${ }^{93.8 \%} 9$	1，000	${ }_{701}^{831}$	－169	－16．9\％	${ }^{93.8 \%}$	1,030 1000 1	1，500	470	55．7\％
96．3\％	${ }^{66}$	80	14		96．3\％	1,000	${ }_{1,436}^{1.400}$	${ }_{436}$	43．6\％
97．5\％	29	43	14		97．5\％	836	${ }^{1,345}$	509	60．9\％
90．0．0．	0	${ }_{0}$			9．0．8\％ 100\％	189	${ }_{74}$	${ }_{-116}$	－60．1\％

Clear Creek below Whiskeytown Reservoir, Monthly Flow

Table SW-06-b
Clear Creek below Whiskeytow Rosesenci, Monthly Fiow

		$\frac{\text { DCR } 2015 \text { With Project }}{\text { Monthy Fow (CFs) }}$	Absolute Difference	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
${ }^{\text {Probe }}$	Monhly fow (crs)	Montly Flow (CFS)	(CFS)	0.0\%
1.2\%	200	200	0	0.0\%
2.5\%	200	200	0	0.0\%
3.7\%	200	200	0	0.0\%
4.9\%	200 200	200 200	0	0.0\%
${ }^{6.2 \%}$	200	${ }_{200}^{200}$	0	0.0\%
8.6\%	200	200	0	0.0\%
9.9\%	200	200	0	0.0\%
11.1\%	200	200	0	
12.3\%	200	200	0	
13.6\%	200	200	0	
14.8\%	200	200	0	
16.0\%	200	200	0	0.0\%
17.3\%	${ }^{200}$	${ }^{200}$	0	0.0\%
18.5\%	200	${ }^{200}$	0	0.0\%
19.8\%	${ }^{200}$	${ }^{200}$	0	0.0\%
21.0\%	${ }^{200}$	${ }^{200}$	0	0.0\%
${ }^{22.2 \%}$	200	${ }^{200}$	0	0.0\%
23.5\%	${ }^{200}$	200	0	
${ }^{24.79 \%}$	200	200	0	
25.9\%	200	200		
28.4\%	${ }_{200}^{200}$	${ }_{200}^{200}$	\bigcirc	0.0\%
29.6\%	200	200	0	0.0\%
30.9\%	200	200	0	0.0\%
32.1\%	200	200	0	
	200	200	0	0.0\%
34.8\%	${ }_{200}$	200	0	0.0\%
37.0\%	200	200	0	0.0\%
38.3\%	200	200	0	0.0\%
39.5\%	200	200	0	0.0\%
40.7\%	${ }^{200}$	${ }^{200}$	0	0.0\%
42.0\%	200	${ }^{200}$	0	0.0\%
43.2\%	200	200	0	0.0\%
44.4.9	${ }^{200}$	${ }^{200}$	0	0.0\%
45.7\%	200	200	0	0.0\%
46.9\%	200	200	0	0.0\%
48.4\%	200	200	0	0.0\%
50.6\%	200	200	0	${ }_{0}^{0.0 \%}$
51.9\%	200	${ }^{200}$	0	0.0\%
54.3\%	${ }_{200}^{200}$	${ }_{200}^{200}$	0	${ }^{0.0 \%}$
55.6\%	200	200	0	
56.8\%	200	200	0	0.0\%
58.0\%	200	200	0	0.0\%
59.3\%	${ }^{200}$	${ }^{200}$	0	0.0\%
60.5\%	200	${ }^{200}$	0	0.0\%
(61.7\% 6	200	200	0	0.0\%
64.2\%	200	200	0	0.0\%
65.4\%	200	200	0	0.0\%
66.7\%	200	200	0	0.0\%
67.9\%	${ }^{200}$	200	0	0.0\%
69.1\%	200	200	0	.0\%
70.4\%	${ }_{200}^{200}$	${ }_{200}^{200}$	0	0\%
71.6\%	${ }_{200}^{200}$	${ }_{200}^{200}$	0	0.0\%
74.1\%	200 200	${ }_{200}^{200}$	0	-0.0\%
75.3\%	200	200	0	0.0\%
76.5\%	200	200	0	0.0\%
77.8\%	200 200	200 200	\bigcirc	-0.0\%
80.2\%	200	200	0	\%
81.5\%	150	150	0	\%
82.7\%	150	150	0	0\%
84.0\%	150	150	0	0.0\%
${ }^{85.2 \%}$	${ }^{150}$	150	0	0\%
${ }^{86.4 \%}$	150	150	0	0.0\%
877\%\%	150	150 150 150	0	0.0\%
${ }^{88.9 \%}$	150	${ }^{150}$	0	0.0\%
${ }^{90.14 \%}$	150 150	150 150	0	0.0\%
92.6\%	150	150	0	0.0\%
93.\%	150	150	0	0.0\%
95.1\%	150	150 150 150	0	0.0\%
96. 96.5%	+150	150 150 150	0	0.0\%
98.8\%	150	150	0	0.0\%
100.0\%	70	70		

Table SW-06-b
Clear Creee beelow Whiskeytow-06-besenoir, Monthly Fow Probabiliy of Exceedance

		Fabruary		
	DCR2015 Without	DCR 2015 With Project	Absolute Difference	Rela
Probability	Monthy fow (CFS)	Monthy flow (CFS)		fference (\%)
0.0\%	710	3,000	2,290	322.8\%
1.2\%	200	710	510	254.8\%
2.5\%	200	200	0	0.0\%
3.7\%	200	200	0	0.0\%
4.9\%	${ }^{200}$	${ }^{200}$	0	0.0\%
6.2\%	${ }^{200}$	${ }^{200}$	0	0.0\%
7.4\%	200	${ }^{200}$	0	0.0\%
8.9\%	${ }^{200}$	200	0	0.0\%
9.9\%	200 200	${ }^{200}$	0	0.0\%
- 11.1%	200 200	200 200	0	0.0\%
13.6\%	200	${ }_{200}^{200}$	0	0.0\%
14.8\%	${ }^{200}$	${ }^{200}$	0	0.0\%
- 16.0%	200	200	0	0.0\%
${ }^{18.5 \%}$	${ }_{200}^{200}$	200 200	0	0.0\%
19.8\%	200	200	0	0.0\%
21.0\%	200	200	0	0.0\%
22.2\%	200	200	0	0.0\%
${ }^{23.5 \%}$	${ }^{200}$	${ }^{200}$	0	0.0\%
24.7\%	200	200	0	0.0\%
25.9\%	${ }^{200}$	${ }^{200}$	0	0.0\%
27.2\%	${ }^{200}$	${ }^{200}$	0	0.0\%
28.4\%	200	${ }^{200}$	0	0.0\%
29.6\%	200 200	200 200	0	0.0\%
32.1\%	${ }_{200}^{200}$	200 200	0	- 0.0%
33,3\%	200	200	0	0.0\%
34.6\%	200	${ }^{200}$	0	0.0\%
355.8\%	200 200	200 200	0	0.0\%
38.3\%	200	200	0	0.0\%
39.5\%	200	200	0	0.0\%
42.0\%	200	200	0	0.0\%
43.2\%	200	200	0	0.0\%
44.4\%	200	200	0	0.0\%
45.7\%	200	200	0	0.0\%
46.9\%	200	200	0	0.0\%
48.1\%	200	200	0	0.0\%
49.4\%	200	200	0	${ }^{0.0 \%}$
51.9\%	200	200	0	0.0\%
53.1\%	200	200	0	0.0\%
54.3\%	200	200	0	0.0\%
	200 200	${ }_{200}^{200}$	0	0.0\%
56.8\%	200 200	200 200	0	0.0\%
59.3\%	${ }_{200}^{200}$	${ }_{200}^{200}$	0	0.0\%
60.5\%	${ }^{200}$	${ }^{200}$	0	0.0\%
61.7\%	200	200	0	0.0\%
-63.0\%	200 200	200 200	0	- 0.0%
65.4\%	200	200	0	0.0\%
${ }^{66.7 \%}$	200	${ }^{200}$	0	0.0\%
67.9\%	200	200	0	0.0\%
70.4\%	200	200	0	${ }^{0.0 \% \%}$
71.6\%	200	200	0	0.0\%
72.8\%	200	200	0	0.0\%
74.1\%	200	200	0	0.0\%
75.3\%	200	200	0	0.0\%
76.5\%	${ }^{200}$	${ }^{200}$	0	0.0\%
77.8\%	200	200	0	0.0\%
80.2\%	${ }_{200}^{200}$	${ }_{200}^{200}$	0	0.0\%
81.5\%	${ }^{200}$	200	0	0.0\%
82.7\%	200	200 150	0	0.0\%
84.0\%	200	$\begin{array}{r}150 \\ 150 \\ \hline\end{array}$	-50	-25.0\%
${ }_{8}^{86.4 \%}$	${ }_{150} 150$	${ }_{150}$	0	0.0\%
87.7\%	150	150	0	\%
88.9\%	150	150	0	0.0\%
90.1\%	150	150	0	0.0\%
914.4\%	150	150	0	0.0\%
92.6\%	150	150	0	0.0\%
93.8\%	150	150	0	0.0\%
95.19\%	150	150	0	0.0\%
96.3\%	150	150	0	0.0\%
97.5\%	150	150	0	- 5.0%
(98.8\%	150 70	70 68	${ }_{-8} 8$	-53.3\% ${ }_{-3.5}$

Table SW-06-b
Clear Creeek below Whiskeytow Row-esenoir , Monthly Fiow
Probability of Exceedance

Figure SW-07-b
Shasta Lake, End of Month Storage

		Octobe		
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	DCR 2015 Without Proiect	DCR 2015 With Project	Abso	Relative
Probability $(\%)$	End of Month Storage (TAF)	End of Month Storage (TAF)	(itar)	Difference (\%)
0.0\%	${ }^{3} 250$	${ }_{3}{ }^{250}$	0	\%
1.2\%	3,250	3,250	0	
2.5\%	3,250	3,250	0	
3.7\%	3,250	3,250	0	
4.9\%	3,250	3,250	0	
6.2\%	3,250	3,250	0	0.0\%
7.4\%	${ }^{3,248}$	3,250	2	1\%
8.6\%	3,242	3,250	8	
9.9\%	3,237	3,250	13	
11.1\%	3,200	3,250	50	1.6\%
12.3\%	3,200	3,242	${ }^{42}$	1.3\%
13.6\%	3,200	3,238	${ }^{38}$	2\%
14.8\%	3,200	3,224	${ }^{24}$	7\%
16.0\%	3,200	3,216	${ }^{16}$	0.5\%
17.3\%	3,193	3,214	21	0.7\%
18.5\%	3,160	3,205	45	1.44\%
19.8\%	3,157	3,204	${ }^{46}$	1.5\%
22.0\%	3,136	${ }^{3,203}$	67	${ }_{2.15}$
22.5\%	3,121	3,200	79	${ }_{2.5 \%}^{2.5 \%}$
224.7\%	3,113	${ }_{3,200}^{3,200}$	87 87	2.8\%
25.9\%	3,108	3,197	89	2.9\%
	3,092 3.066	退,162 3,146	70 80	
229.6\%			${ }_{68}^{80}$	${ }_{22 \%}^{2.0 \%}$
30.9\%	3,059	3.120	61	
32.1\%	3,050	3,120	70	
33.3\%	3.043	3,112	69	
34.6\%	2,976	3,077	101	
${ }^{35.8 \%}$	2,969	${ }^{3}, 060$	91	3.1\%
37.0\%	2,964	3,056	92	3.1\%
	2,945	${ }^{3}, 055$	110	3.7\%
39.5\%	2,939	3,025	${ }^{86}$	2.9\%
40.7\%	2,931	2,995	${ }_{59}$	2.2\%
42.0\%	2,924	2,981	${ }^{58}$	2.0\%
43.2\%\%	2.864 2859 289	${ }_{2}^{2,980}$	${ }_{116}^{116}$	4.0\%
45.7\%	2,859	${ }_{2}^{2,971}$	118	${ }^{4.19 \%}$
46.9\%	${ }_{2}^{2,85}$	${ }_{2}^{2,954}$	104	3.3\%
48.1\%	2,843	2,951	108	3.8\%
49.4\%	2,762	2,948	186	6.7\%
551.9\%	${ }_{\text {2,750 }}^{2.759}$	${ }_{2}^{2,904}$	188 153	5.6\%
53.1\%	${ }_{2}^{2,748}$	${ }_{2}^{2,890}$	141	5
54.3\%	2,731	2,885	154	5.7\%
55.8.8\%	2,775	${ }^{2,876}$	161	5.9\%
58.0\%	${ }_{2,695}^{2,109}$	${ }_{2,856}^{2.867}$	${ }_{161}$	6.0\%
59.3\%	2.678	2.854	176	6.6\%
	2,668	${ }^{2,853}$	186	
61.7\%	2,638	${ }^{2,773}$	${ }^{135}$	5.1\%
63.2.2\%	2.619	2,709	91	3.5\%
65.4\% ${ }^{64.2 \%}$	2.584	2,658	74	2.9\%
66.7\%	2,546 $\substack{2,588 \\ \hline}$	${ }_{2,634}^{2,650}$	${ }_{95}^{104}$	${ }^{4.19 \%}$
67.9\%	2.500	2,612	111	4.5\%
69.1\%	${ }_{2,477}$	2,604	127	5.1\%
70.4\%	2.477 2.422	${ }_{2}^{2.601}$	124 165 16	5.0\%
72.8\%\%	2,422 2.414	- 2.587	${ }^{165}$	${ }_{6}^{6.8 \%}$
74.1\%	-	${ }_{2,518}^{2.578}$	${ }_{171}^{163}$	7.3\%
75.3\%	2,343	2.506	164	7.0\%
76.5\%	${ }_{2}^{2,303}$	2,486	183	8.0\%
79.0\%	${ }_{2,169}^{2,42}$	${ }_{\text {2,419 }}^{2,476}$	${ }_{250}^{234}$	${ }^{10.5 \%}$
80.2\%	${ }_{2}^{2,127}$	${ }_{2}^{2,286}$	160	7.5\%
${ }^{81.5 \%}$	${ }^{2,125}$	2,259	${ }^{133}$	6.3\%
${ }^{82.7 \%}$	2,091	2,252	161	7.7\%
84.0\%	${ }^{2,034}$	2,183 179	149	7.3\%
85.2\%	1,985	2,179	194	9.8\%
${ }^{86.4 \%}$	${ }^{1,807}$	2,172	${ }^{366}$	20.2\%
877.7\%	+1,763	1,964	200	11.4\%
88.9\%	1,679	1,947 1.971 1	268	16.0\%
990.4\%	-1,461	- $\begin{aligned} & 1,761 \\ & 1,693\end{aligned}$	330 307	${ }_{2}^{20.6 \%}$
92.6\%	1.096	1,340	244	22.2\%
93.8\%	1,068	1,261	192	18.0\%
99.3\%	6868	${ }_{9} 960$	310	45.2\%
99.3\%	650	950	300	46.2\%
98.8\%	${ }_{564}^{628}$	802	${ }_{238} 32$	42.2\%
100.0\%	550	613	63	11.4\%

$\begin{aligned} & \hline \text { Percent } \\ & \substack{\text { Excedance } \\ \text { Probabilily }} \end{aligned}$	February			
	${ }_{\text {DCR }}^{\substack{\text { D } 2015 \text { Without } \\ \text { Proiet }}}$	DCR 201	${ }^{\text {absolute }}$	Relative
	f Month st	Montr S	(titereme	Herence (\%)
\% \%	(TAF)	(TAF)		
0.0\%	4,433	4,037	${ }^{396}$	8.9\%
1.2\%	4,022	4,022	0	0.0\%
2.5\%	3,994	3,994	0	0.0\%
3.7\%	3,944	3,944	0	0.0\%
4.9\%	${ }^{3,920}$	${ }^{3,920}$	0	0.0\%
${ }^{6.2 \%}$	3,914	3,914	0	0.0\%
7.4\%	3,910	${ }^{3,848}$	${ }^{62}$	-1.6\%
8.6\%	${ }^{3,848}$	${ }^{3,848}$	0	0.0\%
9.9\%\%	${ }^{3,848}$	${ }^{3,8388}$	${ }^{10}$	-0.3\%
19.1\%\%	- 3.809	-	-1	
12.3\%	3,805	-	-	0.0\%
-14.8\%	-	¢	-17	-0.4\%
16.0\%	3,777	3,772	-5	-0.19
17.3\%	${ }^{3,772}$	3,743	30	-0.8\%
18.5\%	3,772	3,739	${ }^{33}$	
19.8\%	3,743	3,737	-5	-0.1\%
21.0\%	3,739	3,731	-8	-0.2\%
22.2\%	3,737	${ }^{3,713}$	${ }^{24}$	0.7\%
23.5\%	3,773	3,702	${ }^{-11}$	0.3\%
24.7\%	3,694	3,694	0	0.0\%
25.9\%	- 3.675	3,675	0	0.0\%
27.2\%	3,661	3,669	${ }^{8}$	0.2\%
28.4\%	(3,654	3,661	7	0.2\%
	3,654 3 3,648	3,654	0	0.0\%
- 3 30.9\%	${ }^{3,648}$	${ }^{3,654}$	6	0.2\%
32.1\%	${ }^{3,638}$	${ }^{3,636}$	-2	-0.1\%
	${ }^{3.636}$	${ }^{3.628}$	-8	-0.5\%
34.6% 3588%	- $\begin{aligned} & 3.5670 \\ & 3,567\end{aligned}$	$\begin{array}{r}3.588 \\ \hline\end{array}$	${ }^{18}$	
- $\begin{aligned} & 35.8 \% \\ & 370 \%\end{aligned}$	3,567	${ }^{3,570}$	${ }^{3}$	
38.3\%	- ${ }_{\text {3,560 }}$		30	\%
39.5\%	3,516	3,554	${ }_{38}$	1.1\%
40.7\%	3,516	3,531	15	
42.0\%	3.509	3,530	21	0.6\%
43.2\%	3,503	3.516	13	
4.4.4\%	3,493	3,503	10	0.3\%
45.7\%	3,487	3,498	11	0.3\%
46.9\%	3,480	3,480	0	0.0\%
48.19\%	3.462	3,462	0	0.0\%
49.4\%	3,431	3,431	0	0.0\%
	${ }^{3,423}$	${ }^{3,423}$	0	0.0\%
51.9\%	${ }^{3,392}$	3,405	${ }^{13}$	0.4\%
53.1\%	3,391	3,403	13	0.4\%
54.3\% 5 5 5	-3,376 3,354		-9	${ }^{-0.3 \%}$
55.6\%	${ }_{\text {3,354 }}$	3,359	5	-
年56.8\%\%	- 3,331	- 3,350	20	-0.0\%
59.3\%	-	-3,351	${ }^{6}$	${ }_{\text {- }}^{0.0 .2 \% \%}$
60.5\%	3,288	co. 3,299	10	0.3\%
61.7\%	3,288	3,292	4	\%
63.0\%	3,282	3,292	10	0.3\%
	3,280	${ }^{3,288}$	8	0.2\%
${ }^{65.7 \%}$	${ }_{\substack{3.272 \\ 3,252}}^{\text {2, }}$	${ }_{\substack{3.282 \\ 3.276}}^{\text {a, }}$	${ }_{24}$	0.7\%
67.9\%	3,252	${ }_{3,270}$	18	0.5\%
69.1\%	3,252	3,253	1	0\%
70.4\%	3,252	3,252	0	0.0\%
71.6\%	3,249	3,252	3	0.1\%
72.8\%	${ }_{3}^{3,230}$	3,252	${ }^{22}$	0.7\%
74.19\%	3,210	3,252	${ }^{42}$	1.3\%
	3,208	3,252	44	${ }^{1.4 \%}$
76.5\%	3,148	3,184	${ }^{36}$	1.1\%
77.8\%	3,146	3,164	18	0.6\%
89.0\%	2,944	${ }^{3}, 063$	119	${ }^{4.0 \%}$
-	${ }_{2}^{2,832}$	${ }^{3,052}$	220	7.8\%
- ${ }_{\text {812.7\% }}^{8.5}$	2,832	3,021	189	${ }^{6.7 \%}$
82.7% 840%	2, ${ }_{2,793}^{2,783}$	-	131 95	4.0\%\%
885.2\%	¢	2,887	${ }_{29}^{95}$	3.0\%
${ }_{\text {c }}^{\text {85.4\% }}$	${ }_{\text {2,752 }}^{2,785}$	${ }_{\substack{2.778 \\ 2.788}}^{\text {2, }}$	${ }_{26}^{29}$	1.0\%
87,7\%	2,313	2,604	291	2\%\%
88.9\%	2,297	2.579	283	\%
90.1\%	2,238	2.560	322	14.4\%
91.4\%	2,170	2,555	385	177\%
92.6\%	2,142	2,251	109	5.1\%
${ }_{\text {9 }} 93.8 .1 \%$	1,892 1,844 1	2,232	${ }^{340}$	-17.9\%
96.3\%	${ }_{1,381}$	${ }_{1,674}$	${ }_{293}$	21.2\%
97.5\%	1,311	1.447	136	10.4
988\%\%	1,171	${ }^{1,397}$	${ }_{127}^{227}$	19.3\%
100.0\%	1.073	1,257	184	17.2\%

Shasta Lake, End of Month Elevation

Table SW-08-b
stat Lake, End of Month Elevation

	October		$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ (\text { FFETET } \end{gathered}$	Relative
${ }_{\text {Percean }}^{\text {Exceance }}$	DCR 2015 Without Proiect	DCR 2015 With Project		
Probability	End of Month Elevation	End of Month Elevation		Difference (\%)
0.0\%	1,017	1,017	0	0.0\%
1.2\%	1.017	1.017	0	
2.5\%	1,017	1.017	0	
3.7\%	1,017	1.017	0	
4.9\%	1,017	1,017	0	
6.2\%	1.017	1.017	0	0.0\%
7.4\%	1,017	1,017	0	
8.6\%	1,017	1.017	0	0.0\%
9.9\%	${ }^{1,016}$	1.017	1	0.1\%
11.1\%	${ }^{1,015}$	1.017	2	0.2\%
${ }^{12.3 \%}$	${ }^{1,015}$	1,017	${ }_{2}$	0.2\%
	${ }_{1015}^{1,015}$	+1016		0.2\%
${ }^{16.0 \% \%}$	1.015	${ }^{1}$		${ }^{0.1 \%}$
17.3\%	${ }_{1}^{1,014}$	${ }_{1,015}^{1,015}$	1	0.1\%
18.5\%	1,013	1,015	2	0.2\%
	${ }^{1,013}$	1,015		
22.0\%	1011	1015	${ }^{3}$	
23.5\%	1,011	1,015	3	0.3\%
24.7\%	1,011	1,015	4	0.4\%
${ }^{257.2 \%}$	1,011	1.015	4	0.4\%
28.4\%	1,010 1,009	-1,013 ${ }_{1}^{1,012}$	3 3	${ }_{0}^{0.3 \% \%}$
29.6\%	1,009	1,012	3	0.3\%
30.9\%	1,009	1.011	3	0.3\%
32.1\%	1,008	1,011	${ }^{3}$	0.3\%
33.3\%	1.008	1.011	3	0.3\%
34.6\%	${ }^{1,005}$	1,009	4	0.4\%
35.8\%	${ }^{1,005}$	1,009	4	0.4\%
37.0\%	${ }^{1,0004}$	${ }^{1,008}$	4	0.4\%
年38.3\%	+1,004	${ }^{1,0008}$	5	0.5\%
- ${ }^{3.7 \%}$	${ }^{1,003}$	1.007	4	${ }^{0.4 \%}$
${ }^{40.70 \%}$	${ }_{1}^{1,003}$	${ }^{1}$		0.3\%
43.2\%	1,000	1,005	5	
44.4\%	1,000	1,005	5	
45.7\%	1,000	1,004	5	
46.9\%		1,004		0.4\%
48.1\% 49	999	${ }^{1,004}$	5	0.5\%
50.6\%	${ }_{996}^{996}$	${ }_{1}^{1,004}$	${ }_{8}^{8}$	0.8\%
51.9\%	995	1,002	7	0.7\%
53.1\%	995	1,001	6	0.6\%
54.3\%	994	1,001	7	0.7\%
55.6\%	994	1,001	7	0.7\%
56.8% 580%	993	1,000	7	0.7\%
	993	${ }^{1,000}$	7	0.7\%
- ${ }_{\text {co.5\% }}$	992	${ }^{1,000}$	8	0.8\%
61.7\%	990	${ }_{996}$	${ }_{6}$	0.6\%
63.0\%	989	993	4	0.4\%
64.2\%	${ }_{988}^{988}$	${ }_{991}^{991}$	5	崖.5\%\%
65.4% 66.7%	${ }_{986}^{986}$	${ }_{991}^{991}$	${ }_{4}^{5}$	0.5\%
- 6 6.7.9\%	${ }_{984}^{986}$	999	${ }_{5}^{4}$	0.4\%\%
69.1\%	983	989	6	0.6\%
70.4\%	983	989	6	0.6\%
71.6\%	980	988	8	0.9\%
774.1\%	979	988	8	0.9\%
75.3\%	975	985	9	1.0\%
76.5\%	973	983	10	1.1\%
77.8\%	969	983	13	1.4\%
79.0\%	965	980	14	1.5\%
-	963	972	9	0.9\%
81.5\% 88.7%	963	970	8	0.8\%
84.0\%	${ }_{958}^{951}$	${ }_{966} 9$	9	0.9\%
85.2\%	955	966	${ }^{11}$	1.2\%
${ }^{88.4 \%}$	${ }_{945}$	${ }_{964}^{996}$	21	2.2\%
887.7\%	${ }_{937}^{942}$	${ }_{954}^{954}$	15	+1.2\%
${ }^{88.9 \%} 9$	${ }_{921}^{937}$	${ }_{942}^{953}$	${ }_{21}^{15}$	${ }^{1.6 \%}$
91.4\%	914	${ }_{938} 9$	${ }_{25}^{21}$	2.7\%
92.6\%	893	913	20	2.2\%
${ }^{93.85 \%}$	890	907	17	1.9\%
96.3\%	${ }_{846} 8$	${ }_{877}^{887}$	${ }_{31}^{32}$	- ${ }_{\text {3.7\% }}^{\text {3.7\% }}$
97.5\%	844	877	${ }^{33}$	4.0\%
98.8\%	837 834	${ }_{8}^{862}$	25	3.0\%
100.0\%	834	842	8	1.0\%

Table SW-08-b
sta Lake. End of Wonthelevation
Shasta Lake, End of Month Elevation
Probabality of Exceedance

Table SW-08-b
 Shasta Lake, End of Mortht Elevation

		June		
$\underset{\substack{\text { Percent } \\ \text { Exceadance }}}{ }$	$\underset{\substack{\text { DCR } 2015 \text { Without } \\ \text { Proiect }}}{ }$	DCR 2015 With Project		
Probability	End of Month Elevation	End of Month Elevation	Difference	Difference (\%)
${ }^{\text {l\% }}$ (\%)\%	(EEET)	(EEET)		
1.2\%	1.065	${ }^{1,0655}$,	0.0\%
2.5\%	${ }_{1}^{1,0655}$	${ }_{1}^{1,0654}$	0	\%
3.7\%	1,065	${ }_{1}^{1,063}$	-2	${ }^{-0.2 \%}$
4.9\%	1,065	1,063	-2	-0.2\%
6.2\%	1,065	1,063	-3	-0.2\%
7.4\%\%	1,065 1.065	1,062 1,062 10,	${ }_{3}^{3}$	-0.3\% ${ }_{-0.3 \%}$
9.9\%\%	${ }_{1}^{1,0654}$	${ }_{1,062}^{1,062}$	${ }_{-}-$	-0.2\%
11.1\%	1,064	1,062	-2	-0.2
12.3\%	1,064	1,061	${ }^{3}$	
13.6\%	${ }_{1}^{1,063}$	1,061	2	
14.8\%	${ }^{1,062}$	1,061	2	
16.0\%	1,060	1,060	0	
- ${ }^{17.3 \%}$ 18.5\%	${ }^{1,060}$	${ }^{1,060}$	0	0.0\%
${ }^{18.5 \%}$ 19.8\%	-	1,059	-1	${ }_{\text {- }}^{\text {-0.1\% }}$
21.0\%	1,059	1,059	-1	0.0\%
22.2\%	1,059	1,058	-1	-0.1\%
23.5\%	1,059	1,058	-1	-0.1\%
24.7\%	${ }_{1}^{1,055}$	1,058	0	0.0\%
${ }^{25.7 .2 \%}$	${ }_{1}^{1,055}$	${ }^{1,0558}$	0	-0.0\%
28.4\%	1,056	1,056	0	0.0\%
29.6\%	${ }^{1,056}$	${ }^{1,056}$	0	0.0\%
32.1\%	${ }_{1}^{1,055}$	${ }_{1}^{1,056}$	1	0.1\%
33.3\%	1.054	1.056	2	0.2\%
34.6\%		${ }^{1,056}$	${ }_{2}$	0.2\%
357.\%\%	${ }_{1}^{1,053}$	${ }_{1,056}^{1,056}$	2	0.2\%
38.3\%	1,050	1,056	5	
39.5\%	1,049	1,053	4	0.4\%
${ }^{40.7 \%}$	1,049	${ }^{1,053}$	4	0.4\%
${ }^{43.2 \%}$	${ }_{1}^{1,047}$	1,053	${ }_{5}^{4}$	0.5\%
44.4\%	1,047	1,052	5	0.4\%
45.7\%	1,046	${ }_{1}^{1,052}$	5	0.5\%
${ }^{46.9 \%}$	1,046	${ }^{1,052}$	6	0.5\%
${ }^{48.19 \%}$	${ }^{1,043}$	1.051	8	0.7\%
50.6\%	${ }_{1}^{1,042}$	1,049 1 1	${ }_{7}$	0.7\%
51.9\%	${ }_{1}^{1,041}$	${ }^{1,048}$	7	0.7\%
年 53.1 \%	1,041 1 1	1,048		0.7\%
55.6\%	1,039 1 1	${ }_{1,046}^{1,048}$	8	0.7\%
56.8\%	1,038	1,045	7	0.7\%
年58.0\%	${ }^{1,038}$	${ }^{1,043}$		
60.5\%	${ }_{1,037}^{10,037}$	${ }_{1}^{1,043}$	5	0.5\%
61.7\%	1,034	1,042	8	0.8\%
-63.0\%	1.034	1,041	8	0.7\%
${ }^{64.2 \%}$ 6.4\%	1, ${ }_{1,033}^{1,034}$	1,038 1 1	${ }_{8}^{6}$	0.7\%
66.7\%	1,027	1,036	10	0.9\%
67.9\%	1,027 $\substack{1025 \\ 1}$	1,033	${ }^{6}$	0.6\%
	1,025	1,032	7	0.7\%
70.4\%	${ }_{1}^{1,025}$	1,030	5	0.5\%
71.6\%	1,024	1,029	4	0.4\%
74.1\%	1,019	${ }_{1}^{1,026}$	7	0.7\%
75.3\%	${ }^{1,018}$	${ }_{1}^{1,025}$		0.7\%
76.5\%	1,016 1015 1	1,023	7	0.7\%
77.8\%	1,015 1.013	1,021 1.020 1	${ }_{7}$	0.6\%
80.2\%	${ }_{1,012}^{1,013}$	${ }_{1}^{1,017}$	5	0.5\%
81.5\%	1,009	1.015	6	0.6\%
82.7% 840%	${ }_{1}^{1,007}$	1,015	8	0.8\%
${ }^{84.2 \%}$	${ }_{1}^{1,000}$	${ }_{1}^{1,009}$	${ }_{8}$	0.8\%
86.4\%	995	1,006	11	1.1\%
87.7\%	993	1,006	13	1.3\%
88.9\%	991	995	4	0.4\%
90.1\%\%	${ }_{962}^{990}$	${ }_{996}^{996}$	${ }_{24}^{24}$	${ }_{\text {2 }} 0.2 \%$ \%
92.6\%	949	964	15	1.5\%
93.8\%	942	963	21	2.2\%
95.1\%	${ }_{992} 9$	${ }_{961} 96$	${ }_{21}^{20}$	2.1\%
96.3\%	${ }^{935}$	${ }_{9} 96$	21	${ }_{2}^{2.2 \%}$
${ }_{98,8 \%}^{97.5 \%}$	${ }_{906}^{931}$	${ }_{939} 9$	${ }_{33}^{22}$	2.3\%
-100.0\%	904	923	19	2.1\%

Figure $5 W$-09-b
Shasta Lake, End of Month Area

		Ociober		
$\stackrel{\text { Percent }}{\stackrel{\text { Prceedance }}{ }}$	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 W With Project	Absolute	Relaive
Probability	End of Montht Area	End of Month Area	Difference (ACRE)	Difference (\%)
0.0\%	${ }_{2}$ (ACRE)	${ }_{2 \text { (ACRE) }}$		
1.2\%	${ }_{23,927}^{23,07}$	${ }_{23,927}^{2,}$	0	0.0\%
2.5\%	23,927	${ }^{23,927}$	0	
3.7\%	23,927	${ }^{23,927}$	0	
4.9\%	23,927	23,927	0	
6.2\%	${ }^{23,927}$	${ }^{23,927}$	0	0.0\%
7.4\%	${ }^{23,915}$	${ }^{23,927}$	12	0.0\%
${ }_{\text {9.9\% }}$	${ }_{23,855}^{23,81}$	${ }_{\substack{23,927 \\ 23,927}}^{23,27}$	${ }_{71}^{45}$	${ }^{0.2 .2 \%}$
11.1\%	23,659	${ }^{23,927}$	267	1.18
12.3\%	23,659	23,886	226	
13.6\%	23,659	23,863	204	
14.8\%	23,659	23,787	128	0.5\%
-16.0\%	23,659	23,743	84	0.4\%
17.3\%	${ }^{23,624}$	23,735	111	0.5\%
18.5\%	${ }^{23,446}$	${ }^{23,685}$	${ }^{239}$	1.0\%
19.8\%	23,432	${ }^{23,678}$	247	1.1\%
21.0\%	${ }^{23,318}$	${ }^{23,677}$	359	1.5\%
${ }_{\text {22, }}^{22.2 \%}$	23,239	${ }^{23,659}$	${ }^{421}$	1.8\%
23.5\%	${ }^{23,229}$	${ }^{23,659}$	430	1.98
24.7\%	${ }^{23,193}$	23,659	467	${ }_{2}^{2.0 \%}$
${ }^{25.7 .2 \%}$	${ }^{23,168}$	${ }^{23,642}$	475	${ }^{2.0 \%}$
	${ }^{23,080}$	2,3,455	374	${ }^{1.6 \%}$
-	${ }_{22,234}^{22,943}$	${ }_{\text {23, }}^{23,397}$	${ }_{363}^{427}$	
-	${ }_{22,206}^{22,94}$	${ }^{23,233}$	${ }_{326} 36$. 4 \%
32.1\%	${ }_{22,858}^{22,06}$	${ }_{2}^{23,232}$	${ }_{374}^{326}$	1.6\%
33.3\%	22,819	23,187	368	1.6\%
34.6\%	${ }^{22,461}$	${ }^{23,003}$	542	2.4\%
37.0\%	${ }_{22,400}^{22,42}$	${ }_{22,890}^{22,92}$	${ }_{490}$	${ }_{2}^{2.2 \%}$
38.3\%	22,295	22,884	588	
39.5\%	22,268	22,727	459	2.1\%
40.7\%	22,224	22,566	343	1.5\%
42.0\%	22,182	22,492	309	1.4\%
43.2\%	${ }^{21,865}$	${ }^{22,483}$	619	2.8\%
${ }^{44.4 .4 \%}$	${ }^{21,838}$	22,470	632	${ }_{2}^{2.9 \%}$
45.7\%	${ }_{21,828}$	${ }^{22,384}$	555	2.5\%
46.9\%	${ }^{21,802}$	${ }^{22,347}$	545	2.5\%
48.1\% 4.4	${ }^{21,753}$	${ }^{22,328}$	575	2.6\%
49.4\%	${ }^{21,320}$	${ }^{22,315}$	995	4.7\%\%
	${ }^{21,302}$	${ }^{22,304}$	1.002	4.7\%
53.1\%	${ }_{\substack{21,258 \\ 21247}}$	${ }_{22,001}^{22,076}$	818	${ }^{3.5 \%}$
54.3\%	21,154	${ }^{21,978}$	824	3.9\%
年55.6\%	21,069 21030	${ }_{2}^{21,1927}$	858	4.1\%
59.3\%	${ }_{20,872}^{20,94}$	${ }_{\text {21,810 }}^{21,823}$	${ }_{938}$	4.5\%
60.5\%	20.816	21,807	991	4.8\%
61.7\%	20,655	${ }^{21,376}$	${ }^{721}$	3.5\%
-63.0\%	20.553	21,039	486	2.4\%
- ${ }^{64.2 \%}$ 6.4\%	${ }^{20,366}$	20.764	397	\%
${ }_{66.7 \%}$	${ }_{20,123}^{20,107}$	${ }^{20,634}$	550	2.5\%
67.9\%	19,916	20,517	602	3.0\%
69.1\%	19.779	20,474	696	3.5\%
70.4\%	19,778 19.461	20,459	${ }_{9}^{680}$	3.4\%
71.6\%	19,461 19.418	${ }^{20,383}$	${ }_{917}^{922}$	4.7\%
72.8\%	$\xrightarrow{19,418} 10.024$	${ }_{20,015}^{20,34}$	${ }_{991}^{917}$	年.7\%\%
75.3\%	19,002	19,950	948	5.0\%
76.5\%	18,770	19,831	1,061	5.7\%
77.8\%	18.417	19,774	1,357	7.4\%
79.0\%	17,997 17751	19,446	${ }^{1,429}$	8.1\%
-	17,751 17743 181	18,675 18.516	924 772	5.4.9\%
82.7\%	17.547	18,477	930	
84.0\%	17,217	18.079	862	
85.2\%	16,933	18.056	${ }^{1,123}$	6.6\%
- 86.4%	$\begin{array}{r}15.898 \\ 15.646 \\ \hline 1\end{array}$	18.015	${ }^{2,117}$	13.3\%
88.9\%	15,157	${ }_{\text {10,712 }}^{10,07}$	${ }_{1}^{1,555}$	-10.3\%
90.1\%	13.810	15.637	${ }_{1,826}$	13.2\%
914.4\%	${ }^{13,165}$	${ }^{15,242}$	2,077	15.8\%
92.6\%	${ }^{11,424}$	(13.063	${ }^{1,640}$	14.4\%
${ }^{93.8 \%} 9$	- 11,198	${ }^{12,574}$	-1.376	- $\begin{aligned} & \text { 12.3\% } \\ & 30.7 \%\end{aligned}$
96.3\%	7.828	10,244	${ }_{2,416}^{2,46}$	30.9\%
97.5\%	7,652	10,244	${ }_{2}^{2,592}$	33.9\%
98.8\%	7,129	${ }^{9,053}$	${ }_{1,924}$	27.0\%
100.0\%	7,002	7,530	528	7.5\%

Table SW－09－b

Percent Exceanace Probability	bray			
	${ }^{\text {DCR } 2015 \text { Pritout }}$	DCR 2015 With Project		Relative
	Of Month	of Month A	（ACRE）	Herence（\％）
00	（ACRE）	${ }^{\text {ACRR }}$		
	${ }^{29,490}$	${ }^{21,790}$	－1，700	－5．8\％
1．2\％	${ }^{27,726}$	${ }^{27,726}$	0	
2．5\％	${ }^{27,607}$	${ }^{27,607}$	0	
3．7\％	${ }^{27,391}$	27，391	0	
4．9\％	27，288	27，288	0	
6．2\％	27，262	${ }^{27,262}$	0	\％
7．4\％	27，243	${ }^{26,979}$	264	
8．6\％	26，979	${ }^{26,979}$	0	0．0\％
9．9\％	26，979	${ }^{26,936}$	${ }^{43}$	－0．2\％
11．1\％	${ }^{26,810}$	${ }^{26,807}$	－3	
${ }^{12.3 \%}$	${ }^{26,796}$	${ }^{26,796}$	0	
13．4\％\％	${ }^{26,774}$	${ }^{26,748}$	－26	
14．8\％	${ }^{26,748}$	${ }^{20,675}$	－73	
（16．0\％	${ }_{26,654}^{20.65}$	${ }_{2}^{26,527}$	${ }_{-127}^{-23}$	－0．5\％
18．5\％	26，651	26，512	140	
19．8\％	26，527	26，505	－22	
21．0\％	${ }^{26,512}$	26，479	32	\％
22．2\％	26，505	26，400	105	
${ }^{23.5 \%}$	26.400	26，340	－60	2\％
24．7\％	26，298	26，298	0	0．0\％
25．9\％	26，197	26，197	0	0．0\％
27．2\％	${ }^{26,122}$	26，162	${ }^{40}$	0．2\％
28．4\％	26，085	${ }^{26,122}$	37	0．1\％
29．6\％	${ }^{26,085}$	26，085	0	0．0\％
30．9\％	${ }^{26,053}$	26，085	32	0．1\％
32．1\％	${ }^{26,000}$	${ }^{25.989}$	－11	0．0\％
33．3\％	${ }^{25.989}$	${ }^{25.5944}$	${ }^{-45}$	－0．2\％
34．6\％	${ }^{25.634}$	${ }^{25,732}$	98	0．4\％
${ }^{35.78 \%}$	${ }^{25.620}$	${ }^{25.634}$	14	
37．0\％	${ }^{25.583}$	25,220 2558	$\begin{array}{r}37 \\ 160 \\ \hline\end{array}$	
38．3\％	${ }^{25.422}$	20，583	160	
39．7\％	${ }^{25.348}$	${ }^{25.551}$	203	\％
42．0\％	${ }_{25,310}$	${ }_{\text {25，422 }}$	112	0．4\％
43．2\％	25，279	25，348	69	
44．4．9		25，279	${ }_{53}$	
46．9\％	${ }_{\text {25，}}^{255}$	${ }^{25,254}$	5	0．0\％
48．1\％	${ }^{25,059}$	${ }_{25,059}^{2,515}$	0	0．0\％
49．4\％	24，893	24，893	0	0．0\％
50．6\％	24，851	24，851	0	\％
51．9\％	24，687	24，755	${ }^{68}$	\％
年 53.19%	${ }^{24,678}$	24，745	67	0．3\％
54．3\％	24,602	24，556	${ }^{45}$	－0．2\％
55．6\％	${ }^{24,481}$	24，510	${ }_{105}^{28}$	0．1\％
56．8\％	24，357	24，461	105	0．4\％
年58．0\％\％	${ }_{\text {24，}}^{24,305}$	24，271 24， 199	${ }^{33}$	${ }^{0.1 \%}$
年 $6.5 .5 \%$	${ }_{\text {2，}}^{24,131}$	24，199	${ }^{48}$	源
${ }^{60.5 \%}$ 617\％	24，131 24.130	${ }^{24,186}$	${ }_{21}^{55}$	0．2\％ 0
63．0\％	24，095	${ }_{24,150}^{24,51}$	${ }_{55}$	0．2\％
64．2\％	24，086	24，130	44	0．2\％
65．4\％	24，044	24，095	51	0．2\％
${ }^{66.77 \%}$	${ }_{\text {cke }}^{\text {23，938 }}$	24，064	126	
69．1\％	${ }_{\text {23，937 }}$	${ }_{2}^{23,944}$	7	0．0\％
70．4\％	${ }^{23,937}$		1	0．0\％
7．6\％	23，923	23，937	14	\％
72．8\％	${ }_{\text {2，}}^{2,821}$	23,37 2，937 2，	${ }^{116}$	0．5\％
74．1\％	23，715	${ }^{23,937}$	222	\％
－75．3\％	23，703	${ }^{23,937}$	${ }^{234}$	1．0\％
76．5\％	23，380	${ }^{23,572}$	191	0．8\％
778．8\％	${ }_{2}^{23,370}$	${ }^{23,465}$	95	0．4\％
79．0\％	22，294	${ }^{22,928}$	634	2．8\％
80．2\％	${ }^{21,695}$	${ }^{22,869}$	${ }^{1,174}$	5．4\％
81．5\％	21，694	${ }^{22,705}$	1，011	${ }^{4.7 \% \%}$
－ 82.78	${ }^{21,598}$	${ }^{22,296}$	${ }^{698}$	3．2\％\％
－ 8 84．0\％	${ }^{21,483}$	${ }^{21,988}$	505	2．4\％
－ 85.20	${ }^{21,445}$	${ }^{21,1,998}$	151	0.7%
${ }^{86.4 \%}$	21，264	21，405	141	\％
${ }^{888.79 \%}$	${ }^{188,831}$	${ }^{20,343}$	${ }_{1}^{1.6644}$	${ }^{8.76 \%}$
${ }_{90.1 \%}$	18，397	${ }_{20,240}^{20,480}$	${ }_{1}^{1,844}$	10．0\％
1．4\％	18，01	20，212	2，211	12．3\％
92．6\％	17.841	${ }^{18,472}$	631	\％
－93．8\％	16，394	18，360	1，966	12．0\％
96．3\％	13，316	15.126	${ }_{1}^{1,889}$	13．6\％
97．\％	${ }^{12,885}$	24	839	6．5\％
98．8\％	12，018	13，417	1，399	11．6\％
100．0\％	11，231	12，549	1，317	11．7\％

Shastat abeke End of MMont Area

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	June			
	${ }_{\text {Promer }}^{\text {Proiect }}$	DCR 2015 With	${ }^{\text {Absolute }}$ Differese	Relative
	End of Month	of Month	(ifierence	ifference \%)
(\%)	(ACRE)	ACRE)		
${ }^{0.0 \% \%}$	29,776	29,776	0	0.0\%
1.2\%\%	${ }^{29,776}$	${ }^{29,776}$	0	0.0\%
2.5\%	${ }^{29,776}$	29,659	-118	
3.7\%	29,776	29,565	-211	
4.9\%	29,776	${ }^{29,509}$	-268	
${ }^{6.2 \%}$	29,776	29.473	-303	-1.0\%
7.4\%	29,776	29,445	-331	-1.1\%
8.6\%	29,776	29,440	${ }_{-37}$	
9.9\%\%	${ }^{29,636}$	29,439	-197	-0.7\%
19.1\%\%	29,634	${ }^{29,391}$	-243	-0.8\%
12.3\%	${ }_{29,527}^{29,632}$	${ }_{2}^{2,9315}$	-271	
14.8\%	${ }_{29,942}^{29,527}$	${ }_{29,244}$	-297	-0.7\%
16.0\%	29,136	29,167	31	
17.3\%	29,131	29,140	9	0.0\%
18.5\%	29,104	29,021	83	-0.3\%
19.8\%	29,091	9,00	84	-0.3\%
21.0\%	29,064	29,022	${ }^{62}$	-0.2\%
22.2\%	29,046	28,975	-71	0.2\%
23.5\%	29,013	28,945	${ }^{69}$	-0.2\%
24.7\%	28,870	28,907	37	0.1\%
25.9\%	${ }^{28,805}$	28,860	55	0.2\%
27.2\%	${ }^{28,711}$	${ }^{28,746}$	${ }^{35}$	0.1\%
28.4\%	${ }^{28,683}$	${ }^{28,727}$	44	0.2\%
	${ }^{28,653}$	${ }^{28,685}$	${ }^{32}$	0.17\%
- 3 30.9\%	28,593	28.675	82	0.6\%
32.1\%	28,912	28,674	163	0.6\%
	28,465	${ }^{28.665}$	199	0.7\%
34.6% 358%	28,451	28.643	192	0.8\%
- $\begin{aligned} & 35.8 \% \\ & 370 \%\end{aligned}$	${ }_{28,437}^{28,413}$	${ }^{28.636}$	223	
38.3\%	${ }^{28,347}$	${ }_{28,631}^{28,63}$	285	2.3\%
39.5\%	${ }_{\text {27 } 27.829}^{2,09}$	${ }_{28,366}$	${ }_{537}$	1.9\%
40.7\%	27,809	28,342	532	
42.0\%	${ }^{27,796}$	28,334	539	
44.4\%	${ }^{27,658}$	${ }_{\text {28, }}^{28,57}$	549	2.1\%
45.7\%	${ }^{27,497}$	${ }_{28,153}^{20,57}$	656	24\%
46.9\%	27,478	28,141	663	2.4\%
48.1\%	27,177	28.115	937	3.4\%
49.4\%	27,123	27,820	696	2.6\%
50.6\%	${ }^{26,953}$	${ }^{277815}$	862	3.2\%
51.9\%	${ }^{26,862}$	${ }^{27,711}$	849	${ }_{3}^{3.2 \%}$
53.1\%	${ }^{26,842}$	27,700	857	${ }_{3}^{3.2 \%}$
54.3\% 5 5 5	${ }^{26,647}$	${ }^{27,665}$	${ }^{1,018}$	${ }_{3}^{3.8 \%}$
55.6\%	${ }^{26,630}$	${ }^{27,483}$	${ }_{841}^{853}$	-
56.0\%	${ }_{26,548}^{26,567}$	27,408 27136	${ }_{588}^{841}$	2.2\%
59.3\%	${ }_{26,485}^{20,68}$	${ }^{27,068}$	584	2.2\%
60.5\%	${ }^{26,424}$	${ }^{27,060}$	${ }_{6}^{636}$	2.4\%
1.7\%	26,050			
63.0\%	${ }_{2}^{25.996}$	${ }_{2}^{26,928}$	937	5\%\%
${ }^{64.24 \%}$	${ }_{2}^{25,981}$		643	
${ }^{656.7 \%}$	${ }_{\text {25, }}^{253}$	${ }_{\text {26,295 }}^{20,54}$	1,172 18	3.7\%
67.9\%	25,117	${ }_{25,864}$	747	
9.1\%	24,907	25,810	903	\%\%
70.4\%	24,877	${ }^{25.532}$	655	2.6\%
71.6\%	24,828	${ }^{25,377}$	549	2\%\%
72.8\%	24,554	25,047	493	2.0\%
74.19\%	24,156	${ }^{25,000}$	${ }_{844}$	${ }^{3.5 \%}$
- 75.3 .5	24,089	24,952	863	${ }_{3}^{3.6 \%}$
76.5\%	23,91	24,06	915	3.8\%
77.8\%	${ }^{23,659}$	${ }^{24,385}$	725	${ }_{3}^{3.1 \%}$
- ${ }^{79.0 \%}$	${ }^{23,462}$	${ }^{24,339}$	878	${ }_{2}^{3.7 \%}$
- ${ }_{\text {80.2\% }}^{815 \%}$	${ }_{\text {2, }}^{23,292}$	${ }_{\text {cke }}^{23,892}$	${ }_{781} 601$	${ }_{3}^{2.6 \%}$
${ }^{81.27 \%}$	${ }_{\text {22, } 2,995}^{2,29}$	${ }_{\text {23,637 }}^{23,695}$	${ }_{942}^{781}$	${ }^{3.42 \%}$
84.0\%	22,037	22,997	960	4.4\%
85.2\%	21,865	22,904	${ }_{1}^{1,039}$.8\%
86.4\%	21,270	22,638	1,368	6.4\%
87.7\%	20,979	22,533	1,554	\%
88.9\%	20,717	21,214	497	2.4\%
90.1\%	20,594	20,842	248	1.2\%
${ }^{91.46 \%}$	17,647	20,121 17816	2,474	14.0\%
${ }_{93}^{92.6 \%}$	16,325 15.629	17,816 17,735	$\xrightarrow{1,491} \begin{aligned} & \text { 2,105 }\end{aligned}$	${ }^{9.19 .5 \%}$
95.1\%	15,568	17,588	2.019	
9.3\%	14,969	7,064	2,095	
97.5\%	${ }^{14,582}$	16,670 15304 1	2,088 2,793	${ }^{14.3 \%}$
98.8\% 100.	${ }^{12,511}$	${ }^{15,304}$	${ }^{2,793}$	$c223130$
100.0\%	12,316	13,922	1.606	13.\%

Figure SW-10-b
Sacramento River below Keswick Reservoir, Monthly Flow

Table SW-10-b

Table SW-10-b

Tabbl SW-10-b
beeow Keswick Resen

| |
| :--- | :--- | :--- | :--- |

Figure SW-11-b
Sacramento River at Bend Bridge, Monthly Flow

\begin{tabular}{|c|c|c|c|c|}
\hline Proobabity \& ${ }^{\text {a }}$ \& ${ }^{\text {hinf }}$ H6， 890 \& ${ }_{\text {［CFSS }}$ \&

\hline 1．2\％ \& 20，315 \& 22，350 \& ${ }_{2}^{2,034}$ \& 10．0\％

\hline 2．5\％ \& 14，889 \& 16，089 \& 1，101 \& 7．3\％

\hline 3．7\％ \& 14，538 \& 14,788 \& 250 \& 1．7\％

\hline 4．9\％ \& 14,329 \& 14，539 \& 209 \& \％

\hline 6．2\％ \& 13，376 \& 14，451 \& 1.076 \& \％

\hline 7．4\％ \& 13，303 \& 13，775 \& 472 \& 5\％

\hline 8．6\％ \& 13，011 \& 13，472 \& 461 \& 5\％

\hline 9．9\％ \& 12，688 \& 13，285 \& 597 \& \％

\hline 11．1\％ \& 12.628 \& 13，211 \& 583 \& 4．6\％

\hline 12．3\％ \& 12，372 \& 13，124 \& 753 \& 6．1\％

\hline 13．6\％ \& 12,370 \& 12，964 \& 594 \& 4．8\％

\hline 14．8\％ \& ${ }^{12,354}$ \& 12,665 \& 311 \& \％

\hline 16．0\％ \& ${ }^{12,224}$ \& 12，613 \& 390 \& 3．2\％

\hline 17．3\％ \& 12，40 \& 12，553 \& 443 \& 3．7\％

\hline 18．5\％ \& 12，121 \& ${ }^{12,500}$ \& 379 \& 3．1\％

\hline 19．8\％ \& 12，102 \& 12，251 \& 150 \& 1．2\％

\hline 21．0\％ \& ${ }^{12,067}$ \& 12，073 \& 6 \& \％

\hline ${ }^{22.2 \%}$ \& －11，743 \& 12，047 \& 304 \& 2．6\％

\hline ${ }^{23.5 \%}$ \& 11，723 \& 111886 \& 125 \& 1．19\％

\hline 24．7\％ \& 11，654 \& ${ }_{111564}$ \& 53 \& 0．9\％

\hline 27．2\％ \& ${ }^{11,507}$ \& ${ }^{111.564}$ \& $\stackrel{13}{-70}$ \& －0．1\％

\hline 28．4\％ \& 11，497 \& 11,303 \& －193 \& \％

\hline 29．6\％ \& 11，074 \& 11，258 \& 184 \&

\hline 30．9\％ \& 10，992 \& 11，111 \& 119 \& \％

\hline 32．1\％ \& 10，834 \& 11，069 \& \& 2．2\％

\hline 33．3\％ \& 10，830 \& 10，865 \& 35 \& 0．3\％

\hline 34．6\％ \& 10，714 \& 10，821 \& 107 \& 1．0\％

\hline ${ }^{35.8 \%}$ \& 10，543 \& 10，746 \& 203 \& 1．9\％

\hline 37．0\％ \& 10，289 \& 10，605 \& 316 \& 3．1\％

\hline 38．3\％ \& 10，217 \& 10，596 \& 378 \& 3．7\％

\hline 39．5\％ \& ${ }^{9,943}$ \& 10，503 \& 560 \& 5．6\％

\hline 40．7\％ \& ${ }^{9.826}$ \& 10，121 \& 295 \& 3．0\％

\hline 42．0\％ \& 9，760 \& 10，004 \& 244 \& 2．5\％

\hline ${ }^{43.2 \%}$ \& ${ }_{\text {9，}}^{9.646}$ \& 9，598 \& －17 \& 0．8\％

\hline ${ }^{44.4 \%}$ \& 9，446
9，131 \& 9．986 \& 140 \& ${ }^{1.5 \%}$

\hline ${ }^{45.7 \%}$ \& ${ }_{9}^{9,1733}$ \& 9，316 \& 185 \& 2．0\％

\hline ${ }^{46.9 \%}$ \& ${ }_{8}^{8,733}$ \& 9，075 \& ${ }^{342}$ \& 3．9\％

\hline 49.4% \& ${ }_{8}^{8.536}$ \& 8，954 \& 428 \& －

\hline 50．6\％ \& 7.919 \& ${ }_{8,627}$ \& 708 \& 8．9\％

\hline ${ }^{51.9 \%}$ \& ${ }_{7}^{7.843}$ \& 8，428 \& 584 \& 4\％

\hline 53．1\％ \& ${ }_{7}^{7.815}$ \& 8,355 \& 540 \& 9\％

\hline 54．3\％ \& 7,774 \& 8.194 \& 420 \& 5．4\％

\hline 年5．5．6\％ \& $\begin{array}{r}7,692 \\ 7586 \\ \hline\end{array}$ \& 7，975 \& ${ }^{283}$ \& 3．7\％

\hline 56．0\％ \& 7,586
7334
7 \& ${ }_{7}^{7,880}$ \& ${ }^{293}$ \& 3．9\％

\hline 59．3\％ \& 7，312 \& 7，821 \& 510 \& 7．0\％

\hline 60．5\％ \& 7，267 \& 7，770 \& 503 \& 6．9\％

\hline 61．7\％ \& 7，258 \& 77760 \& 502 \& 6．9\％

\hline 63．0\％ \& 7，163 \& 7，595 \& 432 \& 6．0\％

\hline ${ }^{64.2 \%}$ \& ${ }_{\text {c，}}^{6,828}$ \& 7.587 \& 760 \& 11．1\％

\hline 65．4\％ \& ${ }^{6.821}$ \& 7.271 \& 450 \& 6．6\％

\hline ${ }^{66.7 \%}$ \& 6，794 \& 7，165 \& ${ }^{371}$ \& 5．5\％

\hline 67．9\％ \& ，6，737 \& ${ }^{6,956}$ \& ${ }_{2}^{219}$ \& 3．3\％

\hline 69．1\％ \& ${ }^{6,695}$ \& 6，923 \& ${ }^{228}$ \& 3．4\％

\hline 70．4\％ \& ${ }^{6,566}$ \& 6，790 \& 224 \& \％

\hline ${ }^{71.68 \%}$ \& － 6,363 \& 6．688 \& 325

259 \& 5．1\％

\hline 74．1\％ \& ¢，${ }_{6}^{6,340}$ \& ${ }_{6}^{6.665}$ \& 259
256 \& 4．1\％

\hline 75．3\％ \& 6，164 \& 6，366 \& 202 \& 3．3\％

\hline 76．5\％ \& 6，159 \& 6，044 \& －115 \& 9\％

\hline 77．8\％ \& 5．978 \& 5，794 \& －184 \& 3．1\％

\hline 79．0\％ \& 5，799 \& 5，759 \& －41 \& 0．7\％

\hline 80．${ }^{80.5 \%}$ \& ${ }_{\text {5，668 }}^{5.687}$ \& 5，730
5.622 \& ${ }_{-42}^{42}$ \& 0．7\％

\hline 82．7\％ \& ${ }_{5,629}^{50.689}$ \& 5．400 \& -229
-29 \& －4．1\％

\hline 84．0\％ \& 5，579 \& 5，394 \& －186 \& 3．3\％

\hline 85．2\％ \& ${ }^{5} 5.544$ \& 5，277 \& 267 \& －4．8\％

\hline 86．4\％ \& ${ }^{5.493}$ \& 5.114 \& 380 \& 6．9\％

\hline 877\％ \& ${ }^{5.326}$ \& 4．848 \& ${ }^{478}$ \& 9．0\％

\hline 88．9\％ \& 5，235 \& 4，794 \& －461 \& 8．8\％

\hline 90．1\％ \& 5，154 \& 4，548 \& －606 \& －11．8\％

\hline 9，${ }_{9}^{91.4 \%}$ \& | 5.113 |
| :--- |
| , 850 | \& 4，439 \& －675 \& －13．2\％

\hline ${ }^{93.8 \%}$ \& ${ }_{4,733}^{4.850}$ \& 4，280 \& －453 \& －9．6\％

\hline 95．1\％ \& 4，538 \& 4.260 \& －278 \& －6．1\％

\hline 96．3\％ \& 4，493 \& 4，256 \& ${ }^{237}$ \& \％

\hline 9．8．8\％ \& ${ }_{4,114}^{4,285}$ \& 4，210 \& ${ }^{-96}$ \& 2．33\％

\hline
\end{tabular}

Percent	DCR 2015 Wethout		$\begin{gathered} \text { Absolue } \\ \text { Bifference } \\ \text { (CFss) } \end{gathered}$	RelativeDifference $(\%)$
Exceedance Probability	${ }_{\text {Monthly foiet }}^{\text {Prows }}$	DCR 2015 W With Project Monthy Flow（CFFS）		
0．0\％	42，830	41,148	${ }_{-1,682}$	－3．9\％
1．2\％	42，053	41.062	－991	－2．4\％
2．5\％	35，016	34，995	－21	－0．1\％
3．7\％	34，923	34，921	－2	0．0\％
4．9\％	32，464	${ }^{31,838}$	－627	－1．9\％
6．2\％	30，610	30，339	－271	－0．9\％
7．4\％	2，9，97	29,917	－10	0．0\％
8．6\％	29，701	29，696	－5	0．0\％
9．9\％	${ }_{\text {23，}}^{23,995}$	24，153	158 ${ }_{48}$	0．7\％
${ }^{11.12 \%}$	${ }^{23,822}$	管， 23.8196	${ }_{2}^{4.461}$	－0．2\％
13．6\％	21，349	${ }^{22,067}$	718	3．4\％
14．8\％	${ }^{21,025}$	${ }^{21,771}$	746	${ }^{3.5 \%}$
－${ }^{16.0 \%}$	${ }^{18,36}$	${ }_{2}^{21,415}$	${ }_{4}^{3} 4.459$	${ }_{223.3 \%}^{18.7 \%}$
18．5\％	15.960	19.547	3，587	22．5\％
19．8\％	15.095	17.344	2，249	14．9\％
21．0\％	14，891	14，892	1	0．0\％
${ }^{22.2 \%}$ 2．5\％	${ }^{14,5,566}$	14,545 14,036	－11	－0．0\％
24．7\％	13,715	13，820	105	0．8\％
25．9\％	13，581	13，409	－171	－1．3\％
27．2\％	11，966	12，765	799	6．7\％
28．4\％	11.860 111470	${ }^{11,846}$	－13	－0．1\％
29．6\％	11，470	11，466	－4	0．0\％\％
30．9\％	${ }^{10,320}$	10，351	31	0．3\％
32．1\％	${ }^{9,276}$	${ }^{10,320}$	${ }^{1,043}$	11．2\％
管33．3\％	9,108 9 9	（10，091	983 185	
34.6% 358%	9，090	9,274 9 9	185	2．0\％
退35．8\％	${ }_{\text {¢ }}^{\substack{9,986}}$	${ }_{9}^{9,0088}$	$\stackrel{2}{140}$	－
38．3\％	${ }_{8,882}$	8,945	63	0．7\％
42．0\％	${ }_{8,465}^{\text {8．427 }}$	${ }_{8,733}$	${ }_{268}$	3．2\％
43．2\％	7，766	8，227	462	5．9\％
44．4\％	7.414	${ }_{8}^{8,173}$	749	10
45．7\％	7，381	7，772	391	5．3\％
46．9\％	${ }_{7}^{7,364}$	7，766	402	5．5\％
48．1\％	${ }_{7}^{7,340}$	7，596	256	3．5\％
49．4\％	7,231 7157 1	7．525	294	4．1\％
51．9\％	7，038	7，411	${ }_{373}$	5．3\％
53．1\％	6，954	7，359	405	5．8\％
54．3\％	6，938	${ }_{7}^{7,340}$	402	5．8\％
55．6\％	6，787	7，230	443	6．5\％
56.8% 58.0%	6,781 6.679	7,109 7,100	${ }_{421}^{328}$	${ }_{6.3 \%}^{4.8 \%}$
59．3\％	${ }_{6,665}^{6.679}$	6，954	${ }_{299} 29$	${ }^{6.5 \%}$
60．5\％	6，583	6，936	353	5．4\％
617\％\％	${ }_{6}^{6,320}$	${ }^{6,776}$	${ }^{455}$	7．2\％
63．0\％	－6，279	㐌，607	${ }_{324}^{327}$	
6．5．4\％	¢，${ }_{6,24}^{6,266}$	6，524	380 280	${ }_{4.5 \%}^{5.2 \%}$
66．7\％	6，230	6，452	222	3．6\％
67．9\％	6，146	6，450	304	
69．1\％	${ }^{6,001}$	6，410	409	${ }_{\text {c．8\％}}^{6.3 \%}$
70．1．2\％	${ }_{5,958}^{5,977}$	ci，${ }_{6,258}^{6,294}$	317 300	${ }_{\text {5．0\％}}^{5.3 \%}$
72．8\％	5．868	6,254	${ }_{386}$	6．6\％
74．1\％	5，835	6，187	352	6．0\％
75．3\％	5，689	6，164	476	8．4\％
${ }^{76.5 \%}$	5．581	6，159	578 505	10．3\％
77．8\％	5.562 5.52	6,067 5.960	505 408	9．1\％
79．0\％	${ }_{\substack{5.552 \\ 5,529}}^{5}$	${ }_{5}^{5.9860}$	${ }_{314}^{408}$	7．7．7\％
81．5\％	5，483	5，685	202	3．7\％
82．7\％	5．430	¢，5．668	${ }_{2}^{238}$	4．4\％
－84．0\％	${ }_{5}^{5,2851}$	㐌5．312	162 90	3．0\％
86．4\％	5，271	${ }_{5,348}^{5}$	77	1．5\％
87．7\％	5，235	5，330	95	1．8\％
${ }^{88.9 \%} 9$	5,156 5.127	5,230 5.134 5，	74	
91．4\％	4，933	${ }_{\text {5，130 }}$	197	4．0\％
92．6\％	4．815	4，785	${ }^{30}$	－0．6\％
93．8\％	4，739	4，730	－9	－0．2\％
${ }_{96.3 \%}^{95.1 \%}$	4，779	4，725	${ }^{6}$	－ 0.01%
97．5\％	4，524	4，314	-211	－4．7\％
98．8\％ 100．0\％	4,145 3,986	4，148		0．1\％

Table SW－11－b

 \begin{tabular}{lllll}
12.3% \& 25,171 \& 25,176 \& 5 \& 0.0%

13.6% \& 23,94 \& 23,863 \& -31 \& -0.1%

14.8% \& 21,39 \& 21,394 \& 2 \& 0.02%

16.0% \& 20,534 \& 20,537 \& 4 \& 0.0%

\hline

14.8% \& 21,392 \& 21,394 \& 2 \& 0.0%

16.0% \& 20.534 \& 20.537 \& 4 \& 0.0%

17.3% \& 19,938 \& 19.938 \& 1 \& 0.0%

18.5% \& 19.994 \& 19.136 \& -558 \& -2.8%

\hline
\end{tabular}

 34．6\％
$\left.\begin{array}{ll}35.8 \% & 12,345 \\ & 11746 \\ \hline\end{array}\right)$

$\underset{\substack{\text { Pererent } \\ \text { Excedance }}}{\substack{\text { ．} \\ \hline}}$	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 W With Project	Absolute Difference	Relative
Probability	Monthly fow（cFs）	Monthly Fiow（CFS）	（CFF）	
0．0\％	41,237	${ }^{41,238}$	1	0．0\％
${ }_{2}^{1.5 \%}$	33,742 24.735	33,744 24，738	${ }_{3}$	－${ }_{\text {a }}^{0.0 \%}$
3．7\％	${ }_{23,685}$	${ }_{23,602}^{24,50}$	－83	－0．4\％
4．9\％	22，403	22.525	122	0．5\％
6．2\％	22.085	18，007	4，079	
7．4\％	17，949	17.949	0	
8．6\％	17，618	17，620	3	
9．9\％	17.586	17，589	3	
11．1\％	16，929	16，930	1	
12．3\％	16，888	16，895	7	
13．6\％	16，211	16，212	1	0．0\％
14．8\％	15，752	15，754	1	0．0\％
16．7\％	${ }^{14.581}$	${ }^{14,583}$	3	0．0\％
${ }^{17.3 \%}$	14，337	${ }^{14,346}$	8	0．1\％
18．5\％	14，180	14，189	9	0．1\％
19．8\％	13，401	${ }^{13,201}$	200	－1．5\％
21．0\％	${ }^{13,200}$	${ }_{1}^{12,390}$	810	－6．1\％
${ }^{22.2 \%}$	${ }^{11,1,964}$	12，146	181	${ }^{1.5 \%}$
23．5\％	11，179	111，965	246	2．17\％
2．5．9\％	10，888	${ }_{11,308}^{102}$	420	3．9\％
27．2\％	10，582	9，944	－638	
28．4\％	10，332	9，539	793	
29．6\％	${ }^{9,8858}$	${ }^{9,405}$	452	－4．6\％
32．1\％	${ }_{9.445}^{9.94}$	${ }_{9.262}^{9.262}$	182	－1．9\％
33．3\％	9，443	9，117	326	－3．5\％
34．6\％	9，263	${ }^{8,985}$	278	
35．8\％	9，187	8，930	－258	－2．8\％
37．0\％	9，158	8.901	257	－2．8\％
38．3\％	8，930	${ }^{8.830}$	－99	－1．1\％
39．5\％	${ }^{8.925}$	${ }^{8.8000}$	125	－1．4\％
40．7\％	8.837 8.796	8，753	－84	－1．0\％
42．0\％	8，796	8，750	46	－0．5\％
${ }^{43.2 \%}$	－${ }_{8,744}^{8,742}$	8,743 8.655	－1	00\％
${ }^{44.46}$	－ $\begin{aligned} & 8,742 \\ & 8,728\end{aligned}$	${ }_{\text {8，695 }}^{8,677}$	－47	
45．7\％	8，728	8，677	－51	－0．7\％
46．9\％	${ }^{8.606}$	8，666	59	\％\％
49．4\％	－	－8，558	－18	－0．2\％
50．6\％	${ }_{8,529}^{8.80}$	${ }_{8,505}^{8,505}$	－24	
51．9\％	8.524	8.504	${ }^{20}$	2\％
54．3\％	\％，438		－12	
55．6\％	${ }_{8.426}$	${ }_{8,083}^{\text {8，005 }}$	${ }_{-343}$	${ }_{-4.1 \%}$
56．8\％	${ }_{8,373}$	8,071	-303	－3．6\％
58．0\％	8,340 8020	7,926 7755	414	－5．0\％
60．5\％	${ }_{8,080}^{8,201}$	${ }_{\substack{7,735}}^{7,756}$	${ }_{-345}$	5\％
61．7\％	7，977	7，649	328	－4．1\％
63．0\％	7.804	7.629	－175	－2．2\％
64．2\％	7，695	7,7624	－71	－0．9\％
析 65.4%	7，651	7，432	－219	
66．7\％ 6790%	7，634	7,361	－273	6\％
69．1\％	7，556	7,348 7 7	－226	－2．7\％
70．4\％	7.443	7,296	－147	－2．0\％
71．6\％	7，400	${ }_{7}^{7,281}$	119	${ }^{-1.6 \%}$
74．1\％	${ }_{7}^{7,383}$	7，189	－134	－
75．3\％	7，281	7，146	${ }_{1} 135$	
76．5\％	7，234	7，095	－139	9\％
778\％	7，205	7，005	－200	－2．8\％
80．2\％	${ }_{7}^{7,056}$	6，988	－68	
81．5\％	7，009	6,887	－122	－1．7\％
82．7\％	${ }^{6.940}$	6，881	－58	3\％
84．0\％	${ }^{6.883}$	${ }^{6.845}$	${ }^{-37}$	
85．2\％	6，869	6，831	－39	－0．6\％
${ }^{86.4 \%}$	6，774	6，648	${ }^{126}$	－1．9\％
877\％\％	㐌，738	6，585	－153	道
88.9% 90.1%	${ }^{6.698}$	6，547	－151	${ }^{2.2 \%}$
90．1\％	${ }_{6,653}$	${ }_{6,523}$	131	－2．0\％
${ }_{\text {922．6\％}} 9$		6，503	－75	－1．1\％
93．8\％	${ }_{6,336}^{6,396}$	${ }_{6,224}^{6.49}$	－111	－1．8\％
95．1\％	6，335	6，183	－152	4\％
96．3\％	${ }_{\text {5 }}^{5} 5$	－6．070	294	5．1\％
998．8\％	${ }_{\text {c，}}^{5.693}$	${ }_{5}^{5.541}$	$\begin{array}{r}147 \\ \hline 1\end{array}$	－

Table SW-11-b

		Seplember		
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	${ }^{\text {DCR } 20155 \text { Without }}$ Proiet	DCR 2015 With Project	Absolute Difference	
Probability	Monthly Fow (CFFS)	Monthy Flow (cFs)	(cFF)	Difference (\%)
- $\begin{aligned} & 0.0 \% \\ & 1.2 \% \\ & 1.2 \%\end{aligned}$	${ }^{16,726}$	${ }^{16,529}$	-197	- ${ }_{-1.2 \%}^{\text {-2, }}$
- ${ }_{\text {cki.2\% }}^{2.5 \%}$	16,008	(15.446	-562	-3.5\%
3.7\%	15.517	15,292	-224	-1.4\%
4.9\%	15,515	15,268	-247	-1.6\%
6.2\%	15,449	15,235	-214	-1.4\%
7.4\%	15,415	15,145	-271	-1.8\%
9.9\%\%	15,299	14,909	-290	-2.5\%
11.1\%	${ }^{15,185}$	${ }^{14,9,97}$	-279	-1.8\%\%
12.3\%	${ }_{\text {13,865 }}$	${ }_{\text {14,774 }}$	909	6.6\%
13.6\%	${ }^{13,783}$	14,387	604	
8\%	24	14,337	813	
-16.0\%	13,441 13,350	13,872 13.802 1	${ }^{431}$	3.2\%
-17.5\%	${ }_{\text {13,327 }}^{13,350}$			1.9\%\%
19.8\%	${ }_{13,081}$	${ }^{13,327}$	24	\%9\%
21.0\%	${ }_{13}^{13067}$	13.054	14	-1\%
22.2\%	12880	13.042	162	1,
23.5\%	12.880	12,906	26	0.2\%
24.7\%	12,751	12,617	-134	-1.1\%
25.9\%	12,573	12,330	-243	-1.9\%
27.2\%	${ }^{12,224}$	${ }^{12,227}$	3	0.0\%
28.4\%	${ }^{12,1,35}$	12,049	14	0.1\%
29.6\%	${ }^{11,1780}$	11,052	-728	${ }^{-6.2 \%}$
30.9\%	111,134	10,550	-584	-5.2\%
32.1\%	${ }^{111,082}$	10,000	1,082	${ }^{-9.8 \%}$
33.3\%	10,317	9,781	-536	
34.6% 358%	-10,140	9,241	-879	
37.0\%	${ }_{9,220}^{9.529}$	${ }_{8.838}^{9.151}$	-382	-4.1\%
38.3\%	9,213	${ }_{8,455}$	-758	
39.5\%	9,142	${ }_{8,353}$	-790	
40.7\%	8.980	${ }_{8}^{8,235}$	-745	
42.0\%	${ }_{8,705}$	7,979	-726	8.3\%
43.2\%	7,250	7.694	443	6.1\%
44.4\%	7,081	7,468	387	
45.7\%	7,027	7.162	135	1.9\%
46.9\%	6,930	7,081	150	${ }^{2.2 \%}$
48.19\%	6.857	7,036	179	2.6\%
4.9.4\%	6,790	7.020	230	3.4\%\%
50.6\%	${ }^{6,628}$	7,007	380	5.7\%
51.9\%	${ }^{6,4688}$	${ }_{6,821}^{6,75}$	${ }^{352}$	${ }^{5.4 \%}$
	6,452	6,775	322	5.0\%
54.3\% 56.6%	6,400	6,7738	${ }^{339}$	5.3\%
55.6\%	${ }^{6,196}$	6,729	533	
年56.8\%\%			571	${ }^{9.3 \%}$
${ }^{58.0 \%}$	¢, ${ }_{\text {c,985 }}^{6.000}$	${ }_{6,663}^{6.659}$	668	${ }^{11.12 \%}$
60.5\%	5,962	6.618	656	
61.7\%	5,878	6,586	708	
63.0\%	5.816	${ }^{6.550}$	${ }^{733}$	6\%
64.2% 654%	5,797	6,506	${ }_{732} 7$	${ }^{12.2 .2 \%}$
${ }_{6}^{6.7 \%}$	5,708	${ }_{6,356}^{6,479}$	647	11.3\%
67.9\%	5.567	6,353	786	14.1\%
69.1\%	5.512 5.463	¢,327	${ }_{815} 8$	${ }^{14.8 \%}$
77.6\%		ci, 6,315	${ }_{920}^{853}$	+15.7\%
72.8\%	5.343	6,295	952	17.8\%
74.1\%	5,295	6,277	982	18.5\%
75.3\%	5,272	6,274	${ }^{1,002}$	19.0\%
76.5\%	5,271	${ }^{6,273}$	${ }^{1,002}$	19.0\%
77.8\%	¢,		${ }^{1,035}$	19.9\%
(79.0\%	${ }_{5}^{5,117}$	6,195	${ }^{1,0078}$	${ }^{21.1 \%}$
${ }^{801.5 \%}$	${ }_{5}^{5,1064}$	${ }_{\substack{6,145 \\ 6,14}}^{\text {6, }}$	${ }_{1}^{1,0061}$	${ }^{21.3 \%}$
82.7\%	${ }_{5}^{5.064}$	${ }_{6}^{6.017}$	953	18.8\%
	5,049	5.969	920	${ }^{18.2 \%}$
${ }^{65.25 \%}$	${ }_{4}^{4,903}$	${ }_{5}^{5,935}$	1,030	\%
${ }_{8} 8774{ }^{\circ}$				
88.9\%	4.697	${ }_{5.577}^{5.57}$	${ }_{880}$	18.7\%
90.1\%	4,694	5,354	661	
91.4\%	4,693	5,280	587	
92.6\%	4,682	5,262	580	
93.8\%	4,632	5,255	623	
95.19\%	4,559	5,181	622	${ }^{13.6 \%}$
96.3\%	4,490	4,958	468	10.4\%
998.8\%	4,471	4,940	469	10.5\%
988.8\%	$\stackrel{4,401}{4,389}$	${ }_{4,556}^{4,816}$	${ }_{167}^{415}$	3.8\%

Figure SW-12-b
Sacramento River below Red Bluff Diversion Dam, Monthly Flow

 \begin{tabular}{ll}
3.7. \& 15.0.080

3.7\% \& 14.559

4.9% \& 14.326

\hline

\& \&

\hline
\end{tabular}

22.5\%	11,62
22.7%	
22.9%	11.64
27.2%	111.52

$$
\begin{array}{ll}
-28 & -0.2 \% \\
97 & 0.8 \% \\
\hline 23 & 0.2 \% \\
-92 & -.8 \%
\end{array}
$$

$$
\begin{aligned}
& 27.2 \% \\
& 28.4 \% \\
& 29.6 \%
\end{aligned}
$$

$$
\begin{array}{cc}
28.4 \% \\
29.6 \% \\
30.9 \% & 11,505 \\
\hline 11,063 \\
\hline 1,007
\end{array}
$$

\qquad

$$
\begin{aligned}
& 33.3 \% \\
& 34.5 \% \\
& 35.8 \%
\end{aligned}
$$

$$
\begin{aligned}
& 34.6 \% \\
& 35.8 \% \\
& 37.0 \% \\
& 38.3 \% \\
& \hline
\end{aligned}
$$

$$
\begin{array}{ll}
37.0 \% & 10,382 \\
38.3 \% & 10.227 \\
3.5 \% & 9.961 \\
40.7 \% & 9,871
\end{array}
$$

\qquad

$$
\begin{array}{ll}
39.5 \% \\
4.7 \% & 9.861 \\
4.87 \% \\
\hline 9.758
\end{array}
$$

$$
\begin{aligned}
& 42.0 \% \\
& 43.2 \% \\
& 44.4 \% \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& 9,998 \\
& 99.51 \\
& 9,596 \\
& 9,326
\end{aligned}
$$

December				
Percent Exceedance	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	Absolute Difference	Relative
Probability	Monthly fow (CFS)	Monthy Fiow (CFS)	(CFS)	
0.0\%	43,105	1,319		-4.1\%
${ }^{1.2 \%}$	${ }^{42,310}$	${ }^{40.396}$	-1,913	-4.5\%
2.5\%	35,158	5,136		
3.7\%	${ }^{35,008}$	32,945	${ }_{2}^{2,123}$	-6.1\%
4.9\%	32,077	${ }_{28,387}$	${ }_{2}^{-629}$	
7.4\%	${ }^{30,014}$	${ }_{\text {28,223 }}$	-1,791	-6.0\%
8.6\%	${ }^{29,842}$	${ }^{27,716}$	-2,126	-7.1\%
9.9\%	24,062	22,099	-1,963	2\%
11.1\%	${ }^{23,898}$	${ }^{21,982}$	-1,916	-8.0\%
12.3\%	${ }^{21,478}$	${ }^{21,775}$	297	1.4\%
13.6\%	${ }^{21,473}$	${ }^{20,960}$	-513	-2.4\%
14.8\%	${ }^{21,262}$	19,771	-1,491	
16.0\%	18,437	${ }^{19,748}$	${ }^{1,310}$	7.1\%
${ }^{17.3 \%}$	17,534	19,667	2,133	${ }^{12.2 \%}$
18.5\%	${ }^{16,064}$	19,397	${ }^{3,333}$	20.7\%
19.8\%	15,215	15,394	179	1.2\%
21.0\%	14,913	14,7951	-118	
${ }^{22.2 \%}$	14,698	14,161	-538	
23.5\%	${ }^{14,4721}$	${ }^{112,576}$	-1,595	
24.79\%	${ }^{13,595}$	${ }_{11598}$		
${ }^{27.2 \%}$	${ }_{12,052}$	11,303	-749	${ }_{-6.2 \%}$
28.4\%	11,936	10,729	1,207	
29.6\%	11,602	9,802	1.800	
30.9\%	10,339	9,362	977	
32.1\%	9,364	9,172	-192	
33.3\%	9,171	8,918	253	
34.6\%	9,146	8,292	854	-9.3\%
35.8\%	9,131	8,262	-870	-9.5\%
37.0\%	8,986	8,218	-768	-8.5\%
38.3\%	${ }_{8} 8978$	${ }^{8.016}$	-962	-10.7\%
39.5\%	8,999	${ }_{8}^{8.012}$	-897	-10.1\%
40.7\%	8,772	7,843	-930	-10.6\%
42.0\%	${ }_{8}^{8,496}$	7,787	-709	-8.3\%
43.2\%	${ }_{7}^{7,842}$	7,618	-225	
44.4.9	${ }_{7}^{7,473}$	7.170	-303	-4.1\%
45.7\%	${ }_{7}^{7,415}$	7.114	-301	-4.1\%
46.9\%	${ }_{7}^{7,394}$	7,107	-287	
48.1\%	${ }_{7}^{7.380}$	7.005	-376	-5.1\%
50.6\%	7,162	6,970	-192	-2.7\%
51.9\%	7,046	6,858	188	-2.7\%
53.1\%	6,982	6,697	85	1\%
54.3\%	6,973	${ }_{6}^{6,687}$	285	-4.1\%
	6.802	6,615	-187	-29\%
58.0\%	${ }_{6,679}^{6,69}$	${ }_{6,583}^{60,59}$		
59.3\%	6.679	6.524	-155	-2.3\%
60.5\%	6.591	6,455	-136	-2.1\%
61.7\%	6,325	6,454	129	2.0\%
63.0\%	6,285	${ }^{6.415}$	130	2.1\%
64.2\%	${ }^{6,283}$	6,283	0	0.0\%
65.4\%	c, 6.251	¢, 6,263	${ }_{-28}^{12}$	${ }^{0.2 \% \%}$
67.9\%	¢,6,166 6,15		${ }^{28}$	${ }_{\text {- }}^{-0.5 \%}$
69.1\%	6,010	6.074	64	1.1\%
70.4\%	5.977 5 5968	$\begin{array}{r}5,967 \\ 5 \\ 5 \\ \hline\end{array}$	-10	-0.2\%
71.6\%	¢ 5.966	5,944	-22	
74.1\%	${ }_{\substack{\text { c.8.888 } \\ 5.857}}^{\text {c, }}$	${ }_{5.865}^{5.910}$	8	0.1\%
75.3\%	5,735	5,817	81	1.4\%
76.5\%	5.584	5.808	${ }^{224}$	0\%
77.8\%	5.564	5.732	168	
79.0\%	5.555	5.672	116	-.1\%\%
-	${ }_{\substack{\text { 5.4434 } \\ 5.483}}^{\text {c, }}$	${ }_{\substack{5.516 \\ 5.462}}^{\text {c, }}$	${ }_{21}^{28}$	
82.7\%	${ }_{5,450}^{5,5}$	5,374		${ }^{-1.4 \%}$
84.0\%	5,355	5,352	-2	0.0\%
85.2\%	5,305	5,338	33	0.6\%
86.4\%	5,274	5,246	${ }^{28}$	0.5\%
87.7\%	5,250	5,149	102	1.9\%
88.9\%	${ }_{\text {5,165 }}^{5}$	5,145 5 5 54,	${ }_{-8}{ }_{-8}$	-0.4\%
90.1\%	5,142	5,134	78	0.2\%
91.4\%	4,937	4,859 47790	-78 -30	-1.6\%
93.8\%	4,820 4770	4,790	${ }^{-30}$	${ }^{-0.6 \%}$
${ }^{955.1 \%}$	4,726	4.731	5	0.1\%
${ }^{96.3 \%}$	4,610	4,612	2	0.0\%
97.5\%	4,528	4,317	-21	,7\%
	4,148	4,150 3,93		

 \begin{tabular}{lllll}
\hline $1.2 \% \%$ \& 15.516 \& 14,942 \& -575 \& $-3.7 \% \%$

\hline 2.5% \& 15.344 \& 14,908 \& -436 \& -2.8%

\hline 3.7% \& 14.771 \& 14.869 \& 98 \& 0.7%

\hline \& 14.75% \& 14.734 \& 81 \& 0.6%

\hline

2.5\% \& 15.34

$\begin{array}{l}3.7 \% \\
4.9 \%\end{array}$ \& 14,714

\hline
\end{tabular}

 \begin{tabular}{lllll}
11.1% \& 14.522 \& 14,610 \& 88 \& 0.6%

12.3% \& 14.427 \& 14.574 \& 78 \& 0.5%

13.5% \& 14.42 \& 14.555 \& 126 \& 0.9%

14.8% \& 14.423 \& 14.491 \& 68 \& 0.5%

\hline 14%

$14.6 \% \%$ \& 14,429 \& 14,555 \& 126 \& 0.9%

14.82% \& 14.43 \& 14.491 \& 68 \& 0.5%

14.0% \& 14.47 \& 14.499 \& 33 \& 0.2%

17.3% \& 14.312 \& 14.415 \& 103 \& 0.7%

18.5% \& 14,248 \& 14.414 \& 166 \& 1.2%

\hline

18.5% \& 14,248 \& 14,414 \& 166 \& 1.2%

19.8% \& 14.230 \& 14.38 \& 1.28

21.0% \& 14.178 \& 14.032 \& -145 \& 1.10%

22.2% \& 14.122 \& 14.024 \& -98 \& -07%

\hline

22.0\%

22.2\%

23.5%

\hline

23.5%

$\begin{array}{ll}24.7 \% \\
250 \%\end{array}$ \& $\begin{array}{l}14,14,02 \\
13,9 \\
2502\end{array}$

\hline

 \qquad

3,984

3,950

1,5031

\hline
\end{tabular}

24.7%	13,929
23.929	
22.72%	13.961
28.4%	13,901

28.4%	13.868
29.6%	13.885
30.9%	13,750

$$
\begin{aligned}
& 13,875 \\
& \hline 1.863 \\
& 13.74 \\
& 13,611
\end{aligned}
$$

$$
\begin{array}{ll}
30.9 \% & 13,750 \\
32.1 \% & 13772 \\
33.3 \% \\
34.6 \% & 13.618 \\
\hline 3.603
\end{array}
$$

\qquad

$43.2 \% \%$	13,031	12,768	-263	$-2.0 \% \%$
44.4%	12.921	12,762	-159	-1.2%
45.7%	12,696	12,636	-60	-0.5%

50.6%	12,416	$12,2,270$	-146	-1.2%
55.9%	12.363	12.210	-122	-1.0%
53.1%	12,315	12,203	-122	-0.9%

61.7%
6.02
64.02

		gust		
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	$\begin{aligned} & \text { DCR } 2015 \text { Prithout } \\ & \hline \text { Proied } \\ & \hline \end{aligned}$	DCR 2015 With Project	$\begin{array}{\|c} \substack{\text { Abssolute } \\ \text { Difference }} \end{array}$	${ }_{\text {Refative }}^{\text {Rifference (\%) }}$
Probability	Monthy Fow (CFS)	Monthly Flow (CFS)	(CFS)	
0.0\%	14.037	14,036	${ }^{-1}$	0.0\%
1.2\%	13.687	${ }^{13,687}$	1	0.0\%
2.5\%	12,654	${ }^{12,312}$	${ }^{342}$	
3.7\%	${ }_{12,510}$	${ }^{12,147}$	${ }^{-363}$	
4.9\%	12,144	${ }^{11,467}$	-677	-5.6\%
${ }^{6.2 \%}$	${ }^{12.040}$	${ }^{11,043}$	-997	
7.4\%	${ }^{11,1947}$	10,769	-1,178	
8.6\%	${ }^{11,882}$	10,752	-1,129	
9.9\%	${ }^{11,673}$	10,685	-988	-8.5\%
123\%	${ }^{11,652}$	10,003	-1,049	
13.6\%	11,129	10.411	-1.048	-8.9\%
14.8\%	11,260	10,386	${ }_{-874}$	-7.8\%
16.0\%	10,921	10,365	-556	
17.3\%	10,856	0,30	-553	
18.5\%	10,821	10,224	-597	-5.5\%
19.8\%	10,565	10,218	-347	-3.38
21.0\%	10,406	10,127	-279	
22.2\%	10,383	10,075	-308	
23.5\%	10,364	10,043	-321	-3.18
24.7\%	${ }^{10,358}$	10,028	-330	-3.2
25.9\%	${ }^{10,306}$	9,981	-325	-3.28
27.2\%	10,245	9,954	-292	-2.8\%
${ }^{28.4 \%}$	10,243	9,944	-299	-2.9\%
29.6\%	10,221	9,928	-293	
30.9\%	10,186	9,926	-260	-2.6\%
32.1\%	10,041	9,925	-116	-1.2\%
33.3\%	10,022	9,912	-109	
	10,005	9,909	-96	
37.0\%	${ }_{9,923}^{9,928}$	${ }_{9,860}^{9,900}$	-63	-0.6\%
38.3\%	9,914	9,829	-85	
39.5\%	9,868	9,822	46	
40.7\%	${ }^{9,8828}$	9,819		-0.1\%
42.0\%	9,816	9,814	-3	
43.2\%	9,755	9,809	53	0.5%
44.4\%	9,691	9,808	116	1.2\%
45.7\%	9,626	9,803	177	1.8\%
46.9\%	${ }^{9,625}$	9,781	156	1.6\%
48.1\%	9,601	9,741	140	1.5\%
4.4.9\%	9,590	9,726	${ }^{136}$	1.4\%
50.6\%	${ }_{9}^{9.529}$	9,709	180	1.9\%
51.9\%	9,514	${ }^{9,6882}$	168	1.8\%
53.3\%	9,510	9,678	168	${ }^{1.8 \%}$
55..6\%	${ }^{9,4655}$	${ }^{9,676}$	212	2\%\%
55.6\%	${ }_{9}^{9,3988}$	${ }_{9}^{9,672}$	${ }^{274}$	\%
55.8\%	9,360	9,665	${ }^{305}$	退
559.3\%	${ }_{9,355}^{9.359}$	${ }_{9,638}^{9.648}$	${ }_{283}^{288}$	3.0\%
60.5\%	9,324	9.617	293	
61.7\%	9,302	9,602	300	3.2\%
65.0\%	${ }_{\text {9,260 }}$	${ }_{9}^{9.5699}$	${ }_{204}^{304}$	
6.2.2\%	${ }^{9} 225$	9,540	294	${ }^{3}$
66.7\%	9,209	${ }_{9,532}$	322	3.5\%
67.9\%	9,209	${ }_{9}^{9,403}$	194	2.1\%
69.1\%	9,206	9,398	192	1\%
${ }^{70.4 \%}$	9,130	${ }_{9} 9,365$	${ }^{235}$	6\%
771.6\%	8.972	9,345	${ }^{373}$	4.2\%
72.8\%	8,970 8.911	${ }_{9,340}$	370	4.1\%
F74.1\%	8,911 8872	${ }_{9,332}$	421	4.7\%
75.3\%	8.872	${ }^{9,321}$	449	5.1\%
76.5\%	${ }_{8}^{8.857}$	${ }^{9,307}$	450	1\%
77.8\%	8.767	${ }_{9} 9265$	498	5\%
89.0\%	-	9,185	469	\%
80.5\%	8,690 8.681	${ }_{\text {g }} 91180$	489	6\%
81.5\%	8,681	9,170	489	5.6\%
84.0\%	${ }_{8,523}^{8.540}$	${ }_{9,102}^{9,173}$	574 579	${ }_{6}^{6.8 \%}$
85.2\%	8.497	9,090	593	\%\%
86.4\%	8.473	9,013	540	4\%
87.7\%	8,429	${ }_{8}^{8,804}$	374	
- ${ }_{\text {80.1\% }}^{88.9 \%}$	${ }_{\substack{8,382 \\ 8,388}}^{\text {en }}$	${ }_{8,781}^{8,797}$	${ }_{412}^{415}$	${ }_{4.9 \%}^{5.0 \%}$
91.4\%	8,351	${ }^{8,583}$	233	
92.6\%	${ }^{8.342}$	${ }_{8}^{8,322}$	-10	
93.8\%	8,151	8,227	75	
${ }^{95.1 \%}$	8,060 1784	8,161	101	1.3\%
99.3\%	7,764	7,829 7829	65	0.8\%
998.8\%	7,201 7.056	$\begin{array}{r}7,787 \\ \hline 1726 \\ \hline\end{array}$	¢880	8.1\%
	(7.056 $\begin{aligned} & \text { 6.74 }\end{aligned}$	7,7826 7,482	${ }_{736}^{670}$. 5.9%

Figure SW-13-b
Sacramento River below Hamilton City, Monthly Flow

December				
Percent Exceedance	$\begin{aligned} & \text { DCR 2015.5 Whthout } \\ & \text { Proiect } \end{aligned}$	DCR 2015 With Project	Absolute Differenc	
Probabaility	Montly Fol (CFFS)	Montily Flow (CFS)	(CFFS)	
0.0\%				${ }^{2.0}$
1.25\%	${ }^{48.049}$	${ }^{4} 39208$	-2, 27	
3.7\%	${ }_{38,855}$	53,833	21	
4.9\%	38.664	35102	562	
6.2\%		31419	S644	
7.4\%	${ }_{34,010}$	${ }_{31,1360}$	-2650	
8.6\%	33,151	30.445	-2,706	-8.2\%
9.9\%	27,063	24,671	${ }_{2}^{2}, 392$	-8.8\%
11.1\%	26,327	24,136	-2,191	-8.3\%
	24,855	23,496	-1,359	-5.5\%
	24,846	23,080	-1,767	7.1\%
14.8\%	${ }^{23,922}$	22,764	-1,159	-4.8\%
10.0\%	${ }^{21,161}$	${ }^{21,706}$	545	
185\%	${ }^{20,042}$		1,093	
			-791	
21.0\%	${ }_{16.548}$	116.463 15.996	${ }_{-552}$	${ }^{-4.3 \% \%}$
22.2\%	16,007	15.684	-323	2.0\%
23.5\%	${ }^{15.802}$	14,014	-1,787	-113\%
24.7\%		${ }^{13,268}$	-1,957	-12.9\%
252\%		${ }_{11,1494}$	-1858	${ }^{2}$
28.4\%	${ }^{13,272}$	10,803	-2.469	-18.6\%
29.6\%	13,257	10,590	-2.667	-20.1\%
30.9\%	11,492	10,456	${ }^{1,036}$	-9.0\%
32.1\%	11,040	9,950	1,09	-9.9\%
33.3\%	10,802	9,861	-942	-8.7\%
34.6\%	10,459	${ }^{9.684}$	-775	-7.4\%
35.8\%	10,265	9,176	-1,089	-10.6\%
37.0\%	${ }^{10,126}$	8,984	-1,142	-11.3\%
38.3\%	10,041	${ }^{8,744}$	-1,297	-12.9\%
39.5\%	9,949	8,524	-1,425	-14.5\%
40.7\%	${ }_{9}^{9.909}$		-1,583	隹 12.56%
${ }^{4.20 \%}$	9,713	${ }^{8,191}$	-1,583	
4.4.4\%	${ }_{8.582}^{9.439}$	${ }_{7}^{7,825}$	${ }_{\text {d }}$	-18.8\%
45.7\%	${ }_{8,410}$	7,754	-65	8\%
46.9\%	${ }_{8,329}$	7,744	-586	
48.1\%	8,154	7,500	-654	
49.4\%	${ }^{8.029}$	${ }_{7}^{7,368}$	-661	2\%
50.6\%	7,825 77721	7,332 7,244	-473	-6.3\%
53.1\%	${ }_{7}^{7,359}$	${ }_{7,192}$	-467	${ }_{\text {cke }}^{\substack{6.3 \%}}$
54.3\%	7,315	6,993	-323	4.4\%
55.6\%	7,249	6,911	-338	-4.7\%
56.8\%	7,239	6,743	-496	-6.9\%
58.0\%	7,183	6,706	-477	-6.6\%
59.3\%	6,990	6,663	${ }^{-327}$	-4.7\%
60.5\%	6,708	6,657	-51	-0.8\%
${ }^{611.7 \%}$	6,636	6,586	-49	\%
-63.0\%		年,551	-20	
-6.4.4\%	-6.555	6,530 6.530	-22	-0.3\%
66.7%	${ }_{6,528}^{6,58}$	${ }_{6,522}$	${ }^{-6}$	-0.1\%
67.9\%	6,471	6.471	0	0.0\%
69.1\%	6,432	6,436	${ }_{61}$	0.1\%
71.6\%	${ }_{6.299}^{6.306}$	${ }_{6,343}^{6.368}$	${ }_{44}$	-1.7\%
72.8\%	${ }_{6,247}$	${ }_{6,328}$	82	
74.1\%	6,129	6,295	167	\%
75.3\%	5,983	6,275	292	4.9\%
76.5\%	5.867	${ }^{6,272}$	406	${ }^{6.9 \%}$
77.8\%	${ }_{\text {5, }}^{5.810}$	$\underset{\substack{6,255 \\ 6.057}}{\substack{\text { a }}}$	${ }_{333}^{444}$	
80.2\%	${ }_{5,704}$	${ }_{5,807}^{6,857}$	103	1.8\%
81.5\%	5,701	5.713	12	0.2\%
82.7\%	5,689 5 5	5,655	$\begin{array}{r}\text {-35 } \\ \hline\end{array}$	-0.6\%
84.0\%	5,669	5,604	${ }^{65}$	${ }^{1.2 \%}$
- $8.5 .2 \%$	${ }_{5}^{5.524}$	${ }^{5.519}$	-5	0.1\%
${ }^{86.4 \%}$ 87.7\%	5.515	${ }_{5}^{5.517}$	${ }^{31}$	${ }^{0.0 \% \%}$
88.9\%	5,456 5.430	$\stackrel{\substack{5.487 \\ 5.475}}{\text { 5, }}$	$\begin{array}{r}31 \\ 45 \\ \hline\end{array}$	${ }_{\text {0.8\% }}^{0.6 \%}$
90.1\%	5,256	5,454	198	3.8\%
91.4\%	4,978	5,220	242	4.9\%
92.6\%	4.911	4,916	6	0.1\%
93.8\%	4,832	4.801	${ }^{-30}$	-0.6\%
${ }_{965}^{95.1 \%}$	${ }_{4,713}^{4.750}$	${ }_{4,715}^{4.741}$	${ }_{2}^{-9}$	${ }_{\text {- }}^{0.0 .0 \%}$
97.5\%	4,559	4,348	211	6\%
98.8\% 100.0%	4,105 3,90	4,108 4.016	$\stackrel{2}{46}$	${ }^{0.1 \%}$

February				
	DCR2015 Without	DCR 2015 With Project	Absolute Difference	Rela
Probability	Monthy Fow（CFS）	Monthly Flow（CFS）		Difference（\％）
0．0\％	81,563	96，518	14，955	18．3\％
1．2\％	74，339	${ }^{81,558}$	7，218	9．7\％
2．5\％	72，394	74，438	2，045	2．8\％
3．7\％	60，941	${ }^{60,876}$	－65	－0．1\％
4．9\％	52，485	52，140	－345	0．7\％
6．2\％	51.009	49.926	－1，083	－2．1\％
7．4\％	49，773	49，334	－439	－0．9\％
8．9\％	${ }_{4}^{49,112}$	47.911	－1，201	－2．4\％
${ }^{9.9 \%}$	${ }_{4}^{47,910} 448$	${ }_{4}^{47,146}$	－764	－1．6\％
－ 11.12%	${ }_{455789}^{47,449}$	46,950 46.584	${ }_{7} 995$	－ 1.0% \％
13．6\％	${ }_{45,224}$	43，117	${ }_{2,107}$	${ }^{4.7 .7 \%}$
14．8\％	${ }^{41,880}$	${ }^{39,320}$	－2，559	－1．
16．0\％	${ }^{36,684}$	${ }^{35,824}$		
17．3\％	${ }^{35,823}$	34，12	－1，701	
18．5\％	34，802	32，254	－2，548	
19．8\％	33，377	30，816	－2，561	－7．7\％
21．0\％	${ }_{3}^{31,817}$	${ }^{30,317}$	－1，500	4.7
22．2\％	30，317	29，271	1，046	
23．5\％	27，312	${ }^{25,713}$	－1，599	－5．9\％
${ }^{24.79 \%}$	${ }^{27,281}$	25，308	－1，973	－7．2\％
25．9\％	27，195	24，745	－2，450	－9．0\％
27．2\％	24，961	24，716	－245	－1．0\％
28．4\％	${ }^{23,087}$	24，450	1，363	5．9\％
	${ }_{2}^{22,548}$	－ 23,083	108	
30．9\％	${ }^{21,548}$	22，975	1，427	
32．19\％	19，803	${ }^{18,066}$	－1，736	－8．8\％
33．3\％	19，274	17，744	－1，730	
34．6\％	18，770	17，189	－1，581	－8．4
357．8\％	－18，282	${ }^{116,020}$	${ }_{-2,124}$	－11．7\％
38．3\％	17，156	15.717	－1，439	－8．4\％
39．5\％	${ }^{16,018}$	15，578	－440	－2．7\％
42．0\％	${ }^{1515.577}$	${ }^{14,008}$	${ }_{2}$	
43．2\％	${ }_{\text {15，524 }}$	${ }^{12,953}$	${ }_{-2,570}$	－16．6\％
44．4\％	15.037	12.479	－2，559	－17．0\％
45．7\％	13，381	12，045	－1，336	－10．0\％
46．9\％	${ }^{13,225}$	111，266	－1，959	－14．8\％
48．1\％	${ }^{12,949}$	11，154	－1，795	－13．9\％
49．4\％	${ }^{12,840}$	${ }^{10,858}$	－1，982	－15．4\％
年 50.0% \％	${ }^{12,043}$	${ }^{10,829}$	－1，214	－10．1\％
51．9\％	${ }^{11,1800}$	10，656	－1，144	－9．7\％
53．1\％	111，499	－ 10,274	－1，475	－12．6\％
54．3\％	11,100 10,983	¢，${ }_{\text {9，836 }}^{933}$	－1，264	－11．4\％\％
55．8\％	（10，983	$\stackrel{\text { 9，233 }}{\substack{9,969}}$	－1，880	－17．3\％
58．0\％	10，692	8.960	－1，732	－16．2\％
59．3\％	10，470	8，708	－1，762	
60．5\％	10，348	${ }^{8.638}$	－1，711	－16．5\％
	${ }_{9,936}^{9,913}$	－${ }_{8}^{8.535}$	－1，1479	－
${ }_{64.2 \%}$	${ }_{9,476}$	8.244	${ }_{-1,232}$	－13．0\％
65．4\％	9，037	8，134	－904	－10．0\％
66．7\％ 67.9%	9,006	8，128	－878	－9．7\％
67．9\％	${ }_{\text {c，}}^{8,813}$	7，395	${ }_{-1,418}^{-1,058}$	－11．8．1\％
70．4\％	8,778	7，317	${ }^{-1,461}$	－16．6\％
71．6\％	8,743	6，954	－1，788	－20．5\％
72．8\％	8，452	${ }_{6}^{6.793}$	${ }_{1}^{1,659}$	－19．6\％
74．1\％	8,195 8,134	6，748	－1，477	－17．7\％
75．3\％	8，134	6，656	－1，478	－－18．2\％
76．5\％${ }_{778 \%}$	7,928 77791	¢，544	－1，384	－17．5\％
77．0\％	7,791 7,750		－1，306	－16．8\％
80．2\％	7.747	${ }_{6}^{6,293}$	－1，454	－18．8\％
81．5\％	7，358	5，956	－1，401	－19．0\％
－ 82.79%	7，194	¢，5.891 5744	${ }^{-1,303}$	－18．1\％
84．0\％	年，772	5，764	1，009	－14．9\％
${ }_{86.4 \%}$	5，999	${ }_{5,585}^{5.75}$	－414	${ }_{\text {－6．9\％}}$
87．7\％	5，970	5，465	－505	－8．5\％
－${ }_{\text {80．}}^{\text {80．9\％}}$	5.819 5.710	5,458 5.326	－384	${ }_{-6.7 \%}^{-6.7 \%}$
91．4\％	5，616	5，173	${ }_{-43}$	－7．9\％
92．6\％	5，582	5,087	495	－8．9\％
93．8\％	5．561	4．897	664	－11．9\％
95．1\％	¢ 5.411	4，8800	－552	－10．2\％
96．3\％	5，295	4．833	－462	－8．7\％
97．5\％	4，897	4，779	－118	－2．4\％
988．8\％ 1000%	4,776 4.566	$\xrightarrow[4,596]{4,655}$	121 40	－

Apprl				
Percent	${ }_{\text {d }} \mathrm{DCR2015} \mathrm{Without}$	DCR 2015 With Project	${ }_{\text {a }}^{\substack{\text { Absolue } \\ \text { Difference }}}$	Relative
Ex	Monthly fowew（CFS）	Montly Flow（CFS）	（CFFs）	
0．0\％	44.245	42,477	${ }_{-1,768}$	－4．0\％
1．2\％	${ }^{36,686}$	36，687	2	
2．5\％	27，318	27，322	3	
3．7\％	25，199	25，321	122	
4．9\％	25，024	${ }^{24,856}$	－168	
6．2\％	23，862	19，783	4.079	－17．181
7．4\％	${ }^{19,546}$	19.524	－22	
8．6\％	19，356	19，414	58	0．3\％
9．9\％	18,760	${ }^{18,763}$	3	
11．1\％	${ }^{18,253}$	${ }^{18,779}$	－74	－0．4\％
${ }^{12.3 \%}$	${ }^{17,783}$	17，053	－750	－4．7\％
13．6\％	17，084	15，761	－1，323	
14．8\％	16，144	14，179	－1，965	－12．2\％，
16．0\％	15.480 15.511	－13，131	－2，348	－17．22
185\％	${ }^{155267}$	12，513	－2，647	－17．3\％
18．5\％	15，267	${ }^{12,513}$	－2，	
19．8\％	15，139	11，914	－3，24	
${ }_{22}^{22.2 \%}$	${ }_{1}^{14,991}$	${ }^{111,881}$	－	－－9．6\％
23．5\％	12，665	10，710	－1．954	－15．4\％
24．7\％	11，634	9，280	做	
25．9\％	10，619	9，051	－1，568	－14．8\％
27．2\％	9，280	8，753	－528	
28．4\％	9，086	8，725	－360	－4．0\％
29．6\％	${ }^{8,898}$	8，7717	－181	
30．9\％	8，837	${ }^{8.515}$	${ }^{323}$	－3．6\％
32．1\％	${ }^{8.822}$	8.419	－402	－4．6
33．3\％	8，767	8，257	－510	5．8\％
34．6\％	8，579	8,109	470	－5．5\％
${ }^{35.8 \%}$	${ }_{8}^{8,365}$	8，075	－290	－3．5\％
37．0\％	${ }^{8,340}$	7，754	－586	－7．0\％
38．3\％	8，289	7，522	－768	－9．3\％
39．5\％	${ }^{8.0780}$	7，481	－597	
${ }^{40.720 \%}$	${ }_{7}^{7,760}$	7，448	－311	－4．0\％
4．32\％	7.553	${ }_{7}^{7,444}$	－109	
${ }_{4}^{43.4 \%}$	7，431	7,424 7,334	－97	－1．3\％
45．7\％	7，331	7，304	-27	
46．9\％	7，148	7，027	121	
48．1\％	7.123	6，980	144	
49．4\％	7，056	6，906	149	2．1\％
50．6\％	6，950	6，901	－49	\％
51．9\％	6，899	6，765	134	－1．9\％
53．1\％	6，892	6，727	－165	
54．3\％	${ }^{6.877}$	6．715	－163	－2．4\％
年55．6\％	6，845	6，710	－135	－2．0\％
	${ }^{6.788}$	6，685	102	－1．5\％
年58．0\％	6，717	6，648	－69	－1．0\％
	6，682	6.546	－136	${ }^{2.0 \%}$
60．5\％	${ }^{6,650}$	6，494	－155	－2．3\％
${ }^{61.7 \%}$	6，642	6，421	－221	－3．3\％
－ 63.30%	${ }_{6}^{6.6529}$	6，350	－278	－4．2\％
－${ }_{\text {64．2\％}} \mathbf{6 4 . 4 \%}$	6，571		－238	析
${ }_{66.7 \%}^{654 \%}$	－${ }_{\text {6，442 }}^{6,311}$	㐌， 6.192	－119	\％
67．9\％	${ }_{6,306}$	${ }_{6,176}^{6,192}$	－130	－－1\％
69．1\％	6，197	6，096	－101	－1．6\％
70．4\％	¢，6,183 6168 168	6，051	－132	
7．28\％				
74．1\％	${ }_{5,967}^{\text {b，967 }}$	${ }_{5,864}^{5,903}$	－103	－1．7\％
75．3\％	5.836	5．851	15	0．3\％
76．5\％	5．826	5，743	83	1．4\％
77．8\％	5．797	5，740	－57	\％
79．0\％	5．750	5．664	86	1．5\％
－	5.740	5．657	${ }^{-83}$	－1．4\％
81．5\％	5，726	5．651	－74	－1．3\％
－ 82.7%	5．667	5，617	－50	－0．9\％
84．0\％	5，636	5，483	－153	${ }^{2.7 \%}$
－85．2\％	¢， 5.629	5，467	－163	源
${ }^{86.4 \%}$ 87．7\％	5，587	5，447	－140	－2．5\％
88．9\％	${ }_{\substack{5.533 \\ 5.518}}$	${ }_{\substack{5.387}}^{5.385}$	－141	－2．6\％
90．1\％	5，365	${ }_{5,376}$	11	0．2\％
91．4\％	5，288	5，323	35	
92．3\％	5，287	${ }_{5}^{5.210}$	77	－1．5\％
9．3．7\％	5，262	${ }_{5}^{5,197}$	－65	－1．2\％
996．3\％	${ }_{4.816}^{5.173}$	${ }_{5,156}^{5.162}$	340	${ }_{\text {7．1\％}}$
．5\％	4，679	4，947	268	
98．8\％ 100．0\％	${ }_{4}^{4.551}$	4,787 4.763	235 232	

Figure SW-14-b
Sacramento River below Delevan Intake and Pipeline, Monthly Flow

Table SW－14－b

Octob				
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	Absolute	
Probability	Monthy Fow（CFS）	Monthly Fow（CFES）	（CFSS）	
1．2\％	${ }^{14,051}$	${ }^{17,0175}$	3，022	${ }^{2}$
2．5\％	${ }^{11,112}$	11055	57	． 5 \％
3．7\％	10，966	9，734	－1，233	11．2\％
4．9\％	9，726	9.444	－282	2．9\％
6．2\％	8.887	9，309	422	4．7\％
7．4\％	8，447	9，005	558 763	${ }_{\text {6．}}^{6.6 \%}$
8．6\％	8，223	$\begin{array}{r}8,986 \\ 8854 \\ \hline\end{array}$	763	3\％
${ }^{\text {11．9\％\％}}$	${ }_{8}^{8,178}$	8，544		年\％
12．3\％	${ }_{7}^{8,961}$	${ }_{8,372}^{8,377}$	${ }_{411}$	5．2\％
13．6\％	7，956	${ }_{8}^{8,327}$	370	4．7\％
14．8\％	7.915	${ }^{8,120}$	${ }^{205}$	${ }_{3}^{2.6 \%}$
17．3\％	7，851	${ }_{8,044}^{8.129}$	${ }_{193}^{254}$	2．5\％
18．5\％	7.807	7.802	－5	－0．1\％
19．8\％	7，791	7，755	－36	－0．5
21．0\％	7，627	7，690	63	
${ }^{22.2 \%}$	7，426	7，534	107	1．4\％
${ }_{\text {24，}}^{23.5 \%}$	7，383	7，533	150	${ }_{\text {3．2\％}}^{2.0 \%}$
25．9\％	7.051	7.396	346	4．9\％
27．2\％	7，042	7，356	314	4．5\％
28．4\％	－6，948	7,339 7315	${ }_{4}^{391}$	5．6\％
29．6\％	6.902	${ }_{7}^{7,315}$	412	
30．9．1\％	¢， 6.844	${ }_{7}^{7,279}$	${ }_{475}^{433}$	${ }^{6.3 \%}$
33．3\％	${ }_{6,664}^{6,964}$	${ }_{7,268}^{7,269}$	${ }_{604}^{4}$	9．1\％
隹34．6\％		7,258 7,258	595 698	
37．0\％	${ }_{6.532}^{6.560}$	7,238 7,239	${ }_{708}^{698}$	${ }^{10.8 \%}$
38．3\％	${ }_{6,476}$	7.120	644	9．9\％
				11．4\％
42．0\％	${ }_{6,318}^{6,363}$	${ }_{6,881}^{6.912}$	543	8．6\％
43．2\％	${ }_{6}^{6,282}$	${ }_{6}^{6,848}$	567	9．0\％
44．4\％	6，241	6，762	521	8．3\％
45．7\％	6，230	6，629	398	6．4\％
${ }^{46.9 \%}$	${ }^{6.067}$	${ }^{6,620}$	554	${ }^{9.19 \%}$
49．4\％	5，960	6，487	${ }_{526} 5$	8．8\％
50．6\％	5，958	6，465	507	8．5\％
51．9\％	5，900	${ }_{6}^{6,403}$	503	8．5\％
－53．1\％	5.891 5 5	6，367	${ }_{652}^{476}$	8．1\％
55．6\％	5．7．65 5	ci，6,351 6,351	665	－1．4．4
56．8\％	5，527	6，304	777	14．1\％
58．0\％		6，256	${ }_{775} 77$	13．8\％
年 69.5%	5.479 5.478		775 648	14．1\％
61．7\％	5.464	6.072	608	11．1\％
－63．0\％	㐌5，395			${ }^{12.44 \%}$
65．4\％	${ }_{5}^{5.300}$	${ }_{5.875}^{5.976}$	576	10．9\％
66．7\％	5，293	5．862	569	10．8\％
67．9\％	5，271	5．807	537	10．2\％
70．4\％	（5,233 5,202	5，761	${ }_{528}$	10．1\％
71．6\％	${ }_{5,182}^{5,182}$	${ }_{5,522}^{5.051}$	${ }_{341}^{432}$	6．6\％
72．8\％	4，946	5.478	532	10．8\％
74．1\％	4，941	¢，5，458	517 554	${ }^{10.5 \%}$
75．3\％	$\stackrel{4.848}{ }$	5．402	554	11．4\％
76．5\％	4,787 4.732	5,273 5.259	${ }_{5}^{486}$	10．2\％
79．0\％	${ }_{4.713}^{4.732}$		${ }_{489}$	11．4\％
80．2\％	4.702	${ }_{5}^{5,202}$	500	10．6\％
81．5\％	4，675	5，1177	${ }^{441}$	9．4\％
－	${ }_{4,547}^{4.667}$	${ }_{4,844}^{4.871}$	${ }_{297}^{204}$	${ }^{4.45 \%}$
85．2\％	4.520	4.818	298	6．6\％
${ }^{86.4 \%}$	4，424	4．784	${ }^{360}$	8．1\％
88．9\％	4,271	4.694	${ }_{423}^{373}$	${ }_{9.9 \%}$
90．1\％	4，195	4,613	417	，
914．4\％	4，169	4，506	337	8．1\％
${ }_{9}^{92.8 .8 \%}$	4，142	4.423	281	6．8\％
95．1\％	3，951	3，990	${ }_{39}$	1．0\％
96．3\％	3，904	3，923	18	0．5\％
97．5\％	3,790 3 3		96	2．5\％
98．8\％ 1000%	3,748 3.663	－ $\begin{aligned} & 3,705 \\ & 3,542\end{aligned}$	${ }_{-121}$	－-1.19

January				
Percent		DCR 2015 With Project	${ }_{\substack{\text { Absolue } \\ \text { Difference }}}$	Relative
	Monthl Flow（CFS）	Monthy Fow（CFS）	（CFS）	Difference（\％）
0．0\％	83，433	83,581	148	0．2\％
1．2\％	70，932	70，409	－523	－0．7\％
2．5\％	70，449	69，765	685	－1．0\％
3．7\％	69，606	67,996	－1，610	－2．3\％
4．9\％	${ }^{63,314}$	${ }^{65,534}$	2.220	3．5\％
6．2\％	${ }^{62,804}$	${ }^{61,123}$	－1，681	－2．7\％
7．4\％	60，960	${ }^{60,843}$	－116	－0．2\％
8．6\％	59,235 48.590	54,454 45246	－ 4.781 -334	－8．1\％
${ }^{\text {9，9\％}}$	48.590 45108	44,246 44.185	－3．344	－6．9\％
11．19\％	${ }^{45,108}$	44，185	－924	－2．0\％
（12．3\％	${ }_{4}^{42,944}$	43,240 37714	${ }_{-4.657}^{297}$	－0．7\％
＋13．6\％	${ }_{4}^{42,371}$	－ $\begin{aligned} & 37,714 \\ & 36.563\end{aligned}$	-4.657 -4100	－11．0\％
16．0\％	${ }_{40,642}$	36，172	4.470	－11．0\％
17．3\％	39，832	36，120	－3，712	－9．3\％
1．85\％	37，571	35，09	－2，561	－6．8\％
19．8\％	${ }^{36,287}$	${ }^{31,840}$	－4，447	
${ }^{21.0 \%}$		31,335 30.560	－2．558	－7．5\％
${ }^{22.25 \%}$	31，301	30,560 27.510	－－741000	－2．4\％
24．7\％	${ }_{28,268}$	${ }_{26,275}^{2,185}$	${ }^{-1.093}$	－70
25．9\％	${ }^{27,957}$	${ }^{25,756}$	－2，201	－79\％
27．2\％	27，649	23，154	${ }_{-4,495}$	－16．3\％
28．4\％	26，105	21，656	－4，499	－17．0\％
29．6\％	24，072	19，921	－4，151	－17．2\％
30．9\％	22，365	19.527	$-2,838$	－12．7\％
32．1\％	19，694	18，763	－931	－4．7\％
33．3\％	19，371	${ }^{18,643}$	－728	－3．8\％
34．6\％	18，918	16，227	－2，691	－14．2\％
35．8\％	18，737	15，367	－3，370	－180\％
37．0\％	18，162	15.060	－3，102	－17．1\％
	－ $16.9,913$	14，381	－2．533	－15．0\％
39．5\％	${ }_{\text {l }}^{16,991} 10.490$	14,105 12.843 12	$-2,796$ -3.647	－16．5\％
42．0\％	15.714	${ }^{12,723}$	－2，991	－19．0\％
43．2\％	15，487	${ }^{12,626}$	－2，861	－18．5\％
44．4\％ 45.7%	15,395 13,114 1	12,347 12308 1	${ }^{-3.048}$	
46．9\％	$\xrightarrow{13,114}$	${ }^{12,308} 11,021$	${ }_{-2.010}^{-806}$	－6．15\％
48．1\％	12，366	10.625	－1，741	－14．1\％
4．4．4\％	11.414	10，574	－840	－7．4\％
（ 50.6%	${ }^{11,301}$	9,433	－1，868	－16．5\％
53．1\％\％	${ }^{11,234}$	9，222	－2，012	－17．9\％
54．3\％	－11，800	${ }_{8,390}^{8.559}$	－2，4，468	－23．5\％
55．6\％	10，789	8,267	－2．522	－23．4\％
56．8\％	${ }^{10,705}$	${ }^{8,266}$	－2，439	－22．8\％
	10.578 10.249	8，228	－2，350	－22．2\％
59．3\％	10，249	$\begin{array}{r}7,784 \\ 7680 \\ \hline\end{array}$	－2，465	－－23．1\％
${ }^{60.17 \%}$	${ }_{\text {¢ }}^{10.748}$	7,680 7,643	－2，105	
63．0\％	9.719	7.639	${ }_{-2,080}$	－21．4\％
64.2% 654%	9，436	7．569	－1，867	－19．8\％
${ }_{6}^{65.4 \%}$	${ }_{8,930}^{9,269}$	${ }_{7,545}^{7.562}$	－1，${ }_{-1,786}$	－15．5\％
67．9\％	8,787	7.445	${ }_{-1,342}$	－15．3\％
69．19\％	${ }^{8,396}$	7，278	－1，118	－13．3\％
70．4\％	${ }^{8,378}$	7，244	－1，134	－13．5\％
71．6\％${ }^{72.8 \%}$	${ }^{8,293}$	7,226 7 7	－1，067	${ }_{\text {－}}^{-12.9 \%}$
74．1\％	7，767	7,176	－591	－7．6\％
75．3\％	7.637	7.061	－576	－7．5\％
76．5\％	7.572	7，042	－530	－7．0\％
778．8\％	$\begin{array}{r}7,570 \\ 7.566 \\ \hline\end{array}$	7，004	－566	－7．7\％
79．0\％	7，566	${ }_{6}^{6,986}$	－580	${ }^{-7.7 \%}$
80．2\％	7,239 7,237	$\stackrel{6,947}{6,895}$	${ }_{-342}$	－4．0\％
${ }^{82.7 \%}$	7.048	${ }_{6,889}^{60,98}$	－159	－2．3\％
84．0\％	7,048	${ }^{6,871}$	－177	－2．5\％
85．2\％	7，040	6，654	－386	－5．5\％
－ 86.48	7，018	6．519	－498	－7．1\％
88．9\％	${ }_{6,833}^{6.068}$	${ }_{6,188}^{6,385}$	－ 648	－－9．4\％
90．1\％	6，311	6，144	－167	－2．6\％
9， 91.4%	－ $\begin{aligned} & 6,130 \\ & 6,128\end{aligned}$	5.996 5890	${ }_{-}^{-134}$	－2．2\％
93．8\％	6,020	${ }_{5,584}^{5 ., 509}$	${ }_{-136}$	－7．2\％
95．1\％	5.621	5.476	－145	－2．6\％
96．3\％	5．489	5．468	－21	－0．4\％
97．5\％	¢ 5.484	5，412	－73	－1．3\％
98．8．	${ }_{5,076}^{5,307}$		$\begin{array}{r}\text {－} \\ 5 \\ \hline 10\end{array}$	－

1.2%	12,639
2.5%	11.547
3.7%	11.063
49%	10.978

$11, .03$
10.938
10.984
10.596
10.549
10.549 \qquad

 \begin{tabular}{ll}
11．1\％ \& 10．529

12.3% \& 10.522

13.6% \& 10.548

\hline

13.2% \& 10,48

$\begin{array}{l}14.4 \% \\
14.8 \% \\
16.0 \%\end{array}$ \& 10,48

\& 10,403

\hline

14.8% \& 10,48

10.0% \& 10.48

17.3% \& 10.335

18.5% \& 10,327

\hline

17．3\％ \& 10,335

18.5% \& 10.327

19.8% \& 10,193

21.0% \& 10,179

\hline

 \qquad

$1,1,994$

1，990

11，974

11,904

1,889

\hline
\end{tabular}

21.0%
22.2%
22.5%
23.5%

$\left.\begin{array}{l}23.5 \% \\ 24.7 \% \\ 25 \%\end{array}\right)$ | 10.007 |
| :---: |
| o．， 876 |
| 0,88 | \qquad

Percent Exceedance	${ }^{\text {DCR 2015 W Whthout }}$ Proiet	DCR 2015 With Project	Absolute Difference	Relative
Proabaility	Monthl foow（CFFS）	Monthy Fiow（CFFS）	（CFS）	
				－1．4\％
${ }^{1.25 \%}$	${ }^{10.5588}$	${ }^{10,546}$	${ }^{12}$	－0．1\％
2．5\％	${ }_{9} 837$	10，108	${ }^{251}$	
	9，079	，	位	2．8\％
4．9\％	${ }_{9}^{9,6097}$	9，932	243	
7．4\％	91933	9，511	969	
8．6\％	911	9.42	310	
9．9\％	${ }_{9,065}$	${ }_{9} 2025$	140	15\％
11．1\％	${ }_{9} 0.054$	9,192	138	15\％
12．3\％	${ }_{8,683}$	9，169	486	5．6\％
13．6\％	${ }_{8,485}$	9，122	638	7．5\％
14．8\％	${ }_{8,420}$		639	7．6\％
16．0\％	8，284	8，990	706	8．5\％
17．3\％	${ }^{8,085}$	8，919	834	10．3\％
18．5\％	7，968	${ }^{8,758}$	790	9．9\％
19．8\％	7，959	8,639 8.604	${ }_{711}^{680}$	${ }^{8.5 \%}$
${ }_{222 \%}^{21.0 \%}$	7，893	${ }_{8,598}^{8.604}$	838	9．0\％\％
23．5\％	7.517	8，587	1.070	14．2\％
24．7\％	7，416	${ }^{8.585}$	1，168	
25．9\％	7，355	${ }_{8} 8382$		
27．2\％	7，256	8，150	894	
28．4\％	7，165	8，115	950	
29．6\％	7，159	8,110	950	
30．9\％	7，141	8,106	966	13．5\％
32．1\％	${ }_{6}^{6,967}$	8，039	1，073	
33．3\％	6．910	${ }^{8.030}$	1，120	16．2\％
34．6\％	6，902	7，990	1，088	15．8\％
35．7\％	${ }^{6.8881}$	7.990	1，108	16．1\％
37．0\％	${ }^{6.854}$	7，929	${ }_{1}^{1,076}$	15．7\％
38．3\％	6，834	7.916	${ }^{1,082}$	15．8\％
39．5\％	6，817	7,819 7719	${ }^{1,002}$	14．7\％
40．7\％	${ }_{\text {c，}}^{6,691}$	7，719	${ }^{1,028}$	15．4\％
${ }^{42.0 \%}$	6，611	7，704	${ }^{1,033}$	
44．4\％	c．6．668	7,500 7731	832 709	${ }^{12.5 \%}$
45．7\％	${ }_{6.638}$	7，369	732	11．0\％
46．9\％	${ }_{6.624}$	7.366	742	
48．1\％	6．609	7，358	749	
49．4\％	6，601	7，189	588	
50．6\％	6，597	7.175	578	
51．9\％	6，591	7，068	477	
53．1\％	6，591	7，011	420	6．4\％
54．3\％	6．572	7，002	431	6．6\％
55．6\％	${ }^{6.562}$	6，984	422	6．4\％
56．8\％	${ }^{6.555}$	6，972	${ }^{417}$	6．4\％
58．0\％	6，555	${ }^{6,917}$	362	5．5\％
59．3\％	${ }^{6.553}$	6，799	${ }^{246}$	3．8\％
60．5\％	6，525	6，785	260	4．0\％
617\％\％	${ }^{6.514}$	6，738	${ }^{224}$	3．4\％
－63．0\％	6．511	㐌，7888	197	3．0\％
${ }^{64.2 \%}$	6，499	6，689	190	2．9\％
65.4% 6670	㐌，4688	㐌，6899	${ }^{221}$	崖\％
67．9\％	6，458 6.386	${ }_{\substack{6,677 \\ 6.676}}^{\text {6，}}$	220 290	44\％
69．1\％	${ }_{6,385}^{6.360}$	${ }_{6.645}^{6.670}$	${ }_{259}$	4．1\％
70．4\％	6，371	${ }_{6.637}$	266	4．2\％
71．6\％	6，208	6，626	418	7\％
－72．8\％	6，202	6，621	419	8\％
74．19\％	6，189	${ }^{6.621}$	432	7．7\％
77．5\％		${ }^{6,617}$	47	$7.78{ }^{7}$
77．8\％	6，108	${ }_{6.606}^{6.606}$	498	8．8\％
79．0\％	6，069	6，598	528	
80．2\％	6，063	6．596	533	8．8\％
81．5\％	6，050	${ }^{6.565}$	514	8．5\％
82．7\％	6，040	6，561	521	8．6\％
84．0\％	${ }_{5}^{5.995}$		${ }_{645}^{645}$	10．9\％
－ 85.2%	5．912		633 757	－${ }_{\text {10，}}^{10.7 \%}$
${ }^{807.7 \%}$	${ }_{5}^{5,743}$	${ }_{6,515}^{6.515}$	772	13．4\％
88．9\％	5，728	6．497	769	13．4\％
90．1\％	5．634	6．472	838	14．9\％
91．4\％\％	5，562 5.552		${ }_{906}^{905}$	
93．8\％	${ }_{5,550}$	6，426	876	15．8\％
95．1\％	5．375	6．409	1，035	19．3\％
96．3\％	5,271 5 5129	${ }_{6,333}^{6,304}$	${ }^{1,0731}$	20．1\％
98．58\％	5.129 5.055	年，1094	${ }^{973}$	
	4，992	5.056		

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{September}

\hline $$
\begin{aligned}
& \text { Percent } \\
& \text { Exceadace }
\end{aligned}
$$ \& $\xrightarrow{\text { DCR } 2015 \text { Without }}$ Proiect \& ${ }^{\text {OCR }} 2015$ With Project \& $$
\begin{array}{|l|l|l|l|l|r|r|crcc}
\text { Abre }
\end{array}
$$ \&

\hline Probability \& Monthly Foiol（cFs） \& Monthly Fow（CFFS） \& （CFF5） \& Difference （\％）

\hline 0．0\％ \& 15，344 \& \& \&

\hline 1．2\％ \& ${ }^{15,308}$ \& ${ }^{15,320}$ \& 12 \& 0．1\％

\hline 2．5\％ \& ${ }^{15,298}$ \& ${ }^{15,316}$ \& 18 \&

\hline 3．7\％ \& 15，296 \& 15，309 \& 13 \&

\hline 4．9\％ \& 15，270 \& ${ }^{15,293}$ \& ${ }^{23}$ \&

\hline ${ }^{6.2 \%}$ \& －15．262 \& 15，281 \& 20 \&

\hline 7．4\％ \& 15，227 \& ${ }^{15,278}$ \& 51 \&

\hline 8．6\％ \& 14，854 \& ${ }^{15,266}$ \& 425 \&

\hline 9．9\％\％ \& 14，441 \& ${ }^{15,266}$ \& 825 \&

\hline 11．1\％ \& 13，702 \& ${ }_{\text {15，}}^{15125}$ \& 1，5163 \& \％ 1%

\hline 13．6\％ \& ${ }_{\text {13，488 }}^{113.62}$ \& ${ }^{14.319}$ \& ${ }_{831}$ \& 6．2\％

\hline 14．8\％ \& 13，451 \& 14，142 \& 691 \& \％

\hline 16．7\％ \& 13，325 \& 14，047 \& 722 \&

\hline 17．3\％ \& 13，274 \& 13，729 \& 455 \&

\hline 18．5\％ \& ${ }^{12,904}$ \& 13，699 \& 796 \&

\hline 19．8\％ \& ${ }^{12,868}$ \& ${ }^{13,548}$ \& 680 \& 5．3\％

\hline 21．0\％ \& ${ }^{12,683}$ \& 13，490 \& 807 \&

\hline 22．2\％ \& 12，615 \& 13，232 \& 617 \&

\hline 23．5\％ \& 12,601

12,223 \& ${ }^{13,227}$ \& 626 \& 5．0\％

\hline 24．7\％ \& ${ }^{12,283}$ \& ${ }^{13,140}$ \& 857 \& 7．0\％

\hline 25．9\％ \& | 12,232 |
| :--- |
| 121244 |
| 1 | \& $\begin{array}{r}12,980 \\ \hline 1270\end{array}$ \& 748 \& 6．1\％

\hline 27．2\％ \& 12，144 \& ${ }^{12,710}$ \& 566 \& 4．7\％

\hline － 28.4 .9 \& 12，030 \& ${ }^{12,075}$ \& 45 \&

\hline 29．6\％ \& 11，181 \& | 10,923 |
| :--- |
| 10.954 |
| 1 | \& ${ }^{258}$ \&

\hline 30．9\％ \& 11，144 \& 10，854 \& －290 \& 源

\hline 退32．1\％ \& 10,675
10.620
1 \& 10,646
10.564
10， \& －29 \& ${ }^{-0.3 \%}$

\hline 㐌34．3\％ \& 10.0620
10.611 \& （10．564 \& －56 \&

\hline | 34.6% |
| :--- |
| 3588 | \& 10，671 \& ${ }_{\text {9，734 }}^{9,755}$ \& －856 \&

\hline 357．8\％ \& 8,755
8.560 \& ${ }_{9}^{9.154}$ \& 594 \& 7．10\％

\hline 38．3\％ \& ${ }_{8,530}$ \& 9,072 \& 542 \&

\hline 39．5\％ \& ${ }_{8,523}$ \& ${ }_{8,877}$ \& 354 \&

\hline 40．7\％ \& ${ }_{8}^{8.378}$ \& ${ }^{8.772}$ \& 394 \&

\hline 42．0\％ \& ${ }^{7,731}$ \& ${ }^{8,712}$ \& 982 \&

\hline 43．2\％ \& 7，682 \& ${ }_{8,671}$ \& 989 \& 12．9\％

\hline 44．4．\％ \& 6，996 \& ${ }^{8,382}$ \& 1，386 \&

\hline 45．7\％ \& 6，839 \& ${ }_{8,094}$ \& 1，255 \& 18．3\％

\hline 46．9\％ \& 6，611 \& 7，907 \& 1，296 \&

\hline 48．19\％ \& 6，430 \& 7．892 \& ${ }^{1,462}$ \& ${ }^{22.7 \%}$

\hline 49．4\％ \& ${ }^{6,375}$ \& 7，795 \& 1，420 \& ${ }^{22.3 \%}$

\hline 年 50.6% \& 6，136 \& 7，742 \& ${ }^{1,606}$ \& 26．2\％

\hline 51．9\％ \& 6，113 \& 7，547 \& 1，433 \& 23．4\％

\hline ${ }_{\text {ckis }}^{53.10 \%}$ \& \& 7，449 \& 1，620 \& 27．8\％

\hline \& 5,790
5
5 \& ${ }_{7}^{7,446}$ \& －1，657 \&

\hline 55．6\％ \& \& 7，403 \& 1，649 \& 20．0\％

\hline 58．0\％ \& ${ }_{\substack{5.6618}}^{5.606}$ \& 7，288 \& ${ }_{1}^{1,667}$ \& 29．7\％

\hline 59．3\％ \& 5．563 \& 7.259 \& 1，696 \& \％

\hline 60．5\％ \& 5．529 \& 7，097 \& 1，569 \& 4\％

\hline ${ }^{61.7 \%}$ \& 5．516 \& 7，023 \& 1，507 \& 27．3\％

\hline 64．2\％ \& ${ }_{5}^{5,435}$ \& ${ }^{\text {6，9980 }}$ \& ${ }_{1}^{1,5591}$ \&

\hline 6.54% \& ${ }_{5}^{5,362}$ \& 6，951 \& \&

\hline ${ }_{6} 6.7 \%$ \& ${ }_{5,332}^{5.109}$ \& ${ }_{\text {c }}^{6.957}$ \& ${ }_{1}^{1,525}$ \&

\hline 67．9\％ \& 5，089 \& 6,738 \& ${ }_{1}^{1,649}$ \& ${ }^{20.4 \%}$

\hline 69．1\％ \& 5.074 \& 6．679 \& 1，605 \&

\hline 70．4\％ \& 5，052 \& 6.671 \& 1，620 \& 32．1\％

\hline 71．6\％ \& 4，978 \& 6，633 \& 1，655 \& 33．3\％

\hline 72．8\％ \& 4，905 \& 6．591 \& 1，687 \& 34．4\％

\hline 74．1\％ \& 4，897 \& 6，436 \& ${ }^{1,538}$ \& ${ }^{31.4 \%}$

\hline 75．3\％ \& 4，858 \& 6，397 \& 1，539 \& 31．7\％

\hline 76．5\％ \& 4，848 \& 6．380 \& 1，532 \& \％${ }^{\text {\％}}$

\hline 79．0\％ \& 4，825 \& 6．361 \& 1，5335 \& 31．8\％

\hline －79．0\％ \& 4，804 \& 尔， 6,043 \& （1，536 \& 32.0%
27.4%

\hline 81．5\％ \& 4.621 \& 6，031 \& 1，409 \& 30．5\％

\hline 82．7\％ \& 4，543 \& 6，023 \& 1,479
1,579 \& ${ }^{32.6 \%}$

\hline \& ${ }_{4}^{4.374}$ \& 5，953 \& 1，579 \& 36．1\％

\hline \& 4，365 \& ${ }_{5}^{5,764}$ \& ${ }_{1}^{1,4208}$ \& 源

\hline ${ }^{80.4 \%}$ \& 4，341 \& \& ${ }^{1} 2726$ \& 5\％

\hline 88．9\％ \& 4.322 \& ${ }_{5.508}^{5}$ \& ${ }_{\substack{1,186}}^{1,276}$ \& 27．4\％

\hline 90．1\％ \& 4，301 \& 5，352 \& 1，051 \& 24．4\％

\hline 91．4\％ \& 4，295 \& 5，335 \& 1，040 \& 24．2\％

\hline 92．6\％ \& 4，265 \& ${ }_{5}^{5.178}$ \& 913 \& \％

\hline ${ }_{\text {9 }}^{93.1 \%}$ \& 4，177 \& 5，130 \& ${ }^{953}$ \& 2．8\％

\hline ${ }_{9}^{95.3 \%}$ \& | 3,965 |
| :--- |
| 3,863 | \& ${ }_{4,717}^{4.807}$ \& ${ }_{854}^{892}$ \& ${ }_{\text {222，}}^{22.1 \%}$

\hline 97．5\％ \& 3，822 \& 4，506 \& 684 \& 17．9\％

\hline 98．8\％ \& 3，794 \& 4，000 \& 206 \& 5．4\％

\hline 100．0\％ \& 3，660 \& 3，943 \& 283 \& 7．7\％

\hline
\end{tabular}

Figure SW-15-b
Sacramento River at Wilken Slough, Monthly Flow

Table SW-15-b

Ocober				
Percent Exceedance	${ }^{\text {DCR } 2015 \text { Without }} \begin{aligned} & \text { Proiect }\end{aligned}$	DCR 2015 With Project	Absolute Difference	Relative
Probability	Monthy Fow (CFS)	Monthy Flow (CFS)	(CFS)	
0.0\%	${ }^{13,932}$	¢,968	${ }^{3,036}$	21.8\%
${ }^{1.2 \%}$	${ }^{10,953}$	10,980	${ }^{27}$	0.2\%
${ }^{2.5 \%}$				
3.7\%	0,902	9,496	-,260	11.8
4.9\%	9,463	${ }^{9,304}$	-179	
7.4\%	8,049	¢,8816	${ }_{767}$	${ }_{9.5 \%}$
8.6\%	7,845	${ }_{8,653}$	808	10.3\%
9.9\%	7.789	8.401	612	70\%
11.1\%	7,713	${ }^{8.099}$	386	5.0\%
12.3\%	7,684	${ }^{8.018}$	334	4.4\%
13.6\%	7,676	7.991	315	4.18
14.8\%	7,598	${ }_{7,786}$	188	2.5\%
16.0\%	7,589	7,779	191	2.5\%
17.3\%	${ }_{7}^{7.527}$	7,687	161	${ }^{2.1 \%}$
18.5\%	7,496	7,423	-73	-1.0\%
19.8\%	7.417	${ }_{7}^{7,418}$	1	0.0\%
${ }_{2}^{21.0 \%}$	${ }_{7}^{7,286}$	7,389 7369	103	1.4\%\%
${ }^{22.55 \%}$	${ }_{7}^{7,222}$	${ }_{7}^{7,369}$	148	${ }_{2}^{2.5 \%}$
${ }^{24.7 \%}$	6,911	7,195	284	4.1\%
25.9\%	6,905	7,180	274	
27.2\%	6,771	7.160	389	
20.6\%	c.i.723	7,126	403	
30.9\%	${ }_{6,541}^{6,51}$	7,088	547	8.4\%
32.1\%	6.534	7,001	467	7.2\%
33.3\%	6.517	6,988	471	
34.6\%	${ }_{6} 6.516$	6,925	409	6.3\%
33.8\%	6.319	6,905	585	9.3\%
37.0\%	6,249	${ }^{6.895}$	646	10.3\%
38.3\%	${ }_{6}^{6,221}$	${ }^{6.869}$	649	10.4\%
39.5\%	6,207	${ }^{6.818}$	611	9.8\%
40.7\%	6,174	${ }^{6.708}$	534	8.7\%
42.0\%	6,121	6.6, 613	492	${ }^{8.0 \%}$
43.2\%	${ }^{6,070}$	6.535	465	7\%
${ }^{44.47 \%}$	6,024	6.479	455	7.6\%
45.7\%	5,903	6.467	564	9.6\%
${ }^{46.9 \%}$	5,844 5.837	6,450	606 535	
4.9.4\%	5,837 5 5 85		524	${ }_{9.10 \%}^{9.2 \%}$
50.6\%	${ }_{\text {5,766 }}$	6,230	464	
51.9\%	5,749	6,188	440	7.6\%
53.19\%	5,739	6,089	350	6.1\%
54.3\%	${ }_{5}^{5,371}$	${ }^{6.055}$	683	12.7%
55.6\%	5,363	6,031	668	12.5
56.8% 580%	5,344	6,019	675	12.6\%
	5,331	5,978	647	12.1\%
	5,163	5,969	807	15.6\%
60.5\%	5,152	5.912	760	14.8\%
${ }^{61.7 \%}$	5.113	${ }_{5.895}$	${ }^{782}$	15.3\%
-63.0\%	5,108	5.867	${ }^{758}$	14.8\%
64.2% 654%	5,103	5,752	649	12.7\%
65.4% 667%	5,083	5,652	569 599	${ }^{11.2 \%}$
66.7\% 679.9%	5.081	5,650	559	${ }^{11.2 \%}$
- 67.9%	5,050	5.645	596	11.8\%
69.19\%	5,037 5 5 5	5.545 5.477	509	10.1\%
71.6\%	5.022 5.012	¢, ${ }_{5}^{5,47}$	455 150	9.1\%
72.8\%	${ }_{4}^{4.822}$	5,108	287	9\%
74.1\%	4,751	5,107	356	5\%
75.3\%	4,733	5.083	350	7.4\%
77.8\%	${ }_{4.544}^{4.599}$	5.032 5 5.022	${ }_{478}$	9.5.5\%
79.0\%	4.533	5.000	467	10.3\%
80.2\%	4.520	4.975	455	10.1\%
81.5\%	4.519	4,974	454	10.19
82.7% 840%	4,507	4.684	177	3.9\%
84.0\%	4,430	4.661	${ }^{231}$	5.2\%
85.2\%	4,375	4.617	${ }^{241}$	5.5\%
86.4% 87.7%	4,286	4,600	315	7.3\%
87.7% 88.9%	4,258	4,544	286	6.7\%
${ }^{88.9 \%}$	4,112	4,520	408	${ }^{\text {9.9\%\% }}$
${ }^{90.11 \%}$	4,048	4,460	422	10.2\%
91.4\%	4,022	4,342	${ }^{320}$	8.0\%
${ }_{9}^{92.8 \%}$	${ }^{4,021}$	4,297	275	
95.1\%	${ }_{3,769}^{3,999}$	3,880	${ }_{111} 11$	${ }^{-0.9 \%}$
96.3\%	3,689	3.800	112	3.0\%
97.5\%	3,642	3,769	${ }^{27}$	5\%
	(${ }_{\substack{3,602 \\ 3,504}}$	(3.544	-59	1.6\%

| |
| :--- | :--- | :--- | :--- |

Table SW-15-b

February				
	${ }^{\text {DCR 2015 }}$ Pisthout	DCR 2015 With Project	Abssolute Difference	Rela
	Monthy flow (CFS)	Moontly fow (CFS)	(cFs)	Herence ${ }^{(1)}$
0.0\%	24,349	24,911	562	2.3\%
1.2\%	24,275	24,252	-23	-0.1\%
2.5\%	23,750	23,819	68	0.3\%
3.7\%	23,248	23,250	2	0.0\%
4.9\%	23,028	22,972	-56	-0.2\%
6.2\%	22,984	22.957	-27	-0.1\%
7.4\%	22,882	22,877	-6	0.0\%
8.6\%	22.591	22,676	84	0.4\%
9.9\%	22,479	22,459	-20	-0.1\%
11.1\%	22,417	22,354	-63	-0.3\%
12.3\%	22,269	22,220	-49	-0.2\%
13.6% 14.8%	${ }_{\text {22,093 }}^{22,202}$	${ }_{\text {21,882 }}^{22,046}$	-210	-
16.0\%	${ }_{21,522}$	${ }_{21,417}^{2,17}$	-104	-0.5\%
17.3\%	21,506	${ }_{21,292}$	-214	-1.0\%
18.5\%	${ }^{21,420}$	21,269	-151	-0.7\%
19.8\%	${ }^{21,370}$	21,263	-108	-0.5
21.0\%	${ }^{21,367}$	21,200	-168	-0.8\%
22.2\%	21,245	21,146	-99	-0.5\%
23.5\%	${ }^{21,229}$	20.992	-238	-1.1\%
${ }^{24.79 \%}$	${ }^{21,221}$	20,982	-239	-1.1\%
25.9\%	20,906	20,899	-8	0.0\%
27.2\%	${ }^{20,816}$	${ }^{20,805}$	-12	-0.1\%
${ }^{28.4 \%}$	${ }_{20,770}^{20,721}$	${ }_{2}^{20,765}$	-6	0.0\%
	${ }^{20,721}$	20,733	12	37\%
30.9\%	20,699	19,930	-770	-3.7\%
32.1\%	20,590	19,722	-888	-4.2\%
33.3\%	20,440	19,691	-799	
34.6\%	20,147	19,609		
37.0\%	${ }^{20.928}$	${ }^{19,4939}$	-610	-3.2\%
38.3\%	19,751	19,299	-452	-2.3\%
39.5\%	19,742	19,164	-578	\%
40.7\%	19.712	18.746	-966	
42.0\%	19,356	18,341	-1.014	-5.2\%
43.2\%	19,041	18,206	-834	-4.4\%
44.4\%	18,429	17,122	-1,307	-7.1\%
45.7\%	18,046	15.819	-2,227	-12.3\%
46.9\%	17,673	${ }^{15,643}$	-2,030	-11.5\%
48.1\%	17,333	${ }^{15,316}$	-2,017	-11.6\%
49.4\%	17,101	15,315	-1,786	-10.4\%
50.6\%	16,198	14,556	-1,643	-10.1\%
51.9\%	15.977	${ }^{13,518}$	-2,460	-15.4\%
53.1\%	15,337	13,289	-2,048	-13.4\%
	13,929 1384	11,278 11225 112	-2,651	-19.0\%
56.8\%	(13,765	${ }_{1}^{11,1,152}$	${ }_{\text {-2, } 2,614}$	-19.0\%
58.0\%	13,487	10,969	-2,518	-18.7\%
年59.3\%	-	10,775	-2,699	-20.0\%
${ }^{60.5 \%}$	${ }^{12,028}$	10,979	-2,309	-18.3\%
${ }^{63} \mathbf{3} 00^{\circ}$	${ }_{12,537}^{12,426}$	9.843	-2,723	退.7\%
64.2\%	${ }_{\text {cher }}^{112,717}$	${ }_{9.331}^{9.004}$	${ }_{\text {-2, } 238}$	-20.4\%
65.4\%	11,510	9,164	${ }_{2,346}$	-20.4\%
${ }^{66.77 \%}$	${ }^{11,481}$	8,683	-2,798	-24.4\%
- 67.9%	11,349 11.239	8,278 8.249	-3,071	
70.4\%	10,981	${ }_{8,248}^{8,248}$	${ }_{-2,733}$	-24.9\%
71.6\%	10,816	8,239	-2,577	-23.8\%
72.8\%	10,211	8.114	${ }_{-2,096}$	-20.5\%
74.1\%	9,982	7.805	-2,177	-21.8\%
75.3\%	9,294	7,580	-1,714	-18.4\%
76.5\%	${ }_{8}^{8,775}$	7,528	--1,247	- 14.2%
77.8\%	8,646 8,180	7,351 7,313	-1,295	-15.0\%
80.2\%	${ }_{7}^{7,795}$	7,196	-598	-10.7\%
81.5\%	7.574	7.023	-552	-7.3\%
82.7\%	7,571	${ }_{6,875}^{6,875}$	-696	-9.2\%
84.0\%\%	${ }_{7}^{7,283}$	${ }_{6}^{6.515}$	-768	-10.6\%
85.2\%	7,811	${ }_{6}^{6,365}$	-085	-11.2\%
86.47\%	6,078	- ${ }_{5}^{6,366}$	-492	- -1.58%
88.9\%	6,479	5,669	${ }_{-810}$	-12.5\%
90.1\%	6.428	5.592	836	-13.0
91.4\%	6,402	5,334	-1,068	-16.7\%
${ }_{93}^{92.8 \%}$	6,067 6.000	5,296 5 5114	-771	-12.7\%,
95.1\%	5.432	5.046	-387	-7.1\%
96.3\%	5.017	5.000	-17	-0.3\%
97.5\%	4.936	5,000	64	1.3\%
9.8\%	4,705	5,000	295	6.3\%
100.0\%	4,144	4,758	614	14.8\%

PercentExcedanceProbability	${ }^{\text {OCR } 2015 \text { Without May }}$		$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (CcFs) } \\ 3 \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	${ }_{\text {DCR } 2015 \text { Without }}^{\text {Proiect }}$	DCR 2015 With Project		
	Monthy fow (CF5)	Monthy Fow (CFS)		
${ }^{0.0 \% \%}$	1895	${ }^{19,526}$	${ }^{3}$	0.0
2.5\%	${ }^{18,579}$	117.930	-649	
3.7\%	17.684	17706	21	
4.9\%	17,169	17.139	${ }^{30}$	
6.2\%	16,785	16.743	-43	-0.3\%
7.4\%	16,322	15,292	1,030	-6.3\%
8.6\%	15.449	${ }^{12,872}$	-2,577	-16.7\%
9.9\%	${ }^{13,003}$	${ }^{12,824}$	-179	-1.4\%
11.1\%	12,563	${ }^{12,395}$	- 168	-1.5\%
${ }^{12.3 \%}$	${ }^{12,171}$	${ }^{11,870}$	-301	-2.5\%
13.6\%	${ }^{11,1803}$	${ }^{11,701}$	-214	
\%	${ }^{11,482}$	11,268	- 15	
(17.3\%	(11,300	11,093 10,160	-140	${ }^{-1.4 \%}$
18.5\%	9,109	${ }_{9,237}$	128	1.4\%
19.8\%	9,087	8,951	-136	-1.5\%
21.2\%	${ }_{8,566}^{8.006}$	${ }_{\text {¢ }}^{7,760}$	-806	-9.4\%
23.5\%	7,732	${ }_{7}^{7,642}$	-90	-1.2\%
24.7\%	7,610	7,603	-7	-0.19
25.9\%	7,267	7,188	-79	-1.1\%
27.2\%	7,227	${ }_{6}^{6.916}$	311	4.3\%
28.4\%	${ }_{6}^{6,966}$	6.814	-152	-2.2\%
29.6\%	6,288	${ }^{6,465}$	177	${ }^{2.8 \%}$
30.9\%	5,905	6,233	327	5.5\%
332.3\%	5.849 5.575	c,027 $\substack{6,098 \\ \hline \\ \hline}$	178 393	7.1\%
34.6\%	5.538	${ }_{5.871}^{50.07}$	${ }_{333}$	6.0\%
35.8\%	5,453	5.512	59	1.1\%
37.0\%	5,453	5,453	0	0.0\%
- ${ }_{\text {38, }}$	${ }_{5}^{5,435}$	${ }_{5}^{5.385}$	-	-
40.7\%	${ }_{5,315}^{5}$	${ }_{5.315}^{5}$	0	0.0\%
42.0\%	5, 5,254	¢ $\begin{gathered}5,254 \\ 5 \\ 5\end{gathered}$	0	0.0\%
44.4\%	${ }_{\substack{\text { c, } \\ 5.224 \\ 5.228}}$	$\underset{\substack{5.215 \\ 5.228 \\ \hline}}{\text { c, }}$	-9	-0.2\%
45.7\%	5,215	5.196	-19	-0.4\%
	${ }_{5}^{5,196}$	$\stackrel{5.186}{5}$	-10	0.2\%
${ }_{49.4 \%}^{48.19 \%}$	${ }_{\text {c }}^{5,171}$	${ }_{5,171}^{5.176}$	-10	-0.0\%
50.6\%	5,130	5.130	0	0.0\%
51.9\%	5,129	5,129	0	0.0\%
55.3\%	5,108	5,108	0	0.0\%
55.6\%	5,101 5 5	5.101	0	0.0\%
56.8\%	4,956	5.000	44	0.9\%
58.0\%	4,941	4,956	15	0.3\%
59.3\%	4,799	4,941	142	3.0\%
60.5\%	${ }_{4}^{4.772}$	4.879 4799	107 66	${ }_{12}^{2.2 \%}$
61.7\%	${ }_{4}^{4,733}$	4,799 4772	66 96	1.4\%
6.4.2\%	${ }_{4,667}^{4.676}$	${ }_{4,773}^{4,772}$	${ }_{66}^{96}$	${ }^{2.14 \%}$
6.4\%\%	4,665	4,720	56	1.2\%
66.7\%	${ }_{4}^{4,657}$	${ }_{4}^{4,667}$	10	${ }^{0.2 \%}$
69.1\%	${ }_{4,577}^{4.593}$	${ }_{4,657}^{4.665}$	12 80	1.8\%
70.4\%	4,570	4.611	41	0.9\%
71.6\%	4,550	4.593	42	0.9\%
74.1\%	4.509 4.489	4,577	68	1.4\%\%
75.3\%	4,421	4,478	${ }_{57}^{62}$	1.3\%
76.5\%	4,362	4.421	59	1.4\%
77.8\%	4,324	4,362	${ }^{37}$	0.9\%
79.0\%	4,168	${ }_{4}^{4.324}$	${ }^{156}$	3.8\%
80.2\%	4,163	4,168	5	0.1\%
-	4,145	4,163	18	0.4\%
-	4,111	4,195	${ }^{34}$	- 0.8%
85.2\%	${ }_{4,059}^{4,066}$	${ }_{4,066}^{4,070}$	6	- 0.2%
86.4\%	4,012	4,059	47	1.2\%
877.7\%	3,995	3,954	${ }^{41}$	-1.0\%
88.9\%	3,792	3,996	154	4.19\%
91.4\%	${ }_{\text {3,707 }}$	${ }_{3,778}^{3,792}$	${ }_{71}$	1.9\%
92.6\%	3,659	3,707	48	1.3\%
93.8\%\%	3,642	3.659	17	0.5\%
96.3\%	- ${ }_{\text {j,522 }}$	- ${ }_{\text {3,522 }}$	0	0.0\%
97.5\%	${ }^{3,377}$	${ }^{3,337}$	0	0.0\%
98.8\%	${ }^{3,354}$	3,354	0	0.0\%
100.0\%	3,319	3,319	0	0.0\%

Table SW-15-b

| |
| :--- | :--- | :--- | :--- | :--- |

Sacramento River at Verona, Monthly Flow

October				
Percent Exceedanc	DCR 2015 Without Proiect	${ }^{\text {DCR } 2015 ~ W i t h ~ P r o j e c t ~}$	${ }_{\text {Ald }}^{\substack{\text { Absolute } \\ \text { Diference }}}$	
Probability	Monthl Folow（CFS）	Monthly Flow（CFS）	（CFS）	Difference（\％）
0．0\％	26，508	${ }^{26,727}$	220	0．8\％
1．2\％	15.599	15，553	－47	0．3\％
2．5\％	${ }^{14,3537}$	${ }^{13,955}$	－402	－2．8\％
3．7\％	13,727	13，053	－674	－4．9\％
4．9\％	13.030	${ }^{12,993}$	－38	－0．3\％
6．2\％	${ }^{12,2954}$	12.679	－275	－2．1\％
7．4\％	12，837	12.444	－393	－3．1\％
8．9\％	12，441	12，433	${ }^{-8}$	－0．1\％
9．9\％	${ }^{12,391}$	${ }^{12,406}$	15	0．1\％
11．19\％	${ }_{\text {12，}}^{12,287}$	12,367 12154 1	80	0．7\％
12．3\％	${ }_{\text {12，}}^{12,171}$	${ }^{12,154}$	－184	－0．1\％
（13．6\％	${ }^{11,873}$	（12，006	134 189	－ 1.10%
（14．8\％	－11，651	11,840 11,810	189 191 19	${ }^{1.6 \%}$
17．3\％	11，608	11，752	144	1．2\％
18．5\％	11，529	11，501	${ }^{27}$	－0．2\％
19．8\％	${ }^{11,465}$	11,47	5	
21．0\％	11，202	11，466	263	
${ }_{2}^{22.5 \%}$	（10．882	11，420	${ }_{539}$	4．9\％
${ }^{24.7 \%}$	${ }^{10,774}$	${ }_{111,217}^{11,280}$	${ }_{443}^{447}$	${ }_{4}^{4.1 \%}$
25．9\％	10.681	11.094	414	3．9\％
27．2\％	10，681	11，079	398	3．7\％
28．4\％	10，626	10，952	326	3．1\％
29．6\％	10，589	10，913	324	3．1\％
30．9\％	10，412	10，888	477	4．6\％
32．1\％	10,377	10，779	402	3．9\％
33．3\％	10，310	${ }^{10,691}$	381	3．7\％\％
34．6\％	10，124	10，993	${ }^{370}$	3．7\％\％
年35．8\％	${ }^{9,9896}$	10,377 10.368	467 502	年．7\％
年37．0\％	${ }_{9}^{9.8866}$	（10，368	502 526	5．1\％
39．5\％	${ }_{9,796}^{9,837}$	${ }^{10,3630}$	${ }_{544}^{526}$	5．5\％
40．7\％	9，713	10，262	549	5．7\％
${ }^{42.0 \%}$	${ }_{9,633}^{9,663}$	¢， $\begin{aligned} & 10,134 \\ & 9,99\end{aligned}$	${ }_{366}^{471}$	3．8\％
44．4\％	9，516	9，947	431	4．5\％
457．7\％	${ }^{9,373}$	9，896	523	5．6\％
${ }_{48.9}^{46.9 \%}$	${ }_{\text {9，338 }}^{9,938}$	${ }^{9.8388}$	500	5．4\％
49．4\％	${ }_{9,233}^{9,258}$	${ }_{9,633}^{9.835}$	${ }_{401}^{576}$	${ }_{4}^{6.3 \%}$
50．6\％	9，208	9.604	397	4．3\％
51．9\％	9,094	9，557	463	5．1\％
53．1\％	8,893	9，454	561	6．3\％
54．3\％	${ }^{8,822}$	9，339	517	5．9\％
55．6\％	${ }_{8.556}^{8.572}$	9，207	636 634	7．4\％
56．8\％	${ }_{8,553}^{8,556}$	${ }_{\text {9，162 }}^{9,190}$	634 609	7．4\％
59．3\％	8，499	9，082	583	6．9\％
60．5\％	8，249	9，049	800	9．7\％
${ }^{611.7 \%}$	${ }_{8,114}$	8，931	817	10．1\％
－63．0\％	8,112 7,680 1802	8.581 8.419	${ }_{739}^{469}$	${ }_{\text {9．6\％}}^{5.8}$
65．4\％	7.669	${ }_{8,414}^{8,419}$	${ }_{745} 7$	9．7\％
66．7\％	7.592	${ }_{8}^{8,378}$	${ }^{786}$	10．3\％
${ }^{67.9 \%}$	7,231 7126	－ $\begin{aligned} & 8,312 \\ & 8302\end{aligned}$	（1，082	
69．19\％	7,125 7,126	－8，2020	$\underset{\substack{1,117 \\ 1,126}}{1}$	${ }^{16.5 \%}$ 15．8\％
71．6\％	7，028	8,108	1，080	15．4\％
72．8\％	6，932	7，960	${ }^{1,028}$	14．8\％
74．1\％${ }^{75.3 \%}$	¢，${ }_{6.764}$	$\begin{array}{r}7.810 \\ 7786 \\ \hline\end{array}$	${ }_{1}^{1,095}$	${ }^{16.3 \%}$
76．5\％	${ }_{6}^{6.664}$	7,786 7,780	${ }_{\substack{1,122 \\ 1,168}}$	－ 16.8%
77．8\％	6.528	7.532	1，004	15．4\％
79．0\％	6．521	7，491	970	14．9\％
80．2\％	6.421	7，288	867	13．5\％
－	¢，6，123		${ }_{796}^{775}$	${ }_{\text {127\％}}^{12.78}$
88．0\％	${ }_{6,020}^{6,067}$	$\underset{6,819}{6,863}$	${ }_{799}^{796}$	${ }^{\text {c }}$
85．2\％	${ }_{5}^{5,990}$	${ }_{6}^{6,286}$	${ }^{296}$	4．9\％
${ }^{86.46 \%}$	${ }_{5}^{5,865}$	${ }_{6}^{6,124}$	${ }_{289}^{259}$	4．4\％
－87．7\％\％	${ }_{5.757}^{5.821}$	${ }_{\substack{6,101 \\ 5,794}}^{\text {a，}}$	281 37	
90．1\％	5，522	5．584	62	1．1\％
91．4\％	5．479	${ }^{5.576}$	${ }_{381}^{97}$	${ }^{1.8 \%}$
93．8\％	5，169	${ }_{\text {5，482 }}^{5.558}$	${ }_{314}$	6．1\％
95．1\％	4.989	5，369	380	7．6\％
96．3\％	4，845	5，296	451	
998\％	${ }_{4}^{4.462}$	${ }_{4}^{\text {5，741 }}$	${ }_{279}$	6．2\％
100．0\％	4.314	4，349	35	0．8\％

PercentExceedance	December			
	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	$\begin{gathered} \text { Absolute } \\ \text { Aifference } \end{gathered}$	Relative
	Monthly Fow（CFS）	Montly Flow（CFS）	（CFS）	
0．0\％	62，193	61,789		－0．7\％
1．2\％	${ }^{53.845}$	54,398	553	
2．5\％	51，035	4，941	${ }^{2}, 405$	
5．7\％	50，159	4，0367	－1，	
4．9\％	4.5963	45.967	${ }^{3.579}$	
6．2\％	${ }_{45182}$	45，030	－	
7．4．\％	${ }_{40,832}$	4， 4 ，994	－	
9．99\％	39825	38.607	1219	
11．1\％	${ }_{\text {3，} 3.971}$	${ }^{30,037}$	－1934	－50\％
12．3\％	${ }_{34,209}$	34，281	71	
13．6\％	33,785	33，991	207	0．6\％
14．8\％	31，718	32，501	783	5\％
16．0\％	31，217	30，418	－798	－2．6\％
${ }^{17.3 \%}$	29，931	29，795	136	0．5\％
18．5\％	${ }_{2}^{28,535}$	${ }^{28,594}$	41	0．1\％
19．8\％	${ }_{2}^{27,354}$	${ }^{27,996}$	342	1．3\％
21．0\％	${ }_{2}^{25.827}$	25．013	－814	
${ }^{22.22 \%}$	25，245	${ }_{2}^{24,615}$	-635	－2．28
23．5\％	24，604	${ }^{21,845}$	－2，759	源
25．9\％	${ }_{2}^{21,554}$	${ }^{19,960}$	－1，894	－．8\％
27．2\％	． 786	17，722	${ }^{2}, 065$	
28．4\％	19，179	16，616	${ }^{2} .563$	
29．6\％	18，212	16，433	．779	
30．9\％	17，968	16，199	－1，770	－9．8\％
32．1\％	17，659	15，201	－2，458	－13．9\％
33．3\％	16，547	${ }^{14,735}$	－1，812	－11．0
34．6\％	16，398	14,724	－1，675	
33．7\％	${ }^{16,190}$	14，656	－1，534	－9．5\％
37．0\％	${ }^{15,957}$	14，622	－1，335	－8．4\％
38．3\％	${ }^{15,856}$	14，395	－1，461	－9．2\％
39．5\％	${ }^{15,835}$	14,359	－1，476	－9．3\％
40．7\％	15．151	14，190	-961	－6．3\％
42．0\％	14.681	14，139	－542	
43．2\％	${ }^{14.614}$	${ }^{13,718}$	－986	－6．1\％
4．4．4\％	${ }^{14,3060}$	${ }^{112,73}$	－953	
45．7\％	14，303	112，924	－1，331	
46．9\％	14，108	${ }^{12,2954}$	－1，153	
${ }_{494 \%}^{48.19 \%}$	13,961 13.634 1	12,817 12715 1275	－	－8．8．7\％
50．6\％	12，835	12，509	325	
51．9\％	12,742	12，501	－241	－1．9\％
53．1\％	12，627	12，450	177	4\％
54．3\％	12，507	12.450	－57	0．5\％
55．6\％	12.501	${ }^{12,437}$	－64	－0．5\％
56．8\％	12，500	12,424	－76	－0．6\％
	12,487	12，386	－101	－0．8\％
59．3\％	12，455	12，369	${ }^{-87}$	－0．7\％
60．5\％	12，450	${ }^{12,226}$	－224	－1．8\％
61．7\％	12，435	12，111	${ }^{-324}$	－2．6\％
63．0\％	${ }_{1}^{12,224}$	${ }^{11,918}$	${ }^{-306}$	－2．5\％
${ }^{64.2 \%}$	${ }_{12,077}$	${ }^{11,752}$	${ }^{-326}$	${ }^{-2.7 \%}$
65．4\％	${ }^{11,941}$	${ }^{11,702}$	－239	－2．0\％\％
66．7\％ 6790%	${ }^{11,917}$	${ }^{11,648}$	－269	
－67．9\％	11，165	10，919	－847	
69．1\％	${ }^{111,553}$	10,884 10.875	${ }_{-654}$	
71．6\％	${ }^{111,380}$	${ }_{10,837}^{10,875}$	${ }_{-543}$	－－．7．8\％
72．8\％	${ }^{11,173}$	10，801	${ }^{-372}$	3\％
74．1\％	10，993	10，794	－200	－1．8\％
7．5\％	，	10，404	－24	
7788\％	9，940	10，804	4	
79．0\％	${ }_{9,831}^{9.81}$	$\xrightarrow{9,774}$	${ }_{-84}^{21}$	－0．9\％
80．2\％	8.598	9，358	760	8\％
81．5\％	${ }_{8,416}$	9，049	633	7．5\％
82．7\％	8.240	8.474	234	2．8\％
84．0\％	8，236	${ }^{8,368}$	${ }^{131}$	1．6\％
85．2\％	8，010	${ }_{8}^{8,300}$	$\begin{array}{r}290 \\ 258 \\ \hline\end{array}$	3．6\％
${ }^{86.4 \%}$	7，779	8，037	${ }^{258}$	3．3\％
877．\％	${ }^{7,518}$	${ }^{8.034}$	516	6．9\％\％
${ }^{80.1 \%}$	7.516 7042	7,845 7656 7	329 613	${ }^{4.4 \%}$
91．4\％	6，867	7，541	674	9．8\％
92．\％	6．814	6，910	97	1．4\％
93．8\％	6，797	${ }^{6.820}$	${ }^{23}$	0．3\％
${ }^{95.3 \%}$	${ }_{\text {c，}}^{6.468}$	${ }_{6,523}^{6.617}$	${ }_{77}^{36}$	1．2\％
5\％	362	6．497	135	
98．8\％ 100．0\％	${ }_{5}^{5.961}$	¢， $\begin{gathered}6,426 \\ 5,566\end{gathered}$	465 58	7．1．7\％

| |
| :--- | :--- | :--- | :--- |

Table SW-16-b

Apprl				
Percent Exceedance	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	Absolute Difference	Relative
Probability	Monthly fow (CFS)	Monthy Fiow (CFFS)	(CFS)	
0.0\%	59.571	59,565	-6	0.0\%
${ }^{1.2 \%}$	${ }^{56,909}$	${ }^{56.549}$	-300	-0.6
2.5\%	53,928	4,043	14	
3.7\%	4,9834	4,0688	. 25	-0.6\%
4.9\%	48.884	88,358	-25	
6.2\%	${ }_{48,871}$	4 4, 218		
7.6\%	4,591	4,548	-2, 55	
8.9\%	${ }_{45611}$	44.225	-1386	
11.1\%	${ }_{42} 2.553$	3.818	-2735	-6.4\%
12.3\%	38,212	${ }_{\text {38,212 }}$	0	0.0\%
13.6\%	35,471	${ }_{35,467}$	4	0.0\%
14.8\%	34,080	32,626	1,454	-4.3\%
16.0\%	33,158	32,357	-81	-2.4\%
17.3\%	${ }^{32,630}$	${ }^{31,208}$	1,423	-4.4\%
18.5\%	32,534	30,431	-,103	
19.8\%	${ }^{32,063}$	30,212	-1.850	-5.8\%
21.0\%	29,780	29.011	-69	
${ }^{22.2 \%}$	29,004	28,541	-464	
23.5\%	28,408 26.425	${ }^{26,074}$	1,337 61	0.2\%
25.9\%	${ }_{22,542}^{26,42}$	${ }^{21,901}$	-642	
27.2\%	22,026	19,472	2.554	
28.4\%	21,430	19,406	. 0225	
29.6\%	19,293	19,298	5	
30.9\%	18,178	18,130	48	-0.3\%
32.1\%	18,170	18,121	${ }_{50}$	-0.3\%
33.3\%	17,477	177477	0	
34.6\%	17,206	17,122	84	5\%
35.8\%	16,757	16,065	-992	-4.1\%
37.0\%	10,664	${ }^{15.888}$	-776	-4.7\%
38.3\%	${ }^{16,572}$	15,410	-1,162	-7.0\%
39.5\%	16,290	${ }^{15,140}$	-1,150	-7.1\%
40.7\%	${ }^{16,267}$	14,973	1,295	-8.0\%
42.0\%	${ }^{15,413}$	14,760	-653	-4.2\%
43.2\%	${ }^{15,206}$	14,668	-338	-3.5\%
44.4.9	${ }^{14,906}$	14,603	-302	2.0\%
45.7\%	14,717	14,452	-264	1.8\%
46.9\%\%	11,937	11,941	4	0\%
49.4\%			0	0.0\%
50.6\%	13,428	13,420	-7	1\%
5\%	3,209	${ }^{13,037}$	172	-1.3\%
年 54.36%	12,235 111660	12,314 11778		
55.6\%	${ }^{11,1,446}$	${ }^{11,440}$	${ }_{-7}$	-0.1\%
56.8\%	11,405	11,407	1	
58.0\%	10,760	11,246	486	4.5\%
59.3\%	10.594	10,795	201	1.9\%
60.5\%	10.547	10,760	214	2.0\%
61.7\%	${ }^{10.503}$	${ }^{10,668}$	164	1.6\%
63.0\%	${ }^{10,426}$	10.547	120	1.2\%
64.2\%	10,367	${ }^{10,506}$	140	1.3\%
65.4\%	${ }^{10,328}$	10,429	101	1.0\%
${ }^{66.77 \%}$	10,181	${ }^{10,332}$	151	1.5\%
67.9\%	9,982	10,183	202	2.0\%
69.1\%	${ }_{\text {9,964 }}$	${ }_{\substack{9,967 \\ 9.808}}$	- ${ }_{54}$	-0.0\%\%
71.6\%	${ }_{\substack{9,751}}^{9.862}$	${ }_{9.749}^{9.808}$	-54	-0.0\%
72.8\%	9,736	9,741	4	.0\%
74.19\%	${ }_{9}^{9,465}$	9,741	${ }^{276}$	2.9\%
76.5\%	${ }_{9,092}^{9,013}$	${ }_{9,465}^{9.516}$	${ }_{372}$	4.1\%
77.8\%	${ }_{9.073}$	${ }_{9,047}$	-26	
79.0\%	8,995	8,969	${ }_{-26}$	-0.3\%
80.2\%	8,897	${ }_{8,895}$	-1	0.0\%
81.5\%	${ }^{8,577}$	8,578	1	0.0\%
82.7\%	${ }^{8.548}$	8,536	-12	-0.1\%
84.0\%	${ }^{8.533}$	${ }^{8.506}$	-27	-0.3\%
85.2\%	8.505	${ }_{8}^{8,428}$	-77	0.9\%
${ }^{86.47 \%}$	${ }^{8,428}$	${ }^{8,427}$	-1	${ }^{0.0 \% \%}$
87.7\%	8,427	8.328 8.144 8	-994	-1.2\%
${ }^{80.1 \%}$	${ }_{\substack{8,408 \\ 8,312}}^{8,408}$	8,144	${ }^{-264}$	${ }_{\text {- }}^{\text {-3.3\% }}$
91.4\%	${ }_{7}^{7,867}$	7,833	-34	-0.4\%
92.6\%	7,833	7.811	${ }^{22}$	-0.3\%
93.8\%	7,625	7,625	0	0.0\%
-95.17\%	7,605 7.571	7,606 7,367	-205	-2.0\%
97.5\%	7,367	7,339	-28	
	7,339 7,165	7,166 7,055	-111	- -2.5%

Table SW-1 $1-$-b
nento Rive t Verona, Monthy Fiow
Probability of Exceedance

		June		
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	$\underset{\substack{\text { DCR 2015 } \\ \text { Proiethout }}}{\text { and }}$	DCR 2015 With Project	Absolute Difference	Relative
Probability	Monthy fow (CFS)	Monthy flow (CFs)	(CFS)	
0.0\%	49,538	49,503	-35	-0.1\%
1.2\%	${ }^{37,122}$	36,955	-167	-0.4\%
2.5\%	27,095	27,936	841	3.1\%
3.7\%	26,960	27,687	${ }^{727}$	2.7\%
4.9\%	25.773 25.659	26,384 25993	${ }_{334}^{612}$	2.4\%
-6.2\%	25,659 23.985	${ }^{25,993}$	334 1.773	7.4.4\%
8.6\%	20,935	${ }^{21,936}$	1,000	4.8\%
9.9\%	19,461	${ }^{19,771}$	310	1.6\%
${ }^{11.12 \%}$	18,468 177962	-17.617	${ }_{-149}$	
13.6\%	${ }_{177766}$	11,769 189	-996	
14.8\%	16,086	16,118	32	
16.0\%	14,957	15.017	60	0.4\%
17.3\%	14,766	14,943	177	1.2\%
18.5\%	14,466	14,454	-12	-0.1\%
19.8\%	14,307	14,296	-11	-0.1\%
21.0\%	14,107	${ }^{13,840}$	-267	-1.9\%
22.2\%	${ }^{13,7712}$	${ }_{\text {l }}^{13,658}$	-54	${ }^{-0.4 \%}$
23.5\%	${ }^{13,119}$	13,397	${ }^{278}$	2.1\%
${ }^{24.79 \%}$	12,975	${ }^{12,999}$	${ }^{24}$	0.2\%
25.9\%	${ }^{12,719}$	${ }^{12,962}$	${ }^{242}$	
27.2\%	${ }_{\text {12,396 }}$	${ }^{12,536}$	140	
29.6\%	$\xrightarrow{12,345}$		-148	${ }_{\text {- }}-1.2 \%$
30.9\%	12.072	12,053	-19	-0.2\%
32.1\%	12,009	11,837		
33.3\%	11,946	11.816	-130	
34.6\%	11,845	11,706	39	
35.8\%	${ }^{11,640}$	${ }^{11,655}$	15	
37.0\%	11,492	11,640	148	
38.3\%	11,453	11,590	137	1.2\%
39.5\%	${ }^{11,318}$	${ }^{11,543}$	${ }^{225}$	
40.7\%	11,257	11,444	187	1.7\%
42.0\%	${ }^{111,255}$	11,439	184	1.6\%
43.2\%	11,207	${ }^{11,387}$	180	1.6\%
${ }^{44.4 \%}$	10,980	${ }^{11,372}$	392	${ }^{3.6 \%}$
45.7\%	${ }^{10,861}$	111,279	418	
48.1\%	10,814	${ }^{10,956}$	142	1.3\%
49.4\%	10,794	10,825	31	0.3\%
50.6\%	10,709	10,756	47	0.4\%
年 51.9%	10.537 10.468	10,710 10.580	173 112 1	${ }^{1.6 \%}$
54.3\%	10.413	${ }^{10,5255}$	${ }_{112}^{112}$	1.1\%
55.6\%	10,390	10.511	121	1.2\%
59.3\%	10,174	10,387	${ }_{214}^{2514}$	2.1\%
60.5\%	10,100	10,186	86	0.9\%
61.7\%	10,037	10,125	87	0.9\%
63.0\%	${ }^{10,0018}$	10,124	106	1.1\%
${ }^{64.2 \%}$	10,004	10,114	110	${ }^{1.19 \%}$
${ }^{65.4 \%}$	${ }_{9,888}^{9,892}$	$\xrightarrow{10,077}$10.066	185 178 178	- 1.9%
67.9\%	${ }_{9,850}$	10,021	171	1.7\%
69.1\%	9,611	9,975	364	3.8\%
70.4\%	${ }_{9}^{9.571}$	9,622	51	0.5\%
71.2.8\%	${ }_{9,510}^{9.558}$	${ }_{\substack{9,601 \\ 9,537}}^{\text {9, }}$	${ }_{27}^{42}$	- 0.3% \%
74.1\%	${ }^{9,487}$	9,420	-67	-0.7\%
75.3\%	9,381	9,376	${ }^{-6}$	-0.1\%
76.5\%	${ }_{9}^{9,315}$	${ }_{9}^{9,358}$	42	0.5\%
778.8\%	9,234 9195	${ }_{\substack{9,337 \\ 9,226}}$	104 31	-1.1\% 0.3%
80.2\%	9,069	${ }_{9,187}$	117	1.3\%
81.5\%	8,942	9,101	159	${ }_{\text {l }}^{\text {1.8\% }}$
84.0\%	${ }_{8,493}$	8,929	437	5.1\%
85.2\%	8,360	8,495	135	1.6\%
86.4%	${ }_{8}^{8,010}$	${ }_{8,265}$	255	3.2\%
877.7\%	7,897	7,930	33	0.4\%
${ }^{88.9 \%}$	7,830	7,615 7,602	-203	${ }_{-2.6 \%}^{-2.7 \%}$
91.4\%	7,687	7.550	-137	-1.8\%
92.6\%	7,320	7,500	180	2.5\%
93.8\%	7,128	7.471	343	4.8\%
95.1\%	7,025	7,411	386 329	5.5\%
97.5\%	${ }_{6,708}^{6,79}$	7.042	335	5.0\%
98.8\%	${ }^{6.503}$	${ }^{6,767}$	${ }^{264}$	4.1\%
100.0\%	6,245	6,347	102	1.6\%

Figure SW-17-b
Sacramento River at Freeport, Monthly Flow

Table SW－17－b

October				
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	Absolute Difference	
Probability	Montly Fow（CFS）	Monthly Fow（CFFS	（CF5）	
1．2\％		33,002 17881	884	－．8\％
2．5\％	17.927	16.924	1.003	
3．7\％	16.199	15.772	${ }^{-426}$	－26\％
4．9\％	15.591	15，613	23	0．1\％
6．2\％	15，548	15，482	－66	－0．4\％
7．4\％	${ }^{15,3375}$	15，162	${ }^{-175}$	－1．1\％
8．6\％	${ }^{14,475}$	${ }^{14.4828}$	538	4\％
${ }^{\text {11．1\％}}$	14，408	${ }^{14,500}$	－${ }^{368}$	${ }_{21 \%}^{2.6 \%}$
12．3\％	14，142	14，479	${ }_{337} 3$	2．4\％
13．\％	14，077	14，387	309	2．2\％
${ }^{14.89 \%}$	14，014	${ }^{14,353}$	${ }_{3}^{339}$	2．4\％
17．3\％	${ }_{\text {13，}}^{13.428}$	${ }^{14,9061}$	534	4．0\％
18．5\％	13，416	13，739	323	
19．8\％	13，385	13，712	327	
21．0\％	13，374	13，622	248	1．9\％
${ }^{22.2 \%}$	${ }^{13,299}$	13，491	192	1．4\％
${ }^{23.7 \%}$	－ $13,13,17{ }^{13,24}$	${ }_{\text {13，}}^{13,458}$	${ }_{280}$	2．1\％
25．9\％	13，174	13，434	260	2．0\％
27．2\％	13，084	${ }^{13,3731}$	${ }^{247}$	19\％
${ }^{28.49 \%}$	${ }^{13,048}$	${ }_{\text {13，}}^{13,278}$	${ }_{3}^{235}$	1．8\％
－	＋12，949		325 394	${ }_{31.5}^{2.5 \%}$
32．1\％	${ }_{12,815}^{12,29}$	13，189	374	2．9\％
33．3\％	${ }^{12,793}$	13，144	350	2．7\％
34．6\％	12,791 12790	${ }^{13,106}$	${ }_{237}^{315}$	${ }_{2.5 \%}$
37．0\％	－ 12,743	${ }_{\text {l }}^{12,9398}$	${ }_{196}^{287}$	1．5\％
38．3\％	${ }^{12,623}$	12，931	308	2．4\％
	12，375	${ }^{12,871}$	496	4．0\％
42．0\％	${ }^{12,098}$	112，807	709	5．9\％
43．2\％	${ }^{12,007}$	12,672	666	5．5\％
44．4\％	11，962	12,672	709	
45．7\％	${ }^{11,1804}$	${ }^{12,407}$	${ }_{6}^{603}$	5．1\％
${ }^{46.9 \%}$	${ }^{11,803}$	${ }^{12,401}$	597	5．1\％
49．4\％	${ }^{11,1,360}$		${ }_{974}$	8．6\％
50．6\％	${ }^{11,318}$	12,275	957	8．5\％
51．9\％	${ }^{11,267}$	${ }^{12,067}$	799	7．1\％
－53．1\％	11，055	${ }^{11,918}$	${ }_{8}^{863}$	7．7．\％
55．6\％	－10，952	－11，667	${ }_{9}^{815}$	
56．8\％	10，794	11.597	804	7．4\％
年58．0\％	10,730 10,518	${ }^{11,501}$	771	7．2\％
	10.518 10.478	11,390 111,151	${ }_{673}^{872}$	
61．7\％	10，203	11.071	867	8．5\％
63．0\％	9.571	${ }^{11,070}$	1，499	15．7\％
－ 64.2% \％ 6.4%	${ }_{9,251}^{9.513}$	10,818 10.678	${ }_{1,427}^{1,305}$	13．7\％ 15.4%
66．7\％	9，185	10.604	1.419	15．4\％
67．9\％	9，017	10，511	1,494	16．6\％
69．1\％ 7	8,830 8,828	10.471 10.463	${ }^{1,641}$	18．6\％
71．6\％	${ }_{8,570}$	9,677	1,107	12．9\％
72．8\％	${ }^{8,532}$	9.479	947	11．1\％
74．1\％	${ }_{8}^{8,303}$	${ }_{9}^{9,4288}$	＋1，126	${ }^{13.5 \%}$
75．3\％	8，297	9,417	1，120	13．5\％
76．5\％${ }_{778 \%}$	8,109 8049	9，179	＋1，070	13．2\％
77．0\％	8,049 8.042	$\xrightarrow{9,1058}$	$\underset{\substack{1,0162 \\ 1,016}}{ }$	${ }^{13.29 \%}$
80．2\％	${ }_{8,015}^{80}$	${ }_{8,938}$	924	11．5\％
81．5\％	8，012	8，262	${ }^{250}$	3．1\％
－ 8 827\％	8，009	8,237 8,142	228 157	2．8\％
85．2\％	7.963	8.097	134	1．7\％
${ }^{86.4 \%}$	7，958	${ }^{8.053}$	95	1．2\％
88．9\％	7，301	7，523	222	3．0\％
90．1\％	7.129	7，297	168	，
91．4\％	6，596	6，953	357	5．4\％
${ }_{93}^{92.8 \%}$		${ }^{6.825}$	297	4．5\％
95．1\％	${ }_{6,445}^{6,245}$	${ }_{6,578}^{6.659}$	${ }_{134}$	${ }_{\text {2．1\％}}$
96．3\％	${ }_{6}^{6,409}$	${ }_{6}^{6.533}$	${ }^{123}$	1．9\％
97．5\％	6，282	${ }_{\text {6，524 }}^{6.511}$	${ }_{24}^{242}$	3．9\％
98．8\％ 1000%	¢， $\begin{gathered}6,264 \\ 6,215\end{gathered}$		${ }_{61}^{247}$	${ }_{\text {4，}}$

1.2%	46.877	46,777
2．5\％	45．057	4.5575
$3.7 \% \%$	32,120	33.666

$\begin{gathered} \text { Percernt } \\ \text { Exceedance } \end{gathered}$	$\begin{aligned} & \text { DCR 2015 Wisthout } \\ & \hline \text { Provect } \end{aligned}$	DCR 2015 With Project	Absolute	Relative
Probabaility		Monthly Fiow（CFS）	${ }_{\substack{\text {（cF5S } \\-330}}$	Difference（\％）
0．0\％	${ }^{76,916}$		30	
1．2\％	70.987	68，481	${ }^{2,506}$	3．5\％
2．5\％	${ }^{65,974}$	${ }^{66,500}$	526	
3．7\％	59，042	57，505	${ }_{-1.536}$	
4．9\％	57，845	55，658	2，187	－3．8\％
${ }^{6.2 \%}$	56，392	${ }_{\text {55，509 }}$	883	
7．4\％	50，299	50，257	${ }^{-43}$	
8．6\％	49，955	49，744	－211	
9．9\％	${ }^{4} 7,909$	4， 4 ，543	迷	
19．1\％	${ }_{4}^{417338}$	44，540	${ }_{\text {－}}^{137}$	
13．6\％	37，610	3，544	${ }_{1,934}$	
14．8\％	36，991	${ }^{36,508}$	483	
16．0\％	${ }^{35,617}$	35，789	173	
3\％	${ }^{35,228}$	${ }^{34,685}$	543	
18．5\％	34，282	34，323	41	0．1\％
19．8\％	33，051	${ }^{32,665}$	386	
21．0\％	${ }^{31,155}$	${ }^{31,755}$	600	1．9\％
22．2\％	${ }^{28,924}$	28，427	－497	
23．5\％	${ }^{28,617}$	24，658	3，959	－13．88．
24．7\％	27，417	24，230	${ }^{3,187}$	
25．9\％	${ }^{25,800}$	${ }^{23,381}$	${ }^{2}, 419$	－9．4
27．2\％	25，494	${ }^{22,561}$	${ }_{2}^{2,934}$	
28．4．\％	${ }^{22,276}$	22，397	121	0．5\％
29．6\％	${ }_{2}^{22,148}$	20，908	1，240	
30．9\％	22，021	19，644	－，377	－10．8
32．1\％	21，945	18，519	－3，425	15．6\％
33．3\％	20，278	18，408	－1，870	
34．6\％	${ }^{19,884}$	18，149	，	
－35．8\％	19，341	${ }^{1817,1061}$		－6．4\％
38．3\％	18.665	17，688	77	
3．5\％	18，554		－879	
40．7\％	18,149	17，559	90	
42．0\％	17.880	17，1487	－731	－4．1\％
43．2\％	17，260	17，077	－184	－1．14
44．4\％	17，096	${ }^{16,315}$	${ }^{781}$	－4．6\％
45．7\％	${ }^{16,755}$	16，001	754	－4．5\％
46．9\％	${ }^{16,573}$	${ }^{15,717}$	855	－5．2\％
48．19\％	16,442 157717	$\begin{array}{r}15.544 \\ \hline 15\end{array}$	－898	－5．5\％
49．4\％	15.717	${ }^{15,504}$	-213	－1．4\％
50．6\％	15.685 15.561 150	15，489	－196	－1．2\％
51．9\％	15.561	${ }^{15,424}$	－137	－0．9\％
	15.505 15.489	－ 15.412	－93	－0．5\％
54．3\％	15．489	＋15．412	－71	－0．5\％
55．6\％	15．456	${ }^{15,262}$	－194	
56．8\％	15，425	15，059	－16	
59．3\％		${ }_{1}^{14,9896}$	－447	－2．3\％
60．5\％	15，262	14，964	298	
61．7\％	15，078	14，963	116	\％\％
63．0\％	14，991	14，956	34	
64．2\％	14，888	14，845	${ }^{43}$	
65．4\％	14，885	14，635	250	
${ }^{66.77 \%}$	14，845	14，603	242	
67．9\％	14，801	${ }^{14,533}$	267	\％
69．19\％	14，799	14，451	347	－2．3\％
70．4\％	14，408	14，434	${ }^{26}$	0．2\％
71．6\％	14，057	14.077	20	0．1\％
72．8\％	$\substack{13,803 \\ 13.534 \\ 1}$	－14，013	210	1．5\％
74.1% 75.3%	${ }^{13,534}$	${ }^{13,185}$	${ }^{349}$	源
76．5\％	${ }^{13,478}$	－ 11.063	－415	－3．1\％
777．8\％	$\xrightarrow{13,2,296}$	${ }_{\text {l }}^{12,9,968}$	－2418	
79．0\％	12,629	${ }^{12,465}$	－164	－1．3\％
80．2\％	${ }^{11,783}$	12，335	552	4．7\％
${ }^{815.5 \%}$	${ }^{10,853}$	11,191	${ }^{338}$	1\％
84．0\％	10，487	${ }^{111.0883}$	${ }_{401}^{205}$	${ }^{2.8 \%}$
85．2\％	10，174	10，772	598	\％
8．4\％	9，955	10，512	557	5．6\％
87．7\％	9，936	10，256	320	3．2\％
8．9\％	9，883	10，253	370	3．7\％
90．19\％	9，536	10，171	635	6．7\％
91．4\％${ }_{\text {92．6\％}}$	${ }_{9}^{9.537}$	${ }^{9,9288}$	411	4．3\％
93．8\％	${ }_{9,287}^{9.288}$	${ }_{9,477}^{9.962}$	190	2．0\％
95．1\％	8.820	8．802	18	0．2\％
96．3\％	8，240	8，367	127	1．5\％
998．8\％	8,124 7468 7	8,179 7 7	54 134 1	0．7\％
98．8\％	7，468	7，602	${ }^{134}$	${ }_{1}^{1.8 \%}$

Table SW-17-b

7.4\%	67,522	66,026	-1,496	-2.2\%
8.6\%	62,584	62,601	16	0.0\%
9.9\%	62,266	62,249	-17	0.0\%
11.1\%	${ }^{61,862}$	${ }^{61,974}$	${ }^{112}$	0.2\%
12.3\%	${ }^{61,090}$	${ }^{61,122}$	32	\%
13.6\%	${ }^{58,702}$	58.681	${ }^{21}$	0.0\%
14.8\%	58,148	58,139	-9	\%
14.0\%\%	57,480	57,470	-10	0.0\%
17.3\%	${ }^{55,840}$	55,785	-554	
18.5\%	${ }^{54,895}$	52,249	--2,646	-4.8\%
19.8\%	${ }^{53,851}$	52,197	-1,654	${ }^{-3.1 \%}$
21.0\%	${ }^{48.022}$	49.178	${ }^{5} 565$	1.1\%
${ }^{22.25 \%}$	46,068	${ }^{47,49}$	1,351	
22.57\%	${ }^{45,054}$	${ }_{4}^{4,563}$	-291	2.75\%
24.9\%	44.568	40.844	--3.724	
27.2\%	44,213	40,339	${ }_{-}$	-8.8\%
28.4\%	39,779	39,421	-358	9\%
29.6\%	39,432	38,187	-1,245	-3.2\%
30.9\%	38,608	${ }^{35,867}$	-2,741	-7.1\%
32.1\%	${ }^{36,323}$	35,332	-991	-2.7\%
33.3\%	36,011	${ }^{35,125}$	885	-2.5\%
34.6\%	${ }^{35,905}$	${ }^{35,086}$	-819	-2.3\%
35.8\%	${ }^{35,572}$	${ }^{33,710}$	-1.862	-5.2\%
37.0\%	35,375	${ }^{32,585}$	-2,790	-7.9\%
38.3\%	${ }^{35,156}$	32,547	-2,610	-7.4\%
39.5\%	34,687	${ }^{30,802}$	-3,886	-11.2\%
40.7\%	${ }^{32,689}$	30,047	-2,642	-8.19\%
42.0\%	${ }^{31,109}$	${ }^{27,228}$	-3,887	-12.5\%
43.2\%	30,207	20,380	-3,227	
45.7\%	${ }^{28,863}$	${ }^{25,206}$	-3,658	-12.7\%
46.9\%	27,039	25,057	-1,982	.3\%
48.19\%	${ }^{26,523}$	${ }^{23,158}$	-.,364	
59.4\%	${ }^{26,122}$	22,606	--,456	
50.0\%	${ }_{25177}^{25123}$	${ }_{22118}^{22,618}$	--,058	-12.0
53.1\%	23,171	22,004	-1,167	-5.0\%
54.3\%	23,104	21,980	-1,124	-4.9\%
55.6\%	${ }^{22,640}$	21,734	-.906	-4.0\%
56.8\%	22,462	21,693	-769	-3.4\%
58.0\%	${ }^{22,415}$	${ }^{20,967}$	-1,447	-6.5\%
59.3\%	${ }^{21,937}$	${ }^{20,319}$	-1,618	-7.4\%
60.5\%	21,352	20,172	-1,180	-5.5\%
61.7\%	21,000	18,463	-2,537	-12.1\%
-63.0\%	${ }^{20.422}$	17,807	--2,16	-12.8\%
6.54\%	${ }^{20,208}$	17,100	${ }_{-3,108}^{-2,54}$	-15.4\%
66.7\%	19,852	17,089	-2,763	-13.9\%
67.9\%	19,756 19.350 10.	16,946 16.905	-2.810 -2.445	-14.2\%
69.1\%	- $19,3,350$	-16,905	--2,445	
71.6\%	18,931	-16,397	-2,533	-13.4\%
72.8\%	18,108	15.411	-2,697	-14.9\%
74.19\%		5005	-2,815	
75.5\%	17,654	14,3019	--3,385	-18.8\%
77.8\%	${ }^{16,288}$	13,999	--2,290	-14.1\%
79.0\%	15,728	13,534	-2,194	-14.0\%
80.2\%	15,163	13,402	-1,761	-11.6\%
81.5\%	14,303	13,195	-1,108	-7.7\%
82.7\%	${ }^{13,195}$	13,098	-96	-0.7\%
${ }^{84.0 \%}$	12,924 12,558 12	${ }^{13,075}$	151	1.2\%
85.4\%	${ }^{12,405}$	${ }^{12,537}$	${ }_{132}$	1.1\%
87.7\%	11,940	12,427	488	4.1\%
88.9\%	11.516	11,745	${ }^{228}$	2.0\%
90.1\%	111,04	111,679	275	2.4\%
91.4\%	${ }^{11,396}$	11,344	${ }^{-52}$	-0.5\%
993.8\%	${ }_{10,263}^{11,263}$	${ }^{11,234}$	${ }_{88} 8$	0.8\%
95.1\%	10.448	10,514	${ }_{6} 68$	0.6\%
96.3\%	8,782	10,480	1,697	19.3\%
998.\%	7,919	$\xrightarrow{9,124}$	+1,204	14.2\%

Table SW-17-b

Lake Oroville, End of Month Storage

		October		
Percent Exceedance	DCR 2015 Without Proiect	DCR 2015 With Project	${ }_{\text {Abslute }}$	Rela
Probability $(6) 0$	$\underset{\substack{\text { End of Month Storage } \\ \text { (TAF }}}{\substack{\text { and }}}$	End of Month Storage (TAF)	(ifler	Difference (\%)
0.0\%	3,163	${ }^{3,163}$	0	0.0\%
1.2\%	3,154	3,154	0	\%
2.5\%	${ }^{2,993}$	${ }^{3,011}$	18	0.6\%
4.9\%	${ }_{\text {2,783 }}^{2,730}$	${ }_{2,688}^{2,623}$	-95	-3.4\%
6.2\%	2.715	2.585	-130	-4.8\%
7.4\%	2.554	2.478	-76	
8.6\%	2,450	2.478	28	1\%
9.9\%	2,446	2.468	22	
11.1\%	2,423	2.447	24	
12.3\%	2,289	2,301	11	
13.6\%	${ }^{2,270}$	2,289	19	0.9\%
14.8\%	2,226	${ }^{2,283}$	57	2.6\%
16.0\%	2,210	${ }_{2,237}^{2,1}$	27	1.2\%
17.3\%	${ }^{2,186}$	${ }_{2}^{2,186}$	0	\%
18.5\%	${ }_{2}^{2,170}$	2,184	15	0.7\%
19.8\%	${ }^{2,128}$	2,179	50	2.4\%
${ }_{2}^{21.0 \%}$	2,091	${ }_{2}^{2,148}$	57	${ }_{3}^{2.7 \%}$
${ }_{2} 2.55 \%$	${ }_{2,029}^{20,065}$	2,134 2,125 2.15	${ }_{96}^{69}$	${ }^{3.4 \% \%}$
24.7\%	2,002	2,067	${ }_{6}^{65}$	3.2\%
257.2\%	1,944 1094 1024	2,030 1098 1	86 64	
28.4\%	${ }_{1,857}$	1,976	119	6.4\%
29.6\%	1,817	${ }^{1,883}$	66	3.6\%
30.9\%	1,707	${ }^{1.881}$	174	
32.1\%	1,683	1,866	183	10.9
33.3\%	1,669	${ }^{1.825}$	156	$9.4{ }^{\text {a }}$
34.6\%	1.647	1,761	114	
35.8\%	${ }^{1,641}$	1,749	108	6.6\%
37.0\%	${ }^{1,624}$	${ }^{1,726}$	103	6.3\%
38.3\%	1,604	${ }^{1,708}$	104	6.5\%
39.5\%	1,598	${ }^{1,693}$	95	6.0\%
40.7\%	${ }^{1,594}$	${ }^{1,676}$	82	5.2\%
${ }^{42.2 \%}$	1,551	${ }_{1}^{1,675}$	${ }^{123}$	7.9\%
44.4\%	1.519 1.505	${ }^{1}, 6641$	${ }_{108}^{122}$	720\%
45.7\%	${ }_{1,493}^{1,465}$	${ }_{1,613}^{1,613}$	119	8.0\%
46.9\%	${ }^{1,475}$	${ }^{1,605}$	130	8.8\%
48.1\%	+1,446	(1.602	+156	${ }^{10.8 \%}$
50.6\%	${ }_{1}^{1401}$	${ }_{1}^{1,553}$	152	10.9\%
51.9\%	1,281	${ }_{1}^{1,535}$	25	㖪
53.1\%	1,275	1,527	252	
54.3\%	1,271	1,496	${ }^{225}$	
	1,260	${ }^{1,485}$	${ }^{225}$	17.9\%
55.0\%		${ }_{\substack{1,445 \\ 1,453}}^{1,4}$	205 192	16.4% 15.3%
59.3\%	1,248	1,394	146	11.7\%
${ }^{60.5 \%}$	1,248	1,352	105	8.4\%
61.7\%	1,247	1,351	104	8.3\%
-63.0\%	${ }^{1,194}$	1,268	74	6.2\%
65.4\% ${ }_{\text {64, }}$	1,186	${ }^{1,248}$	${ }_{70}$	5.2\%
${ }^{65.77 \%}$	${ }_{1}^{1,177}$	${ }_{1}^{1,248}$	${ }_{78}^{70}$	${ }_{\text {b }}^{5.6 \%}$
67.9\%	1,138	1,244	106	9.3\%
69.1\%	(1,123	1,234	${ }_{111}$	9.9\%
70.4\%	+1,119	+1,204	${ }_{84}^{84}$	7.5\%
72.8\%	+1, ${ }_{1}^{1,113}$		${ }_{86}^{88}$	7.9\%\%
74.1\%	1,100	1.174	75	6.8\%
75.5\%	${ }^{1,071}$	${ }^{1,161}$	89	8.4\%\%
778\%	1058	1119		8\%
79.0\%	${ }_{1}^{1,052}$	${ }_{1}^{1,114}$	62	5.9\%
80.2\%	1,040	1,093	53	5.1\%
81.5\%	${ }^{1,035}$	${ }^{1,074}$	39	3.8\%
82.7\%	1,027	1,068	41	4.0\%
84.0% 852%	1,000	1,057	57	5.7\%
85.2% 864%	990	1,028	38	3.9\%
${ }^{86.4 \%}$	949	${ }^{1,018}$	69	7.3\%
87.7\%	946	1,014	${ }_{58}^{68}$	${ }_{5}^{7.2 \%}$
90.1\%	${ }_{927}$	968	41	4.4\%
91.4\%	804	967	164	20.4\%
92.6\%	${ }_{782}^{792}$	${ }_{994}^{941}$	149 142 1	18.8\%
${ }^{93.85 \%}$	${ }_{771}^{782}$	${ }_{924} 9$	142	18.2\%
${ }_{9}^{95.3 \%}$	${ }_{763} 71$	${ }_{762}$	${ }^{62}$	-
97.5\%	${ }_{7}^{756}$	742	-14	-1.8\%
	${ }^{734}$	${ }^{441}$	7	1.0\%
100.0\%		602	-10	-1.7\%

Lake Orovile，End of Tonth Storas
Probability of Exceedance

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \end{aligned}$	February			
	${ }_{\text {che }}^{\text {DCR } 2015 \text { Whithout }}$	DCR 2015 With Prob	${ }^{\text {Absolute }}$	Relative
	f Month s	Monts S	（titeren	Herence（\％）
（\％）	（TAF）	［TAF）		
0．0\％	3，078	3，078	0	0．0\％
1．2\％	${ }^{3,058}$	3，058	0	
2．5\％	3，057	3，057	0	0．0\％
3．7\％	3，009	3，009	0	0．0\％
4．9\％	2，997	2，997	0	0．0\％
${ }^{6.2 \%}$	${ }_{2}^{2,987}$	2，987	0	0．0\％
7．4\％	2，962	2，962	0	0．0\％
8．6\％	2，952	2，952	0	0．0\％
9．9\％\％	${ }_{2}^{2,925}$	2，925	0	00\％
19．1\％\％	2，890	2，890	12	
${ }^{12.36 \%}$	${ }_{2832}^{2,87}$	${ }_{2,835}^{2,849}$	${ }_{3}^{12}$	0．1\％
14．8\％	${ }_{2}^{2,806}$	${ }_{2,832}$	26	0．9\％
16．0\％	${ }_{2}^{2,788}$	2,806	18	
17．3\％	2，788	2，788	0	0．0\％
18．5\％	2，788	2，788	0	0\％
19．8\％	2，788	2，788	0	0．0\％
21．0\％	2，788	2，788	0	0．0\％
${ }^{22.2 \%}$	2，788	2，788	0	
23．5\％	2，788	2，788	0	0．0\％
24．7\％	2，788	2，788	0	0．0\％
25．9\％	${ }_{2}^{2,788}$	${ }_{2}^{2,788}$	0	0．0\％
27．2\％	${ }^{2,788}$	${ }^{2,788}$	0	0．0\％
28．4\％	${ }_{\text {2，788 }}^{2,788}$	${ }_{2}^{2,788}$	0	0．0\％
	${ }_{\text {2，787 }}^{2,787}$	${ }_{2}^{2,788}$	1	0．0\％
－ 3 30．9\％	${ }^{2,773}$	${ }_{2}^{2,788}$	15	0．5\％
32．1\％	${ }^{2,7766}$	${ }^{2,787}$	21	0．8\％
	${ }_{2}^{2,726}$	${ }_{2}^{2,771}$	45	${ }^{1.6 \%}$
34.6% 3588%	2，632	${ }_{2}^{2.764}$	132	5．0\％
	2，570	${ }^{2,756}$	185	
37．0\％	${ }_{2,541}^{2,568}$	${ }_{2,599}^{2.613}$	${ }_{58}^{46}$	＋1．3\％
39．5\％	${ }_{2,393}$	${ }_{2,567}^{2,59}$	174	7．3\％
40．7\％	2,372	2．536	164	
42．0\％	2，364	2，509	145	6．1\％
44．4\％	2,354 2.350	${ }_{2400}^{2,400}$	${ }^{86}$	${ }^{3.7 \%}$
45．7\％	${ }_{2,346}$	${ }_{2}$	37	1．6\％
46．9\％	${ }_{2,323}$	${ }_{2,378}^{2,3}$	54	2．3\％
48．1\％	2，288	${ }_{2,358}$	70	3．1\％
49．4\％	${ }^{2,279}$	2，355	76	3．3\％
50．6\％	${ }^{2,276}$	2，323	47	2．1\％
51．9\％	${ }^{2,274}$	${ }_{2,311}$	${ }^{38}$	1．6\％
年 53.1 \％	${ }_{2}^{2,240}$	2，269	29	1．3\％
54．3\％\％	${ }_{\text {2，236 }}^{2,236}$	2，219	－11	${ }^{-0.7 \%}$
55．6\％	${ }_{2}^{2,217}$	${ }^{2,206}$	－11	－0．5\％
年56．8\％\％	${ }_{2}^{2,076}$	2，193	117	5．6\％
年58．0\％\％	$\xrightarrow[1,999]{ }$	2，103 2,05	69	${ }^{\text {1．9\％\％}}$
	${ }_{1}^{1,997}$	${ }_{1,057}^{2,005}$	${ }^{\circ}$	
61．7\％	${ }_{1}^{1,841}$	1，937	${ }_{96}$	5．2\％
63．0\％	1，790	1，824	35	1．9\％
	1，763	${ }^{1,8188}$	55	${ }_{5}^{3.9 \%}$
${ }_{66.7 \%}^{65.4 \%}$	1，684	${ }_{1}^{1,754}$	69	4．1\％
67．9\％	1，652	1，751	99	
69．1\％	1，623	1，725	102	6．3\％
70．4\％	1，610	1，701	91	5．6\％
71．6\％	1，592	1.660	68	4．3\％
72．8\％	${ }^{1,576}$	1，622	${ }_{4}$	2．9\％
74．19\％	${ }^{1,561}$	${ }^{1,604}$	${ }^{42}$	2．7\％
	1，559	1，602	42	2．7\％
76．78\％	1，518	${ }^{1,575}$	57	3．7\％
77．0\％	${ }_{1}^{1.517}$	1．557	39	2．6\％
80．2\％	1，408	${ }^{1,522}$	114	
81．5\％	＋1，383	1,489 1.483	${ }_{99}$	${ }_{7}^{6.2 \%}$
82．7\％	${ }^{1,367}$	1.410	43	3．1\％
84．0\％	1，362	1，382	21	1．5\％
${ }^{85.29 \%}$	${ }_{1}^{1,333}$	＋1，373	${ }_{33}^{20}$	1．5\％
${ }^{86.47 \%}$	1，329	1，302	10	2．5\％
888．9\％	${ }_{1}^{1.252}$	${ }_{1}^{1,281}$	${ }_{30}$	2．4\％
90．1\％	1.218	1．254	36	
91．4\％	1，203	1，252	49	4．0\％
92．6\％	1，201	${ }^{1,252}$	51	4．3\％
${ }_{95}^{93.8 \%}$	1,144 1,133	${ }_{1}^{1,245}$	100	8．8\％
96．3\％	1，089	${ }_{1,175}^{1,121}$	86	7．9\％
97．5\％	1，084	1.072	${ }^{12}$	－1．1\％
98．8\％	914	${ }_{941}^{940}$	26	2．9\％\％
100．0\％	844	841	－2	－0．3\％

		June		
Percent Exceedance	DCR 2015 Without Proiect	DCR 2015 With Project	Absolute	
Probability	End of Month Storage	End of Month Storage	（ifiterece	Difference $(\%)$
${ }^{\text {0．0）}}$	${ }_{3}^{\text {（TAF）}}$	（1ar）		
1．2\％	${ }^{3.5388}$	${ }^{3.5388}$	0	
1．2\％	－ $\begin{aligned} & \text { 3，538 } \\ & 3\end{aligned}$	${ }^{3.5388}$		
${ }^{2.5 \%}$	3，538	${ }_{\text {3，538 }}$	0	
3．9\％	3,538 $\substack{388}$	－${ }_{\text {3，538 }}$	O	0．0\％
6．2\％	3，538	${ }_{\text {3，538 }}$	0	0\％
7．4\％	${ }^{3,5388}$	${ }^{3.538}$	0	0．0\％
－${ }_{\text {8．9．9\％}}$	3,538 3,538	3.538 3.538	0	
11．1\％	3，538	${ }_{3,538}$	0	0．0\％
12．3\％	${ }^{3,538}$	${ }^{3.538}$	0	
＋13．6\％	${ }^{3.538}$	${ }^{3.538}$	0	
14.8% 16.0%	${ }^{3.538}$	3，538	0	0．0\％
16.0% 17.3%	${ }^{3,538}$	${ }^{3.538}$	0	0．0\％
－${ }^{17.3 \%}$	3，538	${ }^{3.5388}$	0	0．0\％
19．8\％	${ }_{\substack{3.5388}}^{\text {3，538 }}$	${ }_{3,538}^{3.538}$	0	0．0\％
21．0\％	${ }^{3.538}$	${ }^{3.538}$	0	0．0\％
22．2\％	－ 3.538	－ 3.538	0	0．0\％
23．5\％	3.538 3	$\begin{array}{r}3.538 \\ \hline\end{array}$	0	0\％
225．9\％	${ }^{3.538}$	3．538	0	0．0\％
25．2\％	${ }_{3,588}$	${ }_{3,517}^{3.534}$	$\stackrel{-4}{-21}$	${ }^{-0.6 \%}$
28．4\％	3，538	3，509	－29	－0．8\％
29．6\％	3.538 3.489	3.504 3.483	-34 -7	－0．9\％
32．1\％	3，466	${ }_{3,404}^{3,483}$	${ }_{-62}$	－1．8\％
33．3\％	3，381	${ }_{3.383}$	3	0．1\％
34．6\％	3，312	3，377	${ }^{65}$	2．0\％
退35．8\％	－ $\begin{aligned} & 3.303 \\ & 3.302\end{aligned}$	－3.342 3,31	39 29	－
38，3\％	3，290	${ }_{3,321}^{3,}$	31	09\％
39．5\％	3，282	3，299	17	0．5\％
${ }^{40.7 \%}$	3,265 3.258	－ $\begin{aligned} & 3,283 \\ & 3 \\ & 3\end{aligned}$	17	0．5\％
${ }_{43.2 \%}^{42.2 \%}$	ci，${ }_{\substack{3,210}}^{\text {3，258 }}$	退3，1298	－49	－1．5\％
44．4\％	3，207	3，166	－41	－1．3\％
45．7\％	－${ }_{\text {3，103 }}$	3，156	${ }_{5}^{53}$	1．7\％
46．9\％	${ }_{3}^{3,077}$	3，112	35	1．19\％
${ }^{48.19 \%}$	${ }^{3.029}$	${ }^{3.098}$	69	2．3\％
－${ }_{\text {40．6\％}}$	${ }^{3}, 0022$	${ }^{3.076}$	${ }_{54}$	${ }^{1.8 \%}$
51．9\％	－	${ }_{2,968}^{2,981}$	${ }_{8}$	0．3\％
53．1\％	2，904	2，966	62	2．1\％
年5．3\％\％	2,850 2.806 2，	2,964 2.827	114 20	4．0\％\％
56．8\％	${ }_{2}^{2,750}$	${ }_{2}^{2,821}$	70	2．6\％
	${ }^{2,733}$	2，802	69	2．5\％
60．5\％	${ }_{\text {2，}}^{2,575}$	2,753 $\begin{aligned} & 2,650\end{aligned}$	132 74	5．9\％
61．7\％	2，551	${ }_{2,631}^{2,651}$	79	3．1\％
63．0\％	2.477	2.620	143	8\％
${ }^{64.2 \%}$	2，458	2.613	156	6.36
65．4\％	2，365	2.580	215	9．1\％
66．7\％ 67.9%	2，282	2，527	245	10．7\％
－67．9\％	2，194	2.479	285	13．0\％
69．1\％	${ }^{2,161}$	${ }_{2,319}$	158	7．3\％
70．1．4\％	${ }_{2,138}$	${ }_{2}^{2,234}$	97	4．5\％
71．6\％	2，133	2， 2132	99	4．6\％
74．1\％	$\xrightarrow{2}$	${ }_{2,136}$	${ }_{32}^{64}$	1．5\％
75．3\％	2，050	2，100	50	2．5\％
76．5\％	2.016 1068	2,097 2069	${ }_{101}^{81}$	4．0\％
77．8\％	1,968 1.934 1	2.069 2067	101	5．19\％
89．0\％	1,934 1.840 	2，067	${ }_{170}^{133}$	6．9\％
${ }^{81.5 \%}$	${ }_{1}^{1,7730}$	${ }_{1}^{2,912}$	182	10．5\％
82．7\％	1，722	${ }^{1,896}$	174	10．1\％
－84．0\％	1,721 1,699	＋1，863 ${ }_{1}^{1,720}$	${ }_{21}^{142}$	－${ }_{\text {l }}^{\text {8．3\％}}$
86．4\％	${ }^{1.598}$	${ }^{1,593}$	－5	－0．3\％
87.7% 889%	${ }^{1,447}$	1，507	60	4．1\％
88．9\％	${ }^{1,4366}$	${ }^{1,506}$	69	4．8\％
${ }^{90.1 \%}$	（1，368	1，501	${ }_{110}^{133}$	9．7\％
92．6\％	1，241	${ }_{1,348}^{1,351}$	107	${ }^{8.6 \%}$
93．8\％	1，142	1，311	168	14．7\％
95．1\％	1，141	${ }^{1,306}$	165	14．5\％
${ }_{\text {963\％}}^{96.3 \%}$	${ }^{1,1122}$	${ }^{1,2720}$	147	${ }^{13.1 \%}$
${ }_{98.8 \%}^{97.5 \%}$	${ }^{1,120}$	＋1，234	117	10．2\％
100．0\％	682	682	0	0．0\％

Probability	End of Monthel Elevation	End of Month Elevation	（FEET）	Difference（\％）
${ }_{\text {\％}}$	$\frac{\text {（FEET）}}{869}$	${ }^{\text {（FEET）}} 8$	0	0．0\％
1．2\％	859	859	0	0．0\％
2．5\％	854	854	0	0．0\％
3．7\％	${ }^{853}$	${ }^{853}$	0	0．0\％
4．9\％	${ }^{853}$	${ }^{853}$	0	0．0\％
6．2\％	850	850	0	0．0\％
7．4\％	849	850	1	0．2\％
－${ }_{\text {8．9．9\％}}$	849 849	849 849	0	0．0\％
9．9\％\％	849 849	849 849	0	0．0\％
12．3\％	${ }_{849} 889$	${ }_{849} 8$	－	${ }^{0.0 \% \%}$
13．6\％	849	849	0	0．0\％
14．8\％	849	849	0	0．0\％
－${ }^{16.0 \%}$	849 849	849 849	0	${ }^{0.0 \% \%}$
18．5\％	839	849	10	1．2\％
19．8\％	832	835	3	
21．0\％	831	${ }^{831}$	0	0．0\％
${ }_{22.5 \%}^{22.2 \%}$	${ }_{824} 82$	831	${ }_{6}$	0．8\％
${ }_{24.7 \%}^{23.5 \%}$	${ }_{823}^{824}$	${ }_{825}^{826}$	${ }_{2}^{2}$	0．3\％
25．9\％	822	824	2	0．3\％
27．2\％	${ }^{821}$	${ }^{824}$	${ }^{3}$	0．4\％
28．4\％	814 813	823 822	9	${ }^{1.19 \%}$
29．6\％	813 810	${ }_{821}^{822}$	10	${ }^{1.2 \%}$
30．3\％	810 810	821 818	$\stackrel{11}{9}$	1．3\％
32．1\％	${ }_{807}^{810}$	818	9	${ }^{1.1 \%}$
33.3% 34.6%	807 802	816	9	1．1\％
年34．6\％	${ }_{800}^{802}$	815 815	15	1．6\％
退35．8\％	800 799	815 811	11	1．4\％\％
38．3\％	796	808	12	1．6\％
39．5\％	793	807	13	1．7\％
420\％	${ }_{790}^{790}$	802 802	12 12	1．5\％
43．2\％	782	801	19	2．5\％
44．4\％	${ }^{781}$	794	13	1．6\％
45．7\％	${ }^{781}$	792	11	1．4\％
${ }^{46.9 \%}$	${ }^{780}$	791	12	1．5\％
48．19\％	${ }_{770}^{778}$	${ }_{787} 78$	9	1．1\％
50．6\％	770	765	4	－0．6\％
51．9\％	763	765	2	0．2\％
年53．19\％	758 753	${ }_{751}^{762}$	${ }^{3}$	0．4\％
54.3% 5.6%	753 750	${ }_{752}^{752}$	－1	${ }^{-0.19 \%}$
55．6\％	${ }_{747} 7$	${ }_{7}^{752}$	1	0．2\％
56．0\％	${ }_{728}^{747}$	${ }_{736}$	${ }_{8}^{-1}$	${ }^{-0.1 \%}$
59．3\％	${ }_{727} 727$	${ }_{7} 76$	9	1．2\％
60．7\％\％	${ }_{727}^{727}$	${ }_{730}^{734}$	7	1．0\％
－ 61.7%	${ }_{727}^{727}$	7739 77	3 2	
64．2\％	725	729	3	0．5\％
${ }^{654.4 \%}$	722	${ }_{7} 727$	6	0．8\％
66．7\％ 67.9%	771	${ }_{722} 72$	11	1．5\％
${ }^{67.1 \%}$	771	${ }_{720}^{722}$	10 14	2．0\％
70．4\％	702	715	13	1．8\％
71．6\％	${ }^{700}$	712	12	1．8\％
72．8\％	698	708	11	1．5\％
74.19% 753%	698	707	9	1．3\％
	698	704	6	0．9\％
76．5\％	698	700	${ }^{2}$	0．3\％
77．0\％	${ }_{695}^{696}$	698 698	${ }^{2}$	${ }_{\text {a }}^{0.4 \%}$
80．2\％	690	698	8	1．1\％
815．5\％	685	698	12	1．8\％
－	685 684	694 693	${ }_{9}^{9}$	＋1．3\％
85．2\％	684	692	8	1．1\％
86．4\％	684	689	5	0．7\％
877．7\％	676	686	10	1．4\％
－${ }^{88.9 \%}$	${ }_{674}^{676}$	${ }_{684}^{686}$	9 10	${ }_{\text {l }}^{\text {1．4\％\％}}$
91．4\％	673	678	5	0．8\％
92．6\％	669	677	9	1．3\％
93．8\％	667	677	10	1．6\％
95．1\％	666	675	9	1．3\％
96．3\％	660	664	4	0．6\％
97．5\％${ }_{\text {978\％}}$	657	660	3	0．5\％
	648 641	${ }_{641}^{653}$	5	${ }^{0.7 \%}$
100．0\％	641	641	0	0．1\％

Percent		February		Relative
		DCR 2015 With Project		
	End of Month Elevation	End of Month Elevation	Difierence	Difference (\%)
${ }^{\text {L\% }}$ (\%)\%	(FEET)	(EEET)		
0.0\%	${ }_{867} 86$	869	0	0.0\%
1.2\%\%	${ }_{867}^{867}$	${ }_{867}^{867}$	0	
2.5\%	867	887	0	
3.7\%	884	864		
4.9\%	863	863		
- 7.2%	${ }_{861}^{862}$	${ }_{861}^{862}$	O	0.0\%
8.6\%	${ }_{860}$	${ }_{860}$	0	0.0\%
9.9\%	858	858	0	0.0\%
11.1\%	856	856	0	
12.3\%	852	853	1	1\%
13.6\%	852	852	0	
14.8\%	850	852	2	0.2\%
16.0\%	849	850	1	0.1\%
17.3\%	849	849	0	0.0\%
18.5\%	849	849	0	0.0\%
19.8\%	849	849	0	0.0\%
21.0\%	849	849	0	0.0\%
22.2\%	849	849	0	0.0\%
23.5\%	849	849	0	0.0%
24.7\%	849	849	0	0.0\%
25.9\%	849	849	0	0.0\%
27.2\%	849	849	0	0.0\%
${ }^{28.9 \%}$	849	849	0	0.0\%
30.9\%	848	849	1	
32.1\%	847	849	1	
33.3\%	845	848	3	
34.6\%	838	847	9	1.1\%
35.8\%	834	847	13	1.5\%
37.0% 38.3%	834	${ }^{837}$	3	0.4\%
38.3\%	832 822	${ }_{834}^{836}$	12	- ${ }_{\text {1.4\% }}^{0.5 \%}$
40.7\%	820	${ }_{832}$	11	1.4\%
42.0\%	820	830	10	1.2\%
43.2\%	819	825	6	0.7\%
44.4\%	819	${ }^{822}$	4	0.4\%
45.7\%	818	${ }^{821}$	3	0.3\%
46.9\%	816	${ }^{821}$	5	0.6\%
48.1\%	812	819	7	0.9\%
49.4\%	${ }_{811} 81$	819	8	0.9\%
51.9\%	811	816	5	0.5\%
53.1\%	807	${ }_{810}$	3	0.4\%
54.3\%	807	805	-2	-0.2\%
55.6\%	${ }_{791}^{805}$	804 803	-1	-0.1\%
58.0\%	789	793	4	0.5\%
59.3\%	783	783	1	1\%
- 60.5%	${ }^{776}$	778	2	0.3\%
- 61.7%	${ }_{761} 787$	${ }_{7} 76$	10	1.3\%
64.2\%	758	764	${ }_{6}$	0.7\%
65.4\%	753	763	10	1.4\%
66.7\%	${ }_{750} 7$	${ }^{758}$	7	0.9\%
67.9\%	747	757	11	1.4\%
69.1\%	${ }^{743}$	${ }^{755}$	${ }^{12}$	1.6\%
70.4\%	${ }_{7} 71$	752	11	1.4\%
71.6\%	${ }_{7}^{739}$	748	8	1.1\%
72.8. ${ }^{72.8}$	${ }_{736} 7$	774	6	0.8\%\%
74.19\% 77.3% 75%	${ }_{735}^{736}$	771	5	${ }^{0.7 \% \%}$
7.5\%	735 730	737 737	${ }^{5}$	${ }_{\text {en }}^{0.9 \%}$
77.8\%	730	735	5	0.7\%
79.0\%	717	${ }_{771}^{731}$	14	1.9\%
-	776	${ }_{727} 72$	11	${ }^{1.5 \%}$
${ }^{81.27 \%}$	771	${ }_{717}^{726}$	5	1.7\%
84.0\%	711	714	3	0.4\%
85.2\%	710	713	2	\%
${ }^{86.4 \%}$	707	711	4	6\%
87.7\%	707	704	3	4\%
88.9\%	698	701	4	0.5\%
90.14\%	694	698	4	0.6\%
914.4\%	692	698	6	0.9\%
92.6\% ${ }^{938}$	691	698	6	0.9\%
93.8\%	685	697	${ }^{12}$	1.8\%
95.1\% ${ }_{9} 9$	683	694	11	1.6\%
96.3\%	678	688	10	1.5\%
99.8\% ${ }^{97.5 \%}$	${ }_{651}^{677}$	676 656	-1 5	-0.2\%
100.0\%	638	${ }_{638}$	0	-0.1\%

Percent Exceedanc	DCC 2015 Without Proiect	OCR 2015 With Project	Absolute	Relative
Probability	End of Montht liveration	End of Montrb Elevation	difleren	Difference (\%)
\%\%)	(EEET)	(FEET)		
-	900	900	0	${ }^{0.0 \%}$
2.5\%	900	900	0	0.0\%
- ${ }_{\text {3.7.7\% }}$	900	900	0	0.0\%
3.9\%\%	900	900	0	-0.0\%
6.2\%	990	990	0	0.0\%
7.4\%	900	900	0	
8.6\%	900	900	0	
9.9\%	900	900	0	
11.1\%	900	900	0	
12.3\%	900	900	0	\%
13.6\%	900	900	0	
14.8\%	900	900	0	\%
16.7\%	900	900	0	
17.3\%	900	900	0	0.0\%
18.5\%	900	900	0	0.0\%
19.8\%	900	900	0	0.0
21.0\%	900	900	0	0.0\%
22.2\%	900	900	0	00%
23.5\%	900	900	0	0.0\%
24.7\%	900	900	0	0.0\%
25.9\%	900	990		0.0\%
27.2\%	900	899	-1	-0.2\%
20.6\%	900	${ }_{898} 898$	-2	-0.3\%
30.9\%	897	${ }_{896}$	-	-0.1\%
32.1\%	895	891	4	
33.3\%	889	889	0	0.0\%
34.6\%	885	889	4	
35.8\%	884	887	3	
37.0\%	${ }^{884}$	886	2	0.2\%
38.3\%	883	885	2	
39.5\%	${ }^{882}$	884	1	0.1\%
40.7\%	${ }_{881}^{881}$	${ }_{887}^{883}$	1	0.1\%
42.0\%	881	877	3	-0.4\%
43.2\%	${ }_{877}^{878}$	876	-1	-0.2\%
44.4\%	877	875	-3	-0.3\%
45.7\%	${ }_{868}^{870}$	874	4	0.44\%
46.9\%\%	868	871	2	0.3\%
48.19\%	865	870	5	0.5\%
4.9.4\%	${ }_{864} 86$	${ }_{868} 86$	4	0.4\%
51.9\%	884	${ }_{861} 86$		${ }^{-0.2 \%}$
53.1\%	857	861	4	0.5\%
54.3% 5.56%	${ }_{853}$	861	8	0.9\%
55.6\%	-850	${ }_{851}^{851}$	5	${ }_{\text {en }}^{0.2 \%}$
58.0\%	845	850	5	
59.3\%	${ }^{837}$	846	9	1.1\%
60.5\%	${ }_{8}^{834}$	839	5	\%\%
61.7\%	${ }^{833}$	838	5	0.7\%
63.0\%	828	837	10	1.2\%
${ }^{64.2 \%}$	${ }_{826} 8$	${ }^{837}$	11	13\%
65.4\%	820	835	15	1.8\%
66.7\% 67.9%	812	${ }^{831}$	19	2.4\%
69.1\%	899	${ }_{816}^{828}$	${ }_{16}^{25}$	${ }^{3.0 \%}$
70.4\%	${ }_{797} 7$			1.2\%
71.6\%	${ }_{795}^{796}$	${ }_{807}^{807}$	${ }^{10}$	1.3\%
72.8\%	795 794	802 797	7	0.8\%
74.1\% 7.3%	${ }_{798}^{798}$	797	3	0.4\%
7.5.5\%	785 785	${ }_{793} 7$	8	- ${ }_{\text {N }}$
77.8\%	780	790		1.3\%
79.0\%	776	790	14	1.8\%
-	${ }_{7}^{766}$	${ }_{774} 7$	17	2.3\%
${ }_{8}^{82.7 \%}$	${ }_{754}$	772	19	
84.0\%	754	769	15	1.9\%
85.2\%	752	754	2	3\%
${ }^{86.4 \%}$	${ }^{740}$	739	-1	0.1\%
8777% 880%	${ }_{720}^{722}$	729	7	1.0\%
88.9\%	720	729	8	1.2\%
90.14\%	712	728	16	2.3\%
914.4\%	696	710	13	1.9\%
92.6\% ${ }^{938}$	696	709	${ }^{13}$	1.9\%
93.8\%	${ }_{684}^{684}$	705	21	3.0\%
${ }_{9}^{95.1 \%}$	684	704	20	2.9\%
-96.3\%	682	700	18	2.6\%
${ }_{98}^{97.5 \%}$	682 681	696	14	2.1\%
100.0\%	608	${ }_{608}^{691}$	${ }_{0}$	0.0\%

Lake Oroville, End of Month Area

		Ociober		
$\stackrel{\text { Percent }}{\stackrel{\text { Prceedance }}{ }}$		DCR 2015 With Project	${ }^{\text {Absolute }}$	Relaive
Probability	End of Month Area	End of Month Area	Difiternce	Difference (\%)
0.0\%	${ }^{\text {(ACRE }}$ (1454	${ }_{1}^{\text {(ACCE }}$)	0	0.0\%
1.2\%	14,523	${ }^{14.523}$	0	0,0\%
2.5\%	13,989	14.047	59	
3.7\%	13.779	13.419	-359	
4.9\%	13,286	12,970	-317	
6.2\%	13.059	12,627	-432	-3.3\%
7.4\%	${ }^{12,525}$	12,272	-253	-2.0\%
9.9\%	${ }_{\substack{12,176 \\ 12,164}}^{1}$	12,229 12236 1226	${ }_{72}^{93}$	0.8\%
11.1\%	12,089	12,168	79	
12.3\%	${ }^{11,616}$	11,659	43	
13.4.6\%	${ }^{11,543}$	11,616	73	
14.8\%	11,382	11,595	213	1.9\%
16.0\%	${ }^{11,321}$	11,422	101	0.9\%
17.3\%	11,230	11,231	1	0.0\%
18.5\%	11,170	11,225	54	0.5\%
19.8\%	${ }^{11,015}$	11,203	188	1.7\%
21.0\%	${ }^{10,8767}$	11,089	${ }^{213}$	2.0\%
${ }_{\text {22, }}^{22.2 \%}$	10,777	11.036	260	2.4\%
23.5\%	10,645	${ }^{11,004}$	359	3.4\%
24.7\%	${ }^{10,543}$	10,786	${ }^{243}$	${ }_{31}^{2.3 \%}$
${ }^{25.7 .2 \%}$	${ }^{10,326}$	10,648	${ }^{321}$	${ }^{3.1 \%}$
	10,215	10,453	${ }^{238}$	${ }^{2.3 \% \%}$
-	10,001	10,445	444	
- ${ }^{29.9 \% \%}$	${ }_{9}^{9.8500}$	${ }^{10,097}$	${ }_{6}^{247}$	
32.1\%	${ }_{9,353}^{\text {9,441 }}$	${ }^{10,0,037}$	684	7.3\%
33.3\%	9,292	9,881	589	6.3\%
34.6\%	9,203	9.644	${ }^{441}$	4.8\%
37.0\%	${ }_{9,106}$	${ }_{9.513}^{9.597}$	${ }_{407}$	4.5\%
38.3\%	9.026	9,446	420	4.7\%
39.5\%	8,999	9,389	390	4.3\%
40.7\%	8,983	9,325	342	3.8\%
42.0\%	${ }^{8.806}$	9,318	512	${ }_{5}^{5.8 \%}$
43.2\%	${ }^{8.672}$	9,178	506	${ }_{5}^{5.8 \%}$
${ }^{44.4 .4 \%}$	${ }^{8.615}$	${ }^{9,065}$	450	${ }_{5}^{5.2 \%}$
45.7\%	${ }^{8.566}$	9,061	496	5.8\%
46.9\%	8,488	9,027	539	${ }^{6.4 \%}$
48.19\%	${ }^{8.370}$	9.016	${ }^{646}$	7.7\%
49.4\%	${ }_{8,225}^{8,29}$	${ }_{8}^{8,963}$	${ }^{737}$	7.7.7\%
51.9\%	-		${ }_{1}^{632}$	71.7\%
53.1\%	7.659	8.705	1,047	13.7\%
54.3\%	7,642	8,574	${ }_{932} 3$	${ }_{1}^{12.2 \%}$
55.8\%	7,595 7,548	${ }_{8,399}^{8,532}$	${ }_{851}^{936}$	${ }_{\substack{123.3 \%}}^{12.3 \%}$
58.0\%	7.547	${ }_{8,342}$	795	
59.3\%	7,547	8,152	605	
60.5\%	7,545	7,980	435	5.8\%
61.7\%	7,543	7,973	430	5.7\%
63.0\%	${ }_{7}^{7,322}$	7.628	306	4.2\%
- ${ }^{64.2 \%}$ 6.4\%	7,291	7,547	${ }^{256}$	3.50\%
${ }^{66.7 \%}$	7,222	7,545	${ }_{323}^{289}$	4.5\%
67.9\%	7,091	7.531	439	6.2\%
69.1\%	7,026	7,486	460	6.6\%
70.4\%	7,013	${ }_{7}^{7,363}$	350	5.0\%
71.6\%	${ }_{6}^{6,986}$	${ }_{7}^{7,351}$	${ }^{365}$	${ }_{5}^{5.2 \%}$
72.8.	${ }_{\text {c, }}^{\substack{6,9671}}$	7,322 7.241	356 310	5.5\%
7.3\%	${ }_{6.813}^{6,813}$	7.184	372	5.5\%
76.5\%	${ }^{6.801}$	7,148	${ }^{347}$	5.1\%
77.8\%	${ }^{6.756}$	7.011	${ }^{255}$	3.8\%
79.0\%	c.6.732		${ }_{221}^{257}$	3.3\%\%
81.5\%	6,662	6,823	161	2.4\%
82.7\%	6,629	6,801	172	2.6\%
84.0% 852%	6.514	¢, 6,754	${ }^{240}$	3.7\%
80.4\%	6,282	${ }_{6.593}^{6.032}$	311	4.9\%
87.7\%	6,265	6,574	309	4.9\%
88.9\%	6,247	6,489	${ }^{243}$	${ }^{3.9 \%}$
90.14\%	-6,180	${ }_{6}^{6,365}$	181	
${ }^{92.6 \%}$	5.592 5.535	¢, 6,363	771	${ }^{13.8 \%} 12.8 \%$
93.8\%	${ }_{5,482}^{5,59}$	6,165	683	12.5\%
95.1\%	5,427	5,745	317	5.8\%
96.3\%	5,387	5,381	-6	-0.1\%
97.5\%	5.353 5237 5	5,283 5×273	70 36	-1.3\%
100.0\%	${ }_{4,622}$	${ }_{4}$	-53	-1.1\%

$\begin{gathered} \text { Exerent } \\ \text { Exeedance } \\ \text { Probability } \end{gathered}$	February			Siferative
		DCR 201	$\begin{gathered} \text { Absolute } \\ \text { Differenere } \\ \text { (ACRE) } \end{gathered}$	
	Of Moent A	End of Month Area		
(\%)	(ACRE)	(ACRE)		
0.0\%	14,271	14,271	0	0.0\%
1.2\%	14,204	14,204	0	
2.5\%	14,201	14,201	0	
3.7\%	14.041	14,041	0	
4.9\%	14.001	14,001	0	
${ }^{6.2 \%}$	13,967	13,967	0	
7.4\%	${ }^{13,884}$	${ }^{13,884}$	0	
8.6\%	13,851	${ }_{\text {c }}^{13.851}$	0	
9.9\%\%	13,761	13,761	0	
11.1\%	${ }^{13,644}$	- 13,644	O	
12.3\%	13,467	13,508	4	
14.8\%	${ }_{13,364}$	13.451	87	0.6\%
16.0\%	13,304	13,364	60	
3\%	13,304	13,304	0	
18.5\%	13,304	13,304	0	
19.8\%	13,304	13,304	0	0.0\%
21.0\%	13,304	13,304	0	0.0\%
${ }^{22.2 \%}$	13,304	13,304	0	
23.5\%	13,304	13,304	0	0.0\%
24.7\%	13,304	13,304	0	0.0\%
25.9\%	${ }^{13,304}$	${ }^{13,304}$	0	0.0\%
27.2\%	${ }^{13,304}$	${ }^{13,304}$	0	0.0\%
28.4\%	${ }^{13,304}$	13,304 13304 1	0	0.0\%
29.6\%	${ }^{13,301}$	${ }^{13,304}$	3	0.0\%
30.9\%	13,255	13,304	${ }_{71}$	0.4\%
32.1\%	13,230	13,301	71	0.5\%
33.3\%	13.097	-13,247	149	1.19\%
34.6\%	12,783	13,223	440	3.4\%\%
35.8\%	12,579	-13,197	618	
37.0\%	12,570	${ }^{12,122}$	152	
39.5\%	11,988	${ }^{12,569}$	${ }_{581}^{193}$	4.8\%
40.7\%	${ }_{11,918}$	12,463	545	
42.0\%	11,891	${ }^{12,373}$	483	
44.4\%\%	(11,843	(12,013	288	
45.7\%	${ }^{11,827}$	${ }^{11,953}$	126	1.1\%
46.9\%	11,744	11,937	193	1.6\%
48.1\%	${ }^{11,613}$	11.872	259	2.2\%
49.4\%	11,579	${ }^{11,862}$	282	2.4\%
50.6\%	11,567	${ }^{11,742}$	175	${ }^{1.5 \%}$
51.9\%	${ }^{11,559}$	11,699	140	1.2\%
53.1\%	11,431	${ }^{11,540}$	109	1.0\%\%
54.3\% 5 5 5	11.416	${ }^{11,356}$	-60	0.5\%
${ }_{\text {c }}^{55.6 \% \%}$	${ }^{11,345}$	${ }^{11,305}$	40	4\%
58.0\%		11,258 10.919 10,	${ }_{137}$	${ }^{4.4 .4 \%}$
59.3\%	10,530	10,553	${ }^{23}$	0.2\%
-60.5\%	(10,302	10,374	72 59	0.7\%
${ }^{61.7 \%}$	9,940		59	
63.0\%	9,750	${ }^{9.879}$	129	
${ }^{64.24 \%}$	9,649	9,850		
${ }_{66.7 \%}^{65.4 \%}$	${ }_{9,356}^{9,432}$	${ }_{9.615}^{9.609}$	259	2.8\%
67.9\%	9,223	9,606	383	4.2\%
69.1\%	9,103	9,507	403	4.4\%
70.4\%	9,050	${ }^{9,4219}$	369	4.1\%
71.6\%	8.974	9,257	${ }^{283}$	
72.8\%	8,907	9,100	193	${ }^{2} 2.2 \%$
74.1.\%	8,847	9,023	175	2.0\%
75.3\%	8,840	9.016	176	2.0\%
-76.8\%	8,669	8,904	${ }^{235}$	2.7\%
77.9\%	8,664	${ }^{8.828}$	164	, 9
89.0\%	8,209	8.683	474	
-	${ }_{8,172}^{8,107}$	${ }_{8}^{8.546}$	375	\%
${ }^{81.27 \%}$	8,107 8,041	${ }^{8,520}$	${ }^{438}$	${ }^{5.2 \%}$
84.0\%	${ }_{8,018}^{8.041}$	${ }_{8,105}^{8.19}$	87	${ }^{2.1 .1 \%}$
85.2\%	7.982	${ }_{8,067}$	${ }^{85}$	1.1\%
86.4\%	7.884	8.020	136	1.7\%
87.7\%	7.860	7,772	88	1.1\%
88.9\%	7,562	7.685	123	
90.1\%	7,421	7,570	149	
91.4\%	7,360	7,562	202	\%
92.6\%	7,349	7.5622	213	29\%
93.8\%	7,116	7.532	416	
95.1\%	7,071	7,432	362	5.1\%
96.3\%	6,888	7,244	357	
97.5\%	${ }^{6.866}$	${ }^{6,816}$	-50	\%
		6,241 5.783	${ }_{-13}^{121}$	2.0\%
100.0\%	5,796	5,783	-13	-0.2\%

Figure SW-21-b
Feather River at Thermalito Low Flow Channel, Monthly Flow

October				
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	DCR20155 Without Proiet	DCR 2015 With Project	Absolute Difference	Relati
Probability	Monthy foiect (CFS)	Monthy Fow (CFS)	(cFs)	Herence
0.0\%	800	800	0	0.0\%
1.2\%	800	800	0	0.0\%
2.5\%	880	800	0	0.0\%
3.7\%	8800	880	0	0.0\%
4.9\%	800	800	0	0.0\%
6.2\%	800 800	800 800	0	-0.0\%
7.4\%	800	800	0	0.0\%
- ${ }_{\text {8.9.9\% }}$	800 800	800 800	0	-0.0\%
-11.1\%	800	800	0	0.0\%
	800	800	0	
13.6\%	800	800	0	0.0\%
14.8% 16.0%	${ }_{800}^{800}$	${ }_{800}^{800}$	\bigcirc	${ }^{0.00 \%}$
17.3\%	800	800	0	0.0\%
18.5\%	800	800	0	0.0\%
19.8\%	800	800	0	0.0\%
21.0\%	800	800	0	0.0\%
22.2\%	880	800	0	0.0\%
23.5\%	800	800	0	0.0\%
24.7\%	880	880	0	0.0\%
25.9\%	880	880	0	-0.0\%
27.2\%	800 800	800 800	\bigcirc	${ }^{0.0 \% \%}$
29.6\%	800	800	0	0.0\%
30.9\%	800	800	0	0.0\%
	800 800	800 800	0	${ }^{0.0 \%}$
33.6\%	${ }_{800} 8$	${ }_{800}^{800}$	0	${ }^{0.0 \%}$
35.8\%	800	800		0.0\%
37.0\%	800	800	0	0.0\%
38.3\%	800 800	800 800	0	${ }^{0.0 \% \%}$
40.7\%	800	800	0	0.0\%
42.0\%	800	800	0	0.0\%
43.2\%	800	800	0	0.0\%
4.4.4\%	880	880	0	0.0\%
4.7.7\%	800 800	8800	0	-
48.1\%	${ }_{800} 8$	800 800	\bigcirc	${ }_{\text {0.0\% }}^{0.0 \%}$
49.4\%	800	800	0	0.0\%
50.6\%	880	880	0	0.0\%
53.1\%	${ }_{800}^{800}$	800 800	\bigcirc	0.0\%\%
54.3\%	800	800	0	0.0\%
55.6\%	8800	800 800	0	0.0\%
年56.8\%	800 800	800 800	\bigcirc	- ${ }_{\text {0.0\% }}^{0.0 \%}$
59.3\%	800	800	0	0.0\%
60.5\%	800	800	0	0.0\%
61.7\%	880	880	0	0.0\%
- $6.0 .2 \%$	800 800	800 800	0	${ }^{0.0 \% \%}$
65.4\%	800	800	0	0.0\%
66.7\%	800	800	0	0.0\%
${ }^{67.9 \%}$	800	800	0	0.0\%
69.1\%	800 800	800	0	0.0\%
71.6\%	${ }_{800}^{800}$	800 800	0	${ }^{0.00 \%}$
72.8\%	800	800	0	0.0\%
74.1\%	800	800		0.0\%
75.3\%	800	800		0.0\%
76.5\%	800	800	0	0.0\%
79.0\%	${ }_{800}^{800}$	${ }_{800}^{800}$	0	${ }^{0.00 \%}$
80.2\%	800	800	0	0.0\%
81.5\%	800	800	0	0.0\%
82.7% 84.0%	800 800	800 800	0	0.0.0\%
85.2\%	800	800	0	0.0\%
86.4\%	800	800	0	0.0\%
87.7% 88.9%	800 800	800 800	\bigcirc	-0.0\%
90.1\%	800	800	0	0.0\%
91.4\%	800	800	0	0.0\%
${ }_{9}^{92.8 .8 \%}$	800 800	800 800	0	0.0\%
${ }_{95.1 \%}$	${ }_{800}$	${ }_{800}$	0	0.0\%
96.3\%	800	800	0	0.0\%
97.5\%	800	800	0	0.0\%
98.8\%	800 800	800 800	\bigcirc	${ }^{0.0 \% \%}$

Percent
$\begin{gathered}\text { Exceadance }\end{gathered}$
$\substack{\text { DCR 2015 WWithout } \\ \text { Proiect }}$
DCR 2015 With Project

	December		Absolute Difference CFS	
Percent Exceedanc	$\begin{gathered} \text { DCR 2015.5 Whthout } \\ \text { Proiect } \\ \hline \end{gathered}$	DCR 2015 With Project		
$\xrightarrow{\text { Probability }}$	Monthly Fow (CFSS)	Monthy Flow (cFs)		
12\%	800	800	-	.
2.5\%	800	800	0	0.0\%
3.7\%	800	800	0	0.0\%
4.9\%	800	800	0	
6.2\%	800	800	0	
7.4\%	800	800	0	
8.6\%	800	800	0	0.0\%
9.9\%	800	800	0	0.0\%
11.1\%	800	800	0	0.0\%
12.3\%	800	800	0	0.0\%
13.6\%	800	800	0	0.0\%
14.8\%	800	800	0	
16.0\%	880	800	0	
18.5\%	8800	${ }_{800}^{800}$	0	0.0\%
19.8\%	800	800	0	0.0\%
21.0\%	800	800	0	
${ }^{222.2 \%}$	800	800	0	
22.7\%	800	880		\%
25.9\%	800	800	0	
27.2\%	800	800	0	
28.4\%	800	800	0	0.0\%
30.9\%	800	800	0	0.0\%
32.1\%	800	800	0	0.0\%
33.3\%	800	800	0	0.0\%
34.6\%	800	800	0	0.0\%
${ }^{35.8 \%}$	800	800	0	0.0\%
37.0\%	800	800	0	0.0\%
${ }^{38.3 \%}$	800	800	0	0.0\%
40.7\%	800	880	0	0.0\%\%
42.0\%	800	800	0	0.0\%
43.2\%	800	800	0	
4.4.9\%	800	880	0	
4.7\%	80	800		
48.1\%	800	800	0	0.0\%
49.4\%	800	800	0	0.0\%
${ }^{50.6 \%}$	800	800	0	0.0\%
51.9\%	800	800	0	0.0\%
${ }_{5}^{53.1 \%}$	800	800	0	0.0\%
54.3\%	800	800	0	0.0\%
年5.6\%	880	800	0	0.0\%
	880	800	0	0.0\%
	8800	880	0	0.0\%
	880	880	0	0.0\%
${ }^{60.5 \%}$	800	800	0	0.0\%
66.7.0\%	800	800	0	0.0\%
64.2\%	800	800	0	0.0\%
65.4\%	800	800		0.0\%
66.7\%	800 800	800 800	\bigcirc	0.0\% 0
69.1\%	800	800	\bigcirc	${ }_{0}^{0.0 \% \%}$
70.4\%	800	800	0	.0\%
77.6\%	800	800	0	0.0\%
74.1\%	800	800	0	${ }^{0.0 \%}$
75.3\%	800	800	0	0.0\%
76.5\%	800	800	0	0.0\%
79.0\%	800 800	800 800	0	0.0\%
80.2\%	800	800	0	0.0\%
81.5\%	800	800	0	0.0\%
82.7\%	880	880	0	0.0\%
84.0\%	800	800	0	0.0\%
85.2\%	800	800	0	0.0\%
887.7\%	${ }_{800}^{800}$	800 800	\bigcirc	0.0\%
88.9\%	800	800	0	0.0\%
90.1\%	800	800	0	0.0\%
991.4\%	800 800	800 800	0	0.0\% 0
93.8\%	8800	${ }_{800}^{800}$	0	${ }^{0.0 \%}$
95.1\%	800	800	0	0.0\%
${ }^{99.3 \%}$	8800	${ }_{800}^{800}$	0	0.0\%
988\%	${ }_{800}$	800	0	0.0\%
	${ }_{800}^{800}$	${ }_{800}^{880}$		0.0\%

Apprl				
Percent Exceedance	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	Absolute Difference	Relative
Probability	Monthly Fow (CFS)	Monthly Fow (CFS)	(CFF)	
0.0\%	700	700	0	0.0\%
-1.2\%	700	700	0	0.0\%
- ${ }^{2.5 \%}$ 3.7\%	700 700	700 700	0	0.0\%
4.9\%	700	700	0	0.0\%
6.2\%	700	700	0	0.0\%
7.4\%	700	700	0	\%
8.6\%	700	700	0	
9.9\%	700	700	0	0.0\%
11.1\%	700	700	0	
12.3\%	700	700	0	0.0\%
13.6\%	700	700	0	0.0\%
14.8\%	700	700	0	0.0\%
16.0\%	700	770	0	0.0\%
17.3\%	700	7700	0	0.0\%
18.5\%	700	700	0	
19.8\%	700	700	0	0.0\%
21.0\%	700	700	0	
${ }^{22.2 \%}$	700	7700	0	
-23.5\%	${ }^{700}$	700	0	0.0\%
25.9\%	700	700	0	0.0\%
27.2\%	700	700	0	
28.4\%	700	700	0	
29.6\%	700	700	0	0.0\%
30.9\%	700	700	0	0.0\%
32.1\%	700	700	0	0.0\%
33.3\%	700	700	0	0.0\%
34.6\%	700	700	0	0.0\%
35.8\%	7700	7700	0	0.0%
37.0\%	700	700	0	0.0\%
38.3\%	${ }_{7} 700$	7700	0	0.0\%
39.5\%	700	700	0	0.0\%
40.7\%	700	700	0	0.0\%
42.0\%	700	700	0	0.0\%
43.2\%	${ }^{700}$	${ }_{7} 700$	0	
${ }^{44.4 \%}$	700	7700	0	\%
45.7\%	700	7700	0	0.0\%
46.9\%	700	7700	0	
48.4\%	700	${ }_{700}$	0	0.0\%
50.6\%	700	700	0	
51.9\%	700	700	0	0.0\%
年 53.13%	700 700	7700	0	0.0\%
55.6\%	700	700	0	0.0\%
56.8\%	700	700	0	0.0\%
58.0\%	700	700	0	0.0\%
59.3\%	700	700	0	0.0\%
60.5\%	700	700	0	0.0\%
61.7\%	700	700	0	0.0\%
63.0\%	700	700	0	0.0\%
64.2\%	700	700	0	\%
65.4\%	7700	7700	0	\%
${ }^{66.79 \%}$	700	7700	0	\%
67.9\%	700	7700	0	0.0\%
69.1\%	${ }_{700}^{700}$	${ }_{700}$	O	0.0\%
-71.6\%	${ }_{700}$	${ }_{700}$	0	${ }^{0.0 \% \%}$
72.8\%	700	700	0	
74.1\%	700	700	0	0.0\%
75.3\%	700	700	0	0.0\%
76.5\%	700	700	0	,
77.8\%	700	700	0	\%
79.0\%	700	700	0	\%
80.2\%	700	700	0	0.0\%
81.5\%	700	700	0	0.0\%
- 82.79	700	700	0	0.0\%
84.0\%	700	700	0	0.0\%
85.2\%	700	700	0	0.0\%
86.4\%	700	700	0	0.0\%
87.7\%	700	700	0	0.0\%
${ }^{80.1 \%}$	700	7700	0	${ }^{\text {0.0\% }}$
91.4\%	700	700	0	0.0\%
92.\%	700	700		
93.8\%	700	700	0	0.0\%
${ }_{9}^{95.10 \%}$	700 700	7700	0	\%
96.5\%	700	700		
98.8\% 100.0\%	7700 700	700 700	0	边

Figure SW-22-b
Feather River below Thermalito, Monthly Flow

		Ociober		
Percent Exceedance	$\xrightarrow{{ }^{\text {DCR } 2015} \text { Without }}$ Proiet	DCR 2015 With Project	Absolute Difference	Realive
Probability	Montly Fow（CFS）	Monthy Flow（CFFs）	（CFS）	
0．0\％	4，000	4，000	0	0．0\％
2．5\％	4,000 4.000	4,000 4.000	\bigcirc	0．0．0\％
3．7\％	4.000	4,000	0	0．0\％
4．9\％	4，000	4，000	0	0．0\％
6．2\％	4，000	4，000	0	
7．4\％	4，000	4，000	0	
8．6\％	4，000	4，000	0	
9．9\％	4，000	4，000	0	
11．1\％	4，000	4，000	0	
12．3\％	4，000	4，000	0	0．0\％
13．6\％	4，000	4，000	0	0．0\％
14．8\％	4，000	4，000	0	0．0\％
16．0\％	4，000	4，000	0	0．0\％
（18．5\％	4，000	4,000	0	－
19．8\％	4，000	4,000	0	0．0\％
21．0\％	4,000	4.000	0	0．0\％
${ }_{\text {22，}}^{22.2 \%}$	4,000 4000	4,000 4,000	\bigcirc	0．0\％
${ }_{\text {24，7\％}}^{23.5 \%}$	4.0000	${ }_{4}^{4,0000}$	\bigcirc	0．0\％\％
25．9\％	4，000	4.000	0	0．0\％
27．2\％	4，000	4，000	0	
296\％	4,000	4,000		
30．9\％	4，000	4,000	0	0．0\％
32．1\％	4，000	4，000	0	0．0\％
33．3\％	4，000	4.000	0	
隹34．6\％	4，000	4，000	0	0．0\％
3．${ }^{3.75 \%}$	${ }_{4,000}^{4,000}$	4,0000	0	－ 0.0%
38．3\％	4，000	4，000	0	0．0\％
39．5\％	4,000	4.000	0	0．0\％
40．7\％	4，000	4，000	0	0．0\％
43．2\％	4，000	4,000 3062	${ }^{65}$	0．0\％\％
44．4\％	${ }_{3,804}^{3.004}$	${ }_{3,784}^{\text {3，}}$	－20	－0．5\％
45．7\％	3，786	3，768	－17	－0．5\％
46．9\％	3.674 2.551 2	3.530 3.508	－144	－3．9\％
${ }^{48.4 \%}$	${ }_{2,528}^{2,551}$	${ }_{\text {3，371 }}^{3,308}$	${ }_{842}^{958}$	－${ }_{\text {37，}}$
50．6\％	${ }_{2,429}^{2,39}$	3，306	877	36．1\％
51．9\％				21．2\％
54．3\％	${ }_{2,247}^{2,230}$	${ }_{2,421}^{2,49}$	174	7．7\％
55．6\％	2，098	2，295	197	9．4\％
年56．8\％	2，069	2，155	86	4．1\％
58．0\％	2，020	2，069	49	2．4\％
60．5\％	1，774	1，951	177	10．0\％
61．7\％	1，754	1，908	154	8．8\％
63．0\％	1，721	1，756	35	2．0\％
64.2% 654%	1，721	${ }^{1,735}$	15	0．9\％
	1，711	${ }_{\text {1，717 }}^{1,723}$	${ }_{17}^{12}$	0．7\％
66．7\％ 67.9%	＋1，700	1,777 1,700	17	－
69．1\％	1，700	1，700	0	0．0\％
70．4\％	＋1，700	1，700	0	0．0\％
71．6\％	1，700	1，700	0	0．0\％
74．1\％	${ }_{1}^{1,685}$	1，700	${ }_{15}$	0．9\％
75．3\％	1，261	1.649	388	30．8\％
76．5\％	1，200	1，428	228	5．0\％
778\％	1，200	1，274	74	6．2\％
80．2\％	${ }_{1}^{1,200}$	$\xrightarrow{1,200}$	0	0．0\％
81．5\％	1，200	1，200	0	0．0\％
${ }^{827.7 \%}$	1，112	1，200	88	7．9\％
84．0\％	1，057	1，200	143	13．6\％
－ $85.2 .4 \%$	${ }_{900}^{991}$	1,189 1,055	198 155 158	20．0\％
87，7\％	900	1.015	115	12．8\％
88．9\％	900	996	96	10．7\％
90．1\％	900	915	15	1．6\％
91．4\％	990	990	0	0．0\％
${ }_{93.8 \%}^{92.6 \%}$	990 900	990	0	－ 0.0%
95．1\％	900	900	0	0．0\％
96．3\％	900	900	0	0．0\％
98．5\％ 980．8\％ 100．0\％	900 900 900	900 900 900	0	边

December				
Percent Exceedance	${ }^{\text {DCR 2015 W Whthout }}$ Proiet	DCR 2015 With Project	Absolute Difference	
Probability	Monthly Fow（CFFS）	Monthy Fiow（CFFs）	（CFF）	
				0．0\％
1．2\％	9，719	12，500	2，781	
2．5\％	9，202	11，756	2，554	
3．7\％	7，076	9，719	2，643	3\％
4．9\％	5，924	5，993	70	
6．2\％	5，481	5．557	75	
7．4\％	5，338	5，393	54	1．0\％
8．6\％	5，261	5，240	${ }^{21}$	－0．4\％
9．9\％	5，193	5.217	25	0．5\％
11．1\％	4，972	4，948	－24	－0．5\％
${ }^{12.3 \%}$	4，939	4，912	－27	－0．5\％
13．6\％	4，750	4，795	45	0．9\％
14．8\％	4.615	4，750	${ }^{135}$	2．9\％
10．0\％	${ }_{4}^{4,244}$	4，637	${ }_{3} 33$	
17．5\％	${ }^{4,102}$	4，4969	${ }^{336}$	8．0\％
18．5\％	4，073	4，138	66	
19．8\％	4,012	${ }^{4,052}$	－12	－0．1\％
${ }^{2} 1.0 \%$	${ }^{4,012}$	－3，967	－45	源
23．5\％	3，801	${ }_{3,760}$	－41	－1．1\％
24．7\％	3，584	${ }^{3,718}$	134	3.7
25．9\％	3，228	3，421	193	
27．2\％	3，180	3，232	52	
28．4\％	3，127	3，228	101	
29．6\％	2，745	2，964	219	8．0\％
30．9\％	2，680	2，820	140	5．2\％
32．1\％	2，222	${ }^{2,477}$	255	
33．3\％	2，200	${ }_{2}^{2,287}$	87	4．0\％
34．6\％	${ }^{2}, 024$	${ }_{2}^{2,227}$	${ }^{203}$	10．7\％
35．7\％	${ }^{1,8688}$	2，199	${ }_{231} 37$	17．7\％
37．0\％	${ }^{1,770}$	2，039	270	15．7\％
38．3\％	1，700	－1．865	165	9．7\％
39．5\％	1，700	1,770	70	， 1%
40．7\％	1，700	＋1，770	70 5	4．1\％
4．2．\％	1，700	1，7752	5	， 1%
－ 43.2% \％	1,700 1,700	1,770 1		0．0\％
45．7\％	1，700	1，700	0	0．0\％
46．9\％	1，700	1，700	0	
48．1\％	1，700	1，700	0	
49．4\％	1，700	1，700	0	0．0\％
51．9\％	${ }^{1,7700}$	${ }_{1}^{1,700}$		
53．1\％	1，700	1，700	0	0．0\％
54．3\％	1，700	1，700	0	0．0\％
56．8\％	${ }^{1,7700}$	1，700	0	0．0\％
58．0\％	1，700	1，700	0	0．0\％
59．3\％	1，700	1，700	0	0．0\％
60．5\％	1，700	1，700	0	0．0\％
61．7\％	1，700	1,700 17700	0	0．0\％
63．0\％	${ }^{1,7700}$	1，700	0	0．0\％
－64．2\％${ }^{6.4 .4}$	1，700	1，700	0	－0．0\％
${ }_{66.7 \%}^{65.4 \%}$	1,700 1,700	1,700 1,700	0	0．0\％
67．9\％	1，700	1，700	0	0．0\％
69．1\％	1，700	1，700	0	0．0\％
70．4\％	17，700	1，700	O	
72．8\％	${ }^{1,700}$	${ }^{1,700}$	0	0．0\％
74．1\％	1，627	1，678	51	3．1\％
75．3\％	1，318	1，439	121	9．2\％
76．5\％	1，296	1，312	16	1．2\％
77．8\％	1，200	1，294	94	8\％
79．0\％	1，200	1，200	0	0．0\％
80．2\％	1，200	1，200	0	0．0\％
81．5\％	1，200	1，200	0	0．0\％
${ }^{82.7 \%}$	1，200	${ }^{1,200}$	0	0．0\％
84．0\％	1，200	1，200	0	0．0\％
85．2\％	${ }_{1}^{1,2200}$	＋1，200	0	0．0\％
86．4\％	1，200	${ }_{1}^{1,200}$	0	0．0\％\％
88．9\％	9900	＋1，063	14	${ }_{\text {2．2\％}}^{15.7}$
90．1\％	900	900	0	0．0\％
91．4\％	900	900	0	0．0\％
92．6\％	990	900	0	0．0\％
995．1\％	900	990	0	0．0\％
96．3\％	900	900	0	0．0\％
97．5\％	900	900	0	0．0\％
98．8\％ 100．\％	900	900	0	－ 0

Table SW-22-b

June				
Percent Exceedance	${ }_{\substack{\text { DCR } 2015 \text { Without } \\ \text { Proiet }}}^{\text {det }}$	DCR 2015 With Projet	Abssolute Difference	Relative
	Monthy foied（CFS）	Monthy Flow（CFS）	（CFs）	Prerence（9）
0．0\％	11，681	11,704	24	0．2\％
1．2\％	${ }^{11,332}$	11，224	－108	－0．9\％
2．5\％	10，955	10，944	－12	－0．1\％
3．7\％	9,070	9,056	-14	－0．1\％
4．9\％	8.492	8.480	－12	－0．1\％
6．2\％	${ }_{8}^{8,203}$	${ }^{8,189}$	－15	－0．2\％
7．4\％	${ }^{7,128}$	6，730	－398	－5．6\％
8．6\％	6,741 6.519	6.504 6.108 6	238 -410	－3．5\％${ }_{-6.3 \%}$
${ }^{\text {9，9\％}}$	6.519 6.123	6,108 6 6019	－104	${ }^{-6.3 \%}$
${ }_{\text {l }}^{\text {11．2．1\％}}$	¢，${ }_{6,123}^{6,034}$		－ 104	－－7．7\％
13．6\％	5.598	5，501	－98	－1．7\％
14．8\％	5．514	5．474	－40	
16．0\％	5，319	4.427	893	
17．3\％	4，855	4，347	508	
18．5\％	4，834	4，342	492	－10．2\％
19．8\％	4，775	4，108	666	－14．0\％
${ }_{2}^{21.0 \%}$	4．730	${ }^{3.887}$	－862	－18．2\％
${ }^{22.2 .5 \%}$	4,439 4,361	－3,727 3,720	－7412	
24．7\％	4，356	${ }_{3,548}$	－808	－18．5\％
25．9\％	4，349	3，504	－846	－19．4\％
27．2\％	4，238	3，447	－791	－18．7\％
28．4\％ 20.6	4,231 4.200	3.418 3 3	－813	－19．2\％
29．6\％	4，200	${ }^{3,328}$	－871	－20．7\％
30．9\％	4，101	－3，322	－779	－19．0\％
32.19% 33.3%	4，092	3，315	－777	－19．0\％
33．3\％	4，087	淢，1855	－902	－22．1\％
34．6\％	3,922 3895	3,161 3065 3	－760	－19．4\％
年35．8\％	3.895 3.888	3,065 2，099 2，	－889	－-21.3%
38．3\％	${ }_{3,884}$	${ }_{2,785}$	1，099	－28．3\％
39．5\％	3，741	2.779	－962	257\％
40．7\％	3，733	${ }_{2}^{2,763}$	970	
42．0\％	3，528	2，748	－779	－22．1\％
${ }^{43.4 .4 \%}$	${ }_{\substack{3.474 \\ 3,408}}$	${ }_{\text {2，644 }}^{2,644}$	－830	${ }_{\text {－}}$
45．7\％	3，367	${ }_{2,577}^{2,54}$	－790	－23．5\％
46．9\％	3，360	${ }_{2}^{2.547}$	－813	－24．2\％
48．1\％	3．099	${ }^{2,547}$	－552	－17．8\％
49．4\％	3，079	${ }^{2.541}$	－538	－17．5\％
50．6\％	－${ }_{\text {3，034 }}$	$\stackrel{2.536}{ }$	－498	－16．4\％
51．9\％	2，951	2，468	－482	－16．3\％
${ }_{5} 53.3 \%$	${ }_{2,84}^{2,864}$	2,343 2,348 2.	－-496	－17．9\％
55．6\％	${ }_{2}^{2,828}$	2，333	－495	－17．5\％
56．8\％	${ }_{2}^{2,818}$	${ }_{2}^{2,316}$	－502	－17．8\％
年58．0\％	$\begin{array}{r}2.809 \\ 2.781 \\ \hline\end{array}$	2,252 2,215 	－566	－-19.8%
60．5\％	2，760	${ }_{2,153}$	－607	－22．0\％
61．7\％	2，743	2，149	－594	－21．7\％
－63．0\％	${ }^{2,722}$	${ }_{2}^{2,146}$	－576	－21．2\％
－${ }_{\text {64．2\％}} 6.4 \%$	2,638 2，589	2,047 $\begin{aligned} & 2,011\end{aligned}$ 2，	－591	－$-22.4 .4 \%$
66.7%	${ }_{2,450}^{2,480}$	2，000	－450	－18．4\％
67．9\％	2.412	2,000	412	－17．1\％
69．19\％	${ }^{2,405}$	2.000	405	－16．8\％
70．4\％	2,247 2.269	2,000 2.000	－347	－14．8\％
72．8\％	${ }_{2}^{2} 230$	2.000	${ }_{-2} 230$	－10．3\％
74．1\％	2，161	1，985	－176	－8．1\％
75．3\％	2，094	1，965	${ }^{-128}$	－6．1\％
76．5\％	2，024	1，955	－69	－3．4\％
778．8\％	1,995 1.962 1	（1，894	－81	－5．0\％
－79．0\％	1，962	1.881 1.876 1.85	${ }^{-81}$	－4．1\％
${ }^{81.5 \%}$	${ }_{1}^{1,733}$	${ }_{1}^{1,754}$	${ }_{21}$	1．2\％
－ 82.7%	（1，694	${ }^{1,695}$	1	0．1\％
84.0% 85.2%	1，667	${ }^{1,699}$	${ }_{2}^{23}$	1．4\％\％
88．4\％	${ }_{1}^{1.497}$	${ }_{1,679}^{1.683}$	${ }_{183}^{183}$	${ }^{\text {12．2\％}}$
87．7\％	${ }^{1,475}$	${ }^{1,616}$	142	9．6\％
88．9\％ 90.1%	1，458	${ }_{1}^{1,597}$	${ }_{3}^{140}$	9．6\％
91．4\％	1，139	${ }_{1,567}$	428	37．6\％
92．6\％	${ }^{1,103}$	${ }^{1.529}$	426	
93．8\％	${ }^{1,038}$	${ }^{1,483}$	${ }^{445}$	
95．1\％	${ }^{1,000}$	1，464	464	46．4\％
${ }^{96.3 \%}$	1，000	1，456	456	4．5．6\％
－97．5\％	1，000	1，428	428	42．8\％
98．8\％ 100．	1,000 860	$\xrightarrow{1.000}$	${ }_{117}$	－

Percent Exceedance	$\begin{gathered} \text { DCR } 2015 \text { Without } \\ \text { Proiect } \end{gathered}$	DCR 2015 With Project	Absolute Difference	Relative Difference（\％）
Probability	Montly Fow（CFFS）	Monthy Fiow（CFS）	（CFS）	
				${ }^{-0.2 \%}$
2．5\％	${ }_{8,303}^{8,324}$	$\stackrel{8,189}{8,182}$	－114	－1．4\％
3．7\％	8,196	8.119	－76	－0．9\％
4．9\％	8.195	8.055	－140	－1．7\％
6．2\％	8.174	7.891	－284	－3．5\％
7．4\％	8.119	7.676	－443	－5．5\％
8．6\％	8.081	7.666	416	－5．1\％
9．9\％	${ }_{7}^{8,924}$	7,622	－302	－3．8\％
11．1\％	7.895	7.533	－362	－4．6\％
12．3\％	7.846	${ }_{7}^{7,464}$	－382	－4．9\％
13．6\％	7.840	7,383	－457	－5．8\％
14．8\％	7.825	7，349	－476	－6．1\％
16．0\％	7.711	${ }_{7}^{7,332}$	－379	－4．9\％
17.3% 18.5%	7,658 7,630	7,304 7286 7	－354	－4．6\％
18．5\％	7，630	$\begin{array}{r}7,286 \\ \hline 7268\end{array}$	${ }^{-344}$	－4．5\％
19．8\％	7，607	7，266	－341	－4．5\％
${ }^{212.2 \%}$	7，538	¢，847	－691	${ }_{-9.2 \%}^{-6.7 \%}$
23．5\％	7.506	6，766	－740	
24．7\％	7，503	${ }^{6,677}$	－826	
27．2\％	7,397 7.289	－ $\begin{aligned} & 6.573 \\ & 6.502\end{aligned}$	－884	－11．19\％
28．4\％	7，235	${ }_{6.442}^{6.402}$	－793	－11．0\％
29．6\％	7，171	6，337	－834	－11．6\％
30．9\％	6，948	6，183	－765	－11．0\％
32．1\％	6，559	6，135	－424	－6．5\％
33．3\％	6．539	${ }_{6}^{6.070}$	469	－7．20
34．6\％	${ }^{6.5388}$	5．835	－703	－10．7
35．8\％	6，349	5，690	－659	－10．4\％
37．0\％	${ }_{5.858}$	5，681	－177	－3．0\％
	¢，${ }_{5}^{5.415}$	5，597	182	3.48
39．5\％	5，313	5．511	198	${ }^{3.7}$
${ }_{4}^{40.7 \%}$	4，965	${ }_{\text {c }}^{5} 5$	${ }^{524}$	${ }^{10.5 \%}$
43．2\％	4，862	${ }_{5}^{5,259}$	${ }_{397}^{496}$	8．2\％
	4，760	5.047	287	6．0\％
46．9\％	4.577	${ }_{4.633}$	186 56	1．2\％
48．1\％	4，387	4.079	${ }_{-308}$	－7．0\％
49．4\％	4，310	3，906	－404	－
50．6\％	4，224	3，816	－407	
51．9\％	4，142	3，741	401	－9．7\％
53．1\％	4，020	3，736	284	－7．17
54．3\％	3，999	3，509	490	12．3\％
年5．5\％	${ }^{3,847}$	3，434	${ }_{-413}$	－10．7\％
56．8\％	3，735	3，409	${ }^{-326}$	－8．7\％
58．0\％		3，310	-352	－9．6\％
年 59.3%	$\begin{array}{r}3.649 \\ \hline\end{array}$	${ }^{3.088}$	－561	－15．4\％
60．5\％	${ }^{3,541}$	3，083	－459	13．0\％
61．7\％	${ }_{3}^{3,365}$	3，050	－315	${ }^{-9.3 \%}$
－63．2\％	3，184	${ }_{2}^{2,993}$	－190	${ }^{-6.0 \%}$
6．4\％	${ }_{2,401}$	${ }_{2,598}^{2,59}$	197	${ }_{8.2 \%}$
${ }^{66.77 \%}$	${ }_{2,368}^{2,31}$	2，5322	164	${ }^{6.9 \%}$
67．9\％	${ }_{2,321}^{2,313}$	2，500	179	7．7\％
70．4\％	${ }_{2,223}^{2,213}$	2.500 2.500	－	8．1\％
71．6\％	2，192	${ }_{2,500}^{2.500}$	308	14．0\％
72．8\％	1，925	2.500	575	
74．1\％	1，918	2，500	582	
75．3\％	1，814	2，492	678	
76．5\％	1，743	2，245	502	
77．8\％	1，599	2.060	461	
79．0\％	${ }^{1,586}$	2，047	461	29．1\％
80．2\％	${ }^{1,5577}$	${ }_{2}^{2,025}$	${ }^{448}$	28．4\％
${ }^{81.5 \%}$	1，537	${ }^{1,847}$	309	20．1\％
－82．7\％	1.534 1.501 1.51	1，637	103	6．7\％
84.0% 852%	1，501	${ }^{1,586}$	85	5．6\％
	＋1，481	（1．532	51	3．5\％
87．7\％	1,302	1，313	11	0．9\％
88．9\％	1，281	${ }^{1,308}$	${ }^{27}$	1\％
90．1\％	1，242	1，303	62	\％
91．4\％	${ }^{1,2355}$	1，253	18	4\％
932．8\％	1.084 1.043 1.283	${ }_{1,067}^{1,097}$	${ }_{24}^{25}$	${ }_{2.3 \%}^{2.3 \%}$
95．1\％	1，000	1，040	40	4．0\％
96．3\％	1，000	1，035	35	3．5\％
${ }_{98}^{97.5 \%}$	1,000 1.000	${ }_{1}^{1,035}$	$\begin{array}{r}35 \\ 35 \\ \hline\end{array}$	3．5\％
	1.000	${ }_{1}^{1,035}$	35	

eather River at Mouth, Monthly Flow

Table SW-23-b River at Mouth, Monthy Flo

Table SW－23－b River at Mouth，Monthy Flo

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$		February		$\begin{gathered} \text { Relative } \\ \text { Difference (\% } \end{gathered}$
	${ }_{\text {DCR }} \begin{aligned} & \text { 2015 Without } \\ & \text { Proiet }\end{aligned}$	DCR 2015 With Project	difierence	
	Monthly fow（CFS）	Moontly Flow（CFS）	（CFFs）	
	${ }^{71,426}$	73,148	1，722	2．4\％
1．2\％	41,897	47，215	${ }_{5,318}$	12．7\％
2．5\％	36，327	36，840	513	1．4\％
3．7\％	35，641	36，328	686	1．9\％
4．9\％	35，400	${ }^{35.654}$	254	0．7\％
${ }^{6.2 \%}$	${ }_{\substack{35.055 \\ 33783}}$	35.403 35059	（ 348	年．0\％
7．4\％	${ }_{3}^{33,783}$	${ }_{\substack{35,059 \\ 3 \\ 3 \\ \hline 184}}$	${ }^{1,276}$	3．8\％
8．6\％	31,923 31079 107	${ }_{\text {ckin }}^{33,784}$	1，．861	5．8\％
9．9\％	${ }^{31,079}$	${ }^{31,050}$	－29	－0．1\％
－11．1\％	30,135 25.878	30,139 25.880	${ }_{2}$	0．0\％
13．6\％	23，307	23，310	3	
14．8\％	21，354	22，005	650	3．0\％
16．0\％	${ }^{20,612}$	${ }^{21,354}$	742	
17.3% 185%	20，121	20，595	473	
18．5\％	19，106	20，160	1，053	5．5\％
19．8\％	18,712	18，713	1	
21．0\％	18，049	18，049	0	
${ }^{22.2 \%}$	16，450	17，385	935	5．7\％
${ }^{23.55 \%}$	16.416	16，455	39	0．2\％
24．7\％	15，762	16，416	654	4．1\％
25．9\％	15，612	15，765	152	1．0\％
27．2\％	${ }^{15.036}$	${ }^{15.620}$	584	3．9\％
${ }^{28.4 \%}$	14，332	${ }^{15,126}$	594	4．19\％
	${ }^{13.606}$	${ }^{14,548}$	942	${ }^{6.9 \%}$
30．9\％	${ }^{12,829}$	14，216	1，387	10．8\％
退32．1\％	${ }^{12,512}$	${ }^{13,607}$	1.095	8．8\％
－ $33.4 .6 \%$	12，410	${ }_{12,286}^{12,268}$	416	
34.6% 358%	12，139	${ }^{12,514}$	${ }^{375}$	
37．0\％	＋12，108	12,139 11107	${ }_{-1}$	0．8\％
38．3\％	10，883	10.578	－305	
39．5\％	10，576	10，523	－53	
40．7\％	${ }^{10,521}$	10，029	92	
42．0\％	10，008	8.895	1，113	
43．2\％	8，664	${ }^{8,666}$		0.0
44．4\％	${ }_{8,414}$	${ }_{8,424}$	10	0．1\％
45．7\％	7，806	7，627	178	－2．3\％
46．9\％	7.414	7,415	1	
48．19\％	7．117	7，119	2	0．0\％
49．4\％	${ }^{6.827}$	${ }^{6.827}$	0	0．0\％
50．6\％	6，713	6，713	1	0．0\％
51．9\％	6，655	6，656	1	0．0\％
${ }^{53.10 \%} 5$	¢，522	－6，525	3	0．0\％
	5，957		2	－0．0\％
55．8\％	¢	㐋， 5.956		0．0\％
58．0\％	4，910	${ }_{4,911}$	0	0．0\％
	4，787	4.788	2	0．0\％
${ }^{60.5 \%}$	4，006	4，707	1	
${ }^{61.70 \%}$	4，618	4，619	2	0．0\％
64．2\％	${ }_{4.530}$	${ }_{4.531}^{4.582}$	1	0．0\％
65．4\％	4，318	4，319	1	
66．7\％	4，253	4，263	10	0．2\％
67．9\％	4，234	4，238	4	0．1\％
69．1\％	4，184	4，188	4	0．1\％
70．4\％	4，136	4，135	0	0．0\％
71．6\％	4，099	4，103	4	0．1\％
72．8\％	4.078	4，076	${ }^{-3}$	－0．1\％
74.1% 753%	4，016	4．018	1	0．0\％
75．3\％	3，749	3，749	1	0．0\％
76．5\％	${ }^{3,535}$	${ }^{3.5388}$	3	0．1\％
778\％	${ }_{2}^{2,923}$	${ }_{2}^{2,922}$	1	0．0\％
89．0\％	2，665	${ }_{2}^{2,666}$	1	－0．0\％
－${ }_{80.15 \%}^{8.5 \%}$	${ }_{2}^{2,615}$	${ }_{2}^{2,616}$		－
－	2，607	2，608	！	
84．0\％	${ }_{\text {2，262 }}$	${ }_{2,262}^{2,496}$	${ }_{0}$	0．2\％
85．2\％	${ }_{2}^{2,234}$	${ }_{2}^{2,235}$	1	0．0\％
86．4\％	2，223	${ }_{2,223}$	1	0．0\％
87．7\％	2，181	2，183	1	0．1\％
88．9\％	1，880	1，882	2	0．1\％
90．1\％	1，782	1，784	2	0．1\％
91．4\％	1，700	1，707	7	0．4\％
92．0\％${ }_{9}^{938 \%}$	1，700	1，700	0	${ }^{0.0 \% \%}$
95．1\％	${ }_{1,627}$	${ }_{1,661}$	33	2．1\％
96．3\％	1，522	1，524	2	0．1\％
97．5\％	1，204	1，205	1	0．1\％
988．8\％	990	990	\bigcirc	0．0\％

Apprl				
Percent Exceedance	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	Absolute Difference	Relative
Probability	Monthly fow（CFS）	Monthy Fiow（CFFS）	（cFs）	
0．0\％	49，210	49，206		0．0\％
1．2\％\％	${ }^{30,333}$	30，325	－9	0．0\％
2．5\％	${ }^{20,5959}$	22，950	6	
3．7\％	2，7099	${ }^{27,7253}$	${ }^{6}$	
4．9\％	27，7212	27，267	${ }^{6}$	
7．4\％	${ }_{\text {25，727 }}^{21726}$	${ }^{25,722}$	${ }_{5}$	0．0\％
8．6\％	25，464	25，463	－1	0．0\％
9．9\％	${ }^{21,656}$	21，653	4	0．0\％
11．1\％	${ }^{18,835}$	${ }^{18,831}$	4	0．0\％
12．3\％	17，892	17，888	4	0．0\％
13．6\％	14，914	14，908	－6	0．0\％
14．8\％	${ }^{14,826}$	14，821	－5	0．0\％
16．0\％	14，507	14，495	－12	－0．1\％
17．3\％	${ }^{13,761}$	${ }^{13,766}$	6	0．0\％
18．5\％	13，299	13，292	－7	－0．1\％
19．8\％	11，489	${ }^{12,732}$	1，243	10．8\％
21．0\％	${ }^{11,265}$	－11，259	${ }^{-6}$	－0．10
${ }^{22.22 \%}$	10，317	${ }^{10,706}$	${ }^{388}$	
23．5\％	9，925	10，317	${ }^{393}$	4．0\％
25．9\％	${ }_{9}^{9.0002}$	9,002	${ }^{4}$	0．0\％
27．2\％	8，897	${ }^{8,897}$	0	0.0
28．4\％	${ }_{8,871}$	${ }^{8,870}$	－1	
29．6\％	8，403	${ }_{8,373}$	${ }^{30}$	
30．9\％	${ }^{8,124}$	${ }_{8}^{8,124}$	0	
32．1\％	${ }_{7}^{7} 391$	7,392	1	0．0\％
33．3\％	7，283	7，285	2	
34．6\％	7，016	7，020	4	0．1\％
35．8\％	7，007	7，000	－7	－0．19
37．0\％	6，998	6，996	－2	0．0\％
38．3\％	6，920	6，914	－5	－0．1\％
39．5\％	6，912	${ }^{6,911}$	－1	0．0\％
40．7\％	6,729 6.7709	6，729	0	0．0\％
42．0\％	6．709	6，704	－5	－0．1\％
43．2\％	㐌，6288		4	0．1\％
${ }^{44.47 \%}$		6，478	2	0．0\％
${ }^{45.79 \%}$	¢，336	${ }^{6,336}$		
${ }_{48.1 \%}^{46.9 \%}$			＋	0．0\％
49．4\％	${ }_{5,823}^{0.24}$	${ }_{5,826}$	3	0．0\％
	5．684	5．686	$\stackrel{2}{2}$	0．0\％
531\％				
54．3\％	${ }_{5.324}^{5.342}$	${ }_{5,313}^{5.342}$	－12	－0．2\％
55．6\％	4，999	4，998	0	
56．8\％	4，881	4，882	0	\％
58．0\％	4，790	4，790	0	0．0\％
59．3\％	${ }^{4.380}$	4，382	2	0．0\％
60．5\％	4，378	4，378	0	0．0\％
617\％\％	4，198	4，171	${ }^{27}$	－0．6\％
63．0\％	4，169	4，144	－25	－0．6\％
${ }^{64.2 \%}$	4，109	4，093	－16	－0．4\％
－65．4\％	4,091	4，082	－9	－0．2\％
66．7\％ 6790%	4，060	4，048	－12	${ }^{0.3 \% \%}$
67．9\％	4，094	${ }_{3}^{3.821}$	${ }^{223}$	．5．5\％
69．1\％	${ }_{3}^{3,828}$	${ }^{3,780}$	－48	
${ }_{7126 \%}^{70.4 \%}$		3.625 3.614	－98	${ }_{\text {－}}^{-.36 \%}$
72．8\％	3，609	3，560	－49	
74．1\％	3，557	3，455	102	
75．3\％	3，454		104	
8．5\％	3，347	3，320	27	
77．8\％	${ }^{3,317}$	3，269	${ }^{-48}$	
79．0\％	3．266	3．039	228	
80．2\％	3，167	2，960	207	－6．5\％
81．5\％	2，800	2，800	0	0．0\％
82．7\％	2，800	2，800	0	0．0\％
84．0\％	2，800	2，800	0	0．0\％
85．2\％	${ }^{2} 8800$	${ }_{2}^{2,800}$	0	0．0\％
86．4\％	${ }^{2} 8800$	${ }^{2,800}$	0	0．0\％
87．7\％	2，800	2．800	0	0．0\％
－	2，800	2，800	0	${ }^{\text {0．0\％}}$
90．1\％	2，800	2，800	0	0．0\％
91．4\％	2．800	2，800	0	0．0\％
92．6\％${ }_{9}^{938 \%}$	2．800	2，800	0	0．0\％
93．8．\％	2,800 2800	2,800 2800	0	0．0\％\％
${ }^{95.3 \%}$	2，723	${ }_{2,571}^{2,800}$	${ }_{1} 152$	${ }_{\text {－}}^{\text {－．6\％\％}}$
5\％	2.571		364	
98．8\％\％ 100．0\％	2,195 874	2,202 876	${ }_{6}^{6}$	－ 0.3%

June				
Percent Exceedance	$\xrightarrow{{ }^{\text {DCR }} 2015 \text { Without }}$ Proiect	DCR 2015 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \end{aligned}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
Probability	Montly Folow（CFS）	Monthly Fow（CF	（CFS）	
1．2\％	${ }^{24,593}$	24，581		－0， 0
2．5\％	${ }_{10,244}^{2,24}$	${ }^{219,231}$	－13	， 10
3．7\％	18.949	18.934	－15	－0．1\％
4．9\％	18.554	18.546	－8	00%
6．2\％	18，115	18，102	－13	－0．1\％
7．4\％	17，573	17，564	－9	－0．1\％
8．6\％	12，425	12，411	－14	－0．1\％
111\％	12,420 11954 1020	12,410 11941 1	－10	厚
12．3\％	11,954 10,748	11,941 10,735	－14	${ }^{-0.1 \%}$
13．6\％	10，291	10，276	－14	－0．1\％
14．8\％	9，222	9，113	109	
16．0\％	${ }^{9,125}$	9，019	106	
17.3% 18.5%	9，032	${ }^{8.511}$	－521	
18.5% 19.8%	${ }^{8.524}$	8，183	${ }^{-341}$	－4．0\％
19．8\％	8，195	8,032 7,568	－163	－－．8．8\％
22．2\％	6，960	6，947	－13	－0．2\％
${ }^{23.5 \%}$	6，953	${ }_{6}^{6,719}$	－234	－3．4\％
24．7\％	6，833	6，367	－487	－7．19
25．9\％	6，381	6，187	－193	－3．0\％
27．2\％	6，240	－6，051	－189	${ }^{-3.0}$
${ }^{28.4 \%}$	6，025	¢，	${ }^{-315}$	－5．2\％
30．9\％	¢	${ }_{5}^{5.577}$	－444	－7．4\％
32．1\％	5.808	5.441	－367	－6．3\％
33．3\％	5．659	5，358	－301	－5．3\％
隹34．6\％	5.590 5,361	5,131 4889	－479	－8．2\％
37．0\％	${ }_{5,246}$	4,889 4.899	${ }_{-377}$	${ }_{-7.2 \%}^{-8.8 \%}$
38．3\％	${ }_{5}^{5,137}$	4.613	－524	－10．2\％
				－9．8\％
42．0\％	4.870	4.499	${ }_{-371}$	－7．6\％
43．2\％	4，787	4.482	－304	－6．4\％
44．4\％	4，743	4，421	－322	
45．7\％	4，737	4，376	－361	－7．6\％
${ }^{46.9 .1 \%}$	${ }_{4,597}^{4,25}$	4,346 4.276	－329 ${ }_{-321}$	－7．0\％
49．4\％	4，446	4，270	－176	－4．0\％
50．6\％	4.419	4，241	－179	－4．0\％
年51．9\％	${ }_{4}^{4.406}$	${ }_{4}^{4,202}$	－204	－4．6\％
${ }^{53.10 \%} 5$	${ }_{4,365}^{4,385}$	${ }_{4}^{4,135}$	－250	－5．7\％
55．6\％	${ }_{4}^{4,365}$	4,128 4.008	－284	－5．4\％
56．8\％	4，281	3，806	－475	－11．1\％
年58．0\％	4，231	3，584	－646	－15．3\％
	${ }_{4}^{4,223}$	－3.523 3.515	－699	－
61．7\％	4.148	${ }_{3,403}$	－ 74	
－63．0\％	4，067	$\stackrel{3,392}{ }$	－674	－16．6\％
－64．2\％${ }^{6.4 \%}$	－	${ }_{\substack{3,374 \\ 3,34}}$	－533	${ }_{-13.7 \%}^{-13.5 \%}$
66．7\％	3，858	3，346	－512	－13．3\％
67．9\％	3，782	3，338	－445	－11．8\％
70．4\％		－3,267 3,172	－428	－11．6\％
71．6\％	3，481	3，152	－329	－9．4\％
72．8\％		3，025	－430	－12．5\％
74．1\％${ }^{75.3 \%}$	${ }_{3}^{3,389}$	${ }^{3,024}$	－365	－10．8\％
76．5\％	${ }^{3.308}$	2，916	－391	－11．8\％
77．8\％	（3,248 3,208	${ }_{2,686}^{2,877}$	${ }_{-522}$	－
79．0\％	3，140	${ }_{2}^{2,668}$	－472	－15．0\％
－		2.583 2488 1	－532	－17．1\％
－${ }_{\text {81．5\％}}^{8.7 \%}$	－3.067 3.031	2,488 2458 2	－578	－18．9\％
84．0\％	${ }_{2,887}^{3,031}$	2，368	－519	－18．0\％
85．2\％	${ }_{2,873}$	2，321	－552	－19．2\％
86．4\％	${ }_{2}^{2,692}$	${ }^{2}, 0.066$	－625	－23．2\％
88．9\％	${ }_{2,627}^{2,027}$	${ }_{1,748}^{2,178}$	－879	－3．4\％
90．1\％	2，590	1，676	914	－35．3\％
91．4\％	2.414	1.639	－774	－32．1\％
92．6\％	${ }_{\text {2，398 }}^{2,394}$	${ }^{1,620}$	－778	
${ }^{93.5 \%}$	2，374	1.618	－756	－31．8\％
${ }_{9}^{95.3 \%}$	${ }_{\substack{2,286 \\ 1,291}}^{\text {2，}}$	1，440	－846	－37．0\％
97．5\％	1，118	${ }_{1}^{1,348}$	229	20．5\％
98．8\％	1，000	1，156	156	15.6
100．0\％	750	800	50	6．7\％

Percent	DCR 2015 Without Proiect	DCR 2015 With Project	Absolue	
Probability	Montly Fow（C）	Montly Flow（CFS）	（CFS）	
1．2\％	，	仿		
2．5\％	9167	9170	3	
3．7\％	${ }_{9,156}$	8831	325	
4．9\％	0.102	8740	352	
6．2\％	8946	8731	215	
7．4\％	8.925	8711	－214	
8．6\％	8.882	8701	－181	
9．9\％	8.770	8.666	－104	
11．1\％	8.765	8.627	－139	
12．3\％	8,747	8.621	－126	－1．4\％
13．6\％	8，718	8.614	－104	－1．2\％
14．8\％	8.705	8.4	－207	
17．3\％	${ }_{8,684}^{8,695}$	${ }_{8,051}^{8,443}$	${ }_{632}$	${ }_{\text {－}}$
18．5\％	8.632	8,050	－581	
19．8\％	8．559	8,041	－518	
21．0\％	8．503	7，843	－661	－7．8\％
22．2\％	8.502	${ }_{7}^{7,837}$	－665	－7．8\％
224．7\％	8.485 8.480	7，721	－764	－9．0\％
25．9\％	${ }_{8,412}$	7.560	${ }_{-851}$	－10．1\％
27．2\％	8，408	7，462	－946	－11．2\％
28．4\％	8，295	7,421	－874	－10．5\％
29．6\％	8.049	7，365	－684	－8．5\％
30．9\％	7，926	7，356	－570	－7．2\％
32．1\％	${ }_{7}^{7,816}$	7,177	－640	－8．2\％
33．3\％	7.771	7，097	－674	－8．7\％
34．6\％	${ }_{7}^{7,720}$	6，961	－658	－8．6\％
35．8\％	${ }_{7}^{7,361}$	6，905	－455	
38．3\％	${ }_{7,177}^{7,248}$	${ }_{6.590}^{6.770}$	－-587	${ }_{-8.8 \%}^{-6.6 \%}$
39．5\％	6,334	6,543	208	${ }_{3.3 \%}^{-8.3 \%}$
40．7\％	6，320	${ }^{6,320}$	1	0．0\％
4．3．2\％	6，191 6,188	${ }_{\substack{6,197 \\ 5.97}}^{\text {c，}}$	$\stackrel{7}{-271}$	－${ }^{0.4 \%}$
44．4\％	6.140	${ }_{5}^{5,828}$	－312	－5．1\％
45．7\％	5.828	5，793	－34	－0．6\％
46．9\％	5，363	5，784	421	
48．1\％	${ }_{5}^{5,291}$	5．781	490	9．3\％
49．4\％	5，113	5，723	${ }^{610}$	11.9
${ }^{50.6 \%}$	5．083	5，450	367	7.26
51．9\％	4，965	5，275	309	6．2\％
53．1\％	4，941	5，141	200	4．0\％
54．3\％	4，891	5，107	217	4．4\％
	${ }_{4}^{4.814}$	5，027	${ }_{2}^{213}$	4．4\％
	${ }_{4,582}^{4,24}$	4，957	${ }_{375}^{233}$	4．9\％
55．3\％	${ }_{4.549}^{4.582}$	4，904	375 355	－
60．5\％	4.411	4，711	300	6．8\％
61．7\％	4，392	4．570	178	4．1\％
63．0\％	4，234	4，534	300	7．1\％
64．2\％	3.830 3.803	${ }_{4,029}^{4,498}$	668 268	－${ }_{\text {l }}^{\text {17．5\％}}$
66．7\％	${ }_{3,776}$	${ }_{3,925}^{4,929}$	149	${ }_{3.9 \%}$
67．9\％	3，708	3，645	－	
69．4\％	3,652 3,507	3.628 3.579	－24	－0．7\％
71．6\％	${ }_{\text {3，447 }}$	${ }_{3,521}$	75	2．2\％
72．8\％	3，309	3，489	179	5．4\％
74．1\％	3，300	3，404	104	2\％
75．3\％	3，300	3，150	－150	－4．5\％
76．5\％	3，300	${ }^{2,947}$	－353	10．7\％
79．0\％	2,959 2.818	－	${ }^{-237}$	－8．0\％
80．2\％	${ }_{2}^{2,767}$	${ }_{2}^{2,613}$	－154	－5．6\％
81．5\％	2，625	2，604	－21	－0．8\％
82．7\％	2,484	2，459	－25	－1．0\％
84．0\％	2，026	${ }_{2}^{2,448}$	${ }_{3}^{422}$	${ }^{20.8 \%}$
8．2\％	${ }_{1}^{2,003}$		－	－17．1\％
${ }_{80}^{88.4 \%}$	1，975	1，828	－143	－7．3\％
88．9\％	1，901	${ }_{1}^{1,548}$	－793	－ 18.80%
90．1\％	1，802	1，512	－290	－16．1\％
91．4\％	${ }^{1,567}$	${ }^{1,337}$	－230	－14．7\％
93．8\％	${ }_{1,335}^{1,359}$	${ }_{1,301}^{1.332}$	${ }_{-34}$	－2．5\％
95．1\％	1，274	1,176	－98	－7．7\％
96．3\％	1，266	1，157	－109	\％
97．5\％	1，234	1，146	87	\％
98．8\％	${ }^{1,138}$	1,035	103	\％
100．0\％	750	863	113	15．0\％

Percentceedance	September			Realiveitferenceel
	$\begin{aligned} & \text { DCR 20155 W.thout } \\ & \text { Proiect } \\ & \hline \end{aligned}$	DCR 2015 With Project	Absolute Difference	
Proabaility	Monthy Fow（CFS）	Monthly Fow（CFS）	（CFF）	
0．0\％			6	0．0\％
25\％	${ }^{12,433}$	${ }^{12,245}$	12	0.10
3．7\％	12，332	12.275	－57	－0．5\％
4．9\％	12，273	12，121	152	1．2\％
6．2\％	${ }^{12,095}$	12，073	${ }^{-23}$	
7．4\％	12，071	11,944	127	
8．6\％	${ }^{11,964}$	11，914	－50	－0．4\％
9．9\％	${ }^{11,998}$	${ }^{11,885}$	${ }^{-34}$	0．3\％
11．1\％	${ }^{11,888}$	111，864	${ }^{24}$	－0．2\％
${ }^{12.3 \%}$	${ }^{11,8188}$	${ }^{11,773}$	45	－0．4\％
13．6\％	${ }^{11,1767}$	111，769	1	0．0\％
14．8\％	${ }^{11,164}$	11，594	170	
16．0\％\％	${ }^{11,547}$	${ }^{11,5488}$	1	
18．5\％	${ }_{11506}$	${ }^{11,5537}$	${ }_{21}^{4}$	0．2\％
19．8\％	11，466	11,507	41	0．4\％
21．0\％	${ }^{11,452}$	11.092	－360	
${ }^{22.25 \%}$				
24．50	11,264	10，523	－558	－5．0\％
25．9\％	10，795	10，437	－358	3．3\％
27．2\％	${ }^{10,703}$	10，224	479	5\％
28．4\％	10，582	10，110	472	\％
29．6\％	10，160	10，035	125	
30．9\％	10，105	10，004	101	－1．0\％
32．1\％	10，088	9，947	141	－1．4\％
33．3\％	10．011	9，909	102	－1．0\％
34．6\％	9，986	9，869	－117	${ }^{-1.2 \%}$
	${ }_{9} 9880$	${ }_{9.593}$	${ }^{287}$	2．9\％
37．0\％	9，652	9.517	－135	－1．4\％
边 $\begin{aligned} & 38.3 \% \\ & 30.5 \%\end{aligned}$	9，586	${ }_{9,384}$	－202	－2．1\％
39．5\％	9，486	${ }^{9,230}$	－256	
${ }^{40.70 \%}$	${ }_{9,375}^{9,463}$	${ }_{\text {c }}^{8,445}$	${ }^{-988}$	－10．4\％
42．0\％	${ }_{9}^{9,375}$	${ }_{7}^{7,479}$	－1，958	
43．4\％\％	－		－1，034	－10．8\％
45．7\％	7.592	6．849	－743	－9．8\％
46．9\％	7，560	6，726	834	11．0\％
48．19\％			853	－11．3\％
49．4\％	7，293	${ }^{6.616}$	－671	－9．3\％
519\％	7257	${ }_{6}^{6,401}$	856	
53．1\％	7，061	${ }_{6,380}$	－680	${ }_{-9.6 \%}$
54．3\％	7，011	6，241	．770	－11．0\％
55．6\％	${ }_{6}^{6,883}$	6，206	－677	－9．8\％
56．8\％	㐌，882	6，124	－758	－11．0\％
年 58.0%	6，783	${ }^{6,088}$	－695	－10．2\％
59．3\％	${ }^{6,088}$	5．863	－224	－3．7\％
60．5\％	6，019	5．624	－395	－6．6\％
61．7\％		5.393 5 c，	－429	－7．4\％
－ 63.0 \％${ }^{6}$	${ }_{5}^{5.821}$	5．386	${ }_{-435}$	7．5\％
－${ }_{\text {cher }}^{64.2 \%}$	5，621	5，384	－237	－4．2\％
－ 65.46	4,300 3,839	5,151 4,703	881	－19．8\％
－66．79\％	（3，839	${ }_{4.688}^{4.703}$	${ }_{854}^{864}$	\％
69．1\％		${ }_{4.603}^{4.688}$	${ }_{863}^{867}$	22．4\％
70．4\％	3，474	4.530	${ }_{1}^{1,056}$	－
71．2\％	3，436	4，046	610	17．8\％
74．1\％	$\underset{\substack{3.421 \\ 3,163}}{ }$	${ }_{\text {4，031 }}$	190	
74．3\％	3，101	3，929	${ }_{828}$	220．7\％
76．5\％	3，005	3，643	638	\％
77．8\％	${ }_{2}^{2,823}$	3，473	650	
79．0\％	2，730	${ }^{3,465}$	${ }^{735}$	9\％
80．2\％	2，699	3，404	704	1\％
81．5\％	2.689	3，274	585	21．8\％
－ $\begin{aligned} & 82.7 \% \\ & 840 \%\end{aligned}$	${ }^{2,653}$	3，208	555	20．9\％
84．2\％	2,634 2.600	－	529	${ }^{20.15 \%}$
86．4\％	2.593	3．009	416	16．0\％
87．7\％	2，590	2，962	371	14．3\％
88．9\％	${ }^{2} .5589$	2，934	345	13．3\％
90．17\％	${ }_{2}^{2,552}$	2,852 2888 208	${ }_{249} 28$	10．9\％
91．4\％	2，559	2.808 2，511	${ }_{449}^{249}$	9．7\％
93．8\％	${ }_{1,493}^{2,125}$	${ }_{2.559}^{2.571}$	${ }_{1}^{4.066}$	71．0\％\％
95．1\％	${ }_{1}^{1,201}$	${ }_{1,493}$	${ }_{292}^{1906}$	24．3\％
96．3\％	${ }^{1,1183}$	${ }^{1,183}$	0	0．0\％
	${ }_{1}^{1,060}$	${ }_{1}^{1,117}$	56	5．3\％
	${ }_{1}^{1,028}$	${ }_{1,060}$		${ }_{\text {3．2\％}}$

Figure SW-24-b
Folsom Lake, End of Month Storage

		October		
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	$0 C R 2015$ Without Proiet	DCR 2015 With Project	${ }^{\text {abs }}$	
Probability	End of Month Storage	End of Month Storage		Ifference（\％）
0．0\％	${ }_{712}$	${ }_{712}$		\％
1．2\％	712	712	0	0．0\％
2．5\％	712	712	0	
3．7\％	712	712	0	
4．9\％	707	712	5	
${ }^{6.2 \%}$	680	691	11	1．7\％
7．4\％	612	683	71	．7\％
8．6\％	592	654	62	10．5\％
9．9\％${ }^{\text {91．1\％}}$	592	633	41	
${ }^{11.1 \%}$ 12．3\％	592	630	${ }^{38}$	${ }^{6.4 \%}$
俍 ${ }^{12.36 \%}$	592 592	${ }_{620}^{625}$	${ }_{28}^{33}$	${ }^{5.77 \%}$
14．8\％	590	608	18	3．0\％
16．0\％	590	${ }^{603}$	14	2．3\％
${ }^{17.3 \% \%}$	580 578	600 596	${ }_{18}^{20}$	3．5\％
18．5\％\％	578 574	596	${ }^{18}$	3．2\％
19．8\％	574	${ }_{596} 5$	21	3．7\％
21．0\％	574 571	5994	${ }_{21}^{20}$	3．4\％
22．2\％	571 570	592	21	3．7\％
22．5\％\％	567 567	592 592	${ }_{25}^{22}$	3．9\％
22．9\％\％	${ }_{565}^{567}$	592 584	25 19	4．4\％
227．2\％	561	584 583	19 22	－${ }_{\text {3，9\％\％}}^{3.9 \%}$
28．4\％	559	573	15	
29．6\％	${ }_{553}$	570	17	
30．9\％	547	570	${ }^{23}$	
32．1\％	546	561	16	
33．3\％\％	545	560	15	${ }^{2.8 \%}$
35．8\％\％	543 540	知52	12	${ }_{\text {l }}^{\text {2．7．3\％}}$
37．0\％	532	552	20	3．8\％
38．3\％	529	551	${ }^{23}$	4．3\％
39．5\％	${ }_{526}^{529}$	${ }_{5}^{51}$	${ }^{22}$	4．2\％
－${ }^{4.7 \% \%}$	526 518 5	536 534	16	2．0\％
42．0\％${ }^{432 \%}$	518	534	16	3．0\％
44．4．4\％	517 513	533 522	16	－${ }_{\text {3，}}^{17 \%}$
45．7\％	510	516	7	1．3\％
46．9\％	503	509	5	1．0\％
48．1\％${ }^{49.4}$	500 494	504 503	${ }_{9}^{4}$	0．8\％
年年．4\％\％	${ }_{491}^{494}$	503 501	10	1．9\％
551．9\％	478	500	22	${ }_{4.5 \%}^{2.0 \%}$
53．1\％	${ }^{456}$	499	仡	
54．3\％	454	497	43	9．5\％
55．8\％	${ }_{447}^{453}$	${ }_{491}^{497}$	${ }_{44}^{44}$	9．8\％
58．0\％	446	476	30	6．6\％
59．3\％	${ }^{432}$	472	40	9．2\％
	${ }_{418}^{419}$	468 448	49	11．6\％
661．7\％ 63.0%	418	448	31	7．3\％
63．0\％	390	438	48	12．3\％
64．2\％	381	${ }^{433}$	51	${ }^{13.4 \%}$
65．7\％	${ }^{370}$	${ }^{426}$	${ }_{56}$	15．1\％
667．9\％	－ $\begin{aligned} & 368 \\ & 367\end{aligned}$	415	${ }_{38}^{47}$	${ }^{12.7 \%}$
69．1\％	${ }_{360}$	381	${ }_{21}$	5．9\％
70．4\％	${ }^{358}$	380		6．4\％
71．6\％	349	${ }_{374}^{376}$	${ }_{26}^{26}$	${ }_{7}^{7.6 \%}$
74．1\％	${ }_{344}^{348}$	${ }_{374}^{374}$	${ }_{29}^{26}$	8．5\％
75．3\％	340	372	32	5\％
76．5\％	${ }^{340}$	371	31	9．1\％
797．0\％	334 332	（ $\begin{aligned} & 366 \\ & 350\end{aligned}$	32 18	5．3\％
80．2\％	330	${ }_{3}^{336}$	6	1．7\％
${ }^{81.5 \%}$	${ }^{327}$	324	－2	－0．7\％
82．7\％	${ }_{314}^{321}$	311	－10	－3．0\％
85．2\％	313	307	${ }_{-6}$	－1．8\％
86．4\％	306	307	0	0．1\％
87．7\％	300 279	${ }^{304}$	5	1．5\％
－	${ }_{271}^{279}$	304 286	${ }^{25}$	8．8\％
990．4\％	254 224	286 282	$\begin{array}{r}15 \\ 28 \\ \hline\end{array}$	5．6\％
92．6\％	245	282	37	15．0\％
93．8\％	${ }^{244}$	${ }^{271}$	27	11．1\％
99．3\％	${ }_{2}^{241}$	250 24	9	${ }^{3.9 \%}$
97．5\％	120	${ }_{223}^{248}$	104	${ }_{88.5 \%}^{2.2 \%}$
98．8\％	90	${ }^{123}$	${ }^{33}$	36．7\％
100．0\％	90	90	0	0．0\％

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Prohahility } \end{gathered}$	Fobruary			
	${ }_{\text {DCR 2015 }}^{\text {Pricthout }}$	DCR 2015 With Project	Absolute	
	End of Month Storage	End of Monts Storage	(titere	Difference (\%)
(\%)	[TAF)	(TAF)	(taf)	
0.0\%	${ }^{567}$	567	0	0.0\%
1.2\%	567	567	0	
2.5\%	567	567	0	
3.7\%	567	567	0	0.0\%
4.9\%	567	567	0	
${ }^{6.2 \%}$	567	567	0	0\%
7.4\%	557	557	0	\%
${ }_{\text {9.9\% }}^{\text {8.9\% }}$	567	567	0	
11.1\%	557	567	0	0\%\%
12.3\%	${ }_{567}^{567}$	${ }_{567}^{567}$	0	0.0\%
13.6\%	567	567	0	0.0\%
14.8\%	567	567	0	
16.0\%	567	567	0	
17.3\%	566	567	1	
- $18.5 .8 \%$	${ }_{5}^{566}$	566	0	0.0\%
21.0\%	565	566	1	0.1\%
22.2\%	565	565	1	0.1\%
23.5\%	563	565	2	0.4\%
24.7\%	562	563	1	0.2\%
25.9\%	560	562	?	0.4\%
27.2\%	559	560	1	0.1\%
28.4\%	559	559	0	0.0\%
29.6\%	558	559	1	0.2\%
-	5588 558	(558	0	0.0\%
33.3\%	558	${ }_{558}^{588}$	0	0.0\%
34.6\%	557	558	1	0.2\%
35.8\%	557 557	557 557	0	
37.0\%	${ }_{5}^{557}$	${ }_{5}^{557}$		
30.5\%	555	555	0	0.0\%
40.7\%		555		
42.0\%	553	553	0	
43.2\%	553 5 5	553	0	
44.4\%	${ }_{5}^{53}$	552	-1	-0.14
45.7\%	$\begin{array}{r}552 \\ 551 \\ \hline\end{array}$	552	0	0.06
46.9\%	551	${ }_{5} 51$	0	0.0\%
48.19\%	547 546	547	0	0.0\%
50.6\%	${ }_{546}$	543	-3	${ }^{-0.6 \%}$
51.9\%	543 530	${ }_{535}^{538}$	-5	-0.9\%
53.1\%	529	530	1	0.2\%
54.3\%	527 509	529 527	${ }_{18}^{2}$	0.4\%
55.6\%	509	527	${ }^{18}$	3.4\%
58.0\%	501	55	18	
59.3\%	499	501	2	0.5\%
60.5\%	${ }_{483}^{494}$	499	${ }^{5}$	
${ }^{63.0 \%}$	${ }_{473}^{481}$	${ }_{485}^{494}$	${ }_{12}^{13}$	2.8\%
65.4\%	458	480	22	\%
66.7\%	458	474	16	3.5\%
- 67.9%	${ }_{450}^{457}$	${ }_{458}^{462}$	5	1.19\%
70.4\%	${ }_{448}$	${ }_{458}^{458}$	${ }_{10}$	${ }^{\text {2.3\% }}$
71.6\%	446	457	11	2.5\%
728\%	444	454	11	2.4\%
74.1\%	${ }^{443}$	450	7	1.7\%
75.5\%	${ }_{4}^{430}$	450	10	${ }^{2.2 \%}$
77.8\%	436	446	10	2.2\%
79.0\%	432	443	11	2.5\%
- 80.2%	${ }_{423}^{427}$	${ }_{437}^{440}$	13	3.1\%
${ }^{81.5 \%}$	${ }^{423}$	${ }^{437}$	14	3.4\%
- ${ }_{\text {84, }}$	411	${ }_{4} 27$	17	${ }_{4}^{4.4 \%}$
85.2\%	407	414	18	1.8\%
86.4\%	402	410	8	2.1\%
88.9\%	${ }_{395}^{492}$	${ }_{402}^{407}$	${ }_{7}$	+1.7\%
90.1\%	394	398	4	0.9\%
91.4\%	369	394	25	6.7\%
92.6\%	352 344	${ }^{386}$	35	9.9\%
${ }^{93.85 \%}$	344 295	${ }^{351}$	8	${ }_{1}^{2.2 \%}$
96.3\%	${ }_{285}$	299	14	4.9\%
97.5\%	${ }_{2}^{233}$	${ }^{251}$	18	7.7\%
98.8\%	${ }_{21}^{231}$	214	-18	-7.7.\%
100.0\%	210	211	1	0.3\%

		June		
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	$0 C R 2015$ Without Proiet	DCR 2015 With Project	Absolum	
Probability	End of Month Storage (TAF)	End of Month Storage (TAF)	(TAF)	Difference $(\%)$
0.0\%	${ }_{967}$	${ }_{967}$		0.0\%
1.2\%	967	967	0	0.0\%
2.5\%	967	967	0	
3.7\%	967	967	0	
4.9\%	967	967	0	
6.2\%	967	967	0	0.0\%
7.4\%	967	967	0	
8.6\%	967	967	0	
9.9\%	967	967	0	
11.1\%	967	967	0	
12.3\%	967	967	0	
13.6\%	967	967	0	0.0\%
14.8\%	967	967	0	00\%
16.0\%	967	967	0	0.0\%
17.3\%	967	967	0	0.0\%
	${ }_{967}^{967}$	${ }_{967}^{967}$	0	0.0\%
21.0\%	967	${ }_{967}$	0	0.0\%
${ }^{22.2 \%}$	${ }_{967} 96$	967	0	0.0\%
23.5\%	967	967	0	0.0\%
224.7\%	${ }_{967}^{967}$	${ }_{967}^{967}$	0	- 0.0%
27.2\%	${ }_{967}^{967}$	${ }_{967}^{967}$	0	0.0\%
28.4\%	967	967	0	
29.6\%	967	967	0	
30.9\%	967	967	0	
32.1\%	967	967	0	
33.3\%\%	967	967	0	0.0\%
35.8\%	${ }_{967}^{967}$	${ }_{967}^{967}$:	0.0.0\%
37.0\%	967	967	0	0.0\%
38.3\%	${ }_{967} 96$	967	0	0.0\%
39.5\%	967	967	0	0.0\%
40.7\%	967	965	-2	-0.2\%
43.2\%	965	962	-4	-0.4\%
44.4\%	954	954	${ }_{0}$	0.0\%
45.7\%	950	950	0	0.0\%
46.9\%	946	945	-1	-0.1\%
48.4\%	${ }_{9293}^{944}$	${ }_{923}^{937}$	-7	-0.8\%
50.6\%	${ }_{917}^{923}$	${ }_{9}^{923}$	0	0.0\%
51.9\%	908	917	9	
55.3\%				1.0\%
55.3\%\%	${ }_{893}^{905}$	${ }_{867}^{916}$	${ }_{-26}^{11}$	${ }_{\text {- }}$
56.8\%	879	857	${ }_{-22}$	${ }_{-2.5 \%}$
58.0\%	868	855	-13	-1.5\%
	845	828	-16	-1.9\%
60.7\%	812	${ }^{804}$	${ }^{-8}$	-1.0\%
661.7\%	804	798	-6	-0.8\%
64.2\%	${ }_{773}$	748	-26	${ }_{\text {- }}^{\text {- }}$-4\%\%
65.4\%	767	744	-23	-3.0\%
	${ }_{717}^{721}$	${ }_{773}^{737}$	12	-1.7\%
69.1\%	${ }_{713}^{717}$	727 725	9	1.17\%
70.4\%	${ }_{6} 713$	${ }_{711} 72$	12	1.7\%
71.6\%	690	685	${ }_{-5}^{20}$	-0.8\%
72.8\%\%	${ }_{681}^{684}$	${ }_{6}^{667}$	-15	-2.1\%
75.3\%	${ }_{659}^{681}$	${ }_{655}^{667}$	-14	-2.0\%
76.5\%	640	647	7	-0.1\%
77.8\%	619	637	19	3.0\%
79.0\%	619 590	611		${ }^{-1.2 \%}$
${ }^{81.5 \%}$	580	605	${ }_{24}$	4.2\%
82.7\%	578	586	8	1.4\%
84.0\%	549	${ }_{571}$	21	3.9\%
8. 8.2%	519	520	1	0.2\%
	502	498	4	-0.9\%
887.9\%	${ }_{4}^{487}$	498	${ }_{21}^{11}$	${ }_{4}^{2.3 \%}$
${ }^{80.1 \%}$	469	${ }_{491}^{492}$	${ }_{22}^{21}$	4.8\%
91.4\%	461	488	27	5.9\%
92.6\%	${ }_{461}^{460}$	${ }_{4}^{469}$	${ }_{-1}$	- 1.9%
995.1\%	460 458	${ }_{452} 4$	- -7	${ }^{-0.3 \%}$
${ }_{99.3 \%}$	${ }_{433}^{438}$	${ }_{422}^{422}$	-11	${ }_{\text {- }}$
97.5\%	${ }_{3}^{333}$	${ }^{366}$	${ }^{23}$	6.8\%
	- ${ }_{163}^{338}$	-	15	4.5\%
100.0\%			45	-27.7\%

Figure SW-25-b
Folsom Lake, End of Month Elevation

Table SW-25-b

		February		
${ }_{\text {Perceent }}^{\text {Pexance }}$	$\begin{gathered} \text { DCR } 2015 \text { Without } \\ \text { Proiect } \end{gathered}$	DCR 2015 With Project	Absolute	Reatio
Proabaility	End of Month Elevation	End of Month Elevation		
${ }_{0}^{\text {¢ }}$	(12EEI)	${ }_{42}$	0	0.0\%
1.2\%	423	423	0	
2.5\%	423	423	0	
3.7\%	${ }^{423}$	423	0	
4.9\%	423	423	0	
6.2\%	423	423	0	0.0\%
7.4\%	423	${ }^{423}$	0	
8.6\%	${ }^{423}$	${ }^{423}$	0	0.0\%
9.9\%	${ }^{23}$	${ }^{233}$	0	0.0\%
11.1\%	${ }^{23}$	${ }^{423}$	0	\%
12.3\%	${ }^{423}$	${ }^{423}$	0	0.0\%
13.6\%	${ }^{23}$	${ }^{23}$	0	0.0\%
14.8\%	${ }^{423}$	${ }^{423}$	0	
- 117.0% \%	${ }_{423}^{423}$	${ }_{423}^{423}$	0	
${ }^{17.5 \%}$	${ }_{423}^{423}$	${ }_{423}^{423}$	0	0.0\%
19.8\%	${ }_{423}$	${ }_{423}$	0	0.0\%
21.0\%	423	423	0	0.0\%
22.2\%	${ }^{423}$	423	0	0.0\%
24.7\%	${ }_{423}^{423}$	${ }_{423}^{423}$	0	0.0\%
25.9\%	422	423		0.1\%
227.4\%	${ }_{422}^{422}$	${ }_{422}^{422}$	\bigcirc	0.0\%
29.6\%	422	${ }_{422}$	0	0.0\%
30.9\%	422	422	0	0.0\%
32.1\%	422	422	0	0.0\%
33.3\%	422	422	0	0.0\%
34.6\%	422	${ }^{422}$	0	0.0\%
35.8\%	${ }^{422}$	${ }^{422}$	0	0.0\%
年3.0\%	${ }_{4}^{422}$	422	0	0.0\%
	${ }_{422}$	${ }^{422}$	0	\%
${ }^{39.5 \%}$	${ }^{422}$	${ }^{422}$	0	
${ }^{42.0 .0 \%}$	422	${ }^{422}$	0	-0.0\%
43.2\%	${ }_{422}^{422}$	${ }_{422}^{422}$	0	0.0\%
44.4\%	422	421	0	
45.7\%	421	421	0	
46.9\%	421	421	0	0.0\%
48.1\%	421	421	0	0.0\%
49.4\%	${ }^{421}$	420	0	-0.1\%
50.6\%	420	420	-1	-0.2\%
51.9\%	419	419	1	0.1\%
53.1\%	419	419	0	0.0\%
54.3\%\%	418	419	0	0.19\%
55.8\%	${ }_{415}^{415}$	${ }_{417}^{417}$	${ }_{2}$	0.5\%
58.0\%	415	417	2	0.6\%
59.3\%	415	415	0	0.1\%
6.5\%\%	${ }_{413}^{414}$	${ }_{415}^{415}$	1	0.1\%
61.7\%	${ }_{413}^{413}$	415	2	0.5\%
	${ }_{4}^{413}$	414	2	0.4\%
	${ }_{412}$	${ }_{413}^{413}$	2	0.4\%
66.7\% 6	410	${ }_{4}^{413}$	${ }^{3}$	0.7\%
67.9\%	${ }_{410}^{40}$	${ }_{410}^{412}$	${ }_{1}^{2}$	0.1\%
69.1\%	409	410	1	0.2\%
71.6\%	${ }_{408}$	410	1	0.3\%
72.8\%	408	409		
74.1\%	408	409	1	2\%
75.3\%	408	409	1	0.3\%
76.5\%	407	409	1	0.3\%
77.8\%	407	408	1	0.3\%
890\%	407	408	1	0.3\%
81.5\%	406	407	${ }_{2}$	0.4\%
82.7\%	404	406		0.5\%
84.0\%	404	406	2	0.5\%
8.2\%\%	${ }_{404}^{404}$	${ }_{404}^{404}$	1	0.2\%
88.4\%\%	${ }_{403}^{403}$	${ }_{404}^{404}$	1	0.3\%
88.9\%	${ }_{402}^{403}$	${ }_{403}^{404}$	1	- 0.2%
90.1\%	402	402	0	0.1\%
${ }^{99.4 \% \%}$	398	402	4	0.9\%
${ }_{9} 9.8 .8 \%$	399	${ }_{395}^{401}$	${ }^{6}$	+1.4\%\%
95.1\%	386	394	8	2.1\%
96.3\%	384	${ }^{387}$	2	0.6\%
97.5\%	${ }^{374}$	${ }^{378}$	4	1.0\%
	374 369	${ }^{370}$	4	-1.1\%
100.0\%		369		0.0\%

Table SW-25-b

Proabaility	End of Month Elevation	End of Month Elevation	(ekt	rence $(\%)$
-0.0\%	444	444	0	0.0\%
1.2\%	444	444	0	\%
2.5\%	444	444	0	0.0\%
3.7\%	444	444	0	0.0\%
4.9\%	444	444	0	0.0\%
6.2\%	441	444	3	\%
7.4\%	${ }^{441}$	444	${ }^{3}$	
8.6\%	441	444	3	0.8\%
9.9\%	440	443	${ }^{3}$	0.8\%
11.1\%	440	${ }_{4}^{43}$	3	0.6\%
12.3\%	438	${ }^{441}$	3	0.7\%
13.6\%	${ }^{437}$	440	3	0.7\%\%
14.8\%	${ }_{437}^{437}$	${ }_{439}^{439}$	${ }^{2}$	0.5\%
17.3\%	435	${ }_{438}$	4	0.9\%
${ }^{\text {18.5\%\% }}$	${ }_{432}^{432}$	${ }_{4}^{438}$	5	${ }^{1.4 \%}$
21.0\%				
${ }^{22.2 \%}$	${ }_{431}$	${ }_{434}^{435}$	3	0.6\%
23.5\%	430	433	4	0.9\%
24.7\%	430	432	3	0.7\%
227.2\%	${ }_{429}^{429}$	${ }_{432}^{432}$	${ }_{3}^{2}$	0.6\%
28.4\%	428	431	3	0.8\%
29.6\%	428	431	3	0.7\%
30.9\%	427	431	4	0.9\%
${ }^{32.1 \%}$	${ }^{226}$	${ }^{429}$	2	0.5\%
334.6\%	${ }^{426}$	${ }^{428}$	2	0.5\%
35.8\%	${ }_{426}$	${ }_{428}^{428}$	${ }_{1}^{2}$	0.3\%
37.0\%	426	${ }^{427}$	1	0.2\%
38.3\%	426	${ }^{427}$	1	2\%
40.7\%	426	${ }^{427}$		0.3\%
42.0\%	${ }_{425}$	${ }_{426}$	1	0.3\%
	${ }_{423}^{423}$	${ }_{426}^{426}$	${ }_{2}$	0.6\%
45.7\%	${ }_{422}$	${ }_{426}$	4	,
46.9\%	422	426	4	\%
${ }^{48.1 \%}$	421	426	4	1.0\%
50.6\%	${ }_{421}^{421}$	${ }_{422}^{423}$	2	${ }_{0}^{0.5 \%}$
51.9\%	417	422	5	1.2\%
53.1\%	417	420	3	0.7\%
	416	419	${ }^{3}$	0.7\%
55.8\%	${ }_{415}^{415}$	${ }_{419}^{419}$	${ }_{4}^{4}$	1.0\%
58.0\%	413	419	6	1.4\%
59.3\%	412	419	6	1.5\%
60.5\%	${ }^{412}$	418	6	1.6\%
66.7.0\%	411	417	${ }^{6}$	1.6\%
64.2\%	${ }_{406}^{407}$	${ }_{414}^{415}$	8	1.9\%
65.4\%	405	${ }^{412}$	7	1.8\%
	${ }_{403}^{405}$	${ }_{410}^{412}$	7	${ }_{1}^{1.7 \%}$
69.1\%	${ }_{403}^{403}$	${ }_{410}^{410}$	7	+1.8\%
70.4\%	402	408	6	4\%
71.6\%	401	408	7	6\%
72.8.1\%	${ }_{401} 01$	${ }_{406}^{406}$	5	${ }^{1.3 \%}$
75.3\%	${ }_{401}$	${ }_{405}^{4005}$	5	1.1\%
76.5\%	400	405	5	1.2\%
77.8\%	400	402	2	6\%
79.0\%	400	401	2	\%
- ${ }_{\text {80, }}^{8.2 \%}$	399	401	2	0.5\%
882.7\%	399	400	1	0.4\%
88.0\%	398 396	${ }_{395}^{395}$	${ }_{-1}-1$	-0.3\%
85.2\%	392	${ }^{393}$	1	0.3\%
88.4\%	390 390	${ }_{391}^{391}$	1	0.2\%
88.9\%	390	391	1	0.2\%
${ }^{88.1 \%}$	${ }_{3}^{390}$	${ }_{3} 398$	1	${ }^{0.0 \% \%}$
91.4\%	${ }_{386}$	${ }_{387}^{388}$	1	0.3\%
92.6\%	381	386	6	1.5\%
93.8\%\%	${ }^{380}$	${ }^{386}$	6	1.6\%
96.3%	${ }_{375}^{378}$	388 380	${ }_{4}^{4}$	1.0\%
97.5\%	364	379	15	4.0\%
98.8\%	${ }^{330}$	${ }^{362}$	32	9.7\%
100.0\%	330	330	0	0.0\%

Figure SW-26-b
folsom Lake, End of Month Are

Table SW－26－b

\begin{tabular}{|c|c|c|c|c|}
\hline \& \multirow[t]{2}{*}{\[
\begin{gathered}
\text { DCR } 2015 \text { Whtrout } \\
\hline \text { Profiect }
\end{gathered}
\]} \& \multicolumn{3}{|l|}{Ociober} \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Percent } \\
\text { Exceedance } \\
\text { Probability }
\end{gathered}
\]} \& \& DCR 2015 With Project \& \({ }^{\text {abs }}\) \& Rela \\
\hline \& \& End of Month Area
（ACRE） \& （ACRE） \& Difference（\％） \\
\hline 0．0\％ \& （ACRE） \& \& \& 0．0\％ \\
\hline 1．2\％ \& 9.609 \& \({ }_{9,609}\) \& 0 \& \\
\hline 2．5\％ \& 9，609 \& 9，609 \& 0 \& \\
\hline 3．7\％ \& 9，609 \& 9，609 \& 0 \& \\
\hline 4．9\％ \& 9，578 \& 9，609 \& 31 \& \\
\hline 6．2\％ \& 9.419 \& 9，487 \& 68 \& \\
\hline 7．4\％ \& 8.800 \& 9，439 \& 640 \& \\
\hline 8．6\％ \& \({ }_{8.615}\) \& 9，186 \& 571 \& \\
\hline 9．9\％ \& \({ }_{8,615}\) \& 8，996 \& 381 \& \\
\hline 11．1\％ \& \({ }_{8,615}\) \& 8，961 \& 346 \& \\
\hline 12．3\％ \& \({ }^{8.615}\) \& \({ }^{8,923}\) \& 308 \& 3．6\％ \\
\hline 13．6\％ \& \({ }_{8}^{8.615}\) \& \({ }^{8.871}\) \& \({ }^{256}\) \& 3.0 \\
\hline 14．8\％ \& 8.594 \& 8，759 \& 165 \& 19\％ \\
\hline 16．0\％ \& 8.594 \& 8，720 \& 126 \& 1．5\％ \\
\hline 17．3\％ \& 8.505 \& \({ }^{8.693}\) \& 187 \& \({ }^{2.2 \%}\) \\
\hline － \(18.8 .8 \%\) \& －\({ }_{8,484}^{8,482}\) \& \({ }_{8,651}^{8,651}\) \& 169
197 \& \({ }_{23}^{2.0 \%}\) \\
\hline 29．0\％ \& \({ }_{8,454}^{8,454}\) \& \({ }_{8,634}^{8,651}\) \& \({ }_{180}^{197}\) \& \({ }^{2.3 \%}\) \\
\hline 22．2\％ \& 8.421 \& 8.615 \& 194 \& 2．3\％ \\
\hline 23．5\％ \& \({ }_{8,412}\) \& \({ }_{8,615}\) \& 203 \& 2．4\％ \\
\hline 24．7\％ \& －\({ }_{8,364}^{8,383}\) \& \({ }_{8,643}^{8,611}\) \& 228
179 \& \({ }_{21 \%}^{2.7 \%}\) \\
\hline \({ }^{25.7 .2 \%}\) \& \({ }_{8,331}^{8,364}\) \& \({ }_{8,534}^{8.543}\) \& \({ }_{2} 203\) \& \({ }_{2.4 \%}^{2.19 \%}\) \\
\hline 28．4\％ \& 8,307 \& 8.444 \& 137 \& \\
\hline 29．6\％ \& 8，259 \& 8.413 \& 154 \& \\
\hline 30．9\％ \& 8，198 \& \({ }_{8,412}\) \& 214 \& \\
\hline 32．1\％ \& 8，187 \& 8，333 \& 146 \& \\
\hline 年33．3\％ \& 8，181 \& \({ }_{8}^{8,23}\) \& 142 \& 1．7\％ \\
\hline 34．6\％ \& \({ }_{\text {8，136 }}^{8,131}\) \& ¢， \begin{tabular}{l}
8,251 \\
8,246 \\
\hline
\end{tabular} \& \({ }_{115}^{86}\) \& 1．14\％ \\
\hline 37．0\％ \& 8.058 \& 8，244 \& 186 \& 2．3\％ \\
\hline 38．3\％ \& \({ }^{8,031}\) \& 8，239 \& 208 \& 2．6\％ \\
\hline 39．5\％ \& 8,031 \& 8，237 \& \({ }^{206}\) \& 2．6\％ \\
\hline 40．7\％ \& \({ }_{8}^{8.003}\) \& \({ }^{8.098}\) \& 95 \& 1．2\％ \\
\hline \({ }^{42.3 .2 \%}\) \& 7,936 \& \({ }^{8.080}\) \& 144 \& \({ }_{1}^{1.8 \%}\) \\
\hline 4．4．4\％ \& 7，891 \& \({ }^{8,9,970}\) \& \({ }_{79}^{147}\) \& 1．0\％ \\
\hline 45．7\％ \& 7，857 \& 7.918 \& 62 \& 0．8\％ \\
\hline 46．9\％ \& 7，800 \& 7，846 \& 46 \& 0．6\％ \\
\hline 48．1\％ 4.4 \& \begin{tabular}{l}
7,766 \\
7773 \\
\hline
\end{tabular} \& （7．805 \& 39
84 \& 0．5\％ \\
\hline 50．6\％ \& \({ }_{7}^{7,765}\) \& ¢， \(\begin{aligned} \& 7,798 \\ \& 7777\end{aligned}\) \& 84 \& \({ }_{1}\) \\
\hline 51．9\％ \& 7.565 \& 7.764 \& 200 \& 2．6\％ \\
\hline 年 53.1 \％ \& 7，361 \& 7，760 \& 399 \& 5．4\％ \\
\hline 54．5\％ \& \begin{tabular}{l}
7,344 \\
7,334 \\
\hline
\end{tabular} \& \begin{tabular}{l}
7,741 \\
7,736 \\
\hline
\end{tabular} \& \({ }_{402}^{397}\) \& \({ }_{5}^{5.5 \%}\) \\
\hline 56．8\％ \& 7，281 \& 7，685 \& 404 \& 5．6\％ \\
\hline 58．0\％ \& 7,273 \& 7，545 \& 272 \& 3．7\％ \\
\hline （ \(59.3 \%\) \& 7，145 \& \({ }_{7,513}\) \& \({ }^{368}\) \& 5．1\％ \\
\hline 60．5\％ \& 7，023 \& 7.470 \& \({ }^{447}\) \& 6．4\％ \\
\hline － \(61.7 \%\) \& 7，008 \& 7，289 \& \({ }^{281}\) \& 4．0\％ \\
\hline 64．2\％ \& \({ }_{6.661}^{6.756}\) \& 7，146 \& \({ }_{485}^{442}\) \& \({ }^{6.3 \%}\) \\
\hline 65．4\％ \& 6，529 \& 7，087 \& 558 \& 8．5\％ \\
\hline \({ }^{66.7 \%}\) \& （6．507 \& \& \({ }_{397}^{480}\) \& 7．4\％ \\
\hline － \(67.9 \%\) \& －6，495 \& 㐌，892 \& 397

253 \& 6．1\％

\hline － 70.4% \％ \& ${ }_{\text {c，}}^{6,405}$ \& 析，659 \& 253
274 \& 4．3\％\％

\hline 71．6\％ \& 6，281 \& ${ }_{6.596} 6$ \& 315 \& 5．0\％

\hline 72．8\％ \& ¢， $\begin{aligned} & 6,263 \\ & 6.222\end{aligned}$ \& 6，577 \& ${ }^{315}$ \& 5．0\％

\hline 74．3\％ \& ¢，${ }_{6,172}^{6,222}$ \& \& 384
384 \& 5．6\％

\hline 76．5\％ \& 6，167 \& ${ }_{6,538}$ \& ${ }_{371}$ \& 6．0\％

\hline 77．8\％ \& ${ }^{6,094}$ \& 6.479 \& 385 \& 6．3\％

\hline 79.0%

80.2% \& | 6,077 |
| :--- |
| 6,053 | \& 6，288 \& ${ }^{211}$ \& 3．5\％

\hline 81．5\％ \& ${ }_{6,010}^{60.053}$ \& ${ }_{5,983}$ \& ${ }_{-27}$ \& －0．4\％

\hline 82．7\％ \& 5.938 \& ${ }_{5.823}$ \& －115 \& －1．9\％

\hline 84．0\％ \& 5．862 \& ${ }_{5}^{5.822}$ \& －40 \& －0．7\％

\hline 85．2\％ \& 5．844 \& 5.775 \& －69 \& －1．2\％

\hline 86.4%
87.7% \& 5，766 \& 5，770 \& 4 \& 0．1\％

\hline 877\％ \& 5，689 \& 5．744 \& 55 \& 1．0\％

\hline －${ }^{88.9 \%} 9$ \& 5,430
5
5，30 \& 5，741 \& ${ }^{311}$ \& 5．7\％

\hline 90．4\％ \& ${ }_{\substack{5,077}}^{5,006}$ \& ${ }_{\substack{5.516 \\ 5.466}}^{\text {c，}}$ \& 209
389 \& －${ }^{3.7 \% \%}$

\hline 92．6\％ \& 4，950 \& ${ }_{5}^{5} 462$ \& 511 \& 10．3\％

\hline 93．8\％ \& 4，930 \& 5，306 \& 376 \& 7．6\％

\hline － 95.19% \& 4.889
4.849 \& 5.020
4.935 \& ${ }_{86}^{131}$ \& 2．7\％

\hline ${ }^{96.5 \%}$ \& 4,849
2.657 \& ${ }_{4.563}^{4.935}$ \& ${ }_{1}^{86}$ \& 1．8\％

\hline 98．8\％ \& 2，091 \& ${ }_{2,721}$ \& ${ }_{630}$ \& 30．1\％

\hline 100．0\％ \& 2，091 \& 2，091 \& 0 \& 0．0\％

\hline
\end{tabular}

Table SW-26-b
Lake, End of Month

		February		
Percent Exceedance		DCR 2015 With Project	${ }^{\text {Absolute }}$	Relativ
Probability	End of Montht Area	End of Monthe Area	Difiternce	Difference (\%)
${ }^{(\% .0 \%}$	(ACRE)	(ACRE)		
0.0\%\%	${ }_{8}^{8,385}$	${ }_{8}^{8,3855}$	0	0.0\%
- ${ }^{1.2 \%}$	${ }_{8}^{8,385}$	${ }_{8}^{8,385}$		
2.5\%	${ }_{8}^{8,385}$	${ }^{8.3355}$	0	
3.7\%	${ }_{8}^{8,385}$	${ }_{8}^{8,385}$		
4.9\%	${ }^{8,3355}$	${ }^{8,3855}$		
6.2\%	${ }_{8}^{8.335}$	${ }_{8}^{8.385}$		
8.6\%	${ }_{8,385}^{8,385}$	${ }_{8,385}^{8,385}$	O	0.0\%
9.9\%	8,385	${ }_{8,385}^{8,35}$	0	0.0\%
11.1\%	385	8,385		
12.3\%	8,385	${ }_{8,385}$	0	
13.6\%	8,385	8,385	0	0.0\%
14.8\%	8,385	${ }^{8,385}$	0	0.0\%
16.0\%	8,385	${ }^{8,385}$	0	0.0\%
17.3\%	${ }^{8,376}$	${ }^{8,385}$	9	0.1\%
18.5\%	${ }^{8,376}$	${ }^{8,376}$	0	0.0\%
19.8\%	8,371	${ }^{8,376}$	5	0.1\%
21.0\%	${ }_{8,366}$	${ }^{8.373}$	7	0.1\%
${ }^{22.2 \%}$	${ }^{8,366}$	${ }^{8,371}$	5	0.1\%
23.5\%	${ }_{8}^{8,348}$	${ }_{8}^{8,366}$	18	0.2
24.7\%	8.339	${ }^{8,348}$	9	${ }^{0.11 \%}$
${ }^{25.7 .2 \%}$	${ }_{8,320}$	8,339	${ }^{18}$	- ${ }_{\text {en }}^{0.2 \%}$
	8,314	${ }_{8,320}$	5	0.1\%
-	${ }_{8}^{8,314}$	${ }_{8}^{8,315}$	1	
- ${ }^{29.9 \% \%}$	8,302	-8,314	12	0.0\%
32.1\%	${ }_{8,302}$	${ }_{8,302}$	0	0.0\%
33.3\%	${ }_{8}^{8,302}$	${ }_{8} 8302$		0.0\%
	${ }^{8,293}$	${ }^{8,302}$	9	0.1\%
37.0\%	¢,	${ }_{8,293}^{8,293}$	4	0.0\%
38.3\%	${ }_{8,283}$	${ }_{8,283}$	0	0.0\%
39.5\%	8,274	8,274	0	0.0\%
40.7\%	8,274	8,274	0	0.0\%
42.0\%	8,256	8,256	-1	0.0\%
43.2\%	8,256	${ }_{8,256}$	0	0.0\%
${ }^{44.4 .4 \%}$	8,256	8,249	-7	-0.1\%
45.7\%	8,247	8,247	0	0.0\%
46.9\%	8,237	8,237	0	0.0\%
48.19\%	8,201	8,201	0	0.0\%
49.4\%	8,192	8,164	${ }^{28}$	${ }^{-0.3 \%}$
年 $50.19 \% \%$	${ }^{8,1644}$	8.115	48	-0.0\%\%
53.1\%	${ }_{8}^{8,044}$	8,088	44	${ }_{0}^{0.5 \%}$
	8,035 8016	${ }^{8,044}$	9	0.2\%
55.6\%	${ }_{7}^{8,016}$	${ }^{8,035}$	18	${ }^{0.21 \%}$
56.8\%	7,779	${ }^{\text {7,949 }}$	169	2.2\%
58.0\%	7,758	7,938	179	
	7,758 7712 7	7,779	21	0.3\%
61.7\%	7,615	7,758	144	1.9\%
63.0\%	7,589	7,712	123	1.6\%
64.2\%	7,514	7,628	114	
${ }^{65.4 \%}$	7,381	7,583	202	2.7\%
66.7\%	7,381	7,526	146	2.0\%
- 67.9%	7,371	7,416	45	0.6\%
69.1\%	7,305	7,381	75	1.0\%
70.4\%	7,284	7,381	97	1.3\%
71.6\%	7,270	7,371	101	${ }^{1.44 \%}$
- $72.8 .1 \%$	${ }_{7}^{7,250}$	7,348	${ }_{68}$	-
75.3\%	7,242 7,215	7,310 7,304	${ }_{90}^{68}$	1.2\%
76.5\%	7,188	7,294	106	1.5\%
77.8\%	7.181	7.270		2\%
79.0\%	7,141	7,242	101	1.4\%
-	7.094	7,215	${ }^{121}$	1.7\%
81.5\%	7.056	7,188	${ }^{133}$	1.9\%
	6,950	7.1009	\%	2.3\%
84.2\%	6,911	¢,977	67	1.0\%
86.4\%	6.865	6,942	78	1.1\%
87.7\%	6.863	6,911	48	0.7\%
88.9\%	6,801	${ }^{6.865}$	${ }^{63}$	0.9\%
${ }^{90.14 \%}$	6,791	6.824	33	0.5\%
914.4\%	6.519	6,791	272	4.2\%
92.6\% ${ }_{\text {938, }}$	${ }_{6}^{6,307}$	${ }^{6.720}$	413	${ }^{6.6 \% \%}$
93.8\%	6,211	${ }^{6,302}$	91	${ }^{1.5 \%}$
95.19\%	5,630	6,233	603	
${ }^{963 \%}$	5.506	${ }_{5}^{5.678}$	172	3.1\%
998.8\%	4,750	5.038	${ }_{3}^{287}$	-
100.0\%	4,314	4,326	11	0.3\%

$\begin{gathered} \text { Percent } \\ \text { Preedance } \\ \text { Probability } \end{gathered}$	June			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	${ }_{\text {d }}^{\substack{\text { DCR 2015 Without } \\ \text { Proiet }}}$	DCR 2015 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difieferee } \\ \text { (ACRE) } \end{gathered}$	
	of Month	of Month A		
0.0\%	${ }^{(\text {ACRE }} 11,124$	${ }^{(\text {ACRE }} 11,124$		0.0\%
1.2\%	11,124	11.124	0	0.0\%
2.5\%	11,124	11,124	0	0.0\%
3.7\%	${ }^{11,124}$	${ }^{11,124}$	0	0.0\%
4.9\%	11,124	11,124	0	0.0\%
6.2\%	${ }^{11,124}$	11.124	0	0.0\%
7.4% 8.6%	11,124 11124 112	11,124 11124 1	0	0.0\%
8.6\%	11,124 11124 112	11,124 11124 1	0	0.0\%
9.9\%	11,124 11124 112	11,124 11124 1	0	0.0\%
- 11.19%	11,124 11124 112	11,124 11124 112	0	0.0\%
- ${ }_{\text {l }}^{12.3 \%} \times 1.6 \%$	11,124 11,124 1	11,124 11,124	\bigcirc	0.0\%
14.8\%	${ }_{11,124}^{11,124}$	${ }^{111,124}$	0	0.0\%
16.0\%	${ }^{11,124}$	${ }^{11,124}$	0	0.0\%
(17.3\%	${ }^{11,124}$	${ }^{11,124}$	0	0.0\%
19.8\%	11,124	${ }^{11,1,124}$	0	0.0\%
21.0\%	${ }^{11,124}$	${ }^{11,124}$	0	0.0\%
22.2\%	11,124	11,124	0	\%
23.5\%	11,124	11,124	0	0.0\%
24.7\%	11,124	11,124	0	0.0\%
25.9\%	${ }^{11,124}$	11,124	0	0.0\%
27.2\%	${ }^{11,124}$	11,124	0	0.0\%
28.4\%	${ }^{11,124}$	${ }^{11,124}$	0	0.0\%
29.6\%	${ }^{11,124}$	${ }^{11,124}$	0	0.0\%
30.9\%	${ }^{11,124}$	${ }^{11,124}$	0	
32.1\%	11.124	111.124	0	\%
33.3\%	${ }^{11,124}$	${ }^{11,124}$	0	
34.6\%\%	11,124	11,124	0	0.0\%
37.0\%	11,124	11.122	0	0.0\%
边 38.3%	11,124	11,124 11124 1	0	0.0\%
42.0\%	${ }_{1}^{11,114}$	${ }_{111,092}^{11,14}$	-22	${ }^{-0.2 \%}$
43.2\%	11,092	11,077	-15	-0.1\%
${ }^{44.4 \%}$	${ }^{11,046}$	${ }^{11,046}$	0	0.0\%
45.7\%	${ }^{11,023} 11,001$	${ }^{1110,21} 1095$	$\stackrel{-2}{-7}$	-0.1\%
48.1\%	10,987	10,943	44	-0.4\%
49.4\%	10,860	10,860	0	0.0\%
50.6\%	${ }^{10,828}$	10,838	10	0.1\%
51.9\%	10,774	10.829	55	0.5\%
年 53.1 \%	10,772	${ }^{10,828}$	${ }_{5}^{56}$	0.5\%
54.3\%\%	10,755	10,818	64	0.6\%
${ }_{\text {c }}^{55.6 \% \%}$	10,684	${ }^{10,529}$	-156	-1.5\%
${ }_{\text {cken }}^{56.8 \%}$	10.599 10.535 10.5	10.471 10.460	-129	-1.2\%
59.3\%	10,396	10,299	-97	-0.9\%
-60.5\%	10,206 10,157	10,157	${ }^{-48}$	-0.5\%
${ }^{617.7 \%}$		10,119		
${ }^{63.0 \%}$	${ }_{9,974}^{10.19}$	${ }_{9,820}^{9.911}$	- -154	${ }_{-1.5 \%}^{-2.1 \%}$
65.4\%	9,936	${ }_{9,798}$	-139	-1.4\%
66.7\%	9,663	9,736	73	8\%
67.9\%	${ }_{9}^{9,6641}$	${ }_{9,687}^{9,696}$	${ }_{72} 5$	0.6\%
70.4\%	9,483	${ }_{9,603}^{9,607}$	120	1.3\%
71.6\%	9.479	9,447	-32	-0.3\%
72.8\%	9,442	${ }_{9}^{9,327}$	-115	-1.2\%
	${ }_{9,236}^{9,24}$	${ }_{9}^{9,1909}$	-117	-1.2\%
76.5\%	9,060	9,125	65	0.7\%
77.8\%	8.862	9.034	172	1.9\%
79.0\%	8,861	8,795	-66	-0.7\%
80.2\%	${ }^{8.593}$	${ }^{8.740}$	147	1.7\%
-	8.508 8.489	8,731 8.562	${ }_{73}^{223}$	${ }_{0}^{2.6 \% \%}$
84.0\%	${ }_{8,222}^{8}$	${ }_{8,417}^{8.962}$	195	2.4\%
85.2\%	$\begin{array}{r}7,943 \\ 7788 \\ \hline\end{array}$	$\begin{array}{r}7,950 \\ 7778 \\ \hline\end{array}$	7	0.1\%
${ }^{864.4 \%}$	7,788	7,748 7 7	-39	${ }^{-0.5 \%}$
${ }_{88} 88.9 \%$	7,494 7,494	${ }_{7}^{7,691}$	102 197	2.6\%
90.1\%	7,480	7.685	205	2.7\%
91.4\%	7,406	7,655	249	3.4\%
92.6\%	7,404	7,484	81	1.1\%
933.8\%	7,400	7,387 7 7	-13	-0.2\%
${ }_{9} 95.3 \%$	(7,1484	7,048	-98	-1.4\%
97.5\%	6.200	6.477	277	4.5\%
98.\%	6,143	6,326	183	3.0\%
100.0\%	3,461	${ }_{2.623}$	-838	-24.2\%

Figure SW-27-b
American River below Nimbus Reservoir, Monthly Flow

Percent Exceedance	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	Absolue Difference	
Proabability	Monthly Fow（CFS）	Moonthy Fiow（CFSS）	（CFSS）	
				10．5\％
1．2\％\％	＋13，902	${ }^{13,902}$	0	0．0\％
3．7\％	${ }_{5,457}$	6，181	724	13．3\％
4．9\％	5.000	5.000	0	0．0\％
6．2\％	4.905	4.905	0	0．0\％
7．4\％	4，831	4.828	－3	
8．6\％	4，753	4．508	245	
9．9\％	4.224	4，252	－172	\％
11．1\％	4，264	4，091	－173	－4．0\％
${ }^{12.3 \%}$	4，162	4，079	${ }^{-83}$	－2．0\％
13．6\％	4，016	4，012	－5	－0．1\％
14．8\％	${ }_{3,819}$	3，887	69	${ }^{1.8 \%}$
16．0\％	3，651	${ }^{3,788}$	${ }^{136}$	
17．3\％	${ }^{3,554}$	${ }^{3,771}$	217	
18．9\％	3，547	${ }^{3,726}$	179	
19．8\％	－	3，578	191	
21．0\％	${ }_{\text {3，376 }}$	${ }_{3}^{3.574}$	191	
23．5\％	¢，	${ }_{\substack{\text { 3，377 }}}^{\text {3，374 }}$	${ }_{224}$	7．1\％
24．7\％	3，152	3，359	207	6．6\％
25．9\％	3，119	${ }^{3,326}$	207	
27．2\％	3，043	3，319	275	
28．4\％	3，021	3，177	157	
29．6\％	2，982	3，139	157	5．3\％
30．9\％	2，958	3，136	178	6．0\％
32．1\％	2，915	3，087	172	5.9
33．3\％	2，908	${ }^{3}, 086$	178	6.18
34．6\％	2，887	${ }^{3}, 066$	179	6．2\％
35．8\％	2，846	2，997	151	5．3\％
37．0\％	${ }_{2}^{2,838}$	2，934	${ }^{96}$	3．4\％
38．3\％	${ }_{2}^{2,741}$	2，830	${ }^{90}$	3．3\％
39．5\％	${ }^{2}, 730$	${ }^{2,749}$	20	
40．7\％	2，694	2，743	${ }^{48}$	
42．0\％	2，352	－	312	
44．4\％	${ }_{2,303}^{2,003}$	2，528	${ }_{225}^{225}$	9．8\％
45．7\％	2，253	${ }_{2,412}$	159	
46．9\％	2，078	${ }_{2,373}$	296	
48．1\％	1，989	2，265	276	
49．4\％	1，968	2，147	179	${ }^{\text {9．1\％}}$
年 50.19%	1，947	2，087	140	7．2\％
53．1\％	＋1，925	2，063	${ }^{138}$	
54．3\％	1，925	1，957	32	1．7\％
55．\％	1，925	1，925	0	0．0\％
56．8\％	1，925	${ }_{1}^{1,925}$	0	0．0\％
年58．0\％	${ }^{1,925}$	1，925	0	0．0\％
59．3\％	${ }^{1,841}$	1，925	84	4．6\％
60．5\％	1，759	1，925	166	9．5\％
61．7\％	${ }^{1,727}$	1，925	198	11．4\％
－63．0\％	${ }^{1,689}$	${ }^{1,925}$	${ }^{236}$	14．0\％
64．2\％	${ }^{1,683}$	1，847	164	${ }^{\text {9．7\％}}$
	${ }^{1,683}$	1．813	${ }^{130}$	
－66．7\％${ }^{67.9 \%}$	${ }_{1}^{1,683}$	＋1，804	$\begin{array}{r}121 \\ 54 \\ \hline\end{array}$	7．2\％
69．1\％	${ }_{1}^{1,664}$	${ }_{1}^{1,683}$	54 19	1．2\％
70．4\％	1.649	1，683	34	
71．6\％	1，616	1，683	67	
72．1\％	1．599	－1，683	85	5．3\％
75．3\％	${ }_{1}^{1,554}$	${ }_{1}^{1,683}$	${ }_{129} 129$	${ }_{8.3 \%}^{8.2 \%}$
76．5\％	1，521	1，683	162	
77．\％	1.511	1，683	172	11．4\％
79．0\％	1，489	1，610	121	8．1\％
80．2\％	1，460	1，538	78	5．3\％
81．5\％	1，392	${ }^{1,353}$	${ }^{39}$	2．8\％
82．7\％	1，266	1，348	${ }^{83}$	6．5\％
84．0\％	${ }^{1,203}$	$\xrightarrow{1,295}$	91	7．6\％
85．2\％	${ }_{\text {1，123 }}^{1.129}$	＋1，256	${ }_{174}^{133}$	${ }^{11.85 \%}$
－86．4\％	${ }_{891} 994$	${ }^{1,1,168}$	174	
88．9\％	800	${ }_{993}$	${ }_{193}^{206}$	${ }_{\text {24．2\％}}$
90．1\％	800	895	95	11．8\％
914．4\％	800	830	${ }^{30}$	3．8\％
93．8\％	800	800	0	0．0\％
95．19\％	（ $\begin{gathered}800 \\ 530\end{gathered}$	800	0	0．0\％
97．5\％	500	${ }_{612}$	112	22．3\％
98．8\％	500	500	0	0．0\％

December				
Percent Exceedance	${ }^{\text {DCR 2015 W Whthout }}$ Proiet	DCR 2015 With Project	Absolute Difference	
Proabaility	Monthly Fow（CFFS）	Monthy Fiow（CFs）	（CFF）	
				${ }^{6.2 \%}$
1．2\％	16.514	16,514	0	
2．5\％	16，064	16，330	266	
3．7\％	${ }^{15,873}$	15，873		
4．9\％	${ }^{13,816}$	13，811	5	
6．2\％	12，847	12，769	${ }^{78}$	
7．4\％	9，747	9，747	0	0．0\％
8．6\％	${ }_{8}^{8,732}$	${ }_{8}^{8,726}$	－6	－0．1\％
9．9\％	7，304	7，304	0	0．0\％
11．1\％	6，929	6，929	0	0．0\％
${ }^{12.3 \%}$	5，339	6，397	${ }^{1.058}$	19．8\％
13．6\％	4．816	4，935	120	2．5\％
14．8\％	4，755	4．879	124	${ }^{2.6 \%}$
10．0\％	4，199	${ }^{4.806}$	687	
17．5\％	3，981	${ }_{4}^{4,213}$	${ }_{2} 23$	\％
18．5\％\％	3，864	3，862		
19．8\％	3，584	3.660 3555	${ }_{62} 76$	${ }_{1}^{2.18 \%}$
${ }_{22.2 \%}^{21.0 \%}$		${ }_{\text {3，493 }}^{3.585}$	${ }_{409}$	－ 1.83%
23．5\％	2.963	3．025	61	
24．7\％	2.760	2，963	204	
25．9\％	2，618	2．525	－93	
27．2\％	2，361	2，490	129	5．5\％
28．4\％	2，258	2，425	167	
29．6\％	2，197	2，298	101	4．6\％
30．9\％	2，184	${ }^{2,237}$	53	2．4\％
32．1\％	2，168	2，235	67	3．1\％
33．3\％	2，156	2，184	${ }^{28}$	1．3\％
34．6\％	2，118	${ }^{2,182}$	${ }^{63}$	3．0\％
35．8\％	2，057	2,173 2，154	116	5．6\％
37．0\％	2，000	2，154	154	7．7\％
38．3\％	2.000	2，099	${ }_{31}$	4．9\％
39．5\％	2，000	2，031	31	．5\％
40．7\％	2，000	${ }_{2}^{2,000}$		
4．2．\％	2，000	${ }^{2}, 000$	O	
${ }^{44.4 \%}$	2,000 2.000	${ }_{2,000}^{2,000}$	0	0．0\％
45．7\％	2，000	2，000	0	
46．9\％	2.000	2.000	0	
48．1\％	2.000	2.000	O	
49．4\％	2.000	2.000	0	
50．6\％	2，000	2,000	0	
51．9\％	2，000	2，000	0	0．0\％
53．1\％	2,000	2，000	0	
54．3\％	2，000	2，000	0	0．0\％
年55．6\％	2，000	2，000	0	0．0\％
56．8\％	2，000	${ }^{2}, 000$	0	0．0\％
年58．0\％	2.000	${ }^{2}, 000$	0	0．0\％
59．3\％	2.000	2，000	0	0．0\％
60．5\％	2，000	2，000	0	0．0\％
${ }^{611.7 \%}$	2.000	2，000	0	0．0\％
－63．0\％	2.000	2.000	0	0．0\％
－64．2\％${ }^{6.4 .4}$	2，000 2000	2,000 2000	O	0．0\％
－65．4\％	＋1，000	2,000 2000	172	\％
66．7\％	＋1，828	2，000	172	9．4\％
69．1\％	1,750 1.750	1,982 1.920	232 170	${ }_{\text {9，7\％}}^{13.2 \%}$
70．4\％	${ }_{1,723}$	${ }_{1}^{1,884}$	161	9．3\％
71．6\％	1，703	1，875	172	
－ 72.8%	（1，658	$\begin{array}{r}1,750 \\ 1,750 \\ \hline\end{array}$	92	5．5\％
75．3\％	${ }_{1,575}^{1,635}$	1,750 1.750	115 175 182	1\％
76．5\％	1，574	1，750	176	11．2\％
77．8\％	1，529	1，750	221	
79．0\％	1，489	1，750	261	
80．2\％	1，460	1，650	190	13．0\％
81．5\％	1，392	1，353	${ }^{39}$	2．8\％
82．7\％	${ }_{1,323}$	1，348	${ }^{25}$	1．9\％
84．0\％	1，223	1，256	53	4．4\％
－ $8.5 .2 \%$	${ }_{1}^{1,123}$	${ }_{1}^{1,168}$	${ }_{5}^{44}$	${ }^{3.9 \% \%}$
${ }^{86.4 \%}$	${ }_{9}^{1,122}$	${ }_{\text {l }}$	65	${ }^{0.5 \%}$
－ $\begin{aligned} & 87.7 \% \\ & 889 \%\end{aligned}$	${ }_{861}$	${ }_{\text {1，093 }}$	${ }^{65}$	
－${ }^{88.1 \%}$	88	${ }_{830}$	${ }^{132}$	
90．17\％	800	830	${ }^{30}$	3．8\％
92．6\％	800	800	O	0．0\％
93．8\％	8800	880	0	0．0\％
95．1\％	800	800	0	0．0\％
96．3\％	800	800	0	0．0\％
	540		260	
98．8\％ 100．0\％	517 504	517 507	0	0．4\％

${ }^{\text {Probability }} 0$	dil Fow (1)	18000	CFFS)	
1.2\%	17,377	17,377	0	. 0 \%
2.5\%	${ }^{12,880}$	${ }^{12,880}$	0	0.0\%
3.7\%	${ }^{12.078}$			0.0\%
4.9\%	${ }^{11,247}$	111,253	5	0.0\%
7.4\%	11,0954	11.075 10.978	24	0.2\%
8.6\%	9,747	9,747	0	00\%
9.9\%	9,026	9,026	0	\%
11.1\%	${ }_{8}^{8.624}$	${ }_{8} 8,24$	0	\%
12.3\%	7,742	8,006	264	\%
13.6\%	7,578	7,742	164	2.2\%
14.8\%	7,415	7,415	0	0.0\%
16.0\%	7,205	7,205	0	\%
17.3\%	7,068	7,068	0	0.0\%
18.5\%	6,983	6,983	0	0.0\%
19.8\%	6,281	${ }_{6}^{6,274}$	-7	-0.1\%
${ }_{22.2 \%}^{21.0 \%}$	5.438	5.438	0	0.0\%
23.5\%	5,029	5,023	-6	-0.1\%
24.7\%	5,017	5,017	0	0.0\%
25.9\%	${ }_{4}^{4,992}$	${ }_{4}^{4,992}$	0	0.0.0\%
${ }^{28.4 \%}$	${ }_{4}^{4,946}$	${ }^{4,946}$	O	0.0\%
29.6\%	4.757	4,757	0	0.0\%
-30.9\%	4,614	4,614	0	0.0\%
${ }^{32.3 \%}$	${ }_{4,342}^{4,385}$	${ }_{4,314}^{4.344}$	- 28	
34.6\%	4,231	4,231	0	0.0\%
35.8\%	4,107	4,100	-7	-0.2\%
37.0\%	4,100	4,100	0	\%
38.3\%	4,043	4,043	0	0.0\%
39.5\%	3,880	3,881	0	0.0\%
- 40.79%	3,844	3,844	0	0.0\%
42.0\%	3,804	3,804	0	0.0\%
43.2\%	($\begin{aligned} & 3,732 \\ & 3 \\ & 3\end{aligned}$	3,732	0	0.0\%
44.4\%	${ }^{3,280}$	${ }^{3,280}$	0	0.0\%
45.79\%	${ }^{3,231}$	3,224	-6	-0.2\%
48.1\%	${ }_{3,087}$	3,091	3	0.1\%
49.4\%	2,953	2,952	-1	0.0\%
50.6\%	2,952 2,522	2,952	0	0.0\%
${ }^{51.9 \%}$	${ }_{\text {2,562 }}$	${ }_{\text {2,844 }}^{2,518}$	${ }^{282}$	1.0\%
54.3\%	${ }_{2,374}^{2,518}$	${ }_{2,374}^{2,518}$	0	0.0\%
55.6\%	2,197	${ }_{2}^{2,233}$	36	1.6\%
	2,159	2,197	38	8\%
58.3\%	${ }_{\substack{2,1283}}^{2,122}$	${ }_{\substack{2,1122}}^{2,152}$	${ }_{39} 30$	1.1.9\%
60.5\%	2,011	2,083	72	3.6\%
61.7\%	2,006	2.075	68	3.4\%
63.0\%	1,863	2.011	148	7.9\%
64.2% $6.4 .4 \%$	${ }^{1,847}$	${ }^{1,863}$	16	0.8\%/
-65.4\%	1,750	1,750	0	0.0\%
- 66.7%	1,750	1,750	0	0.0\%
67.9\%	1,750	1,750	0	0.0\%
- 70.4% \%	1,750	1,750	0	0.0\%
71.6\%	+1,750	1,750 1,750	0	0.0\%
72.8\%	1,750	1,750	0	0.0\%
74.19\%	1,695	1,660	${ }^{35}$	1\%
76.5\%	1,445	1,445	0	0.0\%
${ }^{76.8 \%}$	1,275	+1,355	80	6.3\%
79.0\%	1,264	1,275	10	0.8\%
-	1,024	+1,264	${ }^{240}$	23.49\%
${ }_{\text {822\% }}$	981	1,2072	276	${ }^{28.2 \%}$
84.0\%	${ }_{886}$	${ }_{886}$	0	0.0\%
85.2\%	866	866	0	0.0\%
${ }^{86.4 \%}$	809	809	0	0.0\%
87.7% 880%	800	800	0	0.0\%
${ }^{88.9 \%}$	800	800	0	0.0\%
${ }^{90.4 \%}$	800	800	0	0.0\%
92.4.4\%	800 800	800 800	0	0.0\%
93.8\%	800	800	0	0.0\%
${ }_{9}^{95.1 \%}$	800	800	0	0.0\%
96.5\% 97.5%	${ }_{401} 800$	800 800	099	0.0.4\%
98.8\%	400	711	311	77.9\%

Probability	Montly Folo（CFFS）	Monthy flow（cFs）	（CFS）	
－${ }_{1}^{0.0 \%}$		5，120 5 5	－89	－
1．25\％	${ }_{5}^{5,1054}$	${ }_{5}$	54	\％
37\％	5000	5000		－1．1\％
49\％	5000	5000		0．0\％
6．2\％	5，000	5，000		0．0\％
7．4\％	5000	5000		
8．6\％		5000	0	0\％
9．9\％	5.000	5.000	0	0．0\％
11．1\％	5,000	5,000	0	0．0\％
12．3\％	5，000	5，000	0	0．0\％
	5，000	4，912		${ }^{-1.8}$
	5，000	4，605		9\％
16．0\％	5，000	4，323	677	－13．5\％
17．3\％	5，000	4，297	－73	14．1\％
18．5\％	5，000	4，232	－71	
19．8\％	5，000	4，229	－791	－15．4\％
222．2\％	${ }_{5}^{5.000}$	${ }_{4,015}^{4,208}$	－－985	
23．5\％	5.000	3，961	－1，039	－20．8\％
24．7\％	5，000	3，953	－1，047	9\％
25．9\％	5，000	3，891	－1，109	－22．2\％
27．2\％	5，000	3，830	170	－23．4\％
28．4\％	4，771	3，796	－975	－20．4\％
29．6\％	4，741	3，788	－953	．1\％
30．9\％	4，701	3，784	917	－19．5\％
32．1\％	4，626	3，762	863	－18．7\％
33．3\％	4．589	3，754	${ }^{835}$	－18．2\％
34．6\％	4．572	3，699	－873	－19．1\％
35．8\％	4，323	3，668	－655	－15．2\％
37．0\％	4，289	${ }^{3.595}$	695	16．2\％
38．3\％	4，252	3，420	${ }_{-732}$	19．6\％
39．5\％	4，180	3，407	－773	18．5\％
40．7\％	4，150	3，403	－788	－18．0\％
42．0\％	4,084	－	－851	－2．0\％
44．4\％	${ }^{4}, 0091$	${ }_{3}$	－837	－20．7\％
45．7\％	3，830	3，081	－748	－19．5\％
46．9\％	3，784	3，067	717	9\％
48．1\％	09	3，034	675	8．2\％
49．4\％	3，690	2，840	851	3．1\％
50．6\％	3，663	2，835	828	6\％
51．9\％	3，459	2，745	－714	－20．6\％
53．1\％	3，369	2，731	639	－19．0\％
54．3\％	3，313	2，697	616	－18．6\％
55．6\％	${ }^{3,303}$	2，634	－669	－20．3\％
56．8\％	3，259	2，630	630	－19．3\％
58．0\％	3，154	2，619	${ }_{5}^{534}$	－16．9\％
59．3\％	3，146	2，575	－571	－18．2\％
60．5\％	3，106	${ }^{2,546}$	560	18．0\％
661．7\％	3，104	2，521	－583	－18．8\％
	3，096	${ }_{2}^{2.516}$	－579	－18．7\％
${ }^{64.2 \%}$	${ }^{3.034}$	2，465	－569	－18．7\％
${ }_{66.76 \%}$	${ }_{2}^{2,975}$	2，454	－462	－15．8\％
${ }^{66.9 \%}$	${ }_{2,840}^{2,874}$	2，404	${ }_{-436}$	－15．4\％
69．1\％	${ }_{2}^{2,835}$	2.402	433	－15．3\％
70．4\％	2，745	2.401		迆
772．8\％	2，729	2,396 2388 2	－333	－12．2\％
74．1\％	${ }_{2,685}^{2,097}$		－329	－120\％
75．3\％	${ }_{2,619}$	${ }_{2,362}$	－257	
76．5\％	2.611	2.352	－259	－9．9\％
77．8\％	2.546	2，000	－546	－21．5\％
79．0\％	2，521	1，999	522	－20．7\％
80．2\％	2，516	1，997	520	－20．6\％
81．5\％	2，483	${ }^{1,943}$	540	21．8\％
82．7\％	${ }^{2,408}$	${ }^{1,843}$	565	－23．5\％
84．0\％	2，367	${ }^{1,841}$	－526	${ }^{-22.2 \%}$
	2，350	${ }_{1,838}$	－512	21．8\％
86．4\％\％	2，349	1，750	－599	－2．5\％
887．9\％	${ }_{2}^{2,344}$	＋1，598	－746	－31．8\％
80．1\％	$\xrightarrow{2,943}$	（1，516	－825	${ }_{-24.10}$
91．4\％	1，968	${ }_{1,516}$	452	23．0\％
92．6\％	1，775	1，507	－268	15．1\％
93．8\％	${ }^{1.522}$	${ }_{1.425}$	－97	－6．4\％
95．1\％	944	1，405	461	48．8\％
99．3\％	921	1，218	297	32．3\％
98．8\％	${ }_{445}$	${ }_{771}^{853}$	330	54．3\％

August				
Percent Exceedance	${ }^{\text {DCR 2015 W Whthout }}$ Proiet	DCR 2015 With Project	Absolute Difference	
Probability	Monthy fow（CFS）	Monthy Flow（cFs）	（CFS）	
0．0\％	4，782	82		0．0\％
1．2\％	4，379	4，379	0	
2．5\％	4，346	4，346	0	
3．7\％	4，048	4，048	0	
4．9\％	4，032	4，032	0	
6．2\％	3，957	3，957	0	
7．4\％	3，884	3，884	0	0．0\％
8．6\％	3，884	3，884	0	
9．9\％	${ }^{3.818}$	${ }^{3.818}$	0	0．0\％
11．1\％	${ }^{3.812}$	${ }_{3}^{3.812}$	0	0．0\％
${ }^{12.3 \%}$	${ }_{3}^{3.803}$	${ }_{\text {3，803 }}$	0	0．0\％
13．6\％	${ }^{3,742}$	3，787	45	1．2\％
14．8\％	3，637	${ }^{3,742}$	105	2．9\％\％
10．0\％	${ }^{3.610}$	3，637	${ }_{21} 27$	
17．5\％	${ }^{3,589}$	${ }^{3,610}$	${ }^{21}$	
18．5\％\％	－	3，548	86	
19．8\％	3，452	${ }^{3,126}$	S36	
${ }^{2} 1.0 \%$	3，184	${ }^{3,048}$	－63	－2．0\％
23．5\％	2.804	2.976	172	
24．7\％	2.588	2，950	362	
25．9\％	2，559	2，929	369	
27．2\％	2，457	2，905	448	
28．4\％	2，387	2，850	462	
29．6\％	2，383	2，700	318	13．3\％
30．9\％	2，367	${ }_{2}^{2,628}$	262	11．7\％
32．1\％	2，352	2，581	${ }^{229}$	
33．3\％	2，349	2，487	${ }^{138}$	5．9\％
34．6\％	${ }_{2}^{2,348}$	${ }^{2,485}$	${ }^{137}$	${ }_{\text {5．8\％}}$
35．7\％	${ }^{2,298}$	${ }_{2}^{2,471}$	${ }^{173}$	7．5\％
37．0\％	${ }_{2}^{2,292}$	2，324	${ }^{33}$	${ }^{1.4 \%}$
	2，021	2，304	283	－
39．5\％	2，020	2，000	－20	－1．0\％
40．7\％	${ }^{2}, 015$	2，000	－15	
4．2．\％	${ }^{2}, 008$	${ }^{2}, 0000$	－8	
－44．4\％	1,949 1 1.999	2,000 2.000	51	2．6\％
45．7\％	1，934	2，000	66	
46．9\％	1，914	2.000	86	
48．1\％	1，901	2，000	99	
49．4\％	1，897	1，992	94	
50．6\％	1，880	1，982	102	
51．9\％	${ }^{1,824}$	1，975	151	\％
53．1\％	1，750	1，968	218	12．5\％
54．3\％	1，750	1，960	210	\％
55．6\％	1，750	1，939	189	10．8\％
56．8\％	1，750	1，939	189	${ }^{10.8 \%}$
年58．0\％	1，750	${ }^{1,933}$	183	10．5\％
59．3\％	1，750	${ }_{1,825}$	75	4．3\％
60．5\％	1，750	1，809	59	3．4\％
${ }^{611.7 \%}$	1，750	1，797	47	${ }^{2.7 \%}$
63．0\％	＋1750	1，772	22	1．2\％
－64．2\％${ }^{6.4 .4}$	（1，750	（1，770	${ }_{12}^{20}$	${ }^{1.2 \%}$
－65．4\％	（1，750	＋1，762	12	\％\％
－667．9\％	＋1，750	＋1，750		0．0\％\％
69．1\％	i，750	1,750 1.750		${ }^{0.0 \% \%}$
70．4\％	1，750	1，750	0	0．0\％
71．6\％	1，750	1，750	0	0．0\％
－ 7 74．1\％	1,750 1,736	＋1，500	${ }_{14}$	0．0\％
75．3\％	${ }_{1}^{1,690}$	${ }_{1}^{1,691}$	1	\％
76．5\％	1，659	1，611	49	－2．9\％
77．8\％	1，586	1.608	21	
79．0\％	${ }^{1,522}$	${ }^{1,523}$	2	
80．2\％	${ }^{1,176}$	${ }^{1,516}$	341	29．0\％
${ }^{81.5 \%}$	1，146	1，435	290	25．3\％
－ 82.7%	886	1，430	544	年．4．4\％
84．0\％	848	1，409	561	${ }_{7}^{66.17 \%}$
－ $8.5 .2 \%$	809	1，394	585	－
${ }^{86.4 \%}$ 87．7\％	800	1，109	309	－38．7\％
－ $\begin{aligned} & 87.7 \% \\ & 889 \%\end{aligned}$	800	1，108	308	
－${ }^{88.1 \%}$	800	${ }_{1}^{1,095}$	255	${ }_{318 \%}^{36.3 \%}$
9014\％	800	1，055	225	－ 27.7 \％
92．6\％	800	1，022	221	
932．8\％	728	${ }_{997}^{1.007}$	201	${ }_{\text {38．1\％}}^{25.1 \%}$
95．1\％	703	998	215	30．5\％
96．3\％	552	894	343	1\％
	505	364	359	
98．8\％ 100．\％	459 378	800	341 128	74．4\％ 33.9%

Figure SW-28-b
American River at Watt Avenue, Monthly Flow

$\xlongequal{\text { Probability }}$	17912	17912	0	
${ }^{0.2 \%}$	${ }_{17,277}^{11,97}$	${ }^{17,912}$	0	0.0\%
2.5\%	12.596	12.596	0	0.0\%
3.7\%	11,965	${ }^{11,965}$	0	0.0\%
4.9\%	11,110	11,115	5	0.0\%
${ }^{6.2 \%}$	10.940	10,940	0	
\%	0,692	0,655	${ }^{24}$	0.2\%
${ }_{\text {¢ }}^{\text {9.9\% }}$	${ }_{\text {¢, }}^{\substack{\text { 9,657 }}}$	${ }_{\text {8,837 }}^{9.605}$	0	0.0\%
11.1\%	8.514	8.514	0	0.0\%
12.3\%	${ }^{7}, 582$	7,954	372	4.9\%
13.6\%	${ }_{7}^{7,523}$	7.582	59	0.8\%
14.8\%	7,274	7,274	0	0.0\%
16.0\%	7,038	7,038	0	0.0\%
17.3\%	${ }_{6}^{6,975}$	${ }_{6}^{6,975}$	0	0.0\%
18.5\%	6,852	6,852	0	0.0\%
19.8\%	6,188	6,181	-7	-0.1\%
21.0\%	5,289	5.289	0	0.0\%
22.2\%	4.879	4,879	0	0.0\%
24.7\%	4,874	4,875	1	0.0\%
25.9\%	${ }_{4}^{4.855}$	4.865	$\stackrel{-6}{ }$	
27.2\%	4.852	4,852	0	0.0\%
28.4\%	4,649	4,644	0	
30.9\%	${ }_{4,501}^{4,622}$	${ }_{4,501}^{4,622}$	0	0.
32.1\%	4.325	4,265	60	-1.4\%
33.3\%	4,263	4,254	-9	
34.6\%	4,164	4,164	0	
- 3 3.8.0\%	4,037	4.034	- 3	-0.1\%
38.3\%	4,003 3,969	4,003	0	
39.5\%	- 3,795	${ }_{3,794}^{3,991}$	${ }_{-1}$	0.0\%
40.7\%	3,775	3,775	0	0.0\%
42.0\%	3,730	3,730	0	0.0\%
43.2\%	- 3.653	3,650	4	-0.1\%
44.7\%\%	3,153	3,147	-6	-0.2\%
46.79\%	3,144	3,144	0	0.0\%
${ }^{46.9 \%}$	3,070	3,070	0	0.0\%
49.4\%	${ }_{2,886}^{2,992}$	${ }_{2}^{2,995}$	3	0.0\%
50.6\%	2,884	${ }_{2,883}^{2,806}$	-1	0.0\%
51.9\%	${ }_{2}^{2,487}$	2,771	283	114.4\%
53.1\%	¢	¢, ${ }_{2}^{2,362}$	5	0.0\%
55.6\%	2,098	2,171	73	${ }_{3.5 \%}$
56.8\%	${ }_{2}^{2,063}$	2,098	${ }^{35}$	1.7\%
58.3\%	2,062	2,062	0	
59.3\%	1,962	2,056	94	4.8\%
6.5\%	1,946	2,020	73	3.8\%
6.7.7\%	1,903	1,961	58	3.0\%
64.2\%	1,803	1,903	100	5.5\%
64.2\%	1,790	1,802	12	0.7\%
6.4.7\%	1,735	1,738	3	0.2\%
66.7\% 67.9%	1,709	1,709	0	0.0\%
${ }^{67.9 \%}$	1,698	1,698	0	0.0\%
- 70.4%	- ${ }_{1}^{1,692}$	1,691	-1	-0.1\%
71.6\%	${ }^{1,683}$	1.683	0	0.0\%
72.8\%	1,680	1.680	0	0.0\%
74.1\%	1,644 1,385 1	1,594 1,385 1	${ }^{50}$	-3.0\%
76.5\%	${ }_{1}^{1,385}$	+1,385	0	0.0\%
77.5\%	${ }_{\text {1,385 }}^{1,212}$	+1,385	0	0.0\%
79.0\%	${ }_{1,206}^{1,212}$	${ }_{1}^{1,212}$	${ }_{6} 8$	0.5\%
80.2\%	962	1,206	244	25.4\%
81.5\%	919	1,201	282	30.7\%
88.0\%	${ }_{826}^{862}$	${ }_{826}^{1,009}$	${ }^{147}$	- ${ }_{\text {0.0\% }}^{17.1 \%}$
85.2\%	808	807	-1	-0.1\%
88.7\%	749	749	0	0.0\%
87.7\%	${ }^{748}$	${ }^{748}$	0	0.0\%
80.9\%	${ }^{742}$	742	1	0.1\%
90.4\%	741	741	0	0.1\%
991.4\%	7740	770	1	0.1\%
93.8\%	740	740	0	0.0\%
${ }^{95.1 \%}$	${ }_{737}^{737}$	740 737	3	0.4\%
997.5\%	${ }_{3}^{737}$	${ }_{736} 73$	0	0.0\%
98.8\%	${ }_{357}^{357}$	736 672	315	${ }_{\text {88.2\% }}^{10.0 \%}$
			16	4.6\%

$\xrightarrow{\text { Probability }}$	5	$5{ }_{5}$	（CFS）	
－1．2\％	${ }_{5,077}^{5.0}$	${ }_{4,937}^{5,970}$	${ }_{-140}$	${ }_{-2.8 \%}^{0.0 \%}$
2．5\％	4，948	4，937	－11	－0．2\％
3．7\％	4，937	4，937	0	0．0\％
4．9\％	4，9337	${ }_{4}^{4.937}$	${ }_{-1}^{0}$	0．0\％
${ }_{7.4 \%}^{6.2 \%}$	4，9937	${ }_{4,934}^{4,936}$	－3	－0．1\％
8．6\％	4，937	4.931		－0．1\％
9．9\％	4，937	4，921	16	－0．3\％
11．1\％	4，937	4，918	19	－0．4\％
12．3\％	4，936	4，915	${ }^{21}$	－0．4\％
13．6\％	4，935	4，842	－94	－1．9\％
14．8\％	4，934	4．514	420	8．5\％
16．0\％	4，933	4，231	－703	14．2\％
17．3\％	4，933	4，196	737	－14．9\％
18．5\％	4，932	4，168	－763	15．5\％
19．8\％	4，931	4，150	－781	－15．8\％
21．0\％	4，930	4，137	－793	－16．1\％
${ }^{22.2 \%}$	4，924	${ }^{3,948}$	－976	19．8\％
${ }^{23.5 \%}$	4，921	3，892	1，029	20．9\％
${ }^{224.7 \%}$	4，921	${ }^{3.888}$	－1，032	－21．0\％
2272\％	4，918	3，824	－1，093	－22．2\％
${ }_{\text {28．4\％}}^{22.72 \%}$	${ }_{4}^{4,913}$	3,733 3 3	－1，${ }^{-988}$	仿
29．6\％	${ }_{4,678}^{4,713}$	－	－969	－20．7\％
30．9\％	4，622	3，690	－931	－20．2\％
32．1\％	4，534	3，671	－863	19．0\％
33．3\％	4．526	3，666	861	19．0\％
34．6\％	4，505	3，638	－867	19．2\％
年3．8\％	4，217	3，584	633	5．0\％
永．0\％	4，196	${ }^{3,532}$	664	15．8\％
38．5\％	4，176	3，331	845	－20．2\％
30．7\％	4，124	${ }^{3,323}$	800	－19．4\％
42．7．0\％	4，080	${ }^{3,323}$	－757	－18．5\％
42．2\％${ }^{43.2 \%}$	4，016	3，148	－869	－21．6\％
－${ }_{\text {44．4\％}}^{43.2 \%}$	${ }^{3,946}$	3，114	${ }^{-832}$	－21．1\％
44．7\％	${ }_{3,818}$	3，035	－783	－20．5\％
46．9\％	3，709	3，020	－688	－18．6\％
${ }^{46.9 \%}$	3，666	2，987	－678	－18．5\％
49．4\％	3,620	2，920	－700	－19．3\％
50．6\％	3，599	${ }_{2}^{2,754}$	－845	－23．5\％
55．9\％	－${ }_{\text {3，583 }}$	2，740	－843	－23．5\％
55．1\％	3，380	${ }_{2}^{2,656}$	－724	－21．4\％
54．3\％	${ }_{\substack{3,318 \\ 3238}}$	${ }_{2,595}^{2,648}$	－644	－
55．6\％	3，235	${ }_{2,573}$	－662	－20．5\％
${ }^{55.8 \%}$	3，184	2，566	618	－19．4\％
年．0\％\％	3，083	2，545	${ }_{5} 58$	
590．5\％	3，069		－567	－18．5\％
661．7\％	3，048	2，446 2428 1	－603	－19．8\％
63．0\％	3，021	2，402	－619	－20．5\％
64．2\％	2，920	${ }_{2,402}$	－518	年7\％
65．4\％	2，830	2，369	－461	－16．3\％
66．7\％	2,811	2，363	448	－15．9\％
67．9\％	2，754	2，335	420	－15．2\％
69．9\％	2，740	${ }_{2,312}^{2,312}$	408	－14．9\％
71．6\％	2，648	2，312	－336	－12．7\％
${ }_{72} 71.8 \%$	${ }_{2}^{2,638}$	2，311	${ }^{326}$	－12．46
74．1\％	${ }_{2}^{2.612}$	2，309	－304	－11．6\％
75．3\％	${ }_{2}^{2,595}$	${ }^{2,296}$	－299	－11．5\％
76．5\％	${ }_{2}^{2,552}$	${ }^{2,290}$	－202	年这\％
${ }_{77}^{76.8 \%}$	${ }_{2}^{2,545}$	${ }_{1033}^{2,279}$	－513	－10．5\％
79．0\％	${ }_{2}^{2.428}$	${ }_{1}^{1933}$	－	－20．0．6
80．2\％	2.414	${ }_{1}^{1,920}$	－94	－20．5\％
81．5\％	${ }^{2}, 402$	${ }^{1,878}$	． 524	－21．8\％
	2，335	1，787	－554	23．7\％
885．2\％	2,304 2091 2029	1,777 1 1775	－526	－22．9\％
86．4\％	${ }_{2,290}$	${ }_{1,683}$	608	－26．5\％
87．7\％	${ }_{2} 2,289$	1，534	－755	－33．0\％
88．9\％	2，285	${ }^{1,462}$	－823	－36．0\％
90．1\％	1，932	1，456	476	－24．6\％
91．4\％	1，897	1，455	442	23．3\％
92．6\％	1，714	${ }^{1,449}$	265	15．5\％
93．8\％	${ }^{1.461}$	${ }_{1,370}$	－90	${ }^{-6.2 \%}$
${ }_{96.3 \%}^{95.3 \%}$	892	${ }_{1,348}$	456	51．1\％
99．5\％	${ }_{8}^{864}$	${ }_{\text {l }}^{1}$	${ }_{3}^{300}$	34．7\％
98．8\％	${ }_{369}^{505}$	${ }_{722}$	${ }_{353}^{281}$	${ }_{\text {c }}^{5557 \%}$
100．0\％		384	63	19．6\％

August				
Percent Exceedance	$\begin{aligned} & \text { DCR 2015.5 Whthout } \\ & \text { Proiect } \end{aligned}$	DCR 2015 With Project	Absolute Difference	
Probability	Montly Fow（CFFS）	Monthy Flow（CFFS）	（CFS）	
0．0\％	85	885		0．0\％
1．2\％	4，287	4，287		
2．5\％	4，26			
3．7\％	3，964	3，964	0	
4．9\％	3，961	3，961	0	
7．4\％	${ }_{3,813}$	${ }_{3} 813$	0	
8．6\％	${ }_{3,811}$	3,811	0	
9．9\％	${ }_{3,746}$	${ }_{3,746}$	0	
11．1\％	3，742	3.742	0	0．0\％
123\％	3，734	3，734	0	0．0\％
13．6\％	3，671	3，718	47	1．3\％
14．8\％	3，565	3，671	107	
16．0\％	3，540	3，565	24	
17．3\％	${ }^{3.524}$	3，540	16	
18．5\％	3，392	3，480	89	2．6\％
19．8\％	3，384	3，057	${ }^{327}$	－9．6\％
21．0\％	3.031 2800	2.979 2，959	－52	－1．7\％
${ }^{22.2 \%}$	${ }_{2}^{2,800}$	2，959	158	
2．45\％	${ }_{2}$	${ }_{2876}$	\％ 79	
24．9\％	${ }_{2,482}^{2,497}$	${ }_{2,853}^{2,06}$	372	15．0\％
27．2\％	2,377	2,835	457	19．2\％
28．4\％	2，308	${ }^{2,781}$	${ }_{3}^{432}$	20．5\％
29．6\％	${ }^{2,292}$	${ }_{2}^{2,623}$	${ }^{332}$	11.
30．9\％	2，291	2，557	265	11．6\％
32．1\％	${ }^{2,266}$	2，504	238	10．5\％
333\％	2，261	2，412	151	6．7\％
34．6\％	${ }^{2,256}$	${ }^{2}, 404$	148	6．5\％
35．8\％	2，227	${ }_{2}^{2,386}$	159	7．1\％
37．0\％	${ }^{2,216}$	${ }^{2,247}$	30	${ }^{1.45 \%}$
38．3\％	1，931	2，225	294	15．2\％
39．5\％	1，930	1，929	－1	
${ }^{40.70 \%}$	＋1，929	1，918	－11	
4．2．\％	1，927	1，917	－11	
44．4\％	${ }_{1}^{1,873}$	${ }_{1}^{1,916}$	43	${ }^{0.0 .6 \%}$
45．7\％	${ }_{1,865}^{1,87}$	${ }_{1,915}$	50	2．7\％
46．9\％	1，823	1，912	90	\％
48．1\％	${ }^{1.819}$	1，909	89	
49．4\％	${ }^{1,806}$	1，909	103	
50．6\％	1，788	1.907	118	\％
51．9\％	1，736	1，906	170	9．8\％
53．19\％	1，677	1．887	209	12．5\％
54．3\％	1，668	${ }^{1.868}$	200	12．0\％
55．6\％	1.666	1，849	182	10．9\％
56．8\％	${ }^{1,665}$	${ }^{1,848}$	182	11．0\％
年58．0\％	${ }^{1,665}$	${ }^{1,842}$	177	10．6\％
59．3\％	1，662	1，740	78	4．7\％
60．5\％	1，661	1，734	72	4．3\％
${ }^{611.7 \%}$	1，661	1，708	47	2．8\％
63．0\％	1．659	1，706	47	2．8\％
－64．2\％${ }^{6.4 .4}$	＋1，659	${ }_{1}^{1,685}$	${ }_{27}^{43}$	迆
${ }_{6}^{65.7 \%}$	＋1，659	${ }_{\substack{1,685 \\ 1.682}}^{\substack{1,062}}$	${ }_{23}^{27}$	1．4\％\％
67．9\％	${ }_{1}^{1,659}$		21	1．3\％
69．1\％	1，659	1.671	12	0．7\％
70．4\％	＋1，659	－1．671	${ }_{11}^{12}$	0．7\％
7．5．6\％		${ }^{1}$	11	
74．1\％	${ }_{1}^{1,657}$	${ }_{1}^{1,659}$	1	0．1\％
75．3\％	1，615	${ }_{1,623}$	8	0．5\％
76．5\％	${ }^{1,591}$	1，540	51	3．2\％
77．8\％	${ }^{1,521}$	1．539	18	1．2\％
79．0\％	1，461	1，459	－2	－．2\％
80．2\％	1，086	1，455	369	34．0\％
81．5\％	1，061	${ }^{1,372}$	310	29．2\％
82．7\％	818	${ }_{1,365}$	547	66．9\％
84．0\％	773	${ }_{1,345}$	572	74．0\％
85．2\％	${ }_{7} 746$	1，319	573	${ }_{\text {c }}^{76.9 \%}$
86．4\％	${ }_{7}^{746}$	1.049	303	40．6\％
－ $\begin{aligned} & 87.7 \% \\ & 889 \%\end{aligned}$	${ }_{732}$	1,046	301	${ }^{40.4 \%}$
－${ }^{88.9 \%}$	${ }_{732}$	1，010	279	${ }^{38.15 \%}$
90．110\％	${ }^{733}$	991	265	${ }_{343 \%}$
9，4．4\％	${ }_{7} 723$	971	248	${ }^{3} \times 2.7 \%$
932．8\％	${ }_{682}$	${ }_{936}$	${ }_{254}^{232}$	${ }^{327.2 \%}$
95．1\％	659	859	200	30．4\％
96．3\％	505	829	324	64．3\％
5\％	429	804	75	
98．8\％	${ }_{310}^{367}$	${ }_{462} 7$	380 152	－ $10.3 .5 \%$

		Seplember		
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	${ }^{\text {DCR 2015 }}$ Proithout	DCR 2015 With Project	Absolute Difference	
Probability	Monthly Fow（ 4 （CFS）	Monthly Fow（CFS）	（CFF5）	Difference（\％）
	4，935	${ }^{4.885}$	－50	－
${ }^{1.2 \%}$	4,929 4846	4,762 4.538	－167	
3．7\％	4，831	4.452	－379	78\％
4．9\％	4，783	4，361	－422	
6．2\％	4．568	4，308	－260	－5．7\％
7．4\％		4，195	292	
8．6\％	4.475	4，183	－292	－6．5\％
9．9\％	4，425	3，963	－461	－10．4\％
1．12\％	4，395	${ }^{3.668}$	－27	－16．5\％
12．3\％	4，329	3，659	\％	
13．48\％	4，274	3，631	${ }_{-738}$	退
\％	4，202	${ }_{\text {jo4，}}$	星 95	
117．3\％	－	${ }_{3} 1296$	－648	168180
18．5\％	－	3122	${ }_{-6} 680$	退
19．8\％	3，763	3，099	－664	－17．6\％
21．0\％	3，348	2.994	－354	－10．6\％
	3，151	2.830	－321	－10．2\％
23．5\％	3，122	2499	－624	－20．0
24．7\％	3．017	2.498	－519	－17．2\％
25．9\％	2，948	2,487	－461	－15．6\％
27．2\％	2，797	2，449	${ }^{-348}$	－12．4\％
28．4\％	2，990	2.415	－3715	${ }^{-13.4 \%}$
29．6\％	2，671	${ }_{2}^{2} 406$	－271	－10．1\％
30．9\％	2，619	2，405	－214	－8．2\％
32．1\％	${ }_{2}^{2.510}$	${ }_{2}^{2,385}$	－125	－5．0\％
33．3\％	2，508	2，384	－124	
34．6\％	2，410	${ }^{2,297}$	－14	
	${ }_{2355}^{2,406}$	${ }_{\substack{2,246}}^{2,285}$	－139	－5．8\％
38．3\％	2，379	${ }_{2,245}$	－133	－5．6\％
39．5\％	2,276	2，145	－32	－5．8\％
40．7\％	2，145	2，137	－8	－0．4\％
42．0\％	2，124	1，889	${ }^{235}$	
43．2\％	2，123	1．889	－235	－11．18
44．4\％	1，888	1，889	0	0．0\％
45．7\％	1．884	1，886	2	0．1\％
46．9\％	1，804	${ }^{1,835}$	32	1．8\％
48．1\％	1，745	1，712	${ }^{33}$	－1．9\％
49．4\％	${ }^{1,665}$	${ }^{1,675}$	9	0．6\％
50．6\％	${ }^{1,621}$	${ }^{1,583}$	${ }^{38}$	2．4\％
51．9\％	${ }^{1.554}$	${ }^{1,583}$	－1	0．0\％
53．1\％	${ }^{1,523}$	${ }^{1,583}$	60	3．9\％
54．3\％	1，469	1，579	110	7．5\％
55．6\％	1，469	1，578	109	7.4%
56．8\％	1，4699	${ }_{1}^{1,575}$	106	${ }_{7}^{7.3 \%}$
${ }^{50.0 \%}$	1，4699	${ }^{1} 1.575$	106	7．2\％
60．5\％	1，469	${ }_{1,573}$	105	
61．7\％	1，468	1，569	100	
63．0\％	1，467	1，550	83	5．6\％
64．2\％	1，467	10	${ }_{4}$	3．0\％
65．4\％	1，464	1，501	${ }^{38}$	
66．7\％ 67.9%	${ }_{1}^{1,463}$	${ }^{1,469}$	5	0．4\％
69．1\％	${ }_{1,459}^{1,469}$	${ }_{1,468}^{1,468}$	10	0．7\％
70．4\％	1，458	1，468	10	0．7\％
71．6\％	1，445	1，466	21	1．5\％
72．8\％	1，407	1，453	47	3．3\％
74．1\％	1，245	${ }^{1,446}$	201	${ }^{16.2 \%}$
75．3\％	1，193	${ }^{1,445}$	252	21．1\％
76．5\％	${ }^{1,1116}$	${ }_{1}^{1.425}$	308 324	
77．8\％	${ }^{1} 1.061$	－	${ }_{224}^{324}$	5\％
79．0\％	1，041	${ }_{1}^{1,311}$	${ }_{281}^{270}$	${ }_{28}^{25.9 \%}$
－${ }_{\text {80，}}$	${ }_{831}$	1，261	${ }_{393}^{281}$	${ }_{473 \%}^{28.7 \%}$
82．7\％	755	＋1，201	445	9．0\％
84．0\％	${ }_{7} 77$	${ }^{1,1186}$	438	58．6\％
－ 85.20	747	，1，123	335	\％
${ }_{877 \%}$	747	${ }_{918}$	71	
88．9\％	747	850	104	13．9\％
90．1\％	747	834	${ }^{87}$	
91．4\％	746	828	82	\％
92．6\％	736	770	35	
93．8\％	${ }^{634}$	745	111	17．5\％
95．1\％	513	775	${ }^{232}$	45．1\％
96．3\％	503	${ }^{743}$	239	47．9\％
97．5\％	374	742	369	${ }^{98.7 \%}$
988．8\％ 1000%	${ }_{323}^{329}$	626 352	${ }^{296}$	${ }_{9}^{89.9 \%}$

Figure SW-29-b
American River at H Street, Monthly Flow

Table SW-29-b

December				
Percent Exceedance	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	Absolute Difference	
Probability	Montly Fow (CFS)	Monthly Fow (CFS)	(CF5)	
0.0\%	19,126	${ }^{20,319}$	1,193	6.2\%
1.2\%	${ }^{16,284}$	16,284	0	0.0\%
2.5\%		${ }^{10,272}$	${ }^{260}$	
3.7\%	51,009	15,5925	${ }^{14}$	
4.9\%	${ }^{15,726}$	${ }^{13,220}$	${ }^{-6}$	
6.2\%	${ }^{12,5124}$	12,545	9090	
7.4\%\%	${ }_{8} 9.580$	${ }_{8,566}$	-14	
9.9\%\%	${ }_{7} \mathbf{7} 108$	71002	-6	
11.1\%	${ }_{6,749}$	${ }_{6,734}$	${ }_{-14}$	-0.2\%
12.3\%	5,241	6,299	1,057	20.
13.6\%	4,660	4.775	116	2.5\%
14.8\%	4,595	4,723	128	2.8\%
16.0\%	3,990	4,653	663	16.6\%
17.3\%	${ }^{3,828}$	4,080	${ }^{253}$	6.6\%
18.5\%	3,636	3,633	-2	.1\%
19.8\%	3,407	3,463	56	1.6\%
21.0\%	${ }^{3.246}$	${ }^{3,378}$	${ }^{132}$	
${ }^{22.2 \%}$	2,881	${ }^{3,246}$	${ }^{365}$	
-23.5\%	${ }_{2}^{2,729}$	${ }_{2}^{2,822}$	${ }^{93}$	
25.9\%	${ }_{2,448}^{2.465}$	${ }_{2,376}$	-72	${ }_{-2.9 \%}$
27.2\%	2,149	2,328	179	8.3\%
28.4\%	2,069	2,327	257	
29.6\%	2.003	2,143	139	6.9\%
30.9\%	2,000	2,032	32	1.6\%
32.1\%	2.000	2.000	0	0.0\%
33.3\%	2.000	2,000	0	
34.6\%	1,975	2,000	25	1.3\%
33.8\%	1,959	2,000	41	2.1\%
37.0\%	1,958	2,000	${ }^{42}$	2.2\%
38.3\%	${ }^{1,933}$	${ }^{1,994}$	61	3.2\%
39.5\%	1,932	${ }^{1,933}$	1	0.0\%
40.7\%	1,899	${ }^{1,933}$	${ }^{34}$	1.8\%
42.0\%	1,885	1,900	14	0.8\%
43.2\%	${ }^{1,8884}$	${ }^{1,884}$	\%	
44.4.9	${ }^{1,877}$	1,884	7	0.4\%
45.7\%	${ }^{1,874}$	${ }^{1,876}$	2	0.1\%
46.9\%	${ }^{1,872}$	${ }^{1,873}$,	
48.1\%	${ }_{1}^{1.863}$	${ }_{1}^{1,871}$	8	0.4\%
50.6\%	1.859	1.864	4	
51.9\%	1,857	1,860	3	
53.1\%	1,857	${ }^{1.860}$	3	
54.3\%	1,856	1,858	3	0.1\%
55.6\%	1,848	1,857	10	5\%
56.8\%	${ }^{1,841}$	${ }^{1,855}$	14	8\%
58.0\%	1,840	1,855	15	0.8\%
59.3\%	1.838	${ }^{1,847}$	9	0.5\%
60.5\%	1,830	${ }^{1,844}$	14	0.7\%
61.7\%	1,829	1,842	13	0.7\%
63.0\%	${ }_{1,826}$	${ }^{1,832}$	6	0.3\%
64.2\%	1,817	${ }^{1,829}$	12	\%
-65.4\%	- ${ }_{1}^{1.813}$	(1,828	${ }^{16}$	\%
${ }^{66.77 \%}$	1,674	${ }^{1,818}$	144	\%
67.9\%	1,663	${ }_{1,813}^{1,787}$	149	9.0\%
69.1\%	-1,623	1,787 1,765 $\substack{1,785 \\ \hline}$	${ }^{165}$	${ }^{13.23 \%}$
71.6\%	${ }_{1}^{1.553}$	${ }_{1}^{1,712}$	${ }_{175}^{208}$	11.4\%
72.8\%	1,532	1.641	108	
74.1\%	1,515	1.629	115	
75.3\%	${ }^{1,428}$	1.628	99	,0\%
76.5\%	1,421	1,619	98	
77.8\%	1,381	1.595	214	15.5\%
79.0\% 80.2%	1,360	1,584	${ }^{223}$	- ${ }^{16.46 \%}$
-	1,313 1,285	1,504	191	- ${ }_{\text {14.2\% }}$
82.7\%	${ }_{1}^{1,278}$	${ }_{1}^{1,203}$	-76	-5.9\%
84.0\%	1,057	1,106	49	4.6\%
85.2\%	1.054	1,089	${ }^{34}$	3.3\%
86.4\%	1,011	${ }^{1,013}$	3	\%
87.7\%	914	${ }^{1} .0005$	${ }^{92}$	10.0\%
-88.9\%	794	913	${ }^{120}$	${ }^{\text {9.2\% }}$
91.4\%	711	753	42	5.9\%
92.6\%	704	723	18	2.6\%
93.8\%	${ }_{689} 68$	704 689	15 	${ }_{\text {a }}^{\text {2.2\% }}$
${ }_{96.3 \%}$	680	673	${ }_{-7}$	-1.1\%
97.5\%	500	651	151	
98.8\% 100.0\%	500 500	500 500	\bigcirc	${ }^{0.0 \% \%}$

Table SW-29-b

Apprl				
Percent Exceedance	${ }^{\text {DCR 2015 W Whthout }}$ Proiet	DCR 2015 With Project	Absolute Difference	
Probability	Monthly Fow (CFS)	Monthly Flow (cFs)	(CFS)	
				0.0\%
1.2\%	10,135	10,135	0	
2.5\%	8,724	8,724	0	
3.7\%	7,058	7,058	0	
4.9\%	6,976	6,976	0	
6.2\%	6,931	6,931	0	
7.4\%	6,492	6,492	0	0.0\%
8.6\%	6,273	6,273	0	
9.9\%	5.999	5,999	0	0.0\%
11.1\%	${ }_{5}^{5.896}$	${ }_{5}^{5.928}$	32	0.5\%
${ }^{12.3 \%}$	${ }_{5}^{5.843}$	${ }_{5}^{5.843}$	0	0.0\%
13.6\%	${ }_{5}^{5.807}$	5.807	-1	0.0\%
14.8\%	${ }_{\text {5,616 }}^{5}$	5.605	11	
10.0\%	5.567	${ }_{\text {5,567 }}^{5}$		
+18.5\%	¢,5.427 5.118	${ }_{\substack{5.417 \\ 5.118}}^{\text {5, }}$	$\stackrel{-9}{0}$	${ }_{0}^{-0.0 \%}$
19.8\%	4,997	4,996	0	0.0\%
21.0\%	4,640	4,640	0	0.0\%
${ }^{22.25 \%}$		4,508	0	0.0\%
- 24.7%	${ }_{4.433}^{4.478}$	${ }_{4.432}^{4.478}$	0	0.0\%
25.9\%	4,284	4,284	0	
27.2\%	3,886	4,174	288	
28.4\%	3,755	3,886	${ }^{131}$	3.5\%
29.6\%	3,753	${ }^{3,755}$	${ }^{3}$	
30.9\%	3,711	3,711	0	0.0\%
32.1\%	${ }^{3,706}$	3,706	0	0.0\%
33.3\%	3,334	${ }^{3,335}$	1	0.0\%
34.6\%	${ }^{3,310}$	${ }_{3,310}$	0	0.0\%
35.7\%	3,252	3,247	-5	-0.2\%
37.0\%	3,244	3,240 3	-4	-0.1\%
38.3\%	3,214	3,214	0	0.0\%
39.5\%	3,153	3,000	-153	-4.9\%
40.7\%	${ }^{3.000}$	3,000	0	
42.0\%	3,000	3.000 2.760	240	
-44.4\%	3, ${ }_{2}^{3.000}$	${ }_{2.708}^{2.700}$	- 52	-1.9\%
45.7\%	2,708	${ }_{2,598}$	-110	
46.9\%	2.598	2.540	-58	
48.1\%	${ }_{2.526}$	28		
49.4\%	2,433	2,433	0	
50.6\%	2.428	2,419	9	
51.9\%	2,375	2,372	-3	-0.1\%
53.1\%	2,372	2,302	70	
54.3\% 5 5	2,302	2,302	-1	\%
年55.6\%	2,302	${ }^{2,255}$	-47	-2.0\%
56.8\%	${ }_{2}^{2,273}$	2,097	176	-7.7\%
年58.0\%	${ }_{\text {2,267 }}$	2,085	182	-8.0\%
59.3\%	2,097	${ }^{1,848}$	${ }^{249}$	-11.9\%
60.5\%	${ }_{1}^{1,848}$	1,734	-115	${ }^{-6.2 \%}$
${ }^{611.7 \%}$	1,709	1,624	${ }^{84}$	-4.9\%
63.0\%	1,624	1,601	-24	-1.7\%
${ }^{64.2 \%}$	1,5999	1,556	${ }^{-43}$	-2.7\%
-65.4\%	${ }_{\substack{1,555}}^{1.554}$	${ }_{\substack{1,554 \\ 1 \\ 1.551}}^{1.505}$	-1	-0.1\%
66.7\%	${ }_{1}^{1,554}$	${ }_{1}^{1,551}$	-3	-0.1\%
69.1\%	${ }_{1}^{1.550}$	+1.546	${ }_{-4}^{-2}$	-0.2\%
70.4\%	${ }_{1,546}$	${ }_{1,532}$	-13	-0.9\%
71.6\%	${ }^{1,532}$	1,524	-9	-0.6\%
72.8\%	1,524	1,482	42	-2.7\%
74.1\%	1,482	1,439	${ }^{4}$	\%
75.3\%	1,428	1,404	${ }^{25}$	-1.7\%
76.5\%	1,276	1,276	0	0.0\%
77.8\%	1,242	1,243	1	0.1\%
79.0\%	1,222	1,232	11	0.9\%
${ }^{80.2 \%}$	1,138	1,194	56	5.0\%
${ }^{81.5 \%}$	1,104	${ }^{1,079}$	${ }^{25}$	2.3\%
- 82.78	${ }^{1,064}$	970	93	-8.8\%
84.0\%	970	884	${ }_{87} 86$	-8.9\%
- $8.5 .2 \%$	${ }_{703}^{886}$	${ }_{827}^{839}$	-47	-5.3\%
86.4\%	${ }_{681}^{703}$	${ }_{825}^{827}$	${ }_{124}^{124}$	17.6\%
- $\begin{aligned} & 87.7 \% \\ & 889 \%\end{aligned}$	${ }_{6}^{681}$	825 816	144	${ }^{27.2 \%}$
- ${ }^{88.9 \%}$	651	816	165	${ }_{\text {2 }}^{25.48 \%}$
90.17\%	648	815	167	25.8\%
92.6\%	${ }_{627}^{627}$	${ }_{703}$	${ }^{136}$	21.6\%
932.8\%	${ }_{623}^{627}$	${ }_{653}$	180 30	4.8\%
95.1\%	616	627	17	1.8\%
96.3\%	607	623	17	3\%
5\%	605	605		
98.8\% 100.0\%	188 188 1	${ }_{357}^{582}$	394 169	209.8\%

Table SW－29－b

${ }^{\text {a }}$	4	4， 4974		0，
1．2\％	4，491	4，413	－78	－1．7\％
2．5\％	4.417	4，399	－18	－0．4\％
3．7\％	4.413	4，388	－25	6\％
4．9\％	4，399	4，386	－13	－0．3\％
6．2\％	4，397	4，382	－16	\％
7．4\％	4，396	4，375	－21	5\％
8．6\％	4，388	4，372	－17	－0．4\％
9．9\％	4，388	4，347	－41	－0．9\％
11．1\％	4，386	4，339	－47	－1．1\％
12．3\％	4，384	4，321	63	－1．4\％
13．6\％	4，382	4，308	－74	－1．7\％
14．8\％	4，378	3，949	－428	－9．8\％
16．0\％	4，375	3，637	－739	－16．9\％
${ }^{17.3 \%}$	4，375	3，628	－747	（7．1\％
18．5\％	4，372	3，576	－795	－18．2\％
19．8\％	${ }^{4,370}$	3，576	－794	－18．2\％
21．0\％	4，367	3，537	－830	\％
${ }^{22.2 \%}$	4，356	3，387	－969	退
23．5\％	4，347	3，344	${ }^{-1,003}$	－23．1\％
24．7\％	4，339	3，332	－1，007	源
27．2\％	${ }_{4}^{4,321}$	3，173	${ }_{-1.148}$	－26．6\％
28．4\％	4，164	3，170	－993	－23．9\％
29．6\％	4，126	3，159	－．966	－23．4\％
30．9\％	4，051	3，121	－931	\％
32．1\％	3，974	3，119	－856	－21．5\％
33．3\％	3，970	3，107	－863	7\％
34．6\％	3，944	3，072	－873	2．1\％
35．8\％	3，664	3，046	－618	－16．9\％
37．0\％	3，615	2，980	－635	17．6\％
38．3\％	3，608	2，769	－839	－23．3\％
39．5\％	${ }^{3.576}$	2，766	－810	－22．7\％
40．7\％	3，480	2，755	－725	－20．8\％
42．0\％	${ }^{3,476}$	2，568	－908	－26．1\％
43．2\％	3，408	2，562	－845	退
${ }^{44.4 \%}$	（3，280	2，471	－808	－24．6\％
${ }^{45.79 \%}$	3，159	2，465	－695	－22．0\％
${ }^{46.9 \%}$	3，072	2，454	－618	－20．1\％
$4.4 .4 \%$	3，055	2， 265	－－778	－2．5\％
50．6\％	3，029	2，135	－893	．5\％
51．9\％	2，846	2，057	－789	\％
53．1\％	2，772	2，051	－722	\％
54．3\％	2，693	${ }_{2}^{2,036}$	－657	－24．4\％
㐌5．8．8\％	${ }_{\substack{2,623}}^{2,635}$	2,027 2016	－609	－23．0\％
58．0\％	${ }_{2} .553$	2.008	－545	退迆
59．3\％	${ }_{2,493}$	1，962	－531	－21．3\％
60．5\％	2，486	1，897	－589	－23．7\％
61．7\％	2，462	1,879	－583	－23．7\％
63．0\％	2，450	1.864	－586	－23．9\％
64．2\％	2，357	1,843	－514	－21．8\％
65．4\％	${ }_{2}^{2,269}$	1，769	－500	－22．1\％
${ }^{66.7 \%}$	${ }_{\text {2，}}^{2}$ 2，264	1，751	－514	22．7\％
－${ }_{\text {67．9\％}}^{69.1 \%}$	${ }_{2}^{2,251}$	1，750	－501	－${ }_{\text {－}}$
70．4\％	2，135	1，750	－385	－18．0\％
71．6\％	2，076	1，750	－326	－15．7\％
74．1\％	${ }_{2}^{2,027}$	1，750	－	${ }^{-15.2 \%}$
75．3\％	2,016	1，750	－266	， 2%
76．5\％	2.008	1,750	－258	退 2.8%
77．8\％	2，007	1，750	－257	－12．8\％
79．0\％	1,897 1,879	1,750 1,738	-147 -140	－－7．7\％ -7.5%
81．5\％	1，857	1，696	－161	－8．7\％
82．7\％	${ }^{1,843}$	1.598	245	－13．3\％
84．0\％	1，750	1，595	155	－8．9\％
85．2\％	1，750	1，592	158	－9．0\％
86．4\％	1，750	1.501	249	－14．2\％
877\％	1，750	1，352	398	－22．7\％
88．9\％	1，750	${ }^{1,280}$	－470	－26．9\％
${ }^{90.14 \%}$	1，750	1，275	－475	－27．2\％
92．4\％	${ }^{1,532}$	1,274 1,268 1	－－238	－
93．8\％	1，279	1，190	－89	－7．0\％
95．1\％	712	1，166	454	8\％
${ }^{96.5 \%}$	682 323	${ }_{\text {1，027 }}$	344 282 8	50．4\％
98．8\％	188	540	352	187．2\％

August				
Percent Exceedance	$\begin{aligned} & \text { DCR 2015.5 Whthout } \\ & \text { Proiect } \end{aligned}$	DCR 2015 With Project	Absolute Difference	
Probability	Monthy Fow（CFFS）	Monthly Fow（CFS）	（CF5）	
${ }^{0.0 \%}$	4，771	4，771		0．0\％
1．25\％	${ }_{3}$	${ }^{3}$		0．0\％
3．7\％	3，446	S446		
40\％	3122	3122		
6．2\％	${ }_{3,356}$	3，356		
7．4\％	${ }_{3,316}$	${ }_{3,316}$	O	
8．6\％	3，261	3，261		
9．9\％	${ }_{3,258}$	${ }_{3,258}$	0	
11．1\％	3，250	3，250	0	0．0\％
123\％	${ }_{3,240}^{3,}$	${ }_{3,240}$	0	0．0\％
13．6\％	3，186	3，233	47	1．5\％
14．8\％	3，048	3，186	138	4．5\％
16．0\％	3，035	3，048	13	0．4\％
${ }^{17.3 \%}$	2，988	3，035	47	1．6\％
19．8\％	${ }_{2,906}$	${ }_{2,521}$	${ }_{385}$	－13．3\％
21．0\％	${ }_{2}^{2,570}$	2，498	－72	－2．8\％
${ }^{22.2 \%}$	${ }_{2}^{2,326}$	2，437		
24．7\％	${ }_{2,010}^{2,263}$	${ }_{2,395}^{2,404}$	${ }_{385}^{142}$	${ }^{6.9 .1 \%}$
25．9\％	${ }_{1,976}$	${ }_{2,368}^{2,3}$	392	
27．2\％	1，927	2，360	433	
28．4\％	1，811	2，306	495	27．3\％
29．6\％	${ }^{1,806}$	${ }_{2,173}$	367	${ }^{20.3 \%}$
30．9\％	1，791	2，027	235	13．1\％
32．1\％	1，784	2，006	222	${ }^{12.5}$
33．3\％	1，771	${ }^{1,924}$	153	8．6\％
34．5\％	1，750	${ }^{1,911}$	161	9．2\％
35．8\％	1，750	1，909	159	9．1\％
37．0\％	1，750	1，750	0	0．0\％
38．3\％	1，750	1，750	0	0．0\％
39．5\％	1，750	1，750	0	\％
${ }^{40.70}$	＋1，750	1,738 1,738	－12	
4．2．\％	1，750	＋1，738	－12	
4．4．4\％	${ }_{1}^{1.697}$	li，736 $\substack{1,735}$	－14 37	${ }_{2.2 \%}^{-0.2 \%}$
45．7\％	1，686	1，734	48	\％
46．9\％	1，643	1，733	90	
48．1\％	1，641	1，731	90	
49．4\％	1，626	1，730	104	6．4\％
50．6\％	1，609	1，730	120	7．5\％
51．9\％	1，557	1，728	171	11．0\％
53．19\％	1，498	1，708	209	14．0\％
54．3\％	1，489	1，689	200	${ }^{13.4 \%}$
55．6\％	1，488	${ }^{1,674}$	186	${ }^{12.5 \%}$
56．8\％	1，486	${ }^{1,673}$	187	12．5\％
年58．0\％	1，486	1，669	183	－12．3\％
59．3\％	${ }^{1,4866}$	1，561	76	5．1\％
60．5\％	1，485	1，561	75	5．1\％
${ }^{611.7 \%}$	1，484	1，529	45	3．0\％
－63．0\％	（1，483	＋1．527	${ }_{41}^{44}$	2．9\％
－ $6.7 .2 \%$	${ }_{\text {1，482 }}^{1,482}$	＋1，522	41	${ }_{1}^{2.7 \%}$
${ }_{6}^{65.4 \%}$	（1，4821	（1，503	${ }_{22}^{28}$	
－667．9\％	＋1，480	＋1．501	${ }_{21}^{22}$	
67．9\％	＋1，4800	${ }_{1.492}^{1.501}$	${ }_{12}^{21}$	（1．4\％\％
70．4\％	1，480	${ }_{1,492}$	12	0．8\％
71．6\％	1，479	1,491	12	0．8\％
72.8% 74.1%	1，479	（1，489	10	${ }^{0.7 \%}$
74．3\％	li，435	${ }_{\text {li，444 }}^{1,480}$	${ }_{9}^{2}$	
76．5\％	1，410	${ }_{1,362}$	${ }^{-48}$	－3．4\％
77．8\％	${ }_{1}^{1,342}$	1，359	16	1．2\％
79．0\％	1，282	1，281	－1	0．1\％
80．2\％	911	1，277	366	40．1\％
81．5\％	884	1，192	309	35．0\％
82．7\％	639	1，186	546	85．4\％
84．0\％	593	${ }^{1,165}$	572	${ }^{96,3 \%}$
85．2\％	573	1，144	571	
86．4\％	567	888	${ }_{301}$	53．4\％
887．9\％	564 564	${ }_{832}^{868}$	${ }^{301}$	${ }^{53.74 \%}$
90．1\％	553	${ }_{822}$	269	48．9\％
91．4\％	551	792	241	43．7\％
92．6\％	544 530	${ }_{758}^{762}$	218	40．0\％
9．3．7\％	531	${ }_{738}$	227	42．9\％
${ }^{95536}$	326	650	224	
90．75\％	250	655	24	95．5\％
98．8\％ 100．0\％	188 188 188	$\begin{array}{r}569 \\ \hline 44 \\ \hline\end{array}$	381 156	2029\％

Figure SW-46-b
Feather River at Shanghai Bend, Monthly Flow

Table SW－46－b

1.2%	7.878
2.5%	7.603
3.7%	

Percent Exceedance	DCR 2015 Without	DCR 2015 With Project	Absolute Difference	Relative
Probability	Monthly fow（cFs）	Montly Flow（CFS）	（cFs）	
0．0\％	${ }^{34,743}$	${ }^{34,743}$	0	0．0\％
1．2\％	19，255	${ }^{21.809}$	2.554	13．3\％
${ }^{2.5 \%}$	－ 16.411	${ }_{\substack{21,721 \\ 16.411}}$	$\underset{\substack{5.310 \\ 114}}{\text { den }}$	
3．7\％	16，297	${ }^{16,411}$	114	0．7\％
4．9\％	14.296 13.127 1	14,296 13,551	${ }_{425}^{0}$	${ }_{3}^{0.0 \%}$
${ }^{6.2 \%}$	13，27 1275 127	${ }^{13,551}$	${ }_{3525}^{425}$	${ }_{3}^{3.2 \%}$
8．6\％	7，176	${ }_{\text {7，641 }}$	465	6．5\％
9．9\％	${ }_{6}^{6,857}$	7,176	319	47
11．1\％	6，838	7，151	313	
12．3\％	6，702	6，838	${ }^{136}$	
13．6\％	6，701	6，770	70	
14．8\％	${ }^{6.648}$	${ }^{6.648}$	0	
16．0\％	6，550	6，592	${ }^{43}$	
17．3\％	${ }_{6,517}$	6，529	12	
18．5\％	6，503	6，503	0	0．0\％
19．8\％	6，270	6，295	${ }^{25}$	0．4\％
${ }_{22}^{21.0 \%}$		¢， $\begin{gathered}6.095 \\ 5 \\ 5\end{gathered}$	54	0．9\％
${ }_{2}^{22.5 \%}$	${ }_{5,960}^{5.966}$	${ }_{5}^{5.9960}$	${ }_{-14}^{-6}$	${ }^{-0.2 \%}$
24．7\％	5，895	5.779	-117	－2．0\％
25．9\％	5．8533	5，751	－51	－0．9\％
27．2\％${ }^{28.4 \%}$	5.598 5498	5.663 5.598	66 99	－ 1.2%
29．6\％	${ }_{5}^{5}$	${ }_{5,498}^{5.1598}$	${ }_{45}$	0．8\％
	5，379	5.475	96	1．8\％
32．3\％	${ }_{5.076}^{5.076}$	5,409 5 5	${ }_{301}^{333}$	${ }_{5}^{6.6 \%}$
34．6\％	4,995	5.076	81	16\％
35．8\％	4，920	4，827	－94	
退37．0\％\％	${ }_{4}^{4,823}$	4.811	－12	${ }^{-0.2 \%}$
30．5\％	4.564	4,613	49	1．1\％
40．7\％	4.479	4，564	85	1．9\％
42．0\％	4，421	4，495	74	1．7\％
43．2\％	4，315	4，315	0	
44．4\％	${ }_{4}^{4,292}$	${ }_{4}^{4,292}$	0	0．0\％
46．9\％	${ }_{4}^{4,184}$	＋1，283	0	0．0\％
48．1\％	3，983	4.035	52	1．3\％
49．4\％	3，710	3，665	－45	－1．2\％
年 $\begin{aligned} & \text { 50．6\％} \\ & 519 \%\end{aligned}$	3.500 3.190 a		－182	
5 ${ }^{51.9 \%}$	${ }_{\text {3，035 }}^{3,190}$	3， $\begin{aligned} & 3,190 \\ & 3,033\end{aligned}$	－1	0．0\％
54．3\％	3，029	3，029	0	0．0\％
年55．6\％	2,970 2880	2，970	${ }_{58}$	
58．0\％	${ }_{2,860}^{2,060}$	${ }_{2,860}$	1	0．0\％
59．3\％	2,832	2，860	27	1．0\％
60．5\％	2,821	2，832	11	0．4\％
${ }^{617.7 \%}$	${ }^{2.813}$	2.821	8	3\％
63．0\％	${ }_{2}^{2,764}$	${ }_{2}^{2.813}$	${ }^{48}$	1．8\％
－64．2\％	2，746	${ }_{\text {2，764 }}^{2,731}$	18	0．7\％
${ }^{66.7 \%}$	${ }_{2}^{2,661}$	${ }_{2}^{2,724}$	${ }^{63}$	2．4\％
67．9\％	2,656		0	
69．1\％	2，602	2，602	0	0．0\％
70．4\％	2,591 2.599	${ }_{2.569}^{2.577}$	－15	
71．6\％	2，569	2，569	0	0．0\％
74．1\％	${ }_{2,554}^{2,557}$	${ }_{2,554}^{2,557}$	－1	0．0\％
75．3\％	2，552	${ }_{2,537}$	－15	－0．6\％
76．5\％	2．506	2，506	0	0．0\％
77．8\％	2，241 2，207	${ }_{\substack{2,241 \\ 2,241}}^{2,23}$	${ }_{6}$	0．0\％
80．2\％	2，138	2，201	63	
81．5\％	2，065	2，133	68	
82．7\％	1，974	2,065	92	6\％
84．0\％ 88.2%	1,925 1.859	1,925 1880 18	${ }_{11}$	0．0\％
86．4\％	${ }_{1,858}^{1,85}$	1，859	1	0．0\％
87．7\％	1，817	1.858	42	2．3\％
88．9\％	1，784	1，817	32	1．8\％
90．1\％	${ }^{1,763}$	1，784	${ }^{22}$	1．2\％
914．4\％	${ }^{1,7755}$	${ }^{1,764}$	9	0．5\％
${ }_{93.8 \%}^{92.6 \%}$	1,721 17788	${ }^{1,7755}$	${ }^{34}$	2．0\％
95．1\％	${ }_{\text {1，707 }}$	${ }_{1}^{1,708}$	13	－
96．3\％	1，668	1，668	0	0．0\％
97．5\％	${ }^{1,633}$	${ }_{1}^{1,633}$	0	0．0\％
－98．8\％	${ }_{1}^{1,611}$	${ }_{1,611}^{1,613}$	0	${ }_{0}^{0.0 \%}$

Table SW－46－b

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& Febraary \& \& \\
\hline Percent
Exceedance \& \({ }^{\text {DCR } 2015 \text { Without }}\) \& DCR 2015 With Project \& \begin{tabular}{l}
Absolute \\
Difference
\end{tabular} \& \\
\hline Probability \& Monthly fow（CFS） \& Monthly Flow（CFS） \& （CFF） \& \\
\hline 0．0\％ \& 34，404 \& \({ }^{39,712}\) \& \& 15．4\％ \\
\hline 1．2\％ \& 29，343 \& 29，343 \& 0 \& 0．0\％ \\
\hline \({ }_{37 \%}\) \& \({ }_{28,342}^{20,75}\) \& \({ }^{20,734}\) \& \& \(0.0 \%\) \\
\hline 5．7\％ \& 2，342 \& 20，342 \& 2020 \& \\
\hline 4．9\％ \& \({ }^{24,955}\) \& 27，557 \& 2.602 \& 10．4\％ \\
\hline 7．4\％ \& \({ }^{22,565}\) \& \({ }_{2}^{22,565}\) \& \({ }_{0}\) \& 0．0\％ \\
\hline 8．6\％ \& 19，063 \& 20，784 \& 1，721 \& 9．0\％ \\
\hline 9．9\％ \& 18，943 \& 18，943 \& 0 \& 0．0\％ \\
\hline 11．1\％ \& 16，359 \& 18,465 \& 2，106 \& 12．9\％ \\
\hline 12．3\％ \& 16，234 \& 16，359 \& 125 \& 0．8\％ \\
\hline 13．6\％ \& \({ }^{15,733}\) \& \({ }^{16,234}\) \& 502 \& 3．2\％ \\
\hline 14．8\％ \& 15.613 \& 15.771 \& 158 \& 1．0\％ \\
\hline 16．0\％ \& 14，981 \& 15，613 \& 632 \& 4．2\％ \\
\hline 17．3\％ \& 14，889 \& 14，981 \& 92 \& \\
\hline 18．5\％ \& \({ }^{13,547}\) \& \({ }^{13,547}\) \& 0 \& \％ \\
\hline 19．8\％ \& \({ }^{12,229}\) \& \({ }^{13,223}\) \& 995 \& 8．1\％ \\
\hline \({ }_{2}^{21.0 \%}\) \& 11，261 \& \begin{tabular}{|}
12,229 \\
11114
\end{tabular} \& \({ }_{594}^{969}\) \& \({ }^{8.6 \%}\) \\
\hline \({ }_{2}^{22.5 \%}\) \& 10．521 \& －1，114 \& 594 \& 5．6\％ \\
\hline 24．7\％ \& 10，326 \& 9，481 \& 845 \& 8．2\％ \\
\hline 25．9\％ \& 9,481 \& 9，272 \& 209 \& 2．2\％ \\
\hline 27．2\％ \& 8.991 \& 8.991 \& 0 \& 0．0\％ \\
\hline \& \begin{tabular}{l}
7,435 \\
7,140 \\
\hline
\end{tabular} \& \begin{tabular}{l}
8.829 \\
8.474 \\
\hline
\end{tabular} \& \begin{tabular}{l}
1,394 \\
1,333 \\
\hline 1
\end{tabular} \& \(18.8 \%\)
\(18.7 \%\) \\
\hline 30．9\％ \& 7，056 \& \({ }_{7} 7,435\) \& 379 \& 5．4\％ \\
\hline 32．1\％ \& 7，024 \& 7，138 \& 114 \& 1．6\％ \\
\hline 33．3\％ \& 6，666 \& 7，024 \& 358 \& \(5.4{ }^{6}\) \\
\hline 34．6\％ \& 6，420 \& 6，420 \& 0 \& \\
\hline 35．8\％ \& \({ }_{6}^{6,352}\) \& 6，203 \& 149 \& 2．3\％ \\
\hline 37．0\％ \& 6，203 \& \({ }^{6,098}\) \& 106 \& －1．7\％ \\
\hline 38．3\％ \& \({ }^{6,098}\) \& \({ }_{\text {6，012 }}\) \& －86 \& －1．4\％ \\
\hline 39．5\％ \& \({ }_{6}^{6.016}\) \& 5．967 \& －49 \& －0．8\％ \\
\hline 40．7\％ \& 5，968
5905
50， \& \& \({ }^{-62}\) \& －1．0\％ \\
\hline \({ }^{42.2 \%}\) \& \({ }_{5}^{5,905}\) \& \({ }_{5}^{5.862}\) \& \({ }^{43}\) \& \({ }^{-0.7 \%}\) \\
\hline \({ }^{43.2 \%}\) \& 寺 5.316 \& \& 0 \& \\
\hline \({ }_{4}^{4.75 \%}\) \& \& 5，164 \& 0 \& \({ }^{0.0 \% \%}\) \\
\hline 46．9\％ \& 4，804 \& 4.803 \& 0 \& 0．0\％ \\
\hline 48．19\％ \& 4．772 \& 4．772 \& \& \\
\hline 50．6\％ \& \({ }_{4,593}^{4.673}\) \& \({ }_{4,593}^{4.673}\) \& 0 \& \({ }^{\text {0．0\％}}\) \\
\hline 51．9\％ \& 4,405 \& 4，410 \& 5 \& 0．1\％ \\
\hline 53．1\％ \& 4,405 \& 4.405 \& \& \\
\hline 54．3\％
\(55.6 \%\) \& 4，197 \& 4，197 \& 0 \& 0．0\％ \\
\hline 55．6\％ \& 4,039
3
3 \& 4，039 \& \& 0．0\％ \\
\hline 58．0\％ \& 3，795 \& \& \(\bigcirc\) \& \({ }^{0.0 \% \%}\) \\
\hline 59．3\％ \& 3，685 \& 3，685 \& 0 \& 0．0\％ \\
\hline 60．5\％ \& \({ }_{\text {3，675 }}\) \& 3，675 \& 0 \& 0．0\％ \\
\hline \(61.7 \%\)
\(630 \%\) \& 3，576 \& \({ }^{3.576}\) \& 0 \& 0．0\％ \\
\hline －63．0\％ \& \({ }^{3,358}\) \& 3，358 \& 0 \& 0．0\％ \\
\hline － \(64.24 \%\) \& 3，2288 \& \({ }^{3,228}\) \& 0 \& 0．0\％ \\
\hline \({ }^{66.77 \%}\) \& 2，999
2，941 \& \({ }_{2,941}^{2,999}\) \& 0 \& \({ }^{0.0 \% \%}\) \\
\hline 67．9\％ \& 2，889 \& 2.889 \& \& 0．0\％ \\
\hline 69．1\％ \& \({ }^{2,846}\) \& \({ }_{2}^{2,846}\) \& 0 \& 0．0\％ \\
\hline 70．4\％\％ \& \begin{tabular}{l}
2,793 \\
2.791 \\
\hline
\end{tabular} \& 2,793
2791 \& 0 \& 0．0\％ \\
\hline 72．8\％ \& \({ }_{2}^{2,783}\) \& \({ }_{2}^{2,783}\) \& 0 \& 0．0\％ \\
\hline \(74.1 \%\)
\(753 \%\) \& \({ }_{2}^{2,781}\) \& \({ }_{\text {2，781 }}^{2,789}\) \& 0 \& 0．0\％ \\
\hline 76．5\％ \& \({ }_{2,734}^{2,738}\) \& \({ }_{2,734}^{2,736}\) \& 0 \& 0．0\％ \\
\hline 77．8\％ \& \({ }_{2,729}\) \& 2，699 \& 30 \& －1．1\％ \\
\hline 79．0\％ \& 2，699 \& 2，600 \& 99 \& －3．7\％ \\
\hline －80．2\％ \& 2，600 \& 2，565 \& \({ }^{34}\) \& －1．36 \\
\hline － \(\begin{aligned} \& 81.5 \% \\ \& 88.7 \%\end{aligned}\) \& \({ }^{2.565}\) \& \({ }^{2.554}\) \& 12 \& －0．5\％ \\
\hline \(82.7 \%\)
\(84.0 \%\) \& 2，554 \& 2，550 \& 4 \& 0．1\％ \\
\hline \(84.0 \%\)
\(85.2 \%\) \& \({ }^{2,548}\) \& \({ }^{2.548}\) \& 0 \& 0．0\％ \\
\hline \(85.2 \%\)
\(86.4 \%\) \& \({ }^{2}, 544\) \& 2，544 \& 0 \& 0．0\％ \\
\hline － \(86.4 \%\) \& \({ }_{2}^{2,273}\) \& \({ }^{2,273}\) \& 0 \& 0．0\％ \\
\hline 877\％ \& 2,270

2
2 \& 2， 2 2，70 \& 0 \& 0．0\％

\hline 90．1\％ \& ${ }_{2,222}^{2,24}$ \& ， \& 0 \& 0．0\％

\hline 91．4\％ \& 2，032 \& 2.046 \& 14 \& 0．7\％

\hline 92．6\％ \& 2，020 \& 2，020 \& 0 \& 0．0\％

\hline ${ }^{93.85 \%}$ \& | 1,982 |
| :--- |
| 1,931 |
| 1.93 | \& $\begin{array}{r}1,982 \\ 1.931 \\ \hline 1\end{array}$ \& 0 \& 0．0\％

\hline 96．3\％ \& －1，832 \& ${ }_{1}^{1,832}$ \& 0 \& ${ }^{0.0 \% \%}$

\hline 97．5\％ \& 1，785 \& 1，785 \& \& 0．0\％

\hline 98．8\％
100．\％ \& 1,739
1.688 \& 1,771
1.688 \& 32 \& －

\hline
\end{tabular}

							Aprit		
Percent Exceedanc	${ }^{\text {DCR 2015 Without }}$	DCR 2015 With Projed	$\begin{aligned} & \text { Absolute } \\ & \text { Aiffereve } \end{aligned}$		Percent Exceedance	DCR 2015 Without	DCR 2015 With Project	Absolute Difference	Relative
Probability	Monthy fow（CFS）	Monthy Fow（CFS）	（CFF）		Probability	Monthy fow（CFF）	Montily Flow（CFFS）	（CFF）	
－	${ }^{47,934}$				0．0\％	${ }^{30,925}$			0．0\％
－	${ }^{45.576}$	${ }^{45,876}$	0	0．0\％	1．2\％	24，253	${ }^{24,246}$	8	0．0\％
${ }_{\text {2．7\％}}^{2.5 \%}$	${ }^{35,108}$	35,108 3	0	0．0\％	2．5\％	${ }^{19,254}$	19，248	${ }^{6}$	0．0\％
3．9\％	${ }^{32,996}$	${ }^{32,996}$	0	0．0\％	3．7\％	18，434	18，427		
${ }_{6}{ }^{4.2 \%}$	27，009	27，373	${ }^{363}$	1．3\％	4．9\％	${ }^{18,342}$	${ }^{18,342}$	1	0．0\％
${ }^{\text {7．4\％}}$	24，870	24，870	0	0．0\％	${ }^{6.2 \%}$	15．083	15，080	4	0．0\％
8．6\％	21，399	21，674	${ }^{135}$	0．6\％	7．4\％	14，571	${ }^{14,5668}$	${ }^{6}$	${ }_{-0.0 \%}$
${ }_{9.9 \%}^{8.9 \%}$	20，286	20，286		0．0\％	8．6\％	13，6714	13,663 13,310	${ }_{4}^{8}$	0．0\％
11．1\％	${ }^{20,189}$	20,189 17832	0	0．0\％	9．9\％	${ }_{\text {ckis }}^{13,314}$	＋13，310	4	－0．0\％\％
12．3\％	17096	17，096	0	${ }^{0.0 \% \%}$	12．3\％	${ }^{111,986}$	${ }^{11,1977}$	$\stackrel{-9}{-9}$	－0．1\％
13．6\％	16，363	16.640			13．6\％	11，083	11，076		－1\％
14．8\％				5．8\％				9	
16．0\％	15.110	464	354	2．3\％	16．0\％	9，539	9，534	－5	
17．3\％	13，199	14，956	1，757	13．3\％	17．3\％	${ }^{8.533}$	${ }_{8,528}$	－	
18．5\％	12，861	14，629	1，769	13．8\％	18．5\％	${ }_{8,224}$	8，220	4	－0．1\％
19．8\％	12，135	13，199	1，064	8．8\％	19．8\％	${ }^{8.047}$	${ }^{8,038}$	－9	－0．1\％
21．0\％	${ }^{11,629}$	12，135	506	4．4\％	21．0\％	7.779	7.612	167	
22．2\％	11,071	11,071	0	0．0\％	22．2\％	7，620	7，387		
23．5\％	11，007	10，924	－84	－0．8\％	23．5\％	7.401	6，995	406	－5．5\％
24．7\％	10，802	${ }^{10,859}$	57	0．5\％	24．7\％	6．537	6，530	－7	－0．1\％
25．9\％	10，105	10,801	696	6．9\％	25．9\％	5．279	6，332	${ }^{1.053}$	19．9\％
27．2\％	${ }^{9,730}$	10，105	375	3．9\％	27．2\％	5，193	5．279	86	1．7\％
28．4\％	9，271	9，773	466	5．0\％	28．4\％	5，119	5，181	62	${ }^{1.228}$
29．6\％	9，081	9，730	${ }^{649}$	7．1\％	29．6\％	5.012	5，119	106	${ }_{2.17 \%}$
30．9\％	8，995	9,081	${ }^{86}$	1．0\％	30．9\％	4，894	5.012	118	2．4\％
32．19\％	8，951	9.050	99	1．19\％	32．1\％	4，776	4．894	138 8 1	2．9\％
33．3\％	8.604	8.995	329	4．5\％	33．3\％	4，703	4．733	50	
34．6\％	${ }_{8}^{8,380}$	8，604	${ }_{318}^{224}$	${ }_{3}^{2.7 \%}$	34．6\％	${ }^{4,684}$	4，703	19	迷
37．0\％	${ }_{8,010}^{\text {8，122 }}$	8,440 8.010	${ }^{318}$	30．0\％	－ 37.75	（3．894	＋${ }_{3,894}$	920	20．3\％
38．3\％	7，932	7，949	17	0．2\％	38．3\％	3，796	${ }_{3.802}$		
5\％	7，874		58	0．7\％	39．5\％	3，762	3，796	35	
40．7\％	6，851	7.873	1，022	14．9\％	40．7\％	3，751	3，762	11	
42．\％	6，763	7，020	257	3．8\％	42．0\％	3，721	3，751	30	0．8\％
43．2\％	5，888	6，851	963	16．4\％	43．2\％	3，651	3，721	71	
44．4\％	5．884	5，884	0	0．0\％	44．4\％	3，643	3，651	7	0．2\％
45．7\％	5．589	5．589	0	0．0\％	45．7\％	3，590	3，590	0	0．0\％
46．9\％	5，011	5.011	0	0．0\％	46．9\％	3，561	3，561	0	0．0\％
48．1\％	4.875	4．875	0	0．0\％	48．1\％	3．509	${ }^{3.474}$	${ }^{35}$	－1．0\％
49．4\％	4，344	4，344	0	0．0\％	49．4\％	3，477	3，426	52	－1．5\％
50．6\％	4，225	4，225	0	0．0\％	50．6\％	3，426	3，311	114	－3．3\％
51．9\％	3，803	3，803	0	0．0\％	51．9\％	${ }^{3,313}$	3，302	－11	－0．3\％
53．19\％	3，796	3，7796	0	0．0\％	53．1\％	3，302	3，273	－28	－0．9\％
年54．3\％\％	${ }_{\text {3，778 }}$	${ }_{\text {3，778 }}$	0	0．0\％	54．3\％	${ }_{\text {3，273 }}$	${ }^{3,205}$	－68	－2．1\％
55．8\％	${ }^{3,773}$	${ }^{3,773}$	0	0．0\％	55．6\％	${ }^{3,235}$	3，204	${ }^{31}$	－1．0\％
56．8\％	${ }^{3.586}$	3，586	0	0．0\％	${ }^{56.8 \%}$	3，205	3，106	年	1\％
59．3\％	－	－	0	0．0\％	59．3\％	－	${ }_{285}^{2,885}$	－30	－10．0\％
60．5\％	${ }_{3,240}$	${ }_{3,240}^{\text {3，24 }}$	0	0．0\％	60．5\％	${ }_{2,856}$	${ }_{2,815}$	－40	－1．4\％
61．7\％	${ }^{3,183}$	${ }^{3,183}$	0	0．0\％	51．7\％	2.815	2，731	84	3．0\％
－63．0\％	3，141	3，155	14	0．4\％	63．0\％	${ }^{2}, 760$	2.719	40	－1．5\％
64.2% 654%	3，134	3，134	0	0．0\％	64．2\％	${ }^{2}, 726$	${ }^{2,646}$	－80	－2．9\％
${ }^{65.4 \%}$	3.021 2.998	3.021 2.998	0	${ }_{0}^{0.0 \%}$	㐌6．7\％\％	2.646 2.638	2,634 2.623	－15	
67．9\％	${ }_{2,957}$	2，957	0	0．0\％	67．9\％	${ }_{2,625}$	${ }_{2,542}$	${ }_{-8}$	${ }^{-3.1 \%}$
69．1\％	2.863	2,863	0	0．0\％	69．1\％	2.544	2.541	-3	－0．1\％
70．4\％	2，810	2，810	0	0．0\％	70．4\％	2，525	2.516	－9	－0．3\％
71．6\％	2，790	2，790	0	0．0\％	71．6\％	2，517	2，423	94	－3．7\％
72．8\％	${ }_{2}^{2,746}$	${ }_{2}^{2,746}$	0	0．0\％	72．8\％	${ }_{2}^{2,423}$	2，387	－36	－1．5\％
74．15\％	${ }_{2}^{2,721}$	${ }_{2}^{2,721}$	0	0．0\％	74．1\％	2，389	2，312	77	3．2\％
7．3．5\％	${ }_{2}^{2,711}$	2，718	0	0．0\％	75．3\％	2，312	${ }_{2}^{2,306}$	${ }^{-6}$	－0．3\％
76．5\％	2，712	2，680	－32	－1．2\％	76．5\％	${ }_{2}^{2,306}$	2，274	${ }^{-32}$	1．4\％
79．0\％	2，680	2，668	－12	－0．5\％	77．8\％	${ }^{2} 2,274$	2，067	－	9．1\％
79．0\％	2，668	2，${ }_{2}^{2,625}$	${ }^{43}$	－1．6\％	79．0\％	${ }^{2}, 067$	2，062	－5	－0．2\％
88．5\％	2，590	2，590	0	0．0\％	80．2\％	2，062	2，039	23	－10\％
88．7\％	2，583	－	0	0．0\％	${ }^{81.5 \%}$	2，040	2，019	－21	源
84．0\％	${ }_{2487}^{2,496}$	${ }_{2,496}^{2.527}$	${ }^{32}$	1．3\％	${ }^{82.70 \%}$	＋，0198	${ }_{1}^{2,007}$	－12	－0．2\％
85．2\％	${ }_{2,417}$	${ }_{2,487}$	70	2．9\％	85．2\％	${ }_{1,861}$	${ }_{1,822}^{1,824}$	39	1\％
86．4\％	2，360	2，417	57	2．4\％	86．4\％	1，822	1，822	0	0\％
87.7% 880%	2，331	2，331	0	0．0\％	877\％	1，822	1，804	18	0\％
	2，270	2，270	0	0．0\％	88．9\％	1，804	${ }^{1.804}$	0	0\％
90．4\％	2，179	2，179	0	0．0\％	90．1\％	1，779	1，779	0	0\％
${ }^{99.4 \%}$	2，104	2，095	9	－0．4\％	91．4\％	${ }^{1,735}$	1，735	0	0．0\％
${ }_{93.8 \%}^{92.6 \%}$	1.976	1，972	4	0．2\％	92．6\％	1，689	1，688	0	0\％
${ }_{95.1 \%}^{93.8 \%}$	1,915 1,830	1,915 1,830	\bigcirc	－	93．8\％	1.580 1.575	， 585	0	0．0．0\％
96．3\％	${ }_{1,828}$	1.828	0	0．0\％	96．3\％	1，571	${ }_{1,571}$	0	0．0\％
97．5\％	1，785	1，747	${ }^{38}$	2．1\％	97．5\％	1，205	1，205	0	0．0\％
988．8\％ 100.0%	1,747 1,59	－1．696	－51	－	98．8\％ 100．0\％	＋1，205	＋1，205	0	0．0\％

June				
Percent	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	${ }_{\text {a }}^{\substack{\text { Absolute } \\ \text { Difference }}}$	Relative
	Monthly Fow（ （FFS）	Montly Flow（CFS）	（cFs）	Difference $(\%)$
0．0\％	20，912	20，935	24	0．1\％
1．2\％	18，743	18，636	－108	－0．6\％
2．5\％	18，204	18，192	－12	－0．1\％
3．7\％	16，571	16，557	－14	－0．1\％
4．9\％	16，014	16，022	－12	－0．1\％
6．2\％	14.958	${ }^{14,943}$	－15	－0．1\％
7．4\％	${ }^{14,846}$	${ }^{14,831}$	－15	－0．1\％
8．6\％	${ }^{11,730}$	${ }_{117718}$	－12	－0．1\％
9．9\％	11.082	11.067	－15	－0．1\％
11．1\％	10，780	10，766	－14	－0．1\％
${ }^{12.3 \%}$	9，794	9，781	－14	－0．1\％
＋13．3\％	${ }_{8,6.516}^{9,548}$	${ }_{7}^{9,5939}$	-14 -617	－0．72\％
16．0\％	${ }_{8,013}$	7.871	－142	－1．8\％
17．3\％	77.883	7.517	－366	－4．6\％
18．5\％	7,532	7.500	－32	
19．8\％	7，514	6，962	－552	
21．0\％	6，909	6．895	－13	
22．2\％	6，357	5，930	－426	
23．5\％	6，345	5，728	－617	
24．7\％	6，274	5．607	－666	
25．9\％	6，221	5，322	－899	14.
27．2\％	5．944	5，168	－776	${ }^{13} 30$
28．4\％	${ }_{5}^{5.828}$	5．040	－788	－13．5\％
29．6\％	5．742 5 5	5，036	－776	－123
30．9\％	${ }_{5}^{5.718}$	4，943	－776	－13．6\％
32．1\％	${ }_{5}^{5.595}$	4，926	－670	－12．0\％
	5,378 5054 0.0	4，841	－ 328	－10．0
34.6% 3588	5，054	4，8355	－220	－4．36
35．8\％	5，004	${ }_{4}^{4,833}$	－171	${ }^{-3.4}$
30．3\％	${ }_{4}^{4,892}$	${ }_{4}^{4.816}$	－76	
39．5\％	${ }_{4,853}^{4.854}$	4.683	－170	－3．5\％
40．7\％	4，842	4，534	－307	－6．3\％
		4，516	－241	－5．1\％
44．4\％	4，704	4,405	－299	－6．4\％
45．7\％	4.591	4，335	－257	－5．6\％
46．9\％	4，575	4，285	－290	－6．3
48．1\％	4，545	4，045	－500	
49．4\％	4，541	3，984	－557	${ }^{-12.3 \%}$
51．9\％	${ }_{4,528}^{4.536}$	（3，962	－	－
53．1\％	4，412	3，873	${ }_{-540}$	－12．2\％
54．3\％	4，349	3，837	－512	－11．8\％
55．\％	4，249	3，815	－434	－10．2\％
	${ }_{4}^{4,196}$	3,740 3660	－456	－ 10.9%
59．3\％	${ }_{4.151}^{4.179}$	${ }_{3,655}^{3,660}$	－519	－12．4\％
60．5\％	3，909	3，654	－255	${ }_{-6.5 \%}$
${ }^{617.7 \%}$	3，895	${ }^{3,516}$	－379	－9．7\％
－63．0\％	－3.811 3,763 1	3,467 3,400	－344	－9．9\％\％
65．4\％	3，731	3，398	S33	${ }^{-8.9 \%}$
66．7\％	－ 3.683	3，298	－385	－10．4\％
69．1\％	3，606	${ }_{3,267}^{3,287}$	${ }_{-33}$	${ }^{-9.4 \%}$
70．4\％	3，602	3，258	－34	－9．5\％
71．6\％	3，4988	3，047	－451	－12．9\％
72．8．1\％	－	3，014	－463	－13．3\％
75．3\％	3，259	${ }_{2,963}^{2,964}$	${ }_{-29}$	${ }_{-9.1 \%}$
76．5\％		2，901	－341	－10．5\％
77．8\％	3，222	2.801	－421	－13．1\％
79．0\％	3，121	${ }_{2}^{2,776}$	${ }^{-345}$	－11．1\％
－	3，090	2，494	－596	－19．3\％
－${ }_{\text {81．5\％}}^{8.75 \%}$	－3．087	2，484	－603	－19．5\％
827\％	${ }_{2,923}^{2,958}$	2,444 2.270	－653	－17．4．3\％
85．2\％	2，895	${ }_{2}^{2,214}$	－681	－23．5\％
${ }^{86.4 \%}$	2，859	${ }^{2,127}$	－732	－25．5\％
88．9\％	${ }_{2,804}^{2,856}$	${ }_{2,084}^{2,121}$	－721	－25．7\％
90．1\％	2,613	${ }_{2}^{2,078}$	－535	－20．5\％
91．4\％	${ }^{2,564}$	${ }^{2,071}$	－533	－20．5\％
93．8\％	${ }_{2,219}^{2,19}$	${ }_{1,875}^{1,985}$	－344	${ }_{-15.5 \%}$
95．1\％	2，118	1，796	－322	－15．2\％
96．3\％	${ }^{1,859}$	1，712	－147	
97．5\％	1，726	${ }^{1,681}$	45	－2．6\％
98．8\％	1,537 1,391	1,508 1.406	$\begin{array}{r}-49 \\ \hline 15\end{array}$	－3．1\％

 \begin{tabular}{ll}

1.2%	11,888
2.5%	11,424

\hline
\end{tabular}

August				
Percent Exceedance	$\begin{gathered} \text { DCR 2015.5 Whthout } \\ \text { Proiect } \\ \hline \end{gathered}$	DCR 2015 With Project	Absolute Difference	Relative
Probability	Montly Fow（CFSS）	Monthy Fow（cFs）	（CFS）	
				1．7\％
1．2\％	${ }_{9,302}$	${ }_{9,363}$	61	
2．5\％	9，287	9.029	${ }^{258}$	－2．8\％
3．7\％	9，235	8，956	279	
4．9\％	9，170	8，942	228	
6．2\％	9，151	8，939	212	
7．4\％	9，064	${ }^{8.897}$	－167	－1．8\％
8．6\％	${ }_{8}^{8,963}$	8，764	200	－2．2\％
9．9\％	8，962	${ }^{8,747}$	215	－2．4\％
11．1\％	8.958	8，742	－216	－2．4\％
${ }^{12.3 \%}$	8，932	8，694	${ }_{2} 238$	${ }^{-2.7 \%}$
13．6\％	${ }_{8}^{8,786}$	8，669	－17	－1．3\％
14．8\％	8，781	8，457	－330	
16．0\％	8，769	${ }_{8}^{8,237}$	－532	－6．1\％
17．3\％	8，7750	${ }_{8,176}^{8,17}$	－554	${ }^{-6.3 \%}$
19．8\％	8，727	8,123	605	－6．9\％
21．0\％	${ }^{8.697}$	7.814	883	－10．1\％
22．2\％	${ }^{8.669}$	${ }^{7}, 802$	867	－10．0\％
－ 22.47%	${ }_{8}^{8.5080}$	7725	${ }_{-783}$	－
25．9\％	8，297	7，641	－656	－7．9\％
27．2\％	8.202	7.456	．745	－9．17
28．4\％	8，185	7，439	－746	－9．1\％
29．6\％	${ }^{8.077}$	7，217	860	10.6
30．9\％	7，990	7，143	847	－10．6\％
32．1\％	7，960	7，093	867	－10．9\％
33．3\％	7，955	7，031	-924	－11．6\％
34．6\％	${ }^{7} .639$	${ }^{6,964}$	－675	－8．8\％
35．8\％	7，119	6，897	－222	－3．1\％
37．0\％	${ }^{6.896}$	${ }^{6,738}$	－158	－2．3\％
38．3\％	6，737	6，674	${ }^{-63}$	－0．9\％
39．5\％	${ }_{6,341}$	6，549	209	3．3\％
40．7\％	${ }_{6}^{6,331}$	${ }^{6,199}$	－133	\％
43．2\％	${ }_{6,292}$	6，065	${ }_{-227}$	－3．6\％
44．4\％	5，977	6，026	49	0．8\％
45．7\％	5，700	5，943	243	4．3\％
46．9\％	5，428	5．626	198	3．6\％
48．1\％	5，229	5，294		\％
49．4\％	5，204	5，246	${ }^{43}$	0．8\％
50．6\％	5，042	5，111	69	1．4\％
51．9\％	4，998	5，030	32	0．6\％
53．1\％	4，978	4．842	－136	－2．7\％
54.3% 556%	4．873	4．816	－57	－1．2\％
55．6\％	4，754	4，802	49	1．0\％
56．8\％	4，747	4，752	6	0．1\％
年58．0\％	4，655	4，688	33	0．7\％
	${ }_{4}^{4.471}$	4，642	171	3．8\％\％
60．5\％	${ }^{4.463}$	4，600	${ }^{137}$	3．1\％
61．7\％	${ }_{4}^{4,117}$	${ }_{4}^{4,465}$	348	8．5\％
－63．0\％	${ }_{4011}^{4.013}$	${ }_{4}^{4,422}$	409	10．2\％
－64．2\％${ }^{6.4 .4 \%}$	4，011	4，175	164	4．1\％
${ }^{65.4 \%}$	3.921 3.803	4,034 3,968	${ }_{164}^{113}$	${ }_{4.3 \%}^{2.9 \%}$
67．9\％	3，769	3，951	182	4．8\％
69．1\％	3，490	3，927	437	5\％
70．4\％	3．293	${ }_{3.878}$	585	
71．6\％	3，266	${ }^{3,715}$	450	13．8\％
72．8\％	3，203	3，556	353	11．0\％
74．1\％	3，067	3，493	426	13．9\％
75．3\％	2.869	2，960	91	3．2\％
76．5\％	${ }^{2.5655}$	${ }^{2.567}$	2	0．1\％
77．8\％	2，452	2，532	80	3．3\％
79．0\％	2，405	${ }^{2.512}$	107	4．5\％
80．2\％	2，391	2，329	${ }^{62}$	－2．6\％
81．5\％	${ }_{2,305}$	2，316	11	${ }^{\text {0．5\％}}$
－ 82.78	2，045	2，283 2，258 2，	238	${ }^{11.6 \%}$
84．0\％ 88.2%	2，020	2，258	${ }^{238}$	11．8\％
－ $8.5 .2 \%$	2,002 1883	2,102 1080	99	5．0\％
86．4\％	－	－	97	5．2\％
－ $\begin{aligned} & 87.7 \% \\ & 889 \%\end{aligned}$	（1，856	1,708 1,699	－${ }_{-68}$	－8．0\％
90．1\％	${ }_{1,723}$	${ }_{1,594}$	－129	－7．5\％
91．4\％	1，705	${ }^{1,532}$	－173	10．1\％
92．6\％	1.695	1，530	165	－9．8\％
93．8\％	1，568	1，451	117	－7．5\％
${ }_{9}^{95.19 \%}$	1.544 1.400	1，419	${ }^{-126}$	－8．1\％
97．5\％	${ }_{1}^{1,384}$	${ }_{1}^{1,372}$	－12	
98．8\％	1，372	${ }_{1}^{1,335}$	－37	－2．7\％

		Seplember		
$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \end{aligned}$	$\underset{\substack{\text { DCR } 2015 \text { Without } \\ \text { Proiet }}}{\text { ．}}$	DCR 2015 With Project	Absolute Difference	
Probabality	Monthly Fow（cFs）	Monthly Fow（CFS）	（cFs）	Difference（\％）
－ $\begin{aligned} & 0.0 \% \\ & 1.2 \% \\ & 1.2 \%\end{aligned}$	${ }^{10.834}$			${ }_{\text {coion }}^{0.0 \%}$
－${ }_{\text {cki．2\％}}^{2.5 \%}$	10，759	${ }^{10,743}$	17	－0．2\％
3．7\％	${ }^{10,719} 10.714$	10,714 10,700	$\stackrel{-5}{-14}$	－0．0\％
4．9\％	10，700	10，670	${ }^{-30}$	－0．3\％
6．2\％	10，688	10，655	${ }^{33}$	0．3\％
7．4\％	10，670	10，648	${ }^{-22}$	－0．2\％
8．9\％	${ }^{10,648}$	10，636	${ }^{-11}$	－0．1\％
9．9\％	10，636	10，630	${ }^{-6}$	
11．13\％	10，630	10，616	14	－1\％
13．6\％	${ }_{10,616}^{10,20}$	${ }^{10,582}$	－35	－0．3\％
	10，609	10，512	－97	－0．9\％
16．0\％	10，609	10，479	130	
17．3\％	10，556	10，275	281	
18．5\％	10，479	10，251	229	
19．8\％	10，241	10，233	－8	－0．1\％
21．0\％	10，229	9，777	452	
${ }^{22.2 \%}$	10，151	9，753	398	
23．5\％	10，147	${ }^{9}, 455$	－692	－6．8\％
24．7\％	10，021	${ }^{9,076}$	－945	－9．4\％
25．9\％	${ }^{9.503}$	9，052	－451	－4．7\％
27．2\％	9，136	${ }_{\text {8，821 }}^{8,782}$	－315	－3．5\％
${ }^{28.4 .4}$	${ }^{9,025}$	8，782	－243	－2．7\％
	8，996	${ }_{8,628}$	${ }^{-368}$	－4．1\％
30．9\％	8，872	8.611	－261	－2．9\％
32.1% 33.3%	8，709	8，604	－105	－1．2\％
㐌34．3\％\％	${ }^{8.658}$	8，453	－205	
34.6% 358%	8，649	－${ }_{8}^{8,422}$	－227	
35．7\％	${ }_{8,341}^{8,464}$	${ }_{8,158}^{8.218}$	－	－2．2\％
38．3\％	8，310	${ }_{8,073}$	－237	
	8，200	7，917	－282	\％
42．0\％	${ }_{7}$	7,038 6.238	${ }_{1}^{1,694}$	
43．2\％	6，704	6，006	－698	－10．4\％
44．4\％	6，672	5，887	－785	－11．8\％
45．7\％	6，450	5，799	－651	－10．1\％
${ }^{46.9 \%}$	6,245 6.150 6	5.702 5446	－543	－ 8.7 － 1.5%
49．4\％	6，114	5，330	－785	－128\％
50．6\％	6，092	5.220	－872	－14．3\％
51．9\％	${ }_{6}^{6.022}$	${ }_{5}^{5.018}$	${ }^{1.0005}$	16．7\％
53．1\％	5．815	5.004	－811	－13．9\％
54．3\％	5，397	4，946	${ }_{-}^{450}$	3，\％
55．6\％	5，199	4，934	－265	
年56．8\％\％	5,169 4.978	${ }_{4}^{4,8501}$	－187	
${ }_{59.3 \%}$	4，957	4.607	${ }_{-351}^{-187}$	－7．1\％
60．5\％	4，784	4，358	－427	－8．9\％
61.7% 630%	4，189	4，240	50	1．2\％
64．2\％	${ }_{3}^{4,095}$	4	${ }^{63}$	
${ }^{64.4 .4 \%}$	${ }_{\substack{3,120}}^{\text {3，998 }}$	${ }_{3,898}^{4,089}$	778	24．9\％
66．7\％	2.886	${ }_{3,680}$	994	37.0
67．9\％	2,655	${ }^{3.658}$	1，003	
69．1\％	${ }^{2.549}$	3，511	962	
70．4\％	${ }^{2,457}$	2，983	526	21．4\％
71．6\％	2，324	2，754	430	18．5\％
72．8\％	2，261	2,713 269	${ }^{453}$	20．0\％
75．3\％	1，991	2,666	674	33．9\％
76．5\％	1，794	2.521	727	40．5\％
77．8\％	－1．788	${ }_{2}^{2,477}$	690	38．6\％
（79．0\％	－1，773	2，399	${ }_{526} 62$	35．3\％
${ }^{801.5 \%}$	1，704	¢，	559	${ }_{3}^{29.8 \%}$
82．7\％	1，564	2，202	${ }_{698}^{638}$	40．8\％
84．0\％	${ }^{1,492}$	2，059	567	38．0\％
	${ }_{1}^{1,4855}$	${ }_{1}^{1,898}$	435	2．1．\％
${ }^{86.4 \%} 8$	（1，482）	${ }_{1,795}^{1.709}$	${ }_{313}$	${ }^{212 \%}$
88．9\％	${ }_{1,425}^{1,462}$	1，772	347	24．4\％
90．1\％	1，406	1，709	304	21．6\％
91．4\％	1，389	1，653	264	
92．6\％	1，388	1，584	196	
93．8\％	1，388	1，559	171	
${ }_{9}^{95.3 \%}$	1,384 1,275 1	${ }^{1,499}$	111	8．0\％
97．5\％	${ }_{1,267}^{1,245}$	${ }_{1,392}^{1,46}$	125	${ }_{9.9 \%}$
98．8\％	1，235	1，299	6^{6}	5．1\％
100．0\％	1，166	1，234	68	5．9\％

Figure SW-47-b
American River at Mouth, Monthly Flow

December				
Percent Exceedance	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	Absolute Difference	
Probability	Montly Fow (CFS)	Monthly Fow (CFS)	(CF5)	
0.0\%	19,126	${ }^{20,319}$	1,193	6.2\%
1.2\%	${ }^{16,284}$	16,284	0	0.0\%
2.5\%		${ }^{10,272}$	${ }^{260}$	
3.7\%	51,009	15,5925	${ }^{14}$	
4.9\%	${ }^{15,726}$	${ }^{13,220}$	${ }^{-6}$	
6.2\%	${ }^{12,5124}$	12,545	9090	
7.4.\%	${ }_{8}^{\text {9,5580 }}$	${ }_{8,566}$	-14	
9.9\%\%	${ }_{7} \mathbf{7} 108$	71002	-6	
11.1\%	${ }_{6,749}$	${ }_{6,734}$	${ }_{-14}$	-0.2\%
12.3\%	5,241	6,299	1,057	20.
13.6\%	4,660	4.775	116	2.5\%
14.8\%	4,595	4,723	128	2.8\%
16.0\%	3,990	4,653	663	16.6\%
17.3\%	${ }^{3,828}$	4,080	${ }^{253}$	6.6\%
18.5\%	3,636	3,633	-2	.1\%
19.8\%	3,407	3,463	56	1.6\%
21.0\%	${ }^{3.246}$	${ }^{3,378}$	${ }^{132}$	
${ }^{22.2 \%}$	2,881	${ }^{3,246}$	${ }^{365}$	
-23.5\%	${ }_{2}^{2,729}$	${ }_{2}^{2,822}$	${ }^{93}$	
25.9\%	${ }_{2,448}^{2.465}$	${ }_{2,376}$	-72	${ }_{-2.9 \%}$
27.2\%	2,149	2,328	179	8.3\%
28.4\%	2,069	2,327	257	
29.6\%	2.003	2,143	139	6.9\%
30.9\%	2,000	2,032	32	1.6\%
32.1\%	2.000	2.000	0	0.0\%
33.3\%	2.000	2,000	0	
34.6\%	1,975	2,000	25	1.3\%
33.8\%	1,959	2,000	41	2.1\%
37.0\%	1,958	2,000	${ }^{42}$	2.2\%
38.3\%	${ }^{1,933}$	${ }^{1,994}$	61	3.2\%
39.5\%	1,932	${ }^{1,933}$	1	0.0\%
40.7\%	1,899	${ }^{1,933}$	${ }^{34}$	1.8\%
42.0\%	1,885	1,900	14	0.8\%
43.2\%	${ }^{1,8884}$	${ }^{1,884}$	\%	
44.4.9	${ }^{1,877}$	1,884	7	0.4\%
45.7\%	${ }^{1,874}$	${ }^{1,876}$	2	0.1\%
46.9\%	${ }^{1,872}$	${ }^{1,873}$,	
48.1\%	${ }_{1}^{1.863}$	${ }_{1}^{1,871}$	8	0.4\%
50.6\%	1.859	1.864	4	
51.9\%	1,857	1,860	3	
53.1\%	1,857	${ }^{1.860}$	3	
54.3\%	1,856	1,858	3	0.1\%
55.6\%	1,848	1,857	10	5\%
56.8\%	${ }^{1,841}$	${ }^{1,855}$	14	8\%
58.0\%	1,840	1,855	15	0.8\%
59.3\%	1.838	${ }^{1,847}$	9	0.5\%
60.5\%	1,830	${ }^{1,844}$	14	0.7\%
61.7\%	1,829	1,842	13	0.7\%
63.0\%	${ }_{1,826}$	${ }^{1,832}$	6	0.3\%
64.2\%	1,817	${ }^{1,829}$	12	\%
-65.4\%	- ${ }_{1}^{1.813}$	(1,828	${ }^{16}$	\%
${ }^{66.77 \%}$	1,674	${ }^{1,818}$	144	\%
67.9\%	1,663	${ }_{1,813}^{1,787}$	149	9.0\%
69.1\%	-1,623	1,787 1,765 $\substack{1,785 \\ \hline}$	${ }_{208}^{165}$	${ }^{13.23 \%}$
71.6\%	${ }_{1}^{1.553}$	${ }_{1}^{1,712}$	${ }_{175}^{208}$	11.4\%
72.8\%	1,532	1.641	108	
74.1\%	1,515	1.629	115	
75.3\%	${ }_{1,428}$	1.628	99	.0\%
76.5\%	1,421	1,619	98	
77.8\%	1,381	1.595	214	5\%
79.0\% 80.2%	1,360	1,584	223	16.4\%
-	1,313 1,285	1,504	191	- ${ }_{\text {14.2\% }}$
82.7\%	${ }_{1}^{1,278}$	${ }_{1}^{1,203}$	-76	-5.9\%
84.0\%	1,057	1,106	49	4.6\%
85.2\%	1.054	1,089	${ }^{34}$	3.3\%
86.4\%	1,011	${ }^{1,013}$	3	\%
87.7\%	914	${ }^{1} .0005$	${ }^{92}$	10.0\%
-88.9\%	794	913	${ }^{120}$	${ }^{\text {9.2\% }}$
91.4\%	711	753	42	5.9\%
92.6\%	704	723	18	2.6\%
93.8\%	${ }_{689} 68$	704 689	15 	${ }_{\text {a }}^{\text {2.2\% }}$
${ }_{96.3 \%}$	680	673	${ }_{-7}$	-1.1\%
97.5\%	500	651	151	
98.8\% 100.0\%	500 500	500 500	\bigcirc	${ }^{0.0 \% \%}$

		February		
Percent Exceedance	DCR 2015 Without Proiect	DCR 2015 W With Project	Absolute Difference	Relative
（exceadice	Monthy Foioct（CFS）	Monthy Fow（CFS）	（CFS）	
0．0\％	32，621	32，620	－1	0．0\％
1．2\％	15，988	15.982	－6	0．0\％
2．5\％	${ }^{13,581}$	－13，581	0	0．0\％
3．7\％	13，481	13，481	0	0．0\％
4．9\％	13,208 13049	13,208 13051	0	0．0\％
－6．4\％	13,049 12.917	－	$\stackrel{2}{-5}$	0．0．0\％
8．6\％	12，729	${ }^{12,732}$	3	0．0\％
9．9\％	12，219	${ }^{12,216}$	－3	0．0\％
	11,405 10,459	11,405 10,457	${ }_{-3}$	－ 0.0%
13．6\％	10.444	10.444	0	0．0\％
14．8\％		${ }^{10,132}$	${ }^{13}$	0．1\％
16．0\％	10，098	10，119	21	0．2\％
17．3\％	9.878	9.878	0	0．0\％
18．5\％	${ }^{9,827}$	${ }^{9,827}$	0	0．0\％
19．8\％	9,278	9,278		0．0\％
21．0\％	8.196	8.377	181	2．2\％
22，2\％	7,481	7,481		
－${ }_{24}^{23.5 \%}$	7,723	${ }_{7}^{7,223}$	0	0．0\％
24.7% 25.9%	7，246	7，246	0	0．0\％
25．9\％	7，231	7，231	0	－0．0\％
28．4\％	${ }_{6,899}^{6,981}$	${ }_{6,682}^{6,684}$	－217	${ }_{-3.1 \%}^{-0.2 \%}$
29．6\％	6，682	${ }_{6,494}$	－188	－2．8\％
	6，494	${ }^{6,374}$	－119	－1．8\％
${ }^{32.15}$	${ }_{\substack{6.686}}^{6,374}$	${ }_{5}^{6,307}$	${ }^{-68}$	－1．4\％
34．6\％	5.625	5.676	52	0．9\％
	5．465	5．465		
隹 $\begin{aligned} & 37.0 \% \\ & 38.3 \%\end{aligned}$		5,296 5 5	－9	${ }^{-0.2 \% \%}$
30．5\％	5 5，093	5.093	0	0．0\％
40．7\％	4，988	4.988	0	0．0\％
42．0\％	4，789	4，789	113	0．0\％
43．2\％	－4，532	㐌，645	${ }^{113}$	2．5\％
44．4\％	年，734	－ $\begin{aligned} & 3,737 \\ & 3 \\ & 3\end{aligned}$	${ }_{-27}$	0．1\％
45．7\％	3，330	3，303	－27	－0．8\％
46．9\％	3，303	${ }^{3,277}$	-26	－0．8\％
48．1\％ 4.4%	－${ }_{\text {3，886 }}$	3,186 2，699	${ }_{-168}$	－5．9\％\％
50．6\％	${ }_{2,780}^{2,780}$	${ }_{2,598}^{2,599}$	－183	－0．6\％
51．9\％	2，664	2，562	－102	－3．8\％
53．19\％	2，494	2,299 2178	－194	－7．7\％
54．3\％ 5 5	2，305	2，178	－127	－5．5\％
56．8\％	${ }_{\substack{2,1184 \\ 2,102}}^{2,1}$	${ }_{2,014}^{2,041}$	－	－-6.4%
58．0\％	2，000	2，000		0．0\％
59．3\％	1，916	2,000	84	4．4\％
60．5\％	1，683	1,916	233	13．8\％
617\％${ }_{\text {63，}}^{6.7}$	${ }_{1,590}^{1,591}$	1,768 1,652	${ }_{62}^{177}$	－${ }_{\text {11．9\％}}$
64．2\％	${ }_{1,588}$	${ }_{1,591}$	3	0．2\％
65．4\％	1，570	${ }_{1}^{1.588}$	18	1．2\％
66.7% 679%	1，502	1，570	68	4．5\％
67．9\％	1.501 1.392	＋1．500	${ }_{73}$	${ }^{0.0 \%}$
70．4\％	${ }_{1}^{1,388}$	1,430	43	3．1\％
71．6\％	1，341	1,388	46	3．5\％
72．8\％	${ }_{1}^{1,325}$	1,341	16	1．2\％
74．1\％${ }^{753 \%}$	1,314 1,313 1 1	1,325 1,314 1	$\stackrel{11}{2}$	${ }^{0.8 \%}$
76．5\％	1，291	$\xrightarrow{1,313}$	${ }_{22}^{2}$	
778\％	1，282	1，282		0．0\％
79．0\％	1，271	1，271	0	0．0\％
80．2\％	1,269 1,266 1.220	1,269 1,266 1220	0	0．0\％
82．7\％	1，159	${ }_{1,232}$	73	6．3\％
84．0\％	1，151	$\stackrel{1,225}{1187}$	${ }^{73}$	${ }^{6.4 \%}$
－${ }_{\text {85．4\％}} 8.2$ \％	1,1098 1,098 108	${ }_{\substack{1,114 \\ 1,187}}^{1,128}$	85 16	7．5\％
87．7\％	1，095	1，100	5	0．4\％
88．9\％	1，034	1，100	65	6．3\％
90．1\％	975	990	15	1．6\％
914．4\％	${ }_{783} 93$	852	${ }^{-80}$	－8．6\％
92．6\％${ }_{93.8}$	${ }_{761}^{783}$	${ }^{850}$	68	8．6\％
${ }^{93.85 \%}$	${ }_{687}^{761}$	${ }_{634}^{761}$	${ }_{53}$	－
96．3\％	${ }^{634}$	634	1	－0．1\％
97．5\％	${ }^{250}$	${ }^{280}$	30	
988．8\％ 100.0%	250 250	250 250	\bigcirc	

Percent	DCR 2015 Without	DCR 2015 With Project		Relative
Exceedance	${ }_{\text {Montly }}^{\text {Proiect }}$（cFs）	Montly Flow（CFs）	Difference （CFS）	ference（\％）
0．0\％	15，357	15，357	0	0．0\％
1．2\％	10，135	10，135	0	0．0\％
2．5\％	8，724	8，724	0	0．0\％
3．7\％	7，058	7，058	0	0．0\％
－4．9\％ 6.2%	6，976 6.931	6，976 6.931	0	${ }^{0.0 \% \%}$
－ 6.2%		－6，931 6.492	－	
8．6\％	${ }_{6,273}$	${ }_{6,273}$	0	0．0\％
9．9\％	5，999	5，999	0	0．0\％
11．1\％	5.896	5.928	32	
12．3\％	5．843	5，843	0	
13．6\％	5．807	5.807	0	
14．8\％	5．616	5．605	11	
16．0\％	5．567	5．567	0	0．0\％
17．3\％	5，427	5，417	－9	
18．5\％	5，118	5，118	0	0．0\％
19．8\％	4，997	4，996	0	0．0\％
21．0\％	4，640	4，640	0	0．0\％
${ }^{22.2 \%}$	4，508	4，508	0	0．0\％
23．5\％	4，478	4，478	0	\％
${ }^{24.79 \%}$	4，433	4，432	0	0．0\％
27．72\％	＋4，284	4，284	0	
28．4\％	3，866	${ }^{4} 8885$	${ }_{131}^{288}$	7．5\％
29．6\％	${ }_{3,753}$	${ }_{\text {cher }}^{\substack{\text { 3，755 }}}$	${ }_{3}$	0．1\％
30．9\％	3，711	3，711	0	0\％
32．1\％	3，706	3，706	，	．0\％
－33．3\％	${ }^{3,334}$	${ }^{3,335}$	1	
34．6\％	－3，	－	－5	
${ }^{35.0 \%}$		－${ }_{3,240}$	${ }_{-4}$	－0．1\％
38．3\％	3，214	3，214	0	0．0\％
39．5\％	3，153	3，000	－153	－4．9\％
40．7\％	3，000	3，000	0	0．0\％
42．0\％	${ }^{3}, 000$	${ }^{3}, 000$	0	0．0\％
43．2\％	3，000	2，760	240	－8．0\％
44．4\％	${ }^{2} 27800$	2，708	－52	－1．9\％
45．7\％	2，708	2，598	110	－4．1\％
46．9\％	${ }_{2}^{2.598}$	2,540 258	${ }^{58}$	－2．2\％
48．19\％	2，526	2．528	2	0．1\％
49．4\％	${ }_{2}^{2,433}$	${ }_{2}^{2,433}$	0	0．0\％
50．6\％	${ }_{2}^{2,428}$	2.419 2,372	-9	
55．9\％	2,375 2.372	2,372 2 2	${ }_{-7}$	
${ }_{54.3 \%}^{53.3 \%}$	${ }_{2,302}^{2,372}$	${ }_{2,302}^{2,302}$	－10	－2．0\％
55．6\％	2，302	2，255	47	
56．8\％	2，273	2，097	176	
58．0\％	2，267	2，085	182	－8．0\％
59．3\％		1，848	249	．9\％
60．5\％	1，848	1，734	115	－6．2\％
61．7\％	1，709	${ }^{1,624}$	84	－4．9\％
63．0\％	${ }^{1,624}$	1，601	${ }^{24}$	－1．5\％
${ }^{64.2 \%}$	1，599	1，556	${ }^{43}$	－2．7\％
65．4\％	1，555	${ }^{1,554}$	－1	－0．1\％
${ }_{66.7 \%}$	1，554	1，551	－3	${ }^{-0.2 \%}$
${ }^{667.9 \%}$	1，551	1，550	－2	－0．1\％
69．1\％	1，550	${ }^{1,546}$	4	${ }^{-0.2 \%}$
70．4\％	1，546	${ }^{1,532}$	－13	－0．9\％
71．6\％${ }^{728 \%}$	1，532	1，524	－9	－0．0\％\％
（74．19\％	1，524	1，482	－42	${ }_{-2,29 \%}^{-2.7 \%}$
${ }_{75}{ }_{75,3 \%}$	（1，4822	（1，4399	${ }_{-25}^{-43}$	－-1.9%
76．5\％	${ }_{1}^{1,276}$	${ }_{1}^{1,276}$	0	0．0\％
77．8\％	1，242	${ }_{1}^{1,243}$	1	0．1\％
79．0\％	${ }^{1,2222}$	${ }_{1,232}^{102}$	11	0．9\％
	1104	${ }_{1}$	${ }^{56}$	5．0\％\％
${ }_{827 \%}$	${ }_{1}^{1,064}$	${ }_{9}^{1}$	－93	－8．8\％
84．0\％	970	884	${ }_{-86}$	－8．9\％
85．2\％	886	839	${ }_{-47}$	－5．3\％
86．4\％	703	827	124	17．6\％
87．7\％	681	825	144	21．2\％
88．9\％	651	816	165	25．4\％
90．1\％	648	815	167	25．8\％
914\％	${ }_{627} 627$	763	136	21．6\％
92．6\％	${ }_{6}^{627}$	703	${ }_{36} 7$	12．2\％
93．8\％	${ }_{6} 623$	${ }_{653} 627$	${ }_{11}^{30}$	${ }^{4.8 \%}$
95．1\％	616	${ }_{623}^{627}$	17	年．8\％\％
－ 96.3%	605	${ }_{6}^{623}$	17	${ }^{2.8 \%}$
	605 188	605 582	394	209．8\％
100．0\％	188	357	169	90.0

Probability	Monthy fow（CFS）	Monthy Fow（cFs）	（CFS）	
${ }^{0.2 \%}$	${ }_{4,491}^{4.974}$	${ }_{4,413}^{4,974}$	${ }_{-78}$	${ }_{-1.7 \%}^{0.0 \%}$
2．5\％	4，417	4，399	－18	－0．4\％
3．7\％	4，413	4，388	－25	－0．6\％
4．9\％	4，399	4，386	－13	－0．3\％
6．2\％	4，397	4．382	－16	－0．4\％
7．4\％	4，396	4.375	21	－0．5\％
8．6\％	4，388	4，372	－17	－0．4\％
9．9\％	4，388	4，347	－41	－0．9\％
11．1\％	4，386	4，339	－47	－1．1\％
${ }^{12.36 \%}$	4，384	4，321	－63	－1．4\％
14．8\％	${ }_{4,378}^{4,382}$	＋1，3089	－${ }_{-74}$	－1．7\％
16．0\％	4.375	3，637	－739	－16．9\％
3\％	4，375	3，628	－747	
18．5\％	4，372	3，576	－795	－18．2\％
19．8\％	4，370	3，576	－794	－18．2\％
21．0\％	4，367	3，537	－830	－19．0\％
22．2\％	4，356	3，387	－969	－22．2\％
23．5\％	4，347	3，344	－1，003	1\％
24．7\％	4，339	3，332	－1，007	
25．9\％	4，339	3，271	－1，068	2．6\％
27．2\％	4，321	3，173	－1，148	－26．6
28．4\％	4，164	3，170	－993	－23．9\％
29．6\％	4，126	3，159	966	－23．4
30．9\％	4，051	3，121	－931	－23．0\％
32．1\％	${ }^{3,974}$	3，119	－856	－21．5\％
33．3\％	3.970	3，107	－863	－21．7\％
34．6\％	3，944	3，072	－873	－22．1\％
35．8\％	3，664	${ }^{3,046}$	－618	－16．9
37．0\％	${ }^{3,615}$	${ }_{2}^{2,980}$	－635	年．3\％
38．3\％	－${ }^{3.608}$	${ }_{2}^{2,769}$	－839	源
39．7\％	${ }^{3,576}$	${ }^{2,760}$	－725	源． 8%
42．0\％	3，476	${ }_{2,568}^{2,755}$	-725 -98	－
43．2\％	3，408	2.562	－845	－24．8\％
44．4\％	3，280	2.471	－808	－24．6\％
45．7\％	3，159	2，465	695	－22．0
46．9\％	3，072	2，454	－618	－20．1\％
48．19\％	3，055	2，357	698	－22．8\％
49．4\％	3，047	2，269	－778	－25．5\％
50．6\％	3，029	2，135	－893	－29．5\％
51．9\％	2，846	2，057	${ }^{-789}$	－27．7\％
年 53.12%	2，772	2，051	－722	－26．0\％
年 $54.3 \% \%$	2，693	${ }^{2,036}$	－657	－24．4\％
㐌5．6\％\％	2，633	2，027	－606	－23．0\％
56．8\％	${ }_{2}^{2,625}$	2，016	－609	－23．2\％
59．3\％	${ }_{2}^{2,553}$	${ }^{2}, 008$	－545	－21．4\％
59．5\％	${ }_{2}^{2,493}$	${ }^{1} 1.962$	－539	${ }_{-237}$
${ }^{60.17 \%}$	${ }_{2}^{2,486}$	${ }^{1,889}$	－589	－23．7\％
617．7\％	${ }_{2}^{2,462}$	＋1，879	－583	${ }_{-230 \%}$
64．2\％	${ }_{2}^{2,450}$	＋1．864	－586	－23．9\％
－6．5．4\％	${ }_{2269}^{2,357}$	${ }_{\text {l }}^{1,893}$	－514	－22．8\％
${ }^{6.5 .7 \%}$	${ }_{2,264}^{2,269}$	${ }_{\text {1，751 }}$	－514	－22．7\％
67．9\％	${ }_{2}^{2,251}$	1，750	－501	22．2\％
69．1\％	2，153	1，750	－403	18．7\％
70．4\％	2，135	1，750	385	\％
71．6\％	2，076	1，750	326	5．7\％
72．8\％	2，064	1，750	－314	－15．2\％
74.19% 753%	2，027	1，750	277	－13．7\％
75．3\％	2，016	1，750	${ }^{266}$	－13．2\％
76．7．8\％	2，008	1，750	－258	－12．8\％
77．8\％	2，007	1，750	${ }^{257}$	－12．8\％
79．0\％	1，897	1，750	－147	－7．7\％
－${ }^{80.2 \%}$	1，879	1，738	－140	－7．7\％
－${ }^{81.5 \%}$ 827\％	1，857	1，6596	－161	－8．7\％
822．0\％	－	＋1，598	－245	－13．3\％
84．2\％	1，750	1，595	－155	－8．9\％\％
85．4\％	1，750	1，592	－158	－9．0\％
－	1，750	${ }_{1}^{1,559}$	－299	－14．2\％
88．9\％	1,750 1,750	＋1，280	－470	－26．9\％
90．1\％	1，750	1，275	475	－27．2\％
${ }^{914.4 \%}$	1，712	1，274	438	－25．6\％
93．8\％	${ }_{1}^{1,579}$	（1，268	${ }^{-264}$	－17．3\％
．1\％	，	，106	54	
${ }_{96.3 \%}$	682	${ }_{1}^{1,027}$	${ }_{344}$	50．4\％
97．5\％	323	505	282	87．5\％
98．8\％	188	540	352	187．2\％

Figure SW-53-b
Sacramento River at Bend Bridge, Monthly Stage

Table SW-53-b

Table SW-53-b

Cramento Riveratit Bend Bridige Monthly Stage

Table SW-53-b
 Sacramento Rivera t Bend Bridge, Monthly Stage

		DCR 2015 With Project Monthly stage (FT)	$\begin{gathered} \text { Absolute } \\ \text { Difference (FT) } \end{gathered}$	Relative ifference (\%
$\xlongequal{\text { Probabality }} 0$	Monthly stage (FT)	Monthly Stage (FT)	0	
1.2\%	6	6		
2.5\%	6	6	0	0.0\%
3.7\%	6	6	0	-2.3\%
4.9\%	6	5	-1	-12.2\%
6.2\%	6	5	-1	-12.3\%
7.4\%	6	5	-1	-11.1\%
8.6\%	5	5	-1	-10.5\%
9.9\%	5	5	-1	-10.7\%
11.1\%	5	5	0	-9.1\%
12.3\%	5	5	0	-9.2\%
13.6\%	5	5	-1	-9.8\%
14.8\%	5	5	-1	-9.8\%
16.0\%	5	5	0	-9.0\%
18.5\%	5 5	5	\bigcirc	- -7.7%
19.8\%	5	5	0	-6.7\%
21.0\%	5	5	0	-6.7\%
22.5\%	5	5 5	\bigcirc	- $-.54 .9 \%$
24.7\%	5	5	0	-3.8\%
227.2\%	5 5	5 5	0	- ${ }_{\text {- }}^{\text {- }}$-3.8\% 0%
28.4\%	5	5	0	-3.0\%
29.6\%	5	5	0	-3.0\%
30.9\%	5	5	0	-2.9\%
32.1\%	5	5	0	-3.0\%
33.3\%	5	5	0	-3.0\%
34.6\%	5	5	0	-3.0\%
35.8\%	5	5	0	-1.9\%
37.0\%	5	5	0	-1.9\%
383\%	5	5	0	-2.7\%
3.5.5\%	5	${ }_{4}$	0	-1.9\%
($\begin{aligned} & 40.7 \% \\ & 42.0 \%\end{aligned}$	5 5	$\stackrel{4}{4}$	0	-2.3\% ${ }_{-2,3}$
43.2\%	5	4	0	${ }_{-2.1 \%}$
44.4\%	5	4	0	-1.2\%
${ }^{4.79 \%}$		4		-1.9\%
48.1\%	5	${ }_{4}^{4}$	\bigcirc	-1.9\%
49.4\%	4	4	0	-1.0\%
${ }^{50.6 \%}$	4	4	0	-0.9\%
53.1\%	4	4	0	-0.8\%
54.3\%	4	4	0	-0.7\%
55.6\%	4	4	0	0.1\%
56.8\%	4	4	0	0.0\%
58.0\%	4	4	0	0.0\%
59.3\%	4	4	0	1.0\%
60.5\%	4	4	0	1.2\%
617\%	4	4	0	${ }_{\text {1.1. }}^{1.6}$
-63.0\%	4	4	0	2.1\%
64.2% 654.4	4_{4}^{4}	4	0	2.2\%
	4	4	0	${ }_{2}^{2.7 \% \%}$
67.9\%	+	4		3.3\%
69.1\%	4	4	0	3.7\%
70.4\%	${ }_{4}^{4}$	4	0	${ }_{5.3 \%}^{4.7 \%}$
72.8\%	4	4		6.3\%
74.1\%	${ }_{4}^{4}$	4	0	${ }_{7}^{6.1 \%}$
76.5\%	${ }_{4}^{4}$	4	0	8. ${ }^{7.0 \%}$
77.8\%	4	4	0	7.9\%
79.0\%	4	4	0	7.9\%
80.2\%	4	4	0	7.1\%
882.7\%	4	4	0	
84.0\%	4	4	0	6.8\%
85.2\%	4	4	0	5.0\%
86.4\%	4	4	0	4.1\%
877\%	4	4		3.3\%
${ }^{88.9 \%} \begin{aligned} & 901 \%\end{aligned}$	4		0	
91.4\%	4	4	0	3.0\%
92.6\%	4	4	0	3.6\%
${ }_{\text {95, }}^{93.8 \%}$	${ }_{3}^{4}$	4	\bigcirc	2.5.2\%
95.1. ${ }_{\text {96.3\% }}$	${ }_{3}^{3}$	${ }_{3}^{4}$	0	5.2\%
97.5\%	3	3	0	5.4\%
980.\% 100.\%	${ }_{3}$	${ }_{3}$	0	${ }_{9} 9.1 \%$

Figure SW-54-b
Sacramento River below Hamilton City, Monthly Stage

Table SW-54-b

Table SW-54-b

Sacramento River at Wilkins Slough, Monthly Stage

Table SW-56-b

98.8%

Table SW-56-b

 $\begin{array}{cccc} & & \\ \text { Proability }\end{array}$ Monthly Stage (FT)

Feather River near Gridley, Monthly Stage

Table SW-57-b

		Nowner					December		
Percent Exceedance		DCR 2015 With Project	$\begin{gathered} \text { Absolute } \\ \text { - Difference (FT) } \end{gathered}$	Relative Difference (\%)			DCR 2015 With Project	Absolute Difference (FT)	Relative Difference (\%)
Probability	Monthly Stage (fT)		Difference (FT)		Probability			Difference (FT)	Difference ($\%$
-									0.0\%
	${ }_{7} 7$	76	0	0.0\%	1.2\%	${ }_{78}$	79	1	
${ }^{2.5 \%}$	75	76	0	0.2\%	2.5\%	78	79	1	${ }^{1.3 \% \%}$
3.9\%	75	75	0	0.0\%	3.7\%	7	78		
6.2\%	75	75	0	0.0\%	4.9\%\%	76	${ }_{76}$	0	0.0\%
7.4\%	74	74	0	0.0\%	6.2\%	76	${ }_{76}$		0.0\%
8.6\%	74	74	0	0.0\%	8.6\%	76	76	0	0.0\%
9.9\%	74	74	0	0.0\%	9.9\%	76	76	0	0.0\%
11.1\%	74	74	0	0.0\%	111.1\%	76	76	0	0.0\%
12.3\%	74	74		0.0\%	12.3\%	76			
14.48\%	74	74		0.0\%	12.6\%	76	76		0.0\%
\%		74				75	\%		
173\%	74	74	0	0.0\%	1730\%	75	75		
18.5\%	74	74	0	0.0\%	18.5\%	75	75	0	0.0\%
19.8\%	74	74	0	0.0\%	19.8\%	75	75	0	0.0\%
21.0\%	74	74	0	0.0\%	21.0\%	75	75		
22.2\%	74	74	0	0.0\%	22.2\%	75	75	0	
23.5\%	74	74	0	0.0\%	23.5\%	75	75	0	0.0\%
24.7\%	74	74	0	0.0\%	24.7\%	75	75	0	0.1\%
25.9\%	74	74	0	0.0\%	25.9\%	75	75	0	0.1\%
27.2\%	74	74	0	0.0\%	27.2\%	75	75	0	0.0\%
28.4\%	74	74	0	0.0\%	28.4\%	75	75	0	0.1\%
29.6\%	74	74	0	0.0\%	29.6\%	74	75	0	0.2\%
30.9\%	74	74	0	0.0\%	30.9\%	74	75		0.1\%
32.19\%	74	74	0	0.0\%	32.19\%	74	74	0	0.2\%
33.3\%	74	74	0	0.0\%	33.3\%	74	44		0.1\%
34.6\%	74	74	0	0.0\%	34.6\%	74	${ }_{74}$	0	
年3.8.8\%	74 74	74 74	0	0.0\%	357.	74 74	${ }_{74}^{74}$	0	0.4\%
38.3\%		74	0	0.0\%	38.3\%		74	0	0.2\%
39.5\%	74	74	0	0.0\%	3.5\%	74	74	0	
40.7\%	74	74	0	0.1\%	40.7\%	74	74	0	
42.0\%	74	74	0	0.3\%	42.\%	74	74	0	1\%
43.2\%	74	74	0	0.3\%	43.2\%	74	74	0	0.0\%
44.4\%	74	74	0	0.1\%	44.4\%	74	74	0	0.0\%
45.7\%	74	74	0	0.1\%	45.7\%	74	74	0	0.0\%
46.9\%	74	74	0	0.0\%	46.9\%	74	74	0	0.0\%
48.1\%	74	74	0	0.0\%	48.1\%	74	74	0	0.0\%
49.4\%	74	74	0	0.0\%	49.4\%	74	74	0	0.0\%
50.6\%	74	74	0	0.0\%	50.6\%	74	74	0	0.0\%
51.9\%	74	74	0	0.0\%	51.9\%	74	74	0	0.0\%
53.1\%	74	74	0	0.0\%	53.1\%	74	74	0	0.0\%
54.3\%	74	74	0	0.0\%	54.3\%	74	74	0	0.0\%
55.6\%	74	74	0	0.0\%	55.6\%	74	74	0	.0\%
	74	74	0	0.0\%	56.8\%	74	${ }_{74}$	0	.0\%
59.3\%	${ }_{74}^{74}$	${ }_{74}$	0	0.0\%	年58.3\%\%	74 74	74 74	0	0.0\%
60.5\%	74	74	0	0.0\%	60.5\%	74	74	0	0.0\%
61.7\%	74	74	0	0.0\%	61.7\%	74	74	0	0.0\%
-63.0\%	74	74	0	0.0\%	63.0\%	74	74	0	0.0\%
64.2% 654%	74	74	0	0.0\%	64.2\%	74	74	0	0.0\%
${ }^{65.4 \%}$	${ }_{74}^{74}$	74 74	0	0.0\%	${ }_{6}^{65.7 \%}$	74 74	74 74	\bigcirc	0.0\%
67.9\%	73	74	0	0.5\%	67.9\%	74	74	0	0.0\%
69.1\%	${ }^{73}$	${ }^{73}$	0	0.4\%	69.1\%	74	74	0	0.0\%
70.4\%	${ }^{73}$	${ }^{73}$	0	0.0\%	70.4\%	74	74	0	.0\%
71.6\%	${ }_{73}$	${ }_{73}$	0	0.0\%	71.6\%	74	74	0	0.0\%
72.8% 74.10	${ }_{73}$	73	0	0.0\%	72.8\%	74	74	0	0.0\%
74.19\%	73	73	0	0.0\%	74.1\%	74	74	0	0.1\%
75.3\%	73	73	0	0.0\%	75.3\%	73	73	0	0.2\%
76.5% 778%	73	73	0	0.0\%	76.5\%	73	73	0	0.0\%
77.8.0\%	73	73	0	0.0\%	77.8\%	73	73	0	0.1\%
79.0\%	73	${ }_{73}$	0	0.0\%	79.0\%	73	73	0	0.0\%
80.5\%	73 73	${ }_{73}$	0	${ }^{0.0 \% \%}$	-	${ }_{73}$	73 73	0	-
${ }^{82} 8.7 \%$	${ }_{73}$	73	0	0.0\%	${ }_{8} 8.27 \%$	73 73	73 73	\bigcirc	0.0\%
84.0\%	73	73	0	0.0\%	84.0\%	73	73	0	0.0\%
-	73	73	0	0.0\%	85.2\%	73	73	0	0.0\%
${ }^{80.47 \%}$	73	73		0.0\%	${ }^{80.47 \%}$	73	73		20\%
88.9\%	73	73	0	0.0\%	88.9\%	73	73	0	0.0\%
90.1\%	73	73	0	0.0\%	90.1\%	73	73	0	0.0\%
91.4\%	73	73	0	0.0\%	91.4\%	${ }^{73}$	73	0	0.0\%
${ }_{9}^{92.8 .8 \%}$	${ }_{73}^{73}$	${ }_{73}^{73}$	0	0.0\%	92.6\%	${ }_{73}$	${ }^{73}$	0	0.0\%
${ }^{93.8 .1 \%}$	73	73	0	-0.0\%	93.8\%	73	${ }_{73}$	0	0.0\%
96.3\%	73	73	0	0.0\%	96.3\%	73	73	0	0.0\%
97.5\%	${ }^{73}$	73	0	0.0\%	97.5\%	73	73	0	0.0\%
98.8\% 100.0\%	${ }_{73}^{73}$	73	0	0.0.0\%	98.8\% 00.0\%	${ }^{73}$	73	0	0.0.0\%

Table SW-57-b

Table SW-57-b

Figure SW-58-b
American River at Fair Oaks, Monthly Stage

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \\ & \hline \end{aligned}$	DCR 2015 Without Proiect Monthly Stage（FT）	DCR 2015 With Project Monthly Stage（ FT）	Absolute Difference（FT）	Relative Difference（\％）
0．0\％	\％	6	0	－1．4\％
1．2\％	6	6	0	－0．4\％
2．5\％	${ }_{6}^{6}$	${ }_{6}^{6}$	0	－1．3\％
4．9\％	${ }_{6}^{6}$	6	0	0．5\％
6．2\％	6	6	0	3．6\％
7．4\％	6	6	0	5．7\％
9．9\％	6 5	6 6	0	6．7．7\％
11．1\％	5	6	0	4．1\％
12．3\％	5	5	0	2．2\％
13．4\％	5	5	0	1．0\％
14．8\％ 16.0%	5	5	0	\％
－	5 5	5	0	－
18．5\％	5	5	0	1．1\％
19．8\％	5	5	0	1．1\％
21．0\％	5	5	0	2．6\％
${ }^{22.2 \%}$	5	5	0	${ }^{2.7 \%}$
－ 23.5	5	5	0	3．94\％
25．9\％	5	5	0	3．6\％
27．2\％	5	5	0	4．0\％
－ $28.4 .4 \%$	5 5	5 5	0	2．9\％\％
	5	5	0	
32．1\％	5	5	0	
			0	3．1\％
34．8\％	5	5	0	${ }_{\text {1．6\％}}^{2.7 \%}$
37．0\％	5	5	0	1．5\％
38．3\％	5	5	0	0．0\％
39．5\％	5	5	0	0．0\％
40．7\％	5	5	0	0．0\％
42．0\％	5	5	0	0．0\％
43．2\％	5	5	0	0．0\％
44．4\％	5	5	0	0．0\％
45．9\％	5	5	0	0．0\％
${ }_{48.1 \%}^{46.9 \%}$	5	5 5	\bigcirc	0．0\％
49．4\％	5	5	0	0．0\％
50．6\％	5	5	0	0．0\％
	5	5	\bigcirc	${ }^{0.0 \% \%}$
54．3\％	5	5	0	0．0\％
55．6\％	5	5	0	0．0\％
56．0\％	5	5	0	0．0\％
59．3\％	5	5	0	0．0\％
60．5\％	5	5	0	0．0\％
61．7\％	5	5	0	0．0\％
63．0\％	5	5	0	0．0\％
64．2\％	5	5	0	0．0\％
${ }^{654.4}$	5	5	0	0．0\％
${ }^{66.7 \%}$	5	5	0	0．0\％
67．9\％	5	5	0	0．0\％
69．1\％	5	5	0	0．0\％
70．4\％	5	5	0	0．0．0\％
72．8\％	5		0	0．0\％
74．19\％	5	5	0	0．0\％
75．3\％	5	5		0．0\％
76．5\％${ }_{778 \%}$	5	5	0	0．0\％
79．0\％	5	5	0	0．0\％
－	5	5	0	0．2\％
－${ }_{\text {815 }} 8.5 \%$	5 4	5	0	－
84．0\％	4	4	0	3．6\％
85．2\％	4	4	0	2．1\％
${ }^{86.4 \%}$	4	4	0	0．3\％
88．9\％	4	4	0	－
90．1\％	4	4	0	－4．9\％
91．4\％	4	4	0	－2．0\％
92．6\％	4	4	0	0．0\％
93．8\％	4	4	0	0．0\％
${ }_{9}^{95.3 \%}$	${ }_{4}^{4}$	${ }_{4}^{4}$	0	－
97．5\％	3	4		12．7\％
98．8\％	3	${ }^{3}$	0	0．0\％

Probability	Monthlo stage（fage（FT）	Monthly Stage（FT）	rence	Diferencer（\％）	Probabality	Monthliolstage（FT）	Montly Stage（FT）	rence	隹
0．0\％\％	11	${ }_{1}^{12}$	0	4．0\％	0．0\％				2．5\％
$\xrightarrow{1.2 \% \%}$	11	11	0	0．0\％	1．2\％\％	${ }_{12}^{12}$	${ }_{12}^{12}$	0	0．0\％
${ }_{3.7 \%}^{2.5 \%}$	${ }_{7}$	8		5．4\％	${ }^{2.57 \%}$	12 12	${ }_{12}^{12}$	0	0.7%
	7	7		0．0\％	40\％	11			
6．2\％	7	7	0	0．0\％	6．2\％	11	11	0	－0．4\％
7．4\％	7	7	0	0．0\％	74%	10	10	0	00\％
8．6\％	7	7	0	－2．2\％	8．6\％	9	9	0	0．0\％
9．9\％	7	7	0	－1．6\％	9．9\％	8	8	0	0．0\％
11．19\％	7	7	0	－1．7\％	111．1\％	8	8	0	0．0\％
${ }^{12.3 \%}$	7	7	0	－0．8\％	${ }^{12.3 \%}$	7	${ }_{7}$	1	8．0\％
13．6\％	7	7	0	－0．7\％	13．6\％	7	7	O	1．0\％
14．8\％	6	6	0	${ }^{0.75 \%}$	${ }^{1.8 .8 \%}$	7	7	0	6．5\％
17．3\％	6	${ }_{6}^{6}$	0	2．4\％	（17．3\％	6	7	0	2．3\％
18．5\％	6	6	0	2．0\％	18．5\％	6	6	0	0．0\％
19．8\％	6	6	0	2．2\％	19．8\％	6	6	0	0．9\％
21．0\％	6	6	0	2．2\％	21．0\％	6	6	0	0．7\％
22．2\％	6	6	0	0．7\％	22．2\％	6	6	0	4．9\％
23．5\％	6	6	0	2．7\％	23．5	6	6	0	0．8\％
24．7\％	6	6	0	2．5\％	24．7\％	6	6	0	2．8\％
25．9\％	6	6	0	2．5\％	25．9\％	6	5	0	1．3\％
27．2\％	6	6	0	3．4\％	27．2\％	5	5	0	1．9\％
28．4\％	6	6	0	1．9\％	28．4\％	5	5	0	2．6\％
29．6\％	6	6	0	2．0\％	29．6\％	5	5	0	1．6\％
30．9\％	6	6	0	2．2\％	30．9\％	5	5	0	0．8\％
32．1\％	6	6	0	2．2\％	32．1\％	5	5	0	1．1\％
33．3\％	6	6	0	2．2\％	33．3\％	5	5		0．5\％
34．6\％	6	6	0	${ }^{2.3 \%}$	34．6\％	5	5	0	1．0\％
35．8\％	6	6	0	1．9\％	35．8\％	5	5	0	1．9\％
37．0\％	6	6	0	${ }_{1}^{1.2 \%}$	37．0\％	5	5	0	2．7\％
38．5\％	6	6	0	1．2\％	38．3\％	5	5		1．8\％
${ }^{39.7 \%}$	${ }_{6}$	${ }_{6}$	0	${ }^{0.3 \% \%}$	39．5\％	5	5		0．6\％
${ }_{4}{ }^{40.20 \%}$	${ }_{5}^{6}$	${ }_{6}$	0	4．7\％	42．0\％	5	5	0	0．0\％
43．2\％	5	5	0	3．4\％	43．2\％		5	0	0．0\％
44．4\％	5	5	0	3．4\％	44．4\％	5	5	0	0．0\％
45．7\％	5	5	0	2．5\％	45．7\％	5	5	0	0．0\％
46．9\％	5	5	0	5．0\％	46．9\％	5	5	0	0．0\％
48．1\％	5	5	0	4．7\％	48．1\％	5	5	0	0．0\％
49．4\％	5	5	0	3．0\％	49．4\％	5	5	0	0．0\％
年 50.0% \％	5	5	0	2．4\％	50．6\％	5	5	0	0．0\％
53．1．${ }^{51.9 \%}$	5	5	0	2．6\％	51．9\％	5	5	0	0．0\％
54．3\％	5	5	0	1．4\％	53．1\％	5	5	0	0．0\％
54．3\％	5	5	0	0．7\％	54．3\％	5	5	0	0．0\％
55．8\％	5	5	0	0．0\％	55．6\％	5	5	0	0．0\％
56．8．8\％	5	5	0	0．0\％	56．8\％	5	5	0	0．0\％
${ }_{50.3 \%}^{58.0 \%}$	5	5	0	0．0\％	58．0\％		5		0．0\％
${ }^{59.3 \%}$	5	5	0	俍	59．3\％	5	5	0	${ }^{0.00 \%}$
61．7\％	5	5	0	${ }_{3.7 \%}$	61．7\％	5	5	0	0．0\％
63．0\％	5	5	0	4．6\％	63．0\％	5	5	0	0．0\％
${ }^{64.2 \%}$	5	5	0	${ }^{3.3 \%}$	64．2\％	5	5	0	0．0\％
${ }_{6}^{65.4 \%}$	5 5	5 5	\bigcirc	${ }^{2.4 \%}$	65．4\％ 66.7%	5 5	5	0	－
67．9\％	5	5	0	1．1\％	67．9\％		5	0	4．4\％
69．1\％	5	5	0	0．2\％	69．1\％	5	5	0	3．1\％
70．1．6\％	5	5		－${ }_{1}^{0.2 \%}$	70．4\％	5	5	0	年3．2\％
71．8．8\％	5	5	\bigcirc	${ }_{1}^{1.6 \%}$	71．2．8\％	5	5	0	${ }^{3.7 \% \%}$
74．1\％	5	5	0	2．6\％	74．1\％	5	5	0	2．2\％
75．3\％	5	5	0	2．6\％	75．3\％	5	5	0	3．6\％
76．5\％	5	5	0	3．3\％	76．5\％	5	5	0	3．6\％
79．0\％	5	5	0	${ }_{2.7 \%}^{3.7 \%}$	79．0\％	5	5	0	${ }^{\text {5．5．5\％}}$
80．2\％	5	5	0	1．7\％	80．2\％	5	5	0	4．2\％
81．5\％	4	4	0	0．9\％	81．5\％	4	4	0	0．9\％
－	4	4	0	1．9\％	82．7\％	4	4		${ }_{\text {a }}$
84．2\％	4	4	0	${ }_{\substack{2 \\ 3.7 \% \%}}^{\text {2．4\％}}$	－	4	4	0	${ }^{\text {1．5．3\％}}$
86．4\％	4	4	0	5．0\％	${ }^{86.4 \%}$	4	4	0	0．1\％
－	4	4	0	8．0\％	877\％\％	4	4	0	1．8\％
${ }^{80.1 \%}$	${ }_{4}^{4}$	${ }_{4}^{4}$	\bigcirc	${ }_{\text {3．1\％}}^{6.3 \%}$	988．9\％	${ }_{4}^{4}$	${ }_{4}^{4}$	0	${ }^{4.10 \%}$
91．4\％	4	4	0	1．0\％	91．4\％	4	4	0	0．0\％
92．6\％	4	4	0	0．0\％		4	4	0	0．0\％
${ }^{93.8 \%} 9$	4	4_{4}^{4}	0	0．0\％	93．8\％	4	4	0	0．0\％
${ }_{96.3 \%}$	3	4	0	11．1\％	996．3\％	4	4	0	0．0\％
97．5\％	3	4	0	5．1\％	97．5\％	3	4	0	0．6\％
98．8\％	3	3	0	0．0\％	98．8\％	3	3	0	0．0\％

Percent Exceedance	${ }^{\text {DCR2015 WWthout }}$	DCR 2015 With Project	$\begin{gathered} \text { Absolute } \\ \text { - Difference (FT) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
${ }^{\text {Probababily }} 0$	Monthly stage (FT)			0.0\%
0.0\%	${ }_{12}^{16}$	${ }_{12}^{16}$	0	0.0\%
1.2\%	11	12	0	0.0\%
2.5\%	11	11	O	0.0\%
3.7\%	11	11		0.0\%
4.9\%\%	11	11	0	0.0\%
7.4\%	11	11	0	0.0\%
8.6\%	11	11	0	0.0\%
\% $\%$	11	11	0	0.0\%
11.1\%	10	10	0	0.0\%
12.3\%	10	10	0	0.0\%
13.6\%	10	10	0	0.0\%
14.8\%	10	10	0	0.0\%
16.0\%	10	10	0	0.3\%
17.3\%	10	10	0	0.0\%
18.5\%	10	10	0	0.0\%
19.8\%	9	9	0	0.0\%
21.0\%	9	9	0	0.9\%
${ }^{22.2 \%}$	9	9	0	0.0\%
23.5\%	9	9	0	0.0\%
${ }^{24.59 \%}$	9	9	0	0.0\%
25.9\%	9	9	0	0.0\%
27.2\%	8	8	O	0.0\%
${ }^{28.6 \%}$	${ }_{8}^{8}$	8	0	-0.2\%
30.9\%	8	8	0	-0.3\%
32.1\%	8	8	0	
33.3\%			0	
34.6\%	8		0	
35.8\%	8	8	0	0.0\%
- ${ }_{\text {37. }}^{37.0 \%}$	7	7	0	0.0\%
38.3\%	7	7	0	-0.0\%
40.7\%	7	7	0	0.0\%
42.0\%	7	7	0	0.0\%
43.2\%	7	7	0	1.0\%
${ }^{44.4 \%}$	6	6	0	-0.5\%
45.7\%	6	6	0	0.0\%
46.9\%	6	6	0	0.0\%
48.1\%	6	6	0	-0.0\%
49.4\%	6	6	0	
50.9\%	6			- -2.8%
53.1\%	${ }_{6}$	${ }_{5}$	0	-0.9\%
54.3\%	5	5	0	-1.6\%
55.6\% 5688 8.8			0	-2.2\%
56.8\%	${ }_{5}^{5}$		0	-1.1\%
59.3\%	5	5	0	1.0\%
60.5\%	5	5	0	5.1\%
${ }^{617.7 \%}$	5	5	0	2.4\%
63.0\%	5	5	0	1.1\%
${ }^{64.2 \%}$	5	5	0	0.0\%
65.4\%	5	5	0	0.0\%
66.7\%	5	5	0	1.1\%
-67.9\%	5	5	0	2.7\%
69.1\%	4	5	0	${ }^{3.9 \%}$
70.4\%	4	5	0	0.2\%
71.6\%	4	4	0	0.0\%
72.8.10\%	4		0	年0.0\%
75.3\%	${ }_{4}^{4}$	4	\bigcirc	-0.0\%
76.5\%	4	4	0	0.0\%
77.8\%	4	4	0	0.0\%
89.0\%	4		O	0.0\%
81.5\%	4	4	0	0.7\%
82.7\%	4	4	0	1.5\%
84.0\%	4	4	0	0.9\%
85.2\%	4	4	0	2.1\%
86.4\%	4	4	0	0.7\%
877\%	4	4	0	1.0\%
88.9\%	4	4	0	1.8\%
90.1\%	4	4	0	0.9\%
914.4\%	4	4	0	-2.1\%
92.6\%	4	4	0	0.6\%
93.8\%	4	4	0	-0.4\%
95.1\%	4	4	0	0.0\%
-96.5\% ${ }_{\text {9, }}$	4	${ }_{3}^{4}$	\bigcirc	1.1.
98.8\%	3			0.0\%
100.0\%				0.0\%

 0.0\%
1.2\%
2.5%

0.0\%	${ }^{\circ}$	${ }^{\circ}$,	0.0\%	0.0\%			0	0.0\%
${ }_{\text {2.5\% }}^{1.2 \%}$	7	7	0	${ }^{-0.7 \% \%}$	${ }^{1.2 \%}$	7	7	0	0.0\%\%
3.7\%	7	7	0	0.0\%	3.7\%	7	7	0	0.0\%
4.9\%	7	7	0	0.0\%	4.9\%	7	7	0	0.0\%
6.2\%	7	7	0	0.0\%	6.2\%	6	6	0	0.0\%
7.4\%	7	7	0	0.0\%	7.4\%	6	6	0	0.0\%
8.6\%	7	7	0	0.0\%	8.6\%	6	6	0	0.0\%
9.9\%	7	7	0	0.0\%	9.9\%	6	6	0	0.0\%
11.1\%	7	7	0	0.0\%	-11.1\%	6	6	0	0.0\%
12.3\%	7	7	0	0.0\%	12.3\%	6	6	0	0.0\%
13.6\%	7	7	0	-0.8\%	13.6\%	6	6	0	0.5\%
14.8\%	7	7	0	-3.4\%	14.8\%	6	${ }_{6}$	0	1.2\%
16.0\%	7	7	0	-5.8\%	- 17.0% \%	6	6	0	0.3\%
4.8.3\%	7	7	0	${ }_{-6.6 \%}^{-6.1 \%}$	185\%	${ }_{6}$	${ }_{6}$	0	10\%
19.8\%	7	7	0	-6.7\%	19.8\%	6	6	0	-3.7\%
21.0\%	7	7	0	-6.9\%	${ }^{21.0 \%}$	${ }^{6}$	${ }^{6}$	0	-0.8\%
${ }^{22.2 \%}$	7	7	-1	-8.6\%	22.2\%	6	6		2.0\%
24.7\%	7	6	-1	-9.2\%	${ }^{24.7 \%}$	${ }_{5}$	${ }_{6}$	0	5.1\%
25.9\%	7	6	-1	-9.7\%		5	6	0	5.1\%
27.2\%	7		-1	-10.3\%	27.2\%	5	6	0	6.4\%
28.4\%	7	6	-1	-8.8\%	28.4\%	5	6	0	6.8\%
29.6\%	7	6	-1	-8.6\%	29.6\%	5	6	0	4.8\%
30.9\%	7	6	-1	-8.4\%	30.9\%	5	6		3.8\%
32.1\%	7	6	-1	-8.0\%	32.1\%	5	5	0	3.4\%
33.3\%	7	6	-1	-7.8\%	33.3\%	5	5	0	2.1\%
34.6\%	7	6	-1	-8.2\%	34.6\%	5	5	0	2.1\%
35.8\%	7	6	0	-6.4\%	35.8\%	5	5	0	2.7\%
37.0\%	7	6	0	-6.8\%	37.0\%	5	5	0	0.5\%
38.3\%	7	6	-1	-8.3\%	38.3\%	5	5	0	4.8\%
39.5\%	7	6	-1	-7.8\%	39.5\%	5	5	0	-0.4\%\%
42.0\%	7	6	-1	-8.9\%	42.0\%	5	5	0	-0.2\%
43.2\%	7	6	-1	-8.7\%	${ }^{43.2 \%}$	5	5	0	0.0\%
44.4\%	6	${ }_{6}^{6}$		-8.8\%	${ }^{44.4 .7 \%}$	5 5	5	0	0.8\%
46.9\%	6	6	-1	-7.9\%	46.9\%	5	5	0	.5\%
48.1\%	6	6	0	-7.6\%	48.1\%	5	5	0	6\%
49.4\%	6	6	-1	-9.6\%	49.4\%	5	5	0	15\%
50.6\%	6	6	-1		50.6\%	5	5	0	1.9\%
51.9\%	6	6	-1	-8.4\%	51.9\%	5	5	0	2.9\%
53.1\%	6	6	0	-	53.1\%	5	5	0	4.19\%
54.3\%	6	6	0	- $\begin{aligned} & -7.5 \% \\ & -8.3 \%\end{aligned}$	54.3\% ${ }^{5}$	5	5	0	${ }^{4.0 \%}$
556.8\%	6	${ }_{6}$	0	-7.8\%	${ }_{5}^{56.8 \%}$	5	5	0	${ }_{3.5 \%}^{3.5 \%}$
58.0\%	6	6	0	-6.7\%	58.0\%	5	5	0	3.4\%
59.3\%	6	5	0	-7.3\%	59.3\%	5	5	0	1.4\%
60.5\%	6	5	0	-7.7\%	60.5\%	5	5	0	1.0\%
61.7\%	6	5	0	-7.5\%	${ }^{61.7 \%}$	5	5	0	0.9\%
63.0\%	6	5	0	-7.5\%		5	5	0	0.5\%
64.2\%	6	5	0	- -7.4%		5	5	0	0.4\% ${ }^{0.3 \%}$
66.7\%	6	5	0	-6.0\%	${ }^{66.7 \%}$	5	5	0	0.0\%
67.9\%	${ }^{6}$	5	0	-6.0\%	67.9\%	5	5	0	0.0\%
69.1\%	${ }_{6}^{6}$	5	0	- -6.8%	69.10	5	5	0	0.0\%\%
71.6\%	6	5	0	-4.7\%	71.6\%	5	5	0	0.0\%
72.8\%	6	5	0			5	5	0	0\%
74.1\%	6	5	0	- ${ }_{-}^{-4.5 \%}$	74.19\%	5	5	0	0.3\%
76.5\%	${ }_{6}$	5	0	-3.8\%	7.5.5\%	5	5	0	-1.0\%
77.8\%	5	5	0	-8.3\%	77.8\%	5	5	0	0.5\%
79.0\%	5	5	0	-8.1\%	79.0\%	5	5	0	0.0\%
80.2\%	5	5	0	-8.0\%	80.2\%	4	5	0	8.3\%
81.5\%	5	5	0	-8.4\%	81.5\%	4	4	0	7.2\%
82.7\%	5	5	0	-9.1\%	82.7\%	4	4	1	15.5\%
84.0\%	5	5	0	-8.6\%	84.0\%	4	4	1	16.3\%
-85.2\%	5	5	-1	--8.3\%	${ }_{\text {c }}^{856.2 \%}$	${ }_{4}^{4}$	${ }_{4}^{4}$	1	17.5\%
87.7\%	5	5	-1	-12.4\%	87.7\%	4	4	0	9.7\%
88.9\%	5	5	-1	-13.9\%	88.9\%	4	4	0	9.3\%
90.1\%	5	5	0	-8.8\%	90.1\%	4	4	0	8.0\%
91.4\%	5 5	5	\bigcirc	${ }^{-8.5 \%} \times$	${ }_{\text {9, }} 91.48 \%$	${ }_{4}^{4}$	${ }_{4}^{4}$	0	7.2\% 6.6%
93.8\%	5	4	0	-2.1\%	93.8\%	4	4	0	9.4\%
956.3\%	${ }_{4}^{4}$	${ }_{4}^{4}$	1	-	96.1\%	${ }_{3}^{4}$	${ }_{4}^{4}$	\bigcirc	7.5\% 13.4%
97.5\%	3	4	0	12.0\%		3	4	0	4.8\%
98.8\%				14.7\%	988.8\% 100.0\%				15.0% 68%

Trinity and Sacramento River Basin Operations Summary Tables and Bar Charts

Table SW-01-a
Trinity Lake, End of Month Storage

Long-term Average and Average by Water Year Type												
Analysis Period	End of Month Storage (TAF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Sinulation Period'												
WSIP 2303 W Witrout Proed	1,268	1,277	1,362	1,494	1,635	1,763	1,897	1,826	1,737	1,590	1,439	1,320
WSIP 2330 With Projet	1,259	1,271	1,358	1,494	1,637	1,764	1,898	1,827	1,743	1,598	1,436	1,312
Difference	-10	-6	-4	0	3	1	1	1	6	8	-3	-8
Percent Difference ${ }^{\text {a }}$	-0.8\%	-0.5\%	-0.3\%	0.0\%	0.2\%	0.1\%	0.1\%	0.1\%	0.4\%	0.5\%	-0.2\%	-0.6\%
Water Year Typess ${ }^{2}$												
Wet (30.5\%)												
WSIP 2303 W Without Projed	1,537	1,526	1,600	1,772	1,940	2,062	2,230	2,167	2,043	1,904	1,769	1,626
WSIIP 2330 Witit Project	1,517	1,510	1,585	1,775	1,950	2,070	2,235	2,172	2,057	1,913	1,753	1,608
Diffeence	-20	-16	-15	3	10	8	5	5	13	9	-16	-18
Percent Difference	-1.3\%	-1.1\%	-0.9\%	0.2\%	0.5\%	0.4\%	0.2\%	0.2\%	0.6\%	0.5\%	-0.9\%	-1.1\%
Above Norma (14.6\%)												
WSIP 2030 Without Projed	1,457	1,458	1,512	1,637	1,817	1,994	2,149	2,057	1,970	1,810	1,655	1.511
WSIP 2030 Witit Proeat	1,469	1,481	1,537	1,632	1,819	2,002	2,158	2,067	1,988	1,838	1,679	1,527
Difference	12	23	25	-4	2	8	9	9	17	28	24	16
Percent Difference	0.8\%	1.6\%	1.7\%	-0.3\%	0.1\%	0.4\%	0.4\%	0.5\%	0.9\%	1.6\%	1.4\%	1.0\%
Below Normal (20.7\%)												
WSIP 2303 W Witout Projed	1,260	1,269	1,361	1,400	1,552	1,699	1,848	1,781	1,705	1,572	1,406	1,306
WSIP 2030 Witit Projet	1,238	1,249	1,343	1,390	1,542	1,686	1,837	1,770	1,698	1,563	1,391	1,289
Difference	-22	-19	-18	-10	-10	-13	-11	-11	-7	-9	-14	-17
Percent Difference	-1.7\%	-1.5\%	-1.3\%	-0.7\%	-0.6\%	-0.7\%	-0.6\%	-0.6\%	-0.4\%	-0.6\%	-1.0\%	-1.3\%
Dry (19.5\%)												
WSIP 2303 W Witrout Projed	1,085	1,127	1,274	1,368	1,478	1,615	1,720	1,636	1,549	1,376	1,211	1,104
WSIP 2330 Witit Project	1,078	1,123	1,269	1,369	1,480	1,603	1,710	1,626	1,543	1,387	1,210	1,093
Difference	-7	-4	-5	1	2	-12	-11	-11	-6	11	-1	-11
Percentififience	-0.6\%	-0.4\%	-0.4\%	0.1\%	0.1\%	-0.8\%	-0.6\%	-0.6\%	-0.4\%	0.8\%	-0.1\%	-1.0\%
Critical (14.6\%)												
WSIP 2030 W Whtout Prjeed	776	788	837	1,075	1,142	1,200	1,254	1,201	1,162	1,027	889	800
WSIP 2030 With Project	781	791	847	1,084	1,150	1,217	1,272	1,217	1,178	1,035	897	807
Difference	4	3	10	8	8	18	18	16	16	8	8	7
Percent Difference	0.5\%	0.4\%	1.2\%	0.8\%	0.7\%	1.5\%	1.4\%	1.3\%	1.4\%	0.8\%	0.9\%	0.9\%

1 Based on the 82 -year simulation neriod
3 Realive dffiference of the montly average

Trinity Lake, End of Month Sto
Dry Water Year Types (22\%
-WSIP 2030 Without Project EWSIP 2030 With Project

Trinity Lake, End of Month Storage
$\begin{aligned} & \text { Critical Water Year Types (15\%) } \\ & \text { - WSIP } 2030 \text { Without Project }\end{aligned}$ WSIP 2030 With Project

og-term Average and Average by Wation

Long-term Average and Average by Water Year Type												
Analysis Period	End of Month Elevation (FEET)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
${\text { Full Simulation Period }{ }^{\prime} \text { ' }}^{\text {a }}$												
WSIP 2030 Wentrot Projed	2,279	2,280	2,288	2,301	2,313	2,323	2,333	2,327	2,321	2,309	2,295	2,284
WSIP 2030 With Proedt	2,278	2,280	2,288	2,301	2,313	2,323	2,333	2,328	2,321	2,309	2,295	2,284
Difference	-1	0	0	0	0	0	0	0	1	1	0	-1
Percent Difference ${ }^{\text {a }}$	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Water Year Types ${ }^{2}$												
Wet (3.55\%)												
WSIP 2030 Without Pried	2,305	2,305	2,311	2,325	2,340	2,348	2,357	2,353	2,346	2,336	2,325	2,313
WSIP 2330 Witit Project	2,304	2,303	2,310	2,326	2,341	2,348	2,358	2,354	2,347	2,336	2,324	2,312
Difference	-2	-1	-1	0	1	1	0	0	1	1	-1	-2
Percent Difference	-0.1\%	-0.1\%	-0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.1\%	-0.1\%
Above Nomal (14.6\%)												
WSIP 2030 Without Projed	2,299	2,299	2,304	2,313	2,329	2,342	2,352	2,346	2,340	2,329	2,316	2,303
WSIP 2303 With Project	2,300	2,301	2,306	2,313	2,329	2,343	2,353	2,347	2,342	2,331	2,318	2,305
Difference	1	2	2	0	0	1	1	1	1	2	2	1
Percent Difference	0.0\%	0.1\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	0.1\%	0.1\%	0.1\%
Below Norma (20.7\%)												
WSIP 2030 Without Projed	2,281	2,282	2,290	2,293	2,307	2,319	2,331	2,326	2,320	2,309	2,294	2,285
WSIP 2380 Wit Project	2,279	2,280	2,288	2,292	2,306	2,318	2,330	2,325	2,319	2,308	2,293	2,284
Difference	-2	-2	-2	-1	-1	-1	-1	-1	-1	-1	-1	-2
Percent Difference	-0.1\%	-0.1\%	-0.1\%	-0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.1\%	-0.1\%
Dry (19.5\%)												
WSIP 2330 Without Proeet	2,262	2,266	2,280	2,290	2,300	2,312	2,321	2,314	2,307	2,291	2,276	2,265
WSIP 2330 Wit Project	2,262	2,266	2,280	2,291	2,300	2,311	2,320	2,313	2,306	2,292	2,276	2,264
Difference	-1	0	0	0	0	-1	-1	-1	0	1	0	-1
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.1\%
Critical (14.6\%)												
WSIP 2330 W Whtout Proed	2,225	2,227	2,234	2,261	2,268	2,274	2,279	2,274	2,271	2,256	2,238	2,228
WSIP 2330 Wit Project	2,226	2,228	2,236	2,262	2,269	2,276	2,281	2,276	2,272	2,257	2,240	2,230
Difference	1	1	2	1	1	2	2	2	2	1	2	2
Pereent Difference	0.0\%	0.0\%	0.1\%	0.0\%	0.0\%	0.1\%	0.1\%	0.1\%	0.1\%	0.0\%	0.1\%	0.1\%

1 Based on the 82 2year simulation perioa
3 Realive difference of the montly yeras

Trinity River below Lewiston Reservoir, Monthly Flow
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\mathrm{Full} \mathrm{S} \mathrm{Simulation} \mathrm{Period'}^{\prime}$												
WSIP 2030 Without Priject	373	300	479	688	867	767	523	3,867	2,024	863	450	450
WSIP 2030 With Priject	373	300	473	608	839	775	536	3,867	2,024	863	450	450
Difference	0	0	-6	-80	-27	8	13	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	-1.3\%	-11.7\%	-3.2\%	1.1\%	2.5\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 Without Proed	373	300	598	1,385	1,957	1,647	540	4,665	3,198	1,102	450	450
WSIP 2030 With Proeet	373	300	579	1,196	1,904	1,685	582	4,665	3,198	1,102	450	450
Difference	0	0	-19	-189	-53	38	42	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	-3.2\%	-13.7\%	-2.7\%	2.3\%	7.8\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Above Nomal (14.6\%)												
WSIP 2030 Without Proeet	373	300	775	694	721	686	466	4,622	2,458	1,102	450	450
WSIP 2030 With Project	373	300	775	538	645	662	466	4,622	2,458	1,102	450	450
Difference	0	0	0	-155	-76	-24	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	-22.4\%	-10.6\%	-3.5\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Below Normal (2.7\%)												
WSIP 2030 Without Project	373	300	300	300	300	300	504	3,834	1,720	872	450	450
WSIP 2030 with Projet	373	300	300	300	300	300	504	3,834	1,720	872	450	450
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Dry (19.5\%)												
WSIP 2030 Without Proed	373	300	398	300	300	300	528	3,240	1,117	613	450	450
WSIP 2030 Witit Proect	373	300	395	300	300	300	528	3,240	1,117	613	450	450
Difference	0	0	-3	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	-0.8\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Critical (14.6\%)												
WSIP 2030 Without Proed	373	300	300	300	300	300	565	2,330	783	450	450	450
WSIP 2030 With Project	373	300	300	300	300	300	565	2,330	783	450	450	450
Differene	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%

2 As defined by the Sacaramento Valley 40.30 .30 Index Waier Year Hyyrologic Classificioion (SWRCB D-1644, 1999
3 Realive difference of the monntly average

Table SW-05-a
Clear Creek Tunnel, Monthly Flow

Clear Creek Tunnel, Monthly Flow Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\overline{\text { Full Simulion Period }{ }^{\prime}}$												
WSIP 2030 Without Proed	809	495	258	236	209	331	343	79	558	1,748	2,059	1,684
WSIP 2030 With Projet	832	435	231	258	179	351	327	83	470	1,715	2,249	1,762
Difference	23	-60	-27	22	-29	20	-16	5	-88	-33	190	77
Percent Difference ${ }^{\text {a }}$	2.8\%	-12.1\%	-10.4\%	9.5\%	-14.0\%	5.9\%	-4.7\%	5.8\%	-15.8\%	-1.9\%	9.2\%	4.6\%
Water Year Types ${ }^{2}$												
Wet (3.5\%\%)												
WSIP 2030 W Withot Proed	1,270	935	434	438	298	559	477	-	212	1,489	1,812	2,090
WSIP 2030 With Priject	1,298	875	429	493	232	555	477	0	79	1,559	2,220	2,120
Difference	28	-60	-5	56	-66	-3	0	0	-133	71	408	29
Percent Difference	2.2\%	-6.4\%	-1.2\%	12.7\%	-22.3\%	-0.6\%	0.0\%		-62.8\%	4.7\%	22.5\%	1.4\%
Above Normal (14.6\%)												
WSIP 2030 Without Proeet	1,072	758	407	131	111	353	281	0	337	1,688	2,124	2,030
WSIP 2030 With Priject	1,127	573	367	111	67	285	257	0	201	1,508	2,201	2,163
Difference	55	-185	-39	-20	-45	-69	-25	0	-136	-181	76	133
Percent Difference	5.1\%	-24.5\%	-9.6\%	-15.3\%	-40.1\%	-19.4\%	-8.8\%		-40.4\%	-10.7\%	3.6\%	6.5\%
Below Norma (20.7\%)												
WSIP 2030 Without Prjeet	618	294	120	144	106	111	216	71	531	1,445	2,292	1,410
WSIP 2030 With Priject	691	250	94	156	97	156	184	71	466	1,476	2,382	1,462
Difference	74	-44	-25	12	-9	45	-32	0	-65	31	91	53
Percent Difference	11.9\%	-15.0\%	-21.3\%	8.5\%	-8.3\%	40.5\%	-14.8\%	0.0\%	-12.2\%	2.2\%	4.0\%	3.7\%
Dry (19.5\%)												
WSIP 2030 Without Priect	580	146	59	179	333	206	320	197	1,194	2,395	2,298	1,423
WSIP 2030 With Priject	502	106	69	198	324	436	293	195	1,122	2,122	2,482	1,605
Difference	-77	-40	9	19	-9	230	-27	-2	-72	-273	184	181
Percent Difference	-13.3\%	-27.5\%		10.7\%	-2.8\%	111.4\%	-8.4\%	-1.2\%	-6.0\%	-11.4\%	8.0\%	12.7\%
Critical (14.6\%)												
WSIP 2030 W Whtout Proed	167	67	204	124	99	315	339	176	694	1,917	1,858	1,231
WSIP 2030 Witit Proeet	208	83	94	139	107	154	335	210	692	2,046	1,856	1,248
Difference	42	17	-110	15	8	-161	-5	34	-1	129	-2	17
Percent Difference	25.0\%	25.0\%	-53.8\%	11.7\%	8.4\%	-51.1\%	-1.3\%	19.6\%	-0.2\%	6.7\%	-0.1\%	1.4\%

3 Realive difference of the monthy average

Clear Creek below Whiskeytown Reservoir, Monthly Flow Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulition Period'												
WSIP 2303 Without Proed	187	188	190	223	259	226	191	265	181	85	85	148
WSIP 2030 With Project	187	188	190	223	237	226	191	265	181	85	85	148
Difference	0	0	0	0	-22	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	-8.5\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Water Year Types ${ }^{2}$												
Wet (3.5\%\%)												
WSIP 2030 W Withot Proed	200	200	200	303	423	312	200	277	200	85	85	150
WSIP 2030 With Projet	200	200	200	303	350	312	200	277	200	85	85	150
Difference	0	0	0	0	-72	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	-17.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Above Nomal (14.6\%)												
WSIP 2300 Without Priject	200	200	200	196	196	196	196	277	200	85	85	150
WSIP 2030 with Proeet	200	200	200	196	196	196	196	277	200	85	85	150
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Below Normal (20.7\%)												
WSIP 2030 Without Prjeed	188	188	188	188	188	188	188	268	182	85	85	150
WSIP 2030 Witit Proedt	188	188	188	188	188	188	188	268	182	85	85	150
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Dry (19.5\%)												
WSIP 2030 Without Priect	184	188	188	194	194	194	194	265	183	85	85	150
WSIP 2030 Witit Proect	184	188	188	194	194	194	194	265	183	85	85	150
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Cifital (14.6\%)												
WSIP 2030 W Whtout Proed	146	149	163	171	171	171	171	224	120	85	85	133
WSIP 2030 Witit Proeet	146	149	163	171	171	171	171	224	120	85	85	133
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%

1 Based on the 82 -vear sinulation period
3 Realive difference of the montly veras

Table SW-07-a Shasta Lake, End of Month Storage Long-term Average and Average by Water Year Type												
Analysis Period	End of Month Storage (TAF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulition Period'												
WSIP 2030 Wentrout Prjeet	2,475	2,490	2,743	3,066	3,365	3,750	3,989	3,950	3,560	3,013	2,716	2,544
WSIP 2030 With Project	2,560	2,562	2,794	3,109	3,396	3,777	4,021	4,009	3,648	3,105	2,808	2,627
Difference	85	73	52	44	31	27	31	59	88	92	92	83
Percent Difference ${ }^{\text {a }}$	3.4\%	2.9\%	1.9\%	1.4\%	0.9\%	0.7\%	0.8\%	1.5\%	2.5\%	3.1\%	3.4\%	3.3\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2303 Without Projed	2,698	2,625	2,901	3,436	3,579	3,865	4,280	4,387	4,082	3,557	3,251	2,837
WSIP 2030 With Priject	2,718	2,634	2,897	3,439	3,579	3,865	4,285	4,405	4,086	3,561	3,263	2,855
Difference	20	9	-4	4	0	0	6	18	4	4	12	18
Percent Difference	0.7\%	0.3\%	-0.1\%	0.1\%	0.0\%	0.0\%	0.1\%	0.4\%	0.1\%	0.1\%	0.4\%	0.6\%
Above Nomal (14.6\%)												
WSIP 2030 Without Proeet	2,652	2.580	2,818	3,205	3,562	4,014	4,364	4,322	3,908	3,319	2,999	2,758
WSIP 2030 With Project	2,821	2,708	2,875	3,258	3,591	4,015	4,372	4,359	4,031	3,432	3,146	2,940
Difference	169	129	57	53	29	1	8	37	123	113	147	182
Percent Difference	6.4\%	5.0\%	2.0\%	1.7\%	0.8\%	0.0\%	0.2\%	0.9\%	3.1\%	3.4\%	4.9\%	6.6\%
Below Norma (20.7\%)												
WSIP 2030 Without Prjeet	2,744	2,803	2,983	2,976	3,418	3,925	4,214	4,133	3,700	3,078	2,774	2,771
WSIP 2030 Witip Priect	2,797	2,838	2,996	3,014	3,437	3,942	4,209	4,155	3,779	3,160	2,873	2,836
Difference	53	35	14	38	19	17	-5	22	80	83	98	65
Percent Difference	1.9\%	1.3\%	0.5\%	1.3\%	0.6\%	0.4\%	-0.1\%	0.5\%	2.2\%	2.7\%	3.5\%	2.3\%
Dr (19.5\%)												
WSIP 2030 W Withot Prject	2,465	2,593	2,899	2,857	3,275	3,717	3,786	3,663	3,252	2,766	2,486	2,457
WSIP 2030 With Proect	2,527	2,652	2,951	2,924	3,325	3,778	3,854	3,765	3,379	2,884	2,572	2,514
Difference	62	59	52	67	50	61	67	101	126	118	86	57
Percent Difference	2.5\%	2.3\%	1.8\%	2.3\%	1.5\%	1.6\%	1.8\%	2.8\%	3.9\%	4.3\%	3.5\%	2.3\%
Critical (14.6\%)												
WSIP 2030 W Whtout Prjeed	1,465	1,535	1,791	2,560	2,768	3,043	2,961	2,787	2,337	1,810	1,540	1,515
WSIP 2030 With Project	1,678	1,756	2,005	2,656	2,858	3,120	3,073	2,953	2,524	2,042	1,746	1,696
Difference	213	221	214	95	89	77	112	166	187	232	206	181
Percent Difference	14.5\%	14.4\%	12.0\%	3.7\%	3.2\%	2.5\%	3.8\%	6.0\%	8.0\%	12.8\%	13.3\%	12.0\%

1 Based on the 82 2year sinulation period
3 Realive difference of the monthly verage

	End of Mont Elevation (FEET)												
Full ${ }^{\text {simutaion Period }}$													
wspr 230 Whitut Prid	979	${ }^{980}$	${ }^{993}$	1,008	1.021	1.037	1,046	${ }_{1}^{1,044}$	1,022	迷	${ }_{9}^{990}$	983	
	984	984	${ }^{996}$	1.010	1.023	1.038	1,047	1.046	1,032	1,009	995	987	
Dffeeme	5	4	3	2	1	1	1	2	4	5	5	5	
Perantifferees	0.5\%	0.4\%	0.3\%			0.1\%	0.1\%	0.2\%	0.4\%	0.5\%	0.5\%	0.5\%	
Water Year Types ${ }^{2}$													
Wet (30.550)													
wsip ens Whiout Poped	992	989	1.001	1,025	1,031	1.042	1,057	1,061	1,550	1,030	1.017	${ }^{998}$	
wspr 203 Whin Pojed	993	989	1.001	1,025	1.031	1.042	1,057	1.062	1,050	1.030	1.017	999	
offeeene	1	0	0	0	0	0	0	1	0	0	1	1	
Pecent Dffeere	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	0.0\%	0.0\%	0.1\%	0.1\%	
Above Nomal (14.6\%)													
	990	987	998	1,015	1,030	1,048	1,060	1,059	1.044	1,020	1.006	995	
Wsip 2now wip Pojed	998	993	1,000	1,017	1,031	1,048	1,061	1,060	1,048	1,025	1,012	1,003	
Dffeene	-	-	3	3	1	0	0	1	5	5	6	8	
Pecenol freeene	0.8\%	0.6\%	0.3\%	0.3\%	0.1\%	0.0\%	0.0\%	0.1\%	0.4\%	0.5\%	0.6\%	0.8\%	
	994	997	1,005	1.004	1.024	1.044	1.055	1.052	1.035	1,009	996	995	
Wsip 2030 Wwip Piout	997	999	1.006	1.006	1.024	1.045	1.055	1.053	1.038	1.013	1.000	999	
Dffeeene	3	2	1	2	1	1	0	1	3	4	5	3	
Pecent Dffeere	0.3\%	0.2\%	0.1\%	0.2\%	0.1\%	0.1\%	0.0\%	0.1\%	0.3\%	0.4\%	0.5\%	0.3\%	
Dy (19585)													
wSPP P303 Wriour Pojed	980	986	1,001	999	1.018	1,036	1,038	1.033	1,017	995	982	980	
WSIP 2030 Wwif Pijed	983	989	1.004	1.002	1,020	1,038	1,041	1,037	1,022	1,000	986	${ }^{983}$	
Dffeeene	3	3	3	3	2	2	3	4	5	5	4	。	
Perentiffeeme	0.3\%	0.3\%	0.3\%	0.3\%	0.2\%	0.2\%	0.3\%	0.4\%	0.5\%	0.5\%	0.4\%	0.3\%	
Critiol(14.4.5)													
WSSPr 230 W Whatuer Piod	918	${ }^{923}$	942	984	994	1.007	1.003	995	972	941	${ }^{923}$	921	
Wsip 2030 Wwit Piout	934	939	955	989	998	1.011	1,008	1,003	982	${ }^{956}$	937	935	
Dffeene	16	16	13	5	4	3	5	8	11	15	14	14	
Peremon ifferene	1.7\%	17\%	1.4\%	0.5\%	0.4\%	0.3\%	0.5\%	0.8\%	1.1\%	1.6\%	1.6\%	1.5\%	

$\frac{1}{1 \text { Basedon on the } 82 \text { year simulation period }}$
3 Realive difference of the monthy average

	Table SW-09-a											
	End of Month Area (ACRE)											
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period'												
WSIP 2030 W Whtout Proed	19,643	19,731	21,149	22,914	24,494	26,379	27,423	27,208	25,355	22,560	20,956	20,029
WSIP 2030 With Project	20,141	20,163	21,446	23,157	24,660	26,515	27,584	27,504	25,805	23,080	21,481	20,510
Difference	499	432	297	242	166	137	160	296	450	520	524	481
Percent Difference ${ }^{\text {a }}$	2.5\%	2.2\%	1.4\%	1.1\%	0.7\%	0.5\%	0.6\%	1.1\%	1.8\%	2.3\%	2.5\%	2.4\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2300 Without Priject	20,952	20,554	22,047	24,918	25,639	26,973	28,831	29,293	27,947	25,498	23,932	21,703
WSIP 2330 Witit Project	21,059	20,601	22,024	24,938	25,639	26,974	28,854	29,370	27,966	25,534	23,996	21,799
Difference	107	47	-22	20	0	1	24	77	19	36	64	95
Percent Difference	0.5\%	0.2\%	-0.1\%	0.1\%	0.0\%	0.0\%	0.1\%	0.3\%	0.1\%	0.1\%	0.3\%	0.4\%
Above Nomal (14.6\%)												
WSIP 2030 Without Projed	20,694	20,306	21,599	23,676	25,554	27,666	29,193	29,013	27,202	24,283	22,586	21,278
WSIP 2030 With Projet	21,626	21,013	21,908	23,971	25,707	27,670	29,229	29,173	27,750	24,879	23,373	22,266
Difference	931	707	309	295	154	4	35	160	548	596	787	988
Percent Difference	4.5\%	3.5\%	1.4\%	1.2\%	0.6\%	0.0\%	0.1\%	0.6\%	2.0\%	2.5\%	3.5\%	4.6\%
Below Normal (20.7\%)												
WSIP 2303 Without Project	21,198	21,521	22,492	22,435	24,769	27,276	28,551	28,186	26,165	22,993	21,362	21,344
WSIP 2030 With Priject	21,499	21,724	22,571	22,647	24,870	27,353	28,528	28,289	26,563	23,430	21,904	21,703
Difference	301	203	79	211	101	78	-23	103	398	437	542	359
Percent Difference	1.4\%	0.9\%	0.4\%	0.9\%	0.4\%	0.3\%	-0.1\%	0.4\%	1.5\%	1.9\%	2.5\%	1.7\%
Dry (19.5\%)												
WSIP 2030 W Withot Priject	19,642	20,344	22,031	21,804	24,021	26,217	26,508	25,909	23,936	21,311	19,784	19,617
WSIP 2030 Witit Project	19,991	20,680	22,322	22,171	24,285	26,522	26,837	26,399	24,559	21,946	20,249	19,929
Difference	348	336	291	367	264	305	329	490	622	635	465	312
Percent Difference	1.8\%	1.7\%	1.3\%	1.7\%	1.1\%	1.2\%	1.2\%	1.9\%	2.6\%	3.0\%	2.4\%	1.6\%
Critical (14.6\%)												
WSIP 2030 W Whtout Prjeed	13,660	14,091	15,748	20,138	21,288	22,797	22,344	21,404	18,850	15,766	14,115	13,978
WSIP 2330 Witit Project	15,024	15,504	17,018	20,667	21,776	23,208	22,950	22,307	19,948	17,180	15,388	15,153
Difference	1,363	1,413	1,269	529	488	411	605	903	1,097	1,415	1,273	1,175
Percent Difference	10.0\%	10.0\%	8.1\%	2.6\%	2.3\%	1.8\%	2.7\%	4.2\%	5.8\%	9.0\%	9.0\%	8.4\%

3 Realive differenceo of the monthly vereage

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\overline{\text { Full Simulation Period }{ }^{\prime}}$												
WSIP 2303 W Witrout Projed	6,401	6,731	6,528	8,983	11,573	8,809	6,949	7,602	11,338	14,006	10,032	8,215
WSIP 2030 With Proedt	6,377	6,883	6,846	9,130	11,792	8,895	6,859	7,148	10,770	13,882	10,207	8,451
Difference	-24	153	317	147	219	85	-91	-455	-568	-124	176	236
Percent Difierence ${ }^{3}$	-0.4\%	2.3\%	4.9\%	1.6\%	1.9\%	1.0\%	-1.3\%	-6.0\%	-5.0\%	-0.9\%	1.8\%	2.9\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2303 W Witrout Proed	7,508	8,857	6,744	17,694	23,395	16,416	8,912	7,496	10,336	13,814	10,215	12,700
WSIP 2330 Witit Project	7,497	8,985	6,947	18,071	23,470	16,410	8,821	7,295	10,438	13,880	10,496	12,634
Difference	-11	128	203	378	75	-6	-91	-201	101	66	281	-66
Percent Difference	-0.1\%	1.4\%	3.0\%	2.1\%	0.3\%	0.0\%	-1.0\%	-2.7%	1.0\%	0.5\%	2.7\%	-0.5\%
Above Nomal (14.6\%)												
WSIP 2030 Witrout Projed	6,634	9,171	6,246	9,823	12,932	10,150	5,854	7,817	11,874	14,752	10,728	9,615
WSIP 2030 With Project	6,802	9,668	7,370	9,522	13,319	10,532	5,708	7,343	10,297	14,719	10,240	9,153
Difference	168	497	1,124	-301	387	382	-147	-474	-1,577	-32	-488	-462
Percent Difference	2.5\%	5.4\%	18.0\%	-3.1\%	3.0\%	3.8\%	-2.5\%	-6.1\%	-13.3\%	-0.2\%	-4.5\%	-4.8\%
Below Norma (20.7\%)												
WSIP 2303 W Withot Projed	5,286	5,014	7,102	4,556	5,693	4,243	5,943	8,021	11,893	14,866	10,370	5,845
WSIP 2030 with Proeet	5,546	5,273	7,429	4,549	6,021	4,313	6,292	7,584	10,848	14,843	10,201	6,451
Difference	260	259	326	-7	327	70	349	-437	$-1,046$	-23	-168	606
Percent Difference	4.9\%	5.2\%	4.6\%	-0.2\%	5.8\%	1.6\%	5.9\%	-5.5\%	-8.8\%	-0.2\%	-1.6\%	10.4\%
Dry (19.5\%)												
WSIP 2303 W Witout Projed	6,847	5,656	8,163	3,585	4,368	4,621	6,039	7,405	11,844	13,341	9,691	5,092
WSIP 2330 Witit Project	6,686	5,667	8,284	3,941	4,652	4,681	5,900	6,846	11,347	13,188	10,393	5,751
Difference	-161	11	120	356	284	60	-140	-560	-497	-153	702	658
Percent Difference	-2.4\%	0.2\%	1.5\%	9.9\%	6.5\%	1.3\%	-2.3\%	-7.6\%	-4.2\%	-1.1\%	7.2\%	12.9\%
Critical (14.6\%)												
WSIP 2303 W Without Projed	4,842	3,725	3,368	3,464	3,522	3,676	6,595	7,279	11,427	13,330	8,931	4,994
WSIP 2330 Witit Proeet	4,381	3,623	3,366	3,518	3,635	3,709	6,003	6,429	11,054	12,612	9,337	5,472
Difference	-461	-102	-2	54	112	33	-592	-850	-372	-718	406	478
Percent Difference	-9.5\%	-2.7\%	-0.1\%	1.6\%	3.2\%	0.9\%	-9.0\%	-11.7\%	-3.3\%	-5.4\%	4.5\%	9.6\%

Based on the 8 2-year simulation pefinod
3 Realive difference of the monthy veras

Table SW-11-a
Sacramento River at Bend Bridge, Monthly Flow
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulion Period' ${ }^{\text {a }}$												
WSIP 2030 Without Proed	7,298	9,055	11,795	16,301	19,680	14,981	10,540	9,305	12,118	14,270	10,237	8,689
WSIP 2330 Wit Project	7,272	9,208	12,112	16,447	19,878	15,067	10,450	8,852	11,554	14,148	10,406	8,922
Difference	-26	154	317	145	198	85	-90	-453	-564	-122	169	233
Pereent Difference ${ }^{\text {a }}$	-0.4\%	1.7\%	2.7\%	0.9\%	1.0\%	0.6\%	-0.9\%	-4.9\%	-4.7\%	-0.9\%	1.7\%	2.7\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2300 Without Prijet	8,383	11,515	12,390	30,290	36,187	25,621	14,696	9,920	11,490	14,349	10,507	13,249
WSIP 2330 With Project	8,374	11,644	12,593	30,667	36,188	25,617	14,607	9,721	11,594	14,415	10,787	13,181
Difference	-10	129	203	377	2	-5	-90	-199	104	65	280	-69
Percent Difference	-0.1\%	1.1\%	1.6\%	1.2\%	0.0\%	0.0\%	-0.6\%	-2.0\%	0.9\%	0.5\%	2.7\%	-0.5\%
Above Normal (14.6\%)												
WSIP 2030 Without Proed	7,485	11,316	10,617	19,229	21,644	17,271	9,691	9,707	12,724	14,892	10,890	9,984
WSIP 2330 Wit Project	7,653	11,810	11,738	18,929	22,033	17,651	9,543	9,236	11,152	14,867	10,399	9,523
Difference	168	494	1,120	-300	389	381	-148	-471	-1,572	-25	-491	-462
Pereent Difference	2.2\%	4.4\%	10.6\%	-1.6\%	1.8\%	2.2\%	-1.5\%	-4.9\%	-12.4\%	-0.2\%	-4.5\%	-4.6\%
Below Normal (20.7\%)												
WSIP 2030 W Withot Project	6,327	7,276	12,313	9,346	12,207	9,156	9,404	9,494	12,546	15,016	10,542	6,435
Wsip 2303 with Project	6,581	7,533	12,639	9,338	12,535	9,225	9,754	9,055	11,506	14,999	10,372	7,039
Difference	254	258	326	-8	328	69	350	-439	$-1,040$	-17	-170	604
Percent Difference	4.0\%	3.5\%	2.6\%	-0.1\%	2.7\%	0.8\%	3.7\%	-4.6\%	-8.3\%	-0.1\%	-1.6\%	9.4\%
Dry (19.5\%)												
WSIP 2030 Without Prjeed	7,889	8,237	14,959	7,023	10,054	9,274	7.877	8,608	12,378	13,462	9,861	5,481
WSIP 2330 Wit Project	7,723	8,252	15,080	7,374	10,338	9,335	7,738	8,051	11,886	13,310	10,561	6,131
Differene	-165	15	121	351	284	61	-138	-557	-492	-152	700	650
Percent Difference	-2.1\%	0.2\%	0.8\%	5.0\%	2.8\%	0.7\%	-1.8\%	-6.5\%	-4.0\%	-1.1\%	7.1\%	11.9\%
Critical (14.6\%)												
WSIP 2030 Without Priject	5,436	5,279	6,780	6,455	6,751	6,387	7,891	8,283	11,863	13,505	9,093	5,365
WSIP 2330 With Project	4,970	5,181	6,778	6,506	6,864	6,421	7,300	7,439	11,498	12,787	9,463	5,835
Differene	-465	-97	-2	52	113	33	-591	-844	-365	-718	370	471
Percent Difference	-8.6\%	-1.8\%	0.0\%	0.8\%	1.7\%	0.5\%	-7.5\%	-10.2\%	-3.1\%	-5.3\%	4.1\%	8.8\%

Ised on the 8 2-year simulition period
3 Reative difference of the monthy verage

Table SW-12-a Sacramento River below Red Bluff Diversion Dam, Monthly Flow Long-term Average and Average by Water Year Type												
						Monthly	low (CFS)					
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulition Period'												
WSIP 2030 Without Proed	7,198	9,074	11,860	16,487	19,820	15,065	10,477	9,012	11,504	13,624	9,718	8,588
WSIP 2030 With Prioet	7,101	9,061	11,404	15,398	18,673	14,107	10,144	8,580	11,015	13,643	9,953	8,860
Difference	-98	-14	-456	-1,089	-1,147	-959	-333	-432	-489	19	236	271
Percent Difference	-1.4\%	-0.1\%	-3.8\%	-6.6\%	-5.8\%	-6.4\%	-3.2\%	-4.8\%	-4.3\%	0.1\%	2.4\%	3.2\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 W Withot Proed	8,254	11,542	12,462	30,619	36,423	25,766	14,678	9,884	10,591	13,352	9,715	13,096
WSIP 2030 With Priject	8,235	11,509	11,719	29,637	35,247	24,959	14,222	9,369	10,709	13,530	10,024	13,093
Difference	-19	-33	-743	-982	-1,176	-807	-456	-115	117	178	310	-3
Percent Difference	-0.2\%	-0.3\%	-6.0\%	-3.2\%	-3.2\%	-3.1\%	-3.1\%	-1.2\%	1.1\%	1.3\%	3.2\%	0.0\%
Above Nomal (14.6\%)												
WSIP 2030 Without Project	7,378	11,332	10,661	19,476	21,824	17,392	9,574	9,295	11,882	14,003	10,203	9,841
WSIP 2030 With Project	7,377	11,346	10,374	17,639	20,476	16,650	9,203	8,837	10,510	14,407	9,892	9,468
Difference	-1	14	-288	-1,837	-1,347	-742	-371	-458	-1,372	404	-311	-373
Percent Difference	0.0\%	0.1\%	-2.7\%	-9.4\%	-6.2\%	-4.3\%	-3.9\%	-4.9\%	-11.5\%	2.9\%	-3.0\%	-3.8\%
Below Normal (20.7\%)												
WSIP 2030 Without Prjeed	6,229	7,299	12,388	9,482	12,303	9,193	9,311	9,229	11,997	14,447	10,093	6,368
WSIP 2030 Wit Priject	6,501	7,552	12,589	8,125	11,506	7,993	9,243	8,759	11,101	14,637	10,045	6,984
Difference	272	253	201	${ }^{-1,357}$	-797	-1,200	-68	-470	-896	190	-48	616
Percent Difference	4.4\%	3.5\%	1.6\%	-14.3\%	-6.5\%	-13.1\%	-0.7\%	-5.1\%	-7.5\%	1.3\%	-0.5\%	9.7\%
Dry (19.5\%)												
WSIP 2030 Without Priject	7,815	8,259	15,040	7,089	10,132	9,341	7,814	8,467	12,023	13,158	9,619	5,433
WSIP 2030 With Proect	7,398	8,094	14,498	6,292	8,624	8,089	7,625	7,930	11,591	13,018	10,344	6,086
Difference	-417	-165	-542	-796	-1,508	-1,252	-188	-537	-432	-140	725	652
Percent Difference	-5.3\%	-2.0\%	-3.6\%	-11.2\%	-14.9\%	-13.4\%	-2.4\%	-6.3\%	-3.6\%	-1.1\%	7.5\%	12.0\%
Critical (14.6\%)												
WSIP 2030 W Whtout Proed	5,370	5,278	6,815	6,510	6,789	6,396	7,830	8,161	11,635	13,267	8,837	5,298
WSIP 2030 Witip Project	4,913	5,101	5,975	5,934	5,892	5,640	7,225	7,291	11,266	12,540	9,216	5,788
Difference	-457	-177	-839	-575	-897	-757	-605	-870	-369	-727	379	490
Percent Difference	-8.5\%	-3.4\%	-12.3\%	-8.8\%	-13.2\%	-11.8\%	-7.7\%	-10.7\%	-3.2%	-5.5\%	4.3\%	9.2\%

Table SW-13-a Sacramento River below Hamilton City, Monthly Flow Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period'												
WSIP 2030 Without Prjeed	6,663	9,423	13,553	19,005	22,651	17,320	9,858	7,648	8,794	10,882	7,695	8,128
WSIP 2030 With Projet	6,632	9,404	12,733	17,769	21,272	15,823	9,503	7,437	8,613	11,276	7,945	8,417
Difference	-31	-19	-820	-1,236	-1,379	-1,496	-356	-211	-181	394	250	289
Percent Difference ${ }^{\text {a }}$	-0.5\%	-0.2\%	-6.0\%	-6.5\%	-6.1\%	-8.6\%	-3.6\%	-2.8\%	-2.1\%	3.6\%	3.3\%	3.5\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 W Without Prjed	7,701	11,985	14,285	35,138	40,923	29,043	15,127	8,662	7,975	10,633	7,688	12,676
WSIP 2030 Wit Project	7,677	11,956	13,192	33,989	39,537	27,744	14,528	8,571	8,070	10,798	7,720	12,674
Difference	-24	-28	-1,094	-1,149	-1,386	-1,299	-599	-91	96	165	32	-2
Percent Difference	-0.3\%	-0.2\%	-7.7\%	-3.3\%	-3.4\%	-4.5\%	-4.0\%	-1.0\%	1.2\%	1.6\%	0.4\%	0.0\%
Above Nomal (14.6\%)												
WSIP 2030 W Without Prjed	6,819	11,736	12,164	22,753	25,159	20,103	9,227	8,055	9,205	11,213	8,125	9,349
WSIP 2030 With Project	6,880	11,649	11,288	20,703	23,545	18,803	8,670	7,750	8,341	12,309	8,044	8,984
Difference	61	-87	-876	-2,051	-1,614	-1,300	-557	-305	-864	1,096	-81	-365
Percent Difference	0.9\%	-0.7\%	-7.2\%	-9.0\%	-6.4\%	-6.5\%	-6.0\%	-3.8\%	-9.4\%	9.8\%	-1.0\%	-3.9\%
Below Norma (20.7\%)												
WSSIP 2030 W Without Prjed	5,695	7,562	13,985	11,155	14,475	11,044	8,510	7,608	9,201	11,626	7,965	5,928
WSIP 2030 Wit Project	6,145	7,859	14,101	9,645	13,453	9,203	8,083	7,294	8,751	12,525	7,939	6,577
Difference	450	297	117	-1,509	-1,022	-1,841	-427	-314	-451	899	-26	650
Percent Difference	7.9\%	3.9\%	0.8\%	-13.5\%	-7.1\%	-16.7\%	-5.0\%	-4.1\%	-4.9\%	7.7\%	-0.3\%	11.0\%
Dry (19.5\%)												
WSIP 2030 W Withot Project	7,349	8,777	17,290	8,094	12,034	11,042	6,442	6,633	9,119	10,312	7,484	4,910
WSIP 2030 Witip Priect	6,937	8,585	16,300	7,178	10,213	9,109	6,452	6,421	9,127	10,598	8,401	5,584
Difference	-412	-192	-990	-916	-1,821	-1,934	9	-212	8	286	918	674
Percent Difference	-5.6\%	-2.2\%	-5.7\%	-11.3\%	-15.1\%	-17.5\%	0.1\%	-3.2\%	0.1\%	2.8\%	12.3\%	13.7\%
Critical (14.6\%)												
WSIP 2030 W Whtout Prject	4,801	5,268	7,822	7,314	7.814	7,375	5,978	6,543	9,078	10,773	7,178	4,843
WSIP 2030 With Projet	4,489	5,119	6,531	6,670	6,767	6,341	5,946	6,322	9,132	10,371	7,716	5,364
Difference	-312	-149	-1,291	-644	-1,047	-1,034	-32	-221	54	-401	538	521
Percent Difference	-6.5\%	-2.8\%	-16.5\%	-8.8\%	-13.4\%	-14.0\%	-0.5\%	-3.4\%	0.6\%	-3.7\%	7.5\%	10.8\%

1 Basedon on the 82 vever simulution period
3 Reative difference of the monthy verage

Table SW-14-a
Sacramento River below Delevan Intake and Pipeline, Monthly Flow
Long-term Average and Average by Water Year Type

Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulition Period'												
WSIP 2303 W Witout Projed	6,342	9,413	15,403	22,885	27,392	20,418	11,312	7,348	7,982	9,688	6,910	8,324
WSIP 2030 With Project	6,818	9,581	14,263	20,966	25,424	18,632	10,993	7,202	8,577	10,922	7,694	9,295
Difference	476	168	-1,139	-1,919	-1,969	$-1,786$	-319	-145	595	1,234	785	971
Percent Difference?	7.5\%	1.8\%	-7.4\%	-8.4\%	-7.2\%	-8.7\%	-2.8\%	-2.0\%	7.5\%	12.7\%	11.4\%	11.7\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2303 Without Projed	7,465	11,944	16,538	42,186	48,509	33,318	18,595	8,925	7,802	9,554	6,912	13,056
WSIP 2330 Witit Proed	7,632	11,955	15,160	40,350	46,679	31,830	17,976	8,834	8,238	10,067	6,974	13,435
Diffeence	168	11	-1,378	-1,836	$-1,830$	-1,488	-619	-91	${ }^{437}$	513	62	379
Percent Difference	2.2\%	0.1\%	-8.3\%	-4.4\%	-3.8\%	-4.5\%	-3.3\%	-1.0\%	5.6\%	5.4\%	0.9\%	2.9\%
Above Nomal (14.6\%)												
WSIP 2303 W Witout Projed	6,477	11,655	13,880	29,047	31,425	24,591	10,630	8,213	8,398	9,899	7,387	9,573
WSIP 2330 Witit Project	6,881	11,433	12,377	25,962	28,981	22,861	10,072	7,903	8,536	12,135	7,746	10,145
Difference	404	-222	-1,503	-3,085	-2,444	-1,730	-558	-310	138	2,236	359	573
Percent Difference	6.2\%	-1.9\%	-10.8\%	-10.6\%	-7.8\%	-7.0\%	-5.2\%	-3.8\%	1.6\%	22.6\%	4.9\%	6.0\%
Below Norma (20.7\%)												
WSIP 2303 W Withot Projed	5,464	7,658	15,773	13,258	17,960	13,416	9,813	7,173	8,092	10,380	7,097	5,916
WSIP 2030 With Priject	6,569	8,131	15,747	11,037	16,440	11,224	9,388	6,857	8,827	12,545	7,746	7,422
Difference	1,105	473	-26	-2,221	-1,520	-2,192	-425	-316	734	2,165	649	1,506
Percent Difference	20.2\%	6.2\%	-0.2\%	-16.7\%	-8.5\%	-16.3\%	-4.3\%	-4.4\%	9.1\%	20.9\%	9.1\%	25.5\%
Dry (19.5\%)												
WSIP 2303 Witrout Proed	6,942	8,957	19,465	9,146	15,195	13,302	6,200	5,720	7,909	9,095	6,561	5,083
WSIP 2330 Witit Project	7,291	9,243	18,083	7,576	12,366	11,003	6,218	5,496	8,692	10,563	8,500	6,634
Difference	349	286	-1,382	-1,570	-2,829	$-2,299$	17	-224	783	1,468	1,939	1,551
Percent Difference	5.0\%	3.2\%	-7.1\%	-17.2\%	-18.6\%	-17.3\%	0.3\%	-3.9\%	9.9\%	16.1\%	29.6\%	30.5\%
Critical (14.6\%)												
WSIP 2030 W Whtout Prjeed	4,308	4,991	8,619	8,471	8,990	8,777	5,759	5,613	7,883	9,566	6,627	4,949
WSIP 2030 With Project	4,779	5,287	7,088	7,506	7,720	7,573	6,003	5,865	8,819	9,672	7,996	6,018
Difference	471	296	-1,531	-965	-1,271	-1,203	244	253	936	106	1,369	1,069
Percont Difierence	10.9\%	5.9\%	-17.8\%	-11.4\%	-14.1\%	-13.7\%	4.2\%	4.5\%	11.9\%	1.1\%	20.7\%	21.6\%

1 Based on the 82 -year simulation neriod
3 Reative difference of the monthy verage

Table SW-15-a
er at Wiken Sloug
Sacramento River at Wiken Slough, Monthly Flow
Sacramento River at Wiiken Slough, Morthly Flow
Long.term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Sinulation Period'												
WSIP 2030 Wentrot Projed	6,027	8,861	11,770	14,192	15,784	14,348	8,420	5,955	5,986	7,594	5,327	8,033
WSIP 2030 With Proedt	6,510	9,085	11,122	13,130	14,773	13,116	8,233	5,816	6,579	8,807	6,085	9,000
Difference	483	224	-648	-1,062	-1,012	-1,232	-187	-139	593	1,213	758	967
Percent Difference ${ }^{\text {a }}$	8.0\%	2.5\%	-5.5\%	-7.5\%	-6.4\%	-8.6\%	-2.2\%	-2.3\%	9.9\%	16.0\%	14.2\%	12.0\%
Water Year Types ${ }^{2}$												
Wet (3.55\%)												
WSIP 2030 Without Pried	7,119	11,648	12,686	20,038	20,640	18,373	12,980	7,498	5,864	7,534	5,364	12,779
WSIP 2330 Witit Project	7,290	11,718	11,866	19,487	20,330	17,903	12,605	7,473	6,301	8,036	5,419	13,171
Difference	171	69	-821	-551	-310	-470	-375	-25	437	502	55	392
Percent Diffeence	2.4\%	0.6\%	-6.5\%	-2.7\%	-1.5\%	-2.6\%	-2.9\%	-0.3\%	7.5\%	6.7\%	1.0\%	3.1\%
Above Nomal (14.6\%)												
WSIP 2030 Without Projed	6,230	10,270	10,865	17,743	18,306	16,990	9,098	6,682	6,395	7,813	5,834	9,258
WSIP 2303 With Project	6,636	10,300	10,057	16,817	17,417	15,952	8,669	6,357	6,536	10,040	6,134	9,850
Difference	406	30	-808	-926	-889	-1,037	-429	-325	142	2,227	300	592
Percent Difference	6.5\%	0.3\%	-7.4\%	-5.2\%	-4.9\%	-6.1\%	-4.7\%	-4.9\%	2.2\%	28.5\%	5.1\%	6.4\%
Below Norma (20.7\%)												
WSIP 2030 Without Proed	5,308	7,258	11,648	12,060	14,066	12,494	7,701	5,823	6,084	8,259	5,479	5,659
WSIP 2380 Wit Project	6,388	7,744	11,995	10,387	13,029	10,580	7,479	5,506	6,816	10,393	6,079	7,174
Difference	1,080	486	347	-1,673	-1,037	-1,913	-222	-316	732	2,134	599	1,516
Percent Difference	20.3\%	6.7\%	3.0\%	-13.9\%	-7.4\%	-15.3\%	-2.9\%	-5.4\%	12.0\%	25.8\%	10.9\%	26.8\%
Dry (19.5\%)												
WSIP 2030 Without Projed	6,346	8,107	13,549	9,110	13,392	12,380	4,760	4,408	5,864	6,951	4,964	4,783
WSIP 2330 Witit Project	6,756	8,372	12,883	7,580	11,294	10,490	4,798	4,158	6,645	8,387	6,866	6,295
Difference	410	265	-666	-1,530	-2,098	-1,890	37	-250	781	1,436	1,902	1,512
Percent Difference	6.5\%	3.3\%	-4.9\%	-16.8\%	-15.7\%	-15.3\%	0.8\%	-5.7\%	13.3\%	20.7\%	38.3\%	31.6\%
Critical (14.6\%)												
WSIP 2030 W Whtout Proed	4,142	4,921	8,571	8,259	8,770	8,573	4,138	4,263	5,855	7,417	5,012	4,617
WSIP 2330 Witit Project	4,607	5,233	7,054	7,487	7,658	7,399	4,337	4,470	6,779	7,494	6,394	5,654
Difference	465	311	-1,517	-771	-1,112	-1,174	198	207	924	77	1,382	1,037
Pereent Difference	11.2\%	6.3\%	-17.7\%	-9.3\%	-12.7\%	-13.7\%	4.8\%	4.9\%	15.8\%	1.0\%	27.6\%	22.5\%

$\frac{\text { Percent } 1 \text { fifferene }}{1 \text { Based on the } 82 \text { verar sinuludion period }}$
3 Reative difference of the monthy verage

Table SW-17-a Sacramento River at Freeport, Monthly Flow Long-term Average and Average by Water Year Type												
Analysis Period						Monthly	Fow (CFS)					
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulion Period'												
WSIP 2030 Without Proed	11,381	15,801	24,220	33,907	41,521	35,166	22,047	13,469	12,840	19,825	13,884	16,590
WSIP 2330 With Project	12,052	16,175	23,446	32,650	40,359	33,876	21,877	13,347	13,186	20,243	14,514	17,721
Difference	672	374	-774	-1,257	-1,161	-1,290	-170	-123	345	418	629	1,132
Percent Difference ${ }^{\text {a }}$	5.9\%	2.4\%	-3.2\%	-3.7\%	-2.8\%	-3.7\%	-0.8%	-0.9\%	2.7\%	2.1\%	4.5\%	6.8\%
Water Year Types ${ }^{2}$												
Wet (3.55\%)												
WSIP 2030 W Without Prjed	13,580	20,172	27,667	55,944	63,741	51,966	36,623	18,448	13,867	21,398	15,700	26,164
WSIP 2030 Wit Project	14,014	20,214	26,379	55,128	63,310	51,219	36,182	18,437	14,354	21,321	15,736	26,378
Difference	434	42	-1,287	-817	-431	-746	-441	-12	487	-77	37	213
Percent Difference	3.2\%	0.2\%	-4.7\%	-1.5\%	-0.7\%	-1.4\%	-1.2\%	-0.1\%	3.5\%	-0.4\%	0.2\%	0.8\%
Above Normal (14.6\%)												
WSIP 2030 W Witrout Projed	12,753	18,016	22,793	43,085	50,731	45,715	22,296	14,774	13,299	22,694	16,258	19,132
WSIP 2330 Witit Projet	13,079	18,348	21,899	41,569	49,515	44,749	21,963	14,513	13,317	23,279	16,342	19,765
Difference	326	332	-895	-1,516	-1,216	-966	-333	-261	18	585	84	632
Percent Difference	2.6\%	1.8\%	-3.9\%	-3.5\%	-2.4\%	-2.1\%	-1.5\%	-1.8\%	0.1\%	2.6\%	0.5\%	3.3\%
Below Normal (20.7\%)												
WSSIP 2030 W Withot Projed	10,424	13,040	23,085	23,704	32,376	29,058	18,111	11,973	13,025	22,804	15,384	12,098
WSIP 2330 Witit Project	11,726	13,709	23,579	21,742	31,472	27,187	17,934	11,672	13,243	22,919	16,171	13,914
Difference	1,301	669	494	-1,962	-904	-1,871	-178	-301	218	115	787	1,816
Percent Difference	12.5\%	5.1\%	2.1\%	-8.3\%	-2.8\%	-6.4\%	-1.0\%	-2.5\%	1.7\%	0.5\%	5.1\%	15.0\%
Dry (19.5\%)												
WSIP 2030 W Withot Projed	11,566	16,255	29,074	17,683	27,683	23,024	11,994	10,355	12,726	17,409	11,644	11,033
WSIP 2030 Witip Priect	12,327	16,892	28,354	16,399	25,224	20,992	12,065	10,261	13,028	18,475	13,028	12,993
Difference	761	637	-720	-1,284	-2,459	$-2,033$	71	-94	302	1,066	1,385	1,959
Percent Difference	6.6\%	3.9\%	-2.5\%	-7.3\%	-8.9\%	-8.8\%	0.6\%	-0.9\%	2.4\%	6.1\%	11.9\%	17.8\%
Critical (14.6\%)												
WSIP 2030 W Whtout Prjeet	6,533	7,788	13,600	14,905	17,422	14,459	10,411	8,064	10,134	12,677	8,593	7,871
WSIP 2030 With Projet	7,035	8,126	12,149	14,021	16,160	13,525	10,660	8,064	10,750	13,528	9,771	9,343
Difference	501	338	-1,451	-884	-1,262	-934	249	0	616	851	1,178	1,472
Percent Difference	7.7\%	4.3\%	-10.7\%	-5.9\%	-7.2\%	-6.5\%	2.4\%	0.0\%	6.1\%	6.7\%	13.7\%	18.7\%

2 As defined by the Sacamenento Valley $40.30-30$ Index Waier Year Hydrologic Classificition (SWRCB D-1641, 1999)
3 Realive difference of the monthly vereage

Table SW-18-a

Table SW-18-a Lake Oroville, End of Month Storage Long-term Average and Average by Water Year Type												
Analysis Period	End of Month Storage (TAF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period'												
WSIP 2303 W Witout Projed	1,369	1,420	1,647	1,973	2,285	2,518	2,730	2,760	2,565	2,049	1,713	1,469
WSIP 2030 With Projet	1,419	1,468	1,688	2,010	2,311	2,544	2,755	2,786	2,604	2,106	1,780	1,528
Difference	50	48	41	37	26	25	25	26	39	57	67	59
Percent Difference?	3.7\%	3.4\%	2.5\%	1.9\%	1.1\%	1.0\%	0.9\%	0.9\%	1.5\%	2.8\%	3.9\%	4.0\%
Water Year Types ${ }^{2}$												
Wet (3.5\%)												
WSIP 2303 W Without Projed	1,727	1,709	1,892	2,672	2,865	2,952	3,256	3,383	3,243	2,724	2,362	1,938
WSIP 2030 With Project	1,762	1,749	1,929	2,710	2,866	2,952	3,256	3,381	3,242	2,753	2,397	1,974
Difference	35	39	37	38	1	0	0	-1	0	29	35	36
Percent Difference	2.1\%	2.3\%	2.0\%	1.4\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	1.1\%	1.5\%	1.8\%
Above Nomal (14.6\%)												
WSIP 2303 W Withot Projed	1,548	1,566	1,651	2,283	2,760	2,945	3,250	3,313	3,129	2,501	2,045	1,697
WSIP 2330 Witit Project	1,629	1,634	1,718	2,306	2,784	2,951	3,257	3,318	3,146	2,559	2,124	1,778
Difference	81	68	68	23	23	7	6	6	17	59	78	81
Percent Difference	5.2\%	4.4\%	4.1\%	1.0\%	0.8\%	0.2\%	0.2\%	0.2\%	0.6\%	2.3\%	3.8\%	4.8\%
Below Norma (20.7%)												
WSIP 2030 W Witout Projed	1,215	1,230	1,505	1,729	2,123	2,512	2,757	2,764	2,510	1,878	1,441	1,323
WSIP 2030 With Project	1,306	1,313	1,573	1,761	2,152	2,543	2,785	2,792	2,580	2,001	1,562	1,435
Difference	91	83	68	32	29	31	28	28	69	122	121	112
Percent Difierence	7.5\%	6.7\%	4.5\%	1.8\%	1.4\%	1.2\%	1.0\%	1.0\%	2.8\%	6.5\%	8.4\%	8.4\%
Dry (19.5\%)												
WSIP 2303 W Witrout Projed	1,201	1,395	1,762	1,454	1,851	2,213	2,339	2,294	2,048	1,563	1,309	1,146
WSIP 2030 Witit Proeet	1,225	1,422	1,769	1,487	1,884	2,254	2,380	2,332	2,097	1,603	1,374	1,195
Difference	25	27	7	33	33	41	41	38	50	40	65	49
Percent Difference	2.1\%	1.9\%	0.4\%	2.3\%	1.8\%	1.8\%	1.7\%	1.7\%	2.4\%	2.6\%	5.0\%	4.3\%
Cifital (14.6\%)												
WSIP 2303 Without Projed	890	973	1,181	1,246	1.412	1,605	1,598	1,527	1,355	1,079	952	901
WSIIP 2330 Witit Projet	916	999	1,209	1,305	1,477	1,673	1,666	1,611	1,443	1,123	1,000	924
Difference	26	26	29	59	65	69	68	83	88	44	48	23
Percent Difference	2.9\%	2.6\%	2.4\%	4.8\%	4.6\%	4.3\%	4.3\%	5.5\%	6.5\%	4.0\%	5.0\%	2.6\%

$\frac{\text { Percent } 1 \text { fiference }}{1 \text { Based on the } 82 \text {-verar sinuludioio period }}$
3 Realive difference of the monthly wereas

Table SW-19-a
ill
Lake Oroville, End of Month Elevation

Long-term Average and Average by Water Year Type												
Analysis Period	Oct	End of Month Elevation (FEET)										
Long.term												
Full Simultion Period'												
WSIP 2030 Without Proed	708	714	738	772	802	823	838	840	824	779	745	719
WSIP 2 230 With Project	714	720	743	776	805	826	841	842	827	785	753	727
Difference	6	6	5	4	3	3	3	3	4	6	8	7
Percent Difference	0.9\%	0.8\%	0.7\%	0.5\%	0.4\%	0.3\%	0.3\%	0.3\%	0.5\%	0.8\%	1.1\%	1.0\%
Water Year Typess ${ }^{2}$												
Wet (30.5\%)												
WSSP 2030 W Withot Proed	750	748	765	839	854	860	881	889	880	843	813	773
WSIP 2330 With Project	755	753	769	842	854	860	881	889	880	845	817	777
Difference	4	5	5	3	0	0	0	0	0	2	4	4
Percent Difference	0.6\%	0.6\%	0.6\%	0.4\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.3\%	0.4\%	0.5\%
Above Normal (14.6\%)												
WSIP 2030 Without Project	732	732	741	804	846	859	880	885	872	827	787	750
WSIP 2330 With Project	742	741	749	807	848	860	881	885	873	832	795	759
Difference	10	8	8	3	2	0	0	0	1	5	8	9
Percent Difference	1.3\%	1.2\%	1.1\%	0.3\%	0.2\%	0.1\%	0.0\%	0.0\%	0.1\%	0.6\%	1.0\%	1.3\%
Below Norma(20.7%)												
WSIP 2030 W Withot Project	693	695	723	753	792	827	846	847	828	769	720	706
WSIP 2303 With Prijet	704	705	731	756	794	830	848	849	833	782	735	720
Difference	11	10	8	4	3	3	2	2	5	13	15	14
Pereent Difference	1.6\%	1.4\%	1.1\%	0.5\%	0.4\%	0.3\%	0.2\%	0.2\%	0.6\%	1.6\%	2.1\%	1.9\%
Dry (19.5\%)												
wSIP 2030 Without Priect	687	709	747	720	764	800	810	806	783	733	703	683
WSIP 2330 Wit Project	689	711	748	725	768	804	814	810	788	737	710	688
Difference	2	2	1	4	4	5	4	4	4	4	7	5
Percent Difference	0.3\%	0.3\%	0.1\%	0.6\%	0.5\%	0.6\%	0.5\%	0.5\%	0.5\%	0.5\%	1.0\%	0.8\%
Critical (14.6\%)												
WSIP 2030 Without Proedt	645	659	687	694	714	736	735	726	706	671	652	646
Wsip 2303 With Project	651	663	691	702	722	744	743	737	718	679	662	652
Difference	6	5	4	8	8	8	9	10	12	8	9	6
Percent Difference	0.9\%	0.7\%	0.6\%	1.1\%	1.1\%	1.1\%	1.2\%	1.4\%	1.6\%	1.2\%	1.5\%	0.9\%

son hie 82 -year
3 Realive difference of the monthly verage

Table SW-20-a Lake Oroville, End of Month Area												
						of Mont	Area (AC					
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulation Period'												
WSIP 2030 Without Prjeet	7,990	8,192	9,063	10,306	11,465	12,313	13,029	13,118	12,432	10,586	9,322	8,389
WSIP 2030 With Projet	8,201	8,391	9,232	10,451	11,567	12,411	13,122	13,217	12,577	10,802	9,594	8,633
Difference	210	198	168	145	101	98	93	99	145	216	272	245
Percent Difference	2.6\%	2.4\%	1.9\%	1.4\%	0.9\%	0.8\%	0.7\%	0.8\%	1.2\%	2.0\%	2.9\%	2.9\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 Without Project	9,433	9,364	10,019	12,895	13,560	13,849	14,864	15,286	14,820	13,073	11,805	10,245
WSIP 2330 With Project	9,579	9,524	10,171	13,027	13,563	13,849	14,863	15,282	14,818	13,175	11,935	10,386
Difference	146	160	152	132	3	0	-1	-5	-2	102	130	140
Percent Difference	1.5\%	1.7\%	1.5\%	1.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.8\%	1.1\%	1.4\%
Above Norma (14.6\%)												
WSIP 2030 Without Project	8,758	8,793	9,116	11,489	13,203	13,827	14,845	15,053	14,439	12,323	10,696	9,358
WSIP 2330 With Projett	9,088	9,078	9,395	11,584	13,284	13,848	14,866	15,071	14,497	12,533	10,990	9,684
Differene	331	286	279	94	82	22	21	19	57	209	293	326
Percent Difference	3.8\%	3.2\%	3.1\%	0.8\%	0.6\%	0.2\%	0.1\%	0.1\%	0.4\%	1.7\%	2.7\%	3.5\%
Below Normal (20.7\%)												
WSIP 2030 Without Prjeet	7,407	7,467	8,527	9,472	10,943	12,354	13,198	13,219	12,358	10,063	8,335	7,856
WSIP 2030 with Proeet	7,786	7,808	8,800	9,597	11,051	12,465	13,293	13,311	12,593	10,522	8,837	8,318
Difference	379	341	273	125	108	111	95	92	235	459	502	461
Percent Difference	5.1\%	4.6\%	3.2\%	1.3\%	1.0\%	0.9\%	0.7\%	0.7\%	1.9\%	4.6\%	6.0\%	5.9\%
Dry (19.5\%)												
wSIP 2030 Without Project	7,292	8,063	9,466	8,365	9,911	11,266	11,709	11,544	10,649	8,801	7,782	7,106
WSIP 2330 Wit Project	7,387	8,156	9,495	8,504	10,048	11,425	11,862	11,688	10,822	8,946	8,040	7,305
Difference	94	93	29	139	136	159	153	144	174	145	258	198
Percent Difference	1.3\%	1.2\%	0.3\%	1.7\%	1.4\%	1.4\%	1.3\%	1.2\%	1.6\%	1.6\%	3.3\%	2.8\%
Critical (14.6\%)												
WSIP 2030 W Withut Project	5,974	6,351	7,242	7,501	8,175	8,937	8,909	8,624	7,931	6,789	6,228	6,014
WSIP 2030 With Priject	6,114	6,480	7,371	7,757	8,446	9,215	9,191	8,968	8,306	6,997	6,467	6,148
Difference	140	129	129	256	270	278	281	344	375	208	238	135
Percent Difference	2.3\%	2.0\%	1.8\%	3.4\%	3.3\%	3.1\%	3.2\%	4.0\%	4.7\%	3.1\%	3.8\%	2.2\%

3 Realive difference of the monthly vereage

Table SW-21-a
nalito Low Flow
Con
Feather River at Thermalito Low Flow Channel, Monthly Flow

Feather River at Thermalito Low Flow Channel, Monthly FlowLong-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period ${ }^{1}$												
WSIP 2030 Without Proed	800	800	800	800	800	800	700	700	700	700	700	773
WSIP 2030 With Projet	800	800	800	800	800	800	700	700	700	700	700	773
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference ${ }^{\text {a }}$	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 Without Proed	800	800	800	800	800	800	700	700	700	700	700	773
WSIP 2030 With Projet	800	800	800	800	800	800	700	700	700	700	700	773
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Above Nomal (14.6\%)												
WSIP 2030 Without Project	800	800	800	800	800	800	700	700	700	700	700	773
WSIP 2030 With Proeet	800	800	800	800	800	800	700	700	700	700	700	773
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Below Normal (20.7\%)												
WSIP 2030 Without Proeet	800	800	800	800	800	800	700	700	700	700	700	773
WSIP 2030 With Priject	800	800	800	800	800	800	700	700	700	700	700	773
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Dry (19.5\%)												
WSIP 2300 Without Priject	800	800	800	800	800	800	700	700	700	700	700	773
WSIP 2030 Witit Proeet	800	800	800	800	800	800	700	700	700	700	700	773
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Critical (14.6\%)												
WSIP 2030 W Whtout Pried	800	800	800	800	800	800	700	700	700	700	700	773
WSIP 2030 With Projet	800	800	800	800	800	800	700	700	700	700	700	773
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%

$\begin{array}{lllll}0.0 \% & 0.0 \% & 0.0 \% & 0.0 \% & 0.0 \%\end{array}$
3 Realive difference of the monthly vereage

Feather River below Thermalito, Monthly Flow Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period'												
WSIP 2030 Without Projed	2,945	1,986	3,101	4,598	7,321	7,112	2,613	1,865	2,779	7,452	5,138	4,407
WSIP 2030 With Project	3,035	2,015	3,206	4,663	7,518	7,109	2,617	1,828	2,514	7,165	4,947	4,507
Difference	90	28	105	65	197	-3	3	-38	-265	-287	-190	100
Percent Difference ${ }^{\text {e }}$	3.0\%	1.4\%	3.4\%	1.4\%	2.7\%	0.0\%	0.1\%	-2.0\%	-9.5\%	-3.8\%	-3.7\%	2.3\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2303 W Witrout Projed	3,908	2,681	3,765	11,561	17,554	14,599	5,472	2,719	2,745	8,076	5,914	7,511
WSIP 2030 With Priject	3,908	2,614	3,808	11,589	18,213	14,614	5,466	2,728	2,716	7,580	5,804	7,476
Diffeence	0	-67	42	29	659	15	-6	9	-29	-496	-110	-35
Percent Difference	0.0\%	-2.5\%	1.1\%	0.2\%	3.8\%	0.1\%	-0.1\%	0.3\%	-1.1\%	-6.1\%	-1.9\%	-0.5\%
Above Nomal (14.6\%)												
WSIP 2303 W Withot Projed	3,991	2,542	3,874	2,215	6,709	10,363	1,421	1,628	2,798	9,274	7,158	5,631
WSIP 2030 With Projet	3,922	2,749	3,945	2,601	6,707	10,634	1,419	1,626	2,587	8,589	6,827	5,574
Difference	-69	207	72	386	-2	271	-2	-1	-211	-684	-331	-57
Percent Difference	-1.7\%	8.1\%	1.9\%	17.4\%	0.0\%	2.6\%	-0.2\%	-0.1\%	-7.5\%	-7.4\%	-4.6\%	-1.0\%
Below Normal (20.7\%)												
WSIP 2030 W Witrout Proed	2,712	1,853	1,928	1,477	2,316	2,489	1,378	1,311	3,160	8,795	6,558	2,542
WSIP 2030 With Priject	2,839	1,883	2,100	1,477	2,365	2,452	1,424	1,293	2,444	7,918	6,542	2,688
Difference	127	30	172	0	49	-37	46	-18	-717	-877	-16	146
Percent Difiference	4.7\%	1.6\%	8.9\%	0.0\%	2.1\%	-1.5\%	3.3\%	-1.4\%	-22.7\%	-10.0\%	-0.2\%	5.7\%
Dry (19.5\%)												
WSIP 2303 W Witrout Proed	2,152	1,343	3,888	1,388	1,547	2,123	1,539	1,669	2,951	6,661	3,529	2,787
WSIP 2330 Witit Project	2,523	1,415	4,147	1,388	1,536	2,003	1,527	1,685	2,727	6,869	3,063	2,985
Difference	371	72	260	0	-11	-121	-12	17	-224	208	-466	199
Percent Difference	17.3\%	5.4\%	6.7\%	0.0\%	-0.7\%	-5.7\%	-0.8\%	1.0\%	-7.6\%	3.1\%	-13.2\%	7.1\%
Critical (14.6\%)												
WSIP 2030 W Whtout Proed	1,280	1,031	1,560	1,175	1,405	1,465	1,033	1,373	2,061	3,481	1,631	1,517
WSIP 2030 With Projet	1,288	1,019	1,527	1,175	1,325	1,358	1,023	1,102	1,838	4,205	1,537	1,859
Difference	8	-12	-32	0	-80	-107	-10	-271	-223	724	-95	342
Percent Difference	0.6\%	-1.1\%	-2.1\%	0.0\%	-5.7\%	-7.3\%	-1.0\%	-19.7\%	-10.8\%	20.8\%	-5.8\%	22.6\%

Tasedornimez-versmualon pentiod
3 Realive difference of the monthly averas

Table SW-23-a Feather River at Mouth, Monthly Flow												
						Monthly	ow (CFS)					
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period'												
WSIP 2030 W Withot Projed	3,463	2,962	6,097	12,539	16,361	15,102	7,890	4,438	3,887	7,713	5,959	6,127
WSIP 2030 With Proeet	3,554	2,990	6,204	12,600	16,553	15,101	7,897	4,402	3,625	7,431	5,768	6,239
Difference	91	28	108	61	192	-1	6	-35	-262	-282	-192	112
Percent Difference	2.6\%	0.9\%	1.8\%	0.5\%	1.2\%	0.0\%	0.1\%	-0.8\%	-6.7\%	-3.7\%	-3.2\%	1.8\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 W Without Prjed	4,312	3,627	7,948	27,310	34,435	27,089	14,539	6,720	4,762	8,784	7,139	9,542
WSIP 2303 With Priject	4,312	3,561	7,991	27,339	35,094	27,103	14,537	6,730	4,735	8,288	7,039	9,520
Difference	1	-67	43	29	659	14	-3	10	-28	-496	-99	-22
Percent Difference	0.0\%	-1.8\%	0.5\%	0.1\%	1.9\%	0.1\%	0.0\%	0.2\%	-0.6\%	-5.6\%	-1.4\%	-0.2\%
Above Nomal (14.6\%)												
WSIP 2030 Without Proeet	4.472	3,806	5,764	10,74	18,451	22,081	8,045	4,701	4,079	9,503	8,010	7,565
WSIP 2303 With Project	4,403	4,013	5,834	11,130	18,448	22,352	8,043	4,701	3,870	8,819	7,678	7,511
Difference	-69	207	71	387	-3	271	-2	0	-209	-685	-332	-54
Percent Difference	-1.5\%	5.4\%	1.2\%	3.6\%	0.0\%	1.2\%	0.0\%	0.0\%	-5.1\%	-7.2\%	-4.1\%	-0.7\%
Below Normal (20.7\%)												
WSIP 2030 W Withot Project	3,212	2,437	4,565	5,960	7,819	9,831	5,298	3,602	4,070	9,060	7,476	4,396
WSIP 23030 wit Project	3,336	2,468	4,738	5,962	7,871	9,795	5,347	3,586	3,353	8,186	7,457	4,543
Difference	124	31	173	3	53	-36	49	-15	-717	-874	-19	147
Percent Difference	3.9\%	1.3\%	3.8\%	0.0\%	0.7\%	-0.4\%	0.9\%	-0.4\%	-17.6\%	-9.7\%	-0.2\%	3.3\%
Dry (19.5\%)												
WSIP 2330 Without Proeet	3,203	3,012	8,318	4,400	5,231	5,665	3,780	3,283	3,455	6,552	4,023	4,559
WSIP 2030 Witit Proect	3,577	3,077	8,581	4,391	5,193	5,537	3,772	3,303	3,234	6,782	3,554	4,799
Difference	374	65	263	-10	-38	-129	-8	20	-221	230	-469	240
Percent Difference	11.7\%	2.2\%	3.2\%	-0.2\%	-0.7\%	-2.3\%	-0.2\%	0.6\%	-6.4\%	3.5\%	-11.6\%	5.3\%
Critical (14.6\%)												
WSIP 2030 Without Proeet	1,389	1,412	1,783	3,735	3,556	3,198	3,035	2,145	2,189	3,331	1,885	2,114
WSIP 2330 Wit Project	1,402	1,404	1,761	3,712	3,474	3,113	3,029	1,878	1,976	4,052	1,765	2,452
Difference	13	-8	-22	-23	-82	-85	-6	-267	-214	721	-120	338
Percent Difference	0.9\%	-0.5\%	-1.2\%	-0.6\%	-2.3\%	-2.7\%	-0.2\%	-12.4\%	-9.8\%	21.6\%	-6.4\%	16.0\%

3 Realive difference of the monthly vereage

Table SW-24-a
Lake, End of Mont
Folsom Lake, End of Month Storage

Folsom Lake, End of Month Storage Long-term Average and Average by Water Year Type												
Analysis Period	End of Month Storage (TAF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulation Period'												
WSIP 2030 Without Proed	392	399	446	475	496	598	713	769	701	523	478	428
WSIP 2303 With Project	404	404	451	476	499	599	713	764	696	547	499	447
Difference	12	5	5	1	3	2	0	-4	-5	24	21	19
Percent Differences	3.1\%	1.3\%	1.2\%	0.3\%	0.6\%	0.3\%	0.0\%	-0.5\%	-0.7\%	4.6\%	4.4\%	4.5\%
Water Year Typess ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 Without Proed	454	431	476	520	508	626	767	898	853	678	625	508
WSIP 2330 With Project	448	428	475	520	508	626	767	896	848	679	624	516
Difference	-5	-4	-1	0	0	0	0	-2	-5	1	-1	9
Percent Difference	-1.2\%	-0.8\%	-0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.2\%	-0.6\%	0.2\%	-0.2\%	1.7\%
Above Normal (14.6\%)												
WSIP 2030 Without Proeet	414	428	462	531	548	643	778	844	778	544	508	459
WSIP 2030 Wit Project	444	441	478	530	548	643	778	841	769	580	539	487
Difference	30	13	16	-1	0	0	0	-3	-9	37	31	28
Percent Difference	7.3\%	3.0\%	3.5\%	-0.3\%	0.0\%	0.0\%	0.0\%	-0.4\%	-1.2\%	6.8\%	6.1\%	6.2\%
Below Normal (20.7\%)												
WSIP 2030 Without Proeet	398	404	461	500	536	627	775	796	718	482	448	437
WSIP 2303 With Prijet	420	419	471	500	540	629	772	790	700	526	482	464
Differene	22	15	9	-1	4	1	-2	-6	-17	44	35	27
Percent Difference	5.6\%	3.8\%	2.0\%	-0.2\%	0.7\%	0.2\%	-0.3\%	-0.7\%	-2.4\%	9.1\%	7.7\%	6.1\%
Dry (19.5\%)												
WSIP 2030 Without Priject	360	400	403	419	479	594	689	699	596	438	381	371
WSIP 2330 Wit Project	388	411	412	417	482	597	690	692	604	483	430	410
Difference	28	11	8	-2	3	4	1	-8	8	44	50	38
Percent Difference	7.7\%	2.8\%	2.1\%	-0.6\%	0.6\%	0.6\%	0.2\%	-1.1\%	1.3\%	10.1\%	13.1\%	10.4\%
Critical (14.6\%)												
WSIP 2330 Without Priect	275	293	402	361	384	457	484	476	422	353	316	293
WSIP 2330 With Project	269	286	398	375	395	461	484	473	425	355	316	289
Differene	-6	-7	-4	15	11	4	0	-3	3	2	0	-4
Percent Difference	-2.1\%	-2.3\%	-0.9\%	4.0\%	2.9\%	0.9\%	0.1\%	-0.6\%	0.7\%	0.6\%	0.0\%	-1.4\%

Tasedornimez-versmualon pentiod
3 Realive difference of the monthly verage

Table SW-25-a Folsom Lake, End of Month Elevation Long-term Average and Average by Water Year Ty												
Analysis Period	End of Month Elevation (FEET)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
${\text { Full Simulation Period }{ }^{\prime} \text { ' }}^{\text {a }}$												
WSIP 2300 Without Proed	399	401	407	411	414	427	439	445	437	416	410	404
WSIP 2330 Wit Project	401	401	408	411	414	427	439	444	437	419	413	407
Difference	2	1	1	0	0	0	0	-1	-1	3	3	3
Percent Difference	0.4\%	0.2\%	0.2\%	0.0\%	0.1\%	0.0\%	0.0\%	-0.1\%	-0.2\%	0.7\%	0.7\%	0.7\%
Water Year Types ${ }^{2}$												
Wet (3.5\%)												
WSIP 2030 Without Priedt	408	406	412	417	416	431	445	458	454	435	429	415
WSIP 2330 With Project	408	405	412	417	416	431	445	458	453	435	429	416
Difference	-1	0	0	0	0	0	0	0	-1	0	0	1
Percent Difference	-0.2\%	-0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.1\%	0.0\%	0.0\%	0.2\%
Above Normal (14.6\%)												
WSIP 2030 Without Proeet	403	405	410	419	421	433	447	453	447	420	416	410
WSIP 2303 With Project	408	407	412	419	421	433	447	453	446	424	419	413
Difference	4	2	2	0	0	0	0	0	-1	4	4	4
Percent Difference	1.0\%	0.4\%	0.5\%	-0.1\%	0.0\%	0.0\%	0.0\%	-0.1\%	-0.2\%	1.0\%	0.9\%	0.9\%
Below Normal (20.7\%)												
WSIP 2030 W Withot Project	401	402	409	415	419	431	446	448	440	412	408	407
WSIP 23030 wit Projett	404	404	410	415	420	431	446	448	438	418	413	410
Difference	3	2	1	0	0	0	0	-1	-2	6	5	4
Percent Difference	0.8\%	0.6\%	0.3\%	0.0\%	0.1\%	0.0\%	-0.1\%	-0.1\%	-0.4\%	1.4\%	1.2\%	0.9\%
Dry (19.5\%)												
WSIP 2030 Without Proed	395	400	401	403	412	427	437	438	427	406	397	396
WSIP 2330 Wit Project	399	402	402	403	412	427	437	437	427	412	405	402
Difference	4	2	1	-1	0	0	0	-1	1	6	8	6
Percent Difference	1.1\%	0.5\%	0.3\%	-0.1\%	0.1\%	0.1\%	0.0\%	-0.2\%	0.2\%	1.5\%	2.0\%	1.5\%
Critical (14.6\%)												
WSIP 2030 Without Proeet	381	383	401	395	398	408	412	411	404	393	388	384
WSIP 2330 Wit Project	380	382	400	397	400	408	411	409	403	394	388	383
Difference	-1	-1	-1	2	1	0	-1	-1	-1	-	0	-1
Percent Difference	-0.3\%	-0.3\%	-0.1\%	0.5\%	0.4\%	0.1\%	-0.2\%	-0.3\%	-0.2\%	0.0\%	0.0\%	-0.2\%

1 Based on the 82 2year sinulation period
3 Realive effiference of the monntly yerage

Table SW-26-a Folsom Lake, End of Month Area												
Long-term Average and Average by Water Year Type												
	End of Month Area (ACRE)											
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulion Period'												
WSIP 2303 W Witout Projed	6,614	6,705	7,185	7,472	7,692	8,646	9,475	9,797	9,320	7,834	7,425	6,980
WSIP 2030 With Project	6,744	6,760	7,236	7,482	7,719	8,658	9,469	9,758	9,281	8,056	7,641	7,173
Diffeence	130	56	51	10	27	12	-6	-40	-39	222	216	193
Percent Difference ${ }^{\text {a }}$	2.0\%	0.8\%	0.7\%	0.1\%	0.4\%	0.1\%	-0.1\%	-0.4\%	-0.4\%	2.8\%	2.9\%	2.8\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2303 Without Projed	7,262	7,090	7.518	7,950	7,840	8,930	9,911	10,695	10,415	9,156	8,779	7,772
WSIP 2330 Witit Project	7,213	7,055	7,510	7,950	7,840	8,930	9,911	10,680	10,378	9,160	8,769	7,833
Difference	-49	-36	-8	0	0	0	0	-15	-37	3	-10	62
Percent Difference	-0.7\%	-0.5\%	-0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.1\%	-0.4\%	0.0\%	-0.1\%	0.8\%
Above Nomal (14.6\%)												
WSIP 2303 W Witout Projed	6,905	7,031	7,373	8,054	8,212	9,087	10,001	10,396	10,001	8,119	7,812	7,378
WSIP 2030 With Proeet	7,208	7,162	7,523	8,038	8,212	9,087	10,001	10,376	9,936	8,428	8,075	7,641
Difference	303	130	150	-16	0	0	0	-20	-65	310	263	263
Percent Difference	4.4\%	1.9\%	2.0\%	-0.2\%	0.0\%	0.0\%	0.0\%	-0.2\%	-0.7\%	3.8\%	3.4\%	3.6\%
Below Normal (20.7\%)												
WSIP 2303 W Withot Projed	6,748	6,809	7,335	7,744	8,092	8,927	9,982	10,102	9,582	7,529	7,233	7,146
WSIP 2330 Witit Project	6,981	6,975	7,431	7,738	8,124	8,939	9,965	10,063	9,449	7,956	7,583	7,418
Difference	233	167	96	-5	32	13	-17	-40	-133	427	350	273
Percent Difference	3.5\%	2.4\%	1.3\%	-0.1\%	0.4\%	0.1\%	-0.2\%	-0.4\%	-1.4\%	5.7\%	4.8\%	3.8\%
Dry (19.5\%)												
WSIP 2030 Withot Project	6,243	6,667	6,730	6,888	7,537	8,628	9,324	9,378	8,606	7,093	6,450	6,382
WSIP 2030 Witit Projet	6,567	6,801	6,827	6,847	7,564	8,659	9,333	9,314	8,670	7,538	7,006	6,819
Difference	324	133	98	-41	27	31	9	-63	65	444	555	437
Percent Difference	5.2\%	2.0\%	1.5\%	-0.6\%	0.4\%	0.4\%	0.1\%	-0.7\%	0.8\%	6.3\%	8.6\%	6.8\%
Critical (14.6\%)												
WSIP 2030 W Whtout Prject	5,277	5,477	6,698	6,290	6,503	7,241	7,527	7,454	6,941	6,213	5,786	5,495
WSIP 2030 With Project	5,202	5,386	6,648	6,435	6,606	7,267	7,498	7,376	6,915	6,219	5,782	5,455
Difference	-75	-90	-50	145	103	25	-29	-78	-26	6	-4	-41
Percent Difference	-1.4\%	-1.6\%	-0.7\%	2.3\%	1.6\%	0.3\%	-0.4\%	-1.0\%	-0.4\%	0.1\%	-0.1\%	-0.7\%

1 Based on the 82 -vear sinulution period
3 Realive difference of the monthly verage

Table SW-27-a
Table SW-27-a
American River below Nimbus Reservoir, Monthly Flow
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulion Perioa'												
WSIP 2030 Witrout Projed	1,524	2,495	4,038	6,122	7,443	5,203	3,262	1,906	1,757	3,394	1,528	1,814
WSIP 2030 With Project	1,639	2,609	4,038	6,186	7,412	5,226	3,291	1,970	1,767	2,931	1,573	1,847
Difference	114	114	0	64	-31	23	30	64	9	-463	45	34
Percent Difference ${ }^{\text {a }}$	7.5\%	4.6\%	0.0\%	1.0\%	-0.4\%	0.4\%	0.9\%	3.3\%	0.5\%	-13.6\%	3.0\%	1.9\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2303 Without Projed	1,790	3,479	4,792	12,905	13,091	8,133	5,995	3,054	1,857	3,698	1,891	3,178
WSIP 2330 Witit Proed	2,018	3,451	4,744	12,913	13,091	8,133	5,995	3,085	1,915	3,590	1,930	3,014
Diffeence	227	-28	-49	8	0	0	0	31	57	-108	39	-164
Percent Difference	12.7\%	-0.8\%	-1.0\%	0.1\%	0.0\%	0.0\%	0.0\%	1.0\%	3.1\%	-2.9\%	2.1\%	-5.2\%
Above Nomal (14.6\%)												
WSIP 2303 W Witout Projed	1,638	2,294	3,458	6,988	9,155	7,059	3,045	1,770	1,627	4,429	1,534	1,789
WSIIP 2330 Witit Proeat	1,591	2,584	3,410	7,051	9,132	7,058	3,044	1,824	1,719	3,682	1,629	1,835
Difference	-47	290	-49	64	-24	-1	-1	54	92	-747	95	47
Percent Difference	-2.9\%	12.7\%	-1.4\%	0.9\%	-0.3\%	0.0\%	0.0\%	3.1\%	5.7\%	-16.9\%	6.2\%	2.6\%
Below Norma (20.7%)												
WSIP 2303 W Withot Projed	1,431	1,697	2,949	2,793	5,986	4,792	2,531	1,510	1,758	4,297	1,394	1,206
WSIP 2030 with Projet	1,506	1,816	3,048	2,814	5,904	4,827	2,596	1,561	1,957	3,291	1,539	1,337
Difference	74	119	99	21	-82	35	66	52	200	-1,006	145	131
Percent Difference	5.2\%	7.0\%	3.4\%	0.7\%	-1.4\%	0.7\%	2.6\%	3.4\%	11.4\%	-23.4%	10.4\%	10.8\%
Dry (19.5\%)												
WSIP 2030 Withot Project	1,563	3,122	6,604	2,090	3,422	2,714	1,534	1,319	2,096	2,764	1,527	1,063
WSIIP 2330 Witit Projet	1,734	3,404	6,648	2,281	3,328	2,700	1,573	1,461	1,840	2,152	1,436	1,249
Difference	170	282	45	191	-95	-14	39	142	-256	-612	-91	186
Percent Difference	10.9\%	9.0\%	0.7\%	9.1\%	-2.8\%	-0.5\%	2.6\%	10.8\%	-12.2\%	-22.1\%	-6.0\%	17.5\%
Critical (14.6\%)												
WSSIP 2030 W Whtout Proed	936	943	1,169	1,216	1,390	1,143	1,124	996	1,227	1,286	958	858
WSIP 2030 Witit Proeet	957	947	1,117	1,290	1,442	1,270	1,182	1,050	1,137	1,338	1,009	950
Difference	21	4	-52	74	53	127	58	55	-90	52	51	93
Percent Difference	2.3\%	0.4\%	-4.5%	6.1\%	3.8\%	11.1\%	5.1\%	5.5\%	-7.4\%	4.1\%	5.3\%	10.8\%

Ion he 8 2-years
3Realive difference of the montily averas

Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulation Period'												
WSIP 2030 W Without Prjeet	1,462	2,433	3,969	6,040	7,335	5,093	3,169	1,833	1,692	3,331	1,451	1,752
WSIP 2330 Wit Project	1,575	2,546	3,968	6,104	7,303	5,117	3,198	1,896	1,700	2,869	1,500	1,784
Difference	113	113	-1	64	-32	23	29	63	8	-463	49	33
Percent Difference	7.8\%	4.6\%	0.0\%	1.1\%	-0.4\%	0.5\%	0.9\%	3.4\%	0.5\%	-13.9\%	3.4\%	1.9\%
Water Year Typess ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 Without Proed	1,715	3,414	4,715	12,784	12,920	7,975	5,873	2,955	1,781	3,635	1,811	3,112
WSIP 2303 With Project	1,944	3,384	4,666	12,792	12,920	7,975	5,873	2,985	1,838	3,526	1,851	2,947
Difference	229	-30	-48	8	0	0	0	31	57	-109	40	-164
Pereen Difference	13.3\%	-0.9\%	-1.0\%	0.1\%	0.0\%	0.0\%	0.0\%	1.0\%	3.2\%	-3.0\%	2.2\%	-5.3\%
Above Nomal (14.6\%)												
WSIP 2030 Without Project	1,576	2,230	3,391	6,918	9,042	6,938	2,942	1,703	1,565	4,367	1.447	1,726
WSIP 2330 Wit Project	1,528	2,521	3,340	6,982	9,018	6,937	2,941	1,757	1,657	3,619	1,549	1,772
Difference	-47	291	-51	64	-25	-1	-1	54	92	-748	101	46
Percent Difference	-3.0\%	13.0\%	-1.5\%	0.9\%	-0.3\%	0.0\%	0.0\%	3.2\%	5.9\%	-17.1\%	7.0\%	2.6\%
Below Normal (2.7\%)												
WSSP 2030 W Withot Project	1,374	1,635	2,887	2,725	5,908	4,696	2,441	1,444	1,695	4,234	1,309	1,145
WSIP 2330 Wit Project	1,447	1,753	2,985	2,747	5,826	4,732	2,506	1,494	1,894	3,226	1,463	1,274
Difference	73	118	98	22	-82	36	65	50	199	-1,008	154	129
Percent Difference	5.3\%	7.2\%	3.4\%	0.8\%	-1.4\%	0.8\%	2.7\%	3.5\%	11.7\%	-23.8\%	11.8\%	11.2\%
Dry (19.5\%)												
WSIP 2030 Without Proed	1,508	3,060	6,530	2,028	3,350	2,636	1,462	1,259	2,035	2,699	1,455	1,001
WSIP 23030 Wit Project	1,676	3,339	6,571	2,219	3,254	2,623	1,501	1,400	1,778	2,089	1,369	1,188
Difference	168	280	42	191	-97	-13	40	141	-257	-610	-86	186
Percent Difference	11.1\%	9.1\%	0.6\%	9.4\%	-2.9\%	-0.5\%	2.7\%	11.2\%	-12.6\%	-22.6\%	-5.9\%	18.6\%
Critical (14.6\%)												
WSIP 2030 Without Proedt	885	888	1,115	1,156	1,327	1,085	1,067	941	1,172	1,229	900	803
WSIP 2383 With Project	904	892	1,063	1,229	1,379	1,211	1,124	993	1,080	1,282	950	894
Difference	19	4	-52	73	52	127	56	53	-92	53	50	91
Percent Difference	2.2\%	0.5\%	-4.7\%	6.3\%	3.9\%	11.7\%	5.3\%	5.6\%	-7.8\%	4.3\%	5.5\%	11.3\%

3 Realive difference of the monthly verage

Table SW-29-a
River at H Street,
American River at H Street, Monthly Flow

American River at H Street, Monthly Flow												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Ful Simulion Period'												
WSIP 2030 Wentrot Proed	1,358	2,343	3,897	5,957	7,231	4,982	2,998	1,668	1,492	2,866	1,239	1,551
WSIP 2330 With Project	1,467	2,445	3,896	6,020	7,199	5,006	3,027	1,731	1,518	2,405	1,292	1,587
Difference	110	112	-1	63	-32	23	29	63	26	-461	53	36
Percent Difference	8.1\%	4.8\%	0.0\%	1.1\%	-0.4\%	0.5\%	1.0\%	3.8\%	1.8\%	-16.1\%	4.3\%	2.3\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 Witrout Prjeed	1,587	3,300	4,630	12,711	12,804	7,861	5,653	2,741	1,602	3,164	1,565	2,783
WSIP 2030 With Project	1,803	3,270	4,584	12,719	12,804	7,861	5,653	2,772	1,659	2,958	1,581	2,630
Difierence	216	-30	-45	8	0	0	0	31	57	-206	16	-153
Percent Diffeence	13.6\%	-0.9\%	-1.0\%	0.1\%	0.0\%	0.0\%	0.0\%	1.1\%	3.6\%	-6.5\%	1.0\%	-5.5\%
Above Nomal (14.6\%)												
WSIP 2303 W Witout Projed	1,470	2,126	3,323	6,844	8,938	6,821	2,747	1,542	1,386	3,811	1,270	1,530
WSIP 2030 With Proeet	1,422	2,419	3,272	6,903	8,913	6,820	2,745	1,597	1,478	3,063	1,371	1,576
Difference	-47	293	-51	60	-25	-1	-1	54	92	-748	101	46
Percent iffifeence	-3.2\%	13.8\%	-1.5\%	0.9\%	-0.3\%	0.0\%	-0.1\%	3.5\%	6.6\%	-19.6\%	8.0\%	3.0\%
Below Normal (20.7\%)												
WSIP 2030 W Withot Project	1,279	1,563	2,816	2,633	5,801	4,583	2,296	1,291	1,494	3,674	1,112	1,017
WSIP 2030 With Project	1,352	1,682	2,910	2,655	5,719	4,619	2,361	1,342	1,692	2,708	1,266	1,145
Difference	73	118	93	22	-82	36	65	50	199	-966	154	129
Percent Difference	5.7\%	7.6\%	3.3\%	0.8\%	-1.4\%	0.8\%	2.8\%	3.9\%	13.3\%	-26.3\%	13.9\%	12.7\%
Dry (19.5\%)												
WSIP 2030 Withot Project	1,420	2,982	6,445	1,938	3,255	2,527	1,326	1,124	1,763	2,193	1,238	867
WSIP 2030 Witit Proect	1,587	3,257	6,486	2,126	3,158	2,514	1,366	1,265	1,597	1,723	1,190	1,053
Difference	168	275	42	188	-97	-13	40	141	-166	-470	-48	186
Percent Difference	11.8\%	9.2\%	0.6\%	9.7\%	-3.0\%	-0.5\%	3.0\%	12.6\%	-9.4\%	-21.4\%	-3.9\%	21.5\%
Critical (14.6\%)												
WSIP 2030 W Whtout Proed	798	816	1,082	1,067	1,238	986	942	817	1,005	1,055	707	675
WSIP 2030 Witit Proeet	817	820	1,030	1,140	1,290	1,113	998	869	913	1,077	782	765
Difference	19	4	-52	73	52	127	56	53	-92	22	75	91
Percent Difference	2.4\%	0.5\%	-4.8\%	6.8\%	4.2\%	12.8\%	6.0\%	6.4\%	-9.1\%	2.1\%	10.6\%	13.4\%

$\frac{1 \text { Based on the } 82 \text {-year sinulation neilod }}{}$
3 Realivive dffiference of the montly average

Table SW-46-a
Feather River at Shanghai Bend, Monthly Flow

Feather River at Shanghai Bend, Monthly Flow Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period'												
WSIP 2303 W Witrout Projed	3,534	3,095	5,911	9,135	12,324	11,310	4,718	3,192	3,487	8,064	5,915	4,946
WSIP 2030 With Project	3,624	3,121	6,017	9,194	12,515	11,309	4,721	3,154	3,222	7,778	5,727	5,055
Difference	90	26	106	60	190	-2	3	-38	-265	-286	-188	108
Percent Difference ${ }^{\text {a }}$	2.6\%	0.9\%	1.8\%	0.7\%	1.5\%	0.0\%	0.1\%	-1.2\%	-7.6\%	-3.5\%	-3.2\%	2.2\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 Witrout Projed	4,470	3,833	7,029	20,480	25,722	21,242	9,332	5,198	3,762	8,894	6,981	8,177
WSIP 2030 With Priject	4,470	3,766	7,072	20,509	26,380	21,257	9,326	5,206	3,733	8,398	6,871	8,141
Diffeence	0	-67	42	29	659	15	-6	9	-29	-496	-110	-35
Percent Difference	0.0\%	-1.8\%	0.6\%	0.1\%	2.6\%	0.1\%	-0.1\%	0.2\%	-0.8\%	-5.6\%	-1.6\%	-0.4\%
Above Nomal (14.6\%)												
WSIP 2030 Without Projed	4,532	4,029	5,847	7,450	13,672	16,033	3,431	2,984	3,454	10,036	8,056	6,236
WSIP 2330 Witit Project	4,463	4,236	5,919	7,836	13,671	16,304	3,429	2,983	3,243	9,351	7,725	6,180
Difference	-69	207	72	386	-2	271	-2	-1	-211	-684	-331	-57
Percent Difierence	-1.5\%	5.1\%	1.2\%	5.2\%	0.0\%	1.7\%	-0.1\%	0.0\%	-6.1\%	-6.8\%	-4.1\%	-0.9\%
Below Norma (20.7\%)												
WSIP 2030 Without Project	3,222	2,604	4,179	4,082	6,172	5,688	2,849	2,063	3,804	9,348	7,373	3,106
WSIP 2030 With Project	3,349	2,634	4,351	4,082	6,221	5,651	2,895	2,045	3,088	8,471	7,357	3,252
Difference	127	30	172	0	49	-37	46	-18	-717	-877	-16	146
Percent Difference	3.9\%	1.2\%	4.1\%	0.0\%	0.8\%	-0.6\%	1.6\%	-0.9\%	-18.8\%	-9.4\%	-0.2\%	4.7\%
Dry (19.5\%)												
WSIP 2303 W Witrout Projed	3,034	2,742	8,549	2,999	4,018	4,583	2,703	2,358	3,529	7,139	4,092	3,227
WSIP 2030 Witit Proect	3,405	2,804	8,809	2,987	3,976	4,453	2,690	2,375	3,305	7,368	3,651	3,462
Difference	371	62	260	-11	-41	-131	-12	17	-224	228	-441	235
Percent Difference	12.2\%	2.3\%	3.0\%	-0.4\%	-1.0\%	-2.9\%	-0.5\%	0.7\%	-6.3\%	3.2\%	-10.8\%	7.3\%
Critical (14.6\%)												
WSIP 2303 W Whtout Projed	1,693	1,786	2,585	2,521	2,858	2,832	1,728	1,931	2,438	3,775	1,920	1,826
WSIP 2330 Witit Proed	1,705	1,774	2,559	2,497	2,774	2,744	1,717	1,660	2,215	4,478	1,803	2,177
Difference	12	-12	-25	-24	-84	-88	-10	-271	-223	703	-116	351
Percent Difference	0.7\%	-0.7\%	-1.0\%	-0.9\%	-2.9\%	-3.1\%	-0.6\%	-14.0\%	-9.1\%	18.6\%	-6.1\%	19.2\%

Based on the 8 2year simulation period
3 Realive difference of the monthy veray

Table SW-47-a
American River at Mouth, Monthly Flow

American River at Mouth, Monthly Flow Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\overline{\text { Full Simulion Period }{ }^{\prime}}$												
WSIP 2303 W Witrout Projed	1,358	2,343	3,897	5,957	7,231	4,982	2,998	1,668	1,492	2,866	1,239	1,551
WSIP 2030 With Project	1,467	2,455	3,896	6,020	7,199	5,006	3,027	1,731	1,518	2,405	1,292	1,587
Difference	110	112	-1	63	-32	23	29	63	26	-461	53	36
Percent Difference ${ }^{\text {a }}$	8.1\%	4.8\%	0.0\%	1.1\%	-0.4\%	0.5\%	1.0\%	3.8\%	1.8\%	-16.1\%	4.3\%	2.3\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2303 W Witrout Projed	1,587	3,300	4,630	12,711	12,804	7,861	5,653	2,741	1,602	3,164	1,565	2,783
WSIP 2030 With Priject	1,803	3,270	4,584	12,719	12,804	7,861	5,653	2,772	1,659	2,958	1,581	2,630
Diffeence	216	-30	-45	8	0	0	0	31	57	-206	16	-153
Percent Difference	13.6\%	-0.9\%	-1.0\%	0.1\%	0.0\%	0.0\%	0.0\%	1.1\%	3.6\%	-6.5\%	1.0\%	-5.5\%
Above Norma (14.6\%)												
WSSP 2030 Without Project	1,470	2,126	3,323	6,844	8,938	6,821	2,747	1,542	1,386	3,811	1,270	1,530
WSIP 2030 Witit Proeat	1,422	2,419	3,272	6,903	8,913	6,820	2,745	1,597	1,478	3,063	1,371	1,576
Difference	-47	293	-51	60	-25	-1	-1	54	92	-748	101	46
Percent Difference	-3.2\%	13.8\%	-1.5\%	0.9\%	-0.3\%	0.0\%	-0.1\%	3.5\%	6.6\%	-19.6\%	8.0\%	3.0\%
Below Norma (20.7\%)												
WSIP 2030 W Witrout Proed	1,279	1,563	2,816	2,633	5,801	4,583	2,296	1,291	1,494	3,674	1,112	1,017
WSIP 2300 with Projet	1,352	1,682	2,910	2,655	5,719	4,619	2,361	1,342	1,692	2,708	1,266	1,145
Difference	73	118	93	22	-82	36	65	50	199	-966	154	129
Percent Difference	5.7\%	7.6\%	3.3\%	0.8\%	-1.4\%	0.8\%	2.8\%	3.9\%	13.3\%	-26.3\%	13.9\%	12.7\%
Dry (19.5\%)												
WSIP 2030 Without Projed	1,420	2,982	6,445	1,938	3,255	2,527	1,326	1,124	1,763	2,193	1,238	867
WSIP 2330 Witit Project	1,587	3,257	6,486	2,126	3,158	2,514	1,366	1,265	1,597	1,723	1,190	1,053
Difference	168	275	42	188	-97	-13	40	141	-166	-470	-48	186
Percent Difference	11.8\%	9.2\%	0.6\%	9.7\%	-3.0\%	-0.5\%	3.0\%	12.6\%	-9.4\%	-21.4%	-3.9\%	21.5\%
Critical (14.6\%)												
WSIP 2303 W Withot Projed	798	816	1,082	1,067	1,238	986	942	817	1,005	1,055	707	675
WSIP 2330 Witit Proeet	817	820	1,030	1,140	1,290	1,113	998	869	913	1,077	782	765
Difference	19	4	-52	73	52	127	56	53	-92	22	75	91
Percent Difference	2.4\%	0.5\%	-4.8\%	6.8\%	4.2\%	12.8\%	6.0\%	6.4\%	-9.1\%	2.1\%	10.6\%	13.4\%

1 Based on the 82 2year sinulation period
3 Realive difference of the montly veras

Table SW-53-a Sacramento River at Bend Bridge, Monthly Stage Long-term Average and Average by Water Year Type												
Analysis Period						Monthly	Stage (FT)					
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulion Period'												
WSIP 2030 Without Projed	3	4	5	6	8	6	4	4	5	6	4	4
WSIP 2030 With Priject	3	4	5	6	8	6	4	4	5	6	4	4
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference ${ }^{\text {a }}$	-0.4\%	1.8\%	2.9\%	0.8\%	1.0\%	0.7\%	-1.0\%	-5.4\%	-4.9\%	-0.8\%	1.9\%	2.6\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 Without Projed	4	5	5	11	13	10	6	4	5	6	5	6
WSIP 2030 Witit Proeet	4	5	5	12	13	10	6	4	5	6	5	6
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	-0.1\%	1.2\%	1.6\%	1.0\%	0.0\%	0.0\%	-0.7\%	-2.3\%	1.0\%	0.6\%	2.8\%	-0.5\%
Above Nomal (14.6\%)												
WSIP 2030 Without Projed	3	5	4	8	9	7	4	4	6	7	5	4
WSIP 2030 With Proeet	3	5	5	8	9	7	4	4	5	6	4	4
Difference	0	0	1	0	0	0	0	0	-1	0	0	0
Percent Difference	2.4\%	4.2\%	11.7\%	-1.2\%	1.4\%	2.5\%	-1.7\%	-5.5\%	-13.1\%	-0.1\%	-4.9\%	-5.2\%
Below Normal (2.7\%)												
WSIP 2030 W Withot Projed	3	3	5	4	5	4	4	4	5	7	5	3
WSIP 2030 With Project	3	3	5	4	5	4	4	4	5	7	4	3
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	4.5\%	3.9\%	2.9\%	-0.3\%	2.0\%	0.7\%	4.0\%	-5.2\%	-8.7\%	0.0\%	-1.6\%	10.1\%
Dry (19.5\%)												
WSIP 2030 Withot Project	3	3	6	3	4	4	3	4	5	6	4	2
WSIP 2330 Wit Project	3	3	6	3	4	4	3	3	5	6	5	2
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	-2.8\%	0.5\%	1.1\%	5.5\%	2.9\%	0.8\%	-2.0\%	-7.2\%	-4.2\%	-1.1\%	7.8\%	12.3\%
Critical (14.6\%)												
WSIP 2030 W Witut Projed	2	2	3	3	3	3	3	3	5	6	4	2
WSIP 2030 With Project	2	2	3	3	3	3	3	3	5	6	4	2
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Pecent Difference	-8.7\%	-1.9\%	0.0\%	0.9\%	1.7\%	0.5\%	-8.5\%	-11.3\%	-3.4\%	-5.6\%	4.8\%	9.1\%
1Based on the 82 -jears simulation period												
2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) 3 Relative difference of the monthly average												

3 Realive difference of the monthly vereage

Table SW-56-a Sacramento River at Wilkins Slough, Monthly Stage Long-term Average and Average by Water Year Type												
	Monthly Stage (FT)											
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulition Period'												
WSIP 2030 Without Prjeet	29	32	35	37	39	37	31	29	29	31	28	31
WSIP 2030 With Projet	30	32	34	36	38	36	31	29	30	32	29	32
Difference	I	0	-1	-1	-1	-1	0	0	1	1	1	1
Percent Difference	2.0\%	0.8\%	-1.7\%	-2.8\%	-2.5\%	-3.2%	-0.5\%	-0.5\%	2.3\%	4.0\%	3.2\%	3.5\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 Without Project	30	35	36	42	43	41	36	31	29	31	28	36
WSIP 2330 With Project	31	35	35	42	43	41	36	31	29	31	29	36
Difference	0	0	-1	-1	0	0	0	0	0	1	0	0
Percent Difference	0.6\%	0.2\%	-2.2\%	-1.2%	-0.7\%	-1.1\%	-0.9\%	-0.1\%	1.6\%	1.7\%	0.3\%	1.0\%
Above Nomal (14.6\%)												
WSIP 2030 Without Project	29	34	34	40	41	40	32	30	30	31	29	33
WSIP 2330 With Projett	30	34	33	39	40	39	32	29	30	33	29	33
Difference	0	0	-1	-1	-1	-1	0	0	0	2	0	1
Percent Difference	1.5\%	0.0\%	-2.2\%	-2.2\%	-2.1\%	-2.6%	-1.3\%	-1.2\%	0.5\%	7.2\%	1.1\%	1.9\%
Below Norma (20.7\%)												
WSIP 2030 Without Project	28	30	35	35	37	36	31	29	29	32	29	29
WSIP 2030 with Proeet	30	31	35	34	36	34	31	29	30	34	29	30
Difference	1	1	0	-2	-1	-2	0	0	1	2	1	2
Percent Difference	4.3\%	1.8\%	1.1\%	-4.5\%	-2.5\%	-5.2\%	-0.6\%	-1.2\%	2.8\%	6.7\%	2.5\%	5.9\%
Dry (19.5\%)												
wSIP 2030 Without Project	29	31	36	32	36	35	28	27	29	30	28	28
WSIP 2330 Wit Project	30	32	36	31	34	34	28	27	30	32	30	30
Difference	1	0	-1	-2	-2	-2	0	0	1	2	2	2
Percent Difference	2.0\%	1.1\%	-1.7\%	-4.7\%	-5.6\%	-4.9\%	0.2\%	-1.1\%	3.4\%	5.1\%	8.1\%	6.5\%
Critical (14.6\%)												
WSIP 2030 W Withut Project	27	28	32	31	32	32	27	27	29	31	28	28
WSIP 2030 With Project	28	28	30	31	31	31	27	27	30	31	30	29
Difference	1	0	-1	-1	-1	-1	0	0	1	0	2	1
Percent Difference	2.2\%	1.5\%	-4.6\%	-2.5\%	-3.4\%	-3.5\%	0.9\%	1.0\%	3.5\%	0.2\%	5.9\%	4.6\%

3 Realive difference of the monthly verage

Table SW-57-a Feather River near Gridley, Monthly Stage Long-term Average and Average by Water Year Type												
Analysis Period						Monthly	tage (FT)					
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulation Period'												
WSIP 2030 Without Proed	74	74	74	75	76	76	74	74	74	77	76	75
WSIP 2030 With Proedt	75	74	74	75	76	76	74	74	74	77	76	75
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.1\%	0.0\%	0.1\%	0.1\%	0.1\%	0.0\%	0.0\%	0.0\%	-0.2\%	-0.1\%	-0.1\%	0.1\%
Water Year Types ${ }^{2}$												
Wet (3.5\%)												
WSIP 2030 W Withot Projed	75	74	75	78	80	79	76	74	74	77	76	77
WSIP 2030 Wit Project	75	74	75	78	80	79	76	74	74	77	76	77
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Diffeence	0.0\%	0.0\%	0.0\%	0.1\%	0.3\%	0.0\%	0.0\%	0.0\%	0.1\%	-0.3\%	0.0\%	0.0\%
Above Nomal (14.6\%)												
WSIP 2030 W Withot Projed	75	74	75	74	76	78	73	73	74	78	77	76
WSIP 2030 With Proeet	75	74	75	74	76	78	73	73	74	77	77	76
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	-0.1\%	0.1\%	0.1\%	0.3\%	0.0\%	0.2\%	0.0\%	0.0\%	-0.1\%	-0.4\%	-0.2\%	0.0\%
Below Norma (20.7\%)												
WSIP 2030 W Witout Projed	74	74	74	73	74	74	73	73	75	77	76	74
WSIP 2030 with Project	74	74	74	${ }^{73}$	74	74	73	73	74	77	76	74
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.1\%	0.0\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.6\%	-0.5\%	0.0\%	0.2\%
Dry (19.5\%)												
WSIP 2030 Withot Projed	74	73	75	73	74	74	73	74	75	76	75	74
WSIP 2030 With Priject	74	73	75	73	74	74	73	74	74	77	74	74
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent iffieence	0.2\%	0.1\%	0.1\%	0.0\%	0.0\%	-0.1\%	0.0\%	0.0\%	-0.2\%	0.2\%	-0.4\%	0.3\%
Critical (14.6\%)												
WSIP 2030 W Wrtout Prjeet	73	73	73	73	73	73	73	73	74	75	74	74
WSIP 2030 With Projet	73	73	73	73	73	73	73	73	74	75	73	74
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	-0.1\%	-0.1\%	0.0\%	-0.3\%	-0.3\%	0.5\%	-0.2\%	0.3\%
1 Basedon onte 82 2vear simulition period												
2 As defined by the Sacramento Valley $40-30-30$ Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)												

Table SW-58-a American River at Fair Oaks, Monthly Stage Long-term Average and Average by Water Year Type												
Analysis Period						Monthly	tage (FT)					
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Sinulion Perioa'												
WSIP 2030 Without Prjeed	5	5	6	7	8	7	6	5	5	6	5	5
WSIP 2030 With Projet	5	5	6	7	8	7	6	5	5	6	5	5
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference ${ }^{\text {a }}$	2.2\%	1.7\%	0.1\%	0.8\%	-0.2\%	0.3\%	0.7\%	1.5\%	0.8\%	-5.3\%	1.3\%	1.4\%
Water Year Types ${ }^{2}$												
Wet (30.5\%)												
WSIP 2030 W Withot Projed	5	6	6	10	10	8	7	6	5	6	5	6
WSIP 2030 Wit Project	5	6	6	10	10	8	7	6	5	6	5	6
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Diffeence	3.7\%	-0.2\%	-0.6\%	0.1\%	0.0\%	0.0\%	0.0\%	0.5\%	1.1\%	-0.9\%	0.9\%	-2.0\%
Above Nomal (14.6\%)												
WSIP 2030 W Withot Projed	5	5	6	8	9	8	6	5	5	7	5	5
WSIP 2030 With Project	5	5	6	8	9	8	6	5	5	6	5	5
Difference	0	0	0	0	0	0	0	0	0	-1	0	0
Percent Difference	-1.0\%	3.8\%	-0.2\%	0.7\%	-0.2\%	0.0\%	0.0\%	1.3\%	2.3\%	-7.4\%	2.0\%	1.3\%
Below Norma (20.7\%)												
WSSIP 2030 W Without Prjedt	4	5	5	5	7	7	5	5	5	7	4	4
WSIP 2030 Wit Project	5	5	6	5	7	7	5	5	5	6	5	4
Difference	0	0	0	0	0	0	0	0	0	-1	0	0
Percent Difference	1.7\%	2.4\%	2.1\%	0.2\%	-0.7\%	0.2\%	1.3\%	1.5\%	4.5\%	-10.2\%	3.5\%	3.4\%
Dry (19.5\%)												
WSIP 2030 Without Prjeed	4	5	7	5	6	5	4	4	5	6	5	4
WSIP 2030 Witit Proeet	5	6	7	5	6	5	5	4	5	5	4	4
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Diffeence	3.9\%	3.8\%	0.4\%	3.1\%	-1.1\%	-0.1\%	1.2\%	3.6\%	-3.1\%	-8.3\%	-1.5\%	5.5\%
Critical (14.6\%)												
WSIP 2030 W Whtout Prject	4	4	4	4	4	4	4	4	4	4	4	4
WSIP 2300 With Projet	4	4	4	4	4	4	4	4	4	4	4	4
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.4\%	0.1\%	-1.2\%	1.8\%	1.7\%	3.1\%	2.5\%	1.9\%	-1.7\%	1.2\%	2.4\%	3.1\%
1 Based on the 82 -year simulaion period												
2 As defined by the Sacramento Valley $40-30-30$ Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) 3Relative difference of the montly average												

Trinity and Sacramento River Basin Operations Exceedance Probability Charts and Tables

Figure SW-01-b
Trake, End of Month Storage

| |
| :--- | :--- | :--- | :--- |

| |
| :--- | :--- | :--- | :--- |

| |
| :--- | :--- | :--- | :--- |

Figure SW-02-b
Trinity Lake, End of Month Elevation

Figure SW-03-b
Trinity Lake, End of Month Are

Table SW-.03-b
Lake, End of Month Area

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probabaility } \end{array} \end{gathered}$		Octobe		$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
		WSIP 2030 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difieferee } \\ \text { (ACRE) } \end{gathered}$	
	Of Morth	of Month A		
0.0\%	${ }_{1}^{\text {(ACRE) }}$	${ }_{1}^{(\text {ACRE }}$ (1,625	。	0.0\%
1.2\%	13.625	${ }^{13,625}$	0	0.0\%
2.5\%	13.625	13,625	0	0.0\%
3.7\%	13,526	13,457	-69	-0.5\%
4.9\%	13,353	12,998	-354	-2.7\%
6.2\%	${ }^{12,998}$	${ }^{12,795}$	-203	-1.6\%
7.4\%	${ }^{12,932}$	${ }^{12,736}$	-196	-1.5\%
8.6\%	${ }^{12,854}$	${ }^{12,720}$	-135	-1.0\%
9.9\%	12,837	${ }^{12,588}$	-249	-1.9\%
- 11.14%	12,707 12554 125	12,561 12560	-145	-1.1\%
+12.3\%	12.554 12.550 1	12,560 12436	${ }_{-114}^{6}$	0.1\%
14.8\%	${ }_{1}^{12,525}$	112,436 12,400	-125	-1.0\%
16.0\%	12,442	${ }^{12,372}$	-69	-0.6\%
17.3% 18.5%	${ }^{12,359}$	${ }^{12,270}$	89	-0.7\%
19.8\%	(12,298	(12,	-91	-0.7\%
21.0\%	12,093	12.005	88	-0.7\%
22.2\%	11,983	11,987	3	0.0\%
23.5\%	11,979	11,936	43	-0.4\%
24.7\%	11,971	11,922	49	-0.4\%
25.9\%	${ }^{111,962}$	${ }^{111,897}$	-64	-0.5\%
27.2\%	${ }^{11,792}$	${ }^{11,1875}$	${ }_{34}^{83}$	0.7\%
28.4\%	${ }^{11,788}$	${ }^{11,822}$	34	0.3\%
29.6\%	11,721	${ }^{11,804}$	83	0.7\%
30.9\%	${ }^{11,712}$	${ }^{111755}$	${ }_{48}^{48}$	0.4\%
32.1\%	${ }^{11,680}$	${ }^{11,728}$	48	0.4\%
33.3\%	${ }^{11,538}$	${ }^{11,679}$	141	1.2\%
34.6% 35.8%	11,517 11,486 14	11,625 11159	108 93	0.9\%
355.8\%	11,486 11,467	11,579 11549	${ }_{82}^{93}$	0.8\%
37.0\%	11,467	11,549 11.508 1.1520	${ }_{99}^{82}$	0.9\%
39.5\%	11,344	11,422	78	0.7\%
40.7\% 42.0	${ }_{\text {ckin }}^{11,185}$	${ }_{111,332}^{11,32}$	${ }_{168}^{167}$	- 1.5%
43.2\%	11,095	11,093	-2	0.0\%
44.4\%	${ }^{11,071}$	10,860	-211	-1.9\%
${ }_{4}^{45.7 \%}$	11,061 10,976	10,801 10.742	-234	-2.3\%
48.1\%	10.916	10,636	-281	-2.6\%
49.4\%	10,778	10,499	-279	-2.6\%
50.6\%	${ }^{10,672}$	10.489	-183	-1.7\%
51.9\%	10,634	${ }^{10,425}$	-209	-2.0\%
	10,600	${ }^{10,383}$	-216	-2.0\%
54.3\%	10.508 10.475	10,370 10235	- ${ }_{-248}$	- ${ }_{-2,3 \%}^{\text {-3\% }}$
55.6\%	10,475 10,345	10,235 10.151	-240 -193	-2.3\% -1.9%
58.0\%	${ }_{10,323}$	10,147	-176	-1.7\%
59.3\%	10,300	10,145	-154	-1.5\%
60.5\%	${ }^{10,1026}{ }^{10,071}$	10.045 10.008	-116	-1.1\%
${ }^{6117 \%}$		10,008	-64	-0.6\%
-63.0\%	$\xrightarrow{\substack{10,015 \\ 9,930}}$	(10,001	$\stackrel{-14}{-9}$	-0.1\%
${ }^{65.4 \%}$	${ }_{9}^{9,855}$	9,910	55	0.6\%
66.7\% 6	${ }^{9,8835}$	9,850	16	0.2\%
${ }^{67.9 \%}$	${ }_{9,782}^{9,821}$	${ }_{9,780}^{9.788}$	-32	-0.0\%
70.4\%	9,721	9,581	-141	-1.4\%
71.2\%	9,654	9,551	-103	-1.1\%
72.8\%	${ }_{9}^{9.5476}$	${ }_{\text {9,510 }}$	-76	-0.8\%
74.1\%	${ }_{9,472}^{9,476}$	${ }_{9}^{9,4759}$	${ }_{-13}^{0}$	-0.0\%\%
76.5\%	9,248	9,380	${ }^{133}$	1.4\%
77.8\%	8.946	9,272	326	3.6\%
79.0\%	8,843	8.890	48	0.5\%
800.2\%	- ${ }_{8}^{8,728}$	${ }_{8}^{8,732}$	${ }_{-7}$	-0.0\%
${ }_{8}^{82.7 \%}$	${ }_{8,715}^{8,722}$	${ }_{8,210}^{8,775}$	- 505	${ }_{-5.8 \%}^{-0.1 \%}$
84.0\%	${ }_{8}^{8,465}$	${ }_{8,147}$	-318	-3.8\%
85.2\%	8,452 7 7 7	7,970 70918	-482	-5.7\%
86.4\%	7.979	7,918	-61	${ }^{-0.8 \%}$
-	7,7960	7,844 7,619	- -131	-1.5\%
90.1\%	7.710	7.590	-121	1.6\%
91.4\%	7,574	7,498	-76	1.0\%
92.6\%	7,456	7,490	${ }^{33}$	0.4\%
935.1\%	$7,7.201$ 7.256	7,440 7,243	${ }^{139}$	1.9\%
96.3\%	6,745	7,178	433	6.4\%
97.5\%	6.637	7,055	418	6.3\%
98.8\%	6,429		${ }_{4}^{4} 4$	-0.0\%
100.0\%	4,033	4,508	475	11.8\%

Table SW-.03-b
Lake, End of Month Area

$\underset{\substack{\text { Execrent } \\ \text { Probabability }}}{\text { Per }}$	February			
	${ }^{\text {WSIP }}$ Proso Wethout	WIP12030 With Project		Relative
	Of Moent A	End of Month Area	Difierence	Difference (\%)
(\%)	(ACRE)	(ACRE)		
0.0\%	14,350	14,613	264	1.8\%
1.2\%	14,300	14,300	0	
2.5\%	14,300	14,300	0	
3.7\%	14,300	14,300	0	
4.9\%	14,300	14,300	0	
6.2\%	14,300	14,300	0	
7.4\%	14,300	14,300	0	0.0\%
8.6\%	14,300	14,300	0	
9.9\%\%	14,300	14,300	0	
11.1\%	14,300	14,300	0	
12.3\%	14,300	14,300	O	
14.8\%	14.300	14.300	0	0.0\%
16.0\%	14,300	14,300	0	
3\%	. 300	14,300	0	
18.5\%	14,300	14,300	0	
19.8\%	14,300	14,300	0	0.0\%
21.0\%	14,300	14,300	0	0.0\%
${ }^{222.2 \%}$	14,300	14,300	0	0.0\%
23.5\%	14,300	14,298	-2	0.0\%
24.7\%	14,298	14,264	${ }^{34}$	-0.2\%
25.9\%	${ }^{14,283}$	14,254	${ }^{-28}$	-0.2\%
27.2\%	14,225	14,246	${ }^{20}$	0.1\%
28.4\%	14,215	14,233	17	0.18
29.6\%	${ }^{14,208}$	14,097	-110	${ }^{-0.8 \%}$
30.9\%	14,163	14,061	-102	-0.7\%
32.1\%	14,051	14.029	-21	-0.2\%
33.3\%	13,980	${ }^{13,946}$	${ }^{-33}$	${ }^{0.2 \%}$
34.6\%	${ }^{13,903}$	11.914	11	0.1\%
35.8\%	-13,882	${ }^{13,878}$	4	
37.0\%	${ }_{13,779}$	13,874	95	\% 7%
30.5\%	${ }_{13,629}$	13,660	32	0.2\%
40.7\%	13,426	13,559	33	
42.0\%	13,297	${ }^{13,543}$	246	
43.2\%	(13,255	13,256 13,288	- 7	-0.0\%
4.5.7\%	13,225	13,225	-1	0.0\%
46.9\%	13,209	13,150	-59	-0.4\%
48.1\%	13,168	${ }^{13,112}$	-56	-0.4\%
49.4\%	${ }_{13,072}$	${ }^{13,056}$	-17	-0.1\%
50.6\%	${ }^{13,0017}$	${ }^{12,947}$	-70	-0.5\%
51.9\%	${ }^{12,804}$	${ }^{12,901}$	97	0.8\%
53.1\%	${ }^{12,573}$	${ }^{12,891}$	318	2.5\%
54.3\%\%	${ }^{12.572}$	${ }^{12,556}$	-16	-0.1\%
${ }_{\text {c }}^{55.6 \% \%}$	${ }_{1}^{12,557}$	12,503	-55	-0.4\%
年56.8\%\%	${ }^{12,393}$	-12,4955	102	8\%\%
59.3\%	(12,	12,488 12.384	${ }_{26}$	0.2\%
60.5\%	12,318	12,302	-16	-0.1\%
61.7\%	2,286	12,286	-1	
63.0\%	12,209	${ }_{1}^{12,249}$	14	\%
${ }^{64.24 \%}$			14	
${ }^{65.47 \%}$	${ }^{111,942}$	${ }_{112023}$	156	
${ }^{6079 \%}$			151	
69.10	11.1561	118185	304	26\%
70.4\%	11,539	11,484	-55	-0.5\%
71.6\%	11,516	11,449	68	0.6\%
72.8\%	${ }^{11,495}$	${ }^{11,402}$	-92	-0.8\%
74.19\%	11.449	11,316	-133	-1.2\%
- 75.3%	${ }^{11,380}$	${ }^{11,294}$	-86	-0.8\%
76.5\%	${ }^{11,250}$	11.055	-195	-1.7\%
77.8\%	${ }^{11,231}$	${ }^{11,020}$	-211	-1.9\%
89.0\%	${ }^{11,206}$	10,974	${ }^{233}$	2.19\%
-	11,083	-10,746	- 116	-
${ }^{81.5 \%}$	10,860	10,743	-116	源
84.0\%	${ }^{10,737}$	${ }^{10.5570}$	-46	-1.4\%
85.2\%	10,468	10,446	-22	2\%
86.4\%	10,359	10,239	120	2\%
87.7\%	9,727	9,792	65	0.7\%
88.9\%	9,608	9,758	150	1.6\%
90.1\%	9,379	9,736	357	3.8\%
91.4\%	9,266	9,485	219	2.4\%\%
- 92.80%	$9,2,018$ 9.018	${ }_{9,162}^{9,210}$	-29 148 1	-
95.1\%	${ }_{8,867}^{9,09}$	${ }_{8,827}^{9,162}$	${ }_{40}$	
.3\%	8,376	${ }_{8,459}$	83	1.0\%
97.5\%	${ }_{8,051}$	${ }_{8,376}$	325	4.0\%
98.8\%	7.775	7,788	13	0.2\%
100.0\%	7,590	7,733	143	1.9\%

Table SW-.03-b
Lake, End of Month Area

$\begin{gathered} \text { Percent } \\ \text { Preedance } \\ \text { Probability } \end{gathered}$		June		$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
		WSIP 2030 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difieferee } \\ \text { (ACRE) } \end{gathered}$	
	of Month	of Month A		
0.0\%	${ }_{\text {(ACRE) }}^{16,033}$	${ }_{\text {(ACRE) }}^{16,033}$		0.0\%
1.2\%	15.954	15.946	${ }^{-8}$	0.0\%
2.5\%	15.469	15,469	0	0.0\%
3.7\%	15,230	15,233		0.0\%
4.9\%	15,199	${ }^{15,175}$	-24	-0.2\%
6.2\%	15.150	15,139	-11	-0.1\%
7.4\%	${ }^{15.072}$	15.072	0	0.0\%
8.6\%	${ }^{15.029}$	${ }^{15.029}$	0	0.0\%
9.9\%	14,986	15.011	26	0.2\%
11.19\%	${ }^{14,499}$	14,979 114790	${ }^{-34}$	0.0\%
- ${ }_{\text {12.3\% }}^{12.3 \%}$	14.824 14.790	14,790 14.766	-34	-0.2\%
14.8\%	${ }_{1}^{14,719}$	${ }_{\text {14,762 }}^{14,468}$	23 44	-0.3\%
16.0\%	14,695	14.734	39	
17.3\%	14,653	14,670	17	
18.5\%	14,614	14,653	39	
19.8\%	14,428	14,649	221	1.5\%
21.0\%	14,395	14,428	${ }^{33}$	0.2\%
22.2\%	14,389	14,389	0	
23.5\%	14,334	14,378	44	0.3\%
24.7\%	14,301	14,334	${ }^{32}$	0.2\%
25.9\%	14,264	14,301	${ }^{37}$	0.3\%
27.2\%	14,254	14,264	10	0.1\%
28.4\%	${ }^{14,226}$	${ }^{14,226}$	0	0.0\%
29.6\%	14,154	14,221	${ }^{67}$	0.5\%
- 3 30.9\%	${ }^{14,132}$	14.170	37	
32.1\%	14,104	14,154	51	\%
	14.016	14,143	127	0.9\%
34.6% 3588%	14,005	14,032	27	
	13,950	14,016	${ }_{83} 67$	
37.0\%	${ }_{\text {13, }}^{13.866}$	14,005 13.976	${ }^{83}$	0.8\%
39.5\%	${ }^{13.7699}$	${ }_{13,921}$	${ }_{152}$	1.1\%
40.7\%	13,696	13,774	79	
42.0\%	${ }^{13,646}$	${ }^{13,753}$	107	\%
44.4\%	${ }^{13,607}$	13,653 13.637	${ }_{65}$	\%
45.7\%	${ }^{13,498}$	${ }_{\text {13,463 }}$	${ }_{-35}$	
46.9\%	13,404	13,373	-32	${ }^{-0.2 \%}$
48.1\%	13,213	13,272	59	0.4\%
4.9.4\%	13,189	${ }^{13,259}$	71	0.5\%
50.6\%	${ }^{13,143}$	13,205 13.267	61	0.5\%
51.9\%	${ }^{13,109}$	${ }^{13,167}$	${ }^{58}$	0.4\%
年 53.1 \%	${ }^{13,047}$	13,159	112	0.9\%
54.3\%\%	${ }^{12,2945}$	${ }^{13,128}$	183	${ }^{1.49 \%}$
${ }_{\text {c }}^{55.6 \% \%}$	${ }_{1}^{12,937}$	${ }_{\text {l }} 13,047$	110	
56.0\%\%		13,035 12861	${ }^{135}$	-0.3\%
59.3\%	${ }^{12,874}$	${ }^{12,840}$	-34	-0.3\%
60.5\%	12,707 12.683 1	${ }^{12,776}$	${ }_{98} 68$	0.5\%
${ }^{617.7 \%}$	${ }^{12,683}$			
63.4.2\%	${ }_{\text {12, }}^{12.571}$	${ }^{122,766}$	${ }_{168}^{149}$	
65.4\%	${ }^{12,562}$	12,576	14	0.1\%
66.7\%	${ }^{12,526}$	12,549	23	0.2\%
- 67.9%		${ }^{12,381}$	-115	-0.9\%
70.4\%	12,413	${ }_{\text {12,312 }}^{12,352}$	-101	-0.8\%
71.6\%	12,397	12,255	-142	-1.1\%
72.8\%	12,248	${ }^{12,190}$	-59	-0.5\%
74.3\%	12, 2179 12,149	${ }^{12,12,152}$	-27	-0.2\%
76.5\%	12.017	11,966	-52	-0.4\%
77.8\%	12,005	11,918	-87	-0.7\%
79.0\%	${ }^{11,876}$	${ }^{11,824}$	-52	-0.4\%
80.2\%	${ }^{11,618}$	11,729	111	1.0\%
81.5\%	11,518	11,395	123	-1.1\%
82.7\%	${ }^{11,508}$	11,254 11251	-245	-2.2\%
85.2\%	111,212	${ }_{11,136}^{1,251}$	${ }_{-76}$	-0.7\%
86.4\%	${ }^{11,043}$	10,802	-241	-2.2\%
87.7\%	10,970	-10,774	-196 25	-
90.1\%	10,097	10,059	-38	-0.4\%
91.4\%	9,969	9,982	13	0.1\%
92.6\%	9,935	9,953	18	2\%
93.\%	9,922	9,843	79	0.8\%
95.1\%	9,608	9,813	205	2.1\%
96.3\%	${ }^{8,980}$	9,620	640	7.1\%
97.5\%	8 8,957	${ }^{9.547}$	590	6.6\%
	8.591 7252	${ }_{7252}^{8,551}$	${ }^{-41}$	${ }^{-0.5 \%}$
100.0\%	7,252	7,252	0	0.0\%

Figure SW-04-b
Trinity River below Lewiston Reservoir, Monthly Flow

Table SW-04-b

December				
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	${ }^{\text {WSIP }}$ Pro30 Without	WSIP 2030 With Project	Absolute Difference	
Probability	Monthy Fow (CFS)	Montly F Fow (CFS)	(CFS)	
0.0\%	6,000	${ }^{6,000}$	0	0.0\%
- 1.2%	4,906	4,906	0	${ }^{0.0 \%}$
- 2.5%	3,1366	2,664	472	-15.1\%
3.7\%	1,300	1,020	9	
4.9\%	300	300	0	
6.2\%	300	300		
	300	300		
	300	300		0%
11.1\%	300	300		00\%
12.3\%	300	300	0	0.0\%
13.6\%	300	300	0	0.0\%
14.8\%	300	300	0	0.0\%
16.0\%	300	300	0	0.0\%
17.3\%	300	300	0	0.0\%
18.5\%	300	300	0	
19.8\%	300	300	0	0.0\%
21.0\%	300	300	0	
${ }^{22.2 \%}$	300	300	0	
-23.5\%	300	300	0	0.0\%
25.9\%	300	300	0	0.0\%
27.2\%	300	300	0	
28.4\%	300	300	0	
29.6\%	300	300	0	0.0\%
30.9\%	300	300	0	0.0\%
32.1\%	300	300	0	0.0\%
33.3\%	300	300	0	0.0\%
34.6\%	300	300	0	0.0\%
35.8\%	300	300	0	0.0\%
37.0\%	300	300	0	0.0\%
38.3\%	300	300	0	0.0\%
39.5\%	300	300	0	0.0\%
40.7\%	300	300	0	0.0\%
42.0\%	300	300	0	0.0\%
43.2\%	300	300	0	
${ }^{44.4 \%}$	300	300	0	\%
45.7\%	300	300	0	0.0\%
46.9\%	300	300	0	
- 48.14%	300	300 300	0	-0.0\%
50.6\%	300		0	
51.9\%	300	300	0	0.0\%
53.1\%	300	300	0	
54.3\%	300	300	0	0.0\%
55.6\%	300	300	0	0.0\%
56.8\%	300	300	0	0.0\%
58.0\%	300	300	0	0.0\%
59.3\%	300	300	0	0.0\%
60.5\%	300	300	0	0.0\%
617\%\%	300	300	0	0.0\%
63.0\%	300	300	0	0.0\%
${ }^{64.2 \%}$	300	300	0	0.0\%
-65.4\%	300	300 300	0	\%
66.7\% 6790%	300	300	0	\%
- 67.9%	300	300	0	\%
69.1\%	300 300	300 300	O	0.0\%
71.6\%	300	300 300	0	${ }^{0.0 \% \%}$
72.8\%	300	300	0	
74.1\%	300	300	0	0.0\%
75.3\%	300	300	0	0.0\%
76.5\%	300	300	0	,
77.8\%	300	300	0	0.0\%
79.0\%	300	300	0	\%
80.2\%	300	300	0	0.0\%
81.5\%	300	300	0	0.0\%
- 82.7%	300	300	0	0.0\%
84.0\%	300	300	0	0.0\%
85.2\%	300	300	0	0.0\%
86.4\%	300	300	0	0.0\%
87.7\%	300 300	300	0	0.0\%
- ${ }^{88.1 \%}$	300 300	300	0	${ }^{\text {0.0\% }}$
91.4\%	300	300	0	0.0\%
92.6\%	300	300		
93.8\%	300	300	0	0.0\%
-95.19\%	300 300	300 300	0	\%
	300	300		
9.88% 108.0\%	300 300	300 300	0	边

Table SW-04-b

Percent	WSIP 2030 Without	WSIP 2030 With Project	${ }_{\text {a }}^{\substack{\text { Absolue } \\ \text { Difference }}}$	Relative
Probability	Monthly Foiow (CFS)	Monthly Flow (CFS)	(CFF)	
	1,388			9.1\%
1.2\%	1.243	${ }_{1}^{1,388}$	145	
2.5\%	953	1,243	290	
3.7\%	600	953	${ }^{53}$	
4.9\%	600	600	0	
6.2\%	600	600	0	
7.4\%	600	600	0	0.0\%
8.6\%	600	600	0	0.0\%
9.9\%	540	600	60	111.1\%
11.1\%	540	540	0	0.0
${ }^{12.3 \%}$	540	540	0	0.0\%
13.6\%	540	540	0	
14.8\%	540	540	0	
10.0\%	540	540	O	
17.3\%	540	540		
18.5\%	540 540	540 540	O	
19.8\%	550	540	O	
${ }^{22.2 \%}$	540 540	540	0	0.0\%
23.5\%	540	540	0	
24.7\%	540	540	0	0.0\%
25.9\%	540	540	0	
27.2\%	540	540	0	0.0\%
28.4\%	540 540	540	0	0.0\%
29.6\%	540	540	0	\%
30.9\%	540	540	0	0.0\%
32.1\%	540	540	0	0.0\%
33.3\%	540	540	0	0.0\%
34.6\%	540	540	0	0.0\%
${ }^{35.8 \%}$	5400	540 540	0	0.0\%
37.0\%	554	540 540	0	0.0\%
	540	540 540	0	0.0\%
39.5\%	540	540 540	0	0.0\%
${ }^{40.70}$	${ }_{493}$	540 540 4	47	
4.2.\%	493	493	O	
44.4\%	${ }_{493}^{493}$	${ }_{493}$	0	0.0\%
45.7\%		493	0	
46.9\%	493	493	0	
48.1\%		493	0	
49.4\%	493	493	0	
50.6\%	493	493	0	
51.9\%	493	493	0	0.0\%
53.1\%	493	493	0	0.0\%
54.3\%	493	493	0	0.0\%
年5.6\%	493	493	0	0.0\%
56.8\%	493	493	0	${ }^{\text {0.0\% }}$
年58.0\%	460	493	${ }^{33}$	7.2\%
59.3\%	460	460	0	0.0\%
60.5\%	460	460	0	0.0\%
${ }^{611.7 \%}$	460	460	0	0.0\%
-63.0\%	460	460	0	\%
-64.2\% ${ }^{6.4 .4}$	460	460	0	\%
-65.4\%	${ }_{460}^{460}$	${ }_{460}$	0	\%
-667.7\%	${ }_{460}^{460}$	460	O	
69.1\%	460	460	0	0.0\%
70.4\%	460	460	0	
71.6\%	460	460	0	
72.8\%	460	460	0	
74.1\%	460	460	0	0.0\%
75.3\%	460	460	0	\%
76.5\%	460	460	0	0.0\%
77.8\%	460	460	0	0.0\%
79.0\%	460	460	0	0.0\%
-	460	460	0	0.0\%
${ }^{81.5 \%}$	460	460	0	0.0\%
- 82.78	460	460	0	0.0\%
84.0\%	460	460	0	0.0\%
- $8.5 .2 \%$	460	460	0	\%
${ }^{86.4 \%}$	${ }_{460}^{460}$	460	O	0.0\%
- $\begin{aligned} & 87.7 \% \\ & 889 \%\end{aligned}$	${ }_{460} 460$	${ }_{460}$	O	\%
- ${ }^{88.9 \%}$	${ }_{460}$	460	O	0.0\%
9014\%	460	460		0.0\%
92.6\%	${ }_{460} 46$	460	O	0.0\%
938.8\%	${ }_{427}^{460}$	${ }_{427} 4$	0	- ${ }_{\text {0.0\% }}^{0.0 \%}$
95.1\%	427	427	0	0.0\%
96.3\%	427	427	0	\%
5\%	427	427		
98.8\% 100.0\%	${ }_{427}^{427}$	${ }_{427}^{427}$	0	-

		$\frac{\text { WSIP } 2030 \text { With Project }}{\text { Monthl Flow (CFs) }}$	Absolute Difference (CFS)	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
		Monthly Fiow (CFFS)	(CFs)	
1.2\%	450	${ }_{4} 50$		0.0%
25\%	450	450		
3.7\%	450	450	0	0.0\%
4.9\%	450	450	0	
6.2\%	450	450	0	0.0\%
\%	450	450	0	
8.6\%	450	450		
9.9\%	450	450	0	
11.1\%	450	450	0	
12.3\%	450	450	0	
13.6\%	450	450	0	
14.8\%	450	450	0	0.0\%
16.7\%	450	450	0	0.0\%
17.3\%	450	450	0	0.0\%
18.5\%	450	450	0	0.0\%
19.8\%	450	450	0	0.0\%
21.0\%	450	450	0	0.0\%
${ }^{22.2 \%}$	450	450	0	0.0\%
23.5\%	450	450	0	
${ }^{24.79 \%}$	450	450	0	00\%
25.9\%	450	450		
27.2\%	450	450	0	
29.6\%	${ }_{450}$	${ }_{450}$	0	${ }^{\text {0.0\% }}$
30.9\%	450	450	0	
32.1\%	450	450	0	
			0	
34.6\%	450	450	0	
35.8\%	450	450	0	
37.0\%	450	450	0	0.0\%
38.3\%	450	450	0	
39.5\%	450	450	0	0.0\%
40.7\%	450	450	0	0.0\%
42.0\%	450	450	0	0.0\%
43.2\%	450	450	0	0.0\%
44.4\%	450	450	0	0.0\%
45.7\%	450	450	0	0.0\%
46.9\%	450	450	0	0.0\%
48.1\%	450	450	0	0.0\%
49.4\%	450	450	0	0.0\%
50.6\%	450	450	O	
51.9\%	450	450	0	
54.3\%	${ }_{450}$	${ }_{450}$	0	0.0\%
55.6\%			0	
56.8\%	450	450	0	0\%
58.0\%	450	450	0	
59.3\%	450	450	0	0.0\%
60.5\%	450	450	0	0.0\%
61.7\%	450	450	0	0.0\%
63.0\%	450	450	0	0\%
64.2\%	450	450	0	0.0\%
${ }^{65.4 \%}$	450	${ }^{450}$	0	0.0\%
${ }^{66.7 \%}$	450	450	0	0.0\%
67.9\%	450	450	0	0.0\%
69.1\%	450	450	0	0.0\%
70.4\%	450	450		0.0\%
71.6\%	450	450	0	0.0\%
(74.19\%	${ }_{450}^{450}$	${ }_{450}$		
(74.15\%	${ }_{450}$	${ }_{450}^{450}$	0	-0.0\%
76.5\%	450	450	0	\%
77.8\%	450	450	0	0.0\%
79.0\%	450	450	0	0.0\%
9,2\%	450	40	0	
81.5\%	450	450	0	0.0\%
82.7\%	450	450	0	0.0\%
84.0\%	450	450	0	0.0\%
85.2\%	450	450	0	0.0\%
${ }^{86.4 \%}$	450	450	0	0.0\%
877\%	450	450	0	0.0\%
88.9\%	450	450	0	0.0\%
90.1\%	450	450	0	0.0\%
91.4\%	450	450	0	0.0\%
92.6\%	450	450	0	0.0\%
${ }^{93.8 \%}$	450	450	0	0.0\%
95.1\%	450	450	0	.0\%
96.3\%	450	450	-	.0\%
-988\%	450	450	O	0.0\%
100.0\%	450	450		0.0\%

		September		
Percent Exceedance	$\xrightarrow{\text { WSIP } 2030 \text { Without }}$ Proiet	WSII 2030 With Project	Absolute Difference	Relative
Probability	Monthy fowew (CFS)	Monthly Flow(CFSS)	(crs)	
0.0\%	450	450	0	0.0\%
1.2\%	450	450	0	0.0\%
2.5\%	450	450	0	0.0\%
3.7\%	450	450	0	0.0\%
4.9\%	450 450	450 450	0	0.0\%
-6.2\%	450 450	450 450	0	0.0\%
8.6\%	450	450		0.0%
9.9\%	450	450	0	
11.1\%	450	450		
12.3\%	450	450	0	0.0
+	450	450	0	0.0\%
- ${ }^{14.8 \%} \times 1.0 \%$	450	450	0	0.0\%
- 11.0 \% ${ }^{16 \%}$	${ }_{450}$	${ }_{450}^{450}$	0	-0.0\%
18.5\%	450	450	0	0.0\%
19.8\%	450	450	0	0.0\%
21.0\%	${ }_{4}^{450}$	${ }_{4}^{450}$	0	0.0\%
22.2\%	450 450	450 450	0	0.0\%
- 23.50	450	450	0	0.0\%
24.7\%	${ }^{450}$	${ }^{450}$	0	0.0\%
25.9\%	450	${ }^{450}$	0	0.0\%
- 27.2%	${ }_{450}$	450 450	0	0.0\%
${ }^{28.4 \%}$ 29\%\%	${ }_{450}$	${ }_{450}$	O	- 0.0%
30.9\%	450	450	0	0.0\%
32.1\%	450	450	0	0.0\%
	${ }^{450}$	450		0.0\%
35.8\%	${ }_{450}$	${ }_{450}$	0	0.0\%
37.0\%	450	450	0	0.0\%
38.3\%	450	450	0	0.0\%
39.5\%	450	450	0	0.0\%
40.7\%	450	450	0	0.0\%
${ }^{42.0 \%}$	450	450	0	0.0\%
	450	450	0	0.0\%
${ }^{44.4 \%}$	450	450	0	0.0\%
${ }^{45.7 \%}$	450	450	0	0.0\%
${ }^{46.9 \%}$	450	450	0	0.0\%
${ }^{48.49 \%}$	${ }_{450}$	450 450	0	- 0.0%
50.6\%	450	450	0	0.0\%
51.9\%	450	450	0	0.0\%
	450 450	450 450	0	${ }^{\text {0.0.0\% }}$
55.\% \%	450	450		
		450	0	0.0\%
59.3\%	450	${ }_{450}^{450}$	0	0.0\%
60.5\%	450	450	0	0.0\%
61.7\%	450	450	0	0.0\%
63.0\%	450	450	0	0.0\%
64.2% 654%	450	450	0	0.0\%
	450	450	0	0.0\%
66.7\% 67.9%	450	450	0	0.0\%
67.9\%	450	450	0	0.0\%
- 70.14%	450	450	0	0.0\%
70.1.4\%	450			0.0\%
71.2\%\%	450	450	0	${ }^{\text {0.0\% }}$
74.1\%	${ }^{450}$	450	0	- 0.0%
75.3\%	450	${ }_{450}$	0	0.0\%
76.5\%	450	450	0	0.0\%
77.8\%	${ }_{450}^{450}$	450	0	0.0\%
(79.0\%	450	450	0	0.0\%
${ }^{801.5 \%}$	450	${ }_{450}^{450}$	0	0.0\%
82.7\%	450	450	0	0.0\%
-84.0\%	${ }_{450}^{450}$	450 450	:	- ${ }_{\text {0.0\% }}^{0.0 \%}$
${ }_{86.4 \%}$	450	${ }_{450}$	0	${ }_{\text {0.0\% }}$
87.7\%	450	450		0.0\%
88.9\%	450	450	0	0.0\%
90.1\%	450	450	0	0.0\%
${ }_{\text {920.6\% }}^{91.4 \%}$	450	450	0	0.0\%
${ }_{93,8 \%}^{92.6 \%}$	450	450	0	0.0\%
${ }^{93.85 \%}$	450	450	0	0.0\%
${ }_{9}^{95.3 \%}$	450	450	0	-0.0\%
97.5\%	${ }_{450}$	${ }_{450}$	0	0.0\%
98.8\%	450	450	0	0.0\%
100.0\%	450	450	0	0.0\%

Figure SW-05-b
Clear Creek Tunnel, Monthly Flow

Table SW-O5-b Creek Tunnel. Monthly

\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{|c|}
\hline \text { Pexecent }
\end{array}
\] \& \begin{tabular}{c}
WSIP 2 230 Wi.thout \\
Proiect \\
\hline
\end{tabular} \& WSIP 2030 With Project \& Absoutle
Difference \& Relative \\
\hline Probability \& Monthly Fiolow (CFS) \& Monthly Fow (CFS) \& (cFs) \& Difference \((\%)\) \\
\hline 0.0\% \& 2.530 \& 2.530 \& 0 \& 0.0\% \\
\hline 1.2\% \& \({ }_{2,329}\) \& \({ }_{2}^{2,353}\) \& 23 \& 1.0\% \\
\hline 2.5\% \& 1.617 \& 1,372 \& 245 \& -15.2\% \\
\hline 3.7\% \& 1,278 \& 1,188 \& -90 \& -7.1\% \\
\hline 4.9\% \& 1,187 \& 1,187 \& 0 \& 0.0\% \\
\hline 6.2\% \& 1.072 \& 696 \& -376 \& -35.1\% \\
\hline 7.4\% \& 1,067 \& 555 \& \({ }_{-48}\) \& -45.2\% \\
\hline 8.6\% \& 299 \& \({ }^{256}\) \& \({ }^{-42}\) \& -14.2\% \\
\hline \({ }^{\text {911.9\% }}\) \& \begin{tabular}{l}
250 \\
250 \\
\hline
\end{tabular} \& 250
250 \& 0 \& 0.0\% \\
\hline - \(11.14 \%\) \& \begin{tabular}{l}
250 \\
250 \\
\hline
\end{tabular} \& \begin{tabular}{l}
250 \\
250 \\
\hline 20
\end{tabular} \& 0 \& - \\
\hline - \({ }_{\text {123\% }}^{12.36 \%}\) \& 250
250 \& 250
250 \& 0 \& 0.0.0\% \\
\hline (14.8\% \& 250
250 \& 250
250 \& 0 \& 0.0\% \\
\hline 16.0\% \& 250 \& 250 \& 0 \& 0.0\% \\
\hline 17.3\% \& 250 \& \({ }^{250}\) \& 0 \& \\
\hline 18.5\% \& \& 250 \& 0 \& \\
\hline 19.8\% \& \(\begin{array}{r}250 \\ \hline 25 \\ \hline\end{array}\) \& 250 \& 0 \& 0.0\% \\
\hline 222\% \& \({ }_{250}\) \& \({ }_{250}\) \& 0 \& 0.0\% \\
\hline 23.5\% \& 250 \& 250 \& 0 \& 0.0\% \\
\hline 24.7\% \& 250 \& 250 \& 0 \& 0.0\% \\
\hline 25.9\% \& 250 \& 250 \& 0 \& 0.0\% \\
\hline 27.2\% \& \({ }^{250}\) \& \({ }^{250}\) \& 0 \& 0.0\% \\
\hline 28.4\% \& \begin{tabular}{l}
250 \\
250 \\
\hline 20
\end{tabular} \& \begin{tabular}{l}
250 \\
250 \\
\hline 20
\end{tabular} \& 0 \& 0.0\% \\
\hline 29.6\% \& 250 \& 250 \& 0 \& 0.0\% \\
\hline 30.9\% \& \({ }^{250}\) \& \({ }^{250}\) \& 0 \& 0.0\% \\
\hline 32.1\% \& 250 \& 250 \& 0 \& 0.0\% \\
\hline - \(33.3 \%\) \& 250

250 \& | 250 |
| :--- |
| 250 |
| 20 | \& 0 \& 0.0\%

\hline 34.6%
358% \& $\begin{array}{r}250 \\ 250 \\ \hline\end{array}$ \& 250
250 \& 0 \& 0.0\%

\hline \& | 250 |
| :--- |
| 250 |
| 20 | \& 250

144
1 \& ${ }_{-106}^{0}$ \& -0.0\% ${ }_{\text {- }}^{\text {- } 25 \%}$

\hline 38.3\% \& 250 \& 134 \& -116 \& -46.3\%

\hline 39.5\% \& ${ }^{250}$ \& 109 \& -141 \& -56.3\%

\hline 40.7\% \& \& 102 \& -148 \&

\hline 43.2\% \& ${ }_{250}^{250}$ \& 100 \& -150 \& -60.0\%

\hline 44.4\% \& 250 \& 100 \& -150 \& -60.0\%

\hline 45.7\% \& ${ }^{250}$ \& 100 \& -150 \& -60.0\%

\hline 46.9\% \& 134 \& 100 \& -34 \& -25.5\%

\hline 48.1\% \& 109 \& 100 \& -9 \& -8.4\%

\hline 49.4\% \& 102 \& 100 \& -2 \& -1.7\%

\hline 50.6\% \& 100 \& 100 \& 0 \& 0.0\%

\hline 51.9\% \& 100 \& 100 \& 0 \& 0.0\%

\hline 53.19\% \& 100 \& 100 \& 0 \& 0.0\%

\hline 54.3\% \& 100 \& 100 \& 0 \& 0.0\%

\hline 55.8\% \& 100
100 \& 100
100 \& 0 \& -0.0\%

\hline 58.0\% \& 100 \& 100 \& 0 \&

\hline 59.3\% \& 100 \& 100 \& 0 \&

\hline 60.5\% \& 100 \& 100 \& 0 \& 0.0\%

\hline 61.7\% \& 100 \& 100 \& 0 \& 0.0\%

\hline 63.0\% \& 100 \& 100 \& 0 \&

\hline 析.2\%\% \& 100
100 \& 100
100 \& 0 \& 0.0\%

\hline 66.7\% \& 100 \& 100 \& 0 \& 0.0\%

\hline 67.9\% \& 100 \& 100 \& 0 \& 0.0\%

\hline 79.1\% \& 100
100 \& 100 \& 0 \& 0.0\%

\hline 71.6\% \& ${ }_{100}^{100}$ \& ${ }_{100}^{100}$ \& 0 \& 0.0\%

\hline 72.8\% \& 95 \& 100 \& 5 \& 5.3\%

\hline 74.19\% \& ${ }^{32}$ \& 100 \& ${ }_{68}^{68}$ \& 213.9\%

\hline 75.3\% \& 0 \& 95 \& ${ }^{95}$ \&

\hline 76.5\% \& 0 \& ${ }^{3}$ \& ${ }^{3}$ \&

\hline 77.8\% \& 0 \& 2 \& 2 \&

\hline 79.0\% \& 0 \& 0 \& 0 \&

\hline ${ }^{81.5 \%}$ \& 0 \& 0 \& 0 \&

\hline 82.7\% \& 0 \& \& 0 \&

\hline 84.0\% \& 0 \& 0 \& 0 \&

\hline - ${ }_{\text {85.2\% }}^{8.4 \%}$ \& 0 \& 0 \& 0 \&

\hline 87.7\% \& 0 \& 0 \& 0 \&

\hline 88.9\% \& 0 \& - \& 0 \&

\hline 91.4\% \& 0 \& 0 \& 0 \&

\hline 92.6\% \& 0 \& 0 \& 0 \&

\hline 93.8\% \& 0 \& 0 \& 0 \&

\hline ${ }^{95.19 \%}$ \& 0 \& 0 \& 0 \&

\hline ${ }^{9} 9.5 \%$ \& 0 \& 0 \& 0 \&

\hline 98.8\% \& 0 \& 0 \& 0 \&

\hline 100.0\% \& 0 \& \& \&

\hline
\end{tabular}

$\xrightarrow{\text { Table SW-05-b }}$ Creek Tunnel, Monthy Flow

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	$\begin{gathered} \text { WSIP P2030 Without } \\ \text { Proiect } \\ \hline \end{gathered}$	Wsip 2330 W Wth Project	Absolute Difference	Relative Difference
Probabaility	Monthly foow (cFs)	Monthly Fow (CFS)	(CFS)	
0.0\%	2,294	2,294	0	${ }^{0.0 \%}$
- 1.2%	(1,697	1,697	0	号0.0\%
3.7\%		(1,263	O	0.0\%
	1,167	${ }_{1}^{1,167}$	0	0.0\%
6.2\%	1,123	1.042	81	-7.2\%
7.4\%	1.042	1.011	31	
8.6\%	829	762	-66	
9.9\%	${ }_{7}^{736}$	${ }^{736}$	0	0.0\%
11.1\%	707	587	120	
12.3\%	557	556	迷	
1148\%	579	548	-	
-14.0\%	558	${ }_{4} 48$	-90	-179\%
17.3\%	546	445	-101	-18.4\%
18.5\%	487	436	-51	-10.5\%
19.8\%	458	410	${ }^{48}$	
21.0\%	436	401	${ }^{35}$	-8.1\%
22.2\%	410	395	-16	-3.8\%
23.5\%	408	394	-14	-3.3\%
24.7\%	401	390	${ }^{10}$	-2.6\%
25.9\%	394	369	${ }^{25}$	-6.4\%
27.2\%	390	${ }^{361}$	${ }^{-30}$	-7.6\%
28.4.\%	${ }^{369}$	358	-11	
29.6\%	369	328	${ }^{33}$	
30.9\%	358	${ }^{325}$	${ }^{-33}$	
32.19\%	${ }^{328}$	319	${ }_{-8}$	
34.6\%	325 319	318 312	-7	${ }_{-2,2 \%}^{-2.2 \%}$
35.8\%	318	311	-7	
37.\%	312	302	10	
38.3\%	311	288	${ }^{23}$	
39.5\%	286	286	0	
40.7\%	285	285	0	
42.0\%	284	284	0	0.0\%
43.2\%	${ }_{271}^{281}$	${ }^{271}$	-10	
44.4\%	${ }^{271}$	${ }^{250}$	${ }^{21}$	-7.9\%
45.7\%	250	250	0	0.0\%
46.9\%	250	250	0	0.0\%
48.1\%	${ }^{250}$	${ }^{250}$	0	0.0\%
49.4\%	${ }^{250}$	${ }^{250}$	0	0.0\%
50.6\%	${ }^{250}$	${ }^{250}$	0	0.0\%
51.9\%	250	${ }^{250}$	0	0.0\%
53.1\%	250	248 209	-41	
54.3\%	250	209	41	
55.6\%	228	${ }_{205}^{208}$	${ }^{40}$	
	${ }_{208}^{209}$	${ }_{185}^{205}$		
59.3\%	185	${ }_{183}^{185}$	-2	-1.1\%
60.5\%	183	178	-6	
61.7\%	178	176	-2	.1\%
-63.0\%	176	161	-14	-8.2\%
66.4\%	160	${ }_{144}$	-15	-9.6\%
66.7\%	144	143	-1	-0.8\%
67.9\%	143	125	-18	-12.6\%
69.1\%	106	106	0	0.0\%
70.4\%	100	100	0	0.0\%
71.6\%	100	100	0	0.0\%
72.8\%	100	100	0	0.0\%
74.1\%	100	100	0	0.0\%
75.3\%	100	100	0	0.0\%
76.5\%	100	100	0	0.0\%
77.8\%	100	100	0	0.0\%
79.0\%	100	100	-	0.0\%
-	100 100	100 81	${ }_{19}$	
81.5\%	100	81 58	-	
840\%	81 58	${ }_{51}^{58}$	-68	${ }_{\text {-10.6\% }}$
85.2\%	55	0	${ }^{55}$	-100.0\%
86.4\%	0	0	0	
87.7\%	0	0	0	
88.9\%	0	0	0	
90.1\%	0		0	
914.4\%	0	0	0	
92.6\%	0		0	
${ }^{93.8 \%}$	0	0	0	
${ }_{96.3 \%}^{95.1 \%}$	0	0	0	
97.5\%	0	0	0	
98.8\%	0	0	0	

$\xrightarrow{\text { Table SW-05-b }}$ Creek Tunnel, Monthy Flow

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$		$\frac{\text { WSIP } 2030 \text { With Project }}{\text { Monthy Fow (CFs) }}$	Absolute	Relative Difference $(\%)$
\bigcirc	Monthly Fow (CFS.	Monthly Fow (CFs,	(CFS)	
1.2\%	3,300	3,300	0	0.0\%
2.5\%	3,300	3,250	-50	-1.5\%
3.7\%	3,300	3,250	-50	-1.5\%
4.9\%	3,217	3,250	${ }^{33}$	1.0\%
6.2\%	3,052	3,250	198	6.5\%
7.4\%	2,993	3,250	${ }^{257}$	${ }^{8.2 \%}$
8.6\%	2,894 2750 270	(3,250 3,250	356 500	- ${ }_{\text {18, }}^{12.3 \%}$
9.9\%	2,750 2.750	3,250 3,250	500 500	- 18.2%
-11.1\%	2,750 2.750 1		500 136	${ }^{18.2 \%}$
13.6\%	2,750	${ }_{2}^{2,750}$	O	0.0\%
14.8\%	2.730	2,750	20	
16.0\%	${ }_{2}^{2,711}$	2,750	39	
3\%	2,702	2,750	48	
18.5\%	2,500	2,750	250	10.0\%
19.8\%	2,500	2,750	250	
21.0\%	2.500	2,750	250	
${ }^{22.2 \%}$	2,500	2,615	115	
23.5\%	2,500	2,590	90	${ }^{3.6}$
24.7\%	2,500	${ }^{2.572}$	72	2.9\%
25.9\%	2,500	2,500	0	0.0\%
27.2\%	${ }_{2}^{2,500}$	2,500	0	0.0\%
${ }^{28.4 \%}$	${ }_{2363}^{2,378}$	2,500	${ }^{122}$	5.10,
29.6\%	${ }_{\substack{2,363 \\ 2250}}^{2}$	2,500	$\begin{array}{r}137 \\ \hline 50\end{array}$	5.8\%
30.9\%	${ }_{2}^{2,250}$	2,500	${ }^{250}$	11.19
- ${ }_{\text {32, }}$	2,250	2,500	250	- 11.11 .1
34.6\%	2,250	2.500	250	11.1\%
35.8\%	2,250	2,500	250	
	${ }_{2}^{2,250}$		${ }_{2}^{250}$	
30.5\%	${ }_{2,043}^{2,250}$	${ }_{2,500}^{2.500}$	${ }_{457}^{250}$	22.4\%
40.7\%	2.019	2.500	481	23.8
42.0\%	2.000	2.500	500	25.0\%
43.2\%	2,000	2.500	500	25.0
44.4\%	2.000	2,500	500	25.0\%
45.7\%	2,000	2,500	500	25.0\%
46.9\%	2,000	2,406	406	20.3\%
48.19\%	2.000	2,309	${ }^{309}$	15.4\%
49.4\%	2,000	2,250	250	12.5\%
50.6\%	2,000	2,250	${ }^{250}$	12.5\%
51.9\%	2,000	2,250	250	${ }^{12.5 \%}$
- 53.10%	2,000 2000	2, 2,250	250	${ }^{12.5 \%}$
54.3\% 5 5 5	2,000	2,250	250	${ }^{12.5 \%}$
55.6\%	2,000	${ }_{2}^{2,000}$		
58.0\%	${ }_{\text {2,000 }}$	${ }_{2,000}^{2,000}$	\bigcirc	0.0\%
59.3\%	${ }_{1,817}^{1,800}$	2.000	${ }^{183}$	10.1\%
	1,750	2,000	250	14.3\%
${ }^{6} 6.720$	1,750			俍
64.2\%	1,750 1,750	${ }_{2,000}^{2,000}$	${ }_{250}^{250}$	14.3\%
65.4\%	1,750	2,000	250	14.3\%
66.7\%	1,750	2,000	250	14.3\%
67.9\%	1,750	2,000	250	14.3\%
69.1\%	1,750	2,000	250	14.3\%
70.4\%	-1,662	2,000	${ }^{338}$	20.3\%
71.6\%	1,526 1,500	1,817	290	19.0\%
72.8\%	1,500 1.500	1,750	250	16.7\%
74.1\%	1.500 1.500 1	1,750 1,750 1	250	16.7\%
75.3\%	1,500	1,750 1,750	${ }^{250}$	16.7\%
76.5\%	1.500 1.500 1	1,750 1,750	$\begin{array}{r}250 \\ 250 \\ \hline\end{array}$	16.7\%
77.8\%	1.500 1.500	1,750 1.662	250	${ }^{16.7 \%}$
-79.0\%	1.500 1.500	-	162	10.8\%
80.2\%	1,500	1,526	${ }^{26}$	8\%
${ }^{82.7 \%}$	${ }_{1}^{1,500}$	${ }_{1}^{1.550}$	$\stackrel{0}{0}$	0.0\%
84.0\%	${ }_{1}^{1,500}$	${ }_{1,500}^{150}$	0	0.0\%
85.2\%	1,500	1,500	0	0.0\%
${ }^{86.47 \%}$	1.500	1,500	0	.0\%
88.9\%	${ }_{1}^{1,500}$	${ }_{1}^{1,500}$	0	0.0\%
90.1\%	1,500	${ }_{1,500}$	0	0.0\%
91.4\%	1,500	1,500	0	0.0\%
92.6\%	1,500	1,500	0	0.0\%
93.8\%	1,500	1,500	0	0.0\%
${ }^{955.19}$	1.500 1.500	${ }^{1,500}$	0	0.0\%
96.3\%	1,500 1,500	1,500	0	0.0\%
97.5\%	+1.500	+1.500	0	0.0\%
	${ }^{1,250}$	+1,500	${ }^{2} 21,157$	20.0\%

Figure SW-06-b
Clear Creek below Whiskeytown Reservoir, Monthly Flow

Table SW－06－b
Clear Creek below Whisiskyywow Reseemoir，Monntly Fow

		WSIP 2030 W With Project	Absolute Difference	$\begin{gathered} \text { Relative } \\ \text { Difference } \% \% \end{gathered}$
${ }^{\text {Probebabily }}$	Monhly fow（crs）	Monthy Flow（cFs）	（CFS）	0．0\％
1．2\％	200	200	0	0．0\％
2．5\％	200	200	0	0．0\％
3．7\％	200	200	0	0．0\％
4．9\％	200 200	200 200	0	0．0\％
${ }^{6.2 \%}$	200	${ }_{200}^{200}$	0	0．0\％
8．6\％	200	200	0	0．0\％
9．9\％	200	200	0	0．0\％
11．1\％	200	200	0	
12．3\％	200	200	0	
13．6\％	200	200	0	0．0\％
14．8\％	200	200	0	0．0\％
16．0\％	200	200	0	0．0\％
17．3\％	${ }^{200}$	${ }^{200}$	0	0．0\％
18．5\％	200	${ }^{200}$	0	0．0\％
19．8\％	${ }^{200}$	${ }^{200}$	0	0．0\％
21．0\％	${ }^{200}$	${ }^{200}$	0	0．0\％
${ }^{22.2 \%}$	200	${ }^{200}$	0	0．0\％
23．5\％	${ }^{200}$	200	0	0．0\％
${ }^{24.79 \%}$	200	200	0	
25．9\％	200	200		
28．4\％	${ }_{200}^{200}$	${ }_{200}^{200}$	\bigcirc	0．0\％
29．6\％	200	200	0	0．0\％
30．9\％	200	200	0	0．0\％
32．1\％	200	200	0	
	200	200	0	
34．6\％	200	200	0	
35．8\％	200	200	0	
37．0\％	${ }^{200}$	200	0	0．0\％
38．3\％	${ }^{200}$	200	0	0．0\％
39．5\％	${ }^{200}$	${ }^{200}$	0	0．0\％
40．7\％	${ }^{200}$	${ }^{200}$	0	0．0\％
42．0\％	200	${ }^{200}$	0	0．0\％
43．2\％	200	200	0	0．0\％
44．4．9	${ }^{200}$	${ }^{200}$	0	0．0\％
45．7\％	200	200	0	0．0\％
46．9\％	200	200	0	0．0\％
48．4\％	200	200	0	0．0\％
50．6\％	200	200	0	${ }_{0}^{0.0 \%}$
51．9\％	200	${ }^{200}$	0	0．0\％
54．3\％	${ }_{200}^{200}$	${ }_{200}^{200}$	0	${ }^{0.0 \%}$
55．6\％	200	200	0	
56．8\％	200	200	0	0\％
58．0\％	200	200	0	．0\％
59．3\％	${ }^{200}$	${ }^{200}$	0	0．0\％
60．5\％	200	200	0	0．0\％
${ }^{6117 \%}$	200	200	0	0．0\％
63．0\％	${ }^{200}$	${ }^{200}$	0	0．0\％
64．2\％	200	200	0	0．0\％
${ }^{65.4 \%}$	200	200	0	0．0\％
${ }^{66.7 \%}$	200	${ }^{200}$	0	0．0\％
－67．9\％	200	200	0	0．0\％
70．4\％	200	200	0	0．0\％
71．6\％	200	200	0	0．0\％
72．8\％	${ }^{200}$	${ }^{200}$	0	0．0\％
74．1\％	${ }^{200}$	200	0	0\％
7.55	200	200	O	\％
77．8\％	${ }_{200}^{200}$	${ }_{200}^{200}$	0	0．0\％
79．0\％	200	200	0	0．0\％
80．2\％	200	200	0	\％
${ }^{82.7 \%}$	${ }_{150}$	150	0	0．0\％
84．0\％	150	150	0	0．0\％
85．2\％	${ }^{150}$	${ }^{150}$	0	．0\％
86．4\％	150	150	0	0．0\％
877\％\％	150	150 150 150	0	0．0\％
${ }^{88.9 \%}$	150	${ }^{150}$	0	0．0\％
90．1\％	150	${ }^{150}$	0	0．0\％
${ }^{91.4 \%} 9$	150	150	0	0．0\％
93．8\％	${ }^{150}$	${ }_{150}$	0	0．0\％
95．1\％	${ }^{150}$	${ }^{150}$	0	0．0\％
${ }^{96.3 \%}$	150	150	0	0．0\％
97．5\％	150	150		0．0\％
100．0\％	100	100 100		0．0\％

		January		
Percent		WSIP 2033 With Project	Absolute	Relative
Probability	Monthly Fiow（cFs）	Monthy Flow（CFS）	（cfs）	fference（\％）
0．0\％	2.049	2.049	0	0．0\％
1．2\％	987	987	0	0．0\％
2．5\％	200	200	0	0．0\％
3．7\％	200	200	0	0．0\％
4．9\％	${ }^{200}$	200	0	0．0\％
6．2\％	200	${ }_{200}^{200}$	0	0．0\％
7.4% 8.6%	${ }_{200}^{200}$	${ }_{200}^{200}$	0	0．0\％
8．6\％	200 200	200 200	0	0．0\％
${ }^{\text {9，9\％}}$	${ }_{200}^{200}$	200 200	0	0．0\％
－${ }_{\text {11．13\％}}^{12.3 \%}$	200 200	200 200	0	0．0\％
13．6\％	200	200		0．0\％
14．8\％	${ }^{200}$	${ }^{200}$	0	0．0\％
16．0\％	200	200		0．0\％
17.3% 18.5%	200	200	0	0．0\％
18．5\％	200	200	0	0．0\％
19．8\％	200	200	0	0．0\％
210\％	200	200	0	0．0\％
${ }^{22.2 \%}$	200	200	0	0．0\％
23．5\％	200	200	0	0．0\％
24．7\％	200	200	0	0．0\％
25．9\％	${ }^{200}$	${ }^{200}$	0	0．0\％
27．2\％	${ }^{200}$	200	0	0．0\％
${ }^{28.4 \%}$	200	200		0．0\％
－	${ }_{200}$	200	0	0．0\％
30．9\％	${ }^{200}$	200		0.0
32．1\％	200	200	0	0．0\％
年33．3\％	200	200		0．0\％
34．6\％ 3588	200	200	O	0．0\％
35．7\％	${ }_{200}^{200}$	${ }_{200}^{200}$	0	0．0\％
38．3\％	200	200		0.0
39．5\％	200	200	0	0．0\％
40．7\％	200	200	0	0．0\％
42．0\％	200	200	0	0．0\％
43．2\％	200	200	0	0．0\％
44．4\％	200	200	0	0．0\％
45．7\％	200	200	0	0．0\％
46．9\％	200	200	0	0．0\％
48．1\％ 4.4	200	200	0	0．0\％
49．4\％	200	200	0	0．0\％
年 50.6%	${ }^{200}$	${ }^{200}$	0	0．0\％
年 51.9%	${ }^{200}$	200	0	0．0\％
	200	200	0	0．0\％
${ }^{54.3 \%}$ 5．6\％	200	200	0	0．0\％
56．8\％	200	200		0．0\％
56．0\％	200	200	0	0．0\％
593\％	${ }_{200}^{200}$	${ }_{200}^{200}$	0	0．0\％
60．5\％	200	200	0	0.0
61．7\％	200	200	0	0.0
63．0\％	200	200	0	0．0\％
64．2\％	200	200	0	0．0\％
－ 65.4%	${ }^{200}$	${ }^{200}$	0	0．0\％
67．9\％	200	${ }_{200}^{200}$	0	0．0\％
69．1\％	200	200	0	0．0\％
70．4\％	200	200	0	0．0\％
71．6\％	200	200	0	0．0\％
72．8\％	${ }^{200}$	${ }^{200}$	0	0．0\％
74.1% 753%	${ }^{200}$	${ }^{200}$	0	0．0\％
76．5\％	200	200	0	0．0\％
${ }^{76.5 \%}$	200	200 200	0	0．0\％
79．0\％	200	200	0	0．0\％
80．2\％				
81．5\％	200	200	0	0．0\％
${ }^{824.0 \%}$	${ }_{150}^{200}$	200 150	0	－ 0.0%
85．2\％	150	150	0	0．0\％
86．4\％	150	150	0	0．0\％
877\％	150	150	0	0．0\％
88．9\％	150	150	0	0．0\％
90．1\％	150	150	0	0．0\％
91．4\％	150	150	0	0．0\％
92．6\％	150	150	0	0．0\％
93．8\％	150	150	0	0．0\％
95．19\％	150	150	0	0．0\％
96．3\％	150	150	0	0．0\％
97．5\％	150	150	0	0．0\％
98．8\％	150	150	0	－

Table SW-06-b

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$		February		$\begin{gathered} \text { Relative } \\ \text { Difference (\% } \end{gathered}$
	WSIP ${ }^{2030}$ Proiethout	WSIP 2303 With Project	Cifierence	
	Monthy fow (CFS)	Monthy Fow (CFS)	(CFs)	
	3.000	3,000	0	0.0\%
1.2\%	2,963	1,154	-1,810	-61.1\%
2.5\%	200	200	0	0.0\%
3.7\%	200	200	0	0.0\%
4.9\%	${ }^{200}$	${ }^{200}$	0	0.0\%
6.2\%	200	${ }^{200}$	0	0.0\%
7.4% 8.6%	${ }_{200}^{200}$	${ }_{200}^{200}$	0	0.0\%
8.9\%	${ }^{200}$	${ }^{200}$	0	0.0\%
${ }^{\text {9,9\% }}$	200 200	200 200	0	${ }^{0.0 \% \%}$
- $11.1{ }^{\text {12.3\% }}$	200 200	200 200	0	0.0.0\%
13.6\%	200	200	0	0.0
14.8\%	200	200	0	
16.0\%	200	200	0	0.0\%
17.3\%	200	200	0	O\%
18.5\%	200	200	0	0.0\%
19.8\%	200	200	0	0.0\%
21.0\%	200	200	0	0.0\%
${ }^{22.2 \%}$	200	200	0	0.0\%
${ }^{23.55 \%}$	200	200	0	0.0\%
24.7\%	200	200	0	0.0\%
25.9\%	${ }^{200}$	${ }^{200}$	0	0.0\%
27.2\%	200	200	0	0.0\%
${ }^{28.4 \%}$	200	200	0	0.0\%
	200	200	0	0.0\%
30.9\%	200	200	0	0.0\%
退32.1\%	200	200	0	0.0\%
33.3\%	200	200	0	
34.6\%	200	200	0	
37.0\%	${ }_{200}^{200}$	${ }_{200}^{200}$	0	0.0\%
38.3\%	200			
39.5\%	200	200	0	
40.7\%	200	200	0	
42.0\%	200	200	0	0.0\%
43.2\%	200	200	0	0.0\%
44.4\%	200	200	0	0.0\%
45.7\%	200	200	0	0.0\%
46.9\%	${ }^{200}$	${ }^{200}$	0	
48.19\%	200	200	0	0.0\%
49.4\%	200	200	0	0.0\%
50.6\%	200	${ }^{200}$	0	0.0\%
51.9\%	200	${ }^{200}$	0	0.0\%
-53.1\%	200	200	0	0.0\%
	200	200	0	0.0\%
55.6\%	200	200	0	0.0\%
56.8\%	200	${ }_{200}$	O	
59.3\%	${ }_{200}^{200}$	${ }_{200}^{200}$	0	0.0\%
60.5\%	200	200	0	
61.7\%	200	200	0	0.0\%
63.0\%	200	200	0	
64.2\%	200	200	0	0.0\%
${ }^{654.4 \%}$	200		0	0.0\%
66.7\% 67.9%	200	200 200	0	0.0\%
69.1\%	200	200	0	0.0\%
70.4\%	200	200	0	0.0\%
71.6\%	200	200	0	0.0\%
72.8\%	${ }^{200}$	${ }^{200}$	0	0.0\%
74.1\% ${ }^{75.3 \%}$	${ }^{200}$	${ }^{200}$	0	0.0\%
75.3\%	200	${ }^{200}$	0	0.0\%
76.5\%	200	200	0	0.0\%
77.8.\%	200	200	0	0.0\%
-	200	200	0	0.0\%
-	200	200	0	-0.0\%
${ }^{8} 8.7 \%$	${ }_{200}^{200}$	${ }_{200}^{200}$		0.0\%
84.0\%	200	200	0	0.0\%
85.2\%	150	150		0.0\%
-	150	150	0	0.0\%
88.9\%	150	150	0	0.0\%
90.1\%	150	150	0	0.0\%
91.4\%	150	150	0	0.0\%
92.6\%	150	150	0	0.0\%
93.8\%	150	150	0	0.0\%
95.1\%	150	150	0	0.0\%
96.3\%	150	150	0	0.0\%
97.5\%	150	150	0	0.0\%
988.8\% 100\%	${ }^{150}$	150	0	-

Table SW-06-b
Clear Creek below Whisiskyywow Reseemovi, Monntly Fow

Figure SW-07-b
Shasta Lake, End of Month Storage

		Ociober		
Percent Exceedance	WSIP 2030 W.thout Proiet	WSIP 2030 With Project	Absolute	
Probability	End of Month Storage	End of Montrs Storage	(tifereme	Difference (\%)
${ }_{\text {cos }}^{\text {(\%) }}$	${ }^{\text {(TAF) }}$	${ }^{\text {(TAF) }}$		
0.0\%	${ }^{3,250}$	${ }^{3,250}$	0	0.0\%
- 1.2%	3,250 3 3	3,250 3 3	0	0.0\%
2.5\%\%	3,250	3,250	0	0.0\%
4.9\%	-	- $\begin{aligned} & 3,250 \\ & 3 \\ & 3\end{aligned}$	0	0.0\%
6.2\%	${ }_{3,250}$	${ }_{3,250}$	0	.0\%
7.4\%	3,250	3,249	-1	0.0\%
8.6\%	3,232 3 3,215	- ${ }_{\substack{3,248 \\ 3231}}$	16 15 15	${ }^{0.5 \% \%}$
191.1\%	-	$\underset{\substack{3,215 \\ 3,215}}{\substack{\text { 2, }}}$	15 15	0.5\%
12.3\%	3,133	${ }_{3,214}^{3.214}$	81	2.6\%
13.6\%	2,994	3,175	181	
14.8\%	2,992	3,095	103	
16.0\%	2,962	3,046	84	
17.3\%	2,940	3,031	91	1\%
18.5\%	2,934	3,010	76	2.6\%
19.8\%	2,910	2,994	84	2.9\%
21.0\%	${ }^{2}, 904$	${ }^{2}, 952$	${ }^{48}$	1.7\%
${ }^{22.2 \%}$	${ }^{2}, 889$	${ }_{2}^{2,912}$	${ }^{23}$	0.8\%
23.5\%	2,884	${ }_{2}^{2,903}$	19	0.7\%
24.7\%	${ }^{2,863}$	2,899	${ }^{36}$	1.3\%
25.9\%	2,857	2,899	${ }^{42}$	1.5\%
	2,849	2,868	19	${ }^{0.75 \%}$
29.6\%	${ }_{2,8,13}^{2,14}$	${ }_{2,886}^{2,855}$	${ }_{24}^{41}$	0.8\%
30.9\%	${ }_{2}^{2,811}$	2,828	16	0.6\%
	2,799			
-	${ }_{2}^{2,780}$	${ }_{2}^{2,809}$	${ }_{48}$,
35.8\%	${ }_{\text {2,799 }}$	${ }_{2,792}$	83	3.1\%
37.0\%	2,708	2,784	76	2.8\%
38.3\%	2,701	2,751	50	
39.5\%	2,679	${ }^{2,735}$	56	2.1\%
40.7\%	2,663	${ }^{2,722}$	59	2.2\%
42.0\%	2,660	${ }_{2}^{2,705}$	44	1.7\%
43.2\%	2,649	2,700	51	1.9\%
${ }^{44.4 \%}$	${ }^{2,641}$	2,689	48	${ }^{1.8 \%}$
45.9\%	${ }_{255}^{2,597}$	2,684	${ }_{78}^{86}$	
48.1\%	2.564	${ }_{2,658}^{2,684}$	95	3.7\%
49.4\%	2.554	2,637	83	3.2\%
50.6\%	${ }^{2.553}$	2,629	77	3.0\%
51.9\%	2,539	2,609	70	${ }_{3}^{2.8 \%}$
54.3\%	${ }_{2519}^{2,529}$	2,608	79	- ${ }^{3.15 \%}$
55.6\%	${ }_{2}^{2.515}$	${ }_{2,567}^{2,567}$	53	2.1\%
56.8\%	2,493	2.567	74	3.0\%
59.3\%	${ }_{2,456}^{2,467}$	${ }_{2,560}^{2.561}$	${ }_{103}$	3.2\%
60.5\%	${ }_{2,407}$	${ }_{2,553}$	145	
61.7\%	2,398	2,538	141	5.9\%
63.0\%	2,389	2,525	136	5.7\%
${ }^{64.2 \%}$	2,374	2,485	111	4.7\%
${ }^{65.4 \%}$	2,371	2.476	105	4.4\%
66.7\%	2,320	2,461	142	6.1\%
-67.9\%	2,320 2,299	2,429	110	4.7\%
69.19\%	2,299	2,407	108	4.7\%
70.4\%	2,278 $\substack{2,268 \\ \hline}$	2,405	${ }^{127}$	5.6\%
71.6\%	2,268	${ }_{2}^{2,370}$	102	.5\%
- $72.8 .1 \%$	2,260	${ }_{2336}^{2,365}$	104	4.6\%
75.3\%	2,260 2209 229	${ }_{2}^{2,338}$	${ }_{73} 7$	${ }^{3.5 \% \%}$
76.5\%	${ }_{2}^{2,229}$	${ }_{\text {2,297 }}^{2,29}$	68	3.1\%
77.8\%	2,210	2,267		2.6\%
79.0\% 80.2%	2,176 2,166	2,218 2,173	${ }_{7}^{42}$	2.0\%
81.5\%	${ }_{2,124}^{2,160}$	2,108	-16	-0.7\%
- 82.78	2,006	$\stackrel{2.093}{ }$	87	3\%
84.0% 852%	1,938	2,057	118	6.1\%
${ }_{80.4 \%}$	${ }_{1}^{1,869}$	${ }_{2,012}$	144	7.7\%
87.7\%	1.864	1,956	92	4.9\%
88.9\%	1,830	1,939	110	6.0\%
90.1\%	1,766	1,901	135	7.7\%
914\%	1,735	${ }^{1,824}$	89	5.1\%
${ }_{9}^{92.8 \%}$	1,473 1.308 ${ }^{1,183}$	${ }_{\substack{1.693 \\ 1 \\ 1.677}}$	220 370	15.0\%
95.1\%	${ }_{1}^{1,246}$	${ }_{1,503}^{1,5}$	${ }_{25}$	20.6\%
96.3\%	1,209	1,419	210	17.3\%
97.5\%	$\underset{\substack{1,100 \\ \hline 97}}{ }$	$\begin{array}{r}1.394 \\ 1.352 \\ \hline 1\end{array}$	294 395	${ }^{26.7 \%}$
100.0\%	585	${ }_{750}$	165	28.1\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	February			
	Proiect	WSIP 2330 With Project	Absolute	Reala
	Month	f Month Storage	（tar）	Herence（\％）
${ }^{\text {0．0）}}$	（TAF）	（TAF）	0	
			。	0．0\％
1．2\％	4，022	4.022	0	
2．5\％	4，005	4，005	0	
3．7\％	3，982	3，982	0	
4．9\％	3，944	3，944	0	
${ }^{6.2 \%}$	${ }^{3,926}$	${ }^{3,926}$	0	0．0\％
7．4\％	3，920	3，920	0	0．0\％
8．6\％	3，914	3，914	0	
9．9\％\％	${ }^{3,848}$	3，912	${ }_{17}{ }^{17}$	${ }^{1.75 \%}$
${ }^{19.12 \%}$	－	（3，848	${ }_{3}^{17}$	
13．6\％	－	3，	3	0．0\％
14．8\％	3，794	3，794	0	0．0\％
16．0\％	89	3，789	0	
17．3\％	3，777	3，777	0	
18．9\％${ }^{19.8 \%}$	3，743	3，757	14	
－19．8\％	3，739	3，743	4	0．1\％
${ }_{2}^{21.0 \%}$	3.705 3.698	3,739 3,705	$\stackrel{34}{7}$	0．9\％
23．5\％	3，694	3，694	0	0．0\％
24．7\％	3，685	3，685	0	0.0
25．9\％	3，675	3，675	0	0．0\％
27．2\％	${ }^{3,675}$	3，675	0	0．0\％
28．4\％	3，661	3，661	0	0．0\％
29．6\％	3，654	3，654	0	0．0\％
30．9\％	${ }^{3,652}$	${ }_{3}^{3.636}$	${ }^{16}$	
32．1\％	3，636	${ }^{3,603}$	${ }^{33}$	－0．9\％
33．3\％	3，588	${ }^{3.5888}$	0	0．0\％
34．6\％	－3.567 3,57	3.570 3,569	0	\％
37．0\％	${ }_{\substack{3.565 \\ 3,565}}^{\text {3，5 }}$	－	2	0\％
	3，560	3，567	7	0．2\％
39．5\％	3.544 3.539	3.561 3.560		
42．0\％	${ }_{\substack{3.539}}^{\text {3，539 }}$	－	8	0．2\％
43．2\％	${ }^{3.530}$	${ }_{3.540}$	10	
44．4\％	${ }^{3.516}$	3，539	${ }^{23}$	
45．7\％	3，503	3，530	${ }^{27}$	0.8
${ }^{46.9 \%}$	3，498	${ }^{3.522}$	${ }^{24}$	0．7\％
48．19\％	3，496	3，521	${ }^{25}$	0．7\％
50．6\％	－	－3.516 3,503	${ }_{41}^{36}$	－1．2\％
51．9\％	3，431	3，480	49	1．4\％
年53．19\％	－ 3.423	3，462	39	1．1\％
	－3,371 3,358	退，431	${ }_{60}^{60}$	8\％
55．6\％	－ 3,358	3，423	${ }_{55}^{65}$	1．9\％
56．0\％	3，356	－${ }_{\text {3，412 }}$	${ }_{47}^{55}$	${ }_{1.46 \%}^{1.6 \%}$
59．3\％	¢，	3，392	59	1．8\％
60．5\％	3,292 3 3	3，381	89	2．7\％
－ 61.7%				2．4\％
64．2\％	${ }_{3,252}^{3,282}$	${ }_{3.292}^{3.328}$	${ }_{40}^{46}$	1．2\％
65．4\％	3，252	${ }_{3}^{3,288}$	a	1．1\％
66．7\％	3，252	${ }^{3,282}$	30	9\％
－ 67.9%	－3,252 3,252	3,252 3 3,252	0	0．0\％
70．4\％	3，229	ci，3,252 3,252	${ }_{23}$	0．7\％
71．6\％	3，208	3，252	44	1．4\％
72．8\％	3，206	3，252	${ }_{78}^{46}$	－1．4\％
74．1\％	3，158	3，236	78	2．5\％
75．3\％	3，147	3，203	${ }_{56}^{56}$	1．8\％
76．5\％	3，104	3，192	88	2．8\％
778\％	3．091	3,149 3	${ }_{50}^{58}$	1．9\％
89．2\％	${ }_{3}^{3.072}$	3，142	70	${ }_{2}^{2.3 \%}$
81．5\％	3，056	3,138 3,096	40	2．3\％
82．7\％	3，043	3，080	37	1．2\％
84.0% 85.2%	3,037 3,028	3,062 3,047	25 19	0．8．6\％
－${ }_{\text {86．4\％}}$	3，008	${ }_{\text {3，043 }}^{3.047}$	19	0．8\％
87．7\％	2，993	2，979	－14	－0．5\％
88．9\％	${ }_{2}^{2,972}$	${ }_{2}^{2,974}$	${ }^{2}$	0．1\％
91．4\％	${ }_{\text {2，740 }}$	${ }_{\text {2，766 }}^{2,193}$	${ }_{26}^{125}$	1．0\％
92．6\％	2.699	2，757	58	2．1\％
93．8\％	2，599	2，749	150	
95．1\％	2，521	2，659	138	5．5\％
${ }^{96.3 \%}$	${ }^{2.012}$	2，178	166	8．3\％
97．5\％	1，982	2，103	${ }^{121}$	6．1\％
98．8\％ 100．	1,921 1,887	1，951	30 34	1．6\％
100．0\％	1，887	1，921	34	1．8\％

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	June			
	Prioiect	Wsip 2330 With Proid	${ }^{\text {Absolute }}$ Difference	Relative
	f Month s	Montr S	（titeren	fference（\％）
（\％）	（TAF）	（TAF）		
${ }^{0.00 \%}$		4，460	－40	${ }^{-0.9 \%}$
1．2\％	4，500	4，431	${ }^{69}$	－1．5\％
2．5\％	4，500	4，422	${ }^{78}$	
3．7\％	4，500	4.417	${ }_{-83}$	
4．9\％	4，471	4，365	－107	－2．4\％
${ }^{6.2 \%}$	4，324	4，339	14	0．3\％
7．4\％	4，318	4，288	－30	－0．7\％
8．6\％	4，300	4，286	－14	－0．3\％
9．9\％\％	4，274	4，244	－29	${ }^{-0.7 \%}$
19．1\％\％	4，237	4，244	${ }^{-13}$	
${ }^{13.26 \%}$	${ }_{4}^{4}+231$	${ }_{4}^{4,235}$	4	0．5\％
14．8\％	4.205	${ }_{4}^{4,229}$	23	0．5\％
16．0\％	4，199	4，214	15	
17．3\％	4，172	4，194	22	
19．8\％	4，152	4，1790	${ }^{38}$	\％
21．0\％	4.119	4,173	53	13\％
22．2\％	4，117	4，167	${ }_{50}$	1．2\％
23．5\％	4,104	4，154	50	1．2\％
24．7\％	4，097	4，153	55	1．4\％
25．9\％	4，093	4，151	58	1．4\％
27．2\％	4，081	4，140	60	1．5\％
28．4\％	4，072	4，128	56	1．4\％
29．6\％	4，059	4，199	60	${ }^{1.5 \%}$
30．9\％	4，047	4.117	70	1.78
32．1\％	4，000	4，116	116	2．9\％
33．3\％	3，978	4，080	102	2．6\％
34．6\％	3，966	4，079	112	${ }_{2}^{2.8 \%}$
35．8\％	3，955	4，063	109	
37．0\％	3,984 3.866	${ }_{4,015}^{4,037}$	${ }_{129}^{123}$	${ }^{3.10 \%}$
39．5\％	3，841	3，973	132	3．4\％
40．7\％	3，834	3，947	113	
42．0\％	3，833	3，916	${ }^{83}$	2．2\％
43．2\％	3，807	3，913	106	
4．4．4\％	3，768	3，909	141	3．7\％
45．7\％	3，724	3，891	167	4．5\％
46．9\％	3，702	3，889	187	5．1\％
48．19\％	3，696	3．870	174	4．7\％
49．4\％	3，686	${ }^{3.858}$	172	4．7\％
	${ }^{3,665}$	${ }^{3.855}$	190	${ }_{5}^{5.2 \%}$
51．9\％	${ }^{3,632}$	3，841	209	5．7\％
年53．1\％	3，627	3，780	153	4．2\％\％
54．3\％ 5.56%	${ }^{3.606}$	3，772	167	${ }^{4.6 \%}$
55．6\％	－ 3.602	3，742	139	3．9\％
年56．8\％\％	3，599	3，731	132	㐌3．7\％
59．3\％	${ }_{\substack{3.595 \\ 3 \\ \hline 58 \\ \hline}}$	3,24 3,714	130 136	－${ }_{\text {3，8\％}}^{3.8 \%}$
60．5\％	${ }_{3,553}$	${ }_{\text {3，685 }}$	${ }_{132}$	3．7\％
61．7\％	${ }^{3.531}$	3，663	132	
63．0\％	${ }_{\text {3，525 }}$	${ }_{\text {3，657 }}$	132	3．7\％
${ }^{64.2 \%}$	3，517	3，575	${ }^{58}$	${ }^{1.6 \%}$
${ }_{66.7 \%}^{65.4 \%}$	ci，	${ }_{\substack{3.547 \\ 3.527}}$	${ }_{60} 64$	1．7\％
67．9\％	3，467	${ }_{3,465}$	${ }^{-3}$	－0．1\％
9．1\％	3，423	${ }^{3,463}$	40	1．2\％
70．4\％	3，401	3，427	26	0．8\％
71．6\％	3，384	3，421	${ }^{38}$	1．1\％
72．8\％	3，257	3，385	128	3．9\％
74．1\％	3，241	3，301	${ }^{60}$	${ }^{1.8 \%}$
75．3\％	3，229	3，280	51	－
76．5\％	${ }_{3,128}$	3，246	118	3．8\％
77．8\％	${ }^{3,115}$	3，227	112	3．6\％
89．0\％	3，102	3，166	65	${ }_{8}^{2.17 \%}$
－	2，906	3，158	${ }^{253}$	5．7\％\％
－${ }_{\text {812．7\％}}^{8.5}$	${ }_{2}^{2,873}$	3，031	158	${ }^{5.5 \%}$
82.7% 840%	${ }_{2}^{2,872}$	2，997	178	4．3\％
885．2\％		${ }_{2}$	141	${ }^{6.3 \%}$
${ }_{\text {c }}^{\text {85．4\％}}$	${ }_{\substack{2,739}}^{2,788}$	${ }_{2,810}^{2,292}$	${ }_{71}^{141}$	2．6\％
87．7\％	2，711	2，751	40	1．5\％
88．9\％	2，695	2，702	7	0．3\％
90．1\％	2.631	2.691	60	
91．4\％	2，422	2，675	252	10．4\％
92．6\％	2.420	2.555	135	5．6\％
93．8\％	2．413	2，521	108	4．5\％
95．1\％	2，305	2.518	213	9．2\％
5．3\％	2，049	2，233	184	
97．5\％	2，032	2，194	163	8．0\％
98．8\％ 100．	1，991	2，184	193	－9．7\％
100．0\％	906	1，188	282	31．2\％

Table SW-08-b
Lake. End of Wonth Elevai
Shasta Lake, End of Month Elevatil
Probabality of Exceedance

	February			
	Wsif prioet	WSIP 2330 With Project	${ }^{\text {Absolute }}$ Difference	Realive
	Of Month Ele	Month Ele	(iflerence	隹
\% \%	(EEET)	(EEET)		
0.0\%	1,049	1,049	0	0.0\%
1.2\%	${ }^{1,048}$	${ }^{1,048}$	0	
2.5\%	1,047	1,047	0	
3.7\%	1,047	1,047	0	
4.9\%	1,045	${ }^{1,045}$	0	
${ }^{6.2 \%}$	${ }^{1,045}$	${ }^{1,045}$	0	0.0\%
7.4\%	1,044	${ }^{1,044}$	0	0.0\%
8.6\%	1,044	${ }_{1}^{1,044}$	0	
9.9\%\%	1.042	${ }_{1}^{1,044}$	2	\%
${ }^{19.12 \%}$	1,041	${ }_{1}^{1,042}$		\%
13.6\%	${ }_{1}^{1,041}$	${ }_{1}^{1,041}$	0	
14.8\%	1,040	1,040	0	
16.0\%	,040	1,040	0	
17.3\%	1,039	1,039	0	
- $18.5 .5 \%$	1,038	1,039	1	0.0\%
21.0\%	1,038 1,037	1,038 1,038	1	0.1\%
22.2\%	${ }_{1}^{1,036}$	${ }_{1,037}$	0	0.0\%
23.5\%	1,036	1,036	0	0.0\%
24.7\%	${ }^{1,036}$	${ }^{1,036}$	0	
25.9\%	${ }^{1,035}$	${ }^{1,035}$	0	
27.2\%	${ }^{1,035}$	${ }^{1,035}$	0	0.0\%
28.4\%	${ }_{1}^{1,035}$	${ }^{1} 1035$	0	0.0\%
29.6\%	${ }^{1,034}$	${ }^{1,034}$	0	0.0\%
32.1\%	${ }_{1}^{1,034}$	1,034	-1	${ }_{\text {- }}^{\text {-0.1\% }}$
33.3\%	${ }_{1,032}$	${ }_{1,032}$	\bigcirc	0.0\%
34.6\%	1,031	1,031	0	0.0\%
	${ }^{1,031}$	${ }^{1,031}$		0\%
37.3\%	1030	${ }_{1}^{1031}$	O	0.0\%
39.5\%	1,030	1.030	1	0.1\%
40.7\%				0.1\%
43.2\%	1,029	1,030 1,029	0	0.0\%
44.4\%	1,028	1,029	1	0.1\%
45.7\%	1,028	1.029	1	0.1\%
46.9\%	1,028	1,029	1	0.1\%
48.1\%	${ }^{1,028}$	1,029	1	0.1\%
50.6\%	1,027	${ }_{1}^{1,028}$	${ }_{2}$	0.2\%
51.9\%	${ }_{1}^{1,025}$	${ }_{1}^{1,027}$	${ }_{2}$	0.2\%
53.1\%	1,024	1,026	2	0.2\%
54.3\%	${ }^{1,022}$	${ }^{1,025}$	3	0.3\%
55.6\%	${ }_{1}^{1,022}$	1,024	${ }^{3}$	0.3\%
58.0\%	+1,022	1,024 1023 10202	${ }_{2}$	${ }^{0.2 \% \%}$
59.3\%	1,021	${ }_{1}^{1,023}$	3	0.3\%
60.5\%	1,019	${ }^{1,0223}$	4	
			3	
${ }^{63.0 \%}$	${ }_{1,017}^{1,018}$	${ }_{1,019}^{1,020}$	2	0.2\%
65.4\%	1.017	1.019	2	0.2\%
66.7\% 67.9%			1	0.1\%
69.1\%	1,017	${ }_{1,017}^{1,017}$	0	0.0\%
70.4\%	${ }_{1}^{1,016}$	1,017	1	0.1\%
71.6\%	${ }^{1,015}$	1,017	2	
72.8\%	${ }^{1,015}$	1.017	2	0.2\%
74.1\% ${ }^{75.3 \%}$	${ }^{1,013}$	${ }^{1.0016}$	${ }^{3}$	0.3\%
76.5\%	1,011	1,014	4	0.4\%
778.8\%	${ }^{1,010}$	${ }_{1}^{1.013}$	3	0.2\%
79.0\%	${ }^{1,009}$	1,012	3	0.3\%
-	+1,009	${ }_{1}^{1,012}$	2	0.3\%
82.7\%	1,008	1.010		0.2\%
84.0\%	${ }^{1,008}$	1,009	1	0.1\%
-	1,007 1.006 1006	1,008 1,007 1000	1	- 0.1%
87.7\%	1,006	1,005	-1	-0.1\%
88.9\%	1.005	${ }^{1,005}$	0	0.0\%
91.4\%	995	${ }_{996}$	1	0.1\%
92.6\%	993	${ }^{996}$	3	0.3\%
${ }^{93.85 \%}$	${ }_{985}^{989}$	995	7	0.7\%
96.3\%	${ }_{956}$	966	9	1.0\%
97.5\%	${ }_{951}^{955}$	${ }_{962}^{962}$	7	0.7\%
98.8\%	${ }_{951}^{951}$	${ }_{951}^{953}$	${ }_{2}$	0.2\%
100.0\%	949	951	2	0.2\%

Figure Sw-o9-b
Shasta Lake, End of Month Area

		Ociober		
Percent Exceedance	WSIP 2 2030 Without Proiet	WSIP 2303 With Project	Absolute	Relaive
Probability	End of Montht Area	End of Month Area	Difiternce	Difference（\％）
0．0\％	${ }_{2}$（ACRE）	${ }_{2}^{\text {（ACRE）}}$ ）		
1．2\％	${ }_{23,927}^{23,07}$	${ }_{23,927}^{2,307}$		0，0\％
2．5\％	23，927	${ }^{23,927}$	0	
3．7\％	${ }^{23,927}$	${ }^{23,927}$	0	
4．9\％	23，927	23，927	0	
6．2\％	${ }^{23,927}$	${ }^{23,927}$	0	0．0\％
7．4\％	${ }^{23,927}$	${ }^{23,923}$	4	0．0\％
8．9\％	${ }_{\text {cher }}^{23,830}$	23，918 23，824	${ }_{82}^{88}$	0．4\％
11．1\％	23，659	${ }_{23,740}^{2,180}$	80	
3\％	23，303	23，735	432	
13．4．6\％	22.559	23，525	966	
14．8\％	22，550	23，101	551	2．4\％
16．0\％	22，389	22，838	448	2．0\％
17．3\％	${ }^{22,270}$	${ }^{22,758}$	488	2．2\％
18．5\％	${ }_{\text {22，}}^{2241}$	${ }^{22,647}$	406	1．8\％
19．8\％	22，110	22，557	${ }^{446}$	2．0\％
21．0\％	${ }^{22,077}$	${ }^{22,335}$	${ }^{258}$	1．2\％
${ }^{22.2 \%}$	${ }^{21,998}$	22，120	121	0．6\％
23．5\％	${ }^{21,974}$	22,075 22，	101	0．5\％
24．7\％	${ }^{21,860}$	${ }^{22,053}$	193	0．9\％
－ 27.59%	${ }_{2}^{21,826}$	${ }^{22,053}$	227	1．0\％
	${ }_{2}^{21,783}$	${ }_{2}^{2,1885}$	101	0．5\％
－	${ }_{\substack{21,597 \\ 21,590}}^{21,585}$	${ }_{21,1717}^{21,817}$	219	
－${ }^{29.9 \% \%}$	${ }_{\substack{21,583}}^{21,59}$	${ }_{21,670}^{21,17}$	${ }_{87}^{127}$	0．6\％
32．1\％	${ }_{21,519}^{21,53}$	${ }_{21,615}^{2,1,70}$	${ }_{96}$	0．4\％
33．3\％	21,418	21,573	155	0．7\％
	${ }^{21,227}$	21，184	${ }^{257}$	1．2\％
37．0\％	${ }_{21,031}^{21,037}$	${ }_{\substack{\text { 21，437 }}}^{21,480}$	${ }_{406}$	1．9\％
38．3\％	20,992	21，261	268	1．3\％
39．5\％	20，875	21，175	300	1．4\％
40．7\％	20，791	21，105	315	1．5\％
42．0\％	20，777	21，014	${ }^{237}$	1．1\％
43．2\％	20，714	20.988	${ }^{274}$	${ }^{1.3 \% \%}$
${ }^{44.4 .4 \%}$	20，674	20，931	257	${ }^{1.2 \%}$
${ }^{45.7 \%}$	20，440	20，900	460	${ }_{21}^{2.3 \%}$
46．9\％	20，374	20，794	419	${ }_{2}^{2.1 \%}$
48．1\％ 4.4	20，260	20，765	505	2．5\％
年5．4．4\％	20，208	${ }^{20,650}$	442	${ }_{20 \%}^{2.2 \%}$
年50．9\％\％	${ }^{20,202}$	${ }^{20,611}$	409	
53．1\％	${ }^{20,126}$	20，501	375	
54．3\％	${ }_{2}^{20,075}$	${ }^{20,495}$	${ }_{343}^{420}$	${ }^{2.77 \%}$
55．6\％	19，998	20，280	283	
56．8\％	19，872	20，276	403	
58．0\％	19，721	20，248	527	
59．3\％	19，661	20，240	579	29\％
60．5\％	19，377	20，201	824	4．3\％
6．3．0\％	19,320 19,270	${ }^{20,124}$	${ }_{783} 8$	4．2\％
64．2\％	19,185	${ }_{19,826}^{20.025}$	642	
65．4\％	19，167	19，774	${ }_{607}^{642}$	3．2\％
66．7\％	18.869	19，688	819	4．3\％
67．9\％	18，868	19，503	634	3．4\％
69．1\％	18，750	${ }^{19,373}$	${ }^{624}$	3．3\％
70．4\％	${ }^{18,625}$	${ }^{19,363}$	${ }^{738}$	4．0\％
71．8\％	18．570	19，162	591	3．2\％
74．1\％	18,268 18.522	19,130 18.974	${ }_{452}^{604}$	俍
75．3\％	18．461	18.887	${ }_{3} 25$	2．3\％
76．5\％	${ }^{18,345}$	18,740	395	2．2\％
778．8\％	18，234	18．562	${ }^{328}$	1．8\％
79．0\％	${ }^{18.035}$	18，281	${ }^{246}$	1．4\％
－	${ }^{17,776}$	${ }^{18,017}{ }^{17,644}$	41 -90	－0．5\％
82．7\％	17，055	17.559	505	
84．0\％	16，661	17，347	685	4．1\％
85．2\％	16，484	17，197	713	
86．4\％	16，259	17，090	831	5．1\％
87．7\％	16，230	16，764	534	3．3\％
88．9\％	16，032	16，667	635	4．0\％
90．14\％	15，661	16，445	${ }_{783} 7$	5．0\％
${ }^{9} 9.4 .4 \%$		16,000 15.242	517	9．8\％
93．8\％	12，863	15，147	2，284	17．8\％
95．1\％	12，481	14，068	1，587	12．7\％
96．3\％	12，253	${ }^{13,549}$	1,296	10．6\％
97．5\％	11,454 10，301 12，	13,397 13,138 18	$\begin{array}{r}1,942 \\ \hline 283 \\ \hline\end{array}$	－ 17.0%
100．0\％	7，306	8.632	1.326	18．2\％

		February		
${ }_{\text {Execent }}^{\text {Exceedance }}$	WSIT ${ }^{2030}$ Prowithout	WSIP 2030 With Project		Relative
Probability	Of Mont A	End of Month Area	(iterence	Difference (\%)
(\%)	(ACRE)	(ACRE)		
0.0\%	27,790	27,790	0	0.0\%
1.2\%	27,726	27,726	0	
2.5\%	${ }^{27,653}$	${ }^{27,653}$	0	
3.7\%	${ }_{27,544}^{27}$	${ }^{27,554}$	0	
4.9\%	27,391	27,391	0	
${ }^{6.2 \%}$	27.315	${ }_{2}^{27,315}$	0	0.0\%
7.4\%	${ }^{27,288}$	${ }_{\text {27, }}^{2788}$	0	\%
8.6\%	27,262	27,262	0	
9.9\%\%	${ }^{26,979}$	27,253	274	1.0\%
19.1\%\%	${ }^{26,905}$	${ }^{26,979}$	14	
${ }^{12.36 \%}$	${ }^{26,880}$	${ }^{26,883}$	14	
14.8\%	${ }_{26,748}^{20,03}$	${ }_{26,748}^{2,063}$	0	0.0\%
16.0\%	26,725	${ }^{26,725}$	0	
17.3\%	26,675	26,675	0	0.0\%
18.5\%	26,527	26,588	61	
19.8\%	26,512	26,527	15	0.1\%
21.0\%	26,357	26,512	154	0.6\%
22.2\%	26,322	26,357	${ }^{36}$	0.1\%
23.5\%	26,298	26,298	0	0.0\%
24.7\%	26,252	26,252	0	0.0\%
25.9\%	26,197	26,197	0	0.0\%
27.2\%	26,195	${ }^{26,195}$	0	0.0\%
28.4\%	26,122	${ }^{26,122}$	0	0.0\%
29.6\%	${ }^{26,085}$	${ }^{26,085}$	${ }_{-85}$	${ }_{-0.0 \%}^{0.0 \%}$
30.9\%	${ }^{26,073}$	${ }^{25.989}$	-85	${ }^{-0.3 \%}$
32.1\%	${ }^{25.989}$	${ }^{25.811}$	-17	-0.7\%
33.3\%	${ }_{25,534}^{25.732}$	${ }^{25,732}$	0	0.0\%
34.6\%	${ }^{25.534}$	${ }^{25.534}$	${ }_{11}$	
	${ }^{25.520}$	${ }^{25.531}$	1	
38.3\%	${ }_{2}^{25.583}$	${ }^{255,620}$	${ }_{37}$	0.1\%
30.5\%	${ }_{25,497}^{25,48}$	${ }_{25,589}^{25,59}$	92	0.4\%
40.7\%	25,471	25,583	112	
42.0\%	25,470	${ }^{25,515}$	${ }^{44}$	
$4.4 .4 \%$	${ }_{\text {25,348 }}^{25.42}$	${ }^{25.475}$	${ }^{52}$	${ }^{0.2 \% \%}$
45.7\%	${ }_{\text {ene }}^{25,279}$	${ }^{25,422}$	144	
46.9\%	25,251	25,379	127	0.5\%
48.1\%	25,240	25,376	135	0.5\%
4.94\%	25,155	${ }^{25,348}$	192	0.8\%
50.6\%	25,059	${ }^{25,279}$	${ }^{220}$	0.9\%
51.9\%	${ }^{24,893}$	25,155	${ }^{262}$	1.1\%
53.1\%	24,851	${ }^{25,059}$	208	0.8\%\%
54.3\% 5 5 5	24,572	${ }^{24,893}$	${ }^{321}$	${ }^{1.3 \% \%}$
55.6\%	24,503	24,851	${ }^{348}$	${ }^{1.42 \%}$
年56.8\%\%	24,495	24,900	295	${ }^{1.2 \%}$
59.3\%	${ }_{\text {2, }}^{24,452}$	${ }^{24,763}$	${ }_{314}^{250}$	13\%
60.5\%	24,151	24,625	474	
61.7\%	24,130	24,551	${ }^{421}$.7\%
63.0\%	${ }^{24,095}$	24,343	${ }_{218}^{248}$	捡
${ }^{64.24 \%}$	${ }^{21,938}$	24,51	192	
${ }^{6564 \%}$	${ }_{23,937}^{2,937}$	${ }^{24,130}$	158	
6.7.9\%	${ }_{\text {23,937 }}$	${ }_{2}^{24,938}$	1	0.0\%
69.1\%	${ }^{23,937}$	23,937	0	0.0\%
70.4\%	${ }_{\text {2, }}^{23,815}$	${ }_{\text {23, }}^{2,337}$	${ }_{123}^{123}$	0.5\%
71.6\%	23,700	${ }_{\text {2, }}^{23,397}$	${ }_{237}^{237}$	${ }^{1.0 \%}$
72.8\%	23,690	${ }^{23,937}$	247	1.0\%
74.1% 753%	23,434	${ }^{23,849}$	${ }^{415}$	${ }^{1.8 \%}$
75.3\%	${ }^{23,378}$	${ }_{\text {23,677 }}^{23,37}$	299	1.3\%
76.5\%	23,149	${ }^{23,617}$	468	2.0\%
779.0\%	${ }^{23,077}$	${ }_{2}^{23,387}$	310	1.3\%
80.2\%	${ }_{22,2951}^{2,973}$	${ }_{\text {2, }}^{23,348}$	375	1.6\%
81.5\%	${ }^{22,898}$	${ }^{23,101}$	212	0.9\%
82,7\%	${ }^{22,818}$	${ }^{23,017}$	199	0.9\%
84.0\%	${ }^{22,788}$	${ }^{22,224}$	${ }^{136}$	0.6\%
- 85.26%	${ }_{\text {22, }}^{22,740}$	22,842 22755	101	\%
${ }^{80.47 \%}$	22,036		129	0.6\%
${ }_{88} 88.9 \%$	${ }_{\text {22, } 242}^{22,54}$	${ }_{\text {22,450 }}^{22,480}$	8	0.0\%
90.1\%	${ }_{21,563}$	${ }_{22,233}^{2,3}$	670	1\%
91.4\%	21,201	21,342	141	0.7\%
92.6\%	${ }^{20,985}$	${ }^{21,295}$	310	1.5\%
${ }_{95}^{93.8 \%}$	20,447	21,250	804	3.9\%\%
96.3\%	177,089	18,051	963	5.6\%
97.5\%	16,914	17,614	700	4.1\%
98.8\%	16,563	16,736	173	1.0\%
100.0\%	16,361	16,559	198	1.2\%

Table SW-09-b

$\begin{gathered} \text { Exerent } \\ \text { Exeedance } \\ \text { Probability } \end{gathered}$	June			
	Proiect	WSIP 2030 With Project	Absolute	Relative
	of Month	of Month A	(ACRE)	ference (\%)
0.0\%	${ }^{\text {(ACRE) }}$ 29,76	${ }^{\text {(ACRE }}$ 29,606	-171	-0.6\%
1.2\%	29,776	29,481	-295	-1.0\%
2.5\%	29,776	29,443	-334	-1.1\%
3.7\%	29,776	29,422	-354	-1.2\%
4.9\%	29,653	29,196	-457	-1.5\%
6.2\%	${ }^{29,023}$	${ }^{29,086}$	62	0.2\%
7.4\%	28,996	${ }^{28,868}$	-128	-0.4\%
8.9\%	${ }^{28,920}$	28,599	-61	-0.2\%
9.9\%	${ }^{28,806}$	28,680	-126	-0.4\%
11.19\%	${ }^{28,736}$	28,678 28, 839	-58	-0.2\%
- ${ }_{\text {12.3\% }}^{12.36}$	${ }_{28,532}^{28,624}$	28,639 28.618	15 86	0.1\%
-14.8\%	${ }_{\text {28,513 }}^{28,32}$	${ }_{228,612}^{28,18}$	${ }_{99}^{86}$	0.3\%
16.0\%	28,485	${ }^{28,548}$	63	
17.3\%	8,371	28,465	94	
18.5\%	28,284	28.447	162	
19.8\%	28,266	28,380	113	0.4\%
21.0\%	28,143	28,372	229	0.8\%
22.2\%	28,133	28,346	213	
23.5\%	28,079	28,293	214	0.8\%
24.7\%	${ }^{28,048}$	28,286	${ }^{238}$	0.8\%
25.9\%	${ }^{28,031}$	28,279	${ }^{248}$	0.9\%
27.2\%	${ }^{27,978}$	28,233	${ }^{255}$	0.9\%
28.4\%	${ }^{27,941}$	28,180	240	0.9\%
	${ }^{27,884}$	${ }^{28,142}$	${ }^{258}$	0.9\%
- 3 30.9\%	27,833 27633	年28,132	299	1.18\%
32.1\%	${ }^{27,763}$	${ }^{28,129}$	497	1.8\%
	${ }^{27,7388}$	27,975	436	1.6\%
34.6\%	${ }_{27}^{27,487}$	${ }^{27,969}$	482	${ }^{1.8 \%}$
	${ }_{\text {27 }}^{27} \mathbf{2 7 , 4 3 6}$	${ }^{27,903}$	456	
38.3\%	${ }_{2}^{27,2144}$	${ }_{2}^{27,7895}$	552	-
39.5\%	26,949	${ }_{27,516}^{27}$	${ }_{567}$	2.1\%
40.7\%	26,918	27,405	487	
42.0\%	26,915		355	
43.2\%	${ }^{26,804}$	27,260	456	1.7\%\%
${ }_{4}^{44.7 \%}$	${ }_{\text {cken }}^{26,636}$	27,240 27, 164	${ }_{6} 64$	2.3\%
46.9\%	${ }_{26,340}$	27,154	814	3.1\%
48.1\%	26,310	27.074	763	2.9\%
49.4\%	26,255	${ }^{27,021}$	${ }^{766}$	2.9\%
50.6\%	26,145	27.010	865	3.3\%
51.9\%	25,968	${ }^{26,948}$	980	${ }^{3.8 \%}$
年 53.1 \%	${ }^{25,941}$	${ }^{26,689}$	749	2.9\%
54.3\% 5 5 5	${ }^{25,887}$	${ }^{26,655}$	889	${ }^{3.2 \%}$
${ }_{\text {c }}^{55.6 \% \%}$	$\begin{array}{r}25.809 \\ \hline 25792\end{array}$	${ }^{26,523}$	714	${ }_{2}^{2.8 \%}$
58.0\%	${ }^{25,792}$		688	2.6\%
59.3\%	25,679	26,405	${ }^{726}$	2.8\%
60.5\%	${ }^{25,546}$	26,252	706	2.8\%
${ }^{61.7 \%}$	25,427	26,135		
63.0\%	${ }_{\text {2, }}^{25.394}$	${ }^{26.099}$	706	${ }^{2.8 \%}$
${ }^{64.24 \%}$	${ }^{25,54}$	${ }^{25.603}$	308	
${ }^{65.47 \%}$	${ }^{255085}$	${ }^{25,476}$	${ }_{318}$	${ }_{1}^{1.2 \%}$
67.9\%	25,087	${ }_{25,073}^{2,5}$	-14	0.1\%
69.1\%	24,850	25,065	215	0.9\%
70.4\%	24,733	2,4,844	141	0.6\%
71.6\%	${ }^{24,641}$	24,842	202	0.8\%
72.8\%	${ }^{23,962}$	${ }^{24,646}$	683	${ }_{\text {2 }}$ 2.9\%
74.1\%	${ }^{23,877}$	${ }^{24,196}$	320	${ }^{1.3 \%}$
-75.3\%	${ }_{2}^{23,813}$	24,087	${ }^{275}$	1.2\%
76.5\%	23,274	${ }^{23,905}$	631	2.7\%
77.8\%	${ }^{23,206}$	${ }^{23,804}$	598	${ }^{2.6 \%}$
89.0\%	23,133	${ }^{23,480}$	346	1.5\%\%
- ${ }_{\text {80.2\% }}$	${ }_{2}^{22,086}$	23,437 22756	1,350	6.1\%
- ${ }_{\text {822.7\% }}$	${ }^{21,913}$	${ }^{22,756}$	${ }_{867}$	${ }^{3.8 \%}$
824.7\%	${ }^{21,909}$	${ }_{222,434}^{22,56}$	${ }_{941}^{667}$	${ }^{3.4 \% \%}$
85.2\%	${ }_{21,459}$	${ }_{\text {22, } 214}^{22,44}$	755	3.5\%
86.4\%	21,195	21,576	381	18\%
877.7\%	${ }^{21,047}$	21,260	${ }^{213}$	1.0\%
88.9\%	20,961	${ }^{20,998}$	37	0.2\%
90.14\%	-	${ }_{20,952}^{20.943}$	321 1390 1	${ }_{\text {710\% }}^{1.6 \%}$
92.6\%	${ }^{19,451}$	${ }_{20,215}^{20,02}$	764	3.9\%
93.8\%	19,410	20.030	620	3.2\%
95.1\%	18,782	20,015	1,233	6\%
96.3\%	17,304	18,368	1.065	6.2\%
97.5\%	17,201	18.143	941	5.5\%
98.8\%	16,968	18.084 12123	1,116 2237	- $\begin{aligned} & 6.6 \% \\ & 22.6 \%\end{aligned}$
100.0\%	9.886	12,123	2,237	22.6\%

Figure SW-10-b
Sacramento River below Keswick Reservoir, Monthly Flow

Tabbl SW-10-b
beeow Keswick Resen

Table SW－10－b

		Febuary		
Percent Exceedance		WSIP 2030 With Project	Absolute	Relative
	Monthy flow（CFS）	Morthy Fow（CFS）	（cFs）	Difference（\％）
0．0\％	53,417	53，417	0	0．0\％
1．2\％	50，275	50，275	0	0．0\％
2．5\％	39，207	${ }^{39,773}$	${ }_{566}$	1．4\％
3．7\％	38，056	39，207	1，151	3．0\％
4．9\％	38，051	38，056	5	0．0\％
6．2\％	－ 36,392	－ 36,392	0	0．0\％
7．4\％	34,350 32084	34,350 3 3	0	${ }^{0.0 \% \%}$
8．6\％	32.084 30.245	（32，084	0	${ }^{0.0 \%}$
9．9\％\％	－ $\begin{aligned} & 30,245 \\ & \text { 20，46 }\end{aligned}$	30,245 30.113 30，	${ }_{6} 67$	
11．1\％${ }^{12.3 \%}$	29,446 27.865		${ }_{667}^{6681}$	2．3\％
13．6\％	26.990	${ }^{27,865}$	${ }_{875}$	${ }_{3}^{5.2 \%}$
14．8\％	26，644	26，990	346	1．3\％
16．0\％	26，311	26，311		
17．3\％	25，26	26，068	442	
18．5\％	24，390	24，390	0	
19．8\％	23，076	23，076	0	
210\％	${ }^{21,643}$	${ }^{211,643}$	0	0．0\％
${ }^{22.2 \%}$	${ }^{20,242}$	${ }^{20,242}$	0	
23．5\％	20，206	20，206	0	0.06
24．7\％	${ }^{19,346}$	${ }^{19,346}$	0	0．0\％
25．9\％	16，279	16，279	0	0．0\％
27．2\％	14，250	${ }^{14,250}$	0	0．0\％
28．4\％	＋12，789		151	${ }^{1.2 \%}$
29．6\％		12,583 12384 123	${ }^{1,494}$	13．5
30．9\％	8，650	12，384	3，734	43．2\％
32．1\％	${ }^{8,432}$	8，650	218	\％ 6
33．6\％	${ }_{7}^{7,909}$	${ }_{8}^{8,432}$	S54	${ }_{7}^{6.6 \%}$
35．8\％	${ }_{7}^{7,794}$	${ }_{7}^{8,271}$	554	${ }_{8.4 \%}^{7.2 \%}$
37．\％\％	7，118	7，117	－1	0．0\％
38．3\％	6，961	6，961	0	0．0\％
	6，435	6，435	0	0．0\％
${ }^{40.7 \%}$	${ }_{6}^{6,324}$	6，324	0	0．0\％
${ }^{42.2 \%}$		6，092	0	0．0\％
4．4．4\％	${ }_{5,527}$	${ }_{5,826}$	299	5．4\％
45．7\％	4，852	5,703	851	17．5\％
46．9\％	4，595	5，055	${ }^{460}$	10．0\％
48．1\％	4，500	4．772	272	6．0\％
49．4\％	4，500	4，714	214	4．8\％
50．6\％	4，500	4，625	125	2．8\％
51．9\％	4，500	4，500	0	0．0\％
53．1\％ 54.3%	4，500	4，500	0	0．0\％
54.3% 5.56%	4，500	4，500	0	0\％\％
年5．6．8\％	4，500	4，500		0\％
56．8\％ 580%	4，500	${ }_{4}^{4.500}$	0	0\％
59．3\％	${ }_{4,491}^{4.500}$	4.500	${ }_{9}$	0．2\％
60．5\％	4，451	4，500	49	11\％
${ }^{617.7 \%}$	4，207	4，491	285	
	4，107	4.451	344	8．4\％
65．4\％	${ }_{\substack{3.675}}^{3,675}$	${ }_{3,901}^{4,207}$	528 226	
66．7\％	3，560	3，875	315	8．9\％
67．9\％	3，488	${ }^{3.807}$	319	9．1\％
69．1\％	${ }^{3.414}$	3，679	265	
70．4\％	3，250	3，414	164	5．0\％
71．6\％	3，250	${ }^{3,413}$	163	5．0\％
72．8\％	3，250	3，313	63	1．9\％
74．1\％	3，250	3，306	${ }_{5} 5$	1．7\％
75．3\％	3，250	3，297	47	1．5\％
76．5\％	3，250	3，258	8	0．2\％
77．8．0\％	3，250	${ }^{3,250}$	0	0\％\％
－	3，250	3，250	0	0．0\％
${ }^{81.5 \%}$	－	－	0	0．0\％
82．7\％	3，250	3，250		0．0\％
84．0\％	3，250	3，250	0	0．0\％
${ }^{65.25 \%}$	（3，250	－		0．0\％
${ }^{807.7 \%}$	cose3,250 3,250	${ }_{\substack{\text { 3，250 } \\ 3.250}}^{\text {c，250 }}$	0	0\％
88．9\％	3，250	${ }_{3,250}$	0	0．0\％
90．1\％	3，250	3，250	0	0．0\％
91．4\％	3，250	3，250	0	0．0\％
92．6\％	3，250	3，250	0	0．0\％
93．8\％	3，250	3，250	0	0．0\％
95．1\％	3，250	3，250	0	0．0\％
${ }^{96.3 \%}$	3，250	3，250	0	0．0\％
－97．5\％	3，250	3，250	0	0．0\％
98．8\％ 100．	3,250 3,250	3,250 3,250	0	0．0\％

\square Aprll				
Percent Exceedanc	$\begin{aligned} & \text { WSIP } 2030 \text { W.trout } \\ & \text { Proiect } \end{aligned}$	WSIP 2330 With Project	Absolute Differenc	
$\xrightarrow{\text { Probability }}$	Montly Fow（CFFS）	Monthy Flow（CFS）	（CFS）	
0．0\％				0．0\％
2．5\％	${ }_{1}^{2, .657}$	${ }^{21,960}$		
3．7\％	10．026	10，626		
40\％	12204	12502	297	
6．2\％	11590	12024	614	
74\％	11360	11524	164	
8．6\％	10，336	10，822	486	4．7\％
9．9\％	10，045	10，336	291	2．9\％
11．1\％	9,548	9，840	291	${ }^{3.1}$
12．3\％	9，186	9，1865	0	0．0\％
13．6\％	${ }^{9,1157}$	${ }_{8}^{8,855}$	－259	－2．8\％
14．8\％	8.977	8，572	－406	
16．0\％	${ }_{8}^{8,782}$	${ }_{8,516}^{8,545}$	－266	
18．5\％	${ }_{8,672}^{8,675}$	${ }_{7}^{8,961}$	${ }_{-711}$	${ }_{-8.2 \%}$
19．8\％	7,961	7.871	－90	－1．1\％
22．0\％	7．872	7．861	－12	－0．1\％
${ }^{22.25 \%}$	7.8868	7，775	－136	
224．7\％	7，830	7，651	－179	－2．3\％
25．9\％	7，757	7，526	232	
27．2\％	${ }_{7}^{7,663}$	7，295	－368	
28．4\％	7，529	7，254	－275	
29．6\％	7，394	6，777	－617	－8．4
30．9\％	7，373	6，765	－608	－8．2\％
32．1\％	7，104	6，716	－389	
33．3\％	6.977	${ }^{6.671}$	－306	－4．4\％
34．6\％	6，774	6，608	－166	－2．5\％
${ }^{35.8 \%}$	6，765	6，595	－169	－2．5\％
37．0\％	6．670	6，538	－132	－2．0\％
	${ }_{6}^{6.558}$	6．5088	－51	－0．8\％
39．5\％	${ }_{6}^{6,552}$	6，483	－69	－1．1\％
${ }^{40.7 \%}$		6，448	－90	－1．4\％
42．0\％	${ }_{6}^{6,508}$	${ }_{6}^{6,426}$	－81	
44．4\％	${ }_{6,466}^{6,483}$	$\underset{6,336}{6,339}$	${ }_{-130}$	${ }_{-2.0 \%}^{-2.2 \%}$
45．7\％	6，426	6，268	－158	－2．5\％
46．9\％	6，404	5，972	432	－6．7\％
48．1\％	6，342	5，671	－671	－10．6\％
4．4\％			－706	
519\％	${ }_{6}^{6,278}$	${ }_{5}^{5.504}$	－724	11.16
53．1\％	6.078	5.500	－579	－9．5\％
54．3\％	5，957	5.477	480	－8．1\％
55．6\％	5，951	5，370	－581	－9．8\％
${ }^{56.8 \%}$	5．920	5，250	${ }^{-669}$	－11．3\％
	5.511 5477	5，155	${ }^{-356}$	－6．5\％
	5.477 5.433	5，053	－423	－7．7\％
${ }^{60.5 \%}$	5，433	5，017	416	－7．7\％
61．7\％	5，339	4，938	－402	－7．5\％
64．2\％	寺， 5.149	${ }_{4}^{4.867}$	${ }_{-235}^{282}$	－5．5\％
65．4\％	4，940	4，816	${ }_{-124}$	${ }_{-2.5 \%}$
66．7\％	4，925	4，792	－132	-2.7%
67．9\％	4，894	4，634	260	－5．3\％
69．1\％	${ }_{4}^{4,733}$	4,600 4.600	${ }_{-133}^{-201}$	边
71．6\％	4，585	4.600	15	0．3\％
72．8\％	4，564	4，600	${ }^{36}$	8\％
775．3\％	4，500	4．600	100	${ }_{22 \%}^{2.2 \%}$
76．5\％	4.500	4,600	100	${ }^{2.2 \%}$
77．8\％	4，500	4，500	0	0．0\％
79．0\％	4，500	4，500	0	0．0\％
80．2\％	4，500	4，500	0	．0\％
81．5\％	4，500	4，500	0	0．0\％
	4，500	4，500	0	0．0\％
88．0\％	4，500	4，500	0	0．0\％
85．2\％	4，500	4，500	0	0．0\％
877\％	4.500	${ }_{4}^{4.500}$	－	0．0\％
88．9\％	${ }_{3,990}$	4，500	510	12．8\％
90．1\％	3，910	4，500	590	15．1\％
91．4\％	3，700	4，500	800	21．6\％
99．6\％	－ 3,485	${ }_{4}^{4,430}$	945	${ }^{27.1 \%}$
95．1\％	${ }_{3,250}$	3，977	727	22．4\％
96．3\％	3，250	3，700	450	13．8\％
	3,250 3,250	3，3.469 3.258	8	．7\％
	${ }_{\substack{3,250 \\ 3,250}}^{\substack{\text { a }}}$	cose		0．3\％

Pereent msp 2 zowitut may				
Perent	WSIP 2030 Without	WSIP 2033 With Project	Absolute	Relative
Erobability	Monthly Fried（CFS）	Monthy Flow（CFS）	（cFs）	Difference（\％）
0．0\％	12，495	12，495	0	0．0\％
1．2\％	12，433	12，433	0	0．0\％
2．5\％	12，079	${ }^{12,376}$	298	2．5\％
3．7\％	${ }^{11,387}$	${ }^{11,742}$	355	3．1\％
4．9\％	10，920	${ }^{11,387}$	${ }^{467}$	4．3\％
7．4．4\％	10,768 10.577	10.920 10.671	152 95	－
8．6\％	10，007	10，577	570	5．7\％
9．9\％	9，998	9，572	${ }^{-326}$	－3．3\％
${ }^{12.15 \%}$	9，803	${ }_{9}^{9,452}$	－49	
${ }^{13.6 \%}$	${ }_{9,532}$	${ }_{9,079}$	${ }_{-45}$	4．7\％
14．8\％	9，309	8,981	${ }_{-329}$	－3．5\％
16．0\％	${ }^{9,285}$	${ }^{8.839}$	-446	－4．8\％
17．3\％	9，202	8.591	－611	－6．6\％
18．5\％	${ }_{9,162}$	8.560	－602	－6．6\％
19．8\％	9，061	8.515	－546	－6．0\％
21．0\％	8.894	${ }_{8,377}$	－517	－5．8\％
22．2\％	8.864	${ }_{8,367}$	－497	－5．6\％
23．5\％	${ }_{8}^{8,799}$	${ }_{8}^{8,295}$	－504	－5．7\％
24.79% 259%		8,204 8160	－509	－5．9\％
25．9\％		8，160	${ }_{-528}^{-547}$	－6．1\％
27.2% 28.4%	8,487 8,377	7,940 7788	－547	
29．9\％	8,197	${ }_{7}^{7,724}$	－973	－5．8\％
30．9\％	${ }^{8.0055}$	7，629	－376	－4．7\％
32．1\％	7，957	7.611	${ }^{-346}$	4．3\％
33．6\％	7.940	${ }_{7}^{7,545}$	－396	－5．0\％
35．8\％	7,914	7,398	－516	－6．5\％
37．0\％	7，906	7，243	－663	－8．4\％
38．3\％	${ }_{7}^{7,865}$	7，235	－630	
39．5\％	7，831	7，234	－597	－7．6\％
40．7\％	7，775	7，195	－580	－7．5\％
${ }^{42.0 \%}$	7，701	7，053	－648	－8．4\％
${ }^{43.2 \%}$	7，616	7，008	－608	－8．0\％
44．4\％	7，534	6，945	－588	－7．9\％
45．7\％	7，521	6．819	－702	－9．3\％
46．9\％	7,481	6，792	－689	－9．2\％
48．19\％		${ }_{6.682}^{6.765}$	－689	－9．4\％
50．6\％	7,294	${ }_{6,673}^{6.682}$	－621	－8．5\％
51．9\％	7，279	${ }^{6,637}$	－642	－8．8\％
53．19\％	7，235	6．636	－600	－8．3\％
55．6\％	7,151 7,134	${ }_{6,5610}^{6,567}$	－542	－7．9\％
56．8\％	7.118	6,524	－594	－8．3\％
58．0\％	7,105	6.519	－586	－8．2\％
59．3\％	7.043	${ }_{6.513}$	－530	．5\％
60．5\％	7.019	6，411	－608	－8．7\％
63．0\％	${ }_{6.975}^{7.912}$	c． 6.353	－655	－9．4\％
64．2\％	${ }_{6,888}$	${ }_{6,283}$	－576	－8．4\％
65．4\％	6.810	6，265	－545	－8．0\％
66．7\％	6，755	6，263	－492	－7．3\％
67．9\％	6，682	${ }_{6}^{6,118}$	－464	－6．9\％
69．19\％		${ }_{\text {6，158 }}^{6}$	－522	－7．7\％
71．6\％	${ }_{6,544}^{6.549}$	¢，${ }_{6,1120}^{6,12}$	${ }_{-444}$	－6．8\％
72．8\％	6.445	5.944	－500	－7．8\％
74．1\％	${ }_{6}^{6,413}$	5，934	－479	－7．5\％
75．3\％	6，289	5.918	－370	－5．9\％
76．5\％	（ $\begin{aligned} & 6,283 \\ & 6,273\end{aligned}$	（ 5.8886	－ 397	－6．3\％
79．0\％	${ }_{6,168}^{6.173}$	${ }_{5,755}^{5.821}$	${ }_{-411}$	${ }_{-}^{-7.7 \%}$
80．2\％	5.988	5.743	－245	－4．1\％
${ }^{81.5 \%}$	5，964	5，483	－481	－8．1\％
－	${ }_{5}^{5,756}$	${ }_{5,365}^{5,384}$	－387	－6．7\％
85．2\％	5.741	5，313	－428	－7．5\％
86．4\％	5，692	5.045	－648	－11．4\％
87.7% 88.9%	5.687 5.637	${ }_{4}^{5.042}$	－675	－11．9\％
${ }^{80.1 \%}$	${ }_{5,598}^{5,637}$	${ }_{4}^{4,929}$	－669	${ }^{-121.9 \%}$
91．4\％	5，465	4．851	－614	－11．2\％
92．6\％	5，450	4，830	－619	－11．4\％
93．\％	5，429	4，751	679	12．5\％
95．1\％	${ }_{5}^{5,395}$	4，455	－990	－17．4\％
－96．3\％${ }_{\text {97．5\％}}$	5,305 4,869	${ }_{4}^{4,223}$	－1，016	－19．2\％
98．8\％	4,329	4．219		
100．0\％	3，824	3，850	26	0．7\％

Tabbl SW－10－b
beeow Keswick Resen

June				
Percent Exceedance	WSIP 2030 Without Proiect	WSIP 2030 With Project	Absolute Difference	Relative
Probability	Monthly Fow（CFS）	Morthly Flow（CFSS）	（cFs）	
0．0\％	15，000	14，879	121	－0．8\％
1．2\％	15，000	14.426	－574	－3．8\％
2．5\％	14，650	14，010	－640	－4．4\％
3．7\％	${ }^{14.185}$	13.966	-219	－1．5\％
4．9\％	${ }^{14,103}$	13，909	－194	－1．4\％
${ }^{6.2 \%}$	14，101	${ }^{13,618}$	－882	－3．4\％
8．6\％			－990	
9．9\％	${ }^{13,5958}$	12，639	－959	－7．1\％
11．1\％	${ }^{13,577}$	12.617	－960	
12．3\％	13，520	12,517	1，004	
13．6\％	13，298	12，343	－955	
14．8\％	${ }^{13,125}$	12，242	－883	－6．7\％
16．0\％	13，113	12，020	1，094	－8．3\％
17．3\％	12，986	11,989	－996	－7．7\％
18．5\％	12，955	11,960	－995	－7．7\％
19．8\％	${ }^{12,883}$	${ }^{11,942}$	－861	－6．7\％
21．0\％	${ }^{12,746}$	${ }^{11,998}$	－827	－6．5\％
22．2\％	${ }^{12,622}$	${ }^{11,796}$	－826	－6．5\％
23．5\％	${ }_{1}^{12,547}$	${ }^{11,786}$	－762	－6．1\％
24．7\％	12，497	${ }^{11,662}$	－826	${ }^{-6.6 \%}$
25．9\％	${ }^{12,348}$	11，657	－690	
27．2\％	${ }^{12,315}$	${ }^{11,1143}$	${ }_{-7} 802$	崖\％
－ 28.46%	12,279 12279	${ }^{11,483}$	－789	－6．6\％
30．9\％	12，277	11，270	－1，007	－8．28
32．1\％	12，246	11，026	－1，220	
33．3\％	12，147	${ }^{11,022}$	－1，125	
34．6\％	196	11,019		－8．9\％
年35．8\％	${ }^{12.2075}$	${ }^{10,751}$	－1，323	－11．0\％
37．3\％	${ }_{\text {12，}}^{12,056}$	${ }^{10,708}$	－1，347	－11．2\％
39．5\％	12.019	10，677	${ }_{1}^{1,342}$	－11．2\％
40．7\％	${ }^{12,013}$	10，527	－1，486	－12．4\％
42．0\％	${ }^{11,924}$	${ }^{10,518}$	－1，407	－11．8\％
43．2\％	${ }^{11,639}$	10，512	${ }_{-1,127}$	－9．7\％
44．4\％	${ }^{11,369}$	10，500	－869	－7．7\％
45．7\％	${ }^{11,328}$	10，500	－828	－7．3\％
${ }^{46.9 \%}$	${ }^{11,296}$	10，500	－796	－7．0\％
49．4\％	${ }^{111,158}$	${ }^{10.5000}$	－658	－5．9\％
50．6\％	11，071	10，500	－571	－5．2\％
51．9\％	${ }^{11,036}$	10，500	－536	－4．9\％
543\％	${ }^{11,0,095}$	10，500	－－94	${ }_{-4.5 \%}$
55．6\％	10，923	10，500	－423	
			－420	－3．8\％
59．3\％	${ }_{10,837}^{10,89}$	${ }^{10.500}$	${ }_{-337}$	－3．1\％
60．5\％	10，801	10，500	－301	－2．8\％
61．7\％	10，702	10，500	－202	－1．9\％
63．0\％	${ }^{10.559}$	10，500	－89	－0．8\％
64．2\％	${ }^{10,553}$	10，500	－53	－0．5\％
65．4\％	10，532	10，500	－32	－0．3\％
${ }^{66.7 \%}$	10，408	10，500	92	0．9\％
－67．9\％	10,399 10.362	10，499	99	1．0\％
69．1\％	10，362	10，282	-80	－0．8\％
70．4\％	10,281 10.051	10，272	－988	－0．14\％
72．8\％	10，039	10，174	${ }^{135}$	1．3\％
74．1\％	9，965	10，139	174	1．7\％
75．3\％	9，898	${ }^{10,125}$	${ }_{2}^{227}$	${ }^{2.3 \%}$
76．7．8\％	${ }_{9,888}^{9.889}$	${ }^{10.062}$	${ }_{182}^{173}$	＋1．8\％
79．0\％	9.846	9，887	40	0．4\％
－	9，831	9，800		
${ }^{81.27 \%}$	${ }_{9.679}^{9.630}$	${ }_{9,650}^{9.665}$	－29	${ }^{-1.3 \%}$
84．0\％	${ }_{9,596}$	${ }_{9,627}$	31	0．3\％
${ }^{8.5} 8.2 \%$	9，559	9，588	29	0．3\％
${ }^{86.4 \%}$	${ }^{9,5508}$	9，396	－111	－1．2\％
877．7\％	${ }_{9}^{9,471}$	${ }^{9,375}$	－96	－1．0\％
${ }_{90.1 \%}^{88.9 \%}$	${ }_{9,255}^{9,305}$	${ }_{8}^{9.064}$	－${ }_{-631}$	－2．6\％
91．4\％	9,220	${ }_{8,418}$	${ }_{-81}$	－8．7\％
92．6\％	9，191	8，200	－991	－10．8\％
93．8\％	9，184	8，181	1，004	10.9
95．1\％	8，903	8，100	－803	－9．0\％
99．5\％	${ }_{8,392}^{8,728}$	7,989 7,983	－740	－8．8．9\％
98．\％	8，166	7，900	266	3．3\％
100．0\％	7，758	7.516	－242	－3．1\％

August				
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	WSIP 2 230 Proiect Without	WSIP 2030 With Project	Absolute Difference	Reative
Probability	Monthy Fow（CFS）	Monthy Fiow（CFFS）	（CFS）	
0．0\％	${ }^{13,327}$	13，115	${ }^{213}$	－1．6\％
1．2\％	${ }^{13,157}$	${ }^{13,106}$	－51	－0．4\％
2．5\％	${ }^{12,726}$	11，860	866	－6．8\％
4．9\％		${ }^{11,764}$	－974	－7．2\％
6．2\％	${ }^{12.4293}$	${ }^{11,1,610}$	－883	
7．4\％	12，223	111,419	－804	－6．6\％
8．6\％	12，095	11，368	－727	－6．0\％
9．9\％	11，959	11，141	－818	－6．8\％
11．1\％	11，900	11，138	－763	－6．4\％
12．3\％	11,839	11，064	－775	${ }^{-6.5}$
13．6\％	${ }^{11,833}$	${ }^{11,053}$	－780	－6．6\％
14．8\％	${ }^{11,823}$	10，859	－964	－8．2\％
16．0\％	11，466	10，737	－729	－6．4\％
17．3\％	${ }^{11,420}$	10，664	－756	－6．0\％
18．5\％	11,414	10，619	－794	． 0%
19．8\％	${ }^{11,375}$	10，618	－757	${ }^{-6.7 \%}$
21．0\％	${ }^{11,205}$	10．573	－632	－5．6\％
${ }^{22.22 \%}$	11，198	10，555	－642	－5．7\％
23．5\％	${ }^{11,094}$	10，541	－563	
25．9\％	11.062	${ }^{10.446}$	－615	－5．6\％
27．2\％	10，936	10，394	－542	－5．0\％
28．4\％	10，883	10，392	491	
29．6\％	10，825	10，337	－488	－4．5\％
30．9\％	10，820	10，335	－484	－4．5
32．1\％	10，819	10，289	－529	－4．9\％
33．3\％	10.781	10，272	－508	－4．7
34．6\％	${ }^{10,725}$	10，191	－534	－5．0\％
33．7\％	10，689	10，139	－550	－5．1\％
37．0\％	10，647	${ }^{10,088}$	－559	－5．3\％
38．3\％	10，480	10，022	458	－4．4\％
39．5\％	10.211	10，000	－211	－2．1\％
40．7\％	10，140	10，000	－140	－1．4\％
42．0\％	10，137	10，000	137	－1．4\％
43．2\％	9，949	10，000	51	5\％
${ }^{44.45 \%}$	9，945	10，000	${ }_{6}^{55}$	．6\％
45．7\％	9，938	10，000	${ }^{62}$	
46．9\％\％	9，993	10，000	87	0．9\％
$4.4 .4 \%$	${ }_{9} 8.864$	10，000	${ }_{136}^{113}$	1．1\％
50．6\％	9,850	10，000	150	5\％
51．9\％	9，841	10，000	159	
53．1\％	02	10，000	198	
54．3\％	9，802	10，000	198	2．0\％
55．\％	9，785	10，000	215	2\％
56．8\％	9，715	10，000	285	9\％
58．0\％	9，651	10，000	349	3．6\％
59．3\％	9，650	10，000	350	3．6\％
60．5\％	9，626	10，000	374	3．9\％
617．7\％	9，620	10，000	380	3．9\％
63．0\％	9，489	10，000	511	4\％
${ }^{64.2 \%}$	9,472	10，000	${ }^{528}$	6\％
－65．4\％	9，447	10，000	${ }_{5}^{553}$	9\％\％
66．7\％ 6790%	${ }_{9}^{9,427}$	10，000	${ }_{5}^{573}$	19\％
67．9\％	${ }_{9}^{9,305}$	10，000	${ }^{695}$	5\％
69．1\％	9，292	10，000	${ }^{708}$	源
70．4\％	${ }_{\text {g，}}^{9,134}$	10,000 10,000	880 886	8．9\％\％
72．8\％	9，120	9,955	${ }_{835}$	9．2\％
74．19\％	8.917	9，915		
705\％	0，085	9，904		
778\％	${ }_{8}^{8,885}$	${ }_{9} 823$	${ }_{966}$	
79．0\％	${ }_{8,845}^{8.066}$	${ }_{9.783}^{9.781}$	${ }_{938}$	10．6\％
80．2\％	8.831	9，750	${ }_{920}$	
81．5\％	8，799	9，722	${ }^{923}$	10．5\％
82．7\％	8，721	9，697	976	11．2\％
84．0\％	8.721	9，565	845	9．7\％
85．2\％	8，649	${ }^{9,564}$	916	10．6\％
${ }^{86.47 \%}$	${ }_{8}^{8,333}$	9，514	1，182	14．2\％
－ 8 877．9\％	${ }_{8}^{8.305}$	${ }_{9}^{9.504}$	1,199 1177 1	－ 14.4 \％
${ }^{\text {90．1\％}}$	¢，	${ }_{9,397}^{9,497}$	${ }_{1,176}^{1,176}$	14．3\％
91．4\％	8，178	9，368	1，190	14．6\％
92．6\％	8，109	${ }_{9}, 327$	1，218	15．0\％
93．8\％	${ }_{7}^{7,967}$	${ }^{9,164}$	${ }^{1,197}$	${ }^{15.5 \%}$
${ }_{9}^{95.3 \%}$	7，876	$\xrightarrow{9,075}$	1,202 1,199	${ }^{15.52 \%}$
．5\％	7，850	8，946		14．0\％
98．8\％ 100．0\％		8,942 8,909	2,438 2,636	37.5% 42.0%

Figure SW-11-b
Sacramento River at Bend Bridge, Monthly Flow

 $\begin{array}{ll}\text { 11.1\% } & \begin{array}{l}12,4636 \\ 12.3 \%\end{array} \\ 12,209\end{array}$ \qquad

17.3%	11,558	11,575	18	0.02%
18.5%	11,553	11,493	-61	-0.5%

 $\begin{array}{ll}22.2 \% & 11,039 \\ 23.5 \% & 10,848 \\ 247 \% & 10,\end{array}$

 \qquad $\begin{array}{lll}1,442 & 397 & 3.6 \% \\ 1,420 & 382 & 3.5 \% \\ 1,300 & 542 & 5.5 \% \\ 1,305 & 474 & 4.4 \% \\ 1,129 & 374 & 3.5 \% \\ & \end{array}$ | 24.9% | 10,75 |
| :--- | :--- |
| 25.9% | 10,7 |
| 27.2% | |
| 28.4% | 10,4 | \qquad $\begin{array}{lr}22.4 \% \% & 10,4048 \\ \text { 20.9\% } & 10.47 \\ 32.9 \% & 10.29 \\ 33.3 \% & 10,102 \\ 33.3 \% & \end{array}$

Percent Exceedance	$\xrightarrow{\text { WSIP } 2030 \text { Without }}$ Proiet	WSIP 2033 With Project	Absolute Differenc	Relative Difference
Probability	Monthly Fow (CFS)	Monthly Fow (CFS)	(CFF)	
	43,991			0.0\%
${ }^{1.25 \%}$	40,006	41,235	630	1.6\%
3.7\%	${ }_{40,330}$	${ }_{3}^{40,144}$	${ }_{2} 2186$	5.4\%
4.9\%	37,225	37,223	-2	0.0\%
6.2\%	31.401	31,910	508	1.6\%
7.4\%	31,278	31,280	2	
8.6\%	30,717	30,085	632	1\%
${ }^{\text {9.9\% }}$	${ }^{26,011}$	26,187	175	0.7\%
11.1\%	${ }^{25,033}$	25,034	2	0.0\%
${ }^{12.3 \%}$	${ }^{23,636}$	${ }^{23,640}$	5	0.0\%
13.6\%	${ }^{21,764}$	${ }^{22,798}$	${ }_{1}^{1,144}$	5.1\%
14.8\%	${ }^{117,849}$	18,643	794	${ }^{4.5 \%}$
16.0\%	${ }^{17,706}$	18,332	625	3.5\%
185\%	${ }_{1}^{17,337}$	${ }^{18,315}$	998	5.8\%
18.9\%	10,333	17,941	${ }_{\text {, }}^{1.060}$	
21.0\%	${ }^{16,288}$	${ }^{17,048}$	${ }_{288}$	4.8\%\%
22.2\%	15,634	15,636	2	
23.5\%	14,357	14,352	-5	
24.7\%	14,023	14,148	126	
25.9\%	13.451	${ }^{13,996}$	545	
27.2\%	12,911	12,906	-5	
28.4\%	${ }^{11,545}$	${ }^{11,665}$	119	1.0\%
29.6\%	11,239	11.550	311	2.8\%
30.9\%	11,161	11,237	76	0.7\%
32.1\%	10,671	11,218	547	5.1\%
33.3\%	10,245	10,662	417	4.1\%
34.6\%	10,061	10,628	567	5.6\%
35.8\%	9,715	10,460	745	7.7\%
37.0\%	9,6616	10,270	655	6.8\%
38.3\%	${ }^{9.5488}$	9.615	${ }_{6}^{66}$	7\%
39.5\%	9,527	9,549	${ }^{22}$	0.2\%
40.79\%	9,474	9,504	${ }^{30}$	
${ }^{42} \times 2.0$	${ }_{7}^{8.475}$	8,474	-1	
${ }_{4}^{43.4 \%}$	$\xrightarrow{7,885}$	${ }_{7}^{8,941}$	${ }_{96}$	2\%
45.7\%	7.810	7,881	71	9\%
46.9\%	${ }^{7,737}$	7,847	109	.4\%
$4.4 .4 \%$	${ }_{7}^{7,1725}$		84	
50.6\%	7,346	7,734	388	5.3\%
51.9\%	7,337	7,728	390	5.3\%
53.1\%	7,146	7,723	577	8.1\%
54.3\%	6,922	7,694	771	
55.6\%	${ }_{6}^{6,833}$	7.652	819	12.0\%
56.8\%	${ }^{6.831}$	7,347	517	7.6\%
58.0\%	6,657	7,342	685	10.3\%
59.3\%	6,461	7,297	${ }_{8}^{836}$	12.9\%
60.5\%	6,431	7,188	${ }_{7} 77$	11.8\%
61.7% 600%	6,429	7,147	718	11.29
-63.0\%	${ }_{6}^{6.393}$	7,043	651	10.2
㐌 64.2%	- $\begin{aligned} & 6,343 \\ & 6.153\end{aligned}$		600	${ }^{9.5 \%}$
${ }_{6}^{65.7 \%}$	c. ${ }_{6.005}^{6,153}$		709 810	5\%
-6.7.9\%	${ }_{\text {c }}^{6.9071}$		810 815	5\%
69.1\%	${ }_{5.863}^{50,}$	6,732	868	
70.4\%	5.862	6,495	633	
71.6\%	5,737	6,432	695	
- $72.8 .10 \%$	5.697 5.696	${ }_{6}^{6,346}$	649	11.4\%
75.3\%	${ }_{5,524}^{5096}$	${ }_{6,073}^{6,063}$	${ }_{549}$	${ }_{\text {¢ }}^{6.9 \%}$
76.5\%	5.510	6,001	492	9\%
77.8\%	5.507	5.986	480	7\%
79.0\%	5,500	5,748	249	5\%
80.2\%	5.473	5.663	189	5\%
81.5\%	5.428	5,573	145	7\%
82.7\%	${ }_{5}^{5.372}$	5,489	117	2\%
84.0\%	5,312	5,476	164	3.1\%
- ${ }_{\text {85.2\% }}$	¢, 5,296	5.433 5 5 5	${ }_{1}^{137}$	${ }_{\text {cke }}^{2.6 \%}$
87.7\%	5.241	5.315	75	1.4\%
88.9\%	5,228	5,295	67	
90.1\%	5.114	5,225	III	2.2\%
91.4.4\%	5,040 5.004	5,039 5.002	-1 -1	${ }^{0.0 \% \%}$
93.8\%	4,773	4,779	${ }_{6}$	0.1\%
95.1\%	4.725	4.775	50	1.1\%
-96.3\%	${ }_{4}^{4,746}$	4,740	${ }_{-189}^{25}$	0.5\%
98.8\%	4,274	4,215	-59	${ }_{\text {- }}^{4.4 \%}$

Table SW-11-b

${ }_{\text {Probabality }}^{0.00 \%}$	81396	${ }^{\text {P1/397 }}$		
1.2\%	78,412	78,418	6	0.0\%
2.5\%	56,138	56,139	1	0.0\%
3.7\%	49,042	49,044	2	\%
4.9\%	\%	38,824	-1,34	,
7.4\%	${ }_{34,503}$	${ }_{34,482}$	-21	-0.1\%
8.6\%	33,664	33,665	1	
9.9\%	31,145	31,150	5	\%
11.1\%	29,253	29,257	4	0.0\%
12.3\%	22,829	22,827	-2	0.0\%
13.6\%	22,596	21,877	719	\%
14.8\%	21,875	${ }_{21,525}$	-350	-1.6\%
16.0\%	${ }_{21,519}$	21,477	-42	\%
17.3\%	21,477	${ }^{20,878}$	599	-2.8\%
18.5\%	20,694	20,842	148	0.7\%
19.8\%	20,333	20,697	364	1.8\%
21.0\%	${ }^{20,126}$	20,469	${ }_{71} 34$	\%
${ }^{22.2 \%}$	19,363	19,434	71	0.4\%
23.5\%	19,075	19,079	410	
25.9\%	-1,6023	${ }_{17} 17603$	${ }_{1}^{1,340}$	82\%
27.2\%	15.608	16,789	1,181	7.6\%
28.4\%	397	15,612	215	4\%
29.6\%	${ }^{14,548}$	15,463	915	\%
30.9\%	14,326	14,976	649	5\%
32.1\%	14,284	14,965	681	4.8\%
33.3\%	14,025	14,547	522	3.7\%
34.6\%	${ }^{13,597}$	14,284	687	5.1\%
35.8\%	13,475	13,479	3	0.0\%
37.0\%	13,104	${ }^{13,108}$	5	0.0\%
383\%	13,091	12,895	-196	-1.5\%
39.5\%	12,198	12,194	-4	0.0\%
40.7\%	${ }^{111,897}$	${ }^{111,996}$	-1	0.0\%
42.0\%	10,686	10,688	2	0.0\%
43.2\%	10,501	10,503	2	0.0\%
${ }^{45.47 \%}$	${ }^{9,940}$	9,940	1	0.0\%\%
46.9\%	9,836	9,837	$\stackrel{-1}{1}$	0.0\%
48.1\%	${ }^{9.657}$	9,658	0	0.0\%
49.4\%	${ }^{9.401}{ }_{9} 978$	9,402 ${ }_{9}$	${ }_{7}$	\%\%
51.9\%	${ }^{9,040}$	9,042	2	0.0\%
53.1\%	${ }^{8.8866}$	8.884	-2	0\%
54.3\%	8,849	8.849	0	0.0\%
年5.5.6\%	${ }^{8,706}$	8,702	-5	-0.1\%
58.0\%	${ }_{8}^{8,682}$	${ }_{8}^{8,681}$	$\stackrel{-1}{4}$	${ }_{0}^{0.0 \%}$
59.3\%	8.042	8.042	0	0.0\%
${ }^{60.5 \%}$	8.029 7097	${ }_{8}^{8.030}$	1	0.0\%
61.7\%	7,997	7.917	0	0.0\%
${ }^{63.0 \%}$	7,905	7.906	1	0.0\%
${ }^{64.2 \%}$	${ }^{7} 7802$	7,7022	0	0.0\%
${ }^{6.6 .7 \%}$	7,7799	${ }_{7}^{7,770}$	1	0.0\%
67.9\%	7.725	7.729	5	0.1\%
69.1\%	7,663 7 7	${ }_{7}^{7,664}$	1	0.0\%
71.6\%	7,104	7,647 7.597	493	0.0\%\%
72.8\%	7,097	7,105	8	0.1\%
74.1\%	7.087	7.097	10	0.1\%
76.5\%	${ }_{6}{ }_{6}^{7.831}$	7.087	256	3.8\%
77.8\%	6,613	6.833	219	3.3\%
79.0\%	${ }^{6.508}$	6,614	107	1.6\%
80.2\%	${ }^{6,452}$	6,451	-1	0.0\%
- ${ }_{\text {82,7\% }} 8.5$		${ }_{\substack{6,258 \\ 6,268}}^{\text {6, }}$	${ }_{248}^{6}$	0.1\% ${ }_{\text {4.1\% }}$
84.0\%	5,960	5,955	-4	-0.1\%
85.2\%	${ }_{\substack{5.871 \\ 5833}}$	5.873	$\stackrel{1}{2}$	0.0\%
86.4\%	5.833	5.834	1	0.0\%
- 878.78	5,798 5 5.588	${ }_{5}^{5,799}$	${ }_{1}$	0.0\%
${ }^{\text {90.1\% }}$	${ }_{5,334}^{5,508}$	${ }_{5,355}^{5,559}$	2	0.0\%
91.4\%	5,209	5.244	35	0.7\%
${ }^{92.6 \%}$	5,112	${ }_{5}^{5,101}$	-11	-0.2\%
${ }^{93.8 \%}$	5.058	5,065	710	0.1\%
${ }_{96.3 \%}^{95.1 \%}$	4.9889	5,951	- 62	2.3\%
97.5\%	4,680	4,686	5	0.1\%
988\%\%	4,421	4.548	127	2.9\%

Table SW-11-b

1.2\%	15,933	18.740	2,808	17.6\%	1.2\%	${ }^{13,422}$	13,348	-94	-0.7\%
${ }_{3.7 \%}^{2.5 \%}$	${ }^{15,545}$	${ }^{15,5934}$	${ }^{146}$	0.0\%	${ }_{\text {l }}^{\text {2.7\% }}$	13,34 12,955 1	${ }_{\substack{12,179 \\ 12,131}}^{18,21}$	-1,135	-
4.9\%	15.480	15.528	48	0.3\%	4.9\%	12,836	12.008	-827	-6.4\%
6.2\%	15,459	15.481	22	0.1\%	6.2\%	12,773	${ }^{11,728}$	-1,045	${ }_{-8.2 \%}$
7.4\%	15,441	15,465	24	0.2\%	7.4\%	12,568	11,644	-925	-7.4\%
8.6\%	15.429	15,438	9	0.1\%	8.6\%	12,231	${ }^{11,383}$	-848	-6.9\%
9.9\%	15,405	15,434	28	0.2\%	9.9\%	12,192	11,217	-975	-8.0\%
11.1\%	15,379	15,380	1	0.0\%	11.1\%	12,109	11,212	-897	-7.4\%
12.3\%	15,363	15,378	15	0.1\%	12.3\%	11,833	11,188	-644	-5.4\%
13.6\%	15,341	15,363	22	0.1\%	13.6\%	11,780	11,172	-608	-5.2\%
14.8\%	15,338	15,339	1	0.0\%	14.8\%	11,607	11,165	-442	-3.8\%
16.0\%	${ }^{15,330}$	${ }^{15,338}$	8	0.1\%	16.0\%	11,584	11,132	-452	-3.9\%
17.3\%	${ }^{15,320}$	${ }^{15,332}$	11	0.1\%	17.3\%	11,555	11.079	-476	-4.1\%
18.5\%	115,297	${ }^{15,303}$	6	0.0\%	18.9\%	11,496	,978	518	-4.5
19.8\%	15,296	-15,296	-38	0.0\%	19.8\%	11,429	10,903	-526	-4.6\%
20.0\%	15,295	15,257	-81	-0.2\%	21.0\%	${ }_{111323}$	10.841	-470	-4.2\%
23.5\%	${ }^{15,236}$	${ }^{15,231}$	--5	0.0\%	22,5\%	${ }_{112,21}$	10,780	-451	-4.0\%
24.7\%	15,229	${ }_{15,220}$	-9	-0.1\%	24.7\%	11,201	10,742	-459	-4.1\%
25.9\%	15.218	15,213	-5	0.0\%	25.9\%	11,169	10,738	-431	9\%
27.2\%	15,209	15,111	98	-0.6\%	27.2\%	11,106	10,718	-389	-3.5\%
28.4\%	15,168	15,092	-76	-0.5\%	28.4\%	11,058	10,652	-406	-3.7\%
29.6\%	15,153	15,073	80	-0.5\%	29.6\%	11,030	10,608	421	-3.8\%
30.9\%	15,139	15,073	-66	-0.4\%	30.9\%	11,005	10,608	97	-3.6\%
32.1\%	15,109	15,066	43	-0.3\%	32.1\%	10,960	10,577	-383	-3.5\%
33.3\%	15,097	15,056	${ }^{40}$	-0.3\%	33.3\%	10,946	10,577	-369	-3.4\%
34.6\%	15,066	15,025	41	-0.3\%	34.6\%	10,844	10.561	-284	-2.6\%
35.8\%	15,058	15,002	-56	-0.4\%	35.8\%	10,790	10,511	-279	-2.6\%
37.0\%	15,045	14,997	-48	-0.3\%	37.0\%	10,729	10,470	-259	-2.4\%
38.3\%	15,018	14,996	-23	-0.2\%	38.3\%	10,674	${ }^{10,386}$	-288	-2.7\%
39.5\%	14,985	14,969	-17	-0.1\%	39.5\%	10.507	${ }^{10,3665}$	-140	-1.3\%
40.7\%	14,977	14,960	-17	-0.17\%	40.7\%	10,453	${ }^{10,345}$	109	-1.0\%
4.30\%	14,970	-14,858	-172	-0.79\%	${ }^{42.0 \%}$	(10,405	10,337	${ }^{-74}$	-0.8\%
44.20\%	-14,962	-14,832	-119	-0.8\%	4.3.2\%	10,405	10,316		-0.0\%
45.7\%	14,931	14,745	-186	-1.2\%	45.7\%	10,295	10,285	-11	-0.1\%
46.9\%	14,914	14,674	-239	-1.6\%	46.9\%	10,257	10,284	28	0.3\%
48.1\%	14,909	14,569	-340	-2.3\%	48.1\%	10,230	10,283	54	.5\%
49.4\%	14,889	14,486	-403	-2.7\%	49.4\%	10,211	10,263	52	0.5\%
50.6\%	14,861	14,459	401	-2.7\%	50.6\%	10,062	10,258	196	1.9\%
51.9\%	14,812	14,328	485	-3.3\%	51.9\%	10,057	10,257	200	2.0\%
53.1\%	14,809	14,104	-705	-4.8\%	53.1\%	10,034	10,254	220	2.2\%
54.3\%	14,804	13,976	828	-5.6\%	54.3\%	10,012	10,210	198	2.0\%
55.6\%	14,780	13,891	-889	-6.0\%	55.\% \%	9,945	10,204	260	2.6\%
56.8\%	14,765	${ }^{13,823}$	-942	-6.4\%	56.8\%	9,904	10,158	254	2.6\%
58.0\%	14,627	13,791	-836	-5.7\%	58.0\%	9,871	10,151	${ }^{281}$	2.8\%
59.3\%	14.620	${ }^{13,523}$	-1,097	-7.5\%	59.3\%	9,772	10,129	357	${ }^{3.7 \%}$
60.5\%	14,367	${ }^{13,502}$	-865	-6.0\%	60.5\%	9,755	10,127	372	3.8\%
61.7\%	14,260	13,482	-778	-5.5\%	61.7\%	9,725	10,116	391	${ }_{\text {4. }}$
64.0\%	- 14.202	-13.475	${ }_{-65}-727$	-5.1\%	-63.0\%	9,595	${ }^{10,107}$	512 525	5.3\%
6.5.4\%	14,080	-13,441	-654	-4.6\%	${ }^{645.4 \%}$	${ }_{9,565}$	10,101	536	5.6\%
66.7\%	14,052	21	631	-4.5\%	66.7\%	9,554	,068	514	5.4\%
67.9\%	14,031	13,413	-618	-4.4\%	67.9\%	9,491	041	550	5.8\%
69.1\%	13,980	13,402	-578	-4.1\%	69.1\%	9,466	10,022	556	5.9\%
70.4\%	${ }^{13,8880}$	${ }^{13,389}$	-439	-3.6\%	70.4\%	9,440	9,992	${ }_{5}^{553}$	5.9\%
72.8\%	13,61	${ }^{13,323}$	-388			9,400	9,967		
74.1\%	${ }^{13,427}$	-13,134	-293	- -2.2%	74.1\%	${ }_{9}^{9,301}$	${ }_{9}^{9,953}$	${ }_{652}$	7.0\%
75.3\%	13,375	12,983	-392	-2.9\%	75.3\%	9,212	9,923	711	7.7\%
76.5\%	13,256	12,969	288	-2.2\%	76.5\%	9,202	9,913	711	.7\%
77.8\%	13,175	12,963	-211	-1.6\%	77.8\%	9,041	9.899	858	9.5\%
79.0\%	13,102	12,898	203	-1.6\%	79.0\%	9,004	9,863	859	9.5\%
80.2\%	${ }^{12,972}$	12,817	-155	-1.2\%	80.2\%	8,994	9,860	865	9.6\%
81.5\%	12,909	12,769	140	-1.1\%	81.5\%	8.952	9,849	897	10.0\%
82.7\%	${ }^{12,884}$	${ }^{12,765}$	119	-0.9\%	82.7\%	8.912	9,817	905	10.2\%
84.0\%	${ }^{12,821}$	12,691	-131	-1.0\%	84.0\%	8.816	9,804	${ }_{988}$	${ }^{112.2 \%}$
85.2\%	$\begin{array}{r}12,802 \\ \\ \hline 12859\end{array}$	$\begin{array}{r}12,591 \\ \hline 12,597\end{array}$	-211	-1.6\%	85.2\%	${ }^{8.802}$	9,787	985	112.2\%
86.4\%	12,759	${ }^{12,553}$	-207	-1.6\%	${ }^{86.4 \%}$	8,705	9,7713	1,008	11.6\%
87.7\%	-	${ }^{12,477}$	-169	-1.3\%	- 87.7%	${ }_{8}^{8,628}$	9,671	${ }^{1,043}$	${ }^{12.12 \%}$
90.1\%	${ }_{1}^{12,378}$	${ }_{\text {12, }}^{12,488}$	${ }^{-68}$	0.0\%	${ }^{\text {90.1\% }}$	${ }_{8,415}$	${ }_{9,625}$	${ }_{1,210}$	+14.4\%
91.4\%	12,339	12,353	15	0.1\%	91.4\%	8,390	9,337	947	11.3\%
92.6\%	${ }^{12,138}$	$\begin{array}{r}12,259 \\ \hline 12,178\end{array}$	121	1.0\%	92.6\%	${ }_{8}^{8.300}$	9,282	982	11.8\%
9551\%	11,959		60	2.2\%		8.246	9,256	1009	12.2\%
95.3\%	${ }^{11,1,833}$	${ }^{11,1769}$	-64	-0.5\%	${ }_{9}^{95.3 \%}$	8,149 8.006	${ }_{9,124}^{9,240}$	1,091 1,118	13.4% 14.0%
97.5\%	11,093	11,528	435	3.9\%	5\%	7.859	9,116	57	16.0\%
98.8\%			754	7.0\%	98.8\%	6,898	9,115	2,217	32.1\%

Figure SW-12-b
Sacramento River below Red Bluff Diversion Dam, Monthly Flow

| | | |
| :---: | :---: | :---: | :---: |
| | | |

		July		－			August		
${ }_{\substack{\text { Percent } \\ \text { Exceedance }}}$	WSIP ${ }_{\text {Proso Wecthout }}^{\text {Proet }}$	WSII 2033 With Project	${ }_{\text {a }}^{\substack{\text { Absolute } \\ \text { Difference }}}$	Relative	${ }_{\text {Perent }}$	WSIP 2330 Without	WSIP 2030 With Project	${ }_{\substack{\text { absoute } \\ \text { Difference }}}$	Relative
Probability	Monthly Foiow（CFS）	Montly Flow（CFS）	（CFS）	Difference（\％）	Probability	Monthly Foiow（CFS）	Monthy Fow（CFS）	（cFs）	Difference（\％）
0．0\％	352	739	${ }^{3,387}$	22．1\％	0．0\％	13，107	13，055	－52	－0．4\％
1．2\％	15，162	18，271	3，110	20．5\％	1．2\％	12,739	12,7	36	－0．3\％
2．5\％	111			3．1\％		${ }^{12,457}$	1646	811	6．5\％
3．7\％	15，0	15，105	d	0．6\％		12，426	11，559		\％
4．9\％	14，953	5，137	184	1．2\％	4．9\％	12，288	11,349	析	
6．2\％	14.921	15，097	179	${ }^{1.2 \%}$	6．2\％	${ }_{112,209}$	11,206		
8．6\％	${ }^{14,815}$	${ }^{15.5004}$	188	1．3\％	8．6\％	${ }^{11,663}$	10，921	－743	－6．4\％
9．9\％	14,768	14.983	215	1．5\％	9．9\％	11，660	10.911	－748	－6．4\％
11．1\％	14，744	14，894	150	1．0\％	11．1\％	11，609	10，906	－704	－6．1\％
12．3\％	14，708	14，891	184	1．2\％	12．3\％	${ }^{11,328}$	${ }^{10,898}$	－430	
13．6\％	14，688	14，837	149	1．0\％	13．6\％	11，157	10，831	${ }^{-326}$	
14．8\％	14，667	14，827	160	1．1\％	14．8\％	11，150	10，604	547	\％
16．0\％	14，667	14，793	126	0．9\％	16．7\％	${ }^{11,063}$	10，485	－578	－5．2\％
${ }^{17.3 \%}$	${ }^{14,623}$	14，784	160	${ }^{1.10 \%}$	${ }^{17.3 \%}$	111.018	10，424	－594	－5．4\％
18．5\％	${ }^{14,6617}$	14，765	148	1．0\％	18．5\％	10，731	10，376	－355	
19．8\％	14，597	14，759	162	1．19\％	19．8\％	${ }^{10,626}$	10，375	－252	－2．4\％
21．0\％	14，596	${ }^{14,71717}$	121	0．8\％	21．0\％	10．623	10，321	－302	
${ }^{22.25 \%}$	14，578	14，776	${ }^{138}$	0．9\％	${ }^{22.2 \%}$	${ }^{10.520}$	10，282	${ }_{-238}^{-238}$	源
23．5\％	14，548	14，708	176	1．1\％	23．5\％	10，500	10，272		
24．7\％	14，520	${ }^{14.4 .696}$	176	1．2\％	24．7\％	10，451	10，292	－220	
27．2\％	14,4450 14.450	${ }^{14.613}$	173	1．2\％	27．2\％	10，372	${ }^{10,146}$	－226	${ }_{-2.2 \%}$
28．4\％	14，434	14，605	171	1．2\％	28．4\％	10，371	10，123	－248	
29．6\％	14，427	14.580	152	1．1\％	29．6\％	10，327	10，079	49	
30．9\％	14，426	14.576	150	1．0\％	30．9\％	10，313	10，069	243	
32．1\％	14，419	14，553	134	0．9\％	32．1\％	10，279	10，035	－244	－2．4\％
333\％	14，415	14.526	110	0．8\％	33．3\％	10，229	10，032	－197	
34．5\％	14，338	14，509	171	1．2\％	34．6\％	10，153	10，022	131	3\％
35．8\％	14，328	14，497	169	1．2\％	35．8\％	10，029	10，018	－12	－0．1\％
37．0\％	14，324	14，477	153	1．1\％	37．0\％	9，996	10，000	4	0．0\％
年38．3\％	14，316	14.462	146	1．0\％	38．3\％	9，983	9，997	14	0．1\％
39．5\％	14，314	14.447	${ }^{133}$	0．9\％	39．5\％	9，949	9，962	13	0．1\％
${ }^{40.70}$	14，305	14，398	${ }_{77}$	0．7\％	40．7\％	9，802	9，900	97	1．0\％
42．0\％	14，303	14，380	77	0．5\％	42．0\％	9，768	${ }^{9,8588}$	91	0．9\％
${ }^{43.2 \%}$	14，285	${ }^{14,343}$	${ }^{58}$	0．4\％	43．2\％	9，749	9，851	102	1．0\％
${ }^{45.47 \%}$	14，282	${ }^{14,3215}$	39	0．3\％	44．4．9	9，667	9，850	183	1．9\％
45．7\％	14，251	14，315	${ }^{65}$	0．5\％	45．7\％	9，654	9，843	189	2．0\％
${ }^{46.9 \%}$	${ }^{14,250}$	${ }^{14,062}$	－188	－1．3\％	46．9\％	9，579	9.801	${ }^{222}$	2．3\％
48．4\％	14.227 14181	${ }^{13,972}$	－254	－1．8\％	48．19\％	${ }_{9}^{9.510}$	${ }_{9}^{9.800}$	${ }_{2}^{290}$	
50．6\％	14，181	${ }^{13,823}$	－258	－25\％	50．6\％	${ }_{9,478}^{9.502}$	${ }_{9,787}^{9,787}$	${ }_{308}^{295}$	3．3\％
51．9\％	14，142	${ }_{\text {ckind }}^{13,752}$	－390	－2．8\％	51．9\％	9，461	9，759	298	3．1\％
	14，117	13，654	－463		53．1\％	9.422	\％3	311	
54．3\％	14，036	13，638	－397	－2．8\％	54．3\％	9，370	9，733	363	3．9\％
55．6\％	13，961	13，609	－352	－2．5\％	55．\％	9，364	9，730	366	
56．8\％	13，957	13，446	－511	－3．7\％	56．8\％	9，357	9，725	368	3．9\％
	${ }^{13,883}$	13，348	－535	－3．9\％	58．0\％	9，326	9，691	364	3．9\％
59．3\％	${ }^{13,849}$	13，164	685	－4．9\％	59．3\％	9，323	9，669	346	3．7\％
60．5\％	${ }^{13,793}$	13，144	－649	－4．7\％	60．5\％	9，296	9，668	372	4．0\％
61．7\％	${ }^{13,747}$	${ }^{13,078}$	－669	－4．9\％	61．7\％	9，260	9，665	404	4．4\％
－ $\begin{aligned} & \text { 63．0\％} \\ & 64.2 \%\end{aligned}$	${ }^{13,694}$	${ }^{13,043}$	－651	－4．8\％	63．0\％	9，242	${ }^{9.663}$	421	4．5\％
㐌6．2\％\％	${ }^{13,669}$	${ }^{13,037}$	－632	－4．6\％	64．2\％	9，204	9，663	459	5．0\％
${ }^{65.4 \%}$	${ }^{13,529}$	${ }^{12,889}$	－630	－4．7\％	65．4\％	9，140	9，655	515	5．6\％
年 66.79%	${ }^{13,341}$	${ }^{12,880}$	－461	－3．5\％	${ }^{66.79 \%}$	9，106	${ }^{9.635}$	559	${ }_{5}^{5.8 \%}$
679．\％	13,337 13,344	12,668 12.549	－669	－5．0\％	－67．9\％	${ }_{9}^{9,075}$	9，609	534	6．5\％
70．4\％		（12．540	－707	－5．3\％	70．4\％	${ }_{8,963}^{9,963}$	${ }_{9,583}^{9.008}$	${ }_{620}$	${ }_{6}^{6.9 \%}$
71．6\％	13，212	12，531	－681	－5．2\％	71．6\％	8，952	9.572	620	6．9\％
72．8\％	13,175 13,168	12,377 12305	－798	－6．1\％	72．8\％	8，951	${ }^{9.549}$	598	7\％\％
	13，168	${ }^{12,3205}$	－599	－6．4\％	${ }^{74.15 \%}$	${ }_{8}^{8,885}$	${ }_{\text {9，528 }}$	\％3	\％
	12，890	12，291	－599	－4．6\％	75．5．5\％	${ }_{8}^{0.036}$	9，509	673	\％
77．59\％	12，848	112，290	－568	－4．2\％		${ }^{8,7736}$	9，502	727	8\％
79．0\％	${ }_{\text {ckin }}^{12.802}$	${ }_{\text {l }}^{12,2285}$	－527	－4．1\％	79．0\％	${ }_{8.718}^{8.726}$	${ }_{9.450}^{9.453}$	${ }_{732}$	${ }_{8.4 \%}$
80．2\％	${ }^{12,681}$	12，259	－422	－3．3\％	80．2\％	8.674	9，440	766	
81．5\％	${ }^{12,627}$	12，249	－378	－3．0\％	81．5\％	${ }_{8,651}$	9，412	761	8．8\％
82．7\％	${ }^{12,346}$	12，233	－113	－0．9\％	82．7\％	${ }^{8.591}$	9，383	792	9．2\％
84．0\％	12，138	12，186	48	0．4\％	84．0\％	${ }^{8,421}$	9，376	955	11．3\％
85．2\％	11.949	12，105	${ }^{156}$	1．3\％	85．2\％	${ }_{8}^{8,366}$	9，368	1.012	12．1\％
86．4\％	${ }^{11,846}$	${ }^{12,038}$	192	1．6\％	86．4\％	${ }_{8}^{8,347}$	${ }_{9}^{9,337}$	990	11．9\％
	${ }^{111,705}$	${ }^{12,025}$	${ }^{320}$	2．7\％	87．7\％	8，236	9，252	${ }^{1,016}$	${ }^{12.3 \%}$
${ }^{88.9 \%}$	11，608	${ }^{11,972}$	${ }^{364}$	${ }^{3.15 \%}$	88．9\％	${ }^{8,186}$	${ }^{9,240}$	${ }^{1,053}$	12.9% 13.1%
	＋11，492	${ }^{11,18881}$	${ }_{369}$	${ }_{3.2 \%}^{2.5 \%}$	91．4\％	8.1689 8.149	${ }^{9,239}$	1，071	${ }_{\text {l }}$
92．6\％	${ }^{11,397}$	11，743	347	3．0\％	92．6\％	8.146	9，152	1，006	12．3\％
93．8\％	${ }^{11,066}$	11，670	604	5．5\％	93．8\％	${ }^{8,006}$	9，116	1，111	13．9\％
${ }^{95.3 \%}$	${ }^{10,996}$	${ }^{11,5968}$	${ }_{808}^{601}$	${ }^{\text {7．5．5\％}}$	${ }^{965.3 \%}$	7，904	${ }_{8,885}^{9.026}$	$\underset{981}{1.043}$	－13．4\％
975．5\％	10，615	11，169	554	5．2\％	97．5\％	7．859	${ }^{8,736}$	877	11．2\％
988\％	10，498	11，119	${ }^{621}$	5．9\％	98．8\％	6，769	8.679	1，910	28．2\％

Figure SW-13-b
Sacramento River below Hamilton City, Monthly Flow

\begin{tabular}{|c|c|c|c|c|}
\hline \& \multicolumn{2}{|r|}{Jecember} \& \multirow[b]{3}{*}{} \& \multirow[b]{3}{*}{$$
\begin{gathered}
\text { Relative } \\
\text { Difference } \% \%
\end{gathered}
$$}

\hline $$
\begin{aligned}
& \text { Percent } \\
& \text { Exceedance }
\end{aligned}
$$ \& $\xrightarrow{\text { WSIP } 2030 \text { Without }}$ Proiet \& WSIP 2030 With Project \& \&

\hline Probabailiy \& Monthy fow（CFS） \& Moontly Fow（CFS） \& \&

\hline 0．0\％ \& 51,598 \& 51,597 \& \& 0．0\％

\hline 1．2\％ \& 48，170 \& 46.681 \& －1，489 \& 3．1\％

\hline 2．5\％ \& 45，939 \& 45.984 \& 44 \& 0．1\％

\hline 3．7\％ \& 45，087 \& ${ }^{41,543}$ \& -3.544 \& －7．9\％

\hline 4．9\％ \& ${ }^{41,585}$ \& ${ }^{39,982}$ \& －1，603 \& －3．9\％

\hline －6．2\％ \& 38，789 \& ${ }^{38,022}$ \& －766 \& －2．0\％

\hline 8．6\％ \& ${ }_{35,905}$ \& ${ }^{32,468}$ \& －3，437 \& －9．6\％

\hline 9．9\％ \& 31，089 \& 31，273 \& 184 \&

\hline 11．1\％ \& 28，479 \& 28，481 \& 2 \&

\hline 12．3\％ \& 26，495 \& 22，983 \& ${ }^{3}, 512$ \&

\hline 13．6\％ \& 25，429 \& 22，939 \& 2，491 \&

\hline 14．8\％ \& ${ }^{21,826}$ \& 19，679 \& －2，147 \&

\hline 16．0\％ \& ${ }^{21,513}$ \& ${ }^{18,633}$ \& ${ }^{2}, 880$ \&

\hline 17．3\％ \& 21，179 \& 18.561 \& 2，617 \& －12．4\％

\hline 18．5\％ \& 19，680 \& 18，358 \& －1，322 \& －6．7\％

\hline 19．8\％ \& 18，827 \& 16，635 \& －2，192 \& －11．6\％

\hline 21．0\％ \& ${ }^{18,723}$ \& 16，195 \& －2，528 \& －13．5\％

\hline ${ }^{22.2 \%}$ \& 117840 \& 16，063 \& －1，776 \&

\hline 23．5\％ \& ${ }^{17,801}$ \& 15.593

1559 \& －1，807 \& －10，

\hline 24．7\％ \& 15.554
15，457 \& 15.549
1524， \& ${ }^{-5}$ \&

\hline 25．9\％ \& 15，457 \& 15.245
13，
134 \& －212 \&

\hline 27．2\％ \& 15，296 \& －13，634 \& －1，662 \&

\hline － 20.48% \& | 13,642 |
| :--- |
| 13.604 | \& ${ }_{\substack{13,392 \\ 13,324}}$ \& －－580 \& ${ }_{-21 \%}^{-0.4 \%}$

\hline 30．9\％ \& 13，427 \& 12，473 \& －954 \&

\hline 32．1\％ \& 13，090 \& 12，125 \& ．965 \& －7．4\％

\hline 33．3\％ \& ${ }^{13.015}$ \& ${ }^{111,787}$ \& －1，229 \& －9．4\％

\hline 54．6\％ \& \& 11.032 \& －195 \&

\hline 3570\％ \& 11789 \& ${ }^{10,048}$ \& ， \&

\hline 38．3\％ \& ${ }^{11,619}$ \& ${ }_{9}^{9,700}$ \& ${ }_{-1,919}$ \& －16．5\％

\hline 39．5\％ \& 11，014 \& 9，013 \& －2，001 \& －18．2\％

\hline 40．7\％ \& 10，948 \& 8，556 \& －2，391 \& －21．8\％

\hline 42．0\％ \& 10，742 \& 8，462 \& －2，280 \& 21．2\％

\hline 43．2\％ \& 9，768 \& ${ }_{8,373}$ \& ${ }^{-1,394}$ \& －14．3\％

\hline 44．4．\％ \& 9，701 \& ${ }_{8}^{8,132}$ \& －1，569 \& －16．2\％

\hline 45．7\％ \& 9.011 \& 8，057 \& －954 \& －10．6\％

\hline 46．9\％ \& ${ }^{8.891}$ \& ${ }_{7}^{7,615}$ \& －1，276 \& －14．4\％

\hline 48．19\％ \& ${ }^{8.831}$ \& 7，552 \& －1．279 \& －14．5\％

\hline 49．4\％ \& ${ }_{8}^{8.687}$ \& 7，545 \& ${ }^{-1,143}$ \& －13．2\％

\hline 50．6\％ \& ${ }_{8}^{8,465}$ \& 7，397 \& －1，068 \&

\hline 51．9\％ \& ${ }^{8,423}$ \& 7，343 \& －1，720 \&

\hline 543\％ \& ${ }_{\text {c }}$ \& 7,338
7317 \& ${ }_{-4}$ \& －5．6\％

\hline 55．6\％ \& 7,751 \& 7,158 \& －593 \& －7．6\％

\hline 56．8\％ \& \& \& －441 \&

\hline 593\％ \& 7，527 \& ${ }_{7} \mathbf{7} 1216$ \& －210 \&

\hline 60．5\％ \& 7，164 \& 6，904 \& －259 \& －3．6\％

\hline 61．7\％ \& 6．995 \& 6．832 \& －163 \& －2．3\％

\hline 63．0\％ \& 6，977 \& 6，547 \& －431 \& －6．2\％

\hline 64．2\％ \& 6．852 \& 6，514 \& －338 \& \％

\hline 65．4\％ \& 6．687 \& 6，501 \& －186 \& －2．8\％

\hline 66．7\％ \& 6，662 \& 6，447 \& －215 \& －3．2\％

\hline 67．9\％ \& 6，633 \& ${ }^{6,445}$ \& －188 \& －2．8\％

\hline 69．1\％ \& 6，498 \& 6，340 \& －158 \& 2．4\％

\hline 70．4\％ \& 6，092 \& 6，155 \& ${ }^{63}$ \& 1．0\％

\hline 71．6\％ \& ¢，092 \& ${ }^{6,108}$ \& 16 \& ${ }^{\text {0．3\％}}$

\hline 72．8\％ \& cis． \& \& 70 \& 1．2\％

\hline 75．3\％ \& ${ }_{5,901}^{5.934}$ \& ${ }_{5,904}^{5,912}$ \& －22 \& ${ }^{-0.1 \%}$

\hline 76．5\％ \& 5．829 \& 5.828 \& －1 \& 0．0\％

\hline 77．8\％ \& ¢ \& ¢，5．807 \& | 59 |
| :--- |
| 5 | \& ${ }^{1.0 \%}$

\hline 79．0\％ \& 5．667 \& 5，726 \& ${ }_{5}^{58}$ \& 10\％

\hline ${ }^{80.215 \%}$ \& ${ }_{5}^{5} 5.64{ }^{\text {5，}}$ \& ${ }_{5}^{5,761}$ \& ${ }_{64}$ \& ，

\hline ${ }_{8}^{82.7 \%}$ \& ${ }_{5.564}^{5.027}$ \& ${ }_{5.670}^{5.691}$ \& ${ }_{106}^{64}$ \& 1．9\％

\hline 84．0\％ \& ${ }_{5,560}^{50.50}$ \& ${ }_{5,643}^{5,015}$ \& 83 \& 1．5\％

\hline 85．2\％ \& 5，546 \& 5，631 \& 85 \& 1．5\％

\hline 86．4\％ \& 5．544 \& 5，608 \& 63 \& 1．1\％

\hline 877\％ \& 5，386 \& 5．529 \& ${ }^{143}$ \& 2．7\％

\hline 88．9\％ \& 5．280 \& ${ }_{5}^{5.523}$ \& ${ }^{243}$ \& 4．6\％

\hline 90．1\％ \& 5，148 \& 5．383 \& 234 \& 4．6\％

\hline 914\％ \& 5．070 \& 5，088 \& 18 \& 0．4\％

\hline 92．6\％ \& 5．044 \& ${ }_{5}^{5.078}$ \& ${ }^{34}$ \& 0．7\％

\hline 93．8\％ \& 5.027 \& 5.030 \& 2 \& 0．0\％

\hline 95．1\％ \& 4．862 \& ${ }_{4}^{4,877}$ \& ${ }^{16}$ \& 0．3\％

\hline ${ }^{96.3 \%}$ \& 4,551
4.529 \& ${ }_{4}^{4,848}$ \& $\stackrel{97}{93}$ \& ${ }_{5}^{2.0 \%}$

\hline 97．5\％ \& ＋4．529 \& 4,289
4218 \& ${ }_{-68}{ }^{239}$ \& －${ }_{\text {che }}^{5.3 \%}$

\hline 98．8\％
100．0 \& $\underset{\substack{4,286 \\ 4.077}}{ }$ \& ${ }_{4.111}^{4.218}$ \& ${ }_{34}{ }^{68}$ \& －1．8\％\％

\hline
\end{tabular}

Perent WSTP 233 Without January Absote				
${ }_{\text {Percent }}^{\text {Exceedance }}$	WSIP P030 Without	WSIP 2030 With Project	${ }_{\text {a }}^{\substack{\text { Absolute } \\ \text { Difference }}}$	Reataive
Probability	Monthly Fow（CFS）	Montly Flow（CFS）	（CF5）	Difference（\％）
0．0\％	90，217	90，213	－5	0．0\％
1．2\％	64，369	64,385	16	0．0\％
2．5\％	${ }^{63,995}$	64，202	507	0．8\％
3．7\％	62，353	59，935	$-2,418$	－3．9\％
4．9\％	${ }^{61,585}$	59,728	${ }_{-1,857}$	－3．0\％
6．2\％	51.634	50，498	${ }_{-1,136}$	－2．2\％
7．4\％	50，230	50，097	－134	－0．3\％
8．9\％	48，585	46，152	－2，433	－5．0\％
${ }^{\text {911．9\％}}$		38，745	－1，879	－4．6\％
11．19\％	38，744	38,188 3，876	－556	－1．4\％
（12．3\％		35,876 3，605	${ }_{221}^{271}$	0．8\％
＋13．6\％	35,384 35,173	（35．605	${ }_{-1.388}^{221}$	0．6\％
16．0\％	${ }_{33,682}$	${ }_{28,365}$	－5，317	－15．8\％
17．3\％	29，945	${ }^{27,525}$	－2，421	－8．1\％
1．85\％	29，839	27，406	$-2,433$	－8．2\％
19．8\％	${ }^{27,547}$	${ }^{26,028}$	－1，520	－5．5\％
${ }^{21.0 \%}$	25.594 25.564	24，003	$-1,191$ -2300	－4．7\％
${ }_{2}^{22.5 \%}$	${ }_{24,181}^{25,54}$	${ }_{2}^{23,294}$	－1，886	${ }_{-7.8 \%}$
24．7\％	24，158	21，932	${ }_{-2,226}$	－9．2\％
25．9\％	24，018	21,719	－2，299	－9．6\％
27．2\％	23，480	${ }_{21,195}$	${ }_{-2,285}$	－9．7\％
28．4\％	23，449	21，122	－2，326	－9．9\％
29．9\％	22，220	${ }^{20,638}$	－1，582	－7．1\％
30．9\％	${ }^{21,195}$	19,889 10788	－1，305	－6．2\％
32．1\％	${ }^{20,601}$	197788	－813	－3．9\％
33.3% 34.6%		${ }^{17.469}$	－2．440	－12．3\％
34.6% 35.8%	${ }^{19,005}$	${ }^{16,8818}$	－2，187	－11．5\％
35．8\％	${ }^{17,006}$	16,433 14750	－573	－-1.4%
37.0% 38.3%	16,824 15.879	14,750 14.567	－2，074 -1312	－12．3\％
38．3\％	15.879 15,398	${ }_{1}^{14,567} 1$	－1，312	－-7.3%
40．7\％	14，997	13，019	－1，978	－13．2\％
42．0\％	14，752	12.564	－2，188	－14．8\％
43．2\％	14，287	11，777	-2.510	－17．6\％
${ }^{44.4 \%}$	13，891	11，462	－2，429	－17．5\％
45．7\％ 4.9	13,461 12.794 1	11,029 10.607	$-2,432$ -2186	－18．1\％
48．1\％	${ }^{11,388}$	9，369	${ }_{-2,1018}$	－17．7\％
49．4\％	11，244	9，349	${ }_{-1,895}$	－16．9\％
年50．6\％	10，913	9.009	－1，904	－17．4\％
51．9\％	10，803	8.484	－2，319	－21．5\％
53．19\％	${ }^{10,529}$	8，464	－2，065	－19．6\％
54.3% 55.6%	10,433 10,355 103	8,239 8155	－2，195	－21．0\％
年5．5\％	10,355 10,320	8,1155 8,139	$-2,200$ $-2,181$	${ }_{-21.12 \%}^{-21.2 \%}$
56．0\％	10,336 10,036	${ }_{8,104}^{8,139}$	－${ }_{-1,932}$	${ }_{-19}-21.3 \%$
59．3\％	9，789	7，974	－1，815	－18．5\％
60．5\％	9，501	7，943	－1，558	－16．4\％
61.7% 630%	${ }_{9}^{9,410}$	7，653	－1．757	－187\％
64．2\％	9，104	${ }_{7}^{7,241}$	－1，663	－-27.8%
${ }^{65.4 \%}$	${ }^{8.906}$	7.142	－1，764	－19．8\％
66．7\％ 6790%	8.719	7，128	－1，591	－18．2\％
67．9\％	${ }_{8}^{8,284}$	7,122 7,032	－1，238	－15．1\％
70．4\％	8,224	7,020	－1，203	－14．6\％
71．6\％	7，760	7，004	－756	－9．7\％
72．8\％	7，650	${ }_{6}^{6,958}$	－692	－9．0\％
74．1\％ 7.35%	7,605 $7,3,36$	${ }_{6,9,908}^{6,97}$	－-889	－9．6\％
76．5\％	$\xrightarrow{7,127}$		－253	－3．6\％
778．8\％	7，023	㐌， 6.852	－171	－2．4\％
79．0\％	7，007	${ }_{6}^{6.848}$	－159	－2．3\％
－${ }_{\text {80，2\％}}$	$\underset{\substack{6.879 \\ 6,867}}{6,763}$		－97	－1．4\％
${ }^{82.7 \%}$	6.776	${ }_{6,678}^{6,678}$	－98	－1．4\％
84．0\％	${ }^{6,746}$	6，468	－278	4．1\％
－	¢，461 6.424	㐌， 6.446	-45 -81	－0．7\％\％
87．7\％	5，942	6,085	143	2．4\％
88．9\％	5，914	6，030	117	2．0\％
90．19\％	5，854	${ }_{6}^{6.012}$	159	${ }^{2.7 \%}$
${ }_{\text {92．6\％}}$	${ }_{5}^{5.684}$	${ }_{5.741}^{5.918}$	81 138 138	年．4\％\％
93．8\％	5.551	5．602	51	0．9\％
${ }_{9}^{95.3 \%}$	5.539 5.126	5.520 5.303	－19	${ }_{3.5 \%}^{-0.3 \%}$
97．5\％	5.038	5.040	3	0．1\％
98．8\％	4.418	4，867	449	10．2\％
100．0\％	4，311	4，173	－138	－3．2\％

| |
| :--- | :--- | :--- | :--- |

 | 1.2% |
| :---: | :---: |
| 2.5% |
| 3.5% |

August				
Percent	WSIP 2030 Without	WSIP 2030 With Project	${ }_{\text {dita }}^{\substack{\text { Absoute } \\ \text { Diference }}}$	Relative
Probability	Monthly Foiow（CFS）	Montly Flow（CFSS）	（CFFs）	
	11.044			－0．5\％
1．2\％	10，667	10.176	491	
2．5\％	10，390	10，117	－274	
3．7\％	10，239	9，806	433	
4．9\％	10，221	9，750	471	
6．2\％	10，191	9，552	640	
7．4\％	9，998	9，461	－537	
8．6\％	9，811	9，361	－451	\％
9．9\％	9，484	9，010	474	\％
11．1\％	9，461	8.900	－561	－5．9\％
${ }^{12.3 \%}$	${ }^{9,414}$	${ }^{8.845}$	570	
13．6\％	${ }^{9,124}$	8，760	－365	
14．8\％	${ }^{8,966}$	${ }^{8,746}$	220	
16．0\％	${ }^{8,866}$	${ }^{8.693}$	－174	
17．3\％	${ }_{\text {8，847 }}^{8,87}$	8，689	St	
19．8\％	${ }_{8,637}^{88,67}$	${ }_{8.460}$	－177	－2．0\％
21．0\％	8.471	8.405	－66	－0．8\％
22．2\％	${ }_{8,462}$	8,392	－70	
－23．5\％	8，439	8，389	－50	
24．7\％	8.411	8，282	129	
25．9\％	${ }_{8,365}$	${ }_{8,244}$	120	4\％
27．2\％	${ }^{8,361}$	8，180	182	
28．4\％	${ }_{8,327}$	${ }^{8,163}$	－164	2．0\％
29．6\％	8，278	8，139	139	寿\％
30．9\％	8，267	${ }^{8,123}$	144	－1．7\％
32．1\％	8，217	8.080	137	1．7\％
33．3\％	8.174	${ }_{8} 8066$	－108	－1．3\％
34．6\％	8.141	${ }^{8,009}$	－132	－1．6\％
35．8\％	8，140	7.982	－158	－1．9\％
37．0\％	7，990	7，982	${ }^{-8}$	－0．1\％
38．3\％	7.984	7，971	－13	
39．5\％	${ }_{7}^{7,973}$	7.965	${ }^{-8}$	
${ }^{40.7 \%}$	¢7,790 7778	$\begin{array}{r}7,948 \\ 7.941 \\ \hline\end{array}$	${ }^{58}$	
43．2\％	7，687	7，917	${ }_{231}^{164}$	3．0\％
44．4\％	7，569	7，877	308	4．1\％
45．7\％	7，565	7，854	289	
46．9\％	7，557	7，812	254	
48．1\％	7，480	7，784	304	\％
4．4．4\％	7，463	7，769	306	4．1\％
50．6\％	7，408	7，730	322	4．3\％
51．9\％	${ }_{7}^{7,375}$	7，667	292	4．0\％
53．19\％	7，328	7，659	331	4．5\％
54．3\％	7，297	${ }^{7,648}$	351	4．8\％
年5．6\％	7，279	7，637	358	4．9\％
56．8\％	7，270	7，601	${ }^{331}$	4．5\％
－ 5 58．0\％	7，263	7，593	330	4．5\％
－${ }^{59.3 \%}$ 6．5\％	7，242	7．591	349	4．8\％\％
－60．5\％	7，235	7，587	352	\％
63．0\％	${ }_{7,170}^{7,170}$	（7，581	${ }_{411}^{42}$	${ }^{5.7 \%}$
64．2\％	7，107	7.558	451	6．3\％
${ }^{65.4 \%}$	7．069	7,553 7,515	485	6．9\％
${ }^{66.79 \%}$	7，065	7．515	450	
67．9\％	7，056	7．500	$\stackrel{444}{591}$	\％
69．17\％	${ }^{6,928}$	7，4965	564	
70．4\％	6，881	7，465		
72．8\％	6，803	7，458	655	9．6\％
74．1\％	6，788	7，454	665	9．8\％
75．3\％	6，759	7，440	681	10．1\％
76．5\％	6，747	7，411	664	\％
77．8\％	6，747	7.395	649	5\％
79．0\％	${ }^{6.626}$	7，331	706	10．6\％
80．2\％	6，593	7，330	${ }^{737}$	${ }^{11.2 \%}$
${ }^{81.5 \%}$	6．522	${ }_{7} 7.328$	${ }^{806}$	12．4\％
－ 82.78	6，459	7，323	864	退
84．0\％ $8.5 .2 \%$	6，447	7．307	860	俍
－${ }_{\text {85．4\％}}$	㐌， 6,437	7，300	${ }_{8}^{863}$	${ }^{13.4 \%} 13.4 \%$
87．7\％	¢，${ }_{6,392}^{\text {6，428 }}$	${ }_{7}^{7,250}$	${ }_{858}^{884}$	4\％
88．9\％	6，330	7，035	706	
90．1\％	6，142	7.019	877	
91．4\％	6，092	7.008	916	15．0\％
92．6\％	6，068	6，912	844	13．9\％
951\％	6095	6，909	949	
996．3\％	${ }_{\text {c，}}^{5.942}$	c．795	${ }_{854}$	${ }^{110.4 \%}$
97．5\％	5.811	6．608	798	13.7
98．8\％	5．801	6，596	795	13．7\％

Figure SW-14-b
Sacramento River below Delevan Intake and Pipeline, Monthly Flow

Table SW－14－b

	October			
	${ }^{\text {WSPP }}$ 2030 Werthout	WSII 2030 With Project	${ }_{\text {A }}^{\substack{\text { Absalue } \\ \text { Difference }}}$	
	Monthly foiect（CFS）	Montly flow（CFs）	（cFs）	
0．0\％	27,728	26，182	${ }^{1,546}$	－5．6\％
1．2\％	13，993	11，051	－2，942	21．0\％
2．5\％	9，163	10，058	895	9．8\％
3．7\％	9，003	9，782	699	
4．9\％	${ }^{8,984}$	9，510	523	
7．4\％	${ }_{8.697}^{8.658}$	${ }_{8.846}^{9.091}$	${ }_{148}^{238}$	1．7\％
8．6\％	${ }_{8,683}$	${ }_{8,812}$	129	1．5\％
9．9\％	${ }^{8.631}$	${ }^{8.656}$	25	，
－	8，415	8，591	176	2．1\％
${ }^{1.3 .2 \% \%}$	－${ }_{8,297}^{8,297}$	8.583 8.562	286 315	
14．8\％	8,111	8.476	366	4．5\％
16．0\％	8，103	${ }_{8,391}$	288	3．6\％
17．3\％	${ }_{8,033}$	${ }_{8,265}$	232	2．9\％
18．5\％	7，983	8，230	${ }^{247}$	3．1\％
19．8\％	7，926	8，160	${ }^{235}$	3．0\％
${ }_{20}^{21.0 \%}$	7,862 7780 7	8,109 8075 8	248 295 2	
${ }_{2}^{22.2 \%}$	7,780 7691	8,075 7950 7	295 295	
－ 23.5	$\begin{array}{r}7,691 \\ 77656 \\ \hline\end{array}$	7,950 77788	259 112	－${ }^{3.4 \%}$
25．9\％	7.611	7，763	151	2．0\％
27．2\％	7，322	7，725	402	5．5\％
28．4\％	7,304 7165 7.155	7，653	350	${ }_{\text {L }}{ }_{5}^{4.8 \%}$
30．9\％	${ }^{7,155}$	7，556	${ }_{401}$	5．5\％\％
32．1\％	6.805	7.552	747	11．0\％
33．3\％	6，641	7.518	877	13.2
34．6\％	6，541	7，309	768	11.7
35．8\％	6，507	7，261	754	11．6\％
37．0\％	6，498	7，192	694	10．7\％
38．3\％	6，139	7，053	915	14．9\％
39．5\％	${ }^{6,066}$	${ }^{6,932}$	866	14．3\％
40．7\％	－ $\begin{aligned} & \text { 6，007 } \\ & 5 \\ & 5\end{aligned}$	6，902	895	14．9\％
42．0\％		㐌，6588	${ }^{1.082}$	18．7\％
－43．2\％		㐌，6644	985	
${ }_{4}^{4.57 \%}$			${ }_{919} 964$	－ 17.3%
46．9\％	5．609	6，439	831	14．8\％
48．19\％	¢，5583	6，382	799	${ }^{14.3 \%}$
49．4\％	5.577 5.561	¢， $\begin{gathered}6,287 \\ 6.283\end{gathered}$	${ }_{773}^{779}$	12.7% 13.0%
51．9\％	5，481	6,252	771	14．1\％
年 53.13%	5,454 5 5 5	6，250	${ }_{773} 77$	14．4\％
${ }^{54.3 \%} 5$	ci，5,454 5,435	¢， $\begin{aligned} & 6,227 \\ & 6,155\end{aligned}$	${ }_{720}^{773}$	${ }_{\text {l }}^{14.3 .2 \%}$
56．8\％	5.428	6，119	691	12．7\％
58．\％	5.410	6，069	660	12．2\％
59．3\％	5，354	5．941	587	11．0\％
60．5\％	${ }_{5}^{5,341}$	5，900	559	10．5\％
613．7\％	${ }_{5}^{5,213}$	5，889 5.881	632 688	
64．2\％	5，109	5.697	588	11．5\％
${ }^{6554 \%}$	5，054	¢， 5.685	${ }_{632}^{632}$	${ }^{12.5 \%}$
－ $\begin{aligned} & \text { 66．7\％} \\ & 67.9 \%\end{aligned}$	5,014 4,998	5，4821	${ }_{487}^{607}$	9．7\％
69．1\％	4.827	5，451	624	12．9\％
70．4\％	4，812	5，436	${ }_{6}^{623}$	${ }^{12.29 \%}$
71．6\％	4，758	5,407 5 5	${ }_{6}^{649}$	13．6\％
74．1\％	${ }_{4.710}^{4.723}$	${ }_{\text {c，}}^{5.382}$	${ }_{622}^{65}$	13．2\％
75．3\％	4，708	5，214	506	
76．5\％	4，705	5，193	488	10．4\％
77．8\％	4，693	5，168	475	${ }^{10.19 \%}$
80．2\％	4,641	${ }_{5,154}^{51,150}$	${ }_{513}$	11．1\％
81．5\％	4.621	5,117	496	10．7\％
82．7\％	4，573	5，011	438	9．6\％
84．0\％	4，497	4，944	${ }^{447}$	9．9\％
85．2\％	4，428	4，936	507	11．5\％
${ }^{86.4 \%}$ 877\％	${ }^{4,236}$	4，911	675	${ }^{15.59 \%}$
－${ }^{877.7 \%}$	${ }_{4}^{4,2222}$	${ }_{4}^{4.857}$	635 511	${ }^{15.5 \%}{ }^{12.1 \%}$
${ }_{90.1 \%}$	${ }_{4,183}^{4,182}$	4.715	532	${ }^{12.7 \%}$
91．4\％	4，130	4，712	582	14．1\％
92．6\％	4，108	4，685	577	14．1\％
93．8\％	4，094	4．596	502	${ }^{12.3 \%}$
${ }_{9}^{95.3 \%}$	$\xrightarrow{3,889}$	${ }_{4,207}^{4.594}$	${ }_{328}^{658}$	8．4\％
97．5\％	${ }_{3} 3,773$	4，068	296	7．8\％
	－${ }_{3427}$	（3，7996	224	

		February		
Percent Exceedance		WSIP 2030 With Project	Abssolute Difference	Relative
	Monthy fow（（CFS）	Monthy Flow（CFS）		Difference（\％）
0．0\％	101.616	9，822	1，1794	1．8\％
1．2\％	94，345	94,151	－194	－0．2\％
2．5\％	${ }^{77,996}$	${ }_{7}^{76,536}$	${ }^{-1,460}$	，
3．7\％	76，733	74,017	－2，716	－3．5\％
4．9\％	${ }^{73,853}$	${ }^{7,848}$	－4	0．0\％
6．2\％	${ }_{\text {c }}^{73,687}$	71,189 70.983	－2，498	－3．4\％
7．4\％	${ }^{71,243}$	${ }^{70,983}$	－260	－0．4\％
8．6\％	¢3，388 60.666	（ $\begin{aligned} & \text { 62，096 } \\ & 58,631\end{aligned}$	－1，292	－-3.0%
9．9\％		58，631 57883	-2.036 -2.511	－3．4\％
${ }^{11.12 \%}$		57,883 56.447	-2.541 -2.319	－4．2\％
13．6\％	57，719	${ }_{56,166}$	－1．553	－－2．7\％
14．8\％	55.414	${ }^{53,548}$	－1，866	3，\％
16．0\％	51,495	6，957	38	
17．3\％	47，213	45，252	－1，961	4．2\％
18．5\％	45.414	45.077	－337	－0．7\％
19．8\％	45.066	43.515	－1，551	\％
21．0\％	44,647	42,610	－2，037	
${ }^{22.2 \%}$	44，298	40，051	－4，247	
${ }_{\text {2 }}^{23.5 \%}$	41,724	38，220	3，505	8．4\％
24．7\％	38，695	${ }^{37,916}$	－778	－2．0\％
25．9\％ 272%	${ }^{37,626}$	34，089	－3，537	－9．4\％
27．2\％		${ }^{32,315}$	－4，545	12．38
28．4\％ 29.6%	${ }^{32,301}$	30，000	－2，301	－7．1\％
29．6\％	${ }^{31,184}$	30，000	－1，184	
30．9\％	31，109	29，582	－1，527	4.9
${ }_{3}^{32.19 \%}$	${ }^{30,000}$	${ }_{2}^{28,537}$	－1，463	－4．9\％
33．3\％	${ }_{2}^{28.933}$	${ }^{28,234}$	－699	
34．5\％	${ }^{28,767}$	${ }^{25.007}$	－3，760	
37．0\％	${ }_{2}^{27.263}$	${ }_{\text {24，}}^{24,746}$	${ }_{-2.516}^{-2.524}$	${ }_{-9.2 \%}$
38．3\％	26，319	${ }^{23,577}$	－2，742	
39．5\％	24，736	23，426	309	
40．7\％	24，402	23，285	－1，118	
42．0\％	${ }^{23,461}$	19,862	${ }^{-3,598}$	15.3
43．2\％	${ }^{23,261}$	${ }^{19,526}$	${ }^{-3,735}$	16.1
44．4\％	${ }^{21,339}$	${ }^{18,095}$	－3，245	
45．7\％	${ }^{20,048}$	${ }^{17,982}$	－2，067	－10．3\％
46．9\％	19,960	17，090	2，870	14．4\％
48．1\％	19，889	${ }^{16,735}$	－3，154	－15．9\％
49．4\％	19，313	16，114	3，200	16．6\％
50．6\％	18，687	${ }^{16,063}$	－2，623	－14．0\％
51．9\％	${ }^{177,982}$	15，963	2，019	${ }^{112.2 \%}$
53．1\％ 54.3%	17，107	14，968	－2，139	－12．5\％
54.3% 5.56%	16，500	12，825	${ }^{-3.675}$	22．3\％
年5．6．8\％	${ }^{1515.558}{ }^{15310}$	112445	－3，144	
56．8\％ 580%	${ }^{15,5310}$	${ }^{111,959}$	－3，352	
59．3\％	${ }_{\text {13，768 }}^{14,179}$	${ }^{111,883}$	－1，939	
60．5\％	${ }^{13,651}$	11，334	${ }_{2,317}$	－17．0\％
61．7\％	13，313	10，720	－2，593	－19．5\％
6．4．2\％	＋12，880	${ }_{9,738}^{9.878}$	－3，002	－24．1\％
65．4\％	${ }_{12,761}$	${ }_{9,696}$	${ }^{-3,065}$	－24．0\％
66．7\％	12.410	9,246	－3，164	5\％
67．9\％	12，241	9，235	${ }^{3.006}$	
69．1\％	${ }^{11,513}$	9，131	2，383	
70．4\％	11，425	9，117	2，309	－20．2\％
71．6\％	11，421	9，103	${ }_{2}^{2,317}$	－20．3\％
72．8\％	${ }^{10,763}$	${ }_{8}^{8,426}$	${ }^{2}, 3,37$	21．7\％
74．1\％	10，583	8，262	${ }^{2,321}$	${ }^{21.9 \%}$
75．3\％	10，432	7，754	－2，678	－25．7\％
76．5\％	9，748	${ }^{7.594}$	${ }^{2,195}$	${ }^{22.19 \%}$
77．8．0\％	${ }^{9,235}$	7，551	－1．684	－18．2\％
－79．0\％	8，404	7，540	－864	－10．3\％
－${ }_{80.15 \%}^{8.5 \%}$	${ }_{7}^{7,978}$	7，509	469	－5．9\％
－${ }_{\text {c }}^{81.59 \%}$	7,953 7 7.624	7,351 7 7 083	－602	－7．6\％
824．0\％	7，578	7，004	－574	－7．6\％
85．2\％	7.358	${ }_{6} 6.126$	－632	－8．6\％
${ }^{86.4 \%}$	7，198	6．467	－731	－10．2\％
88．9\％	7，079	¢，097	－982	－13．9\％
90．1\％	6，995	5，947	1，049	－15．0\％
91．4\％	6，894	5．880	1，014	\％
92．6\％	6．8699	5．608	－1，261	
93．8\％	6，295	5．549	746	11．9\％
95．1\％	6，292	5，541	750	－11．9\％
96．3\％	${ }_{6}^{6.018}$	5．505	514	8．5\％
－97．5\％	5，468	5，471	3	0．1\％
98．8\％ 100．	－ $\begin{aligned} & 5,485 \\ & 4.811\end{aligned}$	5.407 5139	－ 48	－0．9\％

April				
$\begin{gathered} \text { Percent } \\ \substack{\text { Execeance } \\ \text { Probability }} \\ \hline \text { Po } \end{gathered}$	WSIP 2030 Writhout	WSIP 2030 With Project	${ }_{\text {a }}^{\text {Absolute }}$ Difference	Relative
	Monthly Fiow（CFFS）	Monthy Fow（CFS）		Difference（\％）
	51.060	47，460	－3，600	－7．1\％
1．2\％	42，964	42.920	－44	－0．1\％
2．5\％	42,600	42，591	${ }^{-8}$	0．0\％
3．7\％	40，199	40，196	4	0．0\％
4．9\％	${ }^{30,248}$	30，254	6	0．0\％
6．2\％	${ }^{27,165}$	27，179	13	0．0\％
7．4\％	27.132	27.134	3	0．0\％
8．6\％	${ }^{24,272}$	24，299	${ }^{28}$	0．1\％
9．9\％	${ }^{23,042}$	${ }^{20,251}$	－2，791	－12．1\％
11．1\％	${ }^{21,965}$	${ }^{19,286}$	－2，680	－12．2\％
	${ }^{19,936}$	${ }^{18,925}$	－1．011	－5．1\％
13．6\％	19，273	17,117 16880	$-2,156$ $-2,108$	－11．2\％
14．8\％	${ }^{18,938}$	16，830	－－， 1028	－11．1\％
－ 11.0% \％	117,530 1683	16,604 14,846	－-1.988	－-1.38%
18．5\％	16，604	14，513	${ }_{-2,091}$	－12．6\％
19．8\％	16,236	14，413	－1．823	－11．2\％
220\％\％	15.8897 15837	－	－2，326	－14．6\％\％
${ }^{22.2 \%}$	15，837	${ }^{13,334}$	－2，503	－15．8\％
224．7\％	${ }^{13,047}$	${ }^{13,044}$	${ }_{-3}$	0．0\％
25．9\％	11，470	11，625	154	1．3\％
27．2\％	10．921	11，409	488	4．5\％
28．4\％	10，636	${ }^{10.534}$	－102	－1．0\％
29．6\％	10，618	10，517	－102	－1．0\％
30．9\％	9.811	9，837	25	0．3\％
32．1\％	9，786	9,677	－109	－1．1\％
33．3\％	9，288	${ }^{9,346}$	58	0．6\％
34．6\％	${ }^{8.672}$	8,370	－301	－3．5\％
35．8\％	8，505	${ }_{\text {8，191 }}$	－314	－3．7\％
永．0\％	${ }^{8,492}$	${ }_{7}^{7,613}$	－879	－10．4\％
30．5\％	${ }_{\text {l }}^{7,581}$	7,073 7	${ }_{-516}^{-1.051}$	－－12．8\％
40．7\％	7,321	7.043	-278	－3．8\％
42．0\％	7,141	${ }_{6,971}$	－170	－2．4\％
43．2\％	7，019	${ }^{6,936}$	${ }^{-83}$	
44．4．4\％	${ }^{6,963}$	${ }_{6}^{6,923}$	－43	
46．9\％	6.907	${ }_{6.874}^{6.906}$	－34	－0．5\％
48．1\％	6，902	6，829	－73	－1．1\％
49．4\％	6，730	6，759	29	0．4\％
55．．9\％	${ }_{6}^{6.7654}$	6，731	13	0．2\％
55．1\％	${ }_{6.611}^{6,654}$	${ }_{\substack{6,770}}^{6,718}$	${ }_{95}^{64}$	1．4\％
54．3\％	6，608	6，703	95	1．4\％
55．6\％	6，494	6.686	192	3．0\％
56．8\％	6.472	6，660	188	2．9\％
58．0\％	${ }_{6}^{6,466}$	${ }_{6}^{6.658}$	192	3．0\％
	－ 6.455		161	2．5\％
661．7\％	${ }_{\substack{6,445 \\ 6,42}}^{6}$	－6，6031	158 139 1	2．4．2\％
63．0\％	6.407	6,451	44	0．7\％
64．2\％	6，315	6,441	${ }^{126}$	2．0\％
${ }_{6}^{65.4 \%}$	6，312	6．424	${ }^{112}$	1．8\％
667．7\％	${ }_{6}^{6,295}$	¢ $\begin{gathered}6,385 \\ 6.372\end{gathered}$	${ }_{98}^{90}$	${ }^{1.4 \%}$
67．9\％	${ }_{6}^{6,275}$	${ }_{6}^{6,372}$	98	${ }^{1.6 \%}$
69．1\％	${ }^{6,252}$	6，372	${ }^{120}$	，
71．6\％	${ }_{6,191}^{6.222}$	6,304	${ }_{113}$	1．8\％
72．8\％	6，137	6，226	88	1．4\％
74．1\％	6，133	6，214	81	1．3\％
75．3\％	6，101	${ }_{6}^{6,165}$	${ }^{63}$	1．0\％
777．8\％	6.083 6.080	${ }_{6}^{6,161}$	78	年．3\％
79．0\％	6.021	6,081	60	1．0\％
80．2\％	5，926	6.067	140	2．4\％
81．5\％	5.767	6，056	289	5．0\％
82．7\％	5．705	${ }_{5}^{5.843}$	${ }^{138}$	2．4\％
年年．0\％	5，675		51 61	${ }_{1}^{0.9 \%}$
88．4\％	${ }_{5,378}^{5,636}$	${ }_{5,672}^{5,697}$	${ }_{294} 61$	5．5\％
87．7\％	5，355	5.664	309	5．8\％
88．9\％	5，336	$\begin{array}{r}5.644 \\ 5.400 \\ \hline\end{array}$	${ }^{309}$	5．8\％\％
90．1\％	5，319	5．400	81	1．5\％
992．6\％	${ }_{\text {5，}}^{5.192}$	¢， $\begin{aligned} & 5,356 \\ & 5.206\end{aligned}$	156 14	3．3\％
93．8\％	5，187	5，151	－36	－0．7\％
95．1\％	5.153	5.143	-9	－0．2\％
－ 96.3%	${ }_{4}^{4.934}$	5，131	${ }^{157}$	－${ }_{\text {3，2\％}}^{1.6 \%}$
98．8\％	4，853	${ }_{4,898}^{5.014}$	${ }_{45}$	0．9\％
	4.679	4.642		

		May		
	WSIP P030 Without	WSIP 2030 With Project	${ }_{\text {a }}^{\substack{\text { Absolute } \\ \text { Difference }}}$	Relative
Probability	Monthy Flow（CFS）	Monthy Fow（CFS）	（CFS）	Difference（\％）
0．0\％	23，531	23，304	－227	－1．0\％
1．2\％	${ }^{23,087}$	21，584	${ }_{-1,504}$	－6．5\％
2．5\％	18，973	18.977	4	0．0\％
3．7\％	18，375	16，051	－2，324	－12．6\％
4．9\％	13，998	13，897	－101	－0．7\％
6．2\％	${ }^{13,963}$	${ }^{13,811}$	－152	－1．1\％
7．4\％	12，971	12.807	－164	－1．3\％
8．9\％	12，057	${ }^{11,929}$	－128	－1．19\％
9．9\％	（11，544	${ }^{8,937}$	${ }_{\text {2，}}^{2} \mathbf{2 9 1 7}$	－24．6\％
11．19\％	8.559 8.39	${ }_{8}^{8,833}$	${ }_{4}^{274}$	5．3\％
＋12．3\％	${ }_{8}^{8,3149}$	${ }_{8}^{8,777}$	${ }^{439}$	5．3\％
13.6% 14.8%	8,114 8.088	8,151 7,999	37 -89	－${ }_{-1.5 \%}$
16．0\％	${ }_{7}^{\text {7，723 }}$	7,884	161	2．1\％
17．3\％	7.577	7.868	291	3．8\％
18．5\％	7.301	7,354	53	0．7\％
19．8\％	7．279	7，279	0	0．0\％
${ }^{21.0 \%}$	7．188	¢， $\begin{gathered}6,997 \\ 6.852\end{gathered}$	－191	${ }_{-2,2 \% \%}$
${ }^{22.25 \%}$	${ }_{7}^{7,122}$		－304	－4．3\％
24．7\％	7，010	${ }_{6,801}^{6,801}$	－208	－3．0\％
25．9\％	6，997	${ }_{6}^{6} 677$	－320	4.60
27．2\％	6，962	6,645	－317	－4．6\％
28．4\％	6，896	6，643	－253	－3．7\％
29．6\％	6，892	6.614	－278	－4．0\％
30．9\％	${ }^{6.864}$	${ }^{6,612}$	－251	－3．7\％
32．19\％	¢ 6.828	化，604	${ }_{-24}$	－3．3\％
年33．3\％	${ }^{6.738}$	6．5899	－149	－2．2\％
34.6% 35.8%	6，736	6，537	－199	－2．9\％
35．8\％	${ }_{6}^{6,685}$	6．527	－158	－2．4\％
37.0% 38.3%	¢，667	6，514	－ 154	－2．3\％
38．3\％	ci6．699	${ }_{\substack{6.5008 \\ 6,438}}^{6,47}$	－171	－-1.6%
40．7\％	6，603	6，427	－177	－2．7\％
42．0\％		6．419		－2．6\％
4．4．4\％	${ }_{6,490}$	6，334	－156	－2．4\％
45．7\％	6，483	6，307	－176	－2．7\％
46．9\％	6.414	6，267	－147	－2．3\％
48．19\％	6，382	6．262	-120	－1．9\％
49．4\％	¢， $\begin{gathered}6,269 \\ 6,263\end{gathered}$	¢， $\begin{aligned} & 6,225 \\ & 6,180\end{aligned}$	${ }_{-83}^{43}$	－0．7\％\％
51．9\％	${ }_{6,162}$	6,127	－35	－0．6\％
53．1\％	6，135	6.116	－19	－0．3\％
54．3\％	¢，106	6，113	${ }_{-64}$	0．1\％
年55．6\％	－ $\begin{aligned} & 6,102 \\ & 6,076\end{aligned}$	6,038 6.026	－64	－1．1\％
56．0\％	${ }_{6}^{6,076}$	¢，${ }_{6,026}^{6,014}$	－59	－0．0\％\％
59．3\％	6,037	5.996	41	－0．7\％
60．5\％	5，998	5，965	－33	－0．6\％
61．7\％	5，992	${ }_{5}^{5,934}$	－58	－1．0\％
－ 63.0%	${ }_{5}^{5.970}$	5.903 5.900	${ }_{-48}^{-67}$	－-1.1%
65．4\％	5.877	5.869	－8	－0．1\％
66．7\％ 679%	5，873	5．860	-13	－0．2\％
67．9\％	${ }_{5.862}^{5.864}$	${ }_{5.853}^{5.858}$	－9	${ }_{\text {－}}^{-0.2 \%}$
70．4\％	5，852	5.815	－37	－0．6\％
71.5% 728%	5.848	5．790	－57	－1．0\％
72．8\％	${ }_{5}^{5.811}$	5．782	－30	－0．5\％
74．1\％	${ }_{5}^{5.808}$	5，773 5.788	-35 -37	－0．6\％
76．5\％	${ }_{5}^{5.803}$	5.740	${ }^{-63}$	－1．1\％
77．8\％	5.673	5.738	65	1．1\％
79．0\％	5.667	5.626	41	－0．7\％
－	5.666 5.654	¢，5,482 5.456	－184	
－	${ }_{\text {c，}}^{5,4654}$	5.456 5.410	－198	－3．5\％
84．0\％	${ }_{5,378}^{5,478}$	${ }_{5,338}^{5,410}$	-40	－0．7\％
85．2\％	5.368 5×37	${ }_{5}^{5,330}$	－38	－0．7\％
86．4\％	${ }_{5}^{5,347}$	5．314	－34	－0．6\％
－	${ }_{\substack{5.336 \\ 5.078}}^{5}$	¢，5，289	$\begin{array}{r}-47 \\ 182 \\ \hline\end{array}$	3．6\％
90．1\％	4，972	5，109	137	2．8\％
9， 91.4%	${ }_{4.962}$	${ }_{4}^{4,983}$	${ }_{111}^{72}$	1．5\％
93．8\％	4.818	${ }_{4,852}^{4.973}$	${ }_{34}$	2．7\％
95．1\％	4.814	4，851	37	0．8\％
96．3\％${ }_{\text {975\％}}$	4，792	${ }_{4}^{4.833}$	41	0．9\％
998．5\％	4，720	4．712	－88	－0．0．2\％
98．8．	${ }_{4,553}^{4.664}$	${ }_{4,522}^{4,036}$	${ }_{-31}$	－0．7\％

August				
Percent	WSIP 2030 W Pritout	WSIP 2030 With Project	Absolue	Relative
Probab	Monthly fow（Cf）	Montly Flow（CFS）	（CFS）	
0．0\％	${ }^{10,843}$	${ }^{11,726}$		8．1\％
1．2\％	10，294	${ }^{10,553}$	259	
2．5\％	9.847	10,399	551	5．6\％
3．7\％	9，363	10，343	980	
4．9\％	9，010	10，317	1，307	14．5\％
6．2\％	9.001	9，884	882	9．8\％
7．4\％	8.943	9，833	890	
8．6\％	8，799	9，767	969	11．0\％
9．9\％	8.720	9，437	718	8．2\％
11．1\％	8，717	${ }_{9,316}$	599	6．9\％
${ }^{12.3 \%}$	8，431	8，999	568	6．7\％
13．6\％	8，299	8，971	672	8．17\％
14．8\％	${ }_{8,224}$	8，938	714	
16．0\％	8，107	8，937	${ }_{831}^{830}$	10．2\％
17．5\％	${ }^{8}$	${ }^{8,689}$	627	
18．5\％\％	${ }_{7} 7,975$	8，648	678	
19．8\％	${ }_{7}^{7,155}$	8,604	855	
${ }^{2} \mathbf{2} .10 \%$	7，683	${ }^{8.604}$	921	${ }^{12.20 \%}$
23．5\％	7.642	${ }_{8,454}$	811	
24．7\％	7，623	8，433	810	
25．9\％	7，611	8，184	573	
27．2\％	7．560	8，089	529	
28．4\％	7，549	${ }_{8}^{8.088}$	539	7．1\％
29．6\％	7，427	7，973	546	
30．9\％	7，303	7.894	591	8．1\％
32．1\％	7，231	${ }_{7}^{7,893}$	662	${ }^{9.2 \%}$
33．3\％	7，225	7，799	573	7．9\％
34．6\％	7，193	7，783	590	8．2\％
35．8\％	7，000	7，779	779	11．1\％
37．0\％	6，992	7，757	775	10.9
38．3\％	6，985	7,708	${ }^{723}$	10．4\％
39．5\％	${ }_{\text {b }}^{6.814}$	7，603	790	11.6
40．7\％	${ }_{6}^{6,716}$	7，597	881	${ }^{13.17 \%}$
${ }^{42.0 \%}$	${ }_{6}^{6,672}$	$\begin{array}{r}7.591 \\ 7.547 \\ \hline\end{array}$	919	
44．4\％	¢，642	${ }_{7}^{7.545}$	888 884	${ }_{\text {c }}^{13.3 \%}$
45．7\％	6，634	7，482	848	
46．9\％	6.612	7，464	852	
48．1\％	6．579	7，456	878	
49．4\％	6．565	7,426	861	
50．6\％	${ }^{6.547}$	7，413	866	
51．9\％	${ }^{6.547}$	7，349	${ }^{803}$	
53．1\％	6，542	7，275	${ }^{733}$	11．2\％
54．3\％ 5 5	${ }^{6.538}$	7，235	697	10．7\％
年55．6\％	${ }^{6.531}$	7，230	699	10．7\％
56．8\％	6．509	7，221	712	10．9\％
	6，485	7，206	7720	${ }^{11.19 \%}$
59．3\％	6，453	7,185 7 7	${ }_{772} 7$	${ }^{11.3 \%}$
60．5\％	6，409	7.179	770	${ }^{12.0 \% \%}$
${ }^{61.7 \%}$	6，270	7，058	781	${ }^{12.26 \%}$
－63．0\％	${ }^{6,246}$	6，987	771	－12．9\％
－64．2\％${ }^{6.4 .4}$	6，196	${ }^{6,966}$	778	${ }^{12.42 \%}$
－65．4\％	${ }_{6}^{6,1176}$	6，954	778	迆
－667．7\％	${ }_{6}^{6,146}$	6，924	77	2\％
69．1\％			${ }_{745}^{774}$	${ }_{\text {l }}^{12.2 \%}$
70．4\％	6,140	6,886	746	，
71．6\％	6，136	6，835	699	11．4\％
72．8\％	6，124	6，716	593	
74．1\％	6，107	${ }_{6}^{6,692}$	584	9．6\％
75．3\％	6，105	6，672	567	9．3\％
76．5\％	6，099	${ }^{6.658}$	558	，
77．8\％	6，083	6，655	572	
79．0\％	5，994	${ }^{6.643}$	648	10．8\％
－	5，974	6．639	665	11．1\％
${ }^{81.5 \%}$	5，937	${ }^{6.635}$	699	${ }^{11.8 \%}$
－ 82.78	${ }_{5}^{5,925}$	6，634	709	${ }^{12.20 \%}$
84．0\％	5，903	6，616	713	${ }^{12.12 \%}$
－ $8.5 .2 \%$	${ }_{\text {c }}^{5.878}$	${ }_{6}^{6,616}$	${ }_{7} 737$	${ }^{12.5 \%}$
－ 86.74%	5．829	6．591	762	13．1\％
88．9\％	5．7．51 5 5	¢，${ }_{\substack{\text { 6，562 } \\ 6.551}}$	8819	${ }^{14.4 .10 \%}$
90．1\％	${ }_{5,718}^{5,7518}$	${ }_{6,550}^{6,551}$	${ }_{831}$	5\％
91．4\％	5．669	6，549	881	15．5\％
92．6\％	${ }_{\text {5，616 }}^{5}$	6．540	924	16．4\％
995．1\％	${ }_{\substack{5.563}}^{5.595}$	${ }_{\substack{6.523 \\ 6.523}}^{\text {c，}}$	960	17．3\％
96．3\％	5.142	6.521	1，379	26．8\％
	5．058			
98．8\％ 100．\％	4.871 4.796		1,572 1,390	

		September		
Percent Exceedance		WSIP 2033 With Project	Absolute Difference	Relative
Probability	Monthy Folow（CFS）	Monthy Fow（CFS）	（CFS）	Difference（\％）
0．0\％	15，382	15，541	159	1．0\％
1．2\％	15，311	15，318	7	0．0\％
2．5\％	15，305	15，299	－6	0．0\％
3．7\％	15，278	15，288	9	0．1\％
4．9\％	15，250	15，269	20	0．1\％
\％．2\％	15.228 15.224 1		${ }_{32}^{40}$	0．3\％
7．4\％	15，224	－ 15.257	${ }_{79}^{32}$	0．2\％
8．6\％	15，133	15，211	79	${ }_{\text {ene }}^{0.5 \%}$
${ }^{\text {11．9\％}}$	${ }^{14,8251}$	${ }^{15,121}$	${ }_{293}^{296}$	2．0\％
－${ }_{\text {11．13\％}}^{12.3 \%}$	14.741 14.713	14,934 14.845	193 132 1	年
${ }^{1.3 .6 \%}$	${ }^{13,832}$	${ }_{14,739}^{14,45}$	${ }_{907}^{132}$	6．6\％
14．8\％	${ }^{13,353}$	14,310	957	7．2\％
－16．0\％	13，144	14，166	1，022	7．8\％
－${ }^{17.3 \%}$ 17．5\％	13,142 12.295 1	13,800 13.550 1	${ }_{658} 6$	5．0\％
19．8\％	12，321	${ }^{13,367}$	1，046	8．5\％
21．0\％	11，779	13，190	1.411	12．0\％
${ }^{22.2 \%}$	${ }^{11,737}$	${ }^{12,765}$	${ }_{1}^{1,028}$	8．8\％
23．5\％	${ }^{11,513}$	${ }^{11,834}$	322	2．8\％
24．7\％	${ }^{11,392}$	${ }^{11,572}$	180	－1．9\％
${ }^{257.2 \%}$	－11,266 11,246 11	11,478 11369	${ }_{123}^{212}$	1．1\％
28．4\％	11，054	11，259	205	1．9\％
29．6\％	11,017	11，183	165	1．5\％
30．9\％	10，969	${ }^{11,076}$	107	1．0\％
32．1\％	10，808	10，875	67	0．6\％
年33．3\％	${ }_{9}^{9.8390}$	（10，262	${ }_{388}^{450}$	${ }_{4}^{4.16 \%}$
34.6% 358%	9，390	${ }^{9,778}$	388 706	4．1\％
退35．8\％	${ }_{8,989}^{9,056}$	${ }_{9}^{9,7680}$	706 391	7．8\％${ }_{\text {4．3\％}}$
38．3\％	8.846	9.349	503	5．7\％
39．5\％	8.619	9，299	680	7．9\％
${ }^{40.72 \%}$	${ }_{\text {7，597 }}^{8,617}$	${ }_{8,966}^{9,122}$	1，369	－1．9\％\％
43．2\％	7.416	8,949	${ }_{1,533}$	20．7\％
44．4\％	7，092	8.448	1，356	19．1\％
${ }^{45.7 \%}$	7.071	${ }^{8,147}$	1，077	15．2\％
${ }^{46.9 \%}$	7,068 7,032	8,050 8.001	983	
49．4\％	7，019	${ }_{\text {7，757 }}$	${ }_{738}$	10．5\％
50．6\％	6，946	${ }_{7}^{7,722}$	776	11．2\％
51．9\％	6，746	$\begin{array}{r}7,711 \\ 7,534 \\ \hline\end{array}$	965	14．3\％
年53．1\％	6，720	7，534	814	12．19\％
	6．662	7,533 7,530	${ }_{811} 81$	＋13．19\％
55．8\％	${ }_{\substack{6,375 \\ 6,315}}^{\text {6，}}$	$\begin{array}{r}7.530 \\ 7496 \\ \hline\end{array}$	${ }_{\substack{1,185 \\ 1,181}}^{1 / 24}$	－ 18.18%
58．0\％	6，219	7,467	1.248	20．1\％
（ 59.3%	${ }_{5}^{5.884}$	7.441	1，557	26．5\％
${ }^{60.17 \%}$	${ }_{5}^{5.872}$	${ }_{7}^{7,4023}$	1，535	
61．7\％	${ }_{5}^{5,730}$	${ }_{7}^{7,223}$	1，493	${ }^{26.19 \%}$
64．2\％	${ }_{5.673}^{5.173}$	7，108	＋1，435	${ }^{25.5 \%}$
65．4\％	5，630	7，032	1，402	
66．7\％	5，574	7，005	1，431	25．7\％
－67．9\％	5.409	6，973	1，564	28．9\％
69．1\％ 7	${ }_{5}^{5,314}$	${ }^{6,891}$	1，577	29．7\％
70．1．6\％	c， 2,272 5.267		＋1．581	30．30\％
72．8\％	5.175	6.742	1.567	30．3\％
74．1\％	5，115	6，633	1，518	29．7\％
75．3\％	5，114	${ }^{6,576}$	1，462	28．6\％
76．5\％	4，982	6．541	1，559	31．3\％
77．8\％	4.910 4.908		＋1，630	－33．2\％
－79．0\％	4,908 4,876	${ }_{\text {c，467 }}^{6,492}$	${ }^{1,585}$	${ }_{\text {cke }} \begin{aligned} & 32.3 \% \\ & 32.6 \%\end{aligned}$
81．5\％	4，727	${ }_{6}^{6,431}$	1，704	36．0\％
－ 82.79%	4，688		1，695	36．2\％
84.0% $8.5 .2 \%$	4，620	6，374	1，754	38．0\％
80．4\％	4.495	${ }_{\substack{6,253}}^{6,23}$	${ }^{1,7758}$	${ }^{37.0 \%}$
87．7\％	4，449	6，243	，94	3\％
88．9\％	4，399	5，935	1，536	34．9\％
90．1\％	4，386	5.843	1，457	33．2\％
914．4\％	4，321	5．714	1，393	${ }^{322 \%}$
92．6\％	4，276	5.518	1，241	29．0\％
93．8\％	4，261	5，404	1，142	26．8\％
95．12\％	4，081	5．400	${ }^{1,319}$	
－96．3\％${ }_{\text {97．5\％}}$	3，999	5，359	＋1，361	34．0\％
98．8\％	3，867	4，907	${ }_{1}^{1,040}$	26．9\％
100．0\％	3．580	4，694	1.113	31．1\％

Figure SW-15-b
Sacramento River at Wilken Slough, Monthly Flow

Table SW-15-b

1.2%	21,119	21,157	38	0.2%
2.5%	20,126	19,796	-329	-1.6%
2.5%				

17.3%	12,111
	18.5%
19.8%	12,10
	11,633

$$
\begin{array}{ll}
11 \\
\hline 10 & 12,109 \\
\hline 10 & 1,94 \\
33 & 1,93
\end{array}
$$ 12,012

$\left.\begin{array}{l}11,944 \\ 11,932 \\ 11,686 \\ 120\end{array}\right)$

21.0%	
222%	11.554
	11549

| | | |
| :--- | :--- | :--- | :--- |

| |
| :--- | :--- | :--- | :--- |

Table SW-15-b

Pro.

Apprl				
Percent Exceedance	${ }^{\text {WSIP }}$ Pro30 Without	WSIP 2030 With Project	$\begin{gathered} \text { Absolute } \\ \text { Aifference } \end{gathered}$	Relative
Probability	Monthly Fow (CFS)	Monthy Fiow (CFFS)	(CFF)	
0.0\%	21.579	21,450		-0.6\%
1.2\%	${ }^{21,006}$	${ }^{21,008}$	${ }^{2}$	0.0\%
2.5\%			${ }^{\circ}$	
3.7\%	20,94	20,804	10	
4.9\%	2,178	析	123	
6.2\%	19,067	19,077		
7.4.\%	${ }^{18,0889}$	9,079	30	
9.9\%	18.588	${ }^{17,795}$	933	
11.1\%	${ }^{177738}$	17314	424	
12.3\%	17,439	17,157	-282	-1.6\%
13.6\%	17,170	15.790	-1,380	-8.0\%
14.8\%	16.880	15.720	-1,160	6.9\%
16.0\%	16,480	15,563	-918	-5.6\%
17.3\%	15.910	14,019	1.891	
18.5\%	15.565	13,431	${ }^{-2,133}$	-13.7\%
19.8\%	15.000	$\xrightarrow{13,343}$	-1.657	-11.0\%
21.0\%	14,912	${ }^{12,717}$	${ }^{2}, 195$	-14.79
${ }^{22.22 \%}$	14,474	12,564	-1,910	
23.5\%	-13,444	${ }^{12,024}$	-1.420	-10.6\%
25.9\%	${ }^{10.118}$	10,292	174	1.7\%
27.2\%	${ }_{9,639}$	10.077	439	4.6\%
28.4\%	9,356	9,275	80	
29.6\%	9,333	9,216	116	
30.9\%	8,629	${ }^{8,684}$	55	0.6\%
32.1\%	8,490	${ }_{8,362}$	128	1.5\%
33.3\%	7,957	7,949	-8	0.1\%
34.6\%	${ }^{7}, 428$	7,184	-244	
35.8\%	7,310	${ }_{6}^{6,866}$	-444	-6.1\%
37.0\%	${ }^{7,264}$	6,334	-930	-12.8\%
38.3\%	7,082	5,992	${ }^{1.090}$	-15.4\%
39.5\%	${ }^{6.066}$	5,841	${ }^{226}$	-3.7\%
40.7\%	5,771	5.807	${ }^{36}$	0.6\%
42.0\%	5,641	5,683	42	0.7\%
43.2\%	5,450	5,554	104	1.9\%
44.4.9	${ }_{\text {5,387 }}^{5}$	5,403	16	0.3\%
45.7\%	${ }_{5}^{5,368}$	${ }_{5}^{5,391}$	24	0.4\%
46.9\%\%	${ }_{5}^{5,340}$	${ }_{5}^{5,367}$	${ }^{27}$	
48.4\%	${ }_{\substack{5.340 \\ 5.284}}$	5.332 5.304	${ }_{20}^{28}$	${ }^{-0.4 \%}$
50.6\%	5,249	5,271	21	
9\%	5,183	5,187	4	
53.1\%	5,123	5,050	-72	
54.3\%	5,045	5,010	${ }^{35}$	7\%
55.6\%	5,039	5,001	-38	8\%
56.8\%	4,982	5,000	18	0.4\%
58.0\%	4,969	5,000	31	0.6\%
59.3\%	4,959	5,000	41	0.8\%
60.5\%	4,952	5,000	${ }^{48}$	1.0\%
61.7\%	4,939	5,000	61	1.2\%
63.0\%	4,920	5.000	80	1.6\%
64.2\%	4,909	4,963	54	1.1\%
65.4\%	${ }_{4}^{4.879}$	4,931	52	,
66.7\% 6790%	4,833	4,903	70	迷
- 67.9%	4,799	4.881	82	,
69.1\%	${ }_{4}^{4,7746}$	${ }_{4830}^{4.870}$	${ }_{94} 9$	2.0\%
70.4\%	${ }_{4}^{4.734}$	${ }_{4}^{4,830}$	${ }_{74}^{86}$	
72.8\%	4,695	4,795	100	2.1\%
74.1\%	4,646	4,729	83	1.8\%
75.3\%	4,609	4,700	91	
76.5\%	4,427	4,675	248	
77.8\%	4,410	4.607	197	
79.0\%	4,379	4,605	226	
80.2\%	4,351	4,596	245	5.8\%
81.5\%	4,283	4,453	169	\%
82.7\%	4,120	4,421	301	7.3\%
84.0\%	4,082	4,365	283	6.9\%
85.2\%	3,896	4,310	414	10.6\%
86.4\%	${ }^{3.8588}$	4,239	${ }^{381}$	9.9\%
87.7\%		4,084	${ }_{228}^{228}$	5.9\%
-88.9\%	3.830 3.635	4,069 3.693	${ }^{239}$	
91.4\%	3,633	3,651	17	0.5\%
92.6\%	${ }_{3,585}$	3,615	30	
93.8\%	3,581	${ }^{3,571}$	-9	0.3\%
95.1\% ${ }_{9} 9$	3.542 3.535	(3.542 3.538	${ }_{3}$	0.0\%
96.5\%	3,535	${ }^{3,538}$	${ }^{17}$	\%
	-	-	33	
		(-1.0\%

| |
| :--- | :--- | :--- | :--- |

Table SW－15－b

August				
Percent Exceedance	${ }^{\text {WSIP }}$ Pro30 Without	WSIP 2030 With Project	$\begin{gathered} \text { Absolute } \\ \text { Aifference } \end{gathered}$	
Proababily	Montly Fow（CFS）	Monthly Fow（CFS）	（CFFS）	
0．0\％	9，282	0.085	${ }^{803}$	8．7\％
－ 1.2%	${ }^{8,718}$	8，914	195	2．2\％
2．5\％	${ }_{8}^{8,261}$	${ }^{8,829}$		
3．7\％	7，9130	8，712		
4．9\％	7.030	8，712	1，081	
6．2\％	${ }_{7} 7.429$	${ }_{8}^{8,152}$	827	
7．4．\％	7，343	8，143	999	
9．9\％\％	7113	\％1788		
11．1\％	7,029			
12．3\％	6，788		592	
13．6\％	6，737	7，373	636	9．4\％
14．8\％	6．618	7，289	671	10．1\％
16．0\％	6，529	7，289	760	11．6\％
17．3\％	6，491	7，106	615	9．5\％
18．5\％	6，309	7，086	77	
19．8\％	6，138	${ }_{6}^{6,926}$	788	${ }^{12.8 \%}$
21．0\％	6．130	6．887		12.4
${ }^{22.22 \%}$	6，129	${ }^{6.845}$	776	11．7\％
－23．5\％	${ }_{6}^{6,102}$	${ }^{6,845}$	774	
25．9\％	${ }_{6,005}$	${ }_{6,524}^{6,024}$	519	8．6\％
27．2\％	5，962	6，498	536	9．0\％
28．4\％	5，947	6，445	498	
29．6\％	5，943	6，332	389	6．5\％
30．9\％	5，697	6，262	565	9．9\％
32．1\％	5．662	6，236	574	10．1\％
33．3\％	5．601	6，212	611	10．9\％
34．6\％	5．577	6，184	607	10．9\％
35．8\％	5．473	6，154	681	12．4\％
37．0\％	5，330	6，141	811	15．2\％
38．3\％	${ }_{5}^{5,316}$	6，101	784	14．8\％
39．5\％	5，203	${ }^{6,053}$	850	${ }^{16.3 \%}$
40．7\％	${ }_{5}^{5,185}$	6，052	868	16．7\％
42．0\％	${ }_{5}^{5,122}$	${ }^{6.013}$	891	年\％
43．2\％	${ }_{\text {5 }}^{5} 11116$	${ }^{5.885}$	770	15．0\％
44．4．9	${ }_{5}^{5.070}$	5．880	810	16．0\％
45．7\％	${ }_{\text {5 }}^{5} 50.066$	5．879	812	16．0\％
46．9\％	5．065	${ }_{5}^{5.821}$	772	
48．1\％	${ }_{5}^{5.044}$	5．817	772	${ }^{15.53 \%}$
50．6\％	${ }_{5,035}^{5}$	${ }_{5,728}^{5}$	693	
51．9\％	5，035	5.710	675	
53．1\％	5.029	5.688	659	\％
54．3\％	5，025	5，661	636	12．7\％
55．6\％	5，024	5，644	619	12．3\％
56．8\％	5，018	5，631	613	12．2\％
58．0\％	4，857	5，584	${ }^{727}$	15．0\％
59．3\％	4．852	${ }^{5.573}$	721	14．9\％
60．5\％	4，817	5．515	698	14．5\％
61．7\％	4，623	5，454	831	18．0\％
63．0\％	4.621	5．398	776	16．8\％
64．2\％	4，587	5，382	795	\％${ }^{\text {\％}}$
－65．4\％	4，5622	5,327 5 5	764	\％
66．7\％ 6790%	${ }_{4}^{4,553}$	5，303 5.206	${ }_{778}^{748}$	${ }^{16.44 \%}$
67．9\％	4，5533	5,296 5 5，295	762	${ }^{16.8 \%}$
69．1\％	4，530	5，285	755	${ }^{16.7 \%}$
71．6\％	${ }_{4.529}^{4.529}$	5.272 5.119	743 590	13．0\％
72．8\％	4.517	5.114	597	
74．1\％	4，517	5，103	586	
75．3\％	4，513	5，069	556	3\％
76．5\％	4．511	5，067	556	
77．8\％	4．510	5，059	549	2\％
79．0\％ 80.2%	4．501	5．043	542	${ }^{12.50 \%}$
－	4.379 4.366	5．035 5.034	${ }_{656}^{658}$	15.0% 153% 15
82．7\％	4，359	${ }_{5,034}^{5}$	675	15．5\％
84．0\％	4，297	5，030	733	17．1\％
85．2\％	4，263	5.025	762	17．9\％
86．4\％	4，122	${ }_{5}^{5,024}$	902	
87．7\％	${ }_{4}^{4.073}$	5.018 5 5	${ }_{994}^{939}$	${ }^{23.2 \%}$
－	4，061	5．000	939	${ }_{23,}^{23,1 \%}$
90．4\％	4，054	5，000	946	${ }^{23.1 \%}$
${ }^{\text {92．6\％}}$	${ }_{4,023}$	${ }_{\text {c }}^{5} 5$	977	${ }_{24.3 \%}^{24.10 \%}$
93．8\％	4.016	5，000	984	24．5\％
95．19\％	3.878	5，000	1，122	\％
90．75\％	3，600	${ }_{4}^{50000}$	1，400	38．9\％
	－	4，914	＋1，434	4．2\％
		${ }_{4}^{4.534}$	${ }_{\substack{1.579 \\ 1.279 \\ \hline}}$	4．6．6\％

		September		
${ }_{\text {Percent }}^{\text {Perceance }}$	WSIP 2030 Without	WSIP 2030 With Project	Absolue	Relative
Probability	Monthly Frow（（CFS）	Morthy Flow（CFS）	（cFs）	Difference（\％）
0．0\％		15，238		1．1\％
1．2\％	15，000	15，056	56	
2．5\％	55，000	5，021	21	
3．7\％	15，000	5，000	0	
4．9\％	00	15，000	0	
6．2\％	15，000	15，000	0	
7．4\％	15，000	15，000	0	
8．6\％	14，827	15.000	173	
9．9\％	14,524	14，827	303	
11．1\％	14，443	14，656	212	1．5\％
12．3\％	14,402	14,567	165	1．1\％
13．6\％	${ }^{13,554}$	14，419	864	6．4\％
14．8\％	${ }^{13,123}$	${ }^{13,907}$	784	6．0\％
16．0\％	$\begin{array}{r}12,886 \\ \hline 12755\end{array}$	${ }^{13,900}$	1.014	7．9\％
${ }^{17.3 \%}$	${ }_{\text {12，}}^{12,735}$	${ }^{13,543}$	808	${ }^{6.3 \%}$
18．5\％	12，687	${ }^{13,3288}$	640	
19．8\％	${ }^{12,038}$	${ }^{13,1176}$	1,078	9．0\％
21．0\％	11，475	${ }^{12,972}$	1，497	13.1
${ }^{22.2 \%}$	11，400	12，439	1，039	
23．5\％	${ }_{1111117}$	11，548	383	
${ }^{24.79 \%}$	111004	${ }^{11111295}$	191	
27．2\％	11,004 10.980	${ }^{111,1955}$	195	
	${ }^{10.729}$	10.965	${ }_{236}$	2．2\％
	10，714	10，947	234	2．2\％
30．9\％	10，676	10，857	180	1．7\％
32．1\％	10，531	10.599	69	
33．3\％	${ }^{9.522}$	10，003	482	
34．6\％	9，147	9，449	303	3．3\％
	8，782	9,449	667	7．6\％
37．0\％	${ }^{8,738}$	9，081	344	3．9\％
边 38.3%	8.549 8,383	9，045	497	5．8\％
39．5\％	${ }_{8,383}$	${ }^{9,041}$	${ }^{658}$	7．9\％
40．7\％	（8，325	8，961	635	7．6\％
${ }^{42.2 \%} \times$	${ }_{7}^{7,264}$	8，7746	1，482	${ }^{20.4}$
－ 43.2%	\％7.084 6.925	8，727	${ }^{1,643}$	23．2\％
${ }^{44.7 \%}$	6，925	${ }^{8,404}$	1，478	${ }_{1}^{21.3 \%}$
45．7\％	${ }_{6}^{6,821}$	7，936	${ }^{1,115}$	16．3\％
${ }^{46.9 \%}$		7，814	${ }_{1}^{1,077}$	14．9\％
40．4\％	${ }_{\substack{6.648 \\ 6.648}}^{6,48}$	7,762 7 7	${ }_{8}^{1,077}$	（16．1\％
50．6\％	6，571	7,416	845	12．9\％
9\％	6，421	7，347	926	
53．19\％	6，355	7，311	956	
54．3\％	6，298	7，208	910	14.5
55．6\％	6，106	7,148	1，041	
56．8\％		7，100	1，030	
	5，952	7，092	1，140	19．2\％
年 59.3%	5，791	7，072	1，281	${ }^{22.11 \%}$
${ }^{60.55 \%}$	5．544	7，069	${ }^{1,524}$	27．5\％
61．7\％ 60.0%	5，477	${ }_{6,877}$	${ }^{1,400}$	25．6\％
－63．0\％	5．434	${ }^{6.854}$	${ }^{1,420}$	26．1\％
64.2% 654%	5，342	${ }^{6.830}$	1，488	27．9\％
	5，250	6，766	${ }^{1,5167}$	28．9\％
66．7\％ 67.9%	5，199	6，756	1，557	29．9\％
－67．9\％	5，085	${ }^{6.690}$	1，605	31．6\％
－ 79.14%	4，996	6，657	${ }^{1}, 1,681$	33．2\％
70．1．6\％	4，9965	㐌6．539	${ }_{\substack{1,581 \\ 1.575}}$	come
72．8\％	4．865	6.440	${ }_{1,575}$	
74．1\％	4，826	6，312	1,487	
75．3\％	4，782	6，212	1，431	
76．5\％	4，763	6，209	1，446	
77．8\％	4，650	6，188	1.539	
79．0\％	4，618	6，153	${ }^{1,536}$	
80．2\％	4，566	6，139	1.574	
${ }^{81.5 \%}$	4，465	6，126	${ }^{1,662}$	
－ 82.79%	4，434	${ }_{6}^{6,068}$	1,634	36．9\％
84．0\％	4，405	${ }^{6}, 064$	${ }^{1,660}$	377\％
85．2\％	4，337	5，958	${ }^{1,621}$	37．4\％
${ }^{86.4 \%}$	4，194	5.919	1，724	${ }^{41.19 \%}$
87.7% 88.9%	4，142	5，907	${ }^{1,765}$	42．6\％
${ }^{88.9 \%}$	4，096	5，552	1，456	35．5\％
90．14\％	4．063	5，439	${ }_{1}^{1,375}$	33．8\％
${ }_{\text {92．6\％}}$	4.098 3.956	5，338 5.131 1	1,291 1,175 1	$\xrightarrow{31.9 \%}$
93．8\％	3，943	5.112	1，168	29．6\％
95．19\％	${ }^{3,795}$	5，088	＋1，293	34．1\％
	${ }^{3,678}$		1，322	
98．8\％ 100．0\％		5，0091 4.5420	${ }_{\substack { \text { ¢ } \\ \begin{subarray}{c}{1,160{ \text { ¢ } \\ \begin{subarray} { c } { 1 , 1 6 0 } } \\{1,055}\end{subarray}}$	27．7\％ 3．8\％

Sacramento River at Verona, Monthly Flow

Table SW－16－b

Percent Exceedance	WSIP 2030 Without Proiet	WSIP 2030 With Project	Abssolue Difference	Relative
Probability	Monthly Fow（CFS）	Monthy flow（CFS）	（CFF）	
0．0\％	${ }^{35,821}$	${ }^{37,322}$	1．501	4．2\％
年．2\％\％	15.686 13,779	14.215 14.112	${ }_{\substack{-1,470 \\ 333}}$	－9．4\％
2．5\％	${ }^{13,769}$	${ }^{14,142}$	${ }^{333}$	
4．9\％	13，179	13.125	－54	－0．4\％
6．2\％	13，125	13，230	－95	－0．7\％
7．4\％	12,915	12,905	－10	－0．1\％
8．6\％	12，705	12，729	23	0．2\％
9．9\％	12，502	${ }^{12,684}$	182	
11．1\％	12，366	${ }^{12,503}$	137	1．1\％
12．3\％	${ }^{12,095}$	${ }^{12,463}$	367	
13．6\％	${ }^{11,887}$	12,432	555	4．7\％
14．8\％	${ }^{11,690}$	12，090	400	3．4\％
16．0\％	${ }^{11,631}$	${ }^{12,046}$	415	3．6\％
17．3\％	${ }^{11,606}$	${ }^{11,7555}$	149	${ }^{1.3 \%}$
18．5\％	11,515	11,747	${ }^{232}$	2．0\％
19．8\％	11，471	${ }^{11,672}$	${ }^{201}$	${ }^{1.8 \%}$
21．0\％	${ }^{11,458}$	${ }^{11,663}$	${ }^{206}$	1．8\％
${ }^{22.2 \%}$	${ }^{11,451}$	${ }^{11,1598}$	147	13\％
23．5\％	11，233	${ }^{11,1,388}$	${ }^{305}$	
25．9\％	11063	11，4382	319	${ }^{1.99 \%}$
27．2\％	${ }^{10,847}$	111，214	367	3．4\％
28．4\％	10，772	${ }^{111,173}$	401	
29．6\％	10，710	11，166	456	
30．9\％	10，708	11，161	453	4．2\％
32.1% 33	10，678	11,010	332	3．1\％
${ }_{\text {cke }}$	10，656	${ }^{11,002}$	${ }_{327}^{346}$	
35．8\％	10.419	10，708	288	2．8\％
37．0\％	10，379	10，564	184	1．8\％
38．3\％	10，289	10，530	${ }^{241}$	2．3\％
39．5\％	10，211	${ }^{10,528}$	${ }^{317}$	3．1\％
40．7\％	10，129	10，403	${ }^{274}$	2．7\％
4．3．2\％	10．069	10，395	${ }_{3}^{326}$	3．2\％
44．4\％	${ }_{9,614}^{9,647}$	－10，105	${ }_{491}$	5．1\％
45．7\％	9，516	10，072	556	5．8\％
46．9\％	9，336	9，979	644	6．9\％
48．1\％	9，220	${ }^{9.896}$	676	7．3\％
49．4\％	9，181	（9，862 ${ }_{9}^{945}$	${ }_{725}^{681}$	
51．9\％	${ }_{9,010}$	${ }_{9,679}^{9.045}$	669	7．4\％
53．1\％	8，953	9，647	694	
54．3\％	8,931	9，439	508	7\％
55．6\％	${ }_{8,876}$	9，435	560	6．36
56．8\％	8，689	9，394	704	8．1\％
58．0\％	${ }^{8,453}$	9，370	918	10．9\％
59．3\％	8,382	9，210	828	9．9\％
60．5\％	8，287	9，205	918	11．1\％
－ $\begin{aligned} & \text { 61．7\％} \\ & 63.0 \%\end{aligned}$	8，262	${ }^{9,147}$	${ }_{8}^{885}$	10．7\％
64．2\％	8，798 7	${ }_{9}^{9,074}$	8,276 1,276	年10．4\％
65．4\％	7.609	9，036	1，427	18．8\％
${ }^{66.7 \%}$	7，504	9，032	1，529	20．4\％
67．9\％	${ }_{7}^{7,373}$	${ }^{9,025}$	${ }_{1}^{1,651}$	${ }^{22.4 \%}$
69．1\％	${ }_{7}^{7,348}$	9，019	${ }^{1,671}$	2．7\％
70．1．6\％	${ }_{7,191}^{7,261}$	8.978 8.810	$\underset{1}{1,717}$	3．6\％
72．8\％	7,133	${ }_{8,625}^{8,}$	${ }_{1,493}$	${ }^{22.9 \%}$
74．1\％	6，955	${ }_{8}^{8,387}$	1，432	20．6\％
75．5\％	6，935	7.704	69	11．1\％
77．8\％	${ }_{6,664}^{6,977}$	7，404	566 740	${ }^{8.2 \%}$
79．0\％	6.490	7.018	528	8．1\％
80．2\％	6，210	6，902	692	11．1\％
81．5\％	6，155	6，840	685	
827\％	6，107	${ }^{6.686}$	579	9．5\％
84．0\％	¢，063	${ }^{6.658}$	594	9．8\％
85．2\％	5.925 5 5 15	${ }^{6,448}$	523	8．8\％
－	5.915 5 5 5	${ }^{6,323}$	${ }_{209}$	6．9\％
88．9\％	5，684	5，995	311	5．5\％
90．1\％	5，658	5．979	321	5．7\％
91．4\％	5，464	5．849	385	7．0\％
${ }^{92.26 \%}$	5．407	5.804 5 5	397	7．3\％
${ }^{935.1 \%}$	5，367	5．607	${ }_{3}^{240}$	年．5\％\％
${ }_{96.3 \%}$	4，902	${ }_{5,522}^{5.546}$	315 619	6．0．6\％
－97．5\％	4.761 4.724	5，455	694	14．8\％
988．8\％	${ }_{4}^{4,752}$	5，407	${ }_{91}^{683}$	

－

		January		
Percent	WSIP ${ }_{\text {Proso }}^{\text {Priet }}$ Weout	WSIP 2033 With Project	Absolute	Relative
Probability	Monthy Folow（CFS）	Montly Flow（CFS）	（CFS）	Difference（\％）
0．0\％	71,981	71，700	${ }^{281}$	－0．4\％
1．2\％	70，801	70，023	－778	－1．1\％
2．5\％	65.069	64,474	－596	－0．9\％
3．7\％	62，945	62,954	9	0．0\％
4．9\％	${ }^{60,638}$	${ }^{60,569}$	－69	－0．1\％
6．2\％	60,379 59771	（ 59.766	－613	－1．0\％
7.4% 8.6%	59,711 58,242	59,498 58.039	－213	－0．4\％
8．6\％	（ $\begin{aligned} & 58,242 \\ & 56.426\end{aligned}$	58.039 56731	－203 306	－0．3\％
${ }^{\text {9，9\％}}$	（ $\begin{gathered}56,426 \\ 56,377\end{gathered}$	56，731 55995	306 .388	0．5\％
－11．1\％	${ }_{\substack{56,377 \\ 55,267}}$	55，995 54719	－548	－0．7\％
13．6\％	${ }_{52,521}$	52,436	${ }_{-85}$	－0．2\％
14．8\％	52，474	50,816	1，658	－3．2\％
16．0\％	51，413	50，724	－689	
17．3\％	50，461	49，031	1，430	－2．8\％
18．5\％	48,786	47.559	1，227	－2．5\％
19．8\％	48,748	47.511	1，237	－2．5\％
210\％	48,744	47，133	－1，611	
22．2\％	47.966	46,519	－1，447	－3．0\％
23．5\％	47，090	${ }_{45,928}$	－1，162	－2．5\％
24．7\％	${ }^{44,673}$	44,717	44	0．1\％
25．9\％	44，222	${ }^{42,372}$	－1，849	${ }^{-4.2 \%}$
27．2\％	${ }^{41,733}$	${ }^{41,532}$	－201	－0．5\％
${ }^{28.4 \%}$	${ }^{41,609}$	39，412	－2，197	－5．3\％
－	$\begin{array}{r}37,802 \\ \hline\end{array}$	${ }^{38.087}$	285	0．8\％
30．9\％	35．445	35，147	－298	－0．8\％
	34，611	32，510	－2，101	－6．1\％
年 $\begin{aligned} & 33.3 \% \\ & 346 \%\end{aligned}$	－ $\begin{aligned} & 32,786 \\ & 3238 \\ & \text { 239 }\end{aligned}$	${ }_{\text {coser }}^{30,606}$	－2，180	－6．6\％
$\begin{array}{r}34.6 \% \\ 358 \% \\ \hline\end{array}$		${ }^{29,379}$	－	－9．3．0\％
37．0\％		${ }_{22,651}^{29,080}$	－${ }_{-2,1,47}$	－－7．0\％
38．3\％	30，661	${ }^{28,079}$	${ }_{-2,582}$	－8．4\％
39．5\％	30，335	26，805	30	－11．6\％
40．7\％	${ }^{30,223}$	25，400	－4，823	
42．0\％	27，896	23，907	－3，989	－14．3\％
${ }^{43.2 \%}$		${ }^{21,755}$	－3，3661 -284	－13．4\％
45．7\％	${ }_{23,487}^{23,4{ }^{\text {a }} \text { ，}}$	${ }^{20,884}$	${ }_{2,604}$	－11．1\％
46．9\％	${ }_{22,677}$	19，945	－2，732	－12．0\％
48．1\％	21，563	18，578	－2，985	－13．8\％
49．4\％	21，088	17，546	－3，541	－16．8\％
50．6\％	20，761	17，730	－3，411	－16．4\％
51．9\％	${ }^{20,330}$	17，252	－3．078	－15．1\％
	20，317	16，215	${ }^{-4,102}$	${ }^{-20.2 \%}$
年5．3．6\％	19，428	${ }_{\text {1 }}^{16,7116}$	－3，312	－17．0\％
年5．8．8\％	18．973	15，719	－－，184	－16．8\％
56．8\％	${ }^{18,550}$	15，267	－	－17．8\％
${ }^{58.0 \%}$	${ }^{18,569}$	${ }_{1}^{13,945}$	－3．607	－2．5\％
60．5\％	16，000	13，859	${ }_{-2,141}$	－13．4\％
61．7\％	15．831	13.519	12	14．6\％
63．0\％	15．538	13，441		－13．5\％
64．2\％	15，285	${ }^{13,423}$		2．2\％
${ }^{65.4 \%}$	15，030	${ }^{13,046}$	984	－13．2\％
－66．7\％${ }^{67.9 \%}$	${ }^{14,720}$	12,817 12.772 1272	－1，904	－12．9\％
69．1\％	14，548	12，751	${ }_{-1,797}$	－12．4\％
70．4\％	13，769	12,594	－1，175	
71．6\％	12，953	12，307	－647	－5．0\％
72．8\％	12,700 12.509	12，244	－456	－3．6\％
74．19\％	12，509	${ }^{11,1854}$	－654	－5．2\％
75．3\％	${ }^{12,189}$	11,817	－373	－3．1\％
${ }^{76.5 \%}$	11,874 11,829	${ }^{11,402}$	－472	－4．0\％
79．0\％	11.794	11，299	－495	4．2\％
80．2\％	11.419	10，993		－3．7\％
81．5\％	${ }^{11,317}$	10，985	－332	－2．9\％
－	10.985 10.965	10,965 10.907	－-58	－0．0\％
85．2\％	10，871	10，868	5	0．0\％
－ 86.48	10，852	10，845	${ }^{-8}$	－0．1\％
－${ }_{\text {87，}}^{87.7 \%}$	10,619 10.503	10,779 10.537	160	－${ }_{\text {1．3\％}}^{\text {0．3\％}}$
90．1\％	10，307	10，274	－33	－0．3\％
91．4\％	10，050	10，084	${ }^{33}$	0．3\％
92．8\％	${ }^{9.578}$	9，664	${ }^{85}$	0．9\％
${ }_{9}^{93.8 \%}$	${ }_{9}^{9,426}$	${ }^{9,393}$	－33	－0．7\％
${ }_{96.3 \%}$	－${ }_{8,797}^{8.839}$	${ }_{\text {8，}}^{8,741}$	－ 65	－0．7\％
97．5\％	8.499	8，507	8	0．1\％
98．8\％	7，842	${ }^{8,171}$	329	4．2\％
100．0\％	6，454	6．365	－88	－1．4\％

Table SW-16-b

Table SW－16－b
mento Rivar tveron，Monthy Flow
Probability of fxeedance

		WSIP 203 W With Project	Absolute	Relative
	Monthly fow（cFs）	Monthly Fow（CFS）	（CF5）	
0．0\％	16.067	16,150	83	0．5\％
${ }^{1.2 \%}$	${ }^{16,047}$	${ }^{16,048}$	1	0．0\％
2．5\％	${ }^{15.9995}$	${ }^{16,026}$	${ }_{97}^{31}$	0．2\％
3．7\％	${ }^{15,730}$	${ }^{15,8827}$	97	0．6\％
4．9\％	15．617	15．665	${ }^{48}$	0．3\％
${ }^{6.2 \%}$	15．479	15．426	－53	－0．3\％
7．4\％	${ }^{15,391}$	${ }^{15,270}$	－121	－0．8\％
8．6\％	15.289 15.275	15.233 15183 15	－－92	－0．4\％
${ }^{9.9 \%}$	15,275 15278 1	${ }^{15,183}$	－92	－0．6\％
12．3\％		${ }^{15,167} 15$	－26	－0．2\％
13．6\％	14，830	15.101	270	1.8
14．8\％	14,709	14，870	162	
16．0\％	14，704	${ }^{14,793}$	90	
17．3\％	14，688	14，709	21	
18．5\％	14，595	14，706	111	0．8\％
19．8\％	14，589	14，620	31	0．2\％
21．0\％	14，499	14，565	65	0．4\％
22．2\％	14，466	14，427	－39	－0．3\％
23．5\％	14，429	14，386	${ }^{-43}$	－0．3\％
24．7\％	14，389	14，375	-14	－0．1\％
25．9\％	14，359	${ }^{14,356}$	${ }^{-3}$	0．0\％
27．2\％	14，063	14，278	215	${ }^{1.5}$
28．4\％	－13．969	14，185	216	
29．6\％	${ }^{13,839}$	14，137	298	
30．9\％	－13，806	14，052	246	
32．1\％	13，787	13，919	${ }^{132}$	1．0\％
33．3\％	13，768	${ }^{13.810}$	${ }_{58}^{42}$	
34．6\％	13，732	${ }^{13,799}$	${ }_{82}$	0．4\％
357．\％	13，622	${ }^{13,7776}$	${ }_{154}$	1．1\％
38．3\％	13，498	13，740	242	1．8\％
39．5\％	${ }^{13,328}$	${ }^{13,731}$	403	3．0\％
40．7\％	${ }^{13,323}$	13，703	379	2．8\％
42．0\％	13，288	13，568	280	2．1\％
43．2\％	13，202	13，556	355	2．7\％
44．4\％	${ }^{13,183}$	13.517	334	2．5\％
45．7\％	13，179	13，367	188	1．4\％
46．9\％	13，164	13，338	174	1．3\％
48．19\％	${ }^{13,100}$	${ }^{13,330}$	${ }_{229} 22$	1．8\％
49．4\％	${ }^{13.075}$	${ }^{13,311}$	${ }_{2}^{237}$	1．8\％
50．6\％	${ }^{13,070}$	13，222	152	1．2\％
年 51.9%	${ }^{12,964}$	${ }^{13,081}$	117	0．9\％
年 53.13%	12,889 12828 128		74	0．6\％
54．3\％ 5 5 5	（12，828		87	0．7\％
55．6\％	12,88 12,662 12，	12,785 12783 127	1100	
56．0\％	${ }_{\text {l }}^{12,659}$	${ }^{12,775}$	${ }_{116}^{120}$	－
59．3\％	12，656	${ }_{12,757}^{12,75}$	101	0．8\％
60．5\％	12，600	12，676	76	0．6\％
61．7\％	12，431	${ }^{12,636}$	205	1．6\％
64．2\％	12,425 12271	12，466	${ }_{38}$	
${ }^{645.4 \%}$	${ }^{12,2988}$	112，276	179	1．5\％
66．7\％	12,015	12，198	183	1．5\％
67．9\％	11，488	12，167	719	6．3\％
69．1\％	10，988	12，156	1，168	10．6\％
70．4\％	10，751	${ }^{12,005}$	1，254	11．7\％
71．6\％	10，407	${ }^{11,897}$	1，489	14．3\％
72．8\％	（10．015	${ }^{11,854}$	1，839	18．4\％
74．19\％	9，848	11,419 10.859	${ }_{\text {1，571 }}^{1,255}$	16．0\％
76．5\％	${ }^{8,604}$	10，859	${ }_{2}^{2,255}$	${ }_{2}^{26.2 \%}$
77．8\％	8，229	${ }^{10,582}$	${ }_{2,352}^{2,292}$	${ }^{278.6 \%}$
79．0\％	8.161	${ }^{10,4365}$	2，275	27．9\％
80．2\％	7，999	10，335	2，336	29．2\％
81．5\％	7，889	10，029	2，140	${ }^{27.1 \%}$
84．0\％	${ }_{7}^{7,686}$	${ }_{9,421}^{9,440}$	＋1．734	${ }_{\text {cke }}^{21.62 \%}$
85．2\％	7.479	9，117	1，638	9\％
86．4\％	7，381	8.557	1，176	\％
87．7\％	7，361	${ }^{8.505}$	1，144	15．5\％
${ }^{88.9 \%}$	${ }_{\substack{7,072 \\ 7,072}}$	8,443 8194	$1,1,57$ 1,122	＋15．9\％
91．4\％	7，008	8,000	992	14．2\％
92．6\％	6，741	7,963	1，223	18．1\％
93．8\％	6，725	7，740	1.015	15．1\％
${ }_{96.3 \%}^{95.1 \%}$		7，592	988	
97．5\％	ci，${ }_{6,047}^{6,474}$	7,556 7	1,083 1,521 1.109	${ }_{\text {cker }}^{\text {16．7．7\％}}$
98．8\％	5.768	7，024	1，256	21．8\％
100．0\％	5，648	6.838	1，190	21．1\％

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$		Seplember		RelativeDifference（\％）
	WSIP 2030 Without Proiect	WSIP 203 With Project	Absolute Difference	
	Monthy Fow（CFS）	Monthly Fow（CFF）	（CFS）	
0．0\％				0．0\％
1．2\％	26，197	${ }^{26,501}$	304	1．2\％
2．5\％	26，184	26，182	－2	
3．7\％	25，437	${ }^{26,142}$	705	
4．9\％	25，008	${ }^{25,767}$	759	
${ }^{6.2 \%}$	24，444	${ }^{25.512}$	${ }^{1,068}$	
7．4\％	${ }^{24,296}$	${ }_{2}^{25,300}$	1，004	
8．6\％	24，022	${ }^{25.067}$	1.078	
9．9\％\％	${ }^{23,940}$	${ }^{25.018}$	1，016	
11．1\％	${ }^{23,506}$	${ }^{24,181}$	616	2．6\％
13．6\％	${ }^{22,942}$	${ }^{23,656}$	714	
8\％	80	23，057	177	
16．0\％	22，837	${ }^{23,003}$	166	
17．3\％	21，617	${ }^{22,679}$	1，062	4．9\％
18．5\％	21，507	22，367	860	4．0\％
19．8\％	21，285	21，692	407	1．9\％
21．0\％	${ }^{21,100}$	${ }^{21,581}$	482	
22．2\％	20，916	${ }^{21,094}$	178	0．8\％
23．5\％	${ }^{20,792}$	${ }^{20,673}$	－119	
24．7\％	${ }^{20,773}$	20，430	${ }^{342}$	－1．6\％
25．9\％	20，273	20,149	－125	0．9\％
27．2\％	20，162	${ }^{20,020}$	－142	－0．7\％
－ 28.4 .9	${ }^{20,031}$	19，954	－77	
	19,990 19.975	19，8866	－104	
30．9\％	19，975	19，879	－96	
退32．1\％	19，903	19，685	－218	崖1\％
㐌34．3\％	19,764 19.092	19，654	－10	－0．9\％
354．8\％	19，092	19，182	91	
357．8\％	18,149 17882	${ }^{18,9855}$	${ }_{977}$	${ }_{5}^{4.5 \%}$
38．3\％	17，445	17，363	81	
39．5\％	93	18，250	－342	\％
40．7\％	15，258	14，748	－510	
42．0\％	13，590	14，656	1，066	7．8\％
43．2\％	13，403	14，101	698	2\％
${ }^{44.4 \%}$	13，172		719	
45．77\％	12，759	${ }^{13,836}$	1，077	8．4\％
46．9\％\％	12，758	13，263	505	4．0\％
48．19\％	${ }^{12,373}$	13，250	876	7．1\％
49．4\％	12，372	${ }^{13,048}$	676	5．5\％
50．6\％	${ }^{12,346}$	12，972	627	5．1\％
51．9\％	12，159	12，950	791	6．5\％
	－12，120	12，927	807	${ }^{6.7 \%}$
54．3\％ 5 5.6%	－	12,924 12,839 1289	1，132	${ }^{9.6 \% \%}$
㐌5．8．8\％	11,124	12，839	7，115	
56．0\％	${ }^{11,761}$	－ 12,80202	7，109	
${ }^{58.0 \%}$	${ }^{111,586}$	${ }_{\substack{12,779 \\ 12,709}}^{12,}$	${ }^{1,123}$	${ }_{9.7 \%}^{\text {9．7\％}}$
60．5\％	11，271	12，703	${ }_{1}^{1,432}$	
61．7\％	10.683	12.424	1，742	
63．0\％	570	${ }^{12,387}$	17	7．2\％
－64．2\％	10，444	12，270	－1，826	${ }^{17.5 \%}$
${ }_{6}^{6.7 \%}$	9，934	12,1286 12,086	${ }_{\text {2，151 }}$	${ }^{121.7 \%}$
67．9\％	9，924	${ }^{11,8588}$	1，934	
69．1\％	9，344	11,743	2，399	
70．4\％	9，282	11，560	2，279	\％ 6
71．6\％	9，172	11,440	2，268	24．7\％
72．8\％	9，059	${ }^{11,323}$	2， 2,65	25．0\％
75．3\％	${ }_{8,662}$	11，021	${ }_{2,360}^{2,0}$	27．2\％
76．5\％	${ }_{8,547}$	11，020	2.474	28．9\％
77．3\％	${ }_{8,290}$	10，792	2，502	30．2\％
79．0\％	8，221	10,714	2，492	3\％
80．2\％	8，143	10，705	（2，562	31．5\％
－	8,031 7870 8.020	＋0，626	（2，595	
84．0\％	${ }_{7,825}^{7,870}$	9，789	2,044 1,964	${ }^{265.1 \%}$
85．2\％	7,762	9,727	1，966	3\％
86．4\％	7，662	${ }^{9.6655}$	2，002	${ }^{26.1 \%}$
88．9\％	7，336	${ }_{9,215}^{9,232}$	${ }_{1}^{1,888}$	25．6\％
90．1\％	7.254	9,082	${ }_{1,828}$	25．2\％
91．4\％	7，145	8，958	1，813	25．4\％
92．6\％	6，651	7，949	1，298	
93．8\％	6，019	7，927	1，907	
95．1\％	5．850	7.403	1，554	26．6\％
96．3\％	5，786	7．386	1，600	${ }^{27.7 \%}$
97．5\％${ }^{988 \%}$	5，321	7．049	1，728	32．5\％
年 98.8%	5,301 4.946	${ }_{5.884}^{5.993}$	${ }_{938}^{691}$	$\xrightarrow{13.0 \%} 1$

Figure SW-17-b
Sacramento River at Freeport, Monthly Flow

Table SW－17－b

1.2%	49,144	48,915	$-2,29$	-0.5%
2.5%	47,919	46,839	-1.080	-2.3%

8．6\％	22，156	22，006	－150	－0．7\％
9．9\％	21，619	${ }^{21,578}$	－41	－0．2\％
11．1\％	21，367	21，367	0	0．0\％
12．3\％	21，290	21，037	－253	－1．2\％
13．6\％	20，821	20，607	－213	－1．0\％
14．8\％	19,512	19，460	－52	－0．3\％
16．0\％	19，306	19，242	－63	－0．3\％
17．3\％	19，047	18，997	－50	－0．3\％
18．5\％	18，837	18，981	144	0．8\％
19．8\％		18，687	84	0．5\％
${ }_{22}^{21.0 \%}$	18．508 18.227	18,649 18.506	142 279	0．8\％
23．5\％	${ }^{18,056}$	18.496	440	2．4\％
24．7\％	17，928	18，356	427	2．4\％
25．9\％	17，735	18，335	600	3．4\％
27．2\％	17，648	17.858	211	1．2\％
28．4\％	17，613	17，761	148	0．8\％
29．6\％	17，609	17,721	112	6\％
30．9\％	17，489	17，541	52	0．3\％
32．1\％	${ }^{17,323}$	17，434	111	0．6\％
34．6\％	${ }_{16,816}$	${ }^{117,311}$	494	2．9\％
35．8\％	16，622	17，091	469	2．8\％
37．0\％	16，489	16，625	136	0．8\％
38．3\％	16,476	16，615	140	0．8\％
39．5\％	16,168 15962	16，454	${ }_{460}^{286}$	1．8\％
40．7\％	15.962 15.935	－ 16.422	460 415	${ }_{26 \%}^{2.9 \%}$
42．0\％	15,935 15991	16,350 16.169	415 258	${ }_{\text {2 }}^{2.6 \%}$
434．4\％	${ }_{15,580}^{15,96}$	${ }_{16,117}^{16,169}$	${ }_{537}^{258}$	－ $1 . .4 \%$
45．7\％	15，297	16，023	726	4．7\％
46．9\％	15，281	15.874	593	3．9\％
48．1\％	14,740 14.643	15,207 15.038	${ }_{395}^{469}$	－${ }_{\text {3，}}^{3.2 \%}$
50．6\％	14，574	14，888	314	2．2\％
51．9\％	13，950	14，574	624	4．5\％
53．1\％	13，838	14，441	602	4．4\％
54．3\％	－	14，078	390	2．8．${ }_{5}^{2.8 \%}$
55．6\％		${ }^{14,8,885}$	699	5．1\％
58．0\％	13，206	13，848	642	4．9\％
59．3\％	12，698	13，371	673	5．3\％
60．5\％	12，197	13，290	1，093	9．0\％
61．7\％	12，119	13.069	950	7．8\％
63．0\％	12,075 12073 1	12,952 12949	878 877	7．3\％${ }_{7}$
析．2\％	12,073 11736	＋12，949	${ }_{865}^{877}$	7．4．3\％
66．7\％	11，706	${ }_{12,351}$	645	5．5\％
67．9\％	11.663	12，101	438	3．8\％
70．4\％	11,327 10.970	12,087 11,832	761 862	${ }_{7}^{6.7 \%}$
71．6\％	10，810	11，051	241	2．2\％
72．8\％	10，138	${ }^{11,024}$	886	8．7\％
74．1\％	10,125 10.028	10，359	234	2．3．3\％
75．3\％	${ }_{9,932}^{10,028}$	10，212	${ }_{201}^{184}$	＋1．8\％
77．8\％	${ }_{9.572}$	10，090	517	5．4\％
79．0\％	9，134	9，939	805	8．8\％
80．2\％	${ }_{\text {8，793 }}$	9，789	${ }_{196} 9$	11．3\％
81．5\％	8，551	9，587	1，036	12．1\％
82．7\％	8.548 8035	9，224	${ }_{1}^{676}$	7．9\％
84．0\％	${ }^{8,035}$	${ }_{8}^{9,102}$	1,067 8,64	13．3\％
85．2\％	8,027 7 7978	8.891 8.494	864 516	（10．8\％
86．4\％	7,978 7883 7	8.494 8.448 8	516 565	${ }_{7}^{6.2 \%}$
88．9\％	${ }_{7}^{7,857}$	8.099	243	3．1\％
90．1\％	7，780	${ }_{8} 8,027$	247	3．2\％
91．4\％	7,044 6,743	7.978 7 7	${ }_{964}^{934}$	
923．6\％	${ }_{6,639}^{6,743}$	7，274	${ }_{635} 6$	9．6\％
95．1\％	6，635	7.129	494	7．4\％
96．3\％	${ }_{6}^{6,635}$	7,064 6.769	429	${ }^{6.5 \%}$
98．8\％	${ }_{6.624}$	6，639	15	2．2\％

100．0\％

$\begin{gathered} \text { Percent } \\ \hline \text { Exeedance } \\ \text { Probability } \end{gathered}$	January			RelativeDifference（\％）
	WSIP 2330 Without Proiet	WSIP 2030 With Project	Absolute Difference	
	Monthy Fow（CFF）	Monthly Fiow（CFFS）	（CFF）	
	80,927	80，799	－128	－0．2\％
1．2\％	78，431	${ }^{78.075}$	－356	－0．5\％
2．5\％	${ }^{77,344}$	${ }^{77,381}$	37	0．0\％
3．7\％	77,300	77,302	2	0．0\％
4．9\％	75，237	75，243	6	0．0\％
6．2\％	72，62	${ }^{72,333}$	－269	－0．4\％
7．4\％	70，790	70,785	-4	0．0\％
8．6\％	${ }^{70,523}$	70，022	－501	－0．7\％
${ }^{\text {9，9\％\％}}$	69,052 68905	¢88，937	－115	－0．2\％
11．19\％	68.905 67336	68,718 65.400	－187	－0．3\％
13．6\％	64，542	${ }_{64,756}$	214	0．3\％
14．8\％	64，436	63，593	－843	136
16．0\％	63，319	${ }^{63,235}$	－84	
17．3\％	63，268	62，159	－1，109	
18．5\％	${ }^{61,396}$	58，952	2，444	－4．0\％
19．8\％	${ }^{60,624}$	58，635	1，989	－3．3\％
21．0\％	56，853	55,624	－1，229	
${ }^{22.2 \%}$	56，011	54，977	1，033	
23．5\％	54，936	54,621	－315	－0．6\％
24．7\％	54，579	53，954	－625	－1．1\％
25．9\％	51，205	48.939	－2，266	－4．4\％
27．2\％	48,753	${ }^{48,776}$	－77	－0．2\％
28．4\％	${ }^{46,864}$	${ }^{47,149}$	${ }^{285}$	
29．6\％	${ }^{44,646}$	${ }_{\text {4，}}^{4} \mathbf{4 , 3 5 5}$	－291	
30．9\％	${ }^{41,733}$	37，765	${ }_{-3,968}$	－9．5
32．1\％	39，190	${ }^{37,728}$	－1，462	－3．7\％
33．3\％	38，064	37，654	－410	
$\begin{array}{r}34.6 \% \\ 358 \% \\ \hline\end{array}$	${ }_{\text {38，032 }}$	${ }_{\text {cke }}$	${ }_{\text {－3，633 }}$	
37．0\％	${ }_{\text {35，003 }}$	${ }_{3}^{33,685}$	－1，365	－3．9\％
38．3\％	34，537	31，530		
39．5\％	33，996	31，311	夈	
40．7\％	33，960	29，814	4，146	
42．0\％	${ }^{30,538}$	29，461	－1，077	
43．2\％	30，514	27,487	3，027	－9．9
44．4\％	${ }^{29,845}$	26，458	－3，387	
45．7\％	${ }^{27,892}$	24，451	－3，41	－12．3\％
46．9\％	27，293	23，709	－3，583	
48．19\％	25.965	${ }^{23,225}$	2，741	－10．6\％
4．9．4\％	25，956	22，671	－3，285	${ }^{-12.7 \%}$
50．6\％	${ }^{25,368}$	22.559	－2，809	－11．1\％
51．9\％	${ }^{23,551}$	${ }^{22,058}$	－1，493	－6．3\％
年53．1\％	${ }_{\text {2，}}^{23,115}$	19，332	－3，784	－16．4．9
54．3\％	${ }^{23,003}$	19，1966	${ }^{3.8088}$	16．6\％
55．6\％	22，219	18，955	${ }^{-3,263}$	
年56．8\％\％	${ }_{\substack{21,785 \\ 21279}}^{2,2029}$	18，652	－3，133	
${ }^{58.0 \%}$	${ }_{\text {20，656 }}^{21,279}$	${ }_{\text {17，587 }}^{11,819}$	－	－14．9\％
60．5\％	19，771	16，930	2，841	
61．7\％	18，603	18.543	， 66	
63．0\％	18，547	16，090	－2，457	13．2\％
64.2% 654%	${ }^{18,540}$	${ }^{15,999}$	－2，541	${ }^{-13.77 \%}$
${ }_{6} 6.7 \%$	17，770	${ }^{15,7,700}$	－1，070	－11．6\％
67．9\％	17，654	15，566	2，088	
69．1\％	16，667	15，263	1.403	
70．4\％	15，733	15．016	－717	4．6\％
71．6\％	15，509	15.011	－498	源
72．8\％	15．474	14，969	－505	源
74.1% 753%	15，309	14.968	${ }^{-341}$	－2．2\％
75．3\％	15，112	14，890	${ }^{221}$	－1．5\％
76．5\％	14，733	14，732	－1	0．0\％
77．8\％	${ }^{14.681}$	${ }^{14,522}$	158	1\％
79．0\％ 80.2%	14，201	14，346	145	\％
－	${ }^{13,990}$	14，050	61	\％
－	${ }^{13,787}$	13,806 13594 1	19	0．1\％
84．0\％	${ }_{\text {13，}}^{13,394}$	13,594 13.509	${ }_{205}$	1．5\％
85．2\％	13，250	13，365	115	0．9\％
86．4\％	13，126	13，338	212	1．6\％
87，7\％	13，120	13，087	33	
88．9\％	13，106	13.049	57	\％
90．1\％	${ }^{12,533}$	12，746	213	1．7\％
91．4\％	11，614	11.559	－55	－0．5\％
92．0\％${ }_{938}$	${ }^{11,556}$	${ }^{11,522}$	${ }^{-33}$	－0．3\％
95．1\％	11.068	11，339	271	2．5\％
96．3\％	11，045	11，120	75	0．7\％
97．5\％	10，957	11，053	${ }_{96}^{96}$	0．9\％
988．8\％	¢，727	9，744 $\substack{9,788 \\ \hline}$	${ }_{-88}^{17}$	－${ }_{\text {－}}^{1.3 \%}$

Table SW-17-b

 $-$ -

| |
| :--- | :--- | :--- | :--- |

Table SW－17－b

18.5%	23,883	24,511	628	2.6%
19.8%	23.830	24.376	547	2.3%
21.0%	23,75	24.220	435	1.8%
222.2%	23,783	24,194	410	1.7%

 $\begin{array}{ll}53.1 \% & 20,748 \\ 54.3 \% & 20,759 \\ 55 \%\end{array}$

${ }_{\text {Execeentance }}^{\substack{\text { Per }}}$	$\begin{aligned} & \text { WSIP } 2030 \text { Without } \\ & \text { Proiect } \end{aligned}$	WSIP 2030 With Project	${ }_{\substack{\text { Absoutie } \\ \text { Diference }}}^{\text {a }}$	${ }_{\text {Relative }} \begin{aligned} & \text { Pfference } \\ & \text { \％}\end{aligned}$
Probability	Monthy Foiow（CFS）	Monthly Fiow（CFS）	（CF5）	
				－0．1\％
1．2\％	17，330	17.441	112	
2．5\％	17，285	17，258	－27	
3．7\％	17，232	17，232	1	0．0\％
4．9\％	17，163	17，160	${ }^{-3}$	
6．2\％	177，162	177，150	－12	
7．4\％	177，139	177，139	0	
8．6\％	17，078	17，133	55	
9．9\％	16，982	17，7988	116	
11．19\％	16，999	17，778	159	
${ }^{12.36 \%}$	${ }^{16,903}$	17，039	${ }^{136}$	
13．6\％\％	${ }^{16,762}$	${ }_{1}^{16,999}$	${ }^{157}$	
14．8\％	－ 16.7474	16，8	1158	
16．0\％	${ }^{16,740}$	${ }^{116.879}$	138	
18．5\％	16，720	16，710	－10	
9．8\％	16，707	6，709	2	
21．0\％	16，632	16，676	43	
22．2\％	16，542	16，619	76	
23．5\％	16，390	16，543	152	\％
24．7\％	16，271	16，477	${ }^{206}$	1．3\％
25．9\％	${ }^{16,269}$	16，422	153	0．9\％
27．2\％	${ }^{16,222}$	${ }^{16,4710}$	187	1．2\％
28．4\％	${ }^{16,188}$	${ }^{16,375}$	${ }^{187}$	1．2\％
29．6\％	16，158	16，371	213	1．3\％
30．9\％	16，125	16，188	${ }^{63}$	0．4\％
32．1\％	${ }^{16,083}$	16．085	2	0．0\％
33．3\％	16．001	15，987	－13	－0．1\％
34．6\％	15.841	${ }^{15,974}$	${ }^{133}$	
35．8\％	${ }^{15.837}$	${ }^{15.928}$	91	
37．0\％	${ }^{15.822}$	15.9971	89	
38．3\％	15．761	15．837	${ }^{76}$	0．5\％
40．7\％	15，736	15.761	25	
42．0\％	${ }^{15,588}$	15.751	163	
4．2．2\％	15．510	15，751	${ }^{241}$	
${ }_{4}^{4.7 \%}$	${ }^{151,305}$	15，735	${ }_{430}$	2．8\％
46．9\％	15.287	15.610	323	2．1\％
48．1\％	${ }^{15,248}$	15.599	351	3\％
49．4\％	15，229	${ }^{15,583}$	354	3\％
50．6\％	15，222	15，420	199	1．3\％
51．9\％	15.101	15，395	295	2．0\％
53．1\％	14，974	${ }^{15,380}$	${ }^{406}$	2．7\％
54．3\％	14，944	${ }^{15,304}$	${ }^{360}$	2．4\％
年55．6\％	－ 14.9332	15.287 15.222 1	${ }^{354}$	年\％
56．8\％	${ }^{14,9916}$	${ }^{15,222}$	${ }^{306}$	迆
年58．0\％	${ }^{14,711}$	${ }^{15,182}$	${ }_{5}^{472}$	2\％\％
59．3\％	（14，642	${ }_{\text {15，092 }}^{15,151}$	${ }_{4} 599$	
61．7\％	${ }_{\text {14，576 }}^{14,625}$	－14，974	399	3．7\％
63．0\％	14.549	14，841	292	2．0\％
	14.410	14.806	396	2．8\％
${ }_{6}^{65.47 \%}$	14.242 13.720	${ }_{1}^{14,625}$	${ }_{905}^{499}$	
67．9\％	${ }^{13,585}$	14.576	990	3\％
69．1\％	13，457	14，551	1，094	8．1\％
70．4\％	13，373	14，502	1，129	4\％
71．6\％	12,788	14，410	1，622	
72．8\％	12，580	14，279	1，699	13．5\％
74．1\％	12，365	14，231	1，866	15．1\％
75．3\％	10，782	13，739	2，957	27．4\％
76．5\％	10，191	12，816	2，625	25．8\％
77．8\％	9，793	${ }^{12,532}$	2，740	28．0\％
79．0\％	9，407	${ }^{11,723}$	${ }_{2}^{2,315}$	24．6\％
－	${ }_{\text {9，380 }}^{9,376}$	${ }^{11,717}$	2，337	24．9\％
－ 81.50%	9，3，376	＋11，699	${ }_{2}^{2,293}$	
82．7\％	9，370	${ }^{11,530}$	， 60	11\％
84．2\％	${ }_{9}^{9,1023}$	11,298 10439	35	3\％
${ }_{86.4 \%}$	${ }_{8.934}^{9.022}$	10，378	1.443 1.443	16．2\％
87．7\％	8.837	10，2	1.443	
88．9\％	8，650	9，42	824	
90．1\％	8,424	9,2	833	
91．4\％	8，243	8，988	745	
92．6\％	8.176	8，984	808	
93．8\％	8，139	${ }^{8,768}$	629	
95．1\％	${ }_{8}^{8.077}$	8，759	682	
．3\％	7，779	8，731	952	
97．5\％	－ 7.574	$\begin{array}{r}8.540 \\ 8.50 \\ \hline\end{array}$	965	12．7\％
	7，347	8.504	1，157	15．8\％

Percent Exceedance	WSIP 2 2030 Without Proiet	WSIP 2030 With Project	Absolute Difference	
Probability	Monthy Fow（CFS）	Monthly Flow（CFS）	（CFs）	
0．0\％	30，263	30,2	－11	0．0\％
1．2\％	30，137	${ }^{30,222}$	${ }^{85}$	0．3\％
2．5\％	20，508	${ }_{\text {20，529 }}^{29.929}$	${ }_{88}^{83}$	0．3\％
3．7\％	29，461	${ }^{29,529}$	${ }^{68}$	0．2\％
4．9\％	28.870 28.864	29，352	${ }_{487}^{482}$	${ }_{1}^{1.7 \% \%}$
－ 7.2 \％	28.864 28.399	${ }_{28,937}^{29,351}$	$\underset{539}{487}$	1．7\％
8．6\％	28,311	${ }^{28,660}$	349	${ }_{1} 1.2 \%$
9．9\％	27，912	28，579	668	2．4\％
11．1\％	27,780	${ }^{28,557}$	777	
12．3\％	27,725	28，471	745	
13．6\％	${ }^{277463}$	${ }^{28,337}$	${ }^{774}$	
14．8\％	27，216	27，291	75	
16．0\％	26，390	${ }^{26,179}$	210	
17．3\％	${ }^{25,646}$	${ }^{25,977}$	331	1．3\％
18．5\％	24，994	${ }^{25,056}$	142	0．6\％
19．8\％	${ }^{24,763}$	24，914	152	0．6\％
21．0\％	${ }^{23,847}$	24，904	${ }^{1.057}$	4．4\％
${ }^{22.2 \%}$	${ }^{23,703}$	24，187	484	2．0\％
23．5\％	${ }^{23,699}$	23，272	${ }^{426}$	
24．7\％	${ }_{\text {2，}}^{23,163}$	23,120 22758	${ }^{43}$	
25．9\％	${ }_{2}^{22,758}$	$\begin{array}{r}22,758 \\ \hline 22630\end{array}$	－1	
27．2\％	${ }^{22,582}$	${ }^{22,639}$	${ }^{58}$	
29．6\％	${ }_{22,429}^{22,483}$	${ }_{\text {22，463 }}^{22,26}$	${ }_{34}^{62}$	0．2\％
30．9\％	22，371	22，439	67	3\％
32．1\％	${ }^{22,320}$	22，061	258	1．2\％
			－97	
34．6\％	${ }_{21,547}$	${ }_{2}^{21,436}$	－64	${ }^{-0.5 \%}$
37．0\％	19,727	19，792	65	0．3\％
38．3\％	19，297	${ }^{19,676}$	379	2．0\％
39．5\％	18，643 16893	19，4，366 170020	${ }^{793}$	4．3\％
42．0\％	16，534	16，929	395	2．4\％
43．2\％	14,727	15，753	1,026	7．0\％
44．4\％	14，679	15，550	871	\％
45．7\％	14.448	15，458	1，010	7．0\％
46．9\％\％	${ }^{14.425}$	15，436	1，011	7．0\％
48．1\％	${ }^{14,284}$	${ }^{15.134}$	850	6．0\％
50．6\％	${ }^{14,124}$	${ }^{15,122}$	998	${ }^{7.16 \%}$
51．9\％	13,671	14,875	1，204	8．8\％
－53．19\％	13，610	14，847	${ }^{1,237}$	
${ }^{54.56 \%}$	$13,3,236$ 13.236		－	
56．8\％	13，993	14，489	${ }_{1}^{1,395}$	10．7\％
58．0\％	13，081	14，351	1，270	9．7\％
	12，894			10．8\％
61．7\％	${ }^{12,819}$	14，211	${ }_{1}^{1,391}$	10．9\％
63．0\％	${ }^{12,503}$	14，090	${ }^{1,587}$	12．7\％
64．2\％	12，120	14，004	1，884	15.5
${ }^{654.4 \%}$	11，686	${ }^{13,644}$	1，958	${ }^{16.8 \%}$
${ }^{66.7 \%}$	11，609	${ }^{13,588}$	1，979	17.19
－67．9\％	10，795	13，496	2，702	25．0\％
69．1\％	10，646	13，150	${ }^{2,505}$	${ }^{23.55 \%}$
70．1．6\％	10,295 10.244	13,096 12781 1278	2，801	${ }^{27.2 \%}$
71．8\％	（10，244	12,781 12773 1273	2,537 2.568	22．3\％
74．1\％	9，999	${ }^{12,693}$	${ }_{2}^{2,694}$	26．9\％
75．3\％	9，938	12，389	2，451	24．7\％
76．5\％	9，684	${ }^{12,345}$	2，661	27．5\％
79．0\％	${ }_{9,545}^{9,022}$	（12，2045	${ }_{2.510}^{2.642}$	${ }_{2}^{26.3 \%}$
80．2\％	9.477	11，727	${ }_{2,249}$	
81．5\％	9,089	11，432	2,343	
82．7\％	${ }^{8.865}$	${ }^{11,388}$	2．522	\％
－ $\begin{aligned} & 84.0 \% \\ & 852 \%\end{aligned}$	${ }^{8.638}$	${ }^{11,376}$	2，737	${ }^{31.7 \%}$
－	8.609 8.490	－11，288	${ }_{\substack{2,428 \\ 2,42 \\ \hline \text { 2，}}}$	28．6\％
87．7\％	8,417	10，402	1，985	23．6\％
88．9\％	${ }_{8,166}$	10，322	2，156	26．4\％
90．1\％\％	8，130	10，252	2，122	26．1\％
${ }_{9} 9.2 .4 \%$	${ }_{\text {l }}^{\text {8，719 }}$	${ }_{9,043}^{9,070}$	${ }_{1}^{1,324}$	${ }^{17.12 \%}$
93．\％	7，057	${ }_{8,811}$	1，755	24．9\％
95．1\％	6，903	${ }_{8}^{8.575}$	＋1，672	${ }^{24.2 \%}$
${ }^{97.5 \%}$	${ }_{\substack{6.708 \\ 6.767}}^{\text {cos }}$	8,075 88 8 022	${ }_{\substack{1,314}}^{1,308}$	（19．3\％
98．\％	6，444	7.695	，251	
100．0\％	6．426	7.115	690	10．7\％

Lake Oroville, End of Month Storage

		February		
Percent Exceedanc	WSIP 2330 Without	WSIP 2030 With Proje	Absolute	
Probability	End of Montt Storage	End of Montt Storage	(taf)	ifference (\%)
(\%)		(taf)		
12\%	5,07\%	,0,	,	0.0\%
1.25\%		3,004		
37\%	,028	,041		
	3014	S028	13	0.4\%
6.2\%	009	009		0%
	,097	,097		0.0\%
8.6\%	2987	2987		0\%
9.9\%	2,952	2,952	0	0.0\%
11.1\%	2,951	2,951	0	0.0\%
12.3\%	2,925	2,928	3	0.1\%
13.6\%	2,891	2,925	34	1.2\%
14.8\%	2,890	2,890	0	0.0\%
16.0\%	2,856	2,856		0\%
17.3\%	2,883	${ }_{2}^{2,853}$	0	0.0\%
18.5\%	${ }_{2}^{2,832}$	${ }_{2}^{2,832}$		0.0\%
21.0\%	2.806	2.806	0	0.0\%
22.2\%	2,788	2,788	0	
2.4.70	${ }^{2} 7788$			0.0\%
	${ }_{\text {cole }}^{2,788}$			\%
27.2\%	${ }_{\text {2,788 }}^{\text {2,788 }}$	${ }_{\text {2,788 }}^{2,788}$	0	0.0\%
28.4\%	${ }_{2,788}$	2,788	0	0.0\%
29.6\%	2,788	2,788	0	0.0\%
30.9\%	${ }^{2,788}$	${ }^{2,788}$	0	0.0\%
32.1\%	2,788	2,788	0	0.0\%
33.3\%	${ }^{2,788}$	${ }^{2,788}$	0	0.0\%
34.6\%	${ }^{2,788}$	${ }^{2,788}$	0	0.0\%
35.8\%	${ }_{2}^{2,788}$	${ }_{2}^{2,788}$	0	0.0\%
37.0\%	${ }_{2}^{2,788}$	${ }_{2}^{2,788}$	0	0.0\%
38.3\%	${ }_{2}^{2,788}$	${ }_{2}^{2,788}$	0	0.0\%
39.5\%	${ }_{\text {2,788 }}^{2.788}$	${ }_{\text {2,788 }}^{2,787}$	0	00\%
40.7\%	${ }_{2}^{2,788}$	${ }_{2}^{2,787}$	-1	.0\%
42.0\%	2,787	${ }_{2}^{2,775}$	-12	-0.4\%
43.2\%	2,786	${ }^{2} 7174$	14	-1.15\%
45.7\%		2,697	21	0.8\%
46.9\%	2,660	2,686	26	1.0\%
48.1\%	2,587	2,666	79	3.1\%
49.4\%	2,526	2,596	70	8\%
50.6\%	2.474	2,455	19	
51.9\%	2,461	2.443	18	-0.7\%
53.1\%	2,409	2,335	74	-3.1\%
54.3\%	2,295	2,289	-5	-0.2\%
55.6\%	2,255	${ }^{2,255}$	0	0.0\%
56.8\%	2,253	2,252	-1	-0.1\%
58.0\%	2,251	2,214	${ }^{37}$	-1.6\%
59.3\%	2,093	${ }_{2,192}^{2,19}$	99	4.7\%
60.5\%	${ }_{2}^{2,088}$	${ }_{2}^{2,179}$	91	4.4\%
${ }^{61.7 \%}$	${ }_{2}^{2,078}$	2,117	39	1.9\%
63.0\%	${ }_{2}^{2,063}$	${ }_{2}^{2,066}$	3	0.2\%
${ }^{64.2 \%}$	2,059	2,034	${ }^{26}$	2\%
65.4\%	2,029	${ }^{2,033}$	4	0.2\%
${ }^{66.77 \%}$	${ }_{1}^{2,014}$	${ }_{1}^{2,024}$	10	0.5\%
69.1\%	1,926	+1,923	${ }_{-3}$	${ }^{2.4 .2 \%}$
70.4\%	1,908	1,914	5	3\%
71.6\%	1,884	1,908	24	.3\%
72.8\%	1,855	1,903	49	
74.1\%	1,805	1,903	97	5.4\%
75.3\%	1,765	1,883	117	6.7\%
76.5\%	1,747	1,858	112	6.4\%
77.8\%	1,725	1,841	116	6.7\%
79.0\%	1,697	1.814	118	6.9\%
80.2\%	1,665	1,762	97	5.8\%
81.5\%	1,593	1,759	166	10.4\%
82.7\%	1,549	1,754	205	13.2\%
84.0\%	${ }_{1,522}^{1,57}$	1,591	69	4.5\%
85.2\%	${ }_{1}^{1,467}$	${ }^{1,5688}$	101	6.9\%
${ }^{86.47 \%}$	1.417	1,461	44	${ }^{3.17 \%}$
87.7\%	1,404	1,442	${ }^{38}$	2.7\%
88.9\%	${ }_{1}^{1,402}$	${ }_{1}^{1,431}$	${ }_{72}$	${ }_{5}^{2.15 \%}$
91.4\%	${ }_{1}^{1,238}$	${ }_{1}^{1,357}$	119	9.6\%
92.6\%	1,234	1,287	53	4.3\%
93.8\%	1,198	1,201	2	0.2\%
96.3\%	${ }_{1,091}^{1,080}$	${ }_{1}^{1,164}$	${ }_{73}$	${ }^{-1.7 \%}$
97.5\%	1,088	1,127	39	
98.8\%	1,002	886	115	
100.0\%	628	787	160	25.4\%

		June		
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	${ }^{\text {WSIP }}{ }_{\text {Proioet }}^{230 \text { W.thout }}$	WSIP 2030 With Project	${ }_{\text {Absolut }}$	
Probability	End of Month Storage	End of Month Storage	(titerence	Difference (\%)
(\%)	${ }_{\text {(TAF) }}^{3538}$	${ }_{\text {[TAF) }}^{3538}$		
0.0\%		3.538 388	0	0.0\%
${ }_{2}^{1.5 \%}$	(3.538 3,538	3,538 3,538	\bigcirc	
3.7\%	${ }_{3.538}$	-	0	0.0\%
4.9\%	3,538	3,538	0	0,0
6.2\%	3,538	3.538	0	
7.4\%	3,481	3,475	-6	
8.9\%	3,452	3,431	${ }^{21}$	
9.9\%	3,451	3,421	${ }^{30}$	
11.1\%	3,446	3,402	44	
12.3\%	${ }^{3.418}$	3,391	${ }^{27}$	
13.6\%	${ }^{3,416}$	3,389	-27	-0.8\%
14.8\%	3,397	${ }^{3,371}$	${ }^{-26}$	-0.8\%
16.0\%	3,382	3,364	-18	-0.5\%
17.3\%	3,375	3,313	-62	-1.8\%
18.5\%	3,345	3,284	${ }^{61}$	-1.8\%
19.8\%	3,302	3,241	-61	-1.8\%
21.0\%	3,232	${ }^{3,229}$	$\stackrel{-3}{5}$	-0.1\%
${ }_{\text {22, }}^{22.2 \%}$	- 3,224	- 3,228	5	0.1\%
${ }^{23.4 \%}$	3,190	3,190	0	3\%
25.9\%	3,117	3,147	30	0.9\%
27.2\%	3,107	3,142	35	
28.4\%	3,106	3,125	19	
29.6\%	3,097	3,119	22	
30.9\%	3,090	3,111	21	
32.1\%	3,067	3,104	38	1.2\%
33.3\%	3,055	3,089	${ }^{34}$	1.1\%
34.6\%	3,052	${ }^{3,066}$	15	0.5\%
33.7\%	3,026	${ }^{3,056}$	${ }^{30}$	1.0\%
37.0\%	3,022	3,032	10	0.3\%
边 38.3%	2,955	3,001	46	1.5\%
39.5\%	2,950	2,999	49	1.6\%
40.7\%	2,925	2,998	74	2.5\%
42.0\%	2,870	2,935	65	2.3\%
- $43.2 .4 \%$	${ }_{2}^{2,865}$	2,906	41	1.4\%
${ }^{44.4 \%}$	2.789 2.786 2	${ }_{2}^{2,859}$	70	2.5\%
${ }^{45.79 \%}$	${ }_{\substack{2,786 \\ 2,764}}$	${ }_{2}^{2,816}$	${ }_{27}^{29}$	
${ }^{46.1 \%}$	2,764		27	-
49.4\%	${ }_{\substack{2,754 \\ 2,75}}^{2,784}$	${ }_{2,755}^{2.764}$	40	1.5\%
	2,694	${ }^{2,728}$	${ }^{33}$	1.2\%
51.9\%		2,712	20	
54.3\%	${ }_{2,676}^{2,684}$	${ }_{2,675}^{2,685}$	-1	0.0\%
55.6\%	2,642	2,672	30	1.1\%
	2,568	2,666	98	3.8\%
年58.0\%	2,534	2,600	65	2.6\%
59.3\%	${ }^{2.513}$	2,581	68	2.7\%
	2.418 2.403	2,567	149	5.2\%
63.0\%	2.403	2,532	129	5.4\%
64.2\%	2,394	2.516	123	5.1\%
65.4\%	2,360	2,457	97	4.1\%
66.7\% 67.9%	2,341	2,452	111	4.7\%
67.1\%	${ }_{\text {2,296 }}^{2,2296}$	${ }_{2}^{2,448}$	${ }^{152}$	${ }^{6.6 \%}$
69.1\% 77.4%	${ }_{2}^{2,276}$	2,326	51	${ }_{0}^{2.2 \%}$
71.2\%	${ }_{\substack{2,134 \\ 2,125}}^{\text {2, }}$	${ }_{2}^{2,225}$	91	4.3\%
72.8\%	2,077	2,184	107	5.1\%
74.1\% 75.3%	${ }^{1,995}$	2,087	91	4.6\%
76.5\%	1,956	${ }_{2,061}^{2,060}$	${ }_{105}^{92}$	${ }^{4.4 \%}$
77.8\%	${ }^{1,951}$	2.032	${ }^{81}$	4.2\%
89.0\%	1,937 1.990 1	2,027	90	${ }_{5}^{4.7 \%}$
81.5\%	${ }_{1}^{1,848}$	1,939	91	5.0\%
82.7\%	1,787	1.882	95	5.3\%
84.0\%	${ }^{1,773}$	${ }^{1.816}$	${ }^{43}$	2.4\%
85.2\%	1,749	1,722	${ }^{27}$	-1.6\%
86.4% 88.7%	${ }^{1,597}$	1,703	106	6.6\%
87.7\%	${ }^{1,532}$	1.612	80	5.2\%
${ }^{88.9 \%} 9$	${ }^{1,524}$	1.510	-14	${ }^{0.9 \% \%}$
90.4\%	+1,412	${ }_{1}^{1,430}$	29	2.0\%
92.4.4\%	+1,328	${ }_{1}^{1,370}$	${ }^{42}$	-3.1\%
${ }_{938 \%}^{92.8 \%}$	1,129 1,1226 1	1,229 1,219	${ }_{90}$	- ${ }_{\text {8.7.0\% }}$
95.1\%	${ }_{1}^{1,075}$	1,192	${ }^{118}$	10.9\%
96.3\%	1,062	${ }^{1,083}$	21	1.9\%
${ }_{9}^{97.5 \%}$	991	${ }^{1,0655}$	74	5\%
988.8\% 100.0\%	${ }_{524}^{974}$	${ }_{1}^{1,041}$	${ }_{158}^{67}$	- ${ }_{\text {30,2\% }}^{6.9 \%}$

Percent Exceedance	WSIP 2030 W．thout Proiect	WSIP 2030 With Project	Absoute	Reative
Probability	End of Month Elevation	End of Month Elevation	diferene	Difference（\％）
${ }^{\text {（\％）}}$（\％）\％	（FEET）	（EEET）		
${ }^{0.0 \% \%}$	900	900	0	0．0\％
1．2\％	900	900	0	
2．5\％	900	900	0	
3．9\％	900	${ }_{9900}$	0	${ }^{0.00 \%}$
6．2\％	900	900		0\％
7．4\％	896	896	0	0．0\％
8．6\％	894	${ }_{892}^{893}$	1	迆
11．1\％	894	891		－0．3\％
12．3\％	892	890	2	－0．2\％
13．6\％	892	890	2	
14．8\％	890	889	2	－0．26
16．0\％	889	888		0．1\％
17．3\％	889	885	4	－0．5\％
18．5\％	887	883	4	－0．5\％
19．8\％	884	880	4	－0．5\％
${ }^{21.0 \%}$	879 878	879	0	0．0\％
${ }^{22.25 \%}$	${ }_{876} 88$	${ }_{876}^{879}$	\bigcirc	0．0\％
24．7\％	875	876	1	0．1\％
25．9\％	${ }_{871}^{871}$	873 873	2	0．2\％
27.2% 28.4%	871	873	2	0．3\％
29．6\％	880	${ }_{871}^{872}$	1	${ }_{0}^{0.2 \%}$
30．9\％	869	871	1	，2\％
32．1\％	${ }^{868}$	870	3	
33．3\％\％	867	869	2	0．3\％
隹34．6\％	867 865	${ }_{867}^{868}$	$\frac{1}{2}$	${ }^{0.1 \%}$
35．0\％	${ }_{865}$	${ }_{865}^{867}$	${ }_{1}^{2}$	0．1\％
38．3\％	860	863	3	0．4\％
39．5\％	${ }^{860}$	${ }^{863}$	3	0．4\％
40．7\％	858 854	${ }^{863}$	5	0．6\％
${ }^{42.2 \%} 4$	854	859	4	0．5\％
43．4\％	${ }_{849} 8$	${ }_{854}^{857}$	${ }^{3}$	${ }^{0.3 \% \%}$
45．7\％	${ }_{849} 84$	851 849	${ }_{2}$	${ }^{0.2 \%}$
46．9\％	${ }_{847}^{847}$	849 847	${ }_{1}$	${ }^{0.2 \%}$
${ }^{48.19 \%}$	846	847		0．1\％
49．4\％	${ }_{844}$	${ }_{8}^{847}$	3	0．3\％
51．9\％	${ }_{842}^{842}$	${ }_{844}$	1	0．2\％
年 53.19%	842 841	${ }_{841}^{842}$	0	0．0\％
55．6\％	${ }_{839} 8$	－${ }_{841}^{841}$	${ }_{2}$	${ }^{0.0 \% \%}$
56．8\％	834	840	7	0．8\％
	831 830	836	4	0．5\％
60．5\％	${ }_{824}$	${ }_{834}$	10	${ }^{1.2 \%}$
61．7\％	${ }^{823}$	832	9	1．1\％
63．0\％	822	831	9	1．1\％
64.2% $6.4 .4 \%$	822	830	8	\％
${ }_{\text {c }}^{65.7 \%}$	820 818	${ }_{826}^{826}$	7	－${ }_{\text {l }}^{\text {1．8\％\％}}$
67．9\％	813	${ }_{826}$	12	1．5\％
69．1\％	811	${ }^{816}$	5	0．6\％
70．4\％	807 797	808 806	1	0．1\％
71．6\％	${ }_{791}^{797}$	${ }^{806}$	9	
74．1\％	782	${ }_{792}^{802}$	9	1．2\％
75．3\％	${ }_{778}^{780}$	790		1．2\％
76．5\％	${ }_{778}^{778}$	${ }_{789} 78$	${ }_{8}^{11}$	1．4\％
77．8\％	778 776	786 786	${ }_{9}^{8}$	${ }^{1.19 \%}$
80．2\％	772	${ }_{782}^{786}$	10	${ }^{1.2 \% \%}$
81．5\％	767	777	9	2\％
82.7% 880%	${ }_{7} 71$	771	10	1．3\％
－84．0\％	${ }_{757}^{760}$	764 754	${ }_{-3}^{4}$	－0．6\％\％
86．4\％	740	752	13	1．7\％
877\％	${ }_{731}^{732}$	${ }_{7} 72$	10	1．3\％
88．9\％	${ }_{717} 71$	${ }_{729} 7$	2	0．2\％
${ }^{90.14 \%}$	${ }_{707} 717$	${ }_{7121}$	3	0．5\％
${ }_{92.6 \%}^{9.18 \%}$	707	712 695	${ }_{-12}$	－1．7\％
93．8\％	683	694	11	1．6\％
95．1\％	676 675	6977	14	2．1\％
${ }^{96.3 \%}$	675	677	3	0．4\％\％
98．5\％\％	665 662	675 672	10 10	${ }^{1.5 \%}$
100．0\％	662 578	${ }_{608}^{672}$	${ }_{30}^{10}$	－${ }_{\text {52\％}}$

Lake Oroville, End of Month Area

PercentExceedance		Ocrober		
		WSIP 2030 With ProjectEnd of Month Area	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (ACREE) } \end{aligned}$	$\begin{aligned} & \text { Relative } \\ & \text { Difference } \end{aligned}$
${ }^{\text {0．0．}}$（	（ACRE）			
		13，474	－10	${ }^{-0.8 \%}$
1．2\％	13，474	${ }^{13,250}$	－224	
2．5\％	${ }^{12,951}$	${ }^{12,806}$	${ }^{145}$	
3．7\％	${ }^{12,588}$	${ }^{12,480}$	－108	
4．9\％	${ }^{11,524}$	${ }^{11,524}$	0	
${ }^{6.2 \%}$	${ }^{11,148}$	${ }^{11,295}$	147	1．3\％
7．4\％	${ }^{11,122}$	11，279	157	退
8．6\％	10，764	10，712	－51	
9．9\％	10，517	${ }^{10.682}$	166	${ }^{1.6 \%}$
${ }_{\text {12．3\％}}^{11.1 \%}$	${ }_{9}^{9,8850}$	10，325	${ }^{440}$	－4．4\％\％
13．6\％	9.869	${ }_{9,964}$	${ }_{95}$	
14．8\％	9，830	9，953	${ }^{123}$	
－16．0\％	9，749	9，788	39	
17．3\％	9，605	9，678	73	8\％
－19．8\％	${ }_{9,320}^{9,398}$	${ }_{9,510}^{9,643}$	245 189	${ }_{2.0 \%}^{2.0 \%}$
21．0\％	9，143	9，508	365	4．0\％
22．2\％	9,089	9，431	341	
23．5\％	9，070	9，38	315	
24．7\％	9，043	9，359	316	
25．9\％	9.005	${ }^{9,186}$	181	2．0\％
27．2\％	${ }^{8,942}$	9，134	192	2．1\％
28．4\％	8.912	9，125	${ }^{213}$	2.48
29．6\％	8，781	${ }^{9,108}$	${ }^{327}$	3．7\％
32．1\％	${ }_{8}^{8,703}$	${ }_{9}^{9,073}$	${ }^{370}$	－ 4.3%
33．3\％	${ }_{8,425}^{8,065}$	${ }_{8,861}^{9}$	436	5．2\％
34．6\％	8，388	${ }^{8,858}$	470	5．6\％
年35．8\％	${ }_{8,367}^{8,373}$	8,775 8.722	${ }_{355}^{402}$	4．8\％
37．0\％	${ }_{8,366}^{8,367}$	${ }_{8.654}^{8.722}$	288	3．4\％
39．5\％	8,261	${ }_{8,642}^{8,62}$	380	46\％
40．7\％	8，190	8.6	417	
42．0\％	7，975	${ }_{8,431}$	456	5．7\％
${ }^{43.4 .4 \%}$	（7，722	${ }_{\text {8，}}^{8,314}$	484 592	7．7\％
45．7\％	7.692	8.012	320	4．2\％
46．9\％	7，688	8.010	322	4.29
48．1\％	7，582	7.980	398	5.2
49．4\％	7，553	7，967	414	
	7，550	7，937	387	5．1\％
531．9\％	7，533	7，908	${ }_{3}^{376}$	5．0\％
54．3\％	7.471	${ }_{7}^{7,755}$	${ }_{284}$	3．8\％
55．\％	7，437	7，725	288	3．9\％
年56．8\％	7,393 7340 7	7,657 7653	${ }_{313}^{265}$	${ }_{\text {3 }} 3.3 \%$
	7,340 7,295	7,653 7618 185	${ }_{323}^{313}$	4．3\％ 4
59．3\％	7,295 7,278	7,618 7,592	323 314	4．4\％\％
61．7\％	7,148	7.522	375	5．2\％
－63．0\％	7，133	7,390 7242	$\begin{array}{r}257 \\ \hline 152 \\ \hline\end{array}$	3．6\％
		${ }_{7}^{7,242}$	152	${ }_{5}^{2.1 \%}$
${ }_{6}^{65.7 \%}$	${ }_{6.680}^{6.625}$	7,078	${ }_{398}^{305}$	6．0\％
67．9\％	6.637	7.004	367	
69．1\％	6，625	6，951	326	4．9\％
70．4\％	6，607	${ }^{6.831}$	${ }^{224}$	3．4\％
72．8\％	6,517	${ }_{6,608}^{6,685}$	${ }_{91}$	1．4\％
74．1\％	6，506	6．568	62	1．0\％
75．3\％		6，506	0	0．0\％
76．5\％	6，506	6，506	0	0．0\％
77．8\％	6．504	6，506	1	0．0\％
79．0\％ 80.2%	6，504	6．504	0	0\％
－	6．504	6．504	0	0．0\％
82．7\％	6，502	${ }_{\text {c，}}^{6.504}$	1	0．0\％
84．0\％	${ }_{6}^{6,502}$	${ }^{6,502}$	0	0．0\％
	c，${ }_{\text {6，466 }}^{6,435}$	6,474 6.461	${ }_{2} 7$	0．4\％
87．7\％	${ }_{6,424}^{6,54}$	${ }_{6,436}^{6,4}$	12	0．2\％
88．9\％	6，351	6，289	－61	－1．0\％
91．4\％	${ }_{\text {c，959 }}$	¢，192	${ }_{233}$	3．9\％
92．6\％	${ }_{5}^{5.826}$	6．009	184	3．2\％
${ }^{93.85 \%}$	5，791 5.762	5.839 5773 5	48 -50	0．8\％
96．3\％	5，502	5．591	89	1．6\％
97．5\％	5，336	5，425	89	1．7\％
98．8\％ 100．	5,202 3,879	5.261 4.778	${ }_{80}^{60}$	1．11\％
100．0\％	3，879	4，778	899	23．2\％

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$	February			
	${ }^{\text {WSIP }}$ Proso Wethout	WIP12030 With Project		Relative
	Of Mont A	End of Mooth Area	Difierence	Difference (\%)
(\%)	(ACRE)	(ACRE)		
0.0\%	14,271	14,271	0	0.0\%
1.2\%	14,224	14,224	0	
2.5\%	14,201	14,201	0	
3.7\%	14,103	${ }^{14,146}$	43	
4.9\%	14,058	14,103	45	
6.2\%	14.041	14.041	0	
7.4\%	14.001	14,001	0	0.0\%
8.6\%	11,967	${ }^{13,967}$	0	
9.9\%\%	${ }_{13,851}$	${ }^{13,851}$	0	0.0\%
11.1\%	${ }^{13,847}$	-13,847	O	
${ }^{13.26 \%}$	${ }^{13,6769}$	${ }_{1}^{13,761}$	${ }^{9} 12$	
12.6\%	${ }^{13,649}$	${ }^{13,761}$	1	\%
16.0\%	13,531	${ }_{\text {13,531 }}$	0	0.0\%
3\%	13,521	${ }^{13,521}$	0	0.0\%
18.5\%	13,451	13,451	0	
19.8\%	13,387	13,387	0	0.0\%
21.0\%	13,364	13,364	0	0.0\%
22.2\%	13,304	${ }^{13,304}$	0	0.0\%
23.5\%	${ }^{13,304}$	13,304	0	0.0\%
24.7\%	${ }^{13,304}$	13,304	0	0.0\%
25.9\%	13,304 13	${ }^{13,304}$	0	0.0\%
27.2\%	${ }^{13,304}$	13,304	0	0.0\%
28.4\%	${ }^{13,304}$	${ }^{13,304}$	0	0.0\%
29.6\%	${ }^{13,304}$	${ }^{13,304}$	0	0.0\%
30.9\%	${ }^{13,304}$	13,304 13304 1	0	
32.1\%	${ }^{13,304}$	${ }^{13,304}$	0	0.0\%
33.3\%	13,304	${ }_{\text {13,304 }}$	0	0.0\%
34.6\%	13,304	${ }^{113,304}$	0	
35.8\%	${ }^{13,304}$	${ }^{13,304}$	0	
37.0\%	${ }^{13,304}$	${ }^{13,304}$	O	.0\%
39.5\%	113,304	113,304	0	0.0\%
40.7\%	13,304	13,301	- 3	
42.0\%	${ }^{13,301}$	13,261	40	-0.3\%
44.4\%\%		13,1958 13.058	48	
45.7\%	12,928	12,999	71	0.6\%
46.9\%	12,878	12,964	86	0.7\%
48.1\%	12,634	${ }^{12,898}$	264	2.1\%
49.4\%	12,430 12.259	-	${ }^{233}$	- 1.9%
50.9\%	-	${ }_{\text {l }}$	-61	${ }^{-0.5 \%}$
53.1\%	12,042	11,789	-254	-2.1\%
54.3\%	11,637	11,617	-20	-0.2\%
55.6\%	11,488 111480	11,489 111476	1	0.0\%
年56.8\%	11,480 11,472	11,476 11336	137	- ${ }_{\text {- }}^{\text {- } 20 \%}$
${ }^{58.0 \%}$	11,42 10.883 1808	${ }^{111,256}$	-	-1.4\%
60.5\%	10,865	11,206	342	
61.7\%	329	10,974	145	
63.0\%	10,772	10.784	12	0.1\%
64.2\%	10,757	10.661		-0.9\%
${ }_{6}^{65.7 \%}$	${ }^{10.0686}$	10,661 10.624	15 37	0.4\%
67.9\%	10,297	10,471	174	1.7\%
69.1\%	10,258	10,247	-11	0.1\%
70.4\%	10,193	10,213	20	0.2\%
71.6\%	10,102	10,192	90	9\%\%
72.8.1\%	${ }_{\substack{9,992 \\ 9,808}}$	10,175 10.172	183 364	- ${ }_{\text {3,7\%\% }}^{\text {3,7\% }}$
75.3\%	${ }_{9,659}^{9.008}$	10,098	${ }_{439}$	${ }_{4.5 \%}$
76.5\%	9,589	10,006	418	4.4\%
77.8\%	9,506	9.940	434	4.6\%
79.0\%	9,402	9,842	440	4.7\%
80.2\%	9,276	9,645	369	4.0\%
81.5\%	8,979	9,634	655	7.3\%
82.7\%	8,796	9,616	820	${ }_{\text {9,3\% }}^{\text {9.3\% }}$
${ }^{845.2 \%}$	${ }_{8,456}^{8,685}$	${ }_{8,874}^{8,969}$	${ }_{418}^{285}$	4.9\%
86.4\%	8,250	${ }_{8}^{8,432}$	182	${ }_{2}^{2.2 \%}$
${ }^{88} 8.70$	${ }_{8184}^{8,195}$		${ }^{158}$	${ }_{1}$
80.9\%			129	1.5\%
91.4\%	7,505	${ }_{\text {7,999 }}$	494	6.6\%
92.6\%	7,487	7,708	221	\%
93.\%	7,340	7,349	9	\%
95.1\%	7,297	7.229	${ }^{68}$	-0.9\%
96.3\%	${ }^{6,896}$	7,198	302	4.4\%
97.5\%	6,882	7,046	163	${ }^{2.4 \%}$
98.8\%	$\begin{array}{r}6.520 \\ \hline 4700\end{array}$	5,994 5.511	- ${ }^{-527}$	-8.1\%
100.0\%	4,700	5.511	810	17.2\%

Perce	June			
	WSIP 2030 W. Whthout Proiet	WSIP 2030 With Project	Absolute	
$\underset{\substack{\text { Probability } \\ \text { (of) }}}{ }$	${ }_{\text {End of M Mont Afea }}^{\text {(ACRE) }}$	End of Month Area (ACRE)	Dificeree)	Difference (\%)
${ }_{0}^{0.0 \%}$		${ }_{15}$		0.0\%
1.2\%	15.804	15.804	O	
2.5\%	15,804	15.804	0	
3.7\%	15,804	15,804	0	
4.9\%	804	15,80	0	
. ${ }^{6.2 \%}$	${ }^{15.804}$	${ }^{15.884}$	0	0.0\%
7.4\%	613	15.5	21	-0.1\%
${ }_{\text {9.9\% }}^{\text {8.9\% }}$	${ }_{\text {15,514 }}^{15.515}$	${ }^{15.446}$	-691	-0.4\%
11.1\%	15.498	15,351	-147	-0.9\%
123\%	15,403	15,313	-90	-0.6\%
13.6\%	15,397	15,308	-89	-0.6\%
14.8% 16.0%	${ }^{15,333}$	${ }^{15,248}$	-86	6\%
- 16.0%	${ }^{15,284}$	${ }^{15,224}$	-60	-
18.5\%	${ }_{\text {15,159 }} 15.259$	14,956	${ }_{-203}$	-1.3\%
19.8\%	15,017	14.815	-203	-1.3\%
21.0\%	${ }^{14,783}$	${ }^{14,7772}$	-10	-0.1\%
${ }^{22.2 \%}$	14,756 14.644	${ }_{1}^{14,771}$	15	0.1\%
- 23.5%	14,644 14.590	${ }^{14,644}$	${ }_{31}$	0.0\%
24.7\%	14.590 14.401	14,620 14.500	31 99	0.7\%
${ }^{2} 27.2 \%$	${ }_{1}^{14,367}$	${ }_{1}^{14.4884}$	118	0.7\%\%
28.4\%	${ }^{14,363}$	14,427	63	
29.6\%	14,334	14,408	75	
- $\begin{aligned} & 30.9 \% \\ & 32.1 \%\end{aligned}$	14,312	${ }^{14,381}$	69	0.5\%
33.3\%	14,193	14,307	114	0.8\%
34.6\%	14,183	14,231	48	0.3\%
35.8\%	14,096	14,197	101	0.7\%
笛37.0\%	${ }^{14,085}$	14,119	34	0.2\%
39.5\%	${ }_{\text {13, }}^{13,846}$	${ }^{14,0008}$	152 162	1.2\%
40.7\%	13,760	14,005	246	1.8\%
42.0\%	13,576 13560 1	13,794 13,696	${ }_{1}^{217}$	${ }_{1}^{1.6 \%}$
43.2\% 44.4	${ }^{13,560}$	$\begin{array}{r}13,966 \\ 1354 \\ \hline 1\end{array}$	${ }^{136}$	1.0\%
${ }^{44.57 \%}$	-13,307	13,540 13,397	${ }_{98}^{233}$	1.7\%
46.9\%	13,223	13,313	90	0.7\%
48.19\%	13,190	13,223	33	0.2\%
49.4\%	13.062 12.992 1292	13,195 13,103 1	133 111	- 1.0%
51.9\%	112,985 12,985 18	${ }_{\text {13,251 }}^{13,03}$	${ }_{66}$	0.5\%
53.1\%	${ }^{12,2959}$	12.960		0.0\%
年 54.3%			${ }^{-3}$	0.0\%
56.8\%	${ }_{12,571}^{12,18}$	${ }^{112,899}$	${ }_{328}^{988}$	2.8\%
58.0\%	12,459	12,677	${ }^{218}$	1.7\%
	${ }^{12,388}$	${ }^{12,614}$	${ }^{226}$	1.8\%
- 60.5%	12,071 12,022	12.569 12.469	${ }_{447}^{498}$	4.1\%
63.0\%	12,022	12.451	429	3.6\%
64.2\%	11,991	12,399	408	3.4\%
65.4\%	11,878 111810	12,203 12185 12185	325 375	2.7\%
${ }^{66.7 \%}$	${ }^{11,810}$	12,185 12171 1	${ }_{530}^{375}$	${ }_{3}^{3.2 \%}$
- 67.9%	${ }^{11,641}$	12,171 111755 1	530 189	4.6\%
- 70.4%	${ }^{11,1,465}$	11,755 11,448 18	189 31	
71.6\%	11,036	${ }^{11,376}$	340	3.1\%
72.8\%	10.825 10.519	11,223	398	3.7\%
74.3\%	- 10.519 .49	10.859 10,782	340 342	${ }_{3}^{3.2 \%}$
76.5\%	10,373	10,764	391	3.8\%
77.8\%	10,351	10,654	303	2.9\%
79.0% 802%	10,299 10.127	10,636 10,507 10,	${ }_{381}^{337}$	${ }^{3.3 \%}$
81.5\%	9,966	${ }^{10,308}$	342	3.4\%
82.7\%	9,739	10,093	354	3.6\%
84.0\%	9,688	9,849	161	1.7\%
85.2\%	9,599	9,497	-102	-1.1\%
86.4\%	8.994	9,425	${ }^{431}$	4.8\%
- 87.7%	${ }_{8,693}^{8,725}$	9,057	${ }^{332}$	3.8\%
90.1\%	8,227	${ }_{8,345}^{8,95}$	118	1.4\%
91.4\%	7,879	8.553	174	2.2\%
92.6\%	7.872	7.470	-402	- 5.5 .1\%
${ }^{935.1 \%}$	7,054 6.826	li, 7 7, 714	${ }_{488}^{373}$	${ }_{710}^{5.3 \%}$
96.3\%	${ }_{6}^{6,775}$	6.860	86 315	1.3\%
97.5\%		${ }_{6}^{6.788}$	${ }_{3}^{315}$	4.9\%
100.0\%	$\underset{\substack{6,394 \\ 4,175}}{ }$	${ }_{\substack{6,969 \\ 4,979}}^{6}$	${ }_{804}^{293}$	${ }_{\text {c }}^{4.6 .9 \%}$

Figure SW-21-b
Feather River at Thermalito Low Flow Channel, Monthly Flow

		June		
Percent Exceedance	WSIP 2030 Without Proiect	WSIP 2030 With Project	Absolute Difference	Relative
Probability	Monthy Fow (CFS)	Monthy Fiow (CFS)	(CFF)	
0.0\%	700	700	0	0.0\%
1.2\%	700	700	0	0.0\%
2.5\%	7700	700	0	0.0\%
3.7\%	7700	700	0	0.0\%
4.9\%	700 700	700 700	0	${ }_{\text {en }}^{0.0 \%}$
- 7.4 . 4 \%	700 700	700 700	\bigcirc	0.0\%
8.6\%	700	700	0	0.0\%
${ }^{\text {919.9\% }}$	700	700	0	0.0\%
${ }_{\text {l }}^{\text {11.2.1\% }}$	700	${ }_{700}^{700}$	0	0.0\%
13.6\%	700	700	0	0.0\%
14.8\%	700	700	0	
16.0\%	${ }_{7} 700$	700	0	
17.3\%	700	700	0	
18.5\%	700	700	0	0.0\%
19.8\%	7700	7700	0	0.0\%
${ }_{22.2 \%}$	700	700	0	0.0\%
23.5\%	700	700	0	0.0\%
24.7\%	${ }_{700} 70$	${ }_{7}^{700}$	0	0.0\%
25.9\%	${ }_{700} 70$	${ }_{700}$	0	0.0\%
- 27.2 \% 28.4	7700	${ }_{700}^{700}$	0	0.0\%
${ }^{28.4 .9 \%}$	700 700	${ }_{700}^{700}$	0	-
30.9\%	700	700	0	0.0\%
32.19\%	700	700	0	0.0\%
334.6\%	700	700	0	0.0\%
35.8\%	700	700	0	0
37.0\%	700	700	0	
38.3\% ${ }_{\text {3, }}$	700	700	0	0.0\%
${ }^{39.7 \%}$	700 700	700 700	\bigcirc	0.0\%
42.0\%	700	700	0	0.0\%
43.2\%	${ }_{7}^{700}$	${ }_{7} 700$	0	0.0\%
${ }^{44.4 \%}$	700	700	0	0.0\%
45.7\%	700	700	0	0.0\%
${ }^{46.9 \%}$	700	${ }_{700}$	0	0.0\%
49.4\%	700	700	0	0.0\%
50.6\%	700	700	0	0.0\%
51.9\%	7700	700	0	0.0\%
54.3\%	${ }_{700}$	700	0	0.0\%
55.6\%	700	700	0	0.0\%
	7700	7700	0	0.0\%
59.3\%	700	${ }_{700}^{700}$	0	0.0\%
60.5\%	700	700	0	0.0\%
61.7\%	700	700	0	0.0\%
-63.0\%	700	700	0	0.0\%
${ }^{64.24 \%}$	700 700	700 700	0	0.0\%
66.7\%	700	700	0	0.0\%
67.9\%	${ }_{7}^{700}$	700	0	0.0\%
69.19\%	700	${ }_{7}^{700}$	0	0.0\%
70.4\%	700 700	700 700	0	-0.0\%
72.8\%	700	700	0	0.0\%
74.1\%	7700	700	0	0.0\%
75.3\%	${ }_{700} 70$	700		0.0\%
76.5\%	700 700	700 700	\bigcirc	0.0\%
79.0\%	700	700	0	0.0\%
-	${ }_{700}$	700	0	0.0\%
${ }^{81.5 \%}$ 827\%	${ }_{700}^{700}$	${ }_{700}^{700}$	0	${ }^{0.00 \%}$
84.0\%	700	700	0	0.0\%
85.2\%	7700	700	0	0.0\%
- 86.4%	700 700	700	0	0.0\%
88.9\%	${ }_{700}$	700 700	0	0.0\%
90.1\%	700	700	0	0.0\%
91.4\%	700	700	0	0.0\%
92.6\%	7700	${ }_{7}^{700}$	0	0.0\%
${ }_{\text {9 }} 93.1 \%$	700 700	${ }_{700}$	0	0.0\%
96.3\%	700	700	0	0.0\%
97.5\%	700	700	0	0.0\%
988.8\%	700 700	${ }_{700}^{700}$	0	-0.0\%

Figure SW-22-b
Feather River below Thermalito, Monthly Flow

		Ociober		
Percent Exceedance	WSIP 2 230 Proiect Without	WSIP 2030 With Project	Abssolue Difference	Relative
Probability	Monthy Flow (CFS)	Morthy Flow(CFSS)	(CFS)	
0.0\%	4,620	9,522	4,902	106.1\%
1.2\%	4,000	4.000	0	0.0\%
2.5\%	4,000	4,000	0	0.0\%
3.7\%	4,000	4,000	0	0.0\%
4.9\%	4,000 4000	4,000 4,000	0	${ }_{\text {en }}^{0.0 \%}$
7.4\%	4,000	4,000	0	0.0\%
8.6\%	4,000	4,000	0	0.0\%
9.9\%	4,000	4,000	0	0.0\%
12.3\%	4.000	4,000	0	0.0\%
13.6\%	4,000	4,000	0	0.0\%
14.8\%	4,000	4.000	0	
16.0\%	4,000	4,000	0	
17.3\%	4,000	4,000	0	
18.5\%	4,000	4,000	0	0.0\%
19.8\%	4,000	4,000	0	0.0\%
${ }_{22.2 \%}$	4,000	4,000	0	0.0\%
23.5\%	4,000	4,000	0	0.0\%
24.7\%	4.000	4.000	0	0.0\%
25.9\%	4,000 4000	4.000	0	0.0\%
27.2\%	4,000 4000	4,000 4000	0	0.0\%
${ }^{28.4 \%}$ 20.6\%	${ }_{4}^{4,0000}$	4.0000	\bigcirc	0.0\%\%
30.9\%	4,000	4,000	0	0.0\%
32.19\%	4,000	4,000	0	0.0\%
34.6\%	4,000	4,000	0	0.0\%
35.8\%	4,000	4,000	0	0.0
退37.0\%\%	4,000	4,000	0	0.0\%
39.5\%	4,000	4,000	0	0.0\%
40.7\%	4,000	4.000	0	0.0\%
42.0\%	4,000	4,000	0	0.0\%
43.2\% 44.4	4,000	4,000	0	0.0\%
${ }_{45.7 \%}^{4.4 \%}$	4,000	4,000	\bigcirc	0.0\%
46.9\%	4,000	4,000	38	0.0\%
${ }_{4}^{48.19 \%}$	- $\begin{aligned} & \text { 4,000 } \\ & 3\end{aligned}$	3,962	-38	-1.0\%
	3,897 3 3		-162	-4.2\%
51.9\%	${ }_{\text {3,588 }}^{3.699}$	${ }_{\substack{3.670 \\ 3.617}}$	${ }_{32}$	-0.9\%
	3,585	3,328	-257	-7.7\%
54.3\%	3.580 3.509	3,328 3.114	- ${ }_{-394}$	- -7.0%
56.8\%	${ }_{3}^{3,185}$	${ }_{3} \mathbf{0} 067$	-118	-3.7\%
	+2,603	2,971	367	14.1\%
60.5\%	${ }_{2,439}^{2,502}$	${ }_{2,790}^{2,260}$	${ }_{351}^{324}$	13.0\%\% 14.4%
61.7\%	2,354	2.679	324	13.8\%
63.0\%	2,132	2.676	544	25.5
64.2\%	2,056	2.605	549	26.7\%
${ }^{654.4}$	2,025	2,520	495	24.5\%
㐌667\%	1,848 1,781 1	${ }_{\text {2,280 }}^{2,280}$	${ }^{431}$	23.3\%
69.1\%	${ }_{1}^{1,747}$	${ }_{2,083}^{2,08}$	${ }_{336}$	${ }^{24.2 \%}$
70.4\%	1,723	2,054	${ }^{331}$	19.2\%
71.6\%	1,700 17 1700	-	${ }_{17}^{312}$	18.3\%
72.8\%	1,700 17 1700	- $\begin{aligned} & 1,717 \\ & 1,712\end{aligned}$	17 17	1.0\%
74.3\%	1,700 1,700	1,712	12	0.7\%
76.5\%	1,700	${ }_{1}^{1,700}$	0	0.0\%
77.8\%	- 1.700	1,700	0	0.0\%
-79.0\%	1,700 1,541	1,700 1,688 1	$\stackrel{0}{147}$	0.0\%
81.5\%	1.539	1.649	110	7.1\%
82.7% 840%	1,511	(1,425	-86	-5.7\%
85.2\%	${ }_{1}^{1,381}$	${ }_{1,318}^{1,346}$	-108	-7.4\%\%
86.4\%	${ }_{1,357}$	1,210	-146	-10.8\%
87.7\%	1,264	1,200	-64	-5.1\%
${ }^{88.9 \%}$	1,200 1,200	1,200	${ }^{119}$	0.0\%
91.4\%	1,200	1.013	-187	-15.6\%
92.6\%	1,1900	972	-218	-18.3\%
${ }^{93.5 \%}$	1,074	${ }^{957}$	-116	-10.8\%
${ }_{96.3 \%}^{95.1 \%}$	1,064 1,038 1098	${ }_{901}^{901}$	-163	-15.3\%
97.5\%	900	900	0	0.0\%
98.8\%	990	900	0	0.0\%
100.0\%	900	900	0	0.0\%

Table SW-22-b

Table SW-22-b
Ier below hhemalto Monthy Flow
robability fef Exeedance

August				
Percent Exceedance	WSIP 2030 Without Proiect	WSIP 2033 With Project	Absolute Difference	Relative
Probability	Monthy Foww (CFS)	Monthl Flow (CFSS)	(CFS)	
0.0\%				-1.9\%
1.2\%	8.104	${ }^{\text {8.003 }}$	101	
2.5\%	8.002	7,906	-96	
3.7\%	7,814	7.852	38	
4.9\%	7,800	7,786	-14	
6.2\%	7,795	7,706	-89	
7.4\%	7,795	7,692	103	
8.6\%	7,763	7,681	-81	-1.0\%
9.9\%	7,731	7,681	-50	-0.6\%
11.1\%	7,721	${ }_{7}^{7,676}$	-45	-0.6\%
${ }^{12.3 \%}$	7,716	7,635	-81	-1.0\%
13.6\%	${ }_{7}^{7,690}$	7,564	-126	-1.6\%
14.8\%	${ }_{7}^{7,686}$	7,535	位	
16.0\%	${ }_{7} 7.639$	7.501	-159	
185\%	7,600	7,444	-194	
18.5\%	7,594	7,400	-194	
19.8\%	${ }_{7}^{7.592}$	${ }_{7}^{7,333}$	-239	
${ }_{2}^{22.2 \%}$	${ }_{7,527}^{7.579}$	${ }_{7}^{7,241}$	${ }_{-287}^{-248}$	
23.5\%	7,452	7.151	-301	
24.7\%		7,112	${ }^{234}$	
25.9\%	7,301	7,105	-196	
27.2\%	7,259	6,840	419	5.8\%
28.4\%	7,235	6,792	443	1\%
29.6\%	7,205	6,745	459	
30.9\%	7,193	6,745	448	-6.2\%
32.1\%	7,192	6,715	-478	${ }_{6}^{6.6 \%}$
33.3\%	7,107	6.569	-538	-7.7.\%
34.6\%	7,058	${ }^{6,545}$	-514	-7.3\%
${ }^{35.8 \%}$	7,013	6,397	-616	-8.8\%
37.0\%	7,000	${ }_{6}^{6,385}$	-616	-8.8\%
- 38.3%	${ }^{6,986}$	${ }_{6}^{6,328}$	-658	-9.4\%
39.5\%	6.963	6,212	-754	-
40.7\%	6,914	6,159	-734	-10.9\%
42.0\%	${ }_{6}^{6,497}$	5,941	-39	
${ }_{4}^{43.4 \%}$		${ }_{5.856}^{5.876}$	-610	-9.4\%
45.7\%	6,243	${ }_{5,840}$	-403	
46.9\%	6,139	5,662	-47	
48.1\%	6,099	5.597	-502	
49.4\%	6,071	5,526	545	
50.6\%	6,055	5,491	564	3\%
51.9\%	5,971	5,466	505	-8.5\%
53.1\%	5,932	5,252	680	-11.5\%
54.3\%	5,794	5,231	-563	-9.7\%
55.6\%	5.586	5,122	464	-8.3\%
56.8\%	5,394	5,115	-279	-5.2\%
58.0\%	5,206	5,057	-149	-2.9\%
59.3\%	4,841	4,974	${ }^{133}$	2.8\%
60.5\%	4,726	4,955	229	4.8\%
${ }^{61.7 \%}$	4,509	4.867	358	7.9\%
- 63.0 \%	4.462	4,796	${ }^{335}$	7.5\%
-64.2\% ${ }^{6.4 .4 \%}$	4,449	4,283	-167	\%
-65.4\%	${ }_{4.213}^{4,397}$	-	-198	
-667.9\%	4.826 3	(3,431	-	
67.1\%	-3.826 3,350		-146	-4.3\%
70.4\%	2,992	3,136	144	
71.6\%	2,796	3,092	296	
72.8\%	2,542	2,995	452	
74.1\%	2,538	2.968	430	9\%
75.3\%	2,248	2,898	651	9\%
76.5\%	${ }_{2,122}^{2,120}$	2,735	612	9\%
77.8\%	2,120	2,607	487	
79.0\%	${ }_{2}^{2,093}$	2,500	407	9.4\%
-	2,092 1092	2,500	408	
82.7\%	${ }_{1}^{1,940}$	${ }_{1,662}^{1,69}$	${ }^{278}$	-14.3\%
84.0\%	1,684	1,661	-23	-1.4\%
85.2\%	1,652	1,469	184	-11.1\%
86.4\%	${ }^{1,606}$	${ }^{1,328}$	${ }^{278}$	17.3\%
87.7\%	(1,582	${ }_{1}^{1,232}$	- 307	
88.9\%	-	${ }_{1,104}^{1+17}$	-	-19.3\%
90.17\%	${ }_{1}^{1,369}$	${ }_{1}^{1,104}$	${ }_{-235}$	隹
91.4\%	${ }_{1}^{1,375}$	${ }_{1}^{1,090}$	-186	-14.6\%
93.8\%	${ }_{1}^{1.092}$	${ }_{1,088}^{1,090}$	-4	-0.4\%
95.1\%	1,069	1,000	69	
96.3\%	1,000	1,000	0	\%
5\%	,000	1.000	0	
98.8\% 100.0\%	${ }_{973}^{990}$	912	-77	- 7.8

Figure SW-23-b
eather River at Mouth, Monthly Flow

Table SW-23-b Riverat Wouth, Monthy

| |
| :--- | :--- | :--- | :--- | :--- |

Table SW-23-b Riverat Wouth, Monthy

		Fobruary		
Percent Exceedance		WSIP 2030 With Project	Abssolute Difference	Relative
	Monthly Fow (CFS)	Monthly Fow (CFS)	(cFs)	fierence (\%)
0.0\%	80,642	82,314	${ }_{1}^{1,672}$	2.1\%
1.2\%	65.630	65.634	3	0.0\%
2.5\%	56,317	56,321	4	0.0\%
3.7\%	51,494	51.507	13	0.0\%
4.9\%	47.865	47.867	1	0.0\%
6.2\%	44,257	46,091	1,835	4.1\%
7.4\%	${ }^{42,023}$	4,2,212	1,190	${ }^{2.8 \%}$
8.9\%	40,389	${ }^{42,542}$	2,152	5.3\%
9.9\%	39,172	${ }^{40,394}$	${ }_{1}^{1,222}$	${ }_{3}^{3.1 \%}$
${ }^{11.12 \%}$	37,686 36,280	39,165 36,266	1,478 ${ }_{\text {- }}$	3.9\%
13.6\%	36,018	36,013	-5	0.0\%
14.8\%	${ }^{34,173}$	${ }^{34,175}$	2	
16.0\%	34,123	34,123		
17.3\%	${ }^{31,953}$	31,22	751	
18.5\%	31,195	${ }^{31,043}$	-151	-0.5\%
19.8\%	30,424	29,872	-552	
21.0\%	29,873	29,107	-766	-2.6\%
22.2\%	${ }^{27,737}$	${ }^{28,581}$	944	3.4\%
23.5\%	${ }^{27,340}$	27,639	299	1.1\%
24.7\%	26,290	${ }^{27,341}$	1,051	4.0\%
25.9\%	24,391	26,292	1,901	7.8\%
27.2\%	${ }^{24,256}$	${ }^{25,638}$	1,382	5.7\%
28.4\%	${ }^{22,985}$	${ }^{22,987}$	2	
29.6\%	20,646	${ }_{\text {2, }}^{22,786}$	2,139	10.4
30.9\%	20,148	${ }^{20,647}$	499	2.56
32.1\%	19,083	${ }^{18,901}$	-182	-1.0\%
-33.3\%	17,994	${ }^{18,486}$	492	2.7\%
34.8\%	${ }^{17,945}$	${ }^{17,991}$	$\stackrel{46}{2}$	0.3\%
37.0\%	14,880	14,882	1	0.0\%
38.3\%	14,523	14,555	32	0.2\%
	${ }^{13,771}$	${ }^{13,270}$	-501	-3.6\%
42.0\%	11,799	${ }_{1}^{11,801}$	2	0.0\%
43.2\%	11.474	11,674	200	1.7\%
44.4\%	11,079	11,476	397	
45.7\%	10,510	11,080	570	5.4\%
46.9\%	10,438	10,439	1	0.0\%
48.19\%	${ }_{\text {l }}^{10.148}$	- ${ }_{\text {10,150 }}^{8,712}$	$\stackrel{2}{-9}$	-0.0\%
50.6\%	${ }_{8,047}$	${ }_{8,048}$	1	0.0\%
51.9\%	7,887	${ }_{8}^{8.034}$	${ }^{146}$	1.9\%
53.19\%	7,856	7,884	${ }^{28}$	0.4\%
55.6\%	7,54 7,593	7,858 7427	${ }_{1}^{105}$	- 1.40%
56.8\%	7,383	7.388	,	0.1\%
58.0\%	-6,896	6,899	3	0.0\%
㐌 69.5%		6,659 6.515	1	0.0.0\%
61.7\%	6,236	${ }_{6,237}^{6.237}$	1	0.0\%
63.0\%	${ }_{6}^{6.027}$	6.029	1	
	5,909	5.895	14	-0.2\%
${ }_{66.7 \%}^{65.4 \%}$	${ }_{\text {5,482 }}$	${ }_{\text {5,483 }}$	2	0.0\%
67.9\%	5.471	5.471	0	0.0\%
69.1\%	5,266	5.283	17	0.3\%
70.4\%	5,220	5.221	1	0.0\%
71.6\%	5,109	4.847	-262	-5.1\%
72.8\%	4,843	4,828	-15	-0.3\%
74.1\%	${ }^{4,823}$	4,566	${ }^{257}$	-5.3\%
75.5\%	4,5655	4.263	-302	${ }^{-6.6 \%}$
77.8\%	${ }_{4}^{4,141}$	4.132	-916	${ }_{-0.2 \%}^{-2.7 \%}$
79.0\%	3,367	${ }_{\text {3,367 }}$	0	0.0\%
80.2\%	${ }^{3,168}$	3,175	6	0.2\%
81.5% 887%	2,951 2,739	2,949 2.740	-2	-0.1\%
84.0\%	${ }_{2,630}^{2,739}$	2,740 2.631	1	-
85.2\%	2.571	2.574	3	0.1\%
${ }^{86.4 \%}$	${ }_{2}^{2,457}$	2,459	1	0.1\%
88.9\%	ene ${ }_{\text {2,254 }}$	${ }_{2,265}^{2,264}$	11	0.5\%
90.1\%	2,231	${ }_{2}^{2,244}$	14	0.6\%
91.4\%	1,797	1,913	116	6.5\%
92.6\%	1,703	1,700	-3	-0.2\%
93.8\%	1,700	1,700	0	0.0\%
95.19\%	1,700	${ }^{1,685}$	-15	-0.9\%
-96.3\% 9	1,692	1,534	${ }^{-158}$	-9.9\%
98.8\%	${ }_{900}$	900	\bigcirc	0.0\%
100.0\%	900	900	0	0.0\%

Table SW－23－b Riverat Wouth，Monthy

reent	WSIP 2030 Without	WSIP 2030 With Project	${ }_{\text {a }}^{\substack{\text { Absoute } \\ \text { Difference }}}$	ive
Erocabality	Monthly Foied（CFS）	Montly Flow（CFS）	（cFs）	
0．0\％	9，329	9，360	31	0．3\％
1．2\％	9，278	${ }^{9,125}$	－152	－1．6\％
2．5\％	${ }^{9,0958}$	8，987	－112	${ }^{-1.2 \%}$
3．7\％	9，058	8，890	－169	－1．9\％
4．9\％	8.906 8.790	8,849 8.638	－56	－0．0．7\％
${ }^{6.2 \%}$	8,790 8,599	8．638	－152	－1．7\％
8．6\％	8.580	${ }_{8,516}$	－64	－0．7\％
9．9\％	8.575	8,495		－0．9\％
11．1\％	${ }^{8.538}$	${ }_{8,472}$	－66	
12．3\％	${ }_{8,521}$	${ }_{8,400}$	－121	
13．6\％	${ }_{8,491}$	8，389	－102	
14．8\％	${ }_{8,487}$	8,33	－158	
16．0\％	8.418	8,215	-203	－2．4
17．3\％	8.414	8，158	－255	－30
18．5\％	8.406	8,109	－297	－3．5\％
19．8\％	8，309	${ }_{8}^{8,055}$	－254	－3．1\％
${ }^{21.0 \%}$	8,301 8.211	7，973	${ }^{-328}$	－4．0\％
${ }_{2}^{22.5 \%}$	${ }_{8,151}^{8,211}$	7,859 7,870	－282	${ }_{\substack{3.4 \% \\-3.4 \%}}$
24．7\％	8，150	7.846	－304	－3．7\％
25．9\％	8，138	7.811	－327	－4．0\％
${ }^{27.2 \%} \times 2$	8,100 8,094	7,777 7777	－323	－－4．9\％
29．4．6\％	${ }_{8.072}^{8.094}$	${ }_{7}^{7,745}$	－327	${ }_{-4.1 \%}$
30．9\％	8.052	7，709	－343	－4．3\％
32．1\％	8.028	7，639	89	
33．3\％	8.019	7．559	460	
34．6\％	${ }_{8}^{8.014}$	7，524	－490	－6．1\％
第35．8\％	7，977	7，452		－6．6\％
38．3\％	7,963 7,935	7,278 7 7 7	－685	－8．6\％
30．5\％	7，886	7,215	－671	－8．5\％
40．7\％	7.886	7,177	－709	－9．0\％
42．0\％	7，808	7，168	－640	－8．2\％
43．2\％	7，741	7，064	－677	－8．7\％
4．5．7\％	${ }_{7,453}^{7,738}$	7,048 7.034	－419	${ }^{-8.56 \%}$
46．9\％	7，235	6，929	－306	－4．2\％
48．1\％	7，225	6，746	－480	－6．6\％
49．4\％	${ }_{7}^{7,182}$	6，735	－447	－6．2\％
50．6\％	7,145 7,107		－508	－7．1\％
53．1\％	7.073	${ }_{6,352}^{6,377}$	－721	粗
	${ }_{6}^{6,877}$	6，335	－541	－7．9\％
55．8\％	6，387	${ }_{\text {c，}}^{\substack{6,241}}$	－146	${ }_{-2.3 \%}^{-6.0 \%}$
58．0\％	6.315	6，205	－110	－1．7\％
59．3\％	6，272	6，064	－207	－3．3\％
60．5\％	5，952	6，014	62	1．0\％
61．7\％	5.469	5，993	525	9．6\％
63．0\％	5，251	5.920	${ }_{6} 69$	12．7\％
${ }^{64.2 \%}$	5，499	5，994	${ }^{546}$	10．6\％
${ }^{65.4 \%}$	4，928	5，662	${ }^{734}$	14．9\％
${ }^{66.7 \%}$	${ }_{4}^{4,777}$	5，216	435	9．2\％
67．9\％	${ }_{4}^{4,765}$	${ }_{4,519}^{4.710}$	－ 4 400	－1．2\％
70．4\％	4.013	4.461	448	11．2\％
71．6\％	3，582	4，226	644	18．0\％
72．8\％	3，198	4，101	903	28．2\％
74.1% 75.3%	3.051 3015 3，	3.626 3.088	${ }_{73}^{575}$	8．8\％
76．5\％	${ }_{2,997}$	3，003	6	0．2\％
77．8\％	2，981	2，970	－11	${ }^{-0.4 \%}$
79．0\％	${ }_{2}$	${ }_{2}^{2,835}$	－124	－4．2\％
81．5\％	${ }_{2,733}^{2,798}$	${ }_{2,527}^{2,125}$	－205	${ }_{\text {－7．5\％}}$
82．7\％	2，552	2，233	－320	退
84．0\％	2，232	2，054	－178	8.06
85．2\％	2，202	1，931	-271	
${ }^{86.4 \%}$	${ }_{2}^{2,166}$	${ }^{1,877}$	－289	－13．4\％
877\％\％	2，146	${ }_{1}^{1,485}$	－661	－30．8\％
${ }^{88.9 \%}$	2，056	${ }^{1,416}$	－641	－31．2\％
90．1\％	1，979	1，331	－649	－32．8\％
91．4\％	1，837	${ }_{1,212}^{1,24}$	－603	－32．8\％
${ }_{9}^{92.8 \%}$	1，649	1，212	${ }^{438}$	－26．5\％
${ }_{95.1 \%}^{93.1 \%}$	${ }_{1}^{1,520}$	${ }^{1,148}$	${ }_{-372}$	${ }^{-24.5 \%}$
96．3\％	1，232	1，144	－88	－7．1\％
97．5\％	1，192	1.036	155	13．0\％
988．8\％ 100．0\％	750 750	${ }_{866}^{943}$	193 116	4\％\％

Figure SW-24-b
folsom Lake, End of Month Storage

		Ociober		
Percent Exceedance	WSIP 2030 W．thout Proiet	WSIP 2030 With Project	Absolute	
Probability	End of Morts Storage	End of Month Storage	Difference （TAF）	Difference（\％）
（\％） 0 \％	${ }^{\text {（taf）}}$	${ }_{\text {－}}^{(12)}$		0．0\％
1．2\％	712	72	，	
2．5\％	668	666	－2	－0．3\％
3．7\％	592	653	61	10．3\％
4．9\％	592	${ }^{604}$	12	2．1\％
－6．4\％	－ $\begin{array}{r}592 \\ 592 \\ \hline\end{array}$	594 592	${ }_{0}$	0．3\％
8．6\％	${ }_{591}^{592}$	592	1	0．2\％
${ }_{9}^{\text {9．9\％}}$	588 596	591	3	0．6\％
111．19\％	586	579	${ }^{-8}$	－1．3\％
12．3\％ 13.6%	${ }_{539}^{559}$	－${ }_{537}^{546}$	$\stackrel{-12}{1}$	－2．2\％
14．8\％	517	${ }_{534} 5$	17	3．3\％
16．0\％	502	534	32	6．4\％
17．3\％	500	${ }_{5}^{528}$	${ }^{27}$	5．5\％
18．5\％	498	514	16	${ }^{3.2 \%}$
－${ }^{19.8 .8 \%}$	${ }_{486}^{496}$	504 498	${ }_{12}$	2．4\％
22．2\％	485	491	5	1．1\％
23．5\％	482	490	8	1．7\％
24．7\％	${ }_{465}^{465}$	${ }_{489}^{489}$	${ }_{28}^{22}$	${ }^{4.7 \%}$
25．7．2\％	${ }_{449}^{455}$	${ }_{4}^{484}$	28 18	年．3\％
28．4\％	${ }_{439}$	${ }_{454}^{464}$	14	3．3\％
29．6\％	439	451	${ }^{13}$	2．9\％
30．9\％	${ }_{419}^{427}$	436 437	19 18	4．54\％
33．3\％	418	431	13	3．0\％
34．6\％	417	430	13	3．0\％
37．0\％	408	${ }_{422}$	14	3．4\％
38．3\％	404	418	15	
39．5\％	395	416	21	5．3\％
${ }^{40.7 \%}$	395	414	20	5．0\％
${ }^{43.2 \%}$	${ }_{386}^{388}$	${ }_{412}^{414}$	26 27	${ }_{6}^{6.9 \%}$
44．4\％	382	409	27	7．0\％
45．7\％	${ }_{3}^{376}$	${ }^{398}$	${ }^{22}$	5．9\％
46．9\％	${ }_{373}^{376}$	${ }_{397}^{398}$	${ }_{24}^{22}$	5．8\％
${ }^{48.19 \%}$	${ }_{367}^{373}$	${ }_{391}^{397}$	${ }^{24}$	6．4\％
49．4\％	${ }_{3}^{367}$	${ }_{391} 39$	${ }^{24}$	6．4\％
年 50.19%	－ $\begin{array}{r}356 \\ 350 \\ \hline\end{array}$	389 388	$\begin{array}{r}33 \\ 38 \\ \hline\end{array}$	${ }^{9.2 \%}$
53．1\％	350	381		
54．3\％	${ }^{349}$	${ }^{378}$	29	8．3\％
55．6\％	${ }_{347}^{347}$	${ }_{370}^{372}$	${ }_{23}^{25}$	7.2% 6.7%
58．0\％	344	363	星	
59．3\％	${ }_{343}^{343}$	${ }^{354}$	10	\％\％
－ 60.5%	343 337	352 352	${ }_{15}$	2．6\％
63．0\％	${ }_{337}$	${ }_{350}$	13	3．8\％
64．2\％	335	345	10	2．9\％
${ }^{654.4}$	334 334	${ }^{344}$	10	3．0\％
	${ }^{334}$	${ }^{342}$	8	2．3\％
67．9\％	${ }^{333}$	${ }^{334}$	1	0．2\％
69．1\％	${ }_{3}^{332}$	${ }^{334}$	4	1．2\％
71．6\％	321	330	9	3．0\％
72．8\％	319	330		3．4\％
74．19\％	${ }_{314}^{317}$	${ }_{318}^{324}$	8	${ }_{10}^{2.4 \%}$
${ }^{75.3 \%}$	314 314	318 313	－1	1．0\％
77．8\％	310	312	2	0．8\％
79．0\％	307	307	0	0．0\％
－	304 207	300 300	1	－ 0.2%
82．7\％	297	297		0．2\％
84.0% 852%	${ }_{2}^{295}$	${ }_{2}^{293}$	－2	${ }^{-0.6 \%}$
${ }_{86.4 \%}$	${ }_{284}^{284}$	${ }_{277}^{226}$	－6	${ }_{-2.2 \%}$
87．7\％	277	273	4	－1．5\％
88．9\％	${ }_{2} 271$	${ }_{271} 27$	0	－0．1\％
90．19\％	${ }^{266}$	269	3	1．0\％
	${ }^{262}$	${ }^{266}$	4	1．6\％
93．8\％	${ }_{249}$	${ }_{250}^{250}$	1	0．2\％
95．1\％	245 239	${ }_{232}^{242}$	－3	－1．2\％
96．3\％${ }_{\text {975 }}$	239 189	230 207 0	18	－3．6\％
${ }_{98}^{97.5 \%}$	189 145 1	${ }_{204}^{207}$	18 59	9．6\％
－100．0\％	90	90	0	0．0\％

		February		
Percent Exceedance	WSIP 20330 without Proiet	WSIP 2303 With Project	Absolute	Relaive
Probability	End of toonts storage	End of Morth Storage	Difference (TAF)	Difference (\%)
${ }^{\text {l\% }}$ (\%)\%	(TAF)	(TaF)		
${ }^{\text {1.2\% }}$	567	567		0.0\%
2.5\%	567	567	0	0.0\%
3.7\%	567	567	0	0.0\%
4.9\%	567	567	0	0.0\%
${ }^{6.2 \%}$	${ }_{567}^{567}$	${ }_{567}^{567}$	0	0.0\%
7.4\%\%	567 567	¢67	\bigcirc	0.0\%
8.9\%	567	${ }_{567}^{567}$	0	0.0\%
11.1.\%	567	567	0	0.0%
12.3\%	567	567	0	
13.4\%\%	567	567	0	0.0\%
14.8\%	567	567	0	0.0\%
16.0\%	567	567	0	0.0\%
17.3\%	567	567	0	0.0\%
18.5\%	567	567	0	0.0\%
19.8\%	567	567	0	0.0\%
21.0\%	567	567	0	0.0\%
${ }^{22.2 \%}$	${ }_{567} 5$	567	0	0.0\%
23.5\%	567	${ }_{567}^{567}$	0	0.0\%
24.7\%	${ }_{566}$	567	1	0.2\%
${ }^{25.7 .2 \%}$	566 565	${ }_{5}^{566}$	0	0.0\%
27.2\%	566	566 568	O	
${ }_{\text {2, }}{ }_{29 \%}^{28.4 \%}$	565	㐌	1	0.2\%
30.9\%	563	563	0	,
32.1\%	562	562	0	0\%
隹 33.3%	550	${ }_{561}^{561}$	1	0.2\%
35.8\%	${ }_{558}^{550}$	560	${ }_{2}$	0.2\% 0
37.0\%	558	560	2	0.3\%
	558	558	0	,
39.5\%	558	558	0	0.0\%
40.7\%	557	558	1	0.2\%
42.0\%	557	558	1	0.2\%
43.2\%	556	557	1	0.2\%
${ }^{44.4 .4 \%}$	555	557	2	0.4\%
45.7\%	555	556	1	0.2\%
46.9\%	553	555	2	0.4\%
48.1\%	553	555	${ }_{2}$	0.4\%
50.6\%	552 551	553 553	1	0.2\%
51.9\%	${ }_{547}$	${ }_{552}^{553}$	${ }_{5}$	0.9\%
53.1\%	543	551	8	1.5\%
	532 530	547	15	2.7\%
55.6\%	-	543 530	13 1 1	${ }_{\text {2 }} \mathbf{2 . 2 \%}$
58.0\%	527	529	2	
59.3\%	527	527	0	0.0\%
${ }^{60.5 \%}$	523	523	0	0.1\%
61.7\%	516	514	-2	0.4\%
63.0\%	499	499	0	0.0\%
64.2\%	499	499	0	0.0\%
${ }^{65.4 \%}$	494	494	0	0.0\%
-66.7\%	${ }_{481}^{482}$	494	${ }^{12}$	${ }_{\text {2.5\% }}$
69.1\%	460	479	19	4.1\%
70.4\%				1.5\%
71.6\%	458	463	5	1.1\%
72.8\%	455	${ }_{458}^{458}$	1	0.2\%
74.3\%	455	${ }_{4}^{458}$	${ }^{3}$	${ }^{0.7 \% \%}$
76.5\%	446	${ }_{447}^{457}$	1	0.2\%
77.8\%	443	446	3	0.7\%
79.0\%	440	${ }^{443}$	3	0.7\%
80.15\%	${ }_{416}^{421}$	${ }_{425}^{440}$	19 8	
82.7\%	407	407	0	
84.0\%	402	402	0	0.0\%
85.2\%	394	400	6	1.5\%
86.4\%	390	397	7	1.7\%
87.7\%	387	394	7	${ }_{\text {P17\% }}^{1.79 \%}$
88.9\%	363	377	14	3.9\%
90.14\%	328	374	${ }^{46}$	14.7\%
914.4\%	326	328	2	0.7\%
- 92.6%	316	326	10	3.3\%
93.8\%	304	${ }^{316}$	11	${ }^{3.7 \%}$
-95.1\% ${ }_{9} 9$	297	298	0	0.19\%
96.3\%	${ }^{278}$	291	14	4.9\%
${ }_{98,8 \%}^{97.5 \%}$	${ }_{223}^{256}$	${ }_{211}^{265}$	9	- ${ }_{\text {c. }}^{\substack{3.6 \%}}$
100.0\%	221	198	${ }_{-23}$	-10.5\%

		June		
$\underset{\substack{\text { Percent } \\ \text { Exceadance }}}{ }$	WSIP 2030 W．thout Proiet	WSII 2030 With Project		
Probability	End of Morth Storage	End of Month Storage	（tifereme	Difference（\％）
${ }_{\text {cos }}^{\text {（\％）}}$	（TAF）			0．0\％
1．2\％	967	967		0．0\％
${ }^{\text {2．5\％}}$	${ }_{967}^{967}$	${ }_{967}^{967}$	0	
3．7\％	967	967	0	
4．9\％	967	967	0	0．0\％
6．2\％	${ }_{967}^{967}$	${ }_{967}^{967}$	0	0．0\％
8．6\％	967	967	O	0．0\％
9．9\％	967	967	0	0．0\％
11．1\％	950	941	－8	－0．9
${ }^{12.3 \%}$	941	937	4	
13．6\％ 14.8%	937	${ }^{933}$	－3	年\％
14．8\％ 10.0%	${ }_{918}^{935}$	${ }_{914}^{918}$	－${ }_{-5}$	－0．5\％
17．3\％	913	885	${ }^{28}$	－3．1\％
18．5\％	882	882	${ }^{2}$	0．0\％
19．8\％	880	879	0	0．0\％
${ }_{2}^{21.0 \%}$	${ }_{869}^{871}$	${ }_{871}^{879}$	8	0．9\％
${ }_{2}^{22.5 \%}$	869 868	${ }^{871}$	1	0．1\％
24．7\％	${ }_{866} 8$	866	1	0．1\％
25．9\％	${ }_{832}^{851}$	${ }_{832}^{855}$	5	0．6\％
${ }^{27.2 \%}$	${ }_{831}^{832}$	${ }_{832}^{832}$	0	0．0\％
28．4\％	${ }_{831}^{831}$	${ }_{831}^{832}$	0	0．0\％
30．9\％	798	${ }_{808}$	10	1．2\％
32．1\％	790	791	1	0．2\％
隹33．3\％	${ }_{767}^{774}$	${ }_{767}^{774}$	\bigcirc	0．0．0\％
35．8\％	758	759	1	O10
37．0\％	749	${ }^{757}$	8	
	743	${ }_{7} 72$	－1	－0．1\％
${ }^{39.7 \%}$	${ }_{727}^{729}$	728 720	－1	－0．0\％
42．0\％	723	719	4	－0．6\％
43．2\％	720 712	712	17	－1．2\％
4．4．4\％	${ }_{711}^{712}$	695	－17	－2．4\％
45．7\％ 46.9%	${ }_{7} 711$	692	－20	－2．8\％
46．9\％	${ }_{709} 7$	690	－19	－2．7\％
${ }^{48.19 \%}$	708 708	${ }_{686}^{688}$	－22	－
50．6\％	706	683	－24	－3．4\％
51．9\％	705	681	－24	－3．5\％
年 53.1 \％	705 694	${ }_{668}^{677}$	-28 -26	－4．0\％
54．3\％	${ }_{691}^{694}$	668 668	-26 -26	－3．7\％
56．8\％	687	665	－23	－3．3\％
	${ }_{684}^{685}$	${ }_{663}^{664}$	－21	－3．1\％
${ }^{50.5 \%}$	${ }_{682}^{684}$	${ }_{661}^{663}$	－21	－3．0\％
61．7\％	681	658	－23	－3．4\％
63．0\％	${ }_{678}^{678}$	657	－21	－3．1\％
64.2% 654.4	674	650	－24	－3．6\％
65．4\％ 66.7%	${ }_{669} 6$	${ }_{649} 64$	－21	－3．1\％
67．9\％	639	634	${ }_{-}$	－0．8\％
69．1\％	608	622	14	2．3\％
70．4\％	${ }_{601}^{604}$	${ }_{606}^{606}$		0．3\％
71．6\％	601 600	${ }_{605}^{605}$	${ }_{5}^{4}$	0．7\％
72．8\％	600 583	${ }_{601}^{605}$	5 18	${ }_{3.1 \%}^{0.8 \%}$
75．3\％	577	600	22	3．9\％
76．5\％	575	586	11	2．0\％
778．8\％	567 548	574 555	7	－ 1.2%
79．0\％	${ }_{532}^{548}$	${ }_{546}^{555}$	6 14	1．1\％
81．5\％	515	534	19	3．6\％
82．7\％	498	533	35	7．0\％
84.0% 852%	496	${ }_{519}^{521}$	${ }_{23}^{25}$	5．0\％
${ }_{80.4 \%}$	${ }_{448}^{448}$	469	${ }_{20}^{20}$	4．5\％
87．7\％	447	455	9	1．9\％
88．9\％	${ }^{436}$	441	6	仿
${ }^{90.14 \%}$	433	426	－7	－1．6\％
914．4\％	${ }_{4}^{431}$	${ }^{421}$	－10	－2．3\％
93．8\％	427	${ }_{412}$	${ }_{-15}$	－3．5\％
95．1\％	413	410	4	－0．9\％
96．3\％	400	387	${ }^{-16}$	－3．3\％
97．5\％	${ }_{331}^{377}$	360 337	${ }^{-16}$	－4．4\％
100．0\％	164	95	－69	．42．1\％

Figure SW-25-b
Folsom Lake, End of Month Elevation

Percent Exceedance	WSIP 2030 Without Proiet	WSIP 2030 With Project	Absolute	Relative
Proababily	End of Wonth Elevation	End of Month Elevation	(1)	Difference (\%)
${ }^{\text {0.0\% }}$				
0.0\%\%	440	${ }_{440}^{440}$	0	${ }^{0.0 \%}$
${ }^{1.25 \%}$	${ }_{436}^{440}$	${ }_{436}^{440}$	0	-0.1\%
3.7\%	426	434	8	
4.9\%	426	428	2	
6.2\%	426	427	0	0.1\%
7.4\%	426	426	0	
8.6\%	426	426	0	
9.9\%	426	426	0	0.1\%
11.1\%	426	425	1	-0.2\%
12.3\%	422	${ }^{421}$	2	-0.4\%
13.6\%	419	420	0	0.0\%
14.8\%	417	419	${ }^{2}$	0.5\%
16.0\%	415	419	4	1.0\%
17.3\%	${ }_{4}^{415}$	${ }_{418}^{418}$	3	0.8\%\%
19.8\%	415	417	${ }_{2}$	0.5\%
21.0\%	413	415	1	0.4\%
22.2\%	${ }_{4}^{413}$	414	1	0.2\%
23.5\%	${ }_{4}^{413}$	${ }_{4}^{414}$	1	0.2\%
25.9\%	410	${ }_{414}$	${ }_{4}$	0.7\%
27.2\%	409	411	${ }_{2}$	0.5\%
28.4\%	408	409	2	
29.6\%	407	409	2	0.4\%
332.1\%	${ }_{405}$	${ }_{407}^{408}$	${ }_{2}^{2}$	0.6\%
33.3\%	405	407	2	0.4\%
34.6\%	405	406	2	
35.8\%	404	406		0.6\%
37.0\%	404	405	${ }^{2}$	0.4\%
38.3\%	403	405	$\stackrel{ }{2}$	0.4\%
39.5\%	402	405	${ }^{3}$	0.6\%
40.7\%	402	404	${ }^{2}$	0.6\%
42.0\%	${ }^{401}$	404	3	0.8\%
44.4\%	401	404	${ }^{3}$	0.8\%
45.7\%	399	404	3	
46.9\%	399	402	3	0.8\%
48.1\% ${ }^{4.4 \%}$	399 398	${ }_{402}^{402}$	4	${ }_{\text {coion }}^{0.9 \%}$
49.4\%	398	402		9\%
51.9\%	395	401	6	,
53.1\%	395	400		
54.3\%	395	400	5	2\%
朗56.8\%\%	395	399		1.0\%
58.0\%	${ }_{394}^{395}$	${ }_{397}^{398}$	${ }_{3}^{4}$	-
59.3\%	394	396	2	0.4\%
${ }^{60.5 \%}$	${ }_{394} 394$	395	1	0.4\%
61.7\%	${ }_{393} 3$	395	$\stackrel{2}{2}$	0.6\%
-63.0\%	${ }^{393}$	395	${ }^{2}$	0.5\%
- 64.2%	${ }^{393}$	394	${ }_{2}$	0.4\%
${ }^{65.77 \%}$	392 392	${ }_{394}$	${ }_{1}^{2}$	- ${ }_{\text {0.3\% }}^{0.3 \%}$
67.9\%	392	${ }^{393}$		0.0\%
69.1\%	${ }_{391}^{392}$	${ }_{392}^{393}$	1	0.2\%
70.4\%	391	${ }_{392}$	1	0.4\%
${ }_{72} 7.8 .8 \%$	390	${ }_{392}^{392}$	2	- ${ }_{\text {0.4\% }}^{0.4 \%}$
74.1\%	390	391	1	0.3\%
75.3\%	389 389	390 389	1	${ }^{0.1 \%}$
77.8\%	389	389	0	
79.0\%	388	388	0	0.0\%
80.2\%	388	388	0	\%
81.5\%	${ }^{387}$	387	0	0.1\%
82.7\%	386	387	0	0.0\%
84.0\%	${ }^{386}$	386	0	-0.1\%
85.2% 864%	385	385	0	0.0\%
86.4% 88.7%	${ }^{384}$	${ }_{383}^{383}$	-1	${ }^{-0.3 \%}$
88.9\%	${ }_{382} 88$	${ }_{382}$	-1	- 0.02%
90.1\%	381	381	1	0.1\%
91.4\%	380	381	1	0.2\%
92.6\%	379	379	0	0.1\%
${ }^{93.51 \%}$	${ }^{378}$	378	-	${ }^{0.0 \% \%}$
${ }^{96.3 \%}$	376	374	-2	${ }^{-0.5 \%}$
-97.5\%	364 352	368	4	1.2\%
100.0\%	${ }_{330}$	${ }_{330}$		4.5\%

February				
${ }_{\text {Perceent }}^{\text {Preeance }}$	$\begin{aligned} & \text { WSIP } 2030 \text { Without } \\ & \text { Proiect } \end{aligned}$	WSII 2030 With Project	Absolute	Reatio
Probability	End of Month Elevation	End of Month Elevation		Difference (\%)
${ }_{0}^{\text {¢ }}$	(12EEI)	${ }_{\text {[fEEI) }}^{423}$	0	0.0\%
1.2\%	423	423	0	
2.5\%	423	423	0	
3.7\%	423	${ }^{423}$	0	
4.9\%	423	423	0	
6.2\%	423	423	0	0.0\%
7.4\%	423	${ }^{423}$	0	
8.6\%	423	423	0	0.0\%
9.9\%	${ }^{23}$	${ }^{233}$	0	0.0\%
11.1\%	${ }^{23}$	${ }^{423}$	0	\%
12.3\%	${ }^{423}$	${ }^{423}$	0	0.0\%
13.6\%	${ }^{23}$	${ }^{23}$	0	0.0\%
14.8\%	${ }^{423}$	${ }^{423}$	0	
- 117.0% \%	${ }_{423}^{423}$	${ }_{423}^{423}$	0	
18.5\%	${ }_{423}^{423}$	${ }_{423}^{423}$	0	0.0\%
19.8\%	${ }_{423}$	${ }_{423}$	0	0.0\%
21.0\%	423	${ }^{423}$	0	0.0\%
22.2\%	${ }_{4}^{423}$	${ }^{233}$	0	0.0\%
24.7\%	${ }_{423}^{423}$	${ }_{423}^{423}$	0	0.0\%
25.9\%	423	423	0	0.0\%
27.2\%	423	423	0	
28.4\%	423	423	0	0.0\%
	${ }^{423}$	${ }^{233}$	0	0.0\%
33.9\%	${ }_{423}^{423}$	${ }^{423}$	0	0.0\%
33.3\%	422	423	0	0.0\%
34.6\%	422	423	0	0.0\%
${ }^{35.5 \%}$	${ }^{422}$	${ }^{422}$	0	0.1\%
37.0\%	${ }^{422}$	${ }^{422}$	0	0.0\%
	${ }_{422}$	${ }^{422}$	0	0\%
39.5\%	422	${ }_{422}^{422}$	0	
${ }^{42.0 .0 \%}$	422	${ }^{422}$	0	-0.0\%
43.2\%	${ }_{422}^{422}$	${ }_{422}^{422}$	0	O\%
44.4\%	422	422	0	
45.7\%	422	422	0	
46.9\%	422	422	0	0.1\%
48.1\%	422	422	0	0.1
49.4\%	${ }^{421}$	422	0	
50.6\%	${ }^{421}$	422	0	0.19
${ }^{51.9 \%}$	${ }^{421}$	421	1	0.1\%
53.1\%	${ }^{420}$	${ }^{421}$	1	0.2\%
54.3\%\%	419	${ }^{421}$	${ }^{2}$	0.4\%
55.8\%	419	${ }_{419}^{420}$	${ }_{0}$	0.0\%
58.0\%	418	419	0	0.0\%
59.3\%	418	418	0	0.0\%
6.5\%\%	${ }_{417}^{418}$	${ }_{417}^{418}$	0	0.0\%
61.7\%	${ }_{415}^{417}$	417	0	-0.1\%
	415	415	0	0.0\%
66.2\% 6	415	415	0	0.0\%
66.7\%	${ }_{413}$	414	2	0.4\%
${ }_{6}^{67.9 \%}$	${ }_{411}^{413}$	${ }_{413}^{412}$	0	0.1\%
${ }_{\text {coser }}^{69.1 \%}$	410	${ }^{412}$	2	0.6\%
71.6\%	410	411	1	0.2\%
72.8\%	410	410	0	
74.1\%	409	410	0	0.1\%
75.3\%	409	410	1	0.2\%
77.5\% ${ }^{778 \%}$	408	408	0	0.0\%
779.0\%	${ }_{408}^{408}$	408 408	0	0.1\% 0
80.2\%	405	408	2	0.6\%
81.5\%	${ }_{405}^{404}$	${ }_{406} 0$	1	0.3\%
	404	404	0	0.0\%
88.0\% ${ }^{85.2 \%}$	${ }^{403}$	${ }^{403}$	0	0.0\%
85.2\%\%	402	403	1	0.2\%
887.7\%	401	402	1	${ }_{0}^{0.2 \%}$
88.9\%	397	400	2	0.6\%
${ }^{90.1 \%}$	${ }_{391}^{391}$	${ }_{3}^{399}$	8	1.9\%
991.4\%	391	392	0	0.1\%
${ }_{9} 9.8 .8 \%$	${ }_{388}$	390	2	0.5\%
95.1\%	387	387	0	0.0\%
96.3\%	${ }^{383}$	386	3	0.7\%
997.8\%\%	379	${ }_{3}^{381}$	2	0.4\%
- 10.00%	${ }_{372}$	${ }_{366} 36$	$\stackrel{-5}{ }$	-1.4\%

Figure SW-26-b
Folsom Lake, End of Month Are

		Ociober		
Percent Exceedance	WSIP 2030 W．Whthout Proiet	WSIP 2030 With Project	${ }_{\text {Absolute }}$	
Probability （\％）	${ }_{\text {End of M Mont Afea }}^{\text {（ACRE）}}$	End of Month Area （ACRE）	（ACRE）	Difference（\％）
0．0\％	（ACRE）			0．0\％
	9.609	9.609	0	
2．5\％	9，316	9，298	－17	
3．7\％	8.615	9，179	564	
4．9\％	8.615	8.72	113	
6．2\％	${ }^{8.615}$	${ }_{8,633}$	18	0．2\％
7．4\％	8.615	8.615	0	
8．6\％	${ }^{8.605}$	8.615	10	0．1\％
9．9\％	${ }^{8,580}$	8.610	30	0．3\％
11．1\％	${ }^{8,563}$	${ }_{8,491}$	－72	－0．8\％
12．3\％	8.308	8，196	113	－1．4\％
13．6\％	${ }^{8.099}$	${ }^{8,107}$	8	0．1\％
14．8\％	7，923	8.079	156	2．0\％
16．0\％	7，783	${ }^{8,078}$	${ }^{295}$	3．8\％
17．3\％	7，769	${ }_{8}^{8,022}$	${ }^{253}$	${ }^{3.3 \%}$
18．5\％	（7，748	7，896	179	
19．8\％	7，727	7,806 7	79	1．0\％
21．0\％	7，636	7，745	109	1．4\％
${ }_{2}^{22.5 \%}$	7,633 7,599	7，683	50 75	0．7\％
24．7\％	${ }_{7}^{7,461}$	${ }_{7,664}^{7,674}$	${ }_{203}$	2．7\％
25．9\％	7，354	7.616	262	
27．2\％	7,301	7，467		
20．4\％	7,209	7，343	116	
30．9\％	7，092	7,268	176	
32．1\％	7，021	7，192	170	2．4\％
33．3\％	7.016	7，132	116	1.6
34．6\％	7，007	7，124	117	
35．7\％	6，944	7，118	175	2．5\％
年 $\begin{aligned} & 37.0 \% \\ & 38.3 \%\end{aligned}$	${ }^{6,920}$	7，047	128	1．8\％
39．5\％	${ }_{\text {c，}}^{6.880}$	7.014	${ }_{1}^{134}$	${ }_{28}^{1.9 \%}$
40．7\％	6，798	6，979	182	2．7\％
42．\％	6，734	6，973	240	3．6\％
${ }^{43.2 \%}$	${ }_{6}^{6,716}$	6．961	${ }^{245}$	3．6\％
${ }^{44.4 .9}$	化，667	6，925	${ }^{258}$	${ }^{3.9 \%}$
45．9\％		c， 6.827	230 230	${ }^{3.5 \%}$
48．1\％	6，568	6.821	254	3．9\％
4．9．4\％	6，491	6，760	${ }^{269}$	4．1\％
51．9\％		${ }_{\substack{6.7756}}^{6.738}$	348 448	7．1\％
53．1\％	${ }_{6,288}^{6,28}$	${ }_{6.654}$	366	
54．3\％	6，280	${ }^{6,626}$	${ }^{346}$	5．5\％
年55．8\％	${ }^{6,250}$	${ }^{6,547}$	297	4．8\％
58．0\％	c，6,246 6,216 , 26	${ }_{\substack{6.524 \\ 6.445}}^{6.5224}$	${ }_{229}^{277}$	4．4．7\％
59．3\％	6，208	6，332	124	2．0\％
	6，207	6，312	105	1．7\％
61．7\％	6，135		173	2．8\％
63．0\％ 64.2%	${ }^{6.135}$	6，288	153	2．5\％
64.2% 6.4%	6，108	${ }_{6}^{6,223}$	115	1．9\％
㐌6．4\％ 6.7%	6，101	${ }^{6,222}$	121	2．0\％
66．7\％ 67.9%	6，096	6，187	91	1．5\％
69．1\％	6，049	${ }_{6,098}$	49	0．8\％
70．4\％	${ }_{5}^{5,955}$	6，062	108	1．8\％
71．6\％	5.941 5998		113 1128	－ 1.9%
74．1\％	5.890	5，982 5.982 0.029	${ }_{92}^{128}$	1．6\％
75．3\％	5．864	5.901	37	0．6\％
－77．5\％\％	5，862	$\begin{array}{r}5.847 \\ \hline\end{array}$	－15	－0．3\％
79．0\％	${ }_{\substack{\text { 5．} \\ 5.775 \\ \hline}}^{\text {a }}$	${ }_{\substack{\text { 5．036 } \\ 5.776}}^{\text {ciel }}$	${ }_{0}^{29}$	0．0\％
80．2\％	5.744	5，752	7	0．1\％
81．5\％	5．658	5．692	34	0．6\％
82．7\％	5．655	5．660	5	0．1\％
84．0\％	5，635	${ }_{5}^{5.613}$	${ }^{21}$	－0．4\％
	5.529 5487 5	5．517	－12	－0．2\％
${ }^{86.4 \%}$	5，487	5，402	－85	－1．6\％
87．7\％	5.398 5309 5	$\stackrel{5.338}{5}$	－60	－1．1\％
（	5.309 5 5	${ }_{\text {cke }}^{5.306}$	－3	－0．7\％
91．4\％	5,244 5,189	${ }_{\substack{5,282 \\ 5,247}}^{5,58}$	39 59	0．7\％
92．6\％	5.103	${ }_{5}^{5,122}$	20	0．4\％
93．8\％	5，010	5.017	8	0．2\％
－ 95.19%	4，950	4，908	${ }_{-42}^{4}$	－0．8\％
${ }_{\text {9，}}^{96.5 \%}$		${ }_{4}^{4,696}$	－	－3．3\％
98．8\％	3，141	4,196	${ }_{1.055}$	33．6\％
100．0\％	2，091	2，091	0	0．0\％

		Febrrary		
	WSIP 2 230 Without Proiet	WSIP 2033 With Project	Absolute	
Probability	End of Month Area	End of Month Area	(ACR)	Difference (\%)
(\%)	(ACRE)	ACRE)		
1.2\%	哏,3855	${ }^{8,385}$	0	${ }^{0.00 \%}$
2.5\%	${ }_{8,385}$	${ }_{8,385}$	0	0.0\%
3.7\%	8.385	8385	O	
4.9\%	8,385	${ }_{8,385}$	0	
6.2\%	8,385	${ }_{8,385}$	0	0.0\%
7.4\%	8,385	8,385	0	0.0\%
8.6\%	${ }_{8}^{8.3355}$	${ }_{8}^{8.3855}$	0	0.0\%
${ }^{\text {9.9.9\% }}$	${ }^{8,385}$	${ }_{8}^{8,385}$	O	
19.12\%	-	8,385 8385	0	
12.3\%	${ }_{8}^{8,385}$	${ }_{8}^{8,385}$		0.0\%
14.8\%	${ }_{8,385}^{8,355}$	${ }_{8,385}^{8.055}$	0	0.0\%
16.0\%	8,385	${ }^{8,385}$	0	0.0\%
17.3\%	8,385	8,385	0	0.0\%
18.5\%	8,385	8,385	0	0.0\%
19.8\%	${ }^{8,385}$	${ }_{8,385}$	0	0.0\%
21.0\%	${ }_{8,385}$	8,385	0	0.0\%
22.2\%	${ }^{8,385}$	8,385	0	0.0\%
23.5\%	${ }^{8,385}$	${ }^{8,385}$	0	0.0\%
24.7\%	${ }_{8}^{8,376}$	${ }^{8,385}$	9	0.1\%
25.9\%	${ }_{8,376}$	${ }_{8,376}$	0	0.0\%
27.2\%	${ }^{8,376}$	${ }^{8,376}$	0	0.0\%
28.4\%	${ }_{8}^{8,366}$	${ }_{8,376}$	9	0.1\%
29.6\%	8,358	${ }_{8}^{8,366}$	8	0.1\%
30.9\%	8,348	${ }_{8}^{8,348}$	0	
32.1\%	${ }_{8}^{8,339}$	8,339	0	0.0\%
33.3\%	${ }_{8}^{8,320}$	${ }_{8}^{8,332}$	12	0.1\%
34.6% 3588%	${ }_{8,302}^{8,317}$	8,329 8.320	18 18 18	${ }^{0.2 \%}$
37.0\%	${ }_{8,302}^{8.302}$	${ }_{8,317}^{8.320}$	15 15	0.2\%
边 38.3%	8,302	8,302 8,302	0	
39.7\%	${ }_{8}^{8,3023}$			
42.0\%	${ }_{\substack{8,293 \\ 8.293}}^{\text {a }}$	${ }_{8,302}^{8.302}$	9	0.1\%
43.2\%	${ }_{8,283}$	${ }_{8,293}$	9	0.1\%
4.4.4\%	${ }_{8,274}$	${ }^{8,293}$	18	0.2\%
45.9\%	8,274 8.256	8,283 8.274	9	${ }^{0.1 \%}$
48.1\%	8,256	8.274	18	0.2\%
49.4\%	8,247	8,256	9	0.1\%
50.6\%	8,237	8,256	18	0.2\%
51.9\%	8,201	8,247	${ }_{6}^{46}$	0.6\%
53.19\%	${ }_{8,164}$	8,237	74	0.9\%
${ }^{54.3 \%}$	8.067	8,201	134	${ }^{1.7 \%}$
55.6\%	8.044	8,164	${ }^{20}$	1.5\%
56.8\%	8,035 8.020	8,044 8.035	9	\%
${ }_{\text {50.3\% }}$	${ }_{8}^{8.0016}$	8,035 8016 8	-	${ }^{0.20 \%}$
60.5\%	7,979	${ }_{7}^{7,983}$	4	0.0\%
61.7\%	7,917	7,899	-18	0.2\%
63.4.2\%	7,758	7,758 7,758	0	-
65.4\%	7,712	7,712	0	
66.7\%	7,599	7,712	113	
67.9\%	7,596	7.620	24	
69.1\%	7,397	7,570	174	3\%
70.4\%	7,381	7.442	62	0.8\%
71.6\%	7,381	7,429	49	0.7\%
72.8\%	7,371	7,381	9	0.1\%
74.1\%	7,351	${ }_{7}^{7,381}$	29	0.4\%
75.3\%	7,320	7,371	${ }_{5}^{51}$	0.7\%
76.5\%	7,270	7,277	7	0.1\%
77.8\%	${ }_{7}^{7.242}$	7,270	${ }^{28}$	0.4\%
- ${ }^{79.0 \%}$	7,215	${ }_{7}^{7,242}$	${ }^{28}$	0.4\%
-80.2\%	7,043	7.215	171	2.4\%
- ${ }_{8}^{81.59 \%}$	6,997	7,074	78	1.1\%
-	6,911	6,911	0	0.0\%
-85.2\%	ci,6.791 6.795	ci.6.847	5	0.0\%
80.4\%	${ }_{6}^{6,795}$	${ }_{6,815}^{6.847}$	60	0.9\%
87.7\%	6,729	6,791	62	9\%
88.9\%	6.444	6.611	167	2.6\%
90.1\%	6,021	6.572	551	9.1\%
91.4\%	6,004	6,030	${ }^{26}$	\%
92.6\%	$\stackrel{5.883}{5.74}$	6.007	123	2.1\%
${ }^{935.81 \%}$	5,744	${ }_{5}^{5.878}$	135	2.3\%
96.3\%	5.406	${ }_{5,589}^{50.069}$	183	3.4\%
97.5\%	5,108	5.227	119	2.3\%
98.8\%	4,563	${ }_{4}^{4,327}$	${ }_{-137}^{-237}$	-5.2\%
100.0\%	4,522	4,085	-437	-9.7\%

Table SW-26-b
Lake, End of Mont Area

$\begin{gathered} \text { Percent } \\ \text { Preedance } \\ \text { Probability } \end{gathered}$		June		$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	Proiect	WSIP 2030 With Project	Absolute	
	of Mont A	dof Month A	(ACRE)	
0.0\%	${ }_{\text {(}}^{11,124}$	${ }^{\text {(ACRE) }} 11,124$	0	0.0\%
1.2\%	11,124	11.124	0	0.0\%
2.5\%	11,124	11,124	0	0.0\%
3.7\%	${ }^{11,124}$	${ }^{11,124}$	0	0.0\%
4.9\%	11.124	11,124	0	0.0\%
6.2\%	${ }^{11,124}$	11.124	0	0.0\%
7.4\%	11,124	11,124	0	0.0\%
8.6\%	${ }^{11,124}$	${ }^{11,124}$	0	0.0\%
9.9\%	${ }^{11,124}$	${ }^{11,124}$	0	0.0\%
11.14\%	${ }^{11,021}$	${ }^{10,971}$	-49	-0.4\%
+12.3\%	10,971 10,945	10,945 10.925	-26	-0.2\%
- 13.48%	10,945 10,936	10,925	-21	${ }_{\text {- }}^{0.0 .9 \%}$
16.0\%	${ }^{10,836}$	10.807	${ }^{-28}$	-0.3\%
- 17.3%	${ }^{10,805}$	10,637	169	-1.6\%
19.8\%	${ }^{10,604}$	${ }^{10,603}$	-1	0.0\%
21.0\%	10,551	10,600	49	0.5\%
22.2\%	10,545	10,551	7	0.1\%
${ }^{23.5 \%}$	10,535	10,540	4	0.0\%
24.7\%	${ }^{10,522}$	${ }^{10,525}$	3	0.0\%
25.9\%	10,433	10,461	28	0.3\%
27.2\%	10,324	10,324	0	0.0\%
28.4\%	10,318	10,319	1	0.0\%
29.6\%	${ }^{10,316}$	10,318	2	0.0\%
30.9\%	10,119	10,176	${ }_{8}^{57}$	0.9\%
32.1\%	10,072	10,080	8	0.1\%
33.3\%	9,976	${ }^{9,9976}$	0	0.0\%
34.6\%	${ }_{9}^{9,9835}$	${ }_{9}^{9,9897}$	7	0.1\%
37.0\%	${ }_{9}^{9.889}$	${ }_{9}^{9,877}$	48	0.5\%
38.3\%	${ }_{9}^{9,795}$	9,703	-5	-0.1\%
40.7\%	9,696	9,657	${ }^{-39}$	${ }^{-0.4 \%}$
42.0\%	9,677	9,653	-24	-0.2\%
${ }_{4}^{43.2 \%}$	${ }_{9}^{9,659}$	9,608	-50	-0.5\%
45.7%	9,604	${ }_{9,487}^{\text {9.406 }}$	-117	${ }^{-1.2 \%}$
46.9\%	9,591	9,479	-112	-1.2\%
48.19\%	9,5865	9,456	-129	-1.3\%
49.4\%	${ }_{\text {9,5585 }}$	9,441	-144	-1.5\%
年 50.6%	${ }_{9}^{9.5567}$	${ }_{9}^{9,435}$	-142	-1.5\%
${ }_{\text {51. }}^{51.9 \%}$	${ }_{9,566}^{9.567}$	${ }_{9,395}^{9,422}$	-145	-1.18\%
54.3\%	9.501	${ }_{9}^{9,315}$	-186	-2.0\%
55.6\%	9,485	9,293	-192	-2.0\%
56.8\%	9,463	9,284	-179	-1.9\%
58.0\%	9,451	9,278	-173	-1.8\%
${ }^{50.5 \%}$	${ }_{9,429}^{9,440}$	${ }_{\substack{9,251}}^{9,273}$	-177	-1.8\%
61.7\%	9,422	9.219	-203	-2.2\%
-63.0\%	${ }_{9}^{9.4308}$	${ }_{9}^{9,217}$	- 291	-2.0\%
${ }^{64.2 \%}$	${ }_{9}^{9,374}$	9,149	-225	-2.4\%
${ }^{65.4 \%}$ 6.7\%	${ }_{9}^{9,326}$	${ }_{9,012}^{9,136}$	-139	- ${ }_{\text {- }}^{\text {-2.5\% }}$
67.9\%	9,053	9,006	${ }^{-47}$	-0.5\%
69.1\%	8,766	8.895	129	1.5\%
70.4\%	${ }_{8}^{8,723}$	${ }_{8}^{8,741}$	17	0.2\%
7.2.8\%	${ }_{8,691}^{8.701}$	${ }_{8,733}^{8,737}$	${ }_{42}$	0.5\%
74.1\%	8,536	8,701	165	1.9\%
75.3\%	${ }_{8,481}$	8.687	206	2.4\%
76.5\%	8,457	8.562	104	1.2\%
77.8\%	${ }^{8,384}$	8.447	${ }_{5}^{62}$	0.7\%
79.0\%	8,213 8,059	8,271 8188	58 129	0.7\%
-	8,909 7,904	8,188 8,076	129 172	2.2\%
82.7\%	7,749	${ }_{8,068}$	320	4.1\%
84.0\%	7,735	7,962	${ }^{226}$	2.9\%
- 85.2%	7,732 7,292	7,944 77478	212 186	${ }_{2.5 \%}^{2.7 \%}$
87.7\%	7,277	7,356	79	1.1\%
88.9\%	7,174	7,227	53	0.7\%
901.1\%\%	7,153 7,132	7,081	-65	-1.3\%
92.6\%	7.110	6,979	-131	-1.8\%
93.8\%	7,099	6,961	-138	-1.9\%
95.1\%	${ }_{6}^{6.970}$	${ }_{6}^{6,935}$	-34	-0.5\%
96.3\% ${ }_{\text {97, }}$	ci,647 $\begin{gathered}6,608 \\ 6,0,\end{gathered}$	¢, $\begin{gathered}6,725 \\ 6,412\end{gathered}$	- 122	- -1.8%
98.8\%	6,063	6,132	69	1.1\%
100.0\%	3,480	2,185	-1,295	-37.2\%

Figure SW-27-b
American River below Nimbus Reservoir, Monthly Flow

		October		
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	WSIP 2030 Without Proiect	WSIP 2030 With Project	Absolute Difference	
Probability	Monthly Flow	Monthly Flow (CFS)	(CFS)	
1.2\%	(e,302	${ }^{6,758}$	456	${ }_{6}^{7.2 \%}$
2.5\%	${ }_{2,811}^{2,881}$	${ }_{2} 8885$	74	26\%
3.7\%	2,799	${ }_{2,777}$	-22	-0.8\%
4.9\%	2,994	2,773	279	11.2\%
6.2\%	2,315	2.748	433	18.7\%
7.4\%	${ }_{2,235}^{2,129}$	${ }_{\text {2,733 }}^{2,733}$	497	22.2\%
8.6\%	2,129	${ }^{2}, 703$	574	
${ }^{\text {11.1\% }}$	2,084	2,566 2368	${ }_{382}^{482}$	${ }_{\text {cke }}^{23.14 \%}$
12.3\%	2,002	${ }_{2,084}^{2,080}$	${ }_{82}$	4.1\%
13.6\%	1,957	2,020	63	
14.8\%	18	2,007	88	4.6\%
17.3\%	${ }_{1}^{1,880}$	+1,936	${ }_{136}^{106}$	7.6\%
18.5\%	1,658	1,927	269	16.2\%
19.8\%	1,657	1,910	253	15.3\%
21.0\%	1,568	${ }_{1}^{1,827}$	259	
${ }^{22.2 \%}$	${ }^{1,542}$	${ }^{1,786}$	${ }^{244}$	15.8\%
${ }^{23.7 \%}$	${ }_{1}^{1,500}$	${ }_{1}^{1,685}$	${ }_{185}^{273}$	${ }^{18.23 \%}$
25.9\%	1,500	1,528	28	1.8\%
27.2\%	1,500	1,500	0	
28.4\%	1,500	1,500	0	
29.6\%	1.500 1.500 1	1,500 1500	0	
30.9\%	1,500	1,500	0	
${ }^{32.17 \%}$	1,500 1.500 	1.500 1.500 	\bigcirc	0.0\%
34.6\%	${ }_{1,500}^{1500}$	${ }_{1,500}^{1500}$	0	0.0\%
年35.8\%	1.500 1.500	1,500 1.500	\bigcirc	0.0.0\%
38.3\%	1,500	1.500	0	O
		1,500	0	0.0\%
42.0\%	${ }_{1}^{1,500}$	${ }_{1}^{1,500}$	0	0.0\%
43.2\%	1,500	1,500	0	0.0\%
44.4\%	${ }^{1,500}$	1,500	0	
45.7\%	${ }^{1,500}$	1,500	0	0.0\%
${ }_{48.1 \%}^{46.9 \%}$	1,500 1.500	1,500 1.500	0	0.0\%
49.4\%	1,500	1,500	0	0.0\%
50.6\%	+1,500	1,500 1,500	0	0.0\%
51.9\%	1,500	1,500	0	0.0\%
${ }^{53.15 \%}$	1,500 1.500	1.500 1.500	\bigcirc	0.0\%
55.6\%	${ }_{1,500}^{150}$	${ }_{1}^{1,500}$	0	0.0\%
56.8\%	1,500	1,500	0	0.0\%
59.3\%	${ }_{1}^{1,500}$	1.500 1 1.500	0	0.0\%
60.5\%	1,500	1,500	0	0.0\%
61.7\%	1,500	1,500 1.500	0	0.0\%
64.2\%	${ }_{1}^{1.500}$	${ }_{1,500}^{1.500}$	0	0.0\%
65.4\%	1,500	1.500	0	0.0\%
-667.9\%			0	0.0\%
69.1\%	${ }_{1}^{1,478}$	${ }_{1,500}$	22	1.5\%
70.4\%	1,472	1,500	28	1.9\%
71.6\%	1,464	1,491	${ }^{28}$	1.9\%
72.8\%	${ }_{1}^{1,416}$	1,480	${ }_{64}$	4.5\%
74.3\%	${ }_{\text {1,362 }}^{1,386}$	(1,422	37 49	
76.5\%	1,265	1,391	125	9.9\%
77.8\%	${ }^{1,151}$	${ }_{1}^{1,318}$	167	14.5\%
79.0\% 80.2%	1,101 1,029	1,311 1222	210 232	19.1\%
${ }^{81.5 \%}$	${ }_{998}$	$\underset{\substack{1,266}}{1,262}$	${ }_{259}^{232}$	225.\%
82.7\%	957	1,1217	260	27.1\%
84.0\%	889	1,155	266	30.0\%
${ }^{6.5 .4 \%}$	${ }_{820}^{832}$	919	162 99	12.0\%
87.7\%	800	907	107	13.4\%
88.9\%	800	800	0	0\%
91.4\%	800	800	0	0.0\%
92.6\%	800	800	0	0.0\%
93.8\%	800	800	0	0.0\%
95.1\%	800	800	0	0.0\%
96.3\% 9	800 532	800 800	0	0.0\%
98.8\%	512	534	${ }_{2}$	4.2\%
100.0\%	481	482	2	0.4\%

Table SW－27－b

August				
Percent	WSIP 2030 W Pritout	WSIP 2030 With Project	${ }_{\text {a }}^{\substack{\text { Absolute } \\ \text { Difference }}}$	Relative
robability	Monthy Flow（CF	Monthy Fow（CFS）	（CFFS）	Difference（\％）
0．0\％	${ }^{3,363}$	2，956	－407	－12．1\％
1．2\％	2.882	${ }_{2}^{2,783}$	－99	
2．5\％	2，782	2.614	－168	
3．7\％	2，772	2，533	239	
4．9\％	2，749	2，361	388	
6．2\％	2，576	2,339	－237	
7．4\％	2，883	2，321	162	－6．5\％
8．6\％	2，301	${ }^{2,302}$	1	0．1\％
9．9\％	2，288	${ }^{2}, 002$	287	－12．5\％
11．1\％	2，014	2，000	－14	－0．7\％
${ }^{12.3 \%}$	2，009	2，000	-9	－0．4\％
13．6\％	1，927	2，000	73	3．8\％
14．8\％	1，829	1，999	170	
10．0\％	1，789	1，999	210	
17．5\％	1，775	1，998	222	
18．5\％\％	1，750	1，997	222	
19．8\％	1，750	1，992	${ }^{242}$	13．3\％
${ }^{220.0 \%}$	＋1，750	${ }_{1}^{1,944}$	232 194	11．1\％
23．5\％	1，750	${ }_{1}^{1,856}$	106	
24．7\％	1，750	1，840	90	
25．9\％	1，750	1，834	${ }^{84}$	
27．2\％	1，750	${ }_{1}^{1,813}$	63	3．6\％
28．4\％	1，750	1，793	43	
29．6\％	1，750	1，792	${ }^{42}$	
30．9\％	1，750	1，791	41	2．3\％
32．1\％	1，750	1，755	5	0．3\％
33．3\％	1，750	1，750	0	0．0\％
34．6\％	1，750	1，750	0	0．0\％
35．8\％	1，750	1,750 1,750	0	0．0\％
37．0\％	1，750	1,750 1,750	0	0．0\％
38．3\％	1，750	1,750 1,750	O	0．0\％
39．5\％	1，750	1,750 1,750	O	0．0\％
40．7\％	1,750 1,750	1,750 1,750		\％
42．0\％	＋1，750	1，750	O	0．0\％
${ }^{44.4 \%}$	1，750	1,755 1.737	－13	－0．8\％
45．7\％	1，750	1，707	${ }^{43}$	
46．9\％	1，750	1，659	91	
48．1\％	1，750	${ }^{1.654}$	96	
49．4\％	1，750	${ }^{1,605}$	145	
50．6\％	1，750	1.599	151	
551．9\％	1，707	1，598	－109	－6．4\％
	1，706	1，586	119	－7．0\％
54．3\％	1，575	1，585	9	0．9\％
年5．6\％	${ }^{1,518}$	${ }^{1,575}$	57	3．7\％
	1，512	${ }^{1,545}$	${ }^{33}$	2．2\％
年58．0\％	${ }^{1,446}$	${ }^{1,535}$	88	${ }_{5}^{6.1 \%}$
59．3\％	${ }^{1,440}$	${ }^{1.515}$	76	5．3\％
60．5\％	1，401	${ }^{1.515}$	114	${ }^{8.1 \%}$
${ }^{611.7 \%}$	1，285	${ }^{1,496}$	212	${ }^{16.5 \%}$
63．0\％	${ }_{1}^{1,240}$	${ }^{1} 1447$	207	${ }^{16.7 \%}$
－64．2\％${ }^{6.4 .4}$	${ }_{1}^{1,235}$	${ }_{1}^{1,401}$	${ }^{166}$	${ }^{13.5 \%}$
－65．4\％	＋1，229	${ }_{\substack{1,332}}^{\substack{1,331}}$	${ }^{123}$	10．0\％
－667．7\％	${ }_{1}^{1,2128}$	${ }_{1}^{1,331}$	116	${ }^{8.44 \%}$
69．1\％	${ }_{\substack{1,192}}^{1,210}$	＋1，320	${ }_{128}^{1128}$	${ }^{\text {10．7\％}}$
70．4\％	${ }_{1}^{1,176}$	${ }_{1,320}$	144	12．2\％
71．6\％	1，163	1，264	101	\％
72．8\％	1，141	1	119	10．4\％
75．3\％	${ }_{1}^{1,1071}$	1，181	74	6．6\％
76．5\％	1，067	1，163	96	9．0\％
77．8\％	1.057	1，156	99	
79．0\％	1，046	1，133	88	8．4\％
80．2\％	${ }^{951}$	1，105	153	16．1\％
81．5\％	882	${ }^{1,075}$	194	22．0\％
－ 82.78	882	${ }^{1,057}$	176	19．9\％
84．0\％	800	${ }^{1,003}$	${ }^{203}$	25．4\％
－ $8.5 .2 \%$	800	1，002	202	${ }_{2}^{25.27 \%}$
${ }^{86.4 \%}$	800	${ }_{951}^{989}$	189	${ }^{23.77 \%}$
－	800 800	${ }_{887}^{987}$	151	俍
${ }^{\text {90．1\％}}$	800	882	82	10．2\％
91．4\％	800	852	52	6．5\％
92．6\％	800	${ }_{828}^{828}$	${ }^{28}$	3．4\％\％
93．8\％	800	822	${ }^{22}$	\％
9653\％	699	796	9	
935\％	${ }_{517} 9$	${ }_{7} 77$	20	1．3．\％
	439	647	208	423\％
				4．3\％

Figure SW-28-b
American River at Watt Avenue, Monthly Flow

Table SW-28-b

Table SW－28－b

$\xrightarrow{\text { Proababilit }}$ 0．0\％\％	Monthy Fow	4	（CFS）	
1．2\％	4,947	4，939	－8	${ }_{-0.2 \%}$
2．5\％	${ }_{4}^{4,947}$	${ }_{4}^{4,939}$	－	－0．2\％
3．7\％	4,946 4.943	4，939 4.937	${ }_{-6}^{-8}$	－0．2\％
4．9\％	4，943	${ }_{4}^{4.937}$	${ }_{-6}$	－0．1\％
7．4\％	${ }_{4,942}$	4，937	${ }_{-5}^{-6}$	－0．1\％
8．6\％	4，942	4，936	－6	－0．1\％
9．9\％	4，942	4，934	－8	
11．1\％	4，941	4，929	11	
12．3\％	4，940	4，726	215	4．3\％
13．6\％	4，939	4.633	306	6．2\％
14．8\％	4，938	4．628	310	\％
16．0\％	4，937	4，334	603	－12．2\％
17．3\％	4，937	4，307	－630	－12．8\％
18．5\％	4，937	4，304	－633	－12．8\％
19．8\％	4，937	4，228	－709	－14．4\％
210\％	4，937	4，217	－720	－14．6\％
${ }^{22.2 \%}$	4，937	4，064	－872	\％ 7
23．5\％	4，935	3，958	－977	－19．8\％
${ }^{24.59 \%}$	4，933	${ }^{3.898}$	－1．035	
25．9\％	4，932	3，785	－1，148	－23．3\％
28．20\％	${ }_{4}^{4,983}$		－1，233	\％
29．6\％	${ }_{4,751}^{4,563}$	${ }_{3,526}^{3.629}$	${ }_{-1}^{-1,225}$	${ }_{\text {－}}-25.8$ \％
30．9\％	4，620	3，491	－1．129	－24．4\％
32．1\％	4，530	3，344	－1，186	2\％
33．3\％	4.480	3，303	－1，176	。
34．6\％	4，369	3，248	121	\％
	4，286	3，087	－1，199	
37．0\％	4，167	2，910	－1，257	
38．3\％	4，122	${ }^{2}, 908$	－1，215	－29．5\％
39．5\％	4，109	2，901	－1，208	
40．7\％	4，032	2，779	－1，253	－31．1\％
42．0\％	3，990	${ }^{2,776}$	－1，214	－30．4\％
43．2\％	3，860	${ }^{2,745}$	－1，116	－28．9\％
44．4\％	3，659	${ }^{2,685}$	－974	－26．6\％
45．7\％	3，649	${ }^{2,593}$	－1，056	－28．9\％
${ }^{46.9 \%}$	${ }^{3,582}$	2，549	－1，031	－28．8\％
49．4\％	${ }_{3,364}^{3,493}$	2，502	－993	${ }^{-28.9 \%}$
50．6\％	3，339	${ }_{2,418}$	－921	－27．6\％
51．9\％	${ }_{\text {3，304 }}$	${ }^{2,402}$	－903	－27．3\％
54．3\％	${ }_{\substack{3,108 \\ 3,17}}$	${ }_{2,370}^{2,399}$	－－739	－23．8\％
55．6\％	3，085	${ }_{2}^{2,369}$	－716	
56．8\％	3，061	2，345	－715	－23．4\％
	${ }^{3} 02026$	${ }_{2}^{2,344}$	682	5\％
	2，821	2，337	483	－17．1\％
60．5\％	2，801	2，335	466	－16．7\％
617\％	2，747	2，332	415	－15．1\％
－ 63.0%	2，734	2，324	410	－15．0\％
－64．2\％	2，686	2，312	${ }^{373}$	－13．9\％
${ }^{65.4 \%}$	${ }^{2.5688}$	${ }_{2}^{2,306}$	262	－10．2\％
66．7\％ 67.9%	${ }^{2,547}$	2，302	${ }^{245}$	－9．6\％
67．9\％	${ }_{2} .512$	2，299	${ }^{213}$	8．5\％
69．1\％	2，497	${ }^{2,290}$	－207	－8．3\％
70．1．4\％	2,468 2.352	2,280 2279	－188	－7．6\％
72．8\％	${ }_{2}^{2,314}$	${ }_{2}^{2,274}$	－40	${ }_{-1.7 \%}$
74．1\％	2，307	2，269	－39	－1．7\％
75．3\％	2，296	1，932	－364	－15．8\％
76．5\％	$\begin{array}{r}1,772 \\ 1,763 \\ \hline\end{array}$	1，932	160 169	9．0\％
79．0\％	1,754 1 1,763	${ }_{1}^{1,932}$	178	－ 10.2%
80．2\％	－1，753	1，931	178	10．2\％
－	1，713	1，927	214	12．5\％
84．0\％	1，686	${ }_{1}^{1,767}$	${ }_{81}^{83}$	4．8\％
85．2\％	1.685	1，702	17	1．0\％
86．4\％	${ }^{1,681}$	1，598	${ }^{83}$	4．9\％
877\％\％	1，677	1，541	－137	8．2\％
88．9\％	1，654	${ }^{1,537}$	117	7．1\％
${ }^{90.14 \%}$	1，451	1，433	－17	－1．2\％
991．4\％	（1，363	1，356	${ }^{-7}$	－0．5\％
93．8\％	${ }_{1}^{1,064}$	${ }_{1}^{1,186}$	${ }_{122}^{129}$	111．5\％
95．1\％	1，041	1，115	74	7．1\％
96．9．5\％	${ }_{831}^{954}$	1，104	153 150 1	16．1\％
998．8\％	－ 848	（1，084	${ }_{28}^{250}$	30．0\％
	${ }_{471}$	${ }_{351}$	${ }_{-120}$	－25．5\％

PercentExceananceProbabily	August		$\begin{gathered} \text { Absolve } \\ \text { Aifference } \\ \text { (Cfs) } \end{gathered}$	RelativeDifference（ $\%$ ）
	WSIP 2 230 W Without Proiet	Wsip 2030 With Project		
	Monthly fow（CFS）	Monthl Fiow（CFS）		
0．0\％	3，300	2.878		－12．8\％
1．2\％	${ }_{2}^{2,819}$	${ }^{2,714}$	－104	－3．7\％
2．5\％	2，202	2，541	－19	
3．7\％	2，092	2，454		
4．9\％	${ }_{2}^{2,560}$	${ }^{2,292}$	－394	
6．2\％	${ }_{2}^{2411}$	${ }_{2}^{2,252}$	－159	
7．6\％	${ }_{2}^{231}$	${ }^{2,232}$	5930	
9．9\％\％	${ }_{2}^{2,225}$	＋1932	293	－13．1\％
11．1\％	${ }_{1}^{1,930}$	1931	1	过
12．3\％	1.930	1930	1	0，
13．6\％	1，852	1,930	78	4．2\％
14．8\％	1，752	1，930	177	10．1\％
16．0\％	1，721	1，928	207	12．0\％
17．3\％	1，707	1，926	${ }^{220}$	12．9\％
18．5\％	1，706	${ }_{1,926}$	220	${ }^{12.9 \%}$
19．8\％	1，687	1，920	${ }^{233}$	${ }^{13.3 \%}$
21．0\％	${ }^{1,682}$	1，905	${ }^{223}$	
${ }^{22.2 \%}$	1.680	${ }_{1}^{1,862}$	182	
23．5\％	${ }^{1,679}$	1，788	108	6．5\％
25．9\％	${ }_{1,675}^{1,675}$	${ }_{1}^{1,743}$	${ }_{68}$	4．0\％
27．2\％	1，675	1，743	68	4．0\％
28．4\％	1，675	1，725	50	
29．6\％	1，672	1，722	50	3.0
30．9\％	1，670	1，700	31	1．8\％
32．1\％	1，667	1，678	${ }^{12}$	0．7\％
33．3\％	1，666	1，678	12	0．7\％
34．6\％	1，665	1，671	6	0．3\％
35．8\％	1.664	1，670	6	0．3\％
37．0\％	1，661	${ }^{1,663}$	2	0．1\％
38．3\％	1.660	${ }^{1,661}$	1	0．1\％
39．5\％	1.659	1.660	1	0．1\％
40．7\％	1，659	1，659	0	0．0\％
42．0\％	1，659	1，659	0	0．0\％
43．2\％	1，659	1，659	0	
${ }^{44.45 \%}$	＋1，659	1，659	0	0．0\％
45．7\％	1.659	${ }_{1}^{1,656}$	－33	\％
46．9\％	1，659	1，595	－64	
48．19\％	1.659 1.659	${ }_{\text {1，537 }}^{1.585}$	－122	－7．4\％
50．6\％	1，659	1，534	124	
51．9\％	${ }^{1,623}$	${ }^{1,533}$	90	5\％
54．3\％	${ }_{1}^{1,6884}$	（1，518	－98	源
55．6\％	1，451	1,499	49	3．4\％
56．8\％	1，426	${ }_{1,476}$	50	3．5\％
58．0\％	${ }_{1,372}^{1,312}$	1，467	95	6．9\％
59．3\％	1，369	1，453	84	6．2\％
60．5\％	1，310	1，451	141	10．8\％
${ }^{617.7 \%}$	1，212	1，436	${ }^{224}$	18．4\％
63．0\％	1，177	1，364	187	15．9\％
64．2\％	1，155	1，310	154	4\％
－65．4\％	${ }^{1,1141}$	${ }_{1}^{1,283}$	${ }^{142}$	${ }^{12.5 \%}$
－6．7．9\％	${ }_{\substack{1,1137 \\ 1118}}$	1,257 1.250 1	${ }^{120}$	－
69．1\％	${ }_{1}^{1,101}$	${ }_{1}^{1,247}$	${ }_{146}^{132}$	
70．4\％	1，094	1，245	151	13．8\％
71．6\％	${ }^{1,074}$	${ }^{1,198}$	${ }^{126}$	．8\％
72．10\％	${ }_{1}^{1,016}$	${ }_{1119}$	${ }_{126}^{126}$	崖
753\％	${ }_{1}^{1,001}$	1,091	90	
	1，092	1，096	104	
	975		104	
79．0\％	966	${ }_{1,070}^{1,070}$	104	10．8\％
80．2\％	880	1，013	133	15．2\％
81．5\％	818	999	181	22．1\％
82．7\％	790	966	176	${ }^{22.2 \%}$
84．0\％	${ }^{746}$	935	189	${ }^{25.5 \%}$
85．2\％	744	930	186	25．0\％
${ }^{86.46}$	${ }_{7} 74$	917	174	23．4\％
87．7\％	${ }_{7}^{742}$	883	142	－ 19.12%
${ }^{80.1 \%}$	773 778	${ }_{822}^{829}$	89	${ }^{12.14 \%}$
91．4\％	${ }^{723}$	794	71	9．8\％
92．\％	714	769	55	7．8\％
93．8\％	779	${ }_{738} 7$	${ }_{28}^{29}$	4．2\％
－95．19\％	769 649	${ }_{735}^{736}$	28 86	－${ }^{3.9 \%}$
97．5\％	470	686	216	
98．8\％ 100．0\％	367 306	［ $\begin{array}{r}582 \\ 465\end{array}$	215 160	52．6\％${ }_{\text {52，}}$

percent		WSIP 2030 With Project	Absolute	Reative
Proobability	Monthly Foioct（cFs）	Monthy Flow（CFS）		
0．0\％	4.935	4.874	－62	－1．3\％
1．2\％	4，935	4，726	－209	4．2\％
2．5\％	4，935	4,670	${ }_{2} 265$	－5．4\％
3．7\％	4，926	4，650	${ }_{2} 276$	－5．6\％
4．9\％	4，926	4，559	－366	－7．4\％
6．2\％	4.733	${ }_{3,834}^{4.85}$	－899	－19．0\％
7．4\％	3，962	3，689	－273	－6．9\％
8．6\％	3，425	3，318	－107	－3．1\％
9．9\％	${ }_{3,380}$	3，239	－141	4．2\％
11．1\％	3，206	2，932	${ }^{-273}$	－8．5\％
12．3\％	3，180	2，885	－294	－9．3\％
年 $\begin{aligned} & 13.6 \% \\ & 14.80 \%\end{aligned}$	$\begin{array}{r}2,918 \\ 2.901 \\ \hline 201\end{array}$	2.835 2.793 1	－-108	－－2．9\％
14．8\％ 16.0%	2,901 2,889	2,793 2.747	－108	－3．7\％
17．3\％	${ }_{2,756}^{2,889}$	${ }_{2,714}^{2,747}$	${ }_{-42}$	－1．5\％
18．5\％	2，662	2，637	－25	－0．9\％
19．8\％	2，606	2.611	5	0．2\％
21．0\％	2，600	${ }_{2}^{2.587}$		－0．5\％
${ }^{22.25 \%}$	${ }_{\text {2，487 }}^{2,507}$	${ }_{2,458}^{2.523}$	16 -29	－
24．7\％	2,398	2，311	${ }_{-87}$	－3．6\％
25．9\％	${ }_{2}^{2,367}$	2，199	－168	－7．1\％
27．2\％	${ }_{\text {2，213 }}$	2，194	－19	－0．9\％
28．4\％	2，103	＋1，889	-214	－10．2\％
29．9\％	1.888	${ }_{1}^{1,826}$	－62	－3．3\％
30．9\％	＋1，875	1，796	-80	4．2\％
32．1\％	＋1，745	1，742	－31	－0．2\％
33．3\％	（1，718	退， 1.687	－31	－1．8\％
34．6\％	－${ }_{\text {1，668 }}^{1,622}$	－1,621 1,585	－47	－2．3\％
35.8% 37.0%	1,622 1.518 1	（1，585	-37 66	－2．3\％
－	1，518	1，5844	${ }^{66}$	4．4\％
30．5\％	1，469	${ }^{1.583}$	115	7．9\％\％
40．7\％	1，469	1，574	106	7．2\％
42．0\％	1，469	${ }^{1,5588}$	89	6．1\％
44．4\％	${ }_{1,468}^{1,468}$	${ }_{1,469}^{1.536}$	${ }_{0}$	0．0\％
45．7\％	1.467	1，469	2	0．1\％
${ }^{46.9 \%}$	1，466	1，468	${ }^{2}$	0．2\％
${ }_{4}^{48.4 \%}$	$\xrightarrow{1,449}$	${ }_{1,468}^{1,468}$	17	${ }^{\text {a }}$ 1．2\％
50．6\％	1.449	${ }^{1,463}$	14	1．0\％
51．9\％	1,447	1，450	${ }^{31}$	15%
	${ }_{1,411}^{1,418}$	1，439	21	1．5\％
54.3% 55.6%	1,411	1，434	${ }^{22}$	1．6\％／
年55．8\％	${ }_{1}^{1,308}$	${ }^{1,1414}$	106	8．1\％
56．8\％	1，231	${ }^{1,399}$	168	13．6\％
	1,169 1,169		${ }_{177}^{176}$	退
60．5\％	${ }_{1}^{1,150}$	${ }_{1,341}^{1,361}$	191	16．6\％
61．7\％	1，142	1，340	198	17．3\％
63．0\％	1，124	${ }_{1}^{1,325}$	201	17．9\％
64.2% 6.54%	1,116 1,056 1	1,254 1.235	138 179 1	－
66．7\％	1，009	${ }_{1}^{1,192}$	184	18．2\％
67．9\％	999	1.174	175	17．5\％
69．1\％	${ }_{957}^{960}$		${ }^{213}$	${ }^{22.1 \%}$
71．6\％	945	${ }_{1}^{1,134}$	188	19．9\％
72．8\％	881	1，129	248	28．2\％
74．1\％	${ }^{827}$	1，095	268	32.4%
75．3\％	779	1，080	312	40．5\％
76．5\％	747	${ }^{1,075}$	328	43．9\％
77．8．${ }^{77.0 \%}$	747 747	$\underset{.999}{1,062}$	314 252 2	${ }_{3}^{43.7 \%}$
80．2\％	747	993	246	32．9\％
81．5\％	747	982	235	31．5\％
－ 82.7%	${ }_{747}^{747}$	${ }_{958}^{978}$	${ }_{212}^{232}$	331．\％
${ }^{845.2 \%}$	${ }_{747}$	${ }_{955}^{958}$	212 208	227．8\％
86．4\％	747	898	151	20．3\％
8777\％	${ }_{745}^{747}$	${ }_{813}^{873}$	${ }^{127}$	17．0\％
88．9\％	745 742	813 776	${ }_{35}^{68}$	9．17\％
91．4\％	740	747	7	1．0\％
92．6\％	${ }_{735}^{738}$	${ }_{7}^{746}$	8	1．1\％
${ }^{955.1 \%}$	${ }_{648}$	745	97	15．0\％
96．3\％	469	676	207	44.
97．5\％	415	637 594	${ }^{221}$	53.
100．0\％	336	352	17	5．0\％

Figure SW-29-b
American River at H Street, Monthly Flow

Table SW-29-b

1.2%	15,359	14,582
2.5%	8,049	8,783
2.7%		

2.5\%	8.049
3.7%	6.457
4.9%	5.287

$7.2 \% \%$	4.244
$\begin{array}{l}7.4 \% \\ 8.6 \%\end{array}$	4.7276

4,276
4,246
4,181

 11.14
12.3,
13.6
1.48
1.4

 | 2 |
| :--- | :--- | 3.465

3,233
3,208
3.118
2.968
2,268
 $\begin{array}{r}14.8 \% \\ \quad 16.0 \% \\ \text { 17.3\% } \\ \hline\end{array}$ 17.3%
18.5\%
19.9\%

21.0% | 19.8% |
| :--- |
| 19.8\% |
| 21.0% |
| 22.2% |
| 2.5% |
| 24.7% | | 2.859 |
| :--- |
| a.856 |
| a.648 |
| 2. | \qquad

\qquad		

 33.3\%
34.6\%

35.8\% \begin{tabular}{ll}
34.6% \& 1,775

35.8%

37.773

\hline

1,773

$\begin{array}{l}1,773 \\
1,766 \\
1.674\end{array}$

\hline
\end{tabular} 1,73

1,766
1,764
1,638
1
$3.0 .5 \%$
4.72%
4.0%

Abstract

\qquad

$\begin{array}{r}9.8 \% \% \\ 100.0 \% \\ \hline\end{array}$

December				
Percent Exceedance	WSIP 2030 Without Proiect	WSIP 2030 With Project	Absolute Difference	Relative
Probability	Monthly Fow (CFs)	Montily Fiow (CFFs)	(CFS)	
				${ }^{2.1 \%}$
1.2\%	20,416	20.575	159	
2.5\%	20,3	20.406	98	
3.7\%	19,439	19,658	219	1.1\%
4.9\%	19,154	19,160	7	
6.2\%	17,470	17,464	-6	
7.4\%	17,421	17,410	11	-0.1\%
8.6\%	13,391	13,379	-12	
9.9\%	${ }^{13,093}$	12,638	454	-3.5\%
11.1\%	${ }^{9,187}$	9,202	15	
${ }^{12.3 \%}$	${ }_{8,351}$	${ }_{\text {7,326 }}$	1,005	-12.1\%
13.6\%	¢,159	¢,1566	-3	0.0\%
14.8\%	5.114	${ }^{5.072}$	-42	
16.0\%	(5.063	4,937	-126	
17.5\%	5,039	${ }_{\text {4,293 }}$	-742	
18.5\%\%	4,673	3,783	-80	
19.8\%	-	3,779 3 3	-11	
2.0\%	3,547 3,360	${ }_{\text {3 }} \times$ 3,651	104	2.9\%
23.5\%	${ }_{3,276}$	3,419	143	4.4
24.7\%	3,119	3,358	239	
25.9\%	3,052	3,064	12	
27.2\%	3,047	3,047	0	
28.4\%	2,990	2,658	332	11.1
29.6\%	2,924	2.615	309	
30.9\%	2,603	2,606	2	0.1\%
32.1\%	${ }^{2,428}$	2,349	80	
33.3\%	2.007	${ }_{2}^{2,325}$	319	15.9\%
34.6\%	2,000	2,106	106	5.3\%
35.8\%	2,000	2,000	0	0.0\%
37.0\%	1,938	${ }^{1,938}$	0	0.0\%
38.3\%	${ }^{1,938}$	1,934	4	-0.2\%
39.5\%	${ }_{1}^{1,935}$	1,931	-4	-0.2\%
40.7\%	1,917	${ }^{1,8987}$	-19	
4.2.\%	${ }_{1}^{1,897}$	${ }_{1}^{1,872}$	${ }^{22}$	
${ }^{43.2 \%}$	${ }^{1,879}$	${ }_{1}^{1,872}$	1	01\%
45.7\%	${ }_{1,867}$	${ }_{1,859}^{1,89}$	-7	-0.4\%
46.9\%	1,859	1,859	0	
48.1\%	1.834	${ }^{1,846}$	12	
	1,832	1,841		.5\%
- ${ }_{\text {51.0\% }}$	1,832	1,838	5	${ }^{0.3 \%}$
53.1\%	${ }_{1,880}^{1,831}$	(1,8365	${ }_{5}^{4}$	
54.3\%	${ }_{1,826}$	${ }_{1,830}^{1,80}$	4	0.2\%
55.6\%	1.809	1.829	20	1.1\%
56.8\%	1,807	1,827	21	1.2\%
58.0\%	${ }^{1,667}$	${ }_{1,822}$	154	9.3\%
59.3\%	${ }^{1,654}$	${ }_{1}^{1,804}$	150	9.1\%
60.5\%	1,636	1,787	151	9.3\%
${ }^{611.7 \%}$	1,634	${ }^{1,768}$	134	8.2\%
63.0\%	1,631	1,710	79	4.8\%
64.2\%	1,600	${ }_{\substack{1,673 \\ 1 \\ 1.63}}^{\text {a }}$	73 67	${ }_{4}^{4.6 \%}$
-65.4\%	${ }^{1} 1.597$	${ }^{1,663}$	67	${ }_{2}^{4.2 \%}$
66.7\%	${ }^{1}$	${ }_{1}^{1,628}$	${ }_{53}$	2.4\%
-67.9\%	${ }_{1}^{1.560}$	${ }_{1}^{1,6613}$		${ }^{\text {4.0\% }}$
70.4\%	${ }_{1,514}^{105}$	${ }_{1,600}$	${ }_{86}$	5.7\%
71.6\%	1,488	97	109	7.3\%
72.8\%	1,439	1,579	140	9.7\%
74.1\%	1,437	1,468	32	2.2\%
75.3\%	1,429	1,430	0	\%\%
76.5\%	${ }^{1,387}$	1,402	15	.1\%
77.8\%	1,332	1.384	51	8\%
79.0\%	1,317	1,368	51	3.9\%
-	1,294	1,345	51	3.9\%
${ }^{81.5 \%}$	1,278	${ }^{1,276}$	-2	-0.2\%
- 82.78	1,142	${ }^{1,179}$	${ }^{38}$	3.3\%
84.0\%	${ }^{1,103}$	${ }^{1,179}$	76	${ }^{6.8 \%}$
- $8.5 .2 \%$	${ }^{1,035}$	${ }^{1,1588}$	${ }^{123}$	${ }^{11.9 \%}$
86.4\%	1,023	1,094	70	${ }^{6.9 \% \%}$
- $\begin{aligned} & 87.7 \% \\ & 889 \%\end{aligned}$	${ }_{908} 9$	${ }_{814}$	8	
88.9\%	908	814	${ }_{-53}$	-
90.17\%	847	990	${ }^{-53}$	6.3\%
92.6\%	795	798	O	
93.8\%	${ }_{693}$	${ }_{754}^{778}$	${ }^{33}$	8.8\%
95.1\%	689	693	4	0.6\%
96.3\%	680	683	3	.5\%
5\%	651	677	27	
98.8\% 100.\%	(500	651 500	(151	30.0\%

| |
| :--- | :--- | :--- | :--- |

Table SW-29-b

February				
Percent Exceedance	$\begin{aligned} & \text { WSIP } 2030 \text { Without } \\ & \text { Proiect } \end{aligned}$	WSII 2030 With Project	Absolute Difference	
Probability	Monthy Fow (CFS)	Monthly fow (CFS)	(CF5)	
				0.0\%
1.2\%	25,474	25,474	0	
2.5\%	25,290	25,28	7	
3.7\%	18,998	18,898	0	0.0\%
	18,230	18,230	0	
-6.2\%	${ }^{18.880}$	${ }^{18.080}$	0	0.0\%
8.6\%	${ }^{17,7660}$	${ }^{117,7834}$	${ }_{174}$	1.0\%
9.9\%	17,052	17,052	0	0.0\%
11.1\%\%	${ }^{16,564}$	${ }^{16,561}$	-3	0.0\%
12.3\%	${ }^{16,421}$	${ }^{16,422}$	0	00\%
13.6\%	15.765	15.765	O	0.0\%
14.8\%	15.162	${ }^{15,159}$	-2	\%
16.0\%\%	15,140	${ }^{14,883}$	${ }_{-25}$	-1.7\%
18.5\%	13,954	-13,954	1	0.0\%
19.8\%	${ }^{13,921}$	${ }^{13,921}$		0.0\%
221.0\%	12.293 12762	$\begin{array}{r}12,759 \\ \hline 1239\end{array}$	-164	-1.3\%
${ }^{22.2 \%}$	${ }^{12,762}$	${ }^{12,392}$	-370	2.9\%
24.7\%	${ }^{11,1,399}$	${ }^{11,468}$	69	0.6\%
25.9\%	10,922	10,922		
27.2\%	10,602	10,60	0	
28.4\%	10,486	10,488	2	0.0\%
29.6\%	8,550	8.55	0	
30.9\%	8.501	8,489	12	-0.1\%
	${ }_{8}^{8.057}$	${ }_{8}^{8.057}$	0	0.0\%
334.6\%	${ }_{\text {7,978 }}^{\text {7.065 }}$	7.067	${ }^{3}$	0.0\%
35.8\%	6,919	6,921	1	0.0\%
37.0\%	6,759	6,759	0	0.0\%
	㐌,737	6,737	14	0.0\%
39.5\%	${ }_{6}^{6,705}$	6,720	14	${ }^{0.2 \%}$
${ }^{40.7 \%}$	${ }_{\text {c }}^{6,548}$		${ }^{96}$	
43.2\%	${ }_{5}^{6,483}$	-	,	0.0\%
44.4\%	${ }_{5.814}^{5}$	${ }_{5.812}^{5.827}$	${ }_{-2}$	0.0\%
俍4.7\%\%	5.812	5,811		0.0\%
48.9\%	${ }_{\substack{5,674 \\ 5,360}}$	${ }_{5.563}^{5.671}$	${ }_{-8}^{-2}$	-0.0\%
49.4\%	5,323	5,008	-315	-5.9\%
50.9\%	5.008	4,700	${ }^{308}$	-6.2\%
51.9\%	4,211	4,211	0	0.0\%
	3,924	3,847	-78	-2.0\%
	3,772	3,771	-1	0.0\%
	3,597	3,597	0	0.0\%
	3,561	3,412	149	-4.2\%
59.0\%\%	${ }^{3,412}$	${ }^{3,328}$	${ }^{-83}$	-2.4\%
${ }^{59.3 \%}$	${ }_{\text {3,365 }}^{3,365}$	3,123	-242	-7.2\%
60.5\%	3,365	2,891	-474	-14.1\%
	${ }^{3,326}$	2,841	-485	-14.6\%
664.2\%	${ }_{2}^{2,978}$	${ }_{2}^{2,643}$	-276	-9.5\%
665.4\%	${ }_{\text {2, }}^{2,771}$	${ }_{2}^{2,401}$	-370	-13.4\%
66.7\%	2,529 2.401	${ }_{2}^{2,273}$	-205	-10.1\%
667.9\%	2,409	${ }^{2,195}$	-205	-8.0\%
69.1\%	${ }_{2,102}^{2,187}$	${ }_{2,102}^{2,178}$	-10	-0.4\%
70.4\%	2,000	2.000	0	0.0\%
71.6\%	1,989	1,990	1	\%\%
74.1\%	${ }_{1,423}^{1.570}$	1,599 1,570	328 147	20.9\%
75.3\%	1,407	1,364	43	-3.0\%
76.5\%	1,338	1,338	0	0.0\%
77.7\%	1,325	${ }^{1,325}$	0	0.0\%
79.0\%	${ }_{1}^{1,314}$	${ }_{1,314}^{1,29}$	0	0.0\%
- ${ }^{80.2 \% \%}$	1,293	1,291	2	-0.2\%
81.5\%	-1,282	${ }_{1}^{1,282}$	0	0.0\%
	1,269	1,271	2	0.1\%
84.0\%	${ }_{1}^{1,266}$	${ }_{1}^{1,269}$	3	0.3\%
8.2\%	1,220 11138	1,266	${ }_{71}^{46}$	${ }^{3.8 \%}$
88.4\%\%		${ }_{1}^{1,209}$	71	${ }^{6.2 \%}$
888.9\%	$\underset{\substack{1,138 \\ 1,134}}{1,1220}$	1,204 1179	${ }^{66}$	${ }^{5.8 \%}$
90.1\%	${ }^{1} 1,124$	1,159	45	${ }^{3.9 \% \%}$
90.10\%	${ }_{1}^{1,124}$	+1,159	${ }^{35}$	3.1\%
992.6\%	${ }_{1}^{1,044}$	${ }_{\substack{1,136}}^{1,156}$	${ }_{92}$	8.8\%
93.8\%	986	1,134	148	15.0\%
99.3\%	${ }_{9} 969$	${ }^{1,103}$	${ }^{135}$	13.9\%
99.5\%	951	${ }^{1}$	57	5.9\%
93.8\% 900\%	${ }_{250} 25$	250	0	

Table SW－29－b

	August			
	WSIP 2030 Without	WSIP 2033 With Project	Abssoute	Realite Difeerve el
	Monthly fow（ CFS）	Monthy Flow（CFS）	（CFFs）	
0．0\％	2.786	2，392	${ }^{-393}$	－14．1\％
1．2\％	${ }_{2,277}$	2，201	－77	－3．4\％
2．5\％	2，206	2，046	－160	－7．3\％
3．7\％	2，202	1，970	－232	－10．6\％
4．9\％	2，199	1，766	－432	－19．7\％
6．2\％	2.002	1，750	－252	－12．6\％
7．4\％	1，931	1，750	－181	－9．4\％
8．6\％	$\begin{array}{r}1,750 \\ 1,750 \\ \hline 1750\end{array}$	1,750 1,750 1	0	0．0\％
${ }^{\text {9，9\％}}$	1,750 1,750 1	1,750 1,750 1	0	0．0\％
11．19\％	1,750 1,750 1	1,750 1,750	0	－0．0\％
12．3\％	1,750 1,672	1,750 1,750 1	${ }_{78}$	0．0\％
－ $13.4 .8 \%$	${ }_{1,573}^{1,672}$	1,750 1,749	78 177	－${ }_{\text {4，}}^{1.2 \%}$
16．0\％	${ }_{1,542}$	1，749	207	13．4\％
17．3\％	${ }^{1,528}$	1，747	219	14.3
18．5\％	1，527	1，746		14.3
19．8\％	1，506	1，741	235	
21．0\％	${ }^{1,503}$	1，724	${ }^{221}$	
22．2\％	1，500	1，681	180	
23．5\％	1，498	1，610	112	7．5\％
24．7\％	1，497	1，580	${ }^{83}$	5．6\％
25．9\％	1，496	1，575	78	5．5\％
27．2\％	1，496	1，563	${ }^{67}$	4．5\％
28．4\％	1，496	${ }^{1,546}$	50	3．4\％
29．6\％	1，495	${ }_{1,542}^{1,51}$	47	${ }^{3.1 \%}$
30．9\％	1，491	${ }^{1,521}$	30	2．0\％
32．1\％	1，490	1，500	9	0．6\％
33．3\％	1，489	${ }_{1}^{1.498}$	9	0．6\％
34．6\％	1，487	1，490	3	${ }^{0.2 \%}$
35．8\％	1，486	1，489	${ }^{3}$	
－ 38.3%	${ }_{1}^{1,484}$	${ }_{1}^{1,4884}$	${ }_{0}$	
30．5\％	${ }_{1}^{1,483}$	${ }_{1}^{1,484}$	1	0．0\％
40．7\％	1,483	1,483	0	0．0\％
42．0\％	1，483	1，482	－1	－0．1\％
4．4．4\％	（1，480	＋1，478	${ }_{-3}^{-2}$	－0．2\％
45．7\％	${ }_{1}^{1,480}$	${ }_{1,447}^{1,46}$	－33	${ }_{-2.2 \%}$
46．9\％	1.479	1，416	－63	－4．3\％
48．1\％	1.478	1，405	－73	－4．9\％
49．4\％	1.478	1，359	－119	－8．1\％
50．6\％	1,478	1，358	－119	－8．1\％
51．9\％	1，443	1，354	－89	－6．2\％
53．19\％	1,437 1,305	1，341	－96	－6．7\％
54．3\％	${ }_{1}^{1,305}$	${ }_{1}^{1,326}$	20	${ }^{1.6 \%}$
55．6\％	${ }_{1,247}^{1,272}$	＋1，220	48 51	38\％
	${ }_{1}^{1,247}$	＋1，299	${ }_{51}^{51}$	4．1\％
58．0\％\％	${ }^{1,192}$	1，288	${ }_{96} 9$	11\％
59．3\％	${ }^{1}$	${ }_{1}^{1,27275}$	$\begin{array}{r}86 \\ \hline 140\end{array}$	7．2\％
60．17\％	${ }_{1,033}^{1,131}$	${ }_{1}^{1,272}$	${ }^{1227}$	22．0\％
63．0\％	${ }_{998}$	${ }_{1}^{1,185}$	${ }_{187}^{287}$	18．7\％
64．2\％	979	1，131	152	15．5\％
65．4\％	${ }_{9} 96$	${ }_{1}^{1,1077}$	142 119	\％ 7%
${ }^{60.79 \%}$	999	1074	135	
69．1\％	922	${ }_{1}^{1.067}$	${ }_{145}$	
70．4\％	915	${ }_{1,066}$	151	16．5\％
71．6\％	892	1，019	128	14．3\％
72．8\％	${ }^{874}$	1，000	${ }^{125}$	14．3\％
74．1\％	${ }^{838}$	940	102	${ }^{12.19 \%}$
75．3\％	825	913	87	10．6\％
76．5\％	803	907	104	${ }^{13.0 \%}$
77．8\％	796	892	96	${ }_{\text {1 }}^{12.19 \%}$
79．0\％	${ }_{787} 78$	891	105	－ 13.3%
－	${ }_{6} 707$	${ }^{834}$	${ }^{126}$	5\％
－ 81.50%	640	${ }^{822}$	182	${ }_{278}^{28.5 \%}$
－ 8 82．70\％	6598	${ }_{758} 78$	171	${ }_{33,}^{27.8 \%}$
－ $\begin{aligned} & 84.0 \% \\ & 852 \%\end{aligned}$	㐌 568	${ }_{756} 7$	188	边 $\begin{aligned} & 33.3 \% \\ & 33.1 \%\end{aligned}$
88．4\％	568	${ }_{742}$	176	331．1\％
87．7\％	564	711	147	26．1\％
88．9\％	㐌 563	${ }_{6}^{650}$	88	－15．6\％
9014\％	${ }_{5}^{554}$	644	${ }^{86}$	\％
9．4．0	${ }_{554}^{545}$	595	54	10．2\％
93．8\％	${ }_{531}^{556}$	564	${ }_{34}$	6．4\％
95．1\％	530	559	29	\％
96．3\％	471	559	${ }^{88}$	18．7\％
97．5\％	349	556	207	59．5\％
	（188 $\begin{aligned} & 188 \\ & 188\end{aligned}$	${ }_{348}^{403}$	215 160	144．3\％ 84．9\％

Percent Exceedance	WSIP 2 2303 Without	WSIP 2033 With Project	Absolute Difterence	Relative
	Monthly Fried（CFS）	Monthy Flow（CFS）	（cFs）	ifferece（\％）
0．0\％	4，582	4，521	－62	－1．3\％
1．2\％	4，566	4，336	－230	－5．0\％
2．5\％	4，560	4.301	-260	－5．7\％
3．7\％	4.545	4，252	－293	－6．4\％
4．9\％	4．539	4，194	－345	－7．6\％
6．2\％	${ }_{4}^{4,335}$	3，451	－884	－20．4\％
7．4\％	3，579	${ }^{3,424}$	－156	－4．3\％
8．6\％	3，114	2，937	－177	－5．7\％
${ }^{9.9 \%}$	3，070	2，885	－185	－6．0\％
	2,830 2.805	2.538 2.511	－292	－10．5\％
13．6\％	2.544	2.459	${ }_{-85}$	－3．4\％
14．8\％	2．509	2.418	91	
16．0\％	${ }_{2}^{2.507}$	2,380	127	
17．3\％	2，390	2，362	${ }^{28}$	
18．5\％	2，309	2，257	－53	－2．3\％
19．8\％	2，251	${ }^{2,256}$	5	0．2\％
${ }^{21.0 \%}$		2， 213	－7	－0．3\％
${ }^{22.2 \%}$	${ }_{\substack{2,1128 \\ 2,128}}^{\text {2，}}$	2，190	－15	3．1\％
24．7\％	2.024	1，939	－85	－4．2\％
25．9\％	2，009	${ }_{1,840}$	－169	－8．4\％
27．2\％	＋1，852	（1，838	-14	－0．7\％
28．4\％	1,750 1,750 1	1，750	0	
－	＋1，500	1，688	${ }^{62}$	
30．1\％	1，750	${ }^{1,663}$	${ }^{-87}$	－5．0\％
32．3\％	${ }_{1}^{1} .585$	${ }_{1}^{1,549}$	${ }^{-36}$	${ }_{-2.3 \%}$
34．6\％	${ }^{1,530}$	${ }^{1,483}$	${ }^{46}$	－3．0\％
退35．8\％	1,484 1,380 1	1,446 1.446 1	－38 67	
38．3\％	1.352	1.446	94	7．0\％
39．5\％	1，343	1，445	102	
40．7\％	1，335	1.436	101	
42．0\％	1，332	1，427	94	
43．2\％	1，332	1，399	${ }_{6}^{66}$	5．0\％
${ }^{44.4 \%}$	1，331	${ }^{1,352}$	21	1．6\％
46．9\％	1，329	${ }_{1,332}^{1,341}$	${ }_{3}$	0．2\％
48．1\％	${ }_{1,328}$	1，332	4	0．3\％
49．4\％	${ }_{1,313}$	1，330	17	1．3\％
年50．9\％	1，311	1，329	18	1．4\％\％
53．1\％	${ }_{1}^{1,292}$	${ }_{1}^{1,303}$	${ }_{11}^{4}$	0．9\％
54．3\％	1，280	1，295	15	1．2\％
55．6\％	1，170	1，276	106	9．1\％
	1,093 1,085	1,260 1,213 1	${ }_{1}^{167}$	源
59．3\％	1，030	${ }_{1,212}^{1,212}$	${ }_{182}^{182}$	17．6\％
60．5\％	1，020	1，204	184	18．0\％
61．7\％	1，011	${ }_{1}^{1,203}$	191	18．9\％
64．2\％	998	${ }_{1}^{1,116}$	${ }_{138}$	${ }^{214.1 \%}$
65．4\％	918	1，097	179	
66．7\％	874	1，084	210	
67．9\％	866	1,075	208	24．1\％
69．1\％	840	1，034	194	23．1\％
70．4\％	821	1.011	189	${ }^{23.1 \%}$
71．6\％	807	1，003	195	${ }^{24.2 \%}$
72．8\％	746 689	990	${ }_{224} 24$	－${ }^{32.7 \%}$
7．3．3\％	649	941	${ }_{292}$	45．1\％
76．5\％	630		310	49．1\％
77．8\％	${ }_{6} 62$	924	${ }^{303}$	48．9\％
79．0\％	616 611	－${ }_{867}^{866}$	250	40．6\％
80．15\％	${ }_{611}^{611}$	${ }_{851}^{857}$	${ }_{241}^{246}$	${ }_{39.4 \%}^{40.2 \%}$
82．7\％	611	844	${ }^{233}$	38．2\％
84．0\％	610	${ }_{8} 827$	217	35．6\％
88．4\％	609	799	190	31．3\％
87．7\％	609	738	129	
88．9\％	608	675	66	
90．1\％	608	639	31	5．0\％
914．4\％	${ }_{602}^{602}$	622	20	3．3\％
92．6\％	599 598	609	10	1．7\％
${ }^{93.85 \%}$	596	${ }_{607} 08$	${ }^{12}$	${ }^{2.0 \%}$
${ }_{96.3 \%}$	${ }_{376}$	${ }_{544}$	${ }_{168}$	${ }_{44.6 \%}^{19.0 \%}$
97．5\％	281	538	257	91．5\％
	${ }_{261}^{281}$	（278	89 17	31．5\％

Figure SW-46-b
Feather River at Shanghai Bend, Monthly Flow

Table SW-46-b

| |
| :--- | :--- | :--- | :--- |

PercentExceedance	January			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	WSIP 2 230 Proieth Withut	WSIP 2030 With Project		
	Monthy Flow (CFS)	Montly Flow(CFSS)		
0.0\%	64,676	64,676		0.0\%
1.2\%	51,372	45.550	5.822	-11.3\%
2.5\%	44,597	44,597	0	0.0\%
3.7\%	35,561	${ }^{35,541}$	-20	-0.1\%
4.9\%	${ }^{31,885}$	${ }^{33,980}$	2,095	6.6\%
6.2\%	31.840 23793	31.885 24.673	${ }_{8}^{451}$	- 0.1%
7.4% 8.6%	23,793	${ }_{\text {2, }}^{24,673}$	${ }_{-711} 81$	
8.6\%	22,814	${ }^{22,103}$	-711	-3.1\%
9.9\%	21,607	21,607 20,792	${ }_{148}^{14}$	0.0\%
- 11.12%	20,644 18.823	${ }_{20,644}^{20,792}$	148 1.821	0.7\% 0
13.6\%	18,488	20,296	${ }_{1,808}$	9.8\%
14.8\%	17,902	17,902	0	O\%
16.0\%	15.705	16,310	604	
17.3\%	564	15,3		
18.5\%	${ }^{13,785}$	14,999	1,214	8.8\%
19.8\%	11,147	11,988	841	7.5\%
21.0\%	10,692	11,870	1,178	11.0
22.2\%	10,302	11,147	844	8.2\%
23.5\%	9,972	10,692	720	7.2\%
24.7\%	9,654	9,651	4	0.0\%
25.9\%	9,651	9,443	${ }^{208}$	-2.2\%
27.2\%	9.060	9,237	177	1.9\%
28.4\%	8.902	8.902	0	0.0\%
-	8,604	${ }^{8.604}$	0	0.0\%
30.9\%	${ }_{7}^{8,455}$	${ }_{7}^{8,455}$	0	0.0\%
边 32.1 \%	7,943	7,946	2	${ }_{0}^{0.0 \%}$
34.6\%	7,520	${ }^{7.520}$	0	0.0\%
35.8\%	6,785	6,785	0	0.0\%
37.0\%	${ }^{6.692}$	${ }^{6.692}$	0	0.0\%
${ }_{3}^{30.5 \%}$	${ }_{5,542}^{5.922}$	${ }_{\substack{5.542 \\ 5.542}}^{\text {a }}$	0	0.0\%
40.7\%	5.462	5.462	0	0.0\%
42.0\%	5.418	5.418	0	0.0\%
43.2\%	5,285	5.285	0	0.0\%
44.4\%	5,192	5,192	0	0.0\%
45.7\%	5,153	5,152	-1	0.0\%
46.9\%	4,936	4,936	0	0.0\%
48.19\%	4.712	4.712	0	0.0\%
	4,628	4,348	280	-6.1\%
${ }^{50.6 \%}$	4,396	4,264	-133	-3.0\%
年 51.9%	4,348	4,222	125	-2.9\%
54.3\%	${ }_{3,814}^{4,162}$	${ }_{3,814}^{4.162}$	0	0.0\%
55.6\%	3,798	3,798	0	0.0\%
56.8\%	3,633	3,627	-6	-0.2\%
	3,627 3,595	- $\begin{aligned} & 3.616 \\ & 3.595\end{aligned}$	${ }_{0}^{11}$	-0.3\%
60.5\%	3,430	3,430	0	0.0\%
61.7\%	${ }^{3,388}$	${ }^{3,3888}$	0	0.0\%
63.0\%	3,097	${ }^{3.097}$	0	
${ }^{64.24 \%}$	${ }^{3} \mathbf{3}, 006{ }^{\text {a }}$	${ }^{3} \mathbf{3}, 066$		
${ }_{6}^{6.7 \%}$	${ }_{2,963}$	${ }_{2,963}$	0	0.0\%
67.9\%	2.886	2.886	0	0.0\%
69.1\%	2,841	2.841	0	0.0\%
70.4\%	2,811	2,811	0	0.0\%
71.6\%	${ }_{2}^{2,807}$	2.807 2793	0	0.0\%
74.1\%	-	2,793	0	-0.0\%
75.3\%	${ }_{2}^{2,712}$	2.712	0	0.0\%
76.5\%	2,710	2,710	0	0.0\%
77.8\%	2,683	2,683		0.0\%
79.0\%	2,679 2628	2,679 2628	0	0.0\%
${ }_{81.5 \%}$	${ }_{2,549}^{2,628}$	${ }_{\text {2,549 }}^{2,628}$	0	0.0\%
82.7\%	2,509	2.509	0	0.0\%
84.0\%	${ }_{2}^{2,430}$	2,430	0	0.0\%
${ }^{856.26 \%}$	${ }^{2} 2,295$	${ }_{2203}$	-	0.0\%
${ }^{86.4 \%}$	${ }_{2,280}^{2,295}$	${ }_{2,280}^{2,293}$	-2	-0.0\%
88.9\%	${ }_{2,278}^{2,280}$	${ }_{2,278}^{2,29}$	0	0.0\%
90.1\%	2,277	2,277	0	0.0\%
91.4\%	2,168	2,168	0	0.0\%
92.6\%	2,157	2.110	47	2.2\%
93.8\%	2,105	2,105	0	0.0\%
95.1\%	2,102	2,102	0	0.0\%
96.3\%	1,914	1,999	${ }^{85}$	4.4\%
97.5\%	${ }^{1,859}$	1,914	54	
98.8\%	${ }_{1}^{1,8759}$	1,845 1,759	0	-

Table SW－46－b

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& February \& \&

\hline Percent
Exceedanc \& $$
\begin{aligned}
& \text { WSIP } 2030 \text { Without } \\
& \text { Proiect } \\
& \hline
\end{aligned}
$$ \& WSII 2030 With Project \& ${ }_{\substack{\text { Absolute } \\ \text { Difierence }}}^{\text {a }}$ \& ${ }^{\text {Reative }}$（fferece ${ }^{\text {\％\％}}$

\hline Probability \& Monthly fow（CFFS） \& Montly Flow（CFS） \& \& Difference（\％）

\hline 0．0\％ \& 59.842 \& \& 0 \& 0．0\％

\hline 1．2\％ \& 45，979 \& 45.979 \& 0 \&

\hline 2．5\％ \& 43，990 \& 44，01 \& 11 \&

\hline 3．7\％ \& 40，844 \& 40，844 \& 0 \& 0．0\％

\hline 4．9\％ \& ${ }^{34,850}$ \& ${ }^{36,689}$ \& 839 \& 5．3\％

\hline 6．2\％ \& ${ }^{33,488}$ \& ${ }^{33,488}$ \& 0 \& 0．0\％

\hline 7．4\％ \& ${ }^{31,771}$ \& ${ }^{31,771}$ \& 0 \& \％

\hline 8．6\％ \& ${ }^{31,743}$ \& ${ }^{31,743}$ \& 0 \& 0．0\％

\hline 9．9\％ \& ${ }^{31,558}$ \& ${ }^{31,696}$ \& 138 \& 0．4\％

\hline 11．1\％ \& 29，465 \& 31，558 \& ${ }^{2}, 093$ \& 7．1\％

\hline ${ }^{12.3 \% \%}$ \& ${ }^{28,169}$ \& 29，982 \& ${ }^{1,818}$ \& 退

\hline 13．4\％\％ \& 27，820 \& ${ }^{29,840}$ \& 2，020 \& 7．3\％

\hline 14．8\％ \& 26，979 \& 27，822 \& 843 \& 3．1\％

\hline 17．0\％\％ \& ${ }^{26,978}$ \& ${ }^{26,978}$ \& O \&

\hline 18．5\％ \& ${ }^{23,882}$ \& ${ }^{25,056}$ \& 1，174 \& 4．9\％

\hline 19．8\％ \& 23，358 \& 2，501 \& 1，143 \&

\hline 21．0\％ \& ${ }^{21,923}$ \& 22,417 \& 493 \& 3\％

\hline 22．2\％ \& 21，240 \& ${ }^{21,923}$ \& 683 \& 3．2\％

\hline 23．5\％ \& ${ }^{21,025}$ \& ${ }^{21,240}$ \& 215 \& 0\％

\hline 22．7\％\％ \& 20，687 \& 20.507 \& 180 \& －0．9\％

\hline 257．2\％ \& 19，932
19,281 \& 19，983
19,278 \& －351 \& ${ }_{\text {en }}^{\text {2．3\％\％}}$

\hline 28．4\％ \& 17，629 \& 17，629 \& 0 \& 0．0\％

\hline 29．6\％ \& 14，059 \& 14，195 \& 136 \& 1．0\％

\hline 30．9\％ \& ${ }^{13,655}$ \& 14，059 \& 404 \& 3．0\％

\hline 32．1\％ \& 12，151 \& 12，151 \& 0 \& 0．0\％

\hline 33.3%
34.6% \& ${ }^{11,639}$ \& ${ }^{11,639}$ \& 0 \& 0．0\％

\hline 34．5\％ \& 10，390 \& 10，816 \& ${ }^{426}$ \& 4．19\％

\hline 第35．8\％ \& －8，202 \& － \& 2，188 \& ${ }^{26.7 \%}$

\hline － 37.0% \& －8，179 \& ${ }^{9,027}$ \& ${ }_{81} 88$ \& 10．4\％

\hline 38．3\％ \& 8，120 \& ${ }_{8}^{8,202}$ \& 81 \&

\hline 40．7\％ \& 7，868 \& ${ }_{7}^{8.159}$ \& ${ }^{251}$ \& ${ }^{3.2 \% \%}$

\hline 42．0\％ \& ${ }^{7.5599}$ \& ${ }_{7}^{7.589}$ \& 0 \& 0．0\％

\hline 㐌4．2\％\％ \& $\begin{array}{r}7,317 \\ \hline 7264 \\ \hline\end{array}$ \& ${ }_{7}^{7,317}$ \& 0 \& 0．0\％

\hline 45．7\％ \& 7，121 \& \％，919 \& \&

\hline 46．9\％ \& 6，919 \& 6.760 \& －159 \& －2．3\％

\hline 48．1\％ \& 6，555 \& 6，555 \& \&

\hline 49．4\％ \& 6，449 \& 6．449 \& 0 \& 0．0\％

\hline 50．6\％ \& ${ }^{6,156}$ \& ${ }^{6,156}$ \& 0 \& 0．0\％

\hline 51．9\％ \& ¢，024 \& ${ }_{6}^{6,023}$ \& －1 \& 0．0\％

\hline \& 5.989
5
5 \& 㐌， 5.987 \& $\stackrel{2}{2}$ \& 0．0\％

\hline 54．3\％ \& 5.946
5
5
5 \& 5.946
5，720 \& 0 \& 0．0\％

\hline 年5．5\％\％ \& 5．720 \& 5，720 \& 0 \& 0．0\％

\hline \& 5.503
5
5
5 \& ${ }^{5.503}$ \& 0 \& 0．0\％

\hline 年58．0\％\％ \& ¢， 5 \& 5．492 \& 0 \& 0．0\％\％

\hline 㐌 69.5% \& 5， 5 5，344 \& 5.181 \& －173 \& －3．2\％

\hline 60．5\％ \& 5，351 \& 4．816 \& －37 \& －10．0\％

\hline － 61.79% \& 4．816 \& 4，799 \& －17 \& －0．4\％

\hline 6． 6.2% \& ${ }_{4}^{4.801}$ \& ${ }_{4}^{4,699}$ \& －11 \& ${ }^{-2.5 \%}$

\hline 65．4\％ \& 4，669 \& 4，650 \& －19 \&

\hline \& 4，650 \& 4．575 \& －74 \& －1．6\％

\hline 69．1\％ \& ${ }_{4.223}^{4.575}$ \& ${ }_{4,223}^{4,373}$ \& ${ }_{0}$ \& －4．0\％

\hline 70．4\％ \& 3，880 \& 3，880 \& 0 \& 0．0\％

\hline 71．6\％ \& 3，684 \& 3，684 \& 0 \& \％

\hline 72．8\％ \& 3，489 \& 3，489 \& 0 \& \％

\hline 74．19\％ \& 3，310 \& 3，310 \& 0 \& 0．0\％

\hline 75．3\％ \& 3，005 \& 3，005 \& 0 \& 0．0\％

\hline 76．5\％ \& 2，990 \& 2，990 \& 0 \& \％

\hline 778\％ \& ${ }^{2}, 982$ \& 2，982 \& 0 \& 0．0\％

\hline 79．0\％ \& ${ }^{2,884}$ \& 2，884 \& 0 \& 0．0\％

\hline －${ }_{80.2 \%}^{8.5 \%}$ \& ${ }_{2,848}$ \& 2，852 \& 4 \& 0．1\％

\hline ${ }^{81.5 \%}$ \& 2，760 \& 2，848 \& 89 \& 3．2\％

\hline － 82.80% \& 2，754
2
2 \& 2， \& 5 \& 0．2\％

\hline ${ }^{84.5 \%}$ \& $\begin{array}{r}2,629 \\ 2.581 \\ \hline 2.51\end{array}$ \& 2,754

2
2 \& ${ }_{17}^{126}$ \& ${ }_{1}^{4.8 \%}$

\hline 86．4\％ \& 2，572 \& ${ }_{2,583}^{2,58}$ \& 11 \& 0．4\％

\hline 877\％\％ \& 2，571 \& 2．581 \& 10 \& 0．4\％

\hline ${ }^{88.9 \%}$ \& 2.508
2．478
2， \& 2，508 \& 0 \& 0．0\％

\hline 9014\％ \& ${ }_{2,465}^{2.478}$ \& ${ }_{2}^{2.465}$ \& \& 0．0\％

\hline ${ }_{9} 9.6 \%$ \& ${ }_{2,364}^{2,465}$ \& | 2.465 |
| :--- |
| 2.364 | \& 0 \& 0．0\％

\hline 93．8\％ \& ${ }_{2}^{2,273}$ \& ${ }_{2}^{2} 2,273$ \& 0 \& 0．0\％

\hline 95．1\％ \& 2,179
2112 \& ${ }_{2,243}^{2,173}$ \& 63 \& 2．9\％

\hline 97．5\％ \& 2，021

2，012 \& 2,179
1.832 \& ${ }^{67}$ \& 3．2\％

\hline 98．8\％ \& 1，711 \& ${ }_{1,711}^{1,175}$ \& 0 \& \％

\hline \& \& \& \&

\hline
\end{tabular}

		March					April		
Percent Exceedance	WSIP 2030 Without Proiet	Wsil 2030 With Project	Absolute Difference	Relative	Percent Exceedance	WSIP 2 230 Proiet Without	WSIP 2030 With Project	Absolute Difference	Relative
Probability	Monthly Fow（CFS）	Monthy Flow（CFS）				Monthy Flow（CFS）	Monthly Fow（CFS）		
0．0\％	${ }^{53,653}$	${ }^{53,653}$	0	0．0\％	0．0\％	${ }^{30,813}$	30，8	－6	0．0\％
1．2\％	52，428	52，429	0	0．0\％	1．2\％	${ }^{25,542}$	${ }^{25,538}$	-4	0．0\％
2．5\％	41，481	41.518	${ }^{37}$	0．1\％	2．5\％	22，345	22，342	${ }^{-3}$	0．0\％
3．7\％	${ }^{41,088}$	${ }^{41,481}$	393	1．0\％	3．7\％	15，712	15，704	－8	－0．1\％
4．9\％	${ }^{37,093}$	${ }^{37,096}$	3	0．0\％	4．9\％	14，944	14，937	－7	0．0\％
7．2\％	－37，092	37，092	0	0．0\％	${ }^{6.2 \%}$	11,642 111360	${ }^{111,637}$	－5	0．0\％
8．6\％	26，754	${ }_{26,754}$	0	0．0\％	8．6\％	10，729	${ }_{10,814}^{11,537}$	86	0．8\％
9．9\％	25，520	520	0	0．0\％	9．9\％	10，040	10，721	681	6．8\％
11．1\％	24，973	2，483	490	－2．0\％	11．1\％	9，729	9，725	4	
12．3\％	24，125	125	0	0．0\％	12．3\％	9，684	9，681	${ }^{-}$	
－${ }^{13.6 \%}$	${ }^{20,551}$	${ }^{21,941}$	1，390	6．8\％	13．6\％	${ }^{9,646}$	9.642	4	0．0\％
14．8\％ 10.0%	317	20，551	234	1．2\％	14．8\％	9，176	9，144	${ }^{32}$	${ }^{-0.3 \%}$
－ 16.0 \％	19，782	19，782	0	0．0\％	－ 16.0%	8,005 7,044	7，995	－9	－0．1\％
18．5\％	19，398	18，824	－575	－3．0\％	18．5\％	6，605	6，598	－7	－0．1\％
19．8\％	18.824	18．639	－185	－1．0\％	19．8\％	6，528	6，522	－6	－0．1\％
21．0\％	18，202	18，202	0	0．0\％	21．0\％	6．122	6，113	－9	－0．2\％
22．2\％	${ }^{17,236}$	－17，236	0	0．0\％	22，2\％	¢， 5.945	¢， 5.939	－6	－0．1\％
23．5\％	${ }^{17,213}$	17，213	0	0．0\％	23．5\％	¢，450	¢，450	0	0．0\％
24．7\％	${ }_{\text {cken }}^{15,506}$		0	0．0\％	24．7\％	4，666	4，666	0	0．0\％
25．9\％	${ }^{15,017}$	${ }^{15,017}$	0	0．0\％	25．9\％	4．538	＋4，529	－9	－0．2\％
27.2% 28.4%	14.049 13.613	14.049 13.613	\bigcirc	0．0\％	${ }^{27.2 \%} \times$	－ 4,282	¢	${ }_{-14}$	0．0\％
28．4\％	$\substack{13,613 \\ 13.238 \\ \hline}$	13，613 13.238 1	0	－	28．4\％	（4，009		－14	－0．3\％
30．9\％	13，038	13，037	－1	0．0\％	30．9\％	3，685	3，685	0	0．0\％
32．1\％	12.589	12,559	－30	－0．2\％	32．1\％	3，673	3，673	0	0．0\％
	12．560	12，398	－162	－1．3\％	33．3\％	3，539	3，670		
34．8\％	${ }^{11,8,805}$	${ }^{10,881}$	－924	－7．8\％	34．6\％	3，497	3,539 3,528	${ }_{31}^{11}$	0．9\％
37．\％	9，589	10，804	1，214	12．7\％	37．0\％	3，437	3，497	60	1．8\％
38．3\％	${ }_{8,513}^{8.576}$	${ }_{\text {¢，463 }}^{9,389}$	－ 813	${ }^{\text {9．5．6\％}}$	${ }^{38.3 \%}$ 39．5\％	3,404 3,239	3,394 3,239	-11 0	－0．3\％
40．7\％	8.416	8.416	0	0．0\％	40．7\％	3，138	3，180	41	1．3\％
42．0\％	7，769	7，769	0	0．0\％	42．0\％	3，051	3，138	87	2．8\％
432\％	${ }_{7}^{7,542}$	7，275	－267	－3．5\％	43．2\％	2，907	2，904	－3	－0．1\％
${ }_{4}^{44.4 \%}$	7，275	7，242	－33	－0．5\％	44．4\％	2，870	2，870	0	0．0\％
45．7\％	6，934	6，934	－1	0．0\％	45．7\％	2，850	2，803	－47	－1．6\％
${ }_{48.9}^{46.9 \%}$	${ }_{6}^{6,640}$	${ }_{6,650}^{6,57}$	10	0．2\％	46．9\％	2，803	${ }^{2,758}$	－45	－1．6\％
48．1\％ 4 \％	${ }_{6}^{6.547}$	${ }_{6}^{6.547}$	0	0．0\％	48．1\％	${ }_{\text {2，756 }}^{2,756}$	2，630	－126	－4．2\％
49．4\％	¢，6，291 6	¢，6，291 6	0	0．0\％	49．4\％	${ }_{2,632}^{2,656}$	${ }_{2,501}^{2,595}$	－61	－-2.3%
551．9\％	${ }_{6}^{6,078}$	${ }_{6}^{6,078}$	0	0．0\％	51．9\％	${ }_{2,501}^{2,502}$	${ }_{2,479}$	－23	－0．9\％
53．19\％	5．809	¢ 5.809	0	0．0\％	53．1\％	2，483	2，418	－64	－2．6\％
年 $54.3 \% \%$	5，622	5，570	－52	－0．9\％	54．3\％	${ }_{2}^{2,418}$	2，410	－9	－0．4\％
56．8\％	${ }_{5,563}^{5.573}$	${ }_{5,414}^{5.563}$	－149	${ }_{-2.7 \%}^{-0.2 \%}$	${ }_{56.8 \%}^{55.6 \%}$	${ }_{2,392}^{2,412}$	${ }_{2,391}^{2,392}$	－-2	－0．8\％
58．0\％	4，665	4，650	－15	－0．3\％	58．0\％	${ }_{2,391}$	2，361	－29	
59．3\％	4，326	4，326	0	0．0\％	59．3\％	2,361	2，320	41	
60．5\％	4，316	4，314	－3	－0．1\％	60．5\％	2，320	2，320	0	0．0\％
61.7% 6.0%	4，273	4，273	0	0．0\％	61．7\％	${ }^{2,297}$	2，286	10	－0．4\％
－63．0\％	4，127	4，127	0	0．0\％	63．0\％	${ }_{\substack{2,258}}^{2,176}$	2，231	${ }^{27}$	－1．2\％
65．4\％	4,013	4,013	0	0．0\％	${ }^{645.4 \%}$	${ }_{2,164}^{2,176}$	${ }_{2,164}^{2,16}$	0	0．0\％
66．7\％	3，936	3，935	－1	0．0\％	66．7\％	2，119	2，119	0	0．0\％
67．9\％	3，920	3，920	0	0．0\％	67．9\％	${ }^{2,116}$	${ }^{2,116}$	0	0．0\％
69．19\％	3，827	3，787	－40	－1．0\％	69．1\％	2，073	2，072	－1	
70．4\％	$\begin{array}{r}3,787 \\ 3 \\ 3 \\ \hline\end{array}$	－ $\begin{aligned} & 3,703 \\ & 3,647\end{aligned}$	-84 -56	－-2.2%	70．4\％	$\begin{array}{r}2,047 \\ 1.960 \\ \hline\end{array}$	2,047 1.958	0	－0．0\％
72．8\％	3，647	3，600	${ }_{-47}$	－1．3\％	72．8\％	${ }_{1}^{1,931}$	1，896	${ }_{-35}^{-2}$	－1．8\％
74．19\％	3，600	${ }^{3,532}$	－69	－1．9\％	74．1\％	1，750	1，750	0	0．0\％
75．3\％	${ }^{3,532}$	${ }^{3,391}$	－140	－4．0\％	75．3\％	1，696	1.696	0	0．0\％
76．5\％${ }_{778 \%}$	－3,391 3,251	3,251 3,247	－141	${ }_{-0.1 \%}^{-4.1 \%}$	76．5\％${ }_{778 \%}$	${ }_{1}^{1,672} 1$	－ 1.672	\bigcirc	0．0\％
79．0\％	3，222	${ }_{\substack{3,247 \\ 3,24}}^{3,24}$	${ }_{25}$	0．8\％	79．0\％	${ }_{1,672}^{1,672}$	${ }_{1,672}^{1,672}$	0	0．0\％
80．2\％	3，185	3，222	${ }^{36}$	1．1\％	80．2\％	1.672	1.672	0	0．0\％
－ $\begin{aligned} & 81.5 \% \\ & 88 \%\end{aligned}$	3，020	3，185	165	5．5\％	${ }^{815.5 \%}$	${ }^{1,672}$	${ }_{1}^{1,672}$	0	0．0\％
84．0\％	${ }_{2,754}^{2,76{ }^{2}}$	${ }_{\text {2，751 }}^{2,754}$	－-12	－0．1\％	80，	${ }_{1,672}^{1,672}$	${ }_{1,672}^{1,672}$	0	0．0\％
85．2\％	2，751	2，749	－3	－0．1\％	85．2\％	1，672	1.672	0	0．0\％
${ }^{86.4 \%}$	2，749	2,644	－106	－3．8\％	86．4\％	${ }^{1,672}$	1,672	0	0．0\％
877\％	${ }_{\text {2，644 }}^{2,663}$	${ }_{2,412}^{2,556}$	－${ }_{-232}$	－-8.8%	－${ }_{\text {87，7\％}} 88.9$	${ }_{1,672}^{1,672}$	${ }_{1,672}^{1,672}$	0	0．0\％
90．1\％	2，556	2,405	－150	－5．9\％	90．1\％	${ }_{1,672}$	1,672	0	0．0\％
914．4\％	${ }_{2}^{2,005}$	2，181	${ }^{224}$	－9．3\％	914\％	${ }^{1,580}$	${ }^{1,580}$	0	0．0\％
${ }_{9}^{92.8 \%}$	2,094 2,066	2，092	－2	－0．1\％	92．6\％${ }_{\text {938，}}$	（1．571	1，571	0	－ 0.0%
95．1\％	1.849	1.849	0	0．0\％	95．1\％	1.422	1.422	0	0．0\％
96．3\％	1，814	1，814	0	0．0\％	96．3\％	${ }^{1,324}$	${ }^{1,324}$	0	0．0\％
97．5\％	${ }^{1,657}$	${ }^{1,657}$	0	0．0\％	97．5\％	1，205	1，205	0	0．0\％
98．8\％	1，649	1.645	－4	－0．3\％	98．8\％	${ }_{1}^{1,205}$	${ }^{1,205}$	0	0．0\％

Percent	${ }^{\text {WSIP }}$ 2030 Without	WSIP 2030 With Project	Absolute Difference	Relative
Probability	Monthy fow（CFES	Montly flow（CFSS）	（CFS）	Difference ${ }^{(\%)}$
0.08	18.060	${ }^{18,051}$	－9	－0．1\％
1．2\％	17.872	17.85	${ }^{13}$	－0．1\％
2．5\％	12，132	12，12	－12	－0．1\％
3．7\％	11，231	11，230	－1	0．0\％
4．9\％	8,391	8.378	14	
6．2\％	${ }_{7}^{7} 826$	${ }_{7}^{7} 819$	－7	－0．1\％
7．4\％	7,797	7，779	－18	
8．6\％	${ }_{6}^{6.678}$	${ }_{6}^{6,668}$	－10	－0．1\％
11．1\％		6，496	－12	－0．2\％
12．3\％	6，071	6，059	－12	－0．2\％
13．6\％	5.129	5，117	12	－0．2\％
14．8\％	3，925	3，925	0	
16．0\％	3，816	3，816	0	0．0\％
17．3\％	3，565	3，565	0	0．0\％
18．5\％	3，561	3，304	－257	－7．2\％
俍 $\begin{aligned} & 19.8 \% \% \\ & 210 \%\end{aligned}$	－3,325 3,257	3,242 3,234	－82	－2．5\％
22．2\％	3，044	3，159	${ }_{115}$	3．8\％
23．5\％	2,986	3，042	56	1．9\％
24．7\％	${ }^{2,972}$	2，931	42	－1．4\％
227．2\％	${ }_{2,888}^{2,882}$	${ }_{\substack{2,878 \\ 2,876}}$	4	－0．1\％
22．4\％	${ }_{2,832}^{2,82}$	${ }_{2,818}^{2,818}$	－14	－0．5\％
29．6\％	2，779	${ }_{2,777}^{2,76}$	－2	－0．1\％
30．9\％	2，767	2.751	－16	－0．6\％
32．1\％	2，687	2，646	${ }^{42}$	${ }^{-1.5 \%}$
33．3\％	2.502	2．500	－1	－0．1\％
34．6\％	2，490	${ }^{2,463}$	－27	${ }^{-1.1 \%}$
35．8\％	2，429	${ }^{2,426}$	${ }^{-3}$	－0．1\％
37．0\％	${ }_{2}^{2,422}$	${ }_{2}^{2,424}$	2	0．1\％
边 $\begin{aligned} & 38.3 \% \\ & 30.5 \%\end{aligned}$	${ }_{2}^{2,408}$	2，350	－58	－2．4\％
39．5\％	${ }^{2,343}$	${ }_{\text {2，248 }}^{2,248}$	${ }^{-95}$	${ }^{4.17 \%}$
4．2．\％	${ }_{2}^{2,223}$	${ }_{2}^{2} 185$	${ }_{-38}$	－1．7\％
43．2\％	2，192	2.160	${ }^{-33}$	－1．5\％
44．4\％	${ }_{2}^{2,171}$	2，138		
${ }^{46.79 \%}$	${ }^{2,1130}$	${ }^{2} 1098$		
46．9\％	${ }_{2}^{2,1302}$	${ }_{2}^{2,092}$	－46	
49．4\％	${ }_{2,041}^{2,092}$	${ }_{1,985}^{2,039}$	－56	－2．7\％
50．6\％	2,015	1，954	－61	
51．9\％	1，954	1，951	－3	－0．2\％
53．1\％	1，951	1，888	－62	－3．2\％
54．3\％	1，932	1，787	145	－7．5\％
	${ }^{1,888}$	1，764	124	6．6\％
	1，837	1，760	－77	－4．2\％
年 58.0%	${ }^{1,788}$	1，750	${ }^{-38}$	${ }^{-2.19 \%}$
	1，775	1，778	－27	－1．5\％
60．5\％	1，774	1，736	${ }^{-38}$	－2．1\％
61．7\％	1，767	1，702	－65	－3．7\％
－63．0\％	1，739	${ }^{1.651}$	－88	－5．1\％
65．4\％	${ }_{1}^{1,651}$	${ }_{1}^{1,651}$	－79	－4．0\％
${ }^{66.7 \%}$	1，651	1，651	0	0．0\％
67．9\％	1，651	${ }^{1,651}$	0	0．0\％
69．1\％	1，651	${ }^{1,651}$	0	0．0\％
71．6\％	${ }_{1,651}^{1,651}$	${ }_{1,651}^{1,051}$	0	0．0\％
72．8\％	1，651	${ }_{1,651}$	0	0．0\％
74．1\％	1.651	1，651	0	0．0\％
75．3\％	1，651	1，651	0	0．0\％
76．5\％	1，651	${ }^{1,651}$	0	0．0\％
77．0\％\％	${ }^{1,651}$	${ }^{1.651}$	0	${ }_{\text {en }}^{0.00 \%}$
－79．0\％	${ }_{1,651}^{1,651}$	${ }_{1}^{1,651}$	0	${ }^{0.0 \% \%}$
81．5\％	1，651	1，651	0	0．0\％
82．7\％	1，651	1，651	0	0．0\％
84．0\％	1，651	1，651	0	0．0\％
85．2\％	＋1，651	（1，651	0	0．0\％
88．4\％	＋1，651	（1，651	0	0．0\％
88．9\％	${ }_{1}^{1,651}$	${ }_{1,622}^{1,651}$	${ }_{-29}$	${ }_{-1.7 \%}^{0.0 \%}$
90．1\％	1,651	1，515	－136	－8．2\％
91．4\％	1，622	1，512	－110	－6．8\％
92．6\％	＋1．595	1，401	－195	－12．2\％
${ }_{\text {9 }} 93.8 .1 \%$	${ }_{1,515}^{1,583}$	1,401 1,401 1	－182	－11．5\％
96．3\％	1,421	1，254	167	－11．7\％
97．5\％	1.401	${ }_{1}^{1,216}$	－184	－13．1\％
年 $98.8 \% \%$	${ }_{1}^{1,401}$	1,208 1066	－192	${ }^{-13.7 \%}$

Table SW-46-b
erot shanghanal Bend, Monthy Flow
Proabily ofxxeeedance

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	WSIP 2 2300 Without Proiet	WSII 2033 W With Project	Absolute Difference	Relative
Probability	Monthy foied (CFS)	Monthy Flow (CFS)	(${ }_{\text {diff }}^{\text {diferece }}$	Difference (\%)
0.0\%	${ }^{9,390}$	${ }^{9,390}$	0	0.0\%
1.2\%	9,280	9,226	-54	-0.6\%
2.5\%	9,080		216 -55 -58	-2.4\%
3.7\%	${ }_{8}^{8,883}$	${ }_{8}^{8.828}$	-55	-0.6\%
4.9\%	8,866	8,771	-95	-1.1\%
-6.2% 7.4	8.810 8.776	8,723 8.623	-86	-1.7\%
8.6\%	${ }_{8,771}$	${ }_{8,603}$	-167	
9.9\%	${ }^{8,660}$	${ }_{8,526}$	-134	
11.1\%	8,602	${ }_{8,525}$	-77	
12.3\%	${ }^{8.549}$	${ }^{8.512}$	-37	
13.6\%	${ }^{8,542}$	8,439	104	
14.8\%	${ }^{8.534}$	${ }^{8,277}$	257	-3.0\%
16.7\%	${ }^{8.533}$	8,260	272	-3.2\%
17.3\%	${ }^{8,465}$	8,239	${ }^{226}$	-2.7\%
18.5\%	${ }_{8,393}$	8,155	-238	-2.8\%
19.8\%	8,293	7.990	${ }^{303}$	-3.7\%
210\%	${ }^{8,244}$	7,989	${ }^{255}$	-3.1\%
${ }^{22.2 \%}$	${ }_{8,242}$	7,928	-314	-3.8\%
${ }^{23.5 \%}$	${ }_{8,240}$	7.897	-343	-4.2\%
24.7\%	8,195	7.895	-300	
25.9\%	8,189	7.834	${ }^{356}$	
27.2\% 28.4%	8,147	7,812 7801 7	${ }_{-234}$	
28.4.6\%	8.074 8.052	${ }_{7}^{7,702}$	-349	-
30.9\%	8.037	7.630	-408	-5.1\%
32.1\%	7,994	7,571	-423	3\%
33.3\%				-5.0\%
34.6% 3 3	7.860	7,487	-373	-4.7\%
37.0\%	7,816	7,308	-508	-6.5\%
38.3\%	7.743	7.248	-495	-6.4\%
39.5\%	${ }_{7} 7.694$	6,993	-701	-9.1\%
40.7\%	7,468	6,945	-524	-7.0\%
42.0\%	7,467	${ }^{6,935}$	-533	-7.1\%
43.2\%	$\begin{array}{r}7,348 \\ \hline\end{array}$	${ }^{6,995}$	-433	-5.9\%
44.4\%	7,228 7159	6,682	-547	-7.76\%
45.7\%	7,159	6,680	-479	-6.7\%
46.9\%	7,094	6,554	-540	-7.6\%
48.1\%	${ }_{7} 7.075$	${ }_{6}^{6,496}$	-580	-8.2\%
49.4\%	7.050	6,470	-581	-8.2\%
年 50.6%	7,009 6.948	- $\begin{aligned} & 6.379 \\ & 6.342\end{aligned}$	-606	
51.9\%	- $\begin{aligned} & \text { 6,9488 } \\ & 6.922\end{aligned}$			
54.3\%	${ }_{6,675}^{6,922}$	${ }_{6,123}^{6,129}$	-552	-8.3\%
55.6\%	6,495	6,065	430	
56.8\%	6,372	6,062	310	9\%
58.0\%	6,294	6,052	-243	9\%
59.3\%	5,776	5,982	206	3.6\%
60.5\%	5.510	5,956	445	8.1\%
61.7\%	5,487	5.678	190	3.5\%
63.0\%	5,309	5.555	247	4.6\%
64.2\%	5,302	5,223	-78	5\%
${ }^{65.4 \%}$	5,191	4,940	-251	-4.8\%
66.7\%	5.110	4,739	-371	-7.3\%
-67.9\%	4,298	4,734	${ }^{436}$	10.7\%
69.1\%	4.080	${ }_{4}^{4,436}$	${ }_{3}^{356}$	${ }_{\text {c }} 8.7 \%$
70.4\%	4,049 3745	${ }_{4}^{4,2624}$	213	5.3\%
71.6\%	${ }^{3,745}$	4,024	280	7.5\%
(74.19\%	3,239 3,180	(551	97.8\%
(74.15\%	3,180 3,005	3,631 3,564	459 559	- $18.8 .2 \%$
76.5\%	${ }_{2,716}$	3,460	744	27.4\%
77.8\%	2.589	3,432	843	
79.0\%	2.527	3,203	676	7\%
80.2\%	${ }_{2}^{2,524}$	3,075	551	21.8\%
81.5\%	${ }^{2,477}$	2,606	129	5.2\%
-	2,457	2,358	-99	-4.0\%
- ${ }^{84.2 \%}$	${ }_{2,358}^{2,435}$	1,7,76 1.712		
86.4\%	${ }_{\text {2,257 }}$	${ }_{1,571}$	-686	30.4\%
87.7\%	2,232	1,532	-700	-31.4\%
88.9\%	1,973	1,457	516	26.2\%
90.1\%	1,786	1,400	-386	-21.6\%
91.4\%	1,761	${ }^{1,397}$	-364	-20.7\%
92.6\%	+1,739	${ }_{1}^{1.372}$	-367	${ }^{21.19 \%}$
93.8\%	1,731	1,370 1369	- -361	-20.9\%
${ }_{9}^{95.19 \%}$	+1,548	+1,369	-19	-13.6\%
97.5\%	${ }_{1}^{1,453}$	${ }_{1}^{1,240}$	-213	${ }_{-14.7 \%}$
98.8\%	1,368	1,234	134	9.8\%
100.0\%	${ }_{1.046}$	${ }_{1,225}$	178	

Figure SW-47-b
American River at Mouth, Monthly Flow

Table SW－4－b
an River at Wouth，wonnhly Flow
Probabiliy of Exceedance

April				
Percent Exceedance	WSIP 2 230 W Without Proiect	WSIP 2030 With Project	$\begin{gathered} \text { Absolute } \\ \text { Aifference } \end{gathered}$	Relative
Probability	Monthly Fow（CFS）	Monthly Flow（CFS）	（CFS）	
0．0\％	18,987	${ }^{18,987}$	0	0．0\％
1．2\％	16.641	16，642	1	0．0\％
${ }^{2.5 \%}$	${ }^{11,559}$	${ }^{11,556}$	${ }^{-3}$	0．0\％
3．7\％	10，120	10，121		
4．9\％	${ }^{\text {9，054 }}$	9，055		
7．2\％	7,1889	7，1990	1	
	－ 7 \％，732	7，493		
	${ }_{6}^{6} 431$	6，431		0．0\％
11．1\％	${ }_{6}^{6,325}$	${ }_{6}^{6,325}$		0．0\％
12．3\％	${ }_{6,041}$	6.040		0．0\％
13．6\％	6,017	6，017	0	0．0\％
14．8\％	5，847	5.847	0	0．0\％
16．0\％	5.676	5，676	0	0．0\％
17．3\％	5，187	5，183	4	－0．1\％
18．5\％	4.912	4.912	0	0．0\％
19．8\％	4，705	4，702	－3	－0．1\％
21．0\％	${ }_{4}^{4.212}$	4，272	0	－0．0\％
${ }_{2}^{22.5 \%}$	4,100	4，089	${ }_{-11}$	－0．3\％
24．7\％	4,088	4,088	0	0．0\％
257．2\％	${ }_{3}^{4,724}$	${ }_{3}^{4,724}$	0	0．0\％
28．4\％	3，318	${ }_{3,316}$	－3	
29．6\％	3，236	3，240	3	0．1\％
30．9\％	2，912	2,911	0	
32．1\％	2，812	2.829		0．6\％
33．3\％	2，796	2.812	${ }^{16}$	
34．6\％	2，771	${ }^{2,796}$	25	\％
35．8\％	2，595	2，771	176	6．8\％
37．0\％	2.421	2，593	171	7．1\％
38．3\％	2，310	2，310	0	0．0\％
39．5\％	2，250	2，250	0	0．0\％
40．7\％	${ }_{2}^{2,239}$	${ }_{2}^{2,196}$	－43	－1．9\％
42．0\％	2，196	2，106	－90	－4．1\％
43．2\％	2，103	＋1，824	－279	－13．2\％
4．4．4\％	1，889	1，590	－299	－
45．7\％	1，843	1，586	－25	－13．9\％
${ }^{46.99 \%}$	${ }_{1}^{1.590}$	${ }^{1.564}$	－26	${ }_{-23 \%}^{1.0 \% \%}$
48．19\％	1.586 1.564	${ }^{1.549}$	－33	－1．5\％
50．6\％	${ }_{1,547}^{1,564}$	${ }_{1}^{1,535}$	－12	
51．9\％	1，540	${ }^{1,527}$	－14	－0．9\％
54．3\％	${ }_{1}^{1,535}$	1.526 1.555 1	－9	
55．6\％	${ }_{1,527}$	${ }_{1,474}$	－53	－3．5\％
56．8\％	${ }_{1.526}$	${ }_{1,473}$	－53	－3．5\％
58．0\％	${ }^{1,525}$	1，462	－64	－4．2\％
59．3\％	1.473	1，457	－16	－1．1\％
60．5\％	1，414	1，414	－1	0．0\％
61．7\％	${ }^{1,406}$	${ }^{1,306}$	－100	－7．1\％
63．0\％	${ }^{1,286}$	1，252	$\begin{array}{r}-33 \\ \hline 4\end{array}$	－2．6\％
64．2\％	1，168	${ }_{1,242}^{1,19}$	74	崖．3\％
65．4\％	${ }^{1,094}$	1,191 1,180	${ }_{88}^{97}$	${ }_{8}^{8.9 \%}$
66．7\％ 6790%	${ }_{1}^{1,092}$	${ }^{1,180}$	${ }_{8}^{88}$	${ }_{73 \%}^{8.1 \%}$
67．9\％	1.088	${ }^{1,1168}$	79	8\％
69．1\％	${ }^{1,075}$	1，158	${ }_{113}^{113}$	－ 10.85%
70．1．6\％	${ }_{966}$	${ }_{1,092}^{1,096}$	122 126	${ }^{12.5 \%}$
72．8\％	949	975	26	
74．1\％	935	954	19	
75．3\％	913	949	${ }^{36}$	
76．5\％	877	935	58	\％\％
77．8\％	821	906	${ }^{86}$	迷
79．0\％	818	877	59	2\％
80．2\％	763	846	83	9\％
81．5\％	${ }^{733}$	821	87	11．9\％
－ 82.79	706	819	113	16．0\％
84．0\％	652	818	166	25．4\％
85．2\％	652	816	163	25．19\％
${ }^{86.46}$	640	815	175	退4\％
87．7\％	${ }^{627}$	${ }_{782}$	177	28．3\％
－${ }^{88.9 \%}$	${ }^{623}$	792	169	${ }_{\text {2 }}^{27.1 \%}$
90．1\％	622	${ }_{771} 7$	166	${ }_{\text {2 }}^{26.75 \%}$
91．4\％	619	771	152	${ }_{2}^{24.5 \%}$
－${ }_{\text {93．8\％}}$	${ }_{615}^{616}$	${ }_{763}^{766}$	150	${ }_{24.1 \%}^{24.4 \%}$
95．1\％	605	707	102	16．9\％
96．3\％	600	668	68	
5\％	592	640	47	
98．8\％ 100．0\％	588 188	${ }_{622}^{623}$	35 434	－ 6.0%

Figure SW-53-b
Sacramento River at Bend Bridge, Monthly Stage

Table SW-53-b

Table SW-53-b

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	February			
	$\begin{aligned} & \text { WSIP } 2030 \text { Without } \\ & \text { Proiect } \end{aligned}$	Wsif 2030 With Project		Relative
	Monthly stage (FT)	Monthly Stage (FT)		
${ }^{0.0 \%}$	${ }^{25}$		0	0.0\%
2.5\%	${ }_{20}^{25}$	${ }_{20}^{24}$	0	${ }^{-1.0 \%}$
3.7\%	20	20	0	0.0\%
4.9\%	20	20	0	
6.2\%	19	19	0	0.0\%
7.4\%	18	18	0	0.0\%
8.6\%	17	17	0	0.1\%
9.9\%	16	16	0	0.0\%
11.1\%	16	16	0	0.0\%
${ }^{12.3 \%}$	15	16	1	4.3\%
13.6\%	15	15	0	1.3\%
14.8% 16.0% 	15 15	15 15 15	0	, 10
17.3\%	15	15	0	0.0\%
18.5\%	14	14	0	0.0\%
19.8\%	13	13	0	0.0\%
${ }^{21.0 \%}$	13 13 13	13 13 13	0	
23.5\%	12	13	0	3.3\%
24.7\%	12	12	0	4.2\%
25.9\%	11	12	0	
27.2\%	11	11	0	
20.9\% 28.6	10	10	0	0.0\%
30.9\%	9	${ }_{9}^{10}$	1	0.9\%
32.1\%	8	8	0	3.5\%
33.3\%	8	8	0	4.8\%
34.6\%	7	8	0	5.2\%
${ }^{35.8 \%}$ 37.0\%	7	7	0	0.0\%
38.3\%	6	7	0	0.0\%
39.5\%	6	6	0	0.0\%
40.7\% 420%	${ }_{6}^{6}$	${ }_{6}^{6}$	\bigcirc	0.8\%\%
43.2\%	6	6		${ }_{1.19 \%}$
${ }_{4} 4.4 \%$	${ }_{6}$	${ }_{6}$	0	1.2\%
45.7\%	5	5	0	12\%
46.9\%	5	5	0	\%
		5		0.0\%
49.4\% ${ }^{\text {50.6\% }}$	5 5	5 5	0	0.0\%
51.9\%	5	5	0	0.7\%
53.1\%	5	5	0	0.0\%
	5	5	0	1.8\%
55.6\%	5	5	0	0.0\%
	4	4	0	0.0\%
${ }_{50.3 \%}$	4	4	0	-0.1\%
60.5\%	4	4	0	0.0\%
析17\%\%	4	4	0	0.0\%
- $6.4 .2 \%$	4	4	0	0.0\%
${ }^{64.2 \%} 6$	4	4	0	0.0\%
${ }^{66.7 \%}$	4	4	0	0.0\%
-67.9\%	3_{3}	3	0	0.0\%
70.4\%	3	3	0	0.7\%
71.6\%	3	3	0	1.7\%
74.1\%	${ }_{3}^{3}$	${ }_{3}^{3}$	0	7.0\%
75.3\%	3	3	0	0.0\%
76.5\%	3	3	0	0.0\%
77.8\%	3	3	0	0\%
890.2\%	3	3	0	0.0\%
${ }_{\text {80, }}^{80.5 \%}$	${ }_{3}$	${ }_{3}^{3}$	0	- ${ }^{0.0 \%}$
82.7\%		3	0	1.1\%
84.0\%	${ }_{2}$	3	0	5.6\%
- ${ }_{\text {85.2\% }}^{8.4 \%}$	2	3	0	8.1\%
${ }^{86.4 \%}$ 87.7\%	2	2	\bigcirc	4.7\%\%
88.9\%	2	2	0	1.3\%
90.1\%		2	0	2.8\%
-91.4\% ${ }_{\text {92.6\% }}$	2	2	0	0.0\%
${ }_{9} 92.8 \%$	${ }_{2}$	${ }_{2}$	0	1.0\%
95.1\%	2	2	0	0.1\%
${ }^{96.3 \%}$	${ }_{2}^{2}$	2	0	0.1\%
98.8\%	2	2	0	-4.9\%

Table SW－53－b

		June		
$\begin{aligned} & \text { Percent } \\ & \text { Excedance } \end{aligned}$	$\begin{aligned} & \text { WSIP } 2030 \text { Without } \\ & \text { Proiect } \end{aligned}$	Wsil 2030 With Project	Absolute	Relative
Probability	Monthly Stage（FT）	Monthly Stage（FT）		
${ }^{0.0 \%}$		7	0	${ }^{-1.8 \%}$
2．5\％	6	6	0	－1．2\％
3．7\％	6	6	0	0．0\％
4．9\％	6	6	0	0．0\％
6．2\％	6	6	0	－2．2\％
7．4\％	6	6	0	－2．1\％
8．6\％	6	6	0	－2．1\％
9．9\％	6	6	0	－4．0\％
11．1\％	6	6	0	－5．4\％
${ }^{12.3 \%}$	6	6	0	－6．8\％
－ 14.48%	6	6	0	源
（14．8．\％	6	6	0	－7．1\％
17．3\％	6	6	0	－6．6\％
18．5\％	6	6	0	6．8\％
19．8\％	6	5	－1	－8．5\％
222．2\％	${ }_{6}^{6}$	5	\bigcirc	－8．4\％
23．5\％	${ }_{6}$	5	0	－7．9\％
22．7\％	6	5	0	－7．3\％
257．2\％	${ }_{6}^{6}$	5 5	0	－5．7\％
28．4\％	6	5	0	－5．9\％
29．6\％	6	5	0	－5．4\％
30．9\％	6	5	0	－5．4\％
${ }_{33.3 \%}^{32.1 \%}$	6	5	0	－4．6\％
33．6\％	${ }_{6}^{6}$	5	0	－5．3\％
35．8\％	6	5	0	－6．1\％
37．0\％	${ }_{5}^{6}$	5	0	－7．0\％
38．3\％	5	5	0	－6．2\％
${ }_{40.7 \%}$	5	5	0	－6．0．0\％
42．0\％	5	5	0	－6．2\％
年4．4．4\％	5 5	5	0	－5．5\％
45．7\％	5	5	0	
46．9\％	5	5	0	
				${ }^{-3.7 \%}$
	5	5	\bigcirc	－3．7．7\％
51．9\％	5	5	0	－3．8\％
55．1\％	5	5	0	－3．8\％
	5	5	0	－4．4\％
年55．6\％	5	5	0	－3．6\％
年56．8\％	5	5	0	－3．5\％
年58．0\％\％	5	5	0	－2．8\％
60．5\％	5 5	5	\bigcirc	－3．8\％
61．7\％	5	5	0	－2．8\％
－63．0\％	5	5	\bigcirc	－3．6\％
64．2\％	5	5	0	－4．6\％
${ }_{66.7 \%}^{66.4 \%}$	5	5	0	－3．30\％
67．9\％		5		－3．8\％
79．4\％	5	5	0	－3．9\％
71．6\％	5	5	0	－4．1\％
72．8\％	5	5	0	1\％
74．1\％	5	5	0	7\％
75．5\％	5	5	0	－3．8\％
77．8\％	5 5	5	0	－3．7．7\％
79．0\％		5	0	－3．1\％
80．2\％	5	5	0	4．0\％
81．5\％	5	5	0	－3．0\％
884．0\％	5	4	0	－3．9\％
85．2\％	5	4	0	－3．1\％
88．4\％	5	4	0	－3．9\％
87．7\％		4	0	－7．7\％
${ }_{\text {c }}^{\text {88．9\％}}$	5 4	4	\bigcirc	－7．2\％
90．1\％${ }_{\text {91．4\％}}$	4	4	0	－6．3\％
${ }_{92.6 \%}^{99.4 \%}$	4	4	0	－8．8\％
93．3\％	4	4	0	－11．2\％
${ }^{95.1 \%}$	4	4	${ }_{-1}^{0}$	－10．4\％
97．5\％	4	4	0	－9．0\％
98．8\％	4	4	0	6．1\％

$\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{aligned}$	WSIP 2030 Without Proiect Monthly Stage（FT）	WSIP 2030 With Project Monthly Stage（FT）	Absolute Difference（FT）	Relative Difference（\％）
0．0\％	6	6	0	－1．0\％
1．2\％	6	6	0	－0．7\％
2．5\％	${ }_{6}^{6}$	5	－1	－9．5\％
3．9\％	6	5	0	－6．8\％
6．2\％	6	5	0	${ }^{-8.8 \%}$
7．4\％	5	5	0	－7．9\％
8．9\％	5	5	0	－7．9\％
11．1\％	5	5	0	－－7．9\％
12．3\％	5	5	0	－6．1\％
13．6\％	5	5	0	－5．3\％
14．8\％	5	5	0	－4．4\％
16．0\％	5	5	0	－3．7\％
17．3\％	5	5	0	－4．7\％
18．5\％	5	5	0	－4．7\％
19．8\％	5	5	0	－4．7\％
21．0\％	5	5	0	${ }^{-4.68}$
${ }^{22.2 \%}$	5	5	0	－4．7\％
${ }^{23.5 \%}$	5	5	0	－4．8\％
24．79\％	5	5	0	－4．8\％
${ }^{25.9 \%}$	5	5	0	${ }_{-4.4 \%}^{-4.1 \%}$
28．4\％	5	5	0	－3．8\％
29．6\％	5	5	0	
30．9\％	5	5		－3．8\％
32．1\％	5	5	0	－3．8\％
		5	0	
34．8\％	5	5	0	－1．9\％
37．0\％	5	5	0	－2．7\％
38．3\％	5	4	0	－3．0\％
39．5\％	5	4	0	－2．1\％
40．7\％	5	4	0	－1．1\％
42．0\％	5	4	0	－1．1\％
43．2\％	5	4	0	－1．1\％
44．4\％	4	4	0	0．0\％
45．7\％	4	4	0	0．0\％
46．9\％\％	4	4	0	0．1\％
${ }_{4}^{48.4 \%}$	4	4	0	${ }^{0.1 \%}$
50．6\％	4	4	0	${ }_{2.1 \%}$
51．9\％	4	4	0	2．1\％
	4	4		
55．6\％	4	4	0	${ }_{31}^{2.1 \%}$
56．8\％	4	4	0	2．8\％
58．0\％	4	4	0	3．1\％
59．3\％	4	4	0	4．1\％
60．5\％	4	4	0	4．3\％
61．7\％	4	4	0	4．6\％
63．0\％	4	4	0	6．1\％
64．2\％	4	4	0	6．2\％
${ }^{65.4 \%}$	4	4	0	6．3\％
${ }^{66.7 \%}$	4	4	0	5．3\％
67．9\％	4	4	0	6．1\％
69．1\％	4	4	0	6．4\％
70．4\％	4	4	0	${ }^{6.2 \%}$
71．6\％	4	4	0	6．4\％
74．1．9\％	${ }_{4}^{4}$	4	O	${ }^{6.6 \%}$
74．3\％	4	4	0	${ }_{\text {8．4\％}}$
76．5\％	4	4	0	8．4\％
778．8\％	4	4	0	10．5\％
79．0\％	4	4		10．7\％
${ }^{80.15 \%}$	4	4		10．1\％
${ }_{8827 \%}$	4	4	0	11．6\％
84．0\％	4	4	0	12．8\％
85．2\％	4	4	0	12．8\％
86．4\％	4	4	0	13．4\％
877\％\％	4	4	1	14．0\％
88．9\％	4	4	1	${ }^{16.2 \%}$
90．1\％	4	4	1	16．8\％
${ }^{91.4 \%}$	4	4	0	13．3\％
${ }_{93.8 \%}^{92.6 \%}$	3	${ }_{4}^{4}$	0	－14．4\％
${ }^{955.1 \%}$	3	4	1	15．8\％
${ }^{96.3 \%}$	3	4	1	16．4\％
97．5\％	${ }_{3}^{3}$	${ }_{4}^{4}$	1	－ 18.9%
100．0\％	3 3		1	${ }_{38.2 \%}$

		Seplember		
	$\begin{gathered} \text { WSIP } 2030 \text { Without } \\ \text { Proiect } \end{gathered}$	WSIP 2030 With Project		Relative
Probability	Monthly Stage（FT）	Monthly Stage（FT）		
${ }_{12 \%}$	7	T	0	－0．7\％
2．5\％	7	7	0	－2．3\％
3．7\％	7	7	0	－1．3\％
4．9\％	7	7	0	－1．2\％
6．2\％	7	7	0	－1．9\％
7．4\％	7	7	0	－1．9\％
8．6\％	7	7	0	－1．9\％
${ }^{9.9 \%}$	7	7	0	－2．4\％
11．19\％	7	7	0	－1．4\％
12．3\％	7	7	0	－0．5\％
13．6\％ 14.8%	7		0	0．0\％
14．8\％ 16.0%	6	6	0	0．1\％
17．3\％	6	6	0	2．5\％
18．5\％	5	6	0	6．3\％
19．8\％	5	${ }_{5}^{6}$	0	5．5\％
22．2\％	5	5	0	${ }_{-2.7 \%}$
${ }^{23.5 \%}$	5	5	0	－4．6\％
24．7\％	5	5	0	－3．3\％
${ }^{25.7 .2 \%}$	5	5	0	－8．3\％
28．4\％	5	5	0	－3．8\％
29．6\％	5	5	0	－3．7\％
30．9\％	5	4	0	－6．9\％
32．1\％	5	4	0	－9．0\％
	4	4	0	－3．6\％
34.6% 35.8%	4	4	0	－2．7\％
35．8\％	4	4	0	－4．1\％
37．0\％	4	4	0	3．3\％
38．3\％	${ }_{4}^{4}$	${ }_{4}^{4}$	0	－${ }_{-23 \%}$
40．7\％	4	4	0	0．4\％
${ }^{42.0 \%}$	4	${ }_{3}^{4}$	0	0．9\％
44．4\％	3	3	0	2．7\％
45.7% 46.9%	3	3	0	0．1\％
${ }^{46.9 \%}$	${ }_{3}^{3}$	${ }_{3}^{3}$	0	－1．19\％
49．4\％	3	3	0	－5．3\％
50．6\％	${ }_{3}$	3	0	4．6\％
－${ }_{\text {51．9\％}} 5$	3	3	0	${ }^{-6.8 \%}$
54．3\％	${ }_{3}$	3	0	－-3.4%
55．\％	3	3	0	－1．0\％
56．8\％	3	3	0	－3．2\％
年58．0\％	${ }_{3}^{3}$	3 3	0	${ }^{2.2 \%}$
${ }^{50.5 \%}$	3 3	3 3	0	2．5\％
61．7\％	2	3	0	9．6\％
63．0\％	${ }_{2}$			10．5\％
64．2\％	2	3	0	11．4\％
${ }_{6}^{65.4 \%}$	${ }_{2}^{2}$	${ }_{3}$	0	${ }^{14.2 \% \%}$
679\％	2	3	0	13．5\％
69．1\％	${ }_{2}$	3	0	－ 13.6%
77．6\％	${ }_{2}^{2}$	3	0	14．0\％
72．8\％	2	3	0	14．8\％
74．1\％	2	3	0	16．0\％
75．3\％	2	3	0	16．1\％
76．5\％	${ }_{2}$	3	0	18．7\％
778．8\％	2	3	0	19．5\％
79．0\％	${ }_{2}$	${ }^{2}$	0	18．3\％
－${ }_{\text {80，}}^{\text {81．2\％}}$	${ }_{2}$	${ }_{2}$	0	－18．3\％
${ }^{81.27 \%}$	2	${ }_{2}^{2}$	0	16．3\％
84．0\％		2	0	15．5\％
85．2\％	$\stackrel{2}{2}$			15．3\％
86．4\％	${ }_{2}$	${ }_{2}$	0	17．8\％
－	${ }_{2}^{2}$	2	\bigcirc	15.8% 15.0%
90．1\％		2	0	14．0\％
91．4\％	2	2	0	18．4\％
93．8\％	2	${ }_{2}^{2}$	0	－ 28.8%
95．1\％	2	2	0	20．7\％
－96．3\％${ }_{\text {97．5\％}}$	${ }_{2}^{2}$	${ }_{2}^{2}$	0	${ }^{21.2 \%} \times$
98．8\％	2	2	0	22．0\％
100．0\％	2	2	0	17．2\％

Figure SW-54-b
Sacramento River below Hamilton City, Monthly Stage

Table SW-54-b

		February		
Percent Exceadance	WSIP 2 230 Proiect Without	WSII 2030 With Project	Absolu	Relative
Probability	Monthly stage (FT)	Monthy Stage (FT)	Difference (FT)	
0.0\%	45	45	0	-0.7\%
- 1.2%	45	44	0	-0.5\%
3.7.7\%	${ }_{41}^{41}$	${ }_{40}^{41}$	\bigcirc	-0.3\%
3.7\%	41 41	${ }_{40}^{40}$	0	-0.9\%
6.2\%	40	${ }^{40}$	0	-0.4\%
8.6\%	${ }_{39}$	${ }_{38}$	0	-1.0\%
9.9\%	38	38	0	-0.7\%
- ${ }_{\text {11.1\% }}^{12.3 \%}$	${ }^{38}$	${ }^{38}$	0	
- ${ }_{\text {12.3\% }}^{13.6 \%}$	${ }_{38}^{38}$	${ }_{38}^{38}$	0	-0.0\% ${ }_{-0.1 \%}^{-1 \%}$
14.8\%	38	37	0	-0.7\%
16.0\%	${ }^{38}$	37	0	-1.1\%
17.3\%	37	37	0	0.0\%
18.5\%	37	37	0	0.0\%
19.8\%	36	36	0	-1.3\%
21.0\%	${ }^{36}$	${ }^{36}$	0	-0.8\%
22.2\%	${ }_{36}^{36}$	${ }_{36}^{36}$	0	-0.5\%
	36 35	${ }_{35}^{35}$	0	-0.9\%
224.9\%	${ }_{35}^{35}$	${ }_{35}^{35}$	0	-
27.2\%	${ }_{35}^{35}$	${ }_{34}^{35}$	0	-1.2\%
${ }^{28.49 \%}$	34 34	34 34	-1	-
30.9\%	34	34	0	0.3\%
32.1\%	${ }^{33}$	${ }^{33}$	0	0.1\%
334.6\%	${ }_{33}^{33}$	33 32	0	- -1.4%
35.8\%	${ }^{33}$	32	0	-1.3\%
337.\%	${ }^{33}$	32	0	-0.9\%
38.3\%\%	32	32	0	-1.3\%
${ }^{39.5 \%}$	32 32	${ }_{32}^{32}$	-1 -1	-1.6\%
42.0\%	32	32	-1	-1.7\%
43.2\%	32	${ }^{31}$	-1	-1.6\%
44.4\%\%	${ }_{32}^{32}$	${ }_{31}^{31}$	0	-1.6\%
45.7\%\%	32	31	0	-1.5\%
46.9\%	32	${ }_{31}^{31}$	0	-1.4\%
48.1\%\%	32 32	${ }_{31}^{31}$	-1	-1.4\%
4.9.4\%	${ }_{31}^{32}$	${ }_{31}^{31}$	-1	-1.6\%
50.9\%	${ }_{31}^{31}$	${ }_{31}^{31}$	0	-0.9\%
53.1\%	${ }_{31}^{31}$	${ }_{31}^{31}$	\bigcirc	-0.8\%
54.3\%	31 31	${ }_{31}^{31}$	0	-1.3\%
55.8\%	31 31	31 30	${ }_{-1}^{0}$	${ }_{-2.1 \%}^{-1.1 \%}$
58.0\%	${ }_{31}$	30	-1	-1.9\%
S9.3\%\%	${ }^{31}$	30	-1	-2.1\%
61.7\%	31	${ }_{30}$	-1	-1.8\%
63.0\%	${ }^{31}$	30	-1	-1.8\%
64.2\%	${ }_{30}^{31}$	30	-1	-1.8\%
65.4\%\%	30	30	0	-1.3\%
械6.7\%\%	30	30	0	-1.0\%
67.9\%\%	30	30	0	-1.2\%
70.4\%	30 30	${ }_{30}$	\bigcirc	-1.0\%
71.6\%	30	${ }^{30}$	0	-1.6\%
72.8\%\%	${ }_{30}^{30}$	${ }_{30}^{30}$		-1.15\%
74.1\% ${ }^{75.3 \%}$	30 30	30 30	\bigcirc	-1.5\%
76.5\%	30	30	0	-1.6\%
779.0\%	30 30	30 30	0	-1.3\%
80.2\%	${ }_{30}$	${ }_{30}$	0	${ }^{-1.0 \%}$
- ${ }_{\text {81.5\% }} 8.7 \%$	30 30	30 29	0	-0.9\%
84.0\%	30	29	0	-0.6\%
85.2\%	30	29	0	-0.6\%
88.4\%\%	29	29	0	-0.3\%
888.9\%	29 29	${ }_{29}^{29}$	0	-0.3\%
${ }^{80.1 \%}$	${ }_{29}^{29}$	${ }_{29}^{29}$	\bigcirc	${ }_{\text {-0.7\% }}^{-0.5 \%}$
91.4\%	29	29	0	-1.1\%
92.6\%	29	29	0	-1.1\%
93.8\%\%	${ }_{29}^{29}$	${ }_{29}^{29}$	0	-1.2\%
${ }_{96.3 \%}^{95.1 \%}$	29 29	29 29	0	-1.0\%
97.5\%	${ }_{29}^{29}$	${ }_{29}^{29}$	0	-1.0\%
98.8\%	29 29	${ }^{29}$	0	-0.6\%
100.0\%	29	29	0	-0.1\%

Table SW-54-b

Sacramento River at Wilkins Slough, Monthly Stage

Table SW-56-b

Feather Kiver near Gridley, Monthly Stage

0.0%	78
$\begin{array}{l}1.2 \% \\ 2.5 \%\end{array}$	75

Table SW-57-b

Table SW-57-b

Figure SW-58-b
American River at Fair Oaks, Monthly Stage

		October		
Percent Exceedanc	WSIP 2030 Without Proiect	WSIP 2030 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difference (FT) } \end{gathered}$	Relative Difference (\%)
Probability	Monthly stage (FT)	Monthly Stage (FT)		
${ }^{0.2 \%}$	8 6	8 7	${ }_{1}$	
2.5\%	6	6	0	1.0\%
3.7\%	6	6	0	-0.2\%
4.9\%	5	6	0	4.0\%
6.2\%	5	6	0	6.5\%
7.4\%	5	6	0	7.6\%
8.6\%	5	6	0	\%
9.9\%	5	5	0	7.8\%
11.1\%	5	5	0	5.6\%
${ }^{12.3 \%}$	5	5	0	${ }_{1.4 \%}$
- 14.48%	5	5	0	1.1\%
14.8% 16.0%	5	5	0	
17.3\%	5	5	0	2.5\%
18.5\%	5	5	0	5.1\%
19.8\%	5	5	0	4.8\%
${ }^{21.0 \%}$	5	5	0	年5.2\%
23.5\%	5	5	0	5.8\%
24.7\%	5	5	0	3.8\%
25.9\%	5	5	0	
- 27.2% 2.4\%	5	5	0	
28.4.9\%	5	5	0	0.0\%
-	5	5	0	-0.0\%
32.1\%	5	5	0	0.0\%
33.3\%	5	5	0	0.0\%
34.6\%	5	5	0	0.0\%
退35.8\%	5	5	0	0.0\%
37.3\%	5	5	O	0.0\%
39.5\%	5	5	0	0.0\%
40.7\%	5	5	0	0.0\%
42.0\%	5 5	5	\bigcirc	0.0.0\%
${ }^{43.2 \%} 4$	5	5 5	0	0.0\%
45.7\%	5	5	0	0.0\%
46.9\%	5	5	0	0\%
48.19\%				0.0\%
49.4\% ${ }^{\text {50.6\% }}$	5 5	5 5	0	0.0.0\%
51.9\%	5	5	0	0.0\%
53.1\%	5	5	0	0.0\%
54.3\%	5	5	0	0.0\%
55.6\%	5	5	0	0.0\%
56.8\%	5	5	0	0.0\%
58.0\%	5	5	0	0.0\%
60.5\%	5	5	0	0.0\%
61.7\%	5	5	0	0.0\%
-63.0\%	5	5	0	0.0\%
64.2% $6.4 .4 \%$	5	5	0	0.0\%
${ }^{654.4 \%}$ 6.7\%	5	5	0	0.0\%
67.9\%	5		0	0.3\%
69.1\%	5	5	0	0.5\%
71.6\%	5	5	0	0.6\%
728\%	4	5	0	4\%
74.1\%	4	4	0	8\%
75.3\%	4	4	0	1.1\%
76.5\% 77.8	4	4	0	${ }_{4.2 \%}^{2.9 \%}$
79.0\%	4	4	0	5.6\%
80.2\%	4	4	0	6.5\%
81.5\%	4	4	0	7.2\%
- 8 827\%	4	4	0	7.3\%
84.0\%	4	4	0	${ }^{8.0 \%}$
${ }^{856.4 \%}$	4	${ }_{4}^{4}$	0	${ }_{3.2 \%}^{5.2 \%}$
877.7\%			0	3.5\%
- ${ }_{\text {88.9\% }} 9.1 \%$	4	4	\bigcirc	0.0.0\%
90.1\% ${ }^{914.4 \%}$	4	${ }_{4}^{4}$	0	0.0\%
${ }_{9} 9.26 \%$	4	4	0	0.0\%
${ }^{938 \%}$	4	4	0	0.0\%
${ }_{96.3 \%}^{95.1 \%}$	4	${ }_{4}^{4}$	\bigcirc	0.0\%
97.5\%	3	4	0	11.0\%
98.8\%	3_{3}	3^{3}	0	1.0\%

Table SW-58-b

		February		
	$\begin{aligned} & \text { WSIP } 2030 \text { Without } \\ & \text { Proiect } \end{aligned}$	WSII 2030 With Project		Relative
Probability	Monthly Stage ((T)	Monthy Stage (FT)		
12%				0.0\%
2.5\%	14	14	0	0.0\%
3.7\%	13	13	0	0.0\%
4.9\%	12	12	0	0.0\%
6.2\%	${ }_{12}^{12}$	${ }_{12}^{12}$	0	
7.4\%	12	12	0	
8.6\%	${ }_{12}^{12}$	${ }_{12}^{12}$	0	0.5\%
9.9\%\%	${ }_{12}^{12}$	${ }_{12}^{12}$	0	\%
	${ }_{12}^{12}$	${ }_{12}^{12}$	0	0\%\%
13.6\%	12	${ }_{12}^{12}$	0	0.0\%
14.8\%	12	11	0	-0.2\%
-16.0\%	${ }_{11}^{11}$	${ }_{11}^{11}$	0	-0.7\%
18.5\%	11	11	0	0.0\%
19.8\%	11	11	0	
21.0\%	11	11	0	
${ }_{\text {22, }}^{22.2 \%}$	11	11	0	-1.8\%
${ }^{23.4 .7 \%}$	${ }_{10}^{10}$	${ }_{10}^{10}$	0	-
25.9\%	10	10	0	0.0\%
27.2\%	10	10	0	0.0\%
28.4\%	10	10	0	0.0\%
29.6\%	9	9	0	0.0\%
30.3\%	9	9	0	0.0\%
32.1\%	9	9	0	${ }^{0.0 \% \%}$
34.6\%	8	8	0	${ }_{0}^{0.0 \%}$
33.8\%	8	8	0	0.0\%
37.0\%	8	8	0	0.0\%
38.3\%	8	8		0.0\%
30.7\%	8	8	O	-0.9\%
4.3.0\%	8	8	0	-0.2\%
- $43.4 .2 \%$	8	8	0	0.0\%
4.7.7\%	8	8	0	0.0\%
46.9\%	8	8	0	0.0\%
48.4\%	7	7	0	${ }_{-2.0 \%}^{0.0 \%}$
50.6\%	7	7	0	-3.0\%
51.9\%	7	7	0	0.0\%
54.3\%	7	7	0	-1.4\%
55.6\%	7	${ }_{6}^{6}$	\bigcirc	${ }_{\text {- }}^{\text {0.0\% }}$
56.8\%	6	6	0	-1.7\%
	${ }_{6}^{6}$	${ }^{6}$	0	-0.7\%
年 69.3%	6	6	0	-2.3\%
60.5\%	6	6		-5.2\%
617\%	6	${ }_{6}$	0	-4.9\%
- 63.0%	${ }_{6}^{6}$	${ }_{6}^{6}$	\bigcirc	-3.7\%\%
				-
66.7\% 67.9%	6 5	5 5	0	-3.1\%
69.1\%	5	5	0	-0.1\%
70.4\%	5 5	5 5	0	0.0\%\%
72.8\%	5	5	0	3.5\%
74.19\%	5	5	0	3.6\%
75.3\%	5	5	0	0\%
76.5\%	4	4	0	0.0\%
77.8\%	4	4	0	0.0\%
79.0\%	4	4	0	0.0\%
81.5\%	4	4	0	0.0\%
82.7% 840%		${ }_{4}^{4}$	\bigcirc	0.0\%
84.0\%	4	4	0	年.0\%\%
86.4\%	4	4	0	${ }^{2.1 .1 \%}$
- 87.7%	4	4	0	- 1.4%
90.1\%	4	4	0	0.0\%
992.4\%	4	4	\bigcirc	1.6\%
93.8\%	4	4	0	3.0\%
${ }_{96.3 \%}^{95.1 \%}$	4	4	0	3.3\%
97.5\%	4	4	0	-1.1\%
98.8\%	3	3	0	0.0\%

Table SW-58-b

Trinity and Sacramento River Basin Operations Summary Tables and Bar Charts

Table SW-01-a
Lake, End of Month
Trinity Lake, End of Month Storage

,												
Analysis Period	End of Month Storage (TAF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulion Period'												
WSIP 2070 Weithout Prjed	1,101	1,103	1,217	1,387	1,558	1,697	1,814	1,689	1,572	1,414	1,264	1,152
WSIP 2070 With Project	1,097	1,099	1,214	1,387	1,560	1,701	1,819	1,693	1,579	1,425	1,265	1,149
Difference	-4	-5	-2	0	1	4	5	5	8	11	1	-3
Percent Difference ${ }^{3}$	-0.3\%	-0.4\%	-0.2\%	0.0\%	0.1\%	0.3\%	0.3\%	0.3\%	0.5\%	0.8\%	0.1\%	-0.3\%
Water Year Typess ${ }^{2}$												
Wet (31.7\%)												
WSSP 2070 Weithot Projed	1,365	1,334	1,450	1,694	1,898	2,030	2,184	2,058	1,896	1,745	1,602	1,456
WSIP 2070 with Project	1,337	1,302	1,423	1,681	1,892	2,027	2,181	2,056	1,890	1,747	1,589	1,434
Difference	-29	-33	-27	-13	-6	-3	-3	-3	-6	2	-14	-22
Percent Difierence	-2.1\%	-2.4\%	-1.9\%	-0.7\%	-0.3\%	-0.1\%	-0.1\%	-0.1\%	-0.3\%	0.1\%	-0.9\%	-1.5\%
Above Noma (13.4%)												
WSIP 2070 Without Projed	1,368	1,356	1,425	1,537	1,798	1,975	2,127	1,968	1,857	1,700	1,555	1,420
WSIP 2070 Witit Projet	1,340	1,333	1,406	1,529	1,792	1,983	2,135	1,975	1,874	1,716	1,541	1,395
Difference	-28	-24	-19	-8	-6	8	8	8	17	16	-14	-25
Percent Difference	-2.0\%	-1.7\%	-1.4\%	-0.5\%	-0.3\%	0.4\%	0.4\%	0.4\%	0.9\%	1.0\%	-0.9\%	-1.8\%
Below Normal (15.9\%)												
WSSP 2070 Without Projed	1,154	1,181	1,303	1,376	1,523	1,680	1,817	1,697	1,600	1,443	1,279	1,181
WSIP 2070 With Priject	1,147	1,176	1,300	1,369	1,516	1,672	1,810	1,691	1,597	1,443	1,272	1,170
Difference	-7	-4	-3	-7	-7	-9	-7	-7	-3	0	-7	-11
Pecrent Difiemence	-0.6\%	-0.4\%	-0.2\%	-0.5\%	-0.5\%	-0.5\%	-0.4\%	-0.4\%	-0.2\%	0.0\%	-0.5\%	-0.9\%
Dry (24.4\%)												
WSIP 2070 Without Priect	881	913	1,075	1,198	1,350	1,505	1,591	1,453	1,345	1,168	994	903
WSIP 2070 Witit Project	889	921	1,080	1,213	1,369	1,522	1,608	1,471	1,364	1,186	1,010	913
Difference	8	8	5	15	19	17	17	17	19	18	15	10
Percent Difference	0.9\%	0.9\%	0.5\%	1.2\%	1.4\%	1.1\%	1.1\%	1.2\%	1.4\%	1.6\%	1.5\%	1.1\%
Critical (14.6\%)												
WSIP 2070 Wethot Projed	593	604	664	914	988	1,057	1,095	1,016	954	815	701	627
WSIP 2070 With Project	650	657	719	931	993	1,068	1,105	1,024	977	840	731	673
Difference	56	52	54	17	6	11	9	9	23	25	31	47
Percent Difference	9.5\%	8.7\%	8.2\%	1.8\%	0.6\%	1.0\%	0.9\%	0.9\%	2.4\%	3.1\%	4.4\%	7.5\%

$\frac{\text { Peccentiffierence }}{1 \text { Basedo on the } 82 \text { veara simulation period }}$
3 Realive effiference of the monntly yerage

Trinity Lake, End of Month Stor

- WSIP 2070 Without Project \quad WSIP 2070 With Project

Trinity Lake, End of Month Storage
Critical Water Year Types (15\%)

- WSIP 2070 Without Project WSIP 2070 With Project

Long-term Average and Average by Water Year Type												
Analysis Period	End of Month Elevation (FEET)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\overline{\text { Full Simulaion Period' }}$												
WSIP 2070 Without Proedt	2,261	2,261	2,273	2,290	2,305	2,317	2,325	2,316	2,307	2,292	2,277	2,266
WSIP 2070 Wit Project	2,261	2,262	2,274	2,290	2,306	2,318	2,326	2,317	2,307	2,293	2,278	2,266
Difference	1	1	1	1	1	1	1	1	1	1	1	1
Percent Differences	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	0.0\%	0.0\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
WSIP 2070 Without Proed	2,291	2,288	2,298	2,319	2,336	2,345	2,355	2,347	2,335	2,323	2,311	2,299
WSIP 2070 with Project	2,288	2,285	2,296	2,317	2,336	2,345	2,355	2,347	2,335	2,323	2,310	2,296
Difference	-3	-3	-2	-1	0	0	0	0	-1	0	-1	-2
Percent Difference	-0.1\%	-0.1\%	-0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.1\%	-0.1\%
Above Normal (13.4\%)												
WSIP 2070 Without Proeet	2,291	2,290	2,296	2,304	2,327	2,341	2,350	2,340	2,332	2,319	2,307	2,296
WSIP 2070 wit Project	2,289	2,288	2,294	2,303	2,327	2,342	2,351	2,341	2,334	2,321	2,306	2,293
Difference	-2	-2	-2	0	0	1	1	1	1	1	-1	-2
Percent Difference	-0.1\%	-0.1\%	-0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	0.1\%	0.0\%	-0.1\%
Below Normal (15.9\%)												
WSIP 2070 without Project	2,271	2,274	2,285	2,291	2,304	2,318	2,328	2,319	2,311	2,298	2,283	2,274
WSIP 2070 with Project	2,271	2,274	2,285	2,291	2,304	2,317	2,328	2,319	2,311	2,298	2,283	2,273
Difference	-1	0	0	0	0	-1	0	-1	0	0	0	-1
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Dry $\left(24.4 \%^{6}\right)$												
WSIP 2070 Without Proed	2,239	2,243	2,260	2,274	2,288	2,303	2,310	2,298	2,288	2,271	2,253	2,242
WSIP 2070 Wit Project	2,240	2,244	2,261	2,276	2,291	2,304	2,312	2,300	2,290	2,274	2,255	2,243
Difference	1	1	1	2	2	2	2	2	2	2	2	1
Percent Difference	0.0\%	0.0\%	0.0\%	0.1\%	0.1\%	0.1\%	0.1\%	0.1\%	0.1\%	0.1\%	0.1\%	0.1\%
Critical (14.6\%)												
WSIP 2070 W Whtout Proed	2,192	2,192	2,205	2,239	2,249	2,258	2,262	2,253	2,246	2,225	2,208	2,198
WSIP 2070 Wit Project	2,205	2,206	2,216	2,243	2,251	2,260	2,264	2,255	2,249	2,230	2,215	2,209
Difference	13	14	11	4	2	2	1	1	3	5	6	11
Percent Difference	0.6\%	0.6\%	0.5\%	0.2\%	0.1\%	0.1\%	0.1\%	0.1\%	0.2\%	0.2\%	0.3\%	0.5\%

3 Realive difference of the monthly verage

Table SW-03-a Trinity Lake, End of Month Area												
						d of Mont	Area (AC					
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulition Period'												
WSIP 2070 Without Proed	9,466	9,483	10,163	11,124	12,036	12,733	13,273	12,688	12,120	11,269	10,420	9,767
WSIP 2070 with Proeet	9,462	9,479	10,165	11,145	12,060	12,770	13,308	12,722	12,174	11,342	10,438	9,767
Difference	-4	-4	2	21	24	37	34	34	54	73	19	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.2\%	0.2\%	0.3\%	0.3\%	0.3\%	0.4\%	0.6\%	0.2\%	0.0\%
Water Year Types ${ }^{2}$												
Wet (3.7\%)												
WSSP 2070 Without Proed	11,131	10,946	11,587	12,815	13,830	14,398	15,033	14,515	13,819	13,115	12,414	11,640
WSIP 2070 With Priject	10,959	10,756	11,426	12,764	13,804	14,386	15,022	14,502	13,791	13,118	12,329	11,511
Difference	-172	-190	-161	-52	-26	-12	-12	-13	-29	3	-85	-129
Pereent Difference	-1.5\%	-1.7\%	-1.4\%	-0.4\%	-0.2\%	-0.1\%	-0.1\%	-0.1\%	-0.2\%	0.0\%	-0.7\%	-1.1\%
Above Nomal (13.4\%)												
WSIP 2070 Without Project	11,159	11,101	11,463	11,981	13,276	14,103	14,751	14,073	13,612	12,888	12,182	11,468
WSIP 2070 with Project	11,003	10,970	11,356	11,952	13,260	14,157	14,797	14,126	13,697	12,989	12,121	11,329
Differene	-156	-130	-107	-29	-16	54	46	53	85	100	-61	-139
Pereent Difference	-1.4\%	-1.2\%	-0.9\%	-0.2\%	-0.1\%	0.4\%	0.3\%	0.4\%	0.6\%	0.8\%	-0.5\%	-1.2\%
Below Normal (15.9\%)												
WSIP 2070 Without Prjeed	9,911	10,077	10,797	11,184	11,951	12,763	13,446	12,923	12,431	11,598	10,663	10,073
WSIP 2070 with Projet	9,872	10,054	10,778	11,151	11,930	12,733	13,427	12,895	12,426	11,604	10,630	10,007
Difference	-39	-23	-19	-33	-20	-30	-19	-28	-5	6	-34	-66
Percent Difference	-0.4\%	-0.2\%	-0.2\%	-0.3\%	-0.2\%	-0.2\%	-0.1\%	-0.2\%	0.0\%	0.1\%	-0.3\%	-0.7\%
Dry (24.4\%)												
WSIP 2070 Without Project	8,122	8,327	9,329	10,127	11,037	11,902	12,353	11,637	11,021	9,961	8,864	8,274
WSIP 2070 with Proect	8,175	8,379	9,369	10,229	11,160	12,006	12,449	11,739	11,138	10,083	8,964	8,337
Difference	53	52	40	102	123	104	96	102	117	122	100	63
Percent Difference	0.7\%	0.6\%	0.4\%	1.0\%	1.1\%	0.9\%	0.8\%	0.9\%	1.1\%	1.2\%	1.1\%	0.8\%
Critical (14.6\%)												
WSIP 2070 W Withut Project	6,065	6,117	6,589	8,271	8,771	9,225	9,452	8,958	8,563	7,607	6,812	6,308
WSIP 2070 Witit Proeet	6,510	6,556	7,004	8,418	8,824	9,311	9,530	9,029	8,728	7,798	7,049	6,682
Difference	445	439	415	148	53	86	78	71	166	191	237	374
Percent Difference	7.3\%	7.2\%	6.3\%	1.8\%	0.6\%	0.9\%	0.8\%	0.8\%	1.9\%	2.5\%	3.5\%	5.9\%

2 As defined by the Sacamenento Valley $40.30-30$ Index Waier Year Hydrologic Classificition (SWRCB D-1641, 1999)
3 Realive difference of the monthly vereage

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulation Period' ${ }^{\text {d }}$												
WSIP 2070 Without Proed	370	299	443	676	932	808	540	3,779	2,068	848	445	447
WSIP 2070 with Project	373	300	382	660	895	805	540	3,779	2,068	848	445	450
Difference	3	1	-60	-16	-37	-4	0	0	0	0	0	3
Percent Difference	0.9\%	0.4\%	-13.6\%	-2.4\%	-4.0\%	-0.4\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.6\%
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
WSIP 2070 Without Prijet	373	300	592	1,376	2,159	1,716	582	4,630	3,399	1,102	450	450
WSIP 270 W wit Project	373	300	428	1,334	2,055	1,714	582	4,630	3,399	1,102	450	450
Difference	0	0	-164	-42	-103	-2	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	-27.7\%	-3.1\%	-4.8\%	-0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Above Normal (13.4\%)												
WSSP 2070 Without Project	373	300	673	560	619	741	463	4,662	2,489	1,102	450	450
WSIP 2070 wit Project	373	300	599	537	584	720	463	4,662	2,489	1,102	450	450
Difference	0	0	-73	-23	-35	-20	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	-10.9\%	-4.0\%	-5.7\%	-2.7\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Below Normal (15.9\%)												
WSIP 2070 Without Project	373	300	300	300	300	300	510	3,685	1,565	801	450	450
WSIP 2070 with Project	373	300	300	300	300	300	510	3,685	1,565	801	450	450
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Dry (24.4\%)												
WSIP 2070 Without Proed	373	300	300	300	300	300	527	3,258	1,204	646	450	450
WSIP 2070 With Project	373	300	306	300	300	300	527	3,258	1,204	646	450	450
Differene	0	0	6	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	2.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Critical (14.6\%)												
WSIP 2070 W Withut Project	351	291	300	300	300	300	575	2,092	783	450	413	433
WSIP 2070 With Project	373	300	300	300	300	300	575	2,092	783	450	413	450
Differene	22	9	0	0	0	0	0	0	0	0	0	17
Percent Difiterence	6.3\%	3.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	4.0\%

$2 A$ s defined by the Sacramentio Valley $00-30 \cdot 30$ Index Waier Year Hyyrologic Classification (SWRCB D-1644, 1999
3 Realive difference of the monntly average

Clear Creek Tunnel, Monthly Flow												
						Monthly	low (CFS)					
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\mathrm{Full} \mathrm{S} \mathrm{Simulation} \mathrm{Period'}^{\text {d }}$												
WSIP 2070 Without Prject	765	545	195	287	191	329	348	155	622	1,889	2,067	1,596
WSIP 2070 WitP Project	772	560	221	267	199	283	346	156	568	1,837	2,230	1,659
Difference	6	15	26	-20	9	-46	-3	0	-55	-53	163	63
Percent Difference	0.8\%	2.8\%	13.3\%	-7.0\%	4.7\%	-14.0\%	-0.8\%	0.3\%	-8.8\%	-2.8\%	7.9\%	3.9\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
WSIP 2070 without Priject	1,285	1,145	341	538	228	559	462	0	208	1,596	1,933	2,139
WSIP 2070 with Project	1,390	1,213	417	537	222	506	459	0	264	1,462	2,189	2,284
Difference	105	68	76	-1	-6	-54	-3	0	57	-133	256	144
Percent Difference	8.2\%	6.0\%	22.4\%	-0.1\%	-2.7\%	-9.6\%	-0.7\%		27.3\%	-8.4\%	13.2\%	6.8\%
Above Normal (13.4\%)												
WSIP 2070 Without Project	1,126	940	191	68	64	543	174	0	293	1,582	1,981	1,880
WSIP 2070 with Project	1,164	873	197	55	64	334	183	0	141	1,583	2,481	2,062
Differene	38	-67	7	-14	0	-210	9	0	-152	1	500	182
Percent Difference	3.3\%	-7.2\%	3.5\%			-38.6\%	5.2\%		-51.9\%	0.1\%	25.2\%	9.7\%
Below Nomal (15.9\%)												
WSIP 2070 Without Project	440	158	92	144	100	110	262	115	628	1,853	2,292	1,404
WSIP 2070 with Projet	365	119	75	185	100	131	234	115	564	1,808	2,394	1,481
Difference	-74	-38	-17	41	0	21	-28	0	-64	-45	102	77
Percent Difference	-16.9\%	-24.4\%	-18.4\%	28.5\%	0.0\%	19.1\%	-10.9\%	0.0\%	-10.2\%	-2.4\%	4.5\%	5.5\%
Dry (24.4\%)												
WSIP 2070 Without Project	355	64	66	260	323	118	302	340	1,218	2,416	2,451	1,186
WSIP 2070 with Project	377	66	100	175	248	150	295	335	1,187	2,426	2,501	1,281
Difference	23	3	34	-84	-75	31	-7	-4	-30	10	50	95
Percent Difference	6.4\%			-32.5\%	-23.2\%	26.5\%	-2.2\%	-1.3\%	-2.5\%	0.4\%	2.0\%	8.0\%
Critical (14.6\%)												
WSIP 2070 W Withut Project	347	104	208	145	102	219	433	371	824	1,969	1,552	1,050
WSIP 2070 Witip Priect	170	159	174	117	302	137	454	381	588	1,930	1,457	757
Difference	-178	55	-33	-28	200	-82	21	10	-236	-39	-96	-293
Percent Difference	-51.1\%	53.6\%	-16.1\%	-19.3\%		-37.2\%	4.9\%	2.7\%	-28.7\%	-2.0\%	-6.2\%	-27.9\%

2As defined by the Sacramentio valley $40-30.301$ ndex Waler Year Hydrologic Classification (SWRCB D-164, 1999)
3 Realive difference of the monthly average

Clear Creek below Whiskeytown Reservoir, Monthly Flow Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulaion Period'												
WSIP 2070 Without Proed	187	188	190	255	238	226	192	265	181	85	85	148
WSIP 2070 with Prioet	186	188	187	253	236	225	191	265	181	84	85	148
Difference	0	0	-2	-2	-2	-1	-1	-1	0	-1	0	0
Percent Difference	-0.2\%	0.0\%	-1.3\%	-0.8\%	-1.0\%	-0.3\%	-0.3\%	-0.2\%	0.0\%	-1.2\%	0.0\%	0.0\%
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
WSSP 2070 Without Proed	200	200	200	399	348	308	200	277	200	85	85	150
WSIP 2070 With Priject	199	200	200	401	348	308	200	277	200	82	85	150
Difference	-1	0	0	2	0	0	0	0	0	-3	0	0
Percent Difference	-0.5\%	0.0\%	0.0\%	0.4\%	0.0\%	-0.1\%	-0.1\%	0.0\%	0.0\%	-3.8\%	0.0\%	0.0\%
Above Normal (13.4\%)												
WSIP 2070 Without Proeet	195	195	195	191	191	191	191	274	195	85	85	150
WSIP 2070 With Project	195	195	195	191	191	191	191	274	195	85	85	150
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Below Normal (15.9\%)												
WSIP 2070 Without Prjeed	196	196	196	192	192	192	192	271	188	85	85	150
WSIP 2070 With Project	196	196	196	192	192	192	192	271	188	85	85	150
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Dry (24.4\%)												
WSIP 2070 Without Pried	183	185	185	193	193	193	193	265	182	85	85	150
WSIP 2070 With Project	183	185	175	193	193	193	193	265	182	85	85	150
Difference	0	0	-10	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	-5.4\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Critical (14.6\%)												
WSIP 2070 W Whtout Projed	146	149	163	171	171	171	171	224	120	85	85	133
WSIP 2070 with Proeet	146	149	163	154	154	167	167	220	120	85	85	133
Difference	0	0	0	-17	-17	-4	-4	-4	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	-9.8\%	-9.8\%	-2.4\%	-2.4\%	-1.6\%	0.0\%	0.0\%	0.0\%	0.0\%

1 Based on the 82 yevar simulation period
Index Waier Year Hyydologic Classifaciono (SWRCB D-1644, 1999)
3 Realive difference of the monthly verage

Table SW-07-a Shasta Lake, End of Month Storage												
						of Mont	Storage					
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulation Period'												
WSIP 2070 Without Proedt	2,179	2,180	2,499	2,892	3,216	3,591	3,788	3,681	3,249	2,716	2,440	2,262
WSIP 2070 With Project	2,260	2,267	2,575	2,962	3,275	3,645	3,844	3,761	3,356	2,789	2,508	2,321
Difference	81	87	75	70	59	54	56	80	107	73	68	59
Percent Difference ${ }^{\text {a }}$	3.7\%	4.0\%	3.0\%	2.4\%	1.8\%	1.5\%	1.5\%	2.2\%	3.3\%	2.7\%	2.8\%	2.6\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
WSSP 2070 Without Proed	2,412	2,339	2,728	3,392	3,574	3,841	4,226	4,228	3,831	3,28	3,023	2,552
WSIP 2070 With Project	2,409	2,354	2,741	3,402	3,575	3,842	4,219	4,242	3,860	3,278	2,985	2,544
Differene	-3	15	13	10	1	1	-7	14	30	-7	-38	-8
Percent Difference	-0.1\%	0.6\%	0.5\%	0.3\%	0.0\%	0.0\%	-0.2\%	0.3\%	0.8\%	-0.2\%	-1.3\%	-0.3\%
Above Nomal (13.4\%)												
WSIP 2070 Without Proedt	2,550	2,460	2,633	3,248	3,516	4,056	4,367	4,271	3,836	3,215	2,955	2,686
WSIP 2070 with Project	2,671	2,566	2,694	3,245	3,515	4,053	4,370	4,289	3,917	3,221	2,961	2,789
Difference	121	106	61	-2	-1	-3	3	18	81	6	6	104
Percent Difference	4.7\%	4.3\%	2.3\%	-0.1\%	0.0\%	-0.1\%	0.1\%	0.4\%	2.1\%	0.2\%	0.2\%	3.9\%
Below Normal (15.9\%)												
WSIP 2070 W Withot Project	2,681	2,725	2,986	2,924	3,336	3,793	4,055	3,949	3,478	2,875	2,602	2,658
WSIP 2070 with Projet	2,660	2,713	2,960	3,008	3,407	3,860	4,097	4,018	3,580	2,938	2,655	2,646
Difference	-21	-12	-27	84	71	67	42	69	102	63	53	-13
Percent Difference	-0.8\%	-0.5\%	-0.9\%	2.9\%	2.1\%	1.8\%	1.0\%	1.8\%	2.9\%	2.2\%	2.0\%	-0.5%
Dry (24.4\%)												
WSIP 2070 Without Proed	2,127	2,214	2,576	2,560	3,098	3,542	3,586	3,386	2,938	2,445	2,160	2,167
WSIP 2070 Wit Project	2,233	2,329	2,681	2,661	3,181	3,614	3,662	3,478	3,061	2,556	2,280	2,224
Difference	106	114	104	100	83	71	75	92	123	110	120	56
Percent Difference	5.0\%	5.2\%	4.0\%	3.9\%	2.7\%	2.0\%	2.1\%	2.7\%	4.2\%	4.5\%	5.5\%	2.6\%
Critical (14.6\%)												
WSIP 2070 Without Proedt	875	932	1,226	2,002	2,230	2,486	2,357	2,157	1,719	1,305	997	971
WSIP 2070 With Project	1,172	1,219	1,511	2,204	2,419	2,665	2,579	2,428	1,995	1,563	1,282	1,219
Difference	297	287	285	203	189	179	222	271	276	257	286	247
Percent Difference	34.0\%	30.8\%	23.3\%	10.1\%	8.5\%	7.2\%	9.4\%	12.6\%	16.0\%	19.7\%	28.7\%	25.5\%

1 Based on the 82 -vear simulution period
3 Realive difference of the monthly verage

Table SW-08-a Shasta Lake, End of Month Elevation ong-term Average and Average by Water Year Type												
	End of Month Elevation (FEET)											
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulation Period'												
WSIP 2070 Weithot Projed	961	961	979	998	1,013	1,030	1,037	1,032	1,013	989	974	966
WSIP 2070 with Proeet	967	967	984	1,003	1,017	1,032	1,039	1,036	1,019	993	979	970
Difference	6	6	5	4	3	3	3	4	5	5	5	5
Percent Difference	0.7\%	0.7\%	0.5\%	0.4\%	0.3\%	0.2\%	0.3\%	0.4\%	0.5\%	0.5\%	0.5\%	0.5\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
WSSP 2070 Weithout Prjed	977	974	993	1,023	1,031	1,041	1,055	1,055	1,040	1,018	1,007	985
WSIP 2070 With Priject	977	974	993	1,023	1,031	1,041	1,055	1,056	1,042	1,018	1,005	985
Difference	0	1	1	0	0	0	0	1	1	0	-2	0
Percent Difference	0.0\%	0.1\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	0.0\%	-0.2\%	0.0\%
Above Nomal (13.4\%)												
WSIP 2070 Without Priject	985	981	989	1,017	1,028	1,049	1,060	1,057	1,041	1,015	1,004	992
WSIP 2070 with Project	991	986	992	1,017	1,028	1,049	1,061	1,058	1,044	1,016	1,004	997
Difference	6	5	3	0	0	0	0	1	3	0	0	5
Perenen Difference	0.6\%	0.5\%	0.3\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	0.3\%	0.0\%	0.0\%	0.5\%
Below Normal (15.9\%)												
WSSP 2070 W Witrout Prjeet	991	993	1,005	1,002	1,020	1,039	1,049	1,045	1,026	1,000	988	990
WSIP 2070 with Projet	990	993	1,004	1,006	1,023	1,042	1,051	1,048	1,030	1,003	990	989
Difference	-1	-1	-1	4	3	3	2	2	4	3	2	-1
Pecrent Difference	-0.1\%	-0.1\%	-0.1\%	0.4\%	0.3\%	0.3\%	0.1\%	0.2\%	0.4\%	0.3\%	0.2\%	-0.1\%
Dry (24.4\%)												
WSIP 2070 Without Projed	962	966	985	984	1,009	1,028	1,030	1,022	1,002	979	964	965
WSIP 2070 with Proect	968	973	990	990	1,013	1,032	1,033	1,026	1,008	984	971	968
Difference	6	7	6	6	4	3	3	4	6	5	7	3
Percent Difference	0.6\%	0.7\%	0.6\%	0.6\%	0.4\%	0.3\%	0.3\%	0.4\%	0.6\%	0.6\%	0.7\%	0.3\%
Critical (14.6\%)												
WSIP 2070 W Whtout Proed	866	872	900	949	963	979	972	961	933	904	878	875
WSIP 2070 with Proeet	895	899	922	962	974	988	984	977	951	925	904	899
Difference	29	27	22	13	11	9	12	16	18	20	26	24
Percent Difference	3.4\%	3.1\%	2.4\%	1.4\%	1.2\%	0.9\%	1.2\%	1.7\%	1.9\%	2.3\%	3.0\%	2.8\%

1Based of the 882year simuluaion period
3 Realive effiference of the monntly yerage

Table SW-09-a Shasta Lake, End of Month Area												
						d of Mont	Area (AC					
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simultion Period'												
WSIP 2070 without Projed	17,848	17,873	19,721	21,907	23,654	25,533	26,393	25,856	23,710	20,891	19,325	18,346
WSIP 2070 wit Project	18,394	18,439	20,185	22,325	23,992	25,828	26,696	26,279	24,295	21,340	19,782	18,751
Difference	547	567	465	419	338	294	303	422	586	449	457	405
Percent Difference	3.1\%	3.2\%	2.4\%	1.9\%	1.4\%	1.2\%	1.1\%	1.6\%	2.5\%	2.1\%	2.4\%	2.2\%
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
WSSP 2070 Without Project	19,348	18,932	21,085	24,683	25,616	26,861	28,600	28,604	26,794	24,078	22,706	20,132
Wsif 2070 with Project	19,335	19,019	21,160	24,737	25,623	26,867	28,570	28,666	26,930	24,049	22,500	20,096
Difference	-13	86	76	54	7	6	-30	62	136	-29	-206	-36
Percent Difference	-0.1\%	0.5\%	0.4\%	0.2\%	0.0\%	0.0\%	-0.1\%	0.2\%	0.5\%	-0.1\%	-0.9\%	-0.2\%
Above Nomal (13.4\%)												
WSIP 2070 Without Project	20,140	19,639	20,592	23,912	25,333	27,873	29,208	28,795	26,860	23,729	22,350	20,894
WSIP 2070 with Project	20,802	20,224	20,928	23,901	25,331	27,859	29,220	28,871	27,256	23,770	22,382	21,457
Difference	662	585	336	-11	-3	-14	12	76	395	42	32	563
Pereent Difference	3.3\%	3.0\%	1.6\%	0.0\%	0.0\%	-0.1\%	0.0\%	0.3\%	1.5\%	0.2\%	0.1\%	2.7\%
Below Norma (15.9\%)												
WSIP 2070 Without Project	20,850	21,099	22,504	22,152	24,317	26,597	27,844	27,365	25,076	21,915	20,424	20,738
WSIP 2070 with Project	20,726	21,029	22,357	22,628	24,702	26,944	28,026	27,655	25,566	22,247	20,702	20,653
Difference	-124	-71	-147	477	385	348	182	290	490	331	279	-85
Percent Difference	-0.6\%	-0.3\%	-0.7\%	2.2\%	1.6\%	1.3\%	0.7\%	1.1\%	2.0\%	1.5\%	1.4\%	-0.4\%
Dry (24.4\%)												
WSIP 2070 Without Project	17,715	18,195	20,226	20,139	23,065	25,327	25,506	24,524	22,221	19,525	17,926	17,967
WSIP 2070 with Project	18,321	18,860	20,826	20,719	23,517	25,711	25,908	24,996	22,897	20,139	18,608	18,286
Difference	606	665	600	580	452	384	402	472	676	614	683	319
Pereent Difference	3.4\%	3.7\%	3.0\%	2.9\%	2.0\%	1.5\%	1.6\%	1.9\%	3.0\%	3.1\%	3.8\%	1.8\%
Critical (14.6\%)												
WSIP 2070 W Withut Project	9,464	9,924	12,109	16,735	18,126	19,704	18,940	17,794	15,140	12,550	10,368	10,180
WSIP 2070 with Project	11,745	12,040	13,972	18,005	19,253	20,697	20,198	19,377	16,827	14,259	12,468	12,071
Difference	2,281	2,115	1,863	1,270	1,127	993	1,258	1,583	1,687	1,709	2,101	1,890
Percent Difference	24.1\%	21.3\%	15.4\%	7.6\%	6.2\%	5.0\%	6.6\%	8.9\%	11.1\%	13.6\%	20.3\%	18.6\%

2 As defined by the Sacamenento Valley $40.30-30$ Index Waier Year Hydrologic Classificition (SWRCB D-1641, 1999)
3 Realive difference of the monthly vereage

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
$\overline{\text { Full Simulaion Period' }}$												
WSIP 2070 Without Proed	6,303	6,441	6,167	9,854	12,357	9,185	6,863	7,780	11,743	13,731	9,657	8,219
WSIP 2070 with Project	5,957	6,339	6,370	9,921	12,559	9,226	6,835	7,385	11,229	14,221	9,865	8,451
Difference	-345	-101	203	67	202	41	-28	-395	-515	490	208	231
Percent Difference	-5.5\%	-1.6\%	3.3\%	0.7\%	1.6\%	0.5\%	-0.4\%	-5.1\%	-4.4\%	3.6\%	2.2\%	2.8\%
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
WSIP 2070 Without Prijet	7,426	8,338	6,327	20,037	24,214	17,119	8,283	7,388	11,292	14,025	9,518	13,707
WSIP 2070 with Project	7,456	8,058	6,406	19,997	24,362	17,065	8,422	7,044	11,085	14,496	10,273	13,404
Difference	31	-280	80	-40	148	-54	139	-344	-207	471	755	-303
Percent Difference	0.4\%	-3.4\%	1.3\%	-0.2\%	0.6\%	-0.3\%	1.7\%	-4.7\%	-1.8\%	3.4\%	7.9\%	-2.2\%
Above Normal (13.4\%)												
WSSP 2070 Without Project	7,168	8,851	6,064	9,134	17,768	9,393	5,810	7,916	11,907	15,029	9,568	9,874
WSIP 2070 wit Project	6,769	9,035	6,796	9,400	17,739	9,229	5,716	7,675	10,684	16,249	10,069	8,408
Difference	-398	184	732	266	-30	-164	-94	-242	-1,222	1,220	501	-1,466
Percent Difference	-5.6\%	2.1\%	12.1\%	2.9\%	-0.2\%	-1.7\%	-1.6\%	-3.1\%	-10.3\%	8.1\%	5.2\%	-14.8\%
Below Normal (15.9\%)												
WSIP 2070 Without Project	4,868	5,482	7,186	5,534	5,254	4,726	5,346	7,714	12,103	14,726	9,746	4,532
WSIP 2070 with Project	4,934	5,294	7,398	5,623	5,491	4,803	5,734	7,277	11,475	15,309	10,019	5,707
Difference	66	-188	212	89	237	77	388	-437	-627	583	273	1,175
Percent Difference	1.4\%	-3.4\%	2.9\%	1.6\%	4.5\%	1.6\%	7.3\%	-5.7\%	-5.2%	4.0\%	2.8\%	25.9\%
Dry (24.4\%)												
WSIP 2070 Without Proed	5,795	4,931	7,057	3,561	3,879	4,780	6,451	8,354	12,172	13,370	9,931	4,544
WSIP 2070 Wit Project	5,035	4,792	7,232	3,687	4,120	4,994	6,380	8,071	11,614	13,579	9,814	5,702
Difference	-760	-139	176	126	241	214	-71	-283	-558	209	-118	1,158
Percent Difference	-13.1\%	-2.8%	2.5\%	3.5\%	6.2\%	4.5\%	-1.1\%	-3.4\%	-4.6%	1.6\%	-1.2\%	25.5\%
Critical (14.0\%)												
WSIP 2070 Without Proeet	5,477	3,675	3,331	3,615	3,532	3,973	7,080	7,620	11,468	11,425	9,489	4,931
WSIP 2070 With Project	4,611	3,854	3,349	3,612	3,960	4,084	6,373	6,833	11,129	11,654	8,713	5,309
Difference	-866	179	19	-4	429	111	-708	-788	-339	229	-775	378
Percent Difference	-15.8\%	4.9\%	0.6\%	-0.1\%	12.1\%	2.8\%	-10.0\%	-10.3\%	-3.0\%	2.0\%	-8.2\%	7.7\%

Based on the 8 2year simulation period
3 Reative difference of the monthy verage

Table SW-11-a
Sacramento River at Bend Bridge, Monthly Flow
Song-term Average and Average by Water Year Type
Lent

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simultion Period'												
WSIP 2070 Without Proed	7,145	8,586	11,733	17,889	20,910	15,423	10,186	9,174	12,437	14,026	9,904	8,718
WSIP 2070 With Project	6,798	8,489	11,934	17,953	21,110	15,463	10,158	8,779	11,926	14,517	10,108	8,947
Difference	-347	-97	201	64	200	40	-28	-395	-511	490	204	229
Percent Difference ${ }^{\text {a }}$	-4.9\%	-1.1\%	1.7\%	0.4\%	1.0\%	0.3\%	-0.3\%	-4.3\%	-4.1\%	3.5\%	2.1\%	2.6\%
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
WSIP 2070 Without Prijet	8,248	10,682	12,600	34,139	37,157	26,612	13,685	9,296	12,303	14,559	9,842	14,278
WSIP 2070 with Project	8,282	10,403	12,682	34,101	37,306	26,558	13,824	8,951	12,099	15,027	10,593	13,969
Difference	34	-279	82	-38	149	-55	140	-345	-204	468	751	-310
Percent Difference	0.4\%	-2.6\%	0.7\%	-0.1\%	0.4\%	-0.2\%	1.0\%	-3.7\%	-1.7\%	3.2\%	7.6\%	-2.2%
Above Nomal (13.4\%)												
WSIP 2070 Without Projed	7,986	10,969	9,898	19,403	28,778	16,238	9,414	9,552	12,712	15,284	9,854	10,355
WSIP 2070 with Proeet	7,600	11,154	10,625	19,671	28,749	16,076	9,321	9,311	11,491	16,509	10,346	8,884
Difference	-386	185	728	267	-29	-162	-92	-241	-1,221	1,225	492	-1,471
Percent Difference	-4.8\%	1.7\%	7.4\%	1.4\%	-0.1\%	-1.0\%	-1.0\%	-2.5\%	-9.6\%	8.0\%	5.0\%	-14.2\%
Below Normal (15.9\%)												
WSSP 2070 Without Projed	5,962	7,965	13,471	11,234	11,466	9,773	8,577	8,992	12,679	14,932	9,980	5,096
WSIP 2070 with Project	6,019	7,780	13,687	11,320	11,702	9,848	8,964	8,553	12,056	15,516	10,248	6,267
Difference	58	-185	216	86	236	75	388	-440	-624	584	268	1,171
Percent Difference	1.0\%	-2.3\%	1.6\%	0.8\%	2.1\%	0.8\%	4.5\%	-4.9\%	-4.9\%	3.9\%	2.7\%	23.0\%
Dry (24.4\%)												
WSIP 2070 Without Proect	6,681	7,031	13,340	6,905	10,048	9,398	8,301	9,352	12,656	13,474	10,095	4,997
WSIP 2070 witit Proect	5,912	6,901	13,507	7,027	10,288	9,611	8,229	9,071	12,102	13,686	9,976	6,156
Difference	-769	-130	167	123	240	213	-72	-282	-554	212	-119	1,159
Percent Difference	-11.5\%	-1.8\%	1.3\%	1.8\%	2.4\%	2.3\%	-0.9\%	-3.0\%	-4.4\%	1.6\%	-1.2\%	23.2\%
Critical (14.6\%)												
WSIP 2070 Without Proeet	6,040	5,124	6,974	6,811	6,831	6,594	8,198	8,461	11,850	11,658	9,683	5,299
WSIP 2070 with Project	5,170	5,310	6,989	6,787	7,244	6,698	7,486	7,678	11,517	11,887	8,904	5,681
Difference	-870	186	14	-24	413	104	-711	-784	-333	229	-779	381
Percent Difference	-14.4\%	3.6\%	0.2\%	-0.4\%	6.0\%	1.6\%	-8.7\%	-9.3\%	-2.8\%	2.0\%	-8.0\%	7.2\%

1 Based on the 82 -vear sinulation neriod
3 Realive difference of the monthly verage

Table SW-12-a
Sacramento River below Red Bluff Diversion Dam, Monthly Flow
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulaion Period'												
WSIP 2070 Without Projed	7,062	8,601	11,801	18,092	21,057	15,508	10,132	9,022	12,016	13,609	9,564	8,660
WSIP 2070 With Project	6,666	8,368	11,203	16,880	19,838	14,571	9,815	8,597	11,535	14,105	9,778	8,908
Difference	-396	-233	-598	-1,213	-1,219	-937	-317	-425	-481	496	213	248
Percent Difference ${ }^{\text {a }}$	-5.6\%	-2.7\%	-5.1\%	-6.7\%	-5.8\%	-6.0\%	-3.1\%	-4.7\%	-4.0\%	3.6\%	2.2\%	2.9\%
Water Year Types ${ }^{2}$												
Wet(31.7\%)												
WSIP 2070 Without Projed	8,142	10,699	12,680	34,512	37,397	26,757	13,652	9,047	11,654	13,869	9,293	14,182
WSIP 2070 With Priject	8,182	10,253	11,615	32,980	36,377	25,881	13,370	8,699	11,571	14,325	10,053	13,924
Diffeence	40	-446	-1,065	-1,532	-1,020	-876	-282	-348	-83	456	760	-258
Percent Difference	0.5\%	-4.2%	-8.4\%	-4.4\%	-2.7\%	-3.3\%	-2.1\%	-3.8\%	-0.7\%	3.3\%	8.2\%	-1.8\%
Above Nomal (13.4\%)												
WSIP 2070 W Withot Projed	7,900	10,986	9,937	19,672	29,001	16,353	9,321	9,352	12,172	14,717	9,421	10,312
WSIP 2070 With Project	7,276	10,854	9,700	18,257	27,084	14,811	8,704	9,044	10,945	16,131	9,95	8,853
Difference	-624	-133	-237	-1,415	-1,916	-1,541	-617	-308	$-1,227$	1,414	530	-1,459
Percent Difference	-7.9\%	-1.2\%	-2.4\%	-7.2\%	-6.6\%	-9.4\%	-6.6\%	-3.3\%	-10.1\%	9.6\%	5.6\%	-14.1\%
Below Norma (15.9\%)												
WSIP 2070 W Witrout Proed	5,884	7,987	13,559	11,371	11,554	9,814	8,503	8,889	12,316	14,610	9,727	5,047
WSIP 2070 With Priject	5,957	7,796	13,449	9,787	10,293	8,614	8,523	8,389	11,649	15,214	10,007	6,226
Difference	73	-191	-110	-1,584	-1,261	-1,200	21	-500	-667	605	280	1,180
Percent Difference	1.2\%	-2.4\%	-0.8\%	-13.9\%	-10.9\%	-12.2\%	0.2\%	-5.6\%	-5.4\%	4.1\%	2.9\%	23.4\%
Dry (24.4\%)												
WSIP 2070 Witrout Proed	6,612	7,046	13,416	6,982	10,135	9,458	8,239	9,275	12,394	13,260	9,926	4,959
WSIP 2070 Witit Project	5,751	6,757	13,053	6,182	8,680	8,487	8,063	8,968	11,840	13,411	9,812	6,118
Difference	-861	-289	-363	-800	-1,455	-971	-176	-306	-554	151	-114	1,159
Percent Difference	-13.0\%	-4.1\%	-2.7\%	-11.5\%	-14.4\%	-10.3\%	-2.1\%	-3.3\%	-4.5\%	1.1\%	-1.1\%	23.4\%
Critical (14.6\%)												
WSIP 2270 W Witrout Projed	5,982	5,123	7,010	6,867	6,873	6,614	8,170	8,391	11,701	11,531	9,505	5,266
WSIP 2070 With Project	5,118	5,307	6,172	6,246	6,298	6,442	7,453	7,572	11,369	11,725	8,716	5,647
Differenc	-864	185	-838	-622	-574	-172	-717	-819	-333	194	-789	382
Percent Diffeence	-14.4\%	3.6\%	-12.0\%	-9.1\%	-8.4\%	-2.6\%	-8.8\%	-9.8\%	-2.8\%	1.7\%	-8.3\%	7.2\%

Based on the 82 -jear simulution period
3 Realive difference of the monthy veras

Table SW-13-a Sacramento River below Hamilton City, Monthly Flow Long-term Average and Average by Water Year Type												
Analysis Period						Monthly	ow (CFS)					
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period'												
WSIP 2070 without Proed	6,475	8,824	13,736	21,151	24,329	17,878	9,280	7,403	9,259	10,883	7,547	8,201
WSIP 2070 With Project	6,203	8,571	12,718	19,774	22,860	16,337	8,884	7,265	9,110	11,736	7,711	8,492
Difference	-272	-253	-1,018	-1,377	-1,470	-1,542	-396	-138	-150	853	164	290
Percent Difference ${ }^{\text {a }}$	-4.2\%	-2.9\%	-7.4\%	-6.5\%	-6.0\%	-8.6\%	-4.3\%	-1.9\%	-1.6\%	7.8\%	2.2\%	3.5\%
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
WSSP 2070 Without Pried	7,537	10,948	14,900	40,045	42,492	30,311	13,816	7,768	8,963	11,123	7,265	13,765
WSIP 2070 Witit Proed	7,641	10,420	13,273	38,326	41,237	28,879	13,217	7,598	8,869	11,547	7,704	13,566
Difference	104	-527	-1,627	-1,719	$-1,255$	-1,432	-599	-170	-94	424	440	-198
Percent Difference	1.4\%	-4.8\%	-10.9\%	-4.3\%	-3.0\%	-4.7\%	-4.3\%	-2.2\%	-1.0\%	3.8\%	6.0\%	-1.4\%
Above Nomal (13.4\%)												
WSIP 2070 Without Proeet	7,279	11,314	11,381	23,701	33,362	19,000	8,775	7,837	9,444	11,905	7,371	9,804
WSIP 2070 Witit Project	6,799	11,110	10,754	22,043	31,129	16,737	7,927	7,644	8,780	14,129	7,802	8,443
Difference	-480	-204	-627	-1,658	-2,233	$-2,263$	-848	-193	-664	2,224	431	$-1,362$
Perenen Difference	-6.6\%	-1.8\%	-5.5\%	-7.0\%	-6.7\%	-11.9\%	-9.7\%	-2.5\%	-7.0\%	18.7\%	5.8\%	-13.9\%
Below Normal (15.9\%)												
WSIP 2070 Withot Projed	5,331	8,301	15,617	13,503	14,023	11,778	7,408	7,105	9,465	11,794	7,612	4,576
WSIP 2070 Witit Proeat	5,580	8,177	15,294	11,686	12,523	9,960	7,170	6,790	9,462	13,096	7,843	5,787
Difference	249	-124	-323	-1,818	-1,500	-1,818	-238	-315	-3	1,302	231	1,211
Percent Difference	4.7\%	-1.5\%	-2.1\%	-13.5\%	-10.7\%	-15.4\%	-3.2\%	-4.4\%	0.0\%	11.0\%	3.0\%	26.5\%
Dry (24.4\%)												
WSIP 2070 Without Project	6,053	7,297	15,602	8,186	12,229	11,236	6,742	7,315	9,482	10,419	7,787	4,481
WSIP 2070 Witit Project	5,321	7,014	14,889	7,285	10,487	9,389	6,615	7,418	9,358	10,948	7,770	5,644
Difference	-732	-283	-713	-901	-1,741	-1,848	-127	103	-124	529	-17	1,163
Percent Difference	-12.1\%	-3.9\%	-4.6\%	-11.0\%	-14.2\%	-16.4\%	-1.9\%	1.4\%	-1.3\%	5.1\%	-0.2\%	26.0\%
Critical (14.6\%)												
WSIP 2070 Without Proeet	5,380	5,052	8,223	7,767	8,028	7,591	6,175	6,683	9,139	9,214	7,849	4,807
WSIP 2070 witit Proed	4,685	5,260	6,908	7,072	7,279	7,281	6,013	6,458	9,138	9,792	7,402	5,219
Difference	-695	208	-1,315	-694	-750	-310	-162	-225	-1	578	-447	412
Percent Difference	-12.9\%	4.1\%	-16.0\%	-8.9\%	-9.3\%	-4.1\%	-2.6\%	-3.4\%	0.0\%	6.3\%	-5.7\%	8.6\%

1 Basedon on the 82 vever simulution period
3 Realive difference of the monthly verage

Table SW-14-a
Sacramento River below Delevan Intake and Pipeline, Monthly Flow
Long-term Average and Average by Water Year Type

Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\mathrm{Full} \mathrm{S} \mathrm{Simulation} \mathrm{Period'}^{\text {d }}$												
WSIP 2070 Weithout Prjed	6,139	8,782	15,625	24,973	28,840	20,968	10,708	7,072	8,438	9,687	6,768	8,396
WSIP 2070 With Projet	6,466	8,825	14,292	22,815	26,739	19,079	10,330	6,976	9,185	11,358	7.511	9,448
Difference	327	43	-1,333	-2,158	-2,101	-1,889	-378	-96	747	1,671	744	1,052
Percent Difference ${ }^{\text {a }}$	5.3\%	0.5\%	-8.5\%	-8.6\%	-7.3\%	-9.0\%	-3.5\%	-1.4\%	8.8\%	17.2\%	11.0\%	12.5\%
Water Year Types ${ }^{2}$												
Wet (3.7\%)												
WSIP 2070 Without Projed	7,239	10,786	17,207	46,509	48,447	34,679	17,342	7,987	8,751	10,011	6,462	14,142
WSIP 2070 Witit Project	7,626	10,295	15,066	44,014	46,607	32,899	16,710	7,815	9,564	10,996	7,051	14,430
Difference	387	-491	-2,140	-2,495	-1,840	$-1,780$	-632	-172	813	986	588	288
Perent Difference	5.4\%	-4.6\%	-12.4\%	-5.4\%	-3.8\%	-5.1\%	-3.6\%	-2.2\%	9.3\%	9.8\%	9.1\%	2.0\%
Above Nomal (13.4\%)												
WSIP 2070 Without Projed	6,947	11,357	12,918	29,843	41,836	23,096	9,738	7,904	8,611	10,572	6,656	10,002
WSIP 2070 with Projett	7,285	11,241	11,802	26,947	38,762	20,374	8,893	7,707	9,220	14,303	7,413	9,984
Difference	338	-116	-1,115	-2,896	-3,074	$-2,722$	-845	-197	608	3,731	757	-18
Perent Dififence	4.9\%	-1.0\%	-8.6\%	-9.7\%	-7.3\%	-11.8\%	-8.7\%	-2.5\%	7.1\%	35.3\%	11.4\%	-0.2\%
Below Norma (15.9\%)												
WSSP 2070 Without Projed	5,095	8,709	18,047	16,675	16,937	14,264	8,603	6,921	8,373	10,512	6,813	4,626
WSIP 2070 witit Project	5,894	8,968	17,506	13,700	14,771	12,086	8,357	6,597	9,484	13,037	7,740	6,625
Difference	800	259	-540	-2,975	-2,166	$-2,178$	-246	-324	1,112	2,525	927	2,000
Pecrent Difiemence	15.7\%	3.0\%	-3.0\%	-17.8\%	-12.8\%	-15.3\%	-2.9\%	-4.7\%	13.3\%	24.0\%	13.6\%	43.2\%
Dr ($24.4 \%^{*}$)												
WSIP 2070 Without Projed	5,699	7,218	17,429	9,278	15,721	13,507	6,845	6,323	8,279	9,217	6,840	4,600
WSIP 2070 Wit Project	5,957	7,556	16,641	7,815	13,093	11,248	6,727	6,417	8,904	10,534	7,907	6,554
Difference	259	338	-788	-1,463	-2,628	-2,259	-119	94	625	1,317	1,067	1,954
Percent iffifeence	4.5\%	4.7\%	-4.5\%	-15.8\%	-16.7\%	-16.7\%	-1.7\%	1.5\%	7.5\%	14.3\%	15.6\%	42.5\%
Critical (14.6\%)												
WSSP 2070 W Without Prject	4,882	4,763	9,049	8,998	9,203	9,009	5,943	5,743	7,937	8,066	7,363	4,884
WSIP 2070 Witit Project	4,667	5,384	7,501	7,974	8,378	8,573	5,966	5,830	8,476	8,997	7,693	6,042
Difference	-215	622	-1,548	-1,024	-824	-436	23	88	538	931	330	1,158
Percent Difference	-4.4\%	13.1\%	-17.1\%	-11.4\%	-9.0\%	-4.8\%	0.4\%	1.5\%	6.8\%	11.5\%	4.5\%	23.7\%

3 Realive difference of the monntly yerage

Table SW-15-a
Sacramento River at Wiken Slough, Monthly Flow
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\overline{\text { Full Simuation Period }}$ '												
WSIP 2070 Without Projed	5,879	8,433	11,687	14,608	15,935	14,474	7,961	5,748	6,423	7,581	5,188	8,092
WSIP 2070 With Project	6,218	8,557	11,006	13,486	14,969	13,318	7,696	5,666	7,167	9,225	5,891	9,148
Difference	339	124	-681	-1,122	-967	-1,155	-266	-81	745	1,644	703	1,055
Percent Difference ${ }^{\text {a }}$	5.8\%	1.5\%	-5.8\%	-7.7\%	-6.1\%	-8.0\%	-3.3\%	-1.4\%	11.6\%	21.7\%	13.5\%	13.0\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
WSIP 2070 Witrout Projed	6,846	10,620	12,708	20,489	20,534	18,484	11,967	6,746	6,790	7,925	4,884	13,865
WSIP 2070 with Priject	7,251	10,262	11,642	19,882	20,240	18,096	11,620	6,603	7,610	8,890	5,461	14,157
Difference	406	-359	-1,067	-607	-294	-387	-347	-143	820	965	577	292
Percent ifference	5.9\%	-3.4\%	-8.4\%	-3.0\%	-1.4\%	-2.1\%	-2.9\%	-2.1\%	12.1\%	12.2\%	11.8\%	2.1\%
Above Nomal (13.4\%)												
WSIP 2070 Without Projed	6,667	10,631	10,159	17,618	19,846	16,705	8,418	6,474	6,622	8,446	5,060	9,695
WSIP 2070 with Proeet	7,040	10,684	9,532	16,615	19,240	14,957	7,649	6,406	7,222	12,156	5,736	9,697
Difference	373	53	-627	-1,003	-606	-1,748	-769	-69	600	3,710	675	3
Percent Difference	5.6\%	0.5\%	-6.2\%	-5.7\%	-3.1\%	-10.5\%	-9.1\%	-1.1\%	9.1\%	43.9\%	13.3\%	0.0\%
Below Norma (15.9\%)												
WSIP 2070 Without Projed	4,971	8,324	13,237	14,209	14,421	12,979	6,847	5,566	6,325	8,370	5,185	4,352
WSIP 2070 Witit Proeat	5,735	8,657	13,631	12,071	12,837	10,913	6,701	5,218	7,436	10,852	6,061	6,355
Difference	764	333	393	$-2,138$	-1,584	-2,066	-146	-348	1,111	2,482	876	2,003
Percent Difference	15.4\%	4.0\%	3.0\%	-15.0\%	-11.0\%	-15.9\%	-2.1\%	-6.3\%	17.6\%	29.7\%	16.9\%	46.0\%
Dr (24.4\%)												
WSIP 270 W Witrout Projed	5,484	6,723	11,810	9,185	12,997	12,450	5,422	4,993	6,218	7,054	5,233	4,299
WSIP 2070 witit Proect	5,784	7,058	11,425	7,771	11,155	10,737	5,322	5,069	6,830	8,350	6,267	6,240
Difference	300	335	-385	-1,415	-1,843	-1,713	-100	76	612	1,295	1,035	1,942
Percent Difierence	5.5\%	5.0\%	-3.3\%	-15.4\%	-14.2\%	-13.8\%	-1.9\%	1.5\%	9.8\%	18.4\%	19.8\%	45.2\%
Critical (14.6\%)												
WSIP 270 W Without Projed	4,704	4,649	8,991	8,575	8,926	8,732	4,303	4,373	5,890	6,064	5,893	4,491
WSIP 2070 Witit Project	4,469	5,306	7,436	7,815	8,299	8,371	4,270	4,440	6,428	6,957	6,152	5,662
Difference	-235	657	-1,555	-760	-627	-361	-33	67	538	893	259	1,171
Percent Difference	-5.0\%	14.1\%	-17.3\%	-8.9\%	-7.0\%	-4.1\%	-0.8\%	1.5\%	9.1\%	14.7\%	4.4\%	26.1\%

1 Based on the 82 2year sinulation period
3 Realive difference of the monthly verage

Table SW-17-a Sacramento River at Freeport, Monthly Flow Long-term Average and Average by Water Year Type												
Analysis Period						Monthly	Fow (CFS)					
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\overline{\text { Full Simulion Period' }}$												
WSIP 2070 Without Projed	10,851	14,509	23,754	35,618	43,165	36,153	20,823	11,953	13,242	18,903	13,306	16,798
WSIP 2070 With Projet	11,271	14,663	23,051	34,304	42,108	34,977	20,591	11,971	13,621	19,414	13,909	17,866
Difference	420	154	-703	-1,314	-1,057	-1,176	-232	18	378	511	603	1,067
Percent Difference ${ }^{\text {a }}$	3.9\%	1.1\%	-3.0\%	-3.7\%	-2.4\%	-3.3\%	-1.1\%	0.1\%	2.9\%	2.7\%	4.5\%	6.4\%
Water Year Types ${ }^{2}$												
Wet (3.7\%)												
WSSP 2070 Without Projed	13,096	17,676	27,408	58,309	64,949	54,398	33,632	13,999	14,957	21,217	15,201	27,226
WSIP 2070 With Proeet	13,850	17,290	25,915	57,473	64,483	53,813	33,421	13,859	15,191	21,285	15,588	27,164
Difference	754	-386	-1,493	-836	-466	-585	-211	-140	234	68	387	-63
Percent Difference	5.8\%	-2.2\%	-5.4\%	-1.4\%	-0.7\%	-1.1\%	-0.6\%	-1.0\%	1.6\%	0.3\%	2.5\%	-0.2\%
Above Norma (13.4\%)												
WSIP 2070 Weithot Projed	12,992	17,385	21,102	44,953	60,476	44,687	20,012	13,429	14,208	22,490	15,487	20,904
WSIP 2070 with Project	13,544	17,511	20,732	43,374	59,608	43,186	19,405	13,315	14,300	23,268	16,054	20,666
Difference	552	126	-370	-1,579	-868	-1,502	-606	-115	92	778	567	-238
Percent Difference	4.3\%	0.7\%	-1.8\%	-3.5\%	-1.4\%	-3.4\%	-3.0\%	-0.9\%	0.6\%	3.5\%	3.7\%	-1.1\%
Below Normal (15.9\%)												
WSIP 2070 Without Projed	9,419	15,895	28,000	27,999	31,304	29,983	17,160	11,956	13,252	21,520	14,477	11,303
WSIP 2070 With Project	10,208	16,383	28,571	25,552	30,235	28,023	17,047	11,795	13,671	21,891	15,036	13,288
Difference	788	489	571	-2,447	-1,069	-1,960	-113	-160	420	371	559	1,986
Percent Difiference	8.4\%	3.1\%	2.0\%	-8.7\%	-3.4\%	-6.5\%	-0.7\%	-1.3\%	3.2\%	1.7\%	3.9\%	17.6\%
Dry (24.4\%)												
WSIP 2070 Without Prjeet	9,899	12,195	23,668	18,133	28,551	24,837	13,053	10,783	12,370	16,454	10,893	10,082
WSIP 2070 witit Proect	10,035	12,605	23,427	16,857	26,363	23,065	12,717	11,194	12,948	17,338	12,173	12,552
Difference	136	410	-241	-1,276	-2,188	-1,771	-336	411	578	884	1,281	2,470
Percent Difference	1.4\%	3.4\%	-1.0\%	-7.0\%	-7.7\%	-7.1\%	-2.6\%	3.8\%	4.7\%	5.4\%	11.8\%	24.5\%
Critical (14.6\%)												
WSIP 2070 Without Proed	7,163	7,369	13,812	15,294	17,307	14,344	10,734	8,114	10,084	11,845	9,954	7,586
WSIP 2070 With Priject	6,812	7,929	12,367	14,351	16,694	14,027	10,843	8,131	10,660	12,603	9,979	8,967
Difference	-351	560	-1,445	-943	-613	-317	110	18	576	758	24	1,381
Percent Difference	-4.9\%	7.6\%	-10.5\%	-6.2\%	-3.5\%	-2.2\%	1.0\%	0.2\%	5.7\%	6.4\%	0.2\%	18.2\%

2As defined by the Sacaranent Valley $40.30-30$ Io ndex Waier Year Hydrologic Classificaion (SWRCB $D-1641$, 1999)
3 Realive difference of the monthly vereage

Table SW-18-a Lake Oroville, End of Month Storage Long-term Average and Average by Water Year Type												
Analysis Period	End of Month Storage (TAF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulion Period'												
WSIP 2070 without Project	1,205	1,248	1,548	1,946	2,273	2,499	2,660	2,620	2,374	1,871	1,549	1,287
WSIP 2070 with Project	1,293	1,329	1,610	1,992	2,314	2,534	2,694	2,651	2,431	1,959	1,647	1,383
Difference	88	80	62	46	41	35	34	31	57	88	98	96
Percent Difference	7.3\%	6.4\%	4.0\%	2.4\%	1.8\%	1.4\%	1.3\%	1.2\%	2.4\%	4.7\%	6.3\%	7.4\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
WSSP 2070 Without Project	1,404	1,372	1,691	2,719	2,895	2,942	3,226	3,258	3,001	2,448	2,039	1,585
WSIP 2070 with Project	1,485	1,448	1,730	2,719	2,891	2,942	3,226	3,258	3,039	2,529	2,142	1,695
Difference	81	76	39	1	-4	0	0	0	38	81	103	110
Percent Difference	5.8\%	5.6\%	2.3\%	0.0\%	-0.1\%	0.0\%	0.0\%	0.0\%	1.3\%	3.3\%	5.0\%	6.9\%
Above Nomal (13.4\%)												
WSIP 2070 Without Projed	1,276	1,294	1,388	2,185	2,736	2,962	3,196	3,166	2,898	2,298	1,832	1,392
WSIP 2070 With Project	1,418	1,425	1,511	2,262	2,780	2,962	3,196	3,165	2,939	2,414	1,975	1,549
Difference	142	131	123	77	44	0	0	-1	42	116	143	157
Pereent Difference	11.1\%	10.1\%	8.9\%	3.5\%	1.6\%	0.0\%	0.0\%	0.0\%	1.4\%	5.1\%	7.8\%	11.3\%
Below Norma((15.\%\%)												
WSIP 2070 Without Project	1,113	1,192	1,607	1,636	2,046	2,482	2,656	2,609	2,334	1,732	1,347	1,184
WSIP 2070 With Project	1,268	1,322	1,702	1,693	2,102	2,530	2,698	2,644	2,410	1,872	1,508	1,353
Difference	155	130	95	57	56	47	42	35	76	139	161	170
Percent Difference	13.9\%	10.9\%	5.9\%	3.5\%	2.7\%	1.9\%	1.6\%	1.3\%	3.3\%	8.0\%	12.0\%	14.3\%
Dry (24.4\%)												
WSIP 2070 Without Priject	1,165	1,283	1,620	1,430	1,859	2,216	2,274	2,167	1,913	1,457	1,253	1,140
WSIP 2070 Wit Project	1,189	1,308	1,646	1,485	1,913	2,268	2,327	2,206	1,962	1,507	1,283	1,147
Difference	25	24	26	55	55	52	54	39	49	50	29	7
Percent Difference	2.1\%	1.9\%	1.6\%	3.8\%	2.9\%	2.3\%	2.4\%	1.8\%	2.5\%	3.4\%	2.3\%	0.6\%
Critical (14.6\%)												
WSIP 2070 W Withut Project	875	941	1,203	1,247	1,435	1,607	1,588	1,507	1,346	1,073	942	903
WSIP 2070 with Project	963	1,022	1,283	1,339	1,533	1,708	1,689	1,618	1,451	1,158	1,031	979
Difference	87	82	80	92	98	101	101	111	106	86	89	76
Percent Difference	10.0\%	8.7\%	6.7\%	7.4\%	6.8\%	6.3\%	6.4\%	7.4\%	7.8\%	8.0\%	9.5\%	8.4\%

1 Based on the 82 -vear simulaion period
3 Reative difference of the monthy verage

Table SW-19-a
Lake Oroville, End of Month Elevation

Long-term Average and Average by Water Year Type												
Analysis Period	End of Month Elevation (FEET)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulation Period'												
WSIP 2070 Without Proed	689	694	726	767	800	821	833	829	808	763	729	699
WSIP 2070 with Projet	700	704	733	773	804	825	836	832	814	772	740	711
Difference	11	10	7	5	4	4	4	3	6	9	11	12
Percent Difference ${ }^{\text {a }}$	1.7\%	1.5\%	1.0\%	0.7\%	0.6\%	0.4\%	0.4\%	0.4\%	0.7\%	1.2\%	1.6\%	1.7\%
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
WSIP 2070 Without Project	714	709	741	842	856	859	879	881	863	821	784	735
WSIP 2070 With Project	724	718	745	842	856	859	879	881	866	829	794	747
Difference	9	9	4	0	0	0	0	0	3	7	10	12
Percent Difference	1.3\%	1.2\%	0.6\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.3\%	0.9\%	1.3\%	1.7\%
Above Normal (13.4\%)												
WSIP 2070 Without Project	700	700	708	793	844	861	877	875	856	811	765	715
WSIP 2070 With Project	717	716	723	802	848	861	877	874	859	821	780	733
Difference	17	16	15	8	4	0	0	0	3	9	15	19
Percent Difference	2.5\%	2.3\%	2.2\%	1.0\%	0.4\%	0.0\%	0.0\%	0.0\%	0.3\%	1.1\%	2.0\%	2.6\%
Below Normal (15.9\%)												
WSSP 2070 W Witrout Prjeet	679	689	733	738	783	824	838	835	812	753	709	689
WSIP 2070 with Projet	700	706	744	745	788	827	841	838	819	769	728	710
Difference	20	17	11	6	5	3	3	3	7	16	19	21
Percent Difference	3.0\%	2.4\%	1.5\%	0.8\%	0.7\%	0.4\%	0.3\%	0.3\%	0.9\%	2.1\%	2.7\%	3.1\%
Dry (24.4\%)												
WSIP 2070 Without Project	683	697	733	718	765	800	804	794	771	722	697	682
WSIP 2070 With Project	686	700	736	724	770	805	809	798	775	727	700	683
Difference	3	3	3	6	6	5	5	3	4	5	3	1
Percent Difference	0.4\%	0.4\%	0.4\%	0.9\%	0.7\%	0.6\%	0.6\%	0.4\%	0.5\%	0.7\%	0.5\%	0.1\%
Critical (14.6\%)												
WSIP 2070 W Withut Project	642	653	689	694	716	735	733	724	704	669	650	645
WSIP 2070 with Project	658	667	700	706	728	748	746	738	719	683	666	659
Difference	16	14	11	13	13	13	13	14	15	14	15	14
Percent Difference	2.5\%	2.1\%	1.6\%	1.8\%	1.8\%	1.7\%	1.8\%	1.9\%	2.1\%	2.1\%	2.4\%	2.1\%

1 Based on the 82 2year simulution neriod
3 Realive difference of the montly average

Table SW-20-a Lake Oroville, End of Month Area												
						of Mont	Area (AC					
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period ${ }^{1}$												
WSIP 2070 Without Proedt	7,324	7,496	8,660	10,178	11,411	12,244	12,780	12,632	11,766	9,940	8,709	7,667
WSIP 2070 with Project	7,695	7,830	8,912	10,367	11,571	12,377	12,912	12,752	11,977	10,280	9,098	8,063
Difference	370	334	252	189	160	133	132	120	211	340	390	396
Percent Difference	5.1\%	4.5\%	2.9\%	1.9\%	1.4\%	1.1\%	1.0\%	0.9\%	1.8\%	3.4\%	4.5\%	5.2\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
WSSP 2070 Without Proed	8,156	8,006	9,213	13,049	13,661	13,817	14,763	14,871	14,012	12,123	10,639	8,876
WSIP 2070 with Projet	8,480	8,309	9,361	13,050	13,649	13,819	14,763	14,871	14,141	12,416	11,023	9,312
Difference	324	303	148	1	-12	1	0	0	128	293	385	436
Percent Difference	4.0\%	3.8\%	1.6\%	0.0\%	-0.1\%	0.0\%	0.0\%	0.0\%	0.9\%	2.4\%	3.6\%	4.9\%
Above Normal (13.4\%)												
WSIP 2070 Without Proeet	7,639	7,696	8,028	11,109	13,119	13,884	14,665	14,564	13,670	11,624	9,895	8,140
WSIP 2070 with Project	8,227	8,236	8,540	11,405	13,271	13,884	14,664	14,559	13,808	12,028	10,440	8,781
Differene	589	540	512	295	151	0	-1	-5	138	403	546	641
Percent Difference	7.7\%	7.0\%	6.4\%	2.7\%	1.2\%	0.0\%	0.0\%	0.0\%	1.0\%	3.5\%	5.5\%	7.9\%
Below Normal (15.9\%)												
WSIP 2070 Without Prjeed	6,976	7,298	8,902	9,049	10,633	12,242	12,847	12,687	11,723	9,486	7,956	7,275
WSIP 2070 with Projet	7,629	7,841	9,276	9,271	10,839	12,397	12,986	12,807	11,997	10,038	8,614	7,982
Difference	653	543	374	223	206	155	139	120	274	551	659	707
Percent Difference	9.4\%	7.4\%	4.2\%	2.5\%	1.9\%	1.3\%	1.1\%	0.9\%	2.3\%	5.8\%	8.3\%	9.7\%
Dry (2.4.\%)												
WSIP 2070 Without Project	7,150	7,631	8,929	8,275	9,944	11,284	11,477	11,083	10,153	8,389	7,558	7,083
WSIP 2070 with Proect	7,250	7,728	9,035	8,500	10,151	11,473	11,671	11,219	10,322	8,582	7,676	7,108
Difference	99	97	107	224	208	190	194	137	168	193	118	25
Percent Difference	1.4\%	1.3\%	1.2\%	2.7\%	2.1\%	1.7\%	1.7\%	1.2\%	1.7\%	2.3\%	1.6\%	0.4\%
Critical (14.6\%)												
WSIP 2070 W Whtout Proed	5,901	6,198	7,329	7,498	8,256	8,937	8,855	8,535	7,890	6,744	6,173	6,011
WSIP 2070 Witip Priect	6,317	6,580	7,679	7,900	8,670	9,358	9,280	8,999	8,348	7,142	6,594	6,376
Difference	416	382	350	402	414	421	426	464	458	398	421	365
Percent Difference	7.0\%	6.2\%	4.8\%	5.4\%	5.0\%	4.7\%	4.8\%	5.4\%	5.8\%	5.9\%	6.8\%	6.1\%

3 Realive difference of the monthly vereage

Table SW-21-a
nalito Low Flow
Con
Feather River at Thermalito Low Flow Channel, Monthly Flow
Long-term Average and Average by Water Year Type

Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulation Period'												
WSIP 2070 Weithot Projed	800	800	800	800	800	800	700	700	700	700	700	773
WSIP 2070 With Project	800	800	800	800	800	800	700	700	700	700	700	773
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference ${ }^{\text {a }}$	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Water Year Types ${ }^{2}$												
Wet (3.7\%)												
WSSP 2070 Without Proed	800	800	800	800	800	800	700	700	700	700	700	773
WSIP 2070 With Project	800	800	800	800	800	800	700	700	700	700	700	773
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Perent Diffeence	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Above Nomal (13.4\%)												
WSIP 2070 Weithot Projed	800	800	800	800	800	800	700	700	700	700	700	773
WSIP 2070 with Projett	800	800	800	800	800	800	700	700	700	700	700	773
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Below Normal (15.9\%)												
WSSP 2070 W Witrout Prjeet	800	800	800	800	800	800	700	700	700	700	700	773
WSIP 2070 with Projet	800	800	800	800	800	800	700	700	700	700	700	773
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Dry (24.4\%)												
WSIP 2070 Without Priect	800	800	800	800	800	800	700	700	700	700	700	773
WSIP 2070 Witit Project	800	800	800	800	800	800	700	700	700	700	700	773
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Critical (14.0\%)												
WSIP 2070 W Whtout Proed	800	800	800	800	800	800	700	700	700	700	700	773
WSIP 2070 with Project	800	800	800	800	800	800	700	700	700	700	700	773
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%

$\begin{array}{lllll}0.0 \% & 0.0 \% & 0.0 \% & 0.0 \% & 0.0 \% \\ & \text { Index Water Yearar Hydrologicic Classification (SWRCB B-1641, 1999 }\end{array}$
3 Realive difference of the monthly vereage

Table SW-22-a
below Thermaito
Feather River below Thermalito, Monthly Flow

Feather River below Thermalito, Monthly Flow Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulation Period'												
WSIP 2070 Without Projed	2,748	1,920	2,859	5,848	9,110	7,995	2,358	1,663	3,107	7,016	4,915	4,815
WSIP 2070 With Project	2,711	1,882	3,096	6,091	9,211	8,094	2,354	1,700	2,642	6,493	4,704	4,811
Difference	-38	-38	237	243	101	99	-4	37	-465	-523	-211	-4
Percent Difference ${ }^{\text {a }}$	-1.4\%	-2.0\%	8.3\%	4.2\%	1.1\%	1.2\%	-0.2\%	2.3\%	-15.0\%	-7.5\%	-4.3\%	-0.1\%
Water Year Typess ${ }^{2}$												
Wet (3.7\%)												
WSIP 2070 Without Projed	3,778	2,446	3,438	14,244	20,879	17,306	4,153	1,759	3,627	8,066	6,421	8,049
WSIP 2070 With Priject	3,964	2,405	3,970	14,701	20,961	17,243	4,149	1,749	2,972	7,352	6,044	7,913
Diffeence	186	-41	531	458	82	-63	-4	-10	-655	-714	-377	-136
Percent Diffeence	4.9\%	-1.7\%	15.5\%	3.2\%	0.4\%	-0.4\%	-0.1\%	-0.6\%	-18.1\%	-8.9\%	-5.9\%	-1.7\%
Above Nomal (13.4\%)												
WSIP 2070 Without Projed	3,837	2,336	3,213	3,975	10,866	9,196	1,324	1,652	3,571	8.429	7,279	7,144
WSIP 2070 with Project	3,938	2,368	3,344	4,506	11,442	9,903	1,323	1,655	2,835	7,197	6,826	6,893
Difference	102	32	130	531	576	708	-1	3	-736	-1,232	-453	-251
Percent Difference	2.6\%	1.4\%	4.0\%	13.4\%	5.3\%	7.7\%	-0.1\%	0.2\%	-20.6\%	-14.6\%	-6.2\%	-3.5\%
Below Norma (15.9\%)												
WSIP 2070 W Witrout Proed	2,123	1,977	2,152	1,715	2,301	1,909	1,827	1,549	3,187	8,357	5,798	3,060
WSIP 2070 with Projet	2,037	1,992	2,611	1,919	2,327	2,045	1,912	1,642	2,477	7,287	5,347	2,898
Difference	-86	15	459	204	26	136	85	93	-710	-1,070	-451	-162
Percent Difference	-4.1\%	0.8\%	21.3\%	11.9\%	1.1\%	7.1\%	4.7\%	6.0\%	-22.3\%	-12.8\%	-7.8\%	-5.3\%
Dry (24.4\%)												
WSIP 2070 Without Proed	1,978	1,452	3,156	1,410	1,848	2,954	1,627	1,748	2,779	6,050	2,841	2,395
WSIP 2070 Witit Project	1,664	1,385	3,076	1,410	1,853	2,995	1,579	1,969	2,580	6,057	3,061	2,732
Difference	-314	-66	-81	0	5	41	-49	222	-199	7	220	336
Percent Difference	-15.9\%	-4.6\%	-2.6\%	0.0\%	0.3\%	1.4\%	-3.0\%	12.7\%	-7.1\%	0.1\%	7.7\%	14.0\%
Critical (14.6\%)												
WSIP 270 W Without Projed	1,481	1,117	1,550	1,248	1,479	1,713	1,212	1,446	2,013	3,605	1,983	1,606
WSIP 2070 witit Proeet	1,342	1,012	1,536	1,212	1,430	1,661	1,181	1,250	2,033	3,853	1,896	1,717
Difference	-139	-105	-13	-36	-49	-52	-31	-196	20	249	-87	111
Percent Difference	-.9.4\%	-.94\%	-0.8\%	-2.9\%	-3.3\%	-3.0\%	-2.5\%	-13.6\%	1.0\%	6.9\%	-4.4\%	6.9\%

2 As defined by the Sacaramento Valley 40.30 .30 Index Waier Year Hyydologic Classificiotion (SWRCB D-1644, 1999)
3 Realive difference of the monthy average

Table SW-23-a Feather River at Mouth, Monthly Flow Long-term Average and Average by Water Year Ty												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\overline{\text { Full Simulion Period }{ }^{\prime}}$												
WSIP 2070 Without Projed	3,181	2,644	5,749	14,807	19,074	16,553	7,233	3,577	4,072	7,230	5,696	6,512
WSIP 2070 With Projet	3,147	2,606	5,989	15,034	19,154	16,638	7,231	3,617	3,610	6,732	5,499	6,536
Difference	-34	-38	239	226	80	85	-1	40	-462	-498	-197	24
Percent Difference ${ }^{\text {a }}$	-1.1\%	-1.4\%	4.2\%	1.5\%	0.4\%	0.5\%	0.0\%	1.1\%	-11.3\%	-6.9\%	-3.5\%	0.4\%
Water Year Types ${ }^{2}$												
Wet(31.7\%)												
WSSP 2070 Without Projed	4,134	3,206	7,830	32,171	39,076	31,578	13,230	4,256	5,159	8,644	7,485	10,064
WSIP 2070 With Proeet	4,322	3,165	8,363	32,593	39,139	31,507	13,229	4,249	4,506	7,936	7,120	9,947
Difference	188	-41	533	422	62	-72	-1	-8	-653	-708	-365	-118
Percent Difference	4.5\%	-1.3\%	6.8\%	1.3\%	0.2\%	-0.2\%	0.0\%	-0.2\%	-12.7\%	-8.2\%	-4.9\%	-1.2\%
Above Norma (13.4\%)												
WSIP 2070 Weithot Projed	4,279	2,923	4,830	13,777	28,099	20,826	6,359	3,914	5,002	8,651	8,240	9,108
WSIP 2070 with Project	4,382	2,955	4,960	14,306	28,668	21,526	6,357	3,920	4,267	7,422	7,783	8,859
Difference	102	31	130	529	569	700	-2	6	-735	-1,228	-456	-249
Percent Difference	2.4\%	1.1\%	2.7\%	3.8\%	2.0\%	3.4\%	0.0\%	0.1\%	-14.7\%	-14.2\%	-5.5\%	-2.7\%
Below Norma (15.9\%)												
WSSIP 2070 W Without Proed	2,606	3,033	6,449	6,577	6,827	9,561	4,952	3,771	4,088	8,688	6,684	4,896
WSIP 2070 with Proeet	2,522	3,049	6,908	6,766	6,782	9,656	5,039	3,865	3,379	7,640	6,231	4,739
Difference	-84	16	460	189	-46	95	87	94	-709	-1,048	-452	-157
Percent Difiference	-3.2\%	0.5\%	7.1\%	2.9\%	-0.7\%	1.0\%	1.8\%	2.5\%	-17.3\%	-12.1\%	-6.8%	-3.2\%
Dry (24.4\%)												
WSIP 2070 Without Projed	2,671	2,288	5,485	4,833	5,396	7,337	3,862	3,230	3,287	5,907	3,376	4,163
WSIP 2070 witit Proect	2,360	2,222	5,409	4,828	5,399	7,362	3,818	3,457	3,092	5,992	3,658	4,563
Difference	-311	-65	-76	-5	3	24	-44	227	-196	85	282	399
Percent Difference	-11.6\%	-2.9\%	-1.4\%	-0.1\%	0.1\%	0.3\%	-1.1\%	7.0\%	-6.0\%	1.4\%	8.4\%	9.6\%
Critical (14.6\%)												
WSSP 2070 W Without Prject	1,578	1,343	1,765	3,670	3,529	3,018	3,128	2,162	2,152	3,491	2,283	2,100
WSIP 2070 with Proeet	1,456	1,237	1,756	3,622	3,463	2,966	3,101	1,968	2,179	3,737	2,170	2,250
Difference	-122	-106	-8	-48	-66	-52	-27	-194	27	247	-113	150
Percent Difference	-7.7\%	-7.9\%	-0.5\%	-1.3\%	-1.9\%	-1.7\%	-0.9\%	-9.0\%	1.2\%	7.1\%	-5.0\%	7.1\%

1 Basedon on the 82 vever simulation period
3 Realive difference of the monthly verage

Table SW-24-a
Folsom Lake, End of Month Storage

Long-term Average and Average by Water Year Type												
Analysis Period	End of Month Storage (TAF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simultion Period ${ }^{\text {d }}$												
WSIP 2070 Without Proed	342	341	399	453	481	591	681	679	605	448	413	377
WSIP 2070 with Project	355	350	404	455	483	593	684	677	598	473	433	396
Difference	14	9	5	2	2	2	3	-2	-7	26	20	19
Percent Differences	4.0\%	2.5\%	1.2\%	0.5\%	0.4\%	0.4\%	0.5\%	-0.3\%	-1.2\%	5.7\%	4.9\%	5.2\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
WSIP 2070 Without Proed	371	365	441	522	509	624	760	808	727	557	516	425
WSIP 2070 with Project	371	359	435	522	509	624	759	805	720	562	513	431
Difference	-1	-5	-6	0	0	0	-1	-3	-7	4	-3	6
Percent Difference	-0.2\%	-1.5\%	-1.3\%	0.0\%	0.0\%	0.0\%	-0.1\%	-0.4\%	-0.9\%	0.7\%	-0.7\%	1.5\%
Above Normal (13.4\%)												
WSIP 2070 Without Proeet	373	362	382	514	550	644	767	768	709	472	451	420
WSIP 2070 wit Project	407	388	400	519	550	644	766	764	691	534	493	459
Difference	34	26	18	5	0	0	0	-4	-17	62	42	39
Pereent Difference	9.0\%	7.2\%	4.6\%	1.0\%	0.0\%	0.0\%	0.0\%	-0.6\%	-2.5\%	13.1\%	9.2\%	9.3\%
Below Normal (15.9\%)												
WSIP 2070 W Withot Project	378	371	411	474	509	627	731	719	643	462	427	417
WSIP 2070 with Project	404	387	419	479	510	628	731	713	635	507	465	448
Difference	26	16	8	4	1	1	0	-6	-8	44	38	31
Pereent Difference	6.8\%	4.3\%	1.9\%	0.9\%	0.3\%	0.1\%	0.0\%	-0.9\%	-1.2\%	9.6\%	8.9\%	7.4\%
Dry (24.4\%)												
WSIP 2070 Without Proedt	334	345	379	411	479	597	653	601	515	383	350	349
WSIP 2070 Wit Project	351	358	386	406	478	598	666	607	511	411	380	373
Difference	17	13	8	-5	-1	1	12	6	-4	28	29	24
Percent Difference	5.1\%	3.8\%	2.0\%	-1.2\%	-0.2\%	0.2\%	1.9\%	1.0\%	-0.7\%	7.2\%	8.4\%	6.7\%
Critical (14.6\%)												
WSIP 2070 Without Proedt	221	233	342	296	333	419	421	407	354	279	246	235
WSIP 2070 Wit Project	229	240	351	311	346	433	425	401	350	295	263	246
Difference	9	7	9	14	14	14	4	-5	-4	16	17	11
Pereent Difference	3.9\%	3.1\%	2.6\%	4.9\%	4.1\%	3.2\%	0.9\%	-1.3\%	-1.2\%	5.7\%	6.9\%	4.8\%

Tasedornimez-versmualon pentiod
3 Realive difference of the monthly verage

Folsom Lake, End of Month Sto
Dry Water Year Types 22%

- wSIP 2070 Without Project \quad wsIP 2070 With Project

olsom Lake, End of Month Storag
Critical Water Year Types (15\%) WSIP 2070 With Project

Table SW-25-a Folsom Lake, End of Month Elevation Long-term Average and Average by Water Year Type												
	End of Month Elevation (FEET)											
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simultion Period' ${ }^{\text {d }}$												
WSIP 2070 without Proed	391	392	400	408	412	426	435	435	427	406	401	396
WSIP 2070 With Project	394	393	401	408	412	426	436	435	426	410	405	400
Difference	3	2	1	1	0	0	0	0	-1	4	4	4
Percent Difference	0.7\%	0.5\%	0.3\%	0.1\%	0.1\%	0.1\%	0.0\%	-0.1\%	-0.2\%	1.0\%	0.9\%	0.9\%
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
WSIP 2070 Without Projed	397	396	407	418	416	430	445	449	441	421	417	404
WSIP 2070 with Project	396	395	406	418	416	430	445	449	440	422	417	405
Difference	0	-1	-1	0	0	0	0	0	-1	1	0	1
Percent Difference	0.0\%	-0.2\%	-0.2\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.1\%	-0.2\%	0.2\%	0.0\%	0.4\%
Above Normal (13.4\%)												
WSIP 2070 Without Projed	398	396	399	416	421	433	445	446	440	411	408	405
WSIP 2070 with Proeet	403	400	402	417	421	433	445	445	438	419	414	410
Difference	5	4	3	1	0	0	0	0	-2	8	6	5
Percent Difference	1.2\%	1.0\%	0.7\%	0.1\%	0.0\%	0.0\%	0.0\%	-0.1\%	-0.4\%	2.0\%	1.4\%	1.3\%
Below Normal (15.9\%)												
WSIP 2070 Withot Projed	398	397	403	411	416	431	442	440	432	409	405	404
WSIP 2070 with Project	403	400	404	412	416	431	442	440	431	416	411	408
Difference	4	3	1	1	0	0	0	-1	-1	7	6	5
Percent Difference	1.0\%	0.7\%	0.3\%	0.2\%	0.0\%	0.0\%	0.0\%	-0.2\%	-0.2\%	1.6\%	1.4\%	1.1\%
Dry (24.4\%)												
WSIP 2070 Withot Project	390	393	397	402	412	427	433	427	417	398	393	393
WSIP 2070 Wit Project	394	395	399	401	412	427	435	428	416	403	398	398
Difference	4	3	1	-1	0	0	1	1	0	5	6	5
Percent Difference	1.0\%	0.6\%	0.4\%	-0.1\%	0.0\%	0.0\%	0.3\%	0.2\%	-0.1\%	1.2\%	1.4\%	1.2\%
Critical (14.6\%)												
WSSP 2070 Without Projed	367	369	391	383	390	403	403	401	393	380	373	370
WSIP 2070 with Proeet	371	373	393	387	392	404	402	399	392	384	378	374
Difference	3	3	3	4	2	1	-1	-2	-1	3	5	4
Percent Difference	0.9\%	0.8\%	0.7\%	0.9\%	0.5\%	0.3\%	-0.3\%	-0.5\%	-0.2\%	0.9\%	1.2\%	1.0\%

$\frac{1}{1 \text { Based on one }} 82$ 2.ver simulation period
3Realive effiference of the monntly yerage

			For	$\begin{gathered} \text { Table } \\ \text { m Lake, } \end{gathered}$	SW-26-a-a	th Area						
	End of Month Area (ACRE)											
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulaion Period'												
WSIP 2070 Without Proed	6,031	6,051	6,684	7,218	7,537	8,580	9,213	9,162	8,588	7,129	6,776	6,409
WSIP 2070 with Project	6,219	6,172	6,763	7,260	7,560	8,599	9,228	9,142	8,527	7,426	7,045	6,666
Difference	188	121	79	42	23	19	14	-20	-60	298	269	258
Percent Difference	3.1\%	2.0\%	1.2\%	0.6\%	0.3\%	0.2\%	0.2\%	-0.2\%	-0.7\%	4.2\%	4.0\%	4.0\%
Water Year Types ${ }^{2}$												
Wet (3.7\%)												
WSSP 2070 Without Proed	6,390	6,367	7,154	7,964	7,849	8,910	9,858	10,136	9,609	8,223	7,874	6,937
WSIP 2070 With Project	6,384	6,304	7,092	7,964	7,849	8,910	9,850	10,115	9,561	8,295	7,880	7,044
Difference	-6	-63	-63	0	0	0	-7	-21	-48	72	6	108
Percent Difference	-0.1\%	-1.0\%	-0.9\%	0.0\%	0.0\%	0.0\%	-0.1\%	-0.2\%	-0.5\%	0.9\%	0.1\%	1.6\%
Above Nomal (13.4\%)												
WSIP 2070 Without Project	6,514	6,377	6,576	7,874	8,228	9,092	9,918	9,921	9,538	7,469	7,269	6,985
WSIP 2070 With Project	6,879	6,666	6,784	7,919	8,228	9,092	9,916	9,894	9,411	8,083	7,699	7,385
ence	365	289	208	46	0	0	-2	-27	-127	614	430	400
Percent Difiference	5.6\%	4.5\%	3.2\%	0.6\%	0.0\%	0.0\%	0.0\%	-0.3\%	-1.3\%	8.2\%	5.9\%	5.7\%
Below Normal (15.9\%)												
WSIP 2070 Without Prjeed	6,537	6,457	6,859	7,463	7,824	8,926	9,670	9,576	9,011	7,322	6,999	6,937
WSIP 2070 with Projet	6,838	6,656	6,949	7,516	7,839	8,935	9,660	9,525	8,938	7,807	7,435	7,276
Difference	301	199	90	54	15	9	-11	-51	-73	485	435	339
Percent Difference	4.6\%	3.1\%	1.3\%	0.7\%	0.2\%	0.1\%	-0.1\%	-0.5\%	-0.8\%	6.6\%	6.2\%	4.9\%
Dry (24.4\%)												
WSIP 2070 Without Project	5,945	6,105	6,458	6,802	7,530	8,658	9,082	8,650	7,895	6,526	6,136	6,150
WSIP 2070 With Project	6,207	6,285	6,571	6,760	7,521	8,668	9,180	8,708	7,863	6,850	6,526	6,477
Difference	262	180	113	-42	-8	10	98	58	-32	324	390	327
Percent Difference	4.4\%	2.9\%	1.8\%	-0.6\%	-0.1\%	0.1\%	1.1\%	0.7\%	-0.4\%	5.0\%	6.4\%	5.3\%
Critical (14.6\%)												
WSIP 2070 W Whtout Projed	4,406	4,538	5,953	5,432	5,929	6,890	6,896	6,757	6,199	5,239	4.767	4,597
WSIP 2070 Witip Project	4,606	4,723	6,149	5,689	6,083	6,993	6,860	6,648	6,140	5,488	5,078	4,844
Difference	200	185	196	257	154	103	-36	-110	-59	250	311	248
Percent Difference	4.5\%	4.1\%	3.3\%	4.7\%	2.6\%	1.5\%	-0.5\%	-1.6\%	-1.0\%	4.8\%	6.5\%	5.4\%

1 Based on the 82 -vear sinulation period
3 Realive difference of the monthly verage

Table SW-27-a
American River below Nimbus Reservoir, Monthly Flow
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\overline{\text { Full Simulation Period }{ }^{\prime}}$												
WSIP 2070 Without Projed	1,427	1,932	3,797	7,300	8,821	5,768	3,255	1,529	1,526	2,961	1,309	1,581
WSIP 2070 With Proedt	1,515	2,018	3,857	7,345	8,826	5,762	3,241	1,613	1,620	2,417	1,395	1,590
Difference	88	86	59	44	5	-7	-14	84	94	-545	86	9
Percent Difference ${ }^{\text {a }}$	6.2\%	4.5\%	1.6\%	0.6\%	0.1\%	-0.1\%	-0.4\%	5.5\%	6.2\%	-18.4\%	6.6\%	0.6\%
Water Year Types ${ }^{2}$												
Wet(31.7\%)												
WSIP 2070 W Witrout Proed	1,767	2,361	4,598	15,767	15,292	10,162	5,538	1,999	1,623	3,316	1,552	2,675
WSIP 2070 Witit Proed	1,882	2,440	4,606	15,761	15,292	10,162	5,553	2,035	1,683	3,128	1,671	2,515
Difference	116	79	8	-6	0	0	15	36	60	-188	119	-160
Percent Difference	6.5\%	3.4\%	0.2\%	0.0\%	0.0\%	0.0\%	0.3\%	1.8\%	3.7\%	-5.7\%	7.7\%	-6.0\%
Above Nomal (13.4\%)												
WSIP 2070 Witrout Projed	1,633	2,006	3,254	8,121	13,644	6,186	3,053	1,442	1,322	4,433	1,253	1,546
WSIP 2070 with Project	1,693	2,142	3,393	8,100	13,733	6,186	3,057	1,507	1,545	3,133	1,573	1,588
Differene	60	135	139	-21	89	0	4	66	223	-1,301	320	42
Percent Difference	3.7\%	6.7\%	4.3\%	-0.3\%	0.7\%	0.0\%	0.1\%	4.6\%	16.8\%	-29.3\%	25.5\%	2.7\%
Below Norma (15.5\%)												
WSIP 2070 Without Projed	1,407	2,618	3,528	3,269	5,501	4,896	3,027	1,424	1,558	3,328	1,406	1,181
WSIP 2070 with Projet	1,488	2,788	3,661	3,351	5,555	4,907	3,039	1,528	1,578	2,461	1,504	1,302
Difference	81	170	133	82	54	11	11	103	20	-867	98	120
Percent Difference	5.8\%	6.5\%	3.8\%	2.5\%	1.0\%	0.2\%	0.4\%	7.3\%	1.3\%	-26.1\%	7.0\%	10.2\%
Dry (24.4\%)												
WSIP 2070 Without Projed	1,255	1,519	4,970	2,197	4,472	3,279	1,793	1,396	1,707	2,361	1,198	977
WSIP 2070 Witit Project	1,367	1,589	5,058	2,280	4,399	3,247	1,604	1,500	1,869	1,842	1,160	1,068
Difference	112	70	88	83	-73	-32	-189	105	162	-519	-39	90
Percent Difference	8.9\%	4.6\%	1.8\%	3.8\%	-1.6\%	-1.0\%	-10.5\%	7.5\%	9.5\%	-22.0\%	-3.2\%	9.3\%
Critical (14.6\%)												
WSIP 270 W Without Projed	810	876	900	1,078	1,221	959	1,178	924	1,166	1,447	914	680
WSIP 2070 witit Proeet	831	867	869	1,185	1,239	955	1,350	1,077	1,183	1,128	909	771
Difference	21	-9	-31	108	18	-4	173	153	17	-319	-5	90
Percont Difierence	2.6\%	-1.0\%	-3.5\%	10.0\%	1.5\%	-0.4\%	14.7\%	16.5\%	1.5\%	-22.0\%	-0.6\%	13.3\%

$\frac{1}{1 \text { Based on the } 82 \text {-verar sinulation period }}$
3 Reative difference of the monthy verage

Table SW-28-a
Tat
American River at Watt Avenue, Monthly Flow

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulatio Period'												
WSIP 2070 Without Proed	1,367	1,870	3,734	7,221	8,703	5,648	3,157	1,455	1,464	2,901	1,236	1,521
WSIP 2070 With Project	1,454	1,955	3,792	7,264	8,708	5,641	3,143	1,539	1,557	2,355	1,327	1,529
Difference	87	85	59	44	5	-7	-14	84	93	-546	91	8
Percent Difference ${ }^{\text {a }}$	6.4\%	4.5\%	1.6\%	0.6\%	0.1\%	-0.1\%	-0.4\%	5.8\%	6.3\%	-18.8\%	7.3\%	0.5\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
WSSP 2070 Without Projed	1,696	2,296	4,530	15,650	15,099	9,988	5,399	1,904	1,556	3,254	1,476	2,612
WSIP 2070 Wit Project	1,813	2,374	4,537	15,643	15,099	9,988	5,414	1,939	1,615	3,066	1,596	2,451
Difference	117	78	8	-6	0	0	15	35	59	-188	121	-161
Percent Difference	6.9\%	3.4\%	0.2\%	0.0\%	0.0\%	0.0\%	0.3\%	1.9\%	3.8\%	-5.8\%	8.2\%	-6.2\%
Above Nomal (13.4\%)												
WSSP 2070 Weitrout Prjeet	1,573	1,943	3,190	8,063	13,520	6,031	2,961	1,376	1,264	4,375	1,166	1,486
WSIP 2070 wit Project	1,633	2,077	3,328	8,041	13,610	6,030	2,964	1,441	1,486	3,071	1,498	1,525
Difference	59	134	138	-22	89	-1	4	66	222	-1,303	332	39
Percent Difference	3.8\%	6.9\%	4.3\%	-0.3\%	0.7\%	0.0\%	0.1\%	4.8\%	17.6\%	-29.8\%	28.4\%	2.6\%
Below Normal (15.9\%)												
WSIP 2070 Withot Projed	1,350	2,557	3,458	3,196	5,418	4,801	2,934	1,351	1,497	3,268	1,329	1,121
WSIP 2070 With Project	1,429	2,726	3,589	3,279	5,471	4,811	2,945	1,454	1,515	2,400	1,435	1,239
Difference	79	169	132	83	53	10	11	103	18	-868	106	118
Percent Difference	5.9\%	6.6\%	3.8\%	2.6\%	1.0\%	0.2\%	0.4\%	7.6\%	1.2\%	-26.6\%	8.0\%	10.5\%
Dry (24.4\%)												
WSIP 2070 Withot Project	1,201	1,459	4,910	2,137	4,400	3,193	1,716	1,334	1,646	2,300	1,130	919
WSIP 2070 with Project	1,311	1,528	4,997	2,219	4,326	3,162	1,527	1,440	1,806	1,778	1,096	1,009
Difference	110	69	87	82	-75	-31	-189	106	161	-521	-34	90
Percent Difference	9.2\%	4.7\%	1.8\%	3.8\%	-1.7\%	- -1.0%	-11.0\%	7.9\%	9.8\%	-22.7\%	-3.0\%	9.8\%
Critical (14.6\%)												
WSIP 2070 Without Proeet	762	822	847	1,020	1,161	904	1,123	870	1,113	1,392	857	627
WSIP 2070 Witit Project	781	813	816	1,126	1,178	899	1,295	1,019	1,128	1,073	853	717
Difference	19	-9	-31	106	17	-5	173	149	14	-319	-4	89
Percent Difference	2.4\%	-1.1\%	-3.7\%	10.4\%	1.4\%	-0.5\%	15.4\%	17.1\%	1.3\%	-22.9\%	-0.4\%	14.3\%

$\frac{\text { Pecrentinternee }}{1 \text { Based on the } 82 \text { years simulution period }}$
3 Reative difference of the monthy verage

Table SW-29-a
American River at H Street, Monthly Flow

American River at H Street, Monthly Flow Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
$\overline{\text { Full Simulation Period' }}$												
WSIP 2070 Without Proed	1,260	1,794	3,670	7,137	8,601	5,540	2,983	1,311	1,282	2,470	1,038	1,328
WSIP 2070 With Project	1,349	1,879	3,729	7,180	8,607	5,533	2,973	1,395	1,362	1,977	1,139	1,349
Difference	89	85	59	43	6	-7	-10	84	79	-493	101	21
Percent Difference ${ }^{\text {a }}$	7.1\%	4.7\%	1.6\%	0.6\%	0.1\%	-0.1\%	-0.3\%	6.4\%	6.2\%	-20.0\%	9.7\%	1.6\%
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
WSSP 2070 Weithout Prjed	1,556	2,211	4,458	15,580	14,983	9,880	5,197	1,732	1,377	2,806	1,273	2,299
WSIP 2070 With Project	1,679	2,287	4,466	15,574	14,983	9,880	5,212	1,767	1,436	2,582	1,394	2,175
Difference	123	76	8	-6	0	0	15	35	59	-224	121	-124
Percent Difference	7.9\%	3.4\%	0.2\%	0.0\%	0.0\%	0.0\%	0.3\%	2.0\%	4.3\%	-8.0\%	9.5\%	-5.4\%
Above Nomal (13.4\%)												
WSSP 2070 Weitrout Prjeet	1,468	1,858	3,126	7,980	13,450	5,901	2,765	1,242	1,086	3,817	989	1,307
WSIP 2070 with Project	1,528	2,000	3,264	7,958	13,539	5,900	2,769	1,308	1,308	2,549	1,321	1,366
Difference	59	142	138	-22	89	-1	4	66	222	-1,268	332	58
Percent Difference	4.0\%	7.7\%	4.4\%	-0.3\%	0.7\%	0.0\%	0.1\%	5.3\%	20.4\%	-33.2\%	33.5\%	4.5\%
Below Normal (15.9\%)												
WSSIP 2070 Without Proed	1,256	2,493	3,395	3,098	5,290	4,687	2,748	1,220	1,316	2,742	1,099	990
WSIP 2070 with Project	1,335	2,650	3,533	3,177	5,343	4,698	2,759	1,322	1,334	1,977	1,233	1,108
Difference	79	157	137	79	53	10	11	103	18	-765	134	118
Percent Difference	6.3\%	6.3\%	4.0\%	2.5\%	1.0\%	0.2\%	0.4\%	8.4\%	1.4\%	-27.9\%	12.2\%	11.9\%
Dry (24.4\%)												
WSIP 2070 Without Proect	1,114	1,389	4,832	2,046	4,302	3,092	1,568	1,199	1,448	1,931	936	787
WSIP 2070 Witit Project	1,224	1,461	4,920	2,128	4,234	3,061	1,394	1,305	1,571	1,521	917	877
Difference	110	73	87	82	-68	-31	-174	106	124	-410	-19	90
Percent Difference	9.9\%	5.2\%	1.8\%	4.0\%	-1.6\%	-1.0\%	-11.1\%	8.8\%	8.6\%	-21.2\%	-2.0\%	11.5\%
Critical (14.6\%)												
WSIP 2070 Without Prjeed	675	751	821	931	1,078	810	997	746	946	1,108	674	508
WSIP 2070 with Project	694	743	789	1,037	1,095	805	1,170	895	931	899	685	588
Difference	19	-8	-31	106	17	-5	173	149	-15	-209	11	81
Percent Difference	2.8\%	-1.0\%	-3.8\%	11.4\%	1.6\%	-0.6\%	17.3\%	19.9\%	-1.6\%	-18.9\%	1.7\%	15.9\%

$\frac{\text { Percentiffernce }}{1 \text { Based on the } 82 \text { veear simulation period }}$
3 Realivive dffereence of the monthly verage

Table SW-46-a
Feather River at Shanghai Bend, Monthly Flow

Feather River at Shanghai Bend, Monthly Flow Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulation Period'												
WSIP 2070 Without Projed	3,274	2,810	5,560	11,286	14,955	12,739	4,173	2,445	3,704	7,567	5,627	5,312
WSIP 2070 With Project	3,239	2,770	5,797	11,512	15,033	12,822	4,169	2,482	3,240	7,063	5,429	5,331
Difference	-36	-40	237	225	78	82	-4	37	-465	-504	-197	19
Percent Difference ${ }^{\text {a }}$	-1.1\%	-1.4\%	4.3\%	2.0\%	0.5\%	0.6\%	-0.1\%	1.5\%	-12.5\%	-6.7\%	-3.5\%	0.4\%
Water Year Types ${ }^{2}$												
Wet(31.7\%)												
WSIP 2070 Witrout Projed	4,321	3,392	6,799	25,426	30,914	25,399	7,566	2,874	4,283	8,780	7,358	8,695
WSIP 2070 With Priject	4,507	3,351	7,331	25,847	30,976	25,325	7,562	2,864	3,628	8,068	6,986	8,567
Difference	186	-41	531	421	63	-74	-4	-10	-655	-711	-372	-128
Percent Difference	4.3\%	-1.2\%	7.8\%	1.7\%	0.2\%	-0.3\%	-0.1\%	-0.3\%	-15.3\%	-8.1\%	-5.0\%	-1.5\%
Above Nomal (13.4\%)												
WSIP 2070 W Witrout Proed	4,373	3,352	5,300	10,038	21,160	14,692	3,059	2,302	4,228	9,171	8,210	7,753
WSIP 2070 witit Proeet	4,474	3,384	5,430	10,568	21,729	15,391	3,058	2,305	3,491	7,939	7,757	7,502
Difference	102	32	130	530	569	700	-1	3	-736	-1,232	-453	-251
Percent Difference	2.3\%	1.0\%	2.5\%	5.3\%	2.7\%	4.8\%	0.0\%	0.1\%	-17.4\%	-13.4\%	-5.5\%	-3.2\%
Below Norma (15.9\%)												
WSIP 2070 Without Project	2,627	2,883	5,045	4,374	5,813	5,561	3,103	2,200	3,828	8,916	6,581	3,583
WSIP 2070 Witit Proeat	2,541	2,898	5,505	4,562	5,766	5,654	3,188	2,293	3,118	7,847	6,119	3,421
Difference	-86	15	459	188	-47	93	85	93	-710	-1,070	-462	-162
Percent Difference	-3.3\%	0.5\%	9.1\%	4.3\%	-0.8\%	1.7\%	2.7\%	4.2\%	-18.5\%	-12.0\%	-7.0\%	-4.5\%
Dry (24.4\%)												
WSIP 270 W Without Projed	2,558	2,349	6,204	3,366	3,993	5,893	2,456	2,398	3,373	6,454	3,372	2,808
WSIP 2070 Witit Project	2,244	2,276	6,123	3,358	3,991	5,914	2,407	2,620	3,174	6,537	3,658	3,206
Difference	-314	-73	-81	-8	-3	21	-49	222	-199	83	285	397
Percent Difierence	-12.3\%	-3.1\%	-1.3\%	-0.2\%	-0.1\%	0.4\%	-2.0\%	9.3\%	-5.9\%	1.3\%	8.5\%	14.1\%
Cinital (14.6\%)												
WSIP 2070 Without Proed	1,894	1,743	2,595	2,483	2,860	2,708	1,867	1,987	2,390	3,862	2,231	1,791
WSIP 2070 Witit Project	1,771	1,632	2,582	2,434	2,791	2,653	1,836	1,790	2,410	4,110	2,127	1,941
Difference	-124	-111	-13	-49	-68	-55	-31	-196	20	249	-104	150
Percent Difference	-6.5\%	-6.4\%	-0.5\%	-2.0\%	-2.4\%	-2.0\%	-1.6\%	-9.9\%	0.8\%	6.4\%	-4.7\%	8.4\%

Based on the 8 2year simulation period
3 Realive difference of the montily veras

Table SW-47-a
River at
Nouth,
American River at Mouth, Monthly Flow

American River at Mouth, Monthly Flow Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Flow (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simultion Period'												
WSIP 2070 without Projed	1,260	1,794	3,670	7,137	8,601	5,540	2,983	1,311	1,282	2,470	1,038	1,328
WSIP 270 W wit Project	1,349	1,879	3,729	7,180	8,607	5,533	2,973	1,395	1,362	1,977	1,139	1,349
Difference	89	85	59	43	6	-7	-10	84	79	-493	101	21
Percent Difference ${ }^{\text {a }}$	7.1\%	4.7\%	1.6\%	0.6\%	0.1\%	-0.1\%	-0.3\%	6.4\%	6.2\%	-20.0\%	9.7\%	1.6\%
Water Year Typess ${ }^{2}$												
Wet (31.7\%)												
WSSP 2070 Without Project	1,556	2,211	4,458	15,580	14,983	9,880	5,197	1,732	1,377	2,806	1,273	2,299
WSIP 2070 With Prijet	1,679	2,287	4,466	15,574	14,983	9,880	5,212	1,767	1,436	2,582	1,394	2,175
Difference	123	76	8	-6	0	0	15	35	59	-224	121	-124
Pereent Difference	7.9\%	3.4\%	0.2\%	0.0\%	0.0\%	0.0\%	0.3\%	2.0\%	4.3\%	-8.0\%	9.5\%	-5.4\%
Above Normal (13.4\%)												
WSIP 2070 Weithot Projed	1,468	1,858	3,126	7,980	13,450	5,901	2,765	1,242	1,086	3,817	989	1,307
WSIP 2070 with Project	1,528	2,000	3,264	7,958	13,539	5,900	2,769	1,308	1,308	2,549	1,321	1,366
Difference	59	142	138	-22	89	-1	4	66	222	-1,268	332	58
Pereent Difference	4.0\%	7.7\%	4.4\%	-0.3\%	0.7\%	0.0\%	0.1\%	5.3\%	20.4\%	-33.2\%	33.5\%	4.5\%
Below Norma (15.9\%)												
WSIP 2070 Without Project	1,256	2,493	3,395	3,098	5,290	4,687	2,748	1,220	1,316	2,742	1,099	990
WSIP 2070 wit Project	1,335	2,650	3,533	3,177	5,343	4,698	2,759	1,322	1,334	1,977	1,233	1,108
Difference	79	157	137	79	53	10	11	103	18	-765	134	118
Percent Difference	6.3\%	6.3\%	4.0\%	2.5\%	1.0\%	0.2\%	0.4\%	8.4\%	1.4\%	-27.9\%	12.2\%	11.9\%
Dry (24.4\%)												
WSIP 2070 Without Project	1,114	1,389	4,832	2,046	4,302	3,092	1,568	1,199	1,448	1,931	936	787
WSIP 2070 with Project	1,224	1,461	4,920	2,128	4,234	3,061	1,394	1,305	1,571	1,521	917	877
Difference	110	73	87	82	-68	-31	-174	106	124	-410	-19	90
Percent Difference	9.9\%	5.2\%	1.8\%	4.0\%	-1.6\%	-1.0\%	-11.1\%	8.8\%	8.6\%	-21.2\%	-2.0\%	11.5\%
Critical (14.6\%)												
WSIP 2070 W Withut Project	675	751	821	931	1,078	810	997	746	946	1,108	674	508
WSIP 2070 with Project	694	743	789	1,037	1,095	805	1,170	895	931	899	685	588
Difference	19	-8	-31	106	17	-5	173	149	-15	-209	11	81
Percent Difference	2.8\%	-1.0\%	-3.8\%	11.4\%	1.6\%	-0.6\%	17.3\%	19.9\%	-1.6\%	-18.9\%	1.7\%	15.9\%

$\frac{\text { Pecrentinternee }}{1 \text { Based on the } 82 \text { years simulution period }}$
3 Reative difference of the monthy verage

$\frac{\text { Percent Differences }}{1 \text { Based on onte } 8 \text { 2vear simulition period }}$

Table SW-56-a Sacramento River at Wilkins Slough, Monthly Stage Long-term Average and Average by Water Year Type												
	Monthly Stage (FT)											
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
WSIP 2070 Withot Proed	29	32	35	37	39	37	31	29	30	31	28	31
WSIP 2070 With Project	29	32	34	36	38	36	31	29	30	33	29	32
Difference	0	0	-1	-1	-1	-1	0	0	1	2	1	1
Percent Difference ${ }^{\text {a }}$	1.4\%	0.6\%	-1.8\%	-2.9\%	-2.4\%	-2.9\%	-0.8\%	-0.3\%	2.8\%	5.4\%	3.1\%	4.0\%
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
WSIP 2070 Without Projed	30	34	36	43	43	41	35	30	30	31	28	37
WSIP 2070 With Project	31	34	35	42	43	41	35	30	31	32	29	37
Difference	0	0	-1	-1	0	0	0	0	1	1	1	0
Percent Difference	1.5\%	-1.1\%	-2.9\%	-1.4\%	-0.6\%	-0.9\%	-0.8\%	-0.5\%	2.9\%	3.1\%	2.5\%	0.7\%
Above Normal (13.4\%)												
WSIP 2070 Without Projed	30	34	33	40	42	39	32	30	30	32	28	33
WSIP 2070 with Project	30	34	33	39	42	38	31	29	30	35	29	33
Difference	0	0	-1	-1	-1	-2	-1	0	1	4	1	0
Percent Difference	1.4\%	0.2\%	-1.6\%	-2.3\%	-1.4\%	-4.2\%	-2.3\%	-0.3\%	2.1\%	11.4\%	3.0\%	0.0\%
Below Normal (15.9\%)												
WSIP 2070 Without Project	28	32	36	37	37	36	30	29	30	32	28	27
WSIP 2070 With Project	29	32	37	35	36	34	30	28	31	34	29	30
Difference	1	0	0	-2	-2	-2	0	0	1	2	1	2
Percent Difference	3.2\%	1.2\%	1.2\%	-5.5\%	-4.0\%	-5.6\%	-0.4\%	-1.3\%	4.1\%	7.6\%	4.0\%	8.9\%
Dry (24.4\%)												
WSIP 2070 Without Proeet	28	30	35	32	36	36	28	28	29	30	28	27
WSIP 2070 Witit Project	29	30	34	31	34	34	28	28	30	32	29	29
Difference	0	0	0	-1	-2	-2	0	0	1	1	1	2
Percent Difference	1.6\%	1.5\%	-0.9\%	-4.3\%	-5.0\%	-4.5\%	-0.4\%	0.2\%	2.4\%	4.5\%	4.4\%	8.8\%
Critical (14.6\%)												
WSIP 2070 Without Proeet	28	28	32	32	32	32	27	27	29	29	29	27
WSIP 2070 witit Proed	27	28	31	31	32	32	27	27	30	30	29	29
Difference	0	1	-1	-1	-1	0	0	0	1	1	0	1
Percent Difference	-0.8\%	2.8\%	-4.6\%	-2.4\%	-1.8\%	-0.9\%	-0.2\%	0.3\%	2.1\%	3.8\%	1.3\%	5.3\%

1 Based on the 82 -year simulition period
3 Reative difference of the monthy verage

Table SW-57-a Feather River near Gridley, Monthly Stage Long-term Average and Average by Water Year Type												
Analysis Period						Monthly	tage (FT)					
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\mathrm{Full} \mathrm{S} \mathrm{Simulation} \mathrm{Period'}^{\text {d }}$												
WSIP 2070 Without Proed	74	74	74	75	77	76	74	74	75	77	76	75
WSIP 2070 with Projet	74	74	74	75	77	76	74	74	74	76	75	75
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference ${ }^{\text {a }}$	-0.1\%	0.0\%	0.2\%	0.1\%	0.1\%	0.1\%	0.0\%	0.0\%	-0.3\%	-0.3\%	-0.1\%	0.1\%
Water Year Types ${ }^{2}$												
Wet (31.7\%)												
WSSP 2070 Weithot Projed	75	74	75	79	81	80	75	74	75	77	76	77
WSIP 2070 with Projet	75	74	75	79	81	80	75	74	75	77	76	77
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.1\%	0.0\%	0.3\%	0.2\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.4\%	-0.4\%	-0.2\%	-0.1\%
Above Normal (13.4\%)												
WSIP 2070 Weithot Projed	75	74	75	75	78	77	73	74	75	77	77	77
WSIP 2070 with Project	75	74	75	75	78	78	73	74	75	77	77	77
Difference	0	0	0	0	0	0	0	0	0	-1	0	0
Percent Difference	0.1\%	0.0\%	0.1\%	0.2\%	0.3\%	0.4\%	0.0\%	0.0\%	-0.5\%	-0.7\%	-0.3\%	-0.1\%
Below Normal (15.9\%)												
WSSP 2070 Without Projed	74	74	74	74	74	74	74	74	75	77	76	74
WSIP 2070 with Proeet	74	74	74	74	74	74	74	74	74	77	76	74
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	-0.1\%	0.0\%	0.4\%	0.1\%	0.0\%	0.1\%	0.1\%	0.1\%	-0.6\%	-0.6\%	-0.3\%	0.0\%
Dry (24.4\%)												
WSIP 2070 Without Projed	74	73	74	73	74	74	74	74	74	76	74	74
WSIP 2070 Witip Priect	74	73	74	73	74	74	74	74	74	76	75	74
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	-0.3\%	-0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.1\%	0.2\%	-0.2\%	0.0\%	0.1\%	0.3\%
Critical (14.6\%)												
WSSP 2070 W Without Prject	73	73	73	73	73	74	73	73	74	75	74	74
WSIP 2070 With Project	73	73	73	73	73	74	73	73	74	75	74	74
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	-0.2\%	-0.1\%	0.0\%	0.0\%	0.0\%	-0.1\%	0.0\%	-0.3\%	-0.1\%	0.2\%	-0.1\%	0.1\%
1 Basedo onte 82 -jeara simulition period												

Table SW-58-a American River at Fair Oaks, Monthly Stage Long-term Average and Average by Water Year Type												
Analysis Period						Monthly	tage (FT)					
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulion Period'												
WSIP 2070 Without Proed	4	5	6	7	8	7	6	4	5	6	4	5
WSIP 2070 With Proeet	5	5	6	7	8	7	6	5	5	5	4	5
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	2.1\%	1.8\%	1.2\%	0.7\%	0.2\%	-0.1\%	0.2\%	2.0\%	2.2\%	-6.8\%	2.6\%	1.1\%
Water Year Types ${ }^{2}$												
Wet (3.7\%\%)												
WSIP 2070 Without Proed	5	5	6	11	11	9	7	5	5	6	5	6
WSIP 2070 With Project	5	5	6	11	11	9	7	5	5	6	5	5
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	2.2\%	1.5\%	0.3\%	0.2\%	0.0\%	0.0\%	0.3\%	0.8\%	1.6\%	-1.8\%	2.8\%	-2.0\%
Above Nomal (13.4\%)												
WSIP 2070 Without Project	5	5	6	8	10	8	6	4	4	7	4	5
WSIP 2070 wit Project	5	5	6	8	10	8	6	5	5	6	5	5
Difference	0	0	0	0	0	0	0	0	0	-1	0	0
Percent Difference	1.5\%	2.6\%	2.3\%	-0.4\%	0.6\%	0.0\%	0.1\%	1.5\%	5.4\%	-13.2\%	7.9\%	1.2\%
Below Norma (15.9\%)												
WSSP 2070 W Withot Project	4	5	6	6	7	7	6	4	5	6	4	4
WSIP 2070 wit Project	5	5	6	6	7	7	6	5	5	5	5	4
Difference	0	0	0	0	0	0	0	0	0	-1	0	0
Percent Difference	2.1\%	3.0\%	2.3\%	1.1\%	0.4\%	0.1\%	0.7\%	2.5\%	1.1\%	-10.6\%	3.3\%	3.8\%
Dry (24.4\%)												
WSIP 2070 Without Proect	4	5	6	5	6	6	5	4	5	5	4	4
WSIP 2070 With Project	4	5	6	5	6	6	5	5	5	5	4	4
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	2.9\%	1.9\%	2.0\%	2.1\%	-0.5\%	-0.5\%	-3.1\%	2.6\%	3.2\%	-7.6\%	-0.4\%	2.9\%
Critical (14.6\%)												
WSIP 2070 Without Proeet	4	4	4	4	4	4	4	4	4	4	4	4
WSIP 2070 With Priject	4	4	4	4	4	4	4	4	4	4	4	4
Difference	0	0	0	0	0	0	0	0	0	0	0	0
Percent Difference	0.9\%	-0.2\%	-0.6\%	2.8\%	1.3\%	0.3\%	5.4\%	4.3\%	0.2\%	-5.1\%	1.6\%	4.4\%
1Based on the 82 -jears simulation period												
2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) 3 Relative difference of the monthly average												

Trinity and Sacramento River Basin Operations Exceedance Probability Charts and Tables

Figure SW-01-b
Trinity Lake, End of Month Storage

| |
| :--- | :--- | :--- | :--- |

| |
| :--- | :--- | :--- | :--- |

Figure SW-02-b
Trinity Lake, End of Month Elevation

 Pren

Figure SW-03-b
Trinity Lake, End of Month Are

Table SW－．03－b
Lake，End of Month Area

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \\ \text { old } \end{gathered}$	Ociober			
	WSIP 2070 Without Proiet	WSIP 2070 With Project	${ }^{\text {Absolute }}$	Reative
		End of Month Area	Difference （ACRE）	Difference（\％）
	${ }_{1}^{\text {（ACRE）}}$	${ }_{1}^{(\text {ACRE）}}$	10	0．1\％
1．2\％	13,463	13,417	46	－0．3
2．5\％	13，311	13,311	0	0．0\％
3．7\％	12,879	12，125	－754	－5．9\％
4．9\％	12，464	${ }^{12,116}$	－348	－2．8\％
${ }^{6.2 \%}$	11,930 111848	12,007 111810	$\begin{array}{r}76 \\ \hline\end{array}$	0．6\％
7．4\％	11,848 11.839	11,810 11,786	－38	－0．3\％
9．9\％	11，808	${ }^{11,758}$	－50	${ }^{-0.4 \%}$
11．1．\％	11,775	11，736	－39	－0．3\％
12.3% 13.6%	111,717	11，636	－81	－0．7\％
14．8\％	${ }^{11,658}$	${ }^{111,470}$	－999	－1．6\％
16．0\％	11，635	11，408	－227	－2．0\％
17．3\％	11，634	${ }^{11,362}$	－272	－2．3\％
18．5\％	11.418	11，152	－266	－2．3\％
19．8\％	11，264	${ }^{11,1225}$	－139	－1．2\％
21．0\％	11.184	${ }^{11,027}$	－157	－1．4\％
22．2\％	${ }^{11,152}$	11.014	－138	－1．2\％
23．5\％	11，109	10，914	－195	－1．8\％
24．7\％	10，935	10，905	－30	－0．3\％
25．9\％	10，835	10，839	${ }_{51}^{4}$	0．0\％
${ }^{27.24 \%}$	10,782 10,756	－	－${ }_{-28}$	－0．3\％
29．6\％	10，739	10，673	－65	－0．6\％
年30．9\％	－ 10,6568	10,628 10.549	－28	－0．3\％
32．19\％	10，632	10.549	－83	－0．8\％
	$10,0,623$ 10.569	10.471 10.449	－${ }^{-122}$	－1．4\％
35．8\％	10，563	10，437	－126	－1．2\％
	10，451	10，370	－82	${ }^{-0.8 \%}$
39．5\％	10．430	10，216	－214	－2．1\％
40．7\％	10，348	10，051	－297	－2．9\％
42．0\％	10，114	${ }^{10,041}$	－73	－0．7\％
43．2\％	10，079	${ }^{10,005}$	－74	－0．7\％
${ }^{44.4 \%}$	10，070	10，001	－69	－0．7\％
45．7\％	10，022	9，971	－50	－0．5\％
46．9\％	9，835	9，883	48	0．5\％
49．4\％	9,774	9.863	89	0．9\％
50．6\％	9，679	9，719	41	0．4\％
51．9\％	${ }_{9,614}^{9,642}$	${ }_{\substack{9,5622}}^{9,568}$	－20 ${ }_{-28}$	－0．2\％\％
54．3\％	9.608	${ }_{9,580}^{9,500}$	${ }_{-28}$	－0．3\％
年55．8\％\％	9，5999	9，550	－49	－0．5\％
	${ }_{9,562}^{9,573}$	${ }_{9,432}^{9,432}$	－141	－${ }^{-1.4 \% \%}$
59．3\％	9,452	${ }_{9,390}^{9}$	－62	－0．7\％
㐌6．1．7\％	$\stackrel{9}{9,446}$	${ }_{9,316}^{9,340}$	－105	－1．1\％\％
63．0\％	9，415	9，303	－112	－1．2\％
${ }^{64.2 \%}$	${ }^{9,3788}$	${ }^{9,283}$	－95	－1．0\％
${ }_{6}^{65.4 \%}$	9，228	9.172	－56	－0．6\％
－ 66.7%	9,174 8,849	9,080 8,809	-94 -9 -39	－1．0\％
69．1\％	8.821	${ }_{8,723}$	－98	－1．1\％
70．4\％	8，729	8，457	－271	－3．1\％
71．6\％	8.691	8，266	-425	－4．9\％
72．8\％	－8．613	8,226 8050 8	－386	－4．5\％
74．3\％	${ }_{8,092}^{8.096}$	8,050 7,980	－${ }_{-112}$	－1．4\％
76．5\％	7,888	7.888	0	0．0\％
77．8\％	7，855	${ }_{7}^{7,725}$	－129	－1．6\％
79．0\％	7，596	7.668	72	0．9\％
－	7,329 7,185	7,490 7,274	161 89	2．2\％
82．7\％	6.835	7，125	289	4．2\％
84.0% 852%		7,056 6.907	${ }_{127}^{243}$	${ }^{3.6 \%}$
${ }_{\text {865．4\％}}^{85.2 \%}$	${ }_{6,713}^{6.779}$	${ }_{6,876}^{6,907}$	127 163	2．4\％
87．7\％	6.706	6，856	150	2．2\％
88．9\％	6，670	${ }_{6,822}$	152	2．3\％
${ }^{90.11 \%}$	－6，5699		241 370	笛 ${ }^{3.7 \% \%}$
92．6\％	6，193	6.577	384	6．2\％
93．8\％	6，095	6，535	440	7．2\％
95．1\％	${ }_{5}^{5,798}$	${ }_{6}^{6,303}$	${ }^{505}$	8．7\％
96．3\％	5，471	¢，6，208	${ }_{9}^{737}$	13．5\％
－97．5\％	3,857 3,781	4,843 4,602	${ }_{821}^{985}$	${ }_{\text {2 }}^{21.7 \%}$
100．0\％	3，120	${ }_{3,781}^{4.002}$	661	${ }_{21.2 \%}$

Page 1114 of 1488

Table SW－．03－b
Lake，End of Month Area

	February			
	${ }^{\text {WSIP }}$ Provo Wethout	WIP1 207 With Project		Relative
	Of Moent A	End of Month Area	Difierence	Difference（\％）
（\％）	（ACRE）	（ACRE）		
0．0\％	14，795	14,437	${ }^{358}$	2．4\％
1．2\％	14，300	14，300	0	
2．5\％	14，300	14，300	0	
3．7\％	14，300	14，300	0	
4．9\％	14，300	14，300	0	
${ }^{6.2 \%}$	14，300	14，300	0	
7．4\％	14，300	14，300	0	0．0\％
8．6\％	14，300	14，300	0	
9．9\％\％	14，300	14，300	0	
11．1\％	14，300	14，300	0	
12．3\％	14，300	14,300	O	
14．8\％	14.300	14.300	0	0．0\％
16．0\％	14，300	14，300	0	
3\％	． 300	14，300	0	
18．5\％	14，300	14，300	0	
19．8\％	14，300	14，300	0	0．0\％
21．0\％	14，300	14，300	0	0．0\％
22．2\％	14，300	14，281	19	－0．1\％
23．5\％	14，281	14，238	43	0．3\％
24．7\％	14，183	14，197	15	0．1\％
25．9\％	14．160	${ }^{13,949}$	－212	－1．5
27．2\％	14，154	${ }^{13,922}$	－232	－1．6\％
28．4\％	${ }^{14,085}$	${ }^{13,883}$	－202	－1．4\％
29．6\％	11，987	13，861	126	－0．9\％
－ 3 30．9\％	13，949	${ }^{13,799}$	－149	－1．1\％
32．1\％	${ }^{13,792}$	${ }^{13,721}$	－71	－0．7\％
33．3\％	13，761	－13．667	－94	${ }^{-0.7 \%}$
34．6\％	${ }^{13,649}$	${ }^{13,549}$	－100	
35．8\％	${ }_{1}^{13,357}$	${ }^{13,519}$	2	
38．3\％	13,364 13.243	13,364 13,270	27	\％
30．5\％	13，180	${ }_{13,178}$	－2	0．0\％
40．7\％	13，122	13，098		
42．0\％	${ }^{13,053}$	12，799	－255	－2．0\％
4．4．4\％	12，889	${ }^{12,710}$	－178	－1．4\％
45．7\％	12.569	12,641	72	0．6\％
46．9\％	12,489	12，557	68	0．5\％
48．1\％	12,487	12,503	16	0．1\％
49．4．\％	${ }^{12,398}$	12，357	41	－0．3\％
年 50.6% \％	${ }^{12,368}$	${ }_{12,328}^{12,}$	40	－0．3\％
51．9\％	${ }^{12,321}$	12，289	${ }^{-32}$	－0．3\％
53．1\％	${ }^{12,278}$	${ }^{12,278}$	0	0．0\％
54．3\％ 5 5 5	${ }^{12,218}$	12，261	43	0．4\％
${ }_{\text {c }}^{55.6 \% \%}$	${ }^{12,213}$	${ }^{12,108}$	－105	为
年56．8\％\％		＋11，979	－181	
59．3\％		${ }_{111,725}^{11,91}$	－344	－2．8\％
60．5\％	${ }^{11,896}$	11,724	－171	－1．4\％
61．7\％	．542	11，723	180	
63．0\％	${ }_{111.286}^{1146}$	${ }^{11,414}$	－14	（10\％
64．2\％	11,446	11.246	－200	
${ }^{65.47 \%}$	11354	11179	－175	
6．7．9\％	11，250	${ }^{111,179}$	－71	－0．6\％
69．1\％	11，199	11，164	－35	－0．3\％
70．4\％	11，097	${ }^{11,123}$	25	0．2\％
71．6\％	11，092	11,088	4	0．0\％
72．8\％	11，001	11，081	80	0．7\％
74．1\％	10，957	11，057	101	0．9\％
－75．3\％	10，767	10，928	162	1．5\％
76．5\％	10，763	10，772	9	0．1\％
77．8\％	10．633	10，770	${ }^{137}$	1．3\％
79．0\％	10，440	${ }^{10,729}$	289	
－	（10，282	10，617	${ }_{282}^{335}$	${ }_{\text {cke }}^{\substack{3.3 \% \%}}$
${ }^{812.7 \%}$	${ }_{9,936}^{9,958}$	10,240 10.148 10.080	${ }_{213}^{282}$	${ }_{\text {2．1\％}}^{2.8 \%}$
84．0\％	9，913	10.026	112	1．1\％
85．2\％	9，906	10，000	94	0．9\％
${ }^{86474 \%}$	9，700	9，741	41	0．4\％
88．9\％	${ }_{8,743}^{9.505}$	${ }_{\text {9，105 }}^{\text {9，190 }}$	${ }_{362}^{86}$	4．1\％
90．1\％	8.424	8.574	150	1．8\％
91．4\％	7，992	8，354	362	5\％
92．6\％	7，926	${ }_{8}^{8,185}$	${ }^{259}$	3．3\％
${ }^{935.8 \%}$	7，668	${ }_{8}^{8.006}$	${ }^{338}$	4．4\％
96．3\％	7，190	7，513	323	4．5\％
97．5\％	6，955	7.496	542	7．8\％
98．8\％	6，372	7，329	958	15．0\％
100．0\％	5，467	5，471	4	0．1\％

Table SW-.03-b
Lake, End of Month Area

Figure SW-04-b
Trinity River below Lewiston Reservoir, Monthly Flow

$\begin{gathered} \text { Percenn } \\ \text { Exceader } \\ \text { Probability } \end{gathered}$	October			RelativeDifference (\%)
	${ }^{\text {WSIP } 2070 \text { Proithout }}$	WIIP 207 With Project	Absolute Difference	
	Monthly fow (CFFS)	Montly Flow (CFS)	(CFS)	
- ${ }_{\text {0.2\% }}^{1.2 \%}$	${ }^{373}$	${ }^{373}$		${ }_{\text {one }}^{0.0 \%}$
1.2% 2.5%	${ }^{373}$	${ }^{373}$	0	0.0\%
${ }^{2.5 \%}$	${ }_{3}^{373}$	${ }^{373}$	0	0.0\%
4.9\%	373	373	0	0.0\%
6.2\%	373	${ }^{373}$	0	0.0\%
7.4\%	${ }^{373}$	${ }^{373}$	0	0.0\%
-	${ }_{3}^{373}$	${ }_{373}$	O	
11.1\%	${ }_{373}^{373}$	${ }_{373}^{373}$	O	0.0\%
12.3\%	373	373	0	0.0\%
13.6\%	${ }^{373}$	${ }^{373}$	0	0.0\%
14.8\%	${ }^{373}$	${ }^{373}$	0	0.0\%
- 16.0 \% ${ }^{16.3 \%}$	373 373	373 373	0	0.0\%
18.5\%	${ }_{373}$	${ }_{373}$	0	0.0\%
19.8\%	373	373	0	0.0\%
21.0\%	373	${ }^{373}$	0	0.0\%
${ }^{22.2 \%}$	373	373	0	0.0\%
23.5\%	${ }^{373}$	${ }^{373}$	0	0.0\%
24.7\%	${ }^{373}$	${ }^{373}$	0	0.0\%
25.9\%	${ }^{373}$	${ }^{373}$	0	0.0\%
27.2\%	${ }^{373}$	${ }^{373}$	0	0.0\%
${ }^{28.49 \%}$	373	${ }^{373}$	0	0.0\%
29.6\%	${ }^{373}$	${ }_{373}$	0	0.0\%
30.9\%	${ }^{373}$	${ }^{373}$	0	0.0\%
32.1\%	${ }^{373}$	${ }^{373}$	0	0.0\%
34.6\%	${ }_{3} 73$			0.0\%
35.8\%	373	${ }_{373}$	0	0.0\%
37.0\%	${ }^{373}$	373	0	0.0\%
30.5\%	${ }_{373}$	${ }_{373}$	0	0.0\%
40.7\%	${ }^{373}$	${ }^{373}$	0	
42.0\%	373	373	0	
43.2\%	373	${ }^{373}$	0	0.0\%
44.4.\%	373	373	0	0.0\%
45.7\%	${ }^{373}$	${ }^{373}$	0	0.0\%
46.9\%	373	373	0	
48.1\%	${ }^{373}$	${ }^{373}$	0	0.0\%
49.4\%	${ }^{373}$	${ }^{373}$	0	0.0\%
50.6\%	${ }^{373}$	${ }^{373}$	0	0.0\%
51.9\%	${ }^{373}$	${ }^{373}$	0	0.0\%
-53.1\%	373	${ }^{373}$	0	0.0\%
54.3\%	${ }^{373}$	${ }^{373}$	0	-0.0\%
55.8\%	${ }_{373}$	${ }_{373}$	O	0.0\%
58.0\%	${ }^{373}$	${ }^{373}$	0	0.0\%
	${ }_{373}^{373}$	${ }_{3}^{373}$	0	0.0\%
6117\%	${ }_{373}$	${ }_{373}$	0	0.0\%
63.0\%	373		0	
64.2\%	${ }^{373}$	${ }^{373}$	0	0.0\%
${ }^{65.4 \%}$ 6.7\%	373 373	373 373	0	- 0.0%
67.9\%	${ }_{373}$	373	0	0.0\%
69.1\%	${ }^{373}$	${ }^{373}$	0	0.0\%
70.4\%	${ }^{373}$	${ }^{373}$	0	0.0\%
71.6\%	${ }^{373}$	${ }^{373}$	0	0.0\%
72.8\%	${ }^{373}$	${ }^{373}$	0	0.0\%
74.1\%	${ }^{373}$	${ }^{373}$	0	0.0\%
75.3\%	373	${ }^{373}$	0	0.0\%
76.5\%	373	${ }^{373}$	0	0.0\%
77.8.\%	${ }^{373}$	${ }^{373}$	0	0.0\%
-	${ }^{373}$	${ }^{373}$	0	0.0\%
-	${ }_{373}$	${ }_{373}$	O	0.0\%
82.7\%	373	${ }^{373}$		0.0\%
84.0\%	${ }_{373}^{373}$	${ }^{373}$	0	0.0\%
${ }^{6.5 .4 \%}$	${ }_{373}$	${ }_{373}$	0	0.0\%
87.7\%	373	373	0	
88.9\%	${ }^{373}$	373	0	\%\%
90.1\%	373	373	0	0.0\%
914.4\%	373	373	0	0.0\%
92.6\%	373	373	0	0.0\%
93.8\%	373	373	0	0.0\%
95.19\%	${ }^{373}$	${ }^{373}$	0	0.0\%
96.3\%	${ }^{373}$	${ }^{373}$	0	0.0\%
97.5\%	${ }^{373}$	${ }^{373}$	0	0.0\%
98.8% 100.0\%	${ }_{107}^{373}$	${ }_{373}^{373}$	${ }^{2} 6$	20.0\% ${ }^{\text {209\% }}$

December				
Percent Exceedance	WSIP 2070 Without Proiect	WSIP 2070 W With Project	Absolute Difference	Relative
Probability	Monthly Fow (CFS)	Monthly Fiow (CFS)	(CFS)	
				${ }^{39,3 \%}$
1.2\%	4.401	3,594	-807	-18.3\%
2.5\%	2.200	429	1,771	
3.7\%	300	300	0	0.0\%
4.9\%	300	300	0	
6.2\%	300	300	0	
7.4\%	300	300	0	0.0\%
8.6\%	300	300	0	0.0\%
9.9\%	${ }^{300}$	300	0	0.0\%
11.1\%	300	300	0	0.0\%
${ }^{12.3 \%}$	300	300	0	0.0\%
13.6\%	300	300	0	\%
14.8\%	300	300	0	0\%\%
10.0\%	300	300		
17.3\%	300	300		
1988\%				
${ }^{\text {a }}$ 21.0\%	300	300		0.0\%
${ }^{22.2 \%}$	300	300	0	0.0\%
23.5\%	300	300	0	
24.7\%	300	300	0	0.0
25.9\%	300	300	0	0.0\%
27.2\%	300	300	0	0.0\%
28.4\%	300	300	0	0\%
29.6\%	300	300	0	0.0\%
30.9\%	300	300	0	0.0\%
32.1\%	300	300	0	0.0\%
33.3\%	300	300	0	0.0\%
34.6\%	300	300	0	0.0\%
35.8\%	300	300	0	0.0\%
37.0\%	300	300	0	0.0\%
38.3\%	300	300	0	0.0\%
39.5\%	300	300	0	.0\%
40.7\%	300	300		
4.2.\%	300	300	O	
43.2\%	300	300	0	0.0\%
45.7\%	300		0	
46.9\%	300	300	0	
48.1\%	300		0	
49.4\%	300	300	0	
50.6\%	300	300	0	.0\%
51.9\%	300	300	0	0.0\%
53.1\%	300	300	0	0.0\%
54.3\%	300	300	0	0.0\%
年5.6\%	300	300	0	0.0\%
56.8\%	300	300	0	0.0\%
55.0\%	300 300	300	0	0.0\%
59.3\%	300	300	0	0.0\%
60.5\%	300	300	0	0.0\%
61.7\%	300	300	0	0.0\%
63.0\%	300	300	0	0.0\%
-64.2\% ${ }^{6.4 .4}$	300	300	0	0.0\%
-65.4\%	300	300		0.0\%
${ }^{66.79}$	300	300	O	\%
69.1\%	300	300	0	0.0\%
70.4\%	300	300	0	0.0\%
71.6\%	300	300	0	0\%
72.8\%	300	300	0	.0\%
74.1\%	300	300	0	0.0\%
75.3\%	300	300	0	.0\%
${ }^{77.5 \%}$	${ }^{300}$	300	0	0.0\%
${ }_{7}^{77.8 \%}$	300	300	0	0\%
79.0\%	300	300	0	0.0\%
80.2\%	300	300	0	.0\%
81.5\%	300	300	0	0.0\%
82.7\%	300 300	300	0	0.0\%
84.0\%	300	300	0	0.0\%
- $8.5 .2 \%$	300 300	300	0	0.0\%
86.4\%	300 300	300 300	O	0.0\%
- $\begin{aligned} & 87.7 \% \\ & 889 \%\end{aligned}$	300	300	O	0.0\%
- ${ }^{88.9 \%}$	300	300	O	0.0\%
90.17\%	300	300		0.0\%
91.4\%	300	300		0.0\%
932.8\%	300	300	0	0.0\%
95.1\%	300	300	0	0.0\%
96.3\%	300	300	0	0.0\%
	300	300		
98.8\% 100.0\%	300 300	300 300	0	${ }^{0.0 \% \%}$

Percent	WSIP 2070 Without	WSIP 2070 With Project		Relative
Probability	${ }_{\text {Montly }}^{\text {Proiect (low (cFs) }}$	Monthy Flow (CFs)	Difference (CFS)	ference (\%)
0.0\%	${ }^{1.553}$	${ }^{1,553}$		0.0\%
1.2\%	1,450	1,450	0	0.0\%
2.5\%	1,217	1,217	0	0.0\%
3.7\%	991	991	0	0.0\%
4.9\%	600	600	0	0.0\%
- $\begin{aligned} & 6.2 \% \\ & 7.4 \%\end{aligned}$	600 600	600 600	-	0.0.0\%
8.6\%	600	600	0	0.0\%
9.9\%	600	600	0	0.0\%
11.1\%	600	600	0	
12.3\%	600	600	0	
13.6\%	600	600	0	
14.8\%	540	540	0	0.0\%
16.0\%	540	540	0	0.0\%
17.3\%	540	540	0	0.0\%
18.5\%	540	540	0	0.0\%
19.8\%	540	540	0	0.0\%
21.0\%	540	540	0	0.0\%
${ }^{22.2 \%}$	540	540 540	0	0.0\%
23.5\%	540	540	0	0\%\%
24.7\%	540	$\begin{array}{r}540 \\ 540 \\ \hline\end{array}$	-	
25.9\%	540	$\begin{array}{r}540 \\ 540 \\ \hline\end{array}$		
${ }^{27.2 \%}$	540 540	540 540	0	
-29.6\%	540	540	0	0.0\%
30.9\%	540	540	0	0.0\%
32.1\%	540	540	0	
33.3\%	540		0	
34.6\%	540	540	0	
35.8\%	540	540	0	0.0\%
37.\%	540	540	0	0.0\%
38.3\%	540	540	0	0.0\%
39.5\%	540	540	0	0.0\%
40.7\%	540 540	540	0	0.0\%
42.0\%	540	540	0	0.0\%
43.2\%	540	540	0	0.0\%
44.4\%	493	${ }_{493}$	0	0.0\%
45.7\%	493	${ }^{493}$	0	0.0\%
46.9\%	493	${ }_{493}$	0	0.0\%
48.1\% ${ }^{494 \%}$	${ }_{493}^{493}$	493	0	0.0\%
49.4\%	${ }_{493}$	${ }_{493}^{493}$	0	0.0\%
50.6\%	${ }_{4}^{493}$	${ }_{493}^{493}$		
53.1\%	${ }_{493}^{493}$	${ }_{493}^{493}$	0	
54.3\%	493	493	0	0.0\%
55.6\%	493		0	
56.8\%	493	493	0	0.0\%
58.0\%	493	493	0	0.0\%
${ }^{59.3 \%}$	460	460	0	0.0\%
60.5\%	460	460	0	0.0\%
617\%\%	460	460	0	0.0\%
63.\%	460	460	0	0.0\%
${ }^{64.2 \%}$	460	460	0	0.0\%
${ }^{65.4 \%}$	460	${ }^{460}$	0	0.0\%
${ }^{66.7 \%}$	460	${ }^{460}$	0	0.0\%
${ }^{67.9 \%}$	${ }_{460} 46$	${ }^{460}$	0	0.0\%
69.1\%	460	460	0	0.0\%
70.4\%	${ }_{460}$	460	0	0.0\%
71.6\%	${ }_{460}^{460}$	${ }_{460}^{460}$	-	0.0\%
(74.19\%	${ }_{460}^{460}$	${ }_{460}$		
75.3\%	${ }_{460} 46$	${ }_{460}$	0	0.0\%
76.5\%	460	${ }_{460}$	0	
77.8\%	460	460	0	.0\%
79.0\%	460	460	0	0.0\%
80.15\%	${ }_{460}$	460		
${ }_{\text {82.7\% }}$	460	${ }_{460}$	0	0.0\%
84.0\%	460	460	0	0.0\%
85.2\%	460	460	0	0.0\%
86.4\%	460	460	0	0.0\%
877\%	460	460	0	0.0\%
88.9\%	460	460	0	0.0\%
90.1\%	460	460	0	0.0\%
914\%	460	460	0	0.0\%
92.6\%	${ }^{427}$	427	0	0.0\%
93.8\%	427	${ }_{4}^{427}$	0	0.0\%
95.1\%	427	427	0	0.0\%
96.3\%	427	${ }_{427}^{427}$	-	0.0\%
99.8\%	${ }_{427}^{427}$	427	0	0.0\%
100.0\%	427	427		0.0\%

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$		WSIP 2070 With Project	Absolute Difference	Relative Difference $\%$
${ }_{\substack{\text { Probababily } \\ 0.00 \%}}$			(CFs)	
1.2\%	${ }_{4}^{450}$	450		
25\%	450			
2.5\%	450	${ }_{450}$		0.0\%
5.9\%	${ }_{450}$			
4.9\%	${ }_{450}$	${ }_{450}$	0	0.0\%
7.4\%	${ }_{450}$	${ }_{450}$	0	0.0\%
8.6\%	450	450		
\%	450	450	0	
11.1\%	450	450	0	
12.3\%	450	450	0	
13.6\%	450	450	0	
14.8\%	450	450	0	
16.0\%	450	450	0	0.0\%
17.3\%	450	450	0	0.0\%
18.5\%	450	450	0	0.0\%
19.8\%	450	450	0	0.0\%
21.0\%	450	450	0	0.0\%
${ }^{22.2 \%}$	450	450	0	0.0\%
23.5\%	450	450	0	
${ }^{24.79 \%}$	450	450	0	
25.9\%	450	450		
27.2\%	450	450	O	
${ }^{28.4 \%}$	450	450	O	0.0\%
30.9\%	450	450	0	
32.1\%	450	450	0	
			0	
34.6\%	450	450	0	
33.8\%	450	450	0	
37.0\%	450	450	0	
38.3\%	450	450	0	
39.5\%	450	450	0	0.0\%
40.7\%	450	450	0	0.0\%
42.0\%	450	450	0	0.0\%
43.2\%	450	450	0	0.0\%
44.4\%	450	450	0	0.0\%
45.7\%	450	450	0	0.0\%
46.9\%	450	450	0	0.0\%
48.19\%	450	450	0	0.0\%
49.4\%	450	450	0	0.0\%
50.6\%	450	450		
${ }_{5}^{51.9 \%}$	450	450	0	\%
54.3\%	${ }_{450}$	${ }_{450}$	0	0.0\%
55.6\%	450		0	
56.8\%	450	450	0	0.0\%
58.0\%	450	450	0	0\%
${ }^{59.3 \%}$	450	450	0	0.0\%
60.5\%	450	450	0	0.0\%
61.7\%	450	450	0	0.0\%
63.0\%	450	450	0	.0\%
${ }^{64.2 \%}$	450	450	0	0.0\%
${ }^{65.4 \%}$	450	450	0	0.0\%
66.7\%	450	450	0	0.0\%
${ }^{67.9 \%}$	450	450	0	0.0\%
69.1\%	450	450	0	0.0\%
70.4\%	450	450		0.0\%
71.6\%	450	450	0	0.0\%
-74.1\%	450	450		\%
75.3\%	${ }_{450}$	${ }_{450}$	0	0.0\%
76.5\%	450	450	0	0.0\%
77.8\%	450	450	0	0.0\%
79.0\%	450	450	O	00\%
80.15\%	450	50		0.0\%
${ }^{8} 8.57{ }^{\circ}$	450	450		0.0\%
840\%	450	450	0	\%
85.2\%	450	450	0	0.0\%
86.4\%	450	450	0	0.0\%
87.7\%	450	450	0	0.0\%
88.9\%	450	450	0	0.0\%
90.1\%	450	450	0	0.0\%
91.4\%	450	450	0	0.0\%
92.6\%	450	450	0	0.0\%
93.8\%	450	450	0	0.0\%
95.1\%	450	450	0	0.0\%
-96.3\%	450	450	0	0.0\%
99.8\%	450	450	0	0.0\%
100.0\%	0	0		

Figure SW-05-b
Clear Creek Tunnel, Monthly Flow

Table SW-05-b

$\begin{gathered} \text { Percernt } \\ \text { Exceedance } \end{gathered}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|cr:c} \hline \text { Provithout } \\ \text { Proiet } \end{array}$	WSIP 2070 With Project	Absolute	Relative
Probabality	Monthly fow (CFS)	Monthly Fow (CFS)	(CF5)	Difference $(\% / 2)$
0.0\%	${ }^{2,363}$	2,397	${ }^{34}$	1.5\%
1.2\%	2,158	1,959	-199	-9.2\%
2.5\%	1,272	1,557	${ }^{285}$	
3.7\%	605	${ }^{1,358}$	${ }^{533}$	124.5\%
4.9\%	513	${ }^{1,164}$	651	${ }^{126.8 \%}$
${ }^{6.2 \%}$	437	527	90	
7.4\%	${ }^{393}$	484	91	
8.6\%	${ }^{268}$	${ }_{372}$	174	
9.9\%	${ }^{265}$	372	107	
19.1\%\%	${ }^{250}$	${ }_{262} 26$	18	${ }^{7.4 \%}$
13.6\%	250	250		
14.8\%	250	250	0	
16.0\%	250	250	0	
17.3\%	250	250	0	
18.5\%	250	250	0	0.0\%
19.8\%	250	250	0	0.0\%
21.0\%	250	250	0	
22.2\%	250	250	0	0.0\%
23.5\%	250	250	0	0.0\%
24.7\%	${ }^{250}$	${ }^{250}$	0	0.0\%
25.9\%	${ }^{250}$	${ }^{250}$	0	0.0\%
27.2\%	250	${ }^{250}$	0	0.0\%
28.4\%	${ }^{250}$	$\begin{array}{r}250 \\ 250 \\ \hline\end{array}$	0	
29.6\%	250	250	0	
30.9\%	250	206	-44	-17.5
32.19\%	250	144	106	-42.6\%
33.3\%	250 150	140	17	
34.6\%	144	103	-47	源
337.0\%	${ }_{140}^{144}$	101	${ }_{-39}$	-27.8\%
38.3\%	108	100	-8	
39.5\%	103	100	-3	
40.7\%	100	100	0	
42.0\%	100	100	0	0.0\%
43.2\%	100	100	0	0.0\%
44.4\%	100	100	0	0.0\%
45.7\%	100	100	0	0.0\%
46.9\%	100	100	0	0.0\%
48.1\%	100	100	0	0.0\%
49.4\%	100	100	0	0.0\%
50.6\%	100	100	0	0.0\%
51.9\%	100	100	0	0.0\%
53.1\%	100	100	0	0.0\%
54.3\%	100	100	0	0.0\%
	100 100	100		
55.0\%	100 100	100 100	0	0.0\%
59.3\%	100	100	0	0.0\%
60.5\%	100	100	0	0.0\%
61.7\%	100	100	0	0.0\%
	100	100	0	
66.4\%	100	100	0	0.0\%
66.7\%	91	100	9	9.8\%
67.9\%	90	100	10	11.0\%
69.1\%	${ }^{3}$	100	97	
70.4\%	2	100	98	
71.6\%	0	100	100	
72.8\%	0	100	100	
74.19\%	0	91	91	
75.3\%	0	2	2	
76.5\%	0	2	2	
79.0\%	0	0		
80.2\%	0			
${ }^{81.5 \%}$	0	0	0	
-	0	0	-	
85.2\%	0		0	
5.4\%	0	0	0	
87.7\%	0	0	0	
88.9\%	0	0	0	
90.1\%			0	
914\%	0	0	0	
92.6\%			0	
93.8\%	0	0	0	
95.19\%	0	0	0	
96.3\%	0	0	0	
97.5\%	0		0	
	0	0 0	\bigcirc	

$\xrightarrow{\text { Table SW-05-b }}$ Creek Tunnel, Monthy Flow

$\xrightarrow{\text { Table SW-05-b }}$ Creek Tunnel, Monthy Flow

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& June \& \& \\
\hline Percent
Exceedance \& WSIP 2070 Without
Proiet \& WSIP 2070 With Project \& Abssolue
Difference \& Relative \\
\hline Probability \& Monthly Fow (CFS) \& Morthly Flow(CFS) \& (cFs) \& \\
\hline 0.0\% \& 3,122 \& 3,121 \& -1 \& 0.0\% \\
\hline 1.2\% \& 3,121 \& 3,120 \& -2 \& -0.1\% \\
\hline 2.5\% \& 3,121 \& \({ }_{\text {2,745 }}^{2,745}\) \& -376 \& -12.0\% \\
\hline 3.7\% \& 3,120 \& 2,215 \& -905 \& -29.0\% \\
\hline 4.9\% \& \({ }_{2}^{2,990}\) \& 2,007 \& -983 \& -32.9\% \\
\hline 7.4\% \& \({ }_{2,014}^{2,323}\) \& 1,956
1,899 \& - \({ }^{-368}\) \& - \(-5.58 \%\) \\
\hline 8.6\% \& \({ }_{1}^{1,953}\) \& 1.549 \& -404 \& -20.7\% \\
\hline 9.9\% \& 1,279 \& \({ }^{1,374}\) \& 95 \& \\
\hline \({ }^{19.12 \%}\) \& +1,250 \& +1,255 \& 5 \& \\
\hline 13.6\% \& \({ }_{\substack{1,187}}^{1,25}\) \& \(\xrightarrow{+1,250}\) \& 63 \& 5.3\% \\
\hline 14.8\% \& 1,091 \& 1,250 \& 159 \& 14.6\% \\
\hline 16.0\% \& 1,000 \& 1,250 \& 250 \& 250\% \\
\hline 17.3\% \& 1,000 \& 1,250
1,250 \& 250
330 \& 358 \\
\hline 18.5\% \& 920 \& 1,250 \& 330 \& 35.8\% \\
\hline 19.8\% \& 916 \& 1,154 \& \({ }^{238}\) \& 26.0 \\
\hline 21.0\% \& \({ }^{750}\) \& \({ }^{1,005}\) \& \({ }^{255}\) \& \({ }^{34.0}\) \\
\hline 22.2\% \& \({ }^{750}\) \& 1,000 \& \({ }^{250}\) \& \({ }^{33} 3\) \\
\hline 23.5\% \& 750 \& 1,000 \& 250 \& 33, \\
\hline 24.7\% \& \({ }_{750}\) \& 750 \& 0 \& \\
\hline - 2.5 \& 750
750 \& 750
750 \& 0 \& \% \\
\hline 28.4\% \& 750 \& 750 \& 0 \& 0.0\% \\
\hline 29.6\% \& 750 \& 726 \& \(-24\) \& -3.2\% \\
\hline \& \({ }^{750}\) \& 590 \& -160 \& -21.3\% \\
\hline 32.10\% \& 750 \& 581 \& -168 \& -22.4\% \\
\hline 34.6\% \& 750 \& 379 \& \({ }_{-371}\) \& -49.4\% \\
\hline 35.8\% \& \({ }_{750}^{750}\) \& \({ }^{366}\) \& -384 \& \\
\hline 37.0\% \& \({ }^{750}\) \& 344 \& 406 \& \\
\hline 38.3\% \& 556 \& \({ }_{340}\) \& \& -38.8\% \\
\hline \({ }^{39.7 \%}\) \& 515
486 \& \({ }_{306}^{317}\) \& -198 \& -38.4\% \\
\hline 42.0\% \& 446 \& 303 \& -143 \& -32.1\% \\
\hline 43.2\% \& \begin{tabular}{l}
366 \\
352 \\
\hline 5
\end{tabular} \& \({ }^{301}\) \& -65 \& -17.7\% \\
\hline 44.4\% \& 352
344 \& \({ }^{298}\) \& -54 \& -15.3\% \\
\hline 45.7\%\% \& 344 \& \({ }^{261}\) \& -83 \& -24.1\% \\
\hline \({ }^{46.9 \%}\) \& \({ }^{340}\) \& 251 \& \({ }^{-89}\) \& -26.1\% \\
\hline 49.4\% \& \({ }_{303}^{338}\) \& \({ }_{250}^{250}\) \& \({ }_{-53}\) \& -17.4\% \\
\hline 50.6\% \& \({ }^{301}\) \& \({ }^{250}\) \& -51 \& -17.0\% \\
\hline 51.9\% \& \({ }_{2}^{261}\) \& 250

250 \& -11 \& -4.1\%

\hline 54.3\% \& ${ }_{250}^{251}$ \& ${ }_{250}^{250}$ \& -1 \& -0.0\%

\hline 55.6\% \& 250 \& 250 \& 0 \&

\hline \& 250 \& ${ }^{250}$ \& 0 \&

\hline 58.0\% \& 250
250 \& ${ }_{247}^{250}$ \& -3 \& -1.0\%

\hline 60.5\% \& 250 \& 216 \& -34 \& -13.6\%

\hline 61.7\% \& 250 \& 213 \& -37 \& -14.9\%

\hline 63.0\% \& ${ }_{2} 24$ \& ${ }^{204}$ \& -44 \& -17.6

\hline ${ }^{64.2 \%}$ \& 213 \& 199 \& 13 \& -6.3\%

\hline ${ }^{65.4 \%}$ \& 204 \& 199 \& -5 \& -2.4\%

\hline 67.9\% \& 199 \& 107 \& -91 \& -46.0\%

\hline 69.1\% \& 191 \& 104 \& -87 \& -45.4\%

\hline 70.4\% \& ${ }^{156}$ \& ${ }_{78}^{95}$ \& -60 \& -38.8\%

\hline 71.6\% \& 107 \& 78 \& -29 \& -27.3\%

\hline 74.1\% \& ${ }_{96}^{104}$ \& 77 \& -21 \& -22.1\%

\hline 75.3\% \& 78 \& 72 \& ${ }_{-6}$ \& ${ }_{-7.5 \%}$

\hline 76.5\% \& 77 \& 72 \& -5 \& -6.9\%

\hline 778.8\% \& 75
72 \& ${ }_{70}^{71}$ \& ${ }_{-3}^{4}$ \& -4.8\%

\hline 80.2\% \& 72 \& 69 \& \&

\hline - \& 71 \& ${ }^{65}$ \& -6 \& -9.1\%

\hline 84.0\% \& 35 \& 40 \& -29 \& 14.9\%

\hline 85.2\% \& 0 \& 38 \& ${ }^{38}$ \&

\hline 86.4\% \& 0 \& ${ }^{35}$ \& ${ }^{35}$ \&

\hline - ${ }^{877.7 \%}$ \& 0 \& 0 \& 0 \&

\hline 90.1\% \& 0 \& 0 \& 0 \&

\hline 91.4\% \& 0 \& 0 \& 0 \&

\hline 92.6\% \& 0 \& 0 \& 0 \&

\hline ${ }_{9}^{93.8 \%}$ \& 0 \& 0 \& 0 \&

\hline ${ }^{96.3 \%}$ \& 0 \& 0 \& \bigcirc \&

\hline 97.5\% \& 0 \& 0 \& 0 \&

\hline 98.8\%
1000% \& \bigcirc \& \bigcirc \& \bigcirc \&

\hline
\end{tabular}

${ }_{\substack{\text { Probability } \\ 0.00}}^{\text {a }}$	${ }^{3,300}$	${ }^{1 / 3} \mathbf{3}$ Fow(0	
${ }_{1.2 \%}$	${ }_{3,300}^{3.300}$	3,300 3,300	0	0.0\%
2.5\%	3,300	3,300	0	\%
3.7\%	3,300	3,300	0	0.0\%
4.9\%	3,300 3 3	-3,300	0	0.0\%
${ }^{6.2 \% \%}$	3,300 3,300	3,300 3,300	0	0.0\%
8.6\%	${ }_{3,300}$	${ }_{3,300}$	0	0.0\%
9.9\%	3,300	3,300	0	0.0\%
11.1\%	3,300	3,056	244	
12.3\%	3,207	2.802	405	
13.6\%	3,191	2,801	390	-12.2\%
14.8\%	2,800	2,800	0	0.0\%
16.0\%	2,800	2,800	0	0.0\%
17.3\%	2,750	2,800	50	1.8\%
18.5\%	2,750	2,800	50	1.8\%
19.8\%	2,500	${ }^{2}, 800$	300	12.0\%
${ }^{22.2 .2 \%}$	2.500	${ }^{2}, 750$	250	10.0\%
22.5\%	2,500	2,036	136	${ }^{5.5 \%}$
224.7\%	${ }_{2}^{2,500}$	2,508	8	0.3\%
25.9\%	2,500	${ }_{2,500}^{2,500}$	0	0.0\%
27.2\%	2,250	2,500	250	11.1\%
29.6\%	${ }_{\substack{2,181}}^{2,250}$	${ }_{2,500}^{2.500}$	250 319	14.6\%
30.9\%	2,000	${ }_{2,500}$	500	25.0\%
32.1\%	2,000	2.500	500	25.0\%
	2,000	2,250	250	2.5\%
		${ }^{2} 250$	250	5
37.0\%	${ }_{2,000}$	${ }_{\text {2,250 }}$	${ }_{250}^{250}$	12.5\%
38.3\%	2,000	${ }^{2} 2,250$	250	12.5\%
39.5\%	2,000	${ }^{2}, 036$	${ }^{36}$	1.8\%
40.7\%	2,000	2,000	0	0.0\%
42.0\%	2,000	2,000	0	0.0\%
43.2\%	2.000	2,000	0	0.0\%
44.4\%	2,000	2,000	0	0.0\%
45.7\%	2,000	2,000	0	0.0\%
48.1\%	2,000	2,000	O	0.0\%
49.4\%	${ }_{2,000}^{2.000}$	2,000 2.000		0.0\%
50.6\%	2,000	2,000	0	0.0\%
51.9\%	2,000	2,000	0	0.0\%
53.1\% 54.3%	${ }^{1,988}$	${ }^{1,864}$	124	
54.3\%	+1,750	1,87	67	
55.8\%	1,750	${ }_{\text {l }}^{1,717}$	$\stackrel{4}{-33}$	${ }_{-1.9 \%}$
58.0\%	1,750	1,713	${ }^{37}$	-2.1\%
59.3\%	1,750	1,696	-54	${ }^{-3.1 \%}$
${ }^{60.5 \%}$	1,750	1,500	250	-14.3\%
61.7\%	1,750	1,500	250	14.3\%
63.0\%	${ }^{1,500}$	${ }^{1,500}$	0	0.0\%
64.2\%	1,500	1,500	0	0.0\%
66.7\%	1.500	+1,500	0	0.0\%
67.9\%	1,500	1.500	0	0.0\%
69.1\%	1,500	1,500	0	0.0\%
70.4\%	1,500 1.500 1	+1,500	18	-0.0\%
71.6\%	1,500	1,482	-18	-1.2\%
772.1\%	+1,500	+1,442	-58	-
75.3\%	1,500	1,268	-232	-15.5\%
76.5\%	1,500	1,147	-353	-23.5\%
77.8.0\%	1.500 1.442	1,092 1,050 1,08	- ${ }_{-388}$	${ }_{-272 \%}$
80.2\%	1,340	1.037	-303	-22.6\%
8827\%	${ }^{1} 1.133$	${ }^{1.027}$	-106	-9.3\%
84.0\%	1,050	${ }_{852}$	-929	-88.9\%
85.2\%	1,037	718	318	30.7\%
86.4\%	1,027	676	-351	34.2\%
87.7\%	1,022	635	-387	-37.8\%
88.9\%	1,000 815	${ }^{158}$	842	84.2\%
90.1\%	815	${ }^{129}$	${ }^{-686}$	-84.1\%
99.4\%\%	${ }_{6}^{638}$	83	-554	-88.9\%
${ }^{93.8 \%}$	${ }_{535}$	${ }_{79}^{80}$	${ }_{-456}$	${ }_{-85.3 \%}$
95.1\%	${ }_{80}^{129}$	75 49	35	42.4\%
997.5\%	80	${ }_{43}^{44}$	${ }^{55}$	
98.8\%	${ }_{0}^{43}$	${ }_{43}^{43}$	${ }_{43}$	

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	$\begin{aligned} & \text { WSIP } 2070 \text { Without } \\ & \text { Proiect } \end{aligned}$	WSIP 2070 With Project	Absolute Difference	
Probability	Monthy Fow (CFS)	Monthly Fow (CFS)	(CFF)	
0.0\%	3,300	3,300	0	0.0\%
1.2\%	3,300	3,300	0	0.0\%
2.5\%	3,300 3	3,300 3	0	0.0\%
-		3,300 3,300	0	0.0\%
6.2\%	3,300	3,250	-50	-1.5\%
7.4\%	3,299	3,250	-49	-1.5\%
8.6\%\% 9.9%		3,250 3,250	${ }_{84}^{-6}$	${ }_{\text {- }}^{\text {- }}$
11.1\%	3,165	3,250	85	27\%
12.3\%	3,089	3,250	161	
13.6\%	2,780	3,250	470	
14.8\%	2,750	${ }^{3}, 033$	283	
16.0\%	2,562	${ }^{2,896}$	${ }^{334}$	13.1
17.3\%	2,561	${ }^{2,802}$	${ }^{241}$	9.4\%
18.5\%	2,552	2,770	218	8.5\%
19.8\%	2.506	2,750	${ }^{244}$	9.7\%
21.0\%	2,500	${ }_{2}^{2,626}$	126	5.0%
${ }^{22.2 \%}$	2,500	${ }_{2,573}^{2,50}$	73	2.9%
23.5\%	2,500	2,500	0	0.0\%
${ }^{24.79 \%}$	2,500	2.500	0	0.0\%
25.9\%	2,500	2,500	0	
${ }^{27.2 \%}$	2,500	2,500		0.0
29.6\%	${ }_{2,250}^{2,250}$	${ }_{2,500}^{2.500}$	${ }_{250}$	11.1\%
30.9\%	2,250	2,500	250	11.18
32.1\%	2,250	2,500	250	
	2,250	2.500	250	
34.0\%	${ }_{2}^{2,250}$		250	
37.0\%	${ }_{2}^{2,250}$	${ }_{2}^{2.500}$	${ }_{250}^{250}$	
38.3\%	${ }_{2,250}^{2,250}$	${ }_{2,500}^{2,500}$	250	11.1\%
39.5\%	2,250	2.500	250	11.1\%
40.7\%	2,250	2,500	250	11.1\%
42.0\%	2.000	2,500	500	25.0\%
43.2\%	2,000	2.500	500	25.0\%
44.4\%	2.000	2,500	550	25.0\%
45.7\%	2,000	2,500	500	25.0\%
46.9\%	2.000	2,500	550	25.0\%
48.1\% ${ }^{494 \%}$	2,000 2000	$\begin{array}{r}2.500 \\ 2.500 \\ \hline\end{array}$	550	25.0\%
49.4\%	2,000 2000	2,500	500	${ }^{25.50 \%}$
年 50.6%	2,000 2,000	2,250 2.250	$\begin{array}{r}250 \\ 250 \\ \hline\end{array}$	${ }^{12.55 \%}$
53.1\%	${ }_{2,000}^{2,000}$	2,250 2.250	250 250	${ }^{12.5 \%}$
54.3\%	2,000	${ }_{2,182}^{2,180}$	182	9.1\%
	2,000	${ }_{2}^{2,063}$		3.2\%
56.8\%	2,000 2,000	2,000 2,00	\bigcirc	0.0\%
59.3\%	2.000	2,000	0	0.0\%
60.5\%	2,000	2,000	0	0.0\%
61.7\%	2.000	2,000	0	0.0\%
63.0\%	2.000	2,000	0	0.0\%
	2,000	2,000	0	0.0\%
66.7\%	1,953	2,000	47	2.4\%
67.9\%	1,757	2,000	${ }^{243}$	13.9\%
69.1\%	1,750	2,000	${ }^{250}$	14.3\%
70.4\%	1,750 1,750 1	2,000 2000	250 250 250	14.3\%
71.6\%	1,750 1,750 1.750	2,000 2000	250 250 250	14.3\% 143%
74.1\%	${ }^{1,750}$	2,000 1 1058	208 208	
75.3\%	${ }_{1}^{1,632}$	${ }_{1}^{1,916}$	${ }_{284}^{288}$	17.4\%
76.5\%	1,625	1,750	125	7.7\%
77.8\%	1,500	1,750	250	16.7\%
79.0\%	${ }_{1}^{1,500}$	+1714	${ }_{2}^{250}$	9.7\%
80.15\%	${ }_{1.500}^{1.500}$	${ }_{1,500}^{1,514}$	214	0.0\%
82.7\%	1,500	1,500	0	0\%
84.0\%	1,500	1,500	0	0\%
85.2\%	1,500	1,500	0	0\%
${ }^{86.4 \%}$	1,500	1,500	0	0.0\%
- 87.7%	1,500	1,500	0	0.0\%
${ }^{88.9 \%}$	1,500 1,500	1,500	0	0.0\%
90.1\%	1,500	1,500	0	0.0\%
914.4\%	1,500	1,500	0	0.0\%
${ }_{93.8 \%}$	${ }_{1}^{1,250}$	${ }_{1}^{1,225}$	${ }_{45}$	3.6\%
95.1\%	1,000	1,250	250	25.0\%
96.3\%	${ }^{375}$	-1,240	${ }_{181}^{865}$	231.0\%
987.5\%	250 128 1	251 250	${ }_{122}^{141}$	${ }_{\text {957.5\% }}^{56}$
100.0\%				

Figure SW-06-b
Clear Creek below Whiskeytown Reservoir, Monthly Flow

Table SW-06-b
Clear Creek below Whisiskyywow Reseemovi, Monntly Fow

	WSII 2070 Wethout Proiet Montly Folo (cFs)	WSIP 2070 With Project	Absolute Difference	$\begin{gathered} \text { Relative } \\ \text { Difference } \% \% \end{gathered}$
${ }^{\text {Probebabily }}$	Monhly fow (crs)	Monthy Flow (cFs)	(CFS)	0.0\%
1.2\%	200	200	0	0.0\%
2.5\%	200	200	0	0.0\%
3.7\%	200	200	0	0.0\%
4.9\%	200 200	200 200	0	0.0\%
${ }^{6.2 \%}$	200	${ }_{200}^{200}$	0	0.0\%
8.6\%	200	200	0	0.0\%
9.9\%	200	200	0	0.0\%
11.1\%	200	200	0	
12.3\%	200	200	0	
13.6\%	200	200	0	0.0\%
14.8\%	200	200	0	0.0\%
16.0\%	200	200	0	0.0\%
17.3\%	${ }^{200}$	${ }^{200}$	0	0.0\%
18.5\%	200	${ }^{200}$	0	0.0\%
19.8\%	${ }^{200}$	${ }^{200}$	0	0.0\%
21.0\%	${ }^{200}$	${ }^{200}$	0	0.0\%
${ }^{22.2 \%}$	200	${ }^{200}$	0	0.0\%
23.5\%	${ }^{200}$	200	0	0.0\%
${ }^{24.79 \%}$	200	200	0	
25.9\%	200	200	0	
28.4\%	${ }_{200}^{200}$	${ }_{200}^{200}$	\bigcirc	0.0\%
29.6\%	200	200	0	0.0\%
30.9\%	200	200	0	
32.1\%	200	200	0	
	200	200	0	
34.6\%	200	200	0	
35.8\%	200	200	0	
37.0\%	${ }^{200}$	200	0	0.0\%
38.3\%	${ }^{200}$	200	0	0.0\%
39.5\%	${ }^{200}$	${ }^{200}$	0	0.0\%
40.7\%	${ }^{200}$	${ }^{200}$	0	0.0\%
42.0\%	200	${ }^{200}$	0	0.0\%
43.2\%	200	200	0	0.0\%
44.4.9	${ }^{200}$	${ }^{200}$	0	0.0\%
45.7\%	200	200	0	0.0\%
46.9\%	200	200	0	0.0\%
48.4\%	200	200	0	0.0\%
50.6\%	200	200	0	0.0\%
51.9\%	200	${ }^{200}$	0	0.0\%
54.3\%	${ }_{200}^{200}$	${ }_{200}^{200}$	0	${ }^{0.0 \%}$
55.6\%	200	200	0	
56.8\%	200	200	0	0\%
58.0\%	200	200	0	.0\%
59.3\%	${ }^{200}$	${ }^{200}$	0	0.0\%
60.5\%	200	200	0	0.0\%
617\%\%	200	200	0	0.0\%
63.0\%	${ }^{200}$	${ }^{200}$	0	0.0\%
64.2\%	200	200	0	0.0\%
${ }^{65.4 \%}$	200	200	0	0.0\%
${ }^{66.7 \%}$	200	${ }^{200}$	0	0.0\%
-67.9\%	200	200	0	0.0\%
69.1\%	200	200	0	0.0\%
70.4\%	${ }_{200}^{200}$	${ }_{200}^{200}$	0	0\%
71.6\%	200	200	0	0.0\%
74.1\%	200 200	${ }_{200}^{200}$	0	-0.0\%
75.3\%	200	200	0	0.0\%
76.5\%	${ }^{200}$	200	0	0.0\%
77.8\%	200	200	0	0.0\%
79.0\%	200	200	0	
80.15\%	${ }_{150}$	${ }_{150}^{150}$	${ }^{5}$	-0.0\%
82.7\%	150	150	0	0\%
84.0\%	150	150	0	0.0\%
85.2\%	150	${ }^{150}$	0	0\%
${ }^{86.4 \%}$	150	${ }^{150}$	0	0.0\%
877\%\%	150	150 150 150	0	0.0\%
${ }^{88.9 \%}$	150	${ }^{150}$	0	0.0\%
90.1\%	150	${ }^{150}$	0	0.0\%
${ }^{91.4 \%} 9$	150	150	0	0.0\%
93.8\%	${ }^{150}$	${ }_{150}$	0	0.0\%
95.1\%	150	150	0	0.0\%
96.3\%	150	150 150 150	0	0.0\%
97.5\%	150	150	0	0.0\%
100.0\%	100	0	-100	

Table SW-06-b

Table SW-06-b
Clear Creek below Wribike eyow-06-beservoi, Monthly Flow

Figure SW-07-b
Shasta Lake, End of Month Storage

		Febuary		
Perent	WSIP 2070 Without	WSIP 2070 With Project		
Exceedance	$\frac{\text { Proiect }}{\text { Prata }}$	End of Monts Storage	Difierence	Relative Difference
(\%)	(TAF)	(TAF)	(TAF)	
0.0\%	4,022	4,022	0	0.0\%
1.2\%	4,005	4,005	0	0.0\%
2.5\%	3,979	3,944	${ }^{-35}$	-0.9\%
3.7\%	3,944	3,938	-6	-0.1\%
4.9\%	3,920	${ }_{3,920}$	0	0.0\%
6.2\%	3,917	3,917	0	0.0\%
7.4\%	3,914	3,914	1	0.0\%
8.6\%	3.840 3885	3,900 3884	${ }_{61}^{61}$	-1.6\%
${ }^{\text {9,9\% }}$		3.884 3840	$\stackrel{49}{27}$	1.3\%
111.19\%	-3.813 3774	3,840 3813	${ }_{19}^{27}$	0.7\%
- ${ }_{\text {12.3\% }}^{12.36}$	3,794 3,789	3.813 3.794	19 5	${ }_{\text {en }}^{0.5 \%}$
-14.8\%	-	3,794 3,789	5 12	0.3\%
16.0\%	3,775	3,777	2	
17.3\%	3,743	3,743	0	
18.5\%	3,739	3,739	0	
19.8\%	${ }^{3,695}$	3,724	29	
22.0\%	3.694 3.688	3,705	11	0.3\%
${ }_{23.5 \%}^{22.2 \%}$	${ }_{\substack{3,688 \\ 3,675}}$	${ }_{3,694}^{3,695}$	19	${ }^{0.5 \%}$
24.7\%	3,671	3,675	4	0.1\%
25.9\%	3,661	${ }_{3}^{3.671}$	10	0.3\%
27.2\%	退, 6.64	3,661	7	0.2\%
28.4\%	3,636 $\begin{array}{l}\text { 3,593 }\end{array}$	3,655	19	0.5\%
29.6\%	${ }^{3,593}$	3,654	61	1.7\%
33.9\%\%	$\begin{array}{r}3,588 \\ \mathbf{3} 57 \\ \hline\end{array}$	3,652	64	1.8\%
32.1\%	3.570 3.567	3,636	${ }^{66}$	1.9\%
33.3\%\%	$\begin{array}{r}3.567 \\ \hline\end{array}$	- 3.588	${ }^{21}$	0.6\%
34.6\%	$\begin{array}{r}3.560 \\ 3.53 \\ \hline\end{array}$	3,570	10	0.3\%
357.0\%\%	3.553	3.567 3.560	${ }_{30}^{14}$	0.4\%
38.3\%	3.530 3.516	3.560 3.530	30 14	- 0.8%
39.5\%	${ }_{3,503}^{\text {3,560 }}$	${ }_{3,516}^{3}$	13	0.4\%
${ }^{40.7 \%}$	3,4800	3.503	${ }^{23}$	0.7\%
${ }_{4}^{43.2 \%}$	-3,480 3,462	-	0	-0.0\%
44.4\%	3,454	3,457	2	0.1\%
45.7\%	3,431	3,431	0	0.0\%
46.9\%	${ }_{3,423}$	3,423	0	0.0\%
${ }^{48.19 \%}$	3,421	$\begin{array}{r}3,421 \\ 3 \\ 345 \\ \hline\end{array}$	5	0.0\%
	${ }^{3,405}$	${ }^{3.345}$	-59	-1.7\%
	-3,397	3,335	-62	-1.8\%
55.1\%	- ${ }_{3,357}^{3,381}$	- ${ }_{\text {3,333 }}^{3,333}$	-48	-0.7\%
54.3\%	${ }_{3,340}$	3,332	${ }_{-8}$	-0.2\%
${ }^{55.6 \%}$	3,300	3,302	2	0.0\%
	$\begin{array}{r}3,298 \\ 3,292 \\ \hline\end{array}$	(3,292	${ }_{4}^{-6}$	-0.2\%
559.3\%	3,292 3,288	(3,288 3,282	- -7	-0.1\%
690.5\%	- $\begin{aligned} & 3,288 \\ & 3,282\end{aligned}$	- $\begin{aligned} & 3,282 \\ & 3,273\end{aligned}$	-7	${ }_{\text {- }}^{0.0 .2 \% \%}$
61.7\%	3,252	${ }_{3,266}$	14	0.4\%
63.0\%\%	3,252	(3,252	0	0.0\%
	${ }_{\text {3,252 }}^{3,252}$	3,252 3.252	\bigcirc	${ }^{\text {0.0\% }}$
66.7\%	${ }_{3,252}$	${ }_{3,252}^{5.25}$	0	0.0\%
67.9\% ${ }^{69.1 \%}$	$\begin{array}{r}3,218 \\ 3.202 \\ \hline\end{array}$	- $\begin{aligned} & 3.252 \\ & 3212\end{aligned}$	${ }_{11}^{34}$	${ }^{1.19 \%}$
${ }_{70.4 \%}$	3,067	3,159	92	3.0\%
71.6\%	3,040	3,067	27	0.9\%
72.8\%	2,992	3,059	${ }_{1}^{67}$	2.2\%
74.1\%	2,917	3,057	140	4.8\%
${ }_{76.5 \%}^{75.5 \%}$	2,888 2882 2.8	- $\begin{aligned} & \text { 3,014 } \\ & 2\end{aligned}$	126 114	4.3\%
76.5% 778%	2.872	2,987	114	4.0\%
778.8	2,887	2,972	1105	3.7\%
89.0\%	2,824 2.775	2,938	114 114	4.0\%
80.5\%	${ }_{\substack{2,775 \\ 2,768}}^{\text {2, }}$	2, 2,820	145 119	年.3\%\%
${ }^{82.7 \%}$	${ }_{2}^{2,733}$	2,885	153	5.6\%
84.0\%	2,670	2,842	172	6.4\%
85.2\%\%	2,640 2.619	2,789 2.702	${ }_{83}^{149}$	3.2.2\%
87.7\%	${ }_{2,531}$	${ }_{2,702}$	170	6.7\%
88.9\%	2.516	2.679	${ }^{163}$	6.5\%
${ }^{90.14 \%}$	2.424 2 2 2	- ${ }_{2}^{2.613}$	190	7.8\%
92.6\%	${ }_{2,140}$	${ }_{\text {2,541 }}$	${ }_{401}$	18.8\%
93.3\%	2,137	2.499	362	6.9\%
95.1\%	(1,809	2,175	365	20.2\%
97.5\%	1,584 1,396 1.04	$\begin{array}{r}2,019 \\ 1,551 \\ \hline\end{array}$	${ }_{155}^{435}$	${ }_{\text {111. }}^{27.4 \%}$
98.8\%	1,293	1,332	39	3.0\%
100.0\%	624	907	283	45.4\%

| |
| :--- | :--- | :--- | :--- |

Figure SW-08-b

Shasta Lake, End of Month Elevation

Table SW-08-b
Lake, End of Month Elevation
Shasta Lake, End of Month Elevation
Prooability of Excoedance
and

Figure Sw-09-b
Shasta Lake, End of Month Area

PercentExceedanceProbability	Ociober			
	WSIP 2070 Without Proiet	WSIP 2070 With Project	Absolute	Relative
	End of Mooth Area	End of Month Area	(ACRE)	Difference (\%)
(\%)	(ACRE)	${ }^{\text {(ACRE) }}$	(ACRE)	
0.0\%	23,927	23,927	0	0.0\%
1.2\%	23,870	23,821	49	-0.2\%
2.5\%	23,659	23,392	268	-1.1\%
3.7\%	23,608	23,222	386	-1.6\%
4.9\%	23,573	23,193	-380	-1.6\%
\% 7.2%	- ${ }_{2}^{23,324}$	23,095 23.066	-789 -78	- ${ }_{\text {- }}^{\text {-0, }}$
7.4\%\%	${ }_{\text {22, } 237}^{23,144}$	len $\begin{aligned} & 23,066 \\ & 22.810\end{aligned}$	-78 153 153	-0.7\%
9.9\%\%		22,810 22710	153 214 1	-
11.1\%	22,191	${ }^{22,522}$	331	1.5\%
12.3\%	${ }^{21,935}$	${ }^{22,396}$	461	2.1\%
13.48\%	${ }^{21,825}$	22,197	372	
14.8\%	21,466	22,104	638	
16.0\%	21,354	${ }^{21,814}$	460	2.2\%
17.3\%	21,315	${ }^{21,735}$	${ }^{420}$	2.0%
18.5\%	${ }^{21,283}$	21,601	319	1.5\%
19.8\%	${ }^{21,185}$	${ }^{21,599}$	414	2.0\%
21.0\%	${ }^{21,103}$	${ }^{21,553}$	450	${ }^{2.1 \%}$
${ }^{22.2 \%}$	${ }^{21,076}$	${ }^{21,520}$	${ }^{444}$	2.1\%
23.5\%	${ }^{21,037}$	${ }^{21,324}$	287	1.4\%
24.7\%	${ }^{20,828}$	21,240	411	2.0\%
25.9\%	20,706	20,965	259	1.3\%
27.2\%	20,651	20,945	294	1.49\%
${ }^{28.4 \%} \times 296$	20,605	${ }^{20,999}$	315	1.5\%
30.9\%	${ }^{20,203}$	${ }_{20.422}^{20,67}$	+196	0.17\%
30.1\%	20,083 20,080	${ }^{20,4293}$	214 314	1.6\%
33.3\%	19,902	${ }^{20,342}$	440	2.2\%
34.6\%	19,833	20,056	${ }^{224}$	1\%
37.0\%	${ }^{19,6641}$	19,673	${ }_{32}^{22}$	0.1\%
38.3\%	19,640	9,6,596	${ }_{4}$	0.2%
39.5\%	${ }^{19,9097}$	${ }^{19,9581}$	184	0.0\%
40.7\%	19,246	19,478	232	1.2\%
42.0\%	19,150	19,345	195	1.0\%
43.2\%	${ }^{19,023}$	19,296	273	1.4\%
44.4\%	18,996	19,189	194	1.0\%
45.7\%	${ }^{18,862}$	19,175	${ }^{313}$	1.7\%
46.9\%	188,722	19,108	385	2.1\%
${ }^{48.19 \%}$	18,614	${ }^{19,098}$	${ }^{483}$	${ }_{\text {2, }}^{2.8 \%}$
49.4\% 50.6%	${ }^{18,586}$	18,915	${ }^{329}$	${ }^{1.8 \%}$
年50.9\%\%	18,559	18,857	298	1.6\%
${ }^{53.1 \%}$	${ }^{18,5331}$	18,821	288	${ }^{1.6 \% \%}$
54.3\%	18,521	18,639	118	0.6\%
55.6\%	18,440	-18,654	${ }^{174}$	0.9\%\%
56.8\%	${ }_{\text {18, } 18.276}^{10.020}$	${ }^{18,462}$	186	${ }^{\text {1.0\% }}$
58.0\%	18,200	18,453	254	1.4\%
	${ }^{18,164}$	${ }^{18,357}$	193	${ }^{1.19 \%}$
61.7%	18,019	18,280	${ }_{261}$	1.4\%
63.0\%	17,988	18,184	196	1.1\%
64.2\%	17,776	18,142	366	
65.4% 66.7%	17,604	18.010	406	2.3\%
-66.7\%	17,230	${ }^{17,945}$	715	4.1\%
-67.9\%	17,213	17,567	355	2.1\%
69.1\%	17,194	17,478	283	1.6\%
70.1.4\%	17,068	17,152	83	0.5\%
71.2\% 7	17,045	16,984	${ }^{61}$	-0.4\%
74.1\%	17,038	-16,982	-57	隹
- 74.51 .15	(16,902	${ }^{16,561}$	${ }^{-342}$	${ }^{-2.3 \%}$
76.5\%	15,637	16,060	423	2.7\%
77.8\%	15.589	16,027	438	2.8\%
79.0\%	${ }^{15,499}$	${ }^{16,001}$	502	3.2\%
80.2\%	15.487	${ }^{15.803}$	316 560	2.0\%
${ }^{81.57 \%}$	15,273	5, 15442	560	3.7\%
84.0\%	${ }_{1}^{14,794}$	${ }^{15.45153}$	${ }_{448}$	3.0\%
85.2\%	14,199	15.144	946	6.7\%
86.4\%	14,194	14,600	406	2.9\%
87.7\%	14,169	14,435	266	1.9\%
88.9\%	10,665	${ }^{14,326}$	${ }^{3.660}$	34.3\%
${ }^{90.11 \%}$	10.122	${ }^{12,735}$	2,613	25.8\%
${ }^{91.44 \%}$	9,257	12,231	2,974	32.1\%
${ }_{9}^{92.8 .8 \%}$	7.917	${ }^{12,155}$	4,237	53.5\%
${ }^{93.8 \%}$	7,915	${ }^{12,020}$	4,105	51.9\%
${ }_{9}^{95.1 \%}$	7,828	11,742	3,914	50.0\%
	7,661	11,173	${ }^{3.513}$	45.9\%
${ }_{98.8 \%}^{97.5 \%}$	${ }^{7.590}$	-8.874	(1,284	
100.0\%	7.002	${ }_{7}^{7,029}$	\%	${ }^{3.0 \%}$

	February			
	${ }^{\text {WSIP }}$ Provo Wethout	WIP1 207 With Project		Relative
	Of Mont A	End of Month Are	Difierence	Difference (\%)
(\%)	(ACRE)	(ACRE)		
0.0\%	${ }^{27,726}$	27,726	0	0.0\%
1.2\%	27,653	27,653	0	
2.5\%	27,540	27,391	149	-0.5\%
3.7\%	${ }^{277391}$	${ }^{27,367}$	${ }^{24}$	-0.1\%
4.9\%	27,288	27,288	0	0.0\%
${ }^{6.2 \%}$	${ }^{27,276}$	${ }^{27,776}$	0	0.0\%
7.4\%	27,262	${ }^{27,762}$	0	0.0\%
8.6\%	${ }^{26,944}$	27,204	260	
9.9\%\%	${ }^{26,922}$	27,132	210	0.8\%
19.1\%\%	${ }^{26,8829}$	${ }^{26,944}$	115	
12.3\%	${ }^{26,748}$	${ }^{20,829}$	8	
12.6\%	${ }^{26,725}$	${ }^{26,748}$	${ }_{51}^{22}$.1\%
16.0\%	26,665	${ }^{26,675}$	10	0.0\%
3\%	26,527	${ }^{26,527}$	0	0.0\%
18.5\%	26,512	26,512	0	
19.8\%	26,303	26,447	144	0.5\%
21.0\%	26,298	26,357	59	0.2\%
22.2\%	${ }^{26,266}$	26,303	37	
23.5\%	26,197	${ }^{26,298}$	102	0.4\%
24.7\%	26,173	26,197	${ }^{24}$	0.1\%
25.9\%	${ }^{26,122}$	${ }^{26,173}$	51	0.2\%
27.2\%	26,085	${ }^{26,122}$	${ }^{37}$	0.1\%
28.4\%	${ }^{25.989}$	26,090	101	0.4
29.6\%	${ }^{25,756}$	${ }^{26,085}$	329	${ }^{1.3 \%}$
30.9\%	${ }^{25,732}$	${ }^{26,074}$	${ }^{342}$	
32.1\%	${ }^{25.534}$	${ }^{25,989}$	${ }^{355}$	1.4\%
33.3\%	${ }^{25.6520}$	${ }^{25.732}$	112	0.4\%
${ }^{34.6 \%}$	${ }_{25,583}^{20.585}$	${ }^{25,634}$	51	
35.8\%	${ }^{25.546}$	${ }^{25.520}$	${ }^{74}$	
37.0\%	${ }^{25,422}$	${ }^{25.583}$	160	0.3\%
30.5\%	${ }_{25,279}^{25}$	${ }_{\text {25, } 348}^{2,48}$	69	0.3\%
40.7\%	25,157	25,279	122	
42.0\%	25,155	25,155	0	0.0\%
44.4\%\%	${ }_{\text {25.018 }}^{25}$	${ }_{\text {25,031 }}^{25,059}$	13	0.0.0
45.7\%	${ }^{24,893}$	${ }_{24,893}^{24,593}$	0	\%
46.9\%	24,851	24,851	0	0.0\%
48.1\%	24,843	24,840	-3	0.0\%
49.4\%	24,753	24,436	317	-1.3\%
50.6\%	24,710	24,378	-332	-1.3\%
51.9\%	${ }^{24,626}$	24,370	-256	-1.0\%
53.1\%	${ }^{24,500}$	24,370	-130	-0.5\%
54.3\%	24,407	${ }_{\text {2 }}^{24,3666}$	${ }_{9}^{41}$	${ }^{0} 0.2 \%$
${ }_{\text {c }}^{55.6 \% \%}$	${ }^{24,194}$	24,203	9	
${ }_{\text {cken }}^{56.8 \%}$	${ }^{24,183}$	24,151	-32	${ }_{\text {- }}^{0.1 \%}$
59.3\%	24,130	24,095	-35	-0.1\%
60.5\%	24,095	24,049	${ }^{-46}$	-0.2\%
${ }^{61.7 \%}$	23,938	24,013	76	
63.0\%\%	${ }_{\text {23, }}^{23,93}$	${ }_{\text {23,937 }}^{23,938}$	1	-
65.4\%	${ }_{23,937}^{2,93}$	${ }_{23,937}^{2,39}$	0	
66.7\%	23,937	23,937	0	
67.9\%	23,755	${ }^{23,937}$	183	
69.1\%	23,669	23.725	57	0.2\%
70.4\%	${ }^{2,9,950}$	23,440	489	2.1\%
71.6\%	22,807	22,950	143	0.6\%
728\%	${ }^{22,549}$	${ }^{22,908}$	359 59	- 1.6%
75.3\%	${ }_{\substack{21,995}}^{22,147}$	${ }_{22,665}^{22,897}$	${ }_{6} 71$	3.0\%
76.5\%	21,908	22,519	611	2.8\%
77.8\%	21,880	22.441	560	2.6\%
79.0\%	21,650	22,261	611	2.8\%
- 80.2%	${ }_{\substack{21,387 \\ 21352}}^{2182}$	${ }_{\text {2, }}^{22,161}$	${ }_{636} 774$	
${ }^{8} 8.2 .7 \%$	$\underset{\substack{21,352 \\ 21,162}}{21,50}$	${ }_{\text {21,978 }}^{21,97}$	- ${ }^{636}$ 816	3.9\%
84.0\%	20,828	${ }^{21,747}$	920	4.4\%
85.2\%	20,670	${ }^{21,464}$ 20997	${ }_{494} 7$	3.8\%\%
${ }^{864.4 \%}$	${ }_{2}^{20,554}$	${ }^{20,997}$	${ }^{443}$	${ }^{2.2 \%}$
${ }^{88.9 \%}$	${ }_{20,004}^{20,007}$	${ }_{20,875}^{20,97}$	871	4.4\%
90.1\%	19,470	${ }^{20,524}$	1,054	
91.4\%	18,423	20,220	1,797	8\%
92.6\%	${ }^{17,827}$	${ }^{20,139}$	2,312	13.0\%
${ }_{95}^{93.8 \%}$	17,811	19,906 18030	2,095	+1.8\%
96.3\%	${ }_{14,573}$	17,128	${ }_{2,556}^{2,155}$	17.5\%
97.5\%	13.407	14,366	959	7.2\%
98.8\%	12,772	13,012	40	1.9\%
100.0\%	7,620	9,901	${ }_{2.281}$	29.9\%

Table SW-09-b

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} \& \multicolumn{4}{|c|}{June}

\hline \& Proiect \& WSIP 2070 With Project \& Absolute \& Relative

\hline \& of Month \& Of Mont A \& (ACRE) \& ference (\%)

\hline 0.0\% \& ${ }^{\text {(ACRE) }}$ 29,76 \& \& ${ }^{-398}$ \& -1.3\%

\hline 1.2\% \& 29,776 \& 29,354 \& -422 \& -1.4\%

\hline 2.5\% \& 29,363 \& 29,198 \& -165 \& -0.6\%

\hline 3.7\% \& 29,156 \& 28,670 \& -486 \& -1.7\%

\hline 4.9\% \& 28,784 \& 28.661 \& -124 \& 0.4\%

\hline 6.2\% \& ${ }^{28,755}$ \& ${ }^{28,626}$ \& -129 \& -0.4\%

\hline 7.4\% \& 28,638 \& ${ }^{28,547}$ \& -90 \& -0.3\%

\hline 8.6\% \& 28,406 \& 28,492 \& 87 \& 0.3\%

\hline 9.9\% \& 28,308 \& 28,353 \& ${ }^{45}$ \& 0.2\%

\hline - 11.19% \& ${ }^{288,198}$ \& 28,351
28338 \& ${ }^{153}$ \& 0.5\%

\hline - ${ }_{\text {12.3\% }}^{12.3 \%}$ \& 28,187
28,040 \& ${ }_{28,316}^{28,323}$ \& 136

275 \& 0.5\%

\hline 14.8\% \& ${ }_{\text {27,686 }}^{28,040}$ \& ${ }_{28,149}^{28,369}$ \& ${ }_{463}$ \& 1.7\%

\hline 16.0\% \& ${ }^{27,644}$ \& ${ }^{28,035}$ \& 391 \&

\hline 17.3\% \& ${ }^{27,383}$ \& 27,807 \& ${ }^{423}$ \&

\hline 18.5\% \& ${ }^{27,350}$ \& ${ }^{27731}$ \& 382 \&

\hline 19.8\% \& 27,281 \& 27,615 \& 334 \& 1.2\%

\hline 21.0\% \& 27,161 \& 27,556 \& 395 \& 1.5\%

\hline 22.2\% \& 27,125 \& 27,517 \& 392 \& 1.4\%

\hline 23.5\% \& 27,119 \& 27,464 \& 345 \& 1.3\%

\hline 24.7\% \& 26,970 \& 27.440 \& 470 \& 1.7\%

\hline 25.9\% \& ${ }^{26,755}$ \& 27,407 \& 651 \& 2.4\%

\hline 27.2\% \& ${ }^{26,736}$ \& ${ }^{27,391}$ \& 655 \& 2.4\%

\hline 28.4\% \& ${ }^{26,7712}$ \& 27, 296
2727 \& 584 \& 2.2\%

\hline 29.6\% \& 26,641 \& ${ }^{27,287}$ \& 646 \& 2.4\%

\hline - 3 30.9\% \& ${ }^{26,601}$ \& 27,244 \& 623 \&

\hline 32.1\% \& ${ }^{26,545}$ \& 27,022 \& 478 \& 1.8\%

\hline) 33.3% \& ${ }^{26,406}$ \& ${ }^{26,832}$ \& 427 \& ${ }_{2}^{1.6 \%}$

\hline 34.6\% \& ${ }^{26,101}$ \& ${ }^{26,698}$ \& 597 \&

\hline 35.8\% \& ${ }^{25,992}$ \& ${ }^{26,565}$ \& 573 \&

\hline 38.3\% \& ${ }_{\text {25,823 }}^{25,886}$ \& ${ }_{2}^{26,515}$ \& ${ }_{693}^{663}$ \& ${ }_{2}^{2.6 \%}$

\hline 39.5\% \& ${ }_{\text {25, } 794}$ \& ${ }_{\text {26,317 }}^{26,95}$ \& 523 \& 2.0\%

\hline 40.7\% \& 25,786 \& 26,281 \& 495 \&

\hline 42.0\% \& 25,547 \& 26,165 \& 618 \& 2.4\%

\hline 43.2\% \& ${ }^{25,372}$ \& 25,900 \& 529 \&

\hline ${ }_{4}^{44.7 \%}$ \& ${ }^{25,3533}$ \& 25, 2 , 8999 \& 545 \& ${ }_{2.19 \%}$

\hline 46.9\% \& ${ }_{25,154}$ \& 25,807 \& 653 \& 2.6\%

\hline 48.1\% \& 25.079 \& 25.747 \& 668 \& 2.7\%

\hline 49.4\% \& 25,064 \& 25,609 \& 544 \& 2.2\%

\hline 50.6\% \& 24,951 \& ${ }^{25,518}$ \& 568 \& 2.3\%

\hline 51.9\% \& ${ }^{24,920}$ \& ${ }^{25,518}$ \& 598 \& 2.4\%

\hline 年 53.1 \% \& 24,802 \& ${ }^{25,339}$ \& 537 \& 2.2\%

\hline 54.3\%\% \& 24,742 \& ${ }^{25,244}$ \& 502 \& ${ }_{20}^{2.0 \%}$

\hline 55.6\% \& ${ }_{\text {2, }}^{24,728}$ \& ${ }^{25,241}$ \& 514 \& ,

\hline 56.8\% \& 24,679 \& 24,955 \& ${ }^{276}$ \& ,

\hline 年58.0\%\% \& ${ }_{\text {24, }}^{24,3258}$ \& 24.800
24.450 \& ${ }_{2}^{203}$ \& 1.7.9\%

\hline 60.5\% \& ${ }_{\text {2 }}^{24,225}$ \& 24,450 \& ${ }_{452}^{225}$ \& 1.9\%

\hline 61.7\% \& ${ }_{\text {23,951 }}$ \& ${ }_{24,319}^{24,49}$ \& ${ }_{368}$ \& 1.5\%

\hline 63.0\% \& 23,914 \& 24,258 \& 344 \& 1.4\%

\hline ${ }^{64.2 \%}$ \& 23,693
23,699 \& 23,864
2384 \& 171 \& 0.7\%

\hline ${ }_{6}^{65.7 \%}$ \& ${ }_{\text {23,659 }}^{23,69}$ \& ${ }_{\text {23,849 }}^{23,89}$ \& 190 \& 0.8\%

\hline 67.9\% \& 23,518 \& ${ }^{23,800}$ \& 282 \& 1.2\%

\hline 69.1\% \& 23,451 \& 23,659 \& 208 \& 0.9\%

\hline 70.4\% \& ${ }_{2}^{2,881}$ \& | 23,146 |
| :---: |
| 2, |
| 201 | \& ${ }_{2}^{286}$ \& 1.2\%

\hline 71.6\% \& ${ }^{22,842}$ \& 23,081 \& 239 \& ${ }^{1.0 \%}$

\hline 72.8\% \& ${ }^{22,658}$ \& ${ }^{23,066}$ \& 408 \& -1.8\%

\hline 74.3\% \& ${ }^{22,146}$ \& ${ }^{21,1,64}$ \& -462 \& ${ }_{\text {2.1. }}$

\hline 76.5\% \& 21,001 \& ${ }_{21,161}$ \& 159 \& 0.8\%

\hline 77.8\% \& 20,758 \& 21,094 \& 336 \& 1.6\%

\hline 79.0\% \& 19,878 \& 20,954 \& 1.077 \& 5.4\%

\hline 80.2\% \& 19,872 \& 20,456 \& 584 \& 2.9\%

\hline 81.5\% \& 19,760
19.322
19 \& ${ }^{20,293}$ \& 532
679 \& ${ }_{3.5 \%}^{2.7 \%}$

\hline - 82.79% \& | 19,322 |
| :---: |
| 19,301 | \& 20,01

19862 \& ${ }_{561}^{679}$ \& ${ }^{3.5 \%}$

\hline ${ }^{84.2 \%}$ \& -19, 1395 \& 19,862
19.802 \& ${ }_{668} 668$ \& ${ }_{3.5 \%}^{2.9 \%}$

\hline 86.4\% \& 18,849 \& 19,567 \& 717 \& 3.8\%

\hline 87.7\% \& ${ }^{18,563}$ \& ${ }^{19,526}$ \& 963 \& 5.2\%

\hline 88.9\% \& 17,442 \& ${ }^{19,038}$ \& ${ }^{1,626}$ \& ${ }^{9.3 \%}$

\hline 91.4\% \& ${ }^{15,8388}$ \& 177,987 \& ${ }_{2,149}$ \& ${ }_{\text {13.6\% }}$

\hline 92.6\% \& 15,557 \& 17.849 \& 2,292 \& 14.7\%

\hline 93.\% \& 15.466 \& 17.503 \& 2,037 \& 13.2

\hline 95.1\% \& 15,433 \& 17,271 \& 1,838 \& 11.9\%

\hline 96.3\% \& 15,250 \& 16,659 \& 1.409 \& 9.2\%

\hline 97.5\% \& 10,535 \& 14,082 \& 3,547 \& ${ }^{3377 \%}$

\hline 988.8\% \& 10,246
7 \& 13,499
7002 \& 3,253 \& -

\hline 100.0\% \& 7,002 \& 7,002 \& 0 \& 0.0\%

\hline
\end{tabular}

Figure SW-10-b
Sacramento River below Keswick Reservoir, Monthly Flow

Tabbl SW-10-b
beeow Keswick Resen

December				
Percent Exceedance	${ }^{\text {WSIP } 2070 \text { Without }}$ Proiet	Wsil 2070 With Project	Absolute Difference	Relative
Probability	Monthly fow (CFS)	Monthly Fiow (CFS)	(CFS)	
0.0\%	29,404	30,167	763	2.6\%
${ }^{1.2 \%}$	${ }^{27,847}$	28.967	${ }_{1,120}$	4.0\%
${ }^{2.5 \%}$	${ }_{\text {20, }}^{2038}$	${ }^{2}$	1,609	
3.7\%	${ }_{2,1917}$	${ }_{21,833}$	0	
4.9\%	21,947	${ }_{1} 1,991$, 418	
7.4\%	${ }^{11,7111}$	${ }_{16,287}^{10,997}$	${ }_{-1,424}$	-8.0\%
8.6\%	15.739	16,042	303	1.9\%
9.9\%	14,648	15,739	1,091	
11.1\%	13,280	13,280	0	0.0\%
12.3\%	11.619	12,267	648	5.6\%
13.6\%	10,723	${ }^{10,634}$	-89	-0.8\%
14.8\%	8,283	10,207	1,924	${ }^{23.28}$
16.0\%	6.499	¢,499	0	0.0\%
${ }^{17.3 \%}$	5.710	${ }_{5}^{5.748}$	39	0.7
18.5\%	${ }_{5}^{5,365}$	5,500	${ }^{135}$	2.5\%
19.8\%	5,215	5,500	${ }_{285}^{285}$	5.5\%
21.0\%	4,913	${ }^{5.500}$	587	
${ }^{22.22 \%}$	4,498	${ }_{\text {5 }}^{5.336}$	839	
23.5\%	4,464	5,262	797	17.9\%
25.9\%	4,378	4.920	542	12.4\%
27.2\%	4,376	4,833	457	
28.4\%	4,252	4.668	417	
29.6\%	4,160	4,500	340	
30.9\%	4,122	4,493	371	
32.1\%	4,094	4,464	370	
33.3\%	4,048	4,378	329	8.1\%
34.6\%	4,000	4,376	376	
35.8\%	4,000	4,350	350	8.8\%
37.0\%	4,000	4,262	262	6.6\%
38.3\%	4,000	4,261	${ }^{261}$	6.5\%
39.5\%	4,000	4,250	250	6.3\%
40.7\%	4,000	4,160	160	4.0\%
42.0\%	4,000	4,113	${ }^{113}$	${ }^{2.8 \%}$
43.2\%	4,000	4,099	99	2.5\%
44.4.9	4,000	4,048	88	2\%
45.7\%	4,000	4,000	0	0.0\%
46.9\%	4,000	4,000	0	0.0\%
${ }_{49.4 \%}^{48.1 \%}$	4,000	${ }_{4,000}^{4.000}$	0	0.0\%
50.6\%	4,000	4,000	0	
51.9\%	4,000	4,000	0	
53.1\%	4,000	4.000	0	
54.3\%	4,000	4,000	0	0.0\%
55.6\%	4,000	4,000	0	0.0
56.8\%	4,000	4,000	0	0.0\%
58.0\%	3,959	4,000	41	1.0\%
59.3\%	${ }^{3,929}$	4,000	71	1.8\%
60.5\%	3,773	4,000	${ }^{227}$	6.0\%
61.7\%	3,764	4,000	${ }^{236}$	6.3\%
63.0\%	3,744	3,980	${ }^{236}$	6.3\%
64.2\%	3,707	3,959	${ }^{253}$	6.8\%
65.4\%	3,690	3,929	${ }^{239}$	6.5\%
${ }^{66.77 \%}$	3,650	3,859	209	5.7\%
67.9\%	${ }^{3.556}$	${ }^{3,764}$	208	5.8\%
69.1\%	3,494	3,744	249	.1\%
${ }^{71.6 \%}$	-	3.709 3.707	${ }_{221}^{220}$	6.6\%
72.8\%	3.471	${ }^{3.690}$	219	3\%
74.1\%	3,439	3,650	211	\%
75.3\%	3,392	3,494	102	.0\%
76.5\%	3,251	3,490	239	,
77.8\%	3,250	3,473	223	.9\%
79.0\%	3,250 3 3	3,472	${ }^{222}$	
80,5\%	3,250 3,250	3,471 3,392	${ }_{221}^{221}$	6.8\%\%
82.7\%	${ }_{3,250}$	${ }_{3,250}$	0	0.0\%
84.0\%	3,250	3,250	0	0.0\%
85.2\%	3,250	3,250	0	0.0\%
86.4\%	3,250	3,250	0	0.0\%
877.7\%	3,250	3,250	0	0.0\%
88.9\%	3,250	3,250	0	0.0\%
90.1\%	3,250	3,250	0	0.0\%
91.4\%	3,250 3 3 3	3,250 3 3,250	0	0.0\%
- ${ }_{\text {93.8\% }}$	${ }_{3}^{3,250}$	- 3,250		0.0\%
${ }^{955.1 \%}$	3,250		0	0.0\%
96.3\%	3,250	3,250	0	.0\%
5\%	3,250			
98.8\%\% 100.0\%	3,250 3,250	(3, $\begin{aligned} & 3,250 \\ & 3,250\end{aligned}$	0	- 0

Percent wsp rovo witout January				
Percent	WSIP 207 Prowithout	WSIP 2070 With Project		Relative
Probability	Monthly Fow (CFS)	Moonthy Fow (CFS)	(CFS)	Difference (\%)
0.0\%	52,455	52,455	0	0.0\%
1.2\%	48,778	48.778	0	0.0\%
2.5\%	46.492	46,492	0	0.0\%
3.7\%	44.811	44,811	0	0.0\%
4.9\%	32,871	${ }^{32,871}$	0	0.0\%
6.2\%	28.812	29,481	668	2.3\%
7.4\%	28,387	${ }^{29,425}$	1,038	3.7\%
8.6\%	26,328 25855	- 26.328	0	0.0\%
9.9\%	- 25.8555		0	0.0\%
111.19\%	24,575	${ }_{2}^{23,707}$	-867	-3.5\%
12.3% 136% 13.	23,842	${ }^{22,735}$	-1,107	-4.0\%
13.6\%	20,830	- 20.8380	0	0.0\%
14.0\%	16.949	16,253	696	
17.3\%	16,253	16,200	-54	-0.3\%
18.5\%	15,797	16,036	239	1.5\%
19.8\%	259	15,259	0	
21.0\%	${ }^{13,468}$	14.091	${ }^{624}$	\%
${ }_{\text {22, }}^{22.2 \%}$	${ }^{12,938}$	${ }^{13,329}$	391	3.0\%
${ }^{23.5 \%}$		12,666 11,875	${ }_{-475}$	0.0\%
25.9\%	${ }_{1}^{111,133}$	${ }^{110,972}$	-160	-3.8\% ${ }_{\text {- }}^{\text {- }}$
27.2\%	10,972	9,914	-1,059	-9.7\%
28.4\%	9.615	9.615	0	0.0\%
29.6\%	9,455	9,326	-128	-1.4\%
30.9\%	8,934	9,193	259	2.9\%
32.1\%	¢,	8.818 8491	${ }^{-47}$	-0.5\%
- $\begin{aligned} & 33.3 \% \\ & 34.6 \%\end{aligned}$	¢, $\begin{gathered}7,288 \\ 6,315\end{gathered}$	8,491 7288 18	(1,273	16.5\%
34.6\%		7,288 6,315	${ }_{1}^{973}$	15.4\%
35.8\%	5,204 4.500	¢, $\begin{aligned} & 6.315 \\ & 4.95\end{aligned}$	${ }_{405}^{1,111}$	${ }_{\text {9, }}^{\text {9.0\% }}$
38.3\%	4,500	4.816	316	7.0\%
39.5\%	4,500	4,773	${ }^{213}$	4.7\%
42.0\%	4.500	${ }_{4,500}^{4.636}$	136 0	30\%
43.2\%	4,500	4,500	0	
44.4\%	4,500	4,500	0	0.0\%
46.9\%	4.500 4.500	4.500 4.500	0	0.0\%
48.1\%	4.500	4.500	0	0.0\%
49.4\%	4.465	4,500	35	0.8\%
	4,297	4,500	${ }^{203}$	4.7\%
51.9\%	4,202	4.500	298	7.1\%
${ }^{53.13 \%}$	${ }_{4,087}^{4,165}$	${ }_{4,165}^{4,65}$	300 78	(7.9\%
55.6\%	4,082	4,087	6	0.1\%
56.8\%	4,040	4,082	42	1.0\%
58.0\%	4,025	4,040	14	0.4\%
59.3\%	3,979 3 3	${ }_{4}^{4,033}$	54 99	俍
${ }^{60.17 \%}$	${ }_{\text {3,638 }}^{3,926}$	${ }_{3,926}^{4,025}$	${ }_{288}^{99}$	${ }_{\text {2 }}^{\text {2.9\% }}$
63.0\%	3.629	3,645	16	0.4\%
${ }^{64.2 \%}$	3,584		${ }^{54}$	1.5\%
${ }_{\text {c }}^{65.4 \%}$	${ }_{3.488}^{3.502}$	-3,629 3.584	128 96	- ${ }_{\text {3, }}^{\text {2.7\% }}$
67.9\%	3,417	3,532	114	3.3\%
69.1\%	-3,2553,250	3,450 $\begin{aligned} & 3,417\end{aligned}$	${ }_{167}^{195}$	5.0\%
71.6\%	3,250	3,393	143	4.4\%
72.8\%	3,250	3,393	143	4.4\%
74.1\%	3,250	3,292	${ }_{5}^{42}$	1.3\%
75.3\%	3,250	3,255	5	0.1\%
76.5% 778%	3,250	3,250	0	0.0\%
77.0\%	3,250 3,250	3,250 3,250	0	0.0\%
80.2\%	3,250	3,250	0	0.0\%
81.5\%	3,250	3,250	0	0.0\%
82.7\%	3,250	3,250	0	0.0\%
84.0\%	3,250 3,250 3,	3,250 3,250 3,	0	${ }^{\text {0.0\% }}$
${ }_{\text {8 }} 8.4 .4 \%$	-3,250 3,250 ,	${ }_{\substack{3,250}}^{3,250}$	0	0.0\%
87,7\%	3,250	3,250	0	0.0\%
88.9\%	3,250	3,250	0	0.0\%
91.4\%	-	-	0	0.0\%
92.6\%	3,250	3,250	0	0.0\%
93.8\%	3,250	3,250	0	0.0\%
${ }_{995}^{95.1 \%}$	3,250	(3,250 $\begin{aligned} & 3,250 \\ & 3\end{aligned}$	0	-0.0\%
97.5\%	3,250	3,250	0	${ }_{\text {0.0\% }}^{0.00 \%}$
98.8\%	3,250	3,250	0	0.0\%
100.0\%	3,250	3,250	0	0.0\%

Table SW－10－b

		Fobruary		
$\xrightarrow{\text { Percernt }}$	${ }_{\text {WSIP } 2070 \text { Without }}^{\text {Proiect }}$	WSIP 2070 With Project	Abssolute Difference	Relatio
	Monthly Fow（CFS）	Montly Flow（CFS）	（CFs）	Difference（\％）
0．0\％	59,102	59,102	0	0．0\％
1．2\％	57,345	57,345	0	0．0\％
2．5\％	45.545	${ }^{45,545}$	9	0．0\％
3．7\％	${ }^{42,347}$	43，393	1，045	2．5\％
4．9\％	42，273	42，289	16	0．0\％
6．2\％	39，284	39，284	0	0．0\％
7．4\％	${ }^{38,512}$	38.512	－	0．0\％
8．9\％	3， 3 3，23	34,430 3 3,231	${ }^{1,187}$	3．5\％
9．9\％	${ }^{32,421}$	${ }_{3}^{33,243}$	${ }_{868}^{821}$	${ }^{2.5 \%}$
－ 11.12%		${ }_{\substack{32,421 \\ 31452}}$	966 0	3．1\％
13．6\％	${ }_{31,128}$	31，128	0	0．0\％
14．8\％	30，658		0	
16．0\％	30，048	9，707	341	
17．3\％	${ }^{29,657}$	29.657	0	
18．5\％	25，353	25，353	0	
19．8\％	24，234	24，234	0	
21．0\％	23，832	23，832	0	
22．2\％	23，687	23，687	0	
23．5\％	20.417	20,417	0	0.0
24．7\％	20，251	20，251	0	0．0\％
25．9\％	${ }^{16,138}$	${ }^{16,138}$	0	0．0\％
27．2\％	${ }^{14,5275}$	${ }^{14,527}$	0	0.0
28．4\％	${ }^{13,275}$	13，155	120	－0．9\％
39．6\％\％	${ }^{12,692}$	13,100 12529	409	3.2% 17.6%
32．1\％	9，806		${ }_{685}^{1.676}$	7．0\％
33．3\％	9.460	9.806	${ }^{346}$	3．7\％
34．6\％	${ }_{6}^{6,718}$	7，530	812	${ }^{12.19 \%}$
年35．8\％	－ $\begin{aligned} & 6,344 \\ & 6.311\end{aligned}$	－ $\begin{aligned} & 6,993 \\ & 6.718\end{aligned}$	649 407	10．2\％
38．3\％	6，130	${ }_{6}^{6,639}$	509	8．3\％
	6，062	6，344	282	
42．0\％	${ }_{5,389}^{50.982}$	${ }_{6}^{6,311}$	328	
43．2\％	4，500	${ }_{6,062}^{6,062}$	${ }_{1,562}$	－
44．4\％	4，500	4，652	152	3．4\％
45．7\％	4，500	4，500	0	0．0\％
46．9\％	4，500	4，500	0	
48．1\％	4，500	4，500	0	0．0\％
49．4\％	4，500	4，500	0	0．0\％
51．9\％	4.500	4.500	0	0．0\％
53．1\％	4，500	4，500	0	0．0\％
54．3\％	4，500	4，500	0	0．0\％
55．6\％	4，500	4，500	0	
58．0\％	${ }_{4}^{4,491}$	4，500	$\stackrel{9}{49}$	${ }^{0.2 \% \%}$
59．3\％	4,207	4，491	285	6．8\％
60．5\％	$\stackrel{4,054}{ }$	4，451	397	9．8\％
6．3．0\％	${ }_{3,488}^{3,679}$	${ }_{4,207}^{4.375}$	${ }_{718}^{696}$	隹
64．2\％	3，414	3，750	336	98\％
${ }^{654.4 \%}$	3，250	3，750	500	15．4\％
－667．9\％	3,250 $\substack{350}$ 3	3,750 3 3	500	15．4\％
69．1\％	${ }_{3,250}$	${ }_{3,414}$	164	5．0\％
70．4\％	3，250	3，400	150	4．6\％
71．6\％	3，250	3，250	0	0．0\％
72．8\％	3，250	3，250	0	0．0\％
74．1\％${ }^{753 \%}$	3，250	3，250	0	0．0\％
75．3\％	3，250	3，250	0	0．0\％
76．5\％	3,250 3.250	3,250 3 3	0	0．0\％
79．0\％	3，250	${ }_{3,250}^{3,250}$	0	0．0\％
80．2\％	3，250	3，250		0．0\％
81.5% 887%	（3,250 3,250	3,250 3,250	0	－
84．0\％	3,250 3,250	－3,250 3,250	\bigcirc	－ 0.0%
85．2\％	3，250	3，250	0	0．0\％
${ }^{86.4 \%}$	3，250	3,250 3 3	0	0．0\％
88．9\％	${ }_{\substack{3,250}}^{\substack{\text { 3，250 }}}$	3，250	0	0．0\％
90．1\％	3，250	3，250	0	0．0\％
91．4\％	3，250	3，250	0	0．0\％
92．6\％	3，250	3，250	0	
93．8\％	3，250	3，250	0	0．0\％
${ }_{96.3 \%}^{95.1 \%}$	3,250 3,250	3,250 3,250	0	0．0\％
97．5\％	${ }_{3,250}$	${ }_{3,250}$	0	0．0\％
98．8\％	3，250	3，250	0	0．0\％
100．0\％	3，250	3，250	0	0．0\％

1．2\％	${ }^{52,648}$	${ }^{52,648}$	0	0．0\％	1．2\％	23.403	23，403		0．0\％
${ }_{3}^{2.5 \%}$	37,838 37171	37,838 37171	0	0．0\％	－${ }_{\text {2，}}^{\text {3\％\％}}$	16,165 14.137	16,165 14.137	\bigcirc	0．0\％
4．9\％	25.141	24.744	－－396	－1．6\％	4．9\％	12.419	12.419	0	0．0\％
6．2\％	24.724	24,724	0	0．0\％	6．2\％	11.772	11.589	－183	－1．6\％
7．4\％	24，427	23，578	－849	－3．5\％	7．4\％	11.049	183	134	1．2\％
8．6\％	23，578	22，948	－630	－2．7\％	8．6\％	10.686	11.049	363	3．4\％
9．9\％	22，631	22，631	0	0．0\％	9．9\％	10，233	10，224	－9	1\％
11．1\％	16，992	16，992	0	0．0\％	11．1\％	9，967	8.985	－982	－9．9\％
12．3\％	16，954	16，954	0	0．0\％	12．3\％	9，554	${ }^{8,776}$	－778	－8．1\％
13．6\％	15，193	${ }^{15,193}$	0	0．0\％	13．6\％	9，228	8.728	－500	－5．4\％
14．8\％	14，829	14.829	0	0．0\％	14．8\％	8.857	8.466	－392	－4．4\％
16．0\％	${ }^{13,132}$	${ }^{13,651}$	519	4．0\％	16．0\％	8，765	8，235	－530	－6．1\％
17．3\％	12，788	${ }^{13,241}$	${ }^{453}$	3．5\％	17．3\％	8.412	${ }_{7}^{8,998}$	－214	－2．5\％
18．5\％	${ }^{12,385}$	12，788	402	3．2\％	18．5\％	8，198	7.975	－223	－2．7\％
19．8\％	111996	${ }^{12,385}$	389	3．2\％	19．8\％	8.161	7.944	－217	－2．7\％
21．0\％	1111921	11，876	-45	－0．4\％	21．0\％	${ }^{8} 8.098$	7.881	－217	源
22．2\％\％	11，744	11，220	－494	－4．2\％	${ }^{22.2 .2 \%}$	7.980	7,710	－270	－3．4\％
23．5\％	10，972	10，972	0	0．0\％	23．5\％	7.809	7.650	－199	－2．0\％
25．70\％	10，975	10.328	356	36\％	24．7\％	7.084	7.508	－ 72	
27．2\％	${ }_{9,784}$	${ }_{9,972}$	188	1．9\％	27．2\％	7.575	7,473	－102	－1．3\％
28．4\％	9，071	9，784	713	7．9\％	28．4\％	7.399	7.368	－31	－0．4\％
29．6\％	8，950	9，093	142	1．6\％	29．6\％	7,301		4	0．1\％
30．9\％	8，827	8，950	123	1．4\％	30．9\％	7.182	7，298	116	1．6\％
32．1\％	8，579	8.415	－164	－1．9\％	32．1\％	7，139	7,144	4	0．1\％
33．3\％	${ }^{8.503}$	7.930	－573	－6．7\％	33．3\％	7.110	7.090	－20	．3\％
34．6\％	7，484	7，789	305	4．1\％	34．6\％	7，099	6，976	－123	．7\％
35．8\％	6，863	7，484	621	9．1\％	35．8\％	7,090	6．822	－269	－3．8\％
37．0\％	6.736	6，907	171	2．5\％	37．0\％	7.055	6，732	${ }^{-323}$	－4．6\％
38．3\％	6.735	6，735	0	0．0\％	38．3\％	6，953	${ }^{6,673}$	－280	－4．0\％
39．5\％	5，655	6，118	462	8．2\％	39．5\％	6．888	${ }^{6,668}$	－220	－3．2\％
40．7\％	5，645	5．761	${ }^{116}$	2．0\％	40．7\％	6，738	6.660	－78	－1．2\％
42．0\％	5，627	5．494	－134	－2．4\％	42．0\％	6，543	6，469	－74	－1．19\％
43．2\％	5，494	5，430	－64	－1．2\％	43．2\％	6．463	6，314	－149	－2．3\％
4．4．4\％	4，922	${ }_{5}^{5,375}$	45	9．2\％	44．4．9	6，308	6，246	－62	－1．0\％
45．7\％	4，904	5，1754	250	5．17\％	45．7\％	6，213	${ }^{6,233}$	20	0．3\％
46．9\％	4，800	4，768	－32	－0．70\％	${ }_{48.9 \%}$	${ }_{5}^{6,010}$	5.610 5455	－400	－6．7\％
48．1\％	4.500	4.500	0	0．0\％	4．19\％	${ }_{5}^{5.940}$	${ }_{5}^{5,455}$	－ 530	－8．2\％
50．6\％	4，500	4.500	0	0．0\％	50．6\％	5.836	5，323	－513	8\％
51．9\％	4，500	4，500	0	0．0\％	51．9\％	5，797	305	－492	－8．5\％
53．1\％	4，500	4，500	0	0\％	53．1\％		886	－180	
54．3\％	4，500	4，500	0	0．0\％	54．3\％	5.419	5，283	－136	－2．5\％
55．6\％	4.500	4，500	0	0．0\％	55．6\％	5，310	5，211	－99	－1．9\％
56．8\％	4，500	4，500	0	0．0\％	56．8\％	5，305	5，155	－151	－2．8\％
58．0\％	4，500	4，500	0	0．0\％	58．0\％	5，286	5，103	－183	－3．5\％
59．3\％	4．500	4，500	0	0．0\％	59．3\％	5，148	5.076	－72	－1．4\％
60．5\％	4，500	4，500	0	0．0\％	60．5\％	4，993	4．861	－133	－2．7\％
61．7\％	4，500	4，500	0	0．0\％	61．7\％	4.929	4.818	－111	－2．3\％
63．0\％	4，152	4，500	${ }^{348}$	8．4\％	63．0\％	4.906	4，742	－163	－3．3\％
64．2\％	4，133	4，133	0	0．0\％	64．2\％	4，759	4，735	－23	－0．5\％
65．4\％	4，048	4，048	0	0．0\％	65．4\％	4．742	4，664	－78	－1．6\％
66．7\％	3，979	3，995	16	0．4\％	${ }^{66.7 \%}$	${ }_{4}^{4.672}$	4，600	－72	－1．5\％
6991\％	－	${ }^{3,979}$	$\stackrel{6}{6}$	0．1\％	－67．9\％	${ }_{4}^{4,607}$	4，600	－17	${ }_{2}^{-2.2 \%}$
70．4\％	3，768	3，937	169	4．5\％	70．4\％	4.500	4，600	100	．2\％
71．6\％	3，602	3，768	166	4．6\％	71．6\％	4，500	4，600	100	${ }^{2.2 \%}$
74．1\％	${ }^{3.545}$	${ }_{\substack{3,522}}^{3,602}$	20	0．6\％	74．1\％	4.500	4.6800	100	${ }^{2.22 \%}$
75．3\％	3，250	3，439	189	5．8\％	75．3\％	4，500	4.600	100	2．2\％
76．5\％	3，250	3，278	28	0．9\％	76．5\％	4.500	4，600	100	2．2\％
77．8\％	－ 3,250	3，250	0	0．0\％	77．8\％	4．500	4．600	100	2．2\％
80．2\％	3,250 3,250 250	3,250 3.250	0	0．0．0\％	80．2\％	4.500	4.500 4.500	0	0．0\％
81．5\％	3，250	${ }_{3,250}$	0	0．0\％	81．5\％	4.500	4.500	0	0．0\％
82．7\％	3，250	3，250	0	0．0\％	82．7\％	4.500	4.500	0	0．0\％
84．0\％	3，250	3，250	0	0．0\％	84．0\％	4，500	4，500	0	0．0\％
85．2\％	3，250	3，250	0	0．0\％	85．2\％	4，500	4，500	0	0．0\％
86．4\％	3，250	3，250	0	0．0\％	86．4\％	4，338	4，500	162	3．7\％
87．7\％	3，250	3，250	0	0．0\％	877．7\％	4，203	4，500	297	7．1\％
－	3，250	3，250	0	0．0\％	88．9\％	－ 3.990	4，500	510	－ 12.85
901．4\％	3，250	$\underset{\substack{3,250 \\ 3,250}}{ }$	0	0．0\％	${ }^{91.4 \%}$	${ }_{3,700}$	${ }_{4,357}$	657	17．8\％
92．6\％	3，250	3，250	0	0．0\％	92．6\％	${ }^{3,250}$	${ }_{4}^{4.283}$	1，033	31．8\％
93．8\％	3，250	3，250	0	0．0\％	93．8\％	3，250	4，138	888	27．3\％
959．3\％	3,250 3,250	${ }_{3}^{3,250}$	0	0．0\％	${ }_{96.3 \%}^{95.1 \%}$	${ }_{3,250}^{3,250}$	4.050	${ }_{800}^{83}$	${ }_{24.6 \%}^{25.76}$
97．5\％	3，250	${ }_{3,250}$	0	0．0\％	97．5\％	3，250	3，994	744	22．9\％
98．8\％	3，250	3，250	0	0．0\％	98．8\％	3，250	3，357	107	3．3\％

Figure SW-11-b
Sacramento River at Bend Bridge, Monthly Flow

Table SW－11－b

 \begin{tabular}{ll}
11．1\％ \& 11．，994

12．3\％ \& 11.831

13.6% \& 11.622

\hline

 \qquad

12,124 \& 130

1,736 \& -95

1,025 \& -597

\hline
\end{tabular}

Exceedance		WSIP 2070 With Project	Absolute Difference	Relative
Prooability	Monthy flow（CFS）	Monthy Flow（CFS）	（CFS）	
0．0\％	50，639	50,217	－422	－0．8\％
1．2\％	40，890	${ }^{44,816}$	3，925	9．6\％
2．5\％	38.531 37841 34，	（38．522	${ }_{-1}{ }^{-1}$	0．0\％
3．7\％	37，841	${ }^{37,840}$	－1	0．0\％
4．9\％	36，141	35，290	－852	－2．4\％
6．2\％	35，279	${ }^{34,720}$	－559	－1．6\％
7．4\％	${ }^{33,508}$	32，094	－1，414	－4．2\％
8．6\％	27,964 25.210		－ $\begin{aligned} & -984 \\ & 1.092\end{aligned}$	－3．5\％
9．9\％${ }^{\text {11．1\％}}$	${ }_{\text {24，}}^{24,909}$	${ }_{\text {25，211 }}^{26,302}$	（1032	
12．3\％	${ }_{22,457}^{24,409}$	${ }_{\text {22，470 }}^{25,21}$	13 13	0．1\％
13．6\％	${ }^{19,712}$	21,635	1，923	
14．8\％	18.920	1865	－255	
16．0\％	${ }^{18,668}$	18，481	－187	
17．3\％	${ }^{17,642}$	18,114	472	
18．5\％	${ }^{17,526}$	${ }^{17,529}$	3	0．0\％
19．8\％	17，412	17，497	85	
21．0\％	${ }^{16,623}$	17，412	789	4．7\％
22．2\％	16.559	16，075	－484	
23．5\％	${ }^{16,070}$	15，262	－808	－5．0\％
24．7\％	${ }^{12,122}$	12，124	2	0．0\％
25．9\％	${ }^{111,674}$	${ }^{11,673}$	－2	
27．2\％	11，446	11，450	3	
${ }^{28.4 \%}$	10．557	11，312	755	
29．6\％	10，188	10，865	677	
30．9\％	10，097	10，555	458	
32．1\％	${ }_{9,991}^{10.096}$	10,441 10.381 1	385 390	3．8\％\％
34．6\％	${ }_{9}^{9,886}$	10，312	${ }_{426}$	4．3\％
	9，717	10，102	${ }^{385}$	
37．0\％	${ }_{9}^{9,0452}$	${ }_{9}^{9,989}$	${ }_{435}$	
39．5\％	9，062	${ }_{9,707}$	645	7．1\％
40．7\％	8.874	9，627	753	
42．0\％	${ }^{8.630}$	8,637	7	
43．2\％	${ }_{8}^{8,363}$	8，364	0	
${ }^{44.45 \%}$	${ }^{8.018}$	${ }^{8.018}$	0	0．0\％
46．9\％	7,812	7，884	72	0．9\％
48．1\％	7.723	7.723	0	0．0\％
49．4\％	7.676	7,719	43	0．6\％
50．6\％	7，448	7，676	${ }_{227}^{228}$	3．1\％
	7,436 7,371 7.68	7,662 7 7 754	${ }_{183}^{227}$	3．0\％
53．19\％	7，371	7，554	183	迆
55．6\％	7,104 6.909	7,551 7,370	${ }_{461}^{448}$	年6．7\％
56．8\％	${ }_{6}^{6,883}$	7,110	227	3．3\％
年58．0\％	6.804 6.609	7，062	258 55 5	
59．5\％	6,609 6.509	6，964 6.909	399 395	6．4\％
61．7\％	6，508	6，800	292	
63．0\％	${ }_{6}^{6,232}$	6，614	382	
${ }^{645.4 \%}$	$\underset{\substack{6,130}}{\text { 6，202 }}$	${ }_{6,513}^{6.529}$	${ }_{383}^{327}$	${ }_{6.3 \%}^{5.3 \%}$
66．7\％	6，024	6.511	488	8．1\％
67．9\％	${ }_{5}^{5.746}$	${ }_{6,303}^{6,377}$	${ }_{5}^{57}$	9．7\％
69．1\％	5，696	6，277	581	2\％
70．4\％	（5．652	6，061	410	7．2\％
71．6\％	5，552	${ }^{6,020}$	${ }^{468}$	8．4\％
728\％	5．541	5，750	209	3．8\％
－${ }_{\text {74．3\％}}$	5，454	5，5488	94	1．7\％
7．5．5\％		5，455 5448	5	0．1\％
77．8\％	5.365	5.367	1	0．0\％
79．0\％	5，346	5，363	17	0．3\％
80．2\％	5，284	5，354	70	1．3\％
－	5,259 5.255 5，	5,274 5.250 5，	15 -5	
84．0\％	5.109	5.232	${ }^{123}$	2．4\％
－ 85.2%	5，107	5，133	25	5\％
${ }^{80.7 \%}$	4.964	${ }_{4,957}^{4,958}$	${ }_{-7}$	${ }^{-0.1 \%}$
88．9\％	4，934	4，927	－6	－0．1\％
90．1\％	4，786	4，785	0	
914．4\％	4．782	4，774	－8	
92．8\％	4，777	4．760	－16	
93．8\％	4，740	4，759	19	
95．19\％	4，711	4，738	${ }_{5}^{27}$	0．6\％
－97．5\％	4，203	4，730	${ }_{5} 52$	${ }^{12.5 \%}$
98．8\％	4，156	4，200	44	1．1\％

0.0\%	85,259	85,260	0	0.0\%
- 1.2%	78.609 58308	78.612 58309	${ }_{2}^{3}$	0.0\%
3.7\%	50,260	50,262	2	0.0\%
4.9\%	39,261	38,864	396	\%
6.2\%	37,371	37,366	-5	\%
7.4\%	35,389	35,393	4	0.0\%
8.6\%	35,174	34,304	870	-2.5\%
9.9\%	34,322	33,693	-630	-1.8\%
11.1\%	29,847	29,847	0	0.0\%
12.3\%	25,305	25,307	3	0.0\%
13.6\%	22,954	22,953	-1	0.0\%
14.8\%	${ }^{22,326}$	22,410	84	0.4\%
16.0\%	22,165	22,325	160	0.7\%
${ }^{17.3 \%}$	21,866	22,165	299	1.4\%
18.5\%	${ }^{21,463}$	21,868	405	1.9\%
19.8\%	20,756	20,675	-81	-0.4\%
21.0\%	20,454	${ }^{20,563}$	109	0.5\%
${ }^{22.2 \%}$	19,796	19,779	--71	-0.4\%/
23.5\%	19,764	-19,235	-529	-2.7\%
${ }^{24.790}$	-19,235	18,709	--297	-2.7\%
27.2\%	17,092	17,093	1	0.0\%
28.4\%	16,228	16,497	270	\%
29.6\%	14,326	15,395	1,069	7.5\%
30.9\%	14,218	14,216	2	0.0\%
32.1\%	14,090	14,091	1	0.0\%
33.3\%	13,929	13,948	19	0.1\%
34.6\%	13,794	13,792	-2	
35.8\%	13,276	13,274	-1	0.0\%
37.0\%	${ }^{13,128}$	${ }^{12,994}$	-134	1.0\%
年38.3\%	13,006	${ }^{12,8288}$	-179	-1.4\%
39.5\%	${ }^{12,384}$	${ }^{12,473}$	89	0.7\%
40.7\%	${ }^{11,1102}$	${ }^{11,962}$	799	7.2\%
42.0\%	10,755	11,163	408	3.8\%
${ }^{43.2 \%}$	-10,742	10,777	${ }^{35}$	0.3\%
${ }^{44.4 \%}$	10,642	10,756	114	1.1\%
45.7\%	10,412	10,743	${ }^{632}$	6.2\%
48.1\%	9,856	${ }^{9,851}$	${ }_{-6}$	-0.1\%
49.4\%	${ }_{\substack{9,814 \\ 9.252}}$	${ }_{\substack{9,817 \\ 9,254}}$	${ }_{1}^{2}$	0.0\%
51.9\%	9,222	- 9,219	-3	0.0\%
53.1\%	9,111	9,111	0	0.0\%
54.3\%	9,026	9,017	-9	-0.1\%
55.6\%	8,889	8.979	89	1.0\%
56.8\%	8,790	8,887	96	1.1\%
58.0\%	8,744	8,790	46	0.5\%
59.3\%	8.538	8.736	198	2.3\%
60.5\%	8.425	8.416	-9	-0.1\%
61.7\%	${ }_{7}^{8.002}$	${ }^{8.008}$	${ }_{6}^{123}$	0.1\%
64.2\%	7,849	${ }^{8.9005}$	123 57	0.7\%
65.4\%	7.844	7.842	-2	0.0\%
${ }^{66.7 \%}$	7,797	7,799	2	0.0\%
${ }^{67.9 \%}$	7,746	7,748	2	0.0\%
- 70.14%	7,678	7,682	4	0.0\%
71.5\%	7,510 7 7	7,509 7 7	-1	0.0\%
72.8\%	7.478	7,480 7,450	2	0.0\%
74.3\%	7, 7 7,260	7,450 7,266	0	0.0\%\%
76.5\%	7.147	7,155	8	0.1\%
77.8\%	6.977	7,051	74	\%
79.0\%	6,734	6,978	244	3.6\%
-	6,618	6,737	119	1.8\%
${ }^{81.5 \%}$ 827\%	${ }_{6}^{6.4907}$	${ }_{6,507}^{6,621}$	113 90	1.4.7\%
84.0\%	6,347	6,402	55	0.9\%
85.2\%	6,150	6,348	199	3.2\%
86.4\%	5,936	6,152	217	3.6\%
877\%	5,656	6,124	468	8.3\%
- ${ }^{88.9 \%}$	5,5614 5.440	c,016 5.863	${ }_{422}$	7.2% 7.8%
91.4\%	5.414	5.416	2	0.0\%
92.6\%	5.383	5,337	-45	-0.8\%
93.8\%	${ }_{5}^{5,336}$	5,171	-164	-3.19\%
${ }^{965.3 \%}$	${ }_{4}^{5.8186}$	${ }_{4}^{4.866}$	--931	-3.9\%
97.5\%	4.773	4,723	-50	-1.1\%
98.8\%	4.543	4.565	22	0.5\%

11.1\%	15.440
12.3%	15,422

$16.0 \% \%$	15.33
$\begin{array}{l}17.3 \% \\ 18.5 \%\end{array}$	15.30
15,322	

22.2\%
23.5%
24.7%
27 \qquad

24.7%	15,29
25.9%	11,209
27.20	15.189
28.4%	15,16

\qquad

Percent Exceedance	${ }^{\text {WSIP } 2070}$ Prithout	WSIP 2070 W With Project	Absolute Difference	Relative Difference
${ }^{\text {Probability }}$	Monthly Fow (1 CFS)	Monthly Folw (CFFS)	(CFS)	
${ }^{1.25 \%}$	${ }^{13,495}$	${ }^{12,472}$	-1,023	-7.6\%
3.7\%	${ }_{12,569}^{12,069}$	${ }^{11,959}$	-610	-4.9\%
4.9\%	12.423	11,908	-515	-4.1\%
6.2\%	12,362	${ }^{11,866}$	497	-4.0\%
7.4\%	12,101	${ }^{11,728}$	${ }^{-373}$	
8.6\%	12,095	11,630	465	-3.8\%
9.9\%	${ }^{12,058}$	${ }^{11,527}$	-531	-4.4\%
11.1\%	${ }^{12,043}$	${ }^{11,393}$	-649	-5.4\%
${ }^{12.3 \%}$	${ }^{11,883}$	${ }^{11,385}$	-498	-4.2\%
13.6\%	111,585	11,277	-399	-2.7\%
14.8\%	11,474	10,964	-510	-4.4\%
16.0\%	11,419	10,882	-537	
195\%	${ }^{111,333}$	10,813	-520	
18.9\%	11,117	10,748	-590	
19.8\%	11,114	10,744	-370	
22.2\%	${ }^{11,1048}$	10.7565 10.655	-376	${ }_{-3.4 \%}^{-2.4 \%}$
23.5\%	11,018	10,656	-362	-3.3\%
24.7\%	11,003	10,628	-375	
25.9\%	10,938	10,627	-311	
27.2\%	10,828	10,610	-218	
28.4\%	${ }^{10,820}$	10,600	-220	
29.6\%	10,759	10.566	-193	-1.8\%
30.9\%	10,732	10,554	-178	-1.7\%
${ }^{32.1 \%}$	${ }^{10,716}$	10.518	198	-1.8\%
${ }^{33.3 \%}$	10,659	10,513	-146	-1.4\%
34.6\%	${ }^{10.568}$	10.502	-65	-0.6\%
35.8\%	${ }^{10,535}$	10,460	${ }^{-76}$	-0.7\%
37.0\%	${ }^{10,506}$	10,421	-85	-0.8\%
38.3\%	10,484	10,418	-66	-0.6\%
39.5\%	10,474	10,394	-81	-0.8\%
40.7\%	10,450	10,349	-11	-1.0\%
42.0\%	${ }_{10,326}$	10,319	-11	
44.4\%	10,180	10,289	109	1.1\%
45.7\%	9,903	10,264	361	\%
46.9\%	9,815	10,248	433	
48.1\%	9.680	10,173	493	5.1\%
59.4\%	${ }^{9.5992}$		577	${ }^{6.0 \%}$
51.9\%	${ }_{9,512}^{9.501}$	10,134	621	${ }_{6.5 \%}^{6.10}$
53.1\%	9,487	10,116	630	6.6\%
54.3\%	9,472	10,006	534	6\%
55.6\%	9.442	9,982	540	5.7\%
56.8\%	9,410	9,931	521	5.5\%
58.0\%	9,403	${ }^{9,922}$	518	5.5\%
59.3\%	9,289	9,877	599	3\%
${ }^{60.5 \%}$	${ }_{9,286}$	${ }^{9,8877}$	591	4\%
61.7\%	9,197	${ }^{9,872}$	676	7\%
63.0\%	9,184	${ }_{9}^{9.850}$	666	\%
${ }^{64.2 \%}$	9,139	${ }^{9,836}$	${ }_{7}^{697}$	70\%
${ }_{66.7 \%}^{65.4 \%}$	${ }_{9,055}^{9,118}$	${ }_{\substack{9,835}}^{\text {9,835 }}$	716 776	7.9\%
67.9\%	${ }_{9,036}^{9,055}$	${ }_{9}^{9,788}$	${ }_{751} 7$	8.3\%
69.1\%	9,028	9.671	643	7.1\%
70.4\%	8,982	${ }^{9} .664$	${ }_{6}^{683}$	
72.8\%	${ }_{8,880}^{8.928}$	${ }_{9,634}^{9,642}$	${ }_{754}^{744}$	8.5\%
74.1\%	8.869	9.610	741	4\%
75.3\%	8,844	9,597	753	5\%
76.5\%	${ }^{8.816}$	9,560	744	4\%
77.8\%	8.799	9.514	715	1\%
79.0\%	${ }^{8,696}$	9,492	797	9.2\%
80.2\%	8.649 8.590	9,474	825	9.5\%
81.5\%	8.590 8.59	${ }^{9,456}$	865	10.1\%
82.7\%	8.579 8.543	9,401	821	6\%
- 84.0%	8,543 8.530	${ }^{9,3,360}$	${ }_{788}^{817}$	9.6\%
${ }_{86.4 \%}$	${ }_{8.489}^{8.530}$	${ }_{\substack{\text { g,278 }}}^{\text {g,213 }}$	${ }_{724}$	${ }_{8}^{8.5 \%}$
87.7\%	8.462	9,195	733	8.7\%
88.9\%	${ }^{8,368}$	9,111	${ }^{743}$	8.9\%
90.1\%	8,215	9,048	832	10.1\%
91.4\%	8,157	${ }^{9,027}$	869	7\%
938.8\%	${ }_{8}^{8.0138}$	${ }_{8.674}^{8.69}$	${ }_{663}^{631}$	8.3\%
95.1\%	7,941	${ }_{8,580}$	639	\%
96.3\%	${ }_{7}^{7,828}$	${ }^{8,425}$	597	6\%
97.5\%	7.814	${ }^{8.015}$	200	6\%
98.8\%	6,779	7,562	${ }^{783}$	11.6\%

Percent Exceedance	$\begin{aligned} & \text { WSIP 2070 Without } \\ & \text { Proiect } \end{aligned}$	Wsip 2070 With Project	Absolute Difference	
	Monthy Flow (CFS)	Monthy Flow (CFS)	(CFs)	
0.0\%	15,890	16,601	711	4.5\%
1.2\%	${ }^{15,835}$	${ }^{16,131}$	297	1.9\%
2.5\%	15,824 15588	${ }^{15,807}$	-17	${ }^{0.19 \%}$
3.7\%	${ }^{15.588}$	15.677	89	0.6\%
4.9\%	15.553 15.508 1	15,646 15,501	${ }_{-7}^{93}$	${ }^{0.6 \%}$
7.4\%	15.508 15.453	15.501 15.387	${ }_{-65}^{-7}$	-0.0\%
8.6\%	15,315	${ }^{15,365}$	50	3\%
${ }^{9.9 \%}$	69	15,212	${ }^{43}$	
123\%	${ }_{\text {l }}^{15.128}$	15,157	29	0.2\%
13.6\%	15,098	15,044	- ${ }_{-54}$	-0.4\%
14.8\%	15,058	15,030	${ }_{-28}$	0.2\%
16.0\%	${ }^{15.029}$	14,904	126	0.8\%
17.3\%	15,006	14,721	285	-1.9\%
18.5\%	14,959	14,711	248	-1.7\%
19.8\%	14.959	14,587	-371	-2.5\%
21.0\%	14,940	${ }^{14,166}$	-774	-5.2\%
${ }^{22.2 \%}$	14,481	${ }^{13,855}$	-626	-4.3\%
23.5\%	${ }^{13,776}$	${ }^{13,322}$	-454	
24.7\%	- 13,411	${ }^{13.010}$	-401	
25.9\%	13,205 13,237 13,	${ }^{12,8688}$	${ }_{-73}$	
27.2\%	${ }^{13,037}$	12,324	-787	
29.6\%			-880	-7.2\%
30.9\%	12,120	11,123	-997	-8.2\%
32.1\%	11,956	10,150	1,806	
33.3\%	11.614	9,756	-1,858	
34.6\%		9,168	576	-14.7\%
退35.8\%	10,267 10,000 10	8,224 8143	-2,043	-19.9\%
${ }^{37.0 \%}$	${ }_{9,872}^{10,072}$	${ }_{8,002}^{8,143}$	${ }_{-1,870}{ }^{-1,688}$	-18.9\%
39.5\%	8,720	7,857	-863	-9.9\%
40.7\%	${ }^{8,716}$	${ }_{7.553}$	-1,163	-13.3\%
42.0\%	8.415	${ }_{7,357}$	$-1,058$	-12.6\%
43.2\%	8,162	7,043	-1,118	-13.7
44.4.\%	7,640	6.886	${ }^{754}$	-9.9\%
45.7\%	${ }^{7} .0078$	${ }^{6,840}$	${ }^{238}$	-3.4\%
46.9\%\%	6,977	6,817	-159	2.3\%
49.4\%		6.812	-143	-2.1\%
50.6\%	${ }_{6,435}^{6.45}$	${ }_{6,618}^{6.618}$	184	2.9\%
51.9\%	6,193	6,587	393	\%
${ }^{534.3 \%}$	c.1681 6.011	- $\begin{aligned} & 6.445 \\ & 6.492\end{aligned}$	${ }_{481}$	${ }^{6.0 \%}$
55.6\%	${ }_{5}^{5.745}$	${ }_{6,427}$	682	11.9\%
56.8\%			701	
59.3\%	${ }_{5,665}^{5.675}$	${ }_{6,351}^{6,4}$	${ }_{686}$	12.1\%
60.5\%	5,645	6,330	685	12.1\%
61.7\%	5,464	6,330	866	15.8
63.0\%	5.409	6,299	891	16.5\%
64.2\%	5,397	6,244	847	15.7\%
65.4\%	5,119	6,230	1,111	${ }^{21.7 \%}$
${ }^{66.7 \%}$	5,094	6,180	1,085	${ }^{21.3 \%}$
-67.9\%	5,057	${ }^{6,168}$	${ }^{1,1111}$	20\%
69.1\% ${ }^{\text {70.4\% }}$	5.016	6,143	1,126 1,123	22.5\%
71.6\%	4.856	6,069	${ }_{1,214}^{1,14}$	25.0\%
72.8\%	4,836	6,035	1,199	24.8\%
74.19\%	4,828	${ }_{6}^{6,021}$	1,193	
75.3\%	4,796	+5.964	${ }^{1,1166}$	${ }^{24.3 \%}$
76.5\%	4,746	($\begin{aligned} & 5.898 \\ & 5851 \\ & 5851\end{aligned}$	1,151	24.3\%
79.0\%	4.583	${ }_{5,850}^{5.651}$	${ }_{1}^{1,267}$	27.6\%
80.2\%	4,562	¢ 5.819	${ }^{1,258}$	27.7.\%
${ }^{\text {822.7\% }}$	${ }_{4.543}^{4.560}$	${ }_{5,666}^{5.791}$	${ }_{1}^{1,123}$	24.7\%
84.0\%	4,541	5,642	1,100	24.2\%
85.2\%	4.526	5.626	1,101	
86.4\%	4,498	5.621	1,123	
- 88.7%	4,495	5.582	1,086	${ }^{24.2 \%}$
- ${ }^{88.9 \%}$	4,420	${ }_{5.545}$	${ }^{1,125}$	25.4\%
91.4\%	4,296	5,419	${ }_{1}^{1,123}$	22.1\%
92.6\%	4,226	5,330	1,104	26.1\%
${ }^{93.8 .8 \%}$	4.141	5,245	1,104	${ }^{26.7 \%}$
95.1\%	${ }_{4}^{4,129}$	5,197	${ }_{\text {1,068 }}^{1,063}$	${ }^{25.9 \%}$
97.5\%	3,951	${ }_{5}^{5} 5.085$	${ }_{1}^{1,134}$	${ }^{2.97 \%}$
98.8\%	3,998	5,050	,152	
100.0\%	3.693	4,705	1,012	27.4\%

Figure SW-12-b
Sacramento River below Red Bluff Diversion Dam, Monthly Flow

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probabaility } \end{aligned}$	Octioer			
	WSIP 2070 Without	WSII 2070 With Project	${ }_{\text {Absiolue }}^{\substack{\text { difference }}}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	Monthly foio (CFFS)	Monthly Fow (CFES)	(CF5)	
0.0\%	${ }_{15206}$	${ }^{5,2181}$		12.9\%
2.5\%	${ }_{\text {12107 }}^{112102}$	${ }^{11,1940}$	267	
3.7\%	${ }^{11,536}$	11259	277	-2.\%
4.9\%	11,302	111,179	123	, 16
6.2\%	10.044	10,251	206	2.1\%
7.4\%	9,695	10,007	311	3.2\%
8.6\%	9.621	9,690	69	0.7\%
9.9\%	9,501	9,634	${ }^{134}$,
11.1\%	${ }_{9}^{9,304}$	9,554	251	2.7\%
${ }^{12.36 \%}$	9,274	8,937	${ }^{-337}$	
13.6\%	9,257	8,994	-623	
14.8\%	9,162	${ }^{8,638}$	523	
117.0\%	9,152	${ }_{8}^{8,403}$	-49	-8.2\%
18.5\%	8,474	8,229	-245	-2.9\%
19.8\%	8,456	8.114	342	\%
221.0\%	8.425	${ }^{8.1110}$	-316	7\%
${ }_{\text {223.5\% }}^{22.2 \%}$	8,391 8,279	7,872 7,772	-520	-6.2\%
24.7\%	8,243	7.679	-565	-6.3\%
25.9\%	7.872	7,596	${ }^{-276}$	3.5\%
27.2\%	${ }^{7} 8863$	${ }^{7.546}$	-318	4.0\%
${ }^{28.4 \%}$	7.829	7,519	-310	-4.0\%
29.6\%	7,827	7,256	571	-7.3\%
30.9\%	7,577	7,243	-334	-4.4\%
32.1\%	7,531	7,213	-318	-4.2\%
- 33.3%	7,472	7,169	-303	4.1\%
34.6\%	7,448	6,759	-688	-9.2\%
	${ }_{7} 7.416$	6,711	-705	-9.5\%
38.3\%	${ }_{7}^{7,402}$	${ }^{6,708}$	-694	-9.4\%
${ }_{39.5 \%}$	\%,990	${ }_{6}^{6.653}$	${ }_{-45}$	${ }^{-6.5 \%}$
40.7\%	6.848	6.519	329	-4.8\%
42.0\%	${ }^{6.785}$	${ }^{6.501}$	${ }_{-284}$	2\%
44.4\%	${ }_{6.732}^{6.739}$	¢,430	-302	-3.5\%
45.7\%	6,730	6,335	-394	5.9\%
46.9\%	6,716	6,089	627	3\%
48.1\%	6.632	6.005	627	
49.4\%	${ }^{6.586}$	5.916	670	-10.2\%
${ }^{50.6 \%}$	${ }^{6.521}$	5.915	606	-9.3\%
51.9\%	${ }^{6.517}$	5.915	-603	-9.2\%
55.1\%	6,434	$\begin{array}{r}5.901 \\ 5 \\ 5 \\ \hline\end{array}$	-533	${ }^{-8.3 \%}$
54.3\%	6,278	5,756	-522	-8.3\%
55.6\%	6,244	5.681	-562	-9.0\%
	6,235	${ }^{5,648}$	-587	${ }^{-9.4 \%}$
55.0\%\%	6,089	-	-433	-7.7\%
60.5\%	6,066 5.967	5.629 5.605	${ }_{-3}^{437}$	-7.2\%
61.7\%	${ }_{5}^{5.836}$	${ }^{5.540}$	-296	-5.1\%
63.0\%	${ }_{5}^{5.778}$	5.522	-256	-4.4\%
64.2\%	5.707	5.401	-306	-5.4\%
66.7\%	5,7,600 5	5.389 5.271	-310	-5.4\%\%
67.9\%	5,565	${ }_{5,250}^{5}$	-315	-5.7\%
69.1\%	5,510	5.234	276	0\%
70.4\%	5,468	${ }_{5}^{5.221}$	248	-4.5\%
71.6\%	5,456	5.214	-241	4.4\%
72.8\%	5.430	5,159	${ }^{271}$	-5.0\%
75.3\%	5.368 5.350	5,158 4.882	-210	-3.9\%\%
76.5\%	5,328	4,825	-503	-9.4\%
77.8\%	5,299	4.825	-474	-8.9\%
79.0\%	5,280	4,796	484	-9.2\%
80.2\%	5,256	4,786	471	-9.0\%
${ }^{81.5 \%}$	5,231	4,784	-447	-8.6\%
82.7\%	5,224	4,694	530	-10.1\% ${ }_{\text {- }}^{\text {-10.3\% }}$
885.2\%	5,220 5 51218	${ }^{4,683}$	${ }_{-537} 5$	-
${ }_{86.4 \%}$	${ }_{5}^{5,173}$	4.608	${ }_{-565}$	-10.9\%
87.7\%	5,093	4,574	-519	-10.2\%
88.9\%	4.969	4,566	${ }_{4}^{403}$	-8.19\%
901.1\%	4,966	4,546	析	-8.4\%
91.4.	4,965	${ }_{4}^{4,489}$	-46	-9.6\%
932.8\%	4.873	${ }_{4}^{4.439}$	${ }_{-4}$	-8.9\%
95.1\%	4,842	4.4	-404	3\%
96.3\%	4,838	4,408	-430	\%
97.5\%	4,681	4.398	${ }^{283}$	
98.8\%	4,494	4,370	${ }^{-123}$	${ }^{-2.7 \%}$
100.0\%	4,353	4,348	-5	-0.1\%

| |
| :--- | :--- | :--- | :--- |

Juy					August				
Percent Exceedance	${ }_{\substack{\text { WSIP } \\ \text { Proiect }}}^{\text {Prout }}$	WSIP 2070 With Project	Absolute Difference	Relative	$\xrightarrow{\text { Percent }}$	WSIP 2070 Without	WSIP 2070 With Project	Absolute	Relative
Probability	Monthy Fiow（CFS）	Monthy Flow（CFS）		Difference $(\%)$		Monthly Fiow（CFS）	Monthy fow（CFS）		Difference（\％）
0．0\％	15，571	20，059	4，488	28．8\％	0．0\％	13，509	12，628	－881	－6．5\％
1．2\％	15，350	19，662	4，312	28．1\％	1．2\％	13，234	12，048	－1，186	－9．0\％
2．5\％	15，269	19，074	3，806	24．9\％	2．5\％	12，397	11，886	－511	－4．1\％
3．7\％	15，217	18，774	3，557	23．4\％	3．7\％	12，025	11.549	－476	－4．0\％
4．9\％	15.104	18.685	3，581	23．7\％	4．9\％	${ }^{12,006}$	11，132	－873	－7．3\％
－ 7.2%	15.103 15019	18.671 18.327	－ $\begin{aligned} & 3.568 \\ & 3 \\ & 3\end{aligned}$	${ }_{22}^{23.6 \%}$	6．2\％	$\begin{array}{r}11,973 \\ 11882 \\ \hline 18\end{array}$	${ }^{11,080}$	－883	－7．5\％
7.4% 8.6%	15.019 15011	18,327 17729	－3,308 2783 1	${ }_{18}^{22.0 \%}$	7．4\％	11,882 11850	10.996 10.965	－886	－7．5\％
8．6\％	15.011 15.005	17,794 16.540	2，783 1.535		8．6\％	11,850 11648 1.688	10,965 10.955 1	－895	－7．5\％
${ }^{\text {9．9\％}}$	${ }^{15,005}$	16,540 15955 1050	${ }_{\text {1，535 }}$	10．2\％	${ }^{\text {9，9\％}}$	${ }^{11,648} 11.635$	10,955 10.926 10.9	－693	－5．9\％
${ }^{11.12 \%}$	14,989 14.985	${ }_{\text {15，．661 }}^{15,965}$	976 676	6．5\％	${ }^{11.1 \%} \times 1.3 \%$	11,635 11,357	10,926 10,778	－779	${ }_{-5.1 \%}^{-6.1 \%}$
13．6\％	14，944	15，282	338	2．3\％	13．6\％	11，333	10，653	－680	－6．0\％
14．8\％	14，935	15，278	342	2．3\％	14．8\％	11，231	10，471	61	5．8\％
－16．0\％ 17.3%	14，908	15，237	329	${ }_{\text {2，}}$	16．0\％	${ }^{11,053}$	10，465	－588	－5．3\％
		15，145 15.145	${ }_{277}^{246}$	1．79\％	－${ }_{\text {17．3\％}}^{17.3 \%}$	${ }^{11,048} 11,003$	10,458 10.451	－5990	－5．5．3\％
19．8\％	14，864	15,139	275	1．8\％	19．8\％	10.820	10．408	－412	－．3．8
21．0\％	14，810	15，090	279	1．9\％	21．0\％	10．756	10，389		
22．2\％	14，803	15，069	266	1．8\％	22．2\％	10.747	10，345	402	
23．5\％	14，779	15，047	${ }^{268}$	1．8\％	23．5\％	10，684	10，322	362	
24．7\％	14，762	${ }^{14,931}$	169	1．1\％	24．7\％	${ }^{10,626}$	${ }^{10,312}$	－314	－3．0\％
25．9\％	14，729	14.909	180	1．2\％	25．9\％	10，607	10，266	${ }^{341}$	－3．2\％
27．2\％	${ }^{14,725}$	14.860	135	0．9\％	27．2\％	10.599	10，253	${ }_{-346}$	－3．3\％
${ }^{28.4 \%}$	14，7716	14，855	140	0．9\％	28．4\％	10，499	${ }^{10,225}$	274	源
	14，708	${ }^{14,850}$	142	1．0\％	29．6\％	10，474	10，207	－267	迆
30．9\％	${ }^{14,6868}$	${ }^{14,802}$	116	0．8\％	30．9\％	10，442	10，189	源	－2．4\％
32.1% 333%	14，677	14，773	${ }_{77}^{96}$	0．7\％	32．1\％	10，347	10，100	－248	－2．4\％
	14，673	14，749	17	0．5\％	33．3\％	10，330	10，083	退	迷
34．6\％ 3588	14，669	${ }^{14,7388}$	69	0．5\％	34．6\％	10，294	10，076	－218	
37．0\％	${ }_{\text {14，632 }}^{14,655}$	${ }_{1}^{14,722}$	${ }_{90}$	0．6\％	357．8\％	${ }_{9,995}^{10,195}$	${ }^{10,983}$	－19	－0．1\％
38．3\％	14，589	14,711	123	0．8\％	38．3\％	9，900	9，956	57	6\％
	14，585	14，648	63	0．4\％		9，680	9，940	60	27\％
${ }_{4}{ }^{2} 0{ }^{\circ}$	${ }^{14,500}$	14，629	130	0．9\％	4．2．\％	${ }_{9.667}$	9，990	223	
43．2\％	14，474	14，617	142	1．0\％	43．2\％	9，645	9，882	237	2．5\％
44．4\％	14，428	14，616	189	1．3\％	44．4\％	9，548	9，881	333	3．5\％
45．7\％	14，422	14，575	153	1．1\％	45．7\％	9,487	9,815	${ }^{328}$	3．5\％
46．9\％	14，391	14，465	73	0．5\％	46．9\％	9，453	9，788	335	
48．1\％	${ }^{14,377}$	14，457	${ }_{81}^{81}$	0．6\％	48．1\％	9,439	9，782	343	3．6\％
4．9．4\％	14，359	14.435	${ }^{76}$	0．5\％	49．4\％	9，302	9，736	435	4．7\％
年 50.0% \％	14，3557	14.414	59	0．4\％	50．6\％	9，295	9，731	${ }^{436}$	4．7\％
51．9\％	14，337	14，242	－95	－0．7\％	51．9\％	9，272	9，726	454	4．9\％
年 53.3%	14，304	14，194	－110	－0．8\％	53．1\％	9，143	9，706	563	${ }^{6.2 \%}$
年5．3．6\％	14，288	14，187	－101	－0．7\％	54．3\％	9，143	9，699	556	6．1\％
55．8\％	14，250	14，086	－164	－1．2\％	55．6\％	9，038	9，663	${ }_{6} 625$	6．9\％
56．8\％	14，243	${ }^{13,974}$	－269	－1．9\％	56．8\％	8，999	9，661	${ }_{6}^{663}$	\％．4\％\％
${ }^{58.0 \%}$		${ }_{\text {13，847 }}^{13,96}$	－238	－1．7\％	59．3\％	${ }_{8,981}^{8,982}$	${ }_{9.629}^{9.661}$	${ }_{648}^{69}$	7．2\％
60．5\％	${ }^{14,001}$	－13，769	${ }_{-232}$	－1．7\％	60．5\％	${ }_{8,900}$	${ }_{9,607}^{9,697}$	${ }_{707}^{648}$	7．9\％
61．7\％	13,895	13.649	－246	－1．8\％	61．7\％	8,873	9，605	${ }^{732}$	8．2\％
－63．0\％	${ }^{13,895}$	${ }^{13,562}$	${ }^{-333}$	－2．4\％	63．0\％	${ }^{8.850}$	9，603	${ }_{7} 54$	
${ }^{64.24 \%}$	13，664	${ }_{\text {13，}}^{1331}$	－238	－－2．0\％	${ }^{64.24 \%}$	${ }_{8}^{8.895}$	9，5862	785	
${ }_{66.7 \%}$	${ }_{\text {13，608 }}$	${ }_{\text {13，264 }}$	－344	－2．5\％	${ }^{65.4 \%}$	${ }_{8,765}^{8,795}$	${ }_{9,535}^{9.582}$	${ }_{771} 7$	8．8\％
67．9\％	13，605	13，235	－370	－2．7\％	67．9\％	8，751	9，513	761	8．7\％
69．1\％	${ }^{13,463}$	13，204	－259	－1．9\％	69．1\％	8，742	9,497	755	6\％
70．4\％	13，195	13，120	－75	－0．6\％	70．4\％	8，703	9.462	759	\％
71．6\％	${ }^{13,145}$	${ }^{13,080}$	－65	－0．5\％	71．6\％	8.559	9，422	863	10．1\％
72．8\％	${ }^{13,112}$	${ }^{12,968}$	－144	－1．1\％	72．8\％	8，544	${ }^{9,394}$	849	9．9\％
74.1% 753%	${ }^{12,974}$	${ }^{12,894}$	－81	－0．6\％	74．1\％	8，543	${ }^{9,355}$	812	${ }^{9.5 \%}$
7．7．5\％	${ }^{12,227}$	${ }^{12,886}$	－41	－0．3\％	75．3\％	8.540	9，353	813	9．5\％
76．7．8\％	${ }^{12,898}$	${ }^{12,876}$	－23	${ }^{-0.2 \%}$	76．5\％	8.519	9，341	${ }^{822}$	9．6\％
79．0\％	${ }_{1}^{12,542}$	${ }^{12,806}$	${ }^{264}$	2．1\％	77．8\％	8.499	${ }_{9,329}$	831	9．8\％
－79．0\％	${ }^{12,524}$	${ }^{12,625}$	100	0．8\％	79．0\％	8，474	${ }_{9}^{9,315}$	${ }_{847}^{842}$	${ }^{9.9 .9 \%}$
${ }^{8} 8.15 \%$	${ }_{1}^{12,317}$	${ }_{1}^{12,123}$	－194	－1．5\％	－${ }_{\text {81．5\％}}$	${ }_{8}^{8,434}$	${ }_{\text {9，308 }}^{9,259}$	884	${ }_{\text {cke }}^{10.4 \%}$
82．7\％	12，215	11，996	－218	－1．8\％	82．7\％	${ }_{8,371}$	9，255	885	10．6\％
84．0\％	${ }^{11,1926}$	${ }^{11,920}$	－6	－0．1\％	84．0\％	${ }_{8}^{8,298}$	9，195	${ }^{897}$	10．3\％
88．4\％	11．885	${ }_{111,623}^{115}$	－2185	－2．1．0\％	85．2\％	－${ }_{8,293}^{8,157}$	${ }_{9}^{9,067}$	${ }^{714}$	9．3\％
${ }^{86.47 \%}$	11189	11,277	－209	－2．2\％	${ }^{86.47 \%}$	8，157	9，065	908	\％
88．9\％	${ }_{111,127}$	${ }^{11.472}$	345	3．1\％	88．9\％	${ }_{8,014}^{8.005}$	${ }_{8,986}^{9.020}$	972	\％
${ }^{\text {90．1\％}}$	10，967	11，433	${ }_{466}$	4．2\％	${ }^{\text {90．} 1 \%}$	${ }_{7}^{\text {7，982 }}$	${ }_{8,834}^{\text {8，960 }}$	852	10．7\％
91．4\％	10，902	11，299	396	3．6\％	91．4\％	7，861	8，794	934	9\％
92．6\％	10，870	11，296	426	3．9\％	92．6\％	7，762	${ }^{8.546}$	783	10．1\％
93．8\％	10，264	11，267	1，003	9．8\％	93．8\％	7，686	${ }_{8,417}$	${ }^{731}$	5\％
95．19\％	10，158	11，089	931	9．2\％	95．1\％	7，684	${ }_{8,413}$	${ }_{729}$	${ }^{9.5 \%}$
${ }^{96.3 \%} 9$	9，550	11，035	${ }^{1,485}$	15．5\％	${ }^{96.3 \%}$	7，625	${ }^{8,368}$	${ }^{743}$	9．7\％\％
98．8\％	${ }_{8}^{9,344}$	10，475	${ }_{1}^{1,081}$	${ }^{13.52 \%}$	97．5\％	7,578 6.429	${ }_{7183}^{8.015}$	${ }_{754}^{437}$	${ }^{5.8 \%}$
100．0\％	6.814	6.919	106	1．5\％	100．0\％	${ }_{3,573}^{6,429}$	${ }_{3,834}$		7．3\％

		Seprember		
Percent Exceedance	WSIP 2070 Weithout	WSIP 2070 With Project		Relative
	Monthly flow（CFSS）	Monthy Fow（CFS）		ference（\％）
0．0\％	15.834		634	4．0\％
1．2\％	15.816	16.087	271	
2．5\％	15，703	15,778	74	
3．7\％	15，536	15，645	109	
4．9\％	15，488	15，621	133	
6．2\％	15，383	15,471	88	
7．4\％	15，336	15，324	${ }^{12}$	
8．6\％	15，217	15，263	${ }^{46}$	0．3\％
9．9\％	${ }^{15,105}$	15，201	${ }^{95}$	0．6\％
11．1\％	15，104	15，132	${ }^{28}$	0．2\％
${ }^{12.3 \%}$	${ }^{15,073}$	15，080	7	
13．6\％	${ }^{15.041}$	14，996	45	
14．8\％\％	${ }^{15,005}$	${ }^{14,9282}$	－77	
16．0\％	14，941	14，872	－70	
185\％	14，8844	44,685	－129	${ }^{-1.40 \%}$
18．5\％	114，844	14,685	－159	
19．8\％	14，479	14,467	－ 288	1．9\％\％
22．2\％	${ }^{14,3,316}$	${ }^{13,831}$	－485	－3．4\％
23．5\％	13，656	13，289	－367	－2．7\％
${ }^{24.7 \%}$	${ }^{13,395}$	${ }^{12,934}$	－460	－3．4\％
27．2\％	${ }^{13,019}$		646	－5．0\％
28．4\％	12,646	12.025	－621	4．9\％
29．6\％	12，098	11，320	－777	
30．9\％	11，982	11，093	－889	－7．4\％
32．1\％	${ }^{11,930}$	10，118	－1，812	－15．2\％
33．3\％	${ }^{11,409}$	9，735	－1，674	－14．7\％
34．6\％	10，717	9，094	${ }^{-1,623}$	－15．1\％
35．8\％	10，241	${ }^{8,193}$	－2，047	－20．0\％
37．0\％	${ }^{9,983}$	8，137	${ }^{-1,846}$	－18．5\％
38．3\％	${ }_{9,833}$	7，967	－1，886	－19．1\％
39．5\％	8，703	7，830	－872	－10．0\％
40．79\％	8，700	7，539	－1，161	－13．3\％
432\％	${ }_{8,341}$	${ }_{7}^{7,334}$	－1，008	－12．10\％
${ }_{4}^{43.4 \%}$	${ }_{\substack{8,141 \\ 7,624}}$	7.025 6.871	${ }_{-753}$	－9．9\％
45．7\％	7.058	6,782	－275	9\％
46．9\％	6，936	6，761	－175	
48．1\％	6，921	6，742	－179	
49．4\％	${ }^{6.521}$	6，742	${ }_{221} 22$	3．4\％
${ }^{50.6 \%}$			${ }_{403}^{270}$	${ }_{\text {c }}^{\text {6．3\％}}$
53．1\％	6，080	${ }_{6.520}$	440	7．2\％
54．3\％	${ }_{6}^{6.011}$	${ }_{6,417}$	406	6．8\％
55．6\％	5，745	6，394	649	11．3\％
56．8\％	5．665	${ }^{6,390}$	${ }^{725}$	${ }^{12.8 \%}$
年 58.0%		6，359	719	${ }^{12.7 \%}$
㐌 $\begin{aligned} & \text { 59．3\％} \\ & 6.5 \%\end{aligned}$	5，632	${ }_{6}^{6,328}$	${ }_{697} 97$	${ }^{12.44 \%}$
60．5\％	5，576	6，313	${ }^{37}$	${ }^{13.2 \%}$
－61．7\％	5，464	${ }_{6}^{6,311}$	847	55\％
－63．0\％	${ }_{5}^{5.397}$	6，235	838	${ }^{15.5 \%}$
－6．4．4\％	5.391 5102		${ }^{829}$	－${ }_{\text {21．6\％}}$
66．7\％	4，994	6，157	1，162	23．3\％
67．9\％	${ }_{4}^{4.983}$	6，143	＋1，160	${ }_{2}^{23.3 \%}$
69．1\％	4，943			24．3\％
71．2\％	4,844	6，057	${ }_{1,214}^{1,200}$	25．1\％
72．8\％	4.812	5.998	1，186	24．6\％
74．3\％	${ }_{4}^{4,771}$	5，951 5949	1,180 1218 1 1	${ }^{24.7 .7 \%}$
76．5\％	4，716	5，796	${ }_{1}^{1,080}$	22．9\％
77．8\％	4，551	5，767	1，217	
79．0\％	4，546	5，763	1，217	
80．2\％	4，542	5，762	1，220	26．9\％
81．5\％	4，541	5，754	1，213	${ }^{26.7 \%}$
82．7\％	4，538	5，629	${ }^{1,092}$	24．0\％
84．0\％	4，498	5，620	${ }^{1,122}$	9， 9
－	4，4955	${ }_{5}^{5.618}$	${ }^{1,123}$	${ }_{\text {24，}}^{25.0 \%}$
－	4，477	5．584	1，107	
88．9\％	${ }_{4}^{4,409}$		＋1，143	20．7\％
90．1\％	4，315	${ }_{5,494}^{5.45}$	1，179	27．3\％
91．4\％	4，221	5.419	1，198	28．4\％
92．6\％	4，127	5，236	1，108	${ }^{26.9 \%}$
${ }^{955.1 \%}$	4.086	${ }_{\substack{\text { 5，197 } \\ 5.192}}^{5.212}$	${ }_{1}^{1,111}$	${ }_{2}^{27.2 \%}$
96．3\％	4，066	5，139	1，073	26．4\％
97．5\％	3，951	5，050	1，099	27．8\％
	3,898 3.693	5,004 4.668	＋1，107	${ }_{\text {26．4\％}}^{28.4 \%}$

Figure SW-13-b
Sacramento River below Hamilton City, Monthly Flow

| |
| :--- | :--- | :--- |

		December		
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	${ }^{\text {WSIP } 2070 \text { without }}$ Proiet	WSIP 2070 With Project	Absolute Difference	${ }_{\text {Refative }}^{\text {Rifferene（\％）}}$
Probabality	Monthly Fow（CFS）	Monthly Fow（CFS）	（CFF）	
0．0\％	59,783	59，361	${ }^{-422}$	${ }^{-0.7 \%}$
1．2\％	47.189	47.54	365	
2．5\％	45，341	${ }^{43,920}$	－1，422	
3．7\％	${ }^{43,564}$	39，996	－3，569	
4．9\％	${ }^{42,463}$	${ }^{38,901}$	－3，562	
${ }_{7}^{6.2 \%}$	${ }^{40,417}$	${ }^{37,833}$	－2，584	
7．4\％	${ }^{39,247}$	36，867	${ }_{-2,379}$	
8．6\％	${ }^{36,869}$	${ }^{35,885}$	－984	
9．9\％	30，595	${ }^{28,428}$	－2，167	
1．12\％	${ }_{25}^{28,74}$	${ }_{2}^{20,893}$	－1．821	－6．3\％
13．6\％	24，158	${ }_{21,847}^{2,393}$	${ }_{-2,311}$	－9．6\％
．8\％	338	21，717	－1，620	－6．9
16．0\％	23，328	19，765	3，563	
17．3\％	22，633	19，338	－3，294	
18．5\％	22,494	18，936	－3，558	－15．8\％
19．8\％	21，717	18.928	－2，790	－12
21．0\％	21，434	18，290	－3，144	－14．7\％
${ }^{22.2 \%}$	19.554	18,192	－1，361	－7．0\％
23．5\％	18，634	${ }^{16,629}$	－2，005	－10．8\％
24．7\％	14，759	${ }^{13,611}$	－1，148	－7．8\％
25．9\％	${ }^{13,879}$	${ }_{12,844}^{12,84}$	－1，036	－7．5\％
27．2\％	${ }^{13,637}$	${ }^{12,723}$	－914	－6．7\％
28．4\％	${ }^{13,613}$	${ }^{12,146}$	－1．467	－10．8
29．6\％	${ }_{1}^{13,310}$	${ }^{11,792}$	－1．518	－11．4\％
30．9\％	${ }_{12,877}^{12,818}$	${ }^{11,656}$	${ }^{-1,221}$	－9．5\％
32．1\％	${ }^{12,718}$	${ }^{11,575}$	－1，143	－9．0\％
3．3．\％	12，167	11，1957	－970	
34.6% 3 3	${ }^{12,131}$	10，950	－1，182	
357．${ }^{3}$	${ }^{111,54}$	${ }^{10,753}$	－1．265	－11．5\％
38．3\％	10，976	9，307	－1，669	－15．2\％
			－1，982	－ 18.10
42．0\％	${ }^{10,394}$	${ }_{8,572}^{8.002}$	${ }_{-1,822}$	－17．5\％
43．2\％	10，258	${ }_{8,555}$	－1，703	－16．6\％
44．4\％	10，216	${ }_{8}^{8,447}$	－1，770	－17．3\％
45．7\％	9，537	8，314	－1，223	－12．8\％
46．9\％	9，274	${ }^{8.080}$	－1，194	－12．9\％
48．1\％	8.967	7.656	－1，311	－14．6\％
49．4\％	${ }_{8}^{8,728}$	7，524	－1，204	－13．8\％
年 50.0%	8.643 8.598	7，406	－1，237	－14．3\％
51．9\％	8.598	7,402	－1，196	－13．9\％
53．1\％	8,101 8 8	7,343 7 7	－788	－9．4\％
	${ }^{8.078}$	${ }_{7}^{7,294}$	－784	－9．7\％
55．6\％	7，943	7,202 7172	－741	浱
56．8\％	7,885 7721	${ }_{7}^{7,055}$	－666	源
59．3\％	7，656	¢，966	－690	－－．0\％
60．5\％	7.592	6.861	－731	－9．9\％
61．7\％	7，175	¢，645	－330	－7．7\％
64．2\％	${ }_{6.796}^{6.969}$	${ }_{6.364}^{6.572}$	${ }_{-432}$	－6．4\％
65．4\％	6，714	6，252	462	－6．9\％
66．7\％	6，594	6，207	－388	－5．9\％
67．9\％	6，526	6，139	－388	\％
69．1\％	6，242	5，980	－262	－4．2\％
70．4\％	5，925	5，938	13	2\％
71．6\％	5．828	5，930	102	1．7\％
72．8\％	5．757	5，764	8	0．1\％
74．19\％	5，748	5，745	－3	0．0\％
75．3\％	5，672	5，662	－10	${ }^{-0.2 \%}$
76．5\％	5．628	${ }_{5}^{5.625}$	－4	－0．1\％
77．8\％	－ 5.620	¢ 5.621	1	0．0\％
89．0\％	5，557	5，555	－2	${ }_{\text {－0，}}^{0.0 \%}$
81．5\％	${ }_{5.504}^{5.544}$	${ }_{\text {5，483 }}^{5.494}$	－21	－0．4\％
82．7\％	${ }_{5}^{5.438}$	${ }_{5.416}^{516}$	－23	0．4\％
84．0\％	5，293	¢， 5 5，365	${ }_{25}^{23}$	迷
886．4\％	${ }_{5.099}$	${ }_{\substack{5.225 \\ 5,108}}^{\text {5，}}$	${ }_{9}^{25}$	0．2\％
87．7\％	5.000	5,011	11	2\％
88．9\％	4，961	4，993	32	\％\％
90．1\％	4，921	4，960	39	\％
914\％	4，870	4，956	86	${ }^{1.8 \%}$
${ }_{93.8 \%}^{92.6 \%}$	${ }_{4,814}^{4.867}$	4，914	47	－
95．1\％	4，788	4.807	${ }_{19}^{42}$	0．4\％
96．3\％	4，297	4，792	495	5\％
97．5\％	4，196	4，197	1	0．0\％
98．8\％	${ }_{4}^{4,122}$	4，176	54	${ }^{1.3 \%}$

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$		Fobruary		$\begin{gathered} \text { Relative } \\ \text { Difference (\% } \end{gathered}$
	Wsip Prourewthout	WSIP 2070 With Project	${ }_{\text {a }} \begin{aligned} & \text { dibsoulue } \\ & \text { Difference }\end{aligned}$	
	Monthly fow（CFS）	Monthy Flow（CFS）	（CFs）	
	107，871	107，874	3	0．0\％
1．2\％	103，429	100，869	－2．560	－2．5\％
2．5\％	77，720	76，200	－1，520	－2．0\％
3．7\％	76，297	73，734	－2，563	－3．4\％
4．9\％	70，600	${ }^{68,276}$	－2，324	－3．3\％
6．2\％	${ }_{6}^{68,336}$	${ }^{68,050}$	－286	－0．4\％
7．4\％		61,964 598306	${ }^{-1}$	0．0\％
8．9\％	55．647	54,806 5897	－841	－1．5\％
${ }^{\text {9，9\％}}$	54，497 54.388	${ }_{\text {cke }}^{53,971}$	${ }_{-136}-5$	－1．0\％
－11．1\％	54,388 53.076	53，083 51.980	－1，306 -1.006	－2．4\％
13．6\％	${ }_{52,933}$	50，655	－2．279	${ }^{-2.3 \%}$
14．8\％	52，055	50，547	－1，508	20\％
16．0\％	48，254	48，093	62	
173\％	48，992	45，703	2，389	
18．5\％	41,049	39，233	－1，816	－4．4
19．9\％	40，635	38，083	－2，552	－6．3\％
21．0\％	40，215	${ }^{37,643}$	－2，572	－6．4\％
${ }^{22.2 \%}$	38，936	36，375	－2，561	
23．5\％	34，887	32，304	${ }^{2}, 5663$	－7．4\％
24．7\％	${ }^{33,725}$	${ }^{31,154}$	－2，571	－7．6\％
25．9\％	${ }^{29,333}$	${ }^{30,421}$	${ }^{1,088}$	${ }^{3.7 \%}$
27．2\％	${ }^{28,709}$	28，177	－532	－1．980
${ }^{28.4 \%}$	${ }^{27,163}$	${ }^{26,807}$	－356	－1．3\％
	${ }^{26,691}$	25，468	－1，224	
30．9\％	${ }^{26,423}$	${ }^{24,436}$	－1，787	－6．8\％
退32．1\％		${ }^{24,121}$	${ }_{-1,411}$	－5．5\％
33．3\％	${ }^{23,169}$	22，450	－119	
34．5\％	${ }^{22,610}$	20．603	－2，008	
37．0\％	19，091	${ }^{16,798} 1$	－	${ }_{\text {－}}^{-12.20 \%}$
38．3\％	18，690	16，126	－2．564	－13．7\％
39．5\％	18．，56	15，608	－2，948	
40．7\％	18，167	15，175	－2，991	
42．0\％	17，743		2，688	－15．2
43．2\％	17，621	14，435	－3，185	－18．1\％
44．4\％	17，006	13，965	${ }^{3,041}$	
45．7\％	16，531	13，798	－2，733	－16．5\％
46．9\％	16，367	13，247	3，120	－19．19
48．19\％	15，162	13，159	－2，003	－13．2\％
49．4\％	14，944	${ }^{12,878}$	－2，066	－13．8\％
年 50.0% \％	${ }^{13,166}$	${ }^{12,719}$	－447	－3．4\％
51．9\％	${ }^{12,719}$	${ }^{12,714}$	－5	0．0\％
${ }^{53.10 \%} 5$	${ }^{12,717}$	${ }^{12,616}$	－95	－0．7\％
	${ }^{12,674}$	11,340 10.551	－1，333	－10．5\％
年5．6．8\％	${ }^{12,619}$	10，551	－2，068	－16．4\％
		10,109 9886	－2，065	
59．3\％	${ }_{\substack{\text { a }}}^{12,12089}$	${ }_{9,610}^{9,866}$	－	－20．5\％
60．5\％	11，921	9，592	${ }_{-2,329}$	
61．7\％	11，342	9.518	${ }^{1,1824}$	
63．0\％	11，137	9，369		－15．9\％
64．2\％	10，861	9，315	－1，546	－14．2\％
65．4\％ 66.7%	10,234 0.654	$\begin{array}{r}8,987 \\ 8.972 \\ \hline\end{array}$	${ }^{-1,246}$	－12．2\％
67．9\％	${ }_{9,498}$	${ }_{8,465}^{8.572}$	${ }^{-1,1,034}$	－${ }^{-10.79 \%}$
69．1\％	9，434	8.286	－1，148	－12．2\％
70．4\％	9,415	8，180	－1，235	－13．1\％
71．6\％	9，329	${ }^{8.029}$	－1，300	－13．9\％
72．8\％	9，251	7,878 7669 189	－1，373	－14．8\％
75．3\％	${ }_{8,599}$	7，237	${ }_{-1,362}$	${ }^{-16.8 \%}$
76．5\％	8，485	7，082	－1，403	－16．5\％
77．8\％	${ }_{8,315}$	6，949	－1，366	－16．4\％
79．0\％	8，209	${ }^{6.893}$	${ }^{1,1,316}$	－16．0\％
－	${ }^{8.026}$	6．867	－1，158	－14．4\％
－${ }^{81.57 \%}$	7，516	c． $\begin{gathered}6,805 \\ 6.306\end{gathered}$	－1，1060	${ }^{-14.0 \%}$
84．0\％	7.315	6，041	－1，274	－17．4\％
85．2\％	7，051	5．880	－1，171	－16．6\％
${ }^{80.4 \%}$		${ }_{\substack{5.602 \\ 5.609}}^{\text {5，}}$	${ }_{-870}$	${ }^{-17.44 \%}$
88．9\％	6，125	5.515	－610	－10．0\％
90．1\％	6，101	5，337	－764	12．5\％
914．4\％	6，098	5，165	－933	15．3\％
92．6\％	5．880	5．046	－834	
93．8\％	5，697	4，933	763	
95．19\％	5，606	4，863	－743	－13．3\％
－96．3\％ 9	5.587 4.899	4，7758	－829	－
98．8\％	4，723	4，569	－154	－3．3\％
100．0\％	4．564	4，492	－72	－1．6\％

| | | |
| :--- | :--- | :--- | :--- |
| | | |

Way				
	${ }_{\text {WSIP P27\％O Without }}^{\text {Proiet }}$	WSIP 2070 With Project	Absolute Difference	Relat
Probability	Monthy Fiow（CFS）	Monthy Flow（CFS）		fiferece（\％）
0．0\％	15.425	13，589	${ }^{-1.835}$	－11．9\％
1．2\％	14，042	13，317	－724	－5．2\％
2．5\％	13，283	11，668	－1，615	12．2\％
3．7\％	11，943	11，234	－709	－5．9\％
4．9\％	11,479	${ }^{11,226}$	－252	－2．2\％
6．2\％	${ }^{11,121}$	${ }^{11,070}$	－51	－0．5\％
7．4\％	10，684	10，730	${ }_{163}^{46}$	0．4\％\％
8．9\％	10，259	10，412	153	1．5\％
9．9\％	（10，257	${ }^{10,312}$	${ }^{55}$	0．5\％
－ 11.10%	9，904	${ }_{\substack{10,034 \\ 9,266}}^{\text {a }}$	${ }_{-371}^{131}$	－3．3\％
13．6\％	9,635	${ }_{9,235}^{9,266}$	${ }_{-400}$	－${ }^{-3.8 \%}$
14．8\％	${ }_{9}^{9.599}$	8，985	－614	－6．4\％
－ 16.0%	8，770	8，974	204	2．3\％
18．5\％	${ }_{8,544}^{8,751}$	8.822 8858	${ }_{215}$	${ }_{\text {cke }}^{0.8 \%}$
19．8\％	8.472	${ }_{8,634}$	162	1．9\％
21．0\％	8,397	${ }_{8,545}$	148	1．8\％
22．2\％	8,095	${ }_{8}^{8.429}$	334	4．1\％
23．5\％	8,087	8，294	208	2．6\％
24．7\％	8.064	8,206	142	1．8\％
25．9\％	8.040	8，184	144	1．8\％
27．2\％	7，996	${ }_{8}^{8,139}$	${ }^{143}$	1．8\％
${ }^{28.4 .9 \%}$	7，949	7，982	${ }^{32}$	0．4\％
29．6\％	7,876 7858 8.9	7，977	101 80	1．3\％
30．9\％	7,858 77705	7,938 7.933	${ }_{228} 8$	－
33．3\％	7.683	7.924	241	3．1\％
34．6\％	7，675	7，906	${ }^{231}$	3．0\％
	$\begin{array}{r}7.596 \\ 7.593 \\ \hline\end{array}$	7,866 7799	${ }^{270}$	3．6\％
37．0\％	7,593 7,577	7,799 7,645	206 68	2．7\％
39．5\％	7.564	7.642	78	1．0\％
${ }^{40.7 \%}$	7.546 7 7	7，614	${ }^{68}$	－${ }^{\text {0．9\％\％}}$
${ }^{4.3 .2 \%}$	7,290	7，312	${ }_{22} 2$	${ }_{\text {－}}^{\text {－1．3\％}}$
44．4\％	7，252	7，275	23	0．3\％
45．7\％	7.179	7，239	60	0．8\％
46．9\％	${ }_{7}^{7,175}$	${ }_{7}^{7,156}$	${ }_{91}$	0．6\％
48．1\％	7，055	7.152	97	1．4\％
49．4\％	¢， $\begin{gathered}6,952 \\ 6,925\end{gathered}$	7,095 6.950	${ }_{25}^{143}$	${ }_{0}^{2.4 \%}$
51．9\％	6，902	6,716	－186	－2．7\％
53．1\％	${ }^{6.878}$	${ }_{6} 6.52$	－357	－5．2\％
54．3\％	${ }^{6,833}$	6，480	－353	－5．2\％
年5．5\％ 5	6.789 6.735	${ }_{6}^{6,464}$	－335	－4．8\％
56．8\％			－${ }_{-234}$	－6．3\％
59．3\％	${ }_{6}^{6.587}$	${ }_{6}^{6,288}$	－299	－4．5\％
－ 60.5%	－6.5751 6.481	¢，199	－	－5．7\％
63．0\％	${ }_{6.412}$	6，186	－227	－3．5\％
${ }^{64.2 \%}$	6，371	${ }_{6}^{6,106}$	－266	－4．2\％
${ }^{65.4 \%}$	${ }_{\text {c，}}^{6,295}$	－${ }_{6,1099}^{6,103}$	-237 -195	－3．1\％
67．9\％	6，238	5.960	－278	－4．5\％
69．1\％	6，194	5.921	－273	－4．4\％
70．4\％	6，182	${ }_{5}^{5.914}$	－268	－4．3\％
71．6\％	${ }_{6}^{6,095}$	${ }_{5}^{5,977}$	－188	－3．1\％
72．8\％	${ }_{6}^{6,071}$	5．735 5.779	－337	－5．5\％
7．3．3\％	${ }_{6,026}^{6,032}$	${ }_{5,630}^{5,79}$	－395	－6．6\％
76．5\％	5.885	5．609	－276	－4．7\％
77．8\％	5．854	5.601	－253	4．3\％
79．0\％	${ }_{5}^{5.807}$	5．558	－249	－4．3\％
－	5.724 5 5 5	5.420 5 5	－	－ 5.3%
${ }_{8}^{8.2 .7 \%}$	${ }_{\substack{5,524 \\ 5.5202}}^{\text {a }}$	${ }_{5,353}^{5,409}$	－193	－-3.4%
84．0\％	${ }_{\text {5，503 }}^{5}$	${ }_{5}^{5,294}$	－210	－3．8\％
85．2\％	（5，463	5，${ }_{5}^{5,285}$	－178	－3．3\％
${ }^{80.77 \%}$	${ }_{5,413}^{5,437}$		－169	－3．1\％
88．9\％	5，373	5.42	－131	－2．4\％
90．1\％	${ }_{5}^{5,341}$	5.190	－ 151	－2．8\％
91．4\％	${ }_{5}^{5,316}$	5，185	－131	－2．5\％
－92．8\％\％	${ }_{\substack{5,299 \\ 5.285}}$	5.147 5 5	－152	${ }_{-2.9 \%}^{-2.9 \%}$
95．1\％	5，261	4，908	－	${ }^{-2.7 \%}$
96．3\％	5.111	4，880	－231	4．5\％
97．5\％	5，101	4，765	－336	${ }^{-6.6 \%}$
98．8\％ 1000%	${ }_{2,652}^{4,920}$	${ }_{4.244}^{4.317}$	－ $\begin{array}{r}-603 \\ 1.592\end{array}$	－12．3\％ 600%
100．0\％	2，652	4，244	1，592	

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabbility } \end{gathered}$		June		RelativeDifference（\％）
	WSIP 2 Propo Wethout Proet	WSIP 2070 With Project	$\begin{array}{\|} \text { Abssolute } \\ \text { Difference } \end{array}$	
	Monthy fow（CF5）	Monthly Fow（CFFS）	（CFS）	
	12，232	${ }^{12,427}$	195	1．6\％
1．2\％	12，143	${ }^{12,302}$	160	1．3\％
2．5\％	12，140	${ }^{12,211}$	71	0．6\％
3．7\％	12，081	${ }^{11,666}$	－415	－3．4\％
4．9\％	12，009	11，658	－351	－2．9\％
6．2\％	${ }^{1111793}$	${ }^{11,547}$	－345	－2．9\％
7．4\％	${ }^{11,781}$	${ }^{11,531}$	－250	－2．1\％
8．6\％	${ }^{11,733}$	${ }^{11,429}$	－304	－2．6\％
9．9\％	${ }^{11,575}$	11,310 111143	－266	－2．3\％
11．1\％	${ }^{11,513}$	${ }^{11,143}$	－370	－3．2\％
13．6\％	11，193	10，860	－-333	－${ }_{\text {－}}^{\text {－1．0\％}}$
14．8\％	${ }^{11,165}$	${ }^{10,822}$	－343	－3．1\％
16．0\％	${ }^{11,149}$	10,800 10790	-350 -354	－3．1\％
－ 118.5%	${ }^{11,144}$	10，790 10,758	－	
19．8\％	11，067	10，746	－322	2．9\％
21．0\％	${ }^{11,067}$	10，698	－369	－3．3\％
${ }^{22.2 \%}$	${ }^{10,951}$	${ }^{10,629}$	－321	－2．9\％
${ }^{23.5 \%}$	10，938	10，616	－321	－2．9\％
24．7\％	10，856	10，589	－267	－2．5\％
25．9\％	10，856	10，512	－343	－3．2\％
27．2\％	${ }^{10,763}$	10，487	－276	－2．6\％
28．4\％	10，679	10，458	－221	－2．1\％
	10，647 10.527	10,457 10.454 10	－190	－1．7\％
32．1\％	${ }_{\text {10，457 }} 10.027$	10,454 10,453	$\stackrel{-7}{-4}$	－0．0\％
33．3\％	10，334	10，420	86	0．8\％
34．6\％	10，283	${ }^{10,405}$	${ }^{122}$	1．2\％
337．0\％		10，298 10.069	${ }_{96}^{245}$	2．4\％
383\％	9，957	9,944	-13	－0．1\％
		${ }^{9,8879}$		
42．0\％	${ }_{9,750}^{9.852}$	${ }_{9,858}^{\text {9，067 }}$	109	1．1\％
43．2\％	9，731	9,743	11	0．1\％
44．4\％	9，712	9，561	－151	－1．6\％
45．7\％	9，658	9.316	－342	－3．5\％
46．9\％	9，629	${ }^{9,305}$	${ }^{-324}$	－3．4\％
48．1\％	9，611	${ }^{9,2,25}$	－374	－3．9\％
50．6\％	${ }_{9,439}^{9,522}$	${ }^{9,1456}$	－${ }_{-295}^{-365}$	－3．3\％
51．9\％	9，431	${ }_{8,811}$	－620	－6．6\％
53．1\％	9，263	8.707	－557	－6．0\％
54．3\％	9，208	${ }_{8}^{8,696}$	－512	－5．6\％
55．\％	${ }^{9,080}$	${ }_{8}^{8,690}$	－390	－4．3\％
568．0\％	9,021 8.869	8,611 8.604	－410	－4．5\％
59．3\％	8.616	${ }_{8,500}$	－117	－1．4\％
${ }^{60.5 \%}$	8．535	${ }^{8,403}$	－132	－1．5\％
661．7\％	8,524 8.425	8,384 8.353	－-140	－1．0\％\％
64．2\％	${ }_{8,363}$	${ }_{8,295}^{8,177}$	－68	－0．8\％
66．7\％	${ }_{8,293}^{8,333}$	${ }_{8,168}^{8,177}$	－125	${ }^{-1.5 \%}$
67．9\％	8,151	${ }_{8,150}$	－1	－0．0\％
69．1\％	8,085	8.085	0	0．0\％
70．4\％	7,970	8.070	101	1．3\％
71．6\％	7,865	${ }_{8}^{8,000}$	${ }^{135}$	1．7\％
72．8\％	7，805	7，781	－24	－0．3\％
74．3\％	$\begin{array}{r}7,787 \\ 7780 \\ \hline\end{array}$	7，650	－137	${ }^{-1.17 \%}$
77．5\％	7，659	7,650 7.603	－ 5	－0．7\％
77．8\％	7,642	${ }_{7}^{7.575}$	－67	－0．9\％
79．0\％	7，604	7，547	－57	－0．8\％
80．2\％	7，507	7,491	－16	－0．2\％
88．5\％\％	7,423 7,385	7,452 7,380	29 -5	－0．4\％
84．0\％	7，194	${ }_{\text {l }}^{7,380}$	${ }_{176}$	${ }^{-0.4 \%}$
85．2\％	7,082	7.358	277	3．9\％
－ 86.480	（7，006	7，288	${ }_{331}^{282}$	4．0\％
88．9\％	${ }_{6,883}^{6.941}$	7，174	${ }_{291}$	4．2\％
90．1\％	6．811	7.024	214	3．1\％
91．4\％	6，798	6，941	143	2．1\％
${ }_{9}^{92.6 \% \%}$		¢， $\begin{gathered}6,753 \\ 6.297\end{gathered}$	－200	3．1\％
95．1\％	6,482	${ }_{6,258}^{6,297}$	－224	－3．5\％
96．3\％	6，405	5.711	－695	－10．8\％
97．5\％	6，078	5．508	－570	－9．4\％
98．8\％	（6，075	5.328 5267	－748	${ }_{\text {－}}^{-12.3 \%}$

August				
Percent	WSIP 2070 Weithout	WSIP 2070 With Project	${ }_{\text {a }}^{\text {Absolute }}$	Reative
Probah	Monthly flow（CFs）	Monthy fow（CFS）	（cFs）	
0．0\％	${ }^{11,304}$		－631	－5．6\％
1．2\％	11，170	10，393	－778	
2．5\％	10，302	10，202	－100	
3．7\％	10，289	9，819	－470	－4．6\％
4．9\％	0，099	9，761	337	
6．2\％	9，832	9．513	－319	
7．4\％	9，821	9，318	－503	－5．1\％
8．6\％	9，769	9，073	－696	
9．9\％	9，687	${ }^{8,902}$	－785	－8．1\％
11．1\％	9，569	8，887	－682	－7．1\％
${ }^{12.3 \%}$	9，262	${ }^{8.8878}$	384	－4．1\％
13．6\％	${ }^{9,183}$	${ }_{8,874}$	－329	
14．8\％	9，129	${ }_{\text {8，724 }}$	－405	－4．4\％
110．0\％	8，994	${ }^{8,700}$	－294	
17．5\％	${ }^{8,942}$	8，519	－43	
18．5\％	${ }_{8}^{8,873}$	${ }_{8}^{8,425}$	－438	
19．8\％	8，124	8，365	－359	－4．1\％
222．2\％	${ }_{8.655}^{8.662}$	${ }_{8,278}^{8,220}$	－377	－－4．4\％
23．5\％	${ }_{8.615}$	8，209	－406	
24．7\％	${ }^{8.568}$	8.146	－422	
25．9\％	${ }^{8,550}$	${ }_{8,124}$	－425	
27．2\％	8，433	8，113		
28．4\％	${ }^{8,420}$	${ }^{8,082}$	－339	－4．0\％
29．6\％	${ }^{8,348}$	8.074	274	
30．9\％	8，296	${ }^{8,063}$	233	－2．8\％
32．1\％	8，293	${ }_{8}^{8,024}$	269	${ }^{-3.28}$
33．3\％	${ }^{8,270}$	${ }_{8}^{8.006}$	264	－3．2\％
34．6\％	${ }^{8.174}$	7，908	－267	－3．3\％
35．8\％	${ }_{8}^{8,126}$	7，799	${ }_{-327}$	－4．0\％
37．0\％	7，960	7，787	－173	${ }^{-2.2 \%}$
38．3\％	7，904	7，774	－129	－1．6\％
39．5\％	7，720	7,754 7,664	${ }^{34}$	0．4\％
40．7\％	7，706	${ }_{7}^{7,664}$	－41	－0．5\％
4．2．\％	7，002	${ }_{7}^{7,655}$	－47	
44．4\％	${ }_{\text {7，475 }}$	7.631 7,610	${ }_{135}^{12}$	${ }_{1}^{0.2 \%}$
4．7\％	7，358	7.540	182	2．5\％
46．9\％	7，343	7，537	194	2．6\％
48．1\％	$\begin{array}{r}7,260 \\ \hline\end{array}$	7．528	${ }^{268}$	3．7\％
49．4\％	7，235	7，516	${ }_{2}^{281}$	3．9\％
－ 50.9%	7,231 7,166	7.507 7.505	${ }_{339}^{275}$	
55．1\％	7，068	7，495	${ }_{427}$	6．0\％
54．3\％	7，039	7，448	409	5．8\％
55．6\％	7，035	7,406	371	5．3\％
56．8\％	7，030	7，402	372	5．3\％
58．0\％	7，027	7，402	374	5．3\％
59．3\％	6，945	7,402	457	${ }_{7}^{6.6 \%}$
60．5\％	6，905	7,401	497	7．2\％
${ }^{611.7 \%}$	6，857	${ }_{7}^{7,392}$	535	7．8\％
63．0\％	${ }^{6.806}$	7，387	581	8．5\％
${ }^{64.2 \%}$	6，788	7，364	576	8．5\％
－ 65.4%	年，7800	7,350 7.331	${ }_{551}^{570}$	8．4\％
66．7\％	${ }_{6}^{6,779}$	7,331 7307	551 588	8．17\％
69．1\％	${ }_{6,660}^{6,79}$	${ }_{7}^{7,305}$	㐌 645	${ }^{8.7 \% \%}$
70．4\％	6，649	7，263	614	9．2\％
71．6\％	6，627	7，236	609	9．2\％
72．8\％	6，586	12	626	9．5\％
74．1\％	6，504	7，210	706	\％
75．3\％	6，479	7，183	704	\％
76．5\％	${ }^{6,462}$	${ }^{7,077}$	615	5\％
77．8\％	6，451	7.054	603	
79．0\％	6，437	6，999	562	8．7\％
80．2\％	6，406	6，991	585	9．1\％
${ }^{81.5 \%}$	${ }_{6}^{6,383}$	6，989	606	9．5\％\％
－ 82.78	6，355	6，968	614	9．7\％
84．0\％	6，319	${ }_{6}^{6,926}$	607	9．6\％
－ $8.5 .2 \%$	6，231	6．861	630	10．15\％
${ }^{86.4 \%}$	－	6，852	707	11．5\％
88．9\％	5，998 5 5.953		839	－ 14.00%
90．1\％	5，950	6，726	777	3．1\％
91．4\％	5，938	${ }_{6}^{6,692}$	754	12．7\％
92．6\％	5．694	${ }^{6.6599}$	${ }_{770}$	16．9\％
995．1\％	${ }_{\substack{5.5889 \\ 5.589}}^{\text {c，}}$	c，${ }_{6,329}^{6,439}$	770	${ }^{13.5 \%}$
96．3\％	5．531	6，301	770	13．9\％
5\％	5，498	6，222	723	3．2\％
98．8\％	$\begin{array}{r}4,952 \\ \hline, 593\end{array}$	6，138	1，186	24．0\％

Percent	VSIP 2070 Without	WSIP 2070 With Project	Absolute	Relative
	Montrily Fowect（cFs）	Monthy Flow（CFS）	coitierence	Herere
Probo	15，443	16，006	563	3．6\％
1．2\％	15，394	15，771	377	2．4\％
2．5\％	${ }^{15,368}$	${ }^{15,364}$	4	0．0\％
3．7\％	15，182	${ }^{15,322}$	140	0．9\％
4．9\％	15，150	15，283	${ }^{133}$	0．9\％
6．2\％	${ }^{15.022}$	15，050	${ }^{28}$	0．2\％
7．4\％	14，880	${ }^{14,963}$	83	0．6\％
8．6\％	14.862	${ }^{14,862}$	0	0．0\％
9．9\％	14.654	14.807	153	1．0\％
11．1．\％	${ }^{14,629}$	14.711	82	0．6\％
${ }^{123.3 \%}$	14，615	14,710	95	0．6\％
13.6% 14.8%	14，576 14.533	14，656 14.531	80 -7	${ }_{\text {en }}^{0.50 \%}$
14．8\％ 10.0%	14,533 14,449	14， 414.451 14.456	－2	－ 0.0%
17．3\％	14，447	14，295	－152	－1．1\％
18．5\％	14，401	14，284	－117	－0．8\％
19．8\％	14，291	14.084	－207	－1．4\％
212．2\％	${ }^{13,8808}$		－201	－1．5\％
${ }^{23.5 \%}$	${ }^{13,176}$	${ }^{13,025}$	－ 151	－1．1\％
24．7\％	${ }^{12,923}$	${ }^{12,542}$	－380	－2．9\％
${ }^{25.7 .9 \%}$	（12，550	－	－96	－0．8\％
28．4\％	${ }^{12,128}$	11，514	－614	－5．1\％
29．6\％	11，737	10，877	－859	－7．3\％
30．9\％	11，687	10，718	－968	－8．3\％
32．1\％	11，485	9，691	－1，795	－15．6\％
	10．934	9，417	－1．517	－13．9\％
34．6\％	10，150	${ }^{8,903}$	${ }^{-1,247}$	－123\％
年35．8\％	${ }_{9,591}^{9,770}$	¢，167	－1．603	－16．4\％
－${ }^{37.0 \%}$ 38．3\％	${ }_{9}^{9.591}$	7,755 7417	－1．836	－
39．5\％	8,191	7,312	${ }_{-879}$	－10．7\％
40．7\％	8，150	7，060	${ }^{-1,091}$	－13．4\％
42．0\％	${ }_{7}^{8,129}$			
4．4．4\％	7，134	${ }_{6.641}^{6.755}$	${ }_{-4}$	－1．9．9\％
45．7\％	6，915	6，502	－412	50\％
46．9\％	${ }_{6,562}$	${ }_{6}^{6413}$	-149	
48．1\％ 4.4	${ }_{6}^{6.447}$	6．409	－38	－0．6\％
59．6\％	${ }_{\substack{5.963 \\ 5,865}}^{\text {a }}$		${ }_{324}^{443}$	${ }_{\text {F．5\％}}^{\text {7．4\％}}$
51．9\％	5．663	6，182	519	9．2\％
53．1\％	5．528	6，100	573	10．4\％
54．3\％	5，438	6，068	630	11．6\％
	5,266 5,186	6,031 5052 5，	${ }_{766} 76$	14．5\％
56．0\％	${ }_{5,098}^{5}$	${ }_{5,919}$	${ }_{821}$	16．1\％
59．3\％	5，055	5．855	800	15．8\％
60．5\％	5，035	5．853	818	16．3\％
61.7% 630%	4,933 4828	5.811 5 5	${ }_{941}^{878}$	17．8\％
－63．2\％	${ }_{4,825}^{4.828}$	${ }_{5}^{5.7769}$	${ }_{893} 94$	19．5\％
65．4\％	4.604	5.705	1，101	23．9\％
${ }^{66.77 \%}$	4，574	5.665 5 5643	${ }^{1,091}$	23．9\％
69．1\％	${ }_{4.420}^{4.510}$	${ }_{5}^{5.6620}$	${ }_{1}^{1,200}$	27．1\％
70．4\％	${ }_{4}^{4,373}$	5.611	${ }_{1}^{1,237}$	28．3\％
71．2．8\％	${ }_{4,333}^{4,363}$	5.564 5.519	${ }_{\substack{1,201 \\ 1,185}}^{1}$	27．5\％
74．1\％	4，250	5，498	1,248	29．4\％
75．3\％	4，217	5，462	1，244	29．5\％
76．5\％	4，199	${ }_{\text {5，362 }}$	${ }^{1,163}$	27．7\％
77．8．${ }^{77.0 \%}$	4.159 4125	¢，5，281	${ }^{1,121}$	27．0\％
80．2\％	4，047	${ }_{5}^{5} 5$	${ }_{1,174}$	220．0\％
81．5\％	4，022	5，218	1，196	29．7\％
－ 82.7%	3,990 3 3	5,217 5186	1,227 1,206 1	
85．2\％	3，974	${ }_{5,185}^{5,185}$	1,211	30．5\％
86．4\％	3，967	5.104	1，136	28．6\％
87．7\％	－ $\begin{aligned} & \text { 3，967 } \\ & 3\end{aligned}$	5，071	1，104	27．8\％
－${ }^{88.9 \%}$	3，964	4，995	${ }^{1}, 0031$	${ }^{26.0 \%}$
901．4\％	${ }_{3.836}$	${ }_{4,852}^{4,952}$	${ }_{1}^{1,015}$	26．5\％
92．6\％	${ }_{3,288}$	4.843	1,015	26．5\％
${ }^{93.8 \%}$	¢3,624 3.611	${ }_{\substack{4,832 \\ 4710}}$	1，208	33．3\％
96．3\％	${ }_{3,585}$	4,659	1,074	30．0\％
97．5\％	3,460 3 3	4.630	${ }^{1,1717}$	33．8\％
980．8\％	${ }_{\text {3，25 }}^{3,201}$	${ }_{4,267}^{4.613}$	${ }_{\substack{1,010}}^{1,212}$	${ }_{3}^{35.0 \%}$

Figure SW-14-b
Sacramento River below Delevan Intake and Pipeline, Monthly Flow

Table SW-14-b

$\xrightarrow{\text { Percernt }}$	WSIP 2070 W.thout Proiet	WSIP 2070 With Project	Absolute Difference	
Probabilily	Monthly fow (Monthly Fow (CFF	(CFS)	
1.2\%		15,099	${ }_{2}$	1.8\%
2.5\%	110.431	10.440	9	01\%
3.7\%	9.527	9.693	166	1.7%
4.9\%	9.479	${ }_{9.629}$	150	16\%
6.2\%	9,164	9,612	448	4.9\%
7.4\%	9,079	9,327	249	2.7\%
-	8.547 8.887	${ }^{9.319}$	772	9.0\%
9.9\%	8,487	${ }^{9,1599}$	${ }_{6} 672$	
${ }^{12.3 \%}$	${ }_{8}^{8.424} 8$	8,773	529	6.4\%
13.6\%	8,240	8.604	364	4.4\%
.8\%	8,191	8.486	295	
16.0\%	8,137	${ }_{8,414}$		
17.3\%	7.830	8.112	281	
18.5\%	7,730	${ }^{8.063}$	333	
- ${ }^{19.9 \% \%}$	7,522	${ }^{7} 7771$	250	3.3\%
${ }^{21.0 \%}$	7,409	7.649	240	${ }^{3.2 \%}$
${ }_{2}^{22.5 \%}$	7,318 7,277	7.573 7,536	${ }^{255}$	${ }^{3.5 \%}$
24.7\%	7,227	7.456	229	3.2\%
25.9\%	7,108	7,322	213 318	3.0\%
27.2\%	6,935	7,253	318	4.6\%
${ }^{28.46 \%}$		${ }_{7}^{7,187}$	261	3.8\%
29.6\%	6,864	7,187	${ }_{323} 3$	4.7\%
30.9\%	${ }^{6,833}$	7.170	337	4.9\%
${ }_{3}^{32.19 \%}$	6,667	7.015	348	5.2\%
33.6\%	${ }_{6}^{6.548}$	- 6.998	${ }^{4} 5$	6.9\%
3.8.8\%	${ }_{6.443}^{6.521}$	¢,779	${ }_{336}$	5.2\%
37.0\%	${ }_{6}^{6,416}$	6,757	342	5.3\%
㐌38.3\%	${ }_{6}^{6,223}$	6,665	442	7.1\%
40.7\%	${ }_{5.828}$	${ }_{\substack{6.546 \\ 6.545}}^{\text {c. }}$	${ }_{719} 68$	11.2\%\%
42.0\%	5.806	${ }_{6.526}$	720	12.4\%
43.2\%	5,772	${ }_{6} 6.524$	753	13.0\%
44.4\%	5,616	6,370	754	13.4\%
45.7\%	5.599	6,310	710	12.7\%
${ }^{46.9 \%}$	5,551	6,291	740	13.3\%
${ }^{48.4 \%}$	${ }_{5.545}^{5.547}$	¢,190	${ }_{643}$	
50.6\%	${ }_{5,514}$	${ }_{5.856}^{5}$	342	6.2\%
51.9\%	5.509	5,739	230	4.2\%
53.1\%	$\begin{array}{r}5.479 \\ \hline\end{array}$	5.660 5 5	181	${ }^{3.3 \% \%}$
54.3% 55.6%	5.465	5.559 5 5 5	93	1.7\%
年5.6.8\%	5,449 5 5	${ }_{\text {5,553 }}^{5}$	1104	${ }^{1.9 \%}$
58.0\%	5,403	5,552 5 5466	${ }_{74}^{148}$	${ }_{1}^{2.4 \% \%}$
59.3\%	${ }_{5}^{5.372}$	5,463	91	1.7\%
60.5\%	5,205	5.404	199	3.8\%
61.7\%	5.132	${ }_{5}^{5.403}$	${ }^{272}$	5.3\%
6.4.2\%	${ }_{4.997}^{5.119}$		${ }_{401}^{285}$	8.0\%
65.4\%	4,993	${ }_{5}^{5,393}$	401	0\%
${ }^{66.7 \%}$	4,969	5,299	330	6.6\%
-67.9\%	4.949 4.940	5,289 5 5 204	340	6.9\%
70.4\%	4,841		${ }_{347}^{205}$	${ }_{7.2 \%}^{5.4 \%}$
71.6\%	4.649	5,187	538	11.6\%
72.8\%	4,605	5.175	571	12.4\%
74.1\%	4,545	${ }_{\substack{5,1166}}^{5126}$	${ }_{6}^{621}$	13.7\%
75.3\%	4,541	5,126	584	12.9\%
76.7.8\%	${ }_{4}^{4.527}$	5.099	572	${ }^{12.6 \%}$
79.0\%	${ }_{4,446}^{4.452}$	${ }_{\text {c,030 }}^{5}$	${ }_{585}$	${ }^{13.2 \%}$
80.2\%	4.423	5.007	584	13.2\%
81.5\%	4,387	4,909	521	11.9\%
84.0\%	${ }_{4,346}$	${ }_{4,841}^{4,846}$	${ }_{495}^{493}$	11.14\%
85.2\%	4,288	4,640	352	8.2\%
86.4\%	4,282	4,587	305	\%
877\%	4,055	4,578	523	9\%
- ${ }^{88.9 \%}$	3.881	4.530	${ }_{649}$	16.7\%
91.4\%	3,762	4,417	655	17.4\%
92.6\%	3,715	4.181	466	
93.8\%	3,715	4.176	461	
95.1\%	3,652	4,134	482	13.2\%
${ }^{96.3 \%}$	$\begin{array}{r}3,651 \\ 3 \\ \hline\end{array}$	4,086	${ }^{435}$	11.9\%
-97.5\%	${ }^{3.628}$	3,849	221	${ }^{6.1 \%}$
98.8% 100\%	3,623 3429	3.569 3.525	${ }_{-54}$	-1.5\%

December				
${ }_{\substack{\text { Percent } \\ \text { Exceanace }}}^{\text {P }}$	WSIP 2070 Without	WSIP 2070 With Project	${ }_{\text {a }}^{\substack{\text { Absolue } \\ \text { Difference }}}$	Relative
Probability	Monthly Fiow (CFFS)	Monthy Flow (CFS)	(cFs)	Difference (\%)
0.0\%	70.245	70,145	-100	-0.1\%
1.2\%	52,928	51,634	$-1,294$	-2.4\%
2.5\%	51.090	49,674	${ }^{-1.417}$	-2.8\%
3.7\%	50,781	${ }_{45,264}$	-5.517	-10.9\%
4.9\%	48,014	${ }^{43.483}$	-4.531	-9.4\%
6.2\%	46,289	${ }_{41,853}$	-4,436	-9.6\%
7.4\%	43,297	40,417	-2.879	-6.7\%
8.6\%	40.566	39.588	-978	-2.4\%
9.9\%	${ }^{35,989}$	33,937	-2.052	-5.7\%
11.1\%	30,983	${ }^{26,591}$	-4,301	-13.9\%
12.3\%	${ }^{30,890}$	${ }^{26,542}$	$-4,348$ -3824 -384	- $\begin{aligned} & -14.1 \% \\ & -127 \%\end{aligned}$
13.6\%	30,000	26,176 ${ }_{25} 534$	-3.824 -2773	-12.7\%
14.8% 16.0%	${ }_{\text {cher }}^{28,1116}$	20,342	- $\begin{array}{r}-2.773 \\ -3.649\end{array}$	-9.9\%\%
- 16.0%	${ }_{\text {26,795 }}^{27,116}$	- $\begin{aligned} & \text { 23,468 } \\ & \text { 23, } 109\end{aligned}$	$\begin{array}{r}-3.649 \\ -3.686 \\ \hline\end{array}$	- ${ }^{-13.5 \%}$
18.5\%	${ }^{26,508}$	${ }_{22,239}^{2,109}$	${ }_{4}$	${ }_{-16.1 \%}$
19.8\%	25,127	${ }^{21,848}$	-3.279	-13.0\%
210\%	${ }^{24,974}$	21,688	-3,286	-13.2\%
${ }^{22.2 \%}$	${ }_{2}^{23,827}$	${ }^{19,8,818}$	-4,009	-16.8\%
${ }^{23.4 .7 \%}$	${ }_{1}^{20,164}$	${ }^{119,175}$	${ }_{-2,381}^{-960}$	${ }_{-12.82 \%}^{-1.8 \%}$
25.9\%	17,387	14,469	-2,919	-16.8\%
27.2\%	16.837	14,445	-2,392	-14.2\%
28.4\%	15,393	${ }^{14,007}$	-1,386	-9.0\%
29.6\%	14.814	${ }^{13,991}$	${ }^{-823}$	-5.6\%
30.9\%	14,483	${ }^{13,426}$	${ }^{-1,057}$	-7.7\%
32.1\%	14,192	13,235	-957	-6.7\%
33.3\%	${ }^{14.1055}$	${ }^{12,222}$	-1.884	-13.4\%
34.6\%	${ }^{13,973}$	12,165	-1.808	-12.9\%
35.8\%	13,757 13,534	11,625 10.314	-2,132	-15.5\%
37.0\%	13,534 13,390	10,314 10,155	-3,220 -3236	-23.8\%
38.3\% ${ }_{\text {3, }}$	13,390 13.348	10,155 9,928	-3,236 -3420	-24.2% -25.6%
40.7\%	${ }^{13,3,278}$	${ }_{9}^{9,747}$	${ }_{-3,531}^{-3,420}$	-
42.0\%	12,857	9,442	-3,415	-26.6\%
${ }^{43.2 \%}$	12,220 11.825	${ }_{9}^{9,319}$	-2,901	-2.7\%
${ }^{44.4 \%}$	11,825 11,466	${ }_{\substack{9,248 \\ 9,270}}$	--2.555 -2.218	- ${ }_{-19.9 \%}$
46.9\%	10,958	9,127	${ }_{-1,831}$	-16.7\%
48.1\%	10,871	9,002	-1.889	-17.2\%
49.4\% 50.6%	10,308 10,107	8,987 8,684	-1.321 -1.422	-12.8\%
51.9\%	9,337	8,637	-701	-7.5\%
53.1\%	9,223	8.489	-733	-8.0\%
54.3\%	9,114	${ }_{8}^{8,364}$	-750	-8.2\%
55.6\%	${ }_{8}^{8,859}$	${ }_{8}^{8,358}$	-501	-5.7\%
55.8\%	${ }_{8}^{8,765}$	8,031	-734	-8.4\%
59.3\%	8,764 8.882	$\begin{array}{r}8,000 \\ 7833 \\ \hline\end{array}$	-764	-8.7\%
60.3\%	${ }_{\text {8, }}^{8,483}$	7,783 7,785	-649	-7.7\%
61.7\%	8.030	7,750	-280	-3.5\%
63.0\%	7.985	7.412	-573	-7.2\%
64.2\%	7,559	7,215	${ }^{-344}$	-4.6\%
-65.4\%	6,798 6.421	7,081 6,706	${ }_{284}^{282}$	4.4.4\%
67.9\%	${ }_{6,345}^{6,4}$	${ }_{6,560}$	${ }_{215}$	3.4\%
69.1\%	${ }_{6,318}$	6,230	-88	-1.4\%
70.1.4\%	¢, $\begin{gathered}6,269 \\ 6,196\end{gathered}$	${ }_{6,212}^{6,228}$	16 10	${ }_{\text {0 }} 0.3 \%$
72.8\%	6,182	6,161	-21	-0.3\%
74.1\%	${ }_{6}^{6,138}$	5.979	-159	-2.6\%
75.3\%	5.898	5,976	78	1.3\%
76.5\%	${ }_{5}^{5.871}$	${ }_{5}^{5.894}$	${ }^{23}$	0.4\%
79.0\%	${ }_{5,549}^{5.713}$	${ }_{5}^{5} 5.698$	${ }_{148}^{9}$	${ }_{2.7 \%}^{0.2 \%}$
-80.2\%	${ }_{5}^{5} 522$	5,574	52	0.9\%
81.5\%	5,434	5,562	127	2.3\%
82.7\%	5.004	5,517	513	10.2\%
84.0\%	4,980	$\underset{\substack{5,492 \\ 5487}}{\text { c, }}$	512 533	10.3\%
${ }_{\text {86.4\% }}$	${ }_{4,924}^{4,954}$	${ }_{\substack{5,446}}^{5,487}$	${ }_{521}^{533}$	${ }_{\text {10.6\% }} 10.8{ }^{\text {a }}$
877\%	4,917	5,410	493 515	10.0\%
88.9\%	4.881	5,396	515 359	10.6\%
90.1\%	4,850	5,209	359	7.4\%
92.6\%	${ }_{4,795}^{4,495}$	${ }_{4}^{5,965}$	${ }_{160}^{224}$	${ }_{\text {3.3\% }}^{4.6 \%}$
93.8\%	4,769	4,932	163	3.4\%
${ }_{965 \%}^{95.1 \%}$	${ }_{4}^{4.557}$	${ }_{4}^{4.922}$	399	
97.5\%	4,284	4,791	507	11.8\%
988.8\% 100.0\%	${ }_{4,071}^{4.072}$	${ }_{4.674}^{4.734}$	${ }_{603}^{662}$	16.3% 14.8%

Percent	June		Absolute Difference （CFS）	Relative
	WSIP 2077 Prowthout	WSIP 2070 With Project		
Probability	Monthy foiew（CFS）	Monthy Fow（CFS）		
0．0\％	971	16,961		－0．1\％
1．2\％	${ }^{11,547}$	${ }^{13,055}$	${ }^{1,508}$	13．1\％
2．5\％		${ }^{2,743}$	1,355	\％
3．7\％	111,225	＋12，699	${ }_{1}^{1,542}$	
4．9\％	11.064	12，586	1，522	
6．2\％	10，751	${ }^{12,1735}$	1，3051	
7．4\％	10，597	${ }_{11635}$	1，043	
9．9\％	10．457	${ }^{111,635}$	1169	
191\％	10.349	11510	， 169	111
12．3\％	10，215	11，444	${ }_{1}^{1,230}$	12.0
13．6\％	10，204	11，033	830	8．1\％
14．8\％	10，099	11.024	925	9．2\％
16．0\％	10，091	10，864	772	7．7\％
17．3\％	10，075	10，854	779	7．7\％
18．5\％	9，908	10，777	868	8．8\％
19．8\％	9，749	10，661	913	9．4\％
21．0\％	${ }^{9.647}$	${ }^{10,649}$	${ }^{1.002}$	10．4\％
${ }^{22.2 \%}$	9，639	${ }^{10,0327}$	994	10．3\％
22．5\％	9，554	10，457	${ }_{503}$	
25．9\％	${ }_{9,494}$	10，121	${ }_{628}$	6．6\％
27．2\％	9，478	10，108	630	6．6\％
28．4\％	9，419	10，057	638	
29．6\％	9，319	10，031	713	
30．9\％	9，310	9，972	662	7．1\％
32．1\％	9，200	9，932	${ }^{733}$	8．0\％
33．3\％	9，107	9，930	823	
34．6\％	9，107	9，909	802	8．8\％
35．9\％	9，069	9，846	778	8．6\％
37．0\％	9，023	9，766	744	8．2\％
边 38.3%	${ }^{8,866}$	9，710	845	9．5\％
39．5\％	${ }^{8.835}$	9，642	807	9．1\％
40．7\％	8，781	9，638	856	9．8\％\％
42．0\％	8，734	9，539	805	${ }_{9}^{9.2 \% \%}$
43．2\％	${ }_{8}^{8.670}$	9，4644	794	${ }^{9.27 \%}$
${ }^{44.4)^{\circ}}$	8，609	${ }^{9.3588}$	${ }_{741}$	${ }^{8.77 \%}$
${ }^{45.79 \%}$	${ }_{8}^{8,557}$	${ }_{9}^{9,298}$	${ }_{7} 74$	8．7\％\％
48．1\％	${ }_{8,402}^{80492}$	${ }_{9,131}^{9,175}$	${ }_{728}$	8．7\％
	8，188	9，113	${ }^{924}$	${ }^{11.3 \%}$
51．9\％	${ }_{8,044}^{8.067}$	${ }_{8,997}^{9.046}$	${ }_{953}$	${ }_{\text {112 }}^{12.1 \%}$
53．1\％	${ }_{8,037}$	8.874		
54．3\％	${ }_{8,035}$	8.837	802	10.0
55．6\％	7，949	${ }_{8}^{8.720}$	771	9．7\％
56．8\％	7，850	8，710	860	11．0\％
年58．0\％	7，798	${ }^{8,684}$	886	${ }^{11.4 \%}$
59．5\％	7，732	${ }^{8.605}$	${ }^{873}$	${ }^{11.3 \%}$
60．5\％	7,723 7655 7	8.510 8.506	$\begin{array}{r}787 \\ 882 \\ \hline 8\end{array}$	${ }^{10.2 \%}$
63．0\％	7.654	${ }_{8,450}^{8.450}$	${ }_{796}$	10．4\％
64．2\％	7，551	8，434	883	11．7\％
65．4\％	7，473	8.424	950	12．7\％
${ }^{66.7 \%}$	7，454	\％，8，236	${ }_{742} 7$	10．5\％
${ }_{6}^{67.9 \%}$	7,447 7,393	8,189 8,168	${ }_{773} 7$	${ }_{\text {10，}}^{10.0 \%}$
70．4\％	7，345	${ }_{7,873}$	528	\％
71．6\％	7，341	7，796	455	6．2\％
72．8\％	7，332	7,775	442	6．0\％
74．1\％	${ }^{7,328}$	7，731	403	
75．5．5\％	7,196	7，657	121	
777．8\％	7,168 7	${ }_{7}^{7,242}$	${ }_{74}$	
79．0\％	7，113	${ }_{\substack{7,242 \\ 7,232}}$	120 124	1．7\％
80．2\％	7.075	7.192	117	1．7\％
81．5\％	6，991	7,122	${ }^{131}$	
－ 82.7%	${ }_{6,940}$	7，119	178	${ }^{2.6 \%}$
84．0\％		7,105 7,102	${ }_{4}^{263}$	3．8．8\％
86．4\％	6,423	7,081	${ }_{658}$	10．2\％
87．7\％	6，390	7,071	681	10．7\％
88．9\％	6，363	7，066	702	11．0\％
90．19\％	6，264	7，062	797	${ }^{12.7 \%}$
91．4\％	${ }_{6}^{6,214}$	7，043	${ }_{8}^{829}$	${ }^{13.3 \%}$
93．8\％	¢，194	7,024 6.910	${ }_{726} 828$	－${ }^{13.4 \%}$
95．1\％	5.981	${ }_{6,357}$	375	6．3\％
96．3\％	${ }_{5}^{5.930}$	${ }^{6,355}$	${ }^{424}$	7．2\％
97．5\％	¢	¢，	556	${ }^{\text {9，7\％\％}}$
980．8\％	${ }_{\substack{5.649 \\ 5.690}}^{5.109}$	¢，082	${ }_{433}$	7．7\％

August				
Percent	WSIP 2070 Weithout	WSIP 2070 With Project	${ }_{\text {a }}^{\text {Absolute }}$	Relative
Probal	Monthly fow（cic	Montly Flow（CFS）	（CFs	
0．0\％	10.449	11.414	965	9．2\％
1．2\％	10.426	10，064	－362	
2．5\％	10，014	9.802	${ }_{212}$	
3．7\％	9，465	9，755	289	
4．9\％	9，286	9，700	414	4．5\％
6．2\％	8，984	9，315	331	
7．4\％	8.929	9，075	146	1．6\％
8．6\％	8，796	9，051	255	2．9\％
9．9\％	8，551	9，009	458	5．4\％
11．1\％	8，472	${ }_{8,781}$	${ }^{308}$	3．6\％
${ }^{12.3 \%}$	${ }_{8}^{8,435}$	8，775	${ }^{281}$	3．3\％
13．6\％	8，287	${ }^{8.690}$	403	4．9\％
14．8\％	${ }_{8,2376}^{8,177}$	8，687	451	5\％
110．0\％	8,177	8,499	${ }^{322}$	
17．5\％	${ }^{8,145}$	${ }_{8}^{8,303}$	158	
19．5\％	${ }^{8.0095}$	8，289	${ }_{220}$	
19．8\％	${ }^{8,047}$	$\xrightarrow{8,267}$	${ }_{337}^{220}$	27\％
222．2\％	${ }_{7}^{7,887}$	8,197 8.157	331 310	3．9\％
23．5\％	7.852	${ }_{8,196}$	345	
24．7\％	7，694	8，146	452	
25．9\％	7，658	8，134	477	
27．2\％	7，638	8，115	477	
28．4\％	7，631	${ }_{8,085}$	454	
29．6\％	7，456	${ }^{8,078}$	${ }_{623}^{623}$	
30．9\％	7，445	${ }^{8.012}$	557	7．6\％
32．1\％	7.410	${ }_{7}^{7.963}$	553	
33．3\％	7，386	7，862	476	6．4\％
34．6\％	7，158	7，842	684	9．6\％
35．7\％	7，147	7,823 7819	676	9．5\％\％
37．0\％	7，128	7，819	691	${ }^{9.7 \% \%}$
－ 38.3%	6，951	7.810	859	
39．5\％	6，921	7.670	749	
40．7\％	6，783	7，612	829	${ }_{\text {12，}}^{12.2 \%}$
42．0\％	${ }_{6}^{6,672}$	7.604	842	
－ $44.4 .4 \%$	${ }_{6.657}^{6.672}$	7，4989	${ }_{832}^{824}$	${ }^{12.5 \%}$
45．7\％	6，550	7,488	938	
46．9\％	${ }_{6,517}$	7，354	838	
48．1\％	${ }_{6} 6.515$	7，340	825	7\％
4．94\％	6．453	7，336	883	7\％
－${ }_{\text {51．0\％}}$	㐌，410 6	$\begin{array}{r}7,317 \\ 7175 \\ \hline\end{array}$	907	－14．2\％${ }_{\text {148\％}}$
53．1\％	c．${ }_{\substack{6.248 \\ 6,188}}^{\text {c，}}$	7，175	${ }_{883}^{927}$	
54．3\％	6,178	7，041	863	14．0\％
55．6\％	6，154	6，984	830	13．5\％
56．8\％	6，087	6，954	867	14．2\％
58．0\％	6，087	6，998	${ }_{862} 8$	14．2\％
59．3\％	6，032	${ }_{6}^{6,945}$	913	15．1\％
60．5\％	5，957	6，937	980	16．7\％
${ }^{611.7 \%}$	5，915	6，936	1.021	${ }^{17.3 \%}$
63．0\％	5．909	6．887	978	${ }^{16.6 \%}$
${ }^{64.2 \%}$	${ }_{5}^{5.903}$	${ }^{6,842}$	939	\％
${ }^{65.46}$	5，862	¢，836	974	\％
66．7\％	5，841	${ }^{6,777}$	929	119．7\％
69．1\％		${ }_{\text {b，767 }}^{6.770}$	${ }_{988}$	17．1\％
70．4\％	5，755	6，766	1，011	17．6\％
71．6\％	5，750	32	981	
72．8\％	5．724	6，730	1，006	
74．1\％	${ }_{5}^{5.724}$	${ }_{6}^{6,725}$	1，001	
75．3\％	5，724	6，711	987	
－76．5\％	5，716	6，708	991	
77．8\％	5.680	6，707	1，027	
79．0\％	5．643	${ }^{6.698}$	${ }_{1}^{1,055}$	
80．2\％	5．640	6．669	1,030	3\％
${ }^{81.5 \%}$	5，637	6，650	${ }^{1,013}$	18．0\％
－ 82.78	5，623	6，632	1,009	17．9\％
84．0\％	5，618	6，627	1,009	18．0\％
－ $8.5 .2 \%$	¢ 5.618	${ }^{6,6618}$	1，000	17．8\％
${ }^{86.4 \%}$	5，595 5 5 500		997	17．8\％
－ $\begin{aligned} & 87.7 \% \\ & 889 \%\end{aligned}$	${ }_{\text {chersio }}^{5}$	${ }_{6}^{6,576}$	${ }^{1,005}$	18．0\％
－${ }^{88.9 \%}$	${ }_{\text {5，528 }}$	6，574	1，046	18．9\％
90．17\％	5，484	6，567	，089	19．8\％
91．4\％	5．434	6，492	1，059	19．5\％
${ }_{93.8 \%}^{92.6 \%}$	${ }_{5}^{5.275}$	－ $\begin{aligned} & 6,445 \\ & 6.40\end{aligned}$	${ }_{1}^{1,165}$	22．1\％
95．1\％	${ }_{5}^{5,149}$	6，289	${ }_{1,140}$	22．1\％
96．3\％	4，947	6，259	1，312	8．5\％
	4，943			
98．8\％ 100．\％	4.840 3644	5.688 4.461	848 817	－ 17.5%

		September		
Percent Exceedance	${ }^{\text {WSIP } 2070}$ Proiethout	WSIP 2070 With Project	Absolute	Relative
Probability	Monthy Folow（CFS）	Montly Flow（CFS）	（CFS）	Difference（\％）
0．0\％	15，457	17，076	1.619	10．5\％
1．2\％	15，454	17，049	1.596	10．3\％
2．5\％	15，375	15.499	125	0．8\％
3．7\％	15，291	15，347	56	0．4\％
4．9\％	15，255	15，334	${ }_{78}^{78}$	0．5\％
\％．2\％		15.324 15310	73 67	0．5\％
7.4% 8.6%	15,243 15.214	15.310 15290	${ }_{76} 67$	${ }^{0.4 \%}$
8．9\％	15，214	15,290 15286	${ }_{74}^{76}$	0．5\％
${ }^{\text {9，9\％}}$	15.213 15.203 1	15.286 15.284 1	74 81 81	${ }_{\text {0．5\％}}^{0.5 \%}$
－${ }_{\text {11．13\％}}^{12.3 \%}$	15.203 15.145	15.284 15.266	81 121	0．8\％
13．6\％	15，086	${ }^{15,262}$	176	1．2\％
14．8\％	14.865	${ }^{15,261}$	396	2．7\％
16．0\％	14.749	15，239	490	
17.3% 18.5%	14，606	${ }_{\text {15，231 }}^{15217}$	625	4．3\％
18．5\％ 19.8%	${ }^{14,573}$	${ }^{15,217}$	644	4．4\％\％
－${ }^{19.8 \%}$	14,316 13,792 1	${ }^{15.213} 11.149$	897	${ }_{9}^{6.3 \%}$
22．2\％	13，391	15，139	${ }_{1,747}$	13．0\％
23．5\％	13，345	15.049	1，704	12．8\％
24．7\％	13，335	14，552	1，217	9.1%
25．9\％	13,307 13205 1	${ }^{12,963}$	－344	－2．6\％
27．2\％	${ }^{13,205}$	${ }^{12,887}$	－318	－2．4\％
28．4\％	12,866	12，755	－111	－0．9\％
29．9\％	${ }^{12,2620}$	${ }^{12,682}$	${ }^{62}$	0．5\％
30．9\％	12，279	${ }^{12,548}$	269	${ }^{2.2 \%}$
32．1\％	${ }^{11,1674}$	11，158	－516	－4．4\％
33．3\％	${ }^{11,545}$	10，809	－7364	－6．4\％
34.6% 35.8%	11,200 10,093	9，846	－1，354	－12．1\％
退35．8\％	10,93 10,294	${ }_{9,5696}^{9,506}$	－1．387	－
38．3\％	9,200	8.910	－291	－3．2\％
39．5\％	8.681	8.481	200	－2．3\％
${ }^{40.72 \%}$	${ }_{8,116}^{8,347}$	${ }_{\substack{8,282 \\ 8,268}}^{\text {en }}$	${ }_{152}$	－0．9\％
43．2\％	7,374	8,199	${ }_{825}$	11．2\％
44．4\％	7，223	8,044	821	11．4\％
45．7\％	6，972	7，807	834	12．0\％
${ }^{46.9 \%}$	c．6．691	7,750 7,612	${ }_{1}^{1,172}$	15.8% 182%
49．4\％	6，099	7.573	1.474	24．2\％
50．6\％	6，045	7,493	1.448	24．0\％
51．9\％	5.812	7,364	1，552	26．7\％
53．1\％	${ }_{5}^{5.812}$	7，315	1，503	25．9\％
54.3% 556%	5.476 5 5027	7,721	＋1，754	32．0\％
㐌5．6\％\％	${ }_{\substack{5,211}}^{5.227}$	7.010 6.879	1,783 1.669 1	－
58．0\％	5，120	6．868	1，747	34．1\％
59．3\％	5，050	6．836	1，786	35．4\％
60．5\％	4，957	6，753	1，796	36．2\％
61．7\％	${ }_{4,810}^{4,855}$	¢，7356.732 6.7	1,880 1,922	38.7% 40.0%
64．2\％	4.799	${ }_{6,714}^{6,75}$	${ }_{1,915}^{1,922}$	39．9\％
析 65.4%	${ }_{4.677}^{4.678}$	6,607 6.560	1，929	41．2\％
67．9\％	4,575	${ }_{6,557}^{6.500}$	${ }_{1}^{1,982}$	43．3\％
69．1\％	4.517	6,521	2，005	44．4\％
70．4\％	4，444	6.501	2,057	46．3\％
71．6\％	4，443	${ }_{6}^{6,496}$	2，053	46．2\％
72．8\％	4，434	6，459	2，024	45．7\％
74．19\％	${ }_{4}^{4,428}$	6，441	2，013	45．5\％
75．3\％	4,413	${ }^{6,401}$	${ }^{1,988}$	45．0\％
76．5\％	4，381	${ }^{6,354}$	${ }^{1,973}$	45．0\％
77．8\％	4,365 4.310	－6,321 6.258	1,956 1.948	${ }_{4}^{44.8 \%}$
80．2\％	4，282	6，146	${ }_{1}^{1,864}$	43．5\％
81．5\％	4，228	6，144	1，916	45．3\％
－ 82.79%	${ }_{4}^{4,165}$	5.989 5955	1，824	43．8\％
－${ }_{\text {84．0．}}^{84}$	4，127	${ }_{5}^{5,955}$	${ }^{1,8288}$	44．3\％
${ }_{\text {80．4\％}}$	4,068	${ }_{5,907}^{5.912}$	1,889 1 1,832	455．2\％
87．7\％	3，982	5．885	1，903	478\％
－${ }^{88.9 \%}$	3,839 3,833	5,746 5.694 5，	＋1，907	${ }^{49.79 \%}$
91．4\％	${ }_{3,822}$	5，470	${ }_{1}^{1,647}$	${ }_{43.1 \%}$
92．6\％	3，785	5.449	${ }_{1,664}$	\％
93．8\％	3，778	5，361	1，597	41．9\％
95．1\％	3，754	5.301 5 5 5	1,547 1,59	${ }^{41.2 \%}$
96．3\％	3，737	5，239	1，502	40．2\％
97．5\％	3，671	5，212	1，541	${ }^{42} \times 2.0$
98．8\％	－3,624 3,558	4.597 4.179	${ }_{621}^{974}$	${ }_{\text {ckit．}}^{26.9 \%}$

Figure SW-15-b
Sacramento River at Wilken Slough, Monthly Flow

Tabble SW-15-b
River at Wikien Slough,

	(1,841			
${ }_{\text {7.4\% }}^{6.2 \%}$	${ }^{13,673}$	-13,625	-48	-0.4\%
8.6\%	13,176	13.359	183	14\%
9.9\%	12,759	12,316	-443	-3.5\%
11.1\%	12.114	12,184	70	0.6\%
12.3\%	11.586	11.830	244	21%
13.6\%	11.507	11.692	186	16%
14.8\%	11,444	11,641	197	1.7\%
16.0\%	11,438	11,478	40	0.4\%
17.3\%	${ }^{11,336}$	11,289	-107	
18.5\%	11,357	11,256	-100	-0.9\%
19.8\%	11,34	11.248	-997	\%
22.0\%	11.342	11,005	-337	\%
23,5\%	1,563	10,451	-695	-0.8\%
24.7\%	10,548	10,139	- 409	-3.9\%
25.9\%	10.517	10,062	-455	-4.3\%
27.2\%	10,371	9,911	-460	-4.4\%
28.4\%	10,312	9,869	-443	-4.3\%
29.6\%	10,309	9,832	-477	-4.6\%
30.9\%	10,281	9,807	-474	-4.6\%
32.1\%	10,224	9,640	-585	-5.7\%
33.3\%	10,090	9,591	-499	-4.9\%
34.6\%	10,006	9,588	-418	-4.2\%
35.8\%	9,234	9,141	-93	-1.0\%
37.0\%	9,159	9,033	-126	-1.4\%
38.3\%	9,049	${ }^{8,933}$	-116	-1.3\%
39.5\%	8,997	8,689	-308	退
42.0\%	${ }^{8.9654}$	${ }_{8,644}$	- ${ }_{-10}$	-0.1\%
43.2\%	8.471	${ }_{8,542}$	70	0.8\%
44.4\%	8,253	8.537	284	3.4\%
45.7\%	8,242	${ }^{8,521}$	279	4\%
46.9\%	8,102	8,301	198	2.4\%
48.1\%	7.898	8.119	221	2.8\%
49.4\%	7.886	7,932	46	0.6\%
50.6\%	7,663	7.811	148	1.9\%
51.9\%	7.330	7,787	457	6.2\%
53.1\%	7.309	7,705	395	5.4\%
54.3\%	7,284	7.558	274	3.8\%
55.6\%	7.179	7,465	${ }^{286}$	4.0\%
56.8\%	7,115	7,435	${ }_{320} 3$	4.5\%
58.0\%	6,958	7,724	297	4.3\%
59.3\%	${ }_{6}^{6,936}$	7,134	198	${ }_{2.9 \%}$
60.5\%	6,893	7,068	175	2.5\%
61.7\%	${ }_{6}^{6,783}$	${ }_{6}^{6,956}$	173	2.6\%
64.2\%	${ }_{6}^{6,502}$	6,946	${ }_{29} 24$	3.7.7\%
65.4\%	${ }_{6.361}$	${ }_{6,603}^{6,654}$	${ }_{241}^{291}$	3.8\%
66.7\%	6,343	6,503	160	2.5\%
67.9\%	${ }_{6}^{6,330}$	6.479	149	2.4\%
70.4\%	-			1.7\%
71.6\%	${ }_{5}^{5.724}$	${ }_{6,067}^{6,266}$	${ }_{343}$	6.20\%
72.8\%	5.674	6,014	340	6.0\%
74.1\%	5.517	5,999	482	8.7\%
75.3\%	5.516	5,923	407	7.4\%
76.5\%	5.489	5,783	294	5.4\%
77.8\%	5,283	5.668	385	7.3\%
79.0\%	5.114	5,663	549	10.7\%
80.2\%	4,699	5,666	${ }^{958}$	20.4\%
81.5\%	4,685	5,635	950	${ }^{20.35 \%}$
82.7\%	4,551	5.485	${ }_{935}^{935}$	20.5\%
85.2\%	${ }_{4,492}$	5,348	${ }_{8}^{840}$	
86.4\%	4,437	5,080	643	4.5\%
87.7\%	4,245	5,000	755	17.8\%
88.9\%	4,190	4,993	${ }^{803}$	19.2\%
9014\%	4,120	4,951	88	${ }^{20.2 \%}$
9.4.4\%	4,051	4,938	${ }_{7} 88$	21.9\%
93.6\%	4,042	4,796	154	18.70
95.1\%	${ }_{3}$	4.489	${ }_{567}^{668}$	- 14.44%
96.3\%	3,842	4,264	421	1.0\%
97.5\%	3,736	4,169	433	11.6\%
98.8\%	3.570 3.435	3.827 3 75	${ }_{3}^{257}$	7.2\%

Percent Exceedance	WSIP 2070 Without Proiet	WSIP 2077 With Project	Absolute Difference	Relative
Probability	Monthy fowew (CFS)	Monthly Flow (CFS)	(cFs)	Difference (\%)
0.0\%	22,981	23,069	89	0.4\%
1.2\%	22,243	22,230	-13	-0.1\%
2.5\%	${ }_{\text {21, }}^{22,118}$	- 22,043	-74	-0.3\% ${ }_{-10 \%}$
3.9\%	${ }_{\substack{21,677}}^{21,813}$	${ }_{\text {21, }}^{21,54}$		
6.2\%	${ }_{21,594}$	${ }_{21,392}^{21,42}$	-202	-0.9\%
7.4\%	${ }^{21,567}$	${ }^{21,392}$	-176	-0.8\%
8.0\%	21,427	${ }^{21,1286}$	-141	
9.9\%	21,099	2,121	22	
12.3\%	${ }_{20,828}^{20,85}$	${ }_{19,957}^{20,057}$	-871	
13.6\%	${ }^{20,791}$	19885	-906	
14.8\%	20.440	${ }_{\text {19,664 }}$	-776	
16.0\%	20,229	19,348	-881	-4.4\%
17.3\%	20,147	19,227	-919	-4.6\%
18.5\%	20,022	18,978	-1,044	-5.2\%
19.8\%	19,744	18.939	-805	-4.1\%
21.0\%	19,653	18.872 18399	-781	-4.0\%
22.2\%	19,381	18,399	-982	-5.1\%
23.5\%	18,489 18167	18,173	-	-1.7\%
24.7\%	${ }^{18,167} 17263$	${ }^{16,872}$	$-1,295$ -2888 -282	- $\begin{array}{r}-7.19 \% \\ -16.6 \%\end{array}$
25.9\%	17,263 16.833 1	14.396 14.269	-2.868 -254 254	-
27.2\% ${ }^{28.4 \%}$	¢ $\begin{aligned} & 16.833 \\ & 15196\end{aligned}$	14,269 13.976	- $\begin{aligned} & -2.564 \\ & -1220\end{aligned}$	-
29.6\%	${ }_{\text {14, } 1188}$	${ }_{113,834}^{13,764}$	-1,048	-7.0\%
30.9\%	14,287	13,305	-982	-6.9\%
32.1\%	14,168	${ }^{13,163}$	-1,005	-7.1\%
	${ }^{14.092}$	${ }^{12,178}$	-1,914	
34.8\%	${ }_{\text {13,746 }}$	${ }^{11,548}$	-2,199	-10.0\%
37.0\%	13,322	10,230	${ }_{-3,092}$	-23.2\%
38.3\%	13,287	10.075	-3,212	-24.2\%
39.5\%	${ }^{13,162}$	9,773	-3,389	-25.8\%
40.7\%	${ }^{13,121}$	9,707	${ }^{-3,414}$	-26.0\%
42.0\%	${ }^{12,713}$	9,311	${ }^{-3,402}$	-26.8\%
43.2\%	${ }^{12,173}$	9,1182	${ }^{-2,992}$	-24.6\%
44.4\%	${ }^{11,606}$	9,148	${ }^{-2,457}$	-21.2\%
45.7\%	11,375	9,144	-2,232	-19.6\%
46.9\%	10,880	9,054	${ }^{-1,826}$	-16.8\%
48.1\% ${ }^{494 \%}$	10.870	8,988	-1,882	-17.3\%
49.4\%	10,196	8,800	-1,396	-13.79
50.9\%	-10,015	8,625 8.540	-1, 694	-7.5\%
53.1\%	9.086	${ }_{8,422}$	-664	-7.3\%
54.3\%	9,055	${ }_{8}^{8,363}$	-692	-7.9\%
55.8\%	${ }_{8.619}^{8.641}$	${ }_{7,974}^{\text {\%,973 }}$	-646	-7.5\%
58.0\%	8.493	7,931	-563	
59.3\%	${ }_{8,417}$	7,769	-647	
60.5\%	8,235	7,735	-500	-6.1\%
${ }^{617.7 \%}$	${ }_{8}^{8.023}$	7,600	-424	
-63.0\%	7,938 7398	$\begin{array}{r}7,341 \\ 7,226 \\ \hline\end{array}$	-597	${ }_{-2.5 \%}^{-7.5 \%}$
65.4\%	6.730	6,948	218	3.2\%
66.7\%	6,329	6.607	279	4.4\%
67.9\%	6,324	6,464		2.2\%
69.1\%	${ }_{6}^{6,297}$	6,219	-78	-1.2\%
70.4\%	¢,6,118 6,104	6,168 6.156 186	$\begin{array}{r}\text {-51 } \\ \hline 1\end{array}$	-0.8\%
72.8\%	6,100	6.071	-30	-0.5\%
74.1\%	${ }^{5,993}$	5.899	${ }^{-93}$	-1.6\%
75.3\%	5,853	5,888	35	0.6\%
76.5\% ${ }_{778 \%}$	5,730 5.638	5.848 5.594 5	118 4	- ${ }_{-0.8 \%}$
79.0\%	5.489	5.549	60	1.1\%
80.2\%	5.471 5295	5,547 5 5.527	77	1.4\%
- ${ }^{81.5 \%}$ 827\%	${ }_{\text {5, }}^{\text {5,977 }}$	${ }_{\substack{5,527 \\ 5,483}}^{\text {5, }}$	262	5.0\%
84.0\%	4,964	5,433	469	9.5\%
85.2\%	4.839	5,368	528	10.9\%
${ }^{86.4 \%}$	4,799	5,356	557	11.6\%
-	${ }_{4.772}^{4.786}$	5, 5,294	508 504	${ }^{10.0 \%}$ 10.6\%
90.1\%	4,756	${ }_{5,211}^{5,29}$	455	9.6\%
91.4\%	4.729	4,985	256	5.4\%
92.6\%	4.701 4682	4.963	262 239	5.6\%
93.8\%	${ }_{4}^{4,682}$	4,922	${ }_{382}^{239}$	${ }^{5.19 \%}$
96.3\%	${ }_{4}^{4.4706}$	$\xrightarrow{4.877}$	382 371	${ }_{8.4 \%}^{8.5 \%}$
97.5\%	4.222	4,694	472	11.2\%
98.8\%	4,075	4.684	610	15.0\%

| |
| :--- | :--- | :--- | :--- |

Table SW-15-b

Table SW－15－b

June				
Percent Exceedance	WSIP 2070 Without Proiect	WSIP 2070 With Project	Absolute Difference	
Probability	Monthly Fow（CFFS）	Monthly Fow（CFS）	（CFS）	
0．0\％				0．0\％
2．5\％	${ }_{9,425}^{9,640}$	10.968 10.800	${ }_{\substack{1,3,38 \\ 1}}^{1.386}$	${ }^{13.4 .6 \%}$
3．7\％	9，225	10，697	${ }_{1,471}^{1,47}$	15．9\％
4．9\％	9,123	10，693	1，570	
6．2\％	${ }^{8,857}$	10，251	1，394	
7．4\％	8，737	9，634	897	
8．6\％	${ }^{8.630}$	9，617	987	
9．9\％	8，444	9，572	1，128	13.4
11．1\％	${ }_{8}^{8,310}$	9，551	1，241	14．9\％
${ }^{12.3 \%}$	8，264	${ }^{9,353}$	1,090	13．2\％
13．6\％	8，184	${ }_{8}^{8,976}$	791	${ }_{9} 9.7 \%$
14．8\％\％	8.035	${ }_{8}^{8,933}$	899	17．2\％
110．73\％	8.019	8.861	842	
18．5\％	7，908	${ }_{8}^{8,732}$	${ }^{845}$	－ 10.74%
19．8\％	7，759	${ }_{8,590}$	${ }_{831}$	10．7\％
21．0\％	7，678	${ }^{8.541}$	${ }^{863}$	11．2\％
${ }^{22.2 .5 \%}$	7,636 7,566	8.520 8.465	${ }_{898}^{884}$	11．6\％
${ }^{24.7 \%}$	${ }_{7}^{7.563}$	${ }_{\substack{8,465 \\ 8,153}}^{\text {a }}$	600	
25．9\％	7.518	8,111	593	7．9\％
27．2\％	7，456	${ }^{8,096}$	40	8．6\％
28．4\％	7，383	${ }^{8,032}$	649	
29．6\％	7，223	${ }_{8}^{8,010}$	787	
30．9\％	7，201	7，967	766	10.6
32．1\％	7，168	7，931	763	10.6
33．3\％	7，066	7，901	835	11.8
34．6\％	7，024	7，879	855	122\％
	6，949 6.882	7，739	789	11．4\％
37．0\％	${ }^{6.882}$	7，696	814	11．8\％
38．5\％	－6．843	${ }^{7,665}$	${ }_{8}^{822}$	${ }^{12.20 \%}$
40．7\％	6,684	7.415	${ }_{731}$	10．9\％
42．0\％	6，657	${ }_{7}^{7,366}$	709	10．6\％
${ }^{43.2 \%}$	6.589 6.518	7,322 7.268	773 770	111．5\％
45．7\％	${ }_{6,472}$	7.231	758	11．7\％
46．9\％	${ }^{6,424}$	7，167	${ }^{743}$	11．6\％
${ }^{48.1 \%}$	6，292	7.102	810	
50．6\％	${ }_{6,085}^{6,208}$	7，063	978	161\％
51．9\％	5，930	7，009	1，079	18．2\％
53．19\％	5，923	7.002	1，079	18.2
54．3\％	5，909	6，719	810	13．7\％
年55．6\％	5．860	6，706	${ }^{846}$	14．4\％
年56．8\％	5.857 5.889 5 5，		${ }_{7} 85$	${ }^{13.46 \%}$
59．3\％	${ }_{5}^{5.720}$	${ }_{6.575}^{0.054}$	855	14．9\％
60．5\％	5，710	6，565	854	15．0\％
析17\％\％	¢，581	6．501	${ }_{897}^{920}$	16．5\％
63．0\％	5.534 5.506	6.401 6.383	867 877	15．7\％
64.2% 6.54%	5.506 5.490		${ }_{769}^{877}$	15．9\％
${ }^{654.4 \%}$ 6．7\％	¢， $\begin{aligned} & 5.490 \\ & 5.487\end{aligned}$	¢，6,259 6,188 1	${ }_{701}^{769}$	－${ }_{\text {12．0\％}}^{12.8 \%}$
67．9\％	$\stackrel{5}{5,457}$	6.185	728	13．3\％
69．1\％	5．409	6，122	${ }^{713}$	13．2\％
70．4\％	5，391	5．953	562 545	10．4\％
72．8\％	${ }_{5,340}^{50.342}$	${ }_{5,850}^{5.087}$	510	${ }_{9.5 \%}$
74．1\％	5，337	5，848	511	9．6\％
75．3\％	5，307	5，655	348	6．6\％
76．5\％	¢，5，296	5，641	${ }^{345}$	6．5\％
79．0\％	5，129	${ }_{5,247}^{5,479}$	${ }_{119}^{206}$	2．3\％
80．2\％	5.122	5.244	121	2．4\％
81．5\％	5，077	5，158	81	1．6\％
－ 8 827\％	5，027	$\stackrel{5,145}{ }$	118	2．4\％
84.0% 88.2%	4.925	5．007	83	1．7\％
85．2\％	${ }^{4,624} 4$	5,000 50000	376	
87．7\％	${ }_{4}^{4.516}$	5，000	484	10．7\％
88．9\％	4．502	5．000	498	1117\％
90．1\％	4，247	5.000	753	17．7\％
91．4\％${ }_{\text {926\％}}$	4,204 4.145	5.000 5 5	796 855 8	18．9\％
${ }_{\text {93．8\％}}^{92.6 \%}$	${ }^{4,145}$	5，000	${ }_{9}^{855}$	－ 20.02%
95．1\％	3，966	4,563	597	${ }^{2251 \%}$
96．3\％	${ }^{3.862}$	4，334	473	12．2\％
99．8\％	3，606	${ }_{4}^{4.246}$	88	5．0\％
100．0\％	${ }_{\substack{3,566 \\ 3,567}}$	${ }_{4}^{4,088}$	588 581	

August				
Percent Exceedance	WSIP 2070 Without Proiect	Wsip 2070 With Project	Absolute Difference	Relative
Probability	Monthly fow（CFS）	Monthly Fiow（CFS）	（CFS）	
0．0\％	8,875	9.821		10．7\％
${ }^{1.2 \%}$	${ }^{8.8588}$	8，4022	456	－5．2\％
－ 2.5%	${ }^{8,432}$	${ }_{8}^{8,227}$	－205	
3．7\％	${ }^{\text {d，022 }}$	${ }^{8,128}$	107	7．3\％
4．9\％	${ }_{7}^{7,125}$	${ }^{8}$	351	
6．2\％	7，324	7.1407	82	
7．4\％	${ }_{7} 7.324$	7，436	13	
8．9\％	6.998	7313	316	20\％
11．1\％	${ }_{6}^{6.853}$	7.129	376	5．5\％
12．3\％	6，816	7，138	322	7\％
13．6\％	${ }_{6.696}$	7，044	348	5．2\％
14．8\％	6，600	7，006	406	6．2\％
16．0\％	6，590	${ }_{6}^{6,896}$	307	4．7\％
17．3\％	${ }^{6,543}$	${ }^{6,703}$	160	2．5\％
18．5\％	6，530	6，691	161	2．5\％
19．8\％	6，490	${ }^{6,665}$	176	2．7\％
${ }^{21.0 \%}$		6．659	266	4．2\％
${ }^{22.25 \%}$	${ }_{\text {c，}}^{6,276}$	㐌，641	365	5．8\％
23．5\％	${ }_{6}^{6,188}$	6，629	441	71\％
25．9\％	${ }_{6}^{6,067}$	${ }_{6}^{6.460}$	394	6．5\％
27．2\％	6，029	6，458	429	7．1\％
28．4\％	6，017	6，417	400	
29．6\％	5.914	6，372	458	
30．9\％	5.912	6，349	437	7．4\％
32．1\％	5．762	6，330	568	9．9\％
33．3\％	5．747	6，271	524	
34．6\％	5．630	6，212	582	
35．8\％	5.579 5 5	6，174	595	10．7\％
37．0\％	5，550	6，145	596	10．7\％
38．3\％	5．530	6，132	603	10．9\％
39．5\％	5，341	${ }^{6.088}$	747	14．0\％
40．7\％	5，250	5．969	718	13．7\％
42．0\％	5，143	5，941	798	15．5\％
43．2\％	5．070	5．879	889	${ }^{16.0 \%}$
44．4．9	5．044	5.831	786	15．6\％
45．7\％	${ }^{5}, 025$	5，769	744	14．3\％
46．9\％	5.021	${ }_{\text {5 }}^{5}$ ，680	659	${ }^{13.19 \%}$
49．4\％	${ }_{4.811}^{4,937}$	${ }_{5.658}^{5.676}$	740 848	15．0\％
50．6\％	4，778	${ }_{5,587}^{50.687}$	809	16.9
51．9\％	4.665	5．561	895	
53．1\％	4.622	5，492	870	
54．3\％	4．565	5，485	920	\％
55．6\％	4，543	5，421	878	3\％
56．8\％	4．529	5，381	852	18．8\％
58．0\％	4．524	5，354	829	18．3\％
59．3\％	4，381	5，347	966	${ }^{22.1 \%}$
60．5\％	4，353	5，343	991	22．8\％
617\％\％	4，308	5，300	992	23．0\％
63．0\％	4，294	5．218	924	21．5\％
${ }^{64.2 \%}$	4，250	5，195	944	${ }_{22,2 \%}^{22.2 \%}$
－65．4\％	4，220	5.162 5 5	942	源
66．7\％ 6790%	${ }_{4}^{4,216}$	5，153	${ }_{9} 97$	
67．9\％	4，1866	${ }_{5}^{5.144}$	957	\％
69．1\％	4，105	5，137 5 5 5	${ }_{1}^{1,031}$	${ }^{25.19 \%}$
${ }_{712.6 \%}^{70.4 \%}$	${ }_{4}^{4,1087}$	5，133 5 5	${ }_{1}^{1,033}$	${ }^{25.10 \%}$
72．8\％	4，061	5，112	1,051	9\％
74．1\％	4，060	5，108	，049	
75．3\％	4，055	5，068	1，013	
76．5\％	4，033	5，054	21	
77．8\％	4，030	5．039	1，009	5．0\％
79．0\％ 80.2%	4，029	5．009	980	${ }^{24.3 \%}$
80，5\％	4,029 4.028	5，000 5 5 0000	971	． 1%
82．7\％	4，019	${ }_{5,000}^{5}$	981	
84．0\％	4，016	5，000	984	24．5\％
85．2\％	4.013	5，000	987	24．6\％
86．4\％	4，012	5，000	988	24．6\％
877．7\％	4，011	${ }_{5}^{5.000}$	989	24．6\％
88．9\％	4.010	5.000 5 5	${ }_{990}^{990}$	${ }_{\text {2 }}^{24.78 \%}$
90．1\％	4，010	5.000	990	24．7\％
91．4\％	3，826	${ }_{4}^{4,942}$	${ }^{1,117}$	
93．8．8\％	3,779 3 3	4．875	${ }^{1,096}$	394\％\％
95．1\％	${ }_{\substack{3,508}}^{\substack{\text { 3．，594 }}}$	4，631	${ }_{\text {i，124 }}$	32．0\％
${ }^{96.3 \%}$	3，464	4.616	1，151	33．2\％
	－	4,573	，173	5\％\％
	259	${ }_{4}^{4.0138}$	${ }_{369}$	22．8\％

Percent	WSIP 2070 Without	WSIP 2070 With Project	Absolute	Realive
Probabil	${ }_{\text {Monthly foiet（ }}^{\text {PFSS }}$	Monthly Fiow（CFS）	${ }_{\text {core }}$	Difference \％
	15.210	${ }_{16 \text { 16，787 }}$	${ }_{1,577}^{1 / 205}$	10．4\％
1．2\％	15，061	16.781	1，720	11．4\％
2．5\％	15，000	15,185	185	1．2\％
3．7\％	15，000	${ }^{15,042}$	42	0．3\％
4．9\％	15，000	15，029	29	0．2\％
6．2\％	15，000	${ }^{15.000}$	0	0．0\％
7．4\％	15.000	15.000	0	0．0\％
8．6\％	15，000	15.000	0	0．0\％
9．9\％	15.000	15.000	0	0．0\％
11．1．\％	15.000	${ }^{15,000}$	176	0．0\％
${ }^{12.3 \%}$	${ }^{14,8284}$	15.000	${ }^{176}$	1．2\％
13.6% 14.8%	14,771 14.604	15，000 15000	229 396	
14．8\％ 16.0%	14,604 14.432	15.000 15.000	$\begin{array}{r}396 \\ 568 \\ \hline\end{array}$	3．9\％
－ 16.0%	14,432 14.312	15.000 15.000	568 688	3．8\％
18．5\％	14，308	15，000	692	8\％
19．8\％	14,082	000	918	
21．0\％	${ }^{13,524}$	15.000	${ }^{1,476}$	
${ }_{2}^{22.2 \%}$	${ }^{13,128}$	14，824	${ }^{1,696}$	12．9\％
－	13,053 12.296	14,771 14.309	${ }_{1}^{1,718}$	${ }^{13.2 \%}$
24．9\％	${ }_{12,973}$	12，669	${ }_{-305}$	－2．3\％
27．2\％	12，915	12，614	－301	－2．3\％
28．4\％	12，557	12，408	－150	－1．2\％
29．6\％	12，366	12,404	39	0．3\％
30．9\％	${ }^{11,956}$	12，294	338	2．8\％
32．19\％	${ }^{11,321}$	10,868 10，504	－ 75	－4．0\％
33．3\％	11，264	10，504	－759	－6．7\％
34.6% 35.8%	10，875 10,701	9，513 ${ }_{9}^{934}$	－1，362	－12．5\％
35．8\％	10，701	${ }^{9,324}$	－1，377	－12．9\％
37．0\％	10，020	9，287	－733	－7．3\％
隹38．3\％	8,957 8,464	8，611	－346	－－3．9\％
39．5\％	8,464 8,054	${ }_{8,115}^{8,252}$	${ }_{61}{ }^{212}$	－2．5\％
42．0\％	${ }_{7,873}^{8,054}$	${ }_{\text {7，934 }}$	61	0．8\％
43．2\％	7.030	${ }_{7}^{7,864}$	834	
44．4\％			829	
45．7\％	6，611	7，456	845	
46．9\％	${ }^{6.535}$	7，414	879	13．5\％
48．4\％		7,328 7,249	${ }^{1,533}$	${ }_{\text {2 }}{ }_{26.5 \%}^{21.5 \%}$
50．6\％	5.680	7，239	1，559	27．4\％
51．9\％	5，549	7，158	1，609	29．0\％
	${ }_{5}^{5.443}$	7.014	${ }^{1,571}$	27．9\％
54．3\％	5，169	${ }^{6.947}$	1，778	34．4\％
55．8\％	5,146 4.842	－${ }_{6}^{6,776}$	－1，629	317．7\％
58．0\％	4，762	${ }_{6,600}^{6}$	${ }_{1}^{1,888}$	39．6\％
59．3\％	4.633	${ }_{6}^{6,523}$	1，889	40．8\％
60．5\％	4，621	6，460	1，839	39．8\％
61.7% 630%	${ }_{4}^{4,556}$		1,895 1,989	
－ 63.0%	${ }_{4,357}^{4.389}$	－6,377 6,345	$\begin{array}{r}1,989 \\ 1.988 \\ \hline\end{array}$	4．3\％${ }^{4.56 \%}$
65．4\％	4,334	${ }_{6,29}^{6,295}$	${ }_{1}^{1,925}$	44．4\％
66．7\％	4,285	${ }_{6,238}$	1，952	45．6\％
67．9\％ 69.1%	4,249 4.220	¢，6，233	＋1，984	46．7\％
70．4\％	${ }_{4,215}^{4,215}$	${ }_{6,166}^{6,176}$	${ }_{1}^{1,951}$	46．3\％
71．6\％	4，177	6，146	1，969	47．2\％
728\％	4，135	${ }_{6}^{6,146}$	${ }^{2}, 011$	6\％
74．1\％	4,115 4,093	6,137 6,080	${ }^{2}, 021$	49．19\％
76．5\％	4，066	6,070	2.004	493\％
77．8\％	4，029	6，066	2.038	50．6\％
79．0\％	4，007	5．899	1，891	47．2\％
80．2\％	4，002	（5.880 5808	＋1，878	46．9\％
81．5\％ 887%	3,980 3855	5．808	（1，828	4．5．9\％
822．7\％	${ }_{\substack{3,855 \\ 3,851}}^{3,085}$	${ }_{5,610}^{5.671}$	${ }_{\substack{1,758 \\ 1,788}}^{1,789}$	${ }_{4}^{47.7 \%}$
85．2\％	3，755	${ }_{\text {5，553 }}$	1，798	47．9\％
86．4\％	3，745	5．524	1，779	47．5\％
－ 88.7%	3,643 3.539	5，499 5.431	1,857 1.891 1	51．0\％
90．1\％	3，520	${ }_{5}^{5,385}$	${ }^{1,865}$	53．0\％
914．4\％	3，519	5，054	${ }^{1,535}$	43．6\％
938．8\％	3，438	5．000 5.000	${ }_{1}^{1,562}$	45．4\％
95．1\％	3，434	5.000	${ }^{1,566}$	45．5\％
97．5\％	－${ }_{3,342}^{3,420}$	5,000 4.863	1.588 1.542	
98．8\％	3，311	4,246	${ }_{935}$	28．3\％
100．0\％	3，254	3，725	471	14．5\％

Sacramento River at Verona, Monthly Flow

Table SW-16-b

$\xrightarrow{\text { Table }}$ SW-16--b

Table SW-16-b

Percent Exceedance	WSIP 2070 Without Proiet	WSIP 2070 With Project	Absolute Difference	Reative
	Monthly Fow (CFS)	Monthly Flow (CFS)	(CFS)	
0.0\%	27.830	${ }^{27,866}$	36	0.1\%
1.2\%	${ }^{27,748}$	${ }^{277715}$	${ }^{-33}$	0.1\%
2.5\%	27,478 26.809		${ }_{-46}^{193}$	-0.7\%
3.7\%	26,809	${ }^{26,763}$	46	0.2\%
4.9\%	26.566	26.566	32	${ }_{\text {en }}^{0.0 \%}$
- 7.2 \%		俍26,4999	32 85	${ }^{0.1 \%}$
8.6\%	25,427	${ }^{26,411}$	984	3.9\%
9.9\%	253	26,253	1,000	
11.1\%	25,135	${ }^{26,147}$	1,012	
12.3\%	25,034	${ }^{25,773}$	739	
13.6\%	25,021	${ }^{25,648}$	${ }_{6} 27$	
14.8\%	24,997	25,211	214	0.9\%
16.0\%	24,872	24,792	${ }^{-80}$	
17.3\%	24,817	24,451	366	
18.5\%	24,451	24,248	-202	0.8\%
19.8\%	24,391	${ }^{23,945}$	-446	1.8\%
21.0\%	${ }^{23,659}$	${ }^{23,745}$	86	0.4\%
${ }^{22.2 \%}$	23,174	${ }^{23,475}$	302	${ }^{1.3 \%}$
23.5\%	${ }^{22,948}$	${ }^{22,594}$	-354	-1.5\%
24.7\%	${ }^{22,942}$	${ }^{21,704}$	${ }^{1,2388}$	
25.9\%	${ }_{2}^{22,409}$	${ }^{21,362}$	-1,047	
27.2\%	${ }^{21,966}$	${ }^{21,085}$	881	
- $28.8 .4 \%$	${ }_{\text {210,064 }}$	20.943 20.490	-573	--3.7\%
30.9\%	20,980	20,399	-581	8\%
32.1\%	${ }^{20,511}$	20,221	-289	
33.3\%	${ }^{20,393}$	20,217	-176	
34.6\%	${ }^{19,895}$	${ }^{19,9913}$	18	0.1\%
357.0\%	118.444	-19,250	806	${ }_{4}$
38.3\%	18,333	18,062	${ }^{271}$	-1.5\%
39.5\%	18,327	17,489	838	-4.6\%
40.7\%	17,581	17,253	-328	-1.9\%
42.0\%	17,465	${ }^{16,998}$	-467	-2.7\%
43.2\%	17,108	${ }^{16,826}$	-282	-1.7\%
44.4.\%	11,752	${ }^{14,385}$	${ }_{2,633}$	${ }^{22.46}$
45.7\%	${ }^{11,581}$	13,694	2,172	18.2\%
46.9\%	${ }^{11,523}$	13,265	1,741	15.10
48.19\%	${ }^{11,254}$	13,236 13, 1395	${ }^{1,982}$	17.6\%
49.4\%	${ }^{11,181}$	-13,195	2,014	18.0\%
50.6\%	${ }^{11,1466}$	${ }^{12,9555}$	${ }^{1,809}$	16.2\%
51.9\%	11.061	- 12.5578	${ }_{\substack{1,516 \\ 1,525}}$	
54.3\%	(11,049	+12.574	${ }_{1}^{1,534}$	13.0\%
55.6\%	10,852	12.445	1,593	
8\%	10,789	202	13	
58.0\%	10,664	${ }^{12,370}$	${ }^{1,706}$	16.0\%
59.5\%	- ${ }_{\text {10, }}^{10.410}$	(12,294	${ }^{1,7654}$	- ${ }^{16.3 \%}$
61.7\%	10,082	11,850	1,768	
63.0\%	9,907	11,794	1,887	19.0\%
64.2\%	${ }^{9,883}$	${ }^{11,722}$	1,840	18.6\%
65.4\%	9,814	11,709	${ }^{1,895}$	19.3\%
66.7\%	9,544	11,698	2,154	22.6\%
-67.9\%	${ }^{9,370}$	${ }^{11,1116}$	1,747	18.6\%
69.1\%	9,096	10,979	${ }^{1,883}$	7\%
77.6\%	${ }_{8,801}^{9.025}$	${ }^{10,751}$	${ }_{1}^{1,951}$	222.2\%
72.8\%	8.610	10,668	${ }^{2}, 058$	23.9\%
74.19\%	8,421	${ }^{10,463}$	${ }^{2,042}$	
7.35\%	8,290	10,459	2,169	26.2\%
76.5\%	${ }^{8.070}$	${ }^{10,446}$	${ }_{2,376}^{2,376}$	29.4\%
79.0\%	${ }_{7}^{7,741}$	${ }_{9,950}^{10.012}$	${ }_{\substack{2,208 \\ 2,208}}$	22.5\%
80.2\%	7,340	9,926	${ }_{2,586}$	
81.5\%	7,339	9.809	2,470	
82.7\%	7,074	9,770	${ }^{2,696}$	1\%
- $\begin{aligned} & 84.0 \% \\ & 852 \%\end{aligned}$	7,007	9,687	2,680	38.3\%
86.4\%	¢, ${ }_{6,871}^{6.074}$	${ }_{9,273}^{9.670}$	${ }_{\text {2, } 201}^{2,004}$	34.9\%
87.7\%	6,544	9,267	${ }^{2}, 724$	41.6\%
88.9\%	${ }_{6.528}$	9,031	2.503	38.3
90.1\%	6,307	8.711	2,405	38.1\%
91.4\%	${ }_{6}^{6,275}$	${ }^{8,336}$	${ }^{2}, 061$	32.8\%
92.6\%	${ }^{6.178}$	7.894	1,777	27.8\%
93.8\%	6,036	7.818	1,782	
${ }_{9}^{95.36 \%}$	5.884 5.868	(7,662	${ }^{1,749}$	30.2\%
${ }^{97.5 \%}$	¢ ${ }_{\text {5,4887 }}^{5.688}$	¢,7,885 6,875	${ }_{1}^{1,488}$	${ }_{25}^{24.3 \%}$
98.8\%	5,451	5.637	186	
	5,330	5,376	46	0.9\%

Figure SW-17-b
Sacramento River at Freeport, Monthly Flow

Toble SW-17-b
tio River at freport Monthly Fow
Rrobability of Excedance

October				
$\begin{gathered} \text { Percent } \\ \text { Exceenance } \\ \text { Probability } \end{gathered}$	WSIP 2077 Wewthout	WSIP 2070 With Project		Relative
	Monthy fowew (CFS)	Moontly flow (CFS)	(CFs)	ference (\%)
	${ }^{33,410}$		${ }^{3,604}$	-10.8\%
${ }^{1.2 \%}$	${ }^{22,306}$	${ }^{22,488}$	183	
2.5\%		16,04	545	
3.7\%	14,904	15,503	599	
4.9\%	14,570	${ }^{15,363}$	793	
6.2\%	14,398	15,133	735	
7.4\%	14,358	14,795	${ }^{437}$	
8.6\%	14,315	14,643	328	2.3\%
9.9\%	${ }^{14,086}$	14,632	546	\%
11.1\%	${ }^{13,899}$	${ }^{14,602}$	702	5.1\%
${ }^{12.3 \%}$	${ }^{13,817}$	14,431	614	4.4\%
13.6\%	13,809	14,238	429	3.1\%
14.8\%	${ }^{13,676}$	14,162	${ }_{781}$	
16.0\%	13,420	14,129	710	
185\%	${ }^{13,381}$	${ }^{14,1200}$	719	
18.5\%	${ }^{13,387}$	14,100	79	
19.8\%	${ }^{13,367}$	${ }^{13,9988}$	631	
212.2\%	${ }^{13,252}$	${ }_{\text {13, } 13.827}^{1936}$	575	4.3\%
23.5\%	${ }^{13,042}$	13,793	751	5.8\%
24.7\%	${ }^{13,034}$		729	5.6\%
27.2\%	${ }^{12,9097}$	${ }_{\text {lis.and }}^{13,421}$	514	4.0\%
28.4\%	12,750	13,402	652	5.1\%
29.6\%	${ }^{12,742}$	${ }_{\text {13,343 }}^{13,23}$	602	4.7\%
30.9\%	${ }^{12,577}$	13,207	630	5.0\%
32.1\%	11.986	${ }^{13,339}$	${ }^{1.053}$	8.8\%
33.3\%	11.949	${ }^{12,895}$	945	7.9\%
34.6\%	${ }^{11,893}$	12,887	994	8.4\%
35.8\%	${ }^{11,813}$	${ }_{12,803}$	990	${ }^{8.4 \%}$
37.0\%	11,812	${ }^{12,661}$	849	7.2\%
- 38.3%	11,609	+12,631	${ }^{1,023}$	${ }^{8.8 \%}$
39.5\%	11,489	${ }^{12,518}$	${ }_{1}^{1,035}$	9.0\%
40.7\%	111458	112,243	${ }^{785}$	
4.3.0\%	11080	12,064 11883 18	${ }_{693}^{683}$	
43.2\%	10,960	${ }^{111,683}$	923	8.4\%
45.7\%	10,769	11,661	892	8.3\%
46.9\%	${ }^{10,562}$	111,634	${ }^{1,072}$	${ }^{10.19 \%}$
48.19\%	${ }^{10.351}$	${ }_{111145}^{11,576}$	$\underset{7}{1,215}$	
50.6\%	10,193	10,768	575	5.6\%
51.9\%	10,094	10,684	590	5.8\%
53.1\%	10,092	10,652	560	5.6\%
54.3\%	10,006	10,284	${ }^{278}$	2.8\%
55.6\%	9,973	10,123	151	1.5\%
	9,450	9,933	${ }^{483}$	5.1\%
年58.0\%	9,435	9,889	454	4.8\%
59.3\% 6.5%	9,369	${ }^{9.875}$	506	5.4\%\%
60.5\%	9,343	9,760	417	4.5\%
${ }^{611.7 \%}$	9,331	9.660	328	3.5\%
-63.0\%	9,172	9,215	44	0.5\%
	9,171	${ }_{\text {9,214 }}$	${ }_{68}^{43}$	0.5\%\%
${ }_{66.7 \%}$	${ }_{\substack{9,1368}}^{9,098}$	9,203 8.961	${ }_{138}^{68}$	1.5\%
67.9\%	8,746	8,950	204	2.3\%
69.1\%	8,675 8608	8,939	${ }_{284}^{264}$	3.0\%
70.4\%	${ }_{8,000}^{80,001}$	${ }_{8}^{8.892}$	284	
7288\%	8100	${ }_{8801}$	701	${ }^{5.7 \%}$
74.1\%	8,099	8,752	653	8.1\%
75.3\%	8,085	8,752	666	\%
76.5\%	8.079	${ }^{8,640}$	561	${ }^{6.9 \%}$
779.0\%	8,078 8.055 8	${ }^{8,164}$	85	1.1\%
80.2\%	${ }_{8,028}^{8,055}$	${ }_{8,052}^{8.063}$	${ }_{24}$	${ }_{\text {o.3\% }}^{0.1 \%}$
81.5\%	7,977	${ }^{8.0008}$	31	0.4\%
82.7\%	7.976	7,944	${ }^{32}$	0.4\%
84.0\%	7.962	7,915	${ }_{-48}$	-0.7\%
85.2\%	7.937	7,720	-217	-2.7\%
- 86.48%	7,921	7,671	250	3.2\%
88.9\%	7,881	${ }_{\text {7,137 }}^{7,506}$	-	-9.2\%
90.1\%	6,966	7.122	156	2.2\%
914.4\%	6,592	6,954	${ }^{361}$	5.5\%
92.6\%	${ }^{6.505}$	${ }^{6.878}$	373	5.7\%
${ }^{935.1 \%}$	¢, ${ }_{6,198}^{6,253}$	c,6,599 6,509	${ }_{307}^{445}$	5.0\%
96.3\%	6,173	6,487	314	5.1\%
97.5\%	6,158	6,430	272	4.4\%
98.8\%	6,109 6.108	6,196 6.108	${ }_{0}^{87}$	-

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	WSIP 2070 Without Proiet	WSII 2070 W With Project	Absolute Difference	Relative
Probability	Monthly foied (CFS)	Monthy Flow (CFS)	(cFs)	Difference $\rho_{\%}$
0.0\%	81,196	${ }^{81,176}$	-20	0.0\%
1.2\%	${ }^{78,525}$	78,279	-246	-0.3\%
2.5\%	73,595	${ }^{73,262}$	${ }_{-41}^{-33}$	-0.5\%
3.7\%	${ }^{70,488}$	${ }^{70,077}$	-410	-0.6\%
4.9\%	¢7,004	${ }_{\text {c }}^{66.695}$	-309	-0.9\%
- 7.2 \%			-1,175	-1.9\%
8.6\%	56.510	${ }^{55,305}$	-1,205	
9.9\%	55,196	54,746	450	
11.1\%	54,593	53,728	-865	
12.3\%	${ }^{43,867}$	43,524	343	
13.6\%	${ }^{43,847}$	42,891	-955	
14.8\%	${ }^{38,544}$	${ }^{37,563}$	981	
16.70\%	${ }^{38,067}$	35,307	2.760	
17.3\%	${ }^{36,965}$	${ }_{\text {cker }}^{32,736}$	-4,229	
18.5\%	${ }^{34,576}$	32,700	-1,876	-5.4\%
19.8\%	${ }^{33,974}$	${ }^{30,332}$	-3,642	-10.7\%
210\%	32,640	${ }^{29,453}$	-3,187	
${ }^{22.2 \%}$	32,088	${ }_{27,911}^{28,98}$	-3,177	
23.5\%	${ }^{28,930}$	${ }^{217,902}$	-1,028	
24.7\%	${ }^{28.861}$	27,679	${ }^{-1,182}$	
25.9\%	26,999 25715 2.05	25,204	-1,795	
27.2\%	${ }_{2}^{25,745}$	${ }^{22,4250}$	-3,244	
29.6\%	${ }_{\text {23,359 }}$	${ }_{\text {21, }}^{2191}$	-2,168	-9.3\%
30.9\%	22.445	20.486	-1,958	7\%
32.1\%	${ }^{22,092}$	${ }^{20,344}$	-1,748	-7.9\%
	21,367 20.585	${ }_{\text {20, }}^{20,113}$	-1,254	
34.6\%		19,9274		
370\%	${ }_{20,322}^{20,42}$	18,700	-1,622	
38.3\%	19,121	18.683	-438	-2.3\%
39.5\%	18.994	17,871	-1,123	-5.9\%
40.7\%	18,413	177742	-671	-3.6\%
42.0\%	${ }^{18,165}$	17,015	${ }^{1}, 150$	-6.3\%
43.2\%	${ }^{17,933}$	${ }^{16,899}$	-1,034	-5.8\%
44.4.\%	${ }^{17,548}$	16,177	-1.371	-7.7\%
45.7\%	17,538	16,153	$-1,385$	-7.9\%
46.99\%	17,776	16,037	${ }^{-1,440}$	-8.2\%
48.1\%	17,762	${ }^{15.662}$	-1,500	
49.4\%	17,259	${ }^{15,6784}$	-1,582	-9.2\%
50.6\%	117,235	15.474	-1,760	-10.2\%
531\%	17,130 16.499	$15,3,387$ 15.260	-1,824	-10.6\%
54.3\%	${ }^{15,3,376}$	${ }^{15,205}$	-171	-1.1\%
55.6\%	15,171	15,015	-155	
56.8\%	${ }^{15,120}$	${ }^{14,753}$	${ }^{366}$	-2.4\%
59.3\%	${ }^{15.069}$	14,603	${ }_{-466}$	-3.1\%
60.5\%	14,670	14,595	-75	\%
61.7\%	14,551	14,179	-372	\%
63.0\%	14,544	14.167	-377	-2.6\%
${ }^{64.2 \%}$	14,428	14,049	-380	-2.6\%
- 65.4%	14,276	${ }^{13,875}$	-400	-2.8\%
${ }^{66.7 \%}$	14,198	${ }^{13,820}$	-378	-2.7\%
67.9\%	13,454	${ }^{13,392}$	-62	-0.5\%
69.1\%	${ }^{13,258}$	${ }^{13,383}$	124	0.9\%
70.4\%	13,258 12.246 1	13,070 13.063 1	-188	-1.9\%
71.6\%	+12,946	${ }^{13,063}$	117	厚
- 7 74.1\%	(12,488	13,006 12.214 12,	${ }_{557}^{518}$	
75.3\%	${ }^{10,969}$	${ }^{112,292}$	${ }_{1,323}$	${ }_{12.1 \%}^{4.5}$
76.5\%	10,742	12,008	1,266	11.8\%
77.8\%	10,645	${ }^{11,658}$	${ }^{1,013}$	5\%
79.0\%	10,509		259	\%
80.15\%	10,5689	10,599	143	1.4.0
${ }_{8}^{82.7 \%}$	${ }^{10.500}$	${ }^{10.584}$	${ }_{84}^{60}$	0.8\%
84.0\%	10,488	10,533	46	0.4\%
85.2\%	10,005	10,474	469	4.7\%
86.4\%	9,602	10,416	814	8.5\%
877\%	9,587	10,340	754	7.9\%
88.9\%	9,407	10,201	795	${ }^{8.4 \%}$
90.1\%	9,263	9,888	626	${ }^{6.8 \%}$
91.4\%	9,129	${ }^{9,653}$	524	${ }^{5.7 \%}$
92.6\%	${ }^{8.503}$	${ }_{9,478}$	975	11.5\%
93.8\%	${ }_{8}^{8.345}$	${ }^{9,242}$	897	10.7\%
96.3\%	8,045 7792	${ }_{9}^{9,119}$	${ }^{1,074}$	
97.5\%	6,967	8.014	1.047	
98.8\%	6,939	7.288	349	5.0\%
100.0\%	6,782	7,190	408	6.0\%

,		(2037	-	,	,				
1.2\%	${ }^{77,364}$	76,987	-378	-0.5\%	-1.2\%	${ }^{77,807}$	${ }^{77,799}$	${ }^{-8}$	0.0\%
2.5\%	${ }_{7}^{76,991}$	76,784	-208	-0.3\%	2.5\%		-69,002	-484	-0.7\%
59\%	70,955	70,790	-363	-0.5\%	3.7\%	${ }_{5}^{55,529}$	${ }_{5}^{54,29}$	- 5	-0.0
4.9\%	${ }_{755327}$	${ }_{75 \text { 7328 }}$	-63	-0.0\%	4.9\%	${ }_{\text {cheren }}^{53,211}$	${ }^{51,51956}$	- 15	-0.3\%
7.4\%	${ }_{7} 7.420$	${ }_{72,890}$	-530	-0.7\%	7.4\%	${ }_{51,288}^{52,19}$	${ }_{51,222}$	-66	-0.1\%
8.6\%	67,249	67,252	3	0.0\%	8.6\%	51,122	49,588	-1,534	-3.0
9.9\%	39	66,534	-105	-0.2\%	9.9\%	49,616	48,635	81	. 0 \%
11.1\%	65,997	64,620	-1,377	-2.1\%	11.1\%	48.426	448	22	0\%
12.3\%	64,617	64,239	-378	-0.6\%	12.3\%	40,423	37,444	-2,979	\%
13.6\%	63,952	63,751	201	-0.3\%	13.6\%	32,755	32,132	-624	-1.9\%
14.8\%	63,170	63,166	-3	0.0\%	14.8\%	${ }^{31,838}$	31,201	-637	. 0%
16.0\%	${ }^{63,022}$	63,025	3	0.0\%	16.0\%	${ }^{31,303}$	29,196	-2,108	-6.7\%
17.3\%	60.801	59,311	-1,491	-2.5\%	17.3\%	${ }^{30,903}$	28,854	-2,049	5.6\%
18.5\%	59,017	59,169	152	0.3\%	18.5\%	28,874	28,275	-599	-2.1\%
19.8\%	58,718	58,719	1	0.0\%	19.8\%	27,889	26,050	-1,839	-6.6\%
21.0\%	58,396	58,391	${ }^{-6}$	0.0\%	210\%	${ }^{26,483}$	25,285	-1,198	-4.5\%
22.2\%	56,016	56,022	-14	0.0\%	${ }^{22.2 \%}$	25,471	25,032	-439	-1.7\%
23.5\%	55.419	54,824	-595	-1.1\%	23.5\%	${ }^{23,906}$	23,742	-164	-0.7\%
${ }^{24.79 \%}$	55,137	53,230	-1,907	-3.5\%	24.7\%	${ }^{23,740}$	22,899	-921	-3.99\%
25.9\%	52,385	49,887	-2,517	-4.9\%	25.9\%	${ }^{22,922}$	21,588	-1,34	5.8\%
27.2\%	52,046	49,376	-2,669	-5.1\%	27.2\%	${ }^{21,308}$	${ }^{21,3,34}$	5	0.0\%
29.4\%	${ }_{50,473}$	${ }_{4}^{48,060}$	${ }_{\text {- }}^{\text {-1,413 }}$	-6.8\%	298.4.	${ }_{20.558}^{20,96}$	20,575	${ }_{-2}^{-422}$	-2.0\%
30.9\%	48,936	46,261	${ }_{-2,675}$	-5.5\%	30.9\%	20,171	${ }_{19,578}$	-593	-2.9\%
32.1\%	47,490	46,168	, 32	-2.8\%	32.1\%	19,002	531	529	8\%
33.3\%	45,908	43,674	-2,234	-4.9\%	33.3\%	18,893	18,832		.3\%
34.6\%	44,368	42.576	-1,793	-4.0\%	34.6\%	17,685	16,987		9\%
35.8\%	44,173	42,021	-2,152	-4.9\%	35.8\%	16,547	16,848	301	1.8\%
37.0\%	43,577	41,008	-2.569	-5.9\%	37.\%	16,500	16,520	20	0.1\%
38.3\%	42,912	39,178	-3,734	-8.7\%	38.3\%	16,493	16,453	${ }_{-40}$	-0.2\%
39.5\%	38,819	38,651	-168	-0.4\%	39.5\%	16,147	16,288	141	0.9\%
40.7\%	38,520	38,004	-517	-1.3\%	40.7\%	15.951	16,265	314	2.0\%
42.0\%	35,465	34,929	-536	-1.5\%	42.0\%	15,947	16,016	69	0.4\%
43.2\%	${ }^{35,346}$	33,377	-1,969	-5.6\%	43.2\%	${ }^{15,938}$	15,839	-99	-0.6\%
44.4\%	34,384	30,862	-3,521	-10.2\%	44.4\%	15,485	15,087	-398	-2.6\%
45.7\%	33,772	30,713	-3,060	-9.1\%	45.7\%	${ }^{15,390}$	14,516	-874	-5.7\%
46.9\%	33,422	${ }^{30,312}$	-3,110	-9.3\%	46.9\%	14,627	14,222	-406	-2.8\%
48.1\%	${ }^{32,765}$	${ }^{27,331}$	-5,433	-16.6\%	48.1\%	14.119	14.003	-116	-0.8\%
49.4\%	${ }^{30,843}$	${ }^{26,731}$	-4,112	-13.3\%	49.4\%	14,087	13,405	-683	-4.8\%
50.6\%	28,014	${ }^{26,218}$	-1,795	${ }^{-6.4 \%}$	50.6\%	${ }^{13,507}$	${ }^{13,373}$	-133	-1.0\%
51.9\%	27,012	${ }^{25,228}$	-1,784	-6.5\%	51.9\%	${ }^{13,483}$	13,288	-194	-1.4\%
5430\%	${ }^{266,728}$	${ }^{22,739}$	-4,052		5430/	${ }^{13,457}$	${ }^{13,090}$	- 568	-2.7\%
55.6\%	25,474	22,195	-3,279	-12.9\%	55.6\%	12,779	${ }_{13,086}$	308	2.4\%
56.8\%	23,772	21,943	-1,829	-7.7\%	56.8\%	293	, 64	471	3.7\%
58.0\%	23,329	21,450	-1,880	-8.1\%	58.0\%	12.518	${ }^{13,061}$	543	4.3\%
59.3\%	23,223	21,385	-1,838	-7.9\%	59.3\%	12,344	12,727	384	3.1\%
60.5\%	22,62	21,371	-1,292	-5.7\%	60.5\%	12,274	12,154	-120	-1.0\%
61.7\%	22,024	21,248	-776	-3.5\%	61.7\%	12,237	12,108	-130	1\%
63.0\%	21,490	21,005	-485	-2.3\%	63.0\%	12,165	12,057	-108	-0.9\%
64.2\%	21,327	20,874	-453	-2.1\%	64.2\%	12,154	12,043	-111	-0.9\%
65.4\%	21,218	20,668	-550	-2.6\%	65.4\%	12,072	12,033	-40	-0.3\%
66.7\%	21,122	19,273	-1,850	-8.8\%	66.7\%	${ }^{12,043}$	12.011	-32	-0.3\%
67.9\%	20,888	19,124	-1,764	-8.4\%	67.9\%	${ }^{11,788}$	${ }^{11,962}$	174	1.5\%
69.1\%	19,986	18,833	-1,152	-5.8\%	69.1\%	11,476	11,763	287	2.5\%
70.4\%	19,217	18,501	-716	-3.7\%	70.4\%	${ }^{11,440}$	${ }^{11,512}$	72	0.7\%\%
71.6\%	19,051	18,355	-696	-3.7\%	71.6\%	${ }^{11,395}$	11,470	75	0.7\%
74.1\%	$\begin{array}{r}18,615 \\ 18085 \\ \hline\end{array}$	18,192	${ }_{-1025}^{423}$	- -5.3%	(72.8\%	${ }^{11,39}$	11,216 111193	-103	${ }_{-1.0 \%}^{-0.9 \%}$
75.3\%	18,084	10,663	${ }_{-1,421}$	-7.9\%	75.3\%	11,157	${ }_{11,123}$	-35	-0.3\%
76.5\%	18,080	16,181	-1,899	-10.5\%	76.5\%	10,999	10,984	-15	-0.1\%
77.8\%	17,581	15,909	${ }_{-1,1,72}$	-9.5\%	77.8\%	10,955	10,823	-132	-1.2\%
	${ }^{16,992}$	15,269	${ }_{-1,23}$	- 50.1%	79.0\%	10,788	10,767	49	0.5\%
80.25\%	15,839	14,9261	-1137	${ }^{-5.7 \%}$	80.2\%	10,108	10,764	657	6.5\%
82.7\%	${ }^{14.4709}$	${ }_{14,147}$	${ }_{-560}$	-7.78\%	${ }^{827 \%}$	${ }^{190.098}$	${ }_{10}^{10,512}$	314	-
84.0\%	14,453	14,098	-355	-2.5\%	84.0\%	9,972	10,306	334	3.3\%
85.2\%	14,287	${ }^{13,595}$	-692	-4.8\%	85.2\%	9,887	10,289	401	4.1\%
86.4% 87.7%	13,735	${ }^{13,325}$	--410	-3.8\%	86.4\%	9,878	9,814	-64	-0.7\%
88.9\%	12,654	13,088	433	3.4\%	88.9\%	${ }_{9,815}$	9,665	-150	-1.5\%
90.1\%	12,338	13,057	719	5.8\%	90.1\%	9,610	9,610	0	0.0\%
91.4\%	12,322	12,630	308	2.5\%	91.4\%	9,331	9,267	65	-0.7\%
92.6\%	11,737	${ }^{12,150}$	413	3.5\%	92.6\%	9,318	${ }^{9,265}$	${ }^{53}$	-0.6\%
93.8\%	${ }^{111,643}$	11,707	${ }^{64}$	0.5\%	93.8\%	9,095	${ }^{9,168}$	73	0.8\%
95.1\%	11,282	${ }^{11,517}$	${ }_{5}^{234}$	${ }^{2.1 \%}$	95.1\%	${ }^{8.9788}$	8,908	0	0.0\%
96.5\%	-10,643	-1,3097	(344	5.2\%	997.5\%	${ }_{8.492}^{8,739}$	${ }_{8}^{8,398}$	-52 -94	${ }_{-1.1 \%}^{-0.6 \%}$
988\%	8,752 8.684	9,016 8.498	264	3.0\%	98.8\%	8.244	${ }_{8,348}$	104	1.1.9\%

		May		
Percent Exceedance	${ }^{\text {WSIP }}$ Proro Without	WSIP 2070 With Project	Absolute	Relative
Probability	Monthy Fow (CFS)	Monthly Fow (CFFS)	(CFF)	Hference (\%)
	40.509			6.7\%
-	${ }^{28,375}$	${ }^{26,571}$	${ }^{-1,8803}$	
${ }^{2.5 \% \%}$	${ }_{\text {22, }}^{23,188}$	${ }_{\text {22, } 231}^{24,405}$	1,279	5.5\%
4.9\%	21,082	17,855	-3.228	
6.2\%	18,280	17,593	-687	-3.8\%
7.4\%	17,852	16,009	-1,844	10.3
8.6\%	16,050	15.660	-391	-24\%
9.9\%	15,623	15.621	-2	0.0\%
11.1\%	15,400	15.400	0	0\%
12.3\%		15,353	-1	
13.6\%	15,275	15.112	163	-1.1\%
14.8\%	14,964	15,102	138	
(17.3\%	${ }_{\text {ckis }}^{114.875}$	- $\begin{aligned} & 14,4,894 \\ & 14.170\end{aligned}$	${ }_{295}^{624}$	2.1\%
18.5\%	13,860	13,875	16	0.1\%
19.8\%	${ }^{13,580}$	13,744	163	1.2\%
21.2\%	${ }_{\text {13, }}^{13} \mathbf{1 3 9 1}$	${ }_{\text {13, }}^{13.262}$	${ }_{232}$	1.8\%
23.5\%	12,894	${ }^{13,183}$	288	2.2\%
24.7\%	12,744	13,771	427	
25.9\%	${ }^{12,562}$	13,171	609	4.8\%
27.2\%	${ }^{12,527}$	13,170	643	5.1\%
28.4\%	${ }^{12,512}$	${ }^{13,161}$	649	5.2\%
29.6\%	${ }^{12,378}$	${ }^{13,148}$	769	6.2\%
30.9\%	12,289	13,136	847	${ }^{6.9 \%}$
-	${ }^{12,212}$	${ }^{13,129}$	915	7.5\%
334.6\%		13,103 13.102 1	${ }_{1}^{1,055}$	8.7\%
35.8\%	${ }^{11,949}$	12,715	767	6.4\%
37.0\%	11,841	12,301	460	3.9\%
38.3\%	11,817	12,035	217	1.8\%
39.5\%	-	11,841 11815	183 212 1	${ }_{1}^{1.8 \%}$
42.0\%	${ }^{11,513}$	11,815 111807	${ }_{294}^{212}$	2.8\%
43.2\%	11,498	11,796	299	2.6\%
46.9\%	${ }_{111012}$	${ }^{111,341}$	330	3.0\%
48.1\%	11,000	11,296	295	2.7\%
49.4\%	10,851	11,203	353	3.2\%
551.9\%	10,881 10.779	10,905 10.861	64 82	-
53.1\%	10,632	${ }^{10,840}$	208	2.0\%
54.3\%	10,472	10,778	306	2.9\%
年5.6\%	10,466	10,394	-72	-0.7\%
	(10,346	10,118	${ }_{-212}$	-2.2\%
	10,0,176 10,134	${ }_{9}^{9,9965}$	-212	-2.1\%
60.5\%	${ }^{\text {a,959 }}$	${ }_{9,981}^{9,914}$	${ }_{-87}$	--2.9\%
61.7\%	9,955	9.803	-152	-1.5\%
63.0\%	9.860	9,723	-137	-1.4\%
64.2\%	9,801	9,720	-81	-0.8\%
66.7\%\%	${ }_{9,647}^{9,792}$	${ }_{\substack{9,647 \\ 9,521}}$	-146	-1.5\%
67.9\%	9,565	9.440	-125	-1.3\%
69.1\%	9,463	${ }^{9,437}$	${ }^{26}$	-0.3\%
70.4\%	${ }_{\substack{9,440 \\ 9,47}}$	${ }_{9,266}^{9.379}$	-61	-0.0\%
72.8\%	${ }_{9,377}^{9,4}$	9,250	-127	${ }^{-1.4 \%}$
74.1\%	9,313	9,214	-100	-1.1\%
75.3\%	9,206	9,214	8	0.1\%
76.5\%	9,194	9,163	-30	${ }^{-0.3 \%}$
77.0\%	${ }_{9,126}^{9,133}$	${ }_{9,073}^{9.095}$	-38	-0.6\%
80.2\%	9.071	9.050	-21	-0.2\%
81.5\%	9,019	9,026	8	0.1\%
82.7\%\%	8,966 8.966	8,966 8932	${ }_{34}$	0.0\%
85.2\%	${ }_{8,848}^{8.966}$	${ }_{8,850}^{8,932}$	${ }_{2}^{34}$	-0.4\%
86.4\%	8,754	${ }_{8,7757}^{80,07}$	4	0.0\%
877.7\%	8,751	8,707	-45	-0.5\%
- ${ }_{\text {80, }}^{88.9 \%}$	${ }_{8,623}^{8,693}$	8,665 8.603	-28	-0.0.2\%
91.4\%	8,097	${ }_{8,119}$	22	0.3\%
92.6\% ${ }_{938}$	8,079 7 7644	8,084	${ }^{5}$	0.1\%
9510\%	7,542	${ }_{7} 7,041$	-24	-0.6\%
96.3\%	6,922	¢,923	2	${ }_{0}^{2.0 \%}$
97.5\%	6,852	${ }_{6.622}$	230	-3.4\%
98.8\%	6,328	6,363	35	\%
100.0\%	5,374	5,355	-19	0.4\%

Toble SW－17－b
tio River at freport Monthly Fow
Rrobability of Excedance

Percent WSTP 2rowntrut June Abatue				
Percent Exceedance	WSIP 2070 Without	WSIP 2070 With Project	${ }_{\text {A }}^{\text {Absolue }}$ Difference	Relative
Probability	Monthy Flow（CFS）	Monthy Flow（CFs）		Difference（\％）
0．0\％	${ }^{24,345}$	25,349	1，003	4．1\％
1．2\％	${ }_{19,823}$	19.349	－474	
2．5\％	18，902	18,641	－261	
3．7\％	17，877	17，941	64	
4．9\％	16，914	16，959	45	
6．2\％	16，638	10，252	－387	
7．4\％	15，821	16，143	322	2．0\％
8．6\％	${ }^{15,775}$	15.774	－1	0．0\％
9．9\％	${ }^{15.636}$	${ }^{15,652}$	15	0．1\％
11．1\％	${ }^{15.523}$	${ }^{15,628}$	105	0．7\％
${ }^{12.3 \%}$	15．449	${ }^{15,502}$	53	0．3\％
13．6\％	${ }^{15.3517}$	${ }^{15.322}$	－49	－0．3\％
14．8\％	${ }^{15,313}$		－67	\％
16．0\％	15，259	11．095	－164	
17．3\％	${ }^{15,128}$	114，945	－183	
18．5\％\％	110．045	114，934	年	－0．7\％
19．8\％	14，945	${ }^{14,4653}$	928	
－ 21.0%		${ }_{1}^{14,637}$	－68	0．0\％
23．5\％	14，561	14，612	51	0．3\％
24．7\％	14，490	14，593	103	
25．9\％	14，303	14，576	273	
27．2\％	14，226	14，395	169	
28．4\％	14，153	14，197	44	
29．6\％	${ }^{13,398}$	14，159	${ }^{261}$	1．9\％
30．9\％	13，897	14，124	228	1．6\％
32．1\％	${ }^{13,888}$	14，099	211	1．5\％
33．3\％	${ }^{13,885}$	14，051	165	1．2\％
34．5\％	${ }^{13,850}$	${ }^{13,929}$	79	0．6\％
35．8\％	${ }_{\text {13，818 }}^{13}$	${ }^{13,898}$	80	0．6\％
37．0\％	${ }^{13,717}$	${ }^{13,888}$	170	1．2\％
38．3\％	${ }^{13,708}$	13，875	168	${ }_{1}^{1.2 \%}$
39．7\％	－13，630	${ }^{13,865}$	${ }_{251}^{234}$	1．7\％\％
${ }_{4}^{40.70 \%}$	${ }_{13,393}$	${ }^{13,844}$	251	${ }_{2}^{1.8 \%}$
42，	15，417	10，714	300	${ }_{22 \%}^{2.2 \%}$
44．4\％	${ }_{\text {13，46 }}^{13,377}$	13,744 13,706	${ }_{329}^{297}$	${ }_{\text {2．5\％}}^{2.2 \%}$
45．7\％	13，284	13，642	358	2．7\％
46．9\％	13，278	${ }^{13,603}$	324	2．4\％
48．1\％	${ }^{13,233}$	13.416	183	
49．4\％	191	${ }^{3,377}$	186	1．4\％
51．9\％	${ }_{\text {l }}^{13,189}$ 13，180	113,306 13292	${ }_{112}$	
53．1\％	13，158	13，284	126	1．0\％
54．3\％	13，155	13,279	124	0．9\％
55．6\％	${ }^{13,153}$	${ }^{13,278}$	${ }^{125}$	1．0\％
	${ }^{13,086}$	13，239	${ }^{153}$	${ }^{1.2 \%}$
年58．0\％	${ }^{12,976}$	${ }^{13,234}$	259	2．0\％
	${ }^{12,769}$	13，233	${ }_{464}$	${ }^{3.6 \%}$
析 60.5%	12，657	13，215	558	4．4\％
－ $\begin{aligned} & \text { 61．7\％} \\ & 63.0 \%\end{aligned}$	${ }^{12,636}$	${ }^{13,213}$	577	${ }^{4.6 \% \%}$
64．2\％	（12，411	$\underset{\substack{13,211 \\ 13,202}}{1021}$	791	4\％
65．4\％	${ }^{12,361}$	13，200	839	6．8\％
66．7\％	12，291	13，189	898	7．3\％
67．9\％	${ }^{12,2276}$	13，185	908	7．4\％
69．1\％	${ }^{12,146}$	${ }^{13,168}$	1，021	8．4\％
	${ }^{12,006}$	${ }^{13,165}$	${ }^{1} 1149$	${ }^{9.46 \%}$
728\％		13，155	仿	9．0\％\％
74．1\％	${ }^{11,787}$	${ }^{13,086}$	929	
75．3\％	11，744	${ }_{12,772}$	${ }_{1}^{1,029}$	8．8\％
76．5\％	11，303	12,628	1，325	
77．8\％	11，243	12,411	1，168	
79．0\％	11，174	12，356	1，182	10．6\％
80．2\％	11，132	12，257	1，124	10．1\％
81．5\％	11，100	12，114	${ }^{1,015}$	9．1\％
82．7\％	${ }^{11,066}$	12,047	980	8．9\％
84．0\％	10，994	11,860 11743	866 851	7．9\％
	10，893	${ }^{11,1743}$	851	7．8\％
－	10.862 10,705	111,40 11,599	888	8．4\％\％
88．9\％	10，687	11，226	539	5．0\％
90．1\％	10，679	11，174	496	
91．4\％	10，649	10，862	${ }^{213}$	2．0\％
92．6\％	10．522	10，780	${ }^{258}$	2．5\％
95．1\％	9，924	－	（17	－
96．3\％	${ }_{8,805}^{9,924}$	8，850	46	0．5\％
97．5\％	8，317	8，739	422	5．1\％
100．0\％	${ }_{\text {7，714 }}$	${ }_{8,300}^{8.362}$	188 586	${ }_{\text {l }}$

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$		Sepiember		$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	WSIP 2 Provo Without Proet	WSIP 2070 With Project	$\begin{gathered} \text { Abssolute } \\ \text { Difference } \end{gathered}$	
	Monthly fow（CFFs）	Monthly Fiow（CFS）	（CFFS）	
－${ }_{\text {1．2\％}}^{0.2 \%}$		${ }^{31,963}$		－0．1\％
${ }_{\text {2．5\％}}^{1.2 \%}$	${ }^{31,126}$	${ }^{31,549}$	424	1．4．9
${ }^{2.7 \% \%}$	${ }^{30.676}$	31,369 30.920	${ }_{291}^{693}$	隹
4．9\％	30，509	${ }^{30,368}$	141	
6．2\％	29，438	30.011	574	
7．4\％	29,317	29,109	207	
8．6\％	29.019	28.942	－77	
9．9\％	${ }^{28.825}$	28.89	65	
11．1\％	28，086	${ }^{28,805}$	719	
12．3\％	28，049	${ }^{28,423}$	373	1．3\％
13．6\％	${ }^{23,029}$	${ }_{27,739}$	－87	
14．8\％	${ }_{227747}$	${ }_{2}^{27,732}$	－59	
17．3\％	${ }_{2}^{27,705}$	${ }_{27,313}^{27}$	－392	${ }^{-1.4 \%}$
18．5\％	27，665	27，168	－498	－1．8\％
19．8\％	27，050	26，953	－97	0．4\％
21．0\％	${ }^{26,112}$	26，240	127	0.5
22．2\％	25，645	24，806	839	－3．3\％
23．5\％	24，795	${ }^{24,652}$	144	－0．6\％
24．7\％	24，779	${ }^{23,973}$	－806	－3．3\％
25．9\％	24，553	${ }_{2}^{23,330}$	－623	－2．5\％
27．2\％	${ }_{\text {24，}}^{24,262}$	${ }_{2}^{23,399}$	－862	－3．6\％
－ 28.4 .9		${ }_{2}^{23,381}$	${ }^{-321}$	－1．7\％
－		23，201	－413	
30．1\％		${ }_{22827}^{23,180}$	－251	${ }^{-1.10 \%}$
33．3\％	22，854	${ }^{22,812}$	42	－0．2\％
34．6\％	22，369	21，964	405	1．8\％
	${ }_{\text {21，251 }}^{21,811}$	${ }_{\substack{21,856 \\ 21,321}}^{21,12}$	45 70	0．2\％
38．3\％	19，883	19，859	${ }^{-24}$	0．1\％
39．5\％	19，842	19,420	422	
40．7\％	19，643	${ }^{18,833}$	810	4．1\％
42．0\％	19,478	18,764	－714	
43．2\％ 4 4．4\％	18,790 14.084	18,494 157710	－	－1．6\％
45．7\％	13，977	${ }^{15,4.428}$	${ }_{1}^{1,450}$	10．4\％
46．9\％	13，191	14，992	1，800	13．6\％
48．1\％	${ }^{13,143}$	${ }^{14,983}$	${ }^{1,840}$	14．0\％
49．4\％	12，950	14，708	1，758	${ }^{13.6 \%}$
50．9\％	12，533	14，685	2，152	17．2\％\％
53．1\％	（12，428	${ }^{14,6,633}$	2，226 2，157 ，	17．7．6\％
54．3\％	12，237	14，156	1，919	15．7\％
55．6\％	${ }^{12,212}$	${ }^{13,998}$	1，786	14．6\％
56．8\％	${ }^{12,094}$	${ }^{13,335}$	1，741	14．4\％
${ }^{58.0 \%}$	${ }_{\text {a }}$	13.824 13.761 13，	＋1，765	14．6\％ 15．6\％
60．5\％	11,774	13，699	1，925	16．3\％
61．7\％	，764	13，499	1，735	4．8\％
－63．0\％	${ }^{111,675}$	${ }^{13,445}$	${ }^{1,7770}$	${ }^{15.2 \%}$
${ }^{645.4 \%}$	${ }^{111,192}$	－	${ }_{2,214}^{2,214}$	19．8\％
66．7\％	11，076	${ }^{13,262}$	2，186	19．7\％
67．9\％	10.500	${ }^{12,743}$	${ }_{2}^{2,243}$	21．4\％
70．4\％	10,402 10，256 10，	12，512 11982	2,111 1,725	
71．6\％	9,892	11，944	2，053	20．8\％
72．8\％	9.640	${ }^{11,890}$	2，250	23．3\％
74．1\％	9，574	11，835	2，261	23．6\％
75．3\％	9,078	11,661	${ }^{2}, 583$	28．4\％
76．5\％	${ }^{8.898}$	${ }^{11,620}$	2，722	30．6\％
779．\％	${ }_{\text {8，760 }}^{8.760}$	${ }^{111,595}$	2,835 2.832	－${ }_{\text {32．3\％}}$
80．2\％	8.661	11，431	${ }_{2,770}^{2.85}$	32．0\％
81．5\％	${ }_{8,326}$	11，078	2，752	
82，7\％	7，919	11.017	3，098	39．1\％
84．0\％	${ }_{7}^{7,742}$	－10，791	3，049	39．4\％
${ }^{856.26 \%}$	7，650	10，552	${ }_{2} 2,958$	9\％
${ }^{86.4 \%}$	${ }_{7}^{7,585}$	＋10．269		${ }^{3} 5.4 \%$
88．9\％	7,436	9，555	2，119	28．5\％
90．1\％	7,354	8，980	${ }^{1,626}$	22．1\％
91．4\％	7，261	8，935	1，675	23.
92．6\％	7，064	${ }^{8.349}$	${ }^{1,285}$	18．2\％
93．8\％	7，009	${ }^{8,308}$	1，299	18．5\％
95．19\％	${ }^{6.646}$	${ }_{8}^{8,214}$	1，568	${ }^{23.6 \%}$
96．3\％	6．609	7，963	1，354	${ }^{20.59 \%}$
97．5\％	6，429	${ }_{7}^{7.885}$	1，456	${ }^{22.7 \%}$
98.8% 1000%	6,369 6.310	7,134 6.652	${ }_{342}$	退

Lake Oroville, End of Month Storage

		Warch					Appl		
Percent Exceedance	$\begin{aligned} & \text { WSIP } 2070 \text { Without } \\ & \text { Proiect } \end{aligned}$	2070 with Project	Absolute	Relative	$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	$\begin{aligned} & \text { WSP } 2070 \text { Without } \\ & \hline \end{aligned}$	WSIP 2070 With Project	Absolute	Rela
Probability	End of Month Storage	End of Morth Storage	(itaf)	Difference (\%)	Probability	End of Month Storage	End of Month Storage	(${ }_{\text {def }}$	Difference ${ }^{(\%)}$
0.0\%	${ }_{3,163}$	${ }_{3,163}$	0	0.0\%	0.0\%	${ }^{3,470}$	${ }_{3,470}$	0	0.0\%
1.2\%	3.162				1.29	3,430	3,430		
2.5\%	3,120	3,120	0	0.0\%	2.5\%	3.413	3.411	1	0.0\%
3.7\%	3,105	3,112	7	0.2\%	3.7\%	3,402	3,401	-1	
4.9\%	3,105	3,105	0	0.0\%	4.9\%	3,396	3,396	0	0.0\%
6.2\%	3,103	3,105	2	0.1\%	6.2\%	3,366	3,366	0	0.0\%
7.4\%	3,096	3,096	0	0.0\%	7.4\%	3,354	3,354	0	0.0\%
8.6\%	3,063	${ }^{3}, 063$	0	0.0\%	8.6\%	3,352	3,352	0	0.0\%
9.9\%	3,059	3,059	0	0.0\%	9.9\%	3,334	3,334	0	0.0\%
11.1\%	3,057	3,057	0	0.0\%	11.1\%	3,303	3,303	0	0.0\%
${ }^{12.3 \%}$	3,036	3,036	0	0.0\%	${ }^{12.3 \%}$	${ }^{3,298}$	${ }^{3,298}$	0	0\%\%
13.6\%	${ }^{3,028}$	3,028	0	0.0\%	13.6\%	3,292	3,292	0	0.0\%
14.8\%	${ }^{3,027}$	3,027	0	0.0\%	14.8\%	3,292	3,292	0	0\%\%
16.0\%	${ }^{3.018}$	3,018	0	0.0\%	14.0\%	3,281	3,281	0	
17.3\%	2,999	2,999	0	0.0\%	17.3\%	${ }^{3,270}$	${ }^{3,270}$	0	0\%\%
-19.8\%	${ }_{2,988}^{2,995}$	${ }_{2,988}^{2,995}$	0	0.0\%	19.8\%	${ }_{\substack{3,238 \\ 3,236}}$	-	0	0.0\%
21.0\%	${ }_{2,964}$	2.964	0	0.0\%	21.0\%	3,235	3,235	0	0.0\%
22.2\%	, 964	2.964	0	0.0\%	22.2\%	3,234	3,234	0	
23.5\%	2,964	2,964	0	0.0\%	23.5\%	3,218	218	0	
24.7\%	2,954	2,954	0	0.0\%	24.7\%	3,209	3,208	-1	0.0\%
25.9\%	2,951	2,951	0	0.0\%	25.9\%	3,208	3,208	0	
27.2\%	2,944	2,944	0	0.0\%	27.2\%	3,208	3,208	0	.0\%
28.4\%	2,943	2,943	0	0.0\%	28.4\%	3,186	${ }^{3,183}$	-2	1\%
29.6\%	${ }_{2}^{2,937}$	2,937	0	0.0\%	29.6\%	3,184	3,180	4	-0.1\%
30.9\%	2,936	2,936	0	0.0\%	30.9\%	3,180	3,160	-20	-0.6\%
32.1\%	2,936	2,936	0	0.0\%	32.1\%	3,160	3,159	-1	0.0\%
33.3\%	2,927	2,928	1	0.0\%	33.3\%	3,159	3,159	-1	0.0\%
34.6\%	${ }^{2,922}$	${ }_{2,927}$	5	0.2\%	34.6\%	3,154	3,153	-1	0.0\%
35.8\%	${ }_{2}^{2,918}$	2,922	4	0.1\%	35.8\%	3,132	3,131	-1	0.0\%
37.0\%	2,879	2,918	39	1.4\%	37.0\%	3,117	3,116	0	0.0\%
	${ }_{2}^{2,878}$	2,854	${ }^{24}$	-0.8\%	38.3\%	3,115	3,098	-16	-0.5\%
39.5\%	${ }_{2}^{2,847}$	2,848	1	${ }^{0.15 \%}$	39.5\%	3,099	3,096	-2	-0.1\%
${ }^{40.70 \%}$	2,833 2817	${ }_{2,833}^{2,847}$	14	0.5\%	40.7\%	- 3.082	3,081		
${ }^{42.0 \%}$	2,817 2817	2,833 2817	${ }_{0}^{16}$	-	42.0\%	3,076	-	-1	\%
44.4\%	${ }_{2.788}^{2.877}$	${ }_{2,817}^{2,817}$	29	1.0\%	44.4\%	3.061 3.060	3,069 3.059	-1	0.0\%
45.7\%	${ }_{2,788}$	2,788		0.0\%	45.7\%	3,043		-1	
4.9\%	2,788	2,788	0	0.0\%	46.9\%	3,017	3,016	-1	0.0\%
48.1\%	2,788	2,788	0	0.0\%	48.1\%	3.005	3,007	2	1\%
49.4\%	2,788	2,788	0	0.0\%	49.4\%	3,001	3,000	0	
50.6\%	2,788	2,788	0	0.0\%	50.6\%	2,998	2,997	-1	
51.9\%	2,788	2,788	0	0.0\%	51.9\%	2,889	2,927	38	1.3\%
53.1\%	2,788	2,788	0	0.0\%	53.1\%	2,827	2,888	61	2\%
54.3% 55% 5	2,788	2,788	0	0.0\%	54.3\%	2,812	2,827	15	0.5\%
年5.5\%	2,781	2,788	7	0.2\%	55.\%	2,801	2,809	8	0.3\%
56.8\%	2,687	2,729	42	1.6\%	56.8\%	${ }^{2,761}$	2,807	${ }^{46}$	${ }^{1.7 \%}$
58.0\%	2,466	2,692	${ }^{226}$	9.1\%	58.0\%	2,738	2,802	${ }^{65}$	2.4\%
59.3\% 6.5%	2,436	2,621	185	7.6\%	59.3\%	2,644	${ }^{2,757}$	${ }^{113}$	${ }^{4.3 \%}$
- $\begin{aligned} & \text { 60.5\% } \\ & 61.7 \%\end{aligned}$	${ }_{2}^{2,403}$	${ }_{\text {2,612 }}^{2,65}$	${ }^{209}$	8.7\%	60.5\%	2,572	${ }_{2}^{2,678}$	106	4.1\%
61.7\% 63.0%	${ }_{2}^{2,338}$	${ }_{2}^{2,535}$	197	8.4\%	${ }^{61.7 \%}$	2,549	${ }^{2,5588}$	9	0.4\%
- 63.0%	2,334	${ }_{2,366}$	32	1.4\%	63.0\%	${ }_{2}^{2.522}$	2,552	29	${ }^{1.2 \%}$
64.2\% 65.4%	2,314	2,359	45	1.9\%	${ }^{64.2 \%}$	2,497	+2,528	31	${ }_{2}^{1.2 \%}$
${ }^{65.4 \%}$	${ }_{2}^{2,294}$	2,349	${ }^{55}$	${ }_{3,4 \%}^{2.4 \%}$	${ }^{65.46}$	2,454	ene.511	${ }^{68}$	2.8\%
- 66.79%	${ }_{2}^{2,268}$	${ }_{2}^{2,344}$	${ }_{82}^{76}$	年3.3\%	66.7\%	-	2,517	146	2\%
69.1\%	${ }_{\substack{2,227}}^{2,283}$	${ }_{2,302}^{2,335}$	${ }_{74}$	${ }_{\text {3.3\% }}^{3.6 \%}$	679.1\%	${ }_{\text {2,301 }}^{2,303}$	${ }_{\text {2,482 }}^{2,497}$	${ }_{181}^{194}$	7.9\%
70.4\%	2,211	2,239	28	1.3\%	70.4\%	2,300	325	25	1.1\%
71.6\%	2.179	${ }^{2,237}$	${ }^{58}$	2.7\%	71.6\%	${ }^{2,277}$	${ }^{2,322}$	45	2.0\%
72.8\%	2,173	2,224	51	2.3\%	72.8\%	2,234	2,308	74	3.3\%
74.1\%	2,172	2,184	12	0.6\%	74.1\%	2,233	2,294	61	7\%
75.3\%	2,145	2,154	9	0.4\%	75.3\%	2,204	2,283	79	\%\%
76.5\%	2,126	2,115	${ }^{-11}$	-0.5\%	76.5\%	2,151	2,174	${ }^{23}$	1.1\%
77.8\%	2,118	2,110	-9	-0.4\%	77.8\%	2.125	2,143	18	0.8\%
79.0\%	2.076	2,108	${ }^{33}$	1.6\%	79.0\%	2,080	2,110	30	4\%
-	2,031	2,032	2	0.1\%	80.2\%	2.074	2,094	20	0.9\%
- ${ }^{81.5 \%}$ 82.7\%	2,015	2,026	12	0.6\%	81.5\%	${ }^{2}, 058$	${ }_{2}^{2,076}$	18	0.9\%
-	${ }^{1,915}$	2,004	89	4.6\%	82,7\%	2,013	2,072	59	2.9\%
84.0\%	1,881	1,979	${ }^{98}$	5.2\%	84.0\%	${ }^{1,953}$	2,059	105	5.4\%
-	1,768	1,814	46	2.6\%	${ }^{85.2 \%}$	1,911	${ }^{1.997}$	${ }^{65}$	3.4\%
-	1,762	${ }^{1,804}$	42	${ }^{2.4 \%}$	${ }^{86.74 \%}$	${ }_{1}^{1,838}$	${ }_{1}^{1,873}$	${ }^{35}$	1.9\%
88.9\%	1,738	1,799	61	3.5\%	87.7\%	-	${ }_{1}^{1.889}$	9	0.5\%
- ${ }^{88.9 \%}$	+1,658	${ }_{1}^{1,611}$	${ }_{32}^{120}$	${ }^{7.2 \%}$	88.9\%	${ }^{1}$	${ }^{1,680}$	31 110	1.9\%
91.4\%	${ }_{1,560}^{1,579}$	${ }_{1}^{1,589}$	${ }_{29}^{32}$	+1.9\%	901.4\%	${ }_{1.477}^{1.553}$	${ }_{1}^{1.5623}$	${ }_{85}$	5.7\%
92.6\%	1.528	1,557	29	1.9\%	92.6\%	1,438	1,557	120	8.3\%
93.8\%	1,446	1,531	86	5.9\%	93.8\%	1,437	${ }_{1}^{1.465}$	28	1.9\%
95.1\%	1,303	1,426	122	9.4\%	95.1\%	${ }^{1,306}$	1.410	104	8.0\%
96.3\% ${ }_{\text {975\% }}$	1,277	${ }^{1,382}$	105	8.2\%	${ }^{99.3 \% \%}$	1,270	1,391	${ }^{121}$	${ }^{9.5 \%}$
98.8\%	¢,	(1,285	184	16.8\%	98.8\%	${ }_{1}^{1,066}$	1,209	152 142	
100.0\%	601	807	206	34.2\%	100.0\%	558	756	198	${ }_{\text {35.5\% }}$

Take Orovilie, End of Montht Storas
Probablily of Exceedance

Lake Oroville, End of Month Elevation

		February		
$\underset{\substack{\text { Percent } \\ \text { Exceadance }}}{ }$	WSIP 2070 Wethout Proiect	WSIP 2070 With Project	${ }^{\text {Absolute }}$	
Probability	End of Month Elevation	End of Month Elevation	Difierence	Difference（\％）
\％\％	（FEET）	（FEET）		
－	${ }_{8}^{892}$	${ }_{869}^{887}$	4	${ }^{-0.5 \%}$
－${ }^{1.2 \%}$	869 868	869 868	${ }_{1}$	0．1\％
3．7\％	868	${ }^{868}$	0	0．0\％
4．9\％	${ }^{867}$	${ }^{867}$	0	0．0\％
\％．2\％	867 864	865 864	－2	－0．2\％
7．4\％\％	864 863	864 863	\bigcirc	0．0\％
9．9\％	${ }_{862}^{883}$	${ }_{862}^{863}$	\bigcirc	0．0\％
11．14\％	860	860	0	0．0\％
12．3\％ 13.6%	860 860	8890 ${ }_{8}^{860}$	－1	－
14．8\％	858	858	$\stackrel{1}{0}$	0．0\％
16．0\％	856 853	${ }^{856}$	0	0．0\％
17．3\％	${ }_{8}^{853}$	${ }^{853}$	0	0．0\％
18．5\％	853	853	0	0．0\％
19．8\％	853	853	0	0．0\％
${ }^{21.0 \%}$	${ }_{8}^{853}$	${ }^{853}$	0	0．0\％
${ }^{22.2 .2 \%}$	852 850	852 850	0	${ }^{\text {0．0\％}}$
${ }^{24.7 \%}$	${ }_{850}^{850}$	850 850	0	0．0\％
${ }^{25.59 \%}$	${ }_{849} 84$	${ }_{849} 84$	0	0．0\％
27．2\％	${ }_{849} 89$	${ }_{849}^{849}$	0	0．0\％
${ }^{28.4 \%}$ 29．6\％	849 849	${ }_{849}^{849}$	0	－0．0\％
30．9\％	${ }_{849}$	${ }_{849}$	0	0．0\％
32．1\％	849	${ }^{849}$	0	0．0\％
隹33．3\％	849 849	849 849	0	0．0．0\％
35．8\％	849	849	0	
37．0\％	849	849	0	
38．3\％	849	849	0	0．0\％
${ }^{39.7 \%}$	849 849	${ }_{849}^{849}$	0	0．0\％
42．0\％	849	849	0	0．0\％
43．2\％	849 849	849	0	0．0\％
4．4．4\％	${ }_{849}^{849}$	${ }^{849}$	0	0．0\％
45．7\％ 46.9%	884	${ }_{842}^{842}$	－1	－0．1\％
46．9\％	839	${ }^{842}$	13	0．3\％
48．1\％ 4.48	827 825	${ }_{837}^{840}$	${ }^{13}$	1．1．\％
50．6\％	${ }_{823}^{825}$	${ }_{828}^{887}$	12	1．4\％
51．9\％	${ }^{821}$	${ }^{825}$	5	0．6\％
	${ }_{810}^{813}$	824 823	${ }_{11}^{11}$	1．3\％
55．6\％	810 810	823 811	${ }_{1}^{13}$	－1．1\％
年56．8\％	810	${ }^{808}$	－2	－0．3\％
59．3\％	${ }_{798}^{799}$	806 804	7	0．9\％
${ }^{60.5 \%}$	${ }_{7}^{798}$	${ }^{803}$	5	0．6\％
（61．7\％	798	799	2	0．2\％
${ }^{63.0 \%}$ 64．2\％	${ }_{787}^{792}$	${ }_{795}^{796}$	${ }_{7}^{4}$	0．9\％
65．4\％	783	793	9	1．2\％
66．7\％	${ }_{770}^{773}$	${ }_{7} 779$	16	2．1\％
67．9\％	${ }_{769} 770$	${ }_{772}^{772}$	${ }_{6}$	0．7\％
69．1\％	769	772	3	0．3\％
70．4\％	${ }_{765}^{766}$	${ }_{768}^{770}$	4	0．6\％
72．8\％	760	${ }_{768}$	${ }_{8}$	1．1\％
74．1\％	${ }_{7} 760$	765	5	0．7\％
75．3\％	${ }_{747} 7$	${ }_{763} 7$	${ }^{8}$	1．19\％
77．8\％	${ }_{738}$	${ }_{760} 7$	${ }_{22}^{16}$	3．0\％
79．0\％	738 735	745 745	21 10	2．9\％ 1.4%
81．5\％	726	740	14	1．9\％
－	${ }_{721}^{722}$	724 774	18 4	0．5\％
85．2\％	711	721	10	1．4\％
86．4\％	710	${ }_{714}$	3	0．5\％
－87．7\％	710	714	3	0．5\％
${ }_{90.1 \%}$	704	709 709	${ }_{4}^{5}$	－ 0.6%
91．4\％	699	708	9	1．4\％
92．6\％	${ }_{696} 69$	${ }_{7} 700$	4	0．5\％
${ }_{\text {c }}^{93.85 \%}$	${ }_{692}$	698	7	1．0\％
${ }_{9} 95.3 \%$	688 683	698 694	10 10	－1．5\％
97．5\％	674	682	8	1．2\％
98．8\％	${ }_{6}^{648}$	649	2	0．3\％
100．0\％	598	637	39	6．5\％

Like Oroville，End of Wontht Elevation
Probability of Exceadance

Percent Exceedance	$\begin{gathered} \text { WSIP 2070 Without } \\ \text { Proiect } \\ \hline \text { End onotevation } \end{gathered}$	WSIP 2070 With Project	Absolute Difference	Reative	Percent Exceedance	$\begin{aligned} & \text { WSIP 2077 Without } \\ & \text { Proiect } \end{aligned}$	WSIP 2070 With Projet	Absolute Difference	Relative
$\underset{\substack{\text { Probability } \\(\%)}}{ }$	$\underset{\substack{\text { End of Month Elevation } \\ \text {（FEET）}}}{\text { En }}$	$\underset{\substack{\text { End o Month Elevation } \\ \text {（FEETY }}}{\text { Pr }}$	${ }_{\text {（FEET）}}$	Difference（\％）	Probability $(\%, 0)$	$\underset{\substack{\text { End of Month Elevation } \\ \text {（EET）}}}{\text { En }}$	$\underset{\substack{\text { End of Month Elevation } \\ \text {（FEETY }}}{\text { O．}}$	(FEET)	Difference（\％）
0．0\％	874	874	0	0．0\％	0．0\％	895	895	0	0．0\％
1．2\％	${ }_{874}^{874}$	${ }_{871}^{874}$	0	0．0\％	1．2\％	${ }_{801}^{893}$	${ }_{891}^{893}$	0	0．0\％
2．5\％	871	${ }_{871}^{871}$	0	0．0\％	2．5\％	${ }_{891} 99$	${ }^{891}$	0	0．0\％
3．7\％\％	870 870	${ }_{871}^{870}$	0	－		${ }_{891}^{890}$	${ }_{891}^{891}$	0	－
6．2\％	870	870	0	0．0\％	6．2\％	888	888		0．0\％
7．4\％	870	870	0	0．0\％	7．4\％	887	${ }_{887}$	0	\％
8．6\％	868	868	0	0．0\％	8．6\％	887	887		0．0\％
9．9\％	867	867	0	0．0\％	9．9\％	${ }^{886}$	886	0	0．0\％
${ }_{\text {c }}^{\text {11．1．3\％}}$	${ }_{868}^{867}$	${ }_{866}^{867}$	0	0．0\％	${ }^{11.15 \%}$ 12．3\％	884 884	884 884	0	－0．0\％
13．6\％	865	865	0	0．0\％	13．6\％	883	883	0	0．0\％
14．8\％	${ }_{865} 8$	${ }_{865} 8$	0	0．0\％	14．8\％	${ }^{883}$	${ }_{883} 88$	0	\％
－ 16.0%	864	864	0	0．0\％	16．7\％	882	882	0	0．0\％
－ 17.3%	863 863	${ }_{863}^{863}$	\bigcirc	0．0\％	－ 17.3%	${ }_{882} 8$	${ }_{879}^{882}$	\bigcirc	－0．0\％
19．8\％	862	862	0	0．0\％	19．8\％	879	879	0	0．0\％
21．0\％	861	861	0	0．0\％	21．0\％	879	879	0	0．0\％
22．2\％	861	861	0	0．0\％	22．2\％	879	879	0	0．0\％
23．5\％\％	${ }_{861}^{861}$	${ }_{860} 86$	0	0．0\％	23．5\％	${ }_{877}^{878}$	${ }_{877}^{878}$	0	0．0\％
225．9\％	860 860	860 860	\bigcirc	0．0\％	24．7\％	${ }_{877}^{877}$	${ }_{877}^{877}$	0	0．0\％
25．9\％\％	880	860	0	0．0\％	25．9\％	887	887	0	0．0\％
227．4\％	859 859	859 859	\bigcirc	0．0\％	${ }^{27.2 \%}$	${ }_{876}^{877}$	${ }_{876}^{877}$	0	0．0\％
229．6\％	859 859	859 859	0	－	28．4\％	876 876	876 876	0	－0．0\％
30．9\％	859	859	0	0．0\％	30．9\％	876	874	－1	－0．2\％
32．1\％	859	859	0	0．0\％	32．1\％	874	874	0	
33．3\％	858	858	0	0．0\％	33．3\％	874	874	0	0．0\％
俍3．6\％	858	858	0	0．0\％	34．6\％	874	874	0	0．0\％
35．8\％	858 855	858	0	0．0\％\％	${ }^{35.8 \%}$	${ }_{871}^{872}$	872	0	0．0\％
388．3\％	${ }_{855}^{855}$	－858	${ }_{-2}^{3}$	－0．3\％	年37．0\％	${ }_{871}^{881}$	${ }_{870}^{871}$	－1	－0．1\％
39．5\％	853	853	0	0．0\％	39．5\％	870	870	0	0．0\％
40．7\％	852	853	1	0．1\％	40．7\％	869	869	0	0\％
${ }^{42.0 \%}$	${ }^{851}$	852	1	0．1\％	42．0\％	868	868	0	0．0\％
	851	851	0	0．0\％	43．2\％	${ }^{867}$	868	1	0．1\％
${ }^{44.4 \%}$	849	851	2	0．2\％	44．4\％	867	867	0	0．0\％
45．7\％	849	849	0	0．0\％	45．7\％	${ }_{864} 86$	${ }_{866} 86$	0	0．0\％
${ }_{48.1 \%}^{46.9 \%}$	849	849	0	0．0\％	46．99\％	${ }_{864} 86$	884	0	－0．0\％
49．4\％	849	${ }_{849} 89$	0	0．0\％	49．4\％	${ }_{863} 88$	864 863	0	0．0\％
50．6\％	849	${ }^{849}$	0	0．0\％	50．6\％	863	${ }^{863}$	0	0．0\％
	849 849	${ }_{849}^{849}$	\bigcirc	0．0\％	51．9\％	${ }_{851}^{856}$	－858	3	0．3\％
55．3\％	849 849	849 849	0	－	年 53.19%	851 850	－856	4	0．5\％
55．6\％	848	849		0．1\％	55．6\％	850	850		0．1\％
	842	${ }^{845}$	3	0．3\％	56．8\％	847	850	3	0．4\％\％
59．3\％	${ }_{825}$	${ }_{837} 8$	13	1．5\％	59．3\％	${ }_{839}$	${ }_{847}$	${ }_{8}^{4}$	0．9\％
60．5\％	822	837	14	1．7\％	60．5\％	834	841	7	0．9\％
61．7\％	818	${ }^{831}$	14	1．7\％	61．7\％	832	833	1	0．1\％
63．0\％ 6	817	820	3	0．3\％	63．0\％	831	833	2	0．2\％
66．4\％\％	815	819	4	0．5\％	64．2\％	829	831	2	0．3\％
${ }^{656.7 \%}$	813	819	${ }_{6}$	0．7\％	${ }^{65.4 \%}$	${ }_{826} 82$	${ }_{831} 83$	5	0．6\％
67．9\％	88	${ }_{817}^{818}$	${ }_{8}^{8}$	1．0\％	－ 66.7 6．9\％	${ }_{814}^{820}$	${ }_{829}^{830}$	${ }_{15}^{10}$	${ }^{1.82 \%}$
69．1\％	806	814	8	0．9\％	69．1\％	814	828	14	1．7\％
70．4\％	805	807	${ }^{3}$	0．4\％	70．4\％	814	816	${ }^{3}$	0．3\％
771．8\％\％	${ }_{801}^{801}$	807	${ }_{5}^{6}$	0．7\％	71．6\％	811	816	5	0．6\％
74．1\％	${ }_{801}^{800}$	806 802	1	0．2\％	74．1\％	${ }_{807}^{807}$	${ }_{813}^{814}$	${ }_{6}^{8}$	－ 0.8%
75．5\％	${ }_{798} 7$	${ }_{795} 79$		0．1\％	75．3\％	804	812		1．0\％
${ }_{7}^{76.5 \%}$	796	795	－1	－0．1\％	76．5\％	798	801	2	0．3\％
779．0\％	${ }_{791}^{795}$	${ }_{794}^{794}$	－1	－0．4\％	778．8\％	${ }_{791}^{796}$	${ }_{794}^{798}$	${ }_{3}$	0．2\％
80．2\％	786	786	0	0．0\％	80．2\％	791	793	2	0．3\％
81．5\％	784	786	1	0．2\％	81．5\％	789	791	2	0．2\％
884．0\％	${ }_{771} 7$	${ }_{781}^{783}$	9	${ }_{1}^{1.2 \%}$	${ }^{82.7 \%}$	7784	790		0．8\％
885．2\％	759	${ }_{764} 7$	${ }_{5}$	－${ }_{\text {0．6\％}}$	84．2\％	774	${ }_{780}$	7	－
86．4\％	758	763	4	0．6\％	86．4\％	766	770	4	0．5\％
87．7\％	756	762	6	0．8\％	87．7\％	763	764	1	0．1\％
${ }^{88.9 \%}$	${ }^{747}$	760	13	${ }^{1.7 \%}$	88．9\％	746	750	4	0．5\％
990．4\％	${ }_{7}^{738}$	${ }_{7} 742$	4	0．5\％	90．1\％	735	778	${ }^{13}$	1．8\％
${ }^{99.4 \% \%}$	${ }_{731} 7$	${ }_{7} 795$	4	0．5\％	914．4\％	${ }_{725} 7$	736	10	${ }^{1.4 \%}$
93．8\％	721	732	10	1．5\％	93．8\％	720	724	${ }_{3}$	0．5\％
95．1\％	704	719	15	2．1\％	95．1\％	704	717	13	1．8\％
${ }^{96.3 \%} 9$	701 697	${ }_{711}^{714}$	13 13	1．8\％	96．3\％	700 688	${ }_{7}^{715}$	15	2．1\％
98．8\％	${ }_{679}^{697}$	702	${ }_{23}^{13}$	${ }_{\text {l }}{ }^{1.93 \%}$	${ }_{9}^{98.8 \%}$	688 675	${ }_{693}$	19 17	${ }_{\text {2．6\％}}^{2.7 \%}$
100．0\％	593	632	${ }_{39}$	6．5\％	100．0\％	585	622	37	6．4\％

		June		
${ }_{\text {Pereant }}^{\text {Exceedance }}$	WSIP 2070 Without Proiect	WSIP 2070 With Project	Absoute	
Probability	End of Month Elevatio	End of Month Elevation	(titerence	Difference (\%)
(\%)	(eme	(rem		
0.0\%	${ }^{\text {808 }}$	89	${ }^{-3}$	${ }^{-0.3 \%}$
2.5\%	${ }_{893}^{893}$	894 889	1	-
3.7\%	889	889	0	0.0\%
4.9\%	888	888	0	0.0\%
6.2\%	886	886	0	0.0\%
7.4\%	883	886	2	
8.6\%	${ }^{883}$	884	1	0.1\%
9.9\%	882	883	1	0.1\%
11.1\%	879	${ }_{877} 878$	-2	-0.2\%
${ }^{12.3 \%}$	879	877	-2	-0.2\%
13.6\%	877	876	-1	-0.1\%
- $14.8 \% \%$	${ }_{865}^{869}$	869 869	-	0.0\%
17.3\%	${ }_{864}^{885}$	${ }_{868}^{869}$	${ }_{3}^{4}$	0.4\% 0
18.5\%	${ }^{863}$	${ }^{866}$	3	0.3\%
19.8\%	${ }_{861}^{862}$	${ }_{864}^{865}$		
${ }^{21.2 .2 \%}$	${ }_{858}^{881}$	${ }_{863}^{864}$	5	0.6\%
23.5\%	858	861	3	
24.7\%	856	858	3	
25.9\%	853	858	5	
27.2\%	853	858	4	
28.4\%	852	${ }^{857}$	5	0.6\%
29.6\%	${ }^{851}$	${ }^{856}$	6	0.7\%
30.9\%	850	${ }^{853}$	3	0.4\%
33.3\%	847	852	5	0.5\%
34.6\%	846	852	5	0.6\%
33.8\%	${ }_{846} 845$	881	5	0.5\%
37.0\%	${ }_{844}^{845}$	849	${ }_{5}^{4}$	0.5\%
隹38.3\%	844	849	5	0.6\%
39.5\%	${ }^{843}$	${ }^{848}$	5	0.6\%
40.7\%	843 842	848 846	5	0.6\% 0
43.2\%	842	845		
${ }^{44.46}$	841	844	3	0.4\%
45.9\%	${ }_{839}$	${ }_{841}$	${ }_{3}$	0.3\%
48.1\%	836	839	3	
49.4\%	835	${ }^{837}$	3	
年 50.0% \%	833	836	2	0.3\%
531.1\%	${ }_{830}^{830}$	${ }_{833}^{833}$	${ }_{3}^{3}$	0.4\%
54.3\%	829	833	4	0.4\%
55.6\%	${ }_{825} 82$	${ }^{831}$	6	0.7\%
	822 809	${ }_{827}^{828}$	6	0.7\%
	809	827	18	2.2\%
	807	819	11	1.4\%
	802	814	${ }^{12}$	1.4\%
- 61.7%	802	812	10	${ }^{1.2 \% \%}$
63.0\% 64.2%	${ }_{790} 8$	811	${ }_{17}^{12}$	${ }_{\text {1.5\% }}^{1.15}$
- $6.7 .2 \%$	${ }_{798} 78$	${ }_{809}^{808}$	17	${ }_{2.19}^{2.1 \%}$
65.4\%	788 787	808	21	${ }_{\text {2, }}$
66.7\% 67.9%	787 784	${ }_{796}^{802}$	15 12	- 1.9%
69.1\%	778	787	9	1.1\%
70.4\%	${ }_{770} 77$	${ }_{787} 78$	15	1.9\%
71.2\%	770	784 782	${ }_{12}^{14}$	- 1.5%
74.1\%	770	774	4	0.6\%
75.3\%	769	771	1	0.2\%
76.5\%	${ }_{769} 7$	770	1	0.1\%
77.8\%	766	770		0.5\%
79.0\%	762	${ }_{765}$	4	0.5\%
-	${ }_{761}$	${ }_{765}$	4	0.5\%
81.5\% 88.7%	761	764	4	0.5\%
822.7\%	${ }_{7}^{760}$	${ }_{759}^{759}$	-1	-0.1\%
84.0\% 885	775	${ }_{751}^{755}$	${ }^{-2}$	${ }^{-0.2 \%}$
85.2\%	771	${ }_{741} 7$	${ }^{11}$	1.4\%
- 86.4%	739 739	${ }_{747}^{747}$	8	1.0\%
88.9\%	${ }_{7} 702$	725	22	${ }_{3.2 \%}$
90.1\% 9	${ }_{690}^{693}$	701	${ }_{5}^{8}$	1.2\%
-91.4\% ${ }_{\text {926\% }}$	690	695	5	0.7\%
${ }^{923.8 \%}$	${ }_{683}^{690}$	697	1	0.2\%
95.1\%	679	676	-2	0.3\%
- 9 96.3\%	665	675	10	1.5\%
97.5\% ${ }^{97.8 \%}$	655 647	${ }_{665}^{672}$	17	2.6\%
100.0\%	${ }_{571} 64$	${ }_{608}^{605}$	${ }_{37}$	6.5\%

Lake Oroville, End of Month Area

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	October			
	Prioect	WSIP 2070 With Project	Absolute	Relative
	of Moont $/$	of Month A	Difference	Difference（\％）
（\％）	（ACRE）	ACRE）		
${ }^{0.0 \% \%}$	13,474	13，474	0	0．0\％
1．2\％\％	11,744	${ }^{12,288}$	544	4．6\％
2．5\％	11，470	${ }^{11,954}$	484	4．2\％
3．7\％	11，329	11，470	141	
4．9\％	10，939	11，194	255	2．3\％
${ }^{6.2 \%}$	10．806	${ }^{10.889}$	${ }^{83}$	0．8\％
7．4\％	9，806	10，131	326	${ }^{3.3 \%}$
8．6\％	9，5699	10，045	476	5．0\％
9．9\％\％	9，455	9，954	499	5．3\％
19．1\％\％	${ }_{\text {9，421 }}$	9，526	${ }_{03}$	1．1\％
${ }^{12.3 \% \%}$	${ }_{9}^{9,393}$	${ }_{9,356}^{9,486}$	${ }_{303}^{93}$	3\％
14．8\％	${ }_{8,798}$	${ }_{9,305}$	508	5．8\％
16．0\％	${ }_{8,412}$	9,097	684	8.1
17．3\％	8，882	${ }_{8,847}$	565	
18．5\％	${ }_{8,120}$	${ }_{8,832}$	711	
19．8\％	7，938	8，787	849	
21．0\％	7，886	${ }_{8,368}$	481	${ }^{6.1 \%}$
${ }^{22.2 \%}$	7．881	8，307	426	
23．5\％	7，829	8，286	457	5．8\％
24．7\％	7，819	8，274	454	${ }_{\text {5．8\％}}$
25．9\％	7，604	8，207	603	7．9\％
27．2\％	7，599	8，097	497	6．5\％
28．4\％	7，540	8.072	532 5	7．10\％
	7，487	8.046	559	${ }_{7}^{7.5 \%}$
－ 3 30．9\％	7.475	8.046	571	7．6\％
32．1\％	7,411	${ }^{8.035}$	624	${ }^{8.4 \%}$
	${ }_{7}^{7,365}$	${ }_{7}^{7,892}$	552	7．2\％
34.6% 358%	${ }_{7}^{7,312}$	${ }_{7}^{7,827}$	515	
－ $\begin{aligned} & 35.8 \% \\ & 370 \%\end{aligned}$	${ }_{7}^{7,211}$	7，785	535 527	
37．0\％	${ }_{7}^{7,173}$	Ti，788	¢546	
39．5\％	7，164	7,711	547	7．6\％
40．7\％	7，125	7，607	481	
42．0\％	7，095	7，427	332	4．7\％
43．2\％	7，083	7.419	336	${ }^{4.7 \%}$
44．4\％	7，059	7，412	352	5．0\％
45．7\％	7，056	7，408	352	5．5\％
46．9\％	6，996	7，380	384	5．5\％
48．19\％	6，946	7，366	419	5．0\％
49．4\％	6，936	7，335	399	5．8\％
	${ }^{6.878}$	7，303	425	${ }_{6}^{6.9 \%}$
51．9\％	6，807	${ }_{7,278}$	470	${ }_{6}^{6.9 \%}$
年 53.1 \％	6，793	7，214	${ }_{4}^{421}$	${ }_{6}^{6.2 \%}$
54．3\％ 5 5 5	6，7754	${ }_{7}^{7,198}$	444	${ }^{6.6 \%}$
55．6\％		${ }_{7}^{7,135}$	443	6．6\％
年56．8\％\％		7,136 7,094	${ }_{340}$	${ }_{5}^{6.5 \%}$
	${ }_{6}^{6,696}$	${ }_{7} 7.094$	3398	
60．5\％	${ }_{\text {c，}}^{6.6680}$	7,025 6.992	343 322	1\％
${ }_{61.7 \%}^{60.5 \%}$	${ }_{6,592}^{6.692}$	6，931	${ }_{339} 322$	5．1\％
63．0\％	6．591	6．894	303	4．6\％
			${ }^{344}$	5．3\％
${ }^{65.7 \%}$	${ }_{6.507}^{6.507}$	${ }_{6.887}^{6.044}$	${ }_{321}$	4．9\％
67．9\％	6.507	6，823	317	
99．1\％	6．506	6，790	284	4．4\％
70．4\％	6，505	6，732	227	5\％
71．6\％	${ }^{6.505}$	6，703	199	3．1\％
72．8\％	6，504	6，682	178	2．7\％
74．1\％	6，504	6，559	${ }_{56}$	0．9\％
75．3\％	6，504	6．506	2	0．0\％
76．5\％	6，503	6．506	3	0．0\％
77．8\％	${ }^{6.503}$	6．506	3	0．0\％
－	6，503	6，505	2	0．0\％
－	6，502	6，505	${ }_{9}$	0．0\％
－${ }_{\text {812．7\％}}^{8.5}$	6，4060	6，504	98	．5\％
84．7．0\％	㐌， 6.1891	宛，503	${ }_{316}^{112}$	－1．1\％
85．2\％	${ }_{6,042}$	${ }_{6.503}^{6.503}$	${ }_{461}$	7．6\％
86．4\％	6，007	6.503	496	8．3\％
877\％\％		6，447	459	7．7\％
90．1\％	${ }_{\text {cose }}^{5}$	6，436	450	\％
91．4\％	${ }_{5,831}^{5,939}$	${ }_{6,304}^{6,435}$	473	${ }^{8.15 \%}$
92．6\％	5．809	6，237	429	7．4\％
3．8\％	5，701	5．849	148	2．6\％
95．1\％	5，554	5，637	83	1．5\％
9．3\％	5，378	5．607	${ }^{229}$	4．3\％
97．5\％	5，216	¢，5,377 5	${ }_{161}^{165}$	3．19\％
98．8\％	5,101 3	5.326 4.786	${ }_{1}^{225}$	${ }_{27}^{4.4 \%}$
100．0\％	3，760	4，786	1.026	27．3\％

		June		
Percent Exceedance	WSIP 2070 Without Proiet	WSIP 2070 With Project	${ }^{\text {Absolute }}$	
Probability	End of Month Area	End of Month Area	Difiterence	Difference（\％）
（\％）\％	（ACRE）			
0．0\％	${ }^{15,706}$	15.570	${ }^{-136}$	－0．9\％
2．5\％	${ }^{15.476}$	${ }^{15.505}$	${ }^{29}$	
${ }^{2.5 \%}$	${ }^{15.467}$	${ }^{15,274}$	－193	
3．9\％	－ 15.2245	＋15，266	${ }_{6}^{20}$	－
6．2\％	${ }^{15.140}$	15，134	－6	0．0\％
7．4\％	14.997	15.109	112	0．7\％
8．6\％	－ 14.9983	${ }^{15.025}$	${ }_{32}^{42}$	${ }^{0.3 \% \%}$
11．1\％	14，795			－0．6\％
12．3\％	14，780	14，691	－89	－0．6\％
13．6\％	14，687	14，629	－59	－0．46
14．8\％	14，288	14，291	3	
	14，082	14，269	187	1．3\％
－17．5\％	14，071	14，220	150	1．1\％
－18．9\％		14,165 14,073	${ }_{122}^{147}$	－ 1.0%
21．0\％	13．898	14，062	164	1．2\％
22．2\％	13，757	14，013	256	1．9\％
23．5\％	－13，747	$\begin{array}{r}13,890 \\ 13775 \\ \hline 18.0\end{array}$	${ }^{143}$	1．0\％
24．7\％	13,642 13533 1.538	${ }^{13,775}$	${ }_{231}^{133}$	1．70\％
25．9\％	13,533 13.522 1	13,764 13739	${ }_{217}^{231}$	－1．7\％
27．2\％	13，522 13，43	13,739 13,694 1	${ }_{2}^{217}$	1．6\％
－${ }_{\text {28．4．}}$	13,443 13,390	${ }^{13,694}$	$\begin{array}{r}250 \\ 282 \\ \hline\end{array}$	1．9\％
39．9\％		${ }^{13,672}$	282	${ }_{1.2 \%}^{2.12 \%}$
32．1\％	13，301	13，457	157	1．2\％
33．3\％	${ }^{13,223}$	13，446	223	1．7\％
34．6\％	${ }^{13,172}$	13，439	${ }^{266}$	2．0\％
37．0\％		${ }_{\text {13，330 }}^{113,37}$	${ }_{186}^{234}$	1．4\％
38．3\％	${ }^{13,065}$	13，317	252	
39．5\％	${ }^{13,023}$	13，270	247	
40．7\％	13，000	13，247	${ }^{247}$	1．9\％
42．0\％	${ }^{12,980}$	${ }^{13,153}$	173	1．3\％
－ 43.2% \％	${ }^{12,963}$	${ }_{\text {13，}}^{13,197}$	157	${ }_{1}^{1.2 \%}$
45．7\％	12，863	13，074	211	1．6\％
46．9\％	12,816	12，941	125	1．0\％
48．19\％	12,695 12,609	12,836 12735 1275	141	1．11\％
49．4\％	12.609 12.558 1	${ }^{12,745}$	$\begin{array}{r}136 \\ 103 \\ \hline 1\end{array}$	1．1\％
年 50.19%	12.558 12.207	$\begin{array}{r}12,661 \\ 12.548 \\ \hline 1\end{array}$	103	0．8\％
53．1\％	12,487 12,370	12,548 12537 125	141	${ }^{1.13 \%}$
54．3\％	${ }^{12,362}$	12.535	172	1．4\％
年55．6\％	12,163 111997	${ }^{12,436}$	${ }_{2}^{274}$	2．3\％
㐌5．8．\％\％	11,997 11,488 11	12,267 12,227 1	279 739	${ }_{6}^{2.3 \%}$
59．3\％	11，427	11，845	418	${ }^{6.7 \%}$
${ }^{60.5 \%}$	${ }^{11,1239}$	11.659	${ }^{420}$	
61．7\％	${ }^{11,221}$	11,580	359	
63．0\％	${ }^{11,142}$	${ }^{11,566}$	${ }^{423}$	8\％
－${ }^{64.2 \%}$ 6．4\％	10.901 10.709		${ }_{6}^{602}$	${ }^{5.5 \%}$
66.7%	${ }_{10,683}$	111，222	${ }_{539}$	5．0\％
67．9\％	10，575	11.016	441	4．2\％
69．1\％	10，369	10，694	$\begin{array}{r}325 \\ 548 \\ \hline\end{array}$	3．1\％
70．4\％	10,136 10.064 1	10,684 10.579	548 515	5．4\％
71．2\％	10.064	10，579	515	5．1\％
74．1\％	${ }^{10,001} 10.053$	10,493 10,211	432 158 1	－${ }_{\text {4，}}$
75．3\％	10，036	10，087	51	0．5\％
76．5\％	10，033	10，061	28	0．3\％
778．8\％	${ }_{9}^{9.9768}$	（10．059	144 147	${ }_{\text {1．5\％}}^{1.5 \%}$
79．0\％	${ }_{9}^{9,768}$	${ }_{9,883}^{9,915}$	147 137	1．5\％\％
81．5\％	9，724	9.852	129	1．3\％
－ 8 82．7\％	${ }^{9,7713}$	${ }_{9}^{9,674}$	－ 38	－0．4\％
84．2\％	${ }_{9,019}^{9.571}$	${ }_{9,385}^{9.516}$	${ }_{367} 60$	${ }_{4.1 \%}^{-0.0 \% \%}$
86．4\％	8,970	9，228	${ }_{257}$	2．9\％
877\％	8，957	${ }^{9,012}$	$\begin{array}{r}55 \\ \hline 54 \\ \hline\end{array}$	，
－${ }^{88.9 \%}$	7，723	${ }_{8}^{8,477}$	754	9．8\％
91．4\％	7,411 7,310	7，688 $\begin{aligned} & \text { 7，463 }\end{aligned}$	${ }_{153}^{277}$	－ 3.1%
92．6\％	7,290	7，334	44	0．6\％
93．8\％	7，050	6，912	－138	－2．0\％
95．1\％	－6．912		－75 313	－ 4.1 .19
－ 96.3%		6，795	${ }_{467}^{313}$	4．8\％
99．8\％\％	$\underset{\substack{6,024 \\ 6,024}}{\text { ，}}$		${ }_{455}^{467}$	7．6\％
100．0\％	3，977	4，976	1.000	25．1\％

Figure SW-21-b
Feather River at Thermalito Low Flow Channel, Monthly Flow

October				
Percent Exceedance	WSIP 2070 Without Proiet	WSIP 2070 With Project	Absolute Difference	Relative
	Monthy fow (cFs)	Monthly Flow (CFS)	(cFs)	Difference (\%)
0.0\%	800	800	0	0.0\%
1.2\%	800	800	0	0.0\%
2.5\%	800	800	0	0.0\%
3.7\%	800	800	0	0.0\%
4.9\%	880	880	0	0.0\%
(6.2%	800 800	800 800	0	0.0\%\%
8.6\%	800	800		0.0\%
9.9\%	800	800	0	
11.1\%	800	800	0	
12.3\%	800	800	0	
13.6\%	800	800	0	
14.8\%	800	800	0	
16.0\%	800	800	0	0.0\%
17.3\%	800	800	0	0.0\%
18.5\%	800	800	0	0.0\%
19.8\%	800	800	0	0.0\%
21.0\%	800	800	0	0.0\%
22.2\%	800	800	0	0.0\%
23.5\%	800	800	0	
24.7\%	800	800	0	
${ }^{25.7 .2 \%}$	${ }_{800}^{800}$	800 800	0	00\%
28.4\%	${ }_{800}$	${ }_{800}$	0	
29.6\%	880	880	0	0.0\%
32.1\%	800	800	0	${ }^{0.00 \%}$
33.3\%	800	800	0	0.0\%
34.6\%	800	800	0	0.0\%
35.8\%	800	800	0	
37.0\%	800	800	0	0.0\%
38.3\%	800	800	0	0.0\%
39.5\%	800	800	0	0.0\%
40.7\%	800	800	0	0.0\%
42.0\%	800	800	0	0.0\%
43.2\%	800	800	0	0.0\%
44.4.6	800	800	0	0.0\%
45.7\%	800	800	0	0.0\%
46.9\%	800	800	0	0.0\%
48.1\%	800	800	0	0.0\%
49.4\%	800	800	0	0.0\%
50.19\%	${ }_{800} 80$	800	0	0.0\%
53.1\%	800	800	0	0.0\%
54.3\%	880	800	0	0.0\%
556.8\%	${ }_{800} 8$	${ }_{800} 8$	0	0.0\%
58.0\%	800	800	0	
59.3\%	800	800	0	0.0\%
60.5\%	800	800	0	0.0\%
61.7\%	800	800	0	0.0\%
63.0\%	800	800	0	0.0\%
64.2\%	800	800	0	0.0\%
65.4\%	800	800	0	0.0\%
66.7\%	800	800	0	0.0\%
${ }^{67.9 \%}$	800	800	0	0.0\%
69.1\%	800	800	0	\%
70.4\%	880	800 800	0	\%
71.6\%	880	800	0	\%
72.8\%	800 800	800 800	0	
75.3\%	${ }_{800}^{800}$	800 800	0	0.0\%
76.5\%	800	800	0	0.0\%
77.8\%	800	800	0	0.0\%
79.0\%	880	880	0	0.0\%
${ }^{81.5 \%}$	${ }_{800} 8$	${ }_{800} 8$	0	0.0\%
82.7\%	800	800	0	
84.0\%	800	800	0	0.0\%
85.2\%	800	800	0	0\%
86.4\%	800	800	0	0.0\%
877.7\%	800	800	0	0.0\%
88.9\%	800	800	0	0.0\%
90.1\%	800	800	0	0.0\%
914\%	800	800	0	0.0\%
92.6\%	800	800	0	0.0\%
93.8\%	800	800	0	0.0\%
${ }^{955} 9$	800 800	800 800	0	0.0\%
96.5\%	8800	800	0	0.0\%
98.8\%	800 800	800		-0.0\%
100.0\%	${ }_{800}^{800}$	${ }_{800}^{800}$	0	0.0\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	$\begin{aligned} & \text { WSIP } 2070 \text { Wethout } \\ & \text { Proiect } \\ & \hline \end{aligned}$	WSIP 2070 With Project	Absolute	Relative Difference $(\%)$
Probabaility	Monthly Fow (CFS.	Monthly Fow (CFS)	(CFS)	
1.2\%	800	${ }_{800}^{800}$		0.0\%
2.5\%	800	800	0	0.0\%
3.7\%	80	80	0	
4.9\%	800	800	0	0.0\%
6.2\%	800	80	0	
7.4\%	800	800	0	0.0\%
8.6\%	800	800	0	
9.9\%	800	800	0	
1.12\%	800	880		
13.6\%	800	800	0	
14.8\%	800	800	0	
16.0\%	800	800	0	
17.3\%	800	800	0	
18.5\%	800	800	0	0.0\%
19.8\%	800	800	0	0.0\%
21.0\%	800	800	0	0.0\%
22.2\%	800 800	800	0	0.0\%
${ }^{23.47 \%}$	8800	8800	0	0.0.0\%
25.9\%	800	800	0	0.0\%
27.2\%	800	800	0	0.0\%
28.4\%	800 800	800 800	0	0.0\%
29.6\%	800	800	0	
30.9\%	800	800	0	
32.1\%	800	800	0	0.0\%\%
34.6\%	${ }_{800} 8$	${ }_{800}^{800}$	0	0.0\%
35.8\%	800	${ }_{8}^{800}$	0	
37.0\%	800	800	0	
30.5\%	${ }_{800} 8$	800	0	0.0\%
40.7\%	800	800	0	0.0\%
42.0\%	800	800	0	0.0\%
${ }^{43.2 \%}$	800	800	0	0.0\%
44.4\%	800	800	0	0.0\%
45.7\%	800	800	0	0.0\%
${ }^{46.9 \%}$	800	800	0	0.0\%
4.94\%	800	800	0	0.0\%
50.6\%	800	800	0	0.0\%
51.9\%	800	800	0	0.0\%
54.13\%	800 800	800	0	
55.6\%	800	800	0	0.0\%
56.8\%	800	800	0	0.0\%
58.0\%	800	800	0	
	800	${ }_{800} 80$		
611.7\%	${ }_{800} 8$	${ }_{800}^{800}$	0	0.0\%
63.0\%	800	800	0	\%
64.2\%	800	800	0	0.0\%
${ }^{65.4 \%}$	800	800	0	0.0\%
${ }^{66.7 \%}$	800	800	0	.0\%
69.1\%	800	${ }_{800}^{800}$		\%
70.4\%	800	800	0	0.0\%
71.6\%	800	800	0	0.0\%
72.8\%	880	${ }_{800}^{800}$	0	0.0\%
74.1\%	880	880	0	0.0\%
76.5\%	800 800	800	0	0.0\%
77.8\%	800	${ }_{800}$	0	0.0\%
79.0\%	800	800	0	0.0\%
-	800 800	800 800	0	-
${ }_{\text {822.7\% }}$	800	${ }_{800}^{800}$	0	${ }_{0}^{0.0 \%}$
84.0\%	800	800	0	0.0\%
- 85.2%	800	880	0	0.0\%
${ }^{86.4 \%}$	${ }_{800}^{800}$	800 800	\bigcirc	0.0.0\%
88.9\%	800	800	0	0.0\%
90.1\%	800	800	0	0.0\%
91.4\%	800	800	0	0.0\%
92.6\%	800	800	0	0.0\%
93.8\%	8800	880	0	0.0\%
${ }_{96.3 \%} 95$	800	${ }_{800}^{800}$	0	${ }_{0}^{0.0 \%}$
97.5\%	800	800	0	0.0\%
98.8\%	${ }_{800} 80$	${ }_{800} 80$	0	0.0\%

		May		
	WSIP 2070 Wethout	WSIP 2070 With Project		Relative
Probability	Monthly Fow (CFS)	Monthy Fow (CFS)	(crs)	Difference (\%)
0.0\%	700	700	0	0.0\%
1.2\%	700	700	0	0.0\%
2.5\%	700	700	0	0.0\%
3.7\%	700	700	0	0.0\%
4.9\%	700	700	0	0.0\%
6.2\%	700	700	0	0.0\%
7.4\%	700	700	0	0.0\%
8.6\%	${ }_{7} 700$	700	0	0.0\%
9.9\%	700	700	0	0.0\%
11.1\%	${ }_{700} 70$	700	0	0.0\%
12.3% 136% 13.	7700	${ }_{7}^{700}$	0	0.0\%
- $13.4 .8 \%$	700 700	700 700	0	0.0\%
16.0\%	700		0	0.0\%
17.3\%	700	700	0	0.0\%
1.85\%	700	700	0	0.0\%
19.8\%	700	700	0	0.0\%
${ }^{21.0 \%}$	${ }_{700} 70$	${ }_{700} 700$	O	0.0\%
${ }^{22.55 \%}$	700	700	0	0.0\%
24.7\%	700	700	0	0.0\%
25.9\%	700	700	0	0.0\%
27.2\%	${ }_{7}^{700}$	${ }^{700}$	0	0.0\%
28.4\%	700	700	0	0.0\%
29.6\%	700	700	0	0.0\%
30.9\%	700	700	0	0.0\%
32.1\%	${ }_{7} 700$	700	0	0.0\%
33.3% 34.6%	${ }_{7} 700$	700	0	0.0\%
34.6\%	700	700	0	0.0\%
35.8\%	${ }_{700} 70$	700	0	-
年37.0\%	7700	${ }_{7} 700$	0	0.0\%
38.5\%	700	700	0	0.0\%
40.7\%	700	700		0.0\%
42.0\%	7700	700	0	0.0\%
44.4\%	700	700	0	0.0\%
45.7\%	700	700	0	0.0\%
46.9\%	700	700	0	0.0\%
48.1\% 4.4	700	700	0	0.0\%
50.6\%	700 700	700 700	\bigcirc	- ${ }_{\text {0.0\% }}^{0.0 \%}$
51.9\%	700	700	0	0.0\%
53.1\%	700	700	0	0.0\%
54.3\%	${ }_{700} 70$	${ }_{7}^{700}$	0	0.0\%
年55.6\%	${ }_{700}^{700}$	700 700	0	0.0\%
56.0\%	700 700	700 700	0	${ }^{0.0 \% \%}$
59.3\%	700	700	0	0.0\%
60.5\%	700	700	0	0.0\%
${ }^{61.77 \%}$	${ }_{7}^{700}$	700	0	0.0\%
-63.0\%	${ }_{700}^{700}$	700 700	0	-0.0\%
65.4\%	700	700	0	0.0\%
66.7\% 6799%	7700	7700	0	0.0\%
69.1\%	700	700	0	0.0\%
70.4\%	700	700	0	0.0\%
71.2\%	700	700	0	0.0\%
72.8\%	${ }_{700}^{700}$	${ }_{700} 70$	0	0.0\%
7.3.3\%	700	700	0	0.0\%
76.5\%	700	700	0	0.0\%
77.8\%	700	700	0	0.0\%
79.0\%	${ }_{700} 70$	${ }_{7}^{700}$	0	0.0\%
-	${ }_{7} 700$	700	0	0.0\%
${ }^{81.5 \%}$ 82.7\%	700 700	700 700	0	0.0\%
84.0\%	700	700	0	0.0\%
85.2\%	${ }_{700}$	${ }_{7} 700$	0	0.0\%
- 86.48%	${ }_{700}$	700	0	0.0\%
88.9\%	700	700	0	0.0\%
90.1\%	700	700	0	0.0\%
	7700	700	0	0.0\%
93.8\%	700	${ }_{700}$	0	0.0\%
95.1\%	700	700	0	0.0\%
96.3\%	700	700	0	0.0\%
97.5\%	${ }_{700}$	700	0	0.0\%
98.8\%	700 700	${ }_{700}^{700}$	0	${ }^{0.0 \% \%}$

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$		WSIP 2070 With Project	Absolute Difference	Relative Difference (\%)
${ }_{\substack{\text { Probababily } \\ 0.00 \%}}$			(CFS)	
1.2\%	700	700		0.0\%
2.5\%	700	700	0	
3.7\%	700	700	0	0.0\%
4.9\%	700	700	0	
6.2\%	700	700	0	
7.4\%	700	700	0	
8.6\%	700	700	0	
\%	700	700	0	
11.1\%	700	700	0	
12.3\%	700	700	0	
13.6\%	700	700	0	
14.8\%	700	700	0	
16.0\%	700	700	0	0.0\%
17.3\%	700	700	0	0%
18.5\%	700	700	0	0.0\%
19.8\%	700	700	0	0.0\%
21.0\%	700	700	0	0\%
${ }^{22.2 \%}$	770	700	0	0.0\%
23.5\%	700	700	0	\%
${ }^{24.79 \%}$	700	7700	0	0.0\%
25.9\%	700	700		
27.2\%	700	700	0	
20.6\%	700	700	0	0.0\%
30.9\%	700	700	0	0.0\%
32.1\%	700	700	0	0\%
33.3\%	700	700	0	0.0\%
34.6\%	700		0	0.0\%
37.0\%	770	700		
38.3\%	700	700	0	0.0\%
39.5\%	700	700	0	0.0\%
40.7\%	700	700	0	0.0\%
42.0\%	700	700	0	0.0\%
43.2\%	700	700	0	0.0\%
44.4\%	700	700	0	0.0\%
45.7\%	700	700	0	0.0\%
46.9\%	700	700	0	0.0\%
48.1\%	700	700	0	0.0\%
49.4\%	700	700	0	0.0\%
50.6\%	700	700		
51.9\%	700	700	0	
54.3\%	700	${ }_{700}$	0	0.0\%
55.6\%	700		0	
56.8\%	700	700	0	0.0\%
58.0\%	700	700	0	0.0\%
${ }^{59.3 \%}$	700	700	0	0.0\%
60.5\%	700	700	0	0.0\%
617\%\%	700	700	0	0.0\%
63.\%	700	700	0	.0\%
${ }^{64.2 \%}$	700	700	0	0.0\%
${ }^{65.4 \%}$	700	700	0	0.0\%
${ }^{66.7 \%}$	7700	700	0	0.0\%
${ }^{67.9 \%}$	700	7700	0	0.0\%
69.1\%	700	7700	0	0.0\%
70.4\%	700	700		0.0\%
71.6\%	${ }_{700} 700$	700 700	-	0.0\%
(74.19\%	${ }_{700}^{700}$	${ }_{700}^{700}$		
75.3\%	${ }_{700}^{700}$	${ }_{700}^{700}$	0	0.0\%
76.5\%	700	700	0	
77.8\%	700	700	0	0\%
79.0\%	7700	700	0	0.0\%
80.2\%	7700	700		0.0\%
${ }^{8} 8.57{ }^{\circ}$	700	700		
84.0\%	700	700	0	0.0\%
85.2\%	700	700	0	0.0\%
86.4\%	700	700	0	0.0\%
87.7\%	700	700	0	0.0\%
88.9\%	700	700	0	0.0\%
90.1\%	700	700	0	0.0\%
91.4\%	700	700	0	0.0\%
92.6\%	700	700	0	0.0\%
93.8\%	7700	700	0	0.0\%
95.1\%	700	700	0	0.0\%
97.5\%	7700	700	-	0.0\%
	700	700		0%
100.0\%	700	700		0.0\%

Figure SW-22-b
reather River below Thermalito, Monthly Flow

Table SW-22-b

December				
Percent Exceedance	WSIP 2070 Without Proiect	WSIP 2070 With Project	Absolute Difference	Relative
Probability	Monthly Fow (CFs)	Montily Fiow (CFFs)	(CFS)	
	950		2,778	9.6\%
1.2\%	20,053	20,368	315	
2.5\%	12,911	${ }^{11,595}$	1,316	
3.7\%	9,291	11,297	2,006	21.6\%
4.9\%	${ }_{8,376}$	10,295	1,918	
6.2\%	6.508	9,298	2,789	
7.4\%	5,388	5,386	${ }^{-3}$	0.0\%
8.6\%	5,277	5,313	${ }^{36}$	0.7\%
9.9\%	4,668	5,205	537	11.5\%
11.1\%	4,353	4,777	423	9.7\%
${ }^{12.3 \%}$	4,141	4,250	108	2.6\%
13.6\%	${ }^{3,773}$	4,181	408	
14.8\%	${ }^{3.528}$	4.073	545	
10.0\%	-	${ }^{3.869}$	568	
17.5\%	3,267	${ }^{3,860}$	593	18.2\%
18.5\%\%	3,172	${ }^{3,619}$	447	
19.8\%	-	3,551	468	
22.0\%	${ }_{2}$	${ }_{\text {3, }}^{3,173}$	557	${ }^{18.8 \% \%}$
23.5\%	${ }_{2,518}^{2,58}$	3.076	558	22.2\%
24.7\%	2,243	3.049	806	
25.9\%	2,241	2,996	755	
27.2\%	2,205	2.806	601	
28.4\%	${ }^{2}, 047$	2,756	709	34.6\%
29.6\%	1,972	${ }^{2,657}$	685	
30.9\%	1,923	2,525	602	31.3\%
32.1\%	${ }^{1.861}$	2,244	384	20.6\%
33.3\%	${ }^{1,847}$	${ }^{2} 2.240$	393	21.3\%
34.6\%	1,759	1,986	${ }^{227}$	12.9\%
35.8\%	1,702	${ }_{1,923}$	${ }^{221}$	13.0\%
37.0\%	1,700	1,921	${ }^{221}$	${ }^{13.0 \%}$
38.3\%	1,700	1,881	181	10.2\%
39.5\%	1,700	${ }^{1,806}$	106	${ }^{6.2 \%}$
${ }^{40.70}$	1,700	1,758 1,700	${ }^{58}$	
4.2.\%	1,700	1,700	0	
${ }_{44.4 \%}$	1,700	${ }_{1}^{1,7700}$	0	${ }^{0.0 \% \%}$
45.7\%	1,700	1,700	0	
46.9\%	1,700	1,700	0	
48.1\%	1,700	1,700	0	
49.4\%	1,700	1,700	0	
50.6\%	1,700	1,700	0	
51.9\%	1,700	1,700	0	0.0\%
53.1\%	1,700	1,700	0	0.0\%
54.3\%	1,700	1,700	0	0.0\%
(55.6\%	1,700	1,700	0	0.0\%
	1,700	1,700	0	0.0\%
55.0\%	+1,700	1,700	0	0.0\%
59.3\%	1,700	1,700	0	0.0\%
60.5\%	1,700	1,700	0	0.0\%
${ }^{61.7 \%}$	1,700	1,700	0	0.0\%
-63.0\%	${ }^{1,7700}$	1,700	0	0.0\%
-64.2\% ${ }^{6.4 .4 \%}$	1,700 1,700	+1,700	O	0.0\%
-65.4\%	1,700 1,700	1,700 1,700		00\%
-667.7\%	1,700	${ }_{1}^{1,7700}$.0\%
69.1\%	${ }_{1}^{1,7700}$	${ }_{1}^{1,7700}$	0	${ }^{0.00 \%}$
70.4\%	${ }_{1}^{1,700}$	1,700	0	0.0\%
71.6\%	1,700	1,700	0	0.0\%
	+1,700	1,700	-	0.0\%
75.3\%	${ }_{1}^{1,700}$	${ }_{1,500}^{1,50}$	-200	-14.8\%
76.5\%	1,497	1,472	-25	-1.7\%
77.8\%	1,368	${ }^{1,306}$	-63	-4.6\%
79.0\%	1,319	1,200	119	-9.0\%
80.2\%	1,318	1,200	118	-8.9\%
81.5\%	1,200	1,200	0	0.0\%
82.7\%	1,200	${ }^{1,200}$	0	0.0\%
84.0\%	1,200	${ }^{1,200}$	0	0.0\%
- $8.5 .2 \%$	${ }_{1}^{1,200}$	${ }^{1,200}$	0	${ }^{\text {0.0\% }}$
${ }^{86.4 \%}$ 87.7\%	${ }^{1}$	${ }_{1}^{12200}$	0	${ }^{0.00 \%}$
88.9\%	+1,200	${ }_{\substack{1,200 \\ 1123}}^{\substack{120}}$	${ }_{-77}$	-6.5\%
90.1\%	${ }_{1}^{1,123}$	1,069	-54	-4.8\%
91.4\%	1,008	900	108	-10.7\%
92.6\%	900	900	0	0.0\%
93.8\%	900	900	0	0.0\%
996.3\%	990	990	0	0.0\%
.5\%	00	900	0	
	900	900	0	-0.0\%

Table SW－22－b

		Way		
	WSIP P2070 Without	WSIP 2070 With Project		Reataive
Probability	Monthy Flow（CFS）	Moontly Flow（CFS）	（CFF）	Difference（\％）
0．0\％	7，687	7，678	－9	－0．1\％
1．2\％	6，093	6，094	0	0．0\％
2．5\％	${ }_{3} \mathbf{0}, 061$	4,167	1，106	36．1\％
3．7\％	2，943	3，248	304	10．3\％
4．9\％	${ }_{2}^{2,898}$	3，060	162	5．6\％
6．2\％	${ }_{2}^{2,765}$	3.021	256	9．2\％
7．4\％	${ }_{2}^{2,725}$	${ }_{2}^{2,943}$	217	8．0\％
8．9\％	2，655	${ }_{2}^{2,781}$	${ }_{126} 117$	4．7\％
9．9\％	－	2，743	117	4．4\％
11．19\％	${ }_{\text {2，598 }}^{2,568}$	2，693	95	
12.3% 136% 13.0	2，526	2，623	97	3．8\％
－ 13.6%	2.461 2.430	2.575 2.526	${ }_{96}^{113}$	4．6\％
16．0\％	${ }_{2}^{2,378}$	${ }_{2}^{2,499}$	121	5．1\％
17．3\％	2，339	${ }_{2,464}$	125	5．3\％
18．5\％	${ }_{2}^{2,323}$	2,436	114	
19．8\％	${ }_{2}^{2,316}$	${ }_{2}^{2,378}$	63	
21．0\％	2，152	2,316	165	
${ }^{222.2 \%}$	2，121	2，308	188	
23．5\％	2，056	2，293	237	11.6
24．7\％	2，040	2，284	244	
25．9\％	1，980	${ }^{2,227}$	247	12.5
27．2\％	${ }^{1,976}$	2，193	217	11.0
28．4\％	${ }^{1,974}$	2，151	177	9．0\％
29．6\％	${ }^{1,956}$	2，144	189	${ }^{9.6 \%}$
30．9\％	${ }^{1,8888}$	2，095	207	10．9\％
32．1\％	${ }^{1.884}$	2，045	160	8．5\％
年 $\begin{aligned} & 33.3 \% \\ & 34.6 \%\end{aligned}$	（1．863	1．964	101	5．4\％
34.6% 358% 3，	${ }_{1,877}^{1.862}$	${ }_{1,873}$	${ }^{31}$	1．7\％
年35．8\％	${ }_{1}^{1,731}$	1，775	－2	
年 $\begin{aligned} & 37.0 \% \\ & 383 \%\end{aligned}$		${ }_{1}^{1,690}$	－40	
30．5\％	${ }_{1}^{1,695}$	${ }_{1,593}^{1,647}$	－02	－
40．7\％	1，657	1，589	－68	
42．0\％	1，607	1，553	${ }_{54}$	
43．2\％	${ }^{1,573}$	1，543	31	
44．4\％		1，350	－178	
45．7\％	1，414	1，297	117	－8．3\％
46．9\％	1，364	1，271	－93	－6．8\％
48．19\％	1，336	1，220	－115	
49．4\％	1，277	1，160	117	－9．14
年 $\begin{aligned} & \text { 50．6\％} \\ & 510 \%\end{aligned}$	1，267	1，126	－141	－11．2\％
51．9\％	1，203	1，102	－100	－8．3\％
年 53.1 \％	1，178	${ }^{1,096}$	81	－6．9\％
54.3% 5.5%	${ }^{1,161}$	${ }^{1,095}$	65	－5．6\％
年5．8．8\％	1.102	${ }^{1} 1.062$	40	－3．6\％
56．0\％	${ }_{1}^{1,100}$	（1，046	－54	${ }_{-4.9 \%}^{4.9 \%}$
59．3\％	1，065	1,000	${ }_{-65}$	6．1\％
60．5\％	1，050	1，000	－50	4．7\％
${ }^{61.77 \%}$	1，000	1，000	0	0．0\％
－ 63.0%	1,000 1,000	1,000 1,000	0	－ 0.0%
65．4\％	1，000	1，000	0	
${ }^{66.77 \%}$	${ }^{1,000}$	1，000	0	0．0\％
－67．9\％	${ }^{1,000}$	1，000	0	0．0\％
70．4\％	${ }_{1}^{1,000}$	${ }_{1,000}^{1000}$	0	0．0\％
71．6\％	1，000	1，000	0	0．0\％
72．8\％	1，000	1，000	0	0．0\％
74．1\％${ }^{7.3 \%}$	1，000	1，000	0	0．0\％
75．3\％	1，000	1，000	0	0．0\％
76．5\％${ }_{778 \%}$	1，000	${ }^{1,000}$	0	0．0\％
77．8\％	${ }^{1,000}$	${ }^{1.000}$	0	0．0\％
79．0\％	${ }^{1.000}$	${ }^{1.000}$	0	0．0\％
－	${ }^{1,000}$	${ }^{1,000}$	0	0．0\％
－	1.000	${ }^{1,000}$	0	0．0\％
84．0\％	${ }_{1,000}^{1,000}$	${ }_{1,000}^{1,000}$	0	0．0\％
85．2\％	1，000	1，000	0	0．0\％
${ }^{86.4 \%}$	1，000	${ }^{1.000}$	0	0．0\％
88．9\％	${ }_{1,000}^{1,000}$	${ }_{1,000}^{1,000}$	0	0．0\％
90．1\％	1，000	1，000	0	\％
91．4\％	1，000	1，000	0	
92．6\％	1，000	816	184	
93．8\％	1，000	750	250	
95．1\％	856	${ }_{750}$	106	12．4\％
${ }^{96.75 \%}$	774	${ }^{750}$	${ }^{24}$	－3．1\％
98．8\％	750	750	0	0．0\％
100．0\％	750	750	0	0．0\％

 Promaine

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& September \& \&

\hline Percent
Exceedance \& ${ }^{\text {WSIP } 2070}$ Writhout \& WSIP 2070 With Projet \& Absolute
Difference \& Relative

\hline Probability \& Monthy Fow (CFS) \& Monthy Flow (CFS) \& (CFF) \&

\hline 0.0\% \& 10,000 \& 10,000 \& 0 \& 0.0\%

\hline 1.2\% \& 10,000 \& 10,000 \& 0 \& 0.0\%

\hline 2.5\% \& 10,000 \& 9,842 \& -158 \& -1.6\%

\hline 3.7\% \& 10,000 \& 9,807 \& -193 \& -1.9\%

\hline 4.9\% \& ${ }^{9.8855}$ \& 9,753 \& -112 \& -1.1\%

\hline -6.2\% \& ${ }_{9,653}^{9,753}$ \& ${ }_{9,568}^{9,746}$ \& $\stackrel{-7}{-84}$ \& -0.1\%

\hline 8.6\% \& 9,502 \& 9,536 \& 34 \& 0.4\%

\hline 9.9\% \& 9,501 \& 9,166 \& 335 \& 35\%

\hline 11.1.\% \& 9,386 \& 9,165 \& ${ }^{221}$ \&

\hline 12.3\% \& 9,377 \& 8,788 \& -589 \& -6.3\%

\hline 13.6\% \& 9,255 \& 8,758 \& -497 \&

\hline 14.8\% \& 9,071 \& ${ }^{8,683}$ \& -388 \&

\hline 16.0\% \& ${ }^{8,782}$ \& ${ }_{8.651}$ \& -131 \& -1.5\%

\hline 17.3\% \& 8,559 \& ${ }^{8,407}$ \& -153 \& -1.8\%

\hline 18.5\% \& 8,255 \& ${ }_{8,311}$ \& 56 \& 0.7\%

\hline 19.8\% \& ${ }^{8.008}$ \& 8,287 \& 279 \& ${ }^{3.5 \%}$

\hline 21.0\% \& 7,968 \& ${ }_{8}^{8,133}$ \& 165 \& 2.1\%

\hline ${ }^{22.2 \%}$ \& 7,959 \& ${ }_{7}^{7,983}$ \& ${ }^{24}$ \& 0.3\%

\hline 23.5\% \& 7,797 \& 7,570 \& -227 \&

\hline 24.7\% \& 7,736 \& 7,502 \& ${ }^{235}$ \& -3.0\%

\hline 25.9\% \& 7,723 \& 7,499 \& -224 \&

\hline 27.2\% \& 7,530 \& 7,229 \& -302 \&

\hline 28.4\% \& 7,420 \& 7.186 \& -234 \& -3.2\%

\hline 30.9\% \& 7,306 \& 6,950 \& ${ }_{-36}$ \& 4.9\%

\hline 32.1\% \& 7,068 \& 6,745 \& ${ }^{-323}$ \& 4.6\%

\hline 33.3\% \& 7,024 \& ${ }^{6.524}$ \& -500 \& -7.1\%

\hline 34.8\% \& ¢,667 \& ${ }_{\text {c, }}^{6.231}$ \& ${ }_{-436}$ \&

\hline 37.0\% \& 6,202 \& 5,833 \& -369 \& -6.0\%

\hline 38.3\% \& 5,784 \& 5.557 \& -227 \& -3.9

\hline 39.5\% \& 5,676 \& 5,184 \& 492 \& 8.7\%

\hline 40.7\% \& 5,130 \& 5,126 \& -5 \& -0.1\%

\hline 42.0\% \& 4,968 \& 5,084 \& 115 \& 2.3\%

\hline 43.2\% \& 4,943 \& 4,889 \& -54 \& -1.1\%

\hline 44.4\% \& 4,794 \& 4,811 \& 16 \& 0.3\%

\hline 45.7\% \& 4,757 \& 4,738 \& -19 \& -0.4\%

\hline 46.9\% \& 4,677 \& 4,695 \& 19 \& 0.4\%

\hline 48.1\% \& 4.670 \& 4.993 \& -177 \& -3.8\%

\hline 4.9.4\%
50.6% \& 4,669 \& 4,380 \& ${ }^{289}$ \& ${ }^{-6.2 \%}$

\hline 年 50.6% \& ${ }_{4}^{4,417}$ \& 4,379 \& ${ }^{47}$ \& 1.19\%

\hline 51.9\%
53.1% \& $\xrightarrow{4,939}$ \& 4,154 \& ${ }^{37}$ \& 0.9\%

\hline 543\% \& 3,939
3,649 \& ${ }_{3,021}^{4,052}$ \& ${ }_{272}$ \& 74.9\%

\hline 55.6\% \& 3,511 \& 3,873 \& 362 \&

\hline 56.8\% \& 3,432 \& 3,751 \& 319 \&

\hline 58.0\% \& 3,386 \& 3,714 \& 328 \&

\hline 59.3\% \& 3,360 \& 3.509 \& 149 \& 4.4\%

\hline 60.5\% \& 3,316 \& 2,924 \& -391 \& 11.8\%

\hline 617\%\% \& 3,195 \& 2,902 \& -293 \& 9.2\%

\hline 63.0\% \& 3,109 \& 2,812 \& -297 \& -9.5\%

\hline ${ }^{64.2 \%}$ \& - ${ }_{\text {3,082 }}$ \& ${ }_{2}^{2,782}$ \& -300 \& -9.7\%

\hline 65.4\% \& ${ }^{2,718}$ \& 2,641 \& -77 \& -2.8\%

\hline ${ }^{66.7 \%}$ \& 2,414 \& ${ }^{2.576}$ \& 162 \& ${ }^{6.7 \%}$

\hline - 67.9% \& 2,279 \& ${ }_{2}, 518$ \& 239 \& 10.5\%

\hline 69.1\% \& ${ }^{2,058}$ \& ${ }^{2}, 458$ \& 400 \& 19.4\%

\hline 70.4\% \& ${ }_{1}^{2,026}$ \& 2,343 \& 317 \& 15.5\%

\hline 71.6\% \& 1,708 \& 2,145 \& ${ }^{437}$ \& 25.6\%

\hline 72.8\% \& ${ }^{1,664}$ \& 2,037 \& 396 \& 24.1\%

\hline (74.10\% \& ${ }_{\text {1,584 }}^{1,577}$ \& \& 305

51 \& 19.2\%

\hline 75.3\% \& ${ }_{1}^{1.517}$ \& ¢1,828 \& 251 \& 15.9\%

\hline 76.78\% \& (1,4921 \& (1,826 \& | 334 |
| :--- |
| |
| 238 | \& ${ }^{22.46}$

\hline 79.0\% \& ${ }_{1}^{1,265}$ \& ${ }_{1}^{1,726}$ \& ${ }_{461}^{278}$ \& 19.0\%

\hline 80.2\% \& ${ }_{1}^{1,246}$ \& 1,706 \& 460 \& 36.9\%

\hline 81.5\% \& 1.230 \& 1,587 \& 357 \&

\hline 82.7\% \& 1,216 \& ${ }^{1,485}$ \& 269 \&

\hline 84.0\% \& 1,208 \& 1,467 \& 259 \&

\hline 85.2\% \& 1,203 \& 1,461 \& 258 \&

\hline 86.4\% \& 1,156 \& 1,430 \& 274 \&

\hline 877.7\% \& 1,149 \& ${ }^{1,346}$ \& 197 \& 17.1\%

\hline 88.9\% \& 1,106 \& 1,321 \& 216 \& 19.5\%

\hline 90.19\% \& 1,090 \& 1,295 \& 205 \& 18.8\%

\hline 91.4\% \& ${ }^{1.045}$ \& 1,218 \& 172 \& 16.5\%

\hline 92.6\% \& ${ }^{1.000}$ \& ${ }^{1,188}$ \& 188 \& 188\%\%

\hline 93.8\% \& ${ }^{1,000}$ \& ${ }^{1,145}$ \& 145 \& 14.5\%

\hline ${ }_{\text {9 }}^{95} 5$ \& 1,000
1
1

1000 \& 1,089 \& | 89 |
| :--- |
| 8 | \& ${ }^{8.9 \% \%}$

\hline 97.5\% \& 1,000 \& 1,000 \& ${ }_{0}^{25}$ \& ${ }_{\text {20.0\% }}^{2.5 \%}$

\hline 98.8\% \& 880 \& 1,000 \& 120 \&

\hline 100.0\% \& 863 \& 860 \& -4 \& 0.4\%

\hline
\end{tabular}

Figure SW-23-b
reather River at Mouth, Monthly Flow

Table SW-23-b River at Mouth, Monthy Flo

Perent	WSIP 2070 Without Proiect	WSIP 2070 With Project		Relative Difference (\%)
Probability	Montly Flow (Monthly Fow (CFSS)	(CFF)	4.7\%
1.2\%	${ }^{59,897}$	${ }_{40,218}$	321	0.8\%
2.5\%	32,392	35,180	2,788	8.6\%
3.7\%	24,756	26,761	2.005	8.1\%
4.9\%	19,786	22,940	3,154	15.9\%
6.2\%	19,719	19,234	-485	-2.5\%
7.4\%	18,127	17.547	-580	-3.2\%
8.6\%	16,964	17,184	${ }^{221}$	1.3\%
9.9\%	16,953	16,969	15	0.1\%
11.1\%	${ }^{11,170}$	${ }^{11,172}$	2	0.0\%
12.3\%	${ }_{6}^{6.566}$	7,047	${ }^{481}$	7.3\%
13.6% 14.8%		-6.568 6.447	124 225	
14.8% 16.0%	¢, $\begin{aligned} & 6,223 \\ & 6.147\end{aligned}$	6,447 5,901	${ }_{-246}^{225}$	-3.6\%
117.3\%	${ }_{5,894}$	${ }_{5,878}^{5.901}$	- ${ }_{-16}$	-0.3\%
18.5\%	5.874	5.857	-17	-0.3\%
19.8\%	5.873	5.717	-156	-2.7%
21.0\%	5.679	¢, 5.715	${ }^{35}$	0.6\%
${ }^{22.55 \%}$	4,904	${ }_{5.659}$	${ }_{755}^{458}$	- $1.8 .4 \%$
24.7\%	4.851	4,905	54	1.1\%
25.9\%	4.791	4.791	0	0.0\%
${ }^{277.2 \%}$	${ }_{4}^{4,775}$	4,780	5	0.1\%
${ }^{28.9 \%}$	4.503	4.567	${ }_{64}$	${ }_{1} 1.4 \%$
30.9\%	4,369	4.503	${ }^{134}$	3.1\%
32.1\%	4,347	4,393	46	1.1\%
33.3\%	4,145	4,347	201	4.9\%
34.6\%	${ }_{4,130}$	4,149	19	0.5\%
		-4,131 3 189	- 238	
37.0\%	淢,6864	(3,892	206 107	5.6\%
	-3,634 3,461		107 227	2.9\%
39.5\%	3,461 $\begin{aligned} & \text { 3,423 } \\ & \text {, }\end{aligned}$	-3,688 3.682	${ }_{259}^{227}$	${ }_{\text {c }}^{6.6 \%}$
42.\%	3,229	3,665	437	13.5\%
${ }^{43.2 \%}$		3,462		7.3\%
4.5.7\%	3,017	3,345	${ }_{328}^{308}$	10.9\%
46.9\%	2,994	3,336	342	
48.1\%	2,980	3,237	${ }^{257}$	
4.9.4\%	2,903	3,226	${ }^{324}$	11.1
50.6\%	2,850	3,003	154	5.4
51.9\%	${ }_{2,821}$	2,982	161	5.79
53.19\%	${ }_{2}^{2,739}$	${ }_{2}^{2,913}$	173	6.3\%
54.3\%	${ }_{2}^{2,712}$	2,907	194	7.2\%
55.6\%	2,667	${ }_{2}^{2,883}$	177	6.6\%
56.8\%	2,635	${ }_{2,821}^{2,715}$	186	7.0\%
58.3\%	${ }_{2,347}^{2,439}$	${ }_{2,715}^{2,740}$	301 368	- ${ }_{\text {125\% }}^{12.3 \%}$
60.5\%	${ }_{2,280}^{2,240}$	2,669	389	17.1\%
61.7\%	2,219	2,636	417	18.8\%
63.0\%	2.168	2.443	275	12.7\%
64.2\%	2,048 2,036	ce,	302 249	- 14.7%
66.7\%	2,030	${ }_{2,224}^{2,204}$	194	${ }^{19.6 \%}$
67.9\%	2,018	2,167	149	7.4\%
79.1\%	+1,998	1,913 1.889	${ }_{6}^{-85}$	-4.3\%
71.6\%	${ }_{1}^{1,885}$	${ }_{1,888}^{1,88}$	3	0.2\%
72.8\%	1,806	1,819	13	0.7\%
74.1\%	1.752	${ }_{1,811}^{1,765}$	59	4\%
75.3\%	1,744	1,785	41	2.3\%
76.5\%	1,700	${ }^{1,746}$	${ }^{46}$	2.7\%
77.0\%	1,700 1,700	$\begin{array}{r}1,722 \\ 1700 \\ \hline\end{array}$	22	1.3\%
80.2\%	1,700	1,700	0	0.0\%
81.5\%	1,700	1,700	0	0.0\%
82.7% 880%	-	1,660 1.656 1	${ }^{5}$	0.3\%
- $\begin{aligned} & 84.0 \% \\ & 852 \%\end{aligned}$	1,644 1.570	(1,656	${ }_{74}^{11}$	${ }_{\text {O }} 0.7 \%$
86.4\%	${ }_{1,566}^{1.570}$	1,644 1,570	74 15 14	4.9\%\%
87.7\%	1,459	${ }_{1}^{1,499}$	40	2.7\%
88.9\%	${ }_{1}^{1,429}$	1,461	32	2.2\%
91.4\%	${ }_{1}^{1,152}$	${ }_{1}^{1,1,156}$	4	0.4\%
92.6\%	900	900	0	0.0\%
93.8\%	900	900	0	0.0\%
${ }_{9}^{95.3 \%}$	990 900	900	0	0.0\%
97.5\%	990	900	0	0.0\%
98.8\%	900	900	0	0.0\%
100.0\%	900	900	0	0.0\%

| |
| :--- | :--- | :--- | :--- |

Table SW－23－b River at Mouth，Monthy Flo

| |
| :--- | :--- | :--- | :--- |

April				
Percent Exceedance	WSIP 2070 Without Proiect	WSIP 2070 With Project	Absolute Difference	
Probability	Monthly Fow（CFS）	Monthy Flow（CFs）	（CFS）	
${ }^{0.0 \%}$	51,497			0．0\％
${ }^{1.25 \%}$	3， 3 3218	5，4016	－2	0．0\％
3．7\％	${ }^{227457}$	2， 27215	－5	
4．9\％	22.596	22590		
6．2\％	${ }_{19,506}^{212,506}$	${ }_{19,504}^{24.504}$		
7．4\％	16,845	17，635	789	
8．6\％	16，800	16，838	37	0．2\％
9．9\％	15，233	15，233	0	0．0\％
112\％	15，593	14．595	1	0．0\％
12．3\％	13，209	13，207	－2	0．0\％
13．6\％	11，800	11，801	1	0．0\％
14．8\％	10，302	10，302	1	0．0\％
16．0\％	9，112	9，112	0	0．0\％
17.3% 18.5%	${ }_{8,270}^{9,057}$	9,063 8.262	${ }_{-9}$	－0．1\％
19．8\％	8，159	${ }_{8,162}^{8,162}$	3	0．0\％
21．0\％	－8，086	8，082	8	－0．1\％
22．2\％	7，880	7，872	－8	
24．7\％	${ }_{6.653}^{6.613}$	${ }_{6.641}^{6.071}$	${ }_{-12}$	－0．2\％
25．9\％	6.640	${ }_{6}^{6.617}$	－23	
27．2\％	6.588	6，588	1	
28．4\％	6，362	6，363	1	
29．6\％	6，120	6，117	－3	－0．1\％
30．9\％	6，031	6，032	1	0．0\％
32．1\％	6，029	6，027	－1	0．0\％
33．3\％	6.019	5.910	109	－1．8\％
34．6\％	5，999	5．844	－65	－1．1\％
35．8\％	5，727	5，724	${ }^{-3}$	0．0\％
37．0\％	5，393	5，623	${ }^{230}$	4．3\％
	${ }_{5}^{5,324}$	${ }_{\text {5 }}^{5}$ ，384	6	0.1%
39．5\％	5，148	5，153	${ }^{6}$	0．1\％
${ }^{40.70 \%}$	5，072	5.074	$\stackrel{2}{1}$	
4．3．2\％	4，984	4，943	－41	
4．4．4\％	4,864	4.887	${ }^{9}$	0．1\％
45．7\％	4.828	4.828		0．0\％
	4，658	4．661	3	0．1\％
49．4\％	4.548	${ }_{4.563}^{4.643}$	${ }_{15}^{12}$	0．3\％
50．6\％	4，532	4，541	10	
51．9\％	4，406	4，418	12	3\％
53．1\％	4，367	4，368	1	
54．3\％	4，324	4，325	1	0．0\％
年5．6\％	4，289	4，294	5	0．1\％
年56．8\％	4，203	4，196	－7	－0．2\％
58．0\％	4，195	4，154	－40	－1．0\％
59．3\％	4，177	4，150	－27	－0．7\％
60．5\％	4，169	4，006	－ 63	－3．9\％
${ }^{61.7 \%}$	${ }^{3.875}$	${ }^{3,880}$	5	0．1\％
63．0\％	${ }^{3.867}$	3，847	－20	－0．0\％\％
－64．2\％${ }^{6.4 .4 \%}$	${ }_{3}^{3,838}$	${ }^{3,748}$	－90	${ }^{-2.4 \%}$
－ 65.4%	－ 3,731	－3,665 3,522	${ }_{-68}$	－1．8\％
－66．79\％	－	－	${ }^{-88}$	
69．1\％	${ }_{3,517}^{3.521}$	3，507	－9	－0．3\％
70．4\％	3，507	3，338	169	
71．6\％	3，493	3，316	176	
72．8\％	3，314	${ }^{3,301}$	13	－0．4\％
74．3\％	－${ }_{3,172}$	退， $\begin{aligned} & 3,174 \\ & 3,161\end{aligned}$	${ }^{-12}$	－-3.7%
76．5\％	3，155	3，137	－17	－0．6\％
77．8\％	3，134	3，134	0	
79．0\％	3，128	3，039	89	
80．2\％	3，038	2，930	108	
${ }^{81.5 \%}$	2，854	2，859	4	0．1\％
82．7\％	2，800	2，800	0	0．0\％
84．0\％	${ }_{2}^{2,800}$	2，800	0	0．0\％
－ $8.5 .2 \%$	${ }_{2}^{2,777}$	${ }_{2}^{2,777}$	1	${ }_{\text {－0．3\％}}^{0.0 \%}$
${ }^{86.4 \%}$ 87．7\％	${ }^{2}, 7366$		－1	－${ }_{\text {8．7\％}}^{-0.3 \%}$
88．9\％	${ }_{2,446}^{2,449}$	${ }_{\substack{2,434 \\ 2,662}}^{\text {2，}}$	－12	－0．5\％
90．1\％	2.318	2，318	0	0．0\％
91．4\％	2，315	${ }_{2,315}$	0	0．0\％
92．6\％	2，198	2，201	3	0．19\％
${ }^{935.1 \%}$	${ }_{2,115}^{2,119}$	${ }_{2,094}$	${ }_{21}$	－1．0\％
96．3\％	2.024	${ }_{2,026}^{2,026}$	1	
．5\％	${ }_{1}^{1,824}$	1，825	2	
98．8\％ 100\％	1，337	＋1，337	1	－0．0\％

| |
| :--- | :--- | :--- | :--- |

June				
Percent Exceedance	WSIP 2 Propo Wethout Proet	WSIP 2070 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \end{aligned}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
Probability	Montly Flow（C）	Monthly Fow（CFFS）	（CFS）	
1．2\％	${ }_{7}^{7,679}$	8,109 7 7	${ }^{353}$	${ }_{-5.5 \%}$
2．5\％	7.119	7.114	－5	
3．7\％	7，106	6.704	－402	－57\％
4．9\％	7，004	6，213	－791	－11．3\％
6．2\％	6，976	6，163	-814	－11．7\％
7．4\％	${ }^{6.838}$	${ }_{\text {6，038 }}^{6.019}$	－800	－11．7\％
8．6\％	6，214	5．719	－496	
9．9\％	${ }_{\text {b，143 }}^{6,138}$	5，440	－703	
${ }^{12.3 \%}$	${ }_{\substack{\text { c，} \\ 5.984}}^{6.148}$	${ }_{\substack{\text { 5，357 }}}^{5,390}$	－627	－12．2．5\％
13．6\％	5，929	5，323	－606	2\％
14．8\％	5．890	5，222	－668	
16．0\％	5，770	5，197	－573	
17．3\％	5，763	5，053	－710	
18．5\％ 19.8%	5，612	4，913	－699	－12．5\％
21．0\％	${ }_{5,336}^{5}$	4,838	${ }_{-4} 9$	－9．3\％
22．2\％	5，298	4，799	－499	－9．4\％
23．5\％	5，236	4，797	－439	－8．4\％
24．7\％	5，222	4.578	－644	－12．3
25．9\％	5，195	4，526	－668	－12．9\％
27．2\％	5，183	4，491	－692	－13．4\％
－	${ }_{4,976}^{4,992}$	4,473 4.406	－570	－10．4\％
30．9\％	4，970	${ }_{4,360}$	－610	－12．3\％
32．1\％	4，760	4，312	－448	－9．4\％
33．3\％	${ }_{4}^{4.623}$	4.300 4.294	－-223	－7．0\％
34．8\％	${ }^{4.509}$	${ }_{4}^{4,294}$	－215	－
37．\％	4,554	4，190	－264	－5．9\％
－ 38.3%	4，431	4，173	－258	－5．8\％
${ }^{39.5 \%} 4$	4,406 4.325	4.134 4.116	${ }_{-210}$	－6．4．2\％
42．0\％	4，143	4，094	－49	－1．2\％
43．2\％	4，058	4，073	15	0.4
44．4\％	4，050	3，956	－95	
45．7\％	4，049	3，730	－319	－7．9\％
${ }^{46.9 \%}$	4，042	${ }^{3.522}$	－520	－12．9\％
4．94\％	${ }_{\text {3，987 }}$	－3,339 3,393	－641	－16．0\％
50．6\％	3，936	3，336	－600	－15．2\％
51．9\％	3，908	${ }^{3,246}$	－661	－16．9\％
－53．1\％	－ $\begin{aligned} & 3,899 \\ & 3,867\end{aligned}$	－${ }_{\text {3，210 }}$	－689	－17．7\％
	退， 3,867	3，151	－740	－18．5
56．8\％		3，124	－740	－1720
58．0\％	3，753	3，100	－653	－17．4\％
	3，706	${ }^{3.006}$	－700	
6117\％		${ }_{2,877}^{2,862}$	－555	－16．2\％
63．0\％	3，403	2.812	－590	－17．3\％
64.2% 654%	${ }^{3,335}$	2,800 .753		－16．5\％
${ }_{66.7 \%}^{65.4 \%}$	${ }_{3,312}^{3.329}$	${ }_{2,667}^{2,65}$	${ }_{-645}$	－19．5\％
67．9\％	3，216	2.625	－591	－18．4\％
69．1\％	3，188	2，555	－633	－19．9\％
70．4\％	3，113	${ }_{2}^{2.518}$	－595	－19．1\％
71．6\％	2，999	2.479	－521	－17．4\％
72．8\％	2，941	2，406	－536	－18．2\％
75．3\％	2，800	${ }_{2,379}^{2,184}$	${ }_{-421}$	－15．0\％
76．5\％	2，778	2，373	－404	－14．6\％
77．8\％	2，775	2，329	－428	－15．5\％
80．2\％	2，718 $\substack{2,58 \\ \hline}$	2,284 2215 2	－${ }_{-368}$	－15．9\％
81．5\％	${ }_{2,563}^{2,563}$	${ }_{2,206}^{2,215}$	－357	－13．9\％
82．7\％	2.514	${ }_{2}^{2,127}$	－387	－15．4\％
84．0\％	2，509	2，086	－423	
88．4\％	${ }_{2,355}^{2,440}$	${ }_{1,919}^{2,004}$	${ }_{-136}$	－18．5\％
87．7\％	2，279	1,917	－362	9\％
88．9\％	${ }^{1}, 1995$	${ }^{1.834}$	161	－8．1\％
91．4\％	${ }_{1,812}^{1.812}$	${ }_{1}^{1,881}$	－100	${ }^{-5.2 \%}$
${ }_{9} 9.26 \%$	${ }_{1}^{1,725}$	${ }_{1}^{1,690}$	${ }_{-36}$	${ }_{-2.1 \%}^{\text {－}}$
93．8\％	1，707	1，479	－228	－13．4\％
95．1\％	1，700	${ }_{1}^{1,314}$	－386	－22．7\％
96．3\％	1，575	1，133	－442	－28．1\％
97．5\％	${ }^{1,524}$	1，040	－484	－31．7\％
988．8\％ 1000%	${ }_{750}^{1,391}$	1,000 800	${ }_{50}$	－28．7\％

		ugust		
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	${ }^{\text {WSIP } 2070 \text { Without }}$ Proiet	WSIP 2070 With Project	Absolute Difference	
Probability	Monthy Fow（CFS）	Monthly Fow（CFS）	（CF5）	
0．0\％	9，396	9，117	－279	－3．0\％
1．2\％	9，167	${ }^{8,833}$	${ }^{-334}$	－3．6\％
2．5\％	9，020	${ }^{8,816}$	－203	－2．3\％
3．7\％	${ }_{8}^{8,896}$	8，631	－265	－3．0\％
4．9\％	8，756	${ }^{8.603}$	－153	－1．7\％
${ }^{6.2 \%}$	8，775	${ }_{8} 8.536$	－209	－2．4\％
7．4\％	8，722	${ }_{8,4688}$	－234	
8．6\％	${ }^{8.685}$	${ }_{8,365}$	－320	
9．9\％	8，669	${ }_{8}^{8,364}$	－305	源
12．3\％	${ }_{8.632}^{8.668}$	${ }_{8,322}^{8.363}$	－310	－3．6\％
13．6\％	8.631	8,149	－482	－5．6\％
14．8\％	8.558	8,141	417	
16．0\％	8.508	8，139	－369	
17．3\％	8.446	8，094	－352	
18．5\％	8.443	8，085	－357	
19．8\％	${ }^{8,366}$	${ }_{8} 8,885$	281	－3．4\％
21．0\％	${ }_{8,319}$	7，983	－336	－4．0\％
22．2\％	8，296	7,901	${ }^{396}$	－4．8\％
23．5\％	${ }_{8,265}$	7．839	${ }_{-426}$	－5．2\％
24．7\％	8，257	7，812	－445	－5．4\％
25．9\％	8,240	7，705	－535	－6．5\％
27．2\％	${ }^{8,166}$	7，633	－533	－6．5\％
${ }^{28.4 \%}$	8.117	7.613	－504	－6．2\％
29．6\％	8.098	${ }^{7.500}$	－598	
30．9\％	${ }_{8}^{80} 016$	7，487	－ 229	－6．6\％
32．1\％	${ }_{7}^{7,992}$	7,287 7.244	－704	－8．8\％
俍34．6\％	7,985 7970	7.244 7188	－782	－9．3\％
35．8\％	7,977	7，1005	－872	－11．1\％
37．0\％	7,864	7,004	${ }_{-860}$	退
38．3\％	7，644	${ }^{6,957}$	687	
39．5\％	7,498	6，819	－679	1\％
40．7\％	7，472	${ }^{6.691}$	－781	
42．0\％	7，289	6，648	－640	－8．8\％
43．2\％	7，256	6．630	626	－8．6\％
44．4\％	7，186	${ }^{6,565}$	${ }^{621}$	－8．6\％
45．7\％	7，151	${ }_{6}^{6.523}$	－627	－8．8\％
46．9\％	7，089	${ }_{6,426}$	－664	－9．4\％
48．1\％	6.628	6.401	－227	${ }^{-3.4 \%}$
49．4\％	${ }_{6}^{6,315}$	6，307	－9	－0．1\％
50．6\％	6．012	6，107	95	1．6\％
51．9\％	5．624	6，031	407	7．2\％
53．1\％	5，550	5，990	421	9\％
	5．481	5，724	${ }^{243}$	．4\％
55．6\％	¢	（ $\begin{aligned} & 5,406 \\ & 5 \\ & 5\end{aligned}$	113	．1\％
55．8\％	5，217	5，402	185	3．5\％
59．3\％	4.650	${ }_{5}^{5.1277}$	352 527	（11．3\％
60．5\％	4.586	5.067	481	5\％
61．7\％	4.344	4，657	314	7．2\％
	4，164	4.486	${ }^{322}$	7．7\％
6．25\％	4,056		${ }^{283}$	
66．7\％	4.029	${ }_{\text {3，938 }}$	－92 -91	－2．3\％
67．9\％	3．809	3，793	－17	－0．4\％
69．1\％	3，645	3，693	${ }^{48}$	3\％
70．4\％	${ }^{3,472}$	3，671	200	8\％
71．6\％	3，457	${ }^{3,632}$	175	5．1\％
72．8\％	3，302	3，572	271	8．2\％
74．1\％	3，297	${ }^{3,503}$	${ }^{206}$	6．3\％
57．3\％	3，207	3，485	${ }^{278}$	8．7\％
77．5\％	2，993	3，389	397	13．3\％
77．8\％	${ }_{2}^{2.968}$	${ }^{3.062}$	95	2\％
79．0\％	2，883	3.062 ， 265	179	2\％
80．5\％	${ }_{2,631}^{2,859}$	2，865	${ }_{57}$	2\％\％
81．5\％	2，631	2，688	${ }_{8}^{57}$	2\％
84．0\％	${ }_{2,573}^{2,507}$	${ }_{2,466}^{2,687}$	${ }_{-107}$	－3．2\％
85．2\％	2，491	${ }_{1,998}$	493	
86．4\％	2.376	1，877	499	
87．7\％	2，241	${ }^{1,864}$	377	
88．9\％	2，119	${ }^{1,805}$	${ }^{313}$	4．8\％
90．14\％	2，070	1，742	${ }^{328}$	－15．8\％
92．6\％	${ }_{1,637}$	${ }_{1,515}$	－122	${ }^{-7.5 \%}$
93．8\％	1，633	${ }_{1,492}$	141	8．6\％
95．1\％	1，557	1，440	117	7．5\％
96．3\％	${ }^{1,228}$	1，241	12	1．0\％
97．5\％	1，162	1，054	－107	9．2\％
98．8\％ 100.0%	750 750	${ }_{882}^{891}$	${ }_{132}^{141}$	18．8\％

Figure SW-24-b
Folsom Lake, End of Month Storage

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& Ociober \& \& \\
\hline Percent
Exceedance \& \begin{tabular}{l}
WSIP 2070 W.thout \\
Proiet \\
\hline
\end{tabular} \& WSIP 2070 With Project \& Absolute \& \\
\hline Probability \& End of Morth Storage \& End of Month Storage \& (tifereme \& Difference (\%) \\
\hline \({ }^{0.0 \%}\) \& (1af) \& \& \& \\
\hline 1.2\% \& 657 \& 654 \& - \& -.5\% \\
\hline 2.5\% \& 572 \& \({ }_{559}\) \& \({ }_{-13}\) \& \({ }_{-2.3 \%}\) \\
\hline 3.7\% \& 545 \& 552 \& 7 \& 1.4\% \\
\hline 4.9\% \& 514 \& 549 \& \({ }^{35}\) \& 6.8\% \\
\hline 7.4\% \& 506
503 \& 509
490 \& \(\stackrel{4}{-14}\) \& 0.7\% \\
\hline 8.6\% \& \& \({ }_{487}^{498}\) \& - \& \({ }_{-0.4 \%}\) \\
\hline 9.9\% \& 486 \& 486 \& -1 \& -0.1\% \\
\hline 111.19\% \& 462 \& 482 \& 20 \& 4.3\% \\
\hline \(12.3 \%\)
\(13.6 \%\) \& \({ }_{446}^{457}\) \& \({ }_{452}^{467}\) \& 10
6 \& \({ }_{1}^{2.2 \%}\) \\
\hline 14.8\% \& 441 \& \({ }_{440}\) \& -1 \& -0.3\% \\
\hline 16.0\% \& \({ }^{437}\) \& 439 \& 3 \& 0.6\% \\
\hline 17.3\% \& \({ }^{427}\) \& \({ }^{438}\) \& 11 \& 2.6\% \\
\hline 18.5\% \& \({ }_{4}^{422}\) \& \({ }^{424}\) \& 2 \& 0.4\% \\
\hline 19.8\% \& 410 \& 422 \& 11 \& 2.7\% \\
\hline 210\% \& 406 \& 418 \& 12 \& 3.0\% \\
\hline \({ }^{22.2 \%}\) \& 405 \& 416 \& 11 \& 2.7\% \\
\hline 23.5\%
\(247 \%\) \& \({ }^{403}\) \& 415 \& 12 \& 3.0\% \\
\hline 24.7\% \& \({ }^{399}\) \& 411 \& \({ }^{12}\) \& 3.1\% \\
\hline 25.9\% \& 398
393 \& \({ }_{410}^{410}\) \& \({ }_{16}^{12}\) \& 3.0\% \\
\hline \({ }^{28.4 \%}\) \& 392 \& 408 \& \({ }_{16}^{16}\) \& 4.0\% \\
\hline 29.6\% \& \({ }_{391} 39\) \& 402 \& 11 \& 2.9\% \\
\hline 30.9\% \& - \begin{tabular}{l}
384 \\
378 \\
\hline
\end{tabular} \& 400
390 \& 16
12 \& \({ }_{3}^{4.1 \%}\) \\
\hline 33.3\% \& 377 \& 386 \& 10 \& 2.5\% \\
\hline 34.6\% \& \({ }^{375}\) \& 379 \& 3 \& \\
\hline 年35.8\% \& 374 \& \& \& 0.8\% \\
\hline - \({ }_{\text {37, }}^{37.0 \%}\) \& \begin{tabular}{l}
367 \\
364 \\
\hline
\end{tabular} \& \({ }_{374}^{377}\) \& 10
9 \& \({ }_{2.6 \%}^{2.6 \%}\) \\
\hline 39.5\% \& 362 \& 370 \& 8 \& 2.3\% \\
\hline 40.7\% \& 360
358 \& 369 \& 9 \& \\
\hline 42.0\% \& \({ }^{358}\) \& \({ }^{367}\) \& 9 \& \\
\hline 43.2\% \& 357 \& 367 \& 10 \& 2.9\% \\
\hline \({ }^{44.4 \%}\) \& 350 \& \({ }^{366}\) \& 16 \& 4.5\% \\
\hline \({ }_{4}^{45.7 \%}\) \& \({ }_{345}^{345}\) \& \({ }_{361}^{361}\) \& \({ }_{15}^{15}\) \& 4.4\% 4 \\
\hline 48.1\% \& 336 \& 355 \& 19 \& 5.6\% \\
\hline 4.9.4\% \& 335
333 \& \begin{tabular}{l}
353 \\
353 \\
\hline
\end{tabular} \& 18 \& 5.4\% \\
\hline \& \({ }_{333}^{333}\) \& \begin{tabular}{l}
353 \\
350 \\
\hline
\end{tabular} \& 19 \& 5.8\% \\
\hline 年 \(51.9 \%\) \& \({ }_{332}^{333}\) \& \({ }_{3}^{350}\) \& \({ }_{17}^{16}\) \& \({ }^{4.9 \%}\) \\
\hline 54.3\% \& \({ }_{332}^{332}\) \& 349
344 \& 12 \& \\
\hline 55.6\% \& \({ }_{331}^{332}\) \& \({ }_{343} 3\) \& \({ }_{12}\) \& 3.7\% \\
\hline \& \begin{tabular}{l}
328 \\
325 \\
\hline
\end{tabular} \& \({ }_{343}^{343}\) \& 15 \& 4.5\% \\
\hline 59.3\% \& \({ }_{324}\) \& \({ }_{342}\) \& 18 \& 5.6\% \\
\hline \({ }^{60.5 \%}\) \& 315 \& 32 \& 27 \& \\
\hline \({ }^{61.7 \%}\) \& 315 \& 340 \& 25 \& 8.0\% \\
\hline - \(63.0 \%\) \& 311 \& \({ }_{3}^{336}\) \& \({ }_{7}^{25}\) \& 7.9\% \\
\hline \({ }^{64.4 \%}\) \& 303 \& \({ }_{311}\) \& 9 \& 2.9\% \\
\hline 66.7\% \& 300 \& 310 \& 10 \& 3.4\% \\
\hline 67.9\% \& 300

297 \& ${ }^{308}$ \& 11 \& 2.8\%

\hline 69.1\% \& ${ }^{297}$ \& 307 \& 11 \& 3.6\%

\hline 70.4\% \& ${ }^{288}$ \& ${ }^{301}$ \& 12 \& 4.3\%

\hline 71.6\% ${ }^{72.8 \%}$ \& ${ }_{272}^{273}$ \& ${ }_{298}^{299}$ \& 25
25 \& ${ }^{9.3 \%}$

\hline 72.8\% \& ${ }_{271}^{272}$ \& ${ }_{291}^{298}$ \& ${ }_{20}^{25}$ \& 9.2\%

\hline 75.3\% \& 269 \& 289 \& 20 \& 7.3\%

\hline 76.5\% \& 268 \& ${ }^{278}$ \& 10 \& 3.7\%

\hline 778.8\% \& 266
264 \& ${ }_{274}^{277}$ \& 12 \& ${ }_{3}^{4.5 \%}$

\hline 79.0\% \& 264
261 \& 274
266 \& 9 \&

\hline 81.5\% \& 259 \& ${ }_{2}^{266}$ \& 7 \& 2.8\%

\hline - \& 256
256 \& 262
261 \& 5 \& ${ }_{\text {2.0\% }}^{2.1 \%}$

\hline 85.2\% \& ${ }_{256}$ \& 261 \& 5 \& 2.0\%

\hline 86.4\% \& ${ }_{232}^{247}$ \& 260 \& ${ }^{13}$ \& 5.4\%

\hline - \& ${ }_{2}^{232}$ \& 260
250 \& ${ }^{28}$ \& ${ }^{12.14 \%}$

\hline ${ }_{90.1 \%}$ \& ${ }_{214}^{218}$ \& | 248 |
| :--- |
| 248 | \& ${ }_{34}^{32}$ \& - ${ }_{\text {14.8.8\% }}^{10.0}$

\hline 91.4\% \& 209 \& 246 \& 36 \& 17.4\%

\hline 92.6\% \& ${ }^{201}$ \& ${ }_{24}^{243}$ \& 42 \& 20.6\%

\hline 93.8\% \& 170 \& ${ }^{213}$ \& 44 \& 25.9\%

\hline 95.1\% \& 168 \& 176 \& 62 \& 4.4\%

\hline 97.5\% \& 109
90 \& 171 \& ${ }_{6}^{62}$ \& 57.2\%

\hline 98.8\% \& 90 \& ${ }_{90}$ \& 0 \& 0.0\%

\hline 100.0\% \& 90 \& 90 \& 0 \& 0.0\%

\hline
\end{tabular}

		February		
$\underset{\substack{\text { Percent } \\ \text { Exceadace }}}{ }$	${ }^{\text {WSIP }}$ Provo Wethout	WSIP 2070 With Project	Absolute	
Probability	End of Montts Storage	End of Month Storage	Difierence	Difference (\%)
${ }^{\text {l\% }}$ (\%)\%	${ }_{\text {(TAF) }}^{55}$	$\underbrace{557}_{\text {(TaF) }}$		0.0\%
1.2\%	${ }_{567}^{567}$	${ }_{567}^{567}$	0	0.0\%
- 1.2%	${ }_{567}^{567}$	${ }_{567}^{567}$	0	
${ }^{2.5 \%}$	557	557	0	
3.9\%	567	${ }_{567}^{567}$	0	.0\%
6.2\%	567	567	0	0.0\%
7.4\%	567	567	0	0.0\%
9.9\%\%	${ }_{567}^{567}$	${ }_{567}^{567}$	0	- 0.0%
11.1\%	567	567	0	0.0\%
12.3\%	567	567	0	
	567	567	0	
14.8\% 16.0%	567	567	0	
17.3\%	${ }_{567}^{567}$	${ }_{567}^{567}$	0	0.0\%
18.5\%	567	567	0	0.0\%
19.8\%	567	567	0	0.0\%
21.0\%	567 567	567 567	0	0.0\%
${ }^{22.2 \%}$	$\stackrel{567}{567}$	$\stackrel{567}{567}$	0	0.0\%
23.5\%\%	567 566	567 568	0	0.0\%
224.9\%	${ }_{566}^{566}$	${ }_{566}^{566}$	0	0.0\%
22.9\%	566 566	566 566	0	
228.4\%	${ }_{566}$	${ }_{5}^{566}$	0	
${ }^{229.6 \%}$	565	565 563	0	-0.0\%
30.9\%	562	562	0	0.0\%
32.1\%	560	560	0	0.0\%
	㐌 $\begin{array}{r}560 \\ 558\end{array}$	㐌560	\bigcirc	0.0\%
35.8\%	558	558	0	0.0\%
37.0\%	${ }_{558}^{558}$	${ }_{558}^{558}$	0	0.0\%
38.5\%	558	558	0	0.0\%
40.7\%	557	557	0	0.0\%
42.0\%	556	556	0	0.0\%
43.2\%	¢55	555	0	0.0\%
44.4\%	555 553	${ }_{5}^{555}$	0	0.0\%
46.9\%	553 553	${ }_{5}^{53}$	0	0.0\%
48.9\%	553 5 5	$\begin{array}{r}553 \\ 5 \\ 5 \\ \hline\end{array}$	0	0.0\%
49.4\%	552 551 5	552 551	\bigcirc	0.0\%
50.6\%	547	547	0	0.0\%
	543 530	543 530	\bigcirc	0.0\%
55.3\%	530 529	530 529		
55.6\%	${ }_{527}^{529}$	${ }_{527}^{529}$	0	0.0\%
56.8\%	499	501	2	0.3\%
	499			
60.5\%	${ }_{483}$	494	${ }_{11}$	2.3\%
61.7\%	479	482	3	0.7\%
63.0\%	${ }_{4}^{458}$	479	21	4.5\%
66.4\%\%	${ }_{457}^{458}$	${ }_{458}^{467}$	$\stackrel{9}{1}$	2.2\%
66.7\%	446	458	12	2.7\%
${ }^{67.9 \%}$	${ }_{4}^{446}$	457	11	2.5\%
69.1\%	443	455	12	2.7\%
770.6\%	440	${ }_{4}^{46}$		1.4\%
71.6\%	${ }_{423}^{427}$	${ }_{440}^{443}$	${ }_{17}^{16}$	3.7\%
772.1\%	${ }_{413}^{423}$	440 418	${ }_{5}^{17}$	+1.2\%
75.3\%	408	416	9	2.1\%
76.5\%	407	407	0	0.0\%
77.8\%\%	${ }_{402}^{402}$	${ }_{399}^{402}$	-1	-0.0\%
80.2\%	395	394	$\stackrel{-1}{-1}$	-0.0.3\%
81.5\%	394	369	-25	${ }^{-6.5 \%}$
	394 345	360 360	-34	-8.6\%
${ }^{85.2 \%}$	${ }_{342}$	${ }_{353}$	11	${ }^{4.2 \%}$
86.4\%	340	346	6	1.7\%
877\%	319 318	${ }^{321}$	3	0.9\%
890.1\%	318	${ }^{320}$	2	0.7\%
99.4\%	${ }_{313}^{314}$	${ }_{308}^{308}$	${ }_{-5}{ }^{-6}$	-1.8\%
92.6\%	${ }^{302}$	${ }^{301}$	0	-0.1\%
93.8\%	${ }^{297}$	${ }^{296}$	-1	-0.4\%
	${ }_{279}^{283}$	${ }_{285}^{295}$	${ }^{13}$	4.5\%
99.3\%	279	${ }_{277}^{286}$	6	${ }_{\text {2.2\% }}$
998.8\%	261 188	${ }_{221}^{227}$	${ }_{33}^{16}$	-6.3\%
100.0\%	161	155	${ }_{-6}$	-3.4\%

Figure SW-25-b
Folsom Lake, End of Month Elevation

Isom Lake, End of Honth Elevation
Probabality of Exceedance

Percent Exceedance	WSIP Po7vo without	WSII 2070 With Project	Absolute	Realive
Probability	End of Montht Elevation	End of Month Elevation	(iflerence	Difference (\%)
\% \% 0	(FEET)	(EEET)		
0.0\%	${ }_{423}^{423}$	${ }_{423}^{423}$	0	${ }_{\text {o.0\% }}^{0.0 \%}$
1.2\%	${ }_{4}^{423}$	${ }_{423}^{423}$	0	
2.5\%	${ }_{4}^{23}$	${ }_{423}^{233}$	0	0.0\%
3.7\%\%	${ }_{423}^{423}$	${ }_{423}^{423}$	0	-
6.2\%	423	423	0	0.0\%
7.4\%	423	423	0	0.0\%
9.9\%	${ }_{423}^{423}$	${ }_{423}^{423}$	0	0.0\%
11.1\%	${ }_{423}$	423	0	0.0\%
12.3\%	423	423	0	0.0\%
13.6\%	423	423	0	
14.8\%	423	423	0	
16.0\%	423	423	0	0.0\%
17.3\%	423	423	0	0.0\%
18.5\%	${ }^{423}$	${ }^{233}$	0	
19.8\%	423	423	0	0.0
21.0\%	${ }^{23}$	${ }^{423}$	0	0.0\%
${ }^{22.2 \%}$	${ }_{423}^{423}$	${ }_{423}^{423}$	0	0.0\%
${ }_{2}{ }_{24.7 \%}^{23.5 \%}$	${ }_{423}^{423}$	${ }_{423}^{423}$	0	0.0\%
25.9\%	423	${ }^{423}$	0	0.0\%
- 27.2 \% 28.4	${ }_{423}^{423}$	${ }_{423}^{423}$	\bigcirc	0.0\%
- ${ }_{\text {28.4\% }}$	${ }_{423}^{423}$	${ }_{423}^{423}$	0	
30.9\%	${ }_{423}$	${ }_{423}^{423}$	0	0.0\%
32.1\%	422	422	0	0.0\%
33.3\%	422	422	0	
34.6\%	422	422	0	
35.8\%		422		0.0\%
37.0% 38.3%	${ }_{422}^{422}$	${ }_{422}^{422}$	0	0.0\%
39.5\%	422	422	0	0.0\%
40.7\%	422	422	0	0.0\%
42.0\%	${ }^{422}$	422	0	0.0\%
43.2\%	${ }^{422}$	${ }^{422}$	0	0.0\%
${ }^{44.4 .7 \%}$	${ }^{422}$	${ }^{422}$	0	0.0\%
${ }_{45.9 \%}$	${ }_{422}^{422}$	${ }_{4}^{422}$	0	-0.0\%
48.1\%	421	421	0	0.0\%
49.4\%	421	421	0	0.0\%
	${ }_{421}^{421}$	${ }_{421}^{421}$	0	0.0\%
51.9\%	420	420	0	0
${ }_{5}^{53.3 \%}$	${ }_{419}^{419}$	${ }_{419}^{419}$	0	0.0\%\%
55.\% \%	418	418		
56.8\%	${ }_{415}^{415}$	415	0	0.0\%
59.3\%	414	${ }_{415}^{415}$	1	0.1\%
60.5\%	413	414	1	
61.7\%	412	413	0	0.1\%
-63.0\%	410	412	3	0.6\%
${ }^{64.2 \%}$ 6.4\%	${ }_{410}^{410}$	${ }_{410}^{411}$!	- 0.0%
66.7\%	408	410	1	0.4\%
67.9\%	${ }_{4}^{408}$	410	1	0.3\%
69.1\%	${ }^{408}$	410	1	0.4\%
70.4\%	408	408		0.2\%
71.2.8\%	${ }^{406}$	408	2	${ }_{\text {c }}^{0.5 \%}$
74.1\%	404	405	1	0.2\%
75.3\%	404			
76.5\%	404	404	0	0.0\%
77.8\%	${ }_{403}^{403}$	${ }_{403}^{403}$	0	-0.0\%
80.2\%	402	402	0	0.0\%
81.5\%	402	398	4	.0\%
82.7\%	402	397	5	-1.3\%
- ${ }^{84.0 \%}$	${ }_{394}^{394}$	${ }_{396}^{397}$	${ }_{2}$	- 0.5%
86.4\%	393	394	1	0.2\%
87.7\%	390	390	0	0.1\%
88.9\%	390	390	0	0.1\%
90.19\%	389	388	-1	-0.2\%
914.4\%	339	${ }^{388}$	-1	-0.2\%
${ }_{93}^{92.8 \%}$	${ }_{386}^{386}$	387	0	0.0\%
95.1\%	384 386	${ }_{386}$	${ }_{2}$	${ }^{-0.6 \%}$
96.3\%	383	385	1	0.3\%
97.5\%	380 364	383 371	3	0.8\%
- 10.0 \%	${ }_{356}^{364}$	${ }_{355}^{371}$	${ }_{-2}$	-0.4\%

Table SW-25-b Lake, End of TMont Elevation

Percent Exceedance	${ }^{\text {WSIP } 2077 \text { W. Without }}$	WSIP 2070 With Project	${ }^{\text {Absolute }}$	Realive
Probability	End of Montht Elevation	End of Month Elevation	(eitierence	Difference (\%)
\% \% \%	(FEET)	(FEET)		
-	${ }^{457}$	${ }^{457}$	0	0.0\%
2.5\%	${ }_{4}^{457}$	${ }_{4}^{457}$		
2.5\% ${ }_{3}$.	456	${ }_{4}^{466}$	0	0.0\%
3.7\%\%	456 456	456 456	0	-0.0\%
6.2\%	455	456	0	0\%
7.4\%	455	455	0	0.0\%
${ }_{\text {9.9\% }}^{\text {8.9\% }}$	${ }_{451}^{453}$	${ }_{453}^{455}$	1	
11.1\%	448	448		
12.3\%	448	448	0	0.0\%
13.6\%	447	447	0	
14.8\%	445	445	0	
16.0\%	445	445	0	0.0\%
17.3\%	${ }_{4}^{43}$	${ }_{4}^{444}$	1	0.2\%
- 19.85%	443	${ }_{43}^{443}$	0	0.0\%
21.0\%	442	443	0	0.1\%
22.2\%	441	440	-2	-0.4\%
23.5\%	441	439	-2	-0.5\%
24.7\%	${ }_{441}^{441}$	438 438	-3	-0.7\%
25.9\%	${ }_{440}$	${ }_{4}^{438}$	-2	4\%
${ }^{27.2 \%}$ 28.4\%	440	438	-2	-0.3\%
29.6\%	439	${ }_{437}^{438}$	-2	-0.5\%
30.9\%	439	437	-2	-0.5\%
${ }^{32,1 \%}$				
34.6\%	439	435	4	-0.8\%
35.8\%	439	435		
37.0\%	438	435	2	
38.3\%	437	435	1	
39.5\%	436	435	-1	-0.2\%
${ }_{4}^{40.7 \%}$	435	435	-1	-0.2\%
43.2\%	435	${ }_{43}^{43}$	-2	${ }^{-0.4 \%}$
44.4\%	434	433	-2	-0.4\%
45.7\%	434	432	-2	-0.4\%
46.9\%	434	432	-2	-0.4\%
48.1\%	434	430	${ }^{-3}$	-0.7\%
49.4\%	${ }_{432}^{433}$	430	-3	-0.7\%
51.9\%	432	${ }_{428}$	4	-0.9\%
53.19\%	430	${ }_{4}^{428}$	-2	-0.4\%
54.3\%	429	${ }^{427}$	-1	${ }^{-0.3 \%}$
56.8\%	427	426	-1	-0.2\%
58.0\%	425	425	-1	-0.1\%
${ }^{50.5 \%}$	${ }_{424}^{424}$	${ }_{424}^{424}$	0	0.0\%
61.7\%	424	422	-1	-0.3\%
63.0\%	${ }^{423}$	421	- 2	-0.4\%
64.2\%	422	420	1	-0.3
${ }^{65.4 \%}$	${ }^{421}$	${ }^{418}$	-3	-0.8\%
66.7\% 67.9%	${ }_{4}^{420}$	417	-3	-0.9\%
${ }_{6} 6.1 \%$	${ }_{418}^{418}$	417	-1	${ }^{-0.2 \%}$
70.4\%	416	417		0.3\%
71.6\%	${ }_{416}^{416}$	${ }_{416}^{417}$	1	0.2\%
72.8\%	${ }_{414}^{416}$	${ }_{415}^{416}$	1	0.2\%
74.3\%	414	415	+	${ }^{0.4 \% \%}$
7.5.5\%	${ }_{412}^{412}$	${ }_{410}^{414}$	$\stackrel{2}{-2}$	-0.4\%
77.8\%	${ }_{411}$	410	-1	-0.3\%
79.0\% 80.2%	${ }_{407}^{411}$	${ }_{408}^{408}$	$\stackrel{-2}{1}$	-0.0\%\%
81.5\%	406	407	1	0.3\%
82.7\%	404	406		
- $\begin{aligned} & 84.0 \% \\ & 88.2 \%\end{aligned}$	${ }^{403}$	406	$\stackrel{2}{2}$	0.6\%
${ }_{86.4 \%}$	402	403	2	0.4\%
87.7\%	401	403	3	0.7\%
88.9\%	399	401	2	0.5\%
90.19\%	399	400	1	0.2\%
${ }_{\text {c }}^{\text {92.4\% }}$	398	398	-1	-0.1\%
${ }_{\text {933.8\% }}^{92.6 \%}$	398 396	398 394	0	-0.1\%
95.1\%	${ }_{395}$	${ }_{389}$	- -6	-1.6\%
96.3\%	390	388	-2	-0.4\%
97.5\%	388 387	388 383	${ }_{-4}$	-0.1\%
100.0\%	${ }_{330}$	${ }_{330}$	${ }_{0}$	-0.0\%

Figure SW-26-b
Folsom Lake, End of Month Are

		Ociober		
Percent Exceedance	WSIP 2070 Without Proiet	WSIP 2070 With Project	${ }^{\text {Absolute }}$	
Proabability	End of Montht Area	End of Month Area	Difiterence	Difference（\％）
${ }_{\text {cos }}^{\text {（\％）}}$	（ACRE）	${ }^{\text {（ACRE }}$ ）		
0．0\％	9，510	${ }^{9,468}$	－42	${ }^{-0.4 \%}$
2．5\％	9，213	${ }_{8,183}^{9,18}$	－30	－0．3\％
2．7．7\％	8，434	${ }_{8,312}$	${ }^{-121}$	－1．4\％
4．9\％	8，900	¢，	${ }^{68}$	419\％
6．2\％	7.819	${ }_{7,853}$	${ }_{34}$	0．4\％
7．4\％	7.800	7.674	－125	－1．6\％
－${ }_{\text {8．9．9\％}}$	7,667 7,639	7,649 7,634	－－5	－0．0．2\％
11．1\％	7,420	7.601	181	2．4\％
12．3\％	7，369	7,462	94	
13．6\％	7，272	7,327	55	
14．8\％	7，228	7，216	－11	
16．0\％	7，184	7，208	${ }^{23}$	0．3\％
17．3\％	7，096	7，200	104	
18．5\％	7，046	7，063	17	0.28
19．8\％	6，942	7，046	104	1.5
${ }^{21.0 \%}$	6．904	7.015	111	1．14\％
${ }^{22.5 .5 \%}$	$\underset{\substack{6,885}}{6,893}$	¢，9，998	${ }_{113}^{99}$	1．6\％
24．7\％	6，833	6，946	113	1．6\％
25．9\％		6，940	111 150 1	1．1．\％
27.2% 28.4%	${ }^{6,787}$	${ }^{6,935}$	150	${ }_{2}^{2.2 \%}$
${ }^{28.4 .6 \%}$	${ }_{6}^{6,7762}$	6，920	${ }_{103}^{143}$	${ }_{1.5}^{2.15 \%}$
30．9\％	6,695	${ }_{6.846}$	151	
32．1\％	${ }_{6}^{6,621}$	6，752	131	2．0\％
年33．3\％	${ }_{6}^{6,5607}$	ci， 6.720	113 41 1	1．7\％ 0.6%
34．8\％	${ }_{6,577}$	${ }_{6.614}$	37	0．6\％
37．0\％	${ }^{6,492}$	${ }^{6.606}$	114	
38．3\％	6，458	6，570	111	
39．5\％	6，431	${ }_{6,528}$	97	
${ }^{40.7 \%}$	${ }^{6,403}$	${ }_{6}^{6.517}$	${ }^{113}$	1．8\％
${ }^{43.2 \%}$			${ }_{122}^{110}$	1．7\％\％
44．4\％	6，285	6.473	188	3．0\％
45．7\％	6，232	${ }_{6}^{6,415}$	${ }^{183}$	2．9\％
${ }^{46.9 \%}$	6，232	6，414	${ }^{183}$	2．9\％
${ }^{48.19 \%}$	${ }^{6.1116}$	${ }^{6,342}$	${ }_{2}^{225}$	3．7\％\％
50．6\％	6,089	${ }_{6,39}^{6,326}$	${ }_{230}^{215}$	3．8\％
51．9\％	${ }^{6,088}$	${ }_{6}^{6,284}$	196	3．2\％
53．1\％	6，073	6，281	${ }^{208}$	3．4\％
54．3\％	6，069	6，218	149	2．5\％
56．8\％	6,029	${ }_{6,207}$	178	2．9\％
年58．0\％	5，987	6，199	${ }^{213}$	${ }_{3}^{3.5 \%}$
60．5\％	${ }_{5,870}^{5,80}$	6，193	${ }_{323}$	5．5\％
61．7\％	5，867	${ }_{6}^{6,167}$	300	5．1\％
63．0\％ 642%	5.828	6．121	293	5．0\％
－ $6.5 .4 \%$	5.822 5.723	5.900 5 5	79	－1．3\％
66.7%	${ }_{5,692}^{5}$	${ }_{5,815}^{5.628}$	${ }_{123}$	2．2\％
67．9\％	5，692	5．791	100	1．8\％
69．1\％	¢， $\begin{gathered}\text { 5，533 } \\ 5\end{gathered}$	5.780 5 5	${ }_{129} 12$	${ }_{2}^{2.2 \%}$
70．4\％	$\begin{array}{r}5.549 \\ 543 \\ \hline\end{array}$	${ }_{\text {5，698 }}^{5}$	149	2．7\％
71．6\％	5，343	${ }_{\substack{5.675}}^{56,53}$	${ }_{3}^{332}$	${ }_{6.2 \%}$
74．1\％	5，332 5.309		331 235	年 ${ }_{5.2 \%}$
75．3\％	5．290	5．562	271	5．1\％
76．5\％	5，274	5．413	139	2．6\％
778．8\％	5，236 5 5.221		166 128 128	3．2\％
79．0\％	$\xrightarrow[\substack{5,221 \\ 5,177}]{\text { ，}}$	${ }_{5}^{5,249}$	${ }_{72}^{128}$	2．4\％${ }^{2.4 \%}$
81．5\％	5，142	5,244	102	2．0\％
－ 82.78	5.111	5.186	75	1．5\％
84.0% 852%	5，108	5,180 5 5172	72	1．4\％
${ }_{86.4 \%}$	4，979	${ }_{5,164}^{51 / 2}$	186	3．7\％
87．7\％	4，727	5.160	433	9．2\％
88．9\％	4．467	5，027	560	
90．1\％	4，389	4，996	${ }_{6}^{607}$	13．8\％
914．4\％	4，298	4，958	660	15．4\％
${ }_{93}^{92.8 \%}$	4,152 3,575	4,922 4.376	${ }_{802} 770$	18．6\％
95．1\％	3，552	${ }_{3,685}^{4,685}$	${ }_{133}$	3．7\％
96．3\％	2.444	${ }^{3.596}$	1，153	47．2\％
97．5\％	2，091	－3，322	1，231	58．9\％
988．8\％ 100．0\％	2，091	2，091	\bigcirc	0．0\％

Table SW-26-b
Lake, End of Month

		February		
Percent Exceedance	WSIP 2070 Without Proiet	WSIP 2070 With Project	${ }^{\text {Absolute }}$	Relativ
Probability	End of Montht Area	End of Month Area	Difiternce	Difference (\%)
(\%)\%	(ACRE)	(ACRE)		
0.0\%	${ }^{8,365}$	${ }^{8,385}$,	0.0\%
${ }^{1.2 \%}$	${ }_{8}^{8,385}$	${ }_{8}^{8.3855}$		
2.5\%	${ }_{8}^{8,385}$	${ }^{8.3355}$	0	
3.7\%	${ }_{8}^{8,385}$	${ }_{8}^{8,385}$		
4.9\%	${ }^{8,3355}$	${ }^{8,3655}$		
6.2\%	${ }_{8}^{8,385}$	${ }_{8}^{8.385}$	0	
8.6\%	${ }_{8,385}^{8,385}$	${ }_{8,385}^{8,385}$	0	0.0\%
9.9\%	8,385	8,385	0	0.0\%
11.1\%	8,385	8,38		
12.3\%	8,385	${ }_{8,385}$	0	
13.6\%	8,385	8,385	0	
14.8\%	8,385	${ }^{8,385}$	0	0.0\%
16.0\%	8,385	${ }^{8,385}$	0	0.0\%
17.3\%	${ }^{8,385}$	${ }^{8,385}$	0	0.0\%
18.5\%	8,385	${ }_{8}^{8,385}$	0	0.0\%
19.8\%	${ }^{8,385}$	${ }^{8,385}$	0	0.0\%
21.0\%	${ }^{8,385}$	${ }^{8,385}$	0	0.0\%
${ }^{22.2 \%}$	${ }^{8.3355}$	${ }^{8,385}$	0	0.0\%
23.5\%	${ }_{8}^{8,335}$	${ }_{8}^{8,385}$	0	0.0\%
24.7\%	${ }^{8,376}$	${ }^{8,376}$	0	0.0\%
${ }^{25.7 .2 \%}$	${ }_{8,376}$	${ }_{8,376}$	0	0.0\%
	${ }_{8,376}$	${ }_{8,376}$	0	0.0\%
-	${ }_{\substack{8,366 \\ 8,38}}$	号, 8,366		
- ${ }^{29.9 \% \%}$	8,348 8,39	${ }_{8,339}^{8,348}$	0	0.0\%
32.1\%	${ }_{8,320}$	${ }_{8,320}$	0	0.0\%
33.3\%		8.320	0	0.0\%
	${ }^{8,302}$	${ }_{8,302}$	0	0.0\%
37.0\%	${ }_{8}^{8.302}$	${ }_{8,302}^{8.302}$	0	0.0\%
38.3\%	${ }_{8,302}$	${ }_{8,302}$	0	0.0\%
39.5\%	8,293	8,293	0	0.0\%
40.7\%	8,293	8,293	0	0.0\%
42.0\%	8,283	8,283	0	0.0\%
43.2\%	${ }^{8,274}$	${ }_{8,274}$	0	0.0\%
44.4\%	8,274	8,274	0	0.0\%
45.7\%	8,256	8,256	0	0.0\%
46.9\%	${ }_{8,256}$	${ }_{8,256}$	0	0.0\%
48.19\%	${ }_{8,247}$	8,247	0	0.0\%
49.4\%	8,237	8,237 8,201	0	0.0\%
50.6\%	8,201	8,201	0	0.0\%
51.9\%	8,164	8,164	0	0.0\%\%
54.3\%	8,044 8.035	8,044 8.035	0	0.0\%
55.6\%	${ }_{8,016}$	8.016	0	
	7,758	7,772	14	0.2\%
59.3\%	7,712	${ }_{7}^{7,758}$	46	0.6\%
60.5\%	7,609	7,712	104	1.4\%
61.7\%	7,570	7,600	30	0.4\%
63.0\%	${ }_{7} 7.381$	7.570	190	2.6\%
64.2\%	7,381	7.466	${ }^{85}$	
${ }^{65.4 \%}$	7,371	7,381	9	0.1\%
66.7\%	7,270	7,381	111	${ }^{1.5 \%}$
- 67.9%	7,268	7,371	103	1.4\%
69.1\%	7,242	7,354	112	1.5\%
71.6\%	7,096 7	7,270 7,242	147	2.1\%
72.8\%	7,056	7.215	159	2.2\%
74.1\%	${ }_{6}^{6,964}$	7,009	46	0.7\%
75.3\%	${ }_{6,918}^{6911}$	6,998		1.2\%
76.5\%	6,911	6,911	0	0.0\%
77.8\%	6.865 6.849	ci.6.85	${ }^{-11}$	0.0\%
80.2\%	ci,799	${ }_{\text {c, }}^{6.791}$	${ }_{-8}$	${ }^{-0.2 \% \%}$
81.5\%	6,791	6,509	282	-4.2\%
82.7\%	6,790	6.410	-381	-5.6\%
84.0% 852%	¢, 6,234	6,407	${ }^{173}$	${ }_{210}^{2.8 \%}$
${ }_{86.4 \%}$	6,168	${ }_{6,238}^{6.238}$	70	1.1\%
87.7\%	5.913	5.946	34	0.6\%
88.9\%	5,906	$\stackrel{5.932}{ }$	${ }^{26}$	0.4\%
90.14\%	5.854	${ }_{5}^{5,785}$	-69	- -1.2%
	${ }_{5}^{5.845}$	5,781	${ }^{64}$	-1.1\%
${ }^{923.8 \%}$	${ }_{5,654}^{5.711}$	${ }_{\text {c, }}^{\substack{5.639}}$	${ }_{-16}$	${ }^{-0.3 \%}$
95.1\%	5.473	5,636	163	3.0\%
96.3\%	5,430	5,516	86	1.6\%
97.5\%	5,168 3888 3	5.397 4.514	${ }_{616}^{229}$	
100.0\%	3,421	${ }_{3,322}^{4 .}$	-99	${ }_{-2.9 \%}$

| |
| :--- | :--- | :--- | :--- | :--- |

Figure SW-27-b
American River below Nimbus Reservoir, Monthly Flow

Table SW-27-b

Percent Exceedance	WSIP 2070 Without Proiet	WSIP 2070 With Project	Absolue Difference	Relative
Probabaily	Monthly Fow (CFS)	Monthy Flow (CFS)	(cFs)	
0.0\%	3,339	2.598	${ }^{741}$	-22.2\%
1.2\%	3,125	2.318	-807	-25.8\%
2.5\%	2,672	2,302	-370	-13.9\%
3.7\%	2,621	2,001	-620	-23.7\%
4.9\%	2,340	1,998 1 1	-343 -292	-14.6\%
6.2\% 7	2, 2, 282 2, 1	1,990 1.987	${ }_{-22}^{292}$	
8.6\%	${ }_{1}^{2,952}$	${ }_{1}^{1,980}$	${ }^{29}$	1.5\%
9.9\%	1,823	1,969	147	8.0\%
11.1\%	1,750	1,952	202	
12.3\%	1,750	1,931	181	
13.6\%	1,750	${ }^{1,833}$	83	
14.8\%	1,750	1,757	7	
16.0\%	1,750	1,750	0	0.0\%
17.3\%	1,750	1,750	0	0.0\%
18.5\%	1,750	1,750	0	0.0\%
19.8\%	1,750	1,750	0	0.0\%
21.0\%	1,750 1,750	1,750 1,750	0	0.0\%
${ }_{2}^{22.5 \%}$	1,750	1,750 1,750	0	0.0\%
${ }^{234.7 \%}$	1,750	1,750	0	0.0\%
25.9\%	1,750	1,750	0	0.0\%
- 27.2 \% 28.4	1,750 1,750 1	1,703 1.693	${ }_{-57}^{-57}$	-2.7\% ${ }_{\text {- }}^{\text {- }}$
28.4.6\%	+1,739	${ }_{1,671}^{1,693}$	- -68	${ }_{-3.9 \%}$
30.9\%	1,721	1,634	-87	-5.0
32.1\%	${ }^{1,691}$	1.610	-81	
	1,600	1,570	-30	-1.9\%
35.8\%	${ }_{1,471}^{1,495}$	${ }_{1,547}^{1.559}$	${ }^{-36}$	${ }_{5}$
37.0\%	${ }^{1,434}$	${ }_{1,546}$	111	7.8\%
38.3\%	1,392	1,539	147	10.5\%
${ }^{30.7 \%}$	${ }_{\substack{1,386 \\ 1,384}}^{1,368}$	1,535 1.530 150	149	10.8\%
42.0\%	1.370	1,524	153	11.2\%
43.2\%	1,328	1,508	180	13.6\%
44.4\%	1,318	1,507	189	14.3\%
45.7\%	1,295	1,482	187	14.5\%
46.9\%	1,275	1,481	${ }^{206}$	16.1\%
48.19\%	${ }_{1}^{1,194}$	1.478	${ }^{284}$	${ }^{23.8}$
49.4\%	1,178 1.170	(1,4466	${ }_{262}^{268}$	${ }^{22.82 \%}$
51.9\%	${ }_{1}^{1,148}$	${ }_{1,420}^{1,482}$	${ }_{272}^{222}$	${ }^{23.7 \%}$
53.1\%	1,098	1,396	297	27.1\%
54.3\%	${ }^{1,092}$	1,392	300	
55.6\%	1009	${ }_{1}^{1371}$	299	
58.0\%	${ }_{1,063}$	${ }_{1,368}^{1,371}$	${ }_{305}$	${ }^{28.87 \%}$
59.3\%	${ }_{1,044}$	1,353	309	29.6\%
60.5\%	1,044	1,320	276	26.5\%
61.7\%	1,033	1,294	262	25.3\%
63.0\%	1.019	1,261	242	23.8
64.2\%	977	1,223	246	25.2\%
65.4\%	961	1,215	255	26.5\%
66.7\%	957	1,194	${ }^{237}$	24.8\%
67.9\%	951	${ }^{1,177}$	${ }^{226}$	23.7\%
69.1\%	939	${ }^{1,152}$	${ }^{213}$	${ }^{22.7 \%}$
70.4\%	911	1,151	${ }^{230}$	26.3\%
71.6\%	899	${ }^{1,1,132}$	${ }^{233}$	25.9\%
72.8\%	880	1,075	194	\%
75.3\%	${ }_{828}^{838}$	${ }_{1}^{1,038}$	${ }_{210}^{204}$	${ }_{\text {25.4. }}^{24.4 \%}$
76.5\%	821	1,020	199	24.2\%
77.8\%	819	${ }^{1.015}$	195	3.8\%
79.0\%	800	1.017	210	退2.3\%
81.5\%	${ }_{800} 8$	909	109	${ }_{\text {13.2\% }}^{22.1}$
82.7\%	800	858	58	
84.0\%	800	845	45	7\%
85.2\%	800	838	38	7\%
86.4\%	800	832	32	\%
877\%	800	${ }^{821}$	21	2.6\%
88.9\%	792	${ }^{809}$	17	2.2\%
90.1\%	719	800	81	11.3\%
${ }^{91.4 \%}$	${ }_{565}^{652}$	800	148	22.7\%
${ }_{9}^{92.8 \%}$	550	749	${ }^{224}$	${ }^{4277 \%}$
${ }^{955.1 \%}$	487	695	${ }_{208}$	42.6\%
96.3\%	466	687	${ }^{221}$	47.5\%
97.5\%	453	617	164	36.1\%
-100.0\%	${ }_{443}^{44}$	¢09	${ }_{66}^{155}$	${ }^{34.59 \%}$

Figure SW-28-b
American River at Watt Avenue, Monthly Flow

$\begin{gathered} \text { Pererent } \\ \hline \text { Preadnce } \\ \text { Probobabily } \end{gathered}$	Ociober			
	WSIP 2070 Without	WSIP 207 With Project	Absolute	Reative
	Monthly fow (CFS)	Monthly Fow (CFS)	(CF5)	
	3,616	4,940	${ }^{1,324}$	36.6\%
1.2\%	3,213	${ }^{3.575}$	362	11.3\%
2.5\%	3,141	${ }_{2}^{2,873}$	-268	-8.5\%
3.7\%	2,937	2,848	-90	-3.1\%
4.9\%	2,694	2,648 2265 2	${ }_{-48}^{48}$	- -1.7%
7.4\%	2.314 2.145	2.265 2.112	-48 -32	${ }^{-2.15 \%}$
8.6\%	${ }_{\substack{2,103}}^{\text {2,145 }}$	${ }_{2}^{2,085}$	-19	-0.9\%
9.9\%	2,090	1,968	121	-5.8\%
11.1\%	1,993	1,897	-96	
12.3\%	593	1,679	85	
13.6\%	1,584	1,600	16	
14.8\%	1,528	1.58	60	
16.0\%	1,448	${ }^{1,584}$	136	\%
17.3\%	1,448	${ }^{1,537}$	89	6.1\%
18.5\%	1,448	1,461	${ }^{13}$	0.9\%
19.8\%	1,448	${ }^{1,446}$	2	-0.1\%
21.0\%	${ }^{1,448}$	${ }^{1.443}$	5	-0.3\%
${ }^{22.2 \%}$	1,446	${ }^{1,443}$	${ }^{-3}$	-0.2\%
23.5\%	1,445	${ }_{1}^{1,442}$	3	-0.2\%
${ }^{24.7 \%}$	1,444	${ }_{1}^{1,442}$	2	-0.1\%
${ }^{25.7 .2 \%}$	1,443	${ }_{1}^{1,442}$		-0.19
28.4\%	14433	${ }_{1}^{1,442}$		-0.0\%
29.6\%	${ }_{1}^{1,442}$	${ }_{1}^{1,442}$	-1	
30.9\%	1,442	1,441		
32.1\%	1,442	1,441	1	-0.1\%
33.6\%	1,439	${ }_{1}^{1.441}$		
35.8\%	1,439	1.441	2	0.1\%
	1,439	1,441	2	0.1\%
38.3\%	1,439	${ }^{1,441}$		0.1\%
39.5\%	1,439	1.441	2	0.1\%
40.7\%	1,439	1,441	2	0.1\%
42.0\%	1,439	1,441	2	0.1\%
43.2\%	${ }^{1,438}$	1,441	3	0.2\%
44.4\%	1,435	1,441	5	0.4\%
45.7\%	1,435	1,440	5	0.4\%
${ }^{46.9 \%}$	${ }^{1,435}$	${ }^{1.440}$	5	0.3\%
49.4\%	1,4333	1,439		0.4\%\%
50.6\%	${ }_{1}^{1}, 432$	1,439 1 1	${ }_{7}$	${ }^{0.5 \%}$
51.9\%	1,429	1,439	10	0.7\%
554.3\%	${ }_{1}^{1,422}$	-1439	${ }_{12}$	0.8\%
55.6\%	1,426	1,438	12	
	${ }^{1,426}$	143	12	
55.3\%	+1,425 ${ }_{1,418}^{1,48}$	1,437	13 19	- ${ }_{\text {1.3\% }}^{0.9 \%}$
60.5\%	1,418	1,437	19	1.4\%
61.7\%	1,382	1,431	49	3.6\%
63.0\%	${ }^{1,284}$	1,430	146	11.3\%
${ }^{64.2 \%}$	1,281	1,429	147	5\%
65.4\%	1,279	${ }^{1,425}$	146	11.4\%
66.7% 679%	1,196	${ }^{1,423}$	${ }^{227}$	19.0\%
-67.9\%	1,169	1,420	${ }_{272}^{251}$	${ }^{21.5 \%}$
70.4\%	${ }_{1}^{1,042}$	1,404	${ }_{362}^{27}$	${ }_{\text {34.7\% }}^{24.3}$
71.6\%	1,026	1,350	324	31.6\%
72.8\%	${ }_{1}^{1,025}$	1,306	${ }^{281}$	27.4\%
74.1\%	1,011	1,294 1 1 1	${ }_{270}^{282}$	${ }^{27.9 \%}$
7.5.5\%	989	+1,259		-
77.8\%	932	${ }_{1}^{1,2125}$	${ }_{283}^{281}$	30.3\%
79.0\%	901	1,211	310	34.5\%
80.15\%	${ }_{856}$	${ }^{1,117}$	${ }_{261}^{260}$	30.5\%
82.7\%	756	1,078	322	
84.0\%	755	1,027	272	
85.2\%	755	980	225	
${ }^{86.4 \%}$	${ }_{753}$	925	172	22.8\%
887.7\%	${ }_{751}$	847	95	12.7\%
88.9\%	${ }_{748}^{748}$	${ }_{8}^{823}$	${ }^{75}$	10.0\%
${ }^{90.14 \%}$	${ }_{7} 785$	751	$\stackrel{2}{2}$	0.3\%
92.4.4\%	${ }_{730}^{745}$	748 748	5 18	- ${ }_{\text {2.7\%\% }}^{\text {. }}$
93.8\%	589	748	159	27.\%
95.1\%	487	589	02	21.0\%
${ }^{97.5 \%}$	${ }_{461}^{468}$	487	9	1.9\%
98.8\%	456	451	-5	${ }_{\text {- }}$
100.0\%	439	439	0	0.0\%

 \begin{tabular}{ll}
3.7\% \& 4.639

4.9% \& 4.037

6.2% \& 2.849

\hline

1.039 \& 5.074

\hline
\end{tabular}

Percent	WSIIP 207\% Without	WSIP 2070 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difference } \end{gathered}$	Relative
Probability	Monthy Foiew (cFs)	Monthy Flow (CFs)	(cFs)	Difference $(\%)$
0.0\%	23,931	23,934	3	0.0\%
1.2\%	${ }_{21,432}$	${ }^{21,430}$	-2	0.0\%
2.5\%	21,001	${ }_{21,414}^{2,314}$	413	2.0\%
3.7\%	${ }^{20,283}$	${ }^{20,270}$	-13	-0.1\%
4.9\%	20,082	20,115	33	0.2\%
6.2\%	${ }_{19,227}^{20,}$	${ }^{29,224}$	4	0.0\%
7.4\%	18,389	18.394	5	0.0\%
8.6\%	15,197	${ }^{15,193}$	4	0.0\%
9.9\%	14,531	${ }^{13,858}$	-674	-4.6\%
11.1\%	10,409	9,551	-857	-8.2\%
12.3\%	6,407	6,864	458	7.1\%
13.6\%	${ }_{4}^{4,895}$	¢, 6,249	1,354	- 27.7%
14.8\%	${ }_{4.614}^{4.614}$		-839	9.5\%
- 16.0%	(4,511	3.663 3.160	- -684	-18.8\%
18.5\%	${ }_{2}^{2,863}$	3,023	160	5.6\%
19.8\%	${ }^{2,795}$	${ }^{2,796}$	1	0.0\%
21.0\%	${ }_{2}^{2,728}$	2,350	${ }^{-378}$	-13.8\%
${ }^{22.2 .5 \%}$	2,352 2,39	2,012 2,015	-77 -297	-
24.7\%	2,089	${ }_{1,975}^{2,975}$	-114	-5.5\%
25.9\%	2,000	1,942	-58	-2.9\%
27.2\%	${ }_{1,942}^{2,100}$	1,936	-6	-0.3\%
28.4\%	1,936	${ }^{1,936}$	0	0.0\%
29.6\%	1,936	1,936	0	0.0\%
30.9\%	1,936	${ }^{1,936}$	0	0.0\%
32.1\%	1,936	1,935	-1	0.0\%
33.3\%	1,936	1,934	-1	-0.1\%
34.6\%	1,936	1,934	-2	-0.1\%
35.8\%	1,936 1,932	1,929 1,925	- -7	-0.3\%
38.3\%	${ }_{1}^{1,932}$	${ }_{1}^{1,901}$	-31	-1.6\%
39.5\%	1,904	1,878	-26	-1.4\%
40.7\%	1,879	${ }_{1}^{1,832}$	${ }^{-46}$	-2.5\%
42.0\%	${ }_{1,814}$	${ }^{1,831}$		
4.4.4\%	${ }_{\substack{1,724}}^{1,746}$	${ }_{\text {1,781 }}^{1,192}$	${ }_{57}^{46}$	${ }_{3.3 \%}^{2.6 \%}$
45.7\%	1,719	1,756	37	2.2\%
${ }^{46.9 \%}$	1,688	1,702	14	0.8\%
48.4\%	${ }_{1}^{1,688}$	${ }_{1}^{1,688}$	${ }_{0}^{6}$	- 0.0%
50.6\%	${ }^{1.688}$	1,688	0	0.0\%
51.9\%	${ }^{1,688}$	${ }^{1,688}$	0	0.0\%
53.1\%	${ }^{1,688}$	+1,688	17	0.0\%
54.3% 5.5%	1,671	+1,688	${ }_{53}^{17}$	1.0\%
55.8\%	+1,634 $\begin{aligned} & 1.633 \\ & 1.6\end{aligned}$	(1,688	53 55	${ }_{\text {3.3\% }}^{3.3 \%}$
58.0\%	${ }_{1,615}^{1,639}$	${ }_{1}^{1,688}$	${ }_{73}$	4.5\%
59.3\%	${ }^{1,521}$	1,650	129	8.5\%
60.5\%	1,494	1,613	119	7.9\%
${ }^{617.7 \%}$	${ }_{1}^{1,476}$	+1,610	134	9.0\%
63.0\%	${ }_{1,471}^{1,471}$	$\xrightarrow{1,599}$	${ }_{124}^{125}$	${ }^{8.55 \%}$
65.4\%	${ }_{1}^{1,452}$	1,569	116	8.0\%
${ }^{66.7 \%}$	1,418	1,552	${ }^{135}$	9.5\%
-67.9\%		${ }_{1.491}^{1.537}$	128 206	9.1\% 16.1%
70.4\%	1,150	1.481	332	28.8\%
71.6\%	1,112	1.478	${ }^{366}$	32.9\%
-72.8\%	1,064 1,032	${ }_{1}^{1,4476}$	${ }_{424}^{412}$	(19.1\%
75.3\%	1,027	1.405	378	36.8\%
76.5\%	${ }^{1,006}$	${ }_{1}^{1,347}$	${ }^{340}$	33.8\%
77.8.0\%	1,000	${ }_{\substack{1,287 \\ 1,253}}^{1,18}$	${ }_{253}^{284}$	25.3\%
80.2\%	${ }_{926}$	(1,223	${ }_{298}^{253}$	${ }_{32.2 \%}^{25.3 \%}$
81.5\%	895	1,163	268	29.9\%
-	866 854 8	975	109 86	12.6\%
${ }^{85.2 \%}$	${ }_{754} 58$	${ }_{910}$	${ }_{157}^{86}$	20.8\%
86.4\%	${ }_{752} 7$	${ }^{854}$	103	13.7\%
87.7\%	748 7788	${ }_{883} 8$	105	14.0\%
${ }^{88.9 \%}$	748 748	${ }_{767}^{812}$	19 19	${ }_{\text {2.6\% }} 8.5$
91.4\%	748	754	6	0.8\%
92.6\%	${ }_{7} 78$	${ }_{7} 74$	6	0.8\%
93.8\%	798 598	${ }_{778}^{748}$	0	.0.0\%
96.3\%	568	${ }_{736}$	167	22.5\%
97.5\%	565	598	33	5.8\%
98.8\%	472	472	0	0.0\%

| |
| :--- | :--- | :--- | :--- |

| |
| :--- | :--- | :--- | :--- | :--- |

$\xrightarrow{\text { Probability }}$		4 l Fow（1939	（CFF）	
1．2\％	4,948	4，937	－11	－
2．5\％	4，942	4，937	－5	－0．1\％
3．7\％	4，942	4，937	－5	－0．1\％
4．9\％	${ }_{4,937}^{4.938}$	${ }_{4,553}^{4,937}$	-1 -384	－
－ $7.4 .4 \%$	${ }_{4,937}^{4,937}$	4.553 4.470	－-384	－7．8\％
8．6\％	4，937	4，366	－571	崖．6\％
9．9\％	4，937	4，060	877	
11．1\％	4，935	4,023	－911	－18．5\％
12．3\％	4，930	3．813	117	－22．7\％
13．6\％	4，781	3，735	－1，046	9\％
14．8\％	4，764	${ }^{3.625}$	－1，139	－23．9\％
16．0\％	4，697	3，271	－1，426	－30．4\％
17．3\％	4，682	${ }^{3,216}$	$-1,466$	－31．3\％
18．5\％	4，549	3，137	－1，412	－31．0\％
19．8\％	4．534	3，104	－1，430	－31．5\％
210\％	4，458	${ }^{3.016}$	－1，442	－32．3\％
${ }^{22.2 \%}$	${ }^{4.383}$	2，959	${ }^{-1,424}$	－32．5\％
23．5\％	${ }^{4.266}$	${ }_{2}^{2,892}$	－1，374	－32．2\％
${ }^{24.59 \%}$	4，209	${ }_{2}^{2,837}$	$-1,373$	源
25．9\％	4，141	2，749	${ }^{-1,391}$	
28．4\％	${ }_{3} 927$	${ }_{2}$	${ }^{-1.314}$	${ }_{-33.7 \%}$
29．6\％	3，834	2,620	－1，214	3170
30．9\％	3，778	2，607	$-1,172$	．0\％
32．1\％	3，735	${ }^{2.585}$	－1，150	8\％
			－1，306	－35．4\％
35．8\％	${ }_{\text {3，500 }}$	en，${ }_{\text {2，370 }}$	$\stackrel{-1.131}{-1.131}$	－3．3．5\％
37．0\％	3，379	2，369	－1，010	－29．9\％
38．3\％	3，317	2,345	971	－29．3\％
39．5\％	3，291	2，344	947	8\％
40．7\％	3,280 3 3	2，332	－948	－28．9\％
42．0\％	3，265	${ }^{2,320}$	－945	－28．9\％
43．2\％	3，200	${ }_{2}^{2,314}$	886	－27．7\％
44．4\％	${ }^{2}, 862$	2，301	－561	－19．6\％
45．7\％	2，834	2，301	533	－18．8\％
${ }^{46.9 \%}$		${ }_{2}^{2,299}$	－488	－17．5\％
49．4\％	2，753	（2，299	－457	
50．6\％	2,661	2，269	－393	－14．8\％
51．9\％	2，656	1，934	－722	
54．3\％	${ }_{2,635}^{2,647}$	${ }_{1}^{1,933}$	－702	${ }_{-26.7 \%}^{-26.9 \%}$
55．6\％	2.614	1，933	681	－26．1\％
56．8\％	2，562	1，933	630	6\％
	${ }^{2}, 519$	1，932	587	
59．3\％	${ }^{2.519}$	${ }^{1,932}$	－587	－23．3\％
60．7\％	${ }_{\text {2，417 }}^{2,431}$	1,932 1,932	－-489	－
63．0\％	2，337	1,932	－405	－17．3\％
64．2\％	2，306	1，932	－374	－16．2\％
65．4\％	2，302	1，932	${ }^{370}$	－16．1\％
66．7\％ 67.9%	2，298	1，932	－366	－15．9\％
67．9\％	${ }^{1,933}$	${ }^{1,932}$	－1	－0．1\％
－ 70.49%	${ }^{1,933}$	1,911	－22	－1．1\％
70．1．6\％	1，931	1，909	${ }^{-22}$	－1．2\％
${ }^{71.28 \%}$	－	${ }_{1}^{1,895}$	59	迆
74．1\％	1，773	${ }^{1.8862}$	${ }_{67} 8$	，
75．3\％	1，7736	${ }_{1}^{1,8753}$	${ }^{61}$	${ }^{3.9 \% \%}$
76．5\％	${ }_{1}^{1,1722}$	${ }_{1}^{1,693}$	${ }^{31}$	${ }^{1.8 \%}$
778\％	${ }_{1,687}^{1,67}$	${ }_{1}^{1,608}$	${ }_{-80}$	4．7\％
79．0\％	1，687	${ }^{1,605}$	－82	－4．9\％
－	，	$\begin{array}{r}1.539 \\ \hline 1538 \\ \hline\end{array}$	－149	－8．8\％
827\％	${ }_{1}^{1,687}$	${ }_{1,502}^{1,508}$	－185	
84．0\％	${ }^{1,581}$	${ }_{1,467}^{1,462}$	－114	－7．2\％
85．2\％	${ }^{1,576}$	${ }^{1,370}$	206	－13．1\％
86．4\％	${ }^{1,472}$	1，295	177	通
	1，089	1，052	－37	3．4\％
88．9\％	1，033	${ }^{1,038}$	5	0．5\％
${ }^{90.14 \%}$	996	${ }^{1.022}$	${ }^{26}$	2．7\％
991．4\％	772	947	206	27．7\％
93．8\％	716	${ }_{804} 89$	150 88 8	20．2\％ 12.3%
95．1\％	${ }^{628}$	800	171	27．3\％
${ }^{96.3 \%}$	${ }_{603} 6$	${ }_{617}^{623}$	${ }_{173}$	3．3\％
99．8\％	${ }_{421}^{444}$	617 610	173 189	${ }^{30.80 \%}$

| |
| :---: | :---: | :---: | :---: |

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$	${ }^{\text {WSIP } 2070 \text { Without }}$	Wsip 2070 With Project	Absolue Difference	
Probability	Monthy Fow（CFS）	Monthy Flow（CFS）	（CFS）	
				${ }^{8.7 \%}$
1．2\％	4.786	4，432	354	
2．5\％	3，902	3，813	89	
3．7\％	3，832	3，592	241	
4．9\％	${ }^{3.535}$	3，404	130	
6．2\％	3，185	${ }^{3,246}$	61	
7．4\％	3，072	3，110	${ }^{38}$	
8．6\％	3，060	3，070	10	
9．9\％	2，945	2.665	280	－9．5\％
11．1\％	2，902	2，529	-372	－12．8\％
${ }^{12.3 \%}$	${ }_{2}^{2,837}$	2，381	${ }_{-456}$	16.1
13．6\％	2，721	2，342	－379	13．9
14．8\％	${ }_{2}^{2,615}$	${ }_{2}^{2,235}$	－379	－14．5\％
16．0\％	2，577	2，190	－386	
17．3\％	${ }^{2}, 4600$	2，190	－270	
18．9\％	${ }_{2}^{2,332}$	2，169	－163	
19．8\％	${ }_{\text {2，248 }}^{2,248}$	2，126	－121	捡
21．0\％	${ }_{2}^{2,164}$	1，889	215	－12．7\％
${ }^{22.25 \%}$	${ }_{2}^{2,111}$	${ }^{1,887}$	－243	
2．57\％	${ }_{2111}^{2,118}$	${ }_{1}^{1,681}$	－230	
25．9\％	${ }_{2,103}$			
27．2\％	${ }_{1,889}$	${ }_{1,651}^{1,691}$	－238	－12．6\％
28．4\％	1，888	1，583	－306	16.2
29．6\％	1，882	1，577	－305	
30．9\％	1，872	1，540	－331	17．7\％
32．1\％	1，647	${ }^{1,523}$	－125	－7．6\％
33．3\％	${ }^{1.596}$	1，482	－114	， 1 \％
34．6\％	${ }^{1,476}$	1，469	－7	－0．5\％
35．8\％	1，469	1，469	0	0．0\％
37．0\％	1，469	1，469	0	0．0\％
38．3\％	1，469	${ }^{1,468}$	0	0．0\％
39．5\％	${ }^{1,4688}$	${ }^{1,4688}$	0	0．0\％
40．7\％	1.463	${ }_{1}^{1,461}$	－2	0．19\％
42．0\％	1，461	1，456	－5	碄
43．2\％	${ }^{1} 1456{ }^{\text {a }}$	${ }_{1}^{1,450}$	${ }^{-6}$	
${ }^{44.75 \%}$	${ }_{1} 1440$	，	－121	－4．4\％
	1，404	1，312	析	
46．9\％	${ }_{1}^{1,304}$	${ }_{1}^{1,312}$	8	0．6\％
49．4\％	${ }_{1,253}$	${ }_{1,290}$	37	3．0\％
50．6\％	1，196	1，285		
51．9\％	1，143	1.283	140	
53．1\％	1，089	1，282	194	
54．3\％	1，084	1，270	186	
年5．5\％	1，084	1，255	172	15．9\％
	${ }^{1,066}$	1，238	171	16．1\％
	1，031	1，219	189	18．3\％
59．3\％	1.002	${ }^{1,217}$	215	${ }^{21.5 \%}$
${ }^{60.5 \%}$	978	${ }^{1,2122}$	234	23．9\％
61．7\％ 6.0 \％	975	1，205	${ }^{230}$	23．6\％
63.0% 642%	904	${ }^{1,201}$	296	32．8\％
－ $\begin{aligned} & 64.2 \% \\ & 6.4 \%\end{aligned}$	901	1，190	${ }_{288}^{288}$	32．0\％
㐌6．4\％\％	${ }_{883}^{887}$	${ }_{\text {1，186 }}^{1,185}$		33.76 287\％
66．7\％ 67.9%	${ }_{88}^{88}$	${ }^{\text {r，136 }}$	254	${ }_{\substack{28.7 \% \\ 337 \%}}$
－67．9\％	844	${ }_{1}^{1,1131}$	285	\％
70．4\％	848	${ }_{1}^{1+124}$	${ }_{313}$	
71．6\％	${ }_{775}$	${ }_{\text {l }}^{1,105}$	${ }_{330}$	${ }_{4}^{36.6 \%}$
72．8\％	766	${ }_{1}^{1.036}$	271	3\％
74．1\％	747	1，033	286	\％
75．3\％	747	966	219	3\％
76．5\％	747	890	142	
77．8\％	747	862	115	
79．0\％	747	827	${ }^{80}$	
80．2\％	747	815	68	\％
－${ }^{81.5 \%}$	${ }^{746}$	809	62	\％
－ 82.78%	${ }^{738}$	782	${ }^{43}$	5．9\％
－84．0\％	${ }^{738}$	773	${ }^{34}$	4．6\％
85．2\％	738	747	8	${ }^{1.19 \%}$
86．4\％	602	747	145	${ }^{24.19 \%}$
－${ }_{\text {87，7\％}}^{87.9 \%}$	601	746	146	${ }^{24.35 \%}$
－	511	776	${ }^{235}$	4．9．9\％
90．1\％	440	${ }^{4} 45$	305	69．4\％
${ }_{9}^{91.46 \%}$	419	649	${ }_{217}^{230}$	54．8\％
${ }_{938}^{92.6 \%}$	417	${ }_{6} 634$	217	${ }_{5}^{52.0 \%}$
${ }^{935.1 \%}$	${ }_{406}$	${ }_{626} 63$	218	\％
${ }_{96.3 \%}$	${ }_{380}$	614	${ }_{234} 23$	61．6\％
97．5\％	374	551	177	3\％
98．8\％	327	${ }_{4} 42$	116	35．4\％
100．0\％	314	352	38	12．3\％

Figure SW-29-b
American River at H Street, Monthly Flow

Table SW-29-b Riverat

| | | |
| :--- | :--- | :--- | :--- |
| | | |
| 3.7. | | |

December				
Percent Exceedance	${ }^{\text {WSIP } 2070 \text { Without }}$ Proiet	WSIP 2070 With Project	Absolute Difference	Relative
Probability	Monthly fow (CFS)	Montily Flow (CFFS)	(cFs)	
0.0\%	${ }^{23,870}$	${ }^{23,873}$	3	0.0\%
${ }^{1.2 \%}$	${ }^{21,347}$	21,420		0.3\%
${ }^{2.5 \%}$	21,007	20,230	10	
3.7\%	20,200	2, 252	10	
6.2\%	${ }_{\text {l }}$	20,111 19.052	${ }_{4}$	0.0\%
7.4\%	18,281	18,286	5	0.0\%
8.6\%	15,097	15,094	4	
9.9\%	14,453	13,779	674	-4.7\%
11.1\%	10.314	9,456	857	
12.3\%	6,291	${ }^{6,748}$	458	7.3\%
13.6\%	4,820	6,167	1,347	28.0\%
14.8\%	4,591	5,030	439	${ }^{9.6}$
16.0\%	4,429	3,588	841	
17.3\%	$\begin{array}{r}3,658 \\ \hline 187\end{array}$	3,094	564	
18.5\%	2,747	2,907	160	5.8\%
19.8\%	${ }_{2}^{2,656}$	${ }_{2}^{2,657}$	1	.0.0\%
21.0\%	${ }_{2}^{2.571}$	${ }_{\text {2,193 }}$	-378	14.7
${ }^{22.25 \%}$	${ }_{2}^{2,307}$	2,187	-121	
23.5\%	${ }^{2,221}$	1,945	-276	
25.9\%	${ }_{1,956}$	1,938	-18	-0.9\%
27.2\%	1,945	1,923	${ }^{23}$	-1.24
28.4\%	1,940	1,905	${ }^{35}$	
29.6\%	1,898	1,870	${ }^{28}$	
30.9\%	1,871	1,866	-5	-0.3\%
32.1\%	1,866	1,862	-3	-0.2\%
33.3\%	${ }^{1.862}$	${ }^{1.843}$	-19	
34.6\%	${ }^{1,849}$	1,840	-9	-0.5\%
35.8\%	1,837	${ }^{1,838}$	1	0.0\%
37.0\%	1,836	1,838	1	0.1\%
38.3\%	${ }_{1}^{1,832}$	${ }_{1,821}^{1,81}$	-10	-0.6\%
39.5\%	${ }^{1,829}$	${ }^{1,811}$	-18	-1.0\%
40.7\%	${ }_{1,828}^{1,828}$	1,757	71	3.9\%
42.0\%	1,244	1,749	${ }^{25}$	1.4\%
43.2\%	${ }^{1,670}$	+1,735	65	9\%
44.4.9	1,654	1,1729	75	4.5\%
45.7\%	1,645	1,722	17	4.7\%
46.9\%	1,636	${ }^{1,693}$	${ }^{58}$	${ }^{3.5 \%}$
- 48.10%	${ }_{1}^{1.6331}$	${ }_{1}^{1.6641}$	${ }_{7}$	- 0.4%
50.6\%	1.628	1.632	4	
51.9\%	${ }^{1,624}$	1.631	7	
53.1\%	1,590	${ }_{1}^{1,628}$	37	
54.3\%	1,582	${ }^{1,624}$	${ }^{42}$	2.7\%
55.6\%	1,573	${ }^{1,611}$	${ }^{38}$	2.4\%
56.8\%	${ }^{1,556}$	1,600	44	2.8\%
58.0\%	1,511	1,589	78	5.2\%
59.3\%	${ }^{1,460}$	1,584	123	8.4\%
60.5\%	1,447	1,552	105	7.3\%
617\%\%	${ }^{1,428}$	1,544	116	8.1\%
63.0\%	${ }^{1.4199}$	${ }^{1,535}$	${ }^{116}$	8.2\%
64.2\%	${ }^{1,403}$	${ }^{1,527}$	123	8.8\%
-65.4\%		+1.526	175	${ }^{12.29 \%}$
67.9\%	+1,351	${ }^{1,518}$	1167	
69.1\%	${ }_{1}^{1,225}$	(1,433	217	8.9\%
70.4\%	1,159	1.428	269	23.2\%
71.6\%	1,085	1,377	292	.9\%
72.8\%	1,078	+1,375	${ }^{298}$	27.6\%
74.19\%	989	${ }_{1}^{1,356}$	367	
70\%	964	1,354	322	
7778\%	${ }_{915}^{921}$	${ }_{1}^{1,254}$	${ }^{386}$	
79.0\%	901	${ }_{\substack{1,194 \\ 1}}^{1,201}$	${ }_{293}$	32.5\%
80.2\%	897	1,142	245	27.3\%
81.5\%	874	1,089	214	24.5\%
82.7\%	811	915	105	12.9\%
84.0\%	${ }^{806}$	900	93	11.6\%
85.2\%	768	891	${ }^{123}$	16.0\%
${ }^{86.46}$	760	889	129	17.0\%
87.7\%	${ }_{6} 742$	846	105	14.1\%
-	683 662	764 760	81	11.9\%
90.1\%	662	7760	98	14.9\%
91.4\%	660 657	${ }_{693}^{746}$	${ }^{86}$	13.5\%
92.6\% ${ }_{9}^{938 \%}$	${ }_{647}^{657}$	693 689	${ }^{36}$	5.5\%
955.1\%	$\stackrel{647}{500}$	689 676	${ }_{176}^{42}$	退
${ }^{95.3 \%}$	500	${ }_{667} 66$	${ }_{167}^{176}$	${ }_{33.5 \%}^{35.3 \%}$
.5\%	500	500		
98.8\%\% 100.0\%	($\begin{aligned} & 500 \\ & 500\end{aligned}$	($\begin{aligned} & 500 \\ & 500\end{aligned}$	\bigcirc	- 0 0.0\%

| |
| :--- | :--- | :--- | :--- |

Table SW－29－b Riverat

WSIP 2070 Without February				
Percent Exceedance	$\begin{aligned} & \text { WSIP } 2070 \text { Without } \\ & \text { Proiect } \end{aligned}$	WSIP 2070 With Project	Absolute Difference	
Probability	Monthly fow（CFS）	Monthly Fow（CFS）	（CFS）	
				0．0\％
1．2\％\％	32,715	${ }^{32,707}$	8	
2．5\％\％	${ }^{32,419}$	${ }^{32,419}$	O	
3．7\％	23，198	23，199	1	
4．9\％	22，674	${ }^{22,672}$	2	
6．2\％	22，020	22，016	4	0．0\％
7．4\％	21，197	21，197	0	0．0\％
8．6\％	20,907	20，905	2	0．0\％
9．9\％	20，489	20，480	9	0．0\％
11．1\％	20，203	${ }^{20,203}$	0	\％
${ }^{12.3 \%}$	20，103	${ }^{20,104}$	1	0．0\％
13．6\％	20，003	19，740	${ }^{263}$	－1．3\％
14．8\％	${ }^{19,622}$	19，669	－3	0．0\％
16．0\％\％	${ }^{18.618}$	18，619	1	
18．5\％	17.1512	17612	4	0．3\％
19．8\％	16，183	16,183	0	0．0\％
21．0\％	16，182	16，182	0	
${ }^{22.2 \%}$	14，608	${ }^{14,608}$	0	
2．45\％	14，402	${ }_{1}^{14,4,463}$	1	0．0\％
25．9\％	${ }^{12,577}$	12，436	141	－1．1\％
27．2\％	12，436	${ }^{12,338}$	-98	0．8\％
28．4\％	$\begin{array}{r}12,338 \\ 11,583 \\ \hline\end{array}$	12，279	－59	－0．5\％
29．6\％	${ }^{11,693}$	${ }^{11,693}$	0	0．0\％
30．9\％	10，506	10，504	－1	0．0\％
32．1\％	10，251	${ }^{9.5990}$	661	6．4\％
33．3\％	9，297	9，297	0	0．0\％
34．6\％	${ }^{8,992}$	9，263	272	3．0\％
35．8\％		${ }^{8.313}$	81	1．0\％
37．0\％	${ }_{7}^{7,785}$	${ }_{8}^{8,234}$	378	4．8\％
${ }^{38.3 \%}$ 3．5\％	${ }_{7}^{7,723}$	${ }^{7} .5887$	－136	－1．8\％
39．5\％	${ }^{7,586}$	7，469	117	5\％
42．0\％	${ }_{7}^{7,269}$	${ }_{7}^{7,270}$	1	0．0\％
43．2\％	6,865	6.860	－5	1\％
44．4\％	${ }^{6,603}$	${ }_{6}^{6,603}$	0	0\％
45．7\％		6，472		0．0\％
${ }^{46.9 \%}$	6,184 6,169	6,184 6.170	${ }_{2}$	${ }^{0.0 \%}$
49．4\％	${ }_{6.037}^{6.169}$	${ }_{6,037}^{6.14}$	${ }_{0}$	0．0\％
50．6\％	${ }_{5}^{5.646}$	5.648	1	0．0\％
51．9\％	5.591	5．591	0	0．0\％
53．19\％	4，931	5．510	578	11．7\％
54.3% 556%	4．749	4，934	185	3．9\％
55．6\％ 56.8%	4，568	4，735	167	3．7\％
56.8% 580%	${ }^{4,363}$	4，463	100	2．3\％
年58．0\％	4，301	4，363	62	1．4\％
59．3\％	3，961	3，962	1	0．0\％
60．5\％	${ }^{3,780}$	${ }^{3,279}$	501	－13．2\％
－ 61.7%	3，279	3，271	${ }^{-8}$	－0．3\％
63．0\％ 64.2%	${ }^{3,272}$	${ }^{3.055}$	217	－6．6\％
－64．2\％${ }^{6.4 \%}$	${ }_{2}^{2,354}$	${ }_{2}^{2,351}$	－3	－0．1\％
${ }^{65.4 \%}$	${ }_{2}^{2,233}$	－	1	0．1\％
66．9\％	${ }^{2,233}$	${ }_{1}^{1,948}$	－255	－1．4．
69．1\％	${ }_{1,976}^{2,002}$	1,949 1.938	－ -62 -37	－3．10\％
70．4\％	${ }_{1}^{1,940}$	${ }_{1}^{1,690}$	${ }_{-250}$	－12．9\％
771．6\％	1，714	${ }^{1,662}$	－53	1\％
72．8\％	1，689	${ }^{1,591}$	－97	－5．8\％
75．3\％	${ }^{1,570}$	${ }^{1,570}$	0	0．0\％
7．5．5\％	＋1，329	1,570 1,319	－10	－
77．8\％	${ }_{1,325}$	1，314	－11	－0．8\％
79．0\％	${ }^{1,314}$	1，308	6	0．5\％
80．2\％	＋1，282	1，282	0	0．0\％
81．5\％	1，269	1，269	0	0．0\％
82.7% 840%	1，266	${ }^{1,266}$	0	0．0\％
84．0\％	＋1，156	＋1，188	${ }^{31}$	2．7\％
85.2% 86.4%	${ }^{1,1112}$	${ }^{1} 1114$	${ }_{52}^{22}$	1．9\％
${ }^{86.4 \%}$	1,062	${ }^{1} 1114$	52	4．9\％
87.7% 889%	${ }_{964}^{988}$	${ }_{1}^{1,100}$	＋120	${ }^{12.3 \%}$
${ }^{88.1 \%}$	${ }_{905}^{964}$	${ }_{1}^{1,093}$	128	俍
${ }^{90.14 \%}$	${ }_{761} 905$	${ }_{1}^{1,047}$	${ }_{262}$	15．7\％
${ }_{92.6 \%}^{91.4 \%}$	757	${ }_{1}^{102028}$	265	35．0\％
93．8\％	708	${ }_{854}^{1.012}$	255 146	20．6\％
95．1\％	679	832	${ }^{153}$	22．5\％
96．${ }^{96.5 \%}$	$\begin{array}{r}635 \\ \hline 25 \\ \hline\end{array}$	${ }^{758}$	${ }^{123}$	19．3\％
	${ }_{250}$	${ }_{250}^{250}$		

		April		
Percent Exceedance	${ }^{\text {WSIP } 2070}$ Prithout	WSIP 2070 With Project	Absolute Difference	Relative
Exceoabice	Monthy foiect（CFS）	Moonthy Fow（CFS）	（cFs）	ference（\％）
0．0\％	20，737	20，731	－5	0．0\％
1．2\％	19，388	19，388	0	0．0\％
${ }^{2.5 \%}$	11,880 10.987	11,880 10.983 10.9	${ }_{-}^{0}$	0．0\％
3．7\％	10，987	10，983	-4	0．0\％
4．9\％	10.980 7889	10.960 7889	0	0．0\％
6．2\％	7,489 6.496	7,489 6.496	\bigcirc	0．0．0\％
8．6\％	6，170	6，170	0	
${ }^{\text {9．9\％\％}}$	5，959	5，959	0	
123\％	5，5064	5,854 5.506		
13．6\％	${ }_{5,227}^{5.506}$	${ }_{5,219}^{5}$	－8	－0．2\％
14．8\％	4，798	4，798	0	0．0\％
16．0\％	4，767	4，766	－1	0．0\％
17．3\％	4，559	4，559	0	0．0\％
18．5\％	3，849	3，849	0	0．0\％
19．8\％	3，807	${ }^{3.803}$	4	－0．1\％
21．0\％	${ }^{3.803}$	${ }^{3,798}$	－5	－0．1\％
22．2\％	3，659	${ }^{3.660}$	1	0．0\％
23．5\％	3，445	3，499	54	1．6\％
24.7% 259%	3，434	－ $\begin{aligned} & 3,433 \\ & 3 \\ & 3\end{aligned}$	－	${ }^{0} 0.0 \%$
25．9\％	－ $\begin{aligned} & 3,416 \\ & 3 \\ & 3\end{aligned}$	－	－-100	${ }_{-2.0 \%}^{-2.0 \%}$
${ }^{27.2 \%} \times$		3,283 3,246	－100	－2．9\％
${ }^{28.49 \%}$	${ }_{\substack{3,143 \\ 3,246}}$	${ }_{\substack{3,246 \\ 3,013}}$	${ }_{-131}$	－${ }^{0.0 \%}$
30．9\％	3，013	3，000	－13	－0．4\％
32．1\％	3，000	3，000	0	0．0\％
	3.000 3.000	${ }_{2}^{2,995}$	-9 -35	－${ }_{-1.2 \%}^{-0.3 \%}$
35．8\％	2.991	${ }_{2}^{2,784}$	－207	
37．0\％	2，907	2，758	－149	－5．1\％
38．3\％	2.801	2，677	－125	，
39．5\％	2，759	${ }^{2,652}$	－107	－
42．0\％	${ }_{\text {2，676 }}^{2,689}$	${ }_{\text {2，531 }}^{2,618}$	－146	${ }^{-5.4 \%}$
43．2\％	2.652	2.496	－156	－5．9\％
44．4\％	2，530	2，075	－454	－18．0\％
45．7\％	2,470	2,016	455	－18．4\％
46．9\％	2，224	－1，897	－327	－14．7\％
－48．1\％	2，185	＋1，844	－341	－15．6\％
（49．4\％	1，932	（1，823	-109 30 30	－5．6\％
50．9\％	1,785 1,685	${ }^{1,766}$	30 -75	${ }^{1.8 \%}$
53．1\％	1.604	1.607	3	0．2\％
54．3\％	1.591	1，591	0	0．0\％
55．6\％		${ }^{1,557}$	0	
56．8\％	${ }_{1}^{1,473}$	1,169	－254	
59．3\％	1，299	${ }^{1,108}$	－192	－14．8\％
60．5\％	1，219	1，095	－124	－10．1\％
61．7\％	1，168	1，059	－109	－936
63．0\％	1，108	${ }_{1}^{1,025}$	${ }^{-83}$	
64．2\％	1，095	1，006	－89	
－65．4\％	${ }^{1,058}$	953	－104	\％
${ }^{66.7 \%}$	${ }^{1,026}$	949 898	－77	－7．5\％
67．9\％	892	894	${ }^{2}$	0．2\％
69．1\％ 7	${ }_{803}^{821}$	${ }_{839}^{892}$	71 36	8．5\％${ }^{8.6 \%}$
71．6\％	787	${ }^{821}$	${ }^{33}$	4．3\％
72．8\％	769	816	47	6．1\％
74.1% 753%	738 718	${ }_{812} 8$	73 89	${ }_{1}^{9.9 \%}$
76．5\％	711	804	93	13．1\％
77．8\％	${ }^{706}$	${ }_{798} 8$	97	13．7\％
79．0\％	${ }_{6}^{653}$	798	144	${ }^{22.1 \%}$
81．5\％	${ }_{631}$	777	147	${ }_{23.2 \%}^{24.3 \%}$
82．7\％	${ }_{625} 6$	772	147	23．6\％
－84．0\％	${ }_{619}^{622}$	769 769	147 150 187	${ }_{\text {24，}}^{23.6 \%}$
86．4\％	616	765	149	24．1\％
87．7\％	614	757	142	23．1\％
88．9\％	612	757	145	23．7\％
90．1\％	605	754	149	24．5\％
914．4\％	${ }_{605}^{605}$	712	108	17．8\％
92．6\％	604	${ }_{6}^{676}$	${ }_{5}^{72}$	11．9\％
93．9\％	598 593	${ }_{654}^{635}$	${ }_{42}$	9．4\％
95．1\％	593 599	${ }_{6}^{635}$	${ }_{6}^{42}$	7．2\％
97．5\％	188	${ }_{622}$	${ }_{434}$	231．0\％
98．\％	188	605	${ }^{417}$	222．0\％
100．0\％	188	468	280	148．7\％

		Way		
Percent Exceedance	${ }_{\text {WSIP P27\％O Without }}^{\text {Proiet }}$	WSIP 2070 With Project	Absolute Difference	Reatio
Probability	Monthly Flow（CFS）	Morthy Flow（CFS）	（cFs）	ifference（\％）
0．0\％	5.966	5.966	0	0．0\％
1．2\％	4，025	4.025	0	0．0\％
2．5\％	3，888	3，888	0	0．0\％
3．7\％	3，000	3，000	0	0．0\％
4．9\％	${ }^{2,428}$	3，000	572	23．6\％
6．2\％	${ }_{2}^{2,281}$	2.501	${ }^{221}$	9．7\％
7．4\％	2，250	${ }^{2,332}$	82	3．6\％
8．9\％	2，050	2，250	200	9．8\％
9．9\％	1，919	${ }^{2,245}$	${ }_{136}$	17．0\％
－ 11.12%	1,905 1,864 1	2,041 1.894 1	136 30	7．1．6\％
（12．6\％		1,894 1.864 1	30	
14．8\％	${ }_{1}^{1,805}$	${ }_{1}^{1,824}$	20	1．1\％
16．0\％	${ }^{1,788}$	1，786	1	－0．1\％
17．3\％	1，772	${ }^{1,693}$	－79	
18．5\％	1,695	1，673	－22	－1．3\％
19．8\％	1.676	1，637	${ }^{39}$	－2．3\％
${ }^{21.0 \%}$	（1，673	${ }^{1,685}$	${ }^{38}$	－2．2\％
${ }^{22.2 \%}$	${ }_{1}^{1,663}$	1.571 1.569	－91	－
24．7\％	1,571	${ }_{1,568}$	－3	－0．2\％
25．9\％	1，570	1，552	－19	－1．2\％
27．2\％	1，568	1，551	－17	－1．1\％
28．4\％	＋1，551	＋1，548	14	－0．2\％
－	${ }^{1,522}$	${ }^{1,536}$	14	0．9\％
30．9\％	${ }^{1,521}$	${ }^{1,522}$	1	0．0\％
32．1\％	${ }_{1}^{1,520}$	${ }^{1,522}$	2	0．1\％
33．3\％	${ }_{1}^{1.517}$	${ }^{1,520}$	3	${ }_{0}^{0.2 \%}$
34.6% 35.8%	1,511 1,506 1	1,517 1.509	${ }_{3}^{6}$	－ 0.4%
退35．7．8\％	${ }^{1,506}$	1,509 1.508	$\begin{array}{r}3 \\ 5 \\ \hline\end{array}$	0．3\％
38．3\％	1，459	1，501	43	2．9\％
	${ }_{1}^{1,372}$		96	
42．0\％	1,271	${ }_{1,372}^{1,46}$	101	7．9\％
43．2\％	1，267	1，357	90	7．1\％
44．4\％	1，211	1，355	143	11．8\％
45．7\％	1，167	1，333	166	14．2\％
${ }^{46.9 \%}$	＋1，128	$\underset{\substack{1,211 \\ 1,128}}{1,18}$	${ }_{5}^{83}$	7．4\％\％
49．4\％	1，051	${ }_{1,123}^{1,121}$	72	6．8\％
50．6\％	1，051	1，119	68	6．4\％
51．9\％	1，050	1，074	23	2．2\％
	${ }^{1,038}$	1，064	26 53	${ }_{520}^{2.5 \%}$
54.3% 556%	1，005	1,057 1056 1	53 65	5．2\％
56．8\％	999	1，049	${ }_{80}^{65}$	8．2\％
58．0\％	948	1,049	100	10．6\％
59．3\％	${ }_{936} 936$	${ }^{1,044}$	107	11．5\％
${ }^{60.5 \%}$		1，042	106	
61．7\％	999	${ }_{1,033}^{1,035}$	${ }_{126}^{106}$	13．9\％
64．2\％	894	1.026	132	14．8\％
${ }^{654.4 \%}$	868	1，019	152	17．5\％
66．7．9\％	865 857	＋1，013	$\begin{array}{r}148 \\ 153 \\ \hline\end{array}$	＋17．2\％
69．1\％	${ }_{852}$	1,004	152	17．8\％
70．4\％	844	1.001	157	18．5\％
71．6\％	832	966	134	16．1\％
72．8\％	830	${ }_{957}^{957}$	${ }^{126}$	15．2\％
74.19% 753%	829	957	127	15．4\％
75．3\％	${ }^{784}$	944	159	20．3\％
76．5\％${ }_{7}^{7}$	${ }_{782} 7$	938	156	19．9\％
77．9\％	782 775	${ }_{878}^{896}$	114	${ }^{14.4 .3 \%} 11.3$
80．2\％	745	${ }_{872}$	127	17．0\％
81．5\％	${ }^{741}$	861	120	16．2\％
－ 82.7%	${ }_{688}^{697}$	${ }_{8}^{855}$	${ }^{158}$	${ }^{22.7 \%}$
－${ }_{\text {845．2\％}}$	${ }_{629}^{688}$	818 816	130 187	
86．4\％	627	784	158	25．1\％
87．7\％	621	${ }_{782}$	160	25．8\％
－${ }^{88.9 \%}$	619 613	728 680	109	＋17．7\％
91．4\％	610	646	36	59%
92．6\％	609	627	${ }_{18}$	${ }^{5.9 \%}$
93．8\％	608	621	13	\％
95．1\％	607	608	1	0．1\％
96．3\％	605	606	1	0．19\％
97．5\％	188	605	417	${ }^{221.7 \%}$
988．8\％ 100.0%	（188	${ }_{188}^{496}$	${ }_{0}^{308}$	163．7\％

Table SW-29-b

August				
Percent Exceedance	${ }^{\text {WSIP }}$ Provo Without	WSIP 2070 With Project	$\begin{gathered} \text { Absolute } \\ \text { Aifference } \end{gathered}$	Relative
Probability	Monthy Fow (CFS)	Monthly Fow (CFS)	(CFS)	
0.0\%	2,793	2,044		26.8\%
- 1.2%	${ }_{2}^{2.521}$	$\begin{array}{r}1,750 \\ \hline 1750\end{array}$	-771	-30.7\%
2.5\%	${ }^{2,118}$	1,750	368	
3.7\%	2,74	1,750	崖	
4.9\%	1,781	1,750	${ }^{-31}$	
6.2\%	1,750	1,738	12	
7.4.\%	1708	17730	-12	
9.9\%\%	1.575	1718	143	
11.1\%	1.508	${ }_{1} 1702$	194	129\%
12.3\%	1,507	${ }_{1,683}^{1,1 / 2}$	177	11.12
13.6\%	1,506	1.585	79	5.2
14.8\%	1,505	1,503	-2	${ }_{-0.1}$
16.0\%	1,499	1,502	3	0.2\%
${ }^{17.3 \%}$	1,497	1,499	1	0.1\%
18.5\%	1,497	1,498	1	
19.8\%	1,493	1,493	0	0.0\%
21.0\%	1,489	1.489	0	
${ }^{22.2 \%}$	${ }^{1,4888}$	1,484	4	
23.5\%	(1,4871,487 14	(1,4831	-6	-0.4\%
25.9\%	1.481	1.477	4	-0.3\%
27.2\%	${ }^{1,480}$	${ }_{1}^{1,458}$	${ }^{22}$	-1.5\%
28.4\%	1,477	1,446	31	
29.6\%	1,477	1,425	-52	
30.9\%	1,472	1,386	-86	5.8\%
32.1\%	1,448	1,359	-89	6.1\%
33.3\%	1,357	${ }_{1}^{1,322}$	${ }^{35}$	-2.6\%
34.6\%	${ }^{1,336}$	1,306	-30	
35.8\%	(1,233	${ }^{1,301}$	${ }^{68}$	5.5\%
37.0\%	1,186	1,291	105	8.8\%
38.3\%	1,141	1,290	149	13.1\%
39.5\%	1,139	${ }^{1,288}$	149	13.1\%
40.7\%	${ }^{1,1129}$	${ }^{1,286}$	157	13.9\%
42.0\%	${ }^{1,127}$	${ }^{1,2688}$	140	
43.2\%	${ }^{1,080}$	${ }_{\text {l }}^{1,264}$	184	
${ }^{44.47 \%}$	${ }^{1} 1.068$	1,256	189	17.7\%
45.7\%	1.039	${ }_{1}^{1,239}$	199	19.2\%
46.9\%	${ }^{1,027}$	${ }_{1}^{1,237}$	210	20.5\%
- 48.14%	${ }_{921}^{927}$	${ }_{\substack{1,224 \\ 1,183}}^{\substack{1,28}}$	${ }_{262} 29$	- 32.0 \%
50.6\%	904	1,169	265	3\%
51.9\%	877	1,165	289	
53.1\%	853	1,153	301	
54.3\%	845	1,148	303	5.8\%
55.6\%	833	1,147	314	37.6\%
56.8\%	825	1,130	305	36.9\%
58.0\%	795	1,128	333	41.8\%
59.3\%	${ }^{783}$	1,103	320	${ }^{40.9 \%}$
60.5\%	775	1,058	283	36.5\%
61.7\%	762	1,051	289	37.9\%
63.0\%	${ }^{762}$	1.011	250	${ }^{32.8 \%}$
64.2\%	${ }^{741}$	978	${ }^{237}$	\%
-65.4\%	709 698	975	${ }_{226}^{266}$	源5\%
-66.79\%	6988	${ }_{921} 91$	${ }^{226}$	${ }_{\text {cke }}^{32.25 \%}$
69.1\%	686	911	${ }_{224}$	
70.4\%	675		233	
71.6\%	651	888	236	6.3\%
74.10\%	66	${ }_{7}^{834}$	215	88\%
743\%	596	781	185	
70\%	559	771	185	
778\%	579	776	196	
79.0\%	564	765	${ }_{201}^{200}$	35.6\%
80.2\%	560	741	181	323\%
81.5\%	560	667	107	19.2\%
82.7\%	556	624	69	12.4\%
84.0\%	555	608	${ }^{53}$	9.6\%
85.2\%	552	600	${ }^{48}$	8.7\%
86.4\%	${ }_{538}$	595	57	10.6\%
877.7\%	${ }_{533}^{53}$	587	53	10.0\%
88.9\%	530	573	${ }^{43}$	${ }^{8.19 \%}$
91.4\%	${ }_{491}$	568	75	15.2\% 150%
92.6\%	425	525	100	23.6\%
93.8\%	263	515	252	
95.1\%	${ }^{250}$	474	${ }^{224}$	89.6\%
96.3\%	248 188	459	211	84.9\%
	188 188	370	82	
	(188	(349	174	${ }^{95258 \%}$

Percent Exceedance	WSIP 2070 Without Proiect	WSIP 2070 With Project	Absolute Difference	
Probability	Monthly Fow (cFs)	Monthy Fow (CFS)	${ }_{-422}$	-9.3\%
1.2\%	4.397	4.034		
2.5\%	${ }_{3,636}$	${ }^{4,547}$	-89	-2.5\%
3.7\%	3,446	3,222	${ }^{223}$	-6.5\%
4.9\%	3,162	3,039	123	3.9\%
6.2\%	2,802	2.866	64	2.3\%
7.4\%	2,694	2,752	58	
8.6\%	2,678	${ }_{2}^{2,676}$	-2	
9.9\%	2,591	2,303	287	-11.1\%
11.1\%	2,544	2,149	-395	-15.5\%
${ }^{12.3 \%}$	2,468	2.005	-462	
13.6\%	2,341	${ }^{1,968}$	${ }^{-373}$	-15.9\%
14.8\%	${ }_{\text {2,253 }}$	${ }^{1,8599}$	-394	-17.5\%
16.0\%	${ }_{2}^{2,223}$	1,852	370	
17.3\%	2,094	${ }^{1,836}$	-257	-12.3\%
18.5\%	1,956	+1,829	-127	${ }^{-6.5 \%}$
19.8\%	${ }_{1}^{1,885}$	1,754	-132	
${ }^{2} 2.2 .2 \%$	${ }^{1,750}$	+1,750	0	--20\%
23.5\%	${ }^{1} 17750$	${ }^{1} 1,750$	0	0.0\%
24.7\%	1,750	1,543	207	
25.9\%	+1,750	${ }^{1,543}$	${ }^{207}$	
- ${ }_{\text {27.7.2\% }}$	1,750	1,526	-224	-12.8\%
20.6\%	${ }^{1,750}$	${ }_{1}^{1,439}$	-311	-17.8\%
30.9\%	1,750	${ }_{1,402}$	-348	-19.9\%
32.1\% ${ }^{3.3 \%}$	${ }^{1,508}$	1,390	-119	-7.9\%
34.6\%	1,458 1,352	1,352 1.344 $\substack{142 \\ \hline}$	-106	-7.3\%
35.8\%	1,345	1,337	-7	-0.5\%
37.0\%	1,343	1,330	-13	-1.0\%
38.3\%	+1,388	+1,330	-8	-0.9\%
39.5\%	1,330	${ }_{1}^{1,329}$	-1	-0.1\%
40.7\%	+1,328	${ }_{1}^{1,323}$	-4	-0.3\%
43.2\%	${ }_{1}^{1,325}$	${ }_{1}^{1,317}$	-1	-0.5\%
44.4\%	${ }_{1,311}^{1,31}$	1,250	-61	
45.7\%	1,308	1,181	-127	-9.7\%
46.9\%	1,166	1,174	8	0.7\%
49.4\%	${ }_{1}^{1,115}$	${ }_{1}^{1,161}$	${ }_{46}^{15}$	${ }_{4}^{4.2 \%}$
50.6\%	1,071	1,157	87	1\%
51.9\%	1,005	1,150	145	4\%
53.19\%	950	1,144	194	
54.3\%	948	1,132	184	$19.4{ }^{\circ}$
55.6\%	944	1,118	173	18.4\%
56.8\%	${ }_{892}^{936}$	1,107	171	18.3\%
	892	${ }^{1,086}$	194	21.8\%
59.3\%	867	${ }^{1,081}$	${ }^{213}$	${ }^{24.6 \%}$
60.5\%	840	${ }^{1,076}$	${ }^{236}$	28.1\%
-61.7\%	837	${ }^{1,072}$	${ }^{236}$	28.2\%
-63.0\%	${ }_{768}^{768}$	${ }^{1,067}$	298	38.8\%
64.2% 654%	766 763	${ }^{1,0055}$	290	\%
${ }^{65.4 \%}$ 66.7\%	756 7768	¢,	${ }_{242}^{284}$	37.3\%
-6.7.9\%	${ }_{749}^{756}$	998	${ }_{246}^{242}$	332.9\%
69.1\%	${ }^{726}$	993	267	36.8\%
70.4\%	670	988	318	
71.28\%	${ }_{631} 63$	983	346	
74.1\%	620	${ }_{896}$	${ }_{276} 27$	44.5\%
75.3\%	616	828	212	
76.5\%	611	772	162	
77.8\%	609	751	142	
79.0\%	609	710	101	
80.2\%	609	688	79	13.0\%
81.5\%	${ }_{607}^{608}$	677	69	11.4\%
82.7% 880%	607	655	${ }^{47}$	18\%
84.0\%	601	637	${ }^{36}$	5.9\%
85.2\%	600 464	${ }_{6} 620$	20	3.4\%\%
${ }^{86.47 \%}$	464	616	152	7\%
887.9\%	${ }_{375}^{462}$	610 609	${ }_{234}^{147}$	
88.9% 9.10%	${ }_{302}^{375}$	${ }_{608}^{609}$	${ }_{306}^{234}$	
9014\%	302	608	506	101.4\%
${ }_{9} 9.6 \%$	${ }_{281}^{284}$	533 510	${ }_{229}^{229}$	88.0\%
93.8\%	281	498	217	77.2\%
95.19\%	${ }^{281}$	496	215	
96.3\%	281	4	195	69.27
9888\%	${ }_{281}$	308	27	\%
100.0\%	252	278	26	10.1\%

Figure SW-46-b
Feather River at Shanghai Bend, Monthly Flow

Table SW-46-b

| |
| :--- | :--- | :--- | :--- |

		January		
rerent	WSIP 2070 Wethout	WSIP 2070 With Project		Reative
Ercoeability	Monthy foiew (CFS)	Monthly Flow (CFS)	(CF5)	Difference (\%)
0.0\%	78,322	78,333		0.0\%
1.2\%	71,102	70,884	-218	0.3\%
2.5\%	${ }^{63,346}$	63,011	-334	0.5\%
3.7\%	49,892	48.018	-1,874	-3.8\%
4.9\%	39,932	41,330	1,397	3.5\%
6.2\% 7		㐌30.050	2,631	7.0\%
8.6\%	${ }_{33,228}$	34, 274	1,045	3.1\%
9.9\%	32,134	34,053	1,919	
11.1\%	25,047	25,047	0	
12.3\%	23,411	24,127	716	
13.6\%	22,570	23,997	1,428	
14.8\%	22,367	22,783	416	1.9\%
16.0\%	19,656	22,244	2.589	13.2\%
17.3\%	${ }^{19,646}$	20,233	587	3.0\%
18.5\%	${ }^{17,332}$	${ }^{19,931}$	2,599	15.0\%
19.8\%	${ }^{15,423}$	19,856	4,433	28.7\%
21.0\%	14,319	16,031	1,711	12.0\%
${ }^{22.2 \%}$	${ }^{13,878}$	${ }^{13,878}$	0	0.0\%
23.5\%	- 13.610	${ }^{13,610}$	0	0.0\%
24.7\%	12,787	${ }^{13,325}$	538	4.2\%
- 2.5	11,960 10,001	11,858	-102	
27.2\% 28.4%	10,901 10,671	10,901 10,901	0	
${ }^{28.4 .6 \%}$	${ }_{10,376}^{10,676}$	${ }_{10,976}^{10,976}$	230 0	2.2\%
30.9\%	10,075	10,079	4	0.0\%
32.1\%	9,687	9,567	120	1.2\%
		${ }_{8}^{8,363}$	0	0.0\%
34.8\%	${ }_{7,674}^{8,674}$	${ }_{\text {7, }}^{\text {7,674 }}$	${ }^{-17}$	-0.0.2\%
37.0\%	7,415	7.415	0	0.0\%
38.3\%	6,994	6,494	0	0.0\%
39.5\%	${ }_{6}^{6,337}$	${ }_{6}^{6,337}$	0	0.0\%
40.7\%	5,967	5,967	0	0.0\%
42.0\%	5.597	5,597	0	0.0\%
43.2\%	5.340 5089	${ }_{\text {5,133 }}$	207	-3.9\%
44.4\%	5.089	5,089	0	0.0\%
45.77\%	4,978	4,978	0	0.0\%
46.9\%	4,973	4,932	40	-0.8\%
48.1\% 4 \%	4,932	4.918	${ }^{-14}$	0.3\%
59.6\%	- 4.876	${ }_{4}^{4.876}$	0	-
51.9\%	4,605	4.605	0	0.0\%
53.19\%	${ }_{4}^{4.528}$	4,528	0	0.0\%
54.3\%				
56.8\%	${ }_{3,083}^{4 ., 570}$	${ }_{3,061}^{4.067}$	-22	-0.7\%
58.0\%	3,061	2,973	-89	
59.3\%	2,973	2,930	43	4\%
60.5\%	2,912	2,912	0	0.0\%
61.7\%	2,909	2,909	0	0.0\%
63.0\%	2,891	2,891	0	0.0\%
64.2\%	2,865	2,864	-2	-0.1\%
65.4\%	2,864	2,845	-19	-0.7\%
66.7\%	2,845	2,811	${ }^{-33}$	-1.2\%
-67.9\%	2,811	${ }_{2}^{2,786}$	${ }^{-26}$	-0.9\%
69.1\%	${ }_{2}^{2,786}$	2,782	-3	-0.1\%
70.4\%	${ }_{\text {2, }}^{2,782}$	2,761 2760	${ }^{-22}$	厚\%
71.6\% ${ }^{72.8 \%}$	2.761 2.760	2,760 2.743 2	-17	0.0\%
74.1\%	-	${ }^{2,743}$	-17	--.1.\%
75.3\%	${ }_{2}^{2,743}$	${ }_{2,712}^{2,7}$	${ }^{-31}$	-1.1\%
76.5\%	${ }_{\text {2,712 }}$	2,674	-38	-1.4\%
77.8\%	2,674	2,627	47	-1.8\%
80.2\%	${ }_{2,576}^{2,627}$	${ }_{2,576}^{2.618}$	-10	-0.0\%
81.5\%	${ }_{2,568}$	${ }_{2,450}$	-118	4.6\%
82.7\%	2.475	2,433	42	,
84.0\%	2,450	2.415	${ }^{36}$	1.5\%
85.2\%	2,433	2.406	${ }^{27}$	-1.1\%
- 86.48%	2,406 2311 2	2,308	98	4.1\%
88.9\%	${ }_{2,171}$	${ }_{2} 171$	121	-
90.1\%	2,105	${ }_{2,148}^{2,148}$	43	2.0\%
91.4\%	2,101	2,105	4	0.2\%
92.6\%	2.018	2,104	86	4.2\%
93.3\%	2,002	2,018	${ }_{2}^{17}$	${ }^{0.8 \%}$
95.1\%	2,000	2,002	$\stackrel{2}{2}$	0.1\%
${ }^{97.5 \%}$	${ }_{1}^{1,887}$	(1,857	-12	${ }_{\text {- }}^{0.8 \% \%}$
98.8\%	${ }^{1,831}$	${ }_{1}^{1,831}$,	0.0\%
100.0\%	1,794	1.809	15	0.8\%

Table SW－46－b

		February		
Percent Exceedanc	$\begin{aligned} & \text { WSIP } 2070 \text { Without } \\ & \text { Proiect } \\ & \hline \end{aligned}$	WSIP 2070 With Project	Abssoute	Relative ference $(\%)$
Probability	Monthly Fow（CFFS）	Montly Flow（CFS）	（CFS）	
0．0\％	${ }^{71,558}$		0	0．0\％
1．2\％	54,880	55，279	399	
2．5\％	50，217	52，277	2，060	4．1\％
3．7\％	48，798	50，217	1.419	2．9\％
4．9\％	48，215	48，798	583	1．2\％
6．2\％	46，988	${ }^{46,963}$	－25	－0．1\％
7．4\％	${ }^{45,425}$	42,191	－3，234	7．7\％
8．6\％	${ }^{39,696}$	${ }^{40,793}$	1，098	2．8\％
9．9\％	37，959	${ }^{37,959}$	0	0．0\％
11．1\％	${ }^{36,570}$	${ }^{36,416}$	－ 154	迆
${ }^{12.36 \%}$	${ }^{36,277}$	${ }^{36,270}$	－1	\％
13．4\％\％		35．851	111	源
－1．8．0\％	－${ }_{\text {34，}}^{31818}$	－${ }_{\text {34，}}^{31818}$	11	源
17．3\％	${ }_{3}^{3,4688}$	${ }_{34,472}$	1.005	3．0\％
18．5\％	31，903	31，902	－1	\％
19．8\％	29，940	29，940	0	
21．0\％	29，175	29.175		
22．2\％	26，715	29，157	． 442	
23．5\％	24，888	24，888	0	
24．7\％	24，270	24，27	0	
25．9\％	22,546 2,739	${ }^{22,742}$	196	0．9\％
27．2\％	${ }^{21,739}$	${ }^{22,546}$	807	3．7\％
28．4\％	${ }^{20,913}$	${ }^{21,739}$	${ }_{826}$	3．9\％
29．6\％	18，664	${ }^{19,533}$	869	4．7\％
30．9\％	18，184	18，184	0	0．0\％
32．1\％	17，244	17，244	0	0．0\％
33．3\％	16.644	116.644	0	0．0\％
34．6\％	14，810	${ }^{14,485}$	325	－2．2\％
35．8\％	12，673	12，673	0	0．0\％
37．0\％	10，795	10，644	151	－1．9\％
38．3\％	10，565	10，565	－1	0．0\％
39．7\％	10，．565	10，218	－347	－3．3\％
${ }^{40.7 \%}$	－10．218	${ }_{9}^{9,928}$	32	源
43．2\％	8.529	${ }_{8,529}^{9.249}$	${ }_{-1}$	0．0\％
44．4\％	${ }_{8,052}$	${ }_{8}^{8,552}$	0	0．0\％
45．7\％	${ }_{7}^{7,866}$	7.866	0	0．0\％
${ }^{46.9 \%}$	7，107	7，100	8	${ }^{-0.1 \%}$
48．1\％ 4.4		${ }^{6.711}$	142	－2．1\％
50．6\％	${ }_{\substack{6.818 \\ 6.544}}^{6}$	6.544 6.268	${ }_{\text {－}}^{278}$	－4．4．2\％
51．9\％	6，266	6，024	243	－3．9\％
	6，038	6，010	－27	－0．5\％
54．3\％	${ }_{6}^{6.010}$	${ }^{5.916}$	－94	－1．6\％
55.6% 56.8%	5．916	${ }_{5}^{5.658}$	259	－4．4\％
56．8\％	5．658	5．517	141	－2．5\％
58．0\％	5，445	5，445	0	0．0\％
59．5\％	4，925	4,925 4802	${ }_{-2}$	－0．0\％
61．7\％	4.778	4.778	0	0．0\％
63．0\％	4，762	4，762		0．0\％
64.2% $6.4 .4 \%$	4,519 4.303	4.519 4303	\bigcirc	0．0\％
${ }^{65.4 \%}$ 66．7\％	${ }_{4,185}^{4.303}$	4.303 4.188	${ }_{4}$	0．0\％
67．9\％	3，318	3，318	0	0．0\％
69．1\％	3，205	3，155	－50	－1．6\％
70．4\％	3，155	3，035		－3．8\％
71．2．8\％		3,010 2，979	\bigcirc	－${ }_{\text {0．0\％}}^{0.0 \%}$
74．1\％	2，944	2,944	0	0．0\％
75．3\％	2，891	2,866	${ }^{25}$	－0．9\％
76．5\％${ }_{77}$	2.866	2.809	－57	－2．0\％
77．8\％	${ }_{2}^{2,813}$	${ }^{2,793}$	${ }^{20}$	－0．7\％
79．0\％	${ }^{2,793}$	2，759	${ }^{33}$	－1．2\％
－${ }_{\text {80，2\％}}$	2，759	2，757	－2	－0．1\％
81．5\％ 88.7%	${ }^{2,757}$	${ }_{\text {2，725 }}^{2,727}$	－3	－0．1\％
84．0\％	${ }_{2}^{2,755}$	${ }^{2}, 727$	－28	－1．0\％
84．0\％	2，703	2，703	0	0．0\％
${ }^{86.4 \%}$	2,681 2.530	2,702 2.596	${ }^{21}$	
877\％	2，527	2，530	3	0．1\％
88．9\％	2，490	$\begin{array}{r}2.527 \\ 2.59 \\ \hline\end{array}$	${ }^{37}$	1．5\％
9011\％	${ }^{2} 2067$	2，499	23	0．9\％
9，4．4\％	${ }^{2,273}$	${ }_{2}^{2,467}$	195	${ }^{8.67 \%}$
93．8\％	2,021	${ }_{2,273}$	252	12．5\％
95．1\％	2，007	2，029	22	1．1\％
${ }_{9}^{96.3 \% \%}$	${ }^{1,979}$	2，017	${ }^{38}$	1．9\％
998\％	1，708	＋1，711	3	0．0\％
		1．667		

		Mart					April $^{\text {a }}$		
Exceedanc		Wsil 2070 With Project	Absolute	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	Percent Exceedance	${ }^{\text {WSIP } 2070 \text { Without }}$	Wsip 2070 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \end{aligned}$	
	Monthy Fow（CFS）	Monthly Fiow（CFS）	（CFFS）		Probability	Monthly Fow（CFS）	Monthly Fow（CFS）	（CFS）	
－${ }_{\text {1．2\％}}^{\text {O．2\％}}$	64,080	${ }^{64,080}$	0		0．0\％	${ }^{33,449}$	33.43		0．0\％
${ }^{1.2 \% \%}$	${ }^{63,565}$	63，569	5	0．0\％	${ }^{1.2 \%}$	${ }^{26,602}$	${ }^{26,598}$	4	0．0\％
${ }^{2.5 \%}$	${ }^{48,535}$	${ }^{48,330}$	505	－1．0\％	2．5\％	${ }_{\text {23，671 }}$	${ }^{23,672}$	1	${ }^{0.0 \%}$
3．9\％	48，330	4，773	－51	－1\％	3．7\％	${ }^{13,220}$	14，652	＋	6．0\％
6．2\％	47,973	47，473	－500	－1．0\％	4．9\％	${ }^{11,6051}$	${ }^{11,008}$	－3	0．0\％
7．4\％	${ }^{42,392}$	32.392	0	0．0\％	7．4\％			7	－0．1\％
8．6\％	29.017	29.017	0	0．0\％	8．6\％	8.681		8	－0．1\％
9．9\％			467	1．7\％			8，132	32	
11．1\％	27.096	27431	335	1．2\％	11．1\％	7.916	7911	－5	－0．1\％
12．3\％	26，912	27，096	183	0．7\％	12．3\％	7，299	7，294	4	－0．1\％
13．6\％	25，713	25，713	0	0．0\％	13．6\％	6，824	6，820		－0．1\％
14．8\％	25，154	25，154	0	0．0\％	14．8\％	5，229	5，220	9	－0．2\％
16．0\％	24，753	24，652	101	0．4\％	16．0\％	5．091	5，082	9	
17．3\％	21，311	21，304	－7	0．0\％	17．3\％	4，753	4，753	0	0．0\％
18．5\％	20，267	20，267	0	0．0\％	18．5\％	4，608	4，601	6	－0．1\％
19．8\％	20，253	${ }^{20,253}$	0	0．0\％	19．8\％	4，448	4，407	41	－0．9\％
21．0\％	20，012	${ }^{20,0012}$	0	0．0\％	21．0\％	4，241	4，241		
${ }^{22.2 \%}$	19，278	19，278	0	0．0\％	22．2\％	4，106	4，128	22	
23．5\％	18,770	18,770	0	0．0\％	23．5\％	4，059	4，097	${ }^{38}$	0．9\％
24．7\％	${ }^{18,306}$	${ }^{18,344}$	${ }^{38}$	0．2\％	${ }^{24.7 \%}$	${ }^{3,886}$	4，059	173	4．4\％
25．9\％	${ }^{18,006}$	${ }^{18,306}$	300	1．7\％	25．9\％	${ }^{3.836}$	${ }^{3,886}$	50	1．3\％
27．2\％	16，485	${ }^{18.006}$	1，521	9．2\％	27．2\％	3，740	${ }_{3,836}$	97	2．6\％
28．4\％	16．076	16，076	0	0．0\％	28．4\％	3，654	3，569	${ }^{85}$	－2．3\％
29．6\％	${ }^{15,923}$	15.487 15.193 18	${ }^{-437}$	－2．7\％	29．6\％	3，569	3，487	${ }^{-82}$	－2．3\％
30．9\％	15，181	15，193	12	0．1\％	30．9\％	3，487	3，166	${ }^{321}$	－9．2\％
32．19\％	14，235	14，087	－149	－1．0\％	32．1\％	${ }^{3,1666}$	${ }^{3.078}$	${ }^{-88}$	－2．8\％\％
33．3\％	113，295	－13，295	0	0．0\％	33．3\％	3，087	3，054		－1．19
34．6\％	${ }^{12,2,997}$	12，7837	86	0.7%	34．6\％	3，069	${ }_{2}^{2,989}$	－80	－2．6\％
37．0\％	12,297 11,887		${ }_{337}$	${ }_{\text {2 }}$	－ 37.75	${ }_{2,918}^{2,989}$	${ }_{2,915}^{2,918}$	${ }_{-3}-8$	－0．1\％
38．3\％	10，673	${ }^{11,887}$	1，214	11．4\％	38．3\％	2.917	${ }_{2,898}$		－0．7\％
3．5\％	10，328	11，452	1，124	10.9	39．5\％	2.899	2．853	46	1．6\％
40．7\％	9，147	10，328	81	12．9\％	40．7\％	2.844	2.822		0．8\％
42．0\％	8，110	9,463	1，352	16．7\％	42．0\％	${ }_{2}^{2.826}$	2，814	－12	0．4\％
43．2\％	${ }^{8.032}$	${ }^{9,147}$	1，115	13．9\％	43．2\％	2.814	2，783	－31	1．10
44．4\％	${ }_{7}^{7,520}$	${ }_{8}^{8,271}$	${ }^{751}$	10．0\％	44．4\％	2.801	${ }^{2.744}$	－57	2．0\％
45．7\％	7，078	7，601	522	7．4\％	45．7\％	2，744	2，726	－19	－0．7\％
46．9\％	${ }^{6.8688}$	7，520	652	9．5\％	46．9\％	2.688	${ }^{2,665}$	－23	－0．8\％
48．1\％	6，780	6，780	0	0．0\％	48．1\％	2.679	2.636	－42	－1．6\％
49．4\％	${ }_{6}^{6,305}$	${ }_{6}^{6,305}$	0	0．0\％	49．4\％	${ }^{2.665}$	2，601	－64	－2．4\％
年50．9\％	${ }^{6,180}$	6，191	12	0．2\％	50．6\％	2，410	2，410	0	0．0\％
531．9\％	6，059	5，798	${ }^{261}$	－4．3\％	51．9\％	2，256	${ }_{2}^{2,348}$	92	4．1\％
${ }^{53.13 \%}$	5．580	5，578	－2	0．0\％	53．1\％	${ }_{2}^{2,176}$	2，248	72	3．3\％
55．6\％	${ }_{5}^{5.1888}$	${ }_{\text {5，188 }}$	0	0．0\％	54．3\％	2，171	${ }_{2,176}^{2,176}$	5	0．3\％
55．8\％	5，157	5，157	0	0．0\％	55．6\％	2，124	2，171	47	2\％
56．8\％	${ }^{5,098}$	5，098	0	0．0\％	${ }^{56.8 \%}$	${ }_{2}^{2,123}$	${ }^{2,096}$	－27	
59．3\％	5.030 5008	${ }_{4.928}^{5}$	${ }_{-80}$	－	59．3\％	2,100 2 2	2,089 2.022	－－30	${ }^{-0.5 \%}$
60．5\％	4，842	4，840	－2	－0．1\％	60．5\％	${ }_{2}, 023$	2.020	4	－0．2\％
61．7\％	4，840	4，812	－28	－0．6\％	61．7\％	2，022	1，981	41	． 2 \％
63．0\％	4.812	4，786	－26	－0．5\％	63．\％		1.961	19	．0\％
64．2\％	4，786	4，589	－197	4．1\％	54．2\％	1，916	1，891	${ }^{25}$	．3\％
	4，481	4.402	－78	－1．7\％	\％	${ }^{1.850}$	${ }^{1,822}$	－28	1．5\％
－ 66.7%	4，406	4，178	${ }^{228}$	5．2\％	66．7\％	1，823	1，754	－69	－3．8\％
－ 67.9%	4，157	4，108	－50	－1．2\％	67．9\％	1，754	1，706	${ }^{-48}$	－2．7\％
70．4\％	${ }_{\text {4，010 }}^{\text {3，957 }}$	4,010 3,748	${ }_{209}$	0.0% $.5 .3 \%$	70．4\％	${ }^{1.6872}$	${ }_{1,672}^{1,672}$	－34	－2．0\％
71．6\％	3，748	${ }_{3} \mathbf{6} 663$	-86	－2．3\％	71．6\％	1，672	${ }_{1,672}$	0	0．0\％
72．8\％	3，615	3，631	15	0．4\％	72．8\％	1，672	1，672	0	0．0\％
74．1\％	3，599	3，441	158	4．4\％	74．1\％	1，672	1，672	0	0．0\％
75．3\％	3，574	3，362	－211	5．9\％	75．3\％	1，672	${ }^{1,672}$	0	0．0\％
${ }^{76.55 \%}$	${ }^{3.425}$	${ }^{3} .063$	${ }^{-362}$	－10．6\％	76．5\％	${ }^{1,672}$	${ }^{1,672}$	0	0\％
77．0\％	3，249	${ }_{2}^{2,872}$	－37	－11．6\％	77．8\％	${ }^{1,672}$	${ }^{1,672}$	0	0．0\％
79．0\％	${ }^{3,116}$	${ }_{2}^{2,839}$	－27	－8．9\％	79．0\％	${ }^{1,672}$	${ }_{1}^{1,672}$	0	0．0\％
801．5\％	${ }_{2839}$	2，806	－－59	${ }^{-2.17 \%}$	80．2\％	${ }_{1}^{1,672}$	${ }_{1}^{1,672}$	O	${ }^{0.0 \% \%}$
${ }^{82} 8.7$ \％	${ }_{2,806}^{2,069}$	${ }_{2,734}$	－72	－2．6\％	${ }_{82.7 \%}$	${ }_{1,672}^{1,672}$	${ }_{1,672}^{1,672}$	0	0．0\％
84．0\％	2，790	2，702	－88	－3．2\％	84．0\％	1,672	1,672	0	0．0\％
－	2，734	2，689	－45	－1．6\％	85．2\％	${ }^{1,672}$	${ }^{1,672}$	0	0．0\％
	${ }_{2} 5155$	${ }_{2} 5155$		0．0\％	${ }^{80.47 \%}$	${ }_{1}^{1,672}$	1,672		0．0\％
	${ }_{\substack{2.464}}^{\text {2，}}$	${ }_{\substack{2.465}}^{\text {2，}}$	0	0．0\％	88．9\％	${ }_{1,672}^{1.672}$	${ }_{1,672}^{1.672}$		\％
90．1\％	2,207	${ }_{\text {2，207 }}$	0	0．0\％	90．1\％	${ }_{1,672}$	${ }_{1,672}$	0	0．0\％
91．4\％	2，111	2，102	－9	0．4\％	91．4\％	1，672	1，672	0	0．0\％
92．6\％	2,066	2,066	0	0．0\％		1，576	${ }^{1.576}$	0	0\％
93．8\％	1，784	1，780	4	0．2\％	93．8\％	1，575	1，575	0	0\％
95．1\％	1，780	1，762	${ }^{-18}$	－1．0\％	95．1\％	1，504	1，422	－81	5．4\％
96．3\％${ }^{96.5 \%}$	1，758	1，734	${ }^{25}$	1．4\％	96．3\％	${ }^{1,422}$	1，422	0	0．0\％
97．5\％	1，734	1，733	0	0．0\％	97．5\％	${ }^{1,422}$	1，301	121	8．5\％
988\％\％ 1000%	－1，657	＋1，659		${ }_{\text {21\％}}^{0.1 \%}$	98．8\％ 100．0\％	（1，205	（1，205	0	0．0\％

$\begin{gathered} \text { Percent } \\ \substack{\text { Exceedance } \\ \text { Probabaility }} \end{gathered}$	May			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	WSIP P207 Wethout	WSIP 2070 With Project	Absolue	
	Monthly Fowed（CFS）	Monthly Fow（CFS）	（CFS）	
	13,169	${ }^{13,160}$		0．1\％
1．2\％	7.063	7.063	0	0．0\％
2．5\％	4．689	4．818	129	2．7\％
3．7\％	4，287	4，689	402	
4．9\％	3，712	4，267		
7．4\％	－	－	117	
8．6\％	${ }^{\text {j，594 }}$	5，472		
${ }_{9.9 \%}$	${ }_{3416}$	5，626	123	6．1\％
191\％	${ }_{3}$	${ }_{\text {j，}}^{\substack{\text { jo3 }}}$	217	
12．3\％	${ }_{3,306}$	${ }_{3432}$	126	38\％
13．6\％	${ }_{3,277}$	${ }_{3,393}$	117	3．6\％
14．8\％	3，249	3，344	95	2．9\％
16．0\％	3，177	3，274	97	3．1\％
17．3\％	3，112	3，225	113	3．6\％
18．5\％	3，081	3，177	96	3．1\％
19．8\％	3，029	3，150	121	4．0\％
21．0\％	2，990	3，114	125	4．2\％
22．2\％	2，828	3，087	259	9．2\％
23．5\％	2，802	3，029	${ }^{227}$	${ }^{8.1 \%}$
25．9\％	2，706	${ }_{2,934}^{2,961}$	${ }^{228}$	8．4\％
27．2\％	2，690	2,878	188	7．0\％
29．6\％	${ }_{2,626}^{2,630}$	${ }_{2,801}^{2,843}$	${ }_{175}$	${ }_{6.7 \%}^{8.17}$
30．9\％	${ }_{2,624}$	${ }_{2,798}$	174	6．6\％
32．1\％	2，613	2.795	182	7．0\％
	－${ }_{2}^{2,606}$	2，745	139 132	
34．8\％	${ }_{2,539}$	${ }_{2,615}^{2,65}$	76	3．0\％
37．0\％	2，535	2.613	78	3．1\％
38．3\％	2,381	2.561	180	7．6\％
39．5\％	2，359	2.544	185	7．8\％
40．7\％	2，345	2,341 2193	4	－0．2\％
42．0\％	2,330 2,320	2，193	－136	－5．9\％
43．2\％	2，320	2，105	－215	－9．3\％
${ }^{44.4)^{\circ}}$	2，179	2，104	－75	－${ }^{-3.4 \%}$
46．9\％	${ }_{2}^{2,121}$	${ }_{2,000}^{2,097}$	－64	${ }^{-3.7 \%}$
48．19\％	2.064	1.948	－117	－5．7\％
	2，014	${ }^{1,921}$		
50．9\％	${ }_{1}^{1,927}$	${ }_{1}^{1,850}$	－77	－5．0\％
53．1\％	1，918	1，753	－165	－8．6\％
54．3\％\％	1,853 1.850	1,747 1,746	－106	－5．7\％
56．8\％	${ }_{1}^{1,828}$	1，713	－116	－6．3\％
58．0\％	1，753	1，696	－56	－3．2\％
59．3\％	1，750	1，696	－55	－3．1\％
60．5\％	1，750	1.675	－75	4．3\％
61．7\％	1，716	1，651	－65	－3．8\％
63．0\％	1，700	${ }^{1,651}$	－50	－2．9\％
64．2\％	1,675	${ }^{1,651}$	－25	－1．5\％
65．4\％	${ }_{1,651}^{1,651}$	${ }_{1,651}^{1,651}$	0	－0．0\％
6．7．9\％	${ }_{1}^{1,651}$	${ }_{1,651}$	0	0．0\％
69．1\％	1，651	1，651	0	0．0\％
70．4\％	＋1，651	1，651	0	0．0\％
71．6\％	1，651	1，651	0	0．0\％
74．1\％	${ }_{1,651}^{1,651}$	${ }_{1,651}^{1,651}$	0	0．0\％
75．3\％	1，651	1.651	0	0．0\％
76．5\％	1，651	1，651	0	0．0\％
79．0\％	${ }_{1,651}^{1,651}$	${ }_{1}^{1,651}$	0	0．0\％
80．2\％	1，651	1，651	0	0．0\％
81．5\％	1，651	1，651	0	0．0\％
82．7\％	1，651	1，651	0	0．0\％
84．0\％	1，651	1，651	0	
85．2\％	1，651	1，651	0	0．0\％
86．4\％	1，651	${ }^{1,651}$	0	${ }^{0.0 \% \%}$
88．9\％	1,651	${ }_{1}^{1,651}$	0	0．0\％
90．1\％	1，651	1，651	0	0．0\％
91．4\％	1.651	${ }^{1,592}$	－58	－3．5\％
－ 92.6%	＋1，651	（1，467	－-184	－-1.14%
${ }_{95}^{93.8 \%}$	＋1，651	1，401	－-106	－15．1\％
96．3\％	1,401	${ }_{1,401}^{1,401}$	\％	－0．0\％
97．5\％${ }^{988 \%}$	1,401 1.243 1	（1，401	${ }^{0}$	0．0\％
－ 100.0%	${ }_{1}^{1,066}$	$\stackrel{1,019}{1,066}$	${ }^{24}$	－1．9\％

Table SW－46－b
erot shanghanal Bend，Monthy Flow
Proabily ofxxeeedance

		June		
Percent Exceedance	WSIP 2070 Without Proiet	WSIP 2070 With Project	Absolute Difference	Relative
Probability	Monthy flow（CFS）	Monthy Flow（CFS）	（CFS）	
0．0\％	7.683	6.039	${ }_{-1,644}$	－21．4\％
1．2\％	6，471	5.907	－564	－8．7\％
2．5\％	6，456	5，706	750	－11．6\％
3．7\％	${ }_{6}^{6,421}$	5，467	－954	－14．9\％
4．9\％	6.305 5 5768	4.899 4.875	-1.406 -893	－ 22.3%
－6．2\％	5.768 5.640	${ }_{4.855}^{4.875}$	－－785	－
8．6\％	${ }_{5}^{5.598}$	4，853	－744	－13．3\％
${ }^{9.9 \%}$	5，500	4.840	－660	－12．0\％
${ }^{19.12 \%}$	5.318 5111	4，709	－609	
13．6\％	${ }_{5}^{5,111}$	4.591	－520	
14．8\％	5，051	4,557	${ }_{-4}$	
16．0\％	4.932	4,393	${ }_{-539}$	－10
17．3\％	4，924	4，354	－570	
18．5\％	4，910	4，242	－668	－13．6\％
19．8\％	4，817	4，137	－679	－14．1\％
21．0\％	4．728	4.071	－657	－13．9\％
${ }_{2}^{22.5 \%}$	4，632	$\begin{array}{r}3.989 \\ \hline\end{array}$	－642	－13．9\％
${ }_{24.7 \%}$	${ }_{4,566}$	${ }_{\substack{3,922 \\ 3,920}}$	${ }_{-646}$	－14．2\％
25．9\％	4，509	3，880	－629	－13．9\％
27．2\％	4，481	3，746	－735	－16．4\％
28．4\％	4.425 4.388	退3．688	－757	－17．1\％
－${ }_{\text {20．9\％}}$	${ }_{4,340}^{4,398}$	（3,631 3.604		－
32．1\％	4.323	${ }_{\text {3，587 }}$	－737	－17．0\％
33．3\％	4，306	3，554	－753	7．5\％
34．6\％	4，298	${ }^{3.544}$	－753	－17．5\％
	${ }_{4}^{4,297}$	3.547 3.506	－780	－18．2\％，
38．3\％	${ }_{4,278}^{4,292}$	3．491	－787	捡
39．5\％	4，065	${ }_{3,484}^{\text {3，4，}}$	${ }_{-51}$	－14．3．
40．7\％	4，032	3，419	－612	－15．2\％
42．0\％	3，997	3，393	－604	－15．1\％
43．2\％	3，986	3，381	－605	－15．2\％
44．4\％	3，952	${ }^{3,376}$	－576	－14．6\％
45．7\％	3，921	3，285	－636	－16．2\％
46．9\％	${ }^{3,877}$	3，261	－609	－15．7\％
${ }^{48.19}$	${ }_{3}^{3.773}$	${ }^{3,236}$	－537	－14．2\％，
4．9．4\％	3,736 3 3	－	－704	－18．8\％
50．19\％	3,706 3 3	${ }_{2}^{2,967}$	－740	－20．8\％
53．1\％	3，607	2，857	－750	－20．8\％
54．3\％	3，591	2，835	－756	－21．1\％
55．8\％\％	－			
56．0\％	ci，${ }_{\text {3，394 }}$	${ }_{2,821}^{2,823}$	－574	${ }^{-16.9 \% \%}$
59．3\％	3，355	2，698	－657	${ }_{-19.9 \%}$
60．5\％	3，336	2,683	－653	－19．6\％
${ }^{61.7 \%}$	3，291	2.677	－614	－18．7\％
－63．0\％	${ }_{3}^{3,278}$	2，656	－622	－19．0\％
65．4\％	${ }_{3,148}$	${ }_{\text {2，656 }}^{2,656}$	－492	${ }^{-15.6 \%}$
66．7\％	3，058	${ }_{2,656}^{2,65}$	－402	－13．1\％
67．9\％	3，029	2，656	${ }^{-373}$	－12．3\％
69．1\％	2,830 283 8	－ 2,656	－174	－．6．1\％
70．4\％	2,823 2780 2	2,656 2651	-166 -129	－5．9\％
72．8\％	${ }_{2,740}^{2,780}$	2，604	－136	－5．0\％
74．1\％	2，690	2，602	－88	－3．3\％
75．3\％	2，687	2,590	－97	－3．6\％
76．5\％	2，608	${ }_{2}^{2,539}$	－69	－2．3\％
77．9\％	2，429	${ }_{2,501}^{2.536}$	${ }_{72}$	
80．2\％	${ }_{2,411}$	${ }_{2,381}^{2,3}$	咗	\％
81．5\％	2，204	2，352	148	6．7\％
82.7% 840%	2，009	2，340	330	16．4\％
－${ }_{\text {84．0\％}}^{8.2 \%}$	＋1，985	2,240 2，124 1	${ }_{173}^{255}$	
86．4\％	1，920	${ }_{\text {2，077 }}^{2,124}$	${ }_{157}$	8．2\％
87．7\％	1，847	2.069	222	12．0\％
88．9\％	1.819	2，050	231	12．7\％
90．1\％	1，799	2，017	${ }^{218}$	12．1\％
91．4\％	1，743	1，836	93	5．3\％
${ }_{9}^{92.6 \% \%}$	${ }_{1,656}^{1,657}$	1.830 1.753 1.107	173 97	
95．1\％	1，656	1.641	－15	－0．9\％
96．3\％	1，656	1.604	－52	－3．2\％
97．5\％	1，656	1，574	－82	－5．0\％
98．8\％ 100\％	${ }_{1}^{1,656}$	1,319 1,206	${ }_{-443}^{-337}$	－

August				
Percent Exceedance	${ }^{\text {WSIP } 2070 \text { Without }}$ Proiet	Wsip 2070 With Project	Absolute Difference	Relative
Probability	Monthly fow（CFS）	Monthly Fow（CFS）	（CFFS）	
0．0\％	9，162	． 838		3．5\％
${ }^{1.2 \%}$	${ }^{8.815}$	${ }_{8}^{8.802}$	－14	${ }^{-0.2 \%}$
${ }^{2.5 \%}$	${ }^{8.006}$	${ }_{8}^{8,754}$	－23	
4．9\％	\％97	8，656	－	
4．9\％	${ }_{8}^{8,697}$	${ }^{8.6556}$	－41	
7．4\％	${ }_{8,611}^{8.697}$	${ }_{8,535}^{8.655}$	－76	－0．9\％
8．6\％	${ }_{8.596}$	${ }_{8,443}$	－153	－1．8\％
9．9\％	8.575	8,394	181	21\％
11．1\％	${ }^{8.564}$	8，350	214	－2．5\％
12．3\％	8.529	8，207	322	－3．8\％
13．6\％	${ }_{8} 8.521$	${ }^{8,068}$	452	－5．3\％
14．8\％	${ }^{8,478}$	${ }^{8.067}$	410	－4．8\％
16．0\％	${ }_{8}^{8,377}$	8，031	346	－4．1\％
17．3\％	${ }_{8}^{8,357}$	${ }^{8,029}$	${ }^{328}$	
18．5\％	${ }_{8,347}$	${ }^{8.015}$	332	\％
19．8\％	${ }^{8,273}$	7.917	－356	－4．3\％
21．0\％	${ }_{8,233}^{8,23}$	7.907	${ }^{326}$	
${ }^{22.2 \%}$	${ }_{8}^{8,229}$	7，883	${ }^{346}$	
23．5\％	${ }^{8,192}$	${ }_{7} 7.688$	－504	${ }^{6.2 \%}$
25．9\％	${ }_{8,062}$	7,566	－506	－6．3\％
27．2\％	7，973	7，528	－445	－5．6\％
28．4\％	7，953	7，380	－573	
29．6\％	7，937	7.372	564	
30．9\％	7.917	7，360	－557	－7．0\％
32．1\％	${ }_{7}^{7,877}$	7，339	－537	－6．8\％
33．3\％	${ }_{7}^{7.849}$	7，234	－615	
34．6\％	${ }_{7}^{7.824}$	7，114	710	－9．1\％
35．8\％	7.714	7，114	－600	
37．0\％	${ }^{7}, 604$	7，074	－530	－7．0\％
38．3\％	7，555	7，041	－514	－6．8\％
39．5\％	7，506	7，030	－476	－6．3\％
40．7\％	7，402	7，009	-392	5．3\％
42．0\％	${ }_{7}^{7,392}$	6，961	${ }^{-431}$	5．8\％
43．2\％	7.028	6，897	－131	－1．9\％
4．4．4\％	${ }^{7}, 006$	6，752	－254	－3．6\％
45．7\％	6，757	6．597	－ 59	－2．4\％
46．9\％	6．513	6，459	－54	－0．8\％
－ 48.10%	－ $\begin{aligned} & 6.402 \\ & 5.839\end{aligned}$		－25	－0．0\％\％
50．6\％	5.820	${ }_{5,684}^{5.64}$	${ }_{1} 136$	
51．9\％	5．749	5．667	82	
53．1\％	5．586	5.628	${ }^{43}$	
54．3\％	5．551	5．573	22	0．4\％
55．6\％	5，132	5，491	359	7．0\％
56．8\％	5，059	5，370	311	6．1\％
58．0\％	4，929	5，060	${ }^{132}$	\％
59．3\％	4，906	4，8966	－11	－0．2\％
60．5\％	4，776	4，682	－94	－2．0\％
617\％\％	4，754	4，483	－271	－5．7\％
63．0\％	4．714	4，294	－420	－8．9\％
64．2\％	4，648	${ }^{4,223}$	${ }^{-426}$	\％
65．4\％	${ }_{4}^{4.522}$	4，187	－335	－7．4．
67．9\％	${ }_{4}^{4,381}$	4，057	${ }^{-324}$	－7．4\％
69．1\％	${ }_{4}^{4,113}$	${ }_{\text {li，97 }}$	－196	－
70．4\％	3，952	${ }_{3.848}$	－105	
71．6\％	3，512	3，766	254	7．2\％
72．8\％	3，413	3，709	296	8．7\％
74．1\％	3，133	3，556	424	
75．3\％	3，024	3，082	58	1．9\％
76．5\％	2，954	2，992	38	．3\％
777．8\％	2，590	2.872	282	10．9\％
890\％	2，556 2，32	2,625 2.473	${ }_{131}^{69}$	
81．5\％	${ }_{2,340}$	${ }_{2,238}^{2,2,}$	－102	－4．4\％
82．7\％	2，234	${ }_{2,224}$	－10	－0．5\％
84．0\％	2，139	2，211	73	3．4\％
85．2\％	2，072	${ }^{1,815}$	${ }^{256}$	－12．4\％
86．4\％	2，045	1，796	－249	既2\％
87．7\％	$\begin{array}{r}2.036 \\ 1.932 \\ \hline\end{array}$	－1，697	－339	－16．6\％
88．9\％	${ }^{1,932}$	（1，686	${ }_{-252}^{245}$	－
90．1\％	1，907	1，555	－352	－
92．6\％	（1，734	－${ }_{1}^{1,545}$	－188	－10．9\％
93．8\％	1，661	${ }_{1,467}^{1,465}$	－194	
95．1\％	1，498	1，231	－267	－17．8\％
${ }^{96.3 \%}$	${ }^{1,402}$	1，159	${ }_{-243}^{243}$	年．3\％
	${ }_{1}^{1,321}$	${ }^{1} 1148$	－165	${ }^{112.5 \%}$
	${ }_{1,014}^{1.028}$	（1，148		7\％

		Seplembe		
Pereent	WSIP 2 2ro Wethout Proiect	Wsip 2070 With Project	${ }_{\substack{\text { Absolute } \\ \text { Difference }}}$	Relative
Probabality	Monthly Fow（CFFS）	Monthly Fiow（CFFS）	（CFF）	Difference（\％）
0．0\％				0．0\％
1．2\％	10，646	10，479	－167	－1．6\％
2．5\％	10，630	${ }^{10,473}$	158	
3．7\％	10，595	10，453	142	－1．3\％
4．9\％	10，479	10，392	87	
6．2\％	10，340	10，340	0	
7．4\％	10，270	10，299	29	0．3\％
8．6\％	10，148	10，153	5	0．0\％
9．9\％	10，148	${ }^{9.883}$	${ }^{335}$	－3．3\％
111．19\％	10，032	9，662	－380	
${ }^{12.35 \%}$	10，023	9，441	－582	
13．4\％\％	9，940	9，438	－502	
14．8\％	9，710	9，404	－306	
16．0\％\％	9，5158	9，297	－266	2．7\％
18．5\％	${ }_{8,902}^{\text {9，920 }}$	${ }_{9,092}$	190	2．1\％
19．8\％	${ }_{8,625}$	8,957	333	
21．0\％	${ }_{8,611}$	${ }^{8,779}$	168	
22．2\％	${ }^{8.543}$	${ }^{8.559}$	16	
23．5\％	${ }_{8,406}$	8，179	227	
24．7\％	8，210	8，148	62	0．8\％
25．9\％	8，202	${ }_{8,086}$	116	－1．4\％
27．2\％	8，177	${ }_{7}^{7.837}$	339	
28．4\％	${ }^{8,081}$	7，833	${ }^{248}$	－3．1\％
29．6\％	${ }_{8}^{8.066}$	7，608	－459	－5．7\％
30．9\％	7，897	7,424	${ }^{-473}$	6．0\％
32．19\％	7，632	7，299	－333	4．4\％
33．3\％	7.614	7，224	－389	5．1\％
34．6\％	7.419	${ }_{7}^{7,185}$	${ }^{-234}$	－3．2\％
	7,314 6.954 6	${ }^{7,123}$	－	
37．0\％	6，954	6，449	－505	
38．3\％		年，042	－ 4 － 41	
39．7\％	¢，169 5.69		54	
${ }_{4}^{40.7 \%}$	5．659 5.538	${ }_{5.567}^{5.713}$	54 30	0．5\％
43．2\％	${ }_{5.446}$	5，384	62	
44．4\％	5，327	5，367	40	
45．7\％	5，306	5，331	25	
46．9\％	5，279	5，269	－10	
48．19\％	5，241	5.064	177	
4．4．4\％	5，073	5，027	47	\％
50．6\％	4.819	4，856	37	0．8\％
51．9\％	4，776	4.817	41	0．9\％
年 53.19%	4.416	4，624	208	4．7\％
54．3\％	4，200	4，489	289	6．9\％
年55．6\％	4，127	4，410	${ }_{283}$	6．9\％
	4，049	4，406	357	${ }^{8.8 \%}$
年58．3\％\％	3，996	4.360	445	11．44
年 69.5%	3，911	4，003	92	2．4\％
${ }^{60.5 \%}$	3，841	3，453	－389	－10．1\％
61．7\％ 630%	3，811	3，409	－401	10．5\％
－ $63.4 .2 \%$	${ }^{3.593}$	－	${ }_{-204}$	－8．79\％
－6．5．4\％	3，567	－	－283	
${ }_{6}^{65.7 \%}$	${ }_{2,886}^{2,925}$	${ }_{3,118}^{3,141}$	${ }_{222} 21$	7．7\％
67．9\％	2.729	2,916	187	
．1\％	2.419	2,827	408	
70．4\％	2，079	${ }_{2}^{2,485}$	406	\％
71．2\％	2，072	2，472	400	
72．8\％	1，981	2.455	474	
74．1\％	${ }^{1.875}$	2，430	555	6\％
75．3\％	1，767	2，327	559	31．6\％
76．5\％	1，765	2，208	${ }^{443}$	
77．8\％	＋1，725	2，079	354	20．5\％
79．0\％	1，709	${ }^{1,985}$	${ }^{276}$	16．1\％
－	1，798	${ }^{1.997}$	279	15．8\％
${ }^{81.5 \%}$	1．698	1，971	${ }_{273}^{272}$	16．0\％
82.7% 840%	（1，686	${ }_{1}^{1,959}$	${ }_{318}^{273}$	16．2\％
－84．0\％	${ }^{1.633}$	1.951	318	19．5\％
	${ }_{1}^{1,5671}$	1，945	334 353	${ }^{20.8 \%}$
${ }^{86.4 \%}$	${ }_{1}^{1.437}$	${ }_{1}^{1,925}$	${ }_{413}$	源
88．9\％	${ }_{1}^{1,416}$	${ }_{1}^{1.8789}$	${ }_{364}^{413}$	28.7% 257%
90．1\％	1，365	1，723	358	\％
91．4\％	1，295	1，670	374	\％
92．6\％	1，277	1，560	283	\％
93．8\％	1，234	1，409	175	14．2\％
95．1\％	1，232	1，294	62	
${ }_{\text {c }} 96.58 \%$	－1，231	1,198 1099 109	${ }^{-33}$	－2．7\％
98．8\％	${ }_{1}^{1,119}$	${ }_{1}^{1,070}$	－50	
100．0\％	1.052	1,052	0	0．0\％

Figure SW-47-b
American River at Mouth, Monthly Flow

December				
Percent Exceedance	WSIP 2070 Without Proiect	WSIP 2070 With Project	Absolute Difference	Relative
Probability	Monthly Fow (CFFS)	Monthly Fow (CFFs)	(CFF)	
				0.0\%
1.2\%	21,347	21,420	73	
2.5\%	21,007	21,344	337	1.6\%
3.7\%	20,220	20,230	10	
4.9\%	20,042	20,052	10	
6.2\%	19,114	19.111	4	
7.4\%	18,281	18,286	5	0.0\%
8.6\%	15,097	15,094	4	0.0\%
9.9\%	14,453	${ }^{13,779}$	-674	\%
11.1\%	10,314	9,456	-857	
${ }^{12.3 \%}$	6,291	6,748	458	7.3\%
13.6\%	4,820	¢,167	1,347	28.0\%
14.8\%	4,599	5,030	439	
10.0\%	${ }^{4} 4.429$	3,588	-841	
17.5\%	-	${ }^{3,094}$	-564	
18.5\%\%	2,747	2,907	160	
19.8\%	2,656	${ }^{2}, 6,57$	378	
-22.2\%	${ }_{2}^{2.307}$	${ }_{2,187}^{2,193}$	-121	${ }_{-5.2 \%}$
23.5\%	2,221	${ }_{1,945}$	276	-12.4\%
24.7\%	2,000	1,940	60	
25.9\%	1,956	1,938	-18	
27.2\%	1,945	1,923	${ }^{23}$	
28.4\%	1,940	${ }^{1,905}$	${ }^{-35}$	-1.8\%
29.6\%	${ }^{1,8988}$	${ }^{1,870}$	-28	
30.9\%	1,871	1,866	-5	-0.3\%
32.1\%	${ }^{1,866}$	${ }^{1.862}$	${ }^{-3}$	-0.2\%
33.3\%	${ }^{1.862}$	${ }^{1,843}$	-19	-1.0\%
34.6\%	1,849	${ }^{1,840}$	-9	-0.5\%
35.8\%	${ }^{1,837}$	${ }^{1,838}$	1	0.0\%
37.0\%	${ }^{1,836}$	${ }^{1,838}$	1	0.1\%
38.3\%	${ }_{1,832}^{1,822}$	${ }_{1}^{1,821}$	-10	
39.5\%	+1,829	${ }_{1}^{1,811}$	-18	-1.0\%
40.7\%	(1,828	1,757	-71	
${ }^{42.0 \%}$	${ }_{1}^{1,1624}$	1,749 1,775	${ }^{25}$	
44.4\%	${ }_{1}^{1,654}$	1,735 1.729	65 75	- ${ }^{3.9 \%}$
45.7\%	1,645	1,722	77	
46.9\%	1,636	1,693	58	
48.1\%	${ }^{1.632}$	1.641	9	6\%
4.9.4\%	,531			0.4\%\%
	(1,628	1,632	${ }_{7}^{4}$	
53.1\%	${ }_{1}^{1,590}$	${ }_{1,628}^{1,681}$	37	2.4\%
54.3\%	1,582	1.624	42	2.7\%
55.6\%	1,573	1,611	38	2.4\%
56.8\%	${ }^{1,556}$	${ }^{1,600}$	44	2.8\%
58.0\%	1,511	1,589	${ }^{78}$	5.2\%
59.3\%	${ }^{1,460}$	${ }^{1,584}$	${ }^{123}$	8.4\%
60.5\%	1,447	${ }^{1.552}$	105	7.3\%
${ }^{611.7 \%}$	${ }^{1,4228}$	1,544	116	${ }^{8.11 \%}$
63.0\%	1,419	1,535	116	8.2\%
64.2\%	${ }^{1,403}$	${ }_{\substack{1,527 \\ 1.568}}^{\substack{156}}$	123 175 1	${ }^{8.8 \%}$
-65.4\%	-1,351	+1.518	175	${ }_{12.29 \%}^{12.9 \%}$
${ }^{66.79}$	${ }_{1}^{1,325}$	1.514	116	-
69.1\%	${ }_{1}^{1.216}$	(1,433	217	-
70.4\%	${ }_{\text {1,159 }}$	${ }_{1}^{1,428}$	269	23.2\%
71.6\%	1,085	1,377	292	26.9\%
-72.8\%	1,098	-1,375	298	27.6\%
75.3\%	${ }_{964}^{998}$	${ }_{\substack{1,356 \\ 1,340}}^{1}$	367 376	37.0\%
76.5\%	922	1,254	332	36.0\%
77.8\%	915	1,201	286	
79.0\%	901	1,194	293	5\%
80.2\%	897	${ }^{1,142}$	245	27.3\%
${ }^{81.5 \%}$	874	1,089	214	24.5\%
82.7\%	811	915	105	12.9\%
84.0\%	806	900	93	11.6\%
85.2\%	768	891	${ }^{123}$	${ }^{16.0 \%}$
${ }^{86.46}$	772	${ }_{889}^{889}$	129	17.0\%
88.9\%	742 683	${ }_{764} 846$	105	-14.9\%
90.1\%	662	760	${ }_{98}$	9\%
91.4\%	660	746	${ }^{86}$	13.0\%
92.6\%	657	693	36	5.5\%
93.8\%	㐌 500	689	${ }_{4}^{42}$	
96.3\%	500	667	167	33.5\%
.5\%	500	500	0	0.0\%
98.8\% 100.\%	(500	($\begin{gathered}500 \\ 500\end{gathered}$	0	-0.0\%

Table SW-47-b River at outh , Honthly Fow

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& February \& \&

\hline Percent
Exceedance \& WSIP 2070 Without
Proiet \& WSIP 2070 With Project \& Absolute
Difference \& Eelative

\hline Probability \& Monthy fow (CFS) \& Monthy Fow (CFS) \& (CFs) \&

\hline 0.0\% \& 42,203 \& 42,203 \& 0 \& 0.0\%

\hline 1.2\% \& 32,715 \& 32,707 \& -8 \& 0.0\%

\hline 2.5\% \& 32,49

2,4, \& $\begin{array}{r}32,419 \\ \hline 2,199\end{array}$ \& 0 \& 0.0\%

\hline 3.7\% \& ${ }^{23,198}$ \& 23,199 \& 1 \& 0.0\%

\hline 4.9\% \& ${ }^{22,674}$ \& ${ }_{\text {22, }}^{22,072}$ \& ${ }_{-4}^{-2}$ \& ${ }^{0.0 \% \%}$

\hline ${ }_{\text {c }}^{\text {7.4\% }}$ \& ${ }_{\text {22, }}^{22,020}$ \& ${ }_{2}^{22,016}$ \& 4 \& 0.0\%\%

\hline 8.6\% \& 20,907 \& 20,905 \& -2 \& 0.0\%

\hline 9.9\% \& 20,489 \& 20,480 \& -9 \&

\hline 11.1\% \& 20,203 \& 20,203 \& 0 \&

\hline 123\% \& 20,103 \& 20,104 \& 1 \&

\hline \& 20,003 \& 19,740 \& 263 \&

\hline 14.8%
16.0% \& 19,622 \& 19,619 \& ${ }^{3}$ \& ${ }^{0.0 \%}$

\hline 16.0\% \& ${ }^{18,678}$ \& 18.619 \& 1 \& 0.0\%

\hline 18.5\% \& -177,612 \& ${ }^{117,7600}$ \& ${ }_{0}^{46}$ \& ${ }_{\text {en }}^{0.3 \%}$

\hline 19.8\% \& 16,183 \& 16,183 \& 0 \& 0.0\%

\hline 21.0\% \& 16,182 \& 16,182 \& 0 \& 0.0\%

\hline 22.2\% \& 14,408 \& 14,608 \& 0 \& 0.0\%

\hline 23.5\% \& +14,402 \& 14,402 \& 11 \& 0.0\%

\hline 24.7\% \& \& | 14,163 |
| :--- |
| 12436 |
| 1248 | \& 11 \& 0.1\%

\hline 25.9\% \& | 12,577 |
| :--- |
| 12436 |
| 125 | \& 12,436 \& -141 \& -1.1\%

\hline 27.2\% ${ }^{284 \%}$ \& 12,436
12,388
1 \& (12,388 \& -98 \& -0.8\%

\hline 28.4\% \& \& 12,279
111693 \& -59 \& -0.5\%

\hline 30.9\% \& 10,506 \& 10,504 \& -1 \& 0.0\%

\hline 32.1\% \& 10,251 \& 9.590 \& -661 \& -6.4\%

\hline 33.3\% \& 9,297 \& 9,297 \& 0 \& 0.0\%

\hline 34.6%
35.8% \& 8,992
8.232 \& 9,263
8.313 \& ${ }_{81}^{272}$ \& 3.0\%

\hline 37.0\% \& 7,856 \& ${ }_{8,234}$ \& 378 \& 4.8\%

\hline 38.3\% \& ${ }_{7}^{7,723}$ \& ${ }_{7}^{7,587}$ \& -136 \& -1.8\%

\hline 39.5\% \& 7.586 \& 7.469 \& 117 \&

\hline 40.7\% \& 7,269 \& 7,270 \& 1 \& 0.0\%

\hline ${ }_{4}^{42.2 \%}$ \& 7,131 \& 7,130 \& -1 \& 0.0\%

\hline ${ }_{44.4 \%}^{43.4 \%}$ \& 6,603 \& 6,603 \& ${ }_{0}$ \& -0.0\%

\hline 45.7\% \& 6,472 \& 6,472 \& 0 \& 0.0\%

\hline 46.9\% \& 6,184 \& 6,184 \& 0 \& 0.0\%

\hline 48.19\% \& ¢,169 \& 6,170 \& 2 \& 0.0\%

\hline 49.4\% \& ¢, 6,037 \& ${ }_{6}^{6.037}$ \& 0 \& 0.0\%

\hline 551.9\% \& \& \& \& 0.0\%

\hline 53.1\% \& ${ }_{4}^{5}, 931$ \& ${ }_{5,510}^{5.591}$ \& 578 \& 11.7\%

\hline 54.3\% \& 4.749 \& 4,934 \& 185 \& 3.9\%

\hline 55.8\% \& ${ }_{4,363}^{4,568}$ \& ${ }_{4.463}^{4}$ \& 100 \& ${ }^{3.3 \%}$

\hline 58.0\% \& 4,301 \& 4,363 \& 62 \& 1.4\%

\hline 59.5\% \& 3.961
3
3 \& 3,962 \& 1 \& 0.0\%

\hline 61.7\% \& 3,279 \& 3,271 \& ${ }_{-8}$ \& -0.3\%

\hline 63.0\% \& 3,272 \& 3,055 \& -217 \& -6.6\%

\hline 64.2\% \& ${ }^{2,354}$ \& 2,351 \& ${ }^{-3}$ \& -0.1\%

\hline 65.4\%\% \& ${ }^{2,243}$ \& ${ }_{2}^{2,244}$ \& 1 \& 0.1\%

\hline 66.7\%
67.9% \& 2,233 \& ${ }^{1,978}$ \& -255 \& -11.4\%

\hline 67.9\%\% \& 2,002 \& 1.941 \& -62 \& -3.1\%

\hline 69.1\% \& 1,976 \& 1,938 \& -37 \& -1.9\%

\hline 70.4\% ${ }^{70.6 \%}$ \& 1,940
1714 \& ${ }^{1,690}$ \& -250 \& -12.9\%

\hline 771.8\%\% \& 1,714 \& 1,662 \& -53 \& -3.1\%

\hline 74.1\% \& | 1,689 |
| :--- |
| 1.570 | \& | 1.591 |
| :--- |
| 1.570 | \& -97 \& -5.8\%

\hline 75.3\% \& ${ }_{1}^{1,360}$ \& ${ }_{1,570}$ \& 210 \& 15.5\%

\hline 76.5\% \& 1,329 \& 1,319 \& -10 \& -0.8\%

\hline ${ }_{79} 77.8 \%$ \& | 1,325 |
| :--- |
| 1.314 |
| 1 | \& $\begin{array}{r}1,314 \\ 1.308 \\ \hline\end{array}$ \& -11 \& ${ }^{-0.8 \% \%}$

\hline 80.2\% \& ${ }_{1}^{1,282}$ \& 1,282 \& 0 \& 0.0\%

\hline 81.5%
887% \& ${ }_{1}^{1,269}$ \& 1,269 \& 0 \& 0.0\%

\hline ${ }^{84.0 \%}$ \& ${ }_{1}^{1,156}$ \& ${ }_{\substack{1,188}}^{1,1200}$ \& 31 \& 2.7\%

\hline 85.2\% \& ${ }^{1,112}$ \& ${ }^{1,1134}$ \& ${ }^{22}$ \& 1.9\%

\hline 86.4%
877% \& 1,062 \& 1,114 \& 52 \& 19\%

\hline 887.7\% \& 980 \& 1,100 \& ${ }^{120}$ \& 12.3\%

\hline ${ }^{88.9 \%}$ \& 964 \& ${ }^{1,093}$ \& ${ }^{128}$ \& 13.3\%

\hline 91.4\% \& 761 \& ${ }_{1}^{1,028}$ \& ${ }_{267}$ \& 35.0\%

\hline 92.6\% \& ${ }^{757}$ \& 1.012 \& 255 \& 33.6\%

\hline 93.8\% \& 708 \& 854 \& 146 \& 20.6\%

\hline ${ }_{995}^{95.1 \%}$ \& 679

635 \& \begin{tabular}{l}
832

758

\hline

 \&

153

123

\hline 1
\end{tabular} \& ${ }^{22.5 \%}$

\hline 97.5\% \& ${ }_{250}$ \& ${ }_{250}$ \& , \&

\hline 98.8\% \& ${ }^{250}$ \& ${ }^{250}$ \& 0 \&

\hline 100.0\% \& 250 \& 250 \& 0 \&

\hline
\end{tabular}

| |
| :--- | :--- | :--- | :--- |

Table SW-47-b Rive a Nouth , Wonthly Fiow

August				
Percent Exceedance	${ }^{\text {WSIP }}$ Provo Without	WSIP 2070 With Project	Absolute Difference	Relative
Probability	Monthy Fow (CFS)	Monthly Fow (CFS)	(CFS)	
0.0\%	2,793	2,044		26.8\%
- 1.2%	${ }_{2}^{2.521}$	$\begin{array}{r}1,750 \\ \hline 1750\end{array}$	-771	-30.7\%
2.5\%	${ }^{2,118}$	1,750	368	
3.7\%	2,74	1,750	崖	
4.9\%	1,781	1,750	${ }^{-31}$	
6.2\%	1,750	1,738	12	
7.4.\%	1708	17730	-12	
9.99\%	1.575	1718	143	
11.1\%	1.508	${ }_{1} 1702$	194	129\%
12.3\%	1,507	${ }_{1,683}^{1,1 / 2}$	177	11.12
13.6\%	1,506	1.585	79	5.2
14.8\%	1,505	1,503	-2	${ }_{-0.1}$
16.0\%	1,499	1,502	3	0.2\%
${ }^{17.3 \%}$	1,497	1,499	1	0.1\%
18.5\%	1,497	1,498	1	
19.8\%	1,493	1,493	0	0.0\%
21.0\%	1,489	1.489	0	
${ }^{22.2 \%}$	${ }^{1,4888}$	1,484	4	
23.5\%	(1,4871,487 14	(1,4831	-6	-0.4\%
25.9\%	1.481	1.477	4	-0.3\%
27.2\%	${ }^{1,480}$	${ }_{1}^{1,458}$	${ }^{22}$	-1.5\%
28.4\%	1,477	1,446	31	
29.6\%	1,477	1,425	-52	
30.9\%	1,472	1,386	-86	5.8\%
32.1\%	1,448	1,359	-89	6.1\%
33.3\%	1,357	${ }_{1}^{1,322}$	${ }^{35}$	-2.6\%
34.6\%	${ }^{1,336}$	1,306	-30	
35.8\%	1,233	${ }^{1,301}$	68	5.5\%
37.0\%	1,186	1,291	105	8.8\%
38.3\%	1,141	1,290	149	13.1\%
39.5\%	1,139	${ }^{1,288}$	149	13.1\%
40.7\%	${ }^{1,1129}$	${ }^{1,286}$	157	13.9\%
42.0\%	${ }^{1,127}$	${ }^{1,2688}$	140	
43.2\%	${ }^{1,080}$	${ }_{\text {l }}^{1,264}$	184	
${ }^{44.47 \%}$	${ }^{1} 1.068$	1,256	189	17.7\%
45.7\%	1.039	${ }_{1}^{1,239}$	199	19.2\%
46.9\%	${ }^{1,027}$	${ }_{1}^{1,237}$	210	20.5\%
- 48.14%	${ }_{921}^{927}$	${ }_{\substack{1,224 \\ 1,183}}^{\substack{1,28}}$	${ }_{262} 29$	- 32.0 \%
50.6\%	904	1,169	265	3\%
51.9\%	877	1,165	289	
53.1\%	853	1,153	301	
54.3\%	845	1,148	303	5.8\%
55.6\%	833	1,147	314	37.6\%
56.8\%	825	1,130	305	36.9\%
58.0\%	795	1,128	333	41.8\%
59.3\%	${ }^{783}$	1,103	320	${ }^{40.9 \%}$
60.5\%	775	1,058	283	36.5\%
61.7\%	762	1,051	289	37.9\%
63.0\%	${ }^{762}$	1.011	250	${ }^{32.8 \%}$
64.2\%	${ }^{741}$	978	${ }^{237}$	\%
-65.4\%	709 698	975	${ }_{226}^{266}$	源5\%
-66.79\%	6988	${ }_{921} 91$	${ }^{226}$	${ }_{\text {cke }}^{32.25 \%}$
69.1\%	686	911	${ }_{224}$	
70.4\%	675		233	
71.6\%	651	888	236	6.3\%
74.10\%	66	${ }_{7}^{834}$	215	88\%
743\%	596	781	185	
70\%	599	771	185	
778\%	579	776	196	
79.0\%	564	765	${ }_{201}^{200}$	35.6\%
80.2\%	560	741	181	323\%
81.5\%	560	667	107	19.2\%
82.7\%	556	624	69	12.4\%
84.0\%	555	608	${ }^{53}$	9.6\%
85.2\%	552	600	${ }^{48}$	8.7\%
86.4\%	${ }_{538}$	595	57	10.6\%
877.7\%	${ }_{533}^{53}$	587	53	10.0\%
88.9\%	530	573	${ }^{43}$	${ }^{8.19 \%}$
91.4\%	${ }_{491}$	568	75	15.2\% 150%
92.6\%	425	525	100	23.6\%
93.8\%	263	515	252	
95.1\%	${ }^{250}$	474	${ }^{224}$	89.6\%
96.3\%	248 188	459	211	84.9\%
	188 188	370	82	
	(188	(349	174	${ }^{95258 \%}$

Percent Exceedance	WSIP 2070 Without Proiect	WSIP 2070 With Project	Absolute Difference	
Probability	Monthly Fow (cFs)	Monthy Fow (CFS)	${ }_{-422}$	-9.3\%
1.2\%	4.397	4.034		
2.5\%	${ }_{3,636}$	${ }^{4,547}$	-89	-2.5\%
3.7\%	3,446	3,222	${ }^{223}$	-6.5\%
4.9\%	3,162	3,039	123	3.9\%
6.2\%	2,802	2.866	64	2.3\%
7.4\%	2,694	2,752	58	
8.6\%	2,678	${ }_{2}^{2,676}$	-2	
9.9\%	2,591	2,303	287	-11.1\%
11.1\%	2,544	2,149	-395	-15.5\%
${ }^{12.3 \%}$	2,468	2.005	-462	
13.6\%	2,341	${ }^{1,968}$	${ }^{-373}$	-15.9\%
14.8\%	${ }_{\text {2,253 }}$	${ }^{1,8599}$	-394	-17.5\%
16.0\%	${ }_{2}^{2,223}$	1,852	370	
17.3\%	2,094	${ }^{1,836}$	-257	-12.3\%
18.5\%	1,956	+1,829	-127	${ }^{-6.5 \%}$
19.8\%	${ }_{1}^{1,885}$	1,754	-132	
${ }^{2} 2.2 .2 \%$	${ }^{1,750}$	+1,750	0	--20\%
23.5\%	${ }^{1} 17750$	${ }^{1} 1,750$	0	0.0\%
24.7\%	1,750	1,543	207	
25.9\%	+1,750	${ }^{1,543}$	${ }^{207}$	
- ${ }_{\text {27.7.2\% }}$	1,750	1,526	-224	-12.8\%
20.6\%	${ }^{1,750}$	${ }_{1}^{1,439}$	-311	-17.8\%
30.9\%	1,750	${ }_{1,402}$	-348	-19.9\%
32.1\% ${ }^{3.3 \%}$	${ }^{1,508}$	1,390	-119	-7.9\%
34.6\%	1,458 1,352	1,352 1.344 $\substack{142 \\ \hline}$	-106	-7.3\%
35.8\%	1,345	1,337	-7	-0.5\%
37.0\%	1,343	1,330	-13	-1.0\%
38.3\%	+1,388	+1,330	-8	-0.9\%
39.5\%	1,330	${ }_{1}^{1,329}$	-1	-0.1\%
40.7\%	+1,328	${ }_{1}^{1,323}$	-4	-0.3\%
43.2\%	${ }_{1}^{1,325}$	${ }_{1}^{1,317}$	-1	-0.5\%
44.4\%	${ }_{1,311}^{1,31}$	1,250	-61	
45.7\%	1,308	1,181	-127	-9.7\%
46.9\%	1,166	1,174	8	0.7\%
49.4\%	${ }_{1}^{1,115}$	${ }_{1}^{1,161}$	${ }_{46}^{15}$	${ }_{4}^{4.2 \%}$
50.6\%	1,071	1,157	87	1\%
51.9\%	1,005	1,150	145	4\%
53.19\%	950	1,144	194	
54.3\%	948	1,132	184	$19.4{ }^{\circ}$
55.6\%	944	1,118	173	18.4\%
56.8\%	${ }_{892}^{936}$	1,107	171	18.3\%
	892	${ }^{1,086}$	194	21.8\%
59.3\%	867	${ }^{1,081}$	${ }^{213}$	${ }^{24.6 \%}$
60.5\%	840	${ }^{1,076}$	${ }^{236}$	28.1\%
-61.7\%	837	${ }^{1,072}$	${ }^{236}$	28.2\%
-63.0\%	${ }_{768}^{768}$	${ }^{1,067}$	298	38.8\%
64.2% 654%	766 763	${ }^{1,0055}$	290	\%
${ }^{65.4 \%}$ 66.7\%	756 7768	¢,	${ }_{242}^{284}$	37.3\%
-6.7.9\%	${ }_{749}^{756}$	998	${ }_{246}^{242}$	332.9\%
69.1\%	${ }^{726}$	993	267	36.8\%
70.4\%	670	988	318	
71.28\%	${ }_{631} 63$	983	346	
74.1\%	620	${ }_{896}$	${ }_{276} 27$	44.5\%
75.3\%	616	828	212	
76.5\%	611	772	162	
77.8\%	609	751	142	
79.0\%	609	710	101	
80.2\%	609	688	79	13.0\%
81.5\%	${ }_{607}^{608}$	677	69	11.4\%
82.7% 880%	607	655	${ }^{47}$	18\%
84.0\%	601	637	${ }^{36}$	5.9\%
85.2\%	600 464	${ }_{6} 620$	20	3.4\%\%
${ }^{86.47 \%}$	464	616	152	7\%
887.9\%	${ }_{375}^{462}$	610 609	${ }_{234}^{147}$	
88.9% 9.10%	${ }_{302}^{375}$	${ }_{608}^{609}$	${ }_{306}^{234}$	
9014\%	302	608	506	101.4\%
${ }_{9} 9.6 \%$	${ }_{281}^{284}$	533 510	${ }_{229}^{229}$	88.0\%
93.8\%	281	498	217	77.2\%
95.19\%	${ }^{281}$	496	215	
96.3\%	281	4	195	69.27
9888\%	${ }_{281}$	308	27	\%
100.0\%	252	278	26	10.1\%

Figure SW-53-b
Sacramento River at Bend Bridge, Monthly Stage

Table SW-53-b

Table SW-53-b

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \\ \hline \end{gathered}$	February			
	WSIP 2070 Without Proiect	WSIP 2070 With Project		Relative
	Monthly Stage (FT)	Monthy Stage (FT)	0	
1.2\%	26	${ }_{26}$		0.0\%
2.5\%	${ }_{21}^{26}$	${ }_{21}^{26}$	0	0.0\%
3.7\%	21	21	0	1.0\%
4.9\%	21	21	0	0.0\%
6.2\%	20	20	0	0.0\%
7.4\%	19	19	0	
8.6\%	17	17	0	0.0\%
9.9\%	17	17	0	2.1\%
11.1\%	17	17	0	1.0\%
${ }^{12.3 \%}$	17	17	0	0.7\%
- 14.48%	17	17	0	${ }^{-0.2 \%}$
16.0\%	16	${ }_{16}^{16}$	\bigcirc	0.0\%
17.3\%	16	16	0	0.0\%
18.5\%	14	14	0	
21.0\%	${ }_{14}^{14}$	1	0	0.0\%
22.2\%	14	${ }_{14}^{14}$	0	0.0\%
23.5\%	${ }_{12}^{12}$	${ }^{12}$	0	0.2\%
24.9\%\%	${ }_{11}^{12}$	${ }_{12}^{12}$	${ }_{1}$	7.8\%
27.2\%	10	11	1	5.3\%
28.4\%	10	10	0	3.5\%
29.6\%	10	10	0	
30.9\%	9	10	0	3.1\%
32.1% 3.3%	9	10	0	4.5\%
334.\%	7	7	0	0.0\%
35.8\%	7	7	0	0.0\%
37.0\%	7	7	0	-1.2\%
${ }^{38.3 \%}$	7	7	0	-1.0\%
40.7\%	${ }_{6}$	${ }_{6}$	\bigcirc	-
42.0\%	${ }_{6}^{6}$	${ }_{6}^{6}$	\bigcirc	-5.5\%
4.4.4\%	${ }_{6}$	${ }_{6}$	0	-
45.7\%	6	6	0	-2.4\%
46.9\%	5	5	0	.6\%
48.19\%				1.1\%
59.6\%	5	5 5	\bigcirc	-
51.9\%	5	5	0	0.0\%
53.1\%	5	5	0	0.0\%
	5	5	0	0.0\%
55.6\%	4	5	0	1.2\%
	4	4	0	3.0\%
${ }_{5}^{58.3 \%}$	${ }_{4}^{4}$	${ }_{4}^{4}$	0	0.0\%
60.5\%	4	4	0	0.0\%
析17\%\%	4	4	0	0.0\%
-63.0\%	4	4	0	-0.1\%
${ }^{64.24 \%}$	4	4	0	0.0\%
${ }^{66.7 \%}$	4	4	0	0.0\%
67.9\%	3_{3}^{3}	3_{3}^{3}	0	${ }_{\text {2 }}^{2.2 \%}$
70.4\%	3		0	2.3\%
71.6\%	3	3	0	6.2\%
74.1\%	3	3	0	8.4\%
7.3.3\%	3	3	0	7.9\%
76.5\%	3	3	0	4.1\%
77.8\%	3	3	0	4.7\%
79.0\%	3	3	0	4.3\%
-	${ }_{3}$	${ }_{3}^{3}$	0	2.7.7\%
82.7\%		3	0	3.0\%
84.0\%	${ }_{2}$	${ }^{3}$	0	11.4\%
- ${ }_{\text {85.2\% }}^{8.4 \%}$	2	2	0	2.4\%
${ }^{86.4 \%}$ 87.7\%	2	2	0	4.0\%
88.9\%	2	2	0	4.5\%
90.1\%	2	2	0	1.3\%
- ${ }_{\text {92.4\% }} 9$	2	2	0	${ }^{1.2 \%}$
${ }_{9} 92.8 \%$	${ }_{2}$	2	0	4.4\%
95.1\%	2	2	0	9.0\%
${ }^{96.3 \%}$	${ }_{2}^{2}$	2	0	${ }^{8.1 \%}$
998.\%	2	${ }_{2}$	0	5.4\%

Table SW-53-b

		June		
Perecent		Wsip 2070 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difference (FT } \end{gathered}$	Relative
Probability	Monthly Stage (FT)	Monthly Stage (FT)		
1.2\%	${ }_{7}^{7}$	7	\bigcirc	-0.7\%
2.5\%	7	6	0	-3.9\%
3.7\%	7	6	0	-4.4\%
4.9\%	7	6	0	-3.2\%
6.2\%	7	6	0	-3.8\%
7.4\%	7	6	0	-3.3\%
8.6\%	7	6	0	-5.2\%
${ }^{\text {9,9.9\% }}$	7	6	0	-5.7\%
${ }^{11.19 \%} 1$	${ }_{6}^{6}$	6	0	-2.7\%
${ }^{12.3 \%} \times 1.6 \%$	${ }_{6}$	${ }_{6}$	0	-4.0\%
13.6% 14.8%	${ }_{6}^{6}$	${ }_{6} 6$	\bigcirc	-3.9\%
- ${ }^{14.8 .8 \%}$ (10\%	6	${ }_{6}^{6}$	\bigcirc	-4.0\%
17.3\%	6	6	0	-4.0\%
5\%	6	6	0	2\%
8\%\%	6	6	0	-6.0\%
${ }^{21.0 \%}$	${ }_{6}^{6}$	${ }_{6}^{6}$	0	-6.54\%
23.5\%	6	${ }_{6}^{6}$	0	${ }_{-5.5 \%}^{-5.4 \%}$
24.7\%	6	6	0	-6.0\%
25.9\%	6	6	0	-6.0\%
${ }^{27.2 \%}$	6	6	0	-6.1\%
28.4\% ${ }_{\text {29.6\% }}$	6	6	0	-5.5\%
30.9\%	6	6	0	-5.6\%
32.1\%	6	6	0	-5.6\%
33.3\%	6	6	0	-5.8\%
34.6\%	6	6	0	-5.2\%
	${ }_{6}^{6}$	5	0	-4.7\%
37.0\%	6	5	0	-4.9\%
3. ${ }^{38.5 \%}$	6	5	0	-4.8\% -4.3%
${ }^{40.7 \%}$	${ }_{6}^{6}$	5 5	0	- -4.3%
43.2\%	6	5	0	-4.3\%
44.4\% 45.7%	6	5	0	-3.5\%
${ }^{45.7 \%}$	${ }_{6}$	5	0	-
48.1\%	6	5	0	-5.3\%
49.4\%	6	5	0	-5.3\%
50.6\%	5	5	0	-4.4\%
531.9\%	5 5	5	0	${ }^{-5.46 \%}$
54.3\%	5	5	0	-4.5\%
55.6\%	5	5	0	-4.8\%
56.8\%	5	5	0	-5.4\%
58.0\%	5	5	0	- -.5 .5
60.5\%	5	5	\bigcirc	${ }^{-3.7 \% \%}$
61.7\%	5	5	0	-2.7\%
-63.0\%	5	5		-1.9\%
64.2% 6.4%	5	5	0	-1.8\%
${ }^{65.7 \%}$	5	5	0	-1.9\%
-67.9\% 6	5 5	5 5	0	-1.7\%
70.4\%	5	5	0	-1.2\%
71.6\%	5	5	0	0.1\%
74.1\%	5	5 5	0	-1.3\%
75.3\%	5	5	0	-2.1\%
76.5\%	5	5	0	-2.1\%
778.8\%	5	4	0	-4.0\%
79.0% 80.2%	5	4	0	-4.9\%
${ }_{8} 8.5 \%$	5	4	0	-4.8\%
82.7% 840%			0	-5.1\%
84.0\%	5	4	0	-5.1\%
85.2\%	4	4	0	-
87.7\%	4	4	0	-2.4\%
${ }^{88.9 \%} 9$	4	4	0	-2.2\%
90.14\%	4	4	0	-2.7\%
92.4\%	4	4	0	${ }^{-4.5 \%}$
${ }^{93.85 \%}$	4	4	0	-5.0\%\%
96.3\%	4	4	0	${ }_{-6.0 \%}$
975\%	4	4	0	-5.4\%
98.8\% 1000%	4	3		-8.8\%

		Seplember		
	$\begin{aligned} & \text { WSIP } 2070 \text { Without } \\ & \text { Proiect } \end{aligned}$	WSIP 2070 With Project		Relative
Probability	Monthly Stage (FT)	Monthly Stage (FT)		
${ }_{12 \%}$	7	T	0	${ }^{4.6 \%}$
2.5\%	7	7	0	0.0\%
3.7\%	7	7	0	0.6\%
4.9\%	7	7	0	0.6\%
6.2\%	7	7	0	0.0\%
7.4\%	7	7	0	-0.5\%
8.6\%	7	7	0	0.1\%
9.9\%	7	7	0	0.7\%
11.19\%	7	7	0	0.0\%
(12.3\%	7	7	0	0.0\%
13.6\% 14.8%	7	7	0	-0.1\%
14.8\% 16.0%	7	7	0	-0.0\%
17.3\%	7	6	0	${ }_{-2.0 \%}$
18.5\%	7	6	0	-1.5\%
19.8\%	7	6 6	0	-2.6\%
22.2\%	6	6	0	-4.0\%
${ }^{23.5 \%}$	6	6	0	-2.9\%
24.7\%	6	6	0	-2.7\%
${ }^{25.7 .2 \%}$	${ }_{6}^{6}$	- ${ }_{5}^{6}$	0	-
28.4\%	6	5	0	-5.2\%
29.6\%	5	5	0	-8.0\%
30.9\%	5	5	0	-8.7\%
32.1\%	5	4	1	-16.0\%
	5	4	-1	-17.2\%
34.6% 35.8%	5	4	-1	-15.5\%
35.8\%	4	3	-1	-22.0\%
37.0% 38.3%	4	3	-1	-21.2\%
38.3\%	${ }_{4}^{4}$	3	-1	- -21.3%
40.7\%	4	3	-1	${ }_{\text {- }}$-15.2\%
${ }^{42.0 \%}$	4	3_{3}^{3}	- 1	- 14.3%
44.4\%	3	3	0	-11.1\%
45.7% 46.9%	3	3	0	-3.8\%
${ }^{46.9 \%}$	${ }_{3}^{3}$	${ }_{3}^{3}$	0	${ }_{-2.2 \%}^{-2.4 \%}$
49.4\%	3	3	0	4.7\%
50.6\%	${ }_{3}$	3	0	3.1\%
- ${ }_{\text {51.9\% }} 5$	$\stackrel{3}{2}$	3	0	7.0\%
54.3\%	2	3	0	${ }^{6.7 .7 \%}$
55.\%	2	3	0	13.\%
56.8\%	${ }_{2}$	3	0	13.3\%
	2	3_{3}^{3}	0	14.1\%
59.3\%	${ }_{2}$	3	0	13.1\%
60.1.7\%	${ }_{2}$	3	0	13.1\% 17.1%
63.0\%	2	3	0	${ }^{177.7 \%}$
${ }^{64.2 \%}$	${ }_{2}$	3	0	16.9\%
65.4\%	${ }_{2}^{2}$	${ }_{3}^{3}$	0	${ }_{2}^{23.2 \% \%}$
67.9\%		2	0	23.4\%
69.1\% 7 70.4\%	${ }_{2}^{2}$	${ }_{2}^{2}$	${ }_{1}^{1}$	${ }_{\text {2 }}^{23.5 \%}$
71.6\%	2	2	1	26.3\%
72.8\%	2	2	1	26.0\%
74.1\%	${ }_{2}$	${ }_{2}^{2}$	1	
76.5\%		2	0	${ }^{25.3 \%}$
77.8\%	2	2	1	27.2\%
79.0\%	2	2	1	28.7\%
80.2\%	${ }_{2}$	2	1	28.4\%
81.5\%	${ }_{2}$	2	1	27.9\%
-	2	2	0	25.4% 250%
84.0\%	${ }_{2}^{2}$	2	0	${ }^{25.0 \%}$
86.4\%		2	0	${ }_{\text {25.6\% }}$
87.7\%	${ }_{2}^{2}$	2	0	24.8\%
${ }^{88.9 \%}$	${ }_{2}$	2	0	${ }^{25.9 \%}$
901.4\%		${ }_{2}^{2}$	0	${ }_{26,3 \%}^{27.2 \%}$
92.6\%	2	2	0	26.2\%
93.8\%	2	2	0	26.5\%
${ }_{9}^{956.13 \%}$	${ }_{2}^{2}$	2	0	25.8\%
${ }^{96.3 \%} 9$	${ }_{2}^{2}$	${ }_{2}^{2}$	0	${ }^{25.1 \%}$
98.8\%	2	2	0	28.9\%
100.0\%	1	2	0	26.0\%

Figure SW-54-b
Sacramento River below Hamilton City, Monthly Stage

Table SW－54－b

0．0\％	45	45	＋	0．0\％
－ 1.2%	${ }_{41}^{44}$	43	－1	－1．2\％
3，${ }^{\text {2，}}$	39	㫛		\％．0\％
	38	37		－ 76
	${ }^{37}$	36	1	－17\％
${ }^{7} .4 \%$	37	36		\％
8．6\％	37	36	－	－146
9．9\％	36	36	－1	－18\％
11．1\％	36	35	－1	－20\％
12．3\％	35	35	0	0．0\％
13．6\％	34	34	0	－0．1\％
14．8\％	${ }^{34}$	34	0	0．0\％
110．0\％	${ }^{34}$	${ }^{34}$	0	－0．2\％
17．5\％	－34	34	0	－0．4\％
18．5\％	${ }^{34}$	${ }^{34}$		－0．7\％
21．0\％	34	${ }^{34}$	0	－0．8\％\％
${ }^{2} 2.2 .2 \%$	34	${ }_{3}$	0	－1．2\％
23．5\％	33	33	0	－1．1\％
24．7\％	33	33	0	－1．1\％
25．9\％	33	33	－1	－2．0\％
27．2\％	33	32	－1	－2．1\％
28．4\％	33	32	－1	－2．4\％
29．6\％	33	32	－1	－2．7\％
30．9\％	32	32	0	－1．5\％
32．1\％	32	32	0	－1．5\％
隹3．3\％\％	32	31	－1	－1．7\％
34．6\％	32	31	－1	－1．6\％
$3.8 .8 \%$ 370%	32	31	0	－1．2\％
37．0\％	32	31	0	－1．19\％
30．5\％	32	${ }^{31}$	0	－1．5\％
39．7\％	${ }^{32}$	31	－	－1．5\％
${ }^{40.20 \%}$	${ }_{31}$	${ }^{31}$	－1	－1．6\％
－432\％	31	31	0	－1．5\％
${ }^{44.4 \%}$	31	31	0	－1．2\％
46．9\％	31	31	0	－1．6\％
48．1\％	31	31	0	－1．6\％
49．4\％	31	31	－1	－1．6\％
	31	30	0	－1．6\％
51．9\％	31	30	0	－1．5\％
53．1\％	31	30	0	－1．5\％
54．3\％	31	30	0	－1．6\％
55．6\％ 56.8%	31	30	－1	－1．7\％
56.8% 58.0%	31	30	0	－1．5\％
压58．0\％\％	31	30	0	－1．6\％
59．3\％	31	30	0	－1．4\％
	31	30	0	－1．3\％
${ }^{66.7 \%}$ 6．0\％	30	30	0	－1．2\％
64．2\％	${ }^{30}$	30	0	－1．2\％
－ 64.2% \％${ }^{\text {6．4\％}}$	30	30	0	－1．3\％
－ $6.6 .4 \%$	30 30	30 30	0	－1．3\％
67．9\％	${ }_{30}$	30	0	－0．9\％
69．1\％	30	30	0	－1．2\％
70．4\％	30 30	30	0	－1．3\％
72．8\％	30	30		－1．9\％
74．1\％	${ }_{30}$	30	0	－1．2\％
75．3\％	30	30	0	－1．3\％
76．5\％	30	30	0	－1．4\％
77．7\％	30	30	0	3\％
79．0\％	30	30	0	－1．4\％
80．2\％	30	29	0	1．3\％
88．5\％${ }^{8.7}$	30	29	0	－0．9\％
82．7\％	30	29	0	－0．8\％
	${ }^{30}$	29	0	－0．9\％
8．	30	29	0	－0．8\％
86．4\％	30	29	0	－0．9\％
88．9\％	－30	29	0	－0．9\％
－	${ }^{30}$	29	0	－0．9\％
90．14\％	－29	29		－0．9\％
9926\％	29	29		－0．5\％
${ }_{9}^{92.8 \%}$	－29	${ }_{29}$	0	－0．3\％
95．1\％	${ }_{29}$	29	0	－0．2\％
96．3\％	29	29	0	－0．1\％
	29	29	0	
98.8% 1000%	${ }^{29}$	${ }^{29}$		－0．1\％

Table SW-54-b

Sacramento River at Wilkins Slough, Monthly Stage

Exceedance	$\begin{aligned} & \text { WSIP } 2070 \text { Without } \\ & \text { Proiect } \end{aligned}$	WSIP 2070 With Project	$\begin{array}{ll} \text { Absolute } \\ - \text { Difference (FT) } \end{array}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
			0	0.2\%
1.2\%	44	44	0	0.0\%
2.5\%	44	44	0	-0.2\%
3.7\%	44	44	0	-0.6\%
4.9\%	44	44	0	-0.2\%
6.2\%	44	44	0	-0.4\%
7.4\%	44	44	0	-0.4\%
8.6\%	44	44	0	-0.4\%
9.9\%	${ }_{4}^{43}$	${ }_{4}^{43}$	0	0.2\%
11.19\%	${ }_{4}^{43}$	${ }_{42}^{42}$	-1	-1.6\%
12.3\%	${ }_{4}^{43}$	${ }_{42}^{42}$	-1	-1.8\%
(14.3\%	${ }_{43}^{43}$	${ }_{42}^{42}$	-1	- -1.8%
16.0\%	43	42	-1	-1.8\%
- ${ }^{18.35 \%}$	${ }_{42}^{43}$	${ }_{42}^{42}$	-1	-1.8\%
19.8\%	42	42	-1	-1.6\%
${ }^{21.0 \%}$	${ }_{42}^{42}$	${ }_{41}^{41}$	-1	-1.7\%
${ }^{22.2 \%}$	${ }_{41}^{42}$	${ }_{41}^{41}$	-1	-
24.7\%	41	40	-1	-2.8\%
25.9\%	40	37	${ }^{-3}$	-6.4\%
27.2\%	40	37	-2	-5.8\%
28.4\%	38	37	-1	-2.8\%
29.6\%	${ }_{37}^{38}$	37	1	-2.4\%
30.9\%	37	37	1	-2.2\%
32.1\%	37	${ }^{36}$	-1	-2.4\%
	${ }_{37}^{37}$	$\begin{array}{r}35 \\ 35 \\ \hline\end{array}$	-2	-4.7\%
34.6\%	37	$\begin{array}{r}35 \\ \hline\end{array}$	-2	-4.5\%
- 3 3.5\%	${ }_{37}^{37}$	$\begin{array}{r}35 \\ 34 \\ \hline\end{array}$	-2	-5.5\%
38.3\%	37 37	34 33	${ }_{-3}^{-3}$	- -8.4%
39.5\%	${ }^{36}$	${ }^{33}$	-3	-8.9\%
40.7\%	${ }_{36} 36$	${ }^{33}$		-9.0\%
42.0\%	36 35	${ }_{33}^{33}$	-3	-9.2\%
44.4\%	${ }_{35}$	${ }_{33}$	${ }_{-2}$	-7.0\%
45.7\%	${ }^{35}$	${ }^{33}$	-2	-6.3\%
46.9\%	34	32	-2	-5.2\%
48.4\%	34 34	${ }_{32}^{32}$	-2	- $-.4 .1 \%$
50.6\%	33	32	-1	-4.3\%
51.9\%	${ }^{33}$	32	-1	-2.2\%
-53.1\%	32	32	-1	-2.1\%
54.3\%	32	32	-1	-2.2\%
-55.6\%	${ }_{32}^{32}$	${ }_{31}^{32}$	-1	- -1.2%
55.8\%	32	${ }_{31}$	-1	-2.1\%
(5 59.0\%	${ }_{32}^{32}$	31 31	-1	-1.9\%
60.5\%	${ }_{32}^{32}$	${ }_{31}^{31}$	-1 -1	- -1.17%
61.7\%	31	31	0	-1.4\%
63.0\%	${ }^{31}$	${ }^{31}$	-1	-2.0\%
64.2\%	31 30	31 30	0	-0.8\%\%
66.7\%	30	30	0	1.0\%
67.9\%	30	30 20	0	0.5\%
-69.1\%	30 29	${ }_{29}^{29}$	\bigcirc	-0.0.2\%
71.6\%	29	29	0	0.2\%
728\%	29	${ }^{29}$	0	-0.1\%
74.1.\%	${ }_{29}^{29}$	${ }_{29}^{29}$	0	- 0.4 -.2\%
76.5\%	29	29	0	0.4\%
77.8\%	29	29	0	-0.2\%
79.0\%	29	29	0	0.2\%
80.2\%	29 28	${ }_{29}^{29}$	0	0.3\%
81.5\%	28 28	29 29	0	-1.1\%
82.7% 840%	${ }_{28}^{28}$	29 29	1	2.1\%
- ${ }_{\text {84.0.2\% }}$	28 28	29 28	1	2.2\%
86.4\%	${ }^{28}$	${ }^{28}$	1	2.3\%
-877.7\%	28 28 8	28 28 8	1	2.1\%
90.1\%	${ }^{28}$	${ }^{28}$	1	1.9\%
${ }_{\text {920.6\% }}^{91.4 \%}$	28 28 28	28 28 28	0	1.1.1\%
93.8\%	${ }^{28}$	${ }^{28}$	0	1.0\%
${ }_{96.3 \%}^{95.1 \%}$	27 27	28 28	0	1.8\%
97.5\%	${ }^{27}$	${ }^{28}$	1	2.3\%
98.8\%	${ }_{27}^{27}$	${ }_{28}^{28}$	1	3.1\%
100.0\%	27	28	1	2.8\%

Table SW-56-b

Feather Kiver near Gridley, Monthly Stage

Table SW-57-b

Table SW-57-b

Figure SW-58-b
American River at Fair Oaks, Monthly Stage

Table SW-58-b

		February		
Percent Exceedance	WSIP 2070 W.thout Proiect	WSIP 2070 With Project	Absolute	Realive
Probability	Monthly Stage (FT)	Monthly Stage (FT)		
0.0\%	17	17	0	0.0\%
	16 16	16 16	-	0.0\%
3.7\%	14	14	0	0.0\%
4.9\%	13	13	0	0.0\%
6.2\%	13	13	0	
7.4\%	13	13	0	0.0\%
8.6\%	13	13	0	
9.9\%	13	13	0	0.0\%
11.1\%	13	13	0	0.0\%
12.3\%	13	${ }^{13}$	0	0.0\%
13.6\%	${ }^{13}$	${ }^{13}$	0	-0.2\%
14.8\%	13	${ }_{13}^{13}$	0	-0.2\%
16.0\%	${ }_{12}^{12}$	12	0	0.0\%
17.3\%	${ }_{12}^{12}$	12	0	0.0\%
18.5\%	12	12	0	0.0\%
19.8\%	${ }_{12}^{12}$	${ }_{12}^{12}$	0	0.0\%
21.0\%	${ }_{11}^{12}$	${ }_{11}^{12}$	0	-0.0\%
${ }^{22.25 \%}$	11	11	0	0.0\%
${ }_{24.7 \%}^{22.5 \%}$	11	11	0	0.0\%
25.9\%	11	11	0	0.0\%
27.2\%	11	11	0	-0.6\%
29.6\%	10	10	0	0.0\%
30.9\%	10	10	0	0.0\%
32.1\%	10	9	0	-2.1\%
33.3\%	9	9	0	
34.6\%	9	9	0	0.5\%
35.8\%	9	9	0	0.0\%
37.0\%	9	9	0	2.6\%
边 38.3%	9	9	0	0.0\%
39.5\%	9	9	0	-1.2\%
40.7\%	9	9	0	-0.1\%
42.0\%	9	9	0	0.0\%
43.2\%	${ }_{8}^{8}$	8		0.0\%
${ }^{44.4 .7 \%}$	8	8	0	0.0\%
${ }^{45.79 \%}$	8			
${ }^{48.1 \%}$	${ }_{8}^{8}$	${ }_{8}^{8}$	0	0.0\%
49.4\%	8	8	0	0.0\%
50.6\%	${ }_{8}^{8}$	${ }_{8}^{8}$	0	0.0\%
53.1\%	7	8	0	4.2\%
54.3\%	7	7	0	1.5\%
55.6\%	7	7	0	1.5\%
56.8\%	7	7	0	0.7\%
	7	7	0	1.3\%
(59.3\%	7	7	0	0.0\%
60.5\%	7	6	0	-4.1\%
617.7\%	6	6	0	-1.0\%
63.0\%	6		0	-2.7\%
64.2% 654%	6	6	0	0.0\%
65.4% 667%	5	5	0	0.0\%
- 66.7	5	5	0	-4.4\%
69.1\%	5	5	0	-3.1\%
70.4\%	5	5	0	-0.3\%
71.6\%	5	5	0	
74.1\%	5	5	0	-1.0\%
75.3\%	5	5	0	5.3\%
${ }^{76.5 \%}$	4	4	0	0.0\%
77.8\%	4	4	0	0.0\%
79.0\%	4	4	0	0.0\%
80.2\%	4	4	0	0.0\%
81.5\%	4	4	0	-0.1\%
- 82.7%	4	4	0	${ }^{-1.2 \%}$
- ${ }_{\text {84.0\% }}^{8.2 \%}$	4	4	0	1.2\%
- ${ }_{\text {85.4\% }}$	${ }_{4}^{4}$	4	0	- ${ }_{\text {0.5\% }}$
87.7\%	4			3.1\%
88.9\%	4	4	0	3.9\%
90.1\%	4	4	0	3.7\%
914.4\%	4	4	0	10.9\%
${ }_{\text {93.8\% }}^{92.6 \%}$	${ }_{4}^{4}$	${ }_{4}^{4}$	0	7.0\%
95.1\%	4			2.8\%
96.3\%	4	4	0	0.0\%
98.8\%	3	3	0	0.0\%

River Temperature Modeling Summary Tables and Bar Charts

Long-term Average and Average by Water Year TypeMonthly Temperature (DEGF)												
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulaion Period'												
DCR2015 Wiftout Priject	54.7	54.6	50.8	47.4	46.0	46.6	47.7	48.7	49.6	51.1	52.4	52.9
DCR2015 Winf Projet	54.6	54.6	50.9	47.4	46.1	46.7	47.8	48.9	49.7	50.9	51.9	52.0
Diffeence	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.2	0.2	-0.1	-0.5	-0.9
Percent Differene?	-0.1\%	0.0\%	0.2\%	0.2\%	0.2\%	0.2\%	0.3\%	0.3\%	0.3\%	-0.3\%	-0.9\%	-1.6\%
Water Year Types ${ }^{2}$												
Wet (32%)												
OCR 2015 WWhout Projet	54.1	55.0	51.4	46.7	45.2	45.7	46.9	47.9	49.0	50.5	51.4	50.9
DCR2015 Winf Projet	54.3	55.1	51.5	46.7	45.3	45.7	47.0	48.0	49.0	50.5	51.2	50.7
Diffeerce	0.2	0.1	0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.0	-0.1	-0.3
Percent ififeence	0.4\%	0.2\%	0.2\%	0.1\%	0.0\%	0.0\%	0.1\%	0.1\%	0.1\%	0.0\%	-0.2\%	-0.5\%
Above Nomal (15\%)												
DCR2015 Wiftour Projet	53.9	54.3	50.6	47.8	46.1	46.5	47.8	48.8	49.3	50.3	51.6	51.6
DCR2015 Winf Projert	53.7	54.2	50.8	48.0	46.2	46.7	47.9	48.9	49.4	50.2	51.2	50.9
Diffeence	-0.2	-0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	-0.1	-0.5	-0.6
Percent ifiteence	-0.4\%	-0.2\%	0.2\%	0.5\%	0.3\%	0.3\%	0.2\%	0.2\%	0.3\%	-0.2\%	-0.9\%	-1.2\%
Below Noma (17\%)												
DCR2015 Wiftuour Project	53.8	53.5	50.3	47.2	45.8	46.6	47.8	48.7	48.9	50.3	51.8	52.7
DCR2015 With Projet	53.5	53.3	50.1	47.2	45.8	46.6	47.8	48.9	49.3	50.2	51.5	52.0
Diffeence	-0.2	-0.2	-0.1	0.1	0.1	0.1	0.1	0.1	0.4	-0.2	-0.3	-0.7
Percent Diffeene	-0.5\%	-0.4\%	-0.3\%	0.1\%	0.2\%	0.2\%	0.1\%	0.3\%	0.8\%	-0.3\%	-0.6\%	-1.3\%
Dry (22\%)												
DCR2015 Wiftout Projet	54.7	54.3	50.4	47.7	46.6	47.3	48.0	48.8	49.6	51.2	53.0	53.4
DCR2015 With Projet	54.6	54.2	50.4	47.7	46.6	47.4	48.1	49.0	49.9	51.1	52.5	52.4
Diffeere	-0.1	-0.1	0.0	0.0	0.1	0.1	0.1	0.2	0.3	-0.1	${ }^{-0.5}$	${ }_{-1.1}$
Percent Diffeence	-0.1\%	-0.3\%	-0.1\%	0.0\%	0.2\%	0.3\%	0.2\%	0.4\%	0.5\%	-0.2\%	-1.0\%	-2.0\%
Critical (15\%)												
DCR 2015 WWhout Project	57.7	55.6	50.9	48.2	46.8	47.6	48.5	50.2	51.9	53.6	55.3	57.8
DCR2015 Win Project	57.6	55.8	51.5	48.3	47.1	47.9	48.9	50.6	51.8	53.0	53.9	55.5
Diffeence	-0.1	0.1	0.6	0.2	0.3	0.3	0.4	0.4	0.0	-0.6	-1.4	-2.3
Perenot Difference	0.2\%	0.2\%	1.1\%	0.3\%	0.6\%	0.6\%	0.7\%	0.8\%	0.0\%			

$\frac{1}{1}$ Basedo on tee 82 2.ear simuludion period
${ }^{2}$ 2A dealivive difieerence of the monhty vereage

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulaion Period												
DCR 2015 WWithour Project	55.0	54.6	50.7	47.4	46.3	47.3	48.6	49.8	50.6	52.0	53.3	53.7
DCR2015 Winf Projer	55.0	54.6	50.8	47.5	46.4	47.4	48.8	50.0	50.8	51.8	52.9	52.8
Difteence	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.2	0.2	-0.1	-0.5	-0.9
Percent Differeme?	-0.1\%	0.0\%	0.2\%	0.2\%	0.2\%	0.2\%	0.3\%	0.4\%	0.4\%	-0.3\%	-0.9\%	${ }^{-1.60}$
Water Year Types ${ }^{2}$												
Wet (32\%)												
DCR2015 WWhout Project	54.4	55.0	51.3	46.7	45.5	46.2	47.7	48.9	50.1	51.5	52.3	51.5
DCR2015 With Project	54.6	55.1	51.4	46.8	45.5	46.2	47.8	49.0	50.1	51.5	52.2	51.3
Diffeere	0.2	0.1	0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.0	-0.1	-0.2
Percent iffeeme	0.4\%	0.2\%	0.2\%	0.0\%	0.0\%	0.0\%	0.1\%	0.1\%	0.0\%	0.0\%	-0.2\%	-0.5\%
Above Nomal (15\%)												
DCR 2015 WWhout Project	54.3	54.3	50.6	47.8	46.3	47.2	48.8	49.9	50.3	51.1	52.5	52.3
DCR2015 Win Project	54.0	54.2	50.7	48.0	46.5	47.3	48.9	50.0	50.5	51.1	52.1	51.8
Diffeence	-0.2	-0.1	0.1	0.2	0.1	0.1	0.1	0.0	0.2	-0.1	-0.4	-0.6
Percent Difieence	-0.4\%	-0.2\%	0.3\%	0.5\%	0.3\%	0.3\%	0.2\%	0.1\%	0.4\%	-0.1\%	-0.8\%	-1.1\%
Beow Nomal (17\%)												
DCR 2015 WWitout Projet	54.2	53.5	50.2	47.2	46.1	47.4	48.9	49.9	49.9	51.3	52.7	53.7
DCR2015 With Projet	53.9	53.3	50.0	47.3	46.2	47.5	48.9	50.1	50.5	51.1	52.5	52.9
Diffeene	-0.3	-0.2	-0.1	0.1	0.0	0.1	0.1	0.2	0.5	-0.1	-0.3	-0.8
Percent ififeence	-0.5\%	-0.4\%	-0.2\%	0.1\%	0.1\%	0.2\%	0.1\%	0.4\%	1.1\%	-0.3\%	-0.5\%	-1.4\%
Dr (22\%)												
DCR 2015 Withour Projet	55.1	54.3	50.3	47.7	47.0	48.3	49.1	49.9	50.6	52.1	53.9	54.5
DCR2015 Wit Project	55.0	54.2	50.3	47.8	47.1	48.4	49.2	50.2	51.0	52.0	53.4	53.4
Diffeence	0.0	-0.1	0.0	0.0	0.1	0.1	0.1	0.3	0.4	-0.1	-0.5	-1.2
Percent ifiteence	-0.1\%	-0.2\%	-0.1\%	0.0\%	0.2\%	0.3\%	0.2\%	0.5\%	0.8\%	-0.1\%	-1.0\%	-2.2\%
Critical (15\%)												
DCR 2015 W Whour Projet	58.0	55.6	50.8	48.2	47.4	48.6	49.5	51.3	52.9	54.5	56.2	58.8
DCR 2015 With Project	57.9	55.7	51.3	48.4	47.6	48.8	49.9	51.9	52.9	54.0	54.8	56.5
Difteene	-0.1	0.1	0.5	0.1	${ }^{0.3}$	0.2	0.4	${ }^{0.6}$	0.0	${ }^{-0.5}$	-1.4	${ }^{-2.3}$
Perenen Diffeene	-0.2\%	0.2\%	1.0\%	0.3\%	0.6\%	0.5\%	0.8\%	1.1\%	0.1\%	-1.0\%	-2.5\%	-3.9\%

Basedon the 82 -jear simulution period

3 Realive difference of the montily average

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulition Period'												
DCR2015 W.ithout Priject	55.5	54.0	49.6	46.9	46.6	48.4	50.5	52.1	52.7	53.6	54.9	55.1
DCR2015 Winf Projet	55.5	54.1	49.7	46.9	46.7	48.5	50.6	52.3	53.0	53.5	54.5	54.2
Diffeence	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.2	0.3	-0.1	-0.4	-0.9
Percent Differeme'	-0.1\%	0.0\%	0.2\%	0.1\%	0.1\%	0.2\%	0.2\%	0.4\%	0.6\%	-0.2\%	-0.8\%	-1.6\%
Water Year Types ${ }^{2}$												
Wet $322^{\%}$)												
DCR 2015 WWhoul Priject	54.8	54.5	50.2	46.4	45.8	47.0	49.5	51.4	52.4	53.3	53.9	52.5
DCR2015 With Projet	55.1	54.7	50.3	46.4	45.8	47.1	49.6	51.4	52.4	53.3	53.8	52.3
Diffeence	0.2	0.1	0.1	0.0	0.0	0.0	0.1	0.0	0.0	-0.1	${ }^{-0.1}$	-0.2
Percent Diffeene	0.4\%	0.3\%	0.2\%	0.1\%	0.0\%	0.1\%	0.2\%	0.0\%	-0.1\%	-0.1\%	-0.1\%	-0.4\%
Above Nomal (15\%)												
OCR 2015 WWhtout Projet	54.8	53.8	49.4	47.1	46.5	48.2	50.8	52.4	52.4	52.7	54.1	53.7
DCR2015 Winf Projert	54.5	53.8	49.7	47.2	46.6	48.3	50.8	52.3	52.8	52.7	53.8	53.2
Diffeence	-0.3	-0.1	0.3	0.1	0.1	0.1	0.0	-0.1	0.4	0.0	-0.4	-0.5
Percent ififeence	-0.5\%	-0.2\%	0.7\%	0.3\%	0.1\%	0.2\%	0.0\%	-0.1\%	0.7\%	0.0\%	-0.6\%	-1.0\%
Below Noma (17\%)												
DCR2015 Wiftour Project	54.8	53.0	49.3	46.6	46.4	48.5	50.9	52.3	52.0	52.9	54.3	55.4
DCR2015 Wit Project	54.5	52.9	49.2	46.6	46.5	48.6	51.0	52.5	52.7	52.8	54.1	54.6
Diffeence	-0.3	-0.1	-0.1	0.1	0.0	0.1	0.0	0.2	0.8	-0.1	-0.2	-0.8
Percent ifiteence	-0.6\%	-0.2\%	-0.1\%	0.2\%	0.1\%	0.1\%	0.1\%	0.4\%	1.5\%	-0.2\%	-0.4\%	-1.5\%
Dry (22%)												
OCR 2015 WWitout Projet	55.6	53.7	49.3	47.1	47.3	49.4	51.0	52.0	52.4	53.6	55.5	56.3
DCR 2015 With Project	55.6	53.6	49.4	47.2	47.4	49.5	51.1	52.3	53.0	53.5	54.9	55.0
Diffeerce	0.0	-0.1	0.0	0.1	0.1	0.1	0.1	0.3	0.6	0.0	-0.5	-1.3
Percent Diffeence	0.0\%	-0.1\%	0.0\%	0.1\%	0.1\%	0.2\%	0.2\%	0.6\%	1.1\%	-0.1\%	-0.9\%	-2.3\%
Critical (15\%)												
DCR 2015 WWhout Project	58.4	55.0	49.5	47.8	47.8	49.9	51.1	53.3	54.6	56.1	57.7	60.2
DCR2015 With Project	58.4	55.1	49.8	47.9	48.0	50.0	51.5	54.1	54.7	55.6	56.3	58.0
Diffeence	-0.1	0.1	0.3	0.1	0.2	0.1	0.4	0.8	0.1	-0.5	-1.4	-2.2

$\frac{1}{1 \text { Basedo on the } 82 \text { 2eear simuludion period }}$
3 Readive difference e f the monntily average

Sacramento River at Jellys Ferry
Long-term Average and Aver, Monthy Temperature

Long-												
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulito Period'												
DCR2015 Wiftout Projet	56.0	53.6	48.8	46.5	46.8	49.1	52.0	54.1	54.6	55.1	56.3	56.3
DCR2015 win Projet	55.9	53.6	49.0	46.5	46.8	49.2	52.1	54.4	55.0	55.0	55.9	55.4
Diffeence	0.0	0.0	0.1	0.1	0.0	0.1	0.1	0.2	0.4	-0.1	-0.4	-0.9
Percent Difference	-0.1\%	0.0\%	0.3\%	0.1\%	0.1\%	0.1\%	0.2\%	0.4\%	0.7\%	-0.2\%	-0.7\%	-1.6\%
Water Year Types ${ }^{2}$												
Wet (32%)												
DCR 2015 WWhoul Priject	55.3	54.1	49.3	46.1	46.0	47.8	51.0	53.6	54.8	55.1	55.4	53.5
DCR 2015 With Proeet	55.5	54.3	49.4	46.1	46.0	47.8	51.1	53.6	54.7	55.0	55.3	53.3
Diffeence	0.2	0.1	0.1	0.0	0.0	0.0	0.1	0.0	-0.1	-0.1	-0.1	-0.2
Percent Diffeene	0.4\%	0.3\%	0.2\%	0.1\%	0.0\%	0.1\%	0.2\%	0.0\%	-0.2\%	-0.2\%	-0.1\%	-0.4\%
Above Nomal (15\%)												
OCR 2015 WWitout Project	55.3	53.5	48.7	46.5	46.6	48.9	52.3	54.6	54.4	54.2	55.5	54.9
DCR2015 Win Project	55.0	53.4	49.0	46.6	46.6	49.0	52.3	54.5	54.9	54.2	55.2	54.4
Difieence	-0.3	-0.1	0.4	0.1	0.0	0.1	0.0	-0.1	0.5	0.1	-0.3	-0.5
Percent ififeence	-0.5\%	-0.2\%	0.8\%	0.2\%	0.0\%	0.2\%	0.0\%	-0.2\%	1.0\%	0.1\%	-0.5\%	-0.8\%
Beolow Noma (17\%)												
DCR2015 Wiftour Project	55.3	52.6	48.6	46.1	46.6	49.3	52.5	54.3	53.8	54.4	55.7	56.8
DCR 2015 Wit Project	55.0	52.5	48.6	46.2	46.6	49.4	52.5	54.5	54.7	54.3	55.5	56.0
Diffeence	-0.3	-0.1	0.0	0.1	0.0	0.0	0.0	0.2	1.0	-0.1	-0.1	-0.8
Percent ifiteence	-0.6\%	-0.1\%	0.0\%	0.2\%	0.0\%	0.1\%	0.1\%	0.4\%	1.8\%	-0.1\%	-0.2\%	${ }^{-1.5 \%}$
Dy (22\%)												
DCR 2015 WWitout Project	56.1	53.2	48.5	46.6	47.4	50.1	52.5	53.9	54.0	54.8	56.7	57.7
DCR 2015 With Project	56.1	53.2	48.6	46.7	47.4	50.2	52.6	54.2	54.8	54.8	56.2	56.4
Diffeerce	0.0	-0.1	0.0	0.1	0.0	0.1	0.1	0.3	0.7	0.0	-0.5	-1.4
Percent Diffeence	0.0\%	-0.1\%	0.1\%	0.2\%	0.1\%	0.1\%	0.2\%	0.6\%	1.4\%	0.0\%	-0.9\%	-2.4\%
Critical (15\%)												
OCR 2015 WWitout Project	58.7	54.4	48.7	47.3	48.0	50.6	52.4	55.0	56.1	57.4	58.9	61.3
DCR2015 With Project	58.6	54.5	48.9	47.4	48.2	50.7	52.8	55.9	56.3	57.0	57.6	59.2
Diffeence	-0.1	0.0	0.2	0.1	0.2	0.1	0.4	0.9	0.1	-0.4	-1.4	-2.1

$\frac{\text { Perenen Dififenene }}{1 \text { Based on the } 2 \text {-verar simulution period }}$
${ }^{2}$ 2A dealivive difieerence of the monhty vereage

Sacramento River at Bend SQ-1a
ter Monthly Temperature

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simuliton Period'												
OCR 2015 Without Project	56.2	53.3	48.4	46.3	47.0	49.7	52.8	55.1	55.6	56.2	57.4	57.2
OCR2015 Wat Project	56.2	53.3	48.5	46.4	47.0	49.8	52.9	55.3	56.1	56.1	57.0	56.3
Diffeere	0.0	0.0	0.1	0.1	0.0	0.0	0.1	0.2	0.4	-0.1	-0.4	-0.8
Percent Dififeence	-0.1\%	0.0\%	0.2\%	0.1\%	0.1\%	0.1\%	0.2\%	0.4\%	0.8\%	-0.1\%	-0.6\%	-1.5\%
Water Year Types ${ }^{2}$												
Wet 32% \%												
OCR 2015 Without Project	55.5	53.9	48.9	46.1	46.3	48.4	51.8	54.4	55.8	56.2	56.	54
DCR 2015 Wit Priject	55.7	54.0	49.0	46.1	46.3	48.4	51.9	54.4	55.7	56.1	56.5	54.0
Diffeence	0.2	0.1	0.1	0.0	0.0	0.0	0.1	0.0	-0.1	-0.1	0.0	-0.2
Percent iffeeme	0.4\%	0.3\%	0.2\%	0.0\%	0.0\%	0.1\%	0.1\%	0.0\%	-0.2\%	-0.2\%	-0.1\%	-0.3\%
Above Nomal (15\%)												
OCR 215 WWithout Proeat	55.6	53.2	48.4	46.5	46.8	49.6	53.2	55.6	55.4	55.2	56.7	55.7
DCR2005 Wan Project	55.3	53.1	48.7	46.5	46.8	49.6	53.2	55.4	56.0	55.3	56.5	55.3
Diffeence	-0.3	-0.1	0.4	0.1	0.0	0.1	0.0	-0.1	0.6	0.1	-0.2	-0.4
Perene Dififeence	-0.5\%	-0.2\%	0.8\%	0.1\%	0.0\%	0.1\%	0.0\%	-0.2\%	1.0\%	0.2\%	-0.4\%	-0.78
Below Nomal (17\%)												
OCR 2015 WWitout Project	55.6	52.3	48.2	46.0	46.8	49.9	53.3	55.3	54.8	55.5	56.8	57.8
OCR 2015 Wit Project	55.3	52.3	48.2	46.1	46.8	50.0	53.3	55.5	55.9	55.5	56.7	57.0
Diffeence	-0.3	0.0	0.0	0.1	0.0	0.0	0.0	0.2	1.1	0.0	-0.1	-0.8
Perenen Diffeence	-0.6\%	-0.1\%	0.0\%	0.2\%	0.0\%	0.1\%	0.0\%	0.4\%	2.0\%	-0.1\%	-0.1\%	-1.5
Dry (22\%)												
OCR 2015 WWitout Project	56.3	52.9	48.1	46.4	47.5	50.7	53.3	55.0	55.1	55.9	57.9	58.8
OCR 2015 Wath Project	56.3	52.8	48.1	46.5	47.5	50.7	53.4	55.3	55.9	55.9	57.4	57.4
Diffeence	0.0	0.0	0.0	0.1	0.0	0.1	0.1	0.3	0.8	0.0	-0.5	-1.4
Pecent Differene	0.0\%	-0.1\%	0.1\%	0.2\%	0.1\%	0.1\%	0.2\%	0.6\%	1.5\%	0.0\%	-0.9\%	-2.3\%
Critical (15\%)												
DCR 2015 WWithout Project	58.9	53.9	48.3	47.1	48.1	51.2	53.2	56.0	57.1	58.5	59.9	62.0
DCR 2015 Witi Proeet	58.8	53.9	48.5	47.1	48.3	51.2	53.6	56.9	57.3	58.1	58.5	60.1
Diffeence	-0.1	0.0	0.2	0.0	0.1	0.0	0.4	0.9	0.2	-0.4	-1.4	-2.0

$\frac{\text { Perenen Dififenene }}{1 \text { Based on the } 2 \text {-verar simulution period }}$

3 Realive difference of the montily average

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\overline{\text { Full Simultion Period' }}$												
DCR 2015 WWitout Projet	56.7	53.3	48.3	46.3	47.2	50.2	53.6	56.3	57.2	57.9	59.0	58.6
DCR2015 win Projet	56.6	53.3	48.4	46.4	47.2	50.3	53.7	56.5	57.8	57.9	58.7	57.7
Diffeence	0.0	0.0	0.1	0.0	0.0	0.1	0.1	0.2	0.5	-0.1	-0.3	-0.8
Percent Difference	-0.1\%	0.0\%	0.2\%	0.1\%	0.1\%	0.1\%	0.2\%	0.4\%	0.9\%	-0.1\%	-0.6\%	-1.4\%
Water Year Types ${ }^{2}$												
Wet 3 \%\%)												
DCR 2015 WWhoul Priject	55.9	53.9	48.8	46.1	46.4	48.8	52.4	55.5	57.3	58.0	58.2	55.2
DCR2015 Wit Project	56.1	54.0	48.9	46.1	46.5	48.8	52.5	55.5	57.2	57.8	58.2	55.1
Diffeence	0.2	0.1	0.1	0.0	0.0	0.0	0.1	0.0	-0.1	-0.1	0.0	-0.2
Percent Diffeene	0.4\%	0.3\%	0.2\%	0.0\%	0.0\%	0.1\%	0.2\%	0.0\%	-0.2\%	-0.3\%	0.0\%	-0.3\%
Above Nomal (15\%)												
OCR 2015 WWitout Project	56.1	53.2	48.3	46.5	46.9	50.0	53.9	56.8	57.1	56.9	58.4	57.1
DCR2015 Win Project	55.8	53.1	48.6	46.5	46.9	50.0	54.0	56.6	57.7	57.0	58.2	56.7
Diffeence	-0.3	-0.1	0.3	0.1	0.0	0.1	0.0	-0.1	0.7	0.1	-0.2	-0.4
Percent ifiteence	-0.5\%	-0.2\%	0.7\%	0.1\%	0.0\%	0.2\%	0.0\%	-0.3\%	1.2\%	0.2\%	-0.3\%	-0.6\%
Beolow Noma (17\%)												
DCR2015 Wiftour Project	56.1	52.4	48.1	46.0	47.0	50.5	54.2	56.5	56.5	57.3	58.5	59.5
DCR 2015 Wit Project	55.7	52.3	48.1	46.1	47.0	50.5	54.2	56.7	57.7	57.3	58.5	58.6
Diffeence	-0.3	0.0	0.0	0.1	0.0	0.1	0.0	0.2	1.2	0.0	0.0	-0.8
Percent ifiteence	-0.6\%	-0.1\%	0.0\%	0.2\%	0.0\%	0.2\%	0.0\%	0.4\%	2.2\%	0.0\%	0.0\%	-1.4\%
Dr (22\%)												
DCR 2015 WWitout Project	56.9	52.9	48.0	46.4	47.8	51.3	54.3	56.2	56.8	57.6	59.5	60.5
DCR 2015 Wit Project	56.9	52.9	48.0	46.4	47.8	51.4	54.4	56.6	57.7	57.6	59.0	59.0
Diffeerce	0.0	0.0	0.0	0.1	0.0	0.1	0.1	0.3	0.9	0.1	-0.5	-1.4
Percent Diffeence	0.0\%	-0.1\%	0.1\%	0.2\%	0.1\%	0.2\%	0.2\%	0.6\%	1.7\%	0.1\%	-0.8\%	-2.4\%
Critical (15\%)												
OCR 2015 WWitout Project	59.3	53.9	48.2	47.1	48.5	51.9	54.2	57.2	58.8	60.2	61.5	63.5
DCR2015 With Project	59.3	53.9	48.4	47.1	48.7	51.9	54.7	58.3	59.0	59.8	60.2	61.6
Diffeence	0.0	0.0	0.1	0.0	0.1	0.0	0.5	1.0	0.2	-0.3	${ }^{-1.3}$	-1.9

Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period ${ }^{1}$												
DCR2015 Without Priject	56.7	53.3	48.3	46.3	47.2	50.2	53.6	56.2	57.2	57.8	59.0	58.5
DCR2015 With Projet	56.6	53.3	48.4	46.4	47.2	50.3	53.7	56.4	57.7	57.8	58.6	57.7
Diffeence	0.0	0.0	0.1	0.0	0.0	0.1	0.1	0.2	0.5	-0.1	${ }^{-0.3}$	-0.8
Pecent Dififenee?	-0.1\%	0.0\%	0.2\%	0.1\%	0.1\%	0.1\%	0.2\%	0.4\%	0.9\%	-0.1\%	-0.6\%	-1.4\%
Water Year Types ${ }^{2}$												
Wet (32\%)												
DCR2015 WWhout Project	55.9	53.8	48.8	46.1	46.4	48.8	52.4	55.4	57.3	57.9	58.1	55.2
DCR2015 Win Project	56.1	54.0	48.9	46.1	46.4	48.8	52.5	55.4	57.2	57.8	58.1	55.0
Diffeence	0.2	0.1	0.1	0.0	0.0	0.0	0.1	0.0	-0.1	-0.1	0.0	-0.2
Percent Diffeerne	0.4\%	0.3\%	0.2\%	0.0\%	0.0\%	0.1\%	0.2\%	0.0\%	-0.2\%	-0.2\%	0.0\%	-0.3\%
Above Nomal (15\%)												
OCR 2015 WWhtout Projet	56.0	53.2	48.3	46.5	46.9	49.9	53.9	56.7	57.0	56.8	58.3	57.0
DCR2015 Win Project	55.7	53.1	48.6	46.5	46.9	50.0	53.9	56.6	57.7	56.9	58.1	56.6
Diffeence	-0.3	-0.1	0.3	0.1	0.0	0.1	0.0	-0.1	0.7	0.1	-0.2	-0.4
Percent Differene	-0.5\%	-0.2\%	0.7\%	0.1\%	0.0\%	0.2\%	0.0\%	-0.2\%	1.2\%	0.2\%	-0.3\%	-0.6\%
Beow Nomal (17\%)												
DCR2015 Wiftour Project	56.1	52.4	48.1	46.0	47.0	50.4	54.1	56.4	56.4	57.2	58.4	59.4
DCR2015 With Projet	55.7	52.3	48.1	46.1	47.0	50.5	54.1	56.7	57.6	57.2	58.4	58.5
Diffeere	-0.3	0.0	0.0	0.1	0.0	0.1	0.0	0.2	1.2	0.0	0.0	-0.8
Percent ifiteence	-0.6\%	-0.1\%	0.0\%	0.2\%	0.0\%	0.1\%	0.0\%	0.4\%	2.1\%	0.0\%	-0.1\%	-1.4\%
Dr (22\%)												
DCR 2015 Withour Project	56.8	52.9	48.0	46.4	47.7	51.2	54.2	56.2	56.7	57.5	59.4	60.4
DCR 2015 With Project	56.8	52.9	48.0	46.4	47.8	51.3	54.3	56.5	57.7	57.5	58.9	58.9
Diffeerce	0.0	0.0	0.0	0.1	0.0	0.1	0.1	0.3	0.9	0.1	-0.5	-1.4
Percentififeene	0.0\%	-0.1\%	0.1\%	0.2\%	0.1\%	0.2\%	0.2\%	0.6\%	1.7\%	0.1\%	-0.8\%	-2.4\%
Critical (15\%)												
DCR 2015 WWithour Projet	59.3	53.9	48.2	47.1	48.5	51.9	54.1	57.2	58.7	60.1	61.4	63.4
DCR2015 Wit Project	59.3	53.9	48.4	47.1	48.6	51.9	54.6	58.2	58.9	59.8	60.1	61.5
Diffeence	0.0	0.0	0.1	0.0	0.1	0.0	0.5	1.0	0.2	${ }^{-0.3}$	-1.3	-1.9

3 Realive difference of the monntily average

American River below Nimbus Dam, Monthly Temperature Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\overline{\text { Full Simulation Period }{ }^{\text {' }} \text { ' }}$												
OCR 2015 Without Project	59.0	55.0	50.5	46.0	46.3	49.3	53.9	57.6	61.2	63.6	63.1	63.7
OCR2015 Wat Project	59.1	55.9	50.9	46.2	46.3	49.3	53.9	57.7	61.0	62.2	61.8	63.
Diffeence	0.1	0.9	0.4	0.2	0.1	0.0	0.0	0.1	-0.2	-1.4	${ }^{-1.3}$	-0.6
Percent Diffeernce?	0.2\%	1.7\%	0.9\%	0.4\%	0.2\%	-0.1\%	-0.1\%	0.2\%	-0.3\%	-2.2\%	-2.0\%	-0.9\%
Water Year Types ${ }^{2}$												
Wet (32\%)												
OCR 2015 WWitout Project	57.2	55.0	51.0	45.2	45.5	48.0	51.9	55.3	58.6	61.6	60.7	61.2
OCR 2015 With Projet	58.3	55.9	51.4	45.2	45.5	47.9	51.8	55.3	58.5	60.3	59.7	61.2
Diffeence	1.1	1.0	0.4	0.0	0.0	0.0	0.0	0.0	-0.1	-1.3	-0.9	0.0
Pecent Diffeene	2.0\%	1.7\%	0.8\%	0.0\%	-0.1\%	-0.1\%	-0.1\%	0.0\%	-0.2\%	-2.1\%	-1.5\%	0.08
Above Nomal (15\%)												
OCR 2105 Whthout Project	58.3	54.8	50.9	46.1	46.0	48.6	53.6	56.9	60.2	62.9	62.1	62.9
DCR2015 Wib Project	57.7	55.6	51.5	46.3	46.2	48.6	53.5	56.8	60.0	61.5	61.2	62.1
Diffeence	-0.6	0.8	0.6	0.3	0.2	0.0	-0.1	-0.1	-0.2	-1.4	-1.0	-0.8
Pecenot Diffeence	-1.1\%	1.5\%	1.2\%	0.6\%	0.4\%	0.1\%	-0.2\%	-0.2\%	-0.3\%	-2.2\%	-1.6\%	-1.28
Below Nomal (17\%)												
OCR 2105 Without Project	58.4	54.8	50.6	46.2	45.9	49.1	54.2	57.7	61.1	63.3	63.1	63.9
OCR 2015 Wat Project	57.7	55.8	51.0	46.3	45.9	49.1	54.1	57.6	60.7	61.7	61.7	62
Diffeence	-0.7	0.9	0.5	0.0	0.0	-0.1	-0.1	-0.1	-0.5	-1.6	-1.4	-1.0
Percent Differene	-1.2\%	1.7\%	0.9\%	0.1\%	-0.1\%	-0.1\%	-0.2\%	-0.1\%	-0.8\%	-2.5\%	-2.2\%	-1.6
Dry (22\%)												
OCR 2015 WWithout Project	60.3	55.0	50.0	46.4	46.7	50.0	55.1	59.4	63.2	64.4	64.5	65.3
DCR 2015 Witit Prieet	60.2	56.0	50.4	46.7	46.9	50.1	55.1	59.7	63.1	63.1	63.1	64.6
Diffeence	-0.1	1.0	0.4	0.3	0.2	0.0	0.0	0.4	-0.1	-1.3	${ }^{-1.5}$	-0.7
Pecenen Diffeence	-0.1\%	1.8\%	0.8\%	0.7\%	0.4\%	0.0\%	0.0\%	0.6\%	-0.2\%	-2.0\%	-2.3\%	-1.08
Critical (15\%)												
OCR 2105 Without Project	62.3	55.2	49.6	47.0	47.8	51.9	56.5	60.5	64.8	67.7	67.0	67.0
DCR2015 Wib Project	62.2	56.0	49.9	47.4	48.0	51.8	56.6	61.0	64.6	66.1	65.2	66.1
Diffeence	-0.1	0.8	0.3	0.3	0.2	-0.1	0.1	0.5	-0.1	-1.6	-1.8	-0.9

Monthly Temperature (DEGF)												
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulation Period												
DCR 2015 Without Project	60.3	55.0	50.1	46.4	47.4	51.3	56.5	61.0	64.9	66.9	67.1	66.1
DCR 2015 Wit Project	60.4	55.8	50.5	46.5	47.4	51.3	56.4	61.0	64.6	66.1	65.8	65.5
Diffeence	0.1	0.8	0.4	0.1	0.1	-0.1	-0.1	0.0	-0.2	-0.8	${ }^{-1.3}$	-0.5
Percent Difference	0.1\%	1.4\%	0.8\%	0.3\%	0.1\%	-0.1\%	-0.2\%	0.0\%	-0.4\%	-1.2\%	-1.9\%	-0.8\%
Water Year Types ${ }^{2}$												
Wet (32\%)												
DCR2015 WWitout Projet	58.7	55.1	50.6	45.5	46.2	49.3	53.7	57.8	61.5	65.0	64.1	63.2
DCR2015 Win Project	59.5	55.9	50.9	45.5	46.2	49.3	53.7	57.8	61.4	64.0	63.2	63.3
Diffeence	0.8	0.9	0.4	0.0	0.0	0.0	0.0	0.0	-0.1	-1.0	-0.9	0.1
Percant ififeence	1.4\%	1.6\%	0.7\%	0.0\%	-0.1\%	-0.1\%	-0.1\%	0.0\%	-0.1\%	-1.6\%	-1.4\%	0.2\%
Above Nomal (15\%)												
OCR 2015 Wiftout Project	59.7	54.7	50.5	46.4	47.0	50.0	55.6	60.0	64.1	65.8	65.9	64.8
DCR 2015 Wit Project	59.2	55.4	51.1	46.7	47.1	50.0	55.5	59.9	64.1	64.9	65.1	64.3
Diffeence	-0.5	0.7	0.6	0.2	0.1	0.0	-0.1	-0.1	0.0	-1.0	-0.8	-0.6
Perenen Difieence	-0.9\%	1.3\%	1.1\%	0.5\%	0.3\%	0.1\%	-0.2\%	-0.1\%	0.0\%	-1.5\%	-1.2\%	-0.9\%
Beolow Noma (17\%)												
OCR 2105 Without Project	59.6	54.8	50.1	46.5	46.9	51.2	56.8	60.8	65.2	65.9	67.3	66.5
DCR 2015 W.thriject	59.1	55.6	50.6	46.6	46.9	51.2	56.6	60.7	64.5	65.1	65.7	65.6
Diffeence	-0.5	0.8	0.4	0.0	0.0	-0.1	-0.2	-0.1	-0.7	-0.8	-1.5	${ }_{-1.0}$
Percantififeence	-0.8\%	1.5\%	0.9\%	0.0\%	-0.1\%	-0.1\%	-0.3\%	-0.2\%	-1.1\%	-1.2\%	-2.3\%	-1.4\%
Dry (22\%)												
DCR 2015 WWitout Project	61.4	55.1	49.6	46.7	48.0	52.7	58.2	63.4	67.0	67.6	68.5	67.9
DCR 2015 With Project	61.3	55.9	50.0	47.0	48.2	52.6	58.2	63.6	66.8	67.2	67.1	67.2
Difference	-0.1	0.8	0.4	0.3	0.1	-0.1	-0.1	0.2	-0.2	-0.3	${ }^{-1.4}$	-0.7
Percent Difiteence	-0.1\%	1.5\%	0.8\%	0.6\%	0.3\%	-0.1\%	-0.1\%	0.3\%	-0.4\%	-0.5\%	-2.0\%	-1.0\%
Critical (15\%)												
OCR 2105 Without Project	63.6	55.5	49.2	47.4	50.0	55.1	60.6	65.3	69.3	72.3	72.2	70.2
DCR 2015 Wit Project	63.4	56.0	49.5	47.6	50.1	54.9	60.4	65.4	69.0	71.3	70.2	69.0
Diffeence	-0.1	0.5	0.3	0.3	0.1	-0.2	-0.1	0.1	-0.3	-1.0	-2.0	${ }^{-1.3}$
Percent Diffeene	-0.2\%	1.0\%	0.6\%	0.5\%	0.2\%	-0.3\%	-0.2\%	0.1\%	-0.4\%	-1.4\%	-2.8\%	-1.88

1Basedon the 82 2.jear simulution period

3 Realive difference of the monhty yereage

American River at the Mouth, Monthly Temperature

Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulion Period ${ }^{1}$												
DCR 2015 WWithour Projet	61.4	55.2	49.8	46.6	48.2	52.7	58.3	63.3	67.4	69.3	70.0	67.9
OCR2015 Wat Project	61.4	55.8	50.1	46.7	48.2	52.7	58.2	63.2	67.1	69.0	68.8	67.4
Diffeerce	0.0	0.6	0.4	0.1	0.0	-0.1	-0.1	0.0	-0.3	-0.4	-1.2	-0.5
Percent Differene'	0.0\%	1.2\%	0.7\%	0.3\%	0.1\%	-0.1\%	-0.2\%	-0.1\%	-0.4\%	-0.5\%	-1.8\%	-0.8\%
Water Year Types ${ }^{2}$												
Wet (32\%)												
OCR 2015 WWrout Project	59.9	55.2	50.3	45.7	46.6	50.2	55.0	59.5	63.5	67.5	66.7	64.7
OCR 2015 WWh Project	60.5	56.0	50.6	45.7	46.6	50.2	54.9	59.5	63.4	66.7	65.8	64.9
Diffeence	0.6	0.8	0.3	0.0	0.0	0.0	0.0	0.0	-0.1	-0.8	-0.9	0.2
Pecenen Diffeence	1.0\%	1.4\%	0.7\%	0.0\%	-0.1\%	-0.1\%	-0.1\%	0.0\%	-0.1\%	-1.1\%	-1.3\%	0.3\%
Above Nomal (15\%)												
OCR 2015 WWitout Project	60.9	54.7	50.2	46.7	47.6	50.9	57.1	62.1	66.8	67.9	68.7	66.3
DCR2005 Wan Project	60.4	55.3	50.7	46.9	47.7	50.9	57.0	62.0	66.9	67.4	68.0	66.0
Difference	-0.5	0.6	0.5	0.2	0.1	0.0	-0.1	-0.1	0.1	-0.6	-0.7	-0.4
Percent Differene	-0.8\%	1.1\%	1.1\%	0.4\%	0.2\%	0.1\%	-0.2\%	-0.1\%	0.1\%	-0.9\%	-1.0\%	-0.6\%
Below Noma (17\%)												
OCR 2105 Without Project	60.5	54.8	49.8	46.8	47.7	52.7	58.6	63.0	68.1	67.8	70.4	68.5
DCR 2015 Wit Project	60.2	55.5	50.2	46.8	47.6	52.7	58.4	62.8	67.2	67.6	68.7	67.6
Diffeerese	-0.3	0.7	0.4	0.0	0.0	-0.1	-0.2	-0.2	-0.8	-0.1	-1.6	-0.9
Pecren Diffeence	-0.6\%	1.2\%	0.8\%	0.0\%	-0.1\%	-0.1\%	-0.3\%	-0.3\%	-1.2\%	-0.2\%	-2.3\%	-1.3\%
Dr (22% \%												
OCR 2015 WWitout Project	62.4	55.2	49.4	46.9	49.0	54.5	60.5	66.2	69.8	70.0	71.5	70.0
OCR 2015 Wath Proed	62.3	55.9	49.7	47.2	49.2	54.4	60.4	66.3	69.5	70.4	70.2	69.3
Difference	-0.1	0.7	0.4	0.2	0.1	-0.2	-0.1	0.1	-0.3	0.3	-1.3	-0.7
Pecenen Diffeence	-0.2\%	1.2\%	0.7\%	0.5\%	0.2\%	-0.3\%	-0.1\%	0.1\%	-0.5\%	0.5\%	-1.8\%	-1.0\%
Critical (15\%)												
OCR 2015 WWitout Project	64.8	55.8	48.9	47.6	51.4	57.4	63.4	68.4	72.3	75.5	75.8	${ }^{72.8}$
DCR 2015 With Proeet	64.6	56.2	49.2	47.9	51.5	57.2	63.2	68.3	71.9	74.9	73.8	71.3
Diffeence	-0.2	0.3	0.2	0.2	0.1	-0.2	-0.2	-0.1	-0.4	-0.6	-2.0	-1.5
Perenen Diffeence	-0.3\%	0.6\%	0.5\%	0.4\%	0.1\%	-0.3\%	-0.4\%	-0.1\%	-0.5\%	-0.7\%	-2.7\%	-2.0\%

Basedon the 82 -jear simulution period
${ }^{2}$ 2A dealivive difieerence of the monhty vereage

Trinity River below Table SQ12-1
, Monthy Temperature

Trinity River below Lewiston Dam, Monthly Temperature Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulaion Period												
DCR 2015 WWithour Projet	51.5	50.4	48.6	47.2	47.2	49.3	50.2	46.7	49.8	51.1	51.4	51.5
DCR2015 Winf Projer	51.6	50.7	48.5	47.3	47.4	49.1	50.3	46.8	49.8	51.0	51.2	51.4
Diffeence	0.1	0.3	-0.2	0.1	0.2	-0.2	0.1	0.0	0.0	-0.1	-0.2	-0.1
Perenen Diffeence?	0.1\%	0.7\%	-0.3\%	0.1\%	0.4\%	-0.3\%	0.2\%	0.0\%	0.0\%	-0.1\%	-0.4\%	-0.1\%
Water Year Types ${ }^{2}$												
Wet 32% \%												
DCR2015 WWhout Project	49.6	49.6	48.5	45.8	45.8	47.5	48.6	45.4	47.2	50.3	50.6	49.7
DCR2015 Win Project	49.7	49.8	48.4	45.8	46.0	47.4	48.8	45.4	47.2	50.2	50.3	49.7
Diffeere	0.0	0.1	-0.1	-0.1	0.2	-0.1	0.2	0.0	0.0	-0.1	-0.3	0.0
Percent iffeeme	0.1\%	0.3\%	-0.2\%	-0.1\%	0.4\%	-0.1\%	0.4\%	0.0\%	0.0\%	-0.1\%	-0.6\%	0.0\%
Above Nomal (15\%)												
DCR 2015 WWhout Project	50.7	49.5	49.3	46.7	46.5	49.0	50.0	45.4	48.5	50.7	50.6	50.3
DCR2015 With Projet	50.6	50.1	48.4	46.8	46.8	49.1	50.0	45.4	48.5	50.7	50.2	50.4
Diffeence	-0.1	0.6	-0.9	0.1	0.3	0.1	0.0	0.0	-0.1	0.0	-0.4	0.1
Percent Diffeence	-0.2\%	1.3\%	-1.8\%	0.3\%	0.6\%	0.1\%	-0.1\%	0.0\%	-0.1\%	0.0\%	-0.8\%	0.2\%
Beow Nomal (17\%)												
OCR 2015 WWitour Projet	52.1	49.8	47.5	47.5	47.1	49.2	50.5	46.4	50.6	51.1	51.4	52.0
DCR2015 With Projet	51.8	49.9	47.3	47.7	47.2	49.0	50.7	46.4	50.8	51.3	51.7	51.5
Diffeene	-0.4	0.1	-0.2	0.1	0.1	-0.2	0.2	0.0	0.1	0.1	0.3	-0.6
Percantififeence	-0.7\%	0.2\%	-0.5\%	0.3\%	0.2\%	-0.4\%	0.4\%	0.0\%	0.2\%	0.3\%	0.5\%	-1.1\%
Dry (22\%)												
DCR 2015 Withour Projet	52.5	51.6	48.9	48.3	48.5	50.6	51.5	47.8	51.1	51.1	51.6	52.0
DCR2015 With Project	52.7	51.6	48.5	48.4	48.8	50.3	51.5	47.8	51.2	51.0	51.4	51.9
Diffeence	0.2	0.0	-0.4	0.1	0.2	-0.3	0.0	0.0	0.2	-0.2	-0.2	-0.1
Percent ifiteence	0.3\%	0.0\%	-0.8\%	0.2\%	0.5\%	-0.5\%	0.0\%	0.0\%	0.3\%	-0.4\%	-0.3\%	-0.2\%
Critical (15\%)												
DCR 2015 W Whour Projet	54.3	51.6	49.2	48.7	49.4	51.8	51.2	49.8	53.9	52.9	53.6	55.1
DCR 2015 With Project	54.9	52.9	49.9	48.8	49.5	51.3	51.4	49.9	53.6	52.7	53.3	55.2
Diffeene	${ }^{0.6}$	1.3	0.8	0.1	0.1	${ }^{-0.4}$	0.2	0.1	${ }^{-0.3}$	${ }^{-0.1}$	-0.4	0.1

Based on the 82 verearsimul
3 Readive difference e f the monntily average

Clear Creek below Whiskeytown, Monthly Temperature
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
$\overline{\text { Full Simulation Period }}$												
OCR 2015 Without Project	52.1	50.1	46.2	44.0	43.9	44.8	46.3	47.5	49.1	51.0	52.1	52.2
OCR2015 Wat Project	52.0	50.1	46.2	44.0	43.9	44.8	46.3	47.5	49.1	50.9	52.0	52.1
Diffeerce	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	${ }^{-0.1}$	-0.1
Perene Diffeemee?	-0.1\%	0.0\%	0.0\%	0.0\%	0.1\%	0.0\%	0.1\%	0.0\%	0.0\%	-0.1\%	-0.1\%	-0.2\%
Water Year Types ${ }^{2}$												
Wet (32\%)												
OCR 2015 WWitout Project	50.6	49.5	45.9	43.7	43.5	44.4	46.0	47.5	49.0	50.9	51.7	51.1
DCR2015 Wath Project	50.6	49.5	45.9	43.7	43.6	44.4	46.0	47.5	49.0	50.8	51.6	51.0
Diffeence	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.0	-0.1	-0.1	-0.1	0.0
Pecent Diffeence	0.1\%	0.1\%	0.0\%	-0.1\%	0.2\%	0.0\%	0.1\%	0.0\%	-0.1\%	-0.2\%	-0.2\%	-0.1\%
Above Nomal (15\%)												
OCR 2015 Whitout Project	51.4	49.6	45.9	44.1	43.9	44.7	46.2	47.7	49.3	51.2	51.9	51.5
DCR2005 Wan Project	51.3	49.6	45.9	44.2	43.9	44.7	46.2	47.7	49.3	51.2	51.8	51.3
Diffeence	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.2
Peceno Diffeence	-0.3\%	0.0\%	0.0\%	0.1\%	0.1\%	0.0\%	0.0\%	-0.1\%	0.0\%	-0.1\%	-0.2\%	-0.4\%
Beow Nomal (17\%)												
OCR 2015 Without Project	52.4	50.1	46.3	43.7	43.4	44.5	45.9	47.0	48.5	50.5	51.9	52.3
OCR 2015 Wat Project	52.2	50.1	46.3	43.7	43.4	44.6	46.0	47.1	48.7	50.6	51.8	52.0
Diffeence	-0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.1	0.0	-0.3
Perent Diffeence	-0.4\%	0.1\%	-0.1\%	-0.1\%	0.0\%	0.1\%	0.1\%	0.3\%	0.5\%	0.3\%	-0.1\%	-0.6\%
Dry (22%)												
OCR 2015 WWitout Project	52.7	50.4	46.4	44.0	44.1	45.1	46.4	47.3	48.9	51.0	52.3	52.6
OCR 2015 With Proeet	52.6	50.4	46.3	44.0	44.1	45.1	46.5	47.4	48.9	51.0	52.3	52.6
Diffeence	-0.1	0.0	-0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.0
Percen Dififeerne	-0.1\%	0.0\%	-0.1\%	0.0\%	0.0\%	0.1\%	0.1\%	0.1\%	0.0\%	0.0\%	0.1\%	-0.1\%
Critical (15\%)												
OCR 2105 Without Project	54.5	51.3	46.9	45.1	44.9	45.9	47.3	48.4	50.0	51.5	53.2	54.5
OCR 2015 WWh Project	54.5	51.2	46.9	45.0	44.9	45.9	47.3	48.3	49.8	51.4	53.1	54.5
Diffeence	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.2	-0.2	${ }^{-0.1}$	0.0
Percent Differene	0.0\%	0.0\%	0.1	0.0\%	0.0\%	0.0\%	0.0\%	-0.2\%	-0.4\%	-0.3\%	-0.2\%	0.0\%

$\frac{\text { Pelcaindmernce }}{\text { Based on the } 82 \text { year simulation period }}$
3 Realive difference of the monntily average

Clear Creek at Igo, Monthly Temperature												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period ${ }^{\text {d }}$												
DCR2015 Whituot Propect	52.6	50.3	46.3	44.2	44.3	45.5	47.3	48.6	50.9	54.6	55.1	53.5
DCR2015 Whif Projet	52.6	50.3	46.3	44.2	44.3	45.5	47.3	48.6	50.9	54.6	55.0	53.4
Diffeence	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1
Perenen Diffeenee'	-0.1\%	0.0\%	0.0\%	0.0\%	0.1\%	0.0\%	0.1\%	0.0\%	0.0\%	-0.1\%	-0.1\%	-0.2\%
Water Year Types ${ }^{2}$												
Wet (32\%)												
DCR2015 Whitout Proiect	51.1	49.7	46.0	43.9	43.9	45.0	46.9	48.5	50.6	54.5	54.8	52.4
DCR 2015 Win Project	51.2	49.7	46.0	43.9	44.0	45.1	46.9	48.5	50.6	54.5	54.7	52.4
Diffeence	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	-0.1	-0.1	-0.1	0.0
Perenen Differene	0.1\%	0.1\%	0.0\%	-0.1\%	0.2\%	0.0\%	0.1\%	0.0\%	-0.1\%	-0.2\%	-0.1\%	0.0\%
Above Nomal (15\%)												
DCR2015 Whituot Proiject	51.9	49.8	46.0	44.3	44.3	45.4	47.2	48.7	51.0	54.8	54.9	52.8
DCR2015 Whif Prijet	51.8	49.8	46.0	44.4	44.3	45.4	47.1	48.7	51.0	54.8	54.8	52.6
Diffeene	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.2
Perenen ifference	-0.3\%	0.0\%	0.0\%	0.1\%	0.1\%	0.0\%	0.0\%	-0.1\%	0.0\%	-0.1\%	-0.2\%	-0.4\%
Below Nomal (17\%)												
DCR2015 Whtrout Priject	52.9	50.2	46.4	43.9	43.8	45.2	46.9	48.0	50.2	54.1	54.8	53.6
DCR2015 Whi Prijet	52.7	50.3	46.3	43.8	43.8	45.2	47.0	48.1	50.4	54.2	54.8	53.3
Diffeene	-0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.1	0.0	-0.3
Perenen iffieence	-0.4\%	0.1\%	-0.1\%	-0.1\%	0.0\%	0.1\%	0.1\%	0.3\%	0.4\%	0.3\%	0.0\%	-0.6\%
Dry (22%)												
DCR2015 Whitout Propect	53.2	50.6	46.4	44.2	44.5	45.8	47.5	48.4	50.8	54.6	55.2	53.9
DCR 2015 Winf Project	53.2	50.6	46.4	44.1	44.5	45.8	47.5	48.4	50.8	54.6	55.3	53.8
Diffeence	-0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
Perenen Difference	-0.1\%	0.0\%	-0.1\%	0.0\%	0.1\%	0.1\%	0.1\%	0.1\%	0.0\%	0.0\%	0.1\%	-0.1\%
Citical (15\%)												
DCR2015 WWithout Proiect	55.2	51.5	47.0	45.2	45.4	46.7	48.5	49.6	52.7	55.2	56.0	56.0
DCR2015 Whif Prijet	55.2	51.4	47.0	45.2	45.4	46.7	48.5	49.5	52.5	55.0	55.9	55.9
Diffeence	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.2	-0.2	-0.1	0.0
Perenen ifferene	0.0\%	0.0\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.2\%	-0.4\%	-0.3\%	-0.2\%	0.0\%

1Basedon the 82 2.jear simulution period

Trinity and Sacramento River Basin Operations Exceedance Probability Charts and Tables

Sacramento River below Keswick, Monthly Temperatur

Percent Exceedance Probability (\%)	October			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	DCR 2015 Writhout Proiect	DCR 2015 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGFF) } \end{aligned}$	
	Monthy Temperature	Monthly Temperature		
0.0\%	62.0	62.1		0.1\%
1.2\%	61.1	61.4	0.4	0.6\%
2.5\%	60.4	61.3	0.9	1.4\%
3.7\%	60.2	60.1	-0.1	-0.2\%
4.9\%	59.3	56.5	-2.7	-4.6\%
6.2\%	57.0	56.4	-0.6	-1.0\%
7.4\%	56.7	56.1	-0.6	-1.1\%
8.6\%	56.4	56.0	-0.4	-0.7\%
9.9\%	56.4	56.0	-0.4	-0.7\%
11.17\%	55.7	55.8	0.1	0.2\%
12.3\%	55.4	55.6	0.2	0.4\%
13.6\%	55.3	55.6	${ }^{0.3}$	0.5\%
14.8\%	55.3	55.5	0.2	0.4\%
16.0\%	55.3	55.5	${ }^{0.3}$	0.5\%
17.3\%	55.3	55.5	0.3	0.5\%
18.5\%	55.2 55 5	55.4 554 5.4	0.2	0.4\%
19.8\%	55.2	55.4	0.2	0.4\%
21.0\%	55.2	55.3	0.1	0.2\%
22.2\%	55.1	55.3	0.1	0.2\%
23.5\%	55.1	55.2	0.1	0.3\%
24.7\%	55.1	55.2	0.1	0.2\%
25.9\%	55.1	55.2	0.1	0.2\%
27.2\%	55.0	55.1	0.2	0.3\%
28.4\%	55.0 54	55.1	0.2	0.3\%
29.6\%	54.9 54.9	55.0 54.9	0.1	${ }_{0}^{0.1 \%}$
32.1\%	54.7	54.9	0.2	0.3\%
33.3\%	54.7	54.8	0.1	0.2\%
34.6\%	54.7	54.7	0.0	0.0\%
35.8\%	54.6	54.7	0.1	0.2\%
37.0\%	54.5	54.6	0.1	0.2\%
38.3\%	54.5	54.6	0.2	0.3\%
39.5\%	54.4	54.6	0.2	0.4\%
40.7\%	54.4	54.6	0.1	0.3\%
42.0\%	54.3	54.5	0.2	0.4\%
43.2\%	54.3	54.5	0.2	0.4\%
44.4\%	54.3	54.5	0.2	0.4\%
45.7\%	$\begin{array}{r}54.3 \\ 54 . \\ \hline 5\end{array}$	54.5 54.4	0.2	0.4\%
46.9\%	54.2	54.4	0.1	0.2\%
48.1\%	54.2	54.3	0.0	0.1\%
49.4\%	54.2	54.2	0.0	0.0\%
50.6\%	54.2	54.2	0.0	0.0\%
51.9\%	54.2	54.2	0.0	0.0\%
53.1\%	54.2	54.2	0.0	0.0\%
54.3\%	54.2	54.2	0.0	0.0\%
55.6\%	54.1	54.1	0.0	0.1\%
56.8\%	54.1 54.1	54.1	0.1	0.1\%
58.0\%	54.1	54.1	0.1	0.1\%
59.3\%	54.1 54.1	54.1 54.1	0.0	${ }^{0.11 \%}$
${ }^{60.5 \%}$	54.0	54.1	0.1	0.1\%
61.7\%	54.0	54.0	0.1	0.1\%
63.0\%	53.9	54.0	0.1	0.2\%
64.2\%	53.9	54.0	0.1	0.2\%
65.4\%	53.9	54.0	0.1	0.2\%
66.7\%	53.9	54.0	0.1	0.2\%
67.9\%	53.9	54.0	0.1	0.2\%
${ }^{69.10 \%}$	53.8 53.8	53.9 53.9	0.1 0.1	- 0.10%
71.6\%	53.8	53.9	0.1	0.2\%
72.8\%	53.8	53.9	0.1	0.2\%
74.1\%	53.8	53.8	0.1	0.1\%
75.3\%	53.7	53.8	0.1	0.1\%
76.5\%	53.6	53.8	0.1	0.3\%
77.8\%	53.6	53.8	0.2	0.3\%
79.0\%	53.6	53.7	0.2	0.3\%
80.2\%	53.6	53.7	0.2	0.3\%
81.5\%	53.6	53.7	0.1	0.2\%
82.79\%	${ }_{53,5}^{53.5}$	${ }_{53.5}^{537}$	-0.1	-0.1\%
84.0\%	${ }_{53.5}$	53.4	-0.1	-0.2\%
${ }^{85.20 \%}$	53.4	53.4	-0.1	-0.1\%
-86.4\%	${ }_{53.3}^{53.3}$	${ }_{53.0}^{53.1}$	-0.2 -0.3	-0.3\%
88.9\%	53.2	52.7	-0.5	-1.0\%
90.1\%	53.1	52.7	-0.4	-0.8\%
91.4\%	53.1	52.6	-0.5	-0.9\%
92.6\%	53.0	52.4	-0.6	-1.1\%
93.8\%	52.9	52.4	-0.5	-1.0\%
95.1\%	52.6	52.2	-0.4	-0.8\%
-96.3\% ${ }_{\text {97.5\% }}$	52.6 52.3	51.9 51.5	-0.7 -0.8	-1.1.5\%
98.8\%	52.2	51.3	-0.8	-1.6\%
100.0\%	52.2	51.3	0.0	-1.6\%

$\begin{gathered} \hline \text { Percent } \\ \begin{array}{c} \text { Excedance } \\ \text { Probaility } \end{array} \\ \text { (\%) } \\ \hline \end{gathered}$	January			
	${ }^{\text {DCR } 2015 \text { Without }} \begin{aligned} & \text { Proiect }\end{aligned}$	DCR 2015 With Project	Absolute	Reative
	Monthly Temperature (DEGF)	$\xrightarrow[\text { (DEGF) }]{\text { Monthly Temperature }}$	$\begin{aligned} & \text { Difference } \\ & \text { DieGFe } \end{aligned}$	Difference (\%)
0.0\%	55.2	55.1	-0.1	${ }^{0.1 \%}$
1.2\%	50.2	50.1	-0.1	0.1\%
2.5\%	50.1	50.1	0.0	0.0\%
3.7\%	50.0	49.9	-0.1	-0.1\%
4.9\%	49.9	49.9	0.0	矿
6.2\%	49.7	49.8	0.1	0.3\%
7.4\%	49.5	49.8	0.3	0.5\%
8.6\%	49.4	49.5	0.1	0.3\%
9.9\%	49.2	49.3	0.1	0.2\%
11.1\%	49.1	49.1	0.0	0.1\%
12.3\%	49.1	49.1	0.0	0.0\%
13.6\%	49.0	49.0	0.1	0.1\%
14.8\%	48.9	48.7	-0.1	0.3\%
16.0\%	48.7	48.6	-0.1	0.1\%
17.3\%	48.7	48.6	-0.1	-0.2\%
18.5\%	48.4	48.6	0.1	0.3\%
19.8\%	48.4 48.4	48.5 48.5	0.1	${ }^{0.2 \%}$
21.0\%	48.4	48.5	0.1	0.2\%
22.2\%	48.4 483	48.5 485	0.1	0.2\%
23.5\%	48.3 482	48.5	0.2	0.4\%
24.7\%	48.2	48.3	0.1	0.2\%
25.9\%	48.1	48.3	0.1	0.2\%
27.2\%	48.1	48.2	0.1	0.2\%
28.4\%	48.0	48.2	0.2	0.4\%
29.6\%	48.0	48.1	0.2	0.4\%
30.9\%	48.0	48.1	0.1	0.3\%
32.1\%	47.8	48.1	0.2	0.5\%
	47.7	47.9	0.2	
34.6\%	${ }_{47.6}$	477	0.1	
37.0\%	47.5	47.5	0.0	0.1\%
38.3\%	47.5	47.5	0.0	0.1\%
39.5\%	47.4	47.5	0.0	0.0\%
40.7\%	47.4	47.4	0.0	0.1\%
42.0\%	${ }^{47.4}$	47.3	0.0	-0.1\%
43.2\%	47.3	47.3	0.0	0.0\%
${ }_{4}^{44.4 \%}$	47.3 47.3	${ }_{47.3}^{47.3}$	0.0 0.0	${ }_{0}^{0.0 \% \%}$
46.9\%	47.3	${ }_{47.3}$	0.0	0.1\%
48.1\%	47.2	47.3	0.1	0.1\%
49.4\%	47.2	47.2	0.0	${ }^{0.11 \%}$
50.6\%	47.2	47.2	0.1	0.1\%
51.9\%	47.1	47.2	0.0	0.0\%
53.1\%	47.1	47.2	0.0	0.1\%
54.3\%	47.1	47.1	0.0	0.0\%
55.6\%	47.1	47.1	0.0	-0.1\%
	47.1 47.0	47.0 47.0	0.0 0.0	-0.0\%
59.3\%	46.9	47.0	0.1	0.2\%
60.5\%	46.9	47.0	0.1	0.1\%
61.7\%	46.9	46.9	0.1	0.1\%
63.0\%	46.9	46.9	0.0	0.1\%
${ }^{64.2 \%}$	46.9	46.9	0.0	0.1\%
65.4\%	46.8	46.8	0.0	0.0\%
66.7\%	46.8	46.8	0.0	-0.1\%
67.9\%	46.8	46.8	0.0	0.0\%
69.1\%	46.8	46.7	0.0	0.0\%
70.4\%	46.7	46.7	0.1	${ }^{0.2 \%}$
72.8\%	${ }_{46.6}$	${ }_{46.6}$	0.0	0.1\%
74.1\%	46.6	46.6	0.1	0.1\%
75.3\%	46.5	46.6	0.1	0.2\%
76.5\%	46.4	46.6	0.2	0.3\%
77.8\%	46.4	46.5	0.1	0.2\%
79.0\%	46.4	46.4	0.1	0.2\%
80.2\%	46.3	46.4	0.1	0.1\%
81.5\%	46.2	46.3	0.0	${ }^{0.1 \%}$
828.7\%	46.2 46.2	46.3 46.2	0.0 0.0	- ${ }_{\text {0.1\% }}^{0.0 \%}$
85.2\%	46.1	46.0	0.0	-0.1\%
${ }^{86.4 \%}$	45.9	45.9	0.0	${ }^{-0.1 \%}$
87.7\%	45.8	45.9	0.1	0.1\%
88.9\%	45.6 454	${ }^{45.6}$	0.0	0.19\%
90.1\%	45.4	${ }^{45.6}$	0.2	0.5\%
91.4\%	45.3	45.3	0.0	0.0\%
92.6\% ${ }_{\text {93.8\% }}$	$\begin{array}{r}45.2 \\ 452 \\ \hline\end{array}$	45.3 452 15	0.0	${ }_{\text {en }}^{0.1 \%}$
95.1\%	45.2	45.2	0.0	-0.1\%
96.3\%	45.2	45.1	0.0	0.0\%
97.5\%	44.9	45.1	0.3	${ }^{0.6 \%}$
9800\%	${ }_{44.2}$	${ }_{45.1}^{45.1}$	${ }_{0}^{0.9}$	${ }_{2.1 \%}^{2.1 \%}$

February				
Percent Exceedance	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project		Relative
Probability	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	Difference (DEGF)	Difference (\%)
0.0\%	52.6	52.6	0.0	0.0\%
1.2\%	48.7	49.0	0.2	05%
2.5\%	48.6	48.7	0.1	0.2\%
3.7\%	47.9	47.9	0.0	0.0\%
4.9\%	47.9	47.9	0.0	0.0\%
6.2\%	47.6	47.9	0.3	0.6\%
7.4\%	47.5	47.8	0.2	0.5\%
8.6\%	47.5	47.5	0.0	0.0\%
9.9\%	47.4	47.4	0.0	0.0\%
11.19\%	47.4	47.4	0.0	0.0\%
12.3\%	47.4 47.4	47.4 47.4	${ }_{0}^{0.1}$	${ }_{0}^{0.1 \%}$
14.8\%	47.3	47.4	0.0	0.1\%
16.0\%	47.3	47.4	0.0	0.1\%
17.3\%	47.1	47.4	0.2	0.5\%
18.5\%	47.0	47.3	0.3	0.6\%
19.8\%	47.0	47.0	0.0	0.0\%
21.0\%	46.9	47.0	0.1	0.1\%
22.2\%	46.8	47.0	0.1	0.3\%
23.5\%	46.8	46.9	0.1	0.2\%
24.7\%	46.8	46.9	0.1	0.2\%
25.9\%	46.8	46.8	0.0	0.0\%
27.2% 28.4%	${ }_{46.6}^{46.7}$	46.8 46.8	0.2 0.2	${ }_{0}^{0.3 \%}$
29.6\%	46.6	46.8	0.2	0.3\%
30.9\%	46.6	46.7	0.1	0.3\%
32.1\%	46.6	46.7	0.1	0.3\%
33.3\%	46.6	46.7	0.1	0.3\%
34.6\%	46.6	46.7	0.1	0.3\%
35.8\%	46.5	46.6	0.1	0.2\%
37.0\%	46.5	46.6	0.1	${ }^{0.10 \%}$
- ${ }_{\text {38.3\% }}$	46.5 46.5	46.6 46.6	0.1 0.1	- 0.2%
40.7\%	46.5	46.6	0.1	0.2\%
42.0\%	46.5	46.6	0.1	0.2\%
43.2\%	46.4	46.5	0.2	0.4\%
44.4\%	46.3	46.5	0.2	0.3\%
45.7\%	46.2	${ }^{46.4}$	0.2	0.4\%
46.9\%	46.2	46.3	0.1	${ }^{0.2 \%}$
48.1\%	46.2	46.3	0.1	0.1\%
49.4\%	46.2	46.1	0.0	-0.1\%
50.6\%	46.0	46.0	0.0	0.0\%
51.9\%	45.9	45.9	0.0	0.0\%
${ }^{53.10 \%} 5$	45.8 45.8	${ }_{45.7}^{45.7}$	-0.1 0.0	${ }^{-0.2 \%}$
55.6\%	45.7	45.7	-0.1	-0.1\%
56.8\%	45.7	45.7	0.0	-0.1\%
58.0\%	45.6	45.7	0.0	0.0\%
59.3\%	45.6	45.6	0.0	0.1\%
60.5\%	45.5	45.5	0.0	0.0\%
${ }^{61.7 \%}$	45.5	45.5	0.0	0.1\%
63.0\%	45.5	45.5	0.0	0.0\%
${ }^{64.2 \%}$	45.5	45.5	0.0	0.0\%
65.4\%	45.5	45.5	0.0	0.0\%
66.7\%	45.4	45.5	0.0	0.0\%
-67.9\%	45.4	45.4	0.0	0.1\%
69.19\%	45.4 45.3	45.4 45.3	0.1	${ }_{\text {- }}^{0.2 \%}$
71.6\%	45.3	45.2	0.0	-0.1\%
72.8\%	45.2	45.2	0.0	0.1\%
74.1\%	45.1	45.2	0.1	0.2\%
75.3\%	45.1	45.1	0.0	0.1\%
76.5\%	45.1	45.1	0.0	0.0\%
77.8\%	45.1	45.0	0.0	0.0\%
79.0% 80.2%	45.0	45.0	0.0	-0.1\%
- ${ }^{80.2 \%}$	44.9 44.9	${ }_{44.9}$	0.0 0.0	${ }_{0}^{0.0 \%}$
82.7\%	44.8	44.9	0.0	0.1\%
84.0\%	44.6	44.7	0.1	0.2\%
85.2\%	44.6	44.6	0.0	0.1\%
86.4\%	${ }_{4}^{44.6}$	${ }^{44.6}$	0.0	0.0\%
87.7\%	44.5	44.6	0.1	0.1\%
88.9\%	44.4	44.5	0.1	0.3\%
90.11\%	44.3	44.3	0.0	-0.0\%
${ }_{9}^{91.4 \% \%}$	44.2 43.9	44.3 44.2	${ }_{0}^{0.1}$	${ }_{0}^{0.17 \%}$
93.8\%	43.6	44.0	0.4	0.9\%
95.10\%	43.4	43.9	0.4	1.0\%
96.5\%	${ }_{42.9} 42.9$	${ }_{43.4}^{43.4}$	0.5 0.5	${ }_{1}^{1.2 \%}$
98.8\%	42.8	43.4	0.7	1.5\%
100.0\%	42.8	43.4	0.7	1.5\%

March					Appril				
Percent	DCR 2015 Without	DCR 2015 With Project		$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabilily } \end{gathered}$		DCR 2015 With Project Monthly Temperature (DEGF)	AbsoluteDifference (DEGF)	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
Probability	Monthl Temperatue	Monthly Temperature							
(1)	(DEG)								
${ }^{0.0 \%}$	51.4	51.4	0.0	${ }^{0.1 \%}$	0.0\%	52.7	${ }_{52.8}^{5}$	0.1	${ }^{0.2 \%}$
${ }_{2.5 \%}^{1.2 \%}$	49.0 48.	48.9 49.9	${ }_{0}^{0.0}$	-	${ }^{1.2 \% \%}$	50.6	50.9	0.4	0.8\%
3.7\%	48.7	48.8	0.1	0.2\%	3.7\%	50.0	50.0	0.0	0.0\%
4.9\%	48.6	48.7	0.1	0.2\%	4.9\%	49.6	49.6	0.1	0.2\%
6.2\%	48.4	48.7	0.3	0.6\%	6.2\%	49.5	49.4	0.0	-0.1\%
7.4\%	48.3	48.6	0.3	0.6\%	7.4\%	49.5	49.4	0.0	-0.1\%
8.6\%	48.3	48.5	0.2	0.5\%	8.6\%	49.2	49.3	0.0	0.1\%
9.9\%	48.3	48.4	0.1	0.2\%	9.9\%	49.0	49.2	0.2	0.4\%
11.1\%	48.2	48.2	0.0	0.0\%	11.1\%	48.9	49.1	0.2	0.4\%
12.3\%	48.0	48.1	0.1	0.3\%	12.3\%	48.8	49.0	0.1	0.2\%
13.6\%	48.0	48.0	0.1	0.1\%	13.6\%	48.8	48.8	0.1	0.1\%
14.8\%	48.0	48.0	0.0	0.0\%	14.8\%	48.7	48.8	0.1	0.2\%
16.0\%	47.9	48.0	0.0	0.1\%	16.0\%	48.6	48.7	0.1	0.2\%
17.3\%	47.9	48.0	0.0	0.1\%	17.3\%	48.6	48.6	0.1	0.1\%
18.5\%	47.9	47.9	0.0	0.0\%	18.5\%	48.6	48.6	0.0	0.0\%
19.8\%	47.8	47.8	-0.1	-0.1\%	19.8\%	48.6	48.6	0.0	0.0\%
21.0\%	47.8	47.7	-0.1	-0.2\%	21.0\%	48.5	48.6	0.1	0.1\%
22.2\%	47.7	47.7	0.0	0.0\%	22.2\%	48.4	48.5	0.1	0.3\%
${ }^{23.50 \%}$	47.6 47.6	47.6 47.6	${ }_{0}^{0.0}$	${ }_{0}^{0.0 \% \%}$	${ }^{23.50 \%}$	${ }_{48.3}^{48.3}$	48.5 48.5	0.2 0.2	${ }_{\text {en }}^{0.3 \% \%}$
25.9\%	47.5	47.6	0.1	0.1\%	25.9\%	48.3	48.5	0.2	0.3\%
27.2\%	47.5	47.6	0.1	0.1\%	27.2\%	48.3	48.4	0.1	0.3\%
28.4\%	47.4	47.5	0.1	0.3\%	28.4\%	48.3	48.4	0.1	0.2\%
29.6\%	47.4	47.5	0.1	0.2\%	29.6\%	48.3	48.4	0.1	0.2\%
30.9\%	47.3	47.4	0.1	0.1\%	30.9\%	48.2	48.4	0.1	0.2\%
32.1\%	47.3	47.4	0.1	0.1\%	32.1\%	48.2	48.3	0.1	0.2\%
33.3\%	47.3	47.4	0.1	0.2\%	33.3\%	48.2	48.3	0.1	0.2\%
34.6\%	47.3	47.3	0.1	0.2\%	34.6\%	48.1	48.3	0.2	0.3\%
35.8\%	47.2	47.3	0.1	0.2\%	35.8\%	48.1	48.3	0.2	0.3\%
37.0\%	47.2	47.3	0.1	0.3\%	37.0\%	48.1	48.2	0.2	0.4\%
- $\begin{aligned} & 38.3 \% \\ & 39.5 \%\end{aligned}$	47.1 47.1	47.3 47.3	0.2 0.2	0.3\% 0	- $\begin{aligned} & 38.3 \% \\ & 3.5 \%\end{aligned}$	48.0 48.0	${ }_{48.1}^{48.2}$	${ }^{0.2}$	0.4\%
40.7\%	47.0	47.3	0.2	0.5\%	40.7\%	47.9	48.1	0.2	0.4\%
42.0\%	46.8	47.0	0.2	0.5\%	42.0\%	47.9	48.1	0.2	0.3\%
43.2\%	46.6	46.9	0.3	0.5\%	43.2\%	47.8	48.1	0.2	0.5\%
44.4\%	46.6	46.7	0.1	0.3\%	44.4\%	47.8	48.0	0.2	0.3\%
45.7\%	46.5	46.7	0.1	0.3\%	45.7\%	47.7	47.9	0.2	0.4\%
46.9\%	46.4	46.6	0.2	0.4\%	46.9\%	47.6	47.9	0.3	0.5\%
48.1\%	46.4	46.5	0.1	0.3\%	48.1\%	47.6	47.8	0.2	0.4\%
49.4\%	46.4	46.5	0.1	0.3\%	49.4\%	47.6	47.8	0.2	0.4\%
50.6\%	46.4	46.4	0.1	0.1\%	50.6\%	47.5	47.8	0.2	0.5\%
51.9\%	46.3	46.4	0.1	0.1\%	51.9\%	47.5	47.7	0.2	0.4\%
${ }^{53.13 \%}$	${ }_{46.3}^{46.3}$	${ }_{46.3}^{46.4}$	0.0	${ }_{0}^{0.00 \%}$		${ }_{474}^{47.5}$	${ }_{476}^{47.7}$	${ }_{0}^{0.2}$	
55.6\%	46.3	46.3	0.0	0.0\%	55.6\%	47.4	47.6	0.2	0.5\%
56.8\%	46.3	46.3	0.0	0.0\%	56.8\%	47.4	47.5	0.1	0.3\%
58.0\%	46.3	46.3	0.1	0.1\%	58.0\%	47.4	47.5	0.1	0.3\%
59.3\%	46.2	46.3	0.1	0.2\%	59.3\%	47.4	47.5	0.1	0.2\%
60.5\%	46.2	46.3	0.1	0.3\%	60.5\%	47.3	47.5	0.1	0.3\%
61.7\%	46.1	46.2	0.1	0.2\%	61.7\%	47.3	47.4	0.1	0.2\%
63.0\%	46.1	46.2	0.1	0.2\%	63.0\%	47.3	47.4	0.1	0.3\%
64.2\%	46.1	46.1	0.1	0.1\%	64.2\%	47.3	47.3	0.1	0.2\%
${ }^{65.4 \%}$	46.1	46.1	0.1	${ }^{0.19 \%}$	65.4\%	47.2	47.3	0.1	
${ }^{66.7 \%}$	46.0	46.1	0.1	0.3\%	${ }^{66.77 \%}$	47.2	${ }^{47.3}$	0.1	0.2\%
67.9\%	45.9	46.1	0.2	0.3\%	${ }^{67.9 \%}$	47.2	47.3 473	0.1	${ }^{0.3 \%}$
69.19\%	45.9	46.1	0.2	0.4\%	69.1\%	47.2	47.3	0.1	- 0.2%
70.1.6\%	${ }_{45.7}^{45.7}$	${ }_{46.0}^{46.1}$	${ }_{0.3}^{0.3}$	${ }^{0.76 \%}$	70.1.6\%	${ }_{47.0}^{47.1}$	47.2 47.1	${ }_{0}^{0.1}$	${ }^{0.3 \%}$
72.8\%	45.7	45.9	0.2	0.5\%	72.8\%	47.0	47.1	0.1	0.2\%
74.1\%	45.7	45.8	0.2	0.4\%	74.1\%	46.9	47.1	0.2	0.3\%
75.3\%	45.6	45.8	0.2	0.4\%	75.3\%	46.9	47.0	0.1	0.2\%
76.5\%	45.5	45.7	0.2	0.4\%	76.5\%	46.9	46.9	0.0	0.1\%
77.8\%	45.5	45.7	0.1	0.3\%	77.8\%	46.9	46.9	0.0	0.1\%
79.0\% 880.2%	45.5 45.5	45.6 45.5	${ }_{0.1}^{0.1}$	${ }_{\text {c }}^{0.2 \%}$	79.0\% 80.2%	${ }_{46.6}^{46.7}$	46.9 46.8	${ }_{0.2}^{0.2}$	(0.4\%\%
81.5\%	45.4	45.5	0.0	0.1\%	81.5\%	46.6	46.8	0.2	0.4\%
82.7\%	45.3	45.5	0.1	0.3\%	82.7\%	46.5	46.6	0.0	0.0\%
84.0\%	45.3	45.4	0.1	0.2\%	84.0\%	46.5	46.5	0.0	-0.1\%
85.2\%	45.2	45.4	0.2	0.4\%	85.2\%	46.5	46.5	0.0	0.0\%
86.4\%	45.2	45.3	0.1	0.3\%	86.4\%	46.2	46.5	0.3	0.6\%
87.7\%	45.1	45.2	0.0	0.0\%	87.7\%	46.2	46.2	0.0	0.0\%
88.9\%	45.1	45.1	0.0	0.1\%	88.9\%	46.1	46.2	0.0	0.0\%
90.1\%	45.1	45.1	0.0	0.1\%	90.1\%	46.1	46.2	0.0	0.0\%
${ }_{92.6 \%}^{91.4 \%}$	45.1 44.9	${ }_{45.1}^{45.1}$	${ }_{0}^{0.0}$	${ }_{\text {cose }}^{0.0 \% \%}$	${ }_{92.6 \%}^{91.4 \%}$	${ }_{45.9}^{46.1}$	46.1 46.0	${ }_{0.1}^{0.0}$	${ }_{\text {coin }}^{0.2 \%}$
93.3\%	44.9	44.9	0.0	0.1\%	93.8\%	45.9	46.0	0.1	0.2\%
95.1\%	44.7	44.9	0.2	0.4\%	95.1\%	45.9	45.9	0.0	0.0\%
96.3\%	44.7	44.7	0.0	0.0\%	96.3\%	45.5	45.8	0.3	0.6\%
97.5\%	44.6	44.5	0.0	-0.1\%	97.5\%	45.5	45.5	0.0	0.1\%
98.8\%	43.9	44.2	${ }^{0.3}$	0.6\%	98.8\%	45.4	45.5	0.1	0.2\%
									0.2\%

May				
Percent Exceedance	$\underset{\substack{\text { DCR } 2015 \text { Without }}}{ }$	DCR 2015 With Project		Relative
Probability	Monthy Temperature	Monthly Temperature	$\begin{aligned} & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	Difference (\%)
0.0\%	54.8	55.0	0.2	0.4\%
1.2\%	54.3	54.3	0.1	0.1\%
2.5\%	53.0	52.3	-0.7	
3.7\%	52.2	51.6	-0.6	-1.2\%
4.9\%	50.3	51.3	1.0	1.9\%
6.2\%	50.1	50.9	0.8	1.7\%
7.4\%	50.0	50.8	0.8	1.7\%
8.6\%	50.0	50.8	0.8	1.6\%
9.9\%	49.9	50.5	0.7	1.3\%
11.1\%	49.8	50.3	0.5	1.0\%
12.3\%	49.7	50.2	0.5	1.0\%
13.6\%	49.7	50.2	0.5	1.0\%
14.8\%	49.7	49.9	${ }^{0.3}$	0.6\%
16.0\% 17.3%	${ }_{49.7}^{49.7}$	${ }_{49.7}^{49.8}$	${ }_{0}^{0.1}$	0.4\%
18.5\%	49.6	49.7	0.1	0.2\%
19.8\%	49.5	49.6	0.2	0.3\%
21.0\%	49.4	49.6	0.2	0.4\%
22.2\%	49.4	49.6	0.2	0.4\%
23.5\%	49.4	49.5	0.1	0.3\%
24.7\%	49.2	49.5	0.3	0.6\%
25.9\%	49.2	49.5	0.3	0.6\%
27.2\%	49.2	49.4	0.2	0.4\%
28.4\%	49.2	49.3	0.2	0.3\%
29.6\%	49.1	49.2	0.1	0.2\%
- $\begin{aligned} & 30.9 \% \\ & 32.10\end{aligned}$	49.0 49.0	49.2 492	0.2 0.2	${ }_{0}^{0.5 \% \%}$
32.1\%	49.0	49.2	0.2	0.5\%
33.3\%	49.0	49.2	0.2	0.5\%
34.6\%	48.9	49.2	0.3	0.6\%
35.8\%	48.9	49.1	0.2	0.5\%
37.0\%	48.8	49.0	0.2	0.4\%
38.3\%	48.8	49.0	0.2	0.4\%
39.5\%	48.7	49.0	0.2	0.5\%
40.79\%	48.6	48.9	${ }^{0.3}$	0.6\%
${ }^{42.0 \%}$	48.6 48.6	48.9 48.9	${ }_{0}^{0.3}$	0.5\%
44.4\%	48.6	48.8	0.2	0.4\%
45.7\%	48.6	48.7	0.1	0.2\%
46.9\%	48.6	48.6	0.1	0.1\%
48.1\%	48.5	48.6	0.1	0.1\%
49.4\%	48.5	48.6	0.1	0.2\%
50.6\%	48.5	48.6	0.0	0.1\%
51.9\%	48.5	48.5	0.0	0.0\%
53.1\%	48.5	48.5	0.0	0.1\%
54.3\%	48.5	48.5	0.0	0.1\%
55.6\%	48.5	48.5	0.0	0.0\%
56.8\%	48.4 48.4	48.5 48.4	0.0 0.0	- 0
59.3\%	48.4	48.4	0.0	0.1\%
60.5\%	48.4	48.4	0.0	0.0\%
61.7\%	48.3	48.4	0.1	0.2\%
63.0\%	48.3	48.4	0.1	0.3\%
64.2\%	48.3	48.4	0.1	0.2\%
65.4\%	48.3	48.3	0.0	0.1\%
66.7\%	48.2	48.3	0.1	0.1\%
67.9\%	48.2	48.3	0.1	0.1\%
69.1\%	48.1	48.3	0.2	0.3\%
70.4\%	48.1	48.2	0.1	0.3\%
71.6\%	48.1	48.1	0.1	0.1\%
72.8\%	48.0	48.1	0.1	0.2\%
74.19\%	48.0	48.1	0.1	0.3\%
75.3\%	47.9	48.1	0.1	0.3\%
76.5\%	47.9	48.0	0.2	0.4\%
77.8\%	47.8	48.0	0.2	0.4\%
79.0\%	47.7	47.9	0.2	0.4\%
80.2\%	47.6	47.7	0.1	0.2\%
81.5\%	47.6	47.6	0.1	0.1\%
-	${ }_{47.4}^{47.5}$	47.6 47.5	0.2 0.1	- 0.1%
85.2\%	47.4	47.5	0.1	0.1\%
86.4\%	47.4	47.5	0.1	0.1\%
87.7\%	47.4	47.4	0.0	0.0\%
88.9\%	47.4	47.4	0.1	0.1\%
90.1\%	47.3	47.4	0.1	0.1\%
91.4\%	47.2	47.3	0.1	0.1\%
92.6\%	47.2	47.0	-0.2	-0.4\%
93.8\%	47.0	46.9	0.0	0.0\%
${ }_{9}^{95.19 \%}$	46.8 46.8	46.8 46.8	${ }_{0}^{0.0}$	${ }_{0}^{0.0 \%}$
97.5\%	46.7	46.8	0.0	0.1\%
98.8\%	46.2	46.8	0.5	1.1\%
100.0\%	46.2	46.8	0.5	1.1\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$(\%)	June			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	$\underset{\substack{\text { DCR } \\ \text { Proect }}}{201 \text { Without }}$	DCR 2015 With Project	$\begin{gathered} \text { Absolute } \\ \text { difference } \\ \text { (DEGFF) } \end{gathered}$	
	Monthy Temperature	Monthy Temperature		
0.0\%	54.5	54.0	-0.5	-0.9\%
1.2\%	54.2	53.8	-0.4	-0.8\%
2.5\%	54.1	53.2	-0.9	-1.7\%
3.7\%	52.5	52.5	0.0	0.1\%
4.9\%	52.4	52.4	-0.1	-0.2\%
6.2\%	52.3	52.3	0.1	0.1\%
7.4\%	52.2	52.2	0.0	0.0\%
8.6\%	52.0	52.1	0.2	0.3\%
9.9\%	51.4	52.0	0.6	1.2\%
11.1\%	51.4	51.4	0.0	0.0\%
12.3\%	51.1	51.2	0.1	0.3\%
13.6\%	51.0	50.9	-0.2	-0.3\%
14.8\%	50.7	50.7	0.0	0.0\%
16.0\%	50.7 50.5	50.7 50.7	0.0	${ }^{0.10}$
18.5\%	50.4	50.4	0.0	0.0\%
19.8\%	50.3	50.4	0.1	0.1\%
21.0\%	50.3	50.2	-0.1	-0.1\%
22.2\%	50.2	50.1	0.0	0.0\%
23.5\%	50.2	50.1	0.0	0.0\%
24.7\%	50.1	50.1	0.0	0.0\%
25.9\%	50.1	50.1	0.0	-0.1\%
27.2\%	50.0	50.0	0.1	0.1\%
28.4\%	49.9	50.0 50.0	0.1	${ }^{0.2 \% \%}$
29.6\% 30.9\%	49.9 49.8	50.0 50.0	0.2 0.2	0.4\%
32.1\%	49.8	50.0	0.2	0.4\%
33.3\%	49.7	49.9	0.2	0.4\%
34.6\%	49.7	49.9	0.1	0.3\%
35.8\%	49.7	49.8	0.2	0.3\%
37.0\%	49.6	49.8	0.2	0.4\%
38.3\%	49.5	49.8	0.2	0.5\%
39.5\%	49.5	49.8	${ }^{0.3}$	0.5\%
${ }^{40.79 \%}$	49.4	49.8 49.8	0.3 0.3	0.7\%
43.2\%	49.4	49.7	0.3	0.7\%
44.4\%	49.4	49.6	0.3	0.5\%
45.7\%	49.4	49.6	0.2	0.5\%
46.9\%	49.3	49.6	${ }^{0.3}$	0.6\%
48.1\%	49.3	49.6	${ }^{0.3}$	0.6\%
49.4\%	49.3	49.6	${ }^{0.3}$	0.6\%
50.6\%	49.3	49.5	0.3	0.5\%
51.9\%	49.2	49.5	${ }^{0.3}$	0.5\%
53.1\%	49.2	49.5	0.3	0.5\%
54.3\%	49.2	49.4	0.2	0.4\%
55.6\%	${ }_{49.1}^{49.2}$	${ }_{49.3}^{49.4}$	0.2 0.2	0.4\%\%
58.0\%	49.1	49.3	0.2	0.4\%
59.3\%	49.1	49.3	0.2	0.4\%
60.5\%	49.1	49.3	0.2	0.5\%
61.7\%	49.0	49.3	0.2	0.4\%
63.0\%	49.0	49.2	0.2	0.4\%
64.2\%	49.0	49.2	0.2	0.4\%
65.4\%	48.9	49.2	0.2	0.5\%
66.7\%	48.9	49.2	0.2	0.5\%
67.9\%	48.9	49.1	0.2	0.4\%
69.19\% 70.4%	48.9 48.9	${ }_{49.1}^{49.1}$	0.2 0.2	0.4\%\%
71.6\%	48.9	49.0	0.2	0.3\%
72.8\%	48.9	49.0	0.1	0.3\%
74.1\%	48.8	49.0	0.2	0.4\%
75.3\%	48.8	49.0	0.2	0.4\%
76.5\%	48.7	48.9	0.2	0.5\%
77.8\%	48.7	48.9	0.2	0.5\%
79.0\%	48.7	48.9	0.2	0.5\%
80.2\%	48.5	48.8	${ }^{0.3}$	0.6\%
81.5\%	48.5	48.7	0.3	0.6\%
- 82.78%	48.4 483	48.7 48.6	${ }^{0.3}$	0.6\%
85.2\%	48.3	48.6	0.3	0.6\%
86.4\%	48.3	48.5	0.2	0.5\%
87.7\%	48.3	48.4	0.2	0.4\%
88.9\%	48.2	48.4	0.1	0.3\%
90.1\%	48.2	48.3	0.1	0.2\%
91.4\%	48.1	48.2	0.1	0.2\%
92.6\%	47.9	48.2	${ }^{0.3}$	0.5\%
95.1\%	47.8	48.1	${ }_{0} 0.3$	0.7\%
96.3\%	47.5	48.0	0.5	1.1\%
97.5\%	47.4	47.7	0.3	0.7\%
98.8\%	47.3	47.5	0.1	0.2\%
100.0\%	47.3	47.5	0.1	0.2\%

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceance } \\ \text { Probability } \end{array} \\ (\%) \\ \hline \end{gathered}$	September			RelativeDifference (\%)
	${ }^{\text {DCR } 2015 \text { Without }} \begin{aligned} & \text { Proiect }\end{aligned}$	DCR 2015 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGFF) } \end{aligned}$	
		$\underset{\substack{\text { (DEGF) }}}{\text { Monthy Temperature }}$		
0.0\%	65.7	62.5	-3.2	-4.9\%
1.2\%	62.5	61.6	-0.8	-1.3\%
2.5\%	62.1	60.5	1.6	-2.6\%
3.7\%	61.4	54.8	-6.7	10.9\%
4.9\%	60.7	54.6	-6.1	10.0\%
6.2\%	55.7	53.6	-2.0	-3.6\%
7.4\%	55.2	53.6	-1.5	-2.8\%
8.6\%	55.1	53.6	-1.5	-2.8\%
9.9\%	54.8	53.6	-1.2	-2.2\%
11.1\%	54.5	53.6	-0.9	-1.7\%
12.3\%	54.4	53.6	-0.8	-1.5\%
13.6\%	54.3	53.5	-0.7	${ }^{-1.3 \%}$
14.8\%	54.2	53.4	-0.8	-1.5\%
16.0\%	54.2	53.4	-0.8	-1.5\%
17.3\%	54.2	53.4	-0.8	-1.5\%
18.5\%	54.1	53.3	-0.8	-1.4\%
19.8\%	54.1	53.3	-0.8	-1.5\%
21.0\%	53.9	53.2	-0.7	-1.3\%
22.2\%	53.9	53.2	-0.7	-1.4\%
23.5\%	53.9	53.2	-0.7	-1.3\%
24.7\%	53.9	53.1	-0.7	-1.4\%
25.9\%	53.8	53.0	-0.8	-1.5\%
27.2\%	53.7	52.9	-0.8	-1.5\%
28.4\%	53.7	52.8	-0.9	-1.6\%
29.6\%	53.5	52.8	-0.8	-1.4\%
30.9\%	53.5	52.8	-0.7	-1.3\%
32.1\%	53.4	52.7	-0.7	-1.4\%
33.3\%	53.4	52.5	-0.8	-1.5\%
34.6\%	53.2	52.5	-0.6	-1.2\%
35.8\%	53.1	52.4	-0.7	-1.3\%
37.0\%	53.0	52.2	-0.8	-1.4\%
38.3\%	52.9	52.2	-0.8	-1.4\%
39.5\%	52.9	52.2	-0.8	-1.4\%
40.7\%	52.9	52.1	-0.8	-1.6\%
42.0\%	52.8	52.0	-0.8	-1.5\%
43.2\%	52.8	52.0	-0.8	-1.5\%
44.4\%	52.7	52.0	-0.7	-1.2\%
${ }^{45.79 \%}$	52.6	51.9	-0.7	-1.3\%
46.9\%	52.5	51.8	-0.7	-1.4\%
48.1\%	52.5 525 525	51.8 517	-0.7	-1.4\%
49.4\%	52.5	51.7	-0.8	-1.5\%
50.6\%	$\begin{array}{r}52.4 \\ 52.4 \\ \hline\end{array}$	${ }_{51.6}^{51.6}$	-0.7	-1.4\%
51.9\%	${ }_{52.3}$	${ }_{51.6}$	-0.7	-1.3\%
53.19\%	52.3	51.3	-1.0	-1.9\%
54.3\%	52.1	51.3	-0.8	-1.6\%
55.6\%	51.8	51.3	-0.6	-1.1\%
56.8\%	51.8	51.2	-0.6	-1.2\%
58.0\%	51.8	51.2	-0.6	-1.2\%
59.3\%	51.8 51.7	51.2 51.1	-0.6	${ }^{-1.2 \%}$
61.7\%	51.7	51.1	-0.6	${ }_{-1.1 \%}$
63.0\%	51.6	51.1	-0.6	-1.1\%
${ }^{64.2 \%}$	51.6 515	${ }_{51.1}^{51.1}$	-0.5	-1.0\%
65.4\%	51.5	51.0	-0.5	-1.0\%
66.7\%	51.3	50.9	-0.4	-0.7\%
67.9\%	51.3	50.9	-0.4	-0.7\%
69.19\%	51.2	50.9	-0.4	-0.7\%
70.4\%	51.22	50.7	-0.5	-0.9\%
712.8\%	51.2 51.0	50.7 50.6	-0.4	-0.8\%
74.1\%	51.0	50.6	-0.4	-0.9\%
75.3\%	51.0	50.6	-0.4	-0.9\%
76.5\%	51.0	50.5	-0.5	-0.9\%
77.8\%	${ }_{50.8}^{5}$	50.5	-0.3	-0.7\%
79.0\%	${ }_{50.8}$	50.5	-0.3	-0.6\%
80.2\%	50.8	50.5	-0.3	-0.6\%
81.5\%	50.7 507	50.5	-0.3	-0.5\%
82,7\%\% 84.0%	50.7 50.7	50.4 50.3	-0.3 -0.4	-0.0\%\%
85.2\%	50.6	50.2	-0.4	-0.8\%
86.4\%	${ }_{50.6}$	50.2	-0.4	${ }^{-0.8 \%}$
888.9\%	50.6	50.1	-0.4	-0.9\%
${ }^{88.99 \%}$	50.5 50.5	50.0	-0.5	-1.0\%
-9.1.4\%	50.5 50.5	49.9		-1.2\% ${ }_{-1}$
92.6\%	50.4	49.8	-0.5	-1.1\%
93.8\%	50.2	49.7	-0.5	-1.0\%
95.1\%	50.1	49.5	-0.5	-1.1\%
96.3\%	50.0	49.3	-0.7	-1.3\%
${ }_{98}^{97.5 \%}$	49.6	49.0	-0.6	-1.3\%
- 10.00%	${ }_{49.2}$	${ }_{48.7}^{48.7}$	-0.5 -0.5	${ }_{-1.0 \%}^{-1.0 \%}$

Table SQ2-1b
Sacramento River below Keswick, Monthly Temperature

PercentExceedanceProbability	June to September			
	$\underset{\substack{\text { DCR } 2015 \text { Wethout } \\ \text { Proiect }}}{\text { ater }}$	DCR 2015 With		
	Monthly Temperature (DEGF)	Monthly Temperature	$\begin{aligned} & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	Difference (\%)
0.0\%	58.5	55.9	-2.6	-4.5\%
1.2\%	56.6	55.1	-1.5	-2.7\%
2.5\%	56.5	54.8	-1.7	-3.0\%
3.7\%	55.6	53.7	-1.9	-3.3\%
4.9\%	55.6	53.7	-1.9	-3.4\%
6.2\%	53.8	53.4	-0.4	-0.7\%
7.4\%	53.8	53.4	-0.4	-0.8\%
8.6\%	53.8	53.3	-0.5	-0.9\%
9.9\%	53.7	53.0	-0.7	-1.3\%
11.19\%	53.3	52.8	-0.5	-0.9\%
12.3\%	53.2 53.1	52.8 52.8	-0.4	-0.8\%
13.6\%	53.1 531	52.6 524	-0.4	-0.8\%
14.8\%	${ }_{55.1}^{53}$	${ }_{52.4}$	-0.6	-1.2\%
16.0\%	52.9 52.9	${ }_{52.4}^{52.4}$	-0.5	-1.0\%
17.3\%	52.9	52.4	-0.6	-1.1\%
18.5\%	52.8	52.3	-0.5	-0.9\%
19.8\%	52.5	52.3	-0.2	-0.3\%
21.0\%	52.4	52.2	-0.2	-0.4\%
22.2\%	52.4	52.0	-0.3	-0.6\%
23.5\%	52.3	52.0	-0.4	-0.7\%
24.7\%	$\begin{array}{r}52.2 \\ 52 . \\ \hline\end{array}$	51.9 519	-0.2	${ }^{-0.5 \%}$
${ }^{25.7 .2 \%}$	52.1 52.0	51.9 51.9	-0.1	-0.2\%
28.4\%	52.0	51.9	-0.1	-0.2\%
29.6\%	52.0	51.7	-0.3	-0.5\%
30.9\%	51.9	51.5	-0.4	-0.8\%
32.1\%	51.7	51.5	-0.2	-0.4\%
33.3\%	51.7	51.4	-0.2	-0.5\%
34.6\%	51.7	51.4	-0.3	-0.5\%
35.8\%	51.6	51.4	-0.2	-0.4\%
37.0\%	51.6	51.3	-0.2	-0.4\%
- ${ }_{\text {38.3\% }}$	51.5 51.5	51.2 51.2	-0.3 -0.3	-0.0.6\%
40.7\%	51.5	51.1	-0.4	-0.7\%
42.0\%	51.4	51.1	-0.3	-0.5\%
43.2\%	51.4	51.1	-0.3	-0.5\%
44.4\%	51.2	51.0	-0.2	${ }^{-0.3 \%}$
45.7\%	51.2	51.0	-0.2	-0.3\%
46.9\%	51.1	51.0	-0.2	-0.4\%
48.1\%	51.1	50.9	-0.2	-0.3\%
49.4\%	51.1	50.8	-0.3	-0.5\%
50.6\%	51.1	50.8	-0.3	-0.6\%
	50.9	50.7	-0.2	-0.4\%
54.13\%	50.9 50.8	50.7 50.7	-0.1	-0.4\%
55.6\%	50.8	50.6	-0.1	-0.2\%
56.8\%	50.7	50.6	-0.1	-0.2\%
58.0\%	50.7	50.6	-0.1	-0.2\%
59.3\%	50.7	50.5	-0.1	-0.3\%
60.5\%	50.7	50.5	-0.1	-0.3\%
${ }^{61.7 \%}$	50.6	50.5	-0.1	-0.2\%
63.0\%	50.6	50.5	-0.1	-0.2\%
64.2% 6.54%	50.6	50.4	-0.2	-0.4\%
${ }^{65.4 \%}$ 66.7\%	50.6 50.5	50.4 50.3	-0.2 -0.2	-0.4\%
67.9\%	50.5	50.3	-0.2	-0.5\%
69.1\%	50.4	50.3	-0.1	-0.3\%
70.4\%	50.4	50.3	-0.1	-0.3\%
71.6\%	${ }_{50.4}$	50.2	-0.1	-0.3\%
72.8\%	50.3	50.2	-0.1	-0.3\%
74.1\%	50.3	50.2	-0.1	-0.3\%
75.3\%	50.3	50.2	-0.1	-0.3\%
${ }^{76.5 \%}$	50.3	50.1	-0.1	-0.3\%
77.0\%	50.3 50.3	50.1 50.1	-0.1 -0.1 -0.1	-0.0.3\%
80.2\%	50.2	50.1	-0.2	-0.3\%
81.5\%	50.2	50.0	-0.2	-0.4\%
- 8 82.7\%	$\begin{array}{r}50.1 \\ 501 \\ \hline 0.1\end{array}$	49.9	-0.2	-0.3\%
84.0\%	50.1	49.9	-0.2	-0.4\%
85.2\%	50.1	49.8	-0.3	-0.6\%
86.4\%	50.0	49.7	-0.2	${ }^{-0.5 \%}$
887.7% 88.9%	49.8	49.7	-0.1	-0.2\%
${ }^{88.9 .1 \%}$	${ }_{49.7}^{49.8}$	49.7 49.6	-0.1 -0.1	-0.0.3\%
91.4\%	49.7	49.6	-0.1	-0.2\%
92.6\%	49.6	49.5	-0.1	-0.2\%
93.8\%	49.6	49.5	-0.1	-0.2\%
95.1\%	49.6	49.5	-0.1	-0.2\%
96.3\%	49.6	49.4	-0.1	-0.3\%
${ }_{9}^{97.5 \%}$	49.6	49.4	-0.1	-0.0.0.0\%
100.0\%	48.6	48.5	-0.1	$\stackrel{-0.0 \%}{-0.0 \%}$

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	Juy to September		,		August ${ }^{\text {S September }}$				
	${ }^{\text {DCR } 2015 \text { Without }}$	DCR 2015 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (DEGFF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{gathered}$	$\underset{\substack{\text { Monthly Temperature } \\ \text { (EEGF }}}{\substack{\text { DCR } 2015 \text { Without } \\ \hline}}$ (DEGF)	DCR 2015 With Project Monthly Temperature (DEGF)	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	Monthly Temperature	Monthy Temperature							
	${ }_{\text {(}{ }_{\text {deGFF }} \text { (}}$								
0.0\%	60.5	57.2	-3.3	.5.5\%	0.0\%	63.4	59.0	-4.3	-6.8\%
1.2\%	58.1	56.4		-3.1\%	1.2\%	60.1	58.0		
2.5\%	58.0	55.7	-2.2	-3.9\%	2.5\%	60.0	57.3	-2.6	
3.7\%	56.6	53.9	-2.7	-4.8\%	3.7\%	57.7	54.0	-3.7	-6.4\%
4.9\%	56.0	53.7	-2.3	-4.1\%	4.9\%	57.7	53.7	-3.9	-6.8\%
6.2\%	54.5	53.6	-0.9	-1.7\%	6.2\%	55.0	53.6	-1.3	-2.4\%
7.4\%	54.4	53.6	-0.8	-1.5\%	7.4\%	55.0	53.6	-1.3	-2.4\%
8.6\%	54.0	53.3	-0.7	-1.3\%	8.6\%	54.7	53.6	-1.1	-2.0\%
9.9\%	54.0	53.3	-0.7	-1.3\%	9.9\%	54.5	53.5	-1.0	-1.9\%
11.1\%	53.9	53.3	-0.6	-1.1\%	11.1\%	54.4	53.5	-0.9	-1.7\%
12.3\%	53.8	53.2	-0.6	-1.0\%	12.3\%	54.1	53.5	-0.6	-1.2\%
13.6\%	53.8	53.2	-0.6	-1.0\%	13.6\%	54.1	53.5	-0.7	-1.2\%
14.8\%	53.7	53.2	-0.5	-0.9\%	14.8\%	54.1	53.4	-0.6	-1.2\%
16.0\%	53.7	53.1	-0.6	-1.1\%	16.0\%	54.1	53.4	-0.6	-1.2\%
17.3\%	53.7	53.0	-0.7	-1.3\%	17.3\%	53.9	53.4	-0.5	-0.9\%
18.5\%	53.5	53.0	-0.5	-1.0\%	18.5\%	53.9	53.3	-0.6	-1.1\%
19.8\%	53.4	52.9	-0.5	-0.9\%	19.8\%	53.7	53.3	-0.4	-0.8\%
21.0\%	53.3	52.8	-0.5	-0.9\%	21.0\%	53.6	53.3	-0.3	-0.5\%
22.2\%	53.2	52.7	-0.4	-0.8\%	22.2\%	53.5	53.3	-0.3	-0.5\%
${ }^{23.5 \%}$	53.0	52.7	-0.3	-0.6\%	23.5\%	53.4	53.3	-0.2	-0.3\%
24.7\%	52.9	52.7	-0.3	-0.5\%	24.7\%	53.4	53.2	-0.2	-0.3\%
25.9\%	52.9	52.6	-0.3	-0.6\%	25.9\%	53.4	53.0	-0.4	-0.7\%
27.2\%	52.9	52.5	-0.4	-0.7\%	27.2\%	53.4	52.9	-0.5	${ }^{-0.9 \%}$
28.4\%	52.8	52.4	-0.4	-0.8\%	28.4\%	53.4	52.9	-0.5	-0.9\%
29.6\%	52.8	52.3	-0.5	-0.9\%	29.6\%	53.3	52.7	-0.6	-1.1\%
30.9\%	52.5 52.5	55.1	-0.4	-0.8\%	30.9\%	53.2	52.7 52.7	-0.5	-1.0\%
32.1\%	52.4	51.9	-0.5	-0.9\%	32.1\%	53.2	52.7	-0.5	-1.0\%
33.3\%	52.4	51.9	-0.5	-0.9\%	33.3\%	53.2	52.5	-0.7	-1.3\%
34.6\%	52.3	51.9	-0.4	-0.8\%	34.6\%	53.1	52.3	-0.8	-1.6\%
35.8\%	52.3	51.8	-0.5	-0.9\%	35.8\%	52.9	52.2	-0.7	-1.4\%
37.0\%	52.3	51.8	-0.5	-0.9\%	37.0\%	52.9	52.2	-0.7	-1.4\%
38.3\%	52.2	51.7	-0.5	-1.0\%	38.3\%	52.8	52.1	-0.6	-1.2\%
39.5\%	52.2	51.6	-0.6	-1.1\%	39.5\%	52.7	52.1	-0.6	-1.1\%
40.7\%	52.0	51.6	-0.4	-0.8\%	40.7\%	52.6	52.1	-0.6	-1.1\%
42.0\%	${ }_{52.0}$	${ }_{51.6}$	-0.4	-0.8\%	42.0\%	52.5 525 52.	${ }_{52.0}^{52.0}$	-0.5	-1.0\%
43.2\%	51.9	51.6	-0.4	-0.7\%	43.2\%	52.5	51.9	-0.5	-1.0\%
44.4\%\%	51.9 519	51.5 515 51.5	-0.3	-0.6\%	44.4\%	52.4 52.4 5.4	51.8 518 51.7	-0.7	-1.3\%
46.9\%	51.8	51.4	-0.4	-0.7\%	46.9\%	52.2	51.7	-0.5	-0.9\%
48.1\%	51.8	51.3	-0.4	-0.9\%	48.1\%	52.1	51.7	-0.5	-0.9\%
49.4\%	51.5	51.3	-0.2	-0.4\%	49.4\%	52.0	51.6	-0.4	-0.8\%
50.6\%	51.5	51.2	-0.3	-0.6\%	50.6\%	52.0	51.6	-0.4	-0.8\%
51.9\%	51.5	51.1	-0.4	-0.7\%	51.9\%	52.0	51.6	-0.4	-0.8\%
53.1\%	51.4	51.1	-0.3	-0.6\%	53.1\%	51.9	51.5	-0.4	-0.8\%
54.3\%	51.3	51.1	-0.3	-0.5\%	54.3\%	51.9	51.4	-0.5	-0.9\%
55.6\%	51.3	51.1	-0.2	-0.4\%	55.6\%	51.8	51.4	-0.4	-0.9\%
56.8\%	${ }_{51.3}$	51.1	-0.2	-0.4\%	56.8\%	51.8	51.3	-0.5	-1.0\%
58.0\%	51.2	51.0	-0.2	-0.4\%	58.0\%	51.8	51.3	-0.5	-1.0\%
59.3\%	51.2	51.0	-0.2	-0.4\%	59.3\%	51.8	51.3	-0.5	-0.9\%
60.5\%	51.2	51.0	-0.2	-0.4\%	60.5\%	51.7	51.1	-0.6	-1.1\%
61.7\%	51.1	51.0	-0.1	-0.2\%	61.7\%	51.7	51.1	-0.6	-1.1\%
63.0\%	51.1	50.9	-0.2	-0.5\%	63.0\%	51.6	51.1	-0.5	-1.0\%
64.2\%	51.1	50.8	-0.3	-0.6\%	64.2\%	51.5	51.1	-0.5	-0.9\%
65.4\%	51.1	50.7	-0.4	-0.7\%	65.4\%	51.5	51.1	-0.4	-0.8\%
66.7\%	51.1	50.7	-0.4	-0.7\%	66.7\%	51.4	51.0	-0.4	-0.8\%
669.9\%	51.1 50.9	50.7 50.7	-0.4 -0.2	-0.0.7\%	-67.9\%	51.3 51.3	51.0 51.0	-0.3 -0.3	-0.7\% ${ }^{-0.7 \%}$
70.4\%	50.9	50.7	-0.3	-0.5\%	70.4\%	51.3	50.9	-0.4	-0.7\%
71.6\%	50.9	50.6	-0.3	-0.6\%	71.6\%	51.2	50.9	-0.4	-0.8\%
72.8\%	50.8	50.6	-0.2	-0.4\%	72.8\%	51.2	50.8	-0.4	-0.8\%
74.1\%	50.8	50.6	-0.2	-0.4\%	74.1\%	51.2	50.8	-0.4	-0.8\%
75.3\%	50.8	50.6	-0.2	-0.4\%	75.3\%	51.1	50.8	-0.3	-0.6\%
76.5\%	50.8	50.6	-0.2	-0.4\%	76.5\%	51.1	50.8	-0.3	-0.7\%
77.8\%	50.8	50.5	-0.2	-0.4\%	77.8\%	51.1	50.7	-0.4	-0.7\%
79.0\%	50.7	50.5	-0.2	-0.5\%	79.0\%	51.1	50.7	-0.4	-0.7\%
80.2\%	50.7	50.5	-0.2	-0.5\%	80.2\%	51.0	50.7	-0.3	-0.6\%
81.5\%	50.7	50.4	-0.3	-0.5\%	81.5\%	50.9	50.7	-0.3	-0.5\%
82.79\%	50.7	50.3	-0.4	-0.7\%	82.70\%	50.9 509	50.7	-0.3	${ }^{-0.50 \%}$
84.0\%	50.6	50.3	-0.4	-0.7\%	84.0\%	50.9	50.6	-0.3	-0.5\%
85.2\%	50.5	50.2	-0.3	-0.6\%	85.2\%	50.9	50.6	-0.3	-0.6\%
86.4\%	50.5	50.1	-0.4	-0.7\%	86.4\%	50.8 507	50.5 50.4	-0.3	${ }^{-0.96 \%}$
877.7\%	50.4 50.3	50.1 50.1	-0.3 -0.3	-0.6\%	87.7\%	50.7 507	50.4	-0.3	-0.7\%\%
${ }^{80.1 \%}$	50.3	50.0	-0.3	${ }^{-0.5 \%}$	${ }^{88.90 \%}$	50.7 50.7	50.4 50.3	-0.3 -0.4	-0.0\%
91.4\%	50.3	50.0	-0.3	-0.7\%	91.4\%	50.7	50.3	-0.4	-0.8\%
92.6\%	50.3	49.9	-0.3	-0.7\%	92.6\%	50.7	50.2	-0.4	-0.8\%
93.8\%	50.1	49.9	-0.2	-0.5\%	93.8\%	50.6	50.1	-0.5	-1.1\%
${ }_{9}^{95.19 \%}$	50.1 50.0	49.9	-0.2 -0.2	-0.0.4\%	${ }_{9}^{95.19 \%}$	50.4 50.3	50.1 50.0	-0.3 -0.3	-
97.5\%	50.0	49.9	-0.2	-0.4\%	97.5\%	50.1	49.6	-0.5	-0.9\%
98.8\%	49.5	49.4	-0.1	-0.1\%	98.8\%	49.6	49.5	-0.1	-0.2\%
100.0\%	49.1	48.9	-0.3	-0.5\%	100.0\%	49.5	49.1	-0.4	-0.9\%

Figure SQ3-1b
Sacramento River at Bonnyview Bridge, Monthly Temperatur

Table $S Q 3$-1b
Bonnyiew Bridge,

$\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probabalily } \end{array} \end{aligned}$$(\%)$	October			
	DCR 2015 Without Proiet	DCR 2015 With Project		Relative
	Monthy Temperature	Monthy Temperature	Difference (DEGF)	Difference (\%)
0.0\%	62.3	62.4	0.2	0.2\%
1.2\%	61.3	61.6	0.3	0.6\%
2.5\%	60.7	61.5	0.8	
3.7\%	60.5	60.5	0.0	-0.1\%
4.9\%	59.5	55.8	-2.7	-4.5\%
6.2\%	57.3	56.7	-0.6	-1.1\%
7.4\%	57.0	55.6	-0.4	-0.7\%
8.6\%	56.9	56.6	-0.3	-0.6\%
9.9\%	56.6	56.6	0.0	-0.1\%
11.1\%	55.2	55.2	0.0	-0.1\%
12.3\%	55.8	56.1	${ }^{0.3}$	0.6\%
13.6\%	55.8	56.1	${ }^{0.3}$	0.5\%
14.8\%	55.7	56.0	0.3	0.6\%
16.0\%	55.7	55.0	0.2	0.4\%
17.3\%	55.7	55.9	0.2	0.4\%
18.5\%	55.7	55.9	0.2	0.4\%
19.8\%	55.6	55.8	0.2	0.3\%
21.0\%	55.6	55.7	0.1	0.2\%
22.2\%	55.5	55.6	0.1	0.2\%
23.5\%	55.5	55.6	0.1	0.1\%
24.7\%	55.5	55.5	0.1	0.1\%
25.9\%	55.3	55.5	0.2	0.4\%
27.2\%	55.3	55.5	0.2	0.4\%
28.4\%	55.3	55.5	0.2	0.3\%
29.6\%	55.2	55.5	0.3	0.5\%
30.9\%	55.2	55.2	0.0	0.0\%
32.1\%	55.2	55.2	0.1	0.1\%
33.3\%	55.1	55.2	0.1	0.2\%
34.6\%	55.1	55.2	0.1	0.2\%
35.8\%	54.9	55.2	0.3	0.5\%
37.0\%	54.9	55.2	0.3	0.5\%
38.3\%	54.8	55.1	0.3	0.5\%
39.5\%	54.8	54.9	0.2	0.3\%
40.7\%	54.8	54.9	0.2	0.3\%
${ }^{42.0 \%}$	54.7 54.7	54.9 54.8	${ }_{0.1}^{0.1}$	${ }_{0}^{0.3 \%}$
44.4\%	54.7	54.8	0.1	0.3\%
45.7\%	54.7	54.8	0.1	0.2\%
46.9\%	54.7	54.8	0.1	0.3\%
48.1\%	54.6	54.6	-0.1	-0.1\%
49.4\%	54.6	54.6	0.0	-0.1\%
50.6\%	54.6	54.6	0.0	-0.1\%
51.9\%	54.6	54.6	0.0	0.0\%
	54.6 54.5	54.6 54.5 4.5	0.0	0.0\%
55.6\%	54.5	54.5	0.0	0.0\%
56.8\%	54.5	54.5	0.0	0.0\%
58.0\%	54.5	54.5	0.0	0.0\%
59.3\%	54.4	54.4	0.0	0.1\%
60.5\%	54.4	54.4	0.0	0.1\%
61.7\%	54.3	54.4	0.0	0.1\%
63.0\%	54.3	54.3	0.0	0.0\%
64.2\%	54.3	54.3	0.0	0.0\%
65.4\%	54.3	54.3	0.0	0.0\%
66.7\%	54.2	54.3	0.1	0.1\%
67.9\%	54.2	54.2	0.0	0.1\%
69.1\%	54.2	54.2	0.1	0.1\%
70.4\%	54.1	54.2	0.1	0.1\%
71.6\%	54.1	54.2	0.1	0.2\%
72.8\%	54.1	54.2	0.1	0.2\%
74.19\%	54.0	54.2	${ }^{0.1}$	0.2\%
75.3\%	54.0	54.2	0.2	0.3\%
76.5\%	54.0	54.1	0.2	0.3\%
77.8\%	54.0	54.1	0.1	0.2\%
79.0\%	53.9 53.9	54.1 54.1	0.1	0.2\%
80.1.5\%	53.9 53.9	54.1 54.0	0.2	0.3\%
82.7\%	53.9	53.8	0.0	0.0\%
84.0\%	53.8	53.8	0.0	0.0\%
${ }^{85.20 \%}$	53.8	53.8 535 5.5	-0.1	-0.1\%
${ }^{867.7 \%}$	${ }_{53.7}^{53.7}$	${ }_{53.3}^{53.5}$	-0.1	-0.3\%
88.9\%	53.6	53.2	-0.5	-0.9\%
90.1\%	53.5	53.0	-0.5	-0.9\%
91.4\%	53.5	53.0	-0.5	-0.9\%
92.6\%	53.5	52.8	-0.6	-1.1\%
93.8\%	53.3	52.8	-0.4	-0.8\%
${ }_{965.3 \%}^{95.10 \%}$	53.0 53.0	52.5 52.2	-0.4 -0.7	-0.8\%
97.5\%	52.9	52.0	-0.9	-1.7\%
98.8\%	52.6	51.8	-0.8	-1.6\%
100.0\%	52.6	51.8	0.0	-1.6\%

	January		$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (DEGF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
Exceedance	$\begin{gathered} \text { DCR 2015 WThout } \\ \hline \text { Proiedt } \end{gathered}$	DCR 2015 With Project		
$\underset{\substack{\left.\text { Probability } \\(\%)_{0}\right)}}{ }$	Monthy Temperature	Monthly Temperature		
0.0\%	54.4	54.4	-0.1	-0.1\%
1.2\%	50.3	50.2	-0.1	-0.2\%
2.5\%	50.2	50.2	0.0	0.0\%
3.7\%	50.0	50.0	0.1	0.1\%
4.9\%	50.0	49.9	-0.1	-0.1\%
6.2\%	49.7	49.9	0.2	0.4\%
7.4\%	49.5	49.8	0.3	06\%
8.6\%	49.4	49.5	0.2	0.3\%
9.9\%	49.2	49.3	0.1	0.2\%
11.1\%	49.1	49.1	0.0	0.0\%
12.3\%	49.1	49.1	0.0	0.1\%
13.6\%	49.1	49.1	0.0	0.0\%
14.8\%	49.0	48.7	-0.4	-0.7\%
16.0\%	48.6	48.6	0.0	0.0\%
17.3\%	48.5	48.5	0.0	0.0\%
18.5\%	48.5	48.5	0.0	0.0\%
19.8\%	48.5	48.5	0.1	0.1\%
21.0\%	48.4	48.5	0.1	0.2\%
22.2\%	48.4	48.5	0.1	0.2\%
23.5\%	48.3	48.5	0.2	0.4\%
24.7\%	48.2	48.3	0.1	0.1\%
25.9\%	48.2	48.3	0.1	0.2\%
27.2\%	48.1	48.3	0.2	0.4\%
28.4\%	48.0	48.2	0.2	0.4\%
29.6\%	48.0	48.1	0.2	0.4\%
30.9\%	47.9	48.1	0.2	0.4\%
32.1\%	47.9	48.0	0.1	0.2\%
33.3\%	47.8	48.0	0.2	0.4\%
34.6\%	47.8	47.9	0.1	0.2\%
35.8\%	47.6	47.7	0.0	0.1\%
37.0\%	47.5	47.6	0.1	0.2\%
38.3\%	47.5	47.6	0.0	0.1\%
39.5\%	47.5	47.5	0.0	-0.1\%
40.7\%	47.5	47.5	0.0	-0.1\%
42.0\%	47.4	47.5	0.0	0.0\%
43.2\%	47.4	47.4	0.0	0.0\%
44.4\%	47.4	47.4	0.0	-0.1\%
45.7\%	47.4	47.4	0.0	0.0\%
${ }^{46.9 \%}$	47.3	47.4	0.0	0.1\%
${ }_{4}^{48.1 \%}$	47.3	47.3	0.0	-0.1\%
	47.3 47.2	47.3 47.2	0.0 0.0	0.0\%
51.9\%	47.2	47.2	0.0	0.1\%
53.1\%	47.2	47.2	0.0	0.1\%
54.3\%	47.2	47.2	0.0	0.0\%
55.6\%	47.1	47.2	0.0	0.0\%
56.8\%	47.1	47.2	0.0	0.1\%
58.0\%	47.1	47.2	0.1	0.2\%
59.3\%	47.0	47.1	0.1	0.2\%
60.5\%	47.0	47.1	0.1	0.2\%
${ }^{61.7 \%}$	47.0	47.1	0.1	0.2\%
${ }^{63.0 \%}$	47.0	47.0	0.0	0.1\%
${ }^{64.2 \%}$	47.0	47.0	0.0	0.0\%
65.4\%	47.0	46.9	0.0	0.0\%
${ }^{66.7 \%}$	46.9	46.9	0.0	-0.1\%
-67.9\%	46.9	46.8	-0.1	-0.1\%
${ }_{70.1 \%}^{69.4 \%}$	46.8	46.8	0.0	0.1\%
70.4\%\%	46.7	46.8	0.1	0.2\%
77.6\%\%	46.7	46.8	0.1	0.2\%
72.8\% 74.1%	46.6	46.7	0.1	0.2\%
${ }^{74.1 \%}$	46.6	46.6	0.1	0.1\%
${ }_{7}^{75.5 \%}$	46.6	46.6	0.0	0.1\%
76.5\%	46.5	46.6	0.1	0.2\%
77.0\%	46.4	46.6	0.1	0.3\%
79.0\%	${ }_{46.4}^{46.4}$	46.4	0.0	${ }^{0.0 \%}$
80.1.2\%	46.4	46.4	0.0	-0.1\%
81.5\%	46.4	46.4	0.0	0.1\%
82,7\% 84.0%	46.4	46.3	0.0	0.0\%
84.0% 85.2%	46.3	46.3	0.0	0.0\%
85.2\%	46.1	46.1	0.0	-0.1\%
86.4\%	46.0	46.0	0.0	-0.1\%
87.79% 88.9%	45.9	46.0	0.0	0.1\%
${ }^{88.9 \%}$	45.7	45.7	0.0	0.1\%
90.1\%	45.4	45.7	0.3	0.6\%
91.4\%	45.3	45.5	0.2	0.4\%
92.6\%	45.3	45.3	0.0	0.1\%
93.8\%	45.3	45.2	0.0	-0.1\%
${ }_{995}^{95.19 \%}$	45.2	45.2	0.0	0.0\%
99.3\%	45.2	45.2	0.0	0.0\%
97.5\% ${ }_{\text {98.8\% }}$	45.1	45.2	0.0	0.0\%
98.8% 100.0%	44.3	45.2	0.8	1.9\%
100.0\%	44.3	45.2	0.8	1.9\%

Table SQ3.1b
and

February				
$\begin{gathered} \text { Percerent } \\ \text { Exceedance } \end{gathered}$	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project		Relative
Probability (\%)	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGF } \end{aligned}$	Difference (\%)
0.0\%	52.6	52.6	0.0	0.0\%
1.2\%	49.4	49.6	0.2	05%
2.5\%	48.7	48.8	0.1	0.2\%
3.7\%	48.6	48.6	0.0	0.0\%
4.9\%	48.2	48.6	0.4	0.7\%
6.2\%	48.2	48.3	0.1	0.2\%
7.4\%	48.1	48.2	0.1	0.3\%
8.6\%	48.0	48.1	0.1	0.3\%
9.9\%	47.9	47.9	0.0	-0.1\%
11.12\%	47.9	47.8	0.0	-0.1\%
12.3\%	47.8 477	47.8 477	0.0	${ }^{-0.1 \%}$
14.8\%	47.6	47.7	0.1	0.3\%
16.0\%	47.6	47.7	0.1	0.3\%
17.3\%	47.6	47.5	0.0	0.0\%
18.5\%	47.5	47.5	0.0	0.0\%
19.8\%	47.5	47.5	0.0	0.1\%
21.0\%	47.4	47.5	0.1	0.2\%
22.2\%	47.3	47.4	0.1	0.2\%
23.5\%	47.3	47.4	0.1	0.2\%
24.7\%	47.3	47.4	0.1	0.2\%
25.9\%	47.3 47.3	47.3 47.3	0.1 0.1	-
28.4\%	47.3	47.3	0.0	0.0\%
29.6\%	47.1	47.3	0.1	0.2\%
30.9\%	47.1	47.2	0.1	0.3\%
32.1\%	47.1	47.2	0.1	0.3\%
33.3\%	47.0	47.2	0.2	0.3\%
34.6\%	47.0	47.2	0.2	0.4\%
35.8\%	46.9	47.1	0.2	0.4\%
37.0\%	46.9	47.1	0.2	0.4\%
- ${ }_{\text {38.3\% }}$	46.9 46.8	47.1 47.0	0.2 0.2	0.4.9\%
40.7\%	46.8	46.9	0.1	0.2\%
42.0\%	46.8	46.8	0.0	0.1\%
43.2\%	46.8	46.8	0.0	0.0\%
44.4\%	46.7	46.8	0.1	0.1\%
45.79\%	${ }_{46.6}^{46.7}$	${ }_{46.7}^{46.8}$	${ }_{0.0}^{0.1}$	0.0\%
48.1\%	46.6	46.6	0.0	0.0\%
49.4\%	46.6	46.6	0.0	0.0\%
50.6\%	46.5	46.4	-0.1	-0.2\%
51.9\%	46.3	46.3	0.0	0.0\%
53.12\% 54.3%	${ }_{46.2}^{46.2}$	${ }_{46.1}^{46.1}$	-0.1 -0.1	- ${ }_{\text {- }}^{\text {-0.3\% }}$
55.6\%	46.0	46.1	0.0	0.0\%
56.8\%	46.0	46.0	0.0	0.0\%
58.0\%	45.9	45.9	0.0	0.0\%
59.3\%	45.8	45.9	0.1	0.2\%
60.5\%	45.8	45.9	0.0	${ }^{0.10 \%}$
61.7\%	45.8	45.8	0.0	0.0\%\%
63.0\%	45.7	45.8	0.1	0.3\%
64.20% 6.40	45.7	45.7	0.0	0.0\%\%
${ }^{65.4 \%}$	45.6 45.6	${ }_{45.6}^{45.7}$	${ }_{0}^{0.0}$	${ }^{0.0 .1 \%}$
67.9\%	45.6	45.6	0.0	0.1\%
69.1\%	45.6	45.6	0.0	0.0\%
70.4\%	45.5 455	${ }_{455}^{45.5}$	0.0	${ }^{0.0 \% \%}$
72.8\%	${ }_{45.5}^{45.5}$	${ }_{45.5}^{45.5}$	${ }_{0.0}^{0.0}$	0.0\%
74.1\%	45.4	45.4	-0.1	-0.2\%
75.3\%	45.4	45.3	-0.1	-0.3\%
76.5\%	45.3	45.3	0.0	0.0\%
77.8\%	45.2	45.2	0.0	0.1\%
79.0\%	45.1	45.2	0.0	0.1\%
- ${ }^{80.2 \%}$	${ }_{45.0}^{45.1}$	${ }_{45.1}^{45.1}$	0.0 0.2	${ }_{\text {en }}^{0.3 \%}$
82.7\%	44.9	45.1	0.1	0.2\%
84.0\%	44.8	45.0	0.2	0.4\%
85.2\%	44.8	44.8	0.1	0.19\%
86.4\%	44.7	44.7	0.0	${ }^{0.00 \%}$
88.79% 88.9%	44.7	44.7	0.0	${ }^{\text {0.0\% }}$
90.1\%	44.6	44.6	0.0	0.1\%
91.4\%	44.4	44.6	0.1	0.3\%
92.6\%	44.3	44.6	0.2	0.6\%
93.8\%	44.2	44.4	0.2	0.5\%
${ }_{9}^{95.19 \%}$	43.6 43.5	${ }_{44.0}^{44.3}$	0.6 0.5	${ }_{1}^{1.2 \%}$
97.5\%	43.4	44.0	0.6	1.5\%
98.8\%	${ }_{43}^{43.3}$	43.5 435	0.2	0.6\%
100.0\%	43.3	43.5	0.2	0.6\%

	April			RelativeDifference (\%)
	$\underset{\substack{\text { DCR } 2015 \text { Without } \\ \text { Proet }}}{ }$	DCR 2015 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Differeence } \\ & \text { (DEGFF) } \end{aligned}$	
	Monthly Temperature (DEGE)	Monthly Temperature (DEGF)		
0.0\%	53.5	53.7	0.2	0.3\%
1.2\%	51.7	52.0	0.3	0.6
2.5\%	51.4	51.2	-0.2	-0.3\%
3.7\%	51.2	51.2	0.0	0.0\%
4.9\%	51.1	51.1	0.0	0.0\%
6.2\%	51.0	51.1	0.1	0.2\%
7.4\%	50.9	50.8	-0.1	-0.3\%
8.6\%	50.4	50.2	-0.2	-0.4\%
9.9\%	50.2	50.1	-0.1	-0.1\%
11.1.\%	50.1	50.1	0.0	0.0\%
${ }^{12.3 \%}$	50.0	50.0	0.0	0.0\%
- 13.60%	49.9	49.9	-0.1	${ }^{-0.1 \%}$
14.8.0\%	49.9	49.9	0.0	
17.3\%	49.6	49.8	0.2	0.5\%
18.5\%	49.6	49.7	0.1	0.3\%
19.8\%	49.6	49.6	0.1	0.2\%
21.0\%	49.5	49.6	0.1	0.2\%
22.2\%	49.5	49.6	0.1	0.3\%
23.5\%	49.5	49.6	0.1	0.3\%
24.7\%	49.5	49.6	0.2	0.3\%
25.7\%	49.5	49.6	0.1	0.3\%
27.2% 28.4%	49.4 49.4	49.6 49.5	${ }_{0.1}^{0.1}$	${ }_{\text {con }}^{0.3 \%}$
29.6\%	49.3	49.5	0.2	0.4\%
30.9\%	49.3	49.5	0.2	0.4\%
32.1\%	49.2	49.5	0.2	0.4\%
33.3\%	49.2	49.5	${ }^{0.3}$	0.5\%
34.6\%	49.1	49.3	0.2	0.4\%
35.8\%	49.1	49.3	0.2	0.4\%
37.0\%	49.1	49.3	0.1	0.3\%
38.3\%	49.0	49.3	0.2	0.4\%
39.5\%	49.0	49.1	0.1	0.2\%
40.77\%	49.0	49.1	0.1	0.2\%
42.0\%	${ }_{48.9} 88$	${ }_{49.1}^{49.1}$	${ }_{0}^{0.1}$	-
44.4\%	48.9	49.1	0.2	0.4\%
45.7\%	48.8	49.0	0.1	0.3\%
46.9\%	48.8	49.0	0.2	0.4\%
48.1\%	48.8	49.0	0.2	0.4\%
49.4\%	48.6	48.9	0.4	0.7\%
50.6\%	48.6	48.9	0.3	0.6\%
51.9\%	48.6	48.8	${ }^{0.3}$	0.6\%
53.1\%	48.4	48.8	${ }^{0.3}$	0.7\%
54.3\%	48.4	48.7	0.3	0.6\%
55.6\%	48.4	48.7	0.3	0.5\%
56.8\%	48.3	48.6	${ }^{0.3}$	0.5\%
58.0\%	48.3	48.6	${ }^{0.3}$	0.6\%
59.3\%	48.3	48.5	0.2	0.4\%
60.5\%	48.3	48.4	0.2	0.3\%
61.7\%	48.3	48.4	0.1	0.2\%
63.0\%	48.2	48.4	0.2	0.3\%
64.2\%	48.2	48.3	0.1	${ }^{0.2 \%}$
65.4\%	48.1	48.2	0.1	0.3\%
66.7\%	48.0	48.2	0.2	0.3\%
- 67.9%	48.0 48.0	${ }_{48.1}^{48.1}$	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
70.4\%	48.0	48.0	0.0	0.1\%
71.6\%	48.0	48.0	0.0	0.1\%
72.8\%	47.9	48.0	0.1	0.2\%
74.1\%	47.9	48.0	0.1	0.2\%
75.3\%	47.8	48.0	0.1	0.3\%
76.5\%	47.8	47.9	0.1	0.2\%
77.8\%	47.8	47.9	0.1	0.3\%
79.0\%	47.6	47.7	0.1	0.3\%
80.2\%	47.4	47.7	0.3	0.6\%
- ${ }_{81.5 \%}^{82.7 \%}$	47.3 47.2	47.4 47.2	0.1 0.0	${ }^{0.1 \%}$
84.0\%	47.1	47.2	0.1	0.2\%
85.2\%	47.0	47.1	0.1	0.1\%
86.4\%	46.9	${ }^{47.1}$	0.1	${ }^{0.2 \%}$
87.7\%	46.8	47.1	0.2	0.5\%
88.9\%	46.8	47.0	0.3	0.6\%
90.1\%	46.7	46.7	0.0	0.0\%
91.4\%	46.6	46.7	0.0	0.1\%
- ${ }_{\text {93, }}^{92.6 \%}$	${ }_{46.5}^{46.6}$	${ }_{46.5}^{46.6}$	0.0 0.0	${ }^{0.0 \%}$
95.1\%	46.3	46.4	0.1	0.2\%
${ }^{96.3 \%}$	46.2	46.3	0.1	${ }^{0.2 \%}$
97.5\%	46.2	46.2	0.0	${ }^{0.1 \%}$
98.8\%	46.1	46.2	${ }_{0}^{0.1}$	- 0.1%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabily } \\ (\%) \\ \hline \end{gathered}$	May			RelativeDifference (\%)
	DCR 2015 Without Proiet	DCR 2015 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (eEGFF) } \end{aligned}$	
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF) (
0.0\%	55.6	55.7	0.1	0.2\%
1.2\%	54.9	55.0	0.1	0.2\%
2.5\%	53.9	53.7	-0.2	-0.4\%
3.7\%	53.2	52.8	-0.5	-0.9\%
4.9\%	51.4	52.7	1.3	
6.2\%	51.4	52.5	1.1	2.2\%
7.4\%	51.4	52.4	1.1	2.0\%
8.6\%	51.3	52.1	0.8	1.5\%
9.9\%	51.3	52.0	0.7	1.3\%
11.1\%	51.3	51.8	0.5	1.0\%
12.3\%	51.2	51.7	0.5	0.9\%
13.6\%	51.1	51.6	0.4	0.9\%
14.8\%	50.9	51.3	0.3	0.6\%
16.0\%	50.8	51.1	${ }^{0.3}$	0.5\%
17.3\%	50.8	51.0	0.2	0.4\%
18.5\%	50.7	51.0	0.2	0.5\%
19.8\%	50.6	50.9	0.3	0.6\%
21.0\%	50.6	50.9	0.3	0.6\%
22.2\%	50.6	50.8	0.3	0.6\%
23.5\%	50.6	50.8	${ }^{0.3}$	0.5\%
24.7\%	50.5	50.8	0.2	0.5\%
25.9\%	50.5	50.7	0.2	0.4\%
27.2\%	50.5	50.7	0.2	0.4\%
28.4\%	50.4	50.7	0.2	0.5\%
29.6\%	50.3	50.6	0.3	0.6\%
- ${ }_{\text {30.9\% }}^{32.10}$	50.3	50.6	0.3	0.6\%
${ }^{32.1 \%}$	50.2	50.5	0.4	0.8\%
33.3\%	50.1	50.5	0.4	0.8\%
34.6\%	50.1	50.5	0.4	0.7\%
35.8\%	50.1	50.4	0.3	0.7\%
37.0\%	50.0	50.3	0.3	0.6\%
38.3\%	49.9	50.3	0.4	0.7\%
39.5\%	49.9	50.2	0.3	0.5\%
40.7\%	49.9	50.0	0.1	0.3\%
42.0\%	49.8	49.9	0.1	0.1\%
43.2\%	49.8	49.8	0.0	0.1\%
4.4.4\%	49.7	49.8	0.1	0.1\%
	49.7	49.8	0.1	0.1\%
${ }^{46.9 \%}$	49.7	49.8	0.1	0.1\%
${ }^{48.1 \%}$	49.7	49.8	0.1	${ }^{0.19 \%}$
4.4.4\%	49.6	49.7	${ }^{0.1}$	0.3\%
50.6\%	49.6	49.7	0.1	0.2\%
551.9\%	49.6	49.7	0.1	0.2\%
53.1\% 54.3%	49.5	49.6	0.1	0.2\%
54.3\% 55.6%	49.5	49.6	0.1	0.1\%
55.6\%	49.5	49.6	0.1	0.2\%
- 5 5.8.0\%	49.5	49.6	0.1	0.2\%
5.0\% 59.3%	49.5	49.5	0.1	0.2\%
59.3\%	49.4	49.5	0.1	0.2\%
	49.4	49.5	0.1	0.2\%
61.7\% ${ }_{6} 6.0 \%$	49.4	49.5	0.1	0.2\%
63.0\% 6	49.4	49.5	0.1	0.3\%
64.2\% 65.4%	49.3	49.5	0.1	0.2\%
65.4\%	49.3	49.4	0.1	0.2\%
66.7\% 67.9%	49.3	49.4	0.0	0.1\%
67.9\% ${ }_{6}^{69.1 \%}$	49.3	49.3	0.0	0.1\%
69.1\% 70.4%	49.3	49.3	0.1	0.2\%
77.4\%	49.2	49.3	0.0	0.1\%
71.6\%	49.2	49.2	0.1	0.2\%
72.8.1\%	49.1	49.2	0.1	0.3\%
74.1\% ${ }_{753}$	49.0	49.2	0.2	0.4\%
76.5\%	48.9	49.2	${ }^{0.2}$	${ }^{0.55 \%}$
76.5\%	48.9	49.1	0.2	0.3\%
77.8.0\%	48.8	49.0	0.2	0.4\%
79.0\% 80.2%	48.8	49.0	0.2	0.4\%
80.2\% 81.5%	48.7	48.8	0.1	0.2\%
88.5\%\%	48.7	48.7	0.0	0.0\%
82.7\% 84.0%	48.6	48.6	0.1	0.1\%
8.0% 85.2%	48.6	48.6	0.1	0.1\%
85.2\%	48.5	48.6	0.1	0.1\%
86.4\% ${ }^{87.7 \%}$	48.5	48.3	-0.2	-0.4\%
${ }^{87.7 \%}$	48.3	48.1	-0.2	-0.4\%
88.9\%	48.1	48.1	0.0	0.0\%
${ }^{90.1 \%}$	48.1	48.1	0.0	0.0\%
${ }_{9}^{91.4 \%}$	48.0	48.0	0.0	0.0\%
92.8\%\%	48.0	47.9	-0.1	-0.2\%
${ }_{9}^{93.8 .1 \%}$	47.9	47.9	0.0	-0.1\%
${ }_{95.10 \%}^{96.3 \%}$	47.8	47.9	0.1	0.2\%
997.5\%	47.8	47.8	0.1	0.2\%
97.5\%	47.5	47.8	0.3	0.6\%
988\%	47.4 47.4	${ }_{47.5}^{47.5}$	${ }_{0.1}^{0.1}$	${ }_{\text {one }}^{0.3 \%}$

Table SQ3-1b
tonnyiew Bridge

June				
$\begin{gathered} \text { Percerent } \\ \text { Exceedance } \end{gathered}$	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project		Relative
Probability (\%)	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGF } \end{aligned}$	Difference (\%)
0.0\%	55.4	55.0	-0.5	0.9\%
1.2\%	55.3	54.7	-0.6	O
2.5\%	54.9	54.3	-0.7	-1.2\%
3.7\%	53.6	53.8	0.2	0.4\%
4.9\%	53.3	53.4	0.1	0.3\%
6.2\%	53.2	53.2	0.0	0.0\%
7.4\%	53.2	53.2	0.0	-0.1\%
8.6\%	53.0	53.2	0.1	0.3\%
9.9\%	52.5	52.9	0.4	0.8\%
11.19\%	${ }_{52.2}^{52}$	52.5	0.3	0.6\%
12.3\%	52.2 52.1	52.3 52.2	${ }_{0}^{0.1}$	- ${ }_{\text {0.1\% }}^{0.3 \%}$
14.8\%	52.0	51.8	-0.2	-0.4\%
16.0\%	51.5	51.8	0.3	0.6\%
17.3\%	51.5	51.6	0.1	0.1\%
18.5\%	51.4	51.5	0.1	0.1\%
19.8\%	51.4	51.4	0.0	0.1\%
21.0\%	51.3	51.4	0.1	0.2\%
22.2\%	51.2	51.4	0.2	0.4\%
${ }^{23.5 \%}$	51.1	${ }_{51.3}^{51.3}$	0.3	0.5\%
24.7\%	51.0	${ }_{51.3}$	${ }^{0.3}$	0.5\%
25.9\%	51.0 51.0	51.3 51.2	0.3 0.2	0.5\% 0.5
28.4\%	50.9	51.2	0.2	0.5\%
29.6\%	50.9	51.0	0.2	0.3\%
30.9\%	50.8	51.0	0.2	0.4\%
32.1\%	50.8	51.0	0.2	0.4\%
33.3\%	50.7	51.0	0.2	0.5\%
34.6\%	50.7	50.9	0.2	0.5\%
35.8\%	50.6	50.9	0.3	0.5\%
37.0\%	50.6	50.9	${ }^{0.3}$	0.6\%
388.3\%	50.6 50.6	50.9 50.9	0.3 0.3	0.6\%
40.7\%	50.6	50.8	0.2	0.5\%
42.0\%	50.4	50.8	${ }^{0.4}$	0.7\%
43.2\%	50.4	50.7	${ }^{0.3}$	
44.4\%\%	50.4	50.7	${ }^{0.3}$	0.6\%
45.79\%	50.4 50.3	50.7 50.7	0.3 0.3	0.6\%
48.1\%	50.3	50.7	0.3	0.7\%
49.4\%	50.3	50.6	0.3	0.6\%
50.6\%	50.3	50.6	0.3	0.6\%
51.9\%	50.3	50.6	${ }^{0.3}$	0.6\%
53.1\%	50.2	50.6	0.3	0.7\%
54.3\%	50.2	50.6	0.3	0.7\%
55.6\%	$\begin{array}{r}50.2 \\ 50.2 \\ \hline\end{array}$	50.5 50.5	${ }_{0}^{0.3}$	0.7\% 0
58.0\%	50.2	50.5	0.4	0.7\%
59.3\%	50.1	50.4	0.3	0.7\%
60.5\%	50.0	50.4	0.4	0.8\%
${ }^{61.7 \%}$	50.0	50.4	${ }^{0.3}$	0.7\%
63.0\%	50.0	50.3	${ }^{0.3}$	0.6\%
64.20% 6.40	50.0	${ }^{50.3}$	0.2	0.5\%
${ }^{65.4 \%}$	50.0 50.0	50.3 50.3	0.3 0.3	${ }^{0.5 \%}$
67.9\%	50.0	50.2	0.2	0.5\%
69.19\%	50.0	50.2	0.2	0.5\%
71.6\%	49.9	50.2	0.2	0.5\%
72.8\%	49.9	50.2	0.2	0.5\%
74.1\%	49.8	50.1	${ }^{0.3}$	0.6\%
75.3\%	49.8	50.0	${ }^{0.3}$	0.6\%
76.5\%	49.8	50.0	0.3	0.6\%
77.8\%	49.7	49.9	0.1	0.2\%
80.2\%	49.6	${ }_{49.8}$	0.1	0.4\%
81.5\%	49.4	49.7	0.3	0.7\%
82.79\%	49.4	49.7	${ }^{0.3}$	0.7\%
84.0\%	49.4	49.7	0.4	0.7\%
85.2\%	49.3 493	49.6	${ }_{0}^{0.3}$	0.6\%
86.4\%	${ }_{49.3}^{49.3}$	49.6 49.6	0.3 0.3	${ }_{0}^{0.6 \% \%}$
88.9\%	49.2	49.5	0.3	0.6\%
90.1\%	49.2	49.3	0.1	0.2\%
91.4\%	49.1	49.3	0.2	0.5\%
92.6\%	49.0	49.3	${ }^{0.3}$	0.6\%
95.1\%	48.8	49.1	${ }_{0} 0.3$	${ }^{0.5 \%}$
96.3\%	48.6	49.1	0.5	1.1\%
97.5\%	48.5	48.9	0.3	0.7\%
98.8\%	48.3	${ }_{487} 88$	${ }^{0.4}$	0.9\%
100.0\%	48.3	48.7	0.4	0.9\%

		September		
Percent Exceedance	${ }^{\text {DCR } 2015 \text { Without }} \begin{aligned} & \text { Proiect }\end{aligned}$	DCR 2015 With Project	Absolute	
Probability $(\%)$			(DEGF)	Difference (\%)
0.0\%	66.4	63.2	-3.2	-4.8\%
1.2\%	63.3	62.2	-1.1	-1.7\%
2.5\%	62.8	61.3	1.5	-2.4\%
3.7\%	62.0	55.4	-6.6	10.6\%
4.9\%	61.3	55.3	5.9	
6.2\%	57.2	54.8	-2.4	-4.2\%
7.4\%	55.6	54.8	-1.8	-3.3\%
8.6\%	56.5	54.8	-1.7	-3.1\%
9.9\%	55.0	54.7	-1.3	-2.4\%
11.1\%	55.7	54.6	-1.0	-1.9\%
12.3\%	55.5	54.6	-0.9	-1.6\%
13.6\%	55.4	54.6	-0.8	-1.5\%
14.8\%	55.4	54.5	-0.9	-1.5\%
16.0\%	55.3	54.5	-0.8	-1.5\%
17.3\%	55.3	54.5	-0.9	-1.6\%
18.5\%	55.2	54.4	-0.9	-1.6\%
19.8\%	55.2	54.3	-0.8	-1.5\%
21.0\%	55.1	54.3	-0.8	-1.5\%
22.2\%	55.0	54.2	-0.9	-1.6\%
23.5\%	55.0	54.1	-0.9	-1.7\%
24.7\%	54.9	54.0	-0.9	-1.7\%
25.9\%	54.9	53.9	-0.9	-1.7\%
27.2\%	54.9	53.9	-1.0	-1.8\%
28.4\%	54.8	53.8	-1.1	-1.9\%
29.6\%	54.6	53.8	-0.8	-1.5\%
30.9\%	54.5	53.8	-0.7	-1.4\%
32.1\%	54.5	53.6	-0.9	-1.7\%
33.3\%	54.4	53.5	-0.9	-1.7\%
34.6\%	54.3	53.5	-0.8	-1.5\%
35.8\%	54.1	53.3	-0.8	-1.5\%
37.0\%	54.1	53.2	-0.9	-1.6\%
38.3\%	54.0	53.2	-0.9	-1.6\%
39.5\%	54.0	53.1	-0.9	-1.7\%
40.7\%	53.8	53.1	-0.8	-1.4\%
42.0\%	${ }_{53.6}$	53.0	-0.6	-1.2\%
43.2\%	53.6	52.9	-0.7	-1.3\%
44.4\%	53.6	52.9	-0.8	-1.4\%
45.7\% 46.9%	53.6	52.8	-0.8	-1.5\%
46.9\%	53.6	52.8	-0.8	-1.5\%
48.1\%	53.5	52.7	-0.8	-1.5\%
49.4\%		52.6 52.4	-0.9	${ }_{-1.14 \%}$
50.6\%	53.1	52.4	-0.7	-1.4\%
51.9\%	53.1	${ }_{52.3}$	-0.7	-1.4\%
53.19\%	53.0 52.0	52.3	-0.7	-1.4\%
54.3\%	52.9	52.2	-0.7	-1.3\%
55.6\%	52.8	52.2	-0.7	-1.3\%
56.8\%	52.8	52.1	-0.7	-1.3\%
58.0\%	52.6	52.0	-0.6	-1.1\%
5.3.3\% 6.5\%	52.5	52.0	-0.5	-0.9\%
- ${ }_{\text {60.5\% }} 6$	52.5	${ }_{52.0}$	-0.5	-1.0\%
${ }^{61.7 \%}$	52.5	52.0	-0.5	-0.9\%
63.0\%	52.4	51.9	-0.4	-0.9\%
${ }^{64.2 \%}$	${ }_{52.4}^{52.4}$	${ }_{51.9}$	-0.4	-0.8\%
65.4\%	52.2	51.9	-0.3	-0.5\%
66.7\%	52.2	51.9	-0.3	-0.5\%
67.9\%	52.0	51.7	-0.3	-0.5\%
69.1\%	52.0	51.6	-0.4	-0.7\%
70.4\%	51.9	$5_{51.3}$	-0.6	-1.2\%
71.6\%	51.9	51.3	-0.7	-1.3\%
72.8\%	51.7	51.2	-0.5	-0.9\%
74.19\%	51.6	51.2	-0.5	-0.9\%
75.3\%	51.6	51.1	-0.4	-0.9\%
76.5\%	51.5	51.1	-0.4	-0.7\%
778\%	${ }_{51.5}^{51.5}$	${ }_{51.1}^{51.1}$	-0.4	-0.7\%
79.0\%	51.4 51.3	${ }_{51.1}^{51.1}$	-0.3	-0.5\%
80.2\%	${ }_{51.3}$	51.1	-0.3	-0.5\%
81.5\%	51.3	51.0	-0.3	-0.5\%
82.7\%	51.3	51.0	-0.3	-0.6\%
84.0\%	51.2	51.0	-0.3	-0.5\%
85.2\%	51.2	50.8	-0.4	-0.7\%
86.49% 87.790	51.2	50.8	-0.4	-0.8\%
87.7\%	51.1	50.7	-0.4	-0.8\%
- ${ }_{\text {88.9\% }} 9.1 \%$	${ }_{51.1}^{51.1}$	50.7	-0.4	-0.8\%
${ }_{\text {91.4\% }}^{90.19 \%}$	51.1	50.6	-0.5	-0.9\%
${ }_{\text {92, }}^{91.4 \%}$	51.1	50.4	-0.6	-1.2\%
92.9\% ${ }_{\text {93.8\% }}$	51.0	50.4	-0.6	-1.2\%
${ }_{95}^{93.8 \%}$	51.0	50.4	-0.6	-1.1\%
${ }_{965}^{95.11 \%}$	50.6	50.3	-0.3	-0.6\%
96.3\% ${ }_{\text {97.5\% }}$	50.5	50.0	-0.5	-1.1\%
97.5\% ${ }_{\text {98.8\% }}$	50.1	49.6	-0.5	-1.0\%
98.8\% 1000%	49.7	49.2	-0.5	-1.1\%
100.0\%	49.7	49.2	-0.5	-1.1\%

Table SO3.-1b
Sacramento River at Bonnyview Bridge, Monthy Temperature

	June to Sepplember			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
Percent Exceedance	$\underset{\substack{\text { DCR } 2015 \text { Without } \\ \text { Proiet }}}{ }$	DCR 2015 With Proje	AbsoluteDifference(PGGE)	
Probability	Monthly Temperature	Monthy Temperature		
(\%)	(DEGF)	${ }^{\text {(1EGF) }}$		
0.0\%	59.2	56.7	-2.5	-4.3\%
1.2\%	57.5	55.9	-1.7	${ }^{-2.9 \%}$
2.5\%	57.3	55.7	-1.5	-2.7\%
3.7\%	56.5	54.7	-1.8	-3.2\%
4.9\%	56.5	54.6	-1.8	-3.2\%
6.2\%	55.0	54.5	-0.5	-0\%
7.4\%	55.0	54.4	-0.5	-1.0\%
8.6\%	54.7	54.4	-0.4	-0.7\%
9.9\%	54.6	54.0	-0.6	-1.0\%
11.1\%	54.3	53.9	-0.3	-0.6\%
12.3\%	54.3	53.7	-0.6	-1.1\%
13.6\%	54.1	53.6	-0.5	-0.9\%
14.8\%	54.1	53.5	-0.6	-1.1\%
16.0\%	${ }_{54.0}$	53.4	-0.6	-1.2\%
17.3\%	53.9	53.4	-0.5	-0.9\%
18.5\%	53.8	53.3	-0.5	-0.9\%
19.8\%	53.5	53.1	-0.4	-0.7\%
${ }^{21.0 \%}$	53.3 532 5.	53.1 53.0	-0.2 -0.3	-0.3\%
23.5\%	${ }_{53.1}^{53.1}$	55.9	-0.1	-0.3\%
24.7\%	53.1	52.9	-0.1	-0.3\%
25.9\%	53.0	52.9	-0.1	-0.2\%
27.2\%	53.0	52.8	-0.1	-0.3\%
28.4\%	53.0	52.8	-0.2	-0.3\%
29.6\%	52.9	52.7	-0.1	-0.3\%
30.9\%	52.9	52.5	-0.4	-0.7\%
32.1\%	52.7	52.4	-0.3	-0.6\%
33.3\%	52.7	52.4	-0.3	-0.5\%
	52.7	$\begin{array}{r}52.4 \\ 52 . \\ \hline\end{array}$	-0.3	-0.5\%
35.8\%				-0.7\%
38.3\%	52.6	52.1	-0.5	-0.9\%
39.5\%	52.4	52.1	-0.3	-0.5\%
40.7\%	52.3	52.1	-0.2	-0.4\%
42.0\%	52.3	${ }_{52.1}^{52.1}$	-0.2	-0.4\%
43.2\%	52.2	52.0	-0.2	-0.4\%
44.4\%	52.1	52.0	-0.1	-0.3\%
45.7\%	52.1	52.0	-0.1	-0.2\%
46.9\%	52.0	51.9	-0.1	-0.2\%
${ }^{48.19 \%}$	52.0 52.0	51.9 51.8	-0.1 -0.2	-0.2\%\%
50.6\%	51.9	51.7	-0.2	-0.4\%
51.9\%	51.9	51.7	-0.2	-0.3\%
53.1\%	${ }_{51.8}^{51.7}$	${ }_{51.6}^{51.6}$	-0.1	-0.3\%
54.3\%	51.7	51.6	-0.1	-0.2\%
55.6\%	51.7	51.6	-0.1	-0.2\%
56.8\%	51.6	51.5	-0.1	-0.1\%
58.0\%	51.6	51.5	-0.1	-0.2\%
59.3\%	51.6	51.5	-0.1	-0.2\%
60.5\%	51.5	51.4	-0.1	-0.2\%
61.7\%	51.5	51.4	-0.1	${ }^{-0.3 \%}$
63.0\%	51.5	51.4	-0.2	
64.2\%	51.5	51.4	-0.1	-0.3\%
${ }^{65.49 \%}$	51.5 515 15	51.3 513	-0.1	${ }^{-0.3 \%}$
${ }^{66.77 \%}$	51.5 515 1.5	${ }_{51.3}$	-0.2	-0.4\%
${ }_{6}^{67.9 \%}$	51.5 51.4	51.2 51.2	-0.3 -0.2	-0.5\%
70.4\%	51.3	51.2	-0.1	-0.3\%
71.6\%	51.3	51.1	-0.1	-0.2\%
72.8\%	51.2	51.1	-0.1	-0.2\%
74.1\%	51.2	51.1	-0.1	-0.2\%
75.3\%	51.2	51.1	-0.1	-0.2\%
76.5\%	51.2	51.0	-0.1	-0.3\%
7.3\%	51.2	51.0	-0.1	-0.3\%
79.0\%	51.2 51.2 51	51.0 510	-0.2	${ }^{-0.3 \%}$
80.2\%	51.2 51.2	551.0	-0.2	-0.3\%
82.7\%	51.1	50.9	-0.2	-0.4\%
84.0\%	51.0	50.8	-0.2	-0.4\%
85.2\%	50.9	50.8	-0.1	-0.2\%
86.4\%	50.9	50.6	-0.2	0.5\%
87.7\%	50.7	50.6	-0.1	-0.2\%
${ }_{\text {c }}^{88.9 \%}$	50.7 50.6	50.5 50.5	-0.1 -0.1	-0.2\%
91.4\%	50.5	50.5	-0.1	-0.1\%
92.6\%	50.5	50.5	-0.1	-0.1\%
93.8\%	50.5	50.4	-0.1	-0.1\%
95.1\%	50.4	50.4	0.0	-0.1\%
96.3\%	50.4	${ }_{50.4}$	0.0	-0.1\%
97.5\%	50.4	50.4	-0.1	-0.1\%
98.8\%	49.9	49.8	-0.1	-0.2\%
100.0\%	49.5	49.5	-0.1	0.1\%

	Juy to Seplember				August to September				
$\underset{\substack{\text { Percent } \\ \text { Exceedance }}}{\text { a }}$	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	sute		Percent Exceedanc	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	Absolute	
Probability (\%)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Monthly Temperature } \\ & \text { (DEGF) } \end{aligned}$	$\begin{gathered} \text { Difference } \\ \text { (DEGFF) } \end{gathered}$	Difference (\%)	Probability	Monthly Temperature (DEGF)	Monthly Temperature DEGF)	Difference	Difference (\%)
0.0\%	61.2	58.0	-3.2	-5.3\%	0.0\%	64.0	59.8	-4.2	-6.6\%
1.2\%	59.0	57.1	-1.9	-3.2\%	1.2\%	60.9	58.6	-2.3	-3.7\%
2.5\%	58.7	56.6	-2.1	-3.6\%	2.5\%	60.6	58.1	-2.5	-4.1\%
3.7\%	57.5	54.8	-2.7	-4.6\%	3.7\%	58.4	54.8	-3.6	-6.2\%
4.9\%	56.8	54.7	-2.1	-3.7\%	4.9\%	5	54.8	-3.5	-6.12\%
6.2\%	55.8	54.6	-1.2	-2.1\%	6.2\%	56.3	54.8	-1.6	-2.8\%
7.4\%	55.5	54.6	-1.0	-1.8\%	7.4\%	55.3	54.7	-1.6	-2.8\%
8.6\%	55.2	54.5	-0.6	-1.2\%	8.6\%	55.9	54.7	-1.3	-2.2\%
9.9\%	55.0	54.3	-0.7	-1.3\%	9.9\%	55.7	54.6	-1.1	-1.9\%
11.1\%	55.0	54.3	-0.7	-1.3\%	11.1\%	55.6	54.6	-1.0	-1.8\%
12.3\%	54.9	54.2	-0.7	-1.3\%	12.3\%	55.3	54.6	-0.7	-1.2\%
13.6\%	54.8	54.2	-0.5	-1.0\%	13.6\%	55.2	54.4	-0.7	-1.3\%
14.8\%	54.7	54.2	-0.5	-1.0\%	14.8\%	55.1	54.4	-0.7	-1.3\%
16.0\%	54.7	53.9	-0.7	-1.4\%	16.0\%	55.0	54.4	-0.7	-1.2\%
17.3\%	54.5	53.9	-0.6	-1.1\%	17.3\%	55.0	54.4	-0.6	-1.1\%
18.5\%	54.5	53.9	-0.6	-1.1\%	18.5\%	54.9	54.4	-0.5	-1.0\%
${ }_{\text {210\% }}^{19.8 \%}$	54.4 54.2	53.8 53.8	-0.5 -0.4	-	${ }_{\text {21.0\% }}$	54.7 54.6	54.3 54.3	-0.4 -0.4	-0.7\%
22.2\%	53.9	53.7	-0.2	-0.4\%	22.2\%	54.6	54.2	-0.3	-0.6\%
23.5\%	53.9	53.6	-0.2	-0.4\%	23.5\%	54.5	54.1	-0.4	-0.7\%
24.7\%	53.9	53.6	-0.3	-0.5\%	24.7\%	54.4	54.0	-0.4	-0.7\%
25.9\%	53.9	53.5	-0.4	-0.7\%	25.9\%	54.3	53.9	-0.4	-0.7\%
27.2\%	53.8	53.4	-0.5	-0.8\%	27.2\%	54.3	53.8	-0.5	-1.0\%
28.4\%	53.7	53.3	-0.4	-0.7\%	28.4\%	54.3	53.7	-0.6	-1.1\%
29.6\%	53.7	53.2	-0.5	-0.9\%	29.6\%	54.2	53.7	-0.6	-1.0\%
30.9\%	53.5	53.0	-0.5	-0.9\%	30.9\%	54.2	53.7	-0.5	-1.0\%
32.19\%	53.4 53.4 53	52.9 52.9	-0.5 -0.5	-1.0\%	32.10% 33.3%	54.1 54.1	53.5 53.4	-0.5	-1.0\%
33.3\% 34.6%	53.4 53.3	52.9 52.8	-0.5 -0.6	${ }^{-1.1 .1 \%}$	34.6\%	54.1 54.0	53.4 53.2	-0.7 -0.8	-1.5\%
35.8\%	53.3	52.7	-0.7	-1.2\%	35.8\%	53.9	53.2	-0.8	-1.4\%
37.0\%	53.3	52.7	-0.7	-1.2\%	37.0\%	53.8	53.1	-0.7	-1.4\%
38.3\%	53.1	52.5	-0.6	-1.1\%	38.3\%	53.8	53.1	-0.7	-1.4\%
39.5\%	53.1	52.5	-0.6	-1.1\%	39.5\%	53.8	53.0	-0.7	-1.4\%
40.7\%	53.0	52.5	-0.5	-0.9\%	40.7\%	53.6	53.0	-0.6	-1.2\%
42.0\%	52.9	52.5	-0.4	-0.8\%	42.0\%	53.4	53.0	-0.5	-0.9\%
43.2\%	52.8	52.4	-0.3	-0.7\%	43.2\%	53.4	52.8	-0.6	-1.1\%
44.4\%	52.7	52.4	-0.3	-0.6\%	44.4\%	53.4	52.5	-0.8	-1.6\%
45.7\%	52.7	52.4	-0.3	-0.5\%	45.7\%	53.2	52.5 52.5	-0.7	-1.3\%
46.9\%	52.7 52. 5.	52.4 52. 5.2	-0.3	-0.6\%	46.9\%	53.1 530	52.5 52.5 5.5	-0.6	-1.19\%
${ }_{49.4 \%}^{48.19 \%}$	52.6 52.5	$\begin{array}{r}52.2 \\ 52 . \\ \hline\end{array}$	-0.3	-0.0.0\%	${ }_{49.4 \%}$	53.0 52.9	52.5 52.5	-0.5 -0.4	-0.0.8\%
50.6\%	52.4	52.1	-0.3	-0.5\%	50.6\%	52.8	52.4	-0.4	-0.7\%
51.9\%	52.3	52.1	-0.2	-0.5\%	51.9\%	52.8	52.4	-0.4	-0.7\%
53.1\%	52.3	52.0	-0.3	-0.5\%	53.1\%	52.8	52.4	-0.4	-0.7\%
54.3\%	52.3	51.9	-0.4	-0.7\%	54.3\%	52.7	52.4	-0.4	-0.7\%
55.6\%	52.1	51.9	-0.2	-0.5\%	55.6\%	52.7	${ }_{52.3}$	-0.4	-0.7\%
56.8\%	52.1	51.9	-0.3	-0.5\%	56.8\%	52.7	${ }_{52.3}$	-0.4	-0.7\%
58.0\%	52.1	51.9	-0.3	-0.5\%	58.0\%	52.7	52.3	-0.4	-0.7\%
	52.1 52.0	51.8 51.7	-0.2 -0.2	-0.0.4\%	59.3\%	52.6 52.6	52.1 52.0	-0.6 -0.6	${ }_{-1.11 \%}^{-1.19}$
${ }^{60.17 \%}$	52.9	51.7	-0.2	-0.4\%	${ }^{60.17 \%}$	52.6	52.0	-0.6	${ }_{-1.1 \%}$
63.0\%	51.9	51.7	-0.2	-0.5\%	63.0\%	52.6	52.0	-0.6	-1.1\%
64.2\%	51.9	51.7	-0.2	-0.4\%	64.2\%	52.3	51.9	-0.4	-0.8\%
65.4\%	51.9	51.6	-0.2	-0.5\%	65.4\%	52.3	51.9	-0.4	-0.7\%
66.7\%	51.9	51.6	-0.3	-0.5\%	66.7\%	52.3	51.9	-0.4	-0.8\%
67.9\%	51.9	51.6	-0.3	-0.5\%	67.9\%	52.2	51.9	-0.3	-0.6\%
69.1\%	${ }_{51.8}$	51.6	-0.3	-0.5\%	69.1\%	52.1	${ }_{51.8}$	-0.3	-0.6\%
70.4\% ${ }^{71.6 \%}$	51.8 51.8	51.5 51.5	-0.3 -0.3	-0.0.7\%	-70.4\%	52.1 52.1	51.8 51.7	-0.3 -0.3	--0.6\%
72.8\%	51.7	51.5	-0.2	-0.4\%	72.8\%	52.0	51.7	-0.4	-0.7\%
74.1\%	51.7	51.5	-0.2	-0.4\%	74.1\%	52.0	51.6	-0.4	-0.7\%
75.3\%	51.7	51.5	-0.2	-0.4\%	75.3\%	52.0	${ }_{51.6}$	-0.4	-0.7\%
76.5\%	51.7	51.5	-0.2	-0.4\%	76.5\%	51.9	51.6	-0.4	-0.7\%
77.8\%	${ }_{51.6}^{51.6}$	51.4	-0.2	-0.3\%	77.8\%	51.9	${ }_{51.6}^{51.6}$	-0.3	-0.7\%
79.0\%	${ }_{51.6}^{51.6}$	51.4 513	-0.2	-0.3\%	79.0\%	51.9	51.5 51.5	-0.4	-0.8\%
80.2\%	51.6	51.3	-0.3	-0.5\%	80.2\%	51.9	51.5	-0.4	-0.8\%
81.5\%	${ }_{51.5}^{51.5}$	${ }_{51.3}^{51.2}$	-0.3	-0.5\%	${ }^{81.5 \%}$	${ }_{517}$	${ }_{51.5}^{51.5}$	-0.3	-0.5\%
${ }^{82.70 \%}$	${ }_{51.5}^{51.5}$	51.2 51.1	-0.3	-0.6\%	84.0\%	${ }_{51.6}^{51.7}$	51.4	-0.2	-0.5\%
85.2\%	51.4	51.1	-0.3	-0.7\%	85.2\%	51.6	51.4	-0.2	-0.4\%
86.4\%	51.4	51.0	-0.3	-0.6\%	${ }^{86.4 \%}$	51.5 515	51.3	-0.2	-0.4\%
87.7\%	51.2	51.0	-0.2	-0.4\%	87.7\%	51.5	${ }_{51.3}$	-0.2	-0.4\%
88.9\%	51.2 51.1 51.1	51.0 510	-0.2	-0.5\%	${ }_{\text {c }} 88.90 \%$	51.4 51.4 1.4	$\begin{array}{r}51.2 \\ 51.2 \\ \hline 1.2\end{array}$	-0.2	-0.4\%
${ }_{\text {91.4\% }}^{90.19}$	51.1 51.1	51.0 50.9	-0.1 -0.2	-0.3\%	${ }^{90.19 \%}$	51.4 51.4	51.2 51.2	-0.2 -0.3	-0.4\%
92.6\%	51.0	50.8	-0.2	-0.4\%	92.6\%	51.4	51.0	-0.4	-0.8\%
93.8\%	51.0	50.8	-0.1	-0.3\%	93.8\%	51.3	51.0	-0.4	-0.7\%
95.19\%	50.9	50.7	-0.2	-0.5\%	95.17\%	51.1	50.8	-0.3	-0.6\%
${ }_{9}^{96.3 \%} 9$	${ }_{50.8}$	50.6	-0.2	-0.3\%	${ }_{97.5 \%}^{96.5 \%}$	${ }_{51.0}$	50.7	-0.3	-0.5\%
${ }^{99.5 \% \%}$	50.8 50.4	50.6 50.3	-0.2 -0.1	-0.4\%		50.7 50.4	50.4	-0.4	-0.8\%
100.0\%	50.0	49.7	-0.3	-0.5\%	100.0\%	50.3	${ }_{49.9}$	-0.5	-0.9\%

Figure 5 Sact-1b
Sacramento
River at Balls Ferry, Monthly Temperature

Table SQ4-1b
verat alls Sery, Mon
Sacramento Rivera a balls Ferry, Monthy Temperature

Percent Exceedance Probability (\%)	October			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	DCR 2015 Writhout Proiect	DCR 2015 W With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGFF) } \end{aligned}$	
	Monthy Temperature	Monthy Temperature		
0.0\%	62.5	62.6		0.2\%
1.2\%	61.5	61.8	0.4	0.6\%
2.5\%	60.8	61.5	0.6	1.1\%
3.7\%	60.8	60.8	0.1	0.1\%
4.9\%	59.6	57.4	-2.2	-3.6\%
6.2\%	57.7	57.3	-0.3	-0.6\%
7.4\%	57.6	57.3	-0.3	-0.5\%
8.6\%	57.4	57.1	-0.3	-0.5\%
9.9\%	56.9	57.0	0.0	0.1\%
11.11\%	55.8	55.9	0.0	0.1\%
12.3\%	55.6	56.7	0.1	0.2\%
13.6\%	56.4	56.7	0.3	0.5\%
14.8\%	56.4	56.5	0.2	0.3\%
- 16.00%	56.3 56.3	56.5 56.5	0.2 0.2	0.4\%\%
18.5\%	56.3	56.4	0.1	0.2\%
19.8\%	56.2	56.3	0.1	0.2\%
21.0\%	56.2	56.3	0.1	0.2\%
22.2\%	55.0	56.2	0.2	0.3\%
23.5\%	55.0	55.1	0.1	0.2\%
24.7\%	55.0	55.0	0.0	0.0\%
25.9\%	55.9	55.0	0.1	0.2\%
27.2\%	55.8	55.9	0.2	0.3\%
28.4\%	55.8	55.8	0.1	0.2\%
29.6\%	55.6	55.8	0.2	0.4\%
30.9\%	55.6	55.8	0.2	0.4\%
32.1\%	55.6	55.8	0.2	0.4\%
33.3\%	55.5 555 5.5	55.8 557	0.2	0.4\%
34.6\%	55.5	55.7	0.2	0.3\%
35.8\%	55.5	55.7	0.2	0.3\%
37.0\%	55.4	55.6	0.2	0.4\%
38.3\%	55.4	55.6	0.2	0.4\%
39.5\%	55.3	55.6	0.2	0.4\%
40.7\%	55.3	55.6	0.2	0.4\%
42.0\%	${ }_{55.3}$	55.4	0.1	0.1\%
43.2\%	${ }_{55.3}$	${ }_{55.3}$	0.1	0.1\%
44.4\%	55.3 552 5.	$\begin{array}{r}55.3 \\ 553 \\ \hline\end{array}$	0.1	0.1\%
45.7\%	$\begin{array}{r}55.2 \\ 55 \\ 5 \\ \hline 5.2\end{array}$	55.3	0.0	0.1\%
46.9\%	55.2	55.2	0.0	0.1\%
48.19\%	55.2 55 5.	55.2 55 5.2	0.0	${ }^{0.0 \%}$
49.4\%	55.2	55.2	0.0	${ }^{0.10 \%}$
50.6\%	55.1	55.1	0.0	0.0\%
51.9\%	55.1	55.0	0.0	-0.1\%
53.1\%	55.0	55.0	0.0	-0.1\%
54.3\%	55.0	54.9	-0.1	-0.1\%
55.6\%	55.0 550	54.9 54.9	0.0	${ }^{-0.19 \%}$
56.8\%	55.0 54.0	54.9 54.9		0.0\%
58.0\%	54.9	54.9	0.0	${ }^{-0.1 \%}$
- ${ }^{59.3 \%}$	54.9 54.9	54.9 549	0.0	-0.0\%
61.7\%	54.9	54.8	-0.1	-0.1\%
63.0\%	54.9	54.8	-0.1	-0.1\%
64.2\%	54.9	54.8	-0.1	-0.2\%
65.4\%	54.8	54.8	-0.1	-0.1\%
66.7\%	54.8	54.7	-0.1	-0.3\%
67.9\%	54.7	54.7	-0.1	-0.2\%
69.19\%	54.7 54.6	54.6 54.6	${ }_{0.0}^{0.0}$	-0.0\%
70.4\%	54.6 54.6	54.6 54.6	0.0	${ }_{\text {con }}^{0.0 \% \%}$
72.8\%	54.6	54.6	0.0	0.0\%
74.1\%	54.6	54.6	0.0	0.0\%
75.3\%	54.5	54.6	0.1	0.1\%
76.5\%	54.5	54.5	0.1	0.1\%
77.8\%	54.4	54.5	0.1	0.2\%
79.0\%	54.4	54.5	0.1	0.2\%
80.2\%	54.4	54.5	0.1	0.2\%
81.5\%	54.3	54.4	0.1	0.2\%
82.7\%	54.3 54.3	$\begin{array}{r}54.4 \\ 54.4 \\ \hline\end{array}$	${ }^{0.1}$	0.2\%
84.0\%	54.3	54.4	0.1	0.1\%
${ }^{85.20 \%}$	54.3	54.4	0.1	0.2\%
86.4\%	54.3 54.	54.2 539	-0.1 -0.3	-0.0.0\%
88.9\%	54.2	53.8	-0.3	-0.6\%
90.1\%	54.1	53.8	-0.3	-0.5\%
91.4\%	54.1	53.7	-0.4	-0.7\%
92.6\%	54.0	53.5	-0.5	-0.9\%
93.8\%	53.8	53.5	-0.3	-0.6\%
95.1\%	${ }_{53,8}^{53.8}$	53.0 528	-0.7	${ }^{-1.3 \%}$
-96.3\% ${ }_{\text {97.5\% }}$	${ }_{53.5}^{53.7}$	52.8 52.8	-0.9 -0.8	${ }_{\text {-1.4\% }}^{-1.4 \%}$
98.8\%	53.5	52.7	-0.8	${ }^{1.5 \%}$
100.0\%	53.5	52.7	0.0	-1.5\%

$\begin{array}{\|c} \hline \text { Percent } \\ \text { Exceednce } \\ \text { Probability } \\ (\%) \\ \hline \end{array}$	November			-	December				
	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project			Percent Exceedance	DCR 2115 Without	DCR 2015 With Project	Absolute	Relative
	$\underset{\substack{\text { Monthly Temperature } \\ \text { (DEGF) }}}{\substack{\text { St }}}$	Monthly Temperature (DEGF)		Difference (\%)	Probability $(\%)$		Monthly Temperature (DEGF) . .	(DEGF)	Difference (\%)
0.0\%	56.5	56.8	0.4	0.6\%	0.0\%	53.9	54.1	0.2	0.4\%
1.2\%	56.3	56.3	0.0	0.0\%	1.2\%	52.7	52.5	-0.2	-0.5\%
2.5\%	56.3	56.0	-0.2	-0.4\%	2.5\%	52.4	52.1	-0.3	-0.6\%
3.7\%	56.0	56.0	0.0	0.0\%	3.7\%	52.3	52.0	-0.3	-0.6\%
4.9\%	56.0 560	55.9 559 55	0.0	${ }^{0.00 \%}$	4.9\%	51.8 51.8 1.8	51.7 51.6	-0.1 -0.2	-0.19\%
${ }^{6.2 \%}$	56.0 558 58	55.9 559	${ }_{0}^{0.0}$	${ }^{0.0 \% \%}$	7.2\%\%	51.8 516	51.6 51.6	-0.2 0.0 0.0	-0.0.0\%
8.6\%	55.7	55.9 55.8	${ }_{0.1}^{0.1}$	${ }_{0}^{0.2 \%}$	8.6\%	51.6	51.5	-0.1	-0.2\%
9.9\%	55.7	55.8	0.1	0.2\%	9.9\%	51.4	51.4	0.0	0.1\%
11.1\%	55.6	55.7	0.1	0.2\%	11.1\%	51.4	51.3	0.0	-0.1\%
12.3\%	55.6	55.6	0.0	0.1\%	12.3\%	51.1	51.3	0.2	0.4\%
13.6\%	55.5	55.5	0.0	0.1\%	13.6\%	51.1	51.3	0.2	0.3\%
14.8\%	55.3	55.5	0.1	0.2\%	14.8\%	51.1	51.0	0.0	-0.1\%
16.0\%	55.3	55.4	0.2	0.3\%	16.0\%	51.0	51.0	0.0	0.0\%
17.3\%	55.3	55.3	0.1	0.1\%	17.3\%	51.0	51.0	0.0	0.0\%
18.5\%	55.3	55.2	-0.1	-0.1\%	18.5\%	51.0	50.9	-0.1	-0.1\%
19.9\%	55.2 551 55	55.2 552 55	0.0	${ }^{0.0 \% \%}$	19.9\%	51.0 508 50.5	50.9 509	-0.1	${ }^{-0.29 \%}$
${ }^{22.0 \%}$	55.1 55.0	55.1 55.1	0.1	0.2\%	${ }_{22.2 \%}$	50.8 50.5	50.6	${ }_{0}^{0.1}$	0.2\%
22.5\%	55.0	55.1	0.0	0.1\%	22.5\%	50.5	50.6	0.1	0.2\%
24.7\%	55.0	55.0	0.0	0.1\%	24.7\%	50.5	50.6	0.1	0.2\%
25.9\%	54.9	55.0	0.1	0.2\%	25.9\%	50.5	50.6	0.1	0.2\%
27.2\%	54.8	54.9	0.1	0.2\%	27.2\%	50.4	50.6	0.1	0.3\%
28.4\%	54.8	54.9	0.1	0.2\%	28.4\%	50.4	50.4	0.0	0.1\%
29.6\%	54.8	54.9	0.1	0.2\%	29.6\%	50.3	50.4	0.1	0.1\%
30.9\%	54.8	54.9	0.1	0.2\%	30.9\%	50.2	50.3	0.2	0.3\%
32.1\%	54.7 54.7	54.9 548	0.2	0.3\%	32.10% 33.3%	50.1 50.0	$\begin{array}{r}50.2 \\ 50.2 \\ \hline\end{array}$	0.1 0.1	0.2\%
34.6\%	54.7	54.8	0.2	0.3\%	34.6\%	50.0	50.1	0.1	0.3\%
35.\%\%	54.7	54.8	0.2	0.3\%	35.\%	50.0	50.1	0.1	0.1\%
37.0\%	54.6	54.8	0.2	0.3\%	37.0\%	50.0	49.9	0.0	0.0\%
38.3\%	54.6	54.8	0.2	0.4\%	38.3\%	49.9	49.9	0.1	0.1\%
39.5\%	54.6	54.8	0.2	0.4\%	39.5\%	49.8	49.9	0.1	0.1\%
40.7\%	54.5	54.6	0.1	0.1\%	40.7\%	49.8	49.9	0.1	0.2\%
42.0\%	54.5	54.5	0.1	0.1\%	42.0\%	49.8	49.9	0.1	0.2\%
43.2\%	54.4	54.5	0.1	0.2\%	43.2\%	49.8	49.9	0.1	0.2\%
44.4\%	54.3	54.5	0.2	0.4\%	44.4\%	49.7	49.9	0.1	0.3\%
${ }^{45.7 \%}$	54.3	54.3	0.0	0.0\%	45.7\%	49.7	49.8	0.1	0.2\%
46.9\%	54.2 54.2	54.3	0.1	0.1\%	46.9\%	49.6	49.7	0.1	0.2\%
48.19\%	54.2 54.1	$\begin{array}{r}54.2 \\ 54 . \\ \hline\end{array}$	0.1	0.1\%	48.19\%	49.6	49.7	0.1	0.2\%
年.4\%\%	54.1 54.0	54.1 538	0.0	0.0\%	49.4\%	49.5	49.7	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
50.6\%	54.0	53.8	-0.2	-0.4\%	50.6\%	49.5	49.6	0.1	0.2\%
51.9\%	53.9	53.8	-0.2	-0.3\%	51.9\%	49.4	49.6	0.2	0.4\%
53.1\%	53.9	53.8	-0.2	-0.3\%	53.1\%	49.4	49.6	0.2	0.5\%
54.3\%	53.9	53.7	-0.2	-0.4\%	54.3\%	49.3	49.5	0.2	0.4\%
55.6\%	53.9	53.6	-0.3	-0.5\%	55.6\%	49.3	49.5	0.2	0.4\%
56.8\%	53.8	53.6	-0.3	-0.5\%	56.8\%	49.2	49.5	0.2	0.5\%
58.0\%	53.7	53.6	-0.2	-0.4\%	58.0\%	49.2	49.5	0.3	0.5\%
59.3\%	53.7	${ }_{53.5}$	-0.3	-0.5\%	59.3\%	49.2	49.4	0.2	0.4\%\%
60.5\%	${ }_{53.6}^{59}$	53.4	-0.2	-0.3\%	${ }^{60.50 \%}$	49.2	49.2		
${ }^{61.79 \%}$	53.6 535 5.5	$\begin{array}{r}53.4 \\ 534 \\ \hline\end{array}$	-0.1	-0.2\%	61.7\%	49.1	49.2	0.1	0.2\%
63.0\%	${ }_{53.5}^{53.5}$	${ }_{53.4}^{53.4}$	0.0	-0.1\%	63.0\%	49.1	49.2	0.1	0.3\%
${ }^{64.2 \%}$	${ }_{53.4}^{53.4}$	${ }_{53.4}^{53.4}$	-0.1	-0.1\%	64.2\%	49.1	49.2	0.1	0.2\%
65.4\%	53.4	53.3	-0.1	-0.3\%	65.4\%	49.1	49.2	0.1	0.2\%
66.7\%	53.3	53.3	-0.1	-0.1\%	66.7\%	49.0	49.2	0.2	0.4\%
67.9\%	53.3	53.2	-0.1	-0.2\%	67.9\%	48.8	49.1	0.3	0.6\%
69.1\%	53.3	53.2	-0.1	-0.1\%	69.1\%	48.8	49.1	0.3	0.7\%
70.4\%	53.3	53.2	-0.1	-0.1\%	70.4\%	48.8	49.1	0.3	0.6\%
${ }_{7}^{71.6 \%}$	53.3 532 53	${ }_{531}^{53.1}$	-0.1	-0.2\%	71.6\%	48.7	49.0 489	0.4	0.7\%
72.8\%	53.2 53.1	53.1 53.0	-0.1 -0.1	-0.0.0.	72.8\%	${ }_{48.7}^{48.7}$	48.9 48.9	0.2 0.2	0.5\% 0
75.3\%	53.0	53.0	0.0	0.0\%	75.3\%	48.5	48.8	0.3	0.6\%
76.5\%	53.0	53.0	0.0	0.0\%	76.5\%	48.5	48.6	0.1	0.1\%
77.8\%	52.9	52.9	0.0	0.0\%	77.8\%	48.3	48.6	0.2	0.5\%
79.0\%	52.9	52.9	0.0	0.0\%	79.0\%	48.3	48.5	0.2	0.4\%
80.2\%	52.8	52.8	0.0	0.0\%	80.2\%	48.3	48.5	0.2	0.4\%
81.5\%	52.8	52.8	0.0	0.0\%	81.5\%	48.3	48.5	0.2	0.4\%
82.7\%	52.8	52.7	0.0	-0.1\%	82.7\%	48.2	48.3	0.1	0.2\%
84.0\%	52.6	52.7	0.1	0.1\%	84.0\%	48.2	48.3	0.1	0.2\%
85.2\%	52.6	52.7	0.0	0.1\%	85.2\%	48.1	48.3	0.2	0.4\%
${ }^{86.44 \%}$	52.6 52.6	52.5 524	-0.2	-0.3\%	${ }^{86.44 \%}$	48.0	48.2	0.2	${ }^{0.3 \%}$
${ }^{87} 780$	52.6 52.6 5.	52.4 524 524	-0.2	-0.4\%	87.79\%	47.9	48.1 481	0.2	0.3\%
${ }^{88.90 .1 \%}$	52.6 52.3	52.4 52.4	-0.2 0.1	-0.4\%	${ }^{88.9 \%}$	47.8 47.8	48.1 48.0	0.2 0.2	0.4.4\%
91.4\%	52.1	52.3	0.3	0.5\%	91.4\%	47.8	48.0	0.2	0.4\%
92.6\%	52.0	52.3	0.3	0.5\%	92.6\%	47.7	47.9	0.2	0.4\%
93.8\%	52.0	52.2	0.2	0.3\%	93.8\%	47.7	47.8	0.1	0.1\%
95.1\%	52.0	52.2	0.2	0.3\%	95.1\%	47.6	47.8	0.1	0.3\%
${ }^{96.3 \%}$	51.8	52.0	0.2	0.5\%	96.3\%	47.6	47.7	0.1	0.3\%
97.5\%	51.7	51.3	-0.4	-0.8\%	97.5\%	47.4	47.7	0.2	0.5\%
98.8\% 1000%	51.1 51.1	51.1 51.1	0.0	${ }_{-0.1 \%}^{-0.1 \%}$	988.8\% 100.0\%	${ }_{46.8}^{46.8}$	${ }_{47.6}^{47.6}$	${ }_{0.8}^{0.8}$	1.7\%

$(\%)$	January			
	$\underset{\substack{\text { DCR } 2015 \text { Writhout } \\ \text { Proet }}}{ }$	DCR 2015 W With Project		Relative
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	Difference (DEGF)	Difference (\%)
0.0\%	51.2	51.2	0.0	${ }^{0.19}$
1.2\%	49.5	49.7	0.2	,
2.5\%	49.1	49.4	0.3	0.5\%
3.7\%	49.0	49.1	0.1	0.2\%
4.9\%	48.9	49.1	0.1	0.3\%
6.2\%	48.8	49.0	0.2	0.4\%
7.4\%	48.8	48.9	0.1	0.2\%
8.6\%	48.7	48.6	-0.1	-0.2\%
9.9\%	48.5	48.6	0.0	0.1\%
11.1.\%	48.5	48.6	0.1	0.1\%
12.3\%	48.5 48.5	48.5 48.4	${ }^{0.0}$	${ }_{\text {-0.1\% }}^{0.1 \%}$
14.8\%	48.4	48.2	-0.2	-0.5\%
16.0\%	48.4	48.1	-0.3	-0.6\%
17.3\%	48.1	48.0	-0.1	-0.3\%
18.5\%	47.9	48.0	0.1	0.2\%
19.8\%	47.9	47.9	0.1	0.1\%
21.0\%	47.7	47.9	0.2	0.3\%
22.2\%	47.6	47.7	0.1	0.3\%
224.7\%	47.5 47.5	47.7 47.6	0.2 0.2	0.3\% 0
25.9\%	47.4	47.5	0.1	0.3\%
${ }^{27.2 \% \%}$	${ }_{47.3}^{47.3}$	47.5 47.4	${ }^{0.2}$	0.4\%
29.6\%	47.3	47.4	0.1	0.2\%
30.9\%	47.3	47.3	0.1	0.1\%
32.1\%	47.2	47.3	0.1	0.3\%
33.3\%	47.1	47.2	0.1	0.2\%
334.8\%	${ }_{47.1}^{47.1}$	47.2 472	${ }_{0}^{0.1}$	0.2\%
${ }^{357.0 \%}$	${ }_{47.1}$	47.1	0.1	0.2\%
38.3\%	47.0	47.1	0.1	0.2\%
39.5\%	47.0	47.1	0.0	0.1\%
${ }_{4}^{42.70 \%}$	47.0 47.0	47.0 47.0	0.0 0.0	${ }^{0.1 \%}$
43.2\%	46.9	47.0	0.1	0.2\%
44.4\%	46.9	47.0	0.1	0.2\%
${ }^{45.7 \%}$	46.9	46.9	0.1	0.1\%
46.9\%	46.9	46.9	0.0	0.1\%
48.1\%	46.8	46.8	0.0	0.0\%
4.4.4\%	46.8 46.8	46.8	0.0	0.0\%
551.9\%	${ }_{46.8}^{46.8}$	${ }_{46.8}^{46.8}$	0.0	0.0\%
53.1\%	46.7	46.8	0.0	0.1\%
54.3\%	46.7	46.8	0.1	0.2\%
55.6\%	46.6	46.7	0.2	0.3\%
${ }_{\text {5 5 }}^{5}$	46.6	46.6	0.1	${ }^{0.2 \%}$
55.0\%\%	46.5 46.5	46.6	${ }_{0}^{0.1}$	-0.2\%
60.5\%	46.5	${ }_{46.5}$	0.0	0.0\%
61.7\%	46.4	46.5	0.0	0.1\%
63.0\%	46.4	46.4	0.0	0.0\%
64.2\%	46.4	46.4	0.0	0.0\%
${ }^{65.4 \%}$	46.4	46.4	0.0	0.0\%
66.7\% 67.9%	46.3 46.2	46.4 46.4	${ }_{0.1}^{0.1}$	${ }_{\text {c }}^{0.10 \%}$
69.1\%	46.2	46.3	0.1	0.3\%
70.4\%	46.2	46.3	0.1	0.2\%
${ }^{71.6 \%}$	46.2	46.2	0.1	${ }^{0.11 \%}$
72.8\%	46.2	46.2	0.0	0.0\%
74.1\%	46.1	46.2	0.0	0.1\%
${ }_{7}^{75.3 \%}$	46.1 46.1	46.2 46.1	0.1	${ }_{\text {en }}^{0.2 \%}$
77.8\%	46.0	46.1	0.0	0.1\%
79.0\%	46.0	46.0	0.1	0.2\%
80.2\%	45.9	46.0	0.0	0.1\%
882.7\%	${ }_{45.9}^{45.9}$	45.9 45.9	0.0 0.0	${ }_{\text {a }}^{0.0 \% \%}$
84.0\%	45.8	45.9	0.1	0.2\%
85.2\%	45.7	45.7	0.0	0.0\%
86.4\%	45.7	45.7	0.0	0.0\%
87.7\%	45.6	45.6	0.0	0.1\%
88.9\%	45.4	45.5	0.0	0.1\%
90.1\%	45.3	45.3	0.0	0.0\%
91.4\%	45.3	45.3	0.0	0.0\%
99.8\%	${ }_{45.1}$	${ }_{45.1}$	0.0	0.0\%
95.1\%	45.1	45.1	0.0	0.0\%
99.3\%	45.0 44.9	${ }_{45.1}^{45.1}$	0.1 0.2	${ }_{\text {cose }}^{0.3 \%}$
98.8\%	44.3	45.0	0.6	1.4\%
100.0\%	44.3	45.0	0.6	1.4\%

Table SQ4-1b
vera t alls
erry, Mon
Sacramento Rivera a Balls Ferry, Monthy Temperature

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$(\%)	February			
	$\underset{\substack{\text { DCR } 2010 e t t}}{2015 \text { Without }}$	DCR 2015 With Project		Relative
	Monthy Temperature	Monthy Temperature	Difference (DEGF)	Difference (\%)
0.0\%	50.9	50.9	0.0	0.0\%
1.2\%	50.1	50.3	0.2	
2.5\%	49.2	49.1	0.0	
3.7\%	48.7	48.8	0.1	0.1\%
4.9\%	48.7	48.7	0.0	0.0\%
6.2\%	48.5	48.7	0.2	0.5\%
7.4\%	48.2	48.2	0.0	0.0\%
8.6\%	48.0	48.2	0.2	0.3\%
${ }^{\text {9.9.1. }}$	48.0	48.1	0.2	0.3\%
${ }_{12.3 \%}^{11.10 \%}$	${ }_{47.9}$	${ }_{47.9}^{48.0}$	0.0	${ }^{0.00 \%}$
13.6\%	47.9	47.9	0.0	0.0\%
14.8\%	47.9	47.9	0.0	0.1\%
16.0\%	47.9	47.9	0.0	0.1\%
17.3\%	47.7	47.9	0.2	0.4\%
18.5\%	47.6	47.9	0.2	0.5\%
${ }^{19.10 \% \%}$	47.6	47.7	0.1	${ }^{0.2 \%}$
22.2\%	47.6	47.6	0.1	0.1\%
23.5\%	47.6	47.6	0.1	0.1\%
24.7\%	47.6	47.6	0.1	0.1\%
25.9\%	47.6	47.6	0.1	0.1\%
27.2\%	47.5	47.6	0.1	0.2\%
${ }^{28.49 \%}$	${ }_{47.5}^{47.5}$	47.5 47.5	0.0 0.0	-
30.9\%	47.4	47.5	0.1	0.1\%
32.1\%	47.4	47.4	0.1	0.1\%
33.3\%	47.4	47.4	0.1	0.1\%
34.6\%	47.2	47.3	0.1	0.2\%
35.8% 37.0%	47.1	47.3	0.2	0.4\%
37.0% 38.3%	${ }_{47.1}^{47.1}$	47.2 47.1	0.1 0.0	
39.5\%	47.0	47.1	0.1	0.2\%
40.7\%	46.9	47.1	0.1	0.3\%
42.0\%	46.9 46.9	47.0 47.0	${ }_{0}^{0.1}$	${ }_{0}^{0.1 \%}$
44.4\%	46.9	46.9	0.0	0.0\%
45.7\%	46.8	46.8	0.0	0.0\%
46.9\%	46.8	46.8	0.0	0.1\%
48.1\%	46.8	46.8	0.0	0.0\%
49.4\%	46.7	46.8	0.0	0.1\%
50.6\%	46.7	46.7	0.0	0.0\%
51.9\% 53.1%	${ }_{46.7}^{46.7}$	${ }_{46.7}^{46.7}$	0.0 0.0	-0.0\%
54.3\%	46.6	46.6	0.0	0.0\%
55.6\%	46.5	46.5	0.0	0.0\%
56.8\% 58.0%	46.5 46.4	46.4 46.4	0.0 0.0	-
59.3\%	46.3	46.3	0.0	0.1\%
60.5\%	46.2	46.2	0.0	0.0\%
61.7\%	46.2	46.2	0.0	0.0\%
63.0\%	46.1	46.2	0.1	0.1\%
64.2\%	46.0	46.0	0.0	0.0\%
66.7%	45.9	45.8	0.0	${ }^{-0.1 \%}$
67.9\%	45.9	45.8	-0.1	-0.2\%
69.1\%	45.8	45.8	-0.1	-0.2\%
70.4\%	45.8 457	45.8 457	0.0	-0.0\%
72.8\%	45.7	45.7	0.0	0.0\%
74.1\%	45.7	45.7	0.0	0.1\%
75.3\%	45.6	45.6	0.0	-0.1\%
76.5\%	45.5	45.6	0.1	0.2\%
77.8\%	45.4	45.5	0.1	0.3\%
79.0\%	45.4 45.3	45.5	0.1	0.3\%
80.15\%	${ }_{45.3}$	${ }_{45.4}$	0.1	0.2\%
82.7\%	45.2	45.3	0.1	0.2\%
84.0% 85.200	45.2 45.2	45.3 45.2	0.0	${ }_{0}^{0.10 \%}$
86.4\%	45.2	45.2	0.0	0.1\%
87.7\%	45.2	45.2	0.0	0.0\%
88.9\%	45.1	45.2	0.1	0.2\%
90.1\% ${ }_{\text {91.4\% }}$	45.0	45.1	0.1	0.1\%
${ }^{91.4 \%} 9$	45.0 44.9	45.0 45.0	${ }_{0}^{0.0}$	${ }_{\text {e }}^{0.3 \%}$
93.8\%	44.8	44.9	0.1	0.2\%
95.1\%	44.8	44.9	0.0	0.1\%
96.3\%	${ }_{44.3}^{44.4}$	44.8 44.8	0.4 0.5	${ }_{\text {1.1\% }}^{0.9 \%}$
98.8\%	44.1	44.2	0.0	0.1\%
100.0\%	44.1	44.2	0.0	0.1\%

May				
$\begin{gathered} \text { Percerent } \\ \text { Exceedance } \end{gathered}$	$\underset{\substack{\text { DCR } 2015 \text { Writhout } \\ \text { Proet }}}{ }$	DCR 2015 With Project		Relative
Probability	Monthly Temperature (DEGF)	Monthly Temperature (DEGFF)	Difference (DEGF)	Difference (\%)
0.0\%	57.2	57.1	0.0	0.0\%
1.2\%	55.9	56.0	0.1	0
2.5\%	55.3	55.8	0.6	1.0\%
3.7\%	55.1	55.7	0.6	1.1\%
4.9\%	54.9	55.2	${ }^{0.3}$	0.5\%
6.2\%	54.7	55.0	0.3	0.6\%
7.4\%	54.4	54.8	0.4	0.7\%
8.6\%	54.1	54.8	0.6	1.1\%
9.9\%	53.9	54.7	0.8	1.5\%
11.1.\%	53.8	54.6	0.8	1.5\%
12.3\%	53.7 53.6	54.3 54.1	${ }_{0}^{0.6}$	- 1.2%
14.8\%	53.6	53.9	0.3	0.5\%
16.0\%	53.3	53.8	0.5	0.9\%
17.3\%	53.2	53.6	0.4	0.8\%
18.5\%	53.1	53.5	0.4	0.8\%
19.8\%	53.1	53.5	0.4	0.8\%
21.0\%	53.0	53.4	0.4	0.7\%
22.2\%	52.9	53.3	0.4	0.7\%
23.5\%	52.8 52.7	53.2 53.1	0.4 0.4	0.7\%\%
25.9\%	52.7	53.1	0.4	0.7\%
27.2\%	${ }_{52.7}^{52.7}$	${ }_{53.0}^{53.0}$	0.3	0.6\%
	52.6	52.9	0.3	0.6\%
29.6\%	52.6 526 52.6	${ }_{52}^{52.8}$	0.2	0.5\%
30.9\%	${ }_{52.6}^{52.6}$	52.8 528	${ }^{0.3}$	0.5\%
32.1\%	52.6	52.8	0.2	0.4\%
33.3\%	52.5	52.8	0.2	0.4\%
34.6\%	52.5	52.7	0.3	0.5\%
35.8\%	52.5	52.7	0.2	0.5\%
37.0\%	${ }_{52.3}$	52.6	0.3	0.6\%
- ${ }_{\text {38.3\% }}$	52.3 52.2	52.6 52.5	0.3 0.3	0.5\%\%
40.7\%	52.1	52.4	0.3	0.5\%
42.0\%	52.1	${ }_{52.3}^{52.3}$	0.2	0.5\%
${ }^{4.22 \%}$	52.1	52.2	0.2	0.3\%
44.4\%\%	52.1 520	52.22	0.1	0.2\%
46.9\%	52.0 52.0	52.2 52.1	0.1 0.1	- 0.2%
48.1\%	52.0	52.1	0.1	0.2\%
49.4\%	51.9	52.0	0.2	0.3\%
50.6\%	51.9	52.0	0.2	0.3\%
51.9\%	51.9	52.0	0.1	0.3\%
53.1\%	51.8	52.0	0.2	0.3\%
54.3\%	51.8	51.9	0.1	0.1\%
	51.8 51.6	51.9 51.9	0.1 0.2	${ }_{\text {c }}^{0.2 \% \%}$
58.0\%	51.6	51.8	${ }_{0} 0.2$	0.5\%
59.3\%	51.5	51.8	0.3	0.6\%
60.5\%	${ }_{51.5}$	51.8	0.3	0.5\%
61.7\%	51.4	51.7	0.3	0.6\%
63.0\%	51.4	51.7	0.2	0.5\%
${ }^{64.2 \%}$	51.4	${ }_{51.6}$	0.2	0.5\%
${ }_{66.7 \%}^{654 \%}$	51.4	51.6	${ }_{0}^{0.1}$	0.3\%
67.9\%	51.4	51.4	0.1	0.1\%
69.1\%	51.4	51.4	0.1	0.1\%
70.4\%	${ }_{51.3}$	51.3	0.0	0.0\%
71.6\%	${ }_{51.3}^{51.3}$	51.3 513	0.0	0.0\%
72.8\%	51.2 51.2	51.3 51.2	${ }_{0}^{0.1}$	${ }_{\text {en }}^{0.2 \%}$
75.3\%	51.2	51.2	0.0	0.1\%
76.5\%	51.1	51.2	0.1	0.1\%
77.8\%	51.1	51.1	0.1	0.2\%
79.0\%	51.0	${ }_{51.1}^{51.1}$	0.2	0.3\%
-	50.9 50.8	50.9 50.9	${ }_{0}^{0.1}$	${ }_{0}^{0.1 \%}$
82.7\%	50.8	50.9	0.1	0.1\%
84.0\%	50.8	50.8	0.0	0.1\%
85.2\%	50.8	50.8	0.0	0.0\%
86.4\%	50.7	50.7	0.0	0.0\%\%
87.7\%	50.7	50.5	-0.1	-0.3\%
88.9\%	50.4	50.4	0.0	0.0\%
90.1\%	50.3	50.3	0.0	0.0\%
914.4\%	${ }_{50.3}^{503}$	50.3	0.0	0.0\%
93.8\%	50.2	${ }_{50.3}$	${ }_{0}^{0.1}$	0.1\%
95.1\%	50.1	50.3	0.2	0.4\%
${ }^{96.3 \%}$	50.0	50.1	0.1	${ }^{0.2 \%}$
998.8\%	40.9	50.8 49.8	${ }_{0}^{0.0}$	-0.1\%
100.0\%	49.9	49.8	0.0	-0.1\%

Table SQ4-1b
vera t alls
erry, Mon
Sacramento River at Balls Ferry, Monthy Temperature

- June				
PercentExcedanceProbability		DCR 2015 With Project Monthly Temperature (DEGF)	$\begin{gathered} \text { Absolute } \\ \text { difference } \\ \text { (DEGFF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
0.0\%	57.0		-0.5	-0.8\%
${ }^{1.25 \%}$	57.0 56.8	${ }_{56.1}^{56.2}$	-0.7 -0.7	${ }_{-1.3 \%}^{-1.2 \%}$
3.7\%	55.5	56.1	0.6	1.1\%
4.9\%	55.4	55.6	0.2	0.4\%
6.2\%	54.9	55.3	0.4	0.7\%
7.4\%	54.8	55.2	0.4	0.7\%
8.6\%	54.8	54.8	0.0	0.0\%
9.9\%	54.6	54.8	0.2	0.4\%
11.12\%	54.5	54.6	0.1	0.1\%
12.3\%	54.3	54.5	0.3	0.5\%
13.6\%	54.2	53.8	-0.4	-0.7\%
14.8\%	53.8	53.7	0.0	0.0\%
16.0\%	53.7	53.7	0.0	0.0\%
17.3\%	53.5	53.7	0.2	0.3\%
18.5\%	53.2	53.7	0.4	0.8\%
19.8\%	53.2	53.6	0.4	0.8\%
21.0\%	53.2	$\begin{array}{r}53.6 \\ 53 \\ \hline\end{array}$	0.4	0.7\%
${ }_{2}^{22.20 \%}$	${ }_{53,1}^{53.2}$	53.6 53,5	0.4 0.4	${ }_{\text {coin }}^{0.8 \%}$
${ }^{24.79 \%}$	${ }_{53.1}^{53.1}$	${ }_{53.5}^{53.5}$	0.4	0.7\%
25.9\%	53.1	53.4	0.3	0.6\%
27.2\%	53.0	53.4	0.3	0.6\%
28.4\%	53.0	53.3	0.3	0.5\%
29.6\%	53.0	53.3	0.3	0.5\%
30.9\%	53.0	53.3	${ }^{0.3}$	0.5\%
32.1\%	53.0	53.3	0.3	0.6\%
33.3\%	52.9	53.3	0.3	0.6\%
34.6\%	52.9	53.2	0.3	0.6\%
35.8\%	52.8	53.2	0.4	0.7\%
37.0\%	52.8 528 5.8	53.1 530	${ }^{0.3}$	0.5\%
${ }_{\text {3 }} 38.50 \%$	52.8	53.0 530	${ }_{0}^{0.3}$	${ }^{0.5 \%}$
40.7\%	52.6	53.0	0.4	0.7\%
42.0\%	52.6	53.0	0.4	0.7\%
43.2\%	52.6	52.9	0.4	0.7\%
44.4\%	52.6	52.9	0.4	0.7\%
45.7\%	52.6	52.9	${ }^{0.3}$	0.6\%
46.9\%	52.5 525 525	52.8 528 528	${ }^{0.3}$	${ }^{0.6 \%}$
${ }^{48.19 \%}$	52.5 52.5	52.8 52.8	0.3 0.3	${ }^{0.6 \% \%}$
50.6\%	52.5	52.8	0.3	0.6\%
51.9\%	52.4	52.7	0.3	0.5\%
53.1\%	52.4	52.7	0.3	0.6\%
54.3\%	52.3	52.7	${ }^{0.3}$	0.6\%
55.6\%	52.3	52.6	${ }^{0.3}$	0.6\%
56.8\%	52.2	52.6	${ }^{0.3}$	0.6\%
58.0\%	52.2	52.6	0.3	0.7\%
59.3\%	52.2	52.6	0.4	0.8\%
60.5\%	52.1	52.5	0.4	0.7\%
${ }^{61.7 \%}$	52.1	52.5	0.4	0.7\%
63.0\%	52.1	${ }_{52.5}^{52.5}$	0.4	0.79\%
64.2\%	52.0	52.5	0.5	0.9\%
${ }^{65.49 \%}$	52.0	52.5 52.5	0.5	0.9\%
-66.7\%\%	52.0 520	52.4 52. 5.	0.4	${ }^{0.7 \%}$
69.1\%	51.9	52.3	0.4	0.8\%
70.4\%	51.9	52.3	0.4	0.8\%
71.6\%	51.9	52.3	0.4	0.8\%
72.8\%	51.9	52.3	0.4	0.7\%
74.1\%	51.8	52.2	0.4	0.8\%
75.3\%	51.8	52.2	0.3	0.7\%
76.5\%	51.8	52.2 52.1	0.4	0.7\%
7.3\%	${ }_{51.8}^{518}$	52.1	0.4	0.7\%
79.0\%	51.8 51.8	52.1 52.1	0.4 0.4	- 0.7%
81.5\%	51.7	52.0	0.3	0.6\%
82.7\%	51.6	52.0	0.4	0.9\%
84.0\%	51.5	52.0	0.5	0.9\%
85.2\%	51.5	52.0	0.5	0.9\%
86.4\%	51.4	51.9	0.5	0.9\%
87.7\%	51.3	51.9	0.6	1.1\%
${ }^{88.9 \%} 9$	年 ${ }_{\text {51.3 }}$	51.9 51.7	0.5 0.4	${ }_{\text {l }}^{\text {0.7.0\% }}$
91.4\%	51.2	51.5	0.3	0.6\%
92.6\%	51.1	51.5	0.4	0.8\%
93.8\%	51.1	51.4	0.4	0.7\%
95.1\%	50.7	51.4	0.7	1.4\%
96.3\%	50.7	51.1	${ }^{0.4}$	0.9\%
97.5\%	50.7	51.1	0.5	0.9\%
98.8\%	50.1	51.0	0.9	${ }_{1}^{1.8 \%}$
100.0\%	50.1	51.0	0.9	1.8\%

		September		
Percent Exceedance	DCR 2015 Without Proiect	DCR 2015 With Project		
Probability	Monthy Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
0.0\%	672	641	-30	4.
1.2\%	64.1	62.8	.1.3	-2.1\%
2.5\%	63.7	62.3	${ }^{1.3}$	1\%
3.7\%	62.6	56.8	-5.8	-9.3\%
4.9\%	61.9	56.7	5.2	-8.4\%
6.2\%	59.5	56.7	-2.8	-4.7\%
7.4\%	58.9	56.7	2.2	-3.7\%
8.6\%	58.5	55.6	-1.9	2\%
9.9\%	58.0	56.5	1.5	-2.6\%
11.11\%	57.5	56.4	-1.1	源
${ }^{12.3 \% \%}$	57.4	56.4	1.0	,
13.6\%	57.3	56.3	-1.0	-1.8\%
14.8\%	57.3	56.3	-1.0	-1.8\%
16.0\%	57.1	55.2	-1.0	-1.7\%
17.3\%	57.0	56.1	-1.0	-1.7\%
18.5\%	57.0	56.1	-1.0	-1.7\%
19.8\%	57.0	56.0	-0.9	-1.7\%
21.0\%	57.0	55.9	-1.0	-1.8\%
22.2\%	56.9	55.8	-1.1	-2.0\%
23.5\%	56.7	55.7	-1.0	-1.8\%
24.7\%	56.7	55.6	-1.1	-1.9\%
25.9\%	56.5	55.6	-0.9	-1.5\%
27.2\%	56.4	55.3	${ }^{1.1}$	-1.9\%
28.4\%	56.3	55.3	-1.0	-1.8\%
29.6\%	56.3	55.2	-1.1	-2.0\%
30.9\%	56.3	55.1	-1.2	-2.1\%
32.1\%	56.2	55.0	-1.2	-2.1\%
33.3\%	56.1	55.0	-1.11	-1.9\%
34.6\%	55.0	55.0	-1.11	-1.9\%
35.8\%	56.0	54.9	-1.1	-1.9\%
37.0\%	55.9	54.7		-2.1\%
(e) $\begin{aligned} & 38.3 \% \\ & 395 \%\end{aligned}$	55.6	54.7	-0.9	
39.5\%	55.4	54.7	-0.7	-1.2\%
- 40.70%	$\begin{array}{r}55.3 \\ 553 \\ \hline 5 .\end{array}$	$\begin{array}{r}54.6 \\ 54.6 \\ \hline\end{array}$	-0.7	${ }^{-1.2 \%}$
- 43.2%	55.3 553		-0.7	-1.14\%
44.4\%	$\begin{array}{r}\text { 55.2 } \\ \hline 55\end{array}$	54.4 54.4	-0.8 -0.8	-1.5\%
45.7\%	55.2	54.3	-0.8	-1.5\%
46.9\%	55.2	54.3	-0.9	-1.6\%
48.1\%	55.1	54.2	-0.9	-1.6\%
49.4\% 50.6\%	54.8	54.1	-0.7	-1.3\%
($\begin{aligned} & \text { 50.6\% } \\ & 51.9 \%\end{aligned}$	54.7	54.0	-0.7	-1.4\%
51.9\%	54.7	53.9	-0.8	-1.5\%
53.19\%	54.6	53.8	-0.8	
54.3\%	54.4	53.8	-0.6	-1.2\%
55.6\%	54.3	${ }_{53,7}^{53.7}$	-0.5	-1.0\%
56.8\%	54.0	53.7 53.6	-0.4	-0.7\%
58.0\%	54.0	53.6	-0.4	-0.7\%
59.3\%	53.9	53.6	-0.3	-0.6\%
	53.9	53.5	-0.3	-0.6\%
61.7\% 63.0\%	53.8	53.5	-0.3	-0.6\%
-63.0\%	53.7	53.5	-0.2	-0.3\%
64.2% 6.5%	53.6	53.4	-0.2	-0.4\%
65.4\%	53.5	53.4	-0.1	-0.2\%
${ }^{66.77 \%}$	53.5	53.4	-0.2	-0.3\%
67.9\%	${ }_{535}^{53.5}$	${ }_{52.6}^{52.6}$	-0.9	-1.7\%
69.1\%	${ }_{53.2}$	${ }_{52.6}^{52.6}$	-0.6	-1.19\%
70.4\%	53.1	52.6	-0.5	-0.9\%
71.6% 72.8%	52.8	52.5	-0.2	-0.4\%
72.8\%	52.8	52.4	-0.4	-0.8\%
74.19% 75.3%	52.7	52.3	-0.4	-0.8\%
75.3\%	52.7	52.3	-0.4	-0.7\%
76.5% 778%	52.7	52.3	-0.4	-0.8\%
${ }^{77.8 \%}$	52.5	52.2	-0.3	-0.5\%
79.0\% 80.2%	52.4	52.2	-0.2	-0.4\%
80.2\%	52.4	52.2		-0.4\%
81.5\%	52.4	${ }_{52.2}$	-0.2	-0.4\%
82.7\% 84.0%	52.4	${ }_{52.2}^{52.2}$	-0.2	-0.3\%
84.0\% 85.2\%	52.3	52.1	-0.2	-0.4\%
85.2\%	52.3	52.1	-0.2	-0.4\%
86.4% 87.7%	52.3	52.0	-0.3	-0.6\%
87.7% 88.9%	52.3	51.9	-0.4	-0.7\%
80.9\%	52.2	51.9	-0.3	-0.6\%
${ }^{90.14 \%}$	52.2	51.8	-0.3	-0.7\%
${ }_{9}^{91.42 \%}$	52.1	51.5	-0.6	-1.1\%
-92.6\% ${ }_{\text {93.8\% }}$	52.1	${ }_{51.5}^{515}$	-0.6	${ }^{-1.11 \%}$
95.1\%	51.9	51.4	-0.4	-0.9\%
${ }^{95.19 \%}$	51.6	${ }_{51.3}^{51.3}$	-0.3	${ }^{-0.6 \%}$
${ }^{96.3 \%}$	51.5	50.9	-0.6	-1.1\%
975\% ${ }^{97.8 \%}$	51.0	50.6	-0.4	-0.8\%
98.8\% 100.0\%	50.7	${ }_{50.1}$	-0.6	${ }^{-1.2 \%}$
100.0\%	50.7	50.1	-0.6	-1.2\%

Table SQ4－1b
Sacramento River ab Bails Ferry，Monthly Temperature

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{gathered}$	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project		Realive
	Monthly Temperature （DEGF）	$\underset{\substack{\text { Monthl Temperature } \\ \text {（OEGF）}}}{\text { Mat }}$	Difference （DEGF）	Difference（\％）
0．0\％	60.4	58.1	${ }^{-2.3}$	－3．9\％
1．2\％	58.9	57.2	${ }_{-1.7}$	－2．9\％
2．5\％	58.4	57.1	－1．4	－2．3\％
3．7\％	57.9	56.2	－1．7	－2．9\％
4．9\％	57.9	56.2	－1．6	－2．8\％
6．2\％	56.9	56.2	－0．7	－1．3\％
7．4\％	56.9	56.1	－0．8	－1．4\％
8．6\％	56.3	56.1	－0．2	－0．4\％
9．9\％	56.3	56.1	－0．3	－0．4\％
11．1．1\％	56.1	55.5	－0．6	－1．0\％
123\％${ }_{\text {13．6\％}}$	55.9 55.8	55.4 55.4	-0.5 -0.5	－0．0\％\％
14．8\％	55.8	55.3	－0．5	－1．0\％
16．0\％	55.6	55.1	－0．5	－0．9\％
17．3\％	55.6	55.0	－0．5	－0．9\％
18．5\％	55.4	55.0	－0．4	－0．8\％
19．8\％	55.2	55.0	－0．2	－0．3\％
21．0\％	54.8	54.8	0.0	0．0\％
22．2\％	54.8 548	54.8 54.6	0.0	0．0\％
${ }_{\text {24，}}^{23.50}$	54.8	54.6	－0．1	－0．2\％
24．79\％	54.7 54.7	54.6 54.6	－0．1	－0．0．2\％
27．2\％	54.7	54.4	－0．2	${ }^{-0.4 \%}$
28．4\％	54.6	54.4	－0．2	－0．4\％
29．6\％	54.6	54.4	－0．2	－0．4\％
30．9\％	${ }_{54.6}^{54.6}$	${ }_{54.3}^{54.3}$	－0．3	－0．5\％
32．1\％	54.6	54.3	－0．3	－0．5\％
33．3\％	54.5	54.1	－0．4	－0．7\％
34．6\％	${ }_{54.4}^{54.4}$	${ }_{54.1}$	－0．2	－0．5\％
35．8\％	54.3	54.1	－0．2	－0．4\％
37．0\％	54.3	54.0	－0．3	－0．5\％
38．3\％	54.2	53.8	－0．4	－0．7\％
39．5\％	54.2	53.8	－0．4	－0．7\％
40．7\％	53．9	53．8	－0．1	－0．2\％
42．0\％	53.9 539	53.8 538 53	－0．1	－0．1\％
43．2\％	53.9	53.8	－0．1	－0．1\％
44．4\％	${ }_{53.8}^{53.8}$	${ }_{53.8}^{53.8}$	－0．1	－0．1\％
45．7\％	53.8	53.7	－0．1	－0．2\％
46．9\％	53.8	53.7	－0．1	－0．2\％
48．1\％	53.8	53.6	－0．2	－0．4\％
49．4\％	53.7	53．6	－0．1	－0．2\％
50．6\％	53.6	53.5	－0．1	－0．2\％
年51．9\％	${ }_{53.5}^{53.5}$	${ }_{53.5}^{53.5}$	0.0	－0．1\％
－${ }_{\text {54．3\％}}$	53．4	${ }_{53.3}^{53.3}$	－0．1	－0．0．3\％
55．6\％	53.4	53.3	－0．1	－0．3\％
56．8\％	53．4	53.2	－0．2	－0．3\％
58．0\％	53．3	53.2	－0．1	－0．3\％
59．3\％	${ }_{53.3}$	53．1	－0．1	－0．2\％
60．5\％	53．3	${ }_{53.1}^{55.1}$	－0．1	－0．2\％
61．7\％	53.2	53.1	－0．1	－0．2\％
63．0\％	53．2	53．1	－0．1	－0．2\％
64.20% 6.4%	53.2	53.1	－0．1	${ }^{-0.29 \%}$
${ }^{65.4 \%}$	53.2 53.2	53.1 53.1	-0.1 -0.1	－0．0．2\％
67．9\％	53.2	53.1	－0．1	－0．2\％
69．1\％	53.2	53.1	－0．1	－0．2\％
70．4\％	53.1	53.0	－0．1	－0．2\％
71．6\％	53.1	53.0	－0．1	－0．1\％
72．8\％	53.1	53.0	－0．1	－0．2\％
74．1\％	53.1	52.9	－0．1	－0．2\％
75．3\％	53.0	52.9	－0．1	－0．2\％
76．5\％	53.0	52.8	－0．1	－0．2\％
77．8\％	52.9 529	52.8 528 528	－0．1	－0．2\％
80．2\％	52.9	52.8	0.0	－0．1\％
81．5\％	52.8	52.7	－0．1	－0．2\％
82．7\％	52.7	52.6	－0．2	－0．3\％
84．0\％	52.7	52.6	－0．1	－0．2\％
85．2\％	${ }_{526}^{52.6}$	${ }_{52.5}^{52.5}$	－0．1	－0．1\％
86．4\％	52.6	52.4 523 1	－0．1	－0．3\％
87．7\％	52.5	52.3	－0．2	－0．3\％
88．9\％	${ }_{52.5}^{52.5}$	${ }_{52.3}^{52.3}$	－0．2	－0．3\％
${ }^{90.4 \%}$	52．4	52.3 52.2	-0.1 0.0	－0．0\％
92．6\％	52.2	52.1	0.0	－0．1\％
93．8\％	52.2	52.1	－0．1	－0．2\％
${ }_{\text {9 }}^{95.19 \%}$	52.0 52.0	52.0 520	${ }^{0.0}$	－ 0.10%
97．5\％	52.9	51．9	－0．1	－0．2\％
98．8\％	51.8	51.6	－0．1	－0．3\％
100．0\％	51.2	51.3	0.0	0．1\％

Percent	Juy to September		Probabily fexceeeance		August to Spplember				
	2015 Wthout	DCR 2015 With Project			Percent	DCR 2015 Without	DCR 2015 With Project		
Exceedance	Pro			Realite		Proiect		Difference	Rela
Proabaility	${ }_{\text {Monthl }}^{\text {（ }}$（emperarature	Monthly Temperature	（DEGF）	Difference（\％）	Probability	Monthly Temperature	Monthly Temperature	（DEGF）	ference（\％）
0．0\％	62.3	59.2	－3．0	－4．9\％	0．0\％	64.9	60.9	－4．0	－6．2\％
1．2\％	60.2	58.2	-2.0	－3．4\％	1．2\％	62.0	59.6	－2．4	－39\％
2．5\％	59.8	58.0	－1．8	－3．1\％	2．5\％	61.6	59.3	－2．3	－3．7\％
3．7\％	58.8	56.5	－2．3	－3．9\％	3．7\％	59.5	56.6	－2．9	－4．9\％
4．9\％	58.2	56.5	－1．7	－2．9\％	4．9\％	59.2	56.5	－2．7	－4．6\％
6．2\％	57.7	56.3	－1．5	－2．5\％	6．2\％	58.3	56.5	－1．9	－3．2\％
7．4\％	57.4	56.2	－1．2	－2．1\％	7．4\％	58.3	56.5	－1．8	－3．1\％
8．6\％	57.0	56.2	－0．8	－1．4\％	8．6\％	57.9	56.4	－1．5	－2．6\％
9．9\％	56.8	56.0	－0．8	－1．5\％	9．9\％	57.5	56.4	－1．1	－2．0\％
11．1\％	56.8	56.0	－0．8	－1．4\％	11．1\％	57.5	56.2	－1．3	－2．2\％
12．3\％	56.6	55.9	－0．8	－1．4\％	12．3\％	57.1	56.1	－0．9	－1．7\％
13．6\％	56.5	55.9	－0．6	－1．1\％	13．6\％	56.9	56.1	－0．7	－1．3\％
14．8\％	55.3	55.7	－0．5	－0．9\％	14．8\％	56.7	56.1	－0．6	－1．1\％
16．0\％	56.2	55.7	－0．5	－0．9\％	16．0\％	56.6	56.1	－0．6	－1．0\％
17．3\％	56.1	55.6	－0．5	－0．9\％	17．3\％	56.6	55.9	－0．6	－1．1\％
18．5\％	56.0	55.5	－0．5	－0．9\％	18．5\％	56.5	55.9	－0．6	－1．0\％
19．8\％	55.8	55.4	－0．4	－0．8\％	19．8\％	56.3	55.9	－0．5	－0．8\％
21．0\％	55.6	55.3	－0．3	－0．6\％	21．0\％	56.3	55.8	－0．4	－0．7\％
22．2\％	55.5	55.3	－0．3	－0．5\％	22．2\％	56.2	55.8	－0．3	－0．6\％
${ }^{23.55 \%}$	55.5	55.1	－0．3	－0．6\％	23．5\％	56.1	55.5	－0．7	${ }^{-1.2 \%}$
24．7\％	55.4	55.1	－0．3	－0．5\％	24．7\％	56.1	55.4	－0．7	－1．3\％
25．9\％	55.4 55 5.4	54.9	－0．4	－0．8\％	25．9\％	55.1	55．4	－0．7	－1．3\％
27．2\％	55．4	54.9	－0．5	${ }^{-0.9 \%}$	27．2\％	${ }_{56.0}$	${ }_{55}^{55.3}$	－0．6	${ }^{-1.12 \%}$
28．4\％	55.4 55. 5.	54.9 54	－0．5	－0．8\％	${ }^{28.49 \%}$	55.9 558	55.3 552 5.	－0．7	－1．2\％
30．9\％	55.1	${ }_{54.6}$	－0．5	－0．9\％	30．9\％	55.7	55．1	－0．6	－1．1\％
32．1\％	55.1	54.5	－0．5	－1．0\％	32．1\％	55.7	55.1	－0．6	－1．1\％
33．3\％	55.0	54.5	－0．5	－0．9\％	33．3\％	55.6	54.9	－0．7	－1．3\％
34．6\％	55.0	54.3	－0．6	－1．2\％	34．6\％	55.6	54.8	－0．8	－1．4\％
35．8\％	55.0	54.3	－0．7	－1．3\％	35．8\％	55.6	54.7	－0．9	－1．6\％
37．0\％	54.9 54.7	54.3 54.2	－0．7	－1．2\％	37．0\％	55.4 55.4 5.4	54.7 54.7	－0．7	－1．2\％
－ 38.30	54.7 54.6	年 54.2	－0．6	－1．0\％	－	55.4 55. 5.	54.7 54.7	－0．7	－1．1．0\％
40．7\％	54.5	54.0	－0．5	－0．9\％	40．7\％	55.2	54.6	－0．6	－1．0\％
42．0\％	54.5	54.0	－0．5	－0．9\％	42．0\％	55.1	54.6	－0．5	－0．9\％
43．2\％	54.4	54.0	－0．5	－0．9\％	43．2\％	55.1	54.3	－0．7	－1．3\％
44．4\％	54.4	53.9	－0．5	－0．9\％	44．4\％	55.0	54.2	－0．9	－1．6\％
45．7\％	54.3	53.9	－0．4	－0．7\％	45．7\％	54.9	54.1	－0．8	－1．5\％
46．9\％	54.2	53.9	－0．3	－0．6\％	46．9\％	54.5	54.1	－0．4	－0．8\％
48．1\％	54.1	53.9	－0．2	－0．3\％	48．1\％	54.5	54.1	－0．5	－0．8\％
49．4\％	54.0	53.9	－0．1	－0．3\％	4．4．4\％	54.5	54.0	－0．4	－0．8\％
	54.0 54.0	53.9 53.8	-0.1 -0.2	－0．0．4\％	－	54．5 54.4	54．0 54.0	-0.5 -0.4	－0．8\％
53．1\％	53.9	53.5	－0．4	－0．7\％	53．1\％	54.4	${ }_{53.9}$	－0．4	－0．8\％
54．3\％	53.8	53.5	－0．3	－0．5\％	54．3\％	54.3	53.9	－0．4	－0．7\％
55．6\％	53.7	53.5	－0．3	－0．5\％	55．6\％	54.2	53.8	－0．4	－0．7\％
56．8\％	53.7	53.4	－0．3	－0．5\％	56．8\％	54.2	53.8	－0．4	－0．7\％
58．0\％	53.7	53.4	－0．3	－0．6\％	58．0\％	54.1	53.8	－0．3	－0．6\％
59．3\％	${ }_{53,6}^{53.6}$	${ }_{53.4}^{53.4}$	－0．2	－0．4\％	59．3\％	54.1	53.7	－0．3	－0．6\％
6．5\％\％	53.6	53．3	－0．2	－0．4\％	6．5\％	54.0	53.7	－0．3	－0．6\％
61．7\％	53.5	53.3	－0．3	－0．5\％	61．7\％	54.0	53.7	－0．4	－0．7\％
63．0\％	53.5	53.2	－0．2	－0．4\％	63．0\％	54.0	53.7	－0．3	－0．6\％
64.2% 65.4%	53.4 53.4	53.2 53.2	-0.2 -0.2	－0．4\％	－ 64.29%	53.9 53.9	53.6 53.5	-0.3 -0.4	－0．8\％
66．7\％	53.4	53.2	－0．2	－0．4\％	66．7\％	53.7	53.4	－0．3	－0．6\％
67．9\％	53.4	53.2	－0．2	－0．4\％	67．9\％	53.6	53.3	－0．4	－0．7\％
69．1\％	53.3	53.2	－0．1	－0．3\％	69．1\％	53.6	53.2	－0．4	－0．7\％
70．4\％	53．3	53．2	－0．1	－0．2\％	70．4\％	53．6	53.2	－0．4	－0．8\％
71．6\％	53.3	53.1	－0．1	－0．3\％	71．6\％	53.6	53.2	－0．3	－0．6\％
72．8\％	53．3	53.1	－0．2	－0．3\％	72．8\％	53.5	53.2	－0．3	－0．6\％
74．1\％	53．3	53.1	－0．2	－0．3\％	74．1\％	53．4	53.1	－0．3	－0．6\％
75．3\％	53.2	53.1	－0．2	－0．3\％	75．3\％	53．3	53.1	－0．2	－0．4\％
76．5\％	53.2	53.0	－0．2	－0．4\％	76．5\％	53.3	53.1	－0．2	－0．4\％
77．8\％	53.2	53.0	－0．2	－0．4\％	77．8\％	53.3	53.0	－0．3	－0．5\％
79．0\％	53.2	53.0	－0．2	${ }^{-0.5 \%}$	79．0\％	53.2	53.0	－0．3	－0．5\％
80．2\％	53．2）	53．0	－0．2	－0．5\％	${ }^{80.2 \%}$	53．2）	53．0	－0．2	0．4\％
${ }^{81.5 \%}$	53．1	52．9	－0．2	${ }^{-0.3 \%}$	${ }^{81.5 \%}$	53．1	52．9	－0．2	－0．4\％
－	${ }_{53.0}^{53.1}$	52.9 52.8	-0.2 -0.1	－0．0．0\％	82，7\％ 84.0%	${ }_{53.1}^{53.1}$	52.9 52.9	-0.2 -0.2	－0．4\％
85．2\％	53.0	52.8	－0．2	－0．4\％	85．2\％	53.0	52.8	－0．1	－0．3\％
86．4\％	52.9	52.7	－0．2	－0．4\％	86．4\％	52.9	52.8	－0．1	－0．2\％
87．7\％	52.9	52.6	－0．3	－0．5\％	87．7\％	52.9	52.8	－0．1	－0．1\％
88．9\％	52.7	52.5	－0．2	－0．3\％	88．9\％	52.8	52.8	0.0	0．0\％
90．1\％	52.6	52.4	－0．2	－0．3\％	90．1\％	52.8	52.7	－0．1	－0．2\％
${ }_{\text {92．6\％}}^{91.4 \%}$	52.5 52.5	52.4 52.4	-0.2 -0.1	－0．0．0\％	${ }_{92.6 \%}^{91.4 \%}$	52.8 52.8	年 $\begin{aligned} & 52.3 \\ & 52.3\end{aligned}$	-0.4 -0.5 -0.	－0．8\％
93．8\％	52.4	52．4	0.0	0．0\％	93．8\％	52．4	52.3 52.3	${ }_{-0.1}$	－0．3\％
95．1\％	52.4	52.2	－0．2	－0．4\％	95．1\％	52.4	52.1	－0．3	－0．5\％
96．3\％	52.4	52.0	－0．3	－0．6\％	96．3\％	52.3	52.1	－0．2	－0．4\％
97．5\％	52.2	51.8	－0．3	－0．6\％	97．5\％	52.0	51.7	－0．3	－0．6\％
${ }^{98.8 \%}$	${ }_{52.0}^{52.0}$	${ }_{51.8}^{51.8}$	－0．2	－0．3\％	98．8\％	${ }_{517} 51.8$	${ }_{513}^{51.3}$	－0．5	${ }^{\text {1．0\％}}$
100．0\％	51.6	51.3	－0．3	－0．6\％	100．0\％	51.7	51.3	－0．5	－0．9\％

Figure SQ5-1b
Sacramento River at Jellys Ferry, Monthly Temperatur

$\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probabalily } \end{array} \end{aligned}$$(\%)$	October			
	DCR 2015 Without Proiet	DCR 2015 With Project		Relative
	Monthy Temperature	Monthy Temperature	Difference (DEGF)	Difference (\%)
0.0\%	62.5	62.7	0.2	0.3\%
1.2\%	61.6	61.8	0.2	0.4\%
2.5\%	60.9	61.4	0.5	
3.7\%	60.7	61.0	0.3	0.4\%
4.9\%	59.5	57.9	-1.6	-2.7\%
6.2\%	58.2	57.9	-0.3	-0.5\%
7.4\%	57.8	57.9	0.0	0.1\%
8.6\%	57.6	57.5	-0.1	-0.2\%
9.9\%	57.5	57.3	-0.2	-0.3\%
11.1\%	57.0	57.1	0.1	0.1\%
12.3\%	57.0	57.1	0.1	0.2\%
13.6\%	56.9	57.0	0.1	0.1\%
14.8\%	56.9	57.0	0.1	0.2\%
16.0\%	55.8	55.9	0.1	0.2\%
17.3\%	56.7	56.9	0.2	0.4\%
18.5\%	56.6	56.9	0.2	0.4\%
19.8\%	55.6	56.7	0.1	0.2\%
21.0\%	56.6	56.7	0.1	0.2\%
22.2\%	56.5	56.6	0.1	0.2\%
23.5\%	56.4	56.5	0.1	0.2\%
24.7\%	56.4	56.4	0.1	0.1\%
25.9\%	56.4	55.4	0.1	0.1\%
27.2\%	56.1	56.4	${ }^{0.3}$	0.5\%
28.4\%	56.1	56.4	0.2	0.4\%
29.6\%	56.1	56.3	0.1	0.3\%
30.9\%	55.0	56.2	0.2	0.3\%
32.1\%	55.0	56.1	0.1	0.2\%
33.3\%	55.9	56.1	0.2	0.4\%
34.6\%	55.9	56.1	0.2	0.4\%
35.8\%	55.9	56.1	0.2	0.4\%
37.0\%	55.8	56.0	0.2	0.4\%
38.3\%	55.8	56.0	0.2	0.4\%
39.5\%	55.8	56.0	0.2	0.4\%
40.7\%	55.8	55.9	0.1	0.2\%
${ }^{42.0 \%}$	55.8 55.8	55.9 55.9	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
44.4\%	55.7	55.8	0.1	0.1\%
45.7\%	55.7	55.7	0.0	-0.1\%
46.9\%	55.7	55.6	0.0	-0.1\%
48.1\%	55.7	55.6	-0.1	-0.1\%
49.4\%	55.6	55.6	0.0	-0.1\%
50.6\%	55.6	55.6	0.0	0.0\%
51.9\%	55.6	55.4	-0.1	-0.2\%
53.1\%	55.5	55.4	-0.1	-0.1\%
54.3\%	55.4	55.4	0.0	0.0\%
55.6\%	55.4	55.4	0.0	-0.1\%
56.8\%	55.4 55.4	55.3 55.3	-0.1	-0.19\%
59.3\%	55.4	55.3	-0.1	-0.1\%
60.5\%	55.4	55.3	-0.1	-0.1\%
61.7\%	55.3	55.3	-0.1	-0.1\%
63.0\%	55.3	55.2	-0.1	-0.2\%
64.2\%	55.3	55.2	-0.1	-0.3\%
65.4\%	55.3	55.2	-0.1	-0.2\%
66.7\%	55.3	55.1	-0.1	-0.2\%
67.9\%	55.2	55.1	-0.1	-0.3\%
${ }^{69.1 \%}$	55.2	55.1	-0.1	-0.2\%
70.4\%	55.1	55.0	0.0	-0.1\%
71.6\%	55.0	55.0	0.0	0.0\%
72.8\%	55.0	55.0	0.0	0.0\%
74.1\%	55.0	55.0	0.0	0.0\%
75.3\%	55.0	55.0	0.0	0.1\%
76.5\%	54.9	54.9	0.0	0.1\%
77.8\%	54.9	54.9	0.1	0.1\%
79.0\%	54.9	54.9	0.1	0.1\%
80.2\%	54.8	54.9	0.1	0.1\%
81.5\%	54.8	54.9	0.1	0.1\%
${ }^{82.79 \%}$	54.8 547 4.	$\begin{array}{r}54.9 \\ 548 \\ \hline\end{array}$	0.1	0.2\%
84.0\%	54.7	54.8	0.1	0.2\%
	54.7 54.7	54.7 54.7	0.0	-0.1\%
87.7\%	54.6	54.4	-0.2	-0.4\%
88.9\%	54.6	54.4	-0.2	-0.4\%
90.1\%	54.6	54.4	-0.2	-0.3\%
91.4\%	54.6	54.3	-0.2	-0.4\%
92.6\%	54.5	54.2	-0.3	-0.6\%
93.8\%	54.5	54.0	-0.5	-0.8\%
${ }_{965.3 \%}^{95.10 \%}$	54.3 54.2	53.5 53.4	-0.9 -0.7	-1.4\%
${ }^{97.5 \%}$	54.2 54.0	${ }_{53.3}^{53.4}$	-0.8	${ }_{-1.4 \%}$
98.8\%	53.9	53.2	-0.7	-1.3\%
100.0\%	53.9	53.2	0.0	-1.3\%

January				
Percent Exceance	DCR 2015 Without Proiet	DCR 2015 W With Project		
Probability	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGGF) } \end{aligned}$	Difference (\%)
0.0\%	49.2	49.4	0.1	0.3\%
1.2\%	48.7	48.9	0.2	05\%
2.5\%	48.4	48.7	0.3	0.6\%
3.7\%	48.4	48.4	0.0	-0.1\%
4.9\%	48.2	48.3	0.1	0.2\%
6.2\%	48.2	48.3	0.2	0.3\%
7.4\%	48.2	48.2	0.1	0.1\%
8.6\%	48.1	48.2	0.1	0.2\%
9.9\%	48.1	48.0	-0.1	0.3\%
11.11\%	48.0	48.0	-0.1	-0.1\%
12.3% 13.6\%	48.0 47.9	47.9 47.7	-0.1 -0.2	-0.3\% -0.4%
14.8\%	47.8	47.7	-0.1	-0.3\%
16.0\%	47.7	47.6	0.0	-0.1\%
17.3\%	47.6	47.5	-0.1	-0.1\%
18.5\%	47.4	47.5	0.0	0.0\%
19.8\%	47.1	47.2	0.1	0.2\%
21.0\%	47.0	47.2	0.2	0.4\%
22.2\%	47.0	47.1	0.2	0.4\%
23.5\%	46.9	47.0	0.1	0.2\%
24.7\%	46.9	47.0	0.1	0.3\%
25.9\%	46.9	47.0	${ }_{0}^{0.1}$	- 0.3%
28.4\%	46.8	46.8	0.0	0.0\%
29.6\%	46.8	46.8	0.0	0.0\%
30.9\%	46.7	46.8	0.0	${ }^{0.1 \%}$
32.1\%	46.7	46.7	0.0	0.1\%
33.3\%	46.7	46.7	0.0	0.1\%
34.6\%	46.7	46.7	0.0	0.1\%
35.8\%	46.7	46.7	0.0	0.0\%
37.0\%	46.7	46.7	0.0	0.0\%
- ${ }_{\text {38.3\% }}$	${ }_{46.6}^{46.7}$	46.7 46.6	0.0 0.0	${ }^{0.0 \% \%}$
40.7\%	46.6	46.6	0.0	0.1\%
42.0\%	46.6	46.6	0.0	0.1\%
${ }^{43.2 \%}$	46.6	46.6	0.0	
${ }^{44.4 \%}$	46.5 46.4	46.5	0.1	${ }_{0}^{0.1 \%}$
46.9\%	46.4 46.4	${ }_{46.5}^{46.5}$	${ }_{0.1}^{0.1}$	0.3\%
48.1\%	46.4	46.5	0.2	0.3\%
49.4\%	46.3	46.4	0.1	0.2\%
50.6\%	46.3	46.4	0.0	0.1\%
51.9\%	46.3	46.4	0.1	0.1\%
53.1\%	46.3	46.3	0.1	0.2\%
54.3\%	46.3	46.3	0.1	0.2\%
	${ }_{46.2}^{46.2}$	46.3 46.3	${ }_{0}^{0.1}$	${ }_{\text {a }}^{0.2 \% \%}$
58.0\%	46.2	46.3	0.1	0.3\%
59.3\%	46.1	46.3	0.1	0.3\%
60.5\%	46.1	46.2	0.0	0.1\%
61.7\%	46.1	46.2	0.0	0.1\%
63.0\%	46.1	46.1	0.0	0.0\%
${ }^{64.2 \%}$	46.0	46.1	0.1	0.1\%
65.4\%	46.0	46.1	0.1	0.2\%
${ }^{66.7 \%}$	45.9	46.0	0.1	0.2\%
- ${ }_{\text {67.9\% }}^{69.1 \%}$	${ }_{45.9}$	46.0 46.0	${ }_{0}^{0.1}$	${ }_{0}^{0.1 \%}$
70.4\%	45.9	45.9	0.1	0.1\%
71.6\%	45.8	45.9	0.1	0.2\%
72.8\%	45.8	45.9	0.1	0.3\%
74.1\%	45.8	45.9	0.1	0.3\%
75.3\%	45.8	45.9	0.1	0.2\%
76.5\%	45.7	45.8	0.1	0.2\%
77.8\%	45.7	45.7	0.0	0.0\%
79.0\%	45.7	45.7	0.0	0.0\%
80.2\%	45.7	45.7	0.0	0.0\%
- ${ }^{81.5 \%}$	${ }_{45.5}^{45.6}$	${ }_{45.6}^{45.7}$	${ }_{0.1}^{0.1}$	${ }_{0}^{0.1 \%}$
84.0\%	45.5	45.5	0.0	0.1\%
85.2\%	45.5	45.5	0.0	0.0\%
86.4\%	${ }^{45.4}$	45.4	0.0	0.1\%
87.7\%	45.3	45.4	0.0	0.1\%
88.9\%	45.3	45.3	0.0	0.0\%
90.1\%	45.3	45.3	0.0	0.0\%
91.4\%	45.3	45.2	0.0	0.0\%
-92.6\%	45.2	45.2	0.0	0.0\%
95.1\%	45.0	45.0	0.0	0.0\%
96.3\%	44.8	45.0	0.2	0.4\%
97.5\%	${ }_{44.6}^{44}$	45.0	0.4	0.8\%
98.8\%	${ }_{44.6}$	${ }_{44.8}^{44.8}$	${ }^{0.3}$	${ }^{0.6 \% \%}$
100.0\%	44.6	44.8	0.3	0.6\%

Table SQS-1b
er at Jellys Ferry, Mon

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	February			
	DCR 2015 Without Proiect	DCR 2015 With Project	Absolute	Relative
	Monthy Temperature	Monthy Temperature	Difference (DEGF)	Difference (\%)
0.0\%	50.4	50.6	0.2	0.3\%
1.2\%	49.8	49.8	0.0	0.0\%
2.5\%	49.2	49.2	0.0	-0.1\%
3.7\%	49.0	49.0	0.0	0.0\%
4.9\%	48.6 48.4	48.6 48.6	${ }_{0}^{0.1}$	0.1\%
${ }^{6.2 \%}$	48.4	${ }^{48.6}$	0.1	0.3\%
7.4\%	48.3	48.3	0.1	0.1\%
8.6\%\% 9.9%	48.2 48.1	${ }_{48.2}^{48.3}$	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
11.1\%	48.1	48.2	0.1	0.2\%
12.3\%	48.1	48.2	0.1	0.3\%
13.6\%	48.0	48.2	0.1	0.3\%
14.8\%	48.0	48.0	0.0	0.0\%
16.0\%	48.0	48.0	0.0	0.1\%
17.3\%	48.0	48.0	0.0	0.0\%
19.8\%	47.8	47.8	0.0	0.0\%
21.0\%	47.7	47.8	0.1	0.3\%
22.2\%	47.6	47.8	0.2	0.5\%
23.5\%	47.6	47.8	0.2	0.4\%
24.7\%	47.5	47.6	0.0	0.0\%
25.9\%	47.5	47.5	0.0	0.0\%
27.2\%	47.5	47.5	0.0	0.0\%
28.4\%	47.5	47.5	0.0	0.1\%
29.6\%	47.5 47.4	47.5 47.4	0.0 0.0	${ }_{0}^{0.0 \% \%}$
32.1\%	47.4	47.4	0.0	0.0\%
33.3\%	47.3	47.4	0.1	0.1\%
34.6\%	47.2	47.2	0.0	0.0\%
35.8\%	47.2	47.2	0.0	0.0\%
37.0\%	47.2	47.2	0.0	0.1\%
38.3\%	47.0	47.2	0.2	0.3\%
39.5\%	47.0	47.1	0.1	0.2\%
40.7\%	47.0	47.1	0.1	0.2\%
42.0\%	47.0	47.0	0.0	${ }_{0}^{0.1 \%}$
${ }^{43.2 \%}$	47.0	47.0	0.0 0.0	${ }_{0}^{0.1 \%}$
45.7\%	46.9	47.0	0.0	0.1\%
46.9\%	46.9	47.0	0.1	0.2\%
48.1\%	46.9	46.9	0.0	-0.1\%
49.4\%	46.9	46.9	0.0	0.0\%
50.6\%	46.8	46.8	0.0	-0.1\%
51.9\%	46.8	46.8	0.0	${ }^{-0.19}$
53.1\%	46.8	46.8	0.0	-0.1\%
54.3\%	46.7	46.8	${ }^{0.0}$	${ }^{0.0 \% \%}$
55.6\%	46.7	46.7	0.0	-
56.8\%	46.7 46.7	${ }_{46.7}^{46.7}$	0.0 0.0	${ }_{0}^{0.0 \% \%}$
59.3\%	46.6	46.6	0.0	0.0\%
60.5\%	46.5	46.5	0.0	0.1\%
61.7\%	46.4	46.5	0.0	0.1\%
63.0\%	46.4	46.4	0.0	0.0\%
${ }^{64.2 \%}$	46.2	46.2	0.0	0.0\%
65.4\%	46.1	46.1	0.0	0.0\%
66.7\%	46.0	46.1	0.0	0.1\%
67.9\%	46.0	46.0	0.0	-0.1\%
69.1\%	46.0	46.0	0.0	-0.1\%
70.4\%	${ }_{45.9} 4$	${ }_{45.9}^{46.0}$	0.0 0.0	${ }_{0}^{0.0 \% \%}$
72.8\%	45.9	45.9	0.0	0.0\%
74.1\%	45.9	45.9	0.0	0.0\%
75.3\%	45.8	45.9	0.0	0.1\%
76.5\%	45.8	45.9	${ }^{0.1}$	0.1\%
77.8\%	45.8	45.8	0.0	0.0\%
79.0\%	45.7	45.8	${ }^{0.1}$	0.2\%
80.2\%	45.7	45.7	0.0	0.1\%
81.5\%	45.7	45.6	0.0	${ }_{\text {0, }}^{0.0 \%}$
824.0\%	${ }_{45.6}^{45.6}$	${ }_{45.6}^{45.6}$	0.0	${ }^{0.10 \%}$
85.2\%	45.6	45.6	0.0	0.0\%
86.4\%	45.6	45.6	0.0	0.0\%
87.7\%	45.4	45.5	0.1	0.2\%
88.9\%	45.4	45.5	0.1	${ }^{0.3 \%}$
${ }^{901.4 \%}$	45.4 45.3	${ }_{45.4}^{45.4}$	${ }_{0}^{0.0}$	${ }_{0}^{0.12 \%}$
92.6\%	45.2	45.4	0.2	0.4\%
93.8\%	45.2	45.3	0.1	0.3\%
95.1\%	45.2	45.2	0.1	0.2\%
96.3\%	45.1	45.1	0.0	0.0\%
97.5\%	45.1	45.1	0.0	0.0\%
988.8\% 100.0\%	44.9 44	44.8 44.8	-0.1 -0.1	-0.0\%

May				
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	DCR 2015 Without Proiect Monhthlemperare (DEGFF)	DCR 2015 With ProjectMonthly Temperature (DEGF)	$\begin{gathered} \text { Absolute } \\ \text { (Differenee } \\ \text { (DEGF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
0.0\%	58.5	58.3	-0.1	-0.2\%
1.2\%	58.0	58.0	0.0	
2.5\%	57.3	57.7	0.5	
3.7\%	56.9	57.4	0.5	
4.9\%	56.6	57.2	0.6	
6.2\%	56.3	57.1	0.8	1.4\%
7.4\%	56.3	57.0	0.8	1.3\%
8.6\%	56.3	56.9	0.6	1.1\%
9.9\%	56.2	56.7	0.5	0.8\%
11.1\%	56.2	56.4	0.2	0.4\%
12.3\%	56.0	56.2	0.2	0.4\%
13.6\%	55.9	56.1	0.2	0.4\%
14.8\%	55.7	56.0	0.3	0.5\%
16.0\%	$\begin{array}{r}55.6 \\ 55 . \\ \hline 5.5\end{array}$	55.9 557	0.2	0.4\%
18.5\%	55.3	55.7	0.4	0.7\%
19.8\%	55.0	55.7	0.6	1.1\%
21.0\%	55.0	55.5	0.5	0.9\%
22.2\%	54.9	55.4	0.5	1.0\%
23.5\%	54.9	55.3	0.4	0.8\%
24.7\%	54.9	55.3	0.4	0.8\%
25.9\%	54.8	55.3	0.4	0.8\%
27.2\%	54.6	55.2	0.5	1.0\%
28.4\%	54.6	55.2	0.6	1.0\%
29.6\%	54.6 54.6	55.1 550	0.5 0.4	0.8\%
32.1\%	54.5	54.9	0.4	0.7\%
33.3\%	54.5	54.8	${ }^{0.3}$	0.6\%
34.6\%	54.5	54.8	0.3	0.5\%
35.8\%	54.4	54.7	${ }^{0.3}$	0.5\%
37.0\%	54.4	54.7	0.3	0.6\%
38.3\%	54.4	54.5	0.2	0.3\%
39.5\%	54.3	54.4	0.1	0.1\%
40.7\%	54.3	54.4	0.1	0.2\%
42.0\%	${ }_{54.3}^{54}$	54.4	0.1	0.2\%
${ }_{4}^{43.2 \%}$	54.3 54.3	54.4 54.4	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
45.7\%	54.2	54.4	0.2	0.3\%
46.9\%	54.2	54.4	0.2	0.3\%
48.1\%	54.1	54.3	0.3	0.5\%
49.4\%	54.0	54.3	0.2	0.4\%
50.6\%	54.0	54.2	0.2	0.4\%
51.9\%	54.0	54.2	0.2	0.3\%
53.1\%	53.8	54.1	0.3	0.6\%
54.3\%	${ }_{53,7}^{53.7}$	54.1	0.4	0.7\%
55.6\%	53.7 53.7	54.1 54.1	0.4 0.4	${ }_{\text {0, }}^{0.7 \%}$
58.0\%	53.6	53.9	0.3	0.5\%
59.3\%	53.6	53.9	0.3	0.6\%
60.5\%	53.6	53.8	0.2	0.4\%
${ }^{61.77 \%}$	${ }_{53.5}^{53}$	53.7 53.7	0.2	0.4\%
63.0\%	53.5	${ }_{53.7}^{53.7}$	0.2	0.5\%
64.2\%	53.5	53.7	0.2	0.5\%
65.4\%	53.4	53.7	0.2	0.4\%
${ }^{66.7 \%}$	53.4	53.7	0.2	0.4\%
67.9\%	53.4	53.6	0.2	0.4\%
69.1\%	53.4	53.5	0.1	0.2\%
70.4\% ${ }^{71.6 \%}$	53.2 53.1	年53.3	${ }_{0}^{0.1}$	${ }_{0}^{0.3 \%}$
72.8\%	53.1	53.2	0.1	0.1\%
74.1\%	53.1	53.2	0.1	0.1\%
75.3\%	53.0	53.1	0.1	0.1\%
76.5\%	53.0	53.1	0.1	0.1\%
77.8\%	53.0	53.1	0.0	0.1\%
79.0\%	53.0	53.1	0.1	0.2\%
80.2\%	52.9	53.0	0.1	0.1\%
81.5\%	52.8	52.9	0.1	0.3\%
82.7\%	52.8	52.9	0.1	0.2\%
84.0\%	52.7	52.8	0.0	0.1\%
- ${ }_{\text {85.2\% }} 8.48$	$\begin{array}{r}52.7 \\ 52.6 \\ \hline\end{array}$	$\begin{array}{r}52.6 \\ 52.6 \\ \hline\end{array}$	-0.1 0.0	-
87.7\%	52.6	52.5	-0.1	-0.2\%
88.9\%	52.5	52.3	-0.1	-0.3\%
90.1\%	52.3	52.3	0.0	0.0\%
91.4\%	52.3	52.3	0.0	0.0\%
92.6\%	52.3	52.3	0.0	0.0\%
93.8\%	52.2	52.2	0.0	0.0\%
95.1\%	52.1	52.1	0.0	0.0\%
96.3\%	52.1	52.1	0.0	0.0\%
${ }_{98,8 \%}^{97.5 \%}$	52.0 52.0	52.1 52.0	0.0 0.0	${ }_{0}^{0.1 \%}$
100.0\%	52.0	52.0	0.0	0.1\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probobaility } \end{gathered}$(\%)	September			RelativeDifference (\%)
	${ }^{\text {DCR } 2015 \text { Without }} \begin{aligned} & \text { Proiect }\end{aligned}$	DCR 2015 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGFF) } \end{aligned}$	
		$\underset{\substack{\text { (DEGF) }}}{\text { Monthy Temperature }}$		
0.0\%	67.6	64.8	-2.8	-4.1\%
1.2\%	64.9	63.4	-1.5	-2.3\%
2.5\%	64.4	63.2	-1.2	-1.9\%
3.7\%	63.1	58.5	-4.6	-7.3\%
4.9\%	62.5	58.2	-4.2	
6.2\%	61.2	58.2	-3.0	-4.9\%
7.4\%	60.6	58.2	-2.5	-4.1\%
8.6\%	60.1	57.9	-2.2	-3.6\%
9.9\%	59.5	57.9	-1.5	-2.6\%
11.1\%	59.0	57.7	-1.3	-2.2\%
12.3\%	58.9	57.7	-1.3	-2.1\%
13.6\%	58.9	57.6	-1.3	-2.1\%
14.8\%	58.8	57.6	-1.3	-2.1\%
16.0\%	58.5	57.5	-1.0	-1.7\%
17.3\%	58.5	57.5	-1.1	-1.8\%
18.5\%	58.5	57.4	-1.1	-1.9\%
19.8\%	58.5	57.3	-1.2	-2.1\%
21.0\%	58.5	57.3	-1.2	-2.0\%
22.2\%	58.4	57.2	-1.2	-2.1\%
23.5\%	58.2	57.0	-1.1	-1.9\%
24.7\%	58.1	57.0	-1.2	-2.0\%
25.9\%	58.1	57.0	-1.2	-2.0\%
27.2\%	57.9	56.8	-1.1	-1.9\%
28.4\%	57.8	55.6	-1.2	-2.0\%
29.6\%	57.7	56.6	-1.2	-2.0\%
30.9\%	57.7	56.5	-1.3	-2.2\%
${ }^{32.1 \%}$			-1.4	-2.4\%
33.3\%	57.6	56.3	-1.4	-2.4\%
34.6\%	57.4	55.2	-1.2	-2.0\%
35.8\%	57.4	55.2	-1.1	-2.0\%
37.0\%	57.1	56.1	-0.9	-1.6\%
38.3\%	56.9	55.0	-0.9	-1.5\%
39.5\%	56.8	56.0	-0.8	-1.5\%
40.7\%	56.7	55.9	-0.8	-1.4\%
42.0\%	56.7	55.9	-0.8	-1.4\%
43.2\%	56.6	55.8	-0.9	-1.5\%
44.4\%	56.5	55.6	-1.0	-1.7\%
${ }^{45.79 \%}$	56.5 56.5	55.6 55.5	-1.0	-1.78\%
48.1\%	56.5	55.5	-1.0	-1.8\%
49.4\%	56.4	55.5	-0.9	-1.6\%
50.6\%	56.1	55.4	-0.6	-1.2\%
51.9\%	55.9	55.4	-0.5	-0.8\%
53.1\%	55.8	55.3	-0.5	-0.9\%
54.3\%	55.8	55.3	-0.5	-0.9\%
55.6\%	55.3	55.2	-0.1	-0.1\%
56.8\%	55.2	55.1	-0.1	-0.3\%
58.0\%	55.2	55.1	-0.2	-0.3\%
59.3\%	55.2	55.0	-0.2	-0.4\%
	55.2	54.7	-0.4	-0.8\%
${ }^{61.77 \%}$	55.0	54.7	-0.2	-0.4\%
63.0\%	54.9 54.9	54.6 54.6 5	-0.3	-0.6\%
${ }^{64.2 \%}$	54.9	54.6	-0.3	-0.5\%
65.4\%	54.6 54.6	54.6	0.0	-0.1\%
66.7\%	54.6	54.6	0.0	0.0\%
67.9\%	54.3	54.1	-0.2	-0.4\%
69.1\%	54.3	53.8	-0.5	-1.0\%
70.4\%	54.0	53.7	-0.3	-0.5\%
71.6% 72880	54.0	53.7	-0.3	-0.5\%
72.8\%	53.8	53.5	-0.3	-0.6\%
74.19\%	53.7	53.4	-0.3	-0.6\%
75.3\%	53.7 536	$\begin{array}{r}53.3 \\ 53.3 \\ \hline\end{array}$	-0.4	-0.7\%
76.5\%	53.6 535	${ }_{53}^{53.3}$	-0.3	-0.6\%
777.8\%	53.5 53.4 5.	53.3 532 5.	-0.2	-0.4\%
79.0\%	53.4	53.2	-0.1	-0.3\%
80.2\%	53.4	53.2	-0.1	-0.3\%
81.5\%	53.3	53.1	-0.2	-0.4\%
82.7\%	53.3 53 5.3	53.1	-0.2	-0.4\%
84.0% 85020	53.3	53.0	-0.3	-0.6\%
${ }^{85.2 \%} 8$	- ${ }_{53.2}$	53.0 52.9	-0.3	-
87.7\%	53.2	52.9	-0.3	-0.6\%
88.9\%	53.2	52.9	-0.3	-0.6\%
90.1\%	53.1	52.8	-0.3	-0.5\%
91.4\%	53.0	52.5	-0.6	-1.1\%
92.6\%	${ }_{527}^{52.9}$	52.4 52.4	-0.6	-1.19\%
93.8\%	52.7	${ }_{52.3}^{52.3}$	-0.4	-0.8\%
95.1\%	52.4	52.2	-0.3	-0.5\%
96.3\% 97.5%	${ }_{52.3}$	51.7	-0.6	-1.2\%
98.3\%	51.5	51.0	-0.5	-0.9\%
100.0\%	51.5	51.0	-0.5	-0.9\%

Table SQ5-1b
Sacramento River a t ellys Ferry, Monthly Temperature

			June to Septem	
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \\ \text { low } \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { DCR 2015 Without } \\ \text { Proiet } \end{array} \\ \hline \end{gathered}$	DCR 2015 With Project		Realitive
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	Difference (DEGF)	Difference (\%)
0.0\%	61.3	59.1	-2.2	-3.5\%
1.2\%	60.0	58.4	${ }_{-1.7}$	-2.8\%
2.5\%	59.4	58.1	-1.3	-2.2\%
3.7\%	59.3	57.7	-1.6	-2.7\%
4.9\%	59.0	57.7	-1.3	-2.1\%
6.2\%	58.6	57.7	-0.9	-1.5\%
7.4\%	58.5	57.6	-0.9	-1.6\%
8.6\%	57.9	57.5	-0.5	-0.8\%
9.9\%	57.6	57.4	-0.1	-0.3\%
11.1.1\%	57.3	57.2	-0.2	-0.3\%
123\% ${ }_{\text {13.6\% }}$	57.3 57.3	56.9 56.8	-0.4 -0.6	-
14.8\%	57.2	56.7	-0.5	-0.9\%
16.0\%	57.0	55.6	-0.4	-0.6\%
17.3\%	56.9	56.5	-0.4	-0.7\%
18.5\%	56.7	56.4	-0.3	-0.5\%
19.8\%	55.7	55.4	-0.3	-0.5\%
21.0\%	56.5	56.3	-0.2	-0.3\%
22.2\%	56.4	56.2	-0.1	-0.3\%
23.5\%	56.3	56.2	-0.1	-0.2\%
24.7\%	56.3	56.1	-0.2	-0.3\%
${ }^{25.9 \%}$	56.2 56.2	56.0 55.9	-0.2 -0.3	-0.3\%
28.4\%	56.0	55.9	-0.2	-0.3\%
29.6\%	55.0	55.9	-0.2	-0.3\%
30.9\%	55.0	55.8	-0.2	-0.3\%
32.1\%	56.0	55.7	-0.3	-0.5\%
33.3\%	55.9	55.6	-0.3	-0.5\%
34.6\%	55.9	55.6	-0.2	-0.4\%
35.8\%	55.8	55.5	-0.2	-0.4\%
37.0\%	55.8	55.5	-0.2	-0.4\%
38.3\%	55.5	55.5	0.0	0.0\%
39.5\%	55.5	55.5	0.0	0.0\%
40.7\%	55.5	55.4	-0.1	-0.1\%
42.0\%	55.5	55.4	-0.1	-0.2\%
43.2\%	55.5	55.3	-0.1	-0.2\%
44.4\%	55.4	55.3	-0.1	-0.1\%
45.7\%	55.4	55.3	-0.1	-0.2\%
46.9\%	55.4	55.2	-0.1	-0.2\%
48.1\%	55.3	55.2	-0.1	-0.1\%
49.4\%	${ }_{55.3}^{55.3}$	55.1	-0.2	-0.3\%
50.6\%	55.1	55.0	-0.1	-0.2\%
51.9\%	55.1	55.0	-0.1	-0.2\%
	55.1 55.0	54.9 54.9	-0.2 -0.1	-0.0.0\%
55.6\%	55.0	54.9	-0.2	-0.3\%
56.8\%	55.0	54.9	-0.1	-0.3\%
58.0\%	55.0	54.8	-0.2	-0.4\%
59.3\%	54.9	54.8	-0.1	-0.3\%
60.5\%	54.9	54.8	-0.1	-0.2\%
61.7\%	54.9	54.7	-0.1	-0.3\%
-63.0\%	54.8	54.7 54.7	-0.1	-0.2\%
65.4\%	$\begin{array}{r}54.8 \\ \hline\end{array}$	${ }_{54.7}$	-0.1	-0.1\%
66.7\%	54.8	54.7	-0.1	-0.2\%
67.99\%	54.7	54.7	0.0	-0.1\%
69.1\%	54.7	54.6	0.0	-0.1\%
70.4\%	54.6 54.6	54.6 54.6	0.0	0.0\%
71.6\%	54.6 54.6	54.6 54.5 54	-0.1	-0.1\%
72.8\%	54.6	54.5	-0.1	-0.1\%
74.19% 75.3%	54.6 54.5	54.5	0.0	-0.1\%
76.5\%	54.4	54.4	0.0	-0.0\%
77.8\%	54.4	54.4	0.0	0.1\%
79.0\%	54.4	54.4	0.0	0.1\%
80.2\%	54.3	54.4	0.1	0.1\%
81.5\%	54.3	54.4	0.0	0.0\%
- 82.79%	54.3 54.3 54	54.3 54. 54	0.0	${ }^{-0.10}$
84.0\%	54.3	54.2	0.0	${ }^{-0.1 \%}$
85.2\% ${ }^{86.4 \%}$	54.2 54.1	54.1 540	-0.2	${ }_{-0.0}^{-0.3 \%}$
87.7\%	54.0	53.9	-0.1	-0.2\%
88.9\%	${ }_{54.0}$	53.9	-0.1	-0.2\%
90.1\%	53.9	53.8	-0.1	-0.2\%
91.4\%	${ }_{53.8}$	53.6	-0.2	-0.3\%
93.8\%	53.6	${ }_{53.5}$	-0.1	-0.2\%
95.1\%	53.5	53.5	0.0	-0.1\%
96.3\%	53.4 53.3	53.4 53. 5	0.0	${ }_{0}^{0.1 \%}$
97.5\%	${ }_{53}^{53.3}$	${ }_{53}^{53.3}$	0.1	0.1\%
98.8% 100.0\%	53.2 52.9	53.2 53	0.0	-0.1\%
100.0\%	52.9	53.0	0.1	0.2\%

Figure SQ6-1b
Sacramento River at Bend Brider
Sacramento River at Bend Bridge, Monthly Temperatur

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	October			
	$\underset{\substack{\text { DCR } 2015 \text { Without } \\ \text { Proiect }}}{ }$	DCR 2015 With Project		Relative
	Monthy Temperature	Monthy Temperature	Difference (DEGF)	Difference (\%)
0.0\%	62.6	62.7	0.0	0.0\%
1.2\%	61.7	61.9	0.2	0.3\%
2.5\%	61.1	61.4	03	\%
3.7\%	60.8	61.2	0.4	0.7\%
4.9\%	59.6	58.3	-1.4	-2.3\%
6.2\%	58.5	58.2	-0.3	-0.5\%
7.4\%	58.0	58.2	0.2	0.4\%
8.6\%	57.8	57.7	-0.1	-0.1\%
9.9\%	57.8	57.4	-0.3	-0.6\%
11.1\%	57.2	57.4	0.2	0.3\%
12.3\%	57.2	57.3	0.1	0.2\%
13.6\%	57.2	57.2	0.0	0.0\%
14.8\%	57.2	57.2	0.0	0.1\%
16.0\% 17.3%	57.1 57.0	57.2 57.2	0.1 0.2	0.2\% 0.4
18.5\%	56.9	57.1	0.2	0.4\%
19.8\%	56.9	56.9	0.0	0.1\%
21.0\%	56.8	56.9	0.1	0.1\%
22.2\%	56.8	56.8	0.0	0.0\%
23.5\%	56.7	56.8	0.1	0.1\%
24.7\%	56.7	55.8	0.1	0.2\%
25.9\%	55.6	56.7	0.1	0.3\%
27.2\%	56.5	56.7	0.2	0.4\%
28.4\%	56.4	56.6	0.1	0.2\%
29.6\%	56.4	56.5	0.2	0.3\%
30.9\%	56.3	56.5	0.2	0.3\%
32.1\%	56.3	56.5	0.2	0.3\%
33.3\%	56.2	56.5	0.3	0.5\%
34.6\%	56.2	56.3	0.1	0.2\%
35.8\%	56.2	56.3	0.1	0.1\%
37.0\%	56.1	56.2	0.1	0.3\%
38.3\%	55.1	55.2	0.2	0.3\%
39.5\%	55.0	55.2	0.2	0.4\%
- 40.70%	56.0 56.0	56.2 56.2	0.2 0.2	${ }_{0}^{0.3 \% \%}$
43.2\%	56.0	56.1	0.1	0.2\%
44.4\%	56.0	56.1	0.1	0.2\%
45.7\%	56.0	56.0	0.0	0.0\%
46.9\%	55.0	55.9	0.0	-0.1\%
48.1\%	55.9	55.9	0.0	0.0\%
49.4\%	55.9	55.8	-0.1	-0.1\%
50.6\%	55.8	55.8	0.0	0.0\%
51.9\%	${ }_{55.8}^{55}$	55.7	-0.1	-0.2\%
${ }^{531.10 \%}$	55.8 55.7	55.7 55.6	-0.1 -0.1	-0.0.2\%
55.6\%	55.7	55.6	-0.1	-0.1\%
56.8\%	557 557 557	55.5	-0.1	-0.2\%
58.0\%	55.7 556	55.5 555	-0.1	-0.2\%
59.3\%	55.6 556 55	55.5 555 55	-0.1	${ }^{-0.1 \%}$
60.5\% 61.7%	55.6 55.6	55.5 55.5	-0.1 -0.1	-0.0.1\%
63.0\%	55.6	55.4	-0.1	-0.3\%
64.2\%	55.6	55.4	-0.2	-0.3\%
65.4\%	55.6	55.4	-0.2	-0.3\%
66.7\%	55.6	55.4	-0.2	-0.3\%
67.9\%	55.5	55.3	-0.2	-0.3\%
69.1\%	55.5	55.3	-0.2	-0.3\%
70.4\%	55.4 55. 55	55.3 553 5.3	-0.1	-0.1\%
71.6\%	${ }_{55.3}$	55.3	0.0	0.0\%
72.8\%	55.3	55.3	0.0	0.0\%
74.19\%	55.3 553 55	55.3 55	0.0	0.0\%
76.5\%	55.2	55.2	0.0	0.0\%
77.8\%	55.2	55.2	0.0	0.1\%
79.0\%	55.1	55.2	0.1	0.1\%
80.2\%	55.1	55.2	0.1	0.1\%
81.5\%	55.1	55.2	0.1	0.1\%
-	55.0 55.0	55.1 55.0	0.1 0.0	0.0\%
85.2\%	55.0	55.0	0.0	0.0\%
86.4\%	54.9	54.9	0.0	0.0\%
87.7\%	54.9	54.8	-0.1	-0.2\%
88.9\%	54.8	54.8	0.0	0.0\%
90.1\%	54.8	54.7	-0.1	-0.1\%
91.4\%	54.8	54.6	-0.2	-0.3\%
92.6\%	54.8	54.6	-0.2	-0.3\%
93.8\%	54.8	54.3	-0.5	-0.8\%
${ }_{9}^{95.36 \%}$	54.7 54.5	53.9 53.8	-0.9 -0.7	${ }_{-1.3 \%}^{-1.6 \%}$
97.5\%	54.3	53.5	-0.8	-1.5\%
98.8\%	54.2	53.5	-0.7	-1.3\%
100.0\%	54.2	53.5	0.0	-1.3\%

Proabaility of Exceedance									
$\begin{gathered} \text { Percent } \\ \text { Excedance } \\ \text { Probabilily } \end{gathered}$	November			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	$\begin{gathered} \text { Percent } \\ \text { Excedance } \\ \text { Probability } \\ \text { Con } \end{gathered}$	December		$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (DEGFF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	$\underset{\substack{\text { DCR } 2015 \text { Without } \\ \text { Proiect }}}{ }$	DCR 2015 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGFF) } \end{aligned}$			OCR 2015 Without	DCR 2015 With Project		
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)				Monthly Temperature (DEGF)	Monthly Temperature (DEGF)		
0.0\%	55.8	55.9	0.1	0.1\%		52.6	52.8	0.2	
1.2\%	55.7	55.7	0.1	0.1\%	1.2\%	51.7	51.6		-0.1\%
2.5\%	55.6	55.6	0.1	0.1\%	2.5\%	51.6	51.2	-0.4	-0.8\%
3.7\%	55.5	55.6	0.0	0.0\%	3.7\%	51.3	51.1	-0.2	-0.4\%
4.9\%	55.5	55.6	0.0	0.1\%	4.9\%	50.6	50.7	0.1	0.2\%
6.2\%	55.4	55.5	0.1	0.1\%	6.2\%	50.6	50.5	-0.1	-0.2\%
7.4\%	55.3	55.3	0.0	0.0\%	7.4\%	50.5	50.4	-0.1	-0.2\%
8.6\%	55.3	55.1	-0.2	-0.3\%	8.6\%	50.5	50.4	0.0	-0.1\%
9.9\%	55.2	55.0	-0.1	-0.3\%	9.9\%	50.2	50.2	0.0	0.0\%
11.1\%	55.0	55.0	0.0	0.1\%	11.1\%	50.1	50.1	-0.1	-0.1\%
12.3\%	55.0	55.0	0.0	0.1\%	12.3\%	49.9	50.0	0.0	0.0\%
13.6\%	54.9	55.0	0.0	0.0\%	13.6\%	49.9	49.9	0.0	0.0\%
14.8\%	54.9	54.9	0.0	0.1\%	14.8\%	49.9	49.9	0.0	0.0\%
16.0\%	54.8	54.9	0.1	0.1\%	16.0\%	49.8	49.9	0.0	0.1\%
17.3\%	54.8	54.8	0.0	0.1\%	17.3\%	49.8	49.8	0.0	-0.1\%
18.5\%	54.8	54.7	-0.1	-0.1\%	18.5\%	49.7	49.8	0.0	0.1\%
19.9\%	54.7 547	54.7	-0.1	-0.19\%	19.8\%	49.5	49.8	0.2	0.4\%\%
21.0\%	54.7	54.7	-0.1	-0.1\%	21.0\%	49.4	49.8	0.4	0.8\%
22.2\%	54.6	54.6	-0.1	-0.1\%	22.2\%	49.3	49.7	0.4	0.8\%
23.5\%	54.5	54.6	0.0	0.1\%	23.5\%	49.3	49.6	0.3	0.6\%
24.7\%	54.5	54.5	0.0	0.1\%	24.7\%	49.2	49.5	0.3	0.5\%
25.9\%	54.4	54.4	-0.1	-0.1\%	25.9\%	49.2	49.2	0.0	0.1\%
27.2\%	54.4	54.3	-0.1	-0.2\%	27.2\%	49.1	49.1	0.1	0.1\%
28.4\%	54.1	54.3	0.1	0.2\%	28.4\%	48.9	49.0	0.1	0.3\%
29.6\%	54.1	54.2	0.1	0.2\%	29.6\%	48.9	49.0	0.1	0.3\%
${ }^{30.9 \%}$ 32.1\%	54.0 54.0	54.2 54.2	0.2 0.2	- 0.4%	- ${ }_{\text {30.9\% }}$	48.9 48.8	48.9 48.9	0.0 0.0	0.0\% 0
33.3\%	54.0	54.2	0.2	0.4\%	33.3\%	48.6	48.6	0.0	0.0\%
34.6\%	53.9	54.0	0.1	0.2\%	34.6\%	48.6	48.6	0.0	0.0\%
35.\%\%	53.9	54.0	0.1	0.1\%	35.\%	48.5	48.5	0.0	-0.1\%
37.0\%	53.9	53.9	0.0	0.0\%	37.0\%	48.5	48.5	0.0	0.0\%
38.3\%	53.8	53.8	0.0	0.1\%	38.3\%	48.4	48.5	0.1	0.1\%
39.5\%	53.7	53.8	0.1	0.1\%	39.5\%	48.4	48.5	0.0	0.1\%
40.7\%	53.7	53.8	0.1	0.1\%	40.7\%	48.4	48.5	0.1	0.1\%
42.0\%	53.6	53.7	0.1	0.2\%	42.0\%	48.3	48.4	0.1	0.2\%
43.2\%	53.5	53.7	0.2	0.4\%	43.2\%	48.3	48.4	0.1	0.2\%
${ }^{44.49 \%}$	53.4 53.4	53.6 53.6	${ }_{0}^{0.2}$	0.4\%	${ }_{4}^{44.4 \%}$	48.3 48.3	48.4 48.4	${ }_{0}^{0.1}$	0.2\%
46.9\%	53.4	53.5	0.1	0.2\%	46.9\%	48.3	48.4	0.1	0.2\%
48.19\%	${ }_{53,3}^{53.3}$	53.4	0.1	0.1\%	48.19\%	48.2	${ }^{48.3}$	0.1	0.3\%
49.4\%	53.3	53.4	0.0	0.0\%	4.4.4\%	48.2	48.3	0.1	0.3\%
50.6\%	53.3	53.3	0.1	0.1\%	50.6\%	48.2	48.3	0.1	0.2\%
51.9\%	53.3	53.0	-0.3	-0.5\%	51.9\%	48.2	48.3	0.1	0.2\%
53.1\%	53.1	53.0	-0.1	-0.3\%	53.1\%	48.2	48.2	0.1	0.2\%
54.3\%	53.0	52.9	-0.1	-0.2\%	54.3\%	48.2	48.2	0.1	0.1\%
55.6\%	53.0	52.8	-0.2	-0.3\%	55.6\%	48.1	48.2	0.1	0.3\%
56.8\%	${ }_{55}^{53.0}$	52.7 527	-0.2	-0.4\%	56.8\%	48.1	48.2	0.2	${ }^{0.3 \%}$
58.0\% 593	52.9 52.9	52.7 525	-0.3	-0.0\%	- 58.00%	48.0 48.0	${ }_{48.2}^{48.2}$	0.2 0.2	${ }^{0.3 \%}$
60.5\%	52.7	52.5	-0.2	-0.4\%	60.5\%	47.9	48.1	0.2	0.4\%
61.7\%	52.5	52.5	-0.1	-0.1\%	61.7\%	47.9	48.1	0.2	0.4\%
63.0\%	52.5	52.5	-0.1	-0.1\%	63.0\%	47.9	48.0	0.2	0.3\%
64.2\%	52.5	52.4	-0.1	-0.2\%	64.2\%	47.9	48.0	0.2	0.4\%
65.4\%	52.5	52.4	-0.1	-0.2\%	65.4\%	47.8	48.0	0.2	0.3\%
66.7\%	52.4	52.4	-0.1	-0.1\%	66.7\%	47.7	47.9	0.3	0.6\%
67.9\%	52.4	52.3	-0.1	-0.1\%	67.9\%	47.6	47.9	${ }^{0.3}$	0.7\%
69.1\%	52.4	52.3	-0.1	-0.1\%	69.1\%	47.6	47.9	${ }^{0.3}$	0.6\%
70.4\%	52.3	52.3	-0.1	-0.1\%	70.4\%	47.6	47.9	0.3	0.6\%
71.6\% ${ }^{72.8 \%}$	52.3 52.3	52.3 52.2	-0.1 -0.1	-0.0.0\%	71.6\% ${ }^{72.8 \%}$	47.6 47.5	47.7 47.7	0.3 0.2	0.6\%\%
74.1\%	52.3	52.2	-0.1	-0.2\%	74.1\%	47.5	47.6	0.1	0.3\%
75.3\%	52.2	52.2	0.0	0.0\%	75.3\%	47.3	47.5	0.2	0.4\%
76.5\%	52.2	52.2	0.0	0.0\%	76.5\%	47.3	47.5	0.2	0.4\%
77.8\%	52.1	52.1	0.0	0.0\%	77.8\%	47.3	47.5	0.2	0.4\%
79.0\%	52.1	52.1	0.0	0.0\%	79.0\%	47.3	47.4	0.1	0.3\%
80.2\%	52.0	52.0	0.1	0.1\%	80.2\%	47.3	47.4	0.1	0.3\%
81.5\%	52.0	52.0	0.1	0.1\%	81.5\%	47.2	47.4	0.1	0.3\%
${ }^{82.79 \%}$	${ }_{51.8}^{518}$	52.0 520	${ }^{0.1}$	0.3\%\%	82.7\%	47.2 472	47.4 473	0.1	0.3\%
- ${ }^{84.0 \%}$ 85\%	51.8 51.8	52.0 51.9	${ }_{0}^{0.1}$	${ }_{0}^{0.3 \%}$	-84.0\%	47.2 47.0	47.3 47.3	0.1 0.3	${ }_{0}^{0.6 \%}$
86.4\%	51.7	51.9	0.1	0.2\%	86.4\%	47.0	47.2	0.3	0.6\%
87.7\%	51.6	51.8	0.2	0.3\%	87.7\%	46.8	47.2	0.4	0.8\%
88.9\%	51.3	51.5	0.2	0.4\%	88.9\%	46.8	47.1	0.2	0.5\%
90.1\%	${ }_{51.3}$	51.4	0.2	0.3\%	90.1\%	46.8	46.9	0.0	0.1\%
91.4\%	51.2	51.4	0.2	0.3\%	91.4\%	46.8	46.9	0.1	0.2\%
92.6\%	51.1	51.4	0.2	0.5\%	92.6\%	46.8	46.9	0.1	0.2\%
93.8\%	51.1	51.3	0.2	0.3\%	93.8\%	46.7	46.8	0.1	0.2\%
95.1\%	51.0	51.0	0.1	0.1\%	95.1\%	46.7	46.8	0.2	0.3\%
${ }_{9}^{96.3 \% \%}$	50.7 50.7	51.0 50.8	${ }_{0.1}^{0.2}$	- ${ }_{0}^{0.5 \%}$	96.3\% ${ }^{97.5 \%}$	46.6 46.3	46.6 46.5	0.0 0.2	0.0.0\%
98.8\%	50.6	50.7	0.1	0.2\%	98.8\%	46.1	46.3	0.2	0.4\%
100.0\%	50.6	50.7	0.1	0.2\%	100.0\%	46.1	46.3	0.2	0.4\%

January				
Percent Exceedance	$\underset{\substack{\text { DCR } 2015 \text { Without } \\ \text { Prout }}}{ }$	DCR 2015 With	AbsoluteDifference (DEGF)	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
Probability	Morthy T Temperature	Monthly Temperature		
(\%)	(DEGF)	(DEGF)		
0.0\%	49.2	49.3	0.1	0.3\%
1.2\%	48.4	48.5	0.0	0.0\%
2.5\%	48.1	48.4	0.4	
3.7\%	48.1	48.0	0.0	${ }^{-0.1 \%}$
4.9\%	48.0	48.0	0.0	${ }^{-0.19 \%}$
6.2\%	48.0	47.8	-0.2	-0.5\%
7.4\%	47.9	47.8	-0.1	
8.9\%	47.7	47.8	0.1	
9.9\%	47.7	47.7	0.0	0.00
11.1\%	47.6	47.6	0.0	0.1\%
${ }^{12.35 \%}$	47.5	47.5	0.0	0.1\%
13.6\%	47.5	47.5	0.0	0.0\%
${ }_{\text {16.0\% }}$	${ }_{47.4}$	${ }_{47.3}$	0.0	-0.1\%
17.3\%	47.3	47.3	0.0	0.0\%
18.5\%	47.2	47.3	0.0	0.0\%
19.8\%	46.8	47.0	0.2	0.4\%
21.0\%	46.8	46.8	0.1	0.2\%
22.2\%	46.8	46.8	0.1	0.2\%
23.5\%	46.7	46.7	0.0	0.0\%
24.7\%	46.7	46.7	0.0	0.0\%
25.9\%	46.7	46.7	0.0	0.1\%
27.2\%	46.7	46.7	0.0	0.1\%
28.4\%	46.6	46.7	0.1	0.2\%
29.6\%	46.6	46.7	0.1	0.2\%
30.9\%	46.6	46.6	0.0	0.1\%
32.1\%	46.5	46.6	0.1	0.1\%
33.3\%	46.5	46.6	0.0	${ }^{0.1 \%}$
34.6% 35.8%	46.5 46.5	46.6 46.6	${ }_{0.1}^{0.1}$	${ }^{0.12 \%}$
37.0\%	46.4	46.6	0.1	0.2\%
38.3\%	46.4	46.5	0.1	0.2\%
39.5\%	46.4	46.5	0.1	0.2\%
40.7\%	46.4	46.5	0.1	0.2\%
${ }^{42.0 \%}$	46.4	46.4	${ }^{0.1}$	${ }^{0.1 \%}$
43.2\%	46.4	46.4	0.1	0.1\%
4.4.4\%	46.4	46.4	0.1	0.1\%
45.7\%	46.4	46.4	0.1	0.1\%
46.9\%	46.3	46.4	0.1	0.1\%
48.19\%	46.3	46.4	0.1	0.2\%
49.4\% 50.6%	${ }_{46.2}^{46.3}$	${ }_{46.3}^{46.4}$	${ }_{0.1}^{0.1}$	${ }_{0}^{0.3 \%}$
51.9\%	46.1	46.3	0.1	0.2\%
53.1\%	46.1	46.2	0.1	0.2\%
54.3\%	46.1	46.2	0.1	0.2\%
55.\%	46.1	46.1	0.0	0.1\%
56.8\%	46.1	46.1	0.0	0.0\%
58.0\%	46.0	46.1	0.0	0.0\%
59.3\%	46.0	46.1	0.0	0.0\%
${ }^{60.5 \%}$	46.0	46.0	0.0	${ }^{0.00 \%}$
63.0\%	46.0	46.0	0.0	0.0\%
64.2\%	46.0	46.0	0.0	0.0\%
65.4\%	45.9	46.0	0.0	0.1\%
66.7\%	45.9	45.9	0.0	0.0\%
${ }^{67.99 \%}$	45.9	45.9	0.0	0.0\%
69.1\%	45.8	45.9	0.1	0.2\%
70.4\%	45.8	45.9	0.1	0.2\%
71.6\%	45.8	45.9	0.1	0.2\%
72.8\%	45.8	45.9	0.1	0.2\%
74.1\%	45.7	45.8	0.1	0.2\%
75.3\%	45.7	45.7	0.0	${ }^{0.00 \%}$
76.7\%		45.7	0.0	0.1\%
7.8\%	45.7	45.7	0.0	0.0\%
79.0\%	45.7	45.7	0.1	${ }^{0.1 \%}$
80.2\%	45.6	45.7	0.0	0.10\%
${ }^{81.5 \%}$	${ }^{45.6}$	45.7	${ }^{0.1}$	0.2\%
-	${ }_{45.5}^{45.5}$	45.7 45.5	0.2	0.4\%
85.2\%	45.4	45.4	0.0	0.0\%
86.4\%	45.4	45.4	0.0	0.0\%
87.7\%	45.4	45.4	0.0	0.0\%
88.9\%	45.4	45.4	0.0	0.0\%
90.1\%	45.4	45.4	0.0	0.0\%
91.4\%	45.3	45.3	0.0	-0.1\%
92.6\%	45.2	45.2	0.0	0.0\%
93.8\%	45.1	45.1	0.0	0.0\%
95.1\%	45.1	45.1	0.1	0.1\%
96.3\%	44.9	45.1	0.2	0.4\%
97.5\%	44.8	45.0	0.1	0.3\%
98.8\%	44.6	44.9	0.2	0.5\%
100.0\%	44.6	44.9	0.2	0.5\%

February				
Percent Exceedance	DCR 2015 Without Proiet	DCR 2015 With Project		
Probability	Monthy Temperature	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGGF) } \end{aligned}$	Difference (\%)
0.0\%	50.6	50.7	0.1	0.3\%
1.2\%	49.4	49.4	0.0	-0.1\%
2.5\%	49.2	49.2	0.0	0.0\%
3.7\%	49.1	49.1	0.0	0.0\%
4.9\%	48.6	48.7	0.1	0.1\%
6.2\%	48.5	48.6	0.1	0.2\%
7.4\%	48.4	48.6	0.2	0.5\%
8.6\%	48.3	48.4	0.1	0.2\%
9.9\%	48.3	48.3	0.1	0.2\%
11.1.1\%	48.3	48.3	0.1	0.2\%
12.3\%	48.2	48.2	0.0	0.0\%
13.6\%	48.2	48.2	0.0	0.0\%
${ }^{14.0 \% \%}$	${ }_{48.1}^{48.2}$	${ }_{48.1}^{48.2}$	0.1	0.2\%
17.3\%	48.1	48.1	0.0	0.0\%
18.5\%	48.0	48.0	0.0	0.0\%
19.8\%	47.8	47.9	0.1	0.2\%
21.0\%	47.8	47.8	0.0	0.0\%
22.2\%	47.7	47.7	0.0	0.0\%
23.5\%	47.7	47.7	0.0	0.0\%
24.7\%	47.6	47.7	0.1	0.2\%
25.9\%	47.6	47.6	0.0	0.1\%
27.2% 28.4%	47.6 47.6	47.6 47.6	0.0 0.0	${ }_{0}^{0.1 \%}$
29.6\%	47.6	47.6	0.0	0.0\%
30.9\%	47.5	47.6	0.0	0.0\%
32.1\%	47.5	47.5	0.1	0.2\%
33.3\%	47.4	47.5	0.0	0.1\%
34.6\%	47.3	47.4	0.1	0.2\%
35.8\%	47.3	47.3	0.1	0.2\%
37.0\%	47.3	${ }^{47.3}$	0.1	0.1\%
38.3\%	47.2 47.2	${ }_{47.3}^{47.3}$	0.0	${ }^{0.01 \%}$
40.7\%	47.2	47.2	0.0	0.1\%
42.0\%	47.2	47.2	0.0	0.1\%
43.2\%	47.2	47.2		0.1\%
44.4\%	47.1	47.0 470	-0.1	-0.2\%
45.79\%	47.0 47.0	47.0 46.9	0.0 0.0	-0.1\%
48.1\%	46.9	46.9	0.0	0.0\%
49.4\%	46.9	46.9	0.0	0.0\%
50.6\%	46.9	46.9	0.0	0.0\%
51.9\%	46.9	46.9	0.0	0.0\%
- ${ }_{\text {54.3\% }}$	46.9 46.9	46.9 46.9	${ }_{0}^{0.0}$	${ }_{\text {- }}^{\text {-0.1\% }}$
55.6\%	46.8	46.8	0.0	0.0\%
56.8\%	46.8	46.8	0.0	0.0\%
58.0\%	46.8	46.8	0.0	0.0\%
59.3\%	46.7	46.7	0.1	0.1\%
60.5\%	46.7	46.7	0.0	0.0\%
61.7\%	46.6	46.6	0.1	0.1\%
63.0\%	46.5	46.5	0.0	0.0\%
${ }^{64.2 \%}$	46.4	46.5	0.1	0.2\%
${ }^{65.49 \%}$	46.3	46.4	0.1	0.3\%
66.7\%	46.3	46.3	0.0	0.0\%
- 67.9%	46.2 46.2	${ }_{46.2}^{46.2}$	0.0 0.0	-0.1\%
70.4\%	46.2	46.1	0.0	-0.1\%
71.6\%	46.1	46.1	0.0	0.0\%
72.8\%	46.1	46.1	0.0	0.0\%
74.1\%	46.1	46.1	0.0	0.1\%
75.3\%	46.1	46.0	0.0	-0.1\%
76.5\%	46.0	46.0	0.0	0.0\%
77.8\%	46.0	46.0	0.0	0.0\%
79.0\%	46.0	46.0	0.0	-0.1\%
80.2\%	46.0	45.9	0.0	0.0\%
81.5\%	45.9	45.9	0.0	0.0\%
822.70\% 84.0%	${ }_{45.9}^{45.9}$	${ }_{45.9}^{45.9}$	0.0 0.0	-0.0\%
85.2\%	45.8	45.9	0.0	0.1\%
86.4\%	45.8	45.9	0.1	0.1\%
87.7\%	45.8	45.8	0.0	0.1\%
88.9\%	45.7	45.8	0.1	0.2\%
90.1\%	45.7	45.7	0.1	0.2\%
91.4\%	45.7	45.7	0.0	0.0\%
${ }^{92.8 .8 \%}$	${ }_{45.5}^{45.6}$	${ }_{45.6}^{45.7}$	${ }_{0.1}^{0.0}$	${ }_{0}^{0.1 \%}$
95.1\%	45.4	45.4	0.0	0.0\%
96.3\%	45.4 15.4	45.4	0.0	-0.1\%
${ }^{97.5 \%}$	$\begin{array}{r}45.4 \\ \hline 152\end{array}$	45.4	0.0	0.0\%
98.8\% 100.0\%	${ }_{45.2}^{45.2}$	${ }_{45.2}^{45.2}$	$\stackrel{-0.1}{-0.1}$	-0.0.2\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	May			RelativeDifference (\%)
	${ }^{\text {DCR } 2015 \text { Without }} \begin{aligned} & \text { Proiect }\end{aligned}$	DCR 2015 With Project	$\begin{gathered} \begin{array}{c} \text { Absolute } \\ \text { Difference } \\ \text { (DEGF) } \end{array} \\ \hline \end{gathered}$	
	Monthly Temperature (DEGF)	$\xrightarrow{\text { Monthly Temperature }}$ (DEGF)		
0.0\%	59.0	58.8	-0.2	-0.3\%
1.2\%	58.9	58.8	-0.1	-0.2\%
2.5\%	58.1	58.6	0.5	0.8\%
3.7\%	57.4	58.4	1.0	1.7\%
4.9\%	57.4 57.4	58.3 580 58	0.9	${ }_{1}^{1.5 \%}$
7.4\%	57.2	57.9	0.7	1.3\%
8.6\%	57.1	57.9	0.8	1.3\%
9.9\%	57.1	57.6	0.5	0.8\%
11.1\%	57.1	57.2	0.1	0.3\%
12.3\%	57.1	57.2	0.1	0.2\%
13.6\%	57.0	57.1	0.0	0.0\%\%
14.8\%	56.7	57.0	0.3	0.5\%
${ }^{16.0 \%} \times 1.3 \%$	56.7 56.5	56.9 56.9	0.3 0.4	0.5\%\%
18.5\%	56.3	56.9	0.6	1.1\%
19.8\%	${ }_{56.0}$	56.7	0.7	1.3\%
21.0\%	55.0	56.5	0.5	1.0\%
22.2\%	55.9	56.5	0.6	1.0\%
23.5\%	55.9 558 5.9	${ }_{56.4}^{56.4}$	0.5	1.0\%
24.7\%	55.8	56.4	0.6	1.1\%
25.9\%	55.7	56.3	0.6	1.0\%
27.2\%	55.7 557 5.7	56.3 56.3	${ }^{0.6}$	1.0\%
${ }^{28.49 \%}$	55.7 55.6	56.3 56.1	0.6 0.5	-
30.9\%	55.6	56.0	0.4	0.7\%
32.1\%	55.5	56.0	0.4	0.7\%
33.3\%	55.5	55.9	0.4	0.7\%
34.6\%	55.5	55.8	${ }^{0.3}$	0.5\%
35.8\%	55.5 553	55.7 557	${ }^{0.3}$	0.5\%
37.0\%	55.3	55.7	0.4	0.7\%
38.3\%	55.3	55.7	0.4	0.7\%
39.5\%	55.2	55.5	0.2	0.4\%
40.7\%	55.2 551	55.4	${ }^{0.3}$	0.5\%
${ }^{42.3 .2 \%}$	${ }_{55.1}^{55.1}$	55.3 55.3	0.2 0.2	0.4\%
44.4\%	55.1	55.3	0.2	0.3\%
45.7\%	55.0	55.2 551 5.	0.2	0.3\%
${ }^{46.9 \%}$	55.0 550	55.1 55.1	${ }_{0}^{0.1}$	0.1\%
${ }_{49.4 \%}^{48.19 \%}$	55.0 550	$\begin{array}{r}55.1 \\ 551 \\ \hline 5.1\end{array}$	0.1	- 0.2%
50.6\%	55.0	55.1	0.1	0.1\%
51.9\%	55.0	55.0	0.0	0.1\%
53.1\%	54.9	55.0	0.1	0.2\%
54.3\%	54.9	55.0	0.1	0.2\%
55.6\%	54.8 54.7	55.0 55.0	0.2 0.3	0.3\% 0
58.0\%	54.7	55.0	${ }^{0.3}$	0.6\%
59.3\%	54.6	55.0	${ }^{0.3}$	0.6\%
60.5\%	54.6 54.6	54.9 54.9	0.3 0.3	0.5\%
63.0\%	54.5	54.8	0.3	0.6\%
64.2\%	54.5	54.8	0.3	0.6\%
65.4\%	54.5	54.7	0.2	0.4\%
66.7\%	54.4	54.6	0.2	0.4\%
67.9\%	54.4	54.5	0.1	0.2\%
69.1\%	54.4	54.4	0.1	0.1\%
70.4\%	54.3 54.3	54.4 54.4	0.1 0.1	- 0.2%
72.8\%	54.2	54.3	0.1	0.1\%
74.1\%	54.1	54.2	0.1	0.1\%
75.3\%	54.1	54.1	0.0	-0.1\%
76.5\%	54.1	54.1	0.0	${ }^{-0.1 \%}$
77.8\%	54.0	54.0	0.0	0.0\%
79.0\%	54.0	54.0	0.0	0.0\%
80.2\%	54.0	54.0	0.0	0.0\%
81.5\%	53.8	54.0	0.2	0.3\%
82.7% 840%	53.7 537	53.9 537	0.1	0.2\%
885.2\%	53.7	53.7	0.0	0.0\%
86.4\%	53.7	53.6	0.0	0.0\%
87.7\%	53.6	53.3	-0.3	-0.5\%
88.9\%	${ }_{53,5}^{53.5}$	53.2	-0.3	${ }^{-0.5 \%}$
${ }^{90.1 \%}$	53.2 530	53.2 53.0	-0.1	-0.1\%
92.6\%	53.0	53.0	0.0	0.0\%
93.8\%	52.9	52.9	0.0	0.1\%
95.1\%	52.9	52.9	0.0	0.1\%
96.3\%	52.7	52.7	0.0	0.0\%
97.5\%	52.6	52.6	0.0	0.1\%
988.8\% 100.0%	52.5 52.5	52.6 52.6	0.0 0.0	-

June				
PercentExceedanceProbability	$\begin{gathered} \text { DCR 2015 Without } \\ \hline \text { Monthly Toiet } \\ \hline \text { Tomperatrere } \end{gathered}$	DCR 2015 With Project Monthly Temperature (DEGF)	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (EEGF) } \end{aligned}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
0.0\%	59.3		0.0	0.0\%
${ }^{1.25 \%}$	59.9 58.9	59.1 58.9	0.1 0.0	${ }_{0}^{0.0 \% \%}$
3.7\%	58.6	58.6	0.0	0.0\%
4.9\%	58.5	58.3	-0.2	-0.3\%
6.2\%	58.1	58.3	0.1	0.2\%
7.4\%	57.8	58.2	0.4	0.7\%
8.6\%	57.7	57.9	0.1	0.2\%
9.9\%	57.7	57.5	-0.2	-0.3\%
11.11\%	57.5	57.3	-0.2	-0.4\%
13.6\%	57.3	57.1	-0.2	-0.4\%
14.8\%	57.1	56.9	-0.2	-0.3\%
16.0\%	57.1	56.9	-0.2	-0.3\%
17.3\%	56.9	56.9	-0.1	-0.1\%
18.5\%	55.8	55.8	0.0	0.0\%
19.8\%	56.7	56.8	0.1	0.1\%
${ }^{21.0 \%}$	56.7 567	56.8 56.8	0.0 0.1	${ }_{\text {en }}^{0.2 \%}$
${ }_{22.5 \%}^{22.20}$	56.4	55.8	0.3	0.6\%
24.7\%	56.4	56.8	0.4	0.7\%
25.9\%	56.3	56.7	0.4	0.8\%
27.2\%	56.2	56.7	0.5	0.8\%
28.4\%	56.1	56.7	0.5	0.9\%
29.6\%	56.1	56.6	0.6	1.0\%
30.9\%	56.1	55.6	0.5	0.9\%
32.1\%	56.0	56.6	0.5	1.0\%
33.3\%	55.9	56.6	0.7	1.2\%
35.8\%	55.9	56.5	0.6	${ }_{\text {1.1\% }}^{1.2 \%}$
37.0\%	55.8	56.5	0.7	1.2\%
38.3\%	55.8	56.4	0.6	1.2\%
39.5\%	55.7	56.3	0.5	1.0\%
40.7\%	55.7	56.2	0.5	0.9\%
42.0\%	55.7	56.2	0.5	0.9\%
43.2\%	55.7	56.1	0.4	0.6\%
44.4\%	55.7	55.0	0.4	0.7\%
45.7\%	55.6	56.0	0.4	0.8\%
46.9\%	55.4	56.0	0.6	1.0\%
${ }^{48.19 \%}$	55.4 55.4	56.0 56.0	0.6 0.6	${ }_{\text {1.11\% }}^{1.10 \%}$
50.6\%	${ }_{55.3}$	55.0	0.7	1.2\%
51.9\%	55.3	55.9	0.7	1.2\%
53.19\%	55.2 55 5.2	55.9 558	0.6	1.19\%
54.3\%	55.2	55.8	0.7	1.2\%
55.6\%	55.1	55.8	0.7	1.2\%
56.8\%	55.1	55.8	0.7	1.3\%
58.0\%	55.1	55.8	0.7	1.3\%
59.3\%	55.1	55.8	0.7	1.3\%
60.5\%	55.0	55.6	0.6	1.2\%
61.7\%	54.9	55.6	0.7	1.2\%
63.0\%	54.9 54	55.6	0.7	1.2\%
${ }^{64.2 \%}$	54.9	55.6	0.7	1.2\%
${ }^{65.49 \%}$	54.9	55.5 555 5.5	0.7	${ }^{1.2 \%}$
66.79% 6790%	54.9 54.9	55.5 555 55	0.6	${ }_{1}^{1.10}$
69.1\%	54.8	55.4 55	${ }_{0}^{0.5}$	1.0\%
70.4\%	54.8	55.3	0.5	0.8\%
71.6\%	54.8	55.3	0.4	0.8\%
72.8\%	54.8	55.3	0.5	0.9\%
74.1\%	54.8	55.2	0.5	0.8\%
75.3\%	54.7	55.1	0.4	0.7\%
76.5\%	54.6	55.0	0.4	0.7\%
7.3\%	54.6	55.0	0.4	0.7\%
79.0\%	54.5 54.4	55.0 55.0	0.5 0.6	${ }^{1.0 \%}$
81.5\%	54.4	55.0	0.6	1.0\%
82.7\%	54.4	55.0	0.6	1.0\%
84.0\%	54.3	55.0	0.7	1.3\%
85.2\%	54.3	54.9	0.6	1.2\%
86.4\%	54.2	54.8	0.6	1.1\%
87.7\%	54.2	54.8	0.6	${ }^{1.0 \%}$
${ }^{88.9 \%} 9$	54.2 54.1	54.7 54.7	0.5 0.5	- ${ }_{\text {1.0\% }}^{1.0 \%}$
91.4\%	54.0	54.6	0.6	1.2\%
92.6\%	54.0	54.6	0.6	1.2\%
93.8\%	53.9	54.5	0.6	1.1\%
95.1\%	53.9	54.4	0.5	1.0\%
96.3\%	53.4	54.3	0.9	${ }^{1.7 \%}$
97.5\%	53.3	54.2	0.9	1.7\%
98.8\%	53.1	54.1	1.0	1.9\%
100.0\%	53.1	54.1	1.0	1.9\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probobility } \end{gathered}$	September			RelativeDifference (\%)
	${ }^{\text {DCR } 2015 \text { Without }} \begin{aligned} & \text { Proiect }\end{aligned}$	DCR 2015 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Differeence } \\ & \text { (DEGFF) } \end{aligned}$	
		$\underset{\substack{\text { (DEGF) }}}{\text { Monthy Temperature }}$		
0.0\%	67.5	65.1	-2.4	-3.6\%
1.2\%	65.3	63.7	-1.5	-2.4\%
2.5\%	64.8	63.7	-1.1	-1.7\%
3.7\%	63.4	59.7	-3.8	-6.0\%
4.9\%	62.8	59.4	-3.4	
6.2\%	62.6	59.4	-3.3	-5.2\%
7.4\%	61.8	59.4	-2.4	-3.9\%
8.6\%	61.1	59.1	-2.0	-3.2\%
9.9\%	60.6	59.0	-1.6	-2.6\%
11.1\%	60.0	58.8	-1.2	-2.0\%
12.3\%	59.9	58.6	-1.3	-2.2\%
13.6\%	59.9	58.5	-1.3	-2.2\%
14.8\%	59.9	58.5	-1.4	-2.3\%
16.0\%	59.8	58.4	-1.4	-2.4\%
17.3\%	59.7	58.4	-1.3	-2.2\%
18.5\%	59.6	58.2	-1.4	-2.3\%
19.8\%	59.4	58.1	-1.3	-2.2\%
21.0\%	59.4	58.1	-1.3	-2.1\%
22.2\%	59.4	58.0	-1.4	-2.3\%
23.5\%	59.3	58.0	-1.3	-2.2\%
24.7\%	59.2	58.0	-1.3	-2.1\%
25.9\%	59.1	57.9	-1.2	-2.0\%
27.2\%	58.8	57.8	-1.0	-1.7\%
28.4\%	58.7	57.7	-1.1	-1.9\%
29.6\%	58.7	57.5	-1.2	-2.0\%
30.9\%	58.7	57.5	-1.2	-2.0\%
32.1\%	58.6	57.3	-1.3	-2.2\%
33.3\%	58.6	57.3	-1.2	-2.1\%
34.6\%	58.4	57.3	-1.1	-1.9\%
35.8\%	58.4	57.2	-1.1	-2.0\%
37.0\%	58.2	57.1	-1.1	-1.9\%
38.3\%	58.0	57.1	-0.9	-1.6\%
39.5\%	57.9	57.0	-0.9	-1.5\%
40.7\%	57.8	55.9	-0.9	-1.5\%
42.0\%	57.8	55.9	-0.9	-1.6\%
- 43.2%	57.7	56.8	-0.9	-1.5\%
${ }^{44.4 \%}$	57.6 57.6	56.8 56.7	-0.8 -0.8	-1.1.9\%
46.9\%	57.5	56.7	-0.8	${ }_{-1.4 \%}$
48.1\%	57.4	55.6	-0.8	-1.4\%
49.4\%	${ }_{571}^{57.3}$	56.5	-0.7	-1.2\%
50.6\%	57.1	56.3	-0.7	-1.3\%
51.9\%	55.9	${ }_{56.3}$	-0.6	-1.0\%
53.1\%	56.7	55.3	-0.4	-0.8\%
54.3\%	55.6	56.2	-0.4	-0.7\%
55.6\%	56.5	56.1	-0.3	-0.6\%
56.8\%	55.4	56.1	-0.3	-0.5\%
58.0\%	56.2	56.0	-0.3	-0.5\%
59.3\%	56.1	55.9	-0.2	-0.3\%
	55.0	55.9	-0.1	-0.1\%
61.7\% 63.0%	${ }_{55.9}$	55.6 556 5.6	-0.3	-0.5\%
-63.0\%	55.8 55 5.6	55.6 55.	-0.2	-0.4\%
64.2\%	55.6.	55.5 555 5.	0.0	${ }^{-0.1 \%}$
65.4\%	55.5 552	55.5	0.1	0.1\%
66.7\%	55.2	55.3	0.1	0.1\%
67.9\%	55.1	55.2	0.1	0.2\%
69.19\% 70.4%	55.0	54.9	-0.1	-0.2\%
70.4\%	55.0 54.8	54.7 54.5	-0.3	-0.6\%
712.8\%	54.8 54.7	54.5 54.5	-0.3 -0.2	${ }_{\text {-0.3\% }}^{-0.5 \%}$
74.1\%	54.6	54.2	-0.4	-0.7\%
75.3\%	54.6	54.1	-0.4	-0.8\%
76.5\%	54.5	54.1	-0.4	-0.7\%
77.8\%	54.4	54.0	-0.4	-0.8\%
79.0\%	54.3	53.9	-0.4	-0.7\%
80.2\%	54.2	53.9	-0.3	-0.5\%
81.5\%	54.2	53.9	-0.3	-0.6\%
82,7\% 84.0%	54.1 54.1	53.8 53.8	-0.3 -0.3	-0.0\%
85.2\%	54.0	53.7	-0.2	-0.4\%
86.46\%	53.9	${ }_{53}^{53.7}$	-0.2	-0.4\%
${ }_{88} 8.9 \%$	53.9	53.5	-0.2	-0.4\%
${ }^{\text {90.1\% }}$	${ }_{53.7}^{53.7}$	${ }_{53.4}^{53.5}$	-0.3	-0.5\%
91.4\%	53.6	53.3	-0.4	-0.7\%
92.6\%	53.4	53.0	-0.3	-0.6\%
93.8\%	53.3	53.0	-0.3	-0.6\%
95.1\%	53.1	52.8	-0.3	-0.5\%
96.3\%	53.0	52.2	-0.8	-1.6\%
${ }_{98}^{97.5 \%}$	52.3	52.2	-0.1	${ }^{-0.2 \%}$
100.0\%	52.1	51.7	-0.4	${ }_{-0.9 \%}^{-0.9 \%}$

Table SQ6-1b

$\begin{aligned} & \hline \text { Percent } \\ & \text { Exceedance } \\ & \text { Probabaility } \end{aligned}$	July to September		Probabliy ofexceedance		August to September				
	DCR 2015 Without	2015				DCR 2015 Without	DCR 2015 With		
	Monthly Temperatue	Monthly Temperature	Differenc (DEGF)	Difference (\%)	Probabil	Monthy Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
	(DEGF)				(\%)	(0EG)			
${ }^{0.0 \%}$	63.5	${ }^{61.0}$	-2.6	${ }^{-4.19 \%}$	0.0\%	${ }^{659.8}$	${ }^{62.3}$	-3.5	-5.3\%
${ }^{1.2 \%}$	62.0	59.9	-2.15	${ }_{-3.3 \%}$	${ }^{1.2 \%}$	63.5	61.0	-2.5	-4.0\%
2.5\%	61.5	59.9	-1.5	-2.5\%	2.5\%	${ }^{62.9}$	61.0	-1.9	\%
3.7\%	60.6	59.2	-1.4	-2.3\%	3.7\%	61.2	59.3	-1.9	-3.1\%
4.9\%	60.4	59.0	-1.4	-2.3\%	4.9\%	61.1	59.2	-2.0	-3.2\%
6.2\%	60.0	58.6	-1.4	-2.4\%	6.2\%	61.1	59.1	-2.0	-3.2\%
7.4\%	60.0	58.5	-1.5	-2.6\%	7.4\%	60.6	59.0	-1.6	-2.6\%
8.6\%	59.7	58.5	-1.2	-2.0\%	8.6\%	60.5	58.8	-1.7	-2.8\%
9.9\%	59.3	58.5	-0.8	-1.4\%	9.9\%	60.0	58.8	-1.2	-2.1\%
11.1\%	59.3	58.4	-0.9	-1.5\%	11.1\%	60.0	58.6	-1.4	-2.3\%
12.3\%	59.1	58.3	-0.8	-1.3\%	12.3\%	59.6	58.5	-1.1	-1.8\%
13.6\%	59.0	58.3	-0.7	-1.2\%	13.6\%	59.4	58.5	-0.9	-1.6\%
14.8\%	58.5	58.2	-0.3	-0.5\%	14.8\%	59.2	58.4	-0.8	-1.4\%
16.0\%	58.4	57.9	-0.5	-0.8\%	16.0\%	59.1	58.3	-0.8	-1.3\%
17.3\%	58.4	57.9	-0.5	-0.8\%	17.3\%	59.0	58.2	-0.8	-1.4\%
18.5\%	58.4	57.8	-0.5	-0.9\%	18.5\%	59.0	58.1	-0.8	-1.4\%
19.8\%	58.3	57.8	-0.6	-0.9\%	19.8\%	58.9	58.1	-0.8	-1.4\%
21.0\%	58.0	57.7	-0.4	-0.6\%	21.0\%	58.7	58.0	-0.7	-1.1\%
${ }^{22.20 \%}$	57.9	57.6	-0.4	-0.7\%	22.2\%	58.7	58.0	-0.7	-1.10\%
23.5\%	57.8 578	57.4 573	-0.4 -0.5	-0.7\%	23.5\%	58.5 585 8.	58.0 577	-0.6	- ${ }_{-1.3 \%}$
25.9\%	57.8	57.3	-0.5	-0.9\%	25.9\%	58.4	57.5	-0.9	-1.5\%
27.2\%	57.7	57.3	-0.5	-0.8\%	27.2\%	58.3	57.5	-0.8	-1.4\%
28.4\%	57.7	57.3	-0.4	-0.7\%	28.4\%	58.3	57.5	-0.8	-1.4\%
29.6\%	57.6	57.2	-0.4	-0.7\%	29.6\%	58.3	57.5	-0.8	-1.4\%
30.9\%	57.6	57.1	-0.5	-0.8\%	30.9\%	58.2	57.4	-0.8	-1.3\%
32.1\%	57.5	57.0	-0.5	-0.9\%	32.1\%	58.1	57.4	-0.7	-1.3\%
33.3\%	57.5	56.9	-0.6	-1.1\%	33.3\%	58.1	57.4	-0.7	-1.2\%
34.6\%	57.4	56.8	-0.6	-1.0\%	34.6\%	57.9	57.3	-0.7	-1.2\%
35.8\%	57.3	56.8	-0.5	-0.9\%	35.8\%	57.8	57.1	-0.7	-1.2\%
	57.3	56.8 5.8							
30.5\%	57.1	${ }_{56.7}^{56.7}$	-0.4	-0.7\%	39.5\%	57.7 57.6	57.0 57.0	-0.5	-0.9\%
40.7\%	57.1	56.7	-0.4	-0.7\%	40.7\%	57.6	57.0	-0.5	-0.9\%
42.0\%	57.0	55.6	-0.4	-0.7\%	42.0\%	57.5	57.0	-0.5	-0.9\%
43.2\%	57.0	56.6	-0.4	-0.7\%	43.2\%	57.4	57.0	-0.5	-0.8\%
44.4\%	57.0	55.6	-0.4	-0.7\%	44.4\%	57.3	57.0	-0.4	-0.7\%
45.7\%	56.8	56.5	-0.3	-0.5\%	45.7\%	57.3	56.9	-0.3	-0.6\%
46.9\%	56.8	56.5	-0.3	-0.6\%	46.9\%	57.3	56.6	-0.7	-1.1\%
48.1\%	56.7	56.5	-0.2	-0.4\%	48.1\%	57.2	56.5	-0.7	-1.2\%
49.4\%\%	56.7 56.6	56.3 56.2	-0.4 -0.5	-0.7\%	49.4\% 50.6%	57.1 56.8	56.5 56.4	-0.5 -0.4	-0.7\%
51.9\%	55.6	56.2	-0.4	-0.7\%	51.9\%	55.6	55.4	-0.2	-0.4\%
53.1\%	56.5	56.1	-0.4	-0.7\%	53.1\%	56.6	56.4	-0.2	-0.4\%
54.3\%	56.3	56.1	-0.2	-0.4\%	54.3\%	56.6	56.4	-0.2	-0.4\%
55.6\%	56.3	56.1	-0.2	-0.3\%	55.6\%	56.6	56.3	-0.2	-0.4\%
56.8\%	56.0	56.0	0.0	0.0\%	56.8\%	${ }_{56.4}^{56.4}$	${ }_{56.2}^{56.2}$	-0.2	-0.4\%
58.0\%	56.0	55.9	-0.1	-0.2\%	58.0\%	56.3	56.2	-0.1	-0.1\%
59.3\%	${ }_{56.0}^{56}$	55.9	-0.1	-0.2\%	59.3\%	${ }_{56.3}^{56.3}$	${ }_{56.1}^{56.1}$	-0.2	-0.3\%
60.5\%	55.0	55.8	-0.1	-0.2\%	60.5\%	55.3	55.1	-0.2	-0.3\%
${ }^{61.7 \%}$	55.9	55.8	-0.1	-0.2\%	61.7\%	56.2	56.1	-0.2	-0.3\%
63.0\%	55.9 559	55.8 558 55	-0.1	-0.2\%	-63.0\%	$\begin{array}{r}56.2 \\ 562 \\ \hline\end{array}$	55.9 559	-0.3	-0.0\%
${ }^{64.29 \%}$	${ }_{55.8}^{55.9}$	55.7	-0.1	-0.2\%	${ }^{64.4 \%}$	${ }_{56.2}^{56.2}$	55.9 55	-0.3	-0.6\%
66.7\%	55.8	55.7	-0.2	-0.3\%	66.7\%	56.0	55.8	-0.2	-0.4\%
67.9\%	55.8	55.7	-0.1	-0.3\%	67.9\%	55.0	55.7	-0.3	-0.5\%
69.1\%	55.8	55.6	-0.1	-0.3\%	69.1\%	56.0	55.7	-0.3	-0.5\%
70.4\%	55.8	55.6	-0.1	-0.3\%	70.4\%	55.9	55.7	-0.2	-0.4\%
71.6\%	55.7	55.6	-0.1	-0.3\%	71.6\%	55.9	${ }_{55.6}^{55}$	-0.3	-0.5\%
72.8\%	55.7	55.5	-0.1	-0.2\%	72.8\%	55.8	55.6	-0.2	-0.4\%
74.1\%	${ }_{55.6}$	55.5	-0.1	-0.1\%	74.1\%	55.8	55.6	-0.2	-0.4\%
76.5\%	55.6 55.6	55.5 55.5	-0.1	-0.0.2\%	-76.5\%	55.7 55.6	55.5 55.5	-0.2 -0.1	-
77.8\%	55.6	55.4	-0.1	-0.3\%	77.8\%	55.5	55.3	-0.2	0.4\%
79.0\%	55.5	55.4	-0.1	-0.2\%	79.0\%	55.5	55.2	-0.2	-0.4\%
80.2\%	55.5	55.4	-0.1	-0.2\%	80.2\%	55.3	55.2	-0.1	-0.2\%
81.5\%	55.4	55.3	-0.1	-0.1\%	81.5\%	55.2	55.2	0.0	0.0\%
82.7\%	55.4	55.3	0.0	-0.1\%	82.7\%	55.0	55.1	0.1	0.2\%
84.0\%	55.4	55.3	0.0	-0.1\%	84.0\%	55.0	55.1	0.0	0.1\%
85.2\%	55.3	55.2	-0.1	-0.2\%	85.2\%	55.0	55.0	0.0	0.1\%
86.4\%	55.2 55 5.	$\begin{array}{r}55.1 \\ 551 \\ \hline\end{array}$	-0.1	-0.2\%	86.4\%	54.9	55.0	0.0	0.1\%
87.7\%	55.2	55.1	-0.1	-0.2\%	87.7\%	54.9	55.0	0.0	0.1\%
- ${ }_{\text {80, }}^{88.9 \%}$	55.0 54.9	54.9 54.7	-0.1 -0.2	-0.0.1\%	${ }^{88.9 \%}$	54.9 54.9	54.8 54.6	-0.1 -0.3	-0.5\%
91.4\%	54.9	54.6	-0.3	-0.5\%	91.4\%	54.8	54.5	-0.3	-0.6\%
92.6\%	54.6	54.6	0.0	0.0\%	92.6\%	54.8	54.4	-0.3	-0.6\%
93.8\%	54.5	54.5	0.0	-0.1\%	93.8\%	54.5	54.1	-0.4	-0.8\%
95.1\%	54.5	54.4	-0.1	-0.2\%	95.1\%	54.3	54.0	-0.3	-0.5\%
96.3\%	54.5	54.2	-0.3	-0.5\%	96.3\%	54.1	54.0	-0.2	-0.4\%
97.5\%	54.5	54.1	-0.4	-0.8\%	97.5\%	54.1	53.9	-0.2	-0.4\%
${ }^{98.8 \%}$	${ }_{54.3}$	54.0	-0.3	-0.5\%	${ }^{98.8 \%}$	${ }_{53.9}^{53.9}$	${ }_{53,7}^{53.7}$	-0.2	-0.3\%
100.0\%	54.2	53.9	-0.2	0.4\%	100.0\%	53.8	53.2	-0.6	-1.1\%

Figure SQ7-1b
Sacramento River at Red Bluff, Monthly Temperature

Table SQT.10 at Red Blff, Monthly Temperature

October				
Percent Exceedance	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project		Relative
Probability	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGF } \end{aligned}$	Difference (\%)
0.0\%	63.0	63.1	0.1	0.2\%
1.2\%	62.0	62.2	0.1	029
2.5\%	61.4	61.7	0.3	0.4\%
3.7\%	61.1	61.6	0.5	0.9\%
4.9\%	59.9	59.0	-0.9	-1.4\%
6.2\%	59.3	59.0	-0.3	-0.5\%
7.4\%	58.5	58.9	0.4	0.7\%
8.6\%	58.4	58.3	-0.1	-0.2\%
9.9\%	58.2	58.0	-0.2	0.3\%
11.19\%	57.8	57.9	0.1	0.1\%
12.3\%	57.7 577	57.8 577	0.0	${ }^{0.10 \%}$
14.8\%	57.7	57.7	0.1	0.1\%
16.0\%	57.5	57.7	0.1	0.2\%
17.3\%	57.4	57.7	0.2	0.4\%
18.5\%	57.4	57.5	0.0	0.1\%
19.8\%	57.4	57.4	0.0	0.0\%
21.0\%	57.4	57.4	0.0	-0.1\%
22.2\%	57.3	57.4	0.1	0.1\%
${ }^{23.5 \%}$	57.2	57.3	0.1	0.2\%
24.9\%\%	57.2 57.2	57.3 57.2	0.1 0.1	${ }_{0}^{0.1 \%}$
27.2\%	57.0	57.1	0.1	0.3\%
28.4\%	57.0	57.1	0.1	0.3\%
29.6\%	56.9	57.0	0.2	0.3\%
30.9\%	56.9	57.0	0.2	0.3\%
32.1\%	56.8	57.0	0.2	0.3\%
33.3\%	56.8	56.9	0.2	0.3\%
34.6\%	55.8	55.8	0.0	0.1\%
35.8\%	${ }_{56.7}^{56.7}$	${ }_{56.7}^{56.7}$	0.0	0.0\%
37.0% 38.3%	56.6 56.5	56.7 56.7	${ }_{0.1}^{0.1}$	${ }_{\text {cose }}^{0.2 \%}$
39.5\%	56.5	56.6	0.1	0.2\%
40.7\%	56.5	55.6	0.1	0.2\%
42.0\%	56.4	56.6 5.5	${ }^{0.1}$	0.3\%
43.2\%	56.4	55.5	0.1	
${ }^{44.4 \%}$	56.4 56.4	56.4 56.4	0.0	${ }_{\text {0,0\% }}^{0.0 \%}$
46.9\%	56.4	56.4	0.0	${ }^{-0.1 \%}$
48.1\%	56.4	56.3	0.0	-0.1\%
49.4\%	56.3	56.3	-0.1	-0.1\%
50.6\%	56.3	56.3	0.0	0.0\%
51.9\%	56.2	${ }_{56.2}$	0.0	-0.1\%
53.19\% 54.30	56.2 56.2	56.1 56.1	-0.1	-0.2\%
55.6\%	56.1	56.0	-0.1	-0.2\%
56.8\%	56.1	56.0	-0.1	-0.1\%
58.0\%	${ }_{56.1}^{56.1}$	56.0	-0.2	-0.3\%
59.3\%	${ }_{56.1}^{561}$	55.9 559	-0.1	-0.3\%
60.5\%	56.1	55.9	-0.2	-0.3\%
61.7\%	55.0	55.9	-0.2	-0.3\%
64.2\%	56.0	55.8	-0.2	-0.3\%
65.4\%	55.0	55.8	-0.1	-0.3\%
66.7\%	55.9	55.8	-0.1	-0.2\%
-67.9\%	55.9 559 55	55.8 558 5.	-0.1	-0.2\%
70.4\%	55.9 55.8 5.8	55.8 55.8	-0.1	${ }^{-0.2 \%}$
71.6\%	55.8	55.8	-0.1	-0.1\%
72.8\%	55.8	55.8	0.0	0.0\%
74.1\%	55.8	55.8	0.0	0.0\%
75.3\%	55.8	55.7	-0.1	-0.1\%
76.5\%	55.7	55.7	0.0	-0.1\%
77.8\%	55.7	55.7	0.0	-0.1\%
79.0% 80.2%	55.7 557 55	55.7 557 55	0.0	-0.1\%
- ${ }^{80.2 \%}$	55.7 55.6	55.7 55.6	${ }_{0}^{0.1}$	${ }_{0}^{0.0 \% \%}$
82.7\%	55.5	55.6	0.1	0.3\%
84.0\%	55.5	55.4	-0.1	-0.1\%
85.2\%	55.4	55.4	0.0	0.0\%
86.4\%	55.4 553 5.5	55.3 55 5.3	-0.1	-0.1\%
87.7\%	${ }_{55.3}^{55.3}$	55.3	0.0	-0.1\%
88.9\%	55.3	55.3 551	0.0	-0.1\%
90.11\%	55.3	55.1	-0.1	-0.2\%
	55.2 55.2	55.1 55.1	-0.1	${ }_{\text {- }}^{-0.2 \%}$
93.8\%	55.1	54.8	-0.3	-0.5\%
95.11\%	55.1	54.6	-0.5	-1.0\%
96.5\%	55.0 54.9	54.3 54.1	-0.7 -0.8	-1.5\%
98.8\%	54.8	54.1	-0.7	-1.2\%
100.0\%	54.8	54.1	0.0	-1.2\%

January				
Percent Exceedanc	DCR 2015 Without Proiect	DCR 2015 With Project	Absolute	Reative
$\underset{\substack{\text { Probability } \\(\%)}}{\text { and }}$		Monthy Temperature (DEGF) .		Difference (\%)
0.0\%	49.1	49.2	0.1	0.3\%
1.2\%	48.4	48.6	0.2	0.4\%
2.5\%	48.2	48.4	0.2	0.4\%
3.7\%	48.2	48.2	0.0	-0.1\%
4.9\%	48.0	47.9	-0.2	
6.2\%	47.8	47.8	0.0	-0.1\%
7.4\%	47.8	47.8	0.0	-0.1\%
8.6\%	47.7	47.7	0.0	0.0\%
9.9\%	47.6	47.6	0.0	0.0\%
11.1\%	47.6	47.6	0.0	0.0\%
12.3\%	47.5	47.5	0.0	0.0\%
13.6\%	47.4	47.5	0.0	0.1\%
14.8\%	47.4	47.3	-0.1	-0.1\%
16.0\%	47.3	47.3	0.0	0.0\%
17.3\%	47.3	47.3	0.0	0.0\%
18.5\%	47.3	47.2	-0.1	-0.2\%
19.8\%	46.9	47.0	0.1	0.2\%
21.0\%	46.9	46.9	0.0	0.1\%
22.2\%	46.8	46.9	0.0	0.0\%
23.5\%	46.8	46.8	0.0	0.0\%
24.7\%	46.8	46.8	0.0	0.1\%
25.9\%	46.8	46.8	0.0	0.1\%
27.2\%	46.7	46.8	0.0	0.1\%
28.4\%	46.6	46.7	0.1	0.2\%
29.6\%	46.6	46.7	0.1	0.2\%
30.9\%	46.6	46.7	0.1	0.2\%
32.1\%	46.5	46.6	0.1	0.2
33.3\%	46.5	46.6	0.1	0.2\%
34.6\%	46.5	46.6	0.1	0.3\%
35.\%	46.5	46.6	0.1	0.3\%
37.0\%	46.4	46.5	0.0	0.1\%
38.3\%	46.4	46.5	0.0	0.1\%
39.5\%	46.4	46.5	0.0	0.1\%
40.7\%	46.4	46.5	0.1	0.1\%
42.0\%	46.4	46.4	0.1	0.1\%
43.2\%	46.4	46.4	0.1	0.1\%
44.4\%	46.3	46.4	0.1	0.2\%
45.7\%	46.3	46.4	0.1	0.2\%
46.9\%	46.3	46.4	0.1	0.3\%
${ }^{48.19 \%}$	46.3	46.4	0.1	0.2\%
49.4\% 50.6%	46.3	${ }_{46.3}^{46.3}$	${ }^{0.1}$	0.1\%
51.9\%	46.1	46.2	0.1	0.2\%
53.1\%	46.1	46.2	0.1	0.2\%
54.3\%	46.1	46.2	0.1	0.1\%
55.6\%	46.1	46.1	0.0	0.1\%
56.8\%	46.1	46.1	0.0	0.1\%
58.0\%	46.1	46.1	0.0	0.0\%
59.3\%	46.0	46.1	0.0	0.0\%
- ${ }_{\text {60.5\% }}^{617 \%}$	46.0	46.0	0.0	0.0\%
${ }^{61.77 \%}$	46.0	46.0	0.0	0.0\%
-63.0\%	46.0	46.0	0.0	0.0\%
${ }^{64.2 \%}$	46.0	46.0	0.0	0.0\%
65.4\%	46.0	46.0	0.0	0.1\%
66.7\%	45.9	46.0	0.1	0.2\%
67.9\%	45.9	45.9	0.0	0.1\%
69.1\%	45.9	45.9	0.1	0.1\%
70.4\%	45.8	45.9	0.1	0.2\%
71.6\%	45.8	45.9	0.1	0.1\%
72.8\%	45.8	45.8	0.1	${ }^{0.1 \%}$
74.19\%	45.8	45.8	0.0	0.0\%
76.5\%	45.8	45.8		${ }^{0.1 \%}$
76.5\%	45.7	45.8	0.1	0.1\%
77.8\%	45.7 457	45.7	0.0	0.1\%
79.0\%	45.7	45.7	0.1	0.2\%
80.2\%	45.6	45.7	0.1	0.2\%
81.5\%	45.6	45.7	0.1	0.2\%
82.7\%	45.5	45.6	0.1	0.2\%
84.0\%	45.5	45.6	0.1	0.1\%
85.2\%	45.5	45.5	0.0	0.0\%
86.4\%	45.5	45.5	0.0	0.1\%
87.7\%	45.4	45.4	0.0	0.1\%
88.9\%	45.4	45.4	0.0	0.0\%
90.1\%	45.4	45.3	0.0	-0.1\%
91.4\%	45.3	45.3	0.0	0.0\%
92.6\% ${ }_{93.8 \%}$	45.2	45.2	0.0	0.0\%
93.3\%	45.1	45.2	0.0	0.1\%
${ }_{965}^{95.11 \%}$	45.0	45.1	0.1	0.2\%
96.3\% ${ }^{97.5 \%}$	44.9	45.0	0.2	0.4\%
97.5\% ${ }_{\text {98.8\% }}$	44.9	45.0	0.1	0.3\%
98.8\% 100.0\%	${ }_{44.6}$	44.9	${ }^{0.3}$	${ }_{\text {cose }}^{0.6 \%}$
			0.3	0.6\%

Table SQ7.1b verat Red Bluft, Monthly Temperature

$\begin{gathered} \text { Percernt } \\ \text { Exceedee } \\ \text { Probababily } \end{gathered}$	February			
	DCR 2015 Without	DCR 2015 With Project	solute	
	Monthy Temperature	Monthly Temperature	Ditiference	Difference (\%)
	(0EGF)	(0EGF)		
0.0\%	51.1	51.3	0.1	0.3\%
1.2\%	49.9	49.9	0.0	0.0\%
2.5\%	49.6	49.6	0.0	0.0\%
3.7\%	49.2	49.2	0.0	0.0
4.9\%	48.9	49.2	${ }^{0.3}$	0.6\%
6.2\%	48.8	49.0	0.2	0.3\%
7.4\%	48.7	48.9	0.1	
8.6\%	48.7	48.8	0.1	0.1\%
9.9\%	48.7	48.7	0.0	0.0\%
11.12\%	48.6	48.7	0.1	0.1\%
${ }^{123.3 \%}$	48.6	48.6	0.0	0.0\%
13.6\%	48.6	48.6	0.0	0.0\%
14.8\%	48.5	48.6	0.0	0.0\%
16.0\%	48.4	48.5	0.1	0.2\%
17.3\%	48.4	48.4	0.1	0.1\%
18.5\%	48.4	48.4	0.0	0.0\%
19.8\%	48.1	48.2	0.1	0.2\%
${ }_{2}^{21.0 \% \%}$	${ }_{48.1}^{48.1}$	${ }_{48.1}^{48.1}$	${ }_{0} 0.0$	0.1\%
${ }^{22.55 \%}$	48.0	${ }_{48.1}$	0.0	0.1\%
24.7\%	48.0	48.0	0.0	0.1\%
25.9\%	47.9	48.0	0.1	0.2\%
27.2\%	47.9	48.0	0.1	0.2\%
28.4\%	47.8	47.9	0.1	0.2\%
29.6\%	47.8	47.9	0.1	0.2\%
30.9\%	47.7	47.9	0.2	0.3\%
32.1\%	47.7	47.7	0.0	0.1\%
${ }^{33.3 \%}$	47.6	47.7	0.1	0.1\%
34.6% 35.8%	47.5 47.5	47.6 47.6	${ }_{0}^{0.0}$	0.1\%
37.0\%	47.5	47.5	0.1	0.1\%
38.3\%	47.5	47.5	0.1	0.1\%
39.5\%	47.5	47.5	0.0	0.1\%
40.7\%	47.4	47.5	0.0	0.0\%
42.0\%	47.4	47.4	0.0	0.0\%
43.2\%	47.4	47.4	0.0	-0.1\%
44.4\%	47.3	47.3	0.0	0.0\%
45.7\%	47.2	47.2	0.0	0.0\%
46.9\%	47.2	47.2	-0.1	-0.1\%
${ }^{48.19 \%}$	${ }_{47.1}^{47.1}$	${ }_{47.2}^{47.2}$	0.0	-0.0\%
50.6\%	47.1	47.1	0.0	0.0\%
51.9\%	47.1	47.1	0.0	0.0\%
53.12\%	${ }_{471}^{47.1}$	${ }_{471}^{47.1}$	0.0	${ }^{0.00 \%}$
54.3\%	47.1	47.1	0.0	0.0\%
55.6\%	47.1	47.1	0.0	0.0\%
56.8\%	47.0	47.0	0.0	0.0\%
58.0\%	46.9	47.0	0.0	0.1\%
59.3\%	46.9	46.9	0.0	0.1\%
- ${ }^{60.50}$	${ }_{46.8}^{46.9}$	46.9 46.9	0.0	0.1\%
63.0\%	46.7	46.8	0.1	0.2\%
64.2\%	46.5	46.7	0.2	0.4\%
65.4\%	46.5	46.6	0.2	0.4\%
${ }^{66.77 \%}$	46.4	46.4	-0.1	-0.1\%
${ }^{67.9 \%}$	46.4	46.3	0.0	-0.1\%
69.1\%	46.4	46.3	0.0	-0.1\%
70.4\%	46.4	46.3	0.0	-0.1\%
71.6\%	46.3	46.3	0.0	-0.1\%
72.8\%	46.3	46.3	-0.1	-0.1\%
74.1\%	46.3	46.3	0.0	0.0\%
75.3\%	46.3	46.2	0.0	-0.1\%
-76.8\%	46.2 46.2	46.2	0.0	${ }_{0}^{0.1 \%}$
79.0\%	46.2	46.2	0.1	0.1\%
80.2\%	46.1	46.2	0.0	0.1\%
81.5\%	46.1	46.2	0.0	0.1\%
82.7\%	46.1	46.1	0.0	0.0\%
84.0\%	46.0	46.1	0.1	0.2\%
85.2\%	46.0	46.1	0.1	0.2\%
86.4\%	46.0	46.0	0.1	0.1\%
87.7\%	45.9	46.0	0.1	0.2\%
88.9\%	45.9	46.0	0.1	0.2\%
${ }^{90.10 \%}$	${ }_{45.8}^{45.8}$	${ }_{45.9}^{45}$	${ }^{0.1}$	-0.1\%
92.6\%	45.7	45.7	0.0	0.0\%
93.8\%	45.7	45.7	-0.1	-0.2\%
95.1\%	45.7	45.6	-0.1	-0.2\%
96.3\%	45.6	45.6	0.0	0.0\%
97.5\%	45.6	45.5	-0.1	-0.2\%
98.8\%	45.5	45.4	-0.1	0.2\%
100.0\%	45.5	45.4	-0.1	-0.2\%

May				
Percent Excedance	DCR 2015 Without	DCR 2015 With Project		
Probability	Monthy Temperature	Monthy Temperature	Difference	Difference (\%)
(\%)	(DEGF)	(DEGF)		
0.0\%	60.2	60.1	${ }^{0.1}$	-0.1\%
1.2\%	60.0	60.0	0.1	0.1\%
2.5\%	59.6	60.0	0.4	0.6\%
3.7\%	58.7	59.7	1.0	1.7\%
4.9\%	58.6	59.5	0.9	1.5\%
6.2\%	58.5	59.5	1.0	1.7\%
7.4\%	58.4	59.4	1.0	1.7\%
8.6\%	58.4	59.2	0.8	1.4\%
9.9\%	58.3	58.6	0.2	0.4\%
11.1\%	58.3	58.5	0.2	0.3\%
12.3\%	58.3	58.5	0.1	0.2\%
13.6\%	58.2	58.4	0.3	0.4\%
14.8\%	58.1	58.4	0.3	0.5\%
16.0\%	58.0	58.1	0.2	0.3\%
17.3\%	57.9	58.1	0.2	0.3\%
18.5\%	57.5	58.0	0.5	0.9\%
19.8\%	57.4	58.0	0.5	0.9\%
21.0\%	57.4	57.9	0.5	0.9\%
22.2\%	57.3	57.9	0.6	1.0\%
23.5\%	57.3	57.8	0.5	1.0\%
24.7\%	57.1	57.8	0.7	1.3\%
25.9\%	57.0	57.7	0.6	1.1\%
27.2\%	57.0	57.5	0.5	0.8\%
28.4\%	56.9	57.4	0.5	0.9\%
29.6\%	56.9	57.4	0.5	0.8\%
30.9\%	56.9	57.3	0.4	0.8\%
32.1\%	55.9	57.3	0.4	0.7\%
33.3\%	56.9	57.2	0.4	0.7\%
34.6\%	56.8	57.2	0.4	0.7\%
35.8\%		57.2	0.4	
37.0\%	56.7	57.0	0.3	0.5\%
38.3\%	56.6	56.9 56.8	${ }^{0.3}$	0.6\%
39.5\%	55.6	56.8	0.2	0.3\%
40.7\%	56.5	55.8	0.2	0.4\%
42.0\%	56.5	56.8	${ }^{0.3}$	0.5\%
43.2\%	56.4	56.7	0.2	0.4\%
44.4\%	56.4	55.6	0.2	0.3\%
45.7\%	56.4	56.5	0.1	0.2\%
4.9.9\%	56.4	56.5	0.1	0.2\%
48.19\%	56.3	56.5	0.1	0.2\%
49.4\%\%	56.1	55.4	0.4	0.6\%
${ }^{50.6 \%}$	56.1	56.4		
51.9\%	56.0	56.3	${ }^{0.3}$	${ }^{0.5 \%}$
53.19\% 54.3%	56.0	55.2	0.2	${ }^{0.3 \% \%}$
54.3\% 55.6%	55.0	56.2	0.2	0.3\%
55.6\%	56.0	56.1	0.2	0.3\%
56.8\% 58.0%	55.9	56.1	0.2	0.3\%
58.0\% 59.3%	55.9	56.1	0.2	0.3\%
59.3\% 60.5\%	55.9	56.1	0.2	0.4\%
-	55.8	56.0	0.2	0.4\%
6.17\% 6.0%	55.7	56.0	0.3	0.5\%
- $\begin{aligned} & 63.0 \% \\ & 64.2 \%\end{aligned}$	55.7	55.9	0.2	0.3\%
64.20% 65.40	55.7	55.9	${ }^{0.3}$	0.5\%
65.4\%	55.5	55.8	0.3	0.5\%
${ }^{66.7 \%}$	55.5	55.5	0.1	0.1\%
-67.9\%	55.4 55.4 5.4	55.5 555 5.5	${ }^{0.1}$	0.2\%
69.19\%	55.4	55.5	0.1	0.2\%
70.4\%	55.4	55.5	0.1	0.2\%
71.6\% ${ }_{\text {72.8\% }}$	55.4	55.5	0.1	0.2\%
72.8\%	55.4	55.5	0.1	0.1\%
7.1.1\% 7 75.3%	55.3	55.4	0.1	0.3\%
	55.3	55.4	0.2	0.3\%
76.5\%	55.2	55.4	0.1	0.3\%
77.8\%	55.2	55.2	0.0	0.0\%
79.0\% 80.2%	55.2 55.1	55.2 551 5	0.0	0.0\%
80.2\%	55.1	55.1	0.0	${ }^{0.00 \%}$
81.5\%	55.1 550 55	55.0 55 5	0.0	-0.1\%
	55.0	55.0	0.0	0.0\%
84.0% 85.2%	55.0	55.0	0.0	-0.1\%
85.2\%	55.0	54.9	-0.1	-0.1\%
86.4\%	55.0	54.7	-0.2	0.4\%
827.7\% 88.9\%	54.9	54.4	-0.5	-0.9\%
88.9\%	54.4	54.3	-0.1	-0.1\%
${ }_{\text {91.4\% }}^{90.19 \%}$	54.2	54.2	0.0	0.0\%
91.4\%	54.1	54.1	0.0	0.0\%
92.6\% ${ }_{93}^{98 \%}$	53.9 53.7	53.9 538 53	0.0	${ }^{0.11 \%}$
${ }^{93.8 \%}$	53.7	53.8	0.0	0.1\%
${ }_{9}^{95.3 \%}$	53.7 53.5	53.8 53.6	0.0 0.0	${ }_{\text {0.1\% }}^{0.1 \%}$
97.5\%	53.5	53.5	0.0	0.0\%
98.8\%	${ }_{53.4}^{53.4}$	53.4	0.0	0.0\%
100.0\%	53.4	53.4	0.0	0.0\%

Table SQ7.1b ver at Red Buff. Monthly Temperature

June				
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Proabability } \end{gathered}$	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Differenee } \\ & \text { (DEGF) } \end{aligned}$	$\begin{aligned} & \text { Relative } \\ & \text { Difference (\%) } \end{aligned}$
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)		
0.0\%	61.0	60.9	-0.1	0.2\%
1.2\%	60.6	60.8	0.2	0
2.5\%	60.4	60.8	0.4	0.7\%
3.7\%	60.3	60.2	-0.1	-0.1\%
4.9\%	60.2	60.0	-0.1	-0.2\%
6.2\%	59.9	60.0	0.1	0.2\%
7.4\%	59.6	59.9	0.3	0.5\%
8.6\%	59.5	59.7	0.2	0.4\%
9.9\%	59.2	59.3	0.1	0.1\%
11.1.\%	59.2	59.0	-0.2	-0.3\%
12.3\%	59.1 58.9	58.9 588	-0.2	-0.3\% ${ }_{\text {-0.1\% }}$
14.8\%	58.6	55.8	0.1	0.3\%
16.0\%	58.6	58.7	0.1	0.2\%
17.3\%	58.5	58.7	0.2	0.4\%
18.5\%	58.4	58.7	0.3	0.6\%
19.8\%	58.3	58.7	0.4	0.7\%
21.0\%	58.2	58.7	0.4	0.7\%
22.2\%	58.2	58.6	0.4	0.6\%
${ }^{23.5 \%}$	58.1	58.6	0.5	0.8\%
24.7\%	55.0	58.6	0.6	1.0\%
${ }^{25.7 .2 \%}$	57.9 57.7	58.5 58.5	0.6 0.8	+1.0\%
28.4\%	57.7	58.5	0.7	1.3\%
29.6\%	57.6	58.4	0.8	1.4\%
30.9\%	57.6 575	58.4 58.4	${ }^{0.8}$	${ }^{1.5 \%}$
32.1\%	57.5	58.4	0.9	1.5\%
33.3\%	57.5	58.4	0.9	1.5\%
34.6\%	57.4	58.3	0.9	1.5\%
35.8\%	57.4	58.2	0.8	1.4\%
37.0\%	57.4	58.1	0.7	${ }_{1}^{1.2 \%}$
38.5\%	57.4 57.3	58.0	0.6 0.7	${ }_{\text {1.3\% }}^{1.10 \%}$
40.7\%	57.3	58.0	0.7	1.2\%
42.0\%	57.3	57.9	0.7	1.2\%
${ }^{43.20 \%}$	57.2 571	57.9	${ }_{0}^{0.7}$	
${ }^{44.45 \%}$	57.1 571	57.9 578	${ }_{0}^{0.7}$	1.3\%
46.9\%	57.0	57.8 57.8	${ }_{0.7}^{0.7}$	1.3\%
48.1\%	57.0	57.8	0.7	1.3\%
49.4\%	57.0	57.7	0.8	1.4\%
50.6\%	57.0	57.7	0.7	1.3\%
51.9\%	56.9 56.9	57.6 57.6	0.7 0.7	${ }_{1}^{1.2 \%}$
54.3\%	56.8	57.6	0.7	1.3\%
55.6\%	56.8	57.6	0.7	1.3\%
56.8\%	56.8	57.4	0.6	1.1\%
58.0\%	56.8	57.3 573	0.5	0.8\%
59.3\%	${ }_{56.8}^{567}$	57.3	0.5	0.9\%
60.5\%	56.7	57.2	0.5	0.8\%
61.7% 63.0%	56.7 56.7	57.1 571	${ }^{0.4}$	0.8\%
64.2\%	${ }_{56.7}^{56.7}$	57.1 57.1	0.4 0.4	0.7\%
65.4\%	56.7	57.1	0.4	0.7\%
66.7\%	56.7	57.1	0.4	0.7\%
67.9\%	${ }_{56.6}$	57.0	0.4	0.7\%
69.19\%	56.6 56.5	56.9 56.9	0.4 0.4	${ }^{0.6 \%}$
71.6\%	56.5	56.9	0.5	0.8\%
72.8\%	56.4	56.9	0.4	0.8\%
74.1\%	56.4	55.8	0.4	0.7\%
75.3\%	56.4	55.8	0.4	0.6\%
76.5\%	56.4	56.7	0.4	0.7\%
77.8\%	56.4	55.7	0.4	0.7\%
80.2\%	${ }_{56.2}$	55.6	0.4	0.7\%
81.5\%	56.0	56.6	0.5	1.0\%
${ }^{82.79 \%}$	56.0	55.6	${ }^{0.6}$	1.0\%
84.0\%	55.0	56.5	0.6	${ }^{1.0 \%}$
85.2\%	55.9 559 55	56.5 56.5	${ }_{0}^{0.5}$	1.0\%
86.4\%	55.9 55.8	56.5 56.5	0.6 0.6	${ }_{1.2 \%}^{1.19 \%}$
88.9\%	55.7	56.4	0.7	1.3\%
90.1\%	55.7	56.4	0.7	1.3\%
91.4\%	55.7	56.3	0.7	1.2\%
92.6\%	55.6 555 55	56.3	0.7	1.2\%
95.1\%	55.4	55.0	0.6	1.1\%
96.3\%	55.1	56.0	0.9	1.6\%
97.5\%	55.0	55.9	0.9	1.6\%
98.9\%	54.7 547	55.8 558	1.11	${ }_{\text {2.1\% }}^{2.10}$
100.0\%	54.7	55.8	1.1	2.1\%

September				
Percent Exceedance	$\begin{aligned} & \hline \text { DCR 2015 Without } \\ & \text { Proiet } \end{aligned}$	DCR 2015 With Project	Absolute	Rela
Probability Obo	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DGEFF) } \end{aligned}$	Difference (\%)
0.0\%	68.3	65.9	-2.4	-3.5\%
1.2\%	66.5	64.8	1.7	-2.5\%
2.5\%	65.8	64.5	1.4	-2.1\%
3.7\%	64.4	61.8	-2.6	-4.0\%
4.9\%	64.1	61.3	-2.8	4.4\%
6.2\%	64.0	61.2	-2.7	
7.4\%	63.6	61.1	-2.5	
8.6\%	63.0	61.0	-2.0	-3.2\%
9.9\%	62.3	61.0	-1.4	-2.2\%
11.1\%	61.9	60.4	-1.5	-2.4\%
12.3\%	61.8	60.3	1.5	-2.5\%
13.6\%	61.8	60.2	-1.5	-2.5\%
14.8\%	61.5	60.2	1.3	-2.2\%
16.0\%	61.5	60.1	-1.4	-2.2\%
17.3\%	61.5	59.8	1.7	-2.7\%
18.5\%	61.4	59.8	-1.6	-2.7\%
19.8\%	61.3	59.7	-1.6	2.7\%
21.0\%	61.2	59.7	-1.5	-2.4\%
22.2\%	61.2	59.7	1.5	2.4\%
23.5\%	61.0	59.7	-1.3	-2.2\%
24.7\%	60.9	59.5	-1.4	-2.3\%
25.9\%	60.9	59.5	-1.4	-2.3\%
27.2\%	60.5	59.2	-1.3	-2.1\%
28.4\%	60.4	59.1	-1.3	-2.2\%
29.6\%	60.4	59.1	${ }^{-1.3}$	-2.1\%
30.9\%	60.3	59.1	-1.2	-2.0\%
32.1\%	60.2	58.9	-1.3	-2.2\%
33.3\%	60.2	58.8	-1.3	-2.2\%
34.6\%	60.1	58.8	-1.3	
35.8\%	59.9	58.8	-1.1	-1.8\%
37.0\%	59.8	58.7	-1.0	-1.7\%
38.3\%	59.6	58.7	-0.9	-1.5\%
39.5\%	59.5	58.6	-0.9	-1.6\%
40.7\%	59.5	58.4	-1.1	-1.8\%
42.0\%	59.3	58.3	-1.1	-1.8\%
43.2\%	59.3	58.3	-1.1	-1.8\%
4.4.4\%	59.2	58.2	-1.0	-1.6\%
45.7\%	58.8	58.2	-0.6	-1.1\%
46.9\%	58.8	58.2	-0.6	-1.0\%
48.1\%	58.8	58.1	-0.7	1.3\%
4.9.4\%	58.7	58.0	-0.7	-1.2\%
50.6\%	58.7	58.0	-0.7	-1.1\%
51.9\%	58.4	58.0	-0.4	-0.7\%
53.19\%	58.3	57.8 577	-0.5	-0.9\%
54.3\%	58.1	57.7	-0.4	-0.7\%
55.6\%	57.9	57.6	-0.3	-0.5\%
56.8\%	57.8	57.5	-0.4	-0.6\%
58.0\%	57.7	57.4	-0.3	-0.6\%
59.3\%	57.6	57.3	-0.3	-0.4\%
60.5\%	57.2	57.2	-0.1	0.1\%
${ }^{61.77 \%}$	57.1	57.1	0.0	0.0\%
- $\begin{aligned} & 63.0 \% \\ & 64.2 \%\end{aligned}$	57.1 56.8	57.1 56.9	-0.1 0.2	-0.1\%
${ }^{64.45 \%}$	${ }_{56.5}^{56.8}$	${ }_{56.9}^{56.9}$	0.2 0.4	0.7\%
66.7\%	56.4	56.7	0.3	0.6\%
67.9\%	56.2	56.4	0.1	0.3\%
69.1\%	56.2	56.2	0.0	0.0\%
70.4\%	56.2	56.0	-0.2	-0.3\%
71.6\%	56.1	55.9	-0.2	-0.3\%
72.8\%	55.9	55.9	-0.1	-0.1\%
74.1\%	55.8	55.4	-0.4	-0.8\%
7.3.3\%	55.7	55.4	-0.3	-0.6\%
76.5\%		55.3	-0.4	-0.7\%
77.8\%	55.7	55.1	-0.6	-1.0\%
79.0\%	${ }_{55.5}^{555}$	55.1	-0.4	-0.8\%
80.2\%	55.4 55	55.0	-0.4	-0.7\%
81.5\%	$\begin{array}{r}55.3 \\ 55 \\ \hline 5 \\ \hline\end{array}$	54.9	-0.4	-0.7\%
82.7\% 84.0%	55.2	54.8	-0.4	-0.7\%
84.0% 85.2%	55.1	54.8	-0.3	-0.5\%
85.2\%	55.1	54.8	-0.3	-0.5\%
86.4% 87.7%	55.0	54.8	-0.3	-0.5\%
87.7% 88.9%	54.7	54.6	-0.2	-0.3\%
${ }_{\text {c }}^{\text {88.9\% }}$	54.7	54.5	-0.2	0.4\%
${ }_{\text {91.4\% }}^{90.19 \%}$	54.6	54.5	-0.1	-0.2\%
91.4\%	54.5	54.3	-0.2	-0.5\%
92.6\% ${ }_{93}^{98 \%}$	54.3	54.1 539	-0.3	-0.5\%
93.5\%	54.2	${ }_{53}^{53.9}$	-0.3	0.6\%
${ }_{9}^{95.19 \%}$	54.1	53.8	-0.3	-0.5\%
${ }_{\text {97.5\% }}^{96.3 \%}$	54.1	53.3	-0.8	-1.5\%
97.5\% ${ }_{98.8}$	53.2	53.1	-0.1	-0.2\%
98.8\% 100.0%	53.2	52.8	-0.3	-0.6\%
100.0\%	53.2	52.8	-0.3	-0.6\%

Table SQ7.1b
Sacramento River at Red Bufurt, Monthy Temperature

$\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probabalily } \end{array} \end{aligned}$$(\%)$	une to September			
	DCR 2015 Without Proiect	DCR 2015 With Project	bsolute	Relative
	${ }^{\text {Monthly }}$ (Demperature	$\xrightarrow[\text { Month }]{\text { (0EGF) }}$	(DEGF)	Difference (\%)
0.0\%	63.1	61.3	-1.8	-2.9\%
1.2\%	62.4	61.0	-1.4	-2.3\%
2.5\%	61.6	60.8	-0.8	-1.3\%
3.7\%	61.6	60.5	-1.0	-1.7\%
4.9\%	61.5	60.5	1.0	,
6.2\%	61.4	60.2	-1.2	-1.9\%
7.4\%	61.4	60.2	-1.2	-2.0\%
8.6\%	${ }_{60.8}^{60.8}$	60.1	-0.7	-1.1\%
9.9\%	60.2	60.1	-0.1	-0.2\%
11.1\%	60.2	${ }^{60.0}$	-0.2	-0.3\%
12.3\%	60.0	59.8	-0.2	-0.3\%
13.6\%	59.9	59.4	-0.6	-1.0\%
14.8\%	59.8	59.2	-0.6	-1.0\%
16.0\%	59.6	59.2	-0.4	-0.7\%
17.3\%	59.4	59.2	-0.3	-0.5\%
18.5\%	59.3 59.3	59.1 59.0	-0.3 -0.3	-0.0.9\%
${ }^{12.0 \%}$	59.3	59.0	-0.3	-0.5\%
22.2\%	59.2	59.0	-0.2	-0.4\%
23.5\%	59.1	58.8	-0.3	-0.5\%
24.7\%	59.0	58.8	-0.2	-0.3\%
25.9\%	58.8	58.8	0.0	-0.1\%
27.2\%	58.8	58.7	-0.1	-0.2\%
28.4\%	58.7	58.6	-0.1	-0.1\%
29.6\%	55.6	58.6	-0.1	-0.1\%
30.9\%	58.5	58.6	0.0	0.19\%
32.1% 33.3%	58.5 58.5	58.5 58.5	0.0 0.0	${ }_{\text {a }}^{0.0 \%}$
34.6\%	58.5	58.4	-0.1	-0.2\%
35.8\%	58.4	58.3	-0.1	-0.1\%
37.0\%	58.4	58.3	-0.1	-0.2\%
38.3\%	58.4	58.3	-0.1	-0.2\%
39.5\%	58.4	58.3	-0.1	-0.2\%
40.7\%	58.4	58.2	-0.2	-0.3\%
42.0\%	55.3	58.2	-0.1	-0.2\%
${ }^{43.2 \%}$	58.3 58.2	58.2 58.1	-0.1	-0.2\%
45.7\%	58.1	58.0	-0.1	-0.2\%
46.9\%	58.0	58.0	-0.1	-0.1\%
48.1\%	58.0	58.0	-0.1	-0.1\%
49.4\%	58.0 58.0	57.9	-0.1	-0.2\%
50.6\%	58.0	57.9	-0.1	-0.1\%
51.9\%	57.9	57.9	-0.1	-0.1\%
53.1\%	57.8	57.8	0.0	0.0\%
54.3\%	${ }_{57.6}$	${ }_{57.8}^{57.8}$	0.2	0.3\%
55.6\%\%	57.6	57.7 576	0.1	${ }^{0.2 \%}$
58.0\%	57.5	57.6	0.0	0.1\%
59.3\%	57.5	57.6	0.0	0.0\%
${ }^{60.50 \%}$	$\begin{array}{r}57.5 \\ 575 \\ \hline\end{array}$	57.5 57.4	0.0	0.0\%
61.7% 630%	57.5 575	57.4 57.4	-0.1	-0.2\%
63.0\%	57.5 575	57.4	-0.1	-0.1\%
${ }^{64.2 \%}$	${ }_{57.5}^{575}$	57.4	-0.1	-0.2\%
65.4\%	57.5 574 57	57.4	-0.1	-0.2\%
67.9\%	57.4	57.3	0.0	-0.1\%
69.1\%	57.3	57.3	0.0	0.0\%
70.4\%	57.3	57.3	0.0	0.0\%
71.6\%	57.2	57.3	0.1	0.1\%
72.8\%	57.2	57.3 572	0.1	0.1\%
${ }^{74.15 \%}$	${ }_{57.1}^{57.1}$	57.2 57.2	0.0	0.1\%
76.5\%	57.1	57.1	0.0	-0.1\%
77.8\%	57.1	57.1	-0.1	-0.1\%
79.0\%	57.0	57.1	0.0	0.1\%
80.2\%	57.0	57.0	0.0	-0.1\%
81.5\%	55.8	56.9	0.1	0.2\%
82.7\%	56.8	55.9	0.2	0.3\%
84.0\%	56.7	56.8	0.1	0.2\%
85.2\%	${ }_{56.7}$	${ }_{56.8}$	0.1	0.2\%
${ }^{86.4 \%} 8$	56.6 56.5	56.6	${ }_{0}^{0.1}$	${ }^{0.01 \%}$
88.9\%	56.4	56.5	0.1	0.2\%
90.1\%	56.4	56.2	-0.1	-0.2\%
91.4\%	56.4	55.2	-0.2	-0.4\%
92.6\%	55.4	55.1	-0.2	-0.4\%
93.8\%	56.2	56.1	-0.1	-0.2\%
95.1\%	56.1	55.9	-0.2	-0.3\%
96.3\%	55.8	55.9	${ }^{0.1}$	0.2\%
97.5\%	55.7	55.9	0.2	0.3\%
98.8\%	55.7	55.8	0.1	0.2\%
100.0\%	55.6	55.7	0.0	0.1\%

PercentExceedanceProbability	Juy to September		,		August to September				
	${ }^{\text {DCR } 2015 \text { Without }}$	DCR 2015 With Project	$\begin{gathered} \text { Absolute } \\ \text { Differeence } \\ \text { (DEGGF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	$\begin{array}{\|c} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{array}$		DCR 2015 With Project Monthly Temperature (DEGF)	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGFF) } \end{aligned}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	Monthy Temperature	Monthly Temperature							
	(DEGF)	(0EGF)							
0.0\%	64.7	62.3	-2.4	-3.7\%	0.0\%	66.8	63.4	${ }^{-3.3}$	-5.0\%
1.2\%	63.5	61.4	-2.0	-3.2\%	1.2\%	64.8	62.3		
2.5\%	62.7	61.3	1.4	-2.2\%	2.5\%	64.0	62.1	1.9	-3.0\%
3.7\%	62.4	61.2	-1.3	-2.0\%	3.7\%	63.2	61.3	-1.9	-3.1\%
4.9\%	62.0	60.8	1.2	-1.9\%	4.9\%	62.9	60.9	-2.0	3.1\%
6.2\%	62.0	60.4	-1.6	-2.5\%	6.2\%	62.4	60.8	-1.6	-2.5\%
7.4\%	61.5	60.2	-1.3	-2.1\%	7.4\%	62.3	60.8	-1.6	-2.5\%
8.6\%	61.4	60.2	-1.2	-1.9\%	8.6\%	61.9	60.7	-1.2	-1.9\%
9.9\%	61.1	60.1	-1.0	-1.6\%	9.9\%	61.9	60.5	-1.4	-2.2\%
11.1\%	61.0	60.1	-0.9	-1.5\%	11.1\%	61.6	60.4	-1.1	-1.8\%
12.3\%	60.8	60.1	-0.7	-1.1\%	12.3\%	61.5	60.2	-1.3	-2.0\%
13.6\%	60.8	59.9	-0.9	-1.5\%	13.6\%	61.1	60.2	-0.9	-1.5\%
14.8\%	${ }_{60.1}^{60.1}$	59.9 597		-0.4\%	14.8\%	61.0 60.8	60.1 60.0	-0.9 -0.8	-1.5\%
16.0\%	60.1	59,7	-0.4	-0.7\%	16.0\%	60.8 607	60.0 590	-0.8	-1.4\%
17.3\%	60.1	59.6	-0.5	-0.8\%	17.3\%	60.7	59.9	-0.8	-1.3\%
18.5\%	60.0	59.5	-0.5	-0.8\%	18.5\%	60.7	59.8	-0.9	-1.5\%
19.8\%	60.0	59.4	-0.6	-1.0\%	19.8\%	60.6	59.7	-0.9	-1.4\%
21.0\%	59.6	59.1	-0.5	-0.9\%	21.0\%	60.4	59.7	-0.8	-1.3\%
22.2\%	59.6	59.1	-0.6	-1.0\%	22.2\%	60.3	59.6	-0.7	-1.2\%
23.5\%	59.6	59.0	-0.6	-0.9\%	23.5\%	60.3	59.4	-0.9	-1.5\%
24.7\%	59.5	58.9	-0.6	-1.0\%	24.7\%	60.2	59.3	-0.9	-1.6\%
25.9\%	59.4	58.9	-0.5	-0.8\%	25.9\%	60.0	59.2	-0.8	-1.4\%
27.2\%	59.2	58.8	-0.4	-0.7\%	27.2\%	60.0	59.1	-0.9	.5\%
28.4\%	59.2	58.8	-0.4	-0.7\%	28.4\%	60.0	59.0	-0.9	-1.5\%
29.6\%	59.2	${ }_{58.8}$	-0.4	-0.6\%	29.6\%	59.9	59.0	-0.9	${ }^{-1.5 \%}$
${ }_{\text {32.1\% }}$	59.2 59.2	58.6	-0.6	-0.9\%	${ }^{30.1 \%}$	59.9 59.7	${ }_{58.8}^{59.0}$	-0.9	${ }_{\text {-1.5\% }}$
33.3\%	59.0	58.6	-0.4	-0.6\%	33.3\%	59.5	58.8	-0.8	-1.3\%
34.6\%	59.0	58.5	-0.4	-0.8\%	34.6\%	59.5	58.7	-0.8	-1.4\%
35.8\%	59.0	58.5	-0.5	-0.8\%	35.8\%	59.5	58.7	-0.8	-1.4\%
37.0\%	59.0	58.5	-0.5	-0.9\%	37.0\%	59.5	58.7	-0.8	-1.3\%
38.3\%	58.9	58.4	-0.6	-1.0\%	38.3\%	59.4	58.7	-0.7	-1.2\%
39.5\%	58.8	58.4	-0.4	-0.7\%	39.5\%	59.2	58.7	-0.5	-0.9\%
40.7\%	58.8	58.3	-0.4	-0.7\%	40.7\%	59.2	58.6	-0.6	-0.9\%
		58.3	-0.3	-0.6\%	42.0\%	59.2	58.6	-0.6	-1.0\%
43.2\%	58.6	58.3	-0.3	${ }^{-0.6 \%}$	${ }^{43.2 \%}$	59.0	58.6		
44.4.\%	${ }^{58.6}$	${ }_{58.2}^{58}$	-0.3	-0.6\%	44.4\%	58.9	58.5	-0.3	-0.6\%
${ }^{45.7 \%}$	58.5 58.5	58.2 58.1	-0.3 -0.4	-0.6\%	45.79% 46.9%	58.8 58.7	58.5 58.3	-0.3 -0.4	-0.5\%
48.1\%	58.4	58.0	-0.4	-0.7\%	48.1\%	58.7	58.3	-0.4	-0.6\%
4.4\%	58.3	57.9	-0.4	-0.7\%	49.4\%	58.6	58.1	-0.5	-0.8\%
50.6\%	58.3	57.8	-0.4	-0.7\%	50.6\%	58.5	58.1	-0.4	-0.6\%
51.9\%	58.2	57.8	-0.4	-0.7\%	51.9\%	58.2	58.1	-0.2	-0.3\%
53.1\%	58.2	57.8	-0.4	-0.7\%	53.1\%	58.2	58.0	-0.2	-0.3\%
54.3\%	57.9	57.8	-0.1	-0.2\%	54.3\%	58.2	58.0	-0.2	-0.4\%
55.6\%	57.8	57.6	-0.2	-0.4\%	55.6\%	58.2	57.9	-0.3	-0.5\%
56.8\%	57.8	57.6	-0.2	-0.3\%	56.8\%	58.0	57.9	-0.1	-0.2\%
58.0\%	57.7	57.6 57.5	-0.1	-0.1\%	58.0\%	55.0	57.8	-0.2	-0.4\%
59.3\%	57.6	57.5	-0.1	-0.1\%	59.3\%	57.9	57.7	-0.2	-0.3\%
60.5\%	57.6	57.4	-0.1	-0.2\%	60.5\%	57.8	57.7	-0.1	-0.2\%
61.7\%	57.5	57.4	-0.1	-0.2\%	61.7\%	57.8	57.7	-0.1	-0.2\%
63.0\%	57.5	57.4	-0.1	-0.1\%	63.0\%	57.8	57.7	-0.1	-0.2\%
64.2\%	57.4	57.4	0.0	0.0\%	64.2\%	57.7	57.6	-0.1	-0.2\%
65.4\%	57.4	57.4	0.0	0.0\%	65.4\%	57.7	57.5	-0.2	-0.3\%
66.7\%	57.4	57.3	0.0	-0.1\%	66.7\%	57.6	57.4	-0.2	-0.4\%
67.9\%	57.3	57.2	-0.1	-0.1\%	67.9\%	57.5	57.3	-0.2	-0.3\%
69.1\%	57.3	57.2	-0.1	-0.1\%	69.1\%	57.4	57.3	0.0	-0.1\%
70.4\%	57.3	57.2	-0.1	-0.2\%	70.4\%	57.4	57.2		
71.6% 72.8%	57.2 57.2	57.1 57.1	-0.1	-0.0.0\%	71.6\%	57.3 572 57	57.1 571	-0.2	-0.3\%
74.1\%	57.1	57.1	-0.1	-0.1\%	${ }_{7} 7.12 .1 \%$	57.2 57.2	57.1 57.0	-0.2	-0.4\%
75.3\%	57.0	57.1	0.0	0.0\%	75.3\%	57.2	57.0	-0.2	-0.4\%
76.5\%	57.0	57.1	0.0	0.0\%	76.5\%	56.9	56.8	-0.1	-0.2\%
77.8\%	57.0	57.0	0.0	0.0\%	77.8\%	56.9	56.8	-0.1	-0.2\%
79.0\%	57.0	57.0	-0.1	-0.1\%	79.0\%	56.8	56.7	-0.1	-0.1\%
80.2\%	57.0	56.9	-0.1	-0.1\%	80.2\%	56.7	56.7	0.0	0.0\%
81.5\%	57.0	56.9	-0.1	-0.1\%	81.5\%	56.6	55.6	-0.1	-0.1\%
-	56.9 56.9	56.9 56.9	-0.1 0.0	-0.00\%	82.70\% 84.0%	56.5 56.4	56.5 56.5	${ }_{0}^{0.1}$	-0.0\%\%
85.2\%	56.9	56.9	0.0	0.0\%	85.2\%	56.3	56.4	0.1	0.2\%
86.4\%	56.8	56.6	-0.3	-0.5\%	86.4\%	56.3	56.4	0.1	0.2\%
87.7\%	56.5	55.6	0.1	0.1\%	87.7\%	56.3	56.3	0.1	0.1\%
88.9\%	56.5	56.3	-0.2	-0.3\%	88.9\%	56.2	56.3	0.0	0.1\%
90.1\%	56.4	56.3	-0.1	-0.2\%	90.1\%	56.2	55.9	-0.3	-0.5\%
91.4\%	56.3	56.2	-0.1	-0.1\%	91.4\%	56.2	55.9	-0.3	-0.6\%
92.6\%	56.1	55.0	-0.1	-0.2\%	92.6\%	56.1	55.8	-0.4	-0.6\%
93.8\%	56.1	56.0	-0.1	-0.2\%	93.8\%	55.8	55.4	-0.4	-0.7\%
${ }_{9}^{95.19 \%}$	56.0 56.0	55.9 55.8	-0.2 -0.2	-0.0.3\%	${ }_{9}^{95.36 \%}$	55.8 55.5	55.3 55.3	-0.5 -0.2	${ }^{-0.9 \% \%}$
97.5\%	56.0	55.6	-0.4	-0.8\%	97.5\%	55.3	55.2	-0.1	-0.2\%
98.8\%	55.9	55.5	-0.3	-0.6\%	98.8\%	55.2	55.2	0.0	0.1\%
100.0\%	55.6	55.4	-0.2	-0.4\%	100.0\%	55.1	54.5	-0.7	-1.2\%

Sacramento River below Red Bluff, Monthly Temperatur

October				
$\begin{gathered} \text { Percerent } \\ \text { Exceedance } \end{gathered}$	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project		Relative
Probability (\%)	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGF } \end{aligned}$	Difference (\%)
0.0\%	63.0	63.1	0.1	0.2\%
1.2\%	62.0	62.2	0.1	029
2.5\%	61.4	61.7	0.2	0.4\%
3.7\%	61.1	61.6	0.5	0.9\%
4.9\%	59.8	59.0	-0.9	-1.5\%
6.2\%	59.2	58.9	-0.3	-0.5\%
7.4\%	58.4	58.8	0.4	0.7\%
8.6\%	58.4	58.2	-0.1	-0.2\%
9.9\%	58.1	57.9	-0.2	0.4\%
11.19\%	57.8	57.8	0.1	0.1\%
12.3\%	57.7 577	57.8 577 7.7	0.0	${ }^{0.10 \%}$
14.8\%	57.6	57.7	0.1	0.2\%
16.0\%	57.5	57.7	0.1	0.3\%
17.3\%	57.4	57.6	0.2	0.4\%
18.5\%	57.4	57.5	0.0	0.1\%
19.8\%	57.4	57.4	0.0	0.0\%
21.0\%	57.4	57.3	0.0	-0.1\%
22.2\%	57.3	57.3	0.1	0.1\%
${ }^{23.5 \%}$	57.2	57.3	0.1	0.2\%
24.9\%\%	57.1 57.1	57.3 57.2	0.1 0.1	${ }_{0}^{0.3 \%}$
27.2\%	57.0	57.1	0.2	0.3\%
28.4\%	56.9	57.1	0.1	0.2\%
29.6\%	56.8	57.0	0.2	0.3\%
30.9\%	56.8	57.0	0.2	0.3\%
32.1\%	56.8	57.0	0.2	0.3\%
33.3\%	56.7	56.9	0.2	0.3\%
34.6\%	56.7	55.8	0.0	0.0\%
35.8\%	${ }_{56.7}^{56.7}$	${ }_{56.7}^{56.7}$	0.0	0.0\%
37.0% 38.3%	56.6 56.5	56.7 56.6	${ }_{0.1}^{0.1}$	${ }_{0}^{0.2 \%}$
39.5\%	56.5	56.6	0.1	0.2\%
40.7\%	56.5	56.6	0.1	0.2\%
42.0\%	56.4	55.6	${ }^{0.1}$	0.3\%
43.2\%	56.4	56.5	0.1	
44.4\%\%	56.4	56.4	0.0	0.0\%
46.9\%	S6.4	56.3 56.3	0.0	-0.1\%
48.1\%	56.3	56.3	0.0	-0.1\%
49.4\%	56.3	56.2	-0.1	-0.1\%
50.6\%	56.2	56.2	0.0	0.0\%
51.9\%	56.2	56.2	0.0	-0.1\%
53.1\%	56.2	56.1	-0.1	-0.2\%
54.3\%	56.1	56.0	-0.1	-0.2\%
55.6\%	56.1	56.0	-0.1	-0.2\%
56.8\%	56.1	55.0	-0.1	-0.1\%
58.0\%	56.1	55.9 559	-0.1	-0.3\%
59.3\%	${ }_{56.0}^{56}$	55.9 558	-0.1	-0.3\%
60.5\%	55.0	55.8	-0.2	-0.3\%
${ }^{61.7 \%}$	55.0	55.8	-0.2	-0.3\%
63.0\%	56.0	55.8	-0.2	-0.3\%
${ }^{64.2 \%}$	55.9	${ }_{55.8}$	-0.2	-0.3\%
65.4\%	55.9	55.8	-0.2	-0.3\%
66.7\%	55.9	55.8	-0.1	-0.2\%
-67.9\%	55.9 559 55	55.8 55 5.8	-0.1	-0.2\%
70.4\%	55.9 55.8	55.8 557 5.7	-0.1	${ }^{-0.2 \%}$
71.6\%	55.8	55.7	-0.1	-0.1\%
72.8\%	55.7	55.7	0.0	0.0\%
74.1\%	55.7	55.7	0.0	0.0\%
75.3\%	55.7	55.7	-0.1	-0.1\%
76.5\%	55.7	55.7	0.0	-0.1\%
77.8\%	55.7	55.6	0.0	-0.1\%
79.0\%	55.7	55.6	0.0	-0.1\%
- ${ }^{80.2 \%}$	55.6 55.5	55.6 55.6	${ }_{0}^{0.1}$	${ }_{0}^{0.0 \% \%}$
82.7\%	55.5	55.6	0.1	0.3\%
84.0\%	55.4	55.4	-0.1	-0.1\%
85.2\%	55.3	55.3	0.0	0.0\%
86.4\%	55.3 55 5.3	$\begin{array}{r}55.3 \\ 55 \\ \hline 5\end{array}$	-0.1	-0.1\%
87.7\%	55.3 553 553	55.2 552 551	0.0	-0.0\%
90.1\%	55.2	55.1	-0.1	-0.2\%
91.4\%	55.2	55.1	-0.1	-0.1\%
92.6\%	55.2	55.0	-0.1	-0.2\%
93.8\%	55.1	54.8	-0.3	-0.5\%
${ }_{9}^{95.19 \%}$	55.1 55.0	54.5 54.2	-0.6 -0.7	- ${ }_{-1.0 \%}$
97.5\%	54.9	54.1	-0.8	-1.5\%
98.8\%	54.7 547	54.0 540	-0.7	${ }^{-1.2 \%}$
100.0\%	54.7	54.0	0.0	-1.2\%

Table SO8-1b
below Red Bluf,
Monthly Temperature
Sacramento Ri

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	DCR 2015 Without Proiect Monthly Temperature (DEGGF)	November		-	December				
		DCR 2015 With Project			Percent Exceedance	DCR 2015 Without Proiect	DCR 2015 With Project		
		Monthly Temperature (DEGF)	Difference (DEGF)	Difference (\%)	Probability	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { ifference } \\ & \text { (DEGF) } \end{aligned}$	Difference (\%)
0.0\%		55.9	0.0	-0.1\%	0.0\%	52.5	52.7	0.2	0.4\%
1.2\%	55.7	55.8	0.2	0.3\%	1.2\%	51.6	51.5	0.0	
2.5\%	55.6	55.6	0.0	0.0\%	2.5\%	51.5	51.1	-0.4	
3.7\%	55.5	55.6	0.1	0.1\%	3.7\%	51.2	51.0	-0.2	-0.3\%
4.9\%	55.5	55.5	0.0	0.0\%	4.9\%	50.5	50.6	0.1	0.2\%
6.2\%	55.5	55.5	0.1	0.1\%	6.2\%	50.4	50.3	-0.1	-0.3\%
7.4\%	55.4	55.4	0.0	0.1\%	7.4\%	50.3	50.2	-0.1	-0.1\%
8.6\%	55.3	55.1	-0.2	-0.3\%	8.6\%	50.2	50.2	0.0	0.0\%
9.9\%	55.1	55.1	0.0	-0.1\%	9.9\%	50.0	50.0	-0.1	-0.1\%
11.1\%	55.0	55.0	0.0	0.0\%	11.1\%	49.9	49.9	-0.1	-0.1\%
12.3\%	55.0	55.0	0.1	0.1\%	12.3\%	49.8	49.9	0.0	0.1\%
13.6\%	54.9	55.0	0.1	0.1\%	13.6\%	49.8	49.8	0.1	0.1\%
14.8\%	54.9	54.9	0.0	0.1\%	14.8\%	49.7	49.8	0.1	0.2\%
16.0\%	54.9	54.9	0.0	0.0\%	16.0\%	49.6	49.7	0.1	0.1\%
17.3\%	54.8	54.8	0.0	0.1\%	17.3\%	49.5	49.7	0.1	0.3\%
18.5\%	54.7	54.7	-0.1	-0.1\%	18.5\%	49.5	49.6	0.1	0.2\%
19.8\%	54.7	54.7	-0.1	-0.1\%	19.8\%	49.4	49.6	0.2	0.4\%
21.0\%	54.7	54.6	-0.1	-0.2\%	21.0\%	49.3	49.5	0.2	0.4\%
22.2\%	54.6	54.6	0.0	0.0\%	22.2\%	49.3	49.4	0.1	0.2\%
23.5\%	54.5	54.5	0.0	0.0\%	23.5\%	49.2	49.4	0.2	0.4\%
24.7\%	54.5	54.4	-0.1	-0.1\%	24.7\%	49.2	49.3	0.2	0.3\%
25.9\%	54.4	54.4	0.0	0.0\%	25.9\%	49.2	49.2	0.0	0.1\%
27.2\%	54.3	54.2	-0.1	-0.2\%	27.2\%	48.9	49.0	0.1	0.2\%
28.4\%	54.1 539	$\begin{array}{r}54.2 \\ 54.1 \\ \hline\end{array}$	0.1	0.2\%	28.4\%	48.8 487	49.0 489	0.2	0.4\%
29.6\%	53.9 53.9	54.1 54.1	${ }_{0}^{0.2}$	0.3\% 0	29.6\%	${ }_{48.7}^{48.7}$	${ }_{48.9}^{48.9}$	${ }_{0}^{0.2}$	- ${ }_{\text {0.4\% }}^{0.10}$
${ }^{3} \mathbf{3 0 . 9 \%}$ 32.1\%	53.9 53.9	54.1 54.1	0.2	0.4\%	${ }^{32.1 \%}$	${ }_{48.7}^{48.7}$	${ }_{48.7}^{48.7}$	0.1	${ }^{0.00 \%}$
33.3\%	53.9	54.1	0.2	0.4\%	33.3\%	48.5	48.5	0.0	0.1\%
34.6\%	53.9	54.0	0.2	0.3\%	34.6\%	48.5	48.5	0.0	0.0\%
35.8\%	53.8	53.9	0.1	0.2\%	35.8\%	48.5	48.4	-0.1	-0.2\%
37.0\%	53.8	53.9	0.2	0.3\%	37.0\%	48.5	48.4	-0.1	-0.2\%
38.3\%	${ }_{53.7}$	53.9	0.2	0.4\%	38.3\%	48.3	48.4	0.1	0.1\%
39.5\%	53.7	53.9	0.2	0.4\%	39.5\%	48.3	48.4	0.1	0.1\%
40.7\%	53.6	53.7	0.1	0.1\%	40.7\%	48.2	48.3	0.1	0.2\%
${ }^{42.0 \%}$	53.6	${ }_{53.7}$	0.1	0.1\%	42.0\%	48.2	48.3	0.1	0.2\%
43.2\%	53.6	53.7	0.1	0.2\%	43.2\%	48.2	48.3	0.1	0.2\%
44.4\%	53.4	53.6	0.2	0.3\%	44.4\%	48.2	48.3	0.1	0.3\%
45.7\%	53.4	$\begin{array}{r}53.6 \\ 53.4 \\ \hline\end{array}$	0.2	0.3\%	45.7\%	48.2	48.3	0.1	0.2\%
46.9\%	${ }_{53.4}$	${ }^{53.4}$	0.0	0.0\%	46.9\%	48.1	48.2	0.1	0.2\%
48.1\%	53.4	53.3	0.0	-0.1\%	48.1\%	48.1	48.2	0.1	0.2\%
49.4\%	53.3	53.3	-0.1	-0.1\%	49.4\%	48.1	48.2	0.1	0.2\%
50.6\%	53.3	53.2	0.0	-0.1\%	50.6\%	48.1	48.2	0.1	0.2\%
51.9\%	53.3	53.1	-0.2	-0.3\%	51.9\%	48.1	48.2	0.1	0.3\%
53.1\%	53.1	53.1	0.0	0.0\%	53.1\%	48.1	48.2	0.1	0.2\%
54.3\%	53.0	52.9	-0.1	-0.1\%	54.3\%	48.1	48.2	0.1	0.2\%
	53.0 52.9	52.8 52.7	-0.2 -0.2	- -0.3%	55.6\% ${ }_{\text {56.8\% }}$	48.0 48.0	${ }_{48.1}^{48.2}$	${ }_{0.1}^{0.2}$	- ${ }_{\text {0,3\% }}^{0.3 \%}$
56.0\%	${ }_{52.9}$	52.7	-0.3	-0.5\%	58.0\%	48.0	48.1	0.1	0.3\%
59.3\%	52.8	52.6	-0.1	-0.3\%	59.3\%	48.0	48.1	0.1	0.3\%
60.5\%	52.7	52.5	-0.2	-0.3\%	60.5\%	47.9	48.0	0.1	0.2\%
${ }^{61.7 \%}$	52.7	52.5	-0.2	-0.4\%	61.7\%	47.9	48.0	0.2	0.3\%
63.0\%	52.5	52.5	0.0	-0.1\%	63.0\%	47.8	48.0	0.2	0.5\%
64.2\%	52.5	52.5	-0.1	-0.1\%	64.2\%	47.8	48.0	0.2	0.4\%
65.4\%	52.5	52.4	-0.1	-0.3\%	65.4\%	47.8	47.9	0.2	0.3\%
66.7\%	52.5	52.3	-0.2	-0.4\%	66.7\%	47.6	47.9	0.3	0.6\%
67.9\%	52.4	52.3	-0.1	-0.3\%	67.9\%	47.5	47.8	0.3	0.6\%
69.19\%	$\begin{array}{r}52.4 \\ 52.4 \\ \hline\end{array}$	52.3	-0.1	${ }^{-0.3 \%}$	69.1\%	47.5	47.8	${ }^{0.3}$	0.7\%
71.6\%	52.4	52.2	-0.1	-0.3\%	71.6\%	${ }_{47.5}$	${ }_{47.8}$	0.3	0.6\%
72.8\%	52.4	52.2	-0.2	-0.3\%	72.8\%	47.5	47.7	0.3	0.5\%
74.1\%	52.3	52.2	-0.1	-0.3\%	74.1\%	47.4	47.6	0.2	0.4\%
75.3\%	52.3	52.2	-0.1	-0.1\%	75.3\%	47.4	47.5	0.1	0.2\%
76.5\%	52.2	52.2	0.0	0.0\%	76.5\%	47.3	47.5	0.2	0.4\%
77.8\%	52.1	52.1	0.0	0.0\%	77.8\%	47.3	47.4	0.1	0.2\%
79.0\%	52.0	52.1	0.1	0.1\%	79.0\%	47.2	47.4	0.2	0.3\%
80.2\%	52.0	52.1	0.1	0.2\%	80.2\%	47.2	47.4	0.1	0.3\%
81.5\%	51.9	52.1	0.2	0.4\%	81.5\%	47.2	47.3	0.1	0.3\%
82.79\%	${ }_{51.9}^{51.9}$	${ }_{52.0}^{52.0}$	0.2	0.4\%	82.70\%	47.2	47.3	0.1	${ }^{0.2 \%}$
84.0\%	51.8	52.0	0.2	0.3\%	84.0\%	47.1	47.2	0.1	0.3\%
${ }^{85.20 \%}$	51.8	52.0	0.2	0.3\%	${ }^{85.20 \%}$	47.1	47.2	0.1	0.3\%
${ }^{86.4 \%}$ 87.7\%	${ }_{51.6}^{51.8}$	52.0 51.8	0.2 0.2	${ }_{\text {en }}^{0.4 \%}$	${ }^{86.4 \%} 8$	${ }_{46.9}^{47.0}$	47.2 47.2	0.2 0.3	- ${ }_{\text {0.4\% }}^{0.6 \%}$
88.9\%	51.4	51.5	0.1	0.2\%	88.9\%	46.9	47.1	0.2	0.4\%
90.1\%	51.4	51.5	0.1	0.3\%	90.1\%	46.7	46.9	0.2	0.4\%
91.4\%	51.3	51.5	0.1	0.3\%	91.4\%	46.7	46.9	0.1	0.3\%
92.6\%	51.2	51.4	${ }^{0.3}$	0.5\%	92.6\%	46.7	46.8	0.1	0.2\%
93.8\%	51.0	${ }_{51.1}$	0.2	0.5\%	93.8\%	46.7	46.7	0.0	${ }^{0.00 \%}$
${ }_{965.3 \%}^{95.10 \%}$	51.0 50.8	51.1 51.0	${ }_{0.1}^{0.1}$	${ }_{0}^{0.2 \%}$	${ }_{96.3 \%}^{95.10 \%}$	46.6 46.5	46.6 46.6	0.0 0.0	${ }_{0}^{0.1 \%}$
97.5\%	50.8	50.8	0.0	0.0\%	97.5\%	46.2	46.5	0.3	0.6\%
98.8\%	50.7	50.7	0.1	0.1\%	98.8\%	46.1	46.2	0.1	0.1\%
100.0\%	50.7	50.7	0.1	0.1\%	100.0\%	46.1	46.2	0.1	0.1\%

		January		
Percent	DCR 2015 Without Proiect	DCR 2015 With Project	Absolute	
Probability (\%)	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGGF) } \end{aligned}$	Difference (\%)
0.0\%	49.1	49.2	0.1	0.3\%
1.2\%	48.4	48.6	0.2	
2.5\%	48.2	48.4	0.2	0.4\%
3.7\%	48.2	48.2	0.0	0.1\%
4.9\%	48.0	47.9	-0.2	-0.3\%
6.2\%	47.8	47.8	-0.1	-0.1\%
7.4\%	47.8	47.8	0.0	-0.1\%
8.6\%	47.7	47.7	0.0	0.0\%
9.9\%	47.6	47.6	0.0	0.0\%
11.19\%	47.5	47.6	0.0	0.0\%
12.3\%	47.5	47.5	0.0	0.0\%
13.6\%	47.4	47.5	0.0	0.1\%
14.8\%	47.4	47.3	-0.1	-0.1\%
16.0\%	47.3	47.3	0.0	0.0\%
17.3\%	47.3	47.3	0.0	0.0\%
18.5\%	47.3	47.2	-0.1	-0.2\%
19.8\%	46.9	47.0	0.1	0.2\%
21.0\%	46.9	46.9	0.0	0.1\%
22.2\%	46.8	46.9	0.0	0.1\%
23.5\%	46.8	46.8	0.0	0.0\%
24.7\%	46.8	46.8	0.0	0.1\%
25.9\%	46.8	46.8	0.0	0.1\%
27.2\%	46.7	46.7	0.0	0.1\%
28.4\%	46.6	46.7	0.1	0.2\%
29.6\%	46.6	46.7	0.1	0.2\%
30.9\%	46.6	46.7	0.1	0.2\%
32.1\%	46.5	46.6	0.1	0.2\%
33.3\%	46.5	46.6	0.1	0.2\%
34.6\%	46.5	46.6	0.1	0.3\%
35.\%	46.5	46.6	0.1	0.3\%
37.0\%	46.4	46.5	0.0	0.1\%
38.3\%	46.4	46.5	0.0	0.1\%
3.5\%		46.4	0.0	0.1\%
40.7\%	46.4	46.4	0.1	0.1\%
42.0\%	46.4	46.4	${ }_{0}^{0.1}$	${ }^{0.1 \%}$
43.2\%	46.4	46.4	${ }^{0.1}$	0.1\%
44.4\%	46.3	46.4	0.1	0.2\%
45.7\%	46.3	46.4	0.1	0.2\%
46.9\%	46.3	46.4	0.1	0.3\%
48.1\%	46.3	46.4	0.1	0.2\%
49.4\%	46.3	46.3	0.1	0.1\%
	46.1	46.3	0.2	0.3\%
51.9\%	46.1	46.2	0.1	0.2\%
	46.1 46.1	46.2 46.2	${ }_{0}^{0.1}$	${ }_{0}^{0.12 \%}$
55.6\%	46.1	46.1	0.0	0.1\%
56.8\%	46.1	46.1	0.0	-0.1\%
58.0\%	46.1	46.1	0.0	0.0\%
59.3\%	46.0	46.0	0.0	0.0\%
60.5\%	46.0	46.0	0.0	0.0\%
61.7\%	46.0	46.0	0.0	0.0\%
63.0\%	46.0	46.0	0.0	0.0\%
64.2\%	46.0	46.0	0.0	0.0\%
65.4\%	46.0	46.0	0.0	0.0\%
${ }^{66.7 \%} 6$	45.9	46.0	0.1	0.2\%
${ }^{67.9 \%}$	45.9	45.9	0.0	0.1\%
69.1\%	45.9	45.9	0.1	0.1\%
70.4\%	45.8	45.9	0.1	0.2\%
71.6\%	45.8	45.9	0.1	0.1\%
72.8\%	45.8	45.8	0.1	0.1\%
74.19\%	45.8	45.8	0.0	0.0\%
75.3\%	45.7	45.8	0.0	0.0\%
${ }^{76.5 \%}$	45.7	45.8	0.0	0.1\%
77.7\%	45.7	45.7	0.0	0.1\%
79.0\% 80.2%	45.7	45.7	0.1	${ }^{0.2 \%}$
-	45.6	45.7	0.1	0.2\%
81.5\%	45.6	45.7	0.1	0.2\%
- 82.70%	45.5 45.5	45.6 45.5	${ }_{0}^{0.1}$	${ }^{0.2 \%}$
84.0\%	45.5	45.5	${ }^{0.0}$	0.1\%
85.2\%	45.5 455	45.5 455	0.0	0.0\%
86.4\%	45.5	45.5	0.0	0.1\%
87.7\%	45.4	45.4	0.0	0.1\%
88.9\%	45.4	45.4	0.0	0.0\%
90.1\%	45.4	45.3	0.0	-0.1\%
91.4\% ${ }_{\text {92.6\% }}$	45.3	45.3	0.0	0.0\%
${ }_{9}^{92.86 \%}$	45.1 45.1	45.2 45.1	0.0 0.0	${ }^{0.0 \%}$
95.1\%	45.0	45.1	0.1	0.1\%
96.3\%	44.9	45.0	0.2	0.4\%
97.5\%	44.9	45.0	${ }^{0.1}$	0.3\%
98.8\%	44.6	44.9	${ }^{0.3}$	0.6\%
100.0\%	44.6	44.9	0.3	0.6\%

Table SQ8-1b
Scramento River below Red Buff, , Monthly Temperature

$\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probabalily } \end{array} \end{aligned}$	February			
	DCR 2015 Without Proiet	DCR 2015 With Project		Relative
	Monthly Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
0.0\%	51.1	51.2	0.1	0.3\%
1.2\%	49.9	49.9	0.0	0.0\%
2.5\%	49.6	49.6	0.0	
3.7\%	49.2	49.1	0.0	0.0\%
4.9\%	48.8	49.1	${ }^{0.3}$	0.6\%
6.2\%	48.8	49.0	0.2	0.3\%
7.4\%	48.7	48.8	0.1	0.2\%
8.6\%	48.7	48.8	0.1	0.1\%
9.9\%	48.7	48.7	0.0	0.0\%
11.1\%	48.6	48.6	0.1	0.1\%
12.3\%	48.5	48.5	0.0	0.0\%
13.6\%	48.5	48.5	0.0	0.0\%
14.8\%	48.5	48.5	0.0	0.0\%
${ }^{16.0 \%} \times 17.3 \%$	48.4 48.4	${ }_{48.4}^{48.5}$	0.1 0.0	${ }_{0}^{0.2 \% \%}$
18.5\%	${ }_{48.3}$	48.4	0.0	0.0\%
19.8\%	48.1	48.2	0.1	0.2\%
21.0\%	48.1	48.1	0.0	0.1\%
22.2\%	48.1	48.1	0.0	0.1\%
23.5\%	48.0	48.0	0.0	0.1\%
24.7\%	47.9	48.0	0.0	0.1\%
25.9\%	47.9	48.0	0.1	0.2\%
27.2\%	47.9	47.9	0.1	0.1\%
28.4\%	47.8	47.9	0.1	0.2\%
29.6\%	47.8	47.9	0.1	0.2\%
30.9\%	4777	47.8 477	0.1	${ }^{0.3 \%}$
32.1\%	47.7	47.7	0.0	0.0\%
33.3\%	47.6	47.7	0.1	${ }^{0.2 \%}$
34.6\%	47.5	47.6	0.0	${ }^{0.10 \%}$
35.8\%	47.5	47.6	0.1	0.2\%
37.0\%	47.4	47.5	0.1	0.1\%
38.3\%	47.4	47.5	0.1	0.1\%
39.5\%	47.4	47.5	${ }^{0.1}$	0.1\%
40.7\%	47.4	47.4	0.0	${ }^{0.0 \%}$
${ }^{42.0 \%} 4$	47.4 47.4	47.4 47.4	0.0	${ }_{\substack{0.0 \% \\ 0.01 \%}}^{0.0 \%}$
44.4\%	47.3	47.3	0.0	0.0\%
45.7\%	47.2	47.2	0.0	0.0\%
46.9\%	47.2	47.1	-0.1	-0.1\%
48.1\%	47.1	47.1	0.0	0.0\%
49.4\%	47.1	47.1	0.0	0.0\%
50.6\%	47.1	47.1	0.0	0.0\%
51.9\%	47.1	47.1	0.0	${ }^{0.0 \% \%}$
(${ }_{\text {54.3\% }}^{53.10 \%}$	${ }_{47.1}^{47.1}$	${ }_{47.1}^{47.1}$	0.0 0.0	0.0\%
55.6\%	47.1	47.1	0.0	0.0\%
56.8\%	46.9	46.9	0.0	0.0\%
58.0\%	46.9	46.9	0.0	0.0\%
59.3\%	46.9	46.9	0.0	0.1\%
${ }^{60.5 \%}$	${ }^{46.9}$	46.9	0.0	0.1\%
61.7\%	4.8	46.9	0.1	0.2\%
63.0\%	46.7	46.8	0.1	0.2\%
64.2\%	46.5	46.7	0.2	0.4\%
65.4\%	46.4	46.6	0.2	0.4\%
66.7\%	46.4	46.4	-0.1	-0.1\%
67.9\%	46.4	46.3	0.0	-0.1\%
69.1\%	46.4	46.3	-0.1	-0.1\%
70.4\%	${ }_{46.3}^{46.3}$	${ }_{46.3}^{46.3}$	-0.1 -0.1	-0.1\%
72.8\%	46.3	46.3	0.0	-0.1\%
74.1\%	46.3	46.3	0.0	0.0\%
75.3\%	46.3	46.2	0.0	-0.1\%
76.5\%	46.2	46.2	0.0	0.1\%
77.8\%	46.2	46.2	0.0	0.1\%
79.0\%	46.1	46.2	0.0	0.1\%
80.2\%	46.1	46.2	0.0	0.1\%
81.5\%	46.1	46.1	0.0	0.0\%
${ }^{82.79 \%}$	46.1	46.1	0.0	0.0\%
84.0\%	46.0	46.1	0.1	0.2\%
85.2\%	46.0	46.1	0.1	0.2\%
${ }^{86.4 \%}$	${ }_{45.9}^{46.0}$	${ }_{46.0}^{46.0}$	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
88.9\%	45.9	46.0	0.1	0.2\%
90.1\%	45.8	45.8	0.1	0.1\%
91.4\%	45.8	45.8	0.0	0.0\%
92.6\%	45.7	45.7	0.0	0.0\%
93.8\%	45.7	45.7	0.0	-0.1\%
95.10\%	45.7	45.6	-0.1	-0.2\%
${ }^{96.5 \%}$	${ }_{45.5}^{45.6}$	${ }_{45.5}^{45.6}$	-0.1	-0.2\%
98.8\%	45.5	45.4	-0.1	-0.2\%
100.0\%	45.5	45.4	-0.1	-0.2\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{gathered}$		March		-	April				
		DCR 2015 With Proj			${ }^{\text {Percent }}$	DCR 2015 Without	DCR 2015 With Project		
		Monthy Temperature	Difiference	Difference (\%)	Probability	Monthy Temperature	Monthy Temperature	Difference	Difference (\%)
			(DEGF)		(\%)	${ }_{\text {(}}^{\text {(} E \text { EFF) }}$		(DEGF)	
0.0\%	53.4	53.4	0.0	0.1\%	0.0\%	57.4	57.5	0.1	0.1\%
1.2\%	53.4	53.4	0.0	0.0\%	1.2\%	57.3	56.7	-0.5	
2.5\%	53.3	53.2	-0.1	-0.2\%	2.5\%	56.5	56.7	0.1	0.3\%
3.7\%	53.1	53.0	-0.1	-0.1\%	3.7\%	56.5	56.2	-0.3	-0.5\%
4.9\%	52.8	52.5	-0.3	-0.5\%	4.9\%	56.1	55.9	-0.2	-0.4\%
6.2\%	52.5	52.5	-0.1	-0.1\%	6.2\%	56.0	55.8	-0.3	-0.5\%
7.4\%	52.4	52.5	0.1	0.1\%	7.4\%	55.9	55.7	-0.2	-0.4\%
8.6\%	52.4	52.3	-0.1	-0.2\%	8.6\%	55.8	55.6	-0.2	-0.3\%
9.9\%	52.2	52.3	0.1	0.1\%	9.9\%	55.7	55.5	-0.2	-0.3\%
11.1.1\%	52.0	52.3	0.2	0.5\%	11.19\%	55.4	55.5	0.0	0.1\%
12.3\%	52.0	52.1	0.1	0.2\%	12.3\%	55.3	55.4	0.1	0.2\%
13.6\%	51.9	52.0	0.1	0.2\%	13.6\%	55.3	55.4	0.2	0.3\%
14.8\%	51.9	52.0	0.0	0.1\%	14.8\%	55.2	55.3	0.1	0.1\%
16.0\%	51.8	51.9	0.1	0.2\%	16.0\%	55.2	55.2	0.0	0.1\%
17.3\%	51.7	51.9	0.2	0.4\%	17.3\%	55.1	55.2	0.1	0.2\%
18.5\%	51.7	51.8	0.1	0.2\%	18.5\%	55.0	55.2	0.2	0.3\%
19.8\%	51.7	51.8	0.1	0.2\%	19.8\%	55.0	55.1	0.1	0.2\%
21.0\%	51.5	51.7	0.2	0.3\%	21.0\%	55.0	55.1	0.1	0.1\%
22.2\%	51.5	51.7	0.2	0.3\%	22.2\%	54.7	55.0	0.3	0.5\%
${ }^{23.5 \%}$	${ }_{51.5}$	${ }_{51.6}$	0.1	0.2\%	23.5\%	54.6	55.0	0.3	0.6\%
24.7\%	51.5	51.5	0.1	0.1\%	24.7\%	54.6	54.8	0.2	0.4\%
25.9\%	51.4	51.5	0.0	0.0\%	25.9\%	54.4	54.8	0.4	0.7\%
27.2\%	51.4	51.5	0.0	0.0\%	27.2\%	54.4	54.7	0.3	0.5\%
28.4\%	51.4	51.4	0.0	0.0\%	28.4\%	54.4	54.6	0.2	0.3\%
29.6\%	51.3	51.4	0.0	0.1\%	29.6\%	54.4	54.6	0.2	0.4\%
30.9\%	${ }_{51.3}$	51.3	0.0	0.1\%	30.9\%	54.3	54.5	${ }^{0.3}$	0.5\%
32.1\%	51.2	51.3	0.1	0.1\%	32.1\%	54.3	54.4	0.2	0.3\%
33.3\%	51.2	51.2	0.0	0.1\%	33.3\%	54.3	54.4	0.2	0.3\%
34.6\%	51.2	51.2	0.1	0.1\%	34.6\%	54.2	54.4	0.2	0.4\%
35.8\%	51.2	51.2	0.0	0.1\%	35.8\%	54.2	54.3	0.1	0.1\%
37.0\%	51.1	51.2	0.1	0.2\%	37.0\%	54.1	54.2	0.1	0.2\%
38.3\%	51.0	51.1	0.2	0.4\%	38.3\%	54.1	54.2	0.1	0.3\%
39.5\%	50.8	51.0	0.2	0.4\%	39.5\%	54.1	54.2	0.1	0.2\%
${ }^{40.7 \%}$	50.8	50.9 509	0.2	0.3\%	40.7\%\%	53.9 53.9	54.1 54.1	0.1	0.2\%
43.2\%	50.7	50.8	0.1	0.1\%	43.2\%	${ }_{53.9}$	54.0	0.1	0.2\%
44.4\%	50.6	50.7	0.2	0.3\%	44.4\%	53.9	54.0	0.2	0.3\%
45.7\%	50.6	50.6	0.1	0.2\%	45.7\%	53.9	54.0	0.1	0.2\%
46.9\%	50.4	50.5	0.1	0.1\%	46.9\%	53.7	54.0	0.2	0.4\%
48.1\%	50.4	50.5	0.1	0.1\%	48.1\%	53.7	53.9	0.2	0.5\%
49.4\%	50.4	50.4	0.1	0.2\%	49.4\%	53.7	53.9	0.2	0.5\%
50.6\%	50.2	50.4	0.2	0.4\%	50.6\%	53.6	53.8	0.2	0.3\%
51.9\%	50.2	50.2	0.0	0.0\%	51.9\%	53.6	53.7	0.1	0.2\%
53.1\%	50.2	50.2	0.1	0.1\%	53.1\%	53.6	53.7	0.1	0.2\%
54.3\%	50.0	50.2	0.2	0.4\%	54.3\%	53.6	53.7	0.1	0.2\%
55.6\%	50.0	50.2	0.1	0.3\%	55.6\%	53.6	53.7	0.1	0.2\%
56.8\%	50.0	50.0	0.0	0.1\%	56.8\%	53.5	53.6	0.1	0.2\%
58.0\%	50.0	50.0	0.0	0.1\%	58.0\%	$\begin{array}{r}53.5 \\ 535 \\ \hline\end{array}$	${ }_{\text {53.6 }}^{53}$	0.1	0.3\%
59.3\%	49.9	50.0	0.1	0.1\%	59.3\%	${ }_{53.5}^{53.5}$	${ }_{53.6}^{53.6}$	0.1	0.3\%
60.5\%	49.9	50.0	0.1	0.1\%	60.5\%	53.3	53.6	0.2	0.4\%
61.7\%	49.9	50.0	0.1	0.2\%	61.7\%	53.3	53.6	0.2	0.4\%
63.0\%	49.9	49.9	0.1	0.1\%	63.0\%	53.3	53.5	0.2	0.3\%
64.2\%	49.9	49.9	0.0	0.0\%	64.2\%	53.3	53.4	0.1	0.2\%
65.4\%	49.7	49.7	0.0	0.0\%	65.4\%	53.0	53.3	${ }^{0.3}$	0.6\%
66.7\%	49.6	49.6	0.0	0.0\%	66.7\%	52.8	53.2	0.3	0.7\%
67.9\%	49.4	49.5	0.1	0.1\%	${ }^{67.9 \%}$	52.8 528 18	53.1 530	0.2	0.4\%
69.1\%	49.4	49.4	0.0	0.1\%	69.1\%	52.8	53.0	0.2	0.4\%
70.4\%	49.3	49.3	0.1	0.1\%	70.4\%	52.8	53.0		0.5\%
71.6\%	${ }_{49.1}^{49.1}$	49.3 49.1	${ }_{0}^{0.1}$	${ }_{\text {en }}^{0.3 \%}$	${ }^{71.6 \%}$	52.7 52.7	53.0 53.0	0.3 0.3	${ }^{0.5 \%}$
74.1\%	48.9	49.0	0.1	0.3\%	74.1\%	52.7	53.0	0.3	0.5\%
75.3\%	48.8	48.9	0.1	0.3\%	75.3\%	52.6	53.0	0.4	0.7\%
76.5\%	48.7	48.7	0.0	0.0\%	76.5\%	52.6	52.8	0.3	0.5\%
77.8\%	48.7	48.6	0.0	-0.1\%	77.8\%	52.5	52.7	0.3	0.5\%
79.0\%	48.6	48.6	0.1	0.1\%	79.0\%	52.4	52.6	0.2	0.5\%
80.2\%	48.5	48.5	0.0	0.0\%	80.2\%	52.2	52.2	0.0	0.0\%
81.5\%	48.5	48.5	-0.1	-0.1\%	81.5\%	52.2	52.2	0.0	0.0\%
82.79\%	48.5	48.4	-0.1	-0.3\%	82.70\%	52.0 520	52.0	-0.1	${ }^{-0.19 \%}$
84.0\%	${ }^{48.3}$	48.2	-0.1	-0.2\%	84.0\%	52.0	52.0	0.0	0.0\%
85.2\%	48.2	48.2	0.0	0.0\%	85.2\%	51.9	52.0	0.0	0.0\%
86.4\%	48.2	48.2	0.0	0.0\%	86.4\%	51.9 51.9	${ }_{51.9}$	0.0	0.1\%
87.7\%	48.1	48.2	0.1	0.1\%	87.7\%	51.8	51.9	0.1	0.2\%
88.9\%	48.0	48.1	0.2	0.3\%	88.9\%	51.7	51.9	0.2	0.4\%
90.1\%	47.9	48.0	0.1	0.2\%	90.1\%	51.5	51.7	0.2	0.5\%
91.4\%	47.8	47.9	0.1	0.2\%	91.4\%	50.9	51.4	0.5	0.9\%
${ }_{\text {93, }}^{92.6 \%}$	47.7	47.8	0.1	0.2\%	92.6\% ${ }_{9380}$	50.7	51.0 507	${ }^{0.3}$	- 0.5
95.1\%	47.7	47.6	-0.1	-0.2\%	95.1\%	50.6	50.7	0.0	0.0\%
96.3\%	47.5	47.6	0.0	0.0\%	96.3\%	50.5	50.5	0.0	0.0\%
97.5\%	47.1	47.4	0.3	0.6\%	97.5\%	49.7	49.6	0.0	0.0\%
98.8\%	46.7	47.1	0.4	0.8\%	98.8\%	49.4	49.5	0.0	0.0\%
100.0\%	46.7	47.1	0.4	0.8\%	100.0\%	49.4	49.5	0.0	0.0\%

May				
Percent Exceedanc	DCR 2015 Without Proiect	DCR 2015 With Project		Relative
Probability	Monthly Temperature	Monthy Temperature	$\substack{\text { Difference } \\ \text { (DEGF) }}$	Difference (\%)
${ }^{(\%))^{(0.0 \%}}$	(DEGF)	(DEGF)		
0.0\%	60.1	60.1	-0.1	-0.1\%
1.2\%	59.9	60.0	0.0	
2.5\%	59.5	59.9	0.4	
3.7\%	58.6	59.7	1.0	1.8\%
4.9\%	58.5	59.4	0.9	1.5\%
6.2\%	58.4	59.4	1.0	1.7\%
7.4\%	58.4	59.4	1.0	1.7\%
8.6\%	58.4	59.1	0.8	1.4\%
9.9\%	58.3	58.5	0.2	0.4\%
11.1\%	58.3	58.4	0.2	0.3\%
12.3\%	58.3	58.4	0.1	0.2\%
13.6\%	58.1	58.4	0.3	0.5\%
14.8\%	58.0	58.3	0.3	
16.0\%	57.9	58.1	0.2	
17.3\%	57.9	58.1	0.2	0.3\%
18.5\%	57.4	57.9	0.5	0.9\%
19.8\%	57.4	57.9	0.5	0.9\%
21.0\%	57.3	57.9	0.6	1.0\%
22.2\%	57.2	57.8	0.6	1.0\%
23.5\%	57.2	57.7	0.5	0.9\%
24.7\%	57.0	57.7	0.7	1.3\%
25.9\%	57.0	57.6	0.6	1.1\%
27.2\%	56.9	57.4	0.5	0.9\%
28.4\%	56.8	57.3	0.5	0.90
29.6\%	56.8	57.3	0.5	0.9\%
30.9\%	56.8	57.2	0.4	0.8\%
32.1\%	56.8	57.2	0.4	0.7\%
33.3\%	56.8	57.1	0.4	0.6\%
34.6\%	56.7	57.1	0.4	0.8\%
35.8\%	56.7	57.1	0.4	0.8\%
37.0\%	56.7	56.9	0.3	0.5\%
38.3\%	56.5	56.9	${ }^{0.3}$	0.6\%
39.5\%	56.5	56.7	0.2	0.3\%
40.7\%	56.4	56.7	0.2	0.4\%
42.0\%	56.4	56.7	0.3	0.5\%
43.2\%	56.3	56.6	0.3	0.4\%
48.4\%	56.3	56.5	0.2	0.3\%
45.7\%	56.3	56.4	0.1	0.2\%
46.9\%	${ }_{56.3}$	55.4	0.1	0.2\%
48.1\%	56.3	55.4	0.1	0.2\%
49.4\%	56.0	56.4	0.3	0.6\%
50.6\%	56.0	56.4	0.3	0.6\%
51.9\%	55.0	56. 2	0.2	0.4\%
	56.0	56.1	0.2	0.3\%
54.3\%	55.9	56.1	0.2	0.3\%
	55.9	56.1	0.2	0.3\%
56.8\%	55.9	55.0	0.2	0.3\%
$\stackrel{58.0 \%}{503 \%}$	55.8	56.0	0.2	0.3\%
55.3\% ${ }_{\text {co.5\% }}$	55.8 558 558	55.0	${ }^{0.2}$	0.4\%
${ }^{66.5 \%}$	55.8 557 57	56.0	0.2	0.4\%
${ }^{61.7 \%}$	55.7	55.0	${ }^{0.3}$	0.5\%
63.0\%	55.7	55.9	0.2	0.4\%
66.4.4\%	55.6	55.8	0.2	0.4\%
65.4\% 66.7%	55.4	55.7	0.3	0.6\%
66.7\% 67.9%	55.4	55.5	0.1	0.1\%
67.9\% 69.1%	55.3	55.5	0.1	0.2\%
${ }_{70.1 \%}^{69.4 \%}$	55.3	55.4	0.1	0.2\%
${ }^{77.4 \%}$	55.3	55.4	0.1	0.2\%
71.6\%	55.3	55.4	0.1	0.2\%
72.8\%	55.3	55.4	0.1	0.1\%
74.1\%	55.2	55.4 55 5.	0.2	0.3\%
${ }^{75.3 \%}$	55.2	55.3	0.1	0.3\%
76.5\%	55.2	55.3	0.1	0.2\%
77.8\%	55.1	55.2	0.0	0.0\%
${ }_{8}^{79.0 \%}$	55.1	55.1	0.0	0.0\%
80.2% 81.5%	55.0	55.1	0.0	0.0\%
81.5\%	55.0	55.0	-0.1	-0.1\%
- ${ }_{\text {82, }}^{88.0 \%}$	54.9	54.9		0.0\%
84.0\%	54.9	54.9	0.0	0.0\%
85.4\%	54.9	54.8	-0.1	-0.1\%
887.7\%	54.9	54.7	-0.2	${ }^{-0.4 \%}$
887.9\%	54.8 5.8	$\begin{array}{r}54.4 \\ 54.4 \\ \hline\end{array}$	-0.5	-0.8\%
${ }_{\text {c }}^{\text {88.9\% }}$	54.3 54.2	54.2 54.2	-0.1	-0.1\%
91.4\%	54.1	54.1	0.0	0.0\%
92.6\%	53.8	53.8	0.0	0.1\%
${ }_{9}^{95.81 \%}$	${ }_{53,7}^{53.7}$	53.7 53.7	${ }_{0}^{0.0}$	${ }_{0}^{0.1 \%}$
${ }_{99.3 \%}$	${ }_{53.5}$	${ }_{53.5}$	0.0	0.1\%
97.5\%	53.5	53.5	0.0	0.0\%
98.8\%	53.4	53.4	0.0	0.0\%
100.0\%	53.4	53.4	0.0	0.0\%

June				
$\begin{gathered} \text { Percerent } \\ \text { Exceedance } \end{gathered}$	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project		Relative
Probability (\%)	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	Difference (DEGF)	Difference (\%)
0.0\%	60.9	60.8	-0.1	0.2\%
1.2\%	60.5	60.7	0.2	0, ${ }^{\circ}$
2.5\%	60.3	60.7	0.4	0.7\%
3.7\%	60.2	60.2	-0.1	-0.1\%
4.9\%	60.1	59.9	-0.2	-0.3\%
6.2\%	59.8	59.9	0.1	0.2\%
7.4\%	59.5	59.8	0.3	0.5\%
8.6\%	59.4	59.6	0.2	0.4\%
9.9\%	59.1	59.2	0.1	0.1\%
11.1.1\%	59.1	58.9	-0.2	-0.3\%
12.3\%	59.0 588	58.8 58.7	-0.2	${ }_{-0.1 \%}^{-0.4 \%}$
14.8\%	58.6	58.7	0.1	0.2\%
16.0\%	58.5	58.6	0.1	0.2\%
17.3\%	58.4	58.6	0.2	0.3\%
18.5\%	58.3	58.6	0.3	0.5\%
19.8\%	58.2	58.6	0.4	0.6\%
21.0\%	58.2	58.6	0.4	0.7\%
22.2\%	58.1	58.5	0.3	0.6\%
${ }^{23.5 \%}$	58.0	58.5	0.5	0.8\%
24.7\%	57.9	58.5	0.6	1.0\%
25.9\%	57.9 57.6	58.4 58.4	0.5 0.8	- ${ }^{\text {0.9\% }}$
28.4\%	57.6	58.4	0.7	1.3\%
29.6\%	57.6	58.4	${ }^{0.8}$	1.4\%
30.9\%	57.5 575	58.3 583	${ }^{0.8}$	1.4\%
32.1\%	57.5	58.3	0.8	1.5\%
33.3\%	57.4	58.3	0.9	1.5\%
34.6\%	57.4	58.2	0.9	1.5\%
35.8\%	57.3	58.2	0.8	1.4\%
37.0% 38.3%	57.3 57.3	58.0 58.0	${ }_{0}^{0.7}$	${ }_{1}^{1.12 \%}$
39.5\%	57.2	57.9	0.7	1.2\%
40.7\%	57.2	57.9	0.7	1.1\%
42.0\%	57.2	57.9	0.7	1.2\%
${ }^{43.29 \%}$	57.1	57.8 578 7.8	${ }_{0}^{0.7}$	
${ }^{44.4 \%}$	57.0 57.0	57.8 57.7	${ }_{0}^{0.7}$	1.3\%
46.9\%	57.0	57.7	${ }_{0.7}^{0.7}$	${ }_{1.2 \%}^{1.2 \%}$
48.1\%	56.9	57.7	0.7	1.3\%
49.4\%	56.9	57.6	0.8	1.3\%
50.6\%	56.9	57.6	0.7	1.3\%
51.9\%	55.8	57.5	0.7	1.2\%
${ }^{53.10 \%} 5$	56.8 56.8	57.5 57.5	0.7 0.7	${ }_{\text {1.3\% }}^{1.2 \%}$
55.6\%	56.8	57.5	0.7	1.3\%
56.8\%	56.7	57.4	0.7	1.1\%
58.0\%	56.7	57.2	0.5	0.9\%
59.3\%	${ }_{56.7}^{567}$	57.2	0.5	0.9\%
60.5\%	55.7	57.1	0.5	0.8\%
${ }^{61.7 \%}$	55.6	57.1	0.4	0.7\%
63.0\%	56.6	57.0	0.4	0.7\%
64.20% 6.40	55.6	57.0	0.4	0.7\%
${ }^{65.4 \%}$	56.6 56.6	57.0 57.0	0.4 0.4	0.7\%
67.9\%	56.5	57.0	0.4	0.7\%
69.19\%	56.5 56.4	56.9 56.8	0.4 0.4	0.6\%
71.6\%	56.4	56.8	0.4	0.8\%
72.8\%	56.4	55.8	0.4	0.8\%
74.1\%	56.4	56.7	0.4	0.7\%
75.3\%	56.4	56.7	0.4	0.6\%
76.5\%	56.3	56.7	0.4	0.8\%
77.8\%	55.3	55.6	0.4	0.7\%
80.2\%	${ }_{56.1}^{56.2}$	${ }_{56.5}$	0.4	0.7\%
81.5\%	56.0	56.5	0.6	1.0\%
82.79\%	55.9 559	56.5	${ }^{0.6}$	${ }^{1.0 \%}$
84.0\%	55.9 559	56.4	0.6	1.0\%
85.4\%	55.9 55.8	56.4 56.4	${ }_{0}^{0.5}$	-
87.7\%	55.7	56.4	0.6	1.1\%
88.9\%	55.6	56.4	0.7	1.3\%
90.1\%	55.6	56.3	0.7	1.2\%
91.4\%	55.6	56.2	0.6	1.2\%
93.8\%	55.4	55.9	0.5	${ }_{\text {0.9\% }}$
95.1\%	55.3	55.9	0.6	1.1\%
96.3\%	55.0 550 55	55.9 559	0.9	${ }^{1.6 \%}$
98.8\%	54.6 54.6	55.7	1.9 1.1	${ }_{\text {2.1\% }}^{1.10 \%}$
100.0\%	54.6	55.7	1.1	${ }_{\text {2.1\% }}$

Table SQ8-1b
below Red Buff, Monthly Temperature
Sacramento Ri

PercentExceedanceProbability	DCR 2015 WithoutProiectMonthy Tomperature (DEGF)	July		$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exxedednce } \\ \text { Probability } \\ \text { (\%) } \end{array} \\ \hline \end{gathered}$	DCR 2015 WithoutProietMonthy Temperature(DGEFS $)$	August	$\begin{gathered} \text { Absolute } \\ \text { difference } \\ \text { (DEGF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
		DCR 2015 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \end{aligned}$(DEGF)				DCR 2015 With Project		
		Monthy Temperature					Monthly Temperature		
		(DEGF)					(DEGF)		
0.0\%	62.7	61.2	-1.5	-2.4\%	0.0\%	65.2	60.9	-4.3	-6.6\%
1.2\%	62.0	60.8	-1.2	2.0\%	${ }^{1.2 \%}$	63.2	60.7	2.4	
2.5\%	61.3	60.6	-0.7	1.1\%	2.5\%	62.4	60.7	1.7	
3.7\%	60.8	60.5	-0.2	-0.3\%	3.7\%	62.1	60.7	1.5	-2.4\%
4.9\%	60.6	60.4	-0.2	-0.3\%	4.9\%	61.9	60.6	1.3	2.1\%
6.2\%	60.5	60.0	-0.5	-0.9\%	6.2\%	61.9	60.6	1.3	-2.1\%
7.4\%	60.5	59.9	-0.5	-0.9\%	7.4\%	61.7	60.5	-1.2	-1.9\%
8.6\%	60.0	59.7	-0.4	-0.6\%	8.6\%	61.3	60.5	-0.8	-1.3\%
9.9\%	60.0	59.5	-0.6	-0.9\%	9.9\%	61.0	60.5	-0.5	-0.8\%
11.1.1\%	59.8	59.4	-0.4	-0.7\%	11.19\%	61.0	60.3	-0.7	-1.1\%
12.3\%	59.7	59.4	-0.4	-0.6\%	12.3\%	60.8	60.1	-0.6	-1.1\%
13.6\%	59.7	59.4	-0.3	-0.6\%	13.6\%	60.8	60.1	0.7	1.2\%
14.8\%	59.7	59.2	-0.5	-0.8\%	14.8\%	60.6	59.9	-0.7	-1.1\%
16.0\%	59.6	59.2	-0.3	-0.6\%	16.0\%	60.5	59.7	-0.8	-1.3\%
17.3\%	59.5	59.1	-0.4	-0.7\%	17.3\%	60.4	59.7	-0.8	-1.3\%
18.5\%	59.4	58.8	-0.5	-0.9\%	18.5\%	60.0	59.6	-0.3	-0.6\%
19.8\%	59.3	58.8	-0.6	-0.9\%	19.8\%	59.8	59.5	-0.3	-0.5\%
21.0\%	59.2	58.7	-0.4	-0.8\%	21.0\%	59.8	59.4	-0.4	-0.7\%
22.2\%	59.0	58.7	-0.3	-0.5\%	22.2\%	59.7	59.4	-0.3	-0.5\%
23.5\%	58.7	58.7	0.0	0.0\%	23.5\%	59.7	59.4	-0.3	-0.5\%
24.7\%	58.6	58.7	0.1	0.2\%	24.7\%	59.6	59.3	-0.3	-0.5\%
25.9\%	58.6	58.5	-0.1	-0.1\%	25.9\%	59.6	59.2	-0.3	-0.6\%
${ }^{27.2 \%}$	58.4	58.5	0.0	0.0\%	27.2\%		59.2	-0.4	-0.6\%
28.4\%	58.4	58.4	0.0	0.0\%	28.4\%	59.5	59.2	-0.3	-0.6\%
29.6\%	58.4	58.4	0.0	-0.1\%	29.6\%	59.5	59.1	-0.4	-0.7\%
332.1\%			0.0	-0.0.1\%	- 30.9%	$\begin{array}{r}59.5 \\ 59.4 \\ \hline\end{array}$	59.0	-0.4	-0.7\% ${ }^{-0.7 \%}$
33.3\%	${ }_{58.3}$	58.3	0.0	0.0\%	32.3\%	59.4	59.0	-0.4	-0.7\%
34.6\%	58.3	58.3	0.0	0.0\%	34.6\%	59.4	58.9	-0.4	-0.7\%
35.8\%	58.3	58.2	0.0	-0.1\%	35.8\%	59.3	58.9	-0.5	-0.8\%
37.0\%	58.2	58.1	-0.1	-0.1\%	37.0\%	59.2	58.8	-0.4	-0.7\%
38.3\%	58.2	58.1	-0.1	-0.2\%	38.3\%	59.2	55.8	-0.4	-0.7\%
39.5\%	58.2	58.0	-0.2	-0.3\%	39.5\%	59.2	58.8	-0.4	-0.7\%
${ }^{40.7 \%}$	58.0	58.0 58.0	-0.1	-0.19\%	40.77\%	59.2	58.7	-0.5	-0.8\%
43.2\%	57.8	58.0	0.2	0.3\%	43.2\%	59.1	${ }_{58.6}$	-0.4	-0.7\%
44.4\%	57.8	57.9	0.1	0.2\%	44.4\%	59.0	58.6	-0.4	-0.7\%
45.7\%	57.8	57.8	0.0	0.0\%	45.7\%	59.0	55.6	-0.4	-0.7\%
46.9\%	57.7	57.8	0.0	0.1\%	46.9\%	59.0	58.5	-0.4	-0.8\%
48.1\%	57.7	57.8	0.0	0.1\%	48.1\%	55.8	58.5	-0.3	-0.6\%
49.4\%	57.7	57.8	0.0	0.1\%	49.4\%	58.6	58.5	-0.2	-0.3\%
50.6\%	57.7	57.7	0.0	0.0\%	50.6\%	58.5	58.5	-0.1	-0.1\%
51.9\%	57.7	57.6	0.0	-0.1\%	51.9\%	58.5	58.5	0.0	-0.1\%
53.1\%	57.7	57.6	0.0	-0.1\%	53.1\%	58.5	58.4	-0.1	-0.1\%
54.3\%	57.5	57.6	0.2	0.3\%	54.3\%	58.5	58.4	-0.1	-0.1\%
55.6\%	57.4	57.6	0.2	0.4\%	55.6\%	58.4	58.4	-0.1	-0.1\%
56.8\%	57.4	57.4	0.0	0.0\%	56.8\%	58.3	58.3	0.0	0.0\%
58.0\%	57.4	57.3	0.0	0.0\%	58.0\%	58.3	58.3	0.0	0.0\%
59.3\%	${ }_{57.3}^{57.3}$	57.3	0.1	0.1\%	59.3\%	58.3	58.2	-0.1	-0.1\%
60.5\%	57.3	57.3	0.0	0.1\%	60.5\%	58.3	58.2	0.0	-0.1\%
61.7\% 63.0%	57.1 57.1	57.2	0.1	${ }^{0.3 \%}$	61.7\%	58.2	58.2	0.0	-0.1\%
64.2\%	57.0	57.2 57.2	0.1	0.4\%	64.2\%	58.2	${ }_{58.1}^{58.1}$	-0.1	-0.2\%
65.4\%	57.0	57.2	0.2	0.3\%	65.4\%	58.2	58.1	-0.1	-0.2\%
66.7\%	57.0	57.1	0.2	0.3\%	66.7\%	58.1	58.1	-0.1	-0.1\%
${ }_{6}^{67.9 \%}$	57.0	57.1 571	${ }^{0.1}$	0.2\%	${ }^{67.99 \%}$	58.11	58.0	-0.1	-0.2\%
69.1\%	56.9	57.1	0.1	0.2\%	69.1\%	58.1	58.0	-0.1	-0.2\%
70.4\%	56.9	57.1	0.1	0.2\%	70.4\%	58.0	58.0		
${ }_{7}^{71.6 \%}$	56.9 56.9	57.0 57.0	${ }_{0.1}^{0.1}$	- ${ }_{0}^{0.2 \%}$	71.6\%	57.9 579	57.9 579	${ }_{0}^{0.0}$	${ }_{0}^{0.1 \%}$
74.1\%	55.9	57.0	0.1	${ }^{0.12 \%}$	74.1\%	57.9 57.8	57.9 57.9	0.0	${ }^{0.1 \%}$
75.3\%	56.8	56.9	0.2	0.3\%	75.3\%	57.7	57.9	0.1	0.3\%
76.5\%	56.7	56.7	0.0	0.0\%	76.5\%	57.7	57.8	0.1	0.2\%
77.8\%	56.7	56.7	0.0	0.0\%	77.8\%	57.7	57.8	0.1	0.2\%
79.0\%	56.7	56.7	0.0	0.0\%	79.0\%	57.7	57.8	0.1	0.2\%
80.2\%	55.5	55.6	0.1	0.3\%	80.2\%	57.6	57.7	0.1	0.2\%
${ }^{882.7 \%}$	56.4 56.3	56.6 56.6	${ }_{0}^{0.3}$	${ }_{\text {en }}^{0.5 \%}$	- ${ }_{\text {81.7.7\% }}$	57.6 57.6	57.7 57.7	${ }_{0}^{0.1}$	${ }_{0}^{0.3 \%}$
84.0\%	56.2	56.5	0.3	0.5\%	84.0\%	57.5	57.7	0.2	0.4\%
85.2\%	56.2	56.4	0.2	0.3\%	85.2\%	57.5	57.7	0.2	0.4\%
86.4\%	${ }_{56.1}^{56.2}$	${ }_{56.3}^{56.3}$	0.1	0.2\%	86.4\%	57.4	${ }_{57.6}^{57.6}$	0.2	0.4\%
87.7\%	55.1	55.2	0.1	0.1\%	87.7\%	57.4	57.6	0.2	0.3\%
88.9\%	56.0	56.2	0.2	0.4\%	88.9\%	57.4	57.5	0.2	0.3\%
90.1\%	56.0	56.1	0.2	0.3\%	90.1\%	57.3	57.4	0.1	0.2\%
91.4\%	${ }_{55}^{55.8}$	56.0	0.3	0.5\%	91.4\%	57.1	57.4	0.3	${ }_{0}^{0.5 \%}$
- ${ }_{\text {93, }}^{\text {92\%\% }}$	${ }_{55.7}^{55.7}$	55.9 55.9	0.2 0.2	${ }^{0.3 \%}$	${ }_{\text {93.8\% }}^{92.6 \%}$	57.1 57.0	57.3 57.2	0.2 0.2	${ }^{0.4 \%}$
95.1\%	55.7	55.8	0.1	0.2\%	95.1\%	57.0	57.1	0.2	0.3\%
96.3\%	557 557 551	55.7 558 5.	${ }^{0.0}$	0.0\%	96.3\%	56.8 56.8	57.1	0.2	0.4\%
97.5\%	5512	${ }_{551}^{55.6}$	0.5	0.9\%	${ }^{97.5 \%}$	${ }_{56}^{56.8}$	56.7	-0.1	-0.2\%
98.8\% 100.0%	${ }_{55.1}^{55.1}$	${ }_{55.1}^{55.1}$	0.0 0.0	${ }_{\text {com }}^{0.0 \% \%}$	98.8\% 100.0\%	${ }_{56.7}^{56.7}$	56.5 56.5	-0.2 -0.2	-0.3\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probobaility } \end{gathered}$	September			RelativeDifference (\%)
	DCR 2015 Without Proiect	DCR 2015 With Project	$\begin{gathered} \hline \begin{array}{c} \text { Absolute } \\ \text { Difference } \\ \text { (DEGF) } \end{array} \\ \hline \end{gathered}$	
		Monthy Temperature (DEGF)		
0.0\%	68.3	65.9	-2.4	${ }^{\text {3.5\% }}$
1.2\%	66.4	64.7	-1.7	-2.6\%
2.5\%	65.8	64.4	1.3	-2.0\%
3.7\%	64.3	61.7	-2.6	-4.0\%
4.9\%	64.1	61.2	-2.9	
6.2\%	63.9	61.2	-2.7	-4.2\%
7.4\%	63.5	61.0	-2.5	-4.0\%
8.6\%	62.9	60.9	-2.0	-3.2\%
9.9\%	62.2	60.9	-1.3	-2.2\%
11.1\%	61.8	60.4	-1.5	-2.4\%
12.3\%	61.7	60.2	1.5	-2.5\%
13.6\%	61.7	60.2	-1.5	${ }_{-2.5 \%}$
14.8\%	61.5	60.1	-1.3	-2.2\%
16.0\%	61.4	60.1	-1.4	-2.2\%
17.3\%	61.4	59.7	-1.7	-2.8\%
18.5\%	61.3	59.7	-1.6	-2.7\%
19.8\%	61.2	59.6	-1.6	-2.6\%
21.0\%	61.1	59.6	-1.5	-2.4\%
22.2\%	61.1	59.6	-1.5	-2.4\%
23.5\%	60.9	59.6	-1.3	-2.2\%
24.7\%	60.8	59.4	-1.4	-2.3\%
25.9\%	60.8	59.4	-1.4	${ }_{-2.3 \%}$
27.2\%	${ }^{60.4}$	59.2	-1.3	-2.1\%
28.4\%	60.3	59.0	-1.3	-2.2\%
29.6\%	60.3	59.0	-1.2	-2.1\%
30.9\%	60.2	59.0	1.2	-2.0\%
32.1\%	60.2	58.8	1.3	
33.3\%	60.1	58.8	-1.3	-2.2\%
34.6\%	60.1	58.7	-1.3	-2.2\%
35.\%	59.8	58.7	-1.1	-1.8\%
37.0\%	59.7	58.7	-1.0	-1.8\%
38.3\%	59.5	58.6	-0.9	-1.5\%
39.5\%	59.4	58.5	-0.9	-1.6\%
40.7\%	59.4	58.3	-1.1	-1.8\%
42.0\%	59.2	58.2	-1.0	-1.8\%
43.2\%	59.2	58.2	-1.0	-1.8\%
44.4\%	59.1	58.2	-1.0	-1.6\%
${ }^{45.7 \%}$	58.8	58.2	-0.6	${ }^{-1.1 \%}$
46.9\%	${ }_{58.8}$	58.2	-0.6	-1.0\%
${ }^{48.19 \%}$	58.8 58.8	58.0	-0.7	-1.3\%
49.4\% 50.6%	58.7 58.6	58.0	-0.7	${ }_{-1.10 \%}^{-1.2 \%}$
51.9\%	${ }_{58.3}$	57.9	-0.4	-0.7\%
53.1\%	58.3	57.8	-0.5	-0.9\%
54.3\%	58.0	57.6	-0.4	-0.7\%
55.6\%	57.9	57.6	-0.3	-0.5\%
56.8\%	57.8	57.4	-0.4	-0.6\%
58.0\%	57.6	57.3	-0.3	-0.5\%
59.3\%	57.5	57.3	-0.2	-0.4\%
- ${ }_{\text {60.5\% }}^{617 \%}$	57.2	57.1	0.0	-0.1\%
${ }^{61.77 \%}$	57.0	57.0	0.0	0.0\%
63.0\%	57.0	57.0	-0.1	-0.1\%
${ }^{64.2 \%}$	${ }_{56.7}^{56.7}$	${ }_{56.9}^{56.9}$	0.2	0.3\%
65.4\%	56.4	56.8	0.4	0.7\%
66.7\%	56.4	56.7	${ }^{0.3}$	0.6\%
67.9\%	56.2	56.3	0.1	0.2\%
69.1\%	56.2	56.2	0.0	0.0\%
70.4\%	${ }_{56.1}^{56.1}$	55.9	-0.2	-0.3\%
71.6\%	56.1	55.9	-0.2	0.4\%
72.8\%	55.9	55.8	-0.1	-0.19\%
74.19\%	55.7	55.3	-0.4	-0.8\%
76.5\%	55.6 556	55.3 552 5.	-0.3	-0.6\%
76.5\%	${ }_{55}^{55.6}$	55.2	-0.4	${ }^{-0.7 \%}$
77.8\%	55.6 55.4	55.0 550	-0.6	-1.0\%
79.0\%	55.4	55.0 54.0	-0.4	-0.7\%
80.2\%	55.3	54.9	-0.4	-0.7\%
81.5\%	55.2	54.8	-0.4	-0.7\%
8.27% 870%	55.2	54.8	-0.4	-0.8\%
84.0\%	55.1	54.8	-0.3	-0.5\%
85.2\%	55.0	54.7	-0.3	-0.5\%
86.4\%	55.0	54.7	-0.3	-0.5\%
87.7\%	54.7	54.5	-0.2	-0.3\%
88.9\%	54.7	54.5	-0.2	-0.4\%
90.1\%	54.6 5.5	54.5 54.5	-0.1	-0.2\%
914.4\%	54.5 54.3	54.2	-0.3	0.5\%
92.6\% ${ }_{93.8 \%}$	54.3	54.0	-0.3	-0.5\%
${ }^{93.8 \%}$	54.2	53.9	-0.3	-0.6\%
${ }_{965}^{95.11 \%}$	54.0	53.8	-0.3	-0.5\%
96.3\% ${ }_{\text {97.5\% }}$	54.0	53.2	-0.8	-1.5\%
97.5\% ${ }_{\text {98.8\% }}$	53.2	53.1	-0.1	-0.2\%
98.8\% 100.0\%	${ }_{531}^{53.1}$	52.8 52.8	${ }_{-0.0}$	-0.6\%
			-0.3	-0.6\%

Table SO8-1b
Sacramento River below Red Bluff, Monthy Temperature

$\begin{gathered} \text { Percent } \\ \text { Exceadance } \\ \text { Probability } \\ \text { (IN } \end{gathered}$	June to September			
	DCR 2015 Without Proiet	DCR 2015 With		
	Monthly Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
	(0EO)			
0.0\%	63.1	61.3	-1.8	${ }^{-2.9 \%}$
${ }^{1.25 \%}$	62.3 61.5	60.9 60.7	-1.48	-
3.7\%	61.5	60.5	-1.0	-1.7\%
4.9\%	61.4	60.4	-1.0	-1.6\%
6.2\%	61.4	60.2	-1.2	-1.9\%
7.4\%	61.3	60.1	-1.2	-2.0\%
8.6\%	60.7	60.1	-0.7	-1.1\%
9.9\%	60.1	60.0	-0.1	-0.2\%
-11.1\%	60.1 60.0	59.9 59.8	-0.2 -0.2	- $\begin{aligned} & -0.3 \% \\ & -0.3 \%\end{aligned}$
12.6\%	${ }_{59}^{60.9}$	59.3 59.3	-0.6	-1.0\%
14.8\%	59.7	59.2	-0.6	-0.9\%
16.0\%	59.5	59.1	-0.4	-0.7\%
17.3\%	59.4	59.1	-0.3	-0.5\%
18.5\%	59.2	59.0	-0.3	-0.4\%
19.8\%	59.2	58.9	-0.3	-0.5\%
21.0\%	59.2	58.9	-0.3	-0.5\%
22.2\%	59.1	58.9	-0.2	-0.4\%
22.5\%\%	59.0 589	58.7 587	-0.3	-0.5\%
24.7\%	58.9 58.7			${ }_{\text {-0.0. }}^{-0.0 \%}$
27.2\%	58.7	58.6	-0.1	-0.2\%
28.4\%	58.6	58.5	-0.1	-0.1\%
29.6\%	58.6	58.5	-0.1	-0.1\%
30.9\%	58.5	58.5	0.0	0.1\%
32.1\%	58.4	58.4	0.0	0.0\%
33.3\%	58.4	58.4	0.0	0.0\%
34.6\%	58.4	58.3	-0.1	-0.2\%
35.8\%	58.3	58.3	-0.1	-0.1\%
37.0\%	58.3	58.2	-0.1	-0.3\%
${ }_{39.5 \%}^{38.3 \%}$	58.3 58.3	58.2 58.2	-0.1 -0.1	-
40.7\%	58.3	58.1	-0.1	-0.2\%
42.0\%	58.3	58.1	-0.1	-0.2\%
43.2\%	58.2	58.1	-0.1	-0.2\%
44.4\%	58.1	58.0	-0.1	-0.2\%
45.7\%	58.1	57.9	-0.1	-0.2\%
46.9\%	58.0	57.9	-0.1	-0.1\%
48.1\%	57.9	57.9	-0.1	-0.1\%
49.4\%	57.9	57.8	-0.1	-0.2\%
50.6\%	57.9	57.8	-0.1	-0.1\%
	57.9	57.8	-0.1	-0.1\%
${ }_{5}^{53.3 \%}$	57.8 57.6	57.8 57.7	0.2	- ${ }_{\text {0.0\% }}^{0.3 \%}$
55.6\%	57.5	57.6	0.1	0.2\%
56.8\%	57.5	57.5	0.0	0.0\%
58.0\%	57.5	57.5	0.0	0.0\%
59.3\%	57.5	57.5	0.0	0.0\%
60.5\%	57.5	57.4	0.0	0.0\%
61.7\%	57.4	57.4	-0.1	-0.2\%
63.0\%	57.4	57.3	-0.1	-0.2\%
64.2% 65.4%	57.4	57.3	-0.1	-0.2\%
${ }_{6}^{65.4 \%}$	57.4 57.3	57.3 57.3	-0.1 -0.1	-0.0.0\%
67.9\%	57.3	57.3	0.0	-0.1\%
69.1\%	57.2	57.2	0.0	0.0\%
70.4\%	57.2	57.2	0.0	0.1\%
71.6\%	57.1	57.2	0.1	0.1\%
72.8\%	57.1	57.2	0.1	0.1\%
74.1\%	57.1	57.1	0.0	0.1\%
75.3\%	57.1	57.1	0.0	0.1\%
76.5\%	57.1	57.0	0.0	-0.1\%
${ }_{7} 77.80 \%$	57.1	57.0	0.0	-0.1\%
80.2\%	56.9 56.9	57.0 56.9	0.0 0.0	${ }_{\text {ore }}^{0.10}$
81.5\%	56.7	56.9	0.1	0.2\%
82.7\%	56.7	56.9	0.2	0.3\%
84.0\%	55.6	56.7	0.1	0.1\%
85.2\%	56.6	56.7	0.1	0.1\%
86.4\%	56.5	56.5	0.0	0.0\%
87.7\%	56.4	56.5	0.1	0.1\%
88.9\%	${ }_{56.3}$	55.4	0.1	0.2\%
90.1\%	56.3	56.2	-0.1	-0.2\%
${ }^{92.46 \%}$	${ }_{56.3}^{56.3}$	56.1 56.1	-0.2	-0.4\%
93.8\%	56.1	56.0	-0.1	-0.2\%
95.1\%	56.0	55.9	-0.2	-0.3\%
${ }^{96.3 \%}$	55.7 556	55.8 55.8 5.7	0.1	0.2\%
97.5\%	55.6	55.8	0.2	0.3\%
98.8\%	55.6	55.7 55	${ }^{0.1}$	0.2\%
100.0\%	55.6	55.6	0.0	0.1\%

$\begin{aligned} & \hline \text { Percent } \\ & \text { Exceedance } \\ & \text { Probabaility } \end{aligned}$	July to September		Probabliy o fexceedance		August to September				
	DCR 2015 Without	2015				DCR 2015 Without	DCR 2015 With		
	Monthly Temperatue	Monthly Temperature	Difference (DEGF)	Difference (\%)	Probabil	Monthy Temperature	Monthy Temperature	Difference (DEGF)	Difference (\%)
	(0EG)	(0EG)			(\%)	${ }_{6} 6$			
${ }^{0.0 \%}$	64.6	62.2	-2.4	${ }^{-3.7 \%}$	0.0\%	66.7	63.4	${ }^{-3.3}$	-5.0\%
${ }^{1.2 \%}$	63.4	61.4	-2.0	${ }^{-3.2 \%}$	${ }^{1.2 \%}$	64.8	62.2	-2.6	-4.0\%
2.5\%	${ }^{62.6}$	61.2	-1.4	-2.3\%	2.5\%	64.0	62.0	-1.9	-3.0\%
3.7\%	${ }_{6}^{62.3}$	61.1	-1.2	-2.0\%	${ }^{3.7 \%}$	63.1	61.2	-1.9	-3.1\%
4.9\%	61.9	60.7	-1.2	-1.9\%	4.9\%	62.8	60.8	-2.0	-3.19\%
7.4\%	61.9	60.3	-1.6	-2.5\%	6.2\%	62.3	60.7	-1.6	-2.5\%
8.6\%	61.3	60.1	-1.2	-1.9\%	8.6\%	61.8	60.6	-1.2	-1.9\%
9.9\%	61.0	60.1	-1.0	-1.6\%	9.9\%	61.8	60.4	-1.4	-2.2\%
11.1\%	61.0	60.0	-0.9	-1.5\%	11.1\%	61.5	60.4	-1.2	-1.9\%
12.3\%	60.7	60.0	-0.7	-1.1\%	12.3\%	61.4	60.2	-1.3	-2.0\%
13.6\%	60.7	59.8	-0.9	-1.5\%	13.6\%	61.1	60.1	-0.9	-1.5\%
14.8\%	60.0	59.8	-0.2	-0.4\%	14.8\%	60.9	60.0	-0.9	-1.5\%
16.0\%	60.0	59.6	-0.4	-0.7\%	16.0\%	60.7	59.9	-0.8	-1.4\%
17.3\%	60.0	59.6	-0.5	-0.8\%	17.3\%	60.6	59.9	-0.8	-1.3\%
18.5\%	60.0	59.5	-0.5	-0.8\%	18.5\%	60.6	59.7	-0.9	-1.5\%
19.8\%	59.9	59.3	-0.6	-1.0\%	19.8\%	60.5	59.6	-0.9	-1.4\%
21.0\%	59.6	59.0	-0.5	-0.9\%	21.0\%	60.4	59.6	-0.8	-1.3\%
${ }^{22.20 \%}$	59.6	59.0	-0.6	-0.9\%	22.2\%	60.2	59.5	-0.7	${ }^{-1.2 \%}$
${ }_{\text {24, }}^{23.5 \%}$	59.5 595 9.5	58.9 589	-0.6	-	${ }^{23.75 \%}$	${ }_{60.2}^{60.2}$	$\begin{array}{r}59.3 \\ 59 . \\ \hline 9 .\end{array}$	-0.9 -0.9	-1.1.6\%
25.9\%	59.3	58.8	-0.5	-0.8\%	25.9\%	59.9	59.1	-0.8	-1.4\%
27.2\%	59.2	58.8	-0.4	-0.7\%	27.2\%	59.9	59.0	-0.9	-1.5\%
28.4\%	59.2	58.8	-0.4	-0.7\%	28.4\%	59.9	59.0	-0.9	-1.5\%
29.6\%	59.1	58.7	-0.4	-0.6\%	29.6\%	59.8	58.9	-0.9	-1.5\%
30.9\%	59.1	58.6	-0.5	-0.9\%	30.9\%	59.8	58.9	-0.9	-1.5\%
32.1\%	59.1	58.6	-0.5	-0.9\%	32.1\%	59.7	58.8	-0.9	-1.5\%
33.3\%	58.9	58.5	-0.4	-0.6\%	33.3\%	59.4	58.7	-0.8	-1.3\%
34.6\%	58.9	58.5	-0.5	-0.8\%	34.6\%	59.4	55.6	-0.8	-1.4\%
${ }^{35.7 .0 \%}$	58.9 58.9	58.4 58.4	-0.5 -0.5	-0.0.9\%	357.8\%	59.4 59.4	58.6 58.6	-0.8	${ }_{-1.3 \%}^{-1.3 \%}$
38.3\%	58.8	58.3	-0.6	-0.9\%	38.3\%	59.3	58.6	-0.7	-1.2\%
39.5\%	58.7	58.3	-0.4	-0.7\%	39.5\%	59.1	58.6	-0.5	-0.9\%
40.7\%	58.7	58.3	-0.4	-0.7\%	40.7\%	59.1	58.6	-0.6	-0.9\%
42.0\%	58.6	58.2	-0.3	-0.6\%	42.0\%	59.1	58.5	-0.6	-1.0\%
43.2\%	58.5	58.2	-0.3	-0.6\%	43.2\%	58.9	58.5	-0.4	-0.7\%
44.4\%	58.5	58.2	-0.3	-0.6\%	44.4\%	58.8	58.5	-0.3	-0.6\%
45.7\%	58.4	58.1	-0.3	-0.5\%	45.7\%	58.8	58.5	-0.3	-0.5\%
46.9\%	58.4	58.0	-0.4	-0.6\%	46.9\%	58.6	58.2	-0.4	-0.8\%
48.19\%	58.3	58.0	-0.4	-0.6\%	48.1\%	58.6	58.2	-0.4	-0.7\%
49.4\%\%	58.2 58.2	57.8 57.8	-0.4 -0.4	-0.7\%	49.4\% 50.6%	58.6 58.4	58.1 58.0	-0.5 -0.4	-0.6\%
51.9\%	58.2	55.7	-0.4	-0.7\%	51.9\%	58.2	58.0	-0.2	-0.3\%
53.1\%	58.1	57.7	-0.4	-0.7\%	53.1\%	58.1	57.9	-0.2	-0.3\%
54.3\%	57.8	57.7	-0.1	-0.2\%	54.3\%	58.1	57.9	-0.2	-0.4\%
55.6\%	57.8	57.6	-0.2	-0.3\%	55.6\%	58.1	57.8	-0.3	-0.5\%
56.8\%	57.7	57.5	-0.2	-0.3\%	56.8\%	${ }_{58.0}^{57 .}$	${ }_{57.7}^{57.8}$	-0.1	-0.2\%
58.0\%	57.6	57.5	-0.1	-0.1\%	58.0\%	57.9	57.7	-0.2	-0.4\%
59.3\%	${ }_{57.5}^{57.5}$	57.4	-0.1	-0.2\%	59.3\%	${ }_{57.8}^{57.7}$	${ }_{57.6}^{57.6}$	-0.2	-0.3\%
60.5\%	57.5	57.4	-0.1	-0.2\%	60.5\%	57.7	57.6	-0.1	-0.1\%
61.7\%	57.5	57.4	-0.1	-0.2\%	61.7\%	57.7	57.6	-0.1	-0.2\%
63.0\%	57.4	57.4	-0.1	-0.1\%	63.0\%	57.7	57.6	-0.1	${ }^{-0.20 \%}$
${ }^{64.29 \%}$	57.4	57.4	0.0	0.0\%	${ }^{64.20 \%}$	57.6	57.5	-0.1	${ }^{-0.2 \%}$
65.4\%	57.3	57.3	0.0	0.0\%	65.4\%	57.6	57.4	-0.2	-0.3\%
${ }^{66.7 \%}$	57.3	57.3	0.0	${ }^{-0.1 \%}$	66.7\%	57.5	57.3	-0.2	-0.4\%
${ }_{69.1 \%}^{67.9 \%}$	57.2 57.2	57.1 57.1	-0.1 -0.1	-0.1\%	67.1\%	57.4 57.3	57.3 57.2	-0.2 -0.1	-0.1\%
70.4\%	57.2	57.1	-0.1	-0.2\%	70.4\%	57.3	57.1	-0.1	-0.2\%
71.6\%	57.1	57.1	-0.1	-0.2\%	71.6\%	57.2	57.0	-0.2	-0.3\%
72.8\%	57.1	57.0	-0.1	-0.2\%	72.8\%	57.2	57.0	-0.2	-0.3\%
74.1\%	57.1	57.0	-0.1	-0.1\%	74.19\%	57.2	55.9	-0.2	-0.4\%
75.3\%	57.0	57.0	0.0	0.0\%\%	75.3\%	57.1	55.9	-0.2	-0.4\%
${ }^{76.5 \%}$	56.9	57.0	0.0	0.0\%	${ }^{76.5 \%}$	55.8	56.7	-0.1	-0.2\%
77.8\%	56.9 56.9	56.9 56.9	${ }_{\text {-0, }}^{0.0}$	${ }_{\text {- }}^{0.01 \%}$	77.80\%	56.8 56.8	56.7 56.7	-0.1 -0.1	-
80.2\%	56.9	56.8	-0.1	-0.1\%	80.2\%	56.6	56.6	0.0	0.0\%
81.5\%	56.9	56.8	-0.1	-0.1\%	81.5\%	55.6	56.5	-0.1	-0.1\%
82.7\%	56.9	56.8	-0.1	-0.1\%	82.7\%	56.4	56.5	0.0	0.0\%
84.0\%	56.8	56.8	0.0	0.0\%	84.0\%	56.3	56.5	0.1	0.2\%
85.2\%	56.8	56.8	0.0	0.0\%	85.2\%	56.3	56.3	0.1	0.2\%
86.4\%	${ }_{56.8}^{56.8}$	${ }_{56.5}^{56.5}$	-0.3	-0.4\%	86.4\%	${ }_{56.2}^{56.2}$	${ }_{56}^{56.3}$	0.1	0.2\%
87.7\%	56.4	56.5	0.1	0.1\%	87.7\%	56.2	56.3	0.1	0.1\%
88.9\%	56.4	56.2	-0.2	-0.3\%	88.9\%	56.2	55.2	0.0	0.1\%
90.1\%	56.3	56.2	-0.1	${ }^{-0.2 \%}$	90.1\%	56.1	55.8 55	-0.3	${ }^{-0.5 \%}$
${ }^{91.44 \%}$	56.2	56.1	-0.1	${ }^{-0.1 \%}$	91.4\%	56.1	55.8	-0.3	-0.7\%
92.060	56.1	56.0	-01	-0.2\%	92.60	56.1	55.7 554	-0.4	-0.7\%
${ }^{93.1 \%}$	56.0	55.8	-0.1	-0.3\%	${ }^{93.1 \%}$	${ }_{55.7}^{55.7}$	55.4 55.2	-0.4	-0.9\%
96.3\%	56.0	55.7	-0.2	-0.4\%	96.3\%	55.4	55.2	-0.2	-0.3\%
97.5\%	55.9	55.5	-0.4	-0.8\%	97.5\%	55.3	55.1	-0.1	-0.2\%
98.8\%	55.8	55.5	-0.3	0.6\%	98.8\%	55.2	55.1	0.0	-0.1\%
100.0\%	55.5	55.3	-0.2	-0.4\%	100.0\%	55.1	54.4	-0.7	-1.2\%

Table SQ9.-1b
elow Nimbus Jam, Nonthy Temperature

PercentExceedanceProbability	October			
	DCR 2015 Without	DCR 2015 With Project		
	Monthly Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
	(0ECF)	(0EGF)		
0.0\%	63.3	63.8	0.4	0.7\%
2.5\%	${ }_{63.0}^{63.0}$	63.1 63.0	0.1 0.1	${ }^{0.2 \%}$
3.7\%	62.9	62.7	-0.2	-0.3\%
4.9\%	62.9	62.7	-0.2	-0.3\%
6.2\%	62.7	62.7	0.0	-0.1\%
7.4\%	62.6	62.6	0.0	-0.1\%
8.6\%	62.6	62.5	-0.1	-0.1\%
9.9\%	62.5	62.5	0.1	0.1\%
11.11\%	62.4	62.4	0.1	0.1\%
12.3\%	${ }^{62.3}$	62.4	0.2	0.3\%
13.6\%	62.3	62.3	0.1	0.1\%
14.8\%	62.2	62.2	0.0	0.0\%
16.0\%	62.2	62.2	0.0	0.0\%
17.3\%	62.0	62.1	0.1	0.1\%
18.5\%	61.9	62.0	0.1	0.2\%
19.8\%	61.8	61.8	0.1	0.1\%
21.0\%	61.7	61.7	0.0	0.0\%
${ }^{22.20 \%}$	61.6	61.5	-0.1	-0.1\%
${ }_{\text {24, }}^{23.5 \%}$	61.1 60.8	61.4 61.3	0.2 0.5	-0.9\%
25.9\%	60.8	60.9	0.2	0.3\%
27.2\%	60.7	60.6	-0.1	-0.1\%
28.4\%	60.4	60.6	0.2	0.4\%
29.6\%	60.3	60.6	0.2	0.4\%
30.9\%	60.3	60.5	0.2	0.4\%
32.1\%	60.2	60.4	0.2	0.3\%
33.3\%	60.2	60.4	0.2	0.4\%
34.6\%	60.1	60.4	${ }^{0.3}$	0.5\%
35.8\%	60.0	60.2	0.2	0.4\%
37.0\%	60.0	60.2	0.2	0.4\%
	60.0	60.2	0.2	
${ }^{39.50 \%}$	59.9	60.2	0.2	${ }^{0.4 \%}$
40.79\%	59.9	60.1	${ }^{0.2}$	0.3\%
43.2\%	59.9	${ }_{60.1}^{60.1}$	${ }_{0}^{0.3}$	0.4\%
44.4\%	59.9	60.1	0.2	0.4\%
45.7\%	59.9	60.1	0.2	0.3\%
46.9\%	59.8	60.0	${ }^{0.3}$	0.4\%
48.1\%	59.8	60.0	0.2	0.4\%
4.4\%	${ }_{59.5}^{59.5}$	59.9	0.4	${ }^{0.6 \%}$
50.6\%	59.5		0.4	
51.9\%	59.4	59.8	0.4	0.7\%
53.12\%	59.3 588 8	59.8 59.8 59	${ }^{0.5}$	${ }^{0.8 \%}$
54.3\%	58.8	59.6	0.8	1.4\%
55.6\%	58.5 58.2	59.4 588	0.9	${ }_{1}^{1.5 \%}$
56.8\%	58.2	58.8	${ }^{0.6}$	${ }_{\text {1.0\% }}^{1.00}$
58.0\%	58.1	58.2	0.1	0.1\%
59.3\%	57.7	57.1	-0.6	-1.0\%
60.5\%	57.5	57.1	-0.4	-0.7\%
${ }^{61.7 \%}$	55.9	55.9	0.0	0.0\%\%
63.0\%	56.9 56.8	56.8 56.6	-0.1	-0.2\%
${ }_{66.7 \%}$	55.8	${ }_{56.6}$	-0.2	-0.3\%
67.9\%	56.7	55.6	-0.1	-0.3\%
69.1\%	56.6	56.5	0.0	-0.1\%
70.4\%	56.5	56.5	0.0	-0.1\%
71.6\%	56.5	56.5	0.0	-0.1\%
72.8\%	56.5	56.4	0.0	-0.1\%
74.1\%	56.5	55.4	-0.1	-0.1\%
75.3\%	55.4	55.4	-0.1	-0.1\%
76.5\%	56.4	56.4	-0.1	${ }^{-0.1 \%}$
77.8\%	56.3 563	${ }_{56.3}^{56.3}$	0.0	${ }^{0.0 \% \%}$
79.0\%	${ }_{56.3}$	56.3	0.0	${ }^{0.0 \%}$
80.2\%	56.2	56.3	0.1	0.1\%
${ }^{81.5 \%}$	56.2	${ }_{56.3}^{56.3}$	0.0	${ }_{\text {coin }}^{0.1 \%}$
84.0\%	56.2	56.2	0.0	0.0\%
85.2\%	56.2	56.2	0.0	0.0\%
86.4\%	${ }_{56.1}^{56.1}$	${ }_{56.1}^{56.1}$	0.0	0.0\%\%
87.7\%	55.1	55.1	0.0	0.0\%
88.9\%	55.0	56.1	0.1	0.2\%
90.11\%	55.0	56.1	0.1	0.2\%
91.4\%	55.9 558 55	56.0	0.1	${ }^{0.2 \%}$
${ }^{92.60 \%}$	55.8 554 5.4	55.0	0.1	0.2\%
${ }^{93.1 \%}$	55.4	55.9	${ }_{0}^{0.5}$	0.9\%
96.3\%	55.3	55.8	0.5	1.0\%
97.5\%	55.3	55.6	0.3	0.5\%
98.8\%	54.5	54.8	0.3	0.6\%
100.0\%	54.5	54.8	0.0	0.6\%

		January		
Percent	DCR 2015 Without Proiect	DCR 2015 With Project	Absolute	
Probability	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	Difference	Difference (\%)
0.0\%	49.0	49.4	0.4	0.8\%
1.2\%	48.7	49.2	0.5	1.0\%
2.5\%	48.7	49.0	0.4	0.8\%
3.7\%	48.6	48.9	0.2	0.5\%
4.9\%	48.6	48.5	-0.1	-0.3\%
6.2\%	48.5	48.1	-0.4	-0.8\%
7.4\%	48.0	48.1	0.1	0.2\%
8.6\%	48.0	48.1	0.1	0.1\%
9.9\%	47.9	48.0	0.1	0.1\%
11.19\%	47.8	48.0	0.2	$0.4{ }^{\circ}$
12.3\%	47.8	47.9	0.1	0.2\%
13.6\%	47.7	47.8	0.1	0.2\%
14.8\%	47.6	47.8	0.2	0.5\%
16.0\%	47.6	47.8	${ }^{0.2}$	0.5\%
17.3\%	47.5	47.8	0.3	0.5\%
18.5\%	47.4	47.8	0.3	0.7\%
19.8\%	47.4	47.6	0.2	0.3\%
21.0\%	47.4	47.6	0.2	0.4\%
22.2\%	47.3	47.5	${ }^{0.3}$	0.5\%
23.5\%	47.2	47.5	0.3	0.7\%
24.7\%	47.1	47.5	0.4	0.8\%
25.9\%	47.1	47.4	0.3	0.7\%
27.2\%	47.1	${ }^{47.3}$	0.3	0.6\%
28.4\%	46.9	47.3	0.4	0.9\%
29.6\%	46.9	47.1	0.2	0.5\%
30.9\%	46.8	47.0	0.2	0.4\%
32.1\%	46.8	47.0	0.1	0.3\%
33.3\%	46.8	46.9	0.2	0.3\%
34.6\%	46.8	46.9	${ }^{0.2}$	0.3\%
35.\%	46.6	46.9	0.3	0.6\%
37.0\%	46.6	46.8	0.3	0.6\%
38.3\%	46.5	46.8	0.3	0.7\%
39.5\%	46.4	46.8	0.3	0.7\%
40.7\%	46.4	46.8	0.4	0.8\%
42.0\%	46.3	46.7	0.4	0.8\%
43.2\%	46.3	46.6	${ }^{0.3}$	0.6\%
44.4\%	46.3	46.5	0.2	0.5\%
45.7\%	46.3	46.4	0.2	0.4\%
46.9\%	46.2	46.4	0.2	0.4\%
48.1\%	46.2	46.4	0.1	0.3\%
49.4\%	46.0	46.3	0.3	0.7\%
50.6\%	46.0	46.2	0.2	0.4\%
${ }_{\text {cke }}^{51.9 \%}$	46.0	46.2	0.2	0.4\%
	${ }_{45.9}^{45.9}$	${ }_{46.1}^{46.2}$	0.2 0.2	${ }_{0}^{0.5 \%}$
55.6\%	45.9	46.1	0.2	0.3\%
56.8\%	45.9	46.0	0.1	0.3\%
58.0\%	45.9	46.0	0.1	0.3\%
59.3\%	45.8	46.0	${ }^{0.2}$	0.4\%
60.5\%	45.7	46.0	0.3	0.7\%
61.7\%	45.7	46.0	0.3	0.6\%
63.0\%	45.6	45.7	0.1	0.3\%
64.2\%	45.6	45.7	0.1	0.3\%
${ }^{65.4 \%}$	45.5	45.6	0.1	0.2\%
66.7% 6790%	45.5	45.6	0.1	0.2\%
67.9\% 69.1%	45.4	45.6	0.2	0.3\%
69.19\%	45.3 453	45.5 455	0.2	0.4\%
70.4\%	45.3 452	${ }_{453}^{45.5}$	0.2	0.5\%
71.6\%	45.2 45.2	${ }_{453}^{45.3}$	${ }_{0}^{0.1}$	0.3\%
72.8\%	45.21	45.3	0.1	0.2\%
74.19\%	45.1	45.3	0.1	0.3\%
75.3\%	45.1	45.2	0.1	0.2\%
76.5% 77.8%	45.1	45.2	0.1	0.2\%
77.8\%	45.0	45.2	0.1	0.3\%
79.0\% 880.2%	45.9 44.9	${ }_{45.1}^{45.2}$	${ }_{0}^{0.1}$	0.6\%
81.5\%	44.8	45.1	0.3	0.7\%
82.7\%	44.6	45.1	0.4	0.9\%
84.0\%	44.6	45.0	0.5	1.0\%
85.2\%	44.6	45.0	0.4	0.9\%
86.4\%	44.5	44.8	0.3	0.7\%
87.7\%	44.3	44.6	0.3	0.7\%
88.9\%	44.2	44.4	0.2	0.5\%
90.1\%	44.2	44.2	0.0	0.0\%
914.4\%	44.0	43.8	-0.2	-0.4\%
${ }_{9}^{92.85 \%}$	43.8	43.7	-0.1	-0.2\%
${ }^{93.8 \%} 9$	${ }_{43.8}^{43.8}$	43.5	-0.3	-0.7\%
${ }_{9}^{95.3 \%}$	43.4	${ }_{431}^{43.3}$	-0.1	-0.2\%
${ }^{96.3 \%} 9$	${ }_{43.2}^{43.2}$	${ }_{425}^{43.1}$	-0.1	- ${ }_{\text {- }}^{\text {- } 4 \text {. } 4 \%}$
98.8\%	42.5	41.8	-0.7	-1.7\%
100.0\%	42.5	41.8	-0.7	-1.7\%

Table SQ9-1b
Ow Nimbus Sam, Monthy Temperature

February				
$\begin{gathered} \text { Percerent } \\ \text { Exceedance } \end{gathered}$	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project		Relative
Probability (\%)	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	Difference (DEGF)	Difference (\%)
0.0\%	49.4	49.6	0.2	0.5\%
1.2\%	49.3	49.5	0.2	,
2.5\%	48.8	48.9	0.1	0.3\%
3.7\%	48.4	48.6	0.2	0.4\%
4.9\%	48.3	48.4	0.1	0.3\%
6.2\%	48.2	48.4	0.1	0.3\%
7.4\%	48.2	48.3	0.0	0.1\%
8.6\%	48.2	48.2	0.0	0.0\%
9.9\%	48.1	48.2	0.1	0.2\%
11.19\%	48.0	48.1	0.1	0.2\%
12.3\%	47.8 475	47.8 47.5	0.0	${ }_{\text {cose }}^{0.00 \%}$
14.8\%	47.4	47.4	0.1	0.2\%
16.0\%	47.3	47.4	0.1	0.3\%
17.3\%	47.3	47.4	0.1	0.2\%
18.5\%	47.3	47.4	0.1	0.2\%
19.8\%	47.2	47.3	0.1	0.2\%
21.0\%	47.2	47.3	0.1	0.3\%
22.2\%	47.2	47.3	0.1	0.3\%
${ }^{23.5 \%}$	47.0	47.2	0.2	0.4\%
24.7\%	47.0	47.1	0.1	0.3\%
25.9\%	46.9	47.1	0.2	0.3\%
27.2% 28.4%	46.9 46.8	47.0 47.0	${ }_{0.1}^{0.1}$	${ }_{0}^{0.3 \%}$
29.6\%	46.8	46.9	0.1	0.3\%
30.9\%	46.8	46.9	0.1	0.2\%
32.1\%	46.7	46.9	0.2	0.4\%
33.3\%	46.7	46.8	0.1	0.3\%
34.6\%	46.7	46.8	0.1	0.3\%
35.8\%	46.7	46.7	0.0	0.0\%
37.0\%	46.6	46.6	0.0	0.1\%
- ${ }_{\text {38.3\% }}$	46.6 46.5	46.6 46.5	0.0 0.0	-0.1\%
40.7\%	46.5	46.5	0.0	-0.1\%
42.0\%	46.4	46.5	0.1	0.2\%
${ }^{43.29 \%}$	46.3			
${ }^{44.4 \%}$	${ }_{46.3}^{46.3}$	46.4 46.4	${ }_{0}^{0.2}$	${ }^{0.3 \%}$
46.9\%	46.2	46.3	0.1	0.2\%
48.1\%	46.2	46.2	0.0	0.1\%
49.4\%	46.2	46.2	0.1	0.2\%
50.6\%	46.1	46.2	0.1	0.2\%
51.9\%	46.1	46.1	0.1	0.1\%
53.12\% 54.3%	46.0 46.0	${ }_{46.1}^{46.1}$	0.1 0.1	-0.1\% 0.2%
55.6\%	45.9	45.9	0.0	0.1\%
56.8\%	45.9	45.9	0.0	0.1\%
58.0\%	45.8	45.9	0.0	0.1\%
59.3\%	45.8	45.9	0.1	0.1\%
60.5\%	45.8	45.8	0.1	0.1\%
61.7\%	45.8	45.8	0.0	0.1\%
63.0\%	45.7	45.8	0.1	0.2\%
${ }^{64.2 \%}$	45.7	45.7	0.0	0.1\%
${ }^{65.4 \%}$	${ }_{45.7}^{45.7}$	${ }_{45.7}^{45.7}$	${ }_{0.1}^{0.1}$	${ }_{0}^{0.1 \%}$
67.9\%	45.6	45.7	0.1	0.1\%
69.1\%	45.6	45.7	0.1	0.2\%
70.4\%	45.6	45.7	0.1	0.2\%
71.6\%	45.5 455	${ }_{4}^{45.6}$	${ }^{0.1}$	${ }^{0.2 \%}$
72.8\%	45.5	45.6	${ }^{0.1}$	${ }^{0.3 \%}$
74.1\%	45.5	45.6	0.1	0.3\%
75.3\%	45.4 45.4	${ }_{45.5}^{45.5}$	${ }_{0}^{0.1}$	-
77.8\%	45.3	45.4	0.1	0.2\%
79.0\%	45.2	45.3	0.1	0.2\%
80.2\%	45.2	45.2	0.0	0.0\%
- ${ }_{81.5 \%}$	${ }_{45.1}^{45.1}$	${ }_{45.2}^{45.2}$	0.1 0.0	${ }_{0}^{0.1 \%}$
84.0\%	45.1	45.2	0.1	0.2\%
85.2\%	45.0	45.1	0.2	0.4\%
86.4\%	44.9	45.1	0.2	0.5\%
87.7\%	44.8	45.0	0.1	0.3\%
88.9\%	44.8	44.9	0.1	0.19\%
90.1\%	44.8	44.8	0.0	0.0\%
91.4\%	44.7	44.6	-0.1	-0.2\%
93.8\%	44.6	44.5	0.0	-0.1\%
95.1\%	44.5	44.4	-0.1	-0.2\%
96.3\%	44.3	44.3	0.0	0.1\%
98.8\%	${ }_{44.3}$	${ }_{44.3}$	0.0 0.0	-
100.0\%	44.3	44.3	0.0	0.0\%

American River ${ }_{P}$

PercentExceedance	March			-
	DCR 2015 Without Proiet	DCR 2015 With Project		
Probability	Monthy Temperature	Monthly Temperature	Difference	Difference (\%)
(\%)	(DEGF)	(DEGF)		
0.0\%	53.6	53.6	0.0	${ }^{0.19 \%}$
2.5\%	53.4 52.9	53.5 52.7	-0.1	-0.5\%
3.7\%	52.7	52.5	-0.2	-0.4
4.9\%	52.6	52.1	-0.5	
6.2\%	52.4	51.9	-0.5	-0.9\%
7.4\%	51.9	51.9	-0.1	-0.1\%
8.6\%	${ }_{51.9}$	51.7	-0.2	-0.3\%
9.9\%	51.9	51.6	-0.3	-0.6\%
11.19\%	51.7	51.6	-0.1	-0.2\%
12.3\%	51.3	51.4	0.1	0.1\%
13.6\%	51.2	51.1	-0.1	-0.2\%
14.8\%	51.1 51.1	51.1 51.0	0.0 -0.1	-0.0\%
17.3\%	51.0	50.9	0.0	0.0\%
18.5\%	50.9	50.9	0.0	-0.1\%
19.8\%	50.8	50.8	-0.1	-0.2\%
21.0\%	50.8	50.6	-0.2	-0.3\%
22.2\%	50.6	50.6	0.0	0.1\%
23.5\%	50.4 50.3	50.4 503 0.3	0.0	${ }^{0.00 \%}$
25.9\%	50.2	50.2	0.0	0.0\%
27.2\%	50.1	50.1	0.0	-0.1\%
28.4\%	50.1	50.0	-0.1	-0.2\%
29.6\%	49.9	49.9	0.0	-0.1\%
30.9\%	49.9	49.8	0.0	0.0\%
32.1% 33	49.8 497	49.7 496	-0.1	-0.2\%
34.6\%	49.3	49.5	0.2	0.3\%
35.8\%	49.1	49.3	0.2	0.3\%
37.0\%	49.1	49.2	0.1	0.2\%
38.3\%	49.1	49.1	0.0	0.0\%
39.5\%	49.1	49.1	0.0	-0.1\%
40.7\%	49.1	49.1	0.0	-0.1\%
${ }^{42.0 \%} 4$	49.1 49.0	49.1 49.0	0.0 0.0	-0.0\%
44.4\%	49.0	49.0	0.0	0.1\%
45.7\%	49.0	48.9	-0.1	-0.1\%
46.9\%	49.0	48.8	-0.1	-0.3\%
48.19\%	48.9	48.8	-0.1	-0.3\%
4.94\%	48.8	48.8	-0.1	-0.2\%
50.6\%	${ }_{48.7}^{48.7}$	${ }_{48.7}^{48.8}$	0.0	0.0\%
53.1\%	48.7	48.7	0.0	0.0\%
54.3\%	48.7	48.7	0.1	0.1\%
55.6\%	48.7	48.7	0.1	0.1\%
56.8\%	48.6	48.6	0.0	0.0\%
58.0\%	48.6	48.6	0.0	0.0\%
59.5\%	48.6 48.5	48.5 48.5	-0.1 0.0	$\stackrel{-0.10 \%}{0.0 \%}$
61.7\%	48.5	48.5	0.0	0.0\%
63.0\%	48.5	48.4	0.0	0.0\%
64.2\%	48.4	48.4	0.0	0.0\%
65.4\%	48.4	48.4	0.0	0.0\%
66.7% 67.9%	48.3	48.4	0.0	0.0\%
69.1\%	${ }_{48.3}^{48.3}$	${ }_{48.3}^{48.3}$	${ }_{0}^{0.0}$	${ }_{0}^{0.0 \% \%}$
70.4\%	48.2	48.3	0.1	0.3\%
71.6\%	48.2	48.3	0.1	0.3\%
72.8\%	48.1	48.2	0.1	0.2\%
74.19% 753%	${ }_{48.1}^{48.1}$	${ }_{48.1}^{48.2}$	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
76.5\%	${ }_{48.0}$	${ }_{48.1}$	0.1	0.4\%
77.8\%	47.9	48.1	0.1	0.2\%
79.0\%	47.9	48.0	0.0	0.0\%
80.2\%	47.9	47.9	0.0	0.0\%
81.5\%	47.9 479	47.9	0.0	0.1\%
827.7\% 84.0%	47.9 47.8	47.9 47.9	0.1 0.1	${ }_{0}^{0.1 \%}$
85.2\%	47.8	47.9	0.0	0.0\%
86.4\%	47.8	47.8	0.0	0.0\%
87.7\%	47.8	47.7	-0.1	-0.2\%
88.9\%	47.7	47.7	0.0	0.0\%
90.1\%	47.6	47.6	0.0	0.0\%
91.4\%	47.6	47.6	0.0	0.0\%
92.6\%	47.5	47.5	0.0	${ }^{0.00 \%}$
93.8\%	47.5	47.5	0.0	0.0\%
95.1\%	47.5	47.5	0.0	0.0\%
96.3\%	47.5	47.5	0.0	0.0\%
97.5\%	47.4	47.3	-0.1	-0.2\%
988.8\% 100.0\%	${ }_{47.3}^{47.3}$	46.6 46.6	-0.7 -0.7	-1.4\%

April				
Exceedance	$\begin{gathered} \text { DCR 2015 Without } \\ \text { Proiect } \end{gathered}$	DCR 2015 With Project	Absolute	Relative
Probability $(\%)$	Monthly Temperature (DEGF)	$\xrightarrow[\text { Mont }]{\substack{\text { Monthy Temperature }}}$	(DEGF)	Difference (\%)
0.0\%	58.9	59.3	0.5	0.8\%
1.2\%	58.1	57.9	-0.2	-0.3\%
2.5\%	57.9	57.9	0.0	-0.1\%
3.7\%	57.7	57.6	-0.1	-0\%
4.9\%	57.6	57.4	-0.2	-0.4\%
6.2\%	57.3	57.3	0.0	0.0\%
7.4\%	57.3	57.2	-0.1	-0.2\%
8.6\%	57.2	57.1	-0.2	-0.3\%
9.9\%	56.9	56.7	-0.2	-0.3\%
11.19\%	56.6	56.6	0.0	-0.1\%
12.3\%	56.4	56.5	0.0	0.0\%
13.6\%	56.3	56.3	0.0	0.0\%
14.8\%	56.2	56.2	0.0	0.1\%
16.0\%	56.1	56.2	0.1	0.3\%
17.3\%	56.0	56.2	0.2	0.4\%
18.5\%	55.8	56.2	0.4	0.6\%
19.8\%	${ }_{55}^{558}$	56.1	0.3	0.5\%
21.0\%	55.7	55.0	${ }^{0.3}$	0.5\%
22.2\%	55.7	55.0	0.3	0.5\%
23.5\%	55.5	55.6	0.1	0.2\%
24.7\%	55.3	55.5	0.2	0.4\%
25.9\%	55.2	55.2	0.0	0.0\%
27.2\%	55.2	55.2	0.0	0.0\%
28.4\%	55.2	55.2	0.0	0.0\%
29.6\%	55.0	55.1	0.0	0.1\%
30.9\%	55.0	55.0	0.0	0.0\%
-33.3% 34.6%	55.0 54.9	54.6 54.6	-0.4	-0.7\%
34.8\%	54.8 54.8	54.6	-0.3	${ }_{\text {- }}^{-0.0 \%}$
37.0\%	54.6	54.6	0.0	0.0\%
38.3\%	54.3	54.6	0.2	0.5\%
39.5\%	54.3	54.3	0.1	0.1\%
40.7\%	54.2	54.3	0.1	0.2\%
42.0\%	54.1	54.2	0.1	0.2\%
${ }^{43.2 \%}$	54.1 54.0	54.1 54.0	0.0 0.0	${ }^{0.0 \%}$
45.7\%	54.0	53.9	0.0	-0.1\%
46.9\%	54.0	53.8	-0.1	-0.2\%
48.1\%	53.8	53.8	0.0	-0.1\%
49.4\%	年5388	53.7 537	-0.1	-0.1\%
50.6\%	${ }_{53.8}^{57}$	${ }_{53.7}^{53.7}$	-0.1	-0.2\%
51.9\%	53.8	53.7	-0.1	-0.3\%
53.1\%	53.8	53.5	-0.3	-0.5\%
54.3\%	53.7	53.4	-0.3	-0.6\%
55.6\%	53.6	53.3	-0.3	-0.6\%
56.8\%	53.4	53.3	-0.1	-0.2\%
(${ }_{\text {58.0\% }}^{59.3 \%}$	53.3 53.3	¢53.2	-0.1 -0.1	-0.2\%
60.5\%	53.2	53.1	-0.1	-0.2\%
61.7\%	53.2	52.9	-0.2	-0.5\%
63.0\%	53.1	52.9	-0.2	-0.4\%
${ }^{64.2 \%}$	${ }_{52.9}$	${ }_{52.9}$	0.0	-0.1\%
65.4\%	52.9	52.9	0.0	-0.1\%
66.7\%	52.9	52.8	-0.1	-0.1\%
67.9\%	52.8	52.6	-0.2	-0.4\%
69.1\%	52.6	52.5	-0.1	-0.2\%
70.4\%	52.3 52.3 52	52.3 52.3 523	0.0	0.0\%
72.8\%	52.3	52.3	0.0	${ }_{0}^{0.0 \%}$
74.1\%	52.3	52.2	-0.1	-0.1\%
75.3\%	52.2	52.2	0.0	-0.1\%
76.5\%	52.2	52.2	0.0	0.0\%
77.8\%	52.2	51.9	-0.2	-0.4\%
79.0\%	51.9	${ }_{51.8}$	-0.1	-0.2\%
80.2\%	51.9	51.8	-0.1	-0.2\%
81.5\%	51.8	51.8	-0.1	-0.1\%
82.7\%	${ }_{51.8}$	51.7	-0.1	-0.2\%
84.0\%	51.8	51.6	-0.1	-0.2\%
${ }^{85.2 \%}$	51.7 51.6	51.6 51.6	-0.1 0.0 0.0	-0.2% -0.1%
87.7\%	51.6	51.3	-0.3	-0.6\%
88.9\%	51.3	51.2	-0.1	-0.3\%
90.1\%	51.2	51.1	-0.1	-0.2\%
91.4\%	51.1	51.1	0.0	0.0\%
92.6\%	51.1	51.1	0.0	0.0\%
93.8\%	51.0	51.0	0.0	0.0\%
95.1\%	50.9	50.9	0.0	0.0\%
96.3\%	50.8	50.6	-0.1	-0.3\%
967.5\%	50.5 50.0	50.6 50.5	0.1 0.5	-0.3\%
-100.0\%	50.0	50.5	0.5	0.9\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabily } \\ (\%) \\ \hline \end{gathered}$	May			RelativeDifference (\%)
	DCR 2015 Without Proiet	DCR 2015 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (eEGFF) } \end{aligned}$	
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF) .		
0.0\%	64.8	65.9	1.1	1.7\%
1.2\%	63.9	65.1	1.2	1.9\%
2.5\%	62.9	64.7	1.8	2.9\%
3.7\%	62.9	64.7	1.8	2.8\%
4.9\%	62.2	63.8	1.6	
6.2\%	62.1	61.9	-0.2	-0.3\%
7.4\%	61.6	61.9	0.4	0.6\%
8.6\%	61.0	61.8	0.8	1.3\%
9.9\%	61.0	61.8	0.8	1.3\%
11.1\%	61.0	61.3	0.4	0.6\%
12.3\%	60.9	61.1	0.3	0.4\%
13.6\%	60.8	61.0	0.2	0.3\%
14.8\%	60.5	60.5	0.0	0.0\%
16.0\%	60.3	60.4	0.2	0.3\%
17.3\%	60.2	60.4	0.2	0.3\%
18.5\%	60.1	60.2	0.1	0.2\%
19.8\%	60.1	60.1	0.0	0.0\%
21.0\%	60.0	60.0	0.1	0.1\%
22.2\%	59.8	59.9	0.1	0.2\%
23.5\%	59.7	59.8	0.1	0.2\%
24.7\%	59.3	59.8	0.4	0.7\%
25.9\%	59.3	59.5	0.1	0.2\%
27.2\%	59.1	59.4	0.3	0.5\%
28.4\%	59.0	59.3	0.3	0.5\%
29.6\%	59.0	59.1	0.2	0.3\%
30.9\%	59.0	58.9	0.0	0.0\%
32.1\%	58.9	58.9	0.0	
33.3\%	58.6	58.6	0.0	0.0\%
34.6\%	58.5	58.6	0.1	0.2\%
35.8\%	58.4	58.5	0.2	0.3\%
37.0\%	58.3	58.4	0.1	0.1\%
38.3\%	58.3	57.9	-0.4	-0.7\%
39.5\%	58.2	57.7	-0.4	-0.7\%
40.7\%	57.7	57.6	-0.1	-0.2\%
42.0\%	57.6	57.6	0.0	0.0\%
	57.5	57.6	0.1	0.1\%
44.4\%\%	57.4	57.5	0.1	0.2\%
45.9\%	57.4 57.3	57.4 57.3	0.0 0.0	${ }_{\text {a }}^{0.0 \% \%}$
48.1\%	57.3	57.1	-0.2	-0.3\%
49.4\%	57.1	57.1	0.0	0.0\%
50.6\%	57.1	57.1	0.0	0.0\%
51.9\%	56.9	56.9	0.0	-0.1\%
53.1\%	56.9	55.9	0.0	0.0\%
54.3\%	56.8	55.8	0.0	0.0\%
55.6\%	56.7	56.7	0.0	0.0\%
56.8\%	56.6	56.7	0.0	0.1\%
	56.6	56.6	0.0	0.0\%
59.3\%	56.5 56.4	56.5 56.4	0.0 0.0	${ }_{\text {a }}^{0.0 \% \%}$
61.7\%	56.4	56.4	0.0	0.0\%
63.0\%	56.2	56.4	0.2	0.3\%
64.2\%	56.2	56.3	0.1	0.1\%
65.4\%	56.2	56.1	0.0	-0.1\%
66.7\%	56.1	56.1	-0.1	-0.1\%
67.9\%	56.1	55.9	-0.2	-0.3\%
69.1\%	55.0	55.9	-0.1	-0.2\%
70.4\%	55.9	55.8	-0.1	-0.1\%
71.6\%	55.9	55.8	-0.1	-0.1\%
72.8.1\%	55.8 55.8	55.8 55.7	0.0 0.1	-0.0\%
75.3\%	55.7	55.7	0.0	-0.1\%
76.5\%	55.7	55.7	0.0	0.0\%
77.8\%	55.7	55.6	-0.1	-0.2\%
79.0\%	${ }_{55.6}$	${ }_{55.6} 5$	0.0	0.0\%
80.2\%	55.3	55.3	0.0	0.1\%
81.5\%	${ }_{55.3}$	55.1	-0.1	-0.3\%
82.7\%	55.1	54.9	-0.2	-0.4\%
84.0\%	54.9	54.8	-0.1	-0.1\%
85.2\%	54.8	54.8	0.0	0.0\%
86.4\%	54.7	54.7	0.0	0.0\%
${ }^{87.7 \%}$	54.5	54.5	0.0	0.0\%
88.9\%	54.5	54.5	0.0	0.0\%
${ }^{90.1 \%}$	54.5 54	54.5 54.5	0.0	0.0\%
${ }^{91.4 \%}$	54.4	54.4	0.0	0.0\%
99.6\%	54.4	54.4	0.0	0.0\%
${ }_{9}^{93.8 .1 \%}$	54.2	54.2	0.0	0.0\%
${ }_{99.10 \%}^{96.3 \%}$	53.9	53.9	0.0	0.0\%
997.5\%	53.9	53.8	0.0	0.0\%
97.5\%	53.5	53.6	0.0	0.1\%
988\%	${ }_{53.4}^{53.4}$	53.4 53.4	${ }_{0.0}^{0.0}$	-

$\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probabaility } \end{array} \end{aligned}$	June			Difference (\%)
	DCR 2015 Without	DCR 2015	$\begin{gathered} \hline \begin{array}{c} \text { Absolute } \\ \text { Difference } \\ \text { (DEGF) } \end{array} \end{gathered}$	
	Monthly Temperature	Monthly Temperature		
	(DEGF)	(0EG)		
0.0\%	66.4	67.6	1.2	${ }_{1}^{1.8 \%}$
${ }^{1.25 \%}$	66.3	${ }_{667}^{67.6}$	${ }^{1.3}$	${ }_{1}^{1.9 \%}$
3.7\%	66.0	65.8	-0.2	-0.2\%
4.9\%	65.8	65.7	-0.1	-0.1\%
6.2\%	65.5	65.6	0.0	0.0\%
7.4\%	65.4	65.2	-0.2	-0.4\%
8.6\%	65.3	65.1	-0.3	-0.4\%
9.9\%	65.2	64.8	-0.4	-0.7\%
11.1\%	65.2	64.8	-0.4	-0.6\%
123\%	${ }_{650}^{650}$	64.7	-0.3	-0.5\%
13.6\%	65.0	64.6	-0.4	-0.6\%
14.8\%	64.8	64.6	-0.2	-0.3\%
16.0\%	64.7	64.4	-0.3	-0.5\%
17.3\%	64.7	64.3	-0.4	-0.6\%
18.5\%	64.7	64.3	-0.3	-0.5\%
19.8\%	64.6	64.3	-0.3	-0.5\%
21.0\%	64.6	64.2	-0.4	-0.6\%
22.2\%	64.6	64.2	-0.4	-0.6\%
${ }^{23.5 \%}$	64.5	64.1	-0.5	-0.7\%
24.7\%	64.5	64.1	-0.4	-0.6\%
25.9\%	64.2	64.1	-0.2	-0.2\%
27.2\%	63.9 638	63.8 635	-0.1	-0.2\%
28.4\%	63.8	63.5	-0.3	-0.4\%
29.6\%	63.7	63.2	-0.6	-0.9\%
30.9\%	63.4	62.9	-0.6	-0.9\%
32.19\%	63.4	62.7	-0.7	-1.1\%
33.3\%	63.4	62.6	-0.8	-1.2\%
34.6% 35.8%	62.6 62.6	62.4 61.9	-0.2 -0.7	-0.3\% ${ }_{\text {-1.1\% }}$
37.0\%	62.2	61.3	-0.9	-1.4\%
38.3\%	61.9	61.2	-0.7	-1.2\%
39.5\%	61.8	61.1	-0.7	-1.1\%
40.7\%	${ }_{61.7}$	${ }_{60.8}$	-0.9	-1.5\%
42.0\%	${ }_{61.2}$	${ }_{60.7}$	-0.5	-0.8\%
43.2\%	61.1	60.7	-0.5	-0.7\%
44.4\%	61.0	60.6	-0.3	-0.5\%
45.7\%	61.0	60.4	-0.5	-0.9\%
46.9\%	60.4	${ }_{60.4}$	0.0	0.0\%
${ }_{\text {4 }}^{48.19 \%}$	60.1	60.3	0.2	0.3\%
50.6\%	60.1	60.1	0.0	0.0\%
51.9\%	60.0	59.9	-0.1	-0.1\%
53.1\%	59.9	59.9	0.0	0.0\%
54.3\%	${ }_{59.8}^{59}$	59.8	0.0	0.0\%
55.6\%	${ }_{59}^{59.6}$	59.7	0.1	0.1\%
56.8\%	${ }_{59}^{59.6}$	59.6	0.0	0.0\%
58.0\%	59.6	59.6	0.0	0.0\%
59.3\%	59.6	59.6	0.0	${ }_{0}^{0.0 \% \%}$
${ }^{60.17 \%}$	59.4	59.5	0.1	0.2\%
63.0\%	59.4	59.4	0.0	0.0\%
	59.4	59.4	0.0	0.0\%
${ }_{65.47}$	59.3	59.3	0.0	0.0\%
${ }^{66.79 \%}$	59.3	59.3 59.3	${ }_{0}^{0.0}$	${ }_{0}^{0.0 \%}$
69.1\%	59.2 59.2	- 59.2	0.0	${ }_{0}^{0.1 \%}$
70.4\%	59.2	59.2	0.0	0.1\%
71.6\%	59.1	59.1	0.0	-0.1\%
72.8\%	59.1	59.1	0.0	0.0\%
74.1\%	59.0	59.0	0.0	0.0\%
75.3\%	58.9	58.9	0.0	0.0\%
76.5\%	55.8	58.6	-0.2	${ }^{-0.3 \%}$
77.8\%	58.6	55.6	0.0	0.0\%\%
79.0\%	58.6	58.5 584	-0.1	${ }^{-0.2 \%}$
80.2\%	58.5	58.4	-0.1	-0.2\%
${ }^{81.5 \%}$	58.4 583 8.3	58.3 58.3	0.0	${ }_{\text {-0.1\% }}^{-0.1 \%}$
	58.3 58.3	58.3 58.1	-0.1 -0.2	-0.0.19\%
85.2\%	58.3	58.1	-0.2	-0.3\%
86.4\%	58.2	${ }_{58.0}^{57 .}$	-0.2	-0.3\%
87.7\%	58.1	57.9	-0.2	-0.4\%
88.9\%	58.1	57.8	-0.3	-0.5\%
90.19\%	58.1	57.8	-0.3	-0.6\%
91.4\%	58.1	57.8	-0.3	${ }^{-0.5 \%}$
92380	55.6	57.6	-0.4	-0.7\%
${ }^{95.1 \%}$	55.4	57.2 56.1	-0.4	${ }^{-0.4 \%}$
96.3\%	56.1	56.0	-0.2	-0.3\%
97.5\%	56.1	55.9	-0.2	-0.3\%
98.8\%	${ }_{56.0}$	55.9 55	-0.2	-0.3\%
100.0\%	56.0	55.9	-0.2	-0.3\%

Table SQ9-1b
American River below Nimusus Dam, Monthy Temperature

$\begin{aligned} & \text { Percent } \\ & \hline \text { Exceedance } \\ & \text { Probabaility } \end{aligned}$		July		$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceendance } \\ \text { Probabily } \end{array} \\ \quad(\%) \\ \hline \end{gathered}$	August		$\begin{gathered} \text { Absolute } \\ \text { difference } \\ \text { (DEGF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	${ }_{\substack{\text { DCR } 2015 \text { Without } \\ \text { Proiet }}}$	DCR 2015 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (10EGF) } \end{gathered}$			DCR 2015 Without Proiect	DCR 2015 With Project		
	Monthl Temperature	Monthly Temperature				Monthly Temperature	Monthly Temperature		
	(DEGF)	(DEGF)				(DEGF)	(DEGF)		
0.0\%	70.8	69.5	-1.3	-1.8\%		69.6	67.4	-2.2	-3.1\%
1.2\% ${ }^{\text {2.5\% }}$	70.1 69.4	68.3 66.8	-1.85	- ${ }_{\text {- }}^{\text {- } 3.7 \%}$	${ }_{2.5 \%}^{1.2 \%}$	68.5 67.9	66.5 66.0	-2.1 -1.9	--3.0% -2.9%
3.7\%	68.4	66.3	-2.1	-3.1\%	3.7\%	67.7	66.0	-1.8	-2.6\%
4.9\%	68.1	65.9	-2.2	-3.2\%	4.9\%	67.7	65.5	-2.2	-3.2\%
6.2\%	67.5	65.8	-1.6	-2.4\%	6.2\%	67.6	65.4	-2.2	-3.2\%
7.4\%	67.3	65.7	-1.6	-2.4\%	7.4\%	67.	65.2	-1.7	
8.6\%	67.0	65.7	-1.3	-2.0\%	8.6\%	66.9	65.1	-1.7	6\%
9.9\%	66.8	65.6	-1.2	-1.8\%	9.9\%	66.8	64.7	-2.1	-3.2\%
11.1\%	66.6	65.5	-1.2	-1.8\%	11.1\%	66.8	64.7	-2.1	-3.1\%
12.3\%	66.6	65.0	-1.7	-2.5\%	12.3\%	66.7	64.4	-2.3	-3.5\%
13.6\%	66.6	64.9	-1.7	-2.5\%	13.6\%	66.7	64.3	-2.4	-3.6\%
14.8\%	66.6	64.8	-1.8	-2.6\%	14.8\%	65.9	64.2	-1.6	-2.5\%
16.0\%	66.2	64.1	-2.2	-3.3\%	16.0\%	65.8	64.2	-1.6	-2.4\%
17.3\%	65.9	64.0	-1.9	-2.8\%	17.3\%	65.7	64.1	-1.7	-2.5\%
18.5\%	65.6	64.0	-1.6	-2.4\%	18.5\%	65.4	63.9	-1.5	-2.3\%
19.8\%	65.4	63.7	-1.7	-2.6\%	19.8\%	65.3	63.8	-1.5	-2.3\%
21.0\%	65.2	63.7	-1.5	-2.3\%	21.0\%	65.3	63.8	-1.5	-2.3\%
22.2\%	64.6	63.7	-0.9	-1.4\%	22.2\%	65.3	63.7	-1.6	-2.4\%
23.5\%	64.5	63.6	-1.0	-1.5\%	23.5\%	65.0	63.7	-1.3	-2.0\%
24.7\%	64.5	63.3	-1.2	-1.9\%	24.7\%	64.9	63.5	-1.4	-2.2\%
25.9\%	64.0	63.2	-0.8	-1.2\%	25.9\%	64.6	63.5	-1.1	-1.7\%
27.2\%	63.9	63.0	-1.0	-1.5\%	27.2\%	64.6	63.4	-1.1	-1.8\%
28.4\%	63.9	62.9	-1.0	-1.5\%	28.4\%	64.4	63.4	-1.0	-1.5\%
29.6\%	63.9	62.8	-1.1	-1.7\%	29.6\%	64.4	63.4	-0.9	-1.5\%
30.9\%	63.9	62.8	${ }_{-1.1}$	-1.7\%	30.9\%	64.3	63.2	-1.0	${ }_{-1.6 \%}$
32.1\%	63.8	62.8	-1.1	-1.7\%	32.1\%	64.2	63.1	-1.2	-1.8\%
33.3\%	63.8	62.7	-1.1	-1.7\%	33.3\%	64.1	62.9	-1.2	-1.8\%
34.6\%	63.7	62.5	-1.2	-1.8\%	34.6\%	${ }^{63.9}$	${ }^{62.8}$	-1.11	-1.7\%
									-1.8\%
37.0\%	${ }^{63.6}$	${ }^{62.4}$	-1.2	-1.9\%	37.0\%	${ }_{63.6}^{63.6}$	${ }_{6}^{62.6}$	-1.0	${ }^{-1.6 \%}$
-	${ }_{63.5}^{63.6}$	62.3 62.2	${ }_{-1.3}$	${ }_{-2.1 \%}^{-2.1 \%}$	${ }_{\text {3 }} 38.5 \%$	${ }_{63.2}^{63.3}$	62.4 62.4	-0.8	-1.3\%
40.7\%	63.5	62.2	-1.4	${ }_{\text {-2.2\% }}$	40.7\%	63.1	62.0	-1.1	-1.7\%
42.0\%	63.5	62.2	-1.3	-2.1\%	42.0\%	63.1	61.9	-1.2	-1.9\%
43.2\%	63.5	62.2	-1.3	-2.1\%	43.2\%	63.1	61.9	-1.2	-1.9\%
44.4\%	63.4	62.1	-1.3	-2.0\%	4.4.4\%	${ }^{63.0}$	61.8	-1.2	-2.0\%
45.7\%	63.4	62.0	-1.3	-2.1\%	45.7\%	63.0	61.8	-1.3	-2.0\%
46.9\%	63.2	62.0	-1.2	-1.9\%	46.9\%	62.9	61.8	-1.2	-1.9\%
48.19\%	${ }_{63.2}^{63.2}$	62.0 61.9	-1.22	-	${ }^{48.19 \%}$	62.9 62.8	61.8 61.7	-1.12	-1.9\%
50.6\%	63.0	61.9	-1.2	-1.8\%	50.6\%	62.8	61.6	-1.11	-1.8\%
51.9\%	63.0	61.8	-1.1	-1.8\%	51.9\%	62.7	61.5	-1.2	-1.9\%
53.1\%	63.0	61.7	-1.3	-2.1\%	53.1\%	62.7	61.4	-1.3	-2.0\%
54.3\%	63.0	61.6	-1.4	-2.2\%	54.3\%	62.6	61.3	-1.2	-1.9\%
55.6\%	62.9	61.6	-1.3	-2.1\%	55.6\%	62.5	61.3	-1.1	-1.8\%
56.8\%	62.9	61.5	-1.4	-2.2\%	56.8\%	62.4	61.2	-1.2	-1.9\%
58.0\%	62.8	61.5	-1.3	-2.0\%	58.0\%	62.4	61.1	-1.3	-2.0\%
59.3\%	62.8	61.5	-1.3	-2.0\%	59.3\%	62.4	61.1	-1.3	-2.1\%
60.5\%	62.8	61.4	-1.3	-2.1\%	60.5\%	62.3	61.0	-1.3	-2.0\%
61.7\%	62.8	61.4	-1.4	-2.2\%	61.7\%	62.2	61.0	-1.3	-2.0\%
63.0\%	62.7	61.4	-1.4	-2.2\%	63.0\%	62.2	61.0	-1.2	${ }^{-2.00 \%}$
64.2\%	${ }_{6}^{62.7}$	61.3	-1.4	-2.3\%	${ }^{64.20 \%}$	62.1	60.8	-1.2	-2.0\%
65.4\%	${ }_{6}^{62.7}$	61.2	-1.4	-2.2\%	${ }^{65.46 \%}$	62.0	60.7	-1.4	-2.2\%
${ }^{66.77 \%}$	62.7	61.2	-1.4	-2.3\%	${ }^{66.77 \%}$	62.0	60.6	-1.3	-2.2\%
${ }^{67.9 \%}$	62.6 62.6	61.2 61.2	-1.4	${ }_{-2.3 \%}^{-2.2 \%}$	${ }^{67.9 \%}$	61.9 61.8	60.6 60.6	${ }_{-1.3}$	-2.20\%
70.4\%	62.5	61.1	-1.4	-2.3\%	70.4\%	61.7	60.4	-1.3	-2.0\%
71.6\%	62.2	61.0	-1.2	-2.0\%	71.6\%	61.6	60.3	-1.3	-2.1\%
72.8\%	62.1	61.0	-1.1	-1.8\%	72.8\%	61.5	60.2	-1.3	${ }_{-2.1 \%}$
74.1\%	62.1	61.0	-1.1	-1.8\%	74.1\%	61.4	60.2	-1.2	-2.0\%
75.3\%	62.1	61.0	-1.1	-1.7\%	75.3\%	61.3	60.1	-1.2	-1.9\%
76.5\%	62.0	60.7	-1.3	-2.1\%	76.5\%	61.3	60.0	-1.2	-2.0\%
7.3\%	62.0	60.7	-1.2	-2.0\%	7.3\%	61.2	59.9	-1.3	-2.1\%
79.0\%	61.9	60.7	-1.2	-2.0\%	79.0\%	61.1	59.9	-1.1	-1.9\%
80.2\%	61.9	60.7	-1.2	-2.0\%	80.2\%	${ }_{60.8}^{60}$	59.9	-0.9	-1.6\%
81.5\%	${ }_{618}^{61.9}$	60.5	-1.3	${ }^{-2.22 \%}$	81.5\%	${ }_{60.8}$	59.9	-0.9	-1.5\%
82.7\%	${ }_{61.8}^{618}$	60.3	-1.6	-2.5\%	${ }^{82.79 \%}$	60.7	59.9	-0.8	-1.4\%
84.0\%	61.8	60.1	-1.7	-2.7\%	84.0\%	60.7	59.8	-0.8	-1.4\%
85.2\%	61.4	60.1	-1.4	-2.2\%	85.2\%	60.0	59.7	-0.3	-0.6\%
86.4\%	61.4	59.9	-1.5	-2.4\%	86.4\%	59.9	59.1	-0.7	-1.2\%
87.7\%	61.1	59.8	-1.3	-2.2\%	87.7\%	59.8	59.1	-0.8	-1.3\%
${ }^{88.9 \%}$	60.8 60.8	59.6 59.5	-1.2 -1.2	-	${ }^{88.9 \%}$	59.6 59.2	59.0 58.5	-0.6 -0.7	-1.0\%
91.4\%	60.7	59.2	-1.5	-2.5\%	${ }^{91.4 \%}$	59.2	${ }_{58.5}^{56.5}$	-0.7	${ }_{-1.2 \%}$
92.6\%	60.7	59.0	-1.7	${ }^{-2.8 \%}$	92.6\%	59.1	58.1	-1.0	-1.7\%
93.\%	60.7	58.7	-2.0	-3.2\%	93.8\%	59.1	58.1	-1.0	-1.7\%
95.1\%	60.6	58.7	-1.9	-3.1\%	95.1\%	59.0	58.0	-1.0	-1.7\%
96.3\%	60.5	58.6	-1.9	-3.2\%	96.3\%	58.9	58.0	-1.0	-1.7\%
97.5\%	60.3	58.3	-2.0	-3.3\%	97.5\%	58.9	57.9	-0.9	-1.6\%
98.8\%	59.7	58.2	-1.5	-2.5\%	${ }^{98.8 \%}$	58.5	57.8	-0.7	-1.2\%
100.0\%	59.7	58.2	-1.5	-2.5\%	100.0\%	58.5	57.8	-0.7	-1.2\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabily } \\ (\%) \\ \hline \end{gathered}$	September			RelativeDifference (\%)
	DCR 2015 Without Proiect	DCR 2015 With Project	$\begin{gathered} \begin{array}{c} \text { Absolute } \\ \text { Difference } \\ \text { (DEGF) } \end{array} \\ \hline \end{gathered}$	
	$\underset{\substack{\text { Monthly Temperature } \\ \text { (DEEFF) }}}{ }$	Monthly Temperature (DEGF)		
0.0\%	68.5	68.5	0.0	0.0\%
1.2\%	67.7	66.8	-0.9	${ }^{-1.3 \%}$
2.5\%	67.6	66.6	1.0	-1.5\%
3.7\%	67.4	66.5	-0.9	-1.3\%
4.9\%	67.4	66.5	-0.9	退
6.2\%	67.2	66.4	-0.8	-1.1\%
7.4\%	67.0	66.4	-0.7	-1.0\%
8.6\%	67.0	66.2	-0.8	-1.2\%
9.9\%	66.8	66.2	-0.7	-1.0\%
11.1\%	66.8	66.1	-0.7	-1.0\%
12.3\%	66.8	66.0	-0.7	-1.1\%
13.6\%	66.7	65.8	-0.9	-1.4\%
14.8\%	66.6	65.7	-0.9	-1.4\%
16.0\%	66.6	65.7	-0.9	-1.4\%
17.3\%	66.5	65.6	-0.9	-1.3\%
18.5\%	66.3	65.5	-0.8	-1.1\%
19.8\%	66.1	65.4	-0.7	-1.1\%
21.0\%	66.1	65.1	-1.0	-1.5\%
22.2\%	66.0	64.9	-1.1	-1.6\%
23.5\%	65.9	64.9	-1.0	-1.5\%
24.7\%	65.7	64.8	-0.9	-1.3\%
25.9\%	65.6	64.7	-0.9	-1.4\%
27.2\%	65.4	64.6	-0.8	-1.2\%
28.4\%	65.3	64.6	-0.7	-1.1\%
29.6\%	65.2	64.5	-0.7	-1.1\%
30.9\%	65.2	64.4	-0.8	-1.2\%
32.1\%	65.2	64.3	-0.9	-1.3\%
33.3\%	65.1	64.2	-0.9	-1.4\%
34.6\%	65.1	64.2	-0.9	-1.4\%
35.8\%	65.1	64.2	-0.9	-1.4\%
37.0\%	64.8	64.1	-0.7	-1.0\%
38.3\%	64.6	${ }^{63.9}$	-0.7	-1.0\%
39.5\%	64.5	63.9	-0.6	-1.0\%
40.7\%	64.3	63.8	-0.4	-0.7\%
42.0\%	64.2	63.7	-0.5	-0.8\%
43.2\%	64.1	63.2	-0.9	-1.4\%
44.4\%	63.9	63.2	-0.8	-1.2\%
	63.9	63.1	-0.8	-1.2\%
${ }^{46.9 \%}$	63.9	63.1	-0.8	-1.2\%
${ }^{48.1 \%}$	63.8 635	${ }_{63.0}^{63}$	-0.8	-1.3\%
4.4.4\%	63.5 635	${ }_{628}^{62.9}$	-0.6	-0.9\%
50.6\%	63.5 635	${ }^{62.8}$	-0.7	-1.1\%
551.9\%	63.5	62.8	-0.7	-1.1\%
53.1\% 54.3%	63.3	62.7	-0.6	-1.0\%
54.3\% 55.6%	63.3	62.6	-0.7	-1.1\%
55.6\%	63.2	62.4	-0.8	-1.3\%
- 5 5.8.0\%	63.2	62.3	-0.9	-1.5\%
5.0\% 59.3%	63.2	62.2	-1.0	-1.5\%
59.3\%	62.9	62.1	-0.8	-1.3\%
60.7\%		${ }^{62.1}$		-1.1\%
61.7\% ${ }_{6} 6.0 \%$	${ }^{62.8}$	${ }^{62.0}$	-0.8	-1.3\%
63.0\% 6	${ }_{628}^{62.8}$	61.9	-0.8	-1.3\%
66.4\%	62.8	61.8	-0.9	-1.4\%
65.4\% ${ }_{6}^{66.7 \%}$	62.3	61.8	-0.5	-0.8\%
66.7\% 67.9%	62.2	61.8	-0.4	-0.6\%
67.9\% ${ }_{6}^{69.1 \%}$	62.1	61.8	-0.3	-0.5\%
69.1\% 70.4%	62.1	61.8	-0.3	-0.5\%
77.4\%	62.0	61.7	-0.3	-0.4\%
71.6\%	62.0	61.7	-0.3	-0.4\%
72.8.1\%	61.6	61.7	0.0	0.0\%
${ }^{74.19 \%}$	61.6	61.6	0.0	0.1\%
${ }_{\text {76.5.5\% }}^{75}$	${ }_{61.5}$	${ }_{61.6}^{61.6}$	0.0	0.1\%
	61.4	61.5	0.1	0.1\%
77.0\%	61.3	61.4	0.1	0.1\%
79.0\% 80.2%	61.2	61.3	0.1	0.2\%
80.2\% 81.5%	61.2	61.3	0.0	0.1\%
81.5\%	61.2	61.1	-0.1	0.1\%
82.7\% 84.0%	61.0	60.9	-0.1	-0.2\%
8.0% 85.2%	60.9	60.9	0.1	0.1\%
8.2% 86.4%	60.8	60.8	0.0	0.0\%
887.7\%	60.6 60.5	60.7 60.6	${ }_{0.1}^{0.1}$	${ }_{0}^{0.2 \%}$
88.9\%	60.4	60.5	0.1	0.1\%
90.1\%	60.4	60.2	-0.3	-0.4\%
91.4\%	60.4	${ }^{60.1}$	-0.3	-0.6\%
92.6\% ${ }_{\text {93.8\% }}$	60.3	59.8	-0.5	-0.8\%
93.8\% ${ }_{\text {95.1\% }}$	60.3	59.7	-0.6	-1.0\%
${ }_{99.10 \%}^{96.3 \%}$	60.2	59.6	-0.7	-1.1\%
997.5\%	60.1	59.5	-0.6	-1.0\%
97.5\%	59.8	59.5	-0.4	-0.6\%
988\%	¢99.6	¢9.5	-0.1 -0.1	-0.0\% ${ }_{-0.2 \%}$

Table Sa9-1b
American River below wimbus Dam, Monthy Temperature

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Proabability } \end{gathered}$	June to September			
	$\underset{\substack{\text { DCR } 2015 \text { ect }}}{20150}$	DCR 2015 With Project		
	Monthy Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
0.0\%	67.9	68.0	0.1	0.1\%
1.2\%	67.9	66.8	-1.1	1.6\%
2.5\%	67.3	66.4	-0.9	
3.7\%	67.0	66.1	-0.9	-1.3\%
4.9\%	66.7	65.6	-1.1	1.7\%
6.2\%	66.7	65.4	-1.2	-1.9\%
7.4\%	66.6	65.3	-1.3	-1.9\%
8.6\%	66.4	65.3	-1.2	-1.7\%
9.9\%	66.4	65.3	-1.1	-1.7\%
11.1\%	66.2	65.1	-1.2	-1.7\%
${ }^{12.3 \%}$	66.2 66.0	64.8 64.8	-1.3	-
14.8\%	66.0	64.6	-1.3	-2.0\%
16.0\%	65.9	64.5	-1.4	-2.1\%
17.3\%	65.9	64.3	-1.6	-2.4\%
18.5\%	65.6	64.2	-1.4	-2.1\%
19.8\%	65.3	64.1	-1.2	-1.8\%
21.0\%	65.3	64.0	-1.3	-1.9\%
22.2\%	65.0	64.0	-1.0	-1.5\%
23.5\%	64.8	63.9	-0.9	-1.4\%
24.7\%	64.8	63.9	-0.9	-1.5\%
25.9\%	64.8	63.8	-0.9	-1.5\%
27.2% 28.4%	64.7 64.5	63.8 63.8	-0.9	-1.4\% ${ }_{-1.2 \%}$
29.6\%	64.5	63.5	-1.0	-1.5\%
30.9\%	64.4	63.4	-1.0	-1.5\%
32.1\%	64.1	63.2	-0.9	-1.4\%
33.3\%	64.0	63.2	-0.9	-1.3\%
34.6\%	64.0	63.2	-0.8	-1.3\%
35.8\%	63.8	63.0	-0.9	-1.4\%
37.0\%	63.8	62.9	-0.9	-1.3\%
38.3\%	63.7	62.8	-0.9	${ }_{-1.3 \%}$
39.5\%	63.1	62.5	-0.6	-1.0\%
40.79\%	63.0	62.3	-0.7	-1.19\%
${ }^{42.0 \%}$	63.0 63.0	62.2 61.9	${ }_{-1.1}$	-1.7\%
44.4\%	63.0	61.8	-1.2	-1.9\%
45.7\%	62.8	61.7	-1.0	-1.6\%
46.9\%	62.6	61.7	-0.9	-1.4\%
48.1\%	62.5	61.6	-0.9	-1.5\%
49.4\%	62.4	61.5	-0.9	-1.5\%
50.6\%	62.3	61.5	-0.8	-1.3\%
51.9\%	${ }_{6}^{62.2}$	${ }_{61.4}$	-0.8	${ }_{-1.3 \%}^{-1.3 \%}$
	62.2 62.1	61.3 61.3	-0.8 -0.8	-1.3\%
55.6\%	62.1	61.2	-0.9	1.5\%
56.8\%	62.0	61.1	-0.9	1.4\%
58.0\%	62.0	61.1	-0.8	-1.4\%
59.3\%	61.9	61.1	-0.9	-1.4\%
${ }^{60.5 \%}$	${ }_{61.8}$	${ }_{61.0}$	-0.8	-1.3\%
61.7\%	61.8	60.9	-0.8	${ }^{-1.3 \%}$
63.0\%	61.6	60.9	-0.7	-1.19\%
64.2\%	61.6	60.9	-0.7	-1.1\%
65.4\%	61.5	60.8	-0.7	-1.1\%
66.7\%	61.5	60.7	-0.8	-1.2\%
-67.9\% ${ }_{6}^{69.1 \%}$	61.5 615	60.7 60.6	-0.8	-1.3\%
70.4\%	61.4	60.5	-0.9	-1.4\%
71.6\%	61.4	60.5	-0.9	-1.4\%
72.8\%	61.3	60.5	-0.8	-1.3\%
74.1\%	61.1	60.5	-0.7	-1.1\%
75.3\%	${ }_{61.1}$	${ }^{60.4}$	-0.7	-1.1\%
76.5\%	61.0	60.4	-0.7	-1.1\%
77.8\%	61.0	60.4	-0.6	-1.0\%
79.0\%	60.9	60.3	-0.6	-1.0\%
80.2\%	60.9	60.3	-0.6	-1.0\%
81.5\%	60.9	60.2	-0.6	-1.0\%
82.79\%	60.8	${ }^{60.2}$	-0.6	${ }^{-1.00 \%}$
84.0% 85.2%	60.5 60.1	59.9 59.8	-0.6	-1.0\%
86.4\%	60.0	59.8	-0.2	-0.4\%
87.7\%	59.9	59.5	-0.4	-0.6\%
88.9\%	59.6	59.3	-0.4	-0.7\%
90.1\%	59.6	59.1	-0.6	-0.9\%
91.4\%	${ }_{59.6}^{59}$	58.9	-0.7	-1.2\%
92.6\%	59.6	58.9	-0.7	1.2\%
93.8\%	59.6	58.7	-0.9	-1.5\%
${ }_{99.36 \%}^{95.19 \%}$	58.9 58.9	58.6 58.1	-0.3 -0.8	
97.5\%	58.8	58.0	-0.8	-1.3\%
988.8\% 100.0\%	58.8 58.6	57.9 57.8	-0.9	-1.5\%
100.0\%	58.6	57.8	-0.8	-1.4\%

merican River at Watt Avenue, Monthly Temperatur

Table SQ10-1b

October				
$\begin{gathered} \text { Percerent } \\ \text { Exceedance } \end{gathered}$	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project		Relative
Probability (\%)	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGF } \end{aligned}$	Difference (\%)
0.0\%	65.1	65.0	-0.2	-0.2\%
1.2\%	64.9	64.8	0.0	-
2.5\%	64.8	64.4	-0.4	-0.6\%
3.7\%	64.7	64.2	-0.6	-0.9\%
4.9\%	64.2	64.1	-0.1	-0.1\%
6.2\%	64.2	64.1	-0.1	-0.1\%
7.4\%	64.0	64.1	0.1	0.2\%
8.6\%	63.7	64.0	0.3	0.4\%
9.9\%	63.7	63.9	0.2	0.3\%
11.19\%	63.7	${ }_{63.8}$	0.2	0.3\%
12.3\%	63.6 63.5	63.6 63.6	${ }_{0}^{0.0}$	${ }_{\text {O }}^{0.1 \%}$
14.8\%	63.4	${ }_{63.3}$	0.0	0.0\%
16.0\%	63.2	63.3	0.1	0.1\%
17.3\%	62.6	63.1	0.4	0.7\%
18.5\%	62.5	62.8	0.3	0.5\%
19.8\%	62.5	62.5	0.0	-0.1\%
21.0\%	62.3	62.4	0.1	0.2\%
22.2\%	62.3	62.2	-0.1	-0.2\%
${ }^{23.5 \%}$	61.9	61.9	0.0	0.0\%
24.7\%	61.9	61.8	-0.1	-0.1\%
25.9\%	61.6 61.4	61.7 61.7	0.1 0.3	- 0.2%
28.4\%	61.4	61.7	0.3	0.4\%
29.6\%	${ }^{61.3}$	61.6	${ }^{0.3}$	0.5\%
30.9\%	61.3	${ }_{61.4}^{61.4}$	0.1	0.2\%
32.1\%	61.2	61.3	0.1	0.1\%
33.3\%	61.2	61.3	0.1	0.2\%
34.6\%	61.2	61.3	0.1	0.2\%
35.8\%	61.1	61.2	${ }^{0.1}$	0.2\%
37.0% 38.3%	${ }_{61.0}^{61.0}$	61.2 61.2	0.2 0.2	${ }_{\text {cose }}^{0.3 \% \%}$
39.5\%	61.0	61.1	0.1	0.2\%
40.7\%	61.0	61.1	0.2	0.3\%
42.0\%	60.9	61.1	0.1	0.2\%
${ }^{43.29 \%}$	60.9	61.1		
${ }^{44.45 \%}$	60.8 60.8	${ }_{6}^{61.1}$	0.2 0.2	0.4\%
46.9\%	60.8	61.0	0.3	0.4\%
48.1\%	60.7	61.0	0.3	0.6\%
49.4\%	60.7	61.0	0.3	0.6\%
50.6\%	60.6	60.9	0.4	0.6\%
51.9\%	60.5	60.9	0.4	0.6\%
53.12\% 54.3%	60.4 60.4	60.8 60.5	0.4 0.1	-0.7\% 0.2%
55.6\%	59.5	60.1	0.6	1.0\%
56.8\%	59.5	59.6	0.1	0.1\%
58.0\%	59.3	59.4	0.0	0.1\%
59.3\%	59.2	59.0	-0.1	-0.2\%
60.5\%	59.1	58.7	-0.4	-0.7\%
${ }^{61.7 \%}$	59.1	58.7	-0.4	-0.6\%
63.0\%	58.9	58.7	-0.2	-0.3\%
64.20% 6.40	58.9	58.5	-0.3	-0.6\%
${ }^{65.4 \%}$	58.8 58.5	58.5 58.5	-0.3 -0.1	${ }^{-0.5 \%}$
67.9\%	58.5	58.3	-0.2	-0.4\%
69.19\%	58.5 585 8.	58.2 58.2	-0.3	-0.5\% ${ }_{-0.5}$
71.6\%	${ }_{58.3}^{58.5}$	58.2	${ }_{-0.1}$	-0.2\%
72.8\%	58.2	58.1	-0.2	-0.3\%
74.1\%	58.2	58.1	-0.2	-0.3\%
75.3\%	58.2	58.1	-0.1	-0.2\%
76.5\%	58.2	58.1	-0.1	-0.2\%
77.8\%	58.1	58.0	-0.1	-0.1\%
79.0\%	58.0	57.9	-0.1	-0.0.2\%
- ${ }^{80.2 \%}$	58.0 57.8	57.9 57.9	${ }_{0}^{0.1}$	${ }^{-0.3 \%}$
82.7\%	57.6	57.9	0.2	0.4\%
84.0\%	57.6	57.8	0.2	0.4\%
85.2\%	57.5	${ }_{5778}^{578.8}$	0.4	0.6\%
86.4\%	${ }_{57.5}^{574}$	57.6 57.6	${ }^{0.1}$	0.3\%
88.79% 88.9%	57.4 57.4	57.6 575	0.2	- 0.3%
${ }^{90.1 \%}$	57.4	57.5	0.2	0.3\%
91.4\%	57.3	57.5	0.2	0.4\%
92.6\%	57.0	57.5	0.4	0.8\%
93.8\%	57.0	57.3	0.3	${ }^{0.6 \%}$
${ }_{9}^{95.19 \%}$	56.9 56.8	57.2 57.1	0.3 0.3	${ }_{\text {en }}^{0.5 \%}$
97.5\%	56.6	56.8	0.2	0.3\%
98.8\%	56.5	56.2	-0.4	-0.6\%
100.0\%	56.5	56.2	0.0	-0.6\%

January				
Percent Exceedance	$\underset{\substack{\text { DCR } 2015 \text { Without }}}{ }$	DCR 2015 With Project		Relative
Probability	Monthy Temperature	Monthly Temperature	(DEGF)	Difference (\%)
0.0\%	49.3	49.4	0.1	0.3\%
1.2\%	49.1	49.3	0.1	0.3\%
2.5\%	49.1	49.1	0.0	
3.7\%	48.9	48.9	0.0	0.0\%
4.9\%	48.5	48.7	0.2	0.4\%
6.2\%	48.4	48.6	0.2	0.4\%
7.4\%	48.4	48.6	0.2	0.3\%
8.6\%	48.4	48.6	0.2	0.3\%
9.9\%	48.1	48.2	0.1	0.2\%
11.1\%	48.1	48.2	0.1	0.2\%
12.3\%	47.9	48.1	0.2	0.4\%
13.6\%	47.9	48.1	0.2	0.4\%
14.8\%	47.9	48.0	0.2	0.3\%
16.0\%	47.8	47.9	0.1	0.3\%
17.3\%	47.7	47.9	0.2	0.4\%
18.5\%	47.7	47.9	0.2	0.4\%
19.8\%	47.6	47.9	0.2	0.5\%
21.0\%	47.6	47.8	0.2	0.5\%
22.2\%	47.6	47.7	0.2	0.3\%
23.5\%	47.5	47.7	0.2	0.4\%
24.7\%	47.4	47.7	0.3	0.6\%
25.9\%	47.4	47.7	${ }^{0.3}$	0.6\%
27.2\%	47.3	47.5	${ }^{0.3}$	0.5\%
28.4\%	47.3	47.5	0.2	0.5\%
29.6\%	47.1	47.5	0.4	0.8\%
30.9\%	47.1	47.3	0.2	0.4\%
32.1\%	47.1	47.2	0.1	0.3\%
33.3\%	47.0	47.2	0.2	0.3\%
34.6\%	46.9	47.2	0.2	0.4\%
35.8\%	46.9	47.0	0.1	0.2\%
37.0\%	46.8	47.0	0.2	0.5\%
38.3\%	46.8	47.0	0.2	0.5\%
39.5\%	46.7	47.0	0.2	0.5\%
40.79\%	46.7	46.9	0.2	0.5\%
43.2\%	46.7	46.9	0.2	0.5\%
44.4\%	46.6	46.9	0.2	0.5\%
45.7\%	46.6	46.8	0.2	0.4\%
46.9\%	46.6	46.8	0.2	0.4\%
48.1\%	46.6	46.7	0.1	0.2\%
49.4\%	46.4	48.6	0.2	0.5\%
50.6\%	46.3	46.5	0.1	0.3\%
51.9\%	46.3	46.4	0.1	0.3\%
53.1\%	46.3	46.4	0.1	0.3\%
54.3\%	46.3	46.4	0.1	0.3\%
55.6\%	46.2	46.3	0.2	${ }^{0.3 \%}$
56.8\%	${ }_{46.1}^{46.1}$	46.3 46.3	0.2 0.2	${ }_{0}^{0.3 \%}$
59.3\%	46.1	46.2	0.1	0.3\%
60.5\%	46.1	46.2	0.1	0.2\%
61.7\%	46.1	46.2	0.1	0.2\%
63.0\%	46.0	46.2	0.2	0.3\%
64.2\%	46.0	46.2	0.1	0.3\%
65.4\%	46.0	46.2	0.1	0.3\%
66.7\%	46.0	46.2	0.2	0.3\%
67.9\%	46.0	46.1	0.2	0.3\%
- ${ }^{69.19 \%}$	45.9 45.9	46.1 46.0	${ }_{0}^{0.1}$	${ }_{0}^{0.4 \%}$
71.6\%	45.7	45.9	0.2	0.5\%
72.8\%	45.7	45.9	0.2	0.5\%
74.19\%	45.5	45.7	0.2	0.5\%
75.3\%	45.4	45.5	0.2	0.4\%
76.5\%	45.3	45.5	0.3	0.6\%
77.8\%	45.2	45.5	0.3	0.6\%
79.0\%	45.1	45.5	${ }^{0.3}$	0.8\%
80.2\%	45.1	45.4	${ }^{0.3}$	0.7\%
81.5\%	45.0	45.4	0.3	0.7\%
-	45.0 44.9	45.3 45.2	0.3 0.3	0.7\% 0
85.2\%	44.9	45.2	0.3	0.6\%
86.4\%	44.9	45.1	${ }^{0.3}$	0.6\%
87.7\%	44.8	44.9	0.1	0.3\%
88.9\%	44.7	44.8	0.2	0.4\%
90.1\%	44.4	44.4	0.0	0.0\%
91.4\%	44.3	44.1	-0.2	-0.5\%
92.6\%	44.2	43.9	-0.4	-0.8\%
93.8\%	44.0	43.8	-0.1	-0.3\%
${ }_{9}^{95.19 \%}$	${ }_{43.5}^{43.7}$	43.5 43.5	-0.2 0.0	${ }^{-0.4 \%}$
97.5\%	43.5	42.8	-0.7	-1.5\%
98.8\%	42.8	${ }^{42.1}$	-0.8	-1.8\%
100.0\%	42.8	42.1	-0.8	-1.8\%

Table SQ10-1b

$\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probabaility } \end{array} \end{aligned}$	February			
	DCR 2015 Without Proiect	DCR 2015 With Project	Absolute	Relative
		Monthly Temperature (DEGF)	(DEGF)	Difference (\%)
0.0\%	53.2	53.3	0.1	0.2\%
1.2\%	52.9	53.1	0.2	0.4\%
2.5\%	51.6	51.5	-0.1	-0.2\%
3.7\%	51.2	51.3	0.1	0.3\%
4.9\%	50.0	50.2 501	0.2	0.4\%
7.4\%	49.7	49.8	0.1	0.2\%
8.6\%	49.5	49.5	-0.1	-0.1\%
9.9\%	49.3	49.5	0.2	0.3\%
11.1\%	49.3	49.4	0.2	0.3\%
12.3\%	49.3	49.3	0.1	0.1\%
13.6\%	49.2	49.3	0.1	0.2\%
14.8\%	49.1	49.1	0.0	0.0\%
16.0\%	48.7 48.7	48.9 48.8	0.2 0.1	${ }_{0}^{0.3 \%}$
18.5\%	48.7	48.8	0.1	0.1\%
19.8\%	48.7	48.8	0.1	0.1\%
21.0\%	48.6	48.7	0.1	0.1\%
22.2\%	48.5	48.6	0.1	0.2\%
23.5\%	48.4	48.6	0.2	0.4\%
24.7\%	48.4	48.4	0.0	0.1\%
25.9\%	48.4	48.4	0.0	0.0\%
27.2\%	48.0	48.3	0.3	0.6\%
28.4\%	48.0	48.2	0.2	0.5\%
29.6\%	48.0	48.2	0.2	0.5\%
30.9% 32.1%	47.9 47.8	48.0 47.8	0.1 0.0	-0.0\% 0
33.3\%	47.8	47.8	0.0	0.1\%
34.6\%	47.7	47.8	0.1	0.1\%
35.8\%	47.7	47.7	0.1	0.2\%
37.0\%	47.6	47.7	0.1	0.2\%
38.3\%	47.6	47.6	0.0	0.1\%
39.5\%	47.6	47.6	0.0	0.0\%
40.7\%	${ }_{47.6}$	47.5	0.0	-0.1\%
${ }^{42.0 \%} 43.2 \%$	47.3 47.3	47.5 47.4	${ }_{0}^{0.1}$	${ }_{0.1 \%}^{0.2 \%}$
44.4\%	47.3	47.4	0.1	0.2\%
45.7\%	47.3	47.4	0.1	0.2\%
${ }^{46.9 \%}$	${ }_{47.1}^{47.2}$	47.3 472	${ }_{0}^{0.0}$	${ }^{0.1 \%}$
${ }_{49.4 \%}^{48.10}$	47.1	${ }_{472}^{47.2}$	${ }_{0}^{0.1}$	${ }^{0.2 \% \%}$
50.6\%	47.1	47.2	0.1	0.2\%
51.9\%	47.1	47.1	0.1	0.1\%
53.1\%	47.0	47.1	0.1	0.3\%
54.3\%	46.9	47.0	0.2	0.3\%
55.6\%	46.9	46.9	0.0	-
56.8\%	${ }_{46.9}^{46.9}$	${ }_{46.8}^{46.9}$	0.0 0.0	-0.1\%
59.3\%	46.8	46.8	0.0	0.0\%
60.5\%	46.7	46.8	0.0	0.1\%
61.7\%	46.7	46.8	0.1	0.1\%
63.0\%	${ }^{46.6}$	46.7	0.1	0.2\%
${ }^{64.2 \%}$	46.6	46.7	${ }^{0.1}$	${ }^{0.3 \%}$
65.4\%	46.6	46.7	0.1	0.3\%
66.7\%	46.5	46.6	0.1	0.3\%
67.9\%	46.4	46.5	0.0	0.1\%
69.1\%	46.3	46.4	0.2	0.4\%
70.4\%	46.3 46.2	${ }_{46.3}^{46.4}$	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \% \%}$
72.8\%	46.2	46.3	0.1	0.2\%
74.1\%	46.2	46.2	0.1	0.1\%
75.3\%	46.2	46.2	0.1	0.2\%
76.5\%	46.1	46.2	0.1	0.2\%
77.8\%	46.1	46.2	0.1	0.2\%
79.0\%	46.0	46.2	${ }^{0.1}$	0.3\%
80.2\%	46.0	46.0	0.0	0.0\%
81.5\%	46.0	46.0	0.0	0.0\%
82.7\%	45.9	46.0	0.1	0.1\%
84.0\%	45.9	45.7	-0.2	-0.4\%
85.20\%	45.7	45.7	0.0	0.0\%
-	${ }_{45.7}^{45.7}$	${ }_{45.7}^{45.7}$	0.0	0.0\%
88.9\%	45.6	45.7	0.0	0.1\%
90.1\%	45.6	45.6	0.0	-0.1\%
91.4\%	45.6	45.5	-0.1	-0.2\%
92.6\%	45.5	45.3	-0.2	-0.4\%
93.8\%	45.3	45.2	-0.1	-0.2\%
95.1\%	45.2	45.1	-0.1	-0.3\%
96.3\%	45.2	44.9	-0.2	-0.5\%
97.5\%	44.9	44.9	0.0	0.0\%
988.8\% 100.0\%	44.9	44.8 44.8	${ }_{0.0}^{0.0}$	-0.1\%

May				
Percent Exceedance	$\underset{\substack{\text { DCR } 2015 \text { Withect }}}{ }$	DCR 2015 With Project		Reative
Probability	Monthly Temperature	Monthy Temperature	$\begin{aligned} & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	Difference (\%)
(\%)	(DEGF)			
0.0\%	70.1	69.8	-0.3	${ }^{-0.4 \%}$
1.2\%	69.0	69.5	0.6	
2.5\%	68.2	68.4	0.2	
3.7\%	67.8	68.0	0.1	0.2\%
4.9\%	67.6	67.9	0.3	0.4\%
6.2\%	67.5	67.4	-0.1	-0.1\%
7.4\%	67.0	67.4	0.4	0.5\%
8.6\%	66.3	67.0	0.7	1.1\%
9.9\%	66.2	65.8	-0.4	-0.6\%
11.1\%	66.1	65.3	-0.8	-1.3\%
12.3\%	65.2	65.3	0.0	0.1\%
13.6\%	65.2	65.2	0.0	0.0\%
14.8\%	65.1	65.2	0.1	0.1\%
16.0\%	64.9	64.9	0.0	0.0\%
17.3\%	64.7	64.9	0.1	0.2\%
18.5\%	64.6	64.7	0.1	0.2\%
19.8\%	64.6	64.6	0.0	0.1\%
21.0\%	64.4	64.3	-0.1	-0.1\%
22.2\%	64.0	64.0	0.0	0.0\%
23.5\%	63.7	63.9	0.2	0.4\%
24.7\%	63.3	63.6	0.4	0.6\%
25.9\%	63.2	63.5	${ }^{0.3}$	0.5\%
27.2\%	63.2	63.4	0.2	0.3\%
28.4\%	63.2	63.2	0.0	0.1\%
29.6\%	63.1	63.1	0.0	0.0\%
30.9\%	62.8	62.8	0.0	0.0\%
32.1\%	62.8	62.8	0.0	0.0\%
33.3\%	62.8	62.7	0.0	-0.1\%
34.6\%	62.6	62.4	-0.1	-0.2\%
35.8\%	62.3	62.1	-0.2	-0.3\%
37.0\%	${ }_{62.2}$	${ }_{62.1}^{62.1}$	-0.1	-0.2\%
38.3\%	62.2	${ }^{62.0}$	-0.2	-0.4\%
39.5\%	62.0	61.8	-0.2	-0.3\%
40.7\%	61.8	61.7	-0.1	-0.2\%
${ }^{42.0 \%}$	61.5		-0.1	-0.2\%
43.2\%	61.1	61.1	0.0	0.0\%
44.4\%	61.1	60.9	-0.1	-0.2\%
45.7\%	60.9	${ }_{60.8}^{60.7}$	-0.1	${ }^{-0.2 \%}$
46.9\%	60.7	60.7	0.0	0.0\%
48.1\%	60.7	60.7	0.0	0.0\%
49.4\%	60.3	${ }^{60.3}$	${ }^{0.1}$	${ }^{0.1 \%}$
50.6\%	60.2	60.3	0.1	0.1\%
51.9\%	${ }^{60.2}$	60.2	0.0	0.0\%
53.19\%	59.8	60.2	0.4	0.6\%
54.3\%	59.7	59.8	0.1	0.2\%
55.6\%	59.6	59.7	0.1	0.2\%
	59.4	59.4	0.0	0.0\%
58.0\%	59.3	59.3	0.0	0.0\%
59.3\%	59.3	59.2	0.0	0.0\%
60.5\%	59.1 589	59.1 589	0.0	0.1\%
${ }^{61.7 \%}$	58.9	58.9	0.0	0.0\%
63.0\%	58.8	58.8	0.0	0.0\%
64.2\%	58.8	58.8	0.0	0.1\%
65.4\%	58.7	58.8	0.1	0.1\%
66.7\%	58.7	58.7	0.0	0.0\%
67.9\%	58.6	58.6	0.1	0.1\%
69.19\%	58.5	58.5	0.0	0.0\%
70.4\%	58.4	58.3	-0.1	-0.2\%
71.6\%	58.3	58.1	-0.2	-0.3\%
72.8\%	58.1	58.1	0.0	0.0\%
74.1\%	58.1	58.1	0.0	0.0\%
75.3\%	58.1	58.1	0.0	0.0\%
76.5\%	58.1	58.1	0.0	0.0\%
77.8\%	58.1	58.1	0.0	0.0\%
79.0\%	58.1	58.1	0.0	-0.1\%
80.2\%	58.0	58.0	0.0	0.0\%
81.5\%	57.7	57.7	0.0	0.0\%
- 82.78%	57.5	57.4	0.0	0.0\%
84.0\%	57.4	57.3	-0.1	-0.2\%
- 85.20%	57.3	57.0	-0.3	${ }^{-0.50 \%}$
${ }^{86.44 \%}$	56.9	55.9	0.0	0.0\%
${ }^{87.79 \%}$	56.7	56.7	0.0	-
90.1\%	56.4	56.4	0.0	0.0\%
91.4\%	56.4	56.4	0.0	0.0\%
92.6\%	${ }_{56.3}$	${ }_{56.3}$	0.0	0.0\%
${ }^{93.8 .1 \%}$	56.1 55.8	56.1 55.8	${ }_{0}^{0.0}$	-0.0\%
96.3\%	${ }_{55.7}^{55.7}$	55.7	0.0	0.0\%
97.5\%	55.3	55.5	0.1	0.2\%
98.8\%	55.3	55.2	-0.1	0.2\%
100.0\%	55.3	55.2	-0.1	-0.2\%

June				
Percent Exceedance	DCR 2015 Without Proiet	DCR 2015 With Project		Relative
Probability	Monthy Temperature	Monthy Temperature	Difference (DEGF)	Difference (\%)
0.0%	742	74.6	0.5	06
0.0\%	74.2	74.6		0.6\%
1.5\%	71.8	721	0.2	0.3\%
3.7\%	71.5	70.8	-0.8	-1.1\%
4.9\%	71.5	70.4	-1.1	-1.5\%
6.2\%	71.4	70.2	-1.1	-1.6\%
7.4\%	71.3	69.7	-1.5	-2.1\%
8.6\%	70.8	69.7	-1.0	-1.4\%
9.9\%	70.2	69.7	-0.5	-0.7\%
11.1.1\%	69.7	69.3	-0.4	-0.6\%
12.3\%	69.5	68.9	-0.5	-0.8\%
13.6\%	69.3	68.8	-0.5	-0.7\%
14.0\%	${ }_{68.7}^{68.7}$	${ }_{68.7} 68.7$	0.1	${ }_{0}^{0.1 \%}$
17.3\%	68.5	68.5	-0.1	-0.1\%
18.5\%	68.5	68.2	-0.3	-0.4\%
19.8\%	68.4	68.0	-0.4	-0.5\%
21.0\%	68.4	67.8	-0.6	-0.9\%
22.2\%	68.0	67.7	-0.2	-0.3\%
23.5\%	67.9	67.6	-0.3	-0.5\%
24.7\%	67.7	67.6	-0.2	-0.3\%
${ }^{25.7 .2 \%}$	67.7 67.5	67.5 67.5	-0.2 -0.1	-0.3\% ${ }_{-0.0}^{-0.3 \%}$
28.4\%	67.3	67.3	0.0	0.0\%
29.6\%	67.0	67.1	0.1	0.1\%
30.9\%	${ }_{66.9}^{66.9}$	${ }_{67.0}^{67}$	${ }^{0.1}$	0.2\%
32.1\%	66.8	66.5	-0.3	-0.4\%
33.3\%	66.8	65.8	-1.0	-1.5\%
34.6\%	66.8	65.6	-1.2	${ }^{-1.8 \%}$
35.8\%	66.4	65.6	-0.8	-1.3\%
37.0\%	66.1	65.5	-0.6	-0.8\%
- ${ }_{\text {38.3\% }}$	65.9 65.8	65.5 65.5	-0.4 -0.3	-0.5\%
40.7\%	65.8	65.4	-0.4	-0.6\%
42.0\%	65.8	65.2	-0.5	-0.8\%
43.2\%	65.5	64.8	-0.7	-1.1\%
44.4\%	65.4	64.7	-0.7	-1.1\%
45.7\%	${ }_{65.0}^{65}$	64.7	-0.4	-0.6\%
46.9\%	64.8	64.5	-0.3	-0.4\%
48.1\%	64.7	64.4	-0.2	-0.3\%
49.4\%	64.5	64.4	-0.1	-0.2\%
50.6\%	64.3	64.3	0.0	0.1\%
51.9\%	64.2	64.2	0.0	0.0\%
- ${ }_{\text {54.3\% }}$	64.1 63.9	64.1 64.0	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
55.6\%	63.8	63.9	0.1	0.1\%
56.3\%	63.6	63.8	0.1	0.2\%
58.0\%	63.4	62.9	-0.5	-0.8\%
59.3\%	63.2	62.7	-0.4	-0.7\%
60.5\%	62.9	62.7	-0.2	-0.3\%
61.7\%	62.8	62.7	-0.1	-0.2\%
63.0\%	62.6	62.6	0.0	0.1\%
${ }^{64.2 \%}$	62.5	62.6	0.0	${ }_{0}^{0.10 \%}$
66.7\%	${ }_{62.4} 62.5$	${ }_{62.4}$	0.0	0.0\%
67.9\%	62.4	62.4	0.0	0.0\%
69.1\%	62.3	62.3	0.0	0.0\%
70.4\%	62.3	62.3	0.0	0.0\%
71.6\%	${ }_{62.1}$	${ }_{621}^{62.2}$	0.0	0.0\%
72.8\%	62.1	62.1	0.0	0.0\%
74.1\%	${ }^{62.0}$	62.0	0.0	-0.1\%
75.3\%	62.0	62.0	0.0	0.0\%
76.5\%	61.9	61.9	0.0	0.0\%
77.8\%	61.9	61.9	0.0	0.0\%
79.0\%	61.9	61.9	0.0	-0.0\%
80.80\%	61.8 61.6	61.6 61.5	-0.2 0.0	-0.0.0\%
82.7\%	61.5	61.2	-0.3	-0.5\%
84.0\%	61.2	61.1	-0.2	-0.3\%
85.2\%	61.1	61.0	-0.1	-0.2\%
86.4\%	60.7	${ }_{60.7}$	0.0	0.0\%
87.7\%	60.6	60.5	-0.1	-0.1\%
88.9\%	60.5	${ }^{60.4}$	-0.1	-0.2\%
90.1\%	60.5	60.3	-0.2	-0.3\%
914.4\%	60.4	60.2	-0.2	-0.4\%
93.3\%	60.1	60.1	0.0	0.0\%
95.1\%	58.5	58.2	-0.2	-0.4\%
96.3\%	58.4	58.2	-0.2	-0.4\%
97.5\%	58.2	58.1	-0.1	-0.0.3\%
98.8\% 100.0\%	${ }_{58.2}^{58.2}$	58.0 58.0	-0.1 -0.1	-

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probobaility } \end{gathered}$(\%)	September			RelativeDifference (\%)
	${ }^{\text {DCR } 2015 \text { Without }} \begin{aligned} & \text { Proiect }\end{aligned}$	DCR 2015 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Differeence } \\ & \text { (DEGFF) } \end{aligned}$	
	$\underset{\substack{\text { Monthly Temperature } \\ \text { (DEFF) }}}{\substack{\text { Pr }}}$	$\xrightarrow[\substack{\text { Monthy Temperature } \\ \text { (DEGF) }}]{\text { and }}$		
0.0\%	72.7	72.5	-0.1	-0.2\%
1.2\%	72.0	70.3	-1.7	-2.4\%
2.5\%	71.7	69.9	-1.8	-2.5\%
3.7\%	71.5	69.8	-1.7	-2.4\%
4.9\%	70.5	69.6	-0.9	
6.2\%	70.4	69.5	-0.9	-1.2\%
7.4\%	70.2	69.4	-0.8	-1.1\%
8.6\%	70.2	69.4	-0.8	-1.1\%
9.9\%	70.1	69.0	-1.1	-1.6\%
11.1\%	70.0	68.9	-1.1	-1.6\%
12.3\%	69.8	68.7	-1.1	-1.6\%
13.6\%	69.7	68.6	-1.1	-1.5\%
14.8\%	69.5	68.6	-0.9	-1.3\%
16.0\%	69.4	68.4	-1.0	-1.4\%
17.3\%	69.3	68.1	-1.2	-1.7\%
18.5\%	69.1	68.1	-1.0	-1.4\%
19.8\%	68.9	67.9	-1.0	-1.4\%
21.0\%	68.7	67.7	-1.1	-1.5\%
22.2\%	68.6	67.5	-1.1	-1.6\%
23.5\%	68.2	67.4	-0.8	-1.2\%
24.7\%	68.2	67.4	-0.8	-1.2\%
25.9\%	68.1	67.2	-0.8	-1.2\%
27.2\%	68.1	67.0	-1.1	-1.6\%
28.4\%	67.9	66.8	-1.1	-1.6\%
29.6\%	67.6	66.7	-0.8	-1.2\%
30.9\%	67.3	66.7	-0.6	-1.0\%
32.1\%	67.3	66.6	-0.7	
33.3\%	67.2	66.6	-0.6	-0.9\%
34.6\%	67.2	${ }_{66.3}$	-0.9	-1.3\%
35.8\%	67.0	${ }^{66.3}$	-0.7	-1.1\%
37.0\%	66.9	66.3	-0.6	-0.9\%
38.3\%	66.7	65.9	-0.8	-1.2\%
39.5\%	66.6	65.8	-0.8	-1.3\%
40.7\%	66.6	${ }^{65.6}$	-1.0	-1.4\%
42.0\%	66.6	${ }^{65.6}$	-0.9	-1.4\%
- 43.2%	66.5	65.6	-0.9	-1.4\%
${ }^{44.40 \%}$	66.5	65.6	-0.9	-1.4\%
${ }^{45.79 \%}$	${ }_{66.3}^{66.3}$	65.5 65.5	-0.8 -0.8	-1.2\%
48.1\%	66.3	65.4	-0.9	-1.4\%
49.4\%	65.9	65.3	-0.6	-0.9\%
50.6\%	65.8	65.2	-0.6	-0.8\%
51.9\%	65.5	65.1	-0.4	-0.7\%
53.1\%	65.5	65.0	-0.5	-0.8\%
54.3\%	65.5	65.0	-0.5	-0.8\%
55.6\%	65.3	64.9	-0.3	-0.5\%
56.8\%	65.2	64.8	-0.4	-0.7\%
58.0\%	65.2	64.7	-0.6	-0.9\%
59.3\%	65.2	64.6	-0.6	-1.0\%
	65.2	64.6	-0.6	-0.9\%
${ }^{61.77 \%}$	65.1	64.5	-0.7	-1.0\%
63.0\%	65.1 644	64.4 64.4	-0.6	-1.0\%
${ }^{64.2 \%}$	64.4	64.4	0.0	0.0\%
65.4\%	64.3	64.3	0.0	0.1\%
66.7\%	64.2	64.3	0.1	0.2\%
67.9\%	64.1	64.1	0.0	0.0\%
69.1\% 70.4%	64.1	64.1	0.0	0.0\%
70.4\%	64.0	64.0	0.1	0.1\%
71.2\%\%	${ }_{63.7}^{63.9}$	${ }_{63.6}^{63.9}$	${ }_{-0.1}^{0.0}$	-0.1\%
74.1\%	63.5	63.6	0.1	0.1\%
75.3\%	63.5	63.6	0.1	0.1\%
76.5\%	63.5	63.4	0.0	-0.1\%
77.8\%	${ }^{63.4}$	${ }^{63.3}$	-0.1	-0.1\%
79.0\%	${ }^{63.3}$	${ }^{63.3}$	0.0	0.0\%
80.2\%	63.1	63.2	0.1	0.1\%
81.5\%	63.0	63.2	0.1	0.2\%
88.9\%	63.0 62.9	${ }_{63.0}^{63.1}$	${ }_{0}^{0.1}$	- 0.2%
85.2\%	62.8	63.0	0.1	0.2\%
86.4\%	${ }_{6} 62.7$	${ }_{6}^{62.9}$	0.2	0.3\%
888.9\%	62.7	62.7	0.0	0.1\%
${ }^{88.99 \%}$	62.6 626	62.6 62.6	0.0	0.1\%
901.1\%	62.6 624	62.6 62.4	0.0	0.0\%
92.6\%	62.4	62.3	-0.1	-0.2\%
93.8\%	62.1	62.0	-0.2	-0.3\%
95.1\%	${ }_{6} 6.1$	${ }^{62.0}$	-0.1	-0.2\%
96.3\%	62.0	61.7	-0.2	-0.4\%
${ }_{98,5 \%}^{97.5 \%}$	61.6	61.5	-0.1	-0.2\%
- 10.00%	${ }_{61.6}$	${ }_{61.5}^{61.5}$	-0.1	-0.0.0\%

Table SQ10-1b
American River at watill venueve. Wonthyly Temperature

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	June to September			
	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Projet	Absolute	
	Monthly Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
0.0\%	744	745	0.1	0.10
1.2\%	${ }_{73.4}$	${ }_{71.8}$	${ }_{-1.6}$	${ }_{-2.2 \%}$
2.5\%	71.9	71.0	-0.9	-1.3\%
3.7\%	71.9	70.8	-1.1	-1.5\%
4.9\%	71.2	70.4	-0.8	-1.1\%
6.2\%	71.2	69.8	-1.4	-1.9\%
7.4\%	70.9	69.7	-1.2	-1.7\%
8.6\%	70.8	69.6	-1.2	-1.7\%
9.9\%	70.6	69.5	-1.1	-1.6\%
11.1\%	70.5	69.2	-1.4	-1.9\%
12.3% 13.6%	70.2 70.1	69.9 68.9	-1.22	-1.7\%\%
14.8\%	70.0	68.5	${ }_{-1.5}$	${ }^{-2.2 \%}$
16.0\%	69.6	68.4	-1.2	-1.7\%
17.3\%	69.5	68.3	-1.3	-1.8\%
18.5\%	69.3	68.3	-1.1	-1.6\%
19.8\%	69.1	68.2	-0.9	-1.3\%
21.0\%	69.1	68.2	-0.8	-1.2\%
22.2\%	69.0	67.7	-1.3	-1.8\%
23.5\%	68.9	67.4	-1.5	-2.2\%
24.7\%	68.1	67.2	-0.8	-1.2\%
${ }^{25.9 \%}$	67.9 67.8	67.2 67.1	-0.7 -0.8	-1.1.0\%
28.4\%	67.6	67.1	-0.5	-0.8\%
29.6\%	67.6	66.9	-0.7	-1.0\%
30.9\%	67.5	66.9	-0.7	-1.0\%
32.1\%	67.4	66.8	-0.6	-0.9\%
33.3\%	67.2	66.8	-0.3	-0.5\%
34.6\%	${ }_{66.9}$	${ }_{66.4}^{66.4}$	-0.5	-0.8\%
35.8\%	66.9	66.4	-0.5	-0.8\%
37.0\%	66.8	66.3	-0.5	-0.8\%
38.3\%	66.8	66.2	-0.6	-0.9\%
39.5\% 40.7%	66.4 66.4	66.0 65.7	-0.4 -0.7	-0.0\% ${ }_{-1.1 \%}$
40.70\%	${ }_{66.4}^{66.4}$	${ }_{654}^{65.7}$		
${ }^{43.2 \%}$	${ }_{66.1}^{66.3}$	${ }_{65.4}^{65.4}$	-0.9	${ }_{-1.2 \%}^{-1.4 \%}$
44.4\%	66.0	65.2	-0.7	-1.1\%
45.7\%	65.9	65.2	-0.7	-1.1\%
46.9\%	65.8	65.1	-0.7	-1.1\%
48.1\%	${ }_{65.8}$	65.1	-0.7	-1.1\%
49.4\%	65.8	65.1	-0.7	-1.0\%
50.6\%	65.4	64.9	-0.5	-0.8\%
51.9\%	65.3	64.8	-0.5	-0.8\%
	65.2 65.2	64.8 64.7	-0.5 -0.5	-0.0.7\%
55.6\%	65.2	64.7	-0.5	-0.7\%
56.8\%	65.1	64.7	-0.5	-0.7\%
58.0\%	65.1	64.6	-0.5	-0.8\%
59.3\%	65.0	64.6	-0.5	-0.7\%
60.5\%	65.0	64.4	-0.6	-0.9\%
61.7\%	64.9	64.3	-0.6	-0.9\%
63.0\%	64.8	64.0	-0.8	-1.2\%
64.2\%	64.7	64.0	-0.7	-1.1\%
${ }^{654.4 \%}$	64.6	64.0	-0.6	-0.9\%
${ }^{66.77 \%}$	64.6	63.9	-0.6	-1.0\%
67.9\%	64.6	63.9	-0.7	-1.1\%
69.19\%	64.5 64.4	${ }_{63.8}^{636}$	-0.7	-1.12\%
70.4\%	64.4	${ }_{63.6}^{635}$	-0.8	-1.2\%
71.6\%	64.4	${ }_{63.5}^{63.5}$	-0.9	-1.3\%
72.8\%	64.4	${ }^{63.5}$	-0.9	-1.4\%
74.1\%	64.4	63.5	-0.9	-1.3\%
75.3\%	64.3	63.5	-0.9	-1.3\%
76.5\%	64.2	63.4	-0.8	-1.2\%
77.8\%	63.8 6.8	63.4 633	-0.4	-0.6\%
80.2\%	${ }_{63.8}^{63.8}$	${ }_{63.3}^{63.3}$	-0.4	${ }_{\text {- }}$
81.5\%	63.7	63.3	-0.5	-0.7\%
82.7\%	63.7	63.2	-0.5	-0.8\%
84.0\%	63.4	63.2	-0.2	-0.4\%
85.2\%	${ }^{63.2}$	${ }_{6}^{63.0}$	-0.2	-0.4\%
86.4\%	62.8	62.7	-0.1	-0.2\%
87.7\%	62.6	62.7	0.15	0.2\%
88.9\%	62.6	${ }_{62.0}$	-0.5	-0.9\%
90.1\%	62.5	62.0	-0.5	-0.9\%
91.4\%	62.5	62.0	-0.5	-0.9\%
${ }_{93.8 \%}^{92.6 \%}$	62.4 62.4	61.8 61.8	-0.6 -0.6	${ }_{\text {- }}^{-0.0 \% \%}$
95.1\%	61.8	61.6	-0.2	-0.4\%
96.3\%	61.6	61.3	-0.3	-0.5\%
97.5\%	${ }_{61.6}$	60.7	-0.8	-1.3\%
98.8\%\%	61.4	60.7	-0.7	${ }^{-1.11 \%}$
100.0\%	61.1	60.4	-0.7	-1.1\%

American River aigure SQ11-1b
American River at the Mouth, Monthly Temperature

Table SQ11-1b er at the Mouth, Monthy Temperature

October				
Percent Exceedance	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project		Relative
Probability	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGF } \end{aligned}$	Difference (\%)
0.0\%	66.8	66.7	-0.2	-0.2\%
1.2\%	66.7	66.5	-0.2	S3
2.5\%	66.6	65.5	-1.1	-1.6\%
3.7\%	66.3	65.5	-0.8	-1.2\%
4.9\%	65.5	65.5	0.0	0.0\%
6.2\%	65.5	65.4	-0.1	-0.1\%
7.4\%	65.1	65.2	0.1	0.2\%
8.6\%	65.0	65.1	0.1	0.2\%
9.9\%	64.9	65.0	0.1	0.2\%
11.19\%	64.7	64.8	0.1	0.2\%
12.3\%	64.5 64.5	64.7 64.6	0.2	-
14.8\%	64.5	64.4	0.0	0.0\%
16.0\%	64.1	64.3	0.2	0.2\%
17.3\%	63.2	63.9	0.7	1.1\%
18.5\%	63.2	63.3	0.1	0.2\%
19.8\%	63.1	63.3	0.1	0.2\%
21.0\%	62.9	62.9	0.0	0.0\%
22.2\%	${ }^{62.8}$	62.9	0.1	0.1\%
23.5\%	62.7 626	${ }_{62.8}^{62.8}$	0.2	0.3\%
24.9\%\%	62.6 62.4	62.7 62.6	${ }_{0}^{0.1}$	0.4\%
27.2\%	62.3	62.5	0.2	0.3\%
28.4\%	62.2	62.4	0.1	0.2\%
29.6\%	62.2	62.3	0.1	0.2\%
30.9\%	${ }_{62}^{62.2}$	${ }_{62.2}^{62.2}$	0.0	${ }^{0.19 \%}$
32.1\%	62.2	62.2	0.0	0.1\%
33.3\%	62.2	62.1	-0.1	-0.1\%
34.6\%	62.0	62.1	0.1	0.1\%
35.8\%	61.9	${ }^{62.0}$	0.1	0.2\%
37.0% 38.3%	61.9 61.9	62.0 62.0	0.0 0.0	${ }_{0}^{0.1 \%}$
39.5\%	61.9	61.9	0.1	0.1\%
40.7\%	61.8	61.9	0.1	0.1\%
42.0\%	61.8	61.9	0.1	0.1\%
43.2\%	61.8	61.9	0.1	
${ }^{44.4 \%}$	${ }_{61.6}^{61.6}$	61.8 61.8	${ }_{0}^{0.2}$	0.3\%
46.9\%	61.6	61.8	0.2	0.3\%
48.1\%	61.6	61.8	0.2	0.3\%
49.4\%	61.5	61.7	0.2	0.3\%
50.6\%	61.5	61.6	0.1	0.2\%
51.9\%	61.4	61.6	0.1	0.2\%
53.12\% 54.3%	61.2 61.1	61.4 61.3	0.2 0.1	-0.3\% 0
55.6\%	61.0	60.8	-0.2	-0.3\%
56.8\%	60.8	60.7	-0.1	-0.2\%
58.0\%	60.6	60.7	0.1	0.2\%
59.3\%	60.5	${ }^{60.4}$	-0.1	-0.1\%
60.5\%	60.5	${ }_{60.3}^{60.3}$	-0.2	-0.3\%
${ }^{61.7 \%}$	60.4	60.2	-0.2	-0.3\%
63.0\%	60.4	60.1	-0.3	-0.5\%
64.20% 6.40	60.1	60.1	-0.1	-0.1\%
${ }^{65.4 \%}$	60.1 60.1	60.0 59.8	-0.1	-0.4\%
67.9\%	60.0	59.6	-0.4	-0.6\%
69.1\%	59.8	59.6	-0.2	-0.3\%
70.4\%	59.8	59.6	-0.2	-0.4\%
71.6\%	59.7	59.5	-0.2	-0.4\%
72.8\%	59.6 59.6	59.5 59.4	-0.2 -0.0	-0.0.3\%
75.3\%	59.6	${ }_{59.3}^{59.4}$	-0.3	-0.4\%
76.5\%	59.6	59.3	-0.3	-0.5\%
77.8\%	59.5	59.3	-0.2	-0.4\%
79.0\%	59.3	59.3	-0.1	-0.1\%
80.2\%	59.3	59.2	-0.1	-0.1\%
- ${ }_{81.5 \%}$	59.0 58.9	59.1 59.1	${ }_{0}^{0.1}$	${ }_{0}^{0.3 \% \%}$
84.0\%	58.8	59.0	0.1	0.2\%
85.2\%	58.8	58.8	0.0	0.1\%
86.4\%	58.8	$\stackrel{58.8}{598}$	0.0	0.1\%
87.7\%	58.7	58.8	0.0	0.1\%
88.9\%	58.5	58.8	${ }^{0.3}$	0.4\%
90.11\%	58.5	58.7	0.2	0.4\%
${ }_{9}^{91.4 \% \%}$	58.4 58.4	58.7 58.7	0.3 0.3	0.6\%
93.8\%	58.1	58.3	0.1	0.3\%
95.19\%	57.8	58.1	0.4	0.7\%
96.5\%	57.6 57.5	58.0 57.6	0.4 0.1	${ }_{0}^{0.7 \%}$
98.8\%	57.5	57.2	-0.3	-0.5\%
100.0\%	57.5	57.2	0.0	-0.5\%

		January		
Percent Exceedance	$\underbrace{\text { Proiect }}_{\text {DCR } 2015 \text { Wethout }}$	DCR 2015 With Project		
Probability	Monthy Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
0.0\%	49.8	49.6	. 0.2	-0.5\%
1.2\%	49.4	49.5	0.0	0.1\%
2.5\%	49.4	49.4	0.0	0.0\%
3.7\%	49.2	49.3	0.1	0.2\%
4.9\%	49.1	49.1	0.0	0.0\%
6.2\%	48.8	48.9	0.1	0.3\%
7.4\%	48.4	48.9	0.5	1.0\%
8.6\%	48.3	48.5	0.2	0,
9.9\%	48.2	48.4	0.1	0.3\%
11.1\%	48.1	48.3	0.2	0.5\%
12.3\%	48.1	48.2	0.1	0.2\%
13.6\%	48.1	48.2	0.1	0.2\%
14.8\%	48.1	48.1	0.1	0.2\%
16.0\%	47.9	48.1	0.2	0.4\%
17.3\%	47.8	48.1	0.2	0.5\%
18.5\%	47.8	48.0	0.2	0.4\%
19.8\%	47.8	47.9	0.1	0.3\%
21.0\%	47.8	47.9	0.1	0.2\%
22.2\%	47.7	47.9	0.1	0.3\%
23.5\%	47.7	47.9	0.1	0.3\%
24.7\%		47.8	0.1	0.2\%
25.9\%	47.6	47.8	0.2	0.4\%
27.2\%	47.6	47.8	0.2	0.3\%
28.4\%	47.6	47.6	0.1	0.1\%
29.6\%	47.4	47.6	0.2	0.4\%
30.9\%	47.4	47.6	0.1	0.3\%
32.1\%	47.3	47.5	0.2	0.4\%
33.3\%	47.2	47.5	0.3	0.6\%
34.6\%	47.2	47.4	0.2	0.5\%
35.9\%	47.1	47.4	0.3	0.7\%
37.0\%	47.0	47.3	0.3	0.5\%
- 38.3%	47.0	47.3	0.3	0.6\%
39.5\%	47.0	47.3	0.3	0.6\%
40.7\%	47.0	47.0	0.1	0.1\%
42.0\%	47.0	47.0	${ }^{0.1}$	${ }^{0.19 \%}$
43.2\%	46.9	47.0	0.1	0.3\%
44.4\%	46.9	47.0	0.2	0.3\%
45.7\%	46.8	47.0	0.2	0.4\%
46.9\%	46.8	46.9	0.1	0.3\%
48.1\%	46.8	46.9	0.1	0.3\%
49.4\%	46.8	46.8	0.0	0.1\%
50.6\%	46.5	46.8	0.3	0.6\%
51.9\%	46.5	46.6	0.1	0.3\%
53.19\%	46.5	46.6	0.1	0.3\%
54.3\%	46.4	46.6	0.1	0.3\%
55.6\%	46.4	46.6	0.1	0.3\%
56.8\%	46.4	46.5	0.1	0.2\%
58.0\%	46.4	46.5	0.1	0.2\%
59.3\%	46.3	46.5	0.2	0.4\%
60.5\%	46.3	46.5	0.2	0.4\%
61.7\%	46.2	46.4	0.2	0.4\%
63.0\%	46.2	46.3	0.1	0.3\%
64.2% 65.4%	46.2	46.3	0.1	0.3\%
${ }_{6}^{65.4 \%}$	46.1	46.3	0.2	0.4\%
${ }^{66.77 \%}$	46.1	46.3	0.2	0.4\%
67.9\%	46.1	46.3	0.2	0.4\%
69.1\%	46.1	46.3	0.2	0.4\%
70.4\%	46.1	46.2	0.1	0.2\%
71.6\%	46.0	46.1	0.1	0.2\%
728\%	45.8	46.1	0.3	0.6\%
74.19\%	45.8	45.9	0.1	0.2\%
7.35 765%	45.5	45.9	0.4	0.8\%
74.5% 77.8% 78.8	45.4	45.7	0.3	0.6\%
77.9\%	45.4	45.7	0.3	0.7\%
79.0\% 880.2%	45.4 45.4	45.6 45.6	${ }_{0}^{0.2}$	${ }_{\text {o }}^{0.5 \%}$
81.5\%	45.3	45.5	0.2	0.5\%
82.7\%	45.2	45.5		0.7\%
84.0\%	45.2	45.3	0.2	0.4\%
85.2\%	45.1	45.3	0.2	0.3\%
86.4\%	45.1	45.3	0.2	0.4\%
87.7\%	44.9	45.2	0.3	0.6\%
88.9\%	44.7	45.0	0.3	0.6\%
90.1\%	44.6	44.5	-0.1	-0.3\%
91.4\%	44.5	44.2	-0.3	-0.6\%
-92.6\% ${ }_{\text {93.8\% }}$	44.4	44.0	-0.4	-0.8\%
93.8\%	44.1	44.0	-0.1	-0.2\%
95.19\% ${ }_{\text {96.3\% }}$	43.9	43.8	-0.1	-0.3\%
${ }_{\text {97.5\% }}^{96.3 \%}$	${ }^{43.8}$	43.7	-0.1	${ }^{-0.2 \%}$
97.5\% ${ }_{\text {98.8\% }}$	43.6	43.0	-0.6	1.4\%
98.8\%	43.0	42.4	0.6	1.5\%
100.0\%	43.0	42.4	-0.6	-1.5\%

Table SQ11-1b Sat the Mouth, Monthy Temperatur

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	February			
	DCR 2015 Without Proiect	DCR 2015 With Project	Absolute	Relative
	Monthy Temperature	Monthy Temperature	Difference (DEGF)	Difference (\%)
0.0\%	55.6	55.7	0.0	0.1\%
1.2\%	55.2	55.3	0.1	0.2\%
2.5\%	53.8	53.5	-0.3	-0.5\%
3.7\%	${ }_{5}^{53.1}$	53.4	0.3	0.5\%
4.9\%	51.3 509	${ }_{511}^{51.6}$	${ }_{0}^{0.3}$	0.7\%
${ }^{6.2 \%}$	50.9	51.1	0.2	0.4\%
7.4\%	50.8	51.0	0.3	0.5\%
8.6\%	50.8 507 507	50.8 507 50.	0.1	-0.2\%
11.1\%	50.2	50.2	0.0	0.0\%
12.3\%	50.2	50.2	0.0	0.1\%
13.6\%	50.2	50.2	0.0	0.1\%
14.8\%	50.1	50.1	0.0	0.1\%
16.0\%	50.0	50.1	0.1	0.1\%
17.3\%	50.0	50.0	0.0	0.0\%
19.8\%	49.7	49.8	0.1	0.2\%
21.0\%	49.7	49.8	0.0	0.1\%
22.2\%	49.7	49.7	0.0	0.0\%
23.5\%	49.6	49.5	-0.1	-0.3\%
24.7\%	49.3	49.4	0.2	0.3\%
25.9\%	49.2	49.4	0.2	0.4\%
27.2\%	49.0	49.2	0.1	0.3\%
28.4\%	49.0	49.1	0.1	0.2\%
29.6\%	48.9	49.1	0.2	0.4\%
30.9% 32.1%	48.6 48.6	${ }_{48.7}^{48.9}$	${ }_{0.1}^{0.2}$	0.5\% 0.2%
33.3\%	48.5	48.6	0.2	0.3\%
34.6\%	48.5	48.6	0.1	0.2\%
35.8\%	48.5	48.5	0.0	0.1\%
37.0\%	48.4	48.5	0.1	0.1\%
38.3\%	48.4	48.4	0.0	-0.1\%
39.5\%	48.3	48.3	0.0	0.0\%
40.7\%	48.2	48.2	0.1	0.1\%
42.0\%	48.1	48.2	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
${ }^{43.2 \%} 40.4 \%$	48.1 48.1	${ }_{48.1}^{48.2}$	0.1 0.1	${ }_{0}^{0.1 \%}$
45.7\%	48.0	48.0	0.1	0.1\%
46.9\%	48.0	48.0	0.0	0.1\%
48.1\%	47.9	48.0	0.1	0.1\%
49.4\%	47.8	48.0	${ }^{0.1}$	0.3\%
50.6\%	47.7	47.9	0.2	0.4\%
51.9\%	47.7	47.8	0.1	0.3\%
53.1\%	47.7	47.7	0.0	0.0\%
54.3\%	47.6	47.7	0.0	0.1\%
	47.6	47.7	0.1	${ }^{0.1 \%}$
58.0\%	47.4	47.4	0.0	0.0\%
59.3\%	47.3	47.3	0.0	0.0\%
60.5\%	47.3	47.3	0.0	0.0\%
${ }^{61.7 \%}$	47.2	47.3	0.1	0.1\%
63.0\%	47.2	47.2	0.0	0.0\%
${ }^{64.2 \%}$	47.1	${ }^{47.1}$	0.1	0.1\%
65.4\%	47.0	47.1	0.1	0.2\%
66.7\%	47.0	47.1	0.1	0.2\%
67.9\%	47.0	47.0	0.0	0.0\%
69.1\%	46.9	47.0	0.0	0.0\%
70.4\%	46.8	46.8	0.0	0.0\%
71.6\%	46.8	46.8	0.0	0.0\%
72.8\%	${ }_{46.7}^{46.7}$	${ }_{46.7}^{46.7}$	0.0 0.0	${ }_{\text {a }}^{0.0 \%}$
75.3\%	46.6	46.6	0.0	0.0\%
76.5\%	46.6	46.6	0.0	-0.1\%
77.8\%	46.5	46.5	0.0	0.0\%
79.0\%	46.5	46.5	0.0	0.0\%
80.2\%	46.5	46.5	0.0	0.1\%
81.5\%	46.4	46.5	0.1	0.1\%
82.7\%	46.4	46.4	0.0	0.0\%
84.0\%	46.2	46.3	0.0	0.0\%
${ }^{85.2 \%} 8$	46.2 46.1	46.2 46.1	0.0 0.0	${ }_{\text {a }}^{0.0 \%}$
${ }^{87.7 \%}$	46.0	46.0	0.0	-0.1\%
88.9\%	46.0	45.9	0.0	0.0\%
90.1\%	46.0	45.9	0.0	0.0\%
91.4\%	45.9	45.9	0.0	-0.1\%
92.6\%	45.9	45.7	-0.1	-0.3\%
93.8\%	45.7	45.5	-0.2	-0.5\%
95.1\%	45.6	45.5	-0.1	-0.3\%
96.3\%	45.5	45.3	-0.2	-0.5\%
97.5\%	45.2	${ }^{45.1}$	-0.1	-0.2\%
988.8\% 100.0\%	${ }_{45.1}^{45.1}$	${ }_{45.1}^{45.1}$	0.0 0.0	-0.0.1\%

Table SQ11-1b

June				
Percent Exceedance	DCR 2015 Without Proiet	DCR 2015 With Project	absolute	Relative
Probability	Monthly Temperature (DEGE)	Morthly Temperature (DEEFF)	(Ditec)	Difference (\%)
0.0\%	78.8	78.8	${ }^{0.1}$	-0.1\%
1.2\%	76.5	75.1	-1.5	
2.5\%	76.1	75.0	-1.1	-1.5\%
3.7\%	76.1	74.6	-1.5	-2.0\%
4.9\%	75.0	74.2	-0.9	-1.2\%
6.2\%	75.0	${ }^{73.5}$	-1.5	-2.1\%
7.4\%	74.8	73.4	-1.4	-1.8\%
8.6\%	74.1	73.0	-1.1	-1.5\%
9.9\%	${ }_{73.9}^{73.9}$	${ }^{2} 2.8$	-1.1	-1.4\%
11.1\%	${ }^{73.2}$	72.8	-0.4	-0.5\%
123\%	${ }^{73.1}$	${ }^{72.3}$	-0.8	-1.2\%
13.6% 14.8%	72.9 71.9	72.1 72.0	-0.9 0.1	${ }^{-1.2 \%} 0$
16.0\%	71.6	71.6	0.0	0.0\%
17.3\%	71.2	71.3	0.1	0.2\%
18.5\%	71.0	77.0	0.0	0.0\%
19.8\%	71.0	70.9	-0.1	-0.1\%
21.0\%	70.6	70.6	0.0	0.0\%
22.2\%	70.6	70.6	0.0	0.1\%
23.5\%	70.5	70.2	-0.4	-0.5\%
24.7\%	70.1	${ }^{70.0}$	-0.1	-0.2\%
25.9\%	70.1 70.0	69.9 69.8	-0.2 -0.2	- ${ }^{-0.3 \% \%}$
28.4\%	69.8	69.5	-0.3	-0.4\%
29.6\%	69.7	69.5	-0.2	-0.3\%
30.9\%	69.6	69.3	-0.3	-0.4\%
32.1\%	69.4	69.2	-0.2	-0.3\%
33.3\%	69.3	69.1	-0.2	-0.3\%
34.6\%	69.2	69.1	-0.2	-0.2\%
35.8\%	69.2	68.5	-0.6	-0.9\%
37.0\%	68.9 68.9	${ }_{68.4}^{68.4}$	-0.4	-0.6\%
38.3\% ${ }^{38.5 \%}$	68.6 68.6	${ }_{68.3}^{68.4}$	-0.2 -0.2	-0.3\%
40.7\%	68.5	68.1	-0.4	-0.6\%
42.0\%	68.4	67.8	-0.6	-0.8\%
43.20\%	68.	67.8	-0.5	-0.7\%
44.4\%	68.1	67.7	-0.4	${ }^{-0.5 \%}$
${ }^{45.79 \%}$	${ }_{6}^{67.5}$	67.6 67.4	-0.1 -0.2	${ }^{-0.2 \%}$
48.1\%	67.4	67.3	-0.1	-0.2\%
49.4\%	67.4	67.1	-0.3	-0.4\%
50.6\%	67.3	67.1	-0.2	-0.3\%
51.9\%	67.1	67.1	0.0	0.0\%
53.1\%	67.1	66.9	-0.2	-0.2\%
54.3\%	66.8	66.7	0.0	-0.1\%
55.6\%	66.8	${ }_{66.6}^{66.6}$	-0.2	-0.3\%
56.8\%	66.8	66.2	-0.5	-0.8\%
58.0\%	${ }_{665}^{66.7}$	66.1 655	-0.6	${ }^{-0.9 \%}$
59.3\%	65.5 653	${ }_{651}^{65.5}$	0.0	0.0\%\%
${ }_{6} 6.17 \%$	65.1	65.0	0.0	0.0\%
63.0\%	65.0	65.0	0.0	-0.1\%
${ }^{64.2 \%}$	64.9	64.9	0.0	0.0\%
65.4\%	64.9	64.9	0.0	0.0\%
66.7\%	64.8	64.8	-0.1	-0.1\%
${ }^{67.9 \%}$	64.8	64.6	-0.1	${ }^{-0.2 \%}$
69.19\%	${ }^{64.6}$	${ }_{64.6}$	0.0	0.0\%
70.4\%	${ }_{64.6}^{64}$	${ }_{64.6}^{64}$	0.0	0.0\%
71.2.6\%	64.2 64.2	${ }_{64.2}^{64.3}$	${ }_{0.0}^{0.0}$	${ }_{0}^{0.00 \%}$
74.1\%	64.2	64.2	0.0	0.0\%
75.3\%	64.2	64.0	-0.1	-0.2\%
76.5\%	64.0	64.0	-0.1	-0.1\%
77.8\%	64.0	63.8	-0.2	-0.3\%
79.0\%	63.8	63.6	-0.2	${ }^{-0.3 \%}$
${ }^{80.2 \%}$	63.6	63.6	0.0	-0.1\%
882.7\%	63.4 63.2	${ }_{63.2}^{63.4}$	0.0 0.0	${ }_{\text {com }}^{0.00 \%}$
84.0\%	${ }_{63.2}$	${ }_{63.2}$	0.0	0.0\%
85.2\%	62.9	62.9	0.0	0.0\%
86.4\%	62.3	62.3	0.0	0.0\%
87.7\%	62.1	62.1	0.0	0.0\%
88.9\%	62.0	61.9	-0.1	-0.2\%
90.1\%	61.9	61.8	-0.1	-0.1\%
91.4\%	61.8	61.7	-0.2	-0.2\%
${ }_{93.8 \%}^{92.6 \%}$	61.8 61.8	${ }_{61.6}^{61.6}$	-0.2 -0.2	-
95.1\%	59.7	59.5	-0.2	-0.4\%
96.3\%	59.7 595 9.5	59.5 59.4	-0.2	-0.3\%
97.5\%	59.5	59.4	-0.1	-0.2\%
98.8\%	59.4 59.4	59.22	-0.1	${ }^{-0.2 \%}$

		September		
Percent Exceedance	$\xrightarrow{\text { DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project		
Probability	Monthly Temperature	Monthly Temperature	Difference (DEGF)	diference
(\%)	(DEEG)	(DEGF)		
0.0\%	75.9	75.8	-0.1	-0.1\%
1.2\%	74.9	${ }^{73.2}$	1.7	-2.2\%
2.5\%	74.6	${ }^{72.5}$	-2.1	-2.8\%
3.7\%	74.6	72.5	-2.1	-2.8\%
4.9\%	73.2	72.0	-1.1	-1.5\%
6.2\%	73.1	72.0	-1.1	-1.5\%
7.4\%	72.9	71.9	-1.0	-1.4\%
8.6\%	72.9	71.8	-1.1	-1.5\%
9.9\%	72.6	71.5	-1.1	-1.5\%
11.1\%	72.4	71.2	-1.3	-1.7\%
12.3\%	72.4	71.0	1.4	-2.0\%
13.6\%	72.2	70.9	-1.3	-1.8\%
14.8\%	71.9	70.7	-1.2	-1.7\%
16.0\%	71.7	70.5	-1.2	-1.7\%
17.3\%	71.5	70.4	-1.0	-1.5\%
18.5\%	71.4	70.1	-1.3	-1.9\%
19.8\%	71.3	69.7	-1.6	-2.3\%
21.0\%	70.8	69.6	-1.3	-1.8\%
22.2\%	70.3	69.5	-0.8	-1.1\%
23.5\%	70.3	69.5	-0.8	-1.1\%
24.7\%	70.3	69.4	-0.9	-1.2\%
25.9\%	70.2	69.2	-1.0	-1.4\%
27.2\%	69.8	68.8	-1.0	-1.5\%
28.4\%	69.8	68.7	-1.1	-1.5\%
29.6\%	69.6	68.7	-0.9	-1.3\%
30.9\%	69.3	68.5	-0.7	-1.0\%
32.1\%	69.1	68.4	-0.7	-1.0\%
33.3\%	69.0	68.3	-0.7	-1.0\%
34.6\%	68.9	68.1	-0.8	-1.2\%
35.8\%	68.8	67.9	-0.9	-1.3\%
37.0\%	68.8	67.9	-0.9	-1.2\%
38.3\%	${ }^{68.6}$	67.6	-1.0	
39.5\%	68.4	67.6	-0.9	-1.3\%
40.7\%	68.4	67.6	-0.9	-1.3\%
42.0\%	68.4	67.5	-0.8	-1.2\%
43.2\%	68.2	67.5	-0.7	-1.0\%
44.4\%	68.1	67.5	-0.6	-0.9\%
45.7\%	68.0	67.4	-0.7	-1.0\%
46.9\%	67.9	67.3	-0.7	-1.0\%
48.1\%	67.8	67.2	-0.6	-0.9\%
49.4\%	67.7	67.1	-0.7	-1.0\%
50.6\%	67.7	67.1	-0.6	-0.9\%
51.9\%	67.6	66.9	-0.7	-1.0\%
53.19\%	67.6	66.9	-0.7	-1.0\%
54.3\%	67.5	66.8	-0.8	-1.1\%
55.6\%	67.2	${ }_{66.7}^{66.7}$	-0.5	-0.7\%
56.8\%	67.2	${ }_{66.7}$	-0.5	-0.7\%
58.0\%	67.2	66.7	-0.5	-0.7\%
59.3\%	66.8	66.6	-0.1	-0.2\%
60.5\%	66.8	66.6	-0.1	-0.2\%
61.7\% 63.0%	66.6	66.5	-0.1	-0.1\%
- $\begin{aligned} & 63.0 \% \\ & 64.2 \%\end{aligned}$	66.1	66.5	0.3	0.5\%
	66.1	66.2	0.1	0.1\%
${ }^{65.4 \%}$	66.0	66.1	0.1	0.1\%
${ }^{66.77 \%}$	66.0	66.0	0.1	0.1\%
67.9\%	66.0	66.0	0.1	0.1\%
69.1\%	65.8	65.9	0.1	0.1\%
70.4\%	65.3	65.9	0.6	0.9\%
71.6\%	65.2	65.9	0.6	1.0\%
72.8\%	65.2	65.5	0.3	0.5\%
74.1\%	65.1	65.4	0.2	0.3\%
75.3\%	65.0	${ }^{65.2}$	0.2	0.3\%
76.5% 778%	64.9	65.0	0.0	0.0\%
77.8\%	64.8	64.8	0.1	0.1\%
-79.0\%	64.7 64.6	64.8 64.7	${ }_{0.1}^{0.1}$	${ }_{0}^{0.2 \%}$
81.5\%	64.5	64.5	0.0	-0.1\%
82.7\%	64.5	64.5	0.0	-0.1\%
84.0\%	64.4	64.5	0.0	0.0\%
85.2\%	64.3	64.4	0.1	0.2\%
86.4\%	64.2	64.3	0.1	0.2\%
87.7\%	64.2	64.2	0.0	0.0\%
88.9\%	64.2	64.2	0.0	0.0\%
90.1\%	64.1	64.2	0.1	0.1\%
${ }^{91.49}$	63.8	64.1	0.3	0.5\%
- ${ }_{\text {93, }}^{\text {92.6\% }}$	63.8	64.0	0.2	0.4\%
93.8\%	63.3	64.0	0.6	1.0\%
95.19\%	63.2 6.1	63.4	0.2	0.3\%
${ }^{96.3 \%} 9$	63.1	63.1	0.1	0.1\%
97.5\% ${ }_{\text {98.8\% }}$	63.0	62.9	-0.2	-0.3\%
98.8\%	62.9	62.8	0.0	0.1\%
100.0\%	62.9	62.8	0.0	-0.1\%

Table SQ11-1b

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	June to September			
	DCR 2015 Without	DCR 2015 With Project	Absolute	
	Monthly Temperature	Monthly Temperature	(iflerence	Difference (\%)
	(DEGF)	(ebar)		
0.0\%	78.3	78.4	0.1	0.1\%
1.2\%	77.2	75.4	-1.9	-2.4\%
2.5\%	75.4	74.5	-0.9	-1.2\%
3.7\%	75.0	74.1	-0.9	1.2\%
4.9\%	74.6	${ }^{73.9}$	-0.7	-1.0\%
6.2\%	74.3	${ }^{73.1}$	-1.2	-1.6\%
7.4\%	74.0	72.7	-1.3	
8.6\%	73.8	72.7	-1.1	-1.5\%
9.9\%	73.6	72.6	-1.0	-1.4\%
11.1\%	${ }^{73.5}$	${ }^{72.3}$	-1.2	-1.7\%
12.3\%	${ }^{73.5}$	72.1	-1.4	-1.9\%
13.6\%	72.9	71.5	-1.3	-1.8\%
14.8\%	72.8	71.4	-1.4	-1.9\%
16.0\%	72.4	71.4	-1.0	-1.3\%
17.3\%	72.3	71.3	-1.0	-1.4\%
18.5\%	72.1	71.3	-0.8	-1.1\%
19.8\%	72.0	71.0	-1.0	${ }^{-1.4 \%}$
${ }^{22.00 \%}$	71.9	71.0 70.5	-0.9 -1.3	-1.3\% ${ }_{\text {-1.7\% }}$
23.5\%	71.6	70.0	-1.6	${ }^{-2.2 \%}$
24.7\%	70.7	69.9	-0.8	-1.1\%
25.9\%	70.6	69.7	-0.9	-1.2\%
27.2\%	70.1	69.7	-0.4	-0.6\%
28.4\%	69.9	69.6	-0.3	-0.4\%
29.6\%	69.8	69.5	-0.3	-0.4\%
30.9\%	69.8	69.3	-0.4	-0.6\%
32.1\%	69.7	69.3	-0.4	-0.6\%
${ }^{33.3 \%}$	69.5	69.2	-0.3	-0.5\%
35.58\%	69.1 69.0	68.9 68.9	-0.1	-0.1\%
37.0\%	69.0	68.7	-0.3	-0.5\%
38.3\%	69.0	68.6	-0.4	-0.5\%
39.5\%	68.9	68.4	-0.5	-0.7\%
40.7\%	68.9	68.2	-0.7	-1.0\%
42.0\%	68.7 685	68.1	-0.6	-0.9\%
43.2\%	68.5	68.0	-0.6	-0.8\%
44.4\%	68.4	67.9	-0.6	-0.9\%
	${ }^{68.2}$	67.7	-0.5	-0.7\%
48.1\%	68.1	67.6	-0.6	-0.9\%
49.4\%	68.1	67.5	-0.5	-0.7\%
50.6\%	67.7	67.5	-0.2	-0.3\%
51.9\%	67.6	${ }_{67.4}^{673}$	-0.3	${ }^{-0.4 \%}$
55.1\%	67.6 675	67.3 673	-0.3	-0.4\%
54.3\%	67.5	67.3	-0.3	-0.4\%
55.6\%	67.5	67.2	-0.3	-0.4\%
${ }_{\text {55.8\% }}^{50.38}$	67.4	67.2	-0.2	-0.4\%
58.0\%	67.4	67.2	-0.2	-0.3\%
59.3\%	67.3	67.2	-0.1	-0.2\%
${ }^{60.5 \%}$	67.3	66.7	-0.6	-0.8\%
63.0\%	67.1	${ }_{66.5} 66$.	-0.6	-0.9\%
64.2\%	67.1	66.4	-0.6	-0.9\%
65.4\%	67.0	66.3	-0.7	-1.0\%
66.7\%	66.9	66.2	-0.7	-1.0\%
67.9\%	66.8	66.1	-0.7	-1.1\%
69.1\%	66.8	66.1	-0.8	-1.1\%
70.4\%	66.8	66.0	-0.8	-1.3\%
71.6\%	66.6	65.9	-0.7	-1.1\%
72.8\%	66.6	65.9	-0.7	-1.0\%
74.1\%	66.6	65.9	-0.7	-1.0\%
${ }^{75.3 \%}$	66.5	65.8	-0.7	-1.0\%
${ }^{76.5 \%}$	66.3	65.8	-0.5	-0.7\%
7.78\%	66.0	65.8	-0.2	-0.3\%
79.0\%	65.9	65.7	-0.2	-0.4\%
80.2\%	65.9	65.5 655	-0.4	${ }^{-0.6 \%}$
882.7\%	65.7 656	65.3 653	-0.4	-0.6\%
84.0\%	65.6	65.3	-0.3	0.5\%
85.2\%	65.5	65.2	-0.3	-0.5\%
86.4\%	64.9	65.0	0.1	0.2\%
87.7\%	64.8	64.8	0.1	0.1\%
88.9\%	64.7	64.3	-0.4	-0.6\%
90.1\%	64.6	64.2	-0.4	-0.7\%
91.4\%	64.5	64.1	-0.4	-0.7\%
92.6\%	64.5	64.1	-0.4	-0.6\%
93.8\%	64.5	63.9	-0.6	-0.9\%
95.1\%	63.9	63.8	-0.1	-0.1\%
96.3\%	63.5	63.5	0.0	${ }^{0.0 \%}$
97.5\%	63.4	62.7	-0.7	-1.1\%
98.8\%	${ }^{63.2}$	${ }^{62.6}$	-0.6	${ }^{-0.9 \%}$
100.0\%	62.7	62.1	-0.6	-1.0\%

	July to September		Proabaility of Exceedance		August to September				
				$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$					
Percent Exceedance	${ }^{\text {DCR } 2015 \text { Without }} \begin{aligned} & \text { Proiect }\end{aligned}$	DCR 2015 With Project			$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \\ (\%) \end{array} \\ \hline \end{gathered}$		DCR 2015 With Project Monthly Temperature (EGGF (DEGF)	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
Probability	Monthly Temperature (DEGF)	Monthly Temperature DEGF)							
0.0\%	781	78.	01	0.1\%	0.0\%	778			
	\%					76			.1.10
1.25\%	78.1	7.5	2.	退	1.2\%	7.6	74.6		
	76.1	74.9							
3.7\%	75.2	73.9	-1.3	-1.7\%	3.7\%	75.5	73.6	-19	
4.9\%	75.0	${ }^{73.8}$	-1.1	-1.5\%	4.9\%	75.1	73.2	1.9	
6.2\%	74.7	${ }^{73.6}$	-1.0	-1.4\%	6.2\%	74.6	73.0	1.6	
7.4\%	74.2	${ }^{73.5}$	-0.7	-0.9\%	7.4\%	74.6	${ }_{73.0}^{73}$	1.6	-2.1\%
8.6\%	74.1	${ }_{7}^{73.4}$	-0.6	-0.9\%	8.6\%	74.4	72.9	-1.5	-2.0\%
${ }^{\text {11.1\% }}$	${ }_{73.6}$	${ }_{72.4}$	-1.2	-1.6\%	11.1\%	${ }_{74.2}$	${ }_{72.4}$	${ }_{-1.8}$	-2.4\%
12.3\%	${ }^{73.3}$	72.2	-1.1	-1.5\%	12.3\%	74.1	${ }^{72.3}$	1.8	-2.4\%
13.6\%	73.3	71.7	-1.6	2.1\%	13.6\%	73.8	71.6	2.3	-3.19
14.8\%	73.1	71.7	-1.5	-2.0\%	14.8\%	73.4	71.3	2.1	-2.9\%
16.0\%	73.0	71.4	-1.7	-2.3\%	16.0\%	73.4	71.1	-2.3	
17.3\%	72.6	${ }^{71.3}$	-1.3	-1.8\%	17.3\%	72.7	71.0	-1.7	-2.3\%
18.5\%	72.5	71.1	-1.4	-1.9\%	18.5\%	72.2	70.8	-1.4	-1.9\%
19.8\%	72.4	71.0	-1.4	-2.0\%	19.8\%	${ }^{2} 2.1$	70.7	-1.4	-1.9\%
21.0\%	72.4	70.5	-1.8	-2.5\%	21.0\%	72.1	70.2	-1.9	-2.6\%
22.2\%	71.4	70.1	-1.2	-1.7\%	22.2\%	71.2	70.1	-1.1	-1.5\%
23.5\%	70.8	70.1	-0.7	-1.0\%	23.5\%	71.2	69.9	-1.2	-1.7\%
24.7\%	70.8	69.8	-1.0	-1.4\%	24.7\%	71.1	69.9	-1.2	-1.7\%
25.9\%	70.4	69.7	-0.7	-1.0\%	25.9\%	71.0	69.9	-1.2	-1.7\%
27.2\%	70.2	69.7	-0.5	-0.8\%	27.2\%	70.7	69.7	-1.0	-1.4\%
28.4\%	69.9	69.6	-0.3	-0.4\%	28.4\%	70.3	69.5	-0.7	-1.1\%
${ }^{29.6 \%}$	69.8	69.6	-0.2	-0.3\%	29.6\%	70.1	69.5	-0.6	-0.9\%
${ }^{30.9 \%}$	69.5	69.5	0.0	0.0\%	30.9\%		69.3		
32.1\%			-0.1	-0.1\%	${ }^{32.1 \%}$	69.7	69.2	0.5	
33.3\%	69.4	69.3	-0.2	-0.2\%		69.7	${ }_{698}^{69.0}$	0.6	${ }^{-0.9}$
334.8\%	69.4 69.2	${ }_{688}^{68.9}$	-0.5	-0.6\%	34.6\%	${ }_{695}^{69.5}$	68.8	-0.7	-1.0\%
37.0\%	69.1	68.8	-0.3	-0.5\%	37.0\%	69.4	68.7	-0.8	-1.1\%
38.3\%	69.1	68.8	-0.3	-0.5\%	38.3\%	69.4	68.7	-0.7	-1.0\%
39.5\%	69.0	68.5	-0.5	-0.7\%	39.5\%	69.3	68.7	-0.7	-1.0\%
40.7\%	69.0	68.3	-0.7	-1.0\%	40.7\%	69.3	68.4	-0.9	-1.3\%
42.0\%	68.8	68.2	-0.6	-0.8\%	42.0\%	69.2	68.3	-0.9	-1.3\%
43.2\%	68.8	67.8	-0.9	-1.4\%	43.2\%	68.8	68.3	0.5	-0.8\%
44.4\%	68.5	67.8	-0.7	-1.0\%	44.4\%	68.8	68.0	-0.8	-1.1\%
45.7\%	68.4	67.8	-0.6	-0.9\%	45.7\%	68.7	68.0	-0.7	
46.9\%	68.3	67.8	-0.6	-0.9\%	46.9\%	68.6	67.7	-1.0	-1.4\%
${ }^{48.1 \%}$	68.3 682	67.5 675	-0.8	${ }^{-1.12 \%}$	48.19\%	68.6	67.6 675	-1.0	-1.4\%
49.4\%	68.2	67.5	-0.7	-1.1\%	49.4\%	68.6	67.5	-1.0	-1.5\%
50.6\%	68.1	67.4	-0.7	-1.0\%	50.6\%	68.6	67.5	-1.1	-1.6\%
51.9\%	68.0	67.3	-0.7	-1.0\%	51.9\%	68.5	67.5	-1.1	-1.6\%
53.1\%	67.9	67.3	-0.6	-0.9\%	53.1\%	68.5	67.4	-1.0	-1.5\%
54.3\%	67.9	67.3	-0.6	-0.9\%	54.3\%	68.3	67.4	-0.8	-1.2\%
55.6\%	67.9	67.3	-0.6	-0.8\%	55.\%	68.1	67.4	-0.7	-1.1\%
${ }_{\text {5 56.8\% }}$	67.8	67.3	-0.5	-0.8\%	56.8\%	68.1	67.2	-0.9	-1.3\%
55.0\%		67.2	-0.7	-1.0\%	58.0\%	68.0	67.2	-0.8	-1.2\%
59.3\%	67.8	67.1	-0.8	-1.1\%		67.8	67.1	-0.6	-1.0\%
66.7\%	67.6	66.9	-0.8 -0.7	${ }_{-1.1 \%}$	${ }_{6}^{60.7 \%}$	${ }_{67.7}^{67.8}$	67.1 67.0	-0.6	-1.9\%
63.0\%	67.6	66.9	-0.7	-1.1\%	63.0\%	67.6	67.0	-0.6	-0.9\%
64.2\%	67.5	66.9	-0.6	-0.9\%	64.2\%	67.6	66.8	-0.8	-1.2\%
65.4\%	67.5	66.9	-0.6	-0.9\%	65.4\%	67.6	66.7	-0.8	-1.2\%
66.7\%	67.4	66.7	-0.7	-1.1\%	66.7\%	67.3	66.5	-0.8	-1.2\%
67.9\%	67.4	66.7	-0.7	-1.1\%	67.9\%	67.2	66.3	-0.8	-1.2\%
69.1\%	67.3	66.6	-0.7	-1.0\%	69.1\%	67.0	66.3	-0.7	-1.1\%
70.4\%	67.3	66.6	-0.7	-1.1\%	70.4\%	${ }_{667}^{67.0}$	66.2	-0.8	-1.1\%
71.6\%	67.3	66.5	-0.7	-1.10\%	${ }^{71.6 \%}$	66.7	66.1	${ }^{0.6}$	-0.9\%
72.8\%	67.1	66.5	-0.6	-0.9\%	72.8\%	${ }_{66.6}^{665}$	66.0	-0.6	-0.9\%
74.1\%	67.1	66.4	-0.6	${ }^{-0.9 \%}$	74.19\%	66.5	66.0	-0.6	-0.9\%
76.5\%	${ }_{66.9}^{67.0}$	66.4 66.4	-0.6	-0.9\%	76. 7.5	66.4 66.3	66.0 65.8	-0.5	-0.8\%
77.8\%	66.8	66.3	-0.4	-0.7\%		66.1	65.7	-0.4	-0.6\%
79.0\%	66.5	66.2	-0.3	-0.5\%	79.0\%	65.9	65.6	-0.3	-0.4\%
80.2\%	66.5	66.1	-0.4	-0.7\%	80.2\%	65.4	65.4	0.0	0.0\%
81.5\%	66.4	66.0	-0.3	-0.5\%	81.5\%	65.3	65.4	0.0	0.0\%
82.7\%	66.3	66.0	-0.4	-0.6\%	82.7\%	65.2	65.3	0.1	0.29
84.0\%	66.2	65.9	-0.2	-0.4\%	84.0\%	65.2	65.0	-0.2	-0.3\%
85.2\%	66.1	65.9	-0.2	-0.3\%	85.2\%	65.1	64.9	-0.2	-0.4\%
86.4\%	65.9	65.8	0.0	0.0\%	86.4\%	65.0	64.8	-0.2	-0.4\%
87.7\%	65.7	${ }_{65.6}^{65.6}$	-0.1	-0.1\%	87.7\%	64.6	64.7	0.1	0.2\%
88.9\%	65.6 655 5.5	65.4 650	-0.2	-0.3\%	88.9\%	64.5	64.7	0.2	0.2\%
${ }_{9}^{90.14 \%}$	${ }_{65.4}^{65.5}$	65.0	-0.5	-0.8\%	${ }^{90.19 \%}$	64.5	64.6	0.2	0.3\%
92.6\%	65.4	64.9	-0.5	-0.8\%	92.6\%	64.4	64.0	-0.4	-0.6\%
93.8\%	65.4	64.8	-0.5	-0.8\%	93.8\%	64.3	63.9	-0.4	-0.6\%
95.1\%	65.3	64.7	-0.6	-0.9\%	95.1\%	64.0	63.7	-0.3	-0.5\%
96.3\%	64.8	64.5	-0.3	-0.5\%	96.3\%	64.0	63.5	-0.4	-0.7\%
97.5\%	64.8	63.9	-0.9	1.4\%	97.5\%	63.9	63.4	-0.5	-0.7\%
98.8\%	${ }_{64.3}$	63.6	-0.7	${ }^{-1.12 \%}$	98.3\%	${ }^{63.9}$	${ }^{63.2}$	-0.7	-1.1\%
100.0\%	63.8	63.0	-0.8	1.2\%	100.0\%	63.3	62.9	-0.4	-0.7\%

Trinity River below Lewiston Dam, Monthly Temperature

October				
Percent Exceedance	$\underset{\substack{\text { DCR } 2015 \text { Wethout } \\ \text { Proet }}}{ }$	DCR 2015 With Projet	Absolut	
$\begin{aligned} & \text { Probability } \\ & \text { (\%) } \end{aligned}$	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEFGF) } \end{aligned}$	Difference (\%)
0.0\%	55.9	56.6	0.7	1.3\%
1.2\%	55.5	56.2	0.7	1.2\%
2.5\%	55.3	55.9	0.6	1.0\%
3.7\%	55.2	55.9	0.7	1.3\%
4.9\%	55.0	55.5	0.6	1.0\%
6.2\%	54.8	55.4	0.6	1.1\%
7.4\%	54.6	55.3	0.7	1.3\%
8.6\%	54.5	55.0	0.5	0.9\%
9.9\%	54.4	54.9	0.5	0.9\%
${ }^{11.119 \%}$	54.3 54.3	54.8 547	0.5 0.4	0.9\%
${ }^{12.36 \%}$	54.3 54.3	54.6	0.3	0.5\%
14.8\%	53.8	54.4	0.5	1.0\%
16.0\%	53.6	54.3	0.7	1.3\%
17.3\%	53.6	54.0	0.4	0.8\%
18.5\%	53.6	53.8	0.3	0.5\%
19.8\%	53.5	53.8	0.3	0.6\%
21.0\%	53.4	53.5	0.1	0.2\%
22.2\%	53.3	53.5	0.2	0.3\%
23.5\%	53.3	53.4	0.1	0.2\%
24.7\%	53.3	53.2	0.0	-0.1\%
25.9\%	53.2	53.2	0.0	-0.1\%
27.2\%	53.2 530 5.0	53.2 53.1	${ }^{0.0}$	0.0\%
${ }^{28.49 \%}$	53.0 52.9	53.1 52.9	0.1	${ }_{0.0 \%}^{0.2 \%}$
30.9\%	52.9	52.9	0.0	0.0\%
32.1\%	52.9	52.8	0.0	0.0\%
33.3\%	52.5	52.5	0.0	0.0\%
34.6\%	52.4	51.9	-0.4	-0.8\%
35.8\%	52.4	51.9	-0.5	-0.9\%
37.0\%	52.3	51.6	-0.7	-1.3\%
38.3\%	52.1	51.6	-0.5	-1.0\%
39.5\%		51.5	-0.5	-1.0\%
40.7\%	51.9	51.5	-0.4	-0.8\%
42.0\%	51.8	51.5	-0.3	-0.6\%
${ }^{43.20 \%}$	${ }_{51.7}$	51.5 515	-0.2	-0.5\%
44.4\%	51.6	51.5	-0.1	-0.2\%
45.7\%	51.5	51.5	-0.1	-0.2\%
46.9\%	51.5	51.2	-0.3	-0.5\%
48.1\%	51.4	51.1	-0.2	-0.4\%
49.4\%	${ }_{51.3}$	51.1	-0.2	-0.4\%
50.6\%	${ }_{51,3}$	51.0	-0.3	-0.6\%
${ }^{51.9 \%} 5$	51.3 51.0	51.0 50.9	-0.3 -0.1	-0.0.0\%
54.3\%	50.9	50.9	0.1	0.1\%
55.6\%	50.7	50.8	0.1	0.2\%
56.8\%	50.7	50.8	0.1	0.2\%
58.0\%	50.7	50.8	0.1	0.2\%
59.3\%	50.6	50.6	0.0	0.1\%
${ }^{60.5 \%}$	50.5	50.5	0.0	0.0\%
61.7\%	50.5	50.4	-0.1	-0.1\%
63.0\%	50.3	50.4	0.1	0.1\%
64.2\%	50.3	50.3	-0.1	-0.1\%
${ }^{65.4 \%}$	50.3	50.1	-0.2	-0.3\%
${ }^{66.79 \%}$	50.2	50.1	-0.1	${ }^{-0.2 \%}$
67.9\%				
69.19\%	50.0	50.1	${ }^{0.0}$	0.1\%
70.4\%	50.0	50.1	0.1	0.1\%
71.6% 72.8%	50.0 50.0	50.0 50.0	0.0	${ }_{0}^{0.1 \%}$
74.1\%	49.9	50.0	0.1	0.1\%
75.3\%	49.8	50.0	0.2	0.3\%
76.5\%	49.8	49.9	0.1	0.3\%
77.8\%	49.7	49.8	0.1	0.2\%
79.0\%	49.6	49.7	0.1	0.2\%
80.2\%	49.6	49.7	0.1	0.1\%
81.5\%	49.5	49.5	0.0	-0.1\%
82,7\%	49.5	49.5	0.0	0.0\%
84.0\%	49.5	49.4	0.0	0.0\%
85.2\%	49.4	49.3	-0.1	-0.2\%
86.4\%	49.3	49.2	-0.1	-0.2\%
87.7\%	49.2	49.2	0.0	0.0\%
88.9\%	49.0	48.9	-0.1	-0.2\%
90.1\%	48.8	48.8	0.0	0.1\%
91.4\%	48.7	48.7	0.0	0.1\%
- ${ }_{93.80 \%}^{92.6 \%}$	${ }_{48.6}^{48.7}$	48.6 48.5	-0.1 -0.1	- ${ }_{\text {- }}^{-0.3 \%}$
95.1\%	48.4	48.4	0.0	0.0\%
96.3\%	48.4	48.3	-0.1	-0.1\%
97.5\%	48.3	48.2	-0.1	-0.2\%
98.8\%	47.6	47.9	0.3	0.7\%
100.0\%	47.6	47.9	0.0	0.7\%

Table SQ12-1b
WLewiston Dam, Monthy Temperature
Trinity River below Lewiston Dam, Monthly Temperature

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{Percent
Exceedance
Probability} \& \multirow[b]{4}{*}{} \& \multicolumn{3}{|l|}{November} \& \multirow[b]{4}{*}{Percent
Exceedance
Proabaility (\%)} \& \multicolumn{2}{|r|}{December} \& \multirow[b]{4}{*}{} \& \multirow[b]{3}{*}{Relative} \\
\hline \& \& DCR 2015 With Proje \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& \text { Absolute } \\
\& \text { Difference } \\
\& \text { (DEGF) }
\end{aligned}
\]} \& \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Relative } \\
\text { Difference (\%) }
\end{gathered}
\]} \& \& DCR 2015 Without
Proiect \& DCR 2015 With Project \& \& \\
\hline \& \& Monthly Temperature \& \& \& \& Monthy Temperature \& Monthy Temperature \& \& \\
\hline \& \& (DEGF) \& \& \& \& (DEGF) \& (DEEF) \& \& \\
\hline 0.0\% \& 54.9 \& 54.8 \& -0.1 \& -0.2\% \& \& 52.7 \& 52.7 \& 0.0 \& 0.0\% \\
\hline \({ }^{1.2 \%}\) \& 54.0 \& 54.4 \& 0.4 \& 0.7\% \& 1.2\% \& \({ }_{51.9}\) \& 52.1 \& \({ }^{0.3}\) \& .5\% \\
\hline 2.5\% \& 54.0 \& 54.3 \& 0.4 \& 0.7\% \& 2.5\% \& 51.5 \& 51.7 \& 0.2 \& 4\% \\
\hline 3.7\% \& 54.0 \& 54.2 \& 0.2 \& 0.5\% \& 3.7\% \& 51.4 \& 51.6 \& 0.1 \& 3\% \\
\hline 4.9\% \& 53.1 \& 54.1 \& 1.0 \& 1.9\% \& 4.9\% \& 51.4 \& 51.5 \& 0.1 \& \\
\hline 6.2\% \& 52.9 \& 54.1 \& 1.2 \& 2.2\% \& 6.2\% \& 51.2 \& 51.0 \& -0.2 \& \\
\hline 7.4\% \& 52.9 \& 53.7 \& 0.8 \& 1.5\% \& 7.4\% \& 51.1 \& 50. \& -0.3 \& \\
\hline 8.6\% \& 52.8 \& 53.5 \& 0.7 \& 1.3\% \& 8.6\% \& 51.1 \& 50.7 \& -0.4 \& \\
\hline 9.9\% \& 52.7 \& 53.3 \& 0.6 \& 1.2\% \& 9.9\% \& 51.0 \& 50.6 \& -0.5 \& 0.9\% \\
\hline 11.1\% \& 52.6 \& 53.3 \& 0.7 \& 1.3\% \& 11.1\% \& 51.0 \& 50.6 \& -0.4 \& -0.9\% \\
\hline 12.3\% \& 52.6 \& 53.0 \& 0.4 \& 0.8\% \& 12.3\% \& 50.9 \& 50.5 \& -0.4 \& -0.8\% \\
\hline 13.6\% \& 52.6 \& 52.9 \& 0.3 \& 0.7\% \& 13.6\% \& 50.9 \& 50.4 \& -0.5 \& -1.0\% \\
\hline 14.8\% \& 52.5 \& 52.9 \& 0.4 \& 0.8\% \& 14.8\% \& 50.8 \& 50.2 \& -0.6 \& -1.2\% \\
\hline 16.0\% \& 52.1 \& 52.7 \& 0.6 \& 1.1\% \& 16.0\% \& 50.6 \& 50.2 \& -0.3 \& -0.7\% \\
\hline 17.3\% \& 52.0 \& 52.6 \& 0.7 \& 1.3\% \& 17.3\% \& 50.5 \& 50.2 \& -0.3 \& -0.6\% \\
\hline 18.5\% \& 51.7 \& 52.6 \& 0.9 \& 1.7\% \& 18.5\% \& 50.5 \& 50.2 \& -0.3 \& -0.6\% \\
\hline 19.8\% \& 51.6 \& 52.6 \& 1.0 \& 1.9\% \& 19.8\% \& 50.5 \& 50.2 \& -0.3 \& -0.6\% \\
\hline 21.0\% \& 51.6 \& 52.6 \& 1.0 \& 1.9\% \& 21.0\% \& 50.4 \& 50.1 \& -0.3 \& -0.7\% \\
\hline 22.2\% \& 51.6 \& 52.4 \& 0.8 \& 1.6\% \& 22.2\% \& 50.2 \& 50.0 \& -0.3 \& -0.5\% \\
\hline 23.5\% \& 51.5 \& 52.2 \& 0.7 \& 1.3\% \& 23.5\% \& 50.2 \& 49.9 \& -0.3 \& -0.5\% \\
\hline 24.7\% \& 51.5 \& 52.0 \& 0.5 \& 1.0\% \& 24.7\% \& 50.1 \& 49.9 \& -0.2 \& -0.5\% \\
\hline 25.9\% \& 51.4 \& 52.0 \& 0.6 \& 1.1\% \& 25.9\% \& 50.1 \& 49.9 \& -0.2 \& -0.4\% \\
\hline 27.2\% \& 51.4 \& 51.8 \& 0.3 \& 0.6\% \& 27.2\% \& 50.1 \& 49.9 \& -0.2 \& -0.4\% \\
\hline 28.4\% \& 51.4 \& 51.7 \& 0.3 \& 0.6\% \& 28.4\% \& 50.0 \& 49.9 \& -0.1 \& -0.3\% \\
\hline 29.6\% \& 51.4 \& 51.7 \& 0.3 \& 0.6\% \& 29.6\% \& 50.0 \& 49.8 \& -0.2 \& -0.4\% \\
\hline 30.9\% \& 51.4 \& 51.7 \& 0.3 \& 0.6\% \& 30.9\% \& 49.9 \& 49.7 \& -0.2 \& -0.4\% \\
\hline 32.1\% \& 51.3 \& 51.7 \& 0.4 \& 0.7\% \& 32.1\% \& 49.9 \& 49.7 \& -0.2 \& -0.4\% \\
\hline 33.3\% \& 51.2 \& 51.6 \& 0.4 \& 0.8\% \& 33.3\% \& 49.9 \& 49.6 \& -0.2 \& -0.4\% \\
\hline 34.6\% \& 51.1 \& 51.6 \& 0.5 \& 1.0\% \& 34.6\% \& 49.8 \& 49.4 \& -0.4 \& \({ }^{-0.8 \%}\) \\
\hline 35.8\% \& 51.0 \& 51.6 \& 0.6 \& 1.1\% \& 35.8\% \& 49.7 \& 49.4 \& -0.4 \& -0.7\% \\
\hline 37.0\% \& 50.9 \& 51.6 \& 0.6 \& 1.2\% \& 37.0\% \& 49.7 \& 49.3 \& -0.4 \& -0.8\% \\
\hline 38.3\% \& 50.9
507 \& \begin{tabular}{l}
51.6 \\
513 \\
\hline 1.2
\end{tabular} \& \({ }^{0.6}\) \& \({ }_{1}^{1.2 \%}\) \& 38.3\% \& 49.6 \& 49.3 \& -0.2 \& \({ }^{-0.5 \%}\) \\
\hline 39.5\% \& 50.7 \& 51.3 \& 0.6 \& 1.2\% \& 39.5\% \& 49.5 \& 49.3 \& -0.2 \& -0.4\% \\
\hline 40.7\% \& 50.7 \& 51.2 \& 0.5 \& 0.9\% \& 40.7\% \& 49.5 \& 49.3 \& -0.2 \& -0.4\% \\
\hline 42.0\% \& 50.7 \& 51.2 \& 0.5 \& 1.0\% \& 42.0\% \& 49.5 \& 49.3 \& -0.2 \& -0.4\% \\
\hline 43.2\% \& 50.4 \& 51.1 \& 0.7 \& 1.3\% \& 43.2\% \& 49.4 \& 49.1 \& -0.3 \& -0.6\% \\
\hline 44.4\% \& \({ }^{50.4}\) \& 51.1 \& 0.7 \& 1.4\% \& 4.4.4\% \& 49.4 \& 49.1 \& -0.3 \& -0.6\% \\
\hline 45.7\% \& 50.3 \& 51.0 \& 0.7 \& 1.4\% \& 45.7\% \& 49.4 \& 49.0 \& -0.4 \& -0.8\% \\
\hline 46.9\% \& 50.3 \& 50.9 \& 0.6 \& 1.3\% \& 46.9\% \& 49.3 \& 48.9 \& -0.4 \& -0.8\% \\
\hline \({ }^{48.19 \%}\) \& 50.2
50.2 \& 50.8
50.7 \& 0.6
0.5 \& \({ }_{1.10 \%}^{1.1 \%}\) \& \({ }^{48.19 \%}\) \& \({ }_{49.1}^{49.2}\) \& 48.8
48.8 \& -0.3
-0.3 \& -0.0.7\% \\
\hline 50.6\% \& 50.2 \& 50.5 \& 0.3 \& 0.7\% \& 50.6\% \& 49.1 \& 48.7 \& -0.4 \& -0.8\% \\
\hline 51.9\% \& 50.2 \& 50.5 \& 0.4 \& 0.7\% \& 51.9\% \& 49.0 \& 48.7 \& -0.3 \& -0.5\% \\
\hline 53.1\% \& 50.1 \& 50.4 \& 0.4 \& 0.7\% \& 53.1\% \& 48.9 \& 48.7 \& -0.3 \& -0.5\% \\
\hline 54.3\% \& 50.0 \& 50.4 \& 0.4 \& 0.8\% \& 54.3\% \& 48.9 \& 48.7 \& -0.2 \& -0.5\% \\
\hline 55.6\% \& 50.0 \& 50.3 \& 0.4 \& 0.7\% \& 55.6\% \& 48.8 \& 48.6 \& -0.2 \& -0.4\% \\
\hline 56.8\% \& 49.8 \& 50.2 \& 0.4 \& 0.8\% \& 56.8\% \& 48.8 \& 48.6 \& -0.2 \& -0.4\% \\
\hline 58.0\% \& 49.8 \& 50.1 \& 0.3 \& 0.6\% \& 58.0\% \& 48.8 \& 48.6 \& -0.2 \& -0.5\% \\
\hline 59.3\% \& 49.8 \& 50.1 \& 0.3 \& 0.6\% \& 59.3\% \& 48.7 \& 48.6 \& -0.1 \& -0.2\% \\
\hline 60.5\% \& 49.7 \& 50.0 \& 0.2 \& 0.5\% \& \({ }^{60.5 \%}\) \& 48.6 \& 48.4 \& -0.3 \& -0.6\% \\
\hline - \({ }_{\text {61.7\% }}\) \& 49.6
49.5 \& 49.8
49.8 \& 0.2
0.3 \& \({ }^{0.46 \%}\) \& -61.7\% \& 48.5
48.5 \& 48.3
48.3 \& -0.2
-0.2 \& -0.4\% \\
\hline 64.2\% \& 49.5 \& 49.8 \& 0.3 \& 0.6\% \& 64.2\% \& 48.3 \& 48.3 \& 0.0 \& -0.1\% \\
\hline 65.4\% \& 49.4 \& 49.7 \& 0.3 \& 0.6\% \& 65.4\% \& 48.1 \& 48.1 \& 0.0 \& -0.1\% \\
\hline 66.7\% \& 49.4 \& 49.7 \& 0.3 \& 0.7\% \& 66.7\% \& 47.9 \& 48.1 \& 0.1 \& 0.3\% \\
\hline 67.9\% \& 49.3 \& 49.7 \& 0.3 \& 0.7\% \& 67.9\% \& 47.8 \& 47.7 \& 0.0 \& -0.1\% \\
\hline 69.1\% \& 49.3 \& 49.6 \& 0.3 \& 0.6\% \& 69.1\% \& 47.5 \& 47.7 \& 0.2 \& 0.4\% \\
\hline 70.4\% \& 49.3 \& 49.4 \& 0.1 \& 0.3\% \& 70.4\% \& 47.4 \& 47.3 \& -0.1 \& -0.3\% \\
\hline 71.6\% \& 49.2 \& 49.3 \& 0.1 \& 0.2\% \& 71.6\% \& 47.3 \& 47.3 \& 0.0 \& 0.1\% \\
\hline 72.8\% \& 49.1 \& 49.3 \& 0.2 \& 0.4\% \& 72.8\% \& 47.3 \& 47.1 \& -0.2 \& -0.5\% \\
\hline 74.1\% \& 49.1 \& 49.3 \& 0.2 \& 0.4\% \& 74.1\% \& 47.1 \& 46.7 \& -0.4 \& -0.8\% \\
\hline 75.3\% \& 49.1 \& 49.2 \& 0.1 \& 0.2\% \& 75.3\% \& 47.1 \& 46.7 \& -0.3 \& -0.7\% \\
\hline 76.5\% \& 49.0 \& 49.1 \& 0.1 \& 0.3\% \& \({ }^{76.5 \%}\) \& 47.0 \& 46.7 \& -0.3 \& -0.6\% \\
\hline 7.8\% \& 49.0 \& 49.0 \& 0.0 \& 0.0\% \& 7.8\% \& 46.6 \& 46.5 \& -0.1 \& -0.2\% \\
\hline 79.0\%
\(80.2 \%\) \& \({ }_{48.9}^{48.9}\) \& 48.9
48.9 \& \({ }_{0}^{0.0}\) \& \({ }^{0.0 \% \%}\) \& 79.0\%
\(880.2 \%\) \& \({ }_{46.5}^{46.5}\) \& 46.5
46.4 \& 0.0

0.0 \& -0.1\%

\hline 81.5\% \& 48.9 \& 48.8 \& 0.0 \& 0.0\% \& 81.5\% \& 46.2 \& 46.4 \& 0.2 \& 0.3\%

\hline 82.7\% \& 48.8 \& 48.8 \& 0.0 \& 0.0\% \& 82.7\% \& 46.1 \& 46.1 \& 0.0 \& 0.1\%

\hline 84.0\% \& 48.7 \& 48.8 \& 0.1 \& 0.1\% \& 84.0\% \& 46.0 \& 45.7 \& -0.2 \& -0.5\%

\hline 85.2\% \& 48.7 \& 48.7 \& 0.0 \& -0.1\% \& 85.2\% \& 45.9 \& 45.6 \& -0.3 \& -0.7\%

\hline 86.4\% \& 48.7 \& 48.7 \& -0.1 \& -0.1\% \& 86.4\% \& 45.7 \& 45.4 \& -0.3 \& -0.7\%

\hline 87.7\% \& 48.6 \& 48.6 \& 0.0 \& 0.0\% \& 87.7\% \& 45.4 \& 45.4 \& 0.0 \& 0.0\%

\hline 88.9\% \& 48.6 \& 48.3 \& -0.3 \& -0.6\% \& 88.9\% \& 45.3 \& 45.4 \& 0.0 \& 0.1\%

\hline 90.1\% \& 48.3 \& 48.2 \& 0.0 \& -0.1\% \& 90.1\% \& 45.2 \& 45.4 \& 0.2 \& 0.4\%

\hline 91.4\% \& 48.2 \& 48.1 \& -0.1 \& -0.2\% \& 91.4\% \& 44.8 \& 45.2 \& 0.4 \& 0.9\%

\hline 92.6\% \& 48.0 \& 47.4 \& -0.6 \& -1.2\% \& 92.6\% \& 44.7 \& 44.9 \& ${ }^{0.2}$ \& 0.4\%

\hline 93.8\% \& 47.4 \& 47.3 \& -0.1 \& -0.2\% \& 93.5\% \& 44.5 \& 44.8 \& ${ }^{0.3}$ \& 0.8\%

\hline 95.1\% \& 47.3 \& 47.0 \& -0.3 \& -0.6\% \& 95.19\% \& 44.3 \& 44.5 \& ${ }_{0}^{0.2}$ \& 0.3\%

\hline 96.3\% \& 47.0 \& 46.9 \& -0.1 \& -0.2\% \& 96.3\% \& 44.3 \& 44.3 \& 0.1 \& ${ }_{0}^{0.1 \%}$

\hline 97.5\% ${ }_{98.8 \%}$ \& 46.9 \& 46.2 \& -0.7 \& -1.4\% \& 97.5\% \& 44.0 \& 44.1 \& 0.0 \& 0.1\%

\hline 98.8\%
10.0\% \& ${ }_{45.7}^{45.7}$ \& ${ }_{45.8}$ \& ${ }_{0.1}^{0.1}$ \& ${ }_{0}^{0.2 \%}$ \& 988.8\%
100.0\% \& 43.9 \& 43.8
43.8 \& $\stackrel{-0.1}{-0.1}$ \& -

\hline
\end{tabular}

January				
Percent Exceedanc	DCR 2015 Without Proiect	DCR 2015 With Project	Absolute	Reative
$\underset{\substack{\text { Probability } \\(\%)}}{\text { and }}$		Monthy Temperature (DEGF) (Difference (\%)
0.0\%	52.0	52.0	0.0	0.0\%
1.2\%	51.3	51.3	0.0	0.0\%
2.5\%	51.0	51.2	0.2	0.4\%
3.7\%	50.6	51.1	0.5	0.9\%
4.9\%	50.5	50.8	0.3	
6.2\%	50.0	50.3	0.3	0.6\%
7.4\%	49.9	49.8	-0.1	-0.3\%
8.9\%	49.8	49.7	-0.1	-0.2\%
9.9\%	49.6	49.6	0.0	0.0\%
11.1\%	49.5	49.6	0.0	0.1\%
12.3\%	49.4	49.5	0.0	0.1\%
13.6\%	49.4	49.3	-0.1	-0.2\%
14.8\%	49.3	49.3	0.0	0.0\%
16.0\%	49.2	49.2	0.0	-0.1\%
17.3\%	49.1	49.0	-0.1	-0.2\%
18.5\%	49.0	49.0	0.0	0.0\%
19.8\%	49.0	49.0	-0.1	-0.2\%
21.0\%	48.8	48.9	0.1	0.3\%
22.2\%	48.8	48.9	0.1	0.3\%
23.5\%	48.7	48.9	0.2	0.3\%
24.7\%	48.7	48.8	0.1	0.3\%
25.9\%	48.7	48.7	0.1	0.2\%
27.2\%	48.5	48.7	0.2	0.3\%
28.4\%	48.5	48.6	0.2	0.3\%
29.6\%	48.3	48.5	0.2	0.5\%
30.9% 321%	48.3	48.5	0.2	0.5\%
${ }^{32.1 \%}$				
33.3\%	48.2	48.5	0.3	0.6\%
34.6\%	48.2	48.5	0.3	0.6\%
35.8\%	48.1	48.4	${ }^{0.3}$	0.7\%
37.0\%	48.1	48.4	0.3	0.6\%
38.3\%	48.0	48.4	0.3	0.7\%
39.5\%	47.8	48.2	0.4	0.9\%
40.7\%	47.8	48.1	0.4	0.8\%
42.0\%	47.8	47.8	0.1	0.2\%
43.2\%	47.7	47.8	0.0	0.1\%
44.4\%	47.7	47.8	0.1	0.2\%
${ }^{45.79 \%}$	${ }_{4}^{47.6}$	${ }_{47.7}^{47.7}$	${ }_{0}^{0.1}$	${ }_{\text {coin }}^{0.2 \%}$
48.1\%	47.6	47.7	0.1	0.2\%
49.4\%	47.5	47.6	0.1	0.2\%
50.6\%	47.4	47.6	0.2	0.4\%
51.9\%	47.3	47.5	0.2	0.5\%
53.1\%	47.3	47.5	0.2	0.3\%
54.3\%	47.3	47.4	0.1	0.2\%
55.6\%	47.2	47.3	0.1	0.2\%
56.8\%	47.2	47.3	0.1	0.2\%
58.0\%	47.1	47.3	0.2	0.3\%
59.3\%	47.1	47.2	0.0	0.1\%
- 60.5%	47.1	47.1	0.1	0.2\%
${ }^{61.77 \%}$	47.1	47.1	0.0	0.0\%
-63.0\%	46.9	47.1	0.2	0.4\%
${ }^{64.2 \%}$	46.8	47.0	0.2	0.4\%
65.4\%	46.8	46.9	0.1	0.3\%
66.7\%	46.7	46.8	0.0	0.0\%
67.9\%	46.6	46.7	0.1	0.2\%
69.1\%	46.6	46.6	0.0	0.0\%
70.4\%	46.6	46.6	0.0	0.0\%
71.6\%	46.6	46.4	-0.2	-0.4\%
72.8\%	46.4	45.9	-0.5	-1.0\%
74.19\%	45.8	45.8	0.0	0.0\%
75.3\%	45.8	45.8	0.0	0.1\%
76.5\%	45.8	45.8	${ }^{0.0}$	0.1\%
77.8\%	45.4	45.8	0.3	0.7\%
79.0\%	45.4	45.3	-0.2	-0.3\%
80.2\%	45.2	44.8	-0.5	-1.0\%
81.5\%	45.2	44.7	-0.5	-1.0\%
8.27% 870%	44.7	44.6	-0.1	-0.2\%
84.0\%	44.7	44.5	-0.1	-0.3\%
${ }^{85.2 \%}$	44.5	44.5	0.0	-0.1\%
86.4\%	44.5	44.4	-0.1	${ }^{-0.3 \%}$
87.7\%	44.4	44.0	-0.4	-0.8\%
88.9\%	44.0	44.0	0.0	0.0\%
90.1\%	44.0	43.8	-0.2	-0.4\%
91.4\%	43.7	43.6	0.0	0.1\%
92.6\% ${ }_{93.8 \%}$	43.6	43.5	-0.1	-0.3\%
${ }^{93.8 \%}$	43.4	43.5	0.0	0.1\%
${ }_{965}^{95.11 \%}$	43.3	43.4	0.1	0.2\%
96.3\% ${ }_{\text {97.5\% }}$	43.3	43.3	-0.1	-0.2\%
97.5\% ${ }_{\text {98.8\% }}$	43.1	43.1	0.0	0.0\%\%
98.8\% 100.0\%	${ }_{425}^{42.5}$	${ }_{426} 2.6$	${ }_{0.1}^{0.1}$	- ${ }_{0}^{0.3 \%}$
			0.1	0.3\%

February				
Percent Exceedance	DCR 2015 Without Proiet	DCR 2015 With Project	Absolute	Relative
$\begin{aligned} & \text { Probability } \\ & \text { (\%) } \end{aligned}$	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGFF) } \end{aligned}$	Difference (\%)
0.0\%	52.6	52.6	0.0	0.0\%
1.2\%	52.5	52.6	0.1	0
2.5\%	51.6	51.5	-0.1	-0.2\%
3.7\%	51.2	51.2	0.0	0.0\%
4.9\%	50.8	50.9	0.1	0.3\%
6.2\%	50.3	50.3	0.0	0.0\%
7.4\%	50.2	50.2	0.0	0.0\%
8.6\%	50.1	50.2	0.1	0.2\%
9.9\%	50.1	50.1	0.0	0.0\%
11.1.1\%	49.7	50.0	0.3	0.7\%
12.3\%	49.7	49.8	0.1	0.1\%
13.6\%	49.6	49.7	0.1	0.2\%
16.0\%	${ }_{49.5}$	${ }_{49.7}$	0.2	0.3\%
17.3\%	49.4	49.6	0.2	0.3\%
18.5\%	49.3	49.6	0.3	0.5\%
19.8\%	49.3	49.5	0.2	0.5\%
21.0\%	49.3	49.5	0.2	0.4\%
22.2\%	49.2	49.5	0.3	0.6\%
23.5\%	49.2	49.4	0.3	0.5\%
24.7\%	49.1	49.4	0.3	0.5\%
${ }^{25.9 \%}$	48.7 48.6	49.3 49.2	${ }_{0}^{0.6}$	${ }_{1}^{1.2 \%}$
28.4\%	48.6	49.2	0.7	1.4\%
29.6\%	48.5	49.2	0.7	1.4\%
30.9\%	48.5	49.2	${ }^{0.6}$	${ }_{\text {1.3\% }}^{1.3 \%}$
32.1\%	48.5	48.7	0.2	0.4\%
33.3\%	48.4	48.7	0.3	0.6\%
34.6\%	48.3	48.5	0.2	0.3\%
35.8\%	48.3	48.5	0.2	0.5\%
37.0\%	48.2	48.5	${ }^{0.3}$	0.5\%
38.3\%	${ }_{48.1}^{48.1}$	${ }_{48.3}^{48.4}$	0.3 0.2	0.4\%
40.7\%	48.1	48.3	0.2	0.4\%
42.0\%	48.0	48.3	${ }^{0.3}$	0.6\%
${ }^{43.27 \%}$	47.9	48.3		
44.4\%	47.9	48.2	${ }^{0.3}$	0.5\%
${ }^{45.79 \%}$	47.6 47.4	48.1 48.0	0.5 0.6	${ }_{1}^{1.12 \%}$
48.1\%	47.2	47.9	0.7	1.4\%
49.4\%	47.2	47.6	0.3	0.7\%
50.6\%	47.1	47.3	0.1	0.3\%
51.9\%	47.0	47.2	0.2	0.5\%
53.1\%	46.9	47.1	${ }^{0.3}$	0.6\%
54.3\%	46.8	47.1	0.3	0.6\%
55.6\%	46.7	46.8	0.1	0.3\%
56.8\%	46.7	46.7	0.0	0.0\%
58.0\%	${ }^{46.6}$	46.7	0.1	0.2\%
59.3\%	46.6	46.7	0.1	0.2\%
60.5\%	46.5	46.7	${ }^{0.1}$	0.3\%
61.7\%	46.4	46.6	0.2	0.4\%
63.0\%	46.3	46.6	0.2	0.5\%
64.2\%	46.3	46.5	${ }^{0.3}$	0.6\%
65.4\%	46.2	46.5	${ }^{0.3}$	0.7\%
66.7\%	46.2	46.4	0.2	0.4\%
-67.9\%	46.2	46.2	0.0	0.19\%
69.10 70.4%	${ }_{45.8}^{46.0}$	46.2 46.0	0.2	0.3\%
71.6\%	45.8	${ }_{45.8}$	0.0	0.0\%
72.8\%	45.8	45.6	-0.2	-0.4\%
74.1\%	45.6	45.5	-0.1	-0.2\%
75.3\%	45.5	45.4	0.0	-0.1\%
76.5\%	45.4	45.4	0.0	0.0\%
77.8\%	45.4	45.4	0.0	0.0\%
79.0\%	45.2	45.4	0.2	0.4\%
80.2\%	45.2	45.3	0.1	0.2\%
81.5\%	45.0	44.9	0.0	-0.19\%
822.70\% 84.0%	45.0 44.6	44.6 44.6	-0.3 0.0 0	-0.0.0\%
85.2\%	44.5	44.6	0.1	0.2\%
86.4\%	44.5	44.5	0.0	0.1\%
87.7\%	44.4	44.5	0.1	0.3\%
88.9\%	44.4	44.4	0.0	0.19\%
90.1\%	44.3	44.4	0.1	0.2\%
91.4\%	44.2	44.3	0.1	0.2\%
92.6\%	44.2	44.2	0.0	0.0\%
93.8\%	43.8	44.2	0.4	0.9\%
${ }_{9}^{95.19 \%}$	43.8 43.7	43.9 43.8	${ }_{0.1}^{0.1}$	${ }_{0}^{0.3 \% \%}$
97.5\%	43.2	43.2	0.0	0.0\%
98.8\%	43.1	43.1	-0.1	-0.2\%
100.0\%	43.1	43.1	-0.1	-0.2\%

May				
Percent Exceedance	DCR 2015 Without Proiect	DCR 2015 W With Project		Relative
Probability	Monthly Temperature	Monthy Temperature	Difiference (DEEF)	Difference (\%)
0.0\%	52.6	52.4	-0.2	-0.4\%
1.2\%	51.6	52.2	0.5	1.0
2.5\%	51.3	51.7	0.4	
3.7\%	51.2	51.2	0.0	-0.1\%
4.9\%	50.9	51.1	0.2	0.4\%
6.2\%	50.9	50.9	0.0	0.0\%
7.4\%	50.5	50.5	0.0	0.0\%
8.6\%	50.4	50.4	0.0	0.0\%
9.9\%	50.4	50.4	0.0	0.0\%
11.1\%	50.0	50.0	0.0	0.0\%
12.3\%	49.8	49.8	0.0	0
13.6\%	49.8	49.8	0.0	-0.1
14.8\%	49.5	49.7	0.2	
16.0\%	49.4	49.6	0.1	0.3\%
17.3\%	49.3	49.4	0.2	0.3\%
18.5\%	49.2	49.4	0.2	0.4\%
19.8\%	49.1	49.2	0.1	0.3\%
21.0\%	49.0	49.1	0.1	0.2\%
22.2\%	48.9	48.9	0.0	0.1\%
23.5\%	48.8	48.9	0.1	0.2\%
24.7\%	48.5	48.6	0.0	0.1\%
25.9\%	48.4	48.4	0.0	0.0\%
27.2\%	48.3	48.3	0.0	0.0\%
28.4\%	48.1	48.1	0.0	-0.1\%
29.6\%	48.1	48.0	0.0	-0.1\%
30.9\%	48.0	48.0	0.0	-0.1\%
32.1\%	47.7	47.8	0.1	0.1\%
33.3\%	47.0	47.1	0.1	0.2\%
34.6\%	47.0	47.0	0.0	-0.1\%
35.8\%	46.9	46.9	0.0	0.0\%
37.0\%	46.9	46.8	-0.1	-0.1\%
38.3\%	46.8	46.7	-0.1	-0.2\%
39.5\%	46.7	46.7	0.0	0.0\%
40.7\%	46.7	46.7	0.0	0.0\%
				0.0\%
43.20\%	40.7	46.6	-0.1	${ }^{-0.1 \%}$
44.4.9	46.6	46.6	-0.1	-0.1\%
${ }^{45.79 \%}$	${ }_{46.4}^{46.6}$	${ }_{46.3}^{46.4}$	-0.2 0.0	-0.4\%
48.1\%	46.3	46.3	0.0	0.0\%
49.4\%	46.0	45.9	0.0	0.0\%
50.6\%	45.9	45.9	0.0	0.0\%
51.9\%	45.9	45.9	0.0	0.0\%
年 53.19%	45.9	45.8	0.0	0.0\%
55.6\%	${ }_{45.8}^{45.9}$	${ }_{45.8}^{45.8}$	-0.1 0.0	${ }^{-0.1 \%}$
56.8\%	45.8	${ }_{45.7}$	0.0	-0.1\%
58.0\%	45.7	45.7	0.0	0.0\%
59.3\%	45.6	45.6	0.0	0.0\%
60.5\%	45.6	45.5	0.0	0.0\%
61.7\%	45.5	45.5	0.0	-0.1\%
63.0\%	45.5	45.5	0.0	0.0\%
${ }^{64.2 \%}$	45.2	${ }_{4} 5.2$	0.0	0.0\%
65.4\%	45.2	45.1	-0.1	-0.2\%
${ }^{66.7 \%}$	45.1	45.1	0.0	0.0\%
${ }^{67.9 \%}$	45.1	45.1	0.0	0.0\%
69.1\%		45.1	0.0	
70.46\%	45.1	45.1	0	0.0\%
71.6\%	45.0	45.0	0.0	0.0\%
72.8\%	45.0	45.0	0.0	0.0\%
74.1\%	45.0	45.0	0.0	0.0\%
75.3\%	44.9	44.9	0.0	0.0\%
77.8\%	44.9	44.9	0.0	0.0\%
79.0\%	44.8	44.8	0.1	0.1\%
80.2\%	44.8	44.8	0.1	0.1\%
81.5\%	44.7	44.7	0.0	0.1\%
82.7\% 880 8000	44.6	44.6	0.0	0.0\%
-850\%	44.5	44.5	0.0	-0.1\%
${ }^{85.20 \%}$	44.5	44.5	0.0	0.0\%
${ }^{86.4 \%}$	44.5 443	44.4	0.0	-0.1\%
88.9\%	44.3	44.3	0.0	0.0\%
90.1\%	44.3	44.3	0.0	-0.1\%
91.4\%	44.2	44.3	0.0	0.1\%
92.6\%	44.2	44.2	0.1	0.1\%
93.3\%	44.2	44.1	0.0	0.0\%
95.1\%	44.2	44.1	0.0	0.0\%
96.3\%	43.9	43.9	0.0	0.1\%
97.5\%	43.8	43.9	0.0	0.1\%
98.8\%	43.8	43.8	0.0	0.0\%
100.0\%	43.8	43.8	0.0	0.0\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$(\%)	June			
	$\underset{\substack{\text { DCR } \\ \text { Proect }}}{201 \text { Without }}$	DCR 2015 With Project		Relative
	Monthy Temperature	Monthy Temperature	Difference (DEGF)	Difference (\%)
0.0\%	56.9	56.9	0.0	0.0\%
1.2\%	56.0	56.0	0.0	
2.5\%	55.7	55.4	-0.2	-0.4\%
3.7\%	55.1	55.1	0.0	0.0\%
4.9\%	54.8	54.8	0.0	0.0\%
6.2\%	54.7	54.6	-0.1	-0.2\%
7.4\%	54.7	54.6	-0.1	-0.2\%
8.6\%	54.7	54.1	-0.5	-1.0\%
9.9\%	54.1	54.1	0.0	0.0\%
11.11\%	53.8	54.1	0.3	0.6\%
12.3\%	53.4	53.9	0.5	0.9\%
13.6\%	53.4 53.0	53.3 53.2	-0.1 0.3	${ }^{-0.2 \%}$
16.0\%	52.5	52.6	${ }_{0}^{0.1}$	0.3\%
17.3\%	52.4	52.4	0.0	0.0\%
18.5\%	52.3	52.2	0.0	0.0\%
19.8\%	51.9	52.2	${ }^{0.3}$	0.6\%
21.0\%	51.9	52.1	0.3	0.5\%
22.2\%	51.8	51.9	0.0	0.1\%
23.5\%	51.8	51.8	0.0	0.1\%
24.7\%	51.6	51.8	0.2	0.3\%
25.9\%	51.6 515	${ }_{51.7}$	0.1	0.2\%
${ }^{27.2 \%}$ 28.4\%	51.5 51.5	51.7 51.6	${ }_{0.1}^{0.2}$	${ }^{0.3 \%}$
29.6\%	51.4	51.5	0.1	0.1\%
30.9\%	51.3	51.5	0.2	0.4\%
32.1\%	51.3	51.3	0.0	0.0\%
33.3\%	51.0	51.0	0.0	0.0\%
34.6\%	51.0	50.9	-0.1	-0.2\%
35.8\%	50.9	50.8	-0.1	-0.2\%
37.0\%	50.8	50.7	-0.1	-0.3\%
38.3\%	50.6	50.6	-0.1	-0.1\%
39.5\%	50.6	50.6 50.5	0.0	0.0\%\%
40.79\%	$\begin{array}{r}50.4 \\ 50.4 \\ \hline\end{array}$	50.5 50.5	0.1	0.3\%
${ }_{4}^{42.2 \%}$	50.4 50.1	50.3 50.1	${ }_{0}^{0.0}$	0.0\%
44.4\%	50.1	50.1	0.0	0.0\%
45.7\%	50.1	50.0	-0.1	-0.1\%
46.9\%	50.1	49.9	-0.2	-0.4\%
48.1\%	49.8	49.8	0.0	0.0\%
49.4\%	49.8	49.8	0.0	${ }^{-0.1 \%}$
50.6\%	49.7	49.7	0.0	0.1\%
51.9\%	49.4	49.4	0.0	0.0\%
${ }^{531.19 \%} 5$	49.2	49.3 49.2	${ }_{0}^{0.0}$	0.0\%
55.6\%	49.1	49.2	0.0	0.0\%
56.8\%	49.0	49.0	0.0	0.0\%
58.0\%	48.9	48.8	-0.1	-0.2\%
59.3\%	48.9	48.8	-0.1	${ }^{-0.2 \%}$
${ }^{60.5 \%}$	48.8 48.8	${ }_{48.8}^{48.8}$	0.0 0.0	-0.1\%
63.0\%	48.7	48.7	-0.1	-0.2\%
64.2\%	48.7	48.6	-0.1	-0.2\%
65.4\%	48.7	48.5	-0.2	-0.4\%
66.7\%	48.6	48.5	-0.1	-0.2\%
67.9\%	48.5	48.4	0.0	-0.1\%
69.1\%	48.4	48.3	0.0	-0.1\%
70.4\%	48.3 48.2	48.3 48.3	${ }_{0}^{0.0}$	-0.19\%
72.8\%	47.9	48.1	0.2	0.4\%
74.1\%	47.7	47.7	0.0	0.0\%
75.3\%	47.7	47.4	-0.3	-0.5\%
76.5\%	47.4	47.4	0.1	0.1\%
77.8\%	47.3	47.3	0.0	0.0\%\%
79.0\%	47.1	47.1	0.0	${ }_{\text {- }}^{0.00 \%}$
80.15\%	47.0	47.0	0.0	0.0\%
82.7\%	47.0	47.0	0.0	0.0\%
84.0\%	46.8	46.9	0.2	0.4\%
85.2\%	46.7 46.6	46.6 46.6	0.0	-0.0\%
-86.4\%	46.6 46.6	46.6 46.6	0.0 0.0	${ }_{0}^{0.1 \%}$
88.9\%	46.2	46.1	-0.1	-0.1\%
90.1\%	45.9	45.9	0.0	0.1\%
91.4\%	45.5	45.5	0.0	0.0\%
92.6\%	45.5	45.5	0.0	0.0\%
93.8\%	45.4	45.5	0.0	0.1\%
${ }_{965.3 \%}^{95.19 \%}$	44.8 44.8	44.8 44.8	0.0 0.0	${ }^{0.0 .1 \%}$
97.5\%	44.8	44.8	0.0	0.1\%
98.8\%	44.7	44.7	0.0	0.0\%
100.0\%	44.7	44.7	0.0	0.0\%

Table SQ12-1b
WLewiston Dam, Monthy Temperature
Trinity River below Lewiston Dam, Monthly Temperature

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{gathered}$		July		$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	$\begin{gathered} \text { Percent } \\ \substack{\text { Exceenance } \\ \text { Probability }} \\ \text { def } \end{gathered}$	$\frac{$ DCR 2015 Without Proiect Monthy Temperature }{ M }	August	$\begin{aligned} & \text { Absolute } \\ & \text { Differee } \\ & \text { (efock) } \end{aligned}$	$\begin{aligned} & \text { Relative } \\ & \text { Difference (\%) } \end{aligned}$
		DCR 2015 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Differeen } \\ & \text { (efock) } \end{aligned}$				DCR 2015 With Proje		
		Monthly Temperature					Monthly Temperature		
		(DEGF)					(DEGF)		
0.0\%	54.7	54.7	0.0	0.0\%	0.0\%	58.6	55.8	-1.8	${ }^{-3.2 \%}$
1.2\%	54.1	53.7	-0.4	-0.7\%	1.2\%	56.4	54.9	-1.5	
2.5\%	54.1	53.7	-0.4	-0.7\%	2.5\%	55.2	54.4	-0.8	\%
3.7\%	53.8	53.7	-0.1	-0.2\%	3.7\%	54.2	54.1	-0.1	-0.1\%
4.9	53.6	53.5	-0.2	-0.3\%	4.96	54	54.0	-0.1	
6.2\%	53.4	53.4	0.0	0.1\%	6.2\%	53.9	54.0	0.1	0.2\%
7.4\%	53.4	53.2	-0.2	-0.5\%	7.4\%	53.8	53.7	-0.1	-0.2\%
8.6\%	53.1	53.1	0.0	0.0\%	8.6\%	53.4	53.3	-0.1	-0.3\%
9.9\%	53.0	53.0	0.0	0.0\%	9.9\%	53.1	53.0	-0.1	-0.1\%
11.19\%	53.0	53.0	0.0	0.0\%	11.19\%	53.1	52.9	-0.2	-0.4\%
12.3\%	52.5	52.9	0.4	0.9\%	12.3\%	53.0	52.8	-0.3	-0.5\%
13.6\%	52.4	52.8	0.3	0.7\%	13.6\%	52.9	52.7	-0.2	-0.4\%
14.8\%	52.3	52.6	0.2	0.5\%	14.8\%	52.8	52.6	-0.2	-0.4\%
16.0\%	52.3	52.2	0.0	-0.1\%	16.0\%	52.7	52.5	-0.2	-0.4\%
17.3\%	52.1	52.2	0.1	0.2\%	17.3\%	52.7	52.5	-0.2	-0.4\%
18.5\%	52.1	52.1	0.0	0.0\%	18.5\%	52.6	52.5	-0.2	-0.3\%
19.8\%	51.9	52.0	0.1	0.2\%	19.8\%	${ }_{52.6}$	${ }_{52.3}$	-0.2	-0.4\%
21.0\%	51.9	51.9	0.1	0.2\%	21.0\%	52.6	52.3	-0.2	-0.5\%
22.2\%	51.8	51.9	0.1	0.2\%	22.2\%	52.4	52.3	-0.1	-0.2\%
23.5\%	51.8	51.8	0.0	-0.1\%	23.5\%	52.4	52.1	-0.2	-0.5\%
24.7\%	51.8	51.8	0.0	0.0\%	24.7\%	52.3	52.1	-0.2	-0.5\%
25.9\%	51.8	51.8	0.0	0.0\%	25.9\%	52.3	52.1	-0.2	-0.4\%
27.2\%	51.8	51.7	-0.1	-0.3\%	27.2\%	52.2	52.0	-0.2	-0.4\%
28.4\%	51.8	51.7	-0.1	-0.3\%	28.4\%	52.2	51.9	-0.2	-0.4\%
29.6\%	51.6	51.6	0.0	0.1\%	29.6\%	52.1	51.7	-0.5	-0.9\%
30.9\%	51.5	51.6	0.0	0.1\%	30.9\%	52.1	51.6	-0.4	-0.8\%
	51.5	51.6		0.1\%				-0.5	-1.0\%
33.3\%	51.5	51.5	0.0	0.1\%	33.3\%	52.0	51.5	-0.5	
34.6% 35.8%	51.5 51.5	51.5 51.4	${ }_{-0.1}^{0.0}$	-0.0\%	34.6% 35.8%	51.9 51.8	51.5 51.5	-0.4 -0.3	${ }^{-0.8 \%}$
37.0\%	51.5	51.4	-0.1	-0.1\%	37.0\%	51.8	51.5	-0.3	-0.5\%
38.3\%	51.4	51.4	0.0	0.0\%	38.3\%	51.7	51.5	-0.2	-0.4\%
39.5\%	51.4	51.3	-0.1	-0.2\%	39.5\%	51.6	51.4	-0.2	-0.4\%
40.7\%	51.2	51.2	0.0	0.0\%	40.7\%	51.4	51.3	-0.1	-0.2\%
42.0\%	51.1	51.2	0.0	0.1\%	42.0\%	51.2	51.2	0.0	0.1\%
43.2\%	51.1	51.2	0.1	0.1\%	43.2\%	51.2	51.1	-0.1	-0.3\%
44.4\%	51.1	51.1	0.0	0.1\%	44.4\%	51.2	51.0	-0.1	-0.2\%
45.7\%	51.1	51.0	-0.1	-0.1\%	45.7\%	${ }_{51.1}^{51.1}$	51.0	-0.1	-0.1\%
46.9\%	51.0	50.9	-0.1	-0.1\%	46.9\%	51.1	51.0	0.0	-0.1\%
48.19\%	51.0	50.9 509	-0.1	-0.19\%	48.19\%	${ }_{51.0}^{51.0}$	${ }_{51.0}^{51.0}$	0.0	0.0\%
49.4\%	51.0	50.9	-0.1	-0.19\%	4.9.4\%	${ }_{51.0}^{51.0}$	51.0	${ }^{0.0}$	0.0\%
50.6\%	50.9	50.8	-0.1	-0.3\%	50.6\%	51.0	51.0	0.0	0.0\%
51.9\%	50.9	50.7	-0.2	-0.3\%	51.9\%	51.0	50.9	-0.1	-0.1\%
53.1\%	50.8	50.7	-0.2	-0.3\%	53.1\%	51.0	50.9	-0.1	-0.2\%
54.3\%	50.8	50.7	-0.1	-0.2\%	54.3\%	51.0	50.9	-0.1	-0.2\%
55.6\%	50.8	50.6	-0.1	-0.3\%	55.6\%	51.0	50.9	-0.1	-0.2\%
56.8\%	50.8	${ }_{50.6}$	-0.2	-0.3\%	56.8\%	50.9	50.8 50.8	-0.11	-0.2\%
58.0\%	50.7	50.6	-0.1	-0.2\%	58.0\%	50.9	50.8	-0.1	-0.19\%
59.5\%	50.7 50.6	50.6 50.6	-0.1 0.0	${ }^{-0.1 \%}$	59.3\%	50.9 50.8	50.7 50.5	-0.2 -0.3	-0.0\%\%
61.7\%	50.6	50.5	0.0	0.0\%	61.7\%	50.7	50.5	-0.3	-0.5\%
-63.0\%	$\begin{array}{r}50.4 \\ 50.4 \\ \hline\end{array}$	50.4 50.4	0.0	0.0\%\%	63.0\%	${ }_{50.7}$	50.5	-0.2	-0.4\%
64.2\%	50.4	50.4	0.0	0.0\%	64.2\%	50.7	50.4	-0.2	-0.4\%
65.4\%	50.4	50.4	0.0	0.1\%	65.4\%	50.5	50.4	-0.1	-0.2\%
66.7\%	50.3	50.4	0.0	0.1\%	66.7\%	50.5	50.4	-0.1	-0.3\%
67.9\%	50.3	50.3	0.0	-0.1\%	67.9\%	50.5	50.3	-0.2	-0.5\%
69.1\%	50.3	50.3	0.0	0.0\%	69.1\%	50.5	50.2	-0.3	-0.5\%
70.4\%	50.3	50.3	0.0	0.0\%	70.4\%	50.5	50.2	-0.3	-0.6\%
71.6\%	50.2	50.2	0.0	0.0\%	71.6\%	50.5	50.1	-0.3	-0.6\%
72.8\%	50.2	50.2	0.0	-0.1\%	72.8\%	50.5	50.1	-0.3	-0.7\%
74.1\%	50.2	50.1	-0.1	-0.2\%	74.1\%	50.4	50.1	-0.3	-0.6\%
75.3\%	50.2	50.0	-0.2	-0.4\%	75.3\%	50.3	50.0	-0.3	-0.6\%
76.5\%	50.2	49.9	-0.2	-0.4\%	76.5\%	50.3	50.0	-0.3	-0.6\%
77.8\%	50.0	49.9	-0.1	-0.2\%	77.8\%	${ }_{50.3}$	50.0	-0.3	-0.6\%
79.0\%	49.9	49.8	-0.2	-0.3\%	79.0\%	50.2	49.9	-0.2	-0.5\%
80.2\%	49.9	49.7	-0.2	-0.3\%	80.2\%	50.1	49.8	-0.3	-0.6\%
81.5\%	49.9	49.6	-0.3	-0.6\%	81.5\%	50.0	49.8	-0.2	-0.5\%
82.7\%	49.8	49.5	-0.3	-0.6\%	82.7\%	50.0	49.7	-0.2	-0.5\%
84.0\%	49.8	49.5	-0.3	-0.6\%	84.0\%	49.9	49.7	-0.3	-0.5\%
85.2\%	49.7	49.4	-0.3	-0.5\%	85.2\%	49.7	49.6	-0.1	-0.2\%
86.4\% 87.7%	49.6 49.5	49.4 49.4	-0.3 -0.1	${ }^{-0.5 \%}$	86.4% 87.7%	49.6 49.6	49.6 49.6	0.0 0.0	0.0.0\%
88.9\%	49.5	49.3	-0.2	-0.3\%	88.9\%	49.6	49.6	0.0	0.1\%
90.1\%	49.5	49.2	-0.3	-0.5\%	90.1\%	49.6	49.6	0.0	0.0\%
91.4\%	49.3	49.2	-0.1	-0.3\%	91.4\%	49.6	49.6	0.0	0.0\%
92.6\%	49.3	49.2	-0.2	-0.3\%	92.6\%	49.4	49.6	0.1	0.2\%
93.8\%	49.1	49.1	0.0	-0.1\%	93.8\%	49.4	49.5	0.1	0.2\%
95.1\%	49.1	49.0	-0.1	-0.2\%	95.1\%	49.4	49.3	-0.1	-0.2\%
96.3\%	49.1	49.0	-0.1	-0.2\%	96.3\%	49.3	49.3	0.0	-0.1\%
97.5\%	48.9	49.0	0.0	0.1\%	975\%	49.2	49.2	0.0	-0.1\%
988.8\% 100.0\%	48.8 48.8	48.8 48.8	0.0 0.0	${ }^{0.0 \% \%}$	98.8% 100.0%	49.2.	${ }_{49.1}^{49.1}$	0.0	${ }_{\text {-0.0. }}^{0.1 \%}$

$\begin{aligned} & \text { Percrent } \\ & \text { Exceedance } \\ & \text { Probobalily } \end{aligned}$	September			RelativeDifference (\%)
	$\begin{aligned} & \text { DCR 2015 WEthout } \\ & \text { Proiet } \end{aligned}$	DCR 2015 With Project	$\begin{gathered} \text { Absolute } \\ \text { difference } \\ \text { (DEGF) } \end{gathered}$	
	Monthy Temperature	Monthly Temperature		
0.0\%	57.7	58.0	0.3	0.5\%
1.2\%	57.6	57.6	-0.1	-0.1\%
2.5\%	57.6	57.5	${ }_{-0.1}$	${ }^{0.1 \%}$
3.7\%	57.1	57.1	0.1	0.1\%
4.9\%	56.8	57.0	0.2	
6.2\%	56.2	56.4	0.3	0.5
7.4\%	56.1	54.2	-1.9	-3.3\%
8.6\%	55.2	53.9	-1.3	-2.3\%
9.9\%	54.0	53.9	-0.1	-0.3\%
11.1\%	53.7	53.9	0.2	0.4\%
12.3\%	53.6	53.8	0.2	0.4\%
13.6\%	53.6	53.6	0.0	0.0\%
14.8\%	53.6	53.2	-0.3	-0.6\%
16.0\%	53.4	53.1	-0.2	-0.4\%
17.3\%	53.1	53.1	0.0	0.0\%
18.5\%	53.1	52.9	-0.2	-0.4\%
19.8\%	53.0	52.9	-0.2	-0.3\%
21.0\%	53.0	52.8	-0.2	-0.4\%
22.2\%	52.8	52.5	-0.2	-0.5\%
23.5\%	52.6	52.4	-0.2	-0.5\%
24.7\%	52.5	52.4	-0.2	-0.3\%
25.9\%	52.5	52.3	-0.2	-0.3\%
27.2\%	52.4	52.3	-0.1	-0.2\%
28.4\%	52.3	52.2	-0.1	-0.2\%
29.6\%	52.3	52.2	-0.1	-0.1\%
30.9\%	52.2	52.0	-0.3	-0.5\%
32.1\%	52.2	51.9	-0.3	0.5\%
33.3\%	52.1	51.9	-0.1	-0.3\%
34.6\%	52.0	51.8	-0.2	-0.5\%
35.\%	51.9	51.8	-0.1	-0.2\%
37.0\%	51.8	51.7	-0.1	-0.2\%
38.3\%	51.8	51.7	-0.1	-0.2\%
39.5\%	51.8	51.5	-0.3	-0.5\%
40.7\%	51.7	${ }_{51.5}$	-0.2	-0.3\%
42.0\%	${ }_{51.6}$	51.5	-0.2	-0.4\%
43.2\%	51.5	51.4	0.0	-0.1\%
44.4\%	51.4	51.4	0.0	0.1\%
45.7\% 46.0%	51.2	51.4	0.2	${ }^{0.3 \%}$
46.9\%	51.2	51.2	0.1	0.1\%
48.1\%	51.2	51.2	0.0	0.0\%
49.4\%	51.1 511	${ }_{51.2}^{51.2}$	${ }^{0.1}$	0.1\%
50.6\%	51.1	51.2	0.1	0.1\%
51.9\%	51.1	51.1	0.0	0.0\%
53.1\%	51.0	50.9	-0.2	-0.3\%
54.3\%	51.0	50.8	-0.1	-0.2\%
55.6\%	50.9	50.8	-0.1	-0.2\%
56.8\%	50.8	50.6	-0.1	-0.3\%
58.0\%	50.7	50.5	-0.2	-0.3\%
59.3\%	50.7	50.5	-0.2	-0.4\%
- 60.5%	50.6	50.5		-0.2\%
${ }^{61.77 \%}$	50.4	50.4	0.0	0.0\%
-63.0\%	50.3	50.2	-0.1	-0.3\%
${ }^{64.2 \%}$	50.2	50.2	0.0	0.0\%
65.4\%	50.2	50.1	-0.1	-0.1\%
66.7\%	50.1	50.0	-0.1	-0.2\%
67.9\%	50.0	49.9	-0.1	-0.2\%
69.1\%	49.9	49.8	-0.1	-0.2\%
70.4\%	49.9	49.8	-0.1	-0.2\%
71.6% 728%	49.8	49.8	-0.1	-0.1\%
72.8.1\%	49.8 49.8	49.8 49.8	0.0 0.0	0.0.0\%
75.3\%	49.7	49.7	0.0	0.0\%
76.5\%	49.7	49.7	0.0	0.0\%
77.8\%	49.7	49.6	-0.1	-0.2\%
79.0\%	49.7	49.6	-0.1	-0.1\%
80.2\%	49.6	49.6	0.0	0.1\%
81.5\%	49.5	49.5	0.0	0.1\%
82.7\%	49.4	49.5	0.1	0.2\%
84.0\%	49.4	49.5	0.1	0.2\%
85.2\%	49.3	49.4	0.1	0.1\%
${ }^{86.4 \%}$	49.2	49.4	0.1	0.2\%
87.7\%	49.2	49.3	0.1	0.2\%
88.9\%	49.1	49.2	0.1	0.2\%
90.1\%	49.0	49.0	0.0	-0.1\%
91.4\%	49.0	49.0	0.0	0.1\%
92.6\% ${ }_{93.8 \%}$	48.9	49.0	0.1	0.1\%
${ }_{\text {93, }}^{93.80}$	48.7	48.9	0.3	0.6\%
${ }_{965}^{95.11 \%}$	48.5	48.9	0.4	0.8\%
96.3\% ${ }^{97.5 \%}$	48.4	48.4	0.0	0.1\%
997.9\%	48.3	48.4	0.1	0.2\%
98.8\% 100.0\%	${ }_{48.3}^{48.3}$	48.4 48.4	${ }_{0.1}^{0.1}$	${ }_{0.2 \%}^{0.2 \%}$

Table SQ12-1b
Trinity River below Lewiston Dam, Monthly Temperature

PercentExcedanceProbability	June to September			
	DCR 2015 Without	DCR 2015 With Project	Absolute	
	Monthy Temperature	Monthly Temperature	diference	Difference (\%)
	(DEGF)	(LEGF)		
0.0\%	56.3	55.8	-0.5	-0.9\%
1.2\%	55.8	55.2	-0.6	-1.2\%
2.5\%	55.3	55.1	-0.2	-0.4\%
3.7\%	55.2	54.8	-0.3	-0.6\%
4.9\%	54.7	54.5	-0.2	
6.2\%	54.4	54.2	-0.2	-0.4
7.4\%	53.7	53.9	0.1	0.3\%
8.6\%	53.6	53.4	-0.2	0.3\%
9.9\%	53.5	53.4	-0.1	-0.3\%
11.12\%	53.4	53.2	-0.2	-0.4\%
${ }^{123 \% \%}$	${ }_{53.3}$	${ }^{53.0}$	-0.4	-0.7\%
13.6\%	53.3	52.8	-0.5	-0.9\%
14.8\%	52.7	52.6	-0.1	-0.1\%
16.0\%	52.5	52.6	0.1	0.1\%
17.3\%	52.3	52.4	0.2	0.3\%
18.5\%	52.3	52.3	0.1	0.1\%
19.8\%	52.3	52.2	0.0	-0.1\%
${ }^{21.0 \%}$	52.2 522 52	$\begin{array}{r}52.2 \\ 522 \\ \hline\end{array}$	0.1	0.1\%
${ }^{22.55 \%}$	52.2 52.1	52.20	-0.0	0.19
24.7\%	52.1	52.0	0.0	-0.1\%
25.9\%	52.0	52.0	0.0	0.0\%
27.2\%	51.8	51.8	0.0	0.0\%
28.4\%	51.6	51.7	0.1	0.2\%
29.6\%	51.5	51.6	0.1	0.3\%
30.9\%	51.4	51.5	0.1	0.2\%
32.1\%	51.4	51.4	0.0	0.1\%
33.3\%	51.4	51.4	0.0	0.1\%
34.60 3580	51.4 513 1.3	51.4 51.3 1	0.0	${ }^{0.0 \%}$
37.0\%	51.3	51.2	0.0	0.0\%
38.3\%	51.2	51.2	0.0	0.1\%
39.5\%	51.2	51.2	0.0	0.0\%
40.7\%	51.2	51.1	-0.1	-0.2\%
42.0\%	51.0	51.0	0.0	0.1\%
43.2\%	51.0	51.0	0.0	0.0\%
44.4\%	51.0	51.0	0.0	0.0\%
45.7\%	50.9	50.9	0.0	0.0\%
46.9\%	50.9	50.8	-0.1	-0.2\%
${ }^{48.19 \%}$	50.9 509	50.8 507	-0.1	-0.2\%
50.6\%	50.8	50.6	-0.2	-0.4\%
51.9\%	50.8	50.5	-0.3	-0.6\%
53.19\%	50.7	${ }_{50.5}^{50.5}$	-0.2	-0.4\%
54.3\%	50.7	50.4	-0.3	-0.5\%
55.6\%	50.5	50.3	-0.2	-0.4\%
56.8\%	50.4	50.2	-0.2	-0.4\%
58.0\%	50.3	50.2	-0.1	-0.2\%
59.3\%	50.3 50.3	50.2 50.2	-0.1 -0.1	-0.0.2\%
61.7\%	50.2	50.1	-0.1	-0.2\%
63.0\%	50.2	50.1	-0.1	-0.1\%
64.2\%	50.1	50.1	0.0	0.0\%
65.4% 66700	50.0	49.9	0.0	-0.19\%
${ }^{66.77 \%}$	49.9	49.9	0.0	-0.1\%
69.1\%	49.8	49.7 49.6	-0.2 -0.2	- $0.4 .4 \%$
70.4\%	49.7	49.6	-0.1	-0.2\%
71.6\%	49.6	49.6	0.0	0.0\%
72.8\%	49.5	49.5	0.0	-0.1\%
74.1\%	49.5	49.4	-0.1	-0.1\%
75.3\%	49.4	49.4	0.0	0.0\%
${ }^{76.50 \%}$	49.4	49.3	-0.1	${ }^{-0.2 \%}$
79.0\%	${ }_{49.3}$	49.2	-0.1	-0.2\%
80.2\%	49.3	49.2	-0.1	-0.2\%
81.5\%	49.3	49.1	-0.1	-0.3\%
82.7\%	49.1	49.1	-0.1	-0.2\%
84.0\%	49.1	49.0	-0.1	-0.2\%
85.2\%	49.0	49.0	0.0	0.0\%
86.4\%	49.0	48.9	0.0	0.1\%
87.7\%	48.9	48.9	0.0	0.0\%
${ }^{88.9 \%} 9$	48.9 48.8	48.9 48.8	0.0 0.0	-0.0\%
91.4\%	48.7	48.8	0.0	0.1\%
92.6\%	48.7	48.7	0.0	-0.1\%
93.8\%	48.6	48.6	0.0	-0.1\%
95.1\%	48.4	48.1	-0.2	-0.5\%
96.3\%	48.2	48.1	-0.2	-0.4\%
97.5\%	48.1	48.0	-0.1	-0.2\%
98.8\%	48.1	48.0	-0.1	-0.2\%
100.0\%	48.0	47.9	-0.1	0.2\%

	Juy to September		Prob		August to September				
	${ }^{\text {DCR } 2015 \text { Without }} \begin{aligned} & \text { Proiect }\end{aligned}$	DCR 2015 With Project			Percent Exceedanc	DCR 2115 Without	DCR 2015 With Project	Absolute	
Probability (\%)	Monthly Temperature (DEGEF)	$\xrightarrow{\text { Monthly Temperature }}$ (DEGF)		Difference (\%)	Probability $(\%)$	$\underset{\text { Monthy Temperature }}{\text { (DEGF) }}$	$\underset{\text { Monthl Temperature }}{\text { (DEGF) }}$	(DEGF)	Difference (\%)
0.0\%	56.8	55.4	${ }^{-1.4}$	-2.4\%	0.0\%	58.2	56.0	-2.2	-3.7\%
1.2\%	56.0	55.2	-0.8	-1.4\%	1.2\%	57.0	56.0	-1.0	-1.8\%
2.5\%	55.5	55.2	-0.3	-0.5\%	2.5\%	55.9	55.8	-0.1	-0.1\%
3.7\%	55.0	54.8	-0.1	-0.3\%	3.7\%	55.6	55.5	-0.1	-0.1\%
4.9\%	54.7	54.6	-0.1	-0.2\%	4.9\%	55.3	55.4	0.1	0.1\%
6.2\%	54.2	54.1	-0.1	-0.3\%	6.2\%	54.6	55.3	0.7	1.3\%
7.4\%	53.7	53.8	0.1	0.2\%	7.4\%	54.5	54.0	-0.5	-1.0\%
8.9\%	${ }_{53.4}^{53.4}$	53.4	0.0	0.0\%	8.9\%	${ }_{54.4}^{54}$	${ }_{53,8}^{53.8}$	-0.6	-1.1\%
9.9\%	53.4	52.9	-0.5	-0.9\%	9.9\%	53.4	53.6	0.2	0.4\%
11.1\%	53.0	52.9	-0.1	-0.3\%	11.1\%	53.4	53.4	0.0	0.0\%
12.3\%	53.0	52.8	-0.2	-0.3\%	12.3\%	53.4	53.2	-0.2	-0.4\%
13.6\%	52.9	52.6	-0.3	-0.6\%	13.6\%	53.1	53.0	-0.2	-0.3\%
14.8\%	52.7	52.6	-0.1	-0.2\%	14.8\%	53.1	52.9	-0.1	-0.3\%
16.0\%	52.6	52.5	-0.1	-0.1\%	16.0\%	52.9	52.9	0.0	0.1\%
17.3\%	52.5	52.4	-0.1	-0.2\%	17.3\%	52.9	52.7	-0.1	-0.2\%
18.5\%	52.5	52.4	0.0	0.0\%	18.5\%	52.8	52.7	-0.1	-0.3\%
19.8\%	52.4	52.4	0.0	0.0\%	19.8\%	52.8	52.5	-0.3	-0.6\%
21.0\%	52.4	52.4	0.0	0.0\%	21.0\%	52.8	52.5	-0.3	-0.7\%
${ }^{22.22 \%}$	${ }_{52.4}^{52.4}$	${ }_{52.4}$	0.0	0.0\%	22.2\%	${ }_{52.8}^{52.8}$	${ }_{52.4}^{52.4}$	-0.3	-0.6\%
${ }^{23.5 \%}$	${ }_{52.3}$	52.4	0.1	0.2\%	23.5\%	52.4	${ }_{52.3}$	-0.1	-0.3\%
24.7\%	52.2	52.2	0.0	-0.1\%	24.7\%	52.4	52.2	-0.2	-0.4\%
25.9\%	52.2	52.1	-0.1	-0.2\%	25.9\%	52.2	52.1	-0.1	-0.2\%
27.2\%	52.1	52.0	-0.1	-0.1\%	27.2\%	52.2	52.0	-0.2	-0.4\%
28.4\%	52.0	51.9	-0.1	-0.2\%	28.4\%	52.2	51.9	-0.2	-0.5\%
29.6\%	51.9	51.8	-0.1	-0.2\%	29.6\%	52.2	51.9	-0.2	-0.4\%
30.9\%	${ }_{51.8}$	51.7	0.0	-0.1\%	30.9\%	52.2	51.8	-0.4	-0.7\%
32.10% 33.3%	51.8 51.8 1.8	51.7 517	0.0	-0.0.0\%	32.10% 33.3%	52.1 52.1	51.7 51.7	-0.4 -0.4	-0.8\%
34.6\%	51.7	51.6	-0.2	-0.3\%	34.5\%	51.9	51.6	-0.3	-0.5\%
35.8\%	51.7	51.5	-0.2	-0.3\%	35.8\%	51.8	51.6	-0.2	-0.4\%
37.0\%	51.7	51.5	-0.2	-0.3\%	37.0\%	51.8	${ }_{51.6}$	-0.2	-0.4\%
38.3\%	51.7	51.5	-0.2	-0.3\%	38.3\%	51.7	${ }_{51.6}$	-0.2	-0.3\%
39.5\%	51.6	51.5	-0.1	-0.3\%	39.5\%	51.7	51.6	-0.2	-0.3\%
40.7\%	51.6	51.4	-0.1	-0.3\%	40.7\%	51.6	51.6	0.0	0.0\%
42.0\%	51.5	51.4	-0.1	-0.3\%	42.0\%	51.6	51.5	-0.1	-0.1\%
43.2\%	51.5	51.3	-0.2	-0.4\%	43.2\%	51.5	51.5	0.0	-0.1\%
44.4% 45.7%	51.5 51.4	51.3 51.3	-0.2 -0.2	-0.0.4\%	${ }_{4}^{44.4 \%}$	51.4 51.4	51.3 51.2	-0.1 -0.2	-0.19\%
46.9\%	51.3	51.2	-0.1	-0.2\%	46.9\%	51.4	51.2	-0.2	-0.4\%
48.1\%	${ }_{51.3}^{51.3}$	51.2	-0.1	-0.1\%	48.1\%	${ }_{51.3}^{51.3}$	51.2	-0.1	-0.2\%
49.4\%	51.2	51.2	0.0	0.0\%	49.4\%	51.3	51.1	-0.2	-0.3\%
50.6\%	51.1	51.2	0.0	0.1\%	50.6\%	51.1	51.1	0.0	0.0\%
51.9\%	51.0	51.1	0.0	0.0\%	51.9\%	51.1	51.1	0.0	0.0\%
53.19\%	51.0	51.0	-0.1	-0.1\%	53.19\%	51.0	${ }_{51.1}^{51.1}$	0.0	0.1\%
54.3\%	50.9	50.9	-0.1	-0.1\%	54.3\%	51.0	50.9	-0.1	-0.2\%
55.6\%	50.9	50.8	-0.1	-0.2\%	55.6\%	50.9	50.8	-0.1	-0.2\%
56.8\%	50.8	${ }_{50.6}$	-0.2	-0.3\%	56.8\%	50.8 508 50,	50.7 50.7	-0.1	-0.3\%
58.3\%	50.7 50.7	50.5 50.5	-0.2 -0.2	-0.0.3\%	58.0\%	50.8 50.7	50.7 50.6	-0.1 -0.1 0.1	-
60.5\%	50.6	50.4	-0.2	-0.3\%	60.5\%	50.7	50.4	-0.2	-0.5\%
61.7\%	50.6	50.4	-0.2	-0.4\%	61.7\%	50.6	50.3	-0.3	-0.6\%
63.0\%	50.6	50.4	-0.2	-0.4\%	63.0\%	50.6	50.3	-0.3	-0.6\%
64.2\%	50.5	50.4	-0.1	-0.2\%	64.2\%	50.5	50.2	-0.3	-0.5\%
65.4\%	50.4	50.3	-0.1	-0.2\%	65.4\%	50.3	50.2	-0.1	-0.2\%
66.7\%	50.4	50.3	-0.1	-0.2\%	66.7\%	50.3	50.1	-0.2	-0.3\%
67.9\%	${ }^{50.3}$	50.3	-0.1	-0.2\%	67.9\%	50.2	50.1	-0.1	-0.2\%
69.1\%	50.3	50.2	-0.1	-0.1\%	69.1\%	50.2	50.1	-0.1	${ }^{-0.2 \%}$
70.4\%	${ }_{50.3}^{50.3}$	50.2	-0.1	-0.2\%	-70.4\%	50.1	50.1	0.0	-0.19\%
71.2.8\%	50.2 50.1	50.2 50.0	0.0 -0.1	-0.1\%	71.6\%	50.1 50.1	50.1 50.0	0.0 -0.1	-0.0\%
74.1\%	50.0	49.9	-0.1	-0.2\%	74.1\%	50.0	50.0	0.0	0.0\%
75.3\%	49.9	49.9	0.0	0.0\%	75.3\%	50.0	50.0	0.0	0.0\%
76.5\%	49.9	49.9	0.0	0.0\%	76.5\%	49.9	49.9	0.0	0.0\%
77.8\%	49.8	49.8	0.0	0.1\%	77.8\%	49.9	49.8	0.0	-0.1\%
79.0\%	49.8	49.8	0.0	0.1\%	79.0\%	49.8	49.7	-0.2	-0.4\%
80.2\%	49.8	49.7	0.0	-0.1\%	80.2\%	49.8	49.7	-0.1	-0.3\%
81.5\%	49.7	49.7	-0.1	-0.2\%	81.5\%	49.7	49.7	-0.1	${ }^{-0.2 \%}$
-	49.7	49.6 49.6	-0.11	-0.1\%	-	49.6 49.6	49.6	0.0	0.0\%
85.2\%	49.6	49.6	0.0	-0.1\%	85.2\%	49.6	49.6	0.0	0.0\%
86.4\%	49.6	49.6	0.0	0.0\%	86.4\%	49.5	49.6	0.0	0.1\%
87.7\%	49.6	49.6	0.0	0.0\%	87.7\%	49.4	49.5	0.1	0.2\%
88.9\%	49.5	49.5	${ }^{0.0}$	${ }^{-0.1 \%}$	88.9\%	49.4	49.5	0.0	0.1\%
${ }_{9}^{90.14 \%}$	49.5	49.4 49.4	0.0 0.0	-0.0.0.0\%	${ }_{\text {90. }}^{90.19 \%}$	49.4 49.4	49.4 49.3	0.0 -0.1	-0.0.0\%
92.6\%	49.4	49.3	-0.2	-0.3\%	92.6\%	49.3	49.3	-0.1	-0.2\%
93.8\%	49.4	49.3	-0.2	-0.4\%	93.8\%	49.2	49.2	0.0	-0.1\%
95.1\%	49.4	49.2	-0.1	-0.3\%	95.1\%	49.2	49.1	0.0	-0.1\%
${ }^{96.3 \%} 9$	49.3	49.1	-0.1	${ }^{-0.3 \%}$	96.3\% ${ }_{\text {97.5\% }}$	49.0	49.0	0.0	0.0\%
98.8\%	48.8	48.6	-0.2	-0.4\%	98.8\%	48.7	48.6	-0.1	-0.2\%
100.0\%	48.7	48.6	-0.1	-0.3\%	100.0\%	48.6	48.4	-0.2	-0.4\%

Figure SQ13-1b
clear Creek below Whiskeytown, Monthly Temperatur

Table SQ13-1b

October				
Percent Exceedance	DCR 2015 Without Proiet	DCR 2015 With Project		Relative
$\begin{aligned} & \text { Probability } \\ & \text { (\%) } \end{aligned}$	Monthly Temperature (DEGF)	Monthly Temperature (DEGFF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	Difference (\%)
0.0\%	55.8	55.7	${ }^{-0.1}$	-0.1\%
1.2\%	55.6	55.4	-0.2	-0.40
2.5\%	55.4	55.3	-0.1	-0.1\%
3.7\%	55.1	55.0	-0.1	-0.2\%
4.9\%	54.6	54.8	0.2	0.4\%
6.2\%	54.6	54.8	0.2	0.4\%
7.4\%	54.5	54.7	0.2	0.4\%
8.6\%	54.4	54.5	0.2	0.3\%
9.9\%	54.3	54.2	-0.1	-0.2\%
11.1.1\%	54.3	54.1	-0.2	-0.3\%
12.3\% 13.6\%	54.1 53.9	53.8 53.8	-0.3 0.0	-0.0\% 0
14.8\%	${ }_{53.9} 5$	53.8	-0.1	-0.1\%
16.0\%	53.8	53.8	0.0	0.0\%
17.3\%	53.7	53.7	0.0	0.0\%
18.5\%	53.6	53.5	-0.1	-0.3\%
19.8\%	53.6	53.4	-0.2	-0.4\%
21.0\%	53.4	53.4	-0.1	-0.1\%
22.2\%	53.4	53.2	-0.2	-0.4\%
23.5\%	53.3	53.1	-0.2	-0.4\%
24.7\%	53.3	52.9	-0.3	-0.6\%
25.9\%	53.2	52.9	-0.4	-0.7\%
27.2% 28.4%	${ }_{53.1}^{53.1}$	52.8 52.8	-0.3 -0.4	-
29.6\%	53.0	52.7	-0.3	-0.5\%
30.9\%	52.9	52.7	-0.2	-0.4\%
32.1\%	52.8	52.7	-0.1	-0.1\%
33.3\%	52.7	52.6	-0.1	-0.2\%
34.6\%	52.7	52.6	-0.1	-0.2\%
35.8\%	52.7	52.6	-0.1	-0.1\%
37.0\%	52.6	52.6	-0.1	-0.1\%
38.3\%	52.6 52.5	52.5 52.5	-0.1 0.0	-0.1\%
40.7\%	52.5	52.3	-0.2	-0.3\%
42.0\%	52.4	52.3	-0.2	-0.3\%
43.2\%	52.3	52.2	-0.1	-0.3\%
44.4\%	52.3	${ }_{52.1}^{52.1}$	-0.2	-0.4\%
45.7\%	52.3	52.0 520	-0.3	-0.6\%
46.9\%	52.2	52.0	-0.2	-0.4\%
48.1\%	52.1	51.9	-0.1	-0.2\%
49.4\%	52.0	51.9	-0.1	-0.2\%
50.6\%	52.0	51.9	-0.1	-0.2\%
51.9\%	52.0	51.8	-0.1	-0.2\%
53.1\%	51.9	51.7	-0.2	-0.4\%
54.3\%	51.8	51.7 517	-0.1	${ }^{-0.3 \%}$
55.6\%\%	51.7 51.5	51.7 51.7	${ }_{0}^{0.0}$	
58.0\%	51.5	51.6	0.1	0.3\%
59.3\%	51.4	51.4	0.0	0.0\%
60.5\%	51.4	51.2	-0.2	-0.3\%
61.7\%	51.3	51.1	-0.2	-0.4\%
63.0\%	51.2	51.1	-0.1	-0.1\%
64.2\%	51.0	${ }_{51.1}$	0.1	0.2\%
65.4\%	51.0	51.1	0.1	0.1\%
66.7\%	50.9	51.0	0.1	0.2\%
- 67.9%	50.9 50.9	50.9 50.9	0.0 0.0	-
79.4\%	50.9	50.9	0.0	0.0\%
71.6\%	50.7	50.9	0.1	0.3\%
72.8\%	50.7	50.8	0.1	0.2\%
74.1\%	50.7	50.7	0.1	0.1\%
75.3\%	50.7	50.7	0.1	0.1\%
76.5\%	50.7	50.7	0.0	0.1\%
77.8\%	50.5	50.7	0.2	0.3\%
79.0\%	50.5 50.5	50.5 50.5	0.0	0.0\%
81.5\%	50.5	50.4	0.0	-0.1\%
${ }^{82.79 \%}$	50.4	50.4	0.0	-0.1\%
84.0\%	50.4	50.4	0.0	0.0\%
85.2\%	50.3	50.3	0.1	0.1\%
86.4\%	50.2 50.2	50.3 50.2	${ }_{0}^{0.1}$	${ }_{0}^{0.12 \%}$
88.9\%	50.0	50.1	0.0	0.1\%
90.1\%	50.0	50.0	0.0	0.0\%
91.4\%	49.7	49.9	0.1	0.3\%
92.6\%	49.6	49.7	0.1	0.2\%
93.8\%	49.5	49.7	0.2	0.3\%
95.11\%	49.4	49.6	0.3	0.5\%
${ }^{96.3 \%} 9$	49.4 493	49.5 49.4	${ }_{0}^{0.1}$	${ }_{0}^{0.3 \%}$
98.8\%	49.2	48.9	-0.2	-0.5\%
100.0\%	49.2	48.9	0.0	-0.5\%

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceance } \\ \text { Probability } \end{array} \\ (\%) \\ \hline \end{gathered}$	January			RelativeDifference (\%)
	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (eEGFF) } \end{aligned}$	
	$\underset{\substack{\text { Monthly Temperature } \\ \text { (DEEF) }}}{\text { and }}$	Monthly Temperature (DEEF) (
0.0\%	48.0	47.9	-0.1	-0.1\%
1.2\%	47.2	47.2	0.0	0.0\%
2.5\%	47.0	47.0	0.0	0.1\%
3.7\%	46.4	46.1	-0.3	-0.6\%
4.9\%	45.7	45.7	0.0	
6.2\%	45.6	45.6	0.0	0.0\%
7.4\%	45.6	45.6	0.0	0.0\%
8.6\%	45.5	45.5	0.0	-0.1\%
9.9\%	45.4	45.5	0.0	0.1\%
11.1\%	45.4	45.4	0.1	0.2\%
12.3\%	45.2	45.2	0.0	0.1\%
13.6\%	45.1	45.0	0.0	-0.1\%
14.8\%	44.9	44.9	0.0	0.0\%
16.0\%	44.9	44.9	0.0	0.0\%
17.3\%	44.7	44.8	0.1	0.2\%
18.5\%	44.7	44.7	0.0	0.0\%
19.8\%	44.7	44.7	0.0	0.0\%
21.0\%	44.7	44.6	0.0	0.0\%
22.2\%	44.6	44.6	0.0	-0.1\%
23.5\%	44.6	44.6	0.0	0.0\%
24.7\%	44.6	44.6	0.0	0.0\%
25.9\%	44.6	44.6	0.0	0.0\%
27.2\%	44.6	44.5	0.0	0.0\%
28.4\%	44.5	44.5	0.0	0.0\%
29.6\%	44.4	44.4	0.0	0.1\%
- 30.9%	44.4	44.4	0.0	0.1\%
32.1\%	44.4	44.4	0.0	0.0\%
33.3\%	44.3	44.3	0.0	0.0\%
34.6\%	44.3	44.3	0.0	0.1\%
35.8\%	44.2	44.2	0.0	0.0\%
37.0\%	44.2	44.2	0.0	0.1\%
38.3\%	44.2	44.2	0.0	0.1\%
39.5\%	44.1	44.1	0.0	0.0\%
40.7\%	44.1	44.1	0.0	0.0\%
42.0\%	44.1	44.1	0.0	0.0\%
43.2\%	44.0	44.1	0.0	0.1\%
44.4\%	44.0	44.0	0.0	-0.1\%
45.7\%	44.0	43.9	-0.1	-0.3\%
46.9\%	43.9	43.9	0.0	-0.1\%
48.19\%	43.9	43.8	-0.1	-0.2\%
49.4\%	43.8 438	43.8 438	${ }^{0.0}$	0.0\%
50.6\%	43.8	43.8	0.0	0.0\%
51.9\%	43.7	43.7	0.0	0.0\%
53.19\% 54.3%	43.7	43.7	0.0	-0.1\%
54.3\%	43.7	43.7	0.0	-0.1\%
55.6\%	43.7	43.7	-0.1	-0.1\%
5.6.8\% 58.0\%	43.7	43.7	0.0	-0.1\%
5. 5.0% 59.3%	43.7	43.7	0.0	-0.1\%
59.3\%	43.7	43.7	0.0	0.0\%
	${ }^{43.6}$	43.7	0.0	0.1\%
${ }^{61.77 \%}$	43.6	43.6	0.0	0.0\%
-630\%	43.6	43.6	0.0	0.0\%
64.20% 65.4%	43.6 435	43.6 435	0.0	0.1\%
65.4\%	43.5	43.5	0.0	0.0\%
66.7\% 67.9%	43.5	43.5	0.0	-0.1\%
67.9\%	43.5	43.5	0.0	0.0\%
69.1\% 70.4%	43.4	43.5	0.0	0.1\%
70.4\%	43.4	43.4	0.0	0.0\%
71.6% 72.8%	43.3	43.3	0.0	0.0\%
72.8\%	${ }_{43.3}^{43.3}$	${ }_{43.3}^{43.3}$	0.0 0.0	${ }_{0}^{0.0 \% \%}$
75.3\%	43.3	43.3	0.0	0.0\%
76.5\%	43.2	43.2	0.0	0.0\%
77.8\%	43.2	43.2	0.0	-0.1\%
79.0\%	43.2	43.1	0.0	-0.1\%
80.2\%	43.1	43.1	0.0	0.0\%
81.5\%	43.1	43.1	0.0	0.0\%
82.7\%	43.1	43.1	0.0	-0.1\%
84.0\%	43.1	43.0	-0.1	-0.2\%
${ }^{85.2 \%}$	43.0	43.0	0.0	0.0\%
	43.0	43.0	0.0	0.0\%
87.7\%	43.0	43.0	0.0	0.0\%
88.9\%	42.9	${ }^{42.8}$	-0.1	-0.3\%
90.1\%	42.8	42.8	0.0	-0.1\%
91.4\% ${ }_{9} 9.6 \%$	42.8	42.8	0.0	0.0\%
92.9\% ${ }_{\text {93.8\% }}$	42.8	42.7	-0.1	-0.1\%
${ }_{95.1 \%}^{93.8 \%}$	42.6	42.5	0.0	-0.1\%
${ }_{995}^{95.19 \%}$	42.6	42.5	-0.1	-0.1\%
${ }_{9}^{96.3 \%} 9$	42.5	42.5	-0.1	-0.2\%
${ }^{97.5 \%}$	42.5 42.4	42.4 42.4	0.0 0.0	-0.0.0\%
100.0\%	42.4	42.4	0.0	0.0\%

Table SQ13-1b

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	February			
	DCR 2015 Without Proiect	DCR 2015 With Project	Absolute	Relative
	Monthy Temperature	Monthy Temperature	Difference (DEGF)	Difference (\%)
0.0\%	48.4	48.4	0.0	0.0\%
1.2\%	46.5	46.7	0.1	0.3\%
2.5\%	46.3	46.5	0.3	0.6\%
3.7\%	45.7	46.2	0.5	1.2\%
4.9\%	45.6 454	45.7 45.5	${ }_{0}^{0.1}$	${ }^{0.3 \%}$
${ }^{6.2 \%}$	45.4	${ }^{45.5}$	0.1	0.3\%
7.4\%	45.2	45.4	0.1	0.3\%
- ${ }_{\text {\% }}^{\text {9.9\% }}$	44.9	45.3 449	${ }_{0}^{0.4}$	0.8\%
11.1\%	44.8	44.8	0.0	0.1\%
12.3\%	44.8	44.8	0.0	0.0\%
13.6\%	44.7	44.7	0.0	0.1\%
14.8\%	44.7	44.7	0.0	0.1\%
16.0\%	44.7	44.7	0.0	0.1\%
17.3\%	44.6	44.7	${ }^{0.1}$	${ }^{0.2 \%}$
19.8\%	44.5	44.6	0.1	0.2\%
21.0\%	44.4	44.5	0.1	0.3\%
22.2\%	44.3	44.3	0.0	0.0\%
23.5\%	44.3	44.3	0.0	0.1\%
24.7\%	44.3	44.3	0.1	0.1\%
25.9\%	44.3	44.3	0.0	0.0\%
27.2\%	44.2	44.3	0.0	0.1\%
28.4\%	44.2	44.3	0.0	0.0\%
29.6\%	44.1 44.1	44.2 44.1	0.1 0.0	${ }_{0}^{0.0 \% \%}$
${ }^{32.1 \%}$	44.1	44.1	0.0	0.1\%
33.3\%	44.1	44.1	0.0	0.0\%
34.6\%	44.1	${ }_{44.1}$	0.0	0.0\%
35.8\%	44.0	44.1	0.0	0.1\%
37.0\%	44.0	44.1	0.0	0.1\%
38.3\%	44.0	44.1	0.0	0.1\%
39.5\%	44.0	44.0	0.0	0.1\%
40.7\%	43.9	44.0	0.1	0.3\%
42.0\%	43.9	43.9	0.0	${ }^{0.0 \% \%}$
${ }^{43.2 \%} 40.4 \%$	43.9 43.9	43.9 43.9	0.0 0.0	${ }_{\text {en }}^{0.1 \%}$
45.7\%	43.9	43.9	0.0	0.0\%
46.9\%	43.8	43.8	0.0	0.0\%
48.1\%	43.8	43.8	0.0	-0.1\%
49.4\%	43.8	43.8	0.0	0.0\%
50.6\%	43.7	43.7	0.0	0.0\%
51.9\%	43.7	43.7	0.0	0.0\%
53.1\%	43.7	43.7	0.0	0.0\%
54.3\%	43.6	43.7	0.0	0.1\%
55.6\%	43.6 43.6	43.6 43.5	0.0 -0.1	-0.1\%
58.0\%	43.5	43.5	0.0	0.0\%
59.3\%	43.5	43.5	0.0	0.1\%
${ }^{60.50 \%}$	43.5	43.5	0.0	0.0\%
61.7% 630%	43.5 435	${ }_{435}^{43.5}$	0.0	0.0\%
63.0\%	43.5	${ }^{43.5}$	0.0	0.0\%
64.2\%	43.4	43.4	0.0	${ }^{0.10 \%}$
65.4\%	43.4	43.4	0.0	0.0\%
66.7\%	43.4	43.4	0.0	0.0\%
67.9\%	43.3	43.4	0.0	0.1\%
69.1\%	43.3	43.4	0.0	${ }_{0}^{0.1 \%}$
70.4\% ${ }_{\text {71.6\% }}$	43.3 43.3	${ }_{43.3}^{43.3}$	0.0 0.0	${ }_{0.1 \%}^{0.1 \%}$
72.8\%	43.3	43.3	0.0	0.1\%
74.1\%	43.3	43.3	0.0	0.1\%
75.3\%	43.3	43.2	0.0	-0.1\%
76.5\%	43.2	43.2	0.0	0.0\%
77.8\%	43.2	43.2	0.0	0.0\%
79.0\%	43.2	${ }_{4}^{43.2}$	0.0	0.0\%
80.2\%	43.2	43.1	0.0	-0.1\%
81.5\%	43.1	43.1	0.0	0.0\%
82.7\%	43.1	43.1	0.0	0.0\%
84.0\%	43.1	43.0	-0.1	-0.2\%
${ }^{85.2 \%}$	43.0 43.0	43.0 43.0	0.0 0.0	-0.10\%
87.7\%	43.0	43.0	0.0	-0.1\%
88.9\%	43.0	43.0	0.0	-0.1\%
90.11\%	42.9	42.9	0.0	0.0\%
91.4\%	42.9	42.9	0.0	0.0\%
92.6\%	42.9	42.9	0.0	-0.1\%
93.8\%	42.9	42.7	-0.2	-0.4\%
95.1\%	42.7	42.7	0.0	0.0\%
96.3\%	42.5	${ }^{22.5}$	0.0	0.0\%\%
97.5\%	42.5	${ }^{42.3}$	-0.2	- $0.0 .6 \%$
988.8\% 100.0\%	${ }_{42.1}^{42.1}$	${ }_{42.2}^{42.2}$	${ }_{0.1}^{0.1}$	- ${ }_{0}^{0.3 \%}$

May				
Percent Excedance	DCR 2015 Without	DCR 2015 With Project		
Probability	Monthy Temperature	Monthly Temperature	(ifference	Difference (\%)
(\%)	(DEGF)	(DEGF)		
0.0\%	50.2	50.2	0.0	0.0\%
1.2\%	50.1	50.0	0.0	0.0\%
2.5\%	50.0	49.7	${ }^{0.3}$	-0.7\%
3.7\%	49.5	49.7	0.2	0.4\%
4.9\%	49.4	49.5	0.0	0.0\%
6.2\%	49.2	49.4	0.2	0.4\%
7.4\%	49.0	49.0	0.0	0
8.6\%	48.7	48.9	0.2	0.4\%
9.9\%	48.5	48.8	0.3	0.7\%
11.19\%	48.4	48.6	0.1	0.3\%
12.3\%	48.4	48.5	0.1	0.1\%
13.6\%	48.4	48.5	0.0	0.1\%
14.8\%	48.3	48.4	0.2	0.4\%
16.0\%	48.2	48.3	0.1	0.1\%
17.3\%	48.2	48.2	0.1	0.1\%
18.5\%	48.2	48.2	0.0	0.1\%
19.8\%	48.1	48.2	0.0	0.1\%
21.0\%	48.1	48.2	0.0	0.1\%
22.2\%	48.1	48.2	0.0	0.1\%
23.5\%	48.1	48.1	0.0	0.0\%
24.7\%	48.1	48.1	0.0	0.0\%
25.9\%	48.1	48.1	0.0	0.1\%
27.2\%	48.0	48.1	0.0	0.0\%
28.4\%	48.0	48.0	0.1	0.2\%
29.6\%	47.9	48.0	0.1	0.1\%
30.9\%	47.9	47.9	0.0	0.1\%
32.1\%	47.9	47.9	0.0	0.0\%
33.3\%	47.8	47.8	0.0	0.0\%
34.6\%	47.8	47.8	0.0	-0.1
35.8\%	47.8	47.8	-0.1	-0.1\%
37.0\%	47.8	47.8	0.0	-0.1\%
38.3\%	47.8	47.7	0.0	-0.1\%
39.5\%	47.8	47.7	0.0	-0.1\%
40.7\%	47.7	47.7	0.0	0.0\%
42.0\%	47.7	47.7	0.0	-0.1\%
43.2\%	47.7	47.7	-0.1	-0.1\%
44.4\%	47.7	47.6	0.0	-0.1\%
45.7\%	47.6	47.6	0.0	-0.1\%
4.9.9\%	47.6	47.6	0.0	0.0\%
${ }^{48.19 \%}$	47.6	47.5	-0.1	-0.1\%
49.4\% 50.6\%	47.5 475	47.5 475	0.0	${ }_{\text {- }}^{0.01 \%}$
51.9\%	47.5	47.5	0.0	0.0\%
53.1\%	47.5	47.5	0.0	0.0\%
54.3\%	47.5	47.5	0.0	0.0\%
55.6\%	47.5	47.4	0.0	0.0\%
56.8\%	47.5	47.4	0.0	0.0\%
58.0\%	47.4	47.4	0.0	-0.1\%
59.3\%	47.4	47.4	-0.1	-0.1\%
${ }^{60.5 \%}$	47.3	47.3	0.0	0.0\%
${ }^{61.77 \%}$	47.3	47.3	0.0	0.0\%
-63.0\%	47.3	47.3	0.0	0.0\%
64.20% 65.40	${ }^{47.3}$	${ }^{47.3}$	0.0	0.0\%
65.4\%	47.3	47.3	0.1	0.1\%
${ }^{667.7 \%}$	47.3	47.3	0.0	0.0\%
-67.9\%	${ }_{471}^{47.2}$	47.2	-0.1	-0.1\%
69.19\%	47.1	47.2	0.1	0.2\%
70.4\%	47.1	47.2	0.1	0.2\%
71.6\% ${ }_{\text {72.8\% }}$	47.1	47.1	0.1	0.2\%
$7.2 .8 \%$ 74.1%	47.1	47.1	0.1	0.2\%
7.1.1\% 7 75.3%	47.0	47.1	0.0	0.1\%
7.15% 77.5% 78	47.0	47.0	0.0	0.1\%
76.5% 778%	46.9	47.0	0.1	0.1\%
77.8\%	46.8	47.0	0.2	0.3\%
79.0\%	46.8	46.8	-0.1	-0.1\%
80.2\%	46.8	46.7	0.0	0.0\%
81.5\%	46.7	46.7	0.0	-0.1\%
82.7\% 84.0%	46.7	46.7	0.0	0.0\%
84.0% 85.2%	46.7	46.7	0.0	0.0\%
85.2\%	46.7	46.6	-0.1	-0.1\%
86.4% 87.7%	46.5	46.6	0.1	0.2\%
87.7\% 88.9%	46.5	46.4	0.0	-0.1\%
${ }^{88.9 \%}$ 90.1\%	46.5	46.4	-0.1	-0.1\%
${ }_{\text {911.4\% }}^{90.19 \%}$	46.4	46.2	-0.3	
91.4\%	46.2	46.0	-0.2	-0.4\%
	46.0 46.0	45.9 45.9	-0.11	-0.2\%
${ }_{9}^{93.8 \%}$	46.0	45.9	-0.1	0.2\%
${ }_{995}^{95.19 \%}$	45.9	45.9	0.0	0.1\%
96.3\% ${ }_{\text {97.5\% }}$	45.9	45.8	0.0	-0.1\%
97.5\% ${ }_{\text {98.8\% }}$	45.9	45.8	-0.1	-0.2\%
98.8\% 100.0\%	45.2	45.2	0.0	0.0\%
100.0\%	45.2	45.2	0.0	0.0\%

Table SQ13-1b

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	June			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	DCR 2015 Without	DCR 2015 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (DEGF) } \end{gathered}$	
	Monthy Temperature	Monthly Temperature		
	(DEGF)	(DEGF)		
0.0\%	51.6	52.6	0.9	1.8\%
1.2\%	51.6	51.7	0.1	0.1\%
2.5\%	51.5	51.6	0.1	0.2\%
3.7\%	51.1	51.2	0.0	0.0\%
4.9\%	51.0	51.1	0.1	0.2\%
6.2\%	50.9	51.0	0.2	0.3\%
7.4\%	50.8	50.8	0.0	0.0\%
8.6\%	50.8	50.3	-0.5	-0.9\%
9.9\%	50.4	50.2	-0.1	-0.2\%
11.1\%	50.3	50.2	-0.1	-0.2\%
12.3\%	50.2	50.2	-0.1	-0.1\%
13.6\%	50.2	50.0	-0.2	-0.4\%
14.8\%	50.1	50.0	-0.1	-0.3\%
16.0\%	50.0	49.9	-0.1	-0.1\%
17.3\%	49.9	49.9	0.0	0.0\%
18.5\%	49.9	49.8	-0.1	-0.3\%
19.8\%	49.7	49.8	0.1	0.1\%
${ }_{\text {22, }}^{21.0 \%}$	49.7 49.7	49.8	0.1 0.0	${ }^{0.1 \%}$
${ }_{2}{ }_{23.5 \%}^{22.2 \%}$	49.6	${ }_{49.6}$	0.0	0.0\%
24.7\%	49.6	49.6	0.0	0.0\%
25.9\%	49.6	49.6	0.0	0.1\%
27.2\%	49.5	49.6	0.0	0.0\%
28.4\%	49.5	49.6	0.0	0.1\%
29.6\%	49.5	49.5	0.0	0.0\%
30.9\%	49.5	49.5	0.0	0.0\%
32.1\%	49.5	49.4	0.0	-0.1\%
33.3\%	49.4	49.4	-0.1	-0.1\%
34.6% 35.8%	49.4 49.4	49.4 49.4	-0.1	-0.1\%
37.0\%	49.4	49.4	0.0	0.0\%
38.3\%	49.3	49.2	0.0	-0.1\%
39.5\%	49.2	49.2	0.0	-0.1\%
40.7\%	49.2	49.2	0.0	-0.1\%
42.0\%	49.2	49.2	0.0	-0.1\%
43.2\%	49.1	49.1	-0.1	-0.1\%
44.4\%	49.1	49.1	-0.1	-0.1\%
45.7\%	49.1	49.1	0.0	0.0\%
46.9\%	49.1	49.0	0.0	-0.1\%
${ }^{48.19 \%}$	${ }_{49.1}^{49.1}$	49.0 49.0	0.0 0.0	-0.1\%
50.6\%	49.1	49.0	0.0	0.0\%
51.9\%	49.1	49.0	0.0	-0.1\%
53.19\%	49.0	49.0	0.0	0.0\%
54.3\%	49.0	48.9	0.0	-0.1\%
55.6\%	49.0	48.9	0.0	0.0\%
56.8\%	49.0	48.9	-0.1	-0.1\%
58.0\%	48.9	48.9	0.0	-0.1\%
59.3\%	48.9	48.9	0.0	-0.1\%
	48.9 48.9	48.9 48.9	0.0	-0.0\%
63.0\%	48.9	48.9	0.0	0.0\%
64.2\%	48.9	48.8	0.0	0.0\%
65.4\%	48.8	48.8	0.0	0.0\%
${ }^{66.77 \%}$	48.7	48.8	0.0	0.1\%
67.9\%	48.7	48.8	0.0	0.1\%
69.1\%	48.7	48.7	0.0	0.0\%
70.4\%	48.7	48.7	0.0	0.0\%
71.6\%	48.6	48.6	0.0	0.0\%
72.8\%	48.6	48.6	0.0	0.0\%
74.1\%	48.6	48.5	0.0	-0.1\%
75.3\%	48.6	48.5	0.0	-0.1\%
76.5\%	48.5	48.5	-0.1	-0.1\%
79.0\%	${ }_{48.4}$	${ }_{48.3}$	-0.1	-0.2\%
80.2\%	48.3	48.3	0.0	0.0\%
81.5\%	48.3	48.3	0.0	0.0\%
82.7\%	48.3	48.2	-0.1	-0.1\%
84.0\%	48.1	48.1	0.0	0.0\%
85.2\%	48.1	48.1	0.0	0.0\%
86.4\%	48.0	48.0	-0.1	-0.2\%
87.7\%	48.0	47.9	-0.1	-0.1\%
	48.0 47.8	${ }_{47.9}^{47.9}$	-0.1 0.0	-0.1\%
91.4\%	47.8	47.8	0.0	0.0\%
92.6\%	47.7	47.7	0.0	0.1\%
93.8\%	47.6	47.6	0.0	0.0\%
95.1\%	47.5	47.5	0.0	0.0\%
96.3\%	47.3	47.3	-0.1	${ }^{-0.29 \%}$
97.5\%	47.0	46.9	-0.1	-0.3\%
98.8\%	46.7	46.7	0.0	0.0\%
100.0\%	46.7	46.7	0.0	0.0\%

September				
Percent Exceedance	$\begin{aligned} & \hline \text { DCR 2015 Without } \\ & \text { Proiet } \end{aligned}$	DCR 2015 With Project	Absolute	Relative
Probability Obo	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	Difference	Difference (\%)
0.0\%	56.4	56.0	${ }^{0.3}$	0.6\%
1.2\%	56.1	55.4	-0.7	-1.2\%
2.5\%	55.5	${ }_{55.3}$	-0.2	-0.4\%
3.7\%	55.0	55.3	0.4	0.6\%
4.9\%	54.6	55.0	0.4	0.7\%
6.2\%	54.6	54.6	0.0	0.1\%
7.4\%	54.4	54.5	0.1	
8.6\%	54.3	54.4	0.2	
9.9\%	54.2	54.1	-0.1	
11.1\%	54.1	53.9	-0.2	-0.4\%
12.3\%	53.9	53.8	-0.1	-0.1\%
13.6\%	53.9	53.8	-0.1	-0.2\%
14.8\%	53.8	53.6	-0.2	-0.4\%
16.0\%	53.7	53.5	-0.1	-0.2\%
17.3\%	53.5	53.5	0.0	0.0\%
18.5\%	53.5	53.5	0.0	-0.1\%
19.8\%	53.5	53.4	-0.1	0.2
21.0\%	53.4	53.3	-0.1	-0.19
22.2\%	53.3	53.2	-0.1	
23.5\%	53.3	53.1	-0.2	-0.4\%
24.7\%	53.3	53.0	-0.3	-0.6\%
25.9\%	53.3	52.9	-0.3	-0.6\%
27.2\%	53.2	52.8	-0.4	-0.8\%
28.4\%	53.0	52.8	-0.2	-0.3\%
29.6\%	52.9	52.6	-0.2	-0.5\%
30.9\%	52.9	52.6	-0.3	-0.5\%
32.1\%	52.7	52.6	-0.2	0.3\%
33.3\%	52.6	52.6	0.0	0.1\%
34.6\%	52.6	52.6	0.1	
35.8\%	52.6	52.5	-0.1	-0.1\%
37.0\%	52.5	52.5	0.0	0.0\%
38.3\%	52.4	52.5	0.1	0.2\%
39.5\%	52.4	52.4	0.0	-0.1\%
40.7\%	52.4	52.3	-0.1	-0.1\%
42.0\%	52.4	52.3	-0.1	-0.1\%
43.2\%	52.4	52.3	-0.1	-0.2\%
44.4\%	52.3	52.3	-0.1	-0.2\%
45.7\%	52.3	52.3	-0.1	-0.2\%
46.9\%	52.3	52.2	0.0	0.0\%
48.1\%	52.3	52.2	0.0	-0.1\%
49.4\%	52.2	52.0	-0.2	
50.6\%	52.2	51.9	-0.3	-0.5\%
51.9\%	52.1	51.7	-0.4	-0.7\%
53.19\%	51.9	${ }_{517}^{51.7}$	-0.2	-0.4\%
54.3\%	51.9	51.7	-0.2	-0.4\%
55.6\%	51.9	51.6	-0.3	-0.6\%
56.8\%	${ }_{51.8}^{51.8}$	51.5	-0.3	${ }^{-0.5 \%}$
58.0\%	51.8	51.5	-0.3	-0.5\%
59.3\%	51.7	51.4	-0.4	-0.7\%
60.5\%	51.6	51.4	-0.2	0.4\%
61.7\%	51.5	51.3	-0.2	0.4\%
63.0\%	51.5	51.3	-0.2	0.4\%
${ }^{64.2 \%}$	51.5	51.3	-0.2	0.4\%
65.4\%	51.3	51.3	0.0	0.0\%
66.7\%	51.2	51.3	0.0	0.0\%
67.9\%	51.2	${ }_{51.2}$	0.0	-0.1\%
69.1\%	51.2	51.2	0.0	0.1\%
70.4\%	${ }_{51.1}^{51 .}$	${ }_{51.1}^{51.1}$	0.0	0.0\%
71.6\%	51.1	51.0	-0.1	-0.1\%
72.8\%	51.0	51.0	0.0	0.0\%
74.19\%	51.0	50.9	0.1	0.2\%
75.3\%	51.0	50.8	-0.1	-0.2\%
76.5% 778%	50.9	50.8	-0.1	-0.2\%
77.8\%	50.9	50.8	-0.1	-0.2\%
79.0\%	50.8	50.8	0.0	0.0\%
80.2\%	50.8 508	50.7	-0.1	-0.1\%
81.5\%	50.8	50.7	-0.1	0.1\%
827.7\% 84.0%	50.7	50.7	0.0	0.1\%
84.0\%	50.7	50.7	0.0	0.0\%
85.2\%	50.6	50.7	0.1	0.2\%
86.4\%	50.5	50.6	0.1	0.2\%
87.7\% 88.9\%	50.5	50.6	0.0	0.1\%
88.9\%	50.5	50.5	0.0	0.0\%
90.1\%	50.5	50.5	0.0	0.0\%
91.4\%	50.5	50.4	0.0	-0.1\%
92.6\%	50.3	50.4	0.1	0.1\%
93.8\%	50.2	50.3	0.0	0.1\%
95.19\%	50.2	50.1	-0.1	0.2\%
96.3\% ${ }_{\text {97.5\% }}$	50.1	49.9	-0.1	-0.3\%
997.5\%	49.7	49.6	-0.1	-0.2\%
98.8\% 100.0\%	49.7	49.3	-0.4	-0.9\%
100.0\%	49.7	49.3	-0.4	0.9\%

Table SQ13-1b
Clear Creek below Whiskeytown, Monthly Temperature

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \\ \text { low } \end{gathered}$	$\begin{aligned} & \text { DCR 2015 Without } \\ & \hline \end{aligned}$	DCR 2015 With Project		Relative
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Pifference } \\ & \text { (DEGFF) } \end{aligned}$	Difference (\%)
0.0\%	53.3	53.2	${ }^{0.1}$	-0.2\%
1.2\%	53.2	53.1	-0.1	-0.1\%
2.5\%	53.1	53.1	0.0	-0.1\%
3.7\%	53.1	52.9	-0.2	-0.4\%
4.9\%	52.9	52.8	-0.1	-0.2\%
6.2\%	52.7	52.6	-0.1	-0.2\%
7.4\%	52.6	52.6	0.0	-0.1\%
8.6\%	52.5	52.4	-0.1	-0.2\%
9.9\%	52.5	52.4	-0.1	-0.1\%
11.1.1\%	52.5	52.4	-0.1	-0.2\%
123\% ${ }_{\text {13.6\% }}$	52.1 52.0	52.1 52.1	${ }_{0}^{0.1}$	${ }_{0}^{0.0 \%}$
14.8\%	52.0	52.0	0.0	0.0\%
16.0\%	52.0	52.0	0.0	0.0\%
17.3\%	52.0	52.0	0.0	0.0\%
18.5\%	52.0	52.0	0.0	-0.1\%
19.8\%	52.0	52.0	0.0	0.0\%
21.0\%	51.8	51.9	0.1	0.2\%
22.2\%	${ }_{51.8}$	${ }_{51.8}$	0.0	0.1\%
23.5\%	51.8	51.8	0.1	0.1\%
24.7\%	51.7	51.8	0.1	0.1\%
25.9\%	51.7	51.7	0.0	0.0\%
27.2\%	51.7 51.6	51.6 515 515	0.0	0.0\%
${ }^{28.96 \%}$	${ }_{51.6}$	51.5	-0.1	${ }^{-0.2 \%}$
30.9\%	51.5	51.5	0.0	0.0\%
32.1\%	51.5	51.5	0.0	0.0\%
33.3\%	51.5	51.4	0.0	${ }^{-0.1 \%}$
34.6\%	51.5	51.4	-0.1	-0.1\%
35.8\%	${ }_{51.5}$	51.3	-0.2	-0.3\%
37.0\%	51.4	51.3	-0.1	-0.3\%
38.3\%	51.3	51.2	-0.1	-0.2\%
		51.2	-0.1	-0.2\%
420\%	51.3 512	51.2	-0.1	-0.1\%
${ }^{43.2 \%}$	51.2	51.2 51.2	0.0	${ }_{\text {- }}$
44.4\%	51.2	51.1	-0.1	-0.2\%
45.7\%	51.2	51.0	-0.1	-0.3\%
46.9\%	51.1	51.0	-0.1	-0.1\%
48.1\%	51.1	51.0	-0.1	-0.1\%
4.4.4\%	${ }_{51.0}$	51.0	0.0	0.1\%
50.6\%	51.0	51.0	0.0	0.1\%
51.9\%	${ }_{51.0}$	50.9	0.0	-0.1\%
	50.9 50.9	50.9 50.8	0.0 -0.1	${ }^{0.00 \%}$
55.6\%	50.8	50.8	0.0	-0.1\%
56.8\%	50.8	50.7	-0.1	-0.1\%
58.0\%	50.7	50.7	-0.1	-0.1\%
59.3\%	${ }_{50.7}$	50.7	0.0	-0.1\%
60.5\%	50.7	50.7	0.0	-0.1\%
61.7\%	50.6	50.6	0.0	0.0\%
63.0\%	50.6	50.6	0.0	0.0\%
64.2\%	50.6	50.6	0.0	0.0\%
${ }^{65.4 \%}$	50.6	50.6	0.0	0.0\%
-66.70\%	50.6 50.6	50.6	0.0	0.0\%
${ }^{69.19}$	50.6 50.5	50.6 50.5	${ }_{0.0}^{0.0}$	${ }_{0}^{0.00 \%}$
70.4\%	50.5	50.5	0.0	0.0\%
71.6\%	50.5	50.5	0.0	0.0\%
72.8\%	50.5	50.5	0.0	0.0\%
74.1\%	50.5	50.5	0.0	0.1\%
75.3\%	50.4	50.4	0.0	0.0\%
76.5\%	50.4	50.4	-0.1	-0.1\%
77.8\%	50.4 50.4	50.3 503 0.3	-0.1	-0.2\%
80.2\%	50.3	50.3	-0.1	-0.1\%
81.5\%	50.3	50.3	-0.1	-0.1\%
82.7\%	50.3	50.2	-0.1	-0.2\%
84.0\%	50.3	50.2	-0.1	-0.3\%
85.2\%	${ }_{50.3}^{50.3}$	50.1	-0.2	-0.4\%
86.4\%	50.2	50.1	-0.1	-0.1\%
87.7\%	50.2	50.1	-0.1	-0.2\%
${ }^{88.9 \%} 9$	50.0	50.1 50.0	0.0 0.0	${ }^{0.0 \%}$
91.4\%	49.9	49.9	-0.1	-0.2\%
- 92.68	49.9	49.8	0.0	-0.1\%
95.1\%	49.7	49.7	0.0	${ }_{0}$
96.3\%	49.6	49.6	-0.1	-0.2\%
97.5\%	49.2	48.9	-0.4	-0.7\%
98.9\%	48.8	48.6	-0.2	-0.5\%
100.0\%	48.7	48.2	-0.5	-1.0\%

Figure SQ14-1b
Clear Creek at Igo, Monthly Temperature

Table SQ14-1b
eek at too. Monthly Tem
Clear Creek at ago, , Monthly T Tmperature
Probabailityof Exceedance

	October			$\begin{aligned} & \text { Relative } \\ & \text { Difference (\%) } \end{aligned}$
Percent Exceedance	DCR 2015 Without Proiet	DCR 2015 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	
Probability	Monthy Temperature	Morthy Temperature		
(\%)	(DEGF)	(DEGF)		
0.0\%	57.2	56.9	-0.3	-0.6\%
1.2\%	56.7	55.4	-0.3	-0.5\%
2.5\%	55.0	56.3	0.3	0.6\%
3.7\%	55.8	55.7	-0.1	-0.2\%
4.9\%	55.5	55.3	-0.2	-0.380
6.2\%	55.2	55.3	0.1	0.3
7.4\%	55.2	55.3	0.1	0.3
8.6\%	55.1	55.2	0.1	0.2\%
9.9\%	54.8	55.2	0.4	0.7\%
11.1\%	54.8	54.6	-0.2	-0.3\%
12.3\%	54.5	54.4	-0.1	-0.2\%
13.6\%	54.4	54.4	0.0	-0.1\%
14.8\%	54.4	54.3	0.0	-0.1\%
16.0\%	54.3	54.3	0.0	0.0\%
17.3\%	54.3	54.2	-0.1	-0.2\%
18.5\%	54.2	54.0	-0.2	-0.5\%
	54.1	53.9		-0.3\%
${ }^{21.0 \%}$	539	53.8 536	-0.1	-0.2\%
${ }^{22.22 \%}$	53.9	53.6	-0.3	-0.6\%
${ }^{23.57 \%}$	${ }_{53.7}^{53.8}$	53.6 53.5	-0.2 -0.3	-0.5\%
25.9\%	53.7	53.5	-0.3	-0.5\%
27.2\%	53.6	53.3	-0.3	-0.6\%
28.4\%	53.6	53.2	-0.3	-0.6\%
29.6\%	${ }^{53.5}$	53.2	-0.3	-0.6\%
30.9\%	53.4	53.2	-0.2	-0.4\%
${ }^{32.1 \%}$	53.3	53.2	-0.2	${ }^{-0.3 \%}$
34.6\%	53.2	53.2	0.0 0.0	${ }^{0.00 \%}$
35.8\%	53.1	53.1	0.0	0.0\%
37.0\%	53.1	53.1	0.0	0.0\%
38.3\%	53.0	53.0	0.0	-0.1\%
39.5\%	53.0	52.9	-0.1	-0.1\%
40.7\%	52.9	52.8	-0.2	-0.3\%
${ }^{42.0 \%}$	52.9	${ }_{52,7}$	-0.2	-0.4\%
43.2\%	52.9	52.6	-0.3	-0.6\%
44.4\%	52.9	52.6	-0.3	-0.6\%
45.7\%	52.8	52.5	-0.3	-0.6\%
	52.7 52.5	52.5	-0.2	-0.4\%
48.19\%	52.5	52.5	-0.1	
4.48	${ }^{52.5}$	52.4	0.0	-0.1\%
50.6\%	52.5 525 2.5	$\begin{array}{r}52.4 \\ 52.4 \\ \hline\end{array}$	-0.1	-0.2\%
51.9\%	$\begin{array}{r}52.5 \\ 52.5 \\ \hline\end{array}$	$\begin{array}{r}52.4 \\ 52.3 \\ \hline\end{array}$	-0.1	${ }^{-0.2 \%}$
53.19\%	52.4	${ }_{52.3}$	-0.2	-0.3\%
54.3\% 55.6%	52.3 52.2	52.3	-0.1	-0.0\%
56.8\%	52.0	52.2	0.1	0.3\%
58.0\%	52.0	52.0	0.1	0.1\%
59.3\%	51.8	51.9	0.1	0.1\%
${ }^{60.50 \%}$	51.8	51.7	-0.1	-0.1\%
61.7\%	51.8	51.7	-0.1	${ }^{-0.2 \%}$
63.0\%	51.8	${ }_{51.6}$	-0.2	-0.4\%
64.2\%	51.5	51.5	0.1	0.2\%
65.4\%	51.4	51.5	0.1	0.1\%
66.7\%	51.4	51.5	0.1	0.1\%
67.9\%	51.4	51.4	0.0	0.0\%
69.1\%	51.3	51.3	0.0	0.1\%
70.4\%	51.3	51.3	0.0	0.1\%
71.6\%	51.2	51.3	0.1	0.2\%
72.1\%	51.2 51.2	51.3 51.3	${ }_{0.1}^{0.1}$	${ }_{0}^{0.2 \%}$
75.3\%	51.2	51.2	0.0	0.1\%
76.5\%	51.1	51.2	0.0	0.1\%
77.8\%	51.0	51.2	0.1	0.2\%
79.0\%	51.0	51.0	0.0	0.1\%
80.2\%	51.0	51.0	0.0	0.0\%
81.5\%	51.0	51.0	0.0	0.0\%
82.7\%	51.0	51.0	0.0	0.0\%
84.0\%	50.9	50.9	0.0	0.0\%
85.2\%	50.8	50.8	0.0	0.1\%
86.4\%	50.8	50.8	0.0	${ }_{0}^{0.1 \%}$
87.7% 88.9%	50.7 50.7	50.8 50.7	0.1 0.0	${ }_{\text {en }}^{0.1 \%}$
90.1\%	50.5	50.6	0.1	0.1\%
91.4\%	50.3	50.4	0.1	0.3\%
92.6\%	50.2	50.3	0.0	0.0\%
93.8\%	50.0	50.2	0.2	0.4\%
95.1\%	50.0	50.2	0.2	0.4\%
96.3\%	49.9	50.0	${ }^{0.1}$	0.2\%
97.5\%	49.8	50.0	0.2	0.3\%
98.8\%	49.7	49.5	-0.2	-0.4\%
100.0\%	49.7	49.5	0.0	-0.4\%

$\begin{gathered} \text { Percent } \\ \substack{\text { Exceance } \\ \text { Probability }} \\ (\%) \\ \hline \end{gathered}$	January			RelativeDifference (\%)
	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	$\begin{gathered} \hline \begin{array}{c} \text { Absolute } \\ \text { Difference } \\ \text { (DEGF) } \end{array} \\ \hline \end{gathered}$	
		$\underset{\substack{\text { Monthy Temperature } \\ \text { (DEGF) }}}{\text { and }}$		
0.0\%	48.1	48.0	0.0	-0.1\%
1.2\%	47.3	47.3	0.0	0.0\%
2.5\%	47.1	47.1	0.0	0.1\%
3.7\%	46.4	46.1	-0.3	-0.6\%
4.9\%	46.0	46.0	0.0	
6.2\%	45.8	45.8	0.0	0.0\%
7.4\%	45.8	45.8	0.0	0.0\%
8.9\%	45.8	45.7	0.0	-0.1\%
9.9\%	45.5	45.6	0.1	0.3\%
11.1\%	45.4	45.4	0.0	0.0\%
12.3\%	45.3	45.3	0.0	0.0\%
13.6\%	45.3	45.3	0.0	0.1\%
14.8\%	45.2	45.2	0.0	-0.1\%
16.0\%	45.1	45.1	0.0	0.0\%
17.3\%	45.0	45.1	0.1	0.2\%
${ }^{18.5 \%}$	44.9	44.9	0.0	0.0\%
19.8\%	44.9	44.8	-0.1	-0.1\%
21.0\%	44.8	44.8	0.0	0.0\%
22.2\%	44.8	44.8	0.0	-0.1\%
23.5\%	44.8	44.8	0.0	0.0\%
24.7\%	44.7	44.8	0.0	0.0\%
25.9\%	44.7	44.7	0.0	0.0\%
27.2\%	44.7	44.7	0.0	0.0\%
28.4\%	44.7	44.7	0.0	-0.1\%
29.6\%	44.7	44.7	0.0	0.0\%
-30.9\%	44.7	44.7	0.0	0.0\%
32.1\%			0.0	0.0\%
33.3\%	44.6	44.5	0.0	-0.1\%
34.6\%	44.4	44.5	0.0	0.1\%
35.8\%	44.4	44.4	0.0	0.0\%
37.0\%	44.4	44.4	0.0	0.1\%
38.3\%	44.4	44.4	0.0	0.1\%
39.5\%	44.3	44.4	0.0	0.1\%
40.7\%	44.3	44.4	0.1	0.1\%
42.0\%	44.3	44.4	0.1	0.1\%
43.2\%	44.3	44.3	0.0	0.0\%
${ }_{4}^{44.4 \%}$	44.3	44.3	0.0	0.0\%
- 45.79%	44.2	44.1	0.0	-0.1\%
46.9\%	44.1	44.0	-0.1	-0.2\%
${ }^{48.19 \%}$	44.0	44.0	0.0	-0.1\%
49.4\%	44.0	44.0	0.0	-0.1\%
50.6\%	44.0	44.0	0.0	-0.1\%
51.9\%	44.0	43.9	0.0	-0.1\%
53.19\% 54.3%	43.9	43.9	0.0	0.0\%
54.3\%	43.9	43.9	0.0	0.0\%
55.6\%	43.9	43.9	0.0	0.0\%
56.3\% 58.0\%	43.9	43.9	0.0	0.0\%
58.0\%	43.9	43.9	0.0	0.0\%
59.3\%	43.8	43.9	0.0	0.0\%
	43.8	43.8	0.0	-0.1\%
${ }^{61.77 \%}$	43.8	43.8	0.0	0.0\%
- 63.0%	${ }_{43.7}^{43.8}$	${ }_{437}^{43.7}$	0.0	-0.1\%
${ }^{64.2 \%}$	43.7	43.7	0.0	0.0\%
65.4\%	43.7	43.7	0.0	0.0\%
66.7\% 67.9%	43.7	43.7	0.0	0.0\%
67.9\%	43.7	43.6	0.0	0.0\%
69.19\%	43.6	43.6	0.0	${ }^{0.19 \%}$
70.4\%	43.6	43.6	0.0	0.0\%
71.6\% ${ }^{72.8 \%}$	43.5 43.4	43.4 43.4	-0.1 0.0	$\stackrel{-0.0 \%}{0.0 \%}$
74.1\%	43.4	43.4	0.0	0.0\%
75.3\%	43.4	43.4	0.0	0.0\%
76.5\%	43.4	43.4	0.0	0.0\%
77.8\%	43.4	43.4	0.0	0.0\%
79.0\%	43.3	${ }^{43.3}$	0.0	0.0\%
80.2\%	43.3	43.3	0.0	0.0\%
81.5\%	43.3	43.3	0.0	0.1\%
822.7\% 84.0%	43.3	43.2	0.0	0.1\%
84.0\% 85 8.20%	43.3	43.2	-0.1	0.1\%
85.2\%	43.1	43.2	0.0	0.1\%
86.4% 87.7%	43.1	${ }^{43.1}$	0.0	0.0\%
88.9\%	43.1	43.1	0.0	0.0\%
${ }^{88.9 \%} 9$	43.1	43.0	-0.1	${ }^{-0.2 \%}$
${ }_{9}^{90.4 \%}$	43.0 43.0	43.0	0.0	${ }^{-0.00 \%}$
92.6\%	43.0	42.8	-0.1	-0.3\%
93.8\%	42.7	42.7	0.0	0.1\%
95.1\%	42.7	42.7	0.0	-0.1\%
96.3\%	42.7	42.6	0.0	-0.1\%
${ }_{\text {98, }}^{98.5 \%}$	42.6 42.6	${ }_{42.5}^{42.6}$	-0.1 0.0	-0.0.1\%
100.0\%	42.6	42.5	0.0	-0.1\%

Table SQ14-1b
Clear Creek at aso, , , onthly T Tmperature
Probabailityof Exceedance

$\begin{gathered} \hline \text { Percent } \\ \begin{array}{c} \text { Exceednce } \\ \text { Probability } \end{array} \\ (\%) \\ \hline \end{gathered}$	Febuary			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	DCR 2015 Without	DCR 2015 With Project	$\begin{gathered} \text { Absolute } \\ \text { Differeence } \\ \text { (DEFFF) } \end{gathered}$	
0.0\%	48.9	48.9	0.0	0.0\%
1.2\%	46.9	46.9	0.0	0.0\%
2.5\%	46.6	46.7	0.1	0.3\%
3.7\%	46.2	46.6	0.4	0.9\%
${ }_{\text {4.2\% }}^{4.9 \%}$	46.1 46.0	46.2 46.0	${ }_{0.0}^{0.1}$	- ${ }_{0}^{0.0 \% \%}$
7.4\%	45.9	46.0	0.0	0.0\%
8.6\%	45.2	45.9	0.7	1.6\%
9.9\%	45.2	45.2	0.0	0.1\%
11.11\%	45.1	45.2	0.1	0.1\%
12.3\%	45.1	45.2	0.0	0.1\%
13.6\%	45.1	45.1	0.0	0.0\%
14.8\%	45.0	45.1	0.1	0.2\%
16.0\%	45.0	45.1	0.1	0.1\%
17.3\%	45.0	45.1	0.1	0.2\%
18.5\% 19.8%	45.0 44.9	${ }_{45.0}^{45.0}$	${ }_{0}^{0.1}$	${ }_{\text {en }}^{0.10 \%}$
21.0\%	44.8	45.0	0.1	0.3\%
22.2\%	44.8	44.9	0.1	0.2\%
23.5\%	44.8	44.8	0.0	0.0\%
24.7\%	44.7	44.8	0.1	0.1\%
25.9\%	44.7	44.8	0.1	0.2\%
27.2\%	44.6	44.8	0.1	0.3\%
28.4\%	44.6	44.7	0.1	0.1\%
29.6\%	44.6	44.6	0.1	0.1\%
30.9\%	44.5	44.6	0.0	${ }_{\text {0, }}^{0.1 \%}$
32.1\%	44.5	44.6 44.5	0.0	${ }_{0}^{0.1 \%}$
34.6\%	44.5	44.5	0.0	0.0\%
35.8\%	44.5	44.5	0.0	0.0\%
37.0\%	44.5	44.5	0.0	0.0\%
38.3\%	44.4	44.4	0.0	0.0\%
39.5\%	44.4	44.4	0.0	0.0\%
40.7\%	44.4	44.4	0.0	0.0\%
42.0\%	44.4	44.4	0.0	0.0\%
43.2\%	44.4	44.4	0.0	0.0\%
44.4\%	44.3	44.3	0.1	0.1\%
${ }^{45.79 \%}$	44.3 44.2	44.3 44.3	0.0 0.0	${ }_{0}^{0.1 \%}$
48.1\%	44.2	44.2	0.0	0.0\%
49.4\%	44.2	44.2	0.0	0.0\%
50.6\%	44.2	44.2	0.0	0.1\%
51.9\%	44.2	44.2	0.0	0.0\%
53.1\%	44.1	44.1	0.0	0.0\%
54.3\%	44.1	44.1	0.0	-0.1\%
55.6\%	44.1	44.0	0.0	-0.1\%
56.8\%	44.0	43.9	-0.1	-0.2\%
58.0\%	44.0	43.9	-0.1	-0.1\%
59.3\%	43.9	43.9	0.0	0.0\%
- 60.50	43.9 43.8	43.9 43.8	0.0	-
63.0\%	43.8	43.8	0.0	0.0\%
64.2\%	43.8	43.8	0.0	0.1\%
65.4\%	43.8	43.8	0.0	0.1\%
66.7\%	43.8	43.8	0.0	0.1\%
67.9\%	43.8	43.8	0.1	0.1\%
69.1\%	43.8	43.8	0.0	0.1\%
70.4\%	43.7	43.7	0.0	0.0\%
71.6\%	43.7	43.7 437	0.0	${ }^{0.00 \%}$
72.8\%	${ }_{43.7}^{43.7}$	${ }_{43.7}^{43.7}$	0.0 0.0	${ }^{0.0 \%}$
75.3\%	43.6	43.7	0.1	0.1\%
76.5\%	43.6	43.6	0.0	0.1\%
77.8\%	43.6	43.6	0.0	0.1\%
79.0\%	43.5	43.5	0.0	0.0\%
80.2\%	43.5	43.5	0.0	0.0\%
81.5\%	43.5	43.5	-0.1	-0.1\%
82.7\%	43.5	43.5	0.0	0.0\%
84.0\%	43.5	43.5	0.0	-0.1\%
85.2\%	43.5 43.4	43.4 43.4	-0.1 0.0	$\stackrel{-0.0}{-0.2 \%}$
87.7\%	43.4	43.4	0.0	0.0\%
88.9\%	43.4	43.3	0.0	-0.1\%
90.1\%	43.4	43.3	0.0	-0.1\%
91.4\%	43.4	43.3	-0.1	-0.2\%
92.6\%	43.3	43.2	0.0	-0.1\%
93.8\%	43.2	43.2	0.0	-0.1\%
95.1\%	43.2	43.2	0.0	0.0\%
96.3\%	42.9	42.9	0.0	0.0\%\%
97.5\%	42.8	42.6	-0.2	-0.5\%
988.8\% 100.0%	42.4 42.4	42.6 42.6	${ }_{0.1}^{0.1}$	${ }_{\substack{0.3 \%}}^{0.3 \%}$

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceance } \\ \text { Probability } \end{array} \\ (\%) \\ \hline \end{gathered}$	May			RelativeDifference (\%)
	${ }^{\text {DCR } 2015 \text { Without }} \begin{aligned} & \text { Proiect }\end{aligned}$	DCR 2015 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGFF) } \end{aligned}$	
		$\xrightarrow[\text { (DEGF) }]{\text { Monthy Temperature }}$		
0.0\%	51.3	51.2	-0.1	-0.3\%
1.2\%	51.2	51.0	-0.2	-0.4\%
2.5\%	51.0	51.0	0.0	0.0\%
3.7\%	50.4	50.6	0.2	0.4\%
4.9\%	50.3	50.4	0.1	
6.2\%	50.1	50.3	0.2	0.4\%
7.4\%	50.0	50.0	-0.1	-0.2\%
8.6\%	50.0	49.9	-0.1	-0.1\%
9.9\%	50.0	49.9	-0.1	-0.2\%
11.1\%	49.7	49.8	0.1	0.3\%
12.3\%	49.6	49.8	0.2	0.3\%
13.6\%	49.5	49.7	0.2	0.4\%
14.8\%	49.5	49.5	0.1	0.2\%
16.0\%	49.2	49.5	0.3	0.5\%
17.3\%	49.2	49.5	0.3	0.5\%
18.5\%	49.2	49.3	0.1	0.2\%
19.8\%	49.2	49.2	0.0	0.1\%
21.0\%	49.2	49.2	0.0	0.1\%
22.2\%	49.1	49.2	0.0	0.1\%
23.5\%	49.1	49.1	0.0	0.0\%
24.7\%	49.1	49.1	0.0	0.0\%
25.9\%	49.1	49.1	0.0	0.0\%
27.2\%	49.1	49.1	0.1	0.1\%
28.4\%	49.0	49.0	0.0	0.1\%
29.6\%	48.9	48.9	0.0	0.0\%
30.9\%	48.8	48.9	0.0	0.1\%
32.1\%	48.8	48.9	0.0	
33.3\%	48.8	48.9	0.0	0.0\%
34.6\%	48.8	48.8	0.0	0.1\%
35.8\%	48.8	48.8	0.1	0.1\%
37.0\%	48.8	48.8	0.0	0.0\%
38.3\%	48.8	48.8	0.0	0.0\%
39.5\%	48.8	48.8	0.0	0.0\%
40.7\%	48.8	48.7	-0.1	-0.1\%
42.0\%	48.7	48.7	0.0	-0.1\%
43.2\%	48.7	48.6	-0.1	-0.2\%
44.4\%	48.7	48.6	-0.1	-0.2\%
${ }^{45.79 \%}$	48.6	48.6	0.0	0.0\%
46.9\%	48.6	48.6	0.0	0.0\%
48.19\%	48.6	48.6	0.0	0.0\%
49.4\%	48.6	48.5	0.0	${ }^{-0.10}$
50.6\%	48.6	48.5	0.0	-0.1\%
51.9\%	48.5 48.5	48.5 485	0.0	-0.1\%
54.3\%	48.5	48.5	0.0	-0.1\%
55.6\%	48.5	48.4	0.0	-0.1\%
56.8\%	48.5	48.4	0.0	-0.1\%
58.0\%	48.5	48.4	-0.1	-0.1\%
59.3\%	48.4	48.4	-0.1	-0.1\%
${ }^{60.5 \%}$	48.4		-0.1	-0.1\%
61.7\%	48.4	48.3	-0.1	-0.2\%
63.0\%	48.4 484	48.3 48	-0.1	-0.2\%
${ }^{64.2 \%}$	${ }^{48.4}$	48.3	-0.1	-0.1\%
65.4\%	48.3	48.3	0.0	-0.1\%
66.7\%	48.3	48.3	0.0	-0.1\%
67.9\%	48.3	48.3	0.0	-0.1\%
69.19\% 70.4%	48.2	48.3	0.0	0.0\%
70.4\%	48.2	48.3	0.1	${ }_{0}^{0.1 \%}$
72.8\%	${ }_{48.1}$	48.2	0.1	0.3\%
74.1\%	48.0	48.2	0.1	0.3\%
75.3\%	48.0	48.1	0.1	0.2\%
76.5\%	47.9	48.1	0.2	0.4\%
77.8\%	47.8	48.0	0.2	0.3\%
79.0\%	47.8	48.0	0.2	0.3\%
80.2\%	47.8	47.7	0.0	-0.1\%
81.5\%	47.8	47.7	-0.1	-0.1\%
82.7\%	47.7	47.7	0.0	-0.1\%
84.0\%	47.7	47.6	0.0	-0.1\%
85.2\%	47.6 47.6	47.6 47.5	0.0 -0.1	0.0\%
87.7\%	47.4	47.5	${ }_{0.1}$	${ }_{0}$
88.9\%	47.3	47.4	0.1	0.2\%
90.1\%	47.3	47.1	-0.2	-0.5\%
91.4\%	47.1	47.0	-0.1	-0.2\%
92.6\%	47.1	47.0	-0.1	-0.2\%
93.8\%	47.0	46.9	-0.1	-0.2\%
95.1\%	47.0	46.9	-0.1	-0.2\%
96.3\%	47.0	46.7	-0.2	-0.5\%
97.5\% ${ }_{98.8 \%}$	46.7	46.7	0.0	0.0\%
98.8\%	${ }_{46.3}^{46.3}$	${ }_{46.3}^{46.3}$	${ }_{0.0}^{0.0}$	${ }_{0}^{0.00 \%}$

Table SQQ4.1.
Clear Creek at otgo, , onontly T Tmperature
Probabibily of Exceedance

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$$(\%)$	June			
	DCR 2015 Without	DCR 2015 With Project		
	Monthy Temperature	Monthly Temperature	Difference Difference	Difference (\%)
	547	545		
${ }^{\text {1.2\% }}$	${ }_{54.4}^{54.7}$	54.5 54.4	-0.	0.0\%
2.5\%	${ }_{53,7}$	${ }_{54.3}$	0.6	1.0\%
3.7\%	53.4	53.6	0.2	0.4\%
4.9\%	53.3	53.4	0.1	0.2\%
6.2\%	53.2	53.3	0.1	0.1\%
7.4\%	${ }_{53.1}^{53.1}$	53.3	0.1	0.2\%
8.6\%	$\begin{array}{r}53.1 \\ 52 . \\ \hline 5\end{array}$	55.0	-0.1	-0.2\%
9.9\%	52.7 52.5 1	$\begin{array}{r}52.7 \\ 52.5 \\ \hline\end{array}$	0.0	0.0\%
${ }_{12.3 \%}$	52.5	52.6 52.5	-0.1 0.0	-0.0\%
13.6\%	52.4	52.2	-0.2	-0.4\%
14.8\%	52.4	52.0	-0.3	-0.6\%
16.0\%	52.3	51.9	-0.4	-0.9\%
17.3\%	52.0	51.8	-0.2	-0.4\%
18.5\%	52.0	51.8	-0.2	-0.3\%
19.8\%	51.8	51.7	-0.1	-0.2\%
21.0\%	51.7	51.6	0.0	0.0\%
22.2\%	51.6	51.6	0.0	0.0\%
23.5\%	51.5	51.6	0.1	0.2\%
24.79\%	51.3 513	51.5 515	0.2 0.2	${ }_{0}^{0.5 \%}$
27.2\%	51.3	51.3	0.0	0.1\%
28.4\%	51.2	51.3	0.1	0.1\%
29.6\%	51.2	51.3	0.0	0.1\%
30.9\%	51.2	51.2	0.0	0.1\%
32.1\%	51.2	51.2	0.1	0.1\%
33.3\%	51.1	51.2	0.0	0.1\%
34.6\%	51.1	51.1	0.0	${ }^{0.10 \%}$
35.8% 37.0%	51.1 51.1	$\begin{array}{r}51.1 \\ 51.1 \\ \hline\end{array}$	0.0 0.0	-0.0\%
38.3\%	51.0	51.0	0.0	0.0\%
39.5\%	51.0	51.0	0.0	0.0\%
40.7\%	51.0	51.0	0.0	0.0\%
42.0\%	51.0	51.0	0.0	0.0\%
43.2\%	51.0	51.0	0.0	0.0\%
44.4\%	50.9	50.9	0.0	-0.1\%
45.7\%	50.9	50.9	0.0	0.0\%
46.9\%	50.8	50.9	0.0	0.0\%
48.1\%	50.8	50.8	0.1	0.1\%
49.4\%	50.7	50.8	0.0	0.1\%
50.6\%	50.7	50.8	0.0	0.1\%
51.9\%	50.7 50.7	50.7 50.7	0.0 0.0	$\stackrel{-0.1 \%}{0.0 \%}$
54.3\%	50.7	50.7	0.0	0.0\%
55.6\%	50.7	50.7	0.0	0.0\%
56.3\%	50.7	50.7	0.0	-0.1\%
58.0\%	50.7	50.7	0.0	-0.1\%
59.3\%	50.7	50.6	-0.1	-0.1\%
60.5\%	50.6	50.6	0.0	-0.1\%
${ }^{61.7 \%}$	50.6	50.5	0.0	0.0\%
63.0% 64.2%	50.5	50.5	0.0	0.0\%
- 64.29%	50.5 50.5	50.5 50.5	${ }_{0}^{0.0}$	${ }^{0.00 \%}$
66.7\%	50.5	50.5	0.0	-0.1\%
67.9\%	50.5	50.5	0.0	-0.1\%
69.1\%	50.5	50.4	0.0	-0.1\%
70.4\%	50.4	${ }_{50.3}$	-0.1	-0.3\%
71.6\%	50.4	${ }_{50.3}$	-0.1	-0.2\%
72.8\%	50.3	50.3	-0.1	-0.1\%
74.1\%	50.3	50.2	0.0	-0.1\%
75.3\%	50.2	50.2	-0.1	-0.2\%
${ }^{76.5 \%}$	50.2	50.2	-0.1	-0.1\%
77.8\%	50.2	50.1	-0.1	${ }^{-0.3 \%}$
79.0\%	${ }_{40.9}$	50.0 49.9	0.0 0.0	-0.0\%
81.5\%	49.9	49.9	0.0	0.0\%
82.7\%	49.8	49.8	0.0	0.0\%
84.0\%	49.7	49.7	0.0	-0.1\%
85.2\%	49.7	49.7	0.0	-0.1\%
86.4\%	49.7	49.7	0.0	-0.1\%
87.7\%	49.6	49.6	0.0	0.1\%
88.9\%	49.6	49.5	-0.1	-0.1\%
90.1\%	49.4	49.4	0.0	0.0\%
91.4\%	49.4	49.4	0.0	0.1\%
-92.6\% ${ }_{93.8 \%}$	49.4 49.4	49.4 49.4	0.0 0.0	-
95.1\%	49.3	49.3	0.0	0.0\%
96.3\%	49.2	49.1	-0.1	-0.2\%
97.5\%	49.0	48.9	-0.1	-0.1\%
98.8\%	48.2	48.2	0.0	0.0\%
		48.2		0.0\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	September			
	${ }^{\text {DCR } 2015 \text { Without }}$ Proiet	DCR 2015 With Project	Absolute	
	Monthly Temperature	Monthly Temperature (DEGF)	Difference	Difference (\%)
0.0\%	59.1	58.9	-0.3	-0.5\%
1.2\%	58.3	58.1	-0.2	-0.3\%
2.5\%	57.1	56.5	${ }^{0.6}$	${ }^{-1.1 \%}$
3.7\%	56.3	56.4	0.1	0.1\%
4.9\%	55.7	56.3	0.6	1.1\%
6.2\%	55.7	55.8	0.1	0.2\%
7.4\%	55.5	55.6	0.1	0.1\%
8.6\%	55.5	55.6	0.1	0.1\%
9.9\%	55.4	55.4	0.0	0.0\%
11.19\%	55.2	55.1	-0.1	-0.1\%
${ }^{12.35 \%}$	55.2	55.0	0.1	0.2\%
13.6\%	55.2	54.9	-0.2	-0.4\%
14.8\%	55.1	54.9	-0.2	-0.4\%
16.0\%	55.0 54.0	54.7 54.7	-0.3	-0.5\%
17.3\%	54.9	54.7	-0.3	-0.5\%
18.5\%	54.7	54.6	0.0	0.0\%
19.8\%	54.6	54.6	0.0	0.0\%
21.0\%	54.6	54.6	-0.1	-0.1\%
22.2\%	54.6	54.4	-0.2	-0.4\%
23.5\%	54.5	54.4	-0.2	-0.3\%
24.7\%	54.5	54.3	-0.3	-0.5\%
25.9\%	54.4	54.2	-0.2	-0.5\%
27.2\%	54.4	54.2	-0.3	-0.5\%
28.4\%	54.2	54.0	-0.2	-0.4\%
29.6\%	54.1	54.0	-0.1	-0.2\%
30.9\%	54.1	53.9	-0.2	-0.4\%
32.1\%	54.0	53.9	-0.1	-0.2\%
33.3\%	53.9	53.8	-0.1	-0.2\%
34.6\%	53.9	53.8	0.0	-0.1\%
35.8\%	53.8	53.8	-0.1	-0.1\%
37.0\%	53.8	53.8	-0.1	-0.1\%
38.3\%	53.8	53.8	0.0	0.0\%
39.5\%		53.7	0.0	0.0\%
40.77\%	53.7	53.7	0.1	0.1\%
42.0\%	53.7 536	53.7 536 3	0.0	${ }^{0.0 \%}$
43.2\%	53.6 53	${ }_{\text {cke }}^{53.6}$	0.0	${ }^{0.00 \%}$
44.4\%	${ }_{53,6}^{53.6}$	53.6	0.0	-0.1\%
${ }_{4}^{45.79 \%} 4$	53.6	53.5	-0.1	-0.2\%
46.9\%	${ }_{53.6}^{53}$	${ }_{53.5}^{53.5}$	-0.1	-0.2\%
48.1\%	53.6	53.3	-0.2	-0.4\%
49.4\% 50.6\%	53.5	53.3	-0.2	-0.4\%
50.6\%	53.5	53.1	-0.4	-0.7\%
${ }_{\text {cke }}^{51.9 \%}$	53.3	53.1	-0.3	-0.5\%
53.19\% 54.3%	53.3	53.0	-0.3	-0.6\%
54.3\%	53.2	52.9	-0.3	
55.6\%	53.1 531	52.9 528	-0.2	-0.4\%
56.8\%	53.1 53.0	52.8 528 52.8	-0.3	${ }^{-0.5 \%}$
58.0\%	53.0	52.8	-0.2	-0.3\%
59.3\%	52.9	52.7	-0.2	-0.3\%
60.5\%	52.8	52.7	-0.1	-0.2\%
61.7\% 63.0\%	52.8	52.6	-0.2	-0.3\%
- 63.0%	52.8	52.6 52.6	-0.2	-0.3\%
64.2% 65.4%	52.7 52.6	52.6 52.6	-0.2 0.0	-0.0\%
66.7\%	52.6	52.5	0.0	0.0\%
67.9\%	52.5	52.5	0.0	0.0\%
69.1\%	52.5	52.4	0.0	-0.1\%
70.4\%	52.5	52.4	-0.1	-0.2\%
71.6\%	${ }_{52.4}^{52.4}$	${ }_{52.4}^{52.4}$	0.0	-0.1\%
72.8\%	52.4	${ }_{52.3}$	0.0	0.0\%
74.1\%	52.3	52.3	0.0	-0.1\%
75.3\%	52.3	${ }_{52.2}^{52.2}$	0.0	-0.1\%
76.5\%	52.3	52.1	-0.1	-0.2\%
77.8\%	52.2	52.1	-0.1	-0.2\%
79.0\% 80.2%	52.2	52.1	-0.1	${ }^{-0.2 \%}$
-	52.1	52.1	-0.1	${ }^{-0.1 \%}$
81.5\%	52.1	52.0	0.0	0.0\%
- 82.70%	($\begin{array}{r}52.0 \\ 52.0\end{array}$	52.0 52.0	0.0	0.0\%
84.0\%	52.0 519	${ }_{52.0}$	${ }^{0.0}$	-0.1\%
85.2\%	51.9	52.0	0.0	0.1\%
86.4\%	51.9	52.0	0.1	0.1\%
87.7\% 88.9%	51.9	51.9	0.0	${ }^{\text {0.0\% }}$
88.9\% ${ }_{\text {80.1\% }}$	51.8 517	51.9 519	0.1	- ${ }_{\text {0.2\% }}^{0.3 \%}$
${ }^{901.4 \%}$	51.7 51.7	${ }_{51.7}$	0.0	0.0\%
92.6\%	51.7	51.6	0.0	0.0\%
93.8\%	51.6	51.6	0.0	0.0\%
95.1\%	51.6	51.5	-0.1	-0.1\%
96.3\% ${ }_{\text {975\% }}$	51.5 511	51.3 50.9	-0.1	-0.3\%
${ }_{988}^{97.5 \%}$	51.1	50.9	-0.1	-0.3\%
98.8\% 100.0\%	51.0 510	50.6 50.6	-0.4	-0.0\%\%
100.0\%	51.0	50.6		-0.8\%

$\begin{aligned} & \hline \text { Percent } \\ & \text { Exceedance } \\ & \text { Probabaility } \end{aligned}$$(\%)$	June to September			
	DCR 2015 Wtrout	DCR 2015 With Project		
	Monthy Temperature	Monthy Temperature	Difference	Difference ${ }^{\text {Refate }}$
	(DEGF)	(DEGF)	(DEGF)	
0.0\%	56.5	56.4	-0.1	-0.2\%
1.2\%	56.1	55.9	-0.3	-0.5
2.5\%	55.4	55.4	0.0	0.0\%
3.7\%	55.4	55.3	-0.1	-0.2\%
4.9\%	55.1	55.0	-0.1	-0.2\%
6.2\%	55.1	55.0	0.0	-0.1\%
7.4\%	55.0	55.0	0.0	-0.1\%
8.6\%	55.0	55.0	0.0	-0.1\%
9.9\%	55.0	54.9	-0.1	${ }^{-0.1 \%}$
11.1.\%	54.9	54.8	-0.1	-0.2\%
12.3\%	54.8	54.7	0.1	-0.1\%
13.6\%	54.8	54.7	-0.1	-0.2\%
14.8\%	54.7	54.6	0.0	-0.1\%
16.0\%	54.6 54.5	54.6 54.6	0.0	${ }^{-0.1 \%}$
17.3\%	54.5	54.6	0.1	0.1\%
18.5\%	54.5	54.5	0.0	0.0\%
19.8\%	54.4	54.5	0.0	0.0\%
21.0\%	54.4	54.3	-0.1	-0.2\%
22.2\%	54.3	54.3	0.0	-0.1\%
23.5\%	54.2	54.3	0.0	0.1\%
24.7\%	54.2	54.3	0.0	0.1\%
25.9\%	54.2	54.2	0.0	0.0\%
27.2% 28.4%	54.1 54.0	54.1 54.1	${ }_{0.1}^{0.0}$	${ }^{-0.1 \%}$
29.6\%	54.0	54.1	0.1	0.1\%
30.9\%	53.9	54.0	0.1	0.1\%
32.1\%	53.9	53.9	0.0	0.0\%
33.3\%	53.9	53.8	-0.1	-0.2\%
34.6\%	53.9	53.7	-0.1	-0.2\%
35.8\%	53.9	53.7	-0.1	-0.2\%
37.0\%	53.8	53.7	0.0	0.0\%
38.3\%	53.7	53.7	-0.1	-0.2\%
39.5\%	53.7	53.6	-0.1	-0.1\%
40.7\%	53.6	53.6	-0.1	-0.1\%
42.0\%	${ }_{53.6}^{53}$	53.5	-0.1	-0.1\%
43.2\%	53.5	53.5	0.0	-0.1\%
44.4\%	${ }_{535}^{53.5}$	${ }_{535}^{53.5}$	0.0	0.0\%
45.70\%	53.5 535 5.5	53.5 534 5.4	0.0	0.0\%
46.9\%	53.5	53.4	-0.1	-0.1\%
48.1\%	53.5	53.4	-0.1	-0.1\%
49.4\%	53.5	53.4	-0.1	-0.1\%
50.6\%	53.4	53.4	0.0	0.0\%
51.9\%	53.3	53.4	0.0	0.0\%
53.10\%	53.3 53 5	$\begin{array}{r}53.3 \\ 532 \\ \hline 5\end{array}$	0.0	0.0\%\%
	53.3 532	53.2	-0.1	${ }^{-0.1 \%}$
	- ${ }_{53,2}^{53.2}$	$\begin{array}{r}\text { 53.2 } \\ 53.2 \\ \hline\end{array}$	-0.1	-
56.8\%	${ }_{53.2}^{53.2}$	${ }_{53.2}^{53.2}$	-0.1 0.0	${ }_{\text {- }}^{\text {0.0.1\% }}$
59.3\%	53.2	53.1	0.0	-0.1\%
60.5\%	53.1	53.1	0.0	-0.1\%
61.7\%	53.1	53.1	0.0	0.1\%
63.0\%	53.0	53.1	0.1	0.1\%
64.2\%	53.0	53.0	0.0	0.0\%
${ }^{65.4 \%}$	53.0	53.0	0.0	${ }^{0.00 \%}$
${ }^{66.77 \%}$	53.0 530	53.0 53.0	0.0	0.0\%
-67.9\%	53.0 53.0	53.0 53.0	${ }_{0}^{0.0}$	${ }_{\text {cose }}^{0.00 \%}$
70.4\%	52.9	52.9	0.0	0.0\%
71.6\%	52.9	52.9	0.0	0.0\%
72.8\%	52.9	52.9	0.0	0.1\%
74.1\%	52.8	52.8	0.0	-0.1\%
75.3\%	52.8	52.8	-0.1	-0.1\%
76.5\%	52.8	52.7	-0.1	-0.1\%
77.8\%	52.8	52.7	-0.1	-0.2\%
79.0\%	52.8	52.7	-0.1	-0.1\%
- ${ }^{80.20 \%}$	52.8 52.7	52.7 52.6	-0.1 -0.1	-
82.7\%	52.7	52.6	-0.1	-0.2\%
84.0\%	52.7	52.6	-0.1	-0.2\%
85.2\%	52.6	52.5	-0.1	-0.2\%
86.4\%	${ }_{52.6}^{52.6}$	52.5	-0.1	-0.2\%
87.7\%	52.5	52.5	-0.1	-0.2\%
88.9\%	52.4	52.4	0.0	0.0\%
90.1\%	52.3	52.4	0.0	0.1\%
91.4\%	52.3	52.3	0.0	0.0\%
92.6\%	52.3 523	$\begin{array}{r}52.2 \\ 52.2 \\ \hline\end{array}$	-0.1	-0.2\%
${ }^{935.8 \%}$	52.3 52.0	52.2. 52.1	-0.1	${ }^{-0.2 \%}$
96.3\%	51.9	51.8	-0.1	${ }^{\text {-0.1\% }}$
97.5\%	51.9	51.3	-0.6	-1.1\%
98.9\%	${ }_{511}^{51.3}$	51.0	-0.2	-0.4\%
	51.1	50.9	-0.2	-0.4\%

Table SQ14-1b Clear Creek at Igo, Monthly Temperatu Probability of Exceedance				
July to September				
Percent Exceedance	DCR 2015 Without Proiect	DCR 2015 With Project		Relative
Probability	Monthly Temperature	Monthly Temperature	$\begin{aligned} & \text { Difference } \\ & \text { (DEGGF) } \end{aligned}$	Difference (\%)
0.0\%	57.2	57.1	-0.2	-0.3\%
1.2\%	56.6	56.4	-0.3	-0.5\%
2.5\%	56.4	56.2	-0.3	
3.7\%	56.3	56.1	-0.1	-0.3\%
4.9\%	56.2	56.1	-0.1	-0.1\%
6.2\%	55.0	55.9	0.0	-0.1\%
7.4\%	55.9	55.7	-0.1	-0.2\%
8.6\%	55.9	55.6	-0.2	-0.4\%
9.9\%	55.8	55.6	-0.2	-0.3\%
11.1\%	55.7	55.6	-0.1	-0.2\%
123\%	55.6	55.6	0.0	0.0\%
13.6\%	55.6	55.5	-0.1	-0.1\%
14.8\%	55.4	55.5	0.1	0.2\%
- 16.00%	55.4 55.2	55.5 55.3	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
18.5\%	55.2	55.3	0.1	0.1\%
19.8\%	55.2	55.3	0.1	0.1\%
21.0\%	55.2	55.2	0.0	0.1\%
22.2\%	55.2	55.2	0.0	0.0\%
23.5\%	55.1	55.1	0.0	0.0\%
24.7\%	55.1	55.1	0.0	0.0\%
25.9\%	55.1	55.1	0.0	-0.1\%
27.2\%	55.1	55.0	-0.1	-0.2\%
28.4\%	$\begin{array}{r}55.1 \\ 551 \\ \hline 5 .\end{array}$	55.0 550 550	-0.1	-0.2\%
29.6\%	55.1 550	55.0 54.9	-0.1 -0.1	-0.0\%
32.1\%	55.0	54.9	-0.1	-0.2\%
33.3\%	55.0	54.8	-0.1	-0.2\%
34.6\%	54.8	54.7	-0.1	-0.2\%
35.8\%	54.7	54.7	0.0	-0.1\%
37.0\%	54.7	54.7	0.0	0.0\%
38.3\%	54.7	54.6	0.0	0.0\%
39.5\%	54.5	54.6	0.0	0.1\%
40.7\%	54.5	54.5	0.0	0.0\%
42.0\%	54.4	54.5	0.1	0.2\%
- 43.20%	54.4 54.4	54.4 54.4	0.0 0.0	${ }_{0}^{0.1 \%}$
45.7\%	54.3	${ }_{54.4}$	0.1	0.1\%
46.9\%	54.3	54.3	0.0	0.0\%
48.1\%	54.3	54.3	0.0	0.0\%
49.4\%	54.3	54.3	0.0	0.0\%
50.6\%	54.3	54.3	0.0	-0.1\%
51.9\%	54.2	54.2	0.0	0.0\%
53.1\%	54.2	54.1	-0.1	-0.2\%
54.3\%	54.2	54.1	-0.1	-0.3\%
${ }_{\text {56.8\% }}^{55.6 \%}$	54.2 54.1	54.1 54.0	-0.1 -0.1	-0.0.
58.0\%	54.1	54.0	-0.1	-0.1\%
59.3\%	54.0	54.0	-0.1	-0.1\%
60.5\%	54.0	54.0 53.0	0.0	0.0\%
61.7\%	54.0	53.9	0.0	-0.1\%
63.0\%	53.9	53.8	-0.1	-0.2\%
64.2\%	53.9	53.8	-0.1	-0.2\%
65.4\%	53.9	53.8	-0.1	-0.2\%
66.7\%	53.9	53.7	-0.2	-0.3\%
67.9\%	53.8	53.7	-0.1	-0.2\%
69.19\%	53.8	53.7	-0.1	-0.2\%
70.4\%	53.8 53.7	53.7 53.7	-0.1 0.0	- $0.0 .2 \%$
72.8\%	53.7	${ }_{53.7}$	0.0	0.0\%
74.1\%	53.6	53.6	0.0	0.0\%
75.3\%	53.6	53.6	0.0	0.0\%
76.5\%	53.6	53.6	0.0	0.0\%
77.8\%	53.6	53.6	0.0	0.0\%
79.0\%	${ }_{\text {cke }}^{53.6}$	${ }_{53}^{53.6}$	0.0	0.0\%
80.2\%	53.6	53.6	0.0	0.0\%
81.5\%	53.6	53.5	0.0	0.0\%
82.79\%	53.6	53.5	0.0	${ }^{-0.1 \%}$
84.0\%	${ }_{5}^{53.5}$	${ }_{53.5}^{5.5}$	0.0	-0.1\%
85.20\%	53.5			-0.2\%
86.4\%	53.3	53.3	0.0	0.0\%
87.7\%	53.2	53.2	0.0	0.0\%
88.9\%	53.2	53.2	0.0	0.0\%\%
90.1\%	53.2	53.1	-0.1	-0.2\%
91.4\%	53.2	53.1	-0.1	-0.2\%
92.6\%	53.1	53.1	0.0	0.0\%
93.8\%	53.1	53.0	-0.1	-0.1\%
95.19\%	52.9	${ }_{5}^{52.9}$	0.1	0.2\%
97.5\%	52.7	52.5	${ }_{-0.1}$	-0.3\%
98.8\%	52.5	52.0	-0.5	-0.9\%
100.0\%	52.1	51.5	-0.6	-1.1\%

August to September				
$\begin{gathered} \hline \text { Percent } \\ \hline \begin{array}{c} \text { Exceedance } \\ \text { Probability } \\ \text { (\%) } \end{array} \\ \hline \end{gathered}$	DCR 2015 Without Proiect Monthl Temperature (DEGGF)		$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (eEGF) } \end{aligned}$	$\begin{gathered} \text { Relative } \\ \text { Difference }(\%) \end{gathered}$
0.0\%	58.1		-0.2	-0.4\%
1.2\%	57.2	57.0	-0.2	-0.4\%
2.5\%	56.2	56.1	-0.1	-0.2\%
3.79\%	56.1 56.1	56.0 559	-0.2	-0.3\%
6.2\%	55.0	55.9	-0.1	${ }_{0}$
7.4\%	55.9	55.9	0.0	0.0\%
8.6\%	55.9	55.9	0.0	0.0\%
9.9\%	55.8	55.9	0.0	0.0\%
11.1\%	55.7	55.7	0.0	0.0\%
12.3\%	55.7	55.6	-0.1	-0.2\%
13.6\%	55.5	55.4	-0.1	-0.1\%
14.8\%	${ }_{55.5}^{55.5}$	55.4	-0.1	-0.1\%
${ }^{16.0 \%}$ 17.3\%	55.5 55.5	55.4 55.4	-0.1 -0.1	- -0.10%
18.5\%	55.5	55.4	-0.1	-0.2\%
19.8\%	55.5	55.4	-0.1	-0.1\%
21.0\%	55.4	55.4	0.0	0.0\%
22.2\%	55.4	55.3	-0.1	-0.1\%
23.5\%	55.3	55.3	0.0	-0.1\%
24.7\%	55.3	55.2	-0.1	-0.1\%
25.9\%	55.3	55.1	-0.1	-0.2\%
27.2\%	55.0	54.9	-0.1	-0.1\%
28.4\%	54.9 54.9	54.8 54.8	-0.1 -0.1	-0.0.2\%
30.9\%	54.9	54.8	-0.1	-0.1\%
32.1\%	54.9	54.8	-0.1	-0.1\%
33.3% 34.6%	54.8 54.8	54.8 54.8	0.0	-0.10\%
34.6\%	${ }_{54.8}^{54.8}$	54.8 54.7	0.0	0.0\%
35.8% 37.0%	54.7 54.6	54.7 54.7	0.0	${ }^{0.10}$
38.3\%	54.5	54.6 54.6	0.1	${ }^{0.01 \%}$
39.5\%	54.5	54.5	0.0	0.0\%
40.7\%	54.5	54.5	0.0	0.0\%
42.0\%	54.4	54.5	0.0	0.1\%
43.2\%	54.4	54.4	0.0	0.0\%
${ }_{4}^{44.4 \%}$	54.4 54.4	54.4 54.3	0.0	-0.1\%
46.9\%	54.3	54.3	0.0	-0.1\%
48.1\%	54.3	54.3	0.0	-0.1\%
49.4\%	54.3	54.2	-0.1	-0.2\%
50.6\%	54.1	54.1	0.1	0.1\%
51.9\%	54.1	53.9	-0.2	-0.4\%
53.1\%	54.1	53.9	-0.2	-0.4\%
54.3\%	54.1	53.8	-0.3	-0.5\%
55.6\%	54.0 54.0	53.8 53.7	-0.3 -0.3	-0.0\%
58.0\%	53.9	53.7	-0.2	-0.4\%
59.3\%	53.9	53.7	-0.2	-0.3\%
- 60.5%	53.8 53.7 53,	53.7 53.7	-0.1	-
63.0\%	53.7	53.7	-0.1	-0.1\%
64.2\%	53.7	53.6	-0.1	-0.2\%
65.4\%	53.6	53.6	0.0	0.0\%
66.7\%	53.6	53.6	0.0	0.1\%
67.9\%	53.6	53.5	0.0	0.0\%
69.1\%	53.5	53.5	0.0	0.0\%
70.4\%	53.5 534 5.4	53.5 53.4 5.4	0.0	${ }^{-0.10}$
71.8\%	53.4 53.4	53.4	0.0 0.0	${ }_{0}^{0.00 \%}$
74.1\%	53.4	53.4	0.0	0.0\%
75.3\%	53.3	53.4	0.1	0.1\%
76.5\%	53.3	53.2	-0.1	-0.1\%
77.8\%	53.2	53.2	0.0	0.0\%
79.0\% 80.2%	53.2 53.1	53.2 53.2	0.0	0.0\%
81.5\%	53.1	53.1	0.0	0.0\%
82.7\%	53.1	53.1	0.0	0.0\%
84.0\%	53.1	53.1	0.0	0.0\%
${ }_{\text {cke }}^{85.2 \%}$	53.0 53.0	53.0 53.0	0.0 0.0	${ }_{\text {coion }}^{0.00 \%}$
87.7\%	53.0	53.0	0.1	0.1\%
88.9\%	53.0	52.9	0.0	-0.1\%
90.1\%	53.0	52.9	-0.1	-0.1\%
91.4\%	52.9	52.9	0.0	-0.1\%
92.6\%	52.9	52.8	0.0	-0.1\%
93.8\%	52.9	52.7	-0.2	-0.3\%
${ }_{96.3 \%}^{95.19 \%}$	52.8 52.7	52.7 52.7	-0.1 -0.1	-0.1\%
97.5\%	52.6	52.0	-0.6	-1.1\%
988.8\%	52.2 52.1	51.9 513	-0.3	${ }^{-0.6 \%}$
100.0\%	52.1	51.3	-0.9	-1.7\%

River Temperature Modeling Summary Tables and Bar Charts

Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulition Period ${ }^{1}$												
WSIP 2030 W Witout Project	55.3	55.5	52.1	48.3	46.8	47.5	48.4	49.5	50.4	52.1	53.2	52.8
WSIP 2030 Wit Projert	55.2	55.5	52.2	48.3	46.8	47.5	48.5	49.8	50.6	52.2	53.0	52.9
Difteence	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.3	0.2	0.2	-0.2	0.1
Peceno Diffeenee?	-0.1\%	0.0\%	0.1\%	-0.1\%	-0.1\%	0.0\%	0.2\%	0.6\%	0.4\%	0.3\%	-0.5\%	0.2\%
Water Year Types ${ }^{2}$												
Wet(30\%)												
WSIP 2030 W Witout Project	54.5	55.5	52.4	47.2	45.7	46.3	47.6	49.0	49.8	51.1	52.5	51.2
WSIP 2303 Wiff riject	54.6	55.5	52.4	47.1	45.6	46.3	47.7	49.2	50.0	51.5	52.5	51.7
Diffeence	0.0	0.0	0.0	-0.1	-0.1	0.0	0.1	0.2	0.2	0.4	-0.1	0.5
Percent ififeence	0.1\%	0.0\%	0.0\%	-0.3\%	-0.2\%	0.0\%	0.2\%	0.4\%	0.3\%	0.7\%	-0.1\%	0.9\%
Above Nomal (15\%)												
WSIP 230 W Without Priect	54.5	55.3	52.2	48.3	46.7	47.1	48.4	49.5	49.8	51.3	52.3	51.7
WSIP 2030 Winf Projed	54.4	55.2	52.0	48.3	46.6	47.1	48.5	49.7	50.1	51.3	52.1	52.1
Diffeere	-0.1	0.0	-0.1	0.0	${ }^{-0.1}$	0.0	0.1	0.3	0.3	0.1	-0.2	0.4
Percent Diffeene	-0.2\%	-0.1\%	-0.3\%	0.0\%	-0.1\%	-0.1\%	0.2\%	0.5\%	0.5\%	0.2\%	-0.4\%	0.8\%
Below Nomal (21\%)												
WSIP 2030 W Witout Project	54.9	55.2	52.0	48.7	47.0	47.9	48.6	49.5	50.2	51.8	53.0	52.5
WSIP 2030 Win Project	55.0	55.2	52.0	48.7	47.0	47.9	48.6	49.7	50.5	52.1	52.8	52.7
Diffeence	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.3	-0.2	0.2
Percent Diffeene	0.2\%	0.1\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.5\%	0.5\%	0.5\%	-0.3\%	0.3\%
Dry (20\%)												
WSIP 2303 W Whtout Prieat	55.2	55.5	51.5	49.0	47.5	48.0	48.8	49.7	50.7	52.7	53.6	53.5
WSIP 2380 Wit Projed	55.3	55.5	51.6	48.9	47.5	48.1	48.8	49.9	51.1	52.8	53.3	53.4
Diffeere	0.1	0.0	0.1	-0.1	${ }^{-0.1}$	0.1	0.0	0.2	0.3	0.1	-0.3	-0.1
Percentififene	0.2\%	0.0\%	0.1\%	-0.2\%	-0.1\%	0.1\%	0.1\%	0.4\%	0.7\%	0.3\%	-0.5\%	-0.19
Critical (15\%)												
WSIP 230 W Without Proect	58.2	56.5	52.4	49.4	48.3	49.1	49.5	50.5	52.3	54.5	55.4	56.8
WSIP 2030 Win Project	57.7	56.5	52.8	49.5	48.4	49.1	49.8	51.2	52.3	54.2	54.7	55.9
Diffeence	-0.5	-0.1	0.4	0.1	0.1	0.0	0.3	0.7	0.0	-0.3	-0.7	-0.8

$\frac{\text { Peccent Differenee }}{1 \text { Based of the } 8 \text { everar simulation period }}$
3 Redafive difierence of the monthiy wereage

Monthly Temperature (DEGF)												
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period'												
WSIP 2303 W Witrout Priect	55.7	55.6	52.0	48.4	47.2	48.2	49.4	50.7	51.4	52.9	54.2	53
WSIP 2030 Witit Proeat	55.7	55.6	52.1	48.4	47.2	48.2	49.5	51.0	51.7	53.1	53.9	53.8
Diffeence	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.4	0.2	0.2	-0.3	0.0
Perenen Differene?	-0.1\%	0.0\%	0.1\%	-0.1\%	-0.1\%	0.0\%	0.2\%	0.7\%	0.5\%	0.3\%	-0.5\%	0.1\%
Water Year Types ${ }^{2}$												
Wet (30\%)												
WSIP 2303 W Witrout Prieet	54.9	55.5	52.3	47.3	45.9	46.7	48.5	50.2	50.9	52.0	53.5	51.8
WSIP 2030 Wititroject	55.0	55.5	52.3	47.2	45.8	46.7	48.6	50.4	51.0	52.4	53.4	52,3
Diffeene	0.0	0.0	0.0	-0.1	-0.1	0.0	0.1	0.2	0.1	0.4	-0.1	0.5
Perenen Difference	0.1\%	0.0\%	0.0\%	-0.3\%	-0.2\%	0.0\%	0.2\%	0.5\%	0.3\%	0.7\%	-0.2\%	0.9\%
Above Nomal (15\%)												
WSIP 2330 W Witout Proeet	54.9	55.3	52.1	48.4	47.0	47.6	49.4	50.6	50.8	52.1	53.2	52.5
WSIP 2030 Witit Projet	54.8	55.2	52.0	48.4	46.9	47.6	49.5	51.0	51.2	52.2	53.1	52.9
Diffeene	-0.1	0.0	-0.1	0.0	-0.1	-0.1	0.1	0.3	0.4	0.1	-0.2	0.5
Perenen ifference	-0.2\%	-0.1\%	-0.2\%	0.0\%	-0.2\%	-0.1\%	0.3\%	0.7\%	0.8\%	0.2\%	-0.3\%	0.9\%
Below Nomal (21\%)												
WSIP 2303 W Witout Prieet	55.4	55.2	51.9	48.8	47.4	48.8	49.7	50.5	51.2	52.6	53.9	53.6
WSIP 2330 Witit Priject	55.5	55.2	51.9	48.8	47.4	48.8	49.6	50.8	51.5	52.9	53.8	53.6
Diffeene	0.1	0.1	0.1	0.0	0.0	0.0	-0.1	0.3	0.3	0.3	-0.2	0.0
Perenen Difference	0.1\%	0.1\%	0.1\%	0.0\%	0.0\%	0.0\%	-0.1\%	0.6\%	0.6\%	0.5\%	-0.3\%	0.1\%
Dr (20\%)												
WSIP 2330 W Witout Prjeet	55.7	55.5	51.5	49.0	48.0	48.9	49.8	50.8	51.7	53.6	54.6	54.7
WSIP 2030 Wititroject	55.8	55.5	51.5	48.9	47.9	49.0	49.8	51.1	52.0	53.7	54.2	54.5
Diffeene	0.1	0.0	0.1	-0.1	-0.1	0.0	0.0	0.3	0.4	0.1	-0.4	-0.2
Perenen ifference	0.2\%	0.0\%	0.1\%	-0.2\%	-0.1\%	0.1\%	0.1\%	0.5\%	0.7\%	0.3\%	-0.6\%	-0.4\%
Critica (15\%)												
WSIP 2330 W Witrout Prieet	58.7	56.5	52.3	49.5	48.8	50.0	50.4	51.6	53.2	55.4	56.4	57.9
WSIP 2030 Witit Projet	58.2	56.5	52.6	49.6	48.9	50.0	50.8	52.5	53.3	55.1	55.6	57.0
Diffeene	-0.5	-0.1	0.3	0.1	0.1	0.0	0.3	0.8	0.0	-0.2	-0.8	-0.9
Pereni iffeence	-0.8\%	-0.1\%	0.6\%	0.2\%	0.2\%	0.0\%	0.6\%	1.6\%	0.1\%	-0.4\%	-1.3\%	

1 Based on the 82 -vear simuluation peitiod

3 Realive difference of the montily average

Sacramento Riverat Balls Ferry, Monthly Temperature

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simution Period ${ }^{\text {a }}$												
WSIP 2303 W Whtout Priect	56.3	55.0	50.7	47.8	47.4	49.2	51.2	52.9	53.4	54.5	55.9	55.3
WSIP 2030 Wif Projert	56.3	55.0	50.8	47.7	47.4	49.1	51.3	53.3	53.7	54.7	55.6	55.2
Diffeence	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.4	0.3	0.2	-0.3	0.0
Percent Differenes	0.0\%	0.0\%	0.2\%	-0.1\%	-0.1\%	0.0\%	0.2\%	0.8\%	0.6\%	0.3\%	-0.5\%	-0.1\%
Water Year Types ${ }^{2}$												
Wet (30\%)												
WSIP 2303 W Without Prject	55.5	55.0	51.0	46.9	46.2	47.6	50.3	52.8	53.2	53.8	55.3	53.0
WSIP 2303 Wiff Prijet	55.5	55.0	51.0	46.8	46.1	47.6	50.4	53.1	53.3	54.1	55.2	53.5
Diffeence	0.1	0.0	0.0	-0.1	-0.1	0.0	0.1	0.3	0.1	0.3	${ }^{-0.1}$	0.4
Percent Diffeene	0.1\%	0.0\%	0.0\%	-0.2\%	-0.2\%	0.0\%	0.2\%	0.5\%	0.2\%	0.6\%	-0.3\%	0.8\%
Above Nomal (15\%)												
WSIP 2303 W Without Prieat	55.5	54.8	50.8	47.5	47.1	48.5	51.3	52.9	52.9	53.7	54.9	53.8
WSIP 2030 Wit Project	55.4	54.8	50.9	47.4	47.0	48.4	51.4	53.4	53.5	53.8	54.8	54.3
Diffeence	-0.1	0.0	0.1	0.0	-0.1	-0.1	0.1	0.4	0.6	0.1	${ }^{-0.1}$	0.5
Percent ififeence	-0.3\%	0.0\%	0.3\%	-0.1\%	-0.2\%	-0.2\%	0.3\%	0.8\%	1.1\%	0.2\%	-0.2\%	0.9\%
Below Nomal (21\%)												
WSIP 230 W Without Proect	56.1	54.6	50.7	48.0	47.7	49.8	51.6	52.6	53.0	54.1	55.5	55.4
WSIP 2030 Wit Project	56.1	54.7	50.8	48.0	47.7	49.8	51.4	53.0	53.4	54.4	55.4	55.3
Diffeence	0.0	0.1	0.1	0.0	0.0	0.0	-0.1	0.4	0.4	0.3	-0.2	-0.1
Percent ifiteene	0.1\%	0.2\%	0.2\%	0.0\%	0.0\%	0.0\%	-0.2\%	0.7\%	0.8\%	0.5\%	-0.3\%	-0.2\%
Dy (20%)												
WSIP 2303 W Whtout Proect	56.3	54.8	50.3	48.2	48.1	49.9	51.6	52.8	53.4	55.1	56.2	56.6
WSIP 2030 W Wh Project	56.5	54.9	50.4	48.2	48.0	50.0	51.7	53.2	53.8	55.2	55.8	56.2
Diffeerce	0.2	0.0	0.1	0.0	0.0	0.0	0.1	0.4	0.4	0.1	-0.4	-0.4
Percent Diffeence	0.3\%	0.1\%	0.1\%	0.0\%	-0.1\%	0.0\%	0.1\%	0.7\%	0.8\%	0.3\%	-0.8\%	-0.7\%
Critical (15\%)												
WSIP 230 W Without Proect	59.2	56.0	50.7	48.9	49.2	51.1	52.0	53.6	54.8	56.8	58.0	59.5
WSIP 2380 With Projed	58.8	55.9	51.0	49.0	49.2	51.1	52.3	54.5	54.9	56.7	57.3	58.6
Diffeence	-0.4	-0.1	0.2	0.1	0.1	0.0	0.4	0.9	0.1	-0.1	-0.8	-1.0

1 1asedo on the 82 -jears sinulation period
3 Readive difference e f the monntily average

Sacramento River at Jellys Ferry, Monthly Temperature

Monthly Temperature (DEGF)												
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period'												
WSIP 2303 W Witrout Priect	56.8	54.5	49.8	47.3	47.5	49.8	52.6	54.8	55.1	55.9	57.3	56.
WSIP 2030 Witiproject	56.8	54.6	49.9	47.2	47.5	49.8	52.7	55.3	55.4	56.1	57.0	56.5
Diffeence	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.5	0.3	0.2	-0.3	-0.1
Perenen Differene'	0.0\%	0.0\%	0.2\%	0.0\%	-0.1\%	0.0\%	0.2\%	0.8\%	0.6\%	0.3\%	-0.5\%	-0.2\%
Water Year Types ${ }^{2}$												
Wet (30\%)												
WSIP 2303 W Witrout Prieet	56.0	54.6	50.0	46.6	46.4	48.4	51.7	55.0	55.2	55.5	56.9	54.1
WSIP 2030 Wititroject	56.0	54.6	50.0	46.5	46.3	48.4	51.8	55.3	55.3	55.8	56.7	54.5
Diffeene	0.1	0.0	0.0	-0.1	-0.1	0.0	0.1	0.3	0.1	0.3	-0.2	0.4
Perenen Difference	0.1\%	0.0\%	0.1\%	-0.2\%	-0.2\%	0.0\%	0.2\%	0.5\%	0.1\%	0.5\%	-0.3\%	0.8\%
Above Nomal (15\%)												
WSIP 2330 W Witout Proeet	56.0	54.4	49.9	46.9	47.1	49.2	52.8	54.9	54.7	55.1	56.3	55.0
WSIP 2030 Witit Projet	55.9	54.4	50.2	46.9	47.1	49.1	52.9	55.4	55.4	55.3	56.2	55.5
Diffeene	-0.1	0.0	0.2	0.0	-0.1	-0.1	0.1	0.5	0.7	0.1	0.0	0.5
Perenen ifference	-0.3\%	0.0\%	0.5\%	-0.1\%	-0.1\%	-0.2\%	0.2\%	0.9\%	1.4\%	0.2\%	-0.1\%	0.9\%
Below Nomal (12\%)												
WSIP 2303 W Witout Prieet	56.6	54.1	49.8	47.4	47.8	50.5	53.0	54.4	54.6	55.3	56.9	57.0
WSIP 2330 Witit Priject	56.6	54.2	50.0	47.4	47.7	50.5	52.9	54.8	55.1	55.6	56.7	56.7
Diffeene	0.0	0.1	0.2	0.0	0.0	0.0	-0.1	0.4	0.5	0.3	-0.1	-0.3
Perenen Difference	0.0\%	0.2\%	0.3\%	0.0\%	0.0\%	0.0\%	-0.2\%	0.7\%	1.0\%	0.5\%	-0.2\%	-0.5\%
Dry (20%)												
WSIP 2303 Witrout Priect	56.8	54.3	49.4	47.6	48.0	50.6	53.0	54.5	54.8	56.3	57.5	58.1
WSIP 2030 Wititroject	57.0	54.4	49.5	47.6	48.0	50.5	53.1	55.0	55.3	56.5	57.0	57.6
Diffeene	0.2	0.0	0.1	0.0	0.0	0.0	0.1	0.4	0.4	0.2	-0.5	-0.5
Perenen ifference	0.3\%	0.1\%	0.1\%	0.0\%	-0.1\%	0.0\%	0.1\%	0.8\%	0.8\%	0.3\%	-0.9\%	-0.9\%
Critical (15\%)												
WSIP 2330 W Witrout Prieet	59.6	55.4	49.8	48.3	49.3	51.7	53.2	55.2	56.1	58.0	59.3	60.8
WSIP 2030 Witit Projet	59.3	55.3	49.9	48.4	49.3	51.7	53.6	56.1	56.3	58.0	58.6	59.8
Diffeene	-0.3	-0.1	0.1	0.1	0.0	0.0	0.4	0.9	0.1	-0.1	-0.8	${ }^{-1.0}$
Pereni iffeence	-0.5\%	-0.1\%	0.3\%	0.2\%	0.1\%	0.0\%	0.7\%	1.7\%	$0.3{ }^{\circ}$	-0.1\%	-1.3\%	

Basedion the 82 verearsimulution period

Sacramento River at Bend SQidela
Adge, Monthly Temperature

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simution Period ${ }^{\text {a }}$												
WSIP 2303 W Whtout Priect	57.1	54.2	49.3	47.1	47.6	50.4	53.4	55.8	56.1	57.0	58.4	57.5
WSIP 2030 Wif Projert	57.1	54.2	49.5	47.1	47.6	50.4	53.5	56.3	56.5	57.2	58.1	57.4
Diffeence	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.5	0.4	0.2	-0.3	-0.1
Percent Diftereme'	0.0\%	0.1\%	0.2\%	0.0\%	-0.1\%	0.0\%	0.2\%	0.8\%	0.7\%	0.3\%	-0.5\%	-0.2\%
Water Year Types ${ }^{2}$												
Wet (30\%)												
WSIP 2303 W Without Prject	56.3	54.3	49.6	46.6	46.6	49.0	52.5	56.0	56.3	56.6	58.1	54.8
WSIP 2303 Wiff Prijet	56.3	54.4	49.6	46.5	46.5	48.9	52.6	56.3	56.4	56.8	57.9	55.2
Diffeence	0.1	0.0	0.0	-0.1	-0.1	0.0	0.1	0.3	0.1	0.3	-0.2	0.4
Percent Diffeene	0.1\%	0.0\%	0.1\%	-0.2\%	-0.1\%	0.0\%	0.2\%	0.5\%	0.1\%	0.5\%	-0.3\%	0.7\%
Above Nomal (15\%)												
WSIP 2303 W Without Prieat	56.4	54.2	49.5	46.9	47.3	49.7	53.6	55.9	55.7	56.1	57.4	55.9
WSIP 2030 Wit Project	56.2	54.2	49.8	46.8	47.2	49.6	53.7	56.4	56.5	56.3	57.4	56.4
Diffeence	-0.1	0.0	0.3	0.0	-0.1	-0.1	0.1	0.5	0.8	0.1	0.0	0.5
Percent ififeence	-0.2\%	0.1\%	0.6\%	-0.1\%	-0.1\%	-0.2\%	0.2\%	0.9\%	1.5\%	0.2\%	0.0\%	0.9\%
Below Noma (12\%)												
WSIP 230 W Without Proect	56.9	53.7	49.3	47.2	47.9	51.0	53.8	55.4	55.6	56.4	58.0	58.1
WSIP 2030 Wit Project	56.9	53.8	49.5	47.2	47.9	51.0	53.7	55.8	56.2	56.6	57.9	57.8
Diffeence	0.0	0.1	0.2	0.0	0.0	0.0	-0.1	0.4	0.6	0.3	-0.1	-0.3
Percent ifiteene	0.0\%	0.2\%	0.4\%	0.0\%	0.0\%	0.0\%	-0.2\%	0.7\%	1.0\%	0.5\%	-0.2\%	-0.6\%
Dr (20\%)												
WSIP 2303 W Whtout Proect	57.2	53.9	48.9	47.3	48.1	51.1	53.7	55.6	55.9	57.4	58.7	59.3
WSIP 2030 W Wh Project	57.3	54.0	49.0	47.3	48.0	51.1	53.8	56.1	56.3	57.6	58.2	58.7
Diffeerce	0.2	0.0	0.1	0.0	0.0	0.0	0.1	0.5	0.5	0.2	-0.5	-0.6
Percent Diffeence	0.3\%	0.1\%	0.1\%	0.1\%	0.0\%	0.0\%	0.2\%	0.8\%	0.8\%	0.3\%	-0.9\%	-1.08
Critical (15\%)												
WSIP 230 W Without Proect	59.8	54.8	49.3	48.0	49.3	52.1	53.9	56.1	57.1	59.0	60.3	61.7
WSIP 2380 With Projed	59.6	54.8	49.4	48.1	49.3	52.1	54.3	57.1	57.3	59.0	59.6	60.7
Diffeence	-0.3	-0.1	0.1	0.1	0.0	0.0	0.4	0.9	0.2	0.0	-0.8	-1.0

$\frac{\text { Perenen Dififenene }}{1 \text { Based on the } 2 \text {-verar simulution period }}$

3 Realive difference of the montily average

Sacramento River at Red Bluff, Monthly Temperature

Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
${ }_{\text {Full Simulition Period' }}$												
WSIP 2030 Without Pried	57.7	54.2	49.3	47.1	47.9	50.9	54.2	57.1	57.8	58.6	60.2	59.1
WSIP 2030 Wif Projer	57.7	54.3	49.4	47.1	47.9	50.9	54.4	57.6	58.2	58.8	59.8	58.8
Diffeence	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.5	0.4	0.2	-0.3	-0.2
Percent Difference	0.0\%	0.1\%	0.2\%	0.0\%	0.0\%	0.0\%	0.2\%	0.9\%	0.7\%	0.3\%	-0.5\%	-0.4\%
Water Year Types ${ }^{2}$												
Wet (3\%\%)												
WSIP 2030 Without Priject	56.8	54.4	49.5	46.6	46.8	49.4	53.2	57.2	58.0	58.3	59.9	56.0
WSIP 2303 Wiff Projet	56.9	54.4	49.5	46.6	46.7	49.4	53.3	57.5	58.1	58.5	59.6	56.4
Diffeence	0.1	0.0	0.0	-0.1	-0.1	0.0	0.1	0.3	0.1	0.2	-0.2	0.4
Percent Diffeene	0.1\%	0.0\%	0.1\%	-0.1\%	-0.1\%	0.0\%	0.2\%	0.5\%	0.1\%	0.4\%	-0.4\%	0.7\%
Above Nomal (15\%)												
WSIP 2030 W Without Priect	56.9	54.1	49.5	46.9	47.5	50.2	54.4	57.2	57.3	57.8	59.1	57.3
WSIP 2038 With Prijed	56.8	54.2	49.7	46.8	47.4	50.1	54.5	57.7	58.3	57.9	59.2	57.8
Diffeence	-0.1	0.0	0.3	0.0	0.0	-0.1	0.1	0.5	0.9	0.1	0.0	0.5
Percent Differene	-0.2\%	0.1\%	0.5\%	-0.1\%	-0.1\%	-0.2\%	0.2\%	0.9\%	1.6\%	0.2\%	0.1\%	0.8\%
Below Nomal (12\%)												
WSIP 2308 Without Priject	57.5	53.8	49.2	47.3	48.2	51.6	54.7	56.6	57.3	57.9	59.7	59.8
WSIP 2303 With Projer	57.5	53.9	49.4	47.3	48.2	51.6	54.6	57.1	57.9	58.2	59.6	59.3
Diffeence	0.0	0.1	0.2	0.0	0.0	0.0	-0.1	0.4	0.7	0.3	-0.1	-0.4
Percen Difleeene	0.0\%	0.2\%	0.4\%	0.0\%	0.0\%	0.1\%	-0.2\%	0.8\%	1.1\%	0.5\%	-0.2\%	-0.8\%
Dr (20\%)												
WSIP2030 Wiftout Priject	57.8	54.0	48.9	47.3	48.3	51.7	54.7	56.9	57.5	59.0	60.4	61.1
WSIP 2383 With Projed	58.0	54.0	49.0	47.4	48.4	51.7	54.8	57.4	58.0	59.2	59.8	60.4
Diffeence	0.2	0.0	0.0	0.0	0.0	0.0	0.1	0.5	0.5	0.2	-0.6	-0.7
Percent Difiteence	0.3\%	0.1\%	0.1\%	0.1\%	0.0\%	0.0\%	0.2\%	0.9\%	0.8\%	0.3\%	-1.0\%	-1.2\%
Critical (15\%)												
WSIP 2303 W Without Priject	60.4	54.9	49.3	48.1	49.7	52.8	54.9	57.5	58.7	60.6	62.1	63.3
WSIP 2038 With Prijed	60.2	54.9	49.4	48.2	49.7	52.9	55.4	58.4	58.9	60.7	61.3	62.3
Diffeence	-0.2	-0.1	0.1	0.1	0.0	0.0	0.4	1.0	0.2	0.1	-0.8	${ }^{-1.0}$
Percent Differeme	-0.3\%	-0.1\%	0.2\%	0.1\%	0.1\%	0.1\%	0.8\%	1.7\%	0.4\%	0.1\%	-1.2\%	${ }_{-1.6 \%}$

$\frac{\text { Perenen Dififenene }}{1 \text { Based on the } 2 \text {-verar simulution period }}$

3 Realive difference of the monhty yereage

Sacramento River belowle Red 8 -1a
Long.term Average and Average by Why Temperature

Monthly Temperature (DEGF)												
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulition Period'												
WSIP 2303 W Witrout Priect	57.7	54.2	49.3	47.1	47.9	50.9	54.2	57.0	57.7	58.5	60.1	59.
WSIP 2030 Witiproject	57.7	54.3	49.4	47.1	47.9	50.9	54.3	57.5	58.1	58.7	59.8	58.8
Diffeence	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.5	0.4	0.2	-0.3	-0.2
Perenen Differene?	0.0\%	0.1\%	0.2\%	0.0\%	0.0\%	0.0\%	0.2\%	0.9\%	0.7\%	0.3\%	-0.5\%	-0.3\%
Water Year Types ${ }^{2}$												
Wet (30\%)												
WSIP 2303 W Witrout Prieet	56.8	54.4	49.5	46.6	46.8	49.3	53.1	57.2	57.9	58.2	59.8	56.0
WSIP 2030 Wititroject	56.8	54.4	49.5	46.5	46.7	49.3	53.2	57.5	58.0	58.4	59.6	56.3
Diffeene	0.1	0.0	0.0	-0.1	-0.1	0.0	0.1	0.3	0.1	0.2	-0.2	0.4
Perenen Difference	0.1\%	0.0\%	0.1\%	-0.1\%	-0.1\%	0.0\%	0.2\%	0.5\%	0.1\%	0.4\%	-0.4\%	0.7\%
Above Nomal (15\%)												
WSIP 2330 W Witout Proeet	56.9	54.1	49.5	46.9	47.5	50.1	54.4	57.1	57.3	57.7	59.1	57.2
WSIP 2030 Witit Projet	56.8	54.2	49.7	46.8	47.4	50.0	54.5	57.6	58.2	57.8	59.1	57.7
Diffeene	-0.1	0.0	0.3	0.0	0.0	-0.1	0.1	0.5	0.9	0.1	0.0	0.5
Perenen ifference	-0.2\%	0.1\%	0.5\%	-0.1\%	-0.1\%	-0.2\%	0.2\%	0.9\%	1.6\%	0.2\%	0.1\%	0.8\%
Below Nomal (21\%)												
WSIP 2303 W Witout Prieet	57.5	53.8	49.2	47.3	48.2	51.6	54.7	56.6	57.2	57.8	59.6	59.7
WSIP 2330 Witit Priject	57.5	53.9	49.4	47.3	48.2	51.6	54.6	57.0	57.8	58.1	59.5	59.3
Diffeene	0.0	0.1	0.2	0.0	0.0	0.0	-0.1	0.4	0.6	0.3	-0.1	-0.4
Perenen Difference	0.0\%	0.2\%	0.4\%	0.0\%	0.0\%	0.0\%	-0.2\%	0.8\%	1.1\%	0.5\%	-0.2\%	-0.7\%
Dry (20%)												
WSIP 2330 W Witout Prjeet	57.7	54.0	48.9	47.3	48.3	51.6	54.7	56.9	57.4	58.9	60.3	61.0
WSIP 2030 Wititroject	57.9	54.0	49.0	47.3	48.3	51.6	54.8	57.3	57.9	59.1	59.7	${ }^{60.3}$
Diffeene	0.2	0.0	0.0	0.0	0.0	0.0	0.1	0.5	0.5	0.2	-0.6	-0.7
Perenen ifference	0.3\%	0.1\%	0.1\%	0.1\%	0.0\%	0.0\%	0.2\%	0.9\%	0.8\%	0.3\%	-1.0\%	-1.2\%
Critica (15\%)												
WSIP 2330 W Witrout Prieet	60.4	54.9	49.3	48.1	49.7	52.8	54.9	57.4	58.6	60.5	62.0	${ }^{63.3}$
WSIP 2030 Witit Projet	60.2	54.9	49.4	48.1	49.7	52.8	55.3	58.4	58.9	60.6	61.2	62.2
Diffeene	-0.2	-0.1	0.1	0.1	0.0	0.0	0.4	1.0	0.2	0.1	-0.8	${ }^{-1.0}$
Pereni iffeence	-0.3\%	-0.1\%	0.2\%	0.1\%	0.1\%	0.1\%	0.8\%	1.7\%	0.4	0.1\%	-1.2\%	

$\frac{\text { Perenen Dififenene }}{1 \text { Based on the } 2 \text {-verar simulution period }}$

3 Realive difference of the montily average

Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period ${ }^{1}$												
WSIP 2330 W Witrout Proed	65.6	57.3	49.8	46.3	46.8	49.6	54.9	60.2	64.3	66.4	66.6	68.2
WSIP 2030 Wifit Proed	65.6	57.4	50.1	46.4	46.8	49.6	54.8	60.1	64.1	65.4	66.0	67.5
Diffeence	0.0	0.0	0.3	0.1	0.0	0.0	-0.1	-0.1	-0.2	-1.0	-0.7	-0.7
Perenen Differene'	0.0\%	0.0\%	0.6\%	0.2\%	0.0\%	0.0\%	-0.2\%	-0.2\%	-0.4\%	-1.5\%	-1.0\%	-1.0
Water Year Types ${ }^{2}$												
Wet (30\%)												
WSIP 2303 W Witrout Prieet	65.1	57.1	49.5	45.2	45.8	48.4	52.7	58.0	62.0	66.0	66.3	67.3
WsIP 2030 Win Priject	64.7	57.0	49.9	45.3	45.8	48.4	52.7	58.0	62.0	64.8	64.9	66.5
Diffeene	-0.3	0.0	0.4	0.1	0.0	0.0	0.0	0.0	0.0	-1.2	-1.4	-0.8
Perenen Difference	-0.5\%	-0.1\%	0.8\%	0.1\%	0.0\%	0.0\%	0.0\%	-0.1\%	-0.1\%	-1.8\%	-2.1\%	-1.3\%
Above Nomal (15\%)												
WSIP 2330 W Witrout Prieet	65.2	56.6	49.9	46.4	46.4	48.7	54.5	60.1	64.8	65.8	66.1	67.6
WSIP 2030 Witit Projet	65.2	56.6	50.3	46.5	46.4	48.7	54.5	60.1	64.4	64.8	65.6	67.0
Diffeence	0.0	0.0	0.3	0.1	0.0	0.0	0.0	0.0	-0.4	-1.0	-0.5	-0.6
Perenitififence	0.0\%	0.0\%	0.7\%	0.2\%	0.1\%	0.0\%	0.0\%	-0.1\%	-0.6\%	-1.5\%	-0.7\%	-0.9\%
Below Nomal (21\%)												
WSIP 2330 Witiout Prjeet	65.5	57.9	50.3	46.6	46.8	49.4	55.6	61.2	65.3	65.5	66.9	68.5
WSIP 2030 Witit Priject	65.6	57.8	50.7	46.7	46.8	49.4	55.6	60.9	64.5	64.6	66.1	67.4
Diffeene	0.1	-0.1	0.4	0.1	0.0	0.0	0.0	-0.3	-0.8	-0.9	-0.7	${ }^{-1.1}$
Perenen Difference	0.1\%	-0.2\%	0.8\%	0.1\%	0.0\%	0.0\%	-0.1\%	-0.6\%	-1.2\%	-1.4\%	-1.1\%	-1.6\%
Dry (20%)												
WSIP 2303 Witrout Priect	65.7	56.6	49.1	46.7	47.2	50.4	56.2	61.6	65.5	65.9	66.4	68.7
WSIP 2030 Witit Priject	66.0	56.7	49.3	46.8	47.2	50.4	56.1	61.4	65.2	65.2	66.5	68.1
Diffeerese	0.3	0.1	0.2	0.1	0.0	0.0	-0.1	-0.2	-0.3	-0.8	0.1	-0.6
Paecenififfeence	0.5\%	0.2\%	0.4\%	0.3\%	0.1\%	0.0\%	-0.2\%	-0.3\%	-0.5\%	-1.1\%	0.1\%	-0.8\%
Critical (15\%)												
WSIP 2330 W Witrout Prjeet	67.1	58.8	50.8	47.6	48.8	52.4	57.0	61.7	65.7	69.6	67.7	69.3
WSIP 2030 Witit Projet	67.2	58.9	50.7	47.9	48.8	52.2	56.5	61.9	66.1	68.7	67.5	69.2
Diffeene	0.1	0.1	-0.1	0.3	0.0	-0.2	-0.5	0.2	0.3	-0.9	-0.2	-0.1
Pereni ifference	0.1\%	0.1\%	-0.2\%	0.6\%	0.0\%	-0.4\%	-0.8\%	0.3\%	0.5\%	-1.3\%	-0.3\%	-0.20

American River at Watt Avenue, Monthly Temperature

Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulition Period'												
WSIP 2303 W Witrout Priect	66.2	57.4	49.8	46.8	47.9	51.6	57.8	64.4	69.0	69.8	71.3	70
WSIP 2030 Witiproject	66.1	57.4	50.0	46.9	47.9	51.6	57.6	64.1	68.6	69.3	70.6	69.9
Diffeence	-0.1	0.0	0.3	0.1	0.0	0.0	-0.2	-0.3	-0.3	-0.5	-0.7	-0.7
Perenen Differene'	-0.1\%	0.0\%	0.5\%	0.2\%	0.0\%	-0.1\%	-0.3\%	-0.4\%	-0.5\%	-0.8\%	-1.0\%	-1.0\%
Water Year Types ${ }^{2}$												
Wet (30\%)												
WSIP 2303 W Witrout Prieet	65.7	57.2	49.5	45.6	46.4	49.8	54.8	61.6	66.7	69.3	70.4	69.0
WSIP 2030 Wititroject	65.3	57.2	49.8	45.6	46.5	49.9	54.8	61.5	66.6	68.3	69.2	68.3
Diffeene	-0.3	0.0	0.4	0.1	0.0	0.0	0.0	-0.1	-0.1	-1.0	-1.2	-0.6
Percentififeence	-0.5\%	-0.1\%	0.7\%	0.1\%	0.0\%	0.0\%	0.0\%	-0.2\%	-0.2\%	-1.5\%	-1.7\%	-0.9\%
Above Nomal (15\%)												
WSIP 2330 W Witout Proeet	65.6	56.6	49.9	46.8	47.2	50.1	57.0	64.2	69.3	68.6	70.5	69.9
WSIP 2030 Witit Projet	65.6	56.7	50.2	46.9	47.2	50.1	57.0	64.0	68.8	68.1	70.0	69.3
Diffeene	0.0	0.0	0.3	0.1	0.0	0.0	0.0	-0.2	-0.5	-0.5	-0.5	-0.6
Perenen ifference	-0.1\%	0.1\%	0.6\%	0.2\%	0.1\%	0.0\%	0.0\%	-0.3\%	-0.7\%	-0.7\%	-0.7\%	-0.8\%
Below Nomal (21\%)												
WSIP 2303 W Witout Prieet	66.0	57.9	50.1	47.1	47.8	51.0	58.7	65.2	69.8	68.4	71.6	${ }^{71.1}$
WSIP 2030 Witit Projet	66.0	57.8	50.5	47.2	47.9	51.0	58.5	64.8	68.8	68.2	70.7	70.1
Diffeene	0.0	-0.1	0.4	0.1	0.0	0.0	-0.2	-0.4	-1.0	-0.2	-0.9	-1.0
Perenen Difference	0.0\%	-0.2\%	0.8\%	0.1\%	0.1\%	0.0\%	-0.3\%	-0.6\%	-1.5\%	-0.3\%	-1.3\%	-1.4\%
Dry (20%)												
WSIP 2330 W Witout Prjeet	66.3	56.7	49.1	47.1	48.4	53.1	59.8	65.9	69.7	69.5	71.1	71.5
WSIP 2030 Wititroject	66.5	56.8	49.3	47.2	48.5	53.1	59.6	65.4	69.5	69.4	71.2	70.8
Diffeence	0.2	0.1	0.2	0.1	0.0	0.0	-0.2	-0.5	-0.2	-0.1	0.1	-0.8
Perenen ifference	0.2\%	0.2\%	0.4\%	0.2\%	0.1\%	0.0\%	-0.4\%	-0.7\%	-0.3\%	-0.1\%	0.1\%	-1.1\%
Critical (15\%)												
WSIP 2330 W Witrout Prieet	67.7	58.7	50.7	48.2	50.7	55.6	61.1	66.9	71.0	74.7	73.6	${ }^{72.5}$
WSIP 2030 Witit Projet	67.7	58.8	50.6	48.5	50.7	55.3	60.4	66.7	71.4	74.1	73.1	72.2
Diffeene	0.0	0.1	-0.1	0.2	-0.1	-0.3	-0.7	-0.2	0.3	-0.7	-0.5	-0.3
Pereni iffeence	0.1\%	0.1\%	0.19	0.5\%	-0.1\%	-0.5\%	-1.1\%	-0.3	0.4\%	-0.9\%	-0.7\%	

3 Realive difference of the monhty yereage

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
$\overline{F u l l ~ S i m u l a t i o n ~ P e r i o d ' ~}^{\prime}$												
WSPP 2303 W Witut Project	66.7	57.5	49.7	47.1	48.6	52.9	59.9	67.2	72.2	${ }^{72.3}$	74.6	72.5
WSIP 2030 Witit Projert	66.5	57.5	50.0	47.2	48.6	52.9	59.6	66.9	71.8	72.2	73.9	71.8
Diffeence	-0.1	0.0	0.2	0.1	0.0	0.0	-0.2	-0.4	-0.4	-0.2	-0.7	-0.7
Perene Differene?	-0.2\%	0.0\%	0.5\%	0.2\%	0.0\%	-0.1\%	-0.4\%	-0.5\%	-0.5\%	-0.2\%	-0.9\%	-0.9\%
Water Year Types ${ }^{2}$												
Wet(30\%)												
WSIP 2303 W Witut Project	66.2	57.4	49.4	45.8	46.8	50.8	56.2	64.1	70.0	71.6	73.4	70.3
WSIP 2330 Witit Prieat	65.8	57.4	49.8	45.9	46.8	50.8	56.2	63.9	69.9	70.9	72.4	69.8
Diffeence	-0.4	0.0	0.3	0.0	0.0	0.0	0.0	-0.1	-0.2	-0.8	-1.0	-0.5
Perener Differene	-0.5\%	-0.1\%	0.7\%	0.1\%	0.0\%	0.0\%	0.0\%	-0.2\%	-0.3\%	-1.1\%	-1.4\%	-0.7\%
Above Nomal (15\%)												
WSIP 2303 W Witut Project	66.1	56.7	49.8	47.2	47.7	51.0	58.7	67.1	72.4	70.7	73.6	71.6
Wsip 2030 Win Projert	66.0	56.7	50.1	47.2	47.7	51.1	58.7	66.8	71.8	70.7	73.1	71.1
Diffeence	-0.1	0.1	0.3	0.1	0.0	0.0	0.0	-0.3	-0.6	0.0	-0.5	-0.5
Pereni Difference	-0.1\%	0.1\%	0.5\%	0.1\%	0.1\%	0.0\%	0.0\%	-0.4\%	-0.8\%	0.0\%	-0.7\%	-0.7
Beow Nomal (21\%)												
WSIP 2303 Witrout Project	66.4	57.9	50.0	47.5	48.5	52.1	60.8	68.0	73.0	70.5	75.0	73.2
WSIP 2030 Witit Priedt	66.4	57.8	50.4	47.5	48.6	52.1	60.5	67.6	71.8	70.9	74.0	${ }^{72.1}$
Diffeence	0.0	-0.1	0.4	0.1	0.0	0.0	-0.2	-0.4	-1.2	0.4	-1.1	-1.0
Perentififeeme	-0.1\%	-0.2\%	0.7\%	0.1\%	0.1\%	0.0\%	-0.4\%	-0.6\%	-1.6\%	0.6\%	-1.4\%	-1.49
Dr (20\%)												
WSIP 2303 W Witut Project	66.9	56.9	49.0	47.4	49.3	54.9	62.4	69.0	72.8	72.3	74.5	73.8
WSIP 2030 Witit Projert	66.9	57.0	49.2	47.5	49.4	54.9	62.1	68.3	72.6	72.7	74.6	72.9
Diffeence	0.0	0.1	0.2	0.1	0.1	0.0	-0.3	-0.7	-0.2	0.4	0.1	-0.9
Perenerififterene	0.0\%	0.1\%	0.4\%	0.1\%	0.1\%	0.0\%	-0.5\%	-1.0\%	-0.2\%	0.6\%	0.1\%	-1.2
Critical (15\%)												
WSIP 230 W Without Pried	68.3	58.7	50.6	48.7	52.1	57.8	64.0	70.4	74.5	78.3	77.7	75.0
WSIP 2030 Wit Project	68.3	58.8	50.6	48.9	52.0	57.5	63.2	70.1	74.8	77.7	77.1	74.6
Diffeene	0.0	0.1	0.0	0.2	-0.1	-0.3	-0.8	-0.4	0.3	-0.6	-0.6	-0.4
Perenen Difference	0.0\%	0.1\%	-0.1\%	0.4\%	-0.2\%	-0.6\%	-1.2\%	-0.5\%	0.4\%	-0.7\%		

3 Realive difference of the monhty yereage

Trinity River below Lable SQ12-1
Long-term Average and Average by Why Temperature

Trinity River below Lewiston Dam, Monthly Temperature Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$F_{\text {Ful S Simulation Period' }}$												
WSIP 2303 W Witout Proed	51.8	50.8	49.1	47.7	47.8	49.6	50.8	46.7	49.8	51.0	51.1	51.2
WSIP 2030 Wif Project	51.8	50.9	49.0	47.8	47.8	49.6	50.8	46.7	49.9	51.2	50.9	51.1
Diffeere	0.1	0.1	0.0	0.1	0.0	-0.1	0.0	0.0	0.0	0.1	-0.3	0.0
Perenen Diffeenne?	0.1\%	0.3\%	-0.1\%	0.3\%	0.0\%	-0.1\%	0.0\%	0.0\%	0.0\%	0.3\%	-0.5\%	0.0\%
Water Year Types ${ }^{2}$												
Wet (30\%)												
WSIP 230 W Without Proeat	49.7	49.4	48.8	45.7	45.7	47.4	49.2	45.0	47.1	50.2	50.4	49.5
WSIP 2303 Wiff Prijet	49.8	49.6	48.7	45.9	45.6	47.4	49.1	45.0	47.1	50.2	49.9	49.6
Diffeence	0.1	0.2	-0.1	0.2	-0.1	0.0	-0.1	0.0	0.0	0.0	-0.5	0.1
Percent Diffeerne	0.2\%	0.4\%	-0.2\%	0.4\%	-0.2\%	-0.1\%	-0.2\%	0.0\%	0.1\%	-0.1\%	-1.0\%	0.3\%
Above Nomal (15\%)												
WSIP 2303 W Without Priect	50.3	49.6	49.9	47.3	47.1	49.2	51.0	45.4	48.6	50.3	50.2	50.0
WSIP 2030 Wit Project	50.4	49.9	49.5	47.3	47.1	49.3	51.0	45.4	48.4	50.5	50.1	49.8
Diffeere	0.1	0.2	-0.5	0.0	0.0	0.1	0.0	0.0	-0.3	0.2	-0.1	-0.2
Percent Differene	0.2\%	0.5\%	-0.9\%	0.1\%	0.0\%	0.2\%	-0.1\%	0.0\%	-0.5\%	0.4\%	-0.2\%	-0.4\%
Below Noma (12\%)												
WSIP 2303 W Whtout Priject	51.6	50.6	48.7	48.4	48.3	50.8	51.2	46.6	50.3	51.3	50.7	51.3
WSIP 2030 Wit Project	51.6	50.4	48.4	48.5	48.3	50.7	51.2	46.6	50.2	51.3	50.7	51.3
Diffeence	0.0	-0.1	-0.2	0.1	0.0	-0.1	0.1	0.0	0.0	0.0	0.0	0.0
Percent Differene	0.0\%	-0.3\%	-0.5\%	0.3\%	-0.1\%	-0.2\%	0.1\%	0.0\%	-0.1\%	0.1\%	-0.1\%	0.0\%
Dr (20\%)												
WSIP 2030 W Witout Proiect	53.4	52.2	48.5	48.7	49.1	50.4	51.8	48.0	51.2	51.0	51.4	52.1
WSIP 2030 Winf Projed	53.3	52.0	48.5	48.9	49.2	50.1	51.9	48.0	51.5	51.7	51.2	52.1
Diffeence	-0.1	-0.1	0.0	0.2	0.1	-0.3	0.1	0.0	0.3	0.7	-0.1	0.0
Percent Diffeence	-0.2\%	-0.2\%	0.1\%	0.4\%	0.1\%	-0.7\%	0.3\%	0.0\%	0.5\%	1.3\%	-0.3\%	-0.1\%
Critical (15\%)												
WSIP 2303 W Without Priject	55.5	53.0	50.1	49.7	50.2	52.1	52.1	49.9	54.3	53.1	53.8	54.4
WSIP 2030 Wit Project	55.7	53.6	50.8	49.7	50.4	52.2	52.0	50.1	54.3	52.9	53.5	54.2
Diffeere	0.2	0.6	0.7	0.0	0.2	0.2	-0.1	0.1	0.0	-0.2	-0.3	-0.

$\frac{1}{1 \text { Basedo on the } 82 \text { 2eear simuludion period }}$

3 Realive difieerece of the monhty yereage

Clear Creek below Whiskeytown, Monthly Temperature
Long-term Average and Average by Water Year Type

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
$\overline{\text { Full Simulation Period }}$												
WSIP 2303 W Without Proedt	52.1	50.6	46.9	44.8	44.7	45.6	47.0	48.2	49.8	51.6	52.4	52.1
WSIP 2030 with Project	52.0	50.6	46.9	44.8	44.7	45.6	47.0	48.2	49.8	51.5	52.2	52.0
Diffeere	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.2	-0.1
Perenen Diffeence?	-0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.1\%	-0.1\%	-0.3\%	-0.2\%
Water Year Types ${ }^{2}$												
Wet (30\%)												
WSIP 2030 W Witout Project	50.5	49.8	46.6	44.6	44.4	45.2	46.6	48.0	49.4	51.2	51.8	51.0
WSIP 2303 Wiff riject	50.6	49.8	46.6	44.6	44.4	45.2	46.6	47.9	49.4	51.1	51.6	50.9
Diffeeree	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	-0.2	-0.1
Percent ififeence	0.0\%	0.1\%	0.0\%	0.0\%	-0.1\%	0.0\%	0.0\%	0.0\%	-0.1\%	-0.1\%	-0.4\%	-0.2\%
Above Nomal (15\%)												
WSIP 230 W Without Priect	51.1	49.9	46.7	44.8	44.5	45.3	46.7	48.0	49.5	51.3	51.8	51.3
WSIP 2030 Wit Project	50.9	49.8	46.7	44.8	44.5	45.2	46.6	47.9	49.4	51.3	51.6	51.1
Diffeence	-0.2	0.0	0.0	0.0	0.0	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.2
Perentiofifence	-0.4\%	-0.1\%	0.0\%	0.0\%	0.0\%	-0.1\%	-0.2\%	-0.2\%	-0.2\%	-0.2\%	-0.2\%	-0.4\%
Below Nomal (12\%)												
WSIP 2303 W Whtout Priject	52.2	50.6	46.9	44.6	44.6	45.6	46.9	47.9	49.6	51.5	52.1	51.9
WSIP 2330 Wit Project	52.1	50.6	46.8	44.6	44.6	45.6	46.9	47.9	49.5	51.5	51.9	51.8
Difteence	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	-0.1
Percent Differene	-0.1\%	0.0\%	-0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.1\%	-0.1\%	-0.3\%	-0.2\%
Dry 20%)												
WSIP 2030 WWitout Proet	53.0	51.2	47.0	44.7	44.7	45.7	47.3	48.3	49.7	51.7	52.7	52.7
WSIP 2380 Wit Projed	52.9	51.1	47.0	44.7	44.7	45.8	47.4	48.3	49.7	51.6	52.6	52.6
Diffeence	-0.1	-0.1	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	-0.2	-0.1
Percent ififeence	-0.2\%	-0.1\%	0.0\%	0.1\%	0.0\%	0.1\%	0.3\%	0.0\%	0.0\%	-0.1\%	-0.3\%	-0.2\%
Critical (15\%)												
WSIP 230 W Without Proect	55.1	52.3	47.9	45.9	45.9	46.8	48.2	49.4	51.3	52.6	54.1	55.0
WSIP 2030 Wit Project	54.9	52.2	47.9	45.9	45.9	46.7	48.1	49.4	51.3	52.6	54.0	54.8
Diffeence	-0.2	-0.1	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	-0.1	-0.2

$\frac{\text { Perenen Dififenene }}{1 \text { Based on the } 2 \text {-verar simulution period }}$
3 Readive difference e f the monntily average

Clear Creek at Igo, Monthly Temperature Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\stackrel{\text { Full Simulion Period }}{ }{ }^{\text {a }}$												
WSIP 2330 W Without Priject	52.7	50.8	47.1	45.0	45.2	46.4	48.0	49.3	51.7	55.3	55.5	53.6
WSIP 2030 Win Project	52.7	50.8	47.0	45.0	45.2	46.4	48.1	49.3	51.7	55.2	55.4	53.4
Diffeerce	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	-0.1
Percent Diffeence?	-0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.1\%	-0.1\%	-0.2\%	-0.2\%
Water Year Types ${ }^{2}$												
Wet (3\%\%)												
WSIP 2380 Without Priject	51.2	50.0	46.7	44.8	44.9	45.9	47.5	49.0	51.1	55.0	55.1	52.4
WSIP 2038 With Prijet	51.2	50.1	46.7	44.8	44.8	45.9	47.5	49.0	51.0	54.9	54.9	52.3
Diffeence	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.2	-0.1
Pecenen Diffeence	0.0\%	0.1\%	0.0\%	0.0\%	-0.1\%	0.0\%	0.0\%	0.0\%	-0.1\%	-0.1\%	-0.3\%	-0.2\%
Above Noma (15\%)												
WSIP 2338 W Without Prijet	51.7	50.1	46.8	45.0	44.9	46.0	47.6	49.0	51.2	55.1	54.9	52.7
WSIP 2038 With Prijet	51.4	50.0	46.8	45.0	45.0	45.9	47.6	48.9	51.1	55.0	54.8	52.5
Difference	-0.2	0.0	0.0	0.0	0.0	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.2
Perene Diffeerne	-0.4\%	-0.1\%	0.0\%	0.0\%	0.0\%	-0.1\%	-0.2\%	-0.2\%	-0.2\%	-0.1\%	-0.2\%	-0.3\%
Beow Nomal (21\%)												
WSIP 2380 W Witout Priject	52.7	50.8	47.0	44.8	45.0	46.4	47.9	48.9	51.4	55.2	55.2	53.3
WSIP 2303 With Projet	52.7	50.8	46.9	44.8	45.0	46.4	48.0	48.9	51.4	55.1	55.1	53.2
Diffeence	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	-0.1
Pecent Differene	-0.1\%	0.0\%	-0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.1\%	-0.1\%	-0.2\%	-0.2\%
Dr (20\%)												
WSIP 2380 W Without Priject	53.6	51.4	47.2	44.8	45.1	46.5	48.3	49.3	51.6	55.3	55.8	54.0
WSIP 2383 With Projed	53.6	51.4	47.1	44.9	45.1	46.5	48.4	49.3	51.6	55.2	55.6	53.9
Diffeence	-0.1	-0.1	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	-0.2	-0.1
Pecent Diffeence	-0.2\%	-0.1\%	0.0\%	0.1\%	0.0\%	0.1\%	0.3\%	0.0\%	0.0\%	-0.1\%	-0.3\%	-0.2\%
Critical (15\%)												
WSIP 2338 W Without Project	55.8	52.5	48.0	46.1	46.4	47.6	49.3	50.6	54.0	56.3	57.1	56.5
WSIP 2038 Wint Pricet	55.7	52.5	48.0	46.1	46.4	47.5	49.3	50.6	54.0	56.3	57.0	56.4
Diffeence	-0.2	-0.1	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	-0.1	-0.2
Peceno Diffeene	-0.3\%	-0.1\%	0.0\%	-0.1\%	0.0\%	-0.1\%	-0.1\%	0.0\%	0.0\%	-0.1\%	-0.1\%	-0.3\%

1 Based on the 82 -vear simuluation peitiod

3 Realive difieence of the monhty wereage

Trinity and Sacramento River Basin Operations Exceedance Probability Charts and Tables

Figure sQ2-1b
Figure SQ -1b
Sacramento River below Keswick, Monthly Temperature
Probaily

October				
	WSII 2030 Without	WSIP 2030 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)		
0.0\%	63.3	61.4	-1.8	-2.9\%
1.2\%	63.2	61.2	-2.0	${ }^{3} .2$
2.5\%	61.2	60.3	-0.8	-1.4\%
3.7\%	60.1	60.0	-0.1	-0.2\%
4.9\%	57.8	57.6	-0.2	-0.4\%
6.2\%	57.0	56.2	-0.8	-1.5\%
7.4\%	56.7	56.2	-0.6	-1.0\%
8.6\%	56.5	56.1	-0.4	-0.7\%
9.9\%	55.9	56.1	0.2	0.3\%
11.12\%	55.9	56.1	0.2	0.3\%
12.3\%	55.9	56.0	0.1	0.2\%
13.6\%	55.9 55 5.8	56.0	0.1	${ }^{0.2 \%}$
10.0\%	${ }_{55.7}^{55.8}$	55.8 55.8	0.0 0.2	${ }_{\text {one }}^{0.3 \%}$
17.3\%	55.7	55.8	0.1	0.3\%
18.5\%	55.7	55.8	0.1	0.2\%
19.8\%	${ }_{55.6}^{55}$	55.8	0.1	0.3\%
21.0\%	55.6	55.7	0.1	0.2\%
22.2\%	55.6	55.7	0.1	0.2\%
23.5\%	55.6	55.7	0.1	0.2\%
24.7\%	55.6	55.7	0.1	0.2\%
25.9\%	55.5	55.6	0.1	0.2\%
${ }^{27.2 \%}$				${ }^{0.0 \%}$
28.40	55.5 554 5.4	55.5 555	0.0	0.0\%
29.6\%	55.4 554 5.4.	55.5 555 5.	0.1	${ }^{0.2 \%}$
${ }^{30.19 \%}$	55.4.4 55.4	$\begin{array}{r}55.5 \\ 553 \\ \hline 5 .\end{array}$	0.1 -0.1	${ }^{0.1 \%}$
33.3\%	55.3	55.3	-0.1	-0.1\%
34.6\%	55.3	55.2	-0.1	-0.2\%
35.8\%	55.3	55.2	-0.1	-0.1\%
37.0\%	55.3	55.2	0.0	-0.1\%
38.3\%	55.2	55.2	-0.1	-0.1\%
39.5\%	55.2	55.1	0.0	0.0\%
40.77\%	55.2	55.1	0.0	0.0\%
42.0\%	55.1	55.1	-0.1	-0.1\%
43.2\%	55.0 550	55.1	0.1	0.1\%
${ }^{44.49 \%}$	55.0 550	55.0	0.0	${ }^{0.1 \%}$
46.9\%	55.0	55.0	0.0	0.0\%
48.1\%	55.0	55.0	0.0	0.0\%
49.4\%	54.9	54.9	0.0	0.0\%
50.6\%	54.9	54.9	0.0	-0.1\%
51.9\%	54.9	54.9	-0.1	-0.1\%
53.1\%	54.9	54.9	-0.1	-0.1\%
54.3\%	54.9	54.8	0.0	-0.1\%
55.6\%	54.9	54.8	-0.1	-0.19\%
56.8\%	54.9	54.8	-0.1	-0.1\%
58.0\%	54.8	54.8	0.0	0.0\%
59.3\%	54.8	54.8	0.0	0.0\%
60.5\%	54.7	54.8	0.0	0.1\%
${ }^{61.7 \%}$	54.7	54.7	0.0	0.1\%
63.0\%	54.7	54.7	0.1	0.1\%
64.2\%	54.6	54.7	0.1	0.1\%
65.4\%	54.6	54.7	0.1	0.1\%
66.7\%	54.6	54.7	0.1	0.2\%
${ }^{67.9 \%}$	54.6	54.6	0.1	0.19\%
69.1\%	54.5	54.6	0.1	0.2\%
70.4\%	54.5 54.4	54.6	0.1	0.1\%
71.6% 72.8%	54.4 54.4	54.6 54.6	0.1 0.2	
74.1\%	54.4	54.5	0.2	0.3\%
75.3\%	54.3	54.5	0.2	0.3\%
76.5\%	54.2	54.5	${ }^{0.3}$	0.5\%
77.8\%	54.2	54.5	${ }^{0.3}$	0.5\%
79.0\%	54.2	54.4	0.2	0.4\%
80.2\%	54.2	54.4	0.2	0.4\%
- ${ }_{81.5 \%}$	54.1 54.1	54.3 54.3	${ }_{0.1}^{0.1}$	- ${ }_{0}^{0.2 \%}$
84.0\%	54.1	54.2	0.1	0.3\%
85.2\%	54.1	54.2	0.1	0.1\%
86.4\%	54.1	54.2	0.1	0.1\%
87.7\%	54.0	54.1	0.0	0.0\%
88.9\%	53.9	54.0	0.1	0.2\%
90.1\%	53.9	53.9	0.0	0.1\%
91.4\%	53.8	53.9	0.1	0.2\%
92.6\%	53.8	53.9	0.1	0.1\%
${ }^{93.5 \%}$	53.8	53.8	0.0	${ }^{0.1 \%}$
${ }_{9}^{95.19 \%}$	${ }_{53.7}^{53.7}$	53.7 53.5	0.0 -0.2	${ }^{-0.1 \%}$
97.5\%	53.4	53.5	0.1	0.1\%
98.8\%	53.4 53.4	52.7 527	-0.7	-1.3\%
			0.0	-1.3\%

Table SQ2-1b

$\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probabalily } \end{array} \end{aligned}$	February			
	$\begin{aligned} & \text { WSII 2030 Without } \\ & \hline \text { Proiet } \\ & \hline \end{aligned}$	WSIP 2030 With Project		Relative
	Monthy Temperature	Monthly Temperature	$\begin{aligned} & \text { Difference } \\ & \text { (DEFFF) } \end{aligned}$	Difference (\%)
0.0\%	52.4	52.2	-0.2	.0.3\%
1.2\%	50.2	50.4	0.1	0.26
2.5\%	49.4	49.4	1	
3.7\%	49.1	49.4	0.3	0.7\%
4.9\%	49.0	49.1	0.1	0.2\%
6.2\%	48.7	48.8	0.0	0.1\%
7.4\%	48.7	48.6	-0.1	-0.1\%
8.6\%	48.5	48.6	0.0	0.1\%
9.9\%	48.5	48.5	0.0	0.1\%
11.1\%	48.5	48.5	0.0	0.1\%
12.3\%	48.5	48.5	0.0	0.1\%
13.6\%	48.3	48.5	0.2	0.3\%
14.8\%	48.3	48.4	0.2	${ }^{0.3 \%}$
${ }^{16.0 \%} \times 17.3 \%$	${ }_{48.2}^{48.2}$	48.3 48.3	${ }_{0}^{0.0}$	${ }_{0}^{0.12 \%}$
18.5\%	48.1	48.1	0.1	0.1\%
19.8\%	48.1	48.0	0.0	0.0\%
21.0\%	48.0	48.0	0.0	-0.1\%
22.2\%	48.0	47.8	-0.2	-0.4\%
23.5\%	47.9	47.7	-0.2	-0.3\%
24.7\%	47.8	47.7	-0.1	-0.2\%
25.9\%	47.8	47.7	-0.1	-0.2\%
27.2\%	47.8	47.7	-0.1	-0.2\%
28.4\%	47.7	47.7	0.0	-0.1\%
29.6\%	47.7	47.7	0.0	-0.1\%
30.9\%	47.6	47.6	0.0	0.0\%
32.1\%	47.6	47.6	0.0	0.0\%
33.3\%	47.6	47.6	0.1	0.1\%
34.6\%	47.5	47.6	0.1	0.1\%
35.8\%	47.5	47.6	0.0	0.1\%
37.0\%	47.5	47.5	0.0	0.0\%
38.3\%	47.5	47.5	0.0	0.0\%
39.5\%	47.4	47.4	0.0	0.0\%
40.7\%	47.3	47.2	0.0	0.0\%
42.0\%	47.2	47.2	-0.1	${ }^{-0.1 \%}$
${ }^{43.2 \%}$	47.1	47.1	0.0	0.0\%
44.4\%	47.1	47.0	-0.1	-0.2\%
45.7\%	47.0	47.0	-0.1	${ }^{-0.19}$
46.9\%	47.0	46.9	0.0	-0.1\%
48.19\%	46.9	46.9	0.0	-0.19\%
49.4\%	46.9	46.9	0.0	-0.1\%
50.6\%	46.7	46.8	0.1	0.1\%
51.9\%	46.7	46.6	-0.1	-0.3\%
53.19\%	46.7	46.5	-0.1	-0.2\%
54.3\%	46.6	46.5	-0.1	-0.3\%
55.6\%	46.5	46.5	0.0	0.0\%
59.3\%	46.4	${ }_{46.3}$	-0.1	-0.1\%
60.5\%	46.4	46.3	0.0	-0.1\%
61.7\%	46.2	46.2	0.0	0.0\%
63.0\%	46.2	46.2	0.0	0.0\%
64.2\%	46.2	46.1	-0.1	-0.1\%
65.4\%	46.1	46.1	0.0	0.0\%
66.7\%	46.1	46.1	-0.1	-0.2\%
67.9\%	46.1	46.0	0.0	0.0\%
69.1\%	46.1	45.9	-0.1	-0.3\%
70.4\%	46.0	45.9	-0.1	-0.3\%
${ }^{71.6 \%}$	46.0	45.9	-0.1	-0.3\%
72.8\%	45.8	45.8	0.0	0.0\%
74.1\%	45.7	45.6	0.0	-0.1\%
75.3\%	45.7	45.6	0.0	-0.1\%
76.5\%	45.6	45.6	0.0	-0.1\%
77.8\%	45.6	45.6	0.0	-0.1\%
79.0\%	45.6	45.5	-0.1	-0.2\%
80.2\%	45.5	45.4	-0.1	-0.3\%
81.5\%	45.5	45.3	-0.1	-0.3\%
827\%\% 84.0%	45.5 45.5	${ }_{45.3}^{45.3}$	-0.1 -0.2	-
85.2\%	45.4	45.3	-0.2	-0.4\%
86.4\%	45.4	45.2	-0.2	-0.5\%
87.7\%	45.2	45.1	-0.1	-0.1\%
88.9\%	45.0	44.9	-0.1	-0.2\%
90.1\%	44.9	44.8	-0.1	-0.2\%
91.4\%	44.9	44.7	-0.1	-0.3\%
92.6\%	44.8	44.7	-0.2	0.3\%
93.8\%	44.8	44.6	-0.2	-0.4\%
95.1\%	44.7	44.6	-0.1	-0.1\%
96.3\%	44.5	44.3	-0.1	${ }^{0.3 \%}$
98580	44.4	44.3 43.6	-0.1 -0.1	-0.3\%
96.8\%	${ }_{43.7}^{43.7}$	${ }_{43.6}^{43.6}$	-0.1	${ }_{\text {- }}^{-0.2 \%}$

June				
Percent Excedance	WSII 2030 Without	WSIP 2030 With Project		Relative
$\begin{aligned} & \text { Probability } \\ & \text { (\%) } \end{aligned}$	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Bifference } \\ & \text { (DEFF } \end{aligned}$	Difference (\%)
0.0\%	54.7	54.7	0.0	0.1\%
1.2\%	54.2	53.6	-0.6	1.2\%
2.5\%	53.7	53.2	-0.5	-0.9\%
3.7\%	53.5	53.1	-0.4	-0.8\%
4.9\%	53.1	52.5	-0.6	-1.2\%
6.2\%	52.8	52.5	-0.3	-0.6\%
7.4\%	52.5	52.4	-0.1	-0.2\%
8.6\%	52.2	52.2	0.1	0.1\%
9.9\%	52.1	52.2	0.1	0.1\%
11.12\%	52.0	52.2	0.2	0.3\%
12.3\%	51.9	52.0	0.1	0.2\%
13.6\%	51.7	52.0	${ }^{0.3}$	0.5\%
${ }^{14.00 \%}$	51.7 51.6	51.9 51.9	0.3	${ }_{0}^{0.5 \%}$
17.3\%	51.5	51.7	0.2	0.4\%
18.5\%	51.5	51.6	0.1	0.3\%
19.8\%	51.4	51.6	0.1	0.3\%
21.0\%	51.4	51.6	0.2	0.3\%
22.2\%	51.3	51.5	0.2	0.4\%
23.5\%	51.3	51.4	0.1	0.2\%
24.7\%	51.2	51.3	0.1	0.2\%
25.9\%	51.2	51.2	0.0	0.1\%
27.2\%	51.1	51.2	0.1	0.1\%
28.4\%	51.1	51.1	0.0	0.0\%
29.6\%	51.1	51.1	0.0	${ }^{0.19 \%}$
30.9\%	55.0	51.0	0.0	${ }^{0.19 \%}$
${ }^{32.1 \%}$	50.9	51.0	0.0	0.1\%
33.3\%	50.9	50.9	0.1	0.2\%
34.6\%	50.8	50.9	0.0	${ }^{0.19 \%}$
35.8\%	50.6	50.9	0.3	0.5\%
37.0\%	50.6	50.8	${ }^{0.3}$	0.6\%
38.3\%	50.5	50.8	${ }^{0.3}$	0.5\%
39.5\%	50.5	50.7	${ }^{0.3}$	0.5\%
40.77\%	50.5	50.7	0.3	0.5\%
42.0\%	50.4	50.7	0.3	0.5\%
43.2\%	50.4	50.6 50.6	0.2	0.4\%
${ }^{44.4 \%}$	50.4 50.3	50.6 50.5	${ }_{0}^{0.2}$	${ }^{0.4 \%}$
46.9\%	50.3	50.5	0.2	0.5\%
48.1\%	50.3	50.5	0.2	0.5\%
49.4\%	50.3	50.5	0.2	0.5\%
50.6\%	50.1	50.5	0.3	0.7\%
51.9\%	50.1	50.5	0.4	0.8\%
53.1\%	50.1	50.5	0.4	0.8\%
54.3\%	50.0	50.5	0.4	0.9\%
55.6\%	50.0	50.5	0.4	0.8\%
56.8\%	50.0	50.5	0.4	0.8\%
58.0\%	50.0	50.4	0.4	0.9\%
59.3\%	50.0	50.2	0.3	0.5\%
60.5\%	50.0	50.2	0.2	0.4\%
61.7\%	49.9	50.2	0.2	0.5\%
63.0\%	49.9	50.0	0.1	0.3\%
64.2\%	49.9	50.0	0.2	0.3\%
65.4\%	49.8	50.0	0.2	0.4\%
${ }^{66.77 \%}$	49.8	50.0	0.2	0.4\%
- 67.9%	49.8 49.7	49.9	0.2 0.2	${ }_{\text {cose }}^{0.50 \%}$
70.4\%	49.7	49.9	0.2	0.5\%
71.6\%	49.6	49.9	0.3	0.5\%
72.8\%	49.5	49.8	0.2	0.5\%
74.1\%	49.5	49.8	${ }^{0.3}$	0.6\%
75.3\%	49.5	49.8	${ }^{0.3}$	0.6\%
76.5\%	49.3	49.7	0.4	0.8\%
77.8\%	49.3	49.7	0.4	0.8\%
79.0\%	49.2	49.7	0.4	${ }_{0}^{0.9 \%}$
- ${ }^{80.2 \%}$	49.2 49.2	49.6 49.6	0.4 0.4	${ }_{0}^{0.9 \%}$
82.7\%	49.1	49.6	0.4	0.9\%
84.0\%	49.1	49.6	0.5	1.0\%
85.2\%	49.1	49.5	0.4	0.9\%
86.4\%	49.0	49.5	0.5	${ }^{0.9 \%}$
87.7% 88.9%	49.0	49.5	0.5	${ }^{0.9 \%}$
${ }^{80.1 \%}$	49.0	${ }_{49.4}^{49.4}$	0.4	${ }_{0}^{0.8 \%}$
91.4\%	49.0	49.4	0.4	0.8\%
92.6\%	49.0	49.3	0.4	0.8\%
93.8\%	48.9	49.3	0.5	${ }^{0.9 \%}$
${ }_{965}^{95.10 \%}$	48.8 48.8	${ }_{49.1}^{49.3}$	0.5 0.3	${ }_{\text {0.6\% }}^{1.0 \%}$
97.5\%	48.5	48.9	0.4	0.9\%
98.8\%	48.4 484	48.6	0.2	0.4\%
100.0\%	48.4	48.6	0.2	0.4\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	Juy to September		,		August to September				
	WSIP 2030 Without	WSIP 2030 With Project	Absolute		Percent	WSIP 2030 Without	WSIP 2030 With Project	Absolute	
	Monthly Temperature	Monthly Temperature		Difference (\%)	Probability	Monthy Temperature	Monthy Temperature	Difference	Difference (\%)
	(DEGF)	(DEGF)	(DEGF)		(\%)	(DEGF)	(DEGF)	(DEGF)	
0.0\%	61.8	59.9	-1.9	3.1\%	0.0\%	64.5	62.3	-2.2	-3.4\%
1.2\%	57.8	55.4	-2.5	-4.2\%	1.2\%	59.8	56.2	${ }^{-3.6}$	
2.5\%	56.6	55.2	-1.5	-2.6\%	2.5\%	57.8	55.6	-2.2	
3.7\%	55.3	54.6	-0.6	-1.1\%	3.7\%	55.8	55.2	-0.6	-1.2\%
4.9\%	55.0	54.5	-0.4	0.8\%	4.9\%	55.5	54.8	-0.7	-1.3\%
6.2\%	54.6	54.5	-0.1	-0.2\%	6.2\%	55.0	54.8	-0.2	-0.3\%
7.4\%	54.4	54.5	0.1	0.1\%	7.4\%	54.9	54.8	-0.1	-0.3\%
8.6\%	54.4	54.4	0.1	0.1\%	8.6\%	54.7	54.5	-0.1	-0.3\%
9.9\%	54.3	54.4	0.1	0.1\%	9.9\%	54.4	54.4	0.0	-0.1\%
111.1\%	54.3	54.4	0.1	0.1\%	11.1.\%	54.3	54.3	0.0	0.0\%
12.3\%	54.3	54.3	0.0	0.0\%	12.3\%	54.3	54.3	0.0	0.0\%
13.6\%	54.3	54.2	-0.1	-0.2\%	13.6\%	54.1	54.3	0.1	0.2\%
14.8\%	54.2	54.1	-0.1	-0.2\%	14.8\%	54.1	54.0	0.0	
16.0\%	54.1	54.1	-0.1	-0.1\%	16.0\%	54.1	54.0	-0.1	-0.1\%
17.3\%	54.1	54.0	-0.1	-0.2\%	17.3\%	54.1	53.9	-0.1	-0.2\%
18.5\%	54.0	53.9	-0.1	-0.2\%	18.5\%	54.0	53.9	-0.1	-0.2\%
19.8\%	53.9	53.8	-0.1	-0.2\%	19.8\%	54.0	53.8	-0.1	-0.3\%
21.0\%	53.8	53.7	-0.1	-0.2\%	21.0\%	54.0	53.8	-0.2	-0.3\%
22.2\%	53.7	53.7	0.0	0.0\%	22.2\%	53.9	53.8	-0.2	-0.3\%
23.5\%	53.6	53.7	0.1	0.1\%	23.5\%	53.9	53.7	-0.2	-0.3\%
24.7\%	53.6	53.7	0.1	0.2\%	24.7\%	53.9	53.7	-0.1	-0.2\%
25.9\%	53.6	53.6	0.1	0.2\%	25.9\%	53.8	53.7	-0.1	-0.2\%
27.2\%	53.5	53.4	-0.1	0.2\%	27.2\%	53.8	53.7	0.1	-0.2\%
28.4\%	53.5	53.3	-0.2	-0.4\%	28.4\%	53.8	53.7	-0.1	-0.2\%
29.6\%	53.4	53.3	-0.2	0.3\%	29.6\%	53.8	53.7	-0.1	-0.2\%
30.9\%	53.4	53.3	-0.1	-0.2\%	30.9\%	53.6	53.7	0.1	0.1\%
32.1\%	53.3	53.3	-0.1	-0.1\%	32.1\%	53.6	53.6	0.1	0.1\%
33.3\%	53.2	53.2	0.0	0.1\%	33.3\%	53.6	53.6	0.0	0.0\%
34.6\%	53.1	53.2	0.1	0.1\%	34.6\%	53.4	53.5	0.1	0.1\%
35.8\%	53.0	53.2	0.1	0.2\%	35.8\%	53.4	53.5	0.1	0.2\%
37.0\%	$\stackrel{53.0}{528}$	${ }_{55.1}^{53.1}$	0.1	0.2\%	37.0\%	${ }_{53.4}^{53.4}$	${ }_{53,4}^{53.4}$	0.0	0.1\%
38.3\%	52.8	52.9	0.1	0.2\%	38.3\%	53.2	53.3	0.1	0.2\%
39.5\%	52.8	52.9	0.0	0.1\%	39.5\%	53.1	53.2	0.1	0.2\%
40.7\% 4200%	52.8	52.8	0.0	0.1\%	40.7\%	53.1	53.2	0.1	${ }^{0.12 \%}$
43.2\%	52.	528	0.2	0.3\%	43.2\%	53.0	53.0	${ }_{0}^{0.0}$	0.0\%
44.4\%	52.5	52.7	0.2	0.5\%	44.4\%	52.9	52.9	0.0	0.0\%
45.7\%	52.4	52.7	${ }^{0.3}$	0.5\%	45.7\%	52.9	52.9	0.0	0.0\%
46.\%	52.4	52.7	0.3	0.6\%	46.9\%	52.9	52.9	0.0	0.0\%
48.1\%	52.4	52.6	0.3	0.5\%	48.1\%	52.7	52.8	0.1	0.2\%
4.94\%	${ }_{523}^{52.3}$	52.5	0.2	0.4\%	49.4\%	${ }_{52}^{52.7}$	52.8 528	${ }^{0.1}$	0.2\%
50.6\%	52.3	52.5	0.2	0.4\%	50.6\%	52.7	52.8	0.1	0.2\%
51.9\%	${ }_{52.3}$	52.5	0.2	0.4\%	51.9\%	52.5	52.8	${ }^{0.3}$	0.5\%
53.1\%	52.3	52.4	0.2	0.3\%	53.1\%	52.5	52.8	0.3	0.5\%
54.3\% 55.6%	52.2	52.4	0.1	0.2\%	54.3\%	52.4	52.7	0.3	0.6\%
	52.2	52.3	0.2	0.4\%	55.\%	52.4	52.7	0.3	0.6\%
56.8\% 58.0%	52.1	52.3	0.2	0.4\%	56.8\%	52.4	52.7	${ }^{0.3}$	${ }^{0.650}$
58.0\%	52.1	52.3	0.2	0.4\%	58.0\%	52.3	52.6	${ }^{0.3}$	0.5\%
59.3\%	51.9	${ }_{52.2}$	0.3	0.5\%	59.3\%			${ }^{0.3}$	0.5\%
60.5\% 61.7%	51.9	52.2	0.2	0.5\%	60.5\%	${ }_{52.3}^{52.3}$	${ }_{52.6}^{52.6}$	${ }^{0.3}$	0.6\%
${ }^{61.77 \%}$	51.8 518 518	52.1 52. 2.	${ }^{0.3}$	0.6\%	${ }^{61.77 \%}$	52.3 52.3	52.6 52.5 5.5	${ }^{0.3}$	0.6\%
-63.0\%	${ }_{51.8}^{51.8}$	52.1	0.3	0.6\%	63.0\%	52.2	52.5	${ }^{0.3}$	0.6\%
64.2\%	51.8 51.7	52.1 52.1	${ }_{0}^{0.4}$	0.7\%	64.2\%	52.2 52.2	($\begin{array}{r}\text { 52. } \\ 52.4 \\ \hline\end{array}$	0.3 0.3	0.5\%
66.7\%	51.7	52.1	0.3	0.7\%	66.7\%	52.1	52.4	0.3	0.6\%
67.9\%	51.7	52.0	0.4	0.7\%	67.9\%	52.1	52.3	0.2	0.3\%
69.1\%	51.7	52.0	0.3	0.6\%	69.1\%	52.1	52.1	0.1	1\%
70.4\%	51.7	51.9	0.3	0.5\%	70.4\%	52.0	52.0	0.0	0.0\%
71.6\%	51.6	51.9	0.3	0.5\%	71.6\%	52.0	52.0	0.0	0.0\%
72.8\%	51.6	51.9	0.3	0.5\%	72.8\%	52.0	52.0	0.0	0.0\%
74.1\%	51.6	${ }_{51.8}^{51.8}$	0.2	0.4\%	74.1.\%	51.9	52.0 519	0.1	0.1\%
75.3\%	51.6 515 515	51.8 517	0.2	0.4\%	75.3\%	51.9 518 518	51.9 519	0.0	${ }_{0}^{0.1 \%}$
76.5\%	51.5 515	51.7	0.2	0.3\%	76.5\%	${ }_{51.8}^{51.8}$	51.9	0.1	0.1\%
77.8\%	51.5 515	${ }_{51.6}^{51.6}$	0.1	0.1\%	778\%	${ }_{51.8}^{515}$	${ }_{51.9}^{51.9}$	0.0	0.1\%
79.0\%	51.5	51.6	0.1	0.2\%	79.0\%	51.5	51.8	${ }^{0.3}$	0.6\%
80.2\%	51.4	51.5	0.1	0.3\%	80.2\%	51.5	51.8	0.3	6\%
81.5\%	51.4	51.5	0.1	0.3\%	81.5\%	51.5	51.8	${ }^{0.3}$	0.7\%
82.79% 8400	51.3	51.5	0.2	0.3\%	82.7\%	51.4	${ }^{51.6}$	0.2	0.9\%
84.0\%	51.3	51.5	0.2	0.4\%	84.0\%	51.4	51.6	0.1	0.3\%
${ }^{85.20 \%}$	51.2	51.4	0.2	0.5\%	${ }^{85.20 \%}$	51.4	51.3	-0.1	-0.2\%
${ }^{86.44 \%}$	51.1	51.2	0.1	${ }^{0.2 \%}$	${ }^{86.49 \%}$	51.3	51.22	-0.1	-0.1\%
${ }^{87.7 \%}$	51.1	51.1	0.0	${ }^{0.1 \%}$	87.79\%	51.3	51.2.	0.0	-0.1\%
90.1\%	51.1	51.1	0.0	0.0\%	90.1\%	51.2	51.2	0.0	-0.1\%
91.4\%	50.9	51.0	0.1	0.1\%	91.4\%	51.2	51.1	0.0	-0.1\%
92.6\%	${ }_{50.9}$	${ }_{51.0}^{59}$	0.1	0.2\%	92.6\%	${ }_{51.1}^{51.2}$	${ }_{51.0}^{51.0}$	-0.1	-0.2\%
${ }^{93.58 \%}$	50.8	50.9	0.1	0.2\%	93.8\%	50.9	50.9		-0.1\%
${ }_{95}^{96.10 \%}$	50.7 50.7	50.7 50.5	0.0 -0.2	-0.0\%	${ }_{965}^{95.19 \%}$	50.9 50.8	50.8 50.7	-0.1	-0.3\%
97.5\%	50.5	50.4	-0.1	-0.1\%	97.5\%	50.5	50.4	-0.2	-0.3\%
98.8\%	50.5	50.3	-0.1	0.2\%	98.8\%	50.5	50.3	-0.2	-0.3\%
100.0\%	50.4	50.2	-0.2	-0.4\%	100.0\%	50.3	49.9	-0.5	-1.0\%

Figure SQ3-1b
Sacramento River at Bonnyview Bridge, Monthly Temperatur

$\begin{gathered} \text { Percent } \\ \text { Exceadnce } \\ \text { Probabality } \end{gathered}$	October			
	WSIP 2030 Without Proiect	WSIP 2030 With Project		Relative
	Monthy Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
0.0\%	637	61.8	-1.9	-3.0\%
1.2\%	63.6	61.7	-1.9	
2.5\%	61.5	60.9	-0.6	-1.0\%
3.7\%	60.4	60.4	0.0	0.0\%
4.9\%	58.2	58.3	0.1	0.1\%
6.2\%	57.7	56.9	-0.8	-1.3\%
7.4\%	57.2	55.8	-0.4	-0.6\%
8.6\%	56.9	56.7	-0.2	-0.4\%
9.9\%	56.6	56.7	0.1	0.1\%
11.1\%	56.5	55.6	0.2	0.3\%
12.3\%	55.4	55.6	0.2	0.3\%
13.6\%	56.2	55.5	${ }^{0.3}$	0.5\%
14.8\%	56.2	56.5	0.2	0.4\%
117.3\%\%	56.2	56.4.	0.3 0.3	0.5\%
18.5\%	56.1	56.3	0.2	0.4\%
19.8\%	56.1	56.3	0.2	0.3\%
21.0\%	56.1	56.2	0.1	0.1\%
22.2\%	56.1	56.2	0.1	0.1\%
23.5\%	56.1	56.2	0.1	0.2\%
24.7\%	56.1	56.2	0.1	0.2\%
25.9\%	56.1	56.1	0.0	0.1\%
27.2\%	55.0	55.0	0.1	0.1\%
28.4\%	56.0	56.0	0.0	0.0\%
22.6\%	55.9 559 55	56.0 558	0.0	0.0\%
30.9\%	55.9 559	55.8 558 5.8	-0.1	
${ }_{3}^{32.3 \%}$	55.9 558	55.8	-0.1	-0.2\%
34.6\%	55.8	55.7	-0.2	-0.3\%
35.8\%	55.8	55.7	-0.1	-0.3\%
37.0\%	55.7	55.6	0.0	-0.1\%
38.3\%	55.7	55.6	0.0	-0.1\%
39.5\%	55.7	55.5	-0.1	-0.2\%
${ }^{4.79 \%}$	55.6 555 55	55.5	-0.1	-0.2\%
${ }_{4}^{42.2 \%}$	55.5 55.5	55.5 55.4	0.0 -0.1	-0.1\%
44.4\%	55.5	55.4	-0.1	-0.1\%
45.7\%	55.5	55.4	0.0	-0.1\%
46.9\%	55.4	55.4	0.0	0.0\%
48.1\%	55.4	55.4	0.0	0.0\%
49.4\%	55.4	55.4	0.0	0.0\%
50.6\%	55.4	55.4	0.0	0.0\%
51.9\%	55.4	55.4	0.0	0.0\%
53.1\%	55.4	55.3	0.0	0.0\%
54.3\%	55.3	55.3	0.0	-0.1\%
	55.3 553 55	55.3 552 5	0.0	0.0\%
56.8\%	55.3	55.2 552 5.2	-0.1	-0.1\%
${ }_{5}^{59.3 \% \%}$	55.2 55.	55.2 55.2	0.0	${ }^{0.0 \% \%}$
60.5\%	55.2	55.2	0.0	0.0\%
61.7\%	55.1	55.1	0.0	-0.1\%
63.0\%	55.1	55.1	0.0	0.0\%
64.2\%	55.1	55.1	0.0	0.1\%
65.4\%	55.0	55.1	0.1	0.1\%
66.7\%	55.0	55.1	0.1	0.1\%
${ }_{6}^{67.9 \%}$	54.9 549	55.1 550 55	${ }_{0}^{0.1}$	${ }^{0.2 \%}$
69.1\%	54.9 549	55.0	0.1	0.2\%
70.4\%	54.9	55.0	0.1	0.2\%
71.6\%	54.8	55.0	0.1	0.3\%
72.8\%	54.8	55.0	0.2	0.3\%
74.1\%	54.8	55.0	0.2	0.3\%
75.3\%	54.8	55.0	0.2	0.3\%
76.5\%	54.8	54.9	0.2	0.3\%
77.8\%	54.7	54.9	0.2	0.4\%
79.0\%	54.6	54.9	${ }^{0.3}$	0.5\%
80.2\%	54.6	54.9	0.3	0.5\%
${ }^{88.5 \%}$	54.6 54.6	54.8 54.7	${ }_{0}^{0.1}$	${ }_{0}^{0.4 \%}$
84.0\%	54.6	54.6	0.1	0.1\%
85.2\%	54.5	54.6	0.1	0.2\%
86.4\%	54.5	54.5	0.0	-0.1\%
87.7\%	54.5	54.4	-0.1	-0.1\%
88.9\%	54.3	54.4	0.1	0.1\%
90.1\%	54.2	54.3	0.1	0.1\%
91.4\%	54.2	54.3	0.1	0.2\%
${ }^{92.6 \%}$	54.2 54.1 54	$\begin{array}{r}54.2 \\ 541 \\ \hline\end{array}$	0.0	${ }^{0.00 \%}$
95.1\%	54.0	54.1	0.1	0.1\%
96.3\%	54.0	53.9	-0.1	-0.2\%
97.5\%	53.9	53.8	-0.2	-0.3\%
98.8\%	${ }_{53.7}^{53.7}$	53.4 53.4	-0.3	-0.6\%

Sacramento River at Bonnyview Bridge, Monthy Temperatur

$\begin{gathered} \text { Percernt } \\ \text { Sxeceane } \\ \text { Probababily } \end{gathered}$	WSIP 2030 WithoutProietMonthly Tomperatue(DEGFF	November			$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$$(\%)$	December		$\begin{gathered} \text { Absolute } \\ \text { difference } \\ \text { (DEGF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
		WSIP 2030 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Diffeence } \\ & \text { (eEFFF) } \end{aligned}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$		WSIP 2030 Without	WSIP 2030 With Project		
		$\begin{aligned} & \text { Monthly Temperature } \\ & \text { (DEGF) } \end{aligned}$				Monthly Temperature	$\begin{aligned} & \text { Monthly Temperature } \\ & \text { (DEGF) } \end{aligned}$		
0.0\%	${ }_{5}{ }_{5}^{\text {(0eGr) }}$	58.2	-0.2	0.3\%	-0.0\%	55.5	55.4	-0,	-0.3\%
1.2\%	57.8	579	0.1	0.0\%	1.2\%	55.0	54.9		-3\%
2.5\%	57.4	57.5	0.1	0.2\%	2.5\%	54.9	54.5	-0.4	-0.8\%
3.7\%	56.8	56.9	0.1	0.1\%	3.7\%	54.5	54.4	0.0	0.0\%
4.9\%	56.7	56.9	0.2	0.3\%	4.9\%	54.4	54.2	-0.2	-0.3\%
6.2\%	56.6	56.8	0.2	0.4\%	6.2\%	54.4	54.1	-0.3	-0.5\%
7.4\%	56.6	56.8	0.2	0.4\%	7.4\%	54.2	53.9	-0.2	
8.6\%	56.6	56.5	0.0	-0.1\%	8.6\%	54.0	53.7	-0.3	
9.9\%	56.5	56.5	0.0	0.0\%	9.9\%	53.5	53.6	0.1	0.3\%
11.1\%	56.4	56.4	0.0	-0.1\%	11.1\%	53.4	53.5	0.1	0.2\%
12.3\%	56.4	56.3	-0.1	-0.1\%	12.3\%	53.4	53.5	0.1	0.3\%
13.6\%	56.3	56.2	0.0	-0.1\%	13.6\%	53.3	53.5	0.1	0.3\%
14.8\%	56.3	56.2	-0.1	-0.1\%	14.8\%	53.3	53.5	0.2	0.3\%
16.0\%	56.2	56.2	0.0	-0.1\%	16.0\%	53.3	53.5	0.2	0.3\%
17.3\%	56.2	56.2	0.0	-0.1\%	17.3\%	53.3	53.4	0.2	0.3\%
18.5\%	56.2	56.1	-0.1	-0.2\%	18.5\%	53.2	53.4	0.2	0.5\%
19.8\%	56.1	56.1	-0.1	-0.1\%	19.8\%	53.1	53.3	0.2	0.3\%
21.0\%	56.1	56.1	0.0	-0.1\%	21.0\%	53.1	53.2	0.1	0.2\%
22.2\%	56.0	56.0	0.0	0.0\%	22.2\%	53.0	53.2	0.1	0.2\%
23.5\%	56.0	56.0	0.0	0.0\%	23.5\%	53.0	53.1	0.1	0.2\%
24.7\%	56.0	56.0	0.0	0.0\%	24.7\%	53.0	53.1	0.1	0.1\%
25.9\%	55.9	56.0	0.0	0.1\%	25.9\%	53.0	53.0	0.0	0.0\%
27.2\%	55.9	56.0	0.0	0.0\%	27.2\%	53.0	53.0	0.0	0.0\%
28.4\%	55.9	55.9	0.0	0.0\%	28.4\%	52.9	52.9	0.0	0.0\%
29.6\%	55.9	55.9	0.0	0.0\%	29.6\%	52.9	52.9	0.0	0.0\%
30.9\%	55.9	55.9	0.0	-0.1\%	30.9\%	52.8	52.9	0.1	0.1\%
32.1\%	55.9	55.9	0.0	0.0\%	32.1\%	52.8	52.8	0.0	-0.1\%
33.3\%	55.8	55.8	0.0	0.0\%	33.3\%	52.8	52.8	0.0	0.0\%
34.6\%	55.8	55.8	0.0	0.0\%	34.6\%	52.8	52.8	0.0	0.0\%
35.8\%	55.8	55.8	0.0	0.0\%	35.8\%	52.7	52.7		0.1\%
37.0\%	55.8	55.8	0.0	0.0\%	37.0\%	52.6	52.6	0.0	0.0\%
38.3\%	${ }_{55.8}^{55}$	55.8	0.0	0.0\%	38.3\%	52.5	52.6	0.1	0.2\%
39.5\%	55.8	55.7	-0.1	-0.1\%	39.5\%	52.4	52.5	0.1	0.3\%
40.7\%	55.8	55.7	0.0	-0.1\%	40.7\%	52.4	52.5	0.1	0.2\%
42.0\%	55.7	55.7	0.0	0.0\%	42.0\%	52.4	52.5	0.1	0.3\%
43.2\%	55.7	55.7	0.0	-0.1\%	43.2\%	52.4	52.5	0.1	0.2\%
44.4\%	55.7	55.6	0.0	0.0\%	4.4.4\%	${ }_{52.3}$	52.4	0.1	0.2\%
45.7\%	55.6	55.6	0.0	0.0\%	45.7\%	52.3	52.4	0.1	0.2\%
46.9\%	55.6	55.6	0.0	0.0\%	46.9\%	52.1	52.4	0.2	0.5\%
${ }_{4}^{48.19 \%}$	55.6 55.6	55.5 55.5	0.0 0.0	${ }^{-0.19 \%}$	${ }_{\text {4 }}^{48.19 \%}$	$\begin{array}{r}52.1 \\ 52.1 \\ \hline\end{array}$	52.4 52.4	0.2 0.2	- 0.4%
50.6\%	${ }_{55.5}$	55.5	0.0	-0.1\%	50.6\%	52.1	52.3	0.1	0.3\%
51.9\%	55.5	55.5	0.0	0.0\%	51.9\%	52.1	52.0	-0.1	-0.2\%
53.19\%	$\begin{array}{r}55.5 \\ 555 \\ \hline 5.5\end{array}$	$\begin{array}{r}55.5 \\ 555 \\ \hline 5.5\end{array}$	0.0	0.0\%	53.19\%	${ }_{52.0}^{52.0}$	${ }_{51.9}^{51.9}$	-0.1	-0.2\%
54.3\%	55.5	55.5	0.0	0.0\%	54.3\%	52.0	51.8	-0.2	-0.3\%
55.6\%	55.4	55.4	0.0	0.0\%	55.6\%	51.7	51.8	0.1	0.2\%
56.8\%	55.4	55.4	0.0	0.0\%	56.8\%	51.6	51.7	0.1	0.2\%
58.0\%	55.4	55.4	0.1	0.1\%	58.0\%	51.6	51.6	0.0	-0.1\%
59.3\%	55.4	55.4	0.0	0.1\%	59.3\%	51.5	51.6	0.0	0.0\%
60.5\%	55.3	55.4	0.0	0.1\%	60.5\%	51.4	51.6	0.2	0.3\%
61.7% 63.0%	55.3 55.3	55.3 55.3	0.0 0.0	${ }_{\text {l }}^{0.00 \%}$	61.7\% 63.0%	51.3 51.3 51.3	51.5 51.5 51	0.2 0.3	- 0.5%
63.0% 64.200	$\begin{array}{r}55.3 \\ 55.3 \\ \hline\end{array}$	55.3 55.3	0.0	${ }_{\text {a }}^{0.0 \% \%}$	-63.0\%	51.3 51.2	51.5 51.5	-0.3	${ }_{0}^{0.5 \%}$
65.4\%	55.2	55.3	0.1	0.1\%	65.4\%	51.2	51.5	0.2	0.4\%
66.7\%	55.2	55.2	0.0	0.1\%	66.7\%	51.2	51.4	0.2	0.4\%
67.9\%	55.2	55.2	0.1	0.1\%	67.9\%	51.2	51.4	0.2	0.4\%
69.1\%	55.1	55.2	0.1	0.3\%	69.1\%	51.1	51.4	0.3	0.6\%
70.4\%	55.0	55.2	0.2	0.3\%	70.4\%	51.0	51.3	0.3	0.6\%
71.6\%	55.0	55.2	0.1	0.2\%	71.6\%	51.0	51.2	0.3	0.6\%
72.8\%	55.0	55.2	0.1	0.2\%	72.8\%	50.9	51.2	0.3	0.6\%
74.1\%	55.0	55.1	0.2	0.3\%	74.1\%	50.9	51.0	0.1	0.2\%
75.3\%	55.0	55.1	0.2	0.3\%	75.3\%	50.9	50.9	0.1	0.1\%
${ }^{76.5 \%}$	54.9 549	54.9 54.9	0.0	${ }_{\text {onem }}^{0.0 \%}$	76.5\%	50.8 50.8	50.9 50.9	0.1	0.2\%
79.0\%	54.9	54.9	0.0	0.0\%	79.0\%	50.8	50.9	0.1	0.2\%
80.2\%	54.9	54.9	0.0	-0.1\%	80.2\%	50.8	50.8	0.1	0.1\%
81.5\%	54.8	54.9	0.1	0.1\%	81.5\%	50.7	50.8	0.0	0.0\%
82.7\%	54.8	54.8	0.0	0.1\%	82.7\%	50.6	50.7	0.1	0.2\%
84.0\%	54.8	54.8	0.1	0.1\%	84.0\%	50.6	50.7	0.1	0.2\%
85.2\%	54.8	54.8	0.1	0.1\%	85.2\%	50.4	50.7	0.2	0.4\%
86.4\%	54.7	54.7	0.0	0.1\%	86.4\%	50.4	50.6	0.3	0.5\%
88.9\%	54.7 54.6	54.6 54.6	-0.1 0.0	${ }^{-0.00 \%}$	-87.79\%	50.3 50.3	50.4 50.3	0.1 0.0	${ }_{0}^{0.2 \%}$
90.1\%	54.5	54.5	0.0	0.0\%	90.1\%	50.2	50.3	0.1	0.3\%
91.4\%	54.4	54.3	-0.1	0.1\%	91.4\%	50.1	50.3	0.3	0.5\%
92.6\%	54.4	54.3	-0.1	-0.1\%	92.6\%	50.1	49.9	-0.2	-0.4\%
93.8\%	54.3	54.0	-0.3	-0.6\%	93.8\%	50.0	49.8	-0.2	-0.3\%
95.1\%	54.1	54.0	-0.1	-0.2\%	95.1\%	50.0	49.8	-0.2	-0.3\%
96.3\%	54.1	54.0 539	-0.1	-0.2\%	96.3\%	49.7 493	49.5 489	-0.2	-0.3\%
977.5\% 98.8%	54.0 53.9	53.9 53.6	-0.1 -0.3	-0.2% 0.6%	${ }_{98}^{97.5 \%}$	49.3 49.0	48.9 48.8	-0.4 -0.3	-0.8\%\%
98.8\% 100.0\%	53.9	㐌5.6	-0.3	-0.0\%	98.8\% 100.0\%	49.0	${ }_{48.8}^{48.8}$	-0.3	-0.0\%

		January		
Percent	${ }_{\substack{\text { Wsip } \\ \text { Proiect }}}^{\text {2030 Without }}$	WSIIP 2030 With Project	Absolute	
$\begin{aligned} & \text { Probability } \\ & (\%) \end{aligned}$	Monthly Temperature	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGFG) } \end{aligned}$	Difference (\%)
0.0\%	53.9	53.9	0.0	0.0\%
1.2\%	51.9	51.8	-0.1	
2.5\%	51.7	51.5	-0.2	-0.5\%
3.7\%	51.3	51.3	0.0	-0.1\%
4.9\%	51.3	51.2	-0.1	-0.2\%
6.2\%	51.1	51.2	0.0	0.1\%
7.4\%	51.0	50.6	-0.4	-0.8\%
8.6\%	50.7	50.5	-0.2	-0.4\%
9.9\%	50.4	50.3	-0.1	-0.3\%
11.1.\%	50.1	50.2	0.0	0.1\%
${ }^{12.35 \%}$	50.1	50.1	0.0	
13.6\%	50.0	50.0	0.1	0.1\%
14.8\%	49.9	50.0	0.1	0.2\%
16.0\%	49.8	49.8	0.1	0.1\%
17.3\%	49.8	49.8	0.1	0.1\%
18.5\%	49.8	49.7	-0.1	-0.2\%
19.8\%	49.6	49.6	0.0	0.0\%
21.0\%	49.6	49.6	0.0	0.0\%
22.2\%	49.6	49.6	0.0	0.0\%
23.5\%	49.6	49.5	0.0	-0.1\%
24.7\%	49.5	49.5	0.0	0.0\%
25.9\%	49.4	49.4	0.0	-0.1\%
27.2\%	49.4	49.4	0.0	-0.1\%
28.4\%	49.3	49.4	0.1	0.1\%
29.6\%	49.2	49.3	0.1	0.2\%
30.9\%	49.1	49.0	0.0	0.0\%
32.1\%	49.1	49.0	0.0	-0.1\%
33.3\%	48.9	49.0	0.1	0.1\%
34.6\%	48.9	49.0	0.1	0.1\%
35.8\%	48.9	49.0	0.1	0.2\%
37.0\%	48.8	48.9	0.1	0.2\%
38.3\%	48.8	48.9	0.1	0.3\%
39.5\%	48.8	48.9	0.1	0.2\%
40.77\%	48.7	48.7	0.0	0.1\%
42.0\%	48.5	48.7	0.2	0.3\%
43.2\%	48.5	48.6	0.1	0.2\%
44.4\%	48.5	48.5	0.0	0.0\%
45.7\%	48.5	48.5	0.0	0.0\%
46.9\%	48.5	48.5	0.0	0.0\%
48.1\%	48.5	48.4	0.0	-0.1\%
49.4\%	48.4	48.4	0.0	0.1\%
50.6\%	48.3	48.4	0.1	0.2\%
51.9\%	48.3	48.3	0.0	0.1\%
53.19\% 54.30	48.3	48.2	0.0	-0.1\%
54.3\%	48.2	48.2	0.0	0.0\%
55.6\%	48.1	48.2	0.1	0.1\%
年56.8\%	${ }_{48.1}^{48.1}$	48.2	0.1	${ }_{0}^{0.1 \%}$
59.3\%	48.0	48.1	${ }_{0}^{0.1}$	0.2\%
60.5\%	47.9	48.1	0.1	0.3\%
61.7\%	47.9	48.0	0.1	0.2\%
63.0\%	47.9	48.0	0.1	0.2\%
64.2\%	47.9	48.0	0.1	0.1\%
65.4\%	47.7	47.8	0.1	0.1\%
66.7% 6790%	47.7	47.7	0.0	-0.1\%
- $\begin{aligned} & 67.9 \% \\ & 69.1 \%\end{aligned}$	47.7	47.6		
69.1\%	47.7	47.6	-0.1	-0.2\%
70.4\%	47.6	47.5	-0.1	${ }^{-0.3 \%}$
${ }^{71.6 \%}$	${ }_{475}^{47.6}$	47.5	-0.1	${ }^{-0.3 \%}$
74.1\%	47.5	${ }_{47.2}$	-0.3	-0.6\%
75.3\%	47.5	47.2	-0.3	-0.6\%
76.5\%	47.4	47.1	-0.3	-0.6\%
77.8\%	47.2	47.1	-0.1	-0.3\%
79.0\%	47.2	47.1	-0.1	0.2\%
- ${ }_{\text {80.2\% }}$	47.1	47.0	0.0	-0.1\%
${ }^{81.5 \%}$	47.0	47.0	-0.1	-0.1\%
82.7\%	46.8	46.9	0.2	0.3\%
84.0\%	46.8	46.9	0.1	0.3\%
85.2\%	46.7	46.6	-0.1	-0.2\%
86.4\%	46.7	46.6	0.0	-0.1\%
87,7\%	46.6	46.4	-0.2	-0.4\%
${ }^{88.9 \%}$	46.6	46.3	-0.3	-0.6\%
90.1\%	46.2	46.1	-0.1	-0.2\%
91.4\%	46.2	46.0	-0.2	-0.5\%
- ${ }_{\text {92.8.8\% }}$	46.2	46.0	-0.2	-0.4\%
${ }^{93.8 \%}$	46.0 45.5	${ }_{45.4}^{46.0}$	-0.1	-0.2\%
96.3\%	45.4	45.3	-0.2	-0.4\%
97.5\%	45.4	45.2	-0.2	-0.4\%
98.8\%	45.3	45.1	-0.2	0.3\%
100.0\%	45.3	45.1	-0.2	-0.3\%

Table SQ3.1b
and

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	February			
	WSIP 2030 W. Without	WSIP 2030 With Project	Absolute	Relative
	Monthy Temperature	Monthy Temperature	Difference (DEGF)	Difference (\%)
0.0\%	52.5	52.3	-0.2	-0.3\%
1.2\%	50.9	51.0	0.1	0.2\%
2.5\%	49.8	50.1	0.3	0.7\%
3.7\%	49.6	49.5	0.0	-0.1\%
4.9\%	49.4	49.5	. 1	
6.2\%	49.2	49.4	0.3	0.5\%
7.4\%	49.2	49.2	0.1	0.1\%
8.6\%	49.1	49.1	0.1	0.1\%
9.9\%	49.0	49.0	0.0	0.0\%
${ }_{1}^{11.12 \%}$	49.0	49.0	0.0	0.0\%
13.6\%	49.0	49.0	0.0	0.0\%
14.8\%	48.7	49.0	0.2	0.4\%
16.0\%	48.7	48.6	-0.1	-0.1\%
17.3\%	48.6	48.6	0.0	0.0\%
18.5\%	48.5	48.5	0.0	0.1\%
19.9\%	48.5 485	48.5 484	0.0	0.0\%
${ }_{22}^{21.0 \%}$	${ }_{48,5}^{48.5}$		-0.1	
${ }_{\text {22, }}^{22.5 \%}$	48.5 48.4	${ }_{48.3}^{48.4}$	0.0	-0.1\%
${ }^{23.47 \%}$	${ }_{48.4}^{48.4}$	${ }_{48.3}^{48.3}$	-0.1	-0.3\%
25.9\%	48.3	48.3	0.0	-0.1\%
27.2\%	48.3	48.2	0.0	-0.1\%
28.4\%	48.2	48.2	-0.1	-0.1\%
29.6\%	48.2	48.1	0.0	-0.1\%
30.9\%	48.2	48.1	-0.1	-0.1\%
32.10 33	${ }_{48.1}^{48.1}$	48.1 48.0	0.0	${ }^{-0.1 \%}$
34.6\%	48.1	48.0	0.0	-0.1\%
35.8\%	48.0	48.0	0.0	-0.1\%
37.0\%	48.0	47.9	-0.1	-0.2\%
38.3\%	48.0	47.9	-0.1	-0.2\%
39.5\%	47.9	47.8	-0.1	-0.2\%
40.7\%	47.8	47.7	0.0	-0.1\%
42.0\%	47.6	47.7	0.0	0.1\%
${ }^{43.2 \%}$	${ }_{47}^{47.6}$	${ }_{47.5}^{47.6}$	-0.1	-0.2\%
45.7\%	47.5	47.4	-0.1	-0.2\%
46.9\%	47.3	47.2	0.0	0.0\%
48.19\%	47.2	47.2	0.0	0.0\%
49.4\% 50.6\%	47.1	${ }_{471}^{47.1}$	0.0	${ }_{\text {-0.1\% }}^{-0.1 \%}$
51.9\%	47.1	47.0	-0.1	-0.2\%
53.1\%	47.1	47.0	-0.1	-0.2\%
54.3\%	47.0	47.0	0.0	-0.1\%
55.6\%	4.9	46.9	0.0	0.0\%
56.8\%	46.9	46.9	0.0	0.0\%
58.0\%	46.8	46.9	0.1	0.2\%
	46.8 46.7	${ }_{46.7}^{46.7}$	-0.1	-0.0.0\%
61.7\%	46.6	46.6	0.1	0.1\%
63.0\%	46.6	46.5	-0.1	-0.1\%
64.2\%	46.5	46.5	0.0	0.0\%
65.4\%	46.4	46.5	0.1	0.1\%
66.7\%	46.3	46.4	0.1	0.2\%
67.9\%	46.3	46.2	-0.1	-0.2\%
69.1\%	46.3	46.2	-0.1	-0.2\%
70.4\%	46.3	46.2	-0.1	-0.2\%
71.6\%	46.3	46.1	-0.2	-0.4\%
72.8\%	46.0		0.0	-0.1\%
74.19\%	46.0	45.9	0.0	-0.1\%
76.5\%	${ }_{45.9}$	${ }_{45.8}$	-0.1	-0.2\%
77.8\%	45.9	45.7	-0.2	-0.4\%
79.0\%	45.8	45.7	-0.1	-0.3\%
80.2\%	45.8	45.6	-0.2	-0.4\%
81.5\%	45.7	45.6	-0.1	-0.3\%
82.7\%	45.7	45.6	-0.1	-0.3\%
84.0\%	45.7	45.5	-0.2	-0.4\%
85.2\%	45.7	45.4	-0.2	-0.5\%
86.4% 87.7%	45.6 45.6	${ }_{\text {4 }}^{45.4}$	-0.2 -0.3	-
88.9\%	45.1	45.1	-0.1	-0.1\%
90.1\%	45.1	45.0	-0.1	-0.2\%
91.4\%	45.0	45.0	-0.1	-0.1\%
92.6\%	45.0	44.9	-0.1	-0.3\%
93.8\%	45.0	44.8	-0.1	-0.3\%
95.1\%	44.9	44.8	-0.1	-0.3\%
96.3\%	44.9	44.8	-0.1	-0.3\%
97.5\%	44.9	44.7	-0.2	-0.5\%
988.8\% 100.0\%	43.8 43.8	${ }_{43.7}^{43.7}$	-0.1 -0.1	-

	April			$\begin{gathered} \text { Relative } \\ \text { Difference (\% } \end{gathered}$
Pereent Exceedance	WSIP 2030 Without Proiect	WSII 2030 With Project	Absolute	
Probability	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	(DEGF)	
0.0\%	53.9	53.9	0.0	0.0\%
1.2\%	52.6	53.3	0.6	
2.5\%	52.1	52.5	0.4	0.9\%
3.7\%	52.0	52.1	0.0	0.1\%
4.9\%	52.0	51.9	-0.1	-0.2\%
6.2\%	51.8	51.8	0.0	0.0\%
7.4\%	51.7	51.7	0.1	0.1\%
8.6\%	51.2	51.0	-0.2	-0.4\%
9.9\%	51.1	50.8	-0.4	-0.7\%
11.1.\%	51.1	50.8	-0.3	-0.7\%
12.3\%	50.9	50.7	-0.2	-0.5\%
13.6\%	50.9 509	50.7 50.6	-0.2	-0.4\%
16.0\%	50.7	50.6	-0.1	${ }_{\text {- }}^{-0.5 \%}$
17.3\%	50.7	50.6	-0.1	-0.2\%
18.5\%	50.7	50.6	-0.1	-0.2\%
19.8\%	50.6	50.6	-0.1	-0.1\%
21.0\%	50.6	50.5	0.0	-0.1\%
22.2\%	50.5	50.5	0.0	0.0\%
23.5\%	50.4	50.5	0.1	0.3\%
24.7\%	50.3 50.3 50.	50.4 50.4	${ }^{0.1}$	${ }^{0.2 \%}$
27.2\%	50.2	50.4	0.2	0.4\%
28.4\%	50.1	50.4	0.3	0.5\%
29.6\%	50.0	50.2	0.1	0.3\%
30.9\%	50.0	50.2	0.2	0.4\%
32.1\%	49.9	50.1	0.2	0.4\%
33.3\%	49.9	50.1	0.2	0.3\%
34.6\%	49.8	49.9	0.1	0.2\%
35.8\%	49.8	49.9	0.1	0.2\%
37.0\%	49.8	49.9	0.1	0.2\%
- ${ }_{\text {38.3\% }}$	49.8	49.8 49.8	0.0 0.0	-0.10\%
40.7\%	49.6	49.7	0.1	0.2\%
42.0\%	49.5	49.7	0.1	0.3\%
43.2\%	49.5	49.6	0.1	0.2\%
4.4.4\%	49.5	49.6	0.1	0.2\%
45.7\%	49.5	49.6	0.1	${ }_{0}^{0.2 \%}$
46.9\%	49.5	49.5	0.1	0.1\%
48.1\%	49.4	49.5	0.1	0.2\%
49.4\%	49.4	49.5	0.1	0.3\%
50.6\%	49.3	49.4	0.1	0.1\%
${ }^{51.9 \%}$	49.3 49.3	${ }_{49.3}^{49.3}$	${ }_{0.1}^{0.0}$	${ }_{\text {orem }}^{0.0 \%}$
54.3\%	49.2	49.3	0.1	0.2\%
55.6\%	49.2	49.3	0.1	0.3\%
56.8\%	49.0	49.3	0.3	0.6\%
58.0\%	49.0	49.3	0.2	0.5\%
${ }^{59.3 \%}$	49.0	49.2	0.2	0.3\%
${ }^{60.5 \%}$	49.0	49.1	0.1	0.2\%
61.7\%	48.9	49.1	0.1	0.3\%
63.0\%	48.9	49.1	0.2	0.3\%
64.2\%	48.9	49.0	0.1	0.2\%
${ }^{65.4 \%}$	${ }_{48.8}^{48.8}$	48.9	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
67.9\%	48.7	48.8	0.1	0.2\%
69.1\%	48.6	48.8	0.1	0.2\%
70.4\%	${ }^{48.6}$	48.6	0.0	0.0\%
${ }^{71.5 \%}$	${ }_{48.4}^{48.6}$	48.5 48.5	${ }_{0}^{-0.1}$	-0.2\% ${ }_{0}^{-3.3 \%}$
74.1\%	${ }_{48,3}$	${ }_{48.5}$	0.2	0.5\%
75.3\%	48.2	48.5	0.2	0.4\%
76.5\%	48.2	48.5	0.2	0.4\%
77.8\%	48.2	48.4	0.1	0.3\%
79.0\% 80.2%	48.2 48.1	48.3 48.2	${ }_{0.1}^{0.1}$	${ }_{0}^{0.3 \%}$
81.5\%	48.1	48.2	0.1	0.2\%
${ }^{82.77 \%}$	48.0	48.2	0.1	0.2\%
84.0\%	48.0	48.1	0.1	${ }^{0.2 \%}$
${ }_{\text {86. }}^{8.2 \%}$	479	48.1	0.2	${ }^{0.3 \%}$
${ }^{87} 78$	47.8	47.9	0.1	0.3\%
88.9\%	47.7	47.9	0.2	0.4\%
90.1\%	47.7	47.8	0.1	0.3\%
91.4\%	47.5	47.8	0.3	0.6\%
${ }_{\text {93.8\% }}^{92.6 \%}$	${ }_{47.4}^{47.5}$	${ }_{47.6}^{47.7}$	0.3 0.2	${ }_{\text {0.4\% }}^{0.6 \%}$
95.1\%	47.2	47.6	0.4	0.8\%
96.3\%	47.1	47.3	0.3	0.5\%
97.5\%	47.0	47.0	0.0	0.0\%
98.8\% 100.0\%	46.8 46.8	46.8 46.8	${ }_{0.0}^{0.0}$	${ }^{0.0 \%}$

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceance } \\ \text { Probability } \end{array} \\ (\%) \\ \hline \end{gathered}$	May			RelativeDifference (\%)
	${ }^{\text {WSII }}$ Pro30 Witeth	WSIP 2030 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	
	Monthly Temperature (DEGFF)			
0.0\%	55.7	56.9	1.2	2.1\%
1.2\%	54.3	55.8	1.5	2.8\%
2.5\%	53.2	54.8	1.6	3.0\%
3.7\%	52.7	53.6	0.9	1.7\%
4.9\%	52.4	52.9	0.5	
6.2\%	52.4	52.8	0.3	0.6\%
7.4\%	52.4	52.7	${ }^{0.3}$	0.7\%
8.6\%	52.3	52.6	${ }^{0.3}$	0.6\%
9.9\%	52.2	52.5	${ }^{0.3}$	0.5\%
11.1\%	52.2	52.4	0.2	0.5\%
12.3\%	52.0	52.3	0.3	0.5\%
13.6\%	51.9	52.3	0.4	0.7\%
14.8\%	51.9	52.2	0.4	0.7\%
16.0\%	51.8	52.2	0.4	0.8\%
17.3\%	51.7	52.1	0.4	0.8\%
18.5\%	51.6	52.1	0.4	0.8\%
19.8\%	51.6	52.0	0.4	0.8\%
21.0\%	51.4	51.8	0.4	0.8\%
22.2\%	51.4	51.7	0.3	0.5\%
23.5\%	51.4	51.6	${ }^{0.3}$	0.5\%
24.7\%	51.3	51.5	0.3	0.5\%
25.9\%	51.2	51.5	${ }^{0.3}$	0.6\%
27.2\%	51.1	51.5	0.3	0.7\%
28.4\%	51.1	51.4	0.3	0.5\%
29.6\%	51.1	51.4	0.3	0.5\%
- $\begin{aligned} & 30.9 \% \\ & 3201 \%\end{aligned}$	51.0	51.3	0.4	0.7\%
32.1\%	51.0	${ }_{51.3}$	${ }^{0.3}$	0.7\%
-	50.9	51.2	${ }^{0.3}$	0.6\%
34.6\%	50.9	51.22	${ }^{0.3}$	0.7\%
35.8\%	50.9	51.2	${ }^{0.3}$	0.6\%
37.0\%	50.9	51.2	0.3	0.6\%
38.3\%	50.8	51.1	${ }^{0.3}$	0.5\%
39.5\%	50.8	51.0	0.2	0.4\%
40.7\%	50.8	51.0	0.2	0.4\%
42.0\%	50.7	51.0	${ }^{0.3}$	0.5\%
43.2\%	50.7	51.0	0.3	0.6\%
44.4\%	50.6	51.0	0.4	0.7\%
45.7\%	50.6	51.0	0.4	0.7\%
46.9\%	50.6	50.9	0.3	0.7\%
48.1\%	50.6	50.9	${ }^{0.3}$	0.7\%
49.4\%	50.6 50.5	50.8	${ }^{0.3}$	0.5\%
50.6\%	50.5	${ }_{50.8}$	${ }^{0.3}$	0.6\%
51.9\%	50.5	${ }_{50.8}$	${ }^{0.3}$	0.5\%
53.19\%	${ }_{50.5}^{5}$	50.8	${ }^{0.3}$	0.5\%
54.3\%	50.4	50.7	${ }^{0.3}$	0.6\%
55.6\%	50.4	50.7	0.3	0.6\%
5.6.8\% 58.0\%	50.4	50.7	0.3	0.6\%
5. 5.0% 59.3%	50.3	50.7	0.4	0.8\%
59.3\%	50.3 50.3 0.2	50.7 50.6	${ }^{0.4}$	0.8\%
61.7\%	50.2	50.6	0.4	0.8\%
63.0\%	50.2	50.6	0.4	0.8\%
64.2\%	50.2	50.6	0.4	0.7\%
65.4\%	50.2	50.5	0.3	0.7\%
66.7\%	50.1	50.4	0.3	0.7\%
67.9\%	50.1	50.4	0.4	0.7\%
69.1\%	50.1	50.4	0.3	0.7\%
70.4\%	50.0	50.3	${ }^{0.3}$	0.6\%
71.6% 7280%	49.9	50.3	${ }^{0.3}$	0.7\%
72.8.1\%	49.9	50.3		0.7\%
74.19\%	49.9	50.2	${ }^{0.3}$	0.6\%
${ }^{75.3 \%}$	49.9	50.1	0.2	0.5\%
	49.8	50.1	${ }^{0.3}$	0.5\%
77.8\%	49.8	50.1	0.3	0.6\%
79.0\% 80.2%	49.7	50.1	${ }^{0.3}$	0.7\%
80.2\%	49.7	50.0	0.3	0.7\%
81.5\%	49.6	50.0	0.3	0.7\%
82.7\% 84,	49.6	50.0	0.4	0.7\%
84.0\% 8.20%	49.5	49.9	0.4	0.9\%
${ }^{85.2 \%}$	49.5	49.9	0.4	0.8\%
86.4\%	49.5	49.7	0.2	0.5\%
87.79\%	49.5	49.7	0.2	0.5\%
88.9\%	49.4	49.6	0.2	0.4\%
90.1\%	49.3	49.5	0.2	0.5\%
91.4\% ${ }_{9} 9.6 \%$	49.3	49.5	0.2	0.4\%
${ }_{93.8 \%}^{92.6 \%}$	49.2	49.4	0.2	0.4\%
${ }_{95.1 \%}^{93.8 \%}$	49.2	49.3	0.1	0.2\%
${ }_{995}^{95.19 \%}$	49.1	49.1	0.0	0.1\%
${ }_{9}^{96.3 \%} 9$	49.0	49.0	0.0	0.0\%
97.5\% ${ }_{\text {98.8\% }}$	48.9	48.9	0.0	0.0\%
98.8\% 100.0\%	48.4 48.4	48.9 48.9	${ }_{0}^{0.5}$	${ }_{1.1 \%}^{1.1 \%}$

Table SQ S.1b
Bonnyiew Bridge,
Sacramento River at Bonnyview Bridge, Monthly Temperature

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{gathered}$	June			RelativeDifference (\%)
	${ }^{\text {WSIIP }}$ Pro30 Without	WSIP 2030 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difserene } \\ \text { (DEGFF) } \end{gathered}$	
	Monthly Temperature	Monthly Temperature		
0.0\%	55.6	55.6	0.0	0.0\%
1.2\%	55.0	54.6	-0.4	-0.8\%
2.5\%	54.6	54.3	-0.4	-0.7\%
3.7\%	54.3	53.9	-0.4	-0.7\%
4.9\%	54.0	53.	-0.5	
6.2\%	53.6	53.3	-0.2	-0.4\%
7.4\%	53.5	53.3	-0.3	-0.5\%
8.6\%	53.1	53.2	0.2	0.3\%
9.9\%	53.0	53.1	0.1	0.2\%
11.1\%	53.0	53.0	0.1	0.2\%
12.3\%	53.0	53.0	0.1	0.2\%
13.6\%	52.7	53.0	0.3	0.5\%
14.8\%	52.6	53.0	0.3	0.7\%
16.0\%	52.6	52.9	0.4	0.7\%
17.3\%	52.5	52.8	0.2	0.5\%
18.5\%	52.5	52.6	0.1	0.2\%
19.8\%	52.5 52.4	52.5 52.5	${ }^{0.1}$	${ }_{0}^{0.2 \% \%}$
${ }_{\text {22, }}$	52.4	52.5	${ }_{0} 0.0$	0.1\%
22.5\%	52.4	52.4	0.0	0.1\%
24.7\%	52.3	52.4	0.1	0.1\%
25.9\%	52.3	52.2	0.0	-0.1\%
27.2\%	52.2	52.1	-0.1	-0.2\%
28.4\%	52.2	52.1	-0.1	-0.2\%
29.6\%	52.2	52.1	-0.1	-0.2\%
30.9\%	52.1 519	51.9 519	-0.2	-0.3\%
32.1\%	51.9	51.9 51.8	0.0 0.01	${ }_{-0.1 \%}^{-0.1 \%}$
34.6\%	51.7	51.8	0.1	0.2\%
35.8\%	51.7	51.8	0.1	0.2\%
37.0\%	51.6	51.8	0.2	0.4\%
38.3\%	51.5	51.8	0.3	0.6\%
39.5\%	51.5	51.8	0.3	0.6\%
40.7\%	${ }_{51.4}$	51.8	0.4	0.7\%
42.0\%	51.4	51.7	${ }^{0.3}$	0.7\%
43.2\%	51.4	51.7	0.3	0.7\%
44.4\%\%	51.3	51.7	0.4	0.8\%
${ }^{45.79 \%}$	51.3 51.2	51.6 51.6	0.4 0.4	0.7\%\%
48.1\%	51.2	51.6	0.3	0.7\%
49.4\%	51.2	51.6	0.4	0.7\%
50.6\%	51.2	51.6	0.4	0.7\%
51.9\%	51.1	51.5	0.4	0.8\%
53.1\%	51.1	51.5	0.4	0.8\%
54.3\%	51.1	51.5	0.4	0.8\%
55.6\%	51.1	51.5	0.4	0.8\%
56.8\%	51.1	51.5	0.4	0.8\%
58.0\%	51.0	51.4	0.4	0.8\%
	51.0 51.0		0.4 0.3	0.6\%
61.7\%	50.9	51.2	0.3	0.6\%
63.0\%	50.9	51.1	0.3	0.6\%
64.2\%	50.8	51.1	0.3	0.6\%
65.4\%	50.8	51.1	0.3	0.6\%
66.7\%	50.8	51.1	${ }^{0.3}$	0.6\%
67.9\%	50.7	51.0	0.3	0.6\%
69.1\%	50.7	51.0	${ }^{0.3}$	0.6\%
70.4\%	50.6	51.0	0.4	0.8\%
${ }^{71.6 \%}$	50.6	50.9	0.3	0.7\%
72.8\%	50.5 50.5	50.9 50.8	0.4 0.3	0.7\%\%
75.3\%	50.4	50.8	0.4	0.9\%
76.5\%	50.3	50.7	0.4	0.8\%
77.8\%	50.3	50.7	0.4	0.9\%
79.0\%	50.2	50.7	0.5	0.9\%
80.2\%	50.2	50.7	0.4	0.9\%
81.5\%	50.2	50.6	0.4	0.9\%
82.7\%	50.2	50.6	0.5	0.9\%
84.0\%	50.1	50.6	0.5	1.1\%
85.2\%	50.1 50.1	50.6 50.6	0.5 0.5	${ }_{\text {1.1. }}^{1.1 \%}$
87.7\%	50.0	50.6	0.6	1.1\%
88.9\%	50.0	50.5	0.5	1.0\%
90.1\%	50.0	50.5	0.5	0.9\%
91.4\%	50.0	50.4	0.4	0.8\%
92.6\%	50.0	50.4	0.4	0.8\%
93.8\%	49.9	50.4	0.4	0.9\%
95.1\%	49.9	${ }^{50.3}$	0.4	0.8\%
96.3\%	49.7	50.3	0.5	1.0\%
97.5\%	49.6	50.1	0.5	${ }^{1.1 .19 \%}$
-100.0\%	${ }_{49.5}^{49.5}$	${ }_{49.7}^{49.7}$	0.2 0.2	${ }_{\text {0.5\% }}^{0.5 \%}$

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	September			
	WSII 2030 Without Proiect	WSIP 2030 With Project	Absolute	
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	Difference	Difference (\%)
0.0\%	65.7	65.9	0.2	0.3\%
1.2\%	63.5	59.1	-4.4	-6.9\%
2.5\%	61.5	58.1	-3.4	5.6\%
3.7\%	57.8	56.9	-0.9	-1.5\%
4.9\%	57.5	56.5	-1.0	-1.7\%
6.2\%	56.8	56.2	-0.6	-1.0\%
7.4\%	56.4	56.1	-0.3	-0.5\%
8.6\%	56.1	55.9	-0.2	-0.3\%
9.9\%	55.9	55.9	0.0	0.0\%
11.1\%	55.8	55.4	-0.4	-0.8\%
12.3\%	55.6	55.4	-0.2	
13.6\%	55.6	55.3	-0.3	-0.5\%
14.8\%	55.6	55.2	-0.4	-0.6\%
16.0\%	55.5	55.0	-0.5	-0.8\%
17.3\%	55.4	55.0	-0.4	-0.8\%
18.5\%	55.4	55.0	-0.4	-0.7\%
19.8\%	55.3	54.8	-0.5	-0.8\%
21.0\%	55.3	54.8	-0.5	-0.8\%
22.2\%	55.2	54.8	-0.4	-0.7\%
23.5\%	55.1	54.8	-0.3	-0.6\%
24.7\%	55.0	54.8	-0.2	-0.4\%
25.9\%	54.9	54.8	-0.2	-0.3\%
27.2\%	54.7	54.8	0.1	0.1\%
28.4\%	54.6	54.7	0.1	0.1\%
29.6\%	54.6	54.7	0.0	0.1\%
30.9\%	54.6 54.6	54.6 54.6	0.0	0.0\%
32.1\%	54.6	54.6	0.0	0.0\%
33.3\%	54.5	54.6	0.1	0.2\%
34.6\%	54.2	54.6	0.3	0.6\%
35.8\%	54.2	54.4	0.2	0.4\%
37.0\%	54.1	54.3	0.2	0.4\%
38.3\%	54.1	54.2	0.1	0.2\%
39.5\%	54.1	54.2	0.1	0.1\%
40.7\%	53.9	54.0	0.1	0.2\%
42.0\%	53.9 536	54.0 539	${ }^{0.1}$	${ }^{0.2 \%}$
43.2\%	53.6 535	${ }_{53,9}^{53.9}$	0.4	0.7\%
44.4\%	${ }_{535}^{53.5}$	$\stackrel{53.9}{53}$	0.4	0.7\%
45.7\%	$\begin{array}{r}53.5 \\ 535 \\ \hline\end{array}$	53.8	0.3	0.6\%
46.9\%	53.5	53.5	0.0	0.0\%
48.19\%	53.5	53.4	0.0	-0.1\%
49.4\%	53.4	53.4	0.0	0.0\%
50.6\%	53.2	53.4	0.2	0.3\%
51.9\%	53.2	53.4	0.2	0.3\%
䰲53.19\%	年53.1	53.4 533	${ }^{0.2}$	0.4\%
54.3\%	53.0	53.3	0.3	0.6\%
55.6\%	53.0 529 5	53.3 532 5	${ }^{0.3}$	0.6\%
56.8\%	52.9	${ }_{53.2}$	${ }^{0.3}$	0.6\%
58.0\%	52.9 527	53.2	${ }^{0.3}$	0.5\%
59.3\%	52.7	53.2	0.5	1.0\%
60.5\%	52.6	53.2	0.5	1.0\%
${ }^{61.77 \%}$	52.5	53.2	0.7	1.3\%
63.0\% 642%	52.5	53.1	0.7	1.3\%
$6.4 .2 \%$ 6.4%	52.5	53.1	0.6	1.2\%
${ }^{65.4 \%}$	52.5	53.1	0.6	1.2\%
${ }^{66.7 \%} 6$	52.4	53.0	0.7	1.2\%
${ }^{67.9 \%}$	52.4	53.0	0.6	1.2\%
69.19\%	52.4 52.4 5.	52.9 527	0.6	1.19\%
70.4\%	52.3 52.3	52.7 527	0.4	0.8\%
71.6\%	52.3 522	52.7 52.7	0.4	0.8\%
72.8\%	52.21	52.7 52.7	0.5	0.9\%
74.19\%	52.1	52.7	0.6	1.1\%
75.3\%	52.0	52.6	0.6	1.2\%
76.5% 77.8%	51.9	52.6	0.6	${ }_{1}^{1.2 \%}$
77.8\%	51.9 51.8	52.5 52.5	0.7	1.4\%
80.2\%	51.7	52.5	0.8	1.5\%
81.5\%	51.6	52.5	0.8	1.6\%
82.7\%	${ }_{51.6}^{51.6}$	${ }_{52.4}^{52.4}$	0.9	1.7\%
84.0\%	51.6	52.4	0.9	1.7\%
85.2\%	${ }_{51.6}^{51.6}$	$\stackrel{52.0}{51}$	0.4	0.8\%
86.4\%	51.6	${ }_{51.8}$	0.2	0.4\%
87.7\%	51.5	51.5	0.0	0.0\%
88.9\%	${ }_{51.2}^{51.2}$	${ }_{51.3}$	${ }^{0.1}$	0.3\%
90.1\%	51.1	51.2	0.0	0.0\%
91.4\%	51.0	50.9	-0.2	-0.3\%
- ${ }_{93}^{92.6 \%}$	51.0 507	50.8	-0.1	-0.3\%
${ }^{93.8 \%} 9$	50.7	50.8 50 50.8	0.1	0.2\%
${ }_{9}^{95.3 \%}$	50.6 50.5	50.8 50.5	0.1	0.3\%
${ }^{96.3 \%} 9$	50.5 50.4	50.5 50.5	${ }_{0}^{0.0}$	${ }_{0}^{0.0 \%}$
98.8\%	50.2	50.4	0.1	0.3\%
100.0\%	50.2	50.4	0.1	0.3\%

Table SQ3-1b
Scramento River at Bonnnview Bridge Monthly Temperature

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$	June to September			
	WSII 2030 Without Proiet	WSIP 2030 With Project	Absolu	
	Monthly Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
(\%)	60.4	558	16	27
0.0%		58.	-1.6	-2.7\%
${ }^{1.2 \% \%}$	57.1	55.5	${ }^{-1.6}$	${ }^{-2.8}$
2.5\%	56.5 557	55.5 554 5.	-1.0	-1.8\%
4.9\%	${ }_{55.3}^{55.7}$	${ }_{55.1}$	-0.2	-0.4\%
6.2\%	55.1	55.1	0.0	-0.1\%
7.4\%	55.0	55.0	0.0	0.1\%
8.6\%	55.0	54.9	-0.1	-0.2\%
9.9\%	54.9	54.8	-0.1	-0.3\%
${ }^{11.11 \%}$	54.8 548 54.8	54.7 54.6	-0.1	-0.2\%
13.6\%	54.6	54.6	-0.1	${ }^{-0.1 \%}$
14.8\%	54.6	54.6	0.0	0.0\%
16.0\%	54.6	54.6	0.0	0.0\%
17.3\%	54.5	54.3	-0.2	-0.4\%
18.5\%	54.5	54.3	-0.3	-0.5\%
19.8\%	54.5	54.2	-0.2	-0.4\%
21.0\%	54.3	54.1	-0.1	-0.2\%
22.2\%	54.2	54.0	-0.2	-0.4\%
${ }^{23.5 \%}$	54.1 539	54.0	-0.2	${ }^{-0.3 \%}$
25.9\%	53.9	53.9	0.0	0.1%
27.2\%	53.9	53.9	0.0	-0.1\%
28.4\%	53.9	53.8	-0.1	-0.2\%
29.6\%	53.8	53.7	-0.1	-0.1\%
30.9\%	53.8	53.6	-0.2	-0.3\%
32.1\%	53.7	53.6	-0.1	-0.2\%
33.3\%	53.6	53.6	0.0	-0.1\%
34.6\%	53.3	53.5	0.2	0.3\%
35.8\%	53.3	53.5	0.1	0.2\%
37.0\%	53.3	53.4	0.1	0.2\%
${ }^{38.3 \%}$	53.2	53.4	0.2	0.4\%
				0.3\%
40.70\%	53.1	${ }_{53,3}^{53,3}$	0.1	0.2\%
43.2\%	53.0	53.2	0.2	${ }^{0.45 \%}$
44.4\%	52.9	53.1	0.2	0.5\%
45.7\%	52.8	53.1	0.3	0.6\%
46.9\%	52.8	53.0	0.3	0.5\%
48.1\%	52.7	52.9	0.2	0.4\%
49.4\%	${ }_{52.7}$	52.9	0.2	0.4\%
${ }_{\text {cke }}^{\substack{\text { 50.6\% } \\ 510 \%}}$	52.7	52.8	0.2	0.3\%
55.9\%\%	52.6 52.6	52.8 52.7	0.2 0.1	${ }_{0}^{0.3 \%}$
55.3\%	52.6	52.7 5.7	0.1	0.2\%
55.6\%	52.5	52.7	0.2	0.4\%
${ }_{\text {c }}^{56.8 \%}$	52.5 52.5	52.7 527	0.2	0.4\%
58.0\%	52.4	52.7	0.2	0.4\%
59.3\%	52.4	52.7	0.2	0.4\%\%
60.5\%	52.4	52.7	0.2	0.5\%
61.7\%	52.3	52.6	${ }^{0.3}$	0.6\%
63.0\%	52.3	52.6	0.3	0.6\%
64.2\%	52.2	52.6	0.4	0.7\%
${ }^{66.4 \%}$	$\begin{array}{r}52.2 \\ 521 \\ \hline 2 .\end{array}$	52.5 525 5.5	${ }^{0.3}$	0.7\%
67.9\%	52.1	52.5	0.4	0.8\%
69.1\%	52.1	52.4	0.3	0.6\%
70.4\%	52.1	52.4	0.3	0.5\%
71.6\%	${ }_{52.1}^{52.1}$	${ }_{52.4}^{52.4}$	${ }^{0.3}$	0.5\%
72.8\%	52.1	52.3	0.3	0.5\%
74.1\%	52.0	52.3	0.2	0.5\%
75.5\%	${ }_{52.0}^{52.0}$	${ }_{52.2}^{52.2}$	0.3	0.5\%
76.5\%	52.0	52.1	0.1	0.3\%
${ }_{7}^{77.80 \%}$	${ }_{52.0}$	${ }_{52.1}^{52.1}$	0.1	0.2\%
80.2\%	51.9 51.8	52.1 52.1	${ }_{0}^{0.2}$	${ }_{0}^{0.5 \%}$
81.5\%	51.8	51.9	0.1	0.3\%
82.7\%	51.8	51.9	0.1	0.2\%
84.0\%	51.6	51.9	${ }^{0.3}$	0.5\%
85.2\%	51.6	51.8	0.2	0.5\%
${ }^{86.4 \%}$	51.6 515	51.8 518	${ }^{0.3}$	0.5\%
87.7\%	51.5	51.8	0.2	0.4\%
88.9\%	${ }_{51.5}^{51.5}$	${ }_{51.7}^{51.7}$	0.1	0.3\%
${ }^{90.10}$	51.5 513 15	51.6 515 15	0.1	0.2\%
${ }_{9}^{92.46 \%}$	51.3 51.3	51.5 51.5	0.2 0.3	${ }_{\text {en }}^{0.5 \%}$
93.8\%	51.2	51.4	0.2	0.4\%
95.1\%	${ }_{51.1}^{51.1}$	${ }_{51.3}^{51.2}$	0.2	0.3\%
99.3\%	51.1 51.0	$\begin{array}{r}51.2 \\ 51.2 \\ \hline\end{array}$	${ }_{0}^{0.1}$	- ${ }_{\text {0.2\% }}^{0.3 \%}$
97.5\%	51.0 510	51.2 509	0.1	0.3\%
98.8\%	51.0 50.9	50.9 508	-0.1	-0.2\%
100.0\%	50.9	50.8	-0.1	-0.2\%

Percent Exceedance Probability (\%)	July to September Promalin y				$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	August to September			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	WSII 2030 Without Proiect	WSIP 2030 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGFF) } \end{aligned}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$		WSIP 2030 Without Proiect Monthly Temperature (DEGG)	WSIP 2030 With Project Monthly Temperature (DEGF)	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEFGF) } \end{aligned}$	
	Monthly Temperature (DEGF)	Monthly Temperature DEGF)							
0.0\%	62.6	60.7	-1.9	-3.0\%	0.0\%			-2.2	-3.4\%
1.2\%	58.6	56.3	-2.3	-3.9\%	1.2\%	60.6	57.2	3.4	-5.7\%
2.5\%	57.7	56.3	-1.4	-2.4\%	2.5\%	58.9	56.8	2.1	-3.6\%
3.7\%	56.4	55.5	-0.9	-1.6\%	3.7\%	57.1	56.1	-1.1	-1.9\%
4.9\%	56.0	55.5	-0.5	-0.9\%	4.9\%	55.6	55.9	0.7	-1.2\%
6.2\%	55.8	55.5	-0.3	-0.5\%	6.2\%	56.3	55.9	-0.4	-0.7\%
7.4\%	55.6	55.5	-0.2	-0.3\%	7.4\%	${ }_{56.2}$	55.8	-0.4	-0.6\%
8.6\%	55.4	55.5	0.1	0.2\%	8.6\%	55.8	55.5	-0.3	-0.5\%
9.9\%	55.4	55.4	0.1	0.1\%	9.9\%	55.5	55.4	-0.1	-0.2\%
11.1.\%	55.3	55.4	0.1	0.1\%	11.1\%	55.5	55.3	-0.2	-0.4\%
12.3\%	55.3	55.3	0.0	-0.1\%	12.3\%	55.5	55.3	-0.2	-0.4\%
13.6\%	55.3	55.2	-0.1	-0.2\%	13.6\%	55.3	55.3	0.0	-0.1\%
14.8\%	${ }_{55.3}$	55.1	-0.1	0.3\%	14.8\%	55.3	55.1	-0.2	-0.3\%
16.0\%	55.2	55.0	-0.2	-0.3\%	16.0\%	55.2	55.0	-0.2	-0.3\%
17.3\%	55.1	54.9	-0.2	-0.4\%	17.3\%	55.2	55.0	-0.2	-0.4\%
18.5\%	55.0	54.8	-0.2	-0.3\%	18.5\%	55.1	54.9	-0.2	-0.4\%
${ }^{19.8 \%}$	55.0 54.8	54.7 54.7	-0.3 -0.2	-0.0.3\%	${ }^{19.8 \%}$	55.1 55.1	54.8 54.8	-0.3 -0.3	${ }^{-0.5 \%}$
22.2\%	54.8	54.7	-0.1	-0.2\%	22.2\%	55.1	54.8	-0.3	-0.5\%
23.5\%	54.6	54.6	0.0	0.0\%	23.5\%	55.0	54.8	-0.3	-0.5\%
24.7\%	54.6	54.6	0.0	0.0\%	24.7\%	55.0	54.7	-0.2	-0.4\%
25.9\%	54.6	54.6	0.0	0.0\%	25.9\%	54.9	54.7	-0.2	-0.4\%
27.2\%	54.5	54.4	-0.1	-0.2\%	27.2\%	54.9	54.7	-0.2	-0.4\%
28.4\%	54.5	54.3	-0.2	-0.5\%	28.4\%	54.9	54.7	-0.2	-0.3\%
29.6\%	54.4	54.2	-0.2	-0.4\%	29.6\%	54.9	54.7	-0.2	-0.3\%
30.9\%	54.4	54.2	-0.2	-0.4\%	30.9\%	54.8	54.7	-0.1	-0.2\%
32.1\%	54.2	54.1	-0.1	-0.1\%	32.1\%	54.6	54.6	0.0	0.0\%
33.3\%	54.2	54.1	-0.1	-0.1\%	33.3\%	54.6	54.5	-0.1	-0.2\%
34.6\%	54.1	54.1	0.0	${ }^{-0.1 \%}$	34.6\%	54.4 54.3	54.5 545	0.0	${ }^{0.1 \%}$
35.9\%	54.0	54.0	0.0	0.0\%	35.8\%	54.3	54.5 54.5	0.2	0.3\%
37.0\%	${ }_{53.9}^{53.9}$	54.0	0.0	0.1\%	37.0\%	54.2	54.2	0.0	0.0\%
38.3\%	${ }_{53.7}$	53.9	0.2	0.4\%	38.3\%	54.1	54.2	0.1	0.2\%
39.5\%	53.7	53.8	0.1	0.1\%	39.5\%	54.0	54.2	0.2	0.3\%
40.7\%	53.6	53.6	0.0	0.0\%	40.7\%	54.0	54.1	0.1	0.2\%
42.0\%	${ }_{53.5}$	53.6	0.0	0.1\%	42.0\%	53.9	54.0	0.0	0.0\%
43.2\%	53.4	53.5	0.2	0.3\%	43.2\%	53.9	53.8	-0.1	-0.2\%
44.4\%	53.4	53.5	0.1	0.3\%	44.4\%	53.8	53.8	0.0	0.0\%
45.7\%					45.7\%		53.7	-0.1	
${ }^{46.9 \%}$	53.2 53.2	53.5 53.5	0.3 0.3	${ }^{0.6 \%}$	${ }^{46.9 \%}$	53.7 53.6	53.7 53.6	0.1	${ }_{\text {0, }}^{0.1 \%}$
${ }_{49.4 \%}^{48.1 \%}$	- ${ }_{53,2}$		0.3 0.3	${ }_{0}^{0.5 \%}$	${ }_{4}^{48.19 \%}$	53.6 53.5	53.6 53.6	${ }_{0}^{0.0}$	${ }_{0}^{0.1 \%}$
50.6\%	53.2	53.4	0.2	0.4\%	50.6\%	53.4	53.6	0.2	0.3\%
51.9\%	53.2	53.4	0.2	0.4\%	51.9\%	53.4	53.6	0.2	0.3\%
53.1\%	${ }_{53.1}$	55.3	0.2	0.4\%	53.1\%	53.4	53.6	0.2	0.3\%
54.3\%	53.1	53.3	0.3	0.5\%	54.3\%	53.3	53.6	0.2	0.4\%
55.6\%	53.1	53.2	0.1	0.2\%	55.6\%	53.3	53.5	0.2	0.4\%
56.8\%	53.0	53.1	0.2	0.3\%	56.8\%	53.3	53.5	0.2	0.4\%
58.0\%	52.9	53.1	0.2	0.3\%	58.0\%	53.2	53.4	0.2	0.4\%
59.3\%	52.9	53.1	0.2	0.4\%	59.3\%	53.2)	53.4	0.2	0.4\%\%
60.5\%	52.8	53.1	0.2	0.4\%	60.5\%	53.2	53.4		
61.7% 630%	52.8 528 528	53.0 530 53	0.2	0.4\%	61.7% 630%	${ }_{531}^{53.2}$	53.4 53.4	${ }_{0}^{0.3}$	${ }_{0}^{0.5 \%}$
63.0\%	52.8 527	53.0 53	${ }^{0.2}$	0.4\%	63.0\%	53.1 531	53.4 53.4	${ }^{0.3}$	0.6\%
64.2\%	${ }_{52.7}^{52.7}$	${ }_{53.0}^{53}$	${ }^{0.3}$	0.6\%	64.2\%	${ }_{53.1}^{53.1}$	53.4	${ }^{0.3}$	0.6\%
65.4\%	52.6 52.6	53.0 530	0.4 0.3	0.7\% 0	65.4\%	53.1	53.3 53	${ }^{0.2}$	${ }_{\text {en }}^{0.5 \%}$
67.9\%	52.6	52.9	0.3	0.6\%	67.9\%	53.0	53.3	0.2	0.5\%
69.1\%	52.5	52.9	0.3	0.6\%	69.1\%	53.0	52.9	-0.1	-0.1\%
70.4\%	52.5	52.8	0.3	0.6\%	70.4\%	52.9	52.9	0.0	0.0\%
71.6\%	52.5 52.5	52.8	0.4	0.7\%	71.6\%	52.9	52.9	0.0	${ }^{0.00 \%}$
72.8\%	52.5 525	52.8	${ }^{0.3}$	0.7%	72.8\%	52.8	52.9	0.0	
74.1\%	52.5	52.7	${ }^{0.3}$	0.5\%	74.1\%	52.8	52.9	0.1	0.1\%
75.3\%	52.4 52.4 52.4	52.7 52.7 52.	0.2	0.5\%	75.3\%	52.7 527 527	52.9 528 528	${ }^{0.1}$	${ }^{0.2 \% \%}$
76.5\%	52.4	${ }_{525}^{52.6}$	0.2	0.4\%	76.5\%	${ }_{52}^{52.7}$	${ }_{52.8}^{52.8}$	0.2	0.3\%
77.8\%	${ }_{52.4}^{52.4}$	${ }_{525}^{52.5}$	0.2	0.3\%	77.8\%	${ }_{52.6}^{52.6}$	${ }_{52.8}^{52.8}$	0.2	0.4\%
79.0\%	${ }_{52.4}^{52.4}$	${ }_{52.4}^{52.4}$	0.1	0.19\%	79.0\%	${ }_{52.4}$	52.8 528	${ }^{0.3}$	0.7\%\%
80.2\%	52.4	52.4	0.0	0.0\%	80.2\%	52.4	52.8	0.3	0.7\%
81.5\%	${ }_{52.3}^{52.3}$	${ }_{52.4}^{52.4}$	0.1	0.1\%	81.5\%	52.4	52.7	0.3	0.6\%
82.7\%	${ }_{52.3}$	52.4	0.1	0.1\%	82.7\%	52.3	52.7	0.4	0.7\%
84.0\%	52.2	52.4	0.1	0.3\%	84.0\%	52.3	52.5	0.2	0.4\%
85.2\%	52.1 51.9	52.3 520	0.2	0.3\%	85.20\%	52.2 52.2	52.3 521	0.1	0.2\%
- ${ }^{86.4 \%}$ 87.7\%	51.9 51.9	52.0 52.0	${ }_{0}^{0.1}$	0.2\% 0	-86.4\%	52.2 52.1	52.1 52.1	-0.1 0.0	-0.1\%
88.9\%	51.9	51.9	0.0	0.1\%	88.9\%	52.1	52.0	-0.1	-0.1\%
90.1\%	51.8	51.8	0.1	0.1\%	90.1\%	52.0	52.0	0.0	-0.1\%
91.4\%	51.7	51.8	0.1	0.2\%	91.4\%	52.0	52.0	0.0	0.0\%
92.6\%	${ }_{51.7}$	${ }_{51.8}$	0.1	0.3\%	92.6\%	51.8	51.7	-0.1	-0.2\%
93.8\%	51.6	51.8	0.1	0.2\%	93.8\%	51.8	51.7	-0.1	-0.2\%
95.19\%	${ }_{51.6}^{51.6}$	${ }_{51.7}^{51.7}$	0.1	0.2\%	95.19\%	${ }_{51.6}$	${ }_{51.6}^{51.6}$	0.0	0.0\%\%
96.3\%	51.5	${ }_{51.3}$	-0.2	-0.3\%	96.3\%	51.6	51.4	-0.2	-0.3\%
97.5\%	51.4	${ }_{51.3}^{513}$	0.0	-0.1\%	97.5\%	51.5	51.2	-0.2	${ }^{-0.4 \%}$
98.8% 100.0%	51.4 51.2	51.3 50.9	-0.3	-0.0\%	98.8\% 100.0\%	51.2 51.0	50.5	0.0 0.5	-0.0\%

Figure SQ4-1b
Sacramento
River at Balls Ferry, Monthly Temperature

Table SQ4-1b
verat alls Sery, Mon
Sacramento Rivera a balls Ferry, Monthy Temperature

October				
Percent Exceedance	WSIP 2 230 Winthout Proiet	WSIP 2030 With Project		Relative
Probability (\%)	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	(DEGF)	Difference (\%)
0.0\%	63.9	62.2	-1.7	-2.7\%
1.2\%	63.9	62.1	-1.7	-2.7\%
2.5\%	61.9	61.5	-0.4	-0.7\%
3.7\%	60.6	60.7	0.0	0.1\%
4.9\%	58.6	59.1	0.5	0.9\%
6.2\%	58.6	57.9	-0.7	-1.2\%
7.4\%	57.8	57.9	0.1	0.1\%
8.6\%	57.7	57.6	-0.1	-0.2\%
9.9\%	57.5	57.4	0.0	0.0\%
11.1\%	57.4	57.4	0.0	0.1\%
12.3\%	57.2	57.3	0.1	0.2\%
13.6\%	57.2	57.3	0.1	0.1\%
14.8\%	57.1	57.3	0.2	0.3\%
16.0\% 17.3%	56.9 56.9	57.2 57.2	0.4 0.3	${ }^{0.6 \% \%}$
18.5\%	56.9	57.1	0.3	0.5\%
19.9\%	56.8	57.0	0.2	0.3\%
21.0\%	56.8	57.0	0.2	0.3\%
22.2\%	56.8	56.9	0.1	0.3\%
23.5\%	56.7	56.9	0.2	0.3\%
24.7\%	56.7	56.9	0.2	0.4\%
25.9\%	55.6	56.8	0.2	0.3\%
27.2\%	55.6	56.7	0.1	0.2\%
${ }^{28.4 \%}$ 29.6\%	56.6 56.6	56.6 56.5	0.0 -0.1	-0.0\%
30.9\%	56.6	56.4	-0.1	-0.3\%
32.1\%	56.5	56.4	-0.1	-0.3\%
33.3\%	56.5	56.3	-0.2	-0.3\%
34.6\%	56.4	56.3	-0.1	-0.3\%
35.8\%	56.4	56.3	-0.1	-0.2\%
37.0\%	56.3	56.3	-0.1	-0.1\%
38.3\%	${ }_{56.3}$	56.2	-0.1	-0.1\%
39.5\%	56.3	56.2	-0.1	-0.1\%
40.79\%	56.3	56.2	-0.1	-0.2\%
${ }^{42.0 \%}$	56.2 56.1	56.2 56.0	-0.1 -0.1	-0.0.2\%
44.4\%	56.1	56.0	-0.1	-0.2\%
45.7\%	55.1	55.0	-0.1	-0.2\%
46.9\%	56.1	56.0	-0.1	-0.2\%
48.1\%	55.0	55.0	0.0	-0.1\%
49.4\%	55.0	55.9	-0.1	-0.1\%
50.6\%	56.0	55.9	-0.1	-0.2\%
51.9\%	55.0	55.9	-0.1	-0.2\%
53.1\%	55.0	55.9	-0.1	-0.2\%
54.3\%	55.9	55.9	-0.1	-0.1\%
55.6\%	55.9 55 5.9	55.9	-0.1	${ }^{-0.1 \%}$
年56.8\%	55.8 55.8	55.9 55.8	${ }_{0}^{0.1}$	${ }_{\text {coin }}^{0.1 \%}$
59.3\%	55.7	55.8	0.1	0.1\%
60.5\%	55.7	55.8	0.0	0.1\%
61.7\%	55.6	55.7	0.1	0.2\%
63.0\%	55.6	55.7	0.1	0.2\%
64.2\%	55.6	55.7	0.1	0.2\%
65.4\%	55.6	55.7	0.1	0.2\%
66.7%	55.5	55.6	0.1	0.2\%
67.9\%	55.5	55.6	0.1	0.2\%
69.12\%	55.5 555 55	55.6 556 5	${ }^{0.1}$	${ }^{0.1 \%}$
70.4\%	55.5 555 55	55.6	0.1	0.1\%
71.6\%	55.5	55.6	0.1	0.2\%
72.8\%	55.5 55	$\begin{array}{r}55.6 \\ 55 \\ \hline 5.5\end{array}$	0.1	0.2\%
74.1\%	55.4	55.5 555 5.5	0.1	0.2\%
75.3\%	${ }_{55.3}^{55}$	55.5	0.2	0.4\%
76.5\%	55.3	55.5	0.2	0.4\%
77.8\%	$\begin{array}{r}55.3 \\ 55 \\ \hline 5\end{array}$	$\begin{array}{r}55.5 \\ 55 \\ \hline 5.5\end{array}$	0.2	0.4\%
79.0\%	55.3	55.5	0.2	0.4\%
80.2\%	55.3	55.4	0.1	0.2\%
81.5\%	55.2	55.3	0.1	0.1\%
-	55.2 55.2	55.3 55.2	0.1 0.0	${ }_{0}^{0.1 \%}$
85.2\%	55.1	55.1	0.0	0.0\%
86.4\%	55.1	55.0	-0.1	-0.1\%
87.7\%	55.0	55.0	0.0	0.0\%
88.9\%	55.0	55.0	0.0	0.0\%
90.1\%	54.9	54.9	0.0	0.0\%
91.4\%	54.7	54.8	0.1	0.1\%
92.6\%	54.7	54.6	-0.1	-0.2\%
93.8\%	54.7	54.6	-0.1	-0.2\%
95.1\%	54.6	54.5	-0.1	-0.1\%
96.3\%	54.5 545 4.5	54.5 54.3 4.	0.0	0.0\%
98580	54.5	$\begin{array}{r}54.3 \\ 54.2 \\ \hline\end{array}$	-0.1 0.1	-0.0.3\%
100.0\%	54.1 54.1	54.2 54.2	0.1 0.0	${ }_{\text {corem }}^{0.2 \%}$

$\begin{array}{\|c} \hline \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \\ \text { (\%) } \end{array}$	January			
	WSII 2030 W. Without	Wsip 2030 With Project	Absolute	Relative
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF) St	(DEGF)	Difference (\%)
0.0\%	51.0	51.1	0.1	0.2\%
1.2\%	50.6	50.6	0.0	0.0\%
2.5\%	50.5	50.3	-0.2	-0.3\%
3.79\%	50.2	50.2	0.0	${ }^{-0.19 \%}$
6.2\%	50.0	${ }_{50.1}$	0.0	0.1\%
7.4\%	50.0	49.8	-0.2	-0.3\%
8.6\%	49.8	49.8	0.0	-0.1\%
9.9\%	49.7	49.6	-0.1	-0.2\%
11.1\%	49.5	49.6	0.1	0.3\%
12.3\%	49.3	49.6	0.2	0.5\%
13.6\%	49.3	49.3	0.0	0.0\%
14.8\%	49.2	49.2	0.0	0.1\%
${ }^{16.0 \%} \times 1.3 \%$	49.2 49.1	49.2 49.1	0.1 0.0	-0.1\%
18.5\%	49.1	49.0	0.0	-0.1\%
19.8\%	49.0	48.9	-0.1	-0.2\%
21.0\%	48.8	48.9	0.0	0.1\%
22.2\%	48.8	48.9	0.0	0.1\%
23.5\%	48.8	48.7	-0.1	-0.2\%
24.7\%	48.8	48.7	-0.1	-0.1\%
25.9\%	48.6	48.7	0.0	0.1\%
27.2\%	${ }^{48.6}$	48.6	0.0	0.1\%
${ }^{28.49 \%}$	48.6 48.5	48.6 48.5	0.1 0.0	${ }^{0.1 \%}$
30.9\%	48.4	48.4	0.1	0.1\%
32.1\%	48.3	48.4	0.1	0.2\%
- 33.36				
34.8\%	${ }_{48.1}^{48.1}$	48.1	0	${ }_{\text {coin }}^{0.1 \%}$
37.0\%	48.0	48.1	0.1	0.1\%
383\%	48.0	48.1	0.0	0.1\%
39.5\%	48.0	48.0	0.0	0.0\%
40.7\%	47.9	48.0	0.1	0.1\%
42.0\%	47.9	48.0	0.0	0.1\%
${ }^{43.4 .4 \%}$	47.9	47.8	0.0	${ }^{0.10 \%}$
45.7\%	47.8	47.8	0.0	0.0\%
46.9\%	47.7	47.7	0.0	-0.1\%
48.1\%	47.6	47.7	0.1	0.1\%
49.4\%	${ }^{47.6}$	47.7	${ }^{0.1}$	0.2\%
50.6\%	47.6	47.6	0.0	0.1\%
51.9\%	47.6	47.6	0.0	0.1\%
53.1\%	47.5	47.6	0.1	0.2\%
54.3\%	47.5	47.5	0.0	0.0\%
55.6\%\%	47.5 47.5	47.5 47.5	0.0 0.0	${ }_{0}^{0.1 \%}$
58.0\%	47.5	47.4	0.0	0.0\%
59.3\%	47.4	47.4	0.0	-0.1\%
- ${ }_{\text {60.5\% }}^{617 \%}$	47.4 473	47.4 47.2	0.0	-0.0\%
63.0\%	47.3	47.2	0.0	-0.1\%
64.2\%	47.2	47.1	-0.1	-0.2\%
65.4\%	47.1	47.1	-0.1	-0.1\%
66.7\%	47.0	47.1	0.0	0.1\%
67.9\%	47.0	47.0	0.0	0.0\%
69.1\%	47.0	46.9	-0.1	-0.3\%
70.4\%	46.9	46.8	-0.1	-0.0.2\%
72.8\%	46.9	${ }_{46.8}^{46.8}$	0.0	-0.1\%
74.1\%	46.8	46.8	-0.1	-0.2\%
75.3\%	46.8	46.7	-0.1	-0.2\%
76.5\%	46.8	46.7	-0.1	-0.1\%
77.8\%	46.8	46.7	-0.1	-0.1\%
79.0\%	46.8	46.7	-0.1	-0.2\%
80.2\%	46.7	46.6	-0.1	-0.2\%
81.5\%	46.7	46.5	-0.2	-0.4\%
82.7\%	46.6	46.4	-0.3	-0.6\%
84.0\%	46.6	46.3	-0.3	-0.6\%
${ }^{85.2 \%}$	46.5	46.3	-0.2	-0.5\%
${ }^{8047 \%}$	${ }_{46.3}$	${ }_{46.2}$	-0.1	-0.3\%
88.9\%	46.3	46.1	-0.2	-0.4\%
90.1\%	46.1	46.0	0.0	-0.1\%
91.4\%	45.9	46.0	0.1	0.1\%
92.6\%	45.8	45.8	0.0	0.0\%
93.8\%	45.6	45.8	0.2	0.5\%
95.1\%	45.5	45.5	0.0	0.0\%
96.3\%	45.4	45.3	-0.1	-0.3\%
${ }_{98}^{97.5 \%}$	${ }_{45.4}^{45.4}$	${ }_{45.2}^{45.2}$	-0.2 -0.2	-0.05\%
100.0\%	45.4	45.2	-0.2	-0.5\%

Table SQ4-1b
verat alls Sery, Mon
Sacramento Rivera a balls Ferry, Monthy Temperature

$\begin{gathered} \text { Percent } \\ \text { Exceodane } \\ \text { Probabability } \end{gathered}$	February			
	WSIP 2030 Without	WSIP 2030 With Project	Absolute	
	Monthly Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
(\%)	517	518		
0.0\%	51.7	51.8	0.1	0.2\%
${ }^{1.25 \%}$	50.8 50.4	50.7 50.6	-0.1 0.3	${ }^{-0.5 \%}$
3.7\%	49.5	49.6	0.0	0.0\%
4.9\%	49.5	49.5	0.0	0.0\%
6.2\%	49.3	49.5	0.2	0.4\%
7.4\%	49.3	49.5	0.2	0.4\%
8.6\%	49.2	49.3	0.1	0.2\%
9.9\%	49.2	49.3	0.0	0.1\%
11.1.\%	49.2	49.0	-0.2	-0.3\%
12.3% 13.6%	49.1 49.0	49.0 49.0	-0.1	-0.0.0\%
14.8\%	48.8	49.0	0.2	0.3\%
16.0\%	48.8	48.8	0.0	0.0\%
17.3\%	48.8	48.8	0.0	0.0\%
18.5\%	48.7	48.7	0.0	0.0\%
19.8\%	48.7	48.6	-0.1	-0.1\%
21.0\%	48.5	48.6	0.0	0.0\%
22.2\%	48.5	48.5	0.0	0.0\%
23.5\%	48.5	48.5	0.0	0.0\%
24.7\%	48.5	48.5	0.0	0.0\%
25.9\%	48.4	48.5	0.0	0.1\%
27.2\%	48.4	48.4	0.0	0.0\%
28.4\%	48.4	48.4	0.0	0.0\%
29.6\%	48.4	48.3	-0.1	-0.1\%
30.9\%	48.4	${ }^{48.3}$	-0.1	-0.1\%
32.1\%	48.4	48.3	-0.1	-0.1\%
33.3\%	48.3	48.1	-0.1	-0.3\%
34.6\%	48.3	48.1	-0.1	-0.3\%
35.8\%	48.1	48.1	0.0	0.1\%
37.0\%	48.1	48.0	-0.1	-0.1\%
38.3\%	48.0	48.0	-0.1	-0.2\%
39.5\%	48.0	47.8	-0.2	-0.4\%
40.7\%	48.0	47.8	-0.1	-0.3\%
42.0\%	47.9	47.8 476	-0.1	-0.2\%
${ }^{43.20 \%}$	47.7	${ }^{47.6}$	-0.1	-0.2\%
44.4\%	47.6	${ }^{47.6}$	0.0	0.0\%
45.7\%	47.6	47.6	0.0	${ }^{0.19 \%}$
46.9\%	47.5	47.5	0.0	0.0\%
48.1\%	47.5	47.4	0.0	-0.1\%
49.4\%	47.4	47.4	0.0	0.0\%
50.6\%	47.4	47.4	0.0	-0.1\%
51.9\%	47.4	47.3	0.0	0.0\%
	47.3 47.2	47.3 47.2	0.0 0.0	${ }_{\text {onem }}^{0.00 \%}$
55.6\%	47.2	47.2	0.0	0.0\%
56.8\%	47.2	47.2	0.0	0.0\%
58.0\%	47.1	47.2	0.1	0.1\%
59.3\%	47.1	47.0	0.0	-0.1\%
60.5\%	47.1	47.0	0.0	0.0\%
61.7\%	47.0	47.0	0.0	-0.1\%
63.0\%	46.9	46.9	0.0	0.1\%
64.2\%	46.9	46.8	-0.1	-0.2\%
${ }^{65.4 \%}$	46.8	46.8	0.0	0.0\%
${ }^{66.79 \%}$	46.7	46.7	0.1	0.1\%
		46.6	0.1	0.2\%
69.1\%	46.5	46.5	0.0	-0.1\%
70.4\%	46.5	46.4	-0.1	-0.2\%
71.6\%	46.5	46.4	-0.1	-0.2\%
72.8\%	46.5	46.3	-0.2	-0.4\%
74.1\%	46.5	46.3	-0.2	-0.4\%
75.3\%	46.4	46.2	-0.2	-0.5\%
76.5\%	46.4	46.1	-0.4	-0.8\%
77.8\%	46.2	46.1	-0.1	-0.3\%
79.0\%	46.1	46.0	-0.1	-0.2\%
80.2\%	46.1		-0.1	-0.2\%
81.5\%	46.0	45.8	-0.2	-0.4\%
82.79% 8400	45.9	45.8	-0.1	-0.2\%
84.0\%	45.9	45.7	-0.1	-0.3\%
${ }^{85.29 \%} 8$	45.8 45.8	45.7 45.6	-0.2 -0.1	-0.0.3\%
87.7\%	45.7	45.6	-0.1	-0.2\%
88.9\%	45.7	45.5	-0.2	-0.4\%
90.1\%	45.7	45.5	-0.2	-0.4\%
91.4\%	45.6	45.5	-0.1	-0.3\%
${ }_{9}^{92.80 \%}$	${ }_{45.4}^{45.6}$	45.5 45.4	-0.1 0.0 0	-
95.1\%	45.4	45.2	-0.2	-0.4\%
96.3\%	45.2	45.1	-0.2	-0.3\%
97.5\%	45.2	45.0	-0.2	-0.4\%
98.8\%	44.0	44.1	0.0	0.0\%
100.0\%	44.0	44.1	0.0	0.0\%

$\begin{array}{\|c} \hline \text { Percent } \\ \begin{array}{c} \text { Exxedance } \\ \text { Probability } \\ \text { (\%) } \end{array} \\ \hline \end{array}$	April			
	WSIP 2030 Without Proiect	WSIP 2030 With Project	solute	
	Monthly Temperature	Monthly Temperature DEGF)	Difference	Difference (\%)
0.0\%	55.1	55.1	0.0	0.0\%
1.2\%	54.7	54.5	-0.2	-0.4\%
2.5\%	54.5	54.5	0.0	0.0\%
3.7\%	54.0	54.3	0.2	0.4\%
4.9\%	54.0 538	54.1 537	0.1	0.1\%
7.4\%	53.7	53.6	-0.1	-0.2\%
8.6\%	53.5	52.7	-0.7	${ }^{-1.4 \%}$
9.9\%	53.1	52.7	-0.4	-0.7\%
11.1\%	53.1	52.7	-0.4	-0.7\%
12.3\%	52.9	52.7	-0.2	-0.4\%
13.6\%	52.9	52.7	-0.2	-0.4\%
14.8\%	52.8	52.6	-0.2	-0.3\%
16.0\%	52.7	52.6	-0.1	-0.2\%
17.3\%	$\begin{array}{r}52.7 \\ 52.5 \\ \hline\end{array}$	52.6 525 2.5	-0.1	-0.2\%
19.8\%	52.5	52.5 52.5	0.0	-0.1\%
21.0\%	52.4	52.4	0.0	0.0\%
22.2\%	52.2	52.4	0.2	0.4\%
23.5\%	52.2	52.4	0.2	0.3\%
24.7\%	52.2	52.4	0.2	0.4\%
25.9\%	52.1	52.3	0.1	0.2\%
27.2\%	52.0	52.2	0.2	0.3\%
28.4\%	52.0	52.2	0.2	0.4\%
29.6\%	52.0	52.2	0.2	0.4\%
${ }^{30.9 \%}$	51.9 51.9	52.0 52.0	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
33.3\%	51.9	51.9	0.1	0.2\%
34.6\%	51.6	51.9	0.3	0.5\%
35.8\%	51.6	51.8	0.3	0.5\%
37.0\%	51.5	51.8	0.3	0.6\%
383\%	51.5	51.6	0.2	0.3\%
39.5\%	51.5	51.6	0.2	0.3\%
40.7\%	51.5	51.5	0.1	0.1\%
42.0\%	${ }_{51.3}$	51.5	0.2	0.4\%
${ }^{43.4 \%}$	51.3 51.2	51.5 51.5	${ }_{0}^{0.2}$	0.4\%
45.7\%	51.1	51.4	0.3	0.6\%
46.9\%	51.1	51.4	0.3	0.6\%
48.1\%	51.1	51.3	0.2	0.4\%
4.9.4\%	51.1	${ }_{51.3}^{51.3}$	${ }^{0.2}$	0.4\%
50.6\%	51.0	51.2	0.2	0.4\%
51.9\%	51.0	51.1	0.2	0.3\%
53.1\%	51.0	51.1	0.2	0.4\%
${ }^{54.3 \%}$	50.9	51.1	0.2	0.3\%
55.6\%\%	50.9 50.8	51.1 51.0	0.1 0.2	0.4.9\%
58.0\%	50.8	51.0	0.2	0.5\%
59.3\%	50.8	51.0	0.2	0.5\%
- 60.5%	50.7 50.7	50.9 50.8	${ }_{0}^{0.2}$	0.5\%
63.0\%	50.6	50.8	0.2	0.3\%
64.2\%	50.6	50.8	0.1	0.3\%
65.4\%	50.6	50.7	0.2	0.3\%
66.7\%	50.6	50.7	0.1	0.2\%
67.9\%	50.6	50.7	0.1	0.2\%
69.1\%	50.5	50.6	0.1	0.1\%
70.4\%	50.5	50.6	0.1	0.1\%
72.8\%	50.4	50.5	0.1	${ }_{0}^{0.19 \%}$
74.1\%	50.4	50.4	0.1	0.1\%
75.3\%	50.4	50.4	0.1	0.1\%
76.5\%	50.1	50.3	0.2	0.3\%
77.8\%	50.1	${ }_{50.3}$	0.2	0.4\%
79.0\%	49.7	50.1	0.5	0.9\%
80.2\%	49.6	50.1	0.5	1.1\%
81.5\%	49.6	49.7	0.1	0.2\%
${ }^{82.70 \%}$	${ }_{49.5}^{49.6}$	49.6	0.1	${ }_{0}^{0.2 \%}$
85.2\%	49.5	49.6	0.1	0.2\%
86.4\% 87.7%	49.4 49.4	49.6 49.5	${ }_{0}^{0.1}$	${ }_{0}^{0.3 \% \%}$
88.9\%	49.3	49.4	0.2	0.3\%
90.1\%	49.3	49.3	0.0	0.0\%
91.4\%	49.1	49.3	0.2	0.4\%
92.6\%	49.1	49.1	0.1	0.1\%
93.8\%	49.1	49.1	0.0	0.0\%
95.1\%	49.0	49.0	0.0	0.0\%
96.3\%	48.7	48.8	0.1	0.2\%
97.5\%	48.7	48.7	0.0	0.1\%
98.8\%	${ }_{48.2}^{48.2}$	${ }_{48.2}^{48.2}$	${ }_{0}^{0.0}$	${ }_{\text {com }}^{0.00 \%}$

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceance } \\ \text { Probability } \end{array} \\ (\%) \\ \hline \end{gathered}$	May			RelativeDifference (\%)
	${ }^{\text {WSII }}$ Pro30 Witeth	WSIP 2030 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)		
0.0\%	57.1	58.3	1.2	2.1\%
1.2\%	56.3	57.3	1.0	1.7\%
2.5\%	55.5	55.9	0.5	0.8\%
3.7\%	55.1	55.9	0.7	1.3\%
4.9\%	54.9	55.6	0.7	
6.2\%	54.8	55.5	0.7	1.3\%
7.4\%	54.6	55.4	0.7	1.3\%
8.6\%	54.6	55.2	0.5	0.9\%
9.9\%	54.5	55.0	0.5	0.9\%
11.1\%	54.5	54.9	0.5	0.8\%
12.3\%	54.5	54.9	0.4	0.8\%
13.6\%	54.4	54.8	0.4	0.7\%
14.8\%	54.3	54.7	0.4	0.7\%
16.0\%	54.3	54.7	0.4	0.7\%
17.3\%	54.1	54.7	0.6	1.1\%
18.5\%	54.1	54.6	0.5	0.9\%
19.8\%	53.9	54.5	0.6	1.2\%
21.0\%	53.9	54.5	0.6	1.1\%
22.2\%	53.9	54.4	0.6	1.0\%
23.5\%	53.8	54.4	0.6	1.1\%
24.7\%	53.8	54.3	0.6	1.0\%
25.9\%	53.6	54.2	0.6	1.1\%
27.2\%	53.5	54.1	0.5	1.0\%
28.4\%	53.5	54.1	0.5	1.0\%
29.6\%	53.5	54.0	0.5	1.0\%
30.9\%	53.5	53.8	0.3	0.6\%
32.1\%	53.4	53.8	0.4	
33.3\%	53.3	53.8	0.5	0.8\%
34.6\%	53.2	53.7	0.4	0.8\%
35.8\%	53.2	53.7	0.5	0.9\%
37.0\%	53.1	53.5	0.4	0.7\%
38.3\%	52.8	53.4	0.6	1.1\%
39.5\%	52.8	53.4	0.6	1.1\%
40.7\%	52.8	53.4	0.6	1.2\%
42.0\%	52.8	53.3	0.5	0.9\%
43.2\%	52.8	53.2	0.4	0.8\%
44.4\%	52.7	53.2	0.5	0.9\%
- 45.79%	52.7	53.1	0.4	0.8\%
46.9\%	52.7	53.0	0.3	0.6\%
48.1\%	52.7	53.0	${ }^{0.3}$	0.6\%
49.4\%	52.7 526	53.0	${ }^{0.3}$	0.6\%
50.6\%	52.6	53.0	${ }^{0.3}$	0.6\%
51.9\%	52.6	53.0	${ }^{0.3}$	0.7\%
53.19\%	${ }_{52.6}$	${ }_{53.0}^{53}$	0.4	0.7\%
54.3\%	52.6	53.0	0.4	0.7\%
55.6\%	52.6	53.0	0.4	0.7\%
56.8\%	52.5	52.9	0.4	0.7\%
58.0\%	52.5	52.9	0.4	0.7\%
59.3\%	52.5	52.9	0.4	0.7\%
${ }^{60.5 \%}$ 61.7\%	52.5	${ }_{52.9}$	0.4	
${ }^{61.7 \%}$	52.4	52.9	0.4	0.8\%
-630\%	$\begin{array}{r}52.4 \\ 524 \\ \hline\end{array}$	${ }_{52.9}^{52.9}$	0.5	1.0\%
64.20% 65.4%	$\begin{array}{r}52.4 \\ 52 . \\ \hline\end{array}$	52.9 528	0.5	1.0\%
65.4\%	52.3	52.8	0.5	0.9\%
66.7\% 67.9%	52.3	52.7	0.4	0.8\%
67.9\%	52.2	52.7	0.4	0.8\%
69.1\% 70.4%	52.2	52.6	0.4	0.8\%
70.4\%	52.2	52.6	0.4	0.8\%
71.6% 72.8%	52.2	52.4	0.3	0.5\%
72.8.1\%	52.1 52.1	52.4. 52.4	0.3 0.3	${ }^{0.6 \%}$
75.3\%	52.1	52.4	0.3	0.6\%
76.5\%	52.0	52.4	0.3	0.6\%
77.8\%	51.9	52.4	0.4	0.8\%
79.0\%	51.9	52.2	${ }^{0.3}$	0.5\%
80.2\%	51.9	52.2	${ }^{0.3}$	0.5\%
81.5\%	51.9	52.2	${ }^{0.3}$	0.5\%
82.7\%	${ }_{51.8}^{51.8}$	52.1	${ }^{0.3}$	0.5\%
84.0\%	51.8	52.1	0.3	0.6\%
${ }^{85.2 \%}$	51.8	52.1	0.3	0.6\%
86.4\%	51.8	52.0	0.2	0.5\%
87.7\%	51.8	52.0	0.3	0.5\%
88.9\%	51.7	51.9	${ }^{0.3}$	0.5\%
90.1\%	51.6	51.9	${ }^{0.3}$	0.5\%
91.4\% ${ }_{9} 9.6 \%$	${ }_{51.5}^{51.7}$	${ }_{51.9}^{51.9}$	${ }^{0.3}$	0.7\%
92.9\% ${ }_{\text {93.8\% }}$	51.4	51.6	0.2	0.4\%
${ }_{95.1 \%}^{93.8 \%}$	51.4	51.6	0.2	0.4\%
${ }_{965}^{95.11 \%}$	51.4	51.6	0.3	0.5\%
${ }_{9}^{96.3 \%} 9$	51.3	51.3	0.0	0.0\%
${ }_{9}^{97.5 \%}$	51.2	50.9	-0.2	-0.5\%
98.8\% 100.0\%	50.2 50.2	50.8 50.8	${ }_{0}^{0.6}$	1.1.\%

Table SQ4-1b
vera t alls
erry, Mon

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probababilyt } \end{aligned}$$(\%)$	June			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	WSII 2030 Without	WSIP 2030 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGFF) } \end{aligned}$	
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)		
0.0\%	57.1	57.2	0.1	0.2\%
1.2\%	56.3	56.3	0.0	0.0\%
2.5\%	56.3	56.2	0.0	-0.1\%
3.7\%	56.2	55.8	-0.4	-0.7\%
4.9\%	55.6	55.2	-0.3	-0.6\%
6.2\%	55.4	55.2	-0.1	-0.2\%
7.4\%	55.3	55.1	-0.2	-0.4\%
8.6\%	55.3	55.1	-0.2	-0.3\%
9.9\%	55.1	54.9	-0.2	-0.3\%
11.1.1\%	54.9	54.8	-0.1	-0.1\%
12.3\%	54.9	54.8	-0.1	-0.2\%
13.6\%	54.9	54.7	-0.1	-0.2\%
14.8\%	54.8	54.6	-0.2	-0.4\%
16.0\%	54.6	54.6	0.0	0.0\%
17.3\%	${ }_{54.6}^{54.6}$	54.5 545	-0.1	${ }^{-0.1 \%}$
18.5\%	54.6 54.5	${ }_{54.5}^{54}$	-0.1	-0.1\%
19.8\%	54.5	54.4	-0.1	-0.2\%
21.0\%	54.5	54.4	-0.1	-0.2\%
22.2\%	54.3	54.4	0.1	0.2\%
23.5\%	54.3	54.4	0.0	0.1\%
24.7\%	54.3	54.3	0.0	0.0\%
25.9\%	54.3	54.2	-0.1	-0.1\%
27.2\%	54.2	54.2	0.1	${ }^{0.19 \%}$
28.4\%	54.1	54.2	0.0	0.0\%
29.6\%	54.1	54.1	0.0	0.1\%
30.9\%	54.1 539	54.1	0.0	${ }^{-0.1 \%}$
${ }^{32.1 \%}$	${ }_{53.9}$	54.0	0.1	0.3\%
33.3\%	53.6	54.0	0.4	0.7\%
34.6\%	53.6	54.0	0.4	0.8\%
35.8\%	53.5	53.9	0.4	0.7\%
37.0\%	53.5	53.9	0.4	0.8\%
38.3\%	53.4	53.9	0.5	0.8\%
39.5\%	53.4	53.8	0.4	0.7\%
40.77\%	53.4	53.8	0.4	0.7\%
42.0\%	${ }_{53.3}$	53.7 537	${ }^{0.4}$	0.7\%
43.2\%	53.3 533	53.7 537	${ }_{0}^{0.3}$	0.7\%
${ }^{44.45 \%}$	${ }_{53.3}^{53.3}$	${ }_{53.7}^{53.7}$	0.4 0.4	0.7\%
46.9\%	${ }_{53.3}$	53.6	0.3	0.6\%
48.1\%	53.3	53.6	${ }^{0.3}$	0.6\%
49.4\%	53.2	53.6	${ }^{0.3}$	0.6\%
50.6\%	53.2	53.5	0.4	0.7\%
51.9\%	53.1	53.5	0.3	0.7\%
53.1\%	53.1	53.5	0.4	0.7\%
54.3\%	53.1	53.5	0.4	0.8\%
55.6\%	53.1	53.4	0.3	0.7\%
56.8\%	53.1	53.4	${ }^{0.3}$	0.7\%
58.0\%	53.0	53.3	0.3	0.6\%
59.3\%	53.0	${ }_{53.3}$	0.4	0.7\%
60.5\%	52.9	55.3	0.4	0.7\%
${ }^{61.7 \%}$	52.9	53.3	0.4	0.8\%
63.0\%	52.8	53.3	0.5	1.0\%
64.2\%	52.8	53.3	0.5	1.0\%
${ }^{65.4 \%}$	52.7	53.3	0.6	1.1\%
${ }^{66.77 \%}$	${ }_{52.7}$	${ }_{53.3}$	0.6	1.1\%
- 67.9%	52.7 52.7	53.2 53.2	0.6 0.6	${ }_{\text {1.1.1\% }}^{1.10}$
70.4\%	52.6	53.2	0.5	1.0\%
71.6\%	52.6	53.2	0.6	1.1\%
72.8\%	52.5	53.2	0.6	1.2\%
74.1\%	52.5	53.2	0.7	1.3\%
75.3\%	52.5	53.1	0.7	1.3\%
76.5\%	52.5	53.0	0.6	1.1\%
77.8\%	52.3	52.9	0.6	1.2\%
79.0\%	52.3	52.9	0.6	1.1\%
80.2\%	52.2	52.8	0.6	1.1\%
- ${ }_{81.5 \%}$	$\begin{array}{r}52.2 \\ 52.2 \\ \hline\end{array}$	52.8 52.6	0.6 0.4	${ }_{\text {O.8\% }}^{1.10 \%}$
84.0\%	52.2	52.6	0.4	0.8\%
85.2\%	52.0	52.6	0.5	1.0\%
86.4\%	52.0	52.5	0.6	1.1\%
87.7\%	51.9	${ }_{52.5}^{52.5}$	0.5	1.0\%
88.9\%	51.9	52.4	0.5	1.0\%
90.1\%	51.8	52.4	0.6	1.2\%
914.4\%	51.7	52.4 523 52.	${ }_{0}^{0.7}$	1.3\%
- ${ }_{\text {93, }}^{92.6 \%}$	${ }_{51.7}^{51.7}$	52.3 52.3	0.6 0.6	${ }_{\text {1.2\% }}^{1.2 \%}$
95.1\%	51.6	52.2	0.6	1.1\%
96.3\%	51.6	52.19	0.5	${ }^{1.0 \%}$
97.5\%	51.5	52.0 519	${ }_{0}^{0.5}$	
98.8\% 100.0\%	${ }_{51.5}^{51.5}$	51.9 51.9	0.4 0.4	${ }_{\text {cose }}^{0.8 \%}$

PercentExceedanceProbability	September			
	WSIP P230 Without	WSIP 203 With Project		
	Monthy Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
	(0EGF)	(DEGF)		
0.0\%	66.5	66.8	0.4	0.6\%
${ }_{2.5 \%}^{1.2 \%}$	64.5 63.1	60.5 60.0	${ }_{-3.1}{ }^{-4.0}$	-6.6.9\% ${ }_{\text {- }}^{\text {- }}$
3.7\%	59.8	58.2	-1.6	-2.6\%
4.9\%	59.1	58.2	-0.9	1.5\%
6.2\%	58.8	58.0	-0.8	1.4\%
7.4\%	58.7	57.9	-0.8	-1.4\%
8.6\%	58.0	57.6	-0.4	0.7\%
9.9\%	57.9	57.5	-0.4	0.6\%
11.1\%	57.8	57.1	-0.7	-1.2\%
12.3\%	57.7 577	57.1	-0.6	${ }^{-1.11 \%}$
13.6\%	57.7	57.1	-0.6	-1.1\%
14.8\%	57.6	57.1	-0.5	-0.9\%
16.0\%	57.6	55.7	-0.9	-1.5\%
17.3\%	57.6	56.7	-0.9	-1.5\%
18.5\%	57.3	55.6	-0.6	-1.1\%
19.8\%	57.2	56.6	-0.6	-1.1\%
21.0\%	57.1	55.6	-0.5	-0.9\%
22.2\%	57.1	56.5	-0.5	-1.0\%
${ }^{23.5 \%}$	56.9 56.9	56.5 56.5	-0.4 -0.4	-0.7\%
25.9\%	56.9	56.4	-0.4	-0.8\%
27.2\%	56.6	56.4	-0.1	0.3\%
28.4\%	56.5	56.4	-0.1	0.2\%
29.6\%	56.5	55.3	-0.2	-0.4\%
30.9\%	56.5	55.2	-0.3	-0.5\%
32.1\%	56.4	56.2	-0.2	0.4\%
33.3\%	56.3	56.2	-0.2	-0.3\%
34.6\%	56.0	56.2	0.2	0.3\%
35.8\%	55.0	56.1	0.1	0.2\%
37.0\%	55.8	55.9	0.1	0.2\%
-	55.7 556	55.9 559	${ }_{0} 0.2$	
${ }^{39.7 \%}$	${ }_{55.6}^{55.6}$	55.9 55.6	${ }_{0.1}^{0.3}$	${ }_{0}^{0.5 \%}$
42.0\%	55.4	55.6	0.2	0.3\%
43.2\%	55.3	55.5	0.2	0.3\%
44.4\%	55.2	55.2	0.0	0.0\%
45.7\%	55.2	55.2	0.0	0.0\%
46.9\%	55.1	55.1	0.0	0.1\%
48.1\%	55.1	55.1	0.0	0.0\%
4.9.4\%	55.0	55.0	-0.1	${ }^{-0.1 \%}$
50.6\%	55.0	55.0	0.0	${ }^{-0.1 \%}$
51.9\%	54.8	54.9	0.2	0.3\%
53.1\%	54.6 54.5	54.9 548	${ }^{0.3}$	0.6\%
54.3\%	54.5	54.8	${ }^{0.3}$	${ }^{0.5 \%}$
55.6\%	$\begin{array}{r}54.4 \\ 54.4 \\ \hline\end{array}$	54.7 54.7	${ }^{0.3}$	0.6\%
56.8\%	54.2	54.7	0.5	0.9\%
58.0\%	54.1	54.6	0.5	1.0\%
59.3\%	54.1	54.6 54.6	${ }^{0.5}$	${ }_{1}^{1.0 \%}$
- 60.5%	54.0 53.9	54.6 54.5	0.6 0.5	${ }^{1.0 \% \%}$
63.0\%	53.9	54.5	0.6	1.1\%
64.2\%	53.9	54.5	0.6	1.1\%
65.4\%	53.8	54.4	0.6	1.1\%
66.7\%	53.8	54.4	0.6	1.1\%
679\%	53.7	54.3	0.6	1.2\%
69.1\%	${ }_{53.7}^{53.7}$	54.3	${ }^{0.6}$	${ }_{1}^{1.2 \%}$
70.4\%	53.7	54.3 54.3	0.6	1.2\%
71.6\%	53.6	54.3	0.6	1.2\%
72.8\%	53.6	54.2	0.6	1.1\%
74.1\%	53.4	54.1	0.7	1.4\%
75.3\%	53.3	54.0	0.7	1.3\%
${ }^{76.5 \%}$	${ }_{53.3}^{53}$	${ }_{5}^{53.6}$	${ }^{0.3}$	0.5\%
7.80\%	${ }_{53,3}^{53,3}$	53.5	0.2	0.4\%
79.0% 80200	$\begin{array}{r}53.3 \\ 529 \\ \hline\end{array}$	53.5 53.5	0.2 0.6	0.4\%
- ${ }_{\text {80.2\%\% }}$	52.9 52.7	¢53.4	0.6 0.7	${ }_{\text {1.3\% }}^{1.2 \%}$
${ }^{82.7 \%}$	52.7	53.4	0.7	1.4\%
84.0\%	52.6	53.4	0.8	1.5\%
85.2\%	52.6	53.4	0.7	1.4\%
86.4\%	52.6	${ }_{52.1}^{53}$	0.4	0.8\%
87.7\%	52.6	52.8	0.2	0.4\%
88.9\%	52.6	52.6	0.0	${ }^{0.1 \%}$
90.1\%	52.5 525 2.	${ }_{52.6}^{52.6}$	0.0	${ }^{0.1 \%}$
91.4\%	${ }_{52.5}$	52.2	-0.3	${ }^{0.69 \%}$
92.6\%	52.2	51.9 519	-0.3	-0.6\%
${ }^{935.1 \%}$	51.9 51.7	51.9	0.0	-0.2\%
96.3\%	51.6	51.8	0.2	0.4\%
97.5\%	51.3	51.5	0.3	0.6\%
98.8\%	51.2	51.4	0.1	0.3\%
100.0\%	51.2	51.4	0.1	0.3\%

Table SO4-1b
Sacramento Rivera a talast efyry Monthy Temperature

Figure SQ5-1b
Sacramento River at Jellys Ferry, Monthly Temperatur

Table SQS-1b
er at Jellys Ferry, Mon

$\begin{array}{\|c} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{array}$	October			
	WSIP 2030 Without	WSIP 2030 With Project	Absolute	
	Monthly Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
00\%	641	625	15	20^{06}
0.0\%		62.5	-1.5	.2.4\%
${ }^{1.25 \%}$	64.0 62.1	62.3 61.9	-1.7	-
3.7\%	60.8	60.9	0.1	0.1\%
4.9\%	59.1	59.6	0.5	0.9\%
6.2\%	58.8	58.6	-0.3	-0.4\%
7.4\%	58.3	58.5	0.1	0.2\%
8.6\%	58.2	58.2	0.0	-0.1\%
9.9\%	58.0	58.0	0.0	0.0\%
11.1.\%	57.9	58.0	0.1	0.2\%
12.3% 13.6%	57.8 57.8	57.8 57.8	${ }_{0.0}^{0.0}$	${ }_{0}^{0.0 \% \%}$
14.8\%	57.6	57.8	0.2	0.3\%
16.0\%	57.5	57.8	0.2	0.4\%
17.3\%	57.4	57.7	${ }^{0.3}$	0.5\%
18.5\%	57.4	57.7	${ }^{0.3}$	0.5\%
19.8\%	57.3	57.6	${ }^{0.3}$	0.4\%
21.0\%	57.3	57.5	0.2	0.3\%
22.2\%	57.2	57.5	${ }^{0.3}$	0.5\%
23.5\%	57.2	57.4	${ }^{0.3}$	0.4\%
24.7\%	57.2	57.4	0.2	0.4\%
25.9\%	57.2	57.3	0.1	0.2\%
27.2\%	57.1	57.2	0.0	0.1\%
28.4\%	57.1	57.1	-0.1	-0.1\%
29.6\%	${ }_{57.1}$	57.0	-0.1	-0.1\%
30.9\%	57.1	57.0	-0.1	-0.1\%
32.1\%	57.0	55.9	-0.1	-0.2\%
33.3\%	57.0	56.9	-0.1	-0.1\%
34.6\%	57.0	55.9	-0.1	-0.2\%
35.8\%	56.9	56.8	-0.1	-0.2\%
37.0\%	56.9	56.8	-0.1	-0.2\%
38.3\%	56.9	56.8	-0.1	-0.3\%
39.5\%	56.8	56.7	-0.1	-0.2\%
40.7\%	56.7	56.6	-0.2	-0.3\%
42.0\%	56.7	55.6	-0.1	-0.2\%
43.2\%	56.7	56.5	-0.1	-0.2\%
44.4.4\%	${ }_{56.6}^{56.6}$	${ }_{56.5}^{56.5}$	-0.1	-0.2\%
45.7\%	55.6	56.5	-0.1	-0.2\%
46.9\%	55.6	56.5	-0.1	-0.2\%
48.1\%	56.5	56.5	0.0	-0.1\%
49.4\%	56.5	56.5	0.0	-0.1\%
50.6\%	56.5	56.5	0.0	-0.1\%
51.9\%	56.5	56.4	-0.1	-0.1\%
	56.4	56.4 56.3	-0.1 -0.1	${ }_{\text {- }}^{-0.1 \%}$
55.6\%	56.4	56.3	-0.1	-0.1\%
56.8\%	56.3	56.3	0.1	0.1\%
58.0\%	56.3	56.3	0.1	0.1\%
59.3\%	${ }_{56.3}$	55.3	0.1	0.1\%
60.5\%	56.2	56.3	0.1	0.2\%
61.7\%	56.2	56.3	0.1	0.2\%
63.0\%	56.2	56.3	0.1	0.1\%
64.2\%	56.2	56.1	0.0	-0.1\%
65.4\%	56.1	56.1	0.0	0.0\%
66.70\% 67.9%	56.1 56.0	56.1 56.1	${ }_{0.1}^{0.1}$	${ }_{0}^{0.12 \%}$
69.1\%	56.0	56.1	0.1	0.1\%
70.4\%	55.9	56.1	0.1	0.3\%
71.6\%	55.9	56.0	0.1	0.2\%
72.8\%	55.9	56.0	0.1	0.1\%
74.1\%	55.9	55.0	0.1	0.2\%
75.3\%	55.9	55.0	0.1	0.2\%
76.5\%	55.8	56.0	0.1	0.2\%
77.8\%	55.8	55.9	0.1	0.2\%
79.0\%	55.8	55.9	0.1	0.2\%
80.2\%	55.8	55.9	0.1	0.2\%
81.5\%	55.7 557 5.7	55.8 557 55	0.1	0.2\%
${ }^{82.70 \%}$	55.7	55.7	0.1	0.1\%
84.0\%	55.6	55.7 557	0.0	${ }^{0.19 \%}$
85.2\%	55.6 55 5.6	$\begin{array}{r}55.7 \\ 55 \\ \hline 5.6\end{array}$	0.0	0.0\%\%
86.4\%	55.6	55.6 55 5.6	0.0	${ }^{0.0 \%}$
87.7\%	55.6	55.6	0.0	0.0\%
88.9\%	55.5	55.4	-0.1	-0.3\%
90.1\%	55.5	55.3	-0.1	-0.3\%
91.4\%	55.2	55.3	0.1	0.1\%
92.6\%	55.2	55.2	0.0	-0.1\%
93.8\%	55.2	55.1 550	-0.1	${ }^{-0.2 \%}$
95.1\%	55.1	55.0	0.0	${ }^{-0.1 \%}$
96.3\%	$\begin{array}{r}54.9 \\ 548 \\ \hline 4.8\end{array}$	55.0	${ }^{0.1}$	${ }^{0.1 \%}$
98.5\%	54.8 54.4	54.9 545	0.0	${ }_{0}^{0.1 \%}$
100.0\%	54.4	${ }_{54.5}$	0.0	0.2\%

Table SQS-1b
er at Jellys Ferry, Mon

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	February			
	WSII P2030 Without	WSIP 2030 With Project	bsolute	
	Monthy Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
(\%)	520	521	01	
0.0\%	52.0	$\begin{array}{r}52.1 \\ 50 . \\ \hline\end{array}$	0.1	${ }^{0.11 \%}$
${ }^{1.2 \% \%}$	50.2 49.8	50.4 49.8	0.2	0.4\%
3.7\%	49.7	49.7	-0.1	-0.1\%
4.9\%	49.6	49.5	-0.1	-0.3\%
6.2\%	49.4	49.3	0.0	0.0\%
7.4\%	49.3	49.3	0.0	0.0\%
8.6\%	49.3	49.3	0.0	0.1\%
9.9\%	49.2	49.3	0.1	0.1\%
11.1\%	49.1	49.2	0.0	0.0\%
12.3% 13.6%	${ }_{49.0}^{49.0}$	49.1	0.1 0.0	- ${ }_{0}^{0.0 \% \%}$
14.8\%	48.9	49.0	0.1	0.0\%
16.0\%	48.9	49.0	0.1	0.2\%
17.3\%	48.8	48.9	0.0	0.1\%
18.5\%	48.8	48.6	-0.1	-0.2\%
19.8\%	48.7	48.5	-0.1	-0.3\%
21.0\%	48.5	48.5	-0.1	-0.1\%
22.2\%	48.4	48.4	0.0	-0.1\%
23.5\%	48.4	48.4	0.0	0.0\%
24.7\%	48.3	48.4	0.0	0.1\%
25.9\%	48.2	48.3	0.1	0.1\%
27.2\%	48.2	48.2	0.0	0.0\%
28.4\%	48.2	48.2	0.0	0.0\%
29.6\%	48.1	48.1	0.0	0.0\%
30.9\%	48.1	48.1	0.0	0.0\%
32.1\%	48.1	48.0	-0.1	-0.1\%
33.3\%	48.1	48.0	-0.1	-0.1\%
34.6\%	48.0	48.0	0.0	-0.1\%
35.8\%	48.0	48.0	0.0	-0.1\%
37.0\%	48.0	47.9	0.0	-0.1\%
38.3\%	48.0	47.9	-0.1	-0.1\%
30.5\%				
42.0\%	47.9	${ }_{478} 47.9$	0.0	${ }^{-0.1 \%}$
43.2\%	47.9	47.8	0.0	-0.1\%
44.4\%	47.9	47.8	-0.1	-0.1\%
45.7\%	47.8	47.7	-0.1	-0.2\%
46.9\%	47.6	47.7	0.1	0.2\%
48.1\%	47.6	47.6	0.0	0.0\%
49.4\%	47.5	47.4	0.0	0.0\%
50.6\%	47.4	47.4	0.0	0.0\%
51.9\%	47.4	47.4	0.0	-0.1\%
	${ }_{47.3}^{47.4}$	${ }_{47.3}^{47.3}$	-0.1 0.0	-0.0.0\%
55.6\%	47.3	47.3	0.0	0.1\%
56.8\%	47.2	47.3	0.1	0.1\%
58.0\%	47.2	47.2	0.0	0.0\%
59.3\%	47.2	47.2	0.0	0.0\%
60.5\%	47.2	47.2	0.0	0.0\%
61.7\%	47.1	47.1	0.0	0.1\%
63.0\%	47.0	47.1	0.1	0.2\%
64.2\%	46.9	47.0	0.1	0.1\%
${ }^{65.49 \%}$	46.9	46.9	-0.1	-0.2\%
${ }^{66.77 \%}$	46.9	46.8	-0.1	${ }^{-0.2 \%}$
67.9\%	46.9	46.8	-0.1	-0.2\%
69.19\%	46.8	46.7	-0.2	${ }^{-0.3 \%}$
70.4\%	46.7	${ }^{46.6}$	-0.1	-0.2\%
71.6\%	46.7	46.6 465	0.0	-0.1\%
72.8\%	46.6	46.5	-0.1	-0.2\%
74.1\%	46.5	46.3	-0.2	-0.4\%
75.3\%	46.5	46.3	-0.2	-0.4\%
76.5\%	46.4	46.3	-0.2	-0.4\%
77.8\%	46.4	46.2	-0.1	-0.3\%
80.2\%	${ }_{46.3}^{46.3}$	${ }_{46.2}$	-0.1	${ }_{\text {- }}^{-0.2 \%}$
81.5\%	46.3	46.2	-0.1	-0.2\%
82.7\%	46.2	46.1	-0.1	-0.1\%
84.0\%	46.2	46.0	-0.1	-0.3\%
85.2\%	46.1	46.0	-0.1	-0.3\%
86.4\%	46.1	46.0	-0.1	-0.2\%
87.7\%	46.0	46.0	-0.1	-0.2\%
88.9\%	46.0	45.9	-0.1	-0.2\%
90.1\%	46.0	45.9	-0.1	-0.2\%
91.4\%	45.9	45.8	0.0	-0.19\%
${ }_{93.8 \%}^{92.6 \%}$	45.8 45.8	${ }_{45.6}^{45.7}$	-0.2 -0.2	-0.0.4\%
95.1\%	45.7	45.6	-0.2	-0.3\%
96.3\%	45.5	45.3	-0.1	-0.3\%
97.5\%	${ }^{45.4}$	45.2	-0.1	-0.3\%
98.8\%	44.4	${ }_{44.6}$	0.2	0.4\%
100.0\%	44.4	44.6	0.2	0.4\%

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$	May			$\begin{aligned} & \text { Relative } \\ & \text { Differnce (\%) } \end{aligned}$
	WSIP 2 2030 Without	WSIP 2030 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (DEGFF) } \\ \hline \end{gathered}$	
	Monthly Temperature	Monthly Temperature (DEGF)		
0.0\%	58.9	59.4	0.5	0.8\%
1.2\%	58.2	58.5	0.3	0.4\%
2.5\%	57.3	58.5	1.2	2.0\%
3.7\%	57.1	58.2	1.1	1.9\%
4.9\%	57.0 56.8	57.6 57.5	0.7 0.7	${ }_{1.2 \%}^{1.1 \%}$
7.4\%	56.7	57.3	0.6	1.1\%
8.6\%	56.7	57.3	0.6	1.1\%
9.9\%	55.6	57.0	0.5	0.8\%
11.1\%	56.5	56.9	0.4	0.8\%
12.3\%	56.5	55.8	0.4	0.6\%
13.6\%	56.5	55.8	0.3	0.6\%
14.8\%	56.4	56.8	0.4	0.7\%
16.0\%	56.2	56.8	0.6	1.0\%
17.3\%	56.2	56.7	0.6	1.0\%
18.5\%	56.1	56.7	0.6	${ }_{1.19}^{1.1 \%}$
19.8\%	56.0	56.7 56.6	0.7	${ }_{1}^{1.3 \%}$
${ }_{2}^{21.2 \%}$	56.0 559	56.6 56.6	0.7	1.2\%
${ }^{22.5 \%}$	55.8 55.8	56.5 56.5	0.7	1.2\%
24.7\%	55.6	56.5	0.9	1.5\%
25.9\%	55.6	56.5	0.9	1.6\%
27.2\%	55.6	56.2	0.7	1.2\%
28.4\%	55.5	55.2	0.7	1.3\%
29.6\%	55.5	56.2	0.7	1.3\%
30.9\%	55.5	55.9	0.4	0.8\%
34.6\%	${ }_{55.1}^{55.1}$	55.8 55.6	0.6 0.5	${ }_{1}^{1.20 \%}$
35.8\%	55.1	55.6	0.5	0.9\%
37.0\%	55.1	55.5	0.4	0.7\%
38.3\%	55.0	55.4	0.4	0.8\%
39.5\%	54.8	55.4	0.6	1.0\%
40.7\%	54.8	55.3	0.5	0.9\%
42.0\%	54.8	55.2	0.4	0.7\%
${ }^{43.2 \%} 44.4 \%$	54.7 54.7	55.1 55.1	0.4 0.4	0.7\% 0
45.7\%	54.7	55.0	0.3	0.6\%
46.9\%	54.7	55.0	0.3	0.6\%
48.1\%	54.6	54.9	0.4	0.6\%
49.4\%	54.6 54.5	54.9 54.9	0.4	0.7\%
50.6\%	54.5	54.9	0.4	0.7\%
51.9\%	54.5	54.9	0.4	0.7\%
53.1\%	54.4	54.9	0.5	0.9\%
54.3\%	54.3	54.9	0.5	0.9\%
55.6\%	54.3	54.8	0.5	1.0\%
56.8\%	54.3	54.8	0.5	0.9\%
58.0\%	54.3	54.8	0.5	0.9\%
- ${ }^{59.3 \%}$	54.3 54.3	54.8 54.7	0.5 0.5	0.9\%
61.7\%	54.2	54.7	0.5	0.9\%
63.0\%	54.2	54.7	0.5	0.9\%
${ }^{64.2 \%}$	54.2	54.7	0.5	0.9\%
65.4\%	54.1	54.6	0.5	0.9\%
66.7\%	54.1	54.6	0.4	0.8\%
67.9\%	54.1	54.5	0.4	0.8\%
69.1\%	54.1	54.5	0.4	0.8\%
-70.4\%	54.1 54.1 54	54.5 54.5 54	0.4	0.8\%
72.8\%	54.0	54.5	0.4	0.8\%
74.1\%	54.0	54.4	0.5	0.9\%
-75.3\%	53.9	54.4	0.5	1.0\%
76.5\%	53.9	54.3	0.4	0.8\%
77.8\%	53.8	54.2	0.4	0.7\%
79.0\%	${ }_{53.8}$	54.2	0.4	0.8\%
80.2\%	53.8	54.2	0.4	0.7\%
81.5\%	53.8	54.1	0.3	0.5\%
88.9\%	53.7	54.0	${ }_{0.3}^{0.3}$	0.5\%
85.2\%	53.7	54.0	0.3	0.5\%
${ }^{86.49 \%}$	${ }_{5}^{53.7}$	53.9	0.2	0.4\%
${ }_{88} 8.9 \%$	53.6)	${ }_{53.8}$	0.2	${ }^{0.4 \%}$
90.1\%	53.5	53.8	0.3	0.5\%
91.4\%	53.5	53.5	0.0	0.1\%
92.6\%	53.2	${ }_{53.5}$	0.3	0.6\%
93.8\%	53.0	53.4	0.4	0.7\%
-95.17\%	52.8	53.1	0.3	0.6\%
96.5\%	52.7 52.7	52.8. 52.6	0.0 -0.1	${ }_{\text {- }}^{\substack{0.1 \% \\ 0.1 \%}}$
98.8\%	${ }_{52.0}$	52.5	0.5	1.0\%
100.0\%	52.0	52.5	0.5	1.0\%

Table SQS-1b
er at Jellys Ferry, Mon

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \\ \text { (\%) } \end{gathered}$	June			
	WSII 2030 Without Proiet	WSIP 2030 With Project	Absolut	
	Monthy Temperature	Monthly Temperature	Difference	Difference (\%)
	585	583	O1	O2
0.0%				-0.2\%
${ }^{1.2 \%}$	58.2	57.9	-0.3	-0.5\%
2.7\%	57.8 57.5	57.9 57.4	0.1 0.0	-0.2\%
4.9\%	57.4	57.3	-0.2	-0.3\%
6.2\%	57.4	57.1	-0.3	-0.5\%
7.4\%	57.4	56.9	-0.5	-0.9\%
8.6\%	57.4	56.7	-0.7	-1.1\%
9.9\%	57.0	56.7	-0.2	-0.4\%
11.1\%	56.9	55.6	-0.3	-0.6\%
12.3\%	56.8 56.7	56.5 56.4	-0.2 -0.3	-0.5\%
14.8\%	56.6	55.4	-0.2	-0.4\%
16.0\%	56.4	56.3	-0.1	-0.1\%
17.3\%	56.4	56.3	-0.1	-0.1\%
18.5\%	56.1	56.3	0.2	0.4\%
19.8\%	56.1	56.3	0.2	0.4\%
21.0\%	56.1	56.3	0.2	0.4\%
22.2\%	55.0	55.2	${ }^{0.3}$	0.5\%
23.5\%	55.0	56.1	0.2	0.3\%
24.7\%	55.9	56.1	0.2	0.3\%
25.9\%	55.9	56.1	0.2	0.3\%
27.2\%	${ }_{55.8}^{55}$	55.0	0.2	0.4\%
28.4\%	55.8	56.0	0.2	0.3\%
29.6\%	55.7	55.0	0.2	0.4\%
30.9\%	55.6	55.9	0.3	0.5\%
32.1\%	55.6	55.8	0.3	0.5\%
33.3\%	55.4	55.8	0.4	0.7\%
34.6\%	55.4 554 5.4	55.8 557	${ }^{0.4}$	0.7\%
35.8\%	55.4	55.7	0.3	0.6\%
37.0\%	55.4	55.7	${ }^{0.3}$	0.6\%
38.3\%	¢55.3	55.7 55.6	0.3	0.6\%
40.70\%	55.1 551	55.6	0.5	0.9\%
${ }^{4.32 \%}$	55.1 55.0	55.6 555 5.5	0.5	${ }^{0.0 \%}$
44.4\%	55.0	55.5	0.6	1.1\%
45.7\%	55.0	55.5	0.5	1.0\%
46.9\%	54.9	55.4	0.5	0.9\%
48.1\%	54.9	55.4	0.5	0.8\%
49.4\%	54.9	${ }_{55.3}$	0.5	0.8\%
50.6\%	54.9	55.3	0.5	0.8\%
51.9\%	54.8 54.8	55.3 55.2	0.5 0.5	0.8\%
54.3\%	54.8	55.2	0.5	0.8\%
55.6\%	54.8	55.2	0.4	0.8\%
56.8\%	54.8 547	55.2 551	0.4	0.7\%
58.0\%	54.7	55.1	0.4	0.7\%
59.3\%	54.7	55.1	0.4	0.7\%
60.5\%	54.7	55.0	0.4	0.7\%
61.7\%	54.7	55.0	0.4	0.7\%
63.0\%	54.6	55.0	0.3	0.6\%
64.2\%	54.6	55.0	0.4	0.7\%
${ }_{6}^{65.4 \%}$	54.5	55.0	0.4	0.8\%
66.7\%	54.3	54.9	0.6	1.1\%
${ }^{67.9 \%}$	54.3	54.8		
69.19\% 70.4%	54.2 54.2	54.8 54.8	${ }_{0}^{0.6}$	${ }_{\text {1.1.1\% }}^{1.10}$
71.6\%	54.1	54.8	0.6	1.2\%
72.8\%	54.1	54.7	0.6	1.2\%
74.1\%	54.1	54.7	0.6	1.1\%
75.3\%	${ }_{54.1}^{54}$	54.7 54.7	0.6	1.19\%
76.5\%	54.0	54.6	0.6	1.1\%
77.8\%	55.9 539	54.5 545 54.5	0.6	${ }_{1}^{1.19}$
-79.0\%	53.9 53.8	54.5 54.4	0.6 0.6	${ }_{1.2 \%}^{1.1 \%}$
81.5\%	53.8	54.4	0.6	1.2\%
82.7\%	53.7	54.4	0.7	1.3\%
84.0\%	53.7	54.4	0.7	1.3\%
85.2\%	53.7 537	54.4	0.6	1.2\%
86.4\%	53.7	54.3	0.7	1.3\%
87.7\%	53.6	54.3	0.7	1.3\%
88.9\%	${ }_{53,6}^{53.6}$	54.3	0.7	1.3\%
90.10\%	53.6	54.2	0.6	1.1\%
${ }^{91.4 .6 \%}$	${ }_{53.3}^{53.5}$	54.0 54.0	0.5 0.7	${ }_{\text {1.2\% }}^{1.0 \%}$
93.3\%	53.3	54.0	0.7	1.3\%
95.1\%	53.3	54.0	0.7	1.4\%
96.3\%	53.2 532	53.7 53.7	0.5	${ }^{1.0 \%}$
97.5\%	53.2	$\begin{array}{r}53.7 \\ 53 \\ \hline\end{array}$	${ }^{0.6}$	${ }^{1.0 \%}$
98.8\%	53.1 531	${ }_{53}^{53.6}$	0.5	${ }_{1}^{1.0 \%}$
100.0\%	53.1	53.6	0.5	1.0\%

		September		
Percent	WSIP 2030 Without Proiet	WSIP 2030 With Project	Absolute	
Probability	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	Difference (\%)
0.0\%	66.9	67.3	0.4	0.7\%
1.2\%	65.3	61.6	${ }^{3} .7$	-5.7\%
2.5\%	64.3	61.4	-2.9	-4.4\%
3.7\%	61.5	59.6	-1.9	-3.0\%
4.9\%	60.6	59.4	-1.2	-1.9\%
6.2\%	60.4	59.4	-1.0	-1.7\%
7.4\%	60.3	59.2	-1.1	-1.8\%
8.6\%	59.6	59.0	-0.6	-1.0\%
9.9\%	59.5	58.9	-0.6	-1.1\%
11.19\%	59.5	58.7	-0.8	-1.4\%
${ }^{12.35 \%}$	59.5	58.5	-1.0	${ }^{-1.6 \%}$
13.6\%	59.4	58.5	-1.0	-1.6\%
14.8\%	59.4	58.4	-0.9	-1.6\%
16.0\%	59.4	58.2	-1.1	-1.9\%
17.3\%	59.2	58.1	-1.1	-1.8\%
18.5\%	59.0	58.0	-1.0	-1.6\%
19.8\%	58.7	58.0	-0.7	-1.2\%
21.0\%	58.6	57.9	-0.7	-1.1\%
22.2\%	58.5	57.9	-0.6	-1.1\%
23.5\%	58.4	57.9	-0.6	-0.9\%
24.7\%	58.4	57.9	-0.5	-0.9\%
25.9\%	58.2	57.8	-0.4	-0.6\%
27.2\%	58.1	57.8	-0.4	-0.6\%
28.4\%	58.1	57.7	-0.4	-0.7\%
29.6\%	58.1	57.7	-0.4	-0.6\%
30.9\%	58.0	57.7	-0.3	-0.5\%
32.1\%	57.8	57.6	-0.2	-0.4\%
33.3\%	57.8	57.6	-0.2	-0.3\%
34.6\%	57.6	57.6	-0.1	-0.1\%
35.\%	57.4	57.6	0.1	0.2\%
37.0\%	57.4	57.5	0.0	0.1\%
38.3\%	57.2	57.4	0.2	0.4\%
9.5\%	57.2	57.2	0.0	-0.1\%
40.77\%	57.2	57.0	-0.1	-0.2\%
42.0\%	56.9 567	57.0 567	0.1	0.2\%
43.2\%	56.7	55.7	0.0	-0.1\%
44.4\%	56.7	56.6	0.0	-0.1\%
45.7\%	55.6	55.6	0.0	0.0\%
46.9\%	56.4	55.6	0.2	0.3\%
48.1\%	55.4	55.5	0.2	0.3\%
49.4\%	55.2	55.4	0.2	0.3\%
50.6\%	56.1	56.4	0.3	0.6\%
年 51.9%	56.0	56.3	0.3	0.5\%
53.19\% 54.3%	55.9	56.3	0.4	0.7\%
54.3\%	55.9	56.2	${ }^{0.3}$	0.6\%
55.6\%	55.9 556	55.1	0.2	0.4\%
56.8\%	55.6	55.0	0.5	0.9\%
58.0\%	55.5 555	55.0	0.4	0.8\%
59.3\%	55.5	55.9	0.4	0.7\%
60.5\%	$\begin{array}{r}\text { 55.2 } \\ \hline 5.2 \\ \hline\end{array}$	55.8 557	0.5	1.0\%
61.7\%	55.2	55.7	0.5	1.0\%
63.0\%	55.1	55.7	0.6	1.1\%
${ }^{64.2 \%}$	55.1	55.7	0.6	1.0\%
65.4\%	55.1	55.7	0.6	1.0\%
66.7% 6790%	55.0	55.6	0.6	1.0\%
${ }^{67.9 \%}$	55.9 54.9	55.6 55.5	0.5 0.7	1.0\%
70.4\%	54.8	55.4	0.6	1.1\%
71.6\%	54.7	55.4	0.6	1.1\%
72.8\%	54.7	55.3	0.6	1.2\%
74.1\%	54.7	55.1	0.4	0.7\%
75.3\%	54.5	$\begin{array}{r}55.0 \\ 54.0 \\ \hline\end{array}$	0.5	0.9\%
76.5\%	54.4	54.8	0.4	0.7\%
778\%	54.3	54.5	0.2	0.3\%
79.0\%	54.3	54.5	0.1	0.3\%
-	54.3	54.5	0.1	0.2\%
- ${ }_{\text {81.5\% }}^{817 \%}$	54.3	54.4 54.4	0.1	${ }_{1.2 \%}^{0.10}$
82.7\%	53.8 53.8	54.4 54.3	${ }_{0}^{0.6}$	${ }_{1.1 \%}^{1.1 \%}$
85.2\%	53.6	54.3	0.7	1.4\%
86.4\%	53.5	54.2	0.7	${ }^{1.3 \%}$
87.7\%	53.5	53.9	0.4	0.7\%
${ }^{88.9 \%}$	${ }_{53.5}^{53.5}$	53.7 53.7	${ }^{0.3}$	0.5\%
90.1\%	53.4	$\begin{array}{r}53.6 \\ 53 \\ \hline 5.6\end{array}$	0.2	0.4\%
${ }^{91.46 \%}$	53.4 53.3	53.6 53.0	0.2 -0.2	-0.4\%
93.8\%	52.9	52.8	-0.1	-0.2\%
95.1\%	${ }_{52.8}^{52.8}$	${ }_{52.8}^{52.8}$	0.0	0.0\%
96.3\%	${ }_{52.4}^{52.4}$	52.6	${ }^{0.2}$	0.4\%
97.5\%	${ }_{521}^{52.1}$	52.4	${ }^{0.3}$	0.5\%
98.8\%	52.1 52.1	52.2 522	${ }_{0}^{0.1}$	0.3\%
100.0\%	52.1	52.2	0.1	0.3\%

Table SQ5-1b
Sacramento Rivera t julliss Ferry, Monthly Temperature

Percent Exceedance	$\begin{aligned} & \text { WSIP 2030 Without } \\ & \text { Proiect } \end{aligned}$	WSIP 2030 With Project		Relative
$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|l\|l\|} \substack{\text { (\%bo }} \end{array}$	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Monthly Temperature } \\ & \text { (DEGF) } \end{aligned}$	$\begin{aligned} & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	Difference (\%)
0.0\%	62.6	61.3	${ }^{1.3}$	2.1\%
1.2\%	59.4	58.7	-0.7	-1.3\%
2.5\%	59.4	58.3	-1.1	1.9\%
3.7\%	59.0	58.2	-0.8	1.4\%
4.9\%	58.5	58.2	-0.3	-0.6\%
6.2\%	58.4	58.1	-0.3	-0.5\%
7.4\%	58.3	57.9	-0.4	-0.6\%
8.6\%	58.0	57.8	0.1	-0.3\%
9.9\%	57.9	57.8	-0.1	-0.2\%
11.11\%	57.9	57.7	-0.2	-0.4\%
${ }^{123.3 \%}$	57.8 57.8	57.6 57.6	-0.1 -0.1	-0.0.2\%
14.8\%	57.7	57.6	-0.1	-0.3\%
16.0\%	57.6	57.3	-0.3	-0.6\%
17.3\%	57.5	57.3	-0.2	-0.4\%
18.5\%	57.5	57.3	-0.2	${ }^{-0.3 \%}$
19.8\%	57.4	57.3	-0.2	-0.3\%
21.0\%	57.3	57.1	-0.3	-0.5\%
${ }^{22.20 \%}$	57.2	57.1	-0.2	-0.3\%
${ }_{\text {24, }}^{23.5 \%}$	57.2 57.1	57.0 57.0	-0.1 -0.1	-0.2% 0.2% 0.2%
25.9\%	57.1	57.0	-0.1	-0.2\%
27.2\%	57.1	57.0	-0.1	-0.2\%
28.4\%	57.1	56.9	-0.1	-0.2\%
29.6\%	57.0	56.9 568	-0.1	${ }^{-0.2 \%}$
30.9\%	57.0	${ }_{56.8}^{56.8}$	-0.2	-0.3\%
32.1\%	57.0	56.7	-0.2	${ }^{-0.4 \%}$
33.3\%	56.9	${ }_{56.7}^{56.7}$	-0.2	-0.4\%
34.6\%	55.8	${ }_{56.7}^{56.7}$	-0.1	-0.1\%
35.8% 37.0%	56.6	56.6	0.0	0.0\%\%
37.0% 38.3%	56.5 56.5	56.6 56.6	${ }_{0.1}^{0.1}$	${ }_{0}^{0.12 \%}$
39.5\%	56.4	56.5	0.1	0.1\%
40.7\%	56.4	56.5	0.1	0.2\%
42.0\%	56.4	56.5	0.1	0.2\%
43.2\%	${ }_{56.3}^{56.3}$	56.5	0.1	${ }^{0.2 \%}$
44.4\%	${ }_{56.3}^{56.3}$	${ }_{56.4}^{56.4}$	0.0	0.1\%
45.7\%	${ }_{56.3}$	${ }_{56.3}$	0.0	0.1\%
${ }^{46.9 \%}$	56.2	56.3	0.1	- ${ }_{\text {en }}^{0.2 \%}$
${ }^{48.19 \%}$	56.0 55.9	56.2 56.2	0.2 0.3	${ }_{\text {0. }}^{0.6 \%}$
50.6\%	55.8	56.2	0.3	0.6\%
51.9\%	55.8	56.2	0.3	0.6\%
年 53.19%	55.7 557	${ }_{56.1}$	0.4	0.7\%
54.3\%	55.7 557	56.1	0.4	0.7\%
55.6\%	55.7 556	56.0	0.4	0.7\%\%
56.8\%	55.6 55.6	55.9 55.9	${ }_{0}^{0.4}$	${ }^{0.76 \%}$
59.3\%	55.6 55 55	55.9 558 58	${ }^{0.3}$	0.5\%
60.5\%	55.6 55 5.6	55.8 557 5.7	0.2	0.3\%
61.7\% 63.0%	55.6	55.7	0.2	${ }^{0.3 \%}$
-63.0\%	55.6 55.5	55.7 55.7	${ }_{0}^{0.1}$	- 0.2%
${ }^{65.4 \%}$	55.5	55.6	0.1	0.3\%
${ }^{66.77 \%}$	55.5	${ }_{55.6}^{55}$	0.2	0.3\%
-67.9\%	55.4	55.6	0.1	0.3\%
69.19\%	${ }_{55.3}$	55.6	0.2	0.4\%
70.4\%	55.3 55.3	55.5 555 55	0.2	0.3\%
71.6\%	55.3 553 5.	$\begin{array}{r}55.5 \\ 555 \\ \hline 5.5\end{array}$	0.2	0.3\%
72.8\%	55.3	55.5	0.2	0.3\%
74.1\%	55.3	55.5	0.2	0.3\%
${ }_{7}^{75.3 \%}$	55.2	55.4	0.2	0.4\%
76.5\%	55.2	55.4	0.2	0.4\%\%
79.9\%	55.1 55.1	55.4 55.3	0.3 0.2	- ${ }_{\text {0.4\% }}^{0.4 \%}$
80.2\%	55.1	55.3	0.2	0.4\%
81.5\%	55.0 54.9	${ }_{55.3}$	${ }^{0.3}$	0.5\%
82.7\%	54.9	55.3	0.3	0.6\%
84.0\%	54.8	55.2	0.5	0.9\%
85.2\%	54.7	55.0	${ }^{0.3}$	0.5\%
86.4% 87.7%	54.7 54.7	55.0 54.9	0.3 0.2	${ }_{\text {cose }}^{0.5 \%}$
88.9\%	54.6	54.9	0.3	0.5\%
90.1\%	54.6	54.9	0.3	0.5\%
91.4\%	54.5	54.8	0.3	0.5\%
932.8\%	54.4 54.3	54.7 54.5	0.3 0.2	${ }^{0.5 \%}$
95.1\%	54.2	54.5	0.3	0.5\%
${ }^{96.3 \%}$	54.1	54.2	0.2	0.3\%
97.5\%	${ }_{53}^{53.9}$	54.1	0.2	0.3\%
98.8\% 1000%	53.9 53.5	54.0 533	0.2	0.3\%
100.0\%	53.5	53.3	-0.2	-0.3\%

		July to September	Probabily		August to Seplember				
Percent	WSIP 2330 Without	2030 With P			$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \\ (\%) \\ \hline \end{gathered}$		$\frac{\text { WSIP } 2030 \text { With Project }}{\text { Monthly Temperature }}$ (DEGF)	$\begin{aligned} & \text { Absolute } \\ & \text { Differenee } \\ & \text { (eEGG) } \end{aligned}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
Proabaility	Monthly Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)					
(\%)	(0EG)								
${ }^{0.0 \%}$	64.6	62.9	-1.7	${ }^{-2.7 \%}$	0.0\%		64.9	-2.17	${ }^{-3.1 \%}$
${ }^{1.2 \%}$	60.8	59.5	-1.3	-2.1\%	${ }^{1.2 \%}$	62.7	60.0	-2.7	-4.3\%
2.5\%	60.6 597	59.1 598	-1.5	${ }^{-2.4 \%}$	2.5\%	61.8	60.0	-1.9	,
3.7\%	59.7	58.8	-0.9	-1.5\%	${ }^{3.7 \%}$	60.9	59.2	-1.7	${ }_{-1}^{-2.7 \%}$
4.9\%	59.4	58.7	-0.7	-1.1\%	4.9\%	60.2	59.1	-1.11	-1.8\%
${ }^{6.2 \%}$	59.1	58.5	-0.7	-1.1\%	6.2\%	59.7	58.8	-0.9	-1.5\%
8.6\%	58.9	58.3	-0.6	-1.1\%	8.6\%	59.1	58.5		-1.1\%
9.9\%	58.4	58.3	-0.2	-0.3\%	9.9\%	58.9	58.4	-0.5	-0.8\%
11.1\%	58.4	58.3	-0.1	-0.2\%	11.1\%	58.9	58.4	-0.5	-0.9\%
12.3\%	58.3	58.2	-0.1	-0.2\%	12.3\%	58.9	58.3	-0.6	-1.0\%
13.6\%	58.2	58.1	-0.1	-0.2\%	13.6\%	58.8	58.2	-0.6	-1.0\%
14.8\%	58.2	58.1	-0.1	-0.2\%	14.8\%	58.8	58.1	-0.7	-1.2\%
16.0\%	58.1	58.0	-0.1	-0.3\%	16.0\%	58.7	58.0	-0.7	-1.2\%
17.3\%	58.1	57.7	-0.3	-0.6\%	17.3\%	58.5	58.0	-0.5	-0.9\%
18.5\%	58.0	57.7	-0.3	-0.6\%	18.5\%	58.4	58.0	-0.4	-0.8\%
19.8\%	58.0	57.6	-0.4	-0.7\%	19.8\%	58.4	57.9	-0.5	-0.9\%
22.0\%	57.9	57.5	-0.5	-0.8\%	21.0\%	58.4	57.9	-0.6	-1.0\%
${ }_{2}^{22.5 \% \%}$	57.9 578	57.5 574	-0.4 -0.3		${ }_{\text {22, }}^{22.20 \%}$		57.8 577	-0.5 -0.5	-0.80\%
224.7\%	57.8	57.4	-0.3	-0.6\%	24.7\%	58.1	57.7	-0.4	-0.7\%
25.9\%	57.7	57.4	-0.3	-0.6\%	25.9\%	58.1	57.7	-0.4	-0.7\%
27.2\%	57.6	57.4	-0.2	-0.4\%	27.2\%	58.1	57.6	-0.4	-0.7\%
28.4\%	57.6	57.3	-0.2	-0.4\%	28.4\%	58.1	57.6	-0.4	-0.7\%
29.6\%	57.5	57.2	-0.2	-0.4\%	29.6\%	57.9	57.6	-0.3	-0.5\%
30.9\%	57.3	57.1	-0.2	-0.4\%	30.9\%	57.7	57.6	-0.1	-0.2\%
32.1\%	57.3	57.1	-0.2	-0.4\%	32.1\%	57.6	57.6	0.0	-0.1\%
33.3\%	57.3	57.1	-0.2	-0.4\%	33.3\%	57.6	57.5	-0.1	-0.1\%
34.6\%	57.0	57.1	0.1	0.2\%	34.6\%	57.3	57.5	0.2	0.3\%
${ }^{35.8 \%}$	56.9	57.0	0.1	0.2\%	35.8\%	57.3	57.2	-0.1	-0.2\%
37.0\%	56.9 56.8	57.0 56.9	0.1	${ }_{0}^{0.2 \%}$	37.0\%	57.3 571	57.2 571	-0.1	${ }^{-0.2 \%}$
39.5\%	56.7	56.9	0.2	0.3\%	39.5\%	57.0	57.0	0.0	0.0\%
40.7\%	56.7	56.8	0.1	0.2\%	40.7\%	57.0	57.0	0.0	0.0\%
42.0\%	56.5	56.7	0.2	0.3\%	42.0\%	56.9	56.9	0.0	-0.1\%
43.2\%	56.5	56.7	0.2	0.4\%	43.2\%	56.9	56.9	0.0	0.0\%
44.4\%	56.5	56.6	0.1	0.2\%	44.4\%	56.8	56.9	0.1	0.2\%
45.7\%	56.4	56.6	0.2	0.3\%	45.7\%	56.7	55.8	0.1	0.2\%
46.9\%	56.3	56.5	0.3	0.5\%	46.9\%	56.7	56.7	0.1	0.1\%
48.1\%	56.2	56.5	0.3	0.5\%	48.1\%	56.7	56.6	0.0	-0.1\%
49.4\%	56.2	56.3	0.2	0.3\%	49.4\%	55.6	56.6	0.0	-0.1\%
55.6\%					50.6\%		55.6		
55.9\%	56.1	56.2	0.0	0.1\%	51.9\%	${ }_{56.6}$	56.5	-0.1	-0.1\%
53.10\%	56.1	56.1	0.0	0.0\%		56.6	55.4	-0.2	-0.3\%
554.6\%	56.1 55.9	56.1 56.1	0.0	${ }_{0}^{0.0 \% \%}$	54.3\%	56.4 56.4	56.4 56.3	-0.1	-0.3\%
55.8\%	55.9	56.1	0.2	0.3\%	56.8\%	56.3	56.2	0.0	-0.1\%
58.0\%	55.9	56.1	0.2	0.3\%	58.0\%	56.2	56.2	0.0	0.0\%
59.3\%	55.9 559	${ }_{56.1}$	0.2	0.3\%	59.3\%	${ }_{56.2}^{56.2}$	${ }_{56.2}^{56.2}$	0.0	0.0\%
60.5\%	55.9	55.0	0.2	0.3\%	6.5\%	55.2	55.2	0.0	0.0\%
${ }^{61.7 \%}$	55.8	56.0	0.1	0.2\%	${ }^{61.7 \%}$	56.1	56.1	0.0	${ }^{0.11 \%}$
63.0\%	55.8 558 55	55.9	0.1	0.2\%	-63.0\%	55.1	56.1 561	0.0	0.1\%
66.2\%	55.8 558 558	5599	0.1	0.3\%	64.20		55.1		
65.4\%	55.8	55.9	0.1	0.2\%	65.4\%	55.9	56.1	0.1	0.2\%
66.7\%	55.7	55.8	0.1	0.2\%	${ }^{66.7 \%}$	55.9	55.0	0.1	0.2\%
69.1\%	55.7 55.7	55.8 55.8	${ }_{0}^{0.1}$	${ }^{0.12 \%}$	67.1\%	55.8 55.8	55.9 55.9	${ }_{0}^{0.1}$	- 0.2%
70.4\%	55.7	55.7	0.0	0.1\%	70.4\%	55.7	55.9	0.1	0.3\%
71.6\%	55.6	55.7	0.1	0.2\%	71.6\%	55.6	55.8	0.3	0.5\%
72.8\%	55.5	55.7	0.1	0.2\%	72.8\%	55.5	55.8	0.3	0.5\%
74.1\%	55.5	55.6	0.1	0.1\%	74.19\%	55.5	${ }_{55.8}$	${ }^{0.3}$	0.5\%
75.3\%	55.5	55.6	0.1	0.2\%	75.3\%	55.5	55.8	0.3	0.5\%
${ }^{76.5 \%}$	55.5	55.5	0.1	0.1\%	${ }^{76.5 \%}$	55.5	55.8	0.3	0.5\%
77.8\%	55.4	55.5	0.1	0.2\%	77.8\%	$\begin{array}{r}55.5 \\ 55 \\ \hline\end{array}$	55.7	${ }^{0.3}$	0.5\%
79.0\%	55.4	55.5	0.1	0.2\%	79.0\%	55.4	55.7	${ }^{0.3}$	0.5\%
${ }^{\text {00.2\% }}$	55.3	55.5	0.2	0.4\%	80.2\%	55.4	55.7 556	${ }^{0.3}$	0.6\%
${ }^{81.5 \%}$	55.2 55.1	55.5 55	${ }^{0.3}$	0.5\%	81.5\%	55.3 553 55	55.6 55 55	${ }^{0.3}$	0.5\%
84.0\%	${ }_{55.0}^{55.1}$	55.5 55.4	0.4 0.4	0.8\%	-	55.3 55.2	55.6 55.6	0.3 0.3	0.6\%
85.2\%	54.9	55.3	0.5	0.9\%	85.2\%	55.1	55.3	0.3	0.5\%
86.4\%	54.8	55.2	0.4	0.8\%	86.4\%	55.0	55.0	0.0	-0.1\%
87.7\%	54.7	55.1	0.3	0.6\%	87.7\%	55.0	55.0	0.0	0.0\%
88.9\%	54.7	54.8	0.1	0.1\%	88.9\%	54.9	54.9	0.0	0.0\%
90.1\%	54.7	54.7	0.0	-0.1\%	90.1\%	54.7	54.8	0.1	0.2\%
91.4\%	54.5	54.6	0.1	0.2\%	91.4\%	54.5	54.6	0.1	0.2\%
92.6\%	54.5	54.6	0.1	0.1\%	92.6\%	54.5	54.6	0.1	0.2\%
93.8\%	54.5	54.6	0.1	0.1\%	93.8\%	54.4	54.3	-0.1	0.3\%
${ }^{95.1 \%}$	54.5 54.3	54.4	0.0	${ }^{0.0 \%}$	95.19\%	54.2 54.0	54.2 54.0	0.0	0.1\%
${ }^{997.5 \%}$	54.3 54.1	54.3 54.1	0.0	${ }_{\text {- }}^{\text {-0.1\% }}$	${ }^{96.5 \%}$	54.0 54.0	54.9 53.9	${ }_{-0.1}^{0.0}$	${ }^{0.0 .2 \%}$
98.8\%	54.0	54.0	0.0	0.0\%	98.8\%	53.7	53.9	0.1	0.2\%
100.0\%	53.5	53.2	-0.3	-0.5\%	100.0\%	53.1	52.7	-0.4	0.8\%

Figure Sa6-1b
Sacramento River at Bend Bridge, Monthly Temperatur

Table SQ6-1b
Ser t Bend
Bridge, Monthy
Temperature

$\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probabaility } \end{array} \end{aligned}$	October			
	WSIP 2030 Without Proiect	WSIP 2030 With Project	Absolute	Relative
	Monthy Temperature	Monthly Temperature		Difference (\%)
0.0\%	64.1	62.7	-1.4	${ }^{-2.1 \%}$
1.2\%	64.1	62.4	-1.7	-2.6\%
2.5\%	62.2	62.1	-0.2	-0.2\%
3.7\%	60.9	61.0	0.1	0.2\%
4.9\%	59.5	60.0	0.5	
6.2\%	59.0	59.1	0.0	0.0\%
7.4\%	58.7	58.8	0.1	0.2\%
8.6\%	58.5	58.6	0.1	-0.1\%
9.9\%	58.4	58.4	0.0	-0.1\%
11.1\%	58.2	58.4	0.2	0.3\%
12.3\%	58.2	58.2	0.1	0.1\%
13.6\%	55.1	58.2	0.1	0.2\%
14.8\%	57.9	58.2	0.3	0.4\%\%
16.0\%	57.9	58.1	0.2	0.3\%
${ }^{17.35 \%}$	57.8 57.7	58.0 57.9	0.2 0.2	${ }^{0.4 \%}$
19.8\%	57.7	57.9	0.2	0.4\%
21.0\%	57.7	57.9	0.2	0.4\%
22.2\%	57.6	57.9	0.3	0.4\%
23.5\%	57.6 57.5	57.8	0.2	0.4\%
24.7\%	57.5	57.7	0.2	0.4\%
25.9\%	57.5	57.6	0.1	0.2\%
27.2\%	57.5	57.5	0.0	0.0\%
28.4\%	57.5	57.4	0.0	0.0\%
29.6\%	57.4	57.4	0.0	0.0\%
-30.9\%	57.4	57.4	0.0	0.0\%
32.1\%	57.4	57.2	-0.1	-0.3\%
3346\%	57.3	57.2	-0.1	-0.1\%
35.8\%	57.2	57.1	-0.2	-0.3\%
37.0\%	57.2	57.1	-0.2	-0.3\%
38.3\%	57.2	57.1	-0.2	-0.3\%
39.5\%	57.2	57.0	-0.1	-0.3\%
40.7\%	57.1	57.0	-0.1	-0.3\%
42.0\%	57.1	55.9	-0.2	-0.3\%
43.2\%	57.0	56.9	0.0	-0.1\%
44.4\%	57.0	56.9	-0.1	-0.1\%
${ }^{45.79 \%}$	57.0 56.9	56.8 56.8	-0.1	-0.0.0\%
48.1\%	56.9	56.8	0.0	0.0\%
49.4\%	56.8	56.8	0.0	0.0\%
50.6\%	56.8	56.8	0.0	-0.1\%
51.9\%	56.7	56.7	0.0	0.0\%
53.1\%	56.7	56.7	0.0	0.0\%
54.3\%	56.7	56.7	0.0	-0.1\%
55.6\%	56.7	56.7	0.0	0.0\%
56.8\%	56.7	55.6	0.0	-0.1\%
58.0\%	56.6	56.6	0.0	0.1\%
	55.6	55.6	0.1	0.1\%
${ }^{60.5 \%}$	56.6 56.6	55.6		0.0\%
61.7\%	55.6	56.5	0.0	0.0\%
63.0\%	56.5	56.5	0.0	0.1\%
64.2\%	56.5	56.5	0.0	0.0\%
${ }^{65.4 \%}$	56.4 56.4	56.4	0.0	0.0\%
66.7\%	56.4	56.4	0.0	0.0\%
67.9\%	56.3	56.4	0.1	0.2\%
69.1\%	56.3	56.4	0.1	0.1\%
70.4\%	56.3	56.4	0.1	0.1\%
71.6\%	56.3	56.4	0.1	0.2\%
72.8\%	56.3	56.3	0.1	0.2\%
74.19\%	56.2	56.3	0.1	0.2\%
75.3\%	56.2	56.3	0.1	0.2\%
76.5\%	56.2	56.2	0.1	0.1\%
779.8\%	56.2 56.1	56.2 562	0.1	-
80.2\%	56.1	${ }_{56.1}$	0.0	0.1\%
81.5\%	56.1	56.1	0.0	0.1\%
82.7\%	56.0	56.1	0.1	0.1\%
84.0\%	56.0	56.0	0.0	0.0\%
85.2\%	56.0	56.0	0.0	-0.1\%
86.4\%	55.9	55.9	0.0	0.0\%
887.7\%	55.9 55.9	55.9 55.7	0.0 0.0	-0.0\%
90.1\%	55.8	55.6	-0.1	-0.3\%
91.4\%	55.6	55.6	0.0	0.1\%
92.6\%	55.4	55.6	0.1	0.3\%
93.8\%	55.4	55.3	-0.1	-0.2\%
95.1\%	55.3	55.3	0.0	0.0\%
96.3\%	55.1	55.3	0.1	0.3\%
97.5\%	55.1	55.1	0.0	0.0\%
98.8\%	54.6 54.6	54.7 54.7	0.1 0.0	-

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	February			$\begin{gathered} \text { Relative } \\ \text { Difference }(\%) \end{gathered}$
	WSII 2030 Without Proiet	WSIP 2030 With Project	Absolute	
	Monthly Temperature	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGGF) } \end{aligned}$	
0.0\%	52.1	52.2	0.1	0.1\%
1.2\%	50.5	50.7	0.2	0.3\%
2.5\%	50.0	49.9	-0.1	-0.2\%
3.7\%	49.9	49.6	-0.3	-0.6\%
4.9\%	49.5	49.5	0.0	0.0\%
6.2\%	49.4	49.4	0.0	0.0\%
7.4\%	49.3	49.3	0.1	0.1\%
8.6\%	49.2	49.3	0.0	0.1\%
9.9\%	49.2	49.3	0.1	0.1\%
11.19\%	49.2	49.2	0.1	0.2\%
13.6\%	49.1	49.2	0.1	0.2\%
14.8\%	49.1	49.2	0.1	0.3\%
16.0\%	49.0	49.0	0.0	0.0\%
17.3\%	48.9	49.0	0.0	0.1\%
18.5\%	48.7	48.7	0.0	0.0\%
19.8\%	48.5	48.5	-0.1	-0.1\%
21.0\%	48.4	48.4	0.0	-0.1\%
22.2\%	48.4	48.4	0.0	0.0\%
23.5\%	48.4	48.3	-0.1	-0.1\%
24.7\%	48.3	48.3	0.0	0.0\%
25.9\%	48.3	48.3	0.0	-0.1\%
27.29% 28.49	${ }_{48.2}$	${ }_{48.2}$	0.0	0.0\%
29.6\%	48.2	48.2	0.0	0.0\%
30.9\%	48.2	48.2	0.0	0.1\%
32.1\%	48.2	48.2	0.0	0.0\%
33.3\%	48.2	48.1	0.0	-0.1\%
34.6\%	48.2	48.1	0.0	0.0\%
35.8\%	48.1	48.1	0.0	-0.1\%
37.0\%	48.1	48.1	0.0	0.1\%
38.3\%	48.0	48.0	0.0	0.1\%
		47.9	0.0	
40.70\%	47.9	47.9	0.0	0.0\%
${ }^{42.0 \%}$	47.9 47.9	47.8 478	-0.1	-0.2\%
44.4\%	47.9	47.8	-0.1	-0.1\%
45.7\%	47.8	47.8	0.0	0.0\%
46.9\%	47.7	47.8	0.1	0.1\%
48.1\%	47.6	47.5	0.0	-0.1\%
49.4\%	47.5	47.5	0.0	-0.1\%
50.6\%	47.5	47.5	0.0	0.0\%
51.9\%	47.5	47.5	0.0	0.0\%
	47.5 47.4	47.5 47.5	0.0 0.0	${ }_{\text {a }}^{0.0 \% \%}$
55.6\%	47.4	47.4	0.0	0.0\%
56.8\%	47.4	47.4	0.0	0.1\%
58.0\%	47.4	47.4	0.0	0.0\%
59.3\%	47.4	47.4	0.0	0.0\%
60.5\%	47.3	47.3	0.0	0.0\%
61.7\%	47.3	47.3	0.0	-0.1\%
63.0\%	47.3	47.2	0.0	0.0\%
64.2% 6.54%	47.2	47.1	0.0	-0.1\%
${ }^{65.4 \%}$ 66.7\%	${ }_{47.1}^{47.1}$	${ }_{47.1}^{47.1}$	0.0 -0.1	-0.1\%
67.9\%	47.1	47.0	-0.1	-0.2\%
69.1\%	47.1	47.0	-0.1	-0.2\%
70.4\%	46.9	46.9	0.0	0.0\%
71.6\%	46.8	46.8	-0.1	-0.1\%
72.8\%	46.7	46.7	-0.1	-0.2\%
74.1\%	46.7	46.6	-0.2	-0.3\%
75.3\%	46.7	46.6	-0.1	-0.3\%
76.5\%	46.6	46.5	-0.1	-0.3\%
77.8\%	46.6	46.4	-0.1	-0.3\%
79.0\%	46.6	46.4	-0.1	-0.3\%
80.2\%	46.5	46.4	-0.1	-0.2\%
${ }^{81.5 \%}$	${ }_{46.5}^{46.5}$	46.4	-0.1	-0.1\%
82.0\%	${ }_{46.4}^{46.4}$	${ }_{46.3}^{46.4}$	-0.1	${ }_{\text {- }}-0.2 \%$
85.2\%	46.4	46.2	-0.1	-0.2\%
86.4\%	46.3	46.2	-0.1	-0.3\%
87.7\%	46.3	46.2	-0.1	-0.3\%
88.9\%	46.2	46.2	-0.1	-0.1\%
90.1\%	46.2	46.1	-0.1	-0.2\%
91.4\%	46.1	46.1	0.0	0.0\%
${ }_{\text {933.8\% }}^{92.6 \%}$	46.0 46.0	${ }_{45.9}^{45.9}$	-0.2 -0.2	-0.4\%
95.1\%	46.0	45.8	-0.1	-0.3\%
${ }^{96.3 \%}$	45.6	45.5	-0.1	-0.3\%
97.5\%	45.6	45.5	-0.1	-0.3\%
98.8\%	44.8	44.9	0.2	0.4\%
100.0\%	44.8	44.9	0.2	0.4\%

Probability of Exceedane									
$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	March			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceance } \\ \text { Probability } \end{array} \\ \hline \text { (\%) } \\ \hline \end{gathered}$		April	$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (DEGFF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	WSIP 2030 Without Proiect	WSIP 2030 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGFF) } \end{aligned}$				WSIP 203 With Project		
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)					Monthly Temperature (DEGF)		
0.0\%	53.5	53.6	0.0	0.0\%		57.1	57.1	0.0	0.0\%
1.2\%	53.3	53.5	0.2	0.4\%	1.2\%	56.9	56.7	-0.2	-0.4\%
2.5\%	53.3	53.1	-0.2	-0.3\%	2.5\%	56.3	56.3	0.0	
3.7\%	53.3	52.9	-0.4	-0.8\%	3.7\%	56.2	56.0	-0.2	
4.9\%	52.8	52.8	0.1	0.1\%	4.9\%	56.0	55.7	-0.3	-0.5\%
6.2\%	52.7	52.8	0.1	0.2\%	6.2\%	55.8	55.6	-0.2	-0.3\%
7.4\%	52.7	52.7	0.0	0.1\%	7.4\%	55.7	55.3	-0.5	-0.8\%
8.6\%	52.6	52.6	0.0	-0.1\%	8.6\%	55.5	55.1	-0.4	-0.7\%
9.9\%	52.4	52.5	0.1	0.1\%	9.9\%	55.5	55.1	-0.4	-0.7\%
11.1\%	52.4	52.4	0.0	0.1\%	11.1\%	55.4	55.1	-0.3	-0.6\%
12.3\%	${ }_{52.2}$	${ }_{52.3}$	0.1	0.1\%	12.3\%	${ }_{55.3}$	55.1	-0.3	-0.5\%
13.6\%	52.2	52.1	-0.1	-0.2\%	13.6\%	55.2	55.1	-0.1	-0.3\%
14.8\%	52.1	52.0	-0.1	-0.1\%	14.8\%	55.0	55.0	0.1	0.1\%
16.0\%	52.0 520 5	52.0 520 520	0.0	-0.1\%	16.0\%\% 17.3%	55.0 54.9	55.0 54.9	0.1 0.0	- 0.10%
18.5\%	51.9	52.0	0.1	0.2\%	18.5\%	54.8	54.8	0.0	0.0\%
19.8\%	51.8	51.8	0.0	0.0\%	19.8\%	54.8	54.7	0.0	0.0\%
21.0\%	51.8	51.7	0.0	0.0\%	21.0\%	54.8	54.7	0.0	0.0\%
22.2\%	51.8	51.7	-0.1	-0.2\%	22.2\%	54.5	54.7	0.2	0.4\%
23.5\%	51.6	51.6	0.0	0.0\%	23.5\%	54.3	54.6	0.3	0.6\%
24.7\%	51.6	51.6	0.0	0.0\%	24.7\%	54.2	54.6	0.4	0.7\%
25.9\%	51.6	51.6	0.0	0.0\%	25.9\%	54.2	54.6	0.3	0.6\%
27.2\%	51.5	51.6	0.1	0.1\%	27.2\%	54.1	54.5	0.4	0.7\%
28.4\%	51.5	51.5	0.1	0.1\%	28.4\%	54.1	54.5	0.4	0.7\%
29.6\%	51.5 515 515	51.5 515 515	${ }_{0}^{0.1}$	${ }^{0.1 \%}$	${ }_{3}^{29.9 .9 \%}$	54.1 54.0	54.3 54.2	0.2 0.2	0.0.4\%
32.1\%	51.5	51.5	0.0	0.0\%	32.1\%	54.0	54.0	0.1	0.2\%
33.3\%	51.4	51.4	0.0	0.0\%	33.3\%	53.8	54.0	0.2	0.3\%
34.6\%	51.3	51.3	0.0	0.0\%	34.6\%	53.8	54.0	0.2	0.4\%
35.8\%	51.3	51.3	0.0	0.1\%	35.8\%	53.7	54.0	0.2	0.4\%
37.0\%	51.3	51.3	0.0	0.0\%	37.0\%	53.7	54.0	0.3	0.5\%
38.3\%	51.1	51.1	0.0	0.0\%	38.3\%	53.7	53.8	0.2	0.3\%
39.5\%	51.1	51.1	0.0	0.0\%	39.5\%	53.7	53.7	0.1	0.1\%
40.7\%	51.0	51.0	0.0	0.1\%	40.7\%	53.6	53.7	0.1	0.2\%
42.0\%	50.9	51.0	0.0	0.1\%	42.0\%	53.6	53.7	0.1	0.2\%
43.2\%	50.8	50.8	0.0	0.0\%	43.2\%	53.5	53.7	0.1	0.3\%
44.4\%	50.8	50.8	0.0	0.0\%	44.4\%	53.5	53.7	0.2	0.3\%
45.79\%	50.8	50.8	0.0	0.0\%	45.7\%	53.5	${ }_{53,6}^{53.6}$		
${ }^{46.9 \%} 48.1 \%$	50.6 50.5	50.5 50.5	0.0	-0.1\%	${ }^{46.9 \%}$	53.4 53.4	53.6 53.5	${ }_{0}^{0.1}$	${ }^{0.2 \% \%}$
49.4\%	50.3	50.3	0.0	0.0\%	49.4\%	53.3	53.5	0.2	0.3\%
50.6\%	50.3	50.3	0.0	0.0\%	50.6\%	53.3	53.5	0.2	0.3\%
51.9\%	50.3	50.3	0.0	0.0\%	51.9\%	53.2	53.4	0.2	0.3\%
53.1\%	50.3	50.2	0.0	-0.1\%	53.1\%	53.2	53.4	0.2	0.3\%
54.3\%	50.2	50.1	-0.2	-0.3\%	54.3\%	53.2	53.4	0.2	0.4\%
55.6\%	50.2	50.0	-0.1	-0.2\%		53.0	${ }^{53.3}$	${ }^{0.3}$	0.6\%
	50.1 50.1	50.0 49.9	-0.1 -0.1	-0.3\%	55.8\%	53.0 53.0	53.3 53.2	0.3 0.3	${ }^{0.5 \% \%}$
59.3\%	50.0	49.9	-0.1	-0.2\%	59.3\%	52.9	53.2	0.3	0.5\%
60.5\%	49.9	49.9	-0.1	-0.2\%	${ }^{66.5 \%}$	${ }_{52.9}^{52.9}$	$\begin{array}{r}53.2 \\ 532 \\ \hline 5 .\end{array}$	${ }^{0.3}$	0.6\%
${ }^{61.77 \%}$	49.9	49.9	-0.1	-0.2\%	61.7\%	52.9	53.2	${ }^{0.3}$	0.6\%
63.0\%	49.9	49.8	-0.1	-0.1\%	63.0\%	52.8	53.1	${ }^{0.3}$	0.6\%
64.2\%	49.8	49.7	-0.1	-0.2\%	64.2\%	52.8	53.1	${ }^{0.3}$	0.5\%
65.4\%	49.8	49.6	-0.1	-0.3\%	65.4\%	52.8	53.0	0.3	0.5\%
66.7\%	49.6	49.5	-0.1	-0.1\%	66.7\%	52.8	53.0	0.3	0.5\%
67.9\%	49.6	49.5	-0.1	-0.3\%	67.9\%	52.8	53.0	0.2	0.4\%
69.1\%	49.5	49.4	-0.1	-0.3\%	69.1\%	52.7	52.9	0.2	0.4\%
70.4\%	${ }_{49.3}^{49.4}$	49.3 49.2	-0.1 0.0	-0.0.0\%	70.4\%\%	52.7 52.7	52.9 52.9	0.2 0.2	0.3\% 0.4
72.8\%	49.3	49.2	-0.1	-0.2\%	72.8\%	52.6	52.9	0.2	0.4\%
74.1\%	49.1	49.2	0.0	0.0\%	74.1\%	52.6	52.8	0.2	0.3\%
75.3\%	49.1	48.9	-0.2	-0.4\%	75.3\%	52.6	52.7	0.1	0.1\%
76.5\%	48.9	48.9	0.0	0.0\%	76.5\%	52.5	${ }_{52.6}$	0.1	0.3\%
77.8\%	48.9	48.8	0.0	0.0\%	77.8\%	52.5	52.5	0.0	0.1\%
79.0\%	48.8	48.8	0.0	0.0\%	79.0\%	52.2	52.3	0.1	0.1\%
80.2\%	48.8	48.8	0.0	0.0\%	80.2\%	52.2	52.3	0.0	0.1\%
81.5\%	48.8	48.6	-0.1	-0.2\%	81.5\%	52.2	52.3	0.1	0.2\%
${ }^{82.79 \%}$	48.4	48.4	-0.1	-0.1\%	82.7\%	52.0	52.1	0.1	0.19\%
84.0\% 85.2%	48.4 48.3	48.4 48.4	0.0 0.0	${ }^{0.0 \%}$	${ }^{88.0 \%}$	51.9 51.7	52.0 51.8	${ }_{0.1}^{0.2}$	${ }_{0}^{0.4 \%}$
86.4\%	48.3	48.3	0.0	0.1\%	88.4\%	51.7	51.8	0.1	0.2\%
87.7\%	48.2	48.3	0.2	0.3\%	87.7\%	51.7	51.7	0.0	0.0\%
88.9\%	48.2	48.1	0.0	0.0\%	88.9\%	51.5	51.7	0.2	0.3\%
90.1\%	48.1	48.1	0.0	-0.1\%	90.1\%	51.5	51.6	0.0	0.1\%
91.4\%	48.0	48.1	0.0	0.1\%	91.4\%	51.4	51.5	0.1	0.1\%
92.6\%	47.8	47.8	0.0	0.0\%	92.6\%	51.4	51.5	0.1	0.1\%
93.8\%	47.8	47.8	0.0	0.0\%	93.8\%	51.4	51.5	0.1	0.1\%
${ }_{995.3 \%}^{95 \%}$	47.7 47.7	47.8 47.7	0.0 0.0	-0.1\%	${ }_{9}^{95.3 \%}$	51.4 51.2	51.4 51.2	0.1 0.0	- ${ }_{0}^{0.1 \%}$
97.5\%	47.7	47.7	0.0	0.0\%	97.5\%	50.4	50.4	0.0	0.0\%
98.8\% 1000%	47.5 47.5	47.4 47.4	-0.1	-0.0.2\%	98.8\%	50.1 50.1	50.1 50.1	0.0	- 0

May				
Percent Exceedance	WSIP 2030 W Without Proiet	WSIP 2030 With Project		
Probability	Monthly Temperature (DEGF)	Monthly Temperature (DEGFF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	Difference (\%)
0.0\%	59.8	60.1	0.3	0.5\%
1.2\%	58.8	59.3	0.5	0.9\%
2.5\%	58.1	59.3	1.2	2.1\%
3.7\%	58.1	59.1	0.9	1.6\%
4.9\%	57.9	58.7	0.8	1.3\%
6.2\%	57.9	58.5	0.6	1.1\%
7.4\%	57.8	58.2	0.5	0.8\%
8.6\%	57.6	58.1	0.5	0.9\%
9.9\%	57.6	57.9	0.4	0.6\%
11.1.\%	57.5	57.9	0.3	0.6\%
12.3\%	57.5 57.3 5.	57.8 578	0.4 0.5	${ }_{\text {cose }}^{0.6 \%}$
14.8\%	57.2	57.8	0.6	1.1\%
16.0\%	57.2	57.8	0.6	1.1\%
17.3\%	57.1	57.7	0.6	1.0\%
18.5\%	57.1	57.7	${ }^{0.6}$	1.0\%
19.8\%	57.1	57.6	0.6	1.0\%
21.0\%	56.9	57.6	0.7	1.3\%
22.2\%	56.9	57.6	0.7	1.3\%
23.5\%	56.8	57.5	0.7	1.2\%
24.7\%	56.7	57.4	0.7	1.3\%
25.9\%	56.7	57.4	0.7	1.3\%
27.2% 28.4%	56.6 56.5	57.2 57.2	0.6 0.7	1.0\%
29.6\%	56.5	57.1	0.7	1.2\%
30.9\%	56.5	57.1	0.6	1.1\%
32.1\%	56.3	56.8	0.5	0.9\%
33.3\%	56.3	56.8	0.5	0.8\%
34.6\%	55.3	56.7	0.5	0.8\%
35.8\%	56.1	56.7	0.6	1.0\%
37.0\%	55.0	55.6	0.6	1.1\%
38.3\%	55.0	56.5	0.4	0.8\%
39.5\%	55.9	56.5	0.5	0.9\%
40.79\%	55.9	56.4	0.5	0.9\%
${ }^{42.0 \%}$	55.8 55.7	56.3 56.3	0.6 0.6	1.0\%
44.4\%	55.7	56.2	0.5	0.9\%
45.7\%	55.7	56.1	0.5	0.8\%
46.9\%	55.7	56.1	0.5	0.8\%
48.1\%	55.6	56.1	0.4	0.8\%
49.4\%	55.6	56.1	0.5	0.9\%
50.6\%	55.5	55.0	0.5	0.8\%
51.9\%	55.5	56.0	0.5	0.9\%
53.1\%	55.5	56.0	0.5	1.0\%
54.3\%	55.4	55.9	0.5	1.0\%
	55.4 55.3	55.9 55.9	0.5 0.5	-
58.0\%	55.3	55.9	0.5	1.0\%
59.3\%	55.3	55.8	0.5	0.9\%
60.5\%	55.3	55.8	0.5	0.9\%
61.7\%	55.3	55.7	0.5	0.9\%
63.0\%	55.2	55.7	0.5	0.9\%
64.2\%	55.2	55.7	0.5	0.9\%
65.4\%	55.2	55.6	0.5	0.8\%
66.7\%	55.2	55.5	0.4	0.7\%
${ }^{67.99 \%}$	$\begin{array}{r}55.1 \\ 551 \\ \hline 5 .\end{array}$	55.5 555 55	0.4	0.6\%
		55.5 555 55	0.4	0.7\%
70.4\%	$\begin{array}{r}55.1 \\ 551 \\ \hline 5.1\end{array}$	55.5 555 55	0.4	0.7\%
71.6\%	55.1 55.1	55.5 55.5	0.4 0.4	- 0.7%
74.1\%	55.1	55.4	0.4	0.7\%
75.3\%	55.0	55.4	0.3	0.6\%
76.5\%	55.0	55.3	0.3	0.6\%
77.8\%	55.0	55.3	0.3	0.6\%
79.0\%	55.0	55.3	0.3	0.6\%
80.2\%	54.8	55.2	0.4	0.7\%
81.5\%	54.7	55.1	0.4	0.6\%
-	54.7 54.6	55.0 55.0	0.4 0.4	0.7\%\%
85.2\%	54.6	55.0	0.4	0.7\%
86.4\%	54.6	55.0	0.4	0.7\%
87.7\%	54.5	54.8	${ }^{0.3}$	0.6\%
88.9\%	54.5	54.7	0.2	0.3\%
90.1\%	54.5	54.7	0.2	0.4\%
91.4\%	54.2	54.5	0.3	0.5\%
92.6\%	54.1	54.3	0.2	0.3\%
93.8\%	54.1	54.1	0.0	0.0\%
${ }_{9}^{95.36 \%}$	54.0 53.6	54.0 53.7	${ }_{0}^{0.0}$	${ }_{0}^{0.1 \%}$
97.5\%	53.6	53.6	0.0	0.0\%
98.8\%	53.0	53.6	0.6	1.1\%
100.0\%	53.0	53.6	0.6	1.1\%

Table SQ6-1b
Ser t Bend
Bridge, Monthy
Temperature

June				
Percent Exceedance	WSII 2030 Without	WSIP 2030 With Project		Relative
$\begin{aligned} & \text { Probability } \\ & \text { (\%) } \end{aligned}$	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Bifference } \\ & \text { (DEFF } \end{aligned}$	Difference (\%)
0.0\%	59.3	59.2	0.0	0.1\%
1.2\%	59.0	58.9	-0.1	-0.2\%
2.5\%	58.9	58.7	-0.2	-0.4\%
3.7\%	55.8	58.4	-0.4	-0.7\%
4.9\%	58.5	58.2	-0.3	-0.4\%
6.2\%	58.4	58.1	-0.3	-0.5\%
7.4\%	58.4	58.1	-0.3	-0.4\%
8.6\%	58.2	58.1	-0.1	-0.2\%
9.9\%	58.2	57.8	-0.3	-0.5\%
11.12\%	58.0	57.7	-0.3	-0.6\%
12.3\%	57.8	57.7	-0.1	-0.2\%
13.6\%	57.7	57.7	0.0	0.0\%\%
${ }^{14.00 \%}$	57.7 57.7	57.6 57.4	-0.1	-0.5\%
17.3\%	57.4	57.4	-0.1	-0.1\%
18.5\%	57.2	57.3	0.1	0.1\%
19.8\%	57.2	57.3	0.1	0.2\%
21.0\%	57.1	57.3	0.2	0.3\%
22.2\%	57.0	57.3	0.3	0.5\%
23.5\%	57.0	57.2	${ }^{0.3}$	0.5\%
24.7\%	56.9	57.2	${ }^{0.3}$	0.5\%
25.9\%	56.9	57.2	${ }^{0.3}$	0.5\%
27.2\%	56.9	57.1	${ }^{0.3}$	0.5\%
28.4\%	56.9	57.1	0.2	0.3\%
29.6\%	56.8	57.0	0.2	0.3\%
30.9\%	56.8	56.9	0.2	0.3\%
32.1\%	55.6	56.9	${ }^{0.3}$	0.5\%
33.3\%	55.6	56.9	0.3	0.6\%
34.6\%	56.5	55.9	0.4	0.7\%
35.8\%	56.4	56.9	0.5	0.8\%
37.0\%	56.4	56.8	0.4	0.7\%
38.3\%	56.3	56.7	0.4	0.7\%
39.5\%	56.2	56.7	0.5	0.9\%
40.77\%	56.2	56.7	0.5	0.9\%
42.0\%	56.1	56.7	0.5	1.0\%
43.2\%\%	${ }_{56.1}$	55.6	0.5	0.9\%
44.4\%	${ }_{56.1}^{56.1}$	${ }_{56.5}^{56.5}$	0.5	0.8\%
45.7\%	${ }_{56.1}^{561}$	${ }_{56.5}^{56.5}$	0.4	0.8\%
46.9\%	55.0	56.5	0.4	0.8\%
48.1\%	55.0	56.4	0.4	0.8\%
49.4\%	55.9	56.4	0.5	0.8\%
50.6\%	55.9	56.4	0.5	0.8\%
51.9\%	55.8	56.4	0.6	1.0\%
53.1\%	55.8	56.3	0.6	1.0\%
54.3\%	55.7	56.3	0.6	1.0\%
55.6\%	55.7 557 557	56.3 563	0.6	${ }_{\text {10, }}^{100 \%}$
56.0\%	${ }_{55.7}^{55.7}$	56.2	${ }_{0}^{0.6}$	1.0\%
59.3\%	55.7	56.1	0.4	0.8\%
60.5\%	55.6	56.1	0.4	0.8\%
61.7\%	55.6	56.1	0.4	0.7\%
63.0\%	55.6	56.1	0.5	0.9\%
64.2\%	55.5	56.0	0.5	0.9\%
65.4\%	55.5	56.0	0.5	0.9\%
66.7\%	55.5	55.0	0.5	0.9\%
67.9\%	$\begin{array}{r}\text { 55.3 } \\ \text { 553 } \\ \hline\end{array}$	55.0	0.6	1.1\%
69.19\%	55.3 553 55	55.9 559	0.6	${ }^{1.10 \%}$
71.6\%	55.3	55.9 55	${ }_{0.6}^{0.6}$	1.0\%
72.8\%	55.2	55.8	0.6	1.0\%
74.1\%	55.2	55.7	0.5	1.0\%
75.3\%	55.1	55.7	0.6	1.1\%
76.5\%	55.0	55.6	0.7	1.2\%
77.8\%	55.0	55.6	0.6	1.1\%
79.0\%	54.9	55.6	0.7	1.3\%
80.2\%	54.9	55.6	0.7	1.3\%
${ }^{81.5 \%}$	54.8 54.8 54	55.5 555 55	0.7	${ }_{1}^{1.2 \%}$
82.79\%	54.8 54.8	$\begin{array}{r}55.5 \\ 555 \\ \hline 5\end{array}$	0.7	${ }^{1.3 \%}$
84.0\%	54.8	55.5	0.7	1.3\%
85.2\%	54.7 54.7	55.5 554 5.4	0.7	1.4\%\%
${ }^{86.4 \%} 8$	54.7 54.7	55.4 55.4	${ }_{0}^{0.7}$	${ }_{1.3 \%}^{1.3 \%}$
88.9\%	54.7	55.4	0.7	1.3\%
90.1\%	54.6	55.2	0.6	1.1\%
91.4\%	54.6	55.2	0.6	1.1\%
92.6\%	54.5	55.2	0.7	1.3\%
93.8\%	54.3	55.0	0.6	1.2\%
${ }_{9}^{95.19 \%}$	54.3 54.2	54.9 54.8	0.6 0.6	${ }_{1}^{1.2 \%}$
97.5\%	54.2	54.7	0.6	1.0\%
98.8\%	54.0	54.6	0.6	1.1\%
100.0\%	54.0	54.6	0.6	1.1\%

Page 1367 of 1488

Table SQ6-1b

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	June to September			
	WSII 2030 Without	WSIIP 2030 With Project	Absolute	
	Monthly Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
(\%)	633	620	12	-
0.0\%	63.3		-1.2	2.0\%
1.2\%	60.3 60.3	$\begin{array}{r}59.7 \\ 592 \\ \hline\end{array}$	-0.6	-1.17\%
3.7\%	59.9	59.2	-0.7	-1.2\%
4.9\%	59.6	59.1	-0.5	-0.9\%
6.2\%	59.5	59.1	-0.4	-0.7\%
7.4\%	59.4	59.0	-0.4	-0.7\%
8.6\%	59.0	58.9	-0.1	-0.2\%
9.9\%	58.9	58.7	-0.2	-0.3\%
11.1\%	58.9	58.6	-0.2	-0.4\%
12.3% 13.6%	58.8 58.7	58.6 58.6	-0.2 -0.1	-0.0.3\%
14.8\%	58.7	58.6	-0.1	-0.2\%
16.0\%	58.7	58.4	-0.3	-0.5\%
17.3\%	58.6	58.4	-0.3	-0.4\%
18.5\%	58.6	58.3	-0.3	-0.5\%
19.8\%	58.3	58.3	0.0	-0.1\%
21.0\%	58.3	58.0	-0.3	-0.4\%
22.2\%	58.2	58.0	-0.2	-0.4\%
23.5\%	58.2	58.0	-0.2	-0.3\%
24.7\%	58.2	58.0	-0.2	-0.3\%
25.9\%	58.1	58.0	-0.2	-0.3\%
27.2\%	${ }_{58.1}$	58.0	-0.1	-0.3\%
28.4\%	58.0	58.0	-0.1	-0.1\%
29.6\%	58.0	57.9	-0.1	-0.1\%
30.9\%	58.0	57.9	-0.1	-0.2\%
32.1\%	58.0	57.7	-0.2	-0.4\%
33.3\%	57.9	57.7	-0.2	-0.4\%
34.6\%	57.9	57.7	-0.2	-0.4\%
35.8\%	57.7	57.7	0.0	0.0\%
37.0\%	57.6	57.7	0.0	0.1\%
38.3\%	${ }_{57.6}$	57.7 57.7	0.1	0.1\%
			0.1	0.2\%
40.7\%	57.5 575	57.6 57.6	0.1	0.2\%
42.0\%	${ }_{57.5}^{57.5}$	${ }_{57.6}^{57.6}$	0.1	0.2\%
43.2\%	57.5	57.6	0.1	0.2\%
44.4\%	57.4	57.6 57.5	0.2	${ }^{0.3 \%}$
45.7\%	57.4	57.5	0.1	0.1\%
46.9\%	57.4	57.4	0.0	0.0\%
48.1\%	57.2	57.3	0.1	0.2\%
49.4\%	57.0	57.2	0.2	0.3\%
50.6\%	57.0	57.2	0.2	0.3\%
51.9\%	56.9	57.1	0.2	0.3\%
	56.9 56.8	57.1 57.0	0.2 0.2	${ }_{0}^{0.4 \% \%}$
55.6\%	56.8	57.0	0.2	0.3\%
56.8\%	56.8	56.9	0.2	0.3\%
58.0\%	56.7	56.9	0.2	0.3\%
59.3\%	56.7	55.9	0.2	0.3\%
60.5\%	55.6	55.9	0.2	0.4\%
61.7\%	55.6	56.8	0.2	0.4\%
63.0\%	56.6	55.8	0.3	0.4\%
64.2\%	55.6	55.8	0.2	0.4\%
${ }^{65.49 \%}$	56.6	56.8	0.2	0.4\%
${ }^{66.77 \%}$	56.5	56.8	0.3	0.5\%
67.9\%	56.5	55.8	0.3	0.5\%
69.19\%	56.4	56.7	${ }^{0.3}$	0.5\%
70.4\%	56.4	${ }_{56.7}^{56.7}$	${ }^{0.3}$	0.5\%
71.6\%	56.4 56.3	56.6 56.6	${ }^{0.2}$	0.4\%
72.8\%	56.3	55.6	${ }^{0.3}$	0.5\%
74.1\%	56.3	55.6	0.2	0.4\%
75.3\%	56.3	56.5	0.2	0.4\%
76.5\%	56.3	56.5	0.2	0.3\%
779.8\%	56.3 56.0	56.5 56.4	0.2 0.4	0.6\% 0
80.2\%	56.0	56.4	0.3	0.6\%
81.5\%	55.0	56.3	0.3	0.6\%
82.7\%	55.8	56.3	0.5	0.8\%
84.0\%	${ }_{55}^{55.8}$	${ }_{56}^{56.3}$	0.5	0.9\%
85.2\%	${ }_{55}^{55.8}$	56.2	0.4	0.8\%
86.4\%	55.7	55.0	${ }^{0.3}$	0.5\%
87.7\%	55.7	55.8	0.1	0.2\%
${ }_{\text {cki }}^{88.9 \%}$	55.6	55.7 557	0.2	- 0.3%
${ }^{901.4 \%}$	55.5 55.5	${ }_{55.7}^{55.7}$	0.2 0.2	0.3\%
92.6\%	55.4	55.6	0.2	0.4\%
93.8\%	55.2	55.6	0.4	0.7\%
95.1\%	55.1	55.6	0.5	0.8\%
96.3\%	55.1 54.9	55.3	${ }^{0.2}$	0.4\%
97.5\%	54.9 547	55.1 549 54	${ }^{0.2}$	0.4\%
98.8\%	54.7 54.5	54.9	${ }^{0.1}$	-
100.0\%	54.5	54.3	-0.1	-0.2\%

$\begin{gathered} \text { Percent } \\ \text { Excedance } \\ \text { Probobaility } \end{gathered}$	Juy to September		Probability of Exceedance		August to September				
	WSIP 2030 Without	WSIP 2030 With Project		elative	Percent Exceedanc	WSII 2 230 Winthout Proiet	WSIP 2030 With Project	Absolute	Relative
	Monthly Temperature (DEGEF)	$\underset{\text { Monthly Temperature }}{\text { (DEGF) }}$	$\begin{aligned} & \text { Difference } \\ & \text { (DGEFF) } \end{aligned}$	Difference (\%)	Probability $(\%)$	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	(DEGF)	Difference (\%)
0.0\%	65.2	63.5	-1.7	-2.5\%	0.0\%	67.4	65.4	-2.1	-3.0\%
1.2\%	61.6	60.5	-1.0	-1.7\%	1.2\%	63.4	61.0	-2.4	${ }^{-3.7 \%}$
2.5\%	61.5	60.1	-1.4	-2.2\%	2.5\%	62.7	61.0	-1.8	-2.8\%
3.7\%	60.7	60.1	-0.6	-1.0\%	3.7\%	61.9	60.5	-1.3	-2.2\%
4.9\%	60.7	59.7	-1.0	-1.7\%	4.9\%	61.7	60.1	-1.	-2.6\%
6.2\%	60.1	59.5	-0.7	-1.1\%	6.2\%	60.7	59.8	-1.0	-1.6\%
7.4\%	60.1	59.4	-0.7	-1.2\%	7.4\%	60.7	59.7	-1.0	-1.6\%
8.6\%	60.0	59.2	-0.8	-1.3\%	8.6\%	60.2	59.4	-0.8	-1.3\%
9.9\%	59.4	59.2	-0.3	-0.4\%	9.9\%	60.2	59.4	-0.8	-1.4\%
11.1\%	59.4	59.2	-0.2	-0.4\%	11.1\%	60.1	59.3	-0.8	-1.3\%
12.3\%	59.4	59.1	-0.2	-0.4\%	12.3\%	59.9	59.3	-0.7	-1.1\%
13.6\%	59.2	59.1	-0.2	-0.3\%	13.6\%	59.9	59.2	-0.7	-1.2\%
14.8\%	59.2	59.1	-0.2	-0.3\%	14.8\%	59.9	59.1	-0.7	-1.2\%
16.0\%	59.2	59.0	-0.2	-0.3\%	16.0\%	59.7	59.1	-0.6	-1.0\%
17.3\%	59.1	58.9	-0.3	-0.4\%	17.3\%	59.7	59.1	-0.7	-1.1\%
18.5\% 19.9%	59.0 59.0	58.7 58.7	-0.3 -0.3	-0.0\% ${ }^{-0.5 \%}$	- 18.50%	59.6 59.5	59.1 59.0	-0.5 -0.5	-0.8\%
21.0\%	59.0	58.6	-0.4	-0.7\%	21.0\%	59.4	59.0	-0.4	-0.7\%
22.2\%	58.9	58.4	-0.5	-0.9\%	22.2\%	59.4	58.9	-0.5	-0.8\%
23.5\%	58.9	58.4	-0.5	-0.8\%	23.5\%	59.3	58.9	-0.4	-0.6\%
24.7\%	58.9	58.4	-0.5	-0.8\%	24.7\%	59.2	58.8	-0.4	-0.7\%
25.9\%	58.8	58.4	-0.4	-0.8\%	25.9\%	59.2	58.7	-0.5	-0.9\%
27.2\%	58.8	58.4	-0.4	-0.7\%	27.2\%	59.2	58.6	-0.5	-0.9\%
28.4\%	58.7	58.4	-0.3	-0.5\%	28.4\%	59.1	58.6	-0.5	-0.8\%
29.6\%	58.4	58.3	-0.1	-0.2\%	29.6\%	59.1	58.6	-0.5	-0.8\%
30.9\%	58.3 583	58.3 583	-0.1	-0.1\%	30.9\%	58.8 587	58.6 58.6	-0.2	-0.3\%
32.10% 33.3%	58.3 58.3	58.3 58.2	-0.1	-0.0.0\%	32.10% 33.3%	58.7 58.6	58.6 58.6	-0.1	-0.0.0\%
34.6\%	57.9	58.1	0.2	0.3\%	34.5\%	58.5	58.6	0.1	0.1\%
35.8\%	57.9	58.0	0.2	0.3\%	35.\%	58.3	58.4	0.0	0.1\%
37.0\%	57.9	58.0	0.2	0.3\%	37.0\%	58.3	58.2	-0.2	-0.3\%
38.3\%	57.8	57.9	0.1	0.1\%	38.3\%	58.3	58.1	-0.2	-0.4\%
39.5\%	57.8	57.9	0.1	0.1\%	39.5\%	58.1	58.0	-0.1	-0.1\%
40.7\%	57.8	57.8	0.0	0.0\%	40.7\%	58.0	57.9	0.0	-0.1\%
42.0\%	57.8	57.8	0.0	-0.1\%	42.0\%	58.0	57.9	-0.1	-0.2\%
43.2\%	57.8	57.7	-0.1	-0.2\%	43.2\%	58.0	57.9	-0.1	-0.2\%
44.4\%	57.5	${ }_{57.6}$	0.2	0.3\%	44.4\%	57.9	57.8	-0.1	${ }^{-0.1 \%}$
${ }^{45.79 \%}$	57.4 57.4	57.6 57.5	0.2 0.2	${ }^{0.4 \% \%}$	${ }^{45.79 \%}$	$\begin{array}{r}57.9 \\ 57.8 \\ \hline\end{array}$	$\begin{array}{r}57.8 \\ 57.8 \\ \hline\end{array}$	-0.1 0.0	--0.1\%
48.1\%	57.3	57.5	0.1	0.3\%	48.1\%	57.7	57.8	0.1	0.1\%
49.4\%	57.3	57.4	0.1	0.2\%	49.4\%	57.7	57.6	0.0	-0.1\%
50.6\%	57.3	57.3	0.1	0.1\%	50.6\%	57.7	57.6	-0.1	-0.1\%
51.9\%	57.2	57.2	0.0	0.0\%	51.9\%	57.6	57.6	0.0	0.0\%
53.1\%	57.2	57.2	0.0	0.1\%	53.1\%	57.6	57.5	0.0	0.0\%
54.3\%	57.1	57.1	0.0	0.0\%	54.3\%	57.5	57.4	-0.1	-0.2\%
55.6\%	57.1	57.1	0.0	0.0\%	55.6\%	57.5	57.4	-0.2	-0.3\%
56.8\%	57.1	57.1	0.0	0.0\%	56.8\%	57.4	57.3	-0.1	-0.1\%
58.3\%	57.1 57.0	57.1 57.0	0.0 0.0	-0.0\%	58.0\%	57.3 57.2	57.3 57.3	${ }_{0}^{0.1}$	0.0\%
60.5\%	57.0	57.0	0.0	-0.1\%	60.5\%	57.1	57.2	0.1	${ }_{0}^{0.1 \%}$
61.7\%	57.0	57.0	0.0	-0.1\%	${ }^{61.7 \%}$	57.1	57.2	0.1	${ }^{0.2 \%}$
63.0\%	56.9	57.0	0.1	0.2\%	63.0\%	57.0	57.2	0.2	0.3\%
${ }^{64.2 \%}$	${ }_{56.8}^{56.8}$	55.9	0.1	0.2\%	64.2\%	57.0	57.2	0.2	0.3\%
65.4\%	56.7	55.9	0.1	0.2\%	65.4\%	57.0	57.1	0.1	0.2\%
66.7\%	56.7	56.9	0.1	0.3\%	66.7\%	56.9	57.1	0.2	0.3\%
67.9\%	56.7	56.8	0.1	0.2\%	67.9\%	56.9	57.0	0.1	0.2\%
69.1\%	56.7	56.8	0.1	0.2\%	69.1\%	56.8	57.0	0.2	0.4\%
70.4\%	56.7	56.8	0.1	0.2\%	70.4\%	56.7	57.0	0.2	0.4\%
71.6\%	55.6	56.8	0.1	0.2\%	71.6\%	56.7	55.9	0.2	0.4\%
72.8\%	56.6	56.7		0.2\%	72.8\%	56.6	55.9	0.2	0.4\%
74.1\%	56.5	56.7	0.1	0.3\%	74.1\%	56.5	55.8	0.3	0.5\%
75.3\%	56.5	${ }_{56.7}^{567}$	0.2	0.3\%	75.3\%	56.5	56.8 56.8	${ }^{0.3}$	${ }^{0.6 \%}$
76.5\%	56.5	56.7	0.2	0.4\%	76.5\%	56.5	${ }_{56.8}^{56.8}$	${ }^{0.3}$	0.5\%
77.8\%	56.4	56.7	0.2	0.4\%	77.8\%	56.5	55.7	0.2	0.4\%
79.0\%	56.4	55.6	${ }^{0.3}$	0.5\%	79.0\%	56.4	55.6	${ }^{0.3}$	0.5\%
80.2\%	56.3	55.6	0.2	0.4\%	80.2\%	56.3	55.6	0.3	0.5\%
81.5\%	56.2	56.5	0.3	0.5\%	81.5\%	56.3	55.6	0.3	0.5\%
82.7\%	56.0	56.5	0.4	0.8\%	82.79% 840%	56.2	56.4	0.2	0.3\%
84.0\%	55.9 55.9	56.5 56.4	0.4 0.6	${ }^{0.8 \%}$	-84.0\%	56.2 56.1	56.4 56.2	0.1 0.1	${ }_{0}^{0.2 \%}$
86.4\%	55.8	56.3	0.4	0.8\%	86.4\%	56.0	56.2	0.2	0.3\%
87.7\%	55.8 558 55	56.2	${ }^{0.3}$	0.6\%	887.7\%	55.8 558 5.8	${ }_{55.1}^{56.1}$	0.2	0.4\%\%
88.9\%	55.8	55.7 55 5.6	-0.1	-0.1\%	88.9\%	55.8 55 5.8	55.8 558 5.8	0.0	0.0\%
${ }_{9}^{90.14 \%}$	55.7 55.6	55.6 55.6	-0.1 0.0	- ${ }^{-0.2 \%}$	${ }_{\text {91.4\% }}^{90.19 \%}$	55.8 55.6	55.8 55.6	0.0 0.0	-0.0\%
92.6\%	55.3	55.5	0.2	0.3\%	92.6\%	55.4	55.4	0.0	0.0\%
93.8\%	55.3	55.5	0.2	0.3\%	93.8\%	55.2	55.2	0.0	0.0\%
95.1\%	55.3	55.3	0.1	0.1\%	95.1\%	54.9	55.1	0.2	0.4\%
96.3\%	55.3	55.2	0.0	-0.1\%	96.3\%	54.9	54.9	0.1	${ }_{0}^{0.2 \%}$
${ }^{98.5 \% \%}$	55.1 54.9	55.0 55.0	-0.1 0.1	-0.2\%	${ }^{99.5 \%}$	54.8 54.7	54.6 54.6	0.0 -0.1	-0.0\%\%
100.0\%	54.4	54.2	-0.3	-0.5\%	100.0\%	54.0	53.6	-0.4	-0.7\%

Sacram Figure SQ7-1b
Sacramento River at Red Bluff, Monthly Temperature

Table SQ7.1b verat Red Bluft, Monthly Temperature

Table SQ7.1b rat Red Buff. Monthly Temperature

Sacramento River at ebied Bluft Monthly Temperature
Probability of Exceedance

	- rebuary			
$\begin{gathered} \text { Percent } \\ \hline \text { Exceedance } \\ \text { Probability } \end{gathered}$	$\begin{gathered} \text { WSIP 2030 Without } \\ \text { Proiect } \\ \hline \end{gathered}$	WSIP 2030 With Project		Rela
	Monthly Temperature	$\begin{aligned} & \text { Monthly Temperature } \\ & \text { (DEGFF) } \end{aligned}$	(ifference	Difference (\%)
0.0\%	52.7	52.8	0.0	0.1\%
1.2\%	51.0	51.2	0.2	0.4\%
2.5\%	50.6	50.4	-0.2	-0.5\%
3.7\%	50.4	50.2	-0.2	-0.4\%
4.9\%	49.9	50.0	0.1	0.1\%
6.2\%	49.7	49.8	0.1	0.1\%
7.4\%	49.7	49.8	0.1	0.1\%
8.6\%	49.5	49.7	0.1	0.3\%
9.9\%	49.5	49.6	0.1	0.3\%
111.19\%	49.5 49.5	49.6	0.1	0.2\%
12.3\%	49.5	49.5	0.0	0.1\%
13.6\%	49.5	49.5	0.0	0.0\%
14.8\%	49.4	49.5	0.0	0.0\%
16.0\%	49.3	49.3	0.0	0.1\%
17.3\%	49.2	49.2	0.0	0.0\%
18.5\%	49.0	49.0	0.0	0.0\%
19.8\%	48.8	48.9	0.1	0.2\%
21.0\%	48.8	48.8	0.0	0.1\%
22.2\%	48.8	48.7	-0.1	-0.2\%
23.5\%	48.7	48.6	-0.1	-0.2\%
24.7\%	48.7	48.6	0.0	-0.1\%
25.9\%	48.5	48.6	0.0	0.1\%
27.2\%	48.5	48.6	${ }^{0.0}$	${ }^{0.1 \%}$
28.4\%	48.5	48.6	0.0	0.1\%
29.6\%	48.5	48.5	0.0	0.0\%
30.9\%	48.5	48.5	0.0	0.0\%
32.1\%	48.5	48.5	0.0	0.0\%
33.3\%	48.5	48.5	0.0	0.0\%
34.6\%	48.4	48.5	0.0	0.1\%
35.9\%	48.4	48.5	0.1	0.2\%
37.0\%	48.4 48.4	48.4 48.4	0.1	0.2\%
39.5\%	${ }_{48.3}^{48.4}$	${ }_{48.3}^{48.4}$	0.0	${ }_{0}^{0.0 \%}$
40.7\%	48.1	48.2	0.0	0.1\%
42.0\%	48.1	48.1	0.0	0.0\%
43.2\%	48.1	48.0	0.0	-0.1\%
44.4\%	48.1	48.0	0.0	-0.1\%
45.7\%	48.0	48.0	0.0	0.0\%
46.9\%	48.0	48.0	-0.1	-0.1\%
48.1\%	47.8	47.8	0.0	-0.1\%
49.4\%	47.8	47.8	0.0	0.0\%
50.6\%	47.8	47.8	0.0	0.0\%
51.9\%	47.8	47.8	0.0	${ }^{0.0 \%}$
53.12\%	47.7	47.8	0.1	
55.6\%	47.7	47.7	0.0	0.1%
55.8\%	47.6	47.7	0.1	0.2\%
58.0\%	47.6	47.6	0.0	0.0\%
59.3\%	47.6	47.6	0.0	0.1\%
60.5\%	47.6	47.6	0.0	0.0\%
61.7\%	47.5	47.5	-0.1	-0.1\%
63.0\%	47.5	47.4	-0.1	-0.2\%
	47.4	47.4	-0.1	${ }^{-0.1 \%}$
${ }^{65.49 \%}$				
${ }^{66.79 \%}$	47.4	47.3	-0.2	-0.3\%
-67.9\%	${ }_{472}^{47.2}$	47.2 472	0.0	0.0\%
70.4\%	47.1	${ }_{47.1}$	0.0	0.0\%
71.6\%	47.0	47.0	0.0	0.0\%
72.8\%	46.9	46.9	0.0	-0.1\%
74.1\%	46.9	46.8	-0.1	-0.1\%
75.3\%	46.8	46.7	-0.1	-0.2\%
76.5\%	46.8	46.7	-0.1	-0.2\%
77.8\%	46.7	46.7	-0.1	-0.2\%
${ }^{79.0 \%}$	46.7	46.6	-0.1	-0.2\%
80.2\%	46.7	46.6	-0.1	-0.1\%
81.5\%	46.7	46.6	-0.1	-0.2\%
82.7\%	46.7	46.6	-0.1	-0.2\%
84.0\%	46.7	46.5	-0.1	-0.3\%
85.2\%	46.6	46.5	-0.1	-0.1\%
86.4\%	46.5	46.3	-0.2	-0.4\%
87.7\%	46.5	46.3	-0.1	-0.3\%
88.9\%	46.4	46.3	-0.1	-0.2\%
90.19\%	46.3	46.3	0.0	-0.1\%
91.4\%	46.3	46.3	0.0	0.1\%
92.6\%	46.2	46.0	-0.2	-0.4\%
93.8\%	46.1	46.0	-0.1	-0.3\%
${ }_{96.3}^{96 \%}$	46.1	45.9	-0.2	${ }^{-0.4 \%}$
99.3\% ${ }_{\text {97.5\% }}$	${ }_{45}^{45.8}$	45.7	-0.1	-0.3\%
98.8\%	45.0	45.2	0.2	0.4\%
100.0\%	45.0	45.2	0.2	0.4\%

$\begin{gathered} \text { Percernt } \\ \left.\hline \begin{array}{c} \text { Exceanane } \\ \text { Probobabily } \end{array}\right) \end{gathered}$	WSIP 2030 Without Proiet Monthly Temperature (DEGF)	Uarch			$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \\ \text { (\%) } \end{gathered}$		April	$\begin{gathered} \text { Absolute } \\ \text { difference } \\ \text { (DEGF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
		WSIP 2030 With Project	$\begin{gathered} \text { Absolute } \\ \text { difference } \\ \text { (DEGFF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$		$\begin{gathered} \hline \text { WSIP 2030 Without } \\ \hline \text { Proiot } \\ \hline \text { Monthyly Tomperature } \end{gathered}$	WSIP 2030 With Project		
		Monthly Temperature (DEGF)					Monthly Temperature (DEGF)		
0.0\%	54.4	54.4	0.0	0.1\%	0.0\%	58.4	58.4	0.0	0.0\%
1.2\%	54.3	54.4	0.2	0.3\%	1.2\%	58.1	57.8	-0.3	-0.5\%
2.5\%	54.2	54.1	-0.1	-0.3\%	2.5\%	57.3	57.1	-0.2	-0.4\%
3.7\%	53.9	53.7	-0.2	-0.4\%	3.7\%	57.1	57.0	0.1	-0.2\%
4.9\%	53.6	53.7	0.1	0.2\%	4.9\%	57.0	56.5	0.5	-1.0\%
6.2\%	53.4	53.5	0.1	0.1\%	6.2\%	56.8	56.4	-0.4	-0.7\%
7.4\%	53.4	53.4	0.0	0.1\%	7.4\%	56.5	56.2	-0.3	-0.5\%
8.6\%	53.3	53.4	0.1	0.2\%	8.6\%	56.5	56.2	-0.3	-0.5\%
9.9\%	53.3	53.3	0.0	0.1\%	9.9\%	56.3	56.1	-0.2	-0.3\%
11.1\%	53.1	53.1	0.0	0.0\%	11.1\%	56.3	56.1	-0.2	-0.3\%
12.3\%	53.1	53.1	0.1	0.1\%	12.3\%	56.1	56.1	0.0	0.0\%
13.6\%	53.0	52.9	-0.1	-0.2\%	13.6\%	55.0	56.1	0.1	0.1\%
14.8\%	52.9	52.8	-0.1	-0.3\%	14.8\%	56.0	55.9	0.0	-0.1\%
16.0\%	52.8	52.8	0.0	0.0\%	16.0\%	55.8	55.9	0.1	0.1\%
17.3\%	52.7	52.7	0.1	0.1\%	17.3\%	55.8	55.8	0.0	0.0\%
18.5\%	52.6	52.6	0.0	-0.1\%	18.5\%	55.7	55.7	0.0	0.0\%
19.8\%	52.5	52.6	0.1	0.2\%	19.8\%	55.7	55.7	0.0	0.0\%
21.0\%	52.4	52.5	0.0	0.0\%	21.0\%	55.5	55.7	0.2	0.4\%
22.2\%	52.4	52.4	0.0	0.0\%	22.2\%	55.5	55.7	0.2	0.4\%
23.5\%	52.4	52.4	0.1	0.1\%	23.5\%	55.3	55.7	0.3	0.6\%
24.7\%	52.3	52.4	0.1	0.3\%	24.7\%	55.3	55.6	0.3	0.6\%
25.9\%	52.2	52.3	0.1	0.3\%	25.9\%	55.2	55.5	0.3	0.5\%
27.2\%	52.2	52.3	0.1	0.1\%	27.2\%	55.2	55.5	0.3	0.5\%
28.4\%	52.2	52.2	0.0	0.1\%	28.4\%	55.0	55.4	0.4	0.6\%
29.6\%	52.1	52.1	0.1	0.1\%	29.6\%	54.9	55.3	0.3	0.6\%
30.9\%	52.0	52.1	0.0	0.1\%	30.9\%	54.9	55.2	0.3	0.5\%
32.1\%	52.0	52.1	0.1	0.1\%	32.1\%	54.8	55.1	0.3	0.5\%
33.3\%	52.0	52.1	0.1	0.1\%	33.3\%	54.8	55.1	0.3	0.5\%
34.6\%	52.0 518	52.0 51.0	0.0	0.1\%	34.6\%	54.8 547	55.0 548 5.8	${ }^{0.2}$	0.4\%
- 37.0%		51.9 51.8		${ }_{0}^{0.1 \%}$					0.3\%
38.3\%	51.7	51.7	0.0	0.1\%	38.3\%	54.6	54.8	0.2	0.3\%
39.5\%	51.7	51.7	0.1	0.1\%	39.5\%	54.6	54.8	0.2	0.3\%
40.7\%	51.5	51.5	0.0	0.0\%	40.7\%	54.6	54.7	0.1	0.1\%
42.0\%	51.5	51.5	0.0	0.1\%	42.0\%	54.6	54.6	0.0	0.1\%
43.2\%	51.4	51.5	0.1	0.2\%	43.2\%	54.5	54.6	0.1	0.1\%
44.4\%	51.2	${ }_{51.3}$	0.1	0.2\%	4.4.4\%	54.5	54.6	0.1	0.2\%
45.7\%	51.2	51.2	0.1	0.1\%	45.7\%	54.4	54.5	0.2	0.3\%
46.9\%	51.1	51.1	0.0	0.0\%	46.9\%	54.3	54.5	0.2	0.4\%
48.19\%	51.1 509	55.1	0.0	0.0\%	48.1\%	54.3	54.5	0.2	0.4\%
4.94\%	50.9 508	50.9 508	0.0	0.0\%	${ }^{49.4 \%}$	54.2	54.4	0.2	0.4\%
50.6\%	50.8	50.8	0.0	0.0\%	50.6\%	54.2	54.4		
531.9\%	50.8 50.7	50.7 50.7	${ }_{0}^{0.0}$	${ }^{-0.0 \%}$	${ }^{51.9 \%} 5$	54.1 54.1	54.3 54.3	0.2 0.2	- 0.4%
54.3\%	50.7	50.7	0.0	0.0\%	54.3\%	54.0	54.3	0.3	0.5\%
55.6\%	50.7	50.7	0.0	0.0\%	55.6\%	54.0	54.2	0.3	0.5\%
56.8\%	50.6	50.6	-0.1	-0.1\%	56.8\%	53.9	54.2	0.3	0.5\%
58.0\%	50.6	50.5	-0.2	-0.3\%	58.0\%	53.9	54.1	0.3	0.5\%
59.3\%	50.6	50.3	-0.2	-0.4\%	59.3\%	53.9	54.1	0.3	0.5\%
60.5\%	50.4	50.3	-0.1	-0.3\%	60.5\%	53.9	54.0	0.2	0.3\%
61.7\%	50.4	50.3	-0.1	-0.2\%	61.7\%	53.8	54.0	0.2	0.3\%
63.0\%	50.3	50.3	-0.1	-0.1\%	63.0\%	53.8	54.0	0.2	0.4\%
64.2\%	${ }^{50.3}$	50.3	0.0	-0.1\%	64.2\%	53.8	54.0	0.2	0.4\%
65.4\%	50.3	50.1	-0.1	-0.3\%	65.4\%	53.7	54.0	0.2	0.4\%
${ }^{667.7 \%}$	50.0	50.1	0.0	0.1\%	${ }^{66.77 \%}$	${ }_{53,7}^{53.7}$	53.9	${ }^{0.2}$	0.4\%
67.9\%	50.0	50.0	0.0	0.0\%\%	67.9\%	${ }_{53.6}^{53.6}$	53.9 53	${ }^{0.3}$	0.6\%
69.1\%	50.0	49.9	-0.1	-0.1\%	69.1\%	53.6	53.8	0.3	0.5\%
70.4\%	49.9	49.9	0.0	0.0\%	70.4\%	53.4	${ }_{53,7}^{53.7}$	0.3	0.6\%
71.6\%	49.9	49.8	-0.1	-0.1\%	71.6\%	53.4	53.7	0.3	0.6\%
72.8\%	49.8	49.6	-0.2	-0.5\%	72.8\%	53.3	53.6	0.2	0.4\%
74.19\%	49.6	49.5	-0.1	${ }^{-0.2 \%}$	74.19\%	${ }_{53}^{53.3}$	53.5	0.1	${ }^{0.2 \%}$
${ }^{7.5 .5 \%}$	49.4 49.2	49.4 49.2	0.1 0.0	${ }_{0}^{0.00 \%}$	76.5\%	53.2 53.2	${ }_{53.3}^{53.3}$	0.1	${ }_{0.2 \%}^{0.2 \%}$
77.8\%	49.2	49.2	0.0	0.0\%	77.8\%	53.1	53.3	0.1	0.2\%
79.0\%	49.2	49.2	0.0	-0.1\%	79.0\%	53.1	53.2	0.1	0.3\%
80.2\%	49.2	49.2	0.0	-0.1\%	80.2\%	53.1	53.2	0.1	0.2\%
81.5\%	49.2	49.1	0.0	-0.1\%	81.5\%	52.9	53.2	0.3	0.6\%
82.7\%	48.7	48.8	0.0	0.0\%	82.7\%	52.9	52.9	0.1	0.1\%
84.0\%	48.7	48.7	0.0	0.0\%	84.0\%	52.7	52.9	0.1	0.3\%
85.2\%	48.7	48.7	0.0	-0.1\%	85.2\%	52.7	52.9	0.2	0.4\%
86.4\%	48.7	48.7	0.0	0.0\%	86.4\%	52.5	52.4	-0.2	-0.3\%
${ }^{87.7 \%}$	${ }_{48.4}^{48.5}$	${ }_{48.5}^{48.6}$	0.2 0.0	${ }_{0}^{0.0 \% \%}$	${ }^{87.7 \%}$	52.3 52.1	52.3 52.2	0.0 0.0	${ }_{0}^{0.0 \% \%}$
90.1\%	48.3	48.3	-0.1	-0.1\%	90.1\%	52.1	52.1	0.0	0.0\%
91.4\%	48.2	48.2	0.1	0.1\%	91.4\%	52.0	52.1	0.1	0.1\%
92.6\%	48.1	48.2	0.0	${ }^{0.00 \%}$	92.6\%	52.0	${ }_{519}^{51.9}$	-0.1	${ }^{-0.1 \%}$
93.8\%	48.1	${ }^{48.1}$	0.0	0.0\%	93.8\%	51.8	51.9	0.1	0.1\%
95.11\%	48.0	48.1	0.1	${ }^{0.19 \%}$	95.11\%	51.8	51.9 518	${ }^{0.1}$	${ }^{0.1 \%}$
96.3\%	48.0	47.9	0.0	0.0\%	96.3\%	51.8	${ }_{51.8}$	${ }^{0.1}$	0.1\%
${ }^{97.5 \%} 9$	48.0	47.9	0.0	0.0\%	97.5\%	50.7	50.7	0.0	${ }_{\text {a }}^{0.00 \%}$
100.0\%	47.7	47.6	-0.1	-0.2\%	100.0\%	50.5	50.5	0.0	0.0\%

Table SQT.10 at Red Blff, Monthly Temperature

Sacramento Riverate beid Bulft, wonthy Temperature
Probability of xxeedance

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Proabability } \end{gathered}$	June			
		WSIP 2030 With Project		
	Monthy Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
0.0\%	61.0	60.9	-0.1	-0.2\%
1.2\%	60.6	60.8	0.2	0.3\%
2.5\%	60.6	60.1	-0.4	
3.7\%	60.5	60.1	-0.4	-0.7\%
4.9\%	60.3	60.0	-0.3	-0.6\%
6.2\%	60.3	59.9	-0.3	-0.5\%
7.4\%	60.1	59.9	-0.2	-0.3\%
8.6\%	59.7	59.9	0.2	0.3\%
9.9\%	59.6	59.8	0.2	0.3\%
11.1\%	59.5	59.6	0.1	0.1\%
12.3\%	59.4 59.4	59.3 59.3	-0.1 0.0	-0.1\%
14.8\%	59.3	59.2	0.0	0,0\%
16.0\%	59.2	59.2	0.0	0.0\%
17.3\%	59.2	59.2	0.0	0.0\%
18.5\%	58.9	59.1	0.2	0.4\%
19.8\%	58.8	59.1	${ }^{0.3}$	0.5\%
21.0\%	58.7	59.1	${ }^{0.3}$	0.6\%
22.2\%	58.7	58.9	0.2	0.4\%
23.5\%	58.7	58.9	0.2	0.4\%
24.7\%	58.6	58.9	${ }^{0.3}$	0.5\%
25.9\%	58.6	58.9	0.3 0.3	${ }^{0.5 \%}$
28.4\%	58.5 58.5	58.8 58.8	${ }_{0.3}^{0.3}$	${ }_{\text {a }}^{0.5 \%}$
29.6\%	58.5	58.7	0.2	0.4\%
30.9\%	58.4	58.7	0.2	0.4\%
32.1\%	58.3	58.6	0.4	0.6\%
33.3\%	58.3	58.6	0.4	0.7\%
34.6\%	58.2	58.6	0.4	0.7\%
35.8\%	58.1	58.6	0.5	0.8\%
37.0\%	58.0	58.5	0.5	0.8\%
38.3\%	57.9	58.5	0.5	0.9\%
39.5\%	57.9	58.5	0.5	0.9\%
${ }^{40.7 \% \%}$	57.9	58.4	0.5	${ }^{0.8 \%}$
43.2\% ${ }^{42.2 \%}$	57.8 57.7	58.3 58.3	0.5 0.6	${ }^{0.9 \%}$
44.4\%	57.7	58.2	0.5	0.9\%
45.7\%	57.7	58.2	0.6	1.0\%
46.9\%	57.7	58.2	0.6	1.0\%
48.1\%	57.6	58.1	0.6	1.0\%
49.4\%	57.6	58.1	0.6	1.0\%
50.6\%	57.6	58.1	0.5	0.9\%
51.9\%	57.5	58.1	0.6	1.0\%
53.3\%	57.5 57.4	58.1 58.0	0.6 0.6	${ }_{\text {1.0\% }}^{1.10}$
55.6\%	57.4	58.0	0.6	1.1\%
56.3\%	57.4	58.0	0.6	1.1\%
58.0\%	57.3	58.0	0.7	1.2\%
${ }^{59.3 \% \%}$	57.3 573	58.0 579	0.7	${ }^{1.19 \%}$
60.5\%	57.3	57.9	0.5	0.9\%
61.7\%	57.3	57.8	0.5	0.9\%
63.0\%	57.3	57.7	0.4	0.7\%
64.2\%	57.2	57.6	0.5	0.8\%
65.4\%	57.1	57.6	0.5	0.8\%
66.7\%	57.1	57.6	0.5	0.8\%
${ }^{66.9 .1 \%}$	57.1 57.1	57.5 57.5	0.4 0.5	${ }^{0.8 \%}$
70.4\%	57.0	57.5	0.5	0.9\%
77.6\%	57.0	57.5	0.5	0.8\%
72.8\%	57.0	57.4	0.5	0.8\%
74.1\%	55.9	57.4	0.5	0.9\%
75.3\%	56.6	57.3 573	0.7	1.2\%
76.5\%	55.6	57.3	0.7	1.2\%
77.8\%	55.6	57.3	0.7	1.2\%
79.0\%	56.6	57.2	0.7	1.2\%
80.2\%	56.5	57.2	0.7	1.2\%
81.5\%	55.4	57.1	0.7	1.2\%
884.0\%	56.4	57.1 57.0	${ }_{0}^{0.6}$	${ }_{1.12 \%}^{1.2 \%}$
85.2\%	56.4	57.0	0.6	1.1\%
86.4\%	56.4	57.0	0.6	1.1\%
87.7\%	56.4	57.0	${ }^{0.6}$	1.1\%
88.9\%	56.2	57.0	${ }^{0.8}$	1.4\%
90.1\%	56.1	56.9	0.8	1.4\%
91.4\%	56.1	56.9	0.8	1.4\%\%
92.6\%	56.1	56.9	0.8	1.4\%\%
93.8\%	56.1	55.8	0.7	1.3\%
${ }_{996.3 \%}^{96 \%}$	56.0 55.9	56.6 56.4	0.6 0.5	${ }^{1.19 \%}$
97.5\%	55.7	56.4	0.7	1.3\%
98.8\%	55.5 55.5	56.3 56.3	0.8 0.8	${ }_{1}^{1.5 \%}$
100.0\%	55.5	56.3	0.8	1.5\%

		September		
Percent	${ }_{\substack{\text { Wsip } \\ \text { Proiect }}}^{\text {2030 Without }}$	WSIIP 2030 With Project	Absolute	
Probability	Monthly Temperature	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGFG) } \end{aligned}$	Difference (\%)
0.0\%	67.9	68.4	0.5	0.7\%
1.2\%	67.0	64.3	-27	-4.1\%
2.5\%	66.7	63.8	-2.9	-4.3\%
3.7\%	64.5	62.5	-2.0	-3.0\%
4.9\%	64.1	62.2	-1.9	-2.9\%
6.2\%	63.4	62.0	-1.4	-2.2\%
7.4\%	62.9	61.7	-1.2	-1.8\%
8.6\%	${ }^{62.7}$	61.7	-1.1	-1.7\%
9.9\%	62.7	61.4	-1.3	-2.1\%
111.19\%	62.6	61.4	-1.2	-1.9\%
${ }^{12.3 \%}$	62.4	61.3	-1.1	-1.7\%
13.6\%	62.3	61.2	-1.1	-1.8\%
14.8\%	62.2	61.1	-1.1	-1.7\%
16.0\%	${ }_{622}^{62.2}$	61.0	-1.2	${ }_{-2.0 \%}$
17.3\%	62.2	60.9	-1.3	-2.1\%
18.5\%	61.8	60.7	-1.1	-1.8\%
19.8\%	61.6	60.7	-0.9	-1.4\%
21.0\%	61.5	60.7	-0.8	-1.3\%
22.2\%	61.4	60.5	-0.9	-1.4\%
23.5\%	61.3	60.5	-0.7	-1.2\%
24.7\%	61.2	60.5	-0.8	-1.3\%
25.9\%	61.2	60.5	-0.7	-1.1\%
27.2\%	61.1	60.5	-0.7	-1.1\%
28.4\%	61.1	60.5	-0.6	-1.0\%
29.6\%	61.1	60.5	-0.6	-1.0\%
30.9\%	60.9	60.3	-0.6	-1.0\%
32.1\%	60.7	60.2	-0.5	-0.9\%
33.3\%	60.7	60.1	-0.5	-0.9\%
34.6\%	${ }_{60.6}$	${ }^{60.1}$	-0.5	-0.9\%
35.8\%	60.6	60.1	-0.5	-0.8\%
37.0\%	60.3	60.1	-0.3	-0.4\%
38.3\%	60.0	60.0	0.0	0.1\%
			0.1	0.1\%
- 40.70%	59.8 59.6	59.8 59.6	0.0	0.0\%
${ }^{42.0 \%}$	59.6 59.4	59.6 59.3	0.0 -0.0	-0.1\%
${ }^{43.2 \%}$	59.4	${ }_{59}^{59.3}$	-0.1	-0.2\%
${ }^{44.45 \%}$	59.3 59.2	59.3 59.3	0.0 0.1	${ }_{0}^{0.0 \%}$
46.9\%	59.0	59.3	0.3	0.5\%
48.1\%	59.0	59.3	0.3	0.4\%
49.4\%	58.9	59.2	0.4	0.6\%
50.6\%	58.5	59.0	0.5	0.9\%
51.9\%	58.4	58.9	0.6	1.0\%
	58.4 58.3	58.8 58.8	0.4 0.5	- 0.9%
55.6\%	58.1	58.6	0.5	0.8\%
56.8\%	58.1	58.5	0.5	0.8\%
58.0\%	57.9	58.5	0.5	0.9\%
59.3\%	57.9	58.3	0.4	0.7\%
60.5\%	57.7	58.2	0.5	0.8\%
61.7\%	57.6	58.0	0.4	0.7\%
63.0\%	57.6	57.9	0.4	0.6\%
64.2\%	57.5	57.9	0.3	0.6\%
65.4\%	57.3	57.8	0.5	0.9\%
${ }_{6}^{66.79 \%}$	57.3	57.7	0.4	0.7\%
67.9\%	57.3	57.6	0.4	0.6\%
69.1\%	57.3	57.6	0.4	0.6\%
70.4\%	57.1	57.6 57.5	0.5	0.9\%
71.6\%	57.1	57.5	${ }^{0.3}$	0.6\%
72.8\%	55.9	57.3	0.4	0.7\%
74.1\%	56.9	57.2	${ }^{0.3}$	0.5\%
75.3\%	55.8	57.2	0.4	0.7\%
76.5% 778%	56.8	56.9	0.2	0.3\%
77.8\%	56.4	55.6	0.2	0.4\%
-79.0\%	56.4 56.2	56.5 56.3	${ }_{0.2}^{0.1}$	${ }_{\text {a }}^{0.3 \%}$
81.5\%	56.1	56.2	0.1	0.2\%
82.7\%	56.1	55.2	0.2	0.3\%
84.0\%	55.6	56.1	0.5	0.9\%
85.2\%	55.5	55.0	0.4	0.8\%
86.4\%	55.5	55.9	${ }^{0.4}$	0.8\%
87.7\%	55.5	55.8	${ }^{0.3}$	0.6\%
88.9\%	55.3	55.8	${ }^{0.6}$	1.0\%
90.1\%	55.1	55.7	0.6	${ }^{1.0 \%}$
${ }_{9}^{91.46 \%}$	55.0 55.0	55.6 55.3	0.6 0.3	1.1.6\%
93.8\%	54.9	54.7	-0.2	-0.3\%
95.1\%	54.9	54.6	-0.3	-0.6\%
96.3\%	54.1	54.2	0.2	0.3\%
97.5\%	53.7	54.0	${ }^{0.3}$	0.5\%
98.8\%	53.7 537	53.8 538	${ }_{0}^{0.1}$	0.2\%
100.0\%	53.7	53.8	0.1	0.2\%

Table SQ7-1b
Sacramento River ate exit Bulft Monthy Temperature
Probabily fof Exceedance

	Juniosepmor			
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	$\begin{aligned} & \text { WSIP 2030 Without } \\ & \text { Proiet } \end{aligned}$	Wsip	ute	
	Monthly Temperature	Monthly Temperature	(iflerence	Difference (\%)
	(DEGF)	(DEGF)		
0.0\%	64.6	63.5	${ }^{-1.1}$	-1.7\%
${ }_{2.5 \%}^{1.2 \%}$	${ }_{61.8}^{62.1}$	${ }_{61.6}^{61.6}$	-0.5 -0.8	-
3.7\%	61.7	60.9	-0.8	-1.3\%
4.9\%	61.5	60.8	-0.7	-1.1\%
6.2\%	61.4	60.8	-0.5	-0.9\%
7.4\%	61.3	60.7	-0.6	-0.9\%
8.6\%	60.7	60.7	0.0	0.0\%
9.9\%	60.5	60.4	-0.2	-0.3\%
11.1\%	60.5	60.2	-0.3	-0.5\%
12.3\%	60.5	60.2	-0.3	-0.4\%
13.6\%	60.4	60.2	-0.2	-0.4\%
14.8\%	60.4	60.2	-0.2	-0.4\%
16.0\%	60.3	60.0	-0.3	-0.4\%
17.3\%	60.3	60.0	-0.3	-0.4\%
18.5\%	60.3	59.9	-0.3	-0.5\%
19.8\%	60.1	59.8	-0.3	-0.4\%
21.0\%	59.9	59.8	-0.1	-0.2\%
${ }^{22.22 \%}$	59.9	59.7	-0.2	${ }^{-0.3 \%}$
23.5\%	59.9 598	59.7 59.7	-0.2 -0.2	- ${ }^{-0.3 \%}$
25.9\%	59.8	59.7	-0.2	-0.3\%
27.2\%	59.8	59.6	-0.2	-0.3\%
28.4\%	59.7	59.6	-0.1	-0.2\%
29.6\%	59.7	59.5	-0.1	-0.2\%
30.9\%	59.7	59.5	-0.2	-0.3\%
32.1\%	59.7	59.4	-0.2	-0.4\%
33.3\%	59.6	59.3	-0.3	-0.5\%
34.6\%	59.5	59.3	-0.2	-0.3\%
35.7\%	59.4	59.3	-0.1	-0.2\%
37.0\%	59.4	59.3	-0.1	-0.2\%
-	59.3	$\begin{array}{r}59.3 \\ 59.3 \\ \hline\end{array}$	${ }_{0}^{0.0}$	${ }^{0.0 \% \%}$
40.7\%	59.2	59.3	0.1	0.1\%
42.0\%	59.1	59.3	0.1	0.2\%
43.2\%	59.0	59.3	0.2	0.4\%
44.4\%	59.0	59.1	0.1	0.2\%
45.7\%	59.0	59.1	0.1	0.2\%
46.9\%	59.0	59.0	0.0	0.1\%
48.1\%	58.9	59.0	0.1	0.1\%
4.94\%	58.6	58.9	0.3	0.5\%
50.6\%	58.6 58.6	58.8 58.7	0.3 0.2	${ }_{\text {en }}^{0.5 \%}$
53.1\%	58.5	58.7	0.1	0.2\%
54.3\%	58.5	58.6	0.1	0.2\%
55.6\%	58.5	58.5	0.1	0.1\%
56.8\%	58.4	58.5	0.1	0.2\%
58.0\%	58.3	58.5	0.2	0.3\%
59.3\%	58.3	58.5	0.2	0.3\%
60.5\%	58.3	58.5	0.1	0.2\%
61.7\%	58.3	58.4	0.1	0.2\%
63.0\%	58.3	58.4	0.1	0.2\%
${ }^{64.20 \%}$	58.2	58.4	0.2	0.3\%
${ }^{65.4 \%}$	58.2	58.4	0.2	0.4\%
66.7\%	58.2	58.4	0.3	0.4\%
${ }^{67.9 \%}$	58.1	58.3	${ }^{0.2}$	0.4\%
69.19\%	58.1 580	${ }_{58.3}$	${ }^{0.3}$	0.4\%
71.6\%	58.0	58.3	0.3	0.6\%
72.8\%	57.9	58.3	0.3	0.6\%
74.1\%	57.9	58.3	0.4	0.6\%
75.3\%	57.9	58.1	0.2	0.3\%
76.5\%	57.8	58.1	0.2	0.4\%
77.8\%	57.8	58.0	0.2	0.4\%
79.0% 80.20%	57.7 57.7	58.0 58.0	0.3 0.3	${ }^{0.5 \%}$
81.5\%	57.5	58.0	0.5	0.8\%
82.7\%	57.5	58.0	0.5	0.9\%
84.0\%	57.4	57.8	0.4	0.7\%
85.2\%	57.3	57.8	0.4	0.7\%
86.4\%	${ }_{57.3}$	57.6	${ }^{0.3}$	0.5\%
87.7\%	57.1	57.4	${ }^{0.2}$	0.4\%
ceme	57.1	57.4	0.3	${ }_{\text {cose }}^{0.5 \%}$
${ }^{90.10 \%}$	57.0 57.0	57.3 57.3	0.3 0.2	- 0.4%
92.6\%	56.9	57.2	0.2	0.4\%
93.8\%	56.7	57.1	0.4	0.7\%
95.1\%	56.7	57.1	0.4	0.7\%
96.3\%	56.7 56.4	56.9 56.6	${ }_{0}^{0.3}$	${ }^{0.5 \%}$
97.5\%	56.4	${ }_{56.6}$	${ }^{0.3}$	0.5\%
98.8\%	56.2 558	55.4 557	0.1	0.2\%
100.0\%	55.8	55.7	-0.1	-0.2\%

$\underset{\substack{\text { Percent } \\ \text { Exceeance } \\ \text { Pronality }}}{ }$	July to September		Probabily fexceeeance		August to Spplember				
	WSII 2033 W Without	WSIP 2030 With Project			Percent	WSII 2033 Without	WSIP 2030 With Project		
	Proiect			Reative	Exceedance	Proiect		Difference	
$\underset{\substack{\text { Probability } \\(\%)}}{ }$	Monthly Temperature	Monthly Temperature	(DEGF)	Difference (\%)	Probability	Monthly Temperature	Monthly Temperature	(DEGF)	
0.0\%	66.4	64.8	${ }^{-1.6}$	2.4\%	0.0\%	68.5	66.5	-2.0	-2.9\%
1.2\%	63.2	62.4	-0.8	-1.3\%	1.2\%	64.6	62.9	${ }^{1.8}$	27\%
2.5\%	62.9	61.9	-1.0	-1.6\%	2.5\%	64.5	62.6	-1.9	-3.0\%
3.7\%	62.6	61.7	-0.9	-1.4\%	3.7\%	63.9	62.2	-1.6	-2.5\%
4.9\%	62.5	61.5	-1.1	1.7\%	4.9\%	63.6	61.9	-1.7	-2.7\%
6.2\%	62.0	61.2	-0.9	-1.4\%	6.2\%	62.7	61.5	-1.2	-1.9\%
7.4\%	62.0	61.0	-1.0	-1.7\%	7.4\%	62.5	61.3	-1.2	-1.9\%
8.6\%	61.8	61.0	-0.8	-1.3\%	8.6\%	62.2	61.2	-1.0	-1.5\%
9.9\%	61.1	60.9	-0.2	-0.4\%	9.9\%	62.1	61.1	-1.0	-1.6\%
11.1\%	61.1	60.8	-0.3	-0.5\%	11.1\%	62.1	61.0	-1.0	-1.6\%
12.3\%	61.1	60.8	-0.3	-0.5\%	12.3\%	61.8	61.0	-0.8	-1.2\%
13.6\%	61.1	60.8	-0.3	-0.5\%	13.6\%	61.7	60.9	-0.8	-1.3\%
14.8\%	60.9	60.8	-0.2	-0.3\%	14.8\%	61.6	60.9	-0.7	-1.2\%
16.0\%	60.9	60.7	-0.2	-0.3\%	16.0\%	61.6	60.8	-0.8	-1.2\%
17.3\%	60.8	60.5	-0.4	-0.6\%	17.3\%	61.6	60.8	-0.8	-1.2\%
18.5\%	60.8	60.4	-0.4	-0.6\%	18.5\%	61.5	60.8	-0.7	-1.1\%
19.8\%	60.8	60.4	-0.4	-0.6\%	19.8\%	61.4	60.7	-0.6	-1.1\%
21.0\%	60.7	60.2	-0.5	-0.8\%	21.0\%	61.3	60.7	-0.6	-0.9\%
22.2\%	60.7	60.1	-0.6	-1.0\%	22.2\%	61.2	60.6	-0.6	-1.0\%
23.5\%	60.7	60.1	-0.6	-1.0\%	23.5\%	61.1	60.5	-0.6	-1.0\%
24.7\%	60.6	60.1	-0.5	-0.9\%	24.7\%	61.1	60.3	-0.7	-1.2\%
25.9\%	60.5	60.0	-0.4	-0.7\%	25.9\%	61.0	60.3	-0.7	-1.1\%
27.2\%	60.4	60.0	-0.4	-0.7\%	27.2\%	61.0	${ }^{60.3}$	-0.6	-1.1\%
28.4\%	60.4	60.0	-0.4	-0.7\%	28.4\%	60.9	60.3	-0.6	-1.0\%
29.6\%	60.1	60.0	-0.2	-0.3\%	29.6\%	60.9	60.3	-0.6	-0.9\%
30.9\%	60.0	59.9	-0.1	-0.2\%	30.9\%	60.5	60.3	-0.2	-0.4\%
32.1\%	60.0	59.9	-0.2	-0.3\%	32.1\%	60.5	60.3	-0.2	-0.3\%
33.3\%	60.0	59.8	-0.2	-0.3\%	33.3\%	60.4	60.3	-0.2	-0.3\%
34.6\%	59.7	59.7	0.0	0.1\%	34.6\%	60.1	60.1	0.0	0.1\%
35.8\%	59.7	59.6	0.0	-0.1\%	35.8\%	60.0	60.1	0.1	0.1\%
37.0\%	59.5	59.6	0.1	0.2\%	37.0\%	59.9	59.8	-0.1	-0.1\%
	59.5 595 59	59.6 59.5	${ }_{0}^{0.1}$		- ${ }_{\text {38.3\% }}$	59.8 59.8	$\stackrel{59.7}{59.7}$	-0.1	-0.1\%
40.7\%	59.5	59.5	0.0	0.0\%	40.7\%	59.7	59.6		-0.2\%
42.0\%	59.4	59.4	0.0	0.0\%	42.0\%	59.7	59.6	-0.2	-0.3\%
43.2\%	59.4	59.4	0.0	0.0\%	43.2\%	59.7	59.5	-0.2	-0.3\%
44.4\%	59.0	59.3	0.3	0.4\%	44.4\%	59.7	59.4	-0.3	-0.5\%
45.7\%	59.0	59.1	0.0	0.1\%	45.7\%	59.6	59.4	-0.2	-0.3\%
46.9\%	59.0	59.1	0.0	0.1\%	46.9\%	59.4	59.4	-0.1	-0.2\%
48.1\%	59.0	59.0	0.0	0.1\%	48.1\%	59.4	59.3	0.0	0.0\%
49.4\%	58.9	59.0	0.1	0.2\%	49.4\%	59.3	59.3	0.0	-0.1\%
50.6\%	58.9	59.0	0.1	0.1\%	50.6\%	59.3	59.3	-0.1	-0.1\%
51.9\%	58.9	58.9	0.0	0.1\%	51.9\%	59.2	59.3	0.1	0.2\%
53.19\%	58.8 588 58	58.8 588 58	0.0	${ }^{0.19 \%}$	53.19\%	$\begin{array}{r}59.1 \\ 59.1 \\ \hline 9.0\end{array}$	59.2)	0.0	${ }^{0.0 \% \%}$
54.3\%	58.8	55.8	0.0	0.1\%	54.3\%	59.1	59.1	0.0	0.0\%
55.6\%	58.8	58.8	0.0	-0.1\%	55.6\%	59.0	59.0	0.0	-0.1\%
56.8\%	58.7	${ }_{58.8}^{58.8}$	0.0	0.11\%	56.8\%	58.9	58.8	-0.1	-0.1\%
58.0\%	58.7	58.6	-0.1	-0.2\%	58.0\%	58.9	58.8	-0.1	-0.1\%
59.3\%	58.7	58.5	-0.1	-0.3\%	59.3\%	58.9	55.8	-0.1	-0.1\%
60.5\%	58.6	58.5	-0.1	-0.3\%	60.5\%	58.8	58.8	0.0	0.0\%
61.7\%	58.6	58.5	-0.1	-0.2\%	61.7\%	58.7	55.8	0.1	0.1\%
-63.0\%	58.5 585	58.5	0.0	${ }^{-0.1 \%}$	${ }^{63.0 \%}$	58.7 59.6	58.8	0.1	0.1\%
64.2% 65.4%	58.5 58.5	58.5 58.5	0.0 0.0	${ }_{\text {- }}^{0.0 .0 \%}$	- 64.29%	58.6 58.5	58.7 58.7	${ }_{0.2}^{0.1}$	-
66.7\%	58.4	58.4	0.0	0.0\%	66.7\%	58.5	58.6	0.2	0.3\%
67.9\%	58.3	58.4	0.1	0.2\%	67.9\%	58.5	58.6	0.2	0.3\%
69.1\%	58.3	58.4	0.1	0.2\%	69.1\%	58.4	55.6	0.2	0.3\%
70.4\%	58.2	58.4	0.1	0.2\%	70.4\%	58.2	58.5	0.4	0.6\%
71.6\%	58.2	${ }_{58.3}$	0.1	0.2\%	71.6\%	58.1	58.5	0.4	0.7\%
72.8\%	58.2	58.3	0.1	0.2\%	72.8\%	58.1	58.4	0.3	0.5\%
74.1\%	58.1	58.3	0.2	0.3\%	74.1\%	58.1	58.3	0.2	0.3\%
75.3\%	58.0	58.3	${ }^{0.3}$	0.4\%	75.3\%	58.1	58.3	0.2	0.3\%
76.5\%	58.0	58.2	${ }^{0.3}$	0.5\%	76.5\%	58.1	58.3	0.2	0.3\%
77.8\%	57.9	58.2	${ }^{0.3}$	${ }^{0.5 \%}$	77.8\%	58.1	58.3	0.2	0.3\%
${ }^{79.0 \%}$	57.9	${ }_{58.2}$	${ }^{0.3}$	0.6\%	79.0\%	58.0	58.2	0.3	0.5\%
80.2\%\%	57.8 577	$\begin{array}{r}58.2 \\ 58.2 \\ \hline\end{array}$	0.4 0.4	-0.6\%	80.2\% 88.5%	57.8 57.8	58.1 58.0	${ }_{0}^{0.3}$	${ }^{0.5 \%}$
88.5\%	57.7	58.2	0.4	0.8\%	81.5\%	57.8 578	${ }_{57.0}^{58.0}$	${ }^{0.1}$	0.2\%
82.7\%	57.7	58.1	0.5	0.8\%	82.7\%	57.8	57.9	0.1	0.2\%
88.0\% ${ }^{85.2 \%}$	57.6 57.5	58.1 58.0	0.4 0.5	${ }_{\text {cose }}^{0.8 \%}$	84.0% 85.2%	57.7 576	57.8	${ }^{0.1}$	${ }_{\text {orem }}^{0.2 \%}$
86.4\%	57.4	57.9	0.5	0.8\%	86.4\%	57.5	57.7 57.7	0.3	0.5\%
87.7\%	57.4	57.7	0.3	0.6\%	87.7\%	57.3	57.6	0.3	0.5\%
88.9\%	57.2	57.5	0.2	0.4\%	88.9\%	57.3	57.4	0.1	0.2\%
90.1\% 91.4%	57.2 57.2	57.2 57.1	-0.1 -0.1	-0.0.0\%	${ }_{\text {91.4\% }}^{90.19 \%}$	57.1 57.1	57.3 57.1	0.2 0.0	${ }_{\text {a }}^{0.3 \%}$
${ }_{92.6 \%} 9$	55.9	57.0	0.1	${ }_{0}$	${ }^{91.42 \%}$	57.0	57.9	-0.1	${ }_{\text {-0.1\% }}^{0.0 \%}$
93.8\%	56.9	57.0	0.1	0.2\%	93.8\%	56.6	56.9	0.3	0.5\%
95.1\%	56.7	56.9	0.2	0.3\%	95.1\%	56.3	55.6	0.3	0.6\%
96.3\%	${ }_{56.7}^{56.7}$	${ }_{56.8}^{56.8}$	0.1	0.1\%	96.3\%	${ }_{56.1}^{56.2}$	56.4	0.2	0.3\%
97.5\%	56.6	56.5	-0.1	-0.2\%	97.5\%	56.1	56.1	-0.1	-0.1\%
98.8\%	${ }_{56.3}^{56.3}$	56.4	0.1	0.2\%	98.8\%	56.1	${ }_{56.0}^{56.0}$	-0.1	-0.2\%
100.0\%	55.7	55.5	-0.2	-0.4\%	100.0\%	55.2	54.8	-0.4	-0.6\%

Figure SQ8-1b
Sacramento River below Red Bluff, Monthly Temperature

Sacramento River below Red Buff, Monthly Temperature

$\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probabaility } \end{array} \end{aligned}$	October			
	${ }^{\text {WSIIP }}$ Pro30 Without	WSIP 203 W With Project		Relative
	Monthly Temperature (DEGF)	Monthly Temperature	$\begin{aligned} & \text { Difference } \\ & \text { (DEEGF) } \end{aligned}$	Difference (\%)
0.0\%	64.6	63.3	${ }^{1.3}$	-2.0\%
1.2\%	64.5	62.8	-1.7	-2.7\%
2.5\%	62.6	62.7	0.1	0.2\%
3.7\%	61.4	61.5	0.2	0.3\%
4.9\%	60.2	607	0.5	
6.2\%	59.4	59.9	0.5	0.8\%
7.4\%	59.3	59.4	0.1	0.1\%
8.6\%	59.2	59.4	0.2	0.3\%
9.9\%	59.1	59.1	-0.1	-0.1\%
11.1\%	58.9	59.0	0.2	0.3\%
12.3\%	58.8	58.9	0.1	0.2\%
13.6\%	58.6	58.9	0.2	0.4\%
14.8\%	58.5	58.9	${ }^{0.3}$	0.5\%
16.0\%	58.5	58.7	0.2	0.4\%
17.3\%	58.4	58.7	0.3	0.5\%
18.5\% 19.8%	58.3 58.3	58.6 58.5	0.3 0.2	${ }_{0}^{0.5 \%}$
21.0\%	${ }_{58.3}$	58.5	0.2	0.3\%
22.2\%	58.3	58.4	0.1	0.3\%
23.5\%	58.2	58.4	0.3	0.4\%
24.7\%	58.1	58.3	0.2	0.4\%
25.9\%	58.1	58.1	0.1	0.1\%
27.2\%	58.1	58.1	0.0	0.0\%
28.4\%	58.1	58.1	0.0	0.0\%
29.6\%	55.0	57.9	0.0	-0.1\%
30.9\%	58.0	57.9	0.0	-0.1\%
32.1\%	57.9	57.9	-0.1	-0.1\%
33.3\%	57.9	57.8	-0.2	-0.3\%
34.6\%	57.9	57.8	-0.1	-0.2\%
35.8\%	57.8	57.7	0.0	0.0\%
37.0\%	57.8	57.6	-0.2	-0.3\%
38.3\%	57.6	57.6	-0.1	-0.1\%
39.5\%	57.6	57.5	-0.1	-0.3\%
40.7\%	57.6	57.5	-0.1	-0.2\%
42.0\%	57.6	57.4	-0.1	-0.2\%
43.2\%	57.5	57.4	-0.1	-0.2\%
44.4\%	57.5	57.4	-0.1	-0.2\%
${ }^{45.79 \%}$	57.5 57.4	57.4 57.4	0.0 0.0	-0.0.1\%
48.1\%	57.4	57.4	0.0	-0.1\%
49.4\%	57.4	57.3	-0.1	-0.2\%
50.6\%	57.3	57.3	0.0	0.0\%
51.9\%	57.3	57.2	0.0	0.0\%
53.1\%	57.2	57.2	0.0	0.0\%
54.3\%	57.2	57.2	0.0	0.0\%
55.6\%	57.2	57.2	0.0	0.0\%
56.8\%	57.2	57.2	0.0	0.0\%
58.0\%	57.2	57.1	-0.1	-0.1\%
59.3\%	57.1	57.1	0.0	${ }_{\text {0, }}^{0.0 \%}$
60.5\% 61.7%	57.1 57.1	57.1 57.0	0.0 -0.1	-0.1\%
63.0\%	57.1	57.0	-0.1	-0.1\%
64.2\%	57.0	57.0	0.0	0.0\%
65.4\%	57.0	56.9	0.0	-0.1\%
66.7\%	57.0	56.9	0.0	-0.1\%
67.9\%	56.9	55.9	0.0	0.0\%
69.1\%	56.9	56.9	0.0	0.1\%
70.4\%	55.8	55.9	0.1	0.2\%
71.6\%	56.8	56.9	0.1	0.2\%
72.8\%	56.7	56.9	0.2	0.3\%
74.19\%	56.7	55.9	0.2	0.3\%
7.35\%	56.7	55.8	0.1	
76.5\%	56.7 56.6	56.7 56.6	${ }_{0}^{0.0}$	${ }_{0}^{0.0 \% \%}$
79.0\%	55.6	56.6	0.0	0.0\%
80.2\%	56.6	56.6	0.0	0.1\%
81.5\%	55.6	56.6	0.0	0.0\%
82.7\%	56.5	56.5	0.0	0.0\%
84.0\%	56.5	56.5	0.0	0.0\%
85.2\% ${ }_{\text {86.4\% }}$	56.5 56.4	56.5 56.5	0.0 0.0	-0.0\%
87.7\%	56.4	56.4	0.0	0.1\%
88.9\%	56.3	56.3	0.1	0.1\%
90.1\%	56.3	56.1	-0.2	-0.3\%
91.4\%	56.1	56.1	0.0	-0.1\%
92.6\%	55.9	55.0	0.1	0.3\%
93.8\%	55.9	55.9	0.0	-0.1\%
95.1\%	55.8	55.8	0.0	0.0\%
96.3\%	55.6	55.8	0.2	0.3\%
97.5\%	55.4	55.3	0.0	0.0\%
98.8\%	55.0	55.1	0.1	0.2\%
100.0\%	55.0	55.1	0.0	0.2\%

		January		
Percent		WSIIP 2030 With Project	Absolute	
$\begin{aligned} & \text { Probability } \\ & (\%) \end{aligned}$	Monthly Temperature	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGFG) } \end{aligned}$	Difference (\%)
0.0\%	50.4	50.5	0.1	0.1\%
1.2\%	49.4	49.4	0.0	0.1
2.5\%	49.3	49.3	0.0	0.1\%
3.7\%	49.1	49.1	-0.1	-0.1\%
4.9\%	49.1	49.0	0.0	0.0\%
6.2\%	49.0	49.0	0.0	0.0\%
7.4\%	48.8	48.9	0.1	0.2\%
8.6\%	48.7	48.8	0.1	0.3\%
9.9\%	48.5	48.7	0.1	0.2\%
111.19\%	48.4	48.5	0.1	0.1\%
${ }^{12.3 \%}$		48.3	-0.1	${ }^{-0.1 \%}$
13.6\%	48.3	48.2	0.0	-0.1\%
14.8\%	${ }^{48.3}$	48.2	-0.1	-0.1\%
16.0\%	48.1	48.1	0.0	0.0\%
17.3\%	47.9	48.1	0.2	0.3\%
18.5\%	47.9	48.0	0.1	0.3\%
19.8\%	47.8	47.9	0.1	0.2\%
21.0\%	47.8	47.8	0.1	0.1\%
22.2\%	47.8	47.8	0.0	0.1\%
23.5\%	47.7	47.7	0.0	0.0\%
24.7\%	47.7	47.7	0.0	-0.1\%
25.9\%	47.6	47.6	0.0	0.1\%
27.2% 28.4%	47.6 47.5	47.6 47.6	${ }_{0.1}^{0.0}$	0.0.1\%
29.6\%	47.5	${ }_{47}^{47.6}$	0.1	0.210
30.9\%	47.5	47.5	0.0	0.0\%
32.1\%	47.5	47.4	-0.1	-0.1\%
33.3\%	47.4	47.4	0.0	-0.1\%
34.6\%	47.4	47.4	0.0	-0.1\%
35.\%	47.4	47.4	0.0	0.1\%
37.0\%	47.3	47.4	0.1	0.1\%
38.3\%	47.3	47.3	0.0	0.0\%
39.5\%	47.3	47.3	0.0	0.0\%
40.77\%	47.3	47.3	0.0	0.0\%
42.0\%	47.3	47.2	0.0	-0.1\%
43.2\%	47.2	47.2	0.0	-0.1\%
44.4\%	47.1	47.2	0.0	0.1\%
45.7\%	47.1	47.1	0.0	0.1\%
46.9\%	47.1	47.1	0.0	0.0\%
48.1\%	47.0	47.1	0.1	0.1\%
49.4\%	47.0	47.1	0.1	0.2\%
50.6\%	47.0	47.0	0.1	0.1\%
51.9\%	47.0	47.0	0.0	0.1\%
53.19\%	47.0	47.0	0.0	0.0\%
54.3\%	47.0	46.9	0.0	-0.1\%
55.6\%	${ }_{468}^{47.0}$	46.9	-0.1	-0.2\%
56.8\%	46.8 46.8	46.8	0.0	0.0\%
58.0\%	46.8	46.8	0.0	0.0\%
59.3\%	46.7	46.7	0.0	0.0\%
60.5\%	46.7	46.7	0.0	0.0\%
61.7\%	46.7	46.7	0.0	0.0\%
63.0\%	46.7	46.7	0.0	0.0\%
${ }^{64.2 \%}$	46.6	46.6	0.0	0.1\%
65.4\%	46.6	46.6	0.0	0.1\%
66.7% 6790%	46.6	46.5	0.0	0.0\%
- $\begin{aligned} & 67.9 \% \\ & 69.1 \%\end{aligned}$	46.6		-0.1	-0.1\%
69.1\%	46.5	46.5	-0.1	${ }^{-0.2 \%}$
70.4\%	46.5	46.4	-0.1	-0.2\%
${ }^{71.6 \%}$	46.5 46.5	46.4	-0.1	${ }^{-0.19}$
74.1\%	46.5	${ }_{46.4}$	-0.1	-0.1\%
75.3\%	46.5	46.4	-0.1	-0.1\%
76.5\%	46.5	46.4	-0.1	-0.2\%
77.8\%	46.4	46.4	-0.1	-0.2\%
79.0\%	46.4	46.4	-0.1	-0.2\%
80.2\%	46.4	46.3	-0.1	-0.2\%
81.5\%	46.4	46.3	-0.1	-0.2\%
82.7\%	46.3	46.3	-0.1	-0.1\%
84.0\%	46.3	46.2	0.0	-0.1\%
85.2\%	46.3	46.1	-0.1	-0.3\%
86.4\%	46.2	46.1	-0.1	-0.3\%
87.7\%	46.1	46.0	-0.1	-0.2\%
${ }^{88.9 \%}$	46.1	45.9	-0.2	-0.4\%
90.1\%	46.0	45.8	-0.2	-0.4\%
91.4\%	45.8	45.8	0.0	0.1\%
92.6\%	45.7	45.8	0.1	${ }_{0}^{0.2 \%}$
${ }^{935.8 \%}$	${ }_{45.6}^{45.7}$	${ }_{45.7}^{45.7}$	${ }_{0}^{0.1}$	${ }_{0}^{0.1 \%}$
96.3\%	45.6	45.5	-0.1	-0.1\%
97.5\%	45.5	45.4	-0.1	-0.3\%
98.8\%	45.5	45.3	-0.2	0.3\%
100.0\%	45.5	45.3	-0.2	-0.3\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{gathered}$	February			
	WSIP 2030 Without Proiet	WSIP 2030 With Project	Absolu	
	Monthy Temperature	Monthy Temperature	Difference	Difference (\%)
(\%)	527	527	0	0.10
0.0\%	52.7	52.7		0.1\%
1.2\%	50.9	51.2	0.2	
2.5\%	50.6 50.4	50.3	-0.2	-0.5\%
4.9\%	49.9	49.9	0.0	0.1\%
6.2\%	49.7	49.7	0.1	0.1\%
7.4\%	49.7	49.7	0.1	0.1\%
8.6\%	49.5	49.7	0.1	0.3\%
9.9\%	49.5	49.6	0.1	0.2\%
11.1\%	49.5	49.6	0.1	0.2\%
12.3\%	49.5	49.5	${ }^{0.1}$	${ }^{0.19 \%}$
13.6\%	${ }_{49.4}^{49.4}$	49.5		
14.8\% 16.0\%	49.4	49.5	0.0	${ }^{0.10 \%}$
17.3\%	49.2	49.2	0.0	0.0\%
18.5\%	49.0	49.0	0.0	0.0\%
19.8\%	48.8	48.9	0.1	0.2\%
21.0\%	48.8	48.8	0.0	0.1\%
22.2\%	48.8	48.6	-0.1	-0.2\%
224.7\%	48.7	48.6	-0.1	-0.1\%
24.70\%	48.6 48.5	48.6 48.6	-0.1	${ }^{-0.1 \%}$
27.2\%	48.5	${ }_{48.6}$	0.0	${ }_{0}^{0.1 \%}$
28.4\%	48.5	48.5	0.0	0.1\%
29.6\%	48.5	48.5	0.0	0.0\%
30.9\%	48.5	48.5	0.0	0.0\%
32.1\%	48.5	48.5	0.0	0.0\%
33.3\%	48.5	48.4	0.0	0.0\%
34.6\%	48.4	48.4	0.0	0.1\%
35.8\%	48.4	48.4	0.1	0.1\%
37.0\%	48.4	48.4	0.1	0.1\%
${ }^{38.3 \%}$	48.3	48.4	0.0	0.1\%
			0.0	0.0\%
40.79\%	48.1	48.1		0.1\%
${ }_{4}^{42.0 \%}$	${ }_{48.1}^{48.1}$	48.1 48.0	${ }_{0.0}^{0.0}$	-0.0\% ${ }_{\text {- }}^{0.0}$
44.4\%	48.0	48.0	0.0	-0.1\%
45.7\%	48.0	48.0	0.0	0.0\%
46.9\%	48.0	47.9	-0.1	-0.1\%
48.1\%	47.8	47.8	0.0	-0.1\%
49.4\%	47.8	47.8	0.0	0.0\%
	47.8	47.8	0.0	0.0\%
${ }_{\text {553.1\% }}^{51.9 \%}$	${ }_{47.7}^{47.8}$	47.8 47.7	${ }_{0.1}^{0.0}$	${ }_{0}^{0.0 \% \%}$
54.3\%	47.7	47.7	0.0	0.1\%
55.6\%	47.7	47.7	0.0	0.1\%
55.8\%\%	47.6	47.7	${ }^{0.1}$	0.2\%
58.0\%	47.6	47.6	0.0	0.0\%
59.3\%	47.5	47.6	0.1	${ }^{0.1 \%}$
60.5\%	47.5	47.6	0.0	0.0\%
61.7\%	47.5	47.4	-0.1	-0.1\%
63.0\%	47.5	47.4	-0.1	-0.2\%
64.2\%	47.4	47.4	0.0	-0.1\%
${ }_{\text {66.7.7\% }}^{65.4}$	47.4 47.4	47.2	-0.2 -0.2	-0.3\%
67.9\%	47.2	${ }_{47.2}$	-0.0	-0.1\%
69.1\%	47.2	47.2	0.0	0.0\%
70.4\%	47.1	47.1	0.0	${ }^{0.0 \%}$
71.6\%	47.0	47.0	${ }^{0.0}$	${ }^{\text {0.0\% }}$
72.8\%	46.9	46.9	0.0	-0.1\%
74.1\%	46.9	46.8	-0.1	-0.1\%
75.5\%	46.8	46.7	-0.1	-0.2\%
76.5\%	46.8	46.7	-0.1	-0.2\%
${ }_{7} 77.80 \%$	46.7	46.7	-0.1	-0.2\%
${ }^{\text {80,2\% }}$	${ }_{46.7}^{46.7}$	46.6 46.6	-0.1 -0.1	${ }^{-0.2 \%}$
81.5\%	46.7	46.6	-0.1	-0.2\%
82.7\%	46.7	46.6	-0.1	-0.2\%
84.0\%	46.7	46.5	-0.1	-0.3\%
85.2\%	46.6	46.5	-0.1	-0.1\%
86.4\%	46.5	46.3	-0.2	-0.4\%
87.7\%	46.5	46.3	-0.1	-0.3\%
88.9\%	46.4	46.3	-0.1	-0.2\%
90.1\%	46.3	46.3	0.0	-0.1\%
91.4\% ${ }^{9260}$	${ }_{46.2}^{46.2}$	${ }_{46.0}^{46.3}$	0.0	-0.1\%
93.8\%	46.1	46.0	-0.1	-0.3\%
95.1\%	46.1	45.9	-0.2	-0.4\%
${ }^{96.3 \%}$	45.8	45.7	-0.1	-0.3\%
97.5\%	45.7	${ }_{45}^{45.6}$	-0.1	${ }^{-0.3 \%}$
98.8\%	45.0 450	45.2	0.2	0.4\%
100.0\%	45.0	45.2	0.2	0.4\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabily } \\ (\%) \\ \hline \end{gathered}$	May			RelativeDifference (\%)
	WSII 2030 W. Without	WSIP 2030 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	
0.0\%	61.3	61.0	-0.2	-0.3\%
1.2\%	59.8	60.8	1.0	1.6\%
2.5\%	59.3	60.8	1.4	2.4\%
3.7\%	59.2	60.1	0.9	1.6\%
4.9\%	59.1	59.	0.8	
6.2\%	59.0	59.8	0.7	1.2\%
7.4\%	58.9	59.7	0.7	1.2\%
8.6\%	58.9	59.2	${ }^{0.3}$	0.5\%
9.9\%	58.9	59.2	${ }^{0.3}$	0.6\%
11.1\%	58.8	59.1	0.3	0.5\%
12.3\%	58.8	59.1	0.3	0.5\%
13.6\%	58.7	59.1	0.5	0.8\%
14.8\%	55.6	59.1	0.5	0.9\%
16.0\%	58.5	59.1	0.6	1.0\%
17.3\%	58.4	59.1	0.6	1.0\%
18.5\%	58.3	59.0	0.8	1.3\%
19.8\%	58.2	59.0	0.8	1.4\%
21.0\%	58.1	58.8	0.7	1.2\%
22.2\%	58.1	58.8	0.7	1.2\%
23.5\%	58.1	58.8	0.7	1.2\%
24.7\%	57.9	58.7	0.7	1.2\%
25.9\%	57.9	58.6	0.7	1.2\%
27.2\%	57.9	58.6	0.7	1.3\%
28.4\%	57.8	58.4	0.6	1.0\%
29.6\%	57.8	58.4	0.6	1.0\%
- ${ }_{\text {30.9\% }}^{32.10}$	57.6	58.1	0.5	0.9\%
32.1\%	57.6	58.1	0.6	1.0\%
33.3\%	57.5	58.1	0.6	1.1\%
34.6\%	57.5	58.0	0.6	1.0\%
35.8\%	57.4	57.9	0.5	0.9\%
37.0\%	57.4	57.9	0.5	0.9\%
38.3\%	57.4	57.9	0.5	0.9\%
39.5\%	57.3	57.9	0.6	1.0\%
40.7\%	57.2	57.8	0.5	0.9\%
42.0\%	57.1	57.7	0.6	1.1\%
${ }^{43.2 \%}$	57.1	57.6	0.5	0.8\%
${ }^{44.4 \%}$	57.0	57.5	0.5	0.9\%
	56.9	57.4	0.5	
${ }^{46.9 \%}$	56.9	57.4	0.5	0.8\%
48.1\%	56.8	57.4	0.6	1.0\%
49.4\%	${ }_{56.7}$	57.3 57.3	${ }^{0.6}$	${ }_{1.1 \%}^{1.19}$
50.6\%	56.7	57.3	0.6	1.1\%
51.9\%	56.7	57.3	0.6	1.1\%
53.1\%	${ }_{56.6}^{56.6}$	57.3	0.6	1.1\%
54.3\%	55.6	57.3	0.6	1.1\%
55.6\%	56.6	57.2	0.6	1.0\%
56.8\%	${ }_{56.6}$	57.2	0.6	1.1\%
	56.6	57.1	0.6	1.0\%
59.3\%	56.5 56.5	57.1 57.0	0.5 0.5	- ${ }_{\text {1.0\% }}^{1.0 \%}$
61.7\%	56.4	57.0	0.5	1.0\%
63.0\%	56.4	57.0	0.6	1.0\%
64.2\%	56.4	56.8	0.4	0.7\%
65.4\%	56.4	56.8	0.4	0.7\%
66.7\%	56.4	56.7	0.4	0.7\%
67.9\%	56.3	56.7	0.4	0.6\%
69.1\%	56.3	56.7	0.4	0.7\%
70.4\%	56.2	55.7	0.4	0.8\%
71.6\%	56.2	56.6	0.4	0.8\%
72.8\%	56.2	55.6	0.4	0.7\%
${ }^{74.1 \%}$	56.2	55.6	0.4	0.7\%
75.3\%	56.2	55.6	0.4	0.8\%
76.5\%	${ }_{56.1}^{56}$	${ }_{56.3}$	0.2	0.4\%
${ }_{7}^{77.80 \%}$	56.1	56.2	0.2	0.3\%
79.0\% 80.2%	56.0	56.2	0.2	0.4\%
80.2% 81.5%	55.9	56.2	0.3	0.5\%
81.5\%	55.9	56.2	0.3	0.6\%
88.7% 84.0%	55.9	56.2	0.3	0.6\%
8.0% 85.2%	55.8	56.2	0.4	0.7\%
- $8.2 .2 \%$	55.7	56.1	0.3	0.6\%
887.7\%	55.7	56.1	${ }^{0.3}$	0.6\%
87.7\%	55.7	55.0	0.3	0.5\%
${ }_{90.1 \%}^{88.9 \%}$	55.6	55.8 55.8	${ }^{0.3}$	0.5\%
${ }^{90.1 \%}$	55.5	55.8	${ }^{0.3}$	0.5\%
922.6\%	55.3	55.7	0.4	0.8\%
92.8\%\%	55.1	55.4	0.3	0.5\%
${ }_{9}^{93.8 .1 \%}$	55.1	55.1	0.1	0.1\%
${ }_{95.10 \%}^{96.3 \%}$	54.9	54.9	0.0	0.0\%
99.3\% ${ }_{\text {97.5\% }}$	54.7	54.7	0.0	0.0\%
97.5\%	54.3	54.6	0.3	0.6\%
988\%	54.3 54.3	54.5 54.5	${ }_{0.2}^{0.2}$	0.4\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabily } \\ (\%) \\ \hline \end{gathered}$	September			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	WSII 2030 W.inthout	WSIP 2030 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	
	Monthly Temperature (DEEFF)	$\underset{\text { Month }}{\substack{\text { (DEGF) }}}$		
0.0\%	67.9	68.4	0.5	0.7\%
1.2\%	67.0	64.2	2.8	-4.1\%
2.5\%	66.6	63.8	2.8	-4.3\%
3.7\%	64.4	62.4	1.9	-3.0\%
4.9\%	64.0	62.2	1.9	
6.2\%	63.3	61.9	-1.4	-2.2\%
7.4\%	62.8	61.7	-1.2	-1.9\%
8.6\%	62.7	61.6	-1.1	-1.7\%
9.9\%	62.6	61.3	-1.3	-2.1\%
11.1\%	62.5	61.3	-1.2	-1.9\%
12.3\%	62.3	61.2	-1.1	-1.7\%
13.6\%	62.2	61.1	-1.1	-1.8\%
14.8\%	62.1	61.1	-1.1	-1.7\%
16.0\%	62.1	60.9	-1.2	-1.9\%
17.3\%	62.1	60.8	-1.3	-2.1\%
18.5\%	61.7	60.7	-1.1	-1.7\%
19.8\%	61.5	60.7	-0.9	-1.4\%
21.0\%	61.4	60.6	-0.8	-1.3\%
22.2\%	61.3	60.5	-0.8	-1.4\%
23.5\%	61.2	60.5	-0.7	-1.2\%
24.7\%	61.2	60.4	-0.8	-1.2\%
25.9\%	61.1	60.4	-0.7	-1.1\%
27.2\%	61.1	60.4	-0.7	-1.1\%
28.4\%	61.0	60.4	-0.6	-1.0\%
29.6\%	61.0	60.4	-0.6	-1.0\%
30.9\%	60.9	60.2	-0.6	-1.0\%
32.1\%	60.6	60.1	-0.5	-0.8\%
33.3\%	60.6	60.1	-0.5	-0.9\%
34.6\%	60.6	60.1	-0.5	-0.8\%
35.8\%	60.5	60.0	-0.5	-0.7\%
37.0\%	60.2	60.0	-0.3	-0.4\%
38.3\%	59.9	59.9	0.0	0.1\%
39.5\%	59.8	59.9	0.1	0.1\%
40.7\%	59.7	59.7	0.0	0.0\%
42.0\%	59.5	59.5	0.0	-0.1\%
43.2\%	59.4	59.2	-0.1	-0.2\%
44.4\%	59.2	59.2	0.0	0.0\%
45.7\%	59.1	59.2	0.1	0.1\%
46.9\%	58.9	59.2	0.3	0.4\%
${ }^{48.1 \%}$	58.9	59.2	0.3	0.4\%
49.4\%	58.8	59.11	0.4	0.6\%
50.6\%	58.4	59.0	0.5	0.9\%
51.9\%	58.3	58.9	0.6	1.0\%
53.1\%	58.3	58.7	0.4	0.8\%
- $5.3 .8 \%$	58.2	58.7	0.5	0.9\%
55.6\% 56.8%	58.1	58.5	0.5	0.8\%
- 5 5.8.0\%	58.0	58.4	0.4	0.8\%
58.0\% 59.3%	57.9	58.4	0.5	0.9\%
59.3\%	57.8	58.2	0.4	0.7\%
60.7\%	57.6	58.1	0.5	
${ }^{61.7 \%}$	57.5	57.9	0.4	0.7\%
63.0\% ${ }_{64.2 \%}$	57.5 575	57.9 578	0.4	0.7\%
64.2\%	57.5 572	57.8 578	${ }^{0.3}$	0.6\%
65.4\%	57.2	57.8	0.5	0.9\%
66.7\% 67.9%	57.2	57.6	0.4	0.7\%
67.9\% ${ }_{6}^{69.1 \%}$	57.2	57.6	0.4	0.7\%
69.1\% 70.4%	57.2	57.6	0.4	0.7\%
70.4\%	57.1	57.6	0.5	0.9\%
71.6\%	57.1	57.4	0.3	0.6\%
72.8\%	56.9	57.3	0.4	0.7\%
74.1\%	56.8	57.1	0.3	0.5\%
${ }^{75.3 \%}$	56.7	57.1	0.4	${ }^{0.79 \%}$
${ }^{76.5 \%}$	56.7 563	${ }_{56.9}$	0.2	0.3\%
77.8.0\%	56.3	55.6	0.2	0.4\%
79.0\% 80.2%	56.3	56.4	0.1	0.2\%
80.2\% 81.5%	56.1	56.3	0.2	0.3\%
81.5\%	56.0	56.2	0.2	0.3\%
82.7\% 84.0%	55.0	56.2	0.2	0.3\%
${ }^{88.0 \%}$	55.6 55.5	56.1 55.9	0.5 0.4	0.9\%
86.4\%	55.5	55.9	0.4	0.8\%
87.7\%	55.4	55.8	0.3	0.6\%
88.9\%	55.2	55.8	0.6	1.0\%
${ }^{90.1 \%}$	55.11	55.6 55 5.6	0.6	${ }^{1.0 \%}$
91.4\%	55.0	55.6	0.6	1.0\%
92.6\% ${ }_{\text {93.8\% }}$	54.9	55.2	0.3	0.6\%
93.8\% ${ }_{\text {95.1\% }}$	54.8	54.7	-0.2	-0.3\%
${ }_{99.3 \%}^{95.3 \%}$	54.8	54.5	-0.3	-0.6\%
997.5\%	54.0	54.2	0.2	0.3\%
998.8\%	53.7	54.0	0.3	0.5\%
100.8\%	${ }_{53.7}^{53.7}$	${ }_{53.8}^{53.8}$	${ }_{0.1}^{0.1}$	${ }_{0}^{0.2 \%}$

Table SQ8-1b
Sacramento River below Red Bluft, Monthly Temperature

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{gathered}$	June to September			
	WSII 2030 Wethout Proiect	WSIP 2030 With Project	Absolute	Relative
	Monthly Temperature (DEGF)	$\underset{\text { Montal }}{\substack{\text { Monthy } \\ \text { (Eemperature }}}$	$\begin{aligned} & \text { Difference } \\ & \text { (DGEFF) } \end{aligned}$	Difference (\%)
0.0\%	${ }_{64.6}$	63.5	-1.1	-1.7\%
1.2\%	62.0	61.5	-0.5	-0.8\%
2.5\%	61.7	60.9	-0.8	-1.3\%
3.7\%	${ }_{61.6}$	60.8	-0.8	1.3\%
4.9\%	${ }_{61.4}^{61.4}$	60.8 607	-0.7	-1.1\%
7.4\%	61.2	60.7	-0.6	-0.9\%
8.6\%	60.6	60.6	0.0	-0.1\%
9.9\%	60.5	60.3	-0.2	-0.3\%
11.1\%	60.4	60.1	-0.3	-0.5\%
12.3\%	60.4	60.1	-0.3	-0.4\%
13.6\%	60.3	60.1	-0.2	-0.3\%
14.8\%	60.3	60.1	-0.2	-0.4\%
117.3\%	60.2 60.2	60.0 60.0	-0.3 -0.3	-0.0.4\%
18.5\%	60.2	59.9	-0.3	-0.5\%
19.8\%	60.0	59.7	-0.3	-0.4\%
21.0\%	59.8	59.7	-0.1	-0.2\%
222.2\%	59.8	${ }_{59.6}^{59}$	-0.2	-0.3\%
23.5\%	59.8	59.6	-0.2	-0.3\%
24.7\%	59.8	59.6	-0.2	${ }^{-0.3 \%}$
25.9\%	59.7	59.6	-0.2	-0.3\%
27.2\%	59.7	59.6	-0.2	-0.3\%
28.4\%	59.6	59.5	-0.1	-0.3\%
29.6\%	59.6	59.5	-0.1	-0.2\%
30.9\%	59.6	59.4	-0.2	-0.3\%
32.1\%	59.6	59.4	-0.2	-0.4\%
${ }^{33.3 \%}$	59.6	59.3	-0.3	-0.5\%
34.6\%	59.4	59.3	-0.2	-0.3\%
35.8\%	59.4	59.2	-0.1	-0.2\%
37.0\%	59.3	59.2	-0.1	-0.2\%
38.3\%	59.2	59.2	0.0	${ }^{0.0 \%}$
39.5\%	59.1	59.2	0.1	0.1\%
40.7\%	59.1	59.2	0.1	0.1\%
42.0\%	59.0	59.2	0.1	0.2\%
43.2\%	58.9	59.2	0.2	0.4\%
44.4\%	58.9	59.1	0.1	0.2\%
46.79\%	58.9 58.9	58.9	0.1 0.0	${ }_{0}^{0.2 \%}$
48.1\%	58.8	58.9	0.1	0.1\%
49.4\%	58.6	58.9	0.3	0.5\%
50.6\%	58.5	58.8	0.3	0.5\%
51.9\%	58.5	58.7	0.2	0.3\%
53.1\%	58.5	55.6	0.1	0.2\%
54.3\%	58.4	58.6	0.1	0.2\%
55.6\%	58.4	58.5	0.1	0.2\%
56.8\%	58.3	58.4	0.1	0.2\%
58.0\%	58.3	58.4	0.2	0.3\%
${ }^{59.3 \% \%}$	58.2	58.4	0.2	${ }^{0.3 \% \%}$
${ }^{60.5 \%}$	${ }_{58.2}$	58.4	0.1	0.2\%
${ }^{61.7 \%}$	58.2	58.4	0.1	0.3\%
63.0\%	58.2.	58.4	0.1	0.2\%
66.2\% 6	58.2.	58.3	${ }^{0.2}$	-0.3% 0.4%
${ }_{66.7 \%}$	58.1	${ }_{58.3}$	0.3	0.4\%
67.9\%	58.1	58.3	0.2	0.4\%
69.1\%	58.0	58.3	0.3	0.4\%
70.4\%	57.9	58.2	0.4	0.6\%
77.6\%	57.9	58.2	0.3	${ }^{0.6 \%}$
74.1\%	57.9 578	58.2	0.4	${ }^{0.6 \%}$
75.3\%	57.8	58.0	0.2	0.3\%
76.5\%	57.7	58.0	0.2	0.4\%
77.8\%	57.7	57.9	0.2	0.4\%
79.0\%	57.7	57.9	${ }^{0.3}$	0.5\%
80.2\%	57.6	57.9	${ }^{0.3}$	0.6\%\%
81.5\%	57.5	57.9	0.5	0.8\%
82.7\%	57.4	57.9	0.5	0.9\%
84.0\%	57.4	57.7	0.4	0.7\%\%
	57.3	57.7	0.4	0.7\%
${ }^{867.7 \%}$	57.1	57.3	0.2	0.4\%
88.9\%	57.0	57.3	0.3	0.5\%
90.1\%	57.0	57.2	0.2	0.4\%
91.4\%	55.9	57.2	0.2	0.4\%
92.6\%	55.9	57.1 571	0.2	0.4\%
93.8\%	55.6	57.1	${ }^{0.4}$	0.7\%
95.1\%	55.6	57.0	0.4	0.7\%
99.3\% ${ }_{\text {97.5\% }}$	55.6	56.9	${ }^{0.3}$	${ }_{\text {en }}^{0.5 \%}$
${ }_{98.8 \%}^{97.5 \%}$	56.3 56.2	56.6 56.3	${ }_{0} 0.3$	${ }_{0}^{0.5 \%}$
100.0\%	55.8	55.7	-0.1	${ }_{-0.2 \%}$

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probabaility } \end{aligned}$	Juy to September		,		August to September				
	${ }_{\text {WSIP }}^{\text {2030 }}$ Proiet Whout	SIIP 2030 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (0EEFF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedace } \\ \text { Probabaility } \\ \text { pold } \end{array} \end{gathered}$	WSIP 2030 Without Proiect Monthy Temperature (DEGG) (DEGF)	WSIP 2030 With Project Monthly Temperature (DEGF)	$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (DEGFF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	Morthy Temperature	Monthy Temperature							
	(DEGF)	(DEGF)							
0.0\%	66.3	64.8	-1.6	.2.4\%	0.0\%	68.5	66.5	-2.0	-2.9\%
1.2\%	63.2	62.3	-0.8	-1.3\%	1.2\%	64.6	62.8	-1.8	
2.5\%	62.8	61.8	-1.0	-1.6\%	2.5\%	64.4	62.5	-1.9	0\%
3.7\%	62.5	61.7	-0.8	-1.3\%	3.7\%	63.8	62.2	-1.6	-2.5\%
4.9\%	62.5	61.4	-1.1	-1.7\%	4.9\%	63.5	61.8	-1.7	-2.7\%
6.2\%	61.9	61.1	-0.8	-1.4\%	6.2\%	62.6	61.4	-1.2	-1.9\%
7.4\%	61.9	60.9	-1.0	-1.7\%	7.4\%	62.4	61.2	-1.2	-1.9\%
8.6\%	61.7	60.9	-0.8	-1.3\%	8.6\%	62.1	61.1	-0.9	-1.5\%
9.9\%	61.1	60.8	-0.2	-0.4\%	9.9\%	62.0	61.0	-1.0	-1.6\%
111.1\%	61.1	60.8	-0.3	-0.5\%	11.1.\%	${ }^{62.0}$	61.0	-1.0	-1.6\%
12.3\%	61.0	60.7	-0.3	-0.5\%	12.3\%	61.7	61.0	-0.8	-1.2\%
13.6\%	61.0	60.7	-0.3	-0.5\%	13.6\%	61.6	60.8	-0.8	-1.3\%
14.8\%	60.9	60.7	-0.2	-0.3\%	14.8\%	61.5	60.8	-0.7	-1.2\%
16.0\%	60.8	60.6	-0.2	-0.3\%	16.0\%	61.5	60.8	-0.8	-1.2\%
17.3\%	60.8	60.4	-0.4	-0.6\%	17.3\%	61.5	60.7	-0.8	-1.2\%
18.5\%	60.7	60.3	-0.4	-0.6\%	18.5\%	61.4	60.7	-0.7	-1.1\%
19.8\%	60.7	60.3	-0.4	-0.6\%	19.8\%	61.3	60.6	-0.6	-1.0\%
21.0\%	60.7	60.2	-0.5	-0.8\%	21.0\%	61.2	60.6	-0.6	-0.9\%
22.2\%	60.6	60.0	-0.6	-1.0\%	22.2\%	61.1	60.5	-0.6	-1.0\%
23.5\%	60.6	60.0	-0.6	-1.0\%	${ }^{23.5 \%}$	61.0	60.4	-0.6	-0.9\%
24.7\%	60.5	60.0	-0.5	-0.9\%	24.7\%	61.0	60.3	-0.7	-1.2\%
25.9\%	60.4	59.9	-0.4	-0.7\%	25.9\%	60.9	60.2	-0.7	-1.1\%
27.2\%	60.4	59.9	-0.4	-0.7\%	27.2\%	60.9	60.2	-0.6	-1.1\%
28.4\%	60.3	59.9	-0.4	-0.7\%	28.4\%	60.8	60.2	-0.6	-0.9\%
29.6\%	60.1	59.9	-0.2	-0.3\%	29.6\%	60.8	60.2	-0.6	-0.9\%
30.9\%	60.0	59.9	-0.1	-0.2\%	30.9\%	60.4	60.2	-0.2	-0.4\%
32.1\%	59.9	59.8	-0.2	-0.3\%	32.1\%	60.4	60.2	-0.2	-0.3\%
33.3\%	59.9	59.7	-0.2	-0.3\%	33.3\%	60.3	60.2	-0.2	-0.3\%
34.6\%	59.6	59.7	0.0	0.1\%	34.6\%	60.0	60.1	0.0	0.1\%
35.8\%	59.6	59.6	0.0	-0.1\%	35.8\%	59.9	60.0	0.1	0.1%
37.0\%	59.4	59.5	0.1	0.2\%	37.0\%	59.8	59.8	-0.1	-0.2\%
38.3\%	59.4	59.5	0.1	0.2\%	38.3\%	59.7	59.6	-0.1	-0.1\%
39.5\%	59.4	59.5	0.1	0.1\%	39.5\%	59.7	59.6	0.0	-0.1\%
40.7\%	59.4	59.4	0.0	0.0\%	40.7\%	59.6	59.5	-0.1	-0.2\%
${ }^{42.0 \%}$	59.3 59.3	59.3 59.3	0.0 0.0	0.0\%	${ }_{4}^{42.2 \%}$	59.6 59.6	59.5 59.5	-0.2 -0.2	-0.0.3\%
44.4\%	59.0	59.2	0.3	0.4\%	44.4\%	59.6	59.3	-0.3	-0.5\%
45.7\%	59.0	59.0	0.0	0.1\%	45.7\%	59.5	59.3	-0.2	-0.3\%
46.\%	58.9	59.0	0.1	0.1\%	46.9\%	59.4	59.3	-0.1	-0.1\%
48.1\%	58.9	58.9	0.0	0.1\%	48.1\%	59.3	59.3	0.0	0.0\%
49.4\%	58.8	58.9	0.1	0.2\%	49.4\%	59.2	59.2	0.0	-0.1\%
50.6\%	58.8	58.9	0.1	0.2\%	50.6\%	59.2	59.2	-0.1	-0.1\%
51.9\%	58.8	55.8	0.0	0.1\%	51.9\%	59.1	59.2	0.1	0.2\%
53.1\%	58.7	58.8	0.0	0.1\%	53.1\%	59.1	59.1	0.0	0.0\%
54.3\%	58.7	58.8	0.0	0.0\%	54.3\%	59.0	59.0	0.0	0.0\%
55.6\%	58.7 58.6	58.7 58.7	0.0 0.0	${ }^{-0.1 \%}$	55.6\%\%	58.9 58.8	58.9 58.8	0.0 -0.1	-0.1\%
58.0\%	58.6	58.5	-0.1	-0.2\%	58.0\%	58.8	58.7	-0.1	-0.1\%
59.3\%	58.6	58.5	-0.1	-0.2\%	59.3\%	58.8	58.7	-0.1	-0.1\%
60.5\%	58.6	58.4	-0.2	-0.3\%	60.5\%	58.7	58.7	0.0	0.0\%
61.7\%	58.5	58.4	-0.1	-0.2\%	61.7\%	58.6	58.7	0.1	0.1\%
63.0\%	58.4	58.4	0.0	-0.1\%	63.0\%	58.6	58.7	0.1	0.1\%
64.2\%	58.4	58.4	0.0	-0.1\%	64.2\%	58.6	58.7	0.1	0.2\%
65.4\%	58.4	58.4	0.0	0.0\%	${ }^{65.4 \%}$	58.4	58.6	0.2	0.4\%
66.7\%	58.3	58.3	0.0	0.0\%	66.7\%	58.4	58.6	0.2	0.3\%
67.9\%	58.2	58.3	0.1	0.2\%	67.9\%	58.4	58.5	0.1	0.3\%
69.1\%	58.2	58.3	0.1	0.2\%	69.1\%	58.3	58.5	0.2	0.3\%
70.4\%	58.1	58.3	0.1	0.2\%	70.4\%	58.1	58.5	0.4	0.6\%
71.6\%	58.1	58.3	0.1	0.2\%	71.6\%	58.0	58.5	0.4	0.7\%
72.8\%	58.1	58.2	0.1	0.2\%	72.8\%	58.0	${ }_{58.3} 5$	${ }^{0.3}$	0.5\%
74.19\%	${ }_{55.0}^{57}$	58.2	0.2	0.3\%	74.1\%	58.0	58.2	0.2	0.4\%
75.3\%	57.9	58.2	0.3	0.4\%	75.3\%	58.0	58.2	0.2	0.3\%
76.5\%	57.9	58.2	0.3	0.5\%	76.5\%	58.0	58.2	0.2	0.3\%
77.8\%	57.9	58.1	0.3	0.4\%	77.8\%	58.0	58.2	0.2	0.3\%
79.0\%	57.8	58.1	0.3	0.6\%	79.0\%	57.9	58.2	${ }^{0.3}$	0.5\%
80.2\%	57.7	58.1	0.3	0.6\%	80.2\%	57.8	58.1	0.3	0.5\%
81.5\%	57.7	58.1	0.4	0.7\%	81.5\%	57.8	57.9 57.8	${ }^{0.1}$	0.2\%
${ }^{822.7 \%}$	57.6 575	58.1	0.5	0.8\%	82.79\%	57.7 576	57.8 578	0.1	0.2\%
84.0\%	57.5	58.0	0.4	0.8\%	84.0\%	57.6	57.8	0.1	0.2\%
-85.2\%	57.4 57.3	57.9 57.8	0.5 0.5	0.8\%	- ${ }_{\text {85.2\% }} 8.48$	57.6 57.4	57.7 57.7	0.2 0.3	0.5\%
87.7\%	57.3	57.6	0.3	0.6\%	87.7\%	57.2	57.5	0.3	0.5\%
88.9\%	57.2	57.4	0.2	0.4\%	88.9\%	57.2	57.3	0.1	0.2\%
90.1\%	57.1	57.1	-0.1	-0.1\%	90.1\%	57.1	57.2	0.2	0.3\%
91.4\%	57.1	57.0	-0.1	-0.2\%	91.4\%	57.0	57.0	0.0	0.0\%
92.6\%	56.9	57.0	0.1	0.2\%	92.6\%	55.9	55.8	-0.1	-0.1\%
93.8\%	56.8	56.9	0.1	0.2\%	93.8\%	${ }_{56.6}$	${ }_{56.8}^{56.8}$	0.3	0.5\%
${ }_{965.3 \%}^{95.10 \%}$	${ }_{56.7}^{56.7}$	56.8 56.7	${ }_{0}^{0.1}$	${ }^{0.3 \%}$	${ }_{996.3 \%}^{95 \%}$	56.2 56.1	56.6 56.3	0.3 0.2	0.6\% 0
97.5\%	56.5	56.5	-0.1	-0.2\%	97.5\%	56.1	56.0	-0.1	-0.1\%
98.8\%	56.2 557	56.3 55.4	0.1	0.2\%	98.3\%	56.0	55.9 54.7	-0.11	-0.2\%

Figure 5ag-1b
American River below Nimbus Dam, Monthly Temperature

Table $\mathrm{SQ9}$-1b
How Nimbus Dam,

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	October			
	WSIP 2030 W. Without	WSIP 203 W With Project	Absolute	Relative
	Monthy Temperature	Monthy Temperature	Difference (DEGF)	Difference (\%)
0.0\%	67.9	68.5	0.6	0.8\%
1.2\%	67.9	68.3	0.4	0.6\%
2.5\%	67.9	68.0	0.1	0.2\%
3.7\%	${ }^{67.7}$	67.8	-0.1	-0.1\%
4.9\%	67.7 67.7	${ }_{6}^{67.7}$	0.0 0.0	- ${ }_{\text {0.0\% }}^{0.0 \%}$
7.4\%	67.6	67.6	0.0	${ }_{0}^{0.00 \%}$
8.6\%	67.5	67.5	0.0	0.0\%
9.9\%	67.5	67.5	0.0	0.0\%
11.1\%	67.4	67.4	0.0	0.0\%
12.3\%	67.3	67.3	-0.1	-0.1\%
13.6\%	67.3	67.2	-0.1	-0.2\%
14.8\%	${ }_{67.2}$	67.1	-0.1	-0.2\%
16.0\%	67.2 67.2	67.0 67.0	-0.2 -0.2	-
18.5\%	67.1	66.9	-0.2	-0.3\%
19.8\%	67.1	66.9	-0.2	-0.2\%
21.0\%	67.0	66.8	-0.2	-0.3\%
22.2\%	67.0	66.8	-0.2	-0.3\%
23.5\%	66.9	66.8	-0.1	-0.2\%
24.7\%	66.9	66.8	-0.1	-0.2\%
25.9\%	66.9	66.7	-0.1	-0.2\%
27.2\%	66.8	66.7	-0.1	-0.2\%
28.4\%	66.8	66.6	-0.1	-0.2\%
29.6\%	66.7	66.6	-0.1	-0.2\%
30.9% 32.1%	66.7 66.6	66.6 66.6	-0.1 0.0 	-0.0\%
33.3\%	66.6	66.5	-0.1	-0.1\%
34.6\%	66.5	66.5	0.0	0.0\%
35.8\%	66.5	66.5	0.0	0.0\%
37.0\%	66.5	66.5	0.0	0.0\%
38.3\%	66.4	66.5	0.1	0.1\%
39.5\%	66.2	66.4	0.1	0.2\%
40.7\%	66.2	66.3	0.1	0.1\%
42.0\%	66.2	66.2	0.0	0.0\%
${ }^{43.2 \%}$	66.2 66.2	66.2 66.2	0.0	${ }^{0.01 \%}$
45.7\%	66.2	66.2	0.0	0.0\%
46.9\%	66.2	66.1	-0.1	-0.2\%
48.1\%	66.2	65.9	-0.2	-0.3\%
49.4\%	66.1	65.9	-0.2	-0.3\%
50.6\%	66.0	65.8	-0.1	-0.2\%
51.9\%	66.0	65.8	-0.2	-0.3\%
53.1\%	65.9	65.7	-0.2	-0.4\%
54.3\%	65.8	65.7	-0.1	-0.2\%
55.6\%	65.8	65.7	-0.1	-0.2\%
56.8\%	65.8	65.7	-0.1	-0.1\%
58.0\%	65.5	65.7	0.2	0.3\%
59.3\%	65.4	65.7	0.3	0.4\%
- 60.50	65.3 65.2	65.6 65.6	${ }_{0}^{0.3}$	${ }_{0}^{0.4 \% \%}$
63.0\%	65.2	65.4	0.2	0.4\%
64.2\%	65.2	65.4	0.2	0.3\%
65.4\%	65.2	65.2	0.0	0.0\%
66.7\%	65.0	65.1	0.1	0.1\%
67.9\%	64.9	64.8	-0.1	-0.2\%
69.1\%	64.9	64.8	-0.1	-0.1\%
70.4\%	64.8	64.6	-0.2	-0.3\%
71.6\%	64.7	64.6	-0.1	-0.2\%
72.8\%	64.7	64.2	-0.5	-0.7\%
74.19\%	64.7	64.2	-0.5	${ }^{-0.8 \%}$
75.3\%	64.6 645	64.1 640	-0.5 -0.5	-0.7\%\%
76.5\%	64.5 643	64.0 640	-0.5	-0.8\%
79.0\%	64.3	64.9	-0.4	-0.6\%
80.2\%	64.2	63.8	-0.4	-0.6\%
81.5\%	64.2	63.8	-0.5	-0.7\%
82.7\%	64.1	${ }^{63.8}$	-0.3	-0.5\%
84.0\%	63.8	${ }_{63.6}^{63.6}$	-0.2	-0.3\%
${ }^{85.2 \%}$	${ }_{63.7}^{63.7}$	63.6 63.5	-0.2 -0.2	-
${ }^{864.4 \%}$	${ }_{63.7}$	${ }_{63.4}$	-0.2	-0.4\%
88.9\%	63.5	${ }^{63.4}$	0.0	-0.1\%
90.11\%	63.2	${ }_{63.4} 63$	0.2	0.3\%
91.4\%	62.5	63.4	0.8	${ }_{\text {1.3\% }}$
92.6\%	${ }^{62.4}$	${ }^{63.3}$	1.0	1.6\%
93.8\%	62.3	63.2	0.9	1.4\%
95.1\%	62.2	${ }^{63.1}$	0.9	1.5\%
96.3\%	${ }^{61.6}$	${ }^{62.0}$	0.4	0.6\%
97.5\%	61.1	${ }_{61.6}$	0.5	0.8\%
988.8\% 100.0\%	60.4 60.4	60.5 60.5	0.2 0.0	${ }_{\text {en }}^{0.3 \%}$

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probabalily } \end{aligned}$	February			
	WSIP 2030 Wethout	WSIP 2030 With Project	Absolute	
	Monthly Temperature	Monthly Temperature	Difference (DEGF	Difference (\%)
0.0\%	510	498	12	24
${ }^{\text {1.2\% }}$	49.7	49.7	0.0	${ }_{-0.1 \%}$
2.5\%	49.6	49.7	0.1	0.1\%
3.7\%	49.2	49.3	0.1	0.2\%
4.9\%	49.2	49.3	0.1	0.2\%
6.2\%	49.2	49.1	-0.1	-0.2\%
7.4\%	48.9	48.8	0.0	-0.1\%
8.6\%	48.8	48.8	-0.1	-0.1\%
9.9\%	48.6	48.7	0.1	0.1\%
12.3\%	48.5	48.5	0.0	0.1\%
13.6\%	48.3	48.5	0.1	0.2\%
14.8\%	48.3	48.4	0.1	0.1\%
16.0\%	48.3	48.4	0.1	0.2\%
17.3\%	48.2	48.3	0.1	0.2\%
18.5\%	47.9	47.9	0.0	0.0\%
19.8\%	47.9	47.9	0.0	-0.1\%
21.0\%	47.9	47.9	0.0	0.0\%
22.2\%	47.8	47.8	0.0	-0.1\%
23.5\%	47.8	47.7	-0.1	-0.2\%
24.7\%	47.6	47.7	0.1	0.1\%
25.9\%	47.6	47.7	${ }^{0.1}$	0.19\%
27.2% 28.4%	47.3 47.3	47.6 47.4	${ }_{0}^{0.3}$	${ }_{0}^{0.5 \%}$
29.6\%	47.3	47.3	0.0	0.1\%
30.9\%	47.1	47.3	0.1	0.3\%
32.1\%	47.0	47.2	0.2	0.4\%
33.3\%	47.0	47.1	0.1	0.2\%
34.6\%	47.0	47.0	0.0	0.1\%
35.8\%	47.0	47.0	0.0	0.1\%
37.0\%	47.0	47.0	0.0	0.0\%
38.3\%	47.0	47.0	0.0	${ }^{0.00 \%}$
39.5\% 40.7%				
42.0\%	${ }_{46.8}$	${ }_{46.9}$	0.1	0.2\%
43.2\%	46.8	46.8	0.1	0.2\%
44.4\%	46.7	46.7	0.0	0.0\%
45.7\%	46.7	46.7	0.0	0.0\%
46.9\%	46.7	46.7	0.0	0.0\%
48.1\%	46.7	46.6	0.0	-0.1\%
49.4\%	46.7	46.6	0.0	-0.1\%
50.6\%	46.6	46.6	0.0	0.19\%
51.9\%	46.5	46.6	${ }^{0.1}$	0.2\%
	46.5 46.5	46.5 46.5	${ }_{0}^{0.1}$	${ }_{0}^{0.1 \%}$
55.6\%	46.5	46.5	0.0	0.1\%
56.8\%	46.4	46.5	0.0	0.1\%
58.0\%	46.3	46.3	0.0	0.1\%
59.3\%	46.3	46.3	0.0	0.0\%\%
60.5\%	46.2	46.3	0.1	0.2\%
61.7\%	46.1	46.2	0.1	0.2\%
63.0\%	46.1	46.2	0.1	0.2\%
64.2\%	46.1	46.1	0.0	0.1\%
65.4\%	46.1	46.1	0.0	0.0\%
${ }^{66.77 \%}$	46.0	46.0	0.0	0.0\%
67.9\%	45.9	45.9	0.0	0.0\%
69.1\%	45.9	45.9	0.0	0.0\%
70.4\%	45.9	45.9	0.0	0.0\%
71.6\%	45.9	45.9	0.0	0.0\%
72.8\%	45.9	45.9	0.0	0.0\%
74.1\%	45.9	45.9	0.0	0.0\%
75.3\%	45.8	45.9	0.1	0.1\%
76.5\%	45.8	45.8	0.0	0.1\%
77.8\%	45.7	45.7	0.0	${ }^{0.19 \%}$
-79.0\%	${ }_{45.6}^{45.7}$	${ }_{45.6}^{45.7}$	0.0 0.0	${ }_{\text {a }}^{0.00 \%}$
81.5\%	45.6	45.6	0.0	0.0\%
82.7\%	45.5	45.5	0.0	0.1\%
84.0\%	45.5	45.5	0.0	0.0\%
85.2\%	45.5	45.5	0.0	0.0\%
86.4\%	45.5	45.5	0.0	${ }^{\text {0.0\%\% }}$
87.7\%	45.4	45.5	0.0	0.0\%
88.9\%	45.4	45.5	0.0	0.0\%
90.1\%	45.4	45.4	0.0	0.0\%
91.4\%	45.4	45.4	0.0	-0.1\%
${ }_{\text {93.8\% }}^{92.6 \%}$	${ }_{45.3}^{45.4}$	${ }_{45.2}^{45.3}$	0.0 -0.1	-0.0.2\%
95.1\%	45.3	45.2	-0.1	-0.2\%
${ }^{96.3 \%}$	45.2	45.0	-0.2	-0.4\%
97.5\%	45.2	44.8	-0.4	-0.9\%
98.8\%	44.4	${ }_{446}$	${ }_{0}^{0.1}$	- 0.3%
100.0\%	44.4	44.6	0.1	0.3\%

Table SQ9-1b
Jw Nimbus Sam, Monthy Temperature
American River below Nimbus Dam, Monthy Temperature

		March			April				
Percent Exceedanc	WSIP 2030 Without Proiect	WSIP 2030 With Project				${ }^{\text {WSIP }}$ Pro30 Wieth	WSIP 2030 With Project	solute	
Probability	Monthly Temperature	Monthly Temperature	Differe $\begin{aligned} & \text { Diec } \\ & \text { (i) }\end{aligned}$	Difference (\%)	robabily	Monthly Temperatu	Monthly Temperature	(iference	Ifference (\%)
(\%)	(DEGF)	(DEGF)				(DEGF)			
0.0\%	54.1	53.9	-0.2	-0.4\%	0.0\%	61.1	60.8	-0.3	-0.4\%
${ }^{1.25 \%}$	${ }_{53.7}^{54.1}$	53.5 53.2	-0.6 -0.5	- ${ }^{-1.0 \%}$	${ }^{1.2 \% \%}$	60.2 60.2	60.0 59.7	-0.3 -0.5	-0.4\%
3.7\%	53.3	52.7	-0.5	-1.0\%	3.7\%	59.9	59.1	-0.8	-1.3\%
4.9\%	52.7	52.7	0.0	0.0\%	4.9\%	59.2	58.5	-0.6	-1.0\%
6.2\%	52.7	52.6	0.0	0.0\%	6.2\%	58.8	58.5	-0.3	-0.6\%
7.4\%	52.6	52.5	-0.1	-0.2\%	7.4\%	58.6	58.0	-0.6	-1.1\%
8.6\%	52.5	52.4	-0.1	-0.2\%	8.6\%	58.0	57.9	-0.1	-0.2\%
9.9\%	52.4	52.3	-0.1	-0.2\%	9.9\%	57.9	57.9	-0.1	-0.1\%
11.1\%	52.3	52.2	-0.1	-0.2\%	11.1\%	57.8	57.7	-0.1	-0.1\%
12.3\%	52.3	52.2	-0.1	-0.2\%	12.3\%	57.7	57.6	-0.2	-0.3\%
13.6\%	52.0	52.1	0.1	0.1\%	13.6\%	57.7	57.5	-0.2	-0.3\%
14.8\%	52.0	51.9	-0.1	-0.2\%	14.8\%	57.6	57.4	-0.2	-0.4\%
16.0\%	51.9	51.9	0.0	-0.1\%	16.0\%	57.3	57.2	-0.1	-0.2\%
17.3\%	51.9	51.9	-0.1	-0.2\%	17.3\%	57.3	56.9	-0.4	-0.7\%
18.5\%	51.6	51.7	0.2	0.3\%	18.5\%	57.1	55.8	-0.4	-0.7\%
19.8\%	${ }_{51.6}$	${ }_{51.6}$	0.0	0.0\%	19.8\%	${ }_{56.9}$	${ }_{56.7}^{56.7}$	-0.1	${ }^{-0.3 \%}$
21.0\%	51.2	51.2	0.0	0.0\%	21.0\%	56.8	55.6		-0.3\%
${ }^{22.22 \%}$	51.1	50.9	-0.2	-0.4\%	22.2\%	55.8	56.5	-0.3	-0.4\%
23.5\%	50.8	50.9	0.1	0.1\%	23.5\%	56.7	56.5		-0.5\%
24.7\%	50.7	50.8	0.0	0.0\%	24.7\%	56.6	56.4	-0.2	-0.4\%
25.9\%	50.7	50.8	0.0	0.1\%	25.9\%	56.5	56.4	-0.1	-0.3\%
27.2\%	50.7	50.7	0.0	0.0\%	27.2\%	56.5	56.3	-0.2	-0.3\%
28.4\%	50.4	50.4	0.0	0.0\%	28.4\%	56.4	56.3	-0.1	-0.2\%
29.6\%	50.2	50.3	0.0	0.0\%	29.6\%	56.3	56.2	-0.1	-0.1\%
30.9\%	${ }_{50.2}$	50.2	0.0	0.1\%	30.9\%	${ }_{56.3}$	55.0	-0.3	-0.5\%
32.1\%	50.2	50.2	0.0	0.0\%	32.1\%	56.2	55.9	-0.3	-0.4\%
33.3\%	50.1	50.0	0.0	-0.1\%	33.3\%	56.1	55.7	-0.3	-0.6\%
34.6\%	50.0	50.0	0.0	0.0\%	34.6\%	56.1	55.7	-0.3	${ }^{-0.0 \% \%}$
35.8\%					${ }^{35.8 \%}$				
37.0\%	50.0	49.9	0.0	0.0\%	37.0\%	55.7	55.4	-0.2	-0.4\%
38.5\%	49.9	49.9	-0.1	-0.1\%	38.3\%\%	55.4 55.4	55.4 55.4	0.0	${ }^{0.0 \% \%}$
40.7\%	49.6	49.6	0.0	0.1\%	40.7\%	55.3	55.3	0.0	-0.1\%
42.0\%	49.4	49.5	0.0	0.0\%	42.0\%	55.3	55.3	0.0	-0.1\%
43.2\%	49.4	49.4	0.0	0.0\%	43.2\%	55.3	55.2	-0.1	-0.1\%
44.4\%	49.4	49.4	0.0	0.0\%	44.4\%	55.2	55.2	0.0	0.0\%
45.7\%	49.3	49.3	0.0	0.0\%	45.7\%	55.1	55.2	0.1	0.1\%
46.9\%	49.3	49.3	0.0	0.0\%	46.9\%	55.0	55.1	0.2	0.3\%
48.19\%	${ }_{49.2}^{49.3}$	49.3 49.2	0.0 0.0	-0.0\%	${ }_{4}^{48.4 \%}$	55.0 54.9	55.0 55.0	0.0	${ }_{\text {0, }}^{0.0 \% \%}$
50.6\%	49.1	49.1	0.0	0.0\%	50.6\%	54.9	54.9	0.0	0.0\%
51.9\%	49.1	49.1	0.0	0.0\%	51.9\%	54.9	54.9	0.0	0.1\%
53.1\%	49.0	48.9	0.0	0.0\%	53.1\%	54.8	54.8	0.1	0.1\%
54.3\%	48.9	48.9	0.0	0.0\%	54.3\%	54.7	54.8	0.1	0.1\%
55.6\%	48.9	48.8	0.0	-0.1\%	55.6\%	54.6	54.8	0.2	0.3\%
56.8\%	48.8	48.8	0.0	0.0\%	56.8\%	54.6	54.6	0.0	0.0\%
58.0\%	48.8	48.8	0.0	0.0\%	58.0\%	54.4	54.4	0.0	0.1\%
59.3\%	48.8	48.7	-0.1	-0.2\%	59.3\%	54.4	54.4	0.0	0.0\%
60.5\%	48.7	48.7	0.0	-0.1\%	60.5\%	54.3	54.3	0.0	0.1\%
61.7\%	48.7	48.7	0.0	0.0\%	61.7\%	54.0	54.0	0.0	0.0\%
63.0\%	48.6	48.7	0.0	0.0\%	63.0\%	54.0	54.0	0.0	0.0\%
64.2\%	48.6	48.6	0.0	0.0\%	64.2\%	54.0	53.9	-0.1	-0.2\%
65.4\%	48.6	48.6	0.0	0.0\%	65.4\%	53.9	53.9	0.0	
${ }^{66.7 \%}$	48.6	48.6	0.0	${ }^{0.0 \%}$	${ }^{66.7 \%}$	53.8 537	${ }_{53,9}^{53.9}$	0.0	0.1\%
69.1\%	48.6	48.6	0.0	0.0\%	69.1\%	${ }_{53.5}$	${ }_{53.5}$	0.0	0.0\%
70.4\%	48.5	48.5	0.0	0.0\%	70.4\%	53.4	53.4	0.0	0.0\%
71.6\%	48.5	48.5	0.0	0.0\%	71.6\%	53.4	53.4	0.0	0.0\%
72.8\%	48.4	48.4	0.0	0.0\%	72.8\%	52.8	52.8	0.0	0.0\%
74.1\%	48.4	48.4	0.0	0.0\%	74.1\%	52.7	52.7	0.0	0.0\%
75.3\%	48.3	48.3	0.0	0.0\%	75.3\%	52.6	52.7	0.0	0.0\%
76.5\%	48.2	48.2	0.0	0.0\%	76.5\%	52.6	52.6	0.0	0.0\%
77.8\%	48.2	48.2	0.0	0.0\%	77.8\%	52.6	52.6	0.0	0.0\%
79.0\%	48.2	48.2	0.0	0.0\%	79.0\%	52.5	52.5	0.0	0.0\%
80.2\%	48.1	48.1	0.0	0.0\%	80.2\%	${ }_{52.5}^{52.5}$	${ }_{525}^{52.5}$	0.0	0.0\%
81.5\%	48.1	48.1	0.0	0.0\%	${ }^{81.5 \%}$	${ }_{52.4}$	52.4	0.0	0.0\%
82.7\%	48.1	48.1	0.0	0.0\%	82.7\%	${ }_{52.3}$	${ }_{52.3}$	0.0	0.0\%
84.0\%	48.1	48.1	0.0	0.0\%	84.0\%	52.3	52.3	0.0	0.0\%
85.2\%	48.1	48.1	0.0	0.0\%	85.2\%	52.2	52.2	0.0	0.0\%
86.4\%	48.0	48.0	0.0	0.0\%	86.4\%	52.2	52.2	0.0	0.0\%
87.7\%	47.9	47.9	0.0	0.0\%	87.7\%	52.1	52.1	0.0	0.0\%
${ }^{88.9 \%}$	47.9 47.7	47.9 47.8	${ }_{0.0}^{0.0}$	${ }_{0}^{0.0 \% \%}$	${ }_{90.1 \%}^{88.9 \%}$	51.6 51.5	51.6 51.5	0.0 0.0	0.0.0\%
91.4\%	47.7	47.7	0.0	0.0\%	91.4\%	51.4	51.4	0.0	0.0\%
92.6\%	47.7	47.7	0.0	0.0\%	92.6\%	51.3	51.3	0.0	-0.1\%
93.\%	47.4	47.5	0.0	0.0\%	93.8\%	51.3	51.3	0.0	-0.1\%
95.1\%	47.3	47.3	-0.1	-0.1\%	95.1\%	50.8	51.0	0.3	0.5\%
96.3\%	47.3	47.3	${ }^{0.0}$	0.0\%	${ }^{99.3 \% \%}$	50.7	50.8	${ }^{0.1}$	0.2\%
97.5\%	47.3	47.3	0.0	0.0\%	97.5\%	50.7	50.7	0.0	0.1\%
98.8\%	46.9	46.9	0.0	0.0\%	98.8\%	49.8	49.9	0.0	0.1\%
100.0\%	46.9	46.9	0.0	0.0\%	100.0\%	49.8	49.9	0.0	0.1\%

		May		
${ }_{\text {Percent }}$	WSIIP 2303 Without	WSIP 2030 With Project		
Probability	Monthly Temperature	Monthly Temperature	Difference	Difference (\%)
(\%)	(DEGF)			
0.0\%	66.7	67.8	1.1	1.7\%
1.2\%	66.1	65.5	-0.6	-0.9\%
2.5\%	65.7	65.4	-0.3	-0.4\%
3.7\%	65.3	65.1	-0.2	-0.3\%
4.9\%	65.2	64.2	-1.0	-1.5\%
6.2\%	64.2	64.1	-0.1	-0.2\%
7.4\%	63.9	63.9	0.0	0.1\%
8.6\%	63.7	63.9	0.2	0.3\%
9.9\%	63.6	63.6	0.0	
11.1\%	63.6	63.6	0.0	-0.1\%
12.3\%	63.5	63.4	-0.1	-0.1\%
13.6\%	63.5	63.3	-0.1	-0.2\%
14.8\%	63.2	62.6	-0.6	-1.0\%
16.0\%	62.9	62.5	-0.4	-0.7\%
17.3\%	62.6	62.4	-0.3	-0.4\%
18.5\%	62.6	62.2	-0.3	-0.5\%
19.8\%	62.5	62.0	-0.4	-0.7\%
21.0\%	62.3	62.0	-0.3	-0.5\%
22.2\%	62.2	62.0	-0.3	-0.4\%
23.5\%	62.2	61.9	-0.3	-0.5\%
24.7\%	62.2	61.9	-0.3	-0.4\%
25.9\%	62.1	61.8	-0.3	-0.5\%
27.2\%	62.0	61.7	-0.3	-0.4\%
28.4\%	61.9	61.7	-0.3	-0.4\%
29.6\%	61.8	61.6	-0.2	-0.3\%
30.9\%	61.6	61.5	-0.1	-0.2\%
32.1\%	61.6	61.5	-0.1	-0.1\%
33.3\%	61.6	61.5	-0.1	-0.1\%
34.6\%	61.5	61.4	-0.1	-0.1\%
35.\%	61.3	61.4	0.1	0.1\%
37.0\%	61.2	61.3	0.1	0.2\%
38.3\%	61.1	61.3	0.2	0.3\%
39.5\%	61.1	61.3	0.2	0.3\%
40.7\%	61.0	61.3	0.2	0.4\%
42.0\%	60.8	61.2	0.4	0.7\%
43.2\%	60.7	61.1	0.5	0.8\%
44.4\%	60.6	60.7	0.1	0.2\%
45.7\%	60.6	60.7	0.1	0.1\%
46.9\%	60.6	60.6	0.1	0.1\%
48.1\%	60.6	60.6	0.0	0.1\%
49.4\%	60.5	60.5	-0.1	-0.1\%
50.6\%	60.4	60.4	-0.1	-0.1\%
51.9\%	60.3	60.3	0.0	0.0\%
53.1\%	60.3	60.2	-0.1	-0.2\%
54.3\%	60.2	60.1	0.0	-0.1\%
55.6\%	60.2	60.0	-0.1	-0.2\%
56.8\%	${ }^{60.0}$	59.9	-0.1	-0.2\%
58.0\%	59.8	59.5	-0.3	-0.5\%
59.3\%	59.8	59.5	-0.2	-0.4\%
60.5\%	59.5	59.5	0.0	0.0\%
61.7% 63.0%	59.3	59.3	0.0	0.0\%
-63.0\%	59.3	59.1	-0.2	-0.3\%
64.2\% $6.4 .4 \%$	- 59.2	59.1 58.9	-0.2 -0.3	-0.5\%
66.7%	59.1	58.9	-0.2	-0.4\%
67.9\%	58.9	58.8	-0.1	-0.2\%
69.1\%	58.9	58.5	-0.4	-0.7\%
70.4\%	58.8	58.5	-0.4	-0.6\%
71.6\%	58.5	58.3	-0.2	-0.3\%
72.8\%	58.5	58.2	-0.3	-0.4\%
74.19% 75.3%	58.3	58.0	-0.3	-0.5\%
${ }^{75.3 \%}$	58.2 580 58	57.9 57.9	-0.3	${ }^{-0.5 \%}$
77.8\%	57.9	57.8	-0.1	-0.1\%
79.0\%	57.9	57.7	-0.1	-0.3\%
80.2\%	57.8	57.6	-0.2	-0.4\%
81.5\%	57.7	57.3	-0.4	-0.7\%
82.7\%	$\stackrel{57.3}{56.3}$	$\stackrel{57.1}{56.9}$	-0.2	-0.4\%
84.0\%	55.9	56.9	0.0	0.0\%
85.2\%	55.8	55.8	0.0	0.0\%
86.4\%	56.8	56.8	0.0	0.0\%
87.7\%	55.6	56.7	0.1	0.2\%
88.9\%	56.5	56.5	0.0	0.0\%
90.1\%	56.4	56.4	0.0	0.0\%
${ }_{\text {920, }}^{91.46 \%}$	56.3 56.0	56.4 56.0	0.0	- 0.0%
93.8\%	55.0	56.0	0.0	0.0\%
95.1\%	55.4	55.4	0.0	0.0\%
96.3\%	55.1	55.1	0.0	0.0\%
97.5\%	55.0	55.0	0.0	0.0\%
98.8\%	${ }_{54.6}^{54}$	54.6	0.1	0.1\%
100.0\%	54.6	54.6	0.1	0.1\%

Table $\mathrm{SQ9}$-1b
How Nimbus Sam,, Mo

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{gathered}$	June			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	$\begin{aligned} & \hline \text { WSIP 2030 Without } \\ & \text { Proiect } \\ & \hline \end{aligned}$	WSIP 2030 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difserene } \\ \text { (DEGFF) } \end{gathered}$	
	Monthly Temperature	Monthly Temperature		
0.0\%	69.5	69.5	0.0	0.0\%
1.2\%	69.4	69.4	-0.1	-0.1\%
2.5\%	68.9	69.3	0.3	0.5\%
3.7\%	68.3	68.4	0.0	0.0\%
4.9\%	68.3	68.1	-0.2	-0.3\%
6.2\%	68.2	68.1	-0.1	-0.2\%
7.4\%	68.1	67.9	-0.2	-0.3\%
8.6\%	68.1	67.4	-0.7	-1.0\%
9.9\%	68.1	67.4	-0.7	-1.0\%
11.1\%	68.0	67.3	-0.7	-1.1\%
12.3\%	68.0	67.2	-0.8	-1.2\%
13.6\%	68.0	67.2	-0.8	-1.1\%
14.8\%	67.9	67.2	-0.7	-1.1\%
16.0\%	67.9	67.1	-0.7	-1.1\%
17.3\%	67.8	66.9	-0.9	-1.3\%
18.5\%	67.6	66.8	-0.8	-1.2\%
19.8\%	67.5 672	${ }_{66.7}^{66.7}$	-0.8 -.05	-1.2\%
21.0\%	67.2	66.7	-0.5	-0.8\%
22.2\%	67.1	${ }_{66.7}^{66.7}$	-0.4	-0.6\%
23.5\%	${ }^{67.0}$	${ }_{66.6} 6$	-0.3	-0.5\%
24.7\%	66.9	66.5	-0.3	-0.5\%
25.9\%	66.8	66.2	-0.6	-0.9\%
27.2\%	${ }_{66.8}^{66.8}$	${ }_{66.2} 6$	-0.6	-0.9\%
28.4\%	66.8	66.1	-0.7	-1.0\%
29.6\%	66.7	66.1	-0.6	-1.0\%
${ }^{30.9 \%}$ 32.1\%	66.7 66.5	66.0 66.0	-0.7	-0.7\%
33.3\%	66.5	66.0	-0.5	-0.7\%
34.6\%	66.4	66.0	-0.4	-0.6\%
35.8\%	66.3	65.8	-0.4	-0.6\%
37.0\%	66.2	65.8	-0.4	-0.6\%
38.3\%	66.1	65.5	-0.5	-0.8\%
39.5\%	65.7	65.2	-0.4	-0.6\%
40.7\%	65.6	65.2	-0.4	-0.7\%
42.0\%	65.5	65.0	-0.4	-0.6\%
43.2\%	65.3 653	65.0	-0.3	-0.4\%
44.4\%\%	65.3	64.8	-0.5	-0.7\%
${ }^{45.79 \%}$	65.1 64.9	64.6 64.5	-0.4 -0.4	-0.7\%
48.1\%	64.8	64.5	-0.3	-0.5\%
49.4\%	64.4	64.4	0.0	0.1\%
50.6\%	64.3	64.4	0.0	0.0\%
51.9\%	64.3	64.1	-0.2	-0.3\%
53.1\%	64.2	64.0	-0.2	-0.3\%
54.3\%	64.1	64.0	-0.1	-0.1\%
55.6\%	64.0	64.0	0.1	0.1\%
56.8\%	63.9	63.9	0.0	0.0\%
	63.9 63.8	63.7 63.7	-0.2 -0.2	-0.4\%
60.5\%	63.8	63.7	-0.1	-0.2\%
61.7\%	63.6	63.3	-0.3	-0.5\%
63.0\%	63.4	63.2	-0.2	-0.2\%
${ }^{64.2 \%}$	${ }_{63.1}^{63}$	${ }_{63.1}^{63.1}$	0.0	0.0\%
65.4\%	62.8	63.1	${ }^{0.3}$	0.6\%
66.7\%	62.6	63.1	0.5	0.8\%
67.9\%	62.5	62.2	-0.3	-0.5\%
69.1\%	62.2	62.0	-0.2	-0.3\%
70.4\%	${ }_{61.9} 61$	61.8	-0.1	-0.2\%
72.8\%	${ }_{61.7}$	61.7	0.0	0.0\%
74.1\%	61.7	61.5	-0.2	-0.3\%
75.3\%	61.5	61.4	0.0	0.0\%
76.5\%	61.4	61.4	0.0	0.0\%
77.8\%	${ }^{61.2}$	61.0	-0.2	-0.3\%
79.0\%	61.2	${ }^{61.0}$	-0.2	-0.2\%
80.2\%	61.0	60.9	0.0	-0.1\%
81.5\%	60.9	60.9	0.0	0.0\%
82.7\%	60.9	60.8	0.0	0.0\%
84.0\%	60.8	60.6	-0.1	-0.2\%
${ }^{85.2 \%} 8$	60.6 60.2	60.4 60.2	-0.2 0.0 0.0	-0.0.0\%
87.7\%	60.2	60.0	-0.2	-0.3\%
88.9\%	60.0	60.0	0.0	0.0\%
90.1\%	59.9	59.9	0.0	0.0\%
91.4\%	59.9	59.9	0.0	${ }^{0.00 \%}$
92.6\%	59.8	59.8	0.0	0.0\%
93.8\%	59.6	59.6	0.0	0.0\%
95.1\%	59.4	59.4	0.0	0.0\%
96.3\%	59.3	59.3	0.0	0.0\%
97.5\%	58.9	59.1	0.1	0.2\%
100.0\%	55.7	58.7	0.0	0.0\%

Table Sa9-1b
American River beow Nimbus Day, Monthly Temperature

	June to September		$\begin{gathered} \text { Absolute } \\ \text { Differeen } \\ \text { (DEGFF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference }(\%) \end{gathered}$
Percent Exceedance	WSIP 2 2030 Without	WSIP 2030 With Project		
Probability $(\%)$	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)		
0.0\%	69.5	70.6	1.1	1.6\%
1.2\%	69.4	68.8	-0.6	0.9\%
2.5\%	69.0	68.8	-0.2	0.3\%
3.7\%	68.8	68.8	0.0	0.0\%
4.9\%	68.7	68.7	0.0	-0.1\%
6.2\%	68.7	68.4	-0.3	0.4\%
7.4\%	68.3	68.1	-0.2	-0.3\%
8.6\%	68.2	68.0	-0.2	-0.3\%
9.9\%	68.1	67.9	-0.2	-0.4\%
11.1.1	67.7	67.7	0.0	0.0\%
12.3\%	67.7	67.6	-0.1	-0.1\%
13.6\%	67.7	67.4	-0.3	-0.4\%
14.8\%	67.6	67.2	-0.5	-0.7\%
16.0\%	67.5	67.0	-0.6	-0.8\%
17.3\%\%	67.5	67.0	-0.6	-0.9\%
18.5\%	67.5	66.8	-0.7	-1.1\%
19.8\%	67.4	66.8	-0.6	-0.9\%
${ }^{21.0 \%}$	67.3	66.7	-0.6	
${ }_{\text {22.2\% }}^{22.50}$	67.1	${ }_{66.6}^{66}$	-0.4	-0.7\%
${ }^{23.5 \%}$	${ }_{6}^{67.1}$	66.4 66.4	-0.6 -0.6	-0.09\%
25.9\%	67.0	66.4	-0.6	-0.9\%
27.2\%	67.0	66.4	-0.7	-1.0\%
28.4\%	67.0	66.4	-0.6	-0.9\%
29.6\%	67.0	66.3	-0.7	-1.1\%
30.9\%	66.9	66.2	-0.7	-1.1\%
${ }^{32.19 \%}$	66.9	66.2	-0.7	-1.0\%
33.3\%	66.8	66.2	-0.7	-1.0\%
34.6\%	66.8	66.2	-0.7	-1.0\%
35.8\%	66.8	66.1	-0.6	-1.0\%
37.0\%	66.8	66.1	-0.7	-1.0\%
38.3\%	66.8	66.1	-0.7	-1.0\%
39.5\%	66.7	66.1	-0.6	-0.9\%
40.7\%	66.7	66.0	-0.7	-1.0\%
42.0\%	66.7	66.0	-0.7	-1.0\%
43.2\%	66.7	66.0	-0.7	-1.0\%
44.4\%	66.7	66.0	-0.7	-1.0\%
45.7\%	66.6	65.9	-0.7	-1.0\%
46.9\%	66.6	65.9	-0.7	-1.0\%
${ }^{48.19 \%}$	${ }_{66.6}^{665}$	65.9	-0.7	-1.0\%
49.4\%	66.5 665	65.8 658	-0.7	${ }_{-1.10 \%}$
51.9\%	66.5	65.8	-0.7	-1.0\%
53.1\%	66.4	65.8	-0.7	-1.0\%
54.3\%	66.4	65.7	-0.7	-1.1\%
55.6\%	66.3	65.6	-0.7	-1.0\%
56.8\%	66.3	65.5	-0.8	-1.2\%
58.0\%	66.0	65.5	-0.5	-0.8\%
59.3\%	65.9	65.5	-0.4	${ }^{-0.6 \%}$
		65.5	-0.4	
${ }^{61.77 \%}$	65.9	65.4	-0.5	-0.7\%
63.0\%	65.9	65.3	-0.5	-0.8\%
${ }^{64.2 \%}$	${ }_{65}^{65.8}$	${ }_{651}^{65.3}$	-0.6	-0.8\%
65.4\%	${ }_{65.8}^{65}$	65.1	-0.7	-1.1\%
${ }^{66.79 \%}$	${ }_{65.8}^{658}$	65.1	-0.7	-1.1\%
67.9\%	65.7	65.0	-0.8	-1.2\%
69.19\%	65.7	64.9	-0.8	-1.2\%
${ }^{70.4 \%}$	65.6 65.6	64.9 647	-0.7	-1.10\%
72.8\%	65.5	64.7	-0.8	-1.3\%
74.1\%	65.5	64.6	-0.9	-1.3\%
75.3\%	65.4	64.6	-0.8	-1.2\%
76.5\%	65.3	64.6	-0.7	-1.1\%
77.8\%	65.2	64.4	-0.8	-1.2\%
79.0\%	${ }_{65.1}$	64.3	-0.8	-1.2\%
80.2\%	65.1	64.3	-0.8	-1.2\%
81.5\%	65.1	64.2	-0.8	-1.3\%
82.7\%	65.0	64.2	-0.8	-1.2\%
84.0% 85.206	65.0	64.1	-0.8	-1.3\%
85.2\% ${ }^{86.4 \%}$	65.0 64.8	64.1 64.0	-0.9 -0.7	-1.4\%
87.7\%	64.7	63.9	-0.8	${ }_{-1.2 \%}$
88.9\%	64.7	${ }^{63.8}$	-0.9	-1.4\%
90.11\%	${ }_{64.6}$	${ }_{63}^{63.7}$	-1.0	-1.5\%
91.4\%	64.6 64.6	${ }^{63.6}$	-1.0	-1.5\%
92.6\%	64.6	63.6	-1.0	-1.6\%
93.8\%	64.5	${ }_{63.4}$	-1.1	-1.7\%
${ }_{\text {956.30 }} 9$	64.4	63.4	-1.0	-1.6\%
${ }^{96.3 \%} 9$	64.4	${ }^{63.2}$	-1.2	-1.9\%
${ }^{99.5 \%}$	64.3 64.0	${ }_{62.9}^{63.1}$	-1.12 -1.0	${ }_{\text {- }}$
100.0\%	63.9	62.3	-1.6	-2.5\%

American River at Watt Avenue, Monthly Temperature

Table SQ10-1b at Watt Avenue, Monthy Temperature

Percent Exceedance Probability (\%)	October			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	WSIP 2030 Without Proiet	WSIP 2030 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGFF) } \end{aligned}$	
	Monthy Temperature	Monthly Temperature		
0.0\%	68.8	69.1		0.4\%
1.2\%	68.7	69.1	0.4	0.6\%
2.5\%	68.7	68.6	-0.1	-0.1\%
3.7\%	68.6	68.4	-0.2	-0.4\%
4.9\%	68.4	68.2	-0.2	-0.3\%
6.2\%	68.2	68.2	0.0	0.0\%
7.4\%	68.1	68.2	0.0	0.1\%
8.6\%	68.1	68.0	-0.1	-0.1\%
9.9\%	68.1	68.0	-0.1	-0.1\%
11.11\%	68.0	68.0	0.0	0.0\%
12.3\%	67.9	67.9	0.0	-0.1\%
13.6\%	67.9	67.7	-0.2	-0.3\%
14.8\%	67.7	67.7	0.0	${ }^{0.0 \%}$
16.0\%	67.7 67.6	67.6 67.6	-0.1 0.0	${ }_{\text {- }}^{-0.1 \%}$
18.5\%	67.6	67.6	0.0	-0.1\%
19.8\%	67.5	67.3	-0.2	-0.3\%
21.0\%	67.5	67.3	-0.2	-0.3\%
22.2\%	67.5	67.2	-0.2	-0.4\%
23.5\%	67.4	67.2	-0.2	-0.3\%
24.7\%	67.3	67.1	-0.2	-0.2\%
25.9\%	67.2	67.1	-0.1	-0.2\%
27.2\%	67.1	67.0	-0.1	-0.2\%
28.4\%	67.1	66.9	-0.2	-0.3\%
29.6\% 30.9\%	67.0 67.0	66.9 66.9	-0.2 -0.2	-0.0.0\%
32.1\%	67.0	66.8	-0.3	-0.4\%
33.3\%	66.9	66.8	-0.2	-0.3\%
34.6\%	66.8	66.7	-0.1	-0.2\%
35.8\%	66.8	66.7	-0.1	-0.2\%
37.0\%	66.7	66.7	-0.1	-0.1\%
38.3\%	66.7	66.6	-0.1	-0.2\%
39.5\%	66.7	66.6	-0.2	-0.2\%
40.7\%	66.6	66.6	0.0	0.0\%
42.0\%	66.5	66.5	0.0	-0.1\%
43.2\%	66.5	66.4	-0.1	-0.1\%
44.4\%	66.5	66.4	-0.1	-0.2\%
45.7\%	66.4	${ }_{66.3}$	-0.1	-0.19\%
46.9\%	66.4	66.3	-0.1	-0.2\%
48.1\%	66.4	66.2	-0.2	-0.3\%
49.4\%	66.4	66.2	-0.2	-0.3\%
50.6\%	66.3	66.2	-0.1	-0.2\%
51.9\%	66.3	66.2	-0.1	-0.2\%
53.1\%	66.2	66.1	-0.1	-0.2\%
54.3\%	66.1	66.1	-0.1	-0.1\%
55.6\%	66.0 66.0	${ }_{661}^{661}$	0.0	0.1\%
56.8\%	66.0	66.1	0.1	0.1\%
58.0\%	66.0	66.1	0.1	${ }^{0.1 \%}$
59.3\%	65.9 659	66.0	0.0	0.10\%
${ }^{60.5 \%}$	65.9 65.8	${ }_{65.9}^{66.0}$	${ }_{0.2}^{0.0}$	0.3\%
63.0\%	65.8	65.8	0.1	0.1\%
64.2\%	65.7	65.8	0.1	0.1\%
65.4\%	65.7	65.7	0.1	0.1\%
66.7\%	65.6	65.6	0.0	-0.1\%
67.9\%	65.6	65.6	0.0	0.0\%
69.1\%	65.6	65.3	-0.3	-0.4\%
70.4\%	65.5 654 654	${ }_{65.3}^{651}$	-0.2	-0.3\%
71.6\%	65.4	65.1	-0.3	-0.4\%
72.8\%	65.4	65.1	-0.3	-0.4\%
74.1\%	65.4	65.0	-0.3	-0.5\%
75.3\%	65.2	65.0	-0.2	-0.3\%
76.5\%	65.1	64.7	-0.3	-0.5\%
77.8\%	65.1	64.7	-0.4	-0.6\%
79.0\%	65.0	64.7	-0.3	-0.5\%
80.2\%	65.0	64.7	-0.3	-0.5\%
81.5\%	64.9	64.6	-0.3	-0.4\%
- 82.78%	64.6	64.6	0.0	0.0\%
84.0\%	64.6	64.3	-0.3	-0.5\%
${ }^{85.20 \%}$	${ }_{6}^{64.6}$	64.2	-0.3	-0.5\%
${ }^{86.4 \%} 8$	64.4 64.4	${ }_{64.1}^{64.1}$	-0.3	-0.0.0\%
88.9\%	64.2	64.0	-0.2	-0.2\%
90.1\%	63.9	64.0	0.1	0.1\%
91.4\%	63.7	63.8	0.1	0.2\%
92.6\%	63.5	${ }^{63.8}$	0.3	0.5\%
93.8\%	63.2	63.7	0.5	0.8\%
95.1\%	${ }_{62.9}$	${ }_{68.6}^{63}$	0.7	1.0\%
-96.3\% ${ }_{\text {97.5\% }}$	62.3 62.2	62.9 62.4	0.6 0.1	${ }_{\text {one }}^{0.9 \%}$
98.8\%	61.0	61.1	0.1	0.2\%
100.0\%	61.0	61.1	0.0	0.2\%

Table SQ10-1b at Watt Avenue, Monthy Temperature

February				
Percent Exceedance	WSII 2030 Without	WSIP 2030 With Project	Absolute	
Probability	Monthy Temperature	Monthy Temperature	(iflerence	Difference (\%)
(\%)	(0EGF)	(0EGF)		
0.0\%	55.0	54.4	-0.6	1.1\%
${ }^{1.25 \%}$	53.1 52.1	${ }_{51.7}^{53.1}$	0.0 -0.5	-
3.7\%	51.8	51.1	-0.7	1.4\%
4.9\%	50.8	50.8	0.0	0.0
6.2\%	50.7	50.7	0.1	0.1\%
7.4\%	50.6	50.7	0.1	
8.6\%	50.4	50.4	0.0	0.0
9.9\%	50.3	50.2	-0.1	-0.2\%
11.1\%	50.1	50.1	0.0	0.0\%
12.3\%	50.0	50.0	0.1	0.2\%
13.6\%	49.9	50.0	0.0	0.1\%
14.8\%	49.9	49.9	0.0	0.0\%
16.0\%	49.8	49.9	0.0	0.1\%
17.3\%	49.7	49.8	0.1	0.2\%
18.5\%	49.7	49.7	0.0	0.0\%
19.8\%	49.5	49.6	0.0	0.1\%
21.0\%	49.5	49.6	0.1	0.1\%
${ }^{22.2 \% \%}$	49.3	49.3	-0.1	-0.1\%
23.5\%	49.3	49.2	0.0	-0.1\%
24.7\%	49.1	49.1	0.0	0.0\%
25.9\%	48.8	48.9	0.1	0.19\%
27.2\%	48.8	48.9	0.1	0.2\%
28.4\%	48.8	48.8	0.0	0.1\%
29.6\%	48.4	48.7	0.3	0.6\%
30.9\%	48.3	48.5	0.1	0.3\%
32.1\%	48.2	48.3	0.1	0.2\%
33.3\%	48.1	48.3	0.2	0.4\%
34.6\%	48.1	48.2	0.1	${ }^{0.3 \%}$
35.8\%	48.1	48.1		0.1\%
37.0\%	48.0	48.1	0.1	0.1\%
38.3\%	48.0	48.1	0.1	${ }^{0.19 \%}$
39.5\%	48.0	48.1	0.1	0.1\%
40.7\%	47.9	47.9	0.0	-0.1\%
42.0\%	47.9	47.8	-0.2	${ }^{-0.4 \%}$
43.2\%	47.7	47.7	0.0	0.0\%
44.4\%	47.6	47.6	0.0	0.1\%
45.7\%	47.6	47.6	0.0	0.0\%
46.9\%	47.6	47.6	0.0	0.1\%
48.19\%	47.5	47.6	0.1	0.3\%
4.94\%			0.0	
50.6\%	47.4	47.4	0.0	0.1%
51.9\%	47.4	47.4 474	0.0	${ }^{0.0 \% \%}$
53.19\% 54.3%	47.4 47.3	47.4 47.3	0.0 0.1	${ }^{0.0 \% \%}$
55.6\%	47.3	47.2	0.0	${ }^{\text {-0.1\% }}$
56.8\%	47.1	47.2	0.1	0.3\%
58.0\%	47.1	47.2	0.1	0.2\%
59.3\%	47.0	47.1	0.1	0.2\%
60.5\%	46.9	47.1	0.2	0.4\%
61.7\%	46.9	46.9	0.0	0.0\%
-63.0\%	${ }_{46.8}^{46.8}$	46.8 46.8	0.0	${ }_{\text {com }}^{0.00 \%}$
65.4\%	${ }_{46.8}$	${ }_{46.8}$	0.0	0.0\%
66.7%	46.7	46.8	0.0	0.1\%
67.9\%	46.7	46.8	0.0	0.1\%
69.1\%	46.6	46.6	0.0	0.0\%
70.4\%	46.6	46.6	0.0	0.0\%
71.6\%	46.6	46.6	0.0	0.0\%
72.8\%	46.5	46.6	0.1	0.2\%
74.1\%	46.4	46.5	0.0	0.1\%
75.3\%	46.4	46.5	0.1	0.2\%
76.5\%	46.4	46.4	0.0	0.0\%
779.0\%	46.4 46.4	46.4 46.4	0.0 0.0	${ }_{0}^{0.00 \%}$
80.2\%	46.4	46.4	0.0	0.0\%
81.5\%	46.4	46.4	0.0	0.0\%
82.7\%	46.3	46.3	0.0	0.0\%
84.0\%	46.2	46.2	0.0	0.0\%
85.2\%	46.2	46.2	0.0	0.0\%
86.4\%	46.1	46.1	0.0	0.0\%
87.7\%	46.1	46.1	0.0	0.0\%
88.9\%	46.1	46.0	0.0	0.0\%
90.1\%	45.8	45.9	0.1	0.1\%
91.4\%	45.8	45.8	0.0	0.0\%
92.6\%	45.8	45.7	-0.1	-0.2\%
93.8\%	45.8	45.7	-0.1	-0.2\%
95.1\%	45.7	45.7	0.0	-0.1\%
96.3\%	45.7	45.5	-0.2	-0.5\%
97.5\%	45.7	45.4	-0.3	-0.6\%
98.8\%	44.8	45.1	0.3	0.6\%
100.0\%	44.8	45.1	0.3	0.6\%

May				
Percent Exceedanc	${ }^{\text {WSIP }} 2$ Proiocet	WSIP 2030 With Project	Absolute	Relative
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{gathered} \text { Difference } \\ \text { (DEGGF) } \end{gathered}$	Difference (\%)
0.0\%	70.4	72.4	1.9	2.8\%
1.2\%	70.4	70.2	-0.3	0.4\%
2.5\%	70.1	69.9	-0.2	0.3\%
3.7\%	70.0	69.2	-0.8	-1.20
4.9\%	69.9	69.0	0.9	
6.2\%	69.1	68.2	-0.9	1.3\%
7.4\%	69.0	68.0	-1.0	-1.4\%
8.6\%	68.5	68.0	-0.6	-0.8\%
9.9\%	68.4	67.7	-0.7	-1.0\%
11.1\%	68.3	67.5	-0.8	-1.1\%
12.3\%	68.1	67.4	-0.6	-0.9\%
13.6\%	67.9	67.1	-0.8	-1.2\%
14.8\%	67.8	67.1	-0.7	-1.0\%
16.0\%	67.8	67.1	-0.7	-1.0\%
17.3\%	67.8	67.0	-0.7	-1.1\%
18.5\%	67.8	67.0	-0.8	-1.1\%
19.8\%	67.6	66.8	-0.8	-1.2\%
21.0\%	67.3	66.8	-0.5	-0.7\%
22.2\%	67.2	66.6	-0.6	-0.9\%
23.5\%	67.2	66.6	-0.6	-0.9\%
24.7\%	67.0	66.5	-0.5	-0.8\%
25.9\%	66.9	66.5	-0.4	-0.6\%
27.2\%	66.8	66.4	-0.4	-0.6\%
28.4\%	66.8	66.2	-0.6	-0.8\%
29.6\%	66.7	66.2	-0.5	-0.8\%
30.9\%	66.6	66.2	-0.4	0.6\%
32.1\%	66.4	66.1	-0.3	
33.3\%	66.2	66.0	-0.2	-0.3\%
34.6\%	66.2	66.0	-0.2	-0.3\%
35.\%	66.1	65.7	-0.4	-0.7\%
37.0\%	66.1	65.6	-0.5	-0.7\%
38.3\%	66.0	65.6	-0.4	-0.6\%
39.5\%	65.8	65.5	-0.3	-0.5\%
40.7\%	65.8	65.1	-0.7	-1.0\%
42.0\%	65.7	65.1	-0.7	-1.0\%
43.2\%	65.6	65.1	-0.6	-0.8\%
4.4.4\%	65.3	65.0	-0.3	-0.4\%
45.7\%	65.3	65.0	-0.3	-0.4\%
46.9\%	65.1	65.0	-0.1	-0.2\%
48.1\%	65.1	65.0	-0.1	-0.1\%
49.4\%	${ }_{654}^{65.0}$	${ }_{65.0} 64$	-0.1	-0.1\%
50.6\%	64.7	64.7	0.0	0.0\%
51.9\%	64.6	64.6	0.0	-0.1\%
53.1\%	64.5	64.5	0.0	0.0\%
54.3\%	64.4	64.1	-0.3	-0.5\%
55.6\%	64.2	64.0	-0.2	-0.3\%
56.8\%	64.0	63.9	-0.1	-0.2\%
58.0\%	63.7	63.7	0.0	0.0\%
59.3\%	63.4	63.4	0.0	0.0\%
- ${ }_{\text {60.5\% }}^{617 \%}$	63.4	63.4	0.0	
${ }^{61.77 \%}$	${ }^{63.3}$	63.4	0.1	0.1\%
63.0\%	63.1	63.2	0.0	0.1\%
${ }^{64.2 \%}$	${ }_{62.8}^{62.8}$	${ }_{6}^{63.1}$	${ }^{0.3}$	0.4\%
65.4\%	62.7	62.8	0.1	0.2\%
66.7\%	62.7	62.7	0.0	0.0\%
67.9\%	62.7	62.7	0.0	0.0\%
69.1\%	62.6	${ }^{62.6}$	0.0	0.0\%
70.4\%	62.6	62.5	-0.1	-0.1\%
71.6\%	62.5	62.2	-0.2	-0.4\%
72.8\%	62.3	62.1	-0.2	-0.4\%
74.19\%	62.2	62.0	-0.3	-0.4\%
75.3\%	62.1	61.5	-0.5	-0.9\%
76.5\%	${ }_{6}^{62.0}$	61.5	-0.4	-0.7\%
77.8\%	61.5	61.5	0.0	0.0\%
79.0\%	61.5	61.4	-0.1	-0.2\%
80.2\%	61.5	61.2	-0.3	-0.6\%
81.5\%	61.4	61.2	-0.2	-0.4\%
8.27% 870%	61.2	61.1	0.0	0.1\%
84.0\%	60.6	60.6	0.0	0.0\%
85.2\%	60.1	60.1	0.0	0.0\%
- ${ }^{86.4 \%}$	59.9	59.9	0.0	${ }^{0.0 \%}$
88.9\%	59.8	59.8	0.0	0.0\%
${ }^{90.1 \%}$	${ }_{59.6}^{59.8}$	${ }_{59}^{59.6}$	-0.0	${ }_{\text {- }}^{-0.00 \%}$
91.4\%	59.3	59.2	0.0	0.0\%
92.6\%	59.2	59.2	0.0	0.0\%
93.8\%	58.4	58.4	0.0	0.0\%
95.1\%	58.0	58.0	0.0	0.0\%
96.3\%	57.3	57.3	0.0	0.0\%
${ }_{9}^{97.5 \%}$	57.0	57.0	0.0	${ }^{0.00 \%}$
988.8\% 100.0\%	56.8 56.8	56.9	0.0	
		56.9	0.0	0.1\%

Table SQ10-1b

Table SQ10-1b
American River at abat ili venue Monthy
Probabily of Excedance

$\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probabalily } \end{array} \end{aligned}$$(\%)$	June to September			
	WSII 2030 Without Proiect	WSIP 2030 With Project	bsolute	Relative
	$\underset{\substack{\text { Monthly Temperature } \\ \text { (DEFFF) }}}{ }$		(DEGF)	Difference (\%)
0.0\%	76.1	77.1	1.0	1.3\%
1.2\%	75.1	74.3	-0.8	-1.1\%
2.5\%	75.1	74.3	-0.8	-1.1\%
3.7\%	74.6	74.1	-0.5	-0.7\%
4.9\%	73.4 733	73.6 730	${ }^{0.2}$	-0.3\%
- $7.2 \% \%$	73.3 73.0	73.0 72.6	-0.3 -0.4	-0.4.9\%
7.4\%	${ }^{73.0}$	${ }^{72.6}$	-0.4	-0.6\%
- ${ }_{\text {8.9\%\% }}$	72.8 72.6	72.5 72.2	-0.3	-0.4\%
11.1\%	72.2	72.2	0.0	0.0\%
12.3\%	72.0	72.1	0.1	0.1\%
13.6\%	72.0	71.9	-0.1	-0.2\%
14.8\%	${ }^{27.0}$	71.6	-0.4	-0.6\%
16.0\%	72.0	71.5	-0.5	-0.7\%
${ }^{17.3 \%}$ 18.5\%	${ }_{71.6}^{71.7}$	71.5 71.4	-0.2 -0.2	-0.3\%
19.9\%	71.6	71.0	-0.6	-0.8\%
21.0\%	71.4	70.8	-0.6	-0.8\%
22.2\%	71.4	70.7	-0.7	-0.9\%
23.5\%	71.4	70.7	-0.7	-1.0\%
24.7\%	71.3	70.6	-0.7	-1.0\%
25.9\%	71.3	70.3	-1.0	-1.4\%
27.2\%	71.0	70.2	-0.7	-1.0\%
28.4\%	70.8	70.2	-0.6	-0.9\%
29.6\%	70.7	70.1	-0.6	-0.9\%
30.9\%	70.7	77.1	-0.6	-0.9\%
32.1. ${ }^{3}$	70.7	70.0 69.9	-0.7 -0.7	-1.0\%
34.6\%	70.5	69.8	-0.7	-1.0\%
35.8\%	70.5	69.8	-0.7	-1.0\%
37.0\%	70.4	69.8	-0.6	-0.9\%
38.3\%	70.4	69.6	-0.8	-1.1\%
39.5\%	70.2	69.6	-0.6	-0.9\%
40.7\%	70.2	69.6	-0.6	-0.9\%
42.0\%	70.2	69.6	-0.6	-0.9\%
43.2\%	70.2	69.6	-0.6	-0.8\%
44.4\%	70.0	69.6	-0.5	${ }^{-0.77 \%}$
${ }^{45.79 \%}$	70.0 70.0	69.5	-0.5 -0.6	-0.0.8\%
48.1\%	70.0	69.4	-0.5	-0.8\%
49.4\%	69.9	69.4	-0.5	-0.7\%
50.6\%	69.9	69.4	-0.5	-0.7\%
51.9\%	69.8	69.3	-0.5	-0.7\%
53.1\%	69.7	69.3	-0.4	-0.6\%
54.3\%	69.7	69.3	-0.4	-0.6\%
55.6\%	69.7	69.3	-0.4	-0.6\%
56.8\%	69.6	69.2	-0.4	-0.6\%
58.0\%	69.6	69.1	-0.5	-0.7\%
59.3\%	69.5	69.1	-0.4	-0.6\%
${ }^{60.5 \%}$ 61.7\%	69.3 69.3	69.0 68.9	-0.3 -0.4	-
63.0\%	69.2	68.8	-0.4	-0.6\%
64.2\%	69.2	68.8	-0.4	-0.6\%
65.4\%	69.2	68.7	-0.4	-0.6\%
66.7\%	69.1	68.6	-0.6	-0.8\%
67.9\%	69.1	68.5	-0.6	-0.9\%
69.1\%	68.9	68.4	-0.5	-0.7\%
70.4\%	68.9	68.4	-0.5	-0.7\%
71.6\%	68.8	68.4	-0.5	-0.7\%
72.8\%	68.8	68.4	-0.4	-0.6\%
74.19\%	68.7	${ }_{68.3}$	-0.4	-0.6\%
76.5\%	${ }_{68.7}^{68.7}$	68.3 68.2	-0.4 -0.5	-0.0.7\%
77.8\%	68.7	68.0	-0.7	-1.0\%
79.0\%	68.6	67.9	-0.7	-1.0\%
80.2\%	68.6	67.9	-0.7	-1.1\%
81.5\%	68.6	67.8	-0.8	-1.1\%
82.7\%	68.5	67.7	-0.9	-1.3\%
84.0\%	68.4	${ }^{67.6}$	-0.7	-1.1\%
85.2\%	68.3 68.2	67.6 67.6	-0.7 -0.6	-
87.7\%	68.2	67.4	-0.7	-1.1\%
88.9\%	68.2	67.3	-0.8	-1.2\%
90.11\%	68.1	67.2	-0.9	-1.3\%
91.4\%	68.0	67.2	-0.9	-1.3\%
92.6\%	68.0	67.2	-0.8	-1.2\%
93.8\%	67.9	67.1	-0.8	-1.1\%
95.1\%	67.7	66.8	-0.9	-1.3\%
96.3\%	67.7	66.7	-1.0	-1.4\%
97.5\%	67.6	66.5	-1.1	-1.6\%
98.8\%	67.4	${ }_{665}^{66.5}$	-0.9	-
100.0\%	67.4	65.9	-1.4	-2.1\%

$\begin{array}{\|c} \text { Percent } \\ \text { Exceedance } \\ \text { Probabability } \end{array}$	Juy to September		Probabliy o fexceeance		August to September				
	WSIP 2030 Without	2030	$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (DEGF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$		$\left.\begin{array}{c}\text { WSII 2030 Without } \\ \text { Proiet } \\ \text { Mount } \\ \text { (OEFFF) }\end{array}\right)$	WSIP 2030 With Project Monthly Temperature (DEGF)	$\begin{aligned} & \text { Absolute } \\ & \text { Differenee } \\ & \text { (eEGG) } \end{aligned}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	Monthly Temperatue	Monthly Temperature							
	(0EG)								
0.0\%	76.1	${ }_{77.1}$	1.0	1.3\%				-0.6	-0.8\%
${ }^{\text {2.5\% }}$	${ }_{75.4}$	${ }_{74.1}^{74.3}$	${ }_{-1.3}$	-1.1.8\%	2.5\%	${ }_{74.6}^{75.1}$	74.5 73.8	-0.6	- ${ }_{\text {- }}^{\text {-0.0\% }}$
3.7\%	74.1	73.8	-0.3	-0.4\%	3.7\%	74.0	73.4	-0.6	-0.8\%
4.9\%	73.9	73.5	-0.4	-0.5\%	4.9\%	73.9	73.1	-0.8	-1.0\%
6.2\%	73.8	73.1	-0.7	-0.9\%	6.2\%	73.4	73.1	-0.3	-0.4\%
7.4\%	73.7	73.0	-0.6	-0.8\%	7.4\%	73.3	73.0	-0.3	-0.4\%
8.6\%	73.6	72.8	-0.8	-1.1\%	8.6\%	${ }^{73.3}$	72.8	-0.4	-0.6\%
9.9\%	73.2	72.6	-0.5	-0.7\%	9.9\%	${ }^{7} 3.1$	72.7	-0.4	-0.5\%
11.11\%	73.1	72.5	-0.5	-0.7\%	11.1\%	73.1	72.7	-0.4	-0.6\%
12.3\%	72.7	72.2	-0.5	-0.6\%	12.3\%	73.0	72.4	-0.6	-0.8\%
13.6\%	${ }^{72.6}$	72.2	-0.4	-0.6\%	13.6\%	${ }^{73.0}$	${ }_{72.3} 72$	-0.6	-0.9\%
14.8\%	72.6	72.2	-0.4	-0.6\%	14.8\%	72.5	${ }^{72.3}$	-0.2	-0.3\%
16.0\%	${ }^{72.1}$	${ }^{72.1}$	0.1	0.1\%	16.0\%	72.4	${ }^{72.3}$	-0.1	-0.2\%
17.3\%	71.9	72.1	0.2	0.2\%	17.3\%	72.3	72.1	-0.2	-0.3\%
18.5\%	71.7	72.1	0.3	0.5\%	18.5\%	72.3	71.9	-0.4	-0.5\%
19.8\%	71.5	${ }_{712.1}$	0.5	0.7\%	19.8\%	72.2	71.8	-0.4	-0.6\%
21.0\%	71.4	71.1	-0.3	-0.4\%	21.0\%	72.1	71.7	-0.5	-0.7\%
22.2\%	71.4	71.1	-0.3	-0.4\%	22.2\%	72.1	71.5	-0.6	-0.8\%
${ }^{23.5 \%}$	71.3	71.0	-0.3	-0.4\%	23.5\%	${ }^{72.1}$	${ }_{71.5} 7$	-0.6	-0.8\%
24.7\%	71.1	70.7	-0.5	-0.7\%	24.7\%	${ }^{72.0}$	71.4	-0.6	-0.9\%
25.9\%	70.9	${ }^{70.5}$	-0.5	-0.7\%	25.9\%	71.8	${ }_{71.3}$	-0.5	-0.7\%
27.2\%	${ }^{70.9}$	70.4	-0.5	-0.7\%	27.2\%	71.7	71.2	-0.5	-0.7\%
28.4\%	70.8	70.4	-0.4	-0.6\%	28.4\%	71.5	71.1	-0.4	-0.6\%
29.6\%	70.8	70.3	-0.4	-0.6\%	29.6\%	71.5	71.0	-0.5	-0.6\%
30.9\%	70.7	${ }^{70.3}$	-0.4	-0.6\%	30.9\%	71.5	70.9	-0.6	-0.8\%
32.1\%	70.6	70.3	-0.4	-0.5\%	32.1\%	71.3	70.9	-0.5	-0.6\%
33.3\%	70.5	70.1	-0.4	-0.6\%	33.3\%	71.3	70.7	-0.6	-0.8\%
34.6\%	70.5	69.9	-0.6	-0.8\%	34.6\%	71.2	70.6	-0.6	-0.8\%
35.8\%	70.5	69.9	-0.6	-0.9\%	35.8\%	71.2	70.6	-0.6	-0.8\%
37.0\%	70.4	69.7	-0.8	-1.1\%	37.0\%	71.2	70.6	-0.6	-0.8\%
38.3\%	70.4	69.5	-0.9	-1.2\%		71.2	70.5		
39.5\%	${ }^{70.3}$	69.5	-0.7	-1.1\%	39.5\%	71.2	70.4	-0.7	-1.1\%
40.7\%\%	70.2	69.5	-0.8	${ }^{-1.11 \%}$	40.70\%	77.1	77.4	-0.7	-1.0\%
${ }_{43.2 \%}$	70.2 70.2	${ }_{69.4}^{69.5}$	-0.8	${ }_{-1.11 \%}$	42.2\%	${ }_{71.0}^{71.1}$	70.4	-0.6	-0.8\%
44.4\%	70.1	69.4	-0.7	-1.0\%	44.4\%	70.9	70.4	-0.5	-0.7\%
45.7\%	70.0	69.4	-0.6	-0.9\%	45.7\%	70.8	70.3	-0.4	-0.6\%
46.9\%	70.0	69.4	-0.6	-0.8\%	46.9\%	70.7	70.3	-0.4	-0.6\%
48.1\%	70.0	69.4	-0.6	-0.9\%	48.1\%	70.7	${ }^{70.3}$	-0.4	-0.6\%
49.4\%	70.0	69.3	-0.6	-0.9\%	49.4\%	70.7	70.2	-0.4	-0.6\%
50.6\%	69.9		-0.6		50.6\%				
51.9\%	69.9	69.3	-0.6	-0.8\%	51.9\%	70.5	${ }_{7} 70.2$	-0.3	-0.5\%
53.19\%	69.9	69.3	-0.6	-0.8\%	53.10\%	70.4	70.1	-0.3	-0.4\%
54.3\% 55.6%	69.9 69.8	69.3 69.3	-0.6	-0.8\%	54.3\%	70.4 70.4	70.1 69.9	-0.3 -0.4	-0.4\%
56.8\%	69.8	69.2	-0.6	-0.8\%	56.8\%	${ }^{70.3}$	69.9	-0.4	-0.6\%
58.0\%	69.8	69.2	-0.6	-0.8\%	58.0\%	70.3	69.9	-0.4	-0.5\%
59.3\%	69.7	69.2	-0.6	-0.8\%	59.3\%	${ }^{70.2}$	69.9	-0.4	-0.5\%
60.5\%	69.7	69.1	-0.6	-0.8\%	60.5\%	70.2	69.6	-0.6	-0.8\%
61.7\%	69.7	69.1	-0.5	-0.8\%	61.7\%	70.2	69.6	-0.7	-0.9\%
- 63.0%	69.6 696	69.1 69.1	-0.5 -0.5	-	- 63.0%	${ }_{70.1}^{70.2}$	69.5 69.3	-0.7 -0.9	--0.9\%
${ }_{6} 6.44 \%$	${ }_{69.6}$	69.1	-0.5	-0.7\%	${ }^{65.4 \%}$	70.1	${ }_{69.2}$	-0.9	${ }_{-1.3 \%}$
66.7\%	69.6	69.0	-0.5	-0.8\%	66.7\%	70.1	69.1	-0.9	-1.3\%
67.9\%	69.5	68.9	-0.6	-0.9\%	67.9\%	70.0	69.1	-0.9	-1.3\%
69.1\%	69.5	68.9	-0.6	-0.9\%	69.1\%	70.0	69.1	-0.9	-1.3\%
70.4\%	69.5	68.9	-0.7	-1.0\%	70.4\%	70.0	69.0	-1.0	-1.4\%
71.6\%	69.5	68.8	-0.8	-1.1\%	71.6\%	69.9	69.0	-0.9	-1.3\%
72.8\%	69.5	68.7	-0.8	-1.1\%	72.8\%	69.8	68.9	-0.9	-1.4\%
74.1\%	69.5	68.7	-0.7	-1.1\%	74.1\%	69.7	68.8	-0.9	-1.3\%
75.3\%	69.4	68.7	-0.8	-1.1\%	75.3\%	69.7	68.8	-0.8	-1.2\%
${ }^{76.5 \%}$	69.4	68.6	-0.8	-1.12\%	76.5\%	69.6	68.8	-0.8	-1.19\%
77.8\%	69.4	68.6	-0.8	-1.2\%	77.8\%	69.6	68.8	-0.9	-1.2\%
79.0\%	69.4	68.6	-0.9	-1.2\%	79.0\%	69.6	68.7	-0.9	-1.3\%
80.2\%	69.4	68.5	-0.8	-1.2\%	80.2\%	69.6	68.7	-0.9	-1.3\%
81.5\%	69.4	68.4	-0.9	${ }^{-1.3 \%}$	81.5\%	${ }_{69} 69$	68.6 685	-0.9	-1.3\%
82.7\%	69.3	68.4	-0.9	-1.3\%	82.7\%	${ }_{69.6}$	${ }_{68.5}^{68.5}$	-1.19	-1.5\%
84.0\%	69.3	68.4	-0.9	-1.3\%	84.0\%	69.3	68.4	-0.9	-1.3\%
85.2\%	69.3	68.3	-0.9	-1.3\%	85.2\%	69.3	68.2	-1.0	-1.5\%
86.4\%	69.2	68.2	-1.0	-1.4\%	86.4\%	69.2	${ }_{68.2}$	-1.0	-1.4\%
87.7\%	69.1	68.2	-0.9	-1.3\%	87.7\%	69.2	68.0	-1.1	-1.6\%
88.9\%	69.1	68.2	-1.0	-1.4\%	88.9\%	69.1	67.9	-1.2	-1.7\%
90.1\%	69.1	68.0	-1.1	-1.6\%	90.1\%	68.9	67.8	-1.1	-1.6\%
${ }^{91.44 \%}$	69.1	68.0	-1.11	${ }^{-1.6 \%}$	91.4\%	68.9	67.7	-1.2	-1.8\%
92.6\%	${ }_{687}^{69.1}$	${ }_{6}^{68.0}$	-1.1	-1.6\%	92.6\%	68.9	67.7	-1.2	-1.7\%
${ }^{93.19 \%}$	${ }_{68.7}^{68.7}$	${ }_{67.8}^{67.8}$	-0.9	-1.4\%	${ }^{93.1 \%}$	68.7	${ }_{67.7}^{67.7}$	-1.12	${ }_{-1.6 \%}$
96.3\%	68.7	67.6	-1.1	-1.6\%	96.3\%	68.7	67.5	-1.2	-1.7\%
97.5\%	68.7	67.6	-1.1	-1.6\%	97.5\%	68.7	67.4	-1.2	-1.8\%
98.8\%	68.6	67.2	-1.4	-2.1\%	98.8\%	68.3	67.3	-1.0	-1.5\%
100.0\%	68.3	66.7	-1.6	2.4\%	100.0\%	67.8	66.5	-1.4	2.0\%

Figure SQ11-1b
American River at the Mouth, Monthly Temperature

Table SQ11-1b

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \\ \text { (\%) } \end{gathered}$	October			
	WSII 2030 Without Proiet	WSIP 2030 With Project	Absolu	
	Monthly Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
	699	(060)	0	
0.0%	6.9	70.1	0.2	0.3\%
${ }^{1.25 \%}$	69.5	69.8 69.6	${ }_{0}^{0.1}$	${ }^{0.3 \%}$
3.7\%	69.5	69.2	-0.2	-0.3\%
4.9\%	69.4	68.9	-0.5	-0.7\%
6.2\%	69.0	68.8	-0.2	-0.3\%
7.4\%	68.9	68.6	-0.4	-0.5\%
8.6\%	68.8	68.5	-0.3	-0.4\%
9.9\%	68.7	68.5	-0.2	-0.3\%
${ }^{11.119 \%}$	68.6 68.4	68.4 684	-0.1	-0.2\%
${ }_{\text {13.6\% }}$	${ }_{68.3}^{66.4}$	${ }_{68.3}$	-0.1	-0.1\%
14.8\%	68.3	68.3	0.0	0.0\%
16.0\%	68.1	68.3	0.1	0.2\%
17.3\%	68.1	68.1	0.1	0.1\%
18.5\%	67.9	67.9	0.0	0.0\%
19.8\%	67.8	67.8	0.0	-0.1\%
21.0\%	67.8	67.6	-0.2	-0.3\%
22.2\%	67.8	67.6	-0.2	-0.3\%
${ }_{\text {24, }}^{23.50}$	67.7 67.7	67.5 67.5	-0.1 -0.2	-0.0.2\%
25.9\%	67.6	67.4	-0.2	-0.4\%
27.2\%	67.6	67.4	-0.2	-0.4\%
28.4\%	67.6	67.3	-0.3	-0.4\%
29.6\%	67.5	67.2	-0.3	-0.4\%
30.9\%	67.5	67.2	-0.2	-0.4\%
32.1\%	67.5	67.1	-0.3	-0.5\%
33.3\%	67.4	67.0	-0.4	-0.6\%
34.6\%	${ }^{67.4}$	${ }^{67.0}$	-0.4	-0.6\%
35.8\%	67.4	67.0	-0.4	-0.5\%
37.0\%	67.3	67.0	-0.4	-0.6\%
	67.3	66.9	-0.3	-0.5\%
30.7\%				
42.0\%	67.1	${ }_{66.9} 6$	-0.2	-0.3\%
43.2\%	66.9	66.9	-0.1	-0.1\%
44.4\%	${ }_{66.9}$	${ }_{66.7} 6$	-0.2	-0.3\%
45.7\%	66.8	66.7	-0.2	-0.2\%
46.9\%	66.7	66.7	-0.1	-0.1\%
48.1\%	66.7	66.6	-0.1	-0.2\%
49.4\%	66.7	66.6	-0.1	-0.1\%
50.6\%	66.6	66.6	0.0	-0.1\%
51.9\%	66.6 66.5	66.6 66.5	-0.0	-0.1\%
54.3\%	66.5	66.5	0.0	0.0\%
55.6\%	66.5	66.4	0.0	-0.1\%
56.8\%	66.4	${ }_{66.3}$	-0.1	-0.2\%
58.0\%	66.4	${ }_{66.3}$	-0.1	-0.1\%
59.3\%	66.4	${ }^{66.3}$	-0.1	-0.2\%
60.5\%	66.4	66.3	-0.1	-0.1\%
61.7\%	66.3	66.3	-0.1	-0.1\%
63.0\%	66.3	66.2	-0.1	-0.1\%
64.2\%	66.3	66.2	-0.1	-0.1\%
${ }_{6}^{65.4 \%}$	66.2	66.1	-0.1	-0.2\%
66.7\%	66.1	66.1	0.0	-0.1\%
${ }_{6}^{67.9 \%}$	${ }_{66.1}^{66.1}$	66.0 65.9	-0.2	-0.2\%
70.4\%	66.0	65.9	-0.1	-0.2\%
71.6\%	${ }^{66.0}$	${ }_{655}^{65.8}$	-0.2	-0.3\%
72.8\%	66.0	65.8	-0.2	-0.3\%
74.1\%	65.9	65.7	-0.2	-0.3\%
75.3\%	${ }_{65.7}^{65}$	${ }_{656}^{65.7}$	0.0	0.0\%
76.5\%	65.6	65.6	0.1	0.1\%
77.8\%	65.5	65.4	-0.1	-0.2\%
-79.0\%	65.5 65.4	65.4 65.0	-0.1 -0.4	-0.6\%
81.5\%	65.3	64.9	-0.3	-0.5\%
82.7\%	65.3	64.8	-0.5	-0.8\%
84.0\%	65.2	64.8	-0.5	-0.7\%
85.2\%	64.9	64.8	-0.1	-0.2\%
86.4\%	64.8	64.7	-0.1	-0.1\%
87.7\%	64.8	64.6	-0.1	-0.2\%
88.9\%	64.6	64.6	-0.1	-0.1\%
90.1\%	64.6	64.3	-0.3	-0.4\%
91.4\%	64.5	64.2	-0.2	-0.4\%
${ }_{93.8 \%}^{92.6 \%}$	64.3 64.0	64.2 64.1	-0.1 0.1	${ }_{0}^{-0.2 \%}$
95.1\%	63.5	63.9	0.4	0.7\%
96.3\%	63.2	63.6	0.4	0.6\%
97.5\%	${ }_{6}^{62.9}$	${ }_{61.0}^{63}$	0.1	0.2\%
98.8\%	${ }_{615}^{61.5}$	${ }_{616}^{61.6}$	${ }^{0.1}$	0.1\%
100.0\%	61.5	61.6	0.0	0.1\%

Table SQ11-1b rat the Mouth, Monthy Temperatur

$\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probabalily } \end{array} \end{aligned}$	February			
	WSIP 2030 Without Proiect	WSIP 2030 With Project		Relative
	Monthly Temperature	Monthly Temperature	$\begin{aligned} & \text { Difference } \\ & \text { (DEEGF) } \end{aligned}$	Difference (\%)
0.0\%	57.5	57.3	-0.2	-0.4\%
1.2\%	55.5	55.5	0.0	
2.5\%	54.1	53.1	-1.0	
3.7\%	53.3	52.4	-0.9	-1.7\%
4.9\%	${ }_{5}^{52.2}$	${ }_{52.2}$	0.0	0.0\%
6.2\%	51.8	51.8	0.1	0.1\%
7.4\%	51.8	51.8	0.0	0.1\%
8.6\%	51.6	51.7	0.1	0.2\%
9.9\%	51.4	51.3	-0.1	-0.2\%
11.1\%	${ }_{51.3}^{51.3}$	${ }_{51,3}$	0.0	0.0\%
12.3\%	51.2	51.1	-0.1	-0.2\%
13.6\%	51.0 50.9	51.1 51.0	0.1 0.1	0.2\%
16.0\%	50.9	51.0	0.1	0.3\%
17.3\%	50.9	51.0	0.1	0.2\%
18.5\%	50.9	50.9	0.1	0.1\%
19.8\%	50.8	50.9	0.1	0.2\%
21.0\%	50.5	50.4	0.0	0.0\%
22.2\%	50.4	50.4	0.0	-0.1\%
23.5\%	50.3	50.3	0.0	-0.1\%
24.7\%	50.0	50.0	0.1	0.1\%
25.9\%	49.9	49.9	0.0	0.0\%
27.2\%	49.9	49.9	0.0	0.0\%
28.4\%	49.6	49.7	0.1	0.3\%
29.6\%	49.4	49.5	0.1	${ }^{0.2 \%}$
30.9\%				
32.3\%	49.0	49.3	0.2	0.4\%
34.6\%	49.0	49.1	0.1	0.2\%
35.8\%	48.9	49.0	0.1	0.2\%
37.0\%	48.7	48.8	0.1	0.2\%
38.3\%	48.6	48.7	0.1	0.1\%
39.5\%	48.5	48.6	0.0	0.0\%
40.79\%	48.5	48.5	0.0	-0.1\%
${ }^{4.32 \%}$	48.5 48.3	48.4 48.3	-0.1 0.0 0.0	-0.1\%
44.4\%	48.2	48.3	0.1	0.2\%
45.7\%	48.1	48.2	0.0	0.1\%
46.9\%	48.1	48.1	0.0	0.0\%
48.1\%	48.0	48.1	0.0	${ }^{0.19}$
49.4\%	48.0	48.1	0.0	0.1\%
50.6\%	48.0	48.0	0.0	0.0\%
51.9\%	47.9	48.0	0.1	${ }_{0}^{0.2 \%}$
(${ }_{\text {54.3\% }}^{53.10 \%}$	47.9 47.8	47.9 47.9	0.0 0.1	-0.2\%
55.6\%	47.6	47.8	0.1	0.3\%
56.8\%	47.6	47.7	0.2	0.3\%
58.0\%	47.6	47.6	0.0	0.1\%
59.3\%	47.5	47.6	0.0	0.1\%
${ }^{60.5 \%}$	${ }^{47.5}$	47.6	0.1	0.2\%
61.7\%	47.4	47.5	${ }^{0.1}$	0.2\%
63.0\%	47.4	47.4	0.0	0.0\%
64.2\%	47.4	47.4	0.0	0.0\%
65.4\%	47.2	47.2	0.0	0.0\%
66.7\%	47.1	47.1	0.0	0.0\%
67.9\%	47.1	47.1	0.0	0.1\%
69.19\%	47.1	47.1	0.0	0.1\%
70.4\%	47.1	47.1	0.0	0.0\%
${ }^{71.6 \%}$	47.0	47.0	0.0	0.0\%
72.8\%	47.0	47.0	0.0	0.0\%
74.19\%	46.8	46.9	0.1	0.3\%
75.3\%	46.8	46.8	0.1	0.1\%
76.5\%	46.8	46.8	0.0	0.0\%
77.8\%	46.8	46.8	0.0	0.0\%
79.0\%	46.7	46.8	0.0	0.0\%
80.2\%	46.7	46.7	0.0	0.0\%
81.5\%	46.7	46.7	0.0	0.0\%
${ }^{82.79 \%}$	${ }^{46.6}$	46.6	0.0	0.0\%
84.0\%	46.6	46.6	0.0	0.0\%
${ }^{85.20 \%}$	46.6	46.6	0.0	0.0\%
${ }^{86.47 \%}$	46.4	${ }_{46.4}^{46.4}$	0.0	-0.0\%
88.9\%	${ }_{46.4}$	46.4	0.0	0.0\%
90.1\%	46.1	46.1	0.0	-0.1\%
91.4\%	46.0	46.0	0.0	0.0\%
92.6\%	46.0	46.0	0.0	-0.1\%
93.8\%	46.0	46.0	0.0	-0.1\%
95.19\%	46.0	45.9	-0.1	-0.2\%
97.5\%	45.9	${ }_{45.7}$	-0.2	-0.3\%
98.8\%	45.1	45.4	0.4	0.8\%
100.0\%	45.1	45.4	0.4	0.8\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabily } \\ (\%) \\ \hline \end{gathered}$	May			RelativeDifference (\%)
	WSII 2030 W. Without	WSIP 2030 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	
	Monthy Temperature	Monthly Temperature		
0.0\%	74.6	75.6	1.0	1.4\%
1.2\%	73.6	73.5	-0.1	-0.2\%
2.5\%	73.3	72.9	-0.4	-0.6\%
3.7\%	${ }^{73.1}$	${ }^{72.3}$	-0.7	-1.0\%
4.9\%	72.9	72.2	0.7	
6.2\%	72.8	71.8	-1.1	-1.5\%
7.4\%	72.8	71.1	-1.7	-2.3\%
8.6\%	72.6	71.0	-1.7	-2.3\%
9.9\%	72.0	70.9	-1.1	-1.5\%
11.1\%	71.7	70.6	-1.1	-1.5\%
12.3\%	71.6	70.6	-1.0	-1.5\%
13.6\%	71.4	70.5	-0.9	${ }_{-1.3 \%}$
14.8\%	71.1	70.5	-0.6	-0.9\%
16.0\%	70.9	70.3	-0.6	-0.8\%
17.3\%	70.9	70.3	-0.6	-0.8\%
18.5\%	70.8	70.2	-0.6	-0.9\%
19.8\%	70.8	70.1	-0.7	-0.9\%
21.0\%	70.6	70.1	-0.5	-0.7\%
22.2\%	70.6	70.0	-0.6	-0.9\%
23.5\%	70.5	69.7	-0.8	-1.2\%
24.7\%	70.5	69.7	-0.8	-1.1\%
25.9\%	70.4	69.5	-0.9	-1.3\%
27.2\%	70.4	69.5	-0.9	-1.2\%
28.4\%	70.2	69.5	-0.7	-1.0\%
29.6\%	70.0	69.3	-0.7	-1.0\%
	70.0	69.3	-0.6	-0.9\%
32.1\%	69.9	69.3	-0.6	-0.8\%
33.3\%	69.8	69.2	-0.6	-0.8\%
34.6\%	69.8	69.1	-0.7	-1.0\%
35.8\%	69.7	68.9	-0.8	-1.1\%
37.0\%	69.5	68.8	-0.7	-1.0\%
38.3\%	69.3	68.8	-0.5	-0.8\%
39.5\%	68.9	68.5	-0.4	-0.6\%
40.7\%	68.9	68.4	-0.4	-0.6\%
42.0\%	68.8	68.3	-0.5	-0.8\%
43.2\%	68.7	68.2	-0.5	-0.7\%
44.4\%	68.7	68.2	-0.5	-0.7\%
		68.0	-0.5	-0.7\%
46.9\%	68.2	67.8	-0.4	-0.6\%
48.1\%	68.2	67.7	-0.5	-0.7\%
49.4\%	${ }_{677}^{67.8}$	${ }_{675}^{67.5}$	-0.2	-0.3\%
50.6\%	67.7	${ }^{67.5}$	-0.2	-0.4\%
51.9\%	67.7	67.0	-0.7	-1.0\%
53.1\%	66.9	66.9	0.0	0.0\%
54.3\%	66.6	66.9	0.2	0.4\%
55.6\%	66.6	66.5	-0.1	-0.1\%
${ }_{\text {56.8\% }}^{55}$	66.5	66.5	-0.1	-0.1\%
源5.0\%\%	66.4	66.4	0.0	0.0\%
59.3\%	66.3	${ }_{66.3}$	0.0	0.0\%
661.7\%	${ }_{65.8}^{65.9}$	${ }_{65.9}^{66.1}$	${ }_{0}^{0.1}$	${ }^{0.2 \%}$
63.0\%	65.8	65.8	0.0	0.1\%
64.2\%	65.6	65.8	0.1	0.2\%
65.4\%	65.6	65.6	0.0	0.0\%
66.7\%	65.5	65.6	0.0	0.1\%
67.9\%	65.5	65.5	0.0	0.1\%
69.1\%	65.2	65.5	${ }^{0.3}$	0.4\%
70.4\%	65.0	65.1	0.1	0.1\%
71.6\%	65.0	64.9	-0.1	-0.1\%
- ${ }^{72.8 \%}$	64.9	64.9	0.0	0.0\%
74.1\%	64.9	64.5	-0.3	-0.5\%
75.3\%	64.7	64.4	-0.3	-0.4\%
76.5\%	64.6	64.1	-0.4	-0.6\%
77.8\%	64.4	64.0	-0.4	-0.6\%
79.0\%	64.1	64.0	-0.1	-0.2\%
80.2% 81.5%	64.0	64.0	0.0	0.0\%
81.5\% ${ }^{82.7 \%}$	64.0	63.7	-0.3	-0.4\%
88.7% 84.0%	63.7	63.7	0.0	0.0\%
88.0% 85.2%	63.3	63.3	0.0	0.0\%
85.2\%	62.5	62.5	0.0	0.0\%
86.4\%	62.4	62.4	0.0	${ }^{0.00 \%}$
${ }^{87.7 \%}$	62.3	62.3		0.0\%
88.9\%	62.1 617	${ }_{61.9}$	-0.2	-0.3\%
${ }^{90.1 \%}$	61.7	${ }_{61.7}$	0.0	0.0\%
${ }_{9}^{92.46 \%}$	61.2	61.2	0.0	0.0\%
92.6\% ${ }_{\text {93.8\% }}$	61.2	61.2	0.0	0.0\%
${ }_{95.1 \%}^{93.8 \%}$	60.1	60.1	0.0	0.0\%
${ }_{96.3 \%}^{95.1 \%}$	59.7	59.7	0.0	0.0\%
997.3\%	58.8	58.8	0.0	0.0\%
998.8\%	58.3	58.3	0.0	0.0\%
100.8\%	${ }_{581}^{58.1}$	¢8.2	0.0	${ }_{\text {a }}^{0.1 \%}$
	58.1	58.2	0.0	0.1\%

Table SQ11-1b
 American River a t the Mouth, -10 nothly Temperature

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \\ (\%) \end{gathered}$	June			
	${ }^{\text {WSIIP }}$ Pro30 Without	WSIP 2030 With	ute	Relative
	Monthly Temperature	Monthly Temperature	(iflerence	Difference (\%)
0.0\%	81.2	81.3	0.1	0.1\%
1.2\%	80.6	80.4	-0.2	-0.2\%
2.5\%	78.9	78.9	0.0	0.0\%
3.7\%	78.6	76.8	-1.7	-2.2\%
4.9\%	78.4	76.7	-1.7	-2.2\%
6.2\%	77.4	76.5	-0.9	-1.1\%
7.4\%	77.3	76.0	-1.4	-1.8\%
8.6\%	77.3	75.6	-1.7	-2.1\%
9.9\%	77.2	75.5	-1.7	-2.3\%
11.1\%	777.2	${ }^{75.4}$	-1.7	-2.3\%
12.3\%	77.2	${ }^{75.3}$	-1.8	-2.4\%
13.6\%	76.9	${ }^{75.3}$	-1.6	-2.1\%
14.8\%	76.7	75.1	-1.6	-2.1\%
16.0\%	76.6	74.9	-1.7	-2.2\%
17.3\%	76.5	74.9	-1.7	-2.2\%
18.5\%	76.5	74.8	-1.7	-2.2\%
19.8\%	76.1	74.7	-1.4	-1.8\%
21.0\%	76.1	74.7	-1.4	-1.8\%
${ }^{22.2 \%}$	75.7 754	${ }_{74.5}$	-1.2	${ }^{-1.1 .6 \%}$
23.5\%	75.4 753	74.0 74.0	-13	
${ }^{24.99 \%}$	75.3	74.0	-1.3	${ }_{-1.7 \%}^{-1.7 \%}$
27.2\%	74.5	73.5	-1.0	-1.3\%
28.4\%	74.3	${ }^{73.5}$	-0.8	-1.1\%
29.6\%	74.3	73.3	-1.0	-1.4\%
30.9\%	74.1	${ }_{73.3}^{73.3}$	-0.8	-1.1\%
32.1\%	74.1	73.2	-0.9	-1.2\%
${ }^{33.3 \%}$	73.8	72.9	-1.0	-1.3\%
34.6% 358%	${ }_{73,1}^{73.3}$	72.8 72.8	-0.5 -0.3	-0.7\%
37.0\%	73.0	72.8	-0.2	-0.2\%
38.3\%	72.9	72.7	-0.2	-0.2\%
39.5\%	72.9	${ }^{2} 2.6$	-0.3	-0.4\%
40.7\%	72.9	72.6	-0.3	-0.4\%
42.0\%	${ }^{72.8}$	72.5	-0.3	-0.4\%
43.2\%	72.3	72.4	0.1	0.1\%
44.4\%	72.1	${ }^{72.3}$	0.2	0.3\%
${ }^{45.79 \%}$	71.9	${ }^{72.3}$	0.3	${ }^{0.5 \%}$
${ }^{46.9 \%}$	${ }_{717}^{71.8}$	72.0 71.8	${ }_{0}^{0.1}$	${ }_{\text {coin }}^{0.2 \%}$
49.4\%	71.6	71.7	0.1	1\%
50.6\%	71.5	71.5	0.0	0.0\%
51.9\%	71.3	71.5	0.2	0.2\%
53.1\%	71.3	${ }_{71.3}$	0.0	0.0\%
54.3\%	71.1	${ }_{71.3}$	0.2	0.2\%
55.6\%	71.1	71.2	0.1	0.1\%
56.8\%	71.1	77.1	0.0	0.0\%
58.0\%	71.0	77.1	0.0	0.1\%
59.3\%	70.9	70.9	0.0	0.0\%
60.5\%	${ }^{70.7}$	70.7	-0.1	${ }^{-0.1 \%}$
${ }^{61.79 \%}$	70.7	70.6	-0.1	${ }^{-0.1 \%}$
${ }^{63.00 \%}$	${ }^{70.3}$	${ }^{70.6}$	0.3	0.4\%
64.2\%	70.2	70.2	0.0	0.0\%
${ }^{65.4 \%}$	70.0	70.1	0.1	0.2\%
66.7\%	69.9	70.0	${ }^{0.2}$	${ }^{0.3 \%}$
67.9\%	69.7	69.9	0.2	0.3\%
69.1\%	69.6	69.8	0.2	0.3\%
70.4\%	69.5	69.7	${ }^{0.3}$	0.4\%
71.6\%	69.5	69.7	0.2	0.3\%
72.8\%	69.3	69.6	0.3	0.4\%
74.1\%	69.2	69.6	0.4	0.6\%
- $78.5 .5 \%$	69.1	69.4	${ }^{0.3}$	0.4\%
7780\%	${ }_{68.9} 6.9$	69.4	0.4	0.5\%
79.0\%	68.7	68.9	${ }_{0.2}$	0.2\%
80.2\%	68.7	68.8	0.1	0.2\%
81.5\%	68.6	68.8	0.1	0.2\%
${ }^{82.79 \%}$	68.5 68.4	68.7	0.2	0.2\%
84.0\%	68.4	68.7	0.2	0.3\%
85.2\%	68.2	68.6	0.4	0.6\%
86.4\%	${ }^{68.2}$	68.3	0.1	${ }^{0.2 \% \%}$
88.9\%	68.0	68.0	0.0	0.0\%
90.1\%	67.9	67.9	0.0	0.0\%
91.4\%	67.9	67.9	0.0	0.0\%
92.6\%	67.3 672	67.3 673	${ }_{0}^{0.0}$	${ }^{0.0 \%}$
${ }^{93.8 \%}$	${ }_{667}^{67.2}$	${ }_{669} 67.3$	0.1	0.1\%
95.1\%	${ }_{66.7}$	66.9	0.1	0.2\%
96.3\%	${ }_{66.7}$	${ }_{66.7}^{66.7}$	0.0	${ }^{0.00 \%}$
97.5\%	66.6	66.6	0.0	0.0\%
98.8\%	66.4	66.4	0.0	0.0\%
100.0\%	66.4	66.4	0.0	0.0\%

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& September \& \&

\hline Percent Exceedance \& ${ }^{\text {WSIP }}$ 2033 ${ }_{\text {Proiect }}$ Wethout \& WSIP 2030 With Project \& \&

\hline Probability \& Monthy Temperature \& Monthly Temperature \& Difference (DEGF) \& Difference (\%)

\hline 0.0\% \& ${ }_{787}$ \& 78.4 \& -0.3 \& 0.4\%

\hline 1.2\% \& 77.0 \& 76.4 \& -0.6 \& -0.8\%

\hline 2.5\% \& 76.9 \& 76.1 \& -0.9 \& -1.1\%

\hline 3.7\% \& 76.6 \& 75.8 \& -0.7 \& -1.0\%

\hline 4.9\% \& 76.4 \& 75.6 \& -0.8 \& -1.0\%

\hline 6.2\% \& 75.6 \& 75.5 \& -0.1 \& 0.1\%

\hline 7.4\% \& 75.5 \& 75.1 \& -0.4 \& 0.6\%

\hline 8.6\% \& 75.4 \& 74.7 \& -0.7 \& -

\hline 9.9\% \& 75.3 \& 74.4 \& -0.9 \&

\hline 11.1\% \& 75.3 \& 74.2 \& -1.0 \& -1.4\%

\hline 12.3\% \& 75.2 \& 74.2 \& -1.0 \& 1.3\%

\hline 13.6\% \& 75.2 \& 74.2 \& -1.1 \& -1.4\%

\hline 14.8\% \& 74.8 \& 74.1 \& -0.8 \& -1.1\%

\hline 16.0\% \& 74.8 \& 74.0 \& -0.8 \& -1.1\%

\hline 17.3\% \& 74.7 \& 74.0 \& -0.7 \& -0.9\%

\hline 18.5\% \& 74.6 \& 73.8 \& -0.8 \& -1.1\%

\hline 19.8\% \& 74.3 \& 73.8 \& -0.5 \& -0.7\%

\hline 21.0\% \& 74.2 \& 73.7 \& -0.4 \& -0.6\%

\hline 22.2\% \& 74.1 \& ${ }^{73.1}$ \& -0.9 \& -1.3\%

\hline 23.5\% \& 74.0 \& 73.0 \& -1.0 \&

\hline 24.7\% \& 73.9 \& ${ }^{73.0}$ \& -0.9 \&

\hline 25.9\% \& 73.8 \& 72.9 \& -0.8 \& -1.1\%

\hline 27.2\% \& ${ }^{73.7}$ \& ${ }^{72.9}$ \& -0.8 \& -1.1\%

\hline 28.4\% \& ${ }_{737}^{73.7}$ \& 72.9 \& -0.8 \& -1.1\%

\hline 29.6\% \& ${ }^{73.7}$ \& 72.8 \& -0.8 \& -1.1\%

\hline 30.9\% \& ${ }^{73.6}$ \& 72.8 \& -0.7 \& -1.0\%

\hline 32.1\% \& 73.6 \& 72.8 \& -0.8 \& -1.1\%

\hline 33.3\% \& 73.4 \& 72.7 \& -0.7 \& -1.0\%

\hline 34.6\% \& ${ }_{73.2}^{73.2}$ \& ${ }^{72.7}$ \& -0.4 \& -0.6\%

\hline 35.9\% \& 73.2 \& 72.6 \& -0.5 \& -0.7\%

\hline 37.0\% \& 73.1 \& 72.6 \& -0.5 \& -0.7\%

\hline 38.3\% \& ${ }^{73.1}$ \& 72.4 \& -0.6 \& -0.9\%

\hline 39.5\% \& 73.0 \& 72.4 \& -0.6 \& -0.9\%

\hline 40.7\% \& ${ }^{73.0}$ \& ${ }^{72.3}$ \& -0.7 \& -0.9\%

\hline 42.0\% \& 72.8 \& 72.1 \& -0.6 \& -0.9\%

\hline 43.2\% \& 72.8 \& 72.1 \& -0.7 \& -0.9\%

\hline 44.4\% \& 72.8 \& ${ }_{72.1}$ \& -0.7 \& -1.0\%

\hline 45.7\% \& 72.8 \& ${ }^{72.0}$ \& -0.7 \& -1.0\%

\hline 46.9\% \& 72.7 \& 71.8 \& -1.0 \& -1.3\%

\hline 48.1\% \& 72.7 \& 71.6 \& -1.1 \& -1.5\%

\hline 49.4\% \& 72.7 \& 71.5 \& -1.2 \& 1.6\%

\hline 50.6\% \& 72.6 \& 71.5 \& -1.1 \& -1.5\%

\hline 51.9\% \& ${ }^{72.6}$ \& 71.5 \& -1.0 \& -1.4\%

\hline 53.19\% \& 72.5 \& 71.5 \& -1.0 \& -1.4\%

\hline 54.3\% \& 72.4 \& 71.4 \& -0.9 \& -1.3\%

\hline 55.6\% \& ${ }^{72.3}$ \& ${ }_{71.3}$ \& -1.0 \& -1.4\%

\hline 56.8\% \& 72.1 \& 71.2 \& -0.9 \& -1.3\%

\hline 58.0\% \& 71.8 \& 71.2 \& -0.6 \& -0.9\%

\hline 59.3\% \& 71.8 \& 71.1 \& -0.6 \& -0.9\%

\hline 60.5\% \& 71.7 \& 71.1 \& -0.7 \& -0.9\%

\hline 61.7\% \& 71.7 \& 71.1 \& -0.6 \& -0.9\%

\hline 63.0\%
6.42% \& 71.7 \& 71.0 \& -0.7 \& -1.0\%

\hline 64.2\% \& 71.6 \& 70.9 \& -0.7 \& 0.9\%

\hline 65.4\% \& 71.5 \& 70.9 \& -0.7 \& -0.9\%

\hline ${ }^{66.7 \%}$ \& 71.5 \& 70.8 \& -0.6 \& -0.8\%

\hline 67.9\% \& 71.4 \& 70.8 \& -0.6 \& -0.8\%

\hline 69.1\% \& 71.4 \& 70.8 \& -0.6 \& -0.9\%

\hline 70.4\% \& 71.4 \& ${ }^{70.6}$ \& -0.7 \& -1.0\%

\hline 71.6\% \& ${ }_{711.1}$ \& 70.6 \& -0.7 \& -1.0\%

\hline 72.8\% \& 71.1 \& 70.5 \& -0.6 \& -0.8\%

\hline 74.19%
75.3% \& 71.1 \& 70.5 \& -0.7 \& -0.9\%

\hline 75.3\% \& 71.1 \& ${ }^{70.3}$ \& -0.8 \& -1.1\%

\hline 76.5\% \& 71.0 \& 70.3 \& -0.7 \& -1.0\%

\hline 77.8\% \& 70.7 \& 70.3 \& -0.4 \& -0.5\%

\hline -79.0\% \& 70.5 \& 70.3 \& -0.2 \& ${ }^{-0.3 \%}$

\hline 81.5\% \& 701 \& 70.2 \& 0.0 \& -0.1\%

\hline - ${ }^{81.5 \%}$ \& 70.1 \& 69.8 \& -0.2 \& -0.3\%

\hline - $\begin{aligned} & 82.7 \% \\ & 84.0 \%\end{aligned}$ \& 70.0 \& ${ }_{69.8}^{69.8}$ \& -0.2 \& -0.3\%

\hline 84.0\%
885 \& 70.0 \& 69.6 \& -0.4 \& ${ }^{-0.6 \%}$

\hline 85.2\% \& 69.9 \& 69.4 \& -0.5 \& -0.7\%

\hline 86.4\% \& 69.8 \& 69.2 \& -0.5 \& -0.8\%

\hline 87.7%
88.9% \& 69.5 \& 68.9 \& -0.6 \& -0.9\%

\hline 88.9\%

90.1% \& 69.4 \& 68.9 \& -0.5 \& -0.7\%

\hline ${ }_{\text {91.4\% }}^{90.1 \%}$ \& 69.2 \& 68.7 \& -0.5 \& -0.8\%

\hline ${ }_{9}^{91.46 \%}$ \& 69.1 \& 68.6 \& -0.5 \& -0.7\%

\hline ${ }_{93.8 \%}^{92.6 \%}$ \& ${ }_{68.9}^{69.1}$ \& 68.4
68.3 \& -0.7
-0.6 \& - $\begin{aligned} & -1.19 \% \\ & -0.90 \%\end{aligned}$

\hline 95.1\% \& 68.8 \& 68.2 \& -0.6 \& -0.9\%

\hline 96.3\% \& 68.7 \& 68.1 \& -0.5 \& -0.8\%

\hline 97.5\% \& 68.5 \& 67.8 \& -0.7 \& -1.0\%

\hline 98.8\% \& 67.8 \& 67.7 \& -0.2 \& 0.3\%

\hline 100.0\% \& 67.8 \& 67.7 \& -0.2 \& -0.3\%

\hline
\end{tabular}

Table SQ11-1b
American River a the Mouth, Monthy Temperature

	June to September		$\begin{gathered} \text { Absolute } \\ \text { Differeen } \\ \text { (DEGFF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
Percent Exceedance	WSIP 2 2030 Without	WSIP 2030 With Project		
Probability $(\%)$	Monthly Temperature (DEEFF $)$	Monthly Temperature (DEGF)		
0.0\%	80.2	81.0	0.9	1.1\%
1.2\%	79.2	78.4	-0.8	1.0\%
2.5\%	79.1	78.1	-1.0	1.2\%
3.7\%	78.8	77.9	-1.0	1.2\%
4.9\%	76.8	77.1	${ }^{0.3}$	0.4\%
6.2\%	76.8	76.5	-0.3	0.4\%
7.4\%	76.4	75.9	-0.5	-0.7\%
8.6\%	${ }^{76.1}$	${ }^{75.8}$	-0.3	-0.4\%
9.9\%	75.8	75.4	-0.4	-0.5\%
11.1.1	75.6	75.4	-0.2	-0.3\%
12.3\%	75.6	${ }^{75.3}$	-0.3	-0.4\%
13.6\%	75.3	75.2	-0.1	-0.1\%
14.8\%	75.2	74.9	-0.3	-0.3\%
16.0\%	75.1	74.9	-0.2	-0.2\%
173.3\%	74.9	74.7	-0.3	-0.4\%
18.5\%	74.7	74.4	-0.3	-0.5\%
19.8\%	74.7	74.4	-0.3	-0.5\%
21.0\%	74.6	74.0	-0.6	-0.8\%
22.2\%	74.5	${ }^{73.9}$	-0.7	-0.9\%
23.5\%	74.2	${ }_{73.5}^{73.5}$	-0.7	-1.0\%
24.7\%	74.2	73.4	-0.8	-1.1\%
25.9\%	74.2	73.4	-0.8	-1.1\%
27.2\%	${ }_{74.1}$	${ }_{73.2}^{73}$	-0.9	-1.2\%
28.4\%	${ }_{73.6}$	${ }^{73.0}$	-0.6	-0.8\%
29.6\%	${ }^{73.6}$	${ }^{73.0}$	-0.6	-0.8\%
30.9\%	73.4	${ }^{73.0}$	-0.5	-0.6\%
${ }^{32.19 \%}$	73.3	73.0	-0.4	-0.5\%
33.3\%	73.3	72.8	-0.5	-0.7\%
34.6\%	${ }^{73.2}$	${ }^{2} 2.8$	-0.5	-0.6\%
35.8\%	${ }^{73.2}$	72.6	-0.6	-0.8\%
37.0\%	${ }^{73.2}$	72.6	-0.6	-0.8\%
38.3\%	${ }^{73.1}$	72.4	-0.7	-0.9\%
39.5\%	73.1	72.4	-0.7	-0.9\%
40.7\%	72.9	${ }^{72.3}$	-0.6	-0.8\%
42.0\%	72.9	72.2	-0.6	-0.8\%
43.2\%	72.7	72.2	-0.5	-0.7\%
${ }^{44.49 \%}$	72.7	72.2	-0.6	-0.8\%
45.7\%	72.7 72.4	72.1 72.1	-0.6 -0.3	-0.0.4\%
48.1\%	72.4	72.1	-0.3	-0.4\%
49.4\%	72.4	72.0	-0.4	-0.6\%
50.6\%	72.4	71.9	-0.4	-0.6\%
51.9\%	${ }_{72.2} 72$	71.9	-0.3	-0.4\%
53.1\%	72.2	71.9	-0.3	-0.5\%
54.3\%	${ }^{72.1}$	71.9	-0.3	-0.4\%
55.6\%	${ }_{72.1}$	71.7	-0.4	-0.5\%
56.8\%	72.0	71.7	-0.3	-0.5\%
58.0\%	72.0	71.7	-0.3	-0.4\%
59.3\%	71.9	71.6	-0.3	-0.4\%
60.5\% 61.7%	71.9	${ }_{71.6}^{71.6}$	-0.4	${ }^{-0.5 \%}$
${ }^{61.77 \%}$	71.8	71.5	-0.3	-0.4\%
63.0\%	71.7	71.4	-0.3	-0.4\%
64.20% 6.50%	71.6	${ }_{713}^{71.3}$	-0.3	-0.5\%
${ }^{654.4 \%}$	71.5	71.3	-0.3	-0.4\%
${ }^{66.79 \%}$	71.5	71.2	-0.2	-0.3\%
67.9\%	71.4	71.2	-0.2	-0.3\%
69.19\%	71.4	71.0	-0.4	-0.6\%
70.4\%	${ }_{7113}^{71.3}$	71.0 710	-0.4	-0.5\%
72.8\%	71.3	70.9	-0.3	-0.5\%
74.1\%	71.2	70.8	-0.3	-0.5\%
75.3\%	71.1	70.7	-0.4	-0.6\%
76.5\%	71.1	70.7	-0.5	-0.6\%
77.8\%	77.1	${ }^{70.6}$	-0.4	-0.6\%
79.0\%	71.1	${ }_{70.6}$	-0.5	${ }^{-0.6 \%}$
80.2\%	70.9	70.6	-0.4	-0.5\%
${ }^{81.5 \%}$	70.8	70.5	-0.4	-0.5\%
82.7\%	70.8	70.4	-0.4	-0.6\%
84.0% 8.2%	70.8	70.1	-0.7	-1.0\%
85.2\% ${ }^{86.4 \%}$	70.8 70.7	70.1 70.0	-0.7 -0.7	-
87.7\%	70.7	70.0	-0.7	-1.0\%
88.9\%	70.7	69.9	-0.8	-1.1\%
90.11\%	70.5	69.9	-0.6	-0.9\%
91.4\%	70.5	${ }_{698} 69.8$	-0.6	-0.9\%
92.6\%	70.4	69.8	-0.6	-0.9\%
93.8\%	70.2	69.8	-0.4	-0.6\%
${ }_{\text {956.30 }} 9$	69.9	69.6	-0.3	-0.4\%
${ }^{96.3 \%} 9$	69.9	69.4	-0.5	-0.7\% ${ }_{-13 \%}$
${ }^{99.5 \%}$	${ }_{69.8}^{69.9}$	${ }_{68.6}^{69.0}$	-1.2	${ }_{-1.7 \%}$
100.0\%	69.7	68.5	-1.2	-1.7\%

Figure SQ12-1b
Trinity River below Lewiston Dam, Monthly Temperature

Table SQ12-1b

$\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probabalily } \end{array} \end{aligned}$$(\%)$	October			
	${ }^{\text {WSIP } 2030 \text { Without }}$ Proiet	WSIP 2030 With Project		Relative
	Monthy Temperature	Monthy Temperature	Difference (DEFF)	Difference (\%)
0.0\%	57.1	57.1	0.0	0.0\%
1.2\%	56.3	56.4	0.1	0.1\%
2.5\%	55	56.3	0.3	
3.7\%	55.9	56.0	0.1	0.2\%
4.9\%	55.8	55.8	0.0	0.0\%
6.2\%	55.6	55.8	0.2	0.3\%
7.4\%	55.5	55.8	0.3	0.5\%
8.6\%	55.5	55.7	0.2	0.3\%
9.9\%	55.5	55.5	0.1	0.1\%
11.1\%	55.2	55.4	0.2	0.4\%
12.3\%	55.1	55.4	0.3	0.6\%
13.6\%	54.8 54.8	55.2 55.2	0.4 0.4	0.8\% 0
16.0\%	54.8	55.0	0.3	0.5\%
17.3\%	54.6	55.0	0.4	0.8\%
18.5\%	54.3	54.8	0.5	0.9\%
19.8\%	54.2	54.6	${ }^{0.3}$	0.6\%
21.0\%	54.2	54.5	0.3	0.6\%
22.2\%	54.2	54.2	0.1	0.1\%
23.5\%	54.0	54.2	0.2	0.4\%
24.7\%	53.8	54.1	0.3	0.5\%
25.9\%	53.8	53.7	-0.1	-0.1\%
${ }^{27.2 \%} \times 2.48$	${ }_{53.2}^{53.7}$	53.2 53.2	-0.5 0.0	-
29.6\%	53.9	53.2	0.2	0.4\%
30.9\%	52.9	52.6	-0.3	-0.6\%
32.1\%	52.9	52.6	-0.3	-0.5\%
33.3\%	52.4	52.4	0.0	-0.1\%
34.6\%	52.4	52.4	0.0	0.0\%
35.8\%	52.4	52.3	0.0	-0.1\%
37.0\%	52.2	52.3	0.1	0.2\%
38.3\%	52.1	52.2	0.1	0.2\%
39.5\%	52.0	52.1	0.1	0.2\%
40.7\%	51.8 518 518	52.0 520	0.2	${ }^{0.5 \%}$
43.2\%	51.7	51.9	0.2	0.4\%
44.4\%	51.6	51.7	0.1	0.2\%
45.7\%	${ }_{51.6}^{51.6}$	51.6 515 15	-0.1	${ }^{-0.19}$
46.9\%	51.3	51.5	0.3	0.5\%
48.1\%	51.1	51.5	0.4	0.8\%
49.4\%	51.0	51.3	0.3	0.5\%
50.6\%	51.0	51.1	0.1	0.3\%
51.9\%	50.9	51.0	0.1	0.1\%
54.3\%	50.9 50.9	51.0 50.9	${ }_{0}^{0.1}$	${ }_{0}^{0.3 \%}$
55.6\%	50.9	50.9	0.1	0.2\%
56.8\%	50.8 50.5	50.8	0.0	0.0\%
58.0\%	50.5	50.7		0.5\%
	50.3 50.3	50.7 50.6	0.4	0.7\%
61.7\%	50.3	50.6	0.3	0.5\%
63.0\%	50.3	50.5	0.2	0.4\%
64.2\%	50.3	50.5	0.2	0.5\%
65.4\%	50.2	50.1	-0.1	-0.3\%
66.7\%	50.2	50.1	-0.1	-0.2\%
67.9\%	50.2	49.9	-0.2	-0.5\%
69.19\%	50.1	49.9	-0.2	-0.4\%
71.6\%	50.0	49.8	-0.2	-0.4\%
72.8\%	50.0	49.8	-0.2	-0.4\%
74.1\%	49.9	49.8	-0.1	-0.3\%
75.3\%	49.9	49.7	-0.2	-0.3\%
76.5\%	49.8	49.7	-0.1	-0.2\%
77.8\%	49.7	49.6	-0.1	-0.3\%
79.0\%	49.6	49.5	0.0	-0.1\%
80.2\%	49.4	49.5	0.1	0.2\%
81.5\%	49.4	49.5	0.1	0.2\%
-	49.4 49.4	49.3 49.2	-0.1 -0.1	-0.3\%
85.2\%	49.4	49.2	-0.1	-0.3\%
86.4\%	49.3	49.2	-0.1	-0.2\%
87.7\%	49.3	49.1	-0.3	-0.5\%
88.9\%	49.2	49.0	-0.2	-0.4\%
90.1\%	49.2	49.0	-0.2	-0.5\%
91.4\%	49.1	48.9	-0.1	-0.3\%
92.6\%	48.9	48.8	-0.1	-0.1\%
93.8\%	48.8	48.7	0.0	0.0\%\%
${ }_{9}^{95.36 \%}$	48.8 48.5	48.6 48.2	-0.2 -0.2	-0.0.9\%
97.5\%	48.3	48.2	0.0	-0.1\%
98.8\%	47.6	48.0	0.4	0.8\%
100.0\%	47.6	48.0	0.0	0.8\%

		January		
Percent	WSII 2030 Without Proiect	WSIP 2030 With Project	Absolute	
Probability	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	Difference	Difference (\%)
0.0\%	52.1	52.2	0.1	0.3\%
1.2\%	51.6	51.6		0.0\%
2.5\%	51.5	51.3	-0.2	-0.4\%
3.7\%	51.3	51.0	-0.3	-0.5\%
4.9\%	51.2	50.8	-0.4	-0.9\%
6.2\%	50.8	50.7	0.0	0.0\%
7.4\%	50.7	50.6	-0.1	-0.1\%
8.6\%	50.4	50.4	0.0	-0.1\%
9.9\%	50.3	50.3	0.0	0.0\%
111.19\%	50.3	49.9	-0.5	-0.9\%
${ }^{12.3 \% \%}$	50.3	49.8	-0.4	${ }^{-0.9 \%}$
13.6\%	50.2	49.8	-0.4	-0.7\%
14.8\%	49.9	49.8	-0.1	-0.1\%
16.0\%	49.8	49.8	0.0	0.0\%
17.3\%	49.8	49.7	-0.1	-0.1\%
18.5\%	49.7	49.7	0.0	0.1\%
19.8\%	49.7	49.7	0.0	0.0\%
21.0\%	49.6	49.6	-0.1	-0.1\%
22.2\%	49.3	49.4	0.2	0.3\%
23.5\%	49.2	49.4	0.1	0.3\%
24.7\%	49.2	49.3	0.1	0.3\%
25.9\%	49.1	49.2	0.0	0.1\%
27.2\%	49.1	49.1	0.1	0.1\%
28.4\%	49.1	49.1	0.1	0.1\%
29.6\%	49.0	49.1	0.1	0.1\%
30.9\%	49.0	49.1	0.1	0.2\%
32.1\%	49.0	49.1	0.1	0.2\%
33.3\%	49.0	49.0	0.1	0.1\%
34.6\%	48.9	49.0	0.1	0.1\%
35.\%	48.9	49.0	0.1	0.2\%
37.0\%	48.8	49.0	0.2	0.3\%
38.3\%	48.8	48.9	0.1	03%
39.5\%	48.7	48.8	0.1	0.2\%
40.7\%	48.6	48.8	0.1	0.3\%
42.0\%	48.6	48.7	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
43.2\%	48.6	48.6	${ }^{0.1}$	0.1\%
44.4\%	48.5	48.6	0.2	0.3\%
45.7\%	48.3	48.3	0.0	-0.1\%
46.9\%	48.2	48.2	0.0	0.1\%
48.19\%	48.2	48.2	0.1	0.2\%
49.4\%	48.2	48.2	0.1	0.2\%
50.6\%	48.1	48.1	0.0	0.0\%
51.9\%	48.1	48.1	0.0	0.1\%
	${ }_{47.9}^{47.9}$	${ }_{47.9}^{48.0}$	0.0 0.0	${ }_{\text {coion }}^{0.00 \%}$
55.6\%	47.9	47.9	0.0	0.0\%
56.8\%	47.7	47.7	0.0	-0.1\%
58.0\%	47.7	47.7	0.0	0.1\%
59.3\%	47.4	47.6	0.2	0.5\%
60.5\%	47.4	47.5	0.1	0.3\%
61.7\%	47.3	47.4	0.1	0.2\%
63.0\%	47.3	47.4	0.1	0.3\%
64.2\%	47.2	47.3	0.1	0.2\%
${ }^{65.4 \%}$	46.8	47.1	0.4	0.8\%
66.7% 6790%	46.7	47.0	0.3	0.7\%
67.9\%	46.7	46.8	0.1	0.3\%
69.1\%	46.6	46.7	0.0	${ }^{0.1 \%}$
70.4\%	46.6	46.7	0.0	0.1\%
71.6\%	46.6 46.4	46.6	0.0	0.0\%
72.8\%	46.4	46.5	0.2	0.4\%
74.19\%	45.8	46.4	0.5	1.2\%
75.3\%	45.6	46.3	0.7	1.5\%
76.5% 77.8%	45.6	46.1	0.5	1.19\%
77.8\%	45.4	46.0	0.6	1.4\%
79.0\% 880.2%	${ }_{45.1}^{45.2}$	45.8 45.7	0.6 0.6	${ }_{\text {1.3\% }}^{1.4 \%}$
81.5\%	44.9	45.5	0.6	1.3\%
82.7\%	44.8	45.3	0.5	1.1\%
84.0\%	44.8	45.3	0.5	1.0\%
85.2\%	44.7	45.2	0.4	1.0\%
86.4\%	44.7	45.0	${ }^{0.3}$	0.7\%
87.7\%	44.7	44.9	0.2	0.4\%
88.9\%	44.5	44.7	${ }^{0.3}$	0.6\%
90.1\%	44.4	44.7	0.3	0.7\%
914.4\%	44.4	44.5	0.2	0.4\%
- ${ }_{93}^{92.6 \%}$	44.2	44.4	0.2	0.5\%
- ${ }^{93.8 \%}$	${ }_{43.1}^{44.1}$	44.4 44.4	0.2	0.6\%
${ }_{9}^{95.3 \%}$	${ }_{43,8}^{43.8}$	44.4	0.6	${ }_{1}^{1.3 \%}$
${ }^{96.3 \%}$	43.6 43.4	${ }_{4}^{44.2}$	${ }_{0}^{0.6}$	0.4\%
98.8\%	43.2	43.6	0.4	0.9\%
100.0\%	43.2	43.6	0.4	0.9\%

Trinity River below Leweiston panm Monthly Temperature

	March				April				
Percent Exceedanc	WSIP 2030 Without Proiect	WSIP 2030 With Project				${ }^{\text {WSIP }}$ Pro30 Wieth	WSII 2030 With Project	solute	
Probability	Monthly Temperature	Monthly Temperature	(ifference	Difference (\%)	froabil	Monthly Temperatu	Monthl Temperature	(ference	ifference (\%)
(\%)	(DEGF)	(DEGF)				(0EGF)			
0.0\%	54.3	54.3	0.0	0.0\%	0.0\%	54.3	54.3	0.0	0.0\%
${ }_{2.5 \%}^{1.2 \%}$	53.4 53.4	53.4 53.4	0.0	${ }^{0.0 \% \%}$	${ }_{2.5 \%}^{1.2 \%}$	54.0 53.3	54.0 53.4	0.0 0.1	${ }^{0.0 \%}$
3.7\%	53.4	53.4	0.0	0.0\%	3.7\%	53.1	53.4	0.2	0.5\%
4.9\%	53.2	53.2	0.0	0.0\%	4.9\%	53.1	53.1	0.0	0.0\%
6.2\%	52.8	52.8	0.0	0.1\%	6.2\%	53.0	53.0	0.0	
7.4\%	52.5	52.5	0.0	0.0\%	7.4\%	52.	53.0	0.0	
8.6\%	52.5	52.3	-0.2	-0.3\%	8.6\%	52.7	52.7	0.0	0.0\%
9.9\%	52.3	52.3	0.0	-0.1\%	9.9\%	52.6	52.7	0.1	0.1\%
11.1\%	52.2	52.2	0.0	0.0\%	11.1\%	52.6	52.6	0.0	0.0\%
12.3\%	52.2	52.2	0.0	0.0\%	12.3\%	52.5	52.6	0.1	0.2\%
13.6\%	52.1	52.0	0.0	0.0\%	13.6\%	52.4	52.5	0.1	0.2\%
14.8\%	52.0	52.0	0.0	0.0\%	14.8\%	52.4	52.4	0.1	0.1\%
16.0\%	52.0	52.0	0.0	0.0\%	16.0\%	52.3	52.4	0.0	0.1\%
17.3\%	52.0	51.9	0.0	-0.1\%	17.3\%	52.2	52.3	0.0	0.1\%
18.5\%	52.0	51.9	0.0	-0.1\%	18.5\%	52.2	52.2	0.0	0.0\%
19.8\%	51.9	51.7	-0.2	-0.4\%	19.8\%	52.1	52.2	0.1	0.1\%
21.0\%	51.8	51.6	-0.1	-0.3\%	21.0\%	52.1	52.1	0.1	0.2\%
22.2\%	51.7	51.5	-0.2	-0.4\%	22.2\%	52.0	52.1	0.1	0.2\%
23.5\%	51.6 51.6 51	51.4 51.4 51	-0.2	-0.4\%	22.5\%	52.0 520	52.0 520		
25.9\%	51.6	51.4 51.4	-0.2	-0.4\%	22.9\%	52.0	52.0	0.0	0.0\%
27.2\%	51.4	51.3	-0.1	-0.2\%	27.2\%	52.0	52.0	0.0	0.1\%
28.4\%	51.3	51.3	0.0	-0.1\%	28.4\%	51.9	52.0	0.0	0.1\%
29.6\%	51.3	51.3	-0.1	-0.1\%	29.6\%	51.9	52.0	0.0	0.1\%
30.9\%	51.3	51.1	-0.2	-0.3\%	30.9\%	51.9	51.9	0.0	0.1\%
32.1\%	51.3	51.1	-0.1	-0.3\%	32.1\%	51.8	51.8	0.0	0.0\%
33.3\%	51.1	51.0	-0.1	-0.3\%	33.3\%	${ }_{51.8}^{51.8}$	${ }_{51.8}^{51.8}$	0.0	0.0\%
34.6% 35.8%	51.0 50.9	50.8 50.8	-0.2 -0.1	-0.1\%	33.6\%	51.8 51.8	51.8 51.8	0.0 0.0	- 0.00%
37.0\%	50.8	50.5	-0.3	-0.6\%	37.0\%	51.6	51.7	0.1	0.1\%
38.3\%	50.8	50.4	-0.4	-0.8\%	38.3\%	51.6	51.6	0.0	0.0\%
39.5\%	50.7	50.4	-0.3	-0.6\%	39.5\%	51.6	51.6	0.0	0.0\%
40.7\%	50.6	50.4	-0.2	-0.5\%	40.7\%	51.6	51.6	0.0	0.0\%
42.0\%	50.5	50.2	-0.3	-0.6\%	42.0\%	51.5	51.6	0.0	0.1\%
43.2\%	50.4	50.2	-0.2	-0.5\%	43.2\%	51.5	51.6	0.1	0.1\%
44.4\%	${ }^{50.3}$	50.1	-0.3	-0.5\%	44.4\%	${ }_{51.5}$	51.5	0.0	0.0\%
45.7\%	50.0	50.0	0.0	0.0\%	45.7\%	51.4	51.5	0.0	0.1\%
46.9\%	50.0	50.0	0.0	0.0\%	46.9\%	51.4	51.4	0.0	0.0\%
49.4\% ${ }_{\text {4 }}^{4.4 \%}$	49.9 49.9	50.0 49.9	0.1 0.0	-	${ }_{4}^{49.4 \%}$	年51.4 51.3	51.4 51.4 51.4	0.1 0.1	0.1\% 0
50.6\%	49.8	49.7	-0.1	-0.2\%	50.6\%	51.3	51.2	-0.1	-0.2\%
51.9\%	49.7	49.5	-0.2	-0.4\%	51.9\%	51.2	51.2	0.0	-0.1\%
53.1\%	49.7	49.5	-0.2	-0.5\%	53.1\%	51.2	51.1	-0.1	-0.1\%
54.3\%	49.6	49.4	-0.2	-0.4\%	54.3\%	51.2	50.9	-0.2	-0.5\%
55.6\%	49.5	49.4	-0.1	-0.3\%	55.6\%	51.0	50.9	-0.2	-0.3\%
56.8\%	49.5	49.3	-0.2	-0.3\%	56.8\%	50.9	50.9	0.0	0.0\%
58.0\%	49.4	49.2	-0.2	-0.4\%	58.0\%	50.9	50.9	0.0	0.0\%
59.3\%	49.3	49.1	-0.2	-0.5\%	59.3\%	50.9	50.8	-0.1	-0.1\%
60.5\%	49.3	49.1	-0.2	-0.5\%	60.5\%	50.8	50.8	-0.1	-0.1\%
61.7\%	49.2	49.0	-0.2	-0.4\%	61.7\%	50.8	50.8	0.0	0.0\%
63.0\%	49.1	48.9	-0.2	-0.4\%	63.0\%	50.7	50.7	0.0	0.0\%
64.2\%	49.1	48.9	-0.2	-0.4\%	64.2\%	50.7	50.7	0.0	0.0\%
${ }^{65.49 \%}$	49.1	48.8	-0.2	-0.4\%	${ }^{65.46 \%}$	50.7	50.7	0.0	0.0\%
66.7% 6790%	48.9	48.8	-0.1	${ }^{-0.1 \%}$	66.7\%	50.7 50.7 50	50.5	-0.1	${ }_{-0.0}^{-0.2 \%}$
69.1\%	48.8	48.7	-0.1	-0.2\%	69.1\%	50.3	50.5	0.1	0.2\%
70.4\%	48.7	48.7	0.0	0.0\%	70.4\%	50.3	50.5	0.2	0.4\%
71.6\%	48.7	48.7	0.0	0.0\%	71.6\%	50.3	50.3	0.0	0.0\%
72.8\%	48.6	48.6	0.0	0.0\%	72.8\%	49.6	50.2	0.6	1.2\%
74.1\%	48.6	48.6	0.0	0.0\%	74.1\%	49.5	49.6	0.1	0.2\%
75.3\%	${ }^{48.5}$	48.6	0.1	0.1\%	75.3\%	49.4	49.5	0.1	0.2\%
${ }^{76.5 \%}$			0.2	0.4\%	${ }^{76.5 \%}$	49.4	49.4	0.0	0.0\%
7.78\%	48.3	48.4	0.1	0.2\%	77.8\%	49.4	49.4	0.0	0.0\%
79.0\%	48.1 48.0	48.3 48.3	0.2 0.3	${ }_{\text {en }}^{0.5 \%}$	79.0\%	${ }_{49.1}^{49.3}$	${ }_{49.3}^{49.3}$	0.0 0.2	${ }_{\text {o }} 0.3 \%$
81.5\%	47.5	48.0	0.5	1.0\%	81.5\%	49.1	49.0	-0.1	-0.2\%
82.7\%	47.5	47.5	0.0	-0.1\%	82.7\%	49.0	48.9	-0.1	-0.2\%
84.0\%	47.4	47.5	0.1	0.2\%	84.0\%	48.8	48.9	0.0	0.1\%
85.2\%	47.2	47.4	0.2	0.5\%	85.2\%	48.8	48.7	-0.1	-0.3\%
86.4\%	47.1	47.1	0.0	0.0\%	86.4\%	48.6	48.6	0.0	0.0\%
87.7\%	46.9	46.9	0.1	0.1\%	87.7\%	48.6	48.6	0.0	0.0\%\%
${ }^{88.9 \%}$	46.4 46.3	46.8 46.4	0.5 0.1	寿	${ }_{90.1 \%}^{88.9 \%}$	48.4 48.4	48.3 48.1	-0.1 -0.3	-0.0.6\%
91.4\%	45.5	45.5	0.0	0.0\%	91.4\%	48.1	47.7	-0.3	-0.7\%
92.6\%	44.8	44.8	0.0	0.0\%	92.6\%	47.7	47.6	-0.2	-0.4\%
93.\%	44.3	44.4	0.1	0.2\%	93.8\%	47.6	47.3	-0.2	-0.5\%
95.1\%	44.3	44.3	-0.1	-0.1\%	95.1\%	47.3	47.2	-0.2	-0.3\%
96.3\%	44.1	44.1	0.0	0.0\%	${ }^{96.3 \%}$	47.2	46.7	-0.5	${ }_{-1.10 \%}^{-1.0 \%}$
97.5\%	43.8	43.7	-0.1	-0.2\%	97.5\%	46.7	46.2	-0.5	-1.1\%
98.8\%	43.8	43.6	-0.2	-0.4\%	98.8\%	46.0	46.1	0.0	0.0\%
100.0\%	43.8	43.6	-0.2	-0.4\%	100.0\%	46.0	46.1	0.0	0.0\%

Table SQ12 1 -1b Lewiston Dam, Monthy Temperature

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Proabability } \end{gathered}$	June			
	WSII 2030 W.thout Proiect	WSIP 2030 With Project		Relative
	Monthly Temperature (DEGF)	Monthly Temperature (DEGFF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGF } \end{aligned}$	Difference (\%)
0.0\%	58.4	58.4	0.0	0.0\%
1.2\%	56.1	56.1	0.0	0\%
2.5\%	55.7	55.7	0.0	0.0\%
3.7\%	55.4	55.5	0.1	0.2\%
4.9\%	55.3	55.2	-0.1	-0.2\%
6.2\%	54.7	54.9	0.2	0.3\%
7.4\%	54.6	54.7	0.1	0.1\%
8.6\%	54.1	54.7	0.6	1.1\%
9.9\%	53.7	54.5	0.8	1.5\%
11.19\%	53.0	53.7	0.7	1.3\%
12.3\%	52.5 52.5 52.	${ }_{53}^{53.4}$	0.9	${ }_{1}^{1.8 \%}$
14.8\%	52.2	52.6	0.4	0.7\%
16.0\%	52.2	52.5	0.3	0.5\%
17.3\%	52.1	52.3	0.2	0.4\%
18.5\%	51.9	52.2	${ }^{0.3}$	0.6\%
19.8\%	51.8	52.1	0.3	0.5\%
21.0\%	51.8	51.7	-0.1	-0.2\%
22.2\%	51.8	51.7	-0.1	-0.1\%
${ }^{23.5 \%}$	51.7	${ }_{51.6}$	0.0	-0.1\%
24.7\%	${ }_{51.6}$	51.6	0.0	0.0\%
25.9\%	51.6 51.4 51.	51.4 51.4 51	-0.2 0.0	-0.0.4\%
28.4\%	51.4	51.4	0.0	-0.1\%
29.6\%	51.4	51.4	0.0	-0.1\%
30.9\%	51.4 51.3	51.4	0.0	0.0\%
32.1\%	51.3	51.2	-0.1	-0.3\%
33.3\%	51.2	51.2	0.0	-0.1\%
34.6\%	51.2	51.1	-0.1	-0.1\%
35.8\%	51.0	51.0	-0.1	-0.1\%
37.0\%	51.0	50.8	-0.2	-0.3\%
- ${ }_{\text {38.3\% }}$	51.0 50.8	50.8 50.5	-0.2 -0.3	-0.4\%
40.7\%	50.8	50.5	-0.2	-0.5\%
42.0\%	50.8	50.5	-0.2	${ }^{-0.5 \%}$
43.2\%	50.6	50.4	-0.2	
${ }^{44.4 \%}$	50.5 50.5	50.4 50.4	-0.1	-0.3\%
46.9\%	50.2	50.3	0.0	0.1\%
48.1\%	50.1	50.0	-0.2	-0.4\%
49.4\%	49.9	49.9	0.0	0.0\%
50.6\%	49.8	49.9	0.1	0.1\%
51.9\%	49.8	49.8	0.1	0.1\%
53.10\% 5 5136	49.5	49.8	${ }^{0.3}$	0.6\%
54.3\% 55.6%	49.5 49.3	49.7	0.2 0.2	0.4\% 0
56.8\%	49.3	49.3	0.1	0.1\%
58.0\%	49.2	49.2	0.0	-0.1\%
59.3\%	49.2	48.7	-0.5	-1.0\%
60.5\%	48.6	48.6	0.0	0.0\%
61.7\%	48.6	48.6	-0.1	-0.1\%
63.0\%	48.6	48.5	-0.1	-0.1\%
64.20% 6.40	48.5	48.4	-0.1	${ }^{-0.3 \%}$
${ }^{65.4 \%}$	${ }_{48.1}^{48.1}$	${ }_{48.2}^{48.2}$	0.1 0.0	${ }_{0}^{0.1 \%}$
67.9\%	48.0	48.2	0.2	0.3\%
69.19\%	47.9	48.0 477	0.1	${ }_{0}^{0.2 \%}$
${ }_{71.6 \%}$	47.7	47.7	0.0	-0.1\%
72.8\%	47.6	47.6	0.0	0.0\%
74.1\%	47.6	47.6	-0.1	${ }^{-0.19 \%}$
75.3\%	47.5	${ }^{47.4}$	-0.1	-0.3\%
76.5\%	47.5	47.3	-0.1	-0.3\%
77.8\%	47.4	47.3	-0.1	-0.2\%
79.0% 80.2%	${ }_{47.1}^{47.3}$	47.1	-0.2	-0.4\%
- ${ }^{80.2 \%}$	${ }_{47.1}^{47.1}$	44.9	0.0 0.2	-0.4\%
82.7\%	46.9	46.7	-0.2	-0.4\%
84.0\%	46.8	46.7	0.0	-0.1\%
85.2\%	46.7	46.7	0.0	0.0\%
86.4\%	46.7	46.7	0.0	0.0\%
87.7\%	${ }_{46.7}^{46.7}$	46.7 465	0.0	-0.19\%
90.1\%	46.5	46.3	-0.2	-0.4\%
91.4\%	46.1	46.1	0.0	0.1\%
92.6\%	46.0	46.0	0.0	0.0\%
93.8\%	45.8	45.7	-0.1	${ }^{-0.2 \%}$
96.3\%	45.4	45.5	0.1	0.2\%
97.5\%	45.1	45.2	0.1	0.1\%
98.8\%	${ }_{44.8}^{44}$	${ }_{448}^{44.8}$	0.0	0.0\%
100.0\%	44.8	44.8	0.0	0.0\%

		September		
Percent Exceedanc	$\xrightarrow{\text { WSIP } 2030 \text { Wethout }}$ Proiet	WSIP 2030 With Project		
Probability	Monthly Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
0.0\%	61.2	59.9	${ }^{-1.4}$	-2.2\%
1.2\%	55.9	55.9	-0.1	-0.1\%
2.5\%	55.4	55.4	0.0	0.0\%
3.7\%	55.0	55.0	0.1	0.1\%
4.9\%	54.4	54.5	0.1	0.1\%
6.2\%	54.3	54.2	0.0	0.0\%
7.4\%	54.0	54.0	0.0	0.0\%
8.6\%	53.9	53.9	0.1	0.1\%
9.9\%	53.7	53.7	0.0	0.0\%
11.1\%	53.5	53.6	0.1	0.2\%
12.3\%	53.4	53.5	0.1	0.2\%
13.6\%	53.3	53.3	0.0	0.1\%
14.8\%	53.2	53.3	0.1	0.1\%
16.0\%	53.2	53.2	0.0	0.1\%
17.3\%	53.1	53.1	0.1	0.1\%
18.5\%	53.1	53.1	0.0	0.0\%
19.8\%	53.0	53.1	0.1	0.2\%
21.0\%	53.0	53.0	0.0	0.1\%
22.2\%	52.6	52.9	0.4	0.7\%
23.5\%	52.5	52.8	0.3	0.6\%
${ }^{24.79 \%}$	52.5	52.8	0.3	0.5\%
25.9\%	52.4	52.7	0.2	0.5\%
27.2\%	52.4	52.6	0.2	0.3\%
28.4\%	52.4	52.5	0.1	0.2\%
29.6\%	52.2	52.3	0.1	0.3\%
30.9\%	52.2	52.3	0.1	0.2\%
32.1\%	52.0	52.2	0.3	0.5\%
33.3\%	51.9	52.0	0.1	0.2\%
34.6\%	51.9	51.9	0.1	0.1\%
35.8\%	51.8	51.9	0.1	0.2\%
37.0\%	51.7	51.6	-0.1	-0.2\%
38.3\%	51.7	51.6	-0.1	-0.19\%
39.5\%	51.6	51.4	-0.3	-0.5\%
40.7\%	${ }_{51.3}$	51.1	-0.1	-0.2\%
42.0\%	51.2	51.0	-0.2	-0.3\%
43.2\%	51.1	51.0	-0.1	-0.2\%
44.4\%	51.0	51.0	0.0	0.0\%
45.7\%	51.0	51.0	0.0	0.0\%
46.9\%	51.0	51.0	0.0	0.0\%
48.1\%	50.9	50.8	-0.1	-0.3\%
49.4\%	50.9	50.7	-0.2	-0.4\%
50.6\%	50.9	50.5	-0.4	-0.8\%
51.9\%	50.6	50.5	-0.2	-0.4\%
53.19\%	${ }_{50.6}^{50.6}$	50.4	-0.2	-0.3\%
54.3\%	50.4	50.4	0.0	0.0\%
55.\%	50.4	50.3	-0.1	-0.1\%
56.\%	50.4	50.2	-0.2	-0.3\%
58.0\%	50.3	50.2	-0.1	-0.3\%
59.3\%	50.3	50.1	-0.2	-0.3\%
60.5\%	50.2	50.1	-0.1	-0.1\%
61.7\%	50.1	50.0	-0.1	-0.2\%
63.0\%	50.1	50.0	-0.1	-0.2\%
64.2% 65.4%	50.1	50.0	-0.1	-0.2\%
65.4\% 66.7%	50.0	49.9		-0.1\%
${ }^{66.7 \%}$	49.9	49.7	-0.2	-0.4\%
67.9\%	49.8	49.7	-0.1	-0.2\%
69.1\%	49.8	49.7	-0.1	-0.1\%
70.4\%	49.7	49.7	-0.1	-0.1\%
71.6\%	49.7	49.6	-0.1	-0.2\%
72.8\%	49.7	49.6	-0.1	-0.2\%
74.1\%	49.6	49.6	0.0	-0.1\%
75.3\%	49.5	49.6	0.0	0.0\%
76.5\%	49.4	49.5	0.1	0.2\%
77.8\%	49.3	49.3	0.0	-0.1\%
79.0\%	49.2	49.2	0.0	0.0\%
80.2\%	49.2	49.2	0.0	0.0\%
81.5\%	49.2	49.2	0.0	0.0\%
- 82.78%	49.2	49.2	0.0	0.0\%
84.0% 85.2%	49.1	49.1	0.0	0.0\%
85.2\%	49.1	49.1	0.0	0.0\%
86.4\%	49.1	49.0	0.0	-0.1\%
87.7% 88.9%	49.0	48.9	-0.1	-0.2\%
88.9\% 90.1%	49.0	48.9	-0.1	-0.3\%
90.1\%	48.9	48.9	0.0	0.0\%
91.4\%	48.9	48.8	-0.1	-0.1\%
	48.8	48.8	0.0	-0.1\%
93.8\%	48.5	48.5	-0.1	-0.1\%
${ }_{9}^{95.19 \%}$	${ }^{48.3}$	48.4	0.1	${ }^{0.2 \%}$
${ }_{\text {97.5\% }}^{96.3 \%}$	48.3	48.3	0.0	0.0\%
97.5\%	48.3	48.3	0.0	${ }^{0.1 \%}$
98.8\%	48.0	48.2	0.2	0.4\%
100.0\%	48.0	48.2	0.2	0.4\%

Table SQ12-1b
Trinity River below Lewiston Dam. Monthly Temperature

	July to September		Pouaily		August oseptember				
Percent	WSIP 2030 Without	IP 2030 With Prom			Percent	WSIP 2030 Without	WSIP 2030 With Project		
Probability	Monthly Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)	Probabilit	Monthly Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
(\%)	(DEG)	(0EG)			(\%)				
0.0\%	59.4	58.0	-1.3	.2.3\%	0.0\%	61.3	59.3	-2.0	-3.3\%
1.2\%	55.1	55.0	0.0	${ }^{0.0 \%}$	1.2\%	55.3 551 5.	${ }_{551}^{55.3}$	0.0	0.0\%
3.7\%	53.9	53.6	-0.4	-0.6\%	3.7\%	54.0	${ }_{53.8}$	-0.2	-0.4\%
4.9\%	53.5	53.4	-0.1	-0.2\%	4.9\%	53.8	53.7	-0.1	-0.2\%
6.2\%	53.4	53.3	0.0	0.0\%	6.2\%	53.6	53.6	0.0	0.0\%
7.4\%	53.2	53.3	0.1	0.3\%	7.4\%	53.6	53.5	0.0	-0.1\%
8.6\%	53.2	53.3	0.1	0.2\%	8.6\%	53.5	53.4	0.0	-0.1\%
9.9\%	53.1	53.0	-0.1	0.2\%	9.9\%	53.4	53.3	0.0	${ }^{-0.1 \%}$
11.1\%	53.0	52.9	-0.1	-0.2\%	11.1\%	53.1	53.3	0.2	0.3\%
12.3\%	52.9	52.8	-0.1	-0.2\%	12.3\%	53.1	53.3	0.2	0.5\%
13.6\%	52.9	52.8	-0.1	-0.2\%	13.6\%	53.1	52.9	-0.1	-0.3\%
14.8\%	52.8	52.7	-0.1	-0.2\%	14.8\%	53.0	52.8	-0.2	-0.4\%
16.0\%	52.6	52.7	0.1	0.2\%	16.0\%	52.9	52.7	-0.2	-0.4\%
17.3\%	52.5	52.7	0.1	0.2\%	17.3\%	52.8	52.7	-0.1	-0.2\%
18.5\%	52.4	52.4	0.0	0.0\%	18.5\%	52.8	52.7	-0.1	-0.2\%
19.8\%	${ }_{52.3}$	${ }_{52.3}$	0.0	0.0\%	19.8\%	52.6	52.6	0.0	-0.1\%
21.0\%	52.1	52.3	0.2	0.3\%	21.0\%	52.5	52.6	0.1	0.2\%
22.2\%	52.1	52.2	0.1	0.3\%	22.2\%	52.3	52.3	0.0	0.0\%
23.5\%	52.0	52.2	0.2	0.4\%	23.5\%	52.3	52.3	0.0	-0.1\%
24.7\%	52.0	52.2	0.2	0.4\%	24.7\%	52.2	52.2	0.1	0.1\%
25.9\%	51.9	52.1	0.1	0.3\%	25.9\%	52.1	52.2	0.1	0.2\%
27.2\%	51.9	52.0	0.1	0.3\%	27.2\%	52.1	52.2	0.1	0.2\%
28.4\%	51.8	52.0	0.2	0.5\%	28.4\%	52.1	52.0	-0.1	-0.2\%
29.6\%	51.8	52.0	0.2	0.5\%	29.6\%	52.0	52.0	0.0	0.0\%
30.9\%	51.7	51.8	0.1	0.2\%	30.9\%	52.0	51.8	-0.1	-0.3\%
32.1\%	51.7	51.7	0.0	0.1\%	32.1\%	51.9	51.8	-0.2	-0.3\%
33.3\%	51.7	51.7	0.0	0.1\%	33.3\%	51.9	51.8	-0.1	-0.2\%
34.6\%	51.6	51.5	-0.1	-0.2\%	34.6\%	51.7	51.7	0.0	${ }^{0.1 \%}$
- ${ }^{35.8 \%}$ 37.0\%	51.6 51.4	51.5 51.4	-0.1 0.0	-0.1\%	35.8% 37.0%	51.6 51.5	51.6 51.2	0.0 0.2	-0.5\%
38.3\%	51.4	51.3	-0.1	-0.3\%	38.3\%	51.4	51.1	-0.2	-0.5\%
39.5\%	51.3	51.2	-0.1	-0.2\%	39.5\%	51.4	51.1	-0.3	-0.6\%
40.7\%	51.3	51.2	-0.1	-0.2\%	40.7\%	51.3	51.0	-0.3	-0.7\%
42.0\%	51.2	51.2	0.0	0.0\%	42.0\%	51.2	51.0	-0.2	-0.4\%
43.2\%	51.2	51.2	0.0	0.0\%	43.2\%	51.1	50.9	-0.2	-0.5\%
44.4\%	${ }_{51.1}$	${ }_{51.1}$	0.0	-0.1\%	44.4\%	${ }_{51.0}$	${ }_{50.9}$	-0.2	-0.3\%
45.7\%	${ }_{51.1}^{51.1}$	$\stackrel{51.0}{50}$	-0.1	-0.2\%	45.7\%	50.9	${ }_{50.8}^{50.8}$	0.0	-0.1\%
46.9\%	51.0	50.9	-0.2	-0.3\%	46.9\%	50.9	50.8	-0.1	-0.2\%
48.1\%	50.9	50.9	0.0	0.0\%	48.1\%	50.9	50.8	-0.1	-0.2\%
4.94\%	50.8	50.8	-0.1	${ }^{-0.1 \%}$	49.4\%	50.7	50.7	-0.1	-0.2\%
50.6\% 51.9%	50.8 508	50.8 508 0.8	-0.1	-0.0.0\%	51.9\%	50.7 50.7	50.6 50.5	-0.2 -0.2	-0.3\%
53.1\%	50.8	50.7	0.0	-0.1\%	53.1\%	50.6	50.5	-0.1	-0.2\%
54.3\%	50.7	50.7	0.0	0.0\%	54.3\%	50.6	50.4	-0.2	-0.5\%
55.6\%	50.6	50.7	0.0	0.1\%	55.6\%	50.5	50.4	-0.1	-0.2\%
56.8\%	50.6	50.6	0.0	-0.1\%	56.8\%	50.5	50.4	-0.1	-0.2\%
58.0\%	50.5	50.6	0.0	0.1\%	58.0\%	50.4	50.4	0.0	-0.1\%
59.3\%	${ }_{50.5}^{50.5}$	50.4	0.0	-0.1\%	59.3\%	50.4	50.2	-0.1	-0.3\%
60.5\%	${ }^{50.5}$	50.4	-0.1	-0.2\%	60.5\%	50.4	50.2	-0.2	-0.4\%
61.7\%	50.4	50.3	-0.1	-0.2\%	61.7\%	50.2	50.1	-0.1	-0.3\%
63.0\%	50.3	50.2	0.0	-0.1\%	63.0\%	50.2	50.1	-0.1	-0.3\%
64.2\%	50.2	50.2	0.0	-0.1\%	64.2\%	50.1	50.0	0.0	-0.1\%
65.4\%	50.1	50.2	0.0	0.1\%	65.4\%	50.1	50.0	-0.1	-0.2\%
66.7\%	50.0	50.1	0.1	0.1\%	66.7\%	50.0	49.9	-0.1	-0.2\%
67.9\%	50.0	50.0	0.0	${ }^{0.00 \%}$	67.9\%	50.0	49.9	-0.1	${ }^{-0.2 \%}$
-69.10\%	50.0 50.0	50.0	0.0	${ }^{0.0 \% \%}$	69.1\%	50.0	49.9	-0.1	${ }^{-0.5 \%}$
71.6\%	50.0	49.9	-0.1	-0.1\%	71.6\%	49.9	49.7	${ }_{-0.1}$	-0.3\%
72.8\%	50.0	49.8	-0.1	-0.2\%	72.8\%	49.8	49.7	-0.2	-0.3\%
74.1\%	49.9	49.8	-0.1	-0.2\%	74.1\%	49.7	49.6	-0.1	-0.2\%
75.3\%	49.9	49.7	-0.1	-0.2\%	75.3\%	49.7	49.5	-0.1	-0.3\%
76.5\%	49.8	49.7	0.0	-0.1\%	76.5\%	49.7	49.5	-0.2	-0.3\%
77.8\%	49.7	49.7 49.6	0.0 0.0	-0.0.1\%	77.8\%	${ }_{49.7}^{49.7}$	49.5 49.5	-0.2 -0.2	- -0.3%
80.2\%	49.7	49.6	-0.1	-0.3\%	80.2\%	49.6	49.5	-0.2	-0.3\%
81.5\%	49.7	49.6	-0.1	-0.3\%	81.5\%	49.5	49.4	-0.1	-0.2\%
82.7\%	49.7	49.6	-0.1	-0.3\%	82.7\%	49.5	49.4	-0.1	-0.2\%
84.0\%	49.7	49.5	-0.1	-0.3\%	84.0\%	49.5	49.4	-0.2	-0.3\%
85.2\%	49.6	49.5	-0.1	-0.3\%	85.2\%	49.5	49.3	-0.2	-0.4\%
86.4\%	49.6	49.4	-0.1	-0.3\%	86.4\%	49.4	49.2	-0.2	-0.4\%
87.7\%	49.6	49.2	-0.3	-0.6\%	87.7\%	49.3	49.1	-0.2	-0.3\%
88.9\%	49.4	49.2	-0.2	-0.4\%	88.9\%	49.2	49.0	-0.2	-0.4\%
90.1\%	49.3	49.2	-0.2	-0.3\%	90.1\%	49.1	49.0	-0.1	-0.2\%
${ }_{92.6 \%}^{91.4 \%}$	${ }_{49.1}^{49.2}$	49.21	0.0 0.0	${ }^{0.00 \%}$	${ }_{92.6 \%}^{91.4 \%}$	49.1 49.0	48.9 48.9	-0.1	-0.2\%
93.8\%	${ }_{49.1}$	49.0	0.0	-0.1\%	93.8\%	48.9	48.7	-0.2	-0.4\%
95.1\%	49.1	49.0	-0.1	-0.1\%	95.1\%	48.9	48.6	-0.3	-0.7\%
96.3\%	48.9	48.9	0.0	0.1\%	96.3\%	48.8	48.5	-0.3	0.6\%
97.5\%	48.9	48.7	-0.1	-0.3\%	97.5\%	48.7	48.5	-0.3	-0.6\%
98.8\%	48.8	48.7	-0.1	-0.2\%	98.8\%	48.4	48.4	0.0	-0.0\%
	48.1	48.1		0.0\%	100.0\%	48.0	48.0		0.1\%

Sites 4_A. Modeling Results Compendium

Table of Contents Page
Performance Measures Scorecard for Sites Reservoir Potential Beneficiaries 1
Delta Modeling DCR with Project vs DCR 2015 without Project 77
Delta Modeling WSIP 2030 with Project vs WSIP 2030 without Project 139
Delta Modeling WSIP 2070 with Project vs WSIP 2070 without Project 201
Delta Operations DCR 2015 with Project vs DCR 2015 without Project 263
Delta Operations WSIP 2030 with Project vs WSIP 2030 without Project 345
Delta Operations WSIP 2070 with Project vs WSIP 2070 without Project 427
Regional Deliveries DCR 2015 with Project vs without Project 509
Regional Deliveries WSIP 2030 with Project vs without Project 517
Regional Deliveries WSIP 2070 with Project vs without Project 525
Project Operations DCR 2015 with Project vs DCR 2015 without Project 533
Project Operations WSIP 2030 with Project vs without Project 589
Project Operations WSIP 2070 with Project vs without Project 646
River Operations DCR 2015 with Project vs DCR 2015 without Project 703
River Operations WSIP 2030 with Project vs without Project 885
River Operations WSIP 2070 with Project vs without Project 1,067
Temperature Results DCR 2015 with Project vs DCR 2015 without Project. 1,249
Temperature Results WSIP 2030 with Project vs without Project 1,329
Temperature Results WSIP 2070 with Project vs without Project 1,409

Figure SQ13-1b
Clear Creek below Whiskeytown, Monthly Temperatur

Table SQ13-1b

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$(\%)	October			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	${ }^{\text {WSIIP }}$ Pro30 Winthout	WSIP 2033 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (EEGF) } \end{aligned}$	
	Monthly Temperature (DEGF)			
0.0\%	59.5	58.4	-1.1	-1.8\%
1.2\%	56.2	56.2	0.0	0.0\%
2.5\%	56.2	56.2	0.0	0.0\%
3.79\%	55.0 55.0	55.1 55.0	0.1 0.0	-
${ }_{6.2 \%}$	55.0	55.7	-0.3	-0.5\%
7.4\%	54.8	54.6	-0.2	-0.4\%
8.6\%	54.3	54.5	0.1	0.2\%
9.9\%	54.3	54.4	0.1	0.1\%
11.1\%	54.3	54.3	0.0	0.1\%
12.3% 13.6%	54.3 54.1	$\begin{array}{r}54.2 \\ 54.2 \\ \hline\end{array}$	0.0	-0.1\%
13.6\%	54.1 54.1	54.2 54.1	0.1 -0.1	-0.1\%
16.0\%	54.1	54.0	0.0	0.0\%
17.3\%	54.0	53.8	-0.2	-0.3\%
18.5\%	53.8 53.6	53.8 53.8	${ }_{0}^{0.0}$	- ${ }_{0}^{0.0 \%}$
21.0\%	53.5	53.7	0.1	0.3\%
22.2\%	53.4	53.6	0.2	0.3\%
23.5\%	53.2	53.4	0.2	0.4\%
24.7\%	53.2	53.2	0.1	0.1\%
25.9\%	53.2	53.1	-0.1	-0.2\%
27.2\%	53.1	53.0	-0.1	-0.2\%
28.4\%	53.1 53.0	52.9 52.9	-0.2 -0.1	-0.3\%
30.9\%	53.0	52.9	-0.2	-0.3\%
32.1\%	52.9	52.8	-0.1	-0.2\%
33.3\%	52.8	52.8	0.0	0.0\%
34.6\%	52.8	${ }_{525}^{52.8}$	0.0	0.0\%
35.8\% 37.0\%	52.8 52.7	52.7 52.5 5.	-0.1 -0.1	-0.19\%
38.3\%	${ }_{52.6}$	${ }_{52.3}$	-0.3	-0.6\%
39.5\%	52.5	52.3	-0.2	-0.4\%
40.7\%	52.5	52.3	-0.2	-0.4\%
42.0\%	52.4	52.1	-0.3	-0.6\%
${ }_{4}^{43.2 \%} 4$	52.3 52.1	52.1 52.1	-0.2 0.0	-
45.7\%	52.0	52.0	-0.1	-0.1\%
46.9\%	52.0	51.9	-0.2	-0.3\%
48.1\%	51.9	51.7	-0.1	-0.3\%
49.4\%	51.9 518	51.7 515	-0.1	${ }^{-0.3 \%}$
50.6\%	51.8 51.8	51.5 515 515	-0.3	-0.5\%
53.1\%	51.8 51.7	51.5 51.5	-0.2	-0.4\%
54.3\%	51.7	51.4	-0.3	-0.5\%
55.6\%	51.5	51.4	-0.1	-0.3\%
56.8\%	51.3	51.2	-0.1	-0.2\%
58.0\%	51.3	51.2	-0.1	-0.3\%
59.3\%	51.2 51.1	51.1 51.0	-0.1	-
61.7\%	51.1	51.0	-0.1	-0.1\%
63.0\%	51.1	51.0	-0.1	-0.2\%
64.2\%	51.0	51.0	-0.1	-0.2\%
65.4\%	51.0	50.9	-0.1	-0.1\%
66.7% 67.9%	51.0	50.9	0.0	-0.1\%
${ }_{69.1 \%}^{67.9 \%}$	51.9	50.8	-0.1	-0.2\%
70.4\%	50.9	50.8	-0.1	-0.2\%
71.6\%	50.9	50.8	-0.1	-0.2\%
72.8\%	50.7 50.6	50.6 50.6	-0.1 0.0	-
75.3\%	50.5	50.5	0.0	0.0\%
76.5\%	50.5	50.5	0.0	0.0\%
77.8\%	50.5	50.5	0.0	0.0\%
79.0\%	50.4	50.5	0.1	0.1\%
80.2\%	50.4	50.4	0.0	0.0\%
${ }^{81.5 \%}$	50.4	50.3	-0.1	-0.2\%
824.0\%	50.4 50.3	50.2 50.2	-0.1	-0.3\%
85.2\%	50.2	50.2	0.0	0.0\%
86.4% 87.7%	50.2 50.1	50.2 50.1	0.0 0.0	${ }_{0}^{0.0 \% \%}$
88.9\%	50.1	49.9	-0.1	-0.3\%
90.1\%	49.8	49.9	0.1	0.2\%
91.4\%	49.8	49.6	-0.2	-0.3\%
92.6\%	49.7	49.6	-0.2	-0.3\%
93.8\%	49.6	49.5	-0.1	-0.2\%
95.1\%	49.5	49.5	-0.1	-0.2\%
96.3\%	${ }_{493}^{49.3}$	49.4	0.1	0.2\%
${ }_{\text {98, }}^{\text {97.5\% }}$	49.0	49.3 49.2	${ }_{0}^{0.0}$	0.6\%
100.0\%	49.0	49.2	0.0	0.6\%

		January		
Percent		WSIIP 2030 With Project	Absolute	
$\begin{aligned} & \text { Probability } \\ & (\%) \end{aligned}$	Monthly Temperature	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGFG) } \end{aligned}$	Difference (\%)
0.0\%	48.3	48.3	0.0	0.0\%
1.2\%	48.2	48.2	0.0	0.0\%
2.5\%	48.2	48.2	0.0	0.0\%
3.7\%	48.1	47.9	-0.2	-0.5\%
4.9\%	46.5	46.5	0.0	0.0\%
6.2\%	46.3	46.4	0.0	0.1\%
7.4\%	46.3	46.3	0.1	0.1\%
8.6\%	46.2	46.3	0.0	0.0\%
9.9\%	46.0	46.0	0.0	0.0\%
111.19\%	46.0	46.0	0.1	0.1\%
	46.0 45.9	46.0 46.0	${ }_{0}^{0.1}$	-
14.8\%	45.9	45.8	-0.1	-0.2\%
16.0\%	45.8	45.7	-0.1	-0.2\%
17.3\%	45.8	45.7	-0.1	-0.2\%
18.5\%	45.5	45.5	0.0	0.0\%
19.8\%	45.5	45.5	0.0	0.0\%
21.0\%	45.5	45.5	-0.1	-0.1\%
22.2\%	45.4	45.4	0.0	-0.1\%
23.5\%	45.4	45.3	-0.1	-0.1\%
24.7\%	45.3	45.3	0.0	-0.1\%
25.9\%	45.3	45.3	0.0	0.0\%
27.2\%	45.3	45.3	0.0	0.0\%
28.4\%	45.3	45.3	0.0	0.0\%
29.6\%	45.2	45.2	0.0	0.0\%
30.9\%	45.2	45.2	0.0	-0.1\%
32.1\%	45.2	45.2	0.0	0.0\%
33.3\%	45.1	45.1	0.0	0.0\%
34.6\%	45.1	45.1	0.1	0.2\%
35.8\%	45.0	45.1	0.1	0.2\%
37.0\%	45.0	45.1	0.1	0.2\%
38.3\% 39.5\%	45.0	45.0	0.0	0.1\%
39.5\%			0.0	0.1\%
40.77\%	45.0	45.0	0.0	0.0\%
42.0\%	44.8	44.9	0.1	0.1\%
43.2\%	44.7	44.7	0.0	0.1\%
44.4\%	44.7	44.7	0.1	0.1\%
45.7\%	44.6	44.6	0.0	0.0\%
46.9\%	44.6	44.6	0.0	0.1\%
48.1\%	44.6	44.6	0.0	0.1\%
49.4\%	44.6	44.6	0.0	0.0\%
50.6\%	44.6	44.5	0.0	0.0\%
51.9\%	44.5	44.5	0.0	0.1\%
	44.5 44.5	44.5 44.5	0.0 0.0	- 0.0%
55.6\%	44.5	44.5	0.0	0.0\%
56.8\%	44.5	44.5	0.0	-0.1\%
58.0\%	44.4	44.4	0.0	0.0\%
59.3\%	44.4	44.4	0.0	0.0\%
60.5\%	44.4	44.4	0.0	0.0\%
61.7\%	44.4	44.4	0.0	0.0\%
63.0\%	44.4	44.4	0.0	0.1\%
64.2\%	44.4	44.4	0.0	0.1\%
${ }^{65.4 \%}$	44.3	44.3	0.0	0.0\%
66.7\%	44.3	44.3	0.0	-0.1\%
67.9\%	44.2	44.3	0.0	0.0\%
69.1\%	44.2	44.2	0.0	0.0\%
70.4\%	44.2	44.2	0.0	0.0\%
71.6\%	44.1	44.1	0.0	0.0\%
72.8\%	44.1	44.0	-0.1	-0.1\%
74.1\%	44.0	44.0	0.0	-0.1\%
75.3\%	44.0	44.0	0.0	-0.1\%
76.5% 778%	44.0	44.0	-0.1	${ }^{-0.11 \%}$
77.8\%	44.0	44.0	-0.1	-0.19\%
80.2\%	44.0	43.9	0.0	0.0\%
81.5\%	43.9	43.9	0.0	0.0\%
82.7\%	43.9	43.9	0.0	-0.1\%
84.0\%	43.9	43.8	-0.1	-0.2\%
85.2\%	43.8	43.8	0.0	0.0\%
86.4\%	43.8	43.8	0.0	0.1\%
87.7\%	43.7	43.8	0.0	0.0\%
88.9\%	43.7	43.7	0.0	0.0\%
90.1\%	43.7	43.7	0.1	0.1\%
${ }_{9}^{91.46 \%}$	43.7 43.6	${ }_{43.7}^{43.7}$	${ }_{0}^{0.1}$	${ }_{0}^{0.1 \%}$
93.8\%	${ }_{43.6}$	43.6	0.1	0.2\%
95.1\%	43.5	43.5	0.0	-0.1\%
96.3\%	43.5	43.5	0.0	-0.1\%
97.5\%	43.5	43.4	0.0	-0.1\%
98.8\%	${ }_{431}^{43.1}$	${ }_{431}^{43.1}$	0.0	0.0\%
100.0\%	43.1	43.1	0.0	0.0\%

Table SQ13-1b

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	February			
	WSII 2030 Without Proiet	WSIP 2030 With Project	Absolute	
	Monthy \mathbf{T} Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
(\%)	501	501	0	
0.0\%	47.5	${ }_{401}^{50.1}$	0.0	${ }^{0.0 \% \%}$
${ }^{1.2 \% \%}$	47.5	48.1	0.6	1.3\%
3.7\%	47.3	46.8	-0.5	-1.1\%
4.9\%	46.8	46.5	-0.3	-0.7\%
6.2\%	46.5	46.3	-0.2	-0.4\%
7.4\%	46.3	46.3	0.0	-0.1\%
8.6\%	46.3	46.2	-0.1	-0.2\%
9.9\%	46.2	45.8	-0.4	-1.0\%
11.1\%	45.8	45.7	-0.1	-0.2\%
12.3% 13.6%	45.7 45.6	${ }_{45.6}^{45.7}$	0.0 0.0	- ${ }_{\text {0.0\% }}^{0.0 \%}$
14.8\%	45.5	45.6	0.0	0.0\%
16.0\%	45.5	45.5	0.0	0.0\%
17.3\%	45.5	45.5	0.0	0.0\%
18.5\%	45.3	45.3	0.0	0.0\%
19.8\%	45.3	45.3	0.0	0.0\%
21.0\%	45.3	45.2	0.0	-0.1\%
22.2\%	45.2	45.2	0.0	0.0\%
23.5\%	45.2	45.2	0.0	0.0\%
24.7\%	45.2	45.2	0.0	0.0\%
25.9\%	${ }_{45.1}^{45.2}$	${ }_{45.1}^{45.1}$	0.0	${ }^{0.00 \%}$
28.4\%	${ }_{45.1}$	${ }_{45.0}$	-0.1	-0.2\%
29.6\%	45.0	45.0	0.0	0.1\%
30.9\%	45.0	45.0	0.0	0.0\%
32.1\%	45.0	45.0	0.0	0.0\%
33.3\%	44.9	44.9	0.0	0.0\%
34.6\%	44.9	44.9	0.0	0.1\%
35.8\%	44.9	44.9	0.0	0.0\%
37.0\%	44.8	44.9	0.0	0.1\%
38.3\%	44.7	44.8	0.0	0.1\%
${ }^{39.5 \%}$		44.8	0.0	0.0\%
40.7\%	44.7	${ }_{447}^{44.8}$	0.0	${ }^{0.0 \%}$
42.0\%	44.7	44.7	0.0	${ }^{0.1 \%}$
${ }^{43.2 \%}$	44.7 44.6	44.7	0.0	${ }^{0.0 \%}$
45.79	44.6 44.6	${ }_{44.7}$	0.0	${ }^{0.10 \%}$
46.9\%	44.6	44.6	0.0	0.0\%
48.1\%	44.6	44.6	0.0	0.0\%
49.4\%	44.6	44.6	0.0	0.0\%
50.6\%	44.6	44.5	0.0	-0.1\%
51.9\%	44.6	44.5	-0.1	${ }^{-0.2 \%}$
	44.5 44.5	${ }_{44.5}^{44.5}$	0.0 0.0	-0.1\%
55.6\%	44.5	44.5	0.0	0.0\%
56.8\%	44.5	44.5	0.0	0.0\%
58.0\%	44.5	44.4	0.0	0.0\%
59.3\%	44.4	44.4	0.0	0.0\%
60.5\%	44.4	44.4	0.0	-0.1\%
61.7\%	44.3	44.3	0.0	0.0\%
63.0\%	44.3	44.3	0.0	0.0\%
64.2\%	44.3	44.3	0.0	0.0\%
${ }^{65.4 \%}$	44.2	44.2	0.0	-0.1\%
${ }^{66.77 \%}$	44.2	44.2	0.0	0.0\%
67.9\%	44.2	44.1	-0.1	-0.1\%
69.1\%	44.1	44.1	0.0	0.0\%
70.4\%	44.1	44.1	0.0	0.1\%
71.6\%	44.1	44.1	0.0	0.0\%
72.8\%	44.1	44.1	0.0	0.0\%
74.1\%	44.1	44.1	0.0	0.0\%
75.3\%	44.0	44.0	0.0	0.0\%
76.5\%	44.0	43.9	0.0	0.0\%\%
77.8\%	44.0	43.9	0.0	${ }^{-0.19}$
80.2\%	${ }_{43.9}$	${ }_{43.9}$	0.0	${ }^{-0.1 \%}$
81.5\%	43.9	43.9	0.0	0.0\%
82.7\%	43.9	43.9	0.0	0.0\%
84.0\%	43.9	43.9	0.0	0.0\%
85.2\%	43.8	43.8	0.0	${ }^{0.00 \%}$
86.4\%	43.8	43.8	0.0	0.19\%
87.7\%	43.6	43.8	0.2	0.4\%
88.9\%	43.6	43.6	0.0	0.0\%
90.1\%	43.6	43.6	0.0	0.1\%
91.4\%	43.6	43.6	0.0	${ }^{0.10 \%}$
${ }_{93.8 \%}^{92.6 \%}$	43.5 43.4	${ }_{43.4}^{43.6}$	0.1 0.0	0.0\%
95.1\%	43.4	43.4	0.0	0.0\%
96.3\%	43.3	43.4	0.0	0.0\%
97.5\%	43.3	43.2	-0.1	-0.2\%
98.8\%	43.2	${ }_{431}^{43.1}$	0.0	${ }^{-0.1 \%}$
100.0\%	43.2	43.1	0.0	-0.1\%

		May		
${ }_{\text {Percent }}^{\text {Pexeenance }}$	WSIP 2030 Without Proiet	WSIP 2030 With Project	Absolute	
$\underbrace{\substack{\text { (\%) }}}_{\text {Probability }}$	Monthly Temperature	Monthly Temperatue		Difference (\%)
${ }^{\text {O.O\% }}$	(DEGF)			
0.0\%	50.8	50.8	0.0	0.1\%
1.2\%	50.7	50.7	0.0	
2.5\%	50.5	50.5	0.0	
3.7\%	50.4	50.4	0.0	
4.9\%	50.3	49.9	-0.4	
6.2\%	49.8	49.7	-0.1	-0.3\%
7.4\%	49.6	49.6	0.0	-0.1\%
8.6\%	49.4	49.5	0.1	0.2\%
9.9\%	49.4	49.5	0.1	0.2\%
11.1\%	49.3	49.5	0.1	0.2\%
12.3\%	49.3	49.4	0.1	0.3\%
13.6\%	49.2	49.4	0.2	0.4\%
14.8\%	49.2	49.3	0.1	0.2\%
16.0\%	49.2	49.2	0.1	0.2\%
17.3\%	49.1	49.1	0.0	0.0\%
18.5\%	49.1	49.1	0.0	
19.8\%	49.1	49.1	0.0	
21.0\%	49.0	49.0	0.0	-0.1\%
22.2\%	49.0	48.9	0.0	-0.1\%
23.5\%	49.0	48.9	0.0	0.0\%
24.7\%	48.9	48.9	0.0	-0.1\%
25.9\%	48.9	48.8	-0.1	-0.1\%
27.2\%	48.8	48.8	-0.1	-0.1\%
28.4\%	48.7	48.8	0.0	0.0\%
29.6\%	48.7	48.7	0.0	0.1\%
30.9\%	48.7	48.7	0.1	0.1\%
${ }^{32.1 \%}$	48.7	48.7	0.0	
33.3\%	48.6	48.7	0.0	0.1\%
34.6\%	48.6	48.6	0.0	0.0\%
35.\%	48.6	48.6	0.0	0.1\%
37.0\%	48.5	48.6	0.0	0.1\%
38.3\%	48.5	48.6	0.1	0.1\%
39.5\%	48.5	48.5	0.0	0.1\%
40.7\%	48.5	48.5	0.0	0.1\%
42.0\%	48.5	48.5	0.0	0.0\%
43.2\%	48.4	48.4	0.0	0.0\%
44.4\%	48.4	48.4	-0.1	-0.1\%
45.7\%	48.4	48.3	-0.1	1\%
46.9\%	48.4	48.3	-0.1	-0.2\%
48.1\%	48.4	48.2	-0.1	-0.3\%
49.4\%	48.3	48.1	-0.2	-0.3\%
50.6\%	48.2	48.1	-0.2	-0.3\%
51.9\%	48.2	48.1	-0.1	-0.3\%
53.1\%	48.1	48.1	0.0	0.0\%
54.3\%	48.1	48.0	-0.1	-0.1\%
55.6\%	48.0	48.0	0.0	0.0\%
56.8\%	48.0	48.0	0.0	-0.1\%
58.0\%	48.0	47.9	0.0	0.0\%
59.3\%	47.9	47.8	-0.1	-0.1\%
- 60.5%	47.9	47.8	-0.1	-0.1\%
${ }^{61.77 \%}$	47.9	47.8	-0.1	-0.1\%
-63.0\%	47.8	47.8	-0.1	-0.1\%
${ }^{64.2 \%}$	${ }^{47.8}$	${ }^{47.8}$	-0.1	-0.1\%
65.4\%	47.8	47.8	-0.1	-0.1\%
66.7\%	47.8	47.7	0.0	-0.1\%
67.9\%	47.7	47.7	0.0	0.0\%
69.1\%	47.7	47.7	0.0	0.0\%
70.4\%	47.7	47.6	-0.1	-0.1\%
71.6\%	47.6	47.6	0.0	0.0\%
72.8\%	47.6	47.5	0.0	-0.1\%
74.19\%	47.5	47.5	0.0	0.0\%
75.3\%	47.5	47.5	0.0	0.0\%
76.5\%	47.5	47.4	-0.1	${ }^{-0.2 \%}$
77.8\%	47.5	47.4	-0.1	-0.2\%
79.0\%	47.3	47.3	0.0	0.1\%
80.2\%	47.3	47.3	0.0	0.0\%
81.5\%	47.2	47.2	0.0	0.0\%
82.7\%	47.2	47.2	0.0	0.0\%
84.0% 850%	47.2	47.2	0.0	0.0\%
- 85.2%	47.1	47.1	0.0	0.0\%
-86.4\%	${ }_{47.1}^{47.1}$	${ }_{47.0}^{47.1}$	0.0 .0 .1	-0.1\%
88.9\%	47.0	46.9	-0.1	-0.1\%
90.1\%	46.9	46.9	0.0	0.0\%
91.4\%	46.9	46.9	0.0	0.0\%
92.6\%	46.8	46.9	0.1	0.2\%
93.8\%	46.7	46.6	-0.1	-0.1\%
95.1\%	46.6	46.5	-0.2	-0.4\%
96.3\%	46.4	46.4	0.0	0.0\%
${ }_{98,5 \%}^{97.5 \%}$	46.4	46.4	0.0	0.0\%
98.8% 100.0\%	46.3	46.2	-0.1	-0.2\%
100.0\%	46.3	46.2	-0.1	-0.2\%

Table SQ13-1b

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	June			
	WSIP 2030 W. Without	WSIP 2030 With Project	Absolute	Relative
	Monthy Temperature	Monthy Temperature	Difference (DEGF)	Difference (\%)
0.0\%	55.0	55.0	0.0	0.1\%
1.2\%	52.4	52.4	0.0	0.0\%
2.5\%	52.1	52.2	0.1	0.2\%
3.7\%	52.1	52.1	0.0	0.0\%
4.9\%	52.0 516	52.1 51.6 51	0.1	${ }_{0}^{0.2 \%}$
${ }^{6.2 \%}$	${ }_{51.6}^{51.6}$	51.6 51.5	0.0	0.0\%
7.4\%	51.6	51.5	-0.1	-0.2\%
- ${ }_{\text {\% }}^{\text {9.9\% }}$	51.4 51.4 1.4	51.3 513 51.3	-0.1	${ }^{-0.20 \%}$
11.1\%	51.2	51.2	0.0	0.0\%
12.3\%	51.2	51.1	0.0	0.0\%
13.6\%	51.1	51.0	0.0	-0.1\%
14.8\%	51.0	51.0	0.0	-0.1\%
16.0\%	51.0	51.0	0.0	0.0\%
17.3\%	50.9 509	50.9	0.0	0.0\%\%
19.8\%	50.8	50.7	-0.1	-0.2\%
21.0\%	50.7	50.6	-0.1	-0.2\%
22.2\%	50.7	50.6	-0.1	-0.3\%
23.5\%	50.6	50.6	0.0	0.0\%
24.7\%	50.5	50.4	0.0	-0.1\%
25.9\%	50.4	50.4	0.0	-0.1\%
27.2\%	50.4	50.4	0.0	0.0\%
28.4\%	50.4	50.4	0.0	0.0\%
29.6\%	50.3	50.3	-0.1	-0.2\%
30.9\%	${ }_{50.3}$	50.2	-0.1	-0.2\%
32.10 33	50.2 50.1	50.1 50.1	-0.1	${ }^{-0.2 \%}$
34.6\%	50.1	50.0	-0.1	-0.2\%
35.8\%	50.0	50.0	0.0	0.0\%
37.0\%	49.9	50.0	0.0	0.0\%
38.3\%	49.9	49.9	-0.1	-0.1\%
39.5\%	49.9	49.9	0.0	0.0\%
40.7\%	49.9	49.9	0.0	0.0\%
42.0\%	49.9	49.8	-0.1	-0.1\%
${ }^{43.2 \%}$	49.8	49.8	0.0	0.0\%
45.7\%	49.8	49.7	0.0	0.0\%
46.9\%	49.7	49.7	0.0	0.0\%
48.19\%	49.7	49.7	0.0	0.0\%
49.4\%	49.7	49.7	0.0	${ }^{0.00 \%}$
50.6\%	49.7	49.7	0.0	0.0\%
51.9\%	49.7	49.6	0.0	-0.1\%
53.1\%	49.7	49.6	0.0	0.0\%\%
54.3\%	49.6	49.5	-0.1	-0.3\%
55.6\%	49.5	49.5	-0.1	-0.1\%
56.8\%	49.5	49.5	0.0	-0.1\%
58.0\%	49.5	49.4	-0.1	-0.2\%
59.3\%	49.5	49.4	-0.1	${ }^{-0.3 \%}$
- 60.50	49.5 49.4	49.3 493	-0.1 -0.1	-
63.0\%	49.4	49.3	-0.1	-0.2\%
64.2\%	49.4	49.3	-0.1	-0.2\%
65.4\%	49.3	49.3	0.0	0.0\%
66.7\%	49.3	49.2	0.0	0.0\%
67.9\%	49.2	49.2	0.0	0.0\%
69.1\%	49.2	49.1	-0.1	-0.2\%
70.4\%	49.2 49.1	${ }_{49.1}^{49.1}$	-0.1 0.0	-0.0.2\%
72.8\%	49.1	49.1	0.0	-0.1\%
74.1\%	49.1	49.0	0.0	0.0\%
75.3\%	49.0	49.0	0.0	0.0\%
76.5\%	49.0	48.8	-0.2	${ }^{-0.3 \%}$
77.8\%	48.8	48.7	-0.1	-0.3\%
79.0\%	48.7	48.7	0.0	0.0\%
80.2\%	48.7	48.7	0.0	0.0\%
81.5\%	48.7	${ }^{48.6}$	0.0	${ }_{\text {orem }}^{0.0 \%}$
84.0\%	48.6	${ }_{48.6}$	0.1	0.1\%
85.2\%	48.5	48.5	0.0	0.0\%
${ }^{86.4 \%}$	48.5	48.5	-0.1	${ }^{-0.19}$
87.79% 88.90%	48.4 48.4	48.4 48.3	0.0	-0.1\%
88.9\%	48.4	48.3 483	-0.1	-0.3\%
${ }^{901.4 \%}$	48.4 48.3	48.3 48.2	-0.1	-0.3\%
92.6\%	48.1	48.1	0.0	-0.1\%
93.8\%	48.1	48.0	-0.1	-0.2\%
95.1\%	47.9	47.9	0.0	0.0\%
96.3\%	47.9	47.9	-0.1	-0.1\%
975.5\%	47.8 47.8	${ }_{4}^{47.7}$	0.0 -0.1	-
100.0\%	47.8	47.7	-0.1	-0.2\%

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probobalily } \end{aligned}$	September			RelativeDifference (\%)
	${ }^{\text {WSIP }} 2$ Proiocet	WSIP 2030 With Project	$\begin{gathered} \hline \begin{array}{c} \text { Absolute } \\ \text { Difference } \\ \text { (DEGF) } \end{array} \\ \hline \end{gathered}$	
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)		
0.0\%	60.2	58.9	${ }^{1.3}$	-2.2\%
1.2\%	56.0	56.0	0.0	0.0\%
2.5\%	56.0	55.9	0.0	0.0\%
3.7\%	55.2	55.0	-0.2	
4.9\%	54.9	54.7	-0.3	
6.2\%	54.7	54.5	-0.2	-0.4\%
7.4\%	54.5	54.5	0.0	-0.1\%
8.9\%	54.1	54.0	-0.1	-0.1\%
9.9\%	54.0	54.0	0.0	-0.1\%
11.1\%	54.0	53.9	0.0	-0.1\%
12.3\%	53.9	53.9	0.0	0.0\%
13.6\%	53.9	53.9	0.0	0.1\%
14.8\%	53.7	53.9	0.1	0.3\%
16.0\%	53.7	53.8	0.1	0.3\%
17.3\%	53.6	53.7	0.1	0.1\%
18.5\%	53.6	53.6	0.0	-0.1\%
19.8\%	53.5	53.5	0.0	0.0\%
21.0\%	53.5	53.5	0.0	0.0\%
22.2\%	53.2	53.3	0.1	0.2\%
23.5\%	53.2	53.3	0.1	0.1\%
24.7\%	53.2	53.2	0.0	0.1\%
25.9\%	53.1	53.1	0.1	0.1\%
27.2\%	53.0	52.8	-0.3	-0.5\%
28.4\%	52.9	52.7	-0.2	-0.4\%
29.6\%	52.7	52.6	-0.1	-0.2\%
30.9\%	52.7	52.5	-0.2	-0.3\%
32.1\%	52.7	52.4	-0.3	
33.3\%	52.5	52.4	-0.2	-0.3\%
34.6\%	52.5	52.3	-0.2	-0.3\%
35.\%	52.4	52.3	-0.1	-0.2\%
37.0\%	52.4	52.2	-0.1	-0.3\%
38.3\%	52.4	52.2	-0.2	-0.4\%
39.5\%	52.3	52.1	-0.2	-0.3\%
40.7\%	52.2	51.9	-0.3	-0.5\%
42.0\%	52.2	51.9	-0.3	-0.5\%
43.2\%	52.1	51.9	-0.3	-0.5\%
44.4\%	52.1	51.9	-0.3	-0.5\%
45.7\%	52.1	51.8	-0.3	-0.6\%
46.9\%	${ }_{52.1}$	51.8	-0.3	-0.5\%
48.19\%	51.9 519	${ }_{51.8}^{518}$	-0.2	-0.3\%
49.4\%	51.9 518	51.8 517	-0.1	-0.2\%
50.6\%	51.8 518	51.7	-0.1	-0.1\%
51.9\%	51.8	51.7	-0.1	-0.2\%
53.19\%	51.7	51.6	-0.2	-0.4\%
54.3\%	51.7	51.5	-0.2	-0.4\%
55.6\%	51.7	51.5	-0.2	-0.3\%
56.8\%	51.6	51.4	-0.3	-0.5\%
58.0\%	51.5	51.4	-0.1	-0.3\%
59.3\%	51.5	51.3	-0.2	-0.4\%
	51.4	51.3		
${ }^{61.77 \%}$	51.3	51.2	-0.1	-0.1\%
63.0\%	51.3	51.2	-0.1	-0.1\%
${ }^{64.2 \%}$	51.2	${ }_{51.1}^{51.1}$	-0.1	-0.2\%
65.4\%	51.2	51.1	0.0	-0.1\%
66.7\%	51.2	51.1	0.0	-0.1\%
67.9\%	51.1	51.1	0.0	0.0\%
69.1\%	51.1	51.0	-0.1	-0.2\%
70.4\%	51.0	51.0	-0.1	-0.2\%
71.6\%	51.0	50.9	-0.1	0.1\%
72.8\%	50.9	50.8	-0.1	-0.2\%
74.19\%	50.9	50.8	-0.1	-0.2\%
76.5\%	50.9	50.8	-0.1	-0.2\%
76.5\%	50.9 508 508	50.8	-0.1	-0.2\%
77.8\%	50.8	50.7	-0.2	-0.3\%
79.0\% 80.2%	50.7	50.7	-0.1	-0.2\%
80.2\%	50.7	50.6	-0.1	-0.1\%
81.5\%	50.7	50.5	-0.2	-0.3\%
822.7\% 84.0%	50.6	50.5	-0.1	-0.3\%
84.0\% 85 8.20%	50.6	50.5	-0.1	-0.2\%
85.2% 86.4%	50.5	50.4	-0.2	-0.4\%
86.4\% 87.7%	50.5	50.2	-0.3	${ }^{-0.5 \%}$
${ }^{87.79 \%}$	50.5	50.2	-0.3	-0.5\%
88.9\%	50.5	50.2	-0.3	-0.5\%
${ }^{90.14 \%}$	50.3	50.2	-0.1	-0.3\%
${ }^{92.46 \%}$	50.2 50.2	50.2 50.2	0.0 0.0	-
93.8\%	50.1	49.8	-0.3	0.6\%
95.1\%	50.0	49.8	-0.2	0.3\%
96.3\%	49.9	49.7	-0.2	-0.3\%
97.5\% ${ }_{\text {98.8\% }}$	49.8	49.7	-0.1	-0.2\%
98.8% 100.0%	49.6	49.6	0.0	${ }^{0.1 \%}$
100.0\%	49.6	49.6	0.0	0.1\%

Table SQ13-1b
Clear Creek below Whiskeytow, Monthly Temperature

		,		
Percent Exceedance	$\begin{aligned} & \text { WSIP 2030 Without } \\ & \text { Proriet } \end{aligned}$	WSIP 2030 With Project	Absolute	Relative
Proabability	Monthly Temperature (DEGF)	Monthly Temperature (DEGFF)	Difference (DEGF)	Difference (\%)
0.0\%	55.9	55.2	${ }^{0.6}$	-1.2\%
1.2\%	54.3	54.4	0.1	0.2\%
2.5\%	53.6	53.6	0.0	0.0\%
3.7\%	53.5	53.5	-0.1	-0.1\%
4.9\%	53.4	53.3	0.0	-0.1\%
6.2\%	53.2	53.2	0.0	0.0\%
7.4\%	53.1	53.1	-0.1	-0.1\%
8.6\%	53.1	53.0	-0.1	-0.2\%
9.9\%	53.0	52.9	0.0	-0.1\%
11.1.1\%	52.9	52.9	0.0	0.1\%
12.3\%	52.8 52.7	52.9 52.8	0.1 0.2	0.3\%
14.8\%	52.6	52.8	0.1	0.3\%
16.0\%	52.6	52.8	0.2	0.3\%
17.3\%	52.5	52.7	0.2	0.3\%
18.5\%	52.5	52.5	0.0	-0.1\%
19.8\%	52.5	52.4	-0.1	-0.1\%
21.0\%	52.5	52.4	-0.1	-0.2\%
22.2\%	52.4	${ }_{52.3}$	-0.1	-0.1\%
23.5\%	52.3	52.2	-0.1	-0.1\%
24.7\%	52.2	52.2	0.0	-0.1\%
25.9\%	52.1	52.1	0.0	-0.1\%
27.2\%	52.1	${ }_{5}^{52.0}$	-0.1	-0.2\%
28.4\%	52.0	51.9	-0.1	-0.2\%
29.6\%	52.0	51.9	-0.1	-0.1\%
30.9\%	51.9	51.9	-0.1	-0.2\%
32.1\%	51.9	51.8	-0.1	-0.3\%
33.3\%	51.9	51.8	-0.2	-0.3\%
34.6\%	${ }_{51.8}^{51.8}$	${ }_{51.7}$	-0.1	-0.2\%
35.8\%	51.8	51.7	-0.1	-0.2\%
37.0\%	51.8	51.7	-0.1	-0.3\%
38.3\%	51.7	51.6	0.0	-0.1\%
${ }^{39.5 \%}$	51.6	51.5	0.0	-0.1\%
40.7\%	51.6	51.5	-0.1	-0.1\%
42.0\%	51.6	51.5	-0.1	-0.2\%
43.2\%	51.6	51.5	-0.1	-0.1\%
44.4\%	51.5	51.5	0.0	-0.1\%
45.7\%	51.5	51.4	-0.1	-0.2\%
46.9\%	51.5	51.3	-0.1	-0.2\%
48.1\%	51.4	51.3	-0.1	-0.2\%
49.4\%	51.4	${ }_{51.3}$	-0.1	-0.3\%
50.6\%	51.3	51.3	0.0	-0.1\%
${ }_{\text {51. }}^{51.9 \%}$	51.3	51.3	0.0	-0.1\%
	51.3 51.3	$\begin{array}{r}51.2 \\ 51.1 \\ \hline\end{array}$	-0.1 -0.2	-0.0.3\%
55.6\%	51.2	51.1	-0.2	-0.3\%
56.8\%	51.2	51.1	-0.1	-0.3\%
58.0\%	51.1	51.0	-0.1	-0.2\%
59.3\%	${ }_{51.1}$	51.0	-0.1	-0.2\%
60.5\%	51.0	50.9	-0.1	-0.3\%
61.7\%	51.0	50.9	-0.1	-0.2\%
63.0\%	51.0	${ }^{50.8}$	-0.2	-0.3\%
64.2% 65.4%	50.9	50.8	-0.1	-0.3\%
${ }^{65.4 \%}$	50.9	50.7	-0.2	-0.4\%
6.7.9\%	50.7 50.7	${ }_{50.7}^{50.7}$	0.0	${ }^{-0.00 \%}$
69.1\%	50.7	50.6	-0.1	-0.1\%
70.4\%	50.7	50.6	-0.1	-0.1\%
71.6\%	50.7	50.6	-0.1	-0.1\%
72.8\%	50.6	50.6	0.0	-0.1\%
74.1\%	50.6	50.6	-0.1	-0.1\%
75.3\%	50.6	50.5	-0.1	-0.2\%
76.5% 778%	50.6	50.5	-0.1	-0.2\%
77.8\%	50.6	${ }_{50.4}^{50.4}$	-0.2	-0.4\%
80.2\%	50.6	50.3	-0.3	-0.5\%
81.5\%	50.5	50.3	-0.3	-0.5\%
82.7\%	50.4	50.1	-0.3	-0.5\%
84.0\%	50.2	50.1	-0.1	-0.3\%
85.2\%	${ }_{50.2}^{50.2}$	50.1	-0.2	-0.3\%
86.4\%	${ }_{50.1}$	50.0	-0.1	-0.3\%
87.7\%	50.1	50.0	-0.1	-0.2\%
88.9\%	50.1	50.0	-0.1	-0.1\%
${ }^{90.19 \%}$	50.0	49.9	-0.2	-0.3\%
${ }^{91.4 \%}$	50.0	49.8	-0.2	-0.4\%
93.8\%	50.0	49.8	-0.2	-0.4\%
95.1\%	49.9	49.7	-0.2	-0.4\%
96.3\%	49.8	49.7	-0.1	-0.2\%
97.5\%	49.7	49.6	-0.1	-0.3\%
98.8\%	49.5	49.4	0.0	0.0\%
100.0\%	48.9	48.7	-0.2	-0.4\%

Figure SQ14-1b
Clear Creek at Igo, Monthly Temperatur

Clear Creek at too, Monthy T Temperature
Probability of Exceedance

October				
${ }_{\text {Percent }}^{\text {Pxeedance }}$	${ }_{\text {WSIP 2030 }}$ Proiethout	WSIP 2030 With Project		
Probability	Monthy Temperatue	Monthly Temperature		Difference (\%)
(\%)	(DEGF)	(DEGF)		
0.0\%	60.9	59.9	-1.0	-1.6\%
${ }_{2}^{1.2 \% \%}$	57.0	57.0	0.0	0.0\%
2.5\%	55.9	56.9	0.0	0.0\%
3.7\%	56.2	56.0	-0.2	-0.3\%
${ }_{6.2 \%}^{4.9 \%}$	55.7 55.7	55.9 55.8	0.1 0.2	0.3\%
7.4\%	55.6	55.6	0.0	
8.6\%	55.6	55.2	-0.4	
9.9\%	55.1	55.0	-0.1	-0.2\%
11.12\%	54.8	54.9	0.1	0.2\%
${ }^{123 \% \%}$	54.8	54.9	0.1	0.1\%
13.6\%	54.7	54.8	0.0	0.0\%
14.8\%	54.7	54.7	0.0	0.0\%
16.0\%	54.6	54.6	-0.1	-0.1\%
17.3\%	54.6	54.5	0.0	0.0\%
18.5\%	54.5 541	54.4	-0.2	-0.3\%
${ }^{19.8 \%}$	54.1 54.1	54.3 54.2	0.2 0.1	0.4\%
${ }_{22.2 \%}$	54.0	54.1	0.1	0.1\%
23.5\%	53.9	54.1	0.2	0.3\%
24.7\%	53.8	53.8	0.1	0.1\%
25.9\%	53.7	53.6	-0.1	-0.1\%
27.2\%	53.6	53.6	0.0	-0.1\%
28.4\%	53.6	53.4	-0.2	-0.3\%
29.6\%	53.6	53.4	-0.2	-0.4\%
30.9\%	53.5	53.4	-0.1	-0.3\%
32.1\%	53.5	53.4	-0.2	-0.3\%
33.3\%	53.5	53.4	-0.1	-0.2\%
34.6% 35.8%	${ }_{53.3}^{53.3}$	53.2	-0.1 0.0	${ }^{-0.1 \%}$
37.0\%	53.2	53.1	-0.1	-0.3\%
38.3\%	53.2	53.0	-0.2	-0.3\%
39.5\%	53.0	52.9	-0.1	-0.2\%
40.7\%	53.0	52.8	-0.2	-0.3\%
42.0\%	52.9	52.7	-0.2	-0.3\%
43.2\%	52.9	52.7	-0.2	-0.5\%
44.4\%	52.7	52.6	-0.1	-0.2\%
45.7\%	52.7	52.5	-0.2	-0.3\%
46.9\%	52.5	52.5	-0.1	-0.1\%
48.1\%	52.5	52.4	-0.1	-0.1\%
49.4\% 5 5.6%				-0.1\%
50.6\%	52.4	52,	-0.1	-0.2\%
${ }^{51.9 .1 \%}$	年52.4	52.2	-0.3	-0.6\%
54.3\%	52.3	51.9	-0.4	-0.7\%
55.6\%	52.1	51.9	-0.2	-0.4\%
56.8\%	51.9	51.9	-0.1	-0.1\%
58.0\%	51.9	51.8	0.0	-0.1\%
59.3\%	51.7	51.8	0.0	0.0\%
	51.7 517	51.7 517	0.0 -0.0	-0.0\%
63.0\%	51.7	51.6	-0.1	-0.2\%
64.2\%	51.7	51.6	-0.1	-0.2\%
65.4\%	51.7	51.6	-0.1	-0.2\%
66.7\%	51.6	51.5	-0.1	-0.2\%
67.9\%	51.6	${ }_{51.5}$	-0.2	-0.3\%
69.1\%	51.6	51.5	-0.1	-0.3\%
70.4\%	51.5	${ }_{51.4}^{51.4}$	-0.1	-0.1\%
71.6\%	51.4	51.3	-0.1	-0.1\%
72.8\%	51.3	${ }_{51.3}$	0.0	0.0\%
74.1\%	51.2	51.2	0.0	0.0\%
75.3\%	51.2	51.2	0.0	0.0\%
76.5\%	51.2	51.1	0.0	${ }^{0.00 \%}$
77.8\%	51.1	51.1	0.0	0.0\%
79.0\%	51.1	51.1	0.0	0.1\%
80.2\%	51.0	51.1	0.1	0.1\%
81.5\%	51.0	50.9	-0.1	-0.1\%
${ }^{82.79 \%}$	55.9	50.9 508	0.0	-0.1\%
84.0% 85.2%	50.9	50.8	-0.1	-0.2\%
86.4\%	50.7	50.8	0.1	0.2\%
87.7\%	50.7	50.8	0.1	0.2\%
88.9\%	50.7	50.6	-0.1	-0.2\%
90.1\%	50.6	50.4	-0.1	-0.2\%
91.4\%	50.4	50.3	-0.1	${ }^{-0.3 \%}$
92.6\%	50.3	50.2	-0.2	${ }^{-0.3 \%}$
${ }^{93.85 \%}$	50.3 50.2	50.2	-0.1	-0.0.2\%
96.3\%	50.0	50.0	0.0	0.1\%
97.5\%	49.9	49.9	0.0	0.0\%
98.8\%	49.6	49.9	0.4	0.7\%
100.0\%	49.6	49.9	0.0	0.7\%

Table SQ14.1-1
Clear Creek at tyo, Monthly Temperature
Probability of fxecedance

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	Febuary			
	WSIP 2030 W. Without	WSIP 2030 With Project	Absolute	Relative
	Monthy Temperature	Monthy Temperature	Difference (DEGF)	Difference (\%)
0.0\%	50.6	50.6	0.0	0.0\%
1.2\%	47.8	48.2	0.4	0.8\%
2.5\%	47.5	47.8	0.2	0.5\%
3.7\%	47.4	47.2	-0.2	-0.4\%
4.9\%	47.2	47.1 470	-0.1	-0.2\%
${ }^{6.2 \%}$	47.1	47.0	-0.1	-0.3\%
7.4\%	47.0	46.9	-0.1	-0.3\%
- ${ }_{\text {8.9\%\% }}$	46.9 46.8	46.8 46.1	-0.1	-0.19\%
11.1\%	${ }_{46.1}^{46.8}$	${ }_{46.1}$	-0.7	${ }^{-1.5 \%}$
12.3\%	46.1	46.0	-0.1	-0.2\%
13.6\%	46.0	46.0	0.0	-0.1\%
14.8\%	46.0	46.0	0.0	-0.1\%
16.0\%	${ }_{45.9}^{45.9}$	${ }_{45.9}^{45.9}$	-0.1 0.0	-0.0.2\%
18.5\%	45.8	45.8	0.0	0.0\%
19.8\%	45.8	45.7	-0.1	-0.2\%
21.0\%	45.7	45.7	0.0	-0.1\%
22.2\%	45.7	45.7	0.0	0.0\%
23.5\%	45.7	45.6	0.0	-0.1\%
24.7\%	45.6	45.6	0.0	0.0\%
25.9\%	45.6	45.6	0.0	0.0\%
27.2\%	45.5	45.6	0.0	0.1\%
28.4\% 29.6\%	45.5 45.5	${ }_{45.5}^{45.5}$	0.0 0.0	-0.0\%
30.9\%	45.5	45.5	0.0	0.0\%
32.1\%		45.4	0.0	0.0\%
33.3\%	45.4	45.4	0.0	0.1\%
34.6\%	45.4	45.4	0.1	0.2\%
35.8\%	45.3	45.4	0.0	0.1\%
37.0\%	45.3	45.3	0.0	0.0\%
38.3\%	45.3	45.3	0.0	0.0\%
39.5\%	45.2	45.3	0.0	0.0\%
40.7\%	45.2	45.2	0.0	0.0\%
42.0\%	45.1	45.2	0.1	0.1\%
${ }^{43.2 \%}$	${ }_{45.1}^{45.1}$	${ }_{45.1}^{45.1}$	0.0 0.0	0.0\%
45.7\%	45.1	45.1	0.0	0.0\%
46.9\%	45.1	45.1	0.0	-0.1\%
48.1\%	45.1	45.0	-0.1	-0.1\%
49.4\%	45.1	45.0	-0.1	-0.1\%
50.6\%	45.0	45.0	0.0	0.0\%
51.9\%	45.0	45.0	0.0	0.0\%
53.1\%	45.0	45.0	0.0	0.0\%
54.3\%	45.0	45.0	0.0	0.0\%
55.6\%	44.9 44.9	${ }_{45.0}^{45.0}$	0.0 0.0	${ }_{\text {en }}^{0.1 \%}$
58.0\%	44.9	44.9	0.0	-0.1\%
59.3\%	44.9	44.9	-0.1	-0.1\%
${ }^{60.50 \%}$	44.8	44.8	0.0	-0.1\%
61.7% 630%	44.8 448	44.8 448	0.0	0.0\%
${ }^{63.00 \%}$	44.8	44.8 447	0.0	0.0\%
${ }^{64.2 \%}$	44.7	44.7	0.0	${ }^{-0.1 \%}$
65.4\%	44.6	44.6	0.0	0.0\%
66.7\%	44.6	44.6	0.0	0.0\%
67.9\%	44.6	44.6	0.0	-0.1\%
69.1\%	44.6	44.6	0.0	-0.1\%
70.4\%	44.6 44.5	44.5 44.5	0.0 0.0	-0.0\%
72.8\%	44.5	44.5	0.0	0.0\%
74.1\%	44.5	44.5	0.0	${ }^{0.1 \%}$
75.3\%	44.5	44.5	0.0	0.0\%
76.5\%	44.4	44.4	0.0	0.1\%
77.8\%	44.4	44.4	0.0	0.0\%
79.0\%	44.4	${ }_{4}^{4.3}$	0.0	${ }^{-0.19 \%}$
80.2\%	44.4	44.3	0.0	-0.1\%
81.5\%	44.3	44.3	0.0	-0.0\%
824.0\%	${ }_{44.3}^{44.3}$	${ }_{44.3}^{44.3}$	0.0	${ }^{0.00 \%}$
85.2\%	44.2	44.3	0.1	0.2\%
${ }^{86.47 \%}$	44.2	44.2	0.1	${ }^{0.10}$
87.7\%	44.1	44.1	0.0	0.1\%
88.9\%	44.0	44.1	0.1	${ }^{0.2 \%}$
${ }^{901.4 \%}$	44.0	44.0	0.0	${ }_{\text {coin }}^{0.00 \%}$
92.6\%	44.0	44.0	0.0	0.0\%
93.8\%	43.9	43.9	0.0	0.0\%
95.1\%	43.9	43.9	0.0	0.0\%
96.3\%	43.7	43.7	0.0	-0.1\%
97.5\%	43.6	43.6	0.0	-0.1\%
988.8\% 100.0\%	43.6 43.6	43.6 43.6	-0.1 -0.1	-0.0.1\%

PercentExceedanceProbability		March		$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceendance } \\ \text { Probabily } \end{array} \\ \quad(\%) \\ \hline \end{gathered}$	WSIP 233 W Wethout April		$\begin{gathered} \text { Absolute } \\ \text { difference } \\ \text { (DEGF) } \end{gathered}$	Relative
	WSIP 2030 Without Proiect	WSIP 2030 With Project				${ }^{\text {WSIP }}$ Pro30 Wieth	WSIP 2030 With Project		
	Monthl Temperature	Monthly Temperature				Monthly Temperatu	Monthly Temperature		
	(DEGF)					(DEGF)			
0.0\%	49.0	49.0	0.0	0.0\%		50.8	50.8	0.0	0.0\%
2.5\%	${ }_{48.5}^{48.5}$	48.5 48.5	0.0 0.0	${ }^{0.00 \%}$	${ }_{2.5 \%}^{1.2 \%}$	50.8 50.7	50.8 50.0	0.0 -0.8	- ${ }_{\text {0.0\% }}^{\text {- }}$ /
3.7\%	48.4	48.1	-0.3	-0.7\%	3.7\%	50.0	49.9	0.0	-0.1\%
4.9\%	48.1	48.1	0.0	0.0\%	4.9\%	49.9	49.9	0.0	0.0\%
6.2\%	48.1	48.1	0.0	0.0\%	6.2\%	49.7	49.7	0.0	0.0\%
7.4\%	48.0	47.9	-0.1	-0.2\%	7.4\%	49.7	49.7	0.0	
8.6\%	47.9	47.9	0.0	-0.1\%	8.6\%	49.6	49.7	0.0	\%
9.9\%	47.9	47.8	-0.1	-0.2\%	9.9\%	49.6	49.7	0.1	0.2\%
11.1\%	47.7	47.7	0.0	0.0\%	11.1\%	49.3	49.6	0.3	0.6\%
12.3\%	47.5	47.6	0.1	0.3\%	12.3\%	49.2	49.4	0.2	0.4\%
13.6\%	47.3	47.5	0.2	0.4\%	13.6\%	49.2	49.2	0.0	0.0\%
14.8\%	47.3	47.4	0.1	0.1\%	14.8\%	49.1	49.2	0.1	0.2\%
16.0\%	47.2	47.3	0.1	0.2\%	16.0\%	49.0	49.1	0.1	0.2\%
17.3\%	47.2	47.2	0.0	0.1\%	17.3\%	48.9	49.1	0.1	0.3\%
18.5\%	47.1	47.2	0.1	0.1\%	18.5\%	48.9	49.0	0.1	0.2\%
19.8\%	47.0	47.2	0.2	0.3\%	19.8\%	48.9	48.9	0.0	0.1\%
21.0\%	46.9	46.9	0.0	0.0\%	21.0\%	48.8	48.9	0.1	0.1\%
${ }^{22.2 \% \%}$	46.9	46.9	0.0	0.0\%	22.2\%	48.8	48.8	0.0	0.1\%
23.5\%	46.8	46.8	0.0	0.0\%	- 23.50	${ }_{485}^{48.6}$	48.8	0.2	0.4\%\%
25.9\%	46.8	46.8	-0.1	${ }_{\text {-0.1\% }}^{-0.1 \%}$	24.9\%	48.5	48.5	0.1	0.2\%
27.2\%	${ }_{46.8}$	${ }_{46.7}$	0.0	-0.1\%	${ }^{27.2 \%}$	${ }_{48.4}$	48.5	0.0	0.1\%
28.4\%	46.7	46.7	0.0	-0.1\%	28.4\%	48.3	48.5	0.1	0.3\%
29.6\%	46.7	46.7	0.0	0.0\%	29.6\%	48.3	48.4	0.1	0.2\%
30.9\%	46.7	46.7	0.0	0.0\%	30.9\%	48.3	48.4	0.1	0.1\%
32.1\%	46.7	46.7	0.0	0.0\%	32.1\%	48.3	48.4	0.0	0.1\%
33.3\%	46.7	46.6	0.0	0.0\%	33.3\%	48.3	48.3	0.0	0.0\%
34.6\%	46.7	46.6	-0.1	-0.1\%	34.6\%	48.3	48.3	0.0	0.0\%
35.8\%									
37.0\%	46.6	46.6	0.0	-0.1\%	37.0\%	48.3	48.3	0.0	0.0\%
-	46.6 46.5	${ }_{46.5}^{46.6}$	0.0	0.0\%	-	${ }_{481}^{48.3}$	48.3	0.0	${ }^{0.0 \% \%}$
40.7\%	46.5	46.5	0.1	0.1\%	40.7\%	48.1	48.2	0.1	0.2\%
42.0\%	46.4	46.5	0.1	0.2\%	42.0\%	48.1	48.2	0.1	0.1\%
43.2\%	46.4	46.4	0.1	0.1\%	43.2\%	48.1	48.1	0.0	0.0\%
44.4\%	46.3	46.4	0.1	0.1\%	44.4\%	48.1	48.0	-0.1	-0.1\%
45.7\%	46.3	46.3	0.0	0.0\%	45.7\%	48.0	48.0	-0.1	-0.1\%
46.9\%	46.3	46.3	0.0	0.1\%	46.9\%	48.0	47.9	-0.1	-0.1\%
48.1\%	${ }^{46.2}$	46.3	0.1	0.1\%	48.19\%	48.0	47.9	0.0	-0.1\%
49.4\%\%	46.2 46.2	46.3 46.2	0.1 0.0	-	49.4\%	${ }_{47.9}^{47.9}$	47.9 47.9	0.0 0.0	-0.10\%
51.9\%	46.2	46.2	0.0	0.0\%	51.9\%	47.9	47.9	0.0	0.0\%
53.1\%	46.2	46.2	0.0	0.0\%	53.1\%	47.9	47.9	0.0	0.0\%
54.3\%	46.2	46.2	0.0	0.0\%	54.3\%	47.8	47.8	0.0	0.0\%
55.6\%	46.2	46.1	0.0	0.0\%	55.6\%	47.8	47.8	0.0	0.0\%
56.8\%	46.1	46.1	0.0	0.0\%	56.8\%	47.8	47.8	0.0	-0.1\%
58.0\%	46.1	46.1	0.0	-0.1\%	58.0\%	47.8	47.7	-0.1	-0.1\%
59.3\%	46.1	46.1	0.0	0.0\%	59.3\%	47.8	47.7	-0.1	-0.2\%
	46.1	46.1	0.0	${ }^{0.0 \% \%}$		${ }_{477}^{47.7}$	47.7	-0.1	${ }^{-0.19 \%}$
61.70\%	46.1	46.1	0.0	0.0\%	613.70\%	47.7	47.7	0.0	0.0\%
64.2\%	46.1	46.1	0.0	0.0\%	64.2\%	47.6	47.6	0.0	-0.1\%
65.4\%	46.0	46.0	0.0	0.1\%	65.9\%	47.6	47.6	0.0	0.0\%
66.7\%	46.0	46.0	0.0	0.0\%	66.7\%	47.6	47.6	0.0	-0.1\%
67.9\%	46.0	46.0	0.0	0.1\%	67.9\%	47.6	47.6	0.0	-0.19\%
69.1\%	45.9	46.0	0.0	0.0\%	69.1\%	47.6	47.5	0.0	-0.1\%
70.4\%	45.9	45.9	0.0	-0.1\%	70.4\%	47.6	47.5	-0.1	-0.1\%
71.6\%	45.9	45.9	0.0	-0.1\%	71.6\%	47.6	47.5	-0.1	-0.2\%
72.8\%	45.9	45.9	0.0	-0.1\%	72.8\%	47.5	47.4	-0.1	-0.1\%
74.1\%	45.9	45.8	0.0	-0.1\%	74.1\%	47.5	47.4	-0.1	-0.2\%
75.3\%	45.8	45.8	0.0	-0.1\%	75.3\%	47.4	47.4	0.0	-0.1\%
76.5\%	45.8 45.	45.8 457	0.0	${ }^{0.0 \%}$	76.5\%	47.4 473	${ }_{473}^{47.3}$	0.0	-0.0\%
79.0\%	${ }_{45.6}^{45.7}$	${ }_{45.7}$	0.1	0.2\%	79.0\%	47.3	${ }_{47.3}^{47.3}$	0.0	-0.0\%
80.2\%	45.6	45.6	0.0	0.0\%	80.2\%	47.3	47.3	0.0	0.0\%
81.5\%	45.6	45.5	0.0	0.0\%	81.5\%	47.3	47.3	0.0	-0.1\%
82.7\%	45.6	45.5	0.0	0.0\%	82.7\%	47.2	47.2	0.0	0.0\%
84.0\%	45.5	45.5	-0.1	-0.2\%	84.0\%	47.1	47.2	0.0	0.0\%
85.2\%	45.5	45.4	-0.1	-0.2\%	85.2\%	47.1	47.1	0.0	0.1\%
86.4\%	45.5	45.4	-0.1	-0.2\%	86.4\%	47.1	47.1	0.0	0.1\%
87.7\%	45.4	45.3	-0.1	-0.2\%	87.7\%	47.0	47.1	0.1	0.2\%
88.9\%	45.1	45.1	0.0	0.0\%	88.9\%	46.9	46.9	0.0	0.0\%
90.1\%	45.0	45.0	0.0	0.0\%	90.1\%	46.7	46.9	0.2	0.3\%
91.4\%	45.0 449	45.0 450	0.0	0.1\%	91.4\%	46.6	46.7	0.0	0.1\%
93.3\%	44.9	44.9	0.0	0.0\%	93.3\%	46.4	46.4	0.0	0.0\%
95.1\%	44.9	44.9	0.0	0.0\%	95.1\%	46.4	46.4	0.0	0.0\%
96.3\%	44.9	44.8	0.0	-0.1\%	96.3\%	46.4	46.3	-0.1	-0.3\%
97.5\%	44.8	44.8	0.0	0.0\%	97.5\%	46.1	46.2	0.1	0.2\%
98.8\%	44.7	44.7	0.0	0.0\%	98.8\%	46.0	46.2	0.1	0.3\%
100.0\%	44.7	44.7	0.0	0.0\%	100.0\%	46.0	46.2	0.1	0.3\%

May				
Percent Exceedanc	WSII 2030 W.thout Proiet	WSIP 2030 With Project		Relative
Probability	Monthly Temperature	Monthly Temperature	$\substack{\text { Difference } \\ \text { (DEGF) }}$	Difference (\%)
0.0\%	518	51.8	0.0	0.0\%
1.2\%	51.8	51.8	0.0	-0.1\%
2.5\%	51.7	51.7	0.0	
3.7\%	51.5	51.3	-0.2	-0.3\%
4.9\%	51.3	51.0	-0.4	-0.7\%
6.2\%	51.0	51.0	0.0	-0.1\%
7.4\%	50.9	50.9	0.0	0.0\%
8.6\%	50.9	50.9	0.0	0.0\%
9.9\%	50.7	50.7	0.0	0.0\%
11.1\%	50.6	50.6	0.0	0.0\%
12.3\%	50.4	50.5	0.1	0.2\%
13.6\%	50.4	50.5	0.1	0.2\%
14.8\%	50.4	50.4	0.1	0.2\%
16.0\%	50.3	50.4	0.1	0.2\%
17.3\%	50.2	50.3	0.1	0.2\%
18.5\%	50.2	50.3	0.1	0.2\%
19.8\%	50.1	50.3	0.1	0.3\%
21.0\%	50.0	50.0	0.0	0.1\%
22.2\%	49.9	50.0	0.0	0.0\%
23.5\%	49.9	49.9	0.0	0.0\%
24.7\%	49.9	49.8	0.0	0.0\%
25.9\%	49.9	49.8	0.0	0.0\%
27.2\%	49.9	49.8	0.0	0.0\%
28.4\%	49.8	49.8	0.0	0.0\%
29.6\%	49.8	49.8	0.0	0.0\%
30.9\%	49.7	49.8	0.0	0.1\%
32.1\%	49.7	49.7	0.0	0.0\%
33.3\%	49.7	49.7	0.0	0.1\%
34.6\%	49.6	49.7	0.0	0.1\%
35.8\%	49.6	49.6	0.0	0.0\%
37.0\%	49.6	49.6	0.0	0.0\%
38.3\%	49.6	49.6	0.0	0.0\%
39.5\%	49.6	49.6	0.0	0.0\%
40.7\%	49.5	49.6	0.1	0.2\%
42.0\%	49.5	49.5	0.1	0.1\%
43.2\%	49.4	49.4	0.0	0.0\%
44.4\%	49.4	49.4	-0.1	-0.1\%
45.7\%	49.4	49.4	0.0	-0.1\%
46.9\%	49.4	49.3	0.0	0.0\%
48.1\%	49.4	49.3	0.0	-0.1\%
49.4\%	49.4	49.2	-0.1	-0.2\%
50.6\%	49.3	49.2	-0.1	-0.3\%
51.9\%	49.3	49.1	-0.2	-0.4\%
53.1\%	49.3	49.1	-0.1	-0.3\%
54.3\%	49.2	49.1	-0.1	-0.1\%
年5.6\%\%	49.1	49.1	0.0	-0.1\%
55.8\%	49.1	49.1	0.0	0.0\%
${ }^{55.0 \%}$	49.0	49.0	0.0	0.0\%
55.3\% ${ }_{\text {co.5\% }}$	49.0	49.0	${ }^{0.0}$	0.0\%
	49.0	48.9	0.0	-0.1\%
${ }^{661.7 \%}$	48.9	48.9	-0.1	-0.2\%
63.0\%	48.9	48.9	0.0	-0.1\%
66.4.4\%	48.8	48.8	0.0	0.0\%
65.4\% 66.7%	48.8	48.8	0.0	-0.1\%
	48.8	48.8	0.0	0.0\%
67.9\% 69.1%	48.8	48.8	0.0	0.0\%
69.1\%	48.8	48.8	0.0	0.0\%
70.4\%	48.7	48.7	0.0	0.0\%
71.6\%	48.7	48.6	-0.1	-0.1\%
72.8\%	48.7	48.6	-0.1	-0.2\%
74.1\%	48.7	48.6	-0.1	${ }^{-0.2 \% \%}$
${ }^{75.3 \%}$	48.7	48.4	-0.2	-0.5\%
76.5\% ${ }_{7}$	48.4	48.4	0.0	0.0\%
77.8\%	48.4	48.3	0.0	0.0\%
${ }_{8}^{79.0 \%}$	48.4	48.3	0.0	-0.1\%
80.2\%	48.3	48.3	0.0	0.0\%
	48.2	48.2	0.0	0.0\%
884.0\%	48.2	48.2	0.0	0.0\%
84.0\%	48.1	48.2	0.1	0.2\%
85.4\%	48.1	48.2	0.1	${ }^{0.2 \%}$
887.7\%	48.1	48.1	0.0	0.0\%
887.9\%	48.1 48.0	48.1 48.0	0.0 0.0	-0.0\%
90.1\%	48.0	48.0	0.0	0.0\%
91.4\%	47.9	48.0	0.1	0.1\%
${ }^{929.6 \%}$	47.9	47.8	-0.1	-0.2\%
93.8\% ${ }_{\text {95.1\% }}$	47.8	47.6	-0.1	-0.3\%
${ }_{99.3 \%}^{95.3 \%}$	47.6	47.5	-0.1	-0.2\%
997.5\%	47.5 47.4	${ }_{47.3}^{47.5}$	-0.1	-0.0\%
98.8\%	47.3	47.3	0.0	0.0\%
100.0\%	47.3	47.3	0.0	0.0\%

Table SQ14.1.

lear Creak at aso. Monthly Temperature
Probability of Exceedance

$\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probabalily } \end{array} \end{aligned}$	June			
	${ }^{\text {WSIP } 2030 \text { Without }}$ Proiet	WSIP 2030 With Project		Relative
	Monthly Temperature	Monthly Temperature	$\begin{aligned} & \text { Difference } \\ & \text { (DEEGF) } \end{aligned}$	Difference (\%)
0.0\%	57.7	57.8	0.0	0.1\%
1.2\%	55.5	55.5	0.0	0.0\%
2.5\%	55.3	55.3	0.0	
3.7\%	54.9	54.7	-0.1	-0.2\%
4.9\%	54.4	54.4	0.0	0.0\%
6.2\%	54.4	54.4	0.0	0.0\%
7.4\%	54.2	54.1	0.0	-0.1\%
8.6\%	54.0	54.0	0.1	0.1\%
9.9\%	53.8	53.9	0.1	0.2\%
11.1\%	${ }_{5}^{53.3}$	53.3	0.0	0.0\%
123\%	53.2	53.2	0.0	0.0\%
1236% 14.80%	53.2 53.1	53.2 53.0	0.0 -0.1	-0.1\%
10.0\%	${ }_{53.1}^{53.1}$	55.9	-0.2	-0.3\%
17.3\%	53.0	52.9	-0.2	-0.3\%
18.5\%	52.8	52.8	0.0	0.0\%
19.8\%	52.7	52.8	0.1	0.1\%
21.0\%	52.7	52.6	-0.1	-0.1\%
22.2\%	52.6	52.5	0.0	0.0\%
23.5\%	52.4	52.3	-0.2	-0.3\%
24.7\%	52.3	52.2	-0.1	-0.2\%
25.9\%	52.2	52.2	-0.1	-0.1\%
27.2\%	52.2	52.1	-0.1	-0.1\%
28.4\%	52.2	52.1	0.0	-0.1\%
29.6\%	52.1	52.1	0.0	-0.1\%
30.9\%	52.1	52.0	-0.1	-0.1\%
32.1\%	52.1	52.0	0.0	-0.1\%
33.3\%	52.0	52.0	0.0	-0.1\%
34.6\%	52.0	51.9	-0.1	-0.2\%
35.8\%	52.0	51.9	-0.1	-0.2\%
37.0\%	51.9	51.8	-0.1	-0.2\%
38.3\%	51.9	51.8	-0.1	-0.2\%
39.5\%	51.9	51.8	-0.1	-0.2\%
40.7\%	51.7	51.7	0.0	0.0\%
${ }^{42.0 \%}$	51.7 51.6	51.7 51.7	0.0	-0.0\%
44.4\%	51.6	51.6	0.0	0.1\%
45.7\%	51.6	51.5	-0.1	-0.1\%
46.9\%	51.5	51.5	0.0	0.0\%
48.1\%	51.5	51.5	0.0	-0.1\%
49.4\%	51.5	51.4	0.0	-0.1\%
50.6\%	51.4	51.4	0.0	0.0\%
51.9\%	51.4	51.4	0.0	0.0\%
53.19\%	51.4	51.4	0.0	-0.1\%
54.3\%	51.4	${ }_{51.3}$	0.0	-0.1\%
55.6\%	51.4	${ }_{51.3}^{51.3}$	0.0	${ }^{-0.1 \%}$
56.8\%	51.3 51.3	51.3 51.3	0.0 0.0	${ }^{0.0 \% \%}$
59.3\%	51.3	51.3	-0.1	-0.1\%
60.5\%	51.2	51.1	-0.1	-0.2\%
61.7\%	51.1	51.1	0.0	0.0\%
63.0\%	51.0	51.1	0.1	0.1\%
64.2\%	51.0	51.0	0.0	0.0\%
65.4\%	51.0	50.9	0.0	0.0\%
66.7\%	50.9	50.9	0.0	0.0\%
67.9\%	50.9	50.9	0.0	0.0\%
69.1\%	50.9	50.8	-0.1	-0.2\%
70.4\%	50.9	50.8	-0.1	-0.2\%
71.6\%	50.9	50.8	-0.1	-0.2\%
72.8\%	50.8	50.8 508 50	-0.1	-0.19\%
74.19\%	50.8	${ }_{50.8}^{508}$	0.0	${ }^{-0.19 \%}$
75.3\%	50.7 50.7	50.7 50.4	0.0 -0.3	-0.5\%
77.8\%	50.5	50.4	-0.1	-0.2\%
79.0\%	50.4	50.4	0.0	-0.1\%
80.2\%	50.4	${ }^{50.3}$	0.0	0.0\%
81.5\%	50.4	50.3	0.0	0.0\%
8277\%	50.3	50.3	0.0	0.0\%\%
84.0\%	50.3 50.3	$\begin{array}{r}50.3 \\ 50.2 \\ \hline\end{array}$	-0.1 0.0	-0.0.0\%
${ }^{86.4 \%}$	50.2	50.2 50.2	0.0	0.1\%
87.7\%	50.2	50.2	0.1	0.1\%
88.9\%	50.1	50.0	-0.1	-0.2\%
90.1\%	50.1	50.0	-0.1	-0.2\%
91.4\%	50.1	49.9	-0.1	-0.2\%
92.6\%	49.7	49.7	0.0	0.0\%
93.8\%	49.7	49.7	0.0	0.0\%
${ }^{95.19 \%}$	49.7	49.7	0.0	0.0\%\%
${ }^{97.5 \%}$	${ }_{49.6}$	${ }_{49.5}$	-0.2	-0.4\%
98.8\%	49.4	49.3	-0.1	-0.2\%
100.0\%	49.4	49.3	-0.1	-0.2\%

Table SQ14-1b
reek at loo. Monthly Tempera
Clear Creek at Iogo, Monthly Temperatur
Probabilityof Exceedance

	Probability of Exceedance			
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{gathered}$				
	WSIP 2032 Without	WSIP 2030 With	Absolut Difference(DEGF)	
	Monthy Temperatue	$\begin{aligned} & \text { Monthly Temperature } \\ & \text { (DEGF) } \end{aligned}$		
0.0\%	${ }^{\text {(1)EOF) }}$	59.4	-0.8	-13\%
1.2\%	57.4	57.3	0.0	-0.1\%
2.5\%	57.1	57.0	-0.1	-0.1\%
3.7\%	56.8	56.8	0.0	0.0\%
4.9\%	56.8	56.8	0.0	
6.2\%	56.6	56.7	0.1	0.2
7.4\%	56.5	56.5	-0.1	0.1\%
8.6\%	$\begin{array}{r}56.4 \\ 56 . \\ \hline 6 .\end{array}$	56.2	-0.1	-0.2\%
111\%	55.2			0.1\%
12.3\%	56.1	56.1	${ }_{0}^{0.1}$	${ }^{-0.1 \%}$
13.6\%	55.9	56.1	0.2	0.3\%
14.8\%	55.9	56.1	0.2	0.4\%
16.0\%	55.9	55.8	-0.1	-0.2\%
17.3\%	${ }_{55.8}^{557}$	55.8	-0.1	-0.1\%
18.5\%	55.7	55.8	0.0	0.0\%
${ }^{19.8 \%}$	55.7 55.7	55.6 55.6	-0.1	${ }_{\text {-0.1\% }}^{-0.1 \%}$
22.2\%	55.6	55.6	0.0	0.0\%
23.5\%	55.5	55.5	0.0	0.0\%
24.7\%	55.5	55.5	0.0	0.0\%
25.9\%	55.4	55.5	0.1	0.2\%
27.2\%	55.3	55.4	0.0	0.0\%
28.4\%	55.3	55.3	0.0	0.0\%
29.6\%	55.3	55.3	0.0	0.0\%
- $\begin{aligned} & 30.9 \% \\ & 32.1 \%\end{aligned}$	55.3	55.2 551	-0.1	-0.19\%
33.3\%	55.1	55.1	-0.1	-0.1\%
34.6\%	55.1	55.1	-0.1	0.1\%
35.8\%	55.1	55.1	0.0	0.0\%
37.0\%	55.0 550	55.1	0.0	0.0\%
	55.0 550 550	55.0 549	0.0	-0.0\%
39.5\%	55.0 54.9	54.9 54.9	-0.1	-0.2\%
42.0\%	54.9	54.8	-0.1	-0.2\%
43.2\%	54.9	54.8	-0.1	-0.2\%
44.4\%	54.9	54.8	-0.1	-0.2\%
${ }^{45.79 \%}$	54.9	54.7	-0.1	-0.2\%
48.1\%	54.8	54.7	-0.1	-0.3\%
49.4\%	54.8	54.6	-0.2	-0.3\%
50.6\%	54.8	54.5	-0.2	-0.4\%
51.9\%	54.7 54.6	54.5 545 15	-0.2	-0.4\%
53.19\% 54360	54.6 54.5	54.5 54.4	-0.1	${ }_{\text {cose }}^{0.0 .2 \%}$
54.3\%	54.5	54.4	-0.1	-0.1\%
55.6\%	54.5	54.3	-0.1	-0.3\%
56.8\%	54.4	54.3	-0.2	-0.3\%
58.0\%	54.4	54.2	-0.2	-0.4\%
59.3\%	54.4	54.1	-0.3	-0.5\%
${ }^{60.50}$	$\begin{array}{r}54.3 \\ 54.2 \\ \hline\end{array}$	54.1	-0.1	-0.2\%
${ }^{61.77 \%}$	54.2	54.1	0.1	-0.2\%
63.0\%	54.2	54.1	-0.1	-0.2\%
64.2% 65.4%	54.2 54.2	54.1 54.0	-0.2	-0.3\% ${ }_{-0.3 \%}$
-65.4\%	54.2 54.1	54.0	-0.1	-0.3\%
${ }^{66.77 \%}$	${ }_{54.1}$	54.0	-0.1	-0.2\%
67.9\%	54.1	53.9	-0.2	-0.4\%
69.1\%	54.0	53.9	-0.1	-0.2\%
70.4\%	54.0	53.9	-0.1	-0.2\%
71.6\%	53.9	53.9	-0.1	-0.1\%
${ }_{7} 7.1 \%$	53.9	53.8	-0.1	-0.2\%
75.3\%	53.9	53.8	0.0	0.1\%
76.5\%	53.8	53.8	-0.1	-0.2\%
77.8\%	53.8 538 58	$\begin{array}{r}53.7 \\ 536 \\ \hline 5 .\end{array}$	-0.1	-0.2\%
79.0\%	53.8 53.8	53.6 53.5	-0.2	-0.3\% ${ }_{-0.4 \%}$
80.2\%	53.8	53.5 535	-0.2	-0.4\%
81.5\%	53.7 537	53.5 534 53	-0.3	-0.5\%
82.7\%	53.7	53.4	-0.2	-0.4\%
84.0\%	${ }_{53}^{53.6}$	53.4	-0.2	-0.4\%
85.2\%	53.6 53.5	${ }_{53.3}^{53.4}$	-0.2 -0.2	-0.0.4\%
87.7% 88.9%	53.5 53.5	53.3 53.3	-0.2 -0.2	-0.4\%
90.1\%	53.4	53.3	-0.2	-0.3\%
91.4\%	53.4	53.2	-0.2	-0.5\%
92.6\%	53.4 533 3	${ }_{531}^{53.2}$	-0.2	-0.5\%
93.8\%	53.3 53	${ }_{531}^{53.1}$	-0.2	0.3\%
95.1\%	53.3	53.1	-0.2	-0.3\%
96.3\%	${ }_{531}^{53.3}$	53.1	-0.1	${ }^{-0.3 \%}$
97.5\%	53.1	${ }_{53.1}^{5}$	0.0	0.0\%
98.8\%	52.9	52.8	-0.1	-0.1\%
100.0\%	52.4	52.1	-0.3	-0.5\%

August to September				
Percent Exceedance	$\begin{gathered} \text { WSIP } 2030 \text { Without } \\ \text { Proiect } \\ \hline \end{gathered}$	WsII 2030 With Project		Relative
Probability	Monthly Temperature (DEGF)	Monthly Temperature DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	Difference (9)
0.0\%	61.7	60.7	-1.0	-1.6\%
1.2\%	57.7	55.7	0.0	0.1\%
2.5\%	57.6	57.4	-0.1	-0.2\%
3.7\%	57.1	57.1	0.0	0.0\%
4.9\%	56.7	56.7	0.0	0.1\%
6.2\%	56.3	56.4	0.1	0.1\%
7.4\%	56.2	55.1	-0.1	-0.1\%
- ${ }_{\text {8.9\%\% }}$	56.1 56.1	56.1 56.0	0.0 0.0	-0.0\%
11.1\%	56.0	56.0	0.0	0.0\%
12.3\%	55.0	55.9	-0.1	-0.1\%
13.6\%	55.8	55.9	0.1	0.2\%
14.8\%	55.8	55.9	0.1	0.2\%
16.0\%	55.8	55.8	0.1	0.1\%
17.3\%	55.8	55.8	0.0	0.1\%
18.5\%	55.7	55.6	-0.1	-0.1\%
19.8\%	55.5	55.5	0.0	0.0\%
21.0\%	55.5	55.5	0.0	0.0\%
${ }_{\text {22.5\% }}^{22.2 \%}$	55.5 55.4	55.5 55.5	${ }_{0}^{0.0}$	${ }^{0.0 \% \%}$
24.7\%	55.4	55.3	-0.1	-0.2\%
25.9\%	55.3	55.2	-0.2	-0.3\%
27.2\%	55.1	55.1	0.1	0.1\%
28.4\%	55.1	55.1	0.0	0.0\%
29.6\%	55.0	55.1	0.1	0.1\%
30.9\%	55.0 550	54.9 54.9	-0.1	-0.2\%
32.1\%	55.0	54.8	-0.2	-0.3\%
33.3\%	54.9	54.8	-0.1	-0.2\%
34.6\%	54.8 54.8	54.8	-0.1	-0.1\%
35.8\%	54.8 54.7	54.7 54.7	-0.1 -0.1	-0.1\%
38.3\%	54.7	54.6	-0.1	-0.1\%
39.5\%	54.7	54.6	-0.1	-0.1\%
${ }^{40.70 \%} 4$	54.7 54.7	54.5 54.5	-0.2 -0.2	-0.3\%
${ }^{42.0 \%}$	54.7 54.6	54.5 54.4	-0.2	-0.4\%
${ }^{43.2 \%} 4.4 \%$	54.6 54.6	54.4 54.4	-0.3 -0.3	-0.5\%
4.7\%	54.5	54.4 54.3	-0.2	${ }^{-0.5 \%}$
46.9\%	54.5	54.3	-0.2	-0.3\%
48.1\%	54.4	54.3	-0.2	-0.3\%
4.4.4\%	54.4	54.2	-0.1	-0.2\%
50.6\%	54.3	54.2	-0.1	-0.2\%
${ }^{51.9 \%}$	54.3 54.3	54.0 54.0	-0.2 -0.2	-0.0.4\%
54.3\%	54.2	54.0	-0.2	-0.4\%
55.6\%	54.2	54.0	-0.2	-0.3\%
56.8\%	54.1 54.1	53.9	-0.2	-0.3\%
58.0\%	54.1	53.9	-0.2	-0.3\%
59.3\%	54.1	53.9	-0.2	-0.4\%
60.5\%	53.9	53.9	-0.1	-0.2\%
61.7\%	53.9	53.8	-0.1	-0.3\%
- 63.0%	53.8 53.8	53.7 53.7	-0.1 -0.1	-0.1\%
65.4\%	53.8	53.6	-0.2	-0.4\%
66.7\%	53.8	53.5	-0.2	-0.4\%
67.9\%	53.6	53.5	-0.1	-0.2\%
69.1\%	53.6	53.5	-0.1	-0.2\%
70.4\%	53.5	53.4	-0.1	-0.2\%
71.6\%	53.5	53.4	-0.1	-0.2\%
72.8\%	53.5	53.4	-0.1	-0.2\%
74.19\%	$\begin{array}{r}53.5 \\ 535 \\ \hline 5.5\end{array}$	53.4 533	-0.1	-0.2\%
76.5\%	53.5 53.5	¢ $\begin{array}{r}53.3 \\ 53.2\end{array}$	-0.2 -0.3	-0.0\%
77.8\%	53.4	53.2	-0.2	-0.4\%
79.0\%	$\begin{array}{r}53.4 \\ 534 \\ \hline 3.4\end{array}$	${ }_{53.2}$	-0.2	-0.5\%
81.5\%	53.4	53.2	-0.2 -0.2	-0.4\%
${ }_{\text {822.7\% }}$	${ }_{53.3}^{53.4}$	${ }_{53.2}^{53.2}$	-0.2	-0.0.0\%
84.0\%	53.3	53.2	-0.1	-0.2\%
85.2\%	53.3	53.1	-0.1	-0.3\%
86.4\%	53.3	53.0	-0.3	-0.5\%
87.7\%	53.2	53.0	-0.3	-0.5\%
${ }^{88.9 \%} 9$	53.2 53.1	53.0 52.9	-0.3 -0.2	${ }_{\text {- }}^{-0.5 \%}$
91.4\%	53.0	52.9	-0.1	-0.3\%
${ }^{92.6 \%}$	55.9	52.8	-0.2	-0.3\%
95.1\%	52.9 52.8	52.6	-0.3	${ }^{-0.5 \%}$
${ }^{95.13 \%}$	52.8 52.8	52.6 52.6	-0.2	-0.5\%
${ }^{96.7 .5 \%}$	52.8 52.7	52.6 52.5	-0.3 -0.2	${ }^{-0.5 \%}$
98.8\%	52.4	52.4	0.0	0.0\%
100.0\%	52.0	51.7	-0.3	-0.5\%

River Temperature Modeling Summary Tables and Bar Charts

Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulaton Period'												
WSIP 2070 Wiftout Priject	56.8	56.6	53.3	49.2	47.8	48.3	49.2	50.3	51.1	52.6	54.0	54.7
WSIP 2070 win Projed	56.5	56.5	53.6	49.6	47.9	48.4	49.4	50.6	51.3	52.5	53.5	54.1
Diffeence	-0.3	-0.1	0.4	0.4	0.1	0.1	0.1	0.3	0.3	-0.1	-0.5	-0.7
Percent Dififeence?	-0.5\%	-0.2\%	0.7\%	0.8\%	0.3\%	0.2\%	0.3\%	0.6\%	0.5\%	-0.2\%	-0.9\%	-1.2\%
Water Year Types ${ }^{2}$												
Wet $32 \%)$												
WSIP 2070 Without Propet	55.7	56.4	53.6	48.1	46.5	47.0	48.4	49.6	50.0	51.4	52.9	52.0
WSIP 2070 wif Prijet	55.4	56.1	53.8	48.1	46.4	47.0	48.5	49.8	50.4	51.7	52.7	51.9
Diffeence	-0.4	${ }^{-0.3}$	0.2	0.0	0.0	0.0	0.1	0.3	0.4	0.3	-0.2	-0.1
Pecenen Diffeence	-0.7\%	-0.5\%	0.3\%	0.0\%	-0.1\%	0.0\%	0.2\%	0.6\%	0.8\%	0.6\%	-0.5\%	-0.2\%
Above Noma (13\%)												
WSIP 270 W Withut Priject	55.0	55.9	53.8	49.5	47.7	48.0	49.2	50.1	50.4	51.4	52.5	52.3
WSIP 2070 with Projet	54.8	55.8	54.0	49.6	47.7	47.9	49.2	50.3	50.6	51.4	52.3	52.8
Diffeence	-0.2	-0.1	0.2	0.1	0.0	0.0	0.0	0.2	0.2	0.0	-0.2	0.4
Perene Dififeence	-0.4\%	-0.1\%	0.4\%	0.2\%	0.0\%	-0.1\%	0.1\%	0.3\%	0.3\%	0.0\%	-0.4\%	0.8\%
Below Nomal (16\%)												
WSIP 2070 Wiftout Priject	55.3	55.8	52.8	49.6	47.8	48.6	49.5	50.0	50.5	52.0	53.4	53.9
WSIP 270\% Witi Projet	55.3	56.0	53.3	50.1	47.8	48.6	49.4	50.4	51.1	52.3	52.9	53.1
Diffeence	0.0	0.2	0.5	0.5	0.1	0.0	-0.1	0.4	0.5	0.3	-0.5	-0.8
Pecrent Diffeerne	0.0\%	0.4\%	1.0\%	0.9\%	0.1\%	0.1\%	-0.2\%	0.8\%	1.0\%	0.5\%	-1.0\%	-1.4\%
Dr 248%)												
WSSP 2070 Without Prijet	56.4	56.9	53.3	49.7	48.7	49.0	49.6	50.5	51.4	53.3	53.8	54.8
WSIP 2070 with Projed	56.2	56.6	53.6	50.4	48.9	49.3	49.9	51.0	51.9	53.1	53.4	54.1
Diffeence	-0.1	-0.3	0.3	0.7	0.2	0.3	0.3	0.5	0.5	-0.2	-0.4	-0.7
Pecent Differene	-0.2\%	-0.5\%	0.6\%	1.3\%	0.4\%	0.6\%	0.6\%	0.9\%	0.9\%	-0.4\%	-0.7\%	-1.2\%
Critica (15\%)												
WSIP 270 W Without Priject	62.7	58.1	52.6	49.9	48.9	49.8	50.3	52.2	53.9	55.9	58.9	63.7
WSIP 207\% With Projed	61.7	58.3	53.4	50.8	49.5	49.9	50.6	52.3	53.3	54.7	57.3	60.9
Diffeence	-1.0	0.2	0.8	0.9	0.6	0.2	0.3	0.1	-0.6	-1.2	-1.6	-2.8

$\frac{\text { Percen Differenee }}{1 \text { Based on the } 2 \text { 2-ver simulation period }}$

3 Realive difference of the montily average

						hly Tem	rature (D)					
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period'												
WSIP 270 W Without Priect	57.3	56.6	53.2	49.3	48.2	49.0	50.2	51.5	52.1	53.6	55.1	55.7
WSIP 2070 wit Projert	57.0	56.5	53.6	49.7	48.3	49.1	50.4	51.9	52.4	53.4	54.6	55.0
Diffeence	-0.3	-0.1	0.4	0.4	0.1	0.1	0.1	0.4	0.3	-0.1	-0.5	-0.7
Percent Differenes	-0.5\%	-0.2\%	0.7\%	0.7\%	0.2\%	0.2\%	0.2\%	0.7\%	0.6\%	-0.2\%	-1.0\%	-1.3\%
Water Year Types ${ }^{2}$												
Wet 32%)												
WSIP 270 W Without Priject	56.2	56.4	53.5	48.2	46.7	47.5	49.3	50.8	51.1	52.3	54.0	52.6
WSIP 2070 wit Project	55.9	56.1	53.7	48.2	46.7	47.5	49.4	51.2	51.5	52.6	53.7	52.5
Diffeence	-0.4	-0.3	0.2	0.0	0.0	0.0	0.1	0.3	0.4	0.3	-0.3	-0.1
Percent Diffeene	-0.6\%	-0.5\%	0.3\%	0.0\%	-0.1\%	0.0\%	0.1\%	0.7\%	0.8\%	0.6\%	-0.6\%	-0.2\%
Above Nomal (13\%)												
WSIP 2070 W Whtout Prijet	55.6	55.9	53.7	49.6	48.0	48.5	50.2	51.3	51.5	52.3	53.6	53.1
WSIP 2070 wit Project	55.4	55.8	53.9	49.7	48.0	48.5	50.3	51.5	51.7	52.2	53.3	53.7
Diffeence	-0.2	-0.1	0.2	0.1	0.0	0.0	0.0	0.2	0.2	-0.1	-0.3	0.6
Percent ififeence	-0.3\%	-0.1\%	0.4\%	0.2\%	0.0\%	-0.1\%	0.1\%	0.4\%	0.5\%	-0.1\%	-0.5\%	1.1\%
Below Noma (16\%)												
WSIP 270 W Without Project	56.0	55.8	52.8	49.8	48.3	49.6	50.6	51.2	51.5	52.9	54.5	55.3
WSIP 2070 Wit Project	56.0	56.0	53.3	50.2	48.3	49.6	50.4	51.6	52.1	53.1	53.9	54.3
Diffeence	0.0	0.2	0.5	0.4	0.0	0.0	-0.2	0.4	0.5	0.2	-0.6	-1.0
Percent ifiteene	0.0\%	0.4\%	1.0\%	0.9\%	0.1\%	0.1\%	-0.4\%	0.9\%	1.1\%	0.5\%	-1.0\%	-1.9\%
Dry (24%)												
WSIP 270 W Without Prieat	56.9	56.9	53.2	49.9	49.3	49.9	50.6	51.6	52.4	54.2	54.8	56.2
WSIP 2070 wit Project	56.9	56.7	53.5	50.5	49.4	50.1	50.9	52.1	52.9	54.0	54.4	55.3
Diffeence	0.0	${ }^{-0.2}$	0.3	0.6	0.2	0.2	${ }^{0.3}$	0.5	0.5	-0.2	${ }^{-0.3}$	-0.9
Percent 0 fifeence	-0.1\%	-0.4\%	0.6\%	1.3\%	0.3\%	0.5\%	0.5\%	1.0\%	1.0\%	-0.4\%	-0.6\%	-1.6\%
Critical (15\%)												
WSIP 270 W Without Priject	63.1	58.1	52.6	50.1	49.6	50.8	51.2	53.3	54.8	57.0	59.8	64.6
WSIP 2070 wit Projed	62.2	58.3	53.3	50.9	50.1	50.9	51.6	53.5	54.3	55.8	58.3	61.8
Diffeence	-0.9	0.2	0.7	0.8	0.5	0.1	0.4	0.2	-0.5	-1.2	-1.5	-2.8

$\frac{\text { Pecerent ifietenee }}{1 \text { Based on tee } 82 \text { vear simuludion period }}$
$2 A$ seffined by ye se Sacamenino valley 40.30 .30 Index Water rear Hydrologic Classificaion (SWRCB 0 -1644, 1999
3 Realive difference of the montily average

Monthly Temperature (DEGF)												
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period'												
WSIP 2070 W Witrout Priect	58.0	56.1	51.8	48.6	48.4	50.0	52.0	53.7	54.0	55.2	56.9	57.
WSIP 2070 Wifif Prieat	57.8	56.1	52.1	48.9	48.4	50.0	52.1	54.1	54.3	55.1	56.4	56.5
Diffeence	-0.2	-0.1	0.3	0.3	0.1	0.1	0.1	0.4	0.3	-0.1	-0.5	-0.8
Perenen Differene'	-0.4\%	-0.2\%	0.6\%	0.6\%	0.1\%	0.1\%	0.2\%	0.8\%	0.6\%	-0.2\%	-1.0\%	-1.4\%
Water Year Types ${ }^{2}$												
Wet (32%)												
WSIP 2070 Without Prieet	56.9	56.0	52.0	47.7	47.0	48.4	51.2	53.4	53.3	54.2	56.1	53.7
WSIP 2070 wititroject	56.5	55.7	52.1	47.6	47.0	48.4	51.2	53.8	53.7	54.4	55.6	53.7
Diffeene	-0.3	-0.3	0.1	0.0	0.0	0.0	0.0	0.4	0.4	0.2	-0.4	0.0
Perenen Difference	-0.6\%	-0.5\%	0.2\%	0.0\%	-0.1\%	0.0\%	0.1\%	0.7\%	0.7\%	0.4\%	-0.8\%	-0.1\%
Above Nomal (13\%)												
WSIP 2270 W Witout Proeet	56.3	55.5	52.3	48.5	48.0	49.4	52.2	53.6	53.5	53.9	55.5	54.5
WSIP 2070 Witit Pried	56.2	55.5	52.7	48.7	48.0	49.4	52.2	53.8	53.9	53.8	55.2	55.3
Diffeene	-0.1	0.0	0.4	0.1	0.0	0.0	0.0	0.3	0.4	-0.1	-0.4	0.7
Perenen ifference	-0.2\%	-0.1\%	0.7\%	0.2\%	0.0\%	0.0\%	0.1\%	0.5\%	0.7\%	-0.2\%	-0.7\%	1.3\%
Below Nomal (16\%)												
WSIP 2070 W Witout Priject	56.9	55.3	51.3	48.9	48.4	50.5	52.6	53.4	53.4	54.4	56.3	57.6
WSIP 2070 Witit Priject	56.9	55.5	51.8	49.1	48.4	50.5	52.3	53.9	54.0	54.7	55.7	56.2
Diffeene	0.0	0.2	0.5	0.3	0.0	0.0	-0.3	0.5	0.6	0.2	-0.6	-1.3
Perenen Difference	-0.1\%	0.4\%	0.9\%	0.6\%	0.0\%	0.0\%	-0.5\%	1.0\%	1.1\%	0.4\%	-1.1\%	-2.3\%
Dry (24%)												
WSIP 2070 Witrout Priect	57.7	56.3	51.9	49.1	49.3	50.8	52.3	53.4	54.1	55.8	56.5	58.3
WSIP 2070 witit Priject	57.8	56.1	52.2	49.6	49.5	51.0	52.5	53.9	54.6	55.6	56.2	57.1
Diffeence	0.1	-0.2	0.3	0.5	0.1	0.2	0.2	0.5	0.5	-0.2	${ }^{-0.3}$	-1.2
Perenen ifference	0.1\%	-0.4\%	0.5\%	1.0\%	0.2\%	0.3\%	0.4\%	1.0\%	1.0\%	-0.4\%	-0.6\%	-2.0\%
Critical (15\%)												
WSIP 2270 W Witout Proeet	63.4	57.6	51.1	49.6	50.0	52.0	52.7	55.1	56.4	58.7	61.3	65.7
WSIP 2070 Witit Pried	62.7	57.8	51.6	50.3	50.4	52.0	53.1	55.5	56.0	57.5	60.0	${ }^{63.1}$
Diffeene	-0.8	0.2	0.5	0.7	0.4	0.1	0.4	0.4	-0.4	-1.2	-1.3	${ }^{-2.6}$
Pereni iffeence	-1.2\%	0.3\%	1.19	1.4\%	0.7\%	0.1\%	0.9\%	0.7\%	-0.8\%	-2.0\%	-2.1\%	

3 Realive difference of the montily average

Monthly Temperature (DEG)												
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulition Period'												
WSIP 2070 W Witrout Priect	58.5	55.7	50.7	48.0	48.3	50.6	53.4	55.4	55.6	56.7	58.4	58.
WSIP 2070 Wifif Prieat	58.3	55.6	50.9	48.2	48.4	50.6	53.5	55.9	56.0	56.6	57.9	57.8
Diffeence	-0.2	-0.1	0.3	0.2	0.1	0.0	0.1	0.5	0.4	-0.2	-0.6	-0.8
Perenen Differene'	-0.3\%	-0.2\%	0.5\%	0.4\%	0.1\%	0.1\%	0.2\%	0.8\%	0.7\%	-0.3\%	-1.0\%	-1.4\%
Water Year Types ${ }^{2}$												
Wet (32%)												
WSIP 2070 Without Prieet	57.4	55.7	50.8	47.2	47.1	49.1	52.7	55.5	55.2	55.9	57.8	54.8
WSIP 2070 wititroject	57.1	55.4	50.9	47.2	47.1	49.1	52.7	55.9	55.6	56.1	57.3	54.8
Diffeene	-0.3	-0.3	0.1	0.0	0.0	0.0	0.0	0.4	0.4	0.2	-0.5	0.0
Perenen Difference	-0.5\%	-0.5\%	0.1\%	0.0\%	-0.1\%	0.0\%	0.0\%	0.7\%	0.7\%	0.3\%	-0.9\%	0.0\%
Above Nomal (13\%)												
WSIP 2270 W Witout Proeet	56.9	55.2	51.2	47.7	47.9	50.0	53.6	55.4	55.3	55.4	57.2	55.8
WSIP 2070 Witit Pried	56.8	55.2	51.6	47.8	47.9	50.0	53.7	55.7	55.8	55.2	56.8	56.7
Diffeene	-0.1	0.0	0.4	0.1	0.0	0.0	0.1	0.3	0.5	-0.2	-0.4	0.9
Perenen ifference	-0.2\%	0.0\%	0.8\%	0.2\%	0.0\%	0.0\%	0.1\%	0.5\%	0.9\%	-0.4\%	-0.8\%	1.6\%
Below Nomal (16\%)												
WSIP 2070 W Witout Priject	57.6	54.8	50.2	48.1	48.4	51.2	53.9	55.1	55.0	55.8	57.8	59.4
WSIP 2070 Witit Priject	57.6	55.0	50.7	48.3	48.4	51.2	53.7	55.6	55.6	55.9	57.2	57.9
Diffeene	-0.1	0.2	0.4	0.2	0.0	0.0	-0.2	0.5	0.6	0.2	-0.6	${ }^{-1.6}$
Perenen Difference	-0.1\%	0.3\%	0.9\%	0.4\%	0.0\%	0.0\%	-0.5\%	1.0\%	1.1\%	0.3\%	-1.1\%	-2.6\%
Dry (24%)												
WSIP 2070 Witrout Priect	58.3	55.8	50.8	48.4	49.1	51.4	53.6	54.9	55.5	57.1	57.9	${ }^{60.0}$
WSIP 2070 witit Priject	58.4	55.6	51.0	48.7	49.2	51.5	53.8	55.5	56.1	56.9	57.6	58.6
Diffeence	0.1	-0.2	0.2	0.4	0.1	0.1	0.2	0.5	0.6	-0.2	${ }^{-0.3}$	-1.4
Perenen ifference	0.2\%	-0.4\%	0.4\%	0.8\%	0.2\%	0.2\%	0.3\%	1.0\%	1.0\%	-0.4\%	-0.5\%	-2.3\%
Critical (15\%)												
WSIP 2270 W Witout Proeet	63.6	57.1	50.1	49.0	50.1	52.6	53.8	56.5	57.7	60.0	62.5	66.6
WSIP 2070 Witit Pried	62.9	57.2	50.5	49.5	50.4	52.6	54.3	57.0	57.3	58.9	61.3	64.2
Diffeene	-0.7	0.1	0.4	0.5	0.3	0.0	0.5	0.5	-0.3	${ }^{-1.1}$	-1.1	-2.4
Pereni iffeence	-1.1\%	0.2\%	0.8\%	1.1\%	0.5\%	0.1\%	0.9\%	0.9\%	-0.6\%	-1.9\%	-1.8\%	

3 Readive difference e f the monntily average

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simution Period ${ }^{\text {a }}$												
WSIP 270 W Without Priect	58.8	55.3	50.2	47.8	48.4	51.1	54.2	56.5	56.7	57.8	59.6	59.6
WSIP 2070 wit Projert	58.7	55.2	50.4	48.0	48.5	51.2	54.3	57.0	57.1	57.6	59.1	58.8
Diffeence	-0.2	-0.1	0.2	0.2	0.0	0.0	0.1	0.5	0.4	-0.2	-0.6	-0.8
Percent Differenes	-0.3\%	-0.2\%	0.5\%	0.4\%	0.1\%	0.1\%	0.2\%	0.8\%	0.7\%	-0.3\%	-0.9\%	-1.4\%
Water Year Types ${ }^{2}$												
Wet 32%)												
WSIP 270 W Without Priject	57.7	55.3	50.4	47.2	47.3	49.6	53.5	56.5	56.3	57.0	59.1	55.5
WSIP 2070 with Projet	57.4	55.1	50.4	47.2	47.3	49.7	53.5	57.0	56.7	57.1	58.5	55.5
Diffeence	-0.3	-0.3	0.1	0.0	0.0	0.0	0.0	0.4	0.4	0.1	-0.6	0.0
Percent Diffeene	-0.5\%	-0.5\%	0.1\%	0.0\%	-0.1\%	0.0\%	0.0\%	0.7\%	0.7\%	0.2\%	-1.0\%	0.0\%
Above Nomal (13\%)												
WSIP 270 W Without Priect	57.3	54.9	50.6	47.6	48.0	50.6	54.5	56.6	56.4	56.5	58.5	56.7
WSIP 2070 wit Project	57.3	54.9	51.1	47.7	48.0	50.5	54.5	56.8	57.0	56.3	58.0	57.7
Diffeence	-0.1	0.0	0.4	0.1	0.0	0.0	0.1	0.3	0.6	-0.2	-0.5	1.0
Percent ififeence	-0.1\%	0.0\%	0.8\%	0.2\%	0.0\%	0.0\%	0.1\%	0.5\%	1.0\%	-0.4\%	-0.8\%	1.7\%
Below Nomal (16\%)												
WSIP 270 W Without Project	58.1	54.3	49.7	47.9	48.5	51.7	54.7	56.2	56.1	56.8	59.0	60.7
WSIP 2070 Wit Project	58.0	54.5	50.1	48.0	48.5	51.7	54.5	56.7	56.7	57.0	58.4	59.1
Diffeence	-0.1	0.2	0.4	0.2	0.0	0.0	-0.2	0.5	0.6	0.2	-0.6	${ }_{-1.6}$
Percent ifiteene	-0.1\%	0.3\%	0.8\%	0.3\%	0.0\%	0.0\%	-0.4\%	0.9\%	1.1\%	0.3\%	-1.1\%	-2.7%
Dr (24\%)												
WSIP 270 W Without Prieat	58.6	55.4	50.2	48.1	49.2	51.9	54.4	56.0	56.6	58.2	59.1	61.2
WSIP 2070 W Wh Project	58.8	55.2	50.4	48.5	49.2	52.0	54.5	56.5	57.1	58.0	58.9	59.7
Difference	0.1	-0.2	0.2	0.3	0.1	0.1	0.2	0.5	0.6	-0.2	-0.3	-1.5
Percent 0 fifeence	0.2\%	-0.4\%	0.4\%	0.7\%	0.2\%	0.2\%	0.3\%	0.9\%	1.0\%	-0.4\%	-0.5\%	-2.49
Critical (15\%)												
WSIP 270 W Without Proiect	63.8	56.4	49.8	48.7	50.1	53.0	54.6	57.4	58.6	61.1	63.3	67.1
WSIP 2070 wit Projed	63.1	56.6	50.1	49.2	50.3	53.0	55.1	58.0	58.3	60.0	62.3	64.9
Diffeence	-0.7	0.1	0.4	0.5	0.2	0.0	0.5	0.5	-0.3	-1.1	-1.0	-2.2

2 As seffere by by the Sacameneno valley 40.30 .30 O Index Waier rear Hytrologic Classificaion (SWRCB $8.1644,1991$
3 Realive difierence of the montily average

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
WSIP 270 W Without Priject	59.5	55.4	50.1	47.9	48.7	51.7	55.1	57.8	58.4	59.5	61.5	61.1
WSIP 2070 win Projed	59.4	55.3	50.4	48.1	48.8	51.7	55.2	58.3	58.8	59.3	60.9	60.3
Diffeence	-0.1	-0.1	0.2	0.2	0.1	0.0	0.1	0.5	0.4	-0.2	-0.6	-0.8
Percent Diffeernce?	-0.2\%	-0.2\%	0.4\%	0.4\%	0.1\%	0.1\%	0.2\%	0.8\%	0.7\%	-0.3\%	-0.9\%	-1.4\%
Water Year Types ${ }^{2}$												
Wet (32\%)												
WSPP 270 Without Priject	58.3	55.4	50.3	47.3	47.5	50.1	54.2	57.9	58.1	58.7	61.0	56.7
WSIP 2070 Wif Project	58.1	55.2	50.4	47.2	47.5	50.1	54.2	58.3	58.5	58.8	60.4	56.7
Diffeence	-0.3	-0.3	0.0	0.0	0.0	0.0	0.0	0.4	0.4	0.1	-0.7	0.0
Percent iffeeme	-0.4\%	-0.5\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.7\%	0.7\%	0.2\%	-1.1\%	0.0\%
Above Nomal (13\%)												
WSIP 2070 W Without Priject	58.0	55.0	50.6	47.7	48.2	51.0	55.3	57.9	58.1	58.2	60.4	58.2
WSIP 2070 with Prijed	58.0	55.0	51.0	47.7	48.2	51.1	55.4	58.2	58.8	57.9	59.9	59.2
Diffeence	0.0	0.0	0.4	0.1	0.0	0.0	0.1	0.3	0.7	-0.3	-0.5	1.1
Percent ififeence	0.0\%	0.0\%	0.8\%	0.2\%	0.0\%	0.1\%	0.1\%	0.5\%	1.2\%	-0.6\%	-0.9\%	1.8\%
Below Noma (16\%)												
WSIP 270 W Without Priject	58.9	54.5	49.7	48.0	48.8	52.3	55.7	57.6	57.8	58.5	60.9	62.7
WSIP 2070 Winf Prijet	58.8	54.6	50.1	48.1	48.8	52.3	55.5	58.1	58.4	58.6	60.3	60.9
Diffeence	-0.1	0.2	0.4	0.1	0.0	0.0	-0.2	0.5	0.6	0.1	-0.6	-1.8
Percent Differene	-0.2\%	0.3\%	0.8\%	0.3\%	0.0\%	0.1\%	-0.4\%	0.9\%	1.1\%	0.2\%	-1.0\%	-2.9\%
Dr. (24%)												
WSIP 270 Wiftout Priject	59.4	55.5	50.2	48.2	49.5	52.6	55.4	57.3	58.2	59.9	60.9	63.1
WSIP 2070 With Project	59.5	55.3	50.3	48.5	49.6	52.7	55.5	57.9	58.8	59.7	60.7	61.5
Diffeence	0.2	-0.2	0.2	0.3	0.1	0.1	0.2	0.5	0.6	-0.2	-0.2	-1.6
Percent Difiteence	0.3\%	-0.3\%	0.3\%	0.6\%	0.2\%	0.2\%	0.3\%	0.9\%	1.0\%	-0.3\%	-0.4\%	-2.5\%
Critical (15\%)												
WSIP 2070 Without Priject	64.3	56.6	49.8	48.8	50.6	53.8	55.6	58.8	60.2	62.9	64.9	68.4
WSIP 2070 With Prijed	63.7	56.7	50.1	49.3	50.8	53.8	56.2	59.4	60.1	61.9	64.1	66.3
Diffeence	-0.6	0.1	0.3	0.4	0.2	0.0	0.5	0.6	-0.2	-1.0	-0.8	-2.1
Percent Diffeene	-0.9\%	0.2\%	0.6\%	0.9\%	0.4\%	0.0\%	0.9\%	1.1\%	-0.3\%	-1.6\%	-1.3\%	-3.19

Basedion the 82 verearsimulution period
${ }^{2}$ 2A dealivive difieerence of the monhty vereage

Sacramento River below Red SQ8-1a
Long.term Average and Average by Why Temperature

Monthly Temperature (DEGF)												
Analysis Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Full Simulion Period'												
WSIP 2070 W Witrout Priect	59.5	55.4	50.1	47.9	48.7	51.7	55.0	57.8	58.3	59.4	61.4	61.
WSIP 2070 Wifif Prieat	59.3	55.3	50.3	48.0	48.8	51.7	55.1	58.2	58.7	59.2	60.8	60.2
Diffeence	-0.1	-0.1	0.2	0.2	0.0	0.0	0.1	0.5	0.4	-0.2	-0.6	-0.8
Perenen Differene?	-0.2\%	-0.2\%	0.4\%	0.4\%	0.1\%	0.1\%	0.2\%	0.8\%	0.7\%	-0.3\%	-0.9\%	-1.4\%
Water Year Types ${ }^{2}$												
Wet (32%)												
WSIP 2070 Without Prieet	58.3	55.4	50.3	47.2	47.5	50.1	54.2	57.8	58.0	58.7	60.9	56.6
WSIP 2070 wititroject	58.0	55.2	50.4	47.2	47.5	50.1	54.2	58.3	58.4	58.8	60.3	56.6
Diffeene	-0.3	-0.3	0.0	0.0	0.0	0.0	0.0	0.4	0.4	0.1	-0.6	0.0
Perenen Difference	-0.4\%	-0.5\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.7\%	0.7\%	0.2\%	-1.1\%	0.0\%
Above Nommal (13\%)												
WSIP 2270 W Witout Proeet	58.0	55.0	50.6	47.6	48.2	51.0	55.3	57.8	58.0	58.1	60.3	58.1
WSIP 2070 Witit Pried	58.0	55.0	51.0	47.7	48.2	51.0	55.3	58.1	58.7	57.8	59.8	59.2
Diffeene	0.0	0.0	0.4	0.1	0.0	0.0	0.1	0.3	0.7	-0.3	-0.5	1.1
Paecen ifference	0.0\%	0.0\%	0.8\%	0.2\%	0.0\%	0.0\%	0.1\%	0.5\%	1.2\%	-0.5\%	-0.9\%	1.8\%
Below Nomal (16\%)												
WSIP 2070 W Witout Priject	58.8	54.5	49.7	47.9	48.8	52.2	55.6	57.5	57.7	58.4	60.8	${ }^{62.6}$
WSIP 2070 Witit Priject	58.8	54.6	50.1	48.1	48.8	52.3	55.4	58.0	58.4	58.5	60.2	60.8
Diffeene	-0.1	0.2	0.4	0.1	0.0	0.0	-0.2	0.5	0.6	0.1	-0.6	${ }^{-1.8}$
Perenen Difference	-0.1\%	0.3\%	0.8\%	0.3\%	0.0\%	0.1\%	-0.4\%	0.9\%	1.1\%	0.2\%	-1.0\%	-2.9\%
Dr (24\%)												
WSIP 270 W Without Prjeet	59.3	55.5	50.2	48.2	49.5	52.5	55.3	57.2	58.1	59.8	60.9	${ }^{63.0}$
WSIP 2070 witit Priject	59.5	55.3	50.3	48.5	49.6	52.6	55.5	57.8	58.7	59.6	60.6	${ }^{61.4}$
Diffeence	0.2	-0.2	0.2	0.3	0.1	0.1	0.2	0.5	0.6	-0.2	-0.2	${ }^{-1.6}$
Perenen ifference	0.3\%	-0.3\%	0.3\%	0.6\%	0.2\%	0.2\%	0.3\%	0.9\%	1.0\%	-0.3\%	-0.4\%	-2.5\%
Critical (15\%)												
WSIP 2270 W Witout Proeet	64.2	56.6	49.8	48.8	50.5	53.8	55.6	58.7	60.2	62.8	64.8	68.3
WSIP 2070 Witit Pried	63.7	56.7	50.1	49.3	50.7	53.8	56.1	59.3	60.0	61.8	64.0	66.2
Diffeene	-0.6	0.1	0.3	0.4	0.2	0.0	0.5	0.6	-0.2	-1.0	-0.8	-2.1
Pereni iffeence	-0.9\%	0.2\%	0.6\%	0.9\%	0.3\%	0.0\%	0.9\%	1.0\%	-0.3	-1.6\%	-1.3\%	

$\frac{\text { Perenen Dififenene }}{1 \text { Based on the } 2 \text {-verar simulution period }}$

3 Realive difference of the montily average

Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
$\overline{\text { Full Simulation Period }}$												
WSIP 270 W Without Priect	66.9	59.2	52.1	47.5	47.6	50.4	55.6	61.7	65.8	67.6	65.9	68.2
WSIP 2070 wit Projert	66.8	58.3	52.5	47.7	47.7	50.4	55.5	61.4	65.2	65.8	65.9	67.5
Diffeere	0.0	-0.9	0.5	0.2	0.0	0.0	0.0	-0.2	-0.6	-1.7	0.0	-0.6
Percen Differeme'	0.0\%	-1.5\%	0.9\%	0.5\%	0.1\%	0.0\%	-0.1\%	-0.4\%	-1.0\%	-2.6\%	0.0\%	-0.9\%
Water Year Types ${ }^{2}$												
Wet 32%)												
WSIP 270 W Without Priject	66.5	58.8	51.6	45.9	46.2	48.7	53.5	60.1	64.9	67.2	65.5	67.4
WSIP 2070 wit Project	66.4	57.6	51.9	45.9	46.1	48.7	53.5	60.0	64.6	65.2	65.3	66.7
Diffeence	-0.1	-1.1	0.4	0.0	-0.1	-0.1	0.0	-0.1	-0.3	-2.0	-0.1	-0.7
Percent Diffeene	-0.2\%	-1.9\%	0.7\%	0.0\%	-0.2\%	-0.1\%	-0.1\%	-0.1\%	-0.5\%	-3.0\%	-0.2\%	-1.1\%
Above Nomal (13\%)												
WSIP 270 W Without Proet	66.8	59.1	52.3	47.6	46.9	49.3	55.1	61.3	66.5	65.9	65.7	67.8
WSIP 2070 wit Project	66.6	57.8	53.1	47.7	46.9	49.3	55.1	61.2	65.7	64.3	65.3	67.3
Diffeere	-0.1	-1.2	0.8	0.1	0.0	0.0	0.0	-0.1	-0.8	-1.6	-0.3	-0.5
Perenerififerene	-0.2\%	-2.1\%	1.5\%	0.3\%	0.0\%	0.0\%	0.0\%	-0.1\%	-1.3\%	-2.5\%	-0.5\%	-0.7\%
Below Noma (16\%)												
WSIP 270 W Without Priject	66.9	59.0	52.5	47.9	47.6	49.9	55.6	61.3	65.7	66.8	65.7	68.0
WSIP 2070 Wit Project	66.9	58.1	53.1	48.2	47.7	50.0	55.5	61.2	65.2	65.3	65.6	67.5
Diffeence	0.0	-1.0	0.6	0.3	0.1	0.0	-0.1	-0.2	-0.6	${ }^{-1.4}$	0.0	-0.6
Percent Differene	0.0\%	-1.6\%	1.2\%	0.5\%	0.3\%	0.0\%	-0.3\%	-0.3\%	-0.9\%	-2.2\%	-0.1\%	-0.8\%
Dr (24\%)												
WSIP 270 W Without Prieat	67.0	59.6	52.0	48.2	48.4	51.3	56.8	62.6	65.3	67.6	65.7	68.3
WSIP 2070 wit Project	67.1	58.8	52.4	48.6	48.5	51.3	56.9	62.2	64.4	66.1	66.2	67.8
Diffeence	0.1	-0.8	0.4	0.3	0.1	0.0	0.1	-0.4	${ }^{-1.0}$	-1.5	0.5	-0.5
Percent 0 fifeence	0.2\%	-1.3\%	0.8\%	0.7\%	0.2\%	0.0\%	0.2\%	-0.6\%	-1.5\%	-2.3\%	0.8\%	-0.8\%
Critical (15\%)												
WSIP 2270 WMitout Projet	67.5	59.7	52.5	49.1	50.2	53.9	58.2	64.2	67.8	70.7	67.5	69.9
WSIP 2070 wit Project	67.6	59.3	53.0	49.8	50.5	53.9	58.0	63.7	67.2	68.7	67.4	69.0
Diffeence	0.1	-0.4	0.5	0.7	0.2	0.1	-0.3	-0.5	-0.6	-2.0	-0.1	-0.8
Percont Differene	0.1\%	-0.6\%	0.9\%	1.3\%	0.5\%	0.1\%	-0.5\%	-0.8\%	-0.9\%	-2.8\%	-0.1\%	${ }^{-1.2 \%}$

Basedion the 82 verearsimulution period
3 Readive diffeerence of the monntly average

American River at Watt Avenue, Monthly Temperature

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
$\overline{F u l l ~ S i m u l a t o n ~ P e r i o d ' ~}^{\text {a }}$												
WSIP 270 W Without Project	67.8	59.4	52.0	48.1	48.9	52.6	58.8	66.3	71.1	71.8	72.2	71.6
WSIP 2070 with Projed	67.7	58.7	52.4	48.3	48.9	52.6	58.6	65.9	70.4	70.9	71.7	70.9
Diffeence	-0.1	-0.8	0.4	0.2	0.0	0.0	-0.1	-0.4	-0.7	-0.9	-0.4	-0.6
Percent Difieerenes	-0.1\%	-1.3\%	0.8\%	0.4\%	0.0\%	0.0\%	-0.2\%	-0.5\%	-1.0\%	-1.3\%	-0.6\%	-0.9\%
Water Year Types ${ }^{2}$												
Wet 32%)												
WSIP 2070 Without Prijet	67.4	59.1	51.6	46.3	46.9	50.2	56.0	64.5	69.9	71.0	71.1	69.8
WSIP 270 W Wit Projet	67.3	58.2	51.9	46.3	46.8	50.1	56.0	64.3	69.5	69.5	70.6	69.3
Difference	-0.2	-0.9	0.3	0.0	${ }^{-0.1}$	-0.1	-0.1	-0.2	-0.4	${ }^{-1.6}$	-0.5	-0.5
Percent Diffeene	-0.2\%	-1.6\%	0.6\%	0.0\%	-0.2\%	-0.1\%	-0.1\%	-0.2\%	-0.6\%	-2.2\%	-0.7\%	-0.7\%
Above Nomal (13\%)												
WSIP 2070 Wiftuot Priject	67.6	59.2	52.2	48.1	47.8	50.9	57.9	65.9	71.8	69.2	71.8	71.0
WSIP 2070 Wif Project	67.4	58.1	52.9	48.3	47.8	50.9	57.9	65.7	70.7	68.7	70.6	70.5
Diffeence	-0.2	-1.0	0.7	0.1	0.0	0.0	0.0	-0.2	-1.1	-0.5	-1.2	${ }^{-0.5}$
Percent ififeence	-0.3\%	-1.8\%	1.3\%	0.3\%	0.0\%	0.0\%	0.0\%	-0.3\%	-1.5\%	-0.8\%	-1.7\%	-0.7\%
Below Nomal (16\%)												
WSIP 270 W Without Priject	67.7	59.1	52.4	48.4	48.7	51.7	59.0	66.0	71.2	70.5	71.8	71.7
WSIP 2070 Winf Prijet	67.6	58.3	52.9	48.6	48.8	51.7	58.7	65.6	70.5	70.1	71.1	70.9
Diffeence	-0.1	-0.8	0.5	0.2	0.1	0.0	-0.3	-0.4	-0.6	-0.4	-0.7	-0.8
Percen Differene	-0.1\%	-1.4\%	1.0\%	0.4\%	0.2\%	0.0\%	-0.5\%	-0.6\%	-0.9\%	-0.6\%	-1.0\%	-1.1\%
Dr (24\%)												
WSIP 2070 Without Propet	67.9	59.8	51.9	49.0	49.8	54.2	60.4	66.9	70.7	72.0	72.2	${ }^{72.3}$
WSIP 2070 with Projed	67.9	59.2	52.2	49.2	49.8	54.2	60.6	66.4	69.6	71.4	72.5	71.7
Difference	0.0	-0.7	0.3	0.2	0.1	0.0	0.2	-0.5	${ }^{-1.1}$	-0.6	0.2	-0.6
Pecrent Diffeence	0.0\%	-1.1\%	0.7\%	0.5\%	0.2\%	0.1\%	0.3\%	-0.7\%	-1.5\%	-0.8\%	0.3\%	-0.9\%
Critical (15\%)												
WSIP 2070 Without Prijet	69.0	60.1	52.5	49.9	52.7	57.5	62.7	69.6	73.6	77.0	75.1	74.6
WSIP 270 W Wit Projed	68.9	59.8	52.9	50.4	52.8	57.5	61.9	68.8	73.2	75.8	74.6	73.6
Diffeence	-0.1	-0.3	0.4	0.5	0.1	0.0	-0.8	-0.8	-0.4	-1.1	-0.5	-1.0
Pereen Differeme	-0.1\%	-0.4\%	0.7\%	1.0\%	0.2\%	0.0\%	-1.2\%	-1.1\%	-0.6\%	-1.5\%	-0.7\%	-1.38

Basedon the 82 -jear simulution period
2 As seffere by by the Sacameneno valley 40.30 .30 O Index Waier rear Hytrologic Classificaion (SWRCB $8.1644,199$
3 Realive difieence of the monhty wereage

eras												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulion Period'												
WSIP 2070 W Witrout Priect	68.7	59.7	52.0	48.5	49.7	54.1	61.1	69.4	74.7	74.8	76.7	74.3
WSIP 207\% Wifip Proeat	68.5	59.1	52.3	48.6	49.7	54.1	60.9	69.0	74.0	74.5	75.9	73.6
Diffeence	-0.2	-0.7	0.3	0.1	0.0	0.0	-0.2	-0.4	-0.7	-0.3	-0.7	-0.7
Perenen Differene?	-0.3\%	${ }_{-1.1 \%}$	0.6\%	0.3\%	0.0\%	0.0\%	-0.3\%	-0.6\%	-0.9\%	-0.4\%	-0.9\%	-0.9\%
Water Year Types ${ }^{2}$												
Wet (32\%)												
WSIP 22070 Witrout Prieet	68.2	59.5	51.6	46.6	47.3	51.1	57.8	67.6	73.4	73.8	75.2	71.7
WSIP 2070 Witit Priect	68.0	58.7	51.9	46.6	47.3	51.1	57.7	67.4	73.0	72.7	74.4	71.3
Diffeene	-0.2	-0.8	0.2	0.0	-0.1	-0.1	-0.1	-0.2	-0.4	-1.2	-0.8	-0.4
Perenen ifference	-0.3\%	-1.4\%	0.5\%	-0.1\%	-0.2\%	-0.1\%	-0.2\%	-0.3\%	-0.6\%	-1.6\%	-1.0\%	-0.5\%
Above Nomal (13\%)												
WSIP 2270 W Witout Proeet	68.3	59.3	52.1	48.5	48.4	51.9	59.8	69.1	75.4	71.6	76.1	73.5
WSIP 2070 Witit Pried	68.1	58.4	52.7	48.6	48.4	51.9	59.8	68.8	74.2	72.0	74.3	73.0
Diffeerese	-0.2	-0.9	0.6	0.1	0.0	0.0	0.0	-0.3	-1.2	0.4	-1.7	-0.5
Pereni ifference	-0.3\%	-1.5\%	1.1\%	0.3\%	-0.1\%	0.0\%	0.0\%	-0.4\%	-1.6\%	0.6\%	-2.3\%	-0.7\%
Below Nomal (16\%)												
WSIP 2270 Witiout Prjeet	68.4	59.3	52.3	48.8	49.5	52.9	61.4	69.3	75.0	73.3	76.3	74.7
WSIP 2070 Witif Prieat	68.2	58.6	52.8	49.0	49.6	52.9	61.0	68.8	74.3	73.6	75.2	73.6
Diffeence	-0.2	-0.7	0.5	0.2	0.1	0.0	-0.4	-0.6	-0.7	0.4	${ }^{-1.1}$	-1.0
Perenen ifference	-0.2\%	-1.2\%	0.9\%	0.4\%	0.2\%	0.0\%	-0.7\%	-0.8\%	-0.9\%	0.5\%	-1.5\%	-1.4\%
Dry (24%)												
WSIP 2070 W Witrout Pried	68.8	60.1	51.8	49.5	50.7	56.1	63.0	69.9	74.4	75.3	76.9	75.5
WSIP 2070 witit Priject	68.6	59.6	52.1	49.6	50.8	56.2	63.2	69.4	73.3	75.3	77.0	74.8
Diffeence	-0.1	-0.6	0.3	0.2	0.1	0.1	0.2	-0.5	${ }^{-1.1}$	0.0	0.1	-0.7
Perenen Difference	-0.2\%	-1.0\%	0.5\%	0.3\%	0.1\%	0.1\%	0.4\%	-0.7\%	-1.4\%	0.0\%	0.1\%	-0.9\%
Critica (15\%)												
WSIP 270 W Witrout Prjeet	70.4	60.5	52.5	50.6	54.4	60.2	65.8	73.0	77.3	81.1	80.3	78.3
WSIP 2070 Witit Priject	70.2	60.3	52.8	50.9	54.4	60.1	64.8	72.2	77.0	80.6	79.7	77.3
Diffeene	-0.2	-0.2	0.3	0.4	0.0	-0.1	-1.0	-0.8	-0.2	-0.5	-0.6	-1.0
Perenitifferene	-0.3\%	-0.3\%	0.5\%	0.7\%	-0.1\%	-0.1\%	-1.6\%	-1.2\%	-0.3\%	-0.68	-0.7\%	-1.3

Basedon the 82 -jear simulution period
${ }^{2}$ 2A dealivive difieerence of the monhty vereage

Trinity River below Lewiston Dam, Monthly Temperature Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
$\stackrel{\text { Full Simulation Period' }}{ }$												
WSIP 270 W Without Project	53.2	51.6	49.8	48.4	48.5	50.5	51.5	47.4	50.6	51.7	51.7	52.3
WSIP 2070 Wif Project	53.1	51.7	50.0	48.5	48.6	50.5	51.5	47.4	50.6	51.8	51.4	52.1
Diffeence	-0.1	0.1	0.2	0.1	0.1	0.1	0.0	0.0	0.0	0.1	-0.3	-0.2
Percent Difiterene?	-0.2\%	0.1\%	0.4\%	0.3\%	0.2\%	0.2\%	0.0\%	0.0\%	0.0\%	0.1\%	-0.6\%	-0.4\%
Water Year Types ${ }^{2}$												
WSIP 2070 With Prijet	50.7	50.3	49.6	47.0	46.2	48.3	50.0	45.4	47.7	51.0	50.4	50.0
Diffeence	0.0	0.3	0.0	0.2	0.0	-0.1	0.0	0.0	${ }^{-0.1}$	0.3	-0.3	0.0
Pecrent Diffeence	0.0\%	0.5\%	0.0\%	0.4\%	0.0\%	-0.2\%	0.0\%	0.0\%	-0.1\%	0.7\%	-0.6\%	0.0\%
Above Nomal (13\%)												
WSIP 2070 Without Prijet	51.0	50.0	49.9	47.3	47.7	49.5	51.4	45.6	49.1	50.9	51.1	50.6
WSIP 2070 wit Projet	50.9	50.2	49.8	47.4	47.9	49.8	51.5	45.7	48.9	50.9	50.8	50.3
Difference	-0.1	0.2	-0.1	0.1	0.2	0.3	0.0	0.1	-0.2	0.0	-0.4	-0.3
Perene Dififeence	-0.2\%	0.5\%	-0.2\%	0.2\%	0.4\%	0.6\%	0.0\%	0.1\%	-0.4\%	0.0\%	-0.8\%	-0.6\%
Below Noma (16\%)												
WSIP 2070 Without Project	53.3	51.9	49.3	48.9	49.2	51.6	52.1	47.6	51.3	51.2	51.1	51.7
WSIP 270\% Witip Projet	53.5	51.5	48.9	48.8	49.2	51.4	52.1	47.6	51.4	51.4	51.0	51.6
Diffeence	0.2	-0.4	-0.4	-0.1	0.0	-0.1	-0.1	0.0	0.1	0.2	-0.1	-0.1
Pecrent Diffeerne	0.3\%	-0.7\%	-0.8\%	-0.2\%	0.1\%	-0.3\%	-0.1\%	0.1\%	0.2\%	0.4\%	-0.3\%	-0.20
Dr (24\%)												
WSIP 2070 Without Prijet	55.0	53.0	49.8	49.5	50.0	51.7	52.5	48.7	51.9	51.8	52.4	53.8
WSIP 2070 With Priject	54.9	53.0	50.1	49.7	50.2	52.0	52.5	48.7	51.8	51.7	52.2	53.4
Diffeence	-0.1	0.0	0.4	0.2	0.3	0.2	-0.1	0.0	-0.1	-0.1	-0.2	-0.4
Pecent Diffeence	-0.1\%	-0.1\%	0.7\%	0.4\%	0.5\%	0.5\%	-0.1\%	0.0\%	-0.1\%	-0.2\%	-0.3\%	-0.7\%
Critical (15\%)												
WSIP 270 W Without Project	56.9	53.5	50.8	50.4	51.1	52.4	52.3	51.0	55.0	55.1	54.1	56.9
WSIP 2070 With Projed	56.3	53.7	51.9	50.7	51.2	52.6	52.4	50.9	55.3	54.8	53.3	56.4
Diffeene	${ }^{-0.6}$	0.2	1.0	${ }^{0.3}$	0.1	${ }^{0.3}$	${ }^{0.0}$	${ }^{-0.1}$	0.3	-0.4	${ }^{-0.8}$	${ }^{-0.5}$
Percent ififeence	-1.1\%	0.3\%	2.1\%	0.5\%	0.3\%	0.5\%	0.1\%	-0.1\%	0.5\%	-0.7\%	-1.4\%	-0.8\%

1 Based on he 82 2.jear simulution penioa

Clear Creek below Whiskeytown, Monthly Temperature
Long-term Average and Average by Water Year Type
Monthly Temperature (DEGF)

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
$\overline{\text { Full Simulation Period }}$												
WSIP 270 W Without Proedt	53.1	51.7	47.9	45.7	45.6	46.5	47.8	48.9	50.5	52.3	53.1	53.0
WSIP 2070 win Project	52.9	51.7	47.9	45.7	45.7	46.4	47.8	49.0	50.6	52.7	53.0	52.8
Diffeere	-0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.4	-0.1	-0.2
Perenen Diffeence?	-0.2\%	0.0\%	-0.1\%	0.0\%	0.3\%	0.0\%	-0.1\%	0.1\%	0.1\%	0.8\%	-0.2\%	-0.3\%
Water Year Types ${ }^{2}$												
Wet (32%)												
WSIP 270 W Witrout Project	51.2	50.6	47.4	45.5	45.1	46.0	47.3	48.5	50.0	51.7	52.2	51.5
WSIP 2070 wif Prijet	51.2	50.6	47.5	45.5	45.1	46.0	47.3	48.5	50.0	52.9	52.2	51.4
Diffeeree	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	-0.1	-0.1
Percent ififeence	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.1\%	0.0\%	-0.1\%	2.3\%	-0.1\%	-0.2\%
Abve Nomal (13\%)												
WSIP 270 W Without Proect	51.7	50.8	47.5	45.7	45.4	46.0	47.4	48.5	49.9	51.7	52.1	51.6
WSIP 2070 wit Project	51.5	50.7	47.5	45.7	45.4	46.0	47.3	48.4	49.7	51.5	51.9	51.4
Diffeence	-0.2	-0.1	0.0	0.0	0.0	-0.1	-0.1	-0.1	-0.2	-0.2	-0.3	-0.2
Perentiofifence	-0.4\%	-0.1\%	0.0\%	-0.1\%	-0.1\%	-0.1\%	-0.2\%	-0.2\%	-0.3\%	-0.3\%	-0.5\%	-0.4\%
Below Noma (14\%)												
WSIP 270 W Witout Project	52.8	51.5	47.6	45.2	45.0	46.1	47.5	48.5	50.1	52.0	52.7	52.4
WSIP 2070 wit Project	52.7	51.6	47.5	45.2	45.0	46.1	47.5	48.5	50.2	52.2	52.6	52.4
Diffeene	-0.1	0.0	-0.1	-0.1	0.0	0.0	0.0	0.0	0.1	0.2	-0.1	-0.1
Percent Diffeene	-0.2\%	0.1\%	-0.2\%	-0.1\%	-0.1\%	0.0\%	0.0\%	-0.1\%	0.3\%	0.3\%	-0.2\%	-0.1\%
Dr (24\%)												
WSIP 270 W Without Priject	54.2	52.6	48.4	45.6	45.9	46.8	48.1	49.1	50.8	52.6	53.5	53.7
WSIP 2070 with Projed	54.1	52.6	48.3	45.6	45.8	46.8	48.1	49.2	50.9	52.8	53.5	53.6
Diffeence	-0.1	0.0	-0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.2	0.1	-0.1
Percent ififeence	-0.2\%	0.0\%	-0.1\%	0.1\%	0.0\%	0.0\%	0.0\%	0.1\%	0.2\%	0.3\%	0.1\%	-0.2\%
Critical (15\%)												
WSIP 270 W Without Proiect	56.6	53.7	48.9	47.0	46.9	47.8	49.2	50.3	52.1	53.7	55.4	56.7
WSIP 2070 Wit Project	56.3	53.6	48.9	47.1	47.9	47.7	49.1	50.6	52.5	53.7	55.2	56.1
Diffeence	-0.3	-0.1	0.0	0.1	1.0	0.0	0.0	0.3	0.3	0.0	-0.2	-0.6

$\frac{\text { Perenen Dififenene }}{1 \text { Based on the } 2 \text {-verar simulution period }}$
2 As defined by the Sacamenent valley 40.30 .30 Index Water Year Hydrologic Classification (SWRCCB $0.1641,1999$
3 Realive difference of the montily average

Clear Creek at Igo, Monthly Temperature												
Analysis Period	Monthly Temperature (DEGF)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
$\overline{\text { Full Simulion Period' }}$												
WSIP 270 W Without Project	53.8	52.0	48.1	46.0	46.1	47.2	48.9	50.0	52.5	56.1	56.4	54.5
WSIP 2070 win Projed	53.7	52.0	48.1	46.0	46.2	47.2	48.8	50.1	52.5	56.5	56.3	54.3
Diffeence	-0.1	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.1	0.4	-0.1	-0.2
Percent Dififeence?	-0.2\%	0.0\%	0.0\%	0.1\%	0.4\%	0.0\%	0.0\%	0.1\%	0.1\%	0.7\%	-0.1\%	-0.3\%
Water Year Types ${ }^{2}$												
Wet 32%)												
WSIP 2070 Without Project	51.9	50.9	47.6	45.8	45.6	46.7	48.3	49.6	51.7	55.7	55.7	53.1
WSIP 2070 With Prijet	51.9	50.9	47.6	45.8	45.6	46.7	48.3	49.6	51.7	56.8	55.7	53.0
Diffeence	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	-0.1	-0.1
Percent ififeence	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	-0.1\%	0.0\%	-0.1\%	2.1\%	-0.1\%	-0.1\%
Above Noma((13\%)												
WSIP 270 W Withut Priject	52.4	51.0	47.6	46.0	45.9	46.8	48.4	49.6	51.7	55.6	55.5	53.2
WSIP 2070 With Project	52.2	51.0	47.6	46.0	45.9	46.8	48.3	49.5	51.6	55.5	55.3	53.0
Diffeence	-0.2	-0.1	0.0	0.0	0.0	-0.1	-0.1	-0.1	-0.1	-0.1	-0.2	-0.2
Pecren Diffeence	-0.4\%	-0.1\%	0.0\%	-0.1\%	-0.1\%	-0.1\%	-0.2\%	-0.2\%	-0.3\%	-0.3\%	-0.4\%	-0.4\%
Below Noma (16\%)												
WSIP 2070 Without Project	53.4	51.8	47.8	45.5	45.5	46.9	48.5	49.6	51.9	55.9	56.0	53.9
WSIP 2070 win Projet	53.4	51.8	47.7	45.4	45.5	46.9	48.5	49.6	52.1	56.0	55.9	53.8
Diffeence	-0.1	0.0	-0.1	-0.1	0.0	0.0	0.0	0.0	0.1	0.2	-0.1	-0.1
Peceno ififeene	-0.2\%	0.1\%	-0.2\%	-0.1\%	-0.1\%	0.0\%	0.0\%	-0.1\%	0.3\%	0.3\%	-0.2\%	-0.1\%
Dry (24\%)												
WSIP 270 W Without Priject	54.9	52.9	48.5	45.8	46.3	47.5	49.1	50.2	52.7	56.4	56.7	55.1
WSIP 2070 With Priject	54.8	52.8	48.6	45.8	46.3	47.5	49.1	50.2	52.8	56.5	56.7	55.0
Diffeence	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	-0.1
Pecent Diffeence	-0.2\%	0.0\%	0.0\%	0.1\%	0.0\%	0.0\%	0.0\%	0.1\%	0.2\%	0.3\%	0.1\%	-0.2\%
Cinital (15\%)												
WSIP 2070 Wiftout Priject	57.5	54.0	49.1	47.2	47.5	48.6	50.4	51.6	55.0	57.5	58.5	58.3
WSIP 270\% Win Projed	57.2	53.8	49.0	47.5	48.7	48.7	50.4	51.9	55.3	57.5	58.3	57.8
Diffeence	-0.3	-0.1	0.0	0.3	1.2	0.0	0.0	0.3	0.3	0.0	-0.2	-0.6
Pecenon ififeene	-0.5\%	-0.2\%	-0.1\%	0.6\%	2.6\%	0.0\%	0.0\%	0.5\%	0.6\%	0.0\%	-0.3\%	-1.0\%
1 Basedi on the $82 . y$ ear simulition period												

Trinity and Sacramento River Basin Operations Exceedance Probability Charts and Tables

Figure SQ2-1b
Sacramento River below Keswick, Monthly Temperatur

Table SQ2-1b

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{gathered}$	October			
	WSIP 2070 W. Whthout	WSIP 2070 With Project		Relative
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Bifference } \\ & \text { (DEFF } \end{aligned}$	Difference (\%)
0.0\%	65.9	65.9	0.0	0.0\%
1.2\%	65.0	64.5	-0.4	O76
2.5\%	64.1	64.1	0.0	-0.1\%
3.7\%	63.6	63.1	-0.5	-0.8\%
4.9\%	63.5	62.9	-0.7	-1.1\%
6.2\%	63.5	62.2	-1.3	-2.0\%
7.4\%	62.9	61.8	-1.1	-1.7\%
8.6\%	62.8	61.4	-1.4	-2.3\%
9.9\%	62.4	60.8	-1.6	-2.6\%
11.11\%	62.3	60.6	-1.7	-2.8\%
${ }^{12.3 \%}$	61.8 60.9	60.3 59.6	-1.5	-2.4\%
14.8\%	60.3	59.0	${ }_{-1.3}$	-2.1\%
16.0\%	${ }^{60.1}$	58.9	-1.2	-2.0\%
17.3\%	59.3	58.6	-0.6	-1.1\%
18.5\%	59.0	58.5	-0.5	-0.9\%
19.8\%	57.6	57.5	-0.1	-0.2\%
21.0\%	57.4	57.5	0.1	0.1\%
22.2\%	57.3	57.4	0.1	0.2\%
23.5\%	57.3	57.3	0.0	0.0\%
24.7\%	57.2	57.2	0.0	0.0\%
25.9\%	57.1	56.9	-0.2	0.3\%
27.2% 28.4%	57.1 56.9	56.9 56.6	-0.3	-0.0\%
29.6\%	56.8	56.5	-0.4	-0.7\%
30.9\%	56.5	56.5	-0.1	-0.1\%
32.1\%	56.5	55.9	-0.6	-1.1\%
33.3\%	56.4	55.9	-0.5	-0.9\%
34.6\%	56.4	55.9	-0.5	-0.9\%
35.8\%	56.2	55.8	-0.4	-0.8\%
37.0\%	55.9 558 55	55.7 556 5.6	-0.3	-0.5\%
${ }^{38.3 \%}$ 39.5\%	55.8 55.7	55.6 55.6	-0.2 -0.1	-0.0.0.0\%
40.7\%	55.6	55.6	0.0	0.0\%
	55.6	55.6	0.0	0.0\%
43.2\%	55.6	55.6		
${ }^{44.4 \%}$	55.5 55.5	55.5 55.5	0.0	${ }_{0}^{0.0 \% \%}$
46.9\%	55.5	55.4	-0.1	-0.2\%
48.1\%	55.5	55.4	-0.1	-0.2\%
49.4\%	55.4	55.4	-0.1	-0.1\%
50.6\%	55.4	55.3	0.0	-0.1\%
51.9\%	55.3 553 5.3	55.3 553 5.	0.0	0.0\%
54.3\%	55.3	${ }_{55.2}$	-0.1	-0.2\%
55.6\%	55.3	55.2	-0.1	-0.2\%
56.8\%	55.3	55.1	-0.1	-0.2\%
58.0\%	55.2	55.1	-0.1	-0.2\%
- ${ }^{59.3 \%}$	55.2 552 551	55.1 551 5.	-0.1	-0.2\%
61.7\%	55.1	55.0	-0.1	-0.2\%
63.0\%	55.1	54.9	-0.2	-0.3\%
${ }^{64.2 \%}$	55.1	54.9	-0.2	-0.4\%
65.4\%	55.1	54.9	-0.2	-0.3\%
${ }^{66.79 \%}$	55.1	54.8	-0.2	-0.4\%
-67.9\%	55.0 55.0	54.8 54.7	-0.2 -0.2	-0.0.4\%
70.4\%	54.9	54.7	-0.3	-0.5\%
71.6\%	54.9	54.7	-0.3	-0.5\%
72.8\%	54.9	54.6	-0.3	-0.5\%
74.1\%	54.9	54.6	-0.3	0.5\%
75.3\%	54.8	54.6	-0.2	-0.4\%
76.5\%	54.7	54.6	-0.1	-0.2\%
77.8\%	54.7	54.6	-0.1	-0.2\%
79.0\%	54.7	54.6	-0.1	-0.2\%
80.2\%	54.7	54.6	-0.1	-0.2\%
- ${ }_{\text {81.5\% }}$	54.7 54.7	54.5 54.4	-0.2 -0.2	-0.4\%
84.0\%	54.6	54.4	-0.2	-0.4\%
85.2\%	54.6	54.4	-0.2	-0.4\%
86.4\%	${ }_{54.6}^{54.6}$	54.3	-0.3	-0.5\%
87.7\%	54.6 54.6	54.3 54.3	-0.2	-0.0.9\%
90.1\%	54.5	54.2	-0.3	-0.6\%
91.4\%	54.4	54.2	-0.3	-0.5\%
92.6\%	54.3	54.2	-0.2	-0.3\%
93.8\%	54.3	54.1	-0.1	${ }^{-0.2 \%}$
${ }_{9}^{95.19 \%}$	54.3 53.9	54.0 54.0	-0.2 0.1	-0.4\% 0.2%
97.5\%	53.8	53.9	0.2	0.3\%
98.8\%	53.7	53.9	0.2	0.4\%
100.0\%	53.7	53.9	0.0	0.4\%

Page 1425 of 1488

Table SQ2-1b

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	February			
	$\begin{aligned} & \text { WSII 2070 Without } \\ & \hline \text { Proiet } \\ & \hline \end{aligned}$	WSIP 2070 With Project		Relative
	Monthy Temperature	Monthly Temperature	$\begin{aligned} & \text { Difference } \\ & \text { (DEFFF) } \end{aligned}$	Difference (\%)
0.0\%	52.6	52.6	0.0	0.0\%
1.2\%	51.0	50.9	-0.1	0.2\%
2.5\%	50.9	50.8	-0.1	0.2\%
3.7\%	50.5	50.5	0.0	0.0\%
4.9\%	50.1	50.1	0.0	0.0\%
6.2\%	50.1	50.0	-0.1	-0.2\%
7.4\%	49.8	50.0	0.2	0.4\%
8.6\%	49.7	49.9	${ }^{0.3}$	0.5\%
9.9\%	49.5	49.9	0.3	0.7\%
11.1\%	49.5	49.9	0.4	0.8\%
123\%	49.4	49.8	${ }^{0.3}$	0.7\%
13.6\%	49.4	49.8	${ }^{0.3}$	0.7\%
14.8\%	49.3	49.7	0.3	0.6\%\%
${ }^{16.0 \%} \times 17.3 \%$	${ }_{49.1}^{49.3}$	49.5	0.2 0.4	${ }_{\text {en }}^{0.5 \% \%}$
18.5\%	49.0	49.4	0.4	0.8\%
19.8\%	49.0	49.3	0.3	0.7\%
21.0\%	49.0	49.1	0.2	0.3\%
22.2\%	48.9	49.1	0.2	0.3\%
23.5\%	48.9	49.1	0.2	0.4\%
24.7\%	48.9	49.0	0.2	0.4\%
25.9\%	48.8	49.0	0.2	0.3\%
27.2\%	48.8	49.0	0.1	0.3\%
28.4\%	48.7	48.9	0.2	0.4\%
29.6\%	48.7	48.9	0.2	0.5\%
30.9\%	48.7	48.9	0.2	0.4\%
32.1\%	48.7	48.9	0.2	0.4\%
33.3\%	48.7	48.9	0.2	0.4\%
34.6\%	48.5	48.9	0.3	0.7\%
35.8\%	48.5	48.8	0.3	0.5\%
37.0\%	48.5	48.7	0.3	0.5\%
38.3\%	48.5	48.7	0.2	0.4\%
39.5\%	48.4	48.6	0.2	0.4\%
40.7\%	48.4	48.5	0.1	0.2\%
42.0\%	48.4	48.5	0.0	${ }^{0.11 \%}$
${ }^{43.2 \%}$		48.4	0.1	0.1\%
44.4\%	48.4	48.4	0.1	0.1\%
45.7\%	48.3	48.3	0.0	0.0\%
46.9\%	48.1	48.2	0.2	0.4\%
48.19\%	48.0	48.2	${ }^{0.2}$	0.5\%
49.4\%	47.9	48.1	${ }^{0.3}$	0.6\%
50.6\%	47.8	47.9	0.1	0.2\%
51.9\%	47.8	47.8	0.0	0.0\%
53.19\%	47.7	47.7	-0.1	-0.2\%
54.3\%	47.7	47.6	-0.1	-0.1\%
55.6\%	47.7	47.6	-0.1	-0.2\%
56.8\% 58.0%	47.6 47.6	47.6 47.5	0.0 0.0	${ }^{-0.00 \%}$
59.3\%	47.6	47.5	0.0	-0.1\%
60.5\%	47.5	47.4	-0.1	-0.2\%
61.7\%	47.2	47.2	0.1	0.2\%
63.0\%	47.1	47.2	0.1	0.2\%
64.2\%	47.1	47.2	0.1	0.1\%
65.4\%	47.1	47.2	0.1	0.1\%
66.7\%	47.0	47.0	-0.1	-0.1\%
67.9\%	46.8	46.9	0.1	0.2\%
69.1\%	46.8	46.8	0.0	0.1\%
70.4\% ${ }^{71.6 \%}$	${ }_{46.7}^{46.8}$	46.8 46.8	${ }_{0}^{0.0}$	${ }^{0.12 \%}$
72.8\%	46.7	46.6	-0.1	-0.2\%
74.1\%	46.6	46.5	0.0	-0.1\%
75.3\%	46.5	46.4	0.0	-0.1\%
76.5\%	46.3	46.4	0.1	0.1\%
77.8\%	46.3	46.4	0.1	0.2\%
79.0\%	46.2	46.3	0.1	0.3\%
80.2\%	46.2	46.3	0.1	0.2\%
81.5\%	46.2	46.3	0.1	0.3\%
827\%\%	46.0	46.3	0.2	0.5\%
84.0\%	46.0	${ }_{46.1}^{46.2}$	${ }_{0}^{0.2}$	${ }^{0.5 \%}$
86.4\%	45.8	46.1	0.2	0.5\%
87.7\%	45.8	45.8	0.0	0.0\%
88.9\%	45.7	45.7	0.0	-0.1\%
90.1\%	45.7	45.6	0.0	-0.1\%
91.4\%	45.4	45.6	0.2	0.4\%
92.6\%	45.4	45.6	0.2	0.4\%
93.8\%	45.4	45.4	0.0	0.0\%
95.1\%	45.4	45.3	0.0	0.0\%
96.3\%	45.2	45.3	0.1	${ }^{0.2 \%}$
9.5\%	44.6	45.2	0.6	${ }^{1.42 \%}$
988.8\% 100.0\%	44.3 44.3	${ }_{44.2}^{44}$	-0.1 -0.1	-0.2\%

$\begin{gathered} \hline \text { Percent } \\ \begin{array}{c} \text { Exceednance } \\ \text { Probability } \\ \text { (\%) } \end{array} \\ \hline \end{gathered}$	May			RelativeDifference (\%)
	${ }^{\text {WSIP } 2070 \text { Without }}$ Proiet	WSIP 2070 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (DEGF) } \end{gathered}$	
	Monthly Temperature (DEGF)	$\xrightarrow{\substack{\text { Monthly } \\ \text { (Demperarature }}}$		
0.0\%	55.3	55.2	-0.1	0.1\%
1.2\%	55.0	55.2	0.2	0.3\%
2.5\%	55.0	54.9	-0.1	-0.2\%
3.7\%	55.0	53.8	-1.2	-2.1\%
4.9\%	52.9 52.7	53.2 53.0	0.4 0.3	0.79\%
7.4\%	52.2	52.2	0.0	0.0\%
8.6\%	52.1	52.2	0.1	0.2\%
9.9\%	52.0	52.1	0.1	0.3\%
11.1\%	52.0	52.1	0.1	0.2\%
12.3\%	51.6	51.8	0.3	0.5\%
13.6\%	${ }_{51.6}$	${ }_{51.8}$	0.2	0.4\%
14.8\%	51.4	51.6	0.3	0.5\%
16.0\%	51.4 51.3	51.6 51.5	0.2 0.2	0.4\% 0.4%
18.5\%	51.3	51.5	0.2	0.3\%
19.8\%	51.3	51.5	0.2	0.4\%
21.0\%	51.2	51.4	0.1	0.3\%
22.2\%	51.1	51.4	0.3	0.6\%
23.5\%	51.0	51.3	${ }^{0.3}$	0.6\%
24.7\%	51.0	51.3	0.3	0.6\%
25.9\%	50.9	51.3	${ }^{0.3}$	0.6\%
27.2\%	50.9	51.2	${ }^{0.3}$	0.5\%
28.4\%	50.9	51.2	${ }^{0.3}$	0.6\%
29.6\%	50.9 50.8	51.2 51.1	${ }_{0}^{0.3}$	0.7.7\%
32.1\%	50.8	51.1	0.3	0.6\%
33.3\%	50.8	51.0	0.2	0.4\%
34.6\%	50.7	51.0	0.3	0.6\%
35.8\%	50.6	50.9	0.3	0.5\%
37.0\%	50.6	50.8	0.2	0.4\%
38.3\%	50.6	${ }_{50.8}^{50.8}$	0.2	0.4\%
39.5\%	50.5	50.8	0.2	0.4\%
40.7\%	50.5	${ }_{50.7}^{50.7}$	0.2	0.4\%
${ }^{42.3 .2 \%}$	${ }_{50.5}^{50.5}$	50.7 50.7	0.2 0.2	${ }_{0}^{0.4 \%}$
44.4\%	50.4	50.7	0.3	0.6\%
${ }^{45.79 \%}$	50.4 50.3	50.6 50.6	0.3 0.4	${ }^{0.5 \%}$
48.1\%	50.2	50.6	0.4	0.7\%
49.4\%	50.1	50.5	0.4	0.8\%
50.6\%	50.1	50.5	0.4	0.8\%
51.9\%	50.1	50.5	0.4	0.8\%
53.1\%	50.1	50.5	0.4	0.9\%
54.3% 55.6%	50.1 50.0	50.5	0.4	0.8\%
55.6\%	50.0 49.8	50.4 50.4	0.4 0.6	-
58.0\%	49.8	50.2	0.5	1.0\%
59.3\%	49.7	50.1	0.4	0.8\%
- 60.5%	49.7 497	50.0 50.0	${ }_{0}^{0.3}$	-0.7\%
63.0\%	49.6	50.0	0.4	0.7\%
64.2\%	49.6	50.0	0.4	0.7\%
65.4\%	49.6	50.0	0.4	0.8\%
66.7\%	49.6	49.9	0.3	0.6\%
67.9\%	49.6	49.9	0.3	0.6\%
69.1\%	49.5	49.8	0.4	0.7\%
70.4\%	49.5 49.4	49.8 49.8	0.4 0.4	${ }_{\text {c }}^{0.7 \%}$
72.8\%	49.4	49.7	0.3	0.7\%
74.1\%	49.4	49.7	0.3	0.7\%
75.3\%	49.3	49.7	0.4	0.7\%
76.5\%	49.3	49.6	0.3	0.6\%
79.0\%	49.2	49.6	0.4	0.8\%
80.2\%	49.1	49.6	0.4	0.9\%
81.5\%	49.1	49.5	0.5	1.0\%
82.7\%	49.0	49.5	0.5	0.9\%
845.2\%	49.0	${ }_{49.5}$	0.5	0.9\%
86.4\%	48.8	49.4	0.6	1.2\%
87.7\%	48.8	49.3	0.5	1.1\%
88.9\%	48.6	49.2	0.6	1.2\%
${ }_{\text {91.4\% }}^{90.19 \%}$	48.6 484	49.2	0.6	1.3\%
92.6\%	${ }_{48.3}$	49.0	0.7	1.3\%
93.8\%	48.3	48.9	0.6	1.2\%
95.1\%	48.2	48.8	0.6	1.2\%
96.3\%	48.2	48.7	0.5	1.0\%
97.5\%	48.1	48.6	0.6	1.2\%
988.8\% 100.0%	48.0 48.0	${ }_{48.1}^{48.1}$	${ }_{0.1}^{0.1}$	${ }_{0}^{0.2 \%}$

June				
Percent Exceedance	WSII 207 Prowthout	WSIP 2070 With Project		Relative
$\begin{aligned} & \text { Probability } \\ & \text { (\%) } \end{aligned}$	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Bifference } \\ & \text { (DEFF } \end{aligned}$	Difference (\%)
0.0\%	56.1	55.1	-1.0	-1.7\%
1.2\%	54.9	53.8	-1.2	-2.1\%
2.5\%	54.9	53.6	-1.3	-2.3\%
3.7\%	54.8	53.6	-1.1	-2.1\%
4.9\%	54.6	53.6	-1.0	-1.8\%
6.2\%	53.9	53.6	-0.3	-0.6\%
7.4\%	53.7	53.3	-0.4	-0.7\%
8.6\%	53.7	53.2	-0.4	-0.8\%
9.9\%	53.5	53.2	-0.3	-0.5\%
11.12\%	53.1	53.2	0.1	0.2\%
12.3\%	53.0	53.2	0.2	0.4\%
13.6\%	52.8	53.1	${ }^{0.3}$	0.6\%
14.8\%	52.7	52.9	0.2	0.4\%
16.0\%	52.7	52.8	0.2	0.3\%
17.3\%	${ }_{52.6}^{52.6}$	${ }_{52.7} 5$	0.1	0.2\%
18.5\%	${ }_{52.6}^{52.6}$	${ }_{52,7}^{52.7}$	0.1	0.2\%
19.8\%	52.5	${ }_{52.6}$	0.2	0.3\%
21.0\%	52.5	52.6	0.2	0.3\%
22.2\%	52.4	52.6	0.1	0.3\%
23.5\%	52.4	52.4	0.1	0.1\%
24.7\%	52.2	52.4	0.2	0.4\%
25.9\%	52.2	52.3	0.1	0.2\%
27.2% 28.4%		52.3 52.2	0.2 0.4	0.7\%
29.6\%	51.8	52.2	0.4	0.8\%
30.9\%	51.8	52.2	0.4	0.8\%
32.1\%	51.6	52.1	0.5	1.1\%
33.3\%	51.5	51.9	0.4	0.7\%
34.6\%	51.5	51.8	${ }^{0.3}$	0.7\%
35.8\%	51.5	51.8	0.3	0.7\%
37.0\%	51.5	51.7	0.2	0.5\%
38.3\%	51.4	51.7	${ }^{0.3}$	0.5\%
39.5\%	51.4	51.6	0.2	0.3\%
40.77\%	51.4	51.5	0.1	0.2\%
42.0\%	51.4	51.4 514 1.4	${ }^{0.1}$	0.2\%
43.2\%	51.1	51.4	0.3	0.6\%
44.4\%	${ }_{51.1}^{51.1}$	${ }_{51.4}^{51.4}$	${ }^{0.3}$	0.5\%
45.79\%	50.9 509	51.2 512 51.2	${ }^{0.3}$	${ }^{0.6 \% \%}$
46.9\%	50.9	51.2	${ }^{0.3}$	${ }^{0.6 \%}$
48.1\%	50.9	51.2	${ }^{0.3}$	0.6\%
49.4\%	50.8	51.2	${ }^{0.3}$	0.7\%
50.6\%	50.8	51.2	0.4	0.7\%
51.9\%	50.7	51.1	0.4	0.7\%
53.1\%	50.6	51.1	0.4	0.9\%
54.3\%	50.6	51.0	0.4	0.8\%
55.6\%	50.6	51.0	0.4	0.8\%
56.8\%	50.6	51.0	0.4	0.8\%
58.0\%	50.6	50.9	0.3	0.6\%
59.3\%	50.5	50.9	0.4	0.8\%
60.5\%	50.5	50.9	0.4	0.7\%
${ }^{61.7 \%}$	50.2	50.7	0.6	1.1\%
63.0\%	50.2	50.7	0.5	1.0\%
${ }^{64.2 \%}$	50.1	50.6	0.5	1.0\%
${ }^{65.49 \%}$	50.1	50.5	0.4	0.9\%
${ }^{66.77 \%}$	${ }_{50.0}$	50.5	0.4	${ }^{0.9 \%}$
- 67.9%	50.0 49.9	50.5 50.4	0.5 0.5	${ }_{\text {l }}^{\text {1.0\% }}$
70.4\%	49.9	50.4	0.5	1.0\%
71.6\%	49.8	50.4	0.6	1.1\%
72.8\%	49.7	50.3	0.7	1.3\%
74.1\%	49.7	50.2	0.5	1.1\%
75.3\%	49.7	50.2	0.5	${ }^{1.10 \%}$
76.5\%	49.6	50.2	0.5	1.0\%
77.8\%	49.6	50.1	0.5	1.0\%
79.0\%	49.6	50.1 501	0.5	1.19\%
- ${ }^{80.2 \%}$	49.5	50.1 50.0	0.6 0.5	${ }_{\text {1.1\% }}^{1.1 \%}$
82.7\%	49.5	49.9	0.5	1.0\%
84.0\%	49.4	49.9	0.5	1.1\%
85.2\%	49.4	49.9	0.5	1.0\%
86.4\%	49.4	49.9	0.5	1.1\%
87.7\%	49.2	49.9	0.7	1.4\%
88.9\%	49.1	49.8	0.7	1.4\%
90.1\%	49.0	49.8	0.8	1.5\%
91.4\%	49.0	49.7	0.7	1.4\%
92.6\%	49.0	49.7	0.7	1.4\%
93.8\%	48.9	49.4	0.5	1.1\%
${ }_{9}^{95.19 \%}$	48.8 48.5	49.2 49.0	0.5 0.5	
97.5\%	48.3	48.9	0.6	1.3\%
98.8\%	48.2	48.7	0.5	0.9\%
100.0\%	48.2	48.7	0.5	0.9\%

Table SQ2-1b
Sacramento River below Keswick, Monthy Temperature

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$	June to September			
	${ }^{\text {WSIP } 207 \text { Prowithout }}$	WSIP 2070 With Project		Relative
	Monthly Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
0.0\%	63.2	63.3	0.0	0.1\%
1.2\%	61.5	60.0	-1.4	-2.3\%
2.5\%	61.1	58.7	-2.4	
3.7\%	60.1	58.1	-1.9	-3.2\%
4.9\%	59.1	55.8	-3.3	-5.5\%
6.2\%	57.6	55.8	-1.7	-3.0\%
7.4\%	56.8	55.3	-1.5	-2.6\%
8.6\%	56.8	54.6	-2.1	-3.8\%
9.9\%	56.2	54.6	-1.6	-2.9\%
11.1\%	55.5	54.4	-1.1	-1.9\%
12.3\%	55.1	54.4	-0.7	-1.3\%
13.6\%	54.8	54.4	-0.4	-0.8\%
14.8\%	54.8	54.2	-0.5	-1.0\%
16.0\%	54.8	54.2	-0.6	-1.1\%
17.3\%	54.6	54.0	-0.6	-1.2\%
18.5\%	54.5	53.9	-0.6	-1.1\%
19.8\%	54.2	53.9	-0.3	-0.6\%
21.0\%	54.2	53.8	-0.4	-0.7\%
22.2\%	54.1	53.7	-0.3	-0.6\%
23.5\%	54.0	53.7	-0.3	-0.6\%
24.7\%	53.8	53.6	-0.2	-0.3\%
25.9\%	53.7	53.6	-0.1	-0.1\%
27.2\%	53.6	53.5	-0.1	-0.3\%
28.4\%	53.6	53.3	-0.2	-0.4\%
29.6\%	53.5	53.3	-0.2	-0.4\%
30.9\%	53.4	53.3	-0.2	-0.3\%
32.1\%	53.2	53.1	-0.1	-0.2\%
33.3\%	53.2	53.0	-0.2	-0.4\%
34.6\%	53.1	${ }_{52.9}^{52.9}$	-0.3	-0.5\%
35.8\%	53.1	52.9	-0.2	-0.5\%
37.0\%	52.9	52.8	0.0	0.0\%
38.3\%	52.8	52.8	-0.1	-0.1\%
39.5\%	52.8	52.8	0.0	-0.1\%
40.7\%	52.7	52.7	-0.1	-0.1\%
42.0\%	52.7	52.7	-0.1	-0.1\%
43.2\%	52.7	52.6	-0.1	-0.1\%
44.4\%	52.7	52.6	-0.1	-0.2\%
${ }^{45.79 \%}$	+52.6	+52.6	0.0	-0.1\%
46.9\%	52.6	52.5	-0.1	-0.2\%
48.1\%	52.6	52.5	-0.1	-0.2\%
49.4\%	52.6	52.5	-0.1	-0.2\%
50.6\%	52.5	52.4	-0.1	-0.2\%
51.9\%	52.5	${ }_{52.3}$	-0.2	-0.4\%
53.1\%	52.4	${ }_{52.3}$	-0.1	-0.2\%
54.3\%	${ }_{52.3}$	52.3	0.0	-0.1\%
年.6\%	${ }_{52,3}^{52.3}$	52.2	-0.1	${ }^{-0.11 \%}$
56.8\%	${ }_{52.3}^{52.3}$	52.2	-0.1	-0.1\%
58.0\%	52.1 52.1	${ }_{52.2}^{52.2}$	0.1	0.1\%
59.3\%	52.1	52.2 52.2	0.0	0.1\%
${ }_{60.7 \%}^{60.5 \%}$	52.0 52.0	52.0 52.0	0.0	-
63.0\%	52.0	52.0	0.0	0.1\%
64.2\%	52.0	51.9	0.0	0.0\%
65.4\%	51.9	51.9	0.0	0.0\%
66.7\%	51.8	51.9	0.1	0.2\%
67.9\%	51.8	51.9	0.1	0.2\%
69.1\%	${ }_{51.8}^{51.8}$	51.9	0.1	0.2\%
71.6\%	${ }_{51.7}^{51.7}$	51.8 51.8	${ }_{0}^{0.1}$	${ }^{0.19}$
72.8\%	51.6	51.7	0.1	0.2\%
74.1\%	51.5	51.7	0.2	0.4\%
75.5\%	${ }_{51.5}^{51.5}$	51.5 515	0.0	0.0\%
76.5\%	51.5	51.5	0.0	0.0\%
77.8\%	51.4	51.4	0.0	0.0\%
79.0\%	${ }_{51.4}$	51.4	0.0	0.1\%
80.2\%	${ }_{51.3}$	51.4	0.1	0.2\%
${ }^{81.5 \%}$	${ }_{51.3}$	51.4	0.1	0.2\%
	51.2 51.1	51.2	${ }_{0}^{0.1}$	0.1\%
854006	51.1	51.2	0.1	${ }^{0.2 \%}$
${ }^{88.20 \%}$	51.1 51.0	51.2	0.1	${ }_{0}^{0.3 \%}$
87.7\%	50.9	51.1	0.2	0.3\%
88.9\%	50.9	51.0	0.2	0.3\%
90.1\%	50.8	51.0	0.1	0.3\%
91.4\%	50.7	50.9	0.2	0.4\%
92.6\%	50.5	50.9	0.4	0.8\%
${ }^{93.8 \%}$	50.5	50.9	0.4	0.8\%
${ }_{996.3 \%}^{95 \%}$	50.4 50.3	50.6 50.6	0.2 0.3	0.6\%
97.5\%	50.0	50.5	0.5	0.9\%
98.8\%	49.9	50.2	0.3	0.6\%
100.0\%	49.9	50.0	0.2	0.3\%

$\begin{aligned} & \hline \text { Percent } \\ & \text { Exceedance } \\ & \text { Probabaility } \end{aligned}$	Juy to September		Probability of Exceedance						
			$\begin{gathered} \text { Absolute } \\ \text { Difiference } \\ \text { (DEGFF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	WSIP 2070 Without ProiectMonthly Temperature	ugusto September		
	WSIP 2070 Without	WSIP 2070 With Project					WSIP 2070 With Project		Relative
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)					Monthly Temperature (DEGF)	Difference	Difference (\%)
0.0\%	65.6	66.0	0.4	0.6\%	0.0\%	66.7	67.1	0.4	0.6\%
1.2\%	64.0	62.5	-1.5	-2.4\%	1.2\%	66.7	66.2	-0.5	
2.5\%	63.1	60.4	-2.7	-4.3\%	2.5\%	66.1	634	-2.7	-410
3.7\%	62.2	59.9	-2.3	-3.7\%	3.7\%	65.7	62.7	-3.0	
4.9\%	60.6	57.0	-3.6	-5.9\%	4.9\%	63.4	58.9	-4.5	-7.1\%
6.2\%	59.1	56.5	-2.6	-4.3\%	6.2\%	61.4	57.8	-3.5	-5.8\%
7.4\%	58.2	55.9	-2.3	-3.9\%	7.4\%	60.0	57.0	-2.9	-4.9\%
8.6\%	57.4	55.5	-1.9	-3.3\%	8.6\%	58.9	56.7	-2.2	-3.8\%
9.9\%	57.1	55.3	-1.8	-3.1\%	9.9\%	58.1	56.2	-2.0	-3.4\%
11.1\%	56.7	54.9	-1.8	-3.1\%	11.1\%	58.1	55.7	-2.4	-4.1\%
12.3\%	55.9	54.9	-1.0	-1.8\%	12.3\%	55.6	55.7	-0.9	-1.6\%
13.6\%	55.5	54.8	-0.7	-1.2\%	13.6\%	55.2	55.4	-0.8	-1.5\%
14.8\%	55.3	54.6	-0.7	-1.3\%	14.8\%	55.8	55.2	-0.6	-1.0\%
16.0\%	55.3 552 55	54.6 54.3	-0.7 -0.9	- -1.20%	- 16.0%	$\begin{array}{r}55.8 \\ 55.6 \\ \hline\end{array}$	55.0 54.8	-0.8 -0.8	- ${ }_{\text {- }}$
18.5\%	55.2 55.2	54.3	-0.9	${ }^{-1.7 \%}$	18.5\%	55.5	54.8	-0.7	-1.3\%
19.8\%	54.8	54.2	-0.6	-1.2\%	19.8\%	54.9	54.5	-0.4	-0.8\%
21.0\%	54.7	54.1	-0.6	-1.1\%	21.0\%	54.9	54.5	-0.4	-0.8\%
22.2\%	54.5	54.0	-0.5	-0.9\%	22.2\%	54.7	54.1	-0.6	-1.0\%
23.5\%	54.2	53.9	-0.3	-0.6\%	23.5\%	54.7	54.1	-0.6	-1.1\%
24.7\%	54.2	53.9	-0.3	-0.6\%	24.7\%	54.5	54.0	-0.5	-1.0\%
25.9\%	54.2	53.8	-0.4	-0.7\%	25.9\%	54.4	54.0	-0.4	-0.8\%
27.2\%	54.1	53.7	-0.4	-0.8\%	27.2\%	54.3	53.9	-0.4	-0.7\%
28.4\%	54.1	53.6	-0.5	-0.9\%	28.4\%	54.3	53.8	-0.4	-0.8\%
29.6\%	54.0	53.6	-0.4	-0.8\%	29.6\%	54.3	53.8	-0.5	-0.9\%
30.9\%	54.0	53.5	-0.5	-0.9\%	30.9\%	54.1	53.7	-0.4	-0.7\%
32.1\%	53.9	53.5	-0.4	-0.8\%	32.1\%	54.0	53.7	-0.4	-0.7\%
33.3\%	53.9	53.5	-0.4	-0.7\%	33.3\%	54.0	53.6	-0.5	-0.9\%
34.6\%	${ }_{53,7}^{53.7}$	53.4	-0.3	-0.6\%	34.6\%	$\stackrel{53.9}{53}$	${ }_{\text {53.5 }}^{53.5}$	-0.4	${ }^{-0.7 \% \%}$
35.8\%	53.6	53.3	-0.3	-0.6\%	35.8\%	53.8	53.5	-0.3	-0.6\%
37.0\%	53.6	53.2	-0.3	-0.6\%	37.0\%	53.8	53.5	-0.3	-0.6\%
38.3\%	53.5	53.2	-0.3	-0.6\%	38.3\%	53.8	53.5	-0.3	-0.6\%
39.5\%	53.5	53.2	-0.3	-0.6\%	39.5\%	53.8	53.3	-0.5	-0.9\%
40.7\%	53.4	53.1	-0.3	-0.6\%	40.7\%	53.8	53.3	-0.5	-0.9\%
42.0\%	53.4	53.1	-0.3	-0.5\%	42.0\%	53.7	53.3	-0.5	-0.9\%
43.2\%	53.3	53.0	-0.3	-0.5\%	43.2\%	53.7	53.2	-0.5	-0.8\%
44.4\%\%	53.3 53.3 5.	53.0 520	-0.2	-0.4\%			$\begin{array}{r}53.2 \\ 53.2 \\ \hline\end{array}$	-0.5	${ }^{-0.9 \%}$
${ }_{4}^{45.79 \%}$	53.3 53.2	52.9 52.9	-0.3	-0.0\%\%	${ }_{46.9 \%}^{45.70 \%}$	53.7 53.6	53.2 53.1	-0.5	-
48.1\%	53.2	52.9	-0.3	-0.6\%	48.1\%	53.6	53.1	-0.5	-0.9\%
49.4\%	53.2	52.9	-0.3	-0.6\%	49.4\%	53.6	53.1	-0.5	-0.9\%
50.6\%	53.0	52.9	-0.2	-0.3\%	50.6\%	53.5	53.1	-0.4	-0.7\%
51.9\%	53.0	52.8	-0.2	-0.4\%	51.9\%	53.5	53.0	-0.4	-0.8\%
53.1\%	52.9	52.8	-0.1	-0.2\%	53.1\%	53.5	53.0	-0.5	-0.9\%
54.3\%	52.9	52.8	-0.1	-0.2\%	54.3\%	53.5	53.0	-0.5	-0.8\%
55.6\%	52.8	52.8	-0.1	-0.1\%	55.\%	53.4	52.9	-0.5	-1.0\%
56.8\%	${ }_{52.8}^{52.8}$	52.7	-0.1	-0.1\%	56.8\%	53.4	52.9	-0.5	-0.9\%
58.0\%	52.8	52.7	-0.1	-0.1\%	58.0\%	53.3	52.9		${ }^{-0.8 \%}$
59.3\%	52.7	52.7	-0.1	-0.1\%	59.3\%	53.2	52.9	-0.3	-0.6\%
- 60.5%	52.6 52.6	52.6 52.5	0.1 0.0	-0.1\%	- 60.5%	53.2 52.9	52.8 52.7	-0.3 -0.2	-0.4\%
63.0\%	52.5	52.4	0.0	-0.1\%	63.0\%	52.9	52.7	-0.2	-0.3\%
64.2\%	52.5	52.4	0.0	-0.1\%	64.2\%	52.8	52.7	-0.1	-0.3\%
65.4\%	52.4	52.4	0.0	0.0\%	65.4\%	52.8	52.7	-0.1	-0.3\%
66.7\%	52.4	52.4	0.0	0.0\%	66.7\%	52.8	52.6	-0.2	-0.3\%
67.9\%	52.4	52.4	0.0	-0.1\%	67.9\%	52.7	52.6	-0.2	-0.3\%
69.1\%	52.3	52.3	-0.1	-0.1\%	69.1\%	52.7	52.6	-0.1	-0.2\%
70.4\%	52.3	52.3	0.0	0.0\%	70.4\%	52.6	52.6	-0.1	-0.19\%
71.6\% ${ }^{72.8 \%}$	52.2 52.2	52.2 52.2	0.0 0.0	-0.0\%	71.6% 72.8%	52.6 52.6	52.4 52.4	-0.2 -0.2	- 0.04%
74.1\%	52.1	52.1	0.0	0.1\%	74.1\%	52.6	52.3	-0.3	-0.6\%
75.3\%	52.1	52.0	0.0	-0.1\%	75.3\%	52.6	52.3	-0.3	-0.6\%
76.5\%	52.0	51.9	-0.1	-0.2\%	76.5\%	52.5	52.2	-0.4	-0.7\%
77.8\%	51.9	51.9	0.0	0.0\%	77.8\%	52.5	52.2	-0.3	-0.6\%
79.0\%	51.9	51.8	-0.1	-0.2\%	79.0\%	52.3	52.0	-0.3	-0.5\%
80.2\%	51.9	51.8	-0.1	-0.2\%	80.2\%	52.3	52.0	-0.3	-0.5\%
81.5\%	51.9	51.7	-0.2	-0.3\%	81.5\%	52.2	52.0	-0.3	-0.5\%
${ }^{82.79 \%}$	51.8	51.7	-0.1	-0.3\%	82.7\%	52.2	51.9	-0.3	-0.0\%\%
84.0% 85.2%	51.8 51.7	51.6 51.6	-0.2 -0.1	-0.3\%	-84.0\%	52.0 51.9	51.9 51.7	-0.1 -0.2	-
86.4\%	51.5	51.6	0.1	0.2\%	86.4\%	51.9	51.7	-0.2	-0.4\%
87.7\%	51.4	51.5	0.1	0.2\%	87.7\%	51.8	51.7	-0.1	-0.2\%
88.9\%	51.3	51.5	0.2	0.3\%	88.9\%	51.7	51.6	-0.1	-0.2\%
90.1\%	51.2	${ }_{51.3}$	0.2	0.3\%	90.1\%	51.7	51.6	-0.1	-0.2\%
91.4\%	51.1	51.2	0.1	0.1\%	91.4\%	51.6	51.4	-0.2	-0.5\%
92.6\%	${ }_{51.1}^{51.1}$	${ }_{51.2}^{51.2}$	0.0	0.1\%	92.6\%	$\begin{array}{r}51.4 \\ 51.3 \\ \hline\end{array}$	51.4	-0.1	-0.1\%
93.8\%	51.0	51.1	0.1	0.2\%	93.8\%	51.3	51.3	0.0	0.1\%
95.1\%	51.0	51.0	0.1	0.1\%	95.1\%	51.2	51.1	-0.1	-0.3\%
96.3\% ${ }^{975}$	50.7 50.6	50.9 50.7	0.2	0.4\%	96.3\%	$\begin{array}{r}51.1 \\ 51.1 \\ \hline 102\end{array}$	51.0	-0.1	-
${ }_{\text {98, }}^{97.5 \%}$	50.6 50.4	50.7 50.7	0.2 0.2	0.5\%	${ }^{97.5 \%}$	51.1 50.7	50.9 50.9	-0.2 0.2	-
100.0\%	50.3	50.6	0.3	0.6\%	100.0\%	50.6	50.8	0.2	0.3\%

Figure SQ3-1b
Sacramento River at Bonnyview Bridge, Monthly Temperatur

Table SQ3-1b
tonnyiew Bridge

$\underset{\substack{\text { Percernt } \\ \text { Exceabability }}}{\text { Pron }}$	WSIP 2070 Without Proiet Monthy Toemperature	WSIP 2070 With Project Monthly Temperature (DEGF)	AbsoluteDifference(DEGF)	$\begin{gathered} \text { Relative } \\ \text { Difference }(\%) \end{gathered}$
0.0\%	56.2		0.1	0.2\%
1.2\%	56.1	55.9	-0.1	-0.2\%
2.5\%	55.8	55.8	-0.1	-0.1\%
3.7\%	55.8	55.7	-0.1	-0.1\%
4.9\%	55.8	55.6	-0.2	-0.3\%
6.2\%	55.4	55.4	0.0	0.0\%
7.4\%	55.4	55.4	0.0	0.0\%
8.6\%	55.3	55.4	0.1	0.2\%
9.9\%	55.0	55.0		0.0\%
11.1.\%	54.9	55.0	0.1	0.1\%
12.3\%	54.9	55.0	0.1	0.1\%
13.6\%	54.8	54.9	0.1	0.2\%
14.8\%	54.7	54.9	0.1	0.2\%
(16.0\%	54.7	54.8	0.2	0.3\%
18.5\%	54.6	54.8	0.1	0.2\%
19.8\%	54.4	54.7	0.3	0.5\%
21.0\%	54.4	54.7	0.3	0.6\%
22.2\%	54.3	54.7	0.4	0.7\%
23.5\%	54.3	54.7	0.4	0.6\%
24.7\%	54.2	54.7 54.6	0.4	0.8\%
25.9\%	54.2 54.1	54.6 54.6	0.4	0.8\%
${ }^{27.20 \%}$	54.1 54.1	54.6 54.5	0.4	0.8\%
28.4\%	54.1	54.5	0.4	0.8\%
29.6\%	54.1	54.5	0.4	0.8\%
30.9\%	54.0	54.5	0.5	0.9\%
32.1\%	54.0	54.4	0.4	0.8\%
33.3\%	53.9 539	$\begin{array}{r}54.3 \\ 54.2 \\ \hline\end{array}$	0.4	0.8\%
33.6\% ${ }^{33.8 \%}$	53.9	54.2	0.3	${ }^{0.6 \%}$
377.0\%	53.9 53.8	54.2 54.2	0.3 0.4	0.6\%
38.3\%	53.7	54.1	0.4	0.7\%
39.5\%	53.7	54.1	0.5	0.9\%
40.7\%	53.6	54.1	0.5	1.0\%
42.0\%	53.5	54.1	0.5	1.0\%
43.2\%	53.5	54.1	0.6	1.0\%
44.4\%	53.5	54.0	0.5	0.9\%
45.7\%	53.4	53.9	0.6	1.1\%
${ }^{46.9 \%}$	53.4	53.9	0.5	1.0\%
48.1\%	53.3	53.8	0.6	1.1\%
${ }_{\text {cte }}^{\text {49.4\% }}$	53.2	53.8	0.6	
	- 53.2	53.8 53.7	0.6 0.5	${ }_{\text {1.0\% }}^{1.10 \%}$
53.1\%	53.2	${ }_{53.7}$	${ }_{0}^{0.5}$	0.9\%
54.3\%	53.1	53.7	0.6	1.1\%
55.6\%	53.1	53.5	0.4	0.8\%
56.8\%	52.9	53.5	0.6	1.1\%
58.0\%	52.9	53.4	0.4	0.8\%
59.3\%	52.8	53.3	0.4	0.8\%
60.5\%	52.7	53.2	0.5	1.0\%
${ }^{661.7 \%}$	52.7 525 52	53.1	0.4	0.8\%
	52.5	53.0	0.4	0.8\%
	52.5 52.5	52.9 52.9	0.4 0.4	${ }^{0.8 \%}$
66.7\%	52.5	52.7	0.3	0.5\%
67.9\%	52.3	52.7	0.4	0.7\%
69.1\%	52.3	52.6	0.3	0.7\%
70.4\%	52.2	52.5	${ }^{0.3}$	0.6\%
71.6\%	52.2	52.5	0.3	0.6\%
72.8\%	52.1	52.5	0.3	0.6\%
${ }^{74.1 \%}$	52.1	52.5	0.4	0.7\%
${ }_{76.5 \%}^{75.3 \%}$	51.9 51.9	52.4. 52.3	0.4 0.4	0.8\%
77.8\%	51.8	52.1	0.3	
79.0\%	51.8	52.1	0.3	0.5\%
80.2\%	51.8	52.1	0.3	0.5\%
81.5\%	${ }_{51.6}^{51.6}$	${ }_{52.0}$	0.4	0.8\%
	年 $\begin{gathered}51.6 \\ 515\end{gathered}$	51.9 519	${ }^{0.3}$	0.7\%
(84.0\%	51.5	51.9	0.4	0.7\%
86.4\%	51.4	51.8	0.4	0.8\%
87.7\%	51.3	51.7	0.4	0.8\%
88.9\%	51.2	51.7	0.6	1.1\%
90.1\%	51.2	51.7	0.5	1.0\%
${ }_{922.6 \%}^{91.4 \%}$	51.1 51.1	51.7 51.6	0.6	${ }_{1.10}^{1.10}$
93.8\%	50.8	51.6	${ }_{0}^{0.6}$	1.8\%
95.1\%	50.7	51.2	0.5	1.0\%
96.3\%	50.6	51.0	0.4	0.8\%
97.5\%	50.5	50.8	0.3	0.6\%
98.8\%	${ }_{50.4}$	${ }_{50.3}$	-0.1	-0.2\%
100.0\%	50.4	50.3	-0.1	-0.2\%

		January		
Percent	${ }^{\text {WSIP } 2070}$ Proiecthout	WSIP 2070 With Project	Absolute	
$\begin{aligned} & \text { Probability } \\ & (\%) \end{aligned}$	Monthly Temperature	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGFG) } \end{aligned}$	Difference (\%)
0.0\%	54.3	54.3	0.0	0.0\%
1.2\%	52.9	54.0	1.0	2.0\%
2.5\%	52.7	53.1	0.4	0.7\%
3.7\%	52.5	52.8	0.2	0.4\%
4.9\%	52.3	52.6	0.3	0.6\%
6.2\%	52.2	52.2	0.0	0.0\%
7.4\%	52.2	52.2	0.0	0.0\%
8.6\%	51.9	52.1	0.2	0.4\%
9.9\%	51.7	52.1	0.4	0.7\%
111.19\%	51.6	51.8	0.2	0.4\%
${ }^{12.3 \%}$	51.6	51.7	0.1	0.3\%
13.6\%	51.5	51.7	0.2	0.4\%
14.8\%	51.5	51.6	0.1	0.1\%
16.0\%	${ }_{51.4}$	51.5	0.2	0.3\%
17.3\%	51.2	51.5	0.3	0.6\%
18.5\%	51.0	51.5	0.5	0.9\%
19.8\%	51.0	51.5	0.5	0.9\%
21.0\%	50.9	51.4	0.5	1.0\%
22.2\%	50.7	${ }_{51.3}$	0.6	1.2\%
23.5\%	50.7	51.2	0.5	1.0\%
24.7\%	50.7	51.1	0.4	0.7\%
25.9\%	50.6	51.1	0.5	0.9\%
27.2\%	50.4	51.0	0.6	1.3\%
28.4\%	50.4	50.9	0.5	1.0\%
29.6\%	50.3	50.8	0.6	1.1\%
30.9\%	50.2	50.8	0.6	1.3\%
32.1\%	50.1	50.7	0.7	1.3\%
33.3\%	50.1	50.7	0.7	1.3\%
34.6\%	50.0	$\begin{array}{r}50.7 \\ 50.5 \\ \hline\end{array}$	0.6	1.3\%
35.8\%	49.9	50.5	0.5	1.1\%
37.0\%	49.9	50.4	0.4	0.9\%
38.3\%	49.9	50.2	0.4	0.8\%
39.5\%	49.8	50.2	0.3	0.7\%
40.7\%	49.8	50.1	0.4	0.8\%
42.0\%	49.7	50.0	${ }^{0.3}$	0.7\%
43.2\%	49.7	50.0	${ }^{0.3}$	0.6\%
44.4\%	49.6	49.9	0.2	0.5\%
45.7\%	49.6	49.9	0.3	0.6\%
46.9\%	49.5	49.8	${ }^{0.3}$	0.9\%\%
48.1\%	49.4	49.7	0.3	0.7\%
49.4\%	49.3	49.6	${ }^{0.3}$	0.5\%
50.6\%	49.2	49.6	0.4	0.8\%
51.9\%	49.1	49.6	0.5	0.9\%
	${ }_{49.1}^{49.1}$	49.6 49.5	0.5 0.4	- 1.0%
55.6\%	48.9	49.4	0.5	1.0\%
56.8\%	48.9	49.4	0.5	1.0\%
58.0\%	48.9	49.4	0.5	0.9\%
59.3\%	48.8	49.3	0.5	${ }^{1.0 \%}$
60.5\%	48.7	49.2	0.5	1.0\%
61.7\%	48.7	49.1	0.4	0.9\%
63.0\%	48.7	49.1	0.4	0.9\%
64.2\%	48.6	49.1	0.4	0.9\%
${ }^{65.4 \%}$	48.6	48.9	0.3	0.7\%
66.7\%	48.5	48.9	0.4	0.8\%
67.9\%	48.4	48.8	0.4	0.8\%
69.1\%	48.3	48.8	0.5	1.0\%
70.4\%	48.3	48.7	0.4	0.8\%
71.6\%	48.2	${ }^{48.6}$	0.4	0.8\%
72.8\%	48.2	48.6	0.5	1.0\%
74.1\%	48.1	48.5	0.4	0.9\%
75.3\%	48.1	48.5	0.5	1.0\%
76.5% 778%	47.9	48.4	0.4	0.9\%\%
77.8\%	47.9	48.3	0.4	0.8\%
80.2\%	47.8 47.6	48.1 48.1	0.4 0.5	${ }_{\text {0, }}^{0.8 \%}$
81.5\%	47.6	47.9	0.3	0.7\%
82.7\%	47.5	47.9	${ }^{0.3}$	0.7\%
84.0\%	47.5	47.8	${ }^{0.3}$	0.6\%
85.2\%	47.3	47.6	${ }^{0.3}$	0.6\%
86.4\%	47.2	47.4	0.2	0.3\%
87.7\%	47.1	47.4	0.2	0.5\%
88.9\%	47.1	47.3	0.2	0.5\%
90.1\%	46.8	47.1	0.3	0.7\%
	46.6	47.1	0.6	1.2\%
93.8\%	46.3	${ }_{46.3}$	-0.1	-0.2\%
95.1\%	46.3	46.2	0.0	-0.1\%
96.3\%	46.2	46.1	-0.2	0.3\%
97.5\%	46.0	45.9	-0.1	-0.2\%
98.8\%	45.5	45.9	${ }^{0.3}$	0.7\%
100.0\%	45.5	45.9	0.3	0.7\%

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	February			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	$\begin{gathered} \begin{array}{c} \text { WSIP 2070 Without } \\ \text { Proiect } \end{array} \\ \hline \end{gathered}$	WSIP 2070 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	
	Monthy Temperature	Monthly Temperature		
0.0\%	52.9	52.9	0.0	0.0\%
1.2\%	51.7	51.5	-0.2	-0.3\%
2.5\%	51.5	51.3	-0.2	-0.4\%
3.7\%	50.9	50.9	0.0	0.0\%
4.9\%	50.8	50.7	-0.1	-0.2\%
6.2\%	50.3	50.5	0.2	0.5\%
7.4\%	50.2	50.4	0.2	0.3\%
8.6\%	50.2	50.4	0.2	0.4\%
9.9\%	50.1	50.3	0.2	0.4\%
11.1\%	50.1	50.3	0.3	0.5\%
12.3\%	50.0	50.3	0.3	0.6\%
13.6\%	49.9	50.2	0.4	0.7\%
14.8\%	49.9	50.1	0.2	0.5\%
16.0\%	49.7	50.1	0.3	0.6\%
17.3\%	49.7	50.0	${ }^{0.3}$	0.6\%
18.5\%	49.7 495	49.9	${ }_{0}^{0.2}$	0.3\%
21.0\%	49.5	49.7	0.2	0.5\%
22.2\%	49.4	49.7	0.3	0.6\%
23.5\%	49.4	49.7	${ }^{0.3}$	0.6\%
24.7\%	49.4	49.7	0.3	0.5\%
25.9\%	49.3	49.6	0.3	0.6\%
27.2\%	49.3	49.6	0.3	0.6\%
28.4\%	49.3	49.6	0.3	0.5\%
29.6\%	49.3	49.5	0.2	0.3\%
30.9\%	49.3	49.5	0.2	0.4\%
32.1% 33.3%	${ }_{49.2}^{49.2}$	49.4 49.4	0.2	0.4\%
34.6\%	49.1	49.3	0.1	0.3\%
35.8\%	49.1	49.2	0.2	0.3\%
37.0\%	49.0	49.2	0.2	0.4\%
38.3\%	49.0	49.2	0.2	0.4\%
39.5\%	49.0	49.1	0.1	0.3\%
40.7\%	49.0	49.1	0.1	0.2\%
42.0\%	48.9	49.0	0.1	0.2\%
43.2\%	48.9	49.0	0.1	0.3\%
44.4\%	48.8	48.9	0.1	0.2\%
${ }^{45.79 \%}$	48.8 48.6	48.8 48.7	${ }_{0}^{0.1}$	- 0.2%
48.1\%	48.6	48.7	0.1	0.3\%
49.4\%	48.6	48.5	-0.1	-0.2\%
50.6\%	48.5	48.4	-0.1	-0.1\%
51.9\%	48.4	48.4	0.0	0.0\%
53.1\%	48.3	48.2	-0.1	-0.2\%
54.3\%	48.3	48.2	-0.1	-0.2\%
55.6\%	48.1	48.1	0.0	-0.1\%
56.8\%	47.8	47.8	0.0	0.1\%
	${ }_{47.7}^{47.8}$	${ }_{47.6}^{47.7}$	-0.1 0.0	-0.1\%
60.5\%	47.6	47.6	0.0	0.0\%
61.7\%	47.6	47.5	0.0	-0.1\%
63.0\%	47.5	47.4	-0.1	-0.2\%
${ }^{64.2 \%}$	47.5	47.4	-0.1	-0.2\%
65.4\%	47.3	47.4	0.0	0.0\%
66.7\%	47.2	47.4	0.1	0.2\%
67.9\%	47.2	47.3	0.1	0.2\%
69.1\%	47.1	47.3	0.2	0.4\%
70.4\%	47.0	47.2	0.3	0.6\%
${ }^{71.6 \%}$	47.0	47.1	0.2	0.3\%
72.8\%	46.9 46.8	47.0 46.9	${ }_{0}^{0.1}$	${ }_{0}^{0.1 \%}$
75.3\%	46.8	46.8	0.0	0.0\%
76.5\%	46.7	46.7	0.0	0.1\%
77.8\%	46.5	46.7	0.1	0.3\%
79.0\%	46.5	46.7	0.2	0.4\%
80.2\%	46.4	46.5	0.1	0.3\%
81.5\%	46.4	46.5	0.1	0.2\%
82.7\%	46.3	46.4	0.2	0.3\%
84.0\%	46.2	46.4	0.2	0.4\%
85.2\%	46.1	46.2	0.1	0.2\%
- ${ }^{86.4 \%}$ 87.7\%	46.1 46.1	${ }_{46.1}^{46.1}$	0.0 0.0	- 0.0%
88.9\%	46.0	46.1	0.0	0.1\%
90.1\%	45.9	46.0	0.1	0.2\%
91.4\%	45.9	45.9	0.0	0.0\%
92.6\%	45.9	45.9	0.0	0.0\%
93.8\%	45.9	45.8	-0.1	-0.1\%
95.1\%	45.8	45.7	-0.1	-0.1\%
96.3\%	45.4	45.7	${ }^{0.3}$	0.7\%
${ }_{98.80 \%}^{97.5 \%}$	45.3 44.4	45.4 44.3	0.0 -0.1	-0.1\%
100.0\%	44.4	44.3	-0.1	-0.2\%

Sacramento River at Bonnyview Bridge, Monthly Temperature

$(\%)$	March			-	April				
	WSIP 2070 Without	WSIP 2070 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	WSIP 2070 Without Proiect Monthly Temperature (DEGGF)	WSIP 2070 With Project Monthly Temperature (DEGF)	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	$\begin{aligned} & \text { Relative } \\ & \text { Difference (\%) } \end{aligned}$
	Monthy Temperature	Monthly Temperature							
	(DEGF)	(DEGF)							
0.0\%	53.2	53.3	0.1	0.1\%	0.0\%	54.5	54.3	-0.2	-0.3\%
1.2\%	52.2	52.1	-0.1	-0.2\%	1.2\%	53.4	54.0	0.6	1.2
2.5\%	52.0	52.0	0.0	0.0\%	2.5\%	52.6	52.5	-0.1	-0.1\%
3.7\%	51.7	51.9	0.3	0.5\%	3.7\%	52.6	52.4	-0.2	-0.3\%
4.9\%	51.6	51.8	0.2	0.3\%	4.9\%	52.5	52.2	-0.3	-0.7\%
6.2\%	51.6	51.6	0.0	0.0\%	6.2\%	52.5	52.1	-0.4	-0.7\%
7.4\%	51.3	51.5	0.3	0.5\%	7.4\%	52.4	52.1	-0.3	-0.6\%
8.6\%	51.1	51.5	0.4	0.7\%	8.6\%	52.2	52.1	-0.1	-0.3\%
9.9\%	51.1	51.4	0.2	0.5\%	9.9\%	52.1	52.0	-0.1	-0.1\%
11.1.1\%	51.0	51.2	0.2	0.4\%	11.1.\%	52.0	51.8	-0.2	-0.4\%
12.3\%	50.9	51.1	0.1	0.2\%	12.3\%	51.9	51.7	-0.2	-0.3\%
13.6\%	50.9	51.0	0.1	0.2\%	13.6\%	51.7	51.7	0.0	-0.1\%
14.8\%	50.9	51.0	0.1	0.3\%	14.8\%	51.6	51.7	0.1	0.2\%
16.0\%	50.8	50.9	0.1	0.2\%	16.0\%	51.5	51.6	0.1	0.2\%
17.3\%	50.8	50.9	0.1	0.2\%	17.3\%	51.5	51.5	0.1	0.1\%
18.5\%	50.8	50.9	0.1	0.2\%	18.5\%	51.5	51.5	0.0	0.1\%
19.8\%	50.8	50.9	0.1	0.3\%	19.8\%	51.3	51.4	0.1	0.2\%
21.0\%	50.7	50.9	0.2	0.4\%	21.0\%	51.3	51.4	0.1	0.2\%
22.2\%	50.6	50.9	0.3	0.5\%	22.2\%	51.3	51.3	0.0	0.1\%
${ }^{23.5 \%}$	${ }^{50.6}$	50.9	0.3	0.5\%	23.5\%	51.2	${ }_{51.2}$	0.0	0.1\%
24.7\%	50.6	50.8	0.2	0.4\%	24.7\%	51.0	51.2	0.2	0.4\%
25.9\%	50.5	50.8	0.2	0.4\%	25.9\%	51.0	51.2	0.2	0.4\%
27.2\%	50.3	50.6	${ }^{0.3}$	0.5\%	27.2\%	50.9	51.2	0.2	0.4\%
28.4\%	50.3	50.6	0.3	0.6\%	28.4\%	50.9	51.1	0.2	0.4\%
29.6\%	50.3	50.6	0.3	0.5\%	29.6\%	50.9	51.1	0.2	0.4\%
30.9\%	50.2	${ }_{50.5}$	0.2	0.5\%	30.9\%	50.8	${ }_{51.1}^{51.1}$	${ }^{0.3}$	0.7\%
32.1\%	50.2	50.3	0.1	0.2\%	32.1\%	50.8	51.1	0.3	0.6\%
33.3\%	50.2	50.2	0.0	0.0\%	33.3\%	50.7	51.0	0.3	0.6\%
34.6\%	50.2	50.1	-0.2	-0.3\%	34.6\%	50.7	50.9	0.2	0.4\%
35.8\%	50.2	50.1	-0.1	-0.3\%	35.8\%	50.6	50.9	0.3	0.5\%
37.0\%	50.0	50.0	0.0	0.0\%	37.0\%	50.6	50.9	0.3	0.6\%
38.3\%	49.9	50.0	0.1	0.2\%	38.3\%	50.6	50.8	0.3	0.5\%
39.5\%	49.9	49.9	0.0	0.1\%	39.5\%	50.5	50.8	0.3	0.5\%
40.7\%\%	49.6	49.8	0.2	0.3\%	40.77\%	50.5 505	50.8 508	${ }^{0.3}$	0.5\%
43.2\%	49.4	49.4	0.0	0.0\%	43.2\%	50.5	50.7	${ }_{0.3}^{0.3}$	0.5\%
44.4\%	49.3	49.3	0.0	0.0\%	44.4\%	50.4	50.6	0.2	0.4\%
45.7\%	49.2	49.1	-0.1	-0.2\%	45.7\%	50.4	50.6	0.2	0.4\%
46.9\%	49.2	49.1	-0.1	-0.2\%	46.9\%	50.4	50.6	0.2	0.5\%
48.1\%	49.2	49.1	-0.1	-0.1\%	48.1\%	50.3	50.5	0.2	0.4\%
49.4\%	49.1	49.0	-0.1	-0.3\%	49.4\%	50.3	50.5	0.2	0.4\%
50.6\%	49.0	49.0	0.0	-0.1\%	50.6\%	50.3	50.5	0.2	0.4\%
51.9\%	49.0	49.0	0.0	-0.1\%	51.9\%	50.2	50.4	0.2	0.3\%
53.1\%	48.9	48.9	0.0	0.0\%	53.1\%	50.2	50.3	0.2	0.3\%
54.3\%	48.9	48.9	0.0	0.0\%	54.3\%	50.1	50.3	0.2	0.4\%
55.6\%	48.9	48.8	0.0	-0.1\%	55.6\%	50.1	50.2	0.1	0.2\%
56.8\%	48.8	48.8	0.0	0.1\%	56.8\%	50.1	50.2	0.1	0.1\%
58.0\%	48.7	48.8	0.0	0.0\%	58.0\%	50.1	50.0	-0.1	-0.1\%
59.3\%	48.5	48.5	0.0	0.0\%	59.3\%	49.9	50.0	0.1	0.2\%
60.5\%	48.4	48.4	0.0	0.0\%	60.5\%	49.8	50.0	0.2	0.3\%
61.7\%	48.3	48.3	0.0	0.0\%	61.7\%	49.8	49.9	0.1	0.3\%
63.0\%	48.3	48.3	0.0	0.0\%	63.0\%	49.8	49.9	0.2	0.3\%
64.2\%	48.2	48.2	0.0	0.0\%	64.2\%	49.7	49.9	0.2	0.5\%
65.4\%	48.1	48.2	0.1	0.2\%	${ }^{65.4 \%}$	49.7	49.8	0.1	0.2\%
${ }^{66.77 \%}$	48.1	48.2	0.1	0.2\%	${ }^{66.7 \%}$	49.6	49.7	0.1	0.1\%
-67.9\%	${ }_{47.9}^{47.9}$	48.0 48.0	${ }_{0}^{0.1}$	-	-67.9\%	49.6 49.6	${ }_{49.7}^{49.7}$	${ }_{0}^{0.1}$	-
70.4\%	47.9	48.0	0.1	0.2\%	70.4\%	49.5	49.6	0.1	0.2\%
71.6\%	47.7	48.0	0.3	0.5\%	71.6\%	49.5	49.6	0.1	0.1\%
72.8\%	47.7	48.0	0.3	0.6\%	72.8\%	49.5	49.6	0.1	0.2\%
74.1\%	47.4	47.8	0.4	0.7\%	74.1\%	49.4	49.5	0.0	0.0\%
75.3\%	47.4	47.5	0.1	0.3\%	75.3\%	49.3	49.4	0.1	0.1\%
76.5\%	47.4	47.5	0.1	0.1\%	76.5\%	49.3	49.4	0.1	0.1\%
77.8\%	47.3	47.4	0.1	0.2\%	77.8\%	49.3	49.3	0.0	0.1\%
79.0\%	47.2	47.3	0.1	0.2\%	79.0\%	49.2	${ }_{493}^{49.3}$	${ }_{0}^{0.1}$	${ }^{0.10}$
80.5\%	${ }_{47.2}^{47.2}$	${ }_{47.2}$	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$	-	${ }_{49.1}^{49.2}$	49.2	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
82.7\%	47.1	47.2	0.1	0.2\%	82.7\%	48.9	49.1	0.2	0.4\%
84.0\%	47.1	47.2	0.1	0.2\%	84.0\%	48.9	49.0	0.1	0.3\%
85.2\%	46.9	47.0	0.0	0.1\%	85.2\%	48.8	48.9	0.2	0.3\%
${ }^{86.4 \%}$	46.9	47.0	0.0	0.1\%	86.4\%	48.8	48.9	0.1	0.3\%
87.7\%	46.9	47.0	0.0	0.1\%	87.7\%	48.7	48.9	0.2	0.3\%
88.9\%	46.9	46.9	0.1	0.2\%	88.9\%	48.5	48.8	${ }^{0.3}$	0.7\%
90.1\%	46.9	46.9	0.0	0.0\%	90.1\%	48.5	48.8 487	0.3 0.3	0.6\%
${ }_{992.6 \%}^{99.4 \%}$	46.6 46.6	${ }_{46.7}^{46.8}$	${ }_{0}^{0.2}$	${ }_{\text {a }}^{0.3 \%}$	${ }_{\text {922\% }}{ }^{91.46 \%}$	48.3 48.2	${ }_{48.5}^{48.7}$	${ }_{0.3}^{0.3}$	0.76\%
93.8\%	46.5	46.6	0.1	0.2\%	93.8\%	47.8	47.9	0.1	0.3\%
${ }^{95.19}$	46.5	46.5	0.0	0.1\%	95.1\%	47.7	47.9	0.2	0.4\%
99.3\%	${ }_{46.4}^{46.4}$	${ }_{46.5}^{46.5}$	${ }_{0}^{0.1}$	- 0.2%	96.3\%	${ }_{47.7}^{47.7}$	47.6 47.6	0.0	0.0\%
98.8\%	45.4	45.4	-0.1	-0.2\%	98.8\%	47.5	47.6	0.1	0.2\%
100.0\%	45.4	45.4	-0.1	-0.2\%	100.0\%	47.5	47.6	0.1	0.2\%

		May		
${ }_{\text {Percent }}^{\text {Pexcedance }}$	${ }^{\text {WSIP }}$ Proro With	WSIP 2070 With Project	Absolute	
$\underbrace{\substack{\text { (\%) }}}_{\text {Probability }}$	Monthly Temperature	Monthly Temperatue		Difference (\%)
${ }^{\text {O.O\% }}$	(DEGF)			
0.0\%	56.3	55.3	0.0	0.0\%
1.2\%	56.0	56.1	0.1	
2.5\%	55.8	55.7	-0.2	
3.7\%	55.7	55.0	-0.8	
4.9\%	54.1	54.6	0.5	
6.2\%	53.9	54.2	0.4	0.7\%
7.4\%	53.5	53.6	0.0	0.1\%
8.6\%	53.2	53.6	0.3	0.6\%
9.9\%	53.2	53.4	0.2	0.4\%
11.1\%	53.2	53.4	0.2	0.3\%
12.3\%	53.0	53.3	0.3	0.6\%
13.6\%	53.0	52.9	0.0	-0.1\%
14.8\%	52.7	52.8	0.1	0.2\%
16.0\%	52.7	52.7	0.0	-0.1\%
17.3\%	52.7	52.7	0.0	-0.1\%
18.5\%	52.6	52.6	0.1	0.1\%
19.8\%	52.5	52.6	0.1	0.3
21.0\%	52.5	52.6	0.1	0.2\%
22.2\%	52.3	52.6	0.3	0.5\%
23.5\%	52.3	52.5	0.3	0.5\%
24.7\%	52.1	52.5	0.4	0.8\%
25.9\%	52.1	52.5	0.4	0.8\%
27.2\%	52.1	52.4	0.3	0.6\%
28.4\%	52.0	52.4	0.4	0.8\%
29.6\%	52.0	52.4	0.4	0.8\%
30.9\%	51.9	52.3	0.4	0.8\%
32.1\%	51.9	52.3	0.4	
33.3\%	51.8	52.3	0.5	1.0\%
34.6\%	51.8	52.3	0.5	1.0\%
35.8\%	51.8	52.3	0.5	1.0\%
37.0\%	51.8	52.3	0.5	0.9\%
38.3\%	51.8	52.1	0.4	0.7\%
39.5\%	51.8	52.1	0.3	0.6\%
40.7\%	51.7	52.1	${ }^{0.3}$	0.6\%
42.0\%	51.6	52.0	0.4	0.8\%
43.2\%	51.6	52.0	0.4	0.8\%
44.4\%	51.5	52.0	0.5	0.9\%
- 45.79%	51.4	52.0	0.5	${ }_{1}^{1.0 \%}$
46.9\%	51.4	52.0	0.5	1.1\%
48.19\%	51.4	${ }_{51.9}^{51.9}$	0.4	0.9\%
59.44\%	51.4	51.8	0.4	0.8\%
50.6\%	${ }_{51.3}^{51.3}$	51.8 517	0.5	0.9\%
53.1\%	51.1	51.7	0.6	1.2\%
54.3\%	51.1	51.7	0.6	1.2\%
55.6\%	51.0	51.5	0.5	1.1\%
56.8\%	51.0	51.4	0.4	0.9\%
58.0\%	51.0	51.4	0.4	0.9\%
59.3\%	50.9	51.4	0.4	
${ }^{60.5 \%}$	50.9	51.3	0.4	0.7\%
61.7\%	50.9	51.3	0.4	0.7\%
63.0\%	50.8	51.2	0.3	0.7\%
64.2\%	50.8	51.2	0.4	0.7\%
65.4\%	50.8	51.2	0.4	0.7\%
66.7\%	50.7	51.1	0.4	0.7\%
679\%	50.7	${ }_{51.1}^{51.1}$	0.4	0.8\%
69.1\%	50.6	51.0	0.4	0.8\%
70.4\%	50.6	50.9	0.3	0.7\%
71.6\%	50.6	50.9	0.3	0.6\%
72.8\%	50.5	50.9	0.4	0.8\%
74.1\%	50.5	50.9	0.4	0.8\%
75.3\%	50.4	50.9	0.5	0.9\%
76.5\%	50.4	${ }^{50.9}$	0.5	1.0\%
77.8\%	50.4 50.4	50.8 50.8	0.5	1.0\%
80.2\%	50.3	${ }_{50.8}$	${ }_{0}^{0.5}$	1.0\%
81.5\%	${ }_{50.3}$	${ }_{50.8}$	0.5	1.0\%
82.7\%	50.2	50.7	0.5	1.0\%
84.0\%	50.2	50.7	0.5	1.0\%
85.2\%	50.1	50.6	0.5	1\%
86.4\%	50.1	50.5	0.4	
87.7\%	49.9	50.5	0.6	1.3\%
88.9\%	49.8	50.5	0.7	1.4\%
90.1\%	49.7	50.4	0.7	1.4\%
91.4\%	49.7	50.1	0.5	0.9\%
92.6\%	49.6	50.1	0.5	0.9\%
93.8\%	49.5	50.0	0.5	1.0\%
95.1\%	49.5	50.0	0.4	0.9\%
96.3\%	49.4	49.9	0.5	1.1\%
${ }_{98,5 \%}^{97.5 \%}$	49.4	49.8	0.4	0.9\%
98.8% 100.0\%	49.2	49.7	0.5	${ }_{1}^{1.0 \%}$
100.0\%	49.2	49.7	0.5	1.0\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$(\%)	June			
	${ }^{\text {WSIP } 207 \text { Prowithout }}$	WSIP 2070 With Project		Relative
	Monthy Temperature	Monthy Temperature	Difference (DEGF)	Difference (\%)
0.0\%	57.0	56.1	-0.9	1.6\%
1.2\%	56.1	55.0	${ }^{-1.1}$	
2.5\%	55.9 557	54.9	-1.0	-1.8\%
3.7\%	55.7	54.7	-0.9	-1.7\%
4.9\%	55.7	54.7	-0.9	-1.7\%
6.2\%	54.8	54.7	-0.1	-0.3\%
7.4\%	54.7	54.3	-0.4	-0.7\%
${ }_{\text {8.9.9\% }}^{\text {8.6\% }}$	54.6	54.2	-0.4	-0.8\%
${ }^{9.9 \% \%}$	54.4 54.0	54.2 54.1	-0.2 0.2	-0.3\%
12.3\%	53.8	54.1	0.3	0.5\%
13.6\%	53.8	54.1	${ }^{0.3}$	0.6\%
14.8\%	53.8	54.0	0.2	0.5\%
- 16.00%	53.7 53.7	${ }_{53.7}^{53.7}$	0.1 0.0	${ }_{0}^{0.1 \%}$
18.5\%	53.6	53.7	0.0	0.1\%
19.8\%	53.6	53.7	0.1	0.2\%
21.0\%	53.3	53.6	0.3	0.6\%
22.2\%	53.3	53.6	0.3	0.5\%
23.5\%	53.3	53.4	0.2	0.3\%
24.7\%	53.3	53.4	0.2	0.3\%
25.9\%	53.3	53.3	0.1	${ }^{0.10}$
27.2% 28.4%	53.1 53.1	53.2 53.2	${ }_{0}^{0.1}$	${ }_{0}^{0.12 \%}$
29.6\%	52.9	53.1	0.2	0.3\%
30.9\%	52.8	53.1	0.3	0.5\%
32.1\%	52.8	52.9	0.1	0.2\%
33.3\%	52.8	52.9	0.1	0.2\%
34.6\%	52.8	52.8	0.1	0.1\%
35.8\%	52.7	52.8	0.1	0.3\%
37.0\%	52.5	52.7	0.2	0.4\%
39.5\%	52.4 52.4	52.6 52.6	${ }_{0}^{0.3}$	0.5\%
40.7\%	52.3	52.6	0.3	0.5\%
42.0\%	52.22	52.6 525		
4.2.2\%	52.2	52.5	0.3	0.0\%
${ }^{44.47 \%}$	52.0 51.9	52.5 52.4	0.5 0.5	-
46.9\%	51.9	52.3	0.4	0.8\%
48.1\%	51.8	52.2	0.4	0.8\%
49.4\%	51.8	52.2	0.4	0.8\%
50.6\%	${ }_{51.8}^{517}$	52.2 522	0.4	0.8\%
${ }^{51.9 \%} 5$	51.7 51.7	52.2 52.1	0.4 0.4	0.8\%
54.3\%	51.7	52.1	0.4	0.8\%
55.6\%	${ }_{51.6}^{51.6}$	52.1	0.4	0.9\%
56.8\% 58.0%	51.6 51.6	52.1 52.0	0.4 0.4	0.8.8\%
59.3\%	51.5	51.9	0.4	0.8\%
60.5\%	51.4	51.9	0.6	1.1\%
61.7\%	51.2	51.9	0.6	1.2\%
63.0\%	51.2	51.8	0.6	1.1\%
64.2\%	51.1 510	51.7 517	0.6	1.2\%
65.4\% 66.7%	51.0 50.9	51.7 51.6	0.6 0.7	1.3\% 1.4
67.9\%	50.9	51.6	0.7	1.4\%
69.1\%	50.9	51.5	0.7	1.3\%
70.4\%	50.9	${ }_{51.5}$	0.6	1.2\%
71.6\%	50.9 508 508	51.5 51.4 1.4	0.6	${ }_{1}^{1.19 \%}$
72.8\%	50.8	51.4 51.3	0.6	1.3\%
74.19\%	50.7	${ }_{51.3}^{51.3}$	0.6	1.2\%
75.3\%	50.7 50.6	51.3 51.3	${ }_{0}^{0.6}$	1.3\%
77.8\%	50.6	51.2	0.7	1.3\%
79.0\%	50.5	51.1	0.6	1.2\%
80.2\%	50.5	51.1	0.6	1.2\%
${ }^{81.5 \%}$ 82.7\%	50.5 50.4	51.0 51.0	0.6 0.6	${ }_{\text {1.1\% }}^{1.1 \%}$
84.0\%	50.4	50.9	0.6	1.1\%
	50.3 50.3	50.9 50.9	0.6 0.5	,
86.4\%	50.3 50.3	50.9 50.8	0.5 0.5	${ }_{1}^{1.0 \%}$
88.9\%	50.3	50.8	0.5	1.1\%
90.1\%	50.1	50.8	0.7	1.4\%
91.4\%	50.0	50.8	0.7	1.4\%
93.8\%	49.9	50.5	0.6	1.3\%
95.1\%	49.9	50.5	0.6	1.2\%
96.3\% ${ }_{\text {97.5\% }}$	${ }_{49.3}^{49.7}$	50.1 49.9	0.4 0.6	- ${ }_{\text {0, }}$
98.8\%	49.3	49.7	0.4	0.8\%
100.0\%	49.3	49.7	0.4	0.8\%

	Juy				August				
	WSIP 2077 Wewthout	WSIP 2070 With Project			Percent	WSIP 2070 Without	WSIP 2070 With Project		
Probability	Morthy Temperature	Monthy Temperature	Difference	Difference (\%)	Probability	Monthy Temperatu	Monthy Temperature	Difference	Difference (\%) ${ }^{(\%)}$
(\%)	(DEGF)	${ }_{\text {(DEGF) }}$	(DEGF)		(\%)	(DEGF)	(DEGF)	(DEGF)	
0.0\%	64.7	65.0	${ }^{0.3}$	0.5\%	0.0\%	69.4	69.9	0.5	0.8\%
1.2\%	59.5	56.0	${ }^{-3.5}$	-5.9\%	1.2\%	65.5	64.4	-1.1	
2.5\%	58.4	55.8	-2.6	-4.4\%	2.5\%	64.4	61.5	-2.8	-4.4\%
3.7\%	56.4	55.3	-1.1	-2.0\%	3.7\%	64.4	61.4	-2.9	-4.6\%
4.9\%	56.2	55.1	-1.1	-2.0\%	4.9\%	60.1	57.7	-2.4	-4.0\%
6.2\%	56.0	55.0	-1.0	-1.8\%	6.2\%	60.0	56.0	-4.0	-6.7\%
7.4\%	55.9	55.0	-0.9	-1.6\%	7.4\%	56.8	55.8	-1.0	-1.8\%
8.6\%	55.7	55.0	-0.7	${ }_{-1.3 \%}$	8.6\%	56.3	55.8	-0.5	-0.9\%
9.9\%	55.7	55.0	-0.7	-1.3\%	9.9\%	56.1	55.5	-0.6	-1.0\%
11.1\%	55.6	54.9	-0.7	-1.3\%	11.19\%	55.0	55.5	-0.6	-1.0\%
12.3\%	55.6	54.8	-0.8	-1.5\%	12.3\%	56.0	55.3	-0.7	-1.3\%
13.6\%	55.5	54.6	-0.9	-1.7\%	13.6\%	55.9	55.2	-0.7	-1.2\%
14.8\%	55.5	54.6	-0.9	-1.6\%	14.8\%	55.9	55.2	-0.7	-1.3\%
16.0\%	55.4	54.6	-0.8	-1.5\%	16.0\%	55.8	55.1	-0.7	-1.2\%
17.3\%	55.3	54.5	-0.8	-1.5\%	17.3\%	55.6	55.1	-0.5	-0.9\%
18.5\%	55.3	54.5	-0.8	-1.4\%	18.5\%	55.5	54.9	-0.6	-1.1\%
19.8\%	55.3	54.5	-0.8	-1.4\%	19.8\%	55.5	54.9	-0.6	-1.2\%
21.0\%	55.1	54.4	-0.7	-1.3\%	21.0\%	55.4	54.9	-0.5	-1.0\%
22.2\%	55.1	54.4	-0.7	-1.3\%	22.2\%	55.4	54.9	-0.5	-0.9\%
23.5\%	55.0	54.4	-0.6	-1.2\%	23.5\%	55.3	54.8	-0.5	-0.9\%
24.7\%	55.0	54.4	-0.6	-1.1\%	24.7\%	55.3	54.7	-0.6	-1.0\%
25.9\%	54.8	54.2	-0.6	-1.0\%	25.9\%	55.3	54.6	-0.6	-1.2\%
27.2\%	54.6	54.2	-0.4	-0.8\%	27.2\%	55.2	54.6	-0.6	-1.1\%
28.4\%	54.5	54.1	-0.5	-0.9\%	28.4\%	55.1	54.6	-0.5	-0.9\%
29.6\%	54.4	54.0	-0.4	-0.7\%	29.6\%	55.0	54.6	-0.4	-0.7\%
${ }^{30.9 \%}$	54.3	54.0	-0.3	-0.6\%	30.9\%	55.0 550	54.6 54.5	-0.4	-0.77\%
32.1\%	54.3	54.0	-0.3	-0.6\%	32.1\%	55.0	54.5	-0.4	-0.7\%
33.3\%	54.2	53.9	-0.2	-0.4\%	33.3\%	54.9	54.5	-0.3	-0.6\%
34.6\%	53.9	53.9	0.0	0.1\%	34.6\%	54.8	54.5	-0.3	-0.6\%
35.8\%	53.9	53.9	0.0	0.0\%	35.8\%	54.8	54.5	-0.3	-0.6\%
37.0\%	53.9	53.8	0.0	0.0\%	37.0\%	54.8	54.5	-0.4	-0.7\%
38.3\%	53.7	53.8	0.1	0.1\%	38.3\%	54.8	54.4	-0.4	-0.7\%
39.5\%	53.7	53.7	0.1	0.2\%	39.5\%	54.8	54.4	-0.4	-0.7\%
40.7\%	53.6	53.7	0.2	0.3\%	40.7\%	54.7	54.4	-0.3	-0.6\%
42.0\%	53.5	${ }_{53.6}$	0.1	0.2\%	42.0\%	54.7	54.3	-0.3	-0.6\%
43.2\%	53.5	53.6	0.1	0.2\%	43.2\%	54.7	54.2	-0.4	-0.7\%
44.4\%	${ }_{53.5}^{53.5}$	${ }_{53,6}^{53.6}$	0.1	0.3\%	44.4\%	54.7	54.2	-0.4	-0.8\%
45.7\%	53.4	53.6	0.2	0.4\%	45.7\%	54.7	54.2	-0.4	-0.8\%
46.9\%	53.3	53.5	0.3	0.5\%	46.9\%	54.6	54.2	-0.4	-0.8\%
48.1\%	53.2	53.5	0.3	0.6\%	48.1\%	54.6	54.2	-0.4	-0.8\%
49.4\%	53.2	53.4	0.2	0.5\%	49.4\%	54.6	54.2	-0.4	-0.7\%
50.6\%	53.2	53.4	0.2	0.4\%	50.6\%	54.5	54.2	-0.4	-0.7\%
51.9\%	53.1	53.3	0.2	0.4\%	51.9\%	54.5	54.1	-0.4	-0.7\%
${ }_{54.3 \%}^{53.10 \%}$	53.0 52.9	53.3 53.3	0.2 0.4	${ }_{\text {o.7\% }}^{0.5 \%}$	${ }_{\text {54, }}^{53.10 \%}$	54.5 54.5	54.1 54.1	-0.4	-0.7\%
55.6\%	52.9	53.2	0.3	0.6\%	55.6\%	54.5	54.0	-0.4	-0.8\%
56.8\%	52.8	53.1	${ }^{0.3}$	0.5\%	56.8\%	54.4	54.0	-0.4	-0.7\%
58.0\%	52.8	53.0	0.3	0.5\%	58.0\%	54.4	54.0	-0.3	-0.6\%
59.3\%	52.7	53.0	0.2	0.5\%	59.3\%	54.3	54.0	-0.3	-0.6\%
60.5\%	${ }_{52.7}$	52.9	0.2	0.4\%	60.5\%	54.3	54.0	-0.3	-0.6\%
61.7\%	52.7	52.9	0.3	0.5\%	61.7\%	54.3	54.0	-0.3	-0.6\%
63.0\%	52.6	52.8	0.2	0.4\%	63.0\%	54.2	54.0	-0.3	-0.5\%
64.2\%	52.6	52.8	0.2	0.4\%	64.2\%	54.2	53.9	-0.3	-0.5\%
65.4\%	52.5	52.8	0.3	0.5\%	65.4\%	54.2	53.9	-0.2	-0.4\%
667.9\%	52.5 52.5	52.7 52.7	0.2 0.2	0.4\%	66.7\% 67.9%	54.1 54.1	53.8 53.8	-0.3 -0.3	-0.0.0\%
69.1\%	52.4	52.6	0.3	0.5\%	69.1\%	54.1	53.8	-0.3	-0.5\%
70.4\%	52.3	52.6	0.3	0.7\%	70.4\%	54.0	53.8	-0.2	-0.5\%
71.6\%	52.3	52.6	0.3	0.6\%	71.6\%	54.0	53.7	-0.3	-0.5\%
72.8\%	52.2	52.5	${ }^{0.3}$	0.5\%	72.8\%	54.0	53.7	-0.3	-0.6\%
74.1\%	52.2	52.5	0.3	0.6\%	74.1\%	54.0	53.7	-0.3	-0.5\%
75.3\%	52.0	52.4	0.4	0.8\%	75.3\%	53.9	53.7	-0.2	-0.4\%
76.5\%	52.0	52.4	0.5	0.9\%	76.5\%	53.9	53.6	-0.2	-0.4\%
77.8\%	51.9	52.4	0.5	1.0\%	77.8\%	53.8	53.6	-0.2	-0.4\%
79.0\%	51.8	52.4	0.5	1.0\%	79.0\%	53.7	53.6	-0.1	-0.2\%
80.2\%	51.8 51.7	52.3	0.5	1.0\%	80.2\%	53.6	53.5 535	-0.1	-0.2\%
${ }^{81.5 \%}$	51.7	${ }_{52.1}$	0.4	0.7\%	${ }^{81.5 \%}$	53.4	¢53.5	0.1	0.2\%
	51.7 51.7	52.1. 52.1	0.4 0.4	0.7\% 0	-	53.4 53.4	53.5 53.5	${ }_{0}^{0.1}$	${ }_{\text {coin }}^{0.1 \%}$
885.2\%	51.7	52.1 51.9	0.3	0.5\%	84.2\%	53.4	53.4	0.0	0.0\%
86.4\%	51.5	51.9	0.3	0.7\%	86.4\%	53.4	53.3	0.0	-0.1\%
87.7\%	51.5	51.9	0.4	0.7\%	87.7\%	53.4	53.1	-0.3	-0.5\%
88.9\%	51.5	51.7	0.2	0.5\%	88.9\%	53.2	52.8	-0.4	-0.7\%
90.1\%	51.3	51.7	0.4	0.8\%	90.1\%	53.2	52.8	-0.4	-0.7\%
91.4\%	51.1	51.6	0.5	0.9\%	91.4\%	53.1	52.7	-0.4	-0.7\%
${ }_{93.8 \%}^{92.6 \%}$	51.1 51.1	51.5 51.4	0.4 0.3	0.8\% 0	${ }_{93.8 \%}^{92.6 \%}$	52.9 52.6	52.3 52.0	-0.5 -0.6	${ }_{-1.10 \%}^{-1.0 \%}$
95.1\%	50.9	51.3	0.4	0.8\%	95.1\%	52.5	52.0	-0.6	-1.1\%
${ }^{96.3 \%}$	50.8	51.2	0.4	0.7\%	96.3\%	${ }_{52.0}^{52.0}$	${ }_{51.6}^{51.6}$	-0.4	-0.8\%
97.5\%	50.8	50.9	${ }^{0.1}$	0.3\%	97.5\%	52.0	${ }_{51.5}^{51.5}$	-0.5	-0.9\%
98.8\%	50.7 50.7	50.8 50.8	${ }_{0}^{0.2}$	- ${ }_{0}^{0.3 \%}$	98.8\% 100\%	51.9 51.9	50.9 50.9	${ }_{-11}$	${ }_{-2.1 \%}^{-2.1 \%}$

$\begin{gathered} \hline \text { Percent } \\ \begin{array}{c} \text { Excedance } \\ \text { Probaility } \end{array} \\ \text { (\%) } \\ \hline \end{gathered}$	September			RelativeDifference (\%)
	${ }^{\text {WSIP } 2070 \text { Without }}$	WSIP 2070 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (DEGF) } \\ \hline \end{gathered}$	
	Monthly Temperature (DEEFF)	Monthly Temperature (DEGF)		
0.0\%	70.1	69.3	-0.8	-1.1\%
1.2\%	69.6	67.4	-2.2	-3.2\%
2.5\%	68.4	66.5	-2.0	-2.9\%
3.7\%	68.1	65.9	-2.3	-33\%
4.9\%	6.	62.1	-4.4	-6.6\%
6.2\%	65.6	62.0	-3.6	-5.5\%
7.4\%	64.4	61.0	-3.4	-5.3\%
8.6\%	63.0	59.4	-3.6	-5.7\%
9.9\%	62.0	58.7	-3.3	-5.3\%
11.1\%	61.9	58.6	-3.3	-5.3\%
12.3\%	60.3	58.4	-1.9	-3.2\%
13.6\%	59.0	57.4	-1.6	-2.8%
14.8\%	58.6	57.4	-1.2	-2.1\%
16.0\%	58.5	57.3	-1.2	-2.19\%
17.3\%	58.1	55.7	-1.3	-2.3\%
18.5\%	55.0	56.7	-1.3	-2.3\%
19.8\%	57.4 57.3	56.4 55.8 5.	-1.15	- -1.9%
${ }_{22}^{21.0 \%}$	57.3	55.8 557 5.	-1.5	-2.7\%
${ }^{22.20 \%}$	57.0	55.7 557	-1.3	${ }^{-2.3 \%}$
${ }_{24.7 \%}^{22.50}$	${ }_{56.6}$	${ }_{55.5}^{55.7}$	-1.11	-2.0\%
25.9\%	56.3	55.4	-0.9	-1.6\%
27.2\%	56.2	55.3	-0.9	-1.6\%
28.4\%	56.1	55.2	-0.9	-1.6\%
29.6\%	56.1	55.2	-0.9	-1.6\%
30.9\%	55.8	55.1	-0.7	-1.2\%
32.10% 33.3%	55.6 55.6	55.0 54.8		
34.6\%	55.5	54.7	-0.8	-1.4\%
35.8\%	55.3	54.6	-0.7	-1.2\%
37.0\%	55.2	54.6	-0.6	-1.1\%
38.3\%	55.2	54.6	-0.6	-1.1\%
39.5\%	55.2	54.6	-0.6	-1.1\%
40.7\%	55.2	54.6	-0.6	-1.1\%
42.0\%	55.1	54.5	-0.6	-1.0\%
43.2\%	55.0	54.3	-0.7	-1.3\%
${ }^{44.4 \%}$	55.0 55.0	54.3 54.1	-0.7 -0.8 0.8	-1.3\% ${ }_{-1.5 \%}$
46.9\%	54.8	54.1	-0.7	-1.3\%
48.1\%	54.7	54.1	-0.6	-1.1\%
49.4\%	54.7 547	${ }_{54.1}$	-0.7	-1.2\%
50.6\%	54.7	54.0	-0.7	-1.2\%
51.9\%	54.7	54.0	-0.6	-1.2\%
53.1\%	54.6	54.0	-0.6	-1.1\%
54.3\%	54.6	54.0	-0.6	-1.19\%
55.6\%	54.5	54.0	-0.6	--1.19% -1.0%
56.0\%	54.4 54	${ }_{53.8}$	-0.5	${ }_{-1.0 \%}$
59.3\%	54.3	53.8	-0.5	-0.9\%
${ }^{60.50 \%}$	54.2	53.7 537	-0.5	-0.9\%
61.7\%	54.0	53.7	-0.4	-0.7\%
63.0\%	53.7 535	${ }_{53,6}^{53.6}$	-0.1	-0.2\%
${ }^{64.2 \%}$	${ }_{535}^{53.5}$	53.6 536 53	0.1	0.1\%
65.4\%	53.5	53.6	0.1	0.2\%
66.7\%	53.5	53.5	0.0	0.1\%
67.9\%	53.4	53.5	0.1	0.2\%
69.1\%	53.1	53.5	0.3	0.6\%
70.4.6\%	53.1 53.1	53.4 53.4	0.3 0.3	0.6\%
72.8\%	52.9	53.4	0.5	1.0\%
74.1\%	52.8	53.2	0.4	0.8\%
75.3\%	52.6	53.0	0.4	0.8\%
76.5\%	${ }_{525}^{52.5}$	52.7	0.2	0.4\%
77.8\%	${ }_{52.3}$	52.7	0.4	0.7\%
79.0\%	52.2	52.6	0.4	0.7\%
80.2\%	52.2	52.5	0.4	0.7\%
81.5\%	${ }_{52,2}^{52.2}$	${ }_{52.5}^{52.5}$	0.4	${ }_{0}^{0.7 \%}$
842.0\%	52.1 52.1	52.2 52.2	0.0	0.1\%
85.2\%	52.0	51.9	-0.1	-0.2\%
${ }^{86.44 \%}$	51.9	${ }_{51.7}^{51.7}$	-0.2	-0.49\%
88.9\%	51.9	51.6	-0.2	-0.5\%
90.1\%	51.8	51.6	-0.2	-0.4\%
91.4\%	51.7	51.5	-0.2	-0.5\%
92.6\%	51.7	51.5	-0.2	-0.4\%
93.8\%	51.4	51.4	0.0	0.0\%
95.1\%	51.4	51.4	0.0	0.0\%
96.3\%	51.4	${ }_{51.3}$	0.0	${ }^{-0.110 \%}$
97.5\%	51.3	51.3	-0.1	-0.2\%
988.8\% 100.0%	51.2 51.2	51.1 51.1	-0.2 -0.2	-

Table SO3.-1b
Sacramento River at Bonnyyiew Bridge, Monthy Temperature

June to September				
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	WSIP 207\% WithoutProietMonthl Tomperatue(DEEFF)	$\begin{aligned} & \hline \text { WsIP 207o With Project } \\ & \hline \begin{array}{c} \text { Monthty Temperature } \\ \text { (DEFFF) } \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (DEGF) } \end{gathered}$	$\begin{aligned} & \text { Relative } \\ & \text { Difference }(\%) \end{aligned}$
0.0\%	64.4		0.0	0.0\%
1.2\%	62.3	60.8	-1.5	24
2.5\%	62.2	59.9	-2.3	-3.7\%
3.7\%	60.9	59.1	-1.8	-3.0\%
4.9\%	60.0	55.8	-3.1	-5.2\%
6.2\%	58.4	56.8	-1.6	-2.8\%
7.4\%	57.7	56.3	-1.5	-2.5\%
8.6\%	57.6	55.6	-2.0	-3.5\%
9.9\%	57.1	55.5	-1.6	-2.8\%
11.1.1\%	55.6	55.5	-1.0	-1.8\%
12.3\% 13.6\%	56.0 56.0	55.4 55.4	-0.6 -0.6	- ${ }_{-1.0 \%}$
14.8\%	55.8 55.8	55.3	-0.6	-1.0\%
16.0\%	55.8	55.3	-0.5	-1.0\%
17.3\%	55.8	55.0	-0.8	-1.5\%
18.5\%	55.6	54.9	-0.6	-1.2\%
19.8\%	55.3	54.9	-0.4	-0.6\%
21.0\%	55.2	54.9	-0.3	-0.5\%
22.2\%	55.1	54.7	-0.4	-0.8\%
${ }^{23.5 \%}$	55.1 55.0	54.7 54.7	-0.4 -0.3	-
25.9\%	54.9	54.6	-0.3	-0.6\%
27.2\%	54.7	54.5	-0.2	-0.4\%
28.4\%	54.6	54.4	-0.2	-0.4\%
29.6\%	54.5 545 54.5	54.3 54.3	-0.2	-0.4\%
30.9\%	54.5 54.4	54.3	-0.2	-0.4\%
32.1\%	54.4	54.2	-0.3	-0.5\%
33.3\%	54.3 541 54	53.9 539	-0.4	-0.7\%
34.8\%	54.0	${ }_{53.9}$	-0.2	-0.3\%
37.0\%	53.9	53.8	-0.1	-0.2\%
38.3\%	53.9	53.7	-0.1	-0.2\%
39.5\%	53.8	53.7	-0.1	-0.2\%
${ }^{40.79 \%}$	53.7 53.7	53.6 53.6	-0.1 -0.1	-
43.2\%	53.7	53.6	-0.1	-0.1\%
44.4\%	53.7	53.6	0.0	-0.1\%
45.7\%	53.6	53.5 535	-0.1	-0.2\%
46.9\%	53.6	53.5	-0.1	-0.3\%
48.1\%	53.5	53.5	-0.1	-0.2\%
49.4\%	53.5	53.4	-0.1	-0.2\%
50.6\%	53.5	53.4	-0.1	-0.2\%
51.9\%	53.5 53.3	${ }_{53.3}^{53.4}$	-0.1 0.0	-0.0.2\%
54.3\%	53.3	53.3	0.0	-0.1\%
55.6\%	53.3	53.2	0.0	-0.1\%
56.8\%	53.3	53.2	0.0	-0.1\%
58.0\%	53.2	53.2	0.0	-0.1\%
59.3\%	${ }_{53.1}^{53.1}$	${ }_{53.1}^{53.1}$	0.0	-0.1\%
60.5\%	53.1	${ }_{531}^{53.1}$	0.0	0.0\%
61.7\%	53.1	53.1	0.0	0.0\%
63.0\%	53.1	53.0	0.0	-0.1\%
${ }^{64.2 \%}$	53.0	52.9	-0.1	-0.0.2\%
66.7\%	52.9	52.9	-0.1	${ }^{-0.1 \%}$
67.9\%	52.9	52.9	0.0	-0.1\%
69.1\%	52.8	52.8	0.0	-0.1\%
70.4\%	52.7	52.8	0.0	0.1\%
71.6% 72.8%	52.6 52.5	52.8 52.7	0.2 0.2	0.3\%
74.1\%	52.5	52.6	0.1	0.1\%
75.3\%	52.5	52.5	0.0	-0.1\%
76.5\%	52.5	52.4	-0.1	-0.2\%
77.8\%	52.4	52.4	0.0	-0.19\%
80.2\%	52.2	52.3	0.1	0.2\%
81.5\%	52.1	52.3	0.1	0.3\%
${ }^{82.79 \%}$	52.1	${ }_{52.2}^{52}$	0.1	0.2\%
84.0\%	52.0	52.2	0.2	0.3\%
85.2\%	52.0	${ }_{52.2}^{52.2}$	0.2	0.3\%
86.4% 87.7%	52.0 51.8	52.1 52.0	${ }_{0}^{0.1}$	${ }_{0}^{0.3 \%}$
88.9\%	51.7	51.9	0.2	0.4\%
90.1\%	51.7	51.8	0.1	0.3\%
91.4\%	51.6	51.8	0.3	0.5\%
92.6\%	51.5	51.8	0.3	${ }^{0.5 \%}$
95.1\%	51.4	51.6	${ }_{0} 0.3$	0.5\%
96.3\%	51.4	51.6	0.2	0.4\%
97.5\%	51.0	51.4	0.4	0.7\%
98.8\%	51.0 50.9	51.3 511	${ }^{0.3}$	0.6\%

	Juy to September				August to September				
${ }_{\substack{\text { Percent } \\ \text { Exceedance }}}^{\text {P }}$	WSIP 2070 Without	WSIIP 2070 With Project	soute		Perc	${ }^{\text {WSIP P 270 O W Without }}$	WSIIP 2070 With Project	solute	
Probability (\%)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Monthly Temperature } \\ & \text { (DEGF) } \end{aligned}$	$\begin{gathered} \text { Difference } \\ \text { (DEGFF) } \end{gathered}$	Difference (\%)	Probability	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	Difference	Difference (\%)
0.0\%	66.8	67.1	0.3	0.4\%	0.0\%	67.9	68.2	0.3	0.4\%
1.2\%	64.9	63.2	-1.6	-2.5\%	1.2\%	67.5	66.8	-0.7	-1.0\%
2.5\%	64.3	61.6	-2.7	-4.2\%	2.5\%	67.2	64.5	-2.8	-4.1\%
3.7\%	62.9	60.8	-2.1	-3.3\%	3.7\%	66.4	63.6	-2.8	-4.2\%
4.9\%	61.4	8.0	-3.4	-5.5\%	4.9\%	64.1	59.9	-4.2	-6.6\%
6.2\%	60.0	57.5	-2.5	-4.1\%	6.2\%	62.2	58.7	-3.4	-5.5\%
7.4\%	59.1	55.8	-2.3	-3.9\%	7.4\%	${ }^{60.8}$	57.9	-2.8	-4.7\%
8.6\%	58.2	56.5	-1.8	-3.0\%	8.6\%	59.6	57.7	-2.0	-3.3\%
9.9\%	58.1	56.3	-1.7	-3.0\%	9.9\%	59.4	57.2	-2.2	-3.7\%
11.1\%	57.8	56.0	-1.8	-3.1\%	11.1\%	58.9	56.9	-2.0	-3.4\%
12.3\%	56.8	56.0	-0.7	-1.3\%	12.3\%	57.5	55.8	-0.7	-1.2\%
13.6\%	56.7	55.9	-0.8	-1.4\%	13.6\%	57.4	56.6	-0.8	-1.5\%
14.8\%	55.6	55.7	-0.9	-1.6\%	14.8\%	57.1	55.3	-0.8	-1.3\%
16.0\%	56.4	55.6	-0.8	-1.4\%	16.0\%	57.0	56.1	-1.0	-1.7\%
17.3\%	56.4	55.4	-1.0	-1.7\%	17.3\%	57.0	55.9	-1.1	-1.9\%
18.5\%	56.4	55.4	-1.0	-1.7\%	18.5\%	56.8	55.6	-1.2	-2.1\%
19.8\%	55.0	55.2	-0.8	-1.4\%	19.8\%	56.2	55.6	-0.6	-1.0\%
21.0\%	55.8	55.1	-0.7	-1.3\%	21.0\%	56.1	55.5	-0.6	-1.1\%
22.2\%	55.6	55.0 54.9	-0.6	-1.2\%	22.2\%	$\begin{array}{r}56.1 \\ 55 \\ \hline\end{array}$	$\begin{array}{r}55.1 \\ 551 \\ \hline\end{array}$	-1.0	-1.8\%
23.5\%	55.4	54.9	-0.5	-0.9\%	23.5\%	55.9 559	55.1 551	-0.8	-1.4\%
24.7\%	55.4	54.9	-0.5	-1.0\%	24.7\%	55.9	55.1	-0.7	-1.3\%
25.9\%	55.4	54.8	-0.5	-1.0\%	25.9\%	55.7	55.1	-0.6	-1.1\%
27.2\%	55.3	54.7	-0.6	-1.1\%	27.2\%	55.7	54.9	-0.7	-1.3\%
28.4\%	55.3	54.6	-0.6	-1.1\%	28.4\%	55.5	54.9	-0.6	-1.1\%
29.6\%	55.2	54.6	-0.6	-1.1\%	29.6\%	55.5	54.9	-0.6	-1.1\%
30.9\%	55.0	54.6	-0.4	-0.8\%	30.9\%	55.3	54.8	-0.5	-0.8\%
32.19\%	54.9 548	54.6 54.6	-0.3	-0.6\%	32.19\%	55.1 550	54.7 54.6	-0.4	-0.7\%
33.3% 34.6%	54.8 548 54	$\begin{array}{r}54.6 \\ 543 \\ \hline 4.3\end{array}$	-0.3 -0.5	-0.0\%		55.0 55.0	54.6 54.6	-0.4 -0.4	-0.0.8\%
35.8\%	54.6	54.3	-0.4	-0.7\%	35.8\%	55.0	54.6	-0.4	-0.8\%
37.0\%	54.6	54.2	-0.4	-0.7\%	37.0\%	55.0	54.5	-0.5	-0.9\%
38.3\%	54.4	54.1	-0.3	-0.5\%	38.3\%	54.9	54.4	-0.5	-0.8\%
39.5\%	54.4	54.1	-0.3	-0.5\%	39.5\%	54.8	54.4	-0.4	-0.8\%
40.7\%	54.4	54.1	-0.3	-0.5\%	40.7\%	54.8	54.4	-0.4	-0.8\%
42.0\%	54.3	54.0	-0.3	-0.6\%	42.0\%	54.8	54.4	-0.5	-0.8\%
43.2\%	54.2	54.0	-0.3	-0.5\%	43.2\%	54.8	54.3	-0.5	-0.8\%
44.4\%	54.2	54.0	-0.3	-0.5\%	44.4\%	54.8	54.3	-0.5	-0.8\%
45.7\%	54.2	53.9	-0.3	-0.5\%	45.7\%\%	54.7 547	54.2	-0.5	-0.9\%
46.9\%	54.1	53.9	-0.2	-0.4\%	46.9\%	54.7	54.2	-0.5	-1.0\%
48.19\%	$\begin{array}{r}54.1 \\ 54.1 \\ \hline\end{array}$	53.8 538 53	-0.3	-0.5\%	48.19\%	54.6 54.6 54.6	$\begin{array}{r}54.1 \\ 541 \\ \hline\end{array}$	-0.5	${ }^{-0.9 \%}$
49.4\%	54.1	(53.8	-0.3	${ }^{-0.5 \%}$	4.9.4\%	54.6	54.1 54.1	-0.5	-0.9\%
50.6\%	54.0	$\begin{array}{r}53.8 \\ 53 \\ \hline 8.8\end{array}$	-0.2	-0.4\%	50.6\%	54.5 545	54.1	-0.5	-0.8\%
51.9\%	54.0 54.0	53.8	-0.2	-0.4\%	51.9\%	54.5 545 4.5	54.0 54.0	-0.5	${ }^{-0.99 \%}$
53.1\%	54.0	53.7	-0.2	-0.4\%	53.1\%	54.5	54.0	-0.5	-0.9\%
54.3\%	54.0	53.7	-0.2	-0.5\%	54.3\%	54.5	53.9	-0.6	-1.1\%
55.6\%	53.9	53.7	-0.2	-0.4\%	55.6\%	54.5	53.9	-0.6	-1.1\%
56.8\%	53.9	53.7	-0.2	-0.4\%	56.8\%	54.4	53.8	-0.6	-1.1\%
58.0\%	53.9	53.7	-0.2	-0.4\%	58.0\%	54.4	53.8	-0.6	-1.1\%
59.3\%	53.9	53.7	-0.2	-0.4\%	59.3\%	54.4	53.8 59	-0.6	-1.19\%
${ }^{60.5 \%}$	${ }_{53.6}$	年53.6)	-0.1	-0.1\%	${ }^{60.5 \%}$	54.3	53.8		
${ }^{61.79 \%}$	(53.6	53.5 534	-0.1	-0.2\%	61.7\%	54.1 539	53.7 537	-0.4	-0.8\%
63.0\%	53.5 535 5	53.4 53.4	-0.1	-0.2\%	-63.0\%	$\begin{array}{r}53.9 \\ 538 \\ \hline 58\end{array}$	53.7 537	-0.2	-0.4\%
${ }^{64.2 \%}$	${ }_{535}^{53.5}$	53.4	-0.1	-0.2\%	${ }^{64.2 \%}$	${ }_{53}^{53.8}$	53.7 53.7	-0.1	-0.3\%
65.4\%	${ }_{53.5}^{535}$	53.4	-0.1	-0.2\%	65.4\%	${ }_{53.8}$	${ }_{53,7}^{53.7}$	-0.1	-0.3\%
66.7\%	53.5	53.3	-0.1	-0.2\%	66.7\%	53.8	53.7	-0.1	-0.3\%
67.9\%	53.4	53.3	-0.1	-0.2\%	67.9\%	53.8	53.6	-0.1	-0.3\%
69.1\%	53.3	53.3	0.0	0.0\%	69.1\%	53.7	53.6	-0.1	-0.2\%
70.4\%	53.2	53.2	0.1	0.1\%	70.4\%	53.5	53.6	0.0	0.1\%
72.8\%	53.1 53.1	53.2 53.0	0.0 -0.1	${ }_{\text {- }}^{0.1 \%}$	71.6\%	53.5 53.5	53.5 53.3	0.0 -0.1	-0.3\%
74.1\%	53.1	53.0	0.0	-0.1\%	74.1\%	53.5	53.3	-0.2	-0.4\%
75.3\%	53.1	53.0	-0.1	-0.2\%	75.3\%	53.5	53.2	-0.3	-0.5\%
76.5\%	53.1	52.9	-0.2	-0.3\%	76.5\%	53.5	53.1	-0.4	-0.7\%
77.8\%	53.0	52.8	-0.2	-0.5\%	77.8\%	53.4	53.0	-0.4	-0.7\%
79.0\%	${ }_{52.9}^{52.9}$	${ }_{52.7}$	-0.1	-0.3\%	79.0\%	${ }_{53.2}^{53.2}$	${ }_{52.8}^{52.8}$	-0.3	-0.7\%
80.2\%	52.8	52.7	-0.2	-0.3\%	80.2\%	53.1	52.8	-0.3	-0.5\%
81.5\%	${ }_{52.7}^{52.7}$	${ }_{525}^{52.5}$	-0.1	-0.3\%	81.5\%	${ }_{53.1}^{53}$	${ }_{52.8}^{52.8}$	-0.3	-0.5\%
822.7\%	52.6	52.5	-0.1	-0.2\%	82.7\%	53.0	52.8	-0.3	-0.5\%
${ }^{88.29 \%}$	52.6 52.5	52.5 52.5	-0.1	--0.1\%	84.0\% 88.2%	52.9 52.7	52.7 52.6	-0.1	-
86.4\%	52.3	52.5	0.2	0.3\%	86.4\%	52.7	52.5	-0.2	-0.4\%
87.7\%	52.2	52.4	0.3	0.5\%	87.7\%	52.7	52.4	-0.2	-0.4\%
88.9\%	52.1	52.3	0.1	0.2\%	88.9\%	52.6	52.4	-0.2	-0.4\%
90.1\%	${ }_{52.0}^{52.0}$	52.2	0.1	0.3\%	90.1\%	$\begin{array}{r}52.4 \\ 52.4 \\ \hline\end{array}$	52.4 52.3	0.0	0.0\%
914.4\%	${ }_{52.0}$	${ }_{52.0}$	0.1	0.1\%	91.4\%	${ }_{52.3}^{52.3}$	${ }_{52.3}^{52.3}$	0.0	0.0\%
92.6\%	52.0 510	55.0	0.0	0.1\%	92.6\%	52.3	52.3 52.2	0.0	0.0\%
93.8\%	51.9	51.9	0.0	0.0\%	93.8\%	52.2	52.2	0.0	0.1\%
95.1\%	51.9	51.9	0.0	0.0\%	95.17\%	${ }_{52.1}^{52.1}$	52.1 52.1	0.0	-0.19\%
${ }^{99.3 \% \%}$	51.7 515 515	51.8 517	0.1	${ }^{0.14 \%}$	${ }_{\text {97.5\% }}^{96.3 \%}$	${ }_{52.1}^{52.1}$	52.1	0.0	-0.19\%
98.8\%	51.4	51.7	0.3	0.5\%	98.8\%	51.7	51.7	-0.1	-0.2\%
100.0\%	51.4	51.7	0.3	0.5\%	100.0\%	51.7	51.6	-0.1	-0.1\%

Figure SQ4-1b
Sacramento
River at
Proballs Ferry, Monthly Temperature

Table SQ4-1b
verat alls Sery, Mon
Sacramento Rivera a balls Ferry, Monthy Temperature

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probabalily } \end{aligned}$	October			
	WSII 2070 W. Whout Proiet	WSIP 2070 With Project		Relative
	Monthy Temperature	Monthly Temperature	Difference	Difference (\%)
0.0\%	66.9	66.8	01	.010
1.2\%	66.0	65.3	-0.7	${ }_{-1.1 \%}$
2.5\%	64.5	64.9	0.4	0.6\%
3.7\%	64.4	63.6	-0.8	1.2\%
4.9\%	64.0	63.4	-0.6	-0.9\%
6.2\%	63.8	63.1	-0.7	-1.1\%
7.4\%	63.8	62.5	-1.2	-2.0\%
8.6\%	63.3	62.3	-1.0	-1.6\%
9.9\%	63.2	61.7	-1.5	-2.3\%
11.11\%	63.0	61.6	-1.4	-2.3\%
${ }^{12.3 \%}$	62.7	61.3	-1.3	-2.1\%
13.6\%	61.4 61.3	60.6 60.6	-0.8 -0.8	${ }_{\text {-1.3\% }}$
${ }^{14.00 \%}$	61.3 60.9	${ }_{60.3}^{60.6}$	-0.8	-1.0\%
17.3\%	60.1	59.9	-0.2	-0.4\%
18.5\%	60.1	59.0	-1.0	-1.7\%
19.8\%	58.6	59.0	0.4	0.7\%
21.0\%	58.5	58.9	0.5	0.8\%
22.2\%	58.4	58.8	0.4	0.6\%
23.5\%	58.2	58.5	0.3	0.5\%
24.7\%	58.2	58.5	0.2	0.4\%
25.9\%	58.2	58.3	0.2	0.3\%
27.2% 28.4%	58.2 58.1	年58.1	-0.1 -0.2	-0.0.3\%
29.6\%	58.1	57.8	-0.3	-0.5\%
30.9\%	58.1	57.6	-0.4	-0.7\%
32.1\%	58.1	57.6	-0.4	-0.8\%
33.3\%	57.9	57.6	-0.3	-0.6\%
34.6\%	57.9	57.5	-0.4	-0.6\%
35.8\%	57.8	57.5	-0.3	-0.6\%
37.0\%	57.6 576	57.4	-0.2	-0.3\%
	57.6 57.5	57.4 57.4	-0.2	-0.3\%
40.7\%	57.3	57.3	0.0	0.1\%
42.0\%	57.2	57.3	0.1	0.1\%
43.2\%	57.1	57.3	0.2	0.3\%
44.4\%	57.1	57.3	0.2	0.3\%
45.7\%	57.1	57.2	0.1	0.2\%
46.9\%	57.0	57.1	0.1	0.1\%
48.1\%	56.9	56.9	0.0	-0.1\%
49.4\%	55.9	${ }_{56.6}$	-0.3	-0.5\%
50.6\%	56.9	56.6	-0.3	-0.5\%
51.9\%	56.9	56.6	-0.3	-0.5\%
53.19\% 54.30	56.8 568	56.6 565 6.5	-0.3	-0.5\%
55.6\%	56.8	56.5	-0.3	-0.6\%
56.8\%	56.8	56.5	-0.3	-0.6\%
58.0\%	${ }_{56.7}$	56.5	-0.2	-0.3\%
59.3\%	${ }_{56.7}^{56.7}$	${ }_{56.4}^{56.4}$	-0.2	-0.4\%
60.5\%	56.6 56.6	56.4.	-0.2	-0.3\%
${ }^{61.77 \%}$	${ }_{56.6}^{56.6}$	${ }_{56.4}^{56.4}$	-0.2	-0.3\%
63.0\%	56.4	56.4	0.0	-0.1\%
64.2\%	56.4	56.4	0.0	-0.1\%
65.4\%	56.3	56.3	0.0	-0.1\%
${ }^{66.79 \%}$	56.3	56.2	0.0	0.0\%
-67.9\%	56.2 56.2	56.2 56.2	0.0 0.0	-0.0\%
70.4\%	56.2	56.1	-0.1	-0.2\%
71.6\%	56.2	56.1	-0.1	-0.2\%
72.8\%	56.2	55.0	-0.1	-0.3\%
74.1\%	56.2	55.0	-0.1	-0.2\%
75.3\%	56.1	55.0	-0.1	-0.2\%
76.5\%	56.0	55.9	-0.1	-0.2\%
77.8\%	56.0	55.8	-0.2	-0.3\%
79.0% 80.2%	55.0	55.8	-0.2	-0.3\%
80.1.5\%	${ }_{56.0}^{56.0}$	55.8 55.8	-0.1 -0.2	-0.3\%
82.7\%	55.9	55.8	-0.1	-0.1\%
84.0\%	55.8	55.8	0.0	-0.1\%
85.2\%	55.8 558 55	55.6 556 55	-0.2	-0.4\%
${ }^{86.4 \%} 8$	55.8 55.7	55.6 55.6	$\stackrel{-0.1}{-0.1}$	-0.0.2\%
88.9\%	55.7	55.6	-0.1	-0.2\%
90.1\%	55.6	55.5	-0.1	-0.2\%
91.4\%	55.6	55.5	-0.1	-0.2\%
92.6\%	55.5 554 55	55.5 55 5.4	0.0	0.0\%
95.1\%	55.4	55.2	-0.2	-0.4\%
96.3\%	55.3	55.2	-0.1	-0.2\%
97.5\%	55.1	55.1	0.0	0.0\%
98.8\% 100.0%	55.0 55.0	55.1 55.1	${ }^{0.1}$	${ }^{0.11 \%}$

$\begin{array}{\|c} \hline \text { Percent } \\ \text { Exceednce } \\ \text { Probability } \\ (\%) \\ \hline \end{array}$	November			-	December				
	${ }^{\text {WSIP } 2070 \text { Without }}$	WSIP 2070 With Project			Percent Exceedance	WSIP 2070 Without	WSIP 2070 With Project	Absolute	Relative
	Monthly Temperature (DEEFF)	Monthly Temperature (0EGF)		Difference (\%)	Probability $(\%)$		Monthly Temperature (DEGF)	(DEGF)	Difference (\%)
0.0\%	60.8	59.6	-1.2	-1.9\%	0.0\%	55.2	55.2	-0.1	-0.1\%
1.2\%	59.7	59.5	-0.2	-0.4\%	1.2\%	55.1	55.0	-0.1	-0.1\%
2.5\%	58.9	59.2	0.4	0.6\%	2.5\%	55.0	55.0	0.0	0.0\%
3.7\%	58.8	59.2	0.3	0.6\%	3.7\%	54.9	54.8	-0.1	-0.2\%
4.9\%	58.8 58.5	58.8 58.3 8.	0.0	-0.1\%	4.9\%	54.8 54.7	54.8 54.6	0.0 -0.1	-0.0\%
-6.2\% 7	58.5	58.3 58.1	-0.1 0.0	-	- 7.4%	54.7 54.5	54.6 54.6	-0.1 0.1	${ }^{-0.19 \%}$
8.6\%	58.1	58.0 58.0	-0.1	-0.1\%	8.6\%	54.4	54.4	0.0	0.0\%
9.9\%	58.0	57.9	0.0	0.0\%	9.9\%	54.1	54.1	0.0	0.0\%
11.1\%	57.9	57.9	0.0	-0.1\%	11.1\%	54.1	54.1	0.0	0.0\%
12.3\%	57.8	57.8	0.0	0.0\%	12.3\%	54.0	54.1	0.1	0.1\%
13.6\%	57.8	57.8	0.0	0.0\%	13.6\%	54.0	54.1	0.1	0.2\%
14.8\%	57.7	57.7	0.0	0.0\%	14.8\%	53.8	54.1	0.3	0.5\%
16.0\%	57.7	57.5	-0.2	-0.3\%	16.0\%	53.8	54.0	0.3	0.5\%
17.3\%	57.6	57.4	-0.2	-0.3\%	17.3\%	53.7	53.9	0.2	0.4\%
18.5\%	57.1	57.3	0.2	0.3\%	18.5\%	53.6	53.9	0.3	0.5\%
19.9\%	56.9 56.9	57.2 570	0.2	${ }^{0.4 \%}$	19.8\%	53.5 53.3 5.	53.8 538 38	0.4	${ }^{0.79 \%}$
${ }_{22.2 \%}$	55.8	57.9	0.1	0.2\%	${ }_{\text {22.2\% }}$	${ }_{53.3}^{53.3}$	${ }_{53.8}^{53.8}$	0.5	1.0\%
22.5\%	${ }_{56.8}$	56.9	0.1	0.2\%	22.5\%	53.3	${ }_{53.7}^{53.7}$	0.4	0.8\%
24.7\%	56.7	56.7	0.0	0.0\%	24.7\%	53.2	53.6	0.4	0.7\%
25.9\%	56.6	56.7	0.1	0.1\%	25.9\%	53.0	53.5	0.5	1.0\%
27.2\%	56.5	56.6	0.2	0.3\%	27.2\%	53.0	53.5	0.6	1.1\%
28.4\%	56.4	56.6	0.2	0.4\%	28.4\%	52.8	53.4	0.6	1.0\%
29.6\%	56.4	56.4	0.0	0.0\%	29.6\%	52.7	53.4	0.7	1.3\%
30.9\%	56.4	56.4	0.0	0.0\%	30.9\%	52.6	53.2	0.5	1.0\%
32.1\%	56.3	56.4 564	0.0	0.1\%	32.10% 33.3%	52.6 52.6	53.1 53.1	0.5 0.5	1.0\%
34.6\%	56.2	56.3	0.1	0.3\%	34.5\%	52.5	53.0	0.5	1.0\%
35.\%\%	56.2	56.3	0.1	0.2\%	35.\%	52.4	53.0	0.5	1.0\%
37.0\%	56.1	56.1	-0.1	-0.1\%	37.0\%	52.4	52.9	0.4	0.9\%
38.3\%	56.1	56.1	-0.1	-0.1\%	38.3\%	52.3	52.8	0.5	0.9\%
39.5\%	56.1	56.0	-0.1	-0.2\%	39.5\%	52.1	52.7	0.6	1.1\%
40.7\%	56.1	55.9	-0.2	-0.3\%	40.7\%	52.0	52.4	0.4	0.8\%
42.0\%	55.0	55.9	-0.1	-0.2\%	42.0\%	52.0	52.4	0.4	0.8\%
43.2\%	56.0	55.9	-0.1	-0.2\%	43.2\%	52.0	52.3	0.3	0.5\%
44.4\%	56.0	55.9	-0.1	-0.2\%	44.4\%	51.8	52.1	0.3	0.6\%
45.7\%\%	55.0	55.9 559	-0.1	-0.3\%	45.7\%\%	${ }_{51.7}$	52.11	0.4	0.9\%
46.9\%	55.9	55.9	-0.1	-0.1\%	46.9\%	51.6	52.1	0.4	0.8\%
48.19\%	55.9 559	55.8 558 55	-0.1	-0.1\%	48.19\%	51.6 515 1.5	52.0 52.0	0.4	0.7\%
49.4\%	55.9 558 5.8	55.8	-0.1	-0.2\%	49.4\%	51.5 51.4	52.0 51.9	0.5	0.9\%
50.6\%	${ }_{55.8}^{557}$	55.7	-0.1	-0.3\%	50.6\%	51.4	51.9	0.5	1.0\%
51.9\%	55.7	55.6	-0.1	-0.2\%	51.9\%	51.4	51.9	0.5	0.9\%
53.19\%	55.7 557	55.6 556 5.6	-0.1	-0.2\%	53.19\%	$\begin{array}{r}51.4 \\ 51.4 \\ \hline\end{array}$	${ }_{51.9}^{51.9}$	0.5	0.9\%
54.3\%	55.7	55.6	-0.1	-0.2\%	54.3\%	51.3	51.8	0.5	0.9\%
55.6\%	55.7	55.6	-0.1	-0.2\%	55.6\%	51.2	51.7	0.5	0.9\%
56.8\%	55.7	55.5	-0.2	-0.3\%	56.8\%	51.2	51.7	0.5	0.9\%
58.0\%	55.7	55.5	-0.2	-0.3\%	58.0\%	51.2	51.6	0.4	0.9\%
59.5\% ${ }_{\text {5 }}$	55.7 55.6	55.5 55.4	-0.2 -0.2	-0.0.3\%	59.3\%	$\begin{array}{r}51.1 \\ 51.1 \\ \hline\end{array}$	51.5 51.4	0.4 0.3	0.6\% 0
61.7\%	55.5	55.4	-0.1	-0.3\%	61.7\%	51.0	${ }_{51.3}$	0.3	0.6\%
63.0\%	55.5	55.4	-0.1	-0.3\%	63.0\%	51.0	51.3	0.3	0.5\%
64.2\%	55.5	55.4	-0.1	-0.3\%	64.2\%	51.0	51.3	0.3	0.5\%
65.4\%	55.5	55.4	-0.2	-0.3\%	65.4\%	51.0	51.3	0.3	0.6\%
66.7\%	55.5	55.3	-0.2	-0.3\%	66.7\%	50.9	51.2	0.2	0.5\%
67.9\%	55.5	55.3	-0.2	-0.4\%	67.9\%	50.9	51.1	0.2	0.4\%
69.1\%	55.5	55.3	-0.2	-0.4\%	69.1\%	50.8	51.1	0.3	0.6\%
70.4\%	55.5	55.2	-0.2	-0.4\%	70.4\%	50.5	51.1	0.5	1.0\%
71.6\%	55.4	55.2	-0.2	-0.4\%	71.6\%	50.3	51.0	0.6	${ }_{1}^{1.2 \%}$
72.8\%	55.4 55.4	55.2 55.2	-0.2 -0.2	- -0.3%	72.8\%	50.3 50.3	50.8 50.7	0.5 0.4	1.0\%
75.3\%	55.3	55.2	-0.2	-0.3\%	7.3.3\%	50.3	50.6	${ }_{0.3}$	0.6\%
76.5\%	55.3	55.2	-0.2	-0.3\%	76.5\%	50.3	50.6	${ }^{0.3}$	0.5\%
77.8\%	55.3	55.1	-0.2	-0.4\%	77.8\%	50.2	50.5	0.2	0.5\%
79.0\%	55.3	55.1	-0.2	-0.4\%	79.0\%	50.2	50.5	0.3	0.6\%
80.2\%	55.3	55.1	-0.2	-0.4\%	80.2\%	50.2	50.4	0.3	0.5\%
81.5\%	55.2	55.0	-0.1	-0.3\%	81.5\%	50.1	50.4	0.3	0.5\%
82.7\%	${ }_{55.1}^{551}$	54.9	-0.3	-0.5\%	82.7\%	50.0	${ }^{50.3}$	0.3	0.6\%
84.0\%	55.1	54.8	-0.4	-0.6\%	84.0\%	49.9	50.2	0.3	0.6\%
85.2\%	55.1	54.8	-0.3	-0.6\%	85.2\%	49.9	50.0	0.1	0.3\%
86.4% 87.7%	55.0 55.0	54.7 54.6	-0.3 -0.4	${ }^{-0.5 \%}$	86.4% 87.7%	49.8 49.8	50.0 49.8	0.2 0.0	${ }_{0}^{0.4 \%}$
88.9\%	54.7	54.5	-0.2	-0.4\%	88.9\%	49.7	49.7	0.0	0.0\%
90.1\%	54.7	54.5	-0.2	-0.4\%	90.1\%	49.5	49.5	0.1	0.2\%
91.4\%	54.6	54.4	-0.1	-0.3\%	91.4\%	49.4	49.2	-0.2	-0.3\%
92.6\%	54.6	54.4	-0.2	-0.3\%	92.6\%	48.9	48.9	0.0	0.1\%
93.8\%	54.4	54.3	-0.1	-0.3\%	93.8\%	48.8	48.9	0.1	0.2\%
95.1\%	54.2	54.2	0.0	0.0\%	95.1\%	48.7	48.9	0.1	0.3\%
96.3\%	54.2	54.1	0.0	-0.1\%	96.3\%	48.6	48.9	0.3	0.7\%\%
${ }^{98.5 \% \%}$	53.9 53.5	54.0 53.8	0.1 0.3	0.5\%	98.8\%	${ }_{48.2}$	48.8 48.6	0.4 0.4	0.8\% 0.8
100.0\%	53.5	53.8	0.3	0.5\%	100.0\%	48.2	48.6	0.4	0.8\%

January				
Percent Exceedance	${ }^{\text {WSIP } 2070 \text { With }}$ Prout	WSIP 2070 With Project		Reative
Probability	Monthly Temperature	Monthly Temperature	$\begin{aligned} & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	Difference (\%)
0.0\%	51.7	52.4	0.7	1.4\%
1.2\%	51.6	52.0	0.4	0.7\%
2.5\%	51.6	51.7	0.1	0.2\%
3.7\%	51.5	51.7	0.1	0.3\%
4.9\%	51.3	51.5	0.3	0.5\%
6.2\%	51.2	51.3	0.1	0.3\%
7.4\%	51.1	51.3	0.2	0.3\%
8.6\%	51.1	51.2	0.1	0.2\%
9.9\%	51.0	51.1	0.1	0.2\%
11.1.\%	50.9	${ }_{51.1}$	0.2	0.4\%
12.3\%	50.8	51.1	0.2	0.4\%
13.6\%	50.5	51.0	0.5	1.0\%
14.8\%	50.5	50.9	0.4	0.8\%
16.0\%	50.5	50.9	0.4	0.9\%
17.3\%	50.0	50.7	0.6	1.2\%
18.5\%	49.9	50.6	0.6	1.3\%
19.8\%	49.9	50.5	0.7	1.3\%
21.0\%	49.9	50.2	0.4	0.7\%
22.2\%	49.8	50.2	0.4	0.8\%
23.5\%	49.8	50.1	0.4	0.7\%
24.7\%	49.7	50.1	0.3	0.6\%
25.9\%	49.6	50.0	0.3	0.7\%
27.2\%	49.6	50.0	0.4	0.8\%
28.4\%	49.6	49.9	0.3	0.7\%
29.6\%	49.5	49.7	0.2	0.4\%
30.9\%	49.5	49.7	0.2	0.3\%
32.1\%	49.4	49.6	0.2	0.5\%
33.3\%	49.3	49.6	${ }^{0.3}$	0.7\%
34.6\%	49.2	49.6	0.4	0.8\%
35.8\%	49.1	49.6	0.4	0.9\%
37.0\%	49.1	49.5	0.4	0.9\%
38.3\%	49.1	49.3	0.3	0.6\%
39.5\%	48.9	49.3	${ }^{0.3}$	0.7\%
40.7\%	48.8	49.1	0.4	0.7\%
${ }_{4}^{42.2 \%}$	48.8 48.7	${ }_{49.1}^{49.1}$	0.4 0.3	0.7\%
44.4\%	48.7	49.0	0.3	0.6\%
45.7\%	48.7	49.0	0.3	0.5\%
46.9\%	48.7	48.9	0.2	0.5\%
48.1\%	48.6	48.8	0.2	0.4\%
49.4\%	48.5	48.7	0.2	0.4\%
50.6\%	48.3	48.6	0.3	0.6\%
51.9\%	48.3	48.6	0.4	0.8\%
53.1\%	48.3	48.6	0.4	0.8\%
54.3\%	48.2	48.6	${ }^{0.3}$	0.7\%
55.6\%	48.2	48.5	0.3	${ }^{0.79 \%}$
${ }^{56.8 \%}$	48.1	48.5	0.4	0.8\%
58.0\%\%	48.0	48.4	0.4	0.8\%
590.5\%	48.0 48.0	${ }_{48.4}^{48.4}$	${ }^{0.4}$	0.8\%
${ }^{60.5 \%}$	${ }_{48.0}^{48.0}$	48.4 48.3	0.4 0.4	0.8\%
63.0\%	47.9	48.3	0.3	0.7\%
64.2\%	47.9	48.2	0.2	0.5\%
65.4\%	47.9	48.1	0.2	0.3\%
66.7\%	47.9	48.0	0.1	0.2\%
67.9\%	47.9	47.9	0.1	0.1\%
${ }_{7}^{69.1 \%}$	47.8 477	47.9 479	0.1	0.2\%
70.4\%\%	${ }_{47.7}^{47.7}$	47.9 479	${ }_{0}^{0.2}$	- 0.4%
72.8\%	47.5	47.9	0.3	0.7\%
74.1\%	47.5	47.8	0.3	0.6\%
75.3\%	47.5	47.7	0.3	0.6\%
76.5\%	47.4	47.7	0.3	0.6\%
77.8\%	47.4	47.7	0.3	0.6\%
79.0\%	47.4	47.7	0.3	0.6\%
80.2\%	47.4	47.5	0.1	0.3\%
81.5\%	47.3	47.4	0.1	0.2\%
	47.2 47.1	47.3 47.2	0.1 0.2	${ }_{\text {en }}^{0.3 \%}$
85.2\%	46.9	47.2	0.3	0.7\%
86.4\%	46.9	47.2	0.3	0.6\%
87.7\%	46.9	47.1	0.2	0.5\%
88.9\%	46.6	46.9	0.3	0.7\%
90.1\%	46.6	46.9	0.3	0.7\%
91.4\%	46.6	46.6	0.1	0.2\%
92.6\%	46.5	46.5	0.0	0.1\%
93.8\%	46.3	46.3	0.0	0.0\%
${ }^{95.1 \%}$	46.2	46.2	0.0	${ }^{-0.19}$
${ }^{96.3 \%}$	46.2	46.0	-0.2	-0.4\%
978.5\%	${ }_{456} 5$	${ }_{456} 45$	0.3	0.6\%
98.8\%	45.6 456	${ }_{45}^{45.6}$	0.0	-0.0.1\%
100.0\%	45.6	45.6	0.0	-0.1\%

Table SQ4-1b
vera t alls
erry, Mon
Sacramento River at Balls Feryy, Monthy Temperature

	February			
	WSIP 2070 Without	WSIP 2070 With Project		
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	chiterene (iEGF)	Difference (\%)
0.0\%	52.2	52.2	0.0	0.0\%
1.2\%	51.6	51.8	0.2	0.5\%
2.5\%	51.5	51.4	-0.1	-0.1\%
3.7\%	51.2	51.2	0.0	0.0\%
4.9\%	50.6	50.9	0.3	0.6\%
6.2\%	50.6	50.9	0.3	0.6\%
7.4\%	50.5	50.6	0.0	${ }^{0.19 \%}$
${ }_{9.9 \%}^{8.90 \%}$	50.2	50.3	0.1	0.2\%
11.11\%	50.2	${ }_{50.3}$	0.1	0.1\%
12.3\%	50.2	50.3	0.1	0.1\%
13.6\%	50.2	50.2	0.1	0.1\%
14.8\%	50.0	50.2	0.2	0.4\%
16.0\%	50.0	50.2	0.2	0.5\%
17.3\%	49.7	50.2	0.5	1.0\%
18.5\%	49.7	49.8	0.2	0.3\%
19.8\%	49.7	49.8	0.2	0.3\%
21.0\%	49.6	49.8	0.2	0.5\%
${ }^{22.20 \%}$	49.5	49.8	0.2	0.5\%
${ }^{23.79 \%}$	49.5	49.7	0.2 0.2	0.4\%
25.9\%	49.5	49.6	0.1	0.3\%
27.2\%	49.5	49.6	0.2	0.3\%
28.4\%	49.4	49.6	0.2	0.4\%
29.6\%	49.4	49.6	0.2	0.3\%
30.9\%	49.4	49.5	0.2	0.3\%
32.1\%	49.4	49.5	0.2	0.3\%
33.3\%	49.4	49.4	0.1	0.2\%
34.6% 35.8%	49.3 49.3	${ }_{49.3}^{49.4}$	0.0 0.0	-0.1\%
37.0\%	49.2	49.2	0.0	0.0\%
38.3\%	49.0	49.1	0.0	0.1\%
39.5\%	49.0	49.0	0.0	0.1\%
40.7\%	49.0	49.0	0.0	0.0\%
42.0\%	48.9	48.9	0.0	0.0\%
43.2\%	48.8	48.8	0.0	0.1\%
44.4\%	48.7	48.8	0.0	0.0\%
45.7\%	48.7	48.6	-0.1	-0.2\%
46.9\%	48.6	48.6	0.0	0.0\%
48.19\%	48.5	48.6	0.0	0.1\%
49.4\%	48.5	48.5	0.0	0.0\%
51.9\%	48.4	48.4	0.0	0.0\%
53.1\%	48.3	48.3	0.0	0.1\%
54.3\%	48.2	48.3	0.0	0.1\%
55.6\%	48.2	48.1	-0.1	-0.2\%
56.8\%	48.1	48.1	0.0	-0.1\%
58.0\%	47.9	48.0	0.1	0.2\%
59.3\%	47.9	47.9	0.0	0.0\%
60.5\%	47.8	47.9	0.1	0.2\%
61.7\%	47.8	47.8	0.1	0.1\%
63.0\%	47.8 477	47.8 478	0.0	${ }^{0.10 \%}$
-64.2\%	${ }_{47.6}^{47.7}$	47.7 47.7	${ }_{0.1}^{0.1}$	${ }_{0}^{0.2 \%}$
66.7\%	47.6	47.6	0.0	0.1\%
67.9\%	47.6	47.5	-0.1	-0.2\%
69.1\%	47.4	47.5	0.1	0.2\%
70.4\%	47.3	47.5	0.1	0.2\%
71.6\%	47.3	47.4	0.1	0.2\%
72.8\%	47.2	47.4	0.1	0.3\%
74.1\%	47.1	47.4	0.2	0.5\%
75.3\%	47.0	47.3	${ }^{0.3}$	0.6\%
77.8\%	47.0	47.0	0.0	${ }_{0}^{0.1 \%}$
79.0\%	46.9	46.9	0.0	0.1\%
80.2\%	46.8	46.8	0.0	0.0\%
81.5\%	46.8	46.8	0.0	-0.1\%
82.7\%	46.7	46.8	0.1	0.1\%
84.0\%	46.7	46.7	0.0	0.0\%
85.2\%	46.6	46.7	0.1	0.2\%
86.4\%	46.5	46.6	0.1	0.1\%
87.7\%	46.5	46.5	0.0	0.1\%
${ }^{88.9 \%} 9$	46.5 46.5	46.5 46.5	0.1 0.0	${ }^{0.1 \%}$
91.4\%	46.3	46.3	0.0	-0.1\%
92.6\%	46.3	46.3	-0.1	-0.2\%
93.8\%	46.3	46.2	0.0	-0.1\%
95.1\%	46.1	46.0	-0.2	-0.4\%
96.3\%	46.0	45.9	-0.1	-0.3\%
97.5\%	45.7	45.7	0.0	0.1\%
98.8\%	44.7	44.6	-0.1	-0.2\%
100.0\%	44.7	44.6	-0.1	-0.2\%

March					April				
Percent	WSIP 2070 Without	WSIIP 2070 With Project			Percent	WSIP 2070 Without	WSIIP 2070 With Project		
Exceedance	Proiect	Mothy	Difference		eedance	Proiet	Wsip 2070 With Project		Reative
$\begin{gathered} \text { Probability } \\ (\%) \\ \hline \end{gathered}$	Monthly Temperature (OEFF) Cor	$\begin{gathered} \text { Monthly Temperature } \\ \text { (DEGF) } \end{gathered}$	(DEGF)	(erence (\%)	Probability (\%)		Monthly Temperature (DEEF)	(DEGF)	Difference (\%)
0.0\%	53.6	53.3	-0.3	-0.5\%	0.0\%	55.8	55.7	-0.2	-0.3\%
1.2\%	53.3	53.2	-0.1	-0.2\%	1.2\%	55.1	55.1	0.0	0.1\%
2.5\%	53.2	53.0	-0.1	-0.2\%	2.5\%	54.8	54.7	-0.1	-0.1\%
3.7\%	53.0	52.9	-0.1	-0.2\%	3.7\%	54.7	54.5	-0.2	-0.4\%
4.9\%	52.6	52.8	0.2	0.4\%	4.9\%	54.6	54.4	-0.2	-0.4\%
6.2\%	52.5	52.7	0.2	0.4\%	6.2\%	54.1	54.2	0.1	0.2\%
7.4\%	52.5	52.6	0.1	0.2\%	7.4\%	54.1	53.7	-0.4	-0.7\%
8.6\%	52.4	52.5	0.1	0.2\%	8.6\%	54.0	53.7	-0.4	-0.7\%
9.9\%	52.1	52.5	0.4	0.7\%	9.9\%	54.0	53.7	-0.4	-0.7\%
11.1\%	52.0	52.3	0.2	0.5\%	11.1\%	53.5	53.5	0.0	0.0\%
12.3\%	52.0	52.3	0.3	0.5\%	12.3\%	53.5	53.5	-0.1	-0.1\%
13.6\%	52.0	52.0	0.1	0.2\%	13.6\%	53.5	53.5	0.0	-0.1\%
14.8\%	51.9	51.9	0.0	0.0\%	14.8\%	53.4	53.4	0.0	0.0\%
16.0\%	51.9	51.9	0.0	-0.1\%	16.0\%	53.4	53.4	0.0	0.0\%
17.3\%	51.8	51.8	0.0	0.0\%	17.3\%	53.4	53.4	0.0	0.0\%
18.5\%	51.8	51.8	0.0	0.0\%	18.5\%	53.4	53.2	-0.2	-0.3\%
19.8\%	51.7	51.8	0.1	0.1\%	19.8\%	53.3	53.2	-0.1	-0.2\%
21.0\%	51.7	${ }_{51.8}^{51.8}$	0.1	0.1\%	21.0\%	${ }_{53,3}^{53,3}$	${ }_{53.2}^{53}$	-0.1	-0.19\%
${ }_{\text {22, }}^{22.2 \%}$	51.7 517	51.8 51.8	${ }_{0}^{0.1}$	${ }_{0}^{0.1 \%}$	22.2\%	53.2 53.2	${ }_{53.1}^{53.1}$	-0.1	-0.19\%
24.7\%	51.6	51.8	0.1	0.2\%	24.7\%	53.2	53.1	-0.1	-0.1\%
25.9\%	51.5	51.7	0.1	0.3\%	25.9\%	53.0	53.1	0.0	0.0\%
27.2\%	51.4	51.7	0.3	0.6\%	27.2\%	53.0	53.0	0.1	0.1\%
28.4\%	51.4	51.6	0.2	0.5\%	28.4\%	52.7	53.0	0.3	0.5\%
29.6\%	51.3	51.5	0.2	0.4\%	29.6\%	52.7	53.0	0.3	0.5\%
30.9\%	51.2	51.4	0.2	0.4\%	30.9\%	52.7	53.0	0.3	0.5\%
32.1\%	51.2	51.3	0.1	0.2\%	32.1\%	52.6	52.9	0.3	0.5\%
33.3\%	51.0	51.3	0.3	0.6\%	33.3\%	52.6	52.8	0.2	0.4\%
34.6\%	50.9	51.1	0.2	0.4\%	34.6\%	52.6	52.8	0.3	0.5\%
35.8\%			0.1	0.2\%	35.8\%	52.5	52.8	0.3	
	50.8	50.8	0.0	0.0\%	37.0\%	52.4	52.8 52.8	0.4	0.7\%
38.3.3\%	50.7 50.7	50.8 50.6	0.1 -0.1	-0.2\%	38.3\%	52.4 52.3	$\begin{array}{r}52.7 \\ 52.6 \\ \hline\end{array}$	0.3 0.3	0.6\% 0
40.7\%	50.6	50.5	-0.1	-0.2\%	40.7\%	52.3	52.5	0.2	0.5\%
42.0\%	50.6	50.5	-0.1	-0.2\%	42.0\%	52.3	52.5	0.3	0.5\%
43.2\%	50.5	50.4	-0.1	-0.3\%	43.2\%	52.3	52.5	0.2	0.4\%
44.4\%	${ }^{50.4}$	${ }^{50.3}$	-0.1	-0.2\%	44.4\%	52.3	52.4	0.2	0.3\%
45.7\%	50.4	50.3	-0.1	-0.2\%	45.7\%	52.2	52.4	0.2	0.4\%
46.9\%	50.3	50.3	-0.1	-0.1\%	46.9\%	52.2	52.4	0.2	0.4\%
48.19\%	50.0	50.2	0.2	0.3\%	48.1\%	52.1	${ }_{52.3}$	0.2	0.3\%
49.4\%\%	50.0 50.0	50.0 50.0	0.0 0.0	${ }^{-0.1 \%}$	49.4\%	52.0 52.0	52.3 52.2	${ }_{0.3}^{0.3}$	${ }^{0.6 \% \%}$
51.9\%	50.0	50.0	0.0	0.0\%	51.9\%	51.9	52.0	0.1	0.2\%
53.1\%	49.8	49.8	0.0	0.0\%	53.1\%	51.9	52.0	0.1	0.2\%
54.3\%	49.8	49.8	0.0	-0.1\%	54.3\%	51.8	52.0	0.1	0.2\%
55.6\%	49.8	49.6	-0.2	-0.3\%	55.6\%	51.7	51.9	0.2	0.4\%
56.8\%	49.6	49.6	0.0	-0.1\%	56.8\%	51.7	51.9	0.2	0.4\%
58.0\%	49.6	49.6	0.0	-0.1\%	58.0\%	51.7	51.8	0.2	0.3\%
59.3\%	49.6	49.5	0.0	-0.1\%	59.3\%	51.6	51.8	0.2	0.3\%
60.5\%	49.3	49.5	0.2	0.3\%	60.5\%	51.6	51.7	0.2	0.3\%
61.7\%	49.3	49.4	0.1	0.2\%	61.7\%	51.6	51.7	0.1	0.2\%
-63.0\%	49.2	49.4 493	${ }_{0}^{0.1}$	- ${ }_{0}^{0.3 \%}$	-630\%	51.6 51.5 515	51.7 51.6 51.6	${ }_{0}^{0.1}$	${ }^{0.2 \% \%}$
${ }^{64.29 \%}$	${ }_{49.1}^{49.2}$	${ }_{49.3}$	0.1	0.3\%	${ }^{64.29 \%}$	51.5	${ }_{51.6}^{51.6}$	0.1	${ }_{0}^{0.1 \%}$
66.7\%	49.0	49.2	0.2	0.5\%	66.7\%	51.5	51.5	0.1	0.1\%
67.9\%	48.9	49.2	0.2	0.5\%	67.9\%	51.5	51.5	0.0	0.1\%
69.1\%	48.8	48.9	0.1	0.1\%	69.1\%	51.4	51.5	0.1	0.2\%
70.4\%	48.8	48.9	0.1	0.1\%	70.4\%	51.3	51.5	0.1	0.3\%
71.6\%	48.8	48.9	0.1	0.2\%	71.6\%	51.3	51.5	0.2	0.3\%
72.8\%	48.7	48.9	0.1	0.3\%	72.8\%	${ }_{51.3}$	51.4	0.1	0.3\%
74.1\%	48.5	48.8	0.2	0.4\%	74.1\%	51.3	51.4	0.1	0.2\%
75.3\%	48.5	48.7	0.2	0.4\%	75.3\%	51.2	51.4	0.1	0.3\%
76.5\%	48.5	48.6	0.0	0.1\%	76.5\%	51.2	51.3	0.1	0.2\%
77.8\%	48.4	48.4	-0.1	-0.1\%	77.8\%	51.2	51.3	0.1	0.2\%
79.0\%	48.3	48.2	-0.1	-0.2\%	79.0\%	51.0	51.1	0.2	0.3\%
80.2\%	48.1	48.1	0.0	0.0\%	80.2\%	50.7	51.0	0.2	0.5\%
81.5\%	48.0	48.0	-0.1	-0.1\%	81.5\%	50.7	${ }_{50.8}$	0.1	0.2\%
82.7\%	47.9	47.9	0.0	0.0\%	82.7\%	50.7	50.8	0.1	0.2\%
84.0\%	47.7	47.8	0.1	0.1\%	84.0\%	50.6	50.8	0.2	0.3\%
85.2\%	47.7	47.7	0.0	0.0\%	85.2\%	50.5	50.8	0.2	0.5\%
86.4\%	47.7	47.7	0.0	0.0\%	86.4\%	50.5	50.6	0.1	0.3\%
87.7\%	47.6	47.6	0.0	0.0\%	87.7\%	50.4	50.5	0.1	0.2\%
88.9\%	47.6	47.6	0.0	0.1\%	88.9\%	50.4	50.4	0.1	0.19\%
90.19\%	47.5 47.5	47.5 475	0.0	-	${ }_{\text {911.4\% }}^{90.19 \%}$	50.3 50.2	50.3 50.3	0.1 0.1	- 0.2%
92.6\%	47.4	47.4	0.0	0.0\%	${ }^{92.6 \%}$	50.1	50.3	${ }_{0.1}^{0.1}$	0.3\%
93.\%	47.2	47.4	0.2	0.4\%	93.\%	50.1	50.1	0.1	0.1\%
95.1\%	47.2	47.4	0.2	0.4\%	95.1\%	49.7	49.9	0.2	0.3\%
96.3\%	47.2	47.1	-0.1	-0.2\%	96.3\%	49.1	49.4	0.3	0.6\%
97.5\%	47.0	46.9	0.0	-0.1\%	97.5\%	48.9	49.0	0.1	0.2\%
98.8\%	${ }_{46.6}$	46.7	0.1	0.2\%	98.8\%	48.9	48.8	0.0	0.0\%
100.0\%	46.6	46.7	0.1	0.2\%	100.0\%	48.9	48.8	0.0	0.0\%

May				
Percent Exceedance	${ }^{\text {WSIP } 2070 \text { Without }}$ Proiet	WSIP 2070 With Project	absolute	Relative
Probability (6) (6)	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	(DEGF)	Difference (\%)
0.0\%	57.8	57.9	0.1	0.2\%
1.2\%	57.4	57.6	0.1	0.3\%
2.5\%	57.3	55.9	-0.4	-0.7\%
3.7\%	56.9	56.7	-0.2	-0.3\%
- ${ }^{4.9 \%}$	56.9 56.1	56.6 56.2	-0.2 0.1	-0.2\%
7.4\%	55.9	56.0	0.1	0.1\%
8.6\%	55.8	56.0	0.2	0.3\%
9.9\%	55.7	55.9	0.2	0.4\%
11.1\%	55.6	55.9	0.3	0.5\%
12.3\%	55.4	55.8	0.4	0.7\%
13.6\%	55.4	55.8	0.4	0.8\%
14.8\%	55.1	55.5	0.4	0.7\%
${ }^{16.0 \%} \times 1.3 \%$	55.1 55.0	55.5 55.4	0.4 0.4	0.7\%\%
18.5\%	54.8	55.4	0.6	1.1\%
19.8\%	54.7	55.3	0.6	1.1\%
21.0\%	54.7	55.2	0.6	1.0\%
22.2\%	54.6	55.2	0.6	1.1\%
23.5\%	54.6 54.5	55.1 550	0.5	1.0\%
24.7\%	54.5	55.0	0.5	0.9\%
25.9\%	54.5	54.9	0.4	0.7\%
27.2\%	54.3	54.7	0.4	0.7\%
28.4\%	54.3	54.6	0.3	0.5\%
29.6\%	54.2	54.6	0.4	0.8\%
30.9\%	54.1	54.5	0.4	0.8\%
32.10% 33.3%	54.0 54.0	54.4 54.4	0.4 0.4	0.8\%
34.6\%	53.9	54.4	0.4	0.8\%
35.\%	53.9	54.3	0.5	0.9\%
37.0\%	53.9	54.3	0.5	0.9\%
38.3\%	53.8	54.3	0.5	0.9\%
39.5\%	53.8	54.3	0.5	0.9\%
40.7\%	53.6	54.3	0.6	1.2\%
42.0\%	53.6	54.2	0.6	1.2\%
43.4.4\%	53.4	54.2 54.2	${ }^{0.7}$	${ }_{1}^{1.4 \%}$
45.7\%	53.4	54.2	0.8	1.4\%
46.9\%	53.4	54.2	0.8	1.5\%
48.19\%	$\begin{array}{r}53.4 \\ 53.3 \\ \hline\end{array}$	53.9 539	0.5	${ }^{1.0 \%}$
49.4\%	53.3	53.9 538	0.5	1.0\%
50.6\% 51.9%	53.3 53 5	$\begin{array}{r}53.8 \\ 538 \\ \hline 58\end{array}$	0.6	-
${ }^{53.1 \%}$	53.2	${ }_{53.7}^{53.8}$	${ }_{0}^{0.5}$	${ }_{0}^{0.9 \%}$
54.3\%	53.2	53.7	0.5	1.0\%
55.6\%	53.2	53.7	0.5	1.0\%
56.8\%	53.2	53.7	0.5	1.0\%
- 58.00%	53.1 53.1	53.6 53.6	0.5 0.5	${ }^{1.0 \%}$
60.5\%	53.1	53.6	0.5	1.0\%
${ }^{61.7 \%}$	53.0	53.6	0.5	1.0\%
63.0\%	53.0	53.5	0.5	1.0\%
${ }^{64.2 \%}$	53.0	53.5	0.5	1.0\%
65.4\%	53.0	53.4	0.5	0.9\%
66.7\%	52.9	53.4	0.5	0.9\%
67.9\%	52.9	53.4	0.5	0.9\%
69.1\%	52.9	53.3	0.4	0.8\%
70.1.4\%	52.9 52.8	53.3	0.4 0.4	${ }_{0}^{0.8 \%}$
72.8\%	52.8	53.2	0.4	0.7\%
74.1\%	52.7	53.1	0.4	0.8\%
75.3\%	52.7 527	53.0 530	${ }^{0.3}$	${ }^{0.6 \%}$
76.5\%	52.7 527 527	53.0 530	${ }^{0.3}$	${ }_{\substack{0.6 \% \\ 0.6 \%}}$
79.0\%	52.6	53.0	0.4	0.8\%
80.2\%	52.5	52.8	0.3	0.6\%
81.5\%	52.5	52.8	0.4	0.7\%
82.7\%	52.4	52.8	0.4	0.8\%
84.0\%	$\begin{array}{r}52.4 \\ 52.4 \\ \hline\end{array}$	52.8	0.4	0.7\%
85.2% 86.4%	52.4 52.2	52.7 52.6	0.3 0.5	${ }^{0.6 \%}$
87.7\%	52.1	52.6	0.5	0.9\%
88.9\%	52.1	52.5	0.5	0.9\%
90.1\%	52.1	52.5	0.4	0.9\%
91.4\%	52.0	${ }^{52.5}$	0.4	0.8\%
92.6\%	51.9	${ }_{52.3}$	0.4	0.8\%
93.8\%	51.8	52.3	0.5	0.9\%
95.1\%	51.7	52.2	0.5	1.0\%
96.3\%	51.6	52.1	0.4	0.8\%
987.5\%	51.6 51.4	52.0 51.8	0.4 0.4	${ }^{0.9 \%}$
100.0\%	51.4	51.8	0.4	0.7\%

Table SQ4-1b
vera t alls
erry, Mon

Percent Exceedance Probability (\%)	June			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	WSIP 2070 Without Proiet	WSIP 2070 With Project	AbsoluteDifference(DEGF)	
	Monthy Temperature	Monthly Temperature		
0.0\%	58.5	57.6	-0.9	1.5\%
1.2\%	58.0	57.3	-0.7	-1.2\%
2.5\%	57.6	57.1	-0.6	-1.0\%
3.7\%	57.4	56.7	-0.7	-1.2\%
4.9\%	57.3	56.5	-0.8	-1.4\%
6.2\%	56.6	56.4	-0.3	-0.5\%
7.4\%	56.5	55.0	-0.4	-0.8\%
8.6\%	56.2	55.9	-0.2	-0.4\%
9.9\%	56.0	55.9	-0.1	-0.2\%
11.11\%	55.0	55.9	-0.1	-0.2\%
12.3\%	55.0	55.8	-0.1	-0.3\%
13.6\%	55.8	55.8	0.0	0.0\%
14.8\%	55.8	55.7	-0.1	-0.1\%
16.0\%	55.7 55.7	55.6 55.5	-0.1 -0.2	-0.0.0\%
18.5\%	55.5	55.5	0.0	0.0\%
19.8\%	55.4	55.4	0.0	0.0\%
21.0\%	55.4	55.3	-0.1	-0.2\%
22.2\%	55.3	55.3	-0.1	-0.1\%
23.5\%	55.3	55.2	-0.1	-0.1\%
24.7\%	55.2	55.1	-0.1	-0.1\%
25.9\%	55.1	55.1	0.0	0.0\%
27.2\%	55.1	55.0	0.0	-0.1\%
28.4\%	55.0	55.0	0.0	0.0\%
29.6\%	54.9	55.0	0.0	0.0\%
30.9\%	54.8	54.9	0.2	0.3\%
32.1\%	54.7	54.9	0.2	0.4\%
33.3\%	54.7	54.8 54.8	0.1	0.2\%
34.6\%	54.6	54.8	0.2	0.4\%
35.8\%	54.6	54.8	0.2	0.4\%
37.0\%	54.4	54.8	0.4	0.8\%
38.3\%	54.3	54.7	0.4	0.8\%
39.5\%	54.3	54.7	0.4	0.8\%
40.7\%	54.2	54.7	0.5	0.9\%
42.0\%	54.2	54.6	0.4	0.8\%
43.2\%	54.0	54.5	0.5	1.0\%
44.4\%	53.9	54.5	0.6	1.1\%
45.7\%	53.8 538 38	$\begin{array}{r}54.5 \\ 54.4 \\ \hline\end{array}$	${ }^{0.6}$	${ }_{1}^{1.2 \%}$
46.9\%	${ }_{53.8}^{53}$	54.4	0.6	1.2\%
48.1\%	53.8	54.4	0.6	1.2\%
49.4\%	53.7	54.4	0.7	${ }_{1}^{1.2 \%}$
50.6\%	53.7	54.3	0.6	1.2\%
51.9\%	53.7	54.3	0.6	${ }_{1}^{1.2 \%}$
54.3\%	${ }_{53.6}^{53.7}$	54.3 54.2	${ }_{0}^{0.6}$	${ }_{\text {1.1\% }}^{1.1 \%}$
55.6\%	53.5	54.2	0.7	1.2\%
56.8\%	${ }^{53.4}$	54.1	0.7	${ }_{1}^{1.3 \%}$
58.0\%	53.4	54.0	0.7	1.3\%
59.3\%	53.3 53 53	54.0 53.9	0.7	${ }_{1}^{1.3 \%}$
60.5\%	53.3 53.3 5.	55.9 539	0.7	+1.3\%
${ }^{61.77 \%}$	53.3	53.9	0.7	1.2\%
63.0\%	53.2	53.8 53	0.6	1.1\%
64.2\%	53.1	53.8	0.7	1.3\%
65.4\%	53.1	53.7	0.6	1.2\%
66.7\%	53.0	53.7	0.7	1.2\%
67.9\%	53.0	53.7	0.7	1.2\%
69.1\%	53.0	53.6	0.6	1.2\%
70.4\%	${ }_{52.9} 5$	${ }_{53}^{53.6}$	0.7	${ }^{1.3 \%}$
71.6\%	52.9	53.6	0.7	1.3\%
72.8\%	${ }_{52.9}$	53.6 535	0.7	1.3\%
74.19\%	${ }_{52.8}^{52.8}$	53.5	0.7	1.4\%
75.3\%	52.7 52.7 52.	53.5 535 5.	0.8	${ }^{1.49 \%}$
76.5\%	52.6	53.5	0.8	1.6\%
77.8\%	${ }_{52.6}^{52.6}$	53.4	0.8	1.6\%
79.0\%	${ }_{52.6}$	53.3	0.7	1.4\%
80.2\%	52.5	53.2	0.8	1.5\%
81.5\%	52.5	53.2	0.7	1.4\%
82.79% 8400	52.4 52.3	${ }_{53.0}^{53}$	0.6	${ }_{1}^{1.2 \%}$
84.0\%	52.3	53.0	0.6	${ }^{1.2 \%}$
${ }^{85.20 \%}$	52.2)	52.9	0.7	${ }_{1}^{1.29 \%}$
${ }^{86.4 \%} 8$	52.2.	52.8 52.7	${ }^{0.6}$	${ }_{1.12 \%}^{1.2 \%}$
88.9\%	52.1	52.7	0.6	1.1\%
90.1\%	52.1	52.6	0.5	1.0\%
91.4\%	52.0	52.5	0.4	0.8\%
92.6\%	52.0	52.5	0.4	0.8\%
93.8\%	52.0	52.5	0.5	0.9\%
95.1\%	51.8 51.6 1	$\begin{array}{r}52.4 \\ 52.4 \\ \hline\end{array}$	0.6	1.19\%
${ }^{97.5 \%}$	${ }_{51.4}$	52.1	${ }_{0}^{0.7}$	${ }_{1}$
98.8\%	51.2	51.7	0.6	1.1\%
100.0\%	51.2	51.7	0.6	1.1\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	September			
	${ }^{\text {WSIP } 2070 \text { Without }}$	WSIP 2070 With Project	solute	Relative
	Monthly Temperature	Monthly Temperature	Difierence (DEEF)	Difference (\%)
0.0\%	71.2	69.9	${ }^{-1.3}$	-1.9\%
1.2\%	70.5	68.6	-1.9	-2.7\%
2.5\%	69.2	67.3	-1.9	-2.7\%
3.7\%	68.6	66.9	1.7	-2.4\%
4.9\%	67.3	63.4	-3.9	-5.8\%
6.2\%	66.4	63.0	-3.5	-5.2\%
7.4\%	65.5	62.4	-3.1	-4.7\%
8.6\%	64.1	60.9	-3.2	-5.0\%
9.9\%	63.8	60.4	-3.4	-5.4\%
11.1\%	62.9	60.2	-2.7	-4.3\%
12.3\%	61.6	${ }^{60.1}$	-1.5	-2.4\%
13.6\%	61.0	59.2	-1.8	-3.0\%
14.8\%	60.6	59.1	-1.6	-2.6\%
${ }^{16.0 \%}$	60.5 60.5	59.0 58.6	-1.9	
18.5\%	60.2	58.5	-1.7	-2.9\%
19.8\%	59.9	58.2	-1.6	-2.7\%
21.0\%	59.8	57.8	-2.0	-3.3\%
22.2\%	59.4	57.6	-1.8	-3.0\%
23.5\%	59.2	57.2	-2.0	-3.4\%
24.7\%	58.7	57.1	-1.6	-2.8\%
25.9\%	58.6	57.0	-1.5	-2.6\%
27.2\%	58.4	57.0	-1.4	-2.5\%
28.4\%	58.4	57.0	-1.4	-2.5\%
29.6\%	58.4 578	${ }_{56.7}$	-1.6	-2.8\%
32.1\%	57.8	55.7	-1.1	-1.9\%
33.3\%	57.8	56.6	-1.1	-2.0\%
34.6\%	57.6	56.6	-1.0	-1.8\%
35.8\%	57.5	56.6	-0.9	-1.6\%
37.0\%	57.4	56.6	-0.7	-1.3\%
38.3\%	57.3	55.6	-0.7	-1.2\%
39.5\%	57.2	56.5	-0.7	-1.2\%
40.7\%	57.1	55.4	-0.8	-1.3\%
${ }^{42.0 \%}$	57.1	56.2	-0.9	-1.7\%
${ }_{4}^{43.2 \%}$	57.0 57.0	56.0 56.0	-1.00	${ }_{-1.7 \%}^{-1.8 \%}$
45.7\%	56.9	56.0	-0.9	-1.6\%
46.9\%	56.9	56.0	-0.9	-1.6\%
48.19\%	${ }_{56.9}^{56.9}$	55.9	-1.0	-1.7\%
49.4\%	${ }_{56.8}^{56.8}$	55.9 559	-0.9	-1.6\%
50.6\%	55.6	55.9	-0.7	-1.3\%
51.9\%	56.5	55.8	-0.7	-1.2\%
53.1\%	56.2	55.8	-0.4	-0.8\%
54.3\%	55.0	55.7 557	-0.3	-0.5\%
55.6\%	56.0	55.7	-0.3	-0.5\%
56.0\%	55.8 55.8	55.6 55.6	-0.3 -0.3	-0.5\%
59.3\%	55.5	55.4	-0.1	-0.1\%
60.5\%	55.4	55.3	-0.1	-0.2\%
61.7\%	55.3	55.3	0.0	0.0\%
63.0\%	55.0	55.3	0.3	0.5\%
64.2\%	54.9	55.2	0.4	0.7\%
65.4\%	54.8	55.2	0.4	0.7\%
${ }^{66.7 \%}$	54.8	55.1	0.2	0.4\%
-67.9\%	54.6 54.6	55.0 55.0	0.4 0.4	-0.8\%
70.4\%	54.5	55.0	0.5	0.9\%
71.6\%	54.3	54.7	0.4	0.7\%
72.8\%	54.3	54.6	0.3	0.6\%
74.1\%	54.2	54.5 54.5	${ }^{0.3}$	0.6\%
75.3\%	54.2	${ }_{54.5}^{54.5}$	0.5	0.6\%
76.5\%	53.9	54.4	0.5	1.0\%
77.8\%	53.8	54.2	0.4	0.7\%
79.0\%	53.6	54.0	0.4	0.8\%
80.2\%	53.4	53.9	0.5	1.0\%
81.5\%	53.3	53.9	0.6	1.1\%
- 8 82.0\%	53.2 53.2	53.6 53.2	0.4 0.0	${ }^{0.8 \%}$
85.2\%	53.2	53.1	-0.1	-0.1\%
86.4\%	53.2	52.9	-0.2	-0.4\%
887.7\%	53.22	52.7 52.7	-0.4	-0.8\%
88.9\%	53.1	${ }_{52.7}^{52.7}$	-0.5	${ }^{-0.9 \%}$
90.1\%	53.0	52.6	-0.4	-0.7\%
91.4\%	52.9	52.6	-0.3	-0.6\%
92.6\%	52.8	52.6	-0.2	-0.4\%
93.8\%	52.8	52.6	-0.2	-0.3\%
95.1\%	52.6	52.5	-0.1	-0.2\%
96.3\%	52.6	${ }_{52.5}$	-0.1	-0.2\%
${ }_{98.8 \%}^{97.5 \%}$	52.4 52.3	52.3 52.2	-0.1 -0.1	-0.0.2\%
100.0\%	52.3	52.2	-0.1	-0.2\%

Table SQ4-1b
Sacramento River ab Bails Ferry, Monthly Temperature

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{gathered}$	$\begin{aligned} & \text { WSIP 2070 Without } \\ & \hline \text { Proiet } \end{aligned}$	WSIP 2070 With Project	Absolute	Realive
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{gathered} \text { Difference } \\ \text { (DEGFF) } \end{gathered}$	Difference (\%)
0.0\%	66.0	65.9	-0.1	-0.1\%
1.2\%	63.9	62.0	-1.9	-3.0\%
2.5\%	63.6	61.8	-1.8	-2.8\%
3.7\%	62.2	60.6	-1.6	-2.6\%
4.9\%	61.2	58.4	-2.8	-4.6\%
6.2\%	59.8	58.4	-1.4	-2.4\%
7.4\%	59.2	57.8	-1.3	-2.2\%
8.6\%	59.0	57.4	-1.6	-2.8\%
9.9\%	58.7	57.2	-1.4	-2.4\%
11.1\%	58.3	57.2	-1.2	-2.0\%
12.3\%	57.9	57.1	-0.8	-1.3\%
13.6\%	57.8	57.1	-0.7	-1.2\%
14.8\%	57.5	57.0	-0.5	-0.8\%
117.3\%\%	57.5 57.4	57.0 56.9	-0.5 -0.5	-0.0.0\%
18.5\%	57.3	56.7	-0.6	${ }^{-1.1 \%}$
19.8\%	57.1	56.6	-0.5	-0.9\%
21.0\%	57.0	56.6	-0.5	-0.8\%
22.2\%	57.0	56.5	-0.5	-0.9\%
23.5\%	56.9	55.4	-0.5	-0.9\%
24.7\%	56.9	56.4	-0.5	-0.9\%
25.9\%	55.8	55.4	-0.4	-0.7\%
27.2\%	56.5	56.2	-0.3	-0.4\%
28.4\%	56.4	56.2	-0.2	-0.4\%
29.6\%	56.4	56.1	-0.3	-0.6\%
- 3 3.9\%\%	56.3 56.3	55.9 55.9	-0.4 -0.4	-0.7\%
33.3\%	56.1	55.8	-0.4	-0.7\%
34.6\%	56.0	55.7	-0.4	-0.6\%
35.8\%	55.7	55.7	0.0	0.0\%
37.0\%	55.7	55.6	0.0	-0.1\%
38.3\%	55.6	55.5	-0.1	-0.2\%
39.5\%	55.5	55.4	-0.1	-0.3\%
40.7\%	55.5	55.3	-0.2	-0.4\%
42.0\%	55.5	55.3	-0.2	-0.4\%
44.4\%	55.5 55.4	55.3 55.3	-0.2 -0.1	-0.4\%
45.7\%	55.4	55.3	-0.1	-0.1\%
46.9\%	55.3	55.3	-0.1	-0.2\%
48.1\%	55.3	55.2	-0.1	-0.2\%
49.4\%	55.3	55.2	-0.1	${ }^{-0.19 \%}$
50.6\%	55.2	55.2	-0.1	-0.1\%
51.9\%	55.2	55.2	-0.1	-0.1\%
53.1\%	55.2	55.1	-0.1	-0.2\%
54.3\%	55.2	55.1	-0.1	-0.1\%
55.6\%	55.1	55.1	-0.1	-0.1\%
${ }_{\text {5 }}^{5} 5.8 \%$	55.1 551 5.	55.1	-0.1	-0.1\%
58.0\%	55.1	55.0	-0.1	-0.2\%
59.3\%	55.1 55.1	55.0 55.0	-0.1	-
61.7\%	55.1	54.9	-0.1	-0.3\%
63.0\%	55.0	54.8	-0.2	-0.3\%
64.2\%	54.9	54.8	-0.2	-0.3\%
65.4\%	54.9	54.8	-0.2	-0.4\%
66.7\%	54.8	54.6	-0.2	-0.3\%
67.9\%	54.7	54.6	-0.1	-0.1\%
69.1\%	54.6	54.6	0.0	-0.1\%
70.4\%	54.4	54.6	0.1	0.2\%
${ }^{71.6 \%}$	54.4	54.5	0.1	0.2\%
72.8\%	54.4	54.5	0.1	0.2\%
74.1\%	54.4 54.3	54.3 54.3	0.0	${ }^{-0.1 \%}$
76.5\%	54.2	54.2	0.0	-0.1\%
77.8\%	54.2	54.2	0.0	0.0\%
79.0\%	54.0	54.1	0.1	0.1\%
80.2\%	53.8	54.0	0.2	0.3\%
81.5\%	53.8	54.0	0.2	0.3\%
${ }^{82.7 \%}$	${ }_{53,8}^{538}$	54.0	0.2	0.3\%
84.0\%	53.7	53.9	0.2	0.4\%
${ }^{85.2 \%}$	${ }_{53.6}^{59}$	53.9	0.3	0.5\%
86.4\%	53.6	53.9	0.3	0.5\%
87,7\%	53.5 535	${ }_{53,7}^{53.7}$	0.2	0.4\%
88.9\%	53.4	${ }_{53}^{53.6}$	0.2	0.4\%
90.1\%	53.4	53.6	0.2	0.4\%
91.4\%	53.3	53.5	0.1	0.2\%
92.6\%	53.3	53.4	0.1	0.2\%
93.8\%	53.3	53.4	0.1	0.2\%
${ }_{96.3 \%}^{95.1 \%}$	53.3 53.2	53.4 53.3	0.1 0.1	${ }_{0}^{0.2 \% \%}$
97.5\%	53.1	53.3	0.2	0.5\%
98.8\%	${ }_{52.9}^{52.9}$	53.2	${ }^{0.3}$	0.5\%
100.0\%	52.6	52.9	0.3	0.6\%

PercentExceedanceProbability	Juy to September		,		August to September				
	WSIP P270 Without	WSIP 2070 With Project		$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	WSIP 2070 WithoutProiect	WSIP 2070 With Project Monthly Temperature (DEGF)	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	Monthy Temperature	Monthy Temperature							
	(DEGF)	(DEGF)							
0.0\%	68.5	68.7	0.2	0.2\%	0.0\%	69.5	69.6	0.1	0.2\%
1.2\%	66.0	64.3	-1.7	-2.6\%	1.2\%	68.6	67.7	-0.9	
2.5\%	65.9	63.2	-2.7	-4.0\%	2.5\%	68.6	65.9	-2.7	3.9\%
3.7\%	64.1	62.3	-1.8	-2.8\%	3.7\%	67.3	64.9	-2.4	-3.5\%
4.9\%	62.5	59.5	-3.0	-4.8\%	4.9\%	65.0	61.4	-3.6	5.5\%
6.2\%	61.3	59.1	-2.3	-3.7\%	6.2\%	63.4	60.1	-3.3	-5.1\%
7.4\%	60.5	58.3	-2.2	-3.6\%	7.4\%	62.0	59.4	-2.6	-4.2\%
8.6\%	59.6	58.1	-1.5	-2.5\%	8.6\%	61.3	59.3	-2.0	-3.2\%
9.9\%	59.6	58.0	-1.6	-2.7\%	9.9\%	60.9	58.9	-2.0	-3.3\%
11.1\%	59.6	57.9	-1.7	-2.8\%	11.1\%	60.1	58.7	-1.4	-2.3\%
12.3\%	58.7	57.9	-0.9	-1.5\%	12.3\%	59.4	55.6	-0.9	-1.4\%
13.6\%	58.4	57.5	-0.9	-1.6\%	13.6\%	59.3	58.5	-0.8	-1.4\%
14.8\%	58.3	57.5	-0.8	-1.4\%	14.8\%	59.0	58.0	-1.0	-1.7\%
16.0\%	58.2	57.3	-0.9	-1.5\%	16.0\%	58.8	57.8	-1.0	-1.8\%
17.3\%	58.1	57.2	-0.9	-1.5\%	17.3\%	58.8	57.8	-1.1	-1.8\%
18.5\%	58.1	57.2	-0.9	-1.6\%	18.5\%	58.7	57.5	-1.3	-2.1\%
19.8\%	57.9	56.9	-0.9	-1.6\%	19.8\%	58.6	57.3	-1.3	-2.2\%
21.0\%	57.7	56.9	-0.8	-1.4\%	21.0\%	58.2	57.1	-1.1	-1.8\%
22.2\%	57.5	56.8	-0.7	-1.3\%	22.2\%	58.1	57.0	-1.1	-1.9\%
23.5\%	57.4	56.6	-0.8	-1.4\%	23.5\%	57.9	57.0	-0.9	-1.6\%
24.7\%	57.4	56.5	-0.8	-1.5\%	24.7\%	57.9	56.9	-1.0	-1.6\%
25.9\%	57.3	56.5	-0.8	-1.4\%	25.9\%	57.8	56.8	-0.9	-1.6\%
27.2\%	57.2	56.4	-0.8	-1.4\%	27.2\%	57.7	56.8	-0.9	.6\%
28.4\%	57.1	56.4	-0.7	-1.2\%	28.4\%	57.5	56.7	-0.8	-1.3\%
29.6\%	57.0	56.4	-0.6	-1.1\%	29.6\%	57.4	56.5	-0.9	-1.5\%
30.9\%	55.9	55.4	-0.5	-0.9\%	30.9\%	57.3	56.5	-0.8	-1.4\%
32.1\%	56.8	56.3	-0.5	-0.9\%	32.1\%	57.3	56.5	-0.8	-1.4\%
33.3\%	56.5	56.2	-0.2	-0.4\%	33.3\%	57.2	56.5	-0.7	-1.3\%
34.6\%	56.4	56.1	-0.3	-0.5\%	34.6\%	57.1	56.5	-0.7	-1.1\%
35.8\%	56.4	56.1	-0.3	-0.5\%	35.8\%	57.0	56.4	-0.6	-1.0\%
37.0\%	56.3	55.9	-0.4	-0.7\%	37.0\%	57.0	56.4	-0.6	-1.1\%
38.3\%	56.2	55.9	-0.3	-0.6\%	38.3\%	57.0	56.3	-0.7	-1.2\%
39.5\%	56.1	55.8	-0.3	-0.5\%	39.5\%	56.8	56.3	-0.6	-1.0\%
40.7\%	56.1	55.7	-0.4	-0.7\%	40.7\%	56.7	56.2	-0.6	-1.0\%
42.0\%	56.0	55.6	-0.4	-0.7\%	42.0\%	55.6	56.1	-0.5	-0.9\%
${ }^{43.29 \%}$	56.0	55.6 556	-0.4	-0.7\%	43.2\%	55.5	56.1		
44.4.\%	55.0	55.6	-0.4	${ }^{-0.7 \%}$	44.4.9	56.4	55.0	-0.4	${ }^{-0.7 \%}$
${ }^{45.7 \%}$	56.0 55.9	55.6 55.6	-0.4 -0.3	-0.76\%	45.79% 46.9%	56.4. 56.4	56.0 56.0	-0.4	-0.7\%
48.1\%	55.9	55.5	-0.4	-0.7\%	48.1\%	56.3	55.9	-0.5	-0.9\%
4.4\%	55.8	55.5	-0.3	-0.5\%	49.4\%	56.3	55.8	-0.5	-0.9\%
50.6\%	55.7	55.4	-0.3	-0.6\%	50.6\%	56.3	55.8	-0.5	-1.0\%
51.9\%	55.7	55.4	-0.3	-0.5\%	51.9\%	56.2	55.7	-0.6	-1.0\%
53.1\%	55.7	55.4	-0.3	-0.6\%	53.1\%	56.2	55.6	-0.6	-1.1\%
54.3\%	55.7	55.4	-0.3	-0.6\%	54.3\%	56.2	55.6	-0.6	-1.0\%
55.6\%	55.7	55.3	-0.3	-0.6\%	55.6\%	56.0	55.6	-0.5	-0.8\%
56.8\%	55.6	55.3	-0.3	-0.5\%	56.8\%	56.0	55.6	-0.4	-0.8\%
58.0\%	55.6 55 5.6	55.3 55	-0.2	-0.4\%	-58.0\%	56.0	${ }_{55}^{55.6}$	-0.4	-0.7\%
59.3\%	55.6	55.3	-0.3	-0.5\%	59.3\%	55.9	55.6	-0.4	-0.7\%
60.5\%	55.5	${ }_{55.3}$	-0.2	-0.4\%	60.5\%	55.9	55.5	-0.4	-0.6\%
61.7\%	55.4	55.2	-0.2	-0.3\%	61.7\%	55.8	55.4	-0.4	-0.7\%
63.0\%	55.3	55.2	-0.1	-0.2\%	63.0\%	55.8	55.4	-0.3	-0.6\%
64.2\%	55.2	55.1	-0.1	-0.2\%	64.2\%	55.7	55.4	-0.3	-0.6\%
65.4\%	55.2	55.1	-0.1	-0.2\%	65.4\%	55.6	55.4	-0.3	-0.5\%
66.7\%	55.1	55.1	-0.1	-0.1\%	66.7\%	55.5	55.3	-0.3	-0.5\%
67.9\%	55.1	55.0	0.0	-0.1\%	67.9\%	55.4	55.3	-0.2	-0.3\%
69.1\%	55.1	54.9	-0.1	-0.2\%	69.1\%	55.4	55.2	-0.2	-0.4\%
70.4\%	55.0 550	54.9 54.8	-0.1	-0.0.0\%	70.4\%	55.3 553 553	55.2 552 551	-0.1	-0.3\%
71.6\%	55.0 54.9	54.8 54.8	-0.2 -0.2	-0.0.4\%	71.6\%	55.3 55.3	55.2 55.1	-0.1	-0.2\%
74.1\%	54.9	54.7	-0.2	-0.3\%	74.1\%	55.1	55.0	-0.1	-0.3\%
75.3\%	54.8	54.7	-0.1	-0.2\%	75.3\%	55.1	54.9	-0.2	-0.3\%
76.5\%	54.7	54.6	-0.1	-0.1\%	76.5\%	55.0	54.6	-0.4	-0.7\%
77.8\%	54.7	54.6	-0.1	-0.2\%	77.8\%	54.9	54.6	-0.3	-0.5\%
79.0\%	54.6	54.4	-0.2	-0.4\%	79.0\%	54.8	54.5	-0.3	-0.6\%
80.2\%	54.6	54.3	-0.3	-0.5\%	80.2\%	54.6	54.4	-0.2	-0.4\%
81.5\%	54.2	54.2	-0.1	-0.1\%	81.5\%	54.6	54.4	-0.2	-0.4\%
82,7\%	54.1	54.1	-0.1	-0.2\%	82.7\%	54.5	54.3	-0.2	-0.4\%
84.0\%	54.1	54.0	0.0	-0.1\%	84.0\%	54.5	54.1	-0.4	-0.7\%
85.2\%	${ }_{54.0}^{54}$	54.0	0.0	-0.1\%	85.2\%	54.4	54.1	-0.3	-0.6\%
86.4\%	53.8	${ }_{54.0}$	0.1	0.3\%	86.4\%	54.2	54.0	-0.1	-0.2\%
887.9\%	53.8 53.7	53.9 53.8	${ }_{0}^{0.1}$	${ }_{\text {en }}^{0.2 \%}$	87.7\% 88.9%	54.1 54.1	54.0 53.9	-0.1	-0.1\%
90.1\%	53.6	53.8	0.2	0.4\%	90.1\%	54.0	53.9	-0.1	${ }^{-0.3 \%}$
91.4\%	53.6	53.6	0.0	0.0\%	91.4\%	53.8	53.9	0.1	0.1\%
92.6\%	53.6	53.6	0.0	0.0\%	92.6\%	53.8	53.8	0.1	0.1\%
93.8\%	53.6	53.5	0.0	-0.1\%	93.8\%	53.8	53.8	0.1	0.2\%
${ }_{9}^{95.19 \%}$	53.5 53.5	53.5 53.5	0.0 -0.1	-0.19\%	${ }_{9}^{95.36 \%}$	${ }_{53.7}^{53.7}$	53.8 53.7	0.1 0.1	${ }_{0}^{0.2 \%}$
97.5\%	53.4	53.4	0.1	0.1\%	97.5\%	53.6	53.4	-0.3	-0.5\%
98.8\%	53.2	53.3	0.2	0.3\%	98.8\%	53.6	53.2	-0.4	-0.8\%
100.0\%	53.1	53.2	0.2	0.3\%	100.0\%	53.4	52.9	-0.5	-0.9\%

Figure SQ5-1b
Sacramento River at Jellys Ferry, Monthly Temperatur

Table SQS-1b
ver a t Jellys Fery, Mon

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	October			
	${ }^{\text {WSIP } 2077 \text { W. Without }}$	WSIP 207 With Project	Absolute	Relative
	Monthy Temperature	Monthy Temperature	Difference (DEGF)	Difference (\%)
0.0\%	67.1	66.9	${ }^{0.1}$	-0.2\%
1.2\%	66.2	65.4	-0.9	${ }^{-1.3 \%}$
2.5\%	64.6	65.2	0.6	0.9\%
3.7\%	64.5	63.7	-0.9	-1.3\%
4.9\%	64.0 639	63.3 63	-0.7	-1.1\%
${ }^{6.2 \%}$	63.9	${ }^{63.3}$	-0.6	-0.9\%
7.4\%	63.9	62.6	-1.3	-2.1\%
- ${ }_{\text {\% }}^{\text {9.9\% }}$	63.4 63.4	62.5 62.1	-0.9	-
11.1\%	63.0	62.0	-1.1	${ }^{-1.7 \%}$
12.3\%	62.9	61.5	-1.4	-2.2\%
13.6\%	61.7	61.2	-0.5	-0.9\%
14.8\%	61.5	60.9	-0.6	-0.9\%
16.0\%	61.2 60.5	60.7 60.3	-0.5 -0.2	-0.0.3\%
18.5\%	60.3	59.7	-0.6	-1.0\%
19.8\%	59.1	59.5	0.4	0.6\%
21.0\%	59.0	59.4	0.4	0.6\%
22.2\%	58.9	59.2	0.4	0.7\%
23.5\%	58.9	59.2	0.4	0.6\%
24.7\%	58.8	59.0	0.2	0.3\%
25.9\%	58.7	58.9	0.2	0.3\%
27.2\%	58.7	58.6	-0.1	-0.1\%
28.4\% 29.6\%	58.7 58.6	58.5 58.4	-0.2 -0.2	- $\begin{aligned} & -0.4 \% \\ & -0.3 \%\end{aligned}$
30.9\%	58.6	58.4	-0.2	-0.4\%
32.1\%		58.3	-0.2	-0.4\%
33.3\%	58.4	58.3	-0.2	-0.3\%
34.6\%	58.4 58.4	58.2	-0.2	-0.3\%
35.8\%	${ }_{58.3}^{58.3}$	58.2	-0.1	-0.2\%
37.0\%	58.2	58.2	-0.1	-0.1\%
38.3\%	58.2	58.1 581	-0.1	-0.1\%
40.7\%	58.1	58.1	-0.1	-0.1\%
42.0\%	58.0	58.0	0.0	0.1\%
43.2\%	57.9	58.0	0.0	0.1\%
${ }^{44.4 \%}$	57.8 57.8	58.0 57.9	0.1 0.0	${ }_{0}^{0.2 \%}$
${ }_{4}^{45.9 \%}$	57.8	57.8	0.0	0.0\%
48.1\%	57.8	57.4	-0.3	-0.6\%
49.4\%	57.7	57.3 573	-0.5	-0.8\%
50.6\%	57.7	57.3	-0.5	-0.8\%
51.9\%	57.6	57.2	-0.3	-0.6\%
53.1\%	57.5	57.2	-0.3	-0.4\%
54.3\%	57.5	57.2	-0.3	-0.5\%
55.6\%	57.5 57.5	57.2 57.2	-0.3 -0.3	-0.0.5\%
58.0\%	57.4	57.2	-0.3	-0.5\%
59.3\%	57.2	57.1	-0.1	-0.2\%
${ }^{60.50 \%}$	57.2 572	57.0 57.0	-0.1	-0.2\%
61.7% 630%	57.2 570	57.0 570	-0.2	${ }^{-0.3 \%}$
63.0\% 64.2%	57.0 57.0	57.0 57.0	-0.1 0.0	-0.0\%
65.4\%	56.9	56.9	0.0	0.0\%
66.7\%	56.9	56.9	0.0	-0.1\%
67.9\%	56.9	56.8	-0.1	-0.1\%
69.1\%	56.9	56.8	-0.1	-0.1\%
70.4\%	56.9	56.8	-0.1	-0.1\%
71.6\%	56.8	56.8	0.0	0.0\%
72.8\%	56.8 56.8	56.8 56.7	0.0 -0.1	-0.0\%
75.3\%	56.7	56.7	0.0	-0.1\%
76.5\%	56.7	56.7	0.0	-0.1\%
77.8\%	56.7	56.6	-0.1	-0.2\%
79.0\%	56.7	56.6	-0.1	-0.2\%
80.2\%	56.6	56.5	-0.1	-0.1\%
81.5\%	56.4	56.5	0.1	0.1\%
82.7\%	56.4	55.4	0.0	0.1\%
84.0\%	56.4	56.4	0.0	0.0\%
${ }^{85.2 \%} 8$	56.4 56.3	56.3 56.2	-0.1 -0.1	-0.0.2\%
87.7\%	${ }_{56.3}$	56.2	-0.1	-0.2\%
88.9\%	56.2	56.2	0.0	0.0\%
90.1\%	56.1	56.1	0.0	0.0\%
91.4\%	56.1	55.1	0.0	0.0\%
92.6\%	55.1	55.9 559	-0.2	-0.4\%
93.3\%	56.0	55.9	-0.1	-0.2\%
95.1\%	55.9	55.7	-0.2	-0.4\%
96.3\%	55.8	55.7	-0.1	-0.2\%
97.5\%	55.8	55.6	-0.2	-0.4\%
988.8\% 100.0\%	55.6 55.6	55.6 55.6	0.0 0.0	-0.0.1\%

Page 1440 of 1488

Table SQS-1b
ver a t Jellys Fery, Mon

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	February			
	WSII 2070 Without Proiect	WSIP 2070 With Project	bsolute	
	Monthly Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
(\%)	518	521	0	
0.0\%	${ }_{517}^{51.8}$	${ }_{517}^{52.1}$	${ }^{0.3}$	0.6\%
${ }^{1.2 \% \%}$	51.7 51.5	51.7 51.7	${ }_{0}^{0.0}$	0.0\%
3.7\%	51.2	51.0	-0.2	-0.4\%
4.9\%	50.6	50.8	0.3	0.5\%
6.2\%	50.5	50.5	0.0	0.0\%
7.4\%	50.4	${ }^{50.3}$	0.0	0.0\%
8.6\%	50.4	50.3	0.0	0.0\%
9.9\%	50.2	50.3	0.1	0.2\%
11.1\%	50.1	50.2	0.2	0.3\%
12.3% 13.6%	50.0 50.0	50.1 50.0	${ }_{0.1}^{0.1}$	${ }_{0}^{0.2 \%}$
14.8\%	49.9	49.9	0.0	0.0\%
16.0\%	49.8	49.9	0.1	0.1\%
17.3\%	49.8	49.9	0.1	0.2\%
18.5\%	49.8	49.9	0.1	0.2\%
19.8\%	49.5	49.9	0.3	0.7\%
21.0\%	49.5	49.6	0.1	0.3\%
22.2\%	49.3	49.6	0.2	0.5\%
23.5\%	49.3	49.5	0.2	0.5\%
24.7\%	49.3	49.4	0.2	0.3\%
25.9\%	49.3	49.4	0.2	0.4\%
${ }^{27.20 \%}$	49.2	49.3	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
28.4\%	49.2	49.3	${ }_{0}^{0.1}$	
- ${ }^{29.0 \% \%}$	49.2	49.3	0.1	${ }^{0.1 \%}$
32.1\%	49.0	49.1	0.1	0.2\%
33.3\%	49.0	49.0	0.1	0.1\%
34.6\%	49.0	49.0	0.0	0.0\%
35.8\%	49.0	48.9	-0.1	-0.2\%
37.0\%	48.8	48.9	0.1	0.1\%
- ${ }_{\text {38.3\% }}$	48.8 48.7	${ }_{48.7}^{48.8}$	0.0 0.0	-0.0\%
40.7\%	48.7	48.7	0.0	0.0\%
42.0\%	48.6	48.7	0.1	0.2\%
43.2\%	48.6	48.6	0.1	0.1\%
44.4\%	48.5	48.5	0.0	-0.1\%
45.7\%	48.5	48.5	0.0	0.0\%
46.9\%	48.4	48.4	0.1	0.1\%
48.1\%	48.3	48.4	0.1	0.2\%
49.4\%	48.3	${ }^{48.3}$	0.0	0.1\%
50.6\%	48.3	48.3	0.0	0.1\%
51.9\%	48.3	48.3	0.0	${ }^{0.1 \%}$
	${ }_{48.1}^{48.1}$	48.3 48.2	0.2 0.1	- 0.3%
55.6\%	48.0	48.1	0.1	0.3\%
56.8\%	48.0	48.0	0.0	0.1\%
58.0\%	48.0	48.0	0.0	0.0\%
59.3\%	47.9	48.0	0.1	0.1\%
60.5\%	47.9	47.9	0.0	0.0\%
61.7\%	47.9	47.9	0.0	0.1\%
63.0\%	47.7	47.9	0.2	0.3\%
64.2\%	47.7	47.8	0.1	0.2\%
${ }^{65.49 \%}$	47.7	47.7	0.0	0.1\%
${ }^{66.79 \%}$	47.6	47.7	0.1	${ }^{0.3 \%}$
67.9\%	47.6	47.6	0.1	0.2\%
69.1\%	47.5	47.5	0.0	${ }^{0.1 \%}$
70.4\%	47.4	47.5	0.1	0.2\%
71.6\%	47.3	47.4	0.1	0.1\%
72.8\%	47.3	47.4	0.0	0.1\%
74.1\%	47.3	47.3	0.0	0.0\%
75.3\%	47.3	47.3	0.0	0.0\%
76.5\%	47.3	47.3	0.1	0.2\%
779.8\%	47.2 47.2	47.2 47.2	0.0 0.1	${ }_{0}^{0.0 \%}$
80.2\%	47.1	47.1	0.0	0.0\%
81.5\%	47.0	47.0	-0.1	-0.1\%
82.79% 8400	47.0	47.0	0.0	${ }^{-0.10}$
84.0\%	47.0	46.9	-0.1	-0.2\%
85.2\%	46.9	46.9	0.0	0.0\%
86.4\%	46.9	46.9	0.0	0.0\%
87.7\%	46.7	46.7	0.0	0.0\%
88.9\%	46.6	46.7	0.1	0.2\%
90.1\%	46.6	46.6	0.0	0.0\%
914.4\%	46.6	46.6	0.0	0.0\%
${ }_{93.8 \%}^{92.6 \%}$	${ }_{46.4}^{46.5}$	${ }_{46.3}^{46.4}$	-0.1 -0.1	-0.1\%
95.1\%	46.3	46.2	-0.1	-0.3\%
96.3\%	46.1	46.0	-0.1	-0.2\%
97.5\%	46.0	46.0	0.0	0.1\%
98.8\%\%	45.0	44.9	-0.1	-0.1\%
100.0\%	45.0	44.9	-0.1	-0.1\%

May				
Percent Exceedance	${ }^{\text {WSII }}$ Provo Witheth	WSIP 2070 With Project	Absolute	Relative
Probability (6) (6)	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	(DEGF)	Difference (\%)
0.0\%	59.5	59.1	-0.4	-0.8\%
1.2\%	58.9	58.8	-0.1	-0.2\%
2.5\%	58.6	58.3	-0.3	-0.5\%
3.7\%	58.5	58.2	-0.3	-0.5\%
- ${ }^{4.9 \%}$	58.4 57.9	58.1 58.0	-0.3 0.2	${ }^{-0.3 \%}$
7.4\%	57.7	57.9	0.2	0.4\%
8.6\%	57.6	57.8	0.3	0.5\%
9.9\%	57.5	57.8	${ }^{0.3}$	0.5\%
11.1\%	57.3	57.8	0.5	0.9\%
12.3\%	57.3	57.8	0.5	0.9\%
13.6\%	57.2	57.7	0.4	0.8\%
14.8\%	57.1	57.7	0.6	1.0\%
${ }^{16.0 \%} \times 1.3 \%$	57.1 56.9	57.7 57.7	0.6 0.8	1.0\% 1.4
18.5\%	56.8	57.6	0.9	1.5\%
19.8\%	56.8	57.6	0.8	1.5\%
21.0\%	55.6	57.3	0.6	1.1\%
22.2\%	55.6	57.3	0.7	1.2\%
23.5\%	56.2	57.1	0.9	1.6\%
24.7\%	56.1	56.9	0.8	1.3\%
25.9\%	56.1	56.8	0.7	1.2\%
27.2\%	${ }_{561}^{56.1}$	56.7 56.6	0.6	1.2\%
${ }^{28.49 \%}$	56.1 56.0	56.6 56.4	0.5 0.3	${ }^{0.9 \%}$
30.9\%	56.0	56.4	0.4	0.6\%
			0.4	0.7\%
	55.9		0.5	0.8\%
34.8\%	55.8 55.8	56.3	0.5	${ }_{0}^{0.9 \%}$
37.0\%	55.7	56.3	0.5	1.0\%
38.3\%	55.7	56.1	0.4	0.8\%
39.5\%	55.5	56.1	0.6	1.1\%
40.7\%	55.5 555	56.1	0.6	1.1\%
${ }^{42.3 .2 \%}$	55.5 55.4	55.9 55.9	${ }_{0}^{0.6}$	-
44.4\%	55.2	55.9	0.7	1.2\%
45.7\%\%	55.0	55.9		
${ }^{46.9 \%}$	55.0 55.0	55.8 55.7	0.8 0.7	1.4% 1.3%
49.4\%	54.9	55.7	0.8	1.4\%
50.6\%	54.9	55.6	0.7	1.3\%
51.9\%	54.9	55.6	0.7	1.3\%
53.1\%	54.9	55.6	0.7	1.3\%
54.3\%	54.9	55.6	0.7	1.3\%
55.6\%	54.9 548	55.6 55. 5.5	0.7	1.3\%
58.0\%	54.8	55.4	0.6	1.1\%
59.3\%	54.8	55.4	0.6	1.1\%
${ }^{60.5 \%}$	54.8 548 548	55.4 55.4 55.	0.6	1.1\%
61.7% 630%	54.8 54.7	55.2 551 5.	0.4	0.7\%
63.0\%	54.7	55.1 551	0.4	0.7\%
${ }^{64.2 \%}$	54.7	55.1 551	0.4	0.7\%
65.4\%	54.7	55.1	0.4	0.7\%
66.7\%	54.7	55.1	0.3	0.6\%
67.9\%	54.7	55.0	0.3	0.6\%
69.1\%	54.7	55.0	${ }^{0.3}$	0.6\%
70.4\%	54.6 54.6	55.0 54.9	0.4 0.4	${ }_{\text {c }}^{0.7 \% \%}$
72.8\%	54.5	54.9	0.4	0.8\%
74.1\%	54.5	54.9	0.5	0.8\%
75.3\%	54.4	54.9	0.5	0.9\%
76.5\%	54.4 54.4	54.8 54.8	0.5	${ }^{0.8 \%}$
79.0\%	54.4	54.8	0.4	0.8\%
80.2\%	54.3	54.8	0.5	0.8\%
81.5\%	54.3	54.7	${ }^{0.3}$	0.6\%
82.7\%	54.3	54.6	0.4	0.7\%
84.0\%	54.2	54.6	0.4	0.8\%
${ }_{\text {85, }}^{8.2 \%}$	54.1 54.1	54.6 54.5	0.5 0.4	-0.8\%
87.7\%	54.0	54.5	0.4	0.8\%
88.9\%	54.0	54.4	0.4	0.7\%
90.1\%	53.9	54.3	0.3	0.6\%
91.4\%	53.7	54.0	0.2	0.4\%
92.6\%	53.5	53.9	0.4	0.7\%
93.8\%	53.5	53.8	0.4	0.7\%
95.1\%	53.4	53.8	0.4	0.7\%
96.3\%	53.4	53.7	0.3	0.6\%
98.8\%	53.2	${ }_{53.4}$	0.2	0.3\%
100.0\%	53.2	53.4	0.2	0.3\%

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	June			
	WSII 2070 Without Proiect	WSIP 2070 With Project	Absolut	
	Monthy Temperature	Monthly Temperature	Difference	Difference (\%)
(\%)	${ }_{\text {(DEGF) }}^{\text {(096 }}$	${ }_{\text {(DEGF) }}^{59}$	04	. 7
0.0%	59.6			-0.7\%
${ }_{\text {12\% }} 1.2 \%$	59.5	年58.8	-0.7	-1.20
2.5\%	58.9	58.6 58.1	-0.3	${ }^{-0.6 \%}$
4.9\%	58.5	57.8	-0.7	${ }^{-1.2 \%}$
6.2\%	58.3	57.7	-0.6	-1.1\%
7.4\%	58.1	57.6	-0.5	-0.8\%
8.6\%	58.1	57.4	-0.7	-1.2\%
9.9\%	58.0	57.4	-0.5	-0.9\%
${ }^{11.119 \%}$	57.9	57.4	-0.5	-0.8\%
12.3\%	57.8 57.6	57.4 57.4	-0.4 -0.3	-0.5\%
14.8\%	57.5	57.3	-0.2	${ }^{-0.4 \%}$
16.0\%	57.3	57.3	-0.1	-0.1\%
17.3\%	57.3	57.3	-0.1	-0.1\%
18.5\%	57.3	57.2	-0.1	-0.1\%
19.8\%	57.1	57.1	0.0	0.0\%
21.0\%	57.0	57.1	0.1	0.2\%
${ }^{22.2 \%}$	57.0	57.1	0.1	0.3\%
23.5\%	56.7	56.9	0.2	0.4\%
24.7\%	56.5	56.8	${ }^{0.3}$	0.6\%
25.9\%	56.5	56.8	0.3	0.6\%
${ }^{27.20 \%}$	56.4 56.4	56.8 56.8	${ }^{0.4}$	0.7\%
28.4\%	56.4	56.8 567	0.3	0.6\%
29.6\%	${ }_{56.3}$	56.7	${ }_{0}^{0.4}$	${ }^{0.6 \% \%}$
${ }^{30.9 \%}$	56.3 56.2	56.6 56.6	0.4 0.4	0.8\%
33.3\%	56.2	56.6	0.4	0.7\%
34.6\%	56.2	56.6	0.5	0.8\%
35.8\%	56.0	56.6	0.6	1.0\%
37.0\%	55.0	56.5	0.5	0.9\%
- ${ }_{\text {38.3\% }}$	56.0 55.9	56.4 56.4	0.4 0.5	${ }_{\text {cose }}^{0.8 \%}$
40.7\%	55.9	56.3	0.4	0.8\%
42.0\%	55.7	56.3	0.5	1.0\%
43.2\%	55.7	56.2	0.5	0.9\%
44.4\%	55.7	56.1	0.4	0.8\%
45.7\%	55.7	56.1	0.5	0.8\%
46.9\%	55.6	56.0	0.4	0.7\%
48.1\%	55.6	55.0	0.3	0.6\%
49.4\%	55.3	55.9	0.6	1.2\%
50.6\%	55.2	55.9	0.6	${ }^{1.19 \%}$
51.9\%	55.1 55.1	55.8 55.8	${ }_{0}^{0.7}$	${ }_{\text {1.3\% }}^{1.3 \%}$
54.3\%	55.1	55.8	0.7	1.3\%
55.6\%	55.1	55.8	0.7	1.3\%
56.8\%	55.0	55.7	0.7	1.2\%
58.0\%	55.0	55.7	0.7	1.3\%
59.3\%	55.0	55.6	${ }^{0.6}$	${ }_{1}^{1.19}$
60.5\%	55.0	55.6	0.6	1.1\%
61.7\%	55.0	55.6	0.6	1.1\%
63.0\%	54.9	55.6	0.6	1.2\%
64.2\%	54.8	55.5	0.7	1.3\%
${ }^{65.4 \%}$	54.8	55.5	0.7	1.3\%
66.7\%	54.8	55.4	0.6	1.2\%
67.9\%		55.4		
69.1\%	54.7 54.6	55.4 55.3	0.7 0.7	${ }_{\text {1.2\% }}^{1.2 \%}$
71.6\%	54.6	55.3	0.6	1.2\%
72.8\%	54.6	55.3	0.6	1.2\%
74.1\%	54.6	55.2	0.7	1.2\%
75.3\%	54.5 54.5	$\begin{array}{r}\text { 55.2 } \\ 55 \\ \hline 5.2\end{array}$	0.7	1.3\%
76.5\%	54.5	55.2	0.7	1.3\%
77.8\%	54.4	55.1	0.7	${ }_{1}^{1.2 \%}$
-79.0\%	54.2 54.2	55.0 55.0	0.9 0.9	+1.6\%
81.5\%	54.1	54.8	0.8	1.4\%
82.7\%	54.0	54.7	0.8	1.4\%
84.0\%	54.0	54.7	0.7	1.3\%
85.2\%	53.9 537	54.7	0.7	1.4\%
86.4\%	53.7	54.7	0.9	1.8\%
87.7\%	53.7	54.6	0.9	1.7\%
88.9\%	${ }_{535}^{53.7}$	${ }_{54.3}$	0.7	1.2\%
90.11\%	53.7	54.3	0.7	${ }^{1.2 \%}$
${ }^{91.4 .6 \%}$	53.5 53.5	54.2 54.1	${ }_{0}^{0.7}$	${ }_{1.2 \%}^{1.3 \%}$
93.3\%	53.5	54.1	0.6	1.12\%
95.1\%	53.4	53.8	0.4	0.8\%
${ }^{96.3 \%}$	53.2 53.1	53.8 53.6	0.6 0.5	${ }_{\text {l }}$
97.5\%	${ }_{5}^{53.1}$	53.6 53	${ }^{0.5}$	0.9\%
98.8\%	52.9 52.9	53.5 535	${ }^{0.6}$	${ }_{1}^{1.0 \%}$
100.0\%	52.9	53.5	0.6	1.0\%

		September		
Percent	${ }^{\text {WSIP } 2070}$ Proiecthout	WSIIP 2070 With Project	Absolute	
Probability	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	Difference (DEGF)	Difference (\%)
0.0\%	72.0	70.4	-1.7	-2.3\%
1.2\%	71.1	69.6	-1.5	-2.1\%
2.5\%	69.7	67.7	-2.0	-2.8\%
3.7\%	68.9	67.7	-1.2	-1.8\%
4.9\%	67.8	64.4	-3.4	-5.0\%
6.2\%	67.1	63.8	-3.3	-5.0\%
7.4\%	66.3	63.4	-2.8	-4.3\%
8.6\%	65.3	62.3	-3.0	-4.6\%
9.9\%	64.9	61.7	-3.2	-4.9\%
111.19\%	63.8	61.6	-2.2	-3.4\%
${ }^{12.3 \%}$	62.7	61.5	-1.2	-1.9\%
13.6\%	62.7	60.7	-1.9	-3.1\%
14.8\%	62.6	60.5	-2.1	-3.4\%
16.0\%	62.1	60.2	-1.8	-3.0\%
17.3\%	62.0	60.0	-2.0	-3.2\%
18.5\%	62.0	59.9	-2.1	-3.3\%
19.8\%	61.7	59.8	-1.9	-3.1\%
21.0\%	61.6	59.5	-2.1	-3.3\%
22.2\%	61.4	59.1	-2.2	-3.7\%
23.5\%	61.2	59.0	-2.3	-3.7\%
24.7\%	60.5	58.6	-1.9	-3.1\%
25.9\%	60.4	58.5	-1.9	-3.1\%
27.2\%	60.2	58.5	-1.7	-2.9\%
28.4\%	60.2	58.5	-1.7	-2.9\%
29.6\%	60.2	58.4	-1.8	-3.0\%
30.9\%	60.0	58.4	-1.7	-2.8\%
32.1\%	59.7	58.3	-1.5	-2.5\%
33.3\%	59.6	58.3	-1.4	-2.3\%
34.6\%	59.5	${ }_{58.2}^{58.2}$	-1.3	-2.2\%
35.8\%	59.4	58.2	-1.1	-1.9\%
37.0\%	59.1	58.0	-1.0	-1.8\%
38.3\%	59.0	57.9	-1.0	-1.8\%
3.5\%		57.7		-2.1\%
40.70\%	58.9	57.7	-1.2	-2.0\%
${ }^{42.0 \%}$	58.8 58.8	57.7 57.6	-1.12	-2.0\%
43.2\%	58.8	57.6	-1.2	-2.0\%
44.4\%	58.7	57.6	-1.1	-1.9\%
45.7\%	58.7	57.5	-1.2	-2.0\%
46.9\%	58.5	57.5	-1.1	-1.8\%
${ }_{4}^{48.19 \%}$	58.5	57.4	-1.0	-1.8\%
49.4\%	58.3 58.2	57.4 57.4	-0.9	-1.6\%
51.9\%	58.0	57.4	-0.7	-1.2\%
53.1\%	57.7	57.3	-0.4	-0.7\%
54.3\%	57.2	57.3	0.1	0.1\%
55.6\%	57.0	57.3	${ }^{0.3}$	0.6\%
56.8\%	56.9	57.2	${ }^{0.2}$	0.9\%\%
58.0\%	55.8	57.1	${ }^{0.3}$	0.5\%
59.3\%	56.8	57.0	0.1	0.2\%
60.5\%	56.5	55.9	0.5	0.8\%
61.7\%	56.4	56.9	0.5	0.8\%
- 63.0%	56.4	55.8	0.4	0.8\%
64.2\%	56.3 55.7	56.8 56.5	0.5 0.7	(0.3\%
66.7\%	55.7	56.4	0.7	1.3\%
67.9\%	55.6	56.3	0.7	1.2\%
69.1\%	55.6	56.2	0.6	1.0\%
70.4\%	$\begin{array}{r}55.6 \\ 55 \\ \hline 5.5\end{array}$	56.0 550	0.5	0.9\%
71.6\%	55.5 555 5.5	55.9 558	0.4	0.6\%
72.8\%	55.5 555 5.	55.8	${ }^{0.3}$	0.5\%
74.1\%	55.5	55.7	0.2	0.4\%
75.3\%	55.3	55.5	${ }^{0.3}$	0.5\%
76.5% 778%	55.3	55.4	0.2	0.3\%
77.0\%	55.1 55.0	55.3 55.3	0.3 0.3	0.5\%
80.2\%	54.7	55.3	0.5	1.0\%
81.5\%	54.6	55.1	0.6	1.0\%
82.7\%	54.6	55.0	0.4	0.7\%
84.0\%	54.3	54.2	-0.1	-0.2\%
85.2\%	54.2	54.2	0.0	-0.1\%
86.4\%	54.1	54.0	-0.2	-0.3\%
87.7\%	54.0	53.7	-0.3	-0.6\%
88.9\%	54.0	53.7 53.7	-0.3	-0.6\%
90.1\%	54.0	53.7	-0.3	-0.6\%
${ }_{9}^{91.46 \%}$	54.0 53.8	53.6 53.6	-0.4	-0.7\%
93.3\%	53.8	53.5	-0.2	-0.4\%
95.1\%	$\begin{array}{r}53.7 \\ 53 . \\ \hline\end{array}$	53.5	-0.2	-0.5\%
96.3\%	53.6	53.5	-0.1	-0.2\%
97.5\%	53.3 53.	${ }_{535}^{53.5}$	0.2	0.3\%
98.8\% 1000\%	53.3 53.3	53.0 530	-0.3	-0.5\%
100.0\%	53.3	53.0	-0.3	-0.5\%

Table SQ5-1b
Sacramento River a t jellys fery, Monthly Temperature

,				
Percent Exceedance	$\begin{aligned} & \text { WSIP 2070 Without } \\ & \hline \end{aligned}$	WSIP 2070 With Project	Absolute	Relative
Proabability	Monthly Temperature (DEGF)	Monthly Temperature (OEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGFF) } \end{aligned}$	Difference (\%)
0.0\%	67.0	66.9	${ }^{0.1}$	-0.2\%
1.2\%	65.2	63.2	-2.0	-3.1\%
2.5\%	64.5	63.0	-1.5	-2.4\%
3.7\%	63.1	61.7	-1.4	-2.2\%
4.9\%	62.2	59.7	-2.6	-4.1\%
6.2\%	60.9	59.6	-1.3	-2.1\%
7.4\%	60.3	59.0	-1.3	-2.1\%
8.6\%	60.1	58.9	-1.2	-2.0\%
9.9\%	${ }^{60.0}$	55.6	-1.4	-2.3\%
11.11\%	59.8	58.6	-1.2	-2.0\%
123\% ${ }_{\text {13.6\% }}$	59.4 59.4	58.5 58.5	-0.9 -0.9	-1.5\%
14.8\%	58.9	58.5	-0.4	-0.7\%
16.0\%	58.8	58.4	-0.4	-0.7\%
17.3\%	58.8	58.4	-0.4	-0.7\%
18.5\%	58.7	58.1	-0.6	-0.9\%
19.8\%	58.6	58.0	-0.6	-1.0\%
21.0\%	58.6	57.9	-0.6	-1.1\%
22.2\%	58.5	57.9	-0.6	-1.0\%
23.5\%	58.5	57.9	-0.6	-1.0\%
24.7\%	58.4	57.9	-0.5	-0.9\%
25.9\%	58.1	57.7	-0.4	-0.7\%
27.2% 28.4%	58.1 58.0	57.7 57.7	-0.4 -0.3	-0.5\%
${ }^{\text {20.6\% }}$	58.0	57.7 57.6	-0.3	-0.4\%
30.9\%	57.8	57.3	-0.5	-0.8\%
32.1\%	57.8	57.3	-0.5	-0.8\%
33.3\%	57.7	57.3	-0.5	-0.8\%
34.6\%	57.5	57.3	-0.2	-0.3\%
35.8\%	57.4	57.3	-0.1	-0.2\%
37.0\%	57.3	57.2	-0.1	-0.2\%
38.3\%	57.3	57.1	-0.2	-0.3\%
39.5\%	57.3	57.1	-0.2	-0.3\%
40.7\%	57.2	57.0	-0.1	-0.2\%
42.0\%	57.1	57.0	-0.1	-0.2\%
43.2\%	57.0	57.0	-0.1	-0.1\%
44.4\%	57.0	56.9	-0.1	-0.2\%
45.7\%	57.0	56.7	-0.3	-0.5\%
46.9\%	57.0	56.7	-0.3	${ }^{-0.5 \%}$
48.1\%	57.0	56.7	-0.3	-0.5\%
49.4\%	56.9	56.7	-0.2	-0.4\%
50.6\%	56.9	56.6	-0.2	-0.4\%
51.9\%	55.8	55.6	-0.2	-0.4\%
53.10\%	56.8	55.6	-0.2	-0.4\%
54.3\%	56.8	55.6	-0.2	-0.3\%
55.6\%	56.7	55.6	-0.1	-0.2\%
56.8\%	${ }_{56.6}^{56.6}$	56.6	-0.1	${ }^{-0.19 \%}$
58.0\%	55.6	56.5	-0.1	-0.1\%
59.3\%	55.6	56.5	-0.1	-0.1\%
60.5\%	56.5	56.5	0.0	0.0\%
61.7\%	56.5	56.5	-0.1	-0.1\%
63.0\%	56.5	55.4	-0.1	-0.1\%
64.2\%	55.4	55.4	0.0	0.0\%
${ }^{65.4 \%}$	56.3	56.4	0.1	0.2\%
${ }^{66.79 \%}$	56.2	56.2	0.0	${ }^{0.0 \%}$
${ }^{67.99 \%}$	55.2	55.2	0.0	
69.1\%	56.1	56.0	-0.1	-0.1\%
70.4\%	56.0 56	55.0	-0.1	${ }^{-0.1 \%}$
71.6\%	56.0	55.0	0.0	0.0\%
72.8\%	55.9	55.9	0.0	0.1\%
74.1\%	55.9	55.9	0.0	0.0\%
75.3\%	55.8	55.8	0.0	0.1\%
76.5\%	${ }_{55.8}^{55}$	55.8	0.0	0.0\%
77.9\%	55.6	55.7	0.1	0.1\%
79.0% 80.20%	55.6	55.7	0.0	${ }^{0.0 \%}$
-	55.5	55.6	0.0	0.1\%
81.5\%	55.3	55.5	0.2	0.4\%
- 82.70%	$\begin{array}{r}55.2 \\ 552 \\ 55 \\ \hline\end{array}$	55.4 554	0.2	0.4\%
84.0\%	55.2	55.4	0.2	0.4\%
85.20\%	55.2 551 551	55.4 553 55	0.2	0.4\%
86.4% 87.7%	55.1 55.1	55.3 55.2 5.5	${ }_{0}^{0.2}$	-
88.9\%	55.1	55.2	0.1	0.2\%
90.1\%	54.9	55.1	0.2	0.3\%
${ }^{91.4 \%}$	54.9	55.1	0.2	0.4\%
-92.6\% ${ }_{\text {93.8\% }}$	54.9 54.9	55.0 54.9	0.1 0.1	${ }_{0}^{0.2 \%}$
95.1\%	54.8	54.9	0.1	0.1\%
96.3\%	54.7	54.9	0.2	0.4\%
97.5\%	54.7 54.7	54.8 54	0.2	0.3\%
98.9\%	54.7 54.	54.8 54.4	${ }^{0.1}$	0.3\%
100.0\%	54.2	54.4	0.2	0.4\%

Figure SQ6-1b
Sacramento River at Bend Bridge, Monthly Temperatur

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	October			
	WSIP 207 Prowicthout Proet	WSIP 2070 With Project		Relative
	Monthy Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
0.0\%	67.0	66.9	${ }^{-0.1}$	-0.2\%
1.2\%	66.3	65.5	-0.8	-1.2\%
2.5\%	64.9	65.3	0.4	0.7\%
3.7\%	64.6	63.8	-0.8	-1.2\%
4.9\%	64.2	63.5	-0.7	-1.1\%
6.2\%	64.0	63.5	-0.5	-0.9\%
7.4\%	64.0	62.7	-1.3	-2.0\%
8.6\%	63.6	62.6	-0.9	-1.5\%
9.9\%	63.4	62.5	-0.9	-1.4\%
11.1\%	${ }^{63.0}$	${ }^{62.0}$	-1.0	-1.6\%
12.3\%	62.9	61.6	-1.2	-1.9\%
13.6\%	62.0	61.6	-0.4	-0.7\%
14.8\%	61.6	61.2	-0.4	-0.7\%
16.0\% 17.3%	61.3 60.7	61.0 60.6	-0.3 -0.1	-0.0.0\%
18.5\%	60.6	60.2	-0.4	-0.6\%
19.8\%	59.4	59.8	0.4	0.6\%
21.0\%	59.3	59.7	0.4	0.7\%
22.2\%	59.3	59.7	0.4	0.6\%
23.5\%	59.2	59.5	0.3	0.4\%
24.7\%	59.1	59.4	0.2	0.4\%
25.9\%	59.1	59.2	0.1	0.1\%
27.2\%	59.1	59.0	0.0	-0.1\%
28.4\% 29.6\%	59.1 59.0	59.0 58.8	-0.1 -0.2	-0.0.4\%
30.9\%	58.9	58.7	-0.2	-0.3\%
32.1\%	58.9	58.7	-0.2	-0.3\%
33.3\%	58.8	58.7	-0.1	-0.2\%
34.6\%	58.7	58.7	0.0	0.0\%
35.8\%	58.6	58.6	0.0	-0.1\%
37.0\%	58.6	58.6	0.0	-0.1\%
38.3\%	58.6	58.5	-0.1	-0.1\%
39.5\%	58.5	58.5	0.0	-0.1\%
${ }^{40.70 \%}$	58.5 58.4	58.4 58.4	0.0 0.0	-0.1\%
43.2\%	58.3	58.4	0.1	0.1\%
44.4\%	58.3	58.4	0.1	0.2\%
45.7\%	58.3 583	58.3	0.0	0.0\%
46.9\%	58.3	58.2	0.0	-0.1\%
48.1\%	58.2	57.9	-0.4	-0.6\%
49.4\%	58.2	57.8	-0.4	-0.7\%
50.6\%	58.2	57.7	-0.5	-0.8\%
51.9\%	58.0	57.7	-0.3	-0.0\%\%
54.3\%	58.0 57.9	57.7 57.7	-0.3 -0.2	-0.4\%
55.6\%	57.9	57.6	-0.3	-0.6\%
56.8\%	57.9 57.8	57.6 575	-0.3	${ }^{-0.5 \%}$
58.0\%	57.8	57.5 575	-0.3	
59.3\%	57.7 575	57.5 575	-0.2	${ }^{-0.3 \%}$
${ }^{60.5 \%}$	57.5 57.5	57.5 57.4	-0.1	-0.1\%
63.0\%	57.4	57.4	0.0	0.0\%
64.2\%	57.4	57.4	0.0	-0.1\%
65.4\%	57.4	57.4	0.0	0.0\%
66.7\%	57.4	57.3	0.0	-0.1\%
67.9\%	57.3	57.3	0.0	0.0\%
69.1\%	57.3	57.3	0.0	0.0\%
70.4\%	57.3 573	$\begin{array}{r}57.3 \\ 572 \\ \hline\end{array}$	-0.1	-0.1\%
71.6\%	57.3	57.2	0.0	0.0\%
72.8\%	57.2	$\begin{array}{r}57.2 \\ 572 \\ \hline\end{array}$	0.0	${ }^{-0.1 \%}$
74.19\%	57.2 572 7.1	57.2 572 7.1	0.0	${ }^{-0.1 \%}$
75.3\%	57.2	57.2	0.0	-0.1\%
76.5\%	57.1	57.1	0.0	0.1\%
77.8\%	57.0	57.0	0.0	0.0\%\%
79.0\%	57.0	57.0	0.0	0.0\%
80.2\%	56.9	56.9	0.0	0.0\%
81.5\%	56.8	56.9	0.1	0.1\%
-	56.8 56.7	56.8 56.8	${ }_{0}^{0.1}$	${ }^{0.1 \% \%}$
85.2\%	56.7	56.8	0.1	0.1\%
86.4\%	56.7	56.7	0.0	0.0\%
87.7\%	56.6	56.6	0.0	-0.1\%
88.9\%	56.6	56.6	-0.1	-0.1\%
90.1\%	56.4	56.5	0.1	0.2\%
91.4\%	55.4	55.4	0.0	0.0\%
92.6\%	55.3	55.2	-0.1	-0.2\%
93.8\%	56.3	56.1	-0.2	-0.3\%
${ }_{965}^{95.19 \%}$	56.2)	56.1 56.0	-0.2 -0.2	-0.0.3\%
97.5\%	56.2	55.9	-0.3	-0.5\%
98.8\%	56.1	55.9	-0.2	-0.4\%
100.0\%	56.1	55.9	0.0	-0.4\%

$\begin{gathered} \text { Percent } \\ \hline \text { Excedance } \\ \text { Probability } \end{gathered}$$(\%)$	January			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	WSIP 2070 W.thout Proiet	WSIP 2070 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Differeen } \\ & \text { (DEGFF) } \end{aligned}$	
	Monthy Temperature	Monthly Temperature (DEGFF)		
0.0\%	50.8	50.8	0.1	0.2\%
1.2\%	50.5	50.8	0.3	0.7%
2.5\%	50.5	50.7	0.2	0.4\%
3.7\%	50.2	50.7	0.5	0.9\%
4.9\%	50.1	50.6	0.4	0.8\%
6.2\%	50.1	50.5	0.3	0.7\%
7.4\%	49.7	50.1	0.4	0.9\%
8.6\%	49.5	49.8	0.3	0.6\%
9.9\%	49.5	49.7	0.3	0.5\%
11.1\%	49.3	49.6	0.3	0.6\%
12.3\%	49.3	49.5	0.2	0.4\%
13.6\%	49.3	49.4	0.1	0.2\%
14.8\%	49.1	49.3	0.3	0.5\%
16.0\%	48.8	49.2	0.4	0.9\%
17.3\%	48.8	49.1	0.4	0.8\%
18.5\%	48.8	49.1	${ }^{0.3}$	0.6\%
19.8\%	48.7	48.9	0.3	0.5\%
21.0\%	48.6	48.7	0.2	0.4\%
22.2\%	48.5	48.7	0.1	0.2\%
23.5\%	48.5	48.6	0.1	0.3\%
24.7\%	48.5	48.6	0.1	0.3\%
25.9\%	48.4	48.6	0.2	0.3\%
27.2% 28.4%	48.4 48.4	48.6 48.5	${ }_{0}^{0.2}$	0.4\%
29.6\%	48.3	48.5	0.2	0.4\%
30.9\%	48.3	48.5	0.2	0.4\%
32.1\%	48.3	48.4	0.2	0.4\%
33.3\%	48.3	48.4	0.2	0.3\%
34.6\%	48.2	48.4	0.2	0.4\%
35.8\%	48.2	48.4	0.2	0.4\%
37.0\%	48.2	48.3	0.2	0.3\%
38.3\%	48.1	48.3	0.2	0.4\%
39.5\%	48.1	48.3	0.2	0.5\%
40.7\%	48.0	48.3	0.3	0.6\%
${ }^{42.0 \%}$	48.0 47.9	48.2 48.2	0.2 0.3	${ }^{0.5 \%}$
44.4\%	47.8	48.0	0.2	0.4\%
45.7\%	47.7	48.0	0.3	0.6\%
46.9\%	47.7	48.0	0.3	0.6\%
48.1\%	47.6	48.0	0.3	0.7\%
49.4\%	47.6	47.9	0.2	0.5\%
50.6\%	47.6	47.8	0.2	0.4\%
51.9\%	47.5	47.7	0.3	0.6\%
53.1\%	47.4	47.7	0.3	0.6\%
54.3\%	47.4	47.7	0.2	0.5\%
	47.4 474	${ }_{477}^{47.7}$	0.3 0.3	0.6\%
58.0\%	47.4	47.6	0.2	0.4\%
59.3\%	47.3	47.5	0.2	0.4\%
60.5\%	47.3	47.5	0.1	0.3\%
61.7\%	47.3	47.5	0.2	0.3\%
63.0\%	47.3	47.5	0.2	0.3\%
64.2\%	47.3	47.4	0.2	0.3\%
65.4\%	47.3	47.3	0.0	0.1\%
66.7\%	47.3	47.3	0.0	0.1\%
${ }^{67.99 \%}$	47.1	47.3	${ }^{0.1}$. 0.3%
	47.1	47.3	0.1	0.3\%
70.4\%	47.1	47.3	0.2	
71.6% 72.8%	47.1 47.1	47.2 47.2	${ }_{0.1}^{0.1}$	${ }_{0}^{0.2 \%}$
74.1\%	47.1	47.1	0.1	0.2\%
75.3\%	47.0	47.1	0.1	0.2\%
76.5\%	47.0	47.1	0.1	0.1\%
77.8\%	47.0	47.1	0.1	0.2\%
79.0\%	46.9	47.0	0.1	0.1\%
80.2\%	46.9	46.9	0.0	0.0\%
81.5\%	46.8	46.9	${ }^{0.1}$	0.3\%
${ }^{88.7 \% \%}$	46.8	46.9	0.1	0.2\%
84.0\%	46.7	46.8	0.1	0.1\%
${ }^{85.2 \%}$	46.6	46.8	0.2	0.3\%
${ }^{88.4 \%}$	46.6	46.7	0.2	0.4\%
87.7\%	46.5	46.7	0.1	0.3\%
88.9\%	46.5	46.6	0.1	0.3\%
90.1\%	46.4	46.6	0.1	0.2\%
91.4\%	46.4	46.4	0.1	0.1\%
92.6\%	46.2	46.2	0.0	0.0\%
93.8\%	46.2	46.1	-0.1	-0.2\%
95.1\%	46.2	46.1	-0.1	${ }^{-0.2 \% \%}$
${ }^{96.3 \% \%}$	46.2	46.0	-0.1	${ }^{-0.3 \%}$
99.5\%	45.9	46.0		0.3\%
98.8\%	45.8	45.8 458	0.0	${ }^{0.0 \% \%}$
100.0\%	45.8	45.8	0.0	0.0\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \\ \text { (\%\% } \end{gathered}$	February			
	WSIP 2070 Without Proiect	WSIP 2070 With Project		Relative
	Monthly Temperature	Monthy Temperature	(DEGF)	Difference (\%)
0.0\%	52.0	52.2	0.3	0.5\%
1.2\%	51.8	52.0	0.1	0.2\%
2.5\%	51.8	51.8	0.0	0.1\%
3.7\%	51.5	51.3	-0.2	-0.5\%
4.9\%	50.5	50.6	0.0	0.1\%
6.2\%	50.5	50.5	0.1	0.1\%
7.4\%	50.4	50.4	0.1	0.2\%
8.6\%	50.4	50.4	0.0	0.0\%
9.9\%	50.2	50.3	0.2	0.3\%
11.1\%	50.1	50.2	0.0	0.1\%
12.3\%	49.9	50.1	0.1	0.3\%
13.6\%	49.9	50.0	0.1	0.2\%
14.8\%	49.9	49.9	0.0	0.0\%
${ }^{16.0 \%}$	49.8 49.7	49.9	0.1 0.0	. 0.2%
${ }^{18.55 \%}$	49.7	49.7	0.0	${ }^{-0.1 \%}$
19.8\%	49.5	49.6	0.1	0.2\%
21.0\%	49.5	49.6	0.1	0.3\%
22.2\%	49.4	49.6	0.2	0.4\%
23.5\%	49.4	49.6	0.2	0.3\%
24.7\%	49.4	49.5	0.1	0.3\%
25.9\%	49.3	49.4	0.1	0.2\%
27.2\%	49.2	49.3	0.1	0.3\%
28.4\% 29.6\%	49.2 49.2	49.3 49.2	0.1 0.0	0.1\%
30.9\%	49.1	49.2	0.1	0.1\%
32.1\%	49.1	49.1	0.0	0.1\%
33.3\%	49.1	49.1	0.0	0.0\%
34.6\%	49.0	49.0	${ }^{0.1}$	${ }_{0}^{0.1 \%}$
35.8\%	48.9	49.0	0.1	0.1\%
37.0\%	48.8	48.9	0.1	0.2\%
38.3\%	48.8	48.8	0.0	0.0\%
39.5\%	48.8	48.8	0.0	0.0\%
40.7\%\%	48.8 48.7	${ }_{48.7}^{48.7}$	0.0 0.0	${ }_{\text {a }}^{0.0 \% \%}$
43.2\%	48.5	48.7	0.2	0.3\%
44.4\%	48.4	48.5	0.0	0.1\%
45.7\%	48.4	48.5	0.0	0.1\%
46.9\%	48.4	48.4	0.0	0.1\%
48.1\%	48.3	48.4	0.0	0.1\%
49.4\%	48.3	48.4	0.1	0.1\%
50.6\%	48.3	48.4	0.1	0.1\%
51.9\%	48.3	48.3	0.1	0.1\%
	${ }_{48.2}^{48.2}$	48.3 483	${ }_{0}^{0.1}$	${ }^{0.2 \% \%}$
55.6\%	48.2	48.2	0.0	0.1\%
56.8\%	48.1	48.2	0.0	0.0\%
58.0\%	48.1	48.1	0.0	0.1\%
59.3\%	48.1	48.1	0.1	0.1\%
60.5\%	48.0	48.1	0.1	0.2\%
${ }^{61.77 \%}$	48.0	48.0	0.1	0.1\%
63.0\%	47.9	48.0	0.1	0.2\%
64.2\%	47.8	47.9	0.1	0.3\%
65.4\%	47.8	47.9	0.2	0.3\%
66.7\%	47.7	47.8	0.1	0.2\%
67.9\%	47.7	47.8	0.1	0.2\%
69.19\%	47.7	47.7	0.1	0.2\%
70.4\%	47.6	47.6	0.0	0.0\%
71.6\%	47.6	47.6	0.0	0.1\%
72.8\%	47.6	47.5	0.0	-0.1\%
74.1\%	47.5	47.5	0.0	0.0\%
75.3\%	47.5	47.5	0.0	0.0\%
76.5\%	47.5	47.5	0.0	0.0\%
77.8\%	47.5	47.4	0.0	-0.1\%
79.0\%	47.4	47.4	0.0	0.0\%
80.2\%	47.3	47.3	0.0	0.0\%
${ }^{81.5 \%}$	47.3	47.2	0.0	0.0\%
822.7\%	${ }_{47.2}^{47.2}$	${ }_{47.1}^{47.2}$	0.0 0.0	-0.0\%
85.2\%	47.1	47.1	0.0	0.0\%
86.4\%	47.1	47.0	-0.1	0.2\%
87.7\%	46.8	46.8	0.0	0.0\%
88.9\%	46.8	46.8	0.0	0.0\%
90.1\%	46.7	46.8	0.0	0.1\%
91.4\%	46.7	46.8	0.0	0.1\%
92.6\%	46.7	46.5	-0.1	-0.2\%
93.8\%	46.5	46.5	0.0	-0.1\%
${ }_{965.10 \%}^{96.10}$	46.5 46.3	${ }_{46.2}^{46.3}$	-0.1 -0.1	-0.3\%
97.5\%	46.2	46.2	0.0	0.0\%
98.8\%	${ }^{45.3}$	45.2	-0.1	0.1\%
100.0\%	45.3	45.2	-0.1	-0.1\%

March					April				
Percent	WSII 2070 Without	1 P 207				WSIP 207 Without	WSIP 2070 With Project		
Proabaility	Monthly Temperatue	Monthly Temperature	Difference (DEGF)	Difference (\%)	Probabil	Monthy Temperat	Monthy Temperature	Difference (DEGF)	ifference (\%)
(\%)	(0EC)								
${ }^{0.0 \%}$	54.7	54.2	-0.4	${ }^{-0.8 \%}$	0.0\%	57.5	57.3	-0.2	${ }^{-0.3 \%}$
${ }^{1.2 \%}$	54.3	54.2	-0.1	-0.1\%	${ }^{1.2 \%}$	57.1	57.0	-0.2	-0.3\%
2.5\%	${ }_{5}^{53.7}$	53.9 598	0.2	0.4\%	2.5\%	56.9	55.6	-0.3	-0.5\%
3.7\%	${ }_{53,6}^{59.6}$	53.8	0.2	0.3\%	${ }^{3.7 \%}$	56.5	56.5	-0.1	${ }^{-0.1 \%}$
${ }_{6.2 \%}$	${ }_{53.5}$	${ }_{53.6}$	0.2	0.3\%	6.2\%	${ }_{56.3}$	55.4	0.0	0.1\%
7.4\%	53.4	53.5	0.1	0.1\%	7.4\%	56.3	56.1	-0.2	-0.3\%
8.6\%	53.4	53.5	0.1	0.1\%	8.6\%	56.3	56.1	-0.2	-0.36
9.9\%	53.3	53.4	0.1	0.2\%	9.9\%	56.0	56.1	0.1	
11.1\%	53.3	53.4	0.1	0.2\%	11.1\%	55.0	55.9	0.0	0.0\%
12.3\%	53.3	53.2	0.0	-0.1\%	12.3\%	55.9	5.9	0.0	0.0\%
13.6\%	53.2	53.2	0.0	0.0\%	13.6\%	55.9	55.8	0.0	-0.1\%
14.8\%	53.0	53.1	0.0	0.1\%	14.8\%	55.9	55.8	0.0	-0.1\%
16.0\%	53.0	53.0	0.1	0.1\%	16.0\%	55.7	55.5	-0.3	-0.5\%
17.3\%	52.9	52.9	0.0	0.0\%	17.3\%	55.7	55.4	-0.3	-0.5\%
18.5\%	52.9	52.9	0.0	0.1\%	18.5\%	55.3	55.3	-0.1	-0.1\%
19.8\%	52.8	52.9	0.1	0.1\%	19.8\%	55.2	55.3	0.1	0.2\%
21.0\%	52.8	52.8	0.0	0.0\%	21.0\%	55.1	55.2	0.0	0.1\%
${ }_{2}^{22.25 \%}$	52.8 52.5 52.	52.8 52.8	${ }_{0}^{0.0}$	0.1\%	${ }_{2}^{22.5 \%}$	55.1 55.1	55.2 55.1	0.1 0.0	${ }^{0.1 \% \%}$
224.7\%	52.5	52.5	0.0	0.0\%	224.7\%	55.1	55.1	0.0	0.1\%
25.9\%	52.5	52.5	0.0	0.0\%	25.9\%	55.0	55.1	0.1	0.1\%
27.2\%	52.5	52.5	0.0	0.1\%	27.2\%	55.0	55.1	0.1	0.2\%
28.4\%	52.4	52.5	0.1	0.1\%	28.4\%	54.9	55.1	0.2	0.3\%
29.6\%	52.3	52.4	0.1	0.2\%	29.6\%	54.9	55.0	0.1	0.2\%
30.9\%	52.2	52.4	0.2	0.4\%	30.9\%	54.8	54.9	0.1	0.2\%
32.1\%	52.2	52.4	0.2	0.4\%	32.1\%	54.8	54.9	0.1	0.2\%
33.3\%	52.0	52.0	0.0	0.0\%	33.3\%	54.8	54.9	0.1	0.2\%
34.6\%	51.9	${ }_{52.0}$	0.1	${ }^{0.1 \%}$	34.6\%	54.8	54.9	0.1	0.2\%
${ }^{357.0 \%}$	51.9 51.9	52.0 51.8	-0.1	-0.1\%	${ }^{357.0 \%}$	54.8 54.7	54.9 54.8	0.1 0.1	${ }_{0}^{0.2 \%}$
38.3\%	51.9	51.8	-0.1	-0.2\%	38.3\%	54.5	54.8	0.3	0.5\%
39.5\%	51.9	51.6	-0.3	-0.5\%	39.5\%	54.5	54.7	0.2	0.4\%
40.7\%	51.6	51.6	-0.1	-0.1\%	40.7\%	54.5	54.6	0.1	0.2\%
42.0\%	51.6	51.4	-0.1	-0.3\%	42.0\%	54.4	54.6	0.2	0.3\%
43.2\%	51.5	51.4	-0.1	-0.1\%	43.2\%	54.4	54.5	0.1	0.2\%
44.4\%	51.4	51.4	0.0	0.0\%	44.4\%	54.4	54.5	0.1	0.1\%
45.7\%	51.4	51.4	0.0	0.1\%	45.7\%	54.3	54.4	0.2	0.3\%
46.9\%	51.3	51.4	0.0	0.1\%	46.9\%	54.2	54.4	0.2	0.4\%
48.1\%	51.2	51.3	0.1	0.2\%	48.1\%	54.2	54.4	0.2	0.4\%
49.4\%	51.2	51.2	0.0	0.1\%	49.4\%	54.1	54.3 54.3	0.2	0.3\%
50.6\%	51.2	51.2	0.0	0.0\%	50.6\%	54.1	54.3	0.1	0.3\%
51.9\%	51.1	51.1	0.0	0.0\%	${ }^{51.9 \%}$	54.1	54.3	0.1	0.3\%
53.1\%	51.1	51.1	0.0	0.0\%	53.1\%	54.1	54.2	0.1	0.2\%
54.3\%	51.0	51.1	${ }^{0.0}$	0.0\%	54.3\%	54.1	54.2	0.1	0.1\%
55.6\%	50.9	51.0	0.2	0.4\%	55.6\%	54.0	54.2	0.1	0.2\%
56.8\%	${ }_{50.8}^{50.8}$	50.9	0.0	0.1\%	${ }_{\text {55.8\% }}^{50}$	54.0	${ }_{54.1}$	0.1	0.2\%
58.0\%	50.8	50.9	0.1	0.1\%	58.0\%	54.0	54.1	0.1	0.2\%
59.3\%	${ }_{50.8}^{50.8}$	50.9	0.0	0.1\%	${ }^{59.3 \%}$	${ }_{54.0}$	${ }_{54.1}^{54}$	0.2	0.3\%
${ }_{6}^{60.7 \%}$	50.6	50.6	0.0	0.0\%	${ }^{66.5 \%}$	${ }_{53.8}^{53.9}$	54.1	0.3 0.3	0.5\%
63.0\%	50.6	50.6	0.0	0.1\%	63.0\%	53.7	54.0	0.3	0.5\%
64.2\%	50.5	50.6	0.1	0.2\%	64.2\%	53.7	54.0	0.2	0.4\%
${ }_{6}^{65.4 \%}$	50.5	50.4	0.0	0.0\%	65.4\%	${ }_{53,7} 5$	53.8	0.1	0.2\%
${ }^{66.7 \%}$	50.4 50.3 0.5	50.4 50.4	0.0	${ }^{0.0 \%}$	${ }^{66.7 \%}$	53.7 536 53	53.8	${ }^{0.1}$	${ }^{0.2 \%}$
	50.3 502 0.2	50.4 50.4 50,	0.1		${ }_{6}^{67.9 \%}$	53.6 535 35	53.7 537	${ }^{0.1}$	${ }_{0}^{0.2 \% \%}$
${ }^{69.1 \%}$	50.2	50.2	0.0	0.1\%	${ }^{69.1 \%}$	${ }_{53.5}^{53.5}$	${ }_{53}^{53.7}$	0.2	0.4\%
70.4\%	50.2	50.2	0.1	0.1\%	70.4\%	53.4	53.6	0.2	0.4\%
71.6\%	${ }_{50.1}$	50.2	0.0	0.1\%	71.6\%	53.4	53.6	0.2	0.4\%
72.8\%	50.1	50.2	0.1	0.1\%	72.8\%	53.4	53.6	0.2	0.3\%
74.1\%	50.0	50.0	0.0	0.0\%	74.1\%	53.4	${ }^{53.6}$	0.2	0.3\%
75.3\%	50.0	50.0	0.0	0.1\%	7.3\%	53.4	53.6	0.2	0.3\%
77.8\%	${ }_{49.5}^{49.7}$	49.4	-0.0	-0.0\%	76.5\%	53.4 53.4	53.5 53.5	0.1 0.1	${ }_{0}^{0.2 \%}$
79.0\%	49.3	49.3	0.0	0.0\%	79.0\%	53.3	53.5	0.1	0.3\%
80.2\%	49.3	49.3	0.0	0.0\%	80.2\%	53.2	53.4	0.2	0.4\%
81.5\%	49.3	49.2	-0.1	-0.1\%	81.5\%	53.2	53.4	0.2	0.4\%
82.7\%	49.1	49.2	0.1	0.2\%	82.7\%	53.1	53.4	0.3	0.5\%
84.0\%	49.1	49.1	0.0	0.1\%	84.0\%	53.1	53.4	${ }^{0.3}$	0.5\%
85.2\%	49.1	49.1	0.0	0.0\%	85.2\%	53.1	53.4	0.3	0.6\%
${ }^{86.4 \%}$	49.1	49.0	0.0	-0.1\%	${ }^{88.4 \%}$	${ }_{53.0}^{53.0}$	${ }_{523}^{53.3}$	${ }^{0.3}$	0.5\%
87.7\%	49.0	49.0	0.0	-0.1\%	87.7\%	52.7	52.8	0.0	0.0\%
80.9\%	48.7 48.6	48.8 48.6	0.2 0.0	-0.4\%	88.9\% ${ }_{\text {80.1\% }}$	52.4 52.3	52.5 52.3	0.1 0.0	-0.1\%
91.4\%	48.5	48.6	0.0	0.1\%	91.4\%	52.1	52.1	0.0	0.0\%
92.6\%	48.5	48.5	0.0	0.1\%	92.6\%	${ }_{52.0}^{52.0}$	${ }_{52.1}^{52.1}$	0.1	0.1\%
93.8\%	48.4	48.4	0.0	0.1\%	93.8\%	52.0	52.1	0.1	0.2\%
${ }^{95.19}$	48.4	48.4	0.0	0.0\%	${ }^{95.1 \%}$	51.6 51.3	51.8 513 1.3	0.2	0.4\%
${ }^{96.3 \%}$	48.2	48.2	0.0	0.0\%	${ }^{99.3 \%}$	$\stackrel{51.3}{50.3}$	${ }_{507}^{51.3}$	0.0	0.0\%\%
97.5\%	48.2	48.1	0.0	-0.1\%	97.5\%	50.9	50.7	-0.1	-0.3\%
98.8\%	48.0 480	48.0 480	0.0	${ }_{\text {onem }}^{0.00 \%}$	${ }^{98.8 \%}$	50.7	${ }_{50.6}$	-0.1	-0.1\%
100.0\%	48.0	48.0	0.0	0.0\%	100.0\%	50.7	50.6	-0.1	-0.1\%

May				
Percent Exceedance	WSIP Porvo Without Proiet	WSIP 2070 With Project		Relative
$\begin{aligned} & \text { Probability } \\ & (\%) \end{aligned}$	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGF } \end{aligned}$	Difference (\%)
0.0\%	60.4	59.9	${ }^{-0.5}$	-0.8\%
1.2\%	59.7	59.5	-0.3	-0.5\%
2.5\%	59.7	59.3	-0.4	-0.6\%
3.7\%	59.4	59.1	-0.3	-0.4\%
4.9\%	59.1	59.1	0.0	0.0\%
6.2\%	58.7	59.0	0.4	0.6\%
7.4\%	58.6	59.0	0.4	0.7\%
8.6\%	58.6	59.0	0.4	0.8\%
9.9\%	58.6	58.9	0.3	0.6\%
11.1.\%	58.5	58.9	0.4	0.7\%
12.3\%	58.4	58.8	0.4	0.7\%
13.6\%	58.2	58.8	${ }^{0.5}$	0.9\%
16.0\%	58.1	58.7	0.7	1.1\%
17.3\%	58.0	55.7	0.6	1.1\%
18.5\%	57.9	58.6	0.7	1.1\%
19.8\%	57.9	55.6	0.7	1.3\%
21.0\%	57.8	58.4	0.6	1.1\%
22.2\%	57.4	58.3	0.9	1.5\%
23.5\%	57.4	58.3	0.8	1.4\%
24.7\%	57.2	58.2	1.0	1.8\%
25.9\%	57.1 57.1	58.0 57.9	0.9 0.7	1.6\%
28.4\%	57.1	57.8	0.7	1.3\%
29.6\%	57.1	57.7	0.6	1.1\%
30.9\%	57.0	57.4	0.4	0.7\%
32.1\%	57.0	57.4	0.4	0.7\%
33.3\%	57.0	57.4	0.4	0.8\%
34.6\%	56.9	57.4	0.5	0.8\%
35.8\%	56.9	57.3	0.4	0.7\%
37.0\%	55.8	57.3	0.4	0.8\%
38.3\%	56.8 56.6	57.2 57.2	0.5 0.6	-
40.7\%	56.5	57.1	0.6	1.0\%
42.0\%	56.5	57.1	0.6	1.0\%
43.2\%	56.5	57.1	0.6	1.0\%
44.4\%	56.5	57.1	0.6	1.1\%
45.7\%	56.4	57.0	0.6	1.1\%
46.9\%	56.4	57.0	0.6	1.1\%
48.1\%	56.3	56.9	0.5	1.0\%
49.4\%	56.3	55.9	0.5	1.0\%
50.6\%	56.2	56.8	0.6	1.1\%
51.9\%	56.0	55.8	0.8	1.4\%
53.1\%	56.0	55.8	0.8	1.4\%
54.3\%	56.0	56.8	0.7	1.3\%
年5.50\%	56.0	56.8	0.8	1.4\%
56.8\%	56.0	56.7	0.7	1.2\%
58.0\%	55.9	56.6	0.7	${ }^{1.2 \%}$
59.3\%	55.9 559	56.6	0.7	1.3\%
60.5\%	55.9	56.5	0.6	1.0\%
61.7\%	55.9	55.4	0.6	1.0\%
63.0\%	55.8	56.4	0.5	1.0\%
64.2\%	55.8	56.2	0.4	0.7\%
65.4\%	55.8	55.1	0.4	0.7\%
${ }^{66.7 \%}$	${ }_{55}^{55.8}$	56.1	${ }^{0.3}$	0.5\%
-67.9\%	55.7 55.7	56.1 56.1	0.3 0.3	0.6\%
70.4\%	55.6	56.0	0.4	0.8\%
71.6\%	55.6	56.0	0.4	0.7\%
72.8\%	55.6	56.0	0.4	0.7\%
74.1\%	55.4	55.0	0.5	0.9\%
75.3\%	55.3	55.9	0.6	1.1\%
76.5\%	55.3	55.9	0.6	1.1\%
77.8\%	55.3	55.9	0.6	1.0\%
79.0\%	55.3	55.8	0.5	1.0\%
80.2\%	55.2	55.8	0.6	1.0\%
81.5\%	55.22	55.7 55 5.7	${ }^{0.5}$	${ }^{0.9 \%}$
- 82.780%	55.2 55.2	55.7 55.5	0.5 0.3	0.5\%
85.2\%	55.2	55.5	0.3	0.5\%
86.4\%	55.2	55.5	0.3	0.5\%
87.7\%	55.2	55.3	0.1	0.2\%
88.9\%	55.0	55.2	0.2	0.3\%
90.1\%	55.0	55.2	0.2	0.3\%
91.4\%	55.0	55.1	0.2	0.3\%
92.6\%	54.7	55.0	0.3	0.5\%
93.8\%	54.7	55.0	0.3	0.5\%
${ }_{995.3 \%}^{95.19 \%}$	54.7 54.3	55.0 54.6	0.3 0.4	${ }^{0.5 \%}$
97.5\%	54.3	54.5	0.2	0.4\%
98.8\%	54.2	54.3	0.1	0.2\%
100.0\%	54.2	54.3	0.1	0.2\%

June				
$\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Pexceana } \\ \text { Probability } \end{array} \\ & \left.\hline()_{0}\right) \end{aligned}$	WSII 207 Prowthout	WSIP 2070 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)		
0.0\%	60.5	60.4	-0.1	-0.2\%
1.2\%	60.5	59.7	-0.8	1.3\%
2.5\%	59.7	59.5	-0.2	-0.3\%
3.7\%	59.7	59.1	-0.6	-1.0\%
4.9\%	59.6	58.9	-0.6	-1.1\%
6.2\%	59.6	58.9	-0.6	-1.1\%
7.4\%	59.4	58.9	-0.5	-0.9\%
8.6\%	59.1	58.8	-0.4	-0.7\%
9.9\%	59.1	58.7	-0.4	-0.6\%
11.12\%	59.1	58.7	-0.4	-0.7\%
12.3\%	59.0	58.5	-0.6	-0.9\%
13.6\%	59.0	58.4	-0.5	-0.9\%
14.8\%	55.8	58.4	-0.4	-0.7\%
16.0\%	58.7	58.4 58.4	-0.2	-0.4\%
17.3\%	58.2	58.4	0.1	0.2\%
18.5\%	58.2	58.3	0.1	0.2\%
19.8\%	58.2	58.3	0.1	${ }^{0.19 \%}$
21.0\%	58.1	58.2	0.2	0.3\%
22.2\%	58.0	58.1	0.1	0.3\%
23.5\%	57.9	58.1	0.2	0.3\%
24.7\%	57.8	58.0	0.2	0.4\%
25.9\%	57.6	58.0	0.4	0.6\%
27.2% 28.4%	57.6 57.5	57.9 57.9	0.3 0.4	
29.6\%	57.5	57.9	0.4	0.7\%
30.9\%	57.2	57.9	0.6	1.1\%
32.1\%	57.2	57.8	0.5	0.9\%
33.3\%	57.2	57.7	0.5	0.9\%
34.6\%	57.2	57.7	0.5	0.9\%
35.8\%	57.1	57.6	0.5	1.0\%
37.0\%	57.1	57.6	0.5	0.9\%
38.3\%	57.0	57.5	0.5	1.0\%
39.5\%	56.9	57.5	0.6	1.0\%
40.77\%	56.9 56.8	57.5	0.6	1.0\%
${ }^{42.0 \%}$	55.8	57.4	0.6	1.0\%
43.2\%	${ }_{567}^{56.7}$	$\begin{array}{r}57.2 \\ 572 \\ \hline\end{array}$	${ }^{0.5}$	
${ }^{44.4 \%}$	56.7 56.6	57.2 57.1	0.5 0.5	${ }^{0.9 \%}$
46.9\%	56.6	57.1	0.5	0.9\%
48.1\%	56.6	57.0	0.4	0.8\%
49.4\%	55.4	57.0	0.5	0.9\%
50.6\%	56.2	56.9	0.7	1.3\%
51.9\%	56.2	56.9	0.7	1.2\%
53.1\%	56.2	55.8	0.7	1.2\%
54.3\%	56.2	55.8	0.6	1.0\%
55.6\%	56.1	56.7	0.6	${ }_{1}^{1.0 \%}$
56.8\%	56.1	56.7	0.6	1.1\%
58.0\%	56.0	56.7	0.7	1.2\%
59.3\%	56.0	56.7	0.7	1.2\%
60.5\%	55.0	55.7	0.7	1.2\%
${ }^{61.7 \%}$	55.0	55.6	0.7	1.2\%
63.0\%	56.0	56.6	0.7	1.2\%
${ }^{64.2 \%}$	55.0	55.6	0.6	1.1\%
65.4\%	55.9	55.6	0.6	1.2\%
66.7\%	55.9	56.6	0.6	1.2\%
67.9\%	55.9	55.6	0.7	${ }_{1}^{1.2 \%}$
69.19\%	55.9 558 55	56.5	0.6	1.1\%
70.4\%	55.8 558 558	56.3 56.3	${ }_{0}^{0.5}$	0.8\%
${ }^{71.28 \%}$	55.8 55.7	${ }_{56.3}^{56.3}$	${ }_{0}^{0.4}$	${ }_{\text {1.1\% }}^{0.8 \%}$
74.1\%	55.7	56.3	0.6	1.1\%
75.3\%	55.5	55.2	0.7	1.3\%
76.5\%	55.4	56.2	0.8	1.4\%
77.8\%	55.4	56.2	0.8	1.4\%
79.0\%	55.3	56.1	0.9	1.6\%
80.2\%	55.2	56.1	0.9	1.7\%
- ${ }_{81.5 \%}$	55.1 55.0	56.1 55.9	1.0 0.9	+1.8\%\%
84.0\%	55.0	55.9	0.9	1.7\%
85.2\%	55.0	55.9	0.9	1.6\%
86.4\%	54.8	55.8	0.9	1.7\%
87.7\%	54.8	55.6	0.8	1.5\%
88.9\%	54.7	55.5	0.7	1.4\%
90.1\%	54.6	55.3	0.7	1.3\%
91.4\%	54.6	55.3	0.7	1.3\%
- ${ }_{\text {93, }}^{92.6 \%}$	54.5 54.4	55.2 55.0	0.7 0.6	1.1.1\%
95.1\%	54.3	54.7	0.4	0.7\%
96.3\%	54.3	54.7	0.4	0.8\%
97.5\%	54.2	54.7	0.5	0.8\%
98.8\%	$\begin{array}{r}54.2 \\ 54 . \\ \hline\end{array}$	54.6 54.6	0.4	0.8\%
		54.6	0.4	0.8\%

$\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probabaility } \end{array} \end{aligned}$	September			
	WSIP 2070 Without Proiet	WSIP 2070 With Project	Absolute	Relative
	Monthly Temperature (DEEFF)	$\underset{\substack{\text { Monthly Temperature } \\ \text { (DEGF) }}}{\text { Cor }}$	(DEGF)	Difference (\%)
0.0\%	72.4	70.5	-2.0	-2.7\%
1.2\%	71.1	70.2	-0.9	-1.2\%
2.5\%	70.0	68.1	-1.8	-2.6\%
3.79\%	69.0	${ }_{6}^{67.9}$	-1.1	-1.6\%
6.2\%	67.5	${ }_{64.3}$	${ }_{-3.2}$	-4.8\%
7.4\%	66.8	64.1	-2.7	-4.0\%
8.6\%	66.0	62.9	-3.0	-4.6\%
9.9\%	65.4	62.6	-2.9	-4.4\%
11.1\%	64.3	62.5	-1.8	-2.7\%
12.3\%	64.2	62.4	-1.8	-2.8\%
13.6\%	63.7	62.2	-1.5	-2.3\%
14.8\%	63.5	61.4	-2.1	-3.3\%
16.0\% 17.3%	63.1 63.0	61.1 61.0	-2.0 -2.0	${ }_{-}^{-3.2 \%}$
18.5\%	63.0	61.0	-2.0	-3.1\%
19.8\%	62.9	60.9	-2.1	-3.3\%
21.0\%	62.9	60.8	-2.0	-3.2\%
22.2\%	62.6	60.2	-2.4	-3.9\%
23.5\%	62.4	60.2	-2.2	-3.6\%
24.7\%	${ }_{6} 62.1$	59.7	-2.4	-3.3\%
25.9\%	61.7 61.6	59.6 59.6	-2.00	--3.3% $-.3 .2 \%$
28.4\%	61.5	59.6	-2.0	${ }^{-3.2 \%}$
29.6\%	61.5	59.5	-1.9	-3.1\%
30.9\%	61.2	59.5	-1.7	-2.8\%
32.1% 33.3%	61.2 607	59.5 59.5	-1.6	${ }_{\text {- }}^{-2.29 \%}$
34.6\%	60.7	59.4	${ }_{-1.3}$	${ }_{\text {-2.2\% }}$
35.\%	60.6	59.2	-1.3	${ }_{-2.2 \%}$
37.0\%	60.3	59.2	-1.1	-1.9\%
38.3\%	60.3	59.1	-1.2	-1.9\%
3.5.5\%	60.2	58.9	-1.3	-2.2\%
${ }^{40.70 \%} 4$	60.2 60.1	58.8 58.8	-1.4	-
43.2\%	60.1	58.8	-1.3	-2.1\%
44.4\%	59.9	58.7	-1.2	-2.0\%
${ }^{45.9 \%}$	59.7 59.6	58.6 58.6	-1.1 -1.0	-1.8\%
48.1\%	59.6	58.6	-1.0	${ }^{-1.6 \%}$
49.4\%	59.5	58.6	-1.0	-1.6\%
50.6\%	59.4	58.5	-0.8	-1.4\%
51.9\%	59.2	58.4	-0.8	-1.3\%
53.1\%	58.9	58.4	-0.5	-0.9\%
54.3\%	58.1	58.4	0.3	0.5\%
55.6\%	58.0	58.3	0.3	0.5\%
58.0\%	57.6	${ }_{58.2}$	0.6	${ }_{\text {1.0\% }}$
59.3\%	57.5	58.0	0.5	0.8\%
${ }^{60.50}$	57.5 57.4	58.0	0.5	0.8\%
61.7\%	57.4	58.0	0.5	0.9\%
63.0\%	57.3	57.9	0.6	1.19\%
64.2\%	$\stackrel{57.1}{56.1}$	${ }_{57.8}$	0.8	1.3\%
65.4\%	56.6 56.5	57.7 57.4	${ }^{1.1}$	2.0\%
67.9\%	56.4	57.4	1.0	${ }^{1.7 \% \%}$
69.1\%	56.4	56.7	0.3	0.6\%
70.4\%	56.4	56.7	0.3	0.6\%
${ }^{71.6 \%}$	56.3 56. 5.	${ }_{56.6}$	0.4	0.6\%
72.8\%	56.2 56.1	56.6 56.6	0.4 0.5	${ }_{0}^{0.7 \% \%}$
75.3\%	56.1	56.4	0.3	0.5\%
76.5\%	56.1	56.2	0.2	0.3\%
77.8\%	55.0	56.2	${ }^{0.3}$	0.5\%
79.0\%	55.8	56.1	${ }^{0.3}$	0.5\%
80.2\%	55.7	56.1	0.4	0.7\%
81.5\%	55.5	55.9	0.4	0.7\%
84.0\%	55.2	55.8 55.1	-0.1	-0.4\%
85.2\%	55.1	55.0	-0.1	-0.3\%
86.4\%	54.9	54.8	-0.1	-0.2\%
88.7\%	54.9	54.6 545 4.5	-0.3	-0.5\%
${ }^{88.9 \%}$	54.8 54.6	54.5 54.4	-0.3	-0.6\%
91.4\%	54.6	54.4	-0.2	-0.4\%
92.6\%	54.5	54.4	-0.2	-0.3\%
93.8\%	54.4	54.3	-0.1	-0.1\%
95.19\%	54.4 54.3	54.1 54.1	-0.3	-0.6\%
${ }^{96.5 \%}$	54.3 54.0	54.1 54.0	-0.2 0.1	-0.4\%
98.8\%	53.9	53.5	-0.3	. 5%
100.0\%	53.9	53.5	-0.3	-0.6\%

Table SQ6-1b

$\begin{gathered} \text { Percent } \\ \hline \begin{array}{c} \text { Exceanane } \\ \text { Probobabily } \end{array} \\ \hline \end{gathered}$	June to September			
	WSIP 2070 Wethout	WSIP 2070 With Project	Absolute	
	Monthly Temperature	Monthly Temperature	Difference (DEGF	Difference (\%)
(\%)	687	676	-1	0%
0.0\%	6.7	6.6	-0.1	-0.2\%
${ }_{\text {2.5\% }}^{1.2 \%}$	${ }_{65.1}^{66.1}$	${ }_{6}^{64.2}$	-1.5	-
3.7\%	63.8	62.6	-1.3	-2.0\%
4.9\%	63.0	60.7	-2.3	-3.6\%
6.2\%	61.9	60.6	-1.3	-2.0\%
7.4\%	61.2	60.1	-1.1	-1.8\%
8.6\%	60.9	59.9	-1.0	-1.6\%
9.9\%	60.8 608	59.6	-1.2	${ }^{-2.0 \%}$
12.3\%	60.6	59.5	-1.0	-1.7\%
13.6\%	60.4	59.5	-0.9	-1.4\%
14.8\%	60.0	59.5	-0.5	-0.8\%
16.0\%	59.9	59.4	-0.4	-0.7\%
17.3\%	59.8	59.3	-0.6	-0.9\%
18.5\%	59.8	59.2	-0.6	-1.0\%
19.8\%	59.8	59.2	-0.6	-1.0\%
21.0\%	59.6	59.1	-0.5	-0.8\%
22.2\%	59.6	59.1	-0.5	-0.8\%
23.5\%	59.6	58.9	-0.6	-1.1\%
24.7\%	59.4	58.9	-0.6	-0.9\%
25.9\%	59.3	58.7	-0.7	-1.1\%
${ }^{27.20 \%}$	59.0	58.7 58.7	-0.3	-0.6\%
28.4\%	59.0	58.7	-0.3	-0.5\%
29.6\%	58.9	58.6	-0.3	-0.5\%
30.9\%	58.9	58.6	-0.3	-0.5\%
32.1\%	58.8	58.5	-0.2	-0.4\%
33.3\%	58.8	58.4	-0.4	-0.6\%
34.6\%	58.7	58.4	-0.4	-0.6\%
35.8\%	58.7	58.3	-0.4	-0.6\%
37.0\%	55.6	58.3	-0.2	-0.4\%
38.3\%	58.5	58.3	-0.2	-0.3\%
			-0.3	-0.5\%
40.70\%	58.4 584	58.2	-0.2	
42.0\%	58.4	${ }_{58.1}$	-0.3	-0.4\%
43.2\%	58.3	58.1	-0.2	-0.4\%
44.4\%	58.3	58.1	-0.2	-0.4\%
45.7\%	58.2	58.0	-0.2	-0.4\%
46.9\%	58.2	58.0	-0.2	-0.4\%
48.1\%	58.2	58.0	-0.2	-0.4\%
49.4\%	58.1	57.9	-0.2	-0.3\%
50.9\%	58.1 58.1	57.8 57.8	-0.2 -0.3	-0.5\%
53.1\%	57.9	57.8	-0.2	-0.3\%
54.3\%	57.9	57.7	-0.3	-0.4\%
55.6\%	57.9	57.7	-0.3	-0.4\%
56.8\%	${ }_{577}^{57.8}$	${ }_{576}^{57.6}$	-0.2	${ }^{-0.3 \%}$
58.0\%	57.7	57.6	-0.1	-0.1\%
59.3\%	57.6	57.6	0.0	0.0\%
60.5\%	57.6 57.6	57.6 57.6	0.0	0.0\%\%
63.0\%	57.5	57.6	0.0	0.1\%
64.2\%	57.3	57.6	0.2	0.4\%
65.4\%	57.3	57.5	0.2	0.4\%
${ }^{66.77 \%}$	57.3	57.4	0.2	0.3\%
-67.9\%	57.2 572 7.2	57.4 572 57	0.2	0.3\%
- 79.40%	57.2 57.2	57.2 57.2	0.0 0.0	${ }_{\text {a }}^{0.0 \%}$
71.6\%	57.0	57.0	-0.1	-0.1\%
72.8\%	57.0	56.9	-0.1	-0.2\%
74.1\%	56.9	56.9	0.0	0.0\%
75.3\%	56.8	56.8	0.0	0.0\%
76.5\%	56.7	55.8	0.0	0.0\%
77.8\%	56.7 56.6	56.7 56.6	0.0	${ }^{0.00 \%}$
80.2\%	56.4	56.6	0.2	0.3\%
81.5\%	56.4	56.6	0.2	0.3\%
82.79\%	56.4 56.3	56.5 56.5	${ }_{0}^{0.1}$	${ }^{0.2 \%}$
84.0\%	${ }_{56.3}$	${ }_{56.5}^{56.5}$	0.1	0.2\%
85.2\%	56.3	${ }_{56.4}^{56.4}$	0.1	0.2\%
86.4\%	${ }_{56.3}$	56.4	0.1	0.2\%
87.7\%	56.2	${ }_{56.3}^{56.3}$	0.1	0.1\%
${ }^{88.9 \%} 9$	56.0 55.8	56.1 56.1	0.1 0.2	-
91.4\%	55.8	56.1	${ }^{0.3}$	0.5\%
92.6\%	${ }_{55}^{55.8}$	56.1	${ }^{0.3}$	0.5\%
93.8\%	55.8	56.1	${ }^{0.3}$	0.5\%
${ }^{95.19 \%}$	55.8 558 58	56.0 558 5.7	${ }^{0.2}$	0.3\%
96.5\%	55.8 55.8	55.8 55.7	-0.1	-0.1\%
98.8\%	55.7	55.7	0.0	0.0\%
100.0\%	55.3	55.4	0.1	0.3\%

	Juy to September		Proabaility of Exceedance		August to September				
	WSIP 2070 Without	WSIP 2070 With Project			Percent Exceedanc	${ }^{\text {WSIP }}$ Provo Without	WsIP 2070 With Project	Absolute	
Probability (\%)	Monthly Temperature (DEGEF)	$\xrightarrow{\text { Monthly Temperature }}$ (DEGF)		Difference (\%)	Probability $(\%)$	Monthly Temperature (DEEFF)	Monthly Temperature (DEGF)	(DEGF)	Difference (\%)
0.0\%	70.1	70.2	0.1	0.1\%	0.0\%	70.8	70.8	0.0	0.0\%
1.2\%	67.9	65.7	-2.2	-3.2\%	1.2\%	70.2	68.7	-1.5	-2.2\%
2.5\%	67.4	65.5	-2.0	-2.9\%	2.5\%	69.7	67.7	-1.9	-2.8\%
3.7\%	65.5	64.1	-1.4	-2.1\%	3.7\%	68.4	66.6	-1.8	-2.7\%
4.9\%	64.1	61.8	-2.3	3.6\%	4.9\%	66.1	63.4	-2.7	-4.1\%
6.2\%	63.3	61.2	-2.1	-3.4\%	6.2\%	64.9	62.0	-2.9	-4.5\%
7.4\%	62.5	60.7	-1.8	-2.9\%	7.4\%	63.8	61.7	-2.1	-3.3\%
8.9\%	${ }_{62.0}^{62.7}$	${ }_{60.5}$	-1.5	-2.5\%	8.9\%	${ }_{63,6}^{63.6}$	${ }_{61.4}$	-2.2	-3.4\%
9.9\%	61.7	60.4	-1.3	-2.1\%	9.9\%	62.5	61.3	-1.2	-1.9\%
11.1\%	61.7	60.4	-1.3	-2.2\%	11.1\%	62.4	61.3	-1.2	-1.9\%
12.3\%	61.4	60.3	${ }_{-1.1}$	-1.8\%	12.3\%	62.1	61.2	-0.9	-1.4\%
13.6\%	61.0	59.9	-1.0	-1.7\%	13.6\%	61.9	61.0	-1.0	-1.6\%
14.8\%	60.9	59.9	-1.0	-1.6\%	14.8\%	61.9	60.7	-1.2	-2.0\%
16.0\%	60.8	59.8	-1.0	-1.7\%	16.0\%	61.9	60.3	-1.5	-2.5\%
17.3\%	60.5	59.8	-0.7	-1.2\%	17.3\%	61.5	60.1	-1.4	-2.3\%
18.5\% 19.9%	60.5 60.4	59.8 59.5	-0.7 -1.0	-1.1.6\%	- 18.50%	61.4 61.3	60.0 60.0	-1.4	- ${ }_{-2.29 \%}^{-2.1 \%}$
12.0\%	60.4 60.4	${ }_{59.4}^{59.5}$	-1.0	-1.6\%	19.0\%	${ }_{60.8}^{61.3}$	69.9 59.9	-0.9	-
22.2\%	60.3	59.4	-0.9	-1.5\%	22.2\%	60.8	59.6	-1.2	-1.9\%
23.5\%	60.2	59.3	-0.9	-1.5\%	23.5\%	60.8	59.6	-1.2	-2.0\%
24.7\%	60.1	59.3	-0.8	-1.4\%	24.7\%	60.8	59.5	-1.2	-2.0\%
25.9\%	59.8	59.0	-0.9	-1.4\%	25.9\%	60.7	59.5	-1.3	-2.1\%
27.2\%	59.8	58.9	-0.9	-1.4\%	27.2\%	60.7	59.2	-1.4	-2.4\%
28.4\%	59.7	58.9	-0.8	-1.3\%	28.4\%	60.5	59.2	-1.3	-2.2\%
29.6\%	59.6	58.9	-0.8	-1.3\%	29.6\%	60.3	59.2	-1.11	-1.8\%
${ }^{30.9 \%}$ 32.19\%	59.6 59.5	58.7 58.7	-0.9 -0.8	-1.5% -1.3%	${ }^{30.9 \%}$ 32.1\%	60.3 60.2	59.1 59.1	-1.2 -1.1	-1.9\%
32.3\%	59.5	${ }_{58.7}^{58.7}$	-0.8	-1.3\%	${ }^{32.3 \%}$	60.2	59.1	-1.1	-1.8\%
34.6\%	59.4	58.6	-0.7	-1.2\%	34.6\%	60.0	59.1	-0.9	-1.6\%
35.\%	59.1	58.6	-0.4	-0.8\%	35.\%	59.9	59.0	-0.9	-1.4\%
37.0\%	58.9	58.6	-0.4	-0.6\%	37.0\%	59.9	59.0	-0.8	-1.4\%
38.3\%	58.9	58.5	-0.4	-0.7\%	38.3\%	59.7	59.0	-0.7	-1.2\%
39.5\%	58.9	58.5	-0.3	-0.6\%	39.5\%	59.7	59.0	-0.7	-1.2\%
40.7\%	58.8	58.5	-0.3	-0.6\%	40.7\%	59.5	58.9	-0.6	-1.0\%
42.0\%	58.8	58.5	-0.3	-0.5\%	42.0\%	59.5	55.8	-0.6	-1.1\%
43.2\%	58.8	58.4	-0.4	-0.6\%	43.2\%	59.3	58.8	-0.4	-0.8\%
44.4\%	58.7	58.4	-0.3	-0.5\%	44.4\%	59.2	58.8	-0.4	-0.7\%
45.7\%\%	58.7 587	58.3	-0.4	-0.6\%	45.7\%\%	59.1	58.7 587	-0.4	-0.7\%
46.9\%	58.7 58.	58.2	-0.5	-0.8\%	46.9\%	59.0	58.7	-0.3	${ }^{-0.5 \%}$
48.19\%	年5.6.	58.1	-0.4	${ }^{-0.7 \% \%}$	48.19\%	59.0 589	58.7	-0.3	-0.5\%
49.4\% 50.6%	58.5 58.4	58.1 58.0	-0.4 -0.4	-0.7\%	49.4\%	58.9 58.9	58.6 58.6	-0.3 -0.3	-0.6\%
51.9\%	58.4	58.0	-0.4	-0.6\%	51.9\%	58.8	58.5	-0.3	-0.4\%
53.1\%	58.4	58.0	-0.4	-0.6\%	53.1\%	58.7	58.4	-0.3	-0.5\%
54.3\%	58.2	57.9	-0.2	-0.4\%	54.3\%	58.7	58.4	-0.3	-0.4\%
55.6\%	58.1	57.9	-0.2	-0.3\%	55.6\%	58.6	58.2	-0.4	-0.7\%
56.8\%	58.1	57.9	-0.2	-0.3\%	56.8\%	58.6	58.2	-0.3	-0.6\%
58.0\%	58.0	57.8	-0.2	-0.3\%	58.0\%	58.5	58.2	-0.3	-0.5\%
59.3\%	58.0	57.8	-0.2	-0.3\%	59.3\%	58.4	58.2	-0.2	-0.4\%
60.5\%	57.9 57.9	57.8 578	-0.1	-0.2\%	${ }^{60.5 \%}$	58.4	58.2	-0.2	-0.4\%
${ }^{61.77 \%}$	57.9 578	57.8 578 7.8	-0.1	-0.2\%	${ }^{61.77 \%}$	58.3	58.1	-0.1	${ }^{-0.2 \%}$
63.0\%	${ }_{57.8}^{57}$	57.8 577	-0.1	-0.1\%	63.0\%	${ }_{58.3}^{58.3}$	${ }_{58.1}^{58.1}$	-0.2	-0.3\%
64.2\%	57.8 578 788	57.7 577	-0.1	-0.2\%	64.2\%	58.2 58.2 8.	58.0 579	-0.2	-0.3\%
65.4\%	57.8	57.7	-0.2	-0.3\%	65.4\%	58.2	57.9	-0.3	-0.5\%
${ }^{667.7 \%}$	${ }_{57.8}$	57.7	-0.1	-0.2\%	${ }^{66.77 \%}$	${ }_{58.1}^{58.1}$	$\stackrel{57.9}{57.9}$	-0.3	-0.5\%
67.9\%	57.7	57.6	-0.1	-0.1\%	67.9\%	58.0	57.8	-0.2	-0.4\%
69.19\%	57.7 57.7	57.6 57.6	-0.2	-0.3\%	69.19\% 70.4%	58.0 58.0	57.7 57.6	-0.3	-0.6\%
71.6\%	57.6	57.5	-0.1	-0.2\%	71.6\%	57.8	57.6	-0.3	-0.5\%
72.8\%	57.5	57.5	0.0	-0.1\%	72.8\%	57.8	57.5	-0.3	-0.6\%
74.1\%	57.5	57.3	-0.3	-0.5\%	74.1\%	57.8	57.5	-0.3	-0.6\%
75.3\%	57.2 572	57.1	-0.2	-0.3\%	75.3\%	57.6 57.4	57.3 572	-0.3	-0.5\%
76.5\%	57.2	56.9	-0.3	-0.5\%	76.5\%	57.4	57.2	-0.2	${ }^{-0.3 \%}$
77.8\%	57.2 57.1	56.9 56.9	-0.3	-0.4\%	77.9\%	57.1 571	57.2	0.0	0.0\%
79.0\% 80.2%	57.1 57.0	56.9 56.8	-0.3 -0.1	-0.0\%	79.0% 80.2%	57.1 57.0	57.0 56.8	-0.1 -0.2	-0.0.2\%
81.5\%	56.9	56.7	-0.2	-0.4\%	81.5\%	57.0	56.8	-0.2	-0.4\%
82.7\%	56.4	56.5	0.1	0.1\%	82.7\%	57.0	56.8	-0.2	-0.3\%
84.0\%	56.4	56.4	0.1	0.1\%	84.0\%	56.9	56.7	-0.1	-0.2\%
85.2\%	56.3 56.3	56.4	0.1	0.2\%	85.2\%	55.6	56.7	0.0	0.1\%
86.4% 87.7%	56.3 56.3	56.3 56.2	0.0 0.1	-0.1\%	86.4% 87.7%	56.6 56.6	56.5 56.5	-0.1 -0.1	-0.1\%
88.9\%	56.3	56.2	-0.1	-0.1\%	88.9\%	56.5	56.2	-0.3	-0.5\%
90.1\%	56.2	56.1	-0.1	-0.2\%	90.1\%	56.3	56.2	-0.1	-0.2\%
91.4\%	56.2	55.0	-0.1	-0.2\%	91.4\%	${ }_{56.3}$	55.2	-0.1	-0.2\%
92.6\%	56.2	55.0	-0.1	-0.2\%	92.6\%	56.3	55.1	-0.2	-0.3\%
93.8\%	56.1	56.0	-0.1	-0.1\%	93.8\%	56.2	55.0	-0.2	-0.4\%
95.1\%	56.1	56.0	-0.1	-0.2\%	95.1\%	56.2	55.9	-0.3	-0.5\%
${ }^{96.35 \%}$	55.8 55.8	55.9 55.9	0.1 0.2	${ }^{0.2 \% \%}$	96.3\% ${ }_{\text {97.5\% }}$	56.0 56.0	55.8 557	-0.2 -0.3	- ${ }_{-0.5 \%}^{-0.5 \%}$
98.8\%	55.7	55.7	-0.1	-0.1\%	98.8\%	55.8	55.6	-0.2	-0.3\%
100.0\%	55.6	55.5	-0.1	-0.1\%	100.0\%	55.6	54.8	-0.7	${ }_{-1.3 \%}$

Sacrament Figure SQ7-1b
Sacramento River at Red Bluff, Monthly Temperature

Table SQ7-1b verat Red Buff, Monthly Temperature

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	October			
	$\begin{aligned} & \hline \text { WSIP 2070 Without } \\ & \hline \text { Proiect } \end{aligned}$	WSIP 2070 With Project	Absolute	Relative
	Monthy Temperature	Monthly Temperature		Difference (\%)
0.0\%	67.7	67.6	-0.2	.0.2\%
1.2\%	67.0	66.0	-1.0	-1.5\%
2.5\%	65.4	65.9	0.4	0.7\%
3.7\%	64.9	64.3	-0.7	1.0\%
4.9\%	64.8	64.0	-0.8	
6.2\%	64.3	63.8	-0.5	-0.8\%
7.4\%	64.3	${ }^{63.3}$	-1.1	-1.7\%
8.6\%	64.1	63.2	-0.9	-1.4\%
9.9\%	63.6	63.1	-0.6	-0.9\%
11.1\%	63.4	62.7	-0.7	-1.2\%
12.3\%	63.4	62.6	-0.9	1.4\%
13.6\%	62.7	62.0	-0.7	-1.2\%
14.8\%	62.0	61.8	-0.1	-0.2\%
16.0\%	61.8	61.7	-0.1	-0.2\%
17.3\%	61.4	61.3	-0.2	-0.3\%
18.5\%	61.1	61.1	0.0	0.0\%
19.8\%	60.2	60.6	0.4	0.6\%
21.0\%	60.1	60.5	0.4	0.6\%
${ }^{22.22 \%}$	${ }_{60.1}$	${ }^{60.5}$	0.4	0.6\%
23.5\%	60.0	${ }^{60.3}$	0.3	0.5\%
24.7\%	60.0	59.9	-0.1	-0.2\%
25.9\%	60.0	59.8	-0.2	-0.3\%
27.2\%	59.8	59.8	-0.1	-0.1\%
28.4\%	59.8	59.7	-0.1	-0.1\%
29.6\%	59.7	59.7	0.0	-0.1\%
${ }^{30.9 \%}$	59.6	59.6	0.0	0.0\%
32.1\%			0.0	0.1\%
34.3\%	59.5	59.4	-0.1	
34.0\%	-59.4	59.4	0.0	${ }^{-0.00 \%}$
37.0\%	59.3	59.4	0.0	0.0\%
38.3\%	59.3	59.3	0.0	0.0\%
39.5\%	59.3	59.3	0.0	0.0\%
40.7\%	59.2	59.1	-0.1	-0.2\%
42.0\%	59.1	59.1	0.0	${ }_{\text {0.0\% }}^{0.00 \%}$
${ }^{43.2 \%}$	59.1 59.1	59.1 59.0	0.0 0.0	-0.0\%
45.7\%	59.1	59.0	-0.1	-0.1\%
46.9\%	59.0	58.9	0.0	-0.1\%
48.1\%	59.0	58.7	-0.3	-0.4\%
49.4\%	59.0	58.5	-0.4	-0.7\%
50.6\%	58.9	58.5	-0.4	-0.8\%
51.9\%	58.8	58.5	-0.3	-0.6\%
53.1\%	58.8	58.4	-0.4	-0.6\%
54.3\% 55.6%	58.7	58.4	-0.4	-0.6\%
55.6\%	58.7	58.3	-0.4	-0.6\%
56.8\%	58.6	${ }_{58.3}^{58.3}$	-0.3	${ }_{0}^{-0.5 \%}$
59.3\%	58.5	58.3	-0.2	-0.4\%
${ }^{60.50 \%}$	58.3	58.3	0.0	-0.1\%
61.7\%	58.2	58.3	0.1	0.2\%
63.0\%	58.2	58.2	0.0	0.1\%
${ }^{64.2 \% \%}$	$\stackrel{58.1}{58.1}$	${ }_{58.2}^{58 .}$	0.1	${ }^{0.10 \%}$
65.4\%	58.1	58.1	0.0	0.0\%
66.7\%	58.1	58.1	0.0	0.0\%
${ }^{67.9 \%}$	58.1	58.1	0.0	0.0\%
69.19\%	58.0	58.1	0.1	${ }^{0.1 \%}$
70.4\% ${ }_{\text {71.6\% }}$	58.0 580 8.	58.0 58.0	0.0	0.0\%
72.8\%	57.9	57.9	-0.1	-0.1\%
74.1\%	57.9	57.9	-0.1	-0.1\%
75.3\%	57.8	57.8	0.1	0.1\%
76.5\%	57.8	57.8	0.0	0.1\%
77.8\%	57.7	57.8	0.1	0.1\%
79.0\%	57.6	57.7	0.1	0.2\%
80.2\%	57.5	57.7	0.1	0.3\%
81.5\%	57.5	57.6	0.1	0.2\%
842.7\%	57.5 57.5	57.5 57.5	0.0	${ }^{0.19 \%}$
85.2\%	57.4	57.5	0.0	0.1\%
${ }^{86.46 \%}$	57.4	57.4	0.0	${ }^{0.0 \%}$
88.9\%	57.2	57.2	0.1	${ }_{0}^{0.2 \%}$
90.1\%	57.0	57.2	0.2	0.3\%
91.4\%	55.9	57.0	0.0	0.0\%
92.6\%	56.9	56.7	-0.2	-0.3\%
93.8\%	55.8	55.6	-0.2	-0.4\%
95.1\%	56.8	56.5	-0.3	-0.5\%
96.3\%	56.8	56.5	-0.3	-0.5\%
-97.5\%	${ }_{56.6}^{56.7}$	56.5 56.4	-0.2 -0.2	-0.4\%
100.0\%	56.6	56.4	0.0	-0.3\%

$\begin{gathered} \text { Percent } \\ \substack{\text { Exceedance } \\ \text { Probability } \\ \text { (\%) }} \\ \hline \end{gathered}$	WSIP 2070 WithoutProietMonthly Tomperatue(DEGFF $)$	November			Percent Exceedance Probability $(\%)$	Decemb			
		WSIP 2070 With Project	$\begin{gathered} \text { Absolute } \\ \text { differene } \\ \text { (0EGF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$		$\left.\begin{array}{c}\text { WSIP 2070 Without } \\ \text { Proiet } \\ \text { Monthy Tomperatue } \\ \text { (DEEFF) }\end{array}\right)$	$\begin{gathered} \hline \text { WSIP } 2070 \text { With Project } \\ \hline \text { Monthly Temperature } \\ \text { (DEGF) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (EEGF) } \end{aligned}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
		Monthly Temperature (0EGF)							
0.0\%	60.0	59.0	-1.0	-1.6\%	0.0\%	53.9		-0.1	-0.2\%
1.2\%	59.2	58.8	-0.5	-0.8\%	1.2\%	53.8	53.7	-0.1	-0.1\%
2.5\%	58.3	58.7	0.4	0.7\%	2.5\%	53.6	53.5	-0.1	-0.2\%
3.7\%	58.3	58.5	0.2	0.4\%	3.7\%	53.3	53.4	0.1	0.2\%
4.9\%	58.1	58.2	0.2	0.3\%	4.9\%	53.1	53.1	0.0	0.0\%
6.2\%	57.6	57.9	0.3	0.5\%	6.2\%	53.1	53.0	-0.1	-0.1\%
7.4\%	57.6	57.7	0.1	0.2\%	7.4\%	52.8	52.9	0.1	0.2\%
8.6\%	57.6	57.4	-0.1	-0.3\%	8.6\%	52.7	52.6	0.0	-0.1\%
9.9\%	57.6	57.3	-0.3	-0.4\%	9.9\%	52.5	52.6	0.0	0.1\%
11.1\%	57.5	57.3	-0.2	-0.4\%	11.1\%	52.5	52.5	0.0	0.1\%
12.3\%	57.5	57.2	-0.3	-0.5\%	12.3\%	52.4	52.5	0.2	0.4\%
13.6\%	57.4	57.2	-0.2	-0.4\%	13.6\%	52.3	52.5	0.2	0.4\%
14.8\%	57.2	57.2	0.0	-0.1\%	14.8\%	52.3	${ }_{52.3}$	0.1	0.1\%
16.0\%	57.2	57.0	-0.2	-0.4\%	16.0\%	52.2	52.3	0.1	0.2\%
17.3\%	56.9	56.9	0.0	0.0\%	17.3\%	51.8	52.2	0.4	0.8\%
18.5\%	56.9	56.8	-0.1	-0.1\%	18.5\%	51.7	52.2	0.5	0.9\%
${ }^{19.8 \%}$	56.8 56.6	56.7 56.6	-0.1 0.0	${ }^{-0.12 \%}$	19.8\%	51.6 51.4	52.0 51.9	0.4 0.5	0.7\%\%
22.2\%	56.5	56.4	-0.1	-0.2\%	22.2\%	51.4	51.8	0.4	0.8\%
23.5\%	56.4	56.3	-0.1	-0.1\%	23.5\%	51.3	51.6	0.3	0.5\%
24.7\%	56.2	56.2	0.0	0.0\%	24.7\%	51.3	51.5	0.2	0.4\%
25.9\%	56.1	56.1	0.0	0.1\%	25.9\%	51.2	51.4	0.2	0.3\%
27.2\%	56.1	56.1	0.0	0.0\%	27.2\%	51.1	51.3	0.2	0.4\%
28.4\%	55.0	55.9	-0.2	-0.3\%	28.4\%	51.1	51.3	0.2	0.3\%
29.6\%	55.9	55.9	0.0	-0.1\%	29.6\%	50.9	51.3	0.4	0.8\%
30.9\%	55.8	55.8	0.0	-0.1\%	30.9\%	50.7	51.2	0.5	1.1\%
32.1\%	55.8	55.7	0.0	-0.1\%	32.1\%	50.7	51.2	0.5	1.0\%
33.3\%	55.8	55.7	0.0	-0.1\%	33.3\%	50.6	51.1	0.5	1.0\%
34.6\%	55.7	55.7	-0.1	-0.1\%	34.6\%	50.5	51.1	0.5	1.1\%
35.8\%	55.7	55.7	-0.1	-0.1\%	35.8\%	50.4	51.0	0.6	1.2\%
37.0\%	55.7	55.6	-0.1	-0.2\%	37.0\%	50.3	51.0	0.6	1.3\%
38.3\%	55.7	55.6	-0.1	-0.2\%	38.3\%	${ }^{50.3}$	${ }_{50.7}$	0.4	0.8\%
39.5\%	55.6	55.5	-0.1	-0.2\%	39.5\%	50.3	50.7	0.4	0.8\%
40.7\%	55.6	55.5	-0.1	-0.2\%	40.7\%	50.2	50.4	0.2	0.4\%
42.0\%	55.6	55.4	-0.2	-0.4\%	42.0\%	50.1	50.4	0.2	0.4\%
43.2\%	55.4	55.4	-0.1	-0.1\%	43.2\%	50.1	50.3	0.2	0.4\%
44.4\%	55.4	55.4	0.0	0.0\%	44.4\%	50.0	50.2	0.2	0.5\%
- $4.7 .7 \%$	55.2 55.2	55.2 55.2	0.0 0.0	-0.0\%	${ }^{45.79 \%}$	49.9 49.8	50.2 50.2	0.3 0.3	0.6\% 0
48.1\%	55.2	55.2	0.0	0.0\%	48.1\%	49.8	50.1	0.3	0.5\%
49.4\%	55.1	55.0	-0.1	-0.2\%	49.4\%	49.8	50.0	0.2	0.4\%
50.6\%	55.1	55.0	-0.2	-0.3\%	50.6\%	49.7	49.9	0.2	0.4\%
51.9\%	55.1	54.9	-0.2	-0.3\%	51.9\%	49.7	49.9	0.2	0.4\%
53.1\%	55.0	54.8	-0.2	-0.3\%	53.1\%	49.6	49.9	0.3	0.7\%
54.3\%	55.0	54.8	-0.2	-0.3\%	54.3\%	49.6	49.9	${ }^{0.3}$	0.7\%
55.6\%	54.9	54.8	-0.1	-0.2\%	55.6\%	49.5	49.8	${ }^{0.3}$	0.6\%
56.8\%	54.9	54.7	-0.2	-0.3\%	56.8\%	49.5	49.8	${ }^{0.3}$	0.6\%
58.0\%	54.8	54.6	-0.2	-0.4\%	58.0\%	49.4	49.8	0.4	0.8\%
59.3\%	54.8	54.6	-0.2	-0.4\%	59.3\%	49.4	49.7	0.3	0.7\%
60.5\%	54.8 547 54.7	54.5 545 4.5	-0.2		${ }^{60.50 \%}$	49.4	49.6		
61.7\%	54.7	54.5	-0.2	-0.4\%	61.7\%	49.4	49.6	0.2	0.4\%
63.0\%	54.7	54.5	-0.2	-0.4\%	63.0\%	49.3	49.6	0.2	0.5\%
${ }^{64.2 \%}$	54.7 54.5	54.5 54.5	-0.2	-0.4\%	${ }^{64.2 \%}$	49.3	49.4	0.1	0.2\%
65.4\%	54.5	54.5	-0.1	-0.2\%	65.4\%	49.3	49.4	0.1	0.2\%
${ }^{667.7 \%}$	54.5 545	54.4	-0.1	-0.2\%	${ }^{66.77 \%}$	49.3	49.4	0.1	0.2\%
67.9\%	$\begin{array}{r}54.5 \\ 54.5 \\ \hline\end{array}$	54.4 54.4	-0.1	-0.1\%	67.9\%	49.2	49.3	0.1	0.2\%
69.1\%	54.5	54.4	-0.1	-0.2\%	69.1\%	49.2	49.3	0.1	0.2\%
70.4\%	54.4	54.4	0.0	-0.1\%	70.4\%	49.2	49.2	0.1	0.1\%
71.6\%	54.4	${ }_{54.3}$	-0.1	-0.1\%	71.6\%	49.2	49.2	0.1	0.2\%
72.8\%	54.4 54.4	54.3 54.3	-0.1 0.0 0.0	-0.0.1\%	72.8\%	49.1 49.0	49.2 49.2	0.1 0.2	- 0.10%
75.3\%	54.3	54.3	0.0	0.0\%	75.3\%	49.0	49.2	0.2	0.4\%
76.5\%	54.3	54.3	0.0	0.0\%	76.5\%	48.9	49.1	0.2	0.5\%
77.8\%	54.3	54.3	0.0	-0.1\%	77.8\%	48.9	49.1	0.2	0.4\%
79.0\%	54.3	54.1	-0.1	-0.3\%	79.0\%	48.9	49.1	0.2	0.3\%
80.2\%	54.2	54.1	-0.1	-0.3\%	80.2\%	48.8	49.0	0.2	0.5\%
81.5\%	54.2	54.0	-0.2	-0.4\%	81.5\%	48.7	48.9	0.2	0.4\%
82.7\%	54.1	53.8	-0.2	-0.4\%	82.7\%	48.7	48.8	0.1	0.3\%
84.0\%	54.1	53.8	-0.2	-0.4\%	84.0\%	48.5	48.8	${ }^{0.3}$	0.6\%
85.2\%	54.0	53.8	-0.2	-0.4\%	85.2\%	48.4	48.7	0.3	0.6\%
86.4.9\%	53.9 53.9	53.8 53.8	-0.2 -0.1	-0.0.3\%	86.4% 87.7%	48.4 48.4	48.6 48.5	0.2 0.1	0.5\%\%
88.9\%	53.8	53.7	-0.1	-0.1\%	88.9\%	48.3	48.4	0.1	0.2\%
90.1\%	53.6	53.6	0.0	0.0\%	90.1\%	48.1	47.9	-0.2	-0.4\%
91.4\%	53.5	53.6	0.0	0.1\%	91.4\%	47.8	47.8	0.0	0.0\%
92.6\%	53.2	53.4	0.2	0.4\%	92.6\%	47.7	47.7	0.0	0.0\%
93.8\%	53.2	53.4	0.2	0.3\%	93.8\%	47.7	47.7	0.1	0.2\%
95.1\%	53.1	53.2	0.2	0.3\%	95.1\%	47.7	47.7	0.0	0.1\%
96.3\%	53.0	53.1	0.0	0.0\%	96.3\%	47.6	47.7	0.0	0.1\%
-97.5\%	53.0	52.9	-0.1	-0.2\%	97.5\%	47.6	47.7	0.1	-0.2\%
988.8\% 100.0\%	52.8 52.8	52.8	${ }_{0.1}^{0.1}$	${ }_{0}^{0.1 \%}$	988.8\% 100.0\%	${ }_{47.4}^{47.4}$	${ }_{47.7}^{47.7}$	${ }_{0.3}^{0.3}$	0.5\%

Table SQ7.1b rat Red Buff. Monthly Temperature

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$	February			
	WSII 2070 Without Proiect	WSIP 2070 With Project	Absolu	
	Monthy Temperature	Monthly Temperature	Difference	Difference (\%)
(\%)	525	527	0	0.46
0.0%	52.5	52.		0.4\%
${ }^{1.2 \%}$	52.4	52.5	0.1	0.2
2.5\% ${ }^{\text {3.7\% }}$	52.3 52.2	52.4 51.8	0.1 -0.4	-0.2\% 0
4.9\%	51.1	51.1	0.1	0.1\%
6.2\%	50.9	51.0	0.1	0.2\%
7.4\%	50.8	51.0	0.2	0.3\%
8.6\%	50.7	50.8	0.1	0.1\%
9.9\%	50.7	50.8	0.1	0.1\%
11.1\%	50.6	50.7	0.1	0.1\%
12.3\%	50.4 50.3	50.4 50.4	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
14.8\%	50.3	50.4	0.1	0.3\%
16.0\%	50.1	50.1	0.0	0.0\%
17.3\%	50.1	50.1	0.0	0.0\%
18.5\%	49.9	50.1	0.2	0.4\%
19.8\%	49.9	50.1	0.2	0.4\%
21.0\%	49.8	49.9	0.1	0.2\%
22.2\%	49.8	49.9	0.1	0.3\%
23.5\%	49.8	49.9	0.1	0.2\%
24.7\%	49.7	49.9	0.2	0.3\%
25.9\%	49.7	49.8	0.1	0.1\%
27.2\%	49.6	49.8	0.2	0.4\%
28.4\%	49.5	49.6	0.1	0.2\%
29.6\%	49.5	49.5	0.1	0.1\%
30.9\%	49.5	49.5	0.0	0.1\%
32.1\%	49.5	49.5	0.0	0.1\%
33.3\%	49.4	49.5	0.1	0.2\%
34.6\%	49.3	49.4	0.1	0.1\%
35.8\%	49.3	49.4	0.1	0.1\%
37.0\%	49.2	49.3	0.1	0.2\%
${ }^{38.3 \%}$	49.2	49.2	0.0	0.0\%
		49.2	0.1	0.3\%
40.7\%	49.0	49.1	${ }^{0.1}$	${ }^{0.20 \%}$
43.2\%	${ }_{48.7}^{48.9}$	49.1	0.2	${ }_{\text {cosem }}^{0.3 \%}$
44.4\%	48.7	48.8	0.1	0.2\%
45.7\%	48.7	48.8	0.1	0.2\%
46.9\%	48.7	48.7	0.1	0.1\%
48.1\%	48.7	48.7	0.0	0.1\%
49.4\%	48.7	48.7	0.0	0.1\%
50.6\%	48.6	48.6	0.0	0.0\%
${ }_{\text {5 }}^{51.9 \%}$	48.6	48.6	0.0	0.1\%
	48.5			0.2\%
54.3\%	48.5	48.6	0.1	0.2\%
年5.6\%\%	48.4	48.5	0.1	0.1\%
56.8\%	48.4 48.4	${ }_{48.4}^{48.5}$	0.1 0.0	${ }^{0.2 \% \%} 0$
59.3\%	48.3	48.4	0.1	0.3\%
60.5\%	48.2	48.4	0.2	0.3\%
61.7\%	48.2	48.3	0.1	0.2\%
63.0\%	48.1	48.3	0.2	0.4\%
64.2\%	48.0	48.1	0.1	0.1\%
${ }^{66.4 \%}$	48.0	48.1	0.1	0.1\%
67.9\%	48.0	${ }_{48.0}$	0.1	0.2\%
69.1\%	48.0	48.0	0.1	0.1\%
70.4\%	47.9	48.0	0.0	0.0\%
71.6\%	47.9	47.9	0.0	0.0\%
72.8\%	47.9	47.9	0.0	-0.1\%
74.1\%	47.7	47.7	0.0	0.0\%
75.3\%	47.7	47.6	-0.1	-0.2\%
76.5\%	47.7	47.6	-0.1	-0.2\%
77.8\%	47.7	47.6	-0.1	-0.2\%
80.2\%	47.5 47.5	47.5 47.5	0.0 0.0	${ }_{0}^{0.0 \%}$
81.5\%	47.5	47.5	0.1	0.1\%
82.7\%	47.4	47.5	0.0	0.0\%
84.0\%	47.4	47.4	0.0	0.0\%
85.2\%	47.3	47.3	0.0	0.0\%
86.4\%	47.3	47.2	-0.1	${ }^{-0.2 \%}$
87.7\%	47.0	47.0	0.0	0.0\%
88.9\%	46.9	47.0	0.0	0.1\%
90.1\%	46.9	46.9	0.0	0.0\%
${ }^{91.49 \%}$	46.8	46.9	0.1	0.19\%
${ }_{993.8 \%}^{92.6 \%}$	${ }_{46.6}^{46.8}$	46.6 46.6	-0.2 0.0 0.0	-0.4\%
95.1\%	46.6	46.5	-0.1	-0.3\%
96.3\%	46.4	46.4	0.0	-0.1\%
97.5\%	46.4	46.3	0.0	-0.1\%
98.8\%	45.5 455	45.4 454	-0.1	-0.1\%
100.0\%	45.5	45.4	-0.1	-0.1\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	WSIP 20070 Without Proiect Monthly Temperature (DEGF)	March			$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceance } \\ \text { Probability } \end{array} \\ (\%) \\ \hline \end{gathered}$	WSIP 2070 Without Proiet Monthl Tomperatre (DEGFF)	April		$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
		WSIP 2070 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difiefence } \\ \text { (DEGF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$			WSIP 2070 With Project Monthy Temperature (DEGF)	$\begin{aligned} & \hline \begin{array}{l} \text { Absolute } \\ \text { Difference } \\ \text { (DEGF) } \end{array} \\ & \hline \end{aligned}$	
		Monthly Temperature (DEGF)							
${ }^{0.0 \%}$	${ }_{55}{ }_{5}$	${ }_{5}^{\text {(0ebr }}$)	${ }^{0.4}$	-0.7\%					-0.2\%
1.2\%	55.3	55.1	-0.2	-0.3\%	1.2\%	58.1	57.9	-0.2	-0.3\%
2.5\%	54.6	54.8	0.2	0.3\%	2.5\%	58.0	57.8	0.3	-0.4\%
3.7\%	54.5	54.7	0.2	0.3\%	3.7\%	57.6	57.5	-0.1	-0.2\%
4.9\%	54.4	54.6	0.2	0.4\%	4.9\%	57.4	57.4		-0.1\%
6.2\%	54.3	54.5	0.3	0.5\%	6.2\%	57.2	57.3	0.1	0.2\%
7.4\%	54.3	54.4	0.1	0.2\%	7.4\%	57.2	57.3	0.1	0.1\%
8.6\%	54.2	54.3	0.1	0.2\%	8.6\%	57.1	57.2	0.1	0.1\%
9.9\%	54.2	54.2	0.0	0.0\%	9.9\%	57.1	57.1	0.0	0.0\%
11.1\%	54.1	54.2	0.1	0.1\%	11.19\%	57.1	57.1	0.0	0.0\%
12.3\%	54.1	54.1	0.0	0.0\%	12.3\%	57.1	56.9	-0.2	-0.3\%
13.6\%	54.0	53.9	-0.2	-0.3\%	13.6\%	57.0	56.7	-0.3	-0.5\%
14.8\%	53.8	53.8	0.1	0.1\%	14.8\%	56.9	55.6	-0.3	-0.5\%
16.0\%	53.7	53.8	0.0	0.1\%	16.0\%	56.7	56.5	-0.2	-0.4\%
17.3\%	53.7	53.7	0.0	0.0\%	17.3\%	55.4	56.5	0.1	0.2\%
18.5\%	53.6	53.7	0.1	0.2\%	18.5\%	56.2	56.4	0.2	0.3\%
19.8\%	${ }_{53.6}$	53.7	0.1	0.2\%	19.8\%	56.2	56.4	0.2	0.3\%
21.0\%	53.6	53.7	0.1	0.2\%	21.0\%	56.1	56.3	0.1	0.2\%
22.2\%	53.5	53.6	0.1	0.1\%	22.2\%	56.1	56.3	0.2	0.3\%
23.5\%	${ }_{53,2}^{53.2}$	53.3	0.1	0.2\%	23.5\%	56.0 550	56.2	${ }^{0.3}$	0.5\%
24.7\%	53.2	53.3	0.1	0.1\%	24.7\%	55.9	56.2	0.3	0.5\%
25.9\%	53.2	53.2	0.1	0.2\%	25.9\%	55.9	56.0	0.1	0.2\%
27.2\%	53.1	53.2	0.1	0.2\%	27.2\%	55.9	56.0	0.1	0.2\%
28.4\%	53.1	53.1	0.0	0.1\%	28.4\%	55.9	56.0	0.1	0.2\%
29.6\%	53.0	53.1	0.1	0.2\%	29.6\%	55.8	55.9	0.1	0.2\%
30.9\%	53.0	53.1	0.1	0.2\%	30.9\%	55.8	55.9	0.2	0.3\%
32.1\%	52.7	53.0	${ }^{0.3}$	0.5\%	32.1\%	55.8	55.9	0.2	${ }^{0.3 \%}$
33.3\%	52.7	52.7	0.0	0.0\%	33.3\%	55.7	55.9	0.2	0.3\%
34.6\%	$\begin{array}{r}52.7 \\ 52 . \\ \hline\end{array}$	${ }_{525}^{52.6}$	-0.1	${ }^{-0.1 \%}$	34.6\%	55.6	55.8 558 5.8	${ }^{0.2}$	0.4\%
35.8\%	52.6	52.6	0.0	0.0\%	35.8\%	55.6	55.8	0.2	0.4\%
37.0\%	52.5	52.5	0.0	0.1\%	37.0\%	55.6	55.8	0.2	0.3\%
38.3\%	52.4	52.4	0.0	0.0\%	38.3\%	55.6	55.7	0.2	0.3\%
39.5\%	52.4	52.3	-0.1	-0.1\%	39.5\%	55.5	55.7	0.1	0.2\%
40.7\%	52.3	52.3	0.0	0.1\%	40.7\%	55.5	55.6	0.1	0.2\%
42.0\%	52.1	${ }_{52.3}$	0.2	0.4\%	42.0\%	${ }_{55.3}$	55.5	0.2	0.4\%
43.2\%	52.0	52.1	0.1	0.2\%	43.2\%	55.3	55.5	0.2	0.3\%
44.4\%	52.0	52.0	0.0	0.0\%	44.4\%	55.3	55.4	0.2	0.3\%
45.77\%	51.8	52.0	0.1	0.3\%	45.7\%	55.2	55.4	0.2	0.3\%
46.9\%	51.8	51.9	0.1	0.2\%	46.9\%	55.2	55.3	0.1	0.3\%
48.19\%	51.8 518 18	51.8 518 518	0.0	${ }^{0.19}$	48.19\%	55.1 550	55.3 553 5.	${ }^{0.1}$	0.2\%
4.9.4\%	51.8 517	${ }_{51.8}$	${ }^{0.1}$	${ }^{0.19 \%}$	4.9.4\%	55.0	55.3	${ }^{0.2}$	0.4\%\%
	51.7 517	51.7	${ }^{0.1}$	${ }^{0.19 \%}$	50.6\%	55.0	$\begin{array}{r}55.2 \\ 55 \\ \hline 5 \\ \hline\end{array}$	0.2	(0.4\%\%
${ }^{53.1 \%}$	${ }_{51.7}$	51.7	0.0	${ }_{0}$	${ }^{53.15 \%}$	55.0 55.0	55.2 55.2	${ }_{0}^{0.2}$	${ }^{0.5 \%}$
54.3\%	51.6	51.6	0.0	0.0\%	54.3\%	54.9	55.2	0.3	0.5\%
55.6\%	51.6	51.6	0.0	0.0\%	55.6\%	54.9	55.0	0.1	0.2\%
56.8\%	51.6	51.6	0.0	0.0\%	56.8\%	54.8	55.0	0.1	0.3\%
58.0\%	51.5	51.6	0.1	0.1\%	58.0\%	54.8	54.9	0.1	0.2\%
59.3\%	51.4	${ }_{51.5}^{51.5}$	0.0	0.1\%	59.3\%	54.8	54.9	0.1	0.2\%
${ }^{60.50 \%}$	51.3	51.4 51.4 15	0.1	0.2\%	${ }^{60.50 \%}$	54.8 54.8	54.8 54.8	0.1	0.1\%
61.7\%	51.3	51.3	0.0	0.0\%	61.7\%	54.8	54.8	0.1	0.1\%
63.0\%	${ }_{51.3}^{51.3}$	${ }_{51.1}^{511}$	-0.1	-0.3\%	63.0\%	54.8 54.7	54.8	0.0	0.1\%
64.2\%	${ }_{51.1}^{51.1}$	${ }_{51.1}^{51.1}$	0.0	0.0\%\%	64.2\%	54.7	54.8 54	0.1	0.1\%
65.4\%	51.0	51.1	0.0	0.1\%	65.4\%	54.7	54.8	0.0	0.1\%
66.7\%	51.0	51.1	0.1	0.1\%	66.7\%	54.7	54.8	0.0	0.1\%
67.9\%	50.8	50.9	0.1	0.3\%	67.9\%	54.7	54.7	0.1	0.1\%
69.1\%	50.6	50.7	0.1	0.2\%	69.1\%	54.6	54.7	0.1	0.2\%
70.4\%	50.6	50.6	0.0	0.1\%	70.4\%	54.5	54.7	0.2	0.4\%
71.6\%	50.6	50.6	0.0	0.1\%	71.6\%	54.5	54.7 54.6	0.2	0.3\%
-72.8\%	50.5	50.6	0.0	0.1\%	72.8\%	$\begin{array}{r}54.5 \\ 54.4 \\ \hline\end{array}$	54.6 54.6	0.1	${ }^{0.3 \%}$
74.1\%	50.5	50.6	0.0	0.1\%	74.1\%	54.4	54.6	0.2	0.4\%
75.3\%	50.2	50.3	0.1	0.1\%	75.3\%	54.2	$\begin{array}{r}54.5 \\ 54.4 \\ \hline\end{array}$	${ }^{0.3}$	0.5\%
76.5\%	50.1	50.1	-0.1	${ }^{-0.1 \%}$	76.5\%	54.2	54.4	0.2	0.3\%
77.8\%	50.1	50.1	0.0	0.0\%	77.8\%	54.1	54.4	0.3	0.5\%
79.0\%	49.8	49.8	0.0	0.0\%	79.0\%	54.0	54.4	0.4	0.7\%
80.2\%	49.7	49.6	0.0	-0.1\%	80.2\%	54.0	54.3	0.3	0.5\%
81.5\%	49.6	49.6	0.0	0.0\%	81.5\%	54.0	54.3	0.3	0.5\%
82.7\%	49.5	49.5	0.1	0.1\%	82.7\%	53.9	54.1	0.1	0.2\%
84.0\%	49.4	49.5	0.0	0.0\%	84.0\%	53.9	54.0	0.1	0.2\%
- 85.20%	49.4	49.4	0.0	${ }^{0.19 \%}$	85.2\%	53.9 539	54.0	0.1	0.2\%
86.4\% 87.7%	49.4 49.3	${ }_{49.3}^{49.4}$	0.0 0.0	-0.0\%	86.4% 87.7%	53.9 53.6	54.0 53.6	0.1 0.0	-
88.9\%	49.0	49.1	0.1	0.3\%	88.9\%	53.5	53.5	-0.1	-0.1\%
90.1\%	49.0	49.0	0.0	0.0\%	90.1\%	53.3	53.3	0.0	0.0\%
91.4\%	48.8	49.0	0.1	0.2\%	91.4\%	52.6	52.7	0.1	0.2\%
92.6\%	48.8	48.9	0.1	0.2\%	92.6\%	52.6	52.6	0.0	0.0\%
93.8\%	48.7	48.7	0.0	-0.1\%	93.8\%	52.4	52.5	0.1	0.2\%
95.1\%	48.6	48.6	0.0	0.0\%	95.1\%	52.0	52.2	0.2	0.4\%
96.3\%	48.5	48.5	0.0	0.0\%	96.3\%	51.9	51.6	-0.3	-0.7\%
975\%	48.4	48.4	0.0	0.0\%	975\%	${ }_{51.6}^{51.6}$	51.5	-0.1	${ }^{-0.2 \%}$
98.8\% 100.0%	48.2 48.2	${ }_{48.2}^{48.2}$	0.0 0.0	-	98.8\% 100.0\%	51.0 51.0	51.1 51.1	${ }_{0.1}^{0.1}$	-

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceance } \\ \text { Probability } \end{array} \\ (\%) \\ \hline \end{gathered}$	May			RelativeDifference (\%)
	WSIP 2070 . Without	WSIP 2070 With Project	$\begin{gathered} \begin{array}{c} \text { Absolute } \\ \text { Difference } \\ \text { (DEGF) } \end{array} \\ \hline \end{gathered}$	
	Monthly Temperature (DEGF)	$\underset{\text { Monthy Temperature }}{\text { (DEGF) }}$		
0.0\%	61.9	61.0	-0.9	-1.4\%
1.2\%	61.6	61.0	-0.6	-1.0\%
2.5\%	60.7	60.9	0.2	0.4\%
3.7\%	60.7	60.8	0.1	0.2\%
4.9\%	60.3	60.8	0.4	
6.2\%	60.2	60.6	0.4	0.7\%
7.4\%	60.2	60.6	0.4	0.7\%
8.6\%	60.1	60.5	0.4	0.6\%
9.9\%	59.8	60.3	0.5	0.8\%
11.1\%	59.8	60.3	0.5	0.8\%
12.3\%	59.8	60.3	0.5	0.9\%
13.6\%	59.7	60.3	0.6	0.9\%
14.8\%	59.7	60.2	0.5	0.9\%
16.0\%	59.6	60.2	0.6	0.9\%
17.3\%	59.6	60.2	0.6	1.0\%
18.5\%	59.3	60.0	0.7	1.2\%
19.8\%	59.3	59.8	0.5	0.9\%
21.0\%	59.0	59.8	0.8	1.4\%
22.2\%	58.9	59.8	0.9	1.5\%
23.5\%	58.9	59.8	0.9	1.5\%
24.7\%	58.8	59.6	0.7	1.2\%
25.9\%	58.7	59.5	0.8	1.4\%
27.2\%	58.6	59.4	0.8	1.3\%
28.4\%	58.4	59.2	0.8	1.4\%
29.6\%	58.4	59.1	0.7	1.3\%
30.9\%	58.4	59.0	0.6	1.0\%
32.1\%	58.4	58.9	0.5	
33.3\%	58.3	58.9	0.6	1.0\%
34.6\%	58.2	58.7	0.5	0.8\%
35.8\%	58.0	58.7	0.7	1.2\%
37.0\%	58.0	58.7	0.7	1.2\%
38.3\%	57.9	58.5	0.6	1.0\%
39.5\%	57.9	58.5	0.6	1.0\%
40.7\%	57.9	58.4	0.5	0.9\%
42.0\%	57.8	58.4	0.6	1.1\%
43.2\%	57.8	58.4	0.6	1.1\%
${ }^{44.4 \%}$	57.7	58.4	0.7	1.2\%
4.7.7\%	57.7 57.7	㐌58.3	0.6 0.6	${ }_{\text {1.1. }}^{1.1 \%}$
48.1\%	57.7	58.3	0.6	1.1\%
49.4\%	57.6	58.3	0.6	1.1\%
50.6\%	57.6	58.3	0.7	1.2\%
51.9\%	57.6	58.2	0.6	1.1\%
53.1\%	57.4	58.2	0.7	1.3\%
54.3\%	57.4	58.1	0.7	1.3\%
55.6\%	57.4	58.1	0.7	1.3\%
56.8\%	57.3	58.0	0.7	1.2\%
58.0\%	57.3	58.0	0.7	1.2\%
59.3\%	57.3	57.8	0.6	1.0\%
${ }^{60.5 \%}$ 61.7\%	57.3	57.8	0.5	0.9\%
${ }^{61.7 \%}$	57.2	57.8	0.5	1.0\%
-630\%	57.2 571	57.7	0.5	0.8\%
64.20% 65.4%	57.1 571	57.6 575	0.5	0.9\%
65.4\% ${ }_{6}^{6.7 \%}$	57.1	57.5	0.3	0.6\%
66.7\% 67.9%	57.1	57.5	0.4	0.6\%
67.9\%	57.1	57.5	0.4	0.7\%
69.1\% 70.4%	57.0	57.4	0.4	0.7\%
70.4\%	57.0	57.3	0.4	0.7\%
71.6% 72.8%	57.0	57.3	0.4	0.6\%
72.8.1\%	56.8 56.8	57.3 57.3	0.5 0.5	${ }^{0.9 \%}$
7.3.3\%	56.8	57.3	0.5	0.9\%
76.5\%	55.6	57.3	0.7	1.2\%
77.8\%	56.6	57.2	0.6	1.1\%
79.0\%	56.5	57.1	0.6	1.1\%
80.2\%	56.5	57.1	0.6	1.0\%
81.5\%	56.5	56.9	0.4	0.7\%
82.7\%	56.5	56.8	0.3	0.5\%
84.0\%	56.5	56.7	0.3	0.5\%
${ }^{85.2 \%}$	56.4	56.7	0.3	0.5\%
86.4\%	56.4	56.7	${ }^{0.3}$	0.4\%
87.7\%	56.4	55.6	0.2	0.4\%
88.9\%	56.4	55.6	0.2	0.4\%
90.1\%	56.4	56.5	${ }^{0.1}$	0.3\%
91.4\% ${ }_{9} 9.6 \%$	${ }_{56.3}$	${ }_{56.5}^{56.5}$	0.2	0.3\%
${ }_{93.8 \%}^{92.6 \%}$	56.0	56.5	0.5	0.8\%
${ }_{95.1 \%}^{93.8 \%}$	56.0	56.5	0.5	0.8\%
${ }_{995}^{95.19 \%}$	56.0	56.0	0.0	0.0\%
${ }_{9}^{96.3 \%} 9$	55.8	55.8	0.0	0.1\%
97.5\% ${ }_{\text {98.8\% }}$	55.5	55.6	0.1	0.2\%
98.8\% 100.0\%	55.5 55.5	55.5 55.5	${ }_{0.0}^{0.0}$	-

Table SQ7.1b verat Red Bluft, Monthly Temperature

$\begin{gathered} \text { Percent } \\ \text { Exceance } \\ \text { Probability } \end{gathered}$	June			$\begin{gathered} \text { Relative } \\ \text { Difference (\% } \end{gathered}$
	WSIP 2070 Without	WSIP 2070 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (eEGFF) } \end{aligned}$	
	Monthy Temperature	Monthl Temperature		
	(DEGF)	(EEG)		
0.0\%	62.4	62.6	0.2	0.3\%
1.2\%	62.0	61.4	-0.6	-1.0\%
2.5\%	61.8	61.3	-0.5	-0.9\%
3.7\%	61.6	61.0	-0.6	-1.0\%
4.9\%	61.4	60.9	-0.4	-0.7\%
6.2\%	61.3	60.9	-0.4	-0.7\%
7.4\%	61.1	60.8	-0.3	
8.6\%	61.1	60.8	-0.3	-0.5\%
9.9\%	61.0	60.7	-0.3	-0.5\%
11.1\%	61.0	60.5	-0.4	-0.7\%
${ }^{12.35 \%}$	60.9	60.5	-0.4	-0.6\%
13.6\%	60.6	60.4	-0.2	-0.3\%
14.8\%	60.6	60.2	-0.3	-0.5\%
16.0\%	60.4	60.2	-0.2	-0.4\%
17.3\%	60.0	60.1	0.1	0.2\%
18.5\%	59.9	60.1	0.2	0.3\%
19.8\%	59.9	60.0	0.1	0.2\%
${ }_{2}^{22.0 \%}$	59.8 598 598	59.9 59.9	${ }_{0}^{0.1}$	${ }^{0.2 \% \%} 0$
23.5\%	59.4	59.8	0.4	0.7\%
24.7\%	59.3	59.8	0.5	0.8\%
25.9\%	59.2	59.7	0.5	0.9\%
27.2\%	59.2	59.7	0.5	0.9\%
28.4\%	59.2	59.7	0.5	0.8\%
29.6\%	59.1	59.6	0.5	0.8\%
30.9\%	59.1	59.6	0.5	0.8\%
32.1\%	59.0	59.5	0.5	0.9\%
33.3\%	58.9	59.5	0.5	0.9\%
34.6\%	58.8	59.4	0.6	${ }^{1.0 \%}$
35.8\%				
37.0\%	58.7	59.3	0.6	1.1\%
-	${ }_{5}^{58.6}$	59.3	${ }^{0.6}$	${ }_{1}^{1.1 \%}$
39.5\%	58.6	59.2	0.6	1.1\%
${ }_{42.0 \%}^{40.70 \%}$	58.6 585 8.5	59.1	0.5	0.9\%
43.2\%	58.5	59.0	0.4	0.8\%
44.4\%	58.3	58.9	0.5	0.9\%
45.7\%	58.3	58.8	0.6	1.0\%
${ }^{46.9 \%}$	58.2	58.7	0.5	0.8\%
48.1\%	58.2	58.6	0.4	0.7\%\%
50.6\%	58.1 58.1	58.6	0.4 0.5	0.8\%
51.9\%	57.9	58.6	0.7	1.1\%
53.1\%	57.9	58.5	0.6	1.0\%
54.3\%	57.9	58.5	0.6	1.0\%
55.6\%	57.8	58.5	0.7	1.3\%
56.8\%	${ }_{57.8}^{57.8}$	58.5	0.7	1.2\%
58.0\%	57.8	58.4	0.6	1.1\%
59.3\%	57.8	58.4	0.6	1.1\%
60.5\%	57.7	58.3	0.6	${ }_{1}^{1.0 \%}$
${ }_{\text {cke }}^{61.7 \%}$	57.7	58.3	0.6	${ }^{1.10 \%}$
63.0\%	57.7 577	58.3 583	0.6	-
65.4\%	57.7	58.3	${ }_{0.6}^{0.6}$	1.0\%
66.7\%	57.6	58.2	0.6	1.1\%
67.9\%	57.6	58.2	0.7	1.1\%
69.1\%	57.6	58.2	0.6	1.1\%
70.4\%	57.5 57.5	58.2	0.6	1.1\%
71.6\%	57.5	58.1	0.7	1.1\%
72.8\%	57.4	58.1	0.6	1.1\%
74.1\%	57.4	58.0	0.6	1.1\%
75.3\%	57.1	58.0	0.8	1.5\%
${ }^{76.5 \%}$	57.1	58.0	0.8	${ }_{1}^{1.5 \%}$
77.8\%	57.1	57.9	0.9	${ }_{1}^{1.5 \%}$
79.0\%	57.0	57.9	0.9	1.5\%
80.2\%	55.9	57.8	0.9	${ }^{1.6 \%}$
${ }^{81.5 \%}$	55.8	57.8	1.0	1.8\%
88, ${ }_{\text {82, }}^{8.7 \%}$	56.7 56.6	57.7 577	${ }_{1.1}^{1.1}$	${ }_{\text {2.1\% }}^{1.9 \%}$
85.2\%	56.5	57.5	1.1	1.9\%
86.4\%	56.5	57.4	0.9	1.6\%
87.7\%	56.4	57.3	0.9	1.5\%
88.9\%	56.3	57.1	0.8	1.4\%
90.1\%	56.3	57.0	0.7	1.2\%
91.4\%	56.2	57.0	0.8	1.4\%
92.6\%	56.2	56.9	0.7	1.3\%
93.8\%	56.0	56.5	0.5	1.0\%
95.1\%	55.9	55.4	0.4	0.8\%
${ }^{96.3 \%}$	55.9 559	56.3	0.4	0.7\%
97.5\%	55.9	${ }_{56.3}$	0.4	0.7\%
98.8\%	55.8	55.2	0.4	0.7\%
100.0\%	55.8	56.2	0.4	0.7\%

Table SQ7.1b
Sacramento River at Red Bluft Monthy Temperature

	- June seplemer			
$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	WSIP 207 Prowiethout	WSIP 2070 With Project	te	
	Monthly Temperature	Monthly Temperature	(DEGF)	Difference (\%)
	(DEGF)			
0.0\%	69.3	69.1	-0.2	-0.3\%
1.2\%	67.9 665	66.1 650	${ }^{-1.8}$	-2.6\%
2.5\%	66.5	65.0	-1.5	-2.2\%
3.7\%	65.2	64.1	-1.1	-1.6\%
4.9\%	64.5	62.4	-2.1	-3.2\%
6.2\%	63.3	62.3	-1.0	-1.6\%
7.4\%	62.7	62.0	-0.8	-1.2\%
8.6\%	62.4	61.6	-0.8	-1.3\%
9.9\%	62.4	61.5	-0.9	-1.4
11.1\%	62.4	61.4	-1.0	-1.6\%
12.3\%	62.4	61.3	-1.1	-1.7\%
13.6\%	62.3	61.2	-1.1	-1.7\%
14.8\%	61.9	61.2	-0.7	-1.1\%
16.0\%	61.7	61.1	-0.6	-1.0\%
17.3\%	61.7	61.0	-0.7	-1.1\%
18.5\%	61.6	61.0	-0.6	-1.0\%
19.8\%	61.5	60.9	-0.6	-1.0\%
21.0\%	61.4	60.9	-0.5	-0.8\%
22.2\%	61.3	60.8	-0.5	-0.8\%
23.5\%	61.3	60.8	-0.5	-0.8\%
24.7\%	61.2	60.6	-0.5	-0.9\%
25.9\%	61.0	60.5	-0.5	-0.8\%
27.2\%	60.9	60.5	-0.4	-0.6\%
28.4\%	60.8	60.4	-0.4	-0.7\%
29.6\%	60.7	60.4	-0.3	-0.5\%
30.9\%	60.7	60.4	-0.3	-0.5\%
32.1\%	60.6	60.4	-0.3	-0.5\%
33.3\%	60.6	60.2	-0.4	-0.6\%
34.6\%	60.5	60.2	-0.3	-0.5\%
35.8\%	60.5	60.1	-0.4	-0.6\%
37.0\%	60.4	60.1	-0.3	-0.6\%
38.3\%	60.3	60.1	-0.2	-0.4\%
39.5\%	60.3	60.0	-0.2	-0.4\%
40.7\%	60.2	60.0	-0.2	-0.4\%
42.0\%	60.1	60.0	-0.1	-0.2\%
43.2\%	60.1	59.9	-0.2	-0.3\%
44.4\%	60.0	59.9	-0.1	-0.2\%
45.7\%	60.0	59.7	-0.3	-0.5\%
46.9\%	60.0	59.6	-0.3	-0.6\%
48.1\%	59.9	59.6	-0.3	-0.5\%
49.4\%	59.9	59.6	-0.3	-0.5\%
5.0.6\%	59.9	59.5	-0.3	-0.5\%
51.9\%	59.8	59.5	-0.3	-0.5\%
53.19\% 54.3%	59.7	59.5	-0.2	-0.4\%
54.3\%	59.7	59.5	-0.2	-0.3\%
55.6\%	$\begin{array}{r}59.7 \\ 595 \\ \hline 9.5\end{array}$	59.4	-0.2	-0.4\%
56.8\%	59.5	59.4	-0.1	-0.1\%
58.0\%	59.3	59.4	0.1	0.1\%
59.3\%	59.3	59.4	0.1	0.2\%
60.5\%	59.2	59.3	0.1	0.2\%
61.7\%	59.1	59.3	0.1	0.2\%
63.0\%	59.1	59.3	0.2	0.3\%
64.20% $6.4 .4 \%$	59.1	59.1	0.0	0.19\%
${ }^{65.4 \%}$	59.0	59.1	0.1	0.2\%
${ }^{66.7 \%}$	58.9	59.0	0.1	0.1\%
67.9\%	58.9 58.9	58.9 58.9	0.1 0.0	-0.0\%
70.4\%	58.9	58.8	0.0	0.0\%
71.6\%	58.8	58.6	-0.2	-0.3\%
72.8\%	58.8	58.6	-0.2	-0.4\%
74.1\%	58.7	58.5	-0.1	-0.2\%
75.3\%	58.6	58.5	-0.1	-0.2\%
76.5\%	58.5	58.4	0.0	0.0\%
77.8\%	58.3	58.4	0.1	0.2\%
79.0% 80200	58.2	58.3	0.0	0.1\%
80.2\%	58.1	58.2	0.1	0.1\%
${ }^{81.5 \%}$	58.1 58.1	58.2 58.1	${ }_{0}^{0.0}$	${ }_{0}^{0.1 \%}$
84.0\%	58.0	58.1	0.1	0.2\%
85.2\%	57.9	58.1	0.1	0.2\%
86.4\%	$\stackrel{57.9}{57.9}$	${ }_{57.0}^{57.0}$	0.0	0.19\%
87.7\%	57.8	57.9	0.1	0.2\%
88.9\%	57.5	57.9	0.4	0.7\%
90.1\%	57.5	57.8	0.3	0.5\%
91.4\%	57.5	57.7	0.2	0.3\%
92.6\%	57.4	57.7	0.2	0.4\%
93.8\%	57.4	57.6 575	0.2	0.3\%
95.19\%	$\begin{array}{r}57.4 \\ 57.4 \\ \hline\end{array}$	57.5 574	0.1	0.3\%
${ }^{96.5 \%} 9$	57.4 57.3	57.4 57.2	0.1 0.01	-0.1\% ${ }_{\text {- }}^{0.2 \%}$
98.8\%	57.2	57.2	0.0	-0.1\%
100.0\%	57.0	57.1	0.1	0.1\%

Figure 5a8-1b
Sacramento River below Red Bluff, Monthly Temperature

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	October			
	${ }^{\text {WSIP } 2077 \text { W. Without }}$	WSIP 207 With Project	Absolute	Relative
	Monthy Temperature	Monthy Temperature	Difference (DEGF)	Difference (\%)
0.0\%	67.7	67.5	-0.2	-0.2\%
1.2\%	66.9	66.0	-1.0	${ }^{-1.4 \%}$
2.5\%	65.4	65.8	0.4	0.7\%
3.7\%	64.9	64.2	-0.7	-1.0\%
4.9\%	64.8 643	64.0 638	-0.8	-1.3\%
7.4\%	64.3			
8.6\%	64.0	63.2 63.1	-0.9	${ }_{-1.5 \%}^{-1.7 \%}$
9.9\%	63.6	63.0	-0.6	-0.9\%
11.1\%	63.4	62.7	-0.7	-1.2\%
12.3\%	63.4	62.5	-0.9	-1.4\%
13.6\%	62.7	62.0	-0.7	-1.1\%
14.8\%	61.9	61.8	-0.2	-0.3\%
16.0\%	61.8	61.7	-0.1	-0.2\%
17.3\%	61.4	61.2	-0.2	-0.3\%
18.5\%	61.0	61.0	0.0	0.0\%
19.8\%	60.1	60.5 605	0.4	${ }_{\text {0,6\% }}^{0.6 \%}$
${ }^{21.0 \%}$	60.1 600	60.5	0.4	0.6\%
22.2\%	60.0	60.4	0.4	0.6\%
23.5\%	60.0	60.3	0.3	0.5\%
24.7\%	60.0	59.8	-0.1	-0.2\%
25.9\%	59.9	59.8	-0.2	-0.3\%
27.2\%	59.8	59.7	0.0	-0.1\%
28.4\%	59.7	59.7	-0.1	-0.1\%
29.6\%	59.6	59.6	0.0	-0.1\%
30.9\%	59.5	59.5	0.0	0.0\%
32.10 33	59.5 59.4	59.5 59.4	${ }^{0.0}$	${ }^{0.0 \%}$
34.6\%	59.4	59.3	0.0	${ }^{-0.1 \%}$
35.8\%	59.4	59.3	0.0	-0.1\%
37.0\%	59.3	59.3	0.0	0.0\%
38.3\%	59.3	59.3	0.0	0.0\%
39.5\%	59.3	59.2	0.0	0.0\%
40.7\%	59.2	59.1	-0.1	-0.1\%
42.0\%	59.1	59.1	0.0	0.0\%
${ }^{43.2 \%} 40.4 \%$	59.1 59.0	59.0 59.0	0.0 -0.1	-0.1\%
45.7\%	59.0	59.0	-0.1	-0.1\%
46.9\%	58.9	58.9	-0.1	-0.1\%
48.1\%	58.9	58.7	-0.3	-0.5\%
49.4\%	58.9	58.5	-0.4	-0.8\%\%
50.6\%	58.9	58.4	-0.4	-0.7\%
51.9\%	55.8	58.4	-0.3	-0.6\%
53.1\%	58.7	58.4	-0.4	-0.6\%
54.3\%	58.7	58.3	-0.4	-0.6\%
55.6\%	58.6	58.3	-0.4	-0.6\%
56.8\%	55.6	58.3	-0.3	-0.6\%
58.0\%	58.5	58.2	-0.3	-0.5\%
59.3\%	58.5	58.2	-0.2	-0.4\%
60.5\%	58.3			-0.1\%
${ }^{61.77 \%}$	${ }_{58.1}$	${ }_{58.2}$	0.1	0.2\%
63.0\%	58.1	58.1	0.0	0.1\%
${ }^{64.2 \%}$	58.1	58.1	0.0	0.1\%
65.4\%	58.1	58.1	0.0	0.0\%
66.7\%	58.1	58.1	0.0	0.0\%
67.9\%	58.1	58.0	0.0	-0.1\%
69.1\%	55.0	58.0	0.1	${ }_{0}^{0.10 \%}$
70.4\% ${ }_{\text {71.6\% }}$	57.9 57.9	58.0 57.9	0.0 0.0	${ }^{0.01 \%}$
72.8\%	57.9	57.8	-0.1	-0.1\%
74.1\%	57.9	57.8	-0.1	-0.1\%
75.3\%	57.7	57.8	0.0	0.1\%
76.5\%	57.7	${ }_{577}^{57.8}$	0.1	0.1\%
77.8\%	57.7	57.7	0.1	0.1\%
79.0\%	57.5	57.7	0.1	0.2\%
80.2\%	57.5	57.6	0.1	0.2\%
81.5\%	57.4	$\begin{array}{r}57.5 \\ 575 \\ \hline\end{array}$	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
84.0\%	57.4	57.4	0.0	0.1\%
85.2\%	57.4	57.4	0.0	0.1\%
86.4\%	57.3	57.3	0.0	${ }^{0.0 \%}$
87.7\%	57.1	57.2	0.1	0.10
${ }^{88.9 \%} 9$	57.1 56.9	57.2 571	${ }_{0}^{0.1}$	${ }_{\text {cose }}^{0.3 \%}$
91.4\%	56.9	56.9	0.0	0.0\%
92.6\%	56.9	56.7	-0.2	-0.3\%
93.8\%	56.8	56.6	-0.2	-0.4\%
95.1\%	56.8	56.5	-0.3	-0.5\%
96.3\%	55.8	56.5	-0.3	-0.5\%
${ }_{98}^{97.5 \%}$	56.7 56.6	56.5 56.4	-0.2 -0.2	-0.0.4\%
100.0\%	56.6	56.4	0.0	-0.3\%

Page 1455 of 1488

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$	February			
	WSII 2070 Without Proiect	WSIP 2070 With Project	Absolu	
	Monthy Temperature	Monthly Temperature	Difference	Difference (\%)
(\%)	524	526	0	0
0.0%		52.6		0.4\%
${ }_{\text {12\% }} 1.2 \%$	52.4	52.5 52.5	${ }_{0}^{0.1}$	${ }^{0.22 \%}$
2.5\%	52.2)	52.3 517	0.1	0.2\%
4.9\%	51.0	51.1	0.1	${ }^{0.1 \%}$
6.2\%	50.9	51.0	0.1	0.2\%
7.4\%	50.8	50.9	0.2	0.3\%
8.6\%	50.7	50.8	0.1	0.1\%
9.9\%	50.7	50.7	0.1	0.1\%
11.19\%	50.6	50.7	0.1	0.1\%
12.3\%	50.3 50.3	50.4 50.4	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
14.8\%	50.2	50.4	0.1	0.3\%
16.0\%	50.1	50.1	0.0	0.0\%
17.3\%	50.0	50.1	0.0	0.0\%
18.5\%	49.9	50.0	0.2	0.3\%
19.8\%	49.8	50.0	0.2	0.4\%
21.0\%	49.8	49.9	0.1	0.2\%
22.2\%	49.8	49.9	0.1	0.3\%
23.5\%	49.8	49.9	0.1	0.2\%
24.7\%	49.7	49.9	0.2	0.3\%
25.9\%	49.7	49.8	0.1	0.1\%
28.4\%	49.5	49.6	${ }_{0.1}^{0.2}$	0.2\%
29.6\%	49.5	49.5	0.0	0.1\%
30.9\%	49.5	49.5	0.0	0.1\%
32.1\%	49.4	49.5	0.0	0.1\%
33.3\%	49.3	49.4	0.1	0.2\%
34.6\%	49.3	49.4	0.0	0.1\%
35.8\%	49.3	49.3	0.1	0.1\%
37.0\%	49.2	49.3	0.1	0.2\%
${ }^{38.3 \%}$	49.2	49.2	0.0	0.0\%\%
		49.2	0.1	
42.0\%	48.9	49.0	0.1	0.3\%
43.2\%	48.7	48.9	0.2	0.3\%
44.4\%	48.7	48.8	0.1	0.2\%
45.7\%	48.7	48.8	0.1	0.2\%
46.9\%	48.7	48.7	0.1	0.1\%
48.1\%	48.7	48.7	0.0	0.1\%
49.4\%	48.6	48.7	0.0	0.1\%
50.6\%	48.6	48.6	0.0	0.0\%
55.9\%\%	48.5 48.5	48.6 48.6	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
54.3\%	48.5	48.5	0.1	0.2\%
55.6\%	48.4	48.5	0.1	0.1\%
${ }_{\text {c }}^{56.8 \%}$	48.4	48.4	${ }^{0.1}$	${ }^{0.2 \%}$
58.0\%	48.4	48.4	0.0	0.1\%
59.3\%	48.3	48.4	0.1	0.3\%
60.5\%	48.2	48.4	0.2	0.3\%
61.7\%	48.2	48.3	0.1	0.2\%
63.0\%	48.1	48.2	0.2	0.3\%
64.2\%	48.0	48.1	0.1	0.2\%
65.4\%	48.0	48.1	0.1	0.2\%
66.7\%	48.0	48.0	0.0	0.1\%
69.1\%	${ }_{47.9}^{47.9}$	48.0 48.0	0.1	
70.4\%	47.9	${ }_{47.9}$	${ }_{0}^{0.1}$	0.1\%
71.6\%	47.9	47.9	0.0	0.0\%
72.8\%	47.9	47.9	-0.1	-0.1\%
74.1\%	47.7	47.7	0.0	0.0\%\%
75.5\%	47.7	${ }^{47.6}$	-0.1	-0.2\%
76.5\%	47.7	47.6	-0.1	-0.2\%
${ }_{7} 77.80 \%$	47.7	47.5	-0.1	-0.2\%
80.2\%	47.5	47.5	0.0	0.0\%
81.5\%	47.4	47.5	0.1	0.2\%
82.7\%	47.4	47.4	0.0	0.0\%
84.0\%	47.4	47.4	0.0	0.0\%
${ }^{85.2 \%}$	${ }^{47.3}$	47.3	0.0	0.0\%\%
86.4\%	47.3	47.2	-0.1	${ }^{-0.2 \%}$
87.7\%	47.0	47.0	0.0	0.0\%
88.9\%	46.9	46.9	0.0	0.1\%
90.1\%	46.9	46.9	0.0	0.1\%
${ }^{99.4 .4 \%}$	46.8	46.9	0.1	0.10\%
${ }_{993.8 \%}^{92.6 \%}$	${ }_{46.6}^{46.8}$	46.6 46.6	-0.2 0.0 0.0	-0.4\%
95.1\%	46.6	46.5	-0.1	-0.3\%
96.3\%	46.4	46.4	-0.1	-0.1\%
97.5\%	46.3	46.3	0.0	0.0\%
98.8\%	45.5 455	45.4 454	-0.1	${ }^{-0.1 \%}$
100.0\%	45.5	45.4	-0.1	-0.1\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probobaility } \end{gathered}$	May			RelativeDifference (\%)
	WSIP 2070 Without	WSIP 2070 With Project	$\begin{aligned} & \text { Absolute } \\ & \text { Differeence } \\ & \text { (DEGFF) } \end{aligned}$	
	Monthy Temperature	Monthy Temperature		
0.0\%	61.7	60.9	-0.8	-1.3\%
1.2\%	61.5	60.8	-0.7	-1.1\%
2.5\%	60.6	60.8	0.2	0.4\%
3.7\%	60.6	60.7	0.1	0.1\%
4.9\%	60.3	60.7	0.4	
6.2\%	60.1	60.6	0.4	0.7\%
7.4\%	60.1	60.5	0.4	0.7\%
8.6\%	60.1	60.4	0.4	0.6\%
9.9\%	59.8	60.3	0.5	0.8\%
11.1\%	59.7	60.2	0.5	0.8\%
12.3\%	59.7	60.2	0.5	0.8\%
13.6\%	59.6	60.2	0.6	1.0\%
14.8\%	59.6	60.1	0.5	0.9\%
16.0\%	59.5	60.1	0.6	0.9\%
17.3\%	59.5	60.1	0.6	1.0\%
18.5\%	59.3	60.0	0.7	1.2\%
19.8\%	59.2	59.7	0.5	0.9\%
21.0\%	58.9	59.7	0.8	1.4\%
22.2\%	58.8	59.7	0.9	1.5\%
23.5\%	58.8	59.7	0.9	1.5\%
24.7\%	58.7	59.5	0.7	1.3\%
25.9\%	58.6	59.4	0.8	1.4\%
27.2\%	58.5	59.3	0.8	1.3\%
28.4\%	58.3	59.2	0.8	1.4\%
29.6\%	58.3	59.0	0.8	1.3\%
30.9\%	58.3	58.9	0.6	1.0\%
32.1\%	58.3	58.8	0.5	0.9\%
33.3\%	58.2	58.8	0.6	1.0\%
34.6\%	58.2	58.6	0.5	0.8\%
35.8\%	57.9	55.6	0.7	1.2\%
37.0\%	57.9	58.6	0.7	1.2\%
38.3\%	57.9	58.5	0.6	1.0\%
39.5\%	57.8	58.4	0.6	1.0\%
40.7\%	57.8	58.4	0.5	0.9\%
42.0\%	57.7	58.3	0.6	1.1\%
- 43.2%	57.7	58.3	0.6	1.1\%
${ }_{4}^{44.4 \%}$	57.6 57.6	58.3 58.3 8.	${ }^{0.6}$	${ }_{1.10}^{1.1 \%}$
46.9\%	57.6	58.2	0.6	1.1\%
48.1\%	57.6	58.2	0.6	1.1\%
49.4\%	57.6 575	58.2	0.6	${ }_{1}^{1.19 \%}$
50.6\%	57.5	58.2	0.7	1.2\%
51.9\%	57.5	58.2	0.7	1.2\%
53.1\%	57.4	58.1	0.7	1.3\%
54.3\%	57.3	58.0	0.7	1.3\%
55.6\%	57.3	58.0	0.7	1.3\%
56.8\%	57.2	58.0	0.7	1.3\%
58.0\%	57.2	57.9	0.7	1.2\%
59.3\%	57.2 57.2	57.7 57.7	0.5 0.5	${ }^{0.9 \%}$
61.7\%	57.1	57.7	0.6	1.0\%
63.0\%	57.1	57.6	0.5	0.9\%
64.2\%	57.1	57.5	0.5	0.8\%
65.4\%	57.1	57.4	0.3	0.6\%
66.7\%	57.0	57.4	0.3	0.6\%
67.9\%	57.0	57.4	0.4	0.7\%
69.1\%	56.9	57.3	0.4	0.7\%
70.4\%	55.9	57.3	0.4	0.7\%
71.6% 728% 180	56.9	57.2	0.4	0.7\%
72.8\%	56.7 567	57.2 57.2	${ }^{0.5}$	0.9\%
75.3\%	56.7	57.2	0.5	0.9\%
76.5\%	56.5	57.2	0.7	1.2\%
77.8\%	56.5	57.1	0.6	1.1\%
79.0\%	56.4	57.0	0.6	1.1\%
80.2\%	56.4	57.0	0.6	1.0\%
81.5\%	56.4	55.8	0.4	0.7\%
82.7\%	56.4	55.7	0.3	0.6\%
84.0\%	56.4	56.7	0.3	0.5\%
85.2\%	56.4 56.3	56.6 56.6	0.3 0.2	0.5\%
87.7\%	56.3	56.5	0.2	0.4\%
88.9\%	${ }_{56.3}$	56.5	0.2	0.3\%
90.1\%	56.3	56.4	0.2	0.3\%
91.4\%	56.2	56.4	0.2	0.3\%
92.6\%	55.0	55.4	0.4	0.8\%
93.8\%	55.9	56.4	0.4	0.8\%
95.1\%	55.9 557	55.9	0.0	0.0\%
96.3\%	55.7	55.8	0.0	0.1\%
97.5\% ${ }_{98.8 \%}$	55.5	55.6	0.1	0.2\%
98.8\%	55.4 55.4	55.4 55.4	${ }_{0.0}^{0.0}$	${ }_{0}^{0.1 \%}$

Table SQ8.1b
Sacramento River below Red Bufff, Monthly Temperature

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{gathered}$	June			
	${ }^{\text {WSIP } 207 \text { Prowithout }}$	WSIP 2070 With Project		Relative
	Monthly Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
0.0\%	62.3	62.5	0.2	0.3\%
1.2\%	62.0	61.3	-0.6	1.0\%
2.5\%	61.7	61.2	-0.5	
3.7\%	61.5	60.9	-0.6	-1.0\%
4.9\%	${ }^{61.3}$	60.8	-0.4	-0.7\%
6.2\%	61.2	60.8	-0.4	-0.7\%
7.4\%	61.0	60.7	-0.3	-0.5\%
8.6\%	61.0 609	${ }_{60.7}^{60.7}$	-0.3	-0.5\%
9.9\%	60.9	60.6	-0.3	-0.6\%
${ }_{122.3 \%}^{11.19}$	${ }_{60.8}^{60.9}$	${ }_{60.4}^{60.5}$	-0.4	-0.6\%
13.6\%	60.5	60.3	-0.2	-0.3\%
14.8\%	60.5	60.2	-0.3	0.6\%
16.0\%	60.4 599	60.1 600	-0.3	-0.4\%
18.5\%	59.8	60.0	0.2	0.3\%
19.8\%	59.8	59.9	0.1	0.2\%
21.0\%	59.7	59.9	0.1	0.2\%
22.2\%	59.7	59.8	0.0	0.1\%
23.5\%	59.3	59.7	0.4	0.7\%
24.7\%	59.2	59.7	0.5	0.8\%
25.9\%	59.1	59.7	0.5	0.9\%
27.2\%	59.1	59.6	0.5	98\%
28.4\%	59.1	59.6	0.5	0.8\%
29.6\%	59.0	59.5	0.5	${ }^{0.9 \%}$
	59.0 58.9	$\begin{array}{r}59.5 \\ 59.4 \\ \hline\end{array}$	0.5 0.5	${ }_{\text {en }}^{0.9 \% \%}$
${ }^{32.11 \%}$	58.9 589	59.4.	${ }^{0.5}$	${ }_{0}^{0.9 \%}$
34.6\%	58.7	59.3	0.6	1.0\%
35.8\%	58.7	59.2	0.6	1.0\%
37.0\%	58.6	59.2	0.6	1.1\%
38.3\%	58.5	59.2	0.7	1.1\%
39.5\%	58.5	59.1	0.6	1.1\%
${ }_{4}^{40.7 \% \%}$	58.5 58.5	59.0 58.9	0.5 0.4	0.9\%
43.2\%	58.5	58.9	0.4	0.8\%
44.4\%	58.3	58.8	0.5	0.9\%
45.7\%	58.2	58.7	0.6	1.0\%
46.9\%	58.2	58.6	0.5	0.8\%
48.1\%	58.1	58.5	0.4	0.7\%
49.4\%	58.1	58.5	0.4	0.7\%
50.6\%	58.1	58.5 595	0.5	0.8\%
55.9\%\%	57.8	58.5	0.7	${ }^{1.1 \%}$
	57.8 57.8	58.5 58.4	0.6 0.6	${ }^{1.10 \%}$
55.6\%	57.7	58.4	0.7	1.3\%
			0.7	1.2\%
58.0\%	57.7	${ }^{58.3}$		1.1\%
${ }^{59.3 \%}$	57.7	58.3 58.3	${ }^{0.6}$	${ }^{1.10 \%}$
${ }^{66.7 \% \%}$	57.6 57.6	${ }_{58.3}^{58.3}$	${ }_{0}^{0.6}$	${ }_{\text {1.1. }}^{1.0 \%}$
63.0\%	57.6	58.2	0.6	1.0\%
64.2\%	57.6	58.2	0.6	1.0\%
65.4\%	57.6	58.2	0.6	1.0\%
66.7\%	57.5	58.2	0.6	1.1\%
67.9\%	57.5	58.2	0.7	1.1\%
69.1\%	57.5 575	58.1 58.1	${ }^{0.6}$	${ }_{1}^{1.1 \%}$
${ }^{70.4 \% \%}$	57.5 57.4	58.1 58.0	0.6 0.7	${ }_{1}^{1.12 \%}$
72.8\%	57.4	58.0	0.6	1.1\%
74.1\%	57.3	57.9	0.6	1.1\%
75.3\%	57.1	57.9 57.9	0.8	1.5\%
76.5\%	57.0	57.9	${ }^{0.8}$	${ }^{1.5 \%}$
77.8\%	57.0	57.8	0.9	${ }^{1.5 \%}$
79.0\%	56.9	57.8 578 7.8	${ }^{0.9}$	${ }_{1}^{1.5 \%}$
80.2\%\%	56.8 56.7	57.8 57.7	0.9 1.0	1.8\%
82.7\%	56.6	57.7	1.1	1.9\%
84.0\%	56.5	57.6	1.2	,
85.2\%	56.4	57.5	1.1	1.9\%
86.4\%	56.4	57.3	0.9	1.6\%
87.7\%	56.3	57.2	0.9	1.5\%
88.9\%	${ }_{56.3}$	57.0	0.8	1.4\%
${ }_{9}^{90.14 \%}$	56.3	56.9	0.7	${ }_{1}^{1.2 \%}$
-92.6\%	${ }_{56.1}^{56.1}$	${ }_{56.8}^{56.9}$	0.8 0.7	${ }_{1.3 \%}^{1.4 \%}$
93.8\%	55.9	56.5	0.5	1.0\%
	55.9 558 55	56.3 56.2	0.4	0.8\%
97.5\%	55.8 55.8	56.2	${ }_{0.4}^{0.4}$	0.7\%
98.8\%	55.7	56.1	0.4	0.7\%
100.0\%	55.7	56.1	0.4	0.7\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	September			
	${ }_{\substack{\text { WIIP } \\ \text { Proied }}}^{\text {Without }}$	WSIP 2070 With Project	Absolute	
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGGF) } \end{aligned}$	Difference (\%)
0.0\%	73.8	71.6	-2.2	-3.0\%
1.2\%	722	71.4	-0.8	-1.1\%
2.5\%	71.0	69.3	1.7	-2.4\%
3.7\%	69.9	68.8	-1.1	-1.6\%
4.9\%	68.9	66.6	-2.3	-3.4\%
6.2\%	68.5	65.4	-3.1	-4.5\%
7.4\%	68.2	65.4	-2.8	-4.2\%
8.6\%	67.4	64.2	-3.1	-4.7\%
9.9\%	66.6	64.2	-2.4	-3.6\%
11.19\%	66.1	64.1	-2.0	-3.0\%
${ }^{12.3 \% \%}$	65.5	64.1	1.4	-2.1\%
13.6\%	65.3	63.8	1.5	-2.4\%
14.8\%	65.0	63.0	-2.0	-3.1\%
16.0\%	65.0 648	${ }_{62}^{62.7}$	-2.3	-3.5\%
17.3\%	64.8	62.7	-2.2	-3.3\%
18.5\%	64.8	62.6	-2.2	-3.4\%
19.8\%	64.8	62.5	-2.3	-3.6\%
21.0\%	64.8	62.4	-2.4	-3.7\%
22.2\%	64.4	${ }^{62.1}$	-2.4	-3.7\%
23.5\%	64.2	61.8	-2.4	-3.7\%
24.7\%	64.1	61.6	-2.5	-3.8\%
25.9\%	63.8	61.6	-2.2	-3.5\%
27.2\%	63.6	61.4	-2.2	-3.5\%
28.4\%	63.4	61.4	-2.0	-3.2\%
29.6\%	63.4	61.3	-2.0	-3.2\%
30.9\%	63.3	61.3	-2.1	-3.3\%
32.1\%	63.0	61.2	-1.8	-2.8\%
33.3\%	62.7	61.2	-1.5	-2.4\%
34.6\%	${ }_{62.6}^{62.6}$	${ }_{61.1}$	-1.6	-2.5\%
35.8\%	62.6	61.0	-1.5	-2.5\%
37.0\%	62.5	61.0	-1.5	-2.3\%
38.3\%	62.3	61.0	-1.3	2.1\%
39.5\%	62.3	60.8	1.5	-2.4\%
40.7\%	62.2	60.6	-1.6	-2.5\%
42.0\%	${ }_{619}^{62.1}$	${ }_{60.5}^{60.4}$	-1.6	-2.6\%
43.2\%	61.9	60.4	-1.5	-2.5\%
44.4\%	61.9	60.4	-1.5	-2.5\%
45.7\%	61.4	60.4	-1.0	-1.7\%
46.9\%	61.4	60.3	-1.1	-1.8\%
48.19\%	61.1	60.3	-0.8	-1.2\%
49.4\%	61.0	60.3	-0.7	-1.2\%
	61.0	60.3	-0.8	-1.3\%
51.9\%	60.8	60.2	-0.6	-1.0\%
53.19\% 54.3%	${ }^{60.6}$	60.0	-0.6	-1.0\%
54.3\%	59.7	59.8	0.1	0.1\%
55.6\%	$\begin{array}{r}59.6 \\ 593 \\ \hline 9.3\end{array}$	59.8 597	${ }^{0.2}$	0.3\%
56.8\%	$\begin{array}{r}59.3 \\ 592 \\ \hline\end{array}$	59.7	${ }^{0.3}$	0.5\%
58.0\%	59.2 586	59.6	0.5	0.8\%
59.3\%	58.6	59.5	0.9	1.5\%
60.5\%	58.6	59.5	0.9	1.6\%
61.7\%	58.5	59.4	0.9	1.5\%
${ }^{63.0 \%}$	58.1	59.3	1.2	2.0\%
${ }^{64.2 \%}$	58.0	59.2	1.2	2.0\%
${ }^{65.4 \%}$	58.0	59.2	1.2	2.0\%
- 66.7%	58.0	58.9	1.0	1.7\%
${ }^{67.9 \%}$	57.6	58.9	1.3	2.2\%
69.19\%	57.5 575	58.1 578 8.8	${ }^{0.5}$	${ }^{0.9 \%}$
70.4\%	57.5 57.4	57.8 578 78	${ }^{0.3}$	0.6\%
71.6\%	57.4 57.4	${ }_{577}^{57.8}$	${ }^{0.3}$	0.6\%
72.8\%	57.4	57.7	${ }^{0.3}$	0.5\%
74.19% 75.3%	57.4	57.7	0.3	0.5\%
75.3\%	57.2	57.5	0.3	0.5\%
76.5% 77.8%	57.2	57.5	0.2	0.4\%
77.8\%	57.2 57.0	57.4 57.3	0.2 0.3	0.5\%
80.2\%	57.0	57.3	0.3	0.5\%
81.5\%	56.9	57.2	0.4	0.7\%
82.7\%	56.8	55.6	-0.2	-0.4\%
84.0\%	56.5	56.3	-0.2	-0.3\%
85.2\%	${ }_{56.3}^{56.3}$	$\begin{array}{r}56.1 \\ 55 \\ \hline\end{array}$	-0.2	-0.3\%
86.4\%	56.2	55.9	-0.3	-0.6\%
87.7\%	56.0 558	55.8 557	-0.2	-0.4\%
${ }_{\text {cke }}^{\text {88.9\% }}$	55.8	55.7	-0.1	-0.2\%
90.1\%	55.8	55.6	-0.2	-0.3\%
914\%	55.7	55.6	-0.1	-0.3\%
	55.6	55.5	0.0	0.0\%
${ }_{9}^{93.8 \%}$	55.5 555 55	55.5 551 551	0.0	0.0\%
${ }_{9}^{95.19 \%}$	55.5 553 5.	55.1 551 5.	-0.3	-0.6\%
${ }_{\text {97.5\% }}^{96.3 \%}$	55.3 55.1	55.1 55.1	-0.2 0.0	-0.4\%
997.5\%	55.1	55.1	0.0	0.0\%
98.8\% 100.0\%	54.9	54.4	-0.4	-0.8\%
100.0\%	54.9	54.4	-0.4	-0.8\%

Table SQ8-1b
Sacramento River below Red Bluff, Monthy Temperature

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	June to September			
	WSIP 2070 Without	WSIP 2070 With Project		
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (1eFFFF) } \end{aligned}$	Difference (\%)
0.0\%	69.2	69.0	-0.2	-0.3\%
1.2\%	67.8	66.0	1.8	-2.6\%
2.5\%	66.4	64.9	-1.5	-2.2\%
3.7\%	65.1	64.0	-1.1	-1.7\%
4.9\%	64.4	62.3	-2.1	-3.3\%
6.2\%	63.3	62.2	-1.0	-1.6\%
7.4\%	62.7	61.9	-0.8	-1.3\%
8.6\%	62.3 623	61.5 61.4	-0.8	-1.3\%
11.1\%	62.3	${ }_{61.3}$	-1.0	-1.7\%
12.3\%	62.3	61.2	-1.11	-1.8\%
13.6\%	62.2	61.1	-1.1	-1.7\%
14.8\%	61.8	61.1	-0.7	-1.1\%
16.0\%	61.6	61.0	-0.6	-1.0\%
17.3\%	61.6	60.9	-0.7	-1.1\%
18.5\%	61.5	60.9	-0.6	-1.0\%
19.8\%	61.5	${ }_{60.8}^{6}$	-0.6	-1.0\%
21.0\%	61.3	60.8	-0.5	-0.8\%
22.5\%	61.2	60.7	-0.5	-0.8\%
24.7\%	61.1	60.6	-0.5	-0.9\%
25.9\%	61.0	60.5	-0.5	-0.8\%
27.2\%	60.8	60.4	-0.4	-0.6\%
28.4\%	60.7	60.3	-0.4	-0.7\%
29.6\%	60.6	60.3	-0.3	-0.5\%
30.9\%	60.6	60.3	-0.3	-0.5\%
32.1\%	60.5	60.3	-0.3	-0.5\%
33.3\%	60.5	60.2	-0.4	-0.6\%
34.6\%	60.4	60.1	-0.3	-0.5\%
35.0\%	60.3	60.0	-0.3	-0.6\%
38.3\%	60.2	60.0	-0.2	-0.4\%
39.5\%	60.2	60.0	-0.2	-0.4\%
40.7\%	60.1	59.9	-0.2	-0.4\%
42.0\%	60.0	59.9	-0.1	-0.2\%
43.2\%	60.0	59.8	-0.2	-0.3\%
44.4\%	59.9	59.8	-0.1	-0.2\%
45.7\%	59.9	59.6	-0.3	-0.5\%
46.9\%	59.9	59.5	-0.3	-0.5\%
48.10\%	59.8	59.5	-0.3	-0.5\%
49.4\%	59.8 59.8	59.5 59.5	-0.3 -0.3	-0.5\%
51.9\%	59.7	59.4	-0.3	-0.5\%
53.1\%	59.6	59.4	-0.2	-0.4\%
54.3\%	59.6	59.4	-0.2	-0.4\%
55.6\%	59.6	59.4	-0.2	-0.4\%
56.8\%	59.4	59.3	-0.1	-0.2\%
58.0\%	59.2	59.3	0.1	0.1\%
59.3\%	59.2	59.3	0.1	0.2\%
60.5\%	59.1	59.2	0.1	0.2\%
${ }^{61.79 \%}$	59.1	59.2	0.1	${ }^{0.2 \%}$
63.0\%	59.0	59.2	0.2	0.3\%
64.20% 65.4%	59.0 58.9	59.0 59.0	${ }_{0}^{0.0}$	0.1\%
${ }^{65.49}$	58.9	59.0 590	0.1	${ }^{0.2 \%}$
66.7\% 67.9%	58.8 58.8	58.9 58.9	${ }_{0}^{0.1}$	${ }^{0.11 \%}$
69.1\%	58.8	58.8	0.0	0.0\%
70.4\%	58.8	58.8	0.0	0.0\%
71.6\%	58.7	58.5	-0.2	-0.3\%
72.8\%	58.7	58.5	-0.2	-0.4\%
74.1\%	55.6	58.5	-0.1	-0.2\%
75.3\%	58.6	58.4	-0.1	${ }^{-0.20 \%}$
76.5\%	58.4	58.4	0.0	0.0\%
77.8\%	58.2 58. 8.	58.3	0.1	${ }_{0}^{0.2 \%}$
79.0\%	58.2 58.1	58.2 58.1	${ }_{0.1}^{0.0}$	${ }^{0.11 \%}$
81.5\%	58.0	58.1	0.0	0.1\%
82.7\%	58.0	58.1	0.1	0.19\%
84.0\%	57.9	58.0	0.1	0.2\%
85.2\%	57.9	58.0	0.1	0.2\%
86.4\%	57.9	57.9	0.0	0.1\%
87.7\%	57.7	57.9	0.1	0.2\%
${ }^{88.9 \%} 9$	57.5 57.5	57.9 57.8	0.4 0.3	0.5\%
91.4\%	57.5	57.6	0.2	0.3\%
92.6\%	57.4	57.6	0.2	0.4\%
93.8\%	57.3	57.5	0.2	0.3\%
95.1\%	57.3	57.5 573	${ }^{0.1}$	0.3\%
96.3\%	57.3	57.3	0.1	0.1\%
97.5\%	57.3	57.2	-0.1	-0.2\%
98.8\%	57.2	57.1	0.0	${ }^{-0.1 \%}$
100.0\%	56.9	57.0	0.1	0.1\%

Figure 5ag-1b
American River below Nimbus Dam, Monthly Temperature

Table $\mathrm{SQ9}$-1b
How Nimbus Dam,

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$(\%)	October			
	${ }^{\text {WSIP } 207 \text { Prowithout }}$	WSIP 2070 With Project		Relative
	Monthy Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
0.0\%	70.0	68.3	${ }^{-1.7}$	${ }^{2.4 \%}$
1.2\%	68.9	68.2	-0.7	
2.5\%	697	681	-0.6	
3.7\%	68.2	68.0	-0.2	-0.2\%
4.9\%	67.9	68.0	0.1	0.1\%
6.2\%	67.9	68.0	0.1	0.2\%
7.4\%	67.8	68.0	0.2	0.2\%
8.6\%	67.6	67.9	0.3	0.4\%
9.9\%\%	67.6 67.5	67.9 67.9	0.3 0.3	0.5\%
12.3\%	67.5	67.9	0.3	0.5\%
13.6\%	67.5	67.8	0.3	0.4\%
14.8\%	67.5 675	67.8 677	${ }_{0}^{0.3}$	0.4\%
${ }^{17.3 \%}$	${ }_{67.5}$	${ }_{67.7}$	${ }_{0.3}$	0.4\%
18.5\%	67.4	67.7	0.3	0.4\%
19.8\%	67.4	67.7	0.2	0.4\%
21.0\%	67.4	67.6	0.1	0.2\%
22.2\%	67.4	67.6	0.1	0.2\%
23.5\%	67.4	67.5	0.1	0.1\%
24.7\%	67.4	67.5	0.1	0.1\%
25.9\%	67.4 674	67.5	0.1	0.1\%
28.4\%	67.4 67.4	67.4	${ }_{0.1}^{0.1}$	${ }^{0.1 \%}$
29.6\%	67.4	67.4	0.1	0.1\%
30.9\%	67.3	67.4	0.1	0.1\%
32.1\%	67.3	67.4	0.1	0.2\%
33.3\%	67.3	67.4	0.1	0.2\%
34.6\%	67.2	67.4	0.1	0.2\%
35.8% 37.0%	67.2	67.3	0.1	0.2\%
38.3\%	${ }_{67.1}^{67.2}$	67.3 67.3	0.1	0.3\%
39.5\%	67.1	67.2	0.1	0.2\%
40.7\%	67.1	67.2	0.1	0.2\%
${ }_{4}^{42.2 \%}$	${ }_{67.1}^{67.1}$	67.2 67.1	0.0	${ }_{0}^{0.1 \%}$
44.4\%	67.1	67.1	0.0	0.1\%
45.7\%	67.1	67.1	0.0	0.1\%
46.9\%	67.1	67.1	0.0	0.0\%
48.1\%	67.1	67.1	0.0	0.0\%
49.4\%	67.1	67.1	0.0	0.0\%\%
50.6\%	67.0	67.0	-0.1	-0.1\%
51.9\%	67.0	66.9	-0.1	-0.0.2\%
	67.0 67.0	66.9 66.9	-0.1 -0.1	${ }^{-0.2 \%}$
55.6\%	66.9	66.9	-0.1	-0.1\%
		66.8	-0.1	-0.1\%
58.3\%	${ }_{66.8}^{66.9}$	${ }_{66.7}^{66.8}$	-0.1	-0.02\%
60.5\%	66.8	66.7	-0.1	-0.2\%
61.7\%	66.8	66.6	-0.2	-0.3\%
63.0\%	66.8	66.6	-0.3	-0.4\%
64.2\%	66.8	66.5	-0.3	-0.4\%
65.4\%	66.8	66.5	-0.2	-0.4\%
66.7\%	66.7	66.5	-0.2	-0.3\%
${ }_{69.1 \%}^{67.9 \%}$	${ }_{66.6} 66.7$	${ }_{66.4}^{66.5}$	-0.2 -0.2	${ }_{\text {- }}^{-0.3 \%}$
70.4\%	66.6	66.4	-0.2	-0.3\%
71.6\%	66.6	66.4	-0.2	-0.3\%
72.8\%	66.6	66.4	-0.2	-0.3\%
74.19\%	66.6	${ }_{66.4}^{664}$	-0.2	-0.3\%
75.3\%	66.5	66.4	-0.2	-0.3\%
76.5\%	66.5	66.4	-0.2	-0.3\%
77.8\%	66.5	66.3	-0.2	-0.3\%
79.0\%	66.5	66.3	-0.2	-0.2\%
80.2\%	66.5	${ }^{66.3}$	-0.2	-0.3\%
81.5\%	66.5	66.2	-0.3	-0.4\%
822.7\%	${ }_{66.4}^{66.5}$	${ }_{66.1}^{66.1}$	-0.3	-0.4\%
85.2\%	66.3	66.1	-0.3	-0.4\%
86.4\%	66.2	65.9	-0.3	-0.4\%
87.7\%	66.2	65.9	-0.2	-0.4\%
88.9\%	65.9	65.9	0.0	0.0\%
90.1\%	65.4	65.8	0.4	0.7\%
91.4\%	65.4	65.8	0.4	0.6\%
92.6\%	65.1	65.8	0.7	1.0\%
93.8\%	64.5	65.1	0.6	0.9\%
${ }_{965.3 \%}^{95.19 \%}$	64.3 63.9	63.9 63.8	-0.4	${ }_{\text {- }}^{-0.0 \%}$
97.5\%	63.5	63.6	0.2	0.3\%
98.8\%	62.9	63.5	0.5	0.8\%
100.0\%	62.9	63.5	0.0	0.8\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	February			
	${ }^{\text {WSIP } 2077 \text { W. Without }}$	WSIP 2070 With Project	Absolute	Relative
	Monthy Temperature	Monthy Temperature	Difiererece (DEEFF)	Difference (\%)
0.0\%	52.0	53.4	1.4	2.6\%
1.2\%	51.6	51.9	0.3	0.6\%
2.5\%	51.5	51.7	0.2	0.4\%
3.7\%	${ }_{50.8}$	51.0	0.2	0.3\%
4.9\%	50.7 50.4	50.9 50.9	${ }_{0}^{0.2}$	0.4\%
6.2\%	50.4			
7.4\%	50.3	50.5 50.3	0.2	0.4\%
9.9\%	50.2	50.3	0.2	0.3\%
11.1\%	49.9	50.3	0.4	0.8\%
12.3\%	49.9	50.2	0.2	0.5\%
13.6\%	49.9	50.0	0.1	0.2\%
14.8\%	49.8	49.9	0.0	0.0\%
16.0\%	49.8 49.7	49.8 49.8	0.0 0.0	${ }_{\text {0.1\% }}^{0.0 \%}$
18.5\%	49.7	49.7	0.1	0.1\%
19.8\%	49.5	49.6	0.1	0.2\%
21.0\%	49.4	49.5	0.1	0.1\%
22.2\%	49.2	49.4	0.2	0.4\%
23.5\%	49.2	49.3	0.1	0.2\%
24.7\%	48.9	49.2	0.3	0.6\%
25.9\%	48.8	49.1	0.3	0.6\%
27.2\%	48.8	49.0	0.2	0.4\%
28.4\%	48.8	48.9	0.2	0.3\%
29.6\%	48.7	48.9	0.2	0.4\%
30.9% 32.1%	48.6 48.5	${ }_{48.7}^{48.7}$	0.2 0.2	0.4.4\%
33.3\%	48.5	48.5	0.0	-0.1\%
34.6\%	48.4	48.4	0.0	0.0\%
35.8\%	48.3	48.3	0.0	0.1\%
37.0\%	48.3	48.1	-0.1	-0.2\%
38.3\%	48.2	48.0	-0.3	-0.5\%
39.5\%	47.7	47.8	0.0	0.1\%
40.7\%	47.6	47.6	0.0	0.1\%
42.0\%	47.6	47.6	0.0	0.0\%
${ }^{43.2 \%} 40.4 \%$	47.5 47.4	47.6 47.5	0.1 0.1	${ }_{0}^{0.2 \%}$
45.7\%	47.3	47.3	0.0	0.0\%
46.9\%	47.3	47.2	0.0	-0.1\%
48.1\%	47.1	47.2	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
49.4\%	47.1	47.2	${ }^{0.1}$	0.19\%
50.6\%	47.1	47.2	0.1	0.2\%
51.9\%	47.1	47.2	0.0	0.1\%
53.1\%	47.1	47.2	0.1	0.1\%
54.3\%	47.1	47.1	0.0	0.1\%
55.6\%	47.0	47.1	0.1	0.1\%
56.8\%	47.0	47.0	0.0	0.1\%
58.0\%	46.9	46.9	0.0	0.0\%
59.3\%	46.6	46.9	0.2	0.5\%
${ }^{60.5 \%}$	46.6	46.8		0.5\%
61.7% 630%	46.6	46.7	0.0	0.1\%
63.0\%	${ }_{46.4}^{46.5}$	${ }_{46.6}^{46.6}$	${ }_{0.1}^{0.1}$	${ }_{0}^{0.3 \%}$
65.4\%	46.4	46.4	0.0	0.1\%
66.7\%	46.4	46.4	0.0	0.0\%
67.9\%	46.3	46.3	0.0	0.0\%
69.1\%	46.3	46.3	0.0	0.0\%
70.4\%	46.3	46.2	0.0	-0.1\%
72.8\%	46.2	46.2	0.0	0.0\%
74.1\%	46.2	46.2	0.0	0.0\%
75.3\%	46.2	46.2	0.0	0.0\%
76.5\%	46.2	46.2	0.0	0.0\%
77.8\%	46.1	46.1	0.0	0.1\%
79.0\%	46.1	46.1	0.0	0.1\%
80.2\%	46.0	46.1	0.1	0.2\%
81.5\%	45.9	46.0	0.1	0.2\%
82.7\%	45.9	45.8	0.0	-0.1\%
84.0\%	45.9	45.8	-0.1	-0.2\%
${ }^{85.2 \%}$ 86.4\%	45.8 45.8	${ }_{45.8}^{45.8}$	0.0 0.0	- -0.1%
87.7\%	45.8	45.7	-0.1	-0.1\%
88.9\%	45.7	45.7	0.0	-0.1\%
90.1\%	45.7	45.7	0.0	-0.1\%
91.4\%	45.7	45.5	-0.2	-0.5\%
92.6\%	45.5	45.5	0.0	0.0\%
93.8\%	45.5	45.4	-0.1	-0.2\%
95.1\%	45.4	45.4	0.0	0.0\%
96.3\%	45.4	45.3	-0.1	-0.3\%
97.5\%	45.4	45.0	-0.4	-0.9\%
988.8\% 100.0\%	${ }_{45.2}^{45.2}$	${ }_{44.7}^{44.7}$	-0.5 -0.5	${ }_{-1.1 \%}^{-1.1 \%}$

May				
Percent Exceedanc	WSIP 2070 . Without	WSIP 2070 With Project	Absolute	Relative
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{gathered} \text { Difference } \\ \text { (DEGGF) } \end{gathered}$	Difference (\%)
0.0\%	70.2	67.1	${ }^{-3.2}$	-4.5\%
1.2\%	67.7	66.4	-1.3	1.9\%
2.5\%	67.4	65.8	1.6	-2.3\%
3.7\%	67.0	65.7	-1.2	-1.8\%
4.9\%	66.0	65.6	0.4	
6.2\%	65.9	65.3	-0.5	-0.8\%
7.4\%	65.7	65.1	-0.6	-1.0\%
8.6\%	65.6	65.0	-0.6	-0.8\%
9.9\%	65.4	65.0	-0.4	-0.6\%
11.1\%	65.1	64.8	-0.3	-0.4\%
12.3\%	64.8	64.6	-0.2	-0.3\%
13.6\%	64.6	64.4	-0.3	-0.4\%
14.8\%	64.5	64.3	-0.2	-0.3\%
16.0\%	64.2	64.0	-0.3	-0.4\%
17.3\%	63.8	63.9	0.1	0.2\%
18.5\%	63.8	63.8	0.0	0.0\%
19.8\%	63.6	63.6	0.0	0.0\%
21.0\%	63.6	63.6	0.0	0.0\%
22.2\%	63.5	63.4	-0.1	-0.1\%
23.5\%	63.4	63.3	-0.1	-0.1\%
24.7\%	63.3	63.2	-0.1	-0.1\%
25.9\%	63.3	63.1	-0.2	-0.3\%
27.2\%	63.2	62.8	-0.3	-0.6\%
28.4\%	63.1	62.8	-0.3	-0.5\%
29.6\%	63.0	62.8	-0.2	-0.4\%
30.9\%	63.0	62.8	-0.2	0.3\%
32.1\%	62.9	62.7	-0.2	
33.3\%	62.9	62.6	-0.3	-0.4\%
34.6\%	62.8	62.5	-0.3	-0.5\%
35.\%	62.7	62.4	-0.4	-0.6\%
37.0\%	62.6	62.3	-0.3	-0.5\%
38.3\%	62.6	62.2	-0.3	-0.5\%
39.5\%	62.4	62.2	-0.2	-0.3\%
40.7\%	${ }^{62.2}$	${ }^{62.2}$	0.0	-0.1\%
42.0\%	${ }^{62.2}$	${ }^{62.2}$	0.0	0.0\%
43.2\%	62.1	62.2	0.0	0.0\%
${ }^{44.4 \%}$	62.1 62.1	62.1 62.1	0.0 0.0	0.0\%
46.9\%	${ }_{62.1}$	${ }_{62.0}^{62.1}$	-0.1	-0.1\%
48.1\%	62.0	61.7	-0.3	-0.4\%
49.4\%	61.9	61.7	-0.2	-0.3\%
50.6\%	61.7	61.6	0.0	-0.1\%
51.9\%	61.6	61.5	-0.1	-0.1\%
53.1\%	61.6	61.4	-0.2	-0.2\%
54.3\%	61.5	61.4	-0.2	-0.2\%
55.6\%	61.2	61.3	0.1	0.2\%
56.8\%	61.1	61.1	0.0	0.0\%
58.0\%	61.0	61.0	0.0	0.0\%
59.3\%	61.0	61.0	0.0	0.0\%
${ }^{60.5 \%}$	61.0	61.0	0.0	0.0\%
61.7\%	60.9	61.0	0.1	0.1\%
63.0\%	60.9	60.9	0.0	0.0\%
${ }^{64.2 \%}$	${ }^{60.4}$	60.4	0.0	0.1\%
65.4\%	60.3	60.2	-0.2	-0.3\%
66.7\%	60.1	60.1	-0.1	-0.1\%
67.9\%	60.1	60.0	0.0	-0.1\%
69.1\%	60.0	59.9	-0.1	-0.1\%
70.4\%	59.9	59.9	0.0	0.0\%
71.6\%	59.8	59.8	-0.1	-0.1\%
72.8\%	59.8	59.7	-0.1	-0.2\%
74.19\%	59.8	59.6	-0.2	-0.3\%
76.5\%	59.8	59.5		-0.5\%
76.5\%	59.6	59.3	-0.2	-0.4\%
77.8\%	59.4	59.1	-0.3	-0.4\%
79.0\%	59.3	59.11	-0.3	-0.5\%
80.2\%	59.1	59.0	-0.2	-0.3\%
81.5\%	59.1	58.9	-0.2	-0.3\%
82.70% 84.0%	59.0	58.9	-0.1	-0.2\%
84.0\%	59.0	58.6	-0.4	-0.6\%
85.2\%	58.9	58.5	-0.3	-0.5\%
86.4\%	58.7	58.5	-0.2	${ }^{-0.3 \%}$
87.7\%	58.5	58.2	-0.3	-0.5\%
88.9\%	58.2	58.2	0.0	0.0\%
90.1\%	58.2	58.2	0.0	0.0\%
91.4\%	57.9	58.0	0.1	0.2\%
92.6\% ${ }_{93.8 \%}$	57.9	57.9	0.0	0.0\%
${ }^{93.8 \%}$	57.8	57.8	0.0	0.0\%
${ }_{965}^{95.11 \%}$	57.5	57.5	0.0	0.0\%
96.3\% ${ }_{97.5 \%}$	56.2	56.3	0.0	0.1\%
${ }_{9}^{97.5 \%}$	56.1	56.1	0.0	${ }^{0.0 \% \%}$
988.8\% 100.0\%	56.0	${ }_{561}^{56.1}$	0.0	-0.0\%
				0.0\%

Table SQg-1b
_ow Nimbus Sam, Monthy
Temperature

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$$(\%)$	June			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	WSII 2070 W.thout Proiet	WSIP 2070 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (DEGF) } \end{gathered}$	
	Monthly Temperature (DEGF)	Monthly Temperature (OEGF)		
0.0\%	71.4	70.9	-0.5	0.6\%
1.2\%	70.7	69.7	-1.0	,
2.5\%	69.8	69.1	-0.7	-1.0\%
3.7\%	69.7	68.7	-0.9	-1.3\%
4.9\%	69.1	68.3	-0.8	-1.2\%
6.2\%	69.0	68.2	-0.8	-1.2\%
7.4\%	68.9	67.9	-1.0	-1.4\%
8.6\%	68.7	67.8	-0.9	-1.3\%
9.9\%	68.7	67.7	-1.0	-1.4\%
11.19\%	68.6	67.5	-1.1	-1.6\%
12.3\%	68.5 68.4	67.4 671	-1.1 -13	-1.7\% ${ }_{-1.9 \%}$
14.8\%	68.4	67.0	-1.3	-1.9\%
16.0\%	68.3	67.0	-1.3	-1.9\%
17.3\%	68.3	67.0	-1.3	-1.9\%
18.5\%	68.2	67.0	-1.2	-1.8\%
19.8\%	68.0	66.9	-1.0	-1.5\%
21.0\%	67.9	66.9	-1.0	-1.4\%
22.2\%	67.9	66.8	-1.0	-1.5\%
${ }^{23.5 \%}$	67.8	66.7	-1.0	-1.5\%
24.7\%	${ }^{67.6}$	66.7	-0.9	-1.4\%
25.9\%	67.6 67.6	66.7 66.7	-0.9 -0.9	- -1.4%
28.4\%	67.6	66.7	-0.9	-1.3\%
29.6\%	67.5	66.6	-0.9	-1.4\%
30.9\%	${ }_{67.5}^{67.5}$	66.6	-0.9	-1.4\%
32.1\%	67.4	66.5	-0.9	-1.3\%
33.3\%	67.4	66.5	-0.9	-1.3\%
34.6\%	67.3	66.4	-0.9	-1.3\%
35.8\%	67.3	66.4	-0.9	-1.3\%
37.0\%	${ }^{67.3}$	66.4	-0.9	-1.3\%
- ${ }_{\text {38.3\% }}$	67.2 67.1	66.4 66.4	-0.8 -0.7	-1.2\%
40.7\%	67.1	66.4	-0.7	-1.1\%
		66.3	-0.7	-1.0\%
${ }^{43.2 \%}$	67.0	66.3	-0.7	-1.0\%
${ }^{44.4 \%}$	66.9 66.8	${ }_{66.1}^{66.1}$	-0.8	${ }_{-1.12 \%}$
46.9\%	66.5	65.9	-0.7	-1.0\%
48.1\%	66.5	65.7	-0.8	-1.2\%
49.4\%	66.4	65.6	-0.8	-1.2\%
50.6\%	66.4	65.6	-0.8	-1.3\%
51.9\%	66.1	65.5	-0.5	-0.8\%
53.19\% 54.30	66.0	65.4 653	-0.6	-1.0\%
55.6\%	65.9	65.1	-0.8	-1.2\%
56.8\%	65.9	65.1	-0.8	-1.2\%
58.0\%	65.8	65.0	-0.9	-1.3\%
59.3\%	65.6	64.9	-0.6	-1.0\%
60.5\%	${ }_{65.3}^{65.3}$	64.9	-0.4	-0.6\%
${ }^{61.7 \%}$	65.2	64.8	-0.4	-0.7\%
63.0\%	65.1	64.6	-0.5	-0.7\%
64.20% 6.40	65.0	64.6	-0.4	-0.7\%
${ }^{65.4 \%}$	64.9 64.8	64.4.2	-0.5 -0.6	-
67.9\%	64.3	64.1	-0.2	-0.2\%
69.1\%	64.1	63.9	-0.2	-0.2\%
70.4\%	63.8	63.8	0.0	0.0\%
71.6\%	63.7	${ }_{63.8}^{638}$	0.0	0.0\%
72.8\%	${ }_{6}^{63.7}$	63.8 636	0.0	0.1\%
74.1\%	${ }_{63}^{63.7}$	63.6	-0.1	${ }^{-0.19}$
75.3\%	${ }_{63.6}^{63}$	63.6 635	-0.1	-0.19\%
76.5% 77.8%	63.6	63.5	-0.1	${ }^{-0.2 \%}$
79.0\%	${ }_{63.4}^{63.4}$	63.4	0.0 0.0	${ }_{0}^{0.1 \%}$
80.2\%	63.3	63.4	0.1	0.2\%
81.5\%	63.3	63.1	-0.2	-0.3\%
82,70\% 84.0%	63.1 62.8	62.8 62.6	-0.3 -0.2	--0.4% -0.2%
85.2\%	62.6	62.4	-0.2	-0.3\%
86.4\%	62.4	62.1	-0.3	-0.5\%
87.7\%	${ }^{62.1}$	${ }_{62.1}$	0.0	0.0\%
88.9\%	61.9	61.7	-0.2	-0.4\%
90.1\%	61.7	61.4	-0.3	-0.5\%
914.4\%	61.6	61.3	-0.4	-0.6\%
93.8\%	${ }_{61.4}$	61.0	-0.3	-0.6\%
95.1\%	61.4	60.8	-0.6	-1.0\%
96.3\%	${ }_{61.2}$	60.8	-0.4	${ }^{-0.7 \%}$
98.8\%	60.8 60.7	${ }_{60.3}^{60.5}$	-0.3	-0.8\%
100.0\%	60.7	60.3	-0.5	-0.8\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	September			
	${ }_{\substack{\text { WIIP } \\ \text { Proied }}}^{\text {Without }}$	WSIP 2070 With Project	Absolute	
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	Difference	Difference (\%)
0.0\%	73.8	73.9	0.1	0.2\%
1.2\%	71.2	69.4		
2.5\%	70.7	69.3	-1.4	-2.0\%
3.7\%	70.0	69.0	-0.9	1.3\%
4.9\%	69.9	68.9	1.0	-1.4\%
6.2\%	69.9	68.8	-1.2	-1.7\%
7.4\%	69.8	68.7	1.2	-1.7\%
8.6\%	69.8	68.6	-1.2	1.7\%
9.9\%	69.8	68.6	1.2	-1.7\%
11.19\%	69.6	68.6	-1.0	-1.5\%
${ }^{12.3 \% \%}$	69.2	68.5	-0.7	-1.0\%
13.6\%	69.1	68.4	-0.7	-1.0\%
14.8\%	68.8	68.3	-0.5	-0.7\%
16.0\%	68.8 688	68.3 683	-0.5	-0.7\%
17.3\%	68.8	68.3	-0.5	-0.7\%
18.5\%	68.7	68.2	-0.6	-0.8\%
19.8\%	68.7	68.1	-0.6	-0.8\%
21.0\%	68.6	68.1	-0.5	-0.7\%
22.2\%	68.6	68.1	-0.5	-0.7\%
23.5\%	68.5	68.0	-0.5	-0.8\%
24.7\%	68.5	67.9	-0.6	-0.8\%
25.9\%	68.5	67.9	-0.6	-0.8\%
27.2\%	68.5	67.9	-0.6	-0.9\%
28.4\%	68.5	67.9	-0.6	-0.8\%
29.6\%	68.4	67.9	-0.5	-0.8\%
30.9\%	${ }_{68.4}^{68.4}$	${ }_{67.9}$	-0.5	-0.8\%
32.1\%	68.4	67.8	-0.6	-0.8\%
33.3\%	68.4	67.8	-0.6	-0.8\%
34.6\%	${ }_{68.3}^{68.3}$	${ }_{67.7}$	-0.6	-0.8\%
35.\%	68.3	67.7	-0.6	-0.8\%
37.0\%	68.3	67.7	-0.6	-0.9\%
38.3\%	68.3	67.6	-0.6	-0.9\%
${ }^{39.5 \%}$		67.6	-0.6	${ }^{-0.9 \%}$
40.7\%	68.2	67.6	-0.6	-0.9\%
42.0\%	68.2	${ }_{67.6}^{67.6}$	-0.6	${ }^{-0.9 \%}$
43.2\%	68.2	67.6	-0.6	-0.9\%
44.4\%	${ }_{68.1} 68$	67.4	-0.7	-1.0\%
${ }_{4}^{45.79 \%} 4$	${ }_{681}^{681}$	67.4	-0.7	-1.0\%
46.9\%	68.1	67.4	-0.7	-1.0\%
48.19\%	68.0	67.4	-0.7	-1.0\%
49.4\%	68.0	67.4	-0.6	-0.9\%
50.6\%	68.0	67.3	-0.6	-0.9\%
51.9\%	67.9	67.3	-0.6	-0.9\%
53.19\% 54.3%	67.9	67.3	-0.6	-0.8\%
54.3\%	67.8	67.3	-0.5	-0.7\%
55.6\%	67.8 678	67.3 673	-0.5	-0.7\%
	67.8 677	67.3 673	-0.5	-0.7\%
58.0\%	67.7	67.3 673	-0.5	-0.7\%
59.3\%	${ }_{677}^{67.7}$	${ }_{67.3}^{672}$	-0.5	-0.7\%
	67.7	67.2	-0.5	-0.7\%
${ }^{61.77 \%}$	67.7	67.2	-0.5	-0.7\%
63.0\% 642%	67.7	67.2	-0.5	-0.7\%
$6.4 .2 \%$ 6.4%	67.7	67.2	-0.5	-0.7\%
65.4\%	67.7	67.2	-0.5	-0.8\%
- 66.7%	67.7	67.1	-0.6	-0.9\%
${ }^{67.9 \%}$	67.7	67.1	-0.6	-0.9\%
69.19\%	67.7	67.0	-0.6	-0.9\%
70.4\%	67.6 67.6	67.0 670	-0.6	-0.9\%
71.6\%	67.6 676	${ }_{66.0}^{67.0}$	-0.7	-1.0\%
72.8\%	67.6	66.9	-0.7	-1.0\%
74.19% 75.3%	67.6	66.9	-0.7	-1.0\%
75.3\%	67.6	66.9	-0.7	-1.0\%
76.5% 77.8%	67.5	66.9	-0.7	-1.0\%
77.8\%	67.5 67.5	66.8 66.8	-0.6 -0.6	-0.9\%
80.2\%	67.5	66.8	-0.6	-0.9\%
81.5\%	67.4	66.8	-0.6	-1.0\%
82.7\%	67.4	66.8	-0.7	-1.0\%
84.0\%	67.4	66.7	-0.7	-1.0\%
85.2\%	67.3	${ }_{66.7}^{66.7}$	-0.6	-0.9\%
86.4\%	67.3	66.7	-0.7	-1.0\%
87.7\%	67.3	66.6	-0.6	-1.0\%
88.9\%	67.2	${ }_{66.6} 6$	-0.6	-0.9\%
90.1\%	67.1	66.5	-0.5	-0.8\%
91.4\%	67.0	66.4	-0.7	-1.0\%
${ }_{9}^{92.85 \%}$	67.0	66.3	-0.7	-1.0\%
${ }^{93.8 \%} 9$	66.9 665	${ }_{66.1} 6$.	-0.7	-1.1\%
${ }_{9}^{95.3 \%}$	${ }_{66.5}^{66.5}$	66.1 659	-0.4	-0.6\%
${ }^{96.3 \%} 9$	66.3 66.2	65.9 65.8	-0.4	-0.6\%
98.8\%	65.9	65.7	-0.2	-0.3\%
100.0\%	65.9	65.7	-0.2	0.3\%

Table Sog-1b
Tow Nimbus Sam, Mo
American River beow Nimbus Day, Monthly Temperature

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	June to September			
	${ }^{\text {WSIP } 207 \text { Prowithout }}$	WSIP 2070 With Project		Relative
	Monthly Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
0.0\%	717	73.0	12	1.7\%
1.2\%	70.9	68.7	-2.2	-3.1\%
2.5\%	70.5	68.6	-1.9	
3.7\%	70.2	68.6	-1.6	-2.3\%
4.9\%	69.4	68.5	-0.9	-1.3\%
6.2\%	69.3	68.5	-0.9	-1.3\%
7.4\%	69.1	68.2	-0.9	-1.3\%
8.6\%	68.7	67.9	-0.8	-1.1\%
9.9\%	68.4	67.9	-0.6	-0.8\%
11.1\%	68.3	67.6	-0.6	-0.9\%
12.3\%	68.1	67.4	-0.7	-1.0\%
13.6\%	68.1	67.2	-0.8	-1.2\%
14.8\%	68.0	67.1	-0.9	-1.3\%
16.0% 17.3%	68.0 67.9	67.0 67.0	-1.00	-1.4\%
18.5\%	67.9	66.8	-1.1	-1.7\%
19.8\%	67.9	66.8	-1.1	-1.6\%
21.0\%	67.5	66.8	-0.7	-1.1\%
22.2\%	67.4	66.7	-0.8	-1.2\%
23.5\%	67.2	66.6	-0.6	-0.9\%
24.7\%	67.2	66.5	-0.7	-1.0\%
25.9\%	67.2	66.5	-0.7	-1.0\%
27.2\%	67.1	${ }_{66.3}^{66.3}$	-0.9	-1.3\%
28.4\%	${ }_{671}^{67.1}$	66.3 66.2	-0.9 -0.9	- ${ }_{\text {- }}$-1.3\%
30.9\%	67.0	66.2	-0.8	-1.3\%
32.1\%	67.0	66.1	-0.9	-1.4\%
33.3\%	67.0	66.1	-0.9	-1.3\%
34.6\%	66.9	66.0	-0.8	-1.2\%
35.8\%	66.9	66.0	-0.9	-1.3\%
37.0\%	66.8	66.0	-0.8	-1.3\%
38.3\%	66.8	65.9	-0.9	-1.3\%
39.5\%	66.8	65.9	-0.9	-1.3\%
40.79\%	66.8 66.7	65.9 65.9	-0.9 -0.9	-1.3\%
43.2\%	66.7	65.9	-0.8	-1.2\%
44.4\%	66.6	65.9	-0.8	-1.2\%
45.7\%	${ }_{66.6}^{66.6}$	65.8 658	-0.8	-1.2\%
46.9\%	66.5	65.8	-0.7	-1.1\%
48.1\%	66.5	65.8	-0.7	-1.19\%
49.4\%	66.5	65.7	-0.7	-1.19\%
50.6\%	66.4	65.7	-0.7	-1.1\%
51.9\%	66.4	65.7	-0.6	-1.0\%
53.1\%	66.4	65.7	-0.6	-1.0\%
54.3\%	66.3	65.7	-0.6	-0.9\%
55.6\%	${ }_{66.3}$	${ }_{65.7} 65$	-0.6	-1.0\%
56.8\%	${ }_{66.3}^{66}$	65.7 657	-0.6	-1.0\%
58.0\%\%	${ }_{66.3}^{663}$	${ }_{65}^{65.7}$	-0.7	-1.0\%
59.3\%	66.3	${ }_{656}^{65.6}$	-0.7	${ }^{-1.0 \%}$
${ }^{60.5 \%}$	${ }_{66.3}^{66.3}$	${ }_{656}^{65.6}$	-0.6	-0.9\%
61.7\%	66.2	65.6	-0.6	-0.9\%
63.0\%	66.2	65.6	-0.6	-0.9\%
64.2\%	66.2	65.6	-0.6	-0.9\%
65.4\%	66.2	65.6	-0.6	-0.9\%
66.7\%	66.2	65.6	-0.6	-0.9\%
67.9\%	66.1	65.6	-0.6	-0.9\%
69.19\%	66.1	65.5	-0.6	-0.9\%
70.4\%	66.1	65.5	-0.6	-0.9\%
${ }^{71.6 \%}$	66.0	65.5	-0.6	-0.8\%
72.8\%	66.0	65.5	-0.6	-0.9\%
74.1\%	66.0	65.4	-0.6	-0.9\%
75.3\%	66.0	${ }_{65.4}^{65.4}$	-0.6	-1.0\%
76.5\%	66.0	65.3	-0.7	-1.0\%
77.8\%	66.0	65.3	-0.7	-1.0\%
79.0\%	65.9	65.2	-0.7	-1.0\%
80.2\%	65.8	65.2	-0.6	-0.9\%
81.5\%	65.8	65.2	-0.7	-1.0\%
-	65.8 65.8	65.1 65.1	-0.7	${ }_{-1.1 \%}^{-1.1 \%}$
85.2\%	65.8	65.0	-0.8	-1.1\%
86.4\%	65.8	65.0	-0.7	-1.1\%
87.7\%	65.8	65.0	-0.8	-1.2\%
88.9\%	65.7	65.0	-0.7	-1.1\%
90.1\%	65.7	64.9	-0.7	-1.1\%
91.4\%	${ }_{655}^{65.6}$	64.9	-0.7	-1.0\%
92.6\%	${ }^{65.6}$	64.9	-0.7	-1.1\%
93.3\%	65.6	64.8	-0.8	-1.2\%
${ }_{965.3 \%}^{95.10}$	${ }_{65.5}^{65.5}$	64.8 64.7	-0.8 -0.7	${ }_{-1.1 \%}^{-1.2 \%}$
97.5\%	65.4	64.6	-0.7	${ }_{-1.1 \%}$
98.8\%	64.7	64.6	-0.1	-0.2\%
100.0\%	64.6	64.2	-0.4	-0.6\%

PercentExceedanceProbability	Juy to September		,		August to September				
	WSIP 2077 Wewthout	WSIP 2	$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (DEGFF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{gathered}$	WSIP 2070 Without Proiect Monthly Temperature (DEGF) (DEGF)	WSIP 2070 With Project Monthly Temperature (DEGF)	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	Monthly Temperature	Monthy Temperature							
	(DEGF)	${ }_{\text {(}{ }_{\text {(EGF) }} \text { (}}$							
0.0\%	73.2	73.6	0.5	0.7\%	0.0\%	73.0	${ }^{73.8}$	0.8	1.1\%
1.2\%	71.2	68.8	-2.5	-3.4\%	1.2\%	${ }^{71.3}$	69.2	-2.1	
2.5\%	70.5	68.6	-1.9	-2.7\%	2.5\%	70.0	68.8	-1.2	
3.7\%	70.4	68.5	-1.9	-2.6\%	3.7\%	69.4	68.4	-0.9	-1.4\%
4.9\%	69.5	68.5	-1.0	-1.5\%	4.9\%	69.3	68.3	-0.9	-1.4\%
6.2\%	69.5	68.4	-1.0	-1.5\%	6.2\%	69.2	68.1	-1.1	-1.6\%
7.4\%	68.9	68.3	-0.7	-1.0\%	7.4\%	69.1	67.9	-1.1	-1.7\%
8.6\%	68.7	68.2	-0.5	-0.7\%	8.6\%	68.4	67.8	-0.5	-0.8\%
9.9\%	68.6	68.1	-0.6	-0.8\%	9.9\%	67.9	67.8	-0.1	-0.2\%
11.1\%	68.6	67.8	-0.8	-1.2\%	11.1\%	67.7	67.6	-0.1	-0.1\%
12.3\%	68.5	67.6	-0.9	-1.3\%	12.3\%	67.7	67.6	-0.1	-0.1\%
13.6\%	68.4	67.6	-0.7	-1.1\%	13.6\%	67.7	67.6	-0.1	-0.1\%
14.8\%	68.4	67.3	-1.0	-1.5\%	14.8\%	67.6	67.4	-0.2	-0.3\%
16.0\%	68.2	67.3	-0.9	-1.4\%	16.0\%	67.6	67.4	-0.2	-0.2\%
17.3\%	68.1	67.3	-0.8	-1.2\%	17.3\%	67.6	67.4	-0.2	-0.2\%
18.5\%	68.0	67.2	-0.8	-1.1\%	18.5\%	67.5	67.4	-0.1	-0.2\%
19.8\%	68.0	67.2	-0.8	-1.1\%	19.8\%	67.4	67.4	-0.1	-0.1\%
21.0\%	67.9	67.0	-0.9	-1.3\%	21.0\%	67.4	67.1	-0.3	-0.5\%
22.2\%	67.9	66.9	-0.9	-1.3\%	22.2\%	67.3	67.1	-0.2	-0.3\%
${ }^{23.5 \%}$	67.8	66.9	-0.9	-1.3\%	23.5\%	67.3	67.0	-0.3	-0.4\%
24.7\%	67.8	66.9	-0.9	-1.3\%	24.7\%	67.2	67.0	-0.2	-0.4\%
25.9\%	67.8	66.8	-1.0	-1.4\%	25.9\%	67.2	67.0	-0.2	-0.4\%
27.2\%	67.5	66.8	-0.7	-1.1\%	27.2\%	67.2	67.0	-0.2	${ }^{-0.3 \%}$
28.4\%	67.5	66.7	-0.8	-1.1\%	28.4\%	67.2	67.0	-0.2	-0.3\%
29.6\%	67.5	66.7	-0.7	-1.10\%	29.6\%	${ }_{67.2}^{672}$	66.9	-0.3	-0.4\%
${ }^{30.9 \%}$	67.4.	66.6 66.5	-0.8	${ }_{-1.3 \%}^{-1.2 \%}$	${ }_{\text {322, }}$	${ }_{6}^{67.2}$	${ }_{66.8}^{66.9}$	-0.3	-0.49\%
32.3\%	67.4	66.5	-0.8	${ }^{-1.2 \%}$	32.3\%	67.1	66.8	-0.3	-0.5\%
34.6\%	67.2	66.5	-0.7	-1.1\%	34.6\%	67.1	66.8	-0.3	-0.4\%
35.8\%	67.2	66.5	-0.7	-1.1\%	35.8\%	67.1	66.8	-0.3	-0.4\%
37.0\%	67.2	66.5	-0.7	-1.1\%	37.0\%	67.1	66.8	-0.3	-0.4\%
38.3\%	67.1	66.4	-0.7	-1.0\%	38.3\%	67.0	66.8	-0.3	-0.4\%
39.5\%	67.1	66.4	-0.7	-1.0\%	39.5\%	67.0	66.7	-0.3	-0.4\%
40.7\%	67.1	66.4	-0.7	-1.0\%	40.7\%	67.0	66.7	-0.3	-0.4\%
42.0\%	67.1	66.4	-0.6	-1.0\%	42.0\%	67.0	66.7	-0.3	${ }^{-0.5 \%}$
${ }^{43.2 \%}$	67.0	66.4	-0.6	-0.9\%	43.2\%	67.0	66.7	-0.3	-0.5\%
44.4\%	67.0	66.4	-0.6	-0.9\%	44.4\%	67.0	66.7	-0.3	${ }^{-0.5 \%}$
45.79\%	67.0	66.4	-0.6	-0.9\%	45.79\%	67.0	66.7	-0.3	-0.5\%
${ }_{48.1 \%}^{46.9 \%}$	66.9 66.9	66.3 66.3	-0.6 -0.7	-	${ }^{46.9 \%}$	67.0	66.6	-0.3	-0.5\%
49.4\%	66.9	66.2	-0.7	-1.0\%	49.4\%	66.9	66.6	-0.4	-0.5\%
50.6\%	66.9	66.2	-0.7	-1.0\%	50.6\%	66.9	66.6	-0.4	-0.5\%
51.9\%	66.8	66.1	-0.8	-1.2\%	51.9\%	66.9	66.5	-0.3	-0.5\%
53.1\%	66.8	65.9	-0.9	-1.3\%	53.1\%	66.8	66.5	-0.3	-0.4\%
54.3\%	66.8	65.9	-0.9	-1.4\%	54.3\%	66.8	66.5	-0.3	-0.5\%
55.6\%	66.8	65.9	-0.9	-1.4\%	55.6\%	66.7	66.4	-0.3	-0.5\%
56.8\%	66.7	65.8	-0.9	-1.3\%	56.8\%	66.7	66.4	-0.3	-0.5\%
58.0\%	66.7	65.8	-0.9	-1.4\%	58.0\%	66.6	66.4	-0.3	-0.4\%
59.3\%	66.7	65.7	-0.9	-1.4\%	59.3\%	66.6	66.4	-0.3	-0.4\%
60.5\%	66.6	65.7	-0.9	-1.3\%	60.5\%	66.6	66.4	-0.3	-0.4\%
61.7\%	66.6	65.7	-0.8	-1.2\%	61.7\%	66.6	66.3	-0.3	-0.5\%
63.0\%	66.5	65.7	-0.8	-1.2\%	63.0\%	66.6	66.3	-0.3	-0.4\%
64.2\%	66.5	65.7	-0.8	-1.2\%	64.2\%	66.5	66.3	-0.2	-0.3\%
65.4\%	66.5	65.7	-0.8	-1.2\%	65.4\%	66.5	66.2	-0.2	-0.4\%
66.7\%	66.5	65.7	-0.8	-1.3\%	66.7\%	66.5	66.2	-0.3	-0.4\%
669.9\%	66.5 66.5	65.7 65.6	-0.8 -0.8	-	-67.9\%	66.5 66.4	66.2 66.1	-0.3 -0.2	- $0.0 .4 \%$
70.4\%	66.5	65.6	-0.8	${ }^{-1.2 \%}$	70.4\%	66.4	66.1	-0.2	-0.4\%
71.6\%	66.4	65.6	-0.8	-1.2\%	71.6\%	66.4	66.1	-0.3	-0.4\%
72.8\%	66.4	65.6	-0.8	-1.2\%	72.8\%	66.3	66.1	-0.2	-0.3\%
74.1\%	66.4	65.6	-0.8	-1.2\%	74.1\%	66.3	66.1	-0.2	-0.3\%
75.3\%	66.4	65.6	-0.8	-1.2\%	75.3\%	66.3	66.1	-0.2	-0.3\%
76.5\%	66.4	65.6	-0.8	-1.2\%	76.5\%	66.2	66.0	-0.2	-0.3\%
77.8\%	66.3	65.5	-0.8	-1.2\%	77.8\%	66.2	66.0	-0.2	-0.3\%
79.0\%	66.3	65.5	-0.8	-1.2\%	79.0\%	66.2	66.0	-0.2	-0.2\%
80.2\%	66.3	65.5	-0.8	-1.2\%	80.2\%	66.2	66.0	-0.2	-0.3\%
81.5\%	66.2	65.5	-0.8	-1.1\%	81.5\%	66.1	66.0	-0.1	-0.2\%
- 8 82.7.0\%	66.2 66.1	65.5 65.4	-0.7	${ }_{-1.1 \%}^{-1.1 \%}$	-	66.1 66.1	65.9 65.9	-0.2 -0.2	-
85.2\%	66.1	65.4	-0.7	-1.1\%	85.2\%	66.1	65.8	-0.3	-0.4\%
86.4\%	66.1	65.3	-0.8	-1.2\%	86.4\%	66.0	65.8	-0.2	-0.4\%
87.7\%	66.1	65.3	-0.8	-1.1\%	87.7\%	66.0	65.7	-0.3	-0.4\%
88.9\%	66.0	65.3	-0.7	-1.1\%	88.9\%	66.0	65.7	-0.3	-0.4\%
90.1\%	66.0	65.3	-0.7	-1.1\%	90.1\%	65.9	65.7	-0.2	-0.4\%
91.4\%	65.9	65.3	-0.6	-0.9\%	91.4\%	65.9	65.6	-0.2	-0.3\%
${ }_{\text {c }}^{92.85 \%}$	65.8 65.8	65.2 65.2	-0.6 -0.6	-0.0\%	${ }_{93}^{92.8 \%}$	65.8 65.8	65.6 65.5	-0.2 -0.3	-0.4\%
95.1\%	65.7	65.2	-0.5	-0.8\%	95.1\%	65.8	65.5	-0.3	-0.5\%
96.3\%	65.7	65.2	-0.5	-0.8\%	96.3\%	65.7	65.4	-0.2	-0.4\%
97.5\%	65.6	65.1	-0.5	-0.8\%	97.5\%	65.6	65.3	-0.3	-0.4\%
98.8\%	65.5	65.1	-0.4	-0.6\%	98.8\%	65.4	65.2	-0.2	0.3\%
100.0\%	65.4	65.0	-0.4	-0.6\%	100.0\%	65.4	65.2	-0.2	-0.4\%

American River at Wartere so10-1b
American River at Watt Avenue, Monthly Temperatur

$\begin{gathered} \text { Percernt } \\ \text { Exceedee } \\ \text { Probababily } \end{gathered}$	October			$\begin{gathered} \text { Relative } \\ \text { Difference }(\% \end{gathered}$
	WSIP 2070 Without	WSIP 2070 With Proje	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	
	Monthy Temperature	Monthly Temperature		
	(0EGF)			
0.0\%	71.2	70.1	-1.1	-1.5\%
1.2\%	70.3	69.8	-0.4	-0.6\%
2.5\%	70.1	69.7	-0.4	-0.5\%
3.7\%	70.0	69.7	-0.3	-0.4\%
4.9\%	69.9	69.6	-0.3	0.4\%
6.2\%	69.4	69.3	0.0	-0.1
7.4\%	69.3	69.2	-0.1	
8.6\%	69.3	69.2	-0.1	-0.1\%
9.9\%	69.0	69.1	0.2	0.2\%
11.1\%	68.9	69.1	0.2	0.3\%
${ }^{12.35 \%}$	68.9	69.0	0.1	0.2\%
13.6\%	68.8	68.8	0.0	0.1\%
14.8\%	68.8	68.8	0.0	0.0\%
16.0\%	68.7	68.8	0.1	0.1\%
17.3\%	68.7	68.8	0.1	0.1\%
18.5\%	68.6	68.8	0.2	0.2\%
19.8\%	68.5	68.6	0.1	0.1\%
21.0\%	68.5	68.5	0.0	0.0\%
${ }^{222.2 \%}$	68.5	68.4	0.0	0.0\%
23.5\%	68.4	68.4		0.1\%
24.7\%	68.3	68.4	0.1	0.2\%
25.9\%	${ }^{68.3}$	68.4	0.1	0.1\%
27.2\%	${ }^{68.2}$	68.3	0.1	0.2\%
28.6\%	68.2	68.3	0.1	0.1\%
30.9\%	68.2	68.2	0.0	0.0\%
32.1\%	68.2	68.1	-0.1	-0.1\%
33.3\%	68.2	68.1	-0.1	-0.1\%
34.6\%	68.1	68.1	-0.1	-0.1\%
35.8\%				
37.0\%	68.1		-0.1	-0.1\%
38.3\%	68.1	68.0	-0.1	-0.1\%
39.5\%	68.0	68.0	-0.1	-0.1\%
40.7\%	68.0	68.0	0.0	0.0\%
${ }_{4}^{42.2 \%}$	67.9 679	67.9	0.0	0.0\%
44.4\%	67.9	67.9	0.0	0.0\%
45.7\%	67.9	67.8	0.0	0.0\%
46.9\%	67.8	67.7	-0.1	0.2\%
${ }^{48.1 \%}$	67.8	67.7	-0.1	-0.1\%
59.4\%	67.8 678	${ }^{67.7}$	-0.1 -0.1	-0.1\%
51.9\%	67.8	67.7	-0.1	-0.1\%
53.1\%	67.7	67.7	-0.1	-0.1\%
54.3\%	67.7	67.6	-0.1	-0.1\%
55.6\%	67.7	67.6	-0.1	-0.1\%
56.8\%	67.6	67.6	-0.1	-0.1\%
58.0\%	67.6	67.5	-0.1	-0.1\%
59.3\%	67.6	67.5	-0.1	-0.2\%
${ }_{\text {cosem }}^{60.5 \%}$	67.6	67.5	-0.1	-
63.0\%	67.6	67.4	-0.2	-0.2\%
64.2\%	67.6	67.4	-0.2	-0.3\%
65.4\%	67.5	67.4	-0.2	-0.2\%
66.7\%	67.4	67.3	-0.1	-0.1\%
${ }_{6}^{67.9 \%}$	67.4 674	67.2 672	-0.2	-0.3\%
69.1\%	67.4	67.2	-0.2	-0.3\%
70.4\%	67.4	${ }_{67.2}$	-0.2	-0.3\%
71.6\%	67.3	67.1	-0.2	-0.3\%
72.8\%	67.3	67.1	-0.2	-0.3\%
74.1\%	67.3	67.1	-0.2	-0.3\%
75.3\%	67.2	67.1	-0.2	-0.3\%
${ }^{76.5 \%}$	67.2	67.	-0.2	-0.3\%
${ }^{77.8 \%}$	67.2	67.0	-0.2	-0.2\%
79.0\%	67.1	67.0	-0.1	-0.2\%
80.2\%	67.1	67.0	-0.1	-0.2\%
81.5\%	67.1	67.0	-0.1	${ }^{0.2 \%}$
88, ${ }_{\text {82, }}^{8.7 \%}$	67.1 67.0	67.0 668	-0.1	-0.4\%
85.2\%	67.0	66.7	-0.3	-0.5\%
86.4\%	67.0	66.7	-0.3	-0.5\%
87.7\%	67.0	66.6	-0.4	-0.6\%
88.9\%	66.8	66.5	-0.3	0.4\%
90.1\%	66.6	66.4	-0.3	-0.4\%
91.4\%	66.5	66.4	-0.1	-0.2\%
92.6\%	66.3	66.3	0.1	0.1\%
93.8\%	66.3	66.3	0.0	0.0\%
95.1\%	65.8	65.4	-0.5	-0.7\%
${ }^{96.3 \%}$	${ }_{6519}^{65.2}$	${ }_{651}^{65.3}$	${ }^{0.1}$	${ }^{0.19 \%}$
97.5\%	64.9	65.1	0.2	0.3\%
98.8\%	64.9	65.0	0.1	0.2\%
100.0\%	64.9	65.0	0.0	0.2\%

$\begin{gathered} \hline \text { Percent } \\ \begin{array}{c} \text { Excedance } \\ \text { Probaility } \end{array} \\ \text { (\%) } \\ \hline \end{gathered}$	January			RelativeDifference (\%)
	${ }^{\text {WSIP } 2070 \text { Without }}$ Proiet	WSIP 2070 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (DEGF) } \\ \hline \end{gathered}$	
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)		
0.0\%	52.0	52.6	0.7	1.3\%
1.2\%	51.7	52.3	0.6	1.3\%
2.5\%	51.6	51.3	-0.3	-0.6\%
3.7\%	51.4	51.2	-0.2	-0.3\%
4.9\%	51.3	51.1	-0.1	-0.2\%
6.2\%	50.6	51.0	0.4	0.8\%
7.4\%	50.6	50.9	0.3	0.6\%
8.6\%	50.6	50.6	0.0	0.0\%
9.9\%	50.5	50.5	-0.1	-0.1\%
11.1\%	50.2	50.5	0.2	0.5\%
12.3\%	50.2	50.4	0.2	0.5\%
13.6\%	50.1	50.4	${ }_{0} 0.3$	0.5\%
14.8\%	50.0	50.4	${ }^{0.3}$	0.6\%
16.0\%	50.0	50.3	0.3	0.6\%
17.3\%	50.0	50.2	0.3	0.5\%
18.5\%	49.9	50.1	0.2	0.5\%
19.8\%	49.9 49.9	50.1 50.0	0.2 0.2	${ }^{0.4 \% \%}$
${ }_{2}^{22.0 \%}$	49.9	50.0 50.0	${ }_{0}^{0.2}$	0.3\%
22.5\%	49.6	50.0	0.4	0.7\%
24.7\%	49.5	50.0	0.5	0.9\%
25.9\%	49.5	49.9	0.4	0.9\%
27.2\%	49.5	49.9	0.4	0.8\%
28.4\%	49.4	49.8	0.4	0.7\%
29.6\%	49.4	49.7	0.4	0.8\%
30.9\%	49.3	49.7	0.4	0.7\%
32.10% 33.3%	49.3 492	49.7 49.6	${ }_{0}^{0.3}$	${ }_{0}^{0.7 \% \%}$
34.6\%	49.2	49.6	0.4	0.8\%
35.\%	49.2	49.6	0.3	0.7\%
37.0\%	49.0	49.4	0.4	0.8\%
38.3\%	49.0	49.4	0.4	0.8\%
39.5\%	49.0	49.4	0.4	0.8\%
40.7\%	48.9	49.4	0.5	1.1\%
42.0\%	48.7	49.2	0.4	0.9\%
43.2\%	48.7	49.1	0.4	0.9\%
${ }^{44.4 \%}$	48.7 48.6	49.1 49.0	0.4 0.3	0.7\%
46.9\%	48.6	48.9	0.3	0.7\%
48.1\%	48.6	48.8	0.2	0.5\%
49.4\%	48.5	48.6	0.1	0.2\%
50.6\%	48.4	48.6	0.2	0.4\%
51.9\%	48.3	${ }^{48.6}$	0.2	0.5\%
53.1\%	48.1	48.6	0.4	0.9\%
54.3\%	48.1	48.5	0.4	0.7\%
55.6\%	48.1 47.9	48.5 48.2	0.4 0.3	0.8\% 0.6%
58.0\%	47.8	48.2	0.4	0.8\%
59.3\%	47.8	48.1	0.3	0.7\%
${ }^{60.50 \%}$	47.8	47.9	0.2	0.3\%
61.7\%	47.7	47.8	0.1	0.2\%
63.0\%	47.7	47.8	0.1	0.2\%
${ }^{64.2 \%}$	47.5	47.6 47.6	0.1	0.3\%
65.4\%	47.4	47.6	0.2	0.4\%
66.7\%	47.4	47.4	0.1	0.1\%
67.9\%	47.3	47.3	0.0	0.0\%
69.1\%	46.9	47.0	0.1	0.3\%
70.4\%	46.9 46.8	46.9 46.8	0.0 0.0	${ }_{\text {en }}^{0.0 \%}$
72.8\%	46.7	46.8	0.1	0.2\%
74.1\%	46.6	46.6	0.1	0.1\%
75.3\%	46.5	46.6	0.0	0.1\%
76.5\%	46.5	46.5	0.0	${ }^{-0.1 \%}$
77.8\%	46.3	46.4	0.0	0.0\%
79.0\%	45.9	46.1	0.2	0.3\%
80.2\%	45.8	46.0	0.1	0.3\%
81.5\%	45.8	45.8	0.0	0.0\%
82.7\%	45.7	45.8	0.1	0.2\%
84.0\%	45.6	45.8	0.3	0.6\%
85.2% 86.4%	45.5 45.5	45.6 45.6	0.1 0.1	- 0.10%
${ }^{867.7 \%}$	${ }_{45.4}$	${ }_{45.5}$	0.0	0.1\%
88.9\%	45.4	45.5	0.0	0.0\%
90.1\%	45.4	45.4	0.0	0.1\%
91.4\%	45.1	45.0	-0.1	-0.3\%
92.6\%	45.0	44.8	-0.2	-0.4\%
93.8\%	44.6	44.6	0.1	0.2\%
95.1\%	44.5	44.6	0.0	0.0\%
96.3\%	44.5	44.2	-0.3	-0.7\%
97.5\%	44.2	44.0	-0.2	-0.4\%
988.8\% 100.0%	44.1 44.1	${ }_{43.7}^{43.7}$	-0.4 -0.4	-0.09\%

Table SQ10-1b

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	February			
	WSIP P0770 Without	WSIP 2070 With Project	bsolute	
	Monthy Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
(\%)	556	573	07	
0.0\%	${ }_{557}^{55.6}$	55	0.7	${ }^{1.2 \% \%}$
${ }^{1.2 \% \%}$	55.7 55.2	55.7 55.4	${ }_{0.1}^{0.1}$	0.2\%
3.7\%	53.6	54.2	0.6	1.2\%
4.9\%	53.0	53.1	0.0	0.1\%
6.2\%	52.7	52.4	-0.4	-0.7\%
7.4\%	52.2	52.3	0.1	0.1\%
8.6\%	52.2	52.2	0.0	0.0\%
9.9\%	52.0	52.0	0.0	0.0\%
11.1\%	51.9	51.9	0.0	0.0\%
12.3\%	51.9 51.8	51.9 51.8	${ }_{0}^{0.0}$	${ }_{0}^{0.0 \% \%}$
14.8\%	51.8	51.8	0.0	0.0\%
16.0\%	51.7	51.6	-0.1	-0.2\%
17.3\%	51.2	51.4	0.2	0.3\%
18.5\%	51.2	51.2	0.0	0.1\%
19.8\%	51.0	51.1	0.1	0.2\%
21.0\%	51.0	51.1	0.1	0.3\%
22.2\%	50.9	51.0	0.1	0.3\%
23.5\%	50.8	50.9	0.1	0.2\%
24.7\%	50.7	50.8	0.1	0.2\%
25.9\%	50.6	50.7	0.1	0.2\%
27.2\%	50.5	50.6	0.1	0.1\%
28.4\%	50.5	50.5	0.0	0.1\%
29.6\%	50.2	50.5	0.2	0.5\%
30.9\%	50.1	50.3	0.2	0.4\%
32.1\%	49.9	50.0	0.1	0.2\%
33.3\%	49.7	49.9	0.2	0.4\%
34.6\%	49.7	49.7	0.0	-0.1\%
35.8\%	49.5	49.6	0.2	0.3\%
37.0\%	49.3	49.3	0.0	0.0\%
38.3\%	49.1	49.1	0.0	0.0\%
		49.0	-0.1	-0.2\%
40.70\%	49.1	48.8	-0.3	
${ }^{42.0 \%} 4$	48.6 485	48.6 485	0.0	
43.2\% 4.4%	48.5 48.4	48.5 48.5	${ }_{0}^{0.0}$	${ }_{0}^{0.1 \%}$
45.7\%	48.3	48.3	0.0	0.0\%
46.9\%	48.3	48.3	0.0	0.0\%
48.1\%	48.2	48.3	0.0	0.0\%
49.4\%	48.1	48.1	0.0	0.0\%
50.6\%	48.0	48.1	0.1	0.2\%
51.9\%	48.0	48.0	0.0	${ }^{0.1 \%}$
	${ }_{47.9}^{47.9}$	48.0 48.0	${ }_{0}^{0.1}$	${ }_{0}^{0.3 \% \%}$
55.6\%	47.8	47.8	0.0	0.1\%
56.8\%	47.8	47.8	0.0	0.1\%
58.0\%	47.7	47.8	0.1	0.1\%
59.3\%	47.7	47.7	0.0	0.1\%
60.5\%	47.7	47.7	0.0	-0.1\%
61.7\%	47.4	47.5	0.0	0.1\%
63.0\%	47.4	47.4	0.0	0.1\%
64.2\%	47.3	47.3	0.1	0.1\%
${ }^{65.49 \%}$	47.2	47.3	0.1	0.2\%
${ }^{66.79 \%}$	47.1	47.3	0.2	0.4\%
67.9\%	47.1	47.1	0.1	0.1\%
69.1\%	47.0	47.0	0.0	0.0\%
70.4\%	47.0	47.0	0.0	0.0\%
71.6\%	46.9	46.8	-0.1	${ }^{-0.2 \%}$
72.8\%	46.9	46.8	0.0	0.0\%
74.1\%	46.8	46.8	0.0	0.0\%
75.3\%	46.8	46.8	0.0	0.0\%
76.5\%	46.8	46.8	0.0	0.0\%
77.8\%	46.8	46.8	0.0	${ }^{0.1 \%}$
80.2\%	${ }_{46.7}^{46.8}$	${ }_{46.7}^{46.8}$	0.0 0.0	${ }_{0}^{0.00 \%}$
81.5\%	46.7	46.7	0.0	0.0\%
82.7\%	46.6	46.6	0.0	0.0\%
84.0\%	46.6	46.5	-0.1	-0.2\%
85.2\%	${ }^{46.6}$	46.5	-0.1	-0.1\%
86.4\%	46.6	46.4	-0.2	-0.4\%
87.7\%	46.4	46.3	-0.1	-0.2\%
88.9\%	46.4	46.3	-0.1	-0.3\%
90.1\%	46.3	46.2	-0.1	-0.2\%
91.4\%	46.2	46.2	-0.1	-0.2\%
${ }_{93.8 \%}^{92.6 \%}$	${ }_{46.0}^{46.1}$	${ }_{45.9}^{46.9}$	-0.1	-0.0.2\%
95.1\%	45.9	45.9	0.0	-0.1\%
96.3\%	45.9	45.8	0.0	-0.1\%
97.5\%	45.8	45.8	0.0	-0.1\%
98.8\%\%	45.8 458	45.4 454	-0.3	-0.7\%
100.0\%	45.8	45.4	-0.3	-0.7\%

Table SQ10-1b

$\begin{array}{\|c} \hline \text { Percent } \\ \text { Excedance } \\ \text { Probability } \\ \text { (\%\%) } \\ \hline \end{array}$	June			
	WSIP 2070 Without Proiet	WSIP 2070 With Project	Absolute	
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGFF) } \end{aligned}$	Difference (\%)
0.0\%	78.9	79.0	0.1	0.2\%
1.2\%	78.7	77.5	-1.2	-1.6\%
2.5\%	77.3	76.6	-0.6	-0.8\%
3.7\%	${ }^{76.3}$	75.1	-1.1	-1.5\%
4.9\%	75.9	75.1	-0.8	-1.1\%
6.2\%	75.7	74.6	-1.2	-1.6\%
7.4\%	75.4	74.5	-0.9	-1.1\%
8.6\%	${ }^{75.1}$	74.0	-1.0	-1.4\%
9.9\%	75.0	${ }^{73.1}$	-1.9	-2.5\%
11.1\%	74.8	72.8	-2.0	-2.7\%
(12.3\%	74.3 74.2	72.7 72.6	-1.6	${ }_{-2.1 \%}^{-2.2 \%}$
14.8\%	73.9	72.6	${ }_{-1.3}$	-1.8\%
16.0\%	${ }^{73.8}$	72.5	-1.4	-1.8\%
17.3\%	${ }^{73.8}$	72.1	-1.7	-2.3\%
18.5\%	${ }^{73.7}$	71.9	-1.8	-2.5\%
19.8\%	${ }^{73,7}$	71.9	-1.8	-2.4\%
21.0\%	${ }^{73,7}$	71.9	-1.8	-2.4\%
22.2\%	${ }^{73.3}$	71.9	-1.4	-1.9\%
23.5\%	${ }^{73.3}$	71.8	-1.5	-2.1\%
24.7\%	73.2	71.7	-1.5	-2.1\%
25.9\%\%	${ }^{73.0}$	71.6	-1.3	-1.8\%
27.2\%	${ }_{729}^{72.9}$	71.6	-1.3	-1.8\%
28.4\%\%	72.9	${ }_{71.6}$	-1.3	
33.9\%	72.9	71.6	-1.3	-1.8\%
32.1\%	72.6	71.5	${ }_{-1.1}$	-1.5\%
33.3\%	72.6	71.4	-1.2	-1.7\%
34.6\%	72.6	71.4	-1.2	-1.7\%
35.8\%	72.2	${ }_{71.3}$	-0.9	-1.3\%
37.0\%	72.1	71.3	-0.8	-1.1\%
${ }_{39.5 \%}^{38.3 \%}$	72.1 72.0	${ }_{71.2}^{71.2}$	-0.8 -0.9	-1.2\%
40.7\%	71.8	71.2	-0.6	-0.9\%
42.0\%	71.7	71.1	-0.5	-0.7\%
43.2\%	71.6	71.0	-0.5	-0.8\%
44.4\%	71.5	71.0	-0.5	-0.7\%
45.7\%	71.5	71.0	-0.5	-0.7\%
46.9\%	71.5	71.0	-0.5	-0.7\%
48.1\%	71.4	70.8	-0.6	-0.9\%
49.4\%	71.4	70.7	-0.7	-1.0\%
	71.4	70.6	-0.7	-1.0\%
${ }_{\text {553.1\% }}^{51.9 \%}$	${ }_{71.0}^{71.2}$	70.6 70.4	-0.6 -0.6	-0.0\%
54.3\%	71.0	70.3	-0.7	-1.0\%
55.6\%	71.0	70.2	-0.8	-1.1\%
${ }_{\text {c }}^{56.8 \%}$	70.9	70.2	-0.8	-1.19\%
58.0\%	70.5	70.0	-0.5	-0.7\%
59.3\%	70.5	69.9	-0.6	-0.9\%
60.5\%	70.2	69.9	-0.4	-0.5\%
61.7\%	70.2	69.8	-0.3	-0.5\%
63.0\%	69.9	69.7	-0.1	-0.2\%
664.2\%	69.8	69.7	-0.2	-0.2\%
${ }^{65.4 \%}$	69.8	69.5 69.4	-0.3 -0.4	-0.5\%
67.9\%	69.7	69.4	-0.2	-0.3\%
69.1\%	69.4	69.3	-0.2	-0.2\%
70.4\%	69.3	69.1	-0.2	-0.3\%
71.6\%	69.0	69.0	0.0	0.0\%
72.8\%	68.9	68.9	0.0	0.1\%
74.1\%	68.7	68.7	0.0	0.0\%
75.5\%	${ }_{68.6}^{68.6}$	${ }_{68.7} 68$	0.1	0.19\%
76.5\% 77.8%	68.5	68.6	0.1	${ }_{0}^{0.2 \%}$
799.0\%	${ }_{68.2}^{68.5}$	68.6 68.3	0.1 0.1	${ }_{0}^{0.1 \%}$
80.2\%	68.2	68.1	0.0	-0.1\%
${ }^{88.59 \%}$	68.1	68.1	0.0	0.0\%
82.7\%	67.9	67.6	-0.3	-0.5\%
84.0\%	67.9	67.6	-0.4	-0.5\%
85.2\%	${ }_{67.6}$	67.5	-0.1	-0.1\%
86.4\%	67.5	67.4	-0.1	-0.2\%
87.7\%	67.3	67.0	-0.4	-0.5\%
${ }^{88.9 \%}$	${ }^{67.0}$	66.9	-0.1	${ }^{-0.2 \%}$
90.1\%	66.7	66.9	0.2	0.3\%
	66.7 66.6	66.7 66.6	0.0	${ }_{\text {coin }}^{0.1 \%}$
93.8\%	66.1	66.5	0.4	0.6\%
95.1\%	${ }_{66.1}$	${ }_{66.1}^{665}$	0.0	0.0\%
96.3\%	${ }_{657}^{66.1}$	65.7 657	-0.4	${ }^{-0.6 \%}$
${ }^{97.58 \%}$	${ }_{65}^{65.7}$	65.7 653	0.0	0.0\%
98.8\%	65.6 656	65.3 653	-0.4	-0.5\%
100.0\%	65.6	65.3	-0.4	-0.5\%

Table SQ10-1b
American River at watill venueve Monthyly Temperature

$\begin{gathered} \text { Percent } \\ \substack{\text { Execeance } \\ \text { Probabability } \\ \text { (f) }} \end{gathered}$	Une to Seplember			
	$\begin{aligned} & \hline \text { WSIP } 2070 \text { Without } \\ & \hline \end{aligned}$	WSIP 2070 With Project	lute	
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)		Difference (\%)
0.0\%	78.4	79.8	1.4	1.8\%
1.2\%	78.3	75.7	-2.6	-3.3\%
2.5\%	77.3	75.5	-1.8	-2.3\%
3.7\%	76.9	75.4	-1.5	-1.9\%
4.9\%	76.2	${ }^{75.3}$	-0.9	1.2\%
6.2\%	76.1	75.2	-0.9	-1.2\%
7.4\%	75.7	77.0	-0.8	${ }^{-1.0 \%}$
- ${ }_{\text {8.9.9\% }}$	74.3 74.2	74.4 74.0	0.0 -0.2	-0.0\%\%
11.1\%	74.1	73.7	-0.5	-0.6\%
12.3\%	74.1	${ }^{73.3}$	-0.8	-1.0\%
13.6\%	74.0	${ }^{73.1}$	-0.9	-1.2\%
14.8\%	73.8	${ }^{73.1}$	-0.8	-1.0\%
16.0\%	73.5	73.0	-0.5	-0.7\%
17.3\%	73.4	72.8	-0.6	-0.8\%
18.5\%	${ }^{73.3}$	72.1	-1.2	-1.6\%
19.8\%	${ }_{73.1}$	${ }^{72.0}$	-1.1	-1.5\%
21.0\%	73.0	71.9	-1.0	-1.4\%
${ }^{23.5 \%}$	${ }_{72.7}$	71.9	-0.8	${ }_{-1.1 \%}$
24.7\%	72.3	71.6	-0.7	-1.0\%
25.9\%	72.2	71.6	-0.6	-0.9\%
27.2\%	72.2	71.5	-0.7	-0.9\%
28.4\%	72.2	71.4	-0.8	-1.1\%
29.6\%	72.0	71.4	-0.6	-0.9\%
30.9\%	71.9	71.2	-0.7	-1.0\%
32.1% 33.3%	71.8 71.8	${ }_{71.0}^{71.0}$	-0.8 -0.8	-1.2\%
34.6\%	71.8	71.0	-0.8	-1.2\%
35.8\%	71.8	71.0	-0.8	-1.1\%
37.0\%	71.7	70.9	-0.8	-1.1\%
38.3\%	71.6	70.6	-1.0	-1.4\%
39.5\%	71.6	70.6	-1.0	-1.4\%
40.7\%	71.5	70.5	-1.0	-1.4\%
42.0\%	71.5	70.5	-1.0	-1.4\%
43.2\%	71.5	70.5	-1.0	-1.4\%
44.4\%	71.4	70.4	-0.9	-1.3\%
45.79\%	71.3	70.4 70.3	-0.9	-1.3\%
48.1\%	71.2	70.3	-0.9	-1.2\%
49.4\%	71.1	70.2	-0.9	-1.3\%
50.6\%	71.1	70.2	-0.9	-1.3\%
51.9\%	71.0	70.2	-0.8	-1.2\%
53.19\%	71.0	${ }_{7}^{70.1}$	-0.9	-1.2\%
54.3\%	71.0	${ }^{70.1}$	-0.8	-1.2\%
55.6\%	70.9	70.1	-0.8	-1.2\%
56.8\%	70.9	70.1	-0.8	-1.17\%
58.0\%	70.7	70.1	-0.6	-0.8\%
59.3\%	70.6	70.0	-0.6	-0.8\%
${ }^{60.5 \%}$	70.6	70.0	-0.6	-0.9\%
${ }^{61.79 \%}$	70.6	70.0	-0.6	-0.9\%
63.0\%	70.5	70.0	-0.6	-0.8\%
${ }^{64.2 \%}$	${ }^{70.5}$	70.0	-0.6	-0.8\%
${ }^{65.4 \%}$	70.5	69.9	-0.6	-0.8\%
${ }^{66.77 \%}$	${ }^{70.5}$	69.9	-0.6	-0.9\%
-67.9\%	${ }_{702}^{70.3}$	69.9	-0.5	-0.7\%
69.1\%	70.2	69.8	-0.4	-0.6\%
70.4\%	70.2	69.8	-0.4	-0.6\%
71.6\%	70.2	69.8	-0.4	-0.6\%
72.8\%	70.2	69.8	-0.4	-0.6\%
74.19\%	70.2	69.7	-0.4	-0.6\%
75.3% 76.50%	70.2	69.7	-0.4	-0.6\%
${ }^{76.5 \%}$	70.1	69.7	-0.4	-0.6\%
77.8\%	70.1	69.7	-0.4	-0.6\%
79.0\%	${ }_{70.1}^{70.1}$	69.6 69.6	-0.5 -0.5	-0.7\%
81.5\%	70.1	69.6	-0.5	-0.7\%
82.7\%	70.0	69.5	-0.4	-0.6\%
84.0\%	69.9	69.4	-0.4	-0.6\%
85.2\%	69.8	69.4	-0.4	-0.6\%
86.4\%	69.8	69.4	-0.4	-0.6\%
87.7% 88.90%	69.8	69.3	-0.4	-0.6\%
${ }^{88.9 \%} 9$	${ }_{69.7}^{69.7}$	69.3 69.3	-0.4 -0.4 	-0.0.6\%
91.4\%	69.7	69.2	-0.4	-0.6\%
92.6\%	69.6	69.2	-0.4	-0.6\%
93.8\%	69.5	69.2	-0.4	-0.5\%
95.1\%	69.4	68.9	-0.5	-0.8\%
96.3\%	69.4	68.9	-0.5	-0.7\%
97.5\%	69.4	68.7	-0.7	-1.0\%
98.8\%	69.3	68.7	-0.6	-0.9\%
100.0\%	68.3	67.9	-0.3	-0.5\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	Juy to September		-		August ${ }^{\text {S September }}$				
	WSIP 2077 Wewthout	WSIP 2070 With P	$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (DEGFF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{gathered}$	WSIP 2070 Without Proiect Monthly Temperature (DEGF) (DEGF)	WSIP 2070 With Project Monthly Temperature (DEGF)	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\% } \end{gathered}$
	Monthly Temperature	Monthy Temperature							
	(DEGF)	${ }_{\text {(} D E G F)}$							
0.0\%	80.0	80.0	0.1	0.1\%	0.0\%	78.8	79.1	0.4	0.5\%
1.2\%	79.0	75.7	${ }^{-3.3}$	-4.1\%	1.2\%	78.5	76.2	-2.2	
2.5\%	77.3	75.7	-1.6	-2.1\%	2.5\%	77.2	75.8	-1.4	-1.8\%
3.7\%	76.4	75.3	-1.1	-1.4\%	3.7\%	76.7	75.0	-1.7	-2.2\%
4.9\%	76.3	75.3	-1.0	-1.3\%	4.9\%	75.7	74.7	1.0	-1.3\%
6.2\%	76.0	75.1	-0.9	-1.2\%	6.2\%	75.4	74.4	-1.0	-1.3\%
7.4\%	75.3	75.1	-0.2	-0.3\%	7.4\%	75.4	74.3	-1.1	-1.5\%
8.6\%	74.9	74.9	0.0	0.0\%	8.6\%	75.1	73.9	-1.2	-1.6\%
9.9\%	74.7	74.4	-0.2	-0.3\%	9.9\%	74.6	73.8	-0.9	-1.2\%
11.1.1\%	74.6	74.0	-0.6	-0.8\%	11.1.\%	74.2	${ }^{73.7}$	-0.5	-0.7\%
12.3\%	74.6	73.8	-0.8	-1.0\%	12.3\%	74.2	${ }^{73.7}$	-0.5	-0.7\%
13.6\%	74.6	73.7	-0.8	-1.1\%	13.6\%	73.9	73.5	-0.4	-0.6\%
14.8\%	74.0	73.5	-0.5	-0.7\%	14.8\%	73.9	${ }^{73.3}$	-0.6	-0.8\%
16.0\%	${ }^{73.9}$	73.4	-0.6	-0.8\%	16.0\%	73.8	73.1	-0.8	-1.0\%
17.3\%	${ }^{73.6}$	${ }^{73.0}$	-0.6	-0.8\%	17.3\%	${ }^{73.6}$	${ }^{73.0}$	-0.5	-0.7\%
18.5\%	${ }^{73.6}$	72.9	-0.7	-1.0\%	18.5\%	${ }^{73.5}$	73.0	-0.5	-0.7\%
19.8\%	${ }^{73.3}$	72.8	-0.5	-0.6\%	19.8\%	${ }^{73.4}$	${ }^{73.0}$	-0.4	-0.6\%
21.0\%	73.1	72.6	-0.5	-0.7\%	21.0\%	73.0	72.9	-0.1	-0.2\%
22.2\%	72.9	72.6	-0.3	-0.5\%	22.2\%	72.9	72.7	-0.2	-0.3\%
${ }^{23.5 \%}$	72.9	72.0	-0.9	-1.2\%	23.5\%	72.9	72.2	-0.6	-0.9\%
24.7\%	72.8	71.8	-1.0	-1.4\%	24.7\%	72.8	${ }^{72.0}$	-0.8	-1.2\%
25.9\%	72.7	71.8	-0.9	-1.2\%	25.9\%	72.7	71.9	-0.8	-1.2\%
27.2\%	${ }^{27.6}$	71.8	-0.8	-1.1\%	27.2\%	${ }^{22.7}$	${ }_{71.8}$	-0.9	-1.2\%
28.4\%	72.5	71.8	-0.7	-0.9\%	28.4\%	72.7	71.7	-0.9	-1.3\%
29.6\%	72.4	71.7	-0.7	-1.0\%	29.6\%	${ }^{72.4}$	71.7	-0.7	-1.0\%
30.9\%	72.1	71.7	-0.4	-0.6\%	30.9\%	72.4	${ }_{71.6}$	-0.7	-1.0\%
32.1\%	72.0	71.5	-0.5	-0.7\%	32.1\%	${ }^{72.3}$	71.6	-0.7	-1.0\%
33.3\%	72.0	71.5	-0.5	-0.7\%	33.3\%	${ }^{72.3}$	71.6	-0.7	-1.0\%
34.6\%	72.0	71.4	-0.6	-0.8\%	34.6\%	72.3	71.6	-0.7	-1.0\%
35.8\%	72.0	71.3	-0.6	-0.9\%	35.8\%	72.3	71.5	-0.8	-1.1\%
37.0\%	71.9	71.2	-0.8	-1.0\%	37.0\%	72.1	71.5	-0.6	-0.9\%
38.3\%	71.9	71.1	-0.8	-1.1\%	38.3\%	72.1	71.4	-0.7	-1.0\%
39.5\%	71.8	71.0	-0.8	-1.1\%	39.5\%	72.1	71.4	-0.7	-1.0\%
40.7\%	71.8	71.0	-0.8	-1.2\%	40.77\%	72.0	${ }_{71.3}^{71.3}$	-0.7	-0.9\%
${ }^{42.0 \%}$	71.6 71.6	70.8 70.7	-0.9 -0.9	-1.2\% ${ }_{-1.2 \%}$	${ }^{42.0 \%} 4$	71.9 71.9	71.3 71.2	-0.6 -0.7	-
44.4\%	71.5	70.7	-0.8	-1.2\%	44.4\%	71.8	71.1	-0.7	-0.9\%
45.7\%	71.5	70.7	-0.9	-1.2\%	45.7\%	71.7	71.1	-0.6	-0.9\%
46.9\%	71.2	70.6	-0.6	-0.9\%	46.9\%	71.7	71.0	-0.6	-0.9\%
48.1\%	71.2	70.6	-0.6	-0.9\%	48.1\%	71.6	71.0	-0.7	-1.0\%
49.4\%	71.1	70.6	-0.6	-0.8\%	49.4\%	71.5	70.9	-0.6	-0.8\%
50.6\%	71.1	70.5	-0.7	-0.9\%	50.6\%	71.5	70.9	-0.6	-0.8\%
51.9\%	71.0	70.4	-0.6	-0.9\%	51.9\%	71.5	70.9	-0.6	-0.9\%
53.1\%	71.0	${ }^{70.3}$	-0.7	-1.0\%	53.19\%	${ }_{71.3} 71.3$	77.8	-0.5	-0.7\%
554.3\%	71.0 71.0	70.3 70.2	-0.7 -0.8	${ }_{-1.1 \%}^{-1.0 \%}$		71.3 71.3	70.8 70.8	-0.5 -0.5	-0.7\%\%
56.8\%	71.0	70.1 70.2	-0.9	-1.3\%	55.8\%	${ }_{71.2}^{17.3}$	70.7	-0.5	-0.7\%
58.0\%	70.9	70.1	-0.9	${ }^{-1.2 \%}$	58.0\%	71.2	70.7	-0.5	-0.7\%
59.3\%	70.9	70.1	-0.9	-1.2\%	59.3\%	71.2	70.6	-0.6	-0.8\%
60.5\%	70.9	70.1	-0.8	-1.2\%	60.5\%	71.1	70.6	-0.6	-0.8\%
61.7\%	70.8	70.1	-0.7	-1.0\%	61.7\%	71.0	70.5	-0.5	-0.7\%
63.0\%	70.8	70.0	-0.7	-1.0\%	63.0\%	70.9	70.5	-0.4	-0.5\%
64.2\%	70.7	70.0	-0.7	-1.0\%	64.2\%	${ }^{70.8}$	70.5	-0.3	-0.4\%
65.4\%	70.6	70.0	-0.6	-0.9\%	65.4\%	70.7	70.5	-0.2	-0.2\%
66.7\%	70.6	70.0	-0.6	-0.8\%	66.7\%	70.6	${ }^{70.3}$	-0.4	-0.5\%
67.9\%	${ }_{70.5}^{70.5}$	69.9 69.9	-0.6 -0.6	-0.0.0\%	-67.9\%	70.6 70.5	70.3 70.1	-0.3 -0.4	-0.6\%
70.4\%	70.5	69.9	-0.6	-0.9\%	70.4\%	70.4	70.1	-0.4	-0.5\%
71.6\%	70.4	69.8	-0.7	-1.0\%	71.6\%	70.4	70.0	-0.4	-0.6\%
72.8\%	70.4	69.7	-0.7	-1.0\%	72.8\%	70.3	70.0	-0.3	-0.5\%
74.1\%	70.4	69.7	-0.7	-1.0\%	74.1\%	70.2	70.0	-0.3	-0.4\%
75.3\%	70.4	69.7	-0.7	-1.0\%	75.3\%	70.2	70.0	-0.2	-0.3\%
76.5\%	70.3	69.6	-0.6	-0.9\%	76.5\%	70.2	69.9	-0.3	-0.4\%
77.8\%	70.2	69.6	-0.6	-0.8\%	77.8\%	70.2	69.9	-0.3	-0.4\%
79.0\%	70.2	69.6	-0.6	-0.8\%	79.0\%	70.1	69.8	-0.3	-0.4\%
80.2\%	70.1	69.6	-0.5	-0.7\%	80.2\%	70.0	69.8	-0.2	-0.3\%
81.5\%	70.0	69.5	-0.5	-0.8\%	81.5\%	70.0	69.8	-0.2	-0.3\%
82.7\%	70.0	69.5	-0.5	-0.8\%	82,7\%	77.0	69.8	-0.2	-0.3\%
84.0\%	70.0	69.5	-0.5	-0.7\%	84.0\%	70.0	69.6	-0.4	-0.5\%
85.2\%	69.9	69.4	-0.5	-0.7\%	85.2\%	70.0	69.6	-0.4	-0.6\%
86.4\%	69.8	69.4	-0.5	-0.7\%	86.4\%	70.0	${ }_{69.6}$	-0.4	-0.6\%
87.7\%	69.8	69.3	-0.5	-0.7\%	87.7\%	69.9	69.6	-0.4	-0.5\%
88.9\%	69.8	69.3	-0.5	-0.7\%	88.9\%	69.8	69.5	-0.2	-0.3\%
90.1\%	69.7	69.3	-0.5	-0.7\%	90.1\%	69.7	69.4	-0.4	-0.5\%
91.4\%	69.7	69.2	-0.5	-0.7\%	91.4\%	69.7	69.4	-0.3	-0.5\%
92.6\%	69.6	69.2	-0.4	-0.0\%	- 92.6%	69.7	69.3	-0.4	--0.06% -0.50
95.1\%	69.6	69.1	-0.5	-0.7\%	95.1\%	69.2	69.0	-0.1	-0.2\%
96.3\%	69.5	68.9	-0.6	-0.9\%	96.3\%	69.2	68.9	-0.3	-0.4\%
97.5\%	69.4	68.9	-0.5	-0.7\%	97.5\%	69.0	68.8	-0.2	-0.4\%
98.8\%	69.1	68.4	-0.7	-1.0\%	98.8\%	68.6	68.6	0.1	0.1\%
100.0\%	68.8	68.3	-0.5	-0.7\%	100.0\%	68.5	68.5	-0.1	-0.1\%

Figure SQ11-1b
American River at the Mouth, Monthly Temperature

Table SQ11-1b
ver a the Mouth, Monthly
American River at the Mouth, Monthy Temperature

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabilily } \end{gathered}$	October			
	WSII 2070 Without Proiect	WSIP 2070 With Project	Absolue	
	Monthy Temperature	Monthly Temperature	Difference	Difference (\%)
(\%)	${ }^{2}$	710	03	O
0.0\%	12.2	7.9	-0.3	0.4\%
${ }^{1.25 \%}$	71.8 71.8	${ }_{71.4}^{71.8}$	-0.3	-
3.7\%	71.7	71.1	-0.7	-0.9\%
4.9\%	71.2	71.0	-0.2	-0.3\%
6.2\%	71.1	70.6	-0.4	-0.6\%
7.4\%	70.9	70.6	-0.3	-0.4\%
8.6\%	70.8	70.5	-0.3	-0.5\%
9.9\%	70.5	70.5	0.0	0.0\%
${ }^{11.119 \%}$	77.1	70.4	${ }^{0.3}$	0.4\%
13.6\%	70.1	69.9	-0.2	-0.3\%
14.8\%	70.0	69.8	-0.2	-0.3\%
16.0\%	69.8	69.7	-0.1	-0.2\%
17.3\%	69.8	69.7	-0.1	-0.1\%
18.5\%	69.7	69.5	-0.1	-0.2\%
19.8\%	69.7	69.5	-0.1	-0.2\%
21.0\%	69.6	69.5	-0.1	-0.2\%
22.2\%	69.5	69.3	-0.2	-0.2\%
23.5\%	69.4	69.2	-0.1	-0.2\%
24.7\%	69.1	69.1	0.0	0.0\%
25.9\%	69.1 690	69.1 689	-0.1	-0.19\%
28.4\%	${ }_{69.0}^{69.0}$	${ }_{68.9} 6.9$	-0.1	-0.2\%
29.6\%	69.0	68.8	-0.2	-0.3\%
30.9\%	69.0	68.8	-0.1	-0.2\%
32.1\%	68.9	68.8	-0.2	-0.2\%
33.3\%	68.9	68.7	-0.2	-0.2\%
34.6\%	${ }_{68.9} 6.9$	${ }_{68.7} 68$	-0.2	-0.3\%
35.8\%	68.9	68.7	-0.2	-0.3\%
37.0\%	68.9	68.7	-0.2	-0.3\%
38.3\%	68.9	68.7	-0.2	-0.3\%
39.5\% 40.7%	68.8 68.7	68.6 68.6	-0.2 -0.1	
40.70\%	68.7	68.6	-0.1	-0.2\%
${ }^{43.2 \%}$	${ }_{68.7}^{68.7}$	68.6 68.5	-0.1	-0.2\%
44.4\%	68.7	68.5	-0.2	-0.2\%
45.7\%	68.6	68.5	-0.1	-0.2\%
46.9\%	68.6	68.5	-0.1	-0.2\%
48.1\%	68.6	68.5	-0.1	-0.2\%
49.4\%	68.6	68.4	-0.2	-0.2\%
50.6\%	68.5	68.4	-0.1	-0.2\%
51.9\%	68.4	68.4	-0.1	-0.1\%
	68.4 68.4	68.3 68.3	-0.1	--0.2% -0.2%
55.6\%	68.4	68.3	-0.1	-0.2\%
56.8\%	68.4	68.3	-0.1	-0.2\%
58.0\%	68.3	68.3	-0.1	-0.1\%
59.3\%	68.3	68.2	-0.1	-0.1\%
60.5\%	68.3	68.2	-0.1	-0.2\%
61.7\%	68.2	68.1	-0.1	-0.2\%
63.0\%	68.2	68.1	-0.1	-0.1\%
64.2\%	68.1	68.1	0.0	0.0\%
${ }_{6}^{65.4 \%}$	68.1	68.0	-0.1	-0.1\%
66.7\%	68.0	67.9	-0.1	-0.2\%
${ }^{69.19}$	68.0 68.0	67.8 67.8	-0.2	-0.3\%
70.4\%	68.0	67.7	-0.2	-0.4\%
71.6\%	${ }^{67.9}$	${ }_{677}^{67.7}$	-0.2	-0.4\%
72.8\%	67.9	67.7	-0.2	-0.3\%
74.1\%	67.9	67.6	-0.3	-0.4\%
75.3\%	67.9	${ }_{67.6}^{67.6}$	-0.2	-0.4\%
76.5\%	67.8	67.6	-0.2	-0.4\%
77.8\%	67.7	67.6	-0.1	-0.2\%
-79.0\%	${ }_{6}^{67.7}$	67.6 67.6	-0.1 -0.1	${ }_{\text {- }}^{-0.2 \%}$
81.5\%	67.7	67.6	-0.1	-0.2\%
82.7\%	67.7	67.5	-0.1	-0.2\%
84.0\%	67.6	67.4	-0.3	-0.4\%
85.2\%	67.6	${ }_{67.4}^{67.4}$	-0.2	-0.4\%
86.4\%	${ }_{67.6}^{67.6}$	67.2	-0.4	${ }^{-0.6 \%}$
87.7\%	67.5	67.1	-0.4	-0.6\%
88.9\%	67.4	67.1	-0.3	-0.5\%
90.1\%	67.4	66.9	-0.4	-0.6\%
91.4\%	67.3	66.9	-0.4	-0.6\%
${ }_{93.8 \%}^{92.6 \%}$	67.0 67.0	66.9 66.9	-0.1 -0.2	${ }_{\text {- }}^{-0.3 \%}$
95.1\%	66.9	66.8	-0.1	-0.2\%
96.3\%	66.5	66.4	-0.1	-0.1\%
97.5\%	${ }_{66.2}$	66.2	0.0	${ }^{0.0 \%}$
98.8\%	66.0	66.1	0.0	0.1\%
100.0\%	66.0	66.1	0.0	0.1\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{gathered}$	November			-	December				
	WSIP 2077 Wewthout	WSIP 2070 With Project	$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (DEGF) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	WSIP 2070 WithoutProiectMonthly Temperature (DEGGF)位	WSIP 2070 With Project Monthly Temperature (DEGF)	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	Monthly Temperature	Monthly Temperature							
	(DEGF)	(DEGF)							
0.0\%	62.9	62.8	-0.2	-0.3\%	0.0\%	56.3	56.9	0.6	1.1\%
1.2\%	62.0	61.9	-0.2	-0.3\%	1.2\%	55.7	55.8		
2.5\%	61.9	61.3	-0.7	-1.1\%	2.5\%	55.1	55.4	0.2	0.4\%
3.7\%	61.8	61.1	-0.7	-1.1\%	3.7\%	55.0	55.1	0.1	0.2\%
4.9\%	61.6	60.9	-0.7	-1.2\%	4.9\%	54.5	54.9	0.4	0.7\%
6.2\%	61.3	60.7	-0.6	-1.1\%	6.2\%	54.5	54.7	0.2	0.4\%
7.4\%	61.3	60.7	-0.6	-1.0\%	7.4\%	54.2	54.7	0.5	0.8\%
8.6\%	61.2	60.6	-0.6	-1.1\%	8.6\%	54.2	54.6	0.4	0.7\%
9.9\%	61.2	60.6	-0.6	-1.1\%	9.9\%	54.1	54.5	0.4	0.8\%
11.1.1\%	61.2	60.5	-0.6	-1.0\%	11.19\%	54.0	54.4	0.4	0.7\%
123\%	61.1	60.5	-0.6	-1.0\%	12.3\%	53.9	54.3	0.4	0.8\%
13.6\%	61.0	60.4	-0.6	-1.0\%	13.6\%	53.9	54.3	0.3	0.6\%
14.8\%	61.0	60.4	-0.6	-0.9\%	14.8\%	53.9	54.2	0.4	0.7\%
16.0\%	60.9	60.4	-0.5	-0.9\%	16.0\%	53.8	54.2	0.5	0.9\%
17.3\%	60.9	60.3	-0.6	-0.9\%	17.3\%	53.6	54.1	0.5	1.0\%
18.5\%	60.8	60.2	-0.6	-1.0\%	18.5\%	53.5	54.1	0.6	1.1\%
19.8\%	60.8	60.2	-0.6	-1.0\%	19.8\%	53.4	54.0	0.6	1.1\%
21.0\%	60.8	60.2	-0.6	-1.0\%	21.0\%	53.4	54.0	0.5	1.0\%
22.2\%	60.6	60.2	-0.4	-0.7\%	22.2\%	53.3	53.9	0.6	1.1.\%
${ }^{23.5 \%}$	60.6	60.1	-0.5	-0.7\%	23.5\%	53.3	53.9	0.6	1.1\%
24.7\%	60.5	60.1	-0.4	-0.7\%	24.7\%	53.1	53.7	0.6	1.2\%
25.9\%	60.5	60.1	-0.4	-0.7\%	25.9\%	53.1	53.7	0.6	1.2\%
27.2\%	60.4	59.8	-0.6	-1.0\%	27.2\%	53.1	53.6	0.5	1.0\%
28.4\%	60.4	59.8	-0.6	-0.9\%	28.4\%	53.1	53.5	0.4	0.8\%
29.6\%	${ }_{60.3}^{603}$	59.7	-0.6	-1.0\%	29.6\%	53.0 530	53.5	0.4	0.8\%
${ }^{30.9 \%}$	${ }_{60.3}^{60.3}$	59.6 59.6	-0.7	-1.1\%	${ }^{30.9 \%}$	53.0 530		${ }_{0}^{0.5}$	${ }^{0.9 \%}$
32.3\%	60.2	59.5	-0.8	-1.3\%	32.3\%	52.9	53.2	0.3	0.6\%
34.6\%	60.2	59.5	-0.8	-1.2\%	34.6\%	52.8	53.2	0.4	0.8\%
35.8\%	60.2	59.5	-0.8	-1.3\%	35.8\%	52.7	53.2	0.4	0.8\%
37.0\%	60.2	59.5	-0.7	-1.2\%	37.0\%	52.7	53.1	0.4	0.8\%
38.3\%	60.1	59.4	-0.7	-1.2\%	38.3\%	52.7	53.1	0.5	0.9\%
39.5\%	60.1	59.3	-0.8	-1.3\%	39.5\%	52.7	53.1	0.4	0.8\%
40.7\%\%	60.1	59.3	-0.9	-1.4\%	40.77\%	52.6	53.1 530	0.4	0.8\%
43.2\%	60.0	${ }_{59.2}$	${ }_{-0.8}$	-1.3\%	${ }^{43.2 \%}$	52.5	${ }_{53.0}$	${ }_{0}^{0.5}$	1.0\%
44.4\%	60.0	59.1	-0.8	-1.4\%	44.4\%	52.5	53.0	0.5	1.0\%
45.7\%	59.8	59.1	-0.7	-1.1\%	45.7\%	52.4	53.0	0.6	1.2\%
46.9\%	59.7	59.1	-0.6	-1.0\%	46.9\%	52.4	53.0	0.6	1.2\%
48.1\%	59.7	59.1	-0.6	-1.1\%	48.1\%	52.3	52.9	0.6	1.1\%
49.4\%	59.7	59.1	-0.7	-1.1\%	49.4\%	52.3	52.9	0.6	1.2\%
50.6\%	59.7	59.0	-0.7	-1.1\%	50.6\%	52.3	52.8	0.6	1.1\%
51.9\%	59.7	59.0	-0.7	-1.2\%	51.9\%	52.2	52.8	0.6	1.2\%
53.1\%	59.7	59.0	-0.7	-1.3\%	53.1\%	52.2	52.7	0.5	1.0\%
54.3\%	59.7	58.9	-0.8	-1.3\%	54.3\%	52.1	52.6	0.5	0.9\%
55.6\%	59.6	58.9	-0.7	-1.2\%	55.6\%	52.1	52.5	0.4	0.8\%
56.8\%	59.6	58.9	-0.7	-1.1\%	56.8\%	52.1	52.5	0.4	0.7\%
58.0\%	59.5	55.9	-0.7	-1.19\%	58.0\%	${ }_{52.0}^{52.0}$	${ }_{52.4}^{52.4}$	0.4	0.8\%
59.3\%	${ }_{59.5}^{59.5}$	58.8	-0.7	-1.2\%	59.3\%	${ }_{52.0}^{52}$	${ }_{52.4}^{52.4}$	0.4	0.7\%
60.5\%	59.5	58.8	-0.7	-1.2\%	60.5\%	${ }_{5}^{52.0}$	52.4	0.3	0.6\%
61.7\%	59.5	58.8	-0.7	-1.2\%	61.7\%	51.9	52.3	0.4	0.7\%
63.0\%	59.5	58.7	-0.8	-1.3\%	63.0\%	51.8	52.2	0.4	0.8\%
64.2\%	59.5	58.7	-0.8	-1.3\%	64.2\%	51.7	52.2	0.4	0.8\%
65.4\%	59.5	58.7	-0.8	-1.4\%	65.4\%	51.7	52.2	0.5	0.9\%
66.7\%	59.4	58.7	-0.8	-1.3\%	66.7\%	51.7	52.0	0.3	0.6\%
669.9\%	59.3 59.3	58.6 58.6	-0.7 -0.7	-	-67.9\%	51.7 51.6	51.9 51.9	0.2 0.2	${ }^{0.5 \% \%}$
70.4\%	59.3	58.5	-0.8	-1.4\%	70.4\%	51.6	51.8	0.2	0.4\%
71.6\%	59.3	58.5	-0.8	-1.3\%	71.6\%	51.6	51.7	0.1	0.1\%
72.8\%	59.3	58.4	-0.8	-1.4\%	72.8\%	51.6	51.5	-0.1	-0.2\%
74.1\%	59.2	58.4	-0.8	-1.4\%	74.1\%	51.5	51.5	-0.1	-0.1\%
75.3\%	59.2	58.4	-0.8	-1.4\%	75.3\%	51.3	51.4	0.1	0.2\%
76.5\%	59.2	58.3	-0.8	-1.4\%	76.5\%	51.3	51.4	0.2	0.3\%
77.8\%	59.1	58.2	-1.0	-1.6\%	77.8\%	51.2	${ }_{51.3}$	0.1	0.3\%
79.0\%	59.1	58.2	-1.0	-1.6\%	79.0\%	51.0	51.1	0.1	0.1\%
80.2\%	59.0	58.1	-0.9	-1.5\%	80.2\%	50.8	51.1	0.3	0.5\%
81.5\%	59.0	58.1	-0.9	-1.5\%	81.5\%	50.8	50.8	0.0	0.1\%
82.79\%	59.0 598	58.1	-0.9	${ }^{-1.5 \%}$	82.70\%	50.7	50.5 59.4	-0.2	
84.0\%	58.9	58.1	-0.8	-1.4\%	84.0\%	49.1	50.4	1.3	2.7\%
85.2\%	55.8	58.0	-0.8	-1.4\%	85.2\%	48.9	50.1	1.2	2.5\%
86.4\%	58.7	57.9 57.9	-0.8	-1.4\%	86.4\%	48.9	49.2	${ }^{0.3}$	0.6\%
87.7\%	58.6 58.6	57.8 578 57	-0.8 -0.7	-1.4\%	87.7\%	48.7 48.6	48.9 485	0.2	0.4\%
${ }^{\text {90. }}$-1\%	58.5	57.7	-0.8	${ }^{-1.4 \%}$	${ }^{\text {90. }}$-1\%	48.5	${ }_{48.2}$	-0.3	${ }_{\text {- }}^{-0.6 \%}$
91.4\%	58.5	57.7	-0.9	-1.5\%	91.4\%	48.3	47.8	-0.5	-1.1\%
92.6\%	58.4	57.4	-0.9	-1.6\%	92.6\%	47.8	47.7	-0.1	-0.2\%
93.8\%	56.9	56.7	-0.2	-0.3\%	93.8\%	47.8	47.4	-0.4	-0.8\%
95.1\%	55.6	56.7	0.1	0.1\%	95.19\%	47.7	47.1	-0.6	-1.3\%
${ }_{\text {c }}^{\text {96.5.5\% }}$	56.5 55.3	56.5 55.3	${ }_{0}^{0.1}$	${ }_{0}^{0.1 \%}$	${ }_{\text {97.5\% }}^{96.3 \%}$	47.3 45.9	46.9 46.0	-0.5 0.0	-
98.8\%	53.6	54.0	0.3	0.6\%	98.8\%	45.6	45.6	0.0	0.0\%
100.0\%	53.6	54.0	0.3	0.6\%	100.0\%	45.6	45.6	0.0	0.0\%

$\begin{gathered} \text { Percent } \\ \text { Exceance } \\ \text { Probability } \\ (\%) \\ \hline \end{gathered}$	January			
	${ }^{\text {WSIP }}$ Provo Without	WSIP 2070 With Project	Absolute	Relative
	Monthly Temperature (DEGF)	Monthly Temperature (DEEFF)	(DEGF)	Difference (\%)
0.0\%	53.2	53.7	0.5	0.9\%
1.2\%	52.5	52.8	0.3	0.5\%
2.5\%	52.4	52.3	-0.1	-0.2\%
3.7\%	52.1	52.3	0.2	0.3\%
${ }_{\text {4.2\% }}^{4.9 \%}$	51.7 51.5	51.6 51.6	-0.1 0.0	
7.4\%	51.3	51.4	0.1	0.3\%
8.6\%	51.2	51.3	0.1	0.2\%
9.9\%	51.2	51.2	0.0	-0.1\%
11.1\%	50.9	50.9	0.0	0.0\%
12.3\%	50.6	50.7	0.1	0.2\%
13.6\%	50.6	50.6	0.1	0.2\%
14.8\%	50.4	50.6	0.2	0.4\%
16.0\%	50.4	50.6	0.2	0.4\%
17.3\%	50.4	50.6	0.2	0.4\%
18.5\%	50.4	50.6	0.2	0.4\%
${ }^{19.8 \%}$	50.3 50.2	50.5 50.5	${ }_{0}^{0.2}$	0.0.6\%
22.2\%	50.1	50.5	0.3	0.7\%
23.5\%	50.1	50.5	0.3	0.7\%
24.7\%	50.0	50.4	0.4	0.8\%
25.9\%	50.0	50.4	0.4	0.9\%
27.2\%	49.9	50.3	0.4	0.7\%
28.4\%	49.8	50.2	0.4	0.8\%
29.6\%	49.8	50.2	0.4	0.8\%
30.9\%	49.8	50.2	0.4	0.8\%
${ }^{32.1 \%}$				0.6\%
	49.6	49.9	${ }^{0.3}$	
34.6% 35.8%	49.6	49.9	${ }^{0.3}$	0.5\%
${ }^{35}$	${ }_{49.6}$	${ }_{49.8}$	${ }_{0.3}^{0.2}$	${ }_{0}^{0.6 \%}$
38.3\%	49.5	49.7	0.2	0.5\%
39.5\%	49.3	49.7	0.4	0.8\%
40.7\%	49.2	49.7	0.5	1.0\%
42.0\%	49.2	49.6	0.4	0.9\%
43.2\%	49.2	49.6	0.5	0.9\%
44.4\%	49.0	49.4	0.3	0.7\%
${ }^{45.79 \%}$	49.0 49.0	49.3 49.2	0.3 0.2	${ }_{0}^{0.7 \% \%}$
48.1\%	49.0	49.2	0.2	0.4\%
49.4\%	49.0	49.2	0.2	0.5\%
50.6\%	48.9	49.0	0.2	0.3\%
51.9\%	48.8	49.0	0.1	0.2\%
53.1\%	48.8	48.9	0.1	0.2\%
54.3\%	48.8	48.8	0.0	0.1\%
55.6\%	48.7	48.8	0.0	0.0\%
56.8\%	48.5	48.8	${ }^{0.3}$	0.6\%
58.0\%	48.4	48.6	0.2	0.4\%
59.3\%	48.3	48.5	0.2	0.4\%
- 60.5%	${ }_{48.1}^{48.2}$	48.4 48.1	${ }_{0}^{0.3}$	${ }^{0.5 \%}$
63.0\%	48.0	48.0	0.0	0.1\%
64.2\%	47.9	47.9	0.0	0.0\%
65.4\%	47.8	47.8	0.0	0.0\%
66.7\%	47.7	47.8	0.1	0.1\%
67.9\%	47.6	47.6	0.0	0.0\%
69.1\%	47.2	47.3	0.0	0.0\%
70.4\%	47.1	47.2	0.1	0.2\%
71.6\%	47.0	47.1	0.0	0.1\%
72.8\%	46.9 46.8	47.0 46.9	${ }_{0}^{0.1}$	${ }_{0}^{0.1 \%}$
75.3\%	46.8	46.8	0.0	0.0\%
76.5\%	46.7	46.7	0.0	0.0\%
77.8\%	46.5	46.5	0.0	0.0\%
79.0\%	46.1	46.3	0.1	0.3\%
80.2\%	46.1	46.2	0.1	0.2\%
81.5\%	46.1	46.1	0.0	0.0\%
82.7\%	45.9	46.1	0.2	0.4\%
84.0\%	45.9	46.0	0.1	0.2\%
85.2\% ${ }_{\text {86.4\% }}$	${ }_{45.7}^{45.7}$	${ }_{45.8}^{45.9}$	${ }_{0}^{0.1}$	0.2\%
87.7\%	45.7	45.7	0.0	0.0\%
88.9\%	45.6	45.7	0.0	0.1\%
90.1\%	${ }^{45.6}$	45.7	0.0	0.1\%
91.4\%	45.3	45.1	-0.2	-0.4\%
92.6\%	45.1	44.9	-0.2	-0.4\%
93.8\%	44.7	44.8	0.0	0.1\%
95.1\%	44.7	44.8	0.1	0.1\%
96.3\%	44.7	44.4	-0.3	-0.6\%
97.5\%	44.4	44.2	-0.2	-0.4\%
-100.0\%	${ }_{44.2}^{44.2}$	${ }_{43.9}^{43.9}$	-0.4 -0.4	${ }_{\text {cose }}^{0.0 .9 \%}$

Table SQ11-1b Sat the Mouth, Monthy Temperatur

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \\ (\%) \end{gathered}$	February			
	$\begin{aligned} & \hline \text { WSII 2070 Without } \\ & \hline \text { Proiet } \end{aligned}$	WSIP 2070 With Project		Relative
	Monthly Temperature	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGFF) } \end{aligned}$	Difference (\%)
0.0\%	59.4	59.7	0.3	0.5\%
1.2\%	58.4	58.4	0.1	0.1\%
2.5\%	57.9	57.9	0.1	0.1\%
3.7\%	56.1	56.6	0.5	0.8\%
4.9\%	54.7	54.6	-0.1	-0.1\%
6.2\%	54.2	53.8	-0.4	-0.8\%
7.4\%	53.7	53.6	-0.1	-0.2\%
8.6\%	53.7	53.4	-0.3	-0.5\%
9.9\%	53.5	53.2	-0.3	-0.6\%
11.1\%	53.1	53.2	0.1	0.1\%
12.3\%	53.1	53.2	0.1	0.1\%
13.6\%	53.1	53.1	0.1	0.1\%
14.8\%	53.1	53.0	0.0	-0.1\%
16.0\%	53.1	52.9	-0.2	-0.4\%
17.3\%	52.3	52.5	0.2	0.4\%
18.5\%	52.3	52.4	0.1	0.3\%
19.8\%	52.3	52.4	0.1	0.2\%
21.0\%	52.3	52.3	0.0	0.1\%
${ }^{22.22 \%}$	52.1	52.2	0.1	0.3\%
${ }^{23.5 \%}$	52.0	52.2	0.1	0.3\%
24.7\%	52.0	51.8	-0.2	-0.4\%
25.9\%	51.9	51.7	-0.1	-0.2\%
27.2\%	51.7	51.7	0.0	0.1\%
28.4\%	51.5	51.6	0.2	0.3\%
29.6\%	51.2	51.6	0.4	0.7\%
30.9\%	${ }_{51.2}$	${ }_{51.3}$	0.2	0.3\%
32.1\%	50.9	51.2	0.2	0.4\%
${ }^{33.3 \%}$	50.8	51.0	0.2	0.3\%
34.6% 35.8%	50.5 50.5	50.5 50.4	0.0 0.0	-0.0\%
37.0\%	50.2	50.3	0.1	0.2\%
38.3\%	50.1	50.2	0.1	0.2\%
39.5\%	49.7	49.6	-0.1	-0.2\%
40.7\%	49.5	49.3	-0.2	-0.5\%
42.0\%	49.2	49.2	0.0	0.0\%
43.2\%	49.1	49.1	0.0	0.1\%
4.4.4\%	49.1	49.0	0.0	-0.1\%
45.7\%	49.0	49.0	0.0	0.0\%
${ }^{46.9 \%}$	48.9 48.8	48.9 48.8	0.0 0.0	${ }_{\text {com }}^{0.00 \%}$
49.4\%	48.8	48.8	0.0	0\%
50.6\%	48.5	48.6	0.1	0.2\%
51.9\%	48.5	48.5	0.0	0.0\%
53.19\%	48.5	48.5	0.1	0.1\%
54.3\%	48.5	48.5	0.1	0.1\%
55.6\%	48.4	48.5	0.0	0.1\%
56.8\%	48.3	48.4	0.0	0.1\%
58.0\%	48.3	48.2	-0.1	-0.2\%
59.3\%	48.1	48.2	0.1	0.1\%
${ }^{60.50 \%}$	48.1	48.1	0.0	0.0\%
61.70\%	47.9	48.0	00	0.01\%
64.2\%	47.9	47.9	0.0	0.0\%
65.4\%	47.8	47.8	0.1	0.2\%
66.7\%	47.6	47.8	0.2	0.3\%
67.9\%	${ }^{47.6}$	47.7	0.1	0.2\%
69.1\%	47.5	47.5	0.0	0.0\%
70.4\%	47.5	47.5	0.0	0.0\%
71.6\%	47.5	47.4	0.0	0.0\%
72.8\%	47.5	47.3	-0.2	-0.4\%
74.1\%	47.3	47.3	0.0	0.0\%
75.3\%	47.2	${ }^{47.2}$	0.0	0.0\%
76.5\%	47.1	47.1	0.0	0.0\%
79.0\%	${ }_{47.1}$	${ }_{47.1}^{47.1}$	0.0	0.1\%
80.2\%	47.1	47.1	0.0	-0.1\%
81.5\%	47.1	47.0	0.0	-0.1\%
${ }^{82.79 \%}$	47.1	46.9	-0.1	${ }^{-0.2 \%}$
84.0\%	47.0	46.9	-0.1	-0.1\%
85.2\%	46.9	46.9	0.0	-0.1\%
86.4% 87.7%	46.9	46.9	0.0	0.0\%\%
${ }^{87.7 \%}$	${ }_{46.7}^{46.8}$	${ }_{46.7}^{46.7}$	0.0 0.1	${ }^{-0.1 \%}$
90.1\%	46.6	46.6	0.0	0.0\%
91.4\%	46.5	46.5	0.0	0.0\%
92.6\%	46.4	46.4	0.0	0.0\%
93.8\%	46.3	46.2	-0.2	-0.3\%
95.1\%	46.2	46.1	0.0	-0.1\%
96.3\%	46.1	46.1	0.0	0.0\%
97.5\%	46.1	46.1	0.0	0.0\%
${ }^{98.8 \%}$	46.1	45.7	-0.4	-0.8\%
100.0\%	46.1	45.7	-0.4	-0.8\%

Table SQ11-1b

American River a t the Mouth, Monthly Temperature

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \\ (\%) \end{gathered}$	Une			
	${ }^{\text {WSIP } 2070 \text { Without }}$	WSIP 2070 With		Rela
	Monthy Temperature	Monthly Temperature	Difierence (DEGF)	Difference (\%)
0.0\%	83.9	83.4	${ }^{0.0} 5$	-0.6\%
1.2\%	828	82.8	-0.1	-0.1\%
2.5\%	81.6	81.2	-0.5	-0.6\%
3.7\%	81.5	79.6	-1.9	-2.3\%
4.9\%	80.6	79.1	-1.5	-1.9\%
6.2\%	80.2	78.9	-1.3	-1.6
7.4\%	79.9	78.6	-1.3	
8.6\%	79.1	78.3	-0.8	
9.9\%	79.1	77.4	-1.7	-2.1\%
11.1\%	79.0	77.3	-1.7	-2.2\%
12.3\%	79.0	76.6	-2.4	-3.1\%
13.6\%	78.5	76.5	-2.0	-2.5\%
14.8\%	78.1	76.4	-1.7	-2.2\%
16.0\%	77.9	76.3	-1.6	-2.0\%
17.3\%	77.7	76.2	-1.5	-1.9\%
18.5\%	77.5	76.1	-1.4	-1.8\%
19.8\%	77.4	${ }^{76.1}$	-1.4	${ }^{-1.8 \%}$
${ }^{21.0 \%}$	77.4 77.3	76.1 75.6	-1.15 -1.7	--1.7\%
${ }^{23.5 \%}$	77.1	${ }_{75.6}$	-1.6	-2.0\%
24.7\%	77.0	75.6	-1.5	-1.9\%
25.9\%	77.0	${ }^{75.5}$	-1.5	-2.0\%
27.2\%	76.8	75.4	-1.4	-1.8\%
28.4\%	76.8	75.4	-1.4	-1.8\%
29.6\%	76.6	75.3	-1.3	-1.7\%
30.9\%	76.6	${ }_{75}^{75.3}$	-1.3	-1.7\%
32.1\%	76.5	75.2	-1.3	-1.7\%
33.3\%	76.4	75.1	-1.3	-1.7\%
34.6% 35.80	${ }_{76.3}^{76.4}$	74.9 74.9	-1.5	${ }^{-1.9 \%}$
37.0\%	76.3	74.8	-1.4	-1.9\%
38.3\%	76.2	74.7	-1.4	-1.9\%
39.5\%	76.1	74.7	-1.5	-1.9\%
40.7\%	75.7	74.4	-1.3	-1.7\%
42.0\%	75.7	74.4	-1.3	-1.7\%
43.2\%	75.4	74.4	-1.0	-1.3\%
44.4\%	75.3	74.3	-1.0	-1.4\%
${ }^{45.79 \%}$	${ }^{75.3}$	74.3	-1.0	-1.3\%
${ }^{46.9 \%}$	74.9 74.8	${ }_{74.1}^{74.2}$	-0.7	-0.9\%
49.4\%	74.7	74.0	-0.7	-1.0\%
50.6\%	74.6	73.8	-0.9	-1.2\%
51.9\%	74.5	${ }^{73.8}$	-0.8	-1.0\%
53.19\%	74.4 74.3	73.8 737	-0.7	-0.09\%
54.3\%	74.3	${ }_{73,7}$	-0.7	${ }^{-0.9 \%}$
55.6\%	74.2	${ }^{73.6}$	-0.5	-0.7\%
56.8\%	74.1	${ }_{73.6}^{73.6}$	-0.5	-0.7\%
58.0\%	74.0	${ }_{7}^{73.5}$	-0.5	-0.7\%
59.3\%	${ }^{73.7}$	${ }^{73.4}$	-0.3	-0.4\%
- 60.50	${ }^{73.7}$	${ }^{73.3}$	-0.4	-0.0\%
61.70\%	73.6	${ }_{731}$	-0.	-0.3\%
64.2\%	72.9	${ }_{73.0}$	0.1	0.2\%
65.4\%	72.9	73.0	0.1	0.2\%
66.7\%	72.8	${ }^{2} 2.8$	0.0	0.0\%
67.9\%	72.7	72.8	0.1	0.1\%
69.1\%	${ }^{72.7}$	${ }^{72.8}$	0.1	0.1\%
70.4\%	${ }^{72.6}$	72.8	0.1	0.1\%
71.6\%	72.5	${ }^{22.7}$	0.2	0.3\%
72.8\%	72.5	72.6	0.1	0.2\%
74.1\%	${ }_{72.3}$	${ }_{7}^{72.6}$	0.2	0.3\%
${ }^{75.5 \%}$	71.7 71.7	72.5 72.5	0.8 0.8	${ }_{1.11 \%}^{1.1 \%}$
77.8\%	71.5	72.3	0.8	1.0\%
79.0\%	71.5	${ }^{72.3}$	0.8	1.1\%
80.2\%	71.3	71.9	0.6	0.9\%
81.5\%	71.3	71.5	0.3	0.4\%
${ }^{82.79 \%}$	77.1	${ }_{7115}^{71.5}$	0.5	${ }^{0.79 \%}$
84.0\%	77.0	71.2	0.2	0.3\%
85.2\%	70.9	71.0	0.1	0.1\%
86.4% 87.7%	70.5	71.0	0.6	${ }^{0.8 \%}$
${ }^{87.7 \%}$	70.4 70.4	70.5 70.4	0.0 0.0	${ }_{0}^{0.00 \%}$
90.1\%	70.3	69.7	-0.6	-0.8\%
91.4\%	70.2	69.4	-0.8	-1.1\%
92.6\%	70.1	69.4	-0.7	-0.9\%
93.8\%	69.7	69.4	-0.3	-0.5\%
95.1\%	69.4	69.3	-0.1	-0.2\%
96.3\%	69.4	${ }_{68.9} 68$	-0.4	-0.7\%
97.5\%	68.2	68.7	0.5	0.7\%
98.8\%	68.1	67.7	-0.5	-0.7\%
100.0\%	68.1	67.7	-0.5	-0.7\%

Page 1472 of 1488

Table SQ11-1b

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	June to September			
	${ }^{\text {WSIP } 2077 \text { W. Without }}$	WSIP 2070 With Project	Absolute	Relative
	Monthy Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
0.0\%	83.2	83.8	0.6	0.7\%
1.2\%	82.1	80.4	-1.6	-2.0\%
2.5\%	81.7	80.4	-1.3	-1.6\%
3.7\%	81.3	80.3	-1.0	-1.3\%
4.9\%	80.9 807	80.2	-0.7	-0.9\%
${ }^{6.2 \%}$	80.7	${ }^{80.0}$	-0.7	-0.9\%
7.4\%	80.6	79.8	-0.8	-1.0\%
8.6\%	78.6 785	78.9 783	${ }^{0.3}$	0.3\%
9.9\%	${ }_{78.4}^{78.5}$	${ }_{78.1}^{78.3}$	-0.3	-0.4\%
12.3\%	78.1	77.6	-0.5	-0.7\%
13.6\%	78.0	77.5	-0.5	-0.7\%
14.8\%	78.0	77.4	-0.6	-0.8\%
16.0\%	77.9	77.3	-0.6	-0.8\%
17.3\%	77.5	77.1	-0.4	-0.5\%
18.5\%	77.1	75.9	-1.2	-1.5\%
${ }^{19.19 \%}$	76.9 76.8	${ }_{75.8}^{75.8}$	-1.11	-1.4\%
${ }^{22.2 \%}$	76.7	75.7	-1.0	-1.3\%
23.5\%	76.7	75.6	-1.1	-1.4\%
24.7\%	76.3	75.6	-0.7	-1.0\%
25.9\%	76.2	75.5	-0.7	-0.9\%
27.2\%	76.0	75.5	-0.5	-0.7\%
28.4\%	75.9	75.5	-0.5	-0.6\%
29.6\%	75.7	75.2	-0.5	-0.6\%
30.9\%	75.7	75.0	-0.6	-0.9\%
32.10 33	75.6 75.4		-0.8 -0.8	${ }_{-1.10 \%}$
34.6\%	${ }_{75.3}$	74.5	-0.8	${ }_{-1.1 \%}$
35.8\%	75.3	74.2	-1.0	-1.4\%
37.0\%	75.3	74.1	-1.1	-1.5\%
38.3\%	75.2	74.1	-1.1	-1.5\%
39.5\%	75.2	74.0	-1.2	-1.6\%
40.7\%	75.0	${ }_{73.9} 7$	-1.1	-1.5\%
${ }_{4}^{42.2 \%}$	${ }_{74.9}$	${ }_{73.9} 7$	${ }_{-1.0}$	- 1.3%
44.4\%	74.9	73.9	-1.0	-1.3\%
45.7\%	74.8	73.9	-0.9	-1.2\%
46.9\%	74.7	${ }^{73.8}$	-0.9	-1.2\%
48.1\%	74.6	${ }_{737}^{73.8}$	-0.9	-1.1\%
49.4\%	74.6	${ }_{737} 73$	-0.8	-1.19\%
50.6\%	74.5	${ }_{73.7}^{736}$	-0.9	-1.2\%
53.1\%	74.2 74.2	${ }_{73.5}^{73.6}$	-0.8 -0.7	-
54.3\%	74.1	73.4	-0.7	-0.9\%
55.6\%	74.0	${ }^{73.4}$	-0.6	-0.9\%
56.8\%	74.0	${ }^{73.4}$	-0.6	-0.9\%
58.0\%	74.0	${ }^{73.3}$	-0.6	-0.8\%
	73.9 73.9	${ }_{73.3}^{73.3}$	-0.6	-0.8\%
${ }_{61.7 \%}$	${ }_{73.9}$	${ }_{73.3}$	-0.6	-0.8\%
63.0\%	73.8	${ }^{73.2}$	-0.7	-0.9\%
64.2\%	73.7	${ }_{73.2}^{73}$	-0.6	-0.8\%
65.4\%	73.7	${ }^{73.2}$	-0.6	-0.8\%
66.7\%	73.6	${ }^{73.1}$	-0.5	-0.7\%
67.9\%	${ }^{73.6}$	${ }_{73.1}$	-0.4	-0.6\%
69.1\%	73.5	73.0	-0.5	-0.7\%
70.4\%	73.5	${ }^{73.0}$	-0.4	-0.6\%
71.6\%	73.3	73.0	-0.3	-0.4\%
72.8\%	${ }_{73,3}$	${ }^{72.9}$	-0.3	-0.5\%
74.19% 75.3%	73.2 73.2	${ }_{728}^{72.9}$	-0.3	-0.4\% ${ }_{-0.5 \%}$
7.5.5\%	${ }_{73.1}^{73.2}$	${ }_{72.8}$	-0.3	-0.5\%
77.8\%	73.1	72.8	-0.3	-0.4\%
79.0\%	73.0	72.7	-0.3	-0.4\%
80.2\%	73.0	72.7	-0.3	-0.4\%
81.5\%	73.0	${ }^{72.6}$	-0.3	-0.5\%
82.7\%	73.0	${ }^{72.6}$	-0.3	-0.5\%
84.0\%	72.9	72.6	-0.2	-0.3\%
${ }^{85.2 \%} 8$	72.8 72.7	72.5 72.4	-0.3 -0.3	-0.4\%
${ }^{80.77 \%}$	${ }_{72.6} 7$	${ }_{72.4}$	-0.2	-0.3\%
88.9\%	72.6	${ }^{2} 2.3$	-0.3	-0.4\%
90.1\%	72.5	72.3	-0.2	-0.2\%
91.4\%	${ }^{72.5}$	${ }_{72} 72$	-0.2	-0.3\%
92.6\%	${ }^{72.3}$	72.2	-0.1	-0.1\%
93.3\%	72.2	${ }^{72.2}$	0.0	0.0\%
95.1\%	72.2	${ }^{72.0}$	-0.2	-0.3\%
96.3\%	72.2	71.6	-0.5	-0.7\%
97.5\%	72.0	71.6	-0.4	-0.5\%
988.8\% 100.0\%	71.8 70.8	${ }_{70.5}^{71.2}$	-0.5 -0.3	-0.0.7\%

Figure SQ12-1b
Trinity River below Lewiston Dam, Monthly Temperature

Percent Exceedance Probability (\%)	October			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	WSIP 2070 Without Proiet	WSIP 2070 With Project	AbsoluteDifference(DEGF)	
	Monthy Temperature	Monthy Temperature		
0.0\%	67.2	58.0		-13.7\%
1.2\%	60.8	57.7	${ }_{-3,1}$	
2.5\%	57.5	57.4	-0.2	-0.3\%
3.7\%	57.5	57.3	-0.2	-0.4\%
4.9\%	57.3	56.7	-0.6	-1.0\%
6.2\%	57.0	56.7	-0.3	-0.5\%
7.4\%	56.8	55.6	-0.3	-0.5\%
8.6\%	56.5	56.1	-0.3	-0.6\%
9.9\%	56.4	56.1	-0.2	-0.4\%
11.17\%	55.0	55.1	0.1	0.2\%
12.3\%	55.9	56.1	0.2	0.3\%
13.6\%	55.8	56.1	0.2	0.4\%
14.8\%	55.8	56.0	0.3	0.5\%
16.0\%	55.8	56.0	0.3	0.5\%
17.3\%	55.6	56.0	0.3	0.6\%
18.5\%	55.5 553 5.	55.7 55 5.6	0.2	0.4\%
19.8\%	55.3	55.6	${ }^{0.3}$	0.5\%
21.0\%	55.2	55.6	0.3	0.6\%
22.2\%	55.2	55.3	0.2	0.3\%
23.5\%	55.1	55.3	0.2	0.3\%
24.7\%	55.1	55.2	0.1	0.3\%
25.9\%	55.0	55.1	0.1	0.2\%
27.2\%	55.0	55.1	0.1	0.3\%
${ }^{28.4 \%}$ 29.6\%	55.9 54.9	54.9 54.9	0.0 0.0	-0.0.0\%
30.9\%	54.8	54.8	0.0	0.0\%
32.1\%	54.8	54.8	0.0	0.0\%
33.3\%	54.5	54.7	0.1	0.3\%
34.6\%	54.5	54.6	0.1	0.2\%
35.8\%	54.5	54.5	0.0	0.0\%
37.0\%	54.5	54.5 545	0.0	0.0\%
38.3\%	54.2	54.5	${ }^{0.3}$	0.6\%
39.5\%	54.2	54.5	${ }^{0.3}$	0.6\%
40.79\%	53.9	54.3	0.4	0.8\%
${ }^{42.0 \%}$	53.8 53.7	54.1 54.0	0.3 0.3	0.6\%
44.4\%	53.4	53.9	0.5	1.0\%
45.7\%	53.2	53.6	0.4	0.7\%
46.9\%	53.1	53.6	0.4	0.8\%
48.1\%	52.9	53.6	0.6	1.2\%
49.4\%	52.9	53.5	0.6	1.2\%
50.6\%	52.8	53.4	0.5	1.0\%
51.9\%	52.7	53.1	0.4	0.8\%
53.1\%	52.7	53.0	0.3	0.6\%
54.3\%	52.5	53.0	0.5	1.0\%
55.6\%	52.5 52.5 5.	53.0 520	0.5	0.9\%
56.8\%	52.4 51.4 1.7	52.9 525 25	0.5	0.9\%
58.0\%	51.8	52.5 525 2.	${ }^{0.8}$	${ }^{1.5 \%}$
59.3\%	51.7 517	${ }_{515}^{52.5}$	0.8	1.5\%
60.5\%	${ }_{51.7}^{51.7}$	${ }_{51.6}^{51.7}$	0.0 0.0	-0.1\%
63.0\%	51.7	51.6	-0.1	-0.1\%
64.2\%	51.5	51.5	0.0	0.0\%
65.4\%	51.2	51.3	0.1	0.1\%
66.7\%	51.2	51.1	-0.1	-0.3\%
67.9\%	51.0	50.8	-0.2	-0.4\%
69.1\%	50.9	50.8	-0.1	-0.3\%
70.4\%	50.9	50.7	-0.3	-0.5\%
71.6\%	50.8	50.4	-0.4	-0.7\%
72.8\%	50.7	50.4	-0.3	-0.7\%
74.1.1\%	${ }_{50.7}$	50.4	-0.3	-0.6\%
75.3\%	50.6	50.3	-0.3	-0.6\%
76.5\%	50.5	50.3	-0.2	-0.5\%
77.8\%	50.5	50.2	-0.2	-0.5\%
79.0\%	${ }^{50.4}$	50.2	-0.2	-0.3\%
80.2\%	50.3	50.1	-0.2	-0.3\%
81.5\%	50.1	50.1	0.0	-0.1\%
82.70% 840%	50.1 50.0	50.0 4.9	-0.1	-0.1\%
84.0\%	50.0	49.9	-0.1	-0.2\%
${ }^{85.20 \%}$	50.0	49.9	-0.1	-0.3\%
${ }^{86.4 \%}$ 87.7\%	50.0	${ }_{49.7} 9.7$	-0.3	${ }^{-0.5 \%}$
88.9\%	49.9	49.6	-0.3	-0.6\%
90.1\%	49.7	49.5	-0.2	-0.3\%
91.4\%	49.6	49.5	-0.1	-0.3\%
92.6\%	49.5	49.5	-0.1	-0.1\%
93.8\%	49.3	49.4	0.2	0.4\%
${ }_{9}^{95.10 \%}$	49.3	48.9 48.8	-0.3 -0.4	-0.78\%
- 96.5	${ }_{49.1}^{49.2}$	${ }_{48.7}$	-0.4	-0.8\%
98.8\%	48.8	48.4	-0.4	-0.8\%
100.0\%	48.8	48.4	0.0	-0.8\%

Table SQ12-1b

PercentExcedanceProbability	February			
	$\begin{aligned} & \text { WSII 2070 Without } \\ & \hline \text { Proiet } \\ & \hline \end{aligned}$	WSIP 2070 With Project		Relative
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	(DEGF)	Difference (\%)
0.0\%	53.6	53.6	0.0	0.0\%
1.2\%	53.5	53.5	0.1	0.1\%
2.5\%	53.1	53.1	0.0	0.1\%
3.7\%	51.8	51.9	0.1	0.1\%
4.9\%	${ }_{51.6}$	${ }_{51.6}$	0.1	0.1\%
6.2\%	51.6	51.6	0.1	0.1\%
7.4\%	51.5	51.6	0.1	0.1\%
8.6\%	51.3	51.6	0.3	0.6\%
9.9\%	51.2	51.6	0.4	0.8\%
11.1\%	51.1	51.3	0.1	0.2\%
123\%	${ }_{51.1}$	51.2	0.1	0.1\%
13.6\%	51.0	51.1	0.1	0.2\%
14.8\%	51.0	51.0	0.0	${ }^{0.0 \% \%}$
- 16.00%	50.8 50.7	51.0 50.9	0.2 0.2	${ }^{0.5 \%}$
18.5\%	50.5	50.8	0.3	0.5\%
19.8\%	50.5	50.7	0.3	0.5\%
21.0\%	50.5	50.7	0.3	0.5\%
22.2\%	50.5	50.7	0.2	0.4\%
23.5\%	50.4	50.5	0.1	0.2\%
24.7\%	50.4	50.5	0.1	0.3\%
25.9\%	50.3	50.5	0.2	0.3\%
27.2\%	50.3	50.4	0.1	0.2\%
28.4\%	50.3	50.4	0.1	0.2\%
29.6\%	50.3	50.3	0.0	0.0\%
30.9\%	50.2	50.3	0.1	0.1\%
32.1\%	50.1	50.2	0.1	0.3\%
33.3\%	50.0	${ }_{50.2}^{50.2}$	0.2	0.3\%
34.6\%	50.0	${ }_{50.1}^{50.1}$	0.1	0.2\%
35.8\%	50.0	50.1	0.0	0.1\%
37.0\%	49.9	50.0	0.1	0.2\%
38.3\%	49.7	50.0	0.4	0.7\%
39.5\%	49.7	50.0	0.3	0.7\%
40.7\%	49.6	49.7	0.1	0.2\%
${ }^{42.0 \%}$	49.6 49.3	49.7 49.6	${ }_{0}^{0.1}$	${ }_{0}^{0.7 \% \%}$
44.4\%	49.2	49.6	0.4	0.8\%
45.7\%	49.2	49.6	0.4	0.9\%
46.9\%	49.0	49.2	0.2	0.4\%
48.1\%	48.8	49.0	0.2	0.5\%
49.4\%	48.8	48.9	0.2	0.3\%
50.6\%	48.8	48.8	0.1	0.1\%
51.9\%	48.7	48.8	0.1	0.3\%
53.19\%	48.6	48.6	0.0	0.1\%
54.3\%	48.5	48.6	${ }^{0.1}$	${ }^{0.2 \%}$
55.6\%	48.4 48.4	48.6 48.6	0.2 0.2	0.4.4\%
58.0\%	48.3	48.5	0.2	0.3\%
59.3\%	48.1	48.4	0.3	0.6\%
${ }^{60.5 \%}$	48.1	${ }^{48.1}$	0.0	0.1\%
${ }^{61.7 \%}$	48.1	${ }^{48.1}$	0.0	0.0\%
63.0\%	48.1	48.1	0.0	0.0\%
64.2\%	48.0	48.0	0.0	0.0\%
65.4\%	47.9	48.0	0.1	0.1\%
66.7\%	47.9	48.0	0.1	0.2\%
67.9\%	47.8	48.0	0.1	0.2\%
69.1\%	47.7	47.9	0.2	0.3\%
70.4\%	47.7	47.8 47.5	${ }_{0.1}^{0.1}$	
72.8\%	47.4	47.4	0.0	0.0\%
74.1\%	47.1	47.0	0.0	-0.1\%
75.3\%	46.9	46.9	0.0	0.0\%
76.5\%	46.8	46.8	0.0	0.0\%
77.8\%	46.8	46.8	0.0	0.0\%
79.0\%	46.6	46.5	-0.2	-0.3\%
80.2\%	46.3	46.3	0.0	-0.1\%
81.5\%	46.1	46.2	0.1	0.2\%
82,7\%\% 84.00	46.1 45.8	${ }_{46.1}^{46.1}$	0.0 0.2	${ }^{0.19 \%}$
85.2\%	45.5	45.8	0.4	0.9\%
86.4\%	45.3	45.5	0.2	0.4\%
87.7\%	44.7	44.7	0.0	0.0\%
88.9\%	44.4	44.4	0.0	0.1\%
90.1\%	44.4	44.4	0.0	0.0\%
91.4\%	44.2	44.3	0.0	0.1\%
92.6\%	44.1	44.2	0.1	0.1\%
93.8\%	44.1	44.2	0.1	0.2\%
95.1\%	43.7	44.1	0.4	0.9\%
${ }^{96.3 \%} 9$	43.7 43.6	43.8 43.7	${ }_{0}^{0.1}$	${ }_{0}^{0.3 \%}$
98.8\%	43.4	43.5	0.1	0.2\%
100.0\%	43.4	43.5	0.1	0.2\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	June			
	${ }^{\text {WSIP } 2077 \text { W. Without }}$	WSIP 2070 With Project	Absolute	Relative
	Monthy Temperature	Monthy Temperature	Difiererce (DEEFF)	Difference (\%)
0.0\%	57.0	57.9	0.9	1.6\%
1.2\%	56.9	57.4	0.5	0.8\%
2.5\%	56.8	57.1	0.3	0.5\%
3.7\%	56.7	56.9	0.1	0.2\%
4.9\%		55.8	1.3	
6.2\%	55.4	55.8	0.4	0.7\%
7.4\%	55.4	55.6	0.2	0.4\%
8.6\%	55.1	55.5	0.4	0.8\%
9.9\%	55.1	55.4	${ }^{0.3}$	0.6\%
${ }_{1}^{11.12 \%}$	55.1 555	55.1 5.5	0.0	0.1\%
13.6\%	53.7	54.2	0.5	0.9\%
14.8\%	53.2	53.2	-0.1	-0.1\%
16.0\%	53.1	53.1	0.0	0.0\%
17.3\%	52.9	52.9	0.0	0.0\%
18.5\%	52.9	52.9	0.0	0.1\%
19.8\%	${ }_{52.7}$	${ }_{52.9}$	0.2	0.4\%
21.0\%	52.7	52.7	0.0	0.1\%
22.2\%	52.6	52.6	0.0	0.0\%
23.5\%	52.6	52.5	-0.1	-0.2\%
24.7\%	52.5	52.4	-0.1	-0.1\%
25.9\%	52.5	52.4	-0.1	-0.1\%
27.2\%	52.4	${ }_{52.4}^{52.4}$	-0.1	-0.1\%
28.4\%	52.4	52.1	-0.2	-0.4\%
29.6\%	52.3	52.1	-0.2	-0.4\%
30.9\%	52.2 52.1 1	52.0 510	-0.3	-0.5\%
32.1\%	52.19	51.9 519	-0.2	${ }^{-0.4 \%}$
34.6\%	51.9	51.8	-0.1	-0.2\%
35.8\%	51.8	51.7	-0.1	-0.1\%
37.0\%	51.7	51.6	-0.1	-0.2\%
38.3\%	51.6	51.6	0.0	0.0\%
39.5\%	51.5	51.6	0.0	0.1\%
40.7\%	51.5	51.4	0.0	0.0\%
42.0\%	51.2	51.3	0.2	0.3\%
${ }^{43.2 \%}$	$\begin{array}{r}51.2 \\ 51.1 \\ \hline\end{array}$	51.3 51.3	0.1 0.1	- 0.2%
45.7\%	51.0	50.9	-0.1	-0.1\%
46.9\%	50.7	50.7	0.0	0.0\%
48.1\%	50.6	50.7	0.1	0.1\%
49.4\%	${ }_{50.6}$	50.7	${ }^{0.1}$	0.19\%
50.6\%	50.6	50.6	0.0	0.0\%
51.9\%	50.6	50.5	0.0	-0.1\%
53.1\%	50.5	50.5	0.0	0.0\%
54.3\%	50.5	50.5	0.0	0.0\%
55.6\%	50.4	50.3	-0.1	-0.2\%
56.8\%	50.1	50.0	-0.1	-0.2\%
58.0\%	50.0	49.7	-0.3	-0.7\%
59.3\%	50.0	49.6	-0.4	-0.8\%
${ }^{60.50 \%}$	49.8			
61.70\%	49.7	49.5	-0.2	-0.4\%
64.2\%	49.5	49.2	-0.2	-0.5\%
65.4\%	49.4	49.2	-0.3	-0.5\%
66.7\%	49.3	49.0	-0.3	-0.5\%
67.9\%	49.2	49.0	-0.2	-0.4\%
69.1\%	49.0	48.8	-0.3	-0.6\%
70.4\%	49.0	48.7	-0.3	-0.6\%
71.6\%	48.7	48.7	-0.1	-0.2\%
72.8\%	48.7	48.2	-0.5	-1.0\%
74.19% 75.3%	48.3 48.2	${ }_{479}^{48.0}$	-0.2	-0.4\%
76.5\%	47.9	47.8	0.0	-0.1\%
77.8\%	47.8	47.8	-0.1	-0.1\%
79.0\%	47.7	47.6	0.0	0.0\%
80.2\%	47.6	47.6	0.0	0.0\%
81.5\%	47.6	47.5	0.0	-0.1\%
82.7\%	47.4	47.5	0.0	0.1\%
84.0\%	47.4	47.4	0.0	0.1\%
85.2% 86.4%	47.4 47.2	47.4 47.2	0.0 0.0	-
${ }^{864.4 \%}$	47.0	47.0	0.0	-0.1\%
88.9\%	46.4	46.5	0.0	0.1\%
90.1\%	46.3	46.3	0.0	0.0\%
91.4\%	46.1	46.1	0.0	0.0\%
92.6\%	4.0	46.0	0.0	0.0\%
93.8\%	45.9	46.0	0.1	0.1\%
95.1\%	45.6	45.7	0.0	0.1\%
96.3\%	45.5	45.4	-0.1	-0.2\%
97.5\%	45.2	45.2	0.0	0.1\%
988.8\% 100.0\%	44.9	44.8 44.8	-0.1 -0.1	-0.3\%

Table SQ12-1b
Trinity River below Lewiston Damen Monthly Temperature

PercentExcedanceProbability	June to September			
	WSIP 2070 Wethout	WSIP 2070 With Project	Absolute	
	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGFF) } \end{aligned}$	Difference (\%)
0.0\%	58.6	57.7	-0.8	-1.5\%
1.2\%	57.9	57.5	-0.3	-0.5\%
2.5\%	57.8	57.0	-0.8	-1.4\%
3.7\%	56.5	55.6	-0.9	-1.7\%
4.9\%	55.6	55.5	-0.1	-0.2\%
6.2\%	55.3	55.1	-0.2	-0.4\%
7.4\%	55.2	54.3	-0.9	-1.6\%
8.6\%	54.8	54.1	-0.8	-1.4\%
9.9\%	54.2 541	53.7 535 53	-0.4	-0.8\%
12.3\%	54.0	53.4	-0.6	-1.1\%
13.6\%	53.5	53.4	-0.2	-0.3\%
14.8\%	53.4	53.3	-0.1	-0.2\%
16.0\%	53.2	53.2	0.0	0.1\%
17.3\%	53.2	53.1	0.0	-0.1\%
18.5\%	53.2	53.1	-0.1	-0.2\%
19.8\%	53.0	52.9	-0.2	-0.3\%
21.0\%	52.9	52.8	-0.1	-0.2\%
22.2\%	52.9	52.7	-0.1	-0.2\%
23.5\%	52.8	52.7	-0.1	-0.2\%
24.7\%	52.7	52.7	0.0	-0.1\%
25.9\%	+52.6	$\begin{array}{r}52.7 \\ 52.5 \\ \hline\end{array}$	0.0	0.1\%
27.2% 28.4%	52.5 52.5	52.6 52.5	${ }_{0.1}^{0.1}$	${ }_{0.1 \%}^{0.2 \%}$
29.6\%	52.4	52.5	0.1	0.3\%
30.9\%	52.4	52.4	0.0	0.1\%
32.1\%	52.4	52.3	-0.1	-0.1\%
33.3\%	52.3	52.3	0.0	0.0\%
34.6\%	52.2	52.2	0.0	0.0\%
35.8\%	52.2	52.2	0.0	0.0\%
37.0\%	52.2	52.2	0.0	0.0\%
38.3\%	52.2	52.2	0.0	0.0\%
${ }^{39.5 \%}$			-0.1	-0.1\%
40.70\%	52.1	52.1		
42.0\%	52.0 52.0	52.0 51.8	${ }_{-0.2}^{0.0}$	-0.4\%
44.4\%	51.6	51.8	0.1	0.2\%
45.7\%	51.6	51.7	0.1	0.2\%
46.9\%	51.5	51.4	-0.1	-0.3\%
48.1\%	51.4	51.3	-0.1	-0.1\%
49.4\%	51.2	${ }_{51.1}$	-0.1	-0.1\%
50.6\%	51.2	51.1	-0.1	-0.1\%
51.9\%	51.1	51.0	-0.2	-0.3\%
	51.0 50.9	50.9 50.7	-0.1	-0.2\%
55.6\%	50.8	50.7	-0.1	-0.3\%
56.8\%	50.8	50.6	-0.2	-0.3\%
58.0\%	50.8	50.6	-0.2	-0.3\%
59.3\%	50.7	50.6	-0.1	-0.3\%
60.5\%	50.7	50.5	-0.1	-0.3\%
61.7\%	50.7	50.4	-0.2	-0.5\%
63.0\%	50.6	50.4	-0.2	-0.4\%
64.2\%	50.5	50.4	-0.1	-0.2\%
${ }^{65.4 \%}$	50.4	50.3	-0.1	-0.1\%
66.7\%\%	50.2	${ }^{50.3}$	0.1	0.2\%
67.90	50.2	50.3	0.1	${ }^{0.2 \%}$
70.4\%	50.0 50.0	50.2 50	${ }_{0.1}^{0.1}$	0.2\%
71.6\%	50.0	50.1	0.1	0.2\%
72.8\%	49.9	49.8	0.0	-0.1\%
74.1\%	49.8	49.7	0.0	-0.1\%
75.3\%	49.7	49.7	0.0	-0.1\%
76.5\%	49.7	49.7	0.0	-0.1\%
77.8\%	49.7	49.6	-0.1	-0.2\%
-79.0\%	49.6 49.5	${ }_{49.5}^{49.6}$	-0.1 0.0	$\stackrel{-0.0 \%}{-0.0 \%}$
81.5\%	49.5	49.4	-0.1	-0.2\%
82.7\%	49.5	49.3	-0.2	-0.3\%
84.0\%	49.5	49.3	-0.2	-0.3\%
85.2\%	49.4	49.3	-0.1	-0.2\%
86.4\%	49.3	49.3	0.0	0.0\%
87.7\%	49.3	49.2	-0.1	-0.2\%
${ }^{88.9 \%}$	49.3	49.2	-0.1	${ }^{-0.2 \%}$
90.1\%	49.3	49.0	-0.2	-0.4\%
91.4\%	49.0	49.0	0.0	0.0\%
${ }_{93.8 \%}^{92.6 \%}$	48.9 48.9	48.9 48.8	-0.1 -0.1	-0.1\%
95.1\%	48.9	48.8	-0.1	-0.2\%
${ }^{96.3 \%}$	48.9	48.8	-0.1	-0.2\%
97.5\%	48.8	48.8	0.0	0.0\%
98.8\%	48.5	48.7	${ }^{0.3}$	0.5\%
100.0\%	48.1	48.3	0.2	0.4\%

Percent	Juy to September		Probability of Exceedance		August to September				
	WSIP 2070 Without	WSIP 2007 With Project			Percent	WSIP 2070 Without			
Exceedance	Proiect	Wsip 2070 With Project			deal		WStip 2070 With Project	Difference	Relative
Probability (\%)	Monthly Temperature (DEGF)	Monthy Temperature (DEEFF)	(DEGF)	Difference (\%)	Probability (\%)	$\left.\begin{array}{c}\text { Monthly Temperature } \\ \text { (DEGF) }\end{array}\right)$	Monthly Temperature (DEGF)	(DEGF)	Difference (\%)
0.0\%	59.6	58.0	${ }^{-1.6}$	-2.6\%	0.0\%	61.2	59.2	-2.0	-3.3\%
1.2\%	58.6	57.6	-1.0	-1.7\%	1.2\%	59.6	57.5	-2.1	-3.9\%
2.5\%	58.2	57.0	-1.2	-2.0\%	2.5\%	59.3	57.5	-1.8	-3.1\%
3.7\%	56.4	55.6	-0.8	-1.4\%	3.7\%	56.8	56.9	0.1	0.2\%
4.9\%	55.8	55.0	-0.7	-1.3\%	4.9\%	56.8	55.3	-1.5	-2.6\%
6.2\%	55.6	54.2	-1.4	-2.5\%	6.2\%	56.7	54.9	-1.8	-3.2\%
7.4\%	54.9	54.1	-0.8	-1.5\%	7.4\%	56.0	54.7	-1.2	-2.2\%
8.6\%	54.7	54.0	-0.7	-1.2\%	8.6\%	55.9	54.5	-1.3	-2.4\%
9.9\%	54.6	53.9	-0.7	-1.3\%	9.9\%	54.7	54.3	-0.4	-0.8\%
11.1\%	54.3	53.7	-0.6	-1.1\%	11.1\%	54.7	54.3	-0.4	-0.7\%
12.3\%	54.0	53.7	-0.3	-0.6\%	12.3\%	54.6	54.2	-0.5	-0.9\%
13.6\%	53.9	53.5	-0.3	-0.6\%	13.6\%	54.2	54.1	-0.1	-0.2\%
14.8\%	53.7	53.5	-0.2	-0.4\%	14.8\%	54.1	53.9	-0.1	-0.3\%
16.0\%	53.7	53.5	-0.2	-0.4\%	16.0\%	53.9	53.9	-0.1	-0.1\%
17.3\%	53.7	53.4	-0.2	-0.4\%	17.3\%	53.9	53.9	0.0	0.0\%
18.5\%	53.4	53.4	0.0	-0.1\%	18.5\%	53.9	53.8	0.0	-0.1\%
19.8\%	53.4	53.3	-0.1	-0.3\%	19.8\%	53.7	53.8	0.1	0.1\%
21.0\%	53.3	53.3	-0.1	-0.1\%	21.0\%	53.6	53.7	0.0	0.1\%
22.2\%	53.2	53.1	0.0	-0.1\%	22.2\%	53.6	53.6	-0.1	-0.1\%
23.5\%	53.1	52.9	-0.2	-0.4\%	23.5\%	53.6	53.2	-0.4	-0.8\%
24.7\%	53.0	52.8	-0.1	-0.3\%	24.7\%	53.5	53.2	-0.3	-0.6\%
25.9\%	52.9	52.8	-0.1	-0.2\%	25.9\%	53.4	53.0	-0.4	-0.8\%
27.2\%	52.8	52.8	0.0	0.0\%	27.2\%	53.3	52.9	-0.4	-0.8\%
28.4\%	52.8	52.7	-0.1	-0.2\%	28.4\%	53.0	52.8	-0.2	-0.3\%
29.6\%	52.8	52.7	-0.1	-0.2\%	29.6\%	52.8	52.8	0.0	-0.1\%
30.9\%	52.8	52.6	-0.1	-0.2\%	30.9\%	52.7	52.6	-0.1	-0.2\%
32.1\%	52.6	52.6	0.0	0.0\%	32.1\%	52.7	52.5	-0.2	-0.3\%
33.3\%	52.6	52.4	-0.1	-0.3\%	33.3\%	52.5	52.5	0.0	0.1\%
34.6\%	52.6	52.4	-0.2	-0.3\%	34.6\%	52.4	52.5	0.1	0.2\%
	52.5				35.8\%	52.3	52.4		0.1\%
37.0\%	52.2	52.1	0.0	${ }^{-0.1 \%}$	37.0\%	52.3	52.2	-0.2	${ }^{-0.3 \%}$
38.3\%	52.0	52.1	0.0	0.1\%	-	52.3	52.1	-0.3	-0.5\%
39.5\%	51.9	51.9	0.0	0.0\%	39.5\%	52.0	51.9	-0.1	-0.2\%
40.7\%	51.9	51.8	0.0	-0.1\%	40.7\%	51.9	51.8	-0.1	-0.2\%
${ }^{42.0 \%}$	51.8 51.8	51.8 51.7	0.0 -0.1	-0.1\%	${ }^{42.0 \%}$	51.9 51.8	51.7 51.6	-0.2	-0.4\%
44.4\%	51.8	51.7	-0.1	-0.2\%	44.4\%	51.7	51.5	-0.2	-0.5\%
45.7\%	51.7	51.6	-0.1	-0.2\%	45.7\%	51.7	51.4	-0.2	-0.5\%
46.9\%	51.7	51.5	-0.2	-0.3\%	46.9\%	51.7	51.4	-0.3	-0.5\%
48.1\%	51.6	51.4	-0.2	-0.4\%	48.1\%	51.6	51.4	-0.2	-0.4\%
	51.4	51.3	-0.1	-0.2\%	4.4.4\%	51.5	${ }_{51.3}^{51.3}$	-0.2	${ }^{-0.49 \%}$
50.6\%	51.3	51.3	0.0	0.1\%	50.6\%	51.5	51.2		-0.5\%
51.9\%	51.3 512	51.3 512 1.2	0.0	${ }_{0}^{0.1 \%}$	年51.9\%	51.3 513 1.3	${ }_{51.1}^{51.1}$	-0.2	-0.4\%
54.3\%	51.2	51.2	0.0	0.0\%	54.3\%	51.3	51.0	-0.3	-0.6\%
55.6\%	51.2	51.2	0.0	0.1\%	55.6\%	51.1	50.9	-0.3	-0.5\%
56.8\%	51.1	51.2	0.1	0.1\%	56.8\%	51.1	50.8	-0.3	-0.5\%
58.0\%	51.1	51.1	0.1	0.1\%	58.0\%	50.7	50.8	0.1	0.2\%
59.3\%	$5^{51.1}$	51.0	0.0	-0.1\%	59.3\%	50.6	50.7	0.1	0.1\%
60.5\%	50.9	51.0	0.0	0.1\%	60.5\%	50.6	50.6	0.1	0.1\%
61.7\%	50.9	50.9	0.0	0.1\%	61.7\%	50.5	50.6	0.0	0.1\%
63.0\%	50.8	50.9	0.1	0.1\%	63.0\%	50.5	50.5	0.0	0.0\%
64.2\%	50.7	50.8	0.1	0.3\%	64.2\%	50.5	50.4	-0.1	-0.2\%
65.4\%	50.7	50.6	0.0	-0.1\%	65.4\%	50.5	50.4	-0.1	-0.2\%
${ }^{667.7 \%}$	${ }_{50.6}^{50.6}$	50.6	0.0	0.0\%	${ }^{66.7 \%}$	50.5	${ }_{50.3}$	-0.2	-0.4\%
67.9\%	${ }^{50.6}$	50.5	0.0	0.0\%	67.9\%	50.4	50.2	-0.2	-0.4\%
69.1\%	50.4	50.5	0.1	0.1\%	69.1\%	50.4	50.2	-0.2	-0.4\%
70.4\%	50.4	50.4	0.0	-0.1\%	70.4\%	50.3	50.1	-0.1	-0.2\%
71.6\%	50.4	${ }_{50.3}$	0.0	-0.1\%	71.6\%	50.2	50.1	-0.1	-0.2\%
72.8\%	50.4	50.3	-0.1	-0.1\%	72.8\%	50.1	50.1	0.0	0.0\%
74.1\%	50.3	50.3	-0.1	-0.2\%	74.1\%	50.1	50.1	0.0	0.0\%
75.3\%	50.3	50.2	0.0	-0.1\%	75.3\%	50.0	50.0	0.1	0.1\%
${ }^{76.5 \%}$	50.3	50.2 50.2	0.0	${ }^{-0.1 \%}$	76.5\%	50.0 50.0	50.0 49.9	0.0 .0 .1	0.0.0\%
79.0\%	50.1	50.2	0.1	0.2\%	79.0\%	50.0	49.8	-0.1	-0.3\%
80.2\%	50.1	50.2	0.1	0.2\%	80.2\%	49.9	49.8	-0.1	-0.3\%
81.5\%	50.0	50.2	0.1	0.3\%	81.5\%	49.9	49.8	-0.1	-0.2\%
82.7\%	50.0	50.0	0.0	0.1\%	82.7\%	49.9	49.8	-0.1	-0.2\%
84.0\%	49.9	50.0	0.1	0.2\%	84.0\%	49.8	49.8	0.0	0.0\%
85.2\%	49.9	49.9	0.0	0.0\%	85.2\%	49.7	49.6	-0.1	-0.2\%
86.4\%	49.9	49.9	0.0	0.0\%	86.4\%	49.7	49.6	-0.1	-0.3\%
87.7\%	49.8	49.9	0.0	0.1\%	87.7\%	49.7	49.5	-0.2	-0.3\%
88.9\%	49.8	49.8	0.0	0.0\%	88.9\%	49.7	49.5	-0.2	-0.3\%
90.19\%	49.7	49.7	0.0	0.0\%	90.1\%	49.6	49.5	-0.2	-0.4\%
91.4\%	49.7	49.6	-0.1	-0.1\%	91.4\%	49.6	49.4	-0.2	-0.3\%
93.8\%	49.6	${ }_{49.5}^{49.6}$	-0.1	-0.2\%	-92.6\%	${ }_{49.4}$	${ }_{49.3}^{49.4}$	-0.1	-0.1\%
95.1\%	49.6	49.5	-0.1	-0.1\%	95.1\%	49.3	49.3	0.0	0.0\%
96.3\%	49.5	49.4	-0.1	-0.2\%	96.3\%	49.3	49.2	-0.1	-0.1\%
97.5\%	49.4	49.3	-0.1	-0.1\%	97.5\%	49.3	49.0	-0.3	-0.5\%
98.8\%	49.2	49.1	-0.1	-0.1\%	${ }^{98.8 \%}$	49.2	49.0	-0.3	${ }^{-0.5 \%}$
100.0\%	48.9	48.8	-0.2	-0.4\%	100.0\%	49.0	48.7	-0.3	0.5\%

Figure SQ13-1b
Clear Creek below Whiskeytown, Monthly Temperatur

Table SQ13-1b
Clear Creek below Whiskeytown, Monthly Temperature

October				
Percent	WSIP 2070 Without	WSIP 2070 With	Absolute	
Probability	Monthy Temperature	Monthy Temperature	(DEGF)	Difference (
(\%)	(DEEF)	(DEGF)		
0.0\%	60.9	60.9	0.0	0.0\%
1.2\%	60.7 59.4	58.0 572	${ }^{-2.8}$	-4.6\%
${ }^{2.5 \%}$	59.4 56.8	57.2 56.8	-2.2 0.0	-3.1\%
4.9\%	56.2	56.6	0.4	0.7\%
6.2\%	56.1	56.0	-0.1	-0.2\%
7.4\%	56.1	55.8	-0.2	-0.4\%
8.6\%	55.8 557 5.7	55.8 555 55	0.0	0.0\%
9.9\%	55.7 55.4	55.5 55.4	-0.2	${ }^{-0.3 \%}$
- 11.120	55.4 55.3	55.4 55.4	${ }_{0} 0.0$	0.1\%
13.6\%	${ }_{55.3}$	55.3	0.0	0.0\%
14.8\%	55.1	55.2	0.1	0.1\%
16.0\%	55.1	55.2	0.1	0.1\%
17.3\%	55.1	55.1	0.1	0.1\%
18.5\%	55.0	55.1	0.1	0.1\%
19.8\%	55.0	54.9	-0.1	-0.1\%
${ }^{21.0 \%}$	54.9 54.8	54.8 54.8	-0.1	-
22.5\%	54.7	54.8 54.5	-0.2	-0.4\%
24.7\%	54.6	54.5	-0.2	-0.3\%
25.9\%	54.2	54.4	0.2	0.4\%
27.2\%	54.2	54.3	0.2	0.3\%
28.4\%	54.0	54.1	0.1	0.2\%
29.6\%	54.0	54.0	-0.1	-0.1\%
30.9\%	54.0 53.9	53.9 53.9	0.0 0.0	-0.0\%
33.3\%	53.9	53.8	-0.1	-0.1\%
34.6\%	53.8	53.7	-0.2	-0.3\%
35.8% 370%	53.6 53.5	53.5 53.5	-0.1	-0.0\%
38.3\%	53.5	53.4	-0.1	-0.1\%
39.5\%	53.4	53.4	0.0	-0.1\%
40.7\%	53.4	53.3	0.0	-0.1\%
42.0\%	53.4	53.3	-0.1	-0.1\%
43.2\%	53.3	${ }_{53}^{53}$	0.0	0.0\%
${ }^{44.4 \%}$	${ }_{53.2}^{53.2}$	53.2 52.9	0.0 -0.3	-0.0\%
46.9\%	53.1	52.6	-0.5	-0.9\%
48.1\%	53.0	52.5	-0.4	-0.8\%
49.4\%\% 50.6\%	$\begin{array}{r}52.7 \\ 52.6 \\ \hline\end{array}$	52.5 52.4	-0.2 -0.2	- $\begin{aligned} & -0.3 \% \\ & -0.3 \%\end{aligned}$
51.9\%	52.5	52.3	-0.1	-0.2\%
53.1\%	52.5	52.3	-0.1	-0.3\%
54.3\%	52.1	52.3	0.2	0.3\%
55.6\%	52.1	52.2	0.1	0.2\%
56.8\%	52.1	52.2	0.0	0.1\%
58.0\%	52.0 51.0	52.0	0.0	0.0\%
59.5\%	51.9 51.7	52.0 51.8	${ }_{0}^{0.1}$	0.2\%
61.7\%	51.7	51.7	0.0	0.0\%
63.0\%	51.6	51.6	0.0	-0.1\%
64.20% 65.4%	51.6 51.5 15	51.5 515 515	-0.1	- $0.0 .2 \%$
66.7\%	51.5	51.5	0.0	0.0\%
67.9\%	51.5	51.5	0.0	0.0\%
69.1\%	51.5	51.4	0.0	-0.1\%
70.4\%	51.5	51.3	-0.1	-0.2\%
71.6\%	51.2	51.3	0.1	0.1\%
72.8\%	51.2	51.2	0.0	0.1\%
74.10% 75.3%	51.1 51.0	51.1 51.1	${ }_{0}^{0.1}$	${ }_{\text {coin }}^{0.3 \%}$
76.5\%	50.9	51.1	0.2	0.3\%
77.8\%	50.9	50.9	0.0	0.0\%
79.0\%	50.9	50.8	0.0	0.0\%
80.2\%	50.8 508	50.8 508 508	0.0	0.0\%
81.5\%	50.8	50.8	0.0	0.0\%
827.7\%	50.8 50.8	50.7 50.7	-0.1 -0.1	${ }^{-0.2 \%}$
85.2\%	50.7	50.7	0.0	0.0\%
86.4\%	50.7	50.7	0.0	0.0\%
87.7\%	50.7	50.6	0.0	-0.1\%
88.9\%	50.6	50.6	-0.1	-0.1\%
${ }^{90.19 \%}$	50.6 50.5	50.5 50.5	-0.1	-0.1\%
92.6\%	50.5	50.3	-0.1	-0.3\%
93.\%	50.4	50.2	-0.2	0.3\%
95.1\%	50.4	50.1	-0.2	-0.5\%
96.3\%	${ }_{50.3}^{50.3}$	50.1	-0.2	-0.4\%
97.5\%	50.3	50.0	-0.3	-0.7\%
98.8\%	50.1	49.7	-0.3	-0.7\%
100.0\%	50.1	49.7	0.0	-0.7\%

		January		
Percent	${ }_{\text {WSIP } 2070 \text { Without }}^{\text {Proiet }}$	WSIP 2070 With Project	Absolute	
$\begin{aligned} & \text { Probability } \\ & (\%) \end{aligned}$	Monthly Temperature	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGFG) } \end{aligned}$	Difference (\%)
0.0\%	50.8	50.7	${ }^{0.1}$	-0.1\%
1.2\%	49.4	50.5	1.1	2.3\%
2.5\%	49.2	49.4	0.2	0.4\%
3.7\%	48.6	48.8	0.2	0.4\%
4.9\%	47.9	47.9	0.0	0.0\%
6.2\%	47.4	47.7	0.3	0.6\%
7.4\%	47.4	47.4	0.1	0.2\%
8.6\%	47.2	47.1	-0.1	-0.1\%
9.9\%	47.2	47.1	0.0	-0.1\%
111.19\%	47.0	47.1	0.1	0.2\%
${ }^{12.35 \%}$	47.0	46.9	-0.1	${ }^{-0.2 \%}$
13.6\%	46.7	46.8	0.1	0.2\%
14.8\%	46.7	46.7	0.0	-0.1\%
16.0\%	46.7	46.6	-0.1	-0.2\%
17.3\%	46.5	46.5	0.0	0.0\%
18.5\%	46.5	46.5	0.0	-0.1\%
19.8\%	46.4	46.4	0.1	0.1\%
21.0\%	46.4	46.4	0.0	0.1\%
22.2\%	46.4	46.4	0.0	0.0\%
23.5\%	46.3	46.4	0.0	0.1\%
24.7\%	46.3	46.3	0.0	0.0\%
25.9\%	46.3	46.3	0.0	0.0
27.2\%	46.2	46.2	0.1	0.1\%
28.4\%	46.1	46.2	0.1	0.3\%
29.6\%	46.1	46.1	0.1	0.1\%
30.9\%	46.1	46.1	0.0	0.1\%
32.1\%	46.0	46.0	0.0	-0.1\%
33.3\%	46.0	46.0	-0.1	-0.2\%
34.6\%	46.0	45.9	0.0	-0.1\%
35.8\%	46.0	45.9	-0.1	-0.2\%
37.0\%	45.9	45.9	0.0	-0.1\%
38.3\%	45.9	45.9	0.0	0.0\%
39.5\%			0.0	0.0\%
40.7\%	45.6	45.8	0.1	0.3\%
42.0\%	45.6	${ }_{456}^{45.7}$	0.1	${ }_{0}^{0.2 \%}$
43.2\%	45.6	45.6	0.0	0.1\%
44.4\%	45.6	45.6	0.0	-0.1\%
45.7\%	45.6	45.6	0.0	-0.1\%
46.9\%	45.6	45.5	0.0	-0.1\%
48.1\%	45.5	45.5	0.0	0.0\%
49.4\%	45.5	45.5	-0.1	-0.2\%
50.6\%	45.5	45.4	0.0	-0.1\%
51.9\%	45.4	45.4	0.0	0.0\%
	${ }_{45.4}^{45.4}$	${ }_{45.3}^{45.4}$	-0.1 -0.1	${ }^{-0.1 \%}$
55.6\%	45.4	45.3	-0.1	-0.2\%
56.8\%	45.3	45.2	-0.1	-0.2\%
58.0\%	45.3	45.2	-0.1	-0.1\%
59.3\%	45.2	45.2	0.0	0.0\%
60.5\%	45.2	45.2	0.0	-0.1\%
61.7\%	45.2	45.2	0.0	0.0\%
63.0\%	45.2	45.1	0.0	-0.1\%
64.2\%	45.2	45.1	-0.1	-0.1\%
65.4\%	45.1	45.1	0.0	-0.1\%
- 66.7%	45.1	45.1	0.0	0.0\%
${ }^{67.9 \%}$	45.1	45.0	0.0	0.0\%
69.19\%	45.0 450	45.0	0.0	0.0\%
70.4\%	45.0 450	${ }_{450} 45$	0.0	-0.1\%
71.6\%	45.0	45.0	0.0	0.0\%
72.8\%	45.0	45.0	-0.1	-0.1\%
74.1\%	45.0	44.9	-0.1	-0.2\%
75.3\%	44.9	44.9	-0.1	-0.1\%
76.5\%	44.9	44.9	-0.1	-0.1\%
77.8\%	44.9	44.8	0.0	-0.1\%
79.0% 8020	44.9	44.8	0.0	0.0\%
80.2\%	44.8	44.8	0.0	-0.1\%
81.5\%	44.8	44.8	0.0	-0.1\%
82.7% 84.00	44.8 448	44.7 44.7	-0.1	-0.2\%
84.0\%	44.8	44.7	-0.1	${ }^{-0.1 \%}$
85.2\%	44.7	44.7	0.0	0.1\%
${ }^{86.4 \%}$	44.6	44.7	0.0	0.1\%
87.7\%	44.6	44.6	0.0	0.0\%
88.9\%	44.6	44.6	0.0	0.0\%
90.1\%	44.6	44.5	0.0	-0.1\%
	44.6	44.5	0.0	-0.1\%
${ }_{93.8 \%}^{92.6 \%}$	44.5	44.5 44.5	0.0 0.0	-0.1\%
95.1\%	44.5	44.4	-0.1	-0.2\%
96.3\%	44.4	44.4	0.0	-0.1\%
97.5\%	44.3	44.2	0.0	-0.1\%
98.8\%	43.8 438	${ }_{438}^{43.8}$	0.0	0.0\%
100.0\%	43.8	43.8	0.0	0.0\%

Table SQ13-1b

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	February			
	WSIP 2070 Wethout	WSIP 2070 With Project	Absolute	
	Monthly Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
(\%)	513	591	77	
0.0\%	51.3	59.1	7.7	${ }_{5}^{15.19 \%}$
${ }^{1.2 \% \%}$	${ }_{48.3}^{49.1}$	${ }_{491}^{51.6}$	2.5	${ }^{5.2 \%}$
3.7\%	48.0	48.2	0.1	0.3\%
4.9\%	47.6	48.0	0.4	0.8\%
6.2\%	47.3	47.4	0.0	0.1\%
7.4\%	47.1	47.0	-0.1	-0.2\%
8.6\%	46.9	46.9	0.0	0.0\%
9.9\%	46.7	46.8	0.0	0.1\%
11.1\%	46.7	46.7	0.0	-0.1\%
12.3% 13.6%	46.6 46.6	46.7 46.6	0.0 0.0	${ }_{0}^{0.0 \% \%}$
14.8\%	46.6	46.6	0.0	0.1\%
16.0\%	46.4	46.4	0.0	-0.1\%
17.3\%	46.3	46.3	0.0	0.0\%
18.5\%	46.3	46.3	0.0	0.1\%
19.8\%	46.2	46.2	0.0	0.0\%
21.0\%	46.2	46.1	-0.1	-0.2\%
22.2\%	46.2	46.1	-0.1	-0.2\%
23.5\%	46.1	46.1	-0.1	-0.1\%
24.7\%	46.1	46.1	0.0	-0.1\%
25.9\%	46.1	46.0	-0.1	-0.3\%
27.2\%	45.9	45.9	0.0	0.0\%
28.4\%	45.9	45.9	0.0	0.0\%
29.6\%	45.9	45.9	0.0	0.0\%
30.9\%	45.9	45.9	0.0	0.0\%
32.1\%	45.9	45.9	0.0	0.0\%
33.3\%	45.9	45.8	0.0	0.0\%
34.6\%	45.8	45.8	0.0	0.0\%
35.8\%	45.8	45.8	0.0	0.0\%
37.0\%	45.7	45.7	0.0	0.0\%
38.3\%	45.7	45.7	0.0	0.1\%
			0.0	0.0\%
40.7\%	45.6	${ }_{45}^{45.6}$	0.0	
${ }^{42.0 \%} 4$	45.6 45.5	45.6 45.6	${ }_{0}^{0.0}$	${ }_{0}^{0.0 \%}$
43.2\% 4.4%	45.5 45.4	${ }_{45.4}^{45.6}$	0.1 0.0	0.0.0\%
45.7\%	45.4	45.4	0.0	0.0\%
46.9\%	45.4	45.4	0.0	0.0\%
48.1\%	45.4	45.4	0.0	0.0\%
49.4\%	45.4	45.4	0.0	0.0\%
50.6\%	45.4	45.4	0.0	0.0\%
51.9\%	45.4	45.4	0.0	0.1\%
	${ }_{45.3}^{45.3}$	${ }_{45.3}^{45.3}$	-0.1	-0.1\%
55.6\%	45.3	45.2	-0.1	-0.2\%
56.8\%	45.3	45.2	-0.1	-0.2\%
58.0\%	45.3	45.2	-0.1	-0.2\%
59.3\%	45.2	45.2	-0.1	-0.2\%
60.5\%	45.2	45.1	-0.1	-0.2\%
61.7\%	45.1	45.1	0.0	0.0\%
63.0\%	45.1	45.1	0.0	0.0\%
64.2\%	45.0	45.0	0.0	0.0\%
65.4\%	45.0	45.0	0.0	0.0\%
66.7\%	45.0	45.0	0.0	0.0\%
67.9\%	45.0	45.0	0.0	0.0\%
69.1\%	45.0	45.0	0.0	0.0\%
70.4\%	45.0	45.0	0.0	0.0\%
71.6\%	44.9	44.9	0.0	${ }^{0.0 \%}$
72.8\%	44.9	44.9	0.1	0.1\%
74.1\%	44.9	44.9	0.0	0.1\%
75.3\%	44.9	44.9	0.0	0.0\%
76.5\%	44.8	44.8	0.0	0.1\%
77.8\%	44.7	44.8	0.1	0.2\%
79.0\%	44.7	44.7	0.0	${ }^{0.0 \%}$
80.2\%	44.6	44.7	0.1	0.2\%
81.5\%	44.6	44.6	0.0	0.1\%
82.79% 8400	44.6 446	44.6 445	0.0	${ }^{\text {0.0\% }}$
84.0\%	44.6	44.5	0.0	-0.1\%
85.2\%	44.6	44.5	-0.1	-0.2\%
86.4\%	44.5	44.5	0.0	0.0\%
87.7\%	44.5	44.5	0.0	0.0\%
88.9\%	44.4	44.4	0.0	-0.1\%
90.1\%	44.4	44.4	0.0	0.0\%
91.4\%	44.3	44.3	0.0	0.0\%
${ }_{93.8 \%}^{92.6 \%}$	44.3 44.3	44.3 44.2	${ }_{0.0}^{0.0}$	-0.1\%
95.1\%	44.3	44.2	0.0	-0.1\%
96.3\%	44.2	44.2	0.0	0.1\%
97.5\%	44.2	44.2	0.0	${ }^{0.00 \%}$
98.8\%	44.0	43.9 439	0.0	${ }^{0.0 \%}$
100.0\%	44.0	43.9	0.0	0.0\%

April				
Percent Exceedance	WSIP 2070 Without Proiect	WSIP 2070 With Project		Relative
Probability $(\%)$	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DGEGFe } \end{aligned}$	Difference (\%)
0.0\%	51.9	51.9	0.0	0.0\%
1.2\%	50.6	50.6	0.0	00\%
2.5\%	50.1	49.6	-0.5	-1.1\%
3.7\%	49.5	49.5	0.1	0.1\%
4.9\%	49.4	49.3	-0.1	-0.2\%
6.2\%	49.3	49.3	0.0	0.0\%
7.4\%	49.2	49.2	0.0	0.0\%
8.6\%	49.2	49.2	0.0	0.0\%
9.9\%	49.2	49.1	0.0	-0.1\%
11.11\%	49.1	49.1	0.0	0.0\%
${ }_{\text {12, }}^{12.3 \%}$	49.1	49.1	0.0	0.0\%
13.8\%	49.0 49.0	48.9 48.9	-0.1	-0.2\%
16.0\%	48.9	48.9	0.0	0.0\%
17.3\%	48.9	48.8	0.0	-0.1\%
18.5\%	48.8	48.8	0.0	0.0\%
19.8\%	48.8	48.8	0.0	0.0\%
21.0\%	48.7	48.8	0.1	0.1\%
22.2\%	48.6	48.8	0.1	0.2\%
23.5\%	48.6	48.7	0.0	0.1\%
24.7\%	48.6	48.6	0.0	0.0\%
25.9\%	48.5	48.4	-0.1	-0.2\%
27.2\%	48.4	48.4	0.0	-0.1\%
28.4\%	48.3	48.2	-0.1	-0.2\%
29.6\%	48.3	48.1	-0.1	-0.3\%
30.9\%	48.2	48.1	-0.1	-0.2\%
32.1\%	48.2	48.0	-0.1	-0.3\%
33.3\%	48.1	48.0	-0.2	-0.3\%
34.6\%	48.0	48.0	-0.1	-0.1\%
35.8\%	48.0	48.0	0.0	0.0\%
37.0\%	47.9	47.9	0.0	0.0\%
38.3\%	47.9	47.9	0.0	0.0\%
39.5\%	47.9	47.9	-0.1	-0.1\%
40.79\%	47.9 47.9	47.8 47.8	0.0 0.0	-0.1\%
43.2\%	47.8	${ }_{47.8}$	0.0	0.0\%
44.4\%	47.8	47.8	0.0	-0.1\%
${ }^{45.77 \%}$	47.7	47.7	0.0	${ }^{-0.1 \%}$
46.9\%	47.7	47.7	0.0	-0.1\%
48.1\%	47.7	47.7	0.0	0.0\%
49.4\% 50.6\%	${ }^{47.6}$	47.7	0.0	${ }_{0}^{0.0 \%}$
51.9\%	47.6	47.7	0.0	0.1\%
53.1\%	47.6	47.6	0.0	0.0\%
54.3\%	47.6	47.6	0.0	0.0\%
55.6\%	47.6	47.6	0.0	-0.1\%
56.8\%	47.6 47.6	47.6 47.6	0.0 0.0	-0.1\%
59.3\%	47.5	47.5	0.0	0.0\%
60.5\%	47.5	47.5	0.0	0.0\%
61.7\%	47.5	47.5	0.0	0.0\%
63.0\%	47.5	47.5	0.0	0.0\%
64.2\%	47.4	47.4	0.0	0.0\%
65.4\%	47.4	47.4	0.0	0.0\%
66.7\%	47.4	47.4	0.0	-0.1\%
67.9\%	47.4	47.4	0.0	-0.1\%
69.1\%	47.4	47.3	-0.1	-0.1\%
70.4\%	47.4	47.3	-0.1	-0.2\%
71.6\%	47.3 473	47.3 473	0.0	0.0\%\%
72.8\%	${ }^{47.3}$	47.3	0.0	0.0\%
74.19\%	47.3	47.2	-0.1	-0.1\%
75.3\%	47.2	47.2	0.0	0.0\%
76.5\%	47.2	47.1	0.0	0.0\%
77.8\%	47.1	47.1	0.0	0.0\%
79.0\%	47.0	47.0	0.0	0.0\%
-80.2\%	46.9 46.8	46.9 46.9	0.0 0.1	${ }^{0.11 \%}$
82.7\%	46.7	46.7	0.0	0.0\%
84.0\%	46.7	46.7	0.0	0.0\%
85.2\%	46.7	46.7	0.0	0.0\%
86.4\%	46.7	46.6	-0.1	${ }^{-0.1 \%}$
87.7\%	46.6	46.6	-0.1	-0.1\%
88.9\%	46.6	46.5	0.0	0.0\%
90.1\%	46.5	46.5	0.0	0.0\%
91.4\%	46.4	46.5	0.0	0.0\%
92.6\%	46.4	46.4	0.0	-0.1\%
93.8\%	46.4	46.2	-0.2	-0.3\%
95.1\%	46.0	46.0	-0.1	-0.1\%
97.5\%	${ }_{45.9}^{46.0}$	${ }_{45.9}$	0.0	-0.1\%
98.8\%	45.8	45.8	0.0	0.0\%
100.0\%	45.8	45.8	0.0	0.0\%

		May		
${ }_{\text {Percent }}^{\text {Pexcedance }}$	${ }^{\text {WSIP }}$ Proro With	WSIP 2070 With Project	Absolute	
$\underbrace{\substack{\text { (\%) }}}_{\text {Probability }}$	Monthly Temperature	Monthly Temperatue	${ }_{\text {diflerence }}^{\substack{\text { Diference } \\ \text { (0EF) }}}$	Difference (\%)
${ }^{(\% .0)}$	(DEGF)			
0.0\%	53.1	53.3	0.2	0.3\%
1.2\%	51.7	53.1	1.4	
2.5\%	51.2	51.3	0.0	
3.7\%	50.7	50.9	0.2	
4.9\%	50.5	50.7	0.3	
6.2\%	50.3	50.7	0.3	0.7\%
7.4\%	50.3	50.6	0.3	0.6\%
8.6\%	50.3	50.4	0.1	0.2\%
9.9\%	50.2	50.3	0.0	0.1\%
11.1\%	50.2	50.2	0.0	0.0\%
12.3\%	50.2	50.2	0.0	0.1\%
13.6\%	50.1	50.2	0.1	0.2\%
14.8\%	50.1	50.1	0.1	0.1\%
16.0\%	50.0	50.1	0.1	0.1\%
17.3\%	49.9	50.0	0.1	
18.5\%	49.9	50.0	0.1	0.3\%
19.8\%	49.8	49.9	0.2	
21.0\%	49.7	49.9	0.2	0.3\%
22.2\%	49.7	49.7	0.0	0.0\%
23.5\%	49.7	49.7	0.0	0.0\%
24.7\%	49.7	49.6	-0.1	-0.1\%
25.9\%	49.7	49.6	0.0	-0.1\%
27.2\%	49.6	49.6	0.0	0.1\%
28.4\%	49.6	49.6	0.0	0.1\%
29.6\%	49.6	49.6	0.0	0.1\%
30.9\%	49.5	49.5	0.0	-0.1\%
${ }^{32.1 \%}$	49.5	49.5	0.0	-0.1\%
33.3\%	49.5	49.5	0.0	0.0\%
34.6\%	49.4	49.5	0.0	0.0\%
35.\%	49.4	49.4	0.0	-0.1\%
37.0\%	49.3	49.4	0.0	0.0\%
38.3\%	49.3	49.3	0.0	0.0\%
39.5\%	49.3	49.3	0.0	0.0\%
40.7\%	49.2	49.3	0.1	0.2\%
42.0\%	49.1	49.2	0.1	0.3\%
43.2\%	49.1	49.2	0.1	0.2\%
44.4\%	49.1	49.1	0.1	0.1\%
	48.9	49.1	0.2	
46.9\%	48.9	49.0	0.1	0.2\%
48.1\%	48.9	49.0	0.1	0.2\%
49.4\%	48.9	48.9	0.0	0.1\%
50.6\%	48.8	48.9	0.1	0.1\%
51.9\%	48.8	48.9	0.1	0.1\%
53.1\%	48.8	48.9	0.0	0.1\%
54.3\%	48.8	48.7	0.0	-0.1\%
55.6\%	48.7	48.7	0.0	-0.1\%
56.8\%	48.7	48.7	0.0	-0.1\%
58.0\%	48.7	48.6	0.0	0.0\%
59.3\%	48.7	48.6	-0.1	-0.1\%
- 60.5%	48.6	48.6	-0.1	
${ }^{61.77 \%}$	48.6	48.5	-0.1	-0.2\%
63.0\%	48.6	48.5	-0.1	-0.2\%
64.2\%	48.5	48.4	-0.1	-0.2\%
65.4\%	48.5	48.4	-0.1	-0.2\%
66.7\%	48.5	48.4	0.0	-0.1\%
67.9\%	48.4	48.4	0.0	-0.1\%
69.1\%	48.4	48.4	0.0	0.0\%
70.4\%	48.3	48.3	0.0	0.0\%
71.6\%	48.3	48.2	-0.1	-0.2\%
72.8\%	48.2	48.2	0.0	-0.1\%
74.1\%	48.2	48.1	-0.1	-0.2\%
75.3\%	48.1	48.1	0.0	0.0\%
76.5\%	48.1	48.1	0.0	0.0\%
77.8\%	48.1	48.0	-0.1	-0.1\%
79.0\%	48.1	48.0	-0.1	-0.2\%
80.2\%	48.0	48.0	0.0	-0.1\%
81.5\%	47.9	47.9	0.0	0.0\%
82.7\%	47.9	47.9	0.0	0.1\%
84.0% 850%	47.8	47.8	0.0	0.0\%
- $\begin{aligned} & 85.2 \% \\ & 86.4 \%\end{aligned}$	47.7	47.6	-0.1	-0.3\%
-	${ }_{47.7}^{47.7}$	${ }_{47.5}^{47.5}$	-0.2 -0.1	-0.2\%
88.9\%	47.5	47.5	0.0	
90.1\%	47.4	47.5	0.1	0.1\%
91.4\%	47.4	47.2	-0.2	-0.5\%
92.6\%	47.2	47.2	0.0	-0.1\%
93.8\%	47.2	47.1	0.0	-0.1\%
95.1\%	47.1	47.1	0.0	0.0\%
96.3\%	47.0	47.0	0.0	0.1\%
${ }^{97.5 \%}$	46.9	46.7	-0.1	${ }^{-0.3 \%}$
98.8% 100.0\%	46.5	46.5	0.0	0.0\%
100.0\%	46.5	46.5	0.0	0.0\%

Table SQ13-1b

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	June			
	WSII 2070 Without Proiet	WSIP 2070 With Project	Absolute	Relative
	Monthy Temperature	Monthy Temperature	Difference (DEGF)	Difference (\%)
0.0\%	55.5	56.6	1.1	1.9\%
1.2\%	54.3	55.4	1.1	2.0\%
2.5\%	53.5	54.9	1.4	2.7\%
3.7\%	52.3	52.8	0.5	1.0\%
4.9\%	52.3 522 52	52.5 52. 52.	${ }^{0.3}$	${ }_{\text {en }}^{0.5 \%}$
${ }^{6.2 \%}$	$\begin{array}{r}52.2 \\ 52.1 \\ \hline\end{array}$	${ }_{523}^{52.3}$	0.2	0.3\%
7.4\%	52.1	${ }_{52.3}$	0.2	0.4\%
- ${ }_{\text {8.9\%\% }}$	52.0 52.0	52.3 52.2	${ }_{0}^{0.2}$	${ }^{0.5 \%}$
111.1\%	52.0	52.1	0.1	0.1\%
12.3\%	51.6	52.0	0.4	0.7\%
13.6\%	51.6	51.9	0.3	0.5\%
14.8\%	51.5	51.9	${ }^{0.3}$	0.6\%
- $11.0 \% \%$	51.5 51.5	51.7 51.6	0.2 0.1	- 0.4%
18.5\%	51.5	51.4	0.0	-0.1\%
19.8\%	51.5	51.4	0.0	-0.1\%
21.0\%	51.4	51.4	-0.1	-0.1\%
22.2\%	51.4	51.3	0.0	-0.1\%
23.5\%	51.3	51.3	0.0	-0.1\%
24.7\%	51.3	51.3	0.0	0.1\%
25.9\%	51.3	51.3	0.0	0.0\%
27.2\%	51.2	51.2	0.1	0.1\%
28.4\%	51.1	51.2	0.1	0.2\%
29.6\%	51.1 51.1	51.2 51.2	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
${ }_{\text {32.1\% }}$	51.0	51.1	0.1	0.2\%
33.3\%	51.0	51.1	0.1	0.1\%
34.6\%	50.9	${ }_{51.1}$	0.1	0.3\%
35.8\%	50.9	51.1	0.1	0.3\%
37.0\%	50.9	51.0	0.1	0.1\%
38.3\%	50.9	50.9	0.0	0.1\%
39.5\%	50.9	50.9	0.1	0.1\%
40.7\%	50.8	50.9	0.1	0.2\%
42.0\%	50.8	50.8	0.0	${ }_{0}^{0.10 \%}$
44.4\%	50.7 50.7	50.7 50.7	0.0 0.0	${ }^{0.00 \%}$
45.7\%	50.7	50.7	-0.1	-0.1\%
46.9\%	50.7	50.7	0.0	-0.1\%
${ }^{48.1 \%}$	50.7	50.6 50.6	-0.1	-0.19\%
4.9.4\%	50.7 50.4	50.6 50.5 50.5	-0.1	-0.1\%
50.6\%	50.4	50.5	0.0	0.1\%
51.9\%	50.4	50.4	0.0	0.0\%
53.1\%	50.4	50.4	0.0	0.1\%
54.3\%	50.3	50.4	0.1	0.2\%
55.6\%	50.3 50.3	50.4 50.3	0.1 0.0	- 0.0 0\%
58.0\%	50.2	50.3	0.1	0.2\%
59.3\%	50.2	50.2	0.0	0.1\%
60.5\%	50.2	50.1	-0.1	${ }^{-0.2 \%}$
61.7\%	50.1	50.1 50.0	0.0	0.0\%
63.0\%	50.0	50.0	0.0	0.0\%
64.2\%	49.9	50.0 500	0.0	${ }^{0.10}$
65.4\%	49.9	50.0	0.0	0.1\%
66.7\%	49.9	49.8	-0.1	-0.2\%
67.9\%	49.9	49.8	-0.1	-0.2\%
69.1\%	49.8	49.8	0.0	-0.1\%
70.4\%	49.7	49.7	0.0 0.0	-0.0\%
72.8\%	49.7	49.6	-0.1	-0.2\%
74.1\%	49.7	49.6	-0.1	${ }^{-0.2 \%}$
75.3\%	49.6	49.5	0.0	-0.1\%
76.5\%	49.6	49.5	-0.1	${ }^{-0.2 \%}$
77.8\%	49.6	49.4	-0.2	-0.3\%
79.0\%	49.5	49.3	-0.2	-0.3\%
80.2\%	49.5	49.3	-0.2	-0.4\%
81.5\%	49.4	49.2	-0.1	-0.3\%
82.7\%	49.3	49.1	-0.2	-0.4\%
84.0\%	49.2	49.0	-0.2	-0.3\%
8. 8 86.4\%	49.2 49.0	49.0 49.0	-0.1 -0.1	-
87.7\%	49.0	48.9	-0.1	-0.1\%
88.9\%	48.8	48.8	0.0	0.0\%
90.1\%	48.7	48.6	-0.1	-0.2\%
91.4\%	48.7	48.6	0.0	-0.1\%
92.6\%	48.6	48.6	0.0	0.0\%
93.8\%	48.6	48.6	0.0	${ }_{\text {en }}^{0.00 \%}$
${ }_{96.3 \%}^{95.1 \%}$	48.6 48.4	48.6 48.4	0.0 0.0	0.0\%
97.5\%	48.4	48.4	0.0	0.0\%
98.8\%	${ }_{481}^{48.1}$	48.0 480	-0.1	-0.2\%
100.0\%	48.1	48.0	-0.1	-0.2\%

August				
Percent Exceedance	WSIP 2070 Without Proiect	WSIP 2070 With Project		Relative
Probability (\%)	Monthly Temperature (DEGF)	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DGEGFe } \end{aligned}$	erence (\%)
0.0\%	63.9	63.3	-0.7	-1.1\%
1.2\%	55.8	55.6	-0.2	. 40
2.5\%	55.6	55.5	-0.1	-0.2\%
3.7\%	55.3	54.9	-0.4	-0.8\%
4.9\%	55.2	54.8	-0.4	-0.7\%
6.2\%	55.1	54.7	-0.3	-0.6\%
7.4\%	54.9	54.7	-0.2	-0.4\%
8.6\%	54.7	54.5	-0.2	-0.3\%
9.9\%	54.5	54.5	0.0	0.1\%
11.11\%	54.4	54.4	0.0	0.0\%
12.3\%	54.4	54.4	0.0	0.0\%
13.8\%	54.4 54.2	54.4 54.3	${ }_{0}^{0.0}$	${ }^{0.00 \%}$
16.0\%	54.2	54.3	0.2	0.3\%
17.3\%	54.1	54.3	0.1	0.3\%
18.5\%	54.1	54.3	0.2	0.3\%
19.8\%	54.1	54.3	0.2	0.4\%
21.0\%	54.0	54.2	0.2	0.3\%
22.2\%	54.0	54.1	0.1	0.2\%
23.5\%	53.9	54.0	0.1	0.2\%
24.7\%	53.9	54.0	0.1	0.2\%
25.9\%	53.8	53.9	0.1	0.2\%
27.2\%	53.8	53.8	0.0	0.1\%
28.4\%	53.6	53.8	0.1	0.3\%
29.6\%	53.6	53.7	0.1	0.2\%
30.9\%	53.6 535 5.5	53.6 53.5	0.0	0.0\%
32.1\%	53.5	53.5	0.0	0.0\%
33.3\%	53.5	53.4	-0.1	-0.2\%
34.6\%	53.5	53.4	-0.1	-0.3\%
35.8\%	53.4	53.4	-0.1	-0.1\%
37.0\%	53.3	53.3	-0.1	-0.1\%
38.3\%	53.2	53.3	0.0	0.1\%
39.5\%	53.2	53.3	0.1	0.1\%
40.79\%	53.2 53.2	53.2 53.1	0.0 -0.1	-0.0\%
43.2\%	${ }_{53.1}$	${ }_{53.1}^{53.1}$	0.0	0.0\%
44.4\%	53.1	53.0	0.0	-0.1\%
${ }^{45.77 \%}$	${ }_{53.0}^{53}$	53.0	0.1	0.1\%
46.9\%	52.9	53.0	0.1	0.3\%
48.1\%	52.8	52.9	0.1	0.2\%
49.4\%	52.8	52.9	0.0	0.1\%
50.6\%	52.7	52.8	0.1	0.2\%
51.9\%	52.7	52.8	0.1	0.2\%
53.1\%	52.6	52.7	0.1	0.1\%
54.3\%	52.6 52.6	52.7 52.6	0.1 0.0	${ }^{0.1 \%}$
56.8\%	52.5	52.5	0.1	0.1\%
58.0\%	52.5	52.5	0.0	0.1\%
59.3\%	52.5	52.4	-0.1	-0.2\%
${ }^{60.5 \%}$	${ }_{525}^{52.5}$	52.3	-0.1	-0.2\%
61.7\%	52.4	52.3	-0.1	-0.2\%
63.0\%	52.4	52.1	-0.3	-0.6\%
64.2\%	52.3	52.1	-0.2	-0.5\%
65.4\%	52.3	52.1	-0.2	-0.4\%
66.7\%	52.2	52.0	-0.2	-0.4\%
67.9\%	52.2	51.9	-0.2	-0.4\%
69.1\%	52.2	51.9	-0.2	-0.4\%
70.4\%	${ }_{52.1}^{52.1}$	51.9	-0.2	-0.4\%
71.6\%	52.1	51.9	-0.2	-0.4\%
72.8\%	52.1	51.9	-0.2	-0.3\%
74.1\%	52.0	51.9	-0.1	-0.3\%
75.3\%	52.0	51.8	-0.2	-0.5\%
76.5\%	52.0	51.8	-0.2	-0.5\%
77.8\%	51.9	51.7	-0.3	-0.5\%
79.0\%	51.9	51.6	-0.3	-0.5\%
80.2\%	51.9	${ }_{51.6}$	-0.3	-0.5\%
- ${ }_{\text {822.7\% }}$	51.7 51.7	51.6 51.5	-0.1 -0.2	-0.3\%
84.0\%	51.7	51.5	-0.2	-0.3\%
85.2\%	51.7	51.5	-0.2	-0.3\%
86.4\%	${ }_{51.6}^{51.6}$	51.5 51.4	-0.1	${ }^{-0.2 \%}$
87.7\%	51.6	51.4	-0.2	-0.3\%
88.9\%	${ }_{51.6}$	51.4	-0.2	-0.4\%
90.1\%	51.6	51.4	-0.2	-0.4\%
91.4\%	51.5	${ }_{51.1}$	-0.3	-0.5\%
92.6\%	51.4	51.1	-0.3	-0.5\%
93.8\%	51.4	51.1	-0.2	-0.5\%
${ }_{9}^{95.19 \%}$	51.3 51.3	51.1 51.0	-0.2 -0.3	-0.5\%
97.5\%	51.2	50.9	-0.4	-0.7\%
98.8\%	51.0	50.6	-0.4	-0.8\%
100.0\%	51.0	50.6	-0.4	-0.8\%

		September		
Percent	${ }^{\text {WSIP } 2070}$ Proiecthout	WSIIP 2070 With Project	Absolute	
Probability	Monthly Temperature	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGFG) } \end{aligned}$	Difference (\%)
0.0\%	63.8	63.6	-0.2	-0.4\%
1.2\%	60.8	56.9	-3.9	
2.5\%	58.8	56.8	-2.0	-3.4\%
3.7\%	56.9	56.6	-0.3	-0.5\%
4.9\%	56.5	56.2	-0.2	-0.4\%
6.2\%	55.9	55.8	-0.2	-0.3\%
7.4\%	55.4	55.3	-0.1	-0.2\%
8.6\%	55.4	55.2	-0.2	-0.4\%
9.9\%	55.2	55.0	-0.2	-0.4\%
111.19\%	55.1	54.8	-0.3	-0.5\%
${ }^{12.3 \%}$	54.9	54.7	-0.3	-0.5\%
13.6\%	54.7	54.7	0.0	0.0\%
14.8\%	54.6	54.6	0.0	0.0\%
16.0\%	54.6 54.5	54.6 54.6	0.0	0.0\%
17.3\%	54.5	54.6	0.1	0.1\%
18.5\%	54.5	54.5	0.0	0.0\%
19.8\%	54.5	54.4	0.0	0.0\%
21.0\%	54.5	54.2	-0.2	-0.4\%
22.2\%	54.4	54.1	-0.4	-0.7\%
23.5\%	54.1	54.0	-0.1	-0.2\%
24.7\%	54.1	54.0	-0.1	-0.1\%
25.9\%	54.0	53.8	-0.2	-0.3\%
27.2\%	54.0	53.8	-0.2	-0.3\%
28.4\%	53.9	53.8	-0.1	-0.2\%
29.6\%	53.8	53.7	-0.2	-0.3\%
30.9\%	53.7	53.6	-0.1	-0.1\%
32.1\%	53.4	53.5	0.1	0.2\%
33.3\%	53.3	53.4	0.0	0.1\%
34.6\%	${ }_{53.3}^{53.3}$	${ }_{53,3}^{53.3}$	0.0	0.0\%\%
35.7\%	53.2	53.3	0.1	0.3\%
37.0\%	53.0	53.1	0.1	0.2\%
39.5\%	53.0 52.9	53.0 53.0	0.0 0.0	${ }_{0}^{0.1 \%}$
40.7\%	52.9	52.8	-0.2	-0.3\%
42.0\%	52.9	52.8	-0.1	-0.2\%
43.2\%	52.8	52.7	-0.2	-0.3\%
44.4\%	52.8	52.7	-0.1	-0.3\%
45.7\%	52.8	52.6	-0.2	-0.4\%
46.9\%	52.8	52.6	-0.2	-0.3\%
${ }_{4}^{48.19 \%}$	52.6 525 525	52.6 52.5	0.0	0.0\%
49.4\%	52.5 52.5	52.5 52.4 5	0.0	-0.1\%
51.9\%	52.4	52.3	-0.1	-0.2\%
53.1\%	52.3	52.3	-0.1	-0.1\%
54.3\%	52.3	52.2	-0.1	-0.2\%
55.6\%	52.2	52.1	-0.2	-0.3\%
56.8\%	${ }_{522}^{52.2}$	${ }_{52.0}^{52.0}$	-0.2	${ }^{-0.3 \%}$
58.0\%	52.2	51.9	-0.3	-0.6\%
59.3\%	51.9	51.9	-0.1	-0.1\%
60.5\%	51.8	${ }_{51.8}$	0.0	0.0\%
61.7\%	51.8	51.8	0.0	0.0\%
- 63.0%	${ }_{51.8}$	51.6	-0.2	-0.3\%
64.2\%	51.7 51.7	51.6 51.6	-0.1	-0.2\%
66.7\%	51.6	51.5	-0.1	-0.2\%
679\%	51.6	51.5	-0.2	-0.3\%
69.1\%	51.6	51.4	-0.2	-0.4\%
70.4\%	${ }_{51.6}^{51.6}$	${ }_{51.3}^{51.3}$	-0.2	-0.5\%
71.6\%	${ }_{51.5}^{51.5}$	${ }_{51.3}^{51.3}$	-0.2	-0.4\%
72.8\%	51.5 515	51.3	-0.2	-0.3\%
74.1.\%	51.3	51.2	0.0	0.0\%
75.3\%	51.2	51.2	0.0	0.0\%
76.5% 778%	51.2	51.2	-0.1	${ }^{-0.19 \%}$
77.0\%	51.2 51.2	51.1 51.1	-0.1 -0.1	-0.19\%
80.2\%	51.2	51.0	-0.1	-0.3\%
81.5\%	51.1	51.0	-0.1	-0.2\%
82.7\%	51.1	51.0	-0.1	-0.1\%
84.0\%	51.1	51.0	-0.1	-0.1\%
85.2\%	51.0	50.9	-0.1	-0.3\%
86.4\%	51.0	${ }_{50.8}$	-0.2	-0.3\%
87.7\%	50.9	50.7	-0.2	-0.4\%
88.9\%	50.9	${ }_{50.7}^{50.7}$	-0.2	-0.4\%
90.1\%	50.8	50.7	-0.1	-0.2\%
${ }_{9}^{91.46 \%}$	50.8 50.7	50.7 50.7	-0.1 0.0	-0.0\%
93.8\%	50.6	50.6	-0.1	-0.1\%
95.1\%	50.6	${ }_{50.5}^{50.5}$	-0.1	-0.2\%
96.3\%	50.5	50.4 50.3	0.0	${ }^{-0.11 \%}$
97.5\%	50.5	${ }_{50.3}^{50.3}$	-0.2	-0.3\%
98.8\% 100.0\%	50.5	${ }_{50.3}^{50.3}$	-0.2	-0.3\%
100.0\%	50.5	50.3	-0.2	-0.3\%

Table SQ13-1b
Clear Creek below Whiskeytow, Monthly Temperature

				-
$\underset{\substack{\text { Pexcent } \\ \text { Execance } \\ \text { Probability }}}{\text { Pad }}$	${ }^{\text {WSIP } 2070 \text { Without }}$	Wsil 2070 With Project		
	Monthly Temperature	Monthly Temperature	$\begin{aligned} & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	Difference (\%)
0.0\%	60.5	60.1	${ }^{-0.4}$	${ }^{-0.7 \%}$
1.2\%	55.2	59.1	3.9	7.1\%
2.5\%	54.8	55.7	0.9	1.7\%
3.7\%	54.6	54.6	0.0	-0.1\%
4.9\%	54.6	54.5	-0.1	-0.2\%
6.2\%	54.0	54.3	0.3	0.5\%
7.4\%	54.0	53.9	-0.1	-0.2\%
8.6\%	53.9	53.9	0.0	-0.1\%
9.9\%	53.9	53.9	0.0	
11.1\%	53.7	53.8	0.1	0.2\%
123\%	${ }^{53.6}$	53.8	0.1	0.3\%
13.6\%	53.6	53.7	0.1	0.3\%
14.8\%	53.5	53.7	0.2	0.4\%
16.0\%	53.4	53.7	0.2	0.4\%
17.3\%	53.4	53.5	0.1	0.2\%
18.5\%	53.4	53.4	0.0	0.1\%
19.8\%	${ }_{5}^{53.3}$	53.4	0.1	0.2\%
21.0\%	53.3	53.4	0.1	0.2\%
22.2\%	53.2	53.3 53 5	${ }^{0.1}$	0.2\%
${ }^{24.7 \%}$	53.1	${ }_{53.2}$	0.1	0.2\%
25.9\%	${ }^{53.0}$	53.1	0.1	0.2\%
27.2\%	53.0	53.1	0.1	0.2\%
28.4\%	53.0	53.1	0.1	0.2\%
29.6\%	52.9	52.9	0.0	0.1\%
30.9\%	52.9	52.8	0.0	0.0\%
32.1\%	52.7	52.8	0.1	0.2\%
33.3\%	52.7	52.8	0.1	0.2\%
34.6\%	52.6	52.8	0.1	0.3\%
35.8\%	52.6	52.7	0.2	0.3\%
37.0\%	52.6	52.7	0.1	0.2\%
	52.4 523 523	52.5 52.5	${ }_{0}^{0.1}$	0.2\% 0.4%
40.7\%	52.3	52.5	0.2	0.4\%
42.0\%	52.2	52.4	0.1	0.3\%
43.2\%	52.2	52.3	0.1	0.3\%
44.4\%	52.1	52.2	0.1	0.2\%
45.7\%	52.1	52.2	0.1	0.2\%
46.9\%	52.0	52.2	0.1	0.2\%
48.1\%	52.0	52.1	0.1	0.1\%
49.4\%	52.0	52.1	0.0	0.1\%
50.6\%	52.0	52.0	0.1	0.1\%
51.9\%	52.0	52.0	0.0	0.0\%
53.1\%	51.9	51.9	0.0	0.0\%
54.3\%	51.9	51.9	0.0	0.0\%
55.6\%	51.8	51.8	0.0	-0.1\%
56.8\%	51.7	51.8	0.1	0.2\%
58.0\%	51.7	51.7	0.0	0.0\%
59.3\%	51.6	51.7	0.0	0.1\%
60.5\%	51.6	51.6	0.0	0.0\%
61.7\%	51.5	${ }_{51.6}^{51.6}$	0.1	0.1\%
63.0\%	${ }_{51.5}$	51.5 515 15	0.1	${ }^{0.2 \%}$
64.2\%	51.4 51.4	51.5 51.5	0.0	${ }_{0.1 \%}^{0.1 \%}$
66.7\%	51.4	51.4	0.0	0.0\%
67.9\%	51.4	51.3	-0.1	-0.3\%
69.1\%	51.4	51.3	-0.1	-0.2\%
70.4\%	51.3	51.2	-0.1	-0.3\%
71.6\%	51.2	51.1	-0.2	-0.3\%
72.8\%	51.2	51.1	-0.1	-0.2\%
74.1\%	51.1	51.1	-0.1	-0.2\%
75.3\%	51.1	51.0	-0.1	-0.2\%
76.5\%	51.1	51.0	-0.1	-0.3\%
77.8\%	$\begin{array}{r}51.1 \\ 51.1 \\ \hline\end{array}$	51.0 50.8	-0.1 -0.2	-0.3\% ${ }_{-0.4 \%}$
80.2\%	51.1	50.8	-0.3	-0.5\%
81.5\%	51.1	50.7	-0.4	-0.8\%
82.7\%	$\stackrel{51.0}{50}$	${ }_{50.6}^{50.6}$	-0.4	-0.7\%
84.0\%	50.9	50.6	-0.3	-0.5\%
85.2\%	50.8	50.6	-0.2	-0.4\%
86.4\%	50.8	50.6	-0.2	-0.4\%
87.7\%	50.6	50.5	0.0	-0.1\%
88.9\%	50.6	50.4	-0.1	-0.3\%
90.1\%	50.5	50.4	0.0	0.0\%
91.4\%	50.4 50.4	50.4 50.4	${ }_{0}^{0.0}$	${ }^{-0.1 \%}$
93.3\%	50.4	50.3	-0.1	-0.1\%
95.1\%	50.3	50.3	-0.1	-0.1\%
96.3\%	${ }_{50.3}^{50.3}$	50.1	-0.2	-0.3\%
97.5\%	50.2	49.9	-0.2	-0.4\%
98.8\%	50.0	49.9	-0.1	-0.3\%
100.0\%	49.7	49.5	-0.2	-0.4\%

Figure SQ14-1b
Clear Creek at Igo, Monthly Temperatur

Clear Creek at tigo, Monthy Temperature
Probability of Exceedance

October				
${ }_{\text {Percent }}^{\text {Pxeedance }}$	WSIP 2070 Without	WSIP 2070 With Project	Absolute	
Probability	Monthy Temperatue	Monthly Temperature		Difference (\%)
(\%)	(DEGF)	(EEGF)		
0.0\%	62.4	62.4	0.0	0.0\%
${ }_{\text {1.20 }}^{1.2 \%}$	${ }_{60}^{61.4}$	58.8	-2.6	-4.2\%
2.5\%	60.2	58.0	-2.2	-3.7\%
3.7\%	57.4	57.7	0.2	0.4\%
${ }_{6}{ }^{4.2 \%}$	57.4 57.1	57.6 57.2	0.2 0.1	0.2\%
7.4\%	57.0	56.6	-0.4	0.7\%
8.6\%	56.9	56.4	-0.5	
9.9\%	56.7	56.2	-0.5	-0.9\%
11.1\%	56.4	56.2	-0.2	-0.3\%
12.3\%	55.0	56.1	0.1	0.2\%
13.6\%	56.0	56.1	0.1	0.2\%
14.8\%	55.9	55.9	0.0	-0.1\%
16.0\%	55.8	55.8	0.0	0.0\%
17.3\%	55.8	55.8	0.0	-0.1\%
18.5\%	55.7 556 5.	${ }_{55.7}^{55.7}$	0.0	0.0\%
${ }^{19.8 \%}$	55.6 55.5	55.7 55.6	0.2 0.1	${ }_{0}^{0.3 \%}$
22.2\%	55.4	55.5	0.1	0.3\%
23.5\%	55.3	55.5	0.2	0.3\%
24.7\%	55.2	55.1	-0.1	-0.1\%
25.9\%	54.8	55.1	0.2	0.5\%
27.2\%	54.8	55.0	0.2	0.3\%
28.4\%	54.7	54.7	0.0	0.0\%
29.6\%	54.7	54.6	-0.1	-0.2\%
30.9\%	54.6	54.6	0.0	-0.1\%
32.1\%	54.5	54.5	0.0	-0.1\%
33.3\%	54.5	54.5	0.0	0.0\%
34.6% 35.8%	54.4 54.2	54.2 54.2	-0.2 0.0	-0.1\%
37.0\%	54.2	54.1	-0.1	-0.1\%
38.3\%	54.1	54.1	0.0	-0.1\%
39.5\%	54.1	54.1	0.0	0.0\%
40.7\%	54.0	54.0	0.0	${ }^{-0.1 \%}$
42.0\%	53.9	54.0	0.0	0.0\%\%
43.2\%	53.9	53.8	-0.1	-0.2\%
44.4\%	53.9	53.7	-0.1	-0.0.2\%
${ }^{45.79 \%}$	53.9 53.7	53.6 53.4	-0.3 -0.4	-0.0.7\%
48.1\%	53.6	53.2	-0.4	-0.8\%
49.4\%	53.4	53.1	-0.3	0.6\%
50.6\%	53.3	53.1	-0.2	-0.3\%
51.9\%	53.2	${ }_{531}^{53.1}$	-0.1	${ }^{-0.2 \%}$
53.12\%	53.0 520 5	53.1 529 5	0.0	${ }_{0}^{0.10}$
54.3\%	52.9	52.9	0.1	0.1\%
55.6\%	52.8 528 528	52.9 528	0.1	0.2\%
56.8\%	52.7	52.8 52.8	${ }_{0}^{0.1}$	${ }_{0}^{0.0 \% \%}$
59.3\%	52.6	52.6	0.0	0.0\%
60.5\%	52.5	52.6	0.2	0.3\%
61.7\%	52.4	52.4	0.0	0.0\%
63.0\%	52.4	52.3	-0.1	-0.1\%
64.2% $6.4 .4 \%$	52.3 523 523	52.3 522 52	-0.1	-0.1\%
66.7%	52.3	52.2	-0.1	-0.2\%
67.9\%	52.2	52.2	-0.1	-0.2\%
69.1\%	52.2	52.1	-0.1	-0.2\%
70.4\%	52.1	52.1	0.0	0.0\%
71.6\%	52.0	52.0	0.0	0.1\%
72.8\%	51.9	52.0	0.1	0.1\%
74.1\% 78.3%	51.8 51.8	51.9 51.9	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
76.5\%	51.6	51.9	0.2	0.5\%
77.8\%	51.6	51.7	0.1	0.2\%
79.0\%	51.6	51.7	0.1	0.2\%
80.2\%	51.6	51.6	0.1	0.1\%
81.5\%	51.5	51.6	0.0	0.0\%
82.7\%	51.5	51.5	0.0	${ }^{0.00 \%}$
84.0% 85.2%	51.5 515 515	51.5	0.0	-0.0\%
86.4\%	51.4	51.4	0.0	-0.1\%
87.7\%	51.4	51.3	-0.1	-0.2\%
88.9\%	51.3	51.3	0.0	0.1\%
90.1\%	51.3	51.2	-0.1	${ }^{0.19}$
91.4\% ${ }_{\text {920 }}$	$\begin{array}{r}51.1 \\ 511 \\ \hline 1.1\end{array}$	51.2 510	0.1	0.1\%
93.8\%	51.1 51.1	51.0 50.9	-0.2 -0.2	-0.5\%
95.1\%	51.1	50.9	-0.2	-0.3\%
96.3\%	51.0	50.9	-0.2	0.4\%
97.5\%	51.0	50.6	-0.4	-0.8\%
98.8\%	50.7	${ }_{50.5}$	-0.3	-0.5\%
100.0\%	50.7	50.5	0.0	-0.5\%

$\xrightarrow{\text { Table SO14.1. }}$
Clear Creek at tgo, Monthy Temperature
Probability of Exceedance

$\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$	February			
	${ }^{\text {WSIP }}$ Provo Wict	WSIP 2070 With Project		Relative
	Monthly Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
0.0\%	51.9	62.6	10.7	20.7\%
1.2\%	49.5	52.1	2.7	5.4\%
2.5\%	48.7	49.5	0.8	1.6\%
3.7\%	48.2	48.6	0.4	0.9\%
4.9\%	48.2	48.2	0.1	0.1\%
6.2\%	48.1	48.1	0.0	0.0\%
7.4\%	47.7	47.6	-0.1	-0.1\%
8.6\%	47.5	47.5	0.0	0.0\%
9.9\%	47.1	47.2	0.0	0.1\%
11.1\%	47.1	47.1	0.1	0.1\%
12.3\%	47.1	47.1	0.0	0.0\%
13.6\%	47.0	47.0	0.0	0.0\%
14.8\%	47.0	47.0	0.0	0.0\%
${ }^{16.0 \%} \times 17.3 \%$	46.9 46.8	46.9 46.8	0.0 0.0	${ }^{-0.1 \%}$
18.5\%	46.8	46.7	-0.1	-0.2\%
19.8\%	46.7	46.7	0.0	0.0\%
21.0\%	46.7	46.7	0.0	0.0\%
22.2\%	46.6	46.6	0.0	-0.1\%
23.5\%	46.6	46.6	-0.1	-0.1\%
24.7\%	46.6	46.6	0.0	-0.1\%
25.9\%	4.6	46.5	-0.1	-0.2\%
27.2\%	46.5	46.5	0.0	-0.1\%
28.4\%	46.4	46.5	0.0	0.1\%
29.6\%	46.4	46.4	0.0	0.1\%
30.9\%	46.4	46.4	0.0	0.1\%
32.1\%	46.3	46.3	0.0	-0.1\%
33.3\%	4.3	46.3	0.0	0.0\%
34.6\%	46.2	46.2	0.0	0.0\%
35.8\%	46.2	46.2	0.0	0.0\%
37.0\%	46.2	46.2	0.0	0.0\%
38.3\%	46.2	46.2	0.0	0.0\%
39.5\%	46.2	46.1	0.0	-0.1\%
40.7\%	46.1	46.1	0.0	0.1\%
42.0\%	46.1	46.1	0.0	0.0\%
43.2\%	46.0	${ }^{46.0}$	0.0	0.0\%
44.4\%	46.0	46.0	0.0	0.0\%
45.7\%	46.0	46.0	0.0	0.0\%
46.9\%	46.0	46.0	0.0	0.0\%
48.1\%	4.0	46.0	0.0	0.0\%
49.4\%	45.9	46.0	0.1	0.1\%
50.6\%	45.9	45.9	0.0	0.1\%
51.9\%	45.9	45.8	0.0	-0.1\%
53.19\%	45.8	45.8	0.0	0.0\%
54.3\%	45.8	45.7	-0.1	-0.2\%
55.6\%	45.8	45.7	-0.1	-0.2\%
56.8\%	45.8 45.8	${ }_{45.7}^{45.7}$	-0.1	-0.0.3\%
59.3\%	45.8	45.6	-0.1	-0.3\%
60.5\%	45.6	45.6	0.0	0.0\%
61.7\%	45.6	45.6	0.0	0.0\%
63.0\%	45.6	45.6	0.0	0.0\%
64.2\%	45.5	45.6	0.0	0.1\%
65.4\%	45.5	45.5	0.0	0.1\%
66.7\%	45.5	45.5	0.0	0.0\%
67.9\%	45.5	45.5	0.0	0.0\%
69.1\%	45.5	45.5	0.0	0.0\%
70.4\%	45.4	45.4	0.0	0.0\%
${ }^{71.6 \%}$	45.4	45.4	0.0	0.0\%
72.8\%	45.4	45.4	0.0	0.0\%
74.1\%	45.4	45.4	0.0	0.0\%
75.3\%	45.3	45.4	0.0	0.0\%
76.5\%	45.3	45.3	0.1	0.2\%
77.8\%	45.2	45.2	0.0	0.1\%
79.0\%	45.2	45.2	0.0	0.0\%
80.2\%	45.2	45.2	0.0	0.0\%
81.5\%	45.1	45.1	0.0	0.0\%
82.70% 840%	${ }_{450}^{45.1}$	${ }_{45.1}^{45.1}$	0.0	0.0\%
-850\%	45.0	45.1	0	0.0\%
85.4\%	${ }_{45.0}^{45.0}$	${ }_{45.0}$	0.0	0.0\%
87.7\%	45.0	44.9	0.0	-0.1\%
88.9\%	44.9	44.9	0.0	0.0\%
90.1\%	44.9	44.9	0.0	0.0\%
91.4\%	44.8	44.8	0.0	-0.1\%
92.6\%	44.8	44.8	0.0	0.0\%
93.8\%	44.8	44.8	0.0	-0.1\%
${ }_{99.36 \%}^{95.19 \%}$	44.7 44.6	44.7 44.7	-0.1 0.0	-0.1\%
97.5\%	44.6	44.6	0.0	0.0\%
98.8\%	44.4	44.4	0.0	0.0\%
100.0\%	44.4	44.4	0.0	0.0\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$$(\%)$	WSIP 2070 Without Proiect Monthl Temperature (DEGF)	March		$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$	$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \\ \text { dold } \end{gathered}$		April	$\begin{gathered} \text { Absolute } \\ \text { Anfferece } \\ \text { (Docke } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference }(\%) \end{gathered}$
		WSIP 2070 With Project	$\begin{aligned} & \hline \begin{array}{l} \text { Absolute } \\ \text { Difference } \\ \text { (DEGF) } \end{array} \\ & \hline \end{aligned}$				WSIP 2070 With Project		
		Monthly Temperature (DEEGF)					$\begin{array}{c}\text { Monthly Temperature } \\ \text { (DEGF) }\end{array}$.		
0.0\%	50.2	50.2	0.0	0.0\%	0.0\%	52.8	52.9	0.0	0.0\%
1.2\%	49.7	49.7	0.0	0.0\%	1.2\%	51.6	51.6	0.0	0.0\%
2.5\%	49.7	49.7	0.0	0.0\%	2.5\%	51.0	50.8	-0.2	-0.4\%
3.7\%	49.2	49.5	0.4	0.7\%	3.7\%	50.8	50.7	-0.1	-0.3\%
4.9\%	9	48.9	-0.2	-0.5\%	4.9\%	50.6	50.5	-0.1	-0.2\%
6.2\%	48.9	48.9	0.0	-0.1\%	6.2\%	50.6	50.4	-0.2	-0.3\%
7.4\%	48.9	48.7	-0.1	-0.3\%	7.4\%	50.4	50.4	0.0	0.0\%
8.6\%	48.7	48.7	0.0	0.0\%	8.9\%	50.4	50.4	0.0	0.0\%
9.9\%	48.7	48.7	0.0	0.0\%	9.9\%	50.4	50.3	-0.1	-0.1\%
11.19\%	48.6	48.6	0.0	0.0\%	11.1\%	50.3	50.3	0.0	0.0\%
12.3\%	48.4	48.4	0.0	0.0\%	12.3\%	50.3	50.3	0.0	0.0\%
13.6\%	48.4	48.4	0.0	-0.1\%	13.6\%	50.2	50.2	0.0	0.1\%
14.8\%	48.4	48.4	0.0	0.1\%	14.8\%	50.1	50.2	0.1	0.1\%
16.0\%	48.2	${ }^{48.3}$	0.1	0.2\%	16.0\%	50.1	50.2	0.1	0.1\%
17.3\%	48.1	48.3	0.2	0.4\%	17.3\%	49.9	50.1	0.1	0.3\%
18.5\%	48.1	48.1	0.0	0.1\%	18.5\%	49.8	50.0	0.2	0.4\%
19.8\%	48.1	48.0	0.0	0.0\%	19.8\%	49.8	50.0	0.2	0.5\%
21.0\%	47.9	47.9	0.0	0.0\%	21.0\%	49.7	49.8	0.0	0.1\%
${ }^{2222 \%}$	47.9	47.9	0.0	-0.1\%	${ }^{22.22 \%}$	49.7	49.8	0.0	0.1\%
23.5\%	47.9	47.8	-0.1	-0.2\%	${ }^{23.5 \%}$	49.7	49.7	0.0	0.0\%
24.7\%	47.8	47.7	-0.1	-0.1\%	24.7\%	49.7	49.6	-0.1	-0.2\%
25.9\%	47.7	47.7	0.0	0.0\%	25.9\%	49.6	49.4	-0.2	-0.4\%
27.2\%	47.7	47.6	-0.1	-0.2\%	27.2\%	49.6	49.3	-0.2	-0.5\%
28.4\%	47.7	47.6	-0.1	-0.2\%	28.4\%	49.3	49.2	-0.1	-0.2\%
29.6\%	47.6	47.5	-0.1	-0.1\%	29.6\%	49.3	49.1	-0.2	-0.4\%
30.9\%	47.6	47.5	-0.1	-0.1\%	30.9\%	49.1	49.0	-0.1	-0.1\%
32.1\%	47.5	47.5	0.0	0.0\%	32.1\%	49.1	49.0	-0.1	-0.1\%
33.3\%	47.5	47.5	0.0	0.0\%	33.3\%	49.1	49.0	0.0	-0.1\%
34.6\%	47.5	47.5	0.0	0.0\%	34.6\%	49.1	49.0	-0.1	${ }^{-0.19 \%}$
35.8\%	47.4	47.4	0.0	0.0\%	35.8\%	49.0	49.0	-0.1	-0.19\%
37.0\%	47.4	47.4	0.0	-0.1\%	37.0\%	49.0	49.0	-0.1	-0.1\%
38.3\%	47.4	47.3	-0.1	-0.1\%	38.3\%	49.0	49.0	0.0	-0.1\%
39.5\%	47.4	47.3	-0.1	-0.2\%	39.5\%	49.0	49.0	0.0	0.0\%
40.7\%	47.3	47.3	0.0	0.0\%	40.7\%	49.0	48.9	0.0	-0.1\%
42.0\%	47.3	47.3	0.0	0.0\%	42.0\%	49.0	48.9	0.0	-0.1\%
43.2\%	47.2	47.2	0.0	0.0\%	43.2\%	48.9	48.8	-0.1	-0.3\%
44.4\%	47.2	47.2	0.0	0.0\%	44.4\%	48.8	48.7	-0.1	-0.1\%
${ }^{45.79 \%}$	${ }_{472}^{47.2}$	${ }_{472}^{47.2}$	0.0	0.0\%	${ }^{45.79 \%}$	48.8 488	48.7	-0.1	-0.1\%
46.9\%	47.2	47.2	0.0	0.0\%	46.9\%	48.8	48.7	-0.1	-0.1\%
48.19%	47.2	47.2	0.0	0.10\%	48.19\%	48.7	48.7	0.0	0.0\%\%
49.4\% 50.6%	47.2 47.2	47.2 47.2	0.0 0.0	- 0.0%	49.4\% 50.6%	48.7 487	48.7 487	0.0	${ }_{\text {en }}^{0.0 \% \%}$
51.9\%	47.1	47.2	0.0	0.1\%	51.9\%	48.6	48.7	0.1	0.1\%
53.1\%	47.1	47.1	0.0	0.1\%	53.1\%	48.6	48.6	0.0	0.0\%
54.3\%	47.1	47.0	0.0	-0.1\%	54.3\%	48.6	48.6	0.0	0.0\%
55.6\%	47.0	47.0	0.0	0.0\%	55.\%	48.6	48.6	0.0	0.0\%
56.8\%	47.0	47.0	0.0	-0.1\%	56.8\%	48.6	48.6	0.0	0.0\%
58.0\%	47.0	47.0	0.0	0.0\%	58.0\%	48.6	48.6	0.0	0.0\%
59.3\%	47.0	47.0	0.0	0.0\%	59.3\%	48.6	48.6	0.0	0.0\%
${ }^{60.50 \%}$	47.0	47.0	0.0	0.0\%	${ }^{60.50 \%}$	48.5	48.5	0.0	0.0\%
61.7\%	47.0	46.9	0.0	-0.1\%	61.7\%	48.5	48.5	0.0	0.0\%
63.0\%	47.0	46.9	0.0	0.0\%	63.0\%	48.5	48.5	0.0	0.0\%
64.2\%	46.9	46.9	-0.1	-0.1\%	64.2\%	48.5	48.4	-0.1	-0.1\%
65.4\%	46.9	46.8	-0.1	-0.2\%	65.4\%	48.5	48.4	-0.1	-0.1\%
66.7\%	46.9	46.8	-0.1	-0.2\%	66.7\%	48.4	48.4	0.0	-0.1\%
67.9\%	46.8	46.8	0.0	-0.1\%	${ }^{67.9 \%}$	48.4	48.3	0.0	-0.1\%
69.1\%	46.7	46.8	0.1	0.2\%	69.1\%	48.4	48.3	0.0	0.0\%
70.4\%	46.7	46.7	0.0	0.1\%	70.4\%	48.4	48.3	0.0	0.0\%
71.6\%	46.6	46.7	0.0	0.1\%	71.6\%	48.3	48.3	0.0	0.0\%
${ }^{72.88 \%}$	46.6	${ }^{46.6}$	0.0	0.1\%	72.8\%	${ }^{48.3}$	48.3	0.0	0.0\%
74.1\%	46.5	46.6	0.1	0.2\%	74.1\%	48.2	48.2	0.0	0.0\%
75.3\%	46.5 46.5	46.6 46.5	0.0	-0.1\%	75.3\%	${ }_{48 .}^{48.2}$	48.2 48.1	0.0	-
76.5\%	46.5	46.5	0.0	0.0\%	76.5\%	48.1	48.1	0.0	0.0\%
77.8\%	46.5	46.5	0.0	${ }^{0.0 \% \%}$	77.8\%	48.1 480	48.1 480	0.0	0.0\%\%
79.0\%	46.5	46.4	0.0	0.0\%	79.0\%	48.0	48.0	${ }^{0.0}$	0.0\%
80.2\%	46.4	46.4	0.0	0.0\%	80.2\%	48.0	48.0	0.0	0.0\%
81.5\%	46.4	46.4	0.0	0.0\%	81.5\%	48.0	48.0	0.0	0.0\%
82.7\%	46.3	46.3	0.0	-0.1\%	82.7\%	48.0	47.9	0.0	-0.1\%
84.0\%	46.3	46.2	-0.1	-0.1\%	84.0\%	47.9	47.9	0.0	0.0\%
${ }^{85.2 \%} 8$	46.2 46.2	46.2 46.2	0.0 0.0	-0.1\%	- $8.8 .2 \%$	47.8 47.8	47.8 47.8	0.0 0.0	0.0.0\%
87.7\%	46.1	46.1	0.0	0.0\%	87.7\%	47.7	47.7	0.0	0.0\%
88.9\%	46.0	46.0	0.0	0.0\%	88.9\%	47.6	47.6	0.0	0.0\%
90.11\%	45.9	45.9	0.0	0.0\%	90.1\%	47.5	47.5	0.0	${ }^{0.0 \%}$
91.4\%	45.8	45.8	0.0	0.0\%	91.4\%	47.4	47.4	0.0	0.0\%
92.6\%	45.7	45.7	0.0	0.0\%	92.6\%	47.4	47.2	-0.2	-0.3\%
93.8\%	45.7	45.7	0.0	0.0\%	93.8\%	47.2	47.2	0.0	0.0\%
95.1\%	45.6	45.6	0.0	0.0\%	95.1\%	47.1	47.0	0.0	-0.1\%
96.3\%	45.6	45.5	-0.1	-0.1\%	96.3\%	47.0	47.0	0.0	-0.19\%
${ }_{98}^{97.5 \%}$	45.5	45.5	-0.1	-0.1\%	97.5\%	47.0	46.9	0.0	-0.19\%
100.0\%	${ }_{45.4}$	${ }_{45.5}$	0.0	0.1\%	-100.0\%	46.9	${ }_{46.9}$	0.0	0.0\%

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$	May			
	${ }^{\text {WSIP } 2077 \text { Without }}$	WSIP 2070 With Project		Relative
	Monthly Temperature	Monthy Temperature	Difiference (DEEF)	Difference (\%)
0.0\%	53.9	54.6	0.6	1.2\%
1.2\%	53.0	54.0	0.9	1.8\%
2.5\%	52.3	52.4	0.1	0.1\%
3.7\%	52.3	52.3	0.0	0.1\%
4.9\%	51.8	52.2	0.4	0.8\%
6.2\%	51.7	52.0	0.3	0.6\%
7.4\%	51.4	52.0	0.5	1.0\%
8.6\%	51.4	51.7	0.3	0.6\%
9.9\%	51.4	51.7	0.3	0.7\%
11.1.\%	51.4	51.4	0.1	0.1\%
12.3\%	51.4	51.4	0.0	0.1\%
13.6\%	51.2	51.2	0.0	0.
14.8\%	51.2	51.2	0.0	0.0\%
16.0\%	51.2	51.2	0.0	0.1\%
17.3\%	51.1	51.2	0.1	0.1\%
18.5\%	51.1	51.2	0.0	0.1\%
19.8\%	51.0	51.1	0.1	0.1\%
21.0\%	51.0	51.0	0.0	0.1\%
22.2\%	50.9	51.0	0.1	0.1\%
23.5\%	50.9	50.9	0.1	0.1\%
24.7\%	50.8	50.8	0.0	-0.1\%
25.9\%	50.8	50.8	0.0	0.0\%
27.2\%	50.7	50.7	0.0	0.0\%
28.4\%	50.7	50.7	0.0	0.0\%
29.6\%	50.6	50.7	0.0	0.0\%
30.9\%	50.6	50.6	0.0	0.0\%
32.1\%	50.6	50.5	0.0	-0.1\%
33.3\%	50.5	50.5	0.0	0.0\%
34.6\%	50.5	50.5	0.0	0.0\%
35.8\%	50.5	50.4	-0.1	-0.1\%
37.0\%	${ }_{50.4}$	50.4	0.0	0.0\%
38.3\%	${ }^{50.3}$	50.4	0.1	0.1\%
39.5\%	50.3	50.3	0.0	0.1\%
40.7\% 4200%	50.3	50.3	0.0	0.1\%
42.0\%			0.1	
43.2\%	50.1	50.3	0.1	0.3\%
44.4\%	50.1	50.2	0.1	${ }^{0.3 \%}$
${ }^{45.79 \%}$	50.0	50.1 50.1	${ }_{0}^{0.1}$	- ${ }_{0}^{0.3 \%}$
48.1\%	49.9	50.0	0.1	0.2\%
49.4\%	49.9	50.0	0.1	0.2\%
50.6\%	49.9	49.9	0.0	0.1\%
51.9\%	49.9	49.9	0.0	0.0\%
53.19\%	49.9	49.9	0.0	0.0\%
55.6\%	49.8	49.8	0.0	0.0\%
56.8\%	49.8	49.7	0.0	0.0\%
58.0\%	49.8	49.7	0.0	-0.1\%
59.3\%	49.7	49.7	0.0	0.0\%
${ }^{60.5 \%}$	49.7	49.7	0.0	-0.1\%
61.7\%	49.7	49.6	0.0	-0.1\%
63.0\%	49.7	49.6	-0.1	-0.2\%
${ }^{64.2 \%}$	49.7	49.6	-0.1	-0.2\%
65.4\%	49.6	49.5	-0.1	-0.2\%
66.7\%	49.6	49.5	-0.1	-0.1\%
67.9\% 69.10	49.5	49.4	-0.1	-0.2\%
69.1\%				
70.460	49.4	49.4	0.0	-0.1\%
71.6\%	49.4	49.3	-0.1	-0.1\%
72.8.1\%	${ }_{49.3}^{49.3}$	49.3 49.3	0.0 0.0	-0.0\%
75.3\%	49.2	49.2		-0.1\%
76.5\%	49.2	49.1	-0.1	-0.2\%
77.8\%	49.0	49.1	0.0	0.1\%
79.0\%	49.0	49.0	0.0	0.1\%
80.2\%	49.0	49.0	0.0	0.0\%
- ${ }^{81.5 \%}$	49.0	49.0	0.0	-0.1\%
84.0\%	48.9	48.9	-0.1	${ }^{-0.1 \%}$
85.2\%	48.9	48.8	-0.1	-0.2\%
86.4\%	48.8	48.7	-0.1	0.3\%
87.7\%	48.7	48.7	0.0	0.0\%
88.9\%	48.6	48.6	0.0	${ }^{-0.1 \%}$
90.1\%	48.5	48.5	0.0	0.1\%
91.4\%	48.5	48.3	-0.2	-0.4\%
${ }_{\text {93, }}^{92.6 \%}$	48.3 48.3	48.3 48.1	0.0 0.2	-0.4\%
95.1\%	48.1	48.1	0.0	0.1\%
96.3\%	48.1	48.0	0.0	0.0\%
998.8\%	47.5	47.5	-0.0	-
100.0\%	47.5	47.5	0.0	0.0\%

$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{gathered}$	June			
	${ }^{\text {WSIP } 2070 \text { With }}$ Pout	WSIP 2070 With Project		Relative
	Monthly Temperature	Monthly Temperature	Difference (DEGF)	Difference (\%)
0.0\%	58.9	59.7	0.8	1.4\%
1.2\%	57.5	58.8	1.2	2.2\%
2.5\%	56.7	58.0	1.3	
3.7\%	55.7	55.7	0.1	0.1\%
4.9\%	55.3	55.4	0.1	0.2\%
6.2\%	55.3	55.4	0.1	0.1\%
7.4\%	54.9	54.9	0.0	0.0\%
8.6\%	54.9	54.9	0.0	-0.1\%
9.9\%	54.3	54.7	0.4	0.7\%
11.1\%	54.1	54.4	0.3	0.6\%
12.3\%	53.9	54.1	0.1	0.2\%
13.6\%	53.9	54.1	0.2	0.4\%
14.8\%	53.7	54.0	${ }^{0.3}$	0.5\%
16.0\%	53.7	54.0	0.3	0.5\%
17.3\%	53.6	53.9	0.3	0.5\%
18.5\%	53.4	53.7	0.3	0.5\%
19.8\%	53.3	53.4	0.1	0.2\%
21.0\%	53.1	53.4	0.2	0.4\%
22.2\%	53.1	53.1	0.0	0.0\%
23.5\%	53.1	53.1	0.0	0.0\%
24.7\%	53.1	53.1	0.0	0.0\%
25.9\%	53.0	53.1	0.0	0.1\%
27.2\%	53.0	53.0	0.1	0.1\%
28.4\%	53.0	53.0	0.1	0.1\%
29.6\%	53.0	53.0	0.1	0.1\%
30.9\%	52.9	53.0	0.1	0.2\%
32.1\%	52.9	53.0	0.1	0.1\%
33.3\%	52.9	53.0	0.1	0.1\%
34.6\%	52.9	53.0	0.1	0.1\%
35.8\%	52.8	52.9	0.1	0.2\%
37.0\%	52.8	52.9	0.1	0.1\%
38.3\%	52.8	52.9	0.1	0.2\%
39.5\%	52.7	52.8	0.1	0.2\%
40.7\%	52.7	52.8	0.1	0.2\%
42.0\%	52.7	52.7	0.0	-0.1\%
43.2\%	52.6	52.6	0.0	0.0\%
44.4\%	52.6	52.6	0.0	0.0\%
45.7\%	52.6	52.6	0.0	0.1\%
46.9\%	52.5	52.5	0.0	0.0\%
48.1\%	52.5	52.4	0.0	-0.1\%
49.4\%	52.5	${ }_{52.3}^{52.3}$	-0.1	-0.2\%
50.6\%	52.4	52.3	-0.1	-0.2\%
51.9\%	52.3	52.2	-0.1	-0.1\%
54.3\%	52.2 52.1	52.2 52.2	${ }_{0}^{0.1}$	0.2\%
55.6\%	52.1	52.1	0.0	0.0\%
56.8\%	52.1	52.1	0.0	0.0\%
58.0\%	52.0	52.0	0.0	0.0\%
59.3\%	52.0 520	${ }_{52.0}^{52.0}$	0.0	0.0\%
${ }^{60.5 \%}$	52.0	52.0	0.0	0.0\%
61.7\%	52.0	51.9	0.0	-0.1\%
63.0\%	51.9	51.9	0.0	0.0\%
64.2\%	51.8	51.8	0.0	0.0\%
65.4\%	51.7	51.7	0.0	-0.1\%
66.7\%	51.7	51.7	0.0	0.0\%
67.9\%	51.5	51.6	0.1	0.1\%
69.1\%	51.5	51.5	0.0	0.0\%
70.4\% ${ }^{71.6 \%}$	51.5 51.4	51.5 51.4	0.0 0.0	${ }^{0.0 \% \%}$
72.8\%	51.4	51.4	0.0	0.0\%
74.1\%	51.4	51.3	-0.1	-0.2\%
75.3\%	51.4	51.2	-0.1	-0.2\%
76.5\%	51.3	51.1	-0.2	-0.4\%
77.8\%	51.3	51.1	-0.1	-0.3\%
79.0\%	51.2	51.0	-0.2	-0.5\%
80.2\%	51.2	51.0	-0.2	-0.5\%
81.5\%	51.1	50.9	-0.2	-0.4\%
82.79% 84.0%	51.0	50.9	-0.1	-0.1\%
84.0\%	50.9	50.9	-0.1	-0.1\%
85.20\%	50.9	50.9		-0.1\%
86.4\%	50.9 50.8	50.8 50.7	-0.1 0.0	- ${ }_{\text {- }}^{\text {-0.2\% }}$
88.9\%	50.7	50.6	-0.1	-0.2\%
90.1\%	50.6	50.6	0.0	0.0\%
91.4\%	50.5	50.6	0.1	0.1\%
92.6\%	50.5	50.4	-0.1	-0.2\%
${ }^{93.3 \%}$	50.3	50.3	0.0	0.0\%
${ }_{9}^{95.11 \%}$	50.2 50.1	50.2 50.1	0.0 0.0	${ }^{0.0 \%}$
97.5\%	50.0	50.0	0.0	0.0\%
98.8\%	49.8	49.7	-0.1	-0.2\%
100.0\%	49.8	49.7	-0.1	-0.2\%

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$	September			
	WSII P2070 W.thout	WSIIP 2070 With Project	Absolut	
	Monthly Temperature	Monthly Temperature (DEGF)	$\begin{aligned} & \text { Difference } \\ & \text { (DEGF) } \end{aligned}$	Difference (\%)
0.0\%	66.3	66.1	-0.2	-0.3\%
1.2\%	61.9	60.0	-1.9	-3.1\%
2.5\%	60.3	58.3	-1.9	-3.2\%
3.7\%	59.7	58.2	-1.5	-2.6\%
4.9\%	58.3	57.6	-0.7	-1.2\%
6.2\%	57.1	56.9	-0.2	-0.3\%
7.4\%	56.7	56.7	-0.1	-0.2\%
8.6\%	56.7	56.5	-0.2	-0.4\%
9.9\%	56.6	56.3	-0.3	-0.5\%
11.1\%	56.6	56.2	-0.4	-0.7\%
12.3\%	56.4	56.1	-0.3	-0.5\%
13.6\%	56.1	56.1	0.0	0.0\%
14.8\%	55.9	56.1	0.1	0.2\%
16.0\%	55.9	55.0	0.1	0.1\%
17.3\%	55.9	55.0	0.0	0.1\%
18.5\%	55.9	55.9	0.0	0.0\%
19.8\%	55.9	55.8	-0.1	-0.2\%
21.0\%	55.8	55.7	-0.1	-0.2\%
22.2\%	55.7	55.5	-0.2	-0.3\%
23.5\%	55.5	55.3	-0.2	-0.4\%
24.7\%	55.4	55.2	-0.2	-0.3\%
25.9\%	55.4	55.2	-0.1	-0.2\%
27.2\%	55.3	55.2	-0.1	-0.2\%
28.4\%	55.3	55.2	-0.1	-0.2\%
29.6\%	55.3	55.1	-0.1	-0.3\%
30.9\%	55.1	55.0	-0.1	-0.2\%
32.1\%	54.8	54.9	0.1	0.2\%
33.3\%	54.8	54.8	0.0	0.1\%
34.6\%	54.7	54.7	0.0	0.1\%
35.8\%	54.7	54.7	0.0	0.1\%
37.0\%	54.6	54.7	0.0	0.0\%
38.3\%	54.6 54.5	54.7	0.1	0.2\%
	54.5	54.6	0.1	0.2\%
40.7\%	54.5	54.4	-0.1	-0.1\%
42.0\%	54.4	54.2	-0.2	-0.3\%
43.2\%	54.4	54.2	-0.2	-0.3\%
44.4\%	54.3	54.1	-0.2	-0.4\%
45.7\%	54.3	54.1	-0.2	-0.3\%
46.9\%	54.3	54.1	-0.2	-0.4\%
48.1\%	54.1	54.0	0.0	0.0\%
49.4\%	54.0	54.0	0.0	0.0\%
50.6\% 51.9%	54.0	54.0	0.0	0.0\%
55.9\%	53.9	53.7	-0.2	-0.4\%
554.3\%	53.9 53.7	53.7 53.6	-0.3 0.0 0.0	-0.0.0\%
55.6\%	53.7	53.6	-0.1	-0.2\%
56.8\%	53.6	53.5	-0.1	-0.1\%
58.0\%	53.6	53.5	-0.1	-0.1\%
59.3\%	53.5	53.5	-0.1	-0.1\%
60.5\%	53.5	53.4	-0.1	-0.2\%
${ }^{61.7 \%}$	53.4	53.4	0.0	0.0\%
63.0\%	53.3	53.2	-0.2	-0.3\%
64.2\%	${ }_{53.3}^{53}$	53.2	-0.1	-0.3\%
65.4\%	53.3	53.1	-0.2	-0.3\%
66.7\%	53.2	53.0	-0.1	-0.2\%
66.9\%\%	53.2	${ }_{53.0}^{58}$	-0.2	-0.3\%
79.4\%	${ }_{53.1}$	${ }_{52.9}$	-0.1	-0.3\%
70.4\%	53.0	52.9	-0.2	-0.4\%
77.6\%	53.0	52.8	-0.2	-0.4\%
72.8\%	53.0	52.8	-0.2	-0.4\%
74.1\% ${ }_{\text {75.3\% }}$	52.8	52.7	-0.1	-0.2\%
${ }^{75.3 \%}$	52.8	52.7	-0.1	-0.2\%
76.5% 77.8%	52.8	52.7	-0.1	-0.2\%
${ }_{79.0 \%}^{77.8 \%}$	52.8	52.7	-0.1	-0.2\%
- ${ }^{79.0 \%}$	52.7 52.6	52.6 52.6	-0.1	-0.1\%
81.5\%	52.6	52.6	-0.1	-0.2\%
82.7\%	52.6	52.6	0.0	0.0\%
84.0\%	52.6	52.4	-0.1	-0.2\%
85.2\%	52.5	52.4	-0.1	-0.1\%
${ }^{86.4 \%}$	52.5	52.4	-0.1	-0.2\%
87.7\%	52.5	52.4	-0.1	-0.2\%
88.9\%	${ }_{52.4}^{52.4}$	${ }_{52.2}^{52.2}$	-0.1	-0.2\%
${ }^{99.1 \%}$	52.3	52.2	-0.1	-0.2\%
${ }_{9}^{99.4 \% \%}$	52.3	52.2	-0.1	-0.2\%
${ }_{93.8 \%}^{92.6 \%}$	52.3 52.2	52.1 52.1	-0.1 -0.1	-0.0.2\%
95.1\%	52.1	52.1	0.0	-0.1\%
96.3\%	52.0	52.0	-0.1	-0.1\%
97.5\%	52.0 520	${ }_{51.9}^{51.9}$	-0.1	-0.2\%
98.8\%	52.0	${ }_{51.8}$	-0.2	-0.3\%
100.0\%	52.0	51.8	-0.2	-0.3\%

Table SQ14-1b
reek at IGo, Monthly Temper
Clear Creek at Igo, Monthly Temperature
Probability of Exceedance

$\begin{aligned} & \hline \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probability } \\ (\%) \end{array} \\ & \hline \end{aligned}$	June to September			
	WSIP 2070 Without Proiect	WSIP 2070 With Project	Absolute	Relative
		$\underset{\text { Montal }}{\substack{\text { Monthy Temperature }}}$	(DEGF)	Difference (\%)
0.0\%	63.4	63.0	-0.4	-0.6\%
1.2\%	58.1	61.9	3.8	6.5\%
2.5\%	58.0	58.5	0.5	0.9\%
3.7\%	57.7	57.6	-0.1	-0.2\%
4.9\%	57.4	57.4		
6.2\%	56.9	57.3	0.4	0.7\%
7.4\%	55.9	57.0	0.1	0.2\%
8.6\%	55.6	56.7	0.1	0.1\%
9.9\%	56.6	56.5	-0.1	-0.2\%
11.1\%	56.3	56.5	0.2	0.3\%
12.3\%	56.3	56.3	0.1	0.2\%
13.6\%	56.1	56.3	0.2	0.4\%
14.8\%	56.1	56.3	0.3	0.4\%
16.0\%	56.1	55.3	0.2	0.3\%
17.3\%	56.1	56.0	0.0	-0.1\%
18.5\%	55.9	56.0	0.0	0.1\%
19.8\%	55.8 55.8	55.9 559	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$
21.0\%	55.8 558 55	55.9 559	0.1	0.1\%
22.2\%	${ }_{55.8}^{558}$	55.9 55 5.9	0.0	0.1\%
23.5\%	55.8 557	55.8 557	0.0	-0.1\%
24.7\%	55.7	55.7	0.0	0.0\%
25.9\%	55.7	55.7	0.0	0.1\%
27.2\%	55.5	55.7	0.2	0.4\%
28.4\%	55.5	55.7	0.2	0.4\%
29.6\%	55.4	55.7	0.3	0.5\%
- ${ }_{\text {30.9\% }}$	55.4 55.4	55.6 55.5	0.3 0.1	- 0.5%
33.3\%	55.3	55.4	0.1	0.1\%
34.6\%	55.3	55.4	0.1	0.1\%
35.8\%	55.1	55.3	0.2	0.3\%
37.0\%	55.1	55.2	0.1	0.2\%
38.3\%	55.1	55.2	0.1	0.2\%
3.5\%	55.0	55.1	0.1	0.2\%
40.7\%	54.9	55.1	0.1	0.3\%
${ }^{42.0 \%}$	54.9	54.9	0.1	${ }_{\text {0, }}^{0.1 \%}$
${ }^{43.4 \%}$	54.8 54.8	54.8 54.8	${ }_{0}^{0.1}$	${ }_{0}^{0.1 \%}$
45.7\%	54.8	54.8	0.1	0.1\%
46.9\%	54.8	54.8	0.1	0.1\%
48.1\%	54.7	54.8	0.0	0.1\%
4.94\%	54.7 54.7	54.8 547	0.1	0.1\%
50.6\%	54.7	54.7	0.1	0.1\%
51.9\%	54.6	54.6	0.0	0.0\%\%
53.1\%	54.6	54.6	0.0	0.0\%
54.3\% 55.6\%	54.5	54.6	0.1	${ }_{\text {- }}^{0.3 \%}$
55.6\%	54.4 54.3	54.4 54.4	-0.1 0.1	${ }^{-0.19 \%}$
58.0\%	54.3	54.4	0.1	0.2\%
59.3\%	54.2	54.2	0.0	0.0\%
${ }^{60.50}$	$\begin{array}{r}54.2 \\ 54.1 \\ \hline\end{array}$	54.2.	0.0	${ }^{-0.1 \%}$
61.7\%	54.1 54.1	54.2.	${ }_{0}^{0.1}$	${ }_{0}^{0.1 \%}$
63.0\%	${ }_{54.1}^{5}$	${ }_{54.1}$	0.1	0.1\%
${ }^{64.2 \%}$	54.1	54.1 54.1	0.0	${ }^{0.10 \%}$
${ }^{65.4 \%}$	54.1	54.1 54.1	0.0	0.0\%
66.7\%	54.1	54.1	0.0	0.0\%\%
67.9\%	54.0	53.9	-0.2	-0.3\%
69.19\%	53.9	53.9	-0.1	-0.1\%
70.4\% 7	53.9 53.9	53.8 53.8	-0.1 -0.1	-0.0.0\%
72.8\%	53.9	53.8	-0.1	-0.2\%
74.1\%	53.9	53.8	-0.1	-0.2\%
75.3\%	53.8	53.7	-0.2	-0.3\%
76.5\%	53.8	53.7	-0.1	-0.3\%
77.8\%	53.8	53.7	-0.1	-0.2\%
79.0\%	53.7	53.5	-0.3	-0.5\%
80.2\%	53.7	53.4	-0.3	-0.6\%
${ }^{81.5 \%}$	53.7	53.4	-0.3	-0.5\%
84.0\%	${ }_{53.6}$	${ }_{53.3}$	-0.2	${ }^{-0.4 \%}$
85.2\%	53.5	53.3	-0.2	-0.4\%
86.4\%	53.5	53.2	-0.3	${ }^{-0.5 \%}$
${ }^{88}$	53.2	53.1	-0.1	-0.1\%
${ }^{88.1 \%}$	¢ ${ }_{53,2}^{53.2}$	${ }_{531}^{53.1}$	0.0	${ }^{-0.1 \%}$
91.4\%	53.0	53.0	0.0	-0.1\%
92.6\%	53.0	53.0	0.0	0.0\%
93.8\%	53.0	53.0	0.0	0.0\%
95.1\%	53.0	52.9	0.0	0.0\%
96.3\%	52.9	52.9	0.0	0.0\%
97.5\%	52.8	52.7	-0.2	-0.3\%
988.8\% 100.0\%	52.8 52.4	52.6 52.2	-0.2 -0.2	-0.3\%

Table SQ14-1b Clear Creek at Igo, Monthly Temperature Probability of Exced Probability of Exceedance									
July to September					August to September				
${ }_{\text {Percent }}^{\text {Pexeance }}$	${ }^{\text {WSIP }}$ Provo Without	WSIP 2070 With Project		elative	Percent Exceedanc	WSIP 2070 Without	WSIP 2070 With Project	Absolute	Realive
Probability (\%)	$\underset{\substack{\text { (DEGF) }}}{\substack{\text { Monthy } \\ \text { (Demperature }}}$	Monthly Temperature (DEEFF)	(DEGF)	Difference (\%)	Probability $(\%)$	$\underset{\substack{\text { Monthly Temperature } \\ \text { (DEGF) }}}{\substack{\text { and } \\ \text {. }}}$	$\underset{\substack{\text { Monthly Temperature } \\ \text { (DEFF) }}}{\text { and }}$	(DEGF)	Difference \%
0.0\%	64.9	65.4	0.5	0.8\%	0.0\%	66.3	65.9	-0.4	-0.6\%
1.2\%	59.0	64.4	5.4	9.1\%	1.2\%	60.4	58.9	1.5	-2.5\%
2.5\%	58.6	58.4	-0.2	-0.3\%	2.5\%	59.3	58.7	-. 7	${ }_{\text {1.1. }}$
3.7\%	58.5	58.2	-0.3	-0.5\%	3.7\%	58.9	58.1	-0.8	-1.4\%
4.9\%	58.4	58.1	-0.3	-0.5\%	4.9\%	58.7	57.7	0.9	-1.6\%
6.2\%	57.6	57.5	-0.1	-0.2\%	6.2\%	57.5	57.3	-0.3	-0.4\%
7.4\%	57.4	57.4	0.0	-0.1\%	7.4\%	57.4	57.2	-0.2	-0.3\%
8.6\%	57.3	57.3	0.0	0.0\%	8.6\%	57.3	57.2	-0.1	-0.2\%
9.9\%	57.3	57.2	0.0	0.0\%	9.9\%	57.1	57.1	0.0	0.0\%
11.1.\%	56.9	57.1	0.2	0.4\%	11.1\%	57.0	56.9	-0.1	-0.1\%
12.3\%	56.9	57.1	0.2	0.4\%	12.3\%	56.9	56.9	0.0	0.1\%
13.6\%	56.9	57.1	0.2	0.4\%	13.6\%	56.8	56.8	0.0	0.1\%
14.8\%	56.9	57.1	0.2	0.4\%	14.8\%	56.7	56.8	0.0	0.0\%
16.0\%	55.8	57.0	0.3	0.5\%	16.0\%	56.7	56.7	0.0	0.1\%
17.3\%	56.7	56.9	0.1	0.2\%	17.3\%	56.6	56.7	0.1	0.1\%
18.5\%	56.7	55.9	0.1	0.2\%	18.5\%	55.6	55.7	0.1	0.2\%
	56.7	56.8	0.1	0.2\%	19.8\%	56.5	55.6	0.0	0.1\%
21.0\%	56.7	56.8	0.1	0.2\%	21.0\%	56.4	56.5	0.1	0.2\%
22.2\%	56.7	56.7	0.0	0.0\%	22.2\%	${ }_{56.3}$	${ }_{56.3}$	0.0	0.0\%
23.5\%	55.6	55.6	0.0	0.1\%	23.5\%	56.3	56.3	0.0	0.0\%
24.7\%	56.5	55.6	0.1	0.1\%	24.7\%	56.3	56.3	-0.1	-0.1\%
25.9\%	56.5	56.6	0.1	0.2\%	25.9\%	56.2	56.2	0.0	0.0\%
27.2\%	56.4	56.6	0.2	0.3\%	27.2\%	56.1	56.1	-0.1	-0.1\%
28.4\%	56.4	56.5	0.1	0.2\%	28.4\%	56.1	56.0	-0.1	-0.2\%
29.6\%	56.3	56.3	0.0	-0.1\%	29.6\%	56.0	56.0	0.0	0.0\%
30.9\%	55.3	56.2	-0.1	-0.1\%	30.9\%	55.9	55.0	0.0	0.0\%
32.1\%	56.2	56.2	0.0	0.0\%	32.1\%	55.9	55.9	0.0	-0.1\%
33.3\%	56.1	56.2	0.0	0.1\%	33.3\%	55.8	55.8	0.1	0.1\%
34.6\%	56.1	56.1	0.0	0.0\%	34.6\%	55.7	55.8	0.1	0.2\%
35.8\%	55.9	${ }_{56.1}^{561}$	0.2	0.3\%	35.8\%	55.7 557	${ }_{55}^{55.8}$	0.1	0.1\%
37.0\%	55.9 558	${ }_{56.1}^{56}$	0.2	0.3\%	37.0\%	55.7 557	55.7 55 5.5	0.0	0.0\%
38.3\%	55.8 558 5.8	$\begin{array}{r}56.0 \\ 558 \\ \hline\end{array}$	0.1	0.2\%	38.3\%	$\begin{array}{r}55.7 \\ 55.4 \\ \hline\end{array}$	$\begin{array}{r}55.5 \\ 55 \\ \hline 5.5\end{array}$	-0.2	-0.3\%
39.5\%	55.8	55.8	0.0	0.0\%	39.5\%	55.4	55.3	-0.1	-0.2\%
40.7\%	55.6	55.7	0.1	0.3\%	40.7\%	55.4	55.2	-0.2	-0.3\%
42.0\%	55.5	55.7	0.2	0.4\%	42.0\%	55.4	55.2	-0.1	-0.2\%
43.2\%	55.5	55.6	0.1	0.2\%	43.2\%	55.3	55.2	0.0	0.0\%
44.4\%	55.5	55.6	0.1	0.2\%	44.4\%	55.2	55.2	0.0	0.1\%
${ }_{46.9 \%}^{45.7 \%}$	55.5 55.5	55.5 55.5	0.0 0.0	0.0\%	${ }_{4}^{45.79 \%}$	55.2 55.2	55.2 55.2	0.0 0.0	0.0.0\%
48.1\%	55.5	55.5	0.0	0.0\%	48.1\%	55.1	55.2	0.0	0.0\%
4.4.4\%	${ }_{555}^{55.5}$	55.5 555	0.0	0.1\%	49.4\%	55.1	55.1	0.0	-0.1\%
50.6\%	55.5	55.5	0.0	0.0\%	50.6\%	55.1	55.0	-0.1	-0.2\%
51.9\%	55.4	55.4	0.0	0.1\%	51.9\%	55.1	55.0	-0.1	-0.2\%
53.1\%	55.4	55.4	0.1	0.1\%	53.1\%	55.1	55.0	-0.1	-0.2\%
54.3\%	55.3	55.3	0.0	-0.1\%	54.3\%	54.9	55.0	0.1	0.1\%
55.6\%	55.2	55.2	0.0	0.0\%	55.6\%	54.9	54.9	-0.1	-0.1\%
56.8\%	55.2	55.2	0.0	0.0\%	56.8\%	54.9	54.8	-0.1	-0.2\%
58.0\%	55.1	$\begin{array}{r}55.2 \\ 55 \\ \hline 5.2\end{array}$	0.1	0.2\%	58.0\%	54.9	54.7	-0.2	-0.3\%
㐌69.3\%	55.1 550	55.2 55.1	${ }_{0}^{0.1}$	${ }_{0}^{0.2 \%}$	59.3\%	54.7 54.7	54.6 54.5	-0.1 -0.2	-0.2\%
61.7%	55.0	54.9	-0.2	-0.3\%	61.7%	54.6	54.5	-0.1	-0.2\%
63.0\%	55.0	54.9	-0.2	-0.3\%	63.0\%	54.6	54.5	-0.1	-0.2\%
64.2\%	54.9	54.9	-0.1	-0.2\%	64.2\%	54.6	54.4	-0.1	-0.2\%
65.4\%	54.9	54.8	-0.1	-0.1\%	65.4\%	54.5	54.4	-0.1	-0.2\%
66.7\%	54.8	54.8	-0.1	-0.2\%	66.7\%	54.4	54.2	-0.2	-0.3\%
67.9\%	54.8	54.8	0.0	0.0\%	67.9\%	54.4	54.2	-0.1	-0.3\%
69.1\%	54.7	54.7	0.0	-0.1\%	69.1\%	54.3	54.1	-0.2	-0.4\%
70.4\%	54.7	54.6	-0.1	-0.2\%	70.4\%	54.2	54.1	-0.1	-0.2\%
71.6\%	54.7	54.5	-0.2	-0.4\%	71.6\%	54.2	54.0	-0.2	-0.3\%
74.1\%	54.7 54.6	54.4 54.4	-0.2 -0.2	-0.0.4\%	72.8\%	54.2 54.2	54.0 54.0	-0.2 -0.2	-0.3\% -0.3%
75.3\%	54.6	54.4	-0.2	-0.3\%	75.3\%	54.1	54.0	-0.1	-0.3\%
76.5\%	54.5	54.4	-0.1	-0.2\%	${ }^{76.5 \%}$	54.0	${ }_{53}^{53.9}$	-0.1	-0.2\%
77.8\%	$\begin{array}{r}54.5 \\ 54.5 \\ \hline\end{array}$	54.4	-0.1	-0.2\%	77.8\%	54.0	53.8	-0.2	-0.3\%
79.0\%	54.4 54.4	54.2	-0.2	-0.4\%	79.0\%	54.0	${ }_{53}^{53.8}$	-0.2	-0.3\%
80.2\%	54.4	54.2	-0.2	-0.4\%	80.2\%	53.9	53.8	-0.1	-0.3\%
81.5\%	54.4	54.2	-0.2	-0.3\%	81.5\%	53.9	53.8	-0.1	-0.2\%
82.70\%	54.3	54.1 541	-0.2	-0.3\%	82.7\%	53.8 538 38	53.7 53.7	-0.1 -0.1	-0.02\%
85.2\%	54.2	54.0	-0.2	-0.4\%	84.2\%	53.8	53.7	-0.1	-0.2\%
86.4\%	54.2	54.0	-0.2	-0.3\%	86.4\%	53.8	53.6	-0.1	-0.3\%
- 87.79%	54.1 540 54	54.0	-0.1	${ }^{-0.19 \%}$	87.79\%	53.7 537	53.6 536 3.6	-0.1	-0.2\%
88.9\%	54.0	54.0	0.0	0.0\%	88.9\%	53.7	${ }_{53.6}^{53.6}$	-0.1	-0.2\%
90.11\%	54.0	53.9 53	0.0	${ }^{0.0 \%}$	90.1\%	53.7	${ }_{53}^{53.6}$	-0.1	-0.2\%
914.4\%	${ }_{53.9}^{53.9}$	53.9	0.0	0.0\%	91.4\%	${ }_{53}^{53.7}$	${ }_{53.6}^{53}$	-0.1	-0.2\%
${ }_{9}^{92.6 \%}$	53.9 53.9	53.9 53.8	0.0 -0.1	-0.0.1\%	92.6\% ${ }_{\text {93, }}$	53.6 53.6	53.6 53.4	0.0 0.0	- ${ }_{-0.3 \%}^{-0.3 \%}$
95.1\%	53.9	53.7	-0.2	-0.4\%	95.1\%	53.5	53.4	-0.1	-0.3\%
96.3\%	53.8	53.7	-0.1	-0.2\%	96.3\%	53.4	53.2	-0.2	-0.4\%
97.5\%	53.7	53.7	0.0	-0.1\%	97.5\%	53.3	53.2	-0.2	-0.3\%
98.8% 100.0%	53.7 53.3	53.4 53.1	-0.2	-0.4\%	98.8\% 100.0\%	53.9 52.9	52.7	-0.2	

Sites

SUPPORT - Sites Project

Water Districts/Agencies/Retailers
Regional Water Authority
Mountain Counties Water Association
Southern California Water Committee*
Northern California Water Association
Anderson-Cottonwood Irrigation District
B\&B Ranch
Brophy Water District
Browns Valley Irrigation District
Butte County Board of Supervisors
Crain Orchards, Inc.
Danna \& Danna Inc.
Edwards Ranch
Feather Water District
G\&K Farms, LLC.
Garden Highway Mutual Water Company
Garner, Garner \& Stoy
Hallwood Irrigation District
Hershey Land Row Crop, LLC.
J.A. Driver
Joint Water Districts Board
Biggs-West Gridley Water District
Butte Water District
Richvale Irrigation District
Sutter Extension Water District
Larry Pires Farms
Lindauer River Ranch, Inc.
Llano Seco Rancho
M\&T Ranch
Maxwell Irrigation District
Meridian Farms Water Company
Natomas Mutual Water Co.
North Yuba County Water District
Oji Brothers Farms, Inc.
Pacific Farms \& Orchards
Pelger Mutual Water Company
Pleasant Grove-Verona Mutual Water Co.
Plumas Mutual Water Co.
Princeton-Codora-Glenn Irrigation Dist.

Provident Irrigation District
R. Gorrill Ranch Enterprises

Ramirez Water District
Reclamation District 1004
Reclamation District 108
Reclamation District 2035
Richter Brothers, Inc.
River Garden Farms
Riverview Land \& Equipment, Inc.
Shasta County Board of Supervisors
South Sutter Water District
South Yuba Water District
Sutter Bypass-Butte Slough WUA
Sutter County Board of Supervisors
Sutter Mutual Water Company
Taylor Brothers Farms
Tehama Angus Ranch, Inc.
Tehama County Board of Supervisors
Thermalito Irrigation District
Tudor Mutual Water Company
Tuttle Ranches
Western Canal Water District
William P. Locket
Yolo County Flood Control \& WCD
Yuba County Water Agency

Agricultural Interests

California Rice Commission
Family Water Alliance
California Fresh Fruit Association*
California Farm Bureau Federation*
California Agricultural Aircraft Association*
Western Growers*
California Alfalfa \& Forage Association*
California Agricultural Irrigation Association*
California Association of Wheat Growers*
California Bean Shippers Association*
California Warehouse Association*
California Cotton Ginners \& Growers Association*

[^1]Page 1 of 3

SUPPORT - Sites Project

Western Agricultural Processors Association*
Yuba-Sutter Farm Bureau*
Passmore Ranch*
California Women for Agriculture*

Business Groups

California Business Properties Association*
California Building Industry Association*
California Chamber of Commerce*
San Gabriel Valley Economic Partnership*
East Bay Leadership Council*
Sacramento Metro Chamber of Commerce*

Labor

California Alliance for Jobs*
State Building \& Construction Trades Council \& Local
Affiliates*

Local Government

City of Williams*
City of Willows*
Shasta County*
City of Roseville*
Sutter County*
City of Orland*
County of Tehama*
City of Colusa*
Sacramento Area Council of Governments

Local Associations/Businesses

Roseville Coalition of Neighborhood Associations*
PackageOne*
VCS Consulting*
J.V. Camp \& Associates*

Elected Officials

Senator Feinstein*
Congresswoman Matsui*
California Congressional Delegation (42) *
Doug LaMalfa (CD 1)

John Garamendi (CD 3)
Kevin McCarthy (CD 23)
Jim Costa (CD 16)
Jeff Denham (CD 10)
Mike Thompson (CD 5)
Ken Calvert (CD 42)
Ami Bera (CD 7)
Devin Nunes (CD 22)
Grace Napolitano (CD 32)
Ed Royce (CD 39)
Zoe Lofgren (CD 19)
David Valadao (CD 21)
Adam Schiff (CD 28)
Tom McClintock (CD 4)
Anna Eshoo (CD 18)
Mimi Walters (CD 45)
Eric Swalwell (CD 15)
Paul Cook (CD 8)
Mark DeSaulnier (CD 11)
Darrell Issa (CD 49)
Jimmy Panetta (CD 20)
Steve Knight (CD 25)
Raul Ruiz (CD 36)
Dana Rohrabacher (CD 48)
Norma Torres (CD 35)
Duncan Hunter (CD 50)
Juan Vargas (CD 51)
Scott Peters (CD 52)
Mark Takano (CD 41)
Jerry McNerney (CD 9)
Alan Lowenthal (CD 47)
Ted Lieu (CD 33)
Judy Chu (CD 27)
Ro Khanna (CD 17)
Tony Cardenas (CD 29)
Linda Sanchez (CD 38)
Lou Correa (CD 46)
Salud Carbajal (CD 24)
Brad Sherman (CD 30)
Lucille Roybal-Allard (CD 40)

SUPPORT - Sites Project

```
    Pete Aguilar (CD 31)
California State Senators (12) *
    Jim Nielsen (SD 4)
    Bill Dodd (SD 3)
    Tom BerryHill (SD 8)
    Jeff Stone (SD 28)
    Cathleen Galgiani (SD 5)
    Mike Morrell (SD 23)
    Steven Glazer (SD 7)
    Scott Wiener (SD 11)
    Steven Bradford (SD 35)
    Andy Vidak (SD 14)
California State Assemblymembers (17) *
    James Gallagher (AD 3)
    Vince Fong (AD 34)
    Chad Mayes (AD 42)
    Anna Caballero (AD 30)
    Raul Bocanegra (AD 35)
    Ken Cooley (AD 8)
    Blanca Rubio (AD 48)
    Brian Dahle (AD 1)
    Catherine Baker (AD 16)
    Health Flora (AD 12)
    Jay Obernolte (AD 33)
    Jim Cooper (AD 9)
    Marc Steinorth (AD 40)
    Kevin Kiley (AD 6)
    Kevin McCarty (AD 7)
    Timothy Grayson (AD 14)
    Frank Bigelow (AD 5)
```


Hutuited States Senate

WASHINGTON, DC 20510-0504
http://feinstein.senate.gov
August 4, 2017

Mr. Armando Quintero, Chair
California Water Commission
P.O. Box 942836
Sacramento, CA 94236-0001

RE: Support for Sites Reservoir Project Proposition 1 Application

Dear Chair Quintero:

I write in support of the Sites Reservoir Project in its application for Proposition 1 funding through the Water Supply Investment Program.

I deeply appreciate your work and the work of the California Water Commission to support storage projects that are vital for our water future. I have long worked to secure federal funding for feasibility studies on Sites and other CALFED storage projects, and I am grateful for the State's willingness to advance qualified projects through the Water Supply Investment Program.

Sites Reservoir offers a remarkable opportunity to reoperate California's longest and largest river, the Sacramento, to provide multiple benefits for fish, farms, and cities in an innovative manner. By partnering with the Sites Project Authority in the development of the Reservoir, the state would acquire water storage capacity and have management control over the resulting releases to ensure environmental benefits are achieved.

Sites is a $1,800,000$ acre-foot off-stream reservoir that, if operating today, would increase water storage capacity in the Sacramento Valley by 15% and provide approximately 500,000 acre feet per year of additional water supply on average with approximately half for human use and half for the environment.

Sites Reservoir would allow reoperation of California's water infrastructure in numerous beneficial ways, including:

- Preserving more of Shasta's cold water pool for salmon by making early releases on behalf of Shasta to then enable Shasta to release an equal amount of cold water in summer and fall months;
- Coordinated operations with Folsom and Oroville Reservoirs could likewise offer both water supply and environmental benefits;
- Releases from Sites could increase flows through the Yolo Bypass and other side channels to the Sacramento-San Joaquin Delta that augment food supply for migrating salmon and delta smelt;
- Releases from Sites can provide Level 4 water for wildlife refuges; and
- For Central Valley farms and communities as well as for cities in the Bay Area and Southern California, improve water supply reliability and help to conserve local groundwater basins for use during prolonged droughts.

The past few years have starkly illustrated why California needs to store more water from the wet years for the dry years. As our climate changes, scientists expect the pattern of record-breaking drought and then floods to recur ever more often, elevating the importance of capturing more of the storm runoff that will increasingly dominate our water supply.

It has been a long time coming for major surface storage projects in California to be on the cusp of construction. I greatly appreciate your careful consideration of this important project as you disburse Proposition 1 funding. Please do not hesitate to contact me or John Watts of my staff with any questions.

Sincerely,

cc: California Water Commission members
Jim Watson, General Manager, Sites Project Authority
DF:jw

 datahimgtan, 進 20515

July 31, 2017

Armando Quintero
Chair, California Water Commission
P.O. Box 942836
Sacramento, Califomia 94236-0001

Dear Chairman Quintero,

We write today to convey our support for the Sites Reservoir Project's application for funding from the Proposition 1 Water Storage and Investment Program. The Sites project has the potential to providermultiple benefits to California's farms, cities and to the environment.

As you know, the Sites Project is a 1.8 million acre-foot, off-stream regulating reservoir that would divert and store excess Sacramento River flows. The diversion levels would be dependent upon hydrologic conditions and would be structured to ensure that water taken out of the Sacramento River istruly in excess of downstream needs.

The operational flexibility that the Sites project would provide to the State's entire water system is what makes this project so unique and worthy of funding. A few of the reservoir's many uses include, but are not limited to, a reliable water supply for California cities and agriculture, dedicated water for fishery and environmental flow purposes, increased habitat for migratory birds on the Pacific Flyway, and improved flexibility and drought resiliency for the Central Valley Project and the State Water Project.

Opportunities to apply lessons learned during the last five years of drought must not be wasted. The drought, and this year's record breaking rainfall, have shown us how critical it is to develop smart storage that allows us to store more water in wet years for future use in dry ones. Sites Reservoir is that smart storage.

Thank you for the work that you and the Water Commission are doing to increase water supply reliability across California. We look forward to your announcement of funding awards.

Sincerely,

Kevin McCarthy
Member of Congress

Member of Congress

Ed Royce
Member of Congress

Dana Rohrabacher
Member of Congress

Duncan Hunter
Member of Congress

Scott Peters
Member of Congress

Ted Lieu
Member of Congress

Member of Congress

Mark Takano
Member of Congress

Alan Lowenthal
Member of Congress

Member of Congress

Linda Sanchez
Member of Congress

Salud Carbajal
Member of Congress

Lucille Roybal-Allard
Member of Congress

Brad Sherman
Member of Congress

Member of Congress

Cangress of the $\mathfrak{Z l n i t e n}$ Satates

Joseph Byrne
Chair
California Water Commission
P.O. Box 942836

Sacramento, California 94236-0001
Dear Chair Byrne
I write today in support of the Sites Reservoir Project's request for funding under Proposition 1, the Water Quality, Supply, and Infrastructure Improvement Act. The Sites project has the potential to provide multiple benefits to California's water resources equation including public and environmental benefits for communities and habitat in Northern California.

As you are aware, the $\$ 4.4$ billion Sites Reservoir Project calls for pumping Sacramento River water into an off-stream reservoir in Colusa and Glenn Counties. Should Sites be built, the 1.81 million acre-foot reservoir has the potential, depending on the watery year, to add up to a maximum of 500,000 acre-feet of water to California's water system annually.

In particular, I support the public and environmental benefits that Sites could provide. As you know, we must constantly balance the fresh water supplies in the Sacramento-San Joaquin Delta. The potential for Sites' public benefit portion is substantial, whether these benefits preserve additional cold water in Shasta Reservoir or support tributaries to the Sacramento River, including the American River. The project also may benefit reservoirs on these tributaries, such as Folsom Reservoir, and help balance their water resources in the best way possible.

With all of the water supply and environmental benefits that Sites has the potential to provide, I look forward to seeing the final environmental documentation that will assure the Proposition 1 public benefit portion of the project is truly attainable.

Thank you for your consideration and your continued efforts to invest in our state's water infrastructure. Should you have any questions feel free to contact me or have your staff reach out to my office at (202) 225-7163.

Sincerely,

DORIS MATSUI
Member of Congress

CALIFORNIA LEGISLATURE

STATE CAPITOL
SACRAMENTO, CALIFORNIA 95814

July 10, 2017

Armando Quintero
Chair, California Water Commission
P.O. Box 942836
Sacramento, California 94236-0001
\section*{Dear Chairman Quintero:}

We write today to convey our support for the Sites Reservoir Project's application for funding from the Proposition 1 Water Storage and Investment Program. The Sites project has the proven potential to provide multiple benefits to California's farms, cities and to the environment.

As you know, the Sites Project is a 1.8 million acre-foot, off-stream reservoir that would divert and store excess Sacramento River flows. The diversion levels would be dependent upon hydrologic conditions and would be structured to ensure that water taken out of the Sacramento River is truly in excess of downstream needs.

The operational flexibility that the Sites project would provide to the State's entire water system is what makes this project so unique and worthy of funding. The reservoir's many beneficial uses include, but are not limited to, dedicated water for fishery and flow purposes, a reliable water supply for California agriculture, increased habitat for migratory birds on the Pacific Flyway, and greater water security for urban areas.

Opportunities to apply lessons learned during the last five years of drought must not be wasted. The drought and this year's record breaking rainfall have shown us how critical it is to develop smart storage that allows us to store more water in wet years for future use in dry ones. Sites Reservoir is the kind of smart, well-planned water storage project that will achieve a multitude of beneficial uses.

Thank you for the work that you and the Water Commission are doing to increase water supply reliability across California. We look forward to your announcement of funding awards.

Sincerely,
Mider- Comerestagini

Min unall
Stoufe bthble

Califannia Tidgizlature

July 21, 2017

Armando Quintero
Chair, California Water Commission
P.O. Box 942836
Sacramento, California 94236-0001

Dear Chairman Quintero:

We write today to convey our support for the Site Reservoir Project's application for funding from the Proposition 1 Water Storage Investment Program (WSIP). The Sites project would provide valuable benefits to California's farms and cities, while providing much needed flexibility for water managers to adjust flows for the environment and for flood control.

As you know, the Sites Project is a 1.8 million acre-foot off-stream reservoir that would divert and store excess Sacramento River flows. The diversion levels would be dependent upon hydrologic conditions and would be structured to ensure that water taken out of the Sacramento River is truly in excess of downstream needs. If Sites Reservoir had been operational during the last wet season (October 2016March 2017), 1.4 million acre-feet of water could have been diverted and stored.

The operational flexibility that the Sites project would provide to the State's entire water system is what makes this project so unique and worthy of funding. A few of the reservoir's many uses include, but are not limited to, dedicated water for fishery and flow purposes, a reliable water supply for California's agriculture, increased habitat for migratory birds on the Pacific Flyway, and greater water security for urban areas.

Opportunities to apply lessons learned during the last five years of drought must not be wasted. The drought and this year's record breaking rainfall have shown us how critical it is to develop smart storage that allows us to store more water in wet years for future use in dry ones. Sites Reservoir is that smart storage.

Thank you for the work that you and the Water Commission are doing to increase water supply reliability across California. We look forward to your announcement of funding awards. Please call us at (916)-3192003 should you need any further information regarding our support for this vital project.

Sincerely,

Sites WSIP application support letter, page 1

Assemblymember, $34^{\text {th }}$ District

Assemblymember, $8^{\text {th }}$ District

Brian Dahle
Assemblymember, $1^{\text {st }}$ District

Assemblymember, $42^{\text {nd }}$ District

Assemblymember, $35^{\text {th }}$ District

Blanca Rubio
Assemblymember, $48^{\text {th }}$ District

Catherine Baker
Assemblymember, $16^{\text {th }}$ District

Assemblymember, $9^{\text {th }}$ District

Sites WSIP application support letter, page 2

Assemblymember, $5^{\text {th }}$ District
\qquad
\qquad
\qquad
\qquad

Sites WSIP application support letter, page 3

$A D 14$
\qquad r路
\qquad
\qquad
\qquad
\qquad

California Agricultural Aircraft Association

OFFICERS
Chairman
Reid Potter
Vice Chairman
Doug Thill
Secretary/Treasurer
Rob Scherzinger
Ex-Officios
Joel Dozhier
President
Terry Gage
BOARD OF DIRECTORS
District 1
Alan Jones
Chris Jones
District 2
Lloyd Erlandson
Steve Sperry
District 3
Dan Cudgel
Kevin Morton
District 4
Mark Flasket
Rob Scherzinger
District 5
Chris Nola
Delbert Williams
District 6
Vincent Merton Byron Nelson

Directors-At-Large
Ralph Holsclaw
Rick Richter
Advisory Directors Louie Mendoza Charlie Witrado

Allied Directors Mindy McFarland Karl Kinz

NAAA Director Chris Jones

July 14, 2017
Jim Watson
General Manager
Sites Project Authority
PO Box 517
Maxwell, CA 95955
Dear Jim,
The California Agricultural Aircraft Association is pleased to offer its support for the Sites Project. The California Agricultural Aircraft Association (CAAA) is a non-profit trade association representing the professional aerial application industry in California.

California will continue to face intense water challenges including limited supplies, a growing population, the effects of climate change, increased flow requirements for native fish, and water for wetlands used by migratory birds. Now more than ever, California's water system needs a more flexible, environmentally friendly and sustainable solution to capturing and storing water for use when it's needed most.

The Sites Project would add up to 1,800,000 acre-ft. of capacity to produce 500,000 acre-feet of critical supplies to California's water system on an annualized basis. With its ability to integrate operations with the state's water system, Sites is an innovative and modern approach that will help the state capture, store and move water where it needs to be, when it is needed most.

The Sites Project will help make California's water system more efficient and reliable. The project helps meet the objectives of the California Water Action Plan by providing a substantial supply of high-quality water to support the economy and the environment. Sites Project reflects California's innovative approach to meeting the needs of the environment, economic growth, and our quality of life.

Sites Project works for the ecosystem, and for families, farms, and businesses across the state. We encourage the California Water Commission to invest in the public benefits that the Sites Project would provide.

We look forward to working with the Sites Project Authority to advance this important project.

California Farm Bureau Federation
 Governmental Affairs Division 1127-11th Street, Suite 626, Sacramento, CA 95814 • Phone (916) 446-4647

July 12, 2017
Jim Watson
General Manager
Sites Project Authority
P.O. Box 517

Maxwell, CA 95955
Dear Jim,
On behalf of more than 48,000 farm families and individual members, the California Farm Bureau Federation is pleased to offer our support for the Sites Project.

Farm Bureau's purposes are, among others, to work for the solution of the problems of the farm, the farm home and the rural community throughout California and to protect and advance the social, economic and educational interests of California farmers. Farm Bureau strives to protect and improve the ability of farmers and ranchers engaged in production agriculture to provide safe, reliable, and healthful food and farm products through responsible stewardship of California's diverse natural resource base.

With a diminished Sierra snowpack, punctuated by above normal snow and rainfall like we experienced this year, ever-increasing environmental policy demands such as increased flow requirements for native fish, water for wetlands and a growing population, California will continue to face intense water challenges. Now more than ever, California's water system needs a more flexible, environmentally friendly and sustainable solution for diverting and storing water during periods of excess flows for human and environmental uses during dry periods.

The Sites Project would add up to $1,800,000$ acre feet of capacity and produce an average 500,000 acre feet of critical supplies to California's water system a year. With the ability to integrate with the state's water system, Sites is strategically located and provides an innovative approach that will help to capture, store and move water where and when it is needed most. The project would provide significant new water for instream flows, recreation, groundwater recharge and assist with the long-term success of the Sustainable Groundwater Management Act.

Providing a substantial supply of high-quality water to support farms, the economy and the environment, the Sites Project meets the objectives of the California Water Action Plan, making California's water system more efficient, flexible and reliable.

Sites works for the ecosystem, and for families, farms, and businesses across the state. We encourage the California Water Commission to invest in the public benefits that the Sites Project would provide.

We look forward to working with the Sites Project Authority to advance this important project.

Sincerely,

Danny Merkley
Director of Water Resources

Cc: Keith Dunn, Dunn Consulting

95814

July 20, 2017

Jim Watson
General Manager
Sites Project Authority
P.O. Box 517
Maxwell, CA 95955

Dear Jim,
The California Alfalfa \& Forage Association, representing thousands of forage growers in the state, is pleased to offer its support for the Sites Project.

The Sites Project is a proposed above ground, off-stream water storage project located in Northern California and would add up to 500,000 acre-feet of critical supplies to California's water system annually. Sites is an innovative and modern approach that goes beyond water supply and flood protection by adding flexibility and generating a much-needed new water source for improved water quality, seasonal fish flows, climate change and drought relief.

The Sites Project creates an additional supply of reliable water that can be used for urban, agricultural, environmental, and industrial purposes. Sites would also improve water quality in the Sacramento-San Joaquin Delta (Delta) and enhance environmental flows to benefit the Delta's ecosystem.

California will continue to face severe water challenges including limited supplies, a growing population, the effects of climate change, and increased flow requirements for native fish. Now more than ever, California's water system needs a more flexible, environmentally friendly solution to capturing and storing water for use when it's needed most. The Sites Project would provide an additional tool for water managers to effectively balance competing demands and provide safe and reliable water to support the current and future needs of California's environment and economy.

We look forward to working with the Sites Project Authority to advance this important project.

Sincerely,

Jane Townsend
Executive Director

July 20, 2017
Jim Watson
General Manager
Sites Project Authority
P.O. Box 517

Maxwell, CA 95955

Dear Jim,
The California Agricultural Irrigation Association (CAIA) is pleased to offer its support for the Sites Project. CAIA is a network of irrigation professionals throughout California whose goal is to promote common ideals, standards, and business practices. CAIA advocates for the development of efficient irrigation design and management practices that promote water and soil conservation while increasing yields and improving crop quality.

The Sites Project is a proposed above ground, off-stream water storage project located in Northern California and would add up to 500,000 acre-feet of critical supplies to California's water system annually. Sites is an innovative and modern approach that goes beyond water supply and flood protection by adding flexibility and generating a much-needed new water source for improved water quality, seasonal fish flows, climate change and drought relief.

The Sites Project creates an additional supply of reliable water that can be used for urban, agricultural, environmental, and industrial purposes. Sites would also improve water quality in the Sacramento-San Joaquin Delta (Delta) and enhance environmental flows to benefit the Delta's ecosystem.

California will continue to face severe water challenges including limited supplies, a growing population, the effects of climate change, and increased flow requirements for native fish. Now more than ever, California's water system needs a more flexible, environmentally friendly solution to capturing and storing water for use when it's needed most. The Sites Project would provide an additional tool for water managers to effectively balance competing demands and provide safe and reliable water to support the current and future needs of California's environment and economy.

We look forward to working with the Sites Project Authority to advance this important project.

Executive Director

July 20, 2017
Board of Directors

Jim Parsons,

President
Ducor, Tulare
County
Doug Grupe, Vice
President
Linden, San Joaquin
County
Ian Anderson,
Director
Birds Landing,
Solano County
Larry Hunn,
Director
Clarksburg,
Sacramento County
Steven Parsons,
Director
Ducor, Tulare County

Nick Matteis,
Executive Director

Jim Watson
General Manager
Sites Project Authority
P.O. Box 517

Maxwell, CA 95955
Dear Jim,
The California Association of Wheat Growers, representing the interests of California wheat growers on the state and federal levels, is pleased to offer its support for the Sites Project.

The Sites Project is a proposed above ground, off-stream water storage project located in Northern California and would add up to 500,000 acre-feet of critical supplies to California's water system annually. Sites is an innovative and modern approach that goes beyond water supply and flood protection by adding flexibility and generating a much-needed new water source for improved water quality, seasonal fish flows, climate change and drought relief.

The Sites Project creates an additional supply of reliable water that can be used for urban, agricultural, environmental, and industrial purposes. Sites would also improve water quality in the Sacramento-San Joaquin Delta (Delta) and enhance environmental flows to benefit the Delta's ecosystem.

California will continue to face severe water challenges including limited supplies, a growing population, the effects of climate change, and increased flow requirements for native fish. Now more than ever, California's water system needs a more flexible, environmentally friendly solution to capturing and storing water for use when it's needed most. The Sites Project would provide an additional tool for water managers to effectively balance competing demands and provide safe and reliable water to support the current and future needs of California's environment and economy.

We look forward to working with the Sites Project Authority to advance this important project.

$\frac{\text { CALIFORNIA }}{\frac{\text { BEAN SHIPPERS }}{\text { ASSOCIATIO }}}$

President
Mark Kirsten
Kirsten Company LLC
Lodi
Vice President
Steve Azevedo
Dompe Warehouse
Crows Landing

Directors

Ray Davis
Sutter Basin Growers
Co-op
Knights Landing
Larry Kubo
Rhodes Stockton
Bean Co-op
Tracy
Chad Vander Feer California Bean \& Grain

Pixley
Nelson Parreira
Beans R 4 U
Tulare
Greg Smith
Colusa Milling
Colusa
Manager/Exec Secretary
Jane Townsend Sacramento

Jim Watson
General Manager
Sites Project Authority
P.O. Box 517

Maxwell, CA 95955
Dear Jim,
The California Bean Shippers Association, representing dry bean warehouses, dealers, and exporters, is pleased to offer its support for the Sites Project.

The Sites Project is a proposed above ground, off-stream water storage project located in Northern California and would add up to 500,000 acre-feet of critical supplies to California's water system annually. Sites is an innovative and modern approach that goes beyond water supply and flood protection by adding flexibility and generating a much-needed new water source for improved water quality, seasonal fish flows, climate change and drought relief.

The Sites Project creates an additional supply of reliable water that can be used for urban, agricultural, environmental, and industrial purposes. Sites would also improve water quality in the Sacramento-San Joaquin Delta (Delta) and enhance environmental flows to benefit the Delta's ecosystem.

California will continue to face severe water challenges including limited supplies, a growing population, the effects of climate change, and increased flow requirements for native fish. Now more than ever, California's water system needs a more flexible, environmentally friendly solution to capturing and storing water for use when it's needed most. The Sites Project would provide an additional tool for water managers to effectively balance competing demands and provide safe and reliable water to support the current and future needs of California's environment and economy.

We look forward to working with the Sites Project Authority to advance this important project.

Jane Townsend
Manager/Executive Secretary
"Beans Are Healthy Business for California"
1521 I Street, Sacramento, CA 95814 . (916)441-2514 . Fax (916)446-1063

July 11, 2017

Jim Watson
General Manager
Sites Project Authority
P.O. Box 517

Maxwell, CA 95955

Dear Mr. Watson,

On behalf of the California Fresh Fruit Association I write to express support for the Sites Reservoir Project. The California Fresh Fruit Association is a non-profit, agricultural trade association representing permanent crops (fresh fruit) grown and packed throughout California. For the past five years, many of our organization's family farming operations were severely impacted by drought and water management decisions that reduced the availability of critically needed surface water supplies. Having additional above-ground surface storage north of the Delta better enables flexible water management as the added supply would help to address Delta salinity levels while relieving overall stress on the state's water system. Moreover, we believe the added capacity would allow other reservoirs to carry water into the summer months, a time that is very critical for crop development. With new supply comes an enhanced opportunity for greater flexibility in water management decision making, whether it's making supplies available, or enhancing fulfillment of water contracts. We are encouraged by the project's potential to free up water for you use through an exchange for irrigation or to put to use to alleviate environmental needs.

It is our understanding the Sites Project would add up to 1,800,000 acre-ft. of capacity to produce 500,000 acre-feet of critical supplies to California's water system on an annualized basis. With its ability to integrate operations with the state's water system, Sites is an approach that will help the state capture, store and move water where it needs to be, when it is needed most. California will continue to face intense water challenges including limited supplies, a growing population, the effects of climate change, increased flow requirements for native fish, and water for wetlands. Now more than ever, California's water system needs a more flexible and sustainable solution to capturing and storing water for beneficial uses, including irrigation, when it is critically needed.

We encourage the California Water Commission to invest in the Sites Project and to look to fund qualifying above-ground surface storage projects, which should also include the Temperance Flat Project, to best ensure our limited financial resources are put towards securing California's water future; a future where agricultural irrigation benefits from reduced uncertainty because of the enhanced ability to manage water more effectively. To strengthen the California water picture, first we must expand our capacity to capture more water for a growing state.

We look forward to advancing important above-ground surface storage projects.

Sincerely,

George Radanovich, President

Cc: Tim Johnson, President, California Rice Commission
Christopher Valadez, Director, Environmental \& Regulatory Affairs, California Fresh Fruit Association

CITY OF COLUSA

425 WEBSTER STREET * COLUSA, CA 95932 * (530) 458-4740 * FAX (530) 458-7555

July $18^{\text {th }} 2017$

Jim Watson
General Manager
Sites Project Authority
P.O. Box 517

Maxwell, CA 95955

Dear Jim,

My organization, the City of Colusa, is pleased to offer its support for the Sites Project.
The Sites Project is a proposed above ground, off-stream water storage project located in Northern California and would add up to 500,000 acre-feet of critical supplies to California's water system annually. Sites is an innovative and modern approach that goes beyond water supply and flood protection by adding flexibility and generating a much-needed new water source for improved water quality, seasonal fish flows, climate change and drought relief.

The Sites Project creates an additional supply of reliable water that can be used for urban, agricultural, environmental, and industrial purposes. Sites would also improve water quality in the Sacramento-San Joaquin Delta (Delta) and enhance environmental flows to benefit the Delta's ecosystem.

California will continue to face severe water challenges including limited supplies, a growing population, the effects of climate change, and increased flow requirements for native fish. Now more than ever, California's water system needs a more flexible, environmentally friendly solution to capturing and storing water for use when it's needed most. The Sites Project would provide an additional tool for water managers to effectively balance competing demands and provide safe and reliable water to support the current and future needs of California's environment and economy.

We look forward to working with the Sites Project Authority to advance this important project.

Sincerely,

KIRK KELLEHER, MAYOR

CITY of WILLIAMS

810 E STREET
POST OFFICE BOX 310
WILLIAMS, CALIFORNIA 95987

PHONE: (530) 473-2955 • FAX: (530) 473-2445

July 10, 2017

```
Jim Watson
General Manager
Sites Project Authority
P.O. Box }51
Maxwell, CA }9595
```

Dear Jim,
My organization, City of Williams, is pleased to offer its support for the Sites Project.
The Sites Project is a proposed above ground, off-stream water storage project located in Northern California and would add up to 500,000 acre-feet of critical supplies to California's water system annually. Sites is an innovative and modern approach that goes beyond water supply and flood protection by adding flexibility and generating a muchneeded new water source for improved water quality, seasonal fish flows, climate change and drought relief.

The Sites Project creates an additional supply of reliable water that can be used for urban, agricultural, environmental, and industrial purposes. Sites would also improve water quality in the Sacramento-San Joaquin Delta (Delta) and enhance environmental flows to benefit the Delta's ecosystem.

California will continue to face severe water challenges including limited supplies, a growing population, the effects of climate change, and increased flow requirements for native fish. Now more than ever, California's water system needs a more flexible, environmentally friendly solution to capturing and storing water for use when it's needed most. The Sites Project would provide an additional tool for water managers to effectively balance competing demands and provide safe and reliable water to support the current and future needs of California's environment and economy.

We look forward to working with the Sites Project Authority to advance this important

RESOLUTION 15-02

A Resolution of the City of Williams to Support Construction of the Sites Reservoir Project.

WHEREAS, the City of Williams's mission includes protecting and enhancing the reliability, availability, affordability, and quality of water resources; and

WHEREAS, the City of Williams is in the center of one of the most productive agricultural areas of California; and

WHEREAS, 2014 was the driest year on record in California and the fourth consecutive drought year; and

WHEREAS, water is the lifeblood of our agricultural community and farming is the foundation of our economic wellbeing; and

WHEREAS, as additional water storage is needed to sustain our water needs for the continued prosperity of our City; and

WHEREAS, the Sites Reservoir, technically called the North of the Delta Off stream Storage project, will increase our water supply for our farming community and residents in the future; and

WHEREAS, the Sites Reservoir will improve the Delta water quality and be capable of holding up to 1.9 million acre feet of water; and

WHEREAS, many water purveyors are implementing or considering actions under their water shortage contingency plans; and

NOW, THEREFORE, BE IT RESOLVED that the City Council of the City of Williams encourage the construction of the Sites Reservoir.

MOVED, PASSED AND ADOPTED by the City Council of the City of Williams, California, this 21 st day of January, 2015 by the following vote, to wit:

AYES: Council Member Troughton Jr., Sellers Jr., Bergson, Jauregui
NOES: Council Member Bes.
ABSTAIN: None.
ABSENT: None.

ATTEST:

Charles Bergson, Council Member

Santos Jauregui, Coúncil'Member

June 13, 2017

Jim Watson
General Manager
Sites Project Authority
P.O. Box 517

Maxwell, CA 95955

Dear Jim,
The City Council of the City or Willows is pleased to offer its support for the Sites Project.
California will continue to face intense water challenges including limited supplies, a growing population, the effects of climate change, increased flow requirements for native fish, and water for wetlands used by migratory birds. Now more than ever, California's water system needs a more flexible, environmentally friendly and sustainable solution to capturing and storing water for use when it's needed most.

The Sites Project would add up to 1,800,000 acre-ft. of capacity to produce 500,000 acre-feet of critical supplies to California's water system on an annualized basis. With its ability to integrate operations with the state's water system, Sites is an innovative and modern approach that will help the state capture, store and move water where it needs to be, when it is needed most.

The Sites Project will help make California's water system more efficient and reliable. The project helps meet the objectives of the California Water Action Plan by providing a substantial supply of high-quality water to support the economy and the environment. Sites reflects California's innovative approach to meeting the needs of the environment, economic growth, and our quality of life.

Sites works for the ecosystem, and for families, farms, and businesses across the State. We encourage the California Water Commission to invest in the public benefits that the Sites Project would provide.

We look forward to working with the Sites Project Authority to advance this important project.

Gary L. Hansen
Mayor

Board of Supervisors COUNTY OF TEHAMA

Jim Watson, General Manager
Sites Project Authority
P.O. Box 517

Maxwell, CA 95955

Dear Mr. Watson:

The County of Tehama took formal action this date to support the Sites Reservoir Project and its application for Proposition 1 funding.

The Sites Project is a proposed above ground, off-stream water storage project located ten miles west of Maxwell, in Northern California. When complete, this project would add up to 500,000 acre-feet to California's water system annually. Sites is an innovative and modern approach that goes beyond water supply and flood protection by adding flexibility and generating a much needed new water source for improved water quality, seasonal fish flows, climate change and drought relief.

The Sites Project creates an additional supply of reliable water that can be used for urban, agricultural, environmental, and industrial purposes. This project would also improve water quality in the Sacramento-San Joaquin Delta and enhance environmental flows which would benefit the Delta's ecosystem.

Into the future California will continue to face severe water challenges including limited supplies, a growing population, the effects of climate change, and increased flow requirements for native fish. Now more than ever, our water system needs a more flexible, environmentally friendly solution to capturing and storing water for use when it's needed most. The Sites Project would provide an additional tool for water managers to effectively balance competing demands and provide safe and reliable water to support the current and future needs of California's environment and economy.

We look forward to working with the Sites Project Authority to advance this important project.
Sincerely,

President

RAY DAVIS, IR.
Sutter Basin Growers Cooperative
Knights Landing

Vice President
BRICE LAUPPE
Farmers' Rice Cooperative
Sacramento

Secretary/Treasurer
JOE ALVES
Farmers' Rice Cooperative
Princeton

Past President
CARL HOFF
Butte County Rice Growers Assn Richvale

BRIAN BARRETT
ADM Rice, Inc.
Arbuckle

CHARLEY MATHEWS, JR.
District 10 Dryers LLC
Marysville

JOE TAUSCHER
Colusa Rice Company, Inc.
Colusa

DON TRAYNHAM
The Sun Valley Rice Company, LLC Arbuckle

Executive Vice President ANN QUINN

Jim Watson
General Manager
Sites Project Authority
P.O. Box 517

Maxwell, CA 95955
Dear Jim:

The California Warehouse Association, representing the state's rice warehousing industry, is pleased to offer its support for the Sites Project.

The Sites Project is a proposed above ground, off-stream water storage project located in Northern California and would add up to 500,000 acre-feet of critical supplies to California's water system annually. Sites is an innovative and modern approach that goes beyond water supply and flood protection by adding flexibility and generating a much-needed new water source for improved water quality, seasonal fish flows, climate change and drought relief.

The Sites Project creates an additional supply of reliable water that can be used for urban, agricultural, environmental, and industrial purposes. Sites would also improve water quality in the Sacramento-San Joaquin Delta (Delta) and enhance environmental flows to benefit the Delta's ecosystem.

California will continue to face severe water challenges including limited supplies, a growing population, the effects of climate change, and increased flow requirements for native fish. Now more than ever, California's water system needs a more flexible, environmentally friendly solution to capturing and storing water for use when it's needed most. The Sites Project would provide an additional tool for water managers to effectively balance competing demands and provide safe and reliable water to support the current and future needs of California's environment and economy.

We look forward to working with the Sites Project Authority to advance this important project.

Sincerely,

Ann Quinn
Executive Vice President

PACKAGEONE

Jim Watson, General Manager
Sites Project Authority
P.O. Box 517

Maxwell, CA 95955
Dear Jim,

WE'RETHE ONE

HEADQUARTERS
PackageOne, Inc. 4225 Pell Drive, Sacramento, California 95838 tel : 916-858-1300 fax : 916-858-1311 www.packageone.com

My organization, PackageOne, Inc. is pleased to offer its support for the Sites Project.
PackageOne is an environmentally conscious company that recognizes the importance of preserving natural resources for the youth of tomorrow. As a corporate citizen, we're in the business of not only developing innovative packaging products but of improving lives. We are highly committed to the environment and believe in Green. Our mission is to enable commerce and save the planet, one box at a time.

California will continue to face intense water challenges including limited supplies, a growing population, the effects of climate change, increased flow requirements for native fish, and water for wetlands used by migratory birds. Now more than ever, California's water system needs a more flexible, environmentally friendly and sustainable solution to capturing and storing water for use when it's needed most.

The Sites Project will add up to $1,800,000$ acre-ft. of capacity to produce 500,000 acre-feet of critical supplies to California's water system on an annualized basis. With its ability to integrate operations with the state's water system, Sites is an innovative and modern approach that will help the state capture, store and move water where it needs to be when it is needed most.

The Sites Project will help make California's water system more efficient and reliable. The project helps meet the objectives of the California Water Action Plan by providing a substantial supply of high-quality water to support the economy and the environment. Sites reflects California's innovative approach to meeting the needs of the environment, economic growth and our quality of life.

Sites works for the ecosystem, families, farms, and businesses across the state. We encourage the California Water Commission to invest in the public benefits that the Sites Project will provide.

We look forward to working with the Sites Project Authority to advance this important project.
Sincerely,

Tom Kandris

BOARD OF SUPERVISORS

1450 Court Street, Suite 308B
Redding, California 96001-1673
(530) 225-5557
(800) 479-8009
(530) 225-5189 FAX

711 or 800-735-2922 California Relay Service

DAVID A. KEHOE, DISTRICT 1
LEONARD MOTY, DISTRICT 2
PAM GIACOMINI, DISTRICT 3
BILL SCHAPPELL, DISTRICT 4
LES BAUGH, DISTRICT 5

March 1, 2016

The Honorable Joseph Byrne, Chair
California Water Commission
$14169^{\text {th }}$ Street
Sacramento, CA 95814
Subject: Sites Reservoir Project-Support
Dear Chairman Byrne:
The Shasta County Board of Supervisors would like to express our strong support for the development of the Sites Reservoir Project.

Projects to protect and improve watersheds, wetlands, forests, and floodplains would provide clean, quality water into the Sacramento River system with supply and water quality benefits having a great effect on Northern and Southern California. Studying the feasibility of this project, among others, is a return on investment for both water supply reliability and the ecosystem, as well as encouraging these benefits to accrue sooner and in a cost-effective manner. The Shasta County Board of Supervisors supports the Sites Reservoir Project as a potential applicant under the voter-approved Water Storage Investment Program.

If you have any questions about our position, or wish to discuss the issue further, please contact Mr. Larry Lees, Shasta County Executive Officer, at (530) 225-5561.

Sincerely,

Pam Giacomini, Chairman

Board of Supervisors
County of Shasta
State of California

Armando Quintero
Chair, California Water Commission
P.O. Box 942836

Sacramento, California 94236-0001
RE: Proposition 1 Water Storage Investment Project Funds
Dear Chairman Quintero:
The California Water Commission has an opportunity with Proposition 1 Water Storage Investment Project (WSIP) funds to upgrade our state’s aging water infrastructure system while also helping put Californians to work.

The California Alliance for Jobs writes today in support of the Sites Reservoir Project's application for funding through WSIP. This potential reservoir project has the ability to provide multiple levels of benefits to California communities - rural and urban - as well as benefits to the environment around it. As a "north of the Delta" reservoir site, Sites would be able to provide California's current water systems with additional water security, storage capacity, and delivery flexibility.

Sites Reservoir would hold almost two million acre-feet of water through off-stream diversions. This capacity would allow the project to: provide reliable water supplies to current and future California cities and industries, dedicate water for environmental flows and fisheries, increase current and potential habitats for migratory birds, and improve the economy of currently disadvantaged communities across California.

Investing in the Sites Project also puts people to work. Thousands of family-supporting jobs are produced with every billion dollars invested in water infrastructure. Funding a project like Sites would provide decades worth of well-paying, middle class jobs for all Californians.

California's recent five-year drought and wet winter of 2017 showed the importance of smart and flexible water infrastructure to allow for storage during wet years and convey water during the dry ones. Sites Reservoir is necessary for California's continued economic growth and environmental sustainability.

Respectfully yours,

Michael P. Quigley
Executive Director
California Alliance for Jobs

Associated General Contractors of California

No. California United Contractors District Council of Laborers

No. California Carpenters Regional Council

Sites Reservoir Supporters

California continues to face severe water challenges: limited supplies and a growing population, compounded by climate change, and increased flow requirements for native fish. Now more than ever, California's water system needs a more flexible, environmentally friendly solution to capturing and storing water for use when it's needed most. The Sites project is an innovative project and a 21st century solution to California's water crisis. Sites provides previously unachievable flexibility to the state's water system without impacting sensitive river channels and critical environmental flows that support endangered fish populations.

YeS, I support the Sites Project. Please list me/my organization as a supporter of Sites.

Please provide the following information:
California Alliance for Jobs
Company or Organization Name

Michael Quigley	Executive Director
Name	Title/Occupation

1415 L Street, Suite 1080
Street Address

Sacramento	CA	95814
City	State	Zip

916-446-2259
Phone Number
mpquigley@rebuildca.org
Email Address
Thank you for your support!

Please Return Completed Form by email: info@SitesProject.org

Sites Reservoir Supporters

California continues to face severe water challenges: limited supplies and a growing population, compounded by climate change, and increased flow requirements for native fish. Now more than ever, California's water system needs a more flexible, environmentally friendly solution to capturing and storing water for use when it's needed most. The Sites project is an innovative project and a 21st century solution to California's water crisis. Sites provides previously unachievable flexibility to the state's water system without impacting sensitive river channels and critical environmental flows that support endangered fish populations.

YeS, I support the Sites Project. Please list me/my organization as a supporter of Sites.

Please provide the following information:
California Alliance for Jobs
Company or Organization Name

Orville Thomas	Director of Government Affairs
Name	Title/Occupation

1415 L Street, Suite 1080
Street Address

Sacramento	CA	95814
City	State	Zip

916-446-2259
Phone Number
othomas@rebuildca.org
Email Address
Thank you for your support!

Please Return Completed Form by email: info@SitesProject.org

July 31, 2017

Jim Watson
General Manager
Sites Project Authority
P.O. Box 517
Maxwell, CA 95955

Dear Mr. Watson,

Passmore Ranch is pleased to offer its support for the sites Project. My ranch's primary business is aquaculture and on top of that, I live here in California too. Water is precious to both me, my family, and my ranch.

California will continue to face intense water challenges including limited supplies, a growing population, the effects of climate change, increased flow requirements for native fish, and water for wetlands used by migratory birds. Now more than ever, California's water system needs a more flexible, environmentally friendly and sustainable solution to capturing and storing water for use when it's needed most.

The Sites Project will add up to 1,800,000 acre-ft. of capacity to produce 500,000 acre-feet of critical supplies to California's water system on an annualized basis. With its ability to integrate operations with the state's water system, Sites is an innovative and modern approach that will help the state capture, store and move water where it needs to be when it is needed most.

The Sites Project will help make California's water system more efficient and reliable. The project helps meet the objectives of the California Water Action Plan by providing a substantial supply of high-quality water to support the economy and the environment. Sites reflects California's innovative approach to meeting the needs of the environment, economic growth and our quality of life.

Sites works for the ecosystem, families, farms, and businesses across the state. We encourage the California Water Commission to invest in the public benefits that the Sites Project will provide.

I look forward to working with the Sites Project Authority to advance this important project.

Founder, CEO

YUBA-SUTTER FARM BUREAU
 Serving agriculture since 1919

July 28, 2017

Jim Watson
General Manager
Sites Project Authority
P.O. Box 517

Maxwell, CA 95955

Dear Jim,
The Yuba-Sutter Farm Bureau, is pleased to offer its support for the Sites Project.
YSFB is a non-governmental, non-profit, voluntary membership California Corporation whose purpose is to protect and promote agricultural interests throughout Yuba and Sutter counties and to find solutions to problems of the farm, the farm home and the rural community. YSFB represents more than 1,200 agricultural, associate and collegiate members in Yuba and Sutter counties.

YSFB is deeply interested in protecting the long-term viability of agricultural areas and rural communities located in our region as the stability of the local agricultural industry plays an integral role not only within our rural communities and counties, but regionally, nationally and internationally.

California will continue to face intense water challenges including limited supplies, a growing population, the effects of climate change, increased flow requirements for native fish, and water for wetlands used by migratory birds. Now more than ever, California's water system needs a more flexible, environmentally friendly and sustainable solution to capturing and storing water for use when it's needed most.

The Sites Project will add up to $1,800,000$ acre-ft. of capacity to produce 500,000 acre-feet of critical supplies to California's water system on an annualized basis, while allowing other reservoirs to hold water later into the summer months. The Sites Project will increase Northern California water storage by 23 percent, providing supplies of water for use in dry and critical years. Summed up, the Sites Project, with its ability to integrate operations with the state's water
system, is an innovative and modern approach that will help the state capture, store and move water where it needs to be when it is needed most.

The Sites Project will help make California's water system more efficient and reliable. The project helps meet the objectives of the California Water Action Plan by providing a substantial supply of high-quality water to support the economy and the environment. Sites reflects California's innovative approach to meeting the needs of the environment, economic growth and our quality of life.

Sites works for the ecosystem, families, farms, and businesses across the state. We encourage the California Water Commission to invest in the public benefits that the Sites Project will provide.

We look forward to working with the Sites Project Authority to advance this important project.

Sincerely,

David Burroughs
President, Yuba-Sutter Farm Bureau

CITY COUNCIL

Dennis G. Hoffman, Mayor Bruce T. Roundy, Vice Mayor James Paschall, Sr. Charles Gee Salina Edwards

CITY OFFICIALS

Angela Crook Assistant City Manager/City Clerk Pamela Otterson City Treasurer

CITY MANAGER
Peter R. Carr

July 17, 2017

Jim Watson

General Manager
Sites Project Authority
P.O. Box 517

Maxwell, CA 95955

Dear Jim,

The City of Orland City Council is pleased to offer its support for the Sites Project.

The Sites Project is a proposed above ground, off-stream water storage project located in Northern California and would add up to 500,000 acre-feet of critical supplies to California's water system annually. Sites is an innovative and modern approach that goes beyond water supply and flood protection by adding flexibility and generating a much-needed new water source for improved water quality, seasonal fish flows, climate change and drought relief.

The Sites Project creates an additional supply of reliable water that can be used for urban, agricultural, environmental, and industrial purposes. Sites would also improve water quality in the Sacramento-San Joaquin Delta (Delta) and enhance environmental flows to benefit the Delta's ecosystem.

California will continue to face severe water challenges including limited supplies, a growing population, the effects of climate change, and increased flow requirements for native fish. Now more than ever, California's water system needs a more flexible, environmentally friendly solution to capturing and storing water for use when it's needed most. The Sites Project would provide an additional tool for water managers to effectively balance competing demands and provide safe and reliable water to support the current and future needs of California's environment and economy.

We look forward to working with the Sites Project Authority to advance this important project.

Sincerely,

Mayor

1911 Douglas Blvd., Suite 85-370, Roseville, CA 95661 916-248-4878 www.rcona.org

July 15. 2017
Jim Watson General Manager
Sites Project Authority
P.O. Box 517

Maxwell, CA 95955

Dear Jim,
My organization, Roseville Coalition of Neighborhood Associations (RCONA) , is pleased to offer its support for the Sites Project. RCONA is a 501c3 Public Benefit Corporation representing 16 active Neighborhood Associations all across the City of Roseville. Our mission is to improve the social, physical, and economic health of all neighborhoods across the Roseville community by sharing information, facilitating training and education, providing resources and encouraging communication between neighborhoods, government, educational institutions, and other community groups.

California will continue to face intense water challenges including limited supplies, a growing population, the effects of climate change, increased flow requirements for native fish, and water for wetlands used by migratory birds. Now more than ever, California's water system needs a more flexible, environmentally friendly and sustainable solution to capturing and storing water for use when it's needed most.
The Sites Project would add up to $1,800,000$ acre-ft. of capacity to produce 500,000 acre-feet of critical supplies to California's water system on an annualized basis. With its ability to integrate operations with the state's water system, Sites is an innovative and modern approach that will help the state capture, store and move water where it needs to be, when it is needed most. The Sites Project will help make California's water system more efficient and reliable. The project helps meet the objectives of the California Water Action Plan by providing a substantial supply of high-quality water to support the economy and the environment. Sites reflects California's innovative approach to meeting the needs of the environment, economic growth, and our quality of life.

Sites works for the ecosystem, and for families, farms, and businesses across the state. We encourage the California Water Commission to invest in the public benefits that the Sites Project would provide.

We look forward to working with the Sites Project Authority to advance this important project.

Sincerely,
Werner Kuehn, President RCONA

Sites Reservoir Supporters

California continues to face severe water challenges: limited supplies and a growing population, compounded by climate change, and increased flow requirements for native fish. Now more than ever, California's water system needs a more flexible, environmentally friendly solution to capturing and storing water for use when it's needed most. The Sites project is an innovative project and a 21st century solution to California's water crisis. Sites provides previously unachievable flexibility to the state's water system without impacting sensitive river channels and critical environmental flows that support endangered fish populations.

\square
 YeS, I support the Sites Project. Please list me/my organization as a supporter of Sites.

Please provide the following information:
Roseville Coalition of Neighborhood Associations
Company or Organization Name
Werner Kuehn, President
Name
Title/Occupation

1911 Douglas Blvd, Suite 85-370
Street Address

Roseville, CA 95661
City State Zip

916-248-4878
Phone Number
president@rcona.org
Email Address
Thank you for your support!

July 21, 2017

Jim Watson
General Manager
Sites Project Authority
P.O. Box 517

Maxwell, CA 95955

Dear Jim,
Representing over 600 cotton growers and 27 operating gins in the State of California, the California Cotton Ginners and Growers Association wishes to express our support for the Sites Project. After the entire state was crippled by several years of drought, it is increasingly evident that innovative water storage projects are needed.

The Sites Project would create an additional 1.8 million acre-feet of storage which would produce up to 500,000 acre-feet of supplies to California's water system annually. This water would be extremely valuable in helping achieve a more efficient and reliable water supply system. Capturing and capitalizing on years of increased precipitation would not only help keep families and farms in business but it would also generate economic growth, produce jobs and help California achieve ecosystem benefits.

We have seen billions of gallons of precious water be lost to the ocean due to the lack of adequate infrastructure. The water challenges that California has encountered over the past several years will continue, however investing in opportunities such as the Sites Project will bring balance and sustainability to the most precious resource in the state.
We look forward to do anything we can to help advance the Sites project.
Sincerely,

Roger Isom
President/CEO

July 21, 2017

Jim Watson
General Manager
Sites Project Authority
P.O. Box 517

Maxwell, CA 95955
Dear Jim,

Representing over 128 tree nut hullers and processors of almonds, pecans, pistachios and walnuts in the State of California, the Western Agricultural Processors Association wishes to express our support for the Sites Project. After the entire state was crippled by several years of drought, it is increasingly evident that innovative water storage projects are needed.

The Sites Project would create an additional 1.8 million acre-feet of storage which would produce up to 500,000 acre-feet of supplies to California's water system annually. This water would be extremely valuable in helping achieve a more efficient and reliable water supply system. Capturing and capitalizing on years of increased precipitation would not only help keep families and farms in business but it would also generate economic growth, produce jobs and help California achieve ecosystem benefits.

We have seen billions of gallons of precious water be lost to the ocean due to the lack of adequate infrastructure. The water challenges that California has encountered over the past several years will continue, however investing in opportunities such as the Sites Project will bring balance and sustainability to the most precious resource in the state.

We look forward to do anything we can to help advance the Sites project.

Roger Ism
President/CEO
cc: Carol Baker, Vice-Chair, California Water CommissionAndrew Ball, Board Member, California Water CommissionJoseph Byrne, Board Member, California Water CommissionDaniel Curtin, Board Member, California Water CommissionJoe Del Bosque, Board Member, California Water CommissionMaria Herrera, Board Member, California Water CommissionCatherine Keig, Board Member, California Water CommissionDavid Orth, Board Member, California Water CommissionJoe Yun, Executive Officer, California Water CommissionMembers, Senate Natural Resources \& Water CommitteeMembers, Joint Legislative Budget Committee
Kim Craig, Deputy Cabinet Secretary, Office of Governor Jerry BrownJohn Laird, Secretary, Natural Resources Agency
Cindy Messer, Acting Director, Department of Water Resources
Kip Lipper, Office of Senate President pro Tempore Kevin De Leon
Kevin Bassett, Office of Senator Pat Bates
Bill Craven, Senate Natural Resources \& Water CommitteeJoe Stephenshaw, Senate Budget \& Fiscal Review CommitteeTodd Moffitt, Senate Republican Policy OfficeRocel Bettencourt, Senate Republican Fiscal Office
Thad Bettner, Glenn-Colusa Irrigation District
Todd Manley, Northern California Water Association
Kathleen Cole, Metropolitan Water District of Southern California

BOARD OF SUPERVISORS COUNTY OF SUTTER

June 27, 2017

Jim Watson
General Manager
Sites Project Authority
P.O. Box 517

Maxwell, CA 95955
Dear Jim,
The Sutter County Board of Supervisors is pleased to offer its support for the Sites Project.
The Sites Project is a proposed above ground, off-stream water storage project located in Northern California and would add up to 500,000 acre-feet of critical supplies to California's water system annually. Sites is an innovative and modern approach that goes beyond water supply and flood protection by adding flexibility and generating a much-needed new water source for improved water quality, seasonal fish flows, climate change and drought relief.

The Sites Project creates an additional supply of reliable water that can be used for urban, agricultural, environmental, and industrial purposes. Sites would also improve water quality in the SacramentoSan Joaquin Delta (Delta) and enhance environmental flows to benefit the Delta's ecosystem.

California will continue to face severe water challenges including limited supplies, a growing population, the effects of climate change, and increased flow requirements for native fish. Now more than ever, California's water system needs a more flexible, environmentally friendly solution to capturing and storing water for use when it's needed most. The Sites Project would provide an additional tool for water managers to effectively balance competing demands and provide safe and reliable water to support the current and future needs of California's environment and economy.

We look forward to working with the Sites Project Authority to advance this important project.

Vice-Chairman

July 19, 2017

Mr. Armando Quintero
Chair
California Water Commission
PO Box 942836
Sacramento, CA 94236-0001
Emailed to: CWC@water.ca.gov

RE: Support for Sites and Temperance Flat Projects

Dear Chairman Quintero:

Founded in 1926, Western Growers members are local and regional family farmers growing fresh produce in Arizona, California, Colorado and New Mexico. Our members and their workers provide half the nation's fresh fruits, vegetables and tree nuts, including half of America's fresh organic produce. It is on their behalf that we express our strong support for both the Sites Reservoir and Temperance Flat Reservoir projects in their applications for Proposition 1 public benefit funding.

One of the consequences of climate change is that California's historic precipitation and runoff patterns will change, resulting in greater unreliability of the Sierra snowpack. We must now contend with less snowpack along with faster, flashier and more chaotic runoff into our existing storage and conveyance infrastructure. Indeed, we may have already begun to experience such changes. This year's recordbreaking rain and snow accumulations, coming on the heels of the worst recorded drought ever experienced, vividly demonstrates the need to adapt and enhance a system designed in a climatic era that no longer exists, and for a state population less than half of what it is today.

From October 1, 2016 through July 9, 2017 (nine months of the current water year), more than 50 million acre feet of water flowed into the Sacramento-San Joaquin Delta. After accounting for diversions for in-Delta use and exports by the State Water Project and Central Valley Project, more than 46 million acre feet flowed out to the ocean.

The Sites Project would add up to 1.8 million acre feet of capacity in an off-stream reservoir north of the Delta. State and federal water project operations in recent years have demonstrated the great need for this project as operators struggled with conflicting demands on the Sacramento River system. The Sites Project would provide critically needed flexibility for system operators by capturing high runoff flows on the Sacramento River and allowing later releases from Sites or upstream reservoirs for environmental and economic uses.

Temperance Flat Reservoir would be located on the San Joaquin River in the foothills northeast of Fresno and would create an additional 1.26 million acre-feet of water storage. Combined with the existing Millerton Lake, the complex would provide storage capacity of 1.78 million acre feet. The need is obvious: In 17 of the last 40 years, water has been released from Millerton Lake (Friant Dam) for flood control purposes, due to lack of storage capacity. This season alone Millerton will have released approximately 2.5 million acre feet to the ocean, lost for groundwater recharge or water supply.

Mailing Address: P.O. Box $57089 \cdot$ Irvine, CA 926|9-7089 • Street Address: 15525 Sand Canyon • Irvine, CA 926|8

Mr. Armando Quintero
July 19, 2017
Page 2

The voters of California approved Proposition 1 by a margin of more than two-to-one, and they had a clear understanding, in the midst of a historic drought, that they were being asked whether California should invest in new water storage projects. Governor Brown and other signatories of the official ballot argument in support of Proposition 1 wrote in relevant part: "Proposition 1 invests in new storage increasing the amount of water that can be stored during wet years for the dry years that will continue to challenge California." (Emphasis added.)

As surface water storage projects, Sites and Temperance Flat provide the only means of capturing and storing heavy snowmelt and rain runoff - especially in wet years - that can be later utilized for groundwater recharge. Without this surface storage supply, groundwater recharge opportunities are lost as flood flows cannot be accommodated by saturated recharge lands. As the Sustainable Groundwater Management Act is implemented, the need for this capacity and flexibility is greater than ever.

Both projects would also provide needed additional flood protection for communities throughout the Central Valley.

These projects will help make California's water system more efficient and reliable. The projects help meet the objectives of the California Water Action Plan by providing a substantial supply of high-quality water to support the economy and the environment.

We respectfully urge the Commission to support both the Sites Reservoir Project and the Temperance Flat Reservoir Project to the fullest extent possible.

Sincerely,

Executive Vice President
C: Carol Baker, Member, California Water Commission
Andrew Ball, Member, California Water Commission
Joseph Byrne, Member, California Water Commission
Daniel Curtain, Member, California Water Commission
Joe Del Bosque, Member, California Water Commission
Maria Herrera, Member, California Water Commission
Catherine Keig, Member, California Water Commission
David Orth, Member, California Water Commission
Joe Yun, Executive Officer, California Water Commission
Jim Watson, General Manager, Sites Project Authority
Mario Santoyo, Executive Director, San Joaquin Valley Water Infrastructure Authority
Mailing Address: P.O. Box 57089 • Irvine, CA 92619-7089 • Street Address: 15525 Sand Canyon • Irvine, CA 92618

August 7, 2017

Armando Quintero, Chair
California Water Commission
P.O. Box 942836

Sacramento, CA 94236

Re: Sites Reservoir Project - Support

Dear Chairman Quintero:

On behalf of the Southern California Water Committee, I am writing to express support for the Sites Reservoir Project, and upcoming consideration of the project's application for Proposition 1 funding.

California needs flexible and reliable solutions to address its water woes, especially in light of today's climate realities and our recurring drought cycles. After a crushing five-year drought, this past winter was the wettest in 122 years but California lost the opportunity to capture and store billions of gallons of surplus water due to restrictions on our delivery system and lack of storage options.

We must focus on ways to smooth out the boom or bust cycle, this means having the ability to move water during big storm events and the capacity to save it in reservoirs for drier times. California has had nine droughts since 1900, totaling 41 years. The likelihood that droughts will worsen in the future means we must invest now to improve our old and inefficient water infrastructure.

Californians have the right to expect a clean and reliable water supply not just for today but for generations to come, and the Sites Reservoir Project aligns with delivering on this expectation. For these reasons, we support the Sites Reservoir Project and appreciate your consideration of the project for Proposition 1 funding this fall.

Sincerely,

Charley Wilson
Executive Director
Southern California Water Committee
cc: Carol Baker, Vice-Chair, California Water Commission carol.baker@cwc.ca.gov

Andrew Ball, Member, California Water Commission andrew.ball@cwc.ca.gov

Joseph Byrne, Member, California Water Commission joseph.byrne@cwc.ca.gov

Daniel Curtin, Member, California Water Commission daniel.curtin@cwc.ca.gov

Joe Del Bosque, Member, California Water Commission joe.delbosque@cwc.ca.gov

Cathy Keig, Member, California Water Commission catherine.keig@cwc.ca.gov

Maria Herrera, Member, California Water Commission maria.herrera@cwc.ca.gov

David Orth, Member, California Water Commission david.orth@cwc.ca.gov

May 23, 2017

Mr. Armando Quintero, Chair
California Water Commission
P.O. Box 942836

Sacramento, CA 94236-0001

RE: Support for the Sites Reservoir Project Proposition 1 Application

Dear Chair Quintero:

As the representative organization for businesses in the East Bay, the East Bay Leadership Council (EBLC) has a vested interest in projects that will improve water supplies, resiliency and the environment - water is vital for the health of business, residents and the environment. The EBLC is writing to express support of the Water Supply Investment Program funding application submitted under Proposition 1 for the Sites Reservoir Project.

In 2014, California voters approved $\$ 2.7$ billion in funding for water storage projects, signaling that residents understand the importance of water storage and want to invest in construction projects in exchange for receiving environmental benefits. The recent drought followed by the wettest year on record only further highlighted the state-wide need for more storage to prepare for drought and flood emergencies. The EBLC agrees that two of the storage proposals are superior to others in providing water supply and Delta ecosystem benefits; namely, Sites Reservoir and Los Vaqueros Reservoir. These off-stream reservoirs provide many environmental and water supply benefits that can be achieved through federal, state and local funding. This letter focuses on Sites Reservoir; a separate letter will be provided for Los Vaqueros.

A key component of the East Bay Leadership Council's water policy action plan includes advocating for new and expanded water storage to diversify and enhance regional water supplies. California's most recent drought provided a stark reminder of the importance of a reliable water supply portfolio capable of balancing the water demands across all users: residential, business, agricultural and environmental. Sites Reservoir would provide an additional tool for regional water managers to balance these competing needs. Additionally, public investment in Sites Reservoir would provide the state's environmental resource agencies with an amount of water they would prioritize and manage, on a real-time basis and in every water year type, to advance the long-term objectives of restoring the ecological health and improving water management for beneficial uses of the Delta. This "environmental water" would also create measurable ecosystem and water quality benefits in the Sacramento River and provide additional water for the national wildlife refuges in the Central Valley. Such a new and flexible tool will only increase in value as the state manages its limited water resources through an uncertain future that includes offsetting for the effects of climate change on people and the environment.

The EBLC appreciates the California Water Commission's consideration of this important project and encourages the Commission to approve the Proposition 1 funding application.

Thank you for your time and consideration. Please contact Josh Huber, EBLC's Policy Director, with any questions at 925-246-1880

Sincerely,

Kristin Connelly
President \& CEO

Cc: California Water Commission members

State 毯uilding and Construction Trades Council
 ROBBIE HUNTER
 PRESIDENT
 AFL - CIO

August 4, 2017

Mr. Armando Quintero
Chair, California Water Commission
P.O. Box 942836

Sacramento, California 94236-0001

RE: Sites Reservoir Project Application for Funding from the Proposition 1 Water and Storage Investment Program

Dear Chairman Quintero:
On behalf of the State Building and construction Trades Council, AFL-CIO I write today to convey our support of the Sites Reservoir Project's application for funding from the Proposition 1 Water Storage and Investment Program. The Sites project not only has the potential to provide multiple benefits to California's farms, cities, and environment, but will also create good paying construction jobs which will help the economy.

As you know, the Sites Project is a 1.8 million acre-foot, off-stream regulating reservoir that would divert and store excess Sacramento River flows. The diversion levels would be dependent upon hydrologic conditions and would be structured to ensure that water taken out of the Sacramento River is truly in excess of downstream needs.

The operational flexibility that the Sites project would provide to the State's entire water system is what makes this project so unique and worthy of funding. A few of the reservoir's many uses include, but are not limited to: dedicated water for fishery and environmental flow purposes, a reliable water supply for California cities and agriculture, increased habitat for migratory birds on the Pacific Flyway, and improved flexibility and drought resiliency for the Central Valley Project and the State Water Project.

Opportunities to apply lessons learned during the last five years of drought must not be wasted. The drought (exacerbated by climate change), and this year's record-breaking rainfall, have proven how critical it is to develop smart storage that allows us to store more water in wet years for future use in dry ones. Sites Reservoir is that smart storage.

Thank you for the work that you and the Water Commission are doing to increase water supply reliability across California. We look forward to your announcement of funding awards.

Legislative Director

CD:bp
opeiu\#29/afl-cio
CC: Members, California Water Commission
1231 I Street, Suite $302 \cdot$ Sacramento, CA 95814-2933 $\cdot(916) 443-3302 \cdot$ FAX (916) 443-8204

1521 I Street
Sacramento, CA 95814
(916) 441-2910
www.CAWomen4Ag.com

August 9, 2017
Mr. Joe Yun, Executive Director
California Water Commission
P.O. Box 942836

Sácramento, California 94236-0001

Re: Support for Sites Reservoir

Dear Mr. Yun,
On behalf of the California Women for Agriculture (CWA) membership I would like to express support for the Sites Reservoir Project and additional surface water storage in California. Our state's ongoing water crisis demands varied and comprehensive solutions, including ample new water storage and infrastructure south of the Delta, to help ensure the ongoing viability of agriculture in California, as well as the communities and families that rely on this great industry. The Sites Project is a critical component of such solutions.

CWA is an all-volunteer organization with over 1,000 members engaged public relations, education and legislative advocacy on behalf of California agriculture at the local, state and national level. Our membership includes farmers and ranchers, individuals involved in support industries such as insurance, banking and consulting, and interested consumers from throughout the state. As a group focused on actively promoting the importance of a healthy and vibrant agricultural industry, we have been consistently engaged in discussions around the California drought, water management, and ensuring available water supplies are maximized for the benefit of all Californians. The impacts of the drought were devastating for our industry and forced family farmers to make very difficult decisions. Groundwater wells are an option for some growers, but many are located in areas where groundwater is not available, quality is less than optimal, or costs associated with pumping from deep wells are not feasible for the return on the crop being grown. Growers throughout the state have been severely negatively impacted, and some permanently, by significantly reduced surface water allocations.

The need for surface storage has never been more apparent as it has been in recent years. Water is a scarce commodity and for this reason growers have implemented state of the art irrigation technology over the years. Without that, impacts of the drought would have been much more severe on agriculture. As agriculture continues to conserve and do more with less, the allocations of water directed to environmental purposes increase. An increase to water in the system will be the only
solution to ensure all needs will be met. There is an immediate need for balance because a safe and affordable food supply is essential for California.

CWA has supported increased surface storage, including the Sites Reservoir Project, from the early discussions and negotiations for the Prop 1 Water Bond. We were particularly vocal about the need for continuous appropriations in an amount sufficient to incorporate both Sites and Temperance Flat in the scope of the proposition. That was the intention of the funding. The 1.8 million acre feet of additional water storage Sites would provide operational flexibility to the State's entire water system, making this project unique and worthy of funding.

Sites will provide benefits to California cities, agriculture and the environment, including dedicated water for fishery and environmental flow purposes, increased habitat for migratory birds on the Pacific Flyway, and improved flexibility and drought resiliency for the Central Valley Project and the State Water Project.

We ask that you consider the myriad of regional and state benefits that will be provided for by the construction of this project. There is strong local support for this project and we ask that you allocate sufficient funds from Section 8 of the Prop 1 Water Bond to the Sites Flat Project.

Respectfully,

Sara Reid Herman
State President Elect
California Women for Agriculture
cc: Armando Quintero
Carol Baker
Andrew Ball
Joseph Byrne
Daniel Curtin
Joe Del Basque
Maria Herrera
Catherine Keg
David Orth

RESOLUTION NO. 17-19

SUPPORTING THE SITES RESERVOIR PROJECT ON BEHALF OF THE CITY OF ROSEVILLE

WHEREAS, the State of California is in the midst of a multi-year drought that has severely strained the state and federal water systems; and

> WHEREAS, the City of Roseville, which relies on the Central Valley Project's Folsom Reservoir for its water supply; and

WHEREAS, Folsom Reservoir saw a record low reservoir level in 2015 with the reservoir reaching 135,000 acre-feet; and

WHEREAS, Folsom Reservoir provides beneficial cold water in the American River and is relied upon by the Bureau of Reclamation as a first responder reservoir to send water to the Sacramento-San Joaquin Delta to repel salinity and meet water quality objectives; and

WHEREAS, Roseville values the development of surface water storage infrastructure that provides for more water system reliability north of the Sacramento-San Joaquin Delta; and

WHEREAS, the proposed North of Delta Offstream Storage Project (or Sites Reservoir Project) would add up to 1.8 million acre-feet of potential off-stream water supply storage to be operated for human consumptive uses, the production of food, and environmental benefits; and

WHEREAS, the proposed Sites Reservoir Project is an offstream regulating reservoir that does not impede fish passage and it can provide an environmental block of water that could be used for various purposes, including: improved reliability of flows to support migratory birds of the Pacific Flyway, increased cold water pools available for salmon north of the Sacramento-San Joaquin Delta, water quality and ecosystem improvements in the Delta and recreational value; and

WHEREAS, if Sites Reservoir is built, it could be operated in tandem to relieve pressure off of Folsom Reservoir in cold water and environmental releases of water; and

WHEREAS, if Sites Reservoir is built, could support the state's renewable energy goals; and

WHEREAS, the potential multiple benefits of Sites Reservoir could help Roseville's water supply reliability and ensure the city's future prosperity;

NOW, THEREFORE, BE IT RESOLVED that the City Council of the City of Roseville supports the construction and operation of Sites Reservoir; and directs the City Manager to allocate the appropriate advocacy, communications and technical resources to ensure that Sites

Reservoir is built and operated, to benefit the Roseville community and economy, through added water supply reliability, for generations to come.

PASSED AND ADOPTED by the Council of the City of Roseville this 18 thday of January , 2017, by the following vote on roll call:

AYES COUNCILMEMBERS: Gore, Alvord, Herman, Allard, Rohan NOES COUNCILMEMBERS: None ABSENT COUNCILMEMBERS: None

ATTEST:

Sites Reservoir Supporters

California continues to face severe water challenges: limited supplies and a growing population, compounded by climate change, and increased flow requirements for native fish. Now more than ever, California's water system needs a more flexible, environmentally friendly solution to capturing and storing water for use when it's needed most. The Sites project is an innovative project and a 21st century solution to California's water crisis. Sites provides previously unachievable flexibility to the state's water system without impacting sensitive river channels and critical environmental flows that support endangered fish populations.

YeS, I support the Sites Project. Please list me/my organization as a supporter of Sites.

Please provide the following information:
California Building Industry Association
Company or Organization Name
Robert E. Raymer, PE Technical director
Name Title/Occupation

1215 K Street, Suite 1200
Street Address

Sacramento	CA	95814
City	State	Zip

(916) 340-3322

Phone Number
rraymer@cbia.org
Email Address
Thank you for your support!
Please Return Completed Form by email: keithdunn@me.com

Sites Reservoir Supporters

California continues to face severe water challenges: limited supplies and a growing population, compounded by climate change, and increased flow requirements for native fish. Now more than ever, California's water system needs a more flexible, environmentally friendly solution to capturing and storing water for use when it's needed most. The Sites project is an innovative project and a 21st century solution to California's water crisis. Sites provides previously unachievable flexibility to the state's water system without impacting sensitive river channels and critical environmental flows that support endangered fish populations.

YeS, I support the Sites Project. Please list me/my organization as a supporter of Sites.

Please provide the following information:

San Gabriel Valley Economic Partnership
Company or Organization Name

Brad Jensen	Director of Public Policy
Name	Title/Occupation

4900 Rivergrade Rd. Suite B130
Street Address

Irwindale	CA	91706
City	State	Zip

626-856-3400
Phone Number
bjensen@sgvpartnership.org
Email Address

Thank you for your support!

Sites Reservoir Supporters

California continues to face severe water challenges: limited supplies and a growing population, compounded by climate change, and increased flow requirements for native fish. Now more than ever, California's water system needs a more flexible, environmentally friendly solution to capturing and storing water for use when it's needed most. The Sites project is an innovative project and a 21st century solution to California's water crisis. Sites provides previously unachievable flexibility to the state's water system without impacting sensitive river channels and critical environmental flows that support endangered fish populations. Sites.

Please provide the following information:

$916 \cdot 443 \cdot 4676$
Phone Number

Thank you for your support!

Sites Reservoir Supporters

California continues to face severe water challenges: limited supplies and a growing population compounded by climate change and increased flow requirements for native fish. Now more than ever, California's water system needs a more flexible, environmentally friendly solution to capturing and storing water for use when it's needed most. The Sites project is an innovative project and a 21st century solution to California's water crisis. Sites provides previously unachievable flexibility to the state's water system without impacting sensitive river channels and critical environmental flows that support endangered fish populations.

YeS, I support the Sites Project. Please list me/my organization as a supporter of Sites.

Please provide the following information:
VCS Consulting, LLC
Company or Organization Name

Alan Vail	Managing Partner
Name	Title/Occupation
4125 Temescal Street, Suite G	
Street Address	
Fair Oaks	CA
City	State

916-716-5522
Phone Number
arvail@sbcglobal.net
Email Address
Thank you for your support!

Please Return Completed Form by email: info@SitesProject.org

Sites Reservoir Supporters

California continues to face severe water challenges: limited supplies and a growing population, compounded by climate change, and increased flow requirements for native fish. Now more than ever, California's water system needs a more flexible, environmentally friendly solution to capturing and storing water for use when it's needed most. The Sites project is an innovative project and a 21st century solution to California's water crisis. Sites provides previously unachievable flexibility to the state's water system without impacting sensitive river channels and critical environmental flows that support endangered fish populations.

YeS, I support the Sites Project. Please list me/my organization as a supporter of Sites.

Please provide the following information:
California Chamber of Commerce
Company or Organization Name

Valerie Nera	Policy Advocate
Name	Title/Occupation

1215 K Street, Suite 1400
Street Address

Sacramento	CA	95814
City	State	Zip

916-930-1240
Phone Number

Valerie.Nera@calchamber.com
Email Address
Thank you for your support!

Sites Reservoir Supporters

California continues to face severe water challenges: limited supplies and a growing population, compounded by climate change, and increased flow requirements for native fish. Now more than ever, California's water system needs a more flexible, environmentally friendly solution to capturing and storing water for use when it's needed most. The Sites project is an innovative project and a 21st century solution to California's water crisis. Sites provides previously unachievable flexibility to the state's water system without impacting sensitive river channels and critical environmental flows that support endangered fish populations.

YeS, I support the Sites Project. Please list me/my organization as a supporter of Sites.

Please provide the following information:

Phone Number

Thank you for your support!
Please Return Completed Form by email: keithdunn@me.com

Benefit Calculation, Monetization, and Resiliency Tab

Attachment 7: Non-Monetized Benefits

If applicable, provide a summary of public benefits that cannot be monetized. Provide the following information for each non-monetized benefit.

- Justification why benefit cannot be monetized,
- Qualitative description of importance of benefit (who is affected, how and how often),
- Evidence to show how the physical change is beneficial and important to Californians.

WSIP Application Instructions, March 2017

Response

There are several benefits from the Sites Project that have not been monetized. These are described below.

Operational Flexibility: The addition of the Sites Project would provide increased operational flexibility for the SWP and CVP that would support both public and non-public benefits. It is difficult to find a suitable metric for this benefit without double counting the monetized benefits; nevertheless this is a real benefit. This flexibility is beneficial to the Sacramento River watershed, the Delta, and all beneficiaries served by the SWP and CVP. This is consistent with the Natural Resources Agency, California Water Action Plan (2016) which states:
"Today, water storage is also needed to help provide widespread public and environmental benefits, such as seasonal fish flows, improved water quality, water cool enough to sustain salmon, and increased flexibility to meet multiple demands, especially in increasingly dry years. The financing of additional water storage in California must reflect not just specific local benefits, but also these broader public benefits."

Groundwater Sustainability: As indicated in the response to Q6 and Sites_A6C Groundwater Basins under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB, water from Sites Reservoir would be used by project participants to help prevent undesirable results. The details of how the specific participants will use water from Sites for direct or in lieu recharge have not yet been developed, but are expected to be incorporated into forthcoming sustainable groundwater management plans if this project is approved. At a minimum, Sites Reservoir would contribute to improved groundwater management practices for Glenn and Colusa.

Ecosystem Enhancement - Anadromous Fish - Other Species in Sacramento River: This application includes monetized benefits for Chinook salmon (all runs) downstream of the Sacramento River. Other species in the portion of the Sacramento River between Keswick Dam and Red Bluff would also benefit from improved temperature conditions. These include steelhead and green sturgeon which receive protection from the Federal Endangered Species Act and have recreational value as gamefish. These benefits were not monetized because models for these species are not available for this watershed.

Ecosystem Enhancement - Anadromous Fish - Lower American River: The Sites Project would also provide temperature benefits in the American River watershed below Folsom Dam. These benefits have not been monetized. These benefits were not monetized because models for are not available to estimate the improvement in returning spawners for this watershed.

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A7	CHECKER:	N CARLSON	DATE:	2017 AUGUST		
CAVEAT:		QA/QC:		REF/FILE \#:	WSIP APPLICATION		
NOTES:			PAGE:	1	OF	2	

Recreation - Benefits to Nearby Reservoirs: The addition of Sites Reservoir would improve water surface elevations in existing reservoirs, including Lake Oroville, Shasta Lake and Folsom Lake. Both of these reservoirs are popular for recreation that is dependent on maintaining an adequate surface water elevation. This benefit was not monetized.

Recreation - Benefits to Fishing: Sites Reservoir operations will provide additional coldwater and augment flows to support the migration of important game fish, including Chinook salmon and steelhead.

STATUS:	FINAL	PREPARER:	J HERRIN	PHASE:	1	VERSION:	A
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A7	CHECKER:	N CARLSON	DATE:	2017 AUGUST		
CAVEAT:		QAVC:		REF/FILE \#:	WSIPAPPLICATION		
NOTES:				PAGE:	2	OF	2

Benefit Calculation, Monetization, and Resiliency Tab

Attachment 8: Total Project Cost and Basis of Estimate Report

Attach an estimate of the total project costs that includes construction cost, interest during construction, land acquisition, monitoring, environmental mitigation or compliance obligations, operations and maintenance, repair, and replacement costs during the planning horizon using methods described in TR section 6. If the project costs are located in another attachment, identify the location.

WSIP Application Instructions, March 2017

Response

The project cost estimate for the Sites Project is a Class 4 estimate as defined by the Association for the Advancement of Cost Estimating, International, and includes all of the components required for the WSIP Application. Provided in this attachment are the cost estimates, and the Basis of Estimate Report.

Joseph H. Barnes, PE
\qquad
Date
Civil Engineer, License \# 4105

This page intentionally left blank.

SITES RESERVOIR PROJECT

BASIS OF ESTIMATE REPORT FOR SITES AUTHORITY PROJECT ALTERNATIVE D

WORKING DRAFT
SUBJECT TO CHANGE

Prepared by
AECOM
for

122 West Old Highway 99
Maxwell, CA 95955
Sacramento, California

This page intentionally left blank.

Table of Contents

Section Page
EXECUTIVE SUMMARY E-1

1. INTRODUCTION 1
2. WATER SUPPLY AND DELIVERY, HYDROELECTRIC GENERATION 3
3. PROJECT DESCRIPTION 5
3.1. SITES RESERVOIR 5
3.1.1. Reservoir Parameters 5
3.1.2. Dams Forming Sites Reservoir 5
3.1.3. Reservoir Rim Grouting 6
3.1.4. Reservoir Spillway 6
3.1.5. Creek Diversion During Construction 7
3.2. SITES RESERVOIR INLET/OUTLET FACILITY 7
3.2.1. I/O Pressure Tunnel 8
3.2.2. Inlet/Outlet Tower 8
3.2.3. Emergency Release Facility 9
3.3. SITES PUMPING/GENERATING PLANT 9
3.3.1. Penstocks and Manifolds 9
3.3.2. Pumping/Generating Plant 10
3.3.3. Intake and Discharge Channel to Holthouse Reservoir 11
3.4. HOLTHOUSE RESERVOIR 11
3.4.1. Sizing 11
3.4.2. Holthouse Dam 12
3.4.3. Spillway and Low Level Release 12
3.5. TERMINAL REGULATING RESERVOIR AND PUMPING/GENERATING PLANT 12
3.5.1. Terminal Regulating Reservoir 13
3.5.2. TRR Pumping/Generating Plant 13
3.6. DELEVAN INTAKE AND PUMPING/GENERATING PLANT 14
3.6.1. Site Development 14
3.6.2. Pumping/Generating Plant 14
3.6.3. Fish Screen Structure 15
3.7. DELEVAN AND TERMINAL REGULATING RESERVOIR PIPELINES 15
3.8. RED BLUFF PUMP ADDITION. 16
3.9. TRANSMISSION LINES 16
3.10. ROADS 17
3.10.1. Sites Lodoga Road Replacement with South Bridge 17
3.10.2. North Temporary Bypass Road 17
3.10.3. Other Project Roads 17
3.11. RECREATION AREAS 18
3.12. OTHER ANCILLARY FACILITIES 19
4. ESTIMATING APPROACH 21
4.1. FORMAT 21
4.2. DEFINITIONS 21
4.3. ALLOWANCES AND CONTINGENCIES 22
4.3.1. Mobilization 22
4.3.2. Design Contingency 23
4.3.3. Construction Contingency 23
4.3.4. Non-Contract Costs 23
4.4. ESTIMATE BASE AND ESCALATION 24
4.5. QUANTITIES 24
4.6. LABOR RATES 24
4.7. CONSTRUCTION EQUIPMENT RATES 24
4.8. MECHANICAL AND ELECTRICAL EQUIPMENT COSTS 24
4.9. PIPELINE FABRICATION COSTS 25
4.10. MISCELLANEOUS COSTS 25
4.11. REFERENCES 25
5. BASIS OF ESTIMATE AND ESTIMATING ASSUMPTIONS 27
5.1. SITES RESERVOIR (PROPERTY CLASS 01) 27
5.1.1. Land and Rights 27
5.1.2. Public and Private Roads 27
5.1.3. South Bridge 27
5.1.4. Reservoir Clearing and Demolition 27
5.1.5. Signal spillway 28
5.2. CREEK DIVERSION DURING CONSTRUCTION 28
5.3. MAIN DAMS (PROPERTY CLASS 01) 28
5.3.1. Aggregate for Filter and Drain Zones 28
5.3.2. Sites Dam 29
5.3.3. Golden Gate Dam 29
5.4. SADDLE DAMS (PROPERTY CLASS 01) 30
5.5. HOLTHOUSE RESERVOIR (PROPERTY CLASS 01) 31
5.5.1. Relocations 31
5.5.2. T-C Canal Connection to Holthouse Reservoir 32
5.5.3. Funks Holthouse Connection 33
5.6. TRR RESERVOIR (PROPERTY CLASS 01) 33
5.7. PUMPING AND GENERATING PLANTS (PROPERTY CLASS 03) 33
5.7.1. I/O Pressure Tunnel 33
5.7.2. Sites Pumping/Generating Plant 33
5.7.3. TRR Pumping/Generating Plant 34
5.7.4. Sacramento River Pumping/Generating Plant 34
5.7.5. Fish Screen Structure 35
5.7.6. Red Bluff Pump Addition 35
5.8. CANALS AND CONDUITS (PROPERTY CLASS 05) 35
5.8.1. Holthouse Channel 35
5.8.2. Delevan Pipeline and TRR Pipeline 36
5.9. TRANSMISSION AND INTERCONNECTION (PROPERTY CLASS 13) 37
5.9.1. Sites Substation 37
5.9.2. TRR Pumping/Generating Plant 37
5.9.3. Sacramento River Pumping/Generating Plant Switchyard 37
5.9.4. Transmission Lines 37
5.10. GENERAL PROPERTY (PROPERTY CLASS 15) 38
5.10.1. Recreation Areas 38
5.10.2. Operations and Maintenance Facility 38
5.11. MITIGATION COSTS 38
5.12. INTEREST DURING CONSTRUCTION 39
5.13. OPERATION, MAINTENANCE, REPAIR, AND REPLACEMENT 39
5.14. FEASIBILITY-LEVEL COST ESTIMATE 40
6. COST ESTIMATE SUMMARY 42
7. CONSTRUCTION SCHEDULE 44
8. LIMITATIONS 46
9. REFERENCES 48
APPENDICES
Appendix A Feasibility-Level Cost Estimate
Appendix B Preliminary Construction Schedule
FIGURES
Figure E-1 Project Plan E-2
Figure 2-1 Project Plan 3
Figure 7-1 Project Roll Up Schedule
TABLES
Table E-1. Sites Reservoir Project Facilities - Alternative D 1
Table E-2. Capital Cost Summary 5
Table E-3. Total Project Cost Summary 6
Table 2-1 Maximum Planned Water Diversions and Releases 4
Table 3-1 Sites Reservoir Parameters 5
Table 3-2 Parameters for Main Dams and Saddle Dams 6
Table 3-3 Sites Reservoir Inlet/Outlet Tower 9
Table 3-4 Sites Pumping/Generating Plant Equipment 10
Table 3-5 TRR Pumping/Generating Plant Equipment 13
Table 3-7 Project Roadways and South Bridge 18
Table 4-1 Allowances and Contingencies 22
Table 4-2 Non-Contract Cost Allowances 24
Table 5-1 Summary of Major Quantities for Sites Dam 29
Table 5-2 Summary of Major Quantities for Golden Gate Dam 30
Table 5-3 Summary of Major Quantities for Saddle Dams 31
Table 5-4 Summary of Major Quantities for Holthouse Dam 31
Table 6-1 Capital Cost Summary 42
Table 6-2 Total Project Cost Summary 43

Abbreviations and Acronyms

AACE	Association for the Advancement of Cost Estimating, International
Authority	Sites Project Authority
AWWA	American Water Works Association
BOE	Basis of Estimate Report
cfs	cubic feet per second
DEC	Design, Estimate, and Construction
DC	direct current
DWR	California Department of Water Resources
GCID	Glenn-Colusa Irrigation District
ID	inside diameter
IDC	interest during construction
kV	kilovolt
KVA	kilovolt-ampere
MAF	million acre-foot
MCC	motor control center
MVA	megavolt-ampere
MVAR	megavolt-ampere reactive
MW	megawatt
OMRR	operation, maintenance, repair, replacement
NODOS	North-of-the-Delta Offstream Storage
PG\&E	Pacific Gas and Electric Company
PGP	Pumping/Generating Plant
psi	pounds per square inch
Reclamation sf	United States Department of the Interior, Bureau of Reclamation square feet
SPGP	Sites Pumping/Generating Plant
SRPGP	Sacramento River Pumping/Generating Plant
T-C	Tehama-Colusa
TRR	Terminal Regulating Reservoir
UPS	uninterruptable power supply
VAR	volt-amp reactive
WAPA	Western Area Power Administration
WSIP	Water Storage Investment Program

This page intentionally left blank.

EXECUTIVE SUMMARY

E-1 INTRODUCTION

Project Alternative D is being developed by the Sites Project Authority (Authority) to reflect the Authority's preferences and those of the local stakeholders for the Sites Reservoir Project (Project). Alternative D is an addition to three other alternatives (Alternatives A, B, and C) developed by the United States Department of the Interior, Bureau of Reclamation (Reclamation) and the California Department of Water Resources (DWR).

AECOM Technical Services, Inc. (AECOM) is assisting the Authority to develop and evaluate Alternative D by preparing conceptual plans, feasibility-level cost estimates, a preliminary construction schedule, and other information needed to prepare the Project Feasibility Report and the application for bond funding under the Water Storage Investment Program (WSIP).

This Basis of Estimate (BOE) Report for Alternative D provides brief descriptions for the major project components and supporting information for the Project cost estimate and preliminary construction schedule. Appendices included in this BOE contain the cost estimate and preliminary construction schedule. To support estimating and scheduling, AECOM developed a set of conceptual plans for the Project, which is provided separately.

E-2 Facilities Comprising Project Alternative D

The Authority developed Alternative D by modifying the facilities in Reclamation Alternative C to reflect the Authority's vision for the project. Table E-1 provides a list of the key project facilities that comprise Alternative D, which are briefly described in Section 2. More detailed facility descriptions can be found in the Feasibility Report (Reclamation, 2017). Figure E-1 shows facility locations.

Table E-1. \quad Sites Reservoir Project Facilities - Alternative D

```
Sites Reservoir (Approximately 1.8 Million Acre-Foot [MAF] Maximum Storage)
Two Main Dams (Sites Dam and Golden Gate Dam)
Nine Saddle Dams (Numbered 1 Through 9)
Sites Reservoir Inlet/Outlet Facility, Including Inlet Tower and Tunnel
Sites Pumping/Generating Plant
Holthouse Reservoir
Holthouse Reservoir Inlet/Outlet Facility and Spillway
Terminal Regulating Reservoir (TRR) and TRR Pumping/Generating Plant
TRR and Delevan Pipelines
Delevan Intake and Pumping/Generating Plant on Sacramento River
Sites Lodoga Road Relocation and South Bridge
Other Temporary and Permanent Project Roads
Substation Interconnections to existing Western Area Power Administration (WAPA) and
Pacific Gas and Electric (PG\&E) Transmission Lines
Two Recreation Areas and Day-use Boat Ramp
```


Figure E-1 Project Plan
The more significant modifications made to Reclamation Alternative C to develop Alternative D include the following:

- Delevan Intake and Pumping/Generating Plant site arrangements are modified to make better use of the site and improve constructability of Delevan Pipeline.
- The east-west cross country transmission line between the Terminal Regulating Reservoir (TRR) and the Delevan Intake on the Sacramento River in Alternative C is replaced by a north-south transmission line paralleling Highway 45 from the City of Colusa to the south. The north-south line would begin at a new substation connected to an existing WAPA line.
- The Delevan Pipeline alignment for Alternative D is shifted to the south to address local stakeholder concerns and to incorporate public and local irrigation district easements to reduce private land impacts.
- The TRR Reservoir is downsized from 2,000 acre-feet to approximately 1,200 acre-feet based on information provided by the Glen-Colusa Irrigation District (GCID) regarding the storage volume needed for GCID Canal regulation.
- One of the two generating units in the TRR Pumping/Generating Plant has been removed following consultation with GCID. The GCID system downstream of the TRR can only accommodate a return flow from Holthouse Reservoir of approximately 900 cfs.
- The configuration of Holthouse Reservoir has been adjusted based on additional engineering work that incorporated LiDAR topography. Configuration changes include relocating the concrete dam segment to the left abutment to reduce the risk of encountering poor foundation conditions. The pipeline inlet/outlet and flood control spillway structures are located in the concrete dam section.
- The proposed south bridge alignment across Sites Reservoir has been moved to avoid potential construction conflict with the Inlet/Outlet Structure for Sites Reservoir.
- The design of the south bridge has been modified based on additional design work to better reflect anticipated foundation conditions and take advantage of more cost effective construction methods for the superstructure.
- A new temporary public bypass road has been added across the north end of the reservoir to replace the section of Sites Lodoga Road that must be taken out of service to construct Sites Dam and the reservoir. This bypass facilitates an earlier construction start date and relieves schedule pressure for the completion of the south bridge.
- Only two recreation areas and a day-use boat launch ramp are being provided for Alternative D.

E-3 FEASIBILITY-LEVEL COST ESTIMATE

E-3.1 WSIP Requirements and Cost Estimate Class

The feasibility-level cost estimate presented in this BOE fully reflects the directions and recommendations on estimating project costs for economic analysis presented in Technical Reference Section 6 for the WSIP application (Water Commission, 2016).

As stated in the WSIP Technical Reference, the Project cost estimate must be a Class 4 estimate or better as defined by the Association for the Advancement of Cost Estimating (AACE), International. Overall, the Project cost estimate presented in this BOE represents a mid-range Class 4 estimate. The current level of design for the various project features varies. Some of the more costly facilities (like the dams and portions of the pipelines) are at a level of geotechnical investigation and design that would support a higher Class 3 estimate. The design for other facilities is less advanced, but still well enough defined to support preparing Class 4 estimates.

E-3.2 Estimate Development and Type

The cost estimate for Alternative D was prepared using the Reclamation estimating forms and following Reclamation's estimating guidelines to be consistent with other estimates prepared for Alternatives A, B, and C. Guidelines used include Reclamation's Cost Estimating Handbook (Reclamation, 1989), FAC-09-01 (Reclamation, 2007a), and FAC-09-02 (Reclamation, 2007b).

The Reclamation plant account numbering system was used and Reclamation's cost rounding guidelines were followed.

The cost estimate is characterized as a unit price estimate. Unit prices were developed using a combination of techniques, including detailed analyses of equipment, material, and manpower costs; vendor catalogs and quotes; recent bid results; and corporate experience on projects with similar facilities.

E-3.3 Project Cost Summary

E-3.3.1 Capital Cost Summary

Table E-2 summarizes the estimated feasibility-level capital cost summary for Alternative D in October 2015 dollars. Detailed cost estimate worksheets supporting Table E-2 are provided in Appendix A. The costs in Table E-2 reflect:

- All construction costs, including, but not limited to, mobilization and demobilization, labor, construction equipment, supply and installation of permanent materials and equipment with an expected useful life of 2 years or more, contractor indirect and overhead costs and profit, and bonds and insurance.
- Initial environmental mitigation or compliance obligations.
- Land acquisition, including legal, administrative, and relocation costs.
- Modifications to existing canal headworks structures to be able to reliably supply water to the Project.
- Contingencies for engineering (10 percent) and construction (15 percent), and a non-contract cost allowance (17 percent).

Incidental costs are covered by applying the non-contract cost allowance of 17 percent to the construction cost. Incidental costs directly related to construction or acquisitions, including planning, geotechnical site investigations, engineering and design, construction management, environmental mitigation and compliance, permitting, and other Authority costs directly related to project construction.

E-3.3.2 Total Project Cost Summary

Table E-3 summarizes the total project cost estimate for Alternative D in October 2015 dollars. Total project cost includes the capital cost; finance costs (interest during construction); operation, maintenance repairs, and replacements; and ongoing mitigation and water quality monitoring costs. The estimated annual operation and maintenance, repair and replacement costs, and the mitigation costs (totaling approximately $\$ 26.6$ million) were applied over a 93 -year operating period beginning in 2030. The net present value was then estimated in October 2015 dollars using the WSIP required discount rate (3.5 percent).

E-3.3.3 Other Potential Costs

The estimates presented in Table E-2 and Table E-3 may not be a complete tabulation of all potential Authority costs to implement the project. An example of other costs might include electric utility owner costs for system improvements to provide power to the project or accept power from project generation. Further PG\&E and WAPA system connection studies and discussions with these utilities would be part of future Project design activities that would identify if such costs would be incurred.

Table E-2. Capital Cost Summary

Facility	Field Cost (\$ Million)	Non-Contract Cost (\$ Million)	Construction Cost (\$ Million)
Develop Sites Reservoir	310	50	360
Main Dams	520	90	610
Saddle Dams	230	40	270
Holthouse Dam	160	30	190
Terminal Regulating Reservoir	33	6	39
Inlet/Outlet Structure and Tunnel	180	30	210
Sites Pumping/Generating Plant	680	120	800
Terminal Regulating Reservoir Pumping/Generating Plant	135	25	160
Sacramento River Pumping/Generating Plant	220	40	260
Sacramento River Fish Screen Structure	47	8	55
Red Bluff Addition	3	1	4
Sites Pumping/Generating Plant Conveyance Channel	42	7	49
Delevan Pipeline	560	100	660
Terminal Regulating Reservoir Pipeline	300	50	350
Utility Transmission Line Interconnections	160	30	190
General Property	26	4	30
Land Acquisition and Rights	100	10	110
Environmental Mitigation/Monitoring		340	10

Note: All costs are October 2015 costs

Table E-3. Total Project Cost Summary

Item	Construction Cost 1 (\$ Million)
Capital Cost	4,697
Interest During Construction	789
Operation, Maintenance, Repairs, Replacement (Note 2)	554
Ongoing Water Quality and Mitigation Monitoring Costs (Note 2)	175
Allowance for Utility Systems	50
Total Project Cost	6,265

Note: 1. All costs are October 2015 costs
2. Net present value of annual costs for assumed 100 year operating period beginning in 2030

E-4 PRELIMINARY CONSTRUCTION SCHEDULE

Appendix B provides a preliminary construction schedule for Alternative D developed by AECOM to support the feasibility-level cost estimate. The construction schedule presents a reasonable approach to construct the project that accounts for the logical sequencing of the work, procurement of equipment, and reasonable durations to complete construction activities. Durations reflect the estimated labor and equipment spreads needed to complete activities, including earthwork, balancing the movement of excavated soil and rock to placement sites, supplying and placing all materials, erecting structures, and installing major equipment. Labor and equipment costs are reflected in the cost estimate.

The schedule presents construction activities with an assumed construction start date in late March 2022. Completing the Delevan Intake on the Sacramento River and the Sites Pumping/Generating Plants in early 2030 are the final critical activities to achieve project construction completion and begin pumping operations. It may be possible to begin filling the reservoir using natural runoff from Stone Corral and Funks Creek beginning with the 2028 and 2029 wet season as the dams will have been completed by then.

Activities such as design, permitting, packaging the work, and bidding the construction packages are not included because of the uncertainty in scheduling these activities between now and 2022. With hydroelectric generation being a part of the project, the FERC permitting process may also affect the actual start date.

1. INTRODUCTION

The Sites Project Authority (Authority) is developing a locally preferred plan for the Sites Reservoir Project (Project) that incorporates the Authority's preferences and those of the local stakeholders. This plan, identified as Project Alternative D, is an addition to three other plans being evaluated by the U. S. Bureau of Reclamation (Reclamation), which are identified as Alternatives A, B, and C. AECOM Technical Services, Inc. (AECOM) is providing support to the Authority to develop the feasibility-level cost estimate and preliminary implementation schedule for Alternative D. This Basis of Estimate (BOE) Report for Alternative D contains a brief description of the major project components and provides supporting information for the feasibility-level cost estimate and preliminary construction schedule. The cost estimate worksheets and construction schedule are included herein in Appendices A and B.

The feasibility-level cost estimate and this Basis for Estimate (BOE) Report were prepared in accordance with Task 6, Refine Engineering, Cost Estimate, and Schedule, in the August 28, 2015 Scope of Work Sites Reservoir Feasibility Study. The estimating methodology is consistent with the requirements in Section 6 of the Draft Technical Reference (November 2016) published for the Water Storage Investment Program by the California Water Commission. Unit prices for labor, materials, land, and other inputs reflect an October 2015 pricing basis.

The feasibility-level cost estimate incorporates alignment refinements and additional design information for the south bridge and the Delevan and Terminal Regulating Reservoir (TRR) Pipelines to address stakeholder comments provided on Reclamation alternatives. The bridge and pipelines refinements were prepared in accordance with Task 7, Roadway, Bridge, and Pipeline Alignment Modifications. The engineering refinements for the bridge and pipelines, and for other facilities, are reflected in the set of Plans for Project Alternative D that accompanies the Basis of Estimate Report in a separate volume.

To support feasibility-level cost estimating, a preliminary construction schedule was developed for Alternative D in accordance with Task 6. The assumed schedule is based on a construction start day in spring or summer of 2022, and implementation of the project construction by the Authority. The schedule is discussed further in Section 5.

For consistency with previous estimates prepared for Reclamation Alternatives A, B, and C, the feasibility-level cost estimate for Alternative D also follows the Reclamation format and guidelines. This provides a common base for economic comparisons and facilitates incorporating all four estimates into the Federal Feasibility Report being prepared for the project.

This page intentionally left blank.

2. WATER SUPPLY AND DELIVERY, HYDROELECTRIC GENERATION

The water supply to fill Sites Reservoir will come from three conveyance facilities that draw water from the Sacramento River. Two of the conveyance facilities are existing canals; the Tehama Colusa (TC) Canal with its intake at Red Bluff and the Glen Colusa Irrigation District (GCID) Canal with its intake near Hamilton City. The third facility is the planned new Delevan Intake located on the Sacramento River. Figure 2-1shows the two existing canals and the new intake. Diversions to the reservoir from the three Sacramento River sources would occur during the winter and spring seasons governed by permit requirements and mitigation measures being developed for the Project.

Figure 2-1 Project Plan
Water would be released from Sites Reservoir during the summer and fall back to the canals to meet irrigation demands and back to the Sacramento River to meet downstream demands and environmental commitments. Table 2-1 summarizes the maximum diversion and release flows planned for Alternative D.

Table 2-1 Maximum Planned Water Diversions and Releases

Conveyance	Diversions to Sites Reservoir	Release from Sites Reservoir
T-C Canal	$2,100 \mathrm{cfs}$	$2,000 \mathrm{cfs}$
GCID Canal	$1,800 \mathrm{cfs}$	900 cfs
Sacramento River	$\underline{2,000 \mathrm{cfs}}$	$\underline{1,500 \mathrm{cfs}}$
Total	$5,900 \mathrm{cfs}$	$4,400 \mathrm{cfs}$

As shown on Figure 2-1, Holthouse Reservoir would be the collection and release point for all water moving into and out of Sites Reservoir through the Sites Pumping/Generating Plant. Because the TC Canal connects directly to Holthouse Reservoir, TC Canal water diversions and releases would be managed within Holthouse Reservoir. Diversions and releases for the GCID Canal would be managed in the Terminal Regulating Reservoir (TRR) using the TRR Pumping/Generating Plant connected to Holthouse Reservoir by the TRR Pipeline. Water diversions and releases for the Sacramento River would be managed at the Delevan Intake using the Sacramento River-Pumping/Generating Plant connected to Holthouse Reservoir by the Delevan Pipeline.

Releases to Holthouse Reservoir from Sites Reservoir would be used for hydroelectric power generation using pump-turbines located in the Sites Pumping/Generating Plant. Holthouse Reservoir is sized to allow the Sites Pumping/Generating Plant to operate as a pumped-storage facility to enhance renewable energy generation. Releases to the GCID Canal and the Sacramento River would also be used for power generation on release only (no pumpedstorage) using dedicated turbines in the TRR and Sacramento River Pumping/Generating Plants.

Note that the planned 900 cfs release flow from Sites Reservoir to the GCID Canal shown in Table 2-1 is less than the 1,800 cfs used for other alternatives. The lower release was provided by GCID based on their canal and distribution system capacities downstream from the TRR. Currently, GCID has no plan to increase these capacities.

3. PROJECT DESCRIPTION

This section presents a brief overview of the main project features for Alternative D shown on Figure 2-1. Alternative D resembles Reclamation Alternative C, but reflects Authority and local stakeholder refinements and preferences.

3.1. Sites Reservoir

3.1.1. RESERVOIR PARAMETERS

Table 3-1 summarizes the reservoir parameters for Alternative D.
Table 3-1 Sites Reservoir Parameters

Approximate Total Storage Capacity (With Dead Storage)	1.81 MAF
Approximate Useable Active Storage	1.65 MAF
Maximum Operating Water Elevation	520.0 feet
Minimum Operating Water Elevation	340.0 feet
Top of Dead Pool Elevation	300.0 feet
Approximate Inundation Area (at elevation 520.0 feet)	14,200 acres

The reservoir area is characterized as open grazing lands with limited tree. Demolition of the small town of Sites, several ranches, and associated infrastructure located within the reservoir inundation area will be required. Fencing and asphalt concrete paving will be removed, abandoned gas wells within the reservoir will be checked for proper abandonment, and several small salt springs identified within the reservoir will be capped.

3.1.2. DAMS FORMING SITES RESERVOIR

The Sites Reservoir Dams and Saddle Dams for Project Alternative D are at the same locations and have similar design details as the corresponding dams used for other Project alternatives. Embankment locations are shown on Figure 2-1. To form Sites Reservoir, Golden Gate Dam would be constructed on Funks Creek and Sites Dam would be constructed on Stone Corral Creek. In addition, nine saddle dams of varying sizes would be constructed to close off topographic low point saddles around the eastern rim of the reservoir between Funks Creek and the north end of the reservoir.

The main dams and saddle dams would be zoned earth and rockfill embankments. This type of construction is suitable for the Project area considering the current understanding of geotechnical, geological, and seismologic conditions existing in the reservoir area. The earth and rockfill zoning also make best use of soils and rock materials from borrow areas within the reservoir area and from mandatory excavations required to construct other project facilities. Table 3-2 summarizes embankment parameters and earthwork volumes for each dam. Earthwork volumes were originally estimated by DWR and have been verified by AECOM using available topographic information at the dam sites.

Table 3-2 Parameters for Main Dams and Saddle Dams

Dam	Height Above Streambed (feet)	Crest Length (feet)	Embankment Volume (cubic yards)
Golden Gate Dam	310	2,250	$10,590,000$
Sites Dam	290	850	$3,836,000$
Saddle Dam 1	50	490	93,000
Saddle Dam 2	80	420	86,000
Saddle Dam 3	130	3,810	$3,577,000$
Saddle Dam 4	40	270	18,000
Saddle Dam 5	100	2,290	$1,505,000$
Saddle Dam 6	70	530	144,000
Saddle Dam 7	75	1,040	196,000
Saddle Dam 8	105	2,990	$1,915,000$
Saddle Dam 9	45	340	49,000
Total			$\mathbf{2 2 , 0 0 9 , 0 0 0}$

3.1.3. RESERVOIR RIM GROUTING

Narrow reservoir rim areas between Golden Gate Dam and the northern most saddle dam could provide a potential for through seepage when the reservoir water level is high. For the current study, rim seepage is addressed by installing a grout curtain down into relatively tight rock. AECOM performed a preliminary evaluation of the rim grouting requirement and determined that approximately 6,000 feet of additional curtain measured along the ridge would be require (primary, secondary, and some tertiary grouting). The curtain would be an extension of the embankment foundation grout curtain for Golden Gate Dam and the saddle dams extending out into the adjacent narrow areas. This cost for additional single line rim grouting has been included in the estimate for Alternative D. The average depth of grout treatment would be approximately 60 feet, which represents the estimated distance from the design dam crest elevation (540.0 feet) down to competent rock. The section of drill holes from grade down to elevation 540.0 feet would be backfilled with cement after the lower portion of the hole is pressure grouted. Additional geotechnical investigations would be needed during future phases of the project to further evaluate the seepage risk and confirm the amount of grouting needed.

3.1.4. RESERVOIR SPILLWAY

Sites Reservoir is an off-stream reservoir with a small drainage area relative to reservoir storage. The freeboard provided for the main dams and saddle dams (20 feet above normal maximum pool) allows for the full storage of runoff from the probable maximum flood (PMF) while leaving approximately 15 feet of residual freeboard. Because the reservoir can fully store the PMF above the normal maximum water level with adequate remaining freeboard, there is no flood control spillway. However, a small signal spillway is provided at Saddle Dam 6 to alarm
facility operators in the event the water level ever exceeds the PMF storage level due to overpumping.

3.1.5. CREEK DIVERSION DURING CONSTRUCTION

Storm water runoff from Funks and Golden Corral creeks must be routed around construction sites. Funks Creek is of particular concern because this creek runs through the Golden Gate Dam site and potentially affects downstream work at the Sites Pumping/Generating Plant, the channel from the plant to Holthouse Reservoir, Funks Reservoir, Holthouse Dam Construction, and other activities, many of which fall on the critical path. Construction of these facilities will cover multiple years on the schedule and Funks Creek can produce significant creek flows during the winter seasons. To minimize impact to the large construction area downstream of Golden Gate Dam, AECOM has identified a construction diversion plan for the reservoir that would collect water from Funks Creek in the reservoir area and rechannel it south through a low ridge to Stone Corral Creek, which flows through the Sites Dam site. The volume of material that must be excavated to construct the channel connecting the two creek drainages would be stockpiled and reused in permanent construction for the dams and cofferdams. At the Sites Dam site, a diversion tunnel would be constructed through one abutment of the dam to pass all flood flows. The diversion tunnel would work in combination with upstream cofferdams at the two dam sites and channels in the reservoir to control and direct water.

The drainage area is approximately 84 square miles. Based on National Oceanic and Atmospheric Administration data for a 100-year storm event, the estimated design rainfall depth is 5.2 inches in 24 hours. The resulting design runoff flow routed through the tunnel would be approximately $4,500 \mathrm{cfs}$. The maximum upstream water level during flood routing would reach approximate Elevation 295.0, which is below the assumed top of cofferdam level at Elevation 300.0. For estimating, the tunnel is sized at 20 feet in diameter finished to 18 feet. It is estimated that this tunnel will have to be approximately 3,000 feet long to avoid conflict with the Sites Dam construction. Tunnel would be constructed using drill and blast methods and using steel sets, lagging, and rock bolts for support. The inside perimeter would be shotcrete lined. Heavy riprap will be used for energy dissipation at the discharge area in Stone Corral Creek.

The inlet to the diversion tunnel at Sites Dam will be plugged at the upstream end to begin initial filling of the reservoir. A 24 -inch-diameter outlet pipe will run through the plug to the downstream end of the tunnel. A shutoff valve will be provided at the downstream end of the tunnel plug and an energy dissipation valve will be provided on the pipe at the downstream end of the tunnel. The pipe will be used to make environmental releases to Stone Corral Creek after construction of Sites Dam.

3.2. Sites Reservoir Inlet/Outlet facility

The Sites Reservoir Inlet/Outlet Facilities are shown on Figure 2-1 and include the following components:

- The 4,000 -foot long pressure tunnel through the ridge
- The vertical Inlet/Outlet tower with control gates located in the reservoir, and
- The low level Inlet/Outlet structure on the bottom of the reservoir at the upstream end of the pressure tunnel.
- The emergency drawdown release facility.

The current design details and estimated cost for these facilities will be further evaluated in future phases of the project. Based on the current understanding of site seismicity, it is possible that the vertical intake tower described below would be converted to a sloping intake configuration firmly anchored to the reservoir slope. This reconfiguration would also eliminate the need for an access bridge to the tower and improve operation and maintenance flexibility.

3.2.1. I/O PRESSURE TUNNEL

The pressure tunnel is approximately 4,000 feet long. It would be constructed using drill and blast methods after the upstream and downstream portals are excavated and developed. The neat line excavated diameter would be approximately 36 feet and the internal diameter after lining would be 30 feet. The geology along the tunnel alignment consists of sandstones and mudstones of the Boxer and Cortina Formations and the alignment was selected to avoid faults and shears identified from currently available geological mapping. Rock bolting and steel sets and lagging should be adequate for tunnel support.

The tunnel would be reinforced concrete lined for the full length. At the lower end, a steel liner would be incorporated into the concrete lining where the depth-of-rock cover over the tunnel is inadequate to provide sufficient confinement for the internal design pressure.

The tunnel is sized to meet the Division of Safety of Dams (DSOD) emergency reservoir drawdown guidelines, which requires the outlet facilities have a flow capacity to reduce the maximum reservoir storage depth by 10 percent within 10 days. For Sites Reservoir, this correlates to drawing down the reservoir by 22 feet from maximum pool by releasing approximately 300,000 AF of water in 10 days. The average tunnel outflow over ten days would be approximately 15,100 cfs and the corresponding average tunnel velocity would be approximately 21.5 fps . This design case far exceeds the maximum normal operating case (5,900 cfs pumping flow and velocity of 8.3 fps).

3.2.2. INLET/OUTLET TOWER

The multi-level inlet/outlet tower provides the capability to move water in and out of Sites Reservoir. The tower extends up through the reservoir from its base connection to the pressure tunnel. Four ports with butterfly valves spaced around the tower at nine levels move water in and out of the reservoir. Valves on any tier can be operated independently or all valves can be operated together. Movable fish screens would be provided to cover operating ports when releases are being made. Table 3-3 provides a summary of key Inlet/Outlet Tower parameters.

Table 3-3 Sites Reservoir Inlet/Outlet Tower

Top Elevation	580.0 feet
Bottom Elevation (Top of Bench)	320.0 feet
Inside Diameter	32 feet
Outside Diameter	39 feet
Number of Ports	36 (4 each at 9 levels)
Functional Reservoir Release Elevations	520 feet to 340 feet

The intake tower would also house fixed wheel gates and associated operating equipment that would be used to isolate the tunnel from the tower intersection downstream for inspection and maintenance of the tower and tunnel. These gates also serve as an emergency shutoff device.

A multi-span bridge provides access to the Inlet/Outlet tower from the nearby access road. As mentioned above, the bridge may be eliminated if a sloping intake arrangement is adopted in future design phases of the project.

3.2.3. EMERGENCY RELEASE FACILITY

To control the emergency reservoir drawdown release described in Paragraph 3.2.1 above, four 102-inch diameter fixed-cone (Howell Bunger) dispersion valves would be located in a reinforced-concrete energy dissipation valve chamber located adjacent to the Sites Pumping/Generating Plant. Isolation valves would be located upstream of the energy dissipation valves. The valves would connect back to the pressure tunnel downstream portal through a dedicated buried penstock system branching off of the main buried penstock that connects the tunnel to the Sites Pumping/Generating Plant. The fixed-cone valve discharge would be conveyed downstream in the channel connecting the Sites Pumping/Generating Plant with Holthouse Reservoir.

3.3. Sites Pumping/Generating Plant

3.3.1. PENSTOCKS AND MANIFOLDS

A system of buried steel penstocks and manifolds would connect the pumping and pumping/generating units in the Sites Pumping/Generating Plant with the downstream tunnel portal. The manifold lines are sized for flow velocities of 10 fps or less. All buried penstocks and manifolds would be concrete-encased, with concrete anchor blocks to resist the thrust forces on bends, reduction bifurcations and branches. Penstocks steel thicknesses for cost estimating have been selected considering a pressure equivalent to the maximum pumping head at full reservoir elevation, plus surge allowance, plus an additional 10 percent.

3.3.2. PUMPING/GENERATING PLANT

The Sites Pumping/Generating Plant lifts water from Holthouse Reservoir into Sites Reservoir (refer to Figure 2-1). The SPGP is connected to Holthouse Reservoir by an unlined excavated approach channel. The channel is sized so that flow velocity under all conditions does not exceed approximately 2 fps .

Table 3-4 provides a summary of the SPGP equipment included with Alternative D.

Table 3-4 Sites Pumping/Generating Plant Equipment

Unit Type	Number of Units	$\begin{aligned} & \text { Net Head } \\ & \text { (feet) } \\ & \text { (Pump/Gen) } \end{aligned}$	Pumping Capacity Per Unit (cfs)	Generating Capacity Per Unit (cfs)	Motor Power Total (MW) ${ }^{1}$	Generating Power Total (MW) ${ }^{1}$
Pump Francis Vane Dual-Speed	2 and 1 Spare	330	870	None	58.9	None
		202	870	None	36.0	None
Pump Francis Vane Dual-Speed	2	330	435	None	29.5	None
		202	435	None	18.0	None
Pump/Turbine Reversible Francis, DualSpeed	4 and 1 Spare	330/310	663	1,020	89.8	88.3
		202/182	663	1,020	55.0	51.9
Pump/Turbine Reversible Francis, DualSpeed	2	330/310	332	510	22.5	22.0
		202/182	332	510	13.8	12.9
Totals	10 and 2 Spares	-	5,926 (Max Combined)	5,100 (Max Combined)	$\begin{aligned} & 200.7 \\ & (\mathrm{Max}) \end{aligned}$	110.3 (Max)

1. Motor power and generation based on 82.5% combined efficiency (unit and transformer), no power factor adjustment, higher efficiencies are likely.

The units selected would be dual-speed units to accommodate the wide variations in water levels that can be expected in Sites Reservoir. The head difference on the units between pumping and generating modes is within a range that permits some of the units to be pumpturbines to provide the needed generating capability when releases are being made. Generation water not needed to meet downstream needs would be stored in Holthouse Reservoir. The number of pumping units selected to operate on a daily basis would provide the capacity to pump all water delivered to Holthouse Reservoir up to Sites Reservoir during the off-peak pumping period. Water delivered to Holthouse Reservoir would include generation water plus inflows from the canals and the Sacramento River. The pumping plant would be a conventional, indoor-type pumping/generating plant with an in-line arrangement of vertical units. The SPGP would have a reinforced concrete substructure and a steel superstructure.

Adding variable frequency drive (VFD) capability to the pumping and generating units could help to maximize pumping and generating efficiencies, and improve the generation response to
changes in the power grid demand. The benefits of adding VFD capability will be further evaluated in future design phases.

3.3.3. INTAKE AND DISCHARGE CHANNEL TO HOLTHOUSE RESERVOIR

An excavated intake and discharge channel connects the Sites Pumping/Generating Plant with Holthouse Reservoir (described in the next section). The channel would have a bottom width of 100 feet, 2-horizintal to 1 -vertical side slopes, and would require excavating approximately 4.0 million cubic yards of soil and rock. Excavated material is assumed to be suitable for use in dam construction and for other site grading needs. Road benches would be provided in the excavation above the maximum water level for inspection and maintenance.

The channel is capable of providing pumping flows to the Sites Pumping/Generating Plant (up to $5,900 \mathrm{cfs}$) from Holthouse Reservoir when the water level in the Reservoir is at its planned minimum operating level (elevation 190.0 feet). Flow velocity in the channel under this condition would be approximately 2 feet per second. Under emergency release flows (approximately 15,000 cfs) with Holthouse Reservoir at approximate elevation 206.0 feet, the velocity would still be approximately 2 fps . No riprap or other lining is provided for the channel. Some of the accumulated sediment in the existing Funks Reservoir would need to be removed before excavating the channel. Excavated sediment can be disposed of in Holthouse Reservoir below the minimum operating level.

3.4. Holthouse Reservoir

3.4.1. SIZING

The required active storage in Holthouse Reservoir should be approximately 6,500 acre-feet to permit the Sites Pumping/Generating Plant to operate as a pumped-storage facility. This volume provides for storage of the generating flows (up to $5,900 \mathrm{cfs}$) during on-peak periods and storage of inflows to the reservoir that might be occurring in spring or fall from the TC and GCID Canals and Sacramento River. The collected volume of water would then be pumped up into Sites Reservoir during off-peak and partial-peak periods as necessary on a daily cycle. Diversion flows were estimated from available CaISIM modeling. Note that additional operational studies should be performed in future phases of the project to confirm optimal reservoir size for pumped-storage operation.

The current active storage capacity of Funks Reservoir is estimated to be approximately 2,100 acre-feet after removing sediment that has accumulated in the reservoir since it was commissioned. To provide 6,500 acre-feet of storage, the new Holthouse Dam would be constructed downstream of the existing Funks Dam to extend the reservoir limits. Holthouse dam would have the same crest elevation as the existing Funks Dam (El. 214.0). The required active storage would be located between elevation 206.0 feet and elevation 190.0 feet and would be the sum of the storage provided in the expanded reservoir, Funks Reservoir and the channel connecting the reservoir with the Sites Pumping/Generating Plant.

3.4.2. HOLTHOUSE DAM

Except at the left abutment, Holthouse dam would be a zoned embankment similar to Funks Dam with a maximum height of approximately 48 feet. The dam will be approximately 8,500 feet long. Because a deep soil layer could potentially exist along the dam alignment, the central core zone would extend down to suitable foundation in dense soils. To control seepage under the core section, a slurry cutoff wall would be constructed down through the dense soils to refusal in weathered rock. A grout curtain line would then be installed adjacent to the cutoff wall on both sides to fresh rock to treat remaining weathered rock below the refusal level for the cutoff wall.

On the left abutment, a concrete gravity dam section would be provided that will incorporate the inlet/outlet facilities for the four 12-foot diameter pipes that comprise the Delevan and TRR pipelines (two pipes each), and the emergency spillway for Holthouse Reservoir. The gravity structure has been located on the abutment to position it far enough into the hillside to minimize the risk of encountering unsuitable foundation conditions for the concrete structure. Foundation conditions would be further investigated in future phases of the project.

The inlet/outlet facility for the Delevan and TRR pipelines will incorporate formed concrete transitions for hydraulic efficiency, roller gates to shut off flow in each pipe for dewatering, stop log guides upstream of the roller gates, and a bar rack structure to prevent entry of large debris. The transition entrance for each pipe is sized to limit inlet and outlet flows to approximately 2 fps .

3.4.3. SPILLWAY AND LOW LEVEL RELEASE

The spillway located in the gravity structure will be similar to the existing Funks Dam spillway and will incorporate three motor driven cable operated radial gates with a total bypass capacity of approximately 15,200 cfs, which matches the emergency release requirement for Sites Reservoir discussed previously.

The gravity section would also include an outlet pipe with energy dissipating valve that would provide water to Funks Creek for stream maintenance and facilitate draining the reservoir to permit inspections of the inlet facilitates. The design capacity at maximum head would be approximately 500 cfs.

3.5. Terminal Regulating Reservoir and Pumping/Generating Plant

The TRR is the collection point for water being conveyed down the GCID Canal for ultimate delivery to Sites Reservoir. The TRR Pumping/Generating Plant located within TRR then moves the water to Holthouse Reservoir through the TRR Pipeline. The TRR Pipeline also returns irrigation releases back to the TRR from which the water is directed into the GCID Canal or other local irrigation canals. The return flows pass through a turbine generating unit located in the TRR Pumping/Generating Plant.

3.5.1. TERMINAL REGULATING RESERVOIR

In addition to receiving project water, the TRR provides operational storage for GCID to balance out flow variations in the canal, to distribute releases to their system downstream of the reservoir, and to support operation of the pumping plant. Operational storage in the reservoir is 1,200 acre-feet for Alternative D compared with 2,000 acre-feet assumed for other alternatives. GCID indicates the reduced size is adequate for canal regulation based on their operating experience.

The reservoir would be constructed partially above and below grade by a cut and fill operation. The levee portion around the reservoir perimeter would average approximately 6 feet high and the top elevation would match the existing levees for the GCID Canal at the tie-in point. The excavated portion would be limited to 6 to 10 feet below grade to minimize groundwater issues. The pond would be plastic lined to minimize seepage loss from the pond.

Regulation of flow into and out of the reservoir would be controlled by the existing control gate structure on the GCID Canal just upstream of Funks Creek and a new control gate structure parallel to the canal at the reservoir connection point. Other facilities associated with TRR are a spillway sized for approximately 500 cfs and a release pipe and control valve with a capacity of 100 cfs to 150 cfs to supply local irrigation canals. Spillway flows would be conveyed to the south to Funks Creek in an upgraded existing canal and pipe with the required capacity.

3.5.2. TRR PUMPING/GENERATING PLANT

The pumping and generating equipment provided in the plant is summarized in Table. The structural building for the TRR Pumping/Generating Plant would be similar to that described below for the Sacramento River Pumping/Generating Plant.

Table 3-5 TRR Pumping/Generating Plant Equipment

Unit Type	Number of Units	Net Head (feet) (Pump/Gen)	Pumping Capacity Per Unit (cfs)	Generating Capacity Per Unit (cfs)	Motor Power Total (MW)	Generating Power Total $(M W)^{1}$
Pump Francis	2 $(+1$ standby)	114	620	-	14.5	-
Pump Francis	2	98	325	-	6.5	-
Turbine Kaplan	1	84	-	750	-	4.4
Totals	5 and 1 Spares	-	945 $(M a x$ Combined)	750 $(M a x$ Combined)	$21.0($ Max)	4.4

1. Motor power and generation based on 82.5% combined efficiency (unit and transformer), no power factor adjustment, higher efficiencies are likely.

In addition, the following equipment would also be included with the plant:

- 32-foot-diameter spherical air chambers to control surge pressures in the TRR pipeline.
- Bypass and shutoff valves, manifold piping, mechanical systems, electrical and control systems, switchyard facility.

The switchyard for the TRR Pumping/Generating Plant will be tied back to the main switchyard at the Sites Pumping/Generating Plant by overhead transmission line.

3.6. DELEVAN INTAKE AND PUMPING/GENERATING PLANT

3.6.1. SITE DEVELOPMENT

Site arrangements for Alternative D differ in some respects from the arrangements used for the other alternatives. The Pumping/Generating Plant orientation was rotated toward the south to provide more working room between the plant and Highway 45 to facilitate pipeline construction. The forebay pond was also modified for Project Alternative D to remove the levee earthwork and culverts connecting the fish screen structure afterbay with the pump station forebay. Based on a preliminary discussion with the U. S Army Corps of Engineers, the fill and culverts included with the other alternatives can be removed as long as the earthwork to construct the pumping plant grade is above the 100-year flood level, fill materials conform to the fill requirements for levee construction, and fill is integrally tied to the existing flood control levees along the Sacramento River. In addition, based on current understanding of seepage issues through and under the existing river levee system, it is likely that a suitable slurry cutoff wall (or other cutoff method) would be required under the pump station fill around the forebay pond area to control underseepage.

3.6.2. PUMPING/GENERATING PLANT

The SRPGP would be constructed with a pumping capacity of 2,000 cfs, an intake and fish screen structure at the Sacramento River, and the Delevan Pipeline from the SRPGP to the Holthouse Reservoir. The conveyance system would also be capable of releasing up to 1,500 cfs from Holthouse Reservoir back to the Sacramento River. The return flow would be used to generate hydroelectric energy.

The pumping/generating plant would involve the construction of (1) a pumping/generating plant, (2) forebay/afterbay pond, (3) four air chambers for surge control, (4) manifold piping to connect the pumping and generating units to the Delevan Pipeline (6) a control building, (7) an electrical switchyard, and (8) fish screening facilities on the Sacramento River.

Table 3-6 summarizes the pumping and generating equipment provided in the plant. The pumping/generating plant would also consist of pipelines, mechanical and electrical equipment, aboveground control and O\&M buildings, and related equipment. The overall dimension of the plant building is approximately 300 feet long by 80 feet wide with multiple story structure to provide spaces for mechanical and electrical equipment. A gantry crane would be installed on the finish floor of the plant for moving pumps, generators, motors and turbines, valves, and electrical/mechanical equipment.

Table 3-6 Sacramento River Pumping/Generating Plant

Unit Type	Number of Units	Net Head (feet) (Pump/Gen)	Pumping Capacity Per Unit (cfs)	Generating Capacity Per Unit (cfs)	Motor Power Total (MW)	Generating Power Total $(M W)$
Pump Francis	4 $(+1$ standby)	282	600	-	14.5	-
Turbine Kaplan	2	94	-	750	-	4.4
Totals	6 $(+1$ Standby)	-	2,400 (Max Combined)	750 (Max Combined)	$21.0($ Max)	4.4

1. Motor power and generation based on 82.5\% combined efficiency (unit and transformer), no power factor adjustment, higher efficiencies are likely.

3.6.3. FISH SCREEN STRUCTURE

The fish screen facilities are located on the west side of the Sacramento River, slightly downstream of RM 158.5 and east side of Highway 45. The fish screen structure is designed for a flow of 2,000 -cfs and includes thirty-two 13 -foot by 15 -foot flat plate screens, two blowout bays, two fish screen brush cleaners, a sediment removal system, and tuning baffles. Each item is necessary for the proper function of the proposed fish screen. Construction of the screening facility will require a temporary cofferdam in the river.

3.7. Delevan and Terminal Regulating Reservoir Pipelines

Except for the alignment, the Delevan and TRR Pipeline design arrangements for Project Alternative D are the same as used for the other alternatives. The alignments have been shifted to address stakeholder feedback on previous alignments and make better use of existing County and MID easements, particularly between the Sacramento River and the Colusa Basin Drain.

The Delevan Pipeline runs from the Sacramento River Pumping/Generating Plant to Holthouse Reservoir and includes two adjacent 12 -foot-diameter pipelines. Delevan Pipeline is approximately 13.5 -mile-long. The TRR Pipeline runs from the TRR Pumping/Generating Plant to Holthouse Reservoir and also includes two adjacent 12-foot diameter pipelines. TRR Pipeline is approximately 3.5 -mile-long. There is no interconnection of the Delevan and TRR Pipelines.

The pipelines will be American Water Works Association (AWWA) C-300 Pipe with 12-foot inside diameter (ID). Pipe design will be in accordance with AWWA Manual M9 (AWWA, 1995). Design internal pressure for the pipelines is taken to be the hydraulic grade line for pumping with a 40 percent additional allowance for surge pressures. All pipe will have Carnegie-style bell and spigot joints with O-ring gaskets. Controlled low-strength material will be used for pipe bedding. Note that trench and bedding details were reviewed by Hanson Pipe (Hanson) and Ameron Pipe (Ameron).

Typically, the Delevan and TRR Pipelines would be constructed in a cut and fill trench along the alignment. Between the TRR Reservoir and Holthouse Reservoir the four 12-foot diameter
pipelines would be located in a common trench. Placing the pipelines in a common trench is considered the practical approach under the current design since the likelihood of having to reexcavate a pipe in the future is very low. Placing pipes in individual trenches would also increase real estate needs.

Approximately 10 feet of cover over the top of the pipe is planned to permit ongoing rice and row crop production. This cover also facilitates going under an extensive network of water supply and drainage channels without vertical alignment changes. To facilitate a return to agricultural production after pipeline construction, topsoil will be removed an stockpiled for reuse over backfilled pipe trenches

Dewatering of pipe trench excavations will be required along the pipeline alignments, particularly across the Colusa Basin Drain. The cost estimate includes a series of dewatering wells and associated water collection and sediment control facilities to manage water, which will be discharged to local channels along the alignment. The dewatering wells will be removed as the trench is backfilled and advanced to locations ahead of the excavation as the pipeline installation progresses.

To construct pipelines under major infrastructure facilities, bore/jack construction methods would be used at road crossings (I-5, I-99, and Highway 45); railroad crossings, the crossing under the Colusa Basin Drain, gas transmission line crossings, and the crossing under the GCID Canal.

Facilities associated with both the Delevan and TRR pipelines include:

- Blowoff structures
- Air and vacuum valve assembly structures, access manholes
- Cathodic protection systems

3.8. Red Bluff Pump Addition

The existing Red Bluff Diversion on the Sacramento River includes a fish screen facility and pumping station that supplies water to the T-C Canal. Two spare pump bays were provided in the facility at the time of construction. As part of the Sites reservoir Project, new pumps would be installed in the spare bays. The pumps would be 250 cfs capacity matching the larger pumps already installed and operating. For each pump, 84 -inch diameter motor operated butterfly valve and discharge flap gates will be provided along with a pump flange coupling (similar to those installed on the operating units). Electrical connections and control connections to existing systems would also be provided along with start-up support from equipment manufacturers.

3.9. Transmission Lines

For Alternative D, the Sites and TRR Pumping/Generating Plants and other facilities west of TRR would be serviced from existing PG\&E or WAPA transmissions located close by. A new substation and short section of new transmission line would be provided to make the necessary
connection to the selected utility. To supply power to the Sacramento River Intake and Pumping/Generating Plant, a new transmission line would be added that runs north from an existing WAPA transmission line near Colusa along Highway 45 to the intake. WAPA was selected for service because PG\&E does not have existing line capacity in the area. A new substation would be provided at the connection point near Colusa. The transmission line along Highway 45 included in Alternative D replaces the east-west line included in other alternatives, which addresses local stakeholder concerns regarding the impact of the cross country transmission line on farming operations and wildlife.

3.10. ROADS

3.10.1. SITES LODOGA ROAD REPLACEMENT WITH SOUTH BRIDGE

The Sites Lodoga Road realignment with the new South Bridge over the reservoir replaces the current Sites Lodoga road segment that will be inundated when the reservoir is filled. The road and bridge provide for single lane traffic in each direction. Road and bridge designs follow County rural road and CALTRANS standards. Additional engineering work has been performed to refine the selection of span lengths and further define foundation requirements to improve the accuracy of the cost estimate. The span lengths currently being considered permit deck construction using the balanced cantilever construction method with precast units, which was determined to be less costly than cast-in-place methods.

3.10.2. NORTH TEMPORARY BYPASS ROAD.

A new temporary bypass road at the north end of Sites Reservoir is provided to help expedite close of Sites Lodoga Road in the project area. The new bypass road would begin on the east where existing Road 69 intersects the TC Canal. From there, the planned access road would follow existing ranch roads and trails and connect back to Sites Lodoga Road on the west side of the proposed reservoir outside the inundation area. Access to Road 69 would be from Highway 5 at the Road 68 interchange, then west along Road 68 to Road D and Road 69. The bypass road would be paved for public use. No additional environmental impacts would be anticipated since the route follows existing County roads, roads already planned for the project, and new segment that is located within the reservoir footprint.

3.10.3. OTHER PROJECT ROADS

Table 3-7 provides a list of the significant public and private roads that will be constructed as part of the project. These new roads and road relocations are reflected in the cost estimate for the project.

Table 3-7 Project Roadways and South Bridge

Road or Segment Name	Gravel (miles)	Paved (miles)	$\begin{aligned} & \hline \text { Bridge } \\ & \text { (miles) } \\ & \hline \end{aligned}$	Total (miles)
Lurline Road				
Maxwell-Sites Road to Com Road	5.05			5.05
Lurline Rd. to Lurline Headwaters Recreation Area	0.21			0.21
Com Road	2.95			2.95
Eastside Road				
Field Office Maintenance Yard Access to Sites PGP Access		0.93		0.93
Golden Gate Dam/Electrical Switchyard Access Roads to Property North of Golden Gate Dam	1.52			1.52
Maxwell Sites Road to Stone Corral Road		1.12		1.12
Property North of Golden Gate Dam to North Road	3.63			3.63
Sites Pumping/Generating Plant Access to Golden Gate Dam/Electrical Switchyard Access Roads		0.95		0.95
Stone Corral Road to Field Office Maintenance Yard		1.09		1.09
North Road				
County Road 69 at T-C Canal to Saddle Dam Road	4.69			4.69
Saddle Dam Road to Saddle Dam 9	1.84			1.84
Peninsula Road				
Sites Lodoga Road to Peninsula Hills Recreation Area (East Segment)	0.53			0.53
Sites Lodoga Road to Peninsula Hills Recreation Area (West Segment)	0.94			0.94
North Road to Saddle Dam 1	3.17			3.17
South Bridge			1.57	1.57
South Bridge East Approach		0.28		0.28
South Bridge West Approach		2.25		2.25
Stone Corral Road				
Eastside Road to South Bridge East Approach		1.39		1.39
South Bridge East Approach to Stone Corral Recreation Area	0.26			0.26
Private Access				
Eastside Road to bottom of Golden Gate Dam		0.25		0.25
Eastside Road to Sites Pumping/Generating Plant Electrical Switchyard		0.12		0.12
Eastside Road to Field Office Maintenance Yard		0.04		0.04
Eastside Road to Sites Pumping/Generating Plant		0.18		0.18
North Road to Saddle Dam 6	0.28			0.28
Saddle Dam Road to Saddle Dam 1	3.17			3.17
Saddle Dam Road to Saddle Dam 2	0.03			0.03
Saddle Dam Road to Saddle Dam 3	0.16			0.16
Saddle Dam Road to Saddle Dam 5	0.11			0.11
South Bridge East Approach to Inlet/Outlet Tower		0.11		0.11
South Bridge East Approach to top of Golden Gate Dam		0.75		0.75
Leesville Connector Road	5.5			5.5

3.11. Recreation Areas

Alternative D includes two recreation areas, Stone Corral and Peninsula Hills. In addition, a day use boat ramp facility would be provided on the west side of the reservoir near where the existing Sites Lodoga Road leaves the inundation area. Fewer recreation facilities are provided in Alternative D compared with other alternatives because recent reevaluation of recreational
needs, which included Colusa County, indicate a lower recreational demand than previously envisioned.

3.12. Other Ancillary Facilities

The cost estimate includes costs for an operation and maintenance complex to be located near the Sites Pumping/generating Plant. In addition to the control room, the facility would include offices, vehicle maintenance and fueling facilities, warehousing space, package water and sewage treatment facilities, emergency generator, and parking. Note that local operation of the Project is assumed via SCADA systems from the operation and maintenance facility. Discussions of project operation and integration between the Authority and Federal and State agencies will be ongoing as project development continues. Integration of the Project with other Federal and State facilities could change the criteria for the operation and maintenance complex.

This page intentionally left blank.

4. ESTIMATING APPROACH

4.1. Format

The estimate for Project Alternative D was prepared using the same Bureau Estimate Summary and Estimate Worksheet templates used to prepare costs for other alternatives. AECOM also followed the estimating instructions contained in Reclamation's Cost Estimating Handbook (Reclamation, 1989) and Reclamation's Manual, Directives and Standards, FAC 09-01, FAC 0902, and FAC 09-03. Rounding of estimated costs at the facility summary level and above was performed following the guidelines in the Cost Estimating Handbook. Project features were identified in the estimate in accordance with the property classes and plant account codes identified in the Cost Estimating Handbook.

4.2. Definitions

The terminology used in this report and on the various estimating worksheets follows Reclamation and WSIP conventions wherever possible. The following terms are used:

Contract Cost (Reclamation): The contract cost is the cost to construct the project by the general contractor, including mobilization/demobilization, all subcontractors, direct and indirect costs, labor, equipment, bonds and insurance, profit and an allowance for potential design modifications unrelated to the contractor's activities. This contract cost would be equivalent to the bid price.

Field Cost (Reclamation): The field cost is the contract cost with an appropriate allowance for construction contingency. The field cost is the cost the Authority would plan for to cover the bid price and potential change orders or other modifications to the contract during construction.

Construction Cost (Reclamation): The construction cost is the field cost adjusted for noncontract costs. Non-contract costs are project-related expenses that the Authority must also plan for that are over and above the field cost, including Authority expenses, program management, site investigations, engineering and design, construction management, and the like. Non-contract costs are presented as a percentage of the construction cost. The non-contract cost allowance can also include real estate acquisition and environmental mitigation. However, these costs are not part of the noncontract cost allowance because they have been estimated and are included in the cost estimate on estimate worksheets.

Escalation (Reclamation): The construction cost is escalated from the base estimate date to the anticipated start of construction date. The base date for the cost estimate is October 2015. Start of construction is planned for the spring/summer of 2022. This represents approximately 7 years of escalation.

Capital Cost (WSIP): Capital costs are the costs of construction or acquisition of a tangible physical property with an expected useful life of 15 years or more. Capital costs include: 1) construction, initial environmental mitigation or compliance obligations, and land acquisition, 2) equipment with an expected useful life of 2 years or more, and 3) costs incidentally but directly related to construction or acquisition, including planning, engineering, construction management, architectural and other design work, environmental impact reports and assessments, environmental mitigation or compliance obligation expenses, permitting, appraisals, legal expenses, site acquisitions, and easements. Financing costs such as interest during construction are not included in capital costs.

Total Project Cost (WSIP): The total project cost includes the capital costs, interest during construction, environmental mitigation or compliance obligations after completion of construction, and O\&M, repair, and replacement costs during the planning horizon.

The contract cost, field cost, construction cost and escalated construction cost are tabulated on separate lines on each estimate summary worksheet form for each facility. Capital Cost and Total Project Cost are tabulated separately from the estimate worksheets and presented in tables.

4.3. Allowances and Contingencies

Table 4-1 presents the allowances and contingency percentages that have been adopted and applied to the feasibility-level cost estimate for Project Alternatives D. Each is briefly discussed in the following paragraphs

Table 4-1 Allowances and Contingencies

Mobilization	5 percent
Design Contingency	10 percent
Construction Contingency	10 percent
Non-Contract Costs	17 percent

4.3.1. MOBILIZATION

As defined in the Public Contract Code, mobilization includes preparatory work and operations, including, but not limited to, those necessary for the movement of personnel, equipment, supplies and incidentals to the project site, for the establishment of all offices, buildings and other facilities necessary for work on the project, and for all other work and operations which must be performed or costs incurred prior to beginning work on the various items on the project site. Mobilization is covered in the estimate by increasing the direct construction cost by approximately 5 percent for each facility.

4.3.2. DESIGN CONTINGENCY

Design contingencies are intended to account for uncertainties as the project progresses from the planning phase to the final design phase. These uncertainties include unlisted items, design and scope changes, and cost estimating refinements. Design contingencies are listed as a separate line item in the cost estimate summary work sheets. For the estimates provided in this BOE, 10 percent of the direct construction cost has been used for each facility.

4.3.3. CONSTRUCTION CONTINGENCY

Construction contingencies represent the dollar values of the uncertainties in the estimates to compensate for unforeseen or changed site conditions, minor changes in plans, quantity overruns, and other uncertainties. The percentage allowance used should be based on engineering judgment of the major pay items in the cost estimate, reliability of the data, adequacy of the projected quantities, and general knowledge of site conditions and level of uncertainty. The allowance amount for contingencies varies inversely with the certainty of the engineering and geological information and data. The level of data available to support cost estimating varies from facility to facility for the Project. Overall, the construction contingency has been set at 15 percent for the cost estimates provided in this BOE.

4.3.4. NON-CONTRACT COSTS

Non-contract costs are incidental but directly related to construction or acquisition, including planning, engineering, construction management, architectural and other design work, environmental impact reports and assessments, environmental mitigation or compliance obligation expenses, permitting, appraisals, legal expenses, site acquisitions, and easements, and the like. The cost estimates provided in this BOE include estimates developed for land acquisition and environmental mitigation that are normally covered in the non-contract cost allowance.

Since land development and mitigation are estimated separately, 17 percent has been used to cover the allowance for other non-contract costs in this BOE. The non-contract cost percentage reflects the assumption that the Project would be implemented by the Authority, not Reclamation or the State. It does, however, include an allowance for some costs for Reclamation involvement in the project because Reclamation owns the existing Funks Reservoir and the T-C Canal that will require some modification/upgrade. Future phases of the project will evaluate various alternative contracting strategies to implement the project, which could affect the non-contract costs. Table 4-2 presents the breakdown of cost allocations to non-contract costs.

Table 4-2 Non-Contract Cost Allowances

Authority Program Management and Administration	4.5 percent
Site Investigations, Surveys, Planning, Design, etc.	6.5 percent
Construction Management Services and Related Expenses	6.0 percent
Total	17 percent

4.4. Estimate Base and Escalation

Escalation of construction costs from October 2015 to an assumed notice to proceed date in mid-2022 has been included on the estimate worksheets for information. Escalation was evaluated using various sources, including USACE CPI and the Consumer Price Index. Results varied from 15.3 percent to 15.8 percent over the escalation period. For Project Alternative D, 15 percent has been applied. Escalation is assumed to follow projected inflation trends.
Escalation does not represent material or equipment price increases above the normal inflation rate.

4.5. Quantities

Quantities used to prepare the cost estimate for Project Alternative D were taken from the previous estimate for Alternative C where facilitates were identical, or were developed from the plans for new or modified facilities.

4.6. Labor Rates

Wages and benefits for labor were determined from the General Prevailing Wage Determinations for Colusa County, Northern California, as provided by the State of California Department of Industrial Relations on their website.

4.7. Construction Equipment Rates

Construction equipment operating costs were developed from recent AECOM experience or using data published in the current State of California Department of Transportation publication titled Labor Surcharge and Equipment Rental Rates.

4.8. Mechanical and Electrical Equipment Costs

Mechanical and electrical equipment costs developed for Alternative C have been updated to for use in Alternative D. Updating included vendor contacts. These costs include the turbine, motor or generator, exciter units, and unit installation. Motor control centers were allocated with two per large unit and one per smaller unit. Two direct current (DC) systems and two uninterruptable power supply (UPS) systems were estimated for use at all three pumping/generating plants for redundancy and greater reliability.

4.9. Pipeline Fabrication Costs

Pipeline fabrication costs were obtained previously for Alternative C and have been verified with potential suppliers for the current estimating exercise.

4.10. Miscellaneous Costs

Costs for miscellaneous items were developed from recent AECOM experience, or by referencing estimating data books like RS Means Heavy Construction Cost Data.

4.11. References

Section 9 provides a list of important references that are applicable for the project.

This page intentionally left blank.

5. BASIS OF ESTIMATE AND ESTIMATING ASSUMPTIONS

5.1. Sites Reservoir (Property Class 01)

5.1.1. LAND AND RIGHTS

Appendix D, Real Estate, in the Feasibility Report for the North of the Delta Offstream Storage Project documents the evaluation of acquisition and administrative costs that would be incurred to acquire land in fee and for temporary/permanent easements to develop the project. These costs are included in the project cost estimate as land and rights costs.

5.1.2. PUBLIC AND PRIVATE ROADS

Construction of Site Reservoir and adjoining facilities will require replacement of public roads that will be inundated by the reservoir, temporary public bypass roads during construction, and the construction of new public and private roads to support project operation and access to recreation areas. These costs are included in the project cost estimate as part of the reservoir development costs.

5.1.3. SOUTH BRIDGE

The Project includes a major reservoir bridge crossing referred to as the South Bridge. Estimating assumptions for the bridge include the following:

- The estimate is based on precast concrete deck construction using the balanced cantilever method.
- Pier footings/caps are estimated at 64 feet square and 10 feet thick.
- Based on preliminary designs and assumed depths to fresh rock, bridge pier foundations will be founded on reinforced cast-in-place drilled hole (CIDH) piles socketed into fresh rock. Pile length is approximately 40 feet measured from the underside of the footing mat.
- Thirty six 3-foot diameter CIDH piles are provided under each footing.
- The bridge is broken into two spans by a small hill near mid-span. The short section of road between the two spans on the island is a short causeway formed using mechanically stabilized earth (MSE) walls.
- Bridge deck rails are assumed to be 3-foot-high concrete with a top pipe rail.

5.1.4. RESERVOIR CLEARING AND DEMOLITION

Based on a search of the California Division of Oil, Gas, and Geothermal Resources on-line database, there are many abandoned gas wells in the reservoir area and along the Delevan Pipeline alignment. The cost estimate assumes that some of these abandoned wells may require replugging if disturbed by excavation or other construction-related activities.

Estimating assumptions for clearing and demolition include the following:

- The land area for woodlands is estimated at 700 acres.
- Gas wells exist in the valley. Cost estimate includes an allowance for replugging approximately 20 percent of the existing wells in the reservoir area.
- In accordance with anticipated environmental requirements, demolition includes removal of all structures, metal fencing, barbed wire, fence posts, and asphalt concrete paving.
- Septic tanks and water wells will be abandoned in accordance with Colusa County standards.
- Septic tank waste, septic tanks, buried fuel/oil tanks, waste from building demolition, and other waste will be disposed of offsite in licensed dumps that can receive the material.
- No allowances are made in the estimate for salvage.

5.1.5. SIGNAL SPILLWAY

Saddle Dam 6 incorporates the signal spillway for Sites Reservoir (refer to Paragraph 3.1.4 for description).

5.2. Creek Diversion During Construction

Diversion of Funks Creek and Stone Corral Creek to construct Golden Gate and Sites Dams is described in Paragraph 3.1.5. Estimating assumptions for creek diversion during construction include the following:

- Funks Creek to be diverted south in excavated channel to Stone Corral Creek. Combined creek flows to be discharged through diversion tunnel around the Sites Dam construction site.
- The base of the diversion channel connecting Funks Creek and Stone Corral Creek will be 300 feet wide with $1: 1$ slopes on both sides and bottom at elevation 290.0 feet.
- Temporary cofferdams to elevation 300.0 feet at the upstream toes of Golden Gate Dam and Sites Dam will contain flood flows and prevent flooding of dam construction sites. The cofferdams will be surfaced with riprap on the waterside slope to prevent erosion.
- The diversion tunnel will be approximately 3,000 feet long, 20 feet in outside diameter, finished to inside diameter of 18 feet. Construction by drill and blast methods using steel sets, lagging, and rock bolts for support. The inside perimeter would be shotcrete lined.
- Riprap will be used for energy dissipation at the point of diversion of Stone Corral Creek downstream of Sites Dam.

5.3. Main Dams (Property Class 01)

5.3.1. AGGREGATE FOR FILTER AND DRAIN ZONES

Sand and aggregate for filter and drain zones in the dams (and for concrete aggregate) would come from alluvial deposits in borrow areas about 35 miles from the project site. On-site
sandstone is not suitable for processing and use in filters and drains, or in structural concrete, because of marginal durability based on available testing. Future design phases of the project will further investigate if suitable sources can be found closer to the project site.

5.3.2. SITES DAM

Table 5-1 provides a summary of the major estimated quantities for Sites Dam.

Table 5-1	Summary of Major Quantities for Sites Dam
Item	Quantity
Strip Foundation Areas	30 acres
Foundation Excavation	$793,500 \mathrm{cy}$
Core Zone	$1,070,000 \mathrm{cy}$
Filter Drain and Transition Zones (35 Mile Haul)	852,400 ton
Rock Fill Zones (1 mile haul)	$1,180,500 \mathrm{cy}$
Random Fill Zones (1 mile haul)	$1,085,000 \mathrm{cy}$
Drill Curtain Grout Holes	84,805 If

Estimating assumptions for Sites Dam include the following:

- Materials for dam construction (other than aggregates) will come from borrow areas identified by DWR within the reservoir and from sandstone rock quarries along the eastern ridge of the reservoir. Material will also come from mandatory excavations for other project facilities located within a reasonable distance from the dam.
- Sand and gravel for filter and drain zones will be processed and hauled from off-site borrow areas approximately 30 to 35 miles from the site.
- Suitable material from the in reservoir stream diversion, tunnels, and other mandatory excavations for construction can be used for dam construction.
- Construction of this dam will not start until the north bypass road is completed to replace Sites-Ladoga Road through construction areas.
- Suitable core material will be available within 1 mile of the project.
- Foundation grouting quantities are based on a grout take of approximately 0.75 sacks per foot for all holes.
- Estimated drilling and grouting quantities from grouting profiles were increased by 25 percent to cover stitch grouting at faults and other field contingencies.
- Excavated material not suitable for use in the dam will be deposited within the reservoir dead pool below elevation 300 feet.
- Instrumentation would include piezometers, settlement points, seepage weirs, and seismic monitors.

5.3.3. GOLDEN GATE DAM

Table 5-2 provides a summary of the major estimated quantities for Golden Gate Dam.

Table 5-2 Summary of Major Quantities for Golden Gate Dam

Item	Quantity
Strip Foundation Areas	50 acres
Foundation Excavation	$2,910,000 \mathrm{cy}$
Core Zone	$3,460,000 \mathrm{cy}$
Filter Drain and Transition Zones (35 Mile Haul)	$2,494,000$ ton
Rock Fill Zones (1 mile haul)	$2,870,000 \mathrm{cy}$
Random Fill Zones (1 mile haul)	$1,470,000 \mathrm{cy}$
Drill Curtain Grout Holes	185,600 If

Estimating assumptions for Golden Dam are similar to those for Sites Dam and include the following:

- Materials for dam construction (other than aggregates) will come from borrow areas identified by DWR within the reservoir and from sandstone rock quarries along the eastern ridge of the reservoir. Material will also come from mandatory excavations for other project facilities located within a reasonable distance from the dam.
- Sand and gravel for filter and drain zones will be processed and hauled from off-site borrow areas approximately 30 to 35 miles from the site.
- Suitable material from the in reservoir stream diversion, tunnels, and other mandatory excavations for construction can be used for dam construction.
- Construction of this dam will not start until the north bypass road is completed to replace Sites-Ladoga Road through construction areas.
- Suitable core material will be available within 1 mile of the project.
- Foundation grouting quantities based on a grout take of approximately 0.75 sacks per foot for all holes.
- Estimated drilling and grouting quantities from grouting profiles increased by 25 percent to cover stitch grouting at faults and other field contingencies.
- Excavated material not suitable for use in the dam will be deposited within the reservoir dead pool below elevation 300 feet.
- Instrumentation would include piezometers, settlement points, seepage weirs, and seismic monitors.

5.4. Saddle Dams (Property Class 01)

Table 5-3 provides a summary of the major estimated quantities for Golden Gate Dam.
Estimating assumptions for saddle dams include the following:

- Materials for dam construction (other than aggregates) will come from borrow areas identified by DWR within the reservoir and from sandstone rock quarries along the eastern ridge of the reservoir. Material will also come from mandatory excavations for other project facilities located within a reasonable distance from the dam.
- Sand and gravel for filter and drain zones will be processed and hauled from off-site borrow areas approximately 30 to 35 miles from the site.
- Suitable core material will be available within 1 mile of the project.
- Excavated material that is not suitable for use in the dam will be deposited within the reservoir dead pool below elevation 300 feet.
- Instrumentation for the larger dams (numbers 3, 5, and 8) would include piezometers, settlement points, seepage weirs, and seismic monitors.

Table 5-3 Summary of Major Quantities for Saddle Dams

Item	Saddle Dam Number								
	1	2	3	4	5	6	7	8	9
Strip Foundation (cy)	2.0	2.0	40.0	1.0	20.0	3.0	5.0	30.0	
Foundation Ex (cy)	26,000	26,300	512,000	7,100	270,000	40,200	67,000	373,000	19,000
Core Zone (cy)	27,600	25,300	832,000	7,700	378,000	39,000	60,500	542,000	16,600
Filter, Drain, Transition (ton)	44,300	39,200	$1,532,000$	6,700	557,000	50,000	41,000	706,000	20,500
Rock Fill Zones (cy)	7,000	10,000	$1,014,000$	900	445,000	13,100	61,000	504,000	3,500
Random Fill Zones (cy)	13,900	11,300	340,000	3,000	214,000		57,800	282,000	8,200
Drill Curtain Grout Holes (ft)	None	None	86,500	None	42,400	5,500	10,100	49,200	None
Slurry Cutoff Wall (cy)	None	2,000	2,300	None	2,300	None	None	None	None

5.5. Holthouse Reservoir (Property Class 01)

Table 5-4 provides a summary of the major estimated quantities for Holthouse Dam.
Table 5-4 Summary of Major Quantities for Holthouse Dam

Item	Quantity
Strip Foundation Areas	50 acres
Foundation Excavation	$463,550 \mathrm{cy}$
Core Zone	$883,500 \mathrm{cy}$
Filter Drain and Transition Zones (35 Mile Haul)	$255,000 \mathrm{ton}$
Shell Zones (1 mile haul)	$822,000 \mathrm{cy}$
Rock Fill Zones (1 mile haul)	$109,500 \mathrm{cy}$
Gravity Section Concrete	$42,500 \mathrm{cy}$
Drill Curtain Grout Holes	$185,600 \mathrm{lf}$
Soil/Bentonite Slurry Cutoff Wall	$265,500 \mathrm{cf}$
Spillway Chute, Stilling Basin, and Walls	$3,500 \mathrm{cy}$
Pipeline Inlet/Outlet Structure Concrete	$1,560 \mathrm{cy}$

5.5.1. RELOCATIONS

There are a number of relocations required to construct Holthouse Reservoir.

- The existing Western Area Power Authority (WAPA) transmission lines currently pass through the expanded Holthouse Reservoir area. A relocation of the segment in the
reservoir area would be required to be able to span the new reservoir without a tower in the inundation area.
- A temporary bypass pipeline for the T-C Canal will be needed to maintain canal operation during construction. The current plan is to leave the bypass in place after construction. This bypass would be a backup conveyance to supply water to the canal downstream of Holthouse Reservoir if the level in Holthouse Reservoir is too low to supply the canal by gravity or if the reservoir is drained down for maintenance. For estimating, it is assumed that a bypass pipeline will be buried under the bottom of the new Holthouse Reservoir.

Estimating assumptions for Holthouse Dam include the following:

- Materials for dam construction (other than aggregates) will come from borrow areas within the expanded reservoir area, excavations for the concrete dam section on the left abutment, and surplus suitable material from Delevan and TRR pipeline trenches.
- Sand and gravel for filter and drain zones will be processed and hauled from off-site borrow areas approximately 30 to 35 miles from the site.
- Sandstone rock for rip rap would come from rock quarries developed for the main dams.
- The core section would extend down to dense soils. Below the core, a slurry cutoff wall would extend through remaining dense soils to refusal in weathered rock. The cutoff wall would be embedded into the core on top. Below the bottom of the cutoff wall, pressure grout holes would extend from weathered rock down into moderately fresh rock.
- Foundation grouting would be performed under the concrete dam section to control seepage. This grouting would be continuous with the grouting under the earth dam section.
- Construction of the dam would follow installation of the bypass pipeline for the TC Canal.
- Instrumentation would include piezometers, settlement points, seepage weirs, and seismic monitors.

5.5.2. T-C CANAL CONNECTION TO HOLTHOUSE RESERVOIR

Estimating assumptions for the TC Canal connection to Holthouse Reservoir include the following:

- The T-C Canal will enter the new Holthouse Reservoir at its current location in existing Funks Reservoir.
- A baffle block energy dissipating spillway structure would be provided at the discharge point to allow canal discharges to enter the reservoir in a controlled fashion over the full range of reservoir operation. The spillway would be sized for 2.000 cfs.

5.5.3. FUNKS HOLTHOUSE CONNECTION

Estimating assumptions for the Funks Reservoir - Holthouse Reservoir connection include the following:

- The existing Funks and the new Holthouse Reservoir pools would be connected by demolishing and removing the existing Funks three-gate spillway structure.
- If required to enlarge the gap for hydraulic reasons, a portion of the adjacent Funks Dam could also be removed.

5.6. TRR Reservoir (Property Class 01)

Refer to Section 3.5.1for a description of the facility. Estimating assumptions for the TRR Reservoir include the following:

- Soils for embankment construction would come from the excavated portion of the basin below grade. Soil could also come from surplus pipeline excavated material.
- The TRR liner is assumed to be 60 mil UV-resistant PVC or HDPE.
- A drain pipe and spillway would be provided. Flows would be routed to Funks Creek. Spillway would be sized to accommodate the return flow (up to 900 cfs).

5.7. Pumping and Generating Plants (Property Class 03)

5.7.1. I/O PRESSURE TUNNEL

Refer to Section 3.2.1 for a description of the facility. Estimating assumptions for the I/O Pressure Tunnel include the following:

- The I/O tunnel is a lined tunnel with finished inside diameter of 30 feet.
- For the last 1,000 feet of tunnel at the downstream end, the tunnel includes a 1-inchthick steel liner with concrete backfill due to shallow rock cover conditions.
- Upstream of the liner, a reinforced concrete liner is used.
- Tunnel is sized for the California Division of Safety of Dams emergency reservoir drawdown criteria.
- Tunnel is constructed using drill and blast methods.
- Tunnel support using rock bolting, steel sets, and lagging.
- Tunnel seepage handled by sumping and pumping.
- No allowance for gassy tunnel conditions.

5.7.2. SITES PUMPING/GENERATING PLANT

Estimating assumptions for SRPGP include the following:

- One 2,500 kilovolt ampere (kVA) double-ended unit switchyard (fed from two 2,500 kVA transformers) will be required.
- Two DC systems and two UPS systems will be used for redundancy.
- Circuit breakers for the 38,280 horsepower pumps will be 2000 amperes (A).
- 250 kW standby generator is assumed for SPGP.
- Main transformers at the Sites Switchyard are rated 100 MVA.
- All 13.8 kV circuits are assumed to be connected via MV-105 shielded cable.
- Main 13.8 kV circuits are assumed to be in duct banks with average length of 2,000 feet.
- All 13.8 kV connections to machines are assumed to be in cable tray or exposed conduit.
- Machine connections at SPGP are assumed to average 600 feet long.
- One motor control center (MCC) is assumed per machine.
- Equipment labeled as standby is not included in the estimate.

5.7.3. TRR PUMPING/GENERATING PLANT

Estimating assumptions for TRR PGP include the following:

- One $2,000 \mathrm{kVA}$ double ended unit switchyard (fed from two $2,000 \mathrm{kVA}$ transformers) will be required.
- Two DC systems and two UPS systems will be used for redundancy.
- Main transformers at the TRR Switchyard match the one-line drawing requirements.
- All 13.8 kV circuits are assumed to be connected via MV-105 shielded cable.
- Main transformer 13.8 kV circuits are assumed to be in duct banks with average length of 500 feet.
- All 13.8 kV connections to machines are assumed to be in cable tray or exposed conduit.
- Machine connections at the TRR are assumed to average 200 feet long.
- One MCC is assumed per machine.
- Equipment labeled as standby is not included in the estimate.

5.7.4. SACRAMENTO RIVER PUMPING/GENERATING PLANT

Estimating assumptions for Sacramento River Pumping/Generating Plant include the following:

- One $2,500 \mathrm{kVA}$ double ended unit switchyard (fed from two $2,500 \mathrm{kVA}$ transformers) will be required.
- Two DC systems and two UPS systems will be used for redundancy.
- Main transformers at the SRPGP Switchyard match the one-line drawing's requirements.
- All 13.8 kV circuits are assumed to be connected via MV-105 shielded cable.
- Main transformer 13.8 kV circuits are assumed to be in duct banks with average length of 750 feet.
- All 13.8 kV connections to machines are assumed to be in cable tray or exposed conduit.
- Machine connections at the SRPGP are assumed to average 300 feet long.
- One MCC is assumed per machine.
- Equipment labeled as standby is not included in the estimate.

5.7.5. FISH SCREEN STRUCTURE

Refer to Section 3.6.3 for a description of the facility. Estimating assumptions for the I/O Pressure Tunnel include the following:

- Construction in the river within a steel sheet pile braced cofferdam.
- Foundation piles driven to required capacity after initial excavation within cofferdam in the wet.
- Tremie seal mat placed in bottom of cofferdam after pile driving. Cofferdam dewater after seal mat is placed, structure constructed.
- Fish screen and solid metal closure panels to be stainless steel.
- Screens cleaned using conventional brush cleaning mechanisms (assume two provided).
- Fish screen structure length is taken as 560 feet based on preliminary design.

5.7.6. RED BLUFF PUMP ADDITION

Refer to Section 3.8 for a description of the facility. Estimating assumptions for the pump additions include the following:

- Two pumps would be procured and installed. The pumps would be 250 cfs capacity matching the larger pumps already installed and operating.
- For each pump, 84-inch diameter motor operated butterfly valve and discharge flap gates will be provided along with a pump flange coupling (similar to those installed on the operating units).
- Estimate includes pump, electrical connections and control connections to existing systems.
- Cost is included for manufacturer's representation assistance during installation and start-up of equipment.

5.8. Canals and Conduits (Property Class 05)

5.8.1. HOLTHOUSE CHANNEL

Refer to Section 3.3.3 for a description of the facility. Estimating assumptions for the channel include the following:

- Excavation would be performed using bull dozers with rippers and scrapers, with minimal blasting required.
- Dewatering will be accomplished by ditching, sumping, and pumping.
- Suitable material from this excavation may be used for Golden Gate Dam or Holthouse Dam construction, or to meet other site grading requirements.
- Unsuitable material and sediment removed from Funks Reservoir to build the channel would be deposited within the Sites Reservoir dead pool area below elevation 300 feet.
- The schedule allows adequate time for dewatering the sediment after Funks Reservoir is dewatered so that the material can be loaded and hauled without the need for dredging.
- No rip rap or concrete lining for the channel.

5.8.2. DELEVAN PIPELINE AND TRR PIPELINE

Refer to Section 3.7 for a description of the Pipelines. Since these pipelines represent a significant cost to the project, AECOM worked with Hanson, Sacramento, to prepare a detailed evaluation of pipe fabrication and installation costs and schedule. Hanson evaluated setting up and fabricating on-site fabrication versus fabrication at an existing plant with ground transportation to the site. On-site fabrication proved to the preferred alternative, but not by a significant margin. Hanson also prepared feasibility level designs for three pipe classes based on the hydraulic grade lines for the project (with surge allowances) and prepared cost estimates to set up fabrication facilities and fabricate the pipe on site. AECOM used these costs to price the pipeline supply. Hanson also confirmed the planned bedding details for the pipe shown on the drawings, and provided estimates of typical production and installation rates for similar pipe on other projects. The production and installation rates were factored into the required manpower and equipment spreads used in the estimates.

Estimating assumptions for the pipelines include the following:

- The estimate is based upon the pipeline plan and profile details developed for the project.
- Dewatering is based on preliminary construction dewatering estimate developed from available data.
- 144-inch AWWA C300 pipe material estimate is based on updated Hansen information.
- 22 access manholes with air/vacuum relief at 5,000-foot spacing and four blowoff valves for the Delevan Pipeline segment.
- 12 access manholes with air/vacuum relief at 5,000 spacing and four blowoff valves for the TRR Pipeline segment.
- Costs are based on an installation rate of approximately 128 feet of pipe per day (total sum of pipe installed daily all active headings).
- Primary installation is assumed to be cut-and-cover with the top of pipe approximately 10 feet below the surface.
- Pricing includes jacked sections under Highway 5, Highway 45, the railroad, the Colusa Basin Drain, and the GCID Canal.

5.9. Transmission and Interconnection (Property Class 13)

5.9.1. SITES SUBSTATION

The substation configuration assumes a connection to the existing WAPA 230 kV KeswickO'Banion transmission line based upon a WAPA System Impact Study (WAPA, 2013). This substation would service the western facilities (SPGP and TRR). Note that the cross country transmission line running to the Sacramento River Pumping/Generating Plant has been eliminated for Project Alternative D. Rather the Sacramento River Pumping/Generating Plant would be supplied through a new transmission line from a new substation north of Colusa connected to the WAPA line. The transmission line would run north from the new substation roughly paralleling Highway 45.

In addition to the information provided above, estimating assumptions include the following:

- Estimates are based on the System Impact Study (WAPA, 2013), Option 1, dated February 2013.
- Substation general arrangement and ratings are based on the one-line diagrams prepared for the project.
- All 230 kV substation equipment is rated at 1,200 A and transformer ratings are as shown on the one line diagrams.
- Survey of substation sites and associated geotechnical investigation is included in engineering allowances and contingencies.
- Communication requirements for the substation sites are by others and are not included in the estimate.
- The System Impact Study (WAPA, 2013) mentions the needs for VAR support. This equipment is not shown on the one-line diagrams at this time. A $230 \mathrm{kV}, 65$ MVAR series capacitor bank has an estimated cost of $\$ 300,000$ plus auxiliary equipment for a total estimated cost of $\$ 450,000$. This cost has been included in the Sites Substation cost estimate.

5.9.2. TRR PUMPING/GENERATING PLANT

Switchyard costs developed from the single-line diagram details for the TRR Pumping/Generating Plant Switchyard.

5.9.3. SACRAMENTO RIVER PUMPING/GENERATING PLANT SWITCHYARD

Switchyard costs developed from the single-line diagram details for the Sacramento River Pumping/Generating Plant.

5.9.4. TRANSMISSION LINES

Estimating assumptions include the following:

- The transmission line estimate is based on a single 2156 Aluminum Conductor SteelReinforced Bluebird for each circuit, with line construction consisting of double-circuit lattice towers or single-circuit tubular poles (monopoles).
- The transmission line estimate is based on 700 -foot ruling span.

5.10. General Property (Property Class 15)

5.10.1. RECREATION AREAS

Estimating assumptions include the following:

- Alternative D includes Stone Corral Creek and Peninsula Hills recreation areas and a boat launch facility located on the west side of the reservoir where the current Sites Lodoga Road exits the reservoir near elevation 520.0 feet. All camping and picnic area equipment is assumed to be anchored in concrete.
- Camping and picnic equipment listed on component cost page.
- All boat ramps are assumed to be 50 feet wide built with 6 -inch reinforced concrete for durability.

5.10.2. OPERATIONS AND MAINTENANCE FACILITY

Estimating assumptions include the following:

- The field office is assumed to be 10,000 square feet, including 8,000 square feet of shop space.
- The entire site, including paving, is assumed to be 100,000 square feet.
- The entire site is to be fenced with 6-foot chain link.
- A pre-fabricated metal building shell is assumed.
- Tenant improvements are allowed for space development for offices and shops.
- Water well and septic system are provided.
- Vehicle fueling island is provided.

5.11. Mitigation Costs

AECOM has developed planning-level mitigation cost suitable for Sites Reservoir Alternative C for the Authority that is also applicable to Alternative D. AECOM held a series of mitigation workshops in May 2016 with the Environmental Impact Report (EIR)/Environmental Impact Statement (EIS) Team comprised of DWR, Reclamation and CH2M HILL staff.

During the mitigation workshops, a total of 155 mitigation measures from the NODOS Preliminary Administrative Draft EIR were reviewed. Revised mitigation cost assumptions, schedule impacts associated with mitigation measures and modifications to mitigation that could potentially reduce project costs were discussed during the workshops. The 2013 mitigation cost estimate was also reviewed. Mitigation cost assumptions developed during the mitigation
workshops were then used to update mitigation costs, as well as inform construction and operation and maintenance costs, where appropriate.

5.12. Interest During Construction

AECOM developed an estimate for interest during constriction (IDC) based on the construction schedule presented in Section 7. As shown in Error! Reference source not found., project design, real estate procurement, and construction costs (in 2015 dollars) were distributed over the construction period and IDC (in 2015 dollars) was calculated using an interest rate of 3.5 percent.

Table 5-5 Annual Construction Spending and IDC (2020-2030)
No IDC Adjustment from Federal or WSIP Construction Funding

Year	Milestone	Construction			IDC		Total	
		\% Complete	Cost (\$M)		-3.50\%			
2020	Design	2.5\%	\$	117.40	\$	2.00	\$	119.50
2021	Design	2.5\%	\$	117.40	\$	6.20	\$	123.60
2022	Land Acquisition	0.3\%	\$	133.20	\$	10.80	\$	144.00
2023	Construction	14.7\%	\$	691.90	\$	25.60	\$	717.50
2024	Construction	17.4\%	\$	819.10	\$	52.90	\$	872.00
2025	Construction	18.8\%	\$	882.50	\$	84.50	\$	967.00
2026	Construction	16.9\%	\$	794.20		16.80	\$	911.00
2027	Construction	12.1\%	\$	567.60		44.80	\$	712.30
2028	Construction	6.2\%	\$	291.00		64.90	\$	455.90
2029	Construction	6.0\%	\$	282.80		80.70	\$	463.50
2030	Fully Operational	0.0\%	\$	-	\$	-	\$	-
	Total	100\%		4,697.2		789.2	\$	5,486.4

Note: 50% IDC is attributed to spending in the year of construction based a mid-year average expenditure date.

5.13. Operation, Maintenance, Repair, and Replacement

AECOM developed estimates for the operation, maintenance, repair, and replacement (OMRR) costs for the Project. Annual costs developed included facility staffing, contract maintenance, tools and equipment, fixed and variable operation and maintenance costs (including expenses for power and water system operations), major repairs, periodic major equipment component refurbishment/replacement, power costs adjusted for power revenues, canal wheeling costs and the like. Costs for Costs for ongoing environmental mitigation and water quality monitoring were also considered. The annual costs for OMRR and mitigation and water quality monitoring were distributed over an assumed 93-year ${ }^{1}$ period beginning in 2030 (start of operation). The NPV of the time series was then determined in October 2015 dollars using a discount rate of 3.5

[^2]percent. The NPV costs for OMRR and mitigation and monitoring are included in the cost summary tables provided in Section 6.

5.14. Feasibility-Level Cost Estimate

The feasibility-level cost estimates are included in Appendix A.

This page intentionally left blank.

6. COST ESTIMATE SUMMARY

Table 6-1 summarizes the estimated feasibility-level capital cost summary for Alternative D in October 2015 dollars. Detailed cost estimate worksheets supporting the table are provided in Appendix A.

Table 6-1 Capital Cost Summary

Facility	Field Cost (\$ Million)	Non-Contract Cost (\$ Million)	Construction Cost (\$ Million)
Develop Sites Reservoir	310	50	360
Main Dams	520	90	610
Saddle Dams	230	40	270
Holthouse Dam	160	30	190
Terminal Regulating Reservoir	33	6	39
Inlet/Outlet Structure and Tunnel	180	30	210
Sites Pumping/Generating Plant	680	120	800
Terminal Regulating Reservoir Pumping/Generating Plant	135	25	160
Sacramento River Pumping/Generating Plant	220	40	260
Sacramento River Fish Screen Structure	47	8	55
Red Bluff Addition	3	1	4
Sites Pumping/Generating Plant Conveyance Channel	42	7	49
Delevan Pipeline	560	100	660
Terminal Regulating Reservoir Pipeline	300	50	350
Utility Transmission Line Interconnections	160	30	190
General Property	26	4	30
Land Acquisition and Rights	100	10	110
Environmental Mitigation/Monitoring	340	10	350
Subtotals	4,046	651	4,697
Capital Cost	-	-	4,697

All costs are October 2015 costs

Table 6-2 summarizes the total project cost estimate for Alternative D in October 2015 dollars.

Table 6-2 Total Project Cost Summary

Item	Construction Cost 1 (\$ Million)
Capital Cost	4,697
Interest During Construction	789
Operation, Maintenance, Repairs, Replacement (Note 2)	554
Ongoing Water Quality and Mitigation Monitoring Costs (Note 2)	175
Allowance for Utility Systems	50
Total Project Cost	6,265

Note: 1. All costs are October 2015 costs

$$
\text { 2. Net present value of annual costs for assumed 93-year operating period beginning in } 2030
$$

The estimated annual operation and maintenance, repair and replacement costs, and the mitigation costs (totaling approximately $\$ 26.6$ million annually) were applied over a 100-year operating period beginning in 2030. The net present value was then estimated in October 2015 dollars using the WSIP required discount rate (3.5 percent).

The estimates presented in Table 6-1 and Table 6-2 may not be a complete tabulation of all potential Authority costs to implement the project. An example of other costs might include electric utility owner costs for system improvements to provide power to the project or accept power from project generation. Further PG\&E and WAPA system connection studies and discussions with these utilities would be part of future Project design activities that would identify if such costs would be incurred.

7. CONSTRUCTION SCHEDULE

AECOM has developed a preliminary project implementation schedule for Alternative D as part of developing the feasibility-level cost estimate. Figure 7-1 presents the roll-up schedule. Appendix B contains the full schedule that includes approximately 200 linked construction activities. The schedule presents a reasonable approach to construct the project that accounts for the logical sequencing of the work, procurement of equipment, and reasonable durations to complete construction activities. Durations reflect the estimated labor and equipment spreads needed to complete activities, including earthwork, balancing the movement of excavated soil and rock to placement sites, supplying and placing all materials, erecting structures, and installing major equipment. Labor and equipment costs are reflected in the cost estimate.

The schedule presents construction activities with an assumed construction start date in late March 2022. Predecessor activities like design, permitting, packaging the work, and bidding the construction packages are not included because of the uncertainty in scheduling these activities between now and 2022. With hydroelectric generation a part of the project, the FERC permitting process may also affect the actual start date.

As construction progresses, the critical path (or critical remaining work) moves between facilities. Completing the Sacramento River and Sites Pumping/Generating Plants in early 2030 are the final critical activities to achieve project construction completion and begin pumping operations.

Filling the reservoir is not reflected in the schedule due to the uncertainty in hydrological conditions at that time and the operating criteria that would be contained in the regulatory permits required for the project. It may be possible to begin filling the reservoir using natural runoff from Stone Corral and Funks Creek beginning with the 2028 and 2029 wet season. At this point the dams are completed. Adequate storage would be available to accommodate a major storm event (including the PMF) and release facilities would be available at Sites Dam if needed.

This page intentionally left blank.

8. LIMITATIONS

The construction cost estimate presented in this BOE Report is a feasibility-level cost estimate that reflects a professional opinion of probable project construction costs, total project costs, and escalation to the assumed 2022 start of construction date based on conceptual-level design layouts developed using currently available information on the surface and subsurface site conditions.

Currently available subsurface information and topographic data relied upon by AECOM to prepare designs and cost estimates were developed by others. AECOM does no take responsibility for the accuracy or completeness of this information.

AECOM represents that its services were conducted in a manner consistent with the standard of care ordinarily applied as the state of practice in the profession, within the limits prescribed by our client. No other warranties, either expressed or implied, are included or intended in this technical memorandum.

AECOM assumes that the project will be implemented by the Authority. AECOM further assumes that the estimated cost for the project is based on a conventional design-bid-build approach to the work. Alternative bidding strategies, such as design build, can change the estimated cost.

This document is based on the measurement and pricing of quantities wherever information is provided and/or reasonable assumptions for other work not covered in the drawings. Unit rates have been obtained from historical records and/or discussion with contractors. Contractor costs include mark-ups covering the costs of field overhead, home office overhead and profit and range from 15% to 25% of the cost for a particular item of work.

Cost estimates are an assessment of fair market value for the construction of this project. It is not a prediction of low bid. The construction cost estimate presumes that work packages are established for advertising and bidding such that a minimum of four qualified responsible general contractors bid on the work, and their bids include a minimum of four bidders for subcontracted work. Experience indicates that fewer bidders may result in higher bids. The estimated construction cost is based on industry practice, professional experience and qualifications and represents AECOM's best judgment as a professional construction consultancy familiar with the construction industry.

AECOM does not guarantee that the proposals, bids, or the construction cost will not vary from the estimate prepared. Since AECOM has no control over the cost of labor, material, equipment, the contractor's method of determining prices, the competitive bidding or market conditions at the time of bid, or escalation, the statement of feasibility-level cost is based on industry practice, professional experience and qualifications.

This page intentionally left blank.

9. REFERENCES

AWWA, 1995. American Water Works Association, Manual of Water Supply Practices, Concrete Pressure Pipe, AWWA M9, 1995.

Reclamation, 1989. Cost Estimating Handbook, March 1989 Revised.
Reclamation, 2007a. FAC-09-01, Directives and Standards, Cost Estimating, October 15, 2007.

Reclamation, 2007b. FAC-09-02, Construction Cost Estimates and Project Cost Estimates, October 15, 2007.

Reclamation, 2008. Memorandum, Responses to Findings and Recommendations Regarding the Design, Estimate, and Construction (DEC) Review for the North of the Delta Offstream Storage (NODOS) Investigation, March 28, 2008.

Reclamation, 2011. Administrative Draft Feasibility Study, North of the Delta Offstream Storage (NODOS), December 2011.

Reclamation 2103. 2013 Progress Report, North-of-the-Delta Offstream Storage Investigation, December 2013.

Reclamation 2017. Feasibility Report, North-of-the-Delta Offstream Storage/Sites Reservoir Water Resources Investigation, California, March 2107.

CH2MHill, 2008. North-of-Delta Offstream Storage - Sacramento River Fish Screen Facility Feasibility Study, June 2008.

DWR, 2002. Sites Reservoir Feasibility Study, Materials Investigation, Testing, and Evaluation Program, June 2002.

DWR, 2003a. Sites Reservoir Engineering Feasibility Study, Golden Gate, Sites, and Saddle Dams, February 2003.

DWR, 2003b. Geologic Feasibility Report, Sites Reservoir Project, Project Geology Report No. 94-30-02, including Appendices A, B, and C, July 2003.

DWR, 2003c. Sites Reservoir Engineering Feasibility Study, Pumping Plants and Appurtenant Facilities, June 2003.

DWR, 2006. DWR email correspondences, Sites Emergency Spillway, July 2006.
DWR, 2010a. DWR email correspondence, Verification and Identification of the Road Relocation for Sites Reservoir, May 24, 2010.

DWR, 2010b. Sacramento River, Terminal Regulating Reservoir, and Sites Reservoir Pumping/Generating Plants and Funks Reservoir Modifications, September 2010.

URS, 2010. Real Estate Plan, April 2010.
Water Commission, 2016. Technical Reference, California Water Commission, November 2016.

WAPA, 2013. Bureau of Reclamation, North of the Delta Offstream Storage, Generation/Pumping Plant Interconnection, February 2013.

APPENDIX A

FEASIBILITY-LEVEL COST ESTIMATES

This page intentionally left blank.

PROJECT COST ESTIMATE

			DESCRIPTION	CURRENT FIELD COST	TOTAL FIELD COST	NONCONTRAC T COST	CONSTRUCTION COST	TOTAL CONSTRUCTION COST
	04		Construct Holthouse Reservoir and Appurtenan		160,000,000	30,000,000	190,000,000	
		100	Land and Rights					
		110	Relocations	38,000,000				
		151	Construct Holthouse Dam	105,000,000				
		152	TCCA Canal Bypass Pipeline	8,500,000				
		153	Waterway Structures	4,000,000				
		160	Pumps and Prime Movers					
		170	Accessory Electrical Equipment	4,500,000				
			Rounding					
	05		Construct TRR Reservoir		33,000,000	6,000,000	39,000,000	
		100	Land and Rights					
		151	Construct TRR Reservoir	25,000,000				
		153	Canal Control Structures	6,900,000				
		170	Accessory Electrical Equipment	1,050,000				
			Rounding	50,000				
3			PUMPING AND GENERATING PLANTS		1,265,300,000	223,549,000	1,488,849,000	1,488,849,000
	01		Construct I/O Structure and 30' Diameter Tunne		180,000,000	30,000,000	210,000,000	
		152	30' Diameter Tunnel	120,000,000				
		152	Low level Intake Structure	25,000,000				
		152	Gated Intake/Outlet Tower (Including Mechanic	18,000,000				
		152	Construct Gated Intake Tower, Mechanical	14,000,000				
		152	Construct Gated Intake Tower, Electrical	1,600,000				
			Rounding	1,400,000				
	02		Sites Pumping-Generating Plant		680,000,000	120,000,000	800,000,000	
		100	Land and Rights					
		130	Structures and Improvements	210,000,000				
		140	Roads and Road Structures					
		152	Waterways	115,000,000				
		153	Waterway Structures	43,000,000				
		160	Pumps and Prime Movers	74,000,000				
		165	Turbines and Generators	145,000,000				
		170	Accessory Electrical Equipment	99,000,000				
			Rounding	$(6,000,000)$				

			DESCRIPTION	CURRENT FIELD COST	TOTAL FIELD COST	NONCONTRAC T COST	CONSTRUCTION COST	TOTAL CONSTRUCTION COST
	03		TRR Pumping-Generating Plant		135,000,000	25,000,000	160,000,000	
		100	Land and Rights					
		130	Structures and Improvements	64,000,000				
		140	Roads and Road Structures	1,150,000				
		152	Waterways	12,000,000				
		154	Waterway Protective Works	10,000,000				
		160	Pumps and Prime Movers	19,500,000				
		165	Turbines and Generators	7,600,000				
		170	Accessory Electrical Equipment	20,000,000				
			Rounding	750,000				
	04		Sacramento River Pumping-Generating Plant		220,000,000	40,000,000	260,000,000	
		100	Land and Rights (Included with Reservoir)					
		130	Structures and Improvements	100,000,000				
		140	Roads and Road Structures (Included with Res	740,000				
		152	Discharge Piping					
		154	Waterways - Buried Penstock Piping and Bifurd	3,000,000				
		160	Waterway Protective Structures	9,900,000				
		165	Pumps and Prime Movers	75,000,000				
		170	Turbines and Generators	10,500,000				
			Accessory Electrical Equipment	25,000,000				
			Rounding	$(4,140,000)$				
	05		Sacramento River Fish Screen Structure		47,000,000	8,000,000	55,000,000	
		100	Land and Rights (Included with Reservoir)					
		130	Structures and Improvements	47,000,000				
		140	Roads and Road Structures (Included with Res	165,000				
		170	Accessory Electrical Equipment	680,000				
			Rounding	$(845,000)$				
	06		Red Bluff Pump Addition		3,300,000	549,000	3,849,000	
		100	Land and Rights (Included with Reservoir)					
		130	Structures and Improvements	170,000				
		160	Pumps and Prime Movers	2,600,000				
		170	Accessory Electrical Equipment	500,000				
			Rounding	30,000				

			DESCRIPTION	CURRENT FIELD COST	TOTAL FIELD COST	NONCONTRAC T COST	CONSTRUCTION COST	TOTAL CONSTRUCTION COST
5			Canals and Conduits		902,000,000	157,000,000	1,059,000,000	1,059,000,000
	01		Construct Channel Sites to Holthouse		42,000,000	7,000,000	49,000,000	
		152	Conveyance Channel Sites to Holthouse	42,000,000				
			Rounding					
	02		Construct Delevan Pipeline		560,000,000	100,000,000	660,000,000	
		100	Land and Rights					
		120	Clearing and Demolition	390,000				
		152	Construct Delevan Pipeline	510,000,000				
		152	l-5 Crossing (Jacked)	39,000,000				
		152	Highway 45 Crossing (Jacked)	12,000,000				
			Rounding	$(1,390,000)$				
	03		Construct TRR Pipeline		300,000,000	50,000,000	350,000,000	
		100	Land and Rights					
		152	Construct TRR Pipeline	280,000,000				
		152	Holthouse Inlet Structure	8,200,000				
		152	Construct GCID Crossing	17,000,000				
			Rounding	$(5,200,000)$				
13			Transmission Lines, Switchyards and Sub		160,000,000	30,000,000	190,000,000	190,000,000
	01		Transmission and Interconnection		160,000,000	30,000,000	190,000,000	
		100	Land and Rights					
		175	Sites Substation	35,000,000				
		175	TRR Switchyard	10,000,000				
		175	Sacramento River PGP Switchyard	8,800,000				
		181	Transmission Lines	97,000,000				
		185	WAPA Substation	10,000,000				
			Rounding	$(800,000)$				
15			General Property		26,000,000	4,000,000	30,000,000	30,000,000
			General Property		26,000,000	4,000,000	30,000,000	
		195	Recreation Facilities	24,000,000				
		195	Operating and Maintenance Facility	2,500,000				
			Rounding	$(500,000)$				

			DESCRIPTION	CURRENT FIELD COST	TOtAL FIELD COSt	$\begin{array}{\|l} \text { NONCONTRAC } \\ \text { TCOST } \end{array}$	$\begin{array}{\|c} \text { CONSTRUCTION } \\ \text { COST } \end{array}$	total CONSTRUCTION COST
		Mitig	ation		340,000,000	10,000,000	350,000,000	350,000,000
		Mitig	ation		340,000,000	10,000,000	350,000,000	
			Surface Water Quality	1,800,000				
			Aquatic Resources	55,000,000				
			Botanical Resources	88,000,000				
			Wildlife Habitat	51,000,000				
			Wetlands Habitat	78,000,000				
			Cultural Resources	33,000,000				
			Land Use	30,000,000				
			Paleontology	1,400,000				
			Air Quality	175,000				
			Rounding	1,625,000				

FEATURE:

NODOS Project
 Sites Reservoir - Develop Reservoir Area

BUREAU OF RECLAMATION
ESTIMATE WORKSHEET
SHEET 2 OF

FEATURE： NODOS Project Sites Reservoir－Develop Reservoir Area Public Road Relocation Sheet 3 Civil				NODOS Alternative D						
				WOID： REGION：		ESTIMATE LEVEL：				
				UNIT PRICE LEVEL：						
				FILE：	G：IUS Bureau of RecIGSA NODOSIProject FilesIWORKINGICost Estimating 016120170216 BOE FinallEstimates\［Red Bluff Alt D Sites Reservoir 5052017．x｜sx］Main Dams					
気気荷	$\underset{\text { ¢ }}{\stackrel{y}{4}}$		DESCRIPTION			CODE	QUANTITY	UNIT	UNIT PRICE	AMOUNT
110		Public Road Relocation－continued								
		PAVED－－Lurline Road－Sulphur Gap Road to Lurline Headwaters Rec Area								
	1	Clearing and Grubbing				acre	\＄5，299．50	\＄0		
	2	Earthwork－common cut				yd3	\＄9．01	\＄0		
	3	Earthwork－rock cut				yd3	\＄22．26	\＄0		
	4	Compacted embankment－fill				yd3	\＄10．60	\＄0		
	5	Class 4 Aggregate subbase				ton	\＄12．72	\＄0		
	6	Class 2 Aggregate base				ton	\＄21．20	\＄0		
	7	Asphalt concrete（24＇wide，4＂thick）				ton	\＄74．19	\＄0		
	8	Culverts（6＇dia．X 100＇length）				ea．	\＄42，396．00	\＄0		
	9	Fencing Right of Way				mi	\＄52，995．00	\＄0		
	10	Striping，Signage，Misc．				acre	\＄1，271．88	\＄0		
		PAVED－－Temporary North Road								
	1	Clearing and Grubbing			75	acre	\＄5，299．50	\＄397，463		
	2	Excavation			482，081	CY	\＄9．01	\＄4，343，550		
	3	Fill			317，072	CY	\＄10．60	\＄3，360，963		
	4	Class 4 Aggregate subbase			80，850	ton	\＄12．72	\＄1，028，412		
	5	Class 2 Aggregate base			91，620	ton	\＄21．20	\＄1，942，344		
	6	Asphalt concrete（24＇wide，4＂thick）			64，200	ton	\＄74．19	\＄4，762，998		
	7	Guardrail			27，435	LF	\＄60．00	\＄1，646，100		
	8	Striping，Signage，Misc．			1	Allow	\＄100，000．00	\＄100，000		
			SUBTOTAL THIS SHEET					\＄17，581，830		
QUANTITIES				PRICES						
BY David Hughes			$\begin{aligned} & \text { CHECKED } \\ & \text { 7-Oct } \\ & \hline \end{aligned}$	BY Mike Egge			CHECKED Joe Barnes			
DATE PREPARED			PEER REVIEW／DATE Joe Barnes	DATE PREPARED October 2016			PEER REVIEW／DATE 10／19／16			

FEATURE: NODOS Project
Sites Reservoir - Main Dam Construction

FEATURE: NODOS Project Sites Reservoir - Main Dam Construction Construct Sites Dam Civil				PROJECT: NODOS Alternative D						
				WOID: REGION:		ESTIMATE LEVEL:				
				UNIT PRICE LEVEL:						
				FILE:	G:IUS Bureau of RecIGSA NODOSIProject FilesIWORKINGICost Estimating 2016120170216 BOE FinallEstimates\|[Red Bluff Alt D Sites Reservoir 05052017.xlsx]Main Dams					
気気	$\underset{\substack{\text { ¢ }}}{\substack{\text { ¢ }}}$		DESCRIPTION			CODE	QUANTITY	UNIT	UNIT PRICE	AMOUNT
151		Sites Dam								
		(Clearing included with Sites Reservoir)								
	1	Develop borrow area and temporary haul roads			1	Is	\$1,168,159.25	\$1,168,159		
	2	Strip foundation areas			30	acre	\$2,167.00	\$65,010		
	3	Foundation Excavation			793,500	cy	\$13.63	\$10,815,654		
	4	Foundation Grouting								
	5	Furnish/handle cement material (Cement Type III)			63,604	bag	\$17.70	\$1,125,812		
	6	Construct grout cap			4,955	cy	\$234.27	\$1,160,808		
	7	Drill setup for all holes			843	ea.	\$753.80	\$635,454		
	8	Drill curtain grout holes			84,805	LF	\$27.06	\$2,294,759		
	9	Hookup to grout holes and grout nipples			843	ea.	\$203.66	\$171,685		
	10	Inject Portland cement grout			1,800	hr	\$498.26	\$896,866		
	11	Perform hydraulic conductivity tests			500	ea.	\$323.68	\$161,839		
	12	Embankment Construction								
	13	Core zone (1 mile haul)			1,070,000	cy	\$11.01	\$11,783,226		
	14	Filter drain and transition zones (35 mile haul)			852,400	ton	\$31.74	\$27,058,590		
	15	Rock fill Zone 3 (1 mile haul)			1,180,500	cy	\$22.90	\$27,038,690		
	16	Random fill Zone 4 (1 mile haul)			1,085,000	cy	\$6.01	\$6,520,452		
	17	Unlisted Items			10\%			\$9,089,700		
\square										
SUBTOTAL THIS SHEET								\$99,986,705		
QUANTITIES				PRICES						
BY David Hughes			$\begin{aligned} & \text { CHECKED } \\ & \text { 7-Oct } \end{aligned}$	BY Mike Egge			CHECKED Joe Barnes			
DATE PREPARED			PEER REVIEW / DATE Joe Barnes	DATE PREPARED October 2016			PEER REVIEW / DATE10/19/16			

FEATURE: NODOS Project Sites Reservoir - Main Dam Construction Construct Golden Gate Dam Civil				NODOS Alternative D						
				WOID: REGION:		ESTIMATE LEVEL:				
				UNIT PRICE LEVEL:						
				FILE:	G:IUS Bureau of RecIGSA NODOSIProject FilesIWORKINGICost Estimating 2016120170216 BOE FinallEstimates)[Red Bluff Alt D Sites Reservoir 05052017.x\|sx]Main Dams					
	$\underset{\text { ¢ }}{\substack{\text { ¢ }}}$		DESCRIPTION			CODE	QUANTITY	UNIT	UNIT PRICE	AMOUNT
151		Golden Gate Dam								
		(Clearing included with Sites Reservoir)								
	1	Develop borrow area and temporary haul roads			1	Is	\$1,168,159.25	\$1,168,159		
	2	Clear and grub			50	acre	\$2,167.00	\$108,350		
	3	Foundation Excavation			2,910,000	cy	\$13.63	\$39,664,214		
	4	Foundation Grouting								
	5	Furnish/handle cement material (Cement Type III)			139,200	bag	\$17.70	\$2,463,886		
	6	Construct grout cap			10,907	cy	\$234.27	\$2,555,183		
	7	Drill setup for all holes			1,700	ea.	\$753.80	\$1,281,461		
	8	Drill curtain grout holes			185,600	LF	\$27.06	\$5,022,196		
	9	Hookup to grout holes and grout nipples			1,700	ea.	\$203.66	\$346,222		
	10	Inject Portland cement grout			4,350	hr	\$498.26	\$2,167,427		
	11	Perform hydraulic conductivity tests			1,160	ea.	\$323.68	\$375,466		
	12	Embankment Construction								
	13	Core zone (1 mile haul)			3,460,000	cy	\$11.01	\$38,102,769		
	14	Filter drain and transition zones (35 mile haul)			2,494,000	ton	\$31.74	\$79,169,548		
	15	Rock fill Zone 3 (1 mile haul)			2,870,000	cy	\$22.90	\$65,735,740		
	16	Random fill Zone 4 (1 mile haul)			1,470,000	cy	\$6.01	\$8,834,161		
	17	Rim Grouting north of main dam			100,000	Ift	\$60.00	\$6,000,000		
	18	Unlisted Items			10\%			\$25,299,478		
			SUBTOTAL THIS SHEET					\$278,294,259		
QUANTITIES				PRICES						
BY David Hughes			$\begin{aligned} & \text { CHECKED } \\ & 7 \text { 7-Oct } \\ & \hline \end{aligned}$	BY Mike Egge			CHECKED Joe Barnes			
DATE PREPARED			PEER REVIEW / DATE Joe Barnes	DATE PREPARED October 2016			PEER REVIEW / DATE 10/19/16			

FEATURE: NODOS Project				PROJECT: NODOS Alternative D									
Sites Reservoir - Saddle Dam Construction													
Construct 9 Saddle Dams				WOID:		ESTIMATE LEVEL:							
				REGION:		UNIT PRICE LEVEL:							
Civil			Summary Sheet		{G:IUS Bureau of RecIGSA NODOSIProject FilesIWORKINGICost Estimating 2016120170216 BOE FinallEstimates$Red Bluff Alt D Sites Reservoir 05052017.x\|sx]Saddle Dams} \\ \hline 気気 & \(\underset{\text { ¢ }}{\substack{\text { ¢ } \\ \text { ¢ }}}\) & & DESCRIPTION & CODE & QUANTITY & UNIT & UNIT PRICE & AMOUNT \\ \hline 151 & & \multicolumn{2}{\|l\|}{Construct Saddle Dam 1 - Sheet 1} & & & & & \$1,825,854 \\ \hline & & \multicolumn{2}{\|l\|}{Construct Saddle Dam 2 - Sheet 1} & & & & & \$2,282,885 \\ \hline & & \multicolumn{2}{\|l\|}{Construct Saddle Dam 3 - Sheet 2} & & & & & \$69,759,369 \\ \hline & & \multicolumn{2}{\|l\|}{Construct Saddle Dam 4 - Sheet 2} & & & & & \$394,534 \\ \hline & & \multicolumn{2}{\|l\|}{Construct Saddle Dam 5 - Sheet 3} & & & & & \$37,420,287 \\ \hline & & \multicolumn{2}{\|l\|}{Construct Saddle Dam 6 - Sheet 4} & & & & & \$7,489,381 \\ \hline & & \multicolumn{2}{\|l\|}{Construct Saddle Dam 7 - Sheet 5} & & & & & \$7,342,052 \\ \hline & & \multicolumn{2}{\|l\|}{Construct Saddle Dam 8 - Sheet 6} & & & & & \$42,050,649 \\ \hline & & \multicolumn{2}{\|l\|}{Construct Saddle Dam 9 - Sheet 6} & & & & & \$1,050,946 \\ \hline & & \multicolumn{2}{\|l\|}{(Note that the signal spillway cost is} & & & & & \\ \hline & & \multicolumn{2}{\|l\|}{included on Sheet 4 with Saddle Dam No. 6.)} & & & & & \\ \hline \multicolumn{9}{\|l\|}{\multirow[t]{2}{*}{\(\square\)}} \\ \hline & & & & & & & & \\ \hline & & \multicolumn{2}{\|l\|}{Subtotal} & & & & & \$169,615,957 \\ \hline & & \multicolumn{2}{\|l\|}{Mobilization} & 5\% & +/- & & & \$8,500,000 \\ \hline & & \multicolumn{2}{\|l\|}{Subtotal with Mobilization} & & & & & \$178,115,957 \\ \hline & & \multicolumn{2}{\|l\|}{Contract Cost Allowances (Sum of):} & 10\% & +/- & & & \$16,884,043 \\ \hline & & \multicolumn{2}{\|r\|}{Design Contingencies, \(10 \%(+/-)\)} & & & & & \\ \hline & & \multicolumn{5}{\|r\|}{APS, \(0 \%\) (+/-). Type of procurement: Full and open sealed bid competition} & & \\ \hline & & \multicolumn{2}{\|l\|}{CONTRACT COST} & & & & & \$195,000,000 \\ \hline & & \multicolumn{2}{\|l\|}{Construction Contingencies} & 15\% & +/- & & & \$35,000,000 \\ \hline & & \multicolumn{2}{\|l\|}{FIELD COST} & & & & & \$230,000,000 \\ \hline & & \multicolumn{2}{\|l\|}{Non-Contract Costs} & 17\% & +/- & & & \$40,000,000 \\ \hline & & \multicolumn{3}{\|l\|}{CONSTRUCTION COST (Unit Price Level December 2015)} & & & & \$270,000,000 \\ \hline & & \multicolumn{5}{\|l\|}{Escalation to Notice to Proceed (NTP) (separate calculation not included here)} & & \\ \hline & & & & 2.0\% & per year for & 7.00 & years & \\ \hline & & \multicolumn{3}{\|l\|}{CONSTRUCTION COST (with Escalation to NTP)} & & & & \$310,000,000 \\ \hline & & \multicolumn{7}{\|l\|}{Ref.: For appropriate use and terminology, see Reclamation Manual, Directives and Standards FAC; 09-01, 09-02 and 09-03.} \\ \hline \multicolumn{4}{\|r\|}{QUANTITIES} & \multicolumn{5}{\|c\|}{PRICES} \\ \hline \multicolumn{2}{\|l\|}{BY} & David Hughes & \[\begin{aligned} & \text { CHECKED } \\ & 7 \text {-Oct } \\ & \hline \end{aligned}$				BY Mike Egge			CHECKED Joe Barnes	
DATE PREPARED			PEER REVIEW / DATE Joe Barnes	DATE PRE October 20	PARED 16		PEER REVIEW 10/19/16	ATE					

FEATURE: NODOS Project Holthouse Reservoir Land and Rights				NODOS Alternative D				
				WOID:		ESTIMATE LEVEL:		
				REGION:		UNIT PRICE LEVEL:		
				FILE:	G:IUS Bureau of RecIGSA NODOS\Project FilesIWORKING\Cost Estimating 2016 20170216 BOE Final\Estimates\[Red Bluff Alt D Sites Reservoir 05052017.xlsx]Holthouse Dam			
	噪		DESCRIPTION	Code	quantity	Unit	UNIT PRICE	amount
100		Land and Rights						
		Included with Sites Reservoir						
			SUBTOTAL THIS SHEET					\$0
QUANTITIES				PRICES				
BY David Hughes			CHECKED 7-Oct	BY Mike Egge			CHECKED Joe Barnes	
DATE PREPARED			PEER REVIEW / DATE Joe Barnes	DATE PREPARED October 2016			PEER REVIEW / DATE 10/19/16	

FEATURE: NODOS Project Holthouse Reservoir Facility Relocations (WAPPA Line and TCCA bypass pipeline through expanded Holthouse) Civil				PROJE					
				NODOS Alternative D					
						ESTIMATE LEVEL:			
				REGION:		UNIT PRICE LEVEL:			
				FILE:	G:IUS Bureau of ReclGSA NODOSIProject FilesIWORKINGICost Estimating 2016120170216 BOE Final\|Estimates [Red Bluff Alt D Sites Reservoir 05052017.x	sx]Holthouse Dam			
	$\underset{\substack{\text { ¢ }}}{\stackrel{y}{4}}$	DESCRIPTION		CODE	QUANTITY	UNIT	UNIT PRICE	AMOUNT	
110		Relocate WAPA Transmission Line							
	1	Remove Transmission Line - West Run			8,748	LF	\$85.50	\$747,954	
	2	Remove Transmission Line - East Run			7,778	LF	\$85.50	\$665,019	
	3	Install New Overhead Lines over Holdhouse			16,900	LF	\$910.19	\$15,382,282	
110		Provide TCCA Bypass Pipe through Reservoir							
	1	Clearing \& Grubbing			55	acre	\$2,167.00	\$119,185	
	2	Cut, Demo, \& Remove Concrete Apron @ Intake			667	ft2	\$18.44	\$12,301	
	3	Mass Excavation - Pipeline Installation			22,295	yd3	\$3.47	\$77,272	
	4	144" Pipeline Installation			2,624	Ift	\$2,822.51	\$7,406,276	
	5	Concrete Pour Back @ Apron - Excl Reinforcing			17	yd3	\$390.73	\$6,447	
	6	Concrete Pour Back @ Apron - Reinforcing (1 lb./sf by weight)			16	yd3	\$54.68	\$897	
	7	Pipe Bedding Transit			2,938	yd3	\$23.96	\$70,407	
	8	Pipe Bedding Placement			2,938	yd3	\$147.45	\$433,218	
	9	Backfill Hauling			28,003	yd3	\$1.47	\$41,256	
	10	Spreading of Backfill for Compaction			25,457	yd3	\$0.87	\$22,125	
	11	Compacted Fill - Pipe Zone			25,457	yd3	\$0.55	\$14,031	
	12	Water \& Optimization Treatment for Trench Backfill Material			25,457	yd3	\$1.60	\$40,743	
	13	Misc Metals - Exclusion Screen @ Bypass Intake			865	lb	\$5.50	\$4,758	
	14	SCADA @ Gates			1	allow	\$52,995.00	\$52,995	
	15	Gate Structure @ Bypass Intake - Slab \& Ftgs			600	yd3	\$312.50	\$187,500	
	16	Gate Structure @ Bypass Intake - Walls			500	yd3	\$605.29	\$302,645	
	17	Gates			3	ea	\$370,965.00	\$1,112,895	
	18	Gates Structure, Misc Metals			1	allow	\$52,995.00	\$52,995	
	19	Electrical @ Gate Structure			1	allow	\$52,995.00	\$52,995	
	20	Hazard Comm Signage			1	allow	\$1,500.00	\$1,500	
	21	Levee Road Replacement - Gravel - Subbase - (400')			500	ton	\$12.72	\$6,359	
	22	Levee Road Replacement - Gravel - Class II AB - (400')			500	ton	\$21.20	\$10,599	
	23	Levee Road - Gravel - Spreading/Grading			588	yd3	\$1.92	\$1,128	
	24	Levee Road Compaction			588	yd3	\$0.55	\$324	
	25	Improve Existing Weir Infrastructure as req.			1	allow	\$150,000.00	\$150,000	
			SUBTOTAL THIS SHEET					\$26,976,105	
QUANTITIES				PRICES					
BY David Hughes			CHECKED 7-Oct	BY Mike Egge			CHECKED Joe Barnes		
DATE PREPARED			PEER REVIEW / DATE Joe Barnes	DATE PREPARED October 2016			PEER REVIEW / DATE 10/19/16		

FEATURE： NODOS Project Holthouse Reservoir				NODOS Alternative D						
Constru		uct Holthouse Dam （Earth Dam and RCC Dam Sections） （Includes Spillway Components within Gravity Dam Limits）		WOID：		ESTIM	TE LEVEL：			
		REGION：		UNIT P	ICE LEVEL：					
		FILE：	G：IUS Bureau of ReclGSA NODOSIProject FilesIWORKINGICost Estimating $016 \backslash 20170216$ BOE Final\Estimates\［Red Bluff Alt D Sites Reservoir 5052017．xIsx］Holthouse Dam							
気気気荷					description	CODE	quantity	UNIT	UNIT PRICE	Amount
151				Construct Holthouse Dam and Appurtenances						
	1	Clear and grub			50	acre	\＄2，117．22	\＄105，861		
		Remove Funk＇s Dam Gates			1	allow	\＄58，300．00	\＄58，300		
		Pump Low Water From Funk＇s Reservoir			6	мо	\＄32，600．00	\＄195，600		
		Remove Silt			300，000	yd3	\＄6．89	\＄2，066，805		
		Foundation Excavation			463，550	yd3	\＄13．63	\＄6，318，332		
		Furnish／handle cement material（Cement Type III）			20，400	bag	\＄17．70	\＄361，080		
		Construct grout cap			11，160	cy	\＄234．27	\＄2，614，453		
		Drill setup for all holes			1，860	ea．	\＄753．80	\＄1，402，068		
		Drill curtain grout holes			96，600	LF	\＄27．06	\＄2，613，996		
	10	Hookup to grout holes and grout nipples			1，860	ea．	\＄273．66	\＄378，808		
	11	Inject Portland cement grout			638	hr	\＄498．26	\＄317，641		
	12	Perform hydraulic conductivity tests			1，250	ea．	\＄323．68	\＄404，600		
	13	Excavate Key Trench for soil／bentonite wall			20，833	CY	\＄8．00	\＄166，664		
	14	Soi／Bentonite Wall			262，500	SF	\＄21．00	\＄5，512，500		
	15	Backfill Key Trench			20，833	CY	\＄15．00	\＄312，495		
	16	Core Zone preparation			83，300	SY	\＄3．60	\＄299，880		
	17	Core zone（1 mile haul）			883，500	yd3	\＄11．01	\＄9，729，421		
	18	Shell Zones			822，000	yd3	\＄7．76	\＄6，378，720		
	19	Filter Zone			255，000	ton	\＄31．74	\＄8，094，721		
	20	Rock fill Zone 3 （1 mile haul）Inc．Sand bedding			109，500	yd3	\＄22．90	\＄2，508，036		
	21	Gravity Dam Concrete－Inc．Gate \＆Vent Shafts			31，400	yd3	\＄390．73	\＄12，268，922		
	22	Reinforcing in Dam			31，400	yd3	\＄108．00	\＄3，391，200		
	23	Spillway Top and Sides			6，900	yd3	\＄390．73	\＄2，696，037		
	24	Spillway Base Slab			4，200	yd3	\＄390．73	\＄1，641，066		
	25	Top and Side Rebar－4\％			1，104，000	lb	\＄1．35	\＄1，490，400		
	26	Base Slab Rebar－ 2%			336，000	lb	\＄1．35	\＄453，600		
	27	Spillway Bridge			410	Ift	\＄8，479．20	\＄3，476，472		
	28 D	Dewatering Allowance			1	allow	\＄1，100，000．00	\＄1，100，000		
	29	TC Canal Inlet Energy Dissipation Spillway			1，100	yd3	\＄516．44	\＄568，084		
	30	Toe Drain 12＂PVC			7，000	LF	\＄58．00	\＄406，000		
	31	Crown Gravel			2，300	CY	\＄58．20	\＄133，860		
	32	Hydroseed downstream slope			25	Acres	\＄6，534．00	\＄163，350		
			SUBTOTAL THIS SHEET					\＄77，628，972		
QUANTITIES				PRICES						
BY			CHECKED	BY			CHECKED			
David Hughes			7－Oct	Mike Egge			Joe Barnes			
DATE PREPARED			PEER REVIEW／DATE Joe Barnes	DATE PRE October 20			PEER REVIEW／ 10／19／16			

FEATURE: NODOS Project Holthouse Reservoir Spillway Chute, Energy Dissipation Basin Delevan/TRR Pipeline Inlet/Outlet Structure Civil				PROJEC						
				NODOS Alternative D						
				WOID: REGION:		ESTIMATE LEVEL:				
				UNIT PRICE LEVEL:						
				FILE:	G:IUS Bureau of RecIGSA NODOSIProject FilesIWORKINGICost Estimating 2016120170216 BOE FinallEstimates\|(Red Bluff Alt D Sites Reservoir 05052017.xlsx]Holthouse Dam					
	$\underset{\text { ¢ }}{\substack{\text { ¢ }}}$		DESCRIPTION			CODE	QUANTITY	UNIT	UNIT PRICE	Amount
152		Spillway (Chute, Stilling Basin, and Walls)								
	1	Excavation			37,000	CY	\$13.63	\$504,310		
	2	Backfill			15,000	CY	\$11.01	\$165,150		
	3	Haul \& spread spoil			24,200	CY	\$1.47	\$35,574		
	4	Concrete Slabs on Grade			1,100	CY	\$390.73	\$429,803		
	5	Concrete Walls 18" thick			537	CY	\$591.27	\$317,512		
	6	Concrete Walls - 24 " Thick			415	CY	\$577.25	\$239,559		
	7	Structural Slabs 12"			1,460	CY	\$906.34	\$1,323,256		
	8	Spillway Bridge			1,800	SF	\$500.00	\$900,000		
	9	Bride Guardrail			200	LF	\$162.00	\$32,400		
	10	Chain Link Fencing			250	LF	\$38.00	\$9,500		
	11	Channel cut to I/O Structure - Spread locally			81,000	CY	\$5.24	\$424,440		
	12	Rebar for above 3\% by Wt			421,440	LB	\$1.35	\$568,944		
		I/O Structure for Delevan and TRR Pipeline								
	13	Slab on Grade			583	CY	\$390.73	\$227,796		
	14	Formed and Shaped Walls			660	CY	\$577.25	\$380,985		
	15	Fill Voids with soil			700	CY	\$18.00	\$12,600		
	16	Roof Slab			320	CY	\$487.15	\$155,888		
	17	Rebar for above 5\% by Wt			312,600	LB	\$1.35	\$422,010		
			SUBTOTAL THIS S					\$6,149,727		
QUANTITIES				PRICES						
BY David Hughes			$\begin{aligned} & \text { CHECKED } \\ & \text { 7-Oct } \\ & \hline \end{aligned}$	BY Mike Egge			CHECKED Joe Barnes			
DATE PREPARED			PEER REVIEW / DATE Joe Barnes	DATE PREPARED October 2016			PEER REVIEW / DATE10/19/16			

ESTIMATE WORKSHEET

FEATURE:
NODOS Project
Pumping and Generating Plants

FEATURE： NODOS Project Pumping and Generating Plants Sites Pumping Generating Plant 160 Pumps and Prime Movers Civil				PROJECT： NODOS Alternative D				
				WOID：		ESTIMATE LEVEL：		
				REGION：		UNIT PRICE LEVEL：		
				FILE： G：IUS Bureau of RecIGSA N 2016｜201702 16 BOE Finalle 05052017．xlsx］S．Stes PGP 			SSA NODOSIProject FilesIWORKING\Cost Estimating inallEstimates\［Red Bluff Alt D Sites Reservoir GP	
武気苞	$\underset{\text { ¢ }}{\substack{\text { ¢ }}}$		description	CODE	QUANTITY	UNIT	UNIT PRICE	AMOUNT
160		Pumps and	Prime Movers					
	1	18，471 hp F	ancis Pump		2	ea．	\＄8，670，000．00	\＄17，340，000
	2	36，942 hp F	ancis Pump		2	ea．	\＄17，340，000．00	\＄34，680，000
	3	102＂ANSI B	tterfly Valves		2	ea．	\＄1，295，400．00	\＄2，590，800
	4	72＂ANSI Bu	erfly Valves		2	ea．	\＄647，700．00	\＄1，295，400
			SUBTOTAL THIS SHEET					\＄55，906，200
QUANTITIES				PRICES				
BY TL Peng			$\begin{array}{\|l\|l\|} \hline \text { CHECKED } \\ \hline \text { 7-Oct } \\ \hline \end{array}$	BY Mike Egge			CHECKED Joe Barnes	
DATE PREPARED			PEER REVIEW／DATE Joe Barnes	DATE PREPARED October 2016			PEER REVIEW／DATE10/19/16	

FEATURE: NODOS Project Pumping and Generating Plants Sites Pumping Generating Plant 165 Turbines and Generators Civil				NODOS Alternative D														
				WOID:	ESTIMATE LEVEL:													
				REGION:	UNIT PRICE LEVEL:													
					{A NODOSIProject FilesIWORKINGICost Estimating nallEstimates$Red Bluff Alt D Sites Reservoir P} \\ \hline 気気 & \(\underset{\text { ¢ }}{\substack{\text { ¢ }}}\) & & DESCRIPTION & CODE & QUANTITY & UNIT & UNIT PRICE & Amount \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline 165 & & Turbines and & Generators & & & & & \\ \hline & 1 & 26,446 hp/2 & 6MW Francis Pump/Turbine & & 4 & ea. & \$20,817,000.00 & \$83,268,000 \\ \hline & 2 & 13,243 hp/1 & 3MW Francis Pump/Turbine & & 2 & ea. & \$11,819,250.00 & \$23,638,500 \\ \hline & 3 & 108" ANSI B & tterfly Valves & & 4 & ea. & \$533,384.00 & \$2,133,536 \\ \hline & 4 & 78" ANSI Bu & erfly Valves & & 2 & ea. & \$450,000.00 & \$900,000 \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & SUBTOTAL THIS SHEET & & & & & \$109,940,036 \\ \hline \multicolumn{4}{\|r\|}{QUANTITIES} & \multicolumn{5}{\|c\|}{PRICES} \\ \hline \multicolumn{3}{\|l\|}{\begin{tabular}{l} BY \\ TL Peng \end{tabular}} & \[\begin{array}{\|l\|} \hline \text { CHECKED } \\ \text { 7-Oct } \\ \hline \end{array}$		BY Mike Egge			CHECKED Joe Barnes								
DATE PREPARED			PEER REVIEW / DATE Joe Barnes						DATE PREPARED October 2016			10/19/16						

FEATURE:
NODOS Project
Pumping and Generating Plants

ESTIMATE WORKSHEET
SHEET 55 OF

\qquad

\qquad

FEATURE： NODOS Project Pumping and Generating Plants TRR Pumping Generating Plant 165 Turbines and Generators Civil				PROJECT： NODOS Alternative D						
				$\begin{array}{\|l\|} \hline \text { WOID: } \\ \hline \text { REGION: } \\ \hline \end{array}$		ESTIMATE LEVEL：				
				UNIT PRICE LEVEL：						
				FILE： G：US Bureau of ReclGS 2016120170216 BOE Fin $\|$	OSIProject FilesIWORKIN ates $\backslash[R e d$ Bluff Alt D Sites UNIT PRICE	imating				
気気苞	$\underset{\text { ¢ }}{\substack{\text { ¢ }}}$	DESCRIPTION					CODE	quantity	UNIT	AMOUNT
								\＄0		
								\＄0		
165		Turbines and Generators						\＄0		
	1	4．9MW KaplanTurbine			1	ea	\＄5，428，653．08	\＄5，428，653		
	2	92＂AWWA Butterfly Valves			1	ea	\＄292，551．10	\＄292，551		
								\＄0		
								\＄0		
			SUBTOTAL THIS SHEET					\＄5，721，204		
QUANTITIES				PRICES						
BY TL Peng			$\begin{aligned} & \text { CHECKED } \\ & \hline \text { 7-Oct } \\ & \hline \end{aligned}$	BY Mike Egge			CHECKED Joe Barnes			
DATE PREPARED			PEER REVIEW／DATE Joe Barnes	DATE PREPARED October 2016			PEER REVIEW／DATE 10／19／16			

FEATURE： NODOS Project
Pumping and Generating Plants
TRR Pumping Generating Plant
170 Accessory Electrical Equipment
Electrical

気気亳	$\underset{\text { ¢ }}{\substack{\text { ¢ } \\ \text { ¢ }}}$		DESCRIPTION	CODE	QUANTITY	UNIT	UNIT PRICE	AMOUNT
								\＄0
170		Accessory	ectrical Equipment					\＄0
	1	Exposed and	Embedded Conduit		1	lot	\＄918，000．00	\＄918，000
	2	Duct bank，MV Cable，\＆UG Vaults To Substation			1	lot	\＄520，200．00	\＄520，200
	3	Cable Trays			1	lot	\＄173，400．00	\＄173，400
	4	MV Circuits to Machines			1	lot	\＄91，800．00	\＄91，800
	5	LV，Inst，Comm，Control Cable			1	lot	\＄1，020，000．00	\＄1，020，000
	6	Station Service Unit Substation			1	ea	\＄612，000．00	\＄612，000
	7	Secondary Distribution Transformers			2	lot	\＄14，280．00	\＄28，560
	8	Panelboards			6	ea	\＄20，400．00	\＄122，400
	9	DC Power System			2	lot	\＄122，400．00	\＄244，800
	10	Standby Generator			1	lot	\＄153，000．00	\＄153，000
	11	Standby Switchgear			1	ea	\＄81，600．00	\＄81，600
	12	Automatic Transfer Switch			1	ea	\＄81，600．00	\＄81，600
	13	Motor Control Centers			9	ea	\＄81，600．00	\＄734，400
	14	UPS System			2	ea	\＄61，200．00	\＄122，400
	15	Lighting and Lighting Control			1	lot	\＄122，400．00	\＄122，400
	16	Convenience Power			1	lot	\＄12，240．00	\＄12，240
	17	Grounding			1	lot	\＄510，000．00	\＄510，000
	18	Lightning Protection			1	lot	\＄102，000．00	\＄102，000
	19	13.8 kV switchgear			1	lot	\＄714，000．00	\＄714，000
	20	Protection and Control Panels			10	ea	\＄306，000．00	\＄3，060，000
	21	Plant Control System			1	lot	\＄1，530，000．00	\＄1，530，000
	22	Fire Detection System			1	lot	\＄357，000．00	\＄357，000
	23	Commissioning and Acceptance Testing			1	lot	\＄714，000．00	\＄714，000
	24	Additional Equipment Supply／Install			1	lot	\＄3，009，000．00	\＄3，009，000
								\＄0
								\＄0
			SUBTOTAL THIS SHEET					\＄15，034，800
QUANTITIES				PRICES				
BY TL Peng			CHECKED 7－Oct	BY Mike Egge			CHECKED	
DATE PREPARED			PEER REVIEW／DATE Joe Barnes	DATE PREPARED October 2016			PEER REVIEW／DATE 10／19／16	

ESTIMATE WORKSHEET
SHEET 63 OF

FEATURE: NODOS Project Pumping and Generating Plants Sacramento River Pumping Generating Plant 100 Land and Rights 130 Structures and Improvements Civil				NODOS Alternative D						
				$\begin{array}{\|l} \hline \text { WOID: } \\ \hline \text { REGION: } \end{array}$		ESTIMATE LEVEL:				
				UNIT P	CE LEVEL:					
				FILE:	IProject FilesIWORKING s [Red Bluff Alt D Sites					
気言	$\underset{\text { ¢ }}{\substack{\text { ¢ } \\ \text { ¢ } \\ \hline}}$		dESCRIPTION			CODE	QUANTITY	UNIT	UNIT PRICE	AMOUNT
								\$0		
100		Land and Rights								
		(Included with Sites Reservoir)						\$0		
								\$0		
130		Structures and Improvements						\$0		
	1	Clear and Grub Pump Plant			110	acre	\$4,202.40	\$462,264		
	2	Excavation (Stockpile-1/2 mi, Haul-17 Mi.)			250,000	yd3	\$3.74	\$935,034		
	3	Backfill Pump Station (from Stockpile)			250,000	yd3	\$6.83	\$1,707,225		
	4	Sheet Steel Piling at After bay			79,800	ft2	\$35.00	\$2,793,000		
	5	Sheet Steel Piling at Fore bay			72,600	ft2	\$35.00	\$2,541,000		
	6	Sheet piling at Roads			90,288	ft2	\$35.00	\$3,160,080		
	7	Permanent Sheet Pile at fish screen			76,976	ft2	\$35.00	\$2,694,160		
	8	Concrete			30,000	yd3	\$449.23	\$13,476,900		
	9	Rebar @ 5% by Weight			6,000,000	lb	\$1.35	\$8,100,000		
	10	Structural Steel Framing			125	ton	\$3,800.00	\$475,000		
	11	Fencing and Gates at Switchyard			400	ff	\$36.00	\$14,400		
	12	Fencing and Gates at Perimeter			3,000	Ift	\$36.00	\$108,000		
	13	Seeding			2	acre	\$6,534.00	\$13,068		
	14	Dewatering			1	allow	\$300,000.00	\$300,000		
	15	Stone Slope Protection (10 mi haul)			7,500	ton	\$44.13	\$330,939		
	16	Superstructure - Building			1	Is	\$2,626,500.00	\$2,626,500		
	17	Control Building 100' X 150'			15,000	ft2	\$157.59	\$2,363,850		
	18	Building Site Utilities			1	allow	\$525,300.00	\$525,300		
	19	150 Ton Crane			1	ea	\$841,152.38	\$841,152		
	20	Mechanical Auxiliary System			1	allow	\$26,265,000.00	\$26,265,000		
	21	Furnish \& Install Special Equipment			1	ea	\$5,253,000.00	\$5,253,000		
		SUBTOTAL THIS SHEET								
								\$74,985,872		
QUANTITIES				PRICES						
$\begin{aligned} & \hline \text { BY } \\ & \text { TL Peng } \\ & \hline \end{aligned}$			$\begin{array}{\|l\|} \hline \text { CHECKED } \\ \hline \text { 7-Oct } \\ \hline \end{array}$	BY Mike Egge			CHECKED Joe Barnes			
DATE PREPARED			PEER REVIEW / DATE Joe Barnes	DATE PREPARED October 2016			PEER REVIEW / DATE 10/19/16			

ESTIMATE WORKSHEET
SHEET $65 \mathrm{OF}_{-}$

FEATURE: NODOS Project Pumping and Generating Plants Sacramento River Pumping Generating Plant 152 Waterways (Continued) Civil				NODOS Alternative D				
				WOID:		ESTIMATE LEVEL:		
				REGION:		UNIT PRICE LEVEL:		
				FILE: G:IUS Bureau of ReclGSA NO			OSIProject FilesIWO	ating
	$\underset{\substack{\text { ¢ } \\ \underset{\sim}{¢}}}{\substack{\text { c }}}$		DESCRIPTION	CODE	QUANTITY	UNIT	UNIT PRICE	AMOUNT
								\$0
		Subtotal from Previous Page						\$1,038,822
								\$0
152		Discharge Piping to Delevan - Continued)						\$0
	16	Form \& Concrete Placement - Deadman			148	yd3	\$296.36	\$43,861
		@ Butterfly Valves						\$0
	17	Rebar Reinforcing - Deadman @ Butterfly			148	yd3	\$343.20	\$50,794
		Valves (6\% by weight)						\$0
	18	Concrete Transit Trucking @ Butterfly Valves			148	yd3	\$23.76	\$3,516
	19	Concrete Vault - Valve Box @ Butterfly Valves			4	ea	\$8,175.77	\$32,703
	20	30" Access Hole - Valve Vault @ Butterfly Valves			4	ea	\$1,285.18	\$5,141
	21	Misc Metals - Access Ladder @ Butterfly Valves			32	lft	\$128.11	\$4,099
	22	Misc Metals - Steel Vault Covers @ Butterfly Valves			8,000	lb	\$5.45	\$43,621
	23	Installation of Butterfly Valve Assemblies (x4)			4	ea	\$210,120.00	\$840,480
	24	Butterfly Valve Power/Data/SCADA			1	Is	\$52,530.00	\$52,530
	25	Onsite Welding, Mechanic, Misc			4	day	\$798.99	\$3,196
	26	Surveying			2	day	\$592.54	\$1,185
	27	Trucking - Access Road Gravel (20 mi cycle)			3,883	yd3	\$9.70	\$37,675
	28	Access Road- Gravel - Aggregate Subbase (0.5 mile)			3,300	ton	\$12.61	\$41,604
	29	Access Road - Gravel - Class II AB (0.5 mile)			3,300	ton	\$21.01	\$69,340
	30	Access Road, Spreading/Grading			3,883	yd3	\$1.90	\$7,389
	31	Compaction Access Road			3,883	yd3	\$0.55	\$2,121
								\$0
								\$0
			SUBTOTAL THIS SHEET					\$2,278,077
QUANTITIES				PRICES				
BY TL Peng			CHECKED 7-Oct	BY Mike Egge			$\begin{array}{\|l\|} \hline \text { CHECKED } \\ \text { Joe Barnes } \\ \hline \end{array}$	
DATE PREPARED			PEER REVIEW / DATE Joe Barnes	DATE PREPAREDOctober 2016			PEER REVIEW / DATE$10 / 19 / 16$	

FEATURE： NODOS Project Pumping and Generating Plants Sacramento River Pumping Generating Plant 165 Turbines and Generators Civil				PROJECT： NODOS Alternative D						
				WOID： REGION：		ESTIMATE LEVEL：				
				UNIT PRICE LEVEL：						
				FILE：$\quad \begin{aligned} & \text { G：IUS Bureau of RecIGSA NO } \\ & \text { 2016120170216 BOE Finalles } \\ & 20\end{aligned}$	OSIProject FilesIWORKIN ates $\backslash[$ Red Bluff Alt D Sites UNIT PRICE	imating				
気気亳	$\underset{\substack{\text { ¢ }}}{\substack{\text { ¢ }}}$		DESCRIPTION				CODE	QUANTITY	UNIT	AMOUNT
								\＄0		
								\＄0		
165		Turbines and Generators						\＄0		
	1	15．4MW Generator			2	ea	\＄3，570，000．00	\＄7，140，000		
		92＂AWWA Butterfly Valves			2	ea	\＄292，551．10	\＄585，102		
								\＄0		
								\＄0		
			SUBTOTAL THIS SHEET					\＄7，725，102		
QUANTITIES				PRICES						
BY TL Peng			$\begin{array}{\|l\|} \hline \text { CHECKED } \\ \hline \text { 7-Oct } \\ \hline \end{array}$	BY Mike Egge			CHECKED Joe Barnes			
DATE PREPARED			PEER REVIEW／DATE Joe Barnes	DATE PREPARED October 2016			PEER REVIEW／DATE 10／19／16			

FEATURE： NODOS Project
Pumping and Generating Plants
Sacramento River Pumping Generating Plant
170 Accessory Electrical Equipment
Electrical

気気亳	$\underset{\text { ¢ }}{\substack{\text { ¢ } \\ \text { ¢ }}}$		DESCRIPTION	CODE	QUANTITY	UNIT	UNIT PRICE	AMOUNT
								\＄0
170		Accessory E	lectrical Equipment		1	lot	\＄1，224，000．00	\＄1，224，000
	1	Exposed and	Embedded Conduit		1	lot	\＄2，004，300．00	\＄2，004，300
	2	Duct bank，MV Cable，\＆UG Vaults To Substation			1	lot	\＄244，800．00	\＄244，800
	3	Cable Trays			1	lot	\＄280，500．00	\＄280，500
	4	MV Circuits to Machines			1	lot	\＄1，428，000．00	\＄1，428，000
	5	LV，Inst，Comm，Control Cable			1	ea	\＄714，000．00	\＄714，000
	6	Station Service Unit Substation			2	lot	\＄14，280．00	\＄28，560
	7	Secondary Distribution Transformers			8	ea	\＄20，400．00	\＄163，200
	8	Panelboards			2	lot	\＄122，400．00	\＄244，800
	9	DC Power System			1	lot	\＄153，000．00	\＄153，000
	10	Standby Generator			1	ea	\＄81，600．00	\＄81，600
	11	Standby Switchgear			1	ea	\＄81，600．00	\＄81，600
	12	Automatic Transfer Switch			10	ea	\＄81，600．00	\＄816，000
	13	Motor Control Centers			2	ea	\＄81，600．00	\＄163，200
	14	UPS System			1	lot	\＄178，500．00	\＄178，500
	15	Lighting and Lighting Control			1	lot	\＄20，400．00	\＄20，400
	16	Convenience Power			1	lot	\＄714，000．00	\＄714，000
	17	Grounding			1	lot	\＄153，000．00	\＄153，000
	18	Lightning Protection			1	lot	\＄714，000．00	\＄714，000
	19	13.8 kV switchgear			10	ea	\＄306，000．00	\＄3，060，000
	20	Protection and Control Panels			1	lot	\＄1，530，000．00	\＄1，530，000
	21	Plant Control System			1	lot	\＄459，000．00	\＄459，000
	22	Fire Alarm and Sprinklers in Building			15，000	SF	\＄14．00	\＄210，000
	23	Commissioning and Acceptance Testing			1	lot	\＄3，998，400．00	\＄3，998，400
								\＄0
								\＄0
			SUBTOTAL THIS SHEET					\＄18，664，860
QUANTITIES				PRICES				
BY TL Peng			$\begin{aligned} & \text { CHECKED } \\ & \hline \text { 7-Oct } \\ & \hline \end{aligned}$	BY Mike Egge			CHECKED	
DATE PREPARED			PEER REVIEW／DATE Joe Barnes	DATE PREPARED October 2016			PEER REVIEW／DATE 10／19／16	

BUREAU OF RECLAMATION
ESTIMATE WORKSHEET
SHEET 71 OF

FEATURE： NODOS Project Canals and Conduits Delevan Pipeline Land and Rights Civil				NODOS Alternative D						
				$\begin{array}{\|l} \hline \text { WOID: } \\ \hline \text { REGION: } \end{array}$		ESTIMATE LEVEL：				
				UNIT PRICE LEVEL：						
				FILE：	G：IUS Bureau of RecIGSA NODOSIProject FilesIWORKINGICost Estimating $2016 \backslash 20170216$ BOE Final\Estimates\［Red Bluff Alt D Sites Reservoir 05052017．x｜sx］General Property					
気咭茹	$\stackrel{\text { S }}{\substack{4 \\ \hline \text { 2 }}}$		description			CODE	quantity	Unit	UNIT PRICE	amount
100		Delevan Pipeline Land and Rights								
			SUBTOTAL THIS SHEET					\＄0		
QUANTITIES				PRICES						
BY Melissa Wong			CHECKED 7－Oct	BY Mike Egge			CHECKED Joe Barnes			
DATE PREPARED			PEER REVIEW／DATE Joe Barnes	DATE PREPARED October 2016			PEER REVIEW／DATE 10／19／16			

FEATURE: NODOS Project Canals and Conduits Delevan Pipeline Construct Pipeline Civil				NODOS Alternative D						
				WOID: REGION:		ESTIMATE LEVEL:				
				NIT P	ICE LEVEL:					
					SIProject FilesIWO tes [Red Bluff Alt D	ICost Estimating Reservoir				
	$\underset{\substack{\text { ¢ }}}{\substack{\text { ¢ }}}$		description			CODE	QUANTITY	UNIT	UNIT PRICE	AMOUNT
152		Construct Delevan Pipeline								
	1	Install Dewatering Wells - Incl Temp Piping			100	ea	\$26,265.00	\$2,626,500		
	2	Earthwork - Mass Excavation for Pipeline			2,953,117	yd3	\$6.32	\$18,663,699		
	3	144" Pipeline Installation			112,460	lft	\$2,828.00	\$318,036,880		
	4	Pipe Bedding Transit			125,956	yd3	\$23.76	\$2,992,110		
	5	Pipe Bedding Placement			125,956	yd3	\$146.16	\$18,409,981		
	6	Backfill Hauling			2,420,927	yd3	\$1.46	\$3,526,993		
	7	Spreading Backfill in Trench Zone for Compaction			2,200,843	yd3	\$0.86	\$1,895,238		
	8	Compacted Fill - Pipe Zone			1,049,252	yd3	\$0.54	\$568,712		
	9	Compacted Fill - Random Fill above Pipe Zone			1,151,591	yd3	\$0.72	\$831,465		
	10	Water \& Optimization Treatment for Trench Backfill Material			2,200,843	yd3	\$1.58	\$3,481,661		
	11	Segregate \& Spread Topsoil in Agricultural Areas (Top 1.5' of			295,520	yd3	\$1.90	\$562,359		
	12	Compaction of Topsoil in Agricultural Areas			268,655	yd3	\$0.72	\$193,973		
	13	Loading \& Trucking of Leftover Excavation Materials			843,830	yd3	\$9.70	\$8,187,377		
	14	Spreading of Leftover Excavation Materials			843,830	yd3	\$1.90	\$1,605,765		
	15	Compacted Fill - Leftover Excavation Materials			767,118	yd3	\$0.72	\$553,870		
	16	Form \& Place Concrete @ MH-ARV \& Blow off			1,452	yd3	\$611.81	\$888,343		
	17	Rebar Reinforcing @ MH-ARV \& Blow off (6\% by weight)			1,452	yd3	\$324.00	\$470,448		
	18	Concrete Transit Trucking @ MH-ARV \& Blow off			1,452	yd3	\$23.76	\$34,493		
	19	108" RCP Vault Riser at MH-ARV \& Blow off			24	ea	\$8,175.77	\$196,218		
	20	30" Access Hole @ MH-ARV \& Blow off			24	ea	\$1,285.18	\$30,844		
	21	Misc Metals - Access Ladder @ MH-ARV \& Blow off			192	lft	\$128.11	\$24,596		
	22	Misc Metals - Steel Vault Covers @ MH-ARV \& Blow off			48,000	lb	\$5.45	\$261,773		
	23	Installation of MH-ARV \& Blow off Assemblies			24	ea	\$35,720.40	\$857,290		
	24	Onsite Welding, Mechanic, Misc			880	day	\$798.99	\$703,114		
	25	Surveying			440	day	\$592.54	\$260,717		
	26	Dewatering contingency								
			SUBTOTAL THIS SHEET					\$385,864,419		
QUANTITIES				PRICES						
BY Melissa Wong			$\begin{array}{\|l\|} \text { CHECKED } \\ 7 \text { 7-Oct } \end{array}$	BY Mike Egge			CHECKED Joe Barnes			
DATE PREPARED			PEER REVIEW / DATE Joe Barnes	DATE PREPARED October 2016			PEER REVIEW / DATE10/19/16			

FEATURE:

NODOS Project
Transmission and Interconnections

Ref.: For appropriate use and terminology, see Reclamation Manual, Directives and Standards FAC; 09-01, 09-02 and 09-03.

QUANTITIES		PRICES	
BY Anthony Quantrell	CHECKED $7-$ Oct	BY Mike Egge	CHECKED Joe Barnes
DATE PREPARED	PEER REVIEW / DATE Joe Barnes	DATE PREPARED October 2016	PEER REVIEW / DATE $10 / 19 / 16$

FEATURE:
NODOS Project
Transmission and Interconnections
TRR Switchyard

PROJECT:

NODOS Alternative D

Electrical

APPENDIX B

PRELIMINARY CONSTRUCTION SCHEDULE

NODOS_Sites Reservoi_Ver2					Classic WBS Layout																		02-Dec-16 14:39				
\#	Activity ID	Activity Name	Predeces	Successt	Jriginal	Start	Finish	Total	Free		2017				2018				2019				2020				2021
								Float	Float	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	$0_{1} \square^{2}$		Q3	Q4	Q1	Q2	Q3	Q4	Q1
192	A1560D	Haul to Golden Gate Dam East side	A1560C	A1910B	100	$\begin{aligned} & \text { 22-May-24 } \\ & \text { 08:00 } \end{aligned}$	08-Oct-24 17:00		249																		
193	Access road to bridge - East side				240	15-Mar-22 08:C	13-Feb-23 17:00	1824	0																		
194	A1840	Construct Road to Golden Gate Dam top	A1820	A1920	120	$\begin{aligned} & 30-A u g-22 \\ & 08: 00^{*} \end{aligned}$	13-Feb-23 17:00		1080																		
195	A1850	Construct Access Rd to Sites Crown	A1820	A1970	120	$\begin{aligned} & 30-A u g-22 \\ & 08: 00^{*} \end{aligned}$	13-Feb-23 17:00	1734	770																		
196	A1830	Construct Road to maintenance \& Site Pump plant		A1860	180	$\begin{aligned} & \text { 15-Mar-22 } \\ & 08: 00^{*} \end{aligned}$	21-Nov-22 17:00		0																		
197	A2270	Access road to bridge - East Side		A2220	120	$\begin{aligned} & \text { 15-Mar-22 } \\ & \text { م8:0º } \end{aligned}$ 08:00*	29-Aug-22 17:00		981																		
198	Start Filling Sites Reservoir					08-Feb-30 16:C	11-Feb-30 16:00	0	0																		
199	A2240	Start Filling Sites Reservoir	$\begin{aligned} & \text { A1870, } \\ & \text { A1920, } \end{aligned}$			08-Feb-30 16:00	11-Feb-30 16:00	0	0																		

Benefit Calculation, Monetization, and Resiliency Tab

Attachment 9: Benefit Cost Analysis

Attach the benefit and cost analysis for the proposed project. If the analysis is located in another document, identify the location. See regulations section 6004(a)(6).

WSIP Application Instructions, CWC, March 2017

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1	VERSION:
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A9	CHECKER:	J HERRIN	DATE:	2017 AUGUST	
CAVEAT:		QA/QC:		REF/FILE \#:	WSIP APPLICATION	
NOTES:					PAGE:	1

Table of Contents

Attachment A9: Benefit Cost Analysis 1
Findings 4
Approach 4
Benefit-Cost Ratio 4
Net Present Valuation 4
Public Benefit Ratio 4
Benefits 5
Costs 6
Benefit-Cost Analysis Results 7
Public Benefit Ratio Results 7

Tables

Table A9-1. Annual Benefits Summary (2015\$, \$Millions/year) 5
Table A9-2. Annual and Total Capital Cost Summary (2015\$; \$Millions/year) 6
Table A9-3. Benefit-Cost Analysis Results (2015\$, \$Millions/year) 7
Table A9-4. Public Benefit Ratio Results (2015\$, \$Millions/year) 7
Table A9-5. Public Benefit Ratio Results: No Federal Participation (2015\$, \$Millions/year) 8

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1	VERSION:
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A9	CHECKER:	J HERRIN	DATE:	2017 AUGUST	
CAVEAT:		QA/QC:		REF/FILE \#:	WSIPAPPLICATION	
NOTES:				PAGE:	2	OF

Acronyms and Abbreviations

B/C
BCA
IDC
NODOS
NPV
OM\&R
PBR
project
WSIP
benefit cost
benefit-cost analysis
interest during construction
North-of-the-Delta Offstream Storage
net present value
operations, maintenance, and replacement
public benefit ratio
Sites Reservoir Project
Water Storage Investment Program

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1	VERSION:
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A9	CHECKER:	J HERRIN	DATE:	2017 AUGUST	
CAVEAT:		QA/QC:		REF/FILE \#:	WSIPAPPLICATION	
NOTES:				PAGE:	3	OF

Findings

The benefit-cost analysis (BCA) determined that the Sites Reservoir Project (project) would result in total public benefits with a present value of $\$ 3,506$ million in 2015 dollars. If it receives its requested $\$ 1,662$ million in Water Storage Investment Program (WSIP) funding and the entire $\$ 730$ million of its potential Federal funding, the Sites Reservoir project would have a public benefit ratio (PBR) of 2.11 and an overall benefit-cost (B / C) ratio of 1.52. This does not account for the significant non-monetized benefits.

The project's high PBR indicates that WSIP funding of the project would be a highly cost-effective investment. Similarly, the project's B / C ratio indicates that the project is economically feasible and will result in major net benefits from the total expenditures necessary for its construction and future operations.

As discussed extensively in Sites_A5 Documentation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB and summarized below, the PBR and B / C ratio results are considered highly conservative based on the selected monetization approaches and the assumptions used by the benefit valuation analysis. The project's B/C ratio would increase to more than 2.2 and its PBR to over 3.6 if the alternative cost approach for the project's ecosystem improvements and agricultural supply benefits. Use of WSIP Unit Fish values for the project's anadromous fish benefits are estimated to further increase the project's PBR to over 4.5.

Approach

$B C A$ is a widely used analysis tool for evaluating a project's expected future economic performance. Two key metrics are commonly used to represent and evaluate BCA results: the B/C ratio and the net present value (NPV).

Benefit-Cost Ratio

The B / C ratio is the present (or annualized) value of all project benefits divided by the corresponding value of all costs. The ratio measures the factor by which benefits exceed (or are below) costs. A project with a ratio value greater than 1.0 is considered economically feasible. The B / C ratio is a useful way to compare the relative benefits of projects that may differ in time and/or scale. The overall B / C ratio of a proposed project (considering all costs, benefits, and impacts) is the measure of the project's economic feasibility.

Net Present Valuation

NPV is the present value of all costs subtracted from the present value of all benefits. Projects with values greater than $\$ 0.00$ are considered economically beneficial. The NPV is a useful way to determine the overall dollar value of a project's expected future net benefits.

Public Benefit Ratio

The WSIP Application requires calculation of a project's PBR. The PBR is the present value of the net monetized public benefits divided by the total requested WSIP cost share.

The BCA data, calculations, and results for Sites Reservoir are provided below. In accordance with WSIP Technical Memorandum guidance, benefits and costs were annualized using a 3.5 percent discount rate applied to the project's operations over the remaining 93 years of the study period (i.e., 2030 to 2122).

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:		
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A9	CHECKER:	J HERRIN	DATE:		
CAVEAT:		QAVC:	2017 AUGUST			
NOTES:			REF/FILE \#:	WSIP APPLICATION		PAGE:

Benefits

Table A9-1 shows Sites Reservoir's estimated benefits on an average annual basis for the 93 -year study period. As discussed above, the average annual benefits are based on the NPV of the project's future benefits using the WSIP-required 3.5 percent discount rate.

Table A9-1. Annual Benefits Summary (2015\$, \$Millions/year)

Beneficiary	Benefit Value	Benefit Value Adjusted $^{\text {a }}$
WSIP Public Benefits	$\$ 122.0$	$\$ 123.6$
Ecosystem improvement	$\$ 110.9$	$\$ 112.0$
Anadromous fish \& other aquatic	$\$ 57.0$	$\$ 57.7$
Incremental Level 4 refuge	$\$ 23.8$	$\$ 23.8$
Oroville coldwater pool	$\$ 21.0$	$\$ 21.0$
Yolo Bypass	$\$ 9.1$	$\$ 9.5$
Recreation	$\$ 6.8$	$\$ 6.8$
Flood control	$\$ 4.4$	$\$ 4.9$
Non-Proposition 1 Eligible Benefits	$\$ 194.9$	$\$ 194.9$
Water supply	$\$ 175.4$	$\$ 175.4$
M\&I water supply	$\$ 114.1$	$\$ 114.1$
Agricultural water supply	$\$ 50.2$	$\$ 50.2$
Recaptured water supply	$\$ 11.1$	$\$ 11.1$
Hydropower (system)	$\$ 19.5$	$\$ 19.5$
Total Benefits	$\$ 316.9$	$\$ 318.5$

${ }^{\text {a }}$ Adjusted to incorporate the additional $\$ 44.7$ million (present value) of project benefits obtained during project construction (2026-29).
Overall, Sites Reservoir is estimated to result in $\$ 316.9$ million in total annual benefits. However, when adjusted for the $\$ 44.7$ million in ecosystem improvement and flood reduction benefits between 2026 and 2029, Sites Reservoir is estimated to result in $\$ 318.5$ million in total annual benefits. The project's WSIP public benefits are expected to total $\$ 123.6$ million (adjusted), which is equivalent to 38.8 percent of the project's $\$ 318.5$ million in total benefits.

The WSIP Technical Report guidelines require that each benefit category reporting the present value of its expected net monetized benefits over the planning horizon, in 2015 dollars, be discounted to the start of project operations using the required 3.5 percent discount rate. Net monetized benefits are benefits minus any impacts caused by the proposed project or other costs (other than project costs) that are required to realize the benefit. Table A6-1 in Sites_A6 Annual Benefits Table under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB provides the complete benefit estimates on a yearly basis over the full study period.

The Sites Reservoir analysis's use of CALSIM II modeling and its conservative approach in its physical benefit quantification and benefit monetization approach ensure that all necessary costs or impacts were previously incorporated and consequently were "netted out" so that the benefit valuation results (discussed in detail in Sites_A5 Documentation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB) represent the project's net monetized benefit and do not require any additional adjustment to subtract for any project impacts or other costs.

Costs

Two sets of development costs are shown, and each is used to derive its corresponding BCA results. The first is an unadjusted capital cost that includes the full interest during construction (IDC) that could be expected for the project's 8-year construction schedule. As such, it results in a higher (and therefore financially more conservative) total development cost for the project than if the adjusted (but arguably more realistic) estimate of the development cost discussed below is used.

The adjusted capital cost approach incorporates the IDC reduction that would be gained from expected WSIP and Federal project construction funding. As discussed in Allocation of Total Costs (file name: Sites_A10 Allocation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB), consistent with the Draft North-of-the-Delta Offstream Storage (NODOS) Feasibility Study, Sites Reservoir could potentially obtain up to $\$ 730$ million in Federal funding. For the WSIP analysis, WSIP funding of $\$ 1,662$ million is requested. Assuming that both WSIP and Federal funding would be disbursed as construction expenses are incurred, the project would gain a significant reduction in its IDC because it would carry a much lower amount of capital debt over its 8-year construction period. As such, it results in a lower and arguably more realistic estimate of the project's total development cost than the unadjusted capital cost estimate.

Table A9-2 shows Sites Reservoir's estimated capital cost on an average annual basis for the 93-year study period. As discussed above, the average annual benefits are based on the NPV of the project's future benefits using the WSIP-required 3.5 percent discount rate.

Both the unadjusted (i.e., without WSIP or Federal funding) and the adjusted capital cost (i.e., with WSIP and Federal funding) are shown.

Table A9-2. Annual and Total Capital Cost Summary
(2015\$; \$Millions/year)

Cost Item	Project (Unadjusted IDC)	Project (with IDC saving)
Construction	$\$ 4,747$	$\$ 4,747$
Interest during construction (IDC)	$\$ 798$	$\$ 429^{\text {a }}$
Total Capital Cost	$\$ 5,545$	$\$ 5,176$
Capital amortization (3.5\%; 93 years)	$\$ 195.5$	$\$ 182.5$
Operations, maintenance, and replacement	$\$ 26.6$	$\$ 26.6$
Total Annual Cost	$\$ 222.1$	$\$ 209.1$

${ }^{a}$ Adjusted for $\$ 369$ million in expected IDC savings from WSIP and Federal funding during project construction.
The total development cost of Sites Reservoir is estimated to be $\$ 5.5$ billion without any IDC savings. This cost corresponds to an annualized capital cost of $\$ 195.5$ million. As a result, the total annual cost is estimated to be $\$ 222.1$ million when the projected $\$ 26.6$ million annual operations, maintenance, and replacement (OM\&R) cost is added.

If the project's Federal funding and requested WSIP amounts are obtained, its IDC cost is estimated to decrease from $\$ 797.6$ million to $\$ 429.0$ million. This decrease would result in $\$ 368.5$ million in IDC savings, which would be equivalent to a $\$ 13.0$ million reduction in the project's future annualized cost. As a result, the total development cost for the project with WSIP and Federal construction funding is $\$ 5,176$ million and its annualized cost would total $\$ 209.1$ million.

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1	VERSION:
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A9	CHECKER:	J HERRIN	DATE:	2017 AUGUST	
CAVEAT:		QA/QC:		REF/FILE \#:	WSIP APPLICATION	
NOTES:				PAGE:	6	OF

Benefit-Cost Analysis Results

Table A9-3 shows the BCA results for the project both with and without the expected IDC savings that would be obtained from future WSIP and Federal construction funding.

Table A9-3. Benefit-Cost Analysis Results (2015\$, \$Millions/year)

Results	Project (Unadjusted IDC)	Project (with IDC saving)
Benefit-cost ratio	1.43	1.52
Net benefit (annual)	$\$ 96.4$	$\$ 109.4$
Total net benefit (net present value)	$\$ 2,735$	$\$ 3,104$

Sites Reservoir is projected have at least a B / C ratio of 1.43 and result in total net benefits with an NPV of $\$ 2,735$ million, which would be equivalent to annual net benefits of $\$ 96.4$ million.

If Sites Reservoir receives its requested $\$ 1,662$ million in WSIP funding and the full $\$ 730$ million of its potential Federal funding, the project would have a B / C ratio of 1.52 and result in total net benefits with a net present value of $\$ 3,104$ million, which would be equivalent to annual net benefits of \$109.4 million.

Public Benefit Ratio Results

Sites Reservoir is projected to result in total public benefits with a present value in 2015 dollars of $\$ 3,506$ million over the 100-year study period. These benefits are equivalent to an annualized average of $\$ 123.7$ million. Ecosystem improvements account for over 90 percent of the project public benefits and far surpass the 50 percent WSIP funding requirement.

As shown in Table A9-4, based on the project's requested WSIP funding amount of $\$ 1,662$ million, the PBR for the Sites Reservoir project is 2.11.

Table A9-4. Public Benefit Ratio Results (2015\$, \$Millions/year)

Results	Project (with IDC Saving)
Total public benefits (annual)	$\$ 123.6$
Total ecosystem Improvement benefits (annual)	$\$ 112.0$
Ecosystem improvement as \% of public benefit	90.6%
Total public benefits (NPV)	$\$ 3,506$
WSIP funding request	$\$ 1,662$
PBR	$\mathbf{2 . 1 1}$

This value indicates that WSIP funding for the project would be a highly cost-effective investment. As discussed in Sites_A5 Documentation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB, this result presumes that WSIP funding for the project would encourage Federal funding participation of up to $\$ 730$ million. The Federal contribution significantly reduces the WSIP funding request necessary to achieve the currently proposed public benefit levels.

As shown in Table A9-5, in the absence of any Federal funding for the project, WSIP funding of \$2,392 million would otherwise be necessary to similarly fully fund the project's currently planned public benefits. Under these circumstances, the PBR for the Sites Reservoir project would be reduced to 1.47.

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1	VERSION:
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A9	CHECKER:	J HERRIN	DATE:	2017 AUGUST	
CAVEAT:		QA/QC:		REF/FILE \#:	WSIP APPLICATION	
NOTES:				PAGE:	7	OF

Table A9-5. Public Benefit Ratio Results: No Federal Participation
(2015\$, \$Millions/year)

Results	Project (with IDC saving)
Total public benefits (annual)	$\$ 123.6$
Total ecosystem Improvement benefits (annual)	$\$ 112.0$
Ecosystem improvement as \% of public benefit	90.6%
Total public benefits (NPV)	$\$ 3,506$
WSIP funding request	$\$ 2,392$
PBR	$\mathbf{1 . 4 7}$

Evaluation of Results

As discussed extensively in Sites_A3 Physical Monetized under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB, the Sites Reservoir benefit valuation analysis was very conservative in its benefit monetization. This was due to the selected monetization approaches and the assumptions generally applied in the analysis of the project's future ecosystem improvement and agricultural water supply benefits.

Except for the anadromous fish benefits, WSIP unit water values were used to determine the future economic benefits for the other ecosystem improvements and agricultural water supplies. The WSIP unit values were only adjusted to include the estimated conveyance energy costs for the deliveries. It is arguable that other non-energy conveyance costs and carriage water losses might both also be added to further increase the unit values. In any case, no such escalation of the WSIP unit benefit values has been applied by the Sites Reservoir economic benefit analysis.

As shown in Sites_A3 Physical Monetized under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB, the WSIP unit water benefit values were substantially lower than the estimated alternative cost benefits values based on Shasta Lake Expansion. It is arguable that use of the alternative cost valuation is more representative of the project's future benefit since Sites Reservoir would provide new and permanent additional water supplies and net new benefits that otherwise could not be obtain from water transfer from other current water users (as the WSIP unit water values implicitly presume). Furthermore, it is highly unlikely that the water transfers implicit in the WSIP unit water values could actually occur-or be achieved-in a manner that would result in comparable water quantities and reliability as that provided by the project. The significantly higher value reflects the lack of other options for generating a similar large and permanent quantity of benefits.

Third party effects are another important factor contributing to WSIP unit values' under-representation of the benefits for a very large water storage project (such as Sites Reservoir). There are likely major third-party effects (e.g., externalities or related adverse effects on employees and other businesses in related economic sectors) that are not incorporated or represented in the WSIP unit water values, which focus on the compensation to water sellers.

Even the higher benefit values obtained from the alternative cost estimates for Shasta Lake Dam raise are also considered likely to be conservative and under-represent Sites Reservoir's actual benefit values. As discussed in Sites_A3 Physical Monetized under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB, the development cost estimates used from recent USBR feasibility analysis likely do not factor in either the full costs that would be necessary for project development or the schedule delays necessary for it to be completed. Both factors would contribute to higher alternative cost benefit values

for Sites due to their increased costs and/or reduced present values of its benefits. It was projected that Sites Reservoir would provide limited anadromous fish beginning in 2026 and its full benefits in 2030. A later completion date for raising Shasta will result in greater fish population and habitat declines during the interim period that would in turn reduced the comparative value of its subsequent ecosystem improvements. Finally, there are also reasons to believe that the 2030 Shasta Lake storage conditions assumed by WSIP in its baseline are overly optimistic and therefore when compared to the project operations, the project's quantified benefits are underestimated.

As a result of the conservative nature of the Sites Reservoir benefit valuations, the PBR and B/C ratio results shown in Tables A9-4 and A9-5 should therefore be recognized as very conservative. The project's B / C ratio would increase to more than 2.2 and its PBR to over 3.6 if the alternative cost approach for the project's ecosystem improvements and agricultural supply benefits is used to monetize those benefits. Use of WSIP Unit Fish values for the project's anadromous fish benefits were estimated to further increase the project's PBR to over 4.5.

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1	VERSION:
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A9	CHECKER:	J HERRIN	DATE:	2017 AUGUST	
CAVEAT:		QA/QC:		REF/FILE \#:	WSIPAPPLICATION	
NOTES:				PAGE:	9	OF

Benefit Calculation, Monetization, and Resiliency Tab

Attachment 10: Allocation of Total Costs

Provide a proposed allocation of total project costs to all project beneficiaries, including the Program, and an explanation of how the allocation was calculated consistent with TR section 8 and section 6004(a)(7) of the regulations. If this information is included in another attachment, identify the location.

Table of Contents

Attachment 10: Allocation of Total Costs 1
Analytic Methods 4
Separable Cost-Remaining Benefits Method 4
Data and Assumptions 5
Calculations 5
Results. 5
Tables
Table A10-1. Cost Allocation Summary: WSIP (w/ IDC Savings) and Federal Funding (w/ IDC Savings) (Annualized Values: 2015\$; \$millions) 7
Table A10-2. Total Cost Assignment: Present Value (2015\$; \$millions) 8
Table A10-3. Capital Cost Assignment: Present Value (2015\$; \$millions) 9
Table A10-4. Total Cost Assignment: Annual (2015\$; \$millions) 10
Figures
Figure A-1. Eligible Benefits Graph 11

Acronyms and Abbreviations

IDC	interest during construction
JPA	Joint Powers Authority
NODOS	North-of-the-Delta Offstream Storage
OM\&R	operations, maintenance, and replacement
SCRB	Separable Cost-Remaining Benefits
TR	Technical Report
WSIP	Water Storage Investment Program

A cost allocation was performed to determine the costs to be allocated to the project purposes. Based on its results, a subsequent cost assignment was performed, including beneficiaries and funding sources (accounting for funding sources), to determine the costs to be assigned to the project beneficiaries. The cost assignment also incorporated the requested Water Storage Investment Program (WSIP) grant and potential Federal funding participation (consistent with the Draft North-of-the-Delta Offstream Storage [NODOS] Feasibility Study analysis) to determine the total costs (capital and operations, maintenance, and replacement [OM\&R]) that each beneficiary would need to contribute.

The Sites Reservoir Joint Powers Authority (JPA) considers future Federal participation in the project to be likely given both the Federal government's extensive development of the Feasibility Report, other studies, and its current interest in securing incremental Level 4 refuge and anadromous fish benefits from the project. As a result, consistent with Draft NODOS Feasibility Study, Federal funding of up to $\$ 730$ million was incorporated into the WSIP economic analyses and factored in to determine the \$1,662 million in requested WSIP funding.

In addition to securing funding for the project's public benefits, the Federal and WSIP funding would also benefit the project by lowering the cost of development. Assuming that funding would be disbursed as construction expenses are incurred, the project's interest during construction (IDC) expenses would be significantly reduced because it would carry a much less capital debt over the estimated construction period. The future IDC reduction has been included in the total cost used for the cost allocation and assignments.

However, given that Federal participation is not assured, the WSIP economic analyses also performed an alternate cost allocation and assignment to the project beneficiaries without Federal participation.

Analytic Methods

Separable Cost-Remaining Benefits Method

The Federal government's Separable Cost-Remaining Benefits (SCRB) method was used to perform the cost allocation for Sites Reservoir. This approach is recognized as an acceptable cost allocation by the WSIP Technical Reference (TR) guidance (Section 8.2, Tools and Methods).

The SCRB method is based on the justified investment for each project purpose. The maximum justified investment for a purpose is the lesser of either (1) its benefits or (2) the cost of the single purpose project alternative to achieve the same benefits. Quantification of the justifiable expenditures is a means for allocating joint cost in proportion to benefits.

Under SCRB, the project's separable and joint costs are estimated and used as the basis for determining each purpose's designated share of the project's total cost. Separable costs are costs that have be added to the project specifically to serve a given function. Joint costs are the costs for joint use facilities that serve multiple purposes. Each purpose's separable costs are subtracted from its justifiable expense to determine its remaining justifiable expenses.

The project's total joint costs are then allocated proportionally between the purposes based on their remaining justifiable expense. The sum of each purpose's allocated joint cost and its separable costs then determines the total cost allocated to each purpose. The allocated joint costs for the project's OM\&R, construction, and IDC expenses were also performed to determine corresponding cost allocation for each cost category.

The SCRB cost allocation for each project purpose was used for cost assignment between beneficiaries and expected future Federal and/or WSIP funding amounts (when applicable). The cost assignment

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	VERSION:	C	
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A10	CHECKER:	J HERRIN	DATE:	2O17 AUGUST		
CAVEAT:		QA/QC:		REF/FILE \#:	WSIP APPLICATION		PAGE:
NOTES:			4	OF	11		

between the ecosystem improvement beneficiaries was based on their benefits because no separable costs were identified for that purpose.

Data and Assumptions

If the project's Federal funding and requested WSIP amounts are obtained, its IDC cost is estimated to decrease from $\$ 797.6$ million to $\$ 429.0$ million. This decrease would result in $\$ 368.5$ million in IDC savings, which would be equivalent to a $\$ 13$ million reduction in the project's future annualized cost. As a result, the total development cost for the project with WSIP and Federal construction funding is $\$ 5,176$ million, and its annualized total cost would total $\$ 209.1$ million. The project's cost allocation was based on this estimated development cost. In addition, an alternate cost allocation using the same SRCB method was also performed for Sites Reservoir assuming no Federal funding contribution for its construction. Single purpose and separable cost estimates for the project purposes were developed based on evaluation of each purpose's physical benefits and modified reservoir designs to meet those results.

It was also assumed that consistent with the Draft NODOS Feasibility Study, Federal funding for the project's OM\&R costs would be limited to 50 percent and only applicable for incremental Level 4 refuge water.

Calculations

Table A10-1 shows the estimated annualized total costs allocated to each project purpose. The cost allocation also reports individually each purpose's share of the project's construction, IDC, and OM\&R costs. The corresponding nominal amount of each purpose's portion of the project's $\$ 5,176$ million capital cost is also shown. This includes $\$ 429$ million of interest during construction, $\$ 350$ million of future environmental mitigation or compliance and $\$ 4,397$ million of capital costs.

For all purposes except water supply, the benefits determined their maximum justifiable expense. Separable costs were identified only for Sites Reservoir's hydropower and recreation purposes.

As shown in Table A10-1, water supply was allocated $\$ 92.9$ million in total annual costs, which represents 44.4 percent of the project's estimated total $\$ 209.1$ million annual cost. Ecosystem improvement was also allocated a major share (42.3 percent and $\$ 88.5$ million) of total costs. The annual cost allocations for the other public purposes were $\$ 5.4$ million (2.6 percent) for recreation and $\$ 3.9$ million (1.8 percent) for flood protection. In all cases, per WSIP TR requirements, the cost shares for all purposes are less than their monetized benefits (TR, Section 8.2).

The total cost share allocated to the project's public benefit purposes was $\$ 97.8$ million, which represents nearly half (46.8 percent) of the project's annual total cost. The public benefit purposes' cost share potential eligible for WSIP funding is limited to its capital cost, which is estimated to be $\$ 84.3$ million per year. This amount would account for $\$ 2.4$ billion (46.2 percent) of the project's total capital cost of $\$ 5.2$ billion.

Results

A cost assignment analysis was also performed to determine both the ecosystem beneficiaries' specific cost share and also the WSIP and Federal funding for each public benefit purpose or beneficiary. As required by the application guidelines, Table A10-2 shows the estimated total costs allocated to each project purpose and assigned to the beneficiaries. It also shows the assignment between project purposes and beneficiaries of the requested WSIP funding.

The present value of the project's total cost is estimated to be $\$ 5,931$ million, of which $\$ 755$ million would be for future OM\&R expenses over the 93 -year analysis period. Of the $\$ 755$ million, $\$ 44$ million would be replacement costs with the remaining $\$ 711$ million operations, maintenance and replacement.

Table A10-3 provides the cost assignment for the project's $\$ 5,176$ million total capital cost (i.e., construction and IDC). Federal non-reimbursable construction funding of $\$ 730$ million would be provided as funding for anadromous fish ($\$ 488$ million), Level 4 refuge ($\$ 201$ million), and flood reduction ($\$ 41$ million). The Federal government would also provide $\$ 1.3$ million per year as its 50 percent cost share for the incremental Level 4 refuge's allocated $\$ 2.6$ million annual OM\&R cost (see Table A10-1).

Table A10-3 also shows the distribution of the requested $\$ 1,662$ million in WSIP funding between the public purposes and the beneficiaries. If granted, the WSIP funding would provide sufficient matching funds to fully cover the capital cost for all the project's public benefit categories. WSIP would provide 100 percent funding for the capital cost assignments for the Oroville coldwater pool, Yolo Bypass, and recreation. WSIP would also provide the necessary 56 percent remaining capital needed for the other public benefits receiving Federal funding (i.e., Level 4 refuge, anadromous fish, and flood reduction).

Table A10-4 also shows the total cost assignment on an equivalent annualized basis. However, it should be noted that successful WSIP and Federal funding would instead disburse their contributions during the project's construction phase. As a result, their annualized capital cost share would then be eliminated. WSIP provides no OM\&R funding and would ensure that the entire capital costs for all the public benefits were fully funded (either solely by WSIP or with Federal assistance). Consequently, the annual costs shown in Table A10-4 for the public benefit categories under the non-Federal partners are the annual OM\&R costs that would need to be paid in the future with non-WSIP funding. The results are summarized in Figure A-1.

As discussed in Sites_A5 Documentation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB, the Sites JPA intends to use future sales of its allocation of recaptured water to cover the $O M \& R$ costs assigned for those project public benefit purposes that do not have adequate alternate revenue sources. It is expected that the project would receive Federal funding for 50 percent of the incremental Level 4 refuge supply's annual OM\&R. It is also expected that public use fees from the reservoir's recreational visitors would be used to fully fund the $\$ 0.9$ million in annual OM\&R costs that would be assigned to recreation.

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1	VERSION:
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A10	CHECKER:	J HERRIN	DATE:	2017 AUGUST	
CAVEAT:		QA/QC:		REF/FILE \#:	WSIP APPLICATION	
NOTES:				PAGE:	6	OF

Category	WSIP Public Benefits			Non-Prop 1. Eligible Benefits		Total
	Ecosystem Improvement	Recreation	Flood Control	Water Supply	Hydropower (System)	
Allocated Total Cost						
Total Project Costs						\$209.1
Benefits by Purpose	\$112.0	\$6.8	\$4.9	\$175.4	\$19.5	\$318.5
Single Purpose Cost	\$116.7	\$168.0	\$167.5	\$117.5	\$182.5	
Justifiable Expenditures	\$112.0	\$6.8	\$4.9	\$117.5	\$19.5	\$260.6
Separable Costs	\$0	\$0.3	\$0	\$0	\$14.6	\$14.9
Remaining Benefits (Justifiable Expenditures Less Separable Costs)	\$112.0	\$6.4	\$4.9	\$117.5	\$4.9	\$245.7
Percent (Distribution of Remaining Benefits)	45.6\%	2.6\%	2.0\%	47.8\%	2.0\%	100\%
Allocated Joint Costs	\$88.5	\$5.1	\$3.9	\$92.9	\$3.8	\$194.2
Total Allocated Costs (Separable Plus Allocated Joint Costs)	\$88.5	\$5.4	\$3.9	\$92.9	\$18.5	\$209.1
Percent Total Cost Allocation	42.3\%	2.6\%	1.8\%	44.4\%	8.8\%	100\%
Allocated OM\&R Annual Costs						
Separable OM\&R Cost	\$0	\$0.2	\$0	\$0	\$0	\$0.2
Allocated Joint OM\&R Cost	\$12.05	\$0.7	\$0.52	\$12.64	\$0.5	\$26.4
Total Allocated OM\&R Cost	\$12.0	\$0.9	\$0.5	\$12.6	\$0.5	\$26.6
Percent OM\&R Cost Allocation	45.3\%	3.3\%	2.0\%	47.5\%	2.0\%	100\%
Allocated Capital Costs (Annualized)						
Separable Capital Cost	\$0	\$0.2	\$0	\$0	\$14.6	\$14.8
Allocated Capital Cost	\$76.5	\$4.4	\$3.3	\$80.2	\$3.3	\$167.7
Total Allocated Annual Capital Cost	\$76.5	\$4.5	\$3.3	\$80.2	\$17.9	\$182.5
Percent Capital Cost Allocation	41.9\%	2.5\%	1.8\%	44.0\%	9.8\%	100\%
Allocated Construction Costs (Annualized)						
Separable Construction	\$0.0	\$0.1	\$0.0	\$0.0	\$13.4	\$13.5
Allocated Construction	\$70.1	\$4.0	\$3.1	\$73.6	\$3.0	\$153.8
Total Allocated Construction Cost	\$70.1	\$4.2	\$3.1	\$73.6	\$16.5	\$167.4
Percent Construction Cost Allocation	41.9\%	2.5\%	1.82\%	44.0\%	9.8\%	100\%
Allocated IDC Costs (Annualized)						
Separable IDC	\$0	\$0	\$0	\$0	\$1.2	\$1.2
Allocated IDC	\$6.3	\$0.4	\$0.3	\$6.6	\$0.3	\$13.9
Total Allocated IDC	\$6.3	\$0.4	\$0.3	\$6.6	\$1.5	\$15.1
Percent IDC Cost Allocation	41.9\%	2.5\%	1.8\%	44.0\%	9.8\%	100%
Allocated Capital Costs (Nominal)						
Allocated IDC	\$180	\$11	\$8	\$189	\$42	\$429
Construction Cost	\$1,989	\$118.1	\$86.6	\$2,087	\$467	\$4,747
Allocated Total Capital Cost	\$2,169	\$128.8	\$94.4	\$2,276	\$509	\$5,176

$$
\begin{aligned}
& \text { PREPARER: NCARLSON PHASE: } 1 \text { VERSION: } \\
& \text { OAQC: J HERRIN DATE: } 2017 \text { AUGUST } \\
& \text { REFFILE \#: WSIP APPLCATION }
\end{aligned}
$$

Table A10-2. Total Cost Assignment: Present Value (2015\$; \$millions)

Purpose/Action	Total		Total Cost (Capital and OM\&R) - Present Value					
			Federal Non-Reimbursable		WSIP		Authority	
	Percent	Cost (\$M)						
Cost Assignment: WSIP (w/ IDC Savings), Federal Funding (w/ IDC Savings)								
WSIP Public Benefits	47\%	\$2,773	28\%	\$766	60\%	\$1,662	12\%	\$345
Ecosystem Improvement	42\%	\$2,510	29\%	\$725	59\%	\$1,480	12\%	\$305
Anadromous Fish	52\%	\$1,294	38\%	\$488	49\%	\$630	14\%	\$86
Level 4 Refuge	21\%	\$534	44\%	\$238	49\%	\$260	7\%	\$36
Oroville Coldwater Pool	19\%	\$470	0\%	\$0	86\%	\$406	14\%	\$55
Yolo Bypass	8\%	\$212	0\%	\$0	86\%	\$183	14\%	\$25
Recreation	3\%	\$153	0\%	\$0	84\%	\$129	16\%	\$25
Flood Control	2\%	\$109	38\%	\$41	49\%	\$53	14\%	\$15
Non-Prop. 1 Eligible Benefits	53\%	\$3,158	0\%	\$0	0\%	\$0	100\%	\$3,158
Water Supply	44\%	\$2,634	0\%	\$0	0\%	\$0	100\%	\$2,634
M\&I Water Supply	65\%	\$1,714	0\%	\$0	0\%	\$0	100\%	\$1,714
Ag Water Supply	29\%	\$754	0\%	\$0	0\%	\$0	100\%	\$754
Recaptured Water Supply	6\%	\$167	0\%	\$0	0\%	\$0	100\%	\$167
Hydropower (System)	9\%	\$524	0\%	\$0	0\%	\$0	100\%	\$524
Total	100\%	\$5,931	13\%	\$766	28\%	\$1,662	59\%	\$3,503

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A10	CHECKER:	J HERRIN	DATE:	2017 AUGUST
CAVEAT:		QAQC:		REF/FILE \#:	WSIP APPLICATION
NOTES:					PAGE:

Table A10-3. Capital Cost Assignment: Present Value (2015\$; \$millions)

Purpose/Action	Total		Total Cost (Capital and IDC) - Annual					
			Federal Non-Reimbursable		WSIP		Authority	
	Percent	Cost (\$M)						
Cost Assignment: WSIP (w/ IDC Savings), Federal Funding (w/ IDC Savings)								
WSIP Public Benefits	46\%	\$2,392	31\%	\$730	69\%	\$1,662	0\%	\$0
Ecosystem Improvement	42\%	\$2,169	32\%	\$689	68\%	\$1,480	0\%	\$0
Anadromous Fish	52\%	\$1,118	44\%	\$488	56\%	\$630	0\%	\$0
Level 4 Refuge	21\%	\$461	44\%	\$201	56\%	\$260	0\%	\$0
Oroville Coldwater Pool	19\%	\$406	0\%	\$0	100\%	\$406	0\%	\$0
Yolo Bypass	8\%	\$183	0\%	\$0	100\%	\$183	0\%	\$0
Recreation	2\%	\$129	0\%	\$0	100\%	\$129	0\%	\$0
Flood Control	2\%	\$94	44\%	\$41	56\%	\$53	0\%	\$0
Non-Prop. 1 Eligible Benefits	54\%	\$2,784	0\%	\$0	0\%	\$0	100\%	\$2,784
Water Supply	44\%	\$2,276	0\%	\$0	0\%	\$0	100\%	\$2,276
M\&I Water	65\%	\$1,480	0\%	\$0	0\%	\$0	100\%	\$1,480
Agricultural Water	29\%	\$651	0\%	\$0	0\%	\$0	100\%	\$651
Recaptured Water	6\%	\$144	0\%	\$0	0\%	\$0	100\%	\$144
Hydropower (System)	10\%	\$509	0\%	\$0	0\%	\$0	100\%	\$509
Total	100\%	\$5,176	14\%	\$730	32\%	\$1,662	54\%	\$2,784

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1	VERSION:
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A10	CHECKER:	J HERRIN	DATE:	2017 AUGUST	
CAVEAT:		QAQC:		REF/FILE \#:	WSIP APPLICATION	
NOTES:					PAGE:	9

Table A10-4. Total Cost Assignment: Annual (2015\$; \$millions)

Purpose/Action	Total		Total Cost (Capital and OM\&R) - Annual					
			Federal Non-Reimbursable		WSIP		Authority	
	Percent	Cost (\$M)						
Cost Assignment: WSIP (w/ IDC Savings), Federal Funding (w/ IDC Savings)								
WSIP Public Benefits	47\%	\$97.8	28\%	\$27.0	60\%	\$58.6	12\%	\$12.2
Ecosystem Improvement	42\%	\$88.5	29\%	\$25.6	59\%	\$52.2	12\%	\$10.8
Anadromous Fish	52\%	\$45.6	38\%	\$17.2	49\%	\$22.2	14\%	\$6.2
Level 4 Refuge	21\%	\$18.8	44\%	\$8.4	49\%	\$9.2	7\%	\$1.3
Oroville Coldwater Pool	19\%	\$16.6	0\%	\$0	86\%	\$14.3	14\%	\$2.3
Yolo Bypass	8\%	\$7.5	0\%	\$0	86\%	\$6.5	14\%	\$1.0
Recreation	3\%	\$5.4	0\%	\$0	84\%	\$4.5	16\%	\$0.9
Flood Control	2\%	\$3.9	38\%	\$1.5	49\%	\$1.9	14\%	\$0.5
Non-Prop. 1 Eligible Benefits	53\%	\$111.3	0\%	\$0	0\%	\$0	100\%	\$111.3
Water Supply	44\%	\$92.9	0\%	\$0	0\%	\$0	100\%	\$93
M\&I Water	65\%	\$60.4	0\%	\$0	0\%	\$0	100\%	\$60.4
Ag Water	29\%	\$26.6	0\%	\$0	0\%	\$0	100\%	\$26.6
Recaptured Water	6\%	\$5.9	0\%	\$0	0\%	\$0	100\%	\$5.9
Hydropower (System)	9\%	\$18.5	0\%	\$0	0\%	\$0	100\%	\$18.5
Total	100\%	\$209.1	13\%	\$27.0	28\%	\$58.6	59\%	\$123.5

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1	VERSION:
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A10	CHECKER:	J HERRIN	DATE:	2017 AUGUST	
CAVEAT:		QAQC:		REF/FILE \#:	WSIP APPLICATION	
NOTES:				PAGE:	10 OF	

Figure A-1. Eligible Benefits Graph

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1	VERSION:
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A10	CHECKER:	J HERRIN	DATE:	2017 AUGUST	
CAVEAT:		QAQC:		REF/FILE \#:	WSIP APPLICATION	
NOTES:				PAGE:	11	OF

This file was submitted to the California Water Commission as a Microsoft Excel file. It has been converted to a PDF format for ease of access on our website.
A copy of the Excel file can be obtained by submitting a request to CWC@water.ca.gov.
Physical and Economic Benefits Summary

${ }^{1}$ Enter one of these benefits: Ecosystem, Water Quality, Flood Control, Emergency Response, Recreation, or Non-public benefit
${ }^{2}$ Net of any non-mitigated physical effects

Part 1. Physical and Economic Benefits. Repeat this block for each category of public or non-public benefit quantified							
Ecosystem							
Repeat Rows 1 through 4 for every quantified physical benefit in this benefit category							
1. Physical Benefit Name: Incremental Level 4 Refuge				Notes:			
2. Physical Benefit Measurement Units: TAF/Yr				Notes:			
		2030			2070		
	Enter Page Number from Application	With Project	Without Project	Difference	With Project	Without Project	Difference
3. Net Physical Benefit Measurement ${ }^{2}$	A3-7	35	0	35	31	0	31
4. Annual Economic Benefit, 2015 \$ Million/Yr	A3-7	\$16.1	\$0	\$16.1	\$24.6	\$0	\$24.6
5. Total Annual Monetized Benefit for the Category (sum of all row 4s.)	A3-3	na	na	\$62.4	na	na	\$145.5

[^3]| Enter Benefit Category here ${ }^{1}$ | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Repeat Rows 1 through 4 for every quantified physical benefit in this benefit category | | | | | | | |
| 1. Physical Benefit Name: Oroville Coldwater Pool | | | | Notes: | | | |
| 2. Physical Benefit Measurement Units: TAF/Yr | | | | Notes: | | | |
| | | 2030 | | | 2070 | | |
| | Enter Page Number from Application | With Project | Without Project | Difference | With Project | Without Project | Difference |
| 3. Net Physical Benefit Measurement ${ }^{2}$ | A3-8 | 2,786 | 2,760 | 26 | 2,651 | 2,620 | 31 |
| 4. Annual Economic Benefit, 2015 \$ Million/Yr | A3-9 | na | na | \$11.8 | na | na | \$25.0 |
| 5. Total Annual Monetized Benefit for the Category (sum of all row 4s.) | А3-3 | na | na | \$62.4 | na | na | \$145.5 |

${ }^{1}$ Enter one of these benefits: Ecosystem, Water Quality, Flood Control, Emergency Response, Recreation, or Non-public benefit
${ }^{2}$ Net of any non-mitigated physical effects

Part 1. Physical and Economic Benefits. Repeat this block for each category of public or non-public benefit quantified							
Ecosystem	Ecosystem						
Repeat Rows 1 through 4 for every quantified physical benefit in this benefit category							
1. Physical Benefit Name: Yolo Bypass				Notes:			
2. Physical Benefit Measurement Units: TAF/Yr				Notes:			
		2030			2070		
	Enter Page Number from Application	With Project	Without Project	Difference	With Project	Without Project	Difference
3. Net Physical Benefit Measurement ${ }^{2}$	A3-10	56	17	39	57	18	39
4. Annual Economic Benefit, 2015 \$ Million/Yr	A3-10	na	na	\$8.9	na	na	\$9.2
5. Total Annual Monetized Benefit for the Category (sum of all row 4s.)	A3-3	na	na	\$62.4	na	na	\$145.5

${ }^{1}$ Enter one of these benefits: Ecosystem, Water Quality, Flood Control, Emergency Response, Recreation, or Non-public benefit
${ }^{2}$ Net of any non-mitigated physical effects

Recreation							
Repeat Rows 1 through 4 for every quantified physical benefit in this benefit category							
1. Physical Benefit Name: Recreation				Notes:			
2. Physical Benefit Measurement Units: Increased Visitor Days				Notes:			
		2030			2070		
	Enter Page Number from Application	With Project	Without Project	Difference	With Project	Without Project	Difference
3. Net Physical Benefit Measurement ${ }^{2}$	A3-11	186,829	46,707	140,122	186,829	46,707	140,122
4. Annual Economic Benefit, 2015 \$ Million/Yr	A3-12	\$9.3	\$2.3	\$7.0	\$9.3	\$2.3	\$7.0
5. Total Annual Monetized Benefit for the Category (sum of all row 4s.)	A3-3	\$9.3	\$2.3	\$7.0	\$9.3	\$2.3	\$7.0

${ }^{1}$ Enter one of these benefits: Ecosystem, Water Quality, Flood Control, Emergency Response, Recreation, or Non-public benefit
${ }^{2}$ Net of any non-mitigated physical effects

${ }^{1}$ Enter one of these benefits: Ecosystem, Water Quality, Flood Control, Emergency Response, Recreation, or Non-public benefi
${ }^{2}$ Net of any non-mitigated physical effects

Part 1. Physical and Economic Benefits. Repeat this block for each category of public or non-public benefit quantified							
Non-public benefit							
Repeat Rows 1 through 4 for every quantified physical benefit in this benefit category							
1. Physical Benefit Name: Water Supply				Notes: Includes M\&I, Agricultural and Recaptured Supplies			
2. Physical Benefit Measurement Units: TAF/Yr				Notes:			
		2030			2070		
	Enter Page Number from Application	With Project	Without Project	Difference	With Project	Without Project	Difference
3. Net Physical Benefit Measurement ${ }^{2}$	A3-13	7,113	6,859	254	6,607	6,312	295
4. Annual Economic Benefit, 2015 \$ Million/Yr	A3-14	na	na	\$89.0	na	na	\$251.5
5. Total Annual Monetized Benefit for the Category (sum of all row 4s.)	A3-3	na	na	\$108.5	na	na	\$271.0

${ }^{1}$ Enter one of these benefits: Ecosystem, Water Quality, Flood Control, Emergency Response, Recreation, or Non-public benefit
${ }^{2}$ Net of any non-mitigated physical effects

Non-public benefit	Non-public benefit						
Repeat Rows 1 through 4 for every quantified physical benefit in this benefit category							
1. Physical Benefit Name: Hydropower (System)				Notes:			
2. Physical Benefit Measurement Units: MWh/Yr				Notes: Average Annual Hydropower Generation			
		2030			2070		
	Enter Page Number from Application	With Project	Without Project	Difference	With Project	Without Project	Difference
3. Net Physical Benefit Measurement ${ }^{2}$	A3-14	215,542	0	215,542	215,542	0	215,542
4. Annual Economic Benefit, 2015 \$ Million/Yr	A3-15	\$19.5	\$0	\$19.5	\$19.5	\$0	\$19.5
5. Total Annual Monetized Benefit for the Category (sum of all row 4s.)	A3-3	na	na	\$108.5	na	na	\$271.0

${ }^{1}$ Enter one of these benefits: Ecosystem, Water Quality, Flood Control, Emergency Response, Recreation, or Non-public benefit
${ }^{2}$ Net of any non-mitigated physical effects

Part 2. Total Economic Net Benefits and Allocated Cost by Benefit Category in 2015 \$ Million									
Sum of annual economic net benefits by type	Enter Page Number from Application	Ecosystem	Water Quality	Flood Control	Emergency Response	Recreation	Total Public Benefits	Non-Public Benefits	Total public and non-public benefits ${ }^{1}$
Sum of 2030 benefits from Part 1, Row 5	A3-3	\$62.35	\$0	\$4.4	\$0	\$7.0	\$73.73	\$108.52	
Sum of 2070 benefits from Part 1, Row 5	A3-3	\$145.5	\$0	\$4.4	\$0	\$7.0	\$156.83	\$271.0	
Present Value of Benefits over Planning Horizon using 3.5\% Discount Rate	A6-2	\$3,176	\$0	\$138	\$0	\$192	\$3,506	\$5,528	\$9,035
Present Value of Total Project Costs Allocated to each Benefit Category	A10-5	\$2,510	\$0	\$109	\$0	\$153	\$2,773	\$3,158	\$5,931
Capital Costs Allocated to Each Benefit Category	A10-6	\$2,169	\$0	\$94	\$0	\$129	\$2,392	\$2,785	\$5,176
Total Requested Program Cost Share	A10-5	\$1,480	\$0	\$53	\$0	\$129	\$1,662		

Part 3. Present Value of Project Costs, Cost-Effectiveness Measure, and Public Benefit Ratio, Million 2015 \$ Present Value

	Enter Page Number of Application	2015 \$ Million Present Value
Project Costs		
Capital costs as defined in Program regulations	A10-2	\$4,397
Interest during construction	A10-2	\$429
Replacement costs	A10-3	\$44
Future environmental mitigation or compliance obligation costs	A10-2	\$350
Operations, maintenance and repair (OM\&R) costs	A10-3	\$711
Other costs (describe)	na	\$0
Present Value of Total Project Costs ${ }^{1}$	A10-5	\$5,931
Present Value of Cost of Least-Cost Alternative that Provides the Same Total Physical Benefits	A2-2	\$6,926
Present Value of All Public and Non-public Benefits ${ }^{1}$	A6-2	\$9,035
Ratio of Present Value of Total Monetized Net Benefits to the Total Project Costs	A9-3	1.52
Present Value of Public Benefits ${ }^{1}$	A9-4	\$3,506
Total Requested Program Cost Share ${ }^{1}$	A9-4	\$1,662
Public Benefit Ratio: Ratio of Present Value of Monetized Net Public Benefits to the Total Requested Program Cost Share	A9-4	2.11
${ }^{1}$ Must match numbers in Part 2		

Benefit Calculation, Monetization, and Resiliency Tab
 Attachment 12: Uncertainty Analysis

A. 12 Attach the uncertainty analysis. See regulations section 6004(a)(8).

WSIP Application Instructions, March 2017

Response

This attachment describes the analysis of sources of uncertainty for Sites Reservoir. Such sources include climate change, future projects and water management actions, water supply projects, and drought performance.

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A12	CHECKER:	J HERRIN	DATE:	2017 AUGUST
CAVEAT:		QAVQC:		REF/FILE \#:	WSIP APPLICATION
NOTES:			PAGE:	1	OF

Sites Reservoir Project Sources of Uncertainty Analysis

August 9, 2017

Table of Contents

Introduction 5
Climate Change 6
Operational Flexibility 6
Future Projects and Water Management Actions 8
Multi-region Projects and Actions 8
Water Supply Projects 13
Ecosystem Improvement Projects and Actions 14
Tables
Table 1. Sites Reservoir Project Performance During Drought 16

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1	VERSION:
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A12	CHECKER:	J HERRIN	DATE:	2017 AUGUST	
CAVEAT:		QA/QC:		REF/FILE \#:	WSIP APPLICATION	
NOTES:			PAGE:	3	OF	16

Acronyms and Abbreviations

Authority	Sites Project Authority
CALFED	CALFED Bay-Delta Program
cfs	cubic feet per second
CVP	Central Valley Project
CVPIA	Central Valley Project Improvement Act
CWC	California Water Commission
Delta	Sacramento-San Joaquin River Delta
DEW	Drier/Extreme Warming
DWR	California Department of Water Resources
GCID	Glen Colusa Irrigation District
M\&I	municipal and industrial
MAF	million acre-foot (feet)
Operations Plan	Sites Reservoir Project Operations Plan
Reclamation	Bureau of Reclamation
SWP	State Water Project
SWRCB	State Water Resources Control Board
TAF	thousand acre-feet
T-C Canal	Tehama-Colusa Canal
TCCA	Tehama-Colusa Canal Authority
TRR	Terminal Regulating Reservoir
WMW	Wetter/Moderate Warming
WSIP	Water Storage Investment Program

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1	VERSI ON:
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A12	CHECKER:	J HERRIN	DATE:	2017 AUGUST	
CAVEAT:		QA/QC:		REF/FILE \#:	WSIP APPLICATION	
NOTES:			PAGE:	4	OF	16

Introduction

Sites Reservoir is able to provide operational flexibility to sustain both public and non Proposition 1 benefits under a range of future uncertain conditions including climate change, potential future projects and water management actions, and severe extended droughts. As an off-stream reservoir located in the Sacramento Valley north of the Sacramento-San Joaquin River Delta, Sites Reservoir provides a unique opportunity to provide public physical benefits and improve the operation and resiliency of the Central Valley water system.

The with-project conditions include a 1.81-million-acre-foot (MAF) reservoir, which would be located in the Sacramento Valley west of the town of Maxwell, and associated conveyance facilities including use of existing Tehama-Colusa Canal (T-C Canal) and Glenn-Colusa Irrigation District (GCID) Main Canal diversion and conveyance facilities, plus a proposed new diversion and discharge pipeline. The proposed reservoir would be filled by diversion of excess Sacramento River water that originates from unregulated tributaries to the Sacramento River downstream from Keswick Dam. These flows are "excess" to those needed to meet current regulatory requirements or other water demands.
Operation of the proposed reservoir would be in cooperation with the operations of existing Central Valley Project (CVP) and State Water Project (SWP) system facilities to facilitate and maximize the potential for a wide range of benefits.

The operation of Sites Reservoir Project would allow for the development and administration of an ecosystem enhancement storage account (EESA) that could be managed by the State to provide water for ecosystem and water quality purposes. Such an account would provide a pool of dedicated storage to manage in cooperation with existing operations to improve coldwater conservation storage, stabilize river flows during critical fisheries periods, increase flows through certain watercourses and/or facilities (such as, Yolo Bypass), improve water quality, and/or enhance habitat restoration.

Sites Reservoir Project would be operated in cooperation with CVP and SWP operations to coordinate releases from Shasta Lake, Lake Oroville, and Folsom Lake. Releases from Sites Reservoir would allow reduced releases from other reservoirs while still meeting requirements for minimum instream flow objectives, Sacramento River temperature requirements, and Delta salinity control assigned to CVP and SWP. Through this reduction in releases, storage could be conserved in Shasta Lake, Lake Oroville, and Folsom Lake to significantly increase operational flexibility to improve river water temperatures for fish survival, Delta water quality, flood control, and recreation.

Sites Reservoir Project EESA operations would achieve multiple public benefits over a wide range of hydrologic conditions. These public benefit objectives include the following actions:

- Increase coldwater pool conservation in Trinity Lake, Shasta Lake, Lake Oroville, and Folsom Lake
- Help regulate Sacramento River summer flows for best use of cold water for control of temperature conditions adverse to anadromous fish
- Provide (via upstream actions) incidental Delta water quality improvements in the summer and fall
- Stabilize Sacramento River fall flows for improving spawning and rearing success of anadromous fish
- Provide water to the Yolo Bypass to support salmon migration and summer food production for delta smelt
- Provide water to increase the quantity and frequency of deliveries to Level 4 refuge deliveries per CVPIA

In dry and critically dry years Sites Reservoir operations as proposed would prioritize improving Shasta Lake storage to preserve coldwater and improve water temperatures in the Sacramento River to protect Chinook salmon.

The following sections describe how the expected public physical benefits would be provided and sustained under the following sources of uncertainty:

- Climate Change
- Future Project and Water Management Actions
- Drought
- Other Sources of Uncertainty

Climate Change

The California Water Commission (CWC) provided three CaISim II models that represent a range of climate scenarios under year 2070 conditions. The primary WSIP 2070 model is required to be used as the basis for the analysis of project operations as part of the WSIP application. The two other models provided by the CWC represent alternative extreme climate scenarios. One is characterized by Wetter/Moderate Warming (WMW) conditions and other by Drier/Extreme Warming (DEW) conditions. Both climate conditions demonstrate more extreme hydrologic scenarios resulting in increased winter precipitation and reduced winter and spring snowpack, which causes higher winter runoff and reduced spring snow melt and decreased inflows to Central Valley rim reservoirs. In the WMW scenario there is increased precipitation and higher reservoir inflows and storage levels, and fewer dry years. In the DEW scenario, there are longer more severe dry periods and decreased reservoir inflows. These scenarios provide a range of uncertainty to allow evaluation of how the benefits of the project can be sustained under potential future extreme climate conditions.

Investigatory level analyses were performed for both the WMW and DEW scenarios with the inclusion of the Sites Reservoir project. These model runs were conducted as a sensitivity analysis and are not refined to a level where their numerical results can be used directly, but the results provide a strong indication of how the project will perform under these extreme future climate conditions.

The public benefits provided by Sites Reservoir are largely dependent on the capability to divert Sacramento River water into the reservoir when all other regulatory and water right requirements are met. In both the WMW and DEW climate scenarios, the average annual diversion to Sites Reservoir illustrates the resiliency of the project, as diversions are only reduced by six percent and three percent, respectively, when compared to the base WSIP 2070 model results. The results of the investigatory model runs for the 2070 WMW and DEW climate scenarios demonstrate that Sites Reservoir operations can be adapted to future conditions and provide sustained public benefits as described below.

Operational Flexibility

Sites Reservoir has the operational flexibility to deliver water to provide public benefits where and when it is needed most, based on changing conditions and ecosystem priorities. In the 2070 WMW climate scenario, less water is needed to preserve the coldwater pool in Shasta Lake, Lake Oroville, and Folsom Lake due to wetter hydrologic conditions, so more water can be prioritized for other public benefits such as late summer deliveries to the Yolo Bypass and increasing the quantity and frequency of deliveries to wildlife refuges.

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A12	CHECKER:	J HERRIN	DATE:	201
CAVEAT:		QA/QC:		REF/FILE \#:	WSI
NOTES:				PAGE:	6

In the 2070 DEW climate scenario, more public benefit water is needed to increase storage in Shasta Lake and other Central Valley reservoirs to preserve coldwater pools and enhance water temperature management for salmonids. Therefore, EESA operations may be adapted to emphasize coldwater pool management and less public benefit water could be allocated to other purposes.

EESA in Sacramento Valley Reservoirs

Increased water storage in Shasta Lake, Lake Oroville, and Folsom Lake would benefit salmonids through the conservation of coldwater pool in each reservoir and improved temperature management downstream. The additional water storage also provides the flexibility to release more water when needed to maintain stable flows for salmon habitat to provide better spawning and rearing conditions.

In the 2070 WMW climate scenario, increased inflows to Sacramento Valley reservoirs lead to higher storage levels. In this scenario, less public benefit water is needed to increase Shasta Lake and Lake Oroville storage since the reservoirs have sufficient water to provide flow stabilization and temperature management. Average annual September storage in Shasta Lake and Lake Oroville is increased slightly compared to the base WSIP 2070 condition. The primary benefit is a significant increase of 12 percent in average annual Folsom Lake storage in September to provide improved coldwater pool and flow management in the American River. This demonstrates the operational flexibility of the Sites Reservoir project to provide water for public benefits in responses to future climate change.

In the 2070 DEW climate scenario, public benefit water from Sites Reservoir can be used to significantly increase storage in central valley reservoirs year-round. During dry periods, there is sufficient EESA water in Sites Reservoir to support increased storage in Shasta Lake, Lake Oroville, and Folsom Lake compared to the without project WSIP 2070 condition. During critical drought periods, the average September storage in Shasta Lake is increased by 19 percent, Lake Oroville is increased by 14 percent, and Folsom Lake is increased by 10 percent, respectively. These storage increases help preserve and maintain coldwater in these reservoirs which provides operational flexibility to improve temperature management and downstream habitat for salmonids.

Yolo Bypass

In both the 2070 WMW and DEW climate scenarios, Sites Reservoir has adequate water stored in the EESA to sustain public benefit flows to the Yolo Bypass in the late summer and early fall through the Colusa Basin Drain and Knights Landing Ridge Cut. In the 2070 WMW scenario, water deliveries to the Yolo Bypass occur in over 90 percent of the years, as compared to 70 percent in the base WSIP 2070 condition.

In the 2070 DEW climate scenario, water is delivered to the Yolo Bypass in over 50 percent of the years, as compared to 70 percent in the base WSIP 2070 condition. In this scenario, Shasta Lake and other reservoir storage levels are lower so more EESA water from Sites Reservoir is dedicated to preserving storage and coldwater in Shasta Lake, Lake Oroville, and Folsom Lake. Therefore, slightly less EESA is delivered to the Yolo Bypass.

Refuge Deliveries

In both the 2070 WMW and DEW climate scenarios, Sites Reservoir has adequate water stored in the EESA to sustain public benefit deliveries to wildlife refuges in the Central Valley to meet CVPIA Level 4 targets. In the 2070 WMW scenario, Level 4 refuge deliveries increase due to more available water in storage. In the 2070 DEW scenario, refuge deliveries would possible decrease as EESA operations shift to support the conservation of coldwater in Shasta Lake, Lake Oroville, and Folsom Lake for dry and critical year temperature management.

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1	VERSION:
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A12	CHECKER:	J HERRIN	DATE:	2017 AUGUST	
CAVEAT:		QA/QC:		REF/FILE \#:	WSIP APPLICATION	
NOTES:			PAGE:	7	OF	16

Non-Proposition-1 Water Supply Benefits

Water deliveries to project participants would be sustained under potential future extreme climate conditions as diversions of excess Sacramento River flow to storage only decrease slightly as noted previously. CVP and SWP project water deliveries are reduced under these two extreme conditions, as compared to the without project WSIP 2070 condition. Therefore, water deliveries from Sites Reservoir in the 2070 WMW and DEW climate scenarios to supplement existing water sources provides additional water supply reliability under these future extreme climate conditions.

Future Projects and Water Management Actions

This uncertainty analysis of future projects and water management actions is consistent with the list of projects evaluated in the Draft EIR/EIS cumulative impact assessment

The projects and actions identified are organized in the following groups:

- Multi-regional water resources projects and actions
- Water supply projects
- Ecosystem improvement projects and actions

Qualitative descriptions of the potential effects to public physical benefits, as well as potential improvements are provided below. Some of the descriptions are based on rough investigatory analyses or post-processing of WISP 2070 results to attempt to characterize the operational flexibility to sustain public benefits under these potential future conditions.

Multi-region Projects and Actions

The multi-region projects and actions considered in this discussion that may affect the potential public benefits are:

- Bay-Delta Water Quality Control Plan Update
- Bay Delta Conservation Plan/California WaterFix
- Sustainable Groundwater Management Act (SGMA)
- Reclamation and DWR Request for Reinitiation of Section 7 Consultation Addressing the Long-term Operation of the CVP and SWP (also referred to as Reconsultation)
- NMFS Public Draft Recovery Plan for Sacramento River Winter run Chinook Salmon, Central Valley Spring-run Chinook Salmon, and Central Valley Steelhead
- U.S. Fish and Wildlife Service (USFWS) Recovery Plan for the Sacramento-San Joaquin Delta Native Fishes

Bay-Delta Water Quality Control Plan Update

The State Water Board is in the process of developing and implementing updates to 2006 WQCP that protect beneficial uses in the Bay-Delta watershed. This update is broken into four phases, some of which are proceeding concurrently. Phase 1 of this work, currently in progress, involves updating San Joaquin River flow and southern Delta water quality requirements for inclusion in the WQCP. Phase 2 will involve comprehensive changes to the WQCP to protect beneficial uses not addressed in Phase 1, focusing on Sacramento River driven standards. Phase 3 will involve implementation of Phases 1 and 2 through changes to water rights and other measures; this phase requires a hearing to determine the

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A12	CHECKER:	J HERRIN	DATE:	2017 AUGUST
CAVEAT:		QAQC:		REF/FILE \#:	WSIPAPPLICATION
NOTES:			PAGE:	8	OF

appropriate allocation of responsibility between water rights holders within the scope of the Phase 1 and Phase 2 plans. Phase 4 will involve developing and implementing flow objectives for priority Delta tributaries upstream of the Delta.

There is considerable uncertainty associated with the future development and implementation of flow criteria in the Sacramento River watershed to address tributary-specific public trust needs and other beneficial uses. Water stored in the EESA in Sites Reservoir could be used to enhance public benefit objectives in addition to public trust needs over a wide range of potential future regulatory and operational conditions. The EESA provides the operational flexibility to manage the water associated with the Sites Project to the highest priority needs on an adaptive management basis. Implementation of actions to provide public benefits will be adaptively managed on a continuing basis in response to changing system characteristics (such as reservoir storage), ecological needs, forecasts of future hydrologic conditions, and system operations.

Total average annual diversions of excess Sacramento River flow to Sites Reservoir, based on CalSim II model results, for future 2070 conditions are 588 TAF. The volume of excess flow available for diversion in between December and March allows the seasonal timing of diversions during storm events to be adapted to potential future regulatory requirements. Examples of potential adaption measures include shifting the timing of primary diversion periods (including day-night operations to avoid salmon movements that occur predominantly during dark hours), shifting facility operations and maintenance periods, and shifting diversions between the three intake locations. Therefore, the project has the operational flexibility to adapt diversion, storage, and release operations to provide public physical benefits such as coldwater pool management, refuge deliveries, and Yolo Bypass flow enhancement under a range potential future regulatory regimes.

Bay Delta Conservation Plan/California WaterFix

California Bay Delta Conservation Plan and the California WaterFix are being developed by federal and State agencies and other stakeholders to achieve the dual goals of a reliable water supply for California and a healthy California Bay-Delta ecosystem that supports the State's economy. The program would construct a new diversion and conveyance facility, modify operation of existing CVP and SWP Delta facilities, and reduce ecological stressors that impair the function or the use of the Delta by aquatic and terrestrial resources. The preferred project would convey water under the existing water rights held by DWR and Reclamation; however, DWR and Reclamation have requested changes in the points of diversion for these water rights. The existing 2008 USFWS and 2009 NMFS biological opinions will continue to be implemented until construction of the WaterFix is complete and Reclamation has submitted additional information or a request for reconsultation by the end of construction of the preferred project.

Investigatory level analyses were conducted to assess the interaction between the Sites Reservoir and the proposed WaterFix operations. These investigatory analyses were only developed for sensitivity evaluation purposes, but they do provide an indication of the potential performance of Sites Reservoir in coordination with WaterFix. The results indicate that there is sufficient excess Sacramento River flow available downstream of the Delevan Intake to avoid conflicts between the two projects. The spring outflow criterion for March through May proposed as part of the WaterFix operations would have minimal impacts on diversions to Sites Reservoir as the majority of Sites diversions occur between December and February. The seasonal timing of Sites Project diversions could be shifted to reduce or avoid diversions in March by changing Tehama Colusa Canal Authority (TCCA), Glen Colusa Irrigation District (GCID), and Sites Project facility operations and maintenance periods. Sites Project operations are designed to store water during wet periods and then release water later during periods of critical public benefit need. The investigatory analyses indicate the project has the operational flexibility to shift

the timing of diversions, reservoir storage, and release operations to maintain and potential enhance public physical benefits such as coldwater pool management, refuge deliveries, and Yolo Bypass flow enhancement in cooperation with WaterFix facility operations.

Sustainable Groundwater Management Act

The Sustainable Groundwater Management Act of 2014 (SGMA) provides a framework for long-term sustainable groundwater management across California. Under the legislation, local and regional authorities in medium and high priority groundwater basins will form Groundwater Sustainability Agencies (GSAs) that oversee the preparation and implementation of a local Groundwater Sustainability Plan (GSP). Local stakeholders have until 2017 to organize themselves in Groundwater Sustainability Agencies. Groundwater Sustainability Plans will have to be in place and implementation begun sometime between 2020 and 2022. GSAs will have until 2040 to achieve groundwater sustainability.

No groundwater benefits have been monetized; however, the Sites Reservoir project would potentially beneficially affect groundwater basins within service areas of project participants, particularly those within the Sacramento River Hydrologic Region. Some of the participants are designated as a GSA for affected groundwater basins, including but not limited to Colusa County, Colusa County Water District, Santa Clara Valley Water District, and Zone 7 Water Agency. Many other agencies participating in the Sites Project also participate in Groundwater Sustainability Agencies. These member agencies will be involved in the future integration of the Sites Project into their respective Groundwater Sustainability Plans (GSPs). Coachella Valley Water District, Desert Water Agency, Santa Clara Valley Water District, and Zone 7 Water Agency have each submitted prescribed Alternatives to a GSP, consisting of groundwater management plans or an analysis of basin conditions. The Sites Reservoir Project could be incorporated into future updates of these Alternatives.

In addition, Sites participants: Desert Water Agency, California Water Service, San Bernardino Valley Municipal Water District, Metropolitan Water District of Southern California and San Gorgonio Pass Water Agency are affiliated with adjudicated groundwater basins. Antelope Valley - East Kern Water Agency is affiliated with a groundwater basin that is pending adjudication. Water deliveries from the Sites Reservoir Project could be incorporated into the management strategy for these basins. The associated operations by participating agencies with adjudicated basins would be included in annual monitoring and reporting activities. Additional analysis is provided under the ELIGIBILITY TAB in attachment Sites_A6C Groundwater Basins.

Reclamation and DWR Request for Reinitiation of Section 7 Consultation Addressing the Long-term Operation of the CVP and SWP (Reconsultation)

On August 2, 2016, Reclamation and DWR requested the USFWS and NMFS to reinitiate consultation under Section 7 of the Endangered Species Act of the Long-term Coordinated Operation of the CVP and SWP to review the Reasonable and Prudent Alternative presented in the 2008 USFWS Biological Opinion and 2009 NMFS Biological Opinion, respectively. This request for reconsultation was based upon new information collected and analyzed during multiple years of drought, additional data that indicated continued low Delta smelt populations, and new information being developed during ongoing collaborative science processes (e.g., Collaborative Science and Adaptive Management Team and Collaborative Adaptive Management Team processes). Reclamation and DWR also requested that the California Department of Fish and Wildlife participate in this ongoing program.

There is considerable uncertainty associated with the potential outcome of reinitiation of Section 7 consultation for the long-term operations of the CVP and SWP. Water stored in the EESA in Sites

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1	VERSION:
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A12	CHECKER:	J HERRIN	DATE:	2017 AUGUST	
CAVEAT:		QA/QC:		REF/FILE \#:	WSIP APPLICATION	
NOTES:			PAGE:	10	OF	16

Reservoir could be used in cooperation with CVP/SWP operations to enhance public benefits over a wide range of conditions. The EESA provides the operational flexibility to manage the water associated with the Sites Project to the highest priority needs on an adaptive management basis. Implementation of actions to provide public benefits would be evaluated on a continuing basis in response to changing system parameters, ecological needs, forecasts of future hydrologic conditions, and system operations. For example, as described in the operations plan, water stored the EESA in Sites Reservoir could be exchanged for water normally delivered from other Sacramento Watershed reservoirs and by that exchange Sites EESA water would be "backed" into Lake Shasta, Oroville, or Folsom to increase water storage and thereby help preserve the coldwater pool to enhance fisheries benefit operations.

It is not anticipated that the outcome of the reconsultation will change the ability of the Sites Project to divert excess Sacramento River flows into reservoir storage during major storm events. Results of the CALSIM II future WSIP 2070 condition simulation show an average annual diversion of 588 TAF of excess Sacramento River flow to Sites Reservoir. With an average annual volume of about 2 million acre-feet (MAF) of excess flow available, the seasonal timing of diversions during storm events could be adapted to accommodate potential changes in future CVP/SWP operational and regulatory requirements.

Examples of potential adaption measures include shifting the timing of primary diversion periods, shifting facility operations and maintenance periods, and shifting diversions between the three intake locations. Therefore, the project has the operational flexibility to adapt diversion, storage, and release operations to provide public physical benefits such as coldwater pool management, refuge deliveries, and Yolo Bypass flow enhancement under a range potential future operations and regulatory regimes.

NMFS Public Draft Recovery Plan for Sacramento River Winter-run Chinook Salmon, Central Valley Spring-run Chinook Salmon, and Central Valley Steelhead

The NMFS Draft Recovery Plan provides a roadmap that describes the steps, strategy, and actions that should be taken to return winter-run Chinook salmon, spring-run Chinook salmon, and steelhead to viable status in the Central Valley, California, thereby ensuring their long-term persistence and evolutionary potential.

Excess Sacramento River flow diversions to Sites Reservoir would only take place when flow monitoring indicates that bypass flows are present in the river due to storm event flows. Several existing and additional proposed bypass flow criteria are designed to make certain only excess water would be diverted into Sites Reservoir to maintain and protect existing downstream water uses. As a mitigation measure to more fully avoid and minimize entrainment and impingement of juvenile salmonids and other poor-swimming aquatic species, diversions to Sites Reservoir would also be restricted to protect fish migration during naturally occurring, storm-induced, pulse flow events in the Sacramento River. The proposed pulse protection period would extend from October through May to address outmigration of juvenile winter-, spring-, fall- and late-fall-run Chinook salmon, as well as steelhead.

Due to the combination of operational flexibility and mitigation measures to protect fish during outmigration, it is not anticipated that the NMFS Recovery Plan will change the ability of the Sites Project to provide identified public physical benefits. Water stored in the EESA in Sites Reservoir could be used in cooperation with CVP/SWP operations to enhance public benefits to support chinook salmon, steelhead and sturgeon. The EESA provides the operational flexibility to manage the water associated with the Sites Project to the highest priority needs on an adaptive management basis. As described above, water in stored the EESA in Sites Reservoir could be exchanged and "backed" into Lake Shasta, Oroville, or Folsom to increase water storage and thereby help preserve the coldwater pool to enhance fisheries temperature and flow management operations.

There are number of options being evaluated by the Yolo Bypass-Salmonid Habitat Restoration and Fish Passage Project to modify Fremont Weir to pass a range of flows between 3,000 and 12,000 cfs to provide fish passage and extend periods of inundation. Investigatory level analyses were conducted to provide an indication of the performance of Sites Reservoir operations in coordination with the fish passage project. The results indicate that there is sufficient excess Sacramento River flow available downstream of the Delevan Intake to avoid conflicts with potential future Fremont Weir modifications and operations. Sites Reservoir water could also be released to the Sacramento River or through the Colusa Basin Drain and Knights Landing Ridge Cut to supplement flows into the Yolo Bypass to increase flow levels to promote activation of the flood plain and extend periods of inundation. This concept could also be applied to other isolated floodplains and future weir modifications.

The investigatory analyses indicate the Sites Project has the operational flexibility to shift the timing of diversions, reservoir storage, and release operations to maintain and potentially enhance public physical benefits such as coldwater pool management, refuge deliveries, and Yolo Bypass flow enhancement in cooperation with actions included in the NMFS Public Draft Recovery Plan.

USFWS Recovery Plan for the Sacramento-San Joaquin Delta Native Fishes

The USFWS Recovery Plan addresses the recovery needs for several fish species that occupy the Delta, including delta smelt, Sacramento splittail, longfin smelt, green sturgeon, Chinook salmon (spring-run, late fall-run, and San Joaquin fall-run), and Sacramento perch (believed to be extirpated). The objective of the plan is to establish self-sustaining populations of these species that will persist indefinitely. This would be accomplished by managing the estuary to provide better habitat for aquatic life in general and for the fish addressed by the plan. Recovery actions include tasks such as increasing freshwater flows; reducing entrainment losses to water diversions; reducing the effects of dredging, contaminants, and harvest; developing additional shallow-water habitat, riparian vegetation zones, and tidal marsh; reducing effects of toxic substances from urban non-point sources; reducing the effects of introduced species; and conducting research and monitoring.

Excess Sacramento River flow diversions to Sites Reservoir would only take place when flow monitoring indicates that bypass flows are present in the river due to storm event flows. Several existing and additional proposed bypass flow criteria are designed to make certain only excess water would be diverted into Sites Reservoir to maintain and protect existing downstream water uses. As a mitigation measure to more fully avoid and minimize entrainment and impingement of juvenile salmonids and other poor-swimming aquatic species, diversions to Sites Reservoir would also be restricted to protect fish migration during naturally occurring, storm-induced, pulse flow events in the Sacramento River. The proposed pulse protection period would extend from October through May to address outmigration of juvenile winter-, spring-, fall- and late-fall-run Chinook salmon, as well as steelhead and other anadromous fish.

It is not anticipated that the USFWS Recovery Plan will change the ability of the Sites Project to provide identified public physical benefits. Water stored in the EESA in Sites Reservoir could be used in cooperation with CVP/SWP operations to enhance public benefits to support fish species in the Delta. The EESA provides the operational flexibility to manage the water in Sites Reservoir storage for the highest priority needs on an adaptive management basis. Water stored the EESA in Sites Reservoir could be released through the Colusa Basin Drain and Knights Landing Ridge Cut during summer and fall months (i.e., August through October) to help increase productivity in the Yolo Bypass in the lower Cache Slough and lower Sacramento River areas to increase desirable food sources for Delta smelt and other key fish species.

Water Supply Projects

The water supply projects considered that may affect potential public benefits include:

- Shasta Lake Water Resources Investigation
- North Bay Aqueduct Alternative Intake
- Los Vaqueros Reservoir Expansion Phase II

Shasta Lake Water Resources Investigation

The Shasta Lake Water Resources Investigation is currently being conducted by Reclamation to determine the type and extent of federal interest in a multiple purpose plan to modify Shasta Dam and Reservoir to increase the survival of anadromous fish populations in the upper Sacramento River and increase water supplies and water supply reliability for agricultural, municipal, industrial, and environmental purposes. To the extent possible through meeting these objectives, alternatives include features to benefit other identified water and related resource needs including ecosystem conservation and enhancement, improved hydropower generation capability, flood damage reduction, increased recreation opportunities, and improved water quality conditions in the Sacramento River and the Delta. Anticipated alternatives for expansion of Shasta Lake include, among other features, raising the dam from 6.5 to 18.5 feet above current elevation, which would result in additional storage capacity of 256,000 to 634,000 acre-feet, respectively. The increased capacity is expected to improve water supply reliability and increase the coldwater pool, which would provide improved water temperature conditions for anadromous fish in the Sacramento River downstream of the dam. The final EIS and Feasibility Study for the project were completed in July/August 2015.

Investigatory level analyses were conducted to assess the interaction between Sites Project operations and the proposed increase to Shasta Lake storage capacity. These investigatory analyses provide an indication of potential performance of Sites Project in coordination with an increase in storage in Shasta Lake. Sites Reservoir would be filled through the diversion of excess Sacramento River water that originates from unregulated tributaries to the Sacramento River downstream from Keswick Dam. Less than 1 percent of diversions to Sites Reservoir are assumed to be provided by flood releases or spills that flow through Shasta Lake. Therefore, there is sufficient excess Sacramento River flow available downstream of Keswick Dam so there is no conflict between the two facility operations.

As proposed, the increase in Shasta Lake storage will not change the ability of the Sites Project to provide identified public physical benefits. Water stored in the EESA in Sites Reservoir could be used in cooperation with CVP/SWP operations to enhance public benefits to support chinook salmon and steelhead. The EESA provides the operational flexibility to manage the water in Sites Reservoir storage to the highest priority needs on an adaptive management basis. As described above, water stored in the EESA in Sites Reservoir could be exchanged and "backed" into Shasta Lake to increase water storage and thereby help preserve the coldwater pool to enhance fisheries temperature and flow management. Increased storage capacity in Shasta Lake could provide additional opportunity to exchange water into storage in Shasta Lake and preserve coldwater resources during critical periods.

North Bay Aqueduct Alternative Intake

DWR issued a Notice of Preparation on December 2, 2009 to construct and operate an alternative intake on the Sacramento River, generally upstream of the Sacramento Regional Wastewater Treatment Plant, and connect it to the existing North Bay Aqueduct system by a new segment of pipe. The proposed alternative intake would be operated in conjunction with the existing North Bay Aqueduct intake at Barker Slough. The project would be designed to improve water quality and to provide reliable deliveries

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A12	CHECKER:	J HERRIN	DATE:	2017 AUGUST
CAVEAT:		QAVC:		REF/FILE \#:	WSIPAPPLICATION
NOTES:			PAGE:	13	OF

of SWP supplies to its contractors, the Solano County Water Agency, and the Napa County Flood Control and Water Conservation District (DWR, 2011).

Based on a review of potential operations, it is not anticipated that the alternative intake project will affect the ability of the Sites Project to provide identified public physical benefits.

Los Vaqueros Reservoir Expansion Phase II

Los Vaqueros Reservoir is an off-stream reservoir in the Kellogg Creek watershed to the west of the Delta. The Los Vaqueros Reservoir initial construction was completed in 1997 as a 100,000 acre-foot offstream storage reservoir owned and operated by Contra Costa Water District (CCWD) to improve delivered water quality and emergency storage reliability for CCWD's customers. In 2012, the Los Vaqueros Reservoir was expanded to a total storage capacity of 160,000 acre-feet (Phase 1) to provide additional water quality and supply reliability benefits, and to adjust the timing of its Delta water diversions to accommodate the life cycles of Delta aquatic species, thus reducing species impact and providing a net benefit to the Delta environment. An additional expansion up to 275,000 acre-feet (Phase 2) is being evaluated by CCWD.

Preliminary investigatory level analyses conducted to assess the interaction between the Sites Project and the proposed Los Vaqueros expansion indicate that there is sufficient excess Sacramento River flow available downstream of the Delevan Intake to avoid conflicts between the two operations. Los Vaqueros Reservoir is located in the Delta which is the lowest point in the watershed, therefore it is the location with the greatest amount of surplus. The seasonal timing of Sites diversions between December and May could be coordinated with Los Vaqueros operations to maximize public benefits of both projects.

Ecosystem Improvement Projects and Actions

The ecosystem improvement projects and actions considered in the cumulative impact assessment that may affect or be enhanced by potential public benefits include:

- Yolo County HCP/Natural Community Conservation Plan (NCCP)
- Yolo Bypass Wildlife Area Land Management Plan
- Cache Slough Complex Restoration

Yolo County Habitat/Natural Community Conservation Plan

The Yolo County Habitat Joint Powers Authority, consisting of five local public agencies, launched the Yolo Natural Heritage Program in March 2007. This effort includes the continuing preparation of a joint HCP/NCCP. Member agencies include Yolo County and the Cities of Davis, Woodland, West Sacramento, and Winters. The HCP/NCCP describes the measures that local agencies will implement in order to conserve biological resources, obtain permits for urban growth and public infrastructure projects, and continue to maintain the agricultural heritage and productivity of Yolo County.

The Sites Reservoir Project has the ability to enhance public physical benefits in the Yolo bypass through the release water through the Colusa Basin Drain and Knights Landing Ridge Cut during summer and fall months (i.e., generally August through October when adequate capacity of the Colusa Basin Drain is available) to help increase fish productivity in the Yolo Bypass in the lower Cache Slough and lower Sacramento River areas. Building on what was learned in the 2016 pilot project, these enhancement flows will increase desirable food sources for Delta smelt and other key fish species in the late summer and early fall. In addition, releases of Sites EESA water into the bypass could be timed to provide water flows, depths, and durations to benefit other aquatic and terrestrial wildlife.

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1	VERSION:
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A12	CHECKER:	J HERRIN	DATE:	2017 AUGUST	
CAVEAT:		QAVQ:		REF/FILE \#:	WSIP APPLICATION	
NOTES:			PAGE:	14	OF	16

Other Sites Project water release patterns to augment other environmental programs would be reasonable to consider in cooperation with future unrelated actions (e.g.; the new operational notching of the Fremont weir to support riparian and wetland habitat restoration in the Yolo Bypass) associated with the HCP/NCCP measures or the Central Valley Flood Protection Program.

Yolo Bypass Wildlife Area Land Management Plan

The Yolo Bypass Wildlife Area consists of approximately 16,770 acres of managed wildlife habitat and agricultural land within the Yolo Bypass. The bypass conveys seasonal high flows from the Sacramento River to help control river stage and protect the cities of Sacramento, West Sacramento, and Davis, as well as other local communities, farms, and lands from flooding. Substantial environmental, social, and economic benefits are provided by the Yolo Bypass, benefiting the people of the State of California.

As noted previously, releases of Sites EESA water into the Yolo Bypass could provide water flows, depths, and durations to benefit aquatic species and terrestrial wildlife.

Cache Slough Complex Restoration

The Cache Slough Complex is located in the northern Delta where Cache Slough and the southern Yolo Bypass meet. It currently includes Liberty Island, Little Holland Tract, Prospect Island, Little Egbert Tract and the surrounding waterways. Levee height on these tracts is restricted and designed to allow overtopping in large flow events to convey water from the upper Yolo Bypass. Since 1983 and 1998 respectively, Little Holland Tract and Liberty Island have remained breached. Restoration is occurring naturally on the islands. Restoration in the Cache Slough Complex was identified as an Interim Delta Action by Governor Schwarzenegger in July 2007.

As noted previously, releases of Sites EESA water into the Yolo Bypass could provide water flows, depths, and durations to benefit aquatic species and terrestrial wildlife.

Drought Performance

To evaluate project performance during a five-year drought period, the results of the WSIP 2070 with Sites Reservoir simulation were compared to the base without project WSIP 2070 results for the period 1930 through 1934. During extended drought periods, the public benefit operations of Sites Reservoir prioritize increasing storage in Shasta Lake, Lake Oroville, and Folsom Lake to help preserve the coldwater pools and provide releases to maintain appropriate river water temperatures downstream. Public benefit water would also be used for other high priority needs on an adaptive management basis. Implementation of actions to provide public benefits would be evaluated on a continuing basis in response to changing system parameters (such as reservoir storage), ecological needs, forecasts of future hydrologic conditions, and system operations.

Table 1 presents the volume of water in system storage and in the Sites Reservoir EESA that could be used for public benefit over the course of the 5-year drought period. System reservoir storage is typically highest in May and lowest in September after releases have been made over the summer and before the first fall storm events. Sites Reservoir operations increase system storage for public benefits creating operational flexibility to provide manage cold water storage and temperature flows to benefit salmonids. As shown in Table 1, total system storage that could be used for public benefits in the first year of the drought (May of 1930) is 900 TAF declining to 300 TAF in end of the fourth consecutive year of drought (September of 1934).

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1 VERSION:	C
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A12	CHECKER:	J HERRIN	DATE:	2017 AUGUST	
CAVEAT:		QA/QC:		REF/FILE \#:	WSIP APPLICAT	
NOTES:				PAGE:	15 OF	

Table 1. Sites Reservoir Project Performance During Drought

Increase in Reservoir System Storage with Sites Reservoir over the 5-Year Drought Period From 1930 to 1934						
	System Storage for Public Benefits (TAF) (Shasta, Oroville, and Folsom)		Sites EESA for Public Benefits (TAF)		Total Public Storage Benefit (TAF)	
Year	May	Sep	May	Sep	May	Sep
1930	489	182	416	398	905	581
1931	668	623	253	0	921	623
1932	562	201	165	128	727	329
1933	507	475	103	0	611	475
1934	454	302	172	0	626	302

Other Sources of Uncertainty

The preceding sections adequately cover the range of potential uncertain future conditions that may affect the public physical benefits identified. As discussed previously, the operation of Sites Reservoir Project would allow for the development and administration of an ecosystem enhancement storage account (EESA) that could be managed by the State to provide water for ecosystem and water quality purposes. The EESA provides the operational flexibility for the State's resource managers delegated the responsibility to manage the water stored in Sites Reservoir to sustain public benefits to meet future needs on an adaptive management basis.

The volume of excess flow in the Sacramento River available for diversion primarily between December and March allows the seasonal timing of diversions during storm events to be adapted to potential future uncertain conditions. Examples of potential adaption measures include shifting the timing of primary diversion periods, shifting facility operations and maintenance periods, and shifting diversions between the three intake locations. Therefore, the project has the operational flexibility to adapt diversion, storage, and release operations to provide public benefits such as coldwater pool management, refuge deliveries, and Yolo Bypass flow enhancement over a range potential uncertain future conditions.

Proposal Full View

Print
APPLICANT INFORMATION

the project. If the State accepts full responsibility for the public benefits, this would provide a long-term average of 195 TAF of water for public benefits. The submittals in this application assume the State would instead prefer federal participation with shared investment in public benefits at a level that reduces capital costs for the Water Storage Investment Program (WSIP) program. This anticipates future federal funding under the Water Infrastructure for Improvements to the Nation (WIIN) Act.

BUDGET

Other Contribution	0
Local Contribution	2720000000
Federal Contribution	730000000
Inkind Contribution	64000000
Amount Requested $*$	1662000000
Total Proposal Cost $*$	5176000000

GEOGRAPHIC INFORMATION

Latitude *	$\begin{aligned} & \text { DD } \\ & (+/-): ~ \end{aligned}$	39	MM:	18	SS:	31
Longitude *	$\begin{aligned} & \text { DD } \\ & (+/-): ~ \end{aligned}$	122	MM:	20	SS:	17
Longitude/Latitude Clarification	The lat longitu to the Sites a Roads, point o Antelo Reserv project reservo 14,000 approx pipelin	itude and de correspond intersection of nd Huffmaster the current f access to pe Valley. Sites oir is a large with a main ir of over acres and 13 miles of es.	Loca	ation		reservoir in sa and Glenn ties. New pipeline Sacramento
County*	Colusa,Glenn					
Ground Water Basin	Sacramento Valley-Colusa					
Hydrologic Region	Sacramento River					
Watershed	Colusa Basin (80)					

LEGISLATIVE INFORMATION

Assembly District*	3rd Assembly District
Senate District*	4th Senate District
US Congressional District*	District 3 (CA)

Project Information

PROJECT NAME: SITES PROJECT

SITES PROJECT

Implementing Organization	Sites Project Authority
Secondary Implementing Organization	
Proposed Start Date	$1 / 1 / 0001$
Proposed End Date	$1 / 1 / 0001$
Scope Of Work	
Project Description	
Project Objective	

PROJECT BENEFITS INFORMATION

No records found.

BUDGET

Other Contribution	0
Local Contribution	2720000000
Federal Contribution	730000000
Inkind Contribution	64000000
Amount Requested*	1662000000
Total Project Cost*	5176000000

GEOGRAPHIC INFORMATION

Latitude *

DD (+/-): $:$	39	MM:	18	SS:	31

LEGISLATIVE INFORMATION

Assembly District**	3rd Assembly District
Senate District*	4th Senate District
US Congressional District*	District 3 (CA)

Section : ELIGIBILITY AND GENERAL PROJ ECT INFORMATION

ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB

Q. 1 Applicant Type:

Specify which of the following describes the applicant:
Joint powers authority V
Q. 2 Project Type:

Please identify the appropriate project type for the application:
Surface Storage Projects Identified in the CALFED V

Please identify the public benefit categories for which Program funding is requested:
a) ∇ Ecosystem Improvements (must be included)
b) \boxtimes Water Quality Improvements
c) ∇ Flood Control Benefit
d) \checkmark Emergency Response
e) \boxtimes Recreational Purposes

Q.4:

Explain why the proposed project does not adversely affect any river afforded protection pursuant to the California or Federal Wild and Scenic Rivers Act. See section 6003(a)(1)(I) of the regulations.
The dams for Sites Reservoir would be constructed on Funks and Stone Corral Creeks. Neither watercourse is protected by the California or Federal Wild and Scenic Rivers Act. No protected rivers would be impacted. See Chapter 6 (Section 6.3) in the Draft EIR/S (http://sitesproject.org/information/DraftEIR-EIS)for a detailed analysis of impacts to surface water.

Q.5:

Is the applicant an agricultural or urban water supplier as defined in section 6001 of the Program regulations? If not, enter "Not Applicable"; if so, has the applicant submitted complete Agricultural or Urban Water Management Plans to DWR? Have those plans been verified as complete by DWR? If not, explain how the applicant is working towards compliance with the requirements of Water Code section 10608.56. See section 6003(a)(1)(J) of the regulations.
The Sites Project Authority is composed of representatives of the potentially affected counties, and water management agencies within the Sacramento River watershed. The Sites Project Reservoir Committee participants include both urban and agricultural water suppliers. All participants that are required to submit plans have submitted plans to DWR. Some of the Urban Water Management Plans have already been approved. The remaining plans are currently under review by DWR. All applicants will work with DWR to resolve any future comments on their plans. The status for the plans of each individual agency participating in Sites Reservoir is provided in the Water Management Plan Summary in Attachment Sites_A6B WMPs.xls of this tab.

Q.6:

Does the proposed project affect groundwater basins, as defined by Water Code section 10722 et seq.? If not, enter "Not Applicable"; if so, identify the affected groundwater basins and describe how the project would be integrated with future GSP(s). Explain how the project would reduce, eliminate, or have an effect on undesirable results (as defined in regulations section $6001(\mathbf{a})(85)$) within the affected groundwater basin(s). Describe how the applicant would work with GSA(s) or adjudicated participants of the basin. See regulations section 6003(a)(1)(K).
Sites Reservoir would help alleviate undesirable conditions in the Colusa Groundwater Basin. Desert Water Agency and the Coachella Valley Water Agency would use water from Sites for groundwater replenishment to address undesirable results in their basins. An attachment on Groundwater Management is provided in Attachment Sites_A6C Groundwater Basins of this tab.
A. 1 Executive Summary:

Attach the executive summary (max 20 pages). See regulation section 6003(a)(1)(A).
Last Uploaded Attachments: Sites_A1 ExecSum.pdf

A. 2 Resolution:

Attach the Resolution, as required by regulations section 6003(a)(1)(C). See Program website for an example resolution. Last Uploaded Attachments: Sites_A2 Resolution.pdf

A. 3 Project Description:

Project Description. Attach a description of the project that meets the requirements of section 3.3 of the TR. If a full project description is included in another attachment, identify the attachment name and beginning page number in this attachment.

Last Uploaded Attachments: Sites_A3 Project Description.pdf

A. 4 Project Description Support:

Attach maps, schematics and engineering design drawings that support the project description, if not already available in other attached documents. See section 6003(a)(1)(B) of the regulations.

Last Uploaded Attachments: Sites_A4 Drawings.pdf

A. 5 Attestation:

Attach a statement, under penalty of perjury pursuant to the laws of the State of California, attesting that the information provided in the full application is true and correct to the best of the applicant's knowledge. Scanned uploaded documents containing a scanned signature are sufficient. See section 6003(a)(1)(Y) of the regulations.
Last Uploaded Attachments: Sites_A2 Resolution.pdf

A. 6 Other Application Information:

OPTIONAL: Attach any other information that would support the application which does not fit easily in another category: for example, other studies or an index of the submitted application documents.
Last Uploaded Attachments: Sites_A6A Application Index.xlsx,Sites_A6B WMPs.docx,Sites_A6C Groundwater Basins.docx,Sites_A6D Modeling Results Compendium.pdf,Sites_A6E Letters.pdf

Section : PHYSICAL PUBLIC BENEFITS

PHYSICAL PUBLIC BENEFITS

A. 1 Ecosystem Benefits:

Attach completed Ecosystem Priorities worksheets. Be sure to include the general information worksheet as well as worksheets for each priority being claimed for which funds are being requested. Identify at least one Program ecosystem priority for any ecosystem public benefit quantified. See section $6003(a)(1)(Q)$ of the regulations.
Last Uploaded Attachments: Sites_A1 Ecosystem Priorities.docx

A. 2 Ecosystem Benefits:

Attach supporting documentation requested in Ecosystem Priorities worksheets such as maps or other information not already provided elsewhere in the application.
Last Uploaded Attachments: Sites_A2 Ecosystem Documentation.docx

A. 1 Water Quality Benefits:

Attach completed Water Quality Priorities table(s). If the project is claiming water quality benefits that meet the water quality priorities, be sure to include the general application questions table as well as tables for each priority being claimed for which funds are being requested. Identify at least one Program water quality priority for any water quality public benefit quantified See section $6003(a)(1)(Q)$ of the regulations.
Last Uploaded Attachments: Sites_A1 WQ General Questions.docx,Sites_A1 WQ Priority 1.docx,Sites_A1 WQ Priority 6.docx,Sites_A1 WQ Priority 7.docx,Sites_A1 WQ Priority 9.docx
A. 2 Water Quality Benefits:

Attach supporting documentation requested in Water Quality Priorities tables such as maps or other information not already provided elsewhere in the application.
Last Uploaded Attachments: Sites_A2 WQ Maps.docx,Sites_A2 Documentation WQ Priority 1.docx,Sites_A2 Documentation WQ Priority 6.docx,Sites_A2 Documentation WQ Priority 9.docx

Q. 1 Flood Control Benefits: If the proposed project is not claiming flood control benefits, leave the following questions blank.

If applicable, how will the project provide flood control benefits? If some project operations will be for flood control purposes, explain. Are the flood control benefits realized locally and/or throughout the larger flood control system? (TR section 4.9.2.1) Describe any negative impacts of providing the flood control benefit. (TR section 4.9.2.4)
The proposed project is located in the Colusa Basin watershed in Colusa and Glenn counties. It consists of constructing two main dams, Golden State Dam on Funks Creek and Sites Dam on Stone Corral Creek, and nine saddle dams on the northern end of the reservoir between the Funks Creek and Hunter Creek watersheds along the Glenn-Colusa county line. The existing Funks Dam is located on Funks Creek would be replaced with a new, larger Holthouse Reservoir. As an offstream reservoir, Sites Reservoir does not have a large, upstream watershed. Sites Reservoir can, nevertheless, be operated to provide local flood control benefits by capturing and attenuating flood flows associated with Stone Corral and Funks Creeks and the other local ephemeral watersheds. By capturing flows from extreme storm events, the project will reduce flood damages, such as the February 18, 2017 event that flooded the community of Maxwell and temporarily closed Interstate 5.

Q. 2 Flood Control Benefits: If the proposed project is not claiming flood control benefits, leave the

 following questions blank.What methods were used to calculate flood damage reduction? Identify which of the following methods was used to quantify physical flood control benefits:
1.

Modeling provided with feasibility study
2.

New modeling using historical flood events or historical hydrology
3.

New modeling using the climate change hydrology data set provided
If $\mathbf{1}$ or $\mathbf{2}$ is used, explain how benefits might be different under the provided future climate and sea levels projections. Provide justification for any methods not identified in section 5.4.3 of the TR. See also regulations section 6004(a)(1)(F).
New modeling using historical flood events or historical hydrology was used to determine physical flood damage reduction benefits. Flooding in the watershed currently occurs between October and April due to rainfall-runoff. If rainfall run-off timing and duration are affected by climate change, it is anticipated that the project will provide additional flood damage reduction benefits. Additional information is provided in Attachment A1 (Sites_A1 Flood Control under the PHYSICAL PUBLIC BENEFITS TAB).
A. 1 Flood Control Benefits: If the proposed project is not claiming flood control benefits, leave the following questions blank.

Attach any relevant flood damage reduction supporting documentation, such as hydraulic and hydrologic modeling studies, and property flood damage analysis (TR section 4.9.4). If information to support this question is located in another attachment, provide the location.
Last Uploaded Attachments: Sites_A1 Flood Control.docx
Q. 1 Emergency Response Benefits: If the proposed project is not claiming emergency response benefits, leave the following questions blank.

If applicable, how will the project be operated to provide emergency response benefits? Identify the types of emergency benefits the proposed project could provide. (TR section 4.11.1). If additional information to support this question is located in another attachment, provide the location.
The Authority is committed to working with the state and federal water managers and emergency personnel to provide water to support emergency events such as, but not limited to, firefighting, drought relief, and Delta levee failures. Instead of dedicating a volume of water that may not be called upon by the state until at least a one-in-ten year event (or longer) occurs, the Authority proposes that should water from Sites Reservoir be used to aid in responding to or recovery from an emergency, that repayment would occur through a mutually-acceptable exchange or transfer of water. As such, this benefit was not monetized and the Authority is not requesting Proposition 1 funding for this purpose. Should the Water Commission be interested in acquiring water to reserve storage for a qualifying Proposition-1 emergency event, the Sites Project Authority will work with the Water Commission to evaluate the concept and, if appropriate, prepare an amendment to this application for the Water Commission?s consideration.
A. 1 Emergency Response Benefits: If the proposed project is not claiming emergency response benefits, leave the following questions blank.

Attach a description of the amount or share of stored water to be provided for the emergency benefits and define the conditions under which water would be made available. Describe how the applicant can commit to the conditions under which the emergency benefits would be made available. (TR section 4.11.2)
Q. 1 Recreation Benefits: If the proposed project is not claiming recreation benefits, leave the following questions blank.

If applicable, how will the project be operated to provide recreation benefits? If additional information to support this question is located in another attachment, provide the location.
Sites Reservoir will provide new opportunities for surface-water recreation, such as boating, fishing, and swimming. New shoreline facilities at the reservoir will be constructed to support camping, hiking, horseback riding, mountain biking, picnicking, and sightseeing. The project includes two new recreation areas, Stone Corral and Peninsula Hills. Two boat ramps would provide access to the reservoir. Day-use and overnight camping facilities would be constructed on the shore. Sites Reservoir operations would also support the maintenance of higher water levels at Shasta and Folsom Lakes. Beneficial effects were noted in some instances where additional storage in existing facilities resulting from the operation of Sites Reservoir would provide more frequent access to boat ramps at these facilities. Additional recreational benefits will be provided for fishermen in the Sacramento and American River watersheds as a result of increased populations of Chinook salmon and steelhead. Additional information is provided in Sites_A2 Recreation under the PHYSICAL PUBLIC BENEFITS TAB.
Q. 2 Recreation Benefits: If the proposed project is not claiming recreation benefits, leave the following questions blank.

By providing new recreation benefits, does the proposed project negatively affect any existing recreation activities either at the proposed project site, at another facility, or nearby recreation area? (TR section 4.10.1.1)
Recreational impacts are evaluated in Chapter 21 of the Draft EIR/EIS (Posted at http://sitesproject.org/information/DraftEIR-EIS). No potentially significant impacts were identified. There are no existing recreational activities in the project footprint. Beneficial effects were noted in some instances where additional storage at nearby recreation areas (e.g., Shasta Lake) will result from the operation of Sites Reservoir, providing more frequent access to boat ramps at these facilities.
Q. 3 Recreation Benefits: If the proposed project is not claiming recreation benefits, leave the following questions blank.

Describe the proposed recreation physical benefits including the size of the facility, recreation activities allowed, recreation facilities associated with these activities, and their capacities and seasonal closures and conditions in which facilities are not usable or activities cannot occur. Any supporting analysis should be attached in A. 1 below. (TR section 4.10.1.2)

Sites_A2 Recreation under the PHYSICAL PUBLIC BENEFITS TAB contains a description of the proposed recreation facilities.
A. 1 Recreation Benefits: If the proposed project is not claiming recreation benefits, leave the following questions blank.

Attach recreation visitation estimates including documentation of estimation methodology.
Last Uploaded Attachments: Sites_A1 Recreation Visitation.docx
A. 2 Recreation Benefits: If the proposed project is not claiming recreation benefits, leave the following questions blank.

Attach or provide links to any relevant recreation studies associated with the proposed project.
Last Uploaded Attachments: Sites_A2 Recreation.docx

Section : FEASIBILITY \& IMPLEMENTATION RISK

FEASIBILITY \& IMPLEMENTATION RISK

A. 1 Feasibility Documentation:

Attach feasibility studies or documentation that demonstrates the proposed project's technical, environmental, economic, and financial feasibility as described in TR section 3.5. See also regulations section 6003(a)(1)(0).

Last Uploaded Attachments: Sites_A1 Feasibility.docx

A. 2 Permit List:

Provide a listing and status of all local, state, and federal permits, certifications, and other approval necessary for the construction and operation of the project. See section $6003(\mathrm{a})(1)(\mathrm{W})$ of the regulations.
Last Uploaded Attachments: Sites_A2 Permits.docx

A. 3 Schedule:

Attach an estimated schedule for the proposed project until the first year of operation. If the schedule is included in another attachment, identify the location. See section 6003(a)(1)(G) of the regulations.
Last Uploaded Attachments: Sites_A3 Schedule.pdf

A. 4 Environmental Document:

Attach the most recent publicly available environmental document for the proposed project. If the document is available on a website, provide a link to the document(s). See section 6003(a)(1)(S) of the regulations.
Last Uploaded Attachments: Sites_A4 Environmental.pdf

A. 5 Impacts and Consultation:

Summarize the project's impacts on environmental or cultural resources and how the project will mitigate or minimize impacts to those resources, or identify where in the CEQA document this information can be found. If any environmental or cultural impacts will not be fully mitigated, explain. See regulations section 6003(a)(1)(T).

If applicable, identify whether Tribal consultation has been initiated for the project. If it has, provide supporting documentation, or identify the location in the CEQA document. If consultation has not been initiated, state whether consultation is expected and when consultation is expected to be initiated. See regulations section 6003(a)(1)(U).
Last Uploaded Attachments: Sites_A5 Impacts and Tribal.docx

Section : BENEFIT CALCULATION, MONETIZATION, and RESILIENCY

BENEFIT CALCULATION, MONETIZATION, and RESILIENCY

Q.1:

Did the applicant use the model products and assumptions described in section 6004(a)(1) of the regulations? See regulations section $6003(a)(1)(C C)$. If no, provide a description of the models and assumptions used to determine the without-project future conditions for years 2030 and 2070.
The analyses conducted for the Sites Reservoir Project utilized the model products and assumptions described in section 6004(a)(1). This includes the 2030 and 2070 future conditions CalSim II and DSM2 models provided by the California Water Commission on November 2, 2016. The models provided by the commission were modified to include the facilities and operation of the Sites Project as described in the Project Description and Assumptions section. The with- and withoutproject current conditions analyses were based on the DWR State Water Project Delivery Capability Report 2015 (DCR 2015) - CalSim II base scenario. The DCR 2015 base scenario, provided by DWR, was modified to include the facilities and operation of the Sites Project. The project description and assumptions for the with-project current condition are the same as for the 2030 and 2070 with-project conditions. The analyses also included the use of other analytical tools that were updated for future 2030 and 2070 conditions. These tools include: - USRDOM - Upper Sacramento River Daily Operations Model - Sacramento River HEC5Q model - SALMOD - American River CE-QUAL-W2 Model - CWEST - SWAP - LTGEN - SWP Power - NODOS Power

A. 1 Project Conditions:

Attach description and assumptions of with-project conditions for years 2030 and 2070, as defined in section 6004(a)(2) of the regulations, as well as a description of the with- and without-project current conditions. See also regulations section 6003(a)(1)(BB).
Last Uploaded Attachments: Sites_A1 Modeling.docx

A. 2 Preliminary Operations Plan:

Attach the preliminary operations plan for the proposed project. See regulations section 6003(a)(1)(H) for details. If the preliminary operations plan is located in another attachment, identify the attachment and provide the location.
Last Uploaded Attachments: Sites_A2 Operations.docx

A. 3 Monetized Benefits Analysis:

Attach the analysis of all public and non-public monetized benefits. Identify at least one Program ecosystem or water quality priority for any ecosystem or water quality public benefit quantified. For each public and non-public benefit, describe the methods used to derive the physical and economic benefits and impacts at a level of detail that allows reviewers to verify your analysis.
Description must include:
-
The physical changes that are being monetized, consistent with information requested in the Physical Public Benefits Tab, and describing linkages between physical benefits and monetized benefits. See regulations sections 6004(a)(3) and 6004(a)(4); and
-
The monetization method and sources for data used. See regulations section 6004(a)(4).

Last Uploaded Attachments: Sites_A3 Physical Monetized.docx

A. 4 Mitigation and Compliance Obligation:

For each net public benefit claimed, where applicable, identify any existing environmental mitigation or compliance obligations that are accounted for in each net public benefit as of the date of the CalSim-II model product in section 6004 (a)(1).
-
Applicants that use the CalSim-II and DSM2 models to analyze their projects can indicate "within models" for any existing environmental mitigation and compliance obligations contained in those models.
-
If applicable to their claimed net public benefit such projects shall also list and account for the non-flow related mitigation and compliance obligations of the State Water Project and Central Valley Project.

Last Uploaded Attachments: Sites_A4 Mitigation.docx

A. 5 Quantification Support:

Provide additional information that supports the physical and monetary quantification of the public and non-public benefits and impacts of the project as required by subsection 6004(a)(4) of the regulations. This includes data, assumptions, analytical methods and modeling results, calculations and relevant sources of information. For reference documents or studies relied upon, applicants may provide links to an existing website in lieu of attaching those documents to the application.
Last Uploaded Attachments: Sites_A5 Documentation.docx

A. 6 Monetization Table:

Attach a table displaying each future economic benefit in 2015 dollars for each year of the planning horizon as required by section 6004(a)(4)(A) of the regulations.
Last Uploaded Attachments: Sites_A6 Annual Benefits Table.docx

A. 7 Non-Monetized Benefits:

If applicable, provide a summary of public benefits that cannot be monetized. Provide the following information for each non-monetized benefit.
-
Justification why benefit cannot be monetized,
-
Qualitative description of importance of benefit (who is affected, how and how often),
-
Evidence to show how the physical change is beneficial and important to Californians.
Last Uploaded Attachments: Sites_A7 Non_Monetized.docx

A. 8 Total Project Cost Estimate:

Attach an estimate of the total project costs that includes construction cost, interest during construction, land acquisition, monitoring, environmental mitigation or compliance obligations, operations and maintenance, repair, and replacement costs during the planning horizon using methods described in TR section 6. If the project costs are located in another attachment, identify the location.
The project cost estimates must be reviewed, approved and signed by an engineer licensed by the California Board for Professional Engineers, Land Surveyors, and Geologists.
Last Uploaded Attachments: Sites_A8 Estimate.pdf

A. 9 Benefit and Cost Analysis:

Attach the benefit and cost analysis for the proposed project. If the analysis is located in another document, identify the location. See regulations section 6004(a)(6).
Last Uploaded Attachments: Sites_A9 BCA Results.docx

A. 10 Cost Allocation:

Provide a proposed allocation of total project costs to all project beneficiaries, including the Program, and an explanation of how the allocation was calculated, consistent with TR section 8 and section 6004(a)(7) of the regulations. If this information is included in another attachment, identify the location.

Last Uploaded Attachments: Sites_A10 Allocation.docx

A.11 Physical and Economic Summary Table:

Attach the Physical and Economic Benefits Summary tables. These tables can be downloaded from the Commission website and uploaded with the application. See regulations section 6003(a)(1)(N).
Last Uploaded Attachments: Sites_A11 Physical and Economic Benefits Summary Tables.xlsx

A. 12 Uncertainty Analysis:

Attach the uncertainty analysis. See regulations section 6004(a)(8).
Last Uploaded Attachments: Sites_A12 Uncertainty.docx

Section : PROGRAM REQUIREMENTS

PROGRAM REQUIREMENTS

Q.1:

Describe how the project improves the operation of the state water system. See regulations section 6003(a)(1)(M).
Sites Reservoir would improve operational flexibility and reliability of the state water system, especially within the service areas of both the SWP and CVP, in addition to allowing California resource agencies to purposely allocate water for the benefit of environmental uses. CALSIM modeling results indicate that average long-term end of May storage in Lake Oroville would increase by 26 TAF in 2030 and further increase by an additional 31 TAF in 2070 through exchanges with Sites Reservoir. This demonstrates the resiliency of the improvement in the SWP. Likewise, long-term average storage in CVP reservoirs would also increase. End-of-May storage in Shasta Lake would increase by 59 TAF in 2030 and then increase by an additional 80 TAF in 2070. Storage in existing reservoirs that are cooperatively managed with the Sites Project would increase in all year types. This additional storage would provide the state water system greater flexibility in operating the overall system without negative impacts to water supplies and providing California resource agencies with a water supply dedicated to the environment. Sites Reservoir would be operated collaboratively with the SWP and CVP. The SWP and CVP would make their annual allocations and deliveries as normal. Exchanges with water stored in Sites Reservoir would help to maintain supplies in the existing reservoirs and produce the public benefits described for the project. Sites Reservoir would provide supplemental water that is much needed when allocations are low. Sites Reservoir Project would augment deliveries for both water supply and public benefits, especially during drought years. Sites Reservoir is beneficially located where it can support the operations of existing reservoirs north of the Delta, provide water to the Yolo Bypass for ecosystem restoration, deliver water to be picked up at the North Bay Aqueduct, and export water to the San Joaquin Valley and Southern California. In addition to preserving water in existing SWP and CVP reservoirs through exchange, Sites Reservoir would facilitate water transfers, one of the initiatives in the California Water Action Plan. Water from Sites could be moved south of the Delta to fill Diamond Valley Reservoir or provided for groundwater recharge to Coachella Valley Water District and Desert Water Agency. This topic is further discussed in the Executive Summary (Sites_A1 ExecSum under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB).
Q.2:

Describe how the project provides a net improvement in ecosystem and water quality conditions required by Water Code section 79750.

Sites Reservoir would deliver an average of $125 \mathrm{TAF} / \mathrm{yr}$ from 2030 to 2070 for improving ecosystem and water quality conditions. This is an unprecedented amount of water that the State resources agencies will be able to directly manage for environmental benefit. Furthermore, cooperatively managing the operation of Sites Reservoir with State and Federal facilities will preserve higher water levels in the existing reservoirs and thereby protect the coldwater pools, improve temperature conditions downstream for existing reservoirs, and provide flows to support the migration of aquatic species in a variety of life stages. The potential benefits of the project for fish were modeled using SALMOD. Modeling results predict net improvements in fish populations for Chinook salmon (including endangered winter-run) under 2015, 2030, and 2070 conditions. By
providing releases to the Yolo Bypass, Sites Reservoir Project can also benefit Delta smelt, however, there are insufficient studies to characterize the magnitude of this benefit at this time. Sites Reservoir Project would excel in providing opportunities for in lieu use of surface water, thereby reducing the chronic lowering of groundwater levels, an undesirable result under SGMA. Sites Reservoir will also support the delivery of water for basic human needs to disadvantaged communities. See Sites_A4 Mitigation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB and Sites_A5 Documentation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB for further analysis.

Q.3:

If applicable, summarize how the applicant is coordinating with the owners and operators of water system facilities not owned or operated by the applicant or project partners that may be affected by the project. See regulations section 6003 (a)(1)(P).

The Authority is coordinating the development of operations with the Department of Water Resources and the U.S. Bureau of Reclamation. This coordination includes the future development of Principles of Agreement governing operations. See Sites_A6 Annual Benefits Table under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB. A list of project partners is provided in Sites_A1 Feasibility under the FEASIBILITY AND IMPLEMENTATION RISK TAB.
Q.4:

Describe how the project advances the long-term objectives of restoring the ecological health and improving water management for beneficial uses of the Delta. See regulations section 6003(a)(1)(R).
The operations proposed for Sites Reservoir Project were developed with the intent of contributing to the attainment of the co-equal goals for the Delta of ecological health and improving water management for beneficial use. As a result, the annual yield from the Sites Project is divided between environmental and water supply purposes. The Sites Project would provide a unique opportunity to allocate reservoir storage and establish the first firm asset Ecosystem Enhancement Account in California. Based on the operations assumptions included in this application, the allocated storage would deliver approximately $125 \mathrm{TAF} / \mathrm{yr}$ (in 2030 through 2070 (with deliveries of up to $200 \mathrm{TAF} / \mathrm{yr}$ in critically dry years) that would be managed by the State (CDFW, SWRCB, and DWR) and Federal government to perform restoration actions beyond existing regulatory requirements. Conceptually, this account would use Sites Reservoir project assets to support modified operations that facilitate habitat enhancement actions. A Sites Reservoir Ecosystem Enhancement Governance Board would be created to manage the water account. The water account would be managed to adaptively support operational actions and respond to changing future conditions throughout the Sacramento River watershed and Delta. Sites Reservoir would also provide water for beneficial uses throughout the State, including water for agriculture and M\&I purposes, and State and Federal wildlife refuges. Project participants include agencies in the Sacramento River Valley, Bay Area, San Joaquin Valley, Southern Desert, and South Coast regions of California.
Q.5:

Describe how the applicant will ensure that the proposed project will comply with and be consistent with all applicable local, state, and federal laws and regulations, including existing environmental mitigation or compliance obligation requirements. See regulations section 6003(a)(1)(V).
The Authority has initiated pre-applications discussions with several of the critical resource management and regulatory agencies in order to expedite compliance with all required laws and regulations. This early and diligent effort to understand the evolving concerns for regulatory compliance will reduce the overall compliance schedule and help ensure compliance with all applicable local, state, and federal laws in the planning, construction, and operation of Sites Reservoir, including mitigation requirements. The EIR/EIS (attached at http://sitesproject.org/information/DraftEIR-EIS) describes the impacts and mitigation measures that when implemented would reduce or avoid impacts and support compliance with all applicable laws, regulations, and statutes. This includes all applicable regulations regarding water operations on the Sacramento River. Regulations are identified in Sites_A2 Permits under the FEASIBILITY AND IMPLEMENTATION RISK TAB. The Authority's commitment to mitigation is further described under Sites_A4 Mitigation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB.

A. 1 Delta or Tributary Measurable Improvement:

What measurable improvements to the Delta ecosystem or tributary to the Delta does the project provide? Where is the location of the improvement? If the project is not within the watershed of the Delta, what specific water rights or water contracts would be created or amended to ensure public benefits to the Delta ecosystem? Provide supporting documentation of the willingness of these water right or water contract holders to enter into such contracts or amendments. Explain how these changes would assure measurable improvements to the Delta ecosystem. See regulations section $6003(a)(1)(L)$.
Last Uploaded Attachments: Sites_A1 Measureable Benefits.docx

A. 2 Cost Effectiveness:

Provide documentation indicating the proposed project is cost-effective. If there is at least one feasible alternative means of providing the same amount or more of the total public and non-public physical benefits as provided by the proposed project, calculate, display and document the least-cost of these alternative means and justify the proposed project by comparison.

Last Uploaded Attachments: Sites_A2 Cost Effectiveness.docx
Section : EARLY FUNDING REQUEST

EARLY FUNDING REQUEST

Q.1:

Is early funding for completing environmental documentation and/or permits requested? If yes, answer the following question and provide the requested information. See regulations section 6003(a)(1)(X).
Yes.
Q.2:

What is the requested amount?
Requesting 50% of $\$ 91,851,000$ or $\$ 45,925,500$.

A. 1 Early Funding Scope, Schedule, Budget:

Attach a schedule, scope of work, and budget.
-
Keep in mind that the applicant must provide a 50 percent cost share and reimbursable costs can only go back to November 4, 2014.
-
Scope of work must include an explanation of why early funding is critical to the project, the viability of the project in the absence of this funding and how the project will proceed once early funding is expended.
-
The scope of work cannot include work performed prior to submittal of the application.
-
The tasks in the schedule, scope of work and budget should match.

Last Uploaded Attachments: Sites_A1 Scope.docx

[^0]: ${ }^{1}$ Sources: "New and Emerging Capital Providers for Infrastructure Funding," Water Research Foundation", 2016 (http://www.waterrf.org/resources/pages/PublicWebTools-detail.aspx?ItemID=34); and "Alternative Water Project Delivery Models", University of North Carolina Environmental Finance Center, 2017 (https://efc.sog.unc.edu/project/alternative-water-project-delivery-models).

 | STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VErsion: | C |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A. 1 | CHECKER: P PENINGER | DATE: | 2017 | GUST | |
 | CAVEAT: | | QAQC: N CARLSON | REF/FILE \#: | WSIP | LICATION | |
 | NOTES: | | | PAGE: | 14 | OF 29 | |

 2. Construction easements (permanent and temporary) have been evaluated in sufficient detail to determine that real estate costs are reasonable.
 3. Environmental mitigation costs have been evaluated based on current understanding of project permitting needs (based on site environmental assessments) and in preliminary consultation with the various state and federal agencies.
 4. A preliminary assessment of the potential for encountering hazardous material was performed; including the presence of abandoned gas well, septic systems, underground tanks, and the like.
 5. For major facilities, cost estimates were based on preliminary quantity estimates, equipment and manpower estimates to complete tasks, manufacturer's quotes, and AECOM experience on recent similar projects.
 6. The construction schedule is based on manpower and equipment needed to complete construction, and reflects the interdependency of construction tasks between facilities that control the start or finish of construction activities.
 7. An adequate labor pool exists in the region to complete the project.
 8. Appropriate allowances have been included for mobilization and demobilization, construction contingency, and non-contract (owner) costs.
 9. Packaging of contracts can facilitate competition and avoid potential for equipment and material shortages.
 10. Traffic handling and detours during construction has been considered.
 11. Temporary diversion of water during the winter has been considered.

 ## Appendix 1: Financial Feasibility - Research Foundation Definitions of Water Infrastructure Financing Types ${ }^{2}$

 ## Traditional Financing

 ## Revenue Bonds

 Revenue bonds are fixed income, debt obligations issued by local governments or other public agencies where the principal and interest on the bonds are secured by the specific revenues named in the bond documents. Revenue bonds typically include a rate covenant by which the user agrees to set rates sufficient to meet all operating costs and some multiple of debt service, and may include a flow of funds requirement and a cash reserve fund requirement, among others.

 General Obligation Bond. General Obligation bonds are debt obligations issued by a government entity that are secured by the entities full faith and credit and pledge of tax revenues. This is the strongest pledge the government can provide and is usually regarded by investors and rating agencies as the strongest form of bond security. General Obligation bond issuances often require a bond referendum and public vote.

 ## State Revolving Fund Loan

 The State Revolving Loan Fund (SRF) program provides low-interest loans for water and sanitation infrastructure to municipalities, water/sewer authorities, and utility districts. Each state's SRF programs

 | STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSI ON: | C |
 | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A. 1 | CHECKER: | P PENINGER | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVC: | N CARLSON | REF/FILE\#: | WSIP APPLICATION | |
 | NOTES: | | | | PAGE: | 15 | OF |

 receive its initial capital from federal grants and state contributions, and then "revolves" through the repayment of principal and the payment of interest on outstanding loans. There are two SRF programs, the Clean Water State Revolving Fund created under the Clean Water Act, and the Drinking Water State Revolving Fund created under the Safe Drinking Water Act. Each state administers their own SRF programs and program eligibility, requirements, and benefits differ from state to state.

 ## Alternative Delivery: Public Private Partnerships

 "Public-private partnerships ("P3s") are a contractual arrangement whereby the resources, risks and rewards of both the public agency and private company are combined to provide greater efficiency, better access to capital, and improved compliance with government regulations. The public's interests are generally assured through provisions in the contracts that provide on-going monitoring and oversight of the operation of a service or development of a facility. The key distinctions of P3s from other forms of alternative project delivery are (1) the extended duration of the partnership, and (2) the nature of the financing and the sources of revenues. In a P3, the duration of the partnership is a longterm one, lasting 10 to 20 years or more. While private financing is not a pre-requisite for an alternative delivery project, it is commonly accepted that private financing is a key distinguishing feature of a P3 arrangement.

 In general, there are at least two types of P3 models; (1) demand risk model, and (2) availability payment model. The demand risk model represents the case where P3 financing is secured with the future revenue streams from user charges, and where the private concessionaire takes on the overall financial risks associated with potential fluctuations in future user demand. This model is typically used where there are sufficient revenue streams from user charges to fund the capital investment. Under the availability payment model, the private concessionaire provides the P3 financing, but it is secured with annual payment commitments from the public sector over the concession term. Table A1-6 shows the major investors in North American water infrastructure with their global ranking.

 Table A1-6. Top 10 Global Investors in Water Infrastructure, North America

 | 2016 Global Rank | Company | Country | Funding (\$M) |
 | :---: | :--- | :--- | :---: |
 | 2 | Brookfield Asset Management | Canada | $\$ 31,985$ |
 | 3 | Global Infrastructure Partners | United States | $\$ 20,780$ |
 | 4 | Borealis Infrastructure | Canada | $\$ 19,246$ |
 | 7 | ArcLight Capital Partners | United States | $\$ 10,675$ |
 | 11 | Kohlberg Kravis Roberts | United States | $\$ 5,913$ |
 | 12 | Energy Capital Partners | United States | $\$ 5,882$ |
 | 13 | Stonepeak Infrastructure Partners | United States | $\$ 5,275$ |
 | 14 | JP Morgan Investment Management | United States | $\$ 5,171$ |
 | 17 | EnerVest | United States | $\$ 4,400$ |
 | 20 | First Reserve | United States | $\$ 3,769$ |

 Source: PEI, The Infrastructure Investor 50, 2016
 (http://www.infrastructureinvestor.com/uploadedFiles/Infrastructure Investor/Non-
 Pagebuilder/Aliased/News And Analysis/2016/November/Magazine/II77 II50 Nov16.pdf)

 | STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSI ON: | C |
 | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A.1 | CHECKER: | P PENINGER | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAQC: | N CARLSON | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | PAGE: | 16 | OF |

 ## Appendix 2: Water Balance of CalSim II Simulation Results for Current Conditions, WSIP 2030, and WSIP 2070

 The following section contains tables that portray the water balance results for the following CalSim II simulations:

 ## 1. Current Conditions With Project vs. Current Conditions Without Project

 2. WSIP 2030 With Project vs. WSIP 2030 Without Project
 3. WSIP 2070 With Project vs WSIP 2070 Without Project

 As defined in Section 4.3.1 of the WSIP Technical Reference Document, a water balance is an accounting of all the flows of water into and out of an account for a defined period. An account can represent a location or geographic boundary, such as a reservoir, watershed, or region. The following accounts are included in this report:

 1. Sites Reservoir
 2. Colusa Basin
 3. Sacramento Valley
 4. Sacramento-San Joaquin Delta

 The Sacramento-San Joaquin Delta account consists of the region upstream of Delta outflow and downstream of inflows at Freeport and Vernalis. The Sacramento Valley account includes the region upstream of Freeport and downstream of inflows at Shasta Lake and Trinity Lake, not including the Colusa Basin. The Colusa Basin account consists of the entire Colusa Basin region, not including Sites Reservoir. The Sites Reservoir account provides a water balance for the reservoir itself.

 The following tables include inputs, outputs, and changes in reservoir storage for each account. The parameters are presented as water-year (October through September) annual averages based on the full simulation period (82 years; 1922-2003). The mass balance is computed as the total volume of inputs subtracted by the total volume of outputs and the total volume of change in storage. A mass balance value of zero indicates that all water entering the account is equal to all water leaving the account and accumulating in storage. Moreover, a mass balance of zero confirms that there are no net gains or losses within the account that are unaccounted for. As shown in this report, all the CalSim II models achieve mass balance values of zero for each of the four accounts defined above.

 | STATUS: | FINAL | PREPARER: | J HERRIN | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A.1 | CHECKER: | P PENINGER | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAQC: | N CARLSON | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | PAGE: | 17 | OF |

 | Sites Reservoir Mass Balance (All values are in TAF) | Annual Average for Full Simulation Period | | |
 | :---: | :---: | :---: | :---: |
 | | Current Conditions With Project | Current Conditions Without Project | Difference |
 | Sites Reservoir Mass Balance Inputs | | | |
 | Diversion to Sites Reservoir at Red Bluff (TCC) | 277 | 0 | 277 |
 | Diversion to Sites Reservoir at Hamilton City (GCC) | 105 | 0 | 105 |
 | Diversion to Sites Reservoir at Delevan Pipeline | 133 | 0 | 133 |
 | Total Inputs to Sites Reservoir | 514 | 0 | 514 |
 | Outputs | | | |
 | Release from Sites Reservoir to TCC, GCC, and Colusa Basin Drain | 233 | 0 | 233 |
 | Release from Sites Reservoir to Delevan Pipeline | 234 | 0 | 234 |
 | Sites Reservoir Evaporation \& Losses | 44 | 0 | 44 |
 | Total Outputs from Sites Reservoir | 510 | 0 | 510 |
 | Change in Storage | | | |
 | Sites Reservoir | 4 | 0 | 4 |
 | | | | |
 | Mass Balance | 0 | 0 | 0 |

 *Change in Storage is End of Period Volume minus Beginning of Period Volume divided by number of years in the period.
 *Annual Averages for October through September.

 | STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSION: C | | |
 | :--- | :--- | :--- | :--- | ---: | :---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A.1 | CHECKER: | P PENINGER | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | N CARLSON | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | | PAGE: | 18 | OF | 29 |

 | Colusa Basin Mass Balance
 (All values are in TAF) | Annual Average for Full Simulation Period | | |
 | :---: | :---: | :---: | :---: |
 | | Current Conditions With Project | Current Conditions Without Project | Difference |
 | Colusa Basin Mass Balance Inputs | | | |
 | Diversion at Red Bluff (TCC \& Corning Canal) | 428 | 188 | 240 |
 | Diversion at Hamilton City (GCC) | 890 | 861 | 29 |
 | Release from Sites Reservoir to TCC, GCC, and Coluse Basin Drain | 233 | 0 | 233 |
 | Other Diversions from Sacramento River | 507 | 505 | 1 |
 | Stony Creek and other tributary Inflows | 928 | 928 | 0 |
 | Return Flows | 332 | 332 | 0 |
 | Total Inputs to Colusa Basin | 3,318 | 2,814 | 503 |
 | Outputs | | | |
 | Diversion to Corning Canal | 23 | 20 | 3 |
 | Diversion to Orland Unit Agriculture | 102 | 103 | 0 |
 | Diversion to TCCA Agriculture | 246 | 173 | 73 |
 | Diversion from TCC to Sites Reservoir | 277 | 0 | 277 |
 | Diversion to GCID Agriculture | 763 | 759 | 4 |
 | Diversion from GCC to Sites Reservoir | 105 | 0 | 105 |
 | Diversion to Refuges | 100 | 97 | 3 |
 | Diversion to Other Colusa Basin Agriculture (Right Bank) | 507 | 505 | 1 |
 | Stony Creek Outflow to Sacramento River | 235 | 237 | -2 |
 | Colusa Basin Drain Outflow to Sacramento River | 447 | 427 | 20 |
 | Knights Landing Ridge Cut Outflow | 342 | 320 | 22 |
 | Losses from Canals (TCC, CC, GCC, CBD) | 147 | 149 | -2 |
 | Stony Creek Reservoirs Evaporation \& Losses | 24 | 24 | 0 |
 | Total Outputs from Colusa Basin | 3,317 | 2,814 | 503 |
 | Change in Storage | | | |
 | Stony Creek Reservoirs | 1 | 1 | 0 |
 | | | | |
 | Mass Balance | 0 | 0 | 0 |

 *The Colusa Basin mass balance includes parameters within the Colusa Basin, not including Sites Reservoir, Funks Reservoir, and the Sacramento Valley outside of the Colusa Basin. The Delevan Pipeline is not included in this table because it serves as an input and output for the Sites Reservoir Mass Balance and Sacramento Valley Mass Balance reports.
 *Other Diversion from Sacramento River include diversions to Colusa Basin, West Bank, and WBA8S
 *Stony Creek and other tributary inflows include inflows to East Park Reservoir, Stony Gorge Reservoir, Black Butte Lake and DSA 12 Accretion
 *Return flows include those from WBA8NN, WBA7N, WBA7S, WBA8S, WBA8NS, Delevan and Colusa Refuges
 *Diversion to TCCA Agriculture includes diversions to WBA4, WBA7N, and WBA7S.
 *Diversion to GCID Agriculture includes diversions to WBA8NN and WBA8NS.
 *Diversion to Refuges includes diversions from the Sacramento Valley and the Colusa Basin Drain.
 *Stony Creek Reservoirs includes East Park Reservoir, Stony Gorge Reservoir, and Black Butte Lake
 *Change in Storage is End of Period Volume minus Beginning of Period Volume divided by number of years in the period
 *Annual Averages for October through September.

 | Sacramento Valley Mass Balance
 (All values are in TAF) | Annual Average for Full Simulation Period | | |
 | :---: | :---: | :---: | :---: |
 | | Current Conditions With Project | Current Conditions Without Project | Difference |
 | Sacramento Valley Mass Balance Inputs | | | |
 | Inflow to Shasta Lake and Whiskeytown Reservoir | 5,998 | 5,998 | 0 |
 | Flow through Clear Creek Tunnel | 550 | 542 | 7 |
 | Tributary Inflows upstream of Red Bluff | 1,434 | 1,434 | 0 |
 | Tributary Inflows between Red Bluff and Hamilton City | 803 | 803 | 0 |
 | Stony Creek Inflow | 235 | 237 | -2 |
 | Big Chico Creek Inflow | 97 | 97 | 0 |
 | Accretions in Upper Sacramento River | 1,395 | 1,395 | 0 |
 | Sites Reservoir Release to river through Delevan Pipeline | 234 | 0 | 234 |
 | Inflow from Colusa Basin Drain | 447 | 427 | 20 |
 | Feather River Inflow to Lake Oroville | 3,967 | 3,967 | 0 |
 | Yuba River and Bear River Inflow to Feather River | 2,167 | 2,167 | 0 |
 | Kelly Ridge and Butte Creek Inflow to Feather River | 419 | 419 | 0 |
 | Accretions in Feather River | 460 | 460 | 0 |
 | American River Inflow to Folsom Lake | 2,734 | 2,734 | 0 |
 | Other American River Inflows | 674 | 674 | 0 |
 | Accretions in Lower Sacramento River | 595 | 595 | 0 |
 | Inflow from Knights Landing Ridge Cut | 342 | 320 | 22 |
 | Groundwater Pumping | 1,204 | 1,204 | -1 |
 | Return Flows | 1,502 | 1,494 | 8 |
 | Total Inputs to Sacramento Valley | 25,256 | 24,968 | 289 |
 | Outputs | | | |
 | Diversion to Sutter Refuge | 13 | 11 | 2 |
 | Diversion at Red Bluff (TCC \& CC) | 428 | 188 | 240 |
 | Diversion at Hamilton City (GCC) | 890 | 861 | 29 |
 | Diversion to Sites Reservoir through Delevan Pipeline | 133 | 0 | 133 |
 | Diversion to Other Colusa Basin Agriculture (Right Bank) | 507 | 505 | 1 |
 | Diversion to Other Sacramento River Agriculture and M \& | 2,875 | 2,875 | 0 |
 | Diversion to Feather River Agriculture and M\&/ | 2,245 | 2,226 | 19 |
 | Diversion to Yuba River Agriculture and M\&/ | 63 | 65 | -1 |
 | Reservoir Evaporation \& Losses | 231 | 227 | 4 |
 | Stream-Groundwater Interaction | 139 | 145 | -6 |
 | Yolo Bypass | 2,129 | 2,158 | -29 |
 | Sacramento River below Freeport | 15,605 | 15,709 | -104 |
 | Total Outputs from Sacramento Valley | 25,257 | 24,970 | 288 |
 | Change in Storage | | | |
 | Shasta Lake | 5 | 4 | 1 |
 | Lake Oroville | -8 | -7 | -1 |
 | Folsom Lake | 1 | 0 | 0 |
 | Other Reservoirs | 1 | 1 | 0 |
 | Total Change in Reservoir Storage in Sacramento Valley | -1 | -2 | 1 |
 | | | | |
 | Mass Balance | 0 | 0 | 0 |

 *The Sacramento Valley Mass Balance includes parameters upstream of Freeport to Shasta Lake and Trinity Lake inflow, not including the Colusa Basin. See "Colusa Basin Mass Balance" for additional detail.
 *Other Inflows upstream of Red Bluff include Cow Creek, Cottonwood Creek, Battle Creek, and Payne Creek.
 *Inflows between Red Bluff and Hamilton City include Elder Creek, Thomes Creek, Antelope Creek, Mills Creek, Deer Creek, and Red Bank Creek.
 *Other American River Inflows include inflows to the Sacramento River and from Lake Natoma.
 *Diversion to Other Sacramento River Agriculture and M\&I include diversions to West Sacramento Diversion for Davis Municipal Project, EBMUD \& CCWD Freeport Regional Water Project, North Fork Dam, DSA12, DSA15, DSA59, DSA70, WBA4, and WBA5.
 *Diversion to Feather River Agriculture and M\&I includes diversions to Gray Lodge Refuge, Butte Sink Duck Clubs, Western Canal \& Joint WD Rice Straw Decomp, DSA69, and diversion to Sites Reservoir at Joint Canal near Thermalito.
 *Diversion to Yuba River Agriculture and M\&l include transfers for Lower Yuba River Accord and SCWA excess flows.
 *Change in Storage is End of Period Volume minus Beginning of Period Volume divided by number of years in the period.
 *Other Reservoirs include Whiskeytown Lake, Kesiwck Reservoir, Thermalito Complex, and Lake Natoma.
 *Annual Averages for October through September.

 | Status: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSIon: | C |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A. 1 | CHECKER: P PENINGER | DATE: | 2017 A | GUST | |
 | CAVEAT: | | QAQC: N CARLSON | REF/FILE \#: | WSIP A | LICATION | |
 | NOTES: | | | PAGE: | 20 | OF 29 | |

 | Sacramento - San Joaquin Delta Mass Balance | Annual Average for Full Simulation Period
 (All values are in TAF) | | Current Conditions
 With Project |
 | :--- | ---: | ---: | ---: |
 | Sacrament Conditions
 Without Project | | | |
 | Inputs | | | |
 | Dafference | | | |

 *The Delta Mass Balance includes parameters upstream of Delta Outflow, not including the Sacramento Valley. It is bounded by inflow at Freeport and Vernalis. See "Sacramento Valley Mass Balance" for additional detail.
 *Eastside Streams and other inflows includes Marsh Creek, Mokelumne, \& Calaveras, Cosumnes River.
 *Export to Contra Costa WD/Los Vaqueros Reservoir includes exports to CCWD Old River, Victoria Canal, \& Rock Slough Intakes.
 *Other Delta Diversions include diversions to Stockton DWSP/COSMA, the City of Antioch (pre-1914 water rights), and Vallejo.
 *Net Delta Island Consumptive Use includes diversions and island seepage and drainage.
 *Annual Averages for October through September.

 | STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSION: C | |
 | :--- | :--- | :--- | :--- | ---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A.1 | CHECKER: | P PENINGER | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVC: | N CARLSON | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | PAGE: | 21 | OF |

 | Sites Reservoir Mass Balance (All values are in TAF) | Annual Average for Full Simulation Period | | |
 | :---: | :---: | :---: | :---: |
 | | WSIP 2030 With Project | WSIP 2030 Without Project | Difference |
 | Sites Reservoir Mass Balance Inputs | | | |
 | Diversion to Sites Reservoir at Red Bluff (TCC) | 299 | 0 | 299 |
 | Diversion to Sites Reservoir at Hamilton City (GCC) | 105 | 0 | 105 |
 | Diversion to Sites Reservoir at Delevan Pipeline | 148 | 0 | 148 |
 | Total Inputs to Sites Reservoir | 552 | 0 | 552 |
 | Outputs | | | |
 | Release from Sites Reservoir to TCC, GCC, and Colusa Basin Drain | 262 | 0 | 262 |
 | Release from Sites Reservoir to Delevan Pipeline | 242 | 0 | 242 |
 | Sites Reservoir Evaporation \& Losses | 44 | 0 | 44 |
 | Total Outputs from Sites Reservoir | 549 | 0 | 549 |
 | Change in Storage | | | |
 | Sites Reservoir | 3 | 0 | 3 |
 | | | | |
 | Mass Balance | 0 | 0 | 0 |

 *Change in Storage is End of Period Volume minus Beginning of Period Volume divided by number of years in the period.
 *Annual Averages for October through September.

 | STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSION: C | |
 | :--- | :--- | :--- | :--- | ---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A.1 | CHECKER: | P PENINGER | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVC: | N CARLSON | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | PAGE: | 22 | OF |

 | Colusa Basin Mass Balance | Annua | Average for Full Simulation | |
 | :---: | :---: | :---: | :---: |
 | (All values are in TAF) | WSIP 2030 With Project | WSIP 2030 Without Project | Difference |
 | Colusa Basin Mass Balance Inputs | | | |
 | Diversion at Red Bluff (TCC \& Corning Canal) | 416 | 146 | 271 |
 | Diversion at Hamilton City (GCC) | 886 | 868 | 18 |
 | Release from Sites Reservoir to TCC, GCC, and Coluse Basin Drain | 262 | 0 | 262 |
 | Other Diversions from Sacramento River | 510 | 509 | 1 |
 | Stony Creek and other tributary Inflows | 941 | 941 | 0 |
 | Return Flows | 332 | 332 | 0 |
 | Total Inputs to Colusa Basin | 3,349 | 2,796 | 552 |
 | Outputs | | | |
 | Diversion to Corning Canal | 19 | 16 | 3 |
 | Diversion to Orland Unit Agriculture | 102 | 103 | 0 |
 | Diversion to TCCA Agriculture | 235 | 136 | 100 |
 | Diversion from TCC to Sites Reservoir | 299 | 0 | 299 |
 | Diversion to GCID Agriculture | 763 | 758 | 5 |
 | Diversion from GCC to Sites Reservoir | 105 | 0 | 105 |
 | Diversion to Refuges | 102 | 99 | 4 |
 | Diversion to Other Colusa Basin Agriculture (Right Bank) | 510 | 509 | 1 |
 | Stony Creek Outflow to Sacramento River | 250 | 252 | -2 |
 | Colusa Basin Drain Outflow to Sacramento River | 445 | 422 | 23 |
 | Knights Landing Ridge Cut Outflow | 348 | 329 | 19 |
 | Losses from Canals (TCC, CC, GCC, CBD) | 145 | 149 | 4 |
 | Stony Creek Reservoirs Eva poration \& Losses | 24 | 24 | 0 |
 | Total Outputs from Colusa Basin | 3,348 | 2,795 | 552 |
 | Change in Storage | | | |
 | Stony Creek Reservoirs | 1 | 1 | 0 |
 | | | | |
 | Mass Balance | 0 | 0 | 0 |

 *The Colusa Basin mass balance includes parameters within the Colusa Basin, not including Sites Reservoir, Funks Reservoir, and the Sacramento Valley outside of the Colusa Basin. The Delevan Pipeline is not included in this table because it serves as an input and output for the Sites Reservoir Mass Balance and Sacramento Valley Mass Balance reports.
 *Other Diversion from Sacramento River include diversions to Colusa Basin, West Bank, and WBA8s
 *Stony Creek and other tributary inflows include inflows to East Park Reservoir, Stony Gorge Reservoir, Black Butte Lake and DSA 12 Accretion
 *Return flows include those from WBA8NN, WBA7N, WBA7S, WBA8S, WBA8NS, Delevan and Colusa Refuges

 * Diversion to TCCA Agriculture includes diversions to WBA4, WBA7N, and WBA7S.
 *Diversion to GCID Agriculture includes diversions to WBA8NN and WBA8NS.
 *Diversion to Refuges includes diversions from the Sacramento Valley and the Colusa Basin Drain.
 *Stony Creek Reservoirs includes East Park Reservoir, Stony Gorge Reservoir, and Black Butte Lake.
 *Change in Storage is End of Period Volume minus Beginning of Period Volume divided by number of years in the period
 *Annual Averages for October through September.

 | STATUS: | FINAL |
 | :--- | :--- |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A. 1 |
 | CAVEAT: | |
 | NOTES: | |

 | PREPARER: | J HERRIN | PHASE: | 1 | VERSI ON: C |
 | ---: | :--- | ---: | :---: | :---: |
 | CHECKER: | P PENINGER | DATE: | 2017 AUGUST | |
 | QAVQ:: | N CARLSON | REF/FILE \#: | WSIP APPLICATION | |
 | | | PAGE: | 23 | OF 29 |

 | Sacramento Valley Mass Balance (All values are in TAF) | Annual Average for Full Simulation Period | | |
 | :---: | :---: | :---: | :---: |
 | | WSIP 2030 With Project | WSIP 2030 Without Project | Difference |
 | Sacramento Valley Mass Balance Inputs | | | |
 | Inflow to Shasta Lake and Whiskeytown Reservoir | 6,209 | 6,209 | 0 |
 | Flow through Clear Creek Tunnel | 540 | 534 | 5 |
 | Tributary Inflows upstream of Red Bluff | 1,484 | 1,484 | 0 |
 | Tributary Inflows between Red Bluff and Hamilton City | 840 | 840 | 0 |
 | Stony Creek Inflow | 250 | 252 | -2 |
 | Big Chico Creek Inflow | 101 | 101 | 0 |
 | Accretions in Upper Sacramento River | 1,395 | 1,395 | 0 |
 | Sites Reservoir Release to river through Delevan Pipeline | 242 | 0 | 242 |
 | Inflow from Colusa Basin Drain | 445 | 422 | 23 |
 | Feather River Inflow to Lake Oroville | 4,115 | 4,115 | 0 |
 | Yuba River and Bear River Inflow to Feather River | 2,199 | 2,199 | 0 |
 | Kelly Ridge and Butte Creek Inflow to Feather River | 433 | 433 | 0 |
 | Accretions in Feather River | 460 | 460 | 0 |
 | American River Inflow to Folsom Lake | 2,784 | 2,784 | 0 |
 | Other American River Inflows | 674 | 674 | 0 |
 | Accretions in Lower Sacramento River | 595 | 595 | 0 |
 | Inflow from Knights Landing Ridge Cut | 348 | 329 | 19 |
 | Groundwater Pumping | 1,220 | 1,221 | -1 |
 | Return Flows | 1,490 | 1,486 | 4 |
 | Total Inputs to Sacramento Valley | 25,823 | 25,533 | 291 |
 | Outputs | | | |
 | Diversion to Sutter Refuge | 13 | 10 | 3 |
 | Diversion at Red Bluff (TCC \& CC) | 416 | 146 | 271 |
 | Diversion at Hamilton City (GCC) | 886 | 868 | 18 |
 | Diversion to Sites Reservoir through Delevan Pipeline | 148 | 0 | 148 |
 | Diversion to Other Colusa Basin Agriculture (Right Bank) | 510 | 509 | 1 |
 | Diversion to Other Sacramento River Agriculture and M\&/ | 2,872 | 2,872 | 0 |
 | Diversion to Feather River Agriculture and M\&/ | 2,221 | 2,211 | 10 |
 | Diversion to Yuba River Agriculture and M \& | 60 | 62 | -1 |
 | Reservoir Evaporation \& Losses | 224 | 221 | 3 |
 | Stream-Groundwater Interaction | 140 | 148 | -8 |
 | Yolo Bypass | 2,742 | 2,827 | -85 |
 | Sacramento River below Freeport | 15,595 | 15,666 | -71 |
 | Total Outputs from Sacramento Valley Change in Storage | 25,829 | 25,540 | 289 |
 | Shasta Lake | 3 | 3 | 1 |
 | Lake Oroville | -9 | -10 | 1 |
 | Folsom Lake | -1 | -1 | 0 |
 | Other Reservoirs | 1 | 1 | 0 |
 | Total Change in Reservoir Storage in Sacramento Valley | -6 | -7 | 1 |
 | | | | |
 | Mass Balance | 0 | 0 | 0 |

 *The Sacramento Valley Mass Balance includes parameters upstream of Freeport to Shasta Lake and Trinity Lake inflow, not including the Colusa Basin. See "Colusa Basin Mass Balance" for additional detail.
 *Other Inflows upstream of Red Bluff include Cow Creek, Cottonwood Creek, Battle Creek, and Payne Creek.
 *Inflows between Red Bluff and Hamilton City include Elder Creek, Thomes Creek, Antelope Creek, Mills Creek, Deer Creek, and Red Bank Creek.
 *Other American River Inflows include inflows to the Sacramento River and from Lake Natoma.
 *Diversion to Other Sacramento River Agriculture and M\&I include diversions to West Sacramento Diversion for Davis Municipal Project, EBMUD \& CCWD Freeport Regional Water Project, North Fork Dam, DSA12, DSA15, DSA59, DSA70, WBA4, and WBA5.
 *Diversion to Feather River Agriculture and M\&I includes diversions to Gray Lodge Refuge, Butte Sink Duck Clubs, Western Canal \& Joint WD Rice Straw Decomp, DSA69, and diversion to Sites Reservoir at Joint Canal near Thermalito.
 *Diversion to Yuba River Agriculture and M\&I include transfers for Lower Yuba River Accord and SCWA excess flows.
 *Change in Storage is End of Period Volume minus Beginning of Period Volume divided by number of years in the period.
 *Other Reservoirs include Whiskeytown Lake, Kesiwck Reservoir, Thermalito Complex, and Lake Natoma.
 *Annual Averages for October through September.

 | STATUS: | FINAL | PREPARER: | J HERRIN | PHASE: | 1 | VERSIon: | C |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A. 1 | CHECKER: | P PENINGER | DATE: | 2017 | GUST | |
 | CAVEAT: | | QAQC: | N CARLSON | REF/FLLE \#: | WSIP | LICATION | |

 | Sacramento - San Joaquin Delta Mass Balance (All values are in TAF) | Annual Average for Full Simulation Period | | |
 | :---: | :---: | :---: | :---: |
 | | WSIP 2030 With Project | W SIP 2030 Without Project | Difference |
 | Sacramento - San Joaquin Delta Mass Balance Inputs | | | |
 | Sacramento River below Freeport | 15,595 | 15,666 | -71 |
 | Yolo Bypass | 2,742 | 2,827 | -85 |
 | San Joaquin River below Vernalis | 3,349 | 3,352 | -3 |
 | Eastside Streams and other inflows | 886 | 886 | 0 |
 | Total Inputs to Sacramento - San Joaquin Delta | 22,573 | 22,731 | -159 |
 | Outputs | | | |
 | Diversion to North Bay Aquaduct | 86 | 85 | 1 |
 | Export at Banks Pumping Plant | 2,755 | 2,637 | 118 |
 | Export at Jones Pumping Plant | 2,136 | 2,106 | 30 |
 | Export to Contra Costa WD/Los Vaqueros Reservoir | 168 | 168 | 0 |
 | Other Delta Diversions | 60 | 60 | 0 |
 | Net Delta Island Consumptive Use | 875 | 875 | 0 |
 | Delta Outflow | 16,492 | 16,801 | -309 |
 | Total Outputs from Sacramento - San Joaquin Delta | 22,573 | 22,731 | -159 |
 | | | | |
 | Mass Balance | 0 | 0 | 0 |

 *The Delta Mass Balance includes parameters upstream of Delta Outflow, not including the Sacramento Valley. It is bounded by inflow at Freeport and Vernalis. See "Sacramento Valley Mass Balance" for additional detail.
 *Eastside Streams and other inflows includes Marsh Creek, Mokelumne, \& Calaveras, Cosumnes River.
 *Export to Contra Costa WD/Los Vaqueros Reservoir includes exports to CCWD Old River, Victoria Canal, \& Rock Slough Intakes.
 *Other Delta Diversions include diversions to Stockton DWSP/COSMA, the City of Antioch (pre-1914 water rights), and Vallejo.
 *Net Delta Island Consumptive Use includes diversions and island seepage and drainage.
 *Annual Averages for October through September.

 | STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSION: C | |
 | :--- | :--- | ---: | :--- | ---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A.1 | CHECKER: | P PENINGER | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QALQC: | N CARLSON | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | PAGE: | 25 | OF |

 | Sites Reservoir Mass Balance (All values are in TAF) | Annual Average for Full Simulation Period | | |
 | :---: | :---: | :---: | :---: |
 | | WSIP 2070 With Project | WSIP 2070 Without Project | Difference |
 | Sites Reservoir Mass Balance Inputs | | | |
 | Diversion to Sites Reservoir at Red Bluff (TCC) | 306 | 0 | 306 |
 | Diversion to Sites Reservoir at Hamilton City (GCC) | 118 | 0 | 118 |
 | Diversion to Sites Reservoir at Delevan Pipeline | 164 | 0 | 164 |
 | Total Inputs to Sites Reservoir | 588 | 0 | 588 |
 | Outputs | | | |
 | Release from Sites Reservoir to TCC, GCC, and Colusa Basin Drain | 272 | 0 | 272 |
 | Release from Sites Reservoir to Delevan Pipeline | 268 | 0 | 268 |
 | Sites Reservoir Evaporation \& Losses | 45 | 0 | 45 |
 | Total Outputs from Sites Reservoir | 585 | 0 | 585 |
 | Change in Storage | | | |
 | Sites Reservoir | 3 | 0 | 3 |
 | | | | |
 | Mass Balance | 0 | 0 | 0 |

 *Change in Storage is End of Period Volume minus Beginning of Period Volume divided by number of years in the period.
 *Annual Averages for October through September.

 | STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSI ON: | C |
 | :--- | :--- | :--- | :--- | ---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A.1 | CHECKER: | P PENINGER | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAQC: | N CARLSON | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | PAGE: | 26 | OF |

 | Colusa Basin Mass Balance (All values are in TAF) | Annual Average for Full Simulation Period | | |
 | :---: | :---: | :---: | :---: |
 | | WSIP 2070 With Project | WSIP 2070 Without Project | Difference |
 | Colusa Basin Mass Balance Inputs | | | |
 | Diversion at Red Bluff (TCC \& Corning Canal) | 388 | 95 | 293 |
 | Diversion at Hamilton City (GCC) | 894 | 867 | 27 |
 | Release from Sites Reservoir to TCC, GCC, and Coluse Basin Drain | 272 | 0 | 272 |
 | Other Diversions from Sacramento River | 509 | 507 | 2 |
 | Stony Creek and other tributary Inflows | 972 | 972 | 0 |
 | Return Flows | 332 | 332 | 0 |
 | Total Inputs to Colusa Basin | 3,368 | 2,773 | 594 |
 | Outputs | | | |
 | Diversion to Corning Canal | 14 | 10 | 4 |
 | Diversion to Orland Unit Agriculture | 102 | 103 | 1 |
 | Diversion to TCCA Agriculture | 212 | 86 | 126 |
 | Diversion from TCC to Sites Reservoir | 306 | 0 | 306 |
 | Diversion to GCID Agriculture | 757 | 757 | 0 |
 | Diversion from GCC to Sites Reservoir | 118 | 0 | 118 |
 | Diversion to Refuges | 102 | 99 | 4 |
 | Diversion to Other Colusa Basin Agriculture (Right Bank) | 509 | 507 | 2 |
 | Stony Creek Outflow to Sacramento River | 283 | 288 | 5 |
 | Colusa Basin Drain Outflow to Sacramento River | 449 | 427 | 21 |
 | Knights Landing Ridge Cut Outflow | 346 | 324 | 23 |
 | Losses from Canals (TCC, CC, GCC, CBD) | 143 | 147 | -4 |
 | Stony Creek Reservoirs Eva poration \& Losses | 24 | 25 | 0 |
 | Total Outputs from Colusa Basin | 3,367 | 2,773 | 594 |
 | Change in Storage | | | |
 | Stony Creek Reservoirs | 1 | 1 | 0 |
 | | | | |
 | Mass Balance | 0 | 0 | 0 |

 *The Colusa Basin mass balance includes parameters within the Colusa Basin, not including Sites Reservoir, Funks Reservoir, and the Sacramento Valley outside of the Colusa Basin. The Delevan Pipeline is not included in this table because it serves as an input and output for the Sites Reservoir Mass Balance and Sacramento Valley Mass Balance reports.
 *Other Diversion from Sacramento River include diversions to Colusa Basin, West Bank, and WBA8S
 *Stony Creek and other tributary inflows include inflows to East Park Reservoir, Stony Gorge Reservoir, Black Butte Lake and DSA 12 Accretion
 *Return flows include those from WBA8NN, WBA7N, WBA7S, WBA8S, WBA8NS, Delevan and Colusa Refuges
 *Diversion to TCCA Agriculture includes diversions to WBA4, WBA7N, and WBA7S.
 *Diversion to GCID Agriculture includes diversions to WBA8NN and WBA8NS.
 *Diversion to Refuges includes diversions from the Sacramento Valley and the Colusa Basin Drain.
 *Stony Creek Reservoirs includes East Park Reservoir, Stony Gorge Reservoir, and Black Butte Lake.
 *Change in Storage is End of Period Volume minus Beginning of Period Volume divided by number of years in the period
 *Annual Averages for October through September.

 | STATUS: | FINAL | PREPARER: | J HERRIN | PHASE: | 1 | VERSION: | C |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A. 1 | CHECKER: | P PENINGER | DATE: | 2017 | GUST | |
 | CAVEAT: | | QAVQC: | N CARLSON | REF/FILE \#: | WSIP | LICATION | |
 | NOTES: | | | | PAGE: | 27 | OF 29 | |

 | Sacramento Valley Mass Balance (All values are in TAF) | Annual Average for Full Simulation Period | | |
 | :---: | :---: | :---: | :---: |
 | | WSIP 2070 With Project | WSIP 2070 Without Project | Difference |
 | Sacramento Valley Mass Balance Inputs | | | |
 | Inflow to Shasta Lake and Whiskeytown Reservoir | 6,254 | 6,254 | 0 |
 | Flow through Clear Creek Tunnel | 552 | 546 | 6 |
 | Tributary Inflows upstream of Red Bluff | 1,521 | 1,521 | 0 |
 | Tributary Inflows between Red Bluff and Hamilton City | 877 | 877 | 0 |
 | Stony Creek Inflow | 283 | 288 | -5 |
 | Big Chico Creek Inflow | 106 | 106 | 0 |
 | Accretions in Upper Sacramento River | 1,395 | 1,395 | 0 |
 | Sites Reservoir Release to river through Delevan Pipeline | 268 | 0 | 268 |
 | Inflow from Colusa Basin Drain | 449 | 427 | 21 |
 | Feather River Inflow to Lake Oroville | 4,228 | 4,228 | 0 |
 | Yuba River and Bear River Inflow to Feather River | 2,255 | 2,255 | 0 |
 | Kelly Ridge and Butte Creek Inflow to Feather River | 447 | 447 | 0 |
 | Accretions in Feather River | 460 | 460 | 0 |
 | American River Inflow to Folsom Lake | 2,809 | 2,809 | 0 |
 | Other American River Inflows | 674 | 674 | 0 |
 | Accretions in Lower Sacramento River | 595 | 595 | 0 |
 | Inflow from Knights Landing Ridge Cut | 346 | 324 | 23 |
 | Groundwater Pumping | 1,279 | 1,286 | -7 |
 | Return Flows | 1,486 | 1,472 | 14 |
 | Total Inputs to Sacramento Valley | 26,282 | 25,962 | 320 |
 | Outputs | | | |
 | Diversion to Sutter Refuge | 13 | 10 | 3 |
 | Diversion at Red Bluff (TCC \& CC) | 388 | 95 | 293 |
 | Diversion at Hamilton City (GCC) | 894 | 867 | 27 |
 | Diversion to Sites Reservoir through Delevan Pipeline | 164 | 0 | 164 |
 | Diversion to Other Colusa Basin Agriculture (Right Bank) | 509 | 507 | 2 |
 | Diversion to Other Sacramento River Agriculture and M\&। | 2,869 | 2,869 | 0 |
 | Diversion to Feather River Agriculture and M \& | 2,217 | 2,186 | 31 |
 | Diversion to Yuba River Agriculture and M \& | 57 | 58 | -1 |
 | Reservoir Evaporation \& Losses | 212 | 208 | 4 |
 | Stream-Groundwater Interaction | 174 | 183 | -10 |
 | Yolo Bypass | 3,308 | 3,424 | -117 |
 | Sacramento River below Freeport | 15,486 | 15,565 | -79 |
 | Total Outputs from Sacramento Valley | 26,291 | 25,972 | 318 |
 | Change in Storage | | | |
 | Shasta Lake | 2 | 1 | 1 |
 | Lake Oroville | -11 | -11 | 1 |
 | Folsom Lake | -1 | -1 | 0 |
 | Other Reservoirs | 1 | 1 | 0 |
 | Total Change in Reservoir Storage in Sacramento Valley | -9 | -11 | 2 |
 | | | | |
 | Mass Balance | 0 | 0 | 0 |

 *The Delta Mass Balance includes parameters upstream of Delta Outflow, not including the Sacramento Valley. It is bounded by inflow at Freeport and Vernalis. See "Sacramento Valley Mass Balance" for additional detail.
 *Other Inflows upstream of Red Bluff include Cow Creek, Cottonwood Creek, Battle Creek, and Payne Creek.
 *Inflows between Red Bluff and Hamilton City include Elder Creek, Thomes Creek, Antelope Creek, Mills Creek, Deer Creek, and Red Bank Creek.
 *Other American River Inflows include inflows to the Sacramento River and from Lake Natoma.
 *Diversion to Other Sacramento River Agriculture and M\&I include diversions to West Sacramento Diversion for Davis Municipal Project, EBMUD \& CCWD Freeport Regional Water Project, North Fork Dam, DSA12, DSA15, DSA59, DSA70, WBA4, and WBA5.
 *Diversion to Feather River Agriculture and M\&I includes diversions to Gray Lodge Refuge, Butte Sink Duck Clubs, Western Canal \& Joint WD Rice Straw Decomp, DSA69, and diversion to Sites Reservoir at Joint Canal near Thermalito.
 *Diversion to Yuba River Agriculture and M\&I include transfers for Lower Yuba River Accord and SCWA excess flows.
 *Change in Storage is End of Period Volume minus Beginning of Period Volume divided by number of years in the period.
 *Other Reservoirs include Whiskeytown Lake, Kesiwck Reservoir, Thermalito Complex, and Lake Natoma.
 *Annual Averages for October through September.

 | STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSI ON: | C |
 | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A. 1 | CHECKER: | P PENINGER | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAIQC: | N CARLSON | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | PAGE: | 28 | OF |

 | Sacramento - San Joaquin Delta Mass Balance (All values are in TAF) | Annual Average for Full Simulation Period | | |
 | :---: | :---: | :---: | :---: |
 | | WSIP 2070 With Project | WSIP 2070 Without Project | Difference |
 | Sacramento - San Joaquin Delta Mass Balance Inputs | | | |
 | Sacramento River below Freeport | 15,486 | 15,565 | -79 |
 | Yolo Bypass | 3,308 | 3,424 | -117 |
 | San Joaquin River below Vernalis | 3,493 | 3,497 | -4 |
 | Eastside Streams and other inflows | 895 | 895 | 0 |
 | Total Inputs to Sacramento - San Joaquin Delta | 23,182 | 23,381 | -199 |
 | Outputs | | | |
 | Diversion to North Bay Aquaduct | 85 | 84 | 1 |
 | Export at Banks Pumping Plant | 2,579 | 2,446 | 133 |
 | Export at Jones Pumping Plant | 1,858 | 1,824 | 34 |
 | Export to Contra Costa WD/Los Vaqueros Reservoir | 169 | 169 | 0 |
 | Other Delta Diversions | 60 | 60 | 0 |
 | Net Delta Island Consumptive Use | 865 | 864 | 1 |
 | Delta Outflow | 17,566 | 17,934 | -368 |
 | Total Outputs from Sacramento - San Joaquin Delta | 23,182 | 23,381 | -199 |
 | | | | |
 | Mass Balance | 0 | 0 | 0 |

 *The Delta Mass Balance includes parameters upstream of Delta Outflow, not including the Sacramento Valley. See "Sacramento Valley Mass Balance" for additional detail.
 *Eastside Streams and other inflows includes Marsh Creek, Mokelumne, \& Calaveras, Cosumnes River.
 *Export to Contra Costa WD/Los Vaqueros Reservoir includes exports to CCWD Old River, Victoria Canal, \& Rock Slough Intakes. *Other Delta Diversions include diversions to Stockton DWSP/COSMA, the City of Antioch (pre-1914 water rights), and Vallejo.
 *Net Delta Island Consumptive Use includes diversions and island seepage and drainage.
 *Annual Averages for October through September.

 | STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSION: C | |
 | :--- | :--- | ---: | :--- | ---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A.1 | CHECKER: | P PENINGER | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QALQC: | N CARLSON | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | PAGE: | 29 | OF |

 ## Physical Benefits Tab

 ## Attachment 1: Flood Control Benefits

 Attach any relevant flood damage reduction supporting documentation, such as hydraulic and hydrologic modeling studies, and property flood damage analysis (TR section 4.9.4). If information to support this question is located in another attachment, provide the location.

 WSIP Application Instructions, March 2017
 Response
 This attachment describes the flood control benefits associated with the implementation of Sites Reservoir and all associated facilities, and provides modeling, historical flood and hydrology data, and climate change modeling data to explain localized and overall flood control benefits.

 | STATUS: | FINAL | PREPARER: | D RUARK | PHASE: | 1 | VERSION: | A |
 | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS: | CHECKER: | JHERRIN | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVQ: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | FLOOD CONTROL BENEFITS | | | PAGE: | 1 | OF | 11 |

 ## Table of Contents

 Attachment 1: Flood Control Benefits 1
 Introduction 4
 Without-Project Future Conditions 6
 With-Project Future Conditions - Potential Flood Control Physical Benefits 9
 Flood Inundation Study. 11
 Tables
 Table 1. Sites Reservoir Changes in Flooding Footprint and Damages for the 100-Year Event 9
 Table 2. Hydraulic Model Data Sources 11
 Figures
 Figure 1. Area Map. 5
 Figure 2. Existing FEMA 100-year Floodplain (Without-Project Future Conditions) 7
 Figure 3. February 2017 Flooding - Town of Maxwell and Vicinity. 8
 Figure 4. Modeled 100-year Floodplain with Proposed Project (With-Project Future Conditions) 10

 | STATUS: | FINAL | PREPARER: | D RUARK | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS: | CHECKER: | J HERRIN | DATE: | 2017 AU | UST | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP A | CATION | |
 | NOTES: | FLOOD CONTROL BENEFITS | | | PAGE: | 2 | of | 11 |

 # Acronyms and Abbreviations

 | CVFED | Central Valley Floodplain Evaluation and Delineation |
 | :--- | :--- |
 | FEMA | Federal Emergency Management Agency |
 | NED | National Elevation Dataset |
 | T-C | Tehama-Colusa |
 | USACE | U.S. Army Corps of Engineers |
 | USGS | U.S. Geological Survey |

 | STATUS: | FINAL | PREPARER: | D RUARK | PHASE: | 1 | VERSION: | A |
 | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS: | CHECKER: | JHERRIN | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QANQ: | REF/FILE \#: | WSIP APPLICATION | | | |
 | NOTES: | FLOOD CONTROL BENEFITS | | | PAGE: | 3 | OF | 11 |

 ## Introduction

 The proposed project is located in the Colusa Basin watershed in Colusa and Glenn. Due to the relatively low elevation, flooding in the watershed typically takes place between October and April due to rainfallrunoff. Flood flows from the foothill streams are prone to sudden surges that flow swiftly into the Colusa Basin Drain. The Colusa Basin Drain is a designated floodway according to the Central Valley Flood Protection Board. The primary cause of flooding is inadequate conveyance capacities in the many ephemeral streams throughout the watershed. In addition, high intensity rainfall will cause localized flooding due to poor drainage facilities.

 Funks Creek flows into the existing Funks Reservoir at the Tehama-Colusa (T-C) Canal, with flow contributed from a drainage area of 43 square miles. Stone Corral Creek flows from a drainage area of approximately 38 square miles. The headwaters of Grapevine Creek are on the west side of the proposed Sites Reservoir inundation area and flow into the reservoir inundation area north of SitesLodoga Road. Grapevine Creek flows into Funks Creek approximately seven miles upstream of the existing Funks Reservoir. The headwaters of Antelope Creek are also on the west side of the proposed Sites Reservoir inundation area, just south of the headwaters of Grapevine Creek. Antelope Creek flows through the southern portion of the proposed Sites Reservoir inundation area and joins Stone Corral Creek near the town of Sites. To the north of the proposed reservoir inundation area, Hunters Creek flows to the east. Southeast of the proposed inundation area is Lurline Creek, which flows to the east. Both Hunters and Lurline Creeks flow into the Colusa Basin Drain. Figure 1 depicts the proximity of the proposed project features to these ephemeral streams.

 | STATUS: | FINAL | PREPARER: | D RUARK | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS: | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAVQC: | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | FLOOD CONTROL BENEFITS | | | PAGE: | 4 |

 Figure 1. Area Map

 | STATUS: | FINAL | PREPARER: | D RUARK | PHASE: | 1 | VERSION: | A |
 | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS: | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVQC: | REF/FILE \#: | WSIP APPLICATION | | | |
 | NOTES: | FLOOD CONTROL BENEFITS | | | PAGE: | 5 | OF | 11 |

 ## Without-Project Future Conditions

 The without-project future conditions and existing conditions are assumed to be similar given the rural nature of the area and limited potential for growth and development in Glenn and Colusa counties. Commercial and residential land use is generally limited to the town of Maxwell and areas adjacent to Interstate Highway 5, State Highway 20, and the local roads which traverse this part of Colusa County.

 Figure 2 depicts the existing Federal Emergency Management Agency (FEMA 100-year floodplain in western Colusa County. A portion of the area along Funks Creek, downstream of the existing Funks Reservoir, and Stone Corral Creek are in the existing 100-year floodplain. Funks Reservoir is not a flood control reservoir and therefore can be overwhelmed with runoff allowing peak flows to continue downstream in Funks Creek. Of the 76,269 acres located within the existing 100-year floodplain, 75,716 acres are currently agricultural, 64 acres residential, and 489 acres non-residential.

 A large portion of the town of Maxwell is located within the existing 100-year floodplain. Maxwell is a farm community with a population of about 1,100 people located west of Interstate Highway 5. The most recent census information (2015 American Community Survey) reports that the town of Maxwell has 370 housing units. No census information is provided on the number of businesses in town, although the Colusa County Assessor's parcel records indicate 14 commercial properties with structures present in Maxwell. In addition, the town of Maxwell has one governmental parcel as well as six institutional parcels with an even split of churches and schools.

 In February 2017, the Sacramento Valley experienced heavy rainfall. In Colusa County, the rainfall runoff caused flooding along Stone Corral Creek inundating the town of Maxwell and the surrounding areas including a portion of Interstate Highway 5 and the Sites Project Authority office. Photos of the flooding are included as Figure 3.

 | STATUS: | FINAL | PREPARER: | D RUARK | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS: | CHECKER: | J HERRIN | DATE: | 2017 A | UST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP A | CATION | |
 | NOTES: | FLOOD CONTROL BENEFITS | | | PAGE: | 6 | OF | 11 |

 Figure 2. Existing FEMA 100-year Floodplain (Without-Project Future Conditions)

 | STATUS: | FINAL | PREPARER: | D RUARK | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS: | CHECKER: | J HERRIN | DATE: | 2017 A | UST | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP A | ICATION | |
 | NOTES: | FLOOD CONTROL BENEFITS | | | PAGE: | 7 | OF | 11 |

 Figure 3. February 2017 Flooding: Town of Maxwell and Vicinity

 | STATUS: | FINAL | PREPARER: | D RUARK | PHASE: | 1 | VERSION: |
 | :--- | :--- | ---: | :--- | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS: | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QALQC: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | FLOOD CONTROL BENEFITS | | | PAGE: | 8 | OF |

 ## With-Project Future Conditions - Potential Flood Control Physical Benefits

 Direct flood control benefits would be provided by the proposed project within the Stone Corral Creek and Funks Creek watersheds including the town of Maxwell by reducing the size of the floodplain within the region. It is estimated that the proposed project would reduce the 100-year floodplain by about 10,000 acres, a 9% reduction. In addition to increasing the level of protection in the Funks Creek and Stone Corral Creek watersheds, 100-year level of protection would also be achieved for approximately 4,025 acres in the Colusa Basin located east of Interstate Highway 5. Table 1 provides a summary of the change in 100-year floodplain area by land use type. Figure 3 depicts the With-Project Future Conditions 100-year floodplain.

 Table 1. Sites Reservoir Changes in Flooding Footprint and Damages for the 100-Year Event

 | | 100-Year Existing (Acres) | 100-Year With Project (Acres) | Net Change (Acres) |
 | :--- | :---: | :---: | :---: |
 | Agriculture | 75,716 | 65,874 | 9,842 |
 | Residential | 64 | 44 | 20 |
 | Non-Residential | 489 | 349 | $\mathbf{1 4 0}$ |
 | Total | $\mathbf{7 6 , 2 6 9}$ | $\mathbf{6 6 , 2 6 7}$ | $\mathbf{1 0 , 0 0 2}$ |

 | STATUS: | FINAL | PREPARER: | D RUARK | PHASE: | 1 | VERSI ON: | A |
 | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS: | CHECKER: | JHERRIN | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVC: | REF/FILE \#: | WSIP APPLICATION | | | |
 | NOTES: | FLOOD CONTROL BENEFITS | | | PAGE: | 9 | OF | 11 |

 Figure 4. Modeled 100-year Floodplain with Proposed Project (With-Project Future Conditions)

 | STATUS: | FINAL | PREPARER: | D RUARK | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS: | CHECKER: | J HERRIN | DATE: | 2017 A | UST | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP A | ICATION | |
 | NOTES: | FLOOD CONTROL BENEFITS | | | PAGE: | 10 | OF | 11 |

 ## Flood Inundation Study

 A flood inundation study was conducted to better understand the extent of existing flooding along Funks Creek and Stone Corral Creek downstream of the proposed project area and to analyze changes in the floodplain with the proposed Sites Reservoir project in place.

 Existing information from FEMA's Flood Insurance Study for Colusa County (May 2003) and Letter of Map Revision for town of Maxwell (effective July 2015) were reviewed. FEMA's model was not readily available; therefore, a new numerical model was developed to analyze the future with-project conditions for the $5-, 10-, 25-50-100$-, and 500 -year flood events. Table 2 summarizes the elements of the new hydraulic model developed for this analysis. The modeling results compared to FEMA's results are similar especially near the town of Maxwell.

 Table 2. Hydraulic Model Data Sources

 | Item | FEMA Studies | Sites Reservoir Flood Inundation Study |
 | :--- | :--- | :--- |
 | Hydraulic model
 software | U.S. Army Corps of Engineers (USACE) Model HEC-2
 and HEC-RAS version 4.1 (1-D) and FLO-2D (2-D)
 (https://www.flo-2d.com/) | USACE Model HEC-RAS version 5.0.3 (1-D/2-D)
 (htt://www.hec.usace.army.mil/software/hec-
 ras/) |
 | Topography / Digital
 Terrain Model | USGS quadrangles and LiDAR from Central Valley
 Floodplain Evaluation and Delineation (CVFED)
 program | USGS National Elevation Dataset (NED)
 (https://nationalmap.gov/elevation.html) |
 | Hydrology | HEC-1 and HEC-HMS (from Preliminary Hydrologic
 Analysis for Colusa County; Maxwell, Williams, and
 Arbuckle Study areas (supported Colusa County
 Letter of Map revision); May 2013) | Preliminary Hydrologic Analysis for Colusa County;
 Maxwell, Williams, and Arbuckle Study areas (May
 2013) and USGS Regression Equations |

 | STATUS: | FINAL | PREPARER: | D RUARK | PHASE: | 1 | VERSION: | A |
 | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS: | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVQ: | REF/FILE\#: | WSIP APPLICATION | | | |
 | NOTES: | FLOOD CONTROL BENEFITS | | | PAGE: | 11 | OF | 11 |

 ## Program Requirements Tab

 ## Attachment A.1: Measurable Benefits

 A. 1 What measurable improvements to the Delta ecosystem or tributary to the Delta does the project provide? Where is the location of the improvement? If the project is not within the watershed of the Delta, what specific water rights or water contracts would be created or amended to ensure public benefits to the Delta ecosystem? Provide supporting documentation of the willingness of these water right or water contract holders to enter into such contracts or amendments. Explain how these changes would assure measurable improvements to the Delta ecosystem. See regulations section 6003(a)(1)(L).

 WSIP Application Instructions, March, 2017
 Response
 Table A.1-1 provides some of the key benefits (public and non-public) from the modeling results for Sites Reservoir. Public benefits are highlighted in yellow.

 The most significant measurable improvement to a tributary to the Delta is the improvement in Sacramento River water temperatures that result from Sites Reservoir. The modeled temperature improvements are shown at multiple locations in the river in Table A.1-1 (see under EEA-2).

 Measurable improvements to the Delta ecosystem would be provided through releases to the Yolo Bypass for ecosystem enhancement (see EEA-5 on Table A.1-1). Benefits in the Sacramento, Feather, and American River watersheds (tributaries to the Delta) are also provided (see EEA-1 through EEA-4 and EEA-6 through EEA-8). The locations of the improvements are specified in the table.

 The project is within the watershed contributing to the Delta and can make releases to the Delta for public benefits.

 | STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :---: |
 | PURPOSE: | PROGRAM REQUIREMENT A1 | CHECKER: | D RUARK | DATE: |
 | CAVEAT: | | QAVQ: | REF/FILE \#: | WSIP APGUSLICATION |
 | NOTES: | | | PAGE: | 1 |

 Objective - Ecosystem Enhancern Account (EEA) Action

 ## Cold

 levels, and increased coldwater pool in storage, with particular emphasis on Below Normal, Dry and Critical water year types.

 EEA-2. Sacramento River Flows for Temperature Contol

 Bluff Diversion Dam, with particular emphasis on the months of highest potential water temperature-related impacts (i.e., July through November) during Below Normal, Dry and Critical water year types.

 | Status: | FINAL | PREPARER: | J herrin | PHASE: | 1 | VERSION: |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PROGRAM REQUIREMENT A1 | CHE | D RUARK | DATE: | 2017 | US |
 | Caveat: | | QA | | | WSIP | Ication |

 ## - Lake Cold Water Pool

 Incease the Lavailability
 e availability of coldwater pool storage in Folsom Reservoir, by increasing May storage and coldwater pool storage, to allow the U.S. Bureau of Reclamation additional operational flexibility to provide suitable water temperatures in the lower American River. This action would utilize
 Folsom Lake

 | Folsom Lake | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | End-of-Month Storage (SW-24) | | | | | | | | | | | | |
 | May (TAF) | | | | | | | | | | | | |
 | Full Simulation Period | 838 | 841 | 3 | 0.4\% | 769 | 764 | -4 | -0.5\% | 679 | 677 | -2 | -0.3\% |
 | Dry | 765 | 775 | 10 | 1.3\% | 699 | 692 | -8 | -1.1\% | 601 | 607 | 6 | 1.0\% |
 | Critical | 480 | 489 | 9 | 1.9\% | 476 | 473 | -3 | -0.6\% | 407 | 401 | -5 | -1.3\% |
 | September (TAF) | | | | | | | | | | | | |
 | Full Simulation Period | 505 | 532 | 27 | 5.3\% | 428 | 447 | 19 | 4.5\% | 377 | 396 | 19 | 5.2\% |
 | Dry | 426 | 465 | 39 | 9.1\% | 371 | 410 | 38 | 10.4\% | 349 | 373 | 24 | 6.7\% |
 | Critical | 265 | 278 | 13 | 4.7\% | 293 | 289 | -4 | -1.4\% | 235 | 246 | 11 | 4.8\% |
 | American River at Watt Ave | | | | | | | | | | | | |
 | Monthly Temperature (SQ -19) | | | | | | | | | | | | |
 | Jul-Sep (Deg-F) | | | | | | | | | | | | |
 | Full Simulation Period | 66.7 | 65.8 | -0.9 | -1.3\% | 70.6 | 69.9 | -0.6 | -0.9\% | 71.9 | 71.2 | -0.7 | -0.9\% |
 | Dry | 68.0 | 67.2 | -0.8 | -1.2\% | 70.7 | 70.5 | -0.2 | -0.4\% | 72.2 | 71.9 | -0.3 | -0.4\% |
 | Critical | 71.6 | 70.2 | -1.4 | -2.0\% | 73.6 | 73.1 | -0.5 | -0.7\% | 75.6 | 74.7 | -0.9 | -1.2\% |

 ## EEA-4. Stabilize American River Flow

 > | | 68.0 |
 | :--- | ---: |
 | | 71.6 |

 impacts to fall-run Chinook salmon and steelhead in the lower American River.
 ions to demonstrate how flexibility in storage operations supports stabilization of flows throughout late Fall through Spring.
 Increase flows in the Yolo Bypass by 400 cfs in August, September, and October to promote food production for Delta Smelt

 Stabilize flows in the lower Feather River to minimize redd dewatering, juvenile stranding and isolation of anadromous salmonids.

 | Status: | FINAL | PREPARER: J HeRrin | PHASE: | 1 | VErsIon: |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE | program requirement al | CHECKER: DRUARK | DATE: | $2017 \mathrm{~A}$ | UST |
 | votes: | | | PAGE: | 3 | |

 EA-7. Stabilize Sacramento River Fall fows
 abrupt changes; operation limited to not greatly impact cold water pool operations in D and (years)

 ## Benefit Calculation, Monetization, and Resiliency Tab

 ## Attachment 1: Model Assumptions

 Attach description and assumptions of with-project conditions for years 2030 and 2070, as defined in section 6004(a)(2) of the regulations, as well as a description of the with- and without-project current conditions. See also regulations section 6003(a)(1)(BB).

 WSIP Application Instructions, March 2017

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL: | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAMQC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 1 | OF | 84 |

 Sites Reservoir Project Description and Assumptions of with-Project Conditions for Years 2030 and 2070 plus with and without-Project Current Conditions

 August 9, 2017

 ## Table of Contents

 Attachment 1: Model Assumptions 1
 Introduction 5
 Approach 5
 Project Description and Assumptions. 7
 Project Infrastructure 8
 Tehama-Colusa Canal and Red Bluff Pumping Plant Facilities and Capacity 9
 Glenn-Colusa Irrigation District Main Canal and Hamilton City Pumping Facilities and Capacity 9
 Proposed Delevan Pipeline and Intake Diversion and Release Capacities 9
 Existing Tehama-Colusa Canal and Glenn-Colusa Irrigation District Main Canal Intertie. 10
 Williams Outlet 10
 Holthouse (Funks) Reservoir 10
 Terminal Regulating Reservoir and Pipeline 10
 Diversions to Sites Reservoir. 10
 Sites Reservoir Diversion Bypass Flow Protection 11
 Pulse Flow Protection Diversion Assumptions 11
 Diversions to Fill Sites Reservoir Storage 13
 Sites Reservoir Evaporation 13
 Reservoir Operations Assumptions 14
 Public Benefits 14
 Shasta Lake Coldwater Pool and Sacramento River Temperature Control 15
 Stabilize Upper Sacramento River Fall Flows 15
 Sacramento River Diversion Reductions at Red Bluff and Hamilton City 15
 Folsom Lake Coldwater Pool Improvement and Supply Reliability 16
 Yolo Bypass and Delta Outflow Improvement 16
 Lake Oroville Coldwater Pool Improvement 16
 Water Supply 16
 Works Cited 16
 Figures
 Figure 1. Modeling Analytical Framework 7
 Figure 2. Sites Reservoir and Proposed Facilities. 8
 Figure 3. Pulse Flow Protection for Sites Diversions 13

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 3 | OF | 84 | |

 ## Acronyms and Abbreviations

 | Authority | Sites Project Authority |
 | :---: | :---: |
 | CALFED | CALFED Bay-Delta Program |
 | cfs | cubic feet per second |
 | CVP | Central Valley Project |
 | CVPIA | Central Valley Project Improvement Act |
 | DCR | Delivery Capability Report |
 | Delta | Sacramento-San Joaquin River Delta |
 | DSM2 | Delta Simulation Model |
 | DWR | California Department of Water Resources |
 | Funks Reservoir | Holthouse Reservoir |
 | GCID | Glenn-Colusa Irrigation District |
 | M\&I | municipal and industrial |
 | MAF | million acre-foot (feet) |
 | NODOS | North-of-Delta Offstream Storage |
 | Reclamation | Bureau of Reclamation |
 | SRSC | Sacramento River Settlement Contractor |
 | SVI | Sacramento Valley 40-30-30 water year type index |
 | SWP | State Water Project |
 | SWRCB | State Water Resources Control Board |
 | TAF | thousand acre-feet |
 | T-C Canal | Tehama-Colusa Canal |
 | TCCA | Tehama-Colusa Canal Authority |
 | TRR | Terminal Regulating Reservoir |
 | USACE | U.S. Army Corps of Engineers |
 | USRDOM | Upper Sacramento River Daily Operations Model |
 | VIC | Variable Infiltration Capacity |

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIPAPPLICATION | |
 | NOTES: | | | PAGE: | 4 | OF | 84 |

 ## Introduction

 This document provides descriptions and assumptions of the with-project conditions for the Sites Reservoir Project for years 2030 and 2070 as proposed by the Sites Project Authority (Authority). In addition, this document includes a description of the with- and without-project current conditions.

 The with-project conditions include a 1.81-million-acre-foot (MAF) reservoir, which would be located in the Sacramento Valley west of the town of Maxwell, and associated conveyance facilities including use of existing Tehama-Colusa Canal (T-C Canal) and Glenn-Colusa Irrigation District (GCID) Main Canal diversion and conveyance facilities, plus a proposed new diversion and discharge pipeline. The proposed reservoir would be filled by diversion of excess Sacramento River water that originates from unregulated tributaries to the Sacramento River downstream from Keswick Dam. These flows are "excess" to those needed to meet current regulatory requirements or other water demands. Operation of the proposed reservoir would be in cooperation with the operations of existing Central Valley Project (CVP) and State Water Project (SWP) system facilities to facilitate and maximize the potential for a wide range of benefits. Detailed operating agreements would need to be developed that define a framework and procedures for cooperative operations among the Sites Project Authority (Authority), Central Valley Project (CVP), and State Water Project (SWP).

 ## Approach

 The with-project assumptions were developed through a series of meetings and coordination with Authority representatives including participating water district managers and county representatives, California Department of Water Resources (DWR), and Bureau of Reclamation (Reclamation). The withproject condition builds on previous work conducted under the CALFED Bay-Delta Program (CALFED) by DWR and Reclamation. Subsequent to CALFED, DWR has been the lead on technical studies in coordination with the Authority as part of the North-of-Delta Offstream Storage (NODOS) Project and associated investigations.

 The analyses conducted for the Sites Reservoir Project utilized the model products and assumptions described in section 6004(a)(1) of the code of regulations. This includes the 2030 and 2070 future conditions CALSIM II and DSM2 models provided by the California Water Commission on November 2, 2016. The models provided by the commission were modified to include the facilities and operation of the Sites Project as described below in the Project Description and Assumptions section. There were no modifications to existing CVP and SWP operating criteria.

 The with- and without-project Current Conditions analyses were based on the DWR State Water Project Final Delivery Capability Report 2015 (DWR 2015) - base scenario. Similar to above, the DCR 2015 base scenario, provided by DWR, was modified to include the facilities and operation of the Sites Project. The project description and assumptions for the with-project current condition is the same as described for the 2030 and 2070 with-project conditions.

 The CALSIM II model is based on a monthly time step and, therefore, does not incorporate all the detailed decision processes that occur in actual daily operations of the CVP and SWP systems. To evaluate naturally occurring storm event flows, supplemental modeling was conducted on a daily time step to assess availability of excess Sacramento River flows.

 Table 1 (located at the end of this document) shows the range of potential beneficiary operations under drought and other hydrologic conditions, and priorities assumed for various seasonal operations. It is intended that storage and associated releases could be adaptively managed to support operational actions found to produce the greatest benefits over time.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 5 | OF | 84 | |

 The analyses included the use of other analytical tools that were updated for future 2030 and 2070 conditions. These tools include:

 - USRDOM - Upper Sacramento River Daily Operations Model
 - Sacramento River HEC5Q model
 - SALMOD
 - American River CE-QUAL Model
 - CWEST
 - SWAP
 - LTGEN
 - SWP Power
 - NODOS Power

 The analytical framework, tools, and analyses were formulated for evaluating the benefits and impacts of the Project. The framework provides for iteratively refining operations criteria to minimize both the systemwide and localized impacts on various resources while maximizing the benefits.

 The primary model in the framework is CALSIM II with inputs describing the hydrology, facilities, water management, regulatory standards, and operational criteria assumptions. CALSIM II outputs regarding system operation decisions including deliveries, flows and storages are then used by every other model in the analytical framework. CALSIM II operations were informed based on the reporting metrics from various models that simulate river temperatures, anadromous fish survival, Delta water quality, hydropower generation and economics.

 Upper Sacramento River Daily Operations Model (USRDOM) uses the CALSIM II outputs regarding the operational controls and reservoir releases to simulate daily reservoir operations and daily river flows for the upper Sacramento River from Shasta Dam to Knights Landing. For evaluating Project operations, CALSIM II and USRDOM were simulated iteratively to determine potential Reservoir diversions based on flow conditions in Sacramento River.

 Delta Simulation Model (DSM2) was used to simulate hydrodynamics (flow, velocity and water levels) and water quality (salinity) in the Sacramento-San Joaquin Delta. The Upper Sacramento River HEC5Q model was used to simulate reservoir and river temperatures in the upper Sacramento River, from Shasta Lake to Knights Landing. The Folsom CE-QUAL-W2 model was used to simulate reservoir and river temperatures on the American River. The SALMOD model was used to simulate benefits to anadromous fish in the Sacramento River. The LTGEN, SWP Power, and NODOS Power were used to study the power production and use. The SWAP and CWEST economic modeling tools were used to study the benefits to agricultural water supply and urban water supply. The interrelationships between the models are shown in the analytical framework in Figure 1.

 Descriptions of the models used in the analytical framework are included in the following attachments.

 - CALSIM II and DSM2 Modeling Assumptions
 - HEC5Q Modeling for the Sites Project
 - SALMOD Salmon Modeling of the Sacramento River
 - Upper Sacramento River Daily Flow and Operations Modeling
 - Power Modeling of the Sites Reservoir Project
 - Economic Modeling of the Sites Reservoir Project
 - Folsom Reservoir CE-QUAL-W2 Temperature Modeling

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 6 | OF | 84 | |

 ## Modeling Analytical Framework

 Figure 1. Modeling Analytical Framework

 ## Project Description and Assumptions

 Sites Reservoir would be filled by diversion of excess Sacramento River flows that originate from unregulated tributaries to the Sacramento River downstream from Keswick Dam. As described below, diversions are assumed to potentially occur in any month or water year type, but would likely be greatest in the winter months with wetter conditions (depending on storage conditions and annual flows and events). The Sites Reservoir Project could operate in cooperation with CVP and SWP system facilities to facilitate a wide range of benefits. Sites Reservoir would provide water through four primary mechanisms:

 - Water stored in Sites Reservoir could be released directly to Colusa Basin users,
 - Water could be released to the Sacramento River
 - Water could be released through the Colusa-Basin Drain and Knights Landing Ridge Cut
 - Water stored in Sites Reservoir could be exchanged for water stored in Shasta Lake or other CVP and SWP system reservoirs.

 This last mechanism could be used to significantly increase upstream north-of-Delta storage and operational flexibility to support multiple water supply and ecosystem benefits.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 7 | OF | 84 |

 The project employs a strategy to maximize the potential benefits of Sites Reservoir while not adversely affecting the CVP and SWP's ability to meet existing system regulatory requirements including the following:

 - Water rights
 - Instream flow requirements
 - Biological opinions
 - Delta water quality requirements
 - CVP and SWP requirements
 - Central Valley Project Improvement Act (CVPIA)

 The following sections describe the proposed Sites Reservoir Project infrastructure, Sacramento River diversion criteria and assumptions, public benefits, and water supply benefits.

 ## Project Infrastructure

 The primary facilities include a 1.81-MAF Sites Reservoir that would rely on the existing T-C Canal and GCID Main Canal for diversion and conveyance purposes, as well as a new proposed Delevan Pipeline and intake to divert and convey water to and from the reservoir. Figure 1 shows the location of the proposed reservoir and associated conveyance facilities. A description of existing and proposed new conveyance facilities and their proposed operation follows.

 Figure 2. Sites Reservoir and Proposed Facilities

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIPAPPLICATION | |
 | NOTES: | | | PAGE: | 8 | OF | 84 |

 ## Tehama-Colusa Canal and Red Bluff Pumping Plant Facilities and Capacity

 The existing Tehama-Colusa Canal Authority's (TCCA) T-C Canal through the TCCA service area and Red Bluff Pumping Plant located on the Sacramento River near Red Bluff would be used to divert and convey water to the proposed Sites Reservoir. Operating agreements among the Authority, TCCA, and Reclamation would need to be developed to define Sites Reservoir Project operations and cooperation among the parties.

 Red Bluff Pumping Plant has an existing pumping capacity of 2,000 cubic feet per second (cfs), which is used to meet current agricultural water demand. The project would include installation of one additional pump (250 cfs) to the existing pump grouping, which would increase the overall pumping capacity to 2,250 cfs to fully use the 2,100-cfs capacity for diversion of water through T-C Canal to Sites Reservoir. The total conveyance capacity of T-C Canal is assumed to be $2,250 \mathrm{cfs}$ at the upstream end of the canal and 2,100 cfs at Holthouse Reservoir. Any unused capacity remaining after meeting existing agricultural demands could be used as necessary to convey water to fill Sites Reservoir. Approximately 50 to 60 cfs of the T-C Canal capacity is assumed to be used for existing winter operations, based on communication with TCCA representatives.

 No dedicated period for maintenance was assumed for T-C Canal on the basis of current canal capacity and projected Sites Reservoir diversion amounts. Discussions with TCCA representatives revealed operations and maintenance could be scheduled around proposed Sites Reservoir Project operations.

 ## Glenn-Colusa Irrigation District Main Canal and Hamilton City Pumping Facilities and Capacity

 Similar to T-C Canal, GCID Main Canal would be used to convey water pumped from the existing Hamilton City pumping facility to divert and convey Sacramento River water to the proposed Sites Reservoir. Operating agreements between the Authority and GCID would need to be developed to define Sites Reservoir Project operations and cooperation between the parties. The Hamilton City pumping facility has a 3,000 cfs diversion capacity at the Sacramento River intake, and the capacity of GCID Main Canal is 1,800 cfs at TRR. Any unused capacity remaining after existing agricultural operations could be used to convey water to the proposed Sites Reservoir. The following flows are assumed to occupy capacity in the canal during existing winter operations of GCID Main Canal (values in cfs).

 | October | November | December | January | February | March |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | 513 | 534 | 389 | 235 | 56 | 48 |

 A dedicated annual maintenance shutdown period was assumed from January 7 through February 21.

 ## Proposed Delevan Pipeline and Intake Diversion and Release Capacities

 The proposed Delevan Pipeline would extend east/west across the GCID service area located west of the existing Maxwell Irrigation District intake facility. The proposed intake and discharge facility would include a fish screen and pump station intake to divert up to 2,000 cfs from the Sacramento River to Sites Reservoir when excess Sacramento River water is available for diversion. The pipeline would also have the ability to convey up to 2,500 cfs by gravity from the Sites Reservoir back to the Sacramento River for downstream uses.

 A dedicated annual maintenance shutdown period sometime between April 1 and May 31 is assumed for the pipeline, intake, and fish screen facility in wet, above-normal, and below-normal water year types in accordance with the Sacramento Valley 40-30-30 index. During the maintenance, both diversion

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 9 | OF | 84 |

 and release operations at Delevan would be shut down. No maintenance would be scheduled in dry and critical water year types.

 ## Existing Tehama-Colusa Canal and Glenn-Colusa Irrigation District Main Canal Intertie

 The existing T-C Canal and GCID Main Canal intertie provides flexibility in routing flows of up to 285 cfs from the T-C Canal to the GCID Main Canal.

 ## Williams Outlet

 The Williams Outlet provides flexibility in routing water of up to 65 cfs from the T-C Canal to the GCID Main Canal.

 ## Holthouse (Funks) Reservoir

 The existing Funks Reservoir includes a storage capacity of 2,250 acre-feet and serves as a re-regulating reservoir to stabilize flows in T-C Canal as diverters come on line and off line. The existing Funks Reservoir would be expanded to form Holthouse Reservoir by constructing a new dam (Holthouse Dam) and reservoir to the east of Funks Reservoir, with an enlarged active storage capacity of approximately 6,500 acre-feet and a surface area of approximately 450 acres.

 ## Terminal Regulating Reservoir and Pipeline

 TRR would be a 1,200-acre-foot regulating reservoir constructed adjacent to GCID Main Canal, approximately 3 miles northeast of Holthouse Reservoir. TRR would be composed of an earthen embankment dam, concrete emergency overflow weir, outfall standpipe, and an approximate 4,000-foot-long underground 60-inch-diameter overflow outlet pipe to Funks Creek.

 Water conveyed down GCID Main Canal would be directed into the proposed TRR. A new pump station (the proposed TRR pumping and generating plant) would then convey the water from TRR via the proposed TRR pipeline to the proposed Holthouse Reservoir. TRR would be required to provide operational storage for the TRR pumping and generating plant to balance normal and emergency flow variations between the upstream GCID Main Canal pump station, the 40 miles of connecting canal, and the TRR pumping and generating plant.

 The proposed TRR pipeline would be bidirectional, allowing water to be pumped from TRR to Holthouse (Funks) Reservoir for storage, and allowing water to flow by gravity from Holthouse Reservoir for release to TRR and GCID Main Canal. The pipeline would have a capacity of 1,800 cfs to convey water pumped from TRR to Holthouse Reservoir. The capacity of the pipeline to convey water by gravity flow from Holthouse Reservoir to TRR would be 900 cfs.

 ## Diversions to Sites Reservoir

 The proposed Sites Reservoir would be filled through the diversion of excess Sacramento River water that originates from unregulated tributaries to the Sacramento River downstream from Keswick Dam. Less than 1 percent of diversions to Sites Reservoir are assumed to be provided by flood releases or spills that flow through Lake Shasta. Sacramento River water would be diverted at the three locations on the river as described above. Excess flows are defined as river flows in addition to those required to meet the following:

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULLL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 10 | OF | 84 | |

 - Senior downstream water rights, existing CVP and SWP and other water rights diversions including SWP Article 21 (interruptible supply), and other more senior excess flow priorities (diversions associated with Freeport Regional Water Project and existing Los Vaqueros Reservoir)
 - Existing regulatory requirements including State Water Resources Control Board (SWRCB) D-1641, CVPIA 3406(b)(2), the 2008 U.S. Fish and Wildlife Service biological opinion, and the 2009 National Marine Fisheries Service biological opinion and other instream flow requirements
 - Bypass flow conditions needed to maintain and protect anadromous fish survival and Delta water quality

 The Authority would need to obtain a water right permit to allow the intended operations. Operations would be consistent with the terms and conditions contained in the water right permit approved by SWRCB. The permit would describe the points and methods of diversion, diversion season, purposes of use, and places of use.
 A description of proposed minimum bypass flow requirements and pulse flow criteria to protect existing and future water uses are provided below.

 ## Sites Reservoir Diversion Bypass Flow Protection

 Excess Sacramento River flow diversions to Sites Reservoir would only take place when flow monitoring indicates that bypass flows are present in the river due to storm event flows. Several existing and additional proposed bypass flow criteria were assumed at specified locations. These flow criteria are designed to make certain only excess water would be diverted into Sites Reservoir to maintain and protect existing downstream water uses, as follows.

 - A bypass flow of 3,250 cfs downstream from Red Bluff Diversion Dam must be present to maintain flows in the upper Sacramento River that are required in SWRCB WR 90-5 to prevent dewatering salmonid redds and maintain water temperatures. Diversions at Red Bluff Pumping Plant for filling Sites Reservoir would only be allowed when flows in the river were above the 3,250-cfs bypass flow criteria.
 - Diversions at the Hamilton City intake for GCID Main Canal currently require a bypass flow of 4,000 cfs to prevent fish entrainment. Diversions at Red Bluff Pumping Plant and GCID Main Canal intake for filling Sites Reservoir would only be allowed when flows in the river were above the 4,000-cfs bypass flow requirement downstream from Hamilton City.
 - Diversions for filling Sites Reservoir would only be allowed when flows below Wilkins Slough were above 5,000 cfs given the current minimum flow requirements. Wilkins Slough Navigation Control Point minimum flows currently range from 3,250 to 5,000 cfs depending on hydrologic conditions.
 - Diversions for filling Sites Reservoir would only be allowed when a Sacramento River flow of 15,000 cfs is present at Freeport in January, 13,000 cfs in December and February through June, and 11,000 cfs in all other months. This flow threshold was designed to protect and maintain existing downstream water uses and water quality in the Delta.

 ## Pulse Flow Protection Diversion Assumptions

 Operations modeling of the proposed Project included restrictions on diversions to limit impacts on outmigrating juvenile fish as a "surrogate" for likely permit conditions. Based on recent literature and the proposed permit conditions for other diversion projects, operations modeling for the proposed Project diversions were assumed to be restricted to minimize impacts to fish passage associated with pulse flow

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 11 | OF | 84 | |

 events that stimulate the observed spike in juvenile salmon outmigration. Actual operations are anticipated to be informed by real-time monitoring of fish movement.

 The assumed limits on diversions during naturally occurring, storm-induced pulse flow events in the Sacramento River were based on a recent study by del Rosario et al. (2013), which found an abrupt and substantial spike in winter-run Chinook salmon arrivals at Knights Landing in association with the first storm event producing a flow of 400 cubic meters per second (14,126 cfs) at Wilkins Slough. This spike was followed shortly by passage of up to the 50th percentile of cumulative migration. This relationship was apparent for a wide range of water year types based on catch data collected between 1999 and 2007.

 Accordingly, an assumed pulse protection period was developed that would extend from October through May to address out-migration of juvenile winter-, spring-, fall- and late-fall-run Chinook salmon, as well as steelhead. Pulse flows during this period would provide flow continuity between the upper and lower Sacramento River to support fish migration. It is recognized that research regarding the benefits of pulse flows is ongoing, and further research and adaptive management would be required to develop and refine a pulse flow protection strategy for fish migration and, as such, this assumption was used for modeling and informational purposes only.

 For proposed Sites Reservoir operations, pulse flows are defined by extended peak river flows at Bend Bridge that originate primarily from storm event tributary inflows downstream from Keswick Dam. For the purposes of operations modeling, a naturally occurring pulse event was considered initiated when the 3-day running average flow below Bend Bridge exceeded 15,000 cfs. Such an event would need to continue for at least a 7-day duration to be considered a qualified storm event for the simulation process. Diversions to Sites Reservoir would not be allowed during the 7-day period that flow was greater than 15,000 cfs. The duration of a pulse flow event would be considered terminated under the following conditions: 1) the 3-day running average discharge flow remained greater than 15,000 cfs for 7 days after initiation, 2) the 3-day running average discharge flow dropped below 15,000 cfs before reaching the 7-day duration, or 3) the 3-day running average discharge flow exceeded 25,000 cfs before reaching the 7-day duration.

 Given that del Rosario et al. (2013) indicate that the first storm event was associated with a spike in salmon arrivals at Knights Landing, diversions to Sites Reservoir would not be allowed during the first 7day qualified pulse period, when flows reach 15,000 cfs during the out-migration season. For evaluation of Sites Project Reservoir operations, it was assumed that up to one qualified 7-day pulse event would occur each month during the pulse protection period from October through May, to encourage and support salmonid out-migration and minimize potential diversion impacts. Therefore, for operations modeling, diversions to Sites Reservoir storage would be restricted under the following conditions: 1) if pulse conditions exist at Bend Bridge, and a qualified pulse event has not already occurred within the given month, and 2) if Bend Bridge flows are less than $25,000 \mathrm{cfs}$ during the pulse event. Diversions are allowed when flows exceed 25,000 cfs because flows of this magnitude are considered to provide lesser benefits to fish migration, as shown in Figure 2.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 12 | OF | 84 |

 Pulse flow protection period is October through May
 Figure 3. Pulse Flow Protection for Sites Diversions

 ## Diversions to Fill Sites Reservoir Storage

 Diversions of excess Sacramento River water to Sites Reservoir using existing T-C Canal and GCID Main Canal conveyance facilities could occur at any time during the year, given the flow conditions described above are present in the river. Deliveries for TCCA and GCID service areas have first priority at the existing T-C Canal and GCID intakes, with diversions to Sites Reservoir using the unused capacities of the two canals.

 Diversions through the proposed Delevan Pipeline could also occur at any time of the year assuming Sacramento River flow conditions are above the bypass and pulse flow criteria described above. In summer months, preference would generally be given to Sites Reservoir releases to the river, resulting in limited diversions to storage because the pipeline could only convey flows in one direction at a time.

 ## Sites Reservoir Evaporation

 In the absence of available evaporation data, Sites Reservoir "net-evaporation" rates were estimated using evaporation and precipitation data from existing nearby reservoirs. Net-evaporation is the difference between evaporation and precipitation. Positive values indicate higher rates of evaporation than precipitation while negative values indicate lower rates of evaporation than precipitation. Evaporation and precipitation data have been collected for three nearby reservoirs along Stony Creek including: (1) East Park Reservoir, (2) Stony Gorge Reservoir, and (3) Black Butte Lake.
 The evaporation data was taken from Reclamation's Stony Creek model (Yaworsky, 2006), which makes monthly estimates based on historical data from DWR, Reclamation, and U.S. Army Corps of Engineers (USACE). These evaporation rates are consistent with the data used as inputs in the DCR 2015, WSIP 2030, and WSIP 2070 CALSIM II models.

 The data consists of six historical time series ranging from October 1922 to September 2003 at a monthly time-step. The average annual evaporation rates at East Park Reservoir, Stony Gorge Reservoir, and Black Butte Lake are 6.5 TAF, 4.7 TAF, and 12.2 TAF, respectively. The precipitation data has been provided by the Variable Infiltration Capacity (VIC) model (Liang et al., 1994), a large-scale, semidistributed hydrologic model originally developed by Xu Liang at the University of Washington.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 13 | OF | 84 | |

 The net-evaporation rates for East Park Reservoir, Stony Gorge Reservoir, and Black Butte Reservoir were computed by subtracting each reservoir's precipitation rates from its evaporation rates. The monthly net-evaporation of the three reservoirs was averaged and used as the input for Sites Reservoir net-evaporation. Using this method, the average annual net-evaporation for Sites Reservoir equates to 33.3 TAF.

 Consistent with all other evaporation inputs in CALSIM II, the Sites Reservoir net-evaporation rates are unchanged under 2030 and 2070 future climate conditions.

 ## Reservoir Operations Assumptions

 The primary operational criteria include the following:

 - A defined ecosystem enhancement storage account would be established in Sites Reservoir to be managed by the State to provide water for ecosystem and water quality purposes.
 - Each of the participating Authority members would be allocated a defined storage account in the Sites Reservoir Project to manage their water, as well as store water from other potential sources of supply.
 - It is assumed that a water market of some form would be facilitated by the Authority to promote efficient use and exchange of water in Sites Reservoir storage.
 - All storage accounts would receive an equal proportional share of new water diversions into Sites Reservoir storage.
 - Any water in storage beyond designated member account volumes would be "at risk" and would be "spilled" if the reservoir fills to capacity.
 - A set of operating guidelines and rules would be developed to promote efficient water management for operations of Sites Reservoir and associated facilities.
 - All water stored in Sites Reservoir storage accounts are subject to evaporation and other losses.

 ## Public Benefits

 The operation of Sites Reservoir Project would allow for the development and administration of an ecosystem enhancement storage account that could be managed by the State to provide water for ecosystem and water quality purposes. Such an account would provide a pool of dedicated storage to manage in cooperation with existing operations to improve coldwater conservation storage, stabilize river flows during critical fisheries periods, increase flows through certain watercourses and/or facilities (such as, Yolo Bypass), improve water quality, and/or enhance habitat restoration.

 Sites Reservoir Project would be operated in cooperation with CVP and SWP operations to coordinate releases from Trinity Lake, Shasta Lake, Lake Oroville, and Folsom Lake. Releases from Sites Reservoir would allow reduced releases from other reservoirs while still meeting requirements for minimum instream flow objectives, Sacramento River temperature requirements, and Delta salinity control assigned to CVP and SWP. Through this reduction in releases, storage could be conserved in Trinity Lake, Shasta Lake, Lake Oroville, and Folsom Lake to significantly increase operational flexibility to improve river water temperatures for fish survival, Delta water quality, flood control, and recreation.

 The following summarizes the anticipated primary benefits that could be realized through the provision of Sites Reservoir Project water beyond that required to meet Authority member needs. The priorities and amount of water potentially allocated to achieving the benefits listed below will be subject to the

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 14 | OF | 84 | |

 participation of the California Water Commission Water Storage Investment Program. Sites Reservoir Project operations would achieve multiple benefits over a wide range of hydrologic conditions.

 In drought conditions, Sites Reservoir Project could:

 - Increase coldwater pool conservation in Trinity Lake, Shasta Lake, Lake Oroville, and Folsom Lake
 - Help regulate Sacramento River summer flows for best use of cold water for control of temperature conditions adverse to anadromous fish

 In non-drought hydrologic conditions, Sites Reservoir Project water could:

 - Stabilize Sacramento River fall flows for improving spawning and rearing success of anadromous fish
 - Provide water to the Yolo Bypass to support salmon migration and summer food production for delta smelt
 - Provide water for Incremental Level 4 refuge deliveries per CVPIA
 - Provide (via upstream actions) incidental Delta water quality improvements in the summer and fall

 More detailed descriptions of potential actions that could be implemented in cooperation with the CVP and SWP operations are provided below.

 ## Shasta Lake Coldwater Pool and Sacramento River Temperature Control

 Maximum benefits could be realized assuming Sites Reservoir and Shasta Lake were operated in cooperation to increase Shasta Lake storage and preserve a greater volume of coldwater pool storage. This additional cold water would improve operational flexibility to provide releases to maintain appropriate water temperatures in the Sacramento River during summer months and in drought years.

 Through releases from Sites Reservoir to meet TCCA and GCID irrigation diversions and equivalent reductions in CVP Shasta Lake releases, demands on Shasta Lake storage could be reduced and the coldwater pool maintained for a longer time at higher levels than are currently achievable. Shasta Lake release patterns could be shifted in season and between adjacent years to improve coldwater storage and flow management for salmon and other species using the portion of the Sacramento River between Keswick Dam and the Red Bluff Diversion Dam as habitat.

 ## Stabilize Upper Sacramento River Fall Flows

 Additional storage in Shasta Lake could be used to stabilize fall flows between Keswick Dam and Red Bluff to avoid abrupt flow reductions due to changes in local tributary inflows as a results of storm events. This would reduce adverse conditions for spawning fall-run Chinook salmon (such as, dewatering of redds and scour damage).

 ## Sacramento River Diversion Reductions at Red Bluff and Hamilton City

 The Sites Reservoir Project could allow Shasta Lake to provide increased Sacramento River flows in spring through fall by reducing Sacramento River diversions into T-C Canal and GCID Main Canal during the irrigation season. This would be achieved through exchange with releases from Sites Reservoir to meet CVP T-C Canal and GCID Main Canal contract demands, and could provide multiple benefits to anadromous fish and estuarine-dependent species by providing or augmenting transport flows, increasing habitat availability, increasing productivity, and improving nutrient transport and food availability.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 15 | OF | 84 | |

 ## Folsom Lake Coldwater Pool Improvement and Supply Reliability

 Sites Reservoir Project operations in cooperation with Folsom Lake could improve the reliability of coldwater carryover storage at Folsom Lake, stabilize flows in the American River, and help maintain suitable water temperatures in the lower American River. Additional summer releases from Sites Reservoir could reduce the need for releases from Folsom Lake, resulting in increased carryover storage. Sites Reservoir releases could also provide additional Delta outflow and reduce short-term emergency flow reliance on Folsom Lake releases to maintain Delta water quality.

 ## Yolo Bypass and Delta Outflow Improvement

 Sites Reservoir releases through the Colusa Basin Drain and Knights Landing Ridge Cut into the Yolo Bypass would help increase productivity in in the lower Cache Slough and lower Sacramento River areas to increase desirable food sources for Delta smelt and other key fish species in the late summer and early fall.

 ## Lake Oroville Coldwater Pool Improvement

 Sites Reservoir releases could increase the reliability of coldwater pool storage in Lake Oroville to reduce lower Feather River water temperatures for juvenile steelhead and spring-run Chinook salmon oversummer rearing, and fall-run Chinook salmon. Higher and more stables flows in the lower Feather River at critical times could also minimize redd dewatering, juvenile stranding, and isolation of anadromous salmonids.

 ## Water Supply

 The Sites Reservoir Project could provide a substantial amount of water to potential Sites Reservoir Project participants including agricultural and municipal and industrial (M\&I) users. Sites Reservoir water would be released to meet demands and supplement existing allocations to CVP contractors in the Colusa Basin and released for other water users in the Sacramento Valley.

 The South-of-Delta CVP and SWP contractors that receive water from the Sites Reservoir Project have contract provisions for the conveyance of extra water through SWP of CVP facilities above their SWP or CVP allocations. These water users may opt to have their Sites Reservoir Project water conveyed as either "project" water or "non-project" depending on the conveyance agreements they develop with DWR or Reclamation. If the water is conveyed as project water, then it has a more flexible timeframe for its conveyance and the releases of their water from Sites via the Delevan Pipeline. If the water is conveyed as non-project water, then the water would likely be released from Sites Reservoir and conveyed south or west of the Delta during the "water transfer window" in the biological opinions for the operation on the CVP/SWP in the Delta, provided there is capacity to convey this non-project water.

 ## Works Cited

 California Department of Water Resources (DWR), 2015. The State Water Project Final Delivery Capability Report 2015. July.
 del Rosario, R. B., Y. J. Redler, K. Newman, P. L. Brandes, T. Sommer, K. Reece, R. Vincik. 2013. "Migration Patterns of Juvenile winter-run-sized Chinook Salmon (Oncorhynchus tshawytscha) through the Sacramento-San Joaquin Delta." San Francisco Estuary and Watershed Science. Vol. 11(1).

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 16 | OF | 84 | |

 Liang, X., 1994. A Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models, Water Resource. Series, TR140, 208 pp., Univ. of Washington, Seattle.
 U. S. Bureau of Reclamation, 2006. Colusa Basin Hydrology Project, Appendix H Reclamation Stony Creek Model, March 2004.

 Yaworsky, 2006. Stony Creek evaporation model. Prepared for Reclamation.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 17 | OF | 84 |

 ## CALSIM II and DSM2 Modeling Assumptions

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL: | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAMQC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 18 | OF | 84 |

 ## CALSIM II and DSM2 Modeling Assumptions

 ## Introduction

 This attachment provides a description of the assumptions for the CALSIM II and DSM2 modeling of the Current Conditions, WSIP 2030, and WSIP 2070 without project scenarios.

 The with- and without-project Current Conditions analyses were based on the DWR State Water Project Delivery Capability Report 2015 (DCR 2015) - base scenario. The DCR 2015 base scenario was modified to include the facilities and operation of the Sites Project.

 The 2030 and 2070 future conditions CALSIM II and DSM2 models provided by the California Water Commission on November 2, 2016 were modified to include the facilities and operation of the Sites Project.

 ## Assumptions for DCR 2015, WSIP 2030, and WSIP 2070 Model Without Project Simulations

 This section documents the assumptions used in the CALSIM II and DSM2 model simulations for the baseline model (Without Project) simulations used in the Sites Reservoir Project evaluation. The DCR 2015, WSIP 2030 Without Project, and WSIP 2070 Without Project models are identical except for hydrologic inflows and sea level rise due to climate change.

 The Without Project assumptions include implementation of water operations components of the Reasonable and Prudent Alternatives (RPA) specified in the 2008 Fish and Wildlife Service (FWS) and 2009 National Marine Fisheries Service (NMFS) Biological Opinions (BiOps). The specific assumptions and implementation in the CALSIM II and DSM2 models were developed by a multiagency team comprised of fisheries and modeling experts from the DWR, Department of Fish and Game (DFG), Reclamation, USFWS, and NMFS.

 The description of CALSIM II assumptions refers to the DCR 2015 scenario. However, these assumptions are applicable to the WSIP 2030 Without Project and WSIP 2070 Without Project scenarios also. A summary of the CALSIM II model assumptions in the DWR State Water Project Delivery Capability Report 2015 - base scenario is provided in Table 1.

 ## CALSIM II Assumptions for Current Conditions (DCR 2015)

 ## Hydrology

 Inflows/Supplies
 CALSIM II model includes the historical hydrology with projected 2030 modifications for the operations upstream of the rim reservoirs. Reservoir inflows, stream gains, diversion requirements, irrigation efficiencies, return flows and groundwater operation are all components of the hydrology for CALSIM II.

 ## Level of Development

 CALSIM II input hydrology is based on an analysis of agricultural and urban land use and population estimates. The assumptions used for Sacramento Valley land use result from aggregation of historical survey and projected data developed for the California Water Plan Update (Bulletin 160-98). Generally, land use projections are based on Year 2020 estimates (hydrology serial number 2020D09E). However, the San Joaquin Valley hydrology reflects draft 2030 land use assumptions developed by Reclamation. Where appropriate Year 2030 projections of demands associated with water rights and SWP and CVP water service contracts have been included. Specifically, projections of full build out are used to describe

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 19 | OF | 84 | |

 the American River region demands for water rights and CVP contract supplies and California Aqueduct and the Delta Mendota Canal SWP/CVP contractor demands are set to full contract amounts.

 ## Demands, Water Rights, CVP/SWP Contracts

 CALSIM II demand inputs are preprocessed monthly time series for a specified level of development (e.g. 2030) and per hydrologic conditions. Demands are classified as CVP project, SWP project, local project or non-project (e.g. pre-1914 water rights, in-Delta consumptive use etc.). CVP and SWP demands are separated into different classes based on the contract type. A description of various demands and classifications included in CALSIM II is provided in the 2008 OCAP Biological Assessment Appendix D (Reclamation 2008a). Non-project demands within each Depletion Study Area (DSA) are based on the proportion of the acreage served by the projects versus the total acreage, for each land-use type. Nonproject demands are satisfied from sources other than project storage and project conveyance facilities and are reduced as a function of water availability in the absence of project operations.

 DCR 2015 assumes demands north of the Delta at the future level of development assuming full buildout of facilities and increases associated with water rights and CVP and SWP service contracts. This is primarily an increase in CVP M\&I service contracts (253 TAF/Yr) and water rights ($184 \mathrm{TAF} / \mathrm{Yr}$) related to urban municipal and industrial (M\&I) use, especially in the communities in El Dorado, Placer, and Sacramento counties.

 DCR 2015 also assumes full contract amounts for demands associated with SWP contracts, south of the Delta at the future level of development, in all hydrologic conditions.

 ## Facilities

 CALSIM II includes representation of all the existing CVP and SWP storage and conveyance facilities. Key storage facilities including Shasta Lake, Trinity Lake, Whiskeytown Lake, Lake Oroville, Folsom Lake, Los Vaqueros Reservoir, San Luis Reservoir and Millerton Lake are represented in CALSIM II. Regulating reservoirs such as Lewiston, Keswick, Thermalito and Nimbus are also included in CALSIM II.

 CALSIM II also represents existing conveyance facilities in the Colusa Basin region. Red Bluff Diversion Dam, Tehama-Colusa Canal (TCC) and its intake on the Sacramento River, Corning Canal, Glenn Colusa Canal (GCC) and its intake on the Sacramento River, Stony Creek - TCC intertie, TCC - GCC intertie, and Colusa Basin Drain are some of the key facilities included in the model.

 CALSIM II also represents the flood control weirs along the Sacramento River such as Ord Ferry, Moulton Weir, Colusa Weir and Tisdale Weir, which bypass flood flows into Sutter Bypass. USRDOM was used to model the weir spills into the Sutter Bypass for the simulations. In addition, CALSIM II also represents the flood control weirs such as Fremont Weir and Sacramento Weir, which spill flood flows from the Sacramento River into Yolo Bypass.

 Freeport Regional Water Project, located along the Sacramento River near Freeport, is assumed to be operational under the DCR 2015. Similarly, 30 mgd capacity, City of Stockton Delta Water Supply Project is assumed to be operational under the DCR 2015. Delta-Mendota Canal-California Aqueduct Intertie is assumed to be operational under the DCR 2015. Contra Costa Water District Alternative Intake Project and Los Vaqueros expanded storage capacity of 160 TAF, are included in the DCR 2015 along with the South Bay Aqueduct rehabilitation, to 430 cfs capacity, from junction with California Aqueduct to Alameda County FC\&WSD Zone 7.

 ## Red Bluff Pumping Plant

 The permanent TCC Pumping Plant and intake facilities are in place and the Red Bluff Diversion Dam is operated with gates out of the water all year as required in the NMFS BO Action I.3.1 providing unimpeded upstream and downstream fish passage.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 20 | OF | 84 | |

 ## Tehama Colusa Canal Capacity

 Fish Passage Improvements at Red Bluff Pumping Plant and Fish Screen are included in the DCR 2015 allowing for a pumping capacity of 2,000 cfs into TCC.

 ## Glenn Colusa Canal Capacity

 3,000 cfs of total diversion capacity is assumed at the Sacramento River intake near Hamilton City into GCC.

 ## Existing TCC-GCC Intertie

 The existing TCC-GCC intertie provides flexibility in routing flows of up to 285 cfs, between TCC and GCC.

 ## Williams Outlet

 The Williams Outlet provides flexibility in routing flows of up to 65 cfs, between TCC and GCC.

 ## Funks Reservoir

 The existing Funks Reservoir includes a storage capacity of 2,250 acre-foot and is part of the TCC system. Funks Reservoir serves as a re-regulating reservoir to stabilize flows in the TCC downstream of Funks Reservoir as diverters come on line and off line. Funks Reservoir is not modeled explicitly in CALSIM II.

 The Delta serves as a natural system of channels to transport river flows and reservoir storage to the CVP and SWP facilities in the south Delta, which export water to the projects' contractors through two pumping plants: SWP's Harvey O. Banks Pumping Plant and CVP's C.W. Jones Pumping Plant. Banks and Jones Pumping Plants supply water to agricultural and urban users throughout parts of the San Joaquin Valley, South Lahontan, Southern California, Central Coast, and South San Francisco Bay Area regions.

 The Contra Costa Canal and the North Bay Aqueduct supply water to users in the northeastern San Francisco Bay and Napa Valley areas.

 ## SWP Banks Pumping Plant Capacity

 SWP Banks pumping plant has an installed capacity of about 10,668 cfs (two units of 375 cfs, five units of $1,130 \mathrm{cfs}$, and four units of $1,067 \mathrm{cfs})$. The SWP water rights for diversions specify a maximum of 10,350 cfs, but the U. S. Army Corps' of Engineers (ACOE) permit for SWP Banks Pumping Plant allows a maximum pumping of 6680 cfs . With additional diversions depending on Vernalis flows the total diversion can go up to $8,500 \mathrm{cfs}$ during December $15^{\text {th }}-$ March $15^{\text {th }}$. Additional capacity of 500 cfs (pumping limit up to $7,180 \mathrm{cfs}$) is allowed to reduce impact of NMFS BO Action 4.2.1 on SWP.
 CVP C.W. Bill Jones Pumping Plant (Tracy PP) Capacity
 The Jones Pumping Plant consists of six pumps including one rated at 800 cfs , two at 850 cfs , and three at 950 cfs. DMC-California Aqueduct Intertie that allows 400 cfs additional DMC capacity is assumed to be in place; therefore, pumping capacity is $4,600 \mathrm{cfs}$ in all months.

 ## CCWD Intakes

 The Contra Costa Canal originates at Rock Slough, about four miles southeast of Oakley, and terminates after 47.7 miles at Martinez Reservoir. The canal and associated facilities are part of the CVP, but are operated and maintained by the Contra Costa Water District (CCWD). CCWD also operates a diversion on Old River. CCWD can divert water to the Los Vaqueros Reservoir to store good quality water when available and supply to its customers. In addition to the Rock Slough and Old River diversions, CCWD's Middle River Intake and Pump Station (previously known as the Alternative Intake Project) is included in the DCR 2015. The Alternative Intake Project is a new drinking water intake at Victoria Canal, about 2.5 miles east of Contra Costa Water District's (CCWD) existing intake on the Old River.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 21 | OF | 84 | |

 ## Regulatory Standards

 Major regulatory standards that govern the operations of the CVP and SWP facilities are briefly described below. Specific assumptions related to key regulatory standards are also outlined below.

 ## D-1641 Operations

 The SWRCB Water Quality Control Plan (WQCP) and other applicable water rights decisions, as well as other agreements are important factors in determining the operations of both the Central Valley Project (CVP) and the State Water Project (SWP).
 The December 1994 Accord committed the CVP and SWP to a set of Delta habitat protective objectives that were incorporated into the 1995 WQCP and later, were implemented by D-1641. Significant elements in the D-1641 standards include X2 standards, export/inflow (E/I) ratios, Delta water quality standards, real-time Delta Cross Channel operation, and San Joaquin flow standards.

 ## Coordinated Operations Agreement (COA)

 The CVP and SWP use a common water supply in the Central Valley of California. The DWR and Reclamation have built water conservation and water delivery facilities in the Central Valley in order to deliver water supplies to project contractors. The water rights of the projects are conditioned by the SWRCB to protect the beneficial uses of water within each respective project and jointly for the protection of beneficial uses in the Sacramento Valley and the Sacramento-San Joaquin Delta Estuary. The agencies coordinate and operate the CVP and SWP to meet the joint water right requirements in the Delta.

 The Coordinated Operations Agreement (COA), signed in 1986, defines the project facilities and their water supplies, sets forth procedures for coordination of operations, identifies formulas for sharing joint responsibilities for meeting Delta standards, as the standards existed in SWRCB Decision 1485 (D-1485), and other legal uses of water, identifies how unstored flow will be shared, sets up a framework for exchange of water and services between the Projects, and provides for periodic review of the agreement.

 ## CVPIA (b)(2) Assumptions

 The previous 2008 Operations Criteria and Plan (OCAP) Biological Assessment (BA) modeling included a dynamic representation of Central Valley Project Improvement Act (CVPIA) 3406(b)(2) water allocation, management and related actions (B2). The selection of discretionary actions for use of B2 water in each year was based on a May 2003 Department of the Interior policy decision. The use of B2 water is assumed to continue in conjunction with the USFWS and NMFS BO RPA actions. The CALSIM II implementation does not explicitly account for the use of (b)(2) water, but rather assumes predetermined USFWS BO upstream fish objectives for Clear Creek and Sacramento River below Keswick Dam in addition to USFWS and NMFS BO RPA actions for the American River, Stanislaus River, and Delta export restrictions.

 ## USFWS Delta Smelt BO Actions

 The USFWS Delta Smelt BO was released on December 15, 2008, in response to Reclamation's request for formal consultation with the USFWS on the coordinated operations of the Central Valley Project (CVP) and State Water Project (SWP) in California. To develop CALSIM II modeling assumptions for the RPA documented in this BO, the Department led a series of meetings that involved members of fisheries and project agencies. This group has prepared the assumptions and CALSIM II implementations to represent the RPA in DCR 2015 CALSIM II simulation. The following actions of the USFWS BO RPA have been included in the DCR 2015 CALSIM II simulations:

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 22 | OF | 84 | |

 - Action 1: Adult Delta smelt migration and entrainment (RPA Component 1, Action 1 - First Flush)
 - Action 2: Adult Delta smelt migration and entrainment (RPA Component 1, Action 2)
 - Action 3: Entrainment protection of larval and juvenile Delta smelt (RPA Component 2)
 - Action 4: Estuarine habitat during Fall (RPA Component 3)
 - Action 5: Temporary spring head of Old River barrier and the Temporary Barrier Project (RPA Component 2)

 ## NMFS BO Salmon Actions

 The NMFS Salmon BO on long-term actions of the CVP and SWP was released on June 4, 2009. To develop CALSIM II modeling assumptions for the RPA documented in this BO, the Department led a series of meetings that involved members of fisheries and project agencies. The following NMFS BO RPA have been included in the DCR 2015 CALSIM II simulations:

 - Action I.1.1: Clear Creek spring attraction flows
 - Action I.3.1: Operations after May 14, 2012: Operate RBDD with Gates Out
 - Action I.4: Wilkins Slough operations
 - Action II.1: Lower American River flow management
 - Action III.1.3: Stanislaus River flows below Goodwin Dam
 - Action IV.1.2: Delta Cross Channel gate operations
 - Action IV.2.1: San Joaquin River flow requirements at Vernalis and Delta export restrictions
 - Action IV.2.3: Old and Middle River flow management

 For Action I.2.1, which calls for a percentage of years that meet certain specified end-of-September and end-of-April storage and temperature criteria resulting from the operation of Lake Shasta, no specific CALSIM II modeling code is implemented to simulate the performance measures identified.

 ## Water Transfers

 ## Lower Yuba River Accord (LYRA)

 Lower Yuba River Accord (LYRA) Component 1 water is assumed to be transferred to South of Delta (SOD) State Water Project (SWP) contractors to help mitigate the impact of the NMFS BO on SWP exports during April and May. An additional 500 cfs of capacity is permitted at Banks Pumping Plant from July through September to export this water.

 ## Phase 8 transfers

 Phase 8 transfers are not included.

 ## Short-term or Temporary Water Transfers

 Short term or temporary transfers such as Sacramento Valley acquisitions conveyed through Banks PP are not included.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 23 | OF | 84 | |

 ## Specific Regulatory Assumptions

 Upstream Reservoir Operations

 ## Minimum flow below Lewiston Dam

 The volume of the Trinity River instream flow requirement below Lewiston Dam ranges from 369 815 TAF/year, based on the Trinity EIS Preferred Alternative. The minimum flow volume is determined based on the Trinity River water year classification. The flow schedules from the Trinity Sites Reservoir Project were assumed for each water year type.

 ## Trinity Lake End-of-September Minimum Storage

 Based on the Trinity EIS Preferred Alternative, a minimum end-of-September carryover storage objective of 600 TAF at Trinity Reservoir was assumed to help provide coldwater resource protection. This objective may not be fully accomplished in extended drought periods.

 ## Minimum flow below Whiskeytown Dam

 Whiskeytown Dam is operated to meet the downstream water rights in the Clear Creek and 1963 Reclamation Proposal to USFWS and National Park Service (NPS). It is also operated to meet the predetermined CVPIA 3406(b)(2) flows, and the flow requirements identified under NMFS BO Action

 ## I.1.1.

 ## Shasta Lake End-of-September Minimum Storage

 Shasta Lake is operated such that the end-of-September carryover storage is 1900 TAF in non-critically dry years per the NMFS 2004 Winter-run Biological Opinion.

 2009 NMFS BO Action 1.2.1 requires certain storage to be met at certain percentile of all years. A postprocess of operations is used to determine whether or not these requirements are met.

 ## Minimum flow below Keswick Dam

 Keswick Dam is operated to meet the release schedule under SWRCB WR 90-5, which maintains 3,250 cfs in the Sacramento River. It is also operated to meet predetermined CVPIA 3406(b)(2) flows. NMFS BO Action I.2.2 includes actions that call for minimum flows to protect temperatures.

 Flow Objective for Navigation at Wilkins Slough
 NMFS BO Action 1.4 requires that to conserve cold water pool in Shasta Lake, Wilkins Slough is operated at a flow ranging from 3,500 cfs to 5,000 cfs based on the CVP water supply condition.

 ## Minimum flow below Thermalito Diversion Dam

 Thermalito diversion dam is operated to meet a minimum flow requirement of 700 cfs or 800 cfs in the Feather River low flow channel based on the 2006 Oroville Relicensing Settlement Agreement.

 ## Minimum flow below Thermalito Afterbay Outlet

 1983 DWR - DFG Agreement requires a minimum flow in the Feather River below Thermalito Afterbay Outlet to be between 750 cfs and 1,700 cfs, depending on the Oroville storage condition and the forecasted Feather River runoff condition.

 ## Flow at Mouth of the Feather River

 During the Feather River Service Area (FRSA) diversion season from April through September, a minimum flow of $2,800 \mathrm{cfs}$ is maintained at the mouth of the Feather River depending on Lake Oroville inflow and FRSA allocation.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 24 | OF | 84 | |

 ## Minimum flow below Nimbus Dam

 Nimbus Dam is operated to meet a minimum flow requirement based on the American River Flow Management under the NMFS BO Action II.1. Minimum release requirements range from 800 to 2,000 cfs based on a sequence of seasonal indices and adjustments.

 ## American River Minimum flow at H Street Bridge

 The minimum allowable flows in the Lower American River are defined by SWRCB Decision 893 (D-893) which states that, in the interest of fish conservation, releases should not ordinarily fall below 250 cfs between January 1 and September 15 or below 500 cfs at other times.

 ## Minimum flow near Rio Vista

 The minimum flow required on the Sacramento River at Rio Vista under the WQCP, SWRCB D-1641 is included. During September through December months, the flow requirement ranges from 3,000 cfs to 4,500 cfs, depending on the month and D-1641 40-30-30 index water year type.
 Delta Outflow Index (Flow and Salinity)
 SWRCB D-1641:
 All flow based Delta outflow requirements per SWRCB D-1641 are included in the DCR 2015 simulation. Similarly, for the February through June period X2 standard is included.

 ## USFWS BO (December, 2008) Action 4:

 USFWS BO Action 4 requires additional Delta outflow to manage X2 in the fall months following the wet and above normal years to maintain average X2 for September and October no greater (more eastward) than 74 kilometers in the fall following wet years and 81 kilometers in the fall following above normal years.

 ## Combined Old and Middle River Flows

 USFWS BO restricts south Delta pumping to preserve certain OMR flows in three of its Actions: Action 1 to protect pre-spawning adult Delta smelt from entrainment during the first flush, Action 2 to protect pre-spawning adults from entrainment and from adverse hydrodynamic conditions, and Action 3 to protect larval Delta smelt from entrainment. CALSIM II simulates these actions to a limited extent.

 Brief description of USFWS BO Actions 1-3 implementations in CALSIM is as follows: Action 1 is onset based on a turbidity trigger that takes place during or after December. This action requires limit on exports so that the average daily OMR flow is no more negative than $-2,000 \mathrm{cfs}$ for a total duration of 14 days, with a 5 -day running average no more negative than 2,500 cfs (within 25 percent of the monthly criteria). Action 1 ends after 14 days of duration or when Action 3 is triggered based on a temperature criterion. Action 2 starts immediately after Action 1 and requires range of net daily OMR flows to be no more negative than $-1,250$ to $-5,000$ cfs (with a 5 -day running average within 25 percent of the monthly criteria). The Action continues until Action 3 is triggered. Action 3 also requires net daily OMR flow to be no more negative than $-1,250$ to $-5,000$ cfs based on a 14 day running average (with a simultaneous 5 -day running average within 25 percent). Although the range is similar to Action 2 , the Action implementation is different. Action 3 continues until June 30 or when water temperature reaches a certain threshold.

 NMFS BO Action 4.2.3 requires OMR flow management to protect emigrating juvenile winter-run, yearling spring-run, and Central Valley steelhead within the lower Sacramento and San Joaquin rivers from entrainment into south Delta channels and at the export facilities in the south Delta. This action requires reducing exports from January 1 through June 15 to limit negative OMR flows to -2,500

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULLL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 25 | OF | 84 | |

 to -5,000 cfs. CALSIM II assumes OMR flows required in NMFS BO are covered by OMR flow requirements developed for actions 1 through 3 of the USFWS BO.

 ## South Delta Export-San Joaquin River Inflow Ratio

 NMFS BO Action 4.2.1 requires exports to be capped at a certain fraction of San Joaquin River flow at Vernalis during April and May while maintaining a health and safety pumping of 1,500 cfs. This export constraint is included.

 ## Exports at the South Delta Intakes

 Exports at Jones and Banks Pumping Plant are restricted to their permitted capacities per SWRCB D-1641 requirements. In addition, the south Delta exports are subjected Vernalis flow based export limits during April and May as required Action 4.2.1. Additional 500 cfs pumping is allowed to reduce impact of NMFS BO Action 4.2.1 on SWP during July through September period.

 D-1641 1:1 CVP/SWP export limit based on the Vernalis flow from April 15 - May 15, is also included.
 Under D-1641 the combined export of the CVP Tracy Pumping Plant and SWP Banks Pumping Plant is limited to a percentage of Delta inflow. The percentages range from 35\% to 45\% during February depending on the January eight river index and 35% during March through June months. For rest of the months 65\% of the Delta inflow is allowed to be exported.

 ## Delta Water Quality

 The DCR 2015 simulation includes compliance with the SWRCB D-1641 salinity requirements. However, not all salinity requirements are included as CALSIM II is not capable of predicting salinities in the Delta. Instead, empirically based equations and models are used to relate interior salinity conditions with the flow conditions. DWR's Artificial Neural Network (ANN) trained for salinity is used to predict and interpret salinity conditions at Emmaton, Jersey Point, Rock Slough and Collinsville stations. Emmaton and Jersey Point standards are for protecting water quality conditions for agricultural use in the western Delta and they are in effect from April $1^{\text {st }}$ to August $15^{\text {th }}$. The EC requirement at Emmaton varies from $0.45 \mathrm{mmhos} / \mathrm{cm}$ to $2.78 \mathrm{mmhos} / \mathrm{cm}$, depending on the water year type. The EC requirement at Jersey Point varies from $0.45 \mathrm{mmhos} / \mathrm{cm}$ to $2.20 \mathrm{mmhos} / \mathrm{cm}$, depending on the water year type. Rock Slough standard of $250 \mathrm{mg} / \mathrm{L}$ chloride is for protecting water quality conditions for M\&l use for water through the Contra Costa Canal. It is a year-round standard. D-1641 also requires a certain number of days in a year with chloride concentration less than $150 \mathrm{mg} / \mathrm{L}$. The number of days required is dependent upon the water year type. A pre-processed fixed number of days is used as input to CALSIM II to comply with $150 \mathrm{mg} / \mathrm{L}$ chloride standard at Rock Slough. Collinsville standard is applied during October through May months to protect the water quality conditions for the migrating fish species, and it varies between 12.5 mmhos/cm in May and 19.0 mmhos/cm in October.

 ## Operations Criteria

 ## Delta Cross Channel Gate Operations

 SWRCB D-1641 DCC standards provide for closure of the DCC gates for fisheries protection at certain times of the year. From November through January, the DCC may be closed for up to 45 days for fishery protection purposes. From February 1 through May 20, the gates are closed for fishery protection purposes. The gates may also be closed for 14 days for fishery protection purposes during the May 21 through June 15 time period. Reclamation determines the timing and duration of the closures after discussion with USFWS, DFG, and NMFS.

 NMFS BO Action 4.1.2 requires gates to be operated as described in the BO based on presence of salmonids and water quality from October 1 through December 14; and gates to be closed from

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSI ON: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 26 | OF | 84 | |

 December 15 to January 31, except short-term operations to maintain water quality. CALSIM II includes NMFS BO DCC gate operations in addition to the D-1641 gate operations. When the daily flows in the Sacramento River at Wilkins Slough exceeds 7,500 cfs (flow assumed to flush salmon into the Delta), DCC is closed for a certain number of days per month.

 ## Allocation Decisions

 CALSIM II includes allocation logic for determining deliveries to north-of-Delta and south-of-Delta CVP and SWP contractors. The delivery logic uses runoff forecast information, which incorporates uncertainty in the hydrology and standardized rule curves (i.e. Water Supply Index versus Demand Index Curve). The rule curves relate forecasted water supplies to deliverable "demand," and then use deliverable "demand" to assign subsequent delivery levels to estimate the water available for delivery and carryover storage. Updates of delivery levels occur monthly from January 1 through May 1 for the SWP and March 1 through May 1 for the CVP as runoff forecasts become more certain. The south-ofDelta SWP delivery is determined based on water supply parameters and operational constraints. The CVP system wide delivery and south-of-Delta delivery are determined similarly upon water supply parameters and operational constraints with specific consideration for export constraints.

 ## San Luis Operations

 CALSIM II sets targets for San Luis storage each month that are dependent on the current South-of-Delta allocation and upstream reservoir storage. When upstream reservoir storage is high, allocations and San Luis fill targets are increased. During a prolonged drought when upstream storage is low, allocations and fill targets are correspondingly low. The San Luis rule curve is managed to minimize situations in which shortages may occur due to lack of storage or exports.

 ## CALSIM II Assumptions for WSIP 2030

 The WSIP 2030 without project CALSIM II model was provided by the CWC. The assumptions and operating criteria are identical to DCR 2015 assumptions except for hydrologic inflows and sea level rise due to climate change.

 ## CALSIM II Assumptions for WSIP 2070

 The WSIP 2070 without project CALSIM II model was provided by the CWC. The assumptions and operating criteria are identical to DCR 2015 except for hydrologic inflows and sea level rise due to climate change.

 ## DSM2 Assumptions for Current Conditions

 The Current Conditions DSM2 model was developed from the baseline WSIP 2030 study. The boundary conditions and dispersion factors in the CWC model representing 2030 conditions were removed to create the current conditions DSM2 study. Model input data from DWR's Bay Delta Office Modeling Support Branch Delta Modeling Section was incorporated to represent Current Conditions. All other data used in the Current Conditions study is consistent with the CWC 2030 DSM2 model.

 ## River Flows

 For the Current Conditions (DCR 2015) DSM2 simulation, the river flows at the DSM2 boundaries are based on the monthly flow time series from DWR CALSIM II DCR 2015 model results.

 ## Tidal Boundary

 The tidal boundary condition at Martinez is provided by an adjusted astronomical tide normalized for sea level rise (Ateljevich and Yu, 2007).

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 27 | OF | 84 | |

 ## Water Quality

 Martinez EC
 Martinez EC boundary condition is estimated using the G-model based on the net Delta outflow simulated in CALSIM II and the pure astronomical tide (Ateljevich, 2001).

 ## Vernalis EC

 For the Current Condition DSM2 simulation, the Vernalis EC boundary condition is based on the monthly San Joaquin EC time series estimated in the DWR DCR 2015 CALSIM II model results.

 ## Morphological Changes

 No additional morphological changes were assumed as part of the Current Condition simulation. DSM2 model and grid developed as part of the 2009 recalibration effort (CH2M HILL, 2009) was used as part of the modeling.

 ## DSM2 Assumptions for WSIP 2030 and WSIP 2070

 The WSIP Baseline DSM2 without project models for 2030 and 2070 conditions were provided by the CWC.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL: | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 28 | OF | 84 |

 Table 1
 CALSIM II Model Assumptions
 CALSIM II Modeling Assumptions from DWR State Water Project Delivery Capability Report 2015

 | | Existing Condition ${ }^{1}$ |
 | :---: | :---: |
 | Planning Horizon | 2015 |
 | Period of Simulation | 82 years (1922-2003) |
 | HYDROLOGY | |
 | Level of Development (land use) | 2030 Level 2 |
 | DEMANDS | |
 | North of Delta (excluding the American River) | |
 | CVP | Land-use based, full build-out of contract amounts ${ }^{3}$ |
 | SWP (FRSA) | Land-use based, limited by contract amounts ${ }^{4,7}$ |
 | Non-project | Land-use based, limited by water rights and SWRCB Decisions for Existing Facilities |
 | Antioch Water Works | Pre-1914 water right |
 | Federal refuges | Firm Level 2 water needs ${ }^{5}$ |
 | American River Basin | |
 | Water rights | Year 2025, full water rights ${ }^{6}$ |
 | CVP | Year 2025, full contracts, including Freeport Regional Water Project ${ }^{6}$ |
 | San Joaquin River Basin ${ }^{8}$ | |
 | Friant Unit | Limited by contract amounts, based on current allocation policy |
 | Lower basin | Land-use based, based on district level operations and constraints |
 | Stanislaus River basin ${ }^{9,17}$ | Land-use based, based on New Melones Interim Operations Plan, up to full CVP Contractor deliveries (155 TAF/yr) depending on New Melones Index |
 | South of Delta | |
 | CVP | Demand based on contract amounts ${ }^{3}$ |
 | Federal refuges | Firm Level 2 water needs ${ }^{5}$ |
 | CCWD | 195 TAF/yr CVP contract supply and water rights ${ }^{10}$ |
 | SWP ${ }^{4,11}$ | Demand based on full Table A amounts (4.13 MAF/yr) |
 | Article 56 | Based on 2001-2008 contractor requests |
 | Article 21 | MWD demand up to 200 TAF/month (December-March) subject to conveyance capacity, KCWA demand up to 180 TAF/month, and other contractor demands up to 34 TAF/month, subject to conveyance capacity |
 | North Bay Aqueduct | 77 TAF/yr demand under SWP contracts, up to 43.7 cfs of excess flow under Fairfield, Vacaville and Benicia Settlement Agreement NOD Allocation Settlement Agreement terms for Napa and Solano ${ }^{15}$ |

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 29 | OF | 84 | |

 | | Existing Condition ${ }^{1}$ |
 | :---: | :---: |
 | FACILITIES | |
 | System-wide | Existing facilities |
 | Sacramento Valley | |
 | Shasta Lake | Existing, 4,552 TAF capacity |
 | Red Bluff Diversion Dam | Diversion dam operated with gates out all year, NMFS BO (Jun 2009) Action I.3.1 ${ }^{17}$;assume permanent facilities in place |
 | Colusa Basin | Existing conveyance and storage facilities |
 | Lower American River | Hodge criteria for diversion at Fairbairn |
 | Upper American River | PCWA American River pump station |
 | Lower Sacramento River | Freeport Regional Water Project |
 | Fremont Weir | Existing Weir |
 | Delta Export Conveyance | |
 | SWP Banks Pumping Plant (South Delta) | Physical capacity is 10,300 cfs, permitted capacity is 6,680 cfs in all months and up to 8,500 cfs during Dec $15^{\text {th }}$ - Mar $15^{\text {th }}$ depending on Vernalis flow conditions ${ }^{18}$; additional capacity of 500 cfs (up to $7,180 \mathrm{cfs}$) allowed Jul-Sep for reducing impact of NMFS BO (Jun 2009) Action IV.2.1 ${ }^{17}$ on SWP ${ }^{19}$ |
 | CVP C.W. "Bill" Jones Pumping Plant (formerly Tracy PP) | Permit capacity is 4,600 cfs in all months (allowed for by the Delta-Mendota Canal- California Aqueduct Intertie) |
 | Upper Delta-Mendota Canal Capacity | Exports limited to 4,200 cfs plus diversion upstream from DMC constriction plus 400 cfs Delta-Mendota Canal-California Aqueduct Intertie |
 | Los Vaqueros Reservoir | Enlarged storage capacity (160 TAF), existing pump location, Alternate Intake Project included ${ }^{13}$ |
 | San Joaquin River | |
 | Millerton Lake (Friant Dam) | Existing, 520 TAF capacity |
 | Lower San Joaquin River | City of Stockton Delta Water Supply Project, 30 mgd capacity |
 | South of Delta (CVP/SWP project facilities) | |
 | South Bay Aqueduct | SBA rehabilitation, 430 cfs capacity from junction with California Aqueduct to Alameda County FC\&WSD Zone 7 point |
 | California Aqueduct East Branch | Existing capacity |
 | REGULATORY STANDARDS | |
 | Trinity River | |
 | Minimum Flow below Lewiston Dam | Trinity EIS Preferred Alternative (369-815 TAF/yr) |
 | Trinity Reservoir end-ofSeptember minimum storage | Trinity EIS Preferred Alternative (600 TAF/yr as able) |

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 30 | OF | 84 | |

 | | Existing Condition ${ }^{1}$ |
 | :---: | :---: |
 | Clear Creek | |
 | Minimum flow below Whiskeytown Dam | Downstream water rights, 1963 Reclamation proposal to USFWS and NPS, predetermined Central Valley Protection Improvement Act 3406(b)(2) flows ${ }^{20}$, and NMFS BO (Jun 2009) Action I.1.1 ${ }^{17}$ |
 | Upper Sacramento River | |
 | Shasta Lake end-ofSeptember minimum storage | NMFS 2004 Winter-run Biological Opinion (1,900 TAF in non-critical dry years), and NMFS BO (Jun 2009) Action I.2.1 ${ }^{17}$ |
 | Minimum flow below Keswick Dam | Flows for the SWRCB Water Rights Order 90-5, predetermined Central Valley Protection Improvement Act 3406(b)(2) flows, and NMFS BO (Jun 2009) Action I.2.2 ${ }^{17}$ |
 | Feather River | |
 | Minimum flow below Thermalito Diversion Dam | 2006 Settlement Agreement (700 / 800 cfs) |
 | Minimum flow below Thermalito Afterbay outlet | 1983 DWR, DFG agreement (750-1,700 cfs) |
 | Yuba River | |
 | Minimum flow below Daguerre Point Dam | D-1644 Operations (Lower Yuba River Accord) ${ }^{14}$ |
 | American River | |
 | Minimum flow below Nimbus Dam | American River Flow Management as required by NMFS BO (Jun 2009) Action II. 1^{17} |
 | Minimum flow at H Street Bridge | SWRCB D-893 |
 | Lower Sacramento River | |
 | Minimum flow near Rio Vista | SWRCB D-1641 |
 | Mokelumne River | |
 | Minimum flow below Camanche Dam | Federal Energy Regulatory Commission 2916-029 ${ }^{12}$, 1996 (Joint Settlement Agreement) (100-325 cfs) |
 | Minimum flow below Woodbridge Diversion Dam | Federal Energy Regulatory Commission 2916-029, 1996 (Joint Settlement Agreement) (25-300 cfs) |
 | Stanislaus River | |
 | Minimum flow below Goodwin Dam | 1987 Reclamation, DFG agreement, and flows required for NMFS BO (Jun 2009) Action III.1.2 and III.1.3 ${ }^{17}$ |
 | Minimum dissolved oxygen | SWRCB D-1422 |

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 31 | OF | 84 |

 Existing Condition1

 | Merced River | |
 | :---: | :---: |
 | Minimum flow below Crocker- Huffman Diversion Dam | Davis-Grunsky (180-220 cfs, Nov - Mar), and Cowell Agreement |
 | Minimum flow at Shaffer Bridge | Federal Energy Regulatory Commission 2179 (25-100 cfs) |
 | Tuolumne River | |
 | Minimum flow at Lagrange Bridge | Federal Energy Regulatory Commission 2299-024, 1995 (Settlement Agreement) (94-301 TAF/yr) |
 | Updated Tuolumne River | New Don Pedro operations |
 | San Joaquin River | |
 | San Joaquin River below Friant Dam/Mendota Pool | Full San Joaquin River Restoration flows |
 | Maximum salinity near Vernalis | SWRCB D-1641 |
 | Minimum flow near Vernalis | SWRCB D1641. VAMP is turned off since the San Joaquin River Agreement has expired. ${ }^{16}$ NMFS BO (Jun 2009) Action IV.2.1 Phase II flows not provided due to lack of agreement for purchasing water |
 | Sacramento-San Joaquin Delta | |
 | Delta Outflow Index (flow and salinity) | SWRCB D-1641 and FWS BO (Dec 2008) Action $4{ }^{17}$ |
 | Delta Cross Channel gate operation | SWRCB D-1641 with additional days closed from Oct 1-Jan 31 based on NMFS BO (Jun 2009) Action IV.1.2 ${ }^{17}$ (closed during flushing flows from Oct 1Dec 14 unless adverse water quality conditions) |
 | South Delta exports (Jones PP and Banks PP) | SWRCB D-1641 export limits as required by NMFS BO (June 2009) Action IV.2.1 Phase II ${ }^{17}$ (additional 500 cfs allowed for Jul-Sep for reducing impact on SWP) ${ }^{19}$ |
 | Combined Flow in Old and Middle River (OMR) | FWS BO (Dec 2008) Actions 1-3 and NMFS BO (Jun 2009) Action IV.2.3 ${ }^{17}$ |
 | OPERATIONS CRITERIA: RIVER-SPECIFIC | |
 | Upper Sacramento River | |
 | Flow objective for navigation (Wilkins Slough) | NMFS BO (Jun 2009) Action I.4 ${ }^{17}$; 3,250-5,000 cfs based on CVP water supply condition |
 | American River | |
 | Folsom Dam flood control | Variable 400/670 flood control diagram (without outlet modifications) |
 | Feather River | |
 | Flow at mouth of Feather River (above Verona) | Maintain the DFG/DWR flow target of 2,800 cfs for Apr - Sep dependent on Oroville inflow and FRSA allocation |
 | Stanislaus River | |
 | Flow below Goodwin Dam | Revised Operations Plan and NMFS BO (Jun 2009) Action III.1.2 and III.1.3 ${ }^{17}$ |

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 32 | OF | 84 | |

 | | Existing Condition ${ }^{1}$ |
 | :---: | :---: |
 | San Joaquin River | |
 | Salinity at Vernalis | Grasslands Bypass Project (full implementation) |
 | OPERATIONS CRITERIA: SYSTEMWIDE | |
 | CVP Water Allocation | |
 | CVP settlement and exchange | 100\% (75\% in Shasta critical years) |
 | CVP refuges | 100\% (75\% in Shasta critical years) |
 | CVP agriculture | $100 \%-0 \%$ based on supply. South-of-Delta allocations are additionally limited due to D-1641, FWS BO (Dec 2008), and NMFS BO (Jun 2009) export restrictions ${ }^{17}$ |
 | CVP municipal \& industrial | 100% - 50% based on supply. South-of-Delta allocations are additionally limited due to D-1641, FWS BO (Dec 2008), and NMFS BO (Jun 2009) export restrictions ${ }^{17}$ |
 | SWP Water Allocation | |
 | North of Delta (FRSA) | Contract-specific
 NOD Allocation Settlement Agreement terms for Butte and Yuba ${ }^{15}$ |
 | South of Delta (including North Bay Aqueduct) | Based on supply; equal prioritization between Ag and M\&I based on Monterey Agreement; allocations are limited due to D-1641, FWS BO (Dec 2008), and NMFS BO (Jun 2009) export restrictions ${ }^{17}$
 NOD Allocation Settlement Agreement terms for Napa and Solano ${ }^{15}$ |
 | CVP/SWP Coordinated Operations | |
 | Sharing of responsibility for inbasin use | 1986 Coordinated Operations Agreement (FRWP and EBMUD 2/3 of the North Bay Aqueduct diversions are considered as Delta export, $1 / 3$ of the North Bay Aqueduct diversion is considered as in-basin use) |
 | Sharing of surplus flows | 1986 Coordinated Operations Agreement |
 | Sharing of restricted export capacity for project-specific priority pumping | Equal sharing of export capacity under SWRCB D-1641, FWS BO (Dec 2008), and NMFS BO (Jun 2009) export restrictions ${ }^{17}$ |
 | Water transfers | Acquisitions by SWP contractors are wheeled at priority in Banks Pumping Plant over non-SWP users; LYRA included for SWP contractors ${ }^{19}$ |
 | Sharing of export capacity for lesser priority and wheelingrelated pumping | Cross Valley Canal wheeling (max of 128 TAF/yr), CALFED ROD defined Joint Point of Diversion (JPOD) |
 | San Luis Reservoir | San Luis Reservoir is allowed to operate to a minimum storage of 100 TAF |
 | CVPIA 3406(b)(2) | |
 | Policy decision | Per May 2003 Department of Interior decision |
 | Allocation | $800 \mathrm{TAF} / \mathrm{yr}$, $700 \mathrm{TAF} / \mathrm{yr}$ in 40-30-30 dry years, and $600 \mathrm{TAF} / \mathrm{yr}$ in 40-30-30 critical years |
 | Actions | Pre-determined non-discretionary FWS BO (Dec 2008) upstream fish flow objectives (Oct-Jan) for Clear Creek and Keswick Dam, non-discretionary NMFS BO |

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 33 | OF | 84 | |

 | | Existing Condition |
 | :---: | :---: |
 | | (Jun 2009) actions for the American and Stanislaus Rivers, and NMFS BO (Jun 2009) actions leading to export restrictions |
 | Accounting adjustments | No discretion assumed under FWS BO (Dec 2008) and NMFS BO (Jun 2009) ${ }^{17}$ no accounting |
 | WATER MANAGEMENT ACTIONS | |
 | Water Transfer Supplies (long term programs) | |
 | Lower Yuba River Accord ${ }^{19}$ | Yuba River acquisitions for reducing impact of NMFS BO export restrictions on SWP |
 | Phase 8 | None |
 | Water Transfers (short term or temporary programs) | |
 | Sacramento Valley acquisitions conveyed 21 through Banks PP | Post analysis of available capacity |

 ## Notes:

 ${ }^{1}$ These assumptions have been developed under the direction of the Department of Water Resources and Bureau of Reclamation management team for the BDCP HCP and EIR/EIS. Additional modifications were made by Reclamation for its October 2014 NEPA NAA baselines and by DWR for the 2015 DCR.
 ${ }^{2}$ The Sacramento Valley hydrology used in the Existing Condition CALSIM II model reflects 2020 land-use assumptions associated with Bulletin 160-98. The San Joaquin Valley hydrology reflects draft 2030 land-use assumptions developed by Reclamation to support Reclamation studies.

 3
 VP contract amounts have been reviewed and updated according to existing and amended contracts, as appropriate. Assumptions regarding CVP agricultural and M\&I service contracts and Settlement Contract amounts are documented in the Delivery Specifications attachments to the BDCP CALSIM assumptions document.
 ${ }^{4}$ SWP contract amounts have been updated as appropriate based on recent Table A transfers/agreements. Assumptions regarding SWP agricultural and M\&I contract amounts are documented in the Delivery Specifications attachments to the BDCP CALSIM assumptions document.
 ${ }^{5}$ Water needs for Federal refuges have been reviewed and updated, as appropriate. Assumptions regarding firm Level 2 refuge water needs are documented in the Delivery Specifications attachments to the BDCP CALSIM assumptions document. Refuge Level 4 (and incremental Level 4) water is not included.
 ${ }^{6}$ Assumptions regarding American River water rights and CVP contracts are documented in the Delivery Specifications attachments to the BDCP CALSIM assumptions document. The Sacramento Area Water Forum agreement, its dry year diversion reductions, Middle Fork Project operations and "mitigation" water is not included.

 7 Demand for rice straw decomposition water from Thermalito Afterbay was added to the model and updated to reflect historical diversion from Thermalito in the October through January period.
 ${ }^{8}$ The new CALSIM II representation of the San Joaquin River has been included in this model package (CALSIM II San Joaquin River Model, Reclamation, 2005). Updates to the San Joaquin River have been included since the preliminary model release in August 2005. The model reflects the difficulties of on-going groundwater overdraft problems. The 2030 level of development representation of the San Joaquin River Basin does not make any attempt to offer solutions to groundwater overdraft problems. In addition, a dynamic groundwater simulation is not yet developed for the San

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 34 | OF | 84 | |

 Joaquin River Valley. Groundwater extraction/ recharge and stream-groundwater interaction are static assumptions and may not accurately reflect a response to simulated actions. These limitations should be considered in the analysis of result

 ## 9

 e CALSIM II model representation for the Stanislaus River does not necessarily represent Reclamation's current or future operational policies. A suitable plan for supporting flows has not been developed for NMFS BO (Jun 2009) Action III.1.3.
 ${ }^{10}$ The actual amount diverted is reduced because of supplies from the Los Vaqueros project. The existing Los Vaqueros storage capacity is 100 TAF, and future storage capacity is 160 TAF. Associated water rights for Delta excess flows are included.

 11 Under DCR 2015 and the Future No Action baseline, it is assumed that SWP Contractors can take delivery of all Table A allocations and Article 21 supplies. Article 56 provisions are assumed and allow for SWP Contractors to manage storage and delivery conditions such that full Table A allocations can be delivered. Article 21 deliveries are limited in wet years under the assumption that demand is decreased in these conditions. Article 21 deliveries for the NBA are dependent on excess conditions only, all other Article 21 deliveries also require that San Luis Reservoir be at capacity and that Banks PP and the California Aqueduct have available capacity to divert from the Delta for direct delivery.

 12 Mokelumne River flows reflect EBMUD supplies associated with the Freeport Regional Water Project.
 13 The CCWD Alternate Intake Project, an intake at Victoria Canal, which operates as an alternate Delta diversion for Los Vaqueros Reservoir.
 ${ }^{14}$ D-1644 and the Lower Yuba River Accord are assumed to be implemented for Existing baselines. The Yuba River is not dynamically modeled in CALSIM II. Yuba River hydrology and availability of water acquisitions under the Lower Yuba River Accord are based on modeling performed and provided by the Lower Yuba River Accord EIS/EIR study team.
 ${ }^{15}$ This includes draft logic for the updated Allocation Settlement Agreement for four NOD contractors: Butte, Yuba, Napa and Solano.

 16 It is assumed that D-1641 requirements will be in place in 2030, and VAMP is turned off.
 ${ }^{17}$ In cooperation with Reclamation, National Marine Fisheries Service, Fish and Wildlife Service, and CA Department of Fish and Game, the CA Department of Water Resources has developed assumptions for implementation of the FWS BO th
 (Dec 15 2008) and NMFS BO (June 4 2009) in CALSIM II.
 18 Current ACOE permit for Banks PP allows for an average diversion rate of $6,680 \mathrm{cfs}$ in all months. Diversion rate can increase up to $1 / 3$ of the rate of San Joaquin River flow at Vernalis during Dec 15th - Mar 15th up to a maximum diversion of $8,500 \mathrm{cfs}$, if Vernalis flow exceeds 1,000 cfs.
 ${ }^{19}$ Acquisitions of Component 1 water under the Lower Yuba River Accord, and use of 500 cfs dedicated capacity at Banks PP during Jul-Sep, are assumed to be used to reduce as much of the impact of the Apr-May Delta export actions on SWP contractors as possible.
 ${ }^{20}$ Delta actions, under USFWS discretionary use of CVPIA 3406(b)(2) allocations, are no longer dynamically operated and accounted for in the CALSIM II model. The Combined Old and Middle River Flow and Delta Export restrictions under the FWS BO (Dec $15^{\text {th }}$ 2008) and the NMFS BO (June $4{ }^{\text {th }}$ 2009) severely limit any discretion that would have been otherwise assumed in selecting Delta actions under the CVPIA 3406(b)(2) accounting criteria. Therefore, it is anticipated that CVPIA 3406(b)(2) account availability for upstream river flows below Whiskeytown, Keswick and Nimbus Dams would be very limited. It appears the integration of BO RPA actions will likely exceed the 3406(b)(2) allocation in all water year types. For these baseline simulations, upstream flows on the Clear Creek and Sacramento River are pre-determined

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULLL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 35 | OF | 84 | |

 based on CVPIA 3406(b)(2) based operations from the Aug 2008 BA Study 7.0 and Study 8.0 for Existing and Future No Action baselines respectively. The procedures for dynamic operation and accounting of CVPIA 3406(b)(2) are not included in the CALSIM II model.

 21 Only acquisitions of Lower Yuba River Accord Component 1 water are included.

 ## References

 Atejlevich, E. (2001). "Chapter 11 - Improving Estimates of Salinity at the Martinez Boundary". Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh. 22nd Annual Progress Report to the State Water Resources Control Board. Sacramento, CA.

 Atejlevich, E. and Yu, M. (2007). "Chapter 4: Extended 82-year Martinez Planning Tide". Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh. 28th Annual Progress Report to the State Water Resources Control Board. Sacramento, CA.

 California Department of Water Resources, 2015. The State Water Project Final Delivery Capability Report 2015. July.

 CH2M HILL, 2009. DSM2 Recalibration. Prepared for California Department of Water Resources, October, 2009.

 National Marine Fisheries Service (NMFS), 2009. Biological Opinion and Conference Opinion on the Long-Term Operations of the Central Valley Project and State Water Project.

 SWRCB, 2000. Revised Water Right Decision 1641, March 15, 2000.
 U. S. Bureau of Reclamation (Reclamation), 2008. Central Valley Project and State Water Project Operations Criteria and Plan Biological Assessment, Appendix D CALSIM-II Model, May 2008.
 U. S. Bureau of Reclamation (Reclamation), 2008. Central Valley Project and State Water Project Operations Criteria and Plan Biological Assessment, Appendix F DSM2 Model, May 2008.
 U. S. Fish and Wildlife Service, 2008. Formal Endangered Species Act Consultation on the Proposed Coordinated Operations of the Central Valley Project (CVP) and State Water Project (SWP).

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 36 | OF | 84 | |

 ## HEC5Q Modeling for the Sites Reservoir Project

 # Development of WSIP Climate Scenarios for Use in HEC5Q

 The section describes the updates to HEC5Q that were necessary for performing temperature benefits analysis to support the Water Storage Investment Program (WSIP) application.

 ## Background

 ## HEC5Q Model Background and Limitations

 Over the last 15 years, the US Bureau of Reclamation (Reclamation) has developed applications of the US Army Corps of Engineers HEC5Q model for evaluation of water temperatures on the Sacramento River, American River, and Stanislaus Rivers. Reclamation made substantial revisions to these models for use in their NEPA EIS analysis of the Coordinate Long-Term Operations of the Central Valley Project and State Water Project (LTO EIS) (Reclamation, 2015). The HEC5Q model was designed to work with the model results of the CALSIM II model and was calibrated for historical meteorological conditions. For the LTO EIS analysis, procedures were established to incorporate operational assumptions related to selective withdrawal features at Shasta Lake (temperature control device). HEC5Q is listed in Table 4-14 of the WSIP Technical Reference document as one of the applicable water quality models that can be used to quantify physical changes in water temperatures.

 The regulations for the WSIP require that the models used in the evaluation of the Project incorporate changes associated with the WSIP 2030 and 2070 climate conditions. This required establishing Without Project versions of the HEC5Q models that reflected the change in temperatures associated with the WSIP 2030 and 2070 climate conditions. The LTO EIS HEC5Q model for the Sacramento River was modified to adjust for increases in temperature associated with each climate condition. Further, the operational assumptions related to selective withdrawal features at Shasta Lake were adjusted to consider the effects of each climate condition on the management of reservoir release temperatures and the extent to which water temperature objectives could be achieved within the critical reaches downstream of these reservoirs.

 The HEC5Q models calculate the change over time in water temperatures in reservoirs and rivers based on estimates of equilibrium water temperature and the rate at which heat exchange in the water will change as it approaches equilibrium. These estimates are based on meteorological and environmental information associate with the geographic location being studied. Based on temperature information included in the WSIP statewide gridded monthly data products (CWC, 2016) model inputs for equilibrium temperatures were adjusted for the WSIP climate scenarios.

 In applying the HEC5Q models, water temperature objectives downstream of Shasta Lake are required for the model to select what elevation to withdrawal releases from. The temperature of water varies with depth in a reservoir depending on the degree to which the profile is stratified (due to temperature and density variation). Warmer water is less dense than cooler water and will move to the top of the reservoir. Much of the warming of a reservoir over the spring and early summer months comes from solar radiation through the surface of the lake. To meet temperature objectives downstream of the reservoir, water is selectively withdrawn at an elevation that provides water cool enough to meet the downstream objective. The Shasta Lake schedule is varied each year of simulation based on reservoir storage and inflow conditions and expected changes in water temperature that occur between the

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 38 | OF | 84 | |

 reservoirs and the objective locations in the rivers. Based on reiterative analysis, schedules of temperature objectives are modified to reflect the effects of the WSIP climate conditions.

 The HEC5Q model provides a projection of how the water temperature trends with changes in storage and flows in the water resources system. The model does not provide a prediction of what future water temperatures will be. This model is intended for use in comparative analysis and demonstration of potential effects in the setting of hydrologic information considering historical variability and the effects of climate change. It should be recognized that the HEC5Q model is a simplified and generalized representation of complex hydrodynamic and thermodynamic processes in the riverine environment. While the HEC5Q model can provide 6-hour to daily timestep information at any location within the model domain, evaluation of the model results should consider the limitations of the information used to calibrate the model and the inputs to the model for the specific conditions being evaluated. Because the CALSIM II model results used are subject to specific location and monthly timestep limitations, care must be used in drawing any conclusion from the HEC5Q model results that is finer in spatial and temporal resolution than the CALSIM II model used. Nevertheless, HEC5Q is the best available tool for this evaluation of system effects related to the Project.

 ## Approach

 ## HEC5Q Changes

 Updates were made to the Trinity-Sacramento River Reclamation HEC5Q models used for the Coordinated Long-Term Operations of the Central Valley Project and State Water Project Environmental Impact Study (LTO EIS) to support temperature modeling for the WSIP Application process. The following changes were made to better simulate water temperatures at Current Conditions, and in the 2030 and 2070 climate scenarios developed by the California Water Commission (CWC) for the WSIP Application process: 1) increasing the equilibrium temperatures based on the calculated increase in air temperature for the WSIP 2030 and 2070 climate scenarios, and 2) adjusting the Shasta release temperature schedule assumptions in the Trinity-Sacramento HEC5Q model.

 ## Equilibrium Temperature Adjustment

 Changes in climate can have a myriad of potential and unpredictable effects on water temperatures. However, several studies indicate that increasing air temperatures result in increased water temperatures, regardless of climate scenario (Webb and Walsh 2004, Cushing 1997, Isaak et al. 2012). Since air temperatures are predicted to increase under the WSIP 2030 and 2070 climate scenarios, an increase in water temperature is assumed.

 With the limited data provided, equilibrium temperatures were increased based on the increased air temperature in the WSIP 2030 and 2070 climate scenarios. This approach was supported with an analysis between observed air temperature data from the Gerber and Nicolaus CIMIS stations and the calculated equilibrium temperatures at those two stations. The equilibrium temperatures were developed as part of the Sacramento River Water Quality Extension effort conducted by Reclamation (Smith et al. 2013). The period of record of the observed air temperature data was 01Jan2001 to 31Dec2011. The observed air temperature was averaged by month and then plotted against the calculated current climate equilibrium temperature as shown in Figures 1 and 2. Two linear regressions were performed on the data, one regression for the fall and winter months (October-March) and one regression for the spring and summer months (April-September). Regressions at Gerber indicate a 1:1 ratio of air temperature to equilibrium temperature during fall and winter months and 1:0.8 ratio of air temperature to equilibrium temperature in spring and summer months. Regressions at Nicolaus indicate

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 39 | OF | 84 | |

 a 1:1 ratio, year-round. The calculation of the climate adjusted equilibrium temperature, based on these regressions, is described in the next section.

 Figure 1: Gerber CIMIS Station Monthly Average Observed Air Temperature vs. Monthly Average Calculated Equilibrium Temperature

 Figure 2: Nicolaus CIMIS Station Monthly Average Observed Air Temperature vs. Monthly Average Calculated Equilibrium Temperature

 After performing the regressions to determine the seasonal adjustment factor, the following process was used to calculate the climate scenario adjusted equilibrium temperatures. The WSIP climate

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 40 | OF | 84 | |

 scenario data was obtained from the CWC website (Water Commission 2016). The data comes in files that correspond to grid cells with different latitude and longitudes. In order to perform the equilibrium temperature adjustments, the latitude and longitude coordinates of the Gerber and Nicolaus California Irrigation Management Information System (CIMIS) stations the meteorology data is based from were obtained and then matched with the closest WSIP climate scenario grid cell (Table 1). The climate scenario data that corresponded to that grid cell was then retrieved for the two CIMIS stations.

 Table 1: CIMIS Station Latitude and Longitude coordinates and the corresponding WSIP grid cell coordinates

 | Station | CIMIS | | WSIP | |
 | :---: | :---: | :---: | :---: | :---: |
 | | Latitude | Longitude | Latitude | Longitude |
 | Gerber | 40.05 | 122.16 | 40.03125 | 122.15625 |
 | Nicolaus | 38.87 | 121.55 | 38.84375 | 121.53125 |

 After retrieving the data, the maximum and minimum monthly air temperatures (Tmax \& Tmin) in the WSIP climate scenario data were converted to Fahrenheit from Celsius to match the units of the HEC5Q model. For each WSIP climate scenario, the average monthly air temperature (Tavg) was calculated by averaging the maximum and minimum monthly air temperatures ($T \max +\mathrm{T} \min$) $/ 2$. Then, the monthly average temperature shifts from Current Climate to WSIP 2030 and 2070 were calculated by subtracting the WSIP Current Climate Tavg from the 2030 Tavg and the 2070 Tavg, respectively. Gerber temperature shifts for April to September were multiplied by 0.8 to reflect the equilibrium temperature ratio described earlier. This difference was added to the existing HEC5Q Current Climate Equilibrium Temperature time series (described earlier) to calculate the climate adjusted equilibrium temperature for 2030 and 2070. Figures A1 to A6 in Appendix A show the 2030 and 2070 temperature shifts for each of the Gerber and Nicolaus CIMIS stations.

 It should be noted that the WSIP Current Climate and the LTO EIS HEC5Q Current Climate are based on different climate analyses that do not reflect the same set of assumptions. However, for the WSIP climate updates, it was assumed that both represent the same current climate. In addition, the California Department of Water Resources 2015 Delivery Capability Report (DCR 2015) CALSIM II model was used to analyze the benefits of Sites reservoir under current climate conditions. The WaterFix HEC5Q Current Climate inputs are used for DCR 2015. See Figure 3 for a schematic of the climate adjustment process and climate scenarios used. With project and without project refer to without or with Sites Reservoir.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 41 | OF | 84 | |

 Figure 3: Climate scenarios and climate update process used to update equilibrium temperature for the Sites Reservoir WSIP Application.

 ## Shasta Release Temperature Targeting Adjustments

 The HEC5Q model simulates the Shasta Temperature Control Device (Shasta TCD) to manage temperature downstream at the following four temperature compliance locations: Clear Creek at Bonnyview Bridge, Balls Ferry, Jelly's Ferry, and Bend Bridge. The Shasta TCD modeling code requires a temperature release target for Shasta to operate to. These temperature target schedules are developed as a series of annual temperature target schedules in a pre-processing spreadsheet tool for each temperature compliance location. For the Sites WSIP Application, two adjustments were made to the assumptions of the temperature target spreadsheet tool to demonstrate the Sacramento River temperature benefits of the changed operations at Shasta due to the operational flexibility provided by Sites Reservoir. These adjustments are described below.

 ## Storage Tier Adjustments

 For the Sites WSIP Application, the maximum of April and May end-of-month storage was used to specify that year's compliance location. This adjustment was made because End-of-May is greater than End-of-April storage in some years. Allowing flexibility between End-of-April and End-of-May storage gives a more complete picture of how much cold water pool is available for the temperature management season than if just End-of-April storage was used as the indicator of available cold water pool.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 42 | OF | 84 | |

 Second, the storage tiers were adjusted due to the change in inflows and air temperatures in the WSIP 2030 and 2070 climate scenarios. The changes in climate variables requires a greater volume of water to meet temperature compliance at the targeted compliance location (e.g. it will take more storage volume to meet temperature compliance at Balls Ferry throughout the year).

 An iterative approach was used to adjust the storage levels for both the WSIP 2030 and 2070 climate scenarios. An initial HEC5Q run was completed that utilizes the Maximum End-of-April or May Shasta Storage levels (see Table 2). After the run was completed, temperature outputs for the four compliance locations were loaded into the spreadsheet along with Shasta storage data from CALSIM II. The average of July and August temperature for each year of the 81 year period of record was calculated for each compliance location. The average between July and August was used because it represents the two months with the highest expected temperatures. The furthest downstream location that had a JulyAugust temperature below 56 degrees was the compliance location that was met for that year. For example, if the July-August temperature is 54.5,55,55.8, and 56.2 for Bonnyview, Balls Ferry, Jellys Ferry, and Bend Bridge respectively, then the compliance location that was met was Jellys Ferry, since it is the most downstream location that is below 56 degrees. The compliance location based on the Maximum End-of-April or May Shasta storage was also calculated. The number of years where the compliance location was different between the July-August average temperature and the Maximum End-of-April or May Shasta storage was tabulated. The Maximum End-of-April or May Shasta storage levels were then adjusted until the smallest difference was achieved.

 The Shasta temperature target schedules were then recomputed for each year and the HEC5Q model was then rerun. The new temperature results at the compliance locations were loaded into the spreadsheet and the same process of changing the Maximum End-of-April or May Shasta storage levels was performed. The final Maximum End-of-April or May Shasta storage levels were settled upon after the third iteration for the WSIP 2030 and WSIP 2070 climate scenarios, as shown in Table 2 below. The values in the table show the maximum storage necessary for each compliance location.

 Table 2: Adjusted End-of-April Shasta Storage Levels

 | Compliance Location | Maximum End-of-April or May Shasta Storage | | |
 | :---: | :---: | :---: | :---: |
 | Bend Bridge | Current Conditions | 2030 | 2070 |
 | Jelly's Ferry | 9999 | 9999 | 9999 |
 | Balls Ferry | 4425 | 4500 | 4500 |
 | Below Clear Creek | 4000 | 4300 | 4400 |
 | None | 3600 | 3600 | 4000 |

 ## Temperature Target Adjustments

 A temperature schedule was developed for each temperature compliance location. These temperature schedules are Shasta release temperatures that are calculated based on the amount of warming that will occur between Shasta and the four compliance locations. The amount of warming that occurs was calculated using an exceedance based approach. With the change in operations to Shasta with Sites Reservoir in place, these exceedance percentages were adjusted in order to demonstrate the potential amount of temperature benefit Sites Reservoir can provide. The June to October exceedance percentages were lowered, which calculates a higher warming that occurs between Shasta and the compliance locations for which Shasta has to adjust to by lowering its release temperature target. Lowering the release temperature targets means Shasta uses more of the cold water pool that is available. The exceedance percentages were adjusted to save cold water in the cold water pool for August and September. See Table 3 for the June to September exceedance percentages used for the

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 43 | OF | 84 | |

 without project scenarios and the adjusted exceedance percentages used to characterize warming in the river for the with-project scenarios in the Sites WSIP Application.

 Table 3: June to October exceedance percentages used to characterize warming between Shasta and the temperature compliance locations on the Sacramento River

 | Compliance
 Location | Exceedance Percentages | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | June | | July | | August | | September | |
 | | W/O Sites | W Sites |
 | Clear Creek | 75% | 5% | 50% | 5% | 15% | 5% | 5% | 5% |
 | Balls Ferry | 75% | 10% | 50% | 10% | 15% | 5% | 5% | 5% |
 | Jellys Ferry | 75% | 15% | 50% | 15% | 15% | 5% | 5% | 5% |
 | Bend Bridge | 75% | 25% | 50% | 25% | 15% | 5% | 5% | 5% |

 After setting the exceedance percentages, the HEC5Q model was run three times in order to settle in on the Shasta release temperatures based on these new exceedances. This process was done for the three climate scenarios. See Attachment B for the final Shasta Release temperature schedules for the three climate scenarios.

 ## Results

 After making the necessary adjustments to the climate updates described above, the Without-Project CALSIM II models for each of the three climate scenarios provided by the California Water Commission were run through the updated Trinity-Sacramento River HEC5Q models to quantify the river temperatures on the Sacramento River under the Without Project condition. This established the river temperature baselines for the three climate scenarios that river temperature benefits of the WithProject conditions would be quantified from. Attachment D shows river temperature results on the Sacramento River at Jellys Ferry. The results for both the Sacramento River show that river temperatures increase between the Current Conditions climate, the WSIP 2030 climate scenario, and the WSIP 2070 climate scenario. There are two major factors for this change, the shift in equilibrium temperature based on the increased air temperature and the change in operations based on the change in hydrologic conditions between the climate scenarios.

 ## References

 California Water Commission (CWC). 2016. Application Resources (data and model products), Water Storage Investment Program. California Water Commission. Sacramento CA. November, 2016. (https://cwc.ca.gov/Pages/ApplicationResources.aspx)

 California Water Commission (CWC). 2016. Regulation filed with Office of Administrative Law, Water Storage Investment Program. California Water Commission. Sacramento CA. November, 2016. (https://cwc.ca.gov/Documents/2017/WSIP/2017-0123-03S App.pdf)

 California Water Commission (CWC). 2016. Technical Reference, Water Storage Investment Program. California Water Commission. Sacramento CA. November, 2016. (https://cwc.ca.gov/Documents/2017/WSIP/TechnicalReference.pdf)

 California Water Commission (CWC). 2016. Water Storage Investment Program Climate Change and Sea Level Rise Data and Model Products Update. California Water Commission. (https://cwc.ca.gov/Documents/2017/WSIP/WSIP Data and Model Product Description 2-22-17.pdf)

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 44 | OF | 84 |

 Cushing, C. 1997. Freshwater Ecosystems and Climate Change in North America. A Regional Assessment. Advances in Hydrological Processes.

 Edinger, J., Brady, D., Geyer, J. 1974. Heat Exchange and Transport in the Environment. Electric Power Research Institute.

 Isaak, D. Wollrab, S., Horan, D., Chandler, G. 2012. Climate Change Effects on Stream and River Temperatures Across the Northwest US from 1980-2009 and Implications for Salmonid Fishes. Climatic Change.

 National Marine Fisheries Service (NMFS). 2009. Biological Opinion and Conference Opinion on the Long-Term Operations of the Central Valley Project and State Water Project. June 4. Southwest Region. Long Beach, CA.
 U.S. Bureau of Reclamation (Reclamation). 1990. U.S. Bureau of Reclamation Monthly Temperature Model Sacramento River Basin. United States Bureau of Reclamation.
 U.S. Bureau of Reclamation (Reclamation). 2015. Coordinated Long-Term Operations of the Central Valley Project and State Water Project. Final Environmental Impact Statement. Mid-Pacific Region. Sacramento, California. November, 2015. (http://www.usbr.gov/mp/BayDeltaOffice/coordinated-long-term.html)

 University of Washington. 2017. Washington State Water Temperature Projections. https://cig.uw.edu/datasets/washington-state-water-temperature-projections/

 Webb, B., Walsh, A. 2004. Changing UK River Temperatures and Their Impact on Fish Populations. Hydrology: Science \& Practice for the 21st Century. Volume II. British Hydrological Society.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 45 | OF | 84 | |

 ## Attachment A - Equilibrium Temperature Shifts

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 46 | OF | 84 |

 This attachment shows the results of the equilibrium temperature shifts for the Gerber, and Nicolaus CIMIS stations described in the Equilibrium Temperature Adjustment section.

 Figure A1: Gerber CIMIS station equilibrium temperature shifts for 2030 and 2070 climate scenarios.

 Figure A2: Nicolaus CIMIS station equilibrium temperature shifts for 2030 and 2070 climate scenarios.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP | PPLICAT | |
 | NOTES: | | | | PAGE: | 47 | OF | |

 ## Attachment B - Shasta Release Temperature Schedules

 This attachment shows the final Shasta release temperature schedules that were developed for the Sacramento River HEC5Q model for Current Conditions, WSIP 2030, and WSIP 2070 climate scenarios.

 Table B1: Shasta Release Temperature Schedules for Current Conditions.

 | Location | Max EO-
 Apr or
 May
 Storage | Temperature (F) Schedules for Shasta Dam Release | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | This table is for temperature target with Percent Exceedances | | | | | | | | | | | |
 | | | Jan | Feb | Mar | Apr | May | Jun | Jul | | | Oct | Nov | |
 | | 0 | 60.8 | 60.8 | 60.8 | 53.6 | 53.6 | 52.0 | 51.6 | 51.2 | 49.9 | 55.0 | 56.2 | 56.4 |
 | None | 2000 | 60.8 | 60.8 | 60.8 | 53.6 | 53.6 | 52.0 | 51.6 | 51.2 | 49.9 | 55.0 | 56.2 | 56.4 |
 | Clear Creek | 3600 | 60.8 | 60.8 | 60.8 | 53.6 | 53.6 | 52.0 | 51.6 | 51.2 | 49.9 | 55.0 | 56.2 | 56.4 |
 | Balls Ferry | 4000 | 60.8 | 60.8 | 60.8 | 53.6 | 53.6 | 50.1 | 50.5 | 49.8 | 48.4 | 54.5 | 56.6 | 57.2 |
 | Jellys Ferry | 4425 | 60.8 | 60.8 | 60.8 | 53.6 | 53.6 | 47.9 | 48.8 | 48.2 | 46.7 | 54.1 | 56.9 | 58.0 |
 | Bend Bridge | 9999 | 60.8 | 60.8 | 60.8 | 53.6 | 53.6 | 47.5 | 47.9 | 47.0 | 45.5 | 53.7 | 57.2 | 58.5 |

 Table B2: Shasta Release Temperature Schedules for WSIP 2030.

 | Location | Max EO-
 Apr or
 May
 Storage | Temperature (F) Schedules for Shasta Dam Release | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | This table is for temperature target with Percent Exceedances | | | | | | | | | | | |
 | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
 | | 0 | 60.8 | 60.8 | 60.8 | 53.6 | 53.6 | 52.5 | 52.6 | 51.6 | 50.9 | 54.8 | 56.2 | 56.2 |
 | None | 2000 | 60.8 | 60.8 | 60.8 | 53.6 | 53.6 | 52.5 | 52.6 | 51.6 | 50.9 | 54.8 | 56.2 | 56.2 |
 | Clear Creek | 3600 | 60.8 | 60.8 | 60.8 | 53.6 | 53.6 | 52.5 | 52.6 | 51.6 | 50.9 | 54.8 | 56.2 | 56.2 |
 | Balls Ferry | 4300 | 60.8 | 60.8 | 60.8 | 53.6 | 53.6 | 50.2 | 50.9 | 49.6 | 48.9 | 54.1 | 56.7 | 57.5 |
 | Jellys Ferry | 4500 | 60.8 | 60.8 | 60.8 | 53.6 | 53.6 | 48.4 | 49.3 | 48.0 | 47.2 | 53.5 | 57.1 | 58.4 |
 | Bend Bridge | 9999 | 60.8 | 60.8 | 60.8 | 53.6 | 53.6 | 47.7 | 48.8 | 46.7 | 46.0 | 53.2 | 57.4 | 58.9 |

 Table B3: Shasta Release Temperature Schedules for WSIP 2070.

 | Location | Max EO-
 Apr or May Storage | Temperature (F) Schedules for Shasta Dam Release | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | This table is for temperature target with Percent Exceedances | | | | | | | | | | | |
 | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
 | | 0 | 60.8 | 60.8 | 60.8 | 53.6 | 53.6 | 51.4 | 51.4 | 50.5 | 49.4 | 54.1 | 56.1 | 56.5 |
 | None | 2000 | 60.8 | 60.8 | 60.8 | 53.6 | 53.6 | 51.4 | 51.4 | 50.5 | 49.4 | 54.1 | 56.1 | 56.5 |
 | Clear Creek | 4000 | 60.8 | 60.8 | 60.8 | 53.6 | 53.6 | 51.4 | 51.4 | 50.5 | 49.4 | 54.1 | 56.1 | 56.5 |
 | Balls Ferry | 4400 | 60.8 | 60.8 | 60.8 | 53.6 | 53.6 | 50.0 | 50.4 | 48.8 | 47.8 | 53.4 | 56.5 | 57.6 |
 | Jellys Ferry | 4500 | 60.8 | 60.8 | 60.8 | 53.6 | 53.6 | 48.4 | 49.0 | 46.8 | 45.9 | 52.8 | 56.8 | 58.6 |
 | Bend Bridge | 9999 | 60.8 | 60.8 | 60.8 | 53.6 | 53.6 | 47.7 | 48.3 | 45.5 | 44.4 | 52.4 | 57.2 | 59.2 |

 # Attachment C - Sacramento River at Jellys Ferry Without Project Climate Scenario Temperature Comparisons

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | | PAGE: | 50 | OF | |

 ## Shasta Lake Storage (Beginning of Month)

 Jelly's Ferry Temperature

 ## Shasta Lake Storage (Beginning of Month)

 notes:

 Keswick Dam Flow

 $$
 \begin{array}{lllll}
 0 \% & 20 \% & 40 \% & 60 \% & 80 \% \\
 \hline
 \end{array}
 $$

 Shasta Lake Storage (Beginning of Month)

 Jelly's Ferry Temperature

 ## Shasta Lake Storage (Beginning of Month)

 ## SALMOD Salmon Modeling of the Sacramento River

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL: | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAMQC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 55 | OF | 84 |

 ## SALMOD Salmon Modeling of the Sacramento River for the Sites Reservoir Project

 This attachment provides a summary of the SALMOD model used to simulate the annual production potential for each run of Chinook salmon in the Sacramento River for the Sites Reservoir Water Storage Investment Program Application. It includes a description of the SALMOD model and assumptions.

 ## SALMOD Overview

 SALMOD simulates the population dynamics of the freshwater life stages of anadromous Chinook salmon. Model processes include spawning (egg deposition), egg and alevin development and growth, mortality, and movement (due to habitat limitation, freshets, and seasonal stimuli). Pre-smolts do not graduate to the smolt stage within the model. Instead, they exit the study area and the population is reinitialized with survey estimates of spawning adults each biological year. SALMOD is a spatially explicit model in which habitat quality and carrying capacity are characterized by the hydraulic and thermal properties of individual mesohabitats, which serve as spatial computational units in the model. SALMOD is organized around events occurring during a biological year beginning with spawning and typically concluding with fish that are physiologically "ready" (e.g., pre-smolts), swimming downstream toward the ocean. It operates on a weekly timestep for one or more biological years. Input variables (e.g., streamflow, water temperature, number and distribution of adult spawners) are represented by their weekly average values. SALMOD tracks a population of spatially distinct cohorts that originate as eggs and grow from one life stage to another as a function of local water temperature. The biological characteristics of fish within a cohort are the same. Fish cohorts are tracked by life stage and size class within the spatial computational units. SALMOD uses the weekly averages of the daily flow outputs from the CALSIM II model and the daily temperature outputs from the Trinity-Sacramento HEC5Q model.

 The 2008 Central Valley Project and State Water Project Operations Criteria and Plan Biological Assessment (OCAP BA) Technical Appendix P (Reclamation, 2008) describes the SALMOD model in detail including the development history, model formulation, input assumptions, use of outputs, and limitations of the model.

 ## SALMOD Assumptions for Returning Chinook Salmon Spawners

 This section presents the assumptions used for returning Chinook salmon spawners used in SALMOD modeling for evaluation of the alternatives. The Chinook salmon runs considered in SALMOD include winter, spring, fall, and late fall.
 Based on spatial distribution of surveyed redds on various segments of the Sacramento River, a distribution of spawners is assumed for the reach segments in the SALMOD model. Assumptions of the spawning distributions were based on average 2003-2014 redd survey data, provided by David Swank at NMFS in April 2015.

 The total number of returning adults assumed for each of the four runs is shown in Table 1. The numbers of returning adults assumed for each run summarized in Table 1 are approximate maximums of values assumed in recent applications of the SALMOD model. The ratios of spawning females to total number of returning adults are also included in Table 1. References are unavailable for these ratios. The fractional distribution of returning adults, for each reach segment, for each salmon run, are summarized in Table 2. Each segment is identified by locations along the Sacramento River. Using the fractional distribution of spawners shown in Table 2, the number of returning adults was apportioned to the reach segments in the model.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP | PPLICATIO | |
 | NOTES: | | | | PAGE: | 56 | OF | |

 SALMOD modeled production potential is assumed to vary across alternatives and within each alternative across each biological year according to variations in water temperatures, flows, and the resultant habitat available for Chinook salmon. The assumed number and distribution of returning female spawners is not varied by biological year. The high value was assumed for the number of returning female spawners so as to describe the potential available habitat under a wide range of flow and temperature conditions (value based on maximums of values assumed in recent applications of the SALMOD model). Therefore, the SALMOD results are not intended to estimate a specific number of Chinook salmon produced, but rather to provide an index of available habitat assuming that the number of returning female spawners is not limited.

 Table 1: Number of Returning Chinook Salmon Adults, and Ratio of Spawning Females to All Returning Adults, on the Sacramento River

 | Chinook Salmon Run | Returning Adults (High Curve) | Ratio of Spawning Adults to Non-
 spawning Adults |
 | :---: | :---: | :---: |
 | Winter | 8,500 | 0.48 |
 | Spring | 999 | 0.48 |
 | Fall | 65,000 | 0.48 |
 | Late Fall | 14,000 | 0.48 |

 Table 2: Distribution of Returning Chinook Salmon Adults in Eight Spawning Segments of the Sacramento River

 | Cumulative Distance
 from Keswick Dam
 (meters) | | Fraction of Returning Chinook Salmon Adults (percentage) | | | |
 | :---: | :--- | :---: | :---: | :---: | :---: |
 | | Location of Sacramento River Segment | Winter-Run | Spring-Run | Fall-Run | Late Fall-Run |
 | 5791 | Keswick Dam to Anderson-
 Cottonwood Irrigation District (ACID)
 Dam | 45.10 | 12.83 | 19.50 | 71.30 |
 | 9025 | ACID Dam to Highway 44 Bridge | 42.10 | 33.97 | 6.60 | 5.20 |
 | 28810 | Highway 44 Bridge to Airport Road
 Bridge | 12.20 | 29.76 | 14.70 | 3.90 |
 | 41411 | Airport Road Bridge to Balls Ferry
 Bridge | 0.30 | 11.12 | 19.40 | 8.90 |
 | 49207 | Balls Ferry Bridge to Battle Creek | 0.10 | 7.41 | 12.50 | 5.90 |
 | 56538 | Battle Creek to Jellys Ferry | 0.10 | 1.50 | 15.20 | 3.10 |
 | 71413 | Jellys Ferry Bridge to Bend Bridge | 0.10 | 2.61 | 8.00 | 1.20 |
 | 84828 | Bend Bridge to just upstream of the
 Red Bluff Diversion Dam | 0.00 | 0.80 | 4.20 | 0.60 |

 ## References

 U.S. Bureau of Reclamation (Reclamation). 2008. 2008 Central Valley Project and State Water Project Operations Criteria and Plan Biological Assessment. Technical Appendix P SALMOD Model. May 2008. U.S. Bureau of Reclamation, Mid-Pacific Region, Sacramento, California. Accessible at http://www.usbr.gov/mp/cvo/OCAP/sep08_docs/Appendix_P.pdf

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 57 | OF | 84 | |

 # Upper Sacramento River Daily River Flow and Operations Modeling

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSI ON: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 58 | OF | 84 |

 ## Upper Sacramento River Daily River Flow and Operations Modeling

 This attachment provides the summary of modeling performed to simulate daily flow and operations in the reservoirs, rivers and other conveyance features that are part of the Central Valley Project (CVP) and the Sites Reservoir Project (Project). It includes a description of the Upper Sacramento River Daily Operations Model (USRDOM) and results used in the detailed evaluation of alternatives.

 ## USRDOM Overview

 USRDOM simulates daily flow and storage conditions in the upper Sacramento River including Trinity basin, Sacramento River from Shasta Lake to Knights Landing and Colusa Basin including the Project conveyance and storage features. USRDOM utilizes results from CALSIM II to evaluate the impacts of changing diversion, in-basin use and Delta operations under projected conditions within current or future regulatory and operational regimes. It couples the downstream monthly operational decisions in CALSIM II to a simulation of the associated sub-monthly operational response at Lake Shasta depending on the inflows. It is particularly useful in verifying the CALSIM II simulated river conditions and the availability of excess flows to fill the Sites Reservoir under the capacity and operational constraints of the three intakes at the Red Bluff, Hamilton City and Delevan locations.

 Development of the USRDOM, calibration and verification, its use in planning simulations and its application to the Sites Reservoir Project is documented in detail in the final USRDOM Development, Calibration, and Application report prepared by CH2M HILL for Reclamation (CH2M HILL, 2011).

 ## Objective

 USRDOM is used in several ways as part of modeling of the operations of the Sites Reservoir Project. It was used to test and finalize the CALSIM II operations for the Project alternatives. The main objective of using USRDOM was to simulate daily flows to inform CALSIM II (monthly) about the potential restrictions on the diversions due to pulse flow conditions. It was also used to evaluate storage conditions in Lake Shasta and Sites Reservoir, flow conditions on a daily-weekly time scale along the Sacramento River from Keswick Dam to Knights Landing and in the Colusa Basin conveyance. The results from USRDOM are used for input into temperature, biological and flow regime models to evaluate the Project.

 ## Project Intake Operations Assumptions

 This section briefly describes the key operational assumptions used in the USRDOM model for evaluating the Project.

 The operational assumptions governing the diversions at the three Project intakes, namely existing Tehama Colusa Canal (TCC) Intake, Glenn Colusa Canal (GCC) Intake and the Delevan Pipeline Intake include:

 - Restrictions based on the available channel conveyance capacities at various locations along the TCC and GCC. Further, restrictions based on the dedicated annual maintenance periods for TCC, GCC, and Delevan pipeline.
 - Restrictions based on meeting the specified bypass flow requirements downstream of each of the three intakes. In addition, diversions are restricted based on the seasonal bypass flow requirements specified for Sacramento River near Hood.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVQ: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | | PAGE: | 59 | OF | 84 |

 - Restrictions based on the occurrence of pulse flows in the Sacramento River, which provide key biological cues for the outmigrating juvenile winter-, spring-, fall, and late fall-run Chinook salmon, as well as a portion of the steelhead juvenile fish. Therefore, diversions are restricted for up to one pulse event recognized in each month of the October through May period. Bend Bridge flow was used to identify pulse signals as part of the modeling.

 ## Overview of the Planning Analysis

 CALSIM II simulates CVP and State Water Project (SWP) operations on a monthly timestep from WY 1922 through WY 2003. Therefore, for the USRDOM projected conditions simulation, the inputs are taken from CALSIM II for a consistent analysis. Because USRDOM requires inputs on a daily timestep, the monthly inputs and outputs of the CALSIM II model are downscaled to a daily timestep using the CAL2DOM utility. CAL2DOM utility translates monthly CALSIM II operations data to a daily time step. It uses the inputs and outputs from CALSIM II, USRDOM hydrology inputs, and other datasets to compute inflows, diversions, and evaporation rates for using as inputs in the USRDOM.

 ## Analysis of the Project

 CALSIM II was the core model used to simulate Project operations. However, the assumptions related to the intake operations require daily flow data in determining the diversions allowed at the intakes, in turn affecting the system-wide operations. Since CALSIM II is a monthly timestep model, USRDOM results were used to enforce the intake operations on a sub-monthly scale. Due to the complexity in the intake operational rules, a spreadsheet tool was developed to implement the operational constraints using the daily results from the USRDOM. Further, the models were iterated to ensure all the intake operations assumptions were simulated accurately. Figure 1 shows the schematic of the modeling process used to simulate Project operations.

 In the first iteration, CALSIM II and USRDOM models are simulated for the Project to determine the days requiring the pulse protection. A draft CALSIM II simulation was run with all the physical, regulatory and operational assumptions for the Project alternative. The results from this "draft" CALSIM II simulation were used to run the USRDOM model. The USRDOM setup included Project assumptions consistent with the draft CALSIM II. Since this USRDOM run is used to estimate daily flows in the river to determine the days requiring pulse protection, the diversions at the TCC, GCC, and Delevan intakes are restricted to meet the agricultural demands and other local uses in Colusa Basin region. The CAL2DOM logic was altered to estimate the diversions at the three intake locations without including the diversions for filling Sites Reservoir in this USRDOM run (called as, draft USRDOM No Fills Run). The results from the draft USRDOM No Fills run are used in a spreadsheet tool to determine the number of days under pulse protection in each month, over the 82-year period.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 60 | OF | 84 | |

 1. Draft CALSIM II and USRDOM Simulations for the Sites Reservoir Project to determine days requiring "pulse protection"

 ## 2. Final CALSIM II and USRDOM Simulations for the Project to

 determine daily diversions for Sites Reservoir fill flows at TCC, GCC and proposed new Delevan Pipeline intakes
 3. Final USRDOM Simulation for the Project to provide daily flow data for temperature, biological and flow regime models

 Figure 1-Operations Modeling Process used for the Project Alternatives Evaluation

 In the second iteration, the draft CALSIM II from the first iteration is re-run with the pulse protection data, to simulate the final monthly operations for the Project. The goal of this iteration is to determine the daily diversion amounts at the TCC, GCC, and Delevan pipeline intakes. Since the complexity involved in simulating capacity and maintenance constraints, bypass flow requirements and pulse protection restrictions simultaneously, the existing CAL2DOM logic to determine the daily diversions at the three intakes is insufficient. Therefore, the results from the final CALSIM II simulation are used to run another USRDOM simulation without including the diversions needed to fill the Sites Reservoir at the three intake locations (called as, final USRDOM No Fills Run). The purpose of this final USRDOM No Fills run is to determine the daily flows in the Sacramento River at key control points. This data is used in a spreadsheet tool to determine the daily diversions required to fill Sites Reservoir at the three intakes while complying with all the operational rules.

 The daily diversions for the Sites fills at the three intakes are determined in three steps in the spreadsheet tool. In the first step the available diversion capacity is determined based on the capacity and maintenance constraints described above. In addition, based on the daily USRDOM flow the available flow to meet the monthly average diversion for fill (from CALSIM II) is determined at each

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 61 | OF | 84 | |

 intake, while meeting the bypass flow requirements. If there are no pulse flow restrictions for a given day, then the diversion at each intake is estimated as the minimum of available capacity and the available flow for diversion.

 If the total diversion volumes at each intake from the first step for each month are less than the amount determined in CALSIM II, additional diversions needed to make up the difference are estimated in the second step. In this step, the additional diversions are made up at any of the three intakes depending on the available diversion capacity and the available flow for the diversion. First TCC intake is checked, then the GCC intake and finally the Delevan pipeline intake for any available diversion capacity for each month.

 Based on the diversions from the second step, the months with volumes continue to be short of the CALSIM II values are flagged in the third and final step. These shortages are carried forward to the next months in which the diversion capacity and the flow for the diversion are available. This carrying forward of the shortages is only allowed in November through May months, which generally is the Sites Reservoir filling period. The availability of the flow for the diversion is estimated as the Wilkins Slough flow in excess of the minimum flow requirement at Knights Landing (estimated in CAL2DOM).

 In this process, a few reasonable simplifying assumptions were made for modeling purposes, mainly because CALSIM II determines the diversions at the three intakes on a monthly timestep without knowing the daily constraints due to the intake operations assumptions and the daily variability in the unregulated flows. It is assumed that based on the available real-time monitoring, there is enough flexibility in TCC, GCC, and Delevan pipeline operations and in the interoperability among the three conveyance systems such that the diversions to fill Sites Reservoir can be made up through the following:

 - Diversions at any of the three intake locations while meeting all the intake operations assumptions at each intake
 - Diversions in any of the months during the fill season of November through May if usable diversion capacity and divertible flow is available

 In the third iteration a final USRDOM run is simulated using the final CALSIM II results and the daily diversions for fills from the final step of the spreadsheet tool. CAL2DOM is modified to combine the diversions for the fills and the diversions for meeting local Colusa Basin demands to determine the total daily diversions at each of the three intakes.

 ## Limitations

 In using the USRDOM results for the Sites Reservoir Project evaluation following limitations should be noted:

 The USRDOM calibration for Clear Creek flows below Whiskeytown Dam is significantly weaker than for other flows in the Trinity and Sacramento River systems. It is recommended that the CALSIM II model alone be used as the basis for impact assessment on Clear Creek flows.

 In the downscaling of CALSIM II boundary condition flows for use in the USRDOM simulations, diversions at Red Bluff, Hamilton City and the Delevan Pipeline (Project alternatives) are smoothed from monthly to daily timestep. In this smoothing operation, in order to conserve volume and have a gradual change in diversion flows (as opposed to sharp changes at monthly or other time scale boundaries), there are some days in which diversions are represented in the model at flow rates that may exceed the sustainable rate of the physical capacity of these facilities. It is recommended that any assessment of

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 62 | OF | 84 | |

 flows or other parameters linked to the peak flow rate of these diversions use monthly average values rather than daily or other sub-monthly average values.

 The CALSIM II model is used to establish system operational conditions and USRDOM is used to interpret these on a daily time-step; all residuals and inconsistencies between the CALSIM II and USRDOM models accumulate in storage facilities modeled, including Sites Reservoir; the Sites Reservoir storage in the USRDOM sometimes exceeds physical capacity slightly due to this inconsistency between the models.

 ## References

 CH2M HILL. 2011. Final USRDOM Development, Calibration, and Application. Prepared for Bureau of Reclamation, Mid-Pacific Region.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL: | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 63 | OF | 84 |

 ## Power Modeling of the Sites Reservoir Project

 ## Sites Reservoir Power Analysis - Planning Level Assumptions and Modeling Approach

 This section describes the planning level modeling approach to estimate power impacts of proposed Sites Reservoir facilities.

 ## Sites Reservoir Power Model Overview

 The Sites Reservoir power analysis tool is a spreadsheet post-processor that evaluates power impacts of flow scenarios from CALSIM II operations studies. The tool estimates average annual energy generation and use at proposed Sites Reservoir generation and pumping facilities, including existing facilities that would be operated differently if Sites Reservoir is built. For generation facilities, the tool estimates average annual energy generation and average annual peaking power capacity. For pumping facilities, the tool estimates average annual power requirements. The tool also checks to determine whether offpeak energy use targets are being met. Transmission losses are estimated for both pumping and generation facilities.

 In addition, the tool estimates the economic benefits and costs of power generation and use at the proposed Sites Reservoir generation and pumping facilities.

 Flow and storage levels used in the power analysis tool are taken from CALSIM II studies. The analysis period is for 82 years, based on the projected level hydrologic and land use assumptions associated with the CALSIM II analysis used.

 Figure 1 shows pumping and power generation facilities that are included in the power analysis tool (CALSIM II output parameter names are included in the figure).

 A total of five pumping facilities and three generation facilities are included in the analysis.

 - Pumping facilities:
 o Sacramento River diversion to Tehama-Colusa Canal (existing pumping facility)
 o Sacramento River diversion to Glenn-Colusa Canal (existing pumping facility)
 o Conveyance from Glenn-Colusa Canal Terminal Regulating Reservoir to Funks Reservoir (proposed conveyance with pumping facilities)
 o Conveyance from Sacramento River to Funks Reservoir (proposed conveyance with pumping facilities)
 o Conveyance from Funks Reservoir to Sites Reservoir (proposed conveyance with pumping facilities)

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 65 | OF | 84 | |

 FIGURE 1
 Facilities Included in the Sites Reservoir Power Analysis

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 66 | OF | 84 | |

 Generation facilities:
 o Conveyance from Sites Reservoir to Funks Reservoir (proposed conveyance with power generation facilities)
 o Conveyance from Funks Reservoir to the Sacramento River (proposed conveyance with power generation facilities)
 o Conveyance from Funks Reservoir to Glenn-Colusa Canal Terminal Regulating Reservoir (proposed conveyance with power generation facilities)

 ## Approach

 This section documents the approach that is used to estimate energy use, generation, peaking power capacity, and transmission losses.

 ## Energy Use at Pumping Facilities

 The approach used to estimate energy use at pumping facilities assumes that pumping plant energy use is a function of flow and total head. Energy use is estimated using the following equation:

 $$
 \begin{aligned}
 & \text { Energy Use }(\mathrm{MWh})= \\
 & 0.7457 \frac{\mathrm{~kW}}{\mathrm{hp}} * 62.4 \frac{\mathrm{lbs}}{f t \wedge 3} * \frac{1 M W}{1000 k W} * \frac{1 h p}{550 \frac{l b^{*} f t}{s}} * t \frac{h r s}{m o n t h} * \frac{1}{\eta} * \operatorname{head}(f t) * \mathrm{Q} \frac{f t \wedge 3}{s}
 \end{aligned}
 $$

 The tool also estimates whether user-defined off-peak energy use targets can be met. For example, if it is desired that 90% of required pumping energy use during a particular month occur during off-peak hours, the tool determines whether this is feasible given power and flow capacity limits.

 ## Energy Generation

 The approach used to estimate energy generation at power facilities assumes that power plant generation is a function of flow and total head. Energy generation is estimated using the following equation:

 Energy Generation $(\mathrm{MWh})=$

 $$
 0.7457 \frac{k W}{h p} * 62.4 \frac{\mathrm{lbs}}{f t \wedge 3} * \frac{1 M W}{1000 k W} * \frac{1 h p}{550 \frac{l b^{*} f t}{s}} * t \frac{h r s}{m o n t h} * \eta * \operatorname{head}(f t) * Q \frac{f t \wedge 3}{s}
 $$

 ## Power Capacity

 The approach used to estimate power capacity assumes that peak capacity is a function of total head and average power plant flow. Power capacity is estimated using the following equation:

 Power Capacity (MW) =

 $$
 0.7457 \frac{k W}{h p} * 62.4 \frac{l b s}{f t \wedge 3} * \frac{1 M W}{1000 k W} * \frac{1 h p}{550 \frac{l b^{* f t}}{s}} * \eta * \operatorname{head}(f t) *
 $$

 Avg. power plant flow rate($\frac{f t \wedge 3}{s}$)

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 67 | OF | 84 | |

 The above approach may underestimate peak power capacity. The approach uses average monthly power plant flows, while generation facilities may release at levels considerable higher than average monthly flows during peak demand periods. This approach should be revised if the use of average monthly flows is determined to be too conservative.

 ## Transmission Losses

 Transmission losses are estimated to estimate energy use and generation at load center. Transmission losses are estimated as a percentage of energy use or generation.

 Economic Benefits and Costs
 The economic benefits and costs of power generation and use at each facility is estimated using year 2025 forecasted monthly on-peak and off-peak power prices for Northern California.

 ## Assumptions

 Tables 1-A through 1-E list assumptions that are used to estimate energy use and transmission losses at proposed Sites Reservoir pumping facilities.

 Tables 2-A through 2-C list assumptions that are used to estimate energy generation, power capacity, and transmission losses at proposed Sites Reservoir generation facilities.

 Table 3 shows the 2025 forecasted on-peak and off-peak power prices that are used to estimate economic costs and benefits.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 68 | OF | 84 | |

 TABLE 1-A
 Assumptions for Tehama-Colusa Canal Diversion Pumping Facility

 | Plant Characteristics | Units | Modeling Assumptions | Basis for Assumption |
 | :---: | :---: | :---: | :---: |
 | Max Q Plant | cfs | 2,000 | Fish Passage Improvement Project at the Red Bluff Diversion Dam: Design Development Report, November 2009, CH2M HILL |
 | Efficiency | | 85\% | Based on conversation with Dinh Nguyen, Design Engineer, DWR |
 | Transmission Losses | | 2\% | Discussion with DWR staff, 2/8/07 |
 | Percent Eng Off Peak | | | No off-peak pumping target |
 | Dynamic Head | ft | 12 | Discussion with DWR staff, 2/8/07 |
 | Power Rating | MW | 6.00 | Red Bluff Pumping Plant and Fish Screen October 2009 - Contract \#4 Conformed Drawings USBR and CH2M HILL |

 TABLE 1-B
 Assumptions for Pumping from GC Canal Terminal Regulating Reservoir (TRR) to Funks Reservoir

 | Plant Characteristics | Units | Modeling Assumptions | Basis for Assumption |
 | :---: | :---: | :---: | :---: |
 | Max Q Plant | cfs | 1,800 | From pg 17 of DWR Conveyance Report |
 | Num Pipes | | 2 | From pg 17 of DWR Conveyance Report |
 | Max Q Pipe | cfs | 900 | From pg 17 of DWR Conveyance Report |
 | Roughness | ft | 0.003 | Based on pre-cast concrete pipe (pg 20, DWR Conveyance Report) |
 | Diameter | ft | 12 | Based on pre-cast concrete pipe (pg 20, DWR Conveyance Report) |
 | Length | ft | 14,400 | From Alternative 3, Appendix D of DWR Conveyance Report |
 | Efficiency | | 82\% | March 15, 2011 project team meeting |
 | Off-/on-peak objective | | | No off-peak pumping target |
 | Transmission Losses | | 2\% | Discussion with DWR staff, 2/8/07 |
 | Elevation 1 | ft | 111.5 | Assumes TRR WS is constant; from pg 17 of DWR Conveyance Report |
 | Elevation 2 | ft | 203 | Assumes Funks WS is constant; from pg 6 of Appurtenant Facilities report |
 | Power Rating | MW | 19.68 | Table A, NODOS Feasibility Study (DWR, Sep 2010) |

 TABLE 1-C
 Assumptions for Pumping from Sacramento River to Funks Reservoir

 | Plant Characteristics | Units | Modeling Assumptions | Basis for Assumption |
 | :---: | :---: | :---: | :---: |
 | Max Q Plant | cfs | 2,000 | Discussion with DWR staff, 2/8/07 |
 | Num Pipes/Pumps | | 2 | Discussion with DWR staff, 2/8/07 |
 | Max Q Pipe | cfs | 1,000 | Discussion with DWR staff, 2/8/07 |
 | Roughness | ft | 0.003 | Based on pre-cast concrete pipe (pg 20, DWR Conveyance Report) |
 | Diameter | ft | 12 | From pg 16 of DWR Conveyance Report |
 | Length | ft | 70,000 | From pg 9 of DWR Conveyance Report |
 | Efficiency | | 82\% | March 15, 2011 project team meeting |
 | Off-/on-peak objective | | | No off-peak pumping target |
 | Transmission Losses | | 0.02 | Discussion with DWR staff, 2/8/07 |
 | Elevation 1 | ft | Sac Stage | From Sac Rating Curve |
 | Elevation 2 | ft | 203 | Assumes Funks WS is constant; from pg 6 of Appurtenant Facilities report |
 | Power Rating | MW | 65.65 | Table A, NODOS Feasibility Study (DWR, Sep 2010) |

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | | PAGE: | 69 | OF | 84 |

 TABLE 1-D
 Assumptions for Pumping from Funks Reservoir to Sites Reservoir

 | Plant Characteristics | Units | Modeling Assumptions | Basis for Assumption |
 | :---: | :---: | :---: | :---: |
 | Tunnel | | 1 | From DWR Appurtenant Facilities report |
 | Max Q Pipe | cfs | 5,900 | March 15, 2011 project team meeting |
 | Roughness ${ }_{\text {concrete }}$ | ft | 0.003 | Based on concrete lining (pg 23, DWR Appurtenant Facilities report) |
 | Roughness $_{\text {steel }}$ | ft | 0.0002 | Discussion with DWR staff, 2/8/07 |
 | Diameter | ft | 30 | From Appendix A (pg 23) of DWR Appurtenant Facilities report |
 | Length ${ }_{\text {concreete }}$ | ft | 3,031 | From Figures 4-1 \& 4-2 of DWR Appurtenant Facilities report |
 | Length ${ }_{\text {steel }}$ | ft | 1,000 | From Figures 4-1 \& 4-2 of DWR Appurtenant Facilities report |
 | Efficiency | | 82\% | March 15, 2011 project team meeting |
 | Off-/on-peak objective | | | Maximize off-peak pumping |
 | Transmission Losses | | 0.02 | Discussion with DWR staff, 2/8/07 |
 | Elevation 1 | ft | 203 | Assumes Funks WS is constant; from pg 6 of Appurtenant Facilities report |
 | Elevation 2 | ft | Sites WS | From Sites Elevation-Capacity curve |
 | Power Rating | MW | 181.35 | Table A, NODOS Feasibility Study (DWR, Sep 2010) |

 TABLE 1-E
 Assumptions for Glenn-Colusa Canal Diversion Pumping Plant

 | Plant Characteristics | Units | Modeling
 Assumptions | Basis for Assumption |
 | :--- | :---: | :---: | :--- |
 | Max Q Plant | cfs | 3,000 | CALSIM II maximum flow for GC Canal |
 | Efficiency | | 85% | Based on conversation with Dinh Nguyen, Design Engineer, DWR |
 | Transmission Losses | | 2% | Discussion with DWR staff, 2/8/07 |
 | Off-/on-peak objective | | | No off-peak pumping target |
 | Dynamic Head | ft | 10 | Discussion with DWR staff, 2/8/07 |
 | Power Rating | MW | 3.39 | Derived from Table 2-3 (pg 2-6) in GCID Feasibility Report. |

 TABLE 2-A
 Assumptions for Funks Reservoir Generating Plant

 TABLE 2-B
 Assumptions for Glenn-Colusa Canal Terminal Regulating Reservoir Generating Plant

 | Plant Characteristics | Units | | $\begin{array}{c}\text { Modeling } \\ \text { Assumptions }\end{array}$ | | |
|---|---|---|---|---|---|
 | Basis for Assumption | | | |
 | Max Q Plant | cfs | 1,500 | March 15, 2011 project team meeting |
 | Num Pipes | cfs | 750 | From pg 17 of DWR Conveyance Report |
 | Max Q Pipe | ft | 0.003 | March 15, 2011 project team meeting |
 | Roughness | ft | 12 | Based on pre-cast concrete pipe (pg 20, DWR Conveyance Report) |
 | Diameter | ft | 14,400 | From Alternative 3, Appendix D of DWR Conveyance Report |$]$| Length |
 | :--- |
 | Efficiency |
 | Off-/on-peak objective |
 | Transmission Losses |
 | Elevation 1 |
 | Elevation 2 |
 | Power Rating |

 TABLE 2-C
 Assumptions for Sacramento River Generating Plant

 | Plant Characteristics | Units | Modeling Assumptions | Basis for Assumption |
 | :---: | :---: | :---: | :---: |
 | Max Q Plant | cfs | 1,500 | Pg. 3, DWR Pumping-Generating Plants Feasibility Study |
 | Num Pipes/Pumps | | 2 | Discussion with DWR staff, 2/8/07 |
 | Max Q Pipe | cfs | 750 | Pg. 3, DWR Pumping-Generating Plants Feasibility Study |
 | Roughness | ft | 0.003 | Based on pre-cast concrete pipe (pg 20, DWR Conveyance Report) |
 | Diameter | ft | 12 | From pg 16 of DWR Conveyance Report |
 | Length | ft | 70,000 | From pg 9 of DWR Conveyance Report |
 | Efficiency | | 85\% | March 15, 2011 project team meeting |
 | Off-/on-peak objective | | | Maximize on-peak generation |
 | Transmission Losses | | 2\% | Discussion with DWR staff, 2/8/07 |
 | Elevation 1 | ft | 203 | Assumes Funks WS is constant; from pg 6 of Appurtenant Facilities report |
 | Elevation 2 | ft | Sac Stage | From Sac Rating Curve |
 | Power Rating | MW | 10.8 | Table A, NODOS Feasibility Study (DWR, Sep 2010) |

 TABLE 3
 Forecasted Year 2025 On-Peak and Off-Peak Power Prices
 Source: Prices are forward prices developed by DWR power portfolio section; date of forecast: 08/25/09

 | Month | On-Peak | Off-Peak |
 | :--- | :---: | :---: |
 | October | $\$ 82.81$ | $\$ 67.87$ |
 | November | $\$ 83.69$ | $\$ 69.89$ |
 | December | $\$ 86.29$ | $\$ 72.33$ |
 | January | $\$ 83.25$ | $\$ 70.59$ |
 | February | $\$ 82.22$ | $\$ 71.67$ |
 | March | $\$ 79.50$ | $\$ 67.48$ |
 | April | $\$ 75.45$ | $\$ 61.76$ |
 | May | $\$ 76.95$ | $\$ 57.78$ |
 | June | $\$ 79.19$ | $\$ 58.07$ |
 | July | $\$ 92.57$ | $\$ 65.79$ |
 | August | $\$ 87.50$ | $\$ 66.90$ |
 | September | $\$ 84.59$ | $\$ 66.31$ |

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | | PAGE: | 72 | OF | 84 |

 ## Economic Modeling

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL: | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAMC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | PAGE: | 73 | OF |

 ## Economic Modeling of the Sites Reservoir Project

 This attachment includes the assumptions and approaches used to estimate hydropower benefits from the Sites Reservoir Project. The California Water Commission (CWC) requirements and recommendations for water supply and Hydropower benefits estimation provided in the Technical Reference document are incorporated and detailed in this document. Section 1 covers two approaches that provide M\&I water supply benefits at 2030 and 2070 conditions in average annual value (2015 dollars):

 1. Unit Value Approach using California Water Commission (CWC) provided \$/Acre-Foot benefit of water supply cited in the Technical Reference Document
 2. Economic Model Approach:
 a. M\&I Water Supply: California Water Economics Spreadsheet Tool (CWEST)
 b. Agricultural Water Supply: Statewide Agricultural Production Model (SWAP)

 Section 2 covers the estimation of hydropower benefits and conveyance costs using Long Term Generation (LTGen), State Water Project (SWP) Power, and North of Delta Off-Stream Storage (NODOS) Power.

 Section 3 provides additional comments on the CWC Water Storage Investment Program (WSIP) Technical Reference document (CWC, 2016).

 ## Section 1. Water Supply Benefits Estimation

 ## Quantifying Private Water Availability and Uses

 Sites Project Participants are both agricultural (Ag) and municipal and industrial ($\mathrm{M} \& \mathrm{I}$) agencies. Table X1 provides a list of Sites Project Participants and beneficial use of Sites water supply. Figure X1 maps the location of the Sites Project Participants.

 Table X1. Sites Project Participants (Ag/M\&I)

 | Sacramento Valley Sites Project Participants (Ag) | |
 | :--- | :--- |
 | Colusa County | Glenn-Colusa Irrigation District |
 | Colusa County Water District | Orland-Artois Water District |
 | Cortina Water District | Proberta Water District |
 | Davis Water District | Reclamation District 108 |
 | Dunnigan Water District | Westside Water District |
 | La Grande Water District | |
 | South of Delta Sites Project Participants (M\&I) | |
 | American Canyon, City of | San Bernardino Valley Municipal Water District |
 | Antelope Valley-East Kern Water Agency | San Gorgonio Pass Water Agency |
 | Castaic Lake Water Agency | Santa Clara Valley Water District |
 | Coachella Valley Water District | Zone 7 Water Agency |
 | Desert Water Agency | |
 | South of Delta Sites Project Participants (Ag) | |
 | Wheeler Ridge-Maricopa Water Storage District | |

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 74 | OF | 84 |

 Figure X1 Sites Project Participants

 The WSIP 2030 and 2070 without Project CALSIM II model runs were compared to the WSIP 2030 and 2070 with Project CALSIM II model runs to quantify the annual deliveries to Sites Project Participants. Table X2 provides the annual delivery by water year type and long-term average that were used in the water supply and hydropower benefit estimation. Delivery is the calculated quantity at the location of each Sites Project Participant after accounting for conveyance losses, consistent with section 4.12.3 Location at Which Supply is Measured of the CWC Technical Reference document (CWC, 2016).

 Table X2. Delivery ${ }^{1}$ by Water Year Types ${ }^{2}$ (TAF/year)

 | | Year of Analysis - 2030 | Year of Analysis -2070 |
 | :--- | :--- | :--- |
 | Sacramento Valley Sites Project Participants (Ag) | | |
 | Long-Term Average | 111 | 137 |

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 75 | OF | 84 |

 | Wet | 62 | 110 |
 | :---: | :---: | :---: |
 | Above Normal | 86 | 146 |
 | Below Normal | 125 | 152 |
 | Dry | 157 | 161 |
 | Critical | 153 | 133 |
 | South of Delta Sites Project Participants (M\&I) | | |
 | Long-Term Average | 107 | 117 |
 | Wet | 15 | 15 |
 | Above Normal | 52 | 72 |
 | Below Normal | 121 | 116 |
 | Dry | 213 | 257 |
 | Critical | 185 | 145 |
 | South of Delta Sites Project Participants (Ag) | | |
 | Long-Term Average | 27 | 30 |
 | Wet | 5 | 5 |
 | Above Normal | 6 | 12 |
 | Below Normal | 28 | 26 |
 | Dry | 56 | 69 |
 | Critical | 53 | 41 |
 | Sites Project Participants Total | | |
 | Long-Term Average | 244 | 285 |
 | Wet | 82 | 130 |
 | Above Normal | 144 | 230 |
 | Below Normal | 273 | 294 |
 | Dry | 426 | 488 |
 | Critical | 391 | 319 |

 ${ }^{1}$ Increases from the No Action Alternative. Accounts for 18\% deduction for carriage water for Delta Export
 ${ }^{2}$ Water Year types are the 2030 and 2070 Sacramento Valley 40-30-30 index and the 2030 and 2070 San Joaquin Valley 60-20-20 index

 ## Approach 1 Unit Values Estimation

 Approach 1 applies a dollar value per acre-foot ($\$ / A F$) values for water by region, water year type, and future condition. Table D-6 "Unit Values of Water for WSIP, by Year Type, Future Condition, and Region" of the WSIP Technical Reference (CWC, 2016) unit values were applied to deliveries by region and water year type for 2030 and 2070 conditions. Conveyance costs were included in the benefit calculation. For more information on estimated conveyance costs, see Section 2 Hydropower and Conveyance Cost Estimation.

 ## Approach 2 Economics Models

 ## M\&I Water Supply Benefit: CWEST

 CWEST was developed for the US Bureau of Reclamation's Coordinated Long Term Operation of the Central Valley Project and State Water Project Environmental Impact Statement (LTO EIS) Environmental Consequences analysis. Appendix 19A of the LTO EIS details the history, methodology, and assumptions (Reclamation, 2015). CWEST was selected to estimate M\&I water supply benefits in the WSIP application through the list of criteria in Technical Reference document Section 4.12 Water Supply Analysis (CWC,

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIPAPPLICATION | | |
 | NOTES: | | | PAGE: | 76 | OF | 84 | |

 2016). CWEST was updated for the Sites WSIP analysis to evaluate nine M\&I Sites Project Participants. The updates to CWEST include 2030 and 2070 analysis using 2015 UWMP data, inclusion of only Sites Project Participants, and all relevant assumptions outlined in the CWC Technical Reference document.

 ## Methodology

 CWEST quantifies M\&I water supply benefit by simulating the decisions made at the district or agency level. The model's objective is to select each Sites Project Participant's set of management actions that meet the annual water demand at the lowest cost. The difference in cost between the water supply conditions with and without Sites delivery provides the M\&I water supply benefit.

 ## Data Update for Prop 1 WSIP Application

 The major update to CWEST was removing non- Sites Project Participants from the model and including any Sites Project Participants that were not including in the existing version on the model. CWEST updates for the WSIP application allows for analysis at 2030 and 2070 and is in 2015 dollars. The main data source for the update was individual Sites Project Participants Urban Water Management Plans (UWMPs). Table X3 lists the major model updates relevant Technical Reference document requirements and data sources.

 | Variables | Notes | Sources |
 | :---: | :---: | :---: |
 | Retail Water Price | Retail water prices are in 2015 dollars and were provided by the Raftelis 2015 California-Nevada Water and Wastewater Rate Survey. For Sites Project Participants not included in this study, retail water rates were gathered from individual Site Project Participant documents. Retail water prices were escalated to 2030 based on a retail water price escalation within CWEST (USBR, 2015). | (American Canyon, 2017), (AVEK, 2015), (City of Banning, 2010), (Desert Water Agency, 2017), (Raftelis, 2015), (USBR, 2015) |
 | Conveyance Costs | Conveyance Costs calculations are described in Section 2 | |
 | Groundwater Pumping Costs | The existing CWEST Groundwater pumping cost estimates (USBR, 2015) are applicable to only Sites Project Participants with groundwater as a supply in their 2015 UWMP. The cost (\$/AF) is the sum of a representative cost by region plus a groundwater replenishment charge assumed to be the same as the conveyance cost. Inclusion of the groundwater replenishment charge is consistent with Section 5.4.1.1 of the Technical reference document. | (USBR, 2015), UWMPs for each Sites Project Participant (See reference list) |
 | Shortage Cost | The default M\&I demand elasticity in CWEST is -0.1 as published in the LTO EIS (USBR, 2015) and is determined applicable for the WSIP application. In CWEST, long-term conservation is a decision variable for M\&I Sites Project Participants. With adoption of additional long-term conservation by Sites Project Participants in our analysis, a shortage caused welfare loss needs to be measured under this heightened level of conservation. The CWEST update for the WSIP application relies on 2030 | (USBR, 2015), (MCubed and RMann, 2016) |
 | Fus: FINAL | PREPARER: R LEAF | PHASE: 1 VERSION: C |
 | SE: BENEFIT CALCULATIO | IONETIZATION, AND RESILIENCY A1 CHECKER: R TULL | DATE: 2017 AUGUST |
 | | QAQC: | REF/FILE \#: WSIP APPLICATION |
 | | | PAGE: 77 OF 84 |

 | Variables | Notes | Sources |
 | :---: | :---: | :---: |
 | | conservation and demand levels for the nine M\&। Sites Project Participants provided in their 2015 UWMPs. Calculating welfare loss at a level of conservation greater than the UWMP stated conservation and demand levels supports the use of a more inelastic response.
 The default M\&I demand elasticity in CWEST results in a welfare loss per AF similar in magnitude to the values provided in previous studies. Across the nine M\&I Sites Project Participants, 2030 welfare loss per AF is in a range of $\$ 300$ to $\$ 2,300$ with an average value of $\$ 1,100$ per AF. MCubed and RMann Economics, 2016 study calculated welfare loss per AF across California in a range of $\$ 500$ to $\$ 2,600$ with an average value of $\$ 1,500$ per AF. Therefore, the use of the default M\&I demand elasticity in CWEST is reasonable. | |
 | Transfer Quantities and Costs | Annual transfers were available for the Sites Project Participants with transfers as a 2030 supply in their UWMP. The stated quantity is the annual limit for below normal or above or dry/critical water year types if that information was available. The \$/AF cost of transfer water is based on the Technical Reference document provided unit values by region and water year type plus the conveyance charge. | (CWC, 2016), UWMPs for each Sites Project Participant (See reference list) |
 | 2030, 2070 Water
 Demands | 2030 water demands were gathered from 2015 UWMPs. 2070 followed Technical reference document provided methods in section 2.7.1 Future Population Levels and Section 2.7.3 Future M\&। Water Demand Levels using Department of Finance population projections and gallons per capita per day estimates from 2015 UWMPs | Technical Reference document (CWC, 2016) section 2.7.1 Future Population Levels method using Department of Finance population projects and UWMPs for each Sites Project Participant (See reference list) |
 | 2030, 2070 Water Supplies | 2030 water supply data for preliminary Sites M\&। participants was gathered from 2015 UWMPs. 2030 water supplies were held consistent through 2070, with no modifications based on future climate, environmental, or physical conditions due to data availability. | UWMPs for each Sites Project Participant (See reference list) |
 | Alternative Supply Costs | Alternative Supply costs and available quantities were extrapolated from LCPSIM v97 input values. The four categories of alternative supply costs are: Indoor Conservation, Outdoor Conservation, Recycling, and Desalination. Costs were converted to 2015 dollars and escalated to 2024 based on the Technical Reference document section 5.2.7 Real | (DWR, 2010) |
 | ATUS: FINAL | PREPARER: R LEAF | PHASE: 1 VERSION: C |
 | URPOSE: BENEFIT CALCULATION,Caveat:Otes: | MONETIZATION, AND RESILIENCY A1 CHECKER: R TULL | DATE: 2017 AUGUST |
 | | QA QC: | REF/FILE \#: WSIP APPLICATION |
 | | | PAGE: 78 OF 84 |

 Table X3. CWEST Key Assumptions, Updates, and Sources

 | Variables | Notes | Sources |
 | :--- | :--- | :--- |
 | | Energy Price Escalation. | |
 | Accounting for Potential
 Reuse | Section 4.12.7 Accounting for Potential Reuse
 discusses reuse of new supply. This analysis does not
 include additional benefit from the reuse of Sites
 deliveries | |

 ## Other Relevant Information

 M\&I groundwater pumping is modeled in CWEST for Sites Project Participants if their 2015 UWMP includes groundwater as a water supply in 2030. M\&I groundwater pumping is used to meet annual demand under variable surface water deliveries. When available, annual put and take limits, storage capacity, losses, and pumping costs are modeled in CWEST as managed storage facilities. Otherwise, the UWMP stated 2030 groundwater pumping quantity constrains the maximum annual pumping quantity. For more information on groundwater in CWEST see Reclamation, 2015. Potential SGMA pumping limits were not incorporated into 2030 or 2070 conditions due to data availability. M\&I groundwater basins are generally adjudicated or not identified as medium to high priority. Therefore, groundwater use stated in UWMPs is likely to be consistent with future Groundwater Sustainability Plans. Nevertheless, CWEST does not allow annual groundwater pumping to exceed UWMP stated 2030 quantities, annual take limits, or cumulative take greater than the UWMP stated groundwater storage capacity.

 The distinction between wholesale and retail electricity prices is relevant to private water supply and hydropower benefits estimation. The Technical Reference document did not make this distinction in section 5.2.7 Real Energy Prices for Future Project Costs. For the Hydropower benefits estimation, proprietary wholesale electricity prices were used. In the M\&I water supply benefits estimation, the Technical Reference document provided escalation rates to 2024 were used where applicable. This included the escalation of alternative supply costs and groundwater pumping costs. Retail water price escalation used a retail water price escalation to 2030. Following the Technical Reference document section 5.2.7, 2024 or 2030 were held constant thereafter for the 2070 analysis.

 ## Agricultural Water Supply Benefit: SWAP

 The CWC provided a SWAP model to estimate the benefit to ag Sites Project Participants. This CWC version of SWAP was applied to ensure consistency between the Sites agricultural benefit analysis and the CWC unit value analysis (CWC, 2016).

 ## Methodology

 See Statewide Agricultural Production (SWAP) Model Update and Application to Federal Feasibility Analysis (Reclamation, 2012) for a comprehensive report on the SWAP model.

 ## Data Update for Prop 1 WSIP Application

 The Sites SWAP analysis used the CWC provided SWAP model without any modifications to the model code or baseline data.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 79 | OF | 84 | |

 ## Section 2. Hydropower and Conveyance Cost Estimation

 ## Methodology

 Hydropower benefits estimation follows the requirements of section 4.13 Hydropower Analysis in the Technical Reference document (CWC, 2016). Pumping costs and generation revenue for all major SWP, CVP, and Sites facilities is calculated based on three hydropower models: SWP Power, LTgen, and NODOS Power, respectively. SWP Power and LTgen are publicly available models and are referenced in Section 4.13.3.1 Energy Generation of the CWC Technical Reference document (CWC, 2016).

 ## Data Update for Prop 1 WSIP Application

 Electricity prices provided by CA DWR in an email correspondence were used to updated all three of the hydropower models. The DWR provided data is proprietary and will not be published in this documentation. The 2030 NP-15 wholesale electricity prices were used in both 2030 and 2070 conditions. Forecasts are not available for 2070 and per the direction of the CWC Technical Reference document, 2030 prices were applied to the 2070 analysis. No changes were made to SWP Power and LTgen from the Sites EIR/EIS or feasibility study. NODOS power was updated to be consistent with the project proposal.

 ## Conveyance Cost Estimation

 Technical Reference document Section 6.5 . 1 requires all water "be assigned a water delivery cost per acre-foot be based on variable costs" (CWC, 2016). Conveyance costs for each Sites Project Participant were twofold - A north of delta operations power cost plus the conveyance charge to respective location and delivery quantity after conveyance losses.

 1. North of Delta Operations Hydropower Cost: A \$/AF north of delta operations hydropower cost was calculated by dividing the total long-term average annual net costs north of delta by the total long-term average annual AF through Holthouse. Annual net cost is the total hydropower generation revenue minus the total pumping costs over one year. The water balance accounting at Holthouse can be used to allocate the north of delta operations hydropower cost across the private and public accounts. The net north of delta operations hydropower cost includes Sites net pumping/generation costs and any other with-project effects measured in other north of delta facilities. The SWP/CVP facilities included in the calculation had net effects measured between the No Action and With-Project CALSIM runs. The effects on these facilities were generally reductions in pumping costs or increases in generation revenue. The net north of delta operations hydropower cost was calculated at $\$ 16 / \mathrm{AF}$.
 2. A unique $\$ / A F$ conveyance cost for each Sites Project Participant is added to the $\$ 16 / \mathrm{AF}$ cost from \#1. The unique $\$ / A F$ conveyance cost is the sum of representative unit costs of facilities (pumping and generation) used to get the delivered water to each Site Project Participant location. The unit cost for each facility was calculated from LTgen and SWP power model analyzed with the WSIP 2030 and 2070 with Project CALSIM II runs. This \$/AF was applied to the delivered water to estimate the total hydropower cost. The calculated conveyance costs are similar to the SWP conveyance charges provided in Bulletin 132-10 (DWR, 2013).

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 80 | OF | 84 | |

 ## Section 3. Additional Comments on Private Water Supply Benefit and Hydropower Costs Estimation

 | Comments | |
 | :--- | :--- |
 | 2030 and 2070 With and
 Without-project Future
 Conditions for M\&I, Ag, and
 Hydropower benefits
 estimation | 2030 and 2070 With and without-project future conditions are identical in these
 benefit estimation categories. With and without-project hydrology is the only
 difference in future conditions. Future hydrology used in these analyses were the
 CWC provided WSIP 2030 without Project CALSIM II modelling runs were
 compared to the Sites WSIP 2030 with Project modelling runs. |
 | Consistency with existing Sites
 Feasibility study and EIR/EIS
 for M\&I benefits estimation | The M\&I benefits estimation in the Feasibility Study and EIR/EIS use LCPSIM and
 OMWEM. Due to the difference in participant beneficiaries in the WSIP
 application, CWEST was determined to be a more suitable model. The evaluation
 methods of M\&I benefits in CWEST is generally consistent with LCPSIM and
 OMWEM |
 | Consistency with existing Sites
 Feasibility study and EIR/EIS
 for Ag benefits estimation | The Ag benefits estimation in the Feasibility Study and EIR/EIS use SWAP, albeit a
 previous version. Due to the availability of a newer version through the CWC for
 the WSIP application, the CWC model was selected to evaluate ag benefits in the
 WSIP application. In addition, use of the CWC SWAP model in the Sites WSIP
 application provides consistent analysis with the CWC unit values estimation in
 the Technical Reference document. |
 | Consistency with existing Sites
 Feasibility study and EIR/EIS
 for Hyrdopower benefits
 estimation | The Hydropower benefits estimation in the Feasibility Study and EIR/EIS use
 LTgen, SWP power, and NODOS power models, albeit with different future
 wholesale electricity prices. Due to the availability of a newer forecasted future
 wholesale electricity prices, these models were updated for the WSIP application. |

 ## References

 American Canyon, City of. (2016). 2015 Urban Water Management Plan for City of American Canyon. American Canyon, CA.

 American Canyon, City of. (2017). Rate Schedule Effective 2017. American Canyon, CA.
 Antelope Valley-East Kern (AVEK) Water Agency. (2015). Resolution NO. R-15-11 Wholesale Water Rates and Charges. Palmdale, CA.

 Antelope Valley-East Kern (AVEK) Water Agency. (2016). 2015 Urban Water Management Plan. Palmdale, CA.

 California Department of Water Resources (DWR). (2010). Least Cost Planning Simulation Model. Sacramento, CA. http://www.water.ca.gov/economics/downloads/Models/LCPSIM_Model_Ray.pdf

 California Department of Water Resources (DWR). (2013). Management of the California State Water Project Bulletin 132-10. Sacramento, CA.

 California Water Commission. (2016). Water Storage Investment Program Technical Reference. Sacramento, CA.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 81 | OF | 84 |

 Castaic Lake Water Agency (CLWA) et. al. (2016). 2015 Urban Water Management Plan for Santa Clarita Valley. Santa Clarita, CA.

 City of Banning. (2010). Ordinance 1428 Water Rate Schedule. Banning, Ca.
 Coachella Valley Water District. (2016). 2015 Urban Water Management Plan. Coachella, CA.
 Desert Water Agency. (2016). 2015 Urban Water Management Plan. Palm Springs, CA.
 Desert Water Agency. (2017). Water Rates \& Charges, Residential and Commercial, Effective January 1, 2017. Palm Springs, CA.

 MCubed and RMann Economics. (2016). Proposed Regulatory Framework for Extended Emergency Regulation for Urban Water Conservation Fiscal and Economic Impact Analysis.

 Raftelis. (2015). 2015 California-Nevada Water and Wastewater Rate Survey. Published by Raftelis Financial Consultants, Inc. and California-Nevada Section of the American Water Works Association

 San Bernardino Valley Municipal Water District. (2016). 2015 San Bernardino Valley Regional Urban Water Management Plan. San Bernardino, CA.

 San Gorgonio Pass Water Agency. (2017). 2015 Urban Water Management Plan for San Gorgonio Pass Water Agency. Beaumont, CA.

 Santa Clara Valley Water District. (2016). 2015 Urban Water Management Plan. San Jose, CA.
 U.S. Bureau of Reclamation (Reclamation). (2012). Statewide Agricultural Production (SWAP) Model Update and Application to Federal Feasibility Analysis. Sacramento, CA.
 U.S. Bureau of Reclamation (Reclamation). (2015). Draft Coordinated Long Term Operation of the CVP and SWP Environmental Impact Statement (LTO EIS) Environmental Consequence Analysis, Appendix 19A - California Water Economics Spreadsheet Tool (CWEST) Documentation. Sacramento, CA.

 Zone 7 Water Agency. (2016). 2015 Urban Water Management Plan. Livermore, CA.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 82 | OF | 84 | |

 Folsom Reservoir CE-QUAL-W2 Temperature Model

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | ERSI | C |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP | LIC | |
 | NOTES: | | | | PAGE: | 83 | OF | |

 ## Folsom Reservoir CE-QUAL-W2 Temperature Modeling

 This attachment discusses the CE-QUAL-W2 water temperature modeling tool (PCWA 2015), which was applied to evaluate temperature benefits on the American River. The model was developed for Placer County Water Agency's (PCWA) American River Water Rights Extension (ARWRE) Project (PCWA 2015).

 ## CE-QUAL-W2 Overview

 The CE-QUAL-W2 model was developed to test the ability of alternative hydrology and reservoir operations scenarios to meet regulatory water temperature requirements (or targets if the requirement cannot be met) in the lower American River at Watt Avenue. The water temperature targets are based on the Automated Temperature Selection Procedure (ATSP) schedules developed as part of the Water Forum Flow Management Standard (FMS). The primary water temperature management objective for the lower American River is to meet the best possible temperature schedule each year for Central Valley steelhead (summer rearing) and fall-run Chinook salmon spawning (fall months) given Folsom Reservoir inflows, available reservoir volume, and Folsom Reservoir outflows. The model simulates temperatures in Folsom Lake and temperatures on the American River downstream of Folsom to the confluence with the Sacramento River. The model has the capability of simulating the City of Folsom Temperature Control Device and the Folsom Dam Shutters For planning analyses, the CE-QUAL-W2 temperature model represents the best available planning model for the American River.

 Similar to the Sacramento River HEC5Q model, the input climate data to the CE-QUAL-W2 model was updated to incorporate the WSIP 2030 and 2070 climate scenarios. The process for updating climate in the CE-QUAL-W2 model was different than the climate updates that were performed for HEC5Q.

 The CE-QUAL-W2 model uses climate data based on the Folsom/Fair Oaks CIMIS station. As described in the HEC5Q climate updates section, the WSIP climate change data is based on grid cells and the closest grid cell to the Folsom/Fair Oaks CIMIS station was 38.65625 degrees latitude and - 121.15625 degrees longitude. Climate data for 1995, 2030, and 2070 were downloaded from the data file corresponding to that grid cell. The monthly average air temperature was then calculated by summing the min and max air temperature and dividing by two. The difference between the 1995 average air temperature and the 2030 and 2070 air temperatures was then calculated. The air temperature difference calculated was then added to the original hourly climate data of the model. The difference was added at the midpoint of each month and then difference to each subsequent hour was added based on linear interpolation between the midpoints of each month. For instance, if the difference for June was 2 degrees and for July was 3 degrees, the difference for $6 / 25$ was interpolated between $6 / 15$ and $7 / 15$. In addition to updating the air temperature, the relative humidity was also adjusted using a formula that links air temperature, dew point, and relative humidity based on the adjusted 2030 and 2070 air temperatures.

 ## References

 Placer County Water Agency (PCWA) American River Water Rights Extension Project (ARWRE). 2015. Folsom Reservoir CE-QUAL-W2 Temperature Model Report. November.

 | STATUS: | FINAL | PREPARER: | R LEAF | PHASE: | 1 | VERSION: | C |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1 | CHECKER: | R TULLL | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 84 | OF | 84 | |

 ## Physical Benefits Tab

 ## Attachment 1: Recreation Visitation Estimates

 Attach or provide links to any relevant recreation studies associated with the proposed project.
 WSIP Application Instructions, March 2017

 Response
 This attachment contains analyses of benefits associated with Stone Corral Recreation Area and Peninsula Hills Recreation Area.

 | STATUS: | FINAL | PREPARER: | A MCGREGOR | PHASE: | 1 | VERSION: | A |
 | :--- | :--- | :---: | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFIT | CHECKER: | N CARLSON | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | J HERRIN | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | RECREATION VISITATION ESTIMATES | | | PAGE: | 1 | OF | 4 |

 ## Table of Contents

 Attachment 1: Recreation Visitation Estimates 1
 Introduction 3
 References 4

 ## Tables

 Table 1. Estimated Annual Recreation Visitation at Sites by Primary Activity.. 4

 Acronyms and Abbreviations
 NODOS North-of-the-Delta Offstream Storage
 USBR U.S. Bureau of Reclamation

 | STATUS: | FINAL | PREPARER: | A MCGREGOR | PHASE: | 1 | VERSION: | A |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | PHYSICAL PUBLIC BENEFIT | CHECKER: | N CARLSON | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVC: | JHERRIN | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | RECREATION VISITATION ESTIMATES | | | PAGE: | 2 | OF | 4 |

 ## Introduction

 Recreation benefits are informed in part with visitor use projections for the recreational areas planned for the Sites Project (i.e., Stone Corral, Peninsula Hills). Annual visitation was estimated using a comparable demand and/or facilities-based estimation approach that accounts for Sites planned facilities, carrying capacity, the regional population of potential users, surface acreage of the reservoir and fluctuations in storage throughout the year, as well as the amenities and visitation levels of substitute reservoirs in the region. Additional information and recreation analysis is available in Appendix C of the North-of-the-Delta Offstream Storage (NODOS) Draft Feasibility Study (USBR 2017). These variables for consideration are consistent with those outlined in the WSIP Technical Reference (TR Section 5.4.5). Annual visitation was calculated as a measure of total visitor days, which represents one person visiting for any part or all of a calendar day. This metric is commonly used to inform recreational benefits, and should not be confused with a recreational visit, which could last for more than one calendar day (e.g., camping).

 Visitation projections for Sites, including proportion of visitor use by primary activity type were informed with previous planning estimates (CALFED 2000) and subsequent collaboration with the U.S. Bureau of Reclamation (USBR 2006 \& 2017). The visitation estimates draw upon recreational assessments of regional reservoirs using a comparable demand and/or facilities-based estimation approach; these techniques are founded on the assumption that use at a new reservoir would be similar to use at an existing reservoir that is nearby and hosts similar types and levels of amenities.

 Black Butte Reservoir is considered the most similar nearby reservoir to the planned Sites project to form a comparable attendance estimate. To estimate the number of visitors by type of primary activity at Sites, historical visitation estimates tallied from traffic counters and assumptions on the number of persons per vehicle were applied to data from a visitor characteristic survey at Black Butte. Initial estimates of approximately 400,000 annual recreation user days for Sites were conservatively scaled down to a maximum of 200,000 annual visitor days. This downward adjustment was made in response to ongoing conversations with the Bureau of Reclamation and other project partners as well as additional refinements to Sites planned recreational facilities. In addition, the 200,000 annual visitor days were further adjusted to account for operations that would reduce the reservoir's surface area available to visitors during the peak recreation months, resulting in an annual estimate of approximately 187,000 visitor days.

 The table below illustrates the estimated annual attendance at Sites by primary activity type. As discussed, the breakdowns by activity type follow typical patterns of recreational activity in the region and have been matched with planned recreational facilities to ensure that the projected recreational use could be supported at Sites. Appendix E of the NODOS Draft Feasibility Study (USBR 2017) provides a more detailed discussion of the recreation facilities currently planned and budgeted for development at Sites.

 | STATUS: | FINAL | PREPARER: | A MCGREGOR | PHASE: | 1 | VERSION: | A |
 | :--- | :--- | :---: | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFIT | CHECKER: | N CARLSON | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQQ: | J HERRIN | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | RECREATION VISITATION ESTIMATES | | | PAGE: | 3 | OF | 4 |

 Table 1. Estimated Annual Recreation Visitation at Sites by Primary Activity

 | Activities | Annual Visitor Days | Percent of Total |
 | :--- | ---: | ---: |
 | Shore fishing | 16,254 | 8.7% |
 | Boat fishing | 8,407 | 4.5% |
 | Picnicking | 17,188 | 9.2% |
 | Camping | 27,514 | 14.7% |
 | Sightseeing | 36,992 | 19.8% |
 | Swimming / beach use | 40,492 | 21.7% |
 | Walking | 5,418 | 2.9% |
 | Bicycling/Motorcycling | 2,429 | 1.3% |
 | Off-road vehicle | 187 | 0.1% |
 | Horseback riding | 747 | 0.4% |
 | Boating / water-skiing | 29,145 | 15.6% |
 | Hunting | 560 | 0.3% |
 | Other | 1,495 | 0.8% |
 | Total | $\mathbf{1 8 6 , 8 2 9}$ | $\mathbf{1 0 0 \%}$ |

 ## References

 CALFED (CALFED Bay-Delta Program). 2000. North of the Delta Offstream Storage Investigation Progress Report, Appendix J: Recreation Requirements and Opportunities: Sites Reservoir Alternative. Report prepared by Douglas Rischbieter and David Elkins, California Department of Water Resources. April.

 USBR (U.S. Bureau of Reclamation). 2006. Sites Reservoir Visitation Analysis and Excess Capacity/Demand Substitution Analysis. Prepared by Jon Platt, Technical Service Center, Denver, Colorado.

 USBR. 2017. Draft North-of-the-Delta Offstream Storage Investigation Feasibility Report. Available: https://www.sitesproject.org/information/FeasibilityReport.

 | STATUS: | FINAL | PREPARER: | A MCGREGOR | PHASE: | 1 | VERSION: | A |
 | :--- | :--- | :---: | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFIT | CHECKER: | N CARLSON | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAVQC: | J HERRIN | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | RECREATION VISITATION ESTIMATES | | | PAGE: | 4 | OF | 4 |

 ## Early Funding Tab

 ## Attachment A1: Scope of Work

 Attach a schedule, scope of work, and budget.
 Keep in mind that the applicant must provide a 50 percent cost share and reimbursable costs can only go back to November 4, 2014.

 Scope of work must include an explanation of why early funding is critical to the project, the viability of the project in the absence of this funding and how the project will proceed once early funding is expended.

 The scope of work cannot include work performed prior to submittal of the application.
 The tasks in the schedule, scope of work and budget should match.

 WSIP Application Instructions, March 2017

 | STATUS: | FINAL | PREPARER: | M OLIVER | PHASE: | 1 |
 | :--- | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | EARLY FUNDING A1 | CHECKER: | JHERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | QAVQC: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 1 | OF |

 ## Table of Contents

 Attachment 1A: Scope of Work 1
 Introduction 4
 Acquisition of Required Permits and Authorizations 4
 Anticipated Field Evaluations Requiring Substantial Level of Effort 9
 Anticipated Permit Application Preparation/Acquisition Schedule 9
 Completion of Final EIR/EIS 10

 ## Tables

 Table A1-1. Primary Anticipated Permits, Approvals, and Authorizations for the Sites Reservoir Project 5
 Table A1-2. Applicable Federal, State, and Local Permits and Approvals and Estimated Costs 11
 Table A1-3. Applicable Federal, State, and Local Permits and Approvals Acquisition Timeframes/Schedule (June 2018 Start Date Assumed) 18

 | STATUS: | FINAL | PREPARER: | M OLIVER | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | EARLY FUNDING A1 | CHECKER: | J HERRIN | DATE: | 2017 AU | | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP A | ATION | |
 | NOTES: | | | | PAGE: | 2 | OF | 22 |

 # Acronyms and Abbreviations

 | CEQA | California Environmental Quality Act |
 | :--- | :--- |
 | EIR | Environmental Impact Report |
 | EIS | Environmental Impact Statement |
 | NEPA | National Environmental Policy Act |

 | STATUS: | FINAL | PREPARER: | M OLIVER | PHASE: | 1 |
 | :--- | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | EARLY FUNDING A1 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | QAQC: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 3 | |

 ## Introduction

 The primary activities requiring early funding to support implementation of the Sites Reservoir Project (Project) are associated with federal, state, and local environmental compliance and approvals. The Authority and Reclamation will be releasing the joint public draft Environmental Impact Report/ Environmental Impact Statement (EIR/EIS) in August 2017. In addition to needing to complete the final EIR/EIS and related decision documents per the California Environmental Quality Act (CEQA) and National Environmental Policy Act (NEPA), several permits and authorizations will be required prior to Project construction. Many of these permit applications require a sufficient level of engineering design, field surveys (some multiple year), public review, and agency input and review to obtain which can in many cases require multiple years to complete. As such, multiple activities need to be initiated to maintain project schedules including continued engineering design to finalize all facility locations, permit application development and required surveys, and review of anticipated impacts and proposed/required impacts minimization and mitigation measures.

 Early and consistent coordination with federal, state, and local permitting entities throughout the permitting process will be critical to successful project implementation. Anticipated permits and authorizations are identified below, as well as anticipated level of effort to obtain each approval. Given the scale of the proposed project, the effort anticipated to obtain all permits will be substantial and is proposed to continue to be in part funded by Project participants, as well as the State given the projected benefits to the State that will be provided by the Project. Early funding from the State to support the approval acquisition effort is critical to ensure all approvals are obtained in a timely manner to meet the required project implementation schedule.

 ## Acquisition of Required Permits and Authorizations

 A variety of federal, state, and local agencies permits and approvals will be required to allow for Project implementation, including approvals under the federal and California Endangered Species Acts, issuance of permits under the Clean Water Act, and agency approvals under other federal, state, and local laws and regulations. Table A1-1 identifies the approvals/jurisdiction and authorizations that are anticipated for the Project.

 | STATUS: | FINAL | PREPARER: | M OLIVER | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | EARLY FUNDING A1 | CHECKER: | J HERRIN | DATE: | 2017 A | | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP A | ATION | |
 | NOTES: | | | | PAGE: | 4 | OF | 22 |

 Table A1-1. Primary Anticipated Permits, Approvals, and Authorizations for the Sites Reservoir Project

 | Jurisdiction | Responsibility |
 | :---: | :---: |
 | Federal Agency Permits, Approvals, and Authorizations | |
 | United States Department of the Interior, Bureau of Reclamation | - Complete Final EIS) and issue the Record of Decision (ROD) as the representative NEPA lead agency for the Department of the Interior.
 - Prepare and submit biological assessment to U.S. Fish and Wildlife Service (USFWS) and National Marine Fisheries Service (NMFS) for consideration of issuance of biological opinions
 - National Historic Preservation Act of 1966, Sections 106 and 110
 - American Indian Religious Freedom Act
 - Native American Graves Protection and Repatriation Act |
 | United States Department of the Interior, USFWS | - Issue biological opinion to Reclamation in accordance with ESA Section 7 consultation and incidental take authorization
 - Determine compliance with the following legislation:
 - Fish and Wildlife Coordination Act
 - Bald and Golden Eagle Protection Act
 - Migratory Bird Treaty Act
 - Wild and Scenic Rivers Act |
 | National Oceanic and Atmospheric Administration, NMFS | - Issue a biological opinion to Reclamation in accordance with Endangered Species Act (ESA) Section 7 consultation and incidental take authorization
 - Determine compliance with the following legislation:
 - Fish and Wildlife Coordination Act
 - Magnuson-Stevens Fishery Conservation and Management Act |
 | United States Army Corps of Engineers (USACE) | - Issue permits and approvals related to the following legislation and Executive Order:
 - Rivers and Harbors Act Section 9 (construction of dikes), Section 10 (alteration of navigable waters), and Section 408 (levee modification)
 - Clean Water Act Section 404 (discharge of dredge/fill) permitting and Section 401 water quality certification
 - Emergency Flood Control Fund Act of 1955
 - Executive Order 11988 (floodplain management)
 - Executive Order 11990 (protection of wetlands) |
 | United States Environmental Protection Agency (USEPA) | - Provide compliance with the following legislation (and through agreements with the State of California to implement requirements through CaIEPA associated with air quality):
 - Clean Water Act in coordination with USACE (including evaluation of Least Environmentally Damaging Practicable Alternative [LEDPA])
 - Spill Prevention Control and Countermeasures Plan (SPCCP) developed in accordance with 40 Code of Federal Regulations (CFR) 112
 - Clean Air Act and State Implementation Plan, including the National Ambient Air Quality Standards (NAAQS), as well as Section 309 evaluation of draft EIS
 - Safe Drinking Water Act |
 | Federal Energy Regulating Commission (FERC) | - Potentially provide a license for the Project hydropower component |
 | State Agency Permits, Approvals, and Authorizations | |
 | California Air Resources Board | - Administer the air quality policy to achieve the California Ambient Air Quality Standards (including the NAAQS for USEPA) and State Air Quality Designations |
 | STATUS: FINAL | PREPARER: M OLIVER PHASE: 1 VERSION: A |
 | PURPOSE: EARLY FUNDING A1 | CHECKER: J HERRIN DATE: 2017 AUGUST |
 | CAVEAT: | QAVC: REF/FILE \#: WSIP APPLICATION |
 | NOTES: | PAGE: 5 OF 22 |

 | Jurisdiction | Responsibility |
 | :---: | :---: |
 | California Department of Boating and Waterways | - California Harbors and Navigation Code compliance |
 | California Department of Fish and Wildlife | - Lake and Streambed Alteration Agreement permitting (pursuant to Section 1602 of the California Fish and Game Code)
 - Compliance with Fish and Game Code related to fully protected species, birds of prey, native plant protection, invasive species, sufficient fisheries flows below dams, and fish screening
 - California Endangered Species Act consultation and incidental take authorization (Section 2081)
 - California Native Plant Protection Act
 - Salmon, Steelhead Trout, and Anadromous Fisheries Program Act
 - Marine Invasive Species Act |
 | California Department of Toxic Substances Control | - Compliance with generation, transportation, treatment, storage, and disposal of hazardous waste regulations |
 | California Department of Transportation | - Issuance of encroachment/transportation in coordination with the Federal Highway Administration for federal highways
 - Approval of transportation management plans |
 | California Office of Historic Preservation | - Coordinate with implementation of the California Register of Historical Resources under CEQA
 - Coordinate with federal agencies implementation of National Historic Preservation Act Section 106 consultation |
 | California State Lands Commission (CSLC) | - Issue leases for work in areas under CSLC jurisdiction (e.g., along Sacramento River) |
 | California State Water Resources Control Board | - Issue water rights
 - Administer Clean Water Act for USEPA in coordination with Central Valley Regional Water Quality Board (CVRWQCB) |
 | California Department of Water Resources, Division of Safety of Dams | - Approval of plans and specifications for the construction or enlargement of a dam or reservoir |
 | Central Valley Regional Water Quality Control Board | - Clean Water Act Section 401 certification Clean Water Act Section 402 National Pollutant Discharge Elimination System (NPDES) permitting (including requirements for construction Stormwater Pollution Prevention Plan [SWPPP]) |
 | Central Valley Flood Protection Board | - Responsible for controlling flooding along the Sacramento and San Joaquin rivers and their tributaries in cooperation with USACE
 - Maintain integrity of existing flood control system/designated floodways through permits for encroachments |
 | Native American Heritage Commission | - Identify sacred sites and Most Likely Descendants for Native American burials and provision of Native American contact information |
 | Regional and Local Agency Permits, Approvals, and Authorizations | |
 | Colusa, Glenn, and Tehama Counties | |
 | Planning Departments | - Issuance of Conditional Use Permit
 - Rezoning of parcels in both counties
 - Conformance with State Surface Mining and Reclamation Act (SMARA) permitting or exemption if borrow is required from borrow site(s) not previously permitted
 - Conformance with CEQA environmental review requirements |
 | STATUS: FINAL | PREPARER: M OLIVER PHASE: 1 VERSION: A |
 | PURPOSE: EARLY FUNDING A1 | CHECKER: JHERRIN DATE: 2017 AUGUST |
 | CAVEAT: | QAQC: REF/FILE \#: WSIP APPLICATION |
 | NOTES: | PAGE: 6 OF 22 |

 | Jurisdiction | Responsibility |
 | :---: | :---: |
 | Engineering and Surveying Services Departments | - Plan approval for county road or bridge crossings at creeks or grading for structures drainage plan; and grading permit
 - Erosion control plan development and permitting
 - Building and electrical permitting
 - Development of blasting plan for foundation/roadway installation |
 | Environmental Health Services Departments | - Septic and water system permitting, including well installations |
 | Roads Departments | - Encroachment permitting
 - Construction traffic control plan development for county roads
 - Assessment of fees for increases in peak-hour trips, if required
 - Heavy haul permitting
 - Roadway damage and repair bonds |
 | Fire Departments | - Permitting for the use and storage of hazardous and flammable materials/wastes
 - Hazardous materials business plan development
 - Fire protection plan development |
 | Colusa County APCD and Glenn County APCD | - Administer local air quality plans and coordinate with the California Air Resources Board |

 Notes:
 APCD $=$ Air Pollution Control District
 CaIEPA = California Environmental Protection Agency
 CFR = Code of Federal Regulations
 CSLC = California State Lands Commission
 CVRWQCB = Central Valley Regional Water Quality Control Board
 FERC = Federal Energy Regulating Commission
 EIS = Environmental Impact Statement
 ESA = Endangered Species Act
 LEDPA = Least Environmentally Damaging Practicable Alternative
 NAAQS = National Ambient Air Quality Standard
 NMFS = National Marine Fisheries Service
 NPDES = National Pollutant Discharge Elimination System
 ROD = Record of Decision
 SMARA = Surface Mining and Reclamation Act
 SPCCP = spill prevention control and countermeasure plan
 SWPPP = stormwater pollution prevention plan
 USACE = United States Army Corps of Engineers
 USEPA = U.S. Environmental Protection Agency
 USFWS $=$ U.S. Fish and Wildlife Service

 The final EIR/EIS (FEIR/EIS), when finalized, will be used by the Authority and Reclamation when considering approval of the Project. All cooperating agencies and other federal, State, and local agencies with permitting or approval authority over any aspect of the proposed Project are expected to use the information contained in the FEIR/EIS to meet most, if not all, of their information needs to make decisions and/or issue permits.

 Acquisition of the permits and approvals identified above in Table A1-1 above and by permits/anticipated level of effort/cost in Table A1-2 will require a variety of activities (depending on permit/approval) including:

 - Initial project meetings and application review and input
 - Interagency and lead permitting agency coordination and negotiation
 - Field reviews (including resource delineations), evaluations, data collection and evaluation

 | STATUS: | FINAL | PREPARER: | M OLIVER | PHASE: | 1 | VERSION: |
 | :--- | :--- | :---: | ---: | :---: | :---: | :---: |
 | PURPOSE: | EARLY FUNDING A1 | CHECKER: J HERRIN | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 7 | | |

 - Biological resource surveys
 - Application preparation and refinement
 - GIS-based mapping
 - Project facility pre-design and design
 - Mitigation refinement and identification
 - Hydraulic evaluation

 Table A1-2 identifies the primary federal, state, and local permits and approvals and key activities anticipated associated with each. Anticipated level of effort/cost varies depending on the application requirements, necessary surveys and/or design evaluations/studies, and coordination. Level of effort and time required can vary substantially depending on agency jurisdiction, concerns, and policy. Costs for permit acquisition could in turn vary based on these factors and related agency information and survey/engineering information requests. As shown on Table A1-2, the anticipated required actions, documentation, and surveys (as appropriate) for each permit/approval are identified as separate tasks. Tasks include:

 ## Permit Application and Fee

 This task will include all activities required to develop the actual permit applications including specific information required by a given agency according to their jurisdiction. This task will also include the required filing and processing fees.

 ## Project Description, Design Drawings, Maps and Figures

 Activities under this task will include development of the overall project description specific to a given permit application and agency jurisdiction, as well as specifically required design drawings, maps, and figures. It is the Authority's intent to develop a generalized detailed project description (which will be in part taken from the EIR/EIS) as a "template" that will be used for all applications and amended/revised as necessary to eliminate redundant effort and make the most efficient use of Project funds. Specific information and/or drawings will be included as required by a given agency.

 ## Surveys and Resources Reports

 Required field reviews, surveys per specific agency protocols (e.g., wetland delineations per USACE requirements), and associated resource reports will be prepared as part of this task. Such surveys will be conducted in close coordination with the appropriate agency(s) and will be structured to address as many separate agency protocols and/or specific concerns as possible to minimize the need for additional field review and surveys. Similarly, resource reports indicating likely/observed species presence will be prepared, and will include all species and habitat observed, and acreage of impact anticipated to be impacted (temporary and permanent). Proposed minimization and mitigation measures including construction timing (both seasonal and time of day) as appropriate based on specific agency requirements and mitigation ratios will be identified.

 ## Pre-application Meeting Coordination, Preparation, and Participation; Follow-up Requests and On-going Communication

 This task will include all required coordination effort from the initial pre-application meeting to all meetings (including phone/on-line sessions) required during the review of the specific permit applications to support obtaining final approvals. This task will also include anticipated additional

 | STATUS: | FINAL | PREPARER: | M OLIVER | PHASE: | 1 |
 | :--- | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | EARLY FUNDING A1 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAVQ: | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 8 | OF |

 information development and clarification of project activities, operations, and potential impacts within the context of a given agency's jurisdiction.

 ## Anticipated Field Evaluations Requiring Substantial Level of Effort

 Among the primary activities required to gain a required approval is the necessary field excavation and evaluation to support the implementation of the anticipated activities likely to be specified by the Programmatic Agreement required per Section 106 of the National Historic Preservation Act. Table A1-2 identifies the level of effort/cost anticipated to conduct anticipated excavations/evaluations that will likely be required prior to initiation of construction within the entire project area. In addition, completing the necessary activities to support the federal and state ESA consultation process will require extensive coordination, review, studies, and mitigation plan development as indicated in Table A1-2. The potential for discovery of significant resources or sites during construction is addressed separately as part of the mitigation costs assumed as part of overall project implementation.

 ## Anticipated Permit Application Preparation/Acquisition Schedule

 Preparation of permit applications will occur concurrently with Project design. Those applications requiring sufficient project details, such as the California Department of Water Resources, Division of Safety of Dams approval of plans and specifications for the construction or enlargement of a dam or reservoir and the Central Valley Flood Protection Board encroachment permit for the proposed Delevan diversion/discharge facility. Permit application development and negotiation/acquisition is anticipated to range from a few months to over two years depending on the need for design detail as well as required information development (including surveys for some approvals) for a given permit/approval. Permit application development is anticipated to range from one month to up to one year for more complex applications. Those processes which are anticipated to potentially require multiple years of surveys (e.g., Section 106 and Section 7/Bald Eagle Preservation Act approvals) would involve longer timeframes. Permits with longer lead times due to required design detail or anticipated negotiation complexity are anticipated to take up to 2 years+ and include:

 - SWRCB Water Rights
 - USACE Section 404/10 Permit (and involvement in LEDPA evaluation and Section 408 approval)
 - DWR Division of Safety of Dams Approval
 - USFWS/NMFS/Reclamation Section 7 Endangered Species Act (ESA) Consultation (including Bald Eagle Preservation Act approval)
 - CDFW California Endangered Species Act (CESA) Consultation
 - Federal Energy Regulatory Commission License
 - Advisory Council on Historic Preservation/State Office of Historic Preservation/Reclamation Section 106 Compliance

 Permits/approvals with shorter lead times are anticipated to be those required by local counties, as well as approvals required from Caltrans and the Air Resources Board (including county approvals). Table A13 shows the anticipated key milestones associated with the required permitting effort.

 | STATUS: | FINAL | PREPARER: | M OLIVER | PHASE: | 1 | VERSI ON: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | EARLY FUNDING A1 | CHECKER: | J HERRIN | DATE: | 2017 A | | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP A | ATION | |
 | NOTES: | | | | PAGE: | 9 | OF | 22 |

 ## Completion of Final EIR/EIS

 Completion of the EIR/EIS will require the review of and response to federal, state, local agency and public comments on the document, the development of final draft, and the development of the state Notice of Determination and federal Record of Decision. It is anticipated given the scale of the proposed project, a wide range of comments from a variety of stakeholders will likely be received, some of which will likely require additional evaluation (within the bounds of the analyses included within the public draft EIR/EIS including potentially further evaluation of the proposed WSIP project operational approach).

 Key tasks will include:

 - Continued project team meetings and coordination with project participants
 - Comment review and categorization
 - Development of thematic and master responses
 - Evaluation and refinement of analysis as required by comments (including operations associated with the proposed project)
 - Figure and graphics revisions
 - Development of administrative, pre-release, and final EIR/EIS
 - Development of Notice of Determination and Findings and assistance in preparation of Record of Decision

 All written and oral comments received during the public draft EIR/EIS review period will be identified, compiled, and responded to as appropriate. Comments will be categorized by similar issue area and comments requiring individual responses identified, including where thematic responses are necessary to respond to over-arching comments (if determined necessary). Responses to each comment category will be prepared with public and agency comments and responses assembled into a package clearly defining each comment and the corresponding response. All commenters and comments will be indexed according to the categorization process and tracked accordingly. An administrative final EIR/EIS will be developed that will include findings and conclusions, revisions, and clarification to the public draft EIR/EIS, the public and agency's comments and corresponding responses, and other information that may be required to adequately present technical information and data. A pre-release final EIR/EIS will be prepared in response to Authority team and participant review which will be subsequently revised as necessary to allow for issuance of the final EIR/EIS. It is assumed that the final EIR/EIS will be prepared in an errata format to the Public Draft EIR/EIS. The document will be used to support (and will be appropriately referenced) in the development of the CEQA Notice of Determination, and Findings, as well as the NEPA Record of Decision. The anticipated level of effort is estimated to be approximately $\$ 3$ million. Actual costs depend on comments, and will be less if comments are less extensive and complex than expected (or greater if a larger number of complex comments are received than expected).

 | STATUS: | FINAL | PREPARER: | M OLIVER |
 | :--- | :--- | ---: | :--- |

 Table A1-2. Applicable Federal, State, and Local Permits and Approvals and Estimated Costs

 | Agency | Type of Permit or Approval | Regulated Activity | Authority | Required Actions, Documentation, and Surveys | Total Level of Effort |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Federal Agency Permits and Approvals | | | | | |
 | U.S. Army Corps of Engineers | Department of the
 Army Permit
 (Section 404 and 10) | Discharge of dredged or fill material into waters of the U.S. (including wetlands) - Section 404; Construction of any structure in or over navigable waters of the U.S., the excavation/ dredging or deposition of material in these waters, or any obstruction or alteration in navigable water Section 10 | Section 404 Clean Water Act (33 U.S.C. 1344); Section 10 of the Rivers and Harbor Act (33 U.S.C. 403) | Section 404/10 Pre-Construction Notification application package | \$3,000,000 |
 | | | | | Project description; engineering design drawings; maps and figures | |
 | | | | | Aquatic resources (wetlands and waters of the U.S.) delineation, CRAM evaluation, and aquatic resources delineation report | |
 | | | | | Section 401 Water Quality Certification application package | |
 | | | | | Pre-application meeting coordination, preparation, and participation; follow-up and ongoing communication | |
 | U.S. Army Corps of Engineers | Department of the Army Permit
 (Section 408) | Any proposed project that may affect any existing USACE (and/or State Plan of Flood Control levee in the Central Valley and Delta) | Section 408 of the Rivers and Harbors Act (33 U.S.C. 408) | Section 408 Permit application package | \$2,500,000 |
 | | | | | Project description; design drawings; maps and figures | |
 | | | | | Hydrologic and Hydraulics System Performance Analysis | |
 | | | | | Geotechnical Analysis | |
 | | | | | Pre-application meeting coordination, preparation, and participation; follow-up and ongoing communication | |
 | | | | | Sediment Transport Modeling \& Bathymetric Surveys | |
 | U.S. Army Corps of Engineers/U.S.
 Environmental
 Protection Agency | LEDPA review | Review of LEDPA for issuance of an Individual Permit (Section 404) if required. Project could be relieved of LEDPA analysis if water-dependent determination is upheld. | Section 404(b)(1) | Section 404(b)(1) application package | \$1,100,000 |
 | | | | | Project description; design drawings; maps and figures | |
 | | | | | Alternatives Analysis | |
 | | | | | Pre-application meeting coordination, preparation, and participation; follow-up and ongoing communication | |
 | Advisory Council on Historic Preservation/ State Office of Historic Preservation | Section 106 Review and Compliance | Federal undertaking and as part of consideration of a Section 404 permit by USACE | NHPA (36 CFR 800) | Consultation meeting coordination, preparation, and participation; follow-up and ongoing communication (includes review of USBR-prepared programmatic agreement and research design) | \$40,000,000 |
 | | | Complete cultural resources inventory for archaeological and built environment resources | in support of Section 106 compliance (and state regs) | record search; complete field survey; DPRs; technical reports | |
 | | | Tribal member involvement (compensation) | | Tribal review and input | |

 | STATUS: | FINAL | PREPARER: | M OLIVER | PHASE: | 1 |
 | :--- | :--- | ---: | ---: | :---: | :---: |
 | PURPOSE: | EARLY FUNDING A1 | CHECKER: | JHERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAVQC: | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 11 | OF |

 | Agency | Type of Permit or Approval | Regulated Activity | Authority | Required Actions, Documentation, and Surveys | Total Level of Effort |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | State Agency Permits and Approvals | | | | | |
 | California
 Department of Transportation | Encroachment Permits | Use of California rights-of-way for installation of pipelines along State freeways and roads | $\begin{array}{\|l} 21 \text { CCR 14.11.1- } \\ \text { 14.11.6 } \end{array}$ | CalTrans Encroachment Permit application package and fee | \$400,000 |
 | | | | | Project description; design drawings; maps and figures | |
 | | | | | Biological resources reconnaissance survey and biological assessment | |
 | | | | | Aquatic resources (wetlands and waters of the U.S.) delineation and aquatic resources delineation report | |
 | | | | | Cultural resources literature search, pedestrian survey, and archaeological reconnaissance report | |
 | | | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | |
 | California Department of Transportation | Transportation Permit | Transport of heavy or oversized loads on State roads during construction | California Vehicle Code Section 35780; California Streets and Highway Code 117, 660-711 | CalTrans Annual Transportation Permit application package (9 required throughout duration of construction) and fee | \$250,000 |
 | | | | | Project description; design drawings; maps and figures | |
 | | | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | |
 | California State Lands Commission | Land Use Lease | Placement of fill or structures in navigable waterways or Section 16 or 36 lands (Water intake structures are typically exempt from this process but outfall may require approval) | California Public Resources Code Section 6000 et. seq. | State Lands Commission Lease application package (including survey information) and fee | \$300,000 |
 | | | | | Project description; design drawings; maps and figures | |
 | | | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | |
 | | | | | Following acquisition of lease: as-built drawings; surveys; internal and external inspection program, including structural evaluation and integrity assessment. | |
 | Central Valley Flood Protection Board | Encroachment Permit | Encroachment onto/through state flood control facilities. | 23 CCR encroachment permit | CVFPB Encroachment Permit 3615 and 3615a application package (including required mapping and deeds) and fee | \$900,000 |
 | | | | | Project description; design drawings; maps and figures | |
 | | | | | Hydrologic and Hydraulics System Performance Analysis | |
 | | | | | Section 408 Permit application package | |
 | | | | | Local Maintaining Agency endorsement and concurrence with USACE | |
 | | | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | |

 | STATUS: | FINAL | PREPARER: | M OLIVER | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | EARLY FUNDING A1 | CHECKER: | J HERRIN | DATE: | 2017 AU | | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP AP | ATION | |
 | NOTES: | | | | PAGE: | 13 | OF | 22 |

 | Agency | Type of Permit or Approval | Regulated Activity | Authority | Required Actions, Documentation, and Surveys | Total Level of Effort |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | State Water
 Resources
 Control Board | Water Rights Permit | Diversion of water from existing streamflow | California Water
 Code § 5101 | Water Rights Permit application package (including fee) | \$6,000,000 |
 | | | | | Water Availability Analysis | |
 | | | | | Project description; design drawings; maps and figures; operations modeling; cooperative operations coordination | |
 | | | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | |
 | | | | | Water Rights Hearings | |
 | State Water Resources Control Board and Regional Water Quality Control Boards | General
 Construction
 Stormwater
 National Pollution
 Discharge
 Elimination System
 Permit | All stormwater discharges when clearing, grading, and excavation result in a land disturbance of 5 or more acres | CWA | Construction General Permit application package and fee | \$800,000 |
 | | | | | Project description; design drawings; maps and figures | |
 | | | | | Stormwater Pollution Prevention Plan | |
 | | | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | |
 | State Water Resources Control Board and Regional Water Quality Control Boards | Waste Discharge Requirements | Discharge of reclaimed water on land and to groundwater | Porter-Cologne
 Water Quality Act | Waste Discharge application package and fee | \$250,000 |
 | | | | | Project description; design drawings; maps and figures | |
 | | | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | |
 | State Water Resources Control Board and Regional Water Quality Control Boards | Section 401 Water Quality Certification | Discharge of fill materials to waters of the U.S. | CWA | Section 401 Water Quality Certification application package and fee | \$1,000,000 |
 | | | | | Project description; design drawings; maps and figures | |
 | | | | | Biological resources reconnaissance survey and biological assessment | |
 | | | | | Aquatic resources (wetlands and waters of the U.S.) delineation and aquatic resources delineation report | |
 | | | | | Section 404 Pre-Construction Notification application package | |
 | | | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | |
 | California Department of Water Resources, Division of Safety | Approval of Plans and Specifications for the
 Construction or Enlargement of a | Dam or reservoir construction or enlargement | California Water Code Division 3, Dams and Reservoirs Parts 1 and 2 | Approval of Plans and Specifications for the Construction or Enlargement of a Dam or Reservoir application package and fee ($\$ 5$ million fee) - total of 14 structures subject to DSOD requirements | \$6,600,000 |
 | | | | | Project description; design drawings; maps and figures | |

 | STATUS: | FINAL | PREPARER: | M OLIVER | PHASE: | 1 |
 | :--- | :--- | ---: | ---: | ---: | :---: |
 | PURPOSE: | EARLY FUNDING A1 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QA/QC: | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 14 | OF |

 | Agency | Type of Permit or Approval | Regulated Activity | Authority | Required Actions, Documentation, and Surveys | Total Level of Effort |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | of Dams | Dam or Reservoir | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | |
 | California Occupational Safety and Health Administration | Permit for Buildings/ Structures, Scaffolding/ Falsework, Demolition, Trenches/ Excavations | Construction of trenches or excavations 5 feet or deeper and into which a person is required to descend. Construction or demolition of any building, structure, scaffolding, or falsework more than 3 stories high. The underground use of diesel engines in working mines and tunnels. | California Labor Code Section 6500 | Buildings/Structures, Scaffolding/Falsework, Demolition, Trenches/Excavations Permit application package and fee | \$250,000 |
 | | | | | Project description; design drawings; maps and figures | |
 | | | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | |
 | California Department of Fish and Wildlife | Streambed Alteration Agreement | Crossing of streams, rivers, or lakes (also for reservoirs, which interrupt streams) | Sections 1601-1603 of the California Fish and Game Code | Lake and Streambed Alteration Agreement Notification Package and fee | \$800,000 |
 | | | | | Project description; design drawings; maps and figures | |
 | | | | | Biological resources reconnaissance survey and biological assessment | |
 | | | | | Aquatic resources (wetlands and waters of the U.S.) delineation and aquatic resources delineation report | |
 | | | | | Hydrologic and Hydraulics System Performance Analysis | |
 | | | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | |
 | California Department of Fish and Wildlife | Section 2081
 Incidental Take Permit | Potential adverse effects on State-listed endangered or threatened species or species proposed for State listing. Incidental take of State-protected species by a non-state entity. | Section 2081
 California Fish and Game Code | Sections 2081 (b) and (c) Incidental Take Permit application package and fee | \$2,700,000 |
 | | | | | Project description; design drawings; maps and figures (Separate GIS maps assumed | |
 | | | | | Biological resources reconnaissance survey (assume CDFW protocol) | |
 | | | | | Mitigation Monitoring and Reporting Plan | |
 | | | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | |
 | NAHC/Local Tribes | AB 52 Consultations | Effects on tribal cultural resources | PRC 21080.3.1 | Consultation meetings; coordination; development of mitigation measures | \$500,000 |

 | STATUS: | FINAL | PREPARER: | M OLIVER | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :---: | :---: |
 | PURPOSE: | EARLY FUNDING A1 | CHECKER: | JHERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAVQC: | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 15 | OF |

 | Agency | Type of Permit or Approval | Regulated Activity | Authority | Required Actions, Documentation, and Surveys | Total Level of Effort |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | State Office of Historic Preservation | See Advisory
 Council on Historic Preservation under USACE | Potential adverse effects on State unique archaeological sites and historical resources | $\begin{aligned} & \text { PRC } 21083.2 \text { \& PRC } \\ & 21084.1 \end{aligned}$ | Consultation meeting coordination, preparation, and participation; follow-up and ongoing communication | \$300,000 |
 | Local Agency Permits and Approvals | | | | | |
 | Colusa and Glenn
 County Air
 Pollution Control Districts | Authority to Construct, Permit to Operate, and Notification of Operation | Construction or operation of any non-exempt source of air contaminants; typically limited to stationary sources. | New Source Review regulations; Clean Air Act; New Source Review regulations; Clean Air Act; Glenn County Air Pollution Control District Article III, Sections 50 to 57; Colusa County Air Pollution Control District Regulation III, Rules 3.1 to 3.18. | Authority to Construct, Permit to Operate, and Notification of Operation application packages and fees (for each county)
 Project description; design drawings; maps and figures
 Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication, including annual inspection approach follow-up requests and communication | \$200,000 |
 | Colusa and Glenn County Public Works Departments | Encroachment Permit | Use of local jurisdictions right-ofway to install pipeline across roadways | County ordinances | Encroachment Permit application packages and fees (for each county)
 Project description; design drawings; maps and figures
 Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | \$125,000 |
 | Colusa and Glenn County Public Works Departments | Transportation Permit | Transport of heavy or oversized loads on county roads | County ordinances | Transportation Permit application packages and fees (for each county)
 Project description; design drawings; maps and figures
 Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | \$150,000 |
 | Colusa and Glenn County Public Works Departments | Building Permit, Street Improvement
 Permit, and Grading Permit | Construction activities within the county | Uniform Building Codes, as adopted | Building Permit, Street Improvement Permit, and Grading Permit application packages and fees (for each county)
 Project description; design drawings; maps and figures
 Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | \$200,000 |
 | Colusa County
 Planning
 Department | General Plan Amendments, and/or Zoning Amendments | Changes to zoning or General Plan designations | County Zoning Code and General Plan | Major Use Permits, Tentative Parcel Maps, Tentative
 Subdivision Maps, General Plan Amendments, and/or Zoning
 Amendments application package and fee
 Project description; design drawings; maps and figures | \$100,000 |
 | STATUS: FINAL PURPOSE: EARLY FU CAVEAT: NOTES: | NDING A1 | PREPARER:
 CHECKER:
 QA/QC: | M OLIVER J HERRIN | ASE: 1 VERSION: A
 ATE: 2017 AUGUST
 \#: WSIP APPLICATION
 AGE: 16 OF 22 | |

 | Agency | Type of Permit or Approval | Regulated Activity | Authority | Required Actions, Documentation, and Surveys | Total Level of Effort |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | |
 | Estimated Cost for Permits and Approvals (includes associated required engineering drawings/information) | | | | | \$85,175,000 |
 | Project Management/Oversight/Review (assume 15\%) | | | | | \$12,776,000 |
 | SUBTOTAL | | | | | \$97,951,000 |
 | Sites Project
 Authority/U.S.
 Bureau of
 Reclamation | Completion of Final EIR/EIS | Potential impacts to the environment associated with a state, local, or federal action/project | PRC Section 21000 et seq./Public Law 91190, 42 U.S.C. 4321-
 4347 as amended | Review and respond to comments | \$3,000,000 |
 | | | | | Conduct quantitative analysis (e.g., modeling) | |
 | | | | | Prepare final EIS/EIR, meeting coordination, preparation, and participation; follow-up requests and ongoing communication | |
 | Sunk Costs (Draft EIR/S - excludes all WSIP application support) | | | | | \$2,400,000 |
 | TOTAL | | | | | \$103,351,000 |

 | STATUS: | FINAL | PREPARER: | M OLIVER | PHASE: | 1 | VERSION: | A |
 | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
 | PURPOSE: | EARLY FUNDING A1 | CHECKER: JHERRIN | DATE: | 2017 AUGUST | | | |
 | CAVEAT: | | QAVC: | REF/FILE \#: | WSIP APPLICATION | | | |
 | NOTES: | | | PAGE: | 17 | OF | 22 | |

 Table A1-3. Applicable Federal, State, and Local Permits and Approvals Acquisition Timeframes/Schedule (June 2018 Start Date Assumed)

 | Agency | Type of Permit or Approval | Required Actions, Documentation, and Surveys | Duration (Months) | Total Task Duration (Months/ Anticipated Completion Date) |
 | :---: | :---: | :---: | :---: | :---: |
 | Federal Agency Permits and Approvals | | | | |
 | U.S. Army Corps of Engineers | Department of the Army Permit (Section 404 and 10) | Section 404/10 Pre-Construction Notification application package | 3 | 24 (June 2020) |
 | | | Project description; engineering design drawings; maps and figures | 6 | |
 | | | Aquatic resources (wetlands and waters of the U.S.) delineation, CRAM evaluation, and aquatic resources delineation report | 9 | |
 | | | Section 401 Water Quality Certification application package | 0 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up and ongoing communication | 24 | |
 | U.S. Army Corps of Engineers | Department of the Army Permit (Section 408) | Section 408 Permit application package | 9 | 24 (June 2020) |
 | | | Project description; design drawings; maps and figures | 8 | |
 | | | Hydrologic and Hydraulics System Performance Analysis | 9 | |
 | | | Geotechnical Analysis | 9 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up and ongoing communication | 24 | |
 | | | Sediment Transport Modeling \& Bathymetric Surveys | 9 | |
 | U.S. Army Corps of Engineers/U.S.
 Environmental Protection Agency | LEDPA review | Section 404(b)(1) application package | 6 | 18 (January 2020) |
 | | | Project description; design drawings; maps and figures | 6 | |
 | | | Alternatives Analysis | 6 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up and ongoing communication | 18 | |
 | Advisory Council on Historic Preservation/ State Office of Historic Preservation | Section 106 Review and Compliance | Consultation meeting coordination, preparation, and participation; follow-up and ongoing communication (includes review of USBR-prepared Programmatic Agreement [PA] and research design) | 36 | 36 (June 2021 receive final PA; necessary excavations continue based on approved research design in PA) |
 | | | Record search; complete initial field survey; DPRs; technical reports | 24 | |
 | | | Tribal review and input | 36 | |
 | | | Evaluation excavations and ethnographic study for entire project area and proposed features | 36 | |
 | Reclamation/U.S. Fish and Wildlife Service/National Marine Fisheries Service | Section 7 Consultation | Section 404 Permit application package | 0 | 24 (June 2020) |
 | | | Consultation meeting coordination, preparation, and participation; follow-up requests and ongoing communication; necessary surveys (in addition to those required by USACE 404/10 and CDFW 2081 approval processes) | 24 | |
 | | | BA development assistance | 12 | |
 | U.S. Fish and Wildlife Service | Bald Eagle Protection
 Act (typically addressed through Section 7 consultation) | Consultation meeting coordination, preparation, and participation; follow-up requests and ongoing communication; necessary surveys | 24 | 24 (June 2020) |
 | | | Golden eagle satellite telemetry studies | 24 | |
 | U.S. Coast Guard | Navigability | Consultation meeting coordination, preparation, and participation; follow-up requests | 9 | 9 (March 2019) |
 | STATUS: FINAL | | PREPARER: M OLIVER PHASE: 1 VERSION: A | | |
 | PURPOSE: EARLY FUNDING A1 | | CHECKER: J HERRIN DATE: 2017 AUGUST | | |
 | CAVEAT: | | QAVC: REF/FILE \#: WSIP APPLICATION | | |
 | NOTES: | | PAGE: 18 OF 22 | | |

 | Agency | Type of Permit or Approval | Required Actions, Documentation, and Surveys | Duration (Months) | Total Task Duration (Months/ Anticipated Completion Date) |
 | :---: | :---: | :---: | :---: | :---: |
 | | determination | and ongoing communication | | |
 | Bureau of Reclamation | Warren Act Contract | Consultation meeting coordination, preparation, and participation; follow-up requests and ongoing communication | 18 | 18 (January 2020) |
 | Federal Energy Regulatory Commission | Hydropower License | FERC Pre-Application Document | 4 | 120 (June 2028) |
 | | | FERC Hydropower License (ILP) application package | 12 | |
 | | | Project description; design drawings; maps and figures | 12 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | 12 | |
 | State Agency Permits and Approvals | | | | |
 | California Department of Transportation | Encroachment Permits | CalTrans Encroachment Permit application package and fee | 0 | 18 (January 2020) |
 | | | Project description; design drawings; maps and figures | 6 | |
 | | | Biological resources reconnaissance survey and biological assessment | 0 | |
 | | | Aquatic resources (wetlands and waters of the U.S.) delineation and aquatic resources delineation report | 0 | |
 | | | Cultural resources literature search, pedestrian survey, and archaeological reconnaissance report | 0 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | 18 | |
 | California Department of Transportation | Transportation Permit | CalTrans Annual Transportation Permit application package (9 required throughout duration of construction) and fee | 9 | 18 (January 2020) |
 | | | Project description; design drawings; maps and figures | 9 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | 18 | |
 | California State Lands Commission | Land Use Lease | State Lands Commission Lease application package (including survey information) and fee | 9 | 18 (January 2020) |
 | | | Project description; design drawings; maps and figures | 9 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | 12 | |
 | | | Following acquisition of lease: as-built drawings; surveys; internal and external inspection program, including structural evaluation and integrity assessment. | 18 | |
 | Central Valley Flood Protection Board | Encroachment Permit | CVFPB Encroachment Permit 3615 and 3615a application package (including required mapping and deeds) and fee | 9 | 24 (June 2020) |
 | | | Project description; design drawings; maps and figures | 9 | |
 | | | Hydrologic and Hydraulics System Performance Analysis | 12 | |
 | | | Section 408 Permit application package | 12 | |
 | | | Local Maintaining Agency endorsement and concurrence with USACE | 12 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | 24 | |

 | STATUS: | FINAL | PREPARER: | M OLIVER | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | ---: | :---: | :---: | :---: | A

 | Agency | Type of Permit or Approval | Required Actions, Documentation, and Surveys | Duration (Months) | Total Task Duration (Months/ Anticipated Completion Date) |
 | :---: | :---: | :---: | :---: | :---: |
 | State Water Resources Control Board | Water Rights Permit | Water Rights Permit application package (including fee) | 12 | 36 (June 2021) |
 | | | Water Availability Analysis | 12 | |
 | | | Project description; design drawings; maps and figures; operations modeling; cooperative operations coordination | 12 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | 24 | |
 | | | Water Rights Hearings | 12 | |
 | State Water Resources Control Board and Regional Water Quality Control Boards | General Construction Stormwater National Pollution Discharge Elimination System Permit | Construction General Permit application package and fee | 9 | 18 (January 2020) |
 | | | Project description; design drawings; maps and figures | 9 | |
 | | | Stormwater Pollution Prevention Plan | 12 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | 18 | |
 | State Water Resources Control Board and Regional Water Quality Control Boards | Waste Discharge Requirements | Waste Discharge application package and fee | 9 | 18 (January 2020) |
 | | | Project description; design drawings; maps and figures | 9 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | 18 | |
 | State Water Resources Control Board and Regional Water Quality Control Boards | Section 401 Water Quality Certification | Section 401 Water Quality Certification application package and fee | 9 | 18 (January 2020) |
 | | | Project description; design drawings; maps and figures | 9 | |
 | | | Biological resources reconnaissance survey and biological assessment | 0 | |
 | | | Aquatic resources (wetlands and waters of the U.S.) delineation and aquatic resources delineation report | 0 | |
 | | | Section 404 Pre-Construction Notification application package | 0 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | 18 | |
 | California Department of Water Resources, Division of Safety of Dams | Approval of Plans and Specifications for the Construction or Enlargement of a Dam or Reservoir | Approval of Plans and Specifications for the Construction or Enlargement of a Dam or Reservoir application package and fee (\$5 million fee) | 48 | 48 (August 2021) |
 | | | Project description; design drawings; maps and figures | 18 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | 36 | |
 | California Occupational Safety and Health Administration | Permit for Buildings/ Structures, Scaffolding/ Falsework, Demolition, Trenches/ Excavations | Buildings/Structures, Scaffolding/Falsework, Demolition, Trenches/Excavations Permit application package and fee | 9 | 18 (January 2020) |
 | | | Project description; design drawings; maps and figures | 9 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | 18 | |
 | California Department of Fish and Wildlife | Streambed Alteration Agreement | Lake and Streambed Alteration Agreement Notification Package and fee | 9 | 24 (June 2020) |
 | | | Project description; design drawings; maps and figures | 9 | |
 | | | Biological resources reconnaissance survey and biological assessment | 18 | |
 | | | Aquatic resources (wetlands and waters of the U.S.) delineation and aquatic resources | 18 | |

 | STATUS: | FINAL | PREPARER: | M OLIVER | PHASE: | 1 |
 | :--- | :--- | ---: | ---: | ---: | :---: |
 | PURPOSE: | EARLY FUNDING A1 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAVQ: | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 20 | OF |

 | Agency | Type of Permit or Approval | Required Actions, Documentation, and Surveys | Duration
 (Months) | Total Task Duration (Months/ Anticipated Completion Date) |
 | :---: | :---: | :---: | :---: | :---: |
 | | | delineation report | | |
 | | | Hydrologic and Hydraulics System Performance Analysis | 0 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | 24 | |
 | California Department of Fish and Wildlife | Section 2081 Incidental Take Permit | Sections 2081 (b) and (c) Incidental Take Permit application package and fee | 12 | 24 (June 2020) |
 | | | Project description; design drawings; maps and figures (Separate GIS maps assumed | 12 | |
 | | | Biological resources reconnaissance survey (assume CDFW protocol) | 18 | |
 | | | Mitigation Monitoring and Reporting Plan | 18 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | 24 | |
 | NAHC/Local Tribes | AB 52 Consultations | Consultation meetings; coordination; development of mitigation measures | 24 | 24 (June 2020) |
 | State Office of Historic Preservation | See Advisory Council on Historic Preservation under USACE | Consultation meeting coordination, preparation, and participation; follow-up and ongoing communication | 24 | 24 (June 2020) |
 | Local Agency Permits and Approvals | | | | |
 | Colusa and Glenn County Air Pollution Control Districts | Authority to Construct, Permit to Operate, and Notification of Operation | Authority to Construct, Permit to Operate, and Notification of Operation application packages and fees (for each county) | 12 | 18 (January 2020) |
 | | | Project description; design drawings; maps and figures | 12 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication, including annual inspection approach follow-up requests and communication | 18 | |
 | Colusa and Glenn County Public Works Departments | Encroachment Permit | Encroachment Permit application packages and fees (for each county) | 6 | 12 (June 2019) |
 | | | Project description; design drawings; maps and figures | 6 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | 12 | |
 | Colusa and Glenn County Public Works Departments | Transportation Permit | Transpiration Permit application packages and fees (for each county) | 12 | 18 (January 2020) |
 | | | Project description; design drawings; maps and figures | 12 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | 18 | |
 | Colusa and Glenn County Public Works Departments | Building Permit, Street Improvement Permit, and Grading Permit | Building Permit, Street Improvement Permit, and Grading Permit application packages and fees (for each county) | 12 | 18 (January 2020) |
 | | | Project description; design drawings; maps and figures | 12 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up requests and ongoing communication | 18 | |
 | Colusa County Planning Department | General Plan
 Amendments, and/or
 Zoning Amendments | Major Use Permits, Tentative Parcel Maps, Tentative Subdivision Maps, General Plan Amendments, and/or Zoning Amendments application package and fee | 12 | 18 (January 2020) |
 | | | Project description; design drawings; maps and figures | 12 | |
 | | | Pre-application meeting coordination, preparation, and participation; follow-up | 18 | |

 | STATUS: | FINAL | PREPARER: | M OLIVER | PHASE: | 1 |
 | :--- | :--- | ---: | ---: | ---: | :---: |
 | PURPOSE: | EARLY FUNDING A1 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAVQ: | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 21 | OF |

 | Agency | Type of Permit or Approval | Required Actions, Documentation, and Surveys | Duration (Months) | Total Task Duration (Months/ Anticipated Completion Date) |
 | :---: | :---: | :---: | :---: | :---: |
 | | | requests and ongoing communication | | |
 | Sites Project
 Authority/U.S. Bureau of Reclamation | Completion of Final EIR/EIS | Review and respond to comments | 5 | 10 months (from receipt of public comments) |
 | | | Conduct quantitative analysis (e.g., modeling - concurrent with response to comments)) | 5 | |
 | | | Prepare final EIS/EIR, meeting coordination, preparation, and participation; follow-up requests and ongoing communication | 5 | |

 Notes:
 $A B=$ Assembly Bill
 $B A=$ Biological Assessment
 CCR = California Code of Regulations
 CDFW = California Department of Fish and Wildlife
 CFR = Code of Federal Regulations
 CRAM = California Rapid Assessment Method
 CVFPB $=$ Central Valley Flood Protection Board
 CWA = Clean Water Act
 DPR = Department of Parks and Recreation
 DSOD = Divisions of Safety of Dam
 EIR = Environmental Impact Report
 EIS = Environmental Impact Statement
 FERC = Federal Energy Regulating Commission
 GIS = Geographic Information System
 ILP = Integrated Licensing Process
 LEDPA = Least Environmentally Damaging Practicable Alternative
 NAHC = Native American Heritage Commission
 NHPA = National Historic Preservation Act
 NHRP = National Register of Historic Places
 PRC = Public Resources Code
 U.S.C. = United States Code

 USACE = United States Army Corps of Engineers
 USBR = U.S. Bureau of Reclamation
 WSIP = Water Storage Investment Program

 | STATUS: | FINAL | PREPARER: | M OLIVER | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | ---: | :--- | :---: | :---: |
 | PURPOSE: | EARLY FUNDING A1 | CHECKER: J HERRIN | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 22 | OF | 22 |

 Instructions: This table must be used (only once) for each project. Please provide responses below, regardless of priorities claimed, for the overall project. If the information varies based on the claimed priority(ies), explain the variations. Attach up to three (3) additional pages if more space is needed.

 ## Check (x) all priorities that the project would address and realize (i.e., check all claimed priorities):

 | Priority 1:
 Temperature | Priority 2:
 Dissolved
 Oxygen | Priority 3:
 Nutrients | Priority 4:
 Mercury | Priority 5:
 Salinity | Priority 6:
 Groundwater | Delta Tributary
 Flows | Priority 8:
 Demand on
 Delta | Priority 9:
 Basic Human
 Needs |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | X | | | | | X | X | | X |

 1. Identify the current conditions date (i.e., year) that is used within the application. Current conditions must be based on the date (year) of the CEQA Notice of Preparation for the project or subsequently revised information used to describe existing conditions. The current condition date must be used consistently throughout the water quality priorities application section.

 An updated CEQA Notice of Preparation for the Sites Reservoir Project was released in February 2017. The current conditions date used in the analyses for the application was based on the DWR Delivery Capability Report and base scenario model released in July 2015. The year 2015 was used for current conditions because the Delivery Capability Report and base scenario model the most recent and best data available for the analysis.

 ## 2. Briefly describe where the project would occur. Attach a map that shows the project area.

 The Sites Reservoir would be constructed in Antelope Valley, approximately 10 miles west of the town of Maxwell. Figure 2-1 in in Sites_A3 Project Description uploaded under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB shows the Sites Reservoir footprint. Operation of the proposed reservoir would be in cooperation with the operations of the existing water management system in California, especially the existing Central Valley Project (CVP) and State Water Project (SWP) system facilities, to facilitate delivery and maximize the potential for a wide range of benefits. Water provided by the project would be used and managed within Sites Participant's service areas. Figures A.6-1 through A.6-3 provided in Sites_ A6C Groundwater Basins depict the general service areas for Sites Participants under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, map number, etc.).

    ```
    Application Reference:
    See Figure 2-1 in Sites_A3 Project Description
    uploaded as an attachment under the
    ELIGIBILITY AND GENERAL PROJECT
    INFORMATION TAB.
    See Figures 6-1A, 6-1B and 6-1C on pages 6-2
    through 6-4 in Chapter 6, "Surface Water
    Resources" of the EIR/EIS located online here:
    [http://sitesproject.org/information/DraftEIR-
    EIS]
    Figures A.6-1 through A.6-3 provided in
    Sites_A6C Groundwater Basins under the
    ELIGIBILITY AND GENERAL PROJECT
    INFORMATION TAB.
    ```

 3. Briefly describe the area that the project would improve. Attach a map that shows the improvement area.

 The improvement areas for the project vary depending on the type of water quality benefit provided. A description of the improvement area by the priorities the project would address is further discussed below:

 - Priority 1: Temperature. With cooperative operations with Reclamation and DWR, the project would increase coldwater pool storage in Shasta Lake, Lake Oroville, and Folsom Lake and improve temperatures in the Sacramento and American Rivers during certain months at specific compliance points, particularly in Below Normal, Dry, and Critical water years. The areas of temperature improvement for these waterways are shown on Figures Water Quality $P-1 a$ and $P-1 b$.
 - Priority 6: Groundwater. The project would assist with improving chronic lowering of water levels and reduction of groundwater storage within the groundwater basins associated with Sites Participants. Incidental water quality and subsidence improvements may also result with increases in storage and water levels. Figure Water Quality P-6a show areas that would receive surface water deliveries as a result of the project and the potential groundwater improvement area. Benefits could be identified in areas where surface water would be replacing, or substantially supplementing, groundwater as a source of water supply in areas with groundwater basins in overdraft. It is anticipated that the groundwater basins located within the Sacramento Valley Hydrologic Region would receive the greatest benefits from the project as a result of the volume of water that would be delivered as part of the project.
 - Priority 7: Delta Tributary Flows. Loss of connection to floodplain habitat on the Sacramento River has affected the food web in the Delta. By making late summer releases to the toe drain for the Yolo Bypass, Sites Reservoir can support phytoplankton/zooplankton populations in the Lower Sacramento River. This would provide additional food for Delta smelt and other Delta species.
 - Priority 9: Basic Human Needs. The project would provide supplemental surface water supplies to Municipal and Industrial (M\&I) water providers with disadvantaged communities located within their service areas. Incidental water quality and subsidence improvements may also result with increases in storage and water levels. Figure Water Quality P-6a show the potential groundwater improvement area. It is anticipated that the groundwater basins located within the Sacramento Valley Hydrologic Region would receive the greatest benefits from the project.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, map number, etc.).

    ```
    Application Reference:
    Figures Water Quality P - 1a and P - 1b.
    (Sites_A2 WQ Maps)
    Figure Water Quality P - 6a (Sites_A2 WQ
    Maps)
    ```

 Figures Water Quality P-9a, through P-9c,
 (Sites_A2 WQ Maps)
 4. Briefly describe the existing and potential beneficial uses for the waters affected by the project (cite the appropriate water quality control plan(s) adopted by the California State and Regional Water Boards, or other applicable and reliable sources).
 Water quality objectives for waters affected by the project are specified in the basin plans for the North Coast, Central Valley, Tulare Lake, and the San Francisco Bay regions. Water quality objectives for water temperature are also specified in the SWRCB Water Quality Control Plan for Control of Temperature in the Coastal and Interstate Waters and Enclosed Bays and Estuaries of California. SWRCB Water Rights Orders 90-05 and 91 and the 2009 NMFS biological opinion also include requirements related to storage and conveyance facility operations in order to achieve temperature compliance objectives. The water quality objectives and beneficial uses are further described in Table 7.1 on pages 7-1 to 7-3 in Chapter 7, "Surface Water Quality" of the EIR/EIS.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).
 Application Reference:
 Table 7.1 pages 7-1 to 7-3 in Chapter 7,
 "Surface Water Quality" of the EIR/EIS located
 online here:
 [http://sitesproject.org/information/DraftEIR-
 EIS]
 5. Briefly describe any significant adverse water quality impacts and mitigation measures associated with the project.

 In general, the water quality impacts associated with the Sites Reservoir Project would be similar to those analyses for Alternative D in Chapter 7, "Surface Water Quality" of the EIR/EIS.
 Sites Reservoir operations would involve the diversion of Sacramento River water only when flow monitoring indicates that excess bypass flows are present in the river due to storm event flows. Sites Reservoir Project operations would also be coordinated with SWP and CVP operations. Consequently, all water quality compliance obligations would be met as part of operations associated with the CVP and SWP facilities. In general, the Sites Reservoir operational strategy is to maximize the potential benefits of Sites Reservoir while not adversely affecting the CVP and SWP's ability to meet existing system regulatory requirements including established water quality objectives, biological opinions, water right orders, and instream flow requirements. Several existing and additional proposed Sacramento River bypass flow criteria were assumed at specified locations. These flow criteria are designed to make certain only excess water would be diverted into Sites Reservoir to maintain and protect existing water quality compliance and downstream water uses.
 As a mitigation measure to more fully avoid and minimize entrainment and impingement of juvenile salmonids and other poorswimming aquatic species, Sacramento River diversions to Sites Reservoir would also be restricted to protect fish migration during naturally occurring, storm-induced, pulse flow events in the Sacramento River. The proposed pulse protection period would extend from October through May to address outmigration of juvenile winter-, spring-, fall- and late-fall-run Chinook salmon, as well as steelhead. Pulse flows during this period would provide flow continuity between the upper and lower Sacramento River to support fish migration. It is recognized that research regarding the benefits of pulse flows is ongoing, and further research and adaptive management will be required to develop and refine a pulse flow protection strategy for fish migration. No other significant adverse water quality impacts were identified associated with Sites Reservoir operations.

 Under the proposed WSIP application operations plan, enhanced flows to Yolo Bypass would be released through the Colusa Basin Drain and Knights Landing Ridge Cut during summer and fall months to help increase productivity in the Yolo Bypass in the lower Cache Slough and Sacramento River. Adaptive management and monitoring strategies to minimize adversely affect water quality impacts associated with enhanced flows within the Yolo Bypass and its receiving waters in the Sacramento-San Joaquin Delta would also be implemented.
 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference:
 Chapter 7, "Surface Water Quality" of the EIR/EIS.
 [http://sitesproject.org/information/DraftEIREIS] how those impediments or circumstances may reduce the improvement as evaluated by the applicable REVs. Impediments may include: waste or wastewater discharges, water rights/overdiversion, or other potential factors.

 Initial water quality improvements are expected in year 2028 and full benefits are expected by 2030 depending on hydrologic condition. Achieving full benefits would require water supplies from one or more of the following:

 - State of California Water Rights for "Sites Reservoir"
 - Riparian Water Rights in the Inundation Area

 Further coordination between the Authority, the State Water Resources Control Board and other cooperating agencies will be required to determine the applicability and feasibility of using any of these water rights approaches. Water rights issues could potentially delay the immediacy of the realization of full benefits (REV 7) of the project by 2030.

 Projected groundwater basin benefits are currently an approximation based on interested JPA investors (also referred to as Sites Participants). The actual distribution of water supplies would vary based on the final investors for the project. In addition, each investor may manage supplemental water supplies differently, which may result in greater than expected magnitude and spatial scale of benefits (REV 2 and REV 3, respectively) in one region over another region.
 Projected benefits provided by Sites Reservoir are largely dependent on the capability to divert excess Sacramento River water into the reservoir, which is influenced by changing climate conditions. The operational flexibility of Sites Reservoir allows for the delivery of water for public benefits where and when it is needed most, dependent on changing climate conditions and adaptation to future conditions to provide sustained public benefits. For further information refer to the Sites_A12 Uncertainty under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).
 Application Reference:
 Chapter 6 of the Federal Feasibility Report
 [https://www.sitesproject.org/information/Fe
 asibilityReport]
 Sites_A1 Feasibility under the FEASIBILITY
 AND IMPLEMENTATION RISK TAB
 Sites_A12 Uncertainty under the BENEFIT
 CALCULATION, MONETIZATION, AND
 RESILIENCY TAB

 Application Reference:
 Chapter 6 of the Federal Feasibility Report [https://www.sitesproject.org/information/Fe asibilityReport]

 Sites_A1 Feasibility under the FEASIBILITY AND IMPLEMENTATION RISK TAB
 Sites_A12 Uncertainty under the BENEFIT RESILIENCY TAB
 7. Does the project improve conditions in a groundwater basin where undesirable results (as defined in Water Code 10721(x)(1-6)) caused by extraction have occurred? If yes, describe in applicable priority tables.

 The project would improve groundwater levels and storage in adjudicated basins as well as designated medium and high priority basins under SGMA, including those in critical overdraft. Supplemental water supplies delivered during certain times of the year could result in reduction in decreased use of groundwater through conjunctive use operations by its participants. These operations would increase surface water deliveries and change the timing of available surface and groundwater supplies by providing Sites participants with surface water for storage, use or replenishment (typically in above normal and wet year conditions) and then recovering a portion of the water during periods of water supply shortages (in dry and critical year conditions). These improvements are further discussed under Sites_A1 WQ Priority 6 under the PHYSICAL PUBLIC BENEFITS TAB.

 Additional locations in the application where data and relevant supporting \quad Application Reference: information, including attachments, are documented (document name, page number, table number, etc.).

 8a. Is there an adaptive management and monitoring plan for the project? \square None X Draft \square Final

 ## 8b. Briefly describe the adaptive management and monitoring program framework for the project.

 The Adaptive Management and Monitoring Framework for the project has been developed to identify measurable objectives, performance measures, thresholds, and triggers to meet operational objectives and desired ecosystem benefits. Because uncertainties remain about natural hydrologic variations, project operations, and ecological responses, the Sites Project is being designed with a range of operational scenarios to evaluate the effectiveness of different management actions and evaluate strategies for resilience to climate change. These are further described in the Operations Plan. A monitoring program would also be implemented to collect data necessary to operate and evaluate the Project's success. Key data monitoring elements would include the following:

 - Physical Habitat - diversion (inflow) and release flow rates, reservoir depth, snags, submerged vegetation, and other habitat elements;
 - Water Quality - salinity, temperature, dissolved oxygen, nutrients;
 - Aquatic Biota - algae, plankton, invertebrates, fish community (species, distribution, abundance);

 ## WSIP Data and Information Summary Table: General Application Questions for Water Quality Priorities

 - Birds - species, abundance and distribution, use of habitat features, breeding and nesting, sick or dead birds; and
 - Contaminants - contaminants of concern concentrations in water, sediment, terrestrial or avian biota.

 Monitoring efforts would be guided by the specific Sites Project objectives and desired outcomes and would focus on the most informative, efficient, and cost-effective indicators and methods.
 Types of potential indicators include:

 - Triggers for real-time diversion and release operations - flow rates, anticipated water year type, storage in Sites and other reservoirs, storm events, fish migration data.
 - Performance measures - attributes of target species and their habitat, such as physical habitat conditions, water quality in Sites and elsewhere in the Sacramento River/Delta system, and distribution, abundance and composition of aquatic invertebrates, fish and birds; and
 - Threat indicators - potential for floods or droughts, contaminants of concern, mosquitoes and other vectors, disease outbreaks on Sites Reservoir or elsewhere.

 A preliminary Adaptive Management Framework is included as part of Sites_A2 Operations under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB. A more detailed plan and decision-making process will be developed in future phases of the Sites Project.
 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).
 Application Reference:
 Sites_A2 Operations under the BENEFIT
 CALCULATION, MONETIZATION, AND
 RESILIENCY TAB
 Sites_A2 Operations under the BENEFIT
 CALCULATION, MONETIZATION, AND
 RESILIENCY TAB. Emphasis on the Adaptive
 Management Framework section.
 9. Check (x) the climate change risk factor(s) below that were considered in the project siting and design, and identify any that are not applicable (N/A).

 | Sea level rise and storm surge | Temperature changes | Changing precipitation and runoff | Ocean acidification | Low oxygen waters | Wildfires | Hydrologic variability and extreme events | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | Drought | Flooding |
 | N/A | X | X | N/A | N/A | N/A | X | x |

 Additional locations in the application where data and relevant supporting \quad Application Reference: information, including attachments, are documented (document name, page number, table number, etc.).

 Sites_A12 Uncertainty under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB.

 WSIP Data and Information Summary Table: Water Quality Priorities 1-5 (Water Bodies Not Meeting Standards)
 Priorities 1-5 (summarized): Improve conditions in surface water bodies that are not meeting water quality standards for: (1) temperature; (2) dissolved oxygen; (3) nutrients; (4) mercury; and/or (5) salinity conditions (as described in Priority 5). Instructions: This table must be used for projects claiming water quality priorities 1-5 (identified below). Please check the claimed priority and provide REV responses (data and information) below, as appropriate. Descriptions and clarifying information should provide the rationale for the claimed improvements (e.g., how the values were determined, etc.).
 If the project claims more than one of the priorities below, please complete this table separately for each claimed priority.
 Check (\mathbf{x}) the claimed priority being addressed by this table (check only one per table):

 | Priority 1: Temperature | Priority 2: Dissolved Oxygen | Priority 3: Nutrients | Priority 4: Mercury | Priority 5: Salinity |
 | :---: | :--- | :--- | :--- | :--- |
 | \mathbf{X} | | | | |

 For the priority checked above, please respond to the following requests for data and information by filling in the fields below. Attach up to three (3) additional pages if more space is needed.
 Describe how the project would improve conditions in surface water bodies or surface water body segments that are not meeting water quality standards for the parameter or constituent selected above.
 The project would increase coldwater pool storage in Shasta Lake, Lake Oroville, and Folsom Lake and improve temperatures in the Sacramento and American Rivers during certain months at specific compliance points, particularly in Below Normal, Dry, and Critical water years. Temperature benefits provided with the project would assist to achieve compliance with $56 \circ \mathrm{~F}$ water quality standard in September during critical water years for the Sacramento River below Keswick and Sacramento River at Red Bluff, in August during critical water years in the Sacramento River at Bonny view, and in August during dry water years at Balls Ferry.
 Refer to Sites_A2 Documentation WQ Priority 1 "WSIP Data and Information Summary Table: Water Quality Priorities 1 Temperature" for a summary of temperatures modeling results, uploaded under the PHYSICAL PUBLIC BENEFTS TAB.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 | Application Reference: |
 | :--- |
 | Sites_A2 Documentation WQ Priority 1, |
 | "WSIP Data and Information Summary |
 | Table: Water Quality Priorities 1- |
 | Temperature" uploaded under the |
 | PHYSICAL PUBLIC BENEFTS TAB. |

 Applicable water quality standards* for surface water bodies that would be improved by the project:

 | Surface Water Body Name
 (by segment as applicable) | Time Period
 (days/months in year
 when standard applies)
 Daily | Water Quality
 Standard
 Value and Unit | Source Citation |
 | :--- | :---: | :---: | :---: |
 | Sacramento River - Shasta Dam | Daily | $56^{\circ} \mathrm{F}$ | SWRCB Orders 90-5 and 91-1
 Central Valley Regional Water
 Quality Control Board Basin Plan |
 | Hamilton City to the I Street Bridge | Daily | $68^{\circ} \mathrm{F}$ | Central Valley Regional Water
 Quality Control Board Basin Plan |
 | Sacramento River at Clear Creek | | $57^{\circ} \mathrm{F}$ | 2015 Final Sacramento River
 Temperature Management Plan |
 | Sacramento River - Balls Ferry Bridge to Bend
 Bridge | May 15 - October 31 | $56^{\circ} \mathrm{F}$ | 2009 NMFS BO |
 | Sacramento River - Red Bluff Diversion Dam | - | $56^{\circ} \mathrm{F}$ | SWRCB Orders 90-5 and 91-1 |
 | Trinity River - Lewiston Dam to Douglas City
 Bridge | July 1 - September 14 | $60^{\circ} \mathrm{F}$ | North Coast Regional Water
 Quality Control Board Basin Plan |
 | Trinity River - Lewiston Dam to Douglas City
 Bridge | September 15 -
 October 1 | North Coast Regional Water
 Quality Control Board Basin Plan | |
 | Trinity River - Lewiston Dam to Douglas City
 Bridge | October 1 - December
 31 | $56^{\circ} \mathrm{F}$ | North Coast Regional Water
 Quality Control Board Basin Plan |
 | American River - Watt Ave | Daily | $68^{\circ} \mathrm{F}$ | 2009 NMFS BO |

 *For the purpose of this table, water quality standards means numeric or narrative water quality objectives in water quality control plans adopted by the California State and Regional Water Boards, and water quality criteria promulgated by the USEPA for California under Clean Water Act section 303(c) (e.g., California Toxics Rule).

 WSIP Data and Information Summary Table: Water Quality Priorities 1-5 (Water Bodies Not Meeting Standards) REV 2: Magnitude
 Provide the parameter or constituent values (including units) for each surface water body or surface water body segment that would be improved by the project in the following table. Indicate any time periods associated with applicable water quality standards.

 | Surface Water Body Name (by segment as applicable) | Current Condition** | Expected WithoutProject Condition 2030 | Expected WithProject Condition 2030 |
 | :---: | :---: | :---: | :---: |
 | Trinity River below Lewiston (July-Sept Avg.) - Critical | $53.7{ }^{\circ} \mathrm{F}$ | $53.8{ }^{\circ} \mathrm{F}$ | $53.5^{\circ} \mathrm{F}$ |
 | Sacramento River - Below Keswick (July-Sept Avg.) - Dry | $52.0{ }^{\circ} \mathrm{F}$ | $53.3{ }^{\circ} \mathrm{F}$ | $53.2{ }^{\circ} \mathrm{F}$ |
 | Sacramento River - Below Keswick (July-Sept Avg.) - Critical | $54.1{ }^{\circ} \mathrm{F}$ | $55.6^{\circ} \mathrm{F}$ | $54.9{ }^{\circ} \mathrm{F}$ |
 | Sacramento River - Bonnyview (July-Sept Avg.)*** | $52.5^{\circ} \mathrm{F}$ | $53.6{ }^{\circ} \mathrm{F}$ | $53.6 \circ \mathrm{~F}$ |
 | Sacramento River - Bonnyview (July-Sept Avg.) - Dry | $52.9{ }^{\circ} \mathrm{F}$ | $54.3 \circ \mathrm{~F}$ | $54.1{ }^{\circ} \mathrm{F}$ |
 | Sacramento River - Bonnyview (July-Sept Avg.) - Critical | $55.1^{\circ} \mathrm{F}$ | $56.5{ }^{\circ} \mathrm{F}$ | 55.9*F |
 | Sacramento River - Balls Ferry (July-Sept Avg.) ${ }^{* * *}$ | $54.1{ }^{\circ} \mathrm{F}$ | $55.2^{\circ} \mathrm{F}$ | $55.2{ }^{\circ} \mathrm{F}$ |
 | Sacramento River - Balls Ferry (July-Sept Avg.) - Dry | $54.5^{\circ} \mathrm{F}$ | $56.0^{\circ} \mathrm{F}$ | $55.7^{\circ} \mathrm{F}$ |
 | Sacramento River - Balls Ferry (July-Sept Avg.) - Critical | $56.6^{\circ} \mathrm{F}$ | $58.1{ }^{\circ} \mathrm{F}$ | $57.5^{\circ} \mathrm{F}$ |
 | Sacramento River - Jelly's Ferry (July-Sept Avg.)*** | $55.4{ }^{\circ} \mathrm{F}$ | $56.6^{\circ} \mathrm{F}$ | $56.5^{\circ} \mathrm{F}$ |
 | Sacramento River - Jelly's Ferry (July-Sept Avg.) - Dry | $55.8{ }^{\circ} \mathrm{F}$ | $57.3^{\circ} \mathrm{F}$ | $57.0^{\circ} \mathrm{F}$ |
 | Sacramento River - Jelly's Ferry (July-Sept Avg.) - Critical | $57.9^{\circ} \mathrm{F}$ | $59.4{ }^{\circ} \mathrm{F}$ | $58.8{ }^{\circ} \mathrm{F}$ |
 | Sacramento River - Bend Bridge (July-Sept Avg.)*** | $56.5^{\circ} \mathrm{F}$ | $57.6^{\circ} \mathrm{F}$ | $57.6^{\circ} \mathrm{F}$ |
 | Sacramento River - Bend Bridge (July-Sept Avg.) - Dry | $56.9^{\circ} \mathrm{F}$ | $58.5^{\circ} \mathrm{F}$ | $58.1{ }^{\circ} \mathrm{F}$ |
 | Sacramento River - Bend Bridge (July-Sept Avg.) - Critical | $58.9{ }^{\circ} \mathrm{F}$ | $60.3^{\circ} \mathrm{F}$ | $59.7^{\circ} \mathrm{F}$ |
 | Sacramento River - Red Bluff (July-Sept Avg.)*** | $58.1{ }^{\circ} \mathrm{F}$ | $59.3{ }^{\circ} \mathrm{F}$ | $59.1{ }^{\circ} \mathrm{F}$ |
 | Sacramento River - Red Bluff (July-Sept Avg.) - Dry | $58.5^{\circ} \mathrm{F}$ | $59.3{ }^{\circ} \mathrm{F}$ | $59.1{ }^{\circ} \mathrm{F}$ |
 | Sacramento River - Red Bluff (July-Sept Avg.) - Critical | $60.5^{\circ} \mathrm{F}$ | $60.2{ }^{\circ} \mathrm{F}$ | $59.8{ }^{\circ} \mathrm{F}$ |
 | American River at Nimbus (July-Sept Avg.)*** | $62.4{ }^{\circ} \mathrm{F}$ | $67.1^{\circ} \mathrm{F}$ | $66.3^{\circ} \mathrm{F}$ |
 | American River at Nimbus (July-Sept Avg.) - Dry | $63.6^{\circ} \mathrm{F}$ | $67.0^{\circ} \mathrm{F}$ | $66.6^{\circ} \mathrm{F}$ |
 | American River at Nimbus (July-Sept Avg.) - Critical | $65.8{ }^{\circ} \mathrm{F}$ | $68.9{ }^{\circ} \mathrm{F}$ | $68.5^{\circ} \mathrm{F}$ |
 | American River at Watt Ave (July-Sept Avg.)*** | $68.0{ }^{\circ} \mathrm{F}$ | $70.6{ }^{\circ} \mathrm{F}$ | $69.9 \circ \mathrm{~F}$ |
 | American River at Watt Ave (July-Sept Avg.) - Dry | $68.1{ }^{\circ} \mathrm{F}$ | $70.7^{\circ} \mathrm{F}$ | $69.9{ }^{\circ} \mathrm{F}$ |
 | American River at Watt Ave (July-Sept Avg.) - Critical | $70.7^{\circ} \mathrm{F}$ | $73.6{ }^{\circ} \mathrm{F}$ | $73.1{ }^{\circ} \mathrm{F}$ |
 | American River at Mouth (July-Sept Avg.)*** | $68.4{ }^{\circ} \mathrm{F}$ | $73.1^{\circ} \mathrm{F}$ | $72.6^{\circ} \mathrm{F}$ |
 | American River at Mouth (July-Sept Avg.) - Dry | $70.0^{\circ} \mathrm{F}$ | $73.5{ }^{\circ} \mathrm{F}$ | $73.4{ }^{\circ} \mathrm{F}$ |
 | American River at Mouth (July-Sept Avg.) - Critical | $73.3{ }^{\circ} \mathrm{F}$ | $77.0^{\circ} \mathrm{F}$ | $76.5^{\circ} \mathrm{F}$ |

 **For the purpose of this table, "current condition" means conditions measured or estimated at the year of the CEQA Notice of Preparation (NOP) for the project or subsequently revised information used to describe existing conditions.
 ***Results presented are a long-term average over the full 82 -year simulation period for all water year types.

 ## Provide additional clarifying information below, as needed.

 See Sites_A1 WQ Priority 1, "WSIP Data and Information Summary Table: Water Quality Priorities 1 -Temperature" for a summary of temperatures modeling results.
 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference:
 Sites_A1 WQ Priority 1, "WSIP Data and Information Summary for Water Quality Priorities 1 Temperature" uploaded under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB.
 Sites_A6.D Modeling Results Compendium, "Temperature Results WSIP 2030 with Project vs without Project" uploaded under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB.

 Sites_A6.D Modeling Results Compendium, "Performance Measures Scorecard for Sites Reservoir Potential Beneficiaries" uploaded under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB.
 Sites_A6.D Modeling Results Compendium, "Temperature Results DCR 2015 with Project vs DCR 2015 without Project" uploaded under ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB.

 WSIP Data and Information Summary Table: Water Quality Priorities 1-5 (Water Bodies Not Meeting Standards) REV 3: Spatial Scale
 Provide the geographical extent of the improvement for each surface water body or water body segment that would be improved by the project. Attach a map of the improvement area.

 ## REV 4: Temporal Scale

 Provide the time period(s) during the year (days or months) when the water quality improvement would occur for each surface water body or water body segment that would be improved by the project:

 | Surface Water Body Name (by segment as applicable) | Expected Time Period Provided by Project in 2030 |
 | :--- | :--- |
 | Sacramento River - Below Keswick | July through September |
 | Sacramento River - Bonnyview | July through November |
 | Sacramento River - Balls Ferry | July through November |
 | Sacramento River - Jelly's Ferry | July through November |
 | Sacramento River - Bend Bridge | July through November |
 | Sacramento River - Red Bluff | August through November |
 | Trinity River below Lewiston | July through September |
 | American River at Nimbus | April through September |
 | American River at Watt Ave | April through September |
 | American River at Mouth | April through September |

 The expected time period provided by Project in 2030 is dependent upon water year type. See Sites_A1 WQ Priority 1, "WSIP Data and Information Summary Table: Water Quality Priorities 1 -Temperature" for a summary of temperatures modeling results.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference:
 See Sites_A1 WQ Priority 1, "WSIP Data and Information Summary Table: Water Quality Priorities 1 -Temperature" uploaded under the PHYSICAL PUBLIC BENEFITS TAB.

 ## REV 5: Adaptive Management

 Describe the adaptive management and monitoring strategies for the claimed priority (e.g., potential management or corrective actions that could be taken if monitoring results fall outside of the range of expected values or if claimed improvements are not being achieved by the project). Include the potential measurable objectives, performance measures, thresholds, and triggers to monitor project performance and achievement of improvements.

 The Adaptive Management and Monitoring Framework for the project has been developed to identify measurable objectives, performance measures, thresholds, and triggers to meet operational objectives and desired ecosystem benefits. A monitoring program would also be implemented to collect data necessary to operate and evaluate the Project's success. As part of proposed monitoring, temperature data would be collected. Monitoring efforts would be guided by the specific Sites Project objectives and desired outcomes and would focus on the most informative, efficient, and cost-effective indicators and methods. Temperature operational triggers would be developed to assist with real-time diversion and release operations. A preliminary Adaptive Management Framework is included as part of Sites_A6.D Modeling Results Compendium uploaded under the ELEGIBILITY AND GENERAL PROJECT INFORMATION TAB. A more detailed plan and decision-making process, including the establishment of temperature specific operational triggers, and performance standards will be developed in future phases of the Sites Project. | Additional locations in the application where data and relevant supporting | Application Reference: |
 | :--- | :--- |

 WSIP Data and Information Summary Table: Water Quality Priorities 1-5 (Water Bodies Not Meeting Standards)
 information, including attachments, are documented (document name, page number, table number, etc.).

 Operations Plan provided in Sites_A2
 Operations, uploaded under the BENEFIT
 CALCULATION, MONETIZATION, AND RESILIENCY TAB.
 Adaptive Management Framework provided in Sites_A2 Operations uploaded under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB.

 ## REV 6: Immediacy of Improvement Action

 Describe when the project would begin implementing actions toward achieving the improvement(s) associated with the claimed priority. Include the number of months expected to elapse between grant encumbrance and project implementation (i.e., completed projected construction and start-up of project element(s) that are expected to achieve the claimed priority). Include specifics by surface water body or water body segment, as appropriate.
 Initial benefits are expected in year 2028 (6 years after grant encumbrance for construction) at a lower level than when the project is complete. Full benefits are expected in 2030 (8 years after grant encumbrance).
 See Sites_A6.D Modeling Results Compendium, "Temperature Results WSIP 2030 With Project vs Without Project" uploaded under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB for temperature modeling results.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference: See Sites_A6.D Modeling Results Compendium, "Temperature Results WSIP 2030 With Project vs Without Project" uploaded under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB.

 ## REV 7: Immediacy of the Realization of Benefits

 Describe when the improvement(s) associated with the claimed priority would be realized by the project. Include the number of months expected to elapse from grant encumbrance to full realization of the improvement (i.e., improvement achieves the claimed magnitude at 2030). Include specifics by surface water body or water body segment, as appropriate.
 Initial benefits are expected in year 2028 (6 years after grant encumbrance for construction) at a lower level than when the project is complete. Full benefits are expected in 2030 (8 years after grant encumbrance).
 See Sites_A6.D Modeling Results Compendium, "Temperature Results WSIP 2030 With Project vs Without Project" uploaded under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB for temperature modeling results.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference:
 See Sites_A6.D Modeling Results Compendium, "Temperature Results WSIP 2030 With Project vs Without Project" uploaded under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB.

 ## REV 8: Duration

 Describe the duration of the improvement(s) associated with the claimed priority. Include the number of years that the project would deliver the full realization of the improvement (i.e., the claimed magnitude at 2030). Include specifics by surface water body or water body segment, as appropriate.
 The anticipated duration of the improvements is 100 years. Full benefits are expected in 2030. To determine the duration of potential benefits, additional temperatures modeling with and without the project for 2070 was performed. In most instances, the same magnitude and duration of benefits would be provided by the project in 2070; however, without the project temperatures would continue to warm thereby creating a need for increased coldwater releases to meet temperature water quality objectives The temporal scale of benefits in the Sacramento River shifts to June through October in critical water years. In some instances, the temperature benefits provided by coldwater pool conservation increase by 2070 . For example, there are additional temperature benefits provided in 2070 for the reach of the Sacramento River above Keswick during August and September in below normal years and in the American River reach from Nimbus to the mouth in November. Additional incidental temperature benefits on the Trinity River below Lewiston would also be realized by 2070.
 See Sites_A6.D Modeling Results Compendium, "Temperature Results WSIP 2070 With Project vs Without Project" uploaded under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB for temperature modeling results.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference: See Sites_A6.D Modeling Results Compendium, "Temperature Results WSIP 2070 With Project vs Without Project" uploaded under the BENEFIT CALCULATION,

 ## REV 9: Consistency

 Describe how the improvement(s) associated with the claimed priority would be consistent with water quality control plans and water quality control policies. Include specifics by surface water body or water body segment, as appropriate.
 Sites Project reservoir operations providing temperature benefits would be consistent with applicable water quality control plans and policies. In certain months and water year types, Sites operations would also assist in achieving with water quality temperature standards in reaches of the Sacramento River that currently exceed standards in summer months during dry and critically dry water years.
 As discussed in the Operations Plan, the Sites JPA will work with Reclamation and DWR to account for its water within the CVP and SWP conveyance systems and coordinate its releases from reservoirs to meet Sites water user allocations while providing claimed benefits. Reclamation in cooperation with the Sites JPA will also work with the NMFS, USFWS and CDFW to allow Sites project water to be conveyed in the later summer and fall to Sites project customers, potentially across the Delta, under the current Biological Opinions as has been done for early summer water held for cold water pool purposes in the past. The effects of the conveyance of Sites water across the Delta would also be included in the project description in any SWP/CVP re-consultation process under the Federal Endangered Species Act.
 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

    ```
    Application Reference:
    Operations Plan provided in See Sites_A2
    Operations, uploaded under the BENEFIT
    CALCULATION, MONETIZATION, AND
    RESILIENCY TAB
    ```


 ## REV 10: Connectivity

 Describe, if applicable, how the project would restore or create a hydrologic connection, as a result of water quality improvement(s), to areas that support beneficial uses of water or are being managed for water quality. If multiple connections are restored or created, include specifics by location.

 ## N/A

 Additional locations in the application where data and relevant supporting \quad Application Reference: information, including attachments, are documented (document name, page number, table number, etc.).

 ## REV 11: Resilience to Climate Change at 2030

 Describe how the climate risk factors, identified in the General Application Questions for water quality priorities, were considered as part of the project siting and design for the claimed priority. Explain why any identified risk factors are not applicable.
 Various modeling scenarios were run to allow evaluation of how the benefits of the project can be sustained under potential future climate risk factors, including temperature changes. Results demonstrate that Sites Reservoir will provide operational flexibility to sustain both public and private temperature benefits under a range of climate change scenarios, including severe extended droughts. See Sites_A1 WQ Priority 1, "WSIP Data and Information Summary Table: Water Quality Priorities 1 Temperature" and "Sites Reservoir Project Sources of Uncertainty Analysis," Sites_A12 Uncertainty, uploaded under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference:
 See Sites_A1 WQ Priority 1, "WSIP Data and Information Summary for Water Quality Priorities 1 -Temperature" uploaded under the PHYSICAL PUBLIC BENEFITS TAB.

 ## REV 12: Undesirable Groundwater Results Corrected

 Not applicable because Priorities 1-5 only apply to surface water bodies.

 ## WSIP Data and Information Summary Table: Water Quality Priority 6 (Groundwater)

 Priority 6: Protect, clean up, or restore groundwater resources in high- and medium-priority basins designated by the Department.

 Instructions: This table must be used for projects claiming water quality priority 6. This priority can only be claimed by projects that are expected to achieve improvements in high- or medium-priority basins designated by the Department. There are three sections to this table. Provide information below in those sections that apply to the project. Descriptions and clarifying information should provide the rationale for the claimed improvements (e.g., how the values were determined, etc.). Attach up to three (3) additional pages if more space is needed.

 For the purpose of this table, the following definitions apply:

 - "Protect" means to maintain the current groundwater quality condition or prevent further degradation.
 - "Clean up" means to improve upon the current groundwater quality condition through remediation (contaminant removal) or other methods.
 - "Restore" means a return to, or closely achieve, a prior, improved groundwater level (elevation) condition (when compared to the current condition) that improves water quality.
 - "Basin" means a groundwater basin or subbasin identified and defined in "California's Groundwater: Bulletin 118" (updated in 2003) or modified pursuant to Chapter 3 (commencing at section 10722) of the Water Code.

 ## Describe how the project would protect, clean up, or restore groundwater resources.

 The Sites Reservoir project would improve groundwater sustainability by supplying surface water to facilitate increased conjunctive use practices and for replenishment to enhance aquifer storage recovery.

 Refer to Sites_A2 Documentation WQ Priority 6 "WSIP Data and Information Summary for Water Quality Priorities 6 Groundwater" uploaded under the PHYSICAL PUBLIC BENEFITS TAB for further information.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 ## Application Reference

 List the basin(s) and subbasin(s) to be improved by the project. Include the name and basin/subbasin number, and indicate the basin/subbasin priority level designated by the Department (high or medium). Cite the source.

 NA
 Select the benefit(s) (protect, clean up, or restore) that the project would achieve. For the selected benefit(s), respond to the following requests for data and information by filling in the sections below.
 The project would \square Protect \square Clean up \mathbf{X} Restore (groundwater resources)

 ## Section 1: Protect

 Provide the applicable water quality standards* for parameters/constituents that would be protected by the project:

 | WSIP Data and Information Summary Table: Water Quality Priority 6 (Groundwater) | |
 | :---: | :---: |
 | Describe the duration of the improvement(s) associated with the claimed priority. Include the number of years that the project would deliver the full realization of the improvement (i.e., the claimed magnitude at 2030). Include specifics by groundwater basin or subbasin, as appropriate. | |
 | NA | |
 | Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.). | Application Reference: |
 | REV 9: Consistency (Protect) | |
 | Describe how the improvement(s) associated with the claimed priority would be consistent with water quality control plans, water quality control policies, and/or the Sustainable Groundwater Management Act. Include specifics by groundwater basin or subbasin, as appropriate. | |
 | NA | |
 | Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.). | Application Reference: |
 | REV 10: Connectivity (Protect) | |
 | Describe, if applicable, how the project would restore or create a hydrologic connection, as a result of water quality improvement(s), to areas that support beneficial uses of water or are being managed for water quality. If multiple connections are restored or created, include specifics by location. | |
 | NA | |
 | Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.). | Application Reference: |
 | REV 11: Resilience to Climate Change at 2030 (Protect) | |
 | Describe how the climate risk factors, identified in the General Application Questions for water quality priorities, were considered as part of the project siting and design for the claimed priority. Explain why any identified risk factors are not applicable. | |
 | NA | |
 | Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.). | Application Reference: |
 | REV 12: Undesirable Groundwater Results Corrected (Protect) | |
 | Describe the current groundwater conditions within the claimed project improvement area(s), including, but not limited to: the estimated number of wells present, total pumping values for the basin, current land use, potential and existing beneficial uses, existing water quality values, soil information, geology of the area, and any applicable undesirable results listed at Water Code section 10721(x)(1-6). | |
 | NA | |
 | Describe the expected without-project groundwater conditions in 2030 within the claimed project improvement area, including the factors addressed for current conditions (above). | |
 | NA | |
 | Describe the expected with-project groundwater conditions (after project implementation) in 2030 within the claimed project improvement area, including: the factors addressed for current conditions (above); how the project would coordinate with the appropriate GSA; how the project complies with SGMA if a GSA has not yet been assigned; and how the project would improve conditions in a groundwater basin/subbasin where undesirable results (as defined in Water Code 10721(x)(1-6)) caused by extraction have occurred. | |
 | NA | |
 | Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.). | Application Reference: |
 | Section 2: Clean Up | |

 | WSIP Data and Information Summary Table: Water Quality Priority 6 (Groundwater) | |
 | :---: | :---: |
 | (document name, page number, table number, etc.). | |
 | REV 6: Immediacy of Improvement Action (Clean Up) | |
 | Describe when the project would begin implementing actions toward achieving the improvement(s) associated with the claimed priority. Include the number of months expected to elapse between grant encumbrance and project implementation (i.e., completed projected construction and start-up of project element(s) that are expected to achieve the claimed priority). Include specifics by groundwater basin or subbasin, as appropriate. | |
 | NA | |
 | Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.). | Application Reference: |
 | REV 7: Immediacy of the Realization of Benefits (Clean Up) | |
 | Describe when the improvement(s) associated with the claimed priority would be realized by the project. Include the number of months expected to elapse from grant encumbrance to full realization of the improvement (i.e., improvement achieves the claimed magnitude at 2030). Include specifics by groundwater basin or subbasin, as appropriate. | |
 | NA | |
 | Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.). | Application Reference: |
 | REV 8: Duration (Clean Up) | |
 | Describe the duration of the improvement(s) associated with the claimed priority. Include the number of years that the project would deliver the full realization of the improvement (i.e., the claimed magnitude at 2030). Include specifics by groundwater basin or subbasin, as appropriate. | |
 | NA | |
 | Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.). | Application Reference: |
 | REV 9: Consistency (Clean Up) | |
 | Describe how the improvement(s) associated with the claimed priority would be consistent with water quality control plans, water quality control policies, and/or the Sustainable Groundwater Management Act. Include specifics by groundwater basin or subbasin, as appropriate. | |
 | NA | |
 | Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.). | Application Reference: |
 | REV 10: Connectivity (Clean Up) | |
 | Describe, if applicable, how the project would restore or create a hydrologic connection, as a result of water quality improvement(s), to areas that support beneficial uses of water or are being managed for water quality. If multiple connections are restored or created, include specifics by location. | |
 | NA | |
 | Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.). | Application Reference: |
 | REV 11: Resilience to Climate Change at 2030 (Clean Up) | |
 | Describe how the climate risk factors, identified in the General Application Questions for water quality priorities, were considered as part of the project siting and design for the claimed priority. Explain why any identified risk factors are not applicable. | |
 | NA | |
 | Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.). | Application Reference: |

 ## WSIP Data and Information Summary Table: Water Quality Priority 6 (Groundwater)

 Adaptive management and monitoring strategies for improved groundwater level and storage conditions would be incorporated into existing Sites Participant groundwater monitoring programs or those which will be developed as part of SGMA requirements. Groundwater Sustainably Agencies (GSAs) with jurisdiction over high-priority and medium-priority basins must adopt groundwater management plans (GSP) by 2020 or 2022, depending upon whether the basin is in critical overdraft. GSAs will then have until 2040 or 2042 to achieve groundwater sustainability. Minimum thresholds, measureable objectives and interim milestones will need to be established in the GSP, along with project and management actions to address chronic lowering of groundwater levels and reduced groundwater storage.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference:
 Refer to Sites_A2 Documentation WQ Priority 6 "WSIP Data and Information Summary for Water Quality Priorities 6 Groundwater" uploaded under the PHYSICAL PUBLIC BENEFITS TAB.

 Sites_A2 Operations under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB

 Sites_A2 Operations under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB. Emphasis on the Adaptive Management Framework section.

 ## REV 6: Immediacy of Improvement Action (Restore)

 Describe when the project would begin implementing actions toward achieving the improvement(s) associated with the claimed priority. Include the number of months expected to elapse between grant encumbrance and project implementation (i.e., completed projected construction and start-up of project element(s) that are expected to achieve the claimed priority). Include specifics by groundwater basin or subbasin, as appropriate.

 Initial benefits are expected in year 2028 (6 years after grant encumbrance for construction) at a lower level than when the project is complete. Full benefits are expected in 2030 (8 years after grant encumbrance).

 Additional locations in the application where data and relevant \quad Application Reference: supporting information, including attachments, are documented (document name, page number, table number, etc.).

 ## REV 7: Immediacy of the Realization of Benefits (Restore)

 Describe when the improvement(s) associated with the claimed priority would be realized by the project. Include the number of months expected to elapse from grant encumbrance to full realization of the improvement (i.e., improvement achieves the claimed magnitude at 2030). Include specifics by groundwater basin or subbasin, as appropriate.

 Initial benefits are expected in year 2028 (6 years after grant encumbrance for construction) at a lower level than when the project is complete. Full benefits are expected in 2030 (8 years after grant encumbrance).

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 ## REV 8: Duration (Restore)

 Describe the duration of the improvement(s) associated with the claimed priority. Include the number of years that the project would deliver the full realization of the improvement (i.e., the claimed magnitude at 2030). Include specifics by groundwater basin or subbasin, as appropriate.

 The anticipated duration of the improvements is 100 years. Full benefits are expected in 2030 . To determine the duration of potential benefits, additional regional deliveries modeling with and without the project for 2070 was performed. As shown in Table 1 of Sites_A2 WQ Priority 6, "WSIP Data and Information Summary for Water Quality Priorities 6 -Groundwater" uploaded under the PHYSICAL PUBLIC BENEFITS TAB, regional deliveries in dry and critical years increase in 2070 due to changing climate conditions; therefore, overtime potential groundwater benefits could increase due to increases in water supply availability.

 Refer to Sites_A2 Documentation WQ Priority 6 "WSIP Data and Information Summary for Water Quality Priorities 6 Groundwater" uploaded under the PHYSICAL PUBLIC BENEFITS TAB.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference
 Sites_A2 Documentation WQ Priority 6 "WSIP Data and Information Summary for Water Quality Priorities 6 Groundwater" uploaded under the PHYSICAL PUBLIC BENEFITS TAB.

 | WSIP Data and Information Summary Table: Water Quality Priority 6 (Groundwater) | |
 | :--- | :--- |
 | REV 9: Consistency (Restore) | |
 | Describe how the improvement(s) associated with the claimed priority would be consistent with water quality control plans,
 water quality control policies, and/or the Sustainable Groundwater Management Act. Include specifics by groundwater basin or
 subbasin, as appropriate. | |
 | The Site project could potentially assist Participants achieve compliance under SGMA, requirements for adjudicated basins
 and/or applicable groundwater management ordinances. Consistency determinations and compliance would be the
 responsibility of individual Site Participants. | |
 | Additional locations in the application where data and relevant
 supporting information, including attachments, are documented
 (document name, page number, table number, etc.). | Application Reference: |
 | REV 10: Connectivity (Restore) | |
 | Describe, if applicable, how the project would restore or create a hydrologic connection, as a result of water quality
 improvement(s), to areas that support beneficial uses of water or are being managed for water quality. If multiple connections
 are restored or created, include specifics by location. | |

 The Sites Reservoir project would allow for greater operational flexibility to support maintaining hydrologic connection between surface and groundwater. Conjunctive use practices by Sites participants could reduce surface water diversions and improve surface water flows by using stored groundwater during dry and critical periods. In addition, supplemental water supplies from the Sites Reservoir project would assist with improving aquifer storage and groundwater levels.
 Refer to Sites_A2 Documentation WQ Priority 6 "WSIP Data and Information Summary for Water Quality Priorities 6 Groundwater" uploaded under the PHYSICAL PUBLIC BENEFITS TAB.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference:
 Sites_A2 Documentation WQ Priority 6 "WSIP Data and Information Summary for Water Quality Priorities 6Groundwater" uploaded under the PHYSICAL PUBLIC BENEFITS TAB.

 ## REV 11: Resilience to Climate Change at 2030 (Restore)

 Describe how the climate risk factors, identified in the General Application Questions for water quality priorities, were considered as part of the project siting and design for the claimed priority. Explain why any identified risk factors are not applicable.

 Various modeling scenarios were run to allow evaluation of how the benefits of the project can be sustained under potential future climate risk factors, including water quality changes, changing participation and runoff and extreme hydrologic variability. Sea-level rise, ocean acidification and wildfire risk factors are not applicable to the Sites Reservoir project. Operations modeling results demonstrate that Sites Reservoir will provide operational flexibility to sustain both public and private benefits under a range of climate change scenarios, including severe extended droughts.
 Refer to Sites_A2 Documentation WQ Priority 6 "WSIP Data and Information Summary for Water Quality Priorities 6 Groundwater" uploaded under the PHYSICAL PUBLIC BENEFITS TAB and Attachment A.12, "Sites Reservoir Project Sources of Sites_A12 Uncertainty under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).
 Ren

 ## REV 12: Undesirable Groundwater Results Corrected (Restore)

 Describe the current groundwater conditions within the claimed project improvement area(s), including, but not limited to: the estimated number of wells present, total pumping values for the basin, current land use, potential and existing beneficial uses, existing water quality values, soil information, geology of the area, and any applicable undesirable results listed at Water Code section 10721(x)(1-6).

 Refer to Sites_A2 Documentation WQ Priority 6 "WSIP Data and Information Summary for Water Quality Priorities 6 Groundwater" uploaded under the PHYSICAL PUBLIC BENEFITS TAB

 Describe the expected without-project groundwater conditions in 2030 within the claimed project improvement area, including

 WSIP Data and Information Summary Table: Water Quality Priority 6 (Groundwater)
 the factors addressed for current conditions (above).
 Refer to Sites_A2 Documentation WQ Priority 6 "WSIP Data and Information Summary for Water Quality Priorities 6 Groundwater" uploaded under the PHYSICAL PUBLIC BENEFITS TAB
 Describe the expected with-project groundwater conditions (after project implementation) in 2030 within the claimed project improvement area, including: the factors addressed for current conditions (above); how the project would coordinate with the appropriate GSA; how the project complies with SGMA if a GSA has not yet been assigned; and how the project would improve conditions in a groundwater basin/subbasin where undesirable results (as defined in Water Code 10721(x)(1-6)) caused by extraction have occurred.

 The Site project could potentially assist Participants achieve compliance under SGMA. Some of the participants are designated as a Groundwater Sustainability Agency (GSA) for affected groundwater basins, including but not limited to Colusa County, Colusa County Water District, Santa Clara Valley Water District, and Zone 7. Many other agencies participating in the Sites Project also participate in GSAs. These member agencies will be involved in the future integration of the Sites Project into their respective Ground Water Sustainability Plans (GSPs). In addition, Sites participants: Desert Water Agency, California Water Service, San Bernardino Valley Municipal Water District, Metropolitan Water District and San Gorgonio Pass Water Agency are affiliated with adjudicated groundwater basins. Antelope Valley - East Kern Water Agency is affiliated with a groundwater basin that is pending adjudication. The associated operations by participating agencies with adjudicated basins would be included in annual monitoring and reporting activities. Coachella Valley Water District, Desert Water Agency, Santa Clara Valley Water Agency, and Zone 7 Water Agency have submitted requests for an Alternative strategy to the GSP. The Alternative strategy could consist of a groundwater management plan or law authorizing ground water management within a specific basin. The Sites project could also be incorporated into the overall groundwater management strategy for the groundwater basins associated with these Participants.
 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference:
 Sites_A2 Documentation WQ Priority 6 "WSIP Data and Information Summary for Water Quality Priorities 6 Groundwater" uploaded under the PHYSICAL PUBLIC BENEFITS TAB

 ## WSIP Data and Information Summary Table: Water Quality Priority 7 (Delta Tributary Flows)

 Priority 7: Achieve Delta tributary stream flows that resemble natural hydrograph patterns or other flow regimes that have been demonstrated to improve conditions for aquatic life.

 Instructions: This table must be used for projects claiming water quality priority 7. Descriptions and clarifying information should provide the rationale for the claimed improvements (e.g., how the values were determined, etc.). Attach up to three (3) additional pages if more space is needed.

 Describe how the project would be designed and operated in a manner that resembles natural (unimpaired) hydrographs patterns or other flow regimes that have been demonstrated to improve conditions for aquatic life (e.g., native species and their habitats).

 The Cache Slough area receives water from the Yolo Bypass. It is the only place in the Delta estuary where the Delta smelt population has recently increased. The goal for this operation of the Sites Reservoir Project is to benefit Delta smelt in the lower Cache Slough and lower Sacramento River areas by delivering water through the Yolo Bypass in the late summer and early fall. This flow regime is intended to increase the desirable food sources which should help improve Delta smelt growth and condition as they mature into adults, thereby increasing Delta smelt abundance over time. The key is to push water with a high population of phytoplankton and zooplankton directly into an area of good Delta smelt habitat, where additional production may occur.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 ## Application Reference:

 Sites_A2 Operations under the BENEFIT
 CALCULATION, MONETIZATION, AND RESILIENCY TAB

 Applicable water quality standards* for Delta tributary flows that would be improved by the project:

 | Tributary to the Delta
 (by segment as appropriate) | Time Period
 (days/months in year when
 standard applies) | Water Quality Standard
 Value and Unit | Source Citation |
 | :--- | :--- | :--- | :--- |
 | Rio Vista | September - December
 (minimum monthly average) | $3,000-4,500$ cfs | |
 | | | | |

 *For the purpose of this table, water quality standards means the water quality objectives for river flows and Delta outflow in the California State Water Board's Water Quality Control Plan for the San Francisco Bay/Sacramento-San Joaquin Delta Estuary (2006).

 ## REV 2: Magnitude

 Provide flow values (cfs) for each tributary to the Delta that would be improved by the project:

 | Tributary to the Delta
 (by segment as appropriate) | Current Condition** | Without-Project Flow
 Condition in 2030 | With-Project Flow
 Condition in 2030 |
 | :--- | :--- | :--- | :--- |
 | Yolo Bypass (August - October) | 15 TAF | 24 TAF | 64 TAF |
 | | | | |

 **For the purpose of this table, "current condition" means conditions measured or estimated at the year of the CEQA Notice of Preparation (NOP) for the project or subsequently revised information used to describe existing conditions.

 Provide additional clarifying information below, as needed.
 The concept is that 2 pulses of flow of at least 400 cfs each over a $2-3$ week period would be made into the Yolo Bypass via the Colusa basin drain past the Wallace Weir and Ridge Cut into the Tule Drain and flow through the Toe drain and out to the Sacramento River. With losses, each flow pulse made into the Colusa basin Drain would total about 24 TAF over each 2-3 week period. The flow pulses would be adaptively managed, but it is initially projected as a late summer and early fall release, perhaps in August and September. The release would not occur every year, but in most years a release would be desirable.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference:
 Sites_A2 Operations under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB

 ## REV 3: Spatial Scale

 Provide the geographical extent of the improvement for each tributary to the Delta that would be improved by the project. Attach a map of the improvement area.
 Tributary to the Delta \quad Geographical Extent Improved in 2030

 ## WSIP Data and Information Summary Table: Water Quality Priority 7 (Delta Tributary Flows)

 ## REV 7: Immediacy of the Realization of Benefits

 Describe when the improvement(s) associated with the claimed priority would be realized by the project. Include the number of months expected to elapse from grant encumbrance to full realization of the improvement (i.e., improvement achieves the claimed magnitude at 2030). Include specifics by Delta tributary, as appropriate.

 Baseline monitoring should begin in 2025. Full realization of improvement (as measured by phytoplankton/zooplankton populations) anticipated in 2030. Benefit occurring in Lower Sacramento River.

 | Additional locations in the application where data and relevant supporting | Application Reference: |
 | :--- | :--- | information, including attachments, are documented (document name, page number, table number, etc.).

 ## REV 8: Duration

 Describe the duration of the improvement(s) associated with the claimed priority. Include the number of years that the project would deliver the full realization of the improvement (i.e., the claimed magnitude at 2030). Include specifics by Delta tributary, as appropriate.

 The duration of the improvement is expected to be 90 years (O\&M period for the project per the planning horizon used in the application).

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 ## REV 9: Consistency

 Describe how the improvement(s) associated with the claimed priority would be consistent with water quality control plans, water quality control policies, and the Sustainable Groundwater Management Act. Include specifics by Delta tributary, as appropriate.

 Action is consistent with Delta Smelt Resiliency Strategy (California Natural Resources Agency, July, 2016)

 | Additional locations in the application where data and relevant supporting | Application Reference: |
 | :--- | :--- | :--- | information, including attachments, are documented (document name, page number, table number, etc.).

 ## REV 10: Connectivity

 Describe, if applicable, how the project would restore or create a hydrologic connection, as a result of water quality improvement(s), to areas that support beneficial uses of water or are being managed for water quality. If multiple connections are restored or created, include specifics by location.

 ## Not applicable

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference

 ## REV 11: Resilience to Climate Change at 2030

 Describe how the climate risk factors, identified in the General Application Questions for water quality priorities, were considered as part of the project siting and design for the claimed priority. Explain why any identified risk factors are not applicable.

 The CalSim II model considered temperature change, sea level rise, and changing precipitation.
 The long-term average increase in flow is estimated at 42 TAF under current conditions, 40 TAF under 2030 conditions, and 38 TAF under 2070 conditions. Flows provided into the Yolo Bypass toe drain would be greatly reduced in critical years with flows of 9 TAF under current conditions, 5 TAF under 2030 conditions, and 13 TAF under 2070 conditions. Deliveries into the toe drain are proposed for above normal, below normal, and dry years.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference
 Sites_A12 Uncertainty under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB

 ## REV 12: Undesirable Groundwater Results Corrected

 Describe, if applicable, the current groundwater conditions within the claimed project improvement area(s), including, but not limited to: the number of wells present, total pumping values for the basin, current land use, potential and existing beneficial uses, existing water quality values, soil information, geology of the area, and any applicable undesirable results listed at Water

 | WSIP Data and Information Summary Table: Water Quality Priority 7 (Delta Tributary Flows) | |
 | :--- | :--- |
 | Code section 10721(x)(1-6). | |
 | Not applicable | Describe, if applicable, the expected without-project groundwater conditions in 2030 within the claimed project improvement
 area, including the factors addressed for current conditions (above). |
 | | Describe, if applicable, the expected with-project groundwater conditions (after project implementation) in 2030 within the
 claimed project improvement area, including: the factors addressed for current conditions (above); how the project would
 coordinate with the appropriate GSA; how the project complies with SGMA if a GSA has not yet been assigned; and how the
 project would improve conditions in a groundwater basin/subbasin where undesirable results (as defined in Water Code
 10721(x)(1-6)) caused by extraction have occurred. |
 | Additional locations in the application where data and relevant supporting
 information, including attachments, are documented (document name, page
 number, table number, etc.). | Application Reference: |

 ## WSIP Data and Information Summary Table: Water Quality Priority 9 (Basic Human Needs)

 Priority 9: Provide water for basic human needs, such as drinking, cooking, and bathing, in disadvantaged communities, where those needs are not being met.

 Instructions: This table must be used for projects claiming water quality priority 9 that improve conditions in a non-public water system that serves a disadvantaged community (DAC). Descriptions and clarifying information should provide the rationale for the claimed improvements (e.g., how the values were determined, etc.). Attach up to three (3) additional pages if more space is needed. (Projects that provide water for public water systems, serve DACs, and that are not meeting their existing obligations to provide safe drinking water are not eligible for this priority due to those existing compliance obligations. However, projects that would, as an incidental benefit, provide higher quality water, while not specifically creating new drinking water projects, may be eligible and should describe this scenario where appropriate, below).

 Describe how the project would provide water for basic human needs, such as drinking, cooking, and bathing, in DACs, where those needs are not being met. Include the additional expected volume (acre-feet per year) of suitable water that would be made available for a non-public water system(s) that serves DACs and the additional DAC population that would be served by the improved water supply. If incidental improvements to regional water quality are achieved, highlight the public water system(s) and non-public water system(s) that would benefit from that incidental improvement.
 The project would provide supplemental surface water supplies to Sites Participants Municipal and Industrial (M\&I) water providers located within disadvantaged communities (DACs) that have drinking water supplies that exceed California maximum contaminant levels for various naturally occurring and human-caused contaminants including arsenic, nitrates, hexavalent chromium, bacteria, radionuclides, and disinfection by-products. The primary source for drinking water in the majority of the DACs is groundwater. Supplemental high quality surface water supplies generated from the project could be made available to DACs with unsafe drinking water supplies. In some DACs, chronic lowering of groundwater has resulted in wells reportedly going dry during periods of drought. Groundwater level benefits from increased conjunctive use by Sites participants could also Refer to Sites_A2 WQ Priority 9, "Documentation for Water Quality Priority 9 -Basic Human Needs" uploaded under the PHYSICAL PUBLIC BENEFITS TAB for further information.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference: Refer to Sites_A2 WQ Priority 9, "Documentation for Water Quality Priority 9 -Basic Human Needs" uploaded under the PHYSICAL PUBLIC BENEFITS TAB.

 Identify the DAC(s) addressed by the project using the Department of Water Resources Disadvantaged Communities Mapping Tool or other DAC identifier. Cite the source.
 Refer to Sites_A2 WQ Priority 9, "Documentation for Water Quality Priority 9 -Basic Human Needs" uploaded under the PHYSICAL PUBLIC BENEFITS TAB.

 Provide the population levels for the DACs benefited by the project:

 | DAC Location | Current DAC Population
 with Unmet Needs | 2030 DAC Population
 Benefited by the Project |
 | :--- | :--- | :--- | :--- |
 | See Sites_A2 WQ Priority 9, "Documentation for Water Quality Priority 9-Basic Human Needs" uploaded under the PHYSICAL
 PUBLIC BENEFITS TAB. | | |
 | Applicable water quality standards* for parameters/constituents that would be improved by the project: | | |
 | Parameter/
 Constituent | Water Quality Standard
 Value and Unit | Source Citation |

 *For the purpose of this table, water quality standards means numeric or narrative water quality objectives, including maximum contaminant levels (MCLs), in water quality control plans adopted by the California State and Regional Water Boards. $\mathrm{mg} / \mathrm{L}=$ milligrams per liter

 ## WSIP Data and Information Summary Table: Water Quality Priority 9 (Basic Human Needs)

 MCL = maximum contaminant level
 $\mathrm{pCi} / \mathrm{L}=$ picocuries per liter

 ## REV 2: Magnitude

 Provide the parameter/constituent values (including units) for each surface water body or groundwater basin/subbasin that would be improved by the project and be available to a non-public water system that serves a DAC, or be available to DAC(s) that might receive incidental benefits.

 | Water Body Name
 (including stream segment or
 groundwater basin/subbasin
 number, as applicable)Parameter/
 Constituent | Current Condition** | Without-Project
 Condition in 2030 | With-Project
 Condition in 2030 |
 | :---: | :---: | :---: | :---: | :---: |

 Water quality improvements to surface water bodies or groundwater basins that would serve DAC would vary depending on where supplemental surface supplies would be delivered. Refer to Sites_A2 WQ Priority 9, "Documentation for Water Quality Priority 9 -Basic Human Needs" uploaded under the PHYSICAL PUBLIC BENEFITS TAB for further information.
 **For the purpose of this table, "current condition" means conditions measured or estimated at the year of the CEQA Notice of Preparation (NOP) for the project or subsequently revised information used to describe existing conditions. Provide additional clarifying information below, as needed.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference: Refer to Sites_A2 WQ Priority 9, "Documentation for Water Quality Priority 9 -Basic Human Needs" uploaded under the PHYSICAL PUBLIC BENEFITS TAB for further information.

 ## REV 3: Spatial Scale

 Provide the geographical extent of the improvement claimed by the project for each location. Attach a map of the improvement area.

 | Water Body Name
 (including stream segment or
 groundwater basin/subbasin number, as applicable) | Geographical Extent Improved in 2030
 (e.g., river miles or acre-feet improved) |
 | :---: | :---: |

 The geographical extent of water quality improvements to surface water bodies or groundwater basins that would serve DAC would vary depending on where supplemental surface supplies would be delivered. Refer to Sites_A2 WQ Priority 9, "Documentation for Water Quality Priority 9 -Basic Human Needs" uploaded under the PHYSICAL PUBLIC BENEFITS TAB for further information.
 Provide additional clarifying information below, as needed.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, map number, etc.).

 Application Reference: Refer to Sites_A2 WQ Priority 9, "Documentation for Water Quality Priority 9 -Basic Human Needs" uploaded under the PHYSICAL PUBLIC BENEFITS TAB for further information.

 ## REV 4: Temporal Scale

 Provide the time period(s) during the year (days or months) when the improvement would occur for each location improved by the project:
 Water Body Name
 (including stream segment or groundwater basin/subbasin number, as applicable)

 Expected Time Period Provided by Project in 2030

 Water quality improvements to surface water bodies or groundwater basins that would serve DAC would vary depending on where supplemental surface supplies would be delivered. Refer to Sites_A2 WQ Priority 9, "Documentation for Water Quality Priority 9 -Basic Human Needs" uploaded under the PHYSICAL PUBLIC BENEFITS TAB for further information.
 Provide additional clarifying information below, as needed.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference: Refer to Sites_A2 WQ Priority 9, "Documentation for Water Quality Priority 9 -Basic Human Needs" uploaded under the PHYSICAL PUBLIC BENEFITS TAB for further information.

 ## WSIP Data and Information Summary Table: Water Quality Priority 9 (Basic Human Needs)

 ## REV 5: Adaptive Management

 Describe the adaptive management and monitoring strategies for the claimed priority (e.g., potential management or corrective actions that could be taken if monitoring results fall outside of the range of expected values or if claimed improvements are not being achieved by the project). Include the potential measurable objectives, performance measures, thresholds, and triggers to monitor project performance and achievement of improvements.
 The Adaptive Management and Monitoring Framework for the project has been developed to identify measurable objectives, performance measures, thresholds, and triggers to meet operational objectives and desired ecosystem benefits. Because uncertainties remain about natural hydrologic variations, project operations, and ecological responses, the Sites Project is being designed with a range of operational scenarios to evaluate the effectiveness of different management actions and evaluate strategies for resilience to climate change. These are further described in the Operations Plan. A monitoring program would also be implemented to collect data necessary to operate and evaluate the Project's success. Monitoring efforts would be guided by the specific Sites Project objectives and desired outcomes and would focus on the most informative, efficient, and cost-effective indicators and methods. A preliminary Adaptive Management Framework is included as part of Sites A2 Operations uploaded under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB. A more detailed plan and decision-making process will be developed in future phases of the Sites Project

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 > Application Reference: See Sites_A2 Operations, "Operations Plan" uploaded under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB

 > Adaptive Management Framework provided in Sites A2 Operations uploaded under the BENEFIT CALCULATION MONETIZATION, AND RESILIENCY TAB.

 ## REV 6: Immediacy of Improvement Action

 Describe when the project would begin implementing actions toward achieving the improvement(s) associated with the claimed priority. Include the number of months expected to elapse between grant encumbrance and project implementation (i.e., completed projected construction and start-up of project element(s) that are expected to achieve the claimed priority). Include specifics by location, as appropriate.
 Initial benefits are expected in year 2028 (6 years after grant encumbrance for construction) at a lower level than when the project is complete. Full benefits are expected in 2030 (8 years after grant encumbrance).
 Additional locations in the application where data and relevant supporting \quad Application Reference: information, including attachments, are documented (document name, page number, table number, etc.).

 ## REV 7: Immediacy of the Realization of Benefits

 Describe when the improvement(s) associated with the claimed priority would be realized by the project. Include the number of months expected to elapse from grant encumbrance to full realization of the improvement (i.e., improvement achieves the claimed magnitude at 2030). Include specifics by location, as appropriate.
 Initial benefits are expected in year 2028 (6 years after grant encumbrance for construction) at a lower level than when the project is complete. Full benefits are expected in 2030 (8 years after grant encumbrance).
 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 ## REV 8: Duration

 Describe the duration of the improvement(s) associated with the claimed priority. Include the number of years that the project would deliver the full realization of the improvement (i.e., the claimed magnitude at 2030). Include specifics by location, as appropriate.
 The anticipated duration of the improvements is 100 years. Full benefits are expected in 2030 . To determine the duration of potential benefits, additional regional deliveries modeling with and without the project for 2070 was performed. As shown in Table 1 see Sites_A2 Documentation WQ Priority 6 "WSIP Data and Information Summary for Water Quality Priorities 6 Groundwater" uploaded under the PHYSICAL PUBLIC BENEFITS TAB, regional deliveries in dry and critical years increase in 2070 due to changing climate conditions; therefore, overtime potential groundwater benefits could increase due to increases in water supply availability. See Sites_A2 Documentation WQ Priority 6 "WSIP Data and Information Summary for Water Quality Priorities 6 -Groundwater" uploaded under the PHYSICAL PUBLIC BENEFITS TAB.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference: Sites_A2 Documentation WQ Priority 6 "WSIP Data and Information Summary for Water Quality Priorities 6 -Groundwater" uploaded under the PHYSICAL PUBLIC BENEFITS TAB.

    ```
    WSIP Data and Information Summary Table: Water Quality Priority 9 (Basic Human Needs)
    REV 9: Consistency
    Describe how the improvement(s) associated with the claimed priority would be consistent with water quality control plans, water quality control policies, and the Sustainable Groundwater Management Act. Include specifics by location, as appropriate. Water quality objectives for waters affected by the project are specified in the basin plans for the North Coast, Central Valley, Tulare Lake, and the San Francisco Bay regions. The water quality objectives and beneficial uses are further described in Table 7.1 on pages 7-1 to 7-3 in Chapter 7, "Surface Water Quality" of the EIR/EIS.
    ```

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 ## Application Reference:

 Table 7.1 pages 7-1 to 7-3 in Chapter 7,
 "Surface Water Quality" of the EIR/EIS
 located online here:
 [http://sitesproject.org/information/DraftEI
 R-EIS]

 ## REV 10: Connectivity

 Describe, if applicable, how the project would restore or create a hydrologic connection, as a result of water quality improvement(s), to areas that support beneficial uses of water or are being managed for water quality. If multiple connections are restored or created, include specifics by location.
 The Sites Reservoir project would allow for greater operational flexibility to support maintaining hydrologic connection between surface and groundwater. Conjunctive use practices by Sites participants could reduce surface water diversions and improve surface water flows by using stored groundwater during dry and critical periods. In addition, supplemental water supplies from the Sites Reservoir project would assist with improving aquifer storage and groundwater levels.

 Refer to Sites_A2 Documentation WQ Priority 6 "WSIP Data and Information Summary for Water Quality Priorities 6 Groundwater" uploaded under the PHYSICAL PUBLIC BENEFITS TAB

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference:
 Refer to Sites_A2 Documentation WQ Priority 6 "WSIP Data and Information Summary for Water Quality Priorities 6 Groundwater" uploaded under the PHYSICAL PUBLIC BENEFITS TAB.

 ## REV 11: Resilience to Climate Change at 2030

 Describe how the climate risk factors, identified in the General Application Questions for water quality priorities, were considered as part of the project siting and design for the claimed priority. Explain why any identified risk factors are not applicable.
 Various modeling scenarios were run to allow evaluation of how the benefits of the project can be sustained under potential future climate risk factors, including water quality changes, changing participation and runoff and extreme hydrologic variability. Sea-level rise, ocean acidification and wildfire risk factors are not applicable to the Sites Reservoir project. Operations modeling results demonstrate that Sites Reservoir will provide operational flexibility to sustain both public and private benefits under a range of climate change scenarios, including severe extended droughts. See Sites_A12 Uncertainty, "Uncertainty Analysis" uploaded under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference:
 See Sites_A12 Uncertainty, "Uncertainty
 Analysis" uploaded under the BENEFIT
 CALCULATION, MONETIZATION, AND RESILIENCY TAB.

 ## REV 12: Undesirable Groundwater Results Corrected

 Describe, if applicable, the current groundwater conditions within the claimed project improvement area(s), including, but not limited to: the estimated number of wells present, total pumping values for the basin, current land use, potential and existing beneficial uses, existing water quality values, soil information, geology of the area, and any applicable undesirable results listed at Water Code section 10721(x)(1-6).
 The Sites Reservoir project would improve groundwater sustainability by supplying surface water to facilitate increased conjunctive use practices and for replenishment to enhance aquifer storage recovery. The Sites Reservoir project would improve groundwater in adjudicated groundwater basins, and medium and high priority basins defined under SGMA, including those in critical overdraft. Sites_A6C, "Groundwater Basins Affected by the Sites Reservoir Project:" uploaded under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB provided a listing of potential groundwater basins that could be improved by the project. Improvements would occur by supplying supplemental surface water that could be used to facilitate increased conjunctive use practices and replenishment to enhance aquifer storage recovery. Sites operations would change the timing of available surface and groundwater supplies by providing Sites participants with supplemental surface water for storage, use or replenishment (typically in above normal and wet year conditions) and then recovering a portion of the water during periods of water supply shortages (in dry and critical year conditions) by groundwater pumping. Increased conjunctive use and replenishment operations

 ## WSIP Data and Information Summary Table: Water Quality Priority 9 (Basic Human Needs)

 would assist with improving chronic lowering of water levels and reduction of groundwater storage within the groundwater basins associated with Sites Participants. Incidental water quality, salt water intrusion and subsidence improvements may also result with increases in storage and water levels.
 Describe, if applicable, the expected without-project groundwater conditions in 2030 within the claimed project improvement area, including the factors addressed for current conditions (above).
 Generally speaking, in areas that rely wholly or predominantly on groundwater, only a portion of the water pumped percolates back to the groundwater system, resulting in net extraction of groundwater where groundwater pumping (in part due to recent dry conditions) has exceeded recharge. Sustainability of groundwater supplies depends largely on the amount of surface water available for use and groundwater replenish. The project would provide supplemental surface water supplies that would help to balance groundwater supplies. Without the project, it is anticipated that groundwater pumping would continue to exceed recharge during dry period that would result in increased groundwater storage deficits.
 Describe, if applicable, the expected with-project groundwater conditions (after project implementation) in 2030 within the claimed project improvement area, including: the factors addressed for current conditions (above); how the project would coordinate with the appropriate GSA; how the project complies with SGMA if a GSA has not yet been assigned; and how the project would improve conditions in a groundwater basin/subbasin where undesirable results (as defined in Water Code 10721(x)(1-6)) caused by extraction have occurred.
 The Site project could potentially assist Participants achieve compliance under SGMA. Some of the participants are designated as a Groundwater Sustainability Agency (GSA) for affected groundwater basins, including but not limited to Colusa County, Colusa County Water District, Santa Clara Valley Water District, and Zone 7. Many other agencies participating in the Sites Project also participate in GSAs. These member agencies will be involved in the future integration of the Sites Project into their respective Ground Water Sustainability Plans (GSPs). In addition, Sites participants: Desert Water Agency, California Water Service, San Bernardino Valley Municipal Water District, Metropolitan Water District and San Gorgonio Pass Water Agency are affiliated with adjudicated groundwater basins. Antelope Valley - East Kern Water Agency is affiliated with a groundwater basin that is pending adjudication. The associated operations by participating agencies with adjudicated basins would be included in annual monitoring and reporting activities. Coachella Valley Water District, Desert Water Agency, Santa Clara Valley Water Agency, and Zone 7 Water Agency have submitted requests for an Alternative strategy to the GSP. The Alternative strategy could consist of a groundwater management plan or law authorizing ground water management within a specific basin. The Sites project could also be incorporated into the overall groundwater management strategy for the groundwater basins associated with these Participants.

 Additional locations in the application where data and relevant supporting information, including attachments, are documented (document name, page number, table number, etc.).

 Application Reference:
 Sites_A1 WQ Priority 6, "WSIP Data and Information Summary Table: Water Quality Priority 6 -Groundwater" uploaded under the PHYSICAL PUBLIC BENEFITS TAB.

 Sites_A6C, "Groundwater Basins Affected by the Sites Reservoir Project" uploaded under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB

 ## Program Requirements Tab

 ## Attachment A.2: Cost Effectiveness

 Provide documentation indicating the proposed project is cost-effective. If there is at least one feasible alternative means of providing the same amount or more of the total public and nonpublic physical benefits as provided by the proposed project, calculate, display and document the least-cost of these alternative means and justify the proposed project by comparison.

 WSIP Application Instructions, March, 2017

 Response
 The proposed project has a benefit cost ratio of 1.5 as discussed in Sites_A9 BCA Results under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB. The Federal Feasibility Report (see https://www.sitesproject.org/information/FeasibilityReport) independently analyzed the project using somewhat different economic methodologies and also concluded that the project was cost effective with a benefit to cost ratio of 1.45 (see Chapter 7 of the Federal Feasibility Report).

 Feasible alternatives were evaluated. The NODOS Investigation by DWR and Reclamation identified three primary alternative locations for surface storage as potential alternatives to Sites Reservoir (Colusa Complex, Newville Reservoir, and Red Bank Reservoir). These alternatives are discussed in Chapter 4 of the Federal Feasibility Report (see) and in Chapter 2 of the Draft EIR/EIS (see https://www.sitesproject.org/information/DraftEIR-EIS). Red Bank Reservoir was screened out due to less suitable diversion locations and environmental impacts.

 To provide a preliminary economic assessment for the three surface storage measures, costs for the construction of the reservoirs and the associated conveyance were compared with yield and unit costs. These costs are presented in Table 1. The estimated average annual cost per yield is similar in magnitude for Sites and Newville Reservoirs. The construction cost of Colusa Reservoir Complex would be approximately 4.4 times that of Sites Reservoir, and six times that of Newville Reservoir, while the increase in yield over what would be produced by the Sites and Newville Reservoirs is approximately 10 to 25 percent.

 Table 1. Comparison of Total Construction and Yield Cost in 2015 Dollars

 | Attribute | Measure | | |
 | :---: | :---: | :---: | :---: |
 | | Colusa Reservoir Complex | Sites Reservoir | Newville Reservoir |
 | Gross Storage (acre-feet) | 3,000,000 | 1,810,000 | 1,900,000 |
 | Dead Storage (acre-feet) | 100,000 | 40,000 | 50,000 |
 | Construction Cost | \$20.1B | \$4.5B | \$4.8B |
 | Average Annual Cost ${ }^{\text {a }}$ | \$708M | \$159M | \$169M |
 | Estimated Average Annual Yield (acre-feet) | 328,000 | 274,000 | 275,000 |
 | Average Annual Cost/Yield (acre-feet) | \$2,160/acre-foot | \$579/acre-foot | \$615/acre-foot |

 Note: ${ }^{\text {a }}$ Per WSIP guidance, annual costs were based on a 93-year operating period and a 3.5 percent discount rate. Annual cost shown does not include any allowance for interest during construction or future O\&M costs

 Auburn Dam was also considered as a potential alternative to Sites Reservoir. Reclamation estimated the cost for Auburn Dam at $\$ 9.9$ billion (compared to $\$ 4.7$ billion for Sites Reservoir) with an average

 | STATUS: | FINAL | PREPARER: | J HERRIN | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PROGRAM REQUIREMENT A2 | CHECKER: | D RUARK | DATE: | 2017 A | UST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP A | ICATION | |
 | NOTES: | | | | PAGE: | 1 | OF | 2 |

 annual yield of 229 TAF (compared to 450 TAF for Sites Reservoir) (Folsom Auburn South Unit: Special Report: Benefits and Costs Update, Reclamation, 2006).

 As a result, the Newville Reservoir was determined to be the least cost alternative project that would result in comparable total overall benefits. Sites_A5 Documentation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB includes a Least Cost Alternative that provides the same total physical benefits. No project specific estimates for Newville Reservoir non-construction costs were available. Therefore, a rough approximation of Newville Reservoir future full cost (i.e., including interest during construction, mitigation and future O\&M costs) was estimated based on the corresponding Sites Reservoir costs and proportionally adjusted based on Newville's higher construction cost.

 Consequently, assuming an eight year construction period and similar scheduling, the IDC cost for Newville Reservoir was estimated to be $\$ 820$ million based on the WSIP required 3.5 percent discount rate. Environmental mitigation costs of $\$ 388$ million were also assumed for the project. The present value of Newville Reservoir's total O\&M expenses was estimated to be $\$ 838$ million. Altogether, Newville Reservoir's estimated total project cost was estimated be $\$ 6,926$ million in present value terms.

 Throughout the analysis of benefits, the alternative project cost approach was used in monetization of several benefit categories (see Sites_A5 Documentation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB). However, as discussed in the section, Shasta Lake Dam raise was determined to be a more appropriate alternative project for the benefit valuation of the Sites Reservoir's future ecosystem improvements.

 | STATUS: | FINAL | PREPARER: J HERRIN | PHASE: | 1 | VERSION: | A |
 | :--- | :--- | ---: | ---: | :---: | :---: | :---: |
 | PURPOSE: | PROGRAM REQUIREMENT A2 | CHECKER: | D RUARK | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVQ: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 2 | OF | |

 ## Attachment 1 - WSIP Data and Information Summary for Water Quality Priorities 1 Temperature

 ## Methods

 The 2015 current conditions data used in the analyses for the application was based on the DWR Delivery Capability Report and base scenario model released in July 2015 with project operations. The year 2015 was used for current conditions because the Delivery Capability Report and base scenario model the most recent and best data available for the analysis. Current conditions temperature modeling data for the WSIP application is presented in Sites_A6D Modeling Results Compendium under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB.

 The 2030 expected with- and without-project conditions analyses for the Sites Reservoir Project WSIP Application utilized the model products and assumptions described in section 6004(a)(1) of the code of regulations, including the 2030 and 2070 future conditions CalSim-II models provided by the California Water Commission on November 2, 2016. Temperature models for the primary river systems used the CalSim II reservoir storage, reservoir releases, river flows, and meteorological conditions to estimate reservoir and river temperatures. Water temperature models used were the Upper Sacramento River Water Quality Model (USRWQM) and U.S. Bureau of Reclamation Temperature Model (RECTEMP). A further description of the modeling used for the analysis is provided in Sites A1 Modeling under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB. Temperature modeling data "Performance Measures Scorecard for Sites Reservoir Potential Beneficiaries", "Temperature Results DCR 2015 with Project vs DCR 2015 without Project", and "Temperature Results WSIP 2030 with Project vs without Project" are presented in Sites_A6D Modeling Results Compendium under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB.

 ## Water Quality Objectives and Beneficial Uses

 Water quality objectives for waters affected by the project are specified in the basin plans for the North Coast, Central Valley, Tulare Lake, and the San Francisco Bay regions. Water quality objectives for water temperature are also specified in the SWRCB Water Quality Control Plan for Control of Temperature in the Coastal and Interstate Waters and Enclosed Bays and Estuaries of California. SWRCB Water Rights Orders 90-05 and 91 and the 2009 National Marine Fisheries Service (NMFS) biological opinion (BO) also include requirements related to storage and conveyance facility operations in order to achieve temperature compliance objectives.

 The water bodies within the Project area support warm and cold fresh water habitat and other aquatic beneficial uses. Water bodies in these areas must maintain water temperatures supportive of resident and seasonal fish species habitats, particularly for endangered species. State Water Resources Control Board Order 90-5 compliance. Order 90-5 establishes water right requirements on the U.S. Bureau of Reclamation operations of Keswick Dam, Shasta Dam, the Spring Creek Power Plant and the Trinity River Division related to temperature control in the Upper Sacramento River for the protection of fishery resources and requires monitoring and reporting to evaluate compliance with those requirements.

 As part of the requirements of the 2009 NMFS BO, the preparation of an annual temperature management plans by Reclamation are required to determine NMFS approved management strategies to protect the cold water pool of Trinity, Shasta, Folsom Reservoirs and acceptable temperatures at select compliance points within the river systems downstream of the reservoirs. State Water Project operations at Lake Oroville are also factored into the temperature management plans. The water quality objectives and beneficial uses are further described in Table 7.1 on pages 7-1 to 7-3 in Chapter 7,

 | STATUS: | FINAL | PREPARER: | N SMITH | PHASE: | 1 | VERSION: | A |
 | :--- | :--- | ---: | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFIT | CHECKER: J HERRIN | DATE: | 2017 AUGUST | | | |
 | CAVEAT: | | QAVC: | REF/FILE \#: | WSIP APPLICATION | | | |
 | NOTES: | WATER QUALITY PRIORITIES 1 | | PAGE: | 1 | OF | 6 | |

 "Surface Water Quality" of the EIR/EIS. Water quality objectives specific to temperature for the Trinity River system and the Sacramento River are presented on Tables 7-2, 7-3 and 7-4.

 ## Areas of Temperature Improvements

 The project would increase coldwater pool conservation in Shasta Lake, Lake Oroville, and Folsom Lake and improve temperatures in the Sacramento and American Rivers during certain months at specific compliance points, particularly in Below Normal, Dry, and Critical water years. The areas of temperature improvement for these waterways are shown on Figures Water Quality $P-1$ a and $P-1 b$.

 As discussed in the Operations Plan, Sites_A2 Operations under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB, it is thought that maximum temperature benefits in the Sacramento and American Rivers could be realized by emphasizing cold water releases during the months of highest potential water temperature related impacts (i.e., July through November). Adaptive management and monitoring would also be implemented to ensure that these benefits are achieved to the maximum extent possible. The areas of greatest temperature improvement are summarized in the "Performance Measures Scorecard for Sites Reservoir Potential Beneficiaries" are presented in Sites_A1 Modeling under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB. Temperature modeling data. All temperature modeling data is presented in "Temperature Results WSIP 2030 with Project vs without Project" are presented in" are presented in Sites_A1 Modeling under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB

 ## Sacramento River

 Approximately 59 river miles of the Sacramento River would be improved with the implementation of the Sites Reservoir Project downstream from Keswick Dam (River Mile 302) to the Red Bluff Diversion Dam (River Mile 243). Figure Water Quality P-1a shows the improvement area for the Sacramento River. Site project operations emphasize providing Sacramento River cold water releases during the months of July through November when it's most difficult to achieve temperatures water quality standards; therefore, the main focus of discussion regarding temperatures benefits is limited to this time of the year. Incidental benefits during other times of the year can also be seen, including January through February in most water year types in the Sacramento from below Keswick to Bend Bridge.

 ## Sacramento River - Below Keswick

 Long-term and water year type monthly temperature averages with and without the project in 2030 for the Sacramento River below Keswick Dam are presented in Table SQ2-1a. With the operation of Sites Reservoir project, temperatures would improve in August and September of dry water years and July through November in critical water years. Temperature benefits provided with the project in September during critical water years would assist to achieve compliance with $56{ }^{\circ}$ F water quality standard; without the project temperatures would exceed $56{ }^{\circ} \mathrm{F}$.

 ## Sacramento River - Bonny view

 Temperatures in the Sacramento River at Bonnyview would improve in August for all water year types, in September during dry water years, and July through November in critical water years. Temperature benefits provided with the project in August during critical water years would assist to achieve compliance with $56{ }^{\circ}$ F water quality standard; without the project temperatures would exceed $56{ }^{\circ} \mathrm{F}$. Long-term and water year type monthly temperature averages with and without the project in 2030 for the Sacramento River at Bonnyview are presented in Table SQ3-1a.

 | STATUS: | FINAL | PREPARER: | N SMITH | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFIT | CHECKER: | J HERRIN | DATE: | 2017 AU | | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP A | ATION | |
 | NOTES: | WATER QUALITY PRIORITIES 1 | | | PAGE: | 2 | OF | 6 |

 ## Sacramento River - Balls Ferry

 In the Sacramento River at Balls Ferry, the project would improve temperatures in August for all water year types, in September during below normal and dry water years, and July through November in critical water years. Temperature benefits provided with the project in August during dry water years would assist to achieve compliance with $56{ }^{\circ} \mathrm{F}$ water quality standard; without the project temperatures would exceed $56{ }^{\circ} \mathrm{F}$. Long-term and water year type monthly temperature averages with and without the project in 2030 for the Sacramento River at Balls Ferry are presented in Table SQ4-1a.

 ## Sacramento River - Jelly's Ferry

 Temperatures in the Sacramento River at Jelly's Ferry would improve in August for all water year types, in September during below normal and dry water years, and July through November in critical water years. Long-term and water year type monthly temperature averages with and without the project in 2030 for the Sacramento River at Jelly's Ferry are presented in Table SQ5-1a.

 ## Sacramento River - Bend Bridge

 Temperatures in the Sacramento River at Bed Bridge would improve in August for all water year types, in September during below normal and dry water years, and July through November in critical water years. Long-term and water year type monthly temperature averages with and without the project in 2030 for the Sacramento River at Bend Bridge are presented in Table SQ6-1a.

 ## Sacramento River - Red Bluff

 Long-term and water year type monthly temperature averages with and without the project in 2030 for the Sacramento River below Red Bluff are presented in Table SQ8-1a. With the operation of Sites Reservoir project, temperatures would improve in August and September of during below normal and dry years and August through November in critical water years. Temperature benefits provided with the project in September during critical water years would assist to achieve compliance with $56{ }^{\circ} \mathrm{F}$ water quality standard; without the project temperatures would exceed $56^{\circ} \mathrm{F}$.

 ## American River

 Cold water releases from Folsom Reservoir to the American River as part of site project operations are targeted during the months of July through November. During these months, it's most difficult to achieve temperatures water quality standards. The greatest benefits are seen between April and October during all water year types. Approximately 30 river miles of the American River would be improved with the implementation of the Sites Reservoir Project downstream from Folsom Dam to the mouth of the American River. Figure Water Quality P-1c shows the improvement area for the American River.

 ## American River at Nimbus

 Long-term and water year type monthly temperature averages with and without the project in 2030 for the American River at Nimbus Dam are presented in Table SQ9-1a. Modeling results indicate that temperatures in the American River at Nimbus would improve April through September during most water year types. The greatest benefits can be seen during the month of September.

 ## American River at Watt Ave

 Temperatures in the American River at Watt would improve during April through September in most water year types. The greatest benefits can be seen during the month of September. Long-term and

 | STATUS: | FINAL | PREPARER: | N SMITH | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFIT | CHECKER: | J HERRIN | DATE: | 2017 AU | | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP A | ATION | |
 | NOTES: | WATER QUALITY PRIORITIES 1 | | | PAGE: | 3 | OF | 6 |

 water year type monthly temperature averages with and without the project in 2030 for the American River at Watt are presented in Table SQ10-1a.

 ## American River at Mouth

 At the mouth of the American River, temperatures would improve April during most water year types. The greatest temperature benefits provided with the project are July through September during critical water years. Long-term and water year type monthly temperature averages with and without the project in 2030 for the American River at the mouth are presented in Table SQ11-1a.

 | STATUS: | FINAL | | PREPARER: | N SMITH |
 | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | PHYSICAL PUBLIC BENEFIT | CHECKER: | J HERRIN | PHASE: |
 | CAVEAT: | | QAVQ: | DATE: | 2017 AUGUST |
 | NOTES: | WATER QUALITY PRIORITIES 1 | | REF/FILE \#: | WSIP APPLICATION |
 | | | | PAGE: | 4 |

 Source: Prepared by AECOM 2017
 Figure Water Quality P - 1a Area of Temperature Improvement for the Sacramento River

 | STATUS: | FINAL | PREPARER: | N SMITH |
 | :--- | :--- | ---: | :--- |
 | PURPOSE: | PHYSICAL PUBLIC BENEFIT | CHECKER: J HERRIN | |
 | CAVEAT: | | QAVQC: | |
 | NOTES: | WATER QUALITY PRIORITIES 1 | | |

 | PHASE: | 1 | VERSION: | A |
 | ---: | :---: | :---: | :---: |
 | DATE: | 2017 AUGUST | | |
 | REF/FILE \#: | WSIP APPLICATION | | |
 | PAGE: | 5 | OF | 6 |

 Source: Prepared by AECOM 2017
 Figure Water Quality P-1b. Area of Temperature Improvement for the American River

 | STATUS: | FINAL | PREPARER: | N SMITH | PHASE: | 1 | VERSION: A |
 | :--- | :--- | ---: | ---: | ---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFIT | CHECKER: | JHERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVQ:: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | WATER QUALITY PRIORITIES 1 | | PAGE: | 6 | OF | 6 |

 ## Attachment 1 - WSIP Data and Information Summary for Water Quality Priorities 6 -Groundwater

 ## Methods

 The 2015 current conditions data used in the analyses for the application was based on the DWR Delivery Capability Report and base scenario model released in July 2015 with project operations. The year 2015 was used for current conditions because the Delivery Capability Report and base scenario model the most recent and best data available for the analysis. Regional deliveries modeling data for the WSIP application is presented in Sites_A6D Modeling Results Compendium under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB.

 The 2030 expected with- and without-project estimated deliveries for the Sites Reservoir Project WSIP Application utilized the model products and assumptions described in section 6004(a)(1) of the code of regulations, including the 2030 and 2070 future conditions CalSim-II models provided by the California Water Commission on November 2, 2016. A further description of the modeling used for the analysis is provided in Sites_A1 Modeling under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB. Regional deliveries modeling data for the WSIP application "Regional Deliveries DCR 2015 with Project vs without Project" "Regional Deliveries WSIP 2030 with Project vs without Project" and "Regional Deliveries WSIP 2070 with Project vs without Project" are presented in Sites_A6D Modeling Results Compendium under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB.

 ## Regional Groundwater Improvements

 The Sites Reservoir project would improve groundwater in adjudicated groundwater basins, and medium and high priority basins defined under SGMA, including those in critical overdraft. Sites_A6C Groundwater Basins under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB provided a listing of potential groundwater basins that could be affected by the project. Improvements would occur by supplying supplemental surface water that could be used to facilitate increased conjunctive use practices and replenishment to enhance aquifer storage recovery. Sites operations would change the timing of available surface and groundwater supplies by providing Sites participants with supplemental surface water for storage, use or replenishment (typically in above normal and wet year conditions) and then recovering a portion of the water during periods of water supply shortages (in dry and critical year conditions) by groundwater pumping. Increased conjunctive use and replenishment operations would assist with improving chronic lowering of water levels and reduction of groundwater storage within the groundwater basins associated with Sites Participants. Incidental water quality, salt water intrusion and subsidence improvements may also result with increases in storage and water levels.

 ## Conjunctive Use Management by Sites Participants

 Several Sites Participants have already implemented or are in the process of implemented groundwater replenishment and conjunctive use programs in order to improve groundwater conditions. For example, Santa Clara Water District manages approximately 300 acres of groundwater recharge ponds and more than 90 miles of creeks that recharge approximately 156,000 acre-feet of groundwater each year (2013 California Water Plan Update). There are also several projects considered in the North Sacramento Valley and Sacramento Valley Integrated Regional Water Management Plans (IRWMP) that could potentially use water from Sites Reservoir to support sustainable groundwater management. These projects include:

 - Stony Creek Fan Partnership Conjunctive Management Program
 - Foothill stream restoration and recharge enhancement project;
 - In-lieu recharge project in north-eastern Glenn County; and

 | STATUS: | FINAL | PREPARER: | N SMITH | PHASE: | 1 | VERSION: | A |
 | :--- | :--- | ---: | :--- | ---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFIT | CHECKER: | JHERRIN | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QALQC: | REF/FILE \#: | WSIP APPLICATION | | | |
 | NOTES: | WATER QUALITY PRIORITIES 6 | | PAGE: | 1 | OF | 5 | |

 - Glenn County surface and groundwater quality improvement project.
 - Cooperative Program for Groundwater Studies between the County of Glenn and the Colusa Basin Drainage District

 ## Increases in Regional Surface Water Deliveries

 Table 1 shows the total annual increase in deliveries with the implementation of the project for averages over the long-term and for Dry and Critical water years. An annual breakdown for all water year types is presented in "Regional Deliveries WSIP 2030 with Project vs without Project" are presented in Sites_A6D Modeling Results Compendium under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB.

 Table 1: Increases in Deliveries by Hydrologic Region with the Sites Project

 | CalSim II Modeled Beneficiaries | Average Increase in Deliveries (TAF/yr) | Dry and Critical Increase in Deliveries (TAF/yr) | Average
 Increase in Deliveries (TAF/yr) | Dry and Critical Increase in Deliveries (TAF/yr) | Average Increase in Deliveries (TAF/yr) | Dry and Critical Increase in Deliveries (TAF/yr) |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Sacramento River Hydrologic Region | 2015 | | 2030 | | 2070 | |
 | Supplemental Water to CVP Settlement Contractors | 2 | 6 | 2 | 5 | 1 | 4 |
 | Supplemental Water for CVP Service Area Ag | 67 | 119 | 96 | 137 | 121 | 132 |
 | Supplemental Water for CVP Service Area M\&I | 0 | 0 | 0 | 0 | 0 | 0 |
 | Supplemental Water for SWP Service Area M\&I | 0 | 0 | 0 | 0 | 0 | 0 |
 | Supplemental Water for SWP Service Area Feather River Service Area | 3 | 2 | 4 | 5 | 4 | 4 |
 | Supplemental Water for County of Colusa | 7 | 8 | 8 | 9 | 8 | 8 |
 | Colusa Basin (Incremental Level 4 Refuge Water Supply) | 1 | 0 | 1 | 0 | 1 | 0 |
 | Total | 80 | 136 | 111 | 155 | 136 | 148 |
 | San Joaquin River Hydrologic Region | 2015 | | 2030 | | 2070 | |
 | Supplemental Water for CVP Service Area Ag | 0 | 0 | 0 | 0 | 0 | 0 |
 | Mendota Pool (Incremental Level 4 Refuge Water Supply) | 29 | 13 | 28 | 10 | 25 | 8 |
 | San Francisco Bay Hydrologic Region | 2015 | | 2030 | | 2070 | |
 | Supplemental Water for CVP Service Area Ag | 0 | 0 | 0 | 0 | 0 | 0 |
 | Supplemental Water for SWP Service Area M\&I | 35 | 72 | 38 | 72 | 42 | 77 |
 | Central Coast Hydrologic Region | 2015 | | 2030 | | 2070 | |
 | Supplemental Water for SWP Service Area M\&I | 0 | 0 | 0 | 0 | 0 | 0 |
 | Tulare Lake Hydrologic Region | 2015 | | 2030 | | 2070 | |
 | Supplemental Water for CVP Service Area Ag | 12 | 28 | 13 | 27 | 15 | 29 |
 | Supplemental Water for SWP Service Area M\&I | 0 | 0 | 0 | 0 | 0 | 0 |
 | Supplemental Water for SWP Service Area Ag | 12 | 28 | 13 | 27 | 15 | 29 |
 | Tulare Basin (Incremental Level 4 Refuge Water Supply) | 7 | 3 | 6 | 2 | 6 | 2 |
 | Total | 31 | 58 | 33 | 57 | 36 | 61 |
 | South Lahontan Hydrologic Region | 2015 | | 2030 | | 2070 | |
 | Supplemental Water for SWP Service Area M\&1 | 1 | 3 | 2 | 3 | 2 | 3 |
 | South Coast Hydrologic Region | 2015 | | 2030 | | 2070 | |
 | Supplemental Water for SWP Service Area M\&I | 60 | 126 | 67 | 126 | 73 | 134 |
 | Supplemental Water for SWP Service Area Ag | 0 | 0 | 0 | 0 | 0 | 0 |
 | Delta Environmental Water Quality | 2015 | | 2030 | | 2070 | |
 | Upstream and Delta Inflow | 73 | 72 | 73 | 78 | 68 | 79 |

 | STATUS: | FINAL | PREPARER: | N SMITH |
 | :--- | :--- | ---: | :--- |

 ## Hydrologic Region and Groundwater Basin Information

 The Sites project has the potential to provide improvements to groundwater basins located within the Participant's service area, within Colusa County and near refuges when increases in Incremental Level 4 Refuge Water Supply would be delivered (Table 1). A description of the hydrologic regions is presented in Chapter 6, "Surface Water Resources" of the EIR/EIS. Detailed information regarding groundwater elevation and water wells data for these hydrologic regions can be found on DWR's Groundwater Level Monitoring Website (http://www.water.ca.gov/groundwater/data and monitoring/levels.cfm).

 The greatest benefits from the Sites Project to groundwater are expected in the Sacramento Valley Hydrologic Region. Sites Reservoir would alter the regional water balance in the Sacramento Valley, thereby protecting the region from the long-term overdraft conditions that have come to characterize the San Joaquin Valley.

 Sites Reservoir is an important component of regional water planning for Colusa and Glenn Counties. In 2014 and 2015, the Tehama Colusa Canal received no allocation of water from the Bureau of Reclamation due to the severity of the drought. At the same time, the Colusa subbasin was in an overdraft condition and NASA reported subsidence in the vicinity of Arbuckle, CA (approximately 30 miles south of the proposed location for Sites Reservoir). A recent study concluded that drought, not cropping patterns, is having the dominant effect on declining groundwater levels in this area (Davids Engineering, Inc., Analysis of Land and Water Use in Relation to Groundwater Conditions in Colusa County, 2016). The Sacramento Valley consists of fresh water aquifer systems underlain by larger saline water aquifer systems. Groundwater management must prevent mixing of the fresh and saline aquifer systems. Overpumping of groundwater without adequate recharge could result mixing of these system and degradation of water quality. Recharge throughout the area depends strongly on the availability of supplemental surface water. The reservoir would provide a much more stable water supply of surface water throughout the service areas of Sites participants in the Sacramento Valley (i.e., TCCA, RD 108, County of Colusa and Western Canal WD).

 ## Climate Change Risks

 Climate change projections indicate that California will experience more extreme weather, such as floods and droughts. At the same time, warming temperatures are expected to raise the snowfall elevation, causing more winter precipitation in the Sierra Nevada to occur as rainfall. This will lead to larger and earlier runoff events. As a result of these changes, several million acre-feet of natural snowpack storage could be lost annually, reducing available water supply. In addition, the increasing severity of storms and increased runoff could overwhelm existing reservoir flood protection capacity and increase flood risks downstream.

 By expanding surface storage capacity, water supply systems would have greater flexibility to capture the increased winter runoff and help control larger anticipated flood flows. Additional reserve storage would also allow water to be held over for all uses in dry years and droughts.

 Expansion of surface storage capacity can be an effective climate change adaptation strategy because increasing local and regional surface storage can provide greater flexibility for capturing runoff and managing supplies to meet increasingly variable future conditions. The ability to store water from wet years for use in dry years is critical to addressing increasing climate variability. Additional surface storage allows water to be held over from year to year as a hedge against dry years and droughts.

 Surface storage provides ability to capture flood flows to protect downstream assets and quickly release large quantities of water when demands increase, or to meet instream temperature requirements.

 | STATUS: | FINAL | PREPARER: | N SMITH | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFIT | CHECKER: | J HERRIN | DATE: | 2017 AU | | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP AP | ATION | |
 | NOTES: | WATER QUALITY PRIORITIES 6 | | | PAGE: | 3 | OF | 5 |

 Reservoirs also allow storage of water that can be released slowly at rates that match groundwater basin percolation rates and facilitate recharge of downstream groundwater basins.

 The operational flexibility of Sites Reservoir allows for the delivery of water for public benefits where and when it is needed most while adapting to future conditions to provide sustained public benefits. For further information refer to the Sites_A12 Uncertainty under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB.

 | STATUS: | FINAL | PREPARER: | N SMITH | PHASE: |
 | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | PHYSICAL PUBLIC BENEFIT | CHECKER: | J HERRIN | DATE: |
 | CAVEAT: | | QAVQ: | RERSION: | A |
 | NOTES: | WATER QUALITY PRIORITIES 6 | | REF/FILE \#: | WSIP APPLICATION |
 | | | | PAGE: | 4 |

 Source: Prepared by AECOM 2017
 Figure Water Quality P-6a. Hydrologic regions receiving surface water supplies and potential aea of Groundwater Improvement

 | STATUS: | FINAL | PREPARER: | N SMITH | PHASE: | 1 | VERSION: |
 | :--- | :--- | ---: | :--- | ---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFIT | CHECKER: | JHERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVC: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | WATER QUALITY PRIORITIES 6 | | | PAGE: | 5 | OF |

 ## Attachment A2 - Documentation for Water Quality Priority 9 -Basic Human Needs

 The Sites Project would provide supplemental surface water supplies to Municipal and Industrial (M\&I) water providers whose service areas include disadvantaged communities (DACs) that have drinking water supplies that exceed California maximum contaminant levels for various naturally occurring and human-caused contaminants including arsenic, nitrates, hexavalent chromium, bacteria, radionuclides, and disinfection by-products. The primary source for drinking water in the majority of the DACs is groundwater. Supplemental high quality surface water supplies generated from the project could be made available to DACs with unsafe drinking water supplies.

 In addition, the Sites Reservoir Project water deliveries could augment groundwater storage and water level benefited that could also provide water quality improvements. In some DACs, chronic lowering of groundwater has resulted in wells reportedly going dry during periods of drought. Groundwater level benefits from increased conjunctive use by Sites participants could also improve access to drinking water supplies in DACs with wells going dry, particularly in the Sacramento River Colusa Subbasins.

 ## Methods

 An evaluation of water supplies and public water systems within the hydrologic regions that will receive Sites Reservoir M\&I water supplies and DACs was performed to identify potential disadvantaged communities where those basic human water needs, such as drinking, cooking, and bathing, are not currently being met. The State Water Resources Control Board (SWRCB) Human Right to Water Portal was used to identify water systems that currently do not meet drinking water standards. Water system details were obtained using the SWRCB's Safe Drinking Water Information System. DACs were identified using DWR's web-based Disadvantaged Communities Mapping Tool (DWR, 2015b). An overlay of the Sites Participant's service areas and DAC in areas with drinking water systems not currently meeting standards was performed.

 ## Results

 Table 1 presents the drinking water systems that are currently not meeting drinking water Standards in Participant Service Areas. These areas are also shown on Figures Water Quality P - 9a through Figures Water Quality P-9c. The allocation of deliveries within each service area will be defined by each M\&I participant and could vary from year-to-year depending on the needs of water users in that service area and specific timing and amount of deliveries from the Sites project.

 | STATUS: | FINAL | PREPARER: | N SMITH | PHASE: | 1 | VERSION: | A |
 | :--- | :--- | ---: | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFIT | CHECKER: J HERRIN | DATE: | 2017 AUGUST | | | |
 | CAVEAT: | | QAQC: | REF/FILE \#: | WSIP APPLICATION | | | |
 | NOTES: | WATER QUALITY PRIORITIES 9 | | PAGE: | 1 | OF | 5 | |

 | Table 1: Disadvantaged Community Drinking Water Systems Not Meeting Drinking Water Standards in Participant Service Areas | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Drinking Water System ID | Population Served | System Violations | Site Participant Service Area | Groundwater Basin ID | Groundwater Basin Name | Hydro Region | Disadvantaged Community | Disadvantaged Community Population (2014) |
 | CA3900579 | 50 | Arsenic | CA Water Service Co. | 5-22.01 | San Joaquin Valley | San Francisco Bay | Garden Acres CDP | 6,559 |
 | CA3901213 | 30 | Arsenic, Coliform | CA Water Service Co. | 5-22.01 | San Joaquin Valley | San Francisco Bay | Stockton City CDP | 5,677 |
 | CA4310013 | 29,635 | Disinfection byproducts | Santa Clara Valley Water District | 2-9.02 | Santa Clara Valley | San Francisco Bay | Census Tract 5130 | 7,450 |
 | CA1500493 | 200 | Arsenic | CA Water Service Co. | 5-22.14 | San Joaquin Valley | Tulare Lake | Census Tract 31.22 | 8,612 |
 | CA1500585 | 100 | Arsenic | CA Water Service Co. | 5-22.14 | San Joaquin Valley | Tulare Lake | Census Tract 31.22 | 8,612 |
 | CA1502699 | 35 | Nitrate-Nitrite, Coliform | CA Water Service Co. | 5-22.14 | San Joaquin Valley | Tulare Lake | Census Tract 31.22 | 8,612 |
 | CA1510024 | 8,500 | Arsenic, E. Coli | CA Water Service Co. | 5-22.14 | San Joaquin Valley | Tulare Lake | Census Tract 31.22 | 8,612 |
 | CA1500575 | 165 | Nitrate, Nitrate-Nitrite | CA Water Service Co. | 5-22.14 | San Joaquin Valley | Tulare Lake | Census Tract 23.02 | 3,444 |
 | CA1500494 | 66 | Nitrate, Nitrate-Nitrite | CA Water Service Co. | 5-22.14 | San Joaquin Valley | Tulare Lake | Census Tract 9.05 | 2,553 |
 | CA1500455 | 56 | Arsenic | Antelope Valley - East Kern Water Agency | 6-46 | Fremont Valley | Tulare Lake | Census Tract 59 | 3,678 |
 | CA1510002 | 2,253 | Arsenic, Disinfection byproducts | Antelope Valley - East Kern Water Agency | 6-44 | Antelope Valley | Tulare Lake | Census Tract 56 | 2,241 |
 | CA1500424 | 190 | Arsenic | Antelope Valley - East Kern Water Agency | 6-44 | Antelope Valley | Tulare Lake | Census Tract 58.02 | 7,877 |
 | CA1500485 | 60 | Hexavalent Chromium, Arsenic | Antelope Valley - East Kern Water Agency | 6-44 | Antelope Valley | Tulare Lake | Census Tract 58.02 | 7,877 |
 | CA1500571 | 73 | Arsenic, Nitrate | Antelope Valley - East Kern Water Agency | 6-44 | Antelope Valley | Tulare Lake | Census Tract 58.02 | 7,877 |
 | CA1502231 | 940 | Arsenic | Antelope Valley - East Kern Water Agency | 6-44 | Antelope Valley | Tulare Lake | Census Tract 58.02 | 7,877 |
 | CA1502569 | 35 | Hexavalent Chromium, Arsenic | Antelope Valley - East Kern Water Agency | 6-44 | Antelope Valley | Tulare Lake | Census Tract 58.02 | 7,877 |
 | CA1502744 | 44 | Hexavalent Chromium, Arsenic | Antelope Valley - East Kern Water Agency | 6-44 | Antelope Valley | Tulare Lake | Census Tract 58.02 | 7,877 |
 | CA1900038 | 61 | Arsenic | Antelope Valley - East Kern Water Agency | 6-44 | Antelope Valley | Tulare Lake | Census Tract 9005.06 | 5,020 |
 | CA1900785 | 24 | Arsenic | Antelope Valley - East Kern Water Agency | 6-44 | Antelope Valley | Tulare Lake | Census Tract 9008.06 | 3,883 |
 | CA1900100 | 135 | Arsenic | Antelope Valley - East Kern Water Agency | 6-44 | Antelope Valley | Tulare Lake | Census Tract 9010.10 | 6,271 |
 | CA1900520 | 50 | Arsenic, Coliform | Antelope Valley - East Kern Water Agency | 6-44 | Antelope Valley | Tulare Lake | Census Tract 9010.10 | 6,271 |
 | CA1900961 | 56 | Arsenic, Coliform | Antelope Valley - East Kern Water Agency | 6-44 | Antelope Valley | Tulare Lake | Census Tract 9010.10 | 6,271 |
 | CA1910246 | 1,500 | Arsenic, Coliform, Radionuclides | Antelope Valley - East Kern Water Agency | 6-44 | Antelope Valley | Tulare Lake | Census Tract 9010.10 | 6,271 |
 | CA3710707 | 489 | Disinfection byproducts | Metropolitan Water District | 9-14 | Mission Valley | South Coast | Census Tract 62 | 26 |
 | CA3301380 | 300 | Arsenic, Nitrate | Coachella Valley Water District | 7-31 | Orocopia Valley | Colorado | Census Tract 456.04 | 13,677 |
 | CA3303100 | 314 | Hexavalent Chromium, Arsenic | Coachella Valley Water District | 7-21.01 | Coachella Valley | Colorado | Census Tract 456.09 | 5,671 |
 | CA0600008 | 500 | Arsenic | Colusa County | 5-21.52 | Sacramento Valley | Sacramento | Grimes CDP | 5-21.52 |
 | CA3610064 | 87,000 | Disinfection byproducts, Gross Alpha Particle Activity | San Bernardino Valley Municipal Water District | 8-02.06 | Upper Santa Ana Valley | South Coast | San Bernardino CDP | 8-02.06 |
 | CDP $=$ Census designated place | | | | | | | | |

 \[

 $$
 \begin{aligned}
 & \text { PREPARER: N SMITH } \\
 & \text { CHECKER: J HERRIN } \\
 & \begin{array}{lc}
 \text { PHASE: } & 1 \\
 \text { DATE: } & 2017 \text { AUGUST }
 \end{array} \\
 & \begin{array}{l}
 \text { DATE: } 2017 \text { AUGUST } \\
 \text { REFFILE \#\#: WSIP APPLICATION }
 \end{array}
 \end{aligned}
 $$
 \]

 des: water quality priorities 9

 Source: Prepared by AECOM 2017
 Figure Water Quality P - 9a. Disadvantaged Community Block Groups within Site Participant's Service Area (Northern California)

 | Status: | FINAL | PREPARER: | NSMITH | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: caveat: | Physical public benefit | $\begin{gathered} \text { CHECKER: } \\ \text { OANOO: } \end{gathered}$ | J Herrin | | 2017 A | ST | |
 | notes: | WATER QUALTY PRIORITIES 9 | | | PagE: | 3 | of | 5 |

 Figure Water Quality P - 9b. Disadvantaged Community Block Groups within Site Participant's Service Area (Central California)

 | Status: | FINAL | PREPARER: | NSmith | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE CAVEAT: | Physical public benefit | $\begin{gathered} \text { CHECKER: } \\ \text { QANOC: } \end{gathered}$ | J HERIIN | $\begin{aligned} & \text { DATE: } \\ & \text { REF/FILE \#: } \end{aligned}$ | 2017 A WSIP A | $\begin{aligned} & \text { JST } \\ & \text { CATION } \end{aligned}$ | |
 | notes: | WATER QUALTY Priorities 9 | | | PAGE: | 4 | of | 5 |

 Source: Prepared by AECOM 2017
 Figure Water Quality P - 9c. Disadvantaged Community Block Groups within Site Participant's Service Area (Southern California)

 | STATUS: | final | PREPARER: NSMITH | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: caveat: | PhYSICAL Public benefit | CHECKER: J HERRIN QAOC: | DATE
 REFEIE
 . | 2017 WSIP A | cation | |
 | notes: | WATER QUALITY PRIORITIES 9 | | PAGE: | 5 | of | 5 |

 ## Physical Public Benefits Tab

 Attachment 2: Ecosystem Documentation Priorities 1, 2, 10, 14, 15, and 16

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 | VERSION: | A |
 | :--- | :--- | :---: | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | | QAQC: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 1 | | | |

 This page intentionally left blank.

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 | VERSION: |
 | :--- | :--- | :---: | ---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | | QAQC: | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 2 | OF | |

 ## Table of Contents

 Attachment 2: Ecosystem Documentation Priorities 1, 2, 10, 14, 15, and 16 1
 Ecosystem Priority 1: Provide cold water at times and locations to increase the survival of salmonid eggs and fry 7
 Improved Temperatures 7
 Reduction in Sacramento River Winter-run Chinook Salmon Mortality 10
 Species Conservation Plans. 13
 Ecosystem Priority 2: Provide flows to improve habitat conditions for in-river rearing and downstream migration of juvenile salmonids 14
 Ecosystem Priority 10: North Delta Food Web Study 15
 Ecosystem Priority 14: Ecosystem Priorities Application Worksheet- Terrestrial 34
 Effects of Water Reductions at Refuges: 34
 Ecosystem Priority 15: Develop and Implement Invasive Species Management Plans 37
 Central Valley Prairie 37
 Central Valley Prairie Importance 39
 Central Valley Prairie Creation Approach 39
 Ecosystem Priority 16: Ecosystem Priorities Application Worksheet- Terrestrial 40
 CalSim Model Runs - Refuges 40
 Native Species Benefiting from Implementation of the Project 41
 References: 43

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 |
 | :--- | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAVQC: | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 3 | |

 ## Tables

 Table A2-1. Temperature (${ }^{\circ}$ F) Improvements in Critical Water Years (July through September Period) 7
 Table A2-2. American River Temperature (${ }^{\circ}$ F) Improvement at Watt Avenue (July to September) 7
 Table A2-3. Estimated Percent Reduction in Mortality Due to Thermal Benefits of Project to Salmonid Eggs and Fry 10
 Table A2-4. Stabilize Sacramento River Fall Flows 14
 Table A2-5. Increased Juvenile Production Compared to Without Project (SALMOD 2030) 14
 Table A2-6. Difference: WSIP 2030 With Project minus WSIP 2030 Without Project, Refuge Water Supplies (Central Valley Project [CVP] Contract, Sites and Acquisitions Supplies), Long-term Average and Average by Water Year Type 35
 Table A2-7. Difference: WSIP 2030 With Project minus WSIP 2030 Without Project for Sites Deliveries of Incremental Level 4 Refuge 35
 Table A2-8. Difference: WSIP 2030 With Project minus WSIP 2030 Without Project Sites Deliveries to Sacramento Valley Members: Long-term Average and Average by Water Year Types 36
 Table A2-9. Difference: WSIP 2030 With Project minus WSIP 2030 Without Project Sites Deliveries to South of Delta Members for Agriculture: Long-term Average and Average by Water Year Types 36
 Table A2-10. Difference: WSIP 2030 With Project minus WSIP 2030 Without Project, Refuge Water Supplies (CVP Contract, Sites and Acquisitions Supplies), Long-term Average and Average by Water Year Type 40
 Table A2-11. Waterfowl 41
 Table A2-12. Shorebirds/Egrets/Other Wetland-Dependent Species 42
 Table A2-13. Special-Status Species. 42
 Figures
 Figure A2-1: Area of Temperature Improvement for the Sacramento River 8
 Figure A2-2: Area of Temperature Improvement for the American River 9
 Figure A2-3: Virgate tarplant 37
 Figure A2-4 California Grassland Habitats mapped in 1995 by the GAP Analysis Project 38

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 |
 | :--- | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAVQ: | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 4 | |

 ## Acronyms and Abbreviations

 | º F | Fahrenheit |
 | :--- | :--- |
 | CDFW | California Department of Fish and Wildlife |
 | cfs | cubic feet per second |
 | CV | Central Valley |
 | CVP | Central Valley Project |
 | DCH | Designated Critical Habitat |
 | EFH | Essential Fish Habitat |
 | GCID | Glenn Colusa Irrigation District |
 | IEP | Magnuson-Stevens Fishery Conservation and Management Act |
 | MSA | National Marine Fisheries Service |
 | NMFS | National Wildlife Refuge |
 | NOAA | primary constituent elements Program |
 | NWR | Pacific Fishery Management Council |
 | PCE | U.S. Bureau of Reclamation Temperature Model |
 | PFMC | River Mile |
 | RECTEMP | State Water Resources Control Board |
 | RM | Tehama-Colusa Canal Authority |
 | SWRCB | Upper Sacramento River Water Quality Model |
 | TCCA | USRWQM |

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 A | UST | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP A | ICATION | |
 | NOTES: | | | | PAGE: | 5 | of | 44 |

 This page intentionally left blank.

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 | VERSION: |
 | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAQC: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 6 | | |

 # Ecosystem Priority 1: Provide cold water at times and locations to increase the survival of salmonid eggs and fry

 ## Improved Temperatures

 Cold water benefits will be realized by operating Sites Reservoir and Shasta Lake in cooperation to preserve a greater volume of coldwater pool storage in Shasta Lake. This will be accomplished by substituting water from Sites Reservoir to meet a portion of the CVP water demand from Shasta (especially in the lower GCID and TCCA service areas) thus allowing cold water to be conserved in storage in Shasta Reservoir to benefit anadromous fish. This water will be released to maintain appropriate water temperatures in the Sacramento River, with particular emphasis on the months of highest potential water temperature related impacts. The area of temperature improvement for the Sacramento River resulting from the Project is shown in Figure A2-1 below and temperature improvements in Critical water years are shown in Table A2-1. Shasta Lake average end-of-month storage in May under simulated current, 2030, and 2070 dry water year conditions increases by 90 thousand acre feet (TAF) to 100 TAF above the respective without-project conditions.

 Table A2-1. Temperature (${ }^{\circ}$ F) Improvements in Critical Water Years (July through September Period)

 | Sacramento
 River Location | Current Condition
 without Project (${ }^{\circ} \mathrm{F}$) | Current Condition
 with Project ($\left.{ }^{\circ} \mathrm{F}\right)$ | Difference
 $\left({ }^{\circ} \mathrm{F}\right)$ | WSIP 2030 without
 Project ($\left.{ }^{\circ} \mathrm{F}\right)$ | WSIP 2030 with
 Project $\left({ }^{\circ} \mathrm{F}\right)$ | Difference
 $\left({ }^{\circ} \mathrm{F}\right)$ |
 | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
 | Bonnyview | 56.5 | 55.1 | -1.4 | 56.5 | 55.9 | -0.6 |
 | Balls Ferry | 58.0 | 56.6 | -1.4 | 58.1 | 57.5 | -0.6 |
 | Jellys Ferry | 59.2 | 57.9 | -1.3 | 59.4 | 58.8 | -0.6 |
 | Bend Bridge | 60.1 | 58.9 | -1.2 | 60.3 | 59.7 | -0.6 |

 Through releases from Sites Reservoir to meet TCCA and GCID irrigation diversions and equivalent reductions in CVP Shasta Lake releases, demands on Shasta Lake storage could be reduced and the coldwater pool maintained for a longer time at higher levels than are currently achievable. Shasta Lake release patterns could be shifted in season and between adjacent years to improve coldwater storage and flow management for salmon and other species using the portion of the Sacramento River between Keswick Dam and the Red Bluff Pumping Plant as habitat. Similar increases in storage can be achieved in Lake Oroville (average end-of-May increases of 25 to 35 TAF).

 The operation of Sites Reservoir also provides opportunity for improved temperature conditions in the American River. Results for the American River at Watt Avenue are provided in Table A2-2 and the area of temperature improvement for the American River is shown in Figure A2-2.

 Table A2-2. American River Temperature (${ }^{\circ} \mathrm{F}$) Improvement at Watt Avenue (July to September)

 | Year Type | 2015 without
 Project | 2015 with
 Project | Difference | WSIP 2030
 without
 Project | WSIP 2030
 with Project | Difference |
 | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
 | Average | 66.7 | 65.8 | -0.9 | 70.6 | 69.9 | |
 | Dry | 68.0 | 67.2 | -0.8 | 70.7 | -0.6 | |
 | Critical | 71.6 | 70.2 | -1.4 | 73.6 | -0.2 | |

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 | VERSION: | A |
 | :--- | :--- | :---: | ---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | QAQC: | DATE: | 2017 AUGUST | |
 | CAVEAT: | | | REF/FILE \#: | WSIP APPLICATION | | | |
 | NOTES: | | | PAGE: | 7 | | | |

 Figure A2-1: Area of Temperature Improvement for the Sacramento River

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 | VERSION: |
 | :--- | :--- | :---: | ---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAQC: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 8 | | |

 Figure A2-2: Area of Temperature Improvement for the American River

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 | VERSION: | A |
 | :--- | :--- | :---: | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | | QAQC: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 9 | | | |

 ## Reduction in Sacramento River Winter-run Chinook Salmon Mortality

 The estimated percent reduction in mortality to Winter-run Chinook salmon eggs and fry due to thermal benefits of the project are summarized in Table A2-3, separated by location and water year type.

 Table A2-3. Estimated Percent Reduction in Mortality Due to
 Thermal Benefits of Project to Salmonid Eggs and Fry

 | Winter-run Chinook | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Locations along the Sacramento River | Keswick | Bonnyview Bridge | Balls Ferry | Jellys Ferry | Bend Bridge | Red Bluff | Below Red Bluff |
 | Eggs | | | | | | | |
 | Dry Water Years | | | | | | | |
 | August | - | - | - | - | - | - | - |
 | September | - | - | 8\% | - | - | - | - |
 | October | - | - | - | - | - | - | - |
 | Critical Water Years (15\% of total water years) | | | | | | | |
 | August | - | - | 15\% | - | - | - | - |
 | September | 8\% | 7\% | 25\% | - | - | - | - |
 | October | - | - | - | - | - | - | - |
 | Fry (Alevins) | | | | | | | |
 | Dry Water Years | | | | | | | |
 | August | - | - | - | - | - | - | - |
 | September | - | - | 25\% | - | - | - | - |
 | October | - | - | - | - | - | - | - |
 | Critical Water Years (15\% of total water years) | | | | | | | |
 | August | - | - | - | - | - | - | - |
 | September | - | - | 15\% | - | - | - | - |
 | October | - | - | - | - | - | - | - |

 Beginning at Keswick Dam and continuing in a downstream direction the results were:

 ## Sacramento River Below Keswick Dam (RM 302.0) (Table SQ2-1a)

 Critical water years only (15\% of total water years): During September 2030 without the project the mean monthly water temperature is projected to be $57^{\circ} \mathrm{F}$, thus exceeding the upper water temperature optimum of $56^{\circ} \mathrm{F}$ for egg incubation, but less than the upper water temperature of $58^{\circ} \mathrm{F}$ for preemergent alevins. At this temperature it is expected that egg mortality will increase by 8 percent after 24 days of exposure. No increase in mortality for pre-emergent alevins will occur (Vogel 2015, Table 3, page 10). With the project in place $56^{\circ} \mathrm{F}$ will not be exceeded in September, and egg and alevin mortality will not increase over natural levels. Therefore, the project would reduce egg mortality during September by approximately 8 percent for those eggs remaining in redds. In October 2030 both with and without the project the mean monthly water temperature will rise to $58^{\circ} \mathrm{F}$, thereby increasing egg mortality by 15 percent over 22 days of exposure for any remaining incubating eggs. The number of incubating eggs in October is expected to be small. There would be no increase in alevin mortality with or without the project (Vogel 2015, Table 3, page 10). Both operating scenarios would have similar results by increasing egg mortality during October. During November only pre-emergent fry remain in

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 |
 | :--- | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAVQ: | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 10 | |

 the spawning gravels and water temperatures with and without the project remain less than $58^{\circ} \mathrm{F}$, indicating no increase in mortality with or without the project over natural levels.

 Percent Increase in Shasta September Storage vs Percent Increase in Out-Migrating Juvenile Chinook Salmon as Compared to Without Project Conditions (Simulated 1987-1992)
 *Values presented in TAF represent increases in Shasta September Storage as Compared to Without Project Conditions

 ## Sacramento River at Bonnyview Bridge, Redding (RM 291.8) (Table SQ3-1a)

 Note that most Winter-run spawning occurs (greater than 90 percent) upstream of this location which is 10.2 miles downstream of Keswick Dam.

 Critical water years only (15% of total water years): During September 2030 the mean monthly water temperature without the project is projected to be $58^{\circ} \mathrm{F}$, thus exceeding the upper water temperature optimum of $56^{\circ} \mathrm{F}$ for egg incubation, but not exceeding the thermal optimum of $58^{\circ} \mathrm{F}$ for pre-emergent alevins. The $58^{\circ} \mathrm{F}$ water temperature would result in an estimated 15 percent increase in egg mortality over a 22 day period for those eggs still incubating. With the project in place, egg mortality would decline to 8 percent over a 24 -day exposure period (Vogel 2015, Table 3, page 10). Thus, the project would reduce egg mortality during September by approximately 7 percent. Pre-emergent alevins would not be exposed to greater mortality than natural levels with or without the project during September. During October 2030 egg mortality without the project is projected to be $59^{\circ} \mathrm{F}$, thus exceeding the upper water temperature optimum of $56^{\circ} \mathrm{F}$ for egg incubation. This temperature would result in an estimated 25 percent increase in mortality over natural levels if exposed for 20 days for those eggs remaining. The number of incubating eggs in October is expected to be small. During October 2030 with the project the

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 |
 | :--- | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DERSION: | A |
 | CAVEAT: | | QAVC: | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 11 | |

 mean monthly water temperature is projected to be $58^{\circ} \mathrm{F}$ which would result in a 15 percent increase in egg mortality over natural levels if exposed for 22 days for those eggs remaining. Therefore, the project would reduce egg mortality by 10 percent at this location during October. Without the project preemergent alevins would be exposed to a 10 percent higher mortality rate if exposed for 14 days. With the project, no increase in mortality would occur. Therefore, the project would reduce pre-emergent alevin mortality by 10 percent over the without project scenario. During November only pre-emergent fry remain in the spawning gravels and water temperatures with and without the project remain less than $58^{\circ} \mathrm{F}$, indicating no increase in mortality with or without the project.

 ## Sacramento River at Balls Ferry (RM 276.0) (Table SQ4-1a)

 Note that all Winter-run spawning occurs 13 miles or further upstream of this location. Balls Ferry is 26 miles downstream of Keswick Dam. No redds with incubation eggs and pre-emergent alevins would be located at Balls Ferry. Balls Ferry is a water temperature compliance point with a target water mean daily water temperature of $56^{\circ} \mathrm{F}$ (State Water Resources Control Board WR 90-5 [1990]).

 Dry water years only (22% of total water years): During September of 2030 mean monthly water temperature is projected to reach $57^{\circ} \mathrm{F}$, thus exceeding the upper water temperature optimum of $56^{\circ} \mathrm{F}$ for egg incubation, but not exceeding the thermal optimum of $58^{\circ} \mathrm{F}$ for pre-emergent alevins. At this temperature it is expected that egg mortality would increase by 8 percent after 24 days of exposure, if eggs were actually present at this location. No increase in mortality for pre-emergent alevins would occur if alevins were actually present (Vogel 2015, Table 3, page 10). With the project in place $56^{\circ} \mathrm{F}$ would not be exceeded in September, and egg and alevin mortality would not increase over natural levels were eggs and alevins actually present at this location. Therefore, the project would reduce egg mortality during September by approximately 8 percent for those eggs remaining in redds if eggs were actually present at Balls Ferry. In October 2030 the opposite is true, with the project resulting in a mean monthly water temperature of $57^{\circ} \mathrm{F}$ and without the project a projected $56^{\circ} \mathrm{F}$. Therefore, the theoretical increase in egg mortality would be 8 percent with the project and no increase without the project. No impact to pre-emergent alevins would occur with and without the project if alevins were actually present at this location.

 Critical water years only (15% of total water years): The mean monthly water temperature index of $56^{\circ} \mathrm{F}$ for egg incubation is exceeded from July through October 2030 both with and without the project. In July the mean monthly water temperature with and without the project is $57^{\circ} \mathrm{F}$ which would result in an 8 percent increase in mortality over natural levels if exposed for 24 days (Vogel 2015, Table 3, page 10). In August this value would increase to $58^{\circ} \mathrm{F}$ without the project, but remain at $57^{\circ} \mathrm{F}$ with the project. Therefore, in August, the project would reduce egg mortality by 15 percent if exposed for 22 days. During September the mean monthly water temperature would increase to $60^{\circ} \mathrm{F}$ without the project and $59^{\circ} \mathrm{F}$ with the project. Thus, egg mortality would increase by 50 percent without the project over a 12 -day exposure and 25 percent with the project over a 20 day exposure. Therefore the project would reduce egg mortality by 25% in September. During October the mean monthly water temperature both with and without the project is $59^{\circ} \mathrm{F}$, resulting in an increase in egg mortality of 25 percent for a 20 day exposure for those few eggs still incubating. Pre-emergent alevins would not be exposed to increased mortality until September 2030. During September the mean monthly water temperature is projected to reach $60^{\circ} \mathrm{F}$ without the project and $59^{\circ} \mathrm{F}$ with the project. The respective increases in alevin mortality greater than natural levels are 25 percent over a 14-day exposure period and 10 percent over the same period (Vogel 2015, Table 3, page 10). Therefore the project would reduce alevin mortality by 15% in September. During October 2030, the mean monthly water temperature is $59^{\circ} \mathrm{F}$ with and without the project resulting in a 10 percent increase in mortality over a 14-day period for remaining alevins had

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 | VERSION: |
 | :--- | :--- | :---: | :--- | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAQC: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 12 | | |

 they actually been present at Balls Ferry. Alevin mortality would not increase above natural levels during November 2030 for any fish remaining in redds.

 In summary, in the reach of the Sacramento River used by spawning Winter-run Chinook salmon from Keswick Dam to Clear Creek, the proposed project in 2030 will reduce the percentage of egg mortality in September and October of critically dry water years from 7 to 10 percent depending on location. In the spawning reach pre-emergent fry (alevins) would not be impacted adversely by water temperature with or without the project.

 ## Species Conservation Plans

 The ecosystem improvement is consistent with two recovery actions of National Oceanic and Atmospheric Administration (NOAA) Fisheries Recovery Plan for Winter-run Chinook salmon, Spring-run Chinook salmon, and Central Valley steelhead in the mainstem Sacramento River (National Marine Fisheries Service [NMFS] 2014). The actions in the NOAA Fisheries that will be met are: (1) to develop and apply alternative diversion technologies that reduce entrainment, and (2) evaluate and reduce stranding of juvenile chinook salmon in the channels from Keswick Dam to Colusa, due to flow reductions from Keswick Reservoir, by increasing or stabilizing releases from the reservoir. The ecosystem improvement is also consistent with three of the proposed actions listed in the Sacramento Valley Salmon Resiliency Strategy. These actions are: (1) increase productivity by improving spawning and incubation conditions (habitat and water quality); (2) increase productivity by increasing juvenile salmonid survival; and (3) support the full range of juvenile and adult migration conditions to maintain life history diversity. The project will meet these actions by providing increased flows and management of intake diversions to benefit salmonids in the Sacramento River below Keswick Dam. With improved flows, the project will also enhance and improve the quality of Essential Fish Habitat (EFH) and Designated Critical Habitat (DCH). Essential Fish Habitat is defined in the Magnuson-Stevens Act (MSA) as the waters and substrate necessary for fish spawning, breeding, feeding, or growth until maturity (MSA §3(10)). The project will improve EFH for Pacific Coast Salmon (all four runs of Chinook included) by providing enhanced thermal refugia, floodplain habitats, and spawning habitat which included in the habitat areas of particular concern for Pacific Coast Salmon (Pacific Fishery Management Council [PFMC] and NMFS 2014). The US Fish and Wildlife Service defines DCH by considering those physical or biological features that are essential to the conservation of a given species, and designating specific areas within the geographic area occupied by the species at the time of listing. The project will provide enhanced DCH's primary constituent elements (PCE) as defined in 70 FR 52488 for steelhead. These PCEs are as follow: more suitable flow conditions, additional rearing sites, and increase in downstream passage.

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 A | UST | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP A | ICATION | |
 | NOTES: | | | | PAGE | 13 | OF | 44 |

 ## Ecosystem Priority 2: Provide flows to improve habitat conditions for in-river rearing and downstream migration of juvenile salmonids

 The additional water stored in Shasta Reservoir will be released to augment Sacramento River flows downstream from Keswick Dam. These flows will simulate punctuated high flow events that would trigger increased activity in downstream movement of juvenile Chinook Salmon. The greatest value in providing increase in flows in the Sacramento River below Keswick Dam is to emigrating juvenile Winterrun, Fall-run, and Late fall-run Chinook salmon. Similarly, increased water stored from Lake Oroville and Folsom Lake will also be released to benefit habitat conditions for in-river rearing and downstream emigration of juvenile Chinook salmon in the Feather and American rivers.

 Sites Reservoir would provide a 4.2% (338 cubic feet per second [cfs]) long term average increase in flows in the Sacramento River between Keswick Dam and the Red Bluff Diversion Dam (Table A2-4). Model results using different water year types show that there is a 7.0% (380 cfs) increase in flows in below normal water years and a 7.6% (334 cfs) increase in flows in dry water years. In 2030, there is a 2.5\% (209 cfs) long term average increase in flows, a 3.4\% (169 cfs) increase in below normal water years, and a 10.8% (495 cfs) increase in dry water year flows.

 Table A2-4. Stabilize Sacramento River Fall Flows

 | Flow Increase
 (Nov-Feb) | Current
 Condition
 Increase (cfs) | Current
 Condition
 Increase (\%) | $\mathbf{2 0 3 0}$ Increase
 (cfs) | $\mathbf{2 0 3 0}$ Increase
 (\%) | $\mathbf{2 0 7 0}$ Increase
 (cfs) | $\mathbf{2 0 7 0}$ Increase
 (\%) |
 | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long Term Avg | 338 | 4.2 | 209 | 2.5 | 93 | 1.1 |
 | Below Normal | 380 | 7.0 | 169 | 3.4 | 127 | 2.2 |
 | Dry | 334 | 7.6 | 495 | 10.8 | 163 | 3.8 |

 Flow augmentation in the Sacramento River was estimated using the WSIP and provided CALSIM model that showed benefits to fall-run and late fall-run Chinook salmon productions (Table A2-5).

 Table A2-5. Increased Juvenile Production Compared to Without Project (SALMOD 2030)

 | Year Type | Fall-run | Late fall-run |
 | :---: | :---: | :---: |
 | Long Term Avg | 435,000 | 70,188 |
 | Wet | 28,401 | 37,827 |
 | Above Normal | $1,338,057$ | 61,484 |
 | Below Normal | 118,225 | 37,207 |
 | Dry | 19,886 | 57,277 |
 | Critical | $1,493,425$ | 208,800 |

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 A | JST | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP A | CATION | |
 | NOTES: | | | | PAGE | 14 | OF | 44 |

 ## Ecosystem Priority 10: North Delta Food Web Study

 ## SWC Briefing: North Delta Food Web Study

 ## March 2017

 Ted Sommer and Jared Frantzich Department of Water Resources

 FINAL
 PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2

 PREPARER: N PONFERRADA

 ## CHECKER: J HERRIN

 QAOC:

 ## Delta Smelt Abundance Indices Remain near Historic Lows

 PREPARER: N PONFERRADA CHECKER: J HERRIN QAQC:
 PH

 DATE: 2017 AUGUST REF/FILE \#: WSIP APPLICATION

 PAGE: 16 OF 44

 ## Delta Smelt Resilience Strategy

 ## 13 Proposed Actions

 - Aquatic Weed Control
 - North Delta Food Web Adaptive Management Projects
 - Outflow Augmentation
 - Reoperation of the Suisun Marsh Salinity Control Gates
 - Sediment Supplementation in the Low Salinity Zone
 - Spawning Habitat Augmentation

 - Roaring River Distribution System Food Production
 - Coordinate Managed Wetland Flood and Drain Operations in Suisun Marsh
 - Adjust Fish Salvage Operations during Summer and Fall
 - Storm water Discharge Management
 - Rio Vista Research Station and Fish Technology Center
 - Near-term Delta Smelt Habitat Restoration
 - Franks Tract Restoration Feasibility Study

 | PHASE: | 1 | VERSION: | A |
 | ---: | :---: | :---: | :---: |
 | DATE: | 2017 AUGUST | | |
 | REF/FILE \#: | WSIP APPLICATION | | |
 | PAGE: | 18 | OF | 44 |

 FINAL
 PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2

 PREPARER: N PONFERRADA
 CHECKER: J HERRIN QAQC:

 | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: |
 | DATE: | 2017 | AUGUST | |
 | REF/FILE \#: | WSIP APPLICATION | | |
 | PAGE: | 19 | OF | 44 |

 Delta Smelt Food Web Flow Action Summer 2016

 Project Coordination

 STATUS: FINAL

 ## FINAL

 PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2

 | PREPARER: | N PONFERRADA |
 | ---: | :--- |
 | CHECKER: | J HERRIN |

 QAQC JHERRIN QA/QC:

 PHASE: 1 VERSION: A
 DATE: 2017 AUGUST
 REF/FILE \#: WSIP APPLICATION
 PAGE: 20 OF 4

 | STATUS: | FINAL |
 | :--- | :--- |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 |
 | CAVEAT: | |
 | NOTES: | |

 PREPARER: N PONFERRADA
 CHECKER: J HERRIN QAVC:

 REF/FILE \#: WSIP APPLICATION
 PAGE: 21 OF

 FINAL
 PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2

 PAGE: 22 OF 44

 ## Delta Smelt Flow Action: Study Team

 ## San Francisco
 State University

 Zooplankton: Kimmerer

 Field Coordination: Jared Frantzich Flow
 Water quality
 Plankton

 Funding
 Dept Fish and Wildlife
 Dept Water Resources
 US Bureau of Reclamation
 State and Federal Water Contractors Association
 PAGE: 23 OF 44

 ## FINAL

 PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2

 PREPARER: N PONFERRADA
 CHECKER: J HERRIN
 QAVC:

 | PHASE: | 1 | VERSION: | A |
 | ---: | :---: | :---: | :---: |
 | DATE: | 2017 | AUGUST | |
 | REF/FILE \#: | WSIP APPLICATION | | |
 | PAGE: | 24 | OF | 44 |

 ## Evidence of Downstream Response at Rio Vista

 PREPARER: N PONFERRADA

 ## CHECKER: J HERRIN

 QAQC:

 | PHASE: | 1 | VERSION: | A |
 | ---: | :---: | :---: | :---: |
 | DATE: | 2017 AUGUST | | |
 | REF/FILE \#: | WSIP APPLICATION | | |
 | PAGE: | 25 | OF | 44 |

 ## Big Change in Downstream Biomass and Species


    ```
    PREPARER: N PONFERRADA
    CHECKER: J HERRIN
    QAQC
    ```

 | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: |
 | DATE: | 2017 | AUGUST | |
 | REF/FILE \#: | WSIP APPLICATION | | |
 | PAGE: | 26 | OF | 44 |

 ## Response in Yolo Bypass Was Impressive

 Higher than other Delta Regions

 FINAL
 PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2

 PREPARER: N PONFERRADA
 CHECKER: J HERRIN QA/QC:

 Higher Than Prior Years

 | PHASE: | 1 | VERSI ON: | A |
 | ---: | :---: | :---: | :---: |
 | DATE: | 2017 | AUGUST | |
 | REF/FILE \#: | WSIP APPLICATION | | |
 | PAGE: | 27 | OF | 44 |

 ## Contrast With Harmful Algal Blooms Elsewhere

 ## STATUS:

 PREPARER: N PONFERRADA PHASE: 1 VERSION: A
 CHECKER: J HERRIN
 QAVC:
 $\begin{array}{cc}\text { PHASE: } & 1 \\ \text { DATE: } & 2017 \text { AUGUST }\end{array}$
 REF/FILE \#: WSIP APPLICATION
 PAGE: 28 OF 44

 ## Copepod Response Less Apparent

 *High Downstream Abundance

 ## July 7 (Before)

 *Downstream Export?

 July 19 (During)

 *Downstream Abundance Increase

 Sept 13 (After)

 ## But...Evidence That Food Increased Copepod Egg Production

 ## Good Media Coverage of the Action

 Rerouted water may provide big bonus for endangered smelt

 Media Contact: \quad Communications, (916) 653-9402, nancy.voger $=$
 August 31, 2016
 New Strategy to Improve Conditions for Delta Smelt Shows Promising Results

 ## STATUS: FINAL

 PURPOSE: PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2

 PREPARER: N PONFERRADA CHECKER: J HERRIN QAQC:

 PHASE: 1 VERSION: A
 DATE: 2017 AUGUST
 REF/FILE \#: WSIP APPLICATION

 ## Future Plans

 > Planning Efforts for 2017 Summer/Fall Flow Pulse

 > Increased Project Funds for FY 2017 and 2018

 | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: |
 | DATE: | 2017 | AUGUST | |
 | REF/FILE \#: | WSIP APPLICATION | | |
 | PAGE: | 32 | OF | 44 |

 ## Summary

 -Positive downstream plankton response

 -Solid relationships for the future

 -Successful Adaptive Management

 # Ecosystem Priority 14: Ecosystem Priorities Application Worksheet-Terrestrial

 ## Effects of Water Reductions at Refuges:

 Reduction in water allocations of 50% to 25% of normal deliveries at Sacramento, Colusa and Delevan NWRs during dry or critically dry years would have the following impacts on wetland habitat and wetland dependent species (source: Drought Contingency Plans for Sacramento, Colusa and Delevan NWRs - USFWS 2011a, 2011b, 2011c).

 For 50\% of normal deliveries, wetland acreage at the three refuges would be reduced by 30-50\%. Composite acreages of seasonal and permanent wetlands at all three refuges totals 15,525 acres (based on 2010 data), which includes 13,722 acres of seasonal wetlands (timothy grass and water grass) and 1,803 acres of permanent and semi-permanent wetland/brood ponds. A 30-50\% reduction for permanent and seasonal wetlands would amount to a loss of 4,658 to 7,762 acres. For 25% of normal deliveries, total wetland acreage at the three refuges would be reduced by $60-70 \%$, amounting to loss of 9,315 to 10,867 acres. In addition to the direct loss of wetlands, longer term impacts would also occur to future wetland habitat quality throughout the refuges. Loss of permanent pond acreage would be 80% for both the 50% and 25% reductions of normal deliveries. Other impacts on wildlife of reductions to 50 to 25% of normal deliveries include:

 - Very early spring draw-downs of wetlands which severely limits shorebird habitat and results in poor germination for important wildlife and waterfowl plants.
 - Loss of permanent pond acreage adversely affects habitat for special-status species such as giant garter snakes, tricolored blackbirds, western pond turtles, and for duck broods.
 - Complete elimination of irrigation for annual food plants and control of invasive species such as cocklebur, resulting in increased mowing/diesel fuel consumption to mitigate.
 - Flood-ups delayed on remaining acreage, resulting in widespread crop depredation in nearby agricultural lands.
 - Extreme waterfowl crowding and disease risk (avian botulism (Type C) and avian cholera).
 - Reduced public use on all refuge habitats reduced (or eliminated for 25% of water delivery scenario) other than having the Sacramento National Wildlife Refuge (NWR) visitor center open, and visitor use would decrease to a fraction of normal.

 ## Value of Ricelands to Wildlife

 The Central Valley of California supports one of the largest concentrations of wintering waterfowl in the world, despite loss of 90% of its historic wetlands. The 6-7 million waterfowl that winter annually in the Central Valley rely upon a mix of wetland and agricultural food resources to meet their energetic needs (Eadie et al. 2008, Petrie et al. 2016). Flooded rice fields and surrounding refuge wetlands in the Sacramento-San Joaquin Valley function as some of the most important waterfowl wintering habitat on the Pacific Flyway, supporting the majority of Flyway population in some years (Migratory Bird Conservation Partnership 2014). Ricelands are indispensable components of waterbird habitat; residual rice, weed seeds, and invertebrates provide food for many avian species during fall and winter (Eadie et al. 2008). Ricelands also provide breeding habitat for a variety of birds, and rice fields that are flooded after harvest (i.e., winter flooded) to decompose rice straw provide many of the same habitat values for

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 | | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP A | ICATION | |
 | NOTES: | | | | PAGE: | 34 | OF | 44 |

 waterfowl as the wetlands that they replaced. Droughts adversely affect foraging habitat for wildlife that depend on Central Valley seasonal wetlands and ricelands. An analysis by Petrie et al. (2016) found that in droughts food supplies could be exhausted for ducks by mid- to late winter and by late winter or early spring for geese. For ducks, these results were strongly related to projected declines in winter-flooded rice fields that provide 45% of all the food energy available to ducks in the Central Valley in non-drought water years (Petrie et al. 2016).

 ## CalSim Model Runs - Refuges

 Table A2-6 summarizes CalSim II Model Runs conducted on June 21, 2017 and show the net increase in water supply available for all refuges with implementation of the project.

 Table A2-6. Difference: WSIP 2030 With Project minus WSIP 2030
 Without Project, Refuge Water Supplies
 (Central Valley Project [CVP] Contract, Sites and Acquisitions Supplies), Long-term Average and Average by Water Year Type

 | | Total
 Refuge L2
 (Mar-Feb TAF) | Total
 Refuge L4
 (Mar-Feb TAF) | | | |
 | :--- | :---: | :---: | :---: | :---: | :---: |
 | | | | | | |
 | Long-term | 35 | | | | |
 | Full Simulation Period ${ }^{1}$ | 8 | 53 | | | |
 | Water Year Types ${ }^{2}$ | | | | | |
 | Wet (30\%) | 3 | 47 | | | |
 | Above Normal 15\% | 3 | 38 | | | |
 | Below Normal 21\% | 9 | 21 | | | |
 | Dry 20\% | 14 | 1 | | | |
 | Critical 15\% | | | | 11 | |

 Deliveries of additional Level 2 and Level 4 water during dry and critically dry years would avoid loss of up to 10,867 acres of wetland habitat on the Sacramento, Colusa, and Delevan NWRs, and the other direct and indirect impacts of reduced water availability described above.
 Refuges in the Mendota Pool and the Tulare Basin could also benefit from additional deliveries from the Sites Project. Refuges in these areas include the Kern and Pixley NWR and the CDFW Mendota Wildlife Area. Additional water supply is needed to meet the goals and objectives outlined in the Comprehensive Conservation Plan for Kern and Pixley National Wildlife Refuges (USFWS 2005) and also to improve management of seasonal and permanent wetlands in the Mendota Wildlife Area. Table A2-7 summarizes the results of CalSim II Model Runs that shows the average increased availability of water for refuges and other beneficiaries in the Mendota Pool and Tulare Basin in 2030 with the project, and also the increased water supply available during dry and critically dry years.

 Table A2-7. Difference: WSIP 2030 With Project minus
 WSIP 2030 Without Project for
 Sites Deliveries of Incremental Level 4 Refuge

 | Modeled Beneficiaries | Average Increase in
 Deliveries (TAF/yr) | Dry and Critical
 Increase in Deliveries
 (TAF/yr) |
 | :--- | :---: | :---: |
 | Mendota Pool | 28 | 10 |
 | Tulare Basin | 6 | 2 |

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 |
 | :--- | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVC: | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 35 | OF |

 ## CalSim Model Runs - Ricelands

 As shown in Table A2-8 and Table A2-9, additional water would be available to support rice plantings in dry and critically dry years with the project. Table A2-8 and Table A2-9 summarize CalSim II Model Runs conducted on June 21, 2017 and show the net increase in water supply available for agricultural users in the Central Valley with implementation of the project.

 Table A2-8. Difference: WSIP 2030 With Project minus WSIP 2030
 Without Project Sites Deliveries to Sacramento Valley Members:
 Long-term Average and Average by Water Year Types

 | Analysis Period ${ }^{\mathbf{1}}$ | |
 | :--- | :---: | \(\left.\begin{array}{c}Sacramento Valley

 (Mar-Feb TAF)\end{array}\right]\)

 Table A2-9. Difference: WSIP 2030 With Project minus WSIP 2030 Without Project Sites Deliveries to South of Delta Members for Agriculture:
 Long-term Average and Average by Water Year Types

 | Analysis Period ${ }^{\mathbf{1}}$ Long Term | |
 | :--- | :---: |
 | Jan-Dec, TAF) | |
 | Full Simulation Period | 23 |
 | Water Year Type | 2 |
 | Wet (30\%) | -1 |
 | Above Normal 15\% | 23 |
 | Below Normal 21\% | 52 |
 | Dry 20\% | 50 |
 | Critical 15\% | |

 ${ }^{1}$ Based on the 82 -year simulation period
 ${ }^{2}$ As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (State Water Resources Control Board [SWRCB] D-1641, 1999)
 ${ }^{3}$ Includes Sites delivery to Tehama-Colusa Canal Authority (TCCA) members, Glenn Colusa Irrigation District (GCID), RD108, County of Colusa, and Western Canal Water District

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 | VERSION: | A |
 | :--- | :--- | :---: | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | REF/FILE \#: | WSIP APPLICATION | | | |
 | NOTES: | | | PAGE: | 36 | OF | 44 | |

 ## Ecosystem Priority 15: Develop and Implement Invasive Species Management Plans

 Consistent with this priority, the Authority will create habitat in the vicinity
 of reservoir on lands that are not accessible to the public. This area is currently covered with yellow star thistle (Centaurea solstitialis) and goatgrass (Aegilops triuncialis). The yellow star thistle will be eliminated and replaced with species characteristic of native California prairie.

 ## Central Valley Prairie

 Plant Composition: Burcham (1957) mapped most of "pristine California Prairie" in the Central Valley before agriculture had converted most of this habitat to cropland. His mapping matches the early Valley's accounts by John Muir who described the California Central Valley (CV) Prairie as a sea of wildflowers with little grass. He identified numerous colorful forbs from

 Figure A2-3: Virgate tarplant like virgate tarplant (Holocarpha virgata) and its other Asteraceae relatives. the genera of Layia, Lasthenia, Lupinus, and Eschscholzia dominating the prairie in spring, and a second late summer domination by flowering forbs angustifolia) and perennial lupine (Lupinus formosus) that survive in CV Prairie relic areas where purple needlegrass (Stipa pulchra) would be expected.

 Extent: Since Burcham's mapping, much of the CV Prairie habitat was lost to urbanization and cultivation. The CV Prairie closely corresponds with the extent of California Grassland habitat in the Central Valley.

 Soils: Prairie soils do not support trees and shrubs because their hardpans and clay horizons keep most water too close the soil surface. Some believe California prairie was once covered by bunchgrasses (which are now uncommon), but there is little documentation or evidence for this belief. In fact annual wildflowers covered the floor of the Valley. California Central Valley Prairie typically occurs on alluvial valley soils that favor herbaceous vegetation because of their fine texture and often abundant clay. Before urbanization and cultivation, CV Prairie primarily occurred on "recent alluvium", so named by geologists because it was deposited during the 10,000 years since the last Ice Age. However, because of the high fertility and low relief, this soil type became the prime land for agriculture and development. Currently the last extant areas of CV Prairie are now found on "older alluvium" that was formed from 10,000 to 2 million years ago. Soils in these areas are coarser, less fertile, hillier, and farther from the Valley center. As a result of that, these areas are less often cultivated or urbanized and are very often used for grazing, a land use that in some cases preserves native prairie plants.

 The CV Prairie fine and clayey soils are a great substrate for rhizomatous grasses and shallow rooted annual species because they can densely cover its moist and fertile surface. In contrast, coarse and sandy soils favor deep and wide extending roots of bunch grasses, trees and shrubs because water and air can penetrate freely, however, water and nutrients are scarce near the surface.

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 A | UST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP A | ICATION | |
 | NOTES: | | | | PAGE | 37 | OF | 44 |

 ## California Grassland Habiats

 Figure A2-4 California Grassland Habitats mapped in 1995 by the GAP Analysis Project

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 | VERSION: | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 A | UST | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP A | ICATION | |
 | NOTES: | | | | PAGE: | 38 | OF | 44 |

 Plants: The CV Prairie differs from other prairies of the world in both identity of the perennial species and the larger number and the importance of annuals (Beetle 1947). Typical fine clayey soils of the CV Prairie would have the creeping wildrye (Leymus triticoides) as a dominant grass species along with large number of annual forbs such as California poppy (Eschscholzia californica), purple owl clover (Orthocarpus purpurascens), virgate tarplant, tidytips (Layia platyglossa), narrowleaved mule's ears (Wyethia angustifolia), perennial lupine (Lupinus formosus), Ithuriel's spear (Triteleia laxa), tomcat clover (Trifolium willdenovii), gilia (Gilia tricolor), (Orthocarpus erianthus), blue-eyed grass (Sisyrinchium bellum), and various other species of the genera Layia, Brodiaea, Calandrinia, Nemophila, Castilleja, and Lupinus. On the marginal coarse soils along the edges of the valley, bunchgrasses such as purple needlegrass (Stipa pulchra), and nodding needlegrass (Stipa cernua), were dominant along with important associates such as blue wildrye (Elymus glaucus), pine bluegrass (Poa scabrella), and deergrass (Muhlenbergia rigens).

 ## Central Valley Prairie Importance

 Despite the fact that the CV Prairie provides critical foraging habitat for the golden eagle, nesting and feeding habitat for native bees, refuge borrows for amphibians, and habitat for rich native flora and fauna, CV Prairie does not receive as much attention as the often adjacent vernal pool and riparian habitats for which it serves as an important buffer.

 Habitat for Native Plant Diversity: The CV Prairie provides the optimal habitat for hundreds of native plant species that have adapted to the fine clayey soils and high water table in these areas.

 Golden Eagle Foraging Habitat: Golden Eagles live in open and semi-open country featuring native vegetation across most of the Northern Hemisphere.

 Plant Pollinator Habitat: The spring growth of native forbs represents a tremendous food resource for pollinators. Bees, bumblebees, beetles, hummingbirds, bats, butterflies, moths, and flies are some of the pollinators needed by 90% of flowering plants and over 30% of food crops (Pollinator Partnership 2010). CV Prairie provides food and shelter for bees and other insects that pollinate our food crops. The importance of these native pollinators, especially ground and twig nesting bees, is increasing due to the current collapse of populations of the European honeybee.

 ## Central Valley Prairie Creation Approach

 Site Preparation: In areas where residual native species cover is present, it will be preserved. At the same time invasive species will be controlled and additional native species seeded. However, very often, there are virtually no residual native plants at heavily grazed sites and the "blank slate" restoration approach will be adopted if that is the case at the Sites Reservoir restoration areas. The soil texture, compaction, profile and chemistry, as well as hydrology will be closely analyzed during this phase to determine the best composition of native plant species to be seeded.

 Existing Weed and Weed Seedbank Removal: Non-native vegetation eradication involves removal of the existing exotic species to the greatest extent possible (including the seed bank) and installing a native plant community from seed. Typically, existing vegetation eradication consists of three to four times repeated shallow tilling and irrigation cycles to exhaust the seed bank followed by re-seeding with native vegetation. Hard to eradicate weed species such as the yellow star thistle (Centaurea solstitialis) and goatgrass (Aegilops triuncialis) a more intense eradication methods such as burning, solarization and as a last resort herbicide spraying may be used. It will be also very important to control these invasive species in weed infested areas adjacent to and up-wind of the project. Increasing the cover and diversity of native forbs - either by actively planting them or by removing the invasive species with which

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 A | | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP A | ICATION | |
 | NOTES: | | | | PAGE: | 39 | OF | 44 |

 they compete - will greatly contribute to the restoration success. As one example, hayfield tarplant (Hemizonia congesta) is often added to a native bunchgrass seed mix specifically to armor restored grasslands against re-invasion by yellow star thistle because it is the greatest impediment to successful grass establishment. Annual applications of a broadleaf herbicide are also often necessary to keep it at bay. While herbicides are effective, an ecosystem that depends on regular herbicide application does not meet the definition of self-sustaining. A promising technique for providing natural invasion resistance to restored grasslands is to select native species that compete strongly for the same resources as likely invaders (Young et al. 2009). Native tarplants are among the grassland species most analogous to yellow star thistle in the timing of growth and seed set. These late-season annual forbs germinate with the first fall rains and spend the winter and spring developing a tap root. Doing so allows them to take advantage of deep soil moisture in the summer and to flower and set seed long after the majority of annuals have completed their life cycle. Yellow star thistle is more effectively eliminated if a diversity of native late season forbs is planted that compete for resources with the thistle in slightly different ways. As another example, effective control of the invasive annual barbed goatgrass (Aegilops triuncialis) with analogous native species results in a natural resurgence of native forbs and a corresponding increase in the activity of native bees.

 Seed Collection and Seeding: Because disturbed CV Prairie usually lacks any significant native seed bank, restoring prairie will require the reseeding of native species. Native species should be collected from the nearest vicinity around Sites Reservoir and can be seeded either manually with belly grinders, by the hydro-mulching method or with seed-drillers if the amounts of seed are small. Seed collection should be initiated immediately after project start so that sufficient seed amounts and diversity are available at the time of installation. The traditional approach to prairie restoration emphasizes the establishment of native bunch grasses. Following site preparation, a seed mix of up to seven native grass species is applied.

 ## Ecosystem Priority 16: Ecosystem Priorities Application Worksheet-Terrestrial

 ## CalSim Model Runs - Refuges

 Table A2-10 summarizes CalSim II Model Runs conducted on June 21, 2017 and show the net increase in water supply available for all refuges with implementation of the project.

 Table A2-10. Difference: WSIP 2030 With Project minus WSIP 2030 Without Project, Refuge Water Supplies (CVP Contract, Sites and Acquisitions Supplies), Long-term Average and Average by Water Year Type

 | | Total
 Refuge L2
 (Mar-Feb TAF) | Total
 Refuge L4
 (Mar-Feb TAF) |
 | :--- | :---: | :---: |
 | Long-term | 8 | 35 |
 | Full Simulation Period ${ }^{1}$ | | |
 | Water Year Types ${ }^{2}$ | | |
 | Wet (30\%) | 3 | 53 |
 | Above Normal 15\% | 3 | 47 |
 | Below Normal 21\% | 9 | 38 |
 | Dry 20\% | 14 | 21 |
 | Critical 15\% | 11 | 1 |

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 A | JST | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP A | CATION | |
 | NOTES: | | | | PAGE | 40 | OF | 44 |

 ## Native Species Benefiting from Implementation of the Project

 The following native species occur on the Sacramento NWR Complex refuges and have commercial, recreational, scientific, or educational uses and values, and would benefit from implementation of the project:

 Table A2-11. Waterfowl

 | Common Name | Scientific Name |
 | :--- | :--- |
 | Ross's Goose | Chen rossii |
 | Snow Goose | Chen caerulescens |
 | Green-winged Teal | Anas crecca |
 | Gadwall | Anas cyanoptera |
 | Cinnamon Teal | Anas clypeata |
 | Northern Shoveler | Anser albifrons |
 | Greater White-fronted Goose | Anas acuta |
 | Northern Pintail | Oxyura jamaicensis |
 | Western Meadowlark | Anas americana |
 | Ruddy Duck | Anas platyrhynchos |
 | American Wigeon | Aythya collaris |
 | Mallard | Aythya affinis |
 | Ring-necked Duck | Bucephala albeola |
 | Lesser Scaup | Bucephala clangula |
 | Bufflehead | Anas crecca carolinensis |
 | Common Goldeneye | Branta canadensis |
 | American Green-winged Teal | Anas discors |
 | Canada Goose | |
 | Blue-winged Teal | |
 | | |

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 | VERSION: | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 A | UST | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP A | ICATION | |
 | NOTES: | | | | PAGE: | 41 | OF | 44 |

 Table A2-12. Shorebirds/Egrets/Other Wetland-Dependent Species

 | Common Name | Scientific Name |
 | :--- | :--- |
 | American Bittern | Botaurus lentiginosus |
 | Common Snipe | Gallinago gallinago |
 | Eared Grebe | Ardea alba |
 | Great Egret | Pelecanus erythrorhynchos |
 | American White Pelican | Himantopus mexicanus |
 | Black-necked Stilt | Plegadis chihi |
 | White-faced Ibis | Ardea herodias |
 | Double-crested Cormorant | Cistothorus palustris |
 | Great Blue Heron | Actinemys marmorata |
 | Marsh Wren | Egretta thula |
 | Western Pond Turtle | Recurvirostra americana |
 | Snowy Egret | Charadrius vociferus |
 | American Avocet | Pallinula galeata |
 | Killdeer | Larus delawarensis |
 | Common Gallinule | Numenius americanus |
 | Pied-billed Grebe | Lontra canadensis |
 | Ring-billed Gull | Tringa melanoleuca |
 | Long-billed Curlew | Rallus limicola |
 | North American River Otter | Aechmophorus clarkii |
 | Greater Yellowlegs | Hydroprogne caspia |
 | Virginia Rail | Gallinago delicata |
 | Clark's Grebe | Larus argentatus smithsonianus |
 | Caspian Tern | |
 | Wilson's Snipe | American Herring Gull |

 Table A2-13. Special-Status Species

 | Common Name | Scientific Name |
 | :--- | :--- |
 | Peregrine Falcon | Falco peregrinus |
 | Northern Harrier | Circus cyaneus |
 | American White Pelican | Pelecanus erythrorhynchos |
 | White-faced Ibis | Plegadis chihi |
 | Greater Sandhill Crane | Grus canadensis |
 | Bald Eagle | Haliaeetus leucocephalus |
 | Double-crested Cormorant | Phalacrocorax auritus |
 | Tricolored Blackbird | Agelaius tricolor |
 | Loggerhead Shrike | Lanius ludovicianus |
 | Cooper's Hawk | Accipiter cooperii |
 | White-tailed Kite | Elanus leucurus |
 | Western Pond Turtle | Actinemys marmorata |
 | Giant garter snake | Thamnophis gigas |

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 A | UST | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP A | ICATION | |
 | NOTES: | | | | PAGE: | 42 | OF | 44 |

 ## References:

 70 FR 52488. Endangered and Threatened Species; Designation of Critical Habitat for Seven Evolutionarily Significant Units of Pacific Salmon and Steelhead in California; Final Rule. Vol 70, No. 170. September 2, 2005. Rules and Regulations. Federal Register 52488-52627. Available online at: https://www.gpo.gov/fdsys/pkg/FR-2005-09-02/pdf/05-16389.pdf\#page=2

 Beetle, A. A. 1947. Distribution of the Native Grasses of California. Hilgardia. 17(9): 309-357.
 Burcham, L. T. 1957. California Range Land: An Historico-Ecological Study of the Range Resource of California. Division of Forestry, Department of Natural Resources, State of California. 261 p.

 Eadie, J. M., Elphick, C. S., Reinecke, K. J., and Miller, M. R. 2008. Wildlife Values of North American Ricelands. Edited by Manley, S. W. Published by The Rice Foundation, Stuttgart Arkansas. 90 p.

 Migratory Bird Conservation Partnership. 2014. Waterbird Habitat Enhancement Program: Bird-Friendly Farming in California Rice Fields. Prepared by Audubon California, The Nature Conservancy, and Point Blue Conservation Science for the California Rice Comission. November.

 Pacific Fishery Management Council (PFMC) and National Marine Fisheries Service (NMFS). 2014. Final Environmental Assessment and Regulatory Impact Review for Pacific Coast Salmon Plan Amendment 18: Incorporating Revisions to Pacific Salmon Essential Fish Habitat. Available online at: http://www.westcoast.fisheries.noaa.gov/publications/habitat/essential fish habitat/bc95 fina | ea rir am 18 fonsi appendices.pdf

 Petrie, M. J., Fleskes, J. P., Wolder, M. A., Isola, C. R., Yarris, G. S., and Skalos, D. A. 2016. Potential Effects of Drought on Carrying Capacity for Wintering Waterfowl in the Central Valley of California. Journal of Fish and Wildlife Management. 7(2):408-422.

 Pollinator Partnership. 2010. Selecting Plants for Pollinators: A Regional Guide for Farmers, Land Managers, and Gardeners in the Prairie Parkland Temperate Province. A North American Pollinator Protection Campaign and Pollinator Partnership Publication.

 State Water Resources Control Board (SWRCB). 1999. Water Right Decision 1641. In the Matter of: Implementation of Water Quality Objectives for the San Francisco Bay/Sacramento-San Joaquin Delta Estuary; A Petition to Change Points of Diversion of the Central Valley Project and the State Water Project in the Southern Delta; and A Petition to Change Places of Use and Purposes of Use of the Central Valley Project. December 20.

 State Water Resources Control Board (SWRCB). 1990. Order WR 90-5. In the Matter of Permits 11966, 11967, 11968, 11969, 11970, 11971, 11973, 12364, 12365, 12720, 12721, 12722, 12723, and 12724, and Licenses 9956 and 9957, on Permitted Applications 5625, 5626, 5627, 5628, 9363, 9364, 9365, 15374, 15375, 15376, 16767, 17374, 17375, and 17376, and on Licensed Applications 10588 and 15424 of United States Bureau of Reclamation.
 U.S. Fish and Wildlife Service (USFWS). 2005. Kern and Pixley National Wildlife Refuges Final Comprehensive Conservation Plan. Prepared by U.S. Fish and Wildlife Service Region 1, Sacramento, CA. February.

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 | VERSION: | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 A | UST | |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP A | ICATION | |
 | NOTES: | | | | PAGE | 43 | OF | 44 |

 U.S. Fish and Wildlife Service (USFWS). 2011a. Sacramento National Wildlife Refuge Water Management Plan. February.
 U.S. Fish and Wildlife Service (USFWS). 2011b. Colusa National Wildlife Refuge Water Management Plan. March.
 U.S. Fish and Wildlife Service (USFWS). 2011c. Delevan National Wildlife Refuge Water Management Plan. February.

 Vogel, D. 2015. Potential Effects of Central Valley Project Operations on Winter-Run Chinook Salmon Egg Incubation in 2015: A Preliminary Analysis. April.

 Young, S. L., Barney, J. N., Kyser, G. B., Jones, T. S., and DiTomaso J. M. 2009. Functionally Similar Species Confer Greater Resistance to Invasion: Implications for Grassland Restoration. West Central Research and Extension Center, North Platte. 6.

 | STATUS: | FINAL | PREPARER: | N PONFERRADA | PHASE: | 1 |
 | :--- | :--- | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS ECOSYSTEM PRIORITIES A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAQQ: | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 44 | |

 ## Benefit Calculation, Monetization, and Resiliency Tab

 ## Attachment 2: Operations Plan

 Attach the preliminary operations plan for the proposed project. See regulations section $6003(a)(1)(H)$ for details. If the preliminary operations plan is located in another attachment, identify the attachment and provide the location.

 WSIP Application Instructions, March 2017

 ## Response

 This attachment describes the Site Reservoir preliminary operations plan under varying hydrologic conditions, from wettest to driest years and multiple dry year periods.

 | STATUS: | FINAL | PREPARER: | R TULL | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | R LEAF | DATE: | 2017 AUGUST |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | | PAGE: |

 # Sites Reservoir Project Preliminary Operations Plan Under a Range of Hydrologic Conditions

 August 9, 2017

 ## Table of Contents

 Attachment 2: Operations Plan 1
 Introduction 6
 Operations Assumptions and Criteria 8
 Operations Overview 9
 Operations over a Range of Hydrologic Conditions 11
 Wet Hydrologic Conditions 11
 Yolo Bypass and Delta Outflow Improvement 12
 Water Supply for Wildlife Refuges 12
 Above Normal to Dry Hydrologic Conditions 12
 Shasta Lake Coldwater Pool and Sacramento River Temperature Control 13
 Upper Sacramento River Fall Flow Enhancement 13
 Folsom Lake Coldwater Pool Improvement 13
 American River Flow Enhancement 13
 Lake Oroville Coldwater Pool Improvement and Feather River Flow Enhancement 14
 Yolo Bypass and Delta Outflow Improvement 14
 Water Supply for Wildlife Refuges 14
 Critical Hydrologic Conditions 14
 Shasta Lake Coldwater Pool and Sacramento River Temperature Control 15
 Folsom Lake Coldwater Pool Improvement 15
 American River Flow Enhancement 15
 Lake Oroville Coldwater Pool Improvement and Feather River Flow Enhancement 16
 Yolo Bypass and Delta Outflow Improvement 16
 Water Supply for Wildlife Refuges 16
 Multiple Dry and Critical Year Drought Conditions 16
 Shasta Lake Coldwater Pool and Sacramento River Temperature Control 16
 Yolo Bypass and Delta Outflow Improvement 17
 Water Supply for Wildlife Refuges 17
 Adaptive Management Framework 17
 Adaptive Management Process 18
 Objective-based Monitoring 18
 Sites Project Monitoring Plan Development 20
 Monitoring Plan Elements 20
 Data Management and Assessment 21
 Adaptive Management and Operational Decision-Making Process 21
 General Operational Objectives. 22
 References 24
 Tables
 Table ADF-1. Example of Sites Project Objective-Based Monitoring Framework 19
 Table ADF-2. Description of Proposed Sites Project Authority Seasonal Operations 25

 | STATUS: | FINAL | PREPARER: | R TULL | PHASE: | 1 |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | R LEAF | DATE: | 201 |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSI |
 | NOTES: | | | | PAGE: | 3 |

 ## Acronyms and Abbreviations

 | Authority | Sites Project Authority |
 | :---: | :---: |
 | BiOp | Biological Opinions |
 | BIOS | Biogeographic Information and Observation System |
 | CALFED | CALFED Bay-Delta Program |
 | CDFW | California Department of Fish and Game |
 | cfs | cubic feet per second |
 | COA | Coordinated Operation Agreement |
 | CVP | Central Valley Project |
 | CVPIA | Central Valley Project Improvement Act |
 | CWC | California Water Commission |
 | Delta | Sacramento-San Joaquin River Delta |
 | DWR | California Department of Water Resources |
 | EESA | ecosystem enhancement storage account |
 | FGDC | Federal Geographic Data Committee |
 | GCID | Glenn-Colusa Irrigation District |
 | GPS | global positioning system |
 | M\&I | municipal and industrial |
 | MAF | million acre-foot (feet) |
 | NMFS | National Marine Fisheries Service |
 | NODOS | North-of-Delta Offstream Storage |
 | O\&M | operations and maintenance |
 | OM\&R | operations maintenance and repair |
 | RD 108 | Reclamation District 108 |
 | Reclamation | United States Bureau of Reclamation |
 | SRSC | Sacramento River Settlement Contractor |
 | SVI | Sacramento Valley 40-30-30 water year type index |
 | SWA | Sites Water Account |
 | SWP | State Water Project |
 | SWRCB | State Water Resources Control Board |
 | TAF | thousand acre-feet |
 | T-C Canal | Tehama-Colusa Canal |
 | TCCA | Tehama-Colusa Canal Authority |

 | STATUS: | FINAL | PREPARER: | R TULL | PHASE: | 1 | VERSI ON: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | R LEAF | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 4 | OF | 26 |

 TRR
 USFWS
 WIIN
 WSIP
 WUA

 Terminal Regulating Reservoir
 U.S. Fish and Wildlife Service

 Water Infrastructure and Investment for the Nation
 Water Supply Investment Program
 Weighted Usable Area

 | STATUS: | FINAL | PREPARER: | R TULL | PHASE: | 1 | VERSI ON: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | R LEAF | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 5 | OF | 26 |

 ## Introduction

 Flexible and Adaptable Operations: This document provides a summary description of the operations plan proposed by the Sites Project Authority (Authority) for the Sites Reservoir Project for its application to the California Water Commission for the Water Supply Investment Program (WSIP). Operations of the Sites Reservoir Project facilities are flexible and adaptable to meet a wide range of water supply and environmental needs. For the purposes of this application, the operations deemed to be mostresponsive in providing water to the highest priorities as established by the Water Commission is provided. This operations strategy presents a prioritization of water-based public benefits in the upper Sacramento River and northern Delta. However, the Authority recognizes that over the life of the Sites Reservoir, these priorities may need to change and the Sites Project has the flexibility to adapt to a changing future. Consistent with other portions of this application, the Authority proposes to form a partnership with the State and Federal government resource agencies, so that the full potential of the Sites Project can be incorporated into the prerequisite operational permits.

 Role of the Authority: Pursuant to California Water Code 79759(c), the Authority will own, govern, manage, and operate the Sites Project; which will be accomplished by working in partnership with the agencies participating in the project for both water supply and Proposition 1-eligible public benefits. As such, the Authority will, in addition to other responsibilities, be the holder of the water right, enter into water delivery contracts for both water supply and Proposition 1-eligible public benefits, coordination with the Central Valley Project (CVP) and State Water Project (SWP) operators, and be responsible for environmental compliance obligations, operations and maintenance, and dam safety. Organizationally, the Authority plans to establish a governing body, which is conceptually referred to as the Water Operations Committee. The Water Operations Committee's responsibility is to develop, in partnership, both long-term and annual operational plans that would be implemented by the Authority in cooperation with the operators of the State and Federal projects. As such, the Water Operations Committee will be comprised of investors and stakeholders in the project's development:

 - the water agencies participating in the project's development; which is currently referred to as the Reservoir Committee;
 - the state and federal resource agencies delegated the responsibility to have management control over the investment by the state and/or Federal government, respectively;
 - the operators of the Central Valley Project and State Water Project, respectively; and
 - operators of other facilities needed to move water to where it has been contracted for (i.e., both Proposition 1-eligible and non-Proposition 1-eligible benefits).
 - Other stakeholders as deemed appropriate.

 Additional details regarding how this process is proposed to work is provided as follows. However, the Authority anticipates that the concept presented in this document will evolve as the project evolves and information and insight from the other participants and stakeholders gets incorporated.

 Participation Agreements: Agreements will be developed for Proposition 1-eligible and non- Proposition 1-eligible benefits (generally water supply augmentation contracts). These agreements will define the amount of Sites Reservoir storage allocated to the organization seeking the specific benefits and maximum and range of deliveries as well as cost associated with those deliveries. Water delivery contracts will also define the delivery request process, facilities repayment and OM\&R charges (prorated by acre-foot of delivery). Since the WSIP contributions would cover facilities construction cost,

 costs associated with Proposition 1-eligible public benefit water delivery contracts would not include facilities repayment costs.

 Water Operations Planning: The Water Operations Committee's leadership will manage the development of the 5 -year and annual operating plans. The 5 -year plan is intended to provide a guide to the overall operations of the Sites Reservoir Project, delineate the goals of the Sites Project operations for those years, provide linkage between the water operations consistent with the water delivery contracts, contracts with the State of California to support the development of public benefits, agreements with the federal government for WIIN Act benefits and the use of federal facilities (Shasta, Red Bluff diversion and Tehama-Colusa Canal, and potentially Folsom Dam), and any adaptive management activities. The 5-year plan will be subject to revision when required. Development of the subsequent $5-\mathrm{yr}$ plan will be initiated in the spring of the $4^{\text {th }}$ year to allow for adequate review, coordination and approvals. It is anticipated that the subsequent 5-year plan will be approved during the summer of the $5^{\text {th }}$ year.

 The annual operating plans will provide specific guidance regarding the operations of the Project for that year. These plans will be initiated in the spring of the prior year and completed and approved no later than the Authority Board meeting in August of the prior year. These plans will include the following:

 - A summary of operations (including adaptive management actions and results) from the previous year
 - A listing of any carry-over storage amount and location for public and non-public benefit contract holders
 - Anticipated annual requests for each public and non-public benefit holder
 - Projected operations by water year type, by month and
 - Adaptive management activities planned and natural and Sites Projects conditions necessary to initiate those activities

 Sites Project annual operating plans will also interface with the preparation of the annual Temperature Management Plan for the Sacramento River, consistent with WR 90-5 and applicable RPAs.

 Through detailed coordination with the United States Bureau of Reclamation (Reclamation) and California Department of Water Resources (DWR), the Sites Project will develop and implement detailed operational agreements with these agencies to address issues related to operations of the Sites Project that optimize the use of existing facilities. Though the implementation of these agreements it is expected that the Sites Project will cooperatively interface with the existing ongoing real-time decisionmaking process and work groups (as identified in the California Water Fix 2017 Project Description) to avoid and minimize adverse effects to Central Valley Project and State Water Project facilities, operational plans, listed species, public health, safety and water supply reliability.

 Cooperative Agreement with CVP \& SWP: Water management agreements will be developed with Reclamation and DWR to support the use of existing facilities (e.g.; Shasta Dam and Reservoir, Tehama Colusa Canal and associated facilities, Oroville Dam and Reservoir, Folsom Dam and Reservoir). Initial Draft principles of agreements relating to the detailed water management agreement have been developed and circulated among the participants. Sample details of the contents of the detailed water management agreements are included in the adaptive management portion of this operations plan.

 The Authority will also be responsible for general facility maintenance and upkeep, Authority accounting including payments to the following:

 | STATUS: | FINAL | PREPARER: | R TULL | PHASE: | 1 | VERSI ON: | C |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | R LEAF | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | | PAGE: | 7 | OF | |

 - Reclamation consistent with the Warren Act contracts for the use of Reclamation facility,
 - Glenn-Colusa Irrigation District (GCID) for use of facilities
 - Power supply for pumping and other power needs.

 Authority accounting will also be responsible for receipt of funds from all contract deliveries and other arrangements for O\&M cost associated with deliveries for public benefits.

 ## Operations Assumptions and Criteria

 This operations plan includes a description of project operations and public benefits under a range of hydrologic conditions, from wettest to driest years and multiple dry year periods. Water year types for this operations plan are classified based on the Sacramento Valley 40-30-30 Index per the SWRCB Water year Hydrologic Classification presented in D-1641. The primary actions that will be taken to meet desired public benefit objectives are described for the range of hydrologic conditions. In addition, monitoring of operations to ensure public benefits outcomes is described.

 The with-project conditions include a 1.81-million-acre-foot (MAF) reservoir, which will be located in the Sacramento Valley west of the town of Maxwell, and associated conveyance facilities including use of existing Tehama-Colusa Canal (T-C Canal) and GCID Main Canal diversion and conveyance facilities, plus a proposed new diversion and discharge pipeline (see Sites_A3 Project Description under the ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB for a more detailed description of the project). ${ }^{1}$ The proposed reservoir will be filled by diversion of excess Sacramento River water that originates from unregulated tributaries to the Sacramento River downstream from Keswick Dam. These flows are "excess" to those needed to meet current regulatory requirements or other water demands. Operation of the proposed reservoir will be in cooperation with the operations of existing CVP and SWP system facilities to facilitate and maximize the potential for a wide range of benefits. Detailed operating agreements would need to be developed that define a framework and procedures for cooperative operations among the Authority, CVP, and SWP.

 With-project operations are designed to improve the ability to meet the following primary objectives:

 - Enhance overall system wide water management flexibility
 - Provide increasing cold water conservation in Shasta, Oroville and Folsom to assist in temperature control downstream at critical times for salmonids.
 - Increase reliability of water supplies
 - Provide storage and operational benefits for programs to improve Sacramento-San Joaquin River Delta (Delta) and upstream ecosystems

 The preliminary operations assumptions and criteria for the Sites Reservoir Project were developed through a series of meetings and coordination with Authority representatives including water district managers and county representatives, DWR, and Reclamation. The with-project condition builds on previous work conducted under the CALFED Bay-Delta Program (CALFED) by DWR and Reclamation. Subsequent to CALFED, DWR was the lead on technical studies in coordination with the Authority as part of the North-of-Delta Offstream Storage (NODOS) Project and associated investigations. Since 2014 the Authority has taken the lead role in these studies.

 | STATUS: | FINAL | PREPARER: | R TULL | PHASE: | 1 | VERSI ON: | C |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | R LEAF | DATE: | 2017 | AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | | PAGE: | 8 | OF | |

 As noted in the description and assumptions response to A.1, the operations analyses conducted for the Sites Reservoir Project utilized the model products and assumptions described in section 6004(a)(1) of the California Code of Regulations. The models provided by the Commission were modified to include the facilities and operation of the Sites Project.

 ## Operations Overview

 Sites Reservoir will be filled by diversion of excess Sacramento River flows that originate from unregulated tributaries to the Sacramento River downstream from Keswick Dam. As described below, diversions are assumed to potentially occur in any month or water year type, but would likely be greatest in the winter months with wetter conditions (depending on storage conditions and flow events).

 The primary operational criteria include the following:

 - A defined ecosystem enhancement storage account will be established in Sites Reservoir to be managed by the State to provide water for ecosystem and water quality purposes.
 - Each of the participating Authority members will be allocated a defined storage account in the Sites Reservoir Project to manage their water, as well as store water from other potential sources of supply
 - It is assumed that a water market of some form would be facilitated by the Authority to promote efficient use and exchange of water in Sites Reservoir storage.
 - All storage accounts would receive an equal proportional share of new water diversions into Sites Reservoir storage.
 - Any water in storage beyond designated member account volumes would be "at risk" and would be "spilled" if the reservoir fills to capacity.
 - A set of operating guidelines and rules will be developed to promote efficient water management for operations of Sites Reservoir and associated facilities.
 - All water stored in Sites Reservoir storage accounts are subject to evaporation and other losses.

 The Sites Reservoir Project could operate in cooperation with CVP and SWP system facilities to facilitate a wide range of benefits. Sites Reservoir will provide water through four primary mechanisms:

 - Water stored in Sites Reservoir could be released directly to Colusa Basin users,
 - Water could be released to the Sacramento River
 - Water could be released through the Colusa-Basin Drain and Knights Landing Ridge Cut
 - Water stored in Sites Reservoir could be exchanged for water stored in Shasta Lake or other CVP and SWP system reservoirs.

 This last mechanism could be used to significantly increase upstream north-of-Delta storage and operational flexibility to support multiple water supply and ecosystem benefits.

 The project employs a strategy to maximize the potential benefits of Sites Reservoir while not adversely affecting the CVP and SWP's ability to meet existing system regulatory requirements including the following:

 - Water rights
 - Instream flow requirements

 | STATUS: | FINAL | PREPARER: | R TULL | PHASE: | 1 | VERSI ON: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | CENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | R LEAF | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 9 | OF | 26 |

 - Biological opinions
 - Delta water quality requirements
 - CVP and SWP requirements
 - Central Valley Project Improvement Act (CVPIA)

 Sacramento River water will be diverted at the three locations on the river as described above. Excess Sacramento River flow diversions to Sites Reservoir will only take place when flow monitoring indicates that bypass flows are present in the river due to storm event flows. Several existing and additional proposed bypass flow criteria were assumed at specified locations. These flow criteria are designed to make certain only excess water will be diverted into Sites Reservoir to maintain and protect existing downstream water uses.

 As a mitigation measure to more fully avoid and minimize entrainment and impingement of juvenile salmonids and other poor-swimming aquatic species, diversions to Sites Reservoir will also be restricted to protect fish migration during naturally occurring, storm-induced, pulse flow events in the Sacramento River. The proposed pulse protection period will extend from October through May to address outmigration of juvenile winter-, spring-, fall- and late-fall-run Chinook salmon, as well as steelhead. Pulse flows during this period will provide flow continuity between the upper and lower Sacramento River to support fish migration. It is recognized that research regarding the benefits of pulse flows is ongoing, and further research and adaptive management will be required to develop and refine a pulse flow protection strategy for fish migration.

 Diversions of excess Sacramento River water to Sites Reservoir using existing T-C Canal and GCID Main Canal conveyance facilities could occur at any time during the year, given the flow conditions described above are present in the river. Deliveries for Tehama-Colusa Canal Authority (TCCA) and GCID service areas have first priority at the existing T-C Canal and GCID intakes, with diversions to Sites Reservoir using the unused capacities of the two canals. Diversions through the proposed Delevan Pipeline could also occur at any time of the year assuming Sacramento River flow conditions are above the bypass and pulse flow criteria described above. In summer months, preference would generally be given to Sites Reservoir releases to the river, resulting in limited diversions to storage because the pipeline could only convey flows in one direction at a time.

 The operation of Sites Reservoir Project will allow for the development and administration of an ecosystem enhancement storage account (EESA) that could be actively managed by the State to provide water for ecosystem and water quality purposes. Such an account would provide a pool of dedicated storage to manage in cooperation with existing operations to improve coldwater conservation storage, stabilize river flows during critical fisheries periods, increase flows through certain watercourses and/or facilities (such as, Yolo Bypass), increase availability of wetlands in wildlife refuges, and/or enhance habitat conditions.

 Sites Reservoir Project will be operated in cooperation with CVP and SWP operations to coordinate releases from Shasta Lake, Lake Oroville, and Folsom Lake. Releases from Sites Reservoir will allow reduced releases from other reservoirs while still meeting requirements for minimum instream flow objectives, Sacramento River temperature requirements, and Delta salinity control assigned to CVP and SWP. Through this reduction in releases, storage could be conserved in Shasta Lake, Lake Oroville, and Folsom Lake to significantly increase operational flexibility to improve river water temperatures for fish survival, Delta ecosystem food-web enhancement, flood control, and recreation.

 Sites Reservoir Project EESA operations will achieve multiple public benefits over a wide range of hydrologic conditions.

 In drought conditions, Sites Reservoir Project could:

 | STATUS: | FINAL | PREPARER: | R TULL | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | R LEAF | DATE: | 2017 AUGUST |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | PAGE: | 10 OF | 26 |

 - Increase coldwater pool conservation in Shasta Lake, Lake Oroville, and Folsom Lake
 - Help regulate Sacramento River summer flows for best use of cold water for control of temperature conditions adverse to anadromous fish

 In non-drought hydrologic conditions, Sites Reservoir Project water could:

 - Increase coldwater pool conservation in Trinity Lake, Shasta Lake, Lake Oroville, and Folsom Lake
 - Help regulate Sacramento River summer flows for best use of cold water for control of temperature conditions adverse to anadromous fish
 - Provide (via upstream actions) incidental Delta water quality improvements in the summer and fall
 - Stabilize Sacramento River fall flows for improving spawning and rearing success of anadromous fish
 - Provide water to the Yolo Bypass to support salmon migration and summer food production for delta smelt
 - Provide water for Incremental Level 4 refuge deliveries per CVPIA

 ## Operations over a Range of Hydrologic Conditions

 This section provides a detailed description of proposed Sites Reservoir Project operations for a range of hydrologic conditions, including the actions that will provide public benefits under each of these differing hydrologic conditions.

 The operations actions described below are an example of how the EESA could be used to meet public benefit objectives over a range of hydrologic conditions. Operations in any given year will be a function of the current year hydrology, as well as a function of the system conditions resulting from the previous year's hydrology and operations. The EESA provides the state with the operational flexibility to manage the water in Sites Reservoir storage to the highest priority needs on an adaptive management basis. Implementation of actions to provide public benefits will need to be evaluated on a continuing basis in response to changing system parameters (such as reservoir storage), ecological needs, forecasts of future hydrologic and atmospheric conditions, and system operations.

 Total average annual diversions of excess Sacramento River flow to Sites Reservoir, based on CalSim-II model results, for current, 2030, and 2070 conditions are 514 TAF, 552 TAF, and 588 TAF, respectively. These results indicate that the Sites Project has the ability to adapt to predicted future hydrologic conditions provided by the CWC). The increase in average annual diversions of excess flow is a function of the reduction in spring snowmelt and increase in winter precipitation under the future climate conditions. Increased precipitation and resulting stream flow in the tributaries contributing to the Sacramento River between Keswick and Red Bluff Pumping Plant, in months of November through March, allow additional diversions of excess flow to Sites Reservoir storage. These increased diversions provide additional operational flexibility under future conditions to provide a wide range of public benefits such as critical ecosystem objectives.

 ## Wet Hydrologic Conditions

 Under wet year conditions, the primary EESA operations goal will be to maximize the diversion of excess water from the Sacramento River into Sites Reservoir storage during high flow winter months, subject to the proposed bypass flow criteria. The maximum diversions will occur between the months of November and March to minimize potential impacts to the riverine ecosystem. Monitoring will be conducted at Bend Bridge and other locations near Red Bluff Pumping Plant, Hamilton City Pumping

 | STATUS: | FINAL | PREPARER: | R TULL | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | R LEAF | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 11 | OF | 26 |

 Facility, and proposed Delevan Pipeline Intake to identify when fish are present in the river so diversions to storage could be curtailed to promote pulse flow bypass protection to support salmonid outmigration to the lower Sacramento River.

 Total average annual diversions of excess Sacramento River flow to Sites Reservoir for wet year types for current, 2030, and 2070 conditions are 574, 672, and 715 TAF, respectively. Sites Reservoir average end-of-month storage in May of wet years under simulated current, 2030, and 2070 conditions ranges from 1.77 to 1.71 MAF.

 Proposed Sites Reservoir operations under wet year conditions will be largely a function of current system wide reservoir storage conditions and the need for water to support public benefit objectives. Generally, there is minimal demand for water from storage in wet years depending on the geographic variation and timing of late spring storm events and snow melt conditions. Actions that could be taken in wet years to provide public benefits include:

 ## Yolo Bypass and Delta Outflow Improvement

 Release of Sites water flow through the Colusa Basin Drain and Knights Landing Ridge Cut during summer and fall months (i.e., August through October) to help increase productivity in the lower Cache Slough and lower Sacramento River areas to increase desirable food sources for Delta smelt and other key fish species in the late summer and early fall.

 ## Water Supply for Wildlife Refuges

 Provide water toward meeting Incremental Level 4 wildlife refuge water needs north of the Delta and south of the Delta to supplement refuges supplies up to Level 4 criteria (CVPIA).

 ## Above Normal to Dry Hydrologic Conditions

 This range of hydrologic conditions includes Sacramento Valley 40-30-30 water year types for above normal, below normal, and dry year types. Under these hydrologic conditions, diversions of excess water from the Sacramento River into Sites Reservoir storage will occur during high flow winter months, subject to the proposed bypass flow criteria. Similar to wet years, the majority of diversions will occur between the months of November and March to minimize potential impacts to the riverine ecosystem. Monitoring will be conducted at Bend Bridge and other locations near Red Bluff Pumping Plant, Hamilton City Pumping Facility, and proposed Delevan Pipeline Intake to identify when fish are present in the river so diversions to storage could be curtailed to promote pulse flow bypass protection to support salmonid out-migration. Total average annual diversions of excess Sacramento River flow to Sites Reservoir for above normal water year types for current, 2030, and 2070 conditions range from 572 to 770 TAF. Total average annual diversions of excess Sacramento River flow to Sites Reservoir for dry water year types for current, 2030, and 2070 conditions range from 429 to 578 TAF. Sites Reservoir average end-of-month storage in May under simulated current, 2030, and 2070 conditions ranges from 1.2 to 1.7 MAF for above normal and dry hydrologic conditions.

 Under these water year type conditions, EESA water in Sites Reservoir could provide operational flexibility to support a wide range of potential public benefits and ecosystem objectives. Operational actions to meet these objectives will be determined on an annual basis depending on the geographic variation and timing of late spring storm events, snow melt conditions, system wide reservoir storage, and ecological water needs.

 Actions that could be taken in these years to provide public benefits will include:

 | STATUS: | FINAL | PREPARER: | R TULL | PHASE: | 1 | VERSI ON: | C |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | R LEAF | DATE: | 201 | UGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP | APPLICAT | |
 | NOTES: | | | | PAGE: | 12 | OF | |

 ## Shasta Lake Coldwater Pool and Sacramento River Temperature Control

 Maximum benefits will be realized with Sites Reservoir and Shasta Lake being operated in cooperation to preserve a greater volume of coldwater pool storage in Shasta Lake. This will be accomplished by substituting water from Sites Reservoir to meet a portion of an otherwise CVP water demand from Shasta (especially in the lower GCID and TCCA service areas) thus allowing water to be retained in storage in Shasta Reservoir. This allows additional cold water to be retained and will improve operational flexibility to provide releases to maintain appropriate water temperatures in the Sacramento River, with particular emphasis on the months of highest potential water temperature related impacts (i.e., July through November). Shasta Lake average end-of-month storage in May under simulated current, 2030, and 2070 dry water year conditions increases by 90 TAF to 100 TAF above the respective without-project conditions.

 Through releases from Sites Reservoir to meet TCCA and GCID irrigation diversions and equivalent reductions in CVP Shasta Lake releases, demands on Shasta Lake storage could be reduced and the coldwater pool maintained for a longer time at higher levels than are currently achievable. Shasta Lake release patterns could be shifted in season and between adjacent years to improve coldwater storage and flow management for salmon and other species using the portion of the Sacramento River between Keswick Dam and the Red Bluff Diversion Dam as habitat.

 EESA water released from Shasta Lake for temperature purposes could provide multiple benefits as it will increase lower Sacramento River flows, Delta inflow, and outflow. Some of the Shasta Lake EESA releases could also be recaptured downstream at the Delevan Intake and diverted back into EESA storage in Sites Reservoir to meet additional public benefit objectives. Increased flows in the Sacramento River could also reduce the need for releases and help maintain the coldwater pool from Folsom Lake. These types of multi-benefit operations provide a range options for managing EESA water to achieve maximum benefits.

 ## Upper Sacramento River Fall Flow Enhancement

 Additional storage in Shasta Lake could be used to stabilize fall flows in the Sacramento River between Keswick Dam and Red Bluff to avoid abrupt flow reductions due to changes in local tributary inflows as a result of storm events. This will reduce adverse conditions for spawning fall-run Chinook salmon (such as, dewatering of redds and scour damage).

 ## Folsom Lake Coldwater Pool Improvement

 Sites Reservoir Project operations in cooperation with Folsom Lake could improve the reliability of coldwater carryover storage at Folsom Lake, by increasing May storage and retaining coldwater pool storage, to allow additional operational flexibility to provide suitable water temperatures in the lower American River. This action will use additional coldwater pool storage by providing releases from Folsom Dam (and subsequently from Nimbus Dam) to help provide water temperatures at levels suitable for juvenile steelhead over summer rearing and fall run Chinook salmon spawning in the lower American River from May through November. The proposed operations have not been prioritized to maximize this benefit. Other cooperative operations could expand this benefit at the expense of other environmental benefits.

 ## American River Flow Enhancement

 Summer releases from Sites Reservoir could reduce the need for releases from Folsom Lake, resulting in increased carryover storage. Sites Reservoir releases could also provide additional Delta outflow and reduce short-term emergency flow reliance on Folsom Lake releases to improve Delta water quality.

 | STATUS: | FINAL | PREPARER: | R TULL | PHASE: | 1 | VERSI ON: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | R LEAF | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 13 | OF | 26 |

 Additional storage in Folsom Lake could be released to stabilize flows in the lower American River to minimize dewatering of fall run Chinook salmon redds (i.e., October through March) and steelhead redds (i.e., January through May), and reduce juvenile anadromous salmonids isolation events, particularly from October through June.

 Reduction of the reliance upon Folsom Lake as a "real time first response facility" to meet Delta objectives and demands of the CVP, particularly from January through August, will reduce flow fluctuations and water temperature related impacts to fall run Chinook salmon and steelhead in the lower American River.

 ## Lake Oroville Coldwater Pool Improvement and Feather River Flow Enhancement

 Sites Reservoir releases in coordination with SWP operations could increase Lake Oroville carry over storage and operational flexibility. Additional storage will increase the reliability of the coldwater pool in Lake Oroville and provide flows to reduce lower Feather River water temperatures for juvenile steelhead and spring-run Chinook salmon over-summer rearing, and fall-run Chinook salmon. Additional storage will also provide opportunities to release higher and more stable flows in the lower Feather River at critical times to minimize redd dewatering, juvenile stranding, and isolation of anadromous salmonids. The proposed operations have not been prioritized to maximize this benefit. Other cooperative operations could expand this benefit at the expense of other environmental benefits.

 ## Yolo Bypass and Delta Outflow Improvement

 Release of Sites water flow through the Colusa Basin Drain and Knights Landing Ridge Cut during summer and fall months (i.e., August through October) is proposed to help increase productivity in the Yolo Bypass in the lower Cache Slough and lower Sacramento River areas to increase desirable food sources for Delta smelt and other key fish species in the late summer and early fall. Proposed operation will provide a long-term average delivery of about 56 TAF into the Yolo Bypass, with average dry year type deliveries ranging from 47 to 56 TAF.

 ## Water Supply for Wildlife Refuges

 A portion of the EESA supply is dedicated to provide water toward meeting Incremental Level 4 wildlife refuge water needs north of the Delta and south of the Delta to supplement refuges supplies up to Level 4 criteria (CVPIA). The proposed operations long-term average amount of water available North of the Delta for this purpose will be about 40 TAF (with averages ranges from about 20 to 70 TAF depending on year types) Proposed operation will provide a long-term average annual delivery of about 37 TAF to wildlife refuges, with average dry year type deliveries of up to 22 TAF.

 ## Critical Hydrologic Conditions

 Critical water years are the most extreme drought years per the Sacramento Valley 40-30-30 water year classification. Under Critical hydrologic conditions, diversions of excess water from the Sacramento River into Sites Reservoir storage could potentially occur during isolated high flow storm events in winter months, subject to the proposed bypass flow criteria.

 Monitoring will be conducted at Bend Bridge and other locations near Red Bluff Pumping Plant, Hamilton City Pumping Facility, and proposed Delevan Pipeline Intake to identify when fish are present in the river so diversions to storage could be curtailed to promote pulse flow bypass protection to support salmonid out-migration. Diversions to Sites Reservoir storage will be very limited in Critical water year types.

 The proposed operations for Sites Reservoir Project focused on retaining water from wetter years for use in Dry and Critical years. Under critical water year type conditions, Sites Reservoir EESA could provide water and operational flexibility to support a wide range of potential public benefits and ecosystem objectives. Sites Reservoir average end-of-month storage in May under simulated current, 2030, and 2070 conditions range from 836 TAF to 637 TAF.

 Operational actions to meet these objectives would be determined on an annual basis depending on the geographic variation and timing of late spring storm events, snow melt conditions, system wide reservoir storage, and water demands. In critical water years it is assumed that EESA water in Sites Reservoir will be used to support Shasta Lake coldwater pool and Sacramento River temperature control to the greatest extent possible, as well as maintenance of cold water in Lake Oroville and Folsom Lake. If additional EESA water was available it could be used to support a number of other ecosystem objectives including Yolo Bypass flow enhancement and supplies to wildlife refuges. Actions that could be taken in these years to provide public benefits are described below:

 ## Shasta Lake Coldwater Pool and Sacramento River Temperature Control

 Maximum benefits could be realized assuming Sites Reservoir and Shasta Lake were operated in cooperation to increase Shasta Lake storage and preserve a greater volume of coldwater pool storage. This additional cold water will improve operational flexibility to provide releases to maintain appropriate water temperatures in the Sacramento River, with particular emphasis on the months of highest potential water temperature related impacts (i.e., July through November). Shasta Lake average end-ofmonth storage in May under simulated current, 2030, and 2070 dry water year conditions increases by 180 TAF to 247 TAF compared to without-project conditions.

 Through releases from Sites Reservoir to meet TCCA and GCID irrigation diversions and equivalent reductions in CVP Shasta Lake releases, demands on Shasta Lake storage could be reduced and the coldwater pool maintained for a longer time at higher levels than are currently achievable. Shasta Lake release patterns could be shifted in season and between adjacent years to improve coldwater storage and flow management for salmon and other species using the portion of the Sacramento River between Keswick Dam and the Red Bluff Diversion Dam as habitat.

 ## Folsom Lake Coldwater Pool Improvement

 Sites Reservoir Project operations in cooperation with Folsom Lake could improve the reliability of coldwater carryover storage at Folsom Lake, by increasing May storage and retaining coldwater pool storage, to allow additional operational flexibility to provide suitable water temperatures in the lower American River. This action will use additional coldwater pool storage by providing releases from Folsom Dam (and subsequently from Nimbus Dam) to help provide water temperatures at levels suitable for juvenile steelhead over summer rearing and fall run Chinook salmon spawning in the lower American River from May through November. The proposed operations have not been prioritized to maximize this benefit. Other cooperative operations could expand this benefit at the expense of the other environmental benefits.

 ## American River Flow Enhancement

 Summer releases from Sites Reservoir could reduce the need for releases from Folsom Lake, resulting in increased carryover storage. Sites Reservoir releases could also provide additional Delta outflow and reduce short-term emergency flow reliance on Folsom Lake releases to improve Delta water quality.

 ## Lake Oroville Coldwater Pool Improvement and Feather River Flow Enhancement

 Sites Reservoir releases in coordination with SWP operations could increase Lake Oroville carry over storage and operational flexibility. Additional storage will increase the reliability of the coldwater pool in Lake Oroville and provide flows to reduce lower Feather River water temperatures for juvenile steelhead and spring-run Chinook salmon over-summer rearing, and fall-run Chinook salmon. The proposed operations have not been prioritized to maximize this benefit. Other cooperative operations could expand this benefit at the expense of other environmental benefits.

 ## Yolo Bypass and Delta Outflow Improvement

 Release of Sites water flow through the Colusa Basin Drain and Knights Landing Ridge Cut during summer and fall months (i.e., August through October) to help increase productivity in the Yolo Bypass in the lower Cache Slough and lower Sacramento River areas to increase desirable food sources for Delta smelt and other key fish species in the late summer and early fall. The ability to provide flow into the Yolo Bypass under critical year type conditions will be a function of ecosystem priorities based on the current year hydrology, as well as a function of the system storage conditions resulting from the previous year's hydrology and operations.

 ## Water Supply for Wildlife Refuges

 Provide water toward meeting Incremental Level 4 wildlife refuge water needs north of the Delta and south of the Delta to supplement refuges supplies up to Level 4 criteria (CVPIA). The ability to provide deliveries to wildlife refuges under critical year type conditions will be a function ecosystem priorities based on the current year hydrology, as well as a function of the system storage conditions resulting from the previous year's hydrology and operations.

 ## Multiple Dry and Critical Year Drought Conditions

 Under multiple dry and critical year drought conditions, diversions of excess water from the Sacramento River into Sites Reservoir storage will likely be very limited and carryover storage from previous years will be very important to meeting public benefits and ecosystem objectives.

 Operational actions for use of EESA carry over storage in Sites Reservoir will be determined on an year to year basis depending on the severity of drought conditions, geographic variation and timing of late spring storm events, snow melt conditions, status of system wide reservoir storage, and ecosystem water needs. During extended drought periods, it is assumed that EESA water in Sites Reservoir will be used to support Shasta Lake coldwater pool and Sacramento River temperature control as the highest priority action. If additional EESA water was available it could be used to support a number of other ecosystem objectives including coldwater storage in Lake Oroville and Folsom Lake, Yolo Bypass flow enhancement and supplies to wildlife refuges. Primary actions that could be taken during extended drought periods to provide public benefits are described below:

 ## Shasta Lake Coldwater Pool and Sacramento River Temperature Control

 Maximum public (environmental) benefits are realized assuming Sites Reservoir and Shasta Lake are operated in cooperation to increase Shasta Lake storage and preserve a greater volume of coldwater pool storage. This additional cold water will improve operational flexibility to provide releases to maintain appropriate water temperatures in the Sacramento River, with particular emphasis on the months of highest potential water temperature related impacts (i.e., July through November).

 Through releases from Sites Reservoir to meet TCCA and GCID irrigation diversions and equivalent reductions in CVP Shasta Lake releases, demands on Shasta Lake storage could be reduced and the

 | STATUS: | FINAL | PREPARER: | R TULL | PHASE: | 1 | VERSI ON: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | R LEAF | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 16 | OF | 26 |

 coldwater pool maintained for a longer time at higher levels than are currently achievable. Shasta Lake release patterns could be shifted in season and between adjacent years to improve coldwater storage and flow management for salmon and other species using the portion of the Sacramento River between Keswick Dam and the Red Bluff Diversion Dam as habitat.

 ## Yolo Bypass and Delta Outflow Improvement

 Release of Sites water flow through the Colusa Basin Drain and Knights Landing Ridge Cut during summer and fall months (i.e., August through October) to help increase productivity in the Yolo Bypass in the lower Cache Slough and lower Sacramento River areas to increase desirable food sources for Delta smelt and other key fish species in the late summer and early fall. The ability to provide flow into the Yolo Bypass under drought conditions will be a function of ecosystem priorities based on current year hydrology, as well as a function of the system storage conditions resulting from the previous year's hydrology and operations.

 ## Water Supply for Wildlife Refuges

 Provide water toward meeting Incremental Level 4 wildlife refuge water needs north of the Delta and south of the Delta to supplement refuges supplies up to Level 4 criteria (CVPIA). The ability to provide deliveries to wildlife refuges under drought conditions will be a function of ecosystem priorities based on current year hydrology, as well as a function of the system storage conditions resulting from the previous year's hydrology and operations.

 ## Adaptive Management Framework

 This section presents a monitoring and adaptive management framework to guide the evaluation and improvement of the operations of the Sites Project - as well as assist in the operations of other water management facilities interacting with the Sites Project. Because the Sites Project has not reach final design, construction or operation, this document does not include the detailed protocols and sitespecific, year-type specific sampling design necessary for implementation of a Monitoring and Adaptive Management Plan. A more detailed plan and decision-making process will be developed in future phases of the Sites Project.

 The Adaptive Management Framework is intended to support the investigation of alternative operations of the Sites Project and test these operations regarding their ability to improve environmental conditions in the Sacramento River and Delta system and improve water supply reliability in the State water supply system. The environmental conditions of primary concern in the Sacramento River and Delta system include:

 - Water temperature conditions necessary to support salmonid fish life-cycles in upstream tributaries (recruitment to spawning)
 - Sediment supply and management (suspended material supply during winter flush events and spawning gravel supply and management)
 - Habitat for juvenile salmonid development (floodplain management) for the development of smolts
 - Nutrients chemistry (ammonia levels and its oxidation products)
 - Food availability and the adverse effects of other non-native species
 - Salinity in regard to habitat suitability for native estuarine species in tributaries to the Bay and Delta.
 - Predation

 - Entrainment

 The water supply reliability concerns include:

 - Water supply availability (particularly in dry and critically dry years)
 - Regulatory and policy constraints on water delivery capability
 - Water quality constraints (salinity related chloride and bromine)

 ## Adaptive Management Process

 Adaptive management is a process that promotes flexible decision-making that can be adjusted as new and improved information becomes available about outcomes of management actions and other events (Williams et. al 2007). Adaptive management provides the necessary flexibility and feedback to manage complex natural resources in the face of considerable uncertainty about the effectiveness of specific management actions. It is an iterative process with the following steps:
 a. Plan - Define/redefine the problem, establish goals and objectives, develop restoration alternatives;
 b. Design - Develop designs and operational scenarios for habitat ponds, develop monitoring framework;
 c. Implement - Design, construct, and operate the project;
 d. Monitor - Conduct monitoring to detect change and determine status of resources;
 e. Evaluate - Analyze, synthesize, and manage data; and
 f. Adapt and Learn - Make any necessary adjustments to management, share information.

 Because uncertainties remain about natural hydrologic variations, project operations, and ecological responses, the Sites Project is being designed with a range of operational scenarios (Appendix YY, Project Operations) to evaluate the effectiveness of different management actions. A monitoring program will be implemented to collect data necessary to operate and evaluate the Project's success.

 The adaptive management program will be developed in close coordination with the National Marine Fisheries Service (NMFS), U.S. Fish and Wildlife Service (USFWS) and California Department of Fish and Game (CDFW). Specific adaptive management investigations will be developed to build on the best available science on the range of issues listed above. Adaptive management will be implemented within a framework that is transparent, collaborative, and responsive to changes in scientific understanding.

 ## Objective-based Monitoring

 Monitoring is a fundamental element of adaptive management because effective evaluation and management requires information about the status of target resources and their response to management activities. The information obtained will be used to measure Project effectiveness, to refine operation and management of the Sites Project, to reduce uncertainties about key issues, and to inform subsequent stages of actions to improve environmental conditions in the Sacramento River and Delta system and improve water supply reliability in the State water supply system.

 Monitoring can be defined as the collection and analysis of repeated observations or measurements to evaluate changes in condition and progress toward meeting a management objective (Elzinga et al. 1998). Inherent in defining monitoring as part of the adaptive management cycle are two key concepts (Elzinga et al. 1998). The first is that monitoring is driven by objectives. The objective describes the

 | STATUS: | FINAL | PREPARER: | R TULL | PHASE: | 1 | VERSI ON: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | R LEAF | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 18 | OF | 26 |

 desired condition. Management is designed to meet the objective and monitoring is designed to determine if the objective is met. Objectives form the foundation of the entire monitoring project. The second concept is that monitoring is only initiated if opportunities for management change exist.

 Monitoring efforts will be guided by the specific Sites Project objectives and desired outcomes for ecosystem priorities. The Project's objectives are to meet its primary goal to improve environmental conditions in the Sacramento River and Delta system and improve water supply reliability in the State water supply system. What is measured (indicator), how well it is measured, and how often it is measured are design features that will be defined by how an objective is articulated (Elzinga et al. 1998). Table ADF-1 provides examples of measurable objectives and performance measures for selected ecosystem priorities. Measures like these will be elements of a monitoring framework which will provide data to assess progress towards achieving Sites project objectives and ecosystem priorities, and which

 Table ADF-1. Example of Sites Project Objective-Based Monitoring Framework

 | Objectives and Ecosystem Priorities | Measurable Objectives | Performance Measures and Monitoring |
 | :---: | :---: | :---: |
 | Ecosystem Priority 1: Provide cold water at times and locations to increase the survival of salmonid eggs and fry.
 Ecosystem Priority 2: Provide flows into the Yolo Bypass to flush nutrient laden water into the Cache Slough complex to improve food availability for Delta smelt and other pelagic fish in the Cache Slough complex and lower Sacramento River
 Ecosystem Priority 3: Maintain flows and appropriate ramping rates at times and locations that will minimize dewatering of salmonid redds and prevent stranding of juvenile salmonids in side channel habitat.
 Ecosystem Priority 4: Provide additional water for level 4 wildlife refuges.
 NOTE: Need to Add Sites Reservoir Monitoring for Water Quality, Temperature and Phytoplankton species (need to look out for and control Blue Green algae) | Measurable objectives include flows and temperatures of delivered water .
 Improvement in WUA is based on habitat for steelhead spawning, but improvements in all four runs of Chinook salmon in the Sacramento River will also be seen and could potentially be quantified approximately three to four years later (2033 to 2034) when 2030 cohort return to spawn. | Performance measures include the timing of releases from Shasta, Oroville, and Folsom to maximize benefits of the project to salmonid fish species, and estimates of salmonid out-migrants.
 Monitoring data sources include:
 CDFW Sacramento River monitoring:
 - Main stem Sacramento River Markrecapture Program;
 - Upper Sacramento River Tributary Escapement Monitoring;
 - Sacramento River Tributary MarkRecapture Monitoring;
 - Hatchery Brood stock and Angler Harvest Sampling.
 Existing Delta monitoring programs:
 - Interagency Ecological Program;
 - Delta Juvenile Fish Monitoring Program;
 - Anadromous Fish Restoration Program
 Monitoring for 12 years is recommended to assess increase in spawning by quantifying increasing trends of the first four consecutive cohorts. Monitoring will begin immediately after completion of Sites Reservoir. |

 will inform adaptive management decision-making for operations. The proposed operations prioritize certain ecosystem priorities listed for the Water Storage Investment Program. Key scientific information for further monitoring and adaptive management activities related to those prioritized operations is:

 - Quantification of the improvement in temperature for salmonids above that would have been available absent Sites.
 - Benefits provided by river flow stabilization using Sites Reservoir Project water

 | STATUS: | FINAL | PREPARER: | R TULL | PHASE: | 1 | VERSI ON: | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | R LEAF | DATE: | 2017 | AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP | APPLICAT | |
 | NOTES: | | | | PAGE: | 19 | OF | 26 |

 - The amount of productivity increase in the Cache Slough area and increases in Delta smelt abundance in this area and Lower Sacramento River
 - The amount of additional water provide to Level 4 refuges.

 The next step will be to define, quantitatively or qualitatively, the specific desired outcomes for each objective and to identify appropriate indicators for measurement. Monitoring should focus on the most informative, efficient, and cost-effective indicators and methods. Types of potential indicators include:
 a. Triggers for real-time diversion and release operations - flow rates, anticipated water year type, storage in Sites and other reservoirs, storm events, and salmonid out-migrant numbers, ...;
 b. Performance measures - attributes of target species and their habitat, such as physical habitat conditions, water quality in Sites and elsewhere in the Sacramento River/Delta system, extent of wetland acreage at refuges, and distribution, abundance and composition of aquatic invertebrates, fish, waterfowl, and other wetland-dependent wildlife; and
 c. Threat indicators - potential for floods or droughts, contaminants of concern, mosquitoes and other vectors, disease outbreaks on Sites Reservoir or elsewhere

 ## Sites Project Monitoring Plan Development

 A detailed monitoring plan will be developed during the permitting phase of the final Sites Project and final designs and operations are approved. The actions identified in the monitoring plan will be based on the regulatory requirements and other information needed to operate the Sites Project facilities, to evaluate success and threats, and to help resolve remaining uncertainties, as well as available funding and monitoring requirements for compliance.

 The Sites Project monitoring plan will be developed in coordination with other similar efforts in the Sacramento River watershed, including studies by the Interagency Ecological Program and ongoing studies by USFWS, NMFS, and CDFW in the Sacramento River Watershed. Design and implementation of Sites Project monitoring will also be coordinated with ongoing and proposed survey and monitoring efforts along the Sacramento River and within the Delta to share and build on available data. This coordination will be especially valuable for evaluating Sites Project performance relative to other reference sites and for understanding regional patterns of physical and biological change.

 ## Monitoring Plan Elements

 The Sites Project monitoring plan will include several monitoring elements, modeled on other similar plans for water management facilities (e.g., Delta Independent Science Board 2016) and acceptable to the permitting and operating organizations. Each monitoring element will include a description of the purpose and justification for the monitoring activity, location(s), time period(s) and frequency of monitoring, protocol(s) for data collection, a description of the data to be collected and the anticipated use of the data, proposed quality assurance measures, reporting, and an overview of similar monitoring activities and opportunities for integration. The frequency of data collection and evaluation will be guided by the purpose of monitoring. For example, operational triggers such as water supply flow rates would be measured daily or weekly, while status of target resources would be monitored seasonally or annually. A detailed monitoring protocol will be developed prior to initiating monitoring activities in the field. This protocol will include a description of the measures that will be taken to ensure the quality of the data collected and how those measures will be implemented. The data quality assurance measures may include, but will not be limited to, procedures for calibrating or ensuring the accuracy of any instruments (e.g., GPS) employed in the field, procedures for recording and transferring electronic data,

 | STATUS: | FINAL | PREPARER: | R TULL | PHASE: | 1 | VERSI ON: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | R LEAF | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | $20 \quad$ OF | 26 | |

 methods for ensuring proper operation of field equipment during surveys, and methods for avoiding double counting or insufficient coverage of survey areas.

 Key monitoring elements will include the following:
 a. Physical Habitat in Sites Reservoir- diversions (inflow) and release flow rates, reservoir depth, snags, submerged vegetation, and other habitat elements;
 a. Water Quality - temperature, dissolved oxygen, nutrients;
 b. Aquatic Biota - algae, plankton, invertebrates, fish community (species, distribution, abundance);
 b. Birds around the Sites Reservoir- species, abundance and distribution, use of habitat features, breeding and nesting, sick or dead birds; and
 c. Contaminants in Sites Reservoir- contaminants of concern concentrations in water, sediment, terrestrial or avian biota.

 ## Data Management and Assessment

 Data collected, stored, or made accessible from the data management system will be available to the Sites Project team for the application of statistical and other analytical techniques. Data assessment will be used to foster the integration, consolidation, and review of data, updating of conceptual models, answering of key questions, reporting, and providing management recommendations. Consistent review and assessment of the data would be needed to assure that performance objectives are being met and that funding for data collection is effectively utilized. In addition to program-level data assessment and analysis, data assessment should take place at the individual monitoring activity level through regular evaluation and assessment of data collected over time. This individual monitoring would help ensure data quality and usefulness relative to meeting monitoring objectives.

 An annual report would be generated for each year that surveys are conducted that summarizes the data collected during that year and updates prior reports in a cumulative fashion. A synthesis report would be periodically prepared (each 5 or 10-year period) with long-term observations and recommendations.

 Data, analyses, and publications developed from this monitoring plan will be organized, stored, and made publicly accessible through a common distributed data management system, in coordination with the broader Sacramento River and Delta management efforts. Common protocols will be developed and applied when possible, and all geospatial data will include full metadata and will be compliant with the Federal Geographic Data Committee (FGDC) standards. Sites Project staff will establish and maintain the data management system. The data collected as part of the Sites Project will be transmitted to the California Department of Fish and Wildlife and stored in their Biogeographic Information and Observation System (BIOS) map viewer and all documentation including metadata will be accessible to the public via metadata clearinghouses and document library.

 ## Adaptive Management and Operational Decision-Making Process

 The Sites Reservoir Authority (Authority) is a Joint Powers Authority form within the laws of the State of California. The Authority Board of Directors holds the final decision-making authority for all actions pertaining to the Sites Reservoir Project. The Authority Board has delegated certain responsibilities to standing committees that do (or will) report to the Board. The Board and the Reservoir Committee have developed specific work groups to develop and refine specific products and information for

 consideration by standing committees and the Board. This Adaptive Management Framework, when approved by the Board, will be a chartering document for the Operations Committee and its staff.

 Recognizing the many sources of uncertainty in predicting future environmental conditions, particularly in light of climate change, and knowledge gaps regarding factors controlling fish population dynamics and abundance, an adaptive management approach will be required to make informed decisions about operation management for the Sites Project. The adaptive management concept will be implemented to reduce operational uncertainty, enhance scientific knowledge, comply with the permit requirements of the Sites Project, and improve project performance in a constantly changing natural system. As with other adaptive management plans associated with major water management facilities in California, adaptive management will provide recommended operations intended to test operational hypotheses and provide input to the periodic operational reviews of the Sites Project, and will be developed with the best available science in collaboration with CDFW, USFWS, and NMFS.

 It is expected that all agencies participating in the Sites Reservoir Project will adopt an adaptive management approach to reduce operational uncertainty associated with the operation of the Sites Project. At this time the participating agencies include the Authority, Reclamation, and the California Resources Agency (as the coordinating agency for the State with regard to WSIP participation). As the Site Project proceeds through WSIP, water right acquisition, and permitting processes, it is anticipated that other agencies (including the California Department of Fish and Wildlife, Department of Water Resources, the U.S. National Marine Fisheries Service and Fish and Wildlife Service) will be active participants in the adaptive management process. Together, this adaptive management organization will identify investments in related research, monitoring and other endeavors to support the Sites Project. Additional groups may be added to the adaptive management organization to support the decisionmaking process.

 ## General Operational Objectives

 The Sites Reservoir Project will include a large, off-stream reservoir that is independently owned, constructed, governed, managed and operated by the Authority under its own water rights and other regulatory requirements but in cooperation with both Reclamation and DWR in their operation of the CVP and SWP respectively.

 The operation of Sites Reservoir is predicated on the acquisition of permits consistent with the operational assumptions, the assignment of water rights by the State of California, and the completion of agreements with the Bureau of Reclamation and DWR for the use of existing facilities. Each of these is necessary to obtaining most of the public benefits described in this application. While the implementation of the Sites Project may further the detailed evaluation of the management and allocation of water supplies in California, participation by Reclamation is allowed for by Water Infrastructure and Investment for the Nation (WIIN) Act. Likewise, the California natural resource agencies may participate in the Sites Reservoir Project under terms of Proposition 1, (2014). Both statues allow water acquired for environmental and water quality purposes to be used to improve ecologic conditions in the Sacramento-San Joaquin River Delta (Delta) relative to current conditions.

 The ongoing permit acquisition, water right determinations, environmental analysis activities and the development of detailed water management agreements are all required to be complete in order to meet the following objectives of the Sites Reservoir Project.
 a. The Sites Reservoir Project will be independently constructed, operated and managed by the Site Project Authority (Authority) under its own water rights and other regulatory requirements but in cooperation with both Reclamation operating the Federal Central Valley Project (CVP) and

 DWR operating the State Water Project (SWP) according to separate cooperation agreements between the Authority, the United States and the State of California. The above agencies are also known as cooperating parties.
 b. The operation of Sites Reservoir Project is planned to include State of California and/or accommodate federal participation in exchange for obtaining eligible public benefits; specifically, for environmental and water quality purposes. Such participation is allowed for by Water Infrastructure and Investment for the Nation (WIIN) Act and November 2014, Proposition 1, specifically chapter 8: "Statewide Water System Operational Improvement and Drought Preparedness (aka the California Water Commission's Water Storage Investment Program). Both allow water acquired for environmental and water quality purposes to be used to improve ecologic conditions in the Delta relative to current conditions.
 c. The CVP operated by the Reclamation and the SWP operated by DWR have their own separate water rights and are regulated jointly by both the State Water Resources Control Board and the State and Federal Fishery Agencies under the Endangered Species Acts, and other applicable laws with regard to their respective operations including those in the Sacramento-San Joaquin Delta (Delta). The Sites Reservoir Project operations will not conflict with nor be contractually integrated into those separate water projects or regulatory requirements of the CVP or SWP.
 d. The filling of water into Sites Reservoir will only occur when by-pass requirements at the diversion points and other key locations are met and the Delta is declared to be in "excess conditions" related to Delta Outflow or Delta salinity standards affected by inflow from the Sacramento River. Excess conditions as it is related to Sites Reservoir Project operations will be determined by the methods developed according to the Coordinated Operation Agreement (COA) ${ }^{2}$ and agreed to by the cooperating parties.
 e. Water deliveries from Sites Reservoir to water users, or for environmental purposes will be done in cooperation with the SWP and CVP operations in such a manner so that they will not conflict with or otherwise adversely affect the operations of the SWP or CVP but will instead provide new benefits to water users and the environment.
 f. One of the major environmental benefits of the operations of the Sites Reservoir Project is the ability to allow a portion of the water demand within significant parts of the CVP service area along the Tehama Colusa Canal and Glen Colusa Canal south of Sites Reservoir to be met from Sites Reservoir in the summer and allow a like amount of water to be retained in Shasta Reservoir (via exchange) to assist in cold water pool management. As Sites water is stored via exchange with CVP obligations, it will create a Sites Water Account (SWA) in the Shasta Reservoir. The Authority, working on behalf of its member agencies, will manage this account in cooperation with Reclamation.
 g. The same cooperative operations may be possible at times as it relates to the SWP or CVP in the meeting in-basin water demand obligation. The Authority, on behalf of its member agencies, may want to work with Reclamation and DWR to have some of the Sites water allocations of its customers managed in cooperation with the operations of the SWP and CVP.
 h. When dealing with the SWA discussed above, the Authority will work with Reclamation and DWR to account for this water and its release latter in the summer or early fall to first meet Sites

 water users' allocations while secondly assisting with temperature or flow control downstream of the above reservoirs. This SWA will be accounted for separately, but when needed, moved across the Delta as either project water or non-project under the conveyance agreements obtained separately between the organizations that obtain Sites water south or west of the Delta and Reclamation or DWR. Also, Reclamation, in cooperation with the Authority, will work with the NMFS, USFWS and CDFW to allow the SWA to be conveyed in the later summer and fall to Authority customers, potentially across the Delta, under current Biological Opinions as has been done for early summer water held for cold water pool purposes in the past. Also, the effects of the conveyance of Sites water across the Delta will be included in the project description in any SWP/CVP re-consultation process under the Federal Endangered Species Act.
 i. Sites water users south or west of the Delta will be responsible for obtaining conveyance agreements with Reclamation or DWR to receive their allocation of the SWA and any Delta pumping costs and any losses associated with this moving the SWA from the release point and across the Delta including any Carriage Water losses.
 j. The SWA held in Shasta, Oroville or Folsom reservoirs will be accounted for and subject to standard calculation of project losses as with other water held is storage in those reservoirs. At the Sites Authority discretion, some of the SWA held in storage may be carried over to other years but will be subject to "spill" when the reservoir in which it is held enters flood control operations.
 k. Exchanges, Conveyance, and Purchases of Water Supply - Either cooperating party may make use of its facilities available to the other party for pumping and conveyance of water by written agreement. This includes the Authority use of both the Tehama Colusa and Glen Colusa Canals in order to fill Sites Reservoir and to deliver water to CVP customers as agreed to by the parties.

 ## References

 Elzinga et al. 1998.
 Williams et. al 2007.

 | STATUS: | FINAL | PREPARER: | R TULL | PHASE: | 1 | VERSI ON: | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | R LEAF | DATE: | 2017 | AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP | APPLICAT | |
 | NOTES: | | | | PAGE: | 24 | OF | 26 |

 | Objective | Detail of Operation | Priority of Operation ${ }^{\text {a }}$ | Year Type Most Suitable for Operation ${ }^{\text {b }}$ | Months Most Suitable for Operation ${ }^{\text {c }}$ | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
 | General Operation | | | | | | | | | | | | | | | |
 | Diversions to storage | Conduct diversions through the T-C Canal, GCID Canal, and the proposed Delevan Pipeline (diversions could occur in any month). Diversions would only occur once the D-1641, CVPIA 3406(b)(2), 2008 USFWS BiOp, and 2009 NMFS BiOp requirements have been met and existing authorized Delta diversions (e.g., Freeport Regional Water Project, Los Vaqueros Reservoir, cities of Fairfield, Vacaville, and Benicia) have been satisfied. Diversions to Sites Reservoir would be restricted by Sacramento River bypass criteria at Red Bluff, Hamilton City, Wilkins Slough, and Freeport, and mitigation restrictions for protecting fish outmigration pulse flows. Shading indicates the period in which diversion operations would occur, with the highest diversions during November through March. Diversions could also be limited by future regulatory requirements which may be placed on California and the United States. | n/a | n/a | | | | | | | | | | | | |
 | Seasonal Reservoir Operations | Fill Sites Reservoir by pumping water diverted and stored pursuant to Water Right Application A025517 throughout the winter and spring and drain during peak release periods throughout the summer and fall. | n/a | n/a | | Cycle | | | | | Po | | | | | |
 | Water Supply Operations | | | | | | | | | | | | | | | |
 | Sites Project Authority | Provide storage releases to participating TCCA districts on an as-needed basis to supplement CVP Agricultural Water Service Contract deliveries. Provide storage releases to GCID and RD 108 to supplement CVP Settlement Contract deliveries. Provide supplemental water supplies to project participants in the Sacramento Valley and south-of-the Delta to improve water supply reliability. Export would require new contracts for conveyance with Reclamation and DWR. | SPA-1 | AN,BN, D, C | | | | | | | | | | | | |
 | Hydropower Operation | | | | | | | | | | | | | | | |
 | Dispatchable Hydropower Generation | Provide more than 30 hours per week of uninterrupted operation, with dedicated afterbay/forebay (Holthouse Reservoir) with 6,500-acre-foot capacity. | n/a | ALL | | | | | | | | | | | | |
 | Ecosystem Enhancement Storage Account (EESA) Actions/Operation | | | | | | | | | | | | | | | |
 | EESA-1: Shasta Coldwater Pool | Increase Shasta Lake storage levels to preserve additional coldwater pool storage. This action would have particular emphasis in Below Normal, Dry, and Critical water-year types. This benefit would be achieved by (1) exchanging environmental water from Sites Reservoir for environmental water storage in Shasta, and then releasing water from Sites Reservoir to meet CVP contract requirements for GCID, Reclamation District 108, and the Member Units of the TCCA; (2) releasing water from Sites Reservoir to meet CVP south-of-the-Delta needs instead of releasing water from Shasta; and (3) releasing water from Sites Reservoir to meet a portion of the CVP commitment for Delta outflow. | DP-1 | BN, D, C | | | | | | | | | | | | |
 | EESA-2: Sacramento River Flows for Temperature Control | Maintain water temperatures year-round at levels suitable for all species and life stages of anadromous salmonids in the Sacramento River between Keswick Dam and Bend Bridge, and during the July through September period for Below Normal, Dry, and Critical water-year types. This objective would be achieved by releasing water from increased storage in Shasta. | DP-2 | BN, D, C | | | | | | | | | | | | |
 | EESA-3: Folsom Lake Coldwater Pool | Increase Folsom Lake storage levels to preserve additional coldwater pool to achieve temperatures that are more suitable for juvenile steelhead summer rearing and fall-run Chinook salmon spawning in the lower American River from May through November during dry and critical water-year types. The additional storage would be achieved by releasing Sites Reservoir water to assist with meeting Delta objectives that are currently met through releases from Folsom, particularly from January through August. | DP-2 | D, C | | | | | | | | | | | | |

 Table ADF-2. Description of Proposed Sites Project Authority Seasonal Operations

 he scenario. "SPA" indicates Sites Project Authority operation on an as-needed basis subject to storage availability,
 esurtable for developing the benefit associated with the operation.
 peration, when the operations criteria in the scenario allow for prioritization of the operations, and when conditions are suitable for developing the benefit associated with the operation.
 Notes:
 AN $=$ Above Norma
 AVG $=$ Average
 AVG $=$ Average
 BN $=$ Below Normal
 $\mathrm{C}=$ Critical
 $\mathrm{D}=\mathrm{Dry}$
 $\mathrm{DP}=$ Driest per

 | = Driest periods |
 | :--- | :--- |

 USFWS $=$ U.S. Fish and Wildlife Service

    ```
    Status: FINAL
    kpose: benefit Calculation, monetization, AND resllency az
    CAVEAT:
    ```


 ## Feasibility and Implementation Risk Tab

 ## Attachment 2: Permits

 Provide a listing and status of all local, state, and federal permits, certifications, and other approval necessary for the construction and operation of the project. See section 6003(a)(1)(W) of the regulations.

 WSIP Application Instructions, March 2017

 ## Response

 This attachment describes the anticipated local, state, and federal permits, certifications, and other approval required construction and the time required to obtain each approval for construction and operation of the Sites Project.

 | STATUS: | FINAL | PREPARER: | N SMITH | PHASE: |
 | :--- | :--- | ---: | ---: | ---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A2 | CHECKER: | L BLACK | DATE: |
 | CAVEAT: | | QAVC: | REF/FILE \#: | WSIP AUGUSTICATION |
 | NOTES: | | | PAGE: | 1 |

 ## Table of Contents

 1
 ## Tables

 Table 1. Applicable Federal, State, and Local Permits and Approvals .. 3

 ## Acronyms and Abbreviations

 | BA | Biological Assessment |
 | :--- | :--- |
 | EIR | Environmental Impact Report |
 | EIS | Environmental Impact Statement |
 | LEDPA | Least Environmentally Damaging Practicable Alternative |
 | NEPA | National Environmental Policy Act |
 | SMARA | Surface Mining and Reclamation Act |
 | USACE | U.S. Army Corps of Engineers |

 | STATUS: | FINAL | PREPARER: | N SMITH | PHASE: | 1 | VERSION: |
 | :--- | :--- | :---: | ---: | :---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A2 | CHECKER: | L BLACK | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVQ: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 2 | OF | 4 |

 Table 1 summarizes the anticipated local, state, and federal permits, certifications, and other approval necessary for the construction and operation of the Sites Reservoir Project and the time required to obtain each approval. Additional information related to policies and regulations applicable to the Project is located in Chapter 4, "Environmental Compliance and Permit Summary," and Appendix 4A, "Environmental Compliance," of the Environmental Impact Report (EIR)/Environmental Impact Statement (EIS) (http://sitesproject.org/information/DraftEIR-EIS).

 The project is currently in preliminary engineering and planning stages. To date, no formal permitting or approval processes have been initiated.

 Table 1. Applicable Federal, State, and Local Permits and Approvals

 | Agency | Type of Permit or Approval | Timing |
 | :---: | :---: | :---: |
 | California Department of Fish and Wildlife | Streambed Alteration Agreement | 1 month after application submittal based on 50 percent design |
 | California Department of Fish and Wildlife | Incidental Take Permit | 7 months after application submittal based on 50 percent design |
 | State Office of Historic Preservation | See Advisory Council on Historic Preservation under U.S. Army Corps of Engineers (USACE) | |
 | California Department of Conservation | Approval of Reclamation Plans \& Financial Assurance for Surface Mining and Reclamation Act (SMARA) Permit | 1 to 2 months |
 | Regional Agency Permits and Approvals | | |
 | Central Valley Regional Water Quality Control Board | General Construction Stormwater National Pollution Discharge Elimination System permit | Prior to construction |
 | Central Valley Regional Water Quality Control Board | Waste discharge requirements | 6 months to 1 year after application submittal |
 | Central Valley Regional Water Quality Control Board | Section 401 Water Quality Certification | 6 months after application submittal |
 | Union Pacific Railroad | Rail Crossing Encroachment Permit | 6 months after application submittal |
 | Local Agency Permits and Approvals | | |
 | Colusa and Glenn County Air Pollution Control Districts | Authority to construct and permit to operate | 6 months after application submittal |
 | Colusa and Glenn County Public Works Departments | Encroachment permit | 1 to 2 months |
 | Colusa and Glenn County Public Works Departments | Transportation permit | 1 day |
 | Colusa and Glenn County Public Works Departments | Building permit, street improvement permit, grading permit | Approximately 1 month after final design |
 | Colusa County Planning Department | Zoning/General Plan amendment | 6 months |
 | Colusa and Glenn Counties | Surface Mining and Reclamation Act Permit | 1 to 2 months |

 | STATUS: | FINAL | PREPARER: | N SMITH | PHASE: | 1 VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A2 | CHECKER: | L BLACK | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | PAGE: | 4 OF | 4 |

 ## Physical Benefits Tab

 ## Attachment 2: Recreation Benefits

 Attach or provide links to any relevant recreation studies associated with the proposed project.

 WSIP Application Instructions, March 2017
 Response
 This attachment contains analyses of benefits associated with Stone Corral Recreation Area and Peninsula Hills Recreation Area.

 | STATUS: | FINAL | PREPARER: | D RUARK | PHASE: | 1 |
 | :--- | :--- | ---: | :--- | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFIT | CHECKER: J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVQC: | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | RECREATION BENEFITS | | PAGE: | 1 | OF |

 ## Table of Contents

 Attachment 2: Recreation Benefits 1
 Introduction 3
 Tables
 Table 1. Summary of Recreation Facilities 4
 Figures
 Figure 1. Proposed Sites Reservoir including Recreation Areas 5
 Figure 2. Stone Corral Recreation Area 6
 Figure 3. Peninsula Hills Recreation Area 7

 ## Acronyms and Abbreviations

 MAF million acre-feet
 msl mean sea level
 NODOS North-of-the Delta Offstream Storage

 | STATUS: | FINAL | PREPARER: | D RUARK | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFIT | CHECKER: | J HERRIN | DATE: | 2017 A | | |
 | Caveat: | | QAQC: | | REF/FILE \#: | WSIP A | ICATION | |
 | NOTES: | RECREATION BENEFITS | | | PAGE: | 2 | OF | 7 |

 ## Introduction

 The proposed Sites Reservoir would be located in the Antelope Valley in Colusa and Glenn Counties. At maximum capacity, the reservoir would be the seventh largest reservoir in California, with a storage volume of approximately 1.81 million acre-feet (MAF) and surface area of approximately 14,000 acres. Sites Reservoir would provide new opportunities for surface-water recreation, such as boating, fishing, and swimming. In addition, new facilities would be developed to support other recreation activities like camping, hiking, picnicking, and sightseeing.

 The suitability of lands to support reservoir-based recreation is determined by several factors, including topography, access, physical/aesthetic setting, projected reservoir operations, anticipated use, and competing uses. The following assumptions were made to characterize the potential recreational opportunities and benefits at Sites Reservoir:

 - The maximum design water-surface elevation of Sites Reservoir, 520 feet above mean sea level (ms I), is associated with a 1.81 MAF storage capacity and is considered to be the baseline scenario.
 - The reservoir's water level would fluctuate considerably during normal operations. The maintained portion of the proposed recreation area would be limited to a designated footprint above the maximum designed reservoir water elevation, and access would be provided to the reservoir.
 - General recreational activities include those common to the region, and that are usually of normal quality. Normal quality refers to experiences and activities that could be found in a more common setting, such as a regular city park, but are not an extraordinary recreational experience. These activities include picnicking, camping, day-use visits, hiking, horseback riding, cycling, fishing, boating, and passive recreation.
 - Likelihood of success at fishing and wildlife viewing enhance the value of a recreation site.
 - Overuse may adversely affect the quality of recreational values. Major aesthetic qualities to be considered in assessing recreational opportunities include wildlife, geology and topography, water, and vegetation.
 - It is assumed that recreational development and types of recreational opportunities would be comparable to those available at Black Butte Reservoir located north of Sites Reservoir in Glenn and Tehama counties.

 The location of the proposed recreation areas are shown on Figure 1 and described as follows:

 - Stone Corral Recreation Area - The Stone Corral Recreation Area (see Figure 2) would be located on the east side of the reservoir, north of the existing Maxwell-Sites Road and the proposed Sites Dam. The maximum proposed size of the Stone Corral Recreation Area is 235 acres.
 - Peninsula Hills Recreation Area - The Peninsula Hills Recreation Area (see Figure 3) would occupy approximately 516 acres on the northwest side of Sites Reservoir. The Authority is considering the installation of a separate boat launch facility approximately 2 miles south of this recreation area, with access to the reservoir south of Sites-Lodoga Road.

 The facilities for each recreation area are summarized in Table 1 below.

 | STATUS: | FINAL | PREPARER: | D RUARK | PHASE: | 1 | VERSION: |
 | :--- | :--- | ---: | ---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFIT | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAQC: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | RECREATION BENEFITS | | PAGE: | 3 | OF | 7 |

 Table 1. Summary of Recreation Facilities

 | Feature | Stone Corral | Peninsula Hills |
 | :--- | :--- | :--- |
 | Size | 235 acres | 516 acres |
 | Location | East side of Sites Reservoir | West side of Sites Reservoir |
 | Access | New Stone Corral Road | Existing Sites-Lodoga Road and new bridge and new Peninsula Road |
 | Camp sites | 50 (car and recreational vehicle) | 100 (car and recreational vehicle) and 1 group camp area (group
 camp area can accommodate up to 24 people) |
 | Picnic sites | 10 (with parking at each site) | 10 (with parking at each site) |
 | Hiking trails | Yes | Yes |
 | Vault toilets | 10 | 10 |
 | Kiosk | 1 | 1 |
 | Boat launch | Two lane ramp and parking area | Nearby two lane ramp and parking area approximately two miles
 from recreation area |
 | Utilities | Electricity and water | Electricity and water |
 | Other | $35-a c r e ~ o v e r l o o k / i n t e r p r e t i v e ~$
 (sightseeing) and additional parking
 areas | Equestrian trails and horse trailer parking area; vista
 point/sightseeing; additional parking areas |

 The design for these recreation areas was developed with input from Colusa County, a Sites Project Authority member. They would most likely be the operator/maintainer for the recreation facilities. These recreation areas could potentially be developed and commissioned in a phased approach to match recreational interest at Sites Reservoir. The Stone Corral Recreation Area and the west-side boat ramp would be constructed initially, followed by the remainder of Peninsula Hills Recreation Area, if warranted.

 The Feasibility Report Appendix E Recreation supporting the North-of-the Delta Offstream Storage (NODOS) Investigation prepared for the Bureau of Reclamation provides more detailed discussion of the recreation facilities currently planned and budgeted for development (Found at https://www.sitesproject.org/information/FeasibilityReport).

 | STATUS: | FINAL | PREPARER: | D RUARK | PHASE: | 1 |
 | :--- | :--- | :---: | :--- | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFIT | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAVQ:: | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | RECREATION BENEFITS | | PAGE: | 4 | OF |

 Figure 1. Proposed Sites Reservoir including Recreation Areas

 | STATUS: | FINAL | PREPARER: | D RUARK | PHASE: | 1 | VERSION: |
 | :--- | :--- | ---: | :--- | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFIT | CHECKER: | JHERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | RECREATION BENEFITS | | PAGE: | 5 | OF | 7 |

 Figure 2. Stone Corral Recreation Area

 | STATUS: | FINAL | PREPARER: | D RUARK | PHASE: | 1 | VERSION: |
 | :--- | :--- | :---: | :---: | :---: | :---: | :---: | A

 Figure 3. Peninsula Hills Recreation Area

 | STATUS: | FINAL | PREPARER: | D RUARK | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :---: | :---: | :---: | A

 # BEFORE THE BOARD OF DIRECTORS OF THE SITES PROJECT AUTHORITY

 Resolution No. 2017-001

 #### Abstract

 In the Matter of: Authorizing Filing Application to California Water Commission under Water Storage Investment Program for the Sites Project.

 WHEREAS, the Water Storage Investment Program ("WSIP") is provided for at Chapter 8 (commencing at Section 79750) of Division 26.7, of the California Water Code, which is part of the November 2014 voter-approved Proposition 1, the process for which is specified in regulations promulgated by the California Water Commission at California Code of Regulations, Title 23, Division 7, Chapter 1 ("WSIP Regulation"); and

 WHEREAS, the Sites Project Authority ("Authority") is a joint powers authority formed by and existing among various irrigation districts and other local water districts and local governments within the Sacramento River hydrologic region pursuant to a Joint Exercise of Powers Agreement as last amended February 13, 2017, and through a Reservoir Committee established by the Authority has partners that are not located within said hydrologic region, participating with development of the Sites Project, all as authorized by Water Code Section 79759 of the WSIP authorizing act; and

 WHEREAS, the Sites Project, very generally and as described in detail in the application authorize to be filed by this Resolution and its attachments, is a proposed off-stream reservoir to store unregulated water within the Sacramento River watershed when this outflow is not meeting critical environmental, water quality and water supply needs, and to subsequently release such store water from the reservoir for beneficial uses for consumptive and in-stream flow purposes; and

 WHEREAS, the Sites Project is among the surface storage projects identified in the CALFED Bay-Delta Program Record of Decision, date August 28, 2000, and is therefore eligible for funding under Water Code Section 79751(a); and

 WHEREAS, this Board is familiar with and concurs in the draft of the application authorized to be filed by this Resolution;

 NOW, THEREFORE, BE IT RESOLVED by this Board of Directors as follows:

 1. The foregoing recitals are true and correct;
 2. The General Manager is authorized and directed to timely file an application for the Sites Project with the California Water Commission pursuant to WSIP and its implementing regulations referenced above; and
 3. The Authority's officers and General Manager are authorized to do all things necessary and proper to carry out and implement filing the above referenced application with the California Water Commission.

 PASSED, APPROVED AND ADOPTED by the Board of Directors of the Sites Project Authority this $31^{\text {st }}$ day of July, 2017, by the following vote:

 Ayes: Colusa County, Reclamation District 108, Westside Water District, GlennColusa Irrigation District, Tehama-Colusa Canal Authority, Maxwell Irrigation District, Colusa County Water District, Orland Artois Water District, Placer County Water Agency/City of Roseville, Proberta Water District/TC 6 Districts and Western Canal Water District.

 Nays: None.
 Absent: Glenn County.
 Abstain: None.

 Kim Dolbow Vann, Chair
 Sites Project Authority Board

 ATTEST: Ann Nordyke
 Clerk to the Board of Directors

 ## APPROVED AS TO FORM:

 Secretary's Certificate
 I, Jamie Traynham, Secretary of the Sites Project Authority Board, do hereby certify that the resolution set forth above, is a true and accurate copy of a resolution adopted by the board of directors of the Sites Project Authority at a duly called meeting of the board on July 31, 2017. I further certify that said resolution has not been rescinded, amended, or modified and is in full force and effect as of the date hereof.

 In witness whereof, I have executed this certificate this 2 nd day of August 2017.

 Jamie Traynham, Sedretary
 Sites Project Authority

 Source: Prepared by AECOM 2017
 Figure Water Quality P - 1a. Area of Temperature Improvement for the Sacramento River

 | STATUS: | FINAL | PREPARER: | L TRUMBULL | PHASE: |
 | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITSA2 | CHECKER: | N SMITH | DATE: |
 | CAVEAT: | | QAVQ: | REFSION: AUGUST | A |
 | NOTES: | | | PAGE: | 1 |

 Source: Prepared by AECOM 2017
 Figure Water Quality P-1b. Area of Temperature Improvement for the American River

 | STATUS: | FINAL | PREPARER: | LTRUMBULL | PHASE: | 1 | VERSION: | A |
 | :--- | :--- | ---: | :--- | ---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS A2 | CHECKER: | N SMITH | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QALQC: | REF/FILE \#: | WSIP APPLICATION | | | |
 | NOTES: | | | PAGE: | 2 | OF | 6 | |

 Source: Prepared by AECOM 2017
 Figure Water Quality P-6a. Hydrologic regions receiving surface water supplies and potential area of Groundwater Improvement

 | STATUS: | FINAL | PREPARER: | L TRUMBULL | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | PHYSICAL PUBLIC BENEFITS A2 | CHECKER: | N SMITH | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP A | ATION | |
 | NOTES: | | | | PAGE: | 3 | OF | 6 |

 Source: Prepared by AECOM 2017
 Figure Water Quality P - 9a. Disadvantaged Community Block Groups within Site Participant's Service Area (Northern California)
 Status: FINAL
 PREPARER: LTRUMBL
 Purpose: PHYSICAL PUBLIC benefits A2
 notes:

 Figure Water Quality P - 9b. Disadvantaged Community Block Groups within Site Participant's Service Area (Central California)

 | STATUS: | FINAL |
 | :--- | :--- |
 | PURPOES: | |
 | CHYSICAL PUBLIC BENEFITS A2 | |
 | CAVEAT: | |
 | NOTES: | |

 Notes:

 $$
 \begin{aligned}
 & \text { PREPARER: LTRUMBULL } \\
 & \text { CHECKER: N SMITH } \\
 & \text { DATE: NSMITH } 2017 \text { AUGUST }
 \end{aligned}
 $$

 Source: Prepared by AECOM 2017
 Figure Water Quality P - 9c. Disadvantaged Community Block Groups within Site Participant's Service Area (Southern California)

 | Status: | final | PREPARER: | LTRUMBull | PHASE: | 1 | version: |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: CAVEAT: | PHYSICAL PUBLIC BENEFITS A2 | CHECKER: OAOC: | NSMITH | | $2017 \text { AU }$ | ST |
 | notes: | | | | PAGE: | 6 | 相 |

 ## Benefit Calculation, Monetization, and Resiliency Tab

 ## Attachment 3: Physical and Monetized Benefits

 Attach the analysis of all public and non-public monetized benefits. Identify at least one Program ecosystem or water quality priority for any ecosystem or water quality public benefit quantified. For each public and non-public benefit, describe the methods used to derive the physical and economic benefits and impacts at a level of detail that allows reviewers to verify your analysis.
 Description must include:

 - The physical changes that are being monetized, consistent with information requested in the Physical Public Benefits Tab, and describing linkages between physical benefits and monetized benefits. See regulations sections 6004(a)(3) and 6004(a)(4); and
 - The monetization method and sources for data used. See regulations section 6004(a)(4).

 Response

 ## Table of Contents

 Attachment 3: Physical and Monetized Benefits 1
 Benefits Summary. 4
 Ecosystem Improvement (WSIP Public Benefits). 7
 Anadromous Fish 7
 Incremental Level 4 Refuge Water Supply. 9
 Lake Oroville Coldwater Pool 11
 Yolo Bypass Flows 12
 Recreation (WSIP Public Benefit) 14
 Physical Quantification 14
 Monetized Benefits 14
 Flood Damage Reduction (WSIP Public Benefit) 15
 Physical Quantification 15
 Monetized Benefits 15
 Water Supply (Non-Proposition 1 Eligible Benefit). 16
 Physical Quantification 16
 Monetized Benefits 17
 Hydropower (Non-Proposition 1 Eligible Benefit) 17
 Physical Quantification 17
 Monetized Benefits 17
 Tables
 Table A3-1. Summary of Quantified Physical Benefits and Monetization Approaches. 4
 Table A3-2. Summary of Quantified Water Use by Purpose (TAF/year) 5
 Table A3-3. Summary of Monetized Benefits by Purpose (2015\$; \$1,000s) 6
 Table A3-4. Ecosystem Physical Benefits Quantified and Monetized. 7
 Table A3-5. SALMOD Results for 2030 and 2070 (TAF/year) 8
 Table A3-6. Anadromous Fish Benefits: Least-Cost Alternative (2015\$; \$1,000s) 9
 Table A3-7. Incremental Level 4 Refuge Water Supply Increases (2030 and 2070) (TAF/year) 10
 Table A3-8. Incremental Level 4 Refuge Benefits: WSIP Unit Water Values (2015\$; \$1,000s) 10
 Table A3-9. Lake Oroville Storage Increases for 2030 and 2070 (TAF/year) 11
 Table A3-10. Lake Oroville Coldwater Pool Benefits: WSIP Unit Water Values (2015\$; \$1,000s) 12
 Table A3-11. Yolo Bypass Flow Increases for 2030 and 2070 (TAF/year) 13
 Table A3-12. Yolo Bypass Supply Benefits: WSIP Unit Water Values (2015\$; \$1,000s) 13
 Table A3-13. Annual Recreation Visitation by Primary Activity. 14
 Table A3-14. Estimated Annual Recreation Benefits (2015\$; \$1,000s) 15
 Table A3-15. Flood Reduction Benefits (2015\$; \$1,000s) 16
 Table A3-16. Increase in Water Supply Deliveries (TAF/year) 16
 Table A3-17. Total Water Supply Benefits: CWEST Results and WSIP Unit Water Values (2015\$; $\mathbf{\$ 1 , 0 0 0 s)}$ 17
 Table A3-18. Hydropower Benefits (2015\$; \$1,000s). 18

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | | PAGE: | 2 |

 ## Figures

 Figure A3-1.Percentage Increase in Fish Species Average Production for 2030 and 2070

 ## Acronyms and Abbreviations

 | AS | ancillary services |
 | :--- | :--- |
 | cfs | cubic feet per second |
 | CVP | Central Valley Project |
 | DWR | California Department of Water Resources |
 | GIS | geographic information system |
 | JPA | Joint Powers Authority |
 | M\&I | municipal and industrial |
 | NED | North-of-the-Delta Offstream Storage |
 | NODOS | Powerations and maintenance |
 | O\&M | PLEXOS ${ }^{\circledR}$ Integrated Energy Model |
 | PARO | Sites Reservoir Project |
 | PLEXOS | Renewable Portfolio Standard |
 | project | Recreation Use Values Database |
 | RPS | State Water Project |
 | RUVD | thousand acre-feet |
 | SWP | Technical Report |
 | TAF | Water Storage Investment Program |
 | TR | WSIP |

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | | | PAGE: |

 ## Benefits Summary

 In accordance with the Water Storage Investment Program (WSIP) Technical Report (TR) recommendations, CALSIM II modeling was used to determine the Sites Reservoir Project's (project) future water supply deliveries for 2030 and 2070 for each water-delivery-dependent purpose (e.g., municipal and industrial [M\&I] deliveries, Incremental Level 4 deliveries) (CWC 2016). Other purposes were monetized based on other quantifications of their future operational performance (e.g., increased visitation for Recreation, supported habitat units for anadromous fish).

 Table A3-1 shows the benefits quantified and monetized for the WSIP Application.
 Table A3-1. Summary of Quantified Physical Benefits and Monetization Approaches

 | Benefit Type | Quantified Use | Physical Benefit Quantified | Monetization Method |
 | :---: | :---: | :---: | :---: |
 | WSIP Public Benefits | Ecosystem Improvement Anadromous Fish | Habitat Units | Alternative Cost |
 | | Ecosystem Improvement Incremental Level 4 Refuge Water | Increased Deliveries | WSIP Unit Water Values |
 | | Ecosystem Improvement - Oroville Coldwater Pool | Stored Water | WSIP Unit Water Values |
 | | Ecosystem Improvement - Yolo Bypass | Delivered Water | WSIP Unit Water Values |
 | | Recreation | Visitation | Facilities Assessment and Unit Day Values |
 | | Flood Control | Flood Damage Reduction | Avoided Cost Savings |
 | Non-Proposition 1 Eligible Benefits | Water Supply - M\&I, Agricultural and Recaptured | Increased Deliveries | CWEST Modeling (M\&I and Recaptured); WSIP Unit Water Values (Agricultural) |
 | | Hydropower | Generated Power | PARO/PLEXOS Modeling |
 | M\&I = | municipal and industrial | | |
 | PARO | Power and Risk Office (DWR) | | |
 | PLEXOS = | PLEXOS ${ }^{*}$ Integrated Energy Model | | |
 | WSIP = | Water Storage Investment Program | | |

 For each applicable project purpose, the CALSIM II operational analysis quantified its future water deliveries by water-year type and location. Corresponding physical benefits were estimated on an annual basis for the interim 2031 to 2069 period by interpolating individually (i.e., for each specific purpose by location, water-year type, and incidence rate). The 2070 physical benefit quantities were applied for the post-2070 study period (2071 to 2122). Each year's individual quantified water values were then used to determine a corresponding average expected water use amount. An average annual quantification was then estimated for the entire period of operations (2030 to 2122).

 The majority of the benefits from the project purposes are expected to start producing their full benefits at the beginning of the project operations in 2030. The project's hydropower and recreation operations are the only facilities expected not to attain their full operating levels in 2030. Instead, a short initial ramp-up period is expected for those facilities before they achieve their full operating and benefit levels, in 2032. In a few other cases, the project facilities are expected to generate additional limited benefits before 2030. As a result, partial anadromous fish, Yolo Bypass, and flood damage reduction benefits are expected to be obtained before the end of construction.

 The annualized benefit values for the 2030 to 2122 operating period were included the reduced benefits during the initial hydropower and recreation facilities' 2030 to 2031 ramp-up period. The project's pre2030 additional benefits were not included in the annualized (2030 to 2122) values. However, the

 additional pre-2030 benefits are incorporated into the project's total net benefit value, benefit-cost ratio, and public benefit ratio calculations.

 When applicable for the other project purposes, annual quantifications were similarly interpolated for the interim 2031 to 2069 period. The 2070 physical benefit quantities were also applied for the post2070 study period (2071 to 2122).

 Table A3-2 shows the estimated water supply deliveries and other quantified physical benefits by project purpose for 2030 and 2070, with the annualized average for the entire 2030 to 2122 operating period. More detailed information and discussion of each purpose's physical benefit quantification is provided in Sites_A5 Documentation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB.

 Table A3-2. Summary of Quantified Water Use by Purpose (TAF/year)

 |
 Period WSIP Public Benefits Non-Proposition 1 Eligible Benefits
 Coldwater $^{\text {Pool }^{\text {a }}}$ Yolo
 Bypass Incremental
 Level 4 Refuge Agricultural
 Water Supply M\&I Water
 Supply Recaptured
 Water Supply Total Water | | | | | | | |
 | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | 109 | 39 | 35 | 137 | 106 | 11 | 437 |
 | 2045 | 102 | 39 | 33 | 148 | 110 | 11 | 443 |
 | 2070 | 90 | 39 | 31 | 167 | 117 | 11 | 455 |
 | Average
 $(2030-2122)$ | $\mathbf{9 4}$ | $\mathbf{3 9}$ | $\mathbf{3 2}$ | $\mathbf{1 6 1}$ | $\mathbf{1 1 4}$ | $\mathbf{1 1}$ | $\mathbf{4 5 1}$ |

 ${ }^{a}$ Includes coldwater pool improvements for both Shasta Lake and Lake Oroville.
 M\&I = municipal and industrial
 TAF = thousand acre-feet
 WSIP = Water Storage Investment Program
 Each project purpose benefit was monetized based on its quantified physical benefits. As shown in Table A3-1, a variety of monetization approaches were used to estimate the economic benefit values for the project's purposes. The benefit monetizations for each project purpose are summarized below in Table A3-3. More detailed information and discussion of each purpose's physical benefit quantification is provided in Sites_A5 Documentation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB.

 Table A3-3 shows the estimated monetized benefits by purpose in 2030, 2045, 2070, and the annual average for the entire 2030 to 2122 study period. More detailed information and discussion of each purpose's physical benefit quantification is provided in Section A.5.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | J HERRIN | DATE: | | |
 | CAVEAT: | | QA/QC: | | 2O17 AUGUST | | |
 | NOTES: | | | REF/FILE \#: | WSIP APPLICATION | | PAGE: |

 Table A3-3. Summary of Monetized Benefits by Purpose (2015\$; \$1,000s)
 WSIP Public Benefits Non-Prop. 1 Eligible Benefits

 | Year | WSIP Public Benefits | | | | | | | | Non-Prop. 1 Eligible Benefits | | | Total Benefits |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Total WSIP Public Benefits | Total Ecosystem Improvement | | | | | Recreation | Flood Control | Total Non-Prop. 1 Eligible Benefits | Total Water Supply | Hydropower(System) | |
 | | | Total Ecosystem Improvement | Anadromous Fish \& Other Aquatic | Incremental Level 4 Refuge | Lake Oroville Coldwater Pool | Yolo Bypass | | | | | | |
 | 2030 | \$73,717 | \$62,343 | \$25,637 | \$16,047 | \$11,814 | \$8,845 | \$6,997 | \$4,377 | \$109,207 | \$89,024 | \$20,183 | \$182,925 |
 | 2045 | \$119,700 | \$108,325 | \$48,505 | \$27,644 | \$22,986 | \$9,190 | \$6,997 | \$4,377 | \$177,417 | \$157,234 | \$20,183 | \$297,116 |
 | 2070 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$20,183 | \$428,527 |
 | Annualized (2030-2122) ${ }^{\text {a }}$ | \$122,033 | \$110,900 | \$56,985 | \$23,811 | \$20,987 | \$9,117 | \$6,755 | \$4,377 | \$194,902 | \$175,418 | \$19,483 | \$316,934 | water values were used.

 | Status: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | ose: | benefit Calculation, monetization, and resiliency az | CHECKER: | J Herrin | DATE: | | 7 Aug |
 | EAT: | | qavo: | | \#: | | P APPLICATION |

 ## Ecosystem Improvement (WSIP Public Benefits)

 Sites Reservoir would provide a variety of ecosystem benefits. Four distinct ecosystem benefits were analyzed. Table A3-4 summarizes the physical benefits that were quantified and monetarized for the WSIP Application.

 Table A3-4. Ecosystem Physical Benefits Quantified and Monetized

 | Benefit Category | Location | Physical Benefit Monetized |
 | :--- | :--- | :--- |$|$| Anadromous Fish | Sacramento River watershed between Keswick
 Dam and Red Bluff | Increase in habitat units as determined by SALMOD |
 | :--- | :--- | :--- |
 | Incremental Level 4 Refuge
 Water Supply | National Wildlife Refuges, State Wildlife Areas,
 and privately managed wetlands | Increase in Incremental Level 4 refuge water
 supplies to achieve optimum habitat management |
 | Lake Oroville Coldwater Pool | Lake Oroville | Additional water stored in Lake Oroville provides
 temperature and flow improvements for
 anadromous fish |
 | Yolo Bypass Flows | Yolo Bypass discharging to the Sacramento River | August through October releases from Sites
 Reservoir to Yolo Bypass |

 ## Anadromous Fish

 ## Physical Quantification

 Sites Reservoir provides a variety of benefits to anadromous fish. SALMOD modeling results were used to evaluate the cost of an alternative project to raise the dam at Shasta Lake to estimate the benefits to anadromous fish. The SALMOD model combines flow and temperature information to forecast the population of Chinook salmon in the Sacramento River watershed between Keswick Dam and Red Bluff. Table A3-5 presents the projected increases in future fish population and habitat units by type of fish for 2030,2070 , and the annual average in the 2030 to 2122 study period.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | | | PAGE: |

 Table A3-5. SALMOD Results for 2030 and 2070 (TAF/year)

 | Run | No Action (\# of fish/yr) | Average Increase (\# of fish/yr) | Habitat Units | Dry Year Increase (\# of fish/yr) | Critical Year Increase (\# of fish/yr) | Dry \& Critical Year Increase (\# of fish/yr) |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 2030 SALMOD Results | | | | | | |
 | Fall-Run Chinook | 32,275,104 | 435,138 | 435 | 19,893 | 1,493,430 | 609,308 |
 | Late Fall-Run Chinook | 7,911,118 | 70,188 | 70 | 57,277 | 208,800 | 117,886 |
 | Winter-Run Chinook | 3,892,177 | 20,627 | 21 | -62,557 | 207,285 | 45,380 |
 | Spring-Run Chinook | 866,601 | 13,331 | 13 | 14,088 | 40,324 | 24,582 |
 | Total All Runs | - | 539,284 | 539 | 28,701 | 1,949,839 | 797,156 |
 | 2070 SALMOD Results | | | | | | |
 | Fall-Run Chinook | 27,506,156 | 1,454,968 | 1,455 | 2,574,746 | 3,427,234 | 2,915,741 |
 | Late Fall-Run Chinook | 7,525,505 | 235,595 | 236 | 169,866 | 1,137,267 | 556,826 |
 | Winter-Run Chinook | 3,711,513 | 84,433 | 84 | -12,471 | 673,467 | 261,904 |
 | Spring-Run Chinook | 688,048 | 47,068 | 47 | 69,601 | 42,975 | 58,951 |
 | Total All Runs | - | 1,822,604 | 1,822 | 2,801,742 | 5,280,943 | 3,793,422 |
 | Average (2030-2122) | | | | | | |
 | Long-Term Average | - | 1,539,301 | 1,539 | 2,190,480 | 4,546,667 | 3,132,955 |

 Figure A3-1 shows the percentage growth in population increase projected for each fish type population in both 2030 and 2070.

 Figure A3-1.Percentage Increase in Fish Species Average Production for 2030 and 2070

 ## Monetized Benefits

 Sites Reservoir would enhance future water temperature and flow conditions in the Sacramento River as a means of improving the riverine ecosystem. The economic benefits of the project's contributions to

 anadromous fish survival were estimated based on the alternative cost approach. The cost of the most likely alternative is based on various Shasta Dam raises operated solely for the purpose of increasing the number of salmon smolt in the Sacramento River.

 The Shasta Lake dam raise is considered a reasonable and feasible alternative source due to not only its potential capability to provide the necessary quantities of new water supplies but also its location, which ensures that it can benefit the same anadromous fish population locations and therefore result in the same ecosystem improvement outcomes. Furthermore, recent extensive planning and analysis has been completed for the Shasta Dam raise, which provides more confidence in the accuracy of both its construction cost estimate and its potential implementation viability.

 Table A3-6 shows that Sites Reservoir's anadromous water supply benefits were estimated based on the least-cost alternative of expanding Shasta Lake's storage with a 12.5 -foot raise of Shasta Dam as a single-purpose water storage project that would result in increased future habitat units. The base construction cost for the Shasta Lake Raise was obtained from the 2015 Shasta Lake Water Resource Investigation Feasibility Study. The costs were adjusted into current dollar terms and annualized using a 3.5 percent discount rate in accordance with the WSIP TR requirements.

 Analysis of the numerous Shasta Dam Raise alternatives determined that the 12.5 -foot dam raise was not only the most productive alternative, with 988 new habitat units, but also the most cost-effective alternative, with a unit cost of $\$ 47,539$ per habitat unit. From this finding, the $\$ 47,539$ per habitat unit benefit value was applied to the project's expected future habitat improvement to estimate Sites Reservoir's anadromous fish benefits. This estimate is conservative because it does not account for deteriorating river conditions that would likely result from the longer timeframe required to implement a raise of the Shasta Dam.

 Table A3-6. Anadromous Fish Benefits: Least-Cost Alternative (2015\$; \$1,000s)

 | Alternative | Annual Benefits ${ }^{\text {a }}$ | | Annualized Benefit ${ }^{\text {b }}$ |
 | :---: | :---: | :---: | :---: |
 | | 2030 | 2070 | |
 | Average Conditions ${ }^{\text {c }}$ | | | |
 | Sites Reservoir | \$25,637 | \$86,619 | \$56,985 ${ }^{\text {a }}$ |

 ${ }^{\text {a }}$ Based on 12.5 -foot raise of Shasta Dam as the alternative cost for achieving the ecosystem improvement.
 ${ }^{b}$ Annualized benefits interpolated annual physical benefits between 2030 and 2070 and were then constant after 2070 . Net present value over 93 years at a 3.5% discount rate.
 ${ }^{\text {c }}$ Averaged over the entire hydrologic sequence (1922 to 2003).
 The project's anadromous fish benefits were estimated to increase from $\$ 25.6$ million in 2030 to approximately $\$ 86.6$ million in 2070 . The corresponding average annual benefit for the future 2030 to 2122 operating period was estimated to be $\$ 57.0$ million.

 ## Incremental Level 4 Refuge Water Supply

 ## Physical Quantification

 Table A3-7 shows improved deliveries to National Wildlife Refuges, State Wildlife Areas, and privately managed wetlands projected in 2030, 2070, and the annual average in the 2030 to 2122 study period. The distribution of water between north and south of Delta refuges was assumed and can be modified; however, additional infrastructure would be needed to significantly increase deliveries to north of Delta refuges.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | PAGE: | 9 |

 Table A3-7. Incremental Level 4 Refuge Water Supply Increases
 (2030 and 2070) (TAF/year)

 | Period | North-of-the-Delta | South-of-the-Delta | Total | |
 | :--- | :---: | :---: | :---: | :---: |
 | 2030 Results | | | | |
 | Long-Term Average | 1 | 34 | 35 | |
 | Wet | 1 | 52 | 53 | |
 | Above Normal | 1 | 46 | 47 | |
 | Below Normal | 1 | 38 | 38 | |
 | Dry | 0 | 20 | 21 | |
 | Critical | 0 | 1 | 1 | |
 | 2070 Results | 1 | 30 | 31 | |
 | Long-Term Average | 1 | 50 | 51 | |
 | Wet | 1 | 40 | 41 | |
 | Above Normal | 1 | 29 | 30 | |
 | Below Normal | 0 | 16 | 17 | |
 | Dry | 0 | 1 | 1 | |
 | Critical | $\mathbf{1}$ | $\mathbf{3 1}$ | | |
 | 2030-2122 Results | | | | |
 | Long-Term Average | | | | |
 | Source: CALSIM II. | | | | |

 The changes in incremental Level 4 refuge supply deliveries were interpolated between 2030 and 2070 to project the future refuge water supplies on an annual basis. In accordance with WSIP TR guidance, post-2070 deliveries were assumed to remain at 2070 levels.

 ## Monetized Benefits

 Sites Reservoir would increase water deliveries for incremental Level 4 refuge needs. The economic benefits of the project's contributions to incremental Level 4 refuge needs were estimated using the WSIP unit water values to determine the value of its supplied water. It was also assumed that the incremental Level 4 refuge water would otherwise likely be used for south-of-the-Delta deliveries.

 Therefore, the estimated total benefit value is estimated based on the expected future average hydrological year type and the expected use location of the water supplies. Furthermore, the WSIP unit water values were adjusted to include the additional conveyance energy cost associated with its future use. Table A3-8 presents the estimated benefit values for the projected future increases in incremental Level 4 refuge water.

 Table A3-8. Incremental Level 4 Refuge Benefits: WSIP Unit Water Values (2015\$; \$1,000s)

 | Alternative | Annual Benefits ${ }^{\text {a }}$ | | Annualized Benefit ${ }^{\text {b }}$ |
 | :---: | :---: | :---: | :---: |
 | | 2030 | 2070 | |
 | Average Conditions ${ }^{\text {c }}$ | | | |
 | Sites Reservoir | \$16,047 | \$24,634 | \$23,811 |

 ${ }^{\text {a }}$ Based on WSIP unit water values adjusted by water-year type, expected delivery location, and conveyance energy costs.
 ${ }^{\mathrm{b}}$ Annualized benefits assume interpolated annual physical benefits between 2030 and 2070 and then constant annual benefits after 2070. WSIP unit water values interpolated between 2030 and 2045, after which 2045 unit water values were used.
 ${ }^{\text {c }}$ Averaged over the entire hydrologic sequence (1922 to 2003).
 The project's incremental Level 4 refuge water supply benefits were estimated to increase from $\$ 16.0$ million in 2030 to approximately $\$ 24.6$ million in 2070 . The corresponding average annual benefit for the future 2030 to 2122 operating period was estimated to be $\$ 23.8$ million, which is equal to an

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | | PAGE: | 10 |

 estimated average unit benefit value of \$781 per acre foot for the incremental Level 4 refuge benefits. This valuation reflects the comparatively high benefit values for future south-of-the-Delta water uses.

 ## Lake Oroville Coldwater Pool

 ## Physical Quantification

 Improvements to the coldwater pool and downstream releases to assist migrating fish would be beneficial to salmon, steelhead, and other fish in the lower Feather River. The benefits were anticipated to be less than the benefits downstream from Shasta Lake, but nevertheless significant. The SALMOD model does not include the Feather River area. The improvements in fish habitat in the Feather River watershed were therefore evaluated using an opportunity cost to secure an equivalent amount of storage in Lake Oroville. The storage increase based on CALSIM modeling is characterized below.

 Table A3-9 shows the projected future increase in annual water storage for Lake Oroville.
 Table A3-9. Lake Oroville Storage Increases

 | for 2030 and 2070 (TAF/year) | |
 | :--- | :--- |
 | Water-Year Type | Quantity |
 | $\mathbf{2 0 3 0}$ Results | |
 | Full | 26 |
 | Dry | 38 |
 | Critical | 83 |
 | 2070 Results | 31 |
 | Full | 39 |
 | Dry | 111 |
 | Critical | |
 | Average (2031-2122) | |
 | Long-Term | |
 | Source: CALSIM II.
 TAF \quad thousand acre-feet | |

 ## Monetized Benefits

 Sites Reservoir would enhance future water temperature and flow conditions in the American River as a means of improving the riverine ecosystem. Sites would achieve these ecosystem improvements by enabling Lake Oroville to delay some of its water deliveries, which would increase its coldwater pool conditions and lower the water temperatures of its subsequent water releases.

 The economic benefits of the project's contributions to anadromous fish survival were estimated based on use of the WSIP unit water values to determine the value of the water that would otherwise be needed to be withheld in Lake Oroville to improve its coldwater pool and the temperature conditions of its water releases. Based on Lake Oroville general water supplies, for the purposes of the benefit valuation it is assumed that the water supply that would otherwise need to be retained (and therefore not delivered) would be south-of-the-Delta deliveries.

 Therefore, the estimated total benefit value is estimated based on the expected future average hydrological year type and the expected use location of the water supplies. Furthermore, the WSIP unit water values were also adjusted to include the additional conveyance energy cost associated with its future use. Table A3-10 presents the estimated benefit values for the projected future increases in the coldwater pool at Lake Oroville.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAVC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | | PAGE: |

 Table A3-10. Lake Oroville Coldwater Pool Benefits: WSIP Unit Water Values (2015\$; $\mathbf{\$ 1 , 0 0 0 s}$)

 | Alternative | Annual Benefits ${ }^{\text {a }}$ | | |
 | :--- | :---: | :---: | :---: |
 | | | | |
 | | $\mathbf{2 0 3 0}$ | $\mathbf{2 0 7 0}$ | |
 | Average Conditions ${ }^{\mathbf{c}}$ | $\$ 11,814$ | $\$ 24,976$ | $\$ 20,987$ |
 | Sites Reservoir | | | |

 a Based on WSIP unit water values adjusted by water-year type, expected delivery location, and conveyance energy costs.
 b Annualized benefits assume interpolated annual physical benefits between 2030 and 2070 and then constant annual benefits after 2070. WSIP unit water values interpolated between 2030 and 2045, after which 2045 unit water values were used.
 c Averaged over the entire hydrologic sequence (1922 to 2003).
 The Lake Oroville coldwater benefits of the project were estimated to increase from approximately $\$ 11.8$ million in 2030 to nearly $\$ 25.0$ million in 2070. The corresponding average annual benefit for the future 2030 to 2122 operating period was estimated to be $\$ 21.0$ million, which is equal to an estimated average unit benefit value of $\$ 781$ per acre-foot.

 ## Yolo Bypass Flows

 ## Physical Quantification

 In 2016, the California Department of Water Resources (DWR) performed a North Delta Food Web Study in collaboration with Federal and local water agencies. The study addressed the Delta Smelt Resiliency Strategy (DWR July 2016) recommendation for North Delta food web adaptive management projects. The resulting fall flows in the Yolo Bypass successfully produced a phytoplankton bloom, the major food source for endangered Delta smelt.

 The Cache Slough area that receives water from the Yolo Bypass is the only place in the Delta estuary where the Delta smelt population is increasing. The purpose of this action is to help increase desirable food sources for Delta smelt in the lower Cache Slough and lower Sacramento River areas. This increase in food sources should improve Delta smelt growth and condition as they mature into adults, thereby increasing Delta smelt abundance.
 The Sites Reservoir Project would provide two pulses of flow of at least 400 cubic feet per second (cfs) each over a two- to three-week period into the Yolo Bypass (via the Colusa Basin Drain, past the Wallace Weir and Ridge Cut, and into the Tule Drain) that will flow through the toe drain and out to the Sacramento River. Each flow pulse made into the Colusa Basin Drain would total about 20 thousand acre-feet (TAF) in each of the two- to three-week periods, resulting in an average total flow of 39 TAF per year. The flow pulses would be adaptively managed, but are currently thought to occur in late summer and early fall (e.g., August and September). The water deliveries would not have to occur every year, but would be desirable in most years.
 Table A3-11 shows the projected future increase in annual water flows for Yolo Bypass for 2030, 2070, and the annual average in the 2030 to 2122 study period.

 Table A3-11. Yolo Bypass Flow Increases

 | for 2030 and 2070 (TAF/year) | |
 | :--- | :---: |
 | 2030 Results | Quantity |
 | Full | 39 |
 | Dry | 33 |
 | Critical | |
 | 2070 Results | |
 | Full | |
 | Dry | 5 |
 | Critical | 39 |
 | Average (2031-2122) | 33 |
 | Long-Term | 8 |

 TAF = thousand acre-feet

 ## Monetized Benefits

 Sites Reservoir would increase water deliveries to the Yolo Bypass. The economic benefits of the project's contributions to Yolo Bypass needs were estimated using the WSIP unit water values to determine the value of its supplied water. The Sacramento Valley WSIP unit water values were used to determine the benefit values of the water supplies used for the Yolo Bypass. These values do not include any conveyance cost benefit adjustment and were used because it was presumed that the necessary water supplies would otherwise be obtained from Sacramento Valley agricultural water users. Therefore, the estimated total benefit value is estimated based on the expected future average hydrologic year type and the expected use location of the supplies.
 Table A3-12 presents the estimated benefit values for the projected future increases in Yolo Bypass deliveries.

 Table A3-12. Yolo Bypass Supply Benefits: WSIP Unit Water Values (2015\$; \$1,000s)

 | Alternative | Annual Benefits ${ }^{\text {a }}$ | | Annualized Benefit ${ }^{\text {b }}$ |
 | :---: | :---: | :---: | :---: |
 | | 2030 | 2070 | |
 | Average Conditions ${ }^{\text {c }}$ | | | |
 | Sites Reservoir | \$8,845 | \$9,220 | \$9,117 |

 a Based on WSIP unit water values adjusted by water-year type and expected delivery location.
 b Annualized benefits assume interpolated annual physical benefits between 2030 and 2070 and then constant annual benefits after 2070. WSIP unit water values interpolated between 2030 and 2045, after which 2045 unit water values were used.
 c Average over the entire hydrologic sequence (1922 to 2003).
 The project's Yolo Bypass supply benefits were estimated to increase from $\$ 8.8$ million in 2030 to $\$ 9.2$ million in 2070. The corresponding average annual benefit for the future 2030 to 2122 operating period was estimated to be $\$ 9.1$ million, which is equal to an estimated average unit benefit value of $\$ 237$ per acre-foot for the future ecosystem benefits from Yolo Bypass. This valuation reflects the comparatively lower benefit values for future north-of-the-Delta water uses.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | | |
 | PAGE: | 13 | OF | 18 | | |

 ## Recreation (WSIP Public Benefit)

 ## Physical Quantification

 Recreation benefits were valued using visitation estimates for the new recreational areas planned for the Sites project. Annual visitation was estimated using a facilities-based approach that accounts for Sites planned facilities, carrying capacity, the regional population of potential users, the surface acreage of the reservoir, fluctuations in storage throughout the year, and the amenities and visitation levels of substitute reservoirs in the region.

 Table A3-13 presents the annual visitor-day estimates and unit day values by activity type. The estimated total annual visitor-days assumed in this analysis was approximately 187,000.

 Table A3-13. Annual Recreation Visitation
 by Primary Activity

 | Activities | Annual Visitor-Days |
 | :--- | ---: |
 | Shore fishing | 16,254 |
 | Boat fishing | 8,407 |
 | Picnicking | 15,457 |
 | Sightseeing | 27,514 |
 | Swimming / beach use | 36,992 |
 | Walking | 42,223 |
 | Bicycling/Motorcycling | 5,418 |
 | Horseback riding | 2,429 |
 | Boating / water-skiing | 29,145 |
 | Hunting | 560 |
 | Other | 2,429 |
 | Total | 186,829 |

 ## Monetized Benefits

 Recreation benefits were quantified using unit day values from Rosenberger, Recreation Use Values Database (RUVD) for North America (2016) and from Loomis, Updated Outdoor Recreation Use Values on National Forests and Other Public Lands for U.S. Forest Service (2005). These values were applied to the visitation projections for Sites Reservoir. It was also determined that 80 percent of the visitor-days at Sites Reservoir would represent new recreational visits, and that the remaining 20 percent of visits would reflect recreational visitor-days that, in the absence of Site Reservoir's development, would otherwise have occurred at nearby reservoirs. Table A3-14 presents the results of the recreation benefits analysis.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | | | PAGE: |

 Table A3-14. Estimated Annual Recreation Benefits (2015\$; \$1,000s)

 | Alternative | Annual Benefits ${ }^{\text {a }}$ | | Annualized Benefit ${ }^{\text {b }}$ |
 | :---: | :---: | :---: | :---: |
 | | 2030 | 2070 | |
 | Average Conditions ${ }^{\text {c }}$ | | | |
 | Sites Reservoir | \$6,997 | \$6,997 | \$6,754 |

 ${ }^{\text {a }}$ Annual benefits reflect consumer surplus value for various recreational activities supported by Sites Reservoir and water operation scenarios under year 2030 and year 2070 levels of development. Benefits were attributed for only 75 percent of future visitation expected as new recreational use after accounting for potential substitution effects on other reservoirs in the region.
 ${ }^{\mathrm{b}}$ Annualized benefits represent avoided costs relative to the Future No Project conditions over the planning horizon (2030 to 2122). Annual average is less than 2030 and 2070 values due to initial short ramp-up period before full benefits are generated.
 ${ }^{c}$ Averaged over the entire hydrologic sequence (1922 to 2003).
 The project's future recreation benefits were estimated to be approximately $\$ 7.0$ million in 2030. Although future population growth might be expected to increase future recreation demand and visitation, it was conservatively assumed that the 2030 level of benefits would remain constant throughout the future 2030 to 2122 operating period. As a result, the average annual benefit for the future 2030 to 2122 operating period was estimated to be $\$ 6.8$ million (slightly reduced due to an assumed 50 percent operation during its first two operating years).

 ## Flood Damage Reduction (WSIP Public Benefit)

 ## Physical Quantification

 Development of the Sites project would reduce the magnitude of flood events in the area along Funks Creek and Stone Corral Creek, specifically for the town of Maxwell's residential, commercial, and public structures and contents. In addition, the project would reduce flood damage to adjacent agricultural lands and flood-related closures to Interstate 5 and State Route 20.

 Hydraulic analysis (HEC-RAS 2-D) was used to quantify the project-related reduction in flood-impacted areas and flooding severity for six different flood event types (ranging from 5-year to 500-year flood events). Geographic information system (GIS) land use analysis inventoried the impacted areas. Flood reduction benefits were estimated for current hydraulic conditions to represent the expected 2030 conditions. No adjustments in the hydraulic modeling or other analytic methods were used to project 2070 conditions (including climate change) because the flood damage benefits are relatively limited and due to difficulty in quantifying the magnitude of changes in future flood events.

 Additional details on flood damage reduction benefits are provided under the Sites_A1 Flood Control under the PHYSICAL PUBLIC BENEFITS TAB.

 ## Monetized Benefits

 The value of flood damage reduction benefits was estimated based on the average annual cost of flood damages under No Action conditions and the projected reduction in flooded area and damage costs for "with Project" conditions. The resulting Expected Annual Damages savings from the project-related reduction in flood impact incidence and severity were calculated for a comprehensive range of different flood event types (5 year to 500 year) and adjusted for their expected incidence rate. This approach corresponds to the "avoided cost" approach described in the WSIP TR report.

 Table A3-15 presents the estimated benefit value of the project-related flood damage reduction.

 Table A3-15. Flood Reduction Benefits (2015\$; \$1,000s)

 | Alternative | Annual Benefits ${ }^{\text {a }}$ | | Annualized Benefit ${ }^{\text {b }}$ |
 | :---: | :---: | :---: | :---: |
 | | 2030 | 2070 | |
 | Average Conditions ${ }^{\text {c }}$ | | | |
 | Sites Reservoir | \$4,377 | \$4,377 | \$4,377 |

 ${ }^{\text {a }}$ Based on the project-related reduction in expected annual damages from future flood events.
 ${ }^{\mathrm{b}}$ Annualized benefits assume interpolated annual physical benefits between 2030 and 2070 and then constant annual benefits after 2070.
 ${ }^{\text {c }}$ Averaged over the entire hydrologic sequence (1922 to 2003).
 The project's future flood reduction benefits were estimated to be approximately $\$ 4.4$ million in 2030. It was conservatively assumed that 2030 benefit values would remain constant throughout the future 2030 to 2122 operating period. As a result, the average annual benefit for the future 2030 to 2122 operating period was estimated to be $\$ 4.4$ million.

 ## Water Supply (Non-Proposition 1 Eligible Benefit)

 ## Physical Quantification

 Increases in water supply were monetized based on the increase in deliveries. Increases in deliveries for 2030 and 2070 were estimated using CALSIM II. CALSIM II determined future water deliveries for each applicable project purpose by water-year type and location. Corresponding physical benefits were estimated on an annual basis for the interim 2031 to 2069 period by interpolating individually (i.e., for each specific purpose, location, water-year type, and incidence rate). Each year's individual quantified values were then used to determine a corresponding average expected water use amount. Table A3-16 shows the estimated water supply deliveries by water-year type projected in 2030, 2070, and the annual average in the 2030 to 2122 study period. Sites is expected to reduce the flood area by 9,570 acres. Additional details on flood damage reduction benefits are provided in Sites_A1 Flood Control under the PHYSICAL PUBLIC BENEFITS TAB.

 Table A3-16. Increase in Water Supply Deliveries (TAF/year)

 | Period | NOD Agriculture | SOD Agriculture | SOD M\&I | SOD Recaptured | Total |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | 2030 Results | | | | | |
 | Long-Term Average | 110 | 25 | 106 | 11 | 254 |
 | Wet | 62 | 5 | 15 | | 82 |
 | Above Normal | 86 | 68 | 52 | | 144 |
 | Below Normal | 125 | 28 | 121 | | 273 |
 | Dry | 157 | 56 | 213 | | 426 |
 | Critical | 153 | 53 | 185 | | 391 |
 | 2070 Results | | | | | |
 | Long-Term Average | 137 | 30 | 117 | 11 | 295 |
 | Wet | 110 | 5 | 15 | | 130 |
 | Above Normal | 146 | 12 | 72 | | 230 |
 | Below Normal | 152 | 26 | 116 | | 294 |
 | Dry | 161 | 69 | 257 | | 488 |
 | Critical | 133 | 41 | 145 | | 319 |
 | Average (2030-2122) | | | | | |
 | Long-Term Average | 131 | 29 | 114 | 11 | 286 |

 Source: CALSIM II.
 M\&I = municipal and industrial
 NOD = north-of-the-Delta
 SOD = south-of-the-Delta

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 VERSION: | C |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICAT | |
 | NOTES: | | | | PAGE: | 16 OF | 18 |

 ## Monetized Benefits

 Sites Reservoir would improve water supply reliability to both M\&I water users (primarily south of the Delta) and agricultural waters (both north and south of the Delta). CWEST modeling was used to estimate the project's future M\&I water supply benefits. The CWEST values were also applied to the small quantity of recaptured water that the Sites Joint Powers Authority (JPA) intends to use as a revenue source to cover the future operations and maintenance (O\&M) cost-share for the project's agricultural water supply benefits for ecosystem and other public benefit purposes based on the WSIPrecommended unit water values. The total benefit value was estimated based on the expected future average hydrological year type and the expected use location of the water supplies. The WSIP unit water values were also adjusted to include the additional conveyance energy cost associated with its future use.

 Table A3-17 shows the project's total water supply reliability benefits.
 Table A3-17. Total Water Supply Benefits: CWEST Results and WSIP Unit Water Values (2015\$; \$1,000s)

 | Alternative | Annual Benefits ${ }^{\text {a }}$ | | Annualized Benefit ${ }^{\text {b }}$ |
 | :---: | :---: | :---: | :---: |
 | | 2030 | 2070 | |
 | Average Conditions ${ }^{\text {c }}$ | | | |
 | Sites Reservoir | \$89,024 | \$251,521 | \$175,418 |

 ${ }^{\text {a }}$ Based on CWEST and WSIP unit water values adjusted by water-year type, expected delivery location, and conveyance energy costs.
 ${ }^{\mathrm{b}}$ Annualized benefits assume interpolated annual physical benefits between 2030 and 2070 and then constant annual benefits after 2070. WSIP unit water values interpolated between 2030 and 2045, after which 2045 unit water values were used.
 ${ }^{\text {c }}$ Averaged over the entire hydrologic sequence (1922 to 2003).
 Based on the assumed water use split between agricultural, M\&I, and recaptured water deliveries and their use location, the project's future water supply benefits are estimated to increase from $\$ 89.0$ million in 2030 to approximately $\$ 251.5$ million in 2070 . The corresponding average annual benefit for the future 2030 to 2122 operating period is estimated to be $\$ 175.4$ million, which is equal to an estimated average unit benefit value of $\$ 760$ per acre-foot for water supply use.

 ## Hydropower (Non-Proposition 1 Eligible Benefit)

 ## Physical Quantification

 Hydropower benefits were modeled by both DWR's Power and Risk Office (PARO) and United States Bureau of Reclamation contractors. These non-public benefits are difficult to forecast due to a rapidly changing market for valuing ancillary and systemwide capacity benefits due to the rapid and extensive new development of wind and solar resources. The fluctuation in revenue from hydropower generation over the last decade can be seen by looking at the variability in revenue from generation that has occurred for the State Water Project (SWP).

 Hydropower analysis performed by Toolson and Zhang (2013) generally corroborated PARO's direct net energy benefits. Toolson and Zhang's PLEXOS modeling analysis also evaluated Sites Reservoir ancillary services (AS) and systemwide capacity performance and benefits. Sites is expected to increase the hydropower (system) by 215,542 MWh per year.

 ## Monetized Benefits

 The proposed Sites Reservoir Project includes new hydropower capacity and the ability to provide AS at Shasta Dam and other hydropower facilities throughout the Central Valley Project (CVP) and SWP systems. Estimates of net changes in hydropower capacity, generation, and AS in western

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIPAPPLICATION | |
 | NOTES: | | | | | PAGE: | 17 |

 interconnection electrical power grid were estimated using both DWR's PARO modeling and the PLEXOS ${ }^{\circledR}$ Integrated Energy Model (PLEXOS).

 The PARO model is used to estimate the costs and revenues of hydropower facilities' operations. Power benefits were also valued by PLEXOS, a power market simulation model, to forecast energy and AS power market prices for the year 2022, when the 33 percent Renewable Portfolio Standard (RPS), mandated by California law, will have been implemented. The assumption is that power market prices stabilize once the RPS is achieved.

 DWR's PARO analysis modeled future optimized pumping, generation, and pump-back operations to estimate the future energy use cost and power generation benefits optimized between peak and offpeak periods. The PARO analysis determined that the estimated net energy cost for Sites Reservoir operations would be $\$ 1.7$ million, which was assigned to the facility's O\&M costs.

 The PLEXOS hydropower analysis confirmed DWR's direct net energy benefits and costs. The PLEXOS analysis also estimated annual AS benefits of approximately $\$ 2.4$ million and systemwide capacity benefits of $\$ 17.8$ million per year. As a result, the combined AS and systemwide capacity National Economic Development (NED) benefits potentially attributable to the hydropower facilities would be \$20.2 million per year. Table A3-18 shows the projected future AS and systemwide capacity benefits projected for Sites Reservoir's hydropower operations. As discussed above, the reservoir's projected energy costs are recognized in its O\&M cost and therefore were not included in hydropower system benefits shown in Table A3-18.

 Table A3-18. Hydropower Benefits (2015\$; \$1,000s)

 | Alternative | Annual Benefits a | | Annualized Benefit b |
 | :--- | :---: | :---: | :---: |
 | | $\mathbf{2 0 3 0}$ | $\mathbf{2 0 7 0}$ | |
 | Average Conditions ${ }^{\text {c }}$ | $\$ 20,183$ | $\$ 20,183$ | $\$ 19,483$ |
 | Sites Reservoir | | | |

 ${ }^{\text {a }}$ Based on projected ancillary service and systemwide capacity benefits. Facility pumping costs and generation revenues are included in the facilities' annual O\&M costs.
 ${ }^{\mathrm{b}}$ Annualized benefits assume interpolated annual physical benefits between 2030 and 2070 and then constant benefits after 2070. Annual average is less than 2030 and 2070 values due to initial short ramp-up period before full benefits are generated.
 ${ }^{c}$ Averaged over the entire hydrologic sequence (1922 to 2003).
 Combined AS and systemwide capacity benefits of $\$ 20.2$ million were determined for the project's hydropower operations in 2030. It was conservatively assumed that the project's 2030 level of benefits would remain constant throughout the future 2030 to 2122 operating period. As a result, the average annual hydropower benefit for the future 2030 to 2122 operating period was estimated to be $\$ 19.5$ million (slightly reduced due to an assumed 50 percent operation during its first two operating years).

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | | | PAGE: |

 ## Sites Reservoir Project Description

 This page intentionally left blank.

 ## Table of Contents

 Section Pages
 Acronyms and Abbreviations V

 1. Introduction. 1-1
 2. Sites Reservoir Project Features and Facilities 2-1
 2.1 Project 2-1
 2.1.1 Sites Reservoir Complex 2-1
 2.1.2 Holthouse Reservoir Complex 2-27
 2.1.3 Terminal Regulating Reservoir Complex 2-33
 2.1.4 Delevan Pipeline Complex 2-41
 2.1.5 Overhead Power Lines and Substations 2-48
 2.1.6 Project Buffer. 2-50
 3. Construction and Operation/Maintenance 3-1
 3.1 Construction 3-1
 3.1.1 Access Routes 3-1
 3.2 Facility Operation and Maintenance 3-5
 4. Diversion and Reservoir Operations 4-1
 4.1 Operational Scenario 4-1
 4.1.1 Diversions to Sites Reservoir 4-2
 4.1.2 Sites Reservoir Diversion Bypass Flow Protection 4-2
 4.1.3 Diversions to Fill Sites Reservoir Storage 4-7
 4.1.4 Releases from Sites Reservoir 4-8
 4.1.5 Hydropower Generation 4-8
 4.2 Ecosystem Enhancement Storage Account 4-9
 5. Environmental Commitments Included as Part of the Project 5-1
 5.1 Worker Environmental Awareness Program. 5-1
 5.2 Environmental Site Assessment 5-1
 5.3 Construction Management Procedures. 5-1
 5.3.1 Fire Safety and Suppression 5-2
 5.3.2 Construction Equipment, Truck, and Traffic Management 5-2
 5.4 Stormwater Pollution Prevention Plan, Erosion Control, Management, and Dewatering 5-3
 5.4.1 Compliance with the Requirements of RWQCB Order No. 5-00-175. 5-4
 5.4.2 Spill Prevention and Hazardous Materials Management 5-4
 5.5 Mosquito and Vector Control. 5-5
 5.6 Groundwater/Dewatering Water Supply 5-5
 5.7 Visual and Aesthetic Design, Construction, and Operation Practices 5-5
 5.8 Emergency Action Plan. 5-6
 Tables
 2-1 New Project Facilities and Features and Existing Facilities Relied Upon 2-2
 2-2 Permanent Facility Footprint. 2-5
 2-3 Characteristics of Proposed 1.8-MAF Sites Reservoir Dams 2-7
 2-4 Sites Reservoir Project Onsite or Nearby Dam Materials 2-7
 2-5 Sites Reservoir Inlet/Outlet Structure Tower Details. 2-14
 2-6 Sites Pumping-generating Plant Configuration 2-15
 2-7 Characteristics of Project Roadways and South Bridge Approaches 2-20
 2-8 Proposed South Bridge Characteristics 2-23
 2-9 Characteristics of Proposed Minor Structures 2-23
 2-10 Approximate Number of Facilities at the Proposed Recreation Areas 2-25
 2-11 Aboveground Features Associated with the Proposed Delevan Pipeline 2-46
 3-1 Estimated Construction Durations and Equipment Days for Construction of Sites Reservoir Project 3-3
 3-2 Expected Roadway Access Routes to Project Facilities 3-5
 3-3 Project-related Construction Personnel and Highway Truck Trips 3-8
 3-4 Estimated Equipment Hours for Operation and Maintenance of Sites Reservoir Project 3-11
 4-1 Proposed Seasonal Schedule for Project Operations 4-5
 Figures
 2-1 Project Facilities 2-52
 2-2 Golden Gate Dam Cross Section Showing Grouting 2-53
 2-3 Sites Dam Cross Section Showing Grouting 2-54
 2-4 Saddle Dams 1, 2, 4 and 9 Cross Sections Showing Grouting (Typical) 2-55
 2-5 Saddle Dams 3, 5, 6, 7, and 8 Cross Sections Showing Grouting (Typical) 2-56
 2-6 Potential Quarry Locations Within and Near the Proposed Sites Reservoir Inundation Area 2-57
 2-7 Proposed Sites Reservoir Inlet/Outlet Structure, Holthouse Reservoir, and Associated Facilities 2-58
 2-8A Proposed Access Routes to Project Facilities 2-59
 2-8B Proposed Access Routes to Project Facilities 2-60
 2-9A Proposed Stone Corral Recreation Area and Facilities 2-61
 2-9B Proposed Peninsula Hills Recreation Area and Facilities 2-62
 2-9C Proposed Boat Ramp Recreation Area and Facilities 2-63
 2-10 Location of the Proposed Pump Installation at Red Bluff Pumping Plant 2-64
 2-11 Proposed TRR and Associated Facilities 2-65
 2-12 Proposed Delevan Pipeline Intake/Discharge Facilities 2-67

 ## Acronyms and Abbreviations

 | 4WS | four-wheel drive |
 | :---: | :---: |
 | AASHTO | American Association of State Highway and Transportation Officials |
 | ac-ft | acre-feet |
 | Authority | Sites Project Authority |
 | BMP | best management practice |
 | Caltrans | California Department of Transportation |
 | cfs | cubic feet per second |
 | CVP | Central Valley Project |
 | CVPIA | Central Valley Project Improvement Act |
 | Delta | Sacramento-San Joaquin Delta |
 | DFW | California Department of Fish and Wildlife |
 | DSOD | California Department of Water Resources, Division of Safety of Dams |
 | ESA | Environmental Site Assessment |
 | fps | feet per second |
 | GCID | Glenn-Colusa Irrigation District |
 | I-5 | Interstate 5 |
 | kVA | kilovolt-ampere |
 | MAF | million acre-feet |
 | msl | mean sea level |
 | NMFS | National Marine Fisheries Service |
 | PG\&E | Pacific Gas \& Electric |
 | PMF | probable maximum flood |
 | Project | Sites Reservoir Project |
 | RBPP | Red Bluff Pumping Plant |
 | Reclamation | Bureau of Reclamation |
 | RTS | reservoir-triggered seismicity |
 | RWQCB | Central Valley Regional Water Quality Control Board |
 | SCADA | supervisory control and data acquisition |

 | SR | State Route |
 | :--- | :--- |
 | State | State of California |
 | SWP | State Water Project |
 | SWPPP | stormwater pollution prevention plan |
 | SWRCB | State Water Resources Control Board |
 | TAF | Thousand acre-feet |
 | TCCA | Tehama-Colusa Canal Authority |
 | Technical | U.S. Fish and Wildlife Service |
 | TRR | Western Area Power Authority |
 | USFWS | Worker Environmental Awareness Program |
 | WAPA | |

 ## 1. Introduction

 This report describes the proposed Sites Reservoir Project (Project) and associated construction, operation, and maintenance of necessary facilities. This report is organized in the following manner:

 - Description of Project features and facilities, including construction, operation, and maintenance descriptions specific to Project features (Section 2 Sites Reservoir Project Features and Facilities)
 - Proposed construction, operations/maintenance activities required to construct, operate, and maintain all Project facilities (Section 3 Construction Operation/Maintenance)
 - Proposed project operations (including diversions, releases, ecosystem enhancement actions, hydropower generation, and other benefits) (Section 4 Diversion and Reservoir Operations)
 - Environmental commitments, including preventive measures, plans, and best management practices (BMPs) included as part of the Project (Section 5 Environmental Commitments Included as Part of the Project)

 The operations of the Project are intended to be flexible and vary from year to year in response to the needs of the California water supply system to provide high-quality water to enhance the environment, the economy, and quality of life for Californians.

 This page intentionally left blank.

 ## 2. Sites Reservoir Project Features and Facilities

 This section identifies and describes the primary facilities as well as construction, operation, and maintenance specific to each Project facility. Facilities are grouped into "complexes," based on related function and location. The proposed complexes include the following:

 - Sites Reservoir Complex
 - Holthouse Reservoir Complex
 - Terminal Regulating Reservoir (TRR) Complex
 - Delevan Pipeline Complex
 - Overhead Power Lines and Substations
 - Project Buffer

 Table 2-1 summarizes key Project features, by complex.

 ### 2.1 Project

 The proposed Sites Reservoir Project would include the following primary features and facilities (Figure 2-1); associated Project-related storage, diversion rates, and power generation capabilities are shown in parentheses:

 - Sites Reservoir capacity: 1.8 million acre-feet (MAF)
 - Sacramento River diversions: Existing Tehama-Colusa Canal (Red Bluff) (2,100 cubic feet per second [cfs]) and GCID Main Canal (Hamilton City) (1,800 cfs) pumping plants and proposed Delevan Pipeline Intake/Discharge Facilities ($2,000 \mathrm{cfs}$).
 - Delevan Pipeline operation: 2,000-cfs intake and 1,500-cfs release
 - Hydropower generation capability: Approximately 118 megawatts

 Approximate permanent facility footprint sizes by complex are provided in Table 2-2.

 ### 2.1.1 Sites Reservoir Complex

 The Sites Reservoir Complex includes the features and facilities that are geographically or functionally associated with the Sites Reservoir. This complex includes the Sites Reservoir Inundation Area, the dams that would form the reservoir, proposed borrow locations for materials required to construct the dams, the inlet/outlet facilities for the pumping/generating plant and associated electrical switchyards, the tunnel that would connect the pumping/generating plant to the inlet/outlet structure, and the bridge, roads, recreation areas, and office/maintenance area. Design, construction, and operation of all facilities would comply with applicable Division of Safety of Dams requirements regarding anticipated seismic activity, including fault rupture, ground shaking, ground failure, and liquefaction.

 Table 2-1
 New Project Facilities and Features and Existing Facilities Relied Upon ${ }^{\text {a }}$

 | Project Features/Facilities | Main Elements of the Project Features/Facilities | | | |
 | :--- | :--- | :---: | :---: | :---: |
 | Sites Reservoir Complex | 1.8-MAF capacity (14,200 acres) | | | |
 | Sites Reservoir Inundation Area | Golden Gate Dam; Sites Dam; Saddle Dams 1, 2, 3, 4, 5, 6, 7, 8, and 9 (11 dams) | | | |
 | Golden Gate Dam, Sites Dam, and
 Saddle Dams | Approximately 920 acres in inundation area
 200 acres northeast and east of the inundation area | | | |
 | Borrow Areas (onsite) | | | | |
 | b | | | | |
 | Sites Reservoir Inlet/Outlet Structure
 and Associated Facilities | Multi-level valved tower, 4,000-foot tunnel; 260-foot-high structure; intake openings at nine levels; trash racks, fish
 screens; bridge; 15,200-cfs emergency release outlet capacity | | | |
 | Sites Pumping/ Generating Plant and
 Electrical Switchyard | $5,900-c f s ~ p u m p i n g ~ c a p a c i t y ~$
 $5,100-c f s ~ g e n e r a t i n g ~ c a p a c i t y ~$ | | | |
 | South Bridge and Roads | Temporary construction roads, several access roads to new facilities, and new roads to replace those currently in the
 Inundation Area. South Bridge to provide access between Maxwell and Ladoga. | | | |
 | Recreation Areas ${ }^{\text {c }}$ | Stone Corral
 Peninsula Hills
 Boat Ramp Day Use Area | | | |
 | Field Office Maintenance Yard | Administration, maintenance buildings, and parking (also serves Holthouse and TRR reservoirs) | | | |
 | Holthouse Reservoir Complex | | | | |
 | Holthouse Reservoir | 6,250 ac-ft active storage capacity | | | |
 | Holthouse Spillway and Stilling Basin
 and Spillway Bridge | 15,200 cfs capacity | | | |
 | WAPA Transmission Line Relocation | Eight transmission line towers moved to the west | | | |
 | Sites Pumping/Generating Plant
 Approach Channel | 6,300 feet long | | | |
 | Tehama-Colusa Canal Construction
 Bypass Pipeline/Operation and
 Maintenance Siphon to Tehama-
 Colusa Canal | 12 -foot-diameter approximately 2,600-foot-long siphon pipeline would divert Tehama-Colusa Canal water around
 Holthouse Reservoir during construction; during operation it would pass water to the canal downstream of the
 reservoir without pumping | | | |
 | Additional Pump at the Red Bluff
 Pumping Plant (in Secondary Study
 Area) | Install two additional 250-cfs capacity pumps | | | |

 Table 2-1
 New Project Facilities and Features and Existing Facilities Relied Upon ${ }^{\text {a }}$

 | Project Features/Facilities | Main Elements of the Project Features/Facilities |
 | :---: | :---: |
 | TRR Complex | |
 | TRR | 1,200 acre-feet capacity
 120 acres
 Only a minimal drain would be required because of the close proximity of the TRR to Funks Creek. |
 | TRR Pumping/ Generating Plant and Electrical Switchyard | 1,800-cfs pumping capacity 900-cfs generating capacity 4-acre electrical switchyard |
 | GCID Main Canal Connection to TRR | GCID Main Canal energy dissipation bay/check structure TRR inlet channel and inlet control structure |
 | TRR Pipeline and TRR Pipeline Road | 1,800-cfs pumped capacity 900-cfs gravity flow capacity
 2.5-mile road |
 | GCID Main Canal Modifications | Refurbished existing gates; canal lining immediately upstream and downstream of the TRR. |
 | Delevan Pipeline Complex | |
 | Delevan Pipeline Intake/Discharge Facilities | 250-foot-long by 80 -foot-wide facilities building with multiple stories; four 500-cfs capacity pumping/generating units; two 750 cfs turbines |
 | - Flat Plate Fish Screen Structure and Forebay | 560-foot-long structure; 13-foot-high by 15 -foot-wide flat plate screens (32 total); 2,000 cfs capacity; forebay would be constructed between fish screen and pump turbine station |
 | - Pumping/Generating Plant | 2,000-cfs pumping capacity/ 1,500-cfs generating capacity |
 | - Electrical Switchyard | 4-breaker ring bus with poles 15 to 60 feet tall |
 | - Maintenance and Electrical Buildings | Mechanical control building; electrical building; (each approximately 5,000 square feet) |
 | Delevan Pipeline | West-east alignment from Delevan Pipeline Intake/Discharge Facilities to Holthouse Reservoir 2,000 -cfs capacity pumping / 1,500-cfs capacity release |
 | Overhead Power Lines and Substations | |
 | Substations | Stepdown power from the existing WAPA 500 kV and 230 kV and the PG\&E 230 kV lines near Funks/Holthouse Reservoir;
 Stepdown power from the existing WAPA 230 kV lines approximately 1 mile southwest of Colusa, north of Highway 20;
 Up to 6 acres each including multiple electrical components and related structures, concrete pad, overhead power line tower/pole, fencing |
 | Electrical Connection for Sites Pumping/Generating Plant | New 1- to 4-mile-long, 230 kV or 115 kV , overhead power line from the proposed substation west to Sites Pumping/Generating Plant |

 Table 2-1
 New Project Facilities and Features and Existing Facilities Relied Upon ${ }^{\text {a }}$

 | Project Features/Facilities | Main Elements of the Project Features/Facilities |
 | :--- | :--- |
 | Electrical Connection for TRR
 Pumping/Generating Plant | New 230 kV or 115 kV overhead power line from the proposed substation, east to TRR Pumping/Generating Plant |
 | Electrical Connection for Delevan
 Pumping/Generating Plant | New 115 kV overhead power line along SR 45 from the proposed substation west of Colusa to the Delevan
 Pumping/Generating Plant; line will cross SR 45 |
 | Project Buffer | Total land acquired for the Project beyond the facility footprints, out to the nearest existing parcel boundariesd; applies
 to Sites Reservoir Complex, Holthouse Reservoir Complex, TRR Complex, Delevan Pipeline Complex (excluding the
 pipelines) |

 ${ }^{\text {a }}$ The table is meant to provide an overview of the main components of each complex; not all facilities or features of the project are included in this table but are further detailed in Section 2 Sites Reservoir Project Features and Facilities.
 ${ }^{\text {b }}$ Offsite sources for filter, drain, and transition materials, and concrete aggregate would be required if the onsite sources of these materials are found to be unsuitable or if additional material is required. It is anticipated that approximately 80 percent of materials would come from onsite sources and 20 percent from existing, offsite, commercial sources
 ${ }^{6}$ Per discussions with Glenn and Colusa counties, not all recreation areas would be constructed; all five are included to provide flexibility and a conservative analysis. Development of recreation areas will be phased based on public demand.
 ${ }^{d}$ Where the parcel boundary is less than 100 feet from the facility, the Project Buffer will extend beyond the parcel boundary to result in a minimum 100-foot-wide buffer. Acquisition or establishment of temporary or permanent easements of private properties, either through voluntary or eminent domain processes, would be required prior to initiation of construction activities.
 Notes:
 ac-ft = acre-feet
 PG\&E = Pacific Gas and Electric
 WAPA = Western Area Power Authority
 SR = State Route

 Table 2-2
 Permanent Facility Footprint

 | Complex Name | Size (acres) |
 | :--- | :---: |
 | Sites Reservoir Complex | 17,000 |
 | Holthouse Reservoir Complex | 600 |
 | TRR Complex | 300 |
 | Delevan Pipeline Complex | 25 |
 | Overhead Power Lines and Substations | 20 |
 | Project Buffer | 10,000 |

 Note: Acreages are based on permanent footprint; overlap of facilities (e.g., the Sites Pumping/Generating Plant located within the footprint for the Sites Pumping/Generating Plant Approach Channel) occurs in some cases. Construction footprint estimates are conservative and are described in resource analysis chapters, where applicable.

 ### 2.1.1.1 Sites Reservoir Inundation Area

 The Sites Reservoir would be located in Antelope Valley, approximately 10 miles west of the town of Maxwell. The Inundation Area would be created by construction of eleven dams. The 1.8-MAF Sites Reservoir would have a maximum normal water surface elevation of 520 feet above mean sea level (msl) (the minimum operating water surface would be at elevation 340 feet) and an inundation area of approximately 14,200 acres. The dams would include Golden Gate Dam on Funks Creek, Sites Dam on Stone Corral Creek, and nine saddle dams (dams are discussed in Section 2.1.1.2 Golden Gate Dam, Sites Dam, and Saddle Dams).

 Many areas within the Sites Reservoir Inundation Area would be used for staging materials and equipment prior to and during construction of the Sites Reservoir dams.

 ## Construction

 The majority of the total construction disturbance for this complex would occur within the Inundation Area. Anticipated ground-disturbing activities during construction include the following:

 - Clearing and grubbing: Approximately 90 percent of the Sites Reservoir Inundation Area footprint is annual grassland, and clearing and grubbing would not be needed in these areas. The remaining areas consist of blue oak woodland, agricultural crops, and other vegetation, which would be cleared. Cleared vegetation materials would be disposed of at an appropriate landfill/green waste facility or on-site as appropriate and necessary.
 - Demolition of existing structures: Acquisition or establishment of temporary or permanent easements of private properties, either through voluntary or eminent domain processes would be required prior to initiation of construction activities. Within the Sites Reservoir Inundation Area, approximately 20 houses, 25 barns, and 40 other structures (e.g., sheds, silos, and pump houses) would be demolished once all property owner negotiations were completed. Existing septic tanks and other underground storage tanks would also be removed. In addition, many miles of fencing and asphalt would be removed, as necessary. Demolition debris would be transported and disposed of at an approved landfill(s).
 - Cemetery relocation: Two private cemeteries would be relocated.
 - Salt Lake: Saline water has been observed to seep from underground salt springs near the Salt Lake Fault within the proposed Sites Reservoir Inundation Area. To avoid potential reservoir water quality issues, pressure grouting of seeps and/or concrete caps would be constructed where saline water seeps from the salt springs within the Inundation Area (Salt Lake). The existing salt deposits and highly saline soils in and surrounding Salt Lake will be capped with clay materials from construction of the dams and other project facilities. Subsurface investigations would be conducted to confirm the nature and extent of the springs and appropriate treatment. Saline seeps observed outside of the reservoir or changed conditions of the springs once the reservoir is filled would be addressed by regular reservoir and facilities maintenance procedures. Pressure grouting and capping would also be applied to new seeps surface in other areas. Grout and concrete caps would be designed using standard engineering practices to prevent seepage. ${ }^{1}$

 ## Operations

 Water from the Sacramento River would be pumped into Sites Reservoir each year during times and years that water is available for diversion in accordance with the criteria in Section 4 Diversion and Reservoir Operations. In wetter years, the facility would be anticipated to reach maximum storage levels; in drier years, storage would not likely be at full capacity. Given that the Sites Reservoir would be an "offstream" storage facility, it would receive little natural runoff (approximately 1 percent of the 1.8-MAF reservoir storage capacity) from its own 83 -square-mile watershed. Releases would occur throughout the year to assist in meeting demands, depending on time of year and year type, in accordance with water user agreements. As such, it is anticipated that the reservoir level would fluctuate approximately 140 feet throughout the season, based on demands and the ability to divert water. Specific reservoir operations are discussed in Section 4 Diversion and Reservoir Operations.

 ## Maintenance

 Maintenance activities for the proposed Sites Reservoir Inundation Area and adjacent land are anticipated to include law enforcement (including enforcement activities associated with boating); garbage removal; and maintenance of signs, culverts, and buoys.

 ### 2.1.1.2 Golden Gate Dam, Sites Dam, and Saddle Dams

 Eleven dams would be needed to create the proposed 1.8-MAF Sites Reservoir (Figure 2-1): Golden Gate Dam, Sites Dam, and nine saddle dams. The saddle dams would be located along the northern perimeter of the reservoir between the Funks Creek and Hunters Creek watersheds, near the Glenn-Colusa county line. The proposed Golden Gate Dam would be constructed on Funks Creek, approximately 1 mile west of the existing Funks Reservoir. The proposed Sites Dam would be constructed on Stone Corral Creek, approximately 0.25 mile east of the town of Sites and 10 miles west of the town of Maxwell.

 Saddle Dams 1, 2, 4, and 9 would be small-sized dams, with heights ranging from approximately 40 to 50 feet. Saddle Dams 3, 5, 6, 7, and 8 would be medium-sized dams, with heights ranging from approximately 70 to 130 feet. Saddle Dams 3, 5, and 8 would be the tallest and largest of the nine proposed saddle dams, with embankment volumes of approximately $3.6,1.5$, and 1.9 million cubic yards, respectively. Table 2-3 lists the proposed height and length of the main and saddle dams, as well as the total volume of materials needed to construct the dam embankments. The nine proposed saddle dams are

 anticipated to be earthfill embankment dams and would be constructed primarily of materials from borrow areas within the Sites Reservoir Inundation Area (Table 2-4 and Figure 2-1). Site topography, geology, seismicity, and foundation features were considered when selecting the dam alignments, design, and dam cross sections.

 Table 2-3
 Characteristics of Proposed 1.8-MAF Sites Reservoir Dams

 | Dam | Maximum Height
 Above Base
 (feet) | Crest Length
 (feet) | Total Embankment
 Volume
 (cubic yards) |
 | :--- | :---: | :---: | :---: |
 | Sites Dam | 290 | 850 | $3,836,000$ |
 | Golden Gate Dam | 310 | 2,250 | $10,590,000$ |
 | Saddle Dam 1 | 50 | 490 | 93,000 |
 | Saddle Dam 2 | 80 | 420 | 86,000 |
 | Saddle Dam 3 | 130 | 3,810 | $3,577,000$ |
 | Saddle Dam 4 | 40 | 270 | 18,000 |
 | Saddle Dam 5 | 100 | 2,290 | $1,505,000$ |
 | Saddle Dam 6 | 70 | 530 | 144,000 |
 | Saddle Dam 7 | 75 | 1,040 | 196,000 |
 | Saddle Dam 8 | 105 | 2,990 | $1,915,000$ |
 | Saddle Dam 9 | 45 | 340 | 49,000 |
 | Total | | $\mathbf{2 2 , 0 0 9 , 0 0 0}$ cubic yards | |

 ${ }^{\text {a }}$ Base is defined as ground surface elevation.

 Table 2-4
 Sites Reservoir Project Onsite or Nearby Dam Materials

 | Material | Facilities | Approximate Size
 (acres) |
 | :---: | :---: | :---: |
 | Sandstone $^{\mathrm{a}}$ | Saddle Dams | 80 |
 | Impervious $_{\text {Conglomerate }}^{\text {Impervious }}$ | Saddle Dams 6 through 9 | 400 |
 | Impervious | Multiple | 200 |
 | Sandstone $^{\mathrm{a}}$ | Saddle Dam 3 | 80 |
 | Sandstone | Goldde Dams 1 and 2 | 40 |
 | Impervious | Golden Gate Dam | 70 |
 | Impervious | Golden Gate Dam | 60 |
 | Sandstone $^{\mathrm{a}}$ | Sites Dam | 60 |
 | Sites Dam | 80 | |

 ${ }^{a}$ Located east of the Sites Reservoir Inundation Area
 The crest elevation of all 11 dams would be 540 feet, providing 20 feet of freeboard above the normal maximum operating level. Sites and Golden Gate dams would have crest widths of 30 feet and embankment slopes of 2.25:1 upstream and 2:1 downstream. The saddle dams would have crest widths of 20 feet and embankment slopes of 3:1 upstream and 2.5:1 downstream.

 Saddle Dams 2, 3, and 5 would have fairly flat slopes on the left abutments, ${ }^{2}$ which require low dam heights (less than approximately 10 feet high). At these locations, the dam embankments would be strictly providing residual freeboard. Therefore, the typical saddle dam sections would be replaced at these locations with a small homogenous impervious embankment with a bentonite slurry wall for foundation seepage control. The crest elevation and width and slopes of the homogeneous embankment would match that of the saddle dams. Construction of the slurry wall configuration is a more economical option than construction of the typical embankment and excavation section. The slurry wall would be excavated to a depth corresponding to the moderately weathered bedrock surface, with average dimensions estimated at 20 feet deep by 5 feet wide. At the left abutment of Saddle Dam 2, the slurry wall section would also provide a defensive measure to control foundation seepage if displacement occurs along the Salt Lake Fault. At this location, the slurry wall would be extended to a depth of 40 feet to minimize the potential of foundation seepage along the fault zone.

 The 11 dams would be constructed as zoned, earthen embankments of soil and rock with clay cores. Earthen embankment zones are shown on Figures 2-2 through 2-5. All dams would be constructed under the jurisdiction of the California Department of Water Resources, Division of Safety of Dams (DSOD).

 As part of project design, an updated deterministic and probabilistic seismic hazard analysis would be conducted to account for the anticipated estimated level of ground shaking due to regional earthquakes. Suitable dam zoning and materials would be included as part of project design to accommodate anticipated seismic activity, including fault rupture, ground shaking, ground failure, and liquefaction, in coordination with DSOD. In addition, a seismic monitoring array will be designed and implemented as part of the Project to monitor site seismic activity, including identifying increases in seismicity rate that could be attributed to potential reservoir-triggered seismicity (RTS). Although not anticipated to be a substantial concern, the potential for RTS will be monitored through the deployment of strong motion instruments at center crests, abutments, and toes of the two primary dams (the Golden Gate Dam and the Sites Reservoir Dam) before, during, and a minimum of 2 years after the reservoir first reaches the maximum normal storage level. As part of the initial impoundment/filling of the reservoir, the rate of impoundment will be monitored in conjunction with seismic monitoring and adjusted as needed in the event of increases in seismicity potentially attributable to RTS. The seismic monitors would remain in service over the life of the Project and would also be part of the dam safety monitoring program.

 Material requirements for the Sites Reservoir dams constitute a major component of the overall Project. A construction materials investigation identified and evaluated material sources for construction of the proposed dams. The construction materials investigation program examined materials available in or near the proposed Sites Reservoir, including alluvial deposits (recent and older alluvium), Venado sandstone of the Cortina Formation (fresh and weathered), and mudstone of the Boxer Formation. Table 2-4 and Figure 2-6 present the results of the investigation of materials potentially available within the Sites Reservoir Inundation Area or nearby. Offsite sources for filter, drain, and transition materials, and concrete aggregate would be required if the onsite sources of these materials are unsuitable (i.e., preliminary testing indicates that it does not meet concrete aggregate durability criteria) or if additional material is required. Several existing commercial locations (over 30), ranging in distance from approximately 35 to 80 miles, are available to meet materials needs for high quality aggregates.

 It is anticipated that all earth and rockfill (approximately 80 percent of materials required) would come from onsite sources, and all aggregate (approximately 20 percent of material required) would come from existing, offsite, commercial sources.

 The following material requirements and sources were investigated, and suitability was evaluated for construction of the dams:

 - Impervious core - A large amount of impervious material exists within the Project area or nearby. The locations of potential borrow areas are illustrated on Figure 2-6. Previous studies by the Bureau of Reclamation (Reclamation) identified four main areas of alluvial deposits in the reservoir area that could provide approximately 36 million cubic yards of material. Additional impervious materials are located within required excavation and construction areas for the associated structures and the proposed Holthouse Reservoir Complex. Suitable material from the required excavation and construction areas would be used to the maximum extent practicable. The impervious materials are suitable for use in the proposed embankment dams and are generally classified as low to medium plasticity clays, with lesser amounts of high plasticity clays and clayey sand.
 - Filter, drain, and transition materials - Filter, drain, and transition materials for the proposed embankment dams would be imported from the closest offsite sand and gravel deposits.
 - Rockfill and riprap - The best available source of rockfill material for riprap within the Project area is fresh Venado sandstone. Sandstone quarry areas are located within the Sites Reservoir Inundation Area and are shown on Figure 2-6. Sufficient quantities of fresh sandstone for rockfill material could be obtained from these quarries to construct the proposed embankment dams. It is possible that one centrally located quarry would be developed for Golden Gate and Sites dams instead of developing a quarry for each dam. Note that fresh Venado sandstone was used as riprap for the existing Funks Dam and has performed well.

 Figure 2-6 also shows a proposed sandstone quarry location outside of the Inundation Area for construction of the saddle dams. The haul distance from this proposed quarry is approximately 3 to 4 miles from the saddle dam sites. A potential alternate source of rockfill and riprap material for construction of the saddle dams is a ridge of conglomerate within the reservoir area, near Saddle Dam 3 (Figure 2-6). This potential rockfill source offers a shorter haul distance to the saddle dams (1 to 2 miles). Development of the Venado sandstone quarry would be required for construction of the saddle dams, unless further testing of the conglomerate determines that it is a suitable material.

 - Random fill - Random fill can include various types of soil or rock that do not necessarily have the defined physical characteristics of the other categories of materials used for construction. Random fill would be required for construction of all proposed dams. It is anticipated that two general types of random materials would be required for construction. One type of material would be composed of predominately weathered sandstone from the Cortina Formation; the other type would be predominately mudstone from the Boxer Formation. Mudstone from the Boxer Formation would tend to be "soil like" after excavation and compaction operations, because it is low-strength rock. The weathered Cortina Formation tends to have more fine materials and less well-graded rockfill.

 Random fill material needed for the dams will come from two sources: (1) excavations that are required for the dam foundations and excavations for other nearby structures and (2) onsite quarries in the Sites Reservoir Inundation Area, including suitable byproducts from processing sandstone for other
 construction needs. Random materials generated during construction of the dams would have haul distances of less than 1 mile.

 Although the Boxer Formation material would function more as an upstream and downstream shell zone in the saddle dams, the term random is used for this material zone to be consistent with the terminology used for the design of Sites and Golden Gate dams.

 - Concrete aggregate - Crushed Venado sandstone and offsite sand and gravel deposits were examined as potential sources of concrete aggregate. Preliminary small scale testing performed on crushed samples of Venado sandstone indicates that it does not meet concrete aggregate suitability criteria. Verification of the suitability of the Venado sandstone for use as a concrete aggregate would be further investigated in the future when large bulk fresh samples come available for testing. Potential sources of concrete aggregate borrow areas would be imported from the closest offsite aggregate deposit

 The Project would be designed in accordance with DSOD requirements. ${ }^{3}$
 A signal spillway would be located at Saddle Dam No. 6. The purpose of the signal spillway would be to release water in the event that water is still being pumped into the reservoir after the probable maximum flood (PMF) ${ }^{4}$ has been stored (an unlikely occurrence). If the PMF were to occur when the reservoir is at the normal maximum pool elevation (520 feet), the water surface elevation would rise to 525.2 feet (with full PMF retention). The dam crest elevation would be 540.0 feet, leaving almost 15 feet of freeboard. This "morning glory" spillway ${ }^{5}$ would be provided on a cut bench on the left abutment of the saddle dam. The outlet pipe would be installed under the dam on a cut bench on the dam abutment foundation. On the downstream side of the dam, the pipe would be installed downslope to the creek. An energy-dissipating structure would be located at the end of the pipeline to control the discharge of water to the creek. The spillway would consist of one 7 -foot-diameter concrete pipe sized primarily for inspection and maintenance activities. The spillway pipe inflow elevation would be set at 526.0 feet, just above the estimated pool level with full PMF containment.

 The potential for such an event and necessary actions would be addressed as part of an emergency action plan (Section 5.8 Emergency Action Plan).

 To meet DSOD requirements, an emergency release outlet would be constructed to allow water levels in the reservoir to be lowered quickly if the integrity of a dam is at risk. The 30 -foot-diameter tunnel with a release capacity of approximately 15,200 cfs is designed to meet DSOD's emergency drawdown release criteria (10 percent drawdown of reservoir depth in 10 days). The emergency release capability is provided by a system of piping and energy dissipating valves located adjacent to the Sites Pumping/Generating Plant. The emergency release bypass outlet would be a 26 -foot-diameter pipe that splits off from the tunnel/main inlet/outlet manifold. The 26 -foot-diameter pipe would then split and reduce in size several more times to join four 8.5 -foot dispersion valves located in a reinforced concrete and steel lined dissipation chamber adjacent to the Sites Pumping/Generating Plant. Emergency release

 flows would flow down the channel from the Sites Pumping/Generating Plant into Holthouse Reservoir. The spillway structure in the Holthouse Dam is sized to pass the emergency flow. Spills downstream of Holthouse Reservoir associated with a significant event could lead to potential downstream impacts. This would be addressed in an emergency action plan. The plan would include emergency notification flowcharts, notification procedures, inundation maps, and a variety of other important emergency response protocols if an emergency release is anticipated. The emergency action plan would address potential and actual emergency conditions and any uncontrolled release of water, including release of water through the signal spillway, and it would incorporate lessons learned from the recent Oroville Spillway and Oroville Emergency Spillway incident. These plans are typically reviewed annually and periodically tested through tabletop and functional exercises and drills.

 ## Construction

 The total construction disturbance area for the 11 proposed dams would be approximately 160 acres. The total construction disturbance area would include the footprint of the facilities, materials and equipment staging areas, areas needed to construct the facilities, borrow areas, and access roads. The construction disturbance area for the dams would be within the construction disturbance area for the Sites Reservoir Inundation Area. Temporary easements may be required for construction. Anticipated ground-disturbing activities during construction include the following:

 - Surveying
 - Setting up staging areas within the Sites Reservoir footprint
 - Constructing access roads
 - Transporting equipment to the Project site and setting up offices and batch plants
 - Clearing, demolition of existing structures, and grubbing
 - Diverting streams within the reservoir Inundation Area
 - Excavating and stockpiling activities
 - Grouting of dam foundations and the ridge
 - Constructing of dam embankments
 - Installing monitoring equipment
 - Constructing roads and buildings for facility operation and maintenance
 - Cleaning up the Project area, removing equipment, and restoring the area

 The following key activities are discussed in greater detail below:

 - Funks Creek and Stone Corral Creek Diversion Construction - Diversion of Funks and Stone Corral creeks during construction of the proposed Golden Gate Dam and Sites Dam and for the proposed facilities downstream, is anticipated to be accomplished by passing storm flows through an 18 -inch-diameter diversion tunnel through the ridge at Sites Dam. A channel would be excavated within the reservoir to join the two creeks. Coffer dams at the upstream toes of Sites Dam and Golden Gate Dam would protect the work areas from flows being diverted to the Diversion Tunnel.

 The upstream random zone of Golden Gate and Sites dams would function as the coffer dam and upstream toe berm, provides a convenient place to put waste materials from foundation excavation work during the initial stages of construction and would be used to divert Funks and Stone Corral creeks from the dam footprint.

 Sites and Golden Gate dams would have low-level outlet works capable of releasing stream maintenance flows of up to 10 cfs from October through May into Stone Corral and Funks creeks after construction is completed to mimic the ephemeral nature of these streams.

 - Obtaining and Stockpiling Borrow Materials - Materials would be stockpiled near temporary rock-processing plants that would be constructed for the Project. It is anticipated that at least one rock-processing plant would be located within the reservoir footprint to service the impervious material borrow areas and the sandstone quarries.

 The rock processing operation would consist of rock crushers to produce required sizes, shakers, screens to sort material sizes, and conveyor belts to transport sorted material to stockpiles. Stockpiled materials would be loaded by bulldozers, loaders, and possibly conveyors into large dump trucks and transported to the dam construction sites. Material excavation, processing, and stockpiling are anticipated to occur throughout the dam construction period.

 - Foundation excavation - Recent and older alluvium and decomposed and intensely weathered bedrock would be excavated from the entire footprint of the dam sites to obtain a moderately weathered bedrock surface. In addition, moderately weathered bedrock would be excavated from the impervious core footprint down to the top of slightly weathered and/or fresh bedrock surface. Additional shaping of the foundations would be done to meet requirements that: (1) no excavation slopes should be steeper than 1:1 and (2) the core foundation should be approximately level in sections transverse to the dam alignment. Excavation depths would average approximately 20 feet. Excavation would be performed by heavy equipment but may require blasting in the harder sandstone.
 - Foundation treatment grouting - The foundation grouting for the proposed Golden Gate and Sites dams would consist of a two-row grout curtain, with one row of consolidation holes upstream and one row downstream of the curtain holes. The rows would parallel the dam centerline and would be spaced 10 feet apart. In addition, a 40 -foot-wide by 3 -foot-thick grout cap was included in the design to prevent grout surface leakage during grouting of the upper stage. Foundation grouting for the proposed saddle dams would consist of a two-row vertical grout curtain spaced 10 feet apart parallel to the dam centerline. The saddle dam foundation grouting would also include a 20 -foot-wide by 3 -foot-thick grout cap to prevent surface leakage of grout during grouting of the upper stage. Each row of consolidation and curtain grout holes for all dams would consist of mandatory primary and secondary holes spaced at 10 -foot centers. Figures 2-2 through 2-5 show typical grouting at the proposed Golden Gate Dam, Sites Dam, and the saddle dams.

 The grout curtains would be constructed by drilling vertical holes into the bedrock and filling the holes with grout pumped in under pressure.

 - Additional grouting - Additional grouting will be performed along the east ridge of the reservoir north of Golden Gate Dam. Grouting will be in narrow ridge areas and is intended to minimize any seepage through the ridge when the reservoir is full. Grouting would extend from ground surface down into fresh rock.
 - Dam embankment construction - All proposed dams composing the Sites Reservoir would be constructed as zoned earth rockfill embankment dams and would be constructed of four types of fill materials. The impervious core materials (finer material known as Zone 1), Zone 3 materials (rockfill and riprap), and Zone 4 materials (random materials) would be hauled in large dump trucks from the
 borrow sites that would be located within the reservoir footprint, spread by graders or bulldozers, moisture-conditioned with water trucks, and compacted with sheepsfoot rollers or compactors. Zone 2 materials (filter, drain, and transition materials) potentially would be hauled in large dump trucks from offsite commercial sources to be spread, watered, and compacted.
 - Monitoring equipment installation - Monitoring equipment, including strong motion seismic detectors, piezometers, settlement points, and seepage weirs would be permanently installed at each proposed dam site.

 ## Operations

 Once the proposed dams are constructed and Sites Reservoir is filled, there would be few dam operations required other than release of water from the reservoir during normal or emergency operations.

 ## Maintenance

 Typical ongoing dam maintenance would consist of debris and vegetation removal from the embankment slopes, and periodic monitoring and evaluation of all instrumentation. Cleared debris and vegetation materials would be disposed of at an appropriate landfill/green waste facility or on-site as appropriate and necessary. Dam security and/or law enforcement staff would patrol the dams and other facilities. Additional security measures may include fences to prevent automobiles and pedestrians from accessing the dams and other Project features, booms to prevent boats from approaching the dams, security gates, 24-hour security patrols, and security cameras.

 ### 2.1.1.3 Sites Reservoir Inlet/Outlet Structure

 The purpose of the proposed Sites Reservoir Inlet/Outlet Structure would be to regulate proposed Sites Reservoir inflows and releases through the proposed tunnel to the proposed Sites Pumping/Generating Plant. The structure would be located on the west end of the tunnel and southwest of the proposed Golden Gate Dam (Figure 2-7). As previously discussed, the structure would consist of a low-level inlet/outlet structure for emergency drawdown releases, a multi-level inlet/outlet tower, two fixed wheel gates to isolate the tunnel, a tower access bridge, and various valves and operators to regulate flows into and out of the reservoir.

 The low-level inlet/outlet structure would be approximately 120 feet high from bottom of foundation to the top of trash racks. The rectangular structure dimensions would be approximately 100 feet by 120 feet. The three 30 -foot by 30 -foot intake openings would be covered by trash racks; the primary function is emergency release only.

 The multi-level inlet/outlet tower would have multiple inlet ports with the capability of drawing water at different levels in the reservoir and trash racks with port valves (butterfly valves) embedded in the inlet tower tiers with four valves around each tier. The tower would also contain movable fish screens around two tiers for varied operational purposes ($6,000 \mathrm{cfs}$ for two tiers). Each port valve could be operated independently, or all valves could be operated together in each tier. The tiers would be spaced approximately 20 feet apart down the tower beginning approximately 30 feet below the maximum reservoir water level. The high inlet tower/shaft would also contain two 9 -foot by 35 -foot fixed wheel gates at the base of the tower to isolate the tower from the main tunnel for inspection and maintenance. The main tower shaft would have an inner diameter of 32 feet and an outer diameter of 39 feet. Cranes would be used to hoist the fish screens, port valves, and gates for necessary inspection and maintenance. Table 2-5 provides details regarding the proposed Sites Reservoir Inlet/Outlet Structure tower.

 An approximately 440-foot-long bridge would provide access to the multi-level tower from the nearby access road. The bridge deck elevation would be approximately equal to the dam crest heights (approximately 500 feet). The bridge is expected to be a simple welded-plate girder system with a lightweight concrete deck. The girders would be supported by the multi-level inlet/outlet tower, cast-in-place reinforced concrete piers, and a reinforced concrete abutment.

 ## Construction

 The total construction disturbance area would be approximately 100 acres, mostly within the Sites Reservoir Inundation Area. It would include the footprint of the proposed facilities, the materials and equipment staging area, the area needed to construct the facilities, and access roads.

 Table 2-5
 Sites Reservoir Inlet/Outlet Structure Tower Details

 | Detail | Unit |
 | :--- | :---: |
 | Top elevation | 540 feet |
 | Bottom elevation (top of bench) | 320 feet |
 | Inside diameter | 32 feet |
 | Outside diameter | 39 feet |
 | Number of ports | 28 (4 each at 9 levels) |
 | Functional reservoir release elevations | 480 feet to 340 feet |

 Anticipated ground-disturbing activities during construction include surveying and marking, clearing and grading, building access roads, installing temporary power to the site, preparing materials laydown and equipment staging areas, transporting construction materials and equipment to the site, hillside excavation and tower shaft excavation (separate from tunnel excavation), dewatering, building the multi-level tower base and deck, building the access bridge to the multi-level tower, installing cranes on the tower deck, building the low-level intake structure, finished grading, and site clearing.

 ## Operations

 The proposed multi-level inlet/outlet tower and low-level intake structure would be operated remotely. The multi-level tower port valves could be operated independently or by tier. Port valve operations could be adjusted locally or remotely via a supervisory control and data acquisition (SCADA) system. Port valve operations would be changed by adjusting the hydraulic operators.

 ## Maintenance

 Typical maintenance of the proposed inlet/outlet structure is expected to occur annually and would consist of servicing the hydraulic equipment (hoist cranes and control motors) and the fish screen lift mechanism. Hydraulic equipment maintenance service would primarily involve lube and filter replacements.

 The fixed wheel gate maintenance would be performed annually. Maintenance would involve moving both gates through a full stroke (open and closed) position. Annual inspections for corrosion and wear would also be performed. As part of emergency preparedness checks, the gate operation electrical control panel would be tested every 6 months.

 The port valve hydraulic operations would require a relatively higher level of maintenance including quarterly inspection and maintenance. Typical port valve maintenance would involve lube and filter replacements and inspections for hydraulic line damage.

 The concrete low-level intake structure is considered a low-maintenance structure because it has no mechanical components, and it would be underwater. It is assumed that the stop logs that can be installed in the low-level intake at the upstream end of the tunnel would only be installed in the event of a problem with downstream wheel gate operation. The wheel gates would normally be down so that normal inflows to and from the reservoir would occur through the vertical Inlet/Outlet Tower, not through the low-level inlet. The low-level inlet provides the emergency release capability and permits removal of water from the reservoir between the lowest normal operating level for the tower and the dead storage level.

 During the first few years of operation, it is anticipated that the Inlet/Outlet tower and tunnel downstream of the fixed wheel gates would be dewatered for inspection and maintenance. After this initial period of inspection demonstrates proper performance, the inspection period would be increased.

 ### 2.1.1.4 Sites Pumping/Generating Plant and Electrical Switchyard

 The purpose of the proposed Sites Pumping/Generating Plant would be to pump water from the proposed Holthouse Reservoir into the proposed Sites Reservoir and to generate electricity during the release of water from Sites Reservoir to Holthouse Reservoir. The Sites Pumping/Generating Plant would be located approximately 3,300 feet southeast of the proposed Golden Gate Dam (Figure 2-7).

 The Sites Pumping/Generating Plant would have a total pumping capacity of approximately 5,900 cfs and a release capacity of $5,100 \mathrm{cfs}$. Table 2-6 summarizes the pump and pump/turbine configuration for the 5,900-cfs plant. The pumping/generating plant would lift water from Holthouse Reservoir into Sites Reservoir and would be connected to Holthouse Reservoir by an approximately 6,300-foot-long excavated approach channel, as described in Section 2.1.2 Holthouse Reservoir Complex. The existing Funks Reservoir, which would be incorporated into the proposed Holthouse Reservoir, currently operates in coordination with the Tehama-Colusa Canal between elevations of 203 and 205 feet. The Sites Pumping/Generating Plant would operate with tailwater elevations down to elevation 190 feet during pumping to take advantage of the full 6,500 ac-ft of active capacity of the proposed Holthouse Reservoir. A 30-foot-diameter, 4,000-foot-long tunnel would be located on the inlet side of the Sites Pumping/Generating Plant connection to Sites Reservoir (the tunnel is discussed below).

 Table 2-6
 Sites Pumping-generating Plant Configuration

 | Unit Type | Number of Units | Net Head (feet) | Pumping Capacity (cfs) | Generating Capacity (cfs) | Total Pumping Capacity (cfs) | Total Generating Capacity (cfs) |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Pump - Francis Vane (dual speed) | $\begin{gathered} 2 \\ (+1 \text { standby }) \end{gathered}$ | 330 | 870 | - | 5,926 | 5,100 |
 | | | 202 | 870 | - | | |
 | Pump - Francis Vane (dual speed) | 2 | 330 | 435 | - | | |
 | | | 202 | 435 | - | | |
 | Pump/Turbine Reversible Francis (dual speed) | $\begin{gathered} 4 \\ (+1 \text { standby }) \end{gathered}$ | 330/310 | 663 | 1,020 | | |
 | | | 202/182 | 663 | 1,020 | | |
 | Pump/Turbine Reversible Francis (dual speed) | 2 | 330/310 | 332 | 510 | | |
 | | | 202/182 | 332 | 510 | | |

 Water from Holthouse Reservoir would be drawn into the Sites Pumping/Generating Plant by the pumping and pumping-generating units. The number of units operating would be selected to be capable of providing the approximate pumping capacity needed to deliver all water stored in the Holthouse Reservoir on a daily basis during the off-peak pumping period. The Sites Pumping/Generating Plant would be a conventional, indoor-type pumping-generating plant with an inline arrangement of vertical pumping units, a reinforced concrete substructure, and a steel superstructure. The size of each unit bay was determined based on the minimum required spacing between each unit. Two service bays have been incorporated on both sides of the Sites Pumping/Generating Plant and have been sized to allow for two units to be serviced simultaneously while the remainder of the Sites Pumping/Generating Plant continues operation.

 The pumps would be connected to a complex intake/outflow manifold. When water is drawn out of Holthouse Reservoir and pumped up to Sites Reservoir, the pumped water would flow through successive pipe connections until all 12 pipes coming from the pump units combine into a single 26 -foot-diameter pipe. This pipe would then join the 26 -foot-diameter pipe coming from the emergency bypass outlet, and the two pipes would connect to the 30 -foot-diameter tunnel.

 The 230-kilovolt-ampere (kVA) Sites Electrical Switchyard would handle pumping and generating power to the Sites Pumping/Generating Plant. Power would be supplied to the switchyard from a proposed substation near one of two existing 230 kVA transmission lines northeast of the proposed Holthouse Reservoir (substations are described further in Section 2.1.5 Overhead Power Lines and Substations). The Sites Electrical Switchyard would be approximately 3.5 acres and would be graded flat. Electrical equipment would be housed in the switchyard on concrete pads. An overhead power line tower/pole (approximately 50 feet tall) would receive the electrical line entering the site. (Note: While poles are anticipated for all overhead power lines, towers were included in the acreage assessment to provide a conservative estimate. The relocation of the WAPA transmission lines described under the Holthouse Reservoir Complex will include towers.) The switchyard would be approximately 500 feet by 300 feet, and would have multiple metallic poles with heights varying between 15 and 60 feet. The switchyard would be surrounded by a 6 - to 8 -foot-high chain-link fence with barbed wire or serpentine wire along the top.

 The switchyard and overhead power lines connecting the pumping/generating plant to the substation at the grid would provide all the electricity needed by the pumping/generating plant. The switchyard and overhead power lines would also allow the pumping/generating plant to feed electricity back into the electrical grid during periods of generation.

 ## Construction

 The total site footprint of the proposed Sites Pumping/Generating Plant and approach channel would be approximately 75 acres. An additional 20 acres adjacent to the plant would likely be disrupted during construction.

 Anticipated ground-disturbing activities include the following:

 - Transporting materials to the construction site (including contractor's temporary office and utility hookup)
 - Clearing and grading the construction workspace
 - Placing construction materials at staging areas
 - Excavating the approach channel and pumping plant and hauling excavated material
 - Dewatering
 - Constructing the forebay, pump house, and pump bay
 - Performing site restoration after construction is complete

 The total construction disturbance area for the Sites Pumping/Generating Plant includes the footprint of the proposed switchyard, the materials and equipment staging area, electrical transformer area, and temporary access roads.

 Anticipated major construction activities include clearing and grading the construction workspace, placing necessary construction materials at staging areas, and preparing the switchyard pad.

 ## Operations

 A SCADA system would control all proposed operational modes. The system would be located onsite and would broadcast status information to a manned location in the Operation and Maintenance Building. Plant operators would require continuous communication with the TRR Pumping/Generating Plant, Delevan Pipeline Intake/Discharge Facilities, and Tehama-Colusa Canal operators to coordinate flows into and out of the proposed Holthouse Reservoir and Sites Reservoir. The proposed switchyard would be operated remotely or by onsite operations/maintenance staff.

 Hazardous materials and hazardous wastes including fuels, oils, grease, and lubricants would likely be used and stored for operation of the Sites Pumping/Generating Plant. These materials would be used, stored, and disposed of in accordance with applicable regulations (Section 5 Environmental Commitments Included as Part of the Project).

 ## Maintenance

 Routine maintenance and monitoring of the proposed Sites Pumping/Generating Plant would likely be required daily by onsite personnel. Regular maintenance and inspections would be required for each pump and pump turbine unit and the related equipment, such as gates, valves, electrical equipment, and other mechanical systems. The Sites Pumping/Generating Plant would be equipped with cranes to facilitate operation and maintenance. There would be a 100-ton capacity indoor bridge crane for assembly and maintenance of pumping/generating units and associated equipment. A 50-ton capacity outdoor traveling gantry crane would be installed for assembly and maintenance of butterfly valves. In addition, a 10-ton capacity outdoor traveling gantry crane would be installed to aid in the installation and removal of inlet gates and trash racks.

 The proposed switchyard would require maintenance once or twice a year. Maintenance activities may include annual washing and cleaning of insulating equipment, preventive maintenance, scans of the switchyard under full load, and routinely scheduled testing to meet Western Electricity Coordinating Council (WECC) requirements. Regular maintenance activities would include inspections for damage by animals and landscape maintenance.

 ### 2.1.1.5 Tunnel from Sites Pumping/Generating Plant to Sites Reservoir Inlet/Outlet Structure

 The purpose of the proposed tunnel is to transport water between the proposed Sites Pumping/Generating Plant and the proposed Sites Reservoir Inlet/Outlet Structure. The tunnel alignment would be located west of the existing Funks Reservoir and south of the proposed Golden Gate Dam on Funks Creek. The tunnel
 alignment would fall between the proposed Sites Pumping/Generating Plant location and the proposed Sites Reservoir Inlet/Outlet Structure location and would be approximately 4,000 feet long (Figure 2-7).

 The proposed 30 -foot-inside diameter tunnel was designed to meet DSOD emergency drawdown release criteria. The tunnel would have a maximum discharge capacity of 15,200 cfs with a corresponding tunnel velocity of 21.5 feet per second (fps). Pumping velocities through the tunnel would be approximately 8.20 fps for the 5,900 -cfs pumping plant.

 The full tunnel length between portals would be concrete-lined to prevent rock fallout and to provide a smooth interior surface, thus reducing head loss and minimizing seepage into the surrounding rock. The tunnel concrete liner would include an additional steel liner in the lower 1,000 feet adjacent to the pumping plant where rock cover over the tunnel is too shallow to confine the internal pressure.

 ## Construction

 The total construction disturbance area would be approximately 3 acres. It would include the footprint of the proposed facilities, the materials and equipment staging area, the area needed to construct the facilities, and access roads. There would be no permanent aboveground disturbance area for this facility.

 Anticipated ground-disturbing and related activities during construction include the following:

 - Surveying and marking
 - Clearing and grading
 - Building access roads
 - Installing temporary power to site
 - Developing staging and material laydown areas
 - Transporting construction materials and equipment to the site, upstream cofferdam, and diversion facilities
 - Excavating Portal at both ends
 - Constructing Portal
 - Tunnel blasting/excavating
 - Dewatering and removing excavated material
 - Installing concrete and steel liner
 - Performing site restoration and cleanup

 ## Operations

 The typical operation scenario for the proposed tunnel would be 24 hours per day, 7 days per week. The tunnel would transport flows between the proposed multi-level Sites Reservoir Inlet/Outlet Structure upstream and the Sites Pumping/Generating Plant downstream. During emergency release operations, the tunnel could discharge a maximum flow rate of approximately $15,200 \mathrm{cfs}$.

 ## Maintenance

 Maintenance would likely occur on an annual basis in coordination with maintenance and inspection of the proposed Sites Reservoir Inlet/Outlet Structure and multi-level intake tower upstream and the proposed Sites Pumping/Generating Plant downstream.

 The Inlet/Outlet tower wheel gates would be closed off to completely isolate the tunnel from the reservoir below the inlet/outlet structure for inspection and maintenance; to allow tunnel inspection and maintenance upstream of the wheel gates, stop logs would be used to shut off flow from the low-level inlet structure to the downstream tunnel section. The stop logs would be lowered from a barge above and dropped into the low-level inlet structure.

 Typical tunnel inspection and maintenance may consist of checking for concrete cracks and leaks at joints between lining sections and around connections with the Sites Pumping/Generating Plant, Sites Reservoir Inlet/Outlet Structure tower gates, and low-level intake structure.

 ### 2.1.1.6 South Bridge and Roads

 The proposed Sites Reservoir would inundate several existing roads within Colusa County's jurisdiction. Travel between the towns of Maxwell and Lodoga along the existing Maxwell Sites Road and Sites Lodoga Road would be blocked by the new reservoir. Approximately 6 miles of the existing Huffmaster Road, a gravel county road, would also be inundated. Huffmaster Road provides access to private properties primarily within the proposed Sites Reservoir footprint and the community of Leesville, southwest of the proposed reservoir. Peterson Road, which is also a gravel county road that provides access to private property, is located entirely within the proposed reservoir footprint. Existing roads would be rerouted, as necessary, to provide alternate access routes.

 Approximately 50 miles of new paved and unpaved roads would provide construction and maintenance access to the proposed facilities, as well as provide public access to the proposed recreation areas. The locations of proposed roads, the proposed South Bridge, and existing roads near the proposed Sites Reservoir that would be affected by Project construction and/or operation are shown on Figures 2-8A and 2-8B.

 Six road alternatives were evaluated to determine the best method of connecting the towns of Maxwell and Lodoga. To determine the best road alternative available, weighted criteria were independently assessed for shortest travel time, least total cost, least annual operations and maintenance cost, shortest emergency response time, least impact on wildlife habitat, least impact on wetlands and riparian areas, and least impact on public safety. Of the road alternatives, the South Bridge Alternative was selected as the Project alternative. The portions of Maxwell Sites and Sites Lodoga roads that would be inundated by the proposed reservoir would be replaced by the proposed South Bridge. The proposed road (including new bridge) would start approximately 1 mile east of the proposed Sites Dam on Maxwell Sites Road. The new route would consist of the proposed Eastside Road, Stone Corral Road, the South Bridge, and an approach road west to Sites Lodoga Road. This route would also provide access to the proposed Stone Corral and Peninsula Hills Recreation Areas.

 The proposed South Bridge would be a two-lane concrete bridge, 35.5 feet wide and approximately 1.6 miles long. The top deck elevation would be 45 feet above the Sites Reservoir's maximum normal water surface elevation. For the roads leading up to and away from the bridge, the proposed road right-of-way would be 60 feet wide with a 4 percent maximum grade. Culverts and minor bridges would be constructed to provide passage for streams and drainage of surrounding areas, including the
 construction of a culvert where the proposed Eastside Road would cross Funks Creek. Guardrails, signs, striping, and lighting would be installed after the roads are completed pursuant to applicable county, California Department of Transportation (Caltrans), and American Association of State Highway and Transportation Officials (AASHTO) design specifications. Permanent fencing would be installed along both sides of the 60 -foot-wide right-of-way.

 The proposed North Road and Saddle Dam Road (both new gravel roads) would provide access to northern portions of the Sites Reservoir and saddle dams. The new Eastside Road would be gravel from the existing County Road 69 to near the proposed Sites Pumping/Generating Plant and paved south of the plant. Eastside Road would connect the proposed Stone Corral Road to County Road 69, providing access to the northern portions of the Sites Reservoir, Holthouse Reservoir Complex, Golden Gate Dam, and associated structures and to properties northeast of the Sites Reservoir. Along the west side of the Sites Reservoir, the proposed Peninsula Road would provide access from Sites Lodoga Road to the proposed Peninsula Hills Recreation Area. The proposed Sulphur Gap Road would provide access to southern portions of the Sites Reservoir, and private property adjacent to the proposed Com Road and would connect to Huffmaster Road.

 Permanent facility access roads constructed from gravel and asphalt would facilitate operation and maintenance. These proposed access roads would require new construction or the relocation of existing County roads and bridges; these activities would follow Caltrans and AASHTO design standards as applicable. During construction, gravel roads would be constructed on the following detour and construction roads: the proposed Sulphur Gap and Lurline roads and an existing dirt road west of the proposed Lurline Headwaters Recreation Area to Huffmaster Road.

 A new temporary bypass road at the north end of Sites Reservoir is provided to help expedite the closure of Sites Lodoga Road in the project area and the start of construction in borrow areas and for the main dams. The new bypass road would begin on the east where existing County Road 69 intersects the Tehama-Colusa Canal. Access to County Road 69 would be from Highway 5 at the County Road 68 interchange, then west along County Road 68 to County Road D and County Road 69. From the Tehama-Colusa Canal crossing, the planned access road would follow existing ranch roads and trails that are planned for use as the saddle dam access road. From the saddle dam access road near Saddle Dams 5, existing ranch roads and trails would also be followed to cross the bottom of the reservoir to the southwest and connect back to Sites Lodoga Road on the west side of the proposed reservoir, just above the planned Inundation Area for the reservoir. The bypass road would meet applicable County standards and would be paved along its full length for public use. Characteristics of the Project roadways and South Bridge approaches, the South Bridge, and the proposed minor structures are listed in Tables 2-7, 2-8, and 2-9, respectively.

 Table 2-7
 Characteristics of Project Roadways and South Bridge Approaches

 | Road or Segment Name | New or
 Existing | Permanent (P)
 or
 Temporary (T) | Gravel
 Road
 (miles) | Paved
 Road
 (miles) | Total
 (miles) |
 | :--- | :---: | :---: | :---: | :---: | :---: |
 | Public Access Roads | | | | | |
 | Com Road
 Dam Crown Access Road to
 Communication Tower | | | | | |

 Table 2-7
 Characteristics of Project Roadways and South Bridge Approaches

 | Road or Segment Name | New or Existing | $\begin{aligned} & \text { Permanent (P) } \\ & \text { or } \\ & \text { Temporary (T) } \end{aligned}$ | Gravel Road (miles) | $\begin{aligned} & \text { Paved } \\ & \text { Road } \\ & \text { (miles) } \end{aligned}$ | Total (miles) |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Eastside Road | | | | | |
 | Field Office Maintenance Yard Access to Sites Pumping/Generating Plant Access | New | P | | 0.93 | 0.93 |
 | Golden Gate Dam/Electrical Switchyard Access Roads to Property North of Golden Gate Dam | New | P | 1.52 | | 1.52 |
 | Maxwell Sites Road to Stone Corral Road | New | P | | 1.30 | 1.30 |
 | Property North of Golden Gate Dam to North Road | New | P | 3.63 | | 3.63 |
 | Sites Pumping/Generating Plant Access to Golden Gate Dam/Electrical Switchyard Access Roads | New | P | | 0.95 | 0.95 |
 | Stone Corral Road to Field Office Maintenance Yard | New | P | | 1.09 | 1.09 |
 | North Road | | | | | |
 | County Road 69 at TehamaColusa Canal to Saddle Dam Road | Existing (dirt road to be improved) | P | | 4.69 | 4.69 |
 | Saddle Dam Road to Saddle Dam 9 | New | P | 1.84 | | 1.84 |
 | Peninsula Road | | | | | |
 | Sites Lodoga Road to Peninsula Hills Recreation Area (East Segment) | New | P | 0.90 | | 0.90 |
 | Sites Ladoga Road to Peninsula Hills Recreation Area (West Segment) | New | P | 1.00 | | 1.00 |
 | Saddle Dam Road | | | | | |
 | North Road to Saddle Dam 1 | New | P | 3.10 | | 3.10 |
 | Temporary North Bypass Road | | | | | |
 | Saddle Dam Road to Sites Lodoga Road West ${ }^{\text {a }}$ | New | T | | 4.90 | 4.90 |
 | South Bridge | | | | | |
 | South Bridge | New | P | | 1.48 | 1.48 |
 | South Bridge East Approach | | | | | |
 | Included with Stone Corral Road (below) | NA | NA | NA | NA | NA |
 | South Bridge West Approach | | | | | |
 | South Bridge to Sites Lodoga Road | New | P | | 2.16 | 2.16 |

 Table 2-7
 Characteristics of Project Roadways and South Bridge Approaches

 | Road or Segment Name | New or Existing | $\begin{aligned} & \text { Permanent (P) } \\ & \text { or } \\ & \text { Temporary (T) } \end{aligned}$ | Gravel Road (miles) | Paved Road (miles) | Total (miles) |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Stone Corral Road | | | | | |
 | Eastside Road to Stone Corral Recreation Area | New | P | | 1.6 | 1.6 |
 | South Bridge East Approach to Stone Corral Recreation Area | New | P | 0.21 | | 0.21 |
 | Sulphur Gap Road | | | | | |
 | Maxwell Sites Road to Huffmaster Road (optional; not shown on figures) | New | P | 7.61 | | 7.61 |
 | Private Access Roads | | | | | |
 | Golden Gate Access Roads | | | | | |
 | Eastside Road to bottom of Golden Gate Dam | New | P | | 0.26 | 0.26 |
 | Eastside Road to Sites Pumping/Generating Plant Electrical Switchyard | New | P | | 0.12 | 0.12 |
 | Eastside Road to Field Office Maintenance Yard | New | P | | 0.04 | 0.04 |
 | Eastside Road to Sites Pumping/Generating Plant | New | P | | 0.18 | 0.18 |
 | South Bridge East Approach to Inlet/Outlet Tower | New | P | | 0.50 | 0.50 |
 | South Bridge East Approach to top of Golden Gate Dam | New | P | | 1.2 | 1.2 |
 | Saddle Dam Access Roads | | | | | |
 | North Road to Saddle Dam 6 | New | P | 0.28 | | 0.28 |
 | Saddle Dam Road to Saddle Dam 2 | New | P | 0.03 | | 0.03 |
 | Saddle Dam Road to Saddle Dam 3 | New | P | 0.16 | | 0.16 |
 | Saddle Dam Road to Saddle Dam 5 | New | P | 0.11 | | 0.11 |
 | Leesville Road | | | | | |
 | Huffmaster Road south to Leesville Road | New | P | 5.20 | | 5.20 |
 | Total | | | 28.54 | 21.4 | 49.94 |

 Table 2-8
 Proposed South Bridge Characteristics

 | Item | Dimension |
 | :--- | :--- |
 | Bridge length | Approximately 8,000 feet (1.5 miles) |
 | Bridge width | 35.5 feet |
 | Bridge height ${ }^{\mathrm{a}}$ | Approximately 45 feet above maximum water surface elevation |
 | Bridge depth ${ }^{\mathrm{b}}$ | 20 feet maximum, 8 feet minimum |
 | Spans | 400 feet maximum, 260 feet minimum, 22 spans total |
 | Columns - 1.3-MAF
 dimensions | 22 feet by 14 feet square, hollow, maximum height approximately 260 feet,
 24 columns total |
 | Foundations | Large mat foundations under columns with 4-foot-diameter, cast-in-place, drilled
 shafts |

 ${ }^{\text {a }}$ The bridge height is the distance from the top of the bridge deck to the maximum water surface elevation.
 ${ }^{\mathrm{b}}$ The bridge depth is the distance from the top of the bridge deck to the bottom of the bridge structure that sits atop the columns.

 Table 2-9
 Characteristics of Proposed Minor Structures

 | Item | Typical Dimensions |
 | :--- | :--- |
 | Culverts (over unnamed streams), 17 total | 6-foot diameter by 100-foot length |
 | Minor bridge (over named streams), 1 total | 40-foot width by 80-foot length |

 Note: Minor structures would be built using steel pipe or precast pieces.

 ## Construction

 The construction disturbance area would include the footprint of the proposed South Bridge structure and proposed roads and stream crossings, the materials and equipment staging areas, the area needed to construct the facilities, and access roads. Traffic that is not construction-related would be diverted around construction disturbance areas in accordance with a traffic control plan.

 If necessary, a temporary asphalt batch plant would be built onsite and outside of the Sites Reservoir footprint. One possible location could be adjacent to the footprint of the proposed Field Office Maintenance Yard. This location would be centrally located to the Project's paving needs, is relatively flat, and has shallow soil and impervious subsoil that should allow for easy spill containment and site cleanup. Alternatively, the construction contractor may obtain asphalt from regional commercial sources. Concrete bridge construction would include excavation for foundations and abutments; installing cast-in-place concrete formwork; placing reinforcing steel; installing bridge deck expansion joints; pouring and curing concrete; removing concrete forms; installing bridge barriers, bridge railings, bridge lighting, approach roadway guardrails, fences, signs, and reflectors; and painting approach and bridge deck striping.

 Anticipated ground-disturbing and related activities during construction include the following:

 - Surveying and marking
 - Clearing and grading the construction workspace
 - Preparing the construction materials laydown and equipment staging areas
 - Transporting materials and equipment to the Project site
 - Building concrete and/or asphalt batch plant
 - Creating road cuts and fills; hauling excess cut materials
 - Constructing bridge foundation, including drilled pier installation for foundations
 - Constructing bridge columns
 - Constructing bridge spans
 - Installing culverts and minor bridges
 - Laying aggregate road base and asphalt
 - Installing fences, guardrails, and signs
 - Installing roadway striping and reflectors
 - Performing erosion and stormwater management
 - Implementing BMPs
 - Performing site restoration and cleanup

 ## Operations

 Standard nighttime bridge safety lighting would be provided in accordance with County requirements. Electricity would likely come from an existing overhead distribution line that currently parallels exiting Sites Lodoga Road. Daily management of the right of way (e.g., speed restrictions and closures) would be conducted by County and State law enforcement agencies.

 ## Maintenance

 Procedures will be incorporated to reduce impacts from lighting (e.g., directional lighting and nonreflective materials). Typical road maintenance would consist of chip sealing; patching; grading; crack filling; asphalt overlays; guardrail, fencing, and signage repairs; embankment erosion repair; and vegetation control. Typical culvert and minor bridge maintenance would consist of debris removal, cleaning, and repair of steel pipe corrosion and precast concrete cracks.

 Typical bridge maintenance would consist of debris clearing from bridge deck and deck drainage outlets; barrier, railing, and light repairs; concrete deck and expansion joint repairs; occasional resurfacing; approach slab and guardrail repairs; and abutment erosion maintenance and repair. In addition, annual safety and maintenance inspections would be conducted pursuant to County, Caltrans, and AASHTO requirements as applicable to maintain a bridge condition monitoring record.

 ### 2.1.1.7 Recreation Areas

 Construction of the recreation areas would be phased, based on public demand. The Project would include the development of two recreation areas (Stone Corral Recreation Area and Peninsula Hills Recreation Area). The Project would also include a boat ramp at the western end of the reservoir where the existing Sites Lodoga Road would be inundated. Development of the recreation areas would be phased, likely starting with Stone Corral. Development of additional recreation areas would be initiated based on public demand. The development of new recreation areas at the Sites Reservoir could meet public demand for recreation opportunities. The potential recreation areas at Sites Reservoir were evaluated based on the site topography, environmental considerations, and the effect of potentially large fluctuations in the water surface levels due to normal reservoir operations.

 The Stone Corral Recreation Area (Figure 2-9A) would be located on the eastern shore of the Sites Reservoir, north of the existing Maxwell Sites Road and proposed Sites Dam. Access would be provided by either the proposed South Bridge or Eastside Road. The maximum proposed size of the Stone Corral Recreation Area would be 235 acres.

 The Peninsula Hills Recreation Area (Figure 2-9B) would be located on the northwest shore of the Sites Reservoir, to the north of the existing Sites Lodoga Road. Access would be provided from the proposed Peninsula Road via the existing Sites Lodoga Road. The maximum proposed size of the Peninsula Hills Recreation Area would be 373 acres.

 In addition to the Stone Corral and Peninsula Hills recreation areas, a boat ramp would be provided on the western side of the reservoir where the existing Sites-Lodoga Road intersects with the proposed Inundation Area for the reservoir (Figure 2-9C). The maximum proposed size of the boat ramp area would be 10 acres.

 Potential recreation opportunities could include boating, camping, picnicking, fishing, swimming, and hiking. Facilities may include boat launch sites, trails, designated swimming and fishing access, picnic tables, shaded canopies, campfire rings/barbeques, vault toilets, and dumpsters. In addition, gravel parking areas would be provided for camp sites, day-use areas, and boat launch facilities. The approximate number of facilities at each proposed recreation area is listed in Table 2-10.

 Table 2-10
 Approximate Number of Facilities at the Proposed Recreation Areas

 | Recreation Areas | Features |
 | :--- | :--- |
 | Stone Corral Recreation Area | 50 campsites (car and recreational vehicle) |
 | | 10 picnic sites (with parking at each site) |
 | | 6-lane boat launch ${ }^{\text {a site }}$ |
 | | Hiking trails |
 | | Electricity |
 | | Potable water |
 | | 1 kiosk |
 | | 10 vault toilets |
 | Peninsula Hills Recreation Area | 200 campsites (car and recreational vehicle) |
 | | 1 group camp area |
 | | 10 picnic sites (with parking at each site) |
 | | Hiking trails |
 | | Electricity |
 | | Potable water ${ }^{\text {b }}$ |
 | | 1 kiosk |
 | | 19 vault toilets |
 | Boat ramp on western side of the reservoir | Potable water ${ }^{\text {b }}$ |
 | where Sites-Lodoga Road ends | 1 kiosk |
 | | 1 vault toilet |

 ${ }^{\text {a }}$ Reducing the number of boat lanes with increasing water depth.
 ${ }^{\mathrm{b}}$ Treated water from the reservoir would be the source of potable water.

 ## Construction

 It is anticipated that all construction activities associated with Stone Corral and Peninsula Hills recreation areas and the proposed boat ramp would occur within the proposed footprint of the recreation areas and the temporary and permanent access road areas. The total construction disturbance area would be approximately 620 acres. However, construction disturbance could be much less because recreational facilities would be designed and constructed to minimize vegetative disturbance, including tree removal. Anticipated ground-disturbing activities during construction include the following:

 - Surveying
 - Clearing and grubbing
 - Excavating
 - Backfilling
 - Constructing road and parking lot
 - Addressing potable water and power connections where they are planned to be provided
 - Installing amenities
 - Constructing boat ramp
 - Performing site revegetation

 ## Operations

 It is anticipated that the proposed recreation areas would not have onsite staff. A fee collection box and camping information would likely be available at the kiosk near each recreation area's entrance. It is expected that the greatest use at the facilities would occur between Memorial Day (the end of May) and Labor Day (the beginning of September) of each year, but activities such as hiking and fishing may occur year-round. Regular boat inspections will be conducted to help address the potential for invasive mussels in the reservoir.

 ## Maintenance

 Maintenance activities would include collection of overnight and day-use fees at the fee collection boxes, road grading, water system maintenance, trash removal at picnic sites and overnight campsites, vegetation maintenance, restroom/vault toilet cleaning and restocking of paper goods, boat ramp debris removal, lake debris control, lake hazard marking, lake boom and barrier maintenance, signage, fence maintenance, fuels management, and law enforcement. During peak recreation use periods, these activities would likely occur daily, except for road grading, which is expected to occur once per year before the recreation season. During the non-peak seasons, the activities other than road grading would likely occur on a weekly basis.

 ### 2.1.1.8 Field Office Maintenance Yard

 Because of the size of the Project area and the number of facilities, a staffed operation and maintenance complex (i.e., the Field Office Maintenance Yard) would be built onsite (Figure 2-7) to service Project facilities, as needed. Construction of the Project would be phased, and details regarding the Field Office Maintenance Yard would be based on Project needs. Assumptions discussed in the following sections are conservative to provide flexibility. An administration building and parking area would be constructed to meet Project needs.

 ## Construction

 The total construction disturbance area would be approximately 20 acres, with approximately 12 acres of permanent space for the proposed footprints of the administration and maintenance buildings. Buildings may include an administration/operation building, plant maintenance warehouse, service and supply warehouse, utility craft office, vehicle shop, heavy equipment shop, Project operations building, general maintenance headquarters, septic system, aboveground fuel and waste oil storage tanks. Oil/water separators will be provided in maintenance areas as necessary. A temporary asphalt batch plant may be located in this area but also could be located within the construction footprint for other facilities. Construction of the proposed Field Office Maintenance Yard would include the following:

 - Transporting materials to the Project site
 - Clearing and grading the site for construction, including demolition of existing structures
 - Placing construction materials at staging areas
 - Constructing administrative and maintenance buildings
 - Constructing ancillary facilities (e.g., leach-field, water treatment, lighting, concrete pad for refueling island, aboveground fuel tanks, perimeter fencing)
 - Performing site restoration after construction is complete

 ## Operations

 The typical operations scenario for the proposed Field Office Maintenance Yard would be 24 hours per day, 7 days per week. The facility would be fully staffed during normal business hours, when scheduled maintenance of Project facilities would occur. Minimum personnel staffing would occur during off-peak hours to respond to emergency situations. Spare parts for mechanical and electrical equipment would be stored in the warehouse along with lubricants, oils, and greases to maintain equipment. Daily operations could include personnel traveling from the Field Office Maintenance Yard to Project facilities and performing scheduled repairs, inspection, and maintenance of Project equipment, observing Project facilities and operations, and as-needed emergency repairs. Minor equipment repairs and overhauls (e.g., pumps and turbines) may take place onsite, but major repairs and overhauls would be offsite. The SCADA system would be operated and monitored remotely from the operations area of the administration building.

 Daily operations are anticipated to include fueling and washing vehicles and equipment, gathering technical data on water quality and Project facilities conditions, and maintaining and repairing mechanical equipment.

 ## Maintenance

 Periodic maintenance would likely be performed on an as-needed basis including road, building, vegetation, fence maintenance, and debris removal. Procedures will be implemented to reduce impacts caused by lighting (e.g., by using directional lighting and non-reflective materials).

 ### 2.1.2 Holthouse Reservoir Complex

 The Holthouse Reservoir Complex includes the features and facilities that are geographically or functionally associated with the Holthouse Reservoir. This complex would include the Holthouse Reservoir Inundation Area and dam including spillway and stilling basin and spillway bridge; a relocated WAPA transmission line; the approach channel for the Sites Pumping/Generating Plant; existing TehamaColusa Canal connections, the Tehama-Colusa Canal Construction Bypass Pipeline, and installation of two additional pumps at the Red Bluff Pumping Plant (RBPP).

 ### 2.1.2.1 Holthouse Dam and Reservoir

 The existing 3,372-ac-ft Funks Reservoir is located 1 mile downstream of the proposed Golden Gate Dam site. This reservoir was constructed by Reclamation and is part of the Tehama-Colusa Canal system. Funks Reservoir serves as a re-regulating reservoir to stabilize flows in the canal downstream of Funks Reservoir as diverters come online and offline. The existing Funks Reservoir would be expanded to form the proposed Holthouse Reservoir (Figure 2-7) by constructing a new dam (Holthouse Dam) and reservoir east of Funks Reservoir, and breaching the existing Funks Dam so that the new and existing reservoirs would act as one unit, with an increased active storage capacity of approximately 6,500 ac-ft and a surface area of approximately 450 acres. The proposed Holthouse Reservoir would regulate Sites

 Reservoir inflows and outflows through the proposed Sites Pumping/Generating Plant and provide sufficient supplemental storage to allow simultaneous pump back power generation during on-peak periods.

 The 6,500-acre-foot Holthouse Reservoir would allow the Sites Pumping/Generating Plant to perform a pumped-storage function for up to 6 hours per day while simultaneously collecting and storing inflows from the Sacramento River through the Tehama-Colusa Canal, GCID Main Canal, and the proposed Delevan Pipeline. All water would be pumped into Sites Reservoir from Holthouse Reservoir during off-peak power periods on a daily basis.

 The proposed Holthouse Dam would be constructed as a zoned earthen embankment for most of its required length. However, a concrete gravity section would be provided in a rock cut on the left abutment to accommodate the inlet/outlet structure for the TRR and Delevan Pipelines and a flood control spillway. Except for the left abutment, Holthouse Dam would be a zoned embankment dam similar to the existing Funks Dam. The total length of the dam would be approximately 8,500 feet with a height of approximately 48 feet. The crest elevation of the dam would be at elevation 214 feet to match the crest of the existing Funks Dam. Because a deep soil layer could potentially exist along the dam alignment, the central core zone would extend down to suitable foundation in dense soils. A slurry cutoff wall would be constructed to control seepage. A grout curtain, a barrier that would protect the foundation of the dam from seepage as well as minimize seepage to local agricultural lands, would be installed under the dam. A similar such curtain is in place at the existing Funks Reservoir, which has not experienced seepage issues to date. A downstream seepage collection drain system would also be installed to limit the potential for seepage in addition to a series of piezometers to monitor performance, several of which would be downstream of the dam section and foundation to monitor seepage.

 A concrete gravity dam section on the left abutment would incorporate the inlet/outlet facilities for the four 12 -foot-diameter Delevan and TRR pipelines (two pipes each) and the emergency spillway for Holthouse Reservoir. The spillway would be a multi-gate structure similar to the existing spillway at Funks Dam. The spillway capacity would be sized to pass the emergency drawdown flow for Sites Reservoir. A chute section and stilling basin would be provided for the spillway to dissipate energy before release flows enter Funks Creek. A gated low-level outlet pipe through the gravity dam section would also be provided to make environmental releases to Funks Creek and to help drain Holthouse Reservoir for inspection and maintenance.

 Operating levels within Holthouse Reservoir would vary between elevation 206.0 and 190.0 feet, which would provide the required active storage capacity of approximately 6,500 ac-ft. Elevation 206.0 feet corresponds to the 2011 normal operating level in existing Funks Reservoir. There would be approximately 1,000 ac-ft of dead storage in Holthouse Reservoir because of topographic elevations near the new Holthouse Dam. This space could be allocated to sediment accumulation, disposal of excess excavated material from the Project, or disposal of existing sediment in Funks Reservoir.

 Pump-back operations would involve the daily procurement of relatively inexpensive power sources (i.e., renewable energy) to pump water from the proposed Holthouse Reservoir up to the Sites Reservoir during off-peak hours of power usage and release of that pumped water from Sites Reservoir to Holthouse Reservoir during peak hours of power usage. Pump-back power production provides flexible generation that would be used to compensate for rapid changes in electric power demand, such as from increased air conditioning use on hot days, and to compensate for changes in power production from variable renewable power sources, such as wind and solar power projects. Although water delivery and power
 production are given equal weight in the planning goals for the Project, pump-back power operations would be secondary to water delivery operations because of water contracts and environmental restrictions. These operations would be optimized within those restrictions to produce the greatest value to users. Pump-back operations would be most beneficial at the Sites Pumping/Generating Plant. Pump-back operations at the other Project pumping/generating facilities is not justifiable because of the limited storage potential for water and limited power generation capability compared to the Sites Pumping/Generating Plant.

 ### 2.1.2.2 Western Area Power Authority Transmission Line Relocation

 Eight WAPA transmission line towers are located within the footprint of the proposed Holthouse Reservoir. Based upon preliminary contacts with WAPA, the Project alternative would move a segment of the line to the west so that it would cross at a narrow spot in the existing Funks Reservoir at the existing dam.

 ### 2.1.2.3 Sites Pumping/Generating Plant Approach Channel

 The Sites Pumping/Generating Plant would be connected to Holthouse Reservoir by an earthen approach channel approximately 6,300 feet long. The channel is expected to have relatively flat slope toward the Sites Pumping/Generating Plant and would be constructed at an elevation below the operating range of the reservoir. The channel would have a trapezoidal geometry with a bottom width of approximately 200 feet and a top width of 400 to 700 feet. When Holthouse Reservoir is full, the channel would be nearly entirely submerged. This channel would allow water from Holthouse Reservoir to flow by gravity to or from the pumping/generating plant and would allow upstream Funks Creek flows to enter Holthouse Reservoir via an approach channel spillway.

 ### 2.1.2.4 Existing Tehama-Colusa Canal Connections

 The Tehama-Colusa Canal would continue to discharge into the reservoir at its current location on the north side.

 ### 2.1.2.5 Tehama-Colusa Canal Construction Bypass Pipeline

 Installation of a bypass would be required during construction to divert Tehama-Colusa Canal flow before starting modifications to the existing Funks Reservoir. The Tehama-Colusa Canal Bypass Pipeline would be maintained as a permanent feature following modification of Funks Reservoir and construction of Holthouse Reservoir, as requested by Reclamation and the Tehama-Colusa Canal Authority (TCCA). The permanent bypass would provide operational flexibility to pass water to the canal segment below the reservoir without pumping when gravity flow is not possible. The proposed bypass would consist of a 12 -foot-diameter pipeline starting approximately 2,600 feet upstream of the Tehama-Colusa Canal inlet into Funks Reservoir. The bypass would route the required flows around Funks Reservoir during construction of reservoir modifications. The bypass construction would require installation of two cofferdams on the upstream portions of the Tehama-Colusa Canal to isolate the area of embankment cut and pipe installation. The Funks Reservoir would be dewatered, and the existing check structure would be dismantled and reconstructed approximately 3,000 feet upstream. The check structure would consist of two 18 -foot by 15.5 -foot gates, electrical controls, hoists, and concrete supports and reinforcement. The facility would be relocated slightly downstream of the bypass. The bypass would be gated or valvecontrolled to regulate releases downstream, as required by Reclamation and the TCCA.

 ## Construction

 The total construction disturbance area would include the proposed footprints of Holthouse Reservoir, Holthouse Dam, Holthouse Spillway and Stilling Basin, Tehama-Colusa Canal Construction Bypass Pipeline, and Project Buffer adequate for construction staging.

 Construction materials for the earthen dam would come from required excavations for the Sites Pumping/Generating Plant and the channel connecting the enlarged reservoir with the Sites Pumping/Generating Plant. The material in the existing Funks Dam could also be reused to construct the new dam. Approximately 883,500 cubic yards of core material and $2,000,000$ cubic yards of earth and rockfill would be required to construct the earthen dam section. Approximately 41,000 cubic yards of concrete would be required for the concrete gravity dam section on the left abutment.

 Construction materials for the proposed Holthouse Dam would include imported sand and gravel. Processed rock from Project excavations could also be used if it is suitable for that use.

 Because the existing Funks Reservoir is an onstream reservoir, a significant portion of the reservoir's active storage has been displaced because of sediment accumulation from Funks Creek. Although topographic data are available for the reservoir from the original construction drawings, there are no current bathymetric data to support an estimate of the amount of sedimentation that has actually accumulated. However, it is believed that the current active capacity could be as low as $1,500 \mathrm{ac}$-ft. This would mean that approximately 750 ac-ft (1.2 million loose cubic yards) of sediment have accumulated. A bathymetric survey of the existing reservoir would be performed as part of future design phases of the Project to establish the volume and physical characteristics of the sediment so the material can be properly managed during design and construction.

 A portion of the accumulated sediment would be removed and relocated to construct the new Holthouse Reservoir, particularly the low-level flow channel connecting the reservoir with the Sites Pumping/Generating Plant. However, it may not be necessary to remove all sediment below the minimum normal operating level that does not affect the active storage of the reservoir. Once a diversion system is installed to route Funks Creek flows around the Holthouse Reservoir worksite, the sediment to be removed would be dewatered over a period of time by ditching and sumping. Once it is dry enough to be excavated and moved, the sediment would be disposed of in the lower elevations of the new Holthouse Reservoir, in a dead storage area, or in backwater areas around the perimeter of the existing reservoir. The construction schedule for the Project would allow adequate time to dewater and remove the material without affecting the new dam construction (which is outside the limits of sediment accumulation).

 As described above, a grout curtain would be installed under the dam to minimize seepage to local agricultural lands. A downstream seepage collection drain system would also be installed to limit the potential for impacts on adjacent lands in addition to a series of piezometers to monitor potential seepage during the operation of the facility. Seismic instrumentation, piezometers, and settlement points would also be installed for long-term monitoring of dam performance.

 Typical summer releases from Funks Reservoir to the Tehama-Colusa Canal range from 500 to 800 cfs . Total flows of 50 to 200 cfs for off-peak limited agricultural releases would be needed between November and February, and possibly to March, depending on the weather. The proposed Tehama-Colusa Canal Construction Bypass Pipeline is a 12 -foot-diameter pipeline that would route the required flows around Funks Reservoir during construction of reservoir modifications.

 ## Operations

 Funks Reservoir is operated by TCCA pursuant to a contract with Reclamation. Operation of the proposed Holthouse Reservoir would be coordinated with TCCA, but it would be operated by the designated operator of the proposed Sites Reservoir. During fall and winter, inflows from the conveyance system and water for power generation would be stored during on-peak power periods. The stored water plus ongoing off-peak inflows from the conveyance systems would then be pumped to Sites Reservoir during the partial-peak/off-peak power period on a daily basis. During spring and summer, when releases are made from Sites Reservoir, released water would go through the Sites Pumping/Generating Plant to generate power. Holthouse Dam would maintain releases to Funks Creek of up to 10 cfs year-round, based on a recommendation by the California Department of Fish and Wildlife (CDFW). This flow is intended to replace the existing seepage flow on Funks Creek below Funks Dam.

 ## Maintenance

 Currently, periodic maintenance required for Funks Reservoir includes road, vegetation, and fence maintenance, and debris removal on an as-needed basis. The current Funks Reservoir is also drained annually. While annual draining would not be necessary for the larger Holthouse Reservoir, periodic drawdown may be conducted as needed. Periodic maintenance and inspection of Holthouse Reservoir would be coordinated with Tehama-Colusa Canal operators or could be conducted at a centralized maintenance and operation office for the Sites Reservoir.

 ### 2.1.2.6 Additional Pumps at the Red Bluff Pumping Plant

 The RBGPP, which is located in the Secondary Study Area, is adjacent to Reclamation’s Red Bluff Diversion Dam and was completed in 2012. The plant, which was constructed as part of the Fish Passage Improvement Project (Figure 2-10), included a fish screen, a pumping plant at the Mill Site (i.e., the RBPP), canal, siphon, a forebay, switchyard, and a bridge across Red Bank Creek. The fish screen structure was designed to meet National Marine Fisheries Service (NMFS) and CDFW criteria for diversion flows of 80 to 2,500 cfs. The 2,500-cfs RBPP includes 11 vertical axial-flow pumps. Of the 11 pumps, 9 pumps (seven 250 -cfs and two 125 -cfs pumps) were installed to provide a total capacity of 2,000 cfs.

 The Project would require a pumping capacity that exceeds the current capacity of the RBPP. The pumping plant includes two additional pump bays designed for the future installation of two 250-cfs vertical axial-flow pumps. Installation of two additional 250 -cfs vertical axial-flow pumps into an existing concrete pump bay at the pumping plant would be required (Figure 2-10).

 The Project also includes the operation and maintenance of the proposed additional pumps. Only one pump would be used for operations, the second would provide redundancy if needed. The proposed additional pumps at the pumping plant would allow for a total diversion up to $2,160 \mathrm{cfs}$ in winter and spring, including up to 2,100 cfs for diversion to the proposed Sites Reservoir, and an additional 50 to 60 cfs for maintaining existing winter and spring flow operations of the Tehama-Colusa Canal.

 ## Construction

 Because the RBPP was designed for the future installation of additional pumps, construction activities would be minor and would include the following: ${ }^{6}$

 - Removing the existing blind flange on the afterbay side of the pumping plant and replacing it with an 84-inch butterfly valve. A new 84-inch-diameter flanged steel pipe spool (approximately 3 feet long) would be connected to the new butterfly valve. Permanent supports would be required beneath the butterfly valve and flap gate.
 - Installing the pump during the non-irrigation season to minimize interruptions to the irrigation delivery system. A mobile crane would be required to install the piping and appurtenances.
 - Installing pumping plant unit bay stop logs, using a mobile crane if afterbay dewatering is necessary.
 - Inspecting the pump bay and removing all sediment. Access to the bottom floor of the pumping plant would be provided at each bay via 4.5 -foot by 7 -foot access hatches and ladders.
 - Removing roof hatches over the pump unit bay by using a mobile crane.
 - Installing the pump in accordance with the pump manufacturer's written installation instructions, including constructing the pump pedestal and connecting the pump discharge nozzle to the discharge pipe via a new flexible coupling.
 - Installing motor control centers, electrical equipment, electrical conductors, and SCADA system to integrate the pumps into plant operation.

 ## Operations

 The RBPP includes a control system to provide remote manual and remote auto control of pumps and associated appurtenances. The pumping plant and associated gravity conveyance system are designed to deliver water to the existing 17-acre settling basin located west of the Red Bluff Diversion Dam. Once in the settling basin, water would flow to Check No. 1 on the Tehama-Colusa Canal and the Corning Pumping Plant.

 ## Maintenance

 It is anticipated that the following preventive maintenance would be performed regularly for the vertical axial-flow pumps and appurtenances installed at the RBPP as part of the Project:

 - Washing down or pressure washing, as necessary
 - Checking for rust and corrosion, annually; maintaining all coatings
 - Visually inspecting for damage or wear, monthly
 - Assessing fluids and lubrication; address as necessary
 - Inspecting pumping plant trash racks daily and removing debris as necessary
 - Visually inspecting butterfly valves and flap gates, monthly

 The additional pumps would neither increase the frequency of maintenance activities required at the RBPP nor require additional personnel to perform pump maintenance. However, the volume and timing of non-TCCA water diversions, through any of the pumps, could affect the sediment load distributed to

 the TCCA system (i.e., the pumping plant forebay and settling basin). Increased sedimentation associated with non-TCCA water diversions may require more frequent dredging within the pumping plant forebay and settling basin.

 ### 2.1.3 Terminal Regulating Reservoir Complex

 The TRR Complex includes the Project features and facilities that are geographically or functionally associated with the TRR. This complex would include the TRR Inundation Area, the dam that would form the reservoir, the TRR Pumping/Generating Plant and electrical switchyard, the GCID Main Canal Connection to TRR, the TRR Pipeline, TRR Pipeline Road, and the GCID Main Canal facilities modifications.

 ### 2.1.3.1 Terminal Regulating Reservoir

 Water conveyed down the GCID Main Canal would be directed into the proposed TRR (Figure 2-11). A new pump station (the proposed TRR Pumping/Generating Plant) would then convey the water from the TRR via the proposed TRR Pipeline to the proposed Holthouse Reservoir. The TRR would be required to provide operational storage for the TRR Pumping/Generating Plant to balance normal and emergency flow variations between the upstream GCID Main Canal Pump Station, the 40 miles of connecting canal, and the TRR Pumping/Generating Plant.

 The TRR would be located approximately 3 miles northeast of Holthouse Reservoir, adjacent to the GCID Main Canal. It would be constructed by a combination of excavation and embankment. The TRR would be composed of an earth embankment dam, concrete emergency overflow weir, an outfall standpipe, and a drain/spillway to Funks Creek to allow the reservoir to be drained for operation and maintenance and for emergency purposes. A 15-foot-wide gravel road (the proposed TRR Pipeline Road) would be constructed on top of the embankment to provide access to the TRR for operation and maintenance.

 The embankment materials would be impervious earthen material compacted to DSOD specifications. The facility would be lined with plastic to limit the potential for seepage to adjacent agricultural lands. The TRR would be approximately 15 feet deep, with a maximum water depth of 12 feet, leaving 3 feet of freeboard. The maximum excavation depth of the TRR would be approximately 9 feet, and the maximum embankment height would be approximately 6 feet above existing grade. The total storage volume in the TRR would be divided into three operational components: (1) 2 feet of dead storage beneath the lower operating limit of the pump station; (2) 5 feet of normal operational storage; and (3) 5 feet of emergency storage. The maximum water surface elevation in the TRR could not exceed the water surface elevation in the GCID Main Canal because it is a gravity flow system. The plan area of the TRR would be approximately 150 acres (including the pond and embankments), and the reservoir would have a maximum storage capacity of 1,200 ac-ft. The TRR capacity is designed to provide normal operating and emergency storage as well as a forebay for the proposed TRR Pumping/Generating Plant.

 Major associated features would include a GCID Main Canal transition bay, a connecting channel from the GCID Main Canal to the TRR, and a flow control inlet structure.

 ## Construction

 The total construction disturbance area would be approximately 150 acres. The proposed TRR site is currently in agricultural production (rice crops, annual row crops, and orchards). The total construction disturbance area would include the footprint of the facilities, the materials and equipment staging area, the area needed to construct the facilities, and access roads. This staging area could be the same as or near the

 GCID Main Canal Connection staging area because the construction sites are adjacent to each other. In addition, the portion of the proposed Delevan Pipeline construction disturbance area adjacent to the TRR would also be used for the TRR staging area. As previously described, the TRR would be lined with plastic to limit the potential for seepage to adjacent agricultural lands.

 Anticipated major construction activities include transportation of materials to the proposed worksite, clearing and grading the construction work area, staging of construction materials, dewatering, constructing fencing around the perimeter, constructing lighting, and excavation and embankment construction.

 ## Operations

 In coordination with GCID Main Canal operations, water would be diverted to the proposed TRR by gravity. Flow into the TRR would be controlled by the TRR inlet control gates. An integrated SCADA and communication system would coordinate operation between the Main Pump Station, GCID Main Canal, and the proposed TRR, TRR Pumping/Generating Plant, and Holthouse Reservoir. Flow to Holthouse Reservoir and the water surface in the TRR would be regulated by the TRR Pumping/Generating Plant. TRR pump operators would need continuous communication with GCID Main Canal and Pump Station operators to coordinate water allocations for irrigation demands and Sites Reservoir deliveries. TRR operation would likely be controlled remotely and would not require daily onsite personnel. The reservoir would be designed to allow emergency releases during operation first to the GCID Main Canal via the GCID Main Canal Connection to the TRR (when hydrologically feasible), and then to Funks Creek via the proposed drain/spillway. Release flows would be controlled by an energy dissipater and small concrete structure at the terminal end of the pipeline.

 ## Maintenance

 Typical maintenance of the proposed TRR would include dredging to remove sediment when it is drained, clearing vegetation from the slopes of the embankments, and maintaining the gravel service road atop the embankment. Draining the TRR for maintenance would be accomplished by a standpipe and drain structure at the invert of the reservoir. Drained water would be conveyed to Funks Creek via the proposed TRR to Funks Creek Pipeline. Draining/dredging of the TRR would likely be required every 7 to 10 years, depending on variable sediment transport conditions in the Sacramento River and the surrounding areas. Sediment removed during the dredging activities would be placed on the surrounding levees' embankments.

 Procedures will be incorporated to reduce impacts from lighting (e.g., directional lighting and nonreflective materials).

 ### 2.1.3.2 Terminal Regulating Reservoir Pumping/Generating Plant and Electrical Switchyard

 The purpose of the proposed TRR Pumping/Generating Plant would be to pump water from the proposed TRR to the proposed TRR Pipeline, which would convey water to the proposed Holthouse Reservoir. Return flows from the proposed Holthouse Reservoir to the proposed TRR would flow through the TRR Pumping/Generating Plant to generate power.

 The TRR Pumping/Generating Plant would pump $1,800 \mathrm{cfs}$ of water from the TRR to Holthouse Reservoir. The TRR Pumping/Generating Plant would generate power from flows released through it, with a maximum return flow of 900 cfs . The return flow would provide up to 800 cfs for the GCID Main Canal west of Funks Creek (the canal capacity) plus an additional 100 cfs that would be released from

 TRR directly to other local irrigation ditches or to Funks Creek to meet water supply demands. The minimum water elevation in Holthouse Reservoir for operation of the TRR Pumping/Generating Plant would be 112 feet, and the maximum water elevation for operation would be 121.5 feet.

 The TRR Pumping/Generating Plant would be located adjacent to the north side of the TRR
 (Figure 2-11), approximately 3 miles northeast of Holthouse Reservoir. The TRR Pipeline would begin on the north side of the TRR. The TRR Pumping/Generating Plant would include two $620-\mathrm{cfs}$ and two 325-cfs Francis Vane pumps for pumping and one 750 -cfs Kaplan turbine for generating during release flows.

 Structures associated with the TRR Pumping/Generating Plant would include the following features:

 - Mechanical features:
 - 84-inch online spherical valve on each discharge line
 - Air chambers and butterfly valves with hydraulic power units
 - Compressors
 - Generators
 - Gantry crane - 100 tons
 - Service air and water system
 - Acoustical flowmeter on each discharge line
 - Electrical features:
 - Switchyard transformers
 - Control system
 - Switchgears
 - Grounding grids
 - Control cabinets
 - Refilling of pump units

 The discharge lines may periodically need to be dewatered for inspection and maintenance. These lines would need to be filled at a slow rate to allow the release of air through air and vacuum valves. To accomplish this, one or two 100-cfs pump units would be installed or filling bypass pipelines can be provided around isolation valves.

 The proposed TRR Electrical Switchyard would be located within the footprint of the TRR Pumping/Generating Plant (Figure 2-11) and would be approximately 100 feet long by 50 feet wide.

 ## Construction

 The total construction disturbance area would be approximately 1 acre and would include the footprint of the facilities, the materials and equipment staging area, the area needed to construct the facilities, and access roads. The construction disturbance area would fall within the construction disturbance area of the proposed TRR Pipeline (discussed below).

 Excavation would be conducted using temporary slopes of 1.5:1 for the 25 -foot-deep trench along the pipelines and a temporary slope of 2:1 for the 40-foot-deep foundation of the pump stations. Tied back sheet pile walls can also be used for the pump station excavation. The pump station foundations would be excavated in in situ materials, and no major improvements to the foundations would be required. During construction, the topsoil material would be excavated, stockpiled separately, and replaced to support native grass and plant growth.

 The total construction disturbance area for the switchyard would include the footprint of the proposed switchyard, the materials and equipment staging area, electrical transformer area, and temporary access roads. The construction disturbance area for the TRR Electrical Switchyard would be located within the Delevan Pipeline construction disturbance area.

 Anticipated major construction activities include clearing and grading the construction workspace, placing necessary construction materials at staging areas, and preparing the switchyard pad. Anticipated ground-disturbing activities during construction include the following:

 - Transporting materials to the Project site
 - Clearing and grading the construction workspace
 - Placing construction materials at staging areas
 - Dewatering
 - Excavating the forebay (approach channel) and pumping plant
 - Pile driving if required
 - Constructing the forebay, pump house, and pump bay
 - Installing the pond liner
 - Performing site restoration after construction is complete

 ## Operations

 An integrated SCADA and communication system would be used for the proposed TRR Pumping/Generating Plant. Flows to the proposed Holthouse Reservoir and the water surface in the proposed TRR would be regulated by the TRR Pumping/Generating Plant. TRR pump operators would need continuous communication with GCID Main Canal and Pump Station operators to coordinate water allocation for irrigation delivery and for proposed Sites Reservoir filling. The proposed switchyard would be operated remotely.

 ## Maintenance

 Daily maintenance and monitoring would likely be required. Regular maintenance and inspections would be required for each pump unit and the related equipment, such as gates, valves, and electrical equipment, with possible additional inspections and maintenance needed after earthquakes, storms, or floods.

 The proposed switchyard and associated overhead power lines would require maintenance once or twice a year. Maintenance activities may include annual washing and cleaning of insulating equipment, preventive maintenance, scans of the switchyard under full load, and routinely scheduled testing to meet WECC requirements. Regular maintenance activities would include landscape maintenance and inspections for damage by animals.

 ### 2.1.3.3 GCID Main Canal Connection to Terminal Regulating Reservoir

 The purpose of the proposed connection from the GCID Main Canal to the TRR would be to allow water from the canal to enter the TRR.

 The connection from the GCID Main Canal to the TRR would be located in the east bank of the canal north of Funks Creek (Figure 2-11). An inlet control structure with multiple radial control gates would be provided to regulate flows into and out of TRR. On the main canal, the existing Funks Check at Funks Creek can be refurbished to help balance and regulate flows in and out of the TRR, or a new check structure could be constructed based on future condition assessments. The benefit to keeping the existing

 Funks Check operational is that it would minimize impacts to GCID Canal operations during TRR construction.

 ## Construction

 The total construction disturbance area would be approximately 1 acre and would include the footprint of the facilities, the materials and equipment staging area, the area needed to construct the facilities, and access roads. This construction disturbance area would be within the larger construction disturbance area for the proposed TRR. Anticipated ground-disturbing activities during construction include the following:

 - Transporting materials to the Project site
 - Clearing and grading the construction workspace
 - Placing construction materials at staging areas
 - Dewatering and building a temporary bypass channel
 - Excavating canal energy dissipation bay
 - Performing reservoir inlet excavation and embankment construction
 - Constructing check structure

 It is anticipated that the proposed reservoir inlet from the GCID Main Canal to the proposed TRR would be constructed by first building a temporary bypass channel to the west of the existing canal alignment. The temporary bypass channel would be approximately 1,000 feet long and would connect into the GCID Main Canal upstream and downstream of the construction zone to supply water to the remaining reach of the canal downstream of the TRR area. The temporary bypass channel would be constructed using a combination of excavation, earth embankment, and sheetpile walls to isolate the construction site from the diversion canal. Following completion of the new check structure, the temporary bypass channel would be filled in, earth embankments and sheetpile walls would be removed, and the area would be restored to preconstruction conditions.

 ## Operations

 Gate operation of the new GCID Main Canal check structure would normally be controlled automatically, with an option for local or remote manual control. Gate operation would be established using either upstream or downstream water-level controls, depending on the overall operating regime for the future canal system.

 Flow into the reservoir would be controlled by the proposed TRR inlet control gates. An integrated SCADA and communication system would be required to coordinate operations between the GCID Pump Station, GCID Main Canal, and the proposed TRR, TRR Pumping/Generating Plant, and Holthouse Reservoir. SCADA operation and monitoring would be conducted remotely and would not require daily onsite personnel. Instead, daily operation and monitoring would be managed from a central location.

 ## Maintenance

 Maintenance activities would include: (1) removing debris that could collect upstream of check structures, (2) maintaining gate operators to provide adequate control of gates, (3) periodically repairing and repainting the connection, and (4) dredging the dissipation bay and inlet channel for sediment concurrently with the proposed TRR dredging.

 ### 2.1.3.4 Terminal Regulating Reservoir Pipeline and Terminal Regulating Reservoir Pipeline Road

 The proposed 3.5-mile-long TRR Pipeline would convey water from the proposed TRR to the proposed Holthouse Reservoir (Figure 2-11). The TRR Pipeline would be bi-directional, allowing water to be pumped from the TRR to Holthouse Reservoir for storage and allowing water to flow by gravity from Holthouse Reservoir for release to the TRR/GCID Main Canal and other canals. Water released from Holthouse Reservoir would flow through the turbine at the proposed TRR Pumping/Generating Plant at the end of the TRR Pipeline to generate electricity.

 The proposed TRR Pipeline would have a capacity of 1,800 cfs to convey water that is pumped from the TRR to Holthouse Reservoir. The capacity of the TRR Pipeline to convey water by gravity flow from Holthouse Reservoir to the TRR would also be 1,800 cfs, but the demand would only be approximately 900 cfs based on the GCID Canal capacity west of the TRR and other local irrigation ditch demands to be met by the TRR. The TRR Pipeline would consist of two 12 -foot-diameter reinforced concrete pipes to convey the pumping flow. It would be buried a minimum of 10 feet (to top of pipe) below the ground surface. Facilities associated with the TRR Pipeline would include blowoff and air valve structures.

 The proposed alignment of the TRR Pipeline would cross the existing GCID Main Canal and a primary PG\&E natural gas transmission line. At these locations, the bore-and jack-construction method would be used. Bore-and-jack construction would entail excavating a large pit on each side of the existing infrastructure (highway, railroad, or canal) and then tunneling horizontally under the structure. Because of the high water table in the area, this construction method would require that the area be dewatered. All additional work required for bore-and-jack construction would be conducted within the construction disturbance area and would not require the disturbance of additional land.

 The TRR Pipeline would also cross the easement of an existing PG\&E 230 kV line. It is expected that the pipeline can be trenched across the utility easement and that boring and jacking will not be required. No permanent aboveground structures associated with the pipeline would be constructed, other than a 16 -foot-wide, 2.1-mile-long gravel maintenance road (the proposed TRR Pipeline Road), from the GCID Main Canal to the proposed Holthouse Reservoir Spillway and Stilling Basin.

 Crossing of other existing facilities such as gas lines, water lines, sewer lines, and communications lines would be accomplished using the bore-and-jack or tunneling method or existing facilities would be relocated as determined most appropriate. Disruptions to these utilities would be minimized to the extent possible, and the ground surface would be restored to preconstruction conditions after installation of the TRR Pipeline. Construction activities for the proposed TRR Pipeline would occur within the identified construction disturbance area and would require only slightly more excavation than is required for the pipeline.

 ## Construction

 The construction disturbance area for the proposed TRR Pipeline would be approximately 335 feet wide from the TRR to the proposed Holthouse Reservoir (3.5 miles). The Delevan and TRR Pipelines would be in a common trench excavation in the disturbance area. The total construction disturbance area, which would also include a temporary concrete batch plant, would be within the construction disturbance area for the proposed Delevan Pipeline (discussed below). Anticipated major construction activities include the following:

 - Clearing and grading the construction workspace
 - Stockpiling topsoil
 - Placing necessary construction materials at staging areas
 - Transporting materials to the Project site
 - Trenching/excavation of pipeline route
 - Dewatering
 - Performing bedding preparation
 - Performing onsite fabrication of pipe
 - Installing pipe and valves
 - Addressing crossings of roads and utilities
 - Backfilling and compacting trench
 - Replacing topsoil
 - Revegetating and restoring pipeline route
 - Constructing a gravel maintenance road

 ## Operations

 Operation of the proposed TRR Pipeline would not require daily workers at the site.

 ## Maintenance

 Periodic inspection and maintenance of the proposed TRR Pipeline facilities would likely occur once per year, with possible additional inspections and maintenance needed after storm or flood events. Annual inspections would not necessarily include dewatering of the pipelines. Dewatering for inspection may occur on a 5-year cycle, or when a pipeline problem is expected. Permanent rights-of-way for the land overlying the pipeline would be maintained to provide future access. The proposed gravel maintenance road would be graded, as needed.

 ### 2.1.3.5 GCID Main Canal Facilities Modifications

 The GCID Main Canal delivers water from the Sacramento River to water users along its route from its diversion point northwest of Hamilton City to southeast of the city of Williams. The canal is an unlined earthen channel, with capacity varying from 3,000 cfs at the upstream end to 300 cfs at the southern terminus.

 Water is pumped by the Hamilton City Main Pump Station into the GCID Main Canal. The existing canal facilities include the intake and bypass channels, fish screens, main pump station and forebay, headgates, and the gradient facility. These facilities are located approximately 5 miles northwest of Hamilton City. Project improvements in this area include a new headgate structure and canal lining. A railroad siphon replacement is also proposed near Willows.

 For the Project, the existing headgate structure would be left in place and continue to serve as a bridge between County Road 203 and County Road 205. The existing headgate structure would continue to operate during construction of the new headgate structure, and diversion activities would continue throughout construction. The existing headgate would not be adequate for proposed winter operation during high river flows, because of the large head-drop (decrease of water elevation) across the structure during high river levels. A new headgate structure would be constructed upstream of the existing structure. The new headgate structure would include three automated gates (two vertical roller gates and one radial gate).

 The water level and flow control functions would involve operating conditions that would result in water surface drops across the headgate of between 3 and 15 feet, which would require a set of energy dissipater blocks immediately below the gates to slow down and stabilize the water discharging under each gate.

 The canal reach immediately downstream of the new headgate structure would be lined with concrete for approximately 200 feet to prevent erosion due to the turbulent flow conditions.

 The Union Pacific Railroad siphon at Mile 26.6 does not meet design and operation criteria for the Project and would need to be replaced. The existing railroad siphon structure was built in the early 1900s and includes two 6 -foot-diameter barrels and five 7.25 -foot by 6 -foot barrels. At the existing maximum flows of approximately $2,000 \mathrm{cfs}$, the head loss across the railroad siphon due to high flow velocities and poor entrance and exit transitions reduces upstream canal freeboard to marginal conditions. Because of the structure's age, hydraulic capacity restrictions, and use as a major transportation link, it should be replaced. The new structure would consist of three prefabricated box culverts. Typical future maximum velocity and head losses would be approximately 4 fps and 0.2 foot, respectively.

 The proposed replacement of the railroad siphon would require coordination and planning with railroad operators. Construction restrictions may exist regarding minimizing interference with regular railroad operations. To the extent possible, replacement of the railroad siphon would take place during periods of lowest train traffic, and railroad shutdown time would be minimized.

 ## Construction

 The total construction disturbance area would consist of the existing canal prism, existing operation and maintenance roads, and an additional 50 feet on both sides. The total construction disturbance area would include the footprint of the facilities (new headgate structure, canal lining, and replacement of railroad siphon), the materials and equipment staging area, the area needed to construct the facilities, and access roads. All the construction activities for the new facilities would occur within the existing GCID right-of-way.

 Water delivery to the GCID service area would be maintained during the primary irrigation season (early April through mid-October). The GCID Main Canal is typically out of service each year between early January and late February for maintenance. Construction activities would be scheduled during this maintenance period whenever possible. If construction activities are required outside of the maintenance period, a temporary bypass channel would be built around the construction site to allow diversion water to flow past and maintain regular canal operation. The temporary bypass channel would be constructed within the existing GCID right-of-way by using a combination of excavation, earth embankment, and sheetpile walls to isolate the construction site from the canal. After completion of construction, the temporary bypass channel would be filled in, earth embankments and sheetpile walls would be removed, and the area would be restored to preconstruction conditions.

 ## Operations

 The intake and fish screen facility would operate year-round and would be similar to existing operations. Use of the canal for conveyance to the Sites Reservoir would require increased automation between the GCID facilities and other Project conveyance systems. The available capacity for winter operation (October through March) of Project conveyance would range from a minimum of approximately $1,270 \mathrm{cfs}$ during an average November to a maximum of approximately 1,750 cfs during an average March. There is currently little to no available capacity from April through September. To accommodate the Project, flows need to be monitored and controlled consistently. SCADA operations and monitoring could be
 conducted remotely and would not require daily onsite personnel. Instead, daily operation and monitoring would be managed from a central location and would not require additional staff beyond existing personnel.

 ## Maintenance

 Required maintenance activities would be similar to current maintenance. Periodic inspection and maintenance of mechanical systems, such as the screen cleaning system, would be required. Water levels would continue to be monitored automatically. Additional sediment and debris removal activities may also be required because of increased diversions during high river water levels.

 Debris that enters the intake channel can block flows in the channel, get entangled at the face of the fish screen, block the water control structure, or cause other disruptions to proper operating conditions. Typically, debris builds up during winter flood flows and is removed at the beginning of the irrigation season in late March to early April. Because of winter diversions, a larger debris load is expected at the intake channel, screen structure, and bypass channel. It is expected that debris removal would be required during the winter to maintain proper operating conditions. It may be necessary to retrofit the mouth of the intake channel with a floating log boom to deflect larger debris and increase protection to the fish screens.

 The upper one-third of the intake channel is typically dredged once every 3 years, and the entire channel is dredged once every 10 years. The volume of the dredged materials varies from approximately 30,000 to 130,000 cubic yards. The future volume of sediment in the intake channel is expected to increase with increased Project-related winter operation, and the following assumptions were made regarding future dredging operations:

 - A larger dredge with increased capacity and working depth than is currently used would be required. Supporting equipment, such as a high-capacity crane equipped with a grappling hook and clamshell, would be required to assist in debris removal.
 - Dredging operation would occur year-round.

 Dredged materials would continue to be placed on the 11-acre offsite disposal location southwest of the pump station, at sites on Montgomery Island, and along the canal banks. The new headgate structure would require annual inspection and maintenance including painting and motor control unit inspections, similar to typical check structures along the canal. Expected periodic maintenance activities for the canal that would require onsite personnel include the following:

 - Maintaining canal banks to repair sloughing and erosion damage
 - Filling in animal burrow holes
 - Removing vegetation
 - Removing debris from upstream of the check structures
 - Maintaining gate operators
 - Repairing and repainting gates

 ### 2.1.4 Delevan Pipeline Complex

 The Delevan Pipeline Complex includes the Project features and facilities that are geographically or functionally associated with the Delevan Pipeline. This complex would include the Delevan Pipeline and the Delevan Pipeline Intake/Discharge Facilities (flat plate fish screen structure, forebay, pumping/generating plant and switchyard, maintenance and electrical buildings, and other electrical and mechanical features).

 ### 2.1.4.1 Delevan Pipeline Intake/Discharge Facilities

 The proposed Delevan Pipeline Intake/Discharge Facilities were designed to divert water from the Sacramento River to the proposed Holthouse Reservoir for storage in the Sites Reservoir (Figure 2-12). The facilities would be used to release water from Sites Reservoir to the Sacramento River for downstream uses and to generate electricity.

 The proposed Delevan Pipeline Intake/Discharge Facilities would be located on the Sacramento River at River Mile 158.5 in Colusa County. The river intake/outlet would be located immediately downstream of the existing Maxwell Irrigation District intake and across the river from Moulton Weir, approximately 10 miles northeast of the town of Maxwell. The total footprint of the site would be approximately 20 acres including the pumping/generating plant buildings, fish screen, and forebay.

 Water that passes through the fish screen would be pumped up approximately 150 feet vertically through two 12 -foot-diameter concrete pipes to Holthouse Reservoir. Water would also be able to flow by gravity back from Holthouse Reservoir to the Sacramento River. Reverse-flow water would flow through the turbines to generate electricity. The water would then flow through the forebay and fish screen at a velocity of 1 fps into the Sacramento River. The 1 -fps exit velocity is based on NMFS criteria for adult salmon diffusers to allow the water to exit the screen without extending a false attraction flow to the salmon.

 The proposed pumping capacity of the Delevan Pipeline Intake/Discharge Facilities would be 2,000 cfs when diverting water from the Sacramento River and $1,500 \mathrm{cfs}$ when releasing water to the Sacramento River (and generating electricity). Total lift capacity of the facility would be approximately 150 feet.

 The facilities at this site would include the following:

 - Flat plate fish screen structure - The fish screen structure would prevent fish in the Sacramento River from entering the pump station. The fish screen would also function as an outlet structure, dissipating the energy of the water being released to the river.

 The fish screen structure would consist of thirty-two 13 -foot-tall by 15 -foot-wide flat plate screens. The structure would be approximately 560 feet long (the distance created by the 32 screens bays, the additional two blowout bays, and room for the screen cleaning equipment). Panels would be positioned with minimum protrusion into the river channel parallel to river flow. This facility would be designed in compliance with NMFS and CDFW fish screen criteria.

 - Forebay - After water passes through the fish screen, it would flow into the forebay for the pump station. The forebay would allow fine sediment that is carried in the water to settle out. The forebay would store water before it is pumped out by the pumping/generating plant. The forebay would be lined with a generally impervious layer of material to limit the potential for seepage to adjacent agricultural lands.

 A sediment spoil area would be provided on the northeastern end of the forebay for sediment removal. To remove sediment, a long-arm excavator would be required in combination with a suction dredge or a clamshell. The suction dredge or clamshell would be used to remove the additional sediment in the area where the excavator could not reach.

 - Pumping/generating plant and electrical switchyard - The Delevan Pipeline Intake/Discharge Facilities would pump water from the afterbay to Holthouse Reservoir and would release water from

 Holthouse Reservoir. The Delevan Pipeline Intake/Discharge Facilities building would be approximately 250 feet long by 80 feet wide and would have multiple stories to accommodate mechanical and electrical equipment. The pumping/generating plant would consist of four $500-\mathrm{cfs}$ pumping/generating units (plus one standby unit) to provide a total pumping capacity of 2,000 cfs. Water would be pumped by the pumping/generating plant 150 feet up through the 13.5 -mile-long Delevan Pipeline. When water is released from Sites Reservoir and through Holthouse Reservoir, the intake facilities would function in reverse, capturing the energy and generating electricity. Release flows of up to 1,500 cfs could be passed through two 750 cfs turbines in the pumping/generating plant.

 An electrical switchyard would be required adjacent to the pumping/generating plant that would step down the electrical voltage from high-voltage lines to a lower voltage that can be used by the pumps and other machinery in the plant. A four-breaker ring bus would be required at the switchyard. The ring bus would have multiple metallic poles with heights varying between 15 and 60 feet. The switchyard would be surrounded by a 6 - to 8 -foot-high chain-link fence with barbed wire or concertina wire along the top.

 - Mechanical and electrical buildings - Mechanical and electrical buildings would be constructed on the site to house equipment needed for the operation of the pumping/generating plant. The mechanical and electrical buildings would each be approximately 5,000 square feet. Facilities would be sited and designed such that electrical equipment would be sealed or installed at an elevation above the 100 -year flood stage plus 2 feet of freeboard (elevation 82 feet).
 - Other mechanical and electrical features - Miscellaneous features may include the following:
 - Spherical valves
 - Air chambers and butterfly valves
 - Compressors, generators, and cranes
 - Service air and water systems
 - Acoustical flowmeters
 - Governors and other control devices
 - Transformers
 - Switchgears
 - Grounding grids
 - Controls cabinets

 The proposed Delevan Pipeline Intake/Discharge Facilities site would be protected from flood conditions by installing all mechanical and electrical equipment above the 100-year flood elevation (82 feet above $\mathrm{msl})$. The forebay would be submerged during extreme flood events and would be designed to withstand these conditions. The site naturally slopes upward away from the river, and a flood protection levee with a height of 90 feet above msl exists along the river approximately 275 feet west of the river. A wide berm or ring levee would be constructed behind the flood protection levee to provide additional protection for the equipment and facilities. The berm would encircle the afterbay; the Delevan Pipeline Intake/Discharge Facilities and the mechanical and electrical buildings would be constructed on top of the berm.

 ## Construction

 The total construction disturbance area would be approximately 20 acres. An additional disturbance area around the construction site would be required for staging of materials, equipment, and construction offices. This staging area would be within the construction disturbance area for the proposed Delevan

 Pipeline; the area is estimated to be 1,700 feet by 1,000 feet (a total of 40 acres) and would be located north of and adjacent to the facility site.

 To isolate the proposed construction area from the Sacramento River, a cellular sheetpile coffer dam would be installed in the river at the location of the fish screen. Approximately 1,200 feet of sheet piles would be required to build the cofferdam. From the river bank at the upstream and downstream ends of the fish screen structure, the cofferdam would extend approximately 40 feet into the water from the river bank. Installation of the coffer dam would involve driving interlocking metal sheet piles into the ground one section after another until the entire length of the intake structure is isolated from the river. The height of the coffer dam would match the height of the surrounding levees. The fish screen structure would be constructed within the coffer dam. This will include driving foundation piles, placing a bottom seal mat, dewatering the cofferdam, and constructing the fish screen structure. These features would be removed after the fish screen structure is complete. The area behind the fish screen structure would be dewatered prior to construction of the pumping plant.

 Anticipated major construction activities include the following:

 - Transporting materials to the construction site
 - Clearing and grading the construction workspace
 - Placing necessary construction materials at staging areas
 - Constructing a coffer dam within the Sacramento River
 - Driving foundation piles for fish screen structure within the coffer dam
 - Placing seal mat within the cofferdam
 - Constructing the fish screen structure
 - Dewatering the work area within the river
 - Excavating the forebay and pumping plant site
 - Constructing electrical switchyard
 - Constructing the berm/ring levee
 - Constructing the pump house and pump bays
 - Constructing the forebay structure
 - Constructing the fish screens
 - Removing the coffer dam
 - Filling and regrading where needed at site
 - Restoring disturbed areas following the completion of construction

 As previously discussed, the forebay would be constructed with a generally impermeable material to minimize or eliminate seepage to adjacent properties. Construction of the proposed Delevan Pipeline Intake/Discharge Facilities would require relocation of sections of the Maxwell Irrigation District and Tuttle Ranch pipelines located within the construction disturbance area. To minimize impacts on the operations of the Maxwell Irrigation District facilities during construction, either a temporary bypass pipeline would be constructed to provide water to Maxwell Irrigation District users, or arrangements would be made for supplemental water to be conveyed into the Colusa Basin Drain for the Maxwell Irrigation District to deliver to its users. A temporary bypass pipeline would be constructed to provide water to Tuttle Ranch to irrigate its orchards.

 ## Operations

 Proposed diversion operations would be such that a minimum of $4,000 \mathrm{cfs}$ would remain in the river channel immediately downstream of the diversion point. The assumed associated minimum water surface
 elevation at this design condition is 51 feet. The invert of the screen structure would be set at 38 feet, 4 feet above the invert of the river, to reduce sediment deposition in front of the screen panels.

 Operation intake and discharge modes are summarized as follows:

 - Intake mode - Intake mode refers to the proposed operation of pumping Sacramento River water to the Sites Reservoir when suitable flows and velocities occur in accordance with pre-established diversion criteria (see Section 4.1 Operational Scenario). Water would move through the proposed fish screen and into the forebay, through the proposed Delevan Pipeline to the proposed Holthouse Reservoir, and then to Sites Reservoir. During this operation, the screen cleaning mechanism would be working continuously to prevent buildup on the screen panels, the sediment removal system would be operating, the pumps would be operating, and the SCADA system would be monitoring water levels and pressures across the screen.
 - Discharge mode - Discharge mode refers to the operation when water from Sites Reservoir would be released through the pumping plant into Holthouse Reservoir to generate electricity, into the Delevan Pipeline to discharge to the forebay, and then released through the fish screen into the Sacramento River.

 As is customary for any large-scale diversion on a river, if a pressure differential greater than 1.5 feet across the fish screen occurs, an "emergency mode" would be activated. The pumps would stop operating, and the sluice gates would close to allow the forebay to fill up to match the water surface of the Sacramento River. If the pressure differential increases to above 3 feet, the two blowout panels would trigger and release to allow an inflow of river water so that the water levels equalize.

 A SCADA system would control all operational modes for the diversion without the need for onsite staffing. The system would be located onsite and would broadcast status information to a manned remote location. A sediment removal system would be installed within the fish screen bays, moving sediment back into the river channel or into the forebay. Sediment in the forebay would be mechanically removed annually to maintain optimal operational hydraulics.

 ## Maintenance

 The proposed Delevan Pipeline Intake/Discharge Facilities would likely be staffed daily to maintain, operate, and monitor the facility. It is anticipated that employees would be onsite during diversions (predominantly in winter) and releases (predominantly in summer). Activities would include:

 - Periodic checking and adjustment of flow distribution through fish screens
 - Inspection and periodic maintenance of fish screen cleaning system, debris removal as needed
 - Periodic removal of accumulated sediment
 - Inspection and periodic maintenance (including lubrication) of operating equipment
 - Periodic testing of standby equipment

 ### 2.1.4.2 Delevan Pipeline

 The proposed Delevan Pipeline would convey water approximately 13.5 miles from the Sacramento River to the proposed Holthouse Reservoir to fill the Sites Reservoir and to release water from Holthouse Reservoir to the Sacramento River (Figure 2-1). The Delevan Pipeline would parallel the proposed TRR Pipeline at its western end and would share a common trench and outlet structure into Holthouse Reservoir (Figure 2-1).

 The Delevan Pipeline would have a 2,000-cfs capacity to convey water from the proposed Delevan Pipeline Intake/Discharge Facilities (on the Sacramento River) to Holthouse Reservoir. The capacity of the Delevan Pipeline to convey water from Holthouse Reservoir to the Sacramento River would be 1,500 cfs. Because of the available head elevation, releases through the Delevan Pipeline could be made to the river by gravity without the need for pumping. The Delevan Pipeline would consist of two 12 -foot-diameter reinforced concrete steel cylinder pipes with gasketed bell and spigot joints. The pipeline would begin at the Delevan Pipeline Intake/Discharge Facilities near the Sacramento River and would be aligned to the west until reaching the GCID Main Canal. At the GCID Main Canal, the Delevan Pipeline would be aligned southwesterly and would parallel the TRR Pipeline in a shared trench until it reaches the Holthouse Reservoir Complex.

 Facilities associated with the Delevan Pipeline would include blowoff structures, air valve structures, and an outlet and energy dissipater structure. Blowoff structures would clean low points in the pipeline and allow dewatering. Blowoff valves would release water from the pipeline. These valves are located at major water conveyances so that water can be drained directly into the river or canal and carried downstream. Air and vacuum valves would be needed to evacuate air within the pipeline during filling and to supply air during normal dewatering, as well as to release accumulated air. Manholes would be used to access the pipeline for future maintenance or inspections. Aboveground features associated with the Delevan Pipeline are listed in Table 2-11.

 Table 2-11
 Aboveground Features Associated with the Proposed Delevan Pipeline

 | Aboveground Feature | Height Above Ground | Color | Appearance | Feature Locations |
 | :---: | :---: | :---: | :---: | :---: |
 | Manhole and air valve | 4 feet maximum, 108-inch-diameter | Gray | Concrete box | At high points and at a minimum of every 2,500 feet along the pipeline |
 | Manhole and blowoff valve | 1 foot maximum, 108-inch-diameter | Gray | Concrete box | At low points and at the Sacramento River and the GCID Main Canal crossing |

 The proposed alignment of the Delevan Pipeline would require five major crossings: SR 45, SR 99, Interstate 5 (I-5), Union Pacific Railroad, and the GCID Main Canal. The proposed pipeline route would also cross easements of the existing PG\&E 230 kVA transmission line and a major PG\&E natural gas pipeline. Other than a gravel maintenance road (i.e., the TRR Pipeline Road), no permanent aboveground structures would be constructed where electric utility easements and the pipeline easements would intersect. Other existing infrastructure that the pipeline could cross include gas lines, water lines, sewer lines, and communications lines. The pipeline would also cross the Colusa Basin Drain and Hunter's Creek (also called Logan Creek). These major crossings would be accomplished by using bore-and-jack construction techniques or the facilities would be relocated within the construction corridor.

 The Colusa Basin Drain and Hunter's Creek crossing locations would be at the northern end of the drain. The crossing will be made by boring and jacking the pipes under the drain.

 ## Construction

 Assuming open-trench construction methods, the construction disturbance area to install the proposed Delevan Pipeline would be large enough to accommodate temporary stockpiling of the trenching spoils. Because of the large volume of spoils and the linear construction process (the entire length would not be
 constructed at the same time), the area would also be used for construction staging associated with other facilities, such as a temporary concrete batch plant (the same plant as used for the proposed TRR Pipeline).

 The Delevan Pipeline would likely be constructed in three independent and concurrent sections. Two of the sections would likely begin from the same point and move in opposite directions. As pipelines are installed and tested, the trench would be backfilled to minimize the amount of open trenching. The construction disturbance area for the Delevan Pipeline would be a linear area, 13.5 miles long and approximately 300 feet wide from the Sacramento River to the proposed TRR (10 miles), and approximately 335 feet wide from the TRR to the proposed Holthouse Reservoir (3.5 miles). The additional width of the construction disturbance area would accommodate the TRR Pipeline from the TRR to Holthouse Reservoir. An additional construction disturbance area of 20 acres would be required for a concrete batch plant. Construction disturbance area boundaries would be marked with tape, flagging, or fencing. The construction disturbance area would pass through multiple areas close to residences and would intersect with several roads. The entire Delevan Pipeline construction disturbance area would not be fenced. In high-visibility areas or where the construction site requires a higher level of protection for security or safety, a temporary 6-foot-high chain-link fence would be installed around the worksite.

 Anticipated major construction activities include the following:

 - Trenching/excavation approach - Approximately 6.3 million cubic yards of material would need to be excavated for the Delevan Pipeline trench. Topsoil would be stockpiled separately from other excavated materials and backfilled to pre-Project soil profiles. Trench excavation would be approximately 23 feet deep. For the portion of the Delevan Pipeline that would be installed between the Sacramento River and the TRR, the trench would be approximately 120 feet wide. Two 12 -foot-diameter pipelines would be installed from the Sacramento River to the TRR. Trench excavation for the 3.5 miles from the TRR to Holthouse Reservoir would be approximately 165 feet wide to accommodate both the Delevan and the TRR pipelines. Four 12 -foot-diameter pipes would be installed from the TRR to Holthouse Reservoir. Trench side slopes would be approximately 1:1.5. No shoring would be installed under normal excavation conditions. Special conditions at some locations (unknown at this time) may require additional depth or width, steeper or flatter side slopes, or shoring to accommodate localized soil conditions.

 The Delevan Pipeline trench would be excavated using trenchers and tracked and/ or wheeled excavators and backhoes, or pushed up using bulldozers. The type of soils encountered would determine the type of equipment used for trenching. Harder soils, such as caliche, would require larger trenchers. In specific areas, vacuum excavation, "pot-holing" with a backhoe, or manual digging may be necessary to locate buried utilities. Excavation activities similar to the Delevan Pipeline excavation would also be conducted for electrical transmission pole footings that would be installed within the pipeline right-of-way. The following activities would occur simultaneously with the pipeline excavation:

 - Dewatering - Dewatering of the trench would be necessary in many locations and could be permitted to discharge into local irrigation ditches and drainage canals and/or the Colusa Basin Drain after settling of silt. Silt would be disposed of with excavated material. Dewatering would be in accordance with Central Valley Regional Water Quality Control Board (RWQCB) requirements and California Storm Water Quality Association BMPs for dewatering.
 - Onsite fabrication of pipes - It is possible that all pipes would be fabricated onsite with a concrete batch plant. A fabrication and curing area for the pipes would be located within the 20-acre batch plant footprint. Pipes would be fabricated onsite using imported steel cylinder and straight lengths of reinforcing steel. It is also possible that pipe would be manufactured off site and shipped to the site by truck or rail.
 - Bedding preparation - Bedding material would be installed in the trench before installation of the pipeline. Bedding material would likely be sand, or cemented, controlled density fill. The bedding material would be poured into the trench by dump truck and spread along the bottom of the trench by a small grader or similar equipment.
 - Installation of pipe and valves - The finished sections of the pipes would be transported from the fabrication and curing area to the installation location primarily along the pipeline route on flatbed trucks traveling along the construction access roadway (within the construction disturbance area). These trucks would cross public roadways. Pipe sections would be offloaded from flatbed trucks and placed in the excavated pipeline trench by a 50 -ton capacity crane. Once in place, the joint would be covered with a cement-based sealing compound. At valve locations, prefabricated valves would be delivered to the site on flatbed trucks and installed into previously constructed structures within the trench using the same crane.
 - Backfill of trench - Approximately 5 million cubic yards of material would be needed to backfill the trench after the pipes are installed. Excavated material would be reused to backfill the trench or moved to other Project locations for use, to the extent possible, after placement of pipes. Topsoil would be returned to approximate pre-Project soil profiles. Excess spoils from the excavation (estimated 1.3 million cubic yards) would be spread on adjacent agricultural lands of willing landowners within the 800-yard-wide corridor along the pipeline (outside of potential flood inundation areas), used as backfill at the proposed Delevan Pipeline Intake/Discharge Facilities, or placed in the Sites Reservoir footprint. Excess spoils may also be used to reinforce existing levees in the area as part of a separate program, which would be subject to a separate environmental analysis. Reuse of excavated material may be limited by water content of excavated material and soil compaction requirements. Spreading or stockpiling of excess soils would only occur outside of potential flood inundation areas in accordance with U.S. Army Corps of Engineers and local flood control district requirements.

 ## Operations

 Operation of the proposed Delevan Pipeline would not require daily workers at the site.

 ## Maintenance

 Periodic inspection and maintenance of the proposed Delevan Pipeline would likely occur once per year, typically in April and May, with possible additional inspections and maintenance needed after earthquakes or storm or flood events. Permanent 50 -foot rights-of-way for the land overlying the pipeline would be maintained for future access. Disturbed lands would be returned to agricultural production after pipeline construction.

 ### 2.1.5 Overhead Power Lines and Substations

 Power for the Delevan Pipeline Intake/Discharge Facilities would be provided from the south to avoid placement of new overhead power line corridor next to residences and agricultural operations adjacent to

 Delevan Road. An approximately 6-acre substation would be constructed west of the City of Colusa and would tie into an existing WAPA lines. The new 115 kV Delevan Overhead Power Line would run north from the proposed substation, adjacent to and in parallel with the existing PG\&E 65 kV transmission lines along Highway 45 to the proposed intake/discharge facility on the Sacramento River. Approximately 114 towers/poles would be required for the north-south alignment.

 In addition, a proposed substation associated with an overhead line tie-in to the existing WAPA transmission line (500 or 230 kV) or PG\&E transmission line (230 kV) (two possible options), would be constructed in the general vicinity of the existing Funks Reservoir. The substation would be approximately 6 acres and would serve the Sites Reservoir Pumping/Generating Plant, the TRR Pumping/Generating Plant, the Delevan Pipeline Intake/Discharge, and the Delevan Pumping/Generating Plant. The proposed electrical substations, switchyards, and overhead power lines that would connect the pumping/generating plants to the grid would provide the electricity needed by the pumping plants, as well as back to the grid from the generating process. Switchyards were described in Section 2.1.1.4 Sites Pumping/Generating Plant and Electrical Switchyard, Section 2.1.3.2 Terminal Regulating Reservoir Pumping/Generating Plant and Electrical Switchyard, and Section 2.1.4.1 Delevan Pipeline Intake/Discharge Facilities.

 The west-east aligned Delevan Overhead Power Line would be constructed within a 150-foot-wide permanent overhead power line easement, approximately 150 feet north of the permanent easement for the proposed Delevan and TRR pipelines ${ }^{7}$ from the TRR to the Sites Pumping/Generating Plant. At about the GCID Main Canal crossing, the proposed Delevan Overhead Power Line would travel southwesterly for approximately 9,600 feet, then northwesterly for approximately 3,600 feet, and, finally, west for approximately 5,300 feet, where the overhead power line would cross the proposed Eastside Road. From Eastside Road, the Delevan Overhead Power Line would travel southwesterly for approximately 1,700 feet to connect to the proposed Sites Electrical Switchyard.

 Lower voltage overhead power lines would be connected to the proposed Golden Gate Dam, Sites Dam, South Bridge, and Stone Corral Recreation Area. Electricity to Golden Gate Dam would likely come from the Sites Pumping/Generating Plant through an easement along Funks Creek. Electricity to Sites Dam, South Bridge, and the two recreation areas would likely come from an existing overhead distribution line that parallels Sites Lodoga Road. The power line would be extended to Sites Dam along the canyon walls, through the Stone Corral Recreation Area (following roads when available), along the new Stone Corral Road to the South Bridge. Power on the west side of the Sites Reservoir Inundation Area would be extended across the proposed South Bridge from the proposed substation if needed.

 ## Construction

 As previously described, the proposed north-south aligned Delevan Overhead Power Line would run north from the proposed substation, parallel to the existing PG\&E 65 kV transmission line along Highway 45 to the proposed intake/discharge facility on the Sacramento River. Approximately 114 towers/poles would be required, for a total of approximately 4 acres of permanent disturbance. An additional 40 towers/poles would be constructed west of the TRR, for a total of approximately 1 acre of permanent disturbance. The construction disturbance area would be completely contained within a new permanent easement. The permanent easement would be approximately 150 feet wide along the entire alignment and

 would accommodate construction activities, staging areas, and stockpile areas. A portion of the existing agricultural fields within the overhead power line alignment would need to be fallowed and not watered during construction of tower footings and placement of towers. Anticipated major construction activities include clearing and grading the construction workspace, placing necessary construction materials at staging areas, excavating and constructing tower footings, erecting transmission towers, and stringing the conductor.

 Construction of the overhead power lines would comply with requirements and precautions for construction near other utilities and would meet design and utility requirements. Power towers/poles are anticipated to be approximately 100 feet tall.

 ## Operations

 Operation of the proposed Delevan Overhead Power Line and associated distribution lines would be an unmanned activity.

 ## Maintenance

 The proposed Delevan Overhead Power Line and associated distribution lines would require periodic maintenance (once or twice a year), which would include equipment inspections and vegetation maintenance. Permanent easements and limitations on uses (row crops only) would be maintained to provide future access.

 ### 2.1.6 Project Buffer

 The Project Buffer (Figure 2-1) would consist of the land acquired for the Project beyond the facility footprints, out to the nearest existing parcel boundaries. If the nearest parcel boundary is less than 100 feet beyond the facility footprint, the Project Buffer would extend beyond the parcel boundary to result in at least a 100 -foot buffer. The Project Buffer would surround the proposed Sites Reservoir Complex, Holthouse Reservoir Complex, and all facilities between these two complexes; the proposed TRR and associated facilities; and the proposed Delevan Pipeline Intake/Discharge Facilities. ${ }^{8}$ The intent of the Project Buffer is to create a "buffer" around Project facilities; while following existing parcel boundaries, the area and width of the buffer around Project facilities would vary. The Project Buffer would serve several purposes:

 - Avoiding splitting parcels and rendering parcel remnants unusable by existing landowners
 - Providing a buffer between Project facilities and adjacent existing land uses to avoid potential conflicts in land uses
 - Preventing shoreline development around the proposed Sites Reservoir
 - Preventing livestock access to the reservoirs, and prevent livestock wastes from entering the proposed reservoirs

 ## Construction

 Land within the Project Buffer would remain undeveloped; the existing vegetation would be maintained as wildlife habitat and protected from fuelwood harvest, grazing, and other environmental degradation. Existing structures would be demolished, and the remaining land would be managed as wildlife habitat. Existing agricultural lands would not be maintained as agriculture but would be converted and managed as wildlife habitat.

 The Project Buffer boundary would be fenced using standard three-strand barb wire fences with posts in areas where the parcels are not already fenced, so that the entire Project Buffer boundary would be fenced. A fuel break would be constructed around the perimeter of the Project Buffer.

 ## Operations

 Not applicable.

 ## Maintenance

 Maintenance activities that are proposed to be undertaken within the Project Buffer boundary include fence maintenance and periodic boundary fuel break maintenance.

 SLO118171100RDD SP.JPA_Fig2-1_301_V3.ai cmont 0803/17

 ## NOTES

 1. Embankment section presented is preiiminary and is based upon feasibility level geologic
 exploration and materials investigation, testing, and evaluation programs.
 2. \&: Centerline
 3. GG: Informal name of fault
 4. Embankment zones are as follows ZONE (1) Core
 ZONE (2) Upstream and Downstream
 Filter, Drain, and Transition
 ZONE (3) Rockfill and Riprap - Shell materia
 ZONE (4) Random - Shell material

 FIGURE 2-2
 Golden Gate Dam Cross Section
 Showing Grouting
 Sites Reservoir Project

 ## NOTES

 1. Embankment section presented is preliminary and is based upon feasibility level geologic exploration and material investigation, testing, and evaluation programs.
 2. \mathbb{E} : Centerline
 3. Embankment zones are as follows:

 ZONE (1) Core
 ZONE (2) Upstream and Downstream
 Filter, Drain, and Transition
 ZONE (3) Rockfill and Riprap - Shell material
 ZONE (4) Random - Shell material

 FIGURE 2-3
 Sites Dam Cross Section
 Showing Grouting
 sites Reservoir Project

 FIGURE 2-4
 Saddle Dams 1, 2, 4, and 9 Cross
 Sections Showing Grouting (Typical)
 sites Reservir
 Sites Reservoir Project

 FIGURE 2-5
 Saddle Dams 3, 5, 6, 7, and 8 Cross Sections Showing Grouting (Typical)
 sites Reservoir Project

 LegendBorrowPits
 Dams
 Proposed Sites Reservoir

 FIGURE 2-6
 Potential Quarry Locations Within and Near the Proposed Sites Reservoir Inundation Area
 Sites Reservoir Project

 $\overline{\text { SL0118171100RDD SPJPA_Fig2-7_307_V3.ai cmont 08/03/17 }}$

 | Legend | |
 | :---: | :---: |
 | - | Cities and Towns |
 | \bigcirc | Pumping Plant |
 | | Dams |
 | New or Improved Roads | |
 | - Existing Roads | |
 | Access Routes | |
 | Recreation Areas | |
 | - Interstates | |
 | Rivers/Creeks | |
 | Counties | |
 | Sites Reservoir (New) | |
 | (2) Funks Reservoir (Existing; Dredged) | |
 | Holthouse Reservoir (New) | |
 | | TRR Pipeline (New) |
 | 5 | Delevan Pipeline (New) |
 |) | Tehama-Colusa Canal (Existing) |
 | 7 | Glenn-Colusa Irrigation
 District (GCID) Canal (Existing) |
 | (8) | Terminal Regulating Reservoir (New) |
 | 0 | Delevan Pipeline Intake/Discharge Facilities (New) |
 | 10 | GCID Pumping Plant (Existing) |
 | (11) | Red Bluff Pumping Plant (Existing; Add Pump) |

 FIGURE 2-8A
 Proposed Access Routes

 SL0118171100RDD SPJPA_Fig2-88_309_V3ai cmont 08103317

 Legend
 \triangle Camping/ Group Campsite
 开 Picnic Area
 (1) Vista Point
 (0) Water Tank

 P Parking
 ---- Recreation Area Trails
 -_South Bridge New Roads (gravel)
 ——Access Roads

 - - - Overhead Power Line

 ## Recreation Area Parking Boat Ramps
 1.3 MAF Sites Reservoir
 1.8 MAF Sites Reservoir
 Recreation Area

 MAF = Million acre-feet

 FIGURE 2-9B
 Proposed Peninsula Hills Recreation Area and Facilities
 Sites Reservoir Project

 Legend
 Recreation Areas1.8 MAF Sites Reservior
 \square Boat Ramp
 MAF = Million acre-feet

 FIGURE 2-9C
 Proposed Boat Ramp
 Recreation Area and Facilities
 Path: 110 DINIProjSites.JPAl668147NODOSIGISIMapFilesIFigure3-2e_BoatRamp.mxd
 Sites Reservoir Project

 FIGURE 2-10
 Location of the Proposed Pump Installation at Red Bluff Pumping Plant
 Sites Reservoir Project

 Legend

 - Existing Access Roads
 - Existing PG\&E Transmission Line
 - Funks Creek
 -TRR Pipeline Road
 - - - Overhead Power Line
 -- - Delevan Pipeline
 -- - TRR Pipeline
 - - - TRR to Funks Creek Pipeline

 Overhead Power Line Easement
 \square Terminal Regulating Reservoir (TRR)
 Glenn-Colusa Irrigation District
 (GCID) CanalGCID Canal Connection to TRR
 TRR Pumping/Generating Plant
 Tehama-Colusa Canal
 Holthouse Dam Facilities
 \square Holthouse Reservoir
 Construction Disturbance Area

 FIGURE 2-11 Proposed TRR
 and Associated Facilities
 Sites Reservoir Project

 This page intentionally left blank.

 ## This page intentionally left blank.

 ## 3. Construction and Operation/Maintenance

 Construction, operation, and maintenance activities specific to each Project facility are described under the associated facilities, starting with Section 2.1.1 Sites Reservoir Complex. Operations related to Sacramento River diversions and operation of Sites Reservoir to assist in meeting agricultural, municipal and industrial, and environmental needs are described in Section 4 Diversion and Reservoir Operations.

 ### 3.1 Construction

 Prior to initiation of construction activities, acquisition or establishment of temporary or permanent easements of private properties, either through voluntary or eminent domain processes, would be required. Overall, construction of the Project is expected require approximately 8 years to complete all necessary facilities. Several factors affect this anticipated schedule, including funding, the implementing agency, environmental compliance, contracting methods and strategies, materials and construction equipment availability, lead time for fabrication of major pumping and generating equipment, labor force constraints, weather, and access road capacity limitations. Additional adjustments to the schedule would be addressed during Project development and implementation.

 At the peak of Project construction, the labor force is expected to be approximately 400 workers. Table 3-1 provides a list of the typical construction equipment expected to be onsite during construction of the major facilities and estimated equipment days. The information provided in Table 3-1 may vary as the design of the project is further refined and depending on how the various facilities comprising the project are packaged for construction.

 Construction activities are anticipated to occur between 7:00 a.m. and 7:00 p.m. Nighttime and weekend construction may occur on an as-needed basis and would be coordinated with residents. If nighttime construction is necessary, construction lighting and noise constraints consistent with applicable federal, State, and local requirements would be used. Nighttime construction would not be conducted between 10:00 p.m. and 7:00 a.m. within 1,000 feet of occupied residences. Haul times through residential communities would be limited to 7:00 a.m. to 10:00 p.m. There would be air brake restrictions in residential communities.

 Construction activities associated with the Project would be confined to designated construction disturbance areas. Construction vehicles and equipment would also be parked within these construction disturbance areas. In addition, construction materials would be stored within the construction disturbance areas. Construction bid specifications and design packages would include site designation regarding special or sensitive sites. Special or sensitive sites within the construction disturbance areas where construction equipment and materials would not be allowed would be clearly marked and fenced with orange barrier fencing before any construction or surface-disturbing activity begins. Construction personnel would be trained to recognize these markers and understand the equipment movement restrictions involved. Lath, fencing, or flags would be maintained until final cleanup and/or site restoration is completed, after which they would be removed.

 ### 3.1.1 Access Routes

 Traffic-generating construction activities associated with the Project would include trucks hauling equipment and materials to and from the worksites and the daily arrival and departure of the construction workers. Construction traffic on local roadways would include dump trucks, bottom dump trucks, concrete trucks, flatbed trucks for delivering construction equipment and permanent project equipment,
 pickup trucks, water trucks, equipment maintenance vehicles, and other delivery trucks. Dump trucks and bottom-dump trucks would be used for earth-moving and clearing, removing excavated material, and importing other structural and paving materials. Other delivery trucks would deliver heavy construction equipment, job trailer items, concrete forming materials, reinforcing steel and structural steel, piping materials, foundation piles and sheet piling, sand and gravel from offsite sources, new facility equipment, and other miscellaneous deliveries.

 Table 3-1
 Estimated Construction Durations and Equipment Days for Construction of Sites Reservoir Project

 | | | | n 0 0 0 0 | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Construction Duration in Days - Alt D | 1,410 | 390 | 1,403 | 1,403 | 1180 | 167 | 950 | - | 650 | 530 | 1,525 | 800 | 1,445 | 1,175 |
 | Equipment | | | | | | | | | | | | | | |
 | Backfill loader | - | - | - | - | - | - | 149 | - | - | - | - | 934 | - | - |
 | Backhoe | | | | 1,470 | | | | | | | | | | |
 | Bobcat | - | 316 | - | - | - | - | - | - | - | - | - | - | - | - |
 | Bulldozer | 17,740 | 116 | 279 | 9,770 | 1,760 | 1,336 | 13,650 | - | 32 | 852 | 1,165 | 3,086 | 8 | 1,165 |
 | Compactor | 15,350 | - | 156 | - | - | - | 796 | - | 159 | 66 | 200 | 934 | - | 200 |
 | Concrete Material Trucks | 1,720 | - | - | - | - | - | 472 | - | - | - | - | 224 | - | - |
 | Concrete Pumper | 2033 | - | - | 280 | 306 | - | 22 | - | - | - | 104 | - | 29 | 104 |
 | Concrete Trucks | 648 | 66 | - | 2,246 | 1,030 | - | 176 | - | 156 | - | 416 | 83 | 154 | 416 |
 | Crane | - | - | - | 1,000 | 350 | - | - | 40 | - | - | 200 | 1,500 | 474 | 200 |
 | Pile Driver/Drill Rig | 1,952 | - | - | 105 | - | - | 85 | - | - | - | - | - | 95 | - |
 | Dump Truck | 830 | 474 | 123 | 6,775 | 600 | - | 8 | - | 768 | - | 1,250 | 8,670 | 14 | 1,250 |
 | Excavator Loader | - | - | - | - | - | - | - | - | - | 152 | - | | - | - |
 | Excavator | - | - | - | 26 | - | - | - | - | - | - | - | 400 | | - |
 | Fork lift | 89 | 121 | - | - | 510 | - | 59 | 40 | - | 140 | 400 | 1,500 | 82 | 400 |
 | Fuel truck | 3,548 | 312 | 93 | 1,126 | 552 | 167 | 570 | - | 335 | 185 | 333 | 967 | 57 | 333 |
 | Grader | 7,675 | 28 | 104 | 2,104 | 572 | - | 398 | - | - | 33 | 200 | 467 | 40 | 200 |
 | Generator | 81 | 33 | | 500 | 200 | | 22 | 80 | 156 | | 104 | 583 | | 104 |
 | Grout Pump | | - | - | - | - | - | 170 | - | - | - | - | - | - | - |
 | Highway Trucks | 45,328 | 282 | - | 5,011 | 1,172 | 16 | 4,036 | 30 | 680 | 700 | 1,760 | 5,190 | 810 | 1,760 |
 | Jacking Equipment | - | - | - | - | - | - | - | - | - | - | - | 600 | - | - |
 | Loader | 3,563 | 158 | 41 | 1,235 | 400 | - | 4 | - | 192 | - | 125 | - | 103 | 125 |
 | Material Trucks | - | - | - | - | 2,736 | - | - | - | - | - | - | - | - | - |
 | Off-road Trucks | 27,840 | - | - | 4,560 | - | - | 1,490 | - | - | 1,520 | - | - | - | - |
 | Paving Machine | - | 22 | 5 | 80 | - | - | - | - | 33 | 20 | - | - | - | - |
 | Pipe Fabrication Equipment | - | - | - | - | - | - | - | - | - | - | - | 1,000 | - | - |
 | Pipe Transport Truck | - | - | - | - | - | - | - | - | - | - | - | 1,100 | - | - |
 | Pull Truck | - | - | - | - | - | - | - | - | - | - | - | - | 192 | - |
 | Roller | - | 50 | 10 | 925 | - | - | - | - | 66 | - | - | - | - | - |
 | Scissor Lift | - | - | - | - | 100 | - | - | - | - | - | - | - | - | - |
 | Scraper | 6,800 | - | 147 | 8,736 | 3,090 | 2,672 | 11,460 | - | 138 | 652 | 1,165 | 13,734 | - | 1,165 |
 | Water Trucks | 7,096 | 144 | 191 | 2,252 | 352 | 334 | 2,280 | - | 205 | 215 | 466 | 967 | 101 | 466 |
 | Welding Truck | - | - | - | - | 294 | - | - | - | - | - | - | - | - | - |

 ## This page intentionally left blank.

 Table 1-21 lists the anticipated typical construction access routes to be used for access in the construction to some of the major Project features (routes are illustrated on Figures 1-7A and 1-7B):

 Project-related construction personnel and highway truck trips are identified in Tables 3-2 and 3-3. Of the Project construction-related trips, construction worker trips would compose the majority. Construction workers would likely commute to construction sites from regional population centers, including Maxwell, Willows, Orland, Williams, and Colusa, and from other places in northern California when specialty trades or skillsets are not available locally.

 ### 3.2 Facility Operation and Maintenance

 Project facility operations and maintenance would include any activities that must occur at each facility. Operation activities include those related to the movement of water (such as proposed Sites Reservoir level fluctuations, or the intake or release of water through the proposed Delevan Pipeline Intake/Discharge Facilities), the generation/transmission of electricity, the use of roads during operations and maintenance activities, and recreation activities associated with Sites Reservoir.

 Table 3-2
 Expected Roadway Access Routes to Project Facilities

 | Project Feature | Access Route |
 | :--- | :--- |
 | Sites Reservoir Inundation Area
 (northern area) | From I-5, travel west on County Road 68, turn south on County
 Road D, turn west on County Road 69, and continue straight |
 | Sites Reservoir Inundation Area
 (central area) | From I-5, travel west on Maxwell Sites Road |
 | Sites Reservoir Inundation Area
 (southern area) | From I-5, travel west on Maxwell Sites Road, turn left on Sulphur
 Gap Road (new permanent), and turn right on Huffmaster
 Road |
 | Sites Dam | From I-5, travel west on Maxwell Sites Road |
 | Golden Gate Dam | From I-5, travel west on County Road 68, turn left on County |
 | | Road D, turn right on County Road 69, turn left on Eastside |
 | | Road (new permanent), and turn right on new permanent |
 | O\&M road | |

 Table 3-2
 Expected Roadway Access Routes to Project Facilities

 | Project Feature | Access Route |
 | :---: | :---: |
 | Temporary North Bypass Road | From I-5, travel west on County Road 68, turn left on County Road D, turn right on County Road 69, continue straight on North Road to the vicinity of Saddle Dam No. 5, continue west and south-west on the paved temporary bypass road to the intersection with Sites Lodoga Road on the west side of the reservoir. |
 | Antelope Island Recreation Area | From I-5, travel west on Maxwell Sites Road, turn left on Sulphur Gap Road (new permanent), turn right on Huffmaster Road, and turn left on new temporary construction road |
 | Stone Corral Recreation Area Stone Corral Road | From I-5, travel west on Maxwell Sites Road, turn right on Eastside Road (new permanent), turn left on Stone Corral Road (new permanent), and turn left on Stone Corral Recreation Area Road (new permanent) |
 | Peninsula Hills Recreation Area Peninsula Road | From I-5, travel west on Maxwell Sites Road to Sites Lodoga Road, and turn right on Peninsula Road (new permanent campground spur road)
 From I-5, travel west on Maxwell Sites Road, turn right on Eastside Road (new permanent), turn left on Stone Corral Road (new permanent), across the South Bridge (new permanent) onto Sites Lodoga Road, and turn right on Peninsula Road (new permanent campground spur road) |
 | South Bridge | From I-5, travel west on Maxwell Sites Road, and turn right on Peterson Road to reach central footings (this route is only available if the bridge is constructed before Sites Dam, which will block access on Maxwell Sites Road)
 From I-5, travel west on Maxwell Sites Road and continue straight on Sites Lodoga Road to reach the western approach/footings
 From I-5, travel west on Maxwell Sites Road, turn right on Eastside Road (new permanent), and turn left on Stone Corral Road to reach the eastern approach/footings |
 | Com Road | From I-5, travel west on Maxwell Sites Road, turn left on Com Road (new permanent) at the crest road of Sites Dam.
 From I-5, travel west on Maxwell Sites Road, turn left on Sulphur Gap Road (new permanent), and turn right on Com Road (new permanent) (if Sulphur Gap Road option is constructed) |
 | Eastside Road
 Sites Pumping/Generating Plant
 Field Office Maintenance Yard | From I-5, travel west on County Road 68, turn left on County Road D, turn right on County Road 69, and turn left on Eastside Road (new permanent)
 From I-5, travel west on Maxwell Sites Road and turn right on Eastside Road (new permanent) |
 | Sulphur Gap Road | From I-5, travel west on Maxwell Sites Road, and turn left on Sulphur Gap Road (new permanent) |
 | North Road | From I-5, travel west on County Road 68, turn left on County Road D, turn right on County Road 69, continue straight on North Road (new permanent)
 From I-5, travel west on Maxwell Sites Road, and turn right on Eastside Road (new permanent) and follow to North Road |
 | Holthouse Reservoir Complex | |

 Table 3-2
 Expected Roadway Access Routes to Project Facilities

 | Project Feature | Access Route |
 | :--- | :--- |
 | Holthouse Reservoir Electrical Switchyard | From I-5, travel west on County Road 68, turn left on County
 Road D, turn right on County Road 64, turn left on Eastside
 Road (new permanent), turn left on access road on south
 side of Funks Reservoir |
 | From I-5, travel west on Maxwell Sites Road and turn right on | |
 | Eastside Road (new permanent), turn right on access road | |
 | on south side of Funks Reservoir | |$|$

 Table 3-2
 Expected Roadway Access Routes to Project Facilities

 | Project Feature | Access Route |
 | :--- | :--- |
 | Delevan Overhead Power Line
 (southern portion of north-south alignment
 on SR 45) | From I-5, travel east on Maxwell road and turn right on SR 45 |
 | Delevan Pipeline (far western portion) | |
 | | From I-5, travel west on County Road 68, turn left on County
 Road D, turn right on County Road 69, and turn left on
 Eastside Road (new permanent) |
 | | From I-5, travel west on Maxwell Sites Road, and turn right on |
 | | Eastside Road (new permanent) |
 | Borrow Areas (generally within the | From I-5, travel west on County Road 68, turn left on County |
 | Inundation Area or adjacent on Logan | Road D, turn right on County Road 69, and turn left on |
 | Ridge) | Eastside Road (new permanent) |
 | | From I-5, travel west on Maxwell Sites Road, turn left on right on |
 | | Eastside Road (new permanent) |
 | | From I-5, travel west on Maxwell Sites Road, turn left on Sulphur |
 | Gap Road (new permanent), turn right on Lurline Road (new | |
 | | permanent, detour during construction), turn right on |
 | | Huffmaster Road, and travel straight on Peterson Road |
 | | From I-5, travel west on Maxwell Sites Road |

 Note:
 O\&M = operations and maintenance

 Table 3-3
 Project-related Construction Personnel and Highway Truck Trips

 | Facility | Total
 Highway
 Truck Trips $^{\mathbf{a}}$ | Construction
 Days $^{\mathbf{b}}$ | Highway
 Truck Trips
 per Day | Total
 Personnel
 Trips | Personnel
 Trips
 per Day | Construction
 Trips
 per Day |
 | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
 | Sites Reservoir Inundation
 Area and Dams | 235,240 | 1,523 | 154 | 969,664 | 637 | $\mathbf{8 6 8}$ |
 | Recreation Facilities | 2,290 | 501 | 5 | 33,626 | 67 | $\mathbf{7 4}$ |
 | South Bridge, Gravel
 Roads, and Paved Roads | 25,055 | 961 | 26 | 297,436 | 310 | $\mathbf{3 4 9}$ |
 | Inlet/Outlet Structure,
 Tunnel, and Sites P/G
 Plant | 19,540 | 332 | 59 | 56,260 | 169 | $\mathbf{2 5 8}$ |
 | Holthouse Reservoirs
 Sediment Removal | 80 | 114 | 1 | 12,358 | 108 | $\mathbf{1 0 9}$ |
 | Holthouse Reservoir
 Modification | 22,540 | 566 | 40 | 295,708 | 522 | $\mathbf{5 8 2}$ |
 | GCID Canal and
 Headworks Modifications | 3,400 | 509 | 7 | 41,608 | 82 | $\mathbf{9 2}$ |
 | TRR | 3,500 | 334 | 10 | 54,544 | 163 | $\mathbf{1 7 9}$ |
 | TRR Pumping Plant | 8,800 | 874 | 10 | 255,200 | 292 | $\mathbf{3 0 7}$ |
 | TRR and Delevan Pipelines | 37,910 | 376 | 101 | 55,080 | 146 | $\mathbf{2 9 8}$ |
 | Delevan Pipeline
 Intake/Discharge Facilities
 and Delevan Pipeline P/G
 Plant | 8,800 | 874 | 10 | 257,752 | 295 | $\mathbf{3 1 0}$ |
 | Substations, Switchyards,
 and Overhead Power Lines | 6,810 | 251 | 27 | 49,712 | 198 | $\mathbf{2 3 9}$ |

 Table 3-3
 Project-related Construction Personnel and Highway Truck Trips

 | Facility | Total
 Highway
 Truck Trips $^{\mathbf{a}}$ | Construction
 Days $^{\mathbf{b}}$ | Highway
 Truck Trips
 per Day | Total
 Personnel
 Trips $^{\text {c }}$ | Personnel
 Trips
 per Day | Construction
 Trips
 per Day |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Total Peak Construction Trips per Day | | | | | | |

 ${ }^{\text {a }}$ Average of five highway trips per equipment day
 ${ }^{\text {b }}$ Construction work would be conducted during 5-day work weeks, excluding holidays
 ${ }^{\text {c }}$ One incoming and one outgoing trip per worker per day
 Note:
 $P / G=$ pumping and generating
 Maintenance for the Project facilities would include activities such as debris removal, dredging, vegetation control, rodent control, erosion control and protection, routine inspections (dams, tunnels, pipelines, pumping/generating plants, inlet/outlet works, fence, signs, gates), painting, cleaning, repairs, and other routine tasks to maintain facilities in accordance with design standards after construction and commissioning. Routine visual inspection of the facilities would be conducted to monitor performance and prevent mechanical and structural failures of Project elements. Maintenance activities associated with proposed river intakes could include cleaning, removal of sediments, debris, and biofouling materials. These maintenance actions could require suction dredging or mechanical excavation around intake structures; dewatering; or use of underwater diving crews, boom trucks or rubber wheel cranes, and raftor barge-mounted equipment.
 Proposed operations and maintenance activities could occur daily, annually, periodically (as needed), and on a long-term basis. Approximately 45 operations and maintenance workers would be needed to perform operations and maintenance activities (based on three shifts per day). Table 3-4 shows the estimated equipment and hours of operation for operations and maintenance at Project facilities.

 Table 3-4
 Estimated Equipment Hours for Operation and Maintenance of Sites Reservoir Project

 | Equipment | Reservoirs, Recreation Facilities, Dams, Roads, Bridges | | Intake and Outlet Facilities, Pumping and Generating Plants | | Electrical Switchyards and Overhead Power Lines | | Tunnels and Pipelines | | Estimated Total Hours/Year of Use per Type of Equipment |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Average Number of Piece of Equipment | Estimated Hours/Year of Use per Piece of Equipment | Average Number of Piece of Equipment | Estimated Hours/Year of Use per Piece of Equipment | Average Number of Piece of Equipment | Estimated Hours/Year of Use per Piece of Equipment | Average Number of Piece of Equipment | Estimated Hours/Year of Use per Piece of Equipment | |
 | Backhoe | 4 | 520 | 1 | 520 | 1 | 20 | 1 | 10 | 2,630 |
 | Bobcat | 1 | 520 | 1 | 520 | 1 | 20 | 1 | 10 | 1,070 |
 | Bulldozer | 2 | 520 | 1 | 520 | 1 | 20 | 1 | 10 | 1,590 |
 | Dump Truck | 1 | 1040 | 1 | 260 | - | - | 1 | 10 | 1,310 |
 | Excavator | 1 | 24 | - | - | - | - | - | - | 24 |
 | Portable Generator | 4 | 100 | 4 | 100 | - | - | 4 | 100 | 1,200 |
 | Grader | 1 | 16 | 1 | 16 | - | - | - | - | 32 |
 | 4WD Vehicle | 2 | 5,050 | 2 | 3650 | 2 | 20 | 2 | 20 | 17,480 |
 | Tractor Mower | 2 | 520 | 2 | 520 | 1 | 20 | 1 | 10 | 2,110 |
 | Motor Boat | 2 | 780 | 1 | 520 | - | - | 1 | 10 | 2,090 |
 | All-terrain Vehicle | 4 | 200 | - | - | - | - | - | - | 800 |
 | Sedans/Pickups (onsite) | 4 | 1000 | - | - | - | - | - | - | 4,000 |
 | Pump Truck | 1 | 150 | - | - | - | - | - | - | 150 |
 | Fork Lift | 3 | 500 | - | - | - | - | - | - | 1,500 |
 | Front End Loader | 1 | 300 | - | - | - | - | - | - | 300 |
 | Air Compressor | 2 | 50 | 1 | 50 | - | - | - | - | 150 |
 | Water Truck | 1 | 250 | - | - | - | - | - | - | 250 |
 | Flatbed/Boom Truck | 2 | 250 | 1 | 250 | - | - | - | - | 750 |

 Table 3-4
 Estimated Equipment Hours for Operation and Maintenance of Sites Reservoir Project

 | Equipment | Reservoirs, Recreation Facilities, Dams, Roads, Bridges | | Intake and Outlet Facilities, Pumping and Generating Plants | | Electrical Switchyards and Overhead Power Lines | | Tunnels and Pipelines | | Estimated Total Hours/Year of Use per Type of Equipment |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Average Number of Piece of Equipment | Estimated Hours/Year of Use per Piece of Equipment | Average Number of Piece of Equipment | Estimated Hours/Year of Use per Piece of Equipment | Average Number of Piece of Equipment | Estimated Hours/Year of Use per Piece of Equipment | Average Number of Piece of Equipment | Estimated Hours/Year of Use per Piece of Equipment | |
 | Portable Welders | 2 | 200 | 1 | 100 | - | - | 1 | 100 | 600 |
 | Scissor Lift | 1 | 150 | 1 | 50 | - | - | - | - | 200 |
 | Longer-term Maintenance | One boatoperated dredge and 1 dump truck for 60 hours every 7 to 10 years | One boatoperated dredge, 1 crane, and 1 dump truck for 250 hours every year | - | - | - | - | - | - | Variable |

 Note:
 4WD = four-wheel drive

 This page intentionally left blank.

 ## 4. Diversion and Reservoir Operations

 The operations evaluated in this report are designed to provide a range of statewide benefits including ecosystem enhancement actions, water supply reliability improvement for statewide agricultural, urban, and environmental uses (including increasing the survival of anadromous and endemic fish); and Sacramento-San Joaquin Delta (Delta) water quality improvement. The Project would also provide flexibility in hydropower generation to support integration of renewable energy sources. The Project is intended to improve overall system reliability by making more water available at any given time, for release and use for a variety of potential benefits (see Benefit Calculation, Monetization, and Resiliency tab and attachments, A. 1 and A.2).

 The proposed Project is intended to be operated in a cooperative manner with Central Valley Project (CVP) and State Water Project (SWP) facilities to assist in providing additional storage and release capability to support improving stream temperatures, in-stream habitat, supply deliveries (including refuges), instream flows, and water quality requirements to the extent possible each year as determined most needed. Among existing system constraints, the maintenance of the cold-water pool in various existing reservoirs to support suitable (and improved) in-river fishery habitat conditions is a key operational concern that today is increasingly difficult to meet, particularly during dryer years. In addition, providing water to support improved habitat in the Yolo and Sutter bypasses is also increasingly becoming a potential priority.

 Providing water to improve storage conditions in CVP and SWP facilities is a primary objective of the proposed Project. The Project would be operated to make releases from Sites Reservoir in a cooperative manner with CVP/SWP releases from Trinity Lake, Shasta Lake, Lake Oroville, and Folsom Lake. Often, and especially in drought (driest periods) hydrologic conditions, proposed releases from Sites Reservoir would be made to meet an otherwise CVP or SWP obligation. Sites Reservoir releases would allow an equivalent amount of water to be retained in CVP or SWP storage while meeting requirements for minimum instream flow objectives and Delta salinity control objectives. Through this reduction in SWP and CVP facility releases, storage could be conserved in Trinity Lake, Shasta Lake, Lake Oroville, and Folsom Lake. This increase in storage conditions would substantially improve operational flexibility to provide water for the environment and meeting the Project's primary objectives.

 The Project incorporates the ability to achieve multiple objectives over a range of hydrologic and operational conditions. Operations in any given year would be a function of the current year hydrology, as well as a function of the system conditions resulting from the previous year's hydrology and operations. The Project provides the operational flexibility to manage the water in Sites Reservoir storage to the highest priority needs on an adaptive management basis. Implementation of actions to meet the various objectives would be evaluated on a continuing basis in response to changing system parameters (such as reservoir storage), ecological needs, forecasts of future hydrologic and atmospheric conditions, and system operations.

 ### 4.1 Operational Scenario

 The proposed operational scenario incorporates three primary components:

 1. Operating criteria for diversion of water when all other regulatory criteria are met (including diversion rate in cfs, duration of the diversion, the season of diversion and the water year type of the diversion) from the Sacramento River to fill the Sites Reservoir
 2. Operating criteria for timing and rate of releases of water to achieve the primary objectives of the Project (and associated benefits) in specific year types (such as drought or driest periods) and other hydrologic conditions
 3. Project cooperative operations ${ }^{9}$ with the CVP and SWP operations and facilities

 The operation scenario incorporates operation flexibility to adapt to a range of hydrologic conditions, to address various future uncertainties, and to allow for consideration of a range of future water management actions.

 ### 4.1.1 Diversions to Sites Reservoir

 The proposed Sites Reservoir would be filled through the diversion of Sacramento River water that originates from unregulated tributaries to the Sacramento River downstream from Keswick Dam. These unregulated tributaries contribute over 3 MAF of flow to the Sacramento River on an average annual basis. Less than 1 percent of diversions to Sites Reservoir are assumed to be provided by flood releases or spills that flow through Lake Shasta. Sacramento River water would be diverted at the existing Hamilton City and Red Bluff diversion locations, described in detail above; Sacramento River water would also be diverted via a new Delevan intake and pipeline. Flows available for diversion are considered river flows in addition to those required to meet the following:

 - Senior downstream water rights, existing CVP and SWP and other water rights diversions including SWP Article 21 (interruptible supply), and other more senior flow priorities (diversions associated with Freeport Regional Water Project and Los Vaqueros Reservoir)
 - Existing regulatory requirements including State Water Resources Control Board D-1641, CVPIA 3406(b)(2), the 2008 U.S. Fish and Wildlife Service biological opinion, and the 2009 National Marine Fisheries Service biological opinion and other instream flow requirements
 - Specific bypass requirements that may be placed on Project operations to protect fish migration and avoid possible Delta water quality effects associated with Sites storage operations

 A description of proposed minimum bypass flow requirements to protect existing and future water uses are provided below.

 ### 4.1.2 Sites Reservoir Diversion Bypass Flow Protection

 Sacramento River flow diversions to Sites Reservoir would only take place when flow monitoring indicates that bypass flows are present in the river because of storm event flows. Several existing and additional proposed bypass flow criteria were assumed at specified locations, as part of the Project. These flow criteria are designed to make certain that available water would be diverted into Sites Reservoir to maintain and protect existing downstream water uses, as follows.

 - A bypass flow of 3,250 cfs downstream from Red Bluff Diversion Dam must be present to maintain flows in the upper Sacramento River that are required in State Water Resources Control Board WR 90-5 to prevent dewatering salmonid redds and maintain water temperatures. Diversions at RBPP

 for filling Sites Reservoir would only be allowed when flows in the river are above the 3,250 cfs bypass flow criteria.

 - Diversions at the Hamilton City intake for Glenn-Colusa Canal currently require a bypass flow of 4,000 cfs to prevent fish entrainment. Diversions at RBPP and Glenn-Colusa Canal intake for filling Sites Reservoir would only be allowed when flows in the river are above the 4,000-cfs bypass flow requirement downstream from Hamilton City.
 - Diversions for filling Sites Reservoir would only be allowed when flows below Wilkins Slough were above 5,000 cfs, given the current minimum flow requirements. Wilkins Slough Navigation Control Point minimum flows currently range from 3,250 to $5,000 \mathrm{cfs}$, depending on hydrologic conditions.
 - Diversions for filling Sites Reservoir would only be allowed when a Sacramento River flow of $15,000 \mathrm{cfs}$ is present at Freeport in January; 13,000 cfs in December and February through June; and $11,000 \mathrm{cfs}$ in all other months. This flow threshold protects and maintains existing downstream water uses and water quality in the Delta.

 This page intentionally left blank.

 Proposed Seasonal Schedule for Project Operations

 | Objective | Detail of Operation | Priority of Operation ${ }^{\text {a }}$ | Year Type Most Suitable for Operation ${ }^{\text {b }}$ | Months Most Suitable for Operation ${ }^{\text {c }}$ | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
 | General Operation | | | | | | | | | | | | | | | |
 | Conveyance | Diversions at Red Bluff (Tehama-Colusa Canal), at Hamilton City (GCID Main Canal) and at the proposed Delevan Pipeline could occur in any month. Diversions of excess flows would only be allowed once SWRCB D-1641, CVPIA 3406(b)(2), 2008 USFWS BO and 2009 NMFS BO requirements were met and SWP Article 21 demands were satisfied, and other excess Delta flow diversions (e.g., Freeport Regional Water Project, Los Vaqueros Reservoir, cities of Fairfield, Vacaville, and Benicia) were satisfied. Diversions would be restricted by Sacramento River bypass criteria at Red Bluff, Hamilton City, Wilkins Slough, and Freeport. Shading highlights the period in which diversion operations would occur, with the November through March period shaded the heaviest. | N/A | N/A | | | | | | | | | | | | |
 | Seasonal Storage Operation | Fill Sites Reservoir during excess flow events throughout the winter and spring and drain during peak release periods throughout the summer and fall. The months in which the high and low storage points would occur in the typical seasonal cycle are indicated. | N/A | N/A | | | | | | | $\begin{aligned} & \text { in Cy } \\ & \text { w Poi } \end{aligned}$ | | | | | ycle |
 | Water Supply Operations | | | | | | | | | | | | | | | |
 | Sites Project Authority | Provide storage releases to participating TCCA districts on an as-needed basis to supplement CVP Agricultural Water Service Contract deliveries. Provide storage to GCID and Reclamation District 108 to supplement CVP Settlement Contract deliveries. Provide supplemental water supplied to project participants outside the Sacramento Valley to improve water supply reliability | Authority-1 | AN, BN, D, C | | | | | | | | | | | | |
 | Incremental Level 4 Water Supply for Wildlife Refuges | Provide water to meet Incremental Level 4 wildlife refuge water needs north-of-the-Delta and south-of-the-Delta to supplement refuge supplies up to Level 4 criteria (CVPIA). Shading highlights period in which transfer operations would occur. | AVG-3 | AN, BN, D | | | | | | | | | | | | |
 | Water Quality Operation | | | | | | | | | | | | | | | |
 | Water Quality | Upstream release actions would improve water quality conditions by augmenting Delta inflow and outflow. Operations could augment Delta flows above base D-1641 operations for up to 6 months. Shading highlights period in which Delta benefits could be augmented. | AVG-1 | AN, BN, D | | | | | | | | | | | | |
 | Hydropower Operation | | | | | | | | | | | | | | | |
 | Flexible Hydropower Generation | Include dedicated pump/generation facilities with a dedicated afterbay/forebay of 6,500 ac-ft to allow more than 30 hours per week of uninterrupted operation and generation. | N/A | ALL | | | | | | | | | | | | |
 | Ecosystem Enhancement Storage Account (EESA) Actions/Operation | | | | | | | | | | | | | | | |
 | EESA-1: Shasta Coldwater Pool | Improve the reliability of cold-water pool storage in Shasta Lake to increase operational flexibility to provide suitable water temperatures in the Sacramento River. This action would operationally translate into the increase of Shasta Lake's May storage levels and improved retention of cold-water pool storage with particular emphasis on Below Normal, Dry, and Critical water year types. | DP-1 | BN, D, C | | | | | | | | | | | | |
 | EESA-2: Sacramento River Flows for Temperature Control | Provide releases from Shasta Dam at appropriate water temperatures, and subsequently from Keswick Dam, to improve water temperatures year-round at levels suitable for all species and life stages of anadromous salmonids in the Sacramento River between Keswick Dam and Red Bluff Pumping Plant, with particular emphasis on the months of highest potential water temperature-related impacts (i.e., July through November) during Below Normal, Dry, and Critical water year types. | DP-2 | BN, D, C | | | | | | | | | | | | |
 | EESA-3: Folsom Lake Cold Water Pool | Increase the availability of cold-water pool storage in Folsom Lake by increasing May storage and retaining coldwater pool storage to allow additional operational flexibility to provide suitable water temperatures in the lower American River. This action would use additional cold-water pool storage by providing releases from Folsom Dam (and subsequently from Nimbus Dam) to help provide water temperatures at levels suitable for juvenile steelhead over-summer rearing and fall-run Chinook salmon spawning in the lower American River from May through November during all water year types. | DP-2 | D, C | | | | | | | | | | | | |
 | EESA-4: Stabilize American River Flows | Stabilize flows in the lower American River to minimize dewatering of fall-run Chinook salmon redds (i.e., October through March) and steelhead redds (i.e., January through May), and reduce juvenile anadromous salmonid isolation events, particularly from October through June. Reduce the reliance upon Folsom Lake as a "real-time first response facility" to meet Delta objectives and demands, particularly from January through August, to reduce flow fluctuation and water temperature-related impacts to fall-run Chinook salmon and steelhead in the lower American River. | DP-2 | ALL | | | | | | | | | | | | |

 Table 4-1
 Proposed Seasonal Schedule for Project Operations

 | Objective | Detail of Operation | Priority of Operation ${ }^{2}$ | Year Type Most Suitable for Operation ${ }^{\text {b }}$ | Months Most Suitable for Operation ${ }^{\text {c }}$ | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
 | EESA-5: Habitat Improvement (Summer/Fall)e | Upstream release actions could provide supplemental flow during summer and fall months (i.e., May through December) to improve X 2 position and increase estuarine habitat, reduce entrainment, and improve food availability for anadromous fishes and other estuarine-dependent species (e.g., delta smelt, longfin smelt, Sacramento splittail, starry flounder, and Crangon franciscorum). Shading highlights period in which flow would be augmented (operation coordinated with Water Quality action). | AVG-2 | ALL | | | | | | | | | | | | |
 | EESA-6: Lake Oroville Coldwater Pool | Improve the reliability of cold-water pool storage in Lake Oroville to improve water temperature suitability for juvenile steelhead and spring-run Chinook salmon over-summer rearing and fall-run Chinook salmon spawning in the lower Feather River from May through November during all water year types. Provide releases from Oroville Dam to maintain water temperatures at levels suitable for juvenile steelhead and spring-run Chinook salmon over-summer rearing and fall-run Chinook salmon spawning in the lower Feather River. Stabilize flows in the lower Feather River to minimize redd dewatering, juvenile stranding, and isolation of anadromous salmonids. | DP-2 | BN, D, C | | | | | | | | | | | | |
 | EESA-7: Stabilize Sacramento River Fall Flows | Stabilize flows in the Sacramento River between Keswick Dam and the Red Bluff Pumping Plant to minimize dewatering of fall-run Chinook salmon redds (for the spawning and embryo incubation life stage periods extending from October through March), particularly during fall months. Avoid abrupt changes. Operations would be limited to not adversely impacting cold-water pool operations in dry and critical years. Shading highlights period of greatest effect on stabilization or flows on a daily basis. | AVG-1 | AN, BN, D | | | | | | | | | | | | |

 apriority of operation "DP" indicates that the operational priority has a driest period's emphasis and "AVG" indicates an average-to-wet hydrologic emphasis. The
 defined within the priority structure of the scenario. "Authority" indicates Sites Project Authority operation on an as-needed basis subject to storage availability.

 The

 ming of floodplain inundation. Water made available through sites Reservoir releases could be used to temporaily increase or continue the flow of water through ind for the purpose of incrementally improving floodplain rearing for juvenile salmonids, spawning Sacramento splitail, and othe mentation of this act
 Notes:
 ALL = All year types
 $\mathrm{AN}=\mathrm{Above}$ normal
 Authority $=$ Sites Project Authority
 AVG $=$ Average
 $B N=$ Below norm
 $\mathrm{BO}=$ biological opinion
 $C=$ Critical
 $\mathrm{C}=$ Critical
 CVPIA = Central Valley Project Improvement Act
 DP = Driest periods
 unhority $=$ Sites Project Authority
 N/A = Operations are not or cannot be easily defined within the priority structure of the scenario.
 MFS = National Marine Fisheries Service
 SWRCB = State Water Resources Control Board
 TAF $=$ thousand ac-ft
 USFWS $=$ U.S. Fish and Wildife Service
 X2 $=$ The location of the 2 percent [parts per thousand] salinity isohaline - as measured in kilometers from the Golden Gate Bridge

 ### 4.1.3 Diversions to Fill Sites Reservoir Storage

 Diversions of available Sacramento River water to Sites Reservoir via existing Tehama-Colusa Canal and Glenn-Colusa Canal conveyance facilities could occur at any time during the year if flow conditions described above are present in the river. Deliveries for TCCA and GCID service areas would have first priority at the existing Tehama-Colusa Canal and GCID intakes; diversions to Sites Reservoir would come from the unused capacity of the two canals.

 Diversions through the proposed Delevan Pipeline could also occur at any time of the year assuming Sacramento River flow conditions are above the previously described bypass flow criteria. In summer months, preference would generally be given to Sites Reservoir releases to the river, which would result in limited diversions to storage because the pipeline could only convey flows in one direction at a time.

 The annual diversion amount would range between zero in critical and dry years to more than 1,000 TAF in wetter years. Based on modeling results, the average annual diversions for Sites Reservoir would range from 480 to more than 540 TAF of available Sacramento River flow. Most diversions would occur from December through March during wet and above normal water years but could occur at any time during the year if the flow criteria can be met and capacity exists within the diversion facilities described below.

 The existing TCCA and GCID diversion facilities and main canals would be used for the Project, and a new proposed Delevan Pipeline and inlet/outlet would be used to divert and convey water to the proposed reservoir. Total river diversions would be no greater than $5,900 \mathrm{cfs}$ at any given time, in total for the three diversion points. Deliveries for TCCA and GCID service areas would have first priority; diversions to Sites Reservoir would come from the unused capacity of the two canals. Water provided for local uses would be conveyed through existing or proposed upland facilities. The TCCA and GCID diversion facilities have state-of-the-art fish screens and would divert during months when water is available, in accordance with the criteria identified above, depending on year type and Sites Reservoir levels. The proposed Delevan Pipeline diversion facility would be constructed with a similar fish screen that would meet federal and State criteria and divert water in a similar manner, in prescribed operational approach that complies with the criteria identified above.

 Tehama-Colusa Canal Authority's Red Bluff Pumping Plant and Canal. The RBPP, located on the Sacramento River near Red Bluff, would be used as the primary diversion point and would have a total conveyance capacity to divert up to $2,100 \mathrm{cfs}$ after the installation of an additional 250 cfs pump to the existing pump grouping at RBPP. Any unused capacity remaining after meeting existing agricultural demands would be used, as necessary, to convey water to fill Sites Reservoir by conveying water via the Tehama-Colusa Main Canal. Approximately 50 to 60 cfs of the Tehama-Colusa Main Canal capacity is assumed to be used for existing winter operations.

 Glenn-Colusa Irrigation District's Hamilton City Pumping Plant and Main Canal. The GCID Hamilton City Pumping Plant would be used to divert water from the Sacramento River and the GCID Main Canal used to convey water to Sites Reservoir. This facility has a 3,000 cfs diversion capacity at the Sacramento River intake and the GCID Main Canal capacity at the TRR is 1,800 cfs. Diversions at the GCID diversion facility would be made to supplement those made at the RBPP and the Delevan Pipeline facility described below. Unused Main Canal capacity, remaining after existing agricultural operations, would be used as necessary to convey water to the Sites Reservoir.

 Delevan Pipeline Intake/Discharge Facilities. The proposed Delevan Pipeline Intake/Discharge Facilities would divert up to 2,000 cfs from the Sacramento River and convey water through the Delevan

 Pipeline to Sites Reservoir when flows were available. Diversions through the proposed Delevan Pipeline would occur at any time of the year, as needed, in conjunction with the two existing diversions previously described and in accordance with the same criteria. It is anticipated in summer the pipeline would often be used to release flows to the river. Preference would generally be given to release operations resulting in limiting diversions to storage in the summer because the pipeline could only convey flows in one direction at a time.

 ### 4.1.4 Releases from Sites Reservoir

 Operation of the Delevan Pipeline Intake/Discharge Facilities would include releases from Sites Reservoir to the Sacramento River. As is common to all larger reservoirs throughout the Central Valley, Sites Reservoir is expected to become stratified because of warming within the upper layer of the reservoir in the summer.

 The Project would be operated to achieve a variety of benefits associated with the Project's primary objectives in specific year types and times of year as determined most needed. A maximum of up to 2,500 cfs could be released from the Delevan Pipeline to meet downstream needs. Typical releases would be $1,500 \mathrm{cfs}$. Additional releases could also be made at Funks Creek, Stone Corral Creek, the TCCA Canal, and the GCID Main Canal to support other downstream uses. In drought conditions, priority operations would include:

 - Support improved cold-water pool conservation and stabilize Sacramento River fall flows for improving spawning and rearing success of anadromous fish
 - Provide water to the Cache Slough area via the Yolo Bypass in summer
 - Provide water for Incremental Level 4 refuge deliveries per CVPIA
 - Provide water to Sites water users North and South of the Delta
 - Potentially improve flows to stabilize river flows in the fall to help protect fish habitat

 The reservoir outlet structures included in the Project would allow withdrawal of water from the reservoir over a range of depths to manage release temperatures to match Sacramento River temperatures to the extent possible; and, as such, releases would be managed to limit potential temperature effects.

 ### 4.1.5 Hydropower Generation

 Hydropower generation would be an incidental benefit of conveying water through specific Project facilities and would be influenced by the timing of releases and movement of water and seasonal operational decisions. Four categories of hydropower operations are anticipated:

 - Seasonal hydropower as produced by the normal water operations of the Project. As the Project pumps or releases water for its normal operation, power would be consumed or generated by Project hydropower facilities.
 - Daily pump-back hydropower operation would be determined by the leftover capacity in the proposed Sites Pumping/Generating Plant and Holthouse Reservoir. When those facilities have enough capacity, the Sites Reservoir would release water through the Sites Pumping/Generating Plant into Holthouse Reservoir during on-peak electrical times to generate high revenue power. During off-peak times, water would be pumped back into Sites Reservoir.
 - The Project could release water through the Sites Pumping/Generating Plant to generate power to supplement other renewable power sources (such as wind and solar) in times when those sources typically produce less power. Similarly, power could be consumed by pumping water into Sites

 Reservoir from Holthouse Reservoir when renewable sources peak and the grid has a surplus of power that can be "saved" for later generation when the renewable peak has diminished.

 - Hydropower could also reduce greenhouse gas emissions when paired with solar and wind energy. To ensure that the greenhouse gas emissions from construction activities are mitigated within the first 15 years of operation, the Project would: (1) obtain at least 20 percent of the power used for pumping water from the Sacramento River and the proposed Holthouse Reservoir into the Sites Reservoir from wind and/or solar energy and (2) use at least 20 percent of the Project's generated power and/or served pump load to provide integration services needed to firm up highly variable wind and/or solar generation. The 20 percent integration with wind and/or solar energy goal will be achieved by using variable-speed, pumping-generating units installed at Project pumping/generating plants.

 ### 4.2 Ecosystem Enhancement Storage Account

 Sites Reservoir would be operated in a cooperative manner with other state and federal reservoirs to support ecosystem benefits and enhancements, including actions to increase survival of anadromous and endemic fish populations. Operational actions would include improving conditions related to water temperatures, river flows, and releases to improve Delta water quality.

 The operation of Sites Reservoir to provide a variety of ecosystem benefits would allow for the potential development and administration of an ecosystem enhancement storage account, which could be managed by either the Authority or the State to provide water for ecosystem and water quality purposes. Such an account could provide a pool of dedicated storage to manage in cooperation with existing operations to improve cold-water conservation storage, stabilize river flows during critical fisheries periods, increase flows through certain watercourses and/or facilities (e.g., Yolo Bypass), improve water quality, and/or enhance habitat restoration.

 During early development of this Project, meetings were held with the Sacramento River Flow Regime Technical Advisory Group (Technical Advisory Group), which comprises environmental advocacy groups, academics, and representatives from federal and California water resource and wildlife agencies (the Technical Advisory Group is described in more detail in Chapter 36 Consultation and Coordination). The Technical Advisory Group convened in 2007 to identify benefits and potential impacts of the Project to the flow regime of the Sacramento River and related ecosystem processes. Through meetings that continued for more than 2 years, the group and proponents of Sites Reservoir identified a list of potential operational strategies for the Project that could be used to improve ecosystem conditions related to increased survival of anadromous and endemic fish populations. These operational strategies include cooperation with the Authority and Reclamation for the Project to divert, store, and release water to meet obligations that would otherwise be met through the operations of Shasta Lake, Trinity Lake, Folsom Lake, or Lake Oroville. In this manner, cooperative operational strategies could improve ecosystem conditions by:

 - Improving the reliability of cold-water pool storage in Shasta Lake in May to increase operational flexibility to provide flows in late summer and fall to maintain suitable water temperatures in the Sacramento River, with particular emphasis on Below Normal, Dry, and Critical water year types.
 - Increasing available water in Shasta Lake to increase operational flexibility to release flows from Keswick Reservoir to maintain appropriate mean daily water temperatures year-round at levels suitable for all species, races, runs, and life stages of anadromous salmonids in the Sacramento River between Keswick Dam and Red Bluff, with particular emphasis on the months of highest potential
 water temperature-related impacts (i.e., July through November) during Below Normal, Dry, and Critical water year types.
 - Increasing available water in Shasta Lake to increase operational flexibility to release flows from Keswick Reservoir in a manner to stabilize flows in the Sacramento River between Keswick Dam and the Red Bluff to minimize dewatering of fall-run Chinook salmon redds, especially during spawning and embryo incubation life stage periods from October through March.
 - Improving the reliability of cold-water pool storage in Folsom Lake in May to increase operational flexibility to provide appropriate flows with suitable water temperatures in the lower American River for juvenile steelhead over-summer rearing and fall-run Chinook salmon spawning from May through November during all water year types.
 - Increasing available water in Folsom Lake to improve operational flexibility to release flows from Lake Natoma in a manner that stabilizes flows in the lower American River to: (1) minimize dewatering of fall-run Chinook salmon redds from October through March; (2) minimize dewatering of steelhead redds from January through May; and (3) reduce the occurrence of stranding of juvenile anadromous salmonids due to isolation events that occur when flows of $4,000 \mathrm{cfs}$ or greater are reduced to less than $4,000 \mathrm{cfs}$, particularly from October through June.
 - Improving the reliability of cold-water pool storage in Lake Oroville in the spring to increase operational flexibility to provide appropriate flows with suitable water temperatures in the lower Feather River for juvenile steelhead and spring-run Chinook salmon over-summer rearing and fall-run Chinook Salmon spawning from May through November during all water year types.
 - Increasing available water in Lake Oroville and Thermalito Reservoir to increase operational flexibility to release flows in a manner to stabilize flows in the lower Feather River to: (1) minimize redd dewatering, (2) minimize juvenile stranding, and (3) reduce the occurrence of isolation or stranding of anadromous salmonids.
 - Providing water to meet Incremental Level 4 wildlife refuge water needs north of the Delta and south of the Delta to supplement refuge supplies up to Level 4 criteria (CVPIA)
 - Operating in a flexible manner to support storage and associated releases that could be adaptively managed to support operational actions found to produce the greatest benefits over time. Ecosystemspecific objectives could include the release of water through the Colusa Basin Drain into the Yolo Bypass to deliver nutrient-laden water into the Cache Slough area to increase delta smelt productivity.
 - Operating Sites Reservoir diversions and releases to increase the reliability of floodplain inundation in the Sutter and Yolo bypasses. In coordination with the operation of proposed bypass water control devices (e.g., the proposed Fremont Weir Adult Fish Passage Modification Project), this action would make water available to facilitate better management of the frequency, duration, and timing of inundation within the floodplain of the Sacramento River and the Sutter and Yolo bypasses.

 ## 5. Environmental Commitments Included as Part of the Project

 The following standardized environmental measures, plans, protocols, and BMPs would be incorporated into the Project, including construction contract specifications, as appropriate, to avoid or minimize potential impacts during construction, operations, and maintenance. These commitments are generally based on current adopted rules and regulations; established regulatory agency plans, policies, and programs; and accepted industry standards.

 ### 5.1 Worker Environmental Awareness Program

 A Worker Environmental Awareness Program (WEAP) would be prepared, and all construction crews and contractors will be required to participate in WEAP training prior to starting work on the Project. The WEAP training will include a review of the special-status species, cultural, archaeological, paleontological, and other sensitive resources and areas that could exist in the Project area; the locations of sensitive biological resources, their legal status, and protections; measures to be implemented for avoidance of these sensitive resources; and other required environmentally related resources. A record of all personnel trained will be maintained.

 ### 5.2 Environmental Site Assessment

 Federal and State regulations and policies, including the Comprehensive Environmental Response, Compensation and Liability Act, All Appropriate Inquiry, California Public Resources Code 21151.4, and the Certified Unified Program administered by the respective county agencies, would require environmental site assessment procedures (due diligence) for future development on or near any potentially hazardous or contaminated sites. A Phase I Environmental Site Assessment (ESA) would be conducted as appropriate for property considered for purchase, transfer, retirement, or sale in fee or easement for the Project. The evaluation would assess the potential for hazardous substance contamination in accordance with all applicable federal, State, and local statutes and regulations. Subsequent actions, such as Phase II ESA and III ESA, would be taken as necessary and appropriate. A Phase II ESA would involve sample collection and analysis to identify and characterize contamination as needed. A Phase III ESA would provide a plan for design and implementation of mitigation or remediation (including, but not limited to, removal of underground storage tanks, drums, buried waste, or other items potentially associated with contamination) and would identify the proper storage, handling, transport, and disposal of designated and hazardous waste if so required.

 ### 5.3 Construction Management Procedures

 Required construction management procedures would be incorporated into all construction contractor specifications to avoid or minimize construction-related impacts, including those on public health and safety, in accordance with applicable federal, State, and local laws and regulations. All adjacent property owners would be notified of project construction activities prior to initiation of construction. The plan would include the following standard requirements and would be incorporated into the construction specifications for all contractors:

 - Informing contractors and subcontractors of work hours, modes and locations of transportation, and parking for construction workers
 - Locating overhead and underground utilities
 - Obtaining all necessary utilities excavation or encroachment permits
 - Staging utility line modifications and relocations in a manner that minimizes interruption of service
 - Requiring worker health and safety provisions
 - Identifying all approved truck routes, access roads, and management
 - Providing stockpiling and staging procedures
 - Issuing terms and conditions of all Project permits and approvals
 - Providing local and regional emergency response services contact information
 - Providing construction notification procedures for Glenn, Colusa, and Tehama county police, public works, fire departments, and other public service providers
 - Making all required lighting during construction be directional in nature to minimize glare impacts to humans and wildlife

 ### 5.3.1 Fire Safety and Suppression

 The Authority would incorporate into contract specifications that all contractors would be required to implement onsite BMPs to reduce the potential for accidental fires, including the following:

 - Making sure all motorized equipment used during construction has an approved spark arrestor.
 - Preparing a fire safety plan for Glenn and Colusa county review. This plan would include precautions during times of high-fire danger, a list of fire-suppression equipment and tools to have available, a description of available communications, specifications for the supply of water to have available, and descriptions of other actions that would reduce the risk of ignition and facilitate immediate control of an accidental fire.
 - Having easily accessible fire-suppression equipment available at all work locations.

 ### 5.3.2 Construction Equipment, Truck, and Traffic Management

 The following measures would be implemented as part of all applicable contractor specifications to minimize potential road and traffic impacts in and near the project area, related to facility construction, access to all work sites, and hauling of necessary materials:

 - Identifying specific haul and access routes with all contractors when multiple facility sites are under construction concurrently, so that project-generated construction traffic is dispersed to the extent practicable and necessary.
 - Installing traffic control devices, as specified in Caltrans’ Manual of Traffic Controls for Construction and Maintenance Work Zones, where needed to maintain safe driving conditions, including use of signage to alert motorists of construction activities, potential hazards, and travel detours, as well as the use of flaggers when appropriate.
 - Ensuring that the Authority or its contractors would survey and describe the preconstruction roadway conditions of all existing roads to be used for access to Project facilities prior to construction. Within 30 days after construction is completed, the Authority would survey the same roadways to identify
 any damage that has occurred. Roads damaged by construction would be repaired to a structural condition equal to the condition that existed prior to construction activity.

 During operations and maintenance, truck and other maintenance equipment will be used in a manner to limit impacts and use per applicable federal, State, and local regulations.

 ### 5.4 Stormwater Pollution Prevention Plan, Erosion Control, Management, and Dewatering

 The Project is subject to construction-related stormwater permit and dewatering requirements of the federal Clean Water Act, National Pollutant Discharge Elimination System. The Authority and Reclamation would obtain required permits through the RWQCB before any Project-related ground-disturbing construction activity occurs. As required by the State Water Resources Control Board Construction General Permit, a stormwater pollution prevention plan (SWPPP) would be prepared and implemented before construction starts and throughout the Project construction period. The SWPPP would identify BMPs to prevent and minimize the introduction of contaminants into surface waters. In addition, all BMPs identified below would be employed as necessary during all Project operation and maintenance activities anticipated to require ground disturbance.

 The objectives of the SWPPP would be to: (1) identify pollutants, and their sources, associated with Project construction activities that may affect stormwater quality, (2) identify BMPs to reduce pollutants in stormwater discharges during and after construction and (3) identify non-stormwater discharges and develop a plan to eliminate, control, or treat all non-stormwater discharges. BMPs (which would also be employed during operation and maintenance activities as necessary) would include site management/BMP installation; non-stormwater management; erosion and sediment controls; and an inspection, monitoring, and maintenance program, including the following:

 - Temporary erosion control measures (e.g., silt fencing, weed-free straw bale barriers, fiber rolls, storm drain inlet protection, hydraulic mulch, and stabilized construction entrances) would be employed for all disturbed areas. The SWPPP would also include development of site-specific structural and operational BMPs to prevent and control impacts on runoff water quality, measures to be implemented before each storm event, inspection and maintenance of BMPs, and monitoring of runoff quality by visual and/or analytical means.
 - No disturbed surfaces would be left without erosion control measures in place during the winter and spring.
 - Sediment would be retained onsite by a system of sediment basins, traps, or other appropriate measures.
 - Post-construction erosion control measures would be implemented (including silt fencing, weed-free straw bale barriers, fiber rolls, hydraulic mulch/seeding, and vegetative plantings) and monitored to ensure minimization of water quality and associated impacts. Revegetation treatments would be integrated into grading plans to create favorable planting environments that would aid plant establishment and natural regeneration. Whenever feasible, local native plant species would be used.
 - Groundwater/dewatering would be handled in a manner that would not impact non-stormwater discharges.

 During operations and maintenance, Project facilities including, but not limited to, roads (including access roads), other paved and unpaved surfaces, structures, and equipment, will be properly maintained to avoid the potential for erosion and sediment/siltation into local waterbodies and in compliance with all applicable federal, State, and local regulations. Project operation and maintenance erosion and sediment control plans will be prepared and implemented as determined necessary depending on the specific activity and potential for erosion or other impacts.

 ### 5.4.1 Compliance with the Requirements of RWQCB Order No. 5-00-175

 Groundwater pumped as part of construction-related dewatering will be contained onsite within bermed areas adjacent to the construction areas to avoid impacts to surface waters. As necessary, the Authority will ensure that the water is pumped into Baker tanks or an approved equivalent with either a filter or gel coagulant system or other containment to remove sediment, as required. Remaining water will be discharged to a designated receiving water body or applied to land in accordance with the requirements of RWQCB Order No. 5-00-175. On upland areas, sprinkler systems may be used to disperse the water in support of revegetation efforts. BMPs described in the SWPPP will also be implemented to retain, treat, and dispose of groundwater. Measures will include, but are not limited to the following:

 - Directly conveying pumped groundwater to a suitable land disposal area capable of percolating flows
 - Retaining pumped groundwater in surface facilities to reduce turbidity and suspended sediment concentrations
 - Testing water collected during dewatering for contamination prior to disposal if contamination is suspected
 - Treating (i.e., flocculating) pumped groundwater to reduce turbidity and concentrations of suspended sediments if turbidity exceeds RWQCB effluent limitations as defined in General Order 5-00-175.

 ### 5.4.2 Spill Prevention and Hazardous Materials Management

 Hazardous materials and hazardous wastes including fuels, oils, grease, and lubricants would be used and stored for construction, operation, and maintenance of the proposed Project. These materials would be used, stored, and disposed according to applicable regulations (Chapter 4 Regulatory Requirements and Permit Summary and Chapter 28 Public Health and Environmental Hazards). As part of the SWPPP, a spill prevention and control plan would be developed and implemented to minimize effects from spills of hazardous or petroleum substances during construction and operation/maintenance of the Project. The spill prevention and control plan would include measures to avoid the accidental release of chemicals, fuels, lubricants, and non-stormwater into channels and account for all applicable federal, State, and local laws and regulations, including the Resource Conservation and Recovery Act. Spill prevention kits would always be in close proximity when hazardous materials are used (e.g., crew trucks and other logical locations). Feasible measures would be implemented so that hazardous materials would be properly handled by all reasonable means when working in or near any waterway. No fueling would be done within the ordinary high water mark, immediate floodplain, or full pool Inundation Area unless equipment would be provided so that any accidental fuel spill would not be able to enter the water, contaminate sediments that may come into contact with water, or damage wetland or riparian vegetation. Any equipment that can readily moved out of the channel would not be fueled in the channel or immediate floodplain. For all fueling of stationary equipment at the construction sites, containments would be provided to the degree that any spill would not enter the channel or damage wetland or riparian vegetation. Equipment would not be serviced within the ordinary high water mark or immediate
 floodplain, unless the equipment stationed in these locations cannot be readily relocated (e.g., pumps and generators).

 Additional BMPs designed to avoid spills from construction equipment and equipment used for the operation and maintenance of Project facilities would also be implemented, including the following:

 - Storing hazardous materials in double containment
 - Disposing all hazardous and nonhazardous products in a proper manner
 - Monitoring onsite vehicles for fluid leaks and regular maintenance to reduce the chance of leakage
 - Providing containment (e.g., a prefabricated temporary containment mat, a temporary earthen berm, or other measure) of bulk storage tanks having a capacity of more than 55 gallons

 In addition, existing federal, State, and local worker safety and emergency response regulations require that if any unforeseen hazardous conditions are discovered during construction, the contractor must coordinate with the appropriate agencies, including Colusa and Glenn counties, for the safe handling, sampling, transportation, and disposal of encountered materials. The contractor will also be required to comply with California Occupational Safety and Health Administration standards that ensure worker health and safety.

 ### 5.5 Mosquito and Vector Control

 All Project contractors shall coordinate with Glenn County Mosquito and Vector Control District, the Colusa County Environmental Health Department, and the Colusa County Mosquito Abatement District regarding implementation of federal, State, and local vector control requirements during construction of all Project facilities. The Authority will work with Glenn and Colusa counties to ensure appropriate vector control for the operation and maintenance of all project facilities, including recreation areas, to minimize potential impacts to human health.

 ### 5.6 Groundwater/Dewatering Water Supply

 In the unlikely event that adjacent existing groundwater well users experience temporary, localized impacts to groundwater availability during construction of Project facilities because of construction dewatering (rather than climatic conditions or an increase in non-project groundwater production) such that an existing local well no longer temporarily supports its current use, an alternate water supply will be provided to the landowner during the construction dewatering period.

 ### 5.7 Visual and Aesthetic Design, Construction, and Operation Practices

 Standard and best practice approaches will be implemented during the design, construction, and operation phases to minimize visual and aesthetic impacts to potential residents and other viewers caused by the construction and operation of all Project facilities, including the following:

 - Using native trees, bushes, and shrubs, in a manner that does not compromise facility safety, and access, to screen Project facilities that may substantially degrade the existing visual character of the site(s)
 - Incorporating high-quality site design and architecture that does not detract from the rural nature of the surroundings
 - Locating, designing, and constructing retaining walls and erosion control devices or structures to avoid detracting from the scenic quality of surrounding areas to the extent possible

 ### 5.8 Emergency Action Plan

 An emergency action plan would be implemented for Project construction and operation. The plan would include emergency notification flowcharts, notification procedures, inundation maps, and a variety of other important emergency response protocols for notifying downstream entities if an emergency release was anticipated to occur. The emergency action plan would address potential and actual emergency conditions and any uncontrolled release of water, including release of water through the signal spillway. These plans are typically reviewed annually and periodically tested through tabletop and functional exercises and drills.

 ## Feasibility and Implementation Risk Tab Attachment 3: Schedule

 Attach an estimated schedule for the proposed project until the first year of operation. If the schedule is included in another attachment, identify the location. See section 6003(a)(1)(G) of the regulations.

 WSIP Application Instructions, March 2017

 Sites Reservoir: Implementation Schedule - 2017 to 2021

 ## cWC-WSIP

 | Public |
 | :---: |
 | Benefit |
 | Ratios |
 | (Jan 2018) |

 | Scoring |
 | :---: |
 | and |
 | Ranking |
 | (May 2018) |

 Funding
 Agreement

 CEQA/NEPA

 Federal Feasibility Report

 Sites Reservoir: Implementation Schedule - 2017 to 2021
 Permits and Water Rights

 Permit Application
 Development
 (Summer 2018)

 Designs, Operations, Analyses

 Sites Project Authority

 Sites Reservoir: Implementation Schedule - 2021 to 2031
 Designs, Operations, Analyses

 $$
 \text { Engineering Support During Construction (Fall } 2021 \text { to Feb 2030) }
 $$

 Sites Project Authority

 Project Construction and Initial Operations

 | SHEET LIST TABLE | | |
 | :---: | :---: | :---: |
 | SHEET Number | draming number | SHEET TTLE |
 | | | GENERAL |
 | 1 | 6-0001 | Cover Sheer |
 | | 6-0002 | SHEET INOEX ANO NOTES |
 | | | STES RESERVOIR CVIL |
 | 3 | CS-0701 | ReSERVOOR CLEARING AND DEMOLTION PLAN |
 | 4 | CS-0702 | GAS WELL Plug |
 | 5 | CS-0801 | POTENTAL BORROW SOURCES |
 | | | ROAOS \& Brioces |
 | 6 | CR-101 | Road MOOIFCAITON Plan |
 | 7 | CR-102 | PROPOSED NORTHERN TEMPORARY BYPASS ROAD |
 | 8 | CR-200 | STIES LOOOCA ROAD RELOCATON SHEET NOEX |
 | 9 | CR-201 | STIES LOOOCA ROAD RELICCATON PLIN ANO PROFILE STA. $10+00$ TO STA. $36+00$ |
 | 10 | CR-202 | STES LOOOCA ROAD REILCATION PLAN AND Profile sta. $36+00$ TO STA. $62+00$ |
 | 11 | CR-203 | STIES LOOOCA ROAD RELIOCATON PLAN AND Profile sta. $62+00$ TO STA. $90+00$ |
 | 12 | CR-204 | STEES LOOOCA ROAA RELOCATON PAAN AND Profile Sta. $90+00$ To STA. $118+00$ |
 | 13 | CR-205 | SITES LOOOCA ROAD RELICCATON PLAN ANO PROFLLE STA. $118+00$ TO STA. $146+00$ |
 | 14 | CR-206 | Sties Loooch road relocation Plan Ano profle sta. $146+00$ To Sta $174+00$ |
 | 15 | CR-207 | Sties Loooca road relocation Plan and profle Sta. $174+00$ To Sta $202+00$ |
 | 16 | CR-208 | SITES LOOOCA ROAD RELOCATON PLAN ANO PROFLIE STA. $202+00$ TO STA. $230+00$ |
 | 17 | CR-209 | |
 | 18 | CR-210 | |
 | 19 | CR-211 | SITES LOOOCA ROAD RELIOCATON PLIN ANO PRofle STA. $286+00$ TO STA. $314+00$ |
 | 20 | CR-212 | |
 | 21 | CR-301 | TYPCAL ROAD Cross sections |
 | 22 | CR-302 | SOUTH ERIOE NO. 1 AND 2 TTPCAL SECTION |
 | 23 | CR-401 | South brice no. 1 General Plan and lievation |
 | 24 | CR-402 | SOUTH BRICE No. 2 General Plan and elevation |
 | | | PaRKS And recreational areas |
 | 25 | PR-101 | PARKS AND RECREATONAL AEAS OVERVEW |
 | | | dans |
 | 26 | CM-100 | Emankwents And Sadole dams locaton Plan |
 | 27 | CM-101 | STEES DAM PLAN |
 | 28 | CM-301 | STES DAM SECTION A-A |
 | 29 | CM-302 | STIES DAM SECTON B - ${ }^{\text {d }}$ |
 | 30 | CM-303 | STIES DAM SECOON C-C |
 | 31 | CM-501 | STIES DAM Grouting detals |
 | 32 | CM-502 | STIES DAM Foundation SUFFACE TREATMENT |
 | 33 | C6-101 | GOLDEN GAIE dAM Plan |
 | 34 | C6-301 | GOLDEN GATE DAM SECTON A-A |
 | 35 | C6-302 | COLDEN GATE DAM SECTON B-B |
 | 36 | C6-303 | Golden gate dam secton c-c |
 | 37 | C6-304 | GOLDEN GATE DAM SECTON D-D |
 | 38 | C6-501 | GOLDEN GATE DAM Grouting detal |
 | 39 | CS-101 | SADOLE DAMS PLAN |
 | 40 | CS-102 | SADOLE DAMS PLAN, DAM NO. 1 AND 2 |
 | 41 | CS-103 | SADDLE DAMS PLAN, DAM NO. 3 |
 | 42 | CS-104 | SADDLE DAMS PLAN, DAM No. 4, 5, AND 6 |
 | 43 | CS-105 | SADOLE DAMS PLAN, DAM NO. 7, 8, AND 9 |
 | 44 | CS-301 | SAODLE DAMS TPPCAL SECTONS, DAM No. 1, 2, 4, AND 9 |
 | 45 | CS-302 | SADDLE DAMS TYPCAL SECTONS, DAM NO. 3, 5, 6, 7, AND 8 |
 | 46 | CS-501 | SICNAL SPILLWAY DEETLLS, SADOLE DAM No. 6 |
 | 47 | CH-101 | Holithouse reservor Plan |
 | 48 | CH-102 | HOLTHOUSE RESERVOIR PLAN INLET OULLET STRUCTURE PLAN |
 | 49 | $\mathrm{CH}-301$ | Funks Creek and abutment area embankwent cross sectoon |
 | 50 | CH-501 | Holthouse reservor elevatio ano detals |

 | | | delevan \& TrR Plpeline |
 | :---: | :---: | :---: |
 | 51 | CP-100 | delevan and trr overall plan ano proflie |
 | 52 | CP-101 | delevan and tre Ppeline Index sheet |
 | 53 | CP-201 | delevan plpeline plan and profle sta. $167+36$ To Sta. $288+00$ |
 | 54 | CP-202 | delevan prpeline plan and Profile sta. $208+00$ To Sta. $256+00$ |
 | 55 | CP-203 | delevan preline plan and Profile sta. $256+00$ To Sta. $300+00$ |
 | 56 | CP-204 | delevan preline plan and Profile sta. $30+00$ To Sta. $366+00$ |
 | 57 | CP-205 | delevan preline plan and Proflle sta. $356+00$ To Sta. $144+00$ |
 | 58 | CP-206 | delievan preine plan and Profile sta. $414+00$ To Sta. 42+00 |
 | 59 | CP-207 | delevan plpeline plan and profle sta. 472+00 To Sta. $532+00$ |
 | 60 | CP-208 | delevan ppeline plan and proflle sta. $532+00$ To Sta. $592+00$ |
 | 61 | CP-209 | delievan preline plan and Profile sta. $592+00$ To Sta. $652+00$ |
 | 62 | CP-210 | delevian plpeline plan and profle sta. $652+00$ To Sta. $712+00$ |
 | 63 | CP-211 | DELEVVAN PPELINE PLAN AND Profile sta $712+00$ To STA. $72+00$ |
 | 64 | CP-212 | delevan ppeline plan and Profile sta. $772+00$ To Sta $832+00$ |
 | 65 | CP-213 | Delevien preline plan and profle sta. $832+00$ To Sta. $892+00$ |
 | 66 | CP-301 | DELEVAN AND TRR TMPCAL PIPE CROSS SECTONS |
 | 67 | CP-501 | delevan plpelne bore and jack detals |
 | 68 | CP-502 | delevan Preline Manhole and blowoff structure detals |
 | 69 | CP-503 | delevan and trr trpcal mantole and ar valve detals |
 | 70 | CP-504 | delevan ano trr ppeline Trical cross cand detals |
 | 71 | CP-505 | delevan and trr prelune natural gas ppeline re-constructon |
 | 72 | CP-506 | Delevan and trr Preline ple detals |
 | 73 | CP-507 | Delevan and trr Ppeline cathoolc Protecton |
 | 74 | CP-508 | delevan and tre preline cathool protecton nstallaton |
 | 75 | CP-701 | delevan and tre plpelin dewaterng |
 | | | termmal regulatig reservor (trR) |
 | 76 | CT-101 | TERMINAL RECULATING RESERVOIR PLAN |
 | 77 | CT-301 | TRR PUMP-GENERATON FACILIT FLLOR PLAN |
 | 78 | CT-302 | TRR PUMP-GENERATON FACLITY TRANSVERSE SECTION 620 CFS UNT |
 | 79 | CT-303 | TRR INLET AND GCID Flow Control diversion structures |
 | 80 | CT-304 | TRR 200-CFF SPILWAY AND 150-CFS OUULET WoRks |
 | 81 | CT-305 | TRR BASIN TPPICAL SECTONS |
 | 82 | CT-306 | TRR 200 CFS SPLLWAY |
 | | | Sties Inlet outiet structure |
 | 83 | Cl-101 | INLET-OUTLLE TUNNEL PLAN |
 | 84 | $\mathrm{Cl}-201$ | NLLET-OUTLET TUNNEL PROFILE |
 | 85 | Cl-501 | MULTI-LVVEL ILET-OUTLET TOWER STRUCTURE DETALS |
 | 86 | Cl-502 | MULT-LEVEL ILLET-OUTLET Tower structure And tunnel detals |
 | | | pump generating plants |
 | 87 | CF-101 | DELLVAN INTAKE PUMPING-GENERATING PLANT AND FISH SCREEN STRUCTURE |
 | 88 | CF-102 | DELEVAN INTAKE PUMPING-GENERATING PLANT AND FISH SCREEN STRUCTURE TOP PLAN |
 | 89 | CF-103 | DELEVAN INTAKE PUMPING-GENERATING PLANT AND FISH SCREEN STRUCTURE OONER LEVEL PLAN |
 | 90 | CF-301 | DELEVAN INTAKE PUMPNG-GENERATNG PLANT AND FISH SCREEN STRUCTURE ACCESS ROAD PLIE PLAN AND SECTON |
 | 91 | CF-302 | DELEVAN INTAKE PUMPING-GENERATING PLANT AND FISH SCREEN STRUCTURE TYPICAL FISH SCREN BAY SECTION |
 | 92 | CF-303 | |
 | 93 | -304 | DELEVAN INTAKE PUMPING-GENERATING PLANT AND FISH SCREEN STRUCTURE SEDMENT REMOVAL PIPNG SECTONS |
 | 94 | CF-305 | DELEVAN INTAKE PUMPING-GENERATNG PLANT AND FISH SCREEN STRUCTURE SEDIMENT REMOVAL PIPNG SECTONS |
 | 95 | CF-306 | delevan intake pumping-Generating plant And fish screen structure LoNGTUDNNAL section |
 | 96 | CF-307 | DELEVAN INTAKE PUMPING-GENERATING PLANT AND FISH SCREEN STRUCTURE |
 | 97 | CF-308 | DELEVAN INTAKE PUMPING-GENERATNG PLANT AND FISH SCREEN STRUCTURE AIR CHAMBER PLANT AND ELEEVATON |

 | 98 | $\mathrm{CN}-101$ | STES PUMPING-GENERATING PLANT
 SITE PLAN |
 | :---: | :---: | :---: |
 | 99 | CN-201 | STES PUMPING-GENERATNG PLANT |
 | 100 | CN-202 | STES PUMPPGG-GENERATING PLANT
 SIIE RLAN |
 | 101 | CN-301 | SITES PUMPING-GENERATNG PLANT PLIN AND SECTINN |
 | 102 | CN-302 | SITES PUMPPNG-GEEEERATNG PLANT CROSS SECTON |
 | | | Sctrcal |
 | 103 | E-101 | SITES TRANSMSSIION LINE PLAN |
 | 104 | E-102 | STIES-TRR AND DEELEVAN TRANSMSSION PLAN DEEALS |
 | 105 | E-103 | Stes pumplic-Generating plant electrcal ste plan |
 | 106 | E-104 | SIIES PUMPING-GENERATING PLANT SWTCCYYARD PLAN |
 | 107 | E-105 | delevan PuMPNG-GEnerating Plant swichrard plan |
 | 108 | E-106 | delevan puMPng-Generating plant floor Plan |
 | 109 | E-107 | delevan Pumping-generaing plant sit Plan |
 | 110 | E-501 | TRANSMSSION TOWER, POLLES TPPCALL DETALS |
 | 111 | E-601 | STIES SwTCHYARD SINGLE LINE DIAGRAM |
 | 112 | E-602 | Delevan Swichyaro since lin dagram |
 | 113 | E-603 | TRR SWTCCHYARD SINGLE LINE DIAGRAM |
 | | | appendix and references |
 | 114 | B-100 | APPENOIX |
 | 115 | B-101 | DELEVVAN $\&$ TRR PPELINE BORNG LOCATON MAP |
 | 116 | B-301 | delevan \& TRR PPELINE Boring locs 1 Of 4 |
 | 117 | 8-302 | delevan \& TRR PPreLine boring locs 2 Of 4 |
 | 118 | B-303 | DELEVAN \& TRR PPELINE Boring locs 3 Of 4 |
 | 119 | 8-304 | DELEVAN \& TRR PPELINE BORNG LOCS 4 Of 4 |
 | 120 | B-305 | Delevan- TRR PPELINE GElogic cross sectoon |
 | 121 | B-1101 | Sties dam exploration and geologic map 1 Of 2 |
 | 122 | B-1102 | SITES DAM ExPLORATON AND GELLOGIC MAP 2 OF 2 |
 | 123 | B-1301 | StIES DAM Geologic section 1 Of 2 |
 | 124 | B-1302 | STES DAM Geologic section 2 Of 2 |
 | 125 | B-2101 | GOLDEN GATE DAM EXPLOPRATON \& GEOLOGIC MAP 1 OF 10 |
 | 126 | B-2102 | GOLLEN GATE DAM ExPLORATION \& GEOLOGIC MAP 2 OF 10 |
 | 127 | 8-2103 | GOLDEN GATE DAM ExPLORATION \& GELOLGC MAP 3 Of 10 |
 | 128 | B-2105 | GOLIEN GATE DAM ExPLORATION \& GELOLGIC MAP 5 Of 10 |
 | 129 | B-2104 | GOLLEN GATE DAM ExPLORATON \& GEOLOGIC MAP 4 OF 10 |
 | 130 | B-2106 | GOLDEN GATE DAM ExPLORATION \& GELOLIC MAP 6 OF 10 |
 | 131 | 8-2107 | GOLIEN GATE DAM ExPLORATION \& GELlogic MAP 7 OF 10 |
 | 132 | 8-2108 | GOLDEN GATE DAM ExPLORATON \& GEOLOGIC MAP 8 OF 10 |
 | 133 | B-2109 | GOLLEN GATE DAM EXPLOPATION \& GEOLOGIC MAP 9 OF 10 |
 | 134 | B-2110 | GOLDEN GATE DAM EXPLORATON \& GELOOGC MAP 10 OF 10 |
 | 135 | B-2301 | Gollen gate dam gelogic cross section 1 OF 1 |
 | 136 | B-2302 | GOLDEN GATE DAM GELOOGIC CROSS SECTION 1 OF 2 |
 | 137 | B-2303 | Golden gate daM gelooic cross section 2 OF 2 |
 | 138 | 8-2304 | GOLLEN GATE DAM GElLOGC CROSS SECTON OUTLET TUNNEL 1 OF 2 |
 | 139 | B-2305 | GOLDEN GATE DAM GELLOGC CROSS SECTON OUTLET TUNNEL 2 OF 2 |
 | 140 | B-3101 | SAODLE DAMS 1 \& 2 GElogic MAP |
 | 141 | B-3102 | SADOLE DAM 3 PLAN AND PROFILE |
 | 142 | B-3103 | SADOLE DAMS $4,5 \& 6$ GElOGGC MAP |
 | 143 | B-3104 | SAODLE DAMS $7,8 \& 9$ GEOLOGIC MAP |
 | 144 | B-3301 | SADDLE DAMS 1 \& 2 GEOLOGIC SECTONS |
 | 145 | 8-3302 | SAODLE DAMS $4,5 \& 6$ GElOOGC SECTOONS |
 | 146 | B-4301 | INLET-OUTLET GELLOCIC SECTONS |

 | STRUCTURES TO BE DEMOLISHED | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | APN | нouse | мовıL номе | SEPTC SSYTEM | GRounowater well | baRN | GARAGE Shop | SHED | sLo | Water tower | отнев ${ }^{\text {P }}$ |
 | Town ofstes | 12 | 1 | 13 | ${ }^{13}$ | 2 | 3 | 9 | | | 1 |
 | 011.020.022 | | | | 1 | 1 | | 1 | | | |
 | 011.1020.008 | | | | 1 | 2 | | | | | |
 | 011.030.001 | 1 | | 1 | 1 | 1 | 1 | 1 | 1 | | |
 | 011.1080015 | 1 | | 1 | 1 | 1 | | | | | |
 | 001-100.004 | 1 | | 1 | 1 | 5 | | | 5 | | |
 | 011-100.010 | | | | 1 | 1 | | | | | |
 | 011-123.002 | | | | 1 | 2 | | 1 | | | |
 | 011-130.007 | 1 | | 1 | 1 | 1 | | 2 | | | |
 | 011-150.001 | 1 | | 1 | 1 | 2 | | | 1 | | |
 | 011.150.015 | 1 | | 1 | 1 | 2 | | 2 | | | |
 | 011-150.0.16 | | | | 1 | | | | 1 | | |
 | 011-150.0.017 | | | | 1 | 1 | | 1 | | | 1 |
 | 011-150.022 | | 1 | 1 | 1 | 1 | | 1 | | | |
 | 011-200.002 | 1 | | 1 | 1 | | | 3 | | | |
 | 011-200.003 | | | | 1 | 3 | | | | | |
 | 011-200.007 | | | | 1 | 1 | | | | | |
 | 014070.016 | 1 | | 1 | 1 | | | 3 | 3 | | |
 | 01408080.011 | 1 | | 1 | 1 | | | | | | |
 | 014.170.006 | | | | 1 | 1 | | 1 | | 1 | |
 | 014,470.011 | 2 | | 2 | 2 | 1 | 1 | 1 | | | |
 | 014180.003 | 1 | | 1 | 1 | 1 | 1 | | | | |
 | 014210.001 | 2 | | 2 | 2 | 1 | 2 | 1 | | | |
 | 014240.008 | | | | 1 | 1 | | | | | |
 | тотац | 26 | 2 | ${ }^{28}$ | ${ }_{3}$ | 31 | 8 | ${ }^{27}$ | 11 | 1 | 2 |

 | OTHER ITEMS TO BE DEMOLSHED | | |
 | :---: | :---: | :---: |
 | İem | count | Unt |
 | MAXWELL STEES S STEES LOGOOA ROAOS, APPHALT PAVED | 20.840 | FEET |
 | HuFrmaster roan, ASPHALT PAVED | 740 | feet |
 | Stanomg tmeer | 700 | ACCES |
 | METAL LEECNMG, WTTH ANO WTHOUU BARBEE WRE | 40 | MLES |
 | Underground storage Tanks Ust, OLIFLLEED | 15 | ust |
 | SRING CAPS AT SALT LAKE (ONE ILAKE; TWO UPSTREMM) | | caps |

 ASPHALT CONCRETT PAVEMENT TO BE REMOVED WTHIN THE LIMTS OF THE RESERVOIR BELOW ELL.540.
 3. TABULATED STRUCTURES HAVE NOT BEENVISUALY YSPECTIED
 4. STRUCTURES IDENTFIED FROM 2013 GROUND SURVEY BY DWR
 5. STRUCTURES AND OTHER RACLITTES AND TEMS TO BE DEMOLLSHED SHALL EE REMOVED AND PROPERLY
 WIL NOT BEEPRMITTED.

 One Grounowater well assumed to exist for everr occupied parcelor habitable odeling AN OCUPIED PARCEL. GROUNDNATER WELLSTO BE BLLGGGED AND ABANDONED I NACCORDANCE WTH DWR WATER WELL STANDARDS SECTON 23, BULLETN 74.9
 standing tmber quantity based on owr estimate of remanng tmeer
 9. ONE UNDERGROUND STOPAGE TANK (UST) ASSUMED FOR EVERY TWO BARN STVUCTURES. UST TO OVED OR ABANDONED I I ACCORRANCE WTH LOCALL, STATE AND FEDERAL REGULATIONS.
 10. EACH natural Lspring at salt take to be capped and grouted with ' $\times 4$ 4, 1 -foot thick concrete

 INTERNAL PROJECT BORROW SITES

 EXTERNAL PROJECT BORROW SITES

 ROAD SEGMENT DESCRIPTION

 1. ReAD ARRANGEMETS SHOWN ASSME THE SOUTH BRIOEE WIL

 2. SEE DRAMMG CR-OGO AND Crobor For Estimated Public And

 ## PLAN - DETAIL

 | | SUM OF LENGTH (MLES) | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | gravel | ASHALT | ${ }_{E}^{\text {BRDG }}$ | total |
 | pubic access | 19.73 | ${ }^{11.46}$ | 1.57 | 3276 |
 | Com Road | | | | |
 | Sites Oam to Commuricaion Tower | 1.00 | | | 00 |
 | Eastiside Road | | | | |
 | Fied office and Maitenane Y Yard Access to Pump/Gen Access | | 0.93 | | 0.93 |
 | | 1.52 | | | 1.52 |
 | Maxwel Sites Road to Stone Coral Road | | 1.12 | | 1.12 |
 | Property Nottof fododen Gaie Dam to Noth Road | ${ }^{3.63}$ | | | ${ }_{3}^{3.63}$ |
 | | | 0.95 | | 0.95 |
 | Stone Coral Poad to Field ffice and Mainenanee Yard | | 1.09 | | 1.09 |
 | North Road | | | | |
 | Road 69 at TCC Co Sadde Dam Road | 4.69 | | | 4.69 |
 | Saddle Oam Road 1 S Saddle Oam9 | 1.84 | | | 1.84 |
 | Peninsul Road | | | | |
 | Sties Lootoga Road to Peninsula Hils Receraion Atea | 0.94 | | | 0.94 |
 | Peninsula fills Recreaito Area Roads | 1.00 | | | 1.00 |
 | South Bridge | | | | |
 | South Bidge | | | 1.57 | 1.57 |
 | South Bridge East Apprach | | | | |
 | Stone Coral Rec Road to South Bridge | | 0.28 | | 0.28 |
 | South Bridge West Approach | | | | |
 | Sout Bride et S Sies Lodoga Road | | 2.25 | | 2.25 |
 | Stone Coral Road | | | | |
 | Eastisid Road io South Ridge East Approach | | 1.39 | | 1.39 |
 | South Bidge East Approach to Stone Coral Recereation Aea | 0.26 | | | 0.26 |
 | Sulphur Gap Road | | | | |
 | Huffrastek 0 Leessill Road | 4.85 | | | 4.85 |
 | Maxnel Sies Road to Lurine Road | | 3.45 | | 3.45 |
 | | | | | |
 | PRIVATE ACCESS | 0.58 | 1.47 | 0.00 | 16.85 |
 | Gollen Gate Access Roads | | | | |
 | Eassiside Roadt bototom of Golden Gate Dam | | 0.26 | | 0.26 |
 | Eassisid Roadto Eletrical Sussation | | 0.12 | | 0.12 |
 | Eastiside Road to Field oficice and Mantenence Yard | | 0.04 | | 0.04 |
 | Eassiside Road to PumplCen Plant | | 0.18 | | 0.18 |
 | South Bridge East Appracat of inetoulute Tower | | 0.11 | | 0.11 |
 | South Bidge East Approach to top of Godiden Gaie Dam | | 0.75 | | 0.75 |
 | Sadale Dam Access Roads | | | | |
 | Nooth Roadto Saddle Jam 6 | 0.28 | | | 0.28 |
 | Sadde Pam Roadt S Sadde Oam2 | 0.03 | | | 0.03 |
 | Saddle Dam Road 1 S Saddle Oam 3 | 0.16 | | | 0.16 |
 | Sadde Dam Road to Sadde Dam 5 | 0.11 | | | 0.11 |
 | Temporay Northern Accass | | | | |
 | | | | | |
 | Sadde Oam Road to Stes Loooga | | | | 14.80 |
 | GRAND TOTALS | 20.30 | 12.93 | 1.57 | 49.61 |

 PLAN
 SCALE: $1^{\prime \prime}=100$

 PLAN
 scale: $1^{\prime \prime}=100^{\circ}$

 1

 PROFILE

 ## PLAN

 PROFILE
 $\frac{\text { RO SCALE }}{}$

 StIES DAM

 THE Groutng program for stes dam is assumed to be the same as presented above
 for golden caie daw.
 ALO DAIS
 sadode dans

 ORURFACE FOR THE SHELL (ZONE 3), RANDOM (ZONE 2), FLLER (ZONE 4), ANO DRAN

 NTENSELY WEATHERED BEDROCK WLL BE EXCAYTED FFOM
 TO OBAAN A MOOERAELY WEATHERED BEROCK SURFCEE.

 6. Grouting was not mcluoed in the foundation design of the suall sadole daws (nos

 9. SINCE WATER RRESSURE TESTING IN THE ExPLORATION HOLES NOCCAES THAT THE ROCK

 11. Adoditional grouting and/or teeateent of special features wll likely be required

 SAODLE DAM SPECOL FOUNOATION TREAMENT (SOLL-BENTONTE SUURPY CUTOFF WALIS

 PLAN - EMBANKMENT AND SADDLE DAMS

 REFERENCE NOTES:

 foundation ob, ectives and foundation grouting

 1. To MEET THE

 2. Watir presure test data noicaies some aras of higer hyraulc conouctury in

 $\mathrm{D} \xrightarrow{\text { REG. CE. No. }}{ }^{40105} \mathrm{E}$

 3. For grouting quantit estmate see shet CM-50
 FOUNDATIN TREATMENT -- CLEAN AND SLUSH GROUT
 FOUNDAIION SUAFACES UNDER CORE ZONE 1 AND
 FOUNDATION SURFACES UNDER CORE ZONE A AN
 FLITER/DRAIN ZONE 2. STICH GROUT AT FAULTS.
 SECTION C-C STA. $16+50$

 - Embankment section presented is
 feasibility level geologic
 exploration and material
 explorotion and materials
 investigation, testing an
 evaluation programs.

 2. Embankment zones are as follows
 ZONE (2) Upstream and Downstream
 Transition zoNE $\begin{gathered}\text { Z3 } \\ \text { ZONE }\end{gathered} \begin{gathered}\text { (4) } \\ \begin{array}{c}\text { Fockfill } \\ \text { Random }\end{array} \\ \text { Rand Riprap }\end{gathered}$
 3. $H=$ Height of Dam

 ## NOTES

 | | | DESIGNED $\begin{aligned} & \\ & \\ & \\ & \\ & \\ & \\ & \end{aligned}$ | Approval recommeneo | AECO |
 | :---: | :---: | :---: | :---: | :---: |
 | | | סramv n manumia | AL | |
 | wsp | נв | ${ }^{\text {checkie }}{ }_{\text {u foperss }}$ | Estumer Level | |
 | ve. | APpo | .. | reser | |

 xrew Sites

 ## NOTES: SITES DAM AND GOLDEN GATE DAM

 1. 2 ROWS CONSOLDATED GROUTNG EACH DAM.

 | DRILLING DEPTH OF CURTAIN holes is estimated to be half the heicht of the dam or 100 FEET, WHICH EVER IS GREATER.
 . DRILLING DEPTH OF CONSOLIDATION holes is Estimated to be one-quarter of the height of THE DAME OR 50 FEET, WHICHEVER IS GREATER.
 CONTINGENCY INCLUDED ALLOWANCE FOR GROUTING ABove normal max. w.s. EL. 520'.
 TERTARY GROUTING HOLES ARE ASSUMED ONE-HALF THE LENGTH OF FOUNDATION.
 VERIICATION TESTING WILL BE CONDUCTED ALONG The Centerline every 75 feet to a depth EQUIVALENT TO CURTAIN HOLES. | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | SITES DAM GROUT TABLE | | | | | | | | | |
 | calculared per plan | | | | | | | TOTAL WTH 25\% CONTINGENCY | | |
 | | | | | | | | | | |
 | | | | | | | | | | |

 DENTAL TREATMENT OF SHEAR ZONES, CAVITIES. CRACKS.
 AND SEAMS IN CORE TRENCH

 $\frac{\text { BACKFILL CONCRETING AND SHAPING IN CORE TRENCH }}{\text { NTS }}$

 LOCAL SURFACE TREATMENT AND SHAPING IN CORE TRENCH

 | | | ${ }^{\text {DSSLINED }}$ | ${ }^{\text {appooral recommeneeo }}$ | AECOM |
 | :---: | :---: | :---: | :---: | :---: |
 | | | | | |
 | | | | APProval ev | |
 | wsp | ${ }^{8}$ | ${ }_{\text {checeiol }}^{\ldots}$. ¢оRess | | |
 | | | | | |
 | | | | | D |

 D

 NOTES

 - Embankment section presented is
 feasibility level is based upon
 expioration and materials
 exploration and material
 investigation, testing
 eval
 Embankment zones are as follows

 3. $H=$ Height of Dam
 Notes:
 FOR GROUTING UUANTTTY ESTMMATE SEE DRAWNG CG-501.

 4. SEE SHEET G-003 FOR GROUTING NOTES.

 $$
 500
 $$

 | WSIP APPLICATION ATTACHMENT A4.A | Serce no. |
 | :---: | :---: |
 | GOLDEN GATE DAM GROUTING DETAIL | CG-501 |
 | | |

 \qquad

 NOTES
 Embankment section presented is
 preliminary and is based upon
 preasibility level oeoced upo
 explorotion ond moteriols
 exploration ond moterials
 investigation, testing, and
 evaluatian progans
 2. Embonkment zones ore as follows

 ZONE
 ZONE
 ZONE
 OONE
 OOM
 ZONE (3) Riprap

 TYPICAL SECTION
 SADDLE DAM NOS. 1, 2, 4, AND 9

 NOTES

 1. Embonkment section presented is feosibility level geologic explorotion and moteriols
 investigotion, testing, and investigotion, testing
 evaluation programs.
 2. Embankment zones are as follows:

 $$
 \begin{aligned}
 & \text { ZoNE } \begin{array}{l}
 \text { Core } \\
 \text { Rondom, Predominat } \\
 \text { RONE (3ockmoll } \\
 \text { Rockill }
 \end{array}
 \end{aligned}
 $$

 . $H=$ Height of Dall

 TYPICAL SECTION
 SADDLE DAM NOS. 3, 5, 6, 7, AND 8

 | | | | | | | Appooval recomumeneo | AECOM |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | |
 | | | | | | | Approval er | |
 | ${ }^{13-1} 10 / 101 / 207$ | | | wsp | ${ }^{18}$ | CHECKED ${ }_{\text {u foress }}$ | | |
 | DATE | | | sub. | - | | ressulu | 为 |
 | | A | | | | | | D |

 ## holthouse reservoir

 HOLTHOUSE RESERVOIR NAXIMUM WAER ELEVTION 206.0 FEE
 MINMMU WTR ELEVATITN 1900 EEET
 APPROXXMATE ACTVE STORAGE 6,250 AF

 ## HOLTHOUSE DAM

 CREST LEVEL AT ELEVATION 214.0 feE CREST WDH 20 FEET
 TOTA LENGTH APROXIMATEL 8,500 FET
 LENGTH OF CONCRETE DAM 530 FEET LENGTH OF CONCRETE DAM 530 FEET
 LENATH OF EMANKENT, 7 FET
 MAXIMUM EMBANKMENT HEIGHT 48 FEET

 PLAN - HOLTHOUSE RESERVOIR

 | WSIP APPLICATION ATTACHMENT A4.A | Spec no. |
 | :---: | :---: |
 | HOLTHOUSE RESERVOIR PLAN | CH-101 |
 | | [Rev.SHEET No.
 47 |

 - embankment zones are as follows:

 ZONE (1) CLAY CORE
 ZONE (2) UPSTREAM AND DOWNSTREAM
 ZONE (3) SAND bED AND RIPRAP
 Zone (4) Shell, Local borrow Sm, SC
 2. Borrow from delevan ano trr rpeline excavation, reuse, of exiting
 3. Local borrow sm, sC, reuse of existing embankwent materal.
 4. Two rows of grout curtan as detaled, x-Patienn holes nclined at OPPoSIIG 15 DEGREE ANGLES, EXTENONG TO APPROXXMATELY 25° ' BELOW ROCK SURFACE.

 TYPICAL SECTION ON SHALLOW ROCK
 NTS

 TYPICAL SECTION ON DEEP ROCK
 TYP

 Horizontal scale: $1^{1 "}=200^{\circ}$

 STA.
 $900+00870+00840+00810+00780+00750+00720+00690+00660+00630+00600+00 \quad 570+00 \quad 540+00 \quad 510+00 \quad 480+00450+00 \quad 420+00390+00 \quad 360+00330+00300+00 \quad 270+00 \quad 240+00210+00 \quad 180+00$
 Existing boring log data (Sheets B-0801-B-0805) was used along the proposed alignment
 Dewatering wells are fully penetrating wells in a water table aquifer Required depth of dewatering is 3 -feet below the center line of the excavation, w
 4. Dewatering wells will be spaced on 100 -foot centers.
 both sides of the excavation
 anday er day as clay or clay and silt and 100 -feet in sections characterized
 as sand or gravel -. Dewatening wells are assumed to be 6 -inch diamete

 | Start Station | $\begin{aligned} & \text { End } \\ & \text { Station } \end{aligned}$ | Excavation
 Length (f) | Excavation Width (ft) | Depth to Water Table (H) (ft BGS) | Well Drawdown (hw) (f BGS) | Material | $\begin{gathered} Q \\ \text { (gpm/well) } \end{gathered}$ | | Total Q (gpd/section) |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 192+50 | 220+00 | 2,750 | 120 | 10 | 40 | CL | 0.0 | 0 | - |
 | 220+00 | $350+00$ | 13,000 | 120 | | 50 | CL-ML | 0.1 | 4 | 51,103 |
 | 350+00 | 470+00 | 12,000 | 120 | 5 | 50 | CL-ML | 0.2 | 4 | 50,428 |
 | $470+00$ | $515+00$ | 4,500 | 120 | 5 | 40 | CL | 0.0 | 0 | 0 |
 | $515+00$ | $545+00$ | 3,000 | 120 | 10 | 60 | SP | 22.2 | 639 | 1,916,858 |
 | $545+00$ | 720+00 | 17,500 | 120 | 10 | 40 | CL | 0.0 | 0 | 0 |
 | 720+00 | 790+00 | 7,000 | 120 | 10 | 60 | SP | 13.7 | 393 | 2,752,412 |
 | 790+00 | 890+00 | 10,000 | 120 | 5 | 50 | CL-ML | 0.2 | 4 | 42,023 |

 NOTES:

 Source:

 WSIP APPLICATION ATTACHMENT A4.A
 DELEVAN AND TRR PIPELINE DEWATERING

 $\underset{i=000}{P L A N}-$ TRR INLET AND DIVERSION STRUCTURES $\underset{(T-100}{-}$

 TRR INLET AND DIVERSION STRUCTURES

 D \qquad
 E

 $\underset{\substack{=100^{\circ}}}{\text { CROSS SECTION - TRR 200-CFS SPILLWAY }}$

 PROFILE - TRR 200-CFS SPILLWAY

 \qquad

 FEASIBILITY-LEVEL FINAL FEASIBILITY-LEVEL FINAL
 NOT FOR CONSTRUCTION
 WSIP APPLICATION ATTACHMENT A4.A PLANT AND FISH SCREEN STRUCTURE FISH SCREEN SIDE ELEVATION

 | CF-303 | |
 | :---: | :---: |
 | Rev. | $\begin{gathered} \text { SHEET No. } \\ 92 \end{gathered}$ |

 A \quad B

 G

 ## SHEET NOTES:

 BEERRE WORK II STARTED, CONTRACTOR SHAL VERIF STIE Conotions. COORDINATE PLRSONNEL.
 2. ELECTRCAL WORK SHALL BE PROVIDED iN ACCORDANCE WTH ANS//EEE STANDARD

 23OKV LINE SHALL BE ROUTED ITO NEW SIES PLANT SUBSTATON. OUTAGE SHALL BE
 PLANNE ANO COORODNATED WTH UTLTT DURNG A ACHEDULED OUTAGE. ANY DANAGE

 5. CONTREATOR SHALL PROVDE 23OKV CONSTRUCTIO IN ACCORDANCE WTH CA GENEPL
 -
 Transmssion Line cost esimate Is based on the following design bais and ANDNS: TO FT RULING SPAN; 128 -120' TANGENT LATICE TOWERS; $6-120^{\prime}$ DEADEND LATICE TOWERS: 4-120 (LAREE ANGLL

 ## KEYED NOTES:

 (1) EXXITNG PGEE 230KV LINES. LINES MAY BE ROUTED NTO NEW STES SUBSTATON
 (2) ExSTNG WAPA 230kV KESWCK-O'BANON LINE, SOUTHERN PART. LINE WLL RoUTE Essmusue
 (3) LOCATON NF 230KV LINE TAAEEFF TO STIES SUBSTATON. NEW 23OKV DEADEND

 (5) STES SUBSTAION AND P/G PLANT. SEE DWG E-104 FOR STE PLAN. SEE SHEE
 (6) ONE SINGLE CIRCUTTE 23ONV LINE FRO THE TRR PLANT, ORIGINTING FROM ITES

 SUBSTATIO
 DAGGAM.
 (8) SINGLE CIRCUTT 115kV LINE FROM WAPA TO DELEVAN PLANT. MoNople steel COORDINATION WTH CALTRANS.

 230 KY INE ESTIMATE IS BASED ON SINGLE 2156 ACSR "Bluebiro" For EACH

 (11) TRANSMISIIN LINE ESTMMTE IS BASED ON A SINGLE CURCUT CONSTRUCTION FROM
 SITES SWTCHYARD TO TRR SWTCCHARD (3.5 MILES).

 (13) OH LINE ROUTING IS Prelumnary.

 | Shet No. |
 | :---: |
 | 103 |

 2. SHAL BE TAPPED AD ROUTEDTO STITES SUSTATTON

 ## KEYED NOTES:

 1) POSSIBE LOCATION OF NTERCONNECTION TO PGAE 230kV LNES. ROUTE TO STTES PIG PLANT.
 2) ONE DOUBLE CIRCUT AND ONE SNGLEE CIRCUIT 23OKV LINES.
 (3) SINGLE CIRCUT 230 IVV Lne From sites Swichyard to trr Switchyaro
 (4) Possible location of interconnectoon to wapa 230kv lines. route to new substation.
 3) NEW WAPA SUBSTATON. TRANSFORMER FOR 230KV To 115 SkV CIRCUT TO DELEVVAN PLANT.
 4) WOOD or STEEL POLES, SINGLE CIRCUTT 115KV OH Lne To deLEVVAN P/G PLANT.
 (7) DELLEVAN Switchyaro. SEE SINGLE LINE DAGRAM E.5001.

 LEGEND: \qquad new overhead blectrical ine

 ELECTRICAL SITE PLAN

 ## SHEET NOTES

 SEE SHEET E-0010 for general electrical notes.
 2. UTLITY 23OKV LNES SHALL BE ROUTED NTO NEW STIES PLANT

 3. ASSUME POWER LINE DIFFCULTY OF INSTALATON TO BE SMLAR TO
 PASTALY YOOOED ROLLING HLL CONSTRCTON. SwTchYard layout Shal provid breaker and a hal scheme,

 ## NUMBERED NOTES:

 (1) RERRUUED UTLITY 23OKV LNE DOUBLE CIRCUT, AND SINGLE
 (2) SITES 230KV SWTCHYARD. SEE SNGLE LINE DIAGRAM ON E-1601. 230 KV LNE WLL ORIGINATE AT SITES SWITCHYARD.
 (3) SITES P/G PRANT SHALL INCLUDE ALL SWTTCHYPR MONTORNG AND CONTROLS, INCLUDNG UTULTY REMOTE TRANSFER TRP
 CONTROL SCHEMES. SEE SITES P/G RLAN VEW, SHEET EP-5102.
 CONTROL ROOM IN THE PLANT.
 5) SIIES FELD OFFICE TO BE SUPPLED WTH 480V CIRCUITS FOR
 6.
 TYPCCAL BuLLDNG AM
 SECURITY SYTEMS.

 LEGEND:
 ——EOH ——— NEW OVERHEAD ELECTRCCAL LINE

 SWITCHYARD PLAN

 SWITCHYARD PLAN

 † Power Circuit Breaker
 1 Disconnect Switch unu Power Transformer
 -(M) Motor Disconnect Switch T Transfer Switah
 (M) Motor
 (6) Generator
 (w/6) Motor/Generator
 $\mathrm{man}_{\mathrm{m}} \mathrm{cT}$
 $\sim_{r} P T$

 Pawer Circuit Breaker

 | APPENDIXA | |
 | :---: | :---: |
 | GEOTECHNICAL REFERENCES | |
 | B-101 | DELEVAN \& TRR PIPELINE BORING LOCATION MAP |
 | B-301 | DELEVAN \& TRR PIPELINE BORING LOGS 10 O 4 |
 | B-302 | DELEVAN \& TRR PIPELINE BORING LOGS 20 O 4 |
 | B-303 | DELEVAN \& TRR PIPELINE BORING LOGS 3 OF 4 |
 | B-304 | DELEVAN \& TRR PIPELINE BORING LOGS 4 OF 4 |
 | B-305 | DELEVAN- TRR PIPELINE GEOLOGIC CROSS SECTION |
 | B-1101 | SITES DAM EXPLORATION AND GEOLOGIC MAP 1 OF 2 |
 | B-1102 | SITES DAM EXPLORATION AND GEOLOGIC MAP 2 OF 2 |
 | B-1301 | SITES DAM GEOLOGIC SECTION 1 OF 2 |
 | B-1302 | SITES DAM GEOLOGIC SECTION 2 OF 2 |
 | B-2101 | GOLDEN GATE DAM EXPLORATION \& GEOLOGIC MAP 1 OF 10 |
 | B-2102 | GOLDEN GATE DAM EXPLORATION \& GEOLOGIC MAP 2 OF 10 |
 | B-2103 | GOLDEN GATE DAM EXPLORATION \& GEOLOGIC MAP 3 OF 10 |
 | B-2105 | GOLDEN GATE DAM EXPLORATION \& GEOLOGIC MAP 5 OF 10 |
 | B-2104 | GOLDEN GATE DAM EXPLORATION \& GEOLOGIC MAP 4 OF 10 |
 | B-2106 | GOLDEN GATE DAM EXPLORATION \& GEOLOGIC MAP 6 OF 10 |
 | B-2107 | GOLDEN GATE DAM EXPLORATION \& GEOLOGIC MAP 7 OF 10 |
 | B-2108 | GOLDEN GATE DAM EXPLORATION \& GEOLOGIC MAP 8 OF 10 |
 | B-2109 | GOLDEN GATE DAM EXPLORATION \& GEOLOGIC MAP 9 OF 10 |
 | B-2110 | GOLDEN GATE DAM EXPLORATION \& GEOLOGIC MAP 10 OF 10 |
 | B-2301 | GOLDEN GATE DAM GEOLOGIC CROSS SECTION 1 OF 1 |
 | B-2302 | GOLDEN GATE DAM GEOLOGIC CROSS SECTION 10 O 2 |
 | B-2303 | GOLDEN GATE DAM GEOLOGIC CROSS SECTION 2 OF 2 |
 | B-2304 | GOLDEN GATE DAM GEOLOGIC CROSS SECTION OUTLET TUNNEL 1 OF 2 |
 | B-2305 | GOLDEN GATE DAM GEOLOGIC CROSS SECTION OUTLET TUNNEL 2 OF 2 |
 | B-3101 | SADDLE DAMS 1 \& 2 GEOLOGIC MAP |
 | B-3102 | SADDLE DAM 3 PLAN AND PROFILE |
 | B-3103 | SADDLE DAMS 4,5 \& 6 GEOLOGIC MAP |
 | B-3104 | SADDLE DAMS 7,8 \& 9 GEOLOGIC MAP |
 | B-3301 | SADDLE DAMS 1 \& 2 GEOLOGIC SECTIONS |
 | B-3302 | SADDLE DAMS 4,5 \& 6 GEOLOGIC SECTIONS |
 | B-4301 | InLet-OUTLET GEOLOGIC SECTIONS |

 | WSIP APPLICATION ATTACHMENT A4.A | Serec no. |
 | :---: | :---: |
 | GEOTECHNICAL APPENDIX | |
 | | REV. SHEET No.
 114 |

 \qquad

 D
 E
 \qquad 1 F G

 Station (feet)
 NOTE

 gots othoft optoro.
 \square

 Please see attached Table of Contents from the Sites Reservoir Project Draft EIR/EIS. The full Draft EIR/EIS can be found at http://sitesproject.org/information/DraftEIR-EIS

 ## Table of Contents

 Chapters Pages
 Executive Summary ES-1
 Acronyms and Abbreviations XXV

 1. Introduction 1-1
 1.1 Project Description 1-2
 1.2 Project Operations 1-6
 1.3 Project Background 1-7
 1.4 Project Objectives, and Purpose and Need 1-11
 1.5 Summary of CEQA and NEPA Requirements 1-12
 1.6 Existing Conditions/No Project/No Action Condition. 1-14
 1.7 Intended Use of this Draft EIR/EIS 1-15
 1.8 Study Areas 1-22
 1.9 Areas of Controversy/Issues to be Resolved 1-26
 1.10 Public Involvement 1-33
 1.11 Organization of the Draft EIR/EIS 1-33
 1.12 Preparers of the Draft EIR/EIS 1-35
 2. Alternatives Analysis 2-1
 2.1 Introduction 2-1
 2.2 Approach to Alternatives Analysis 2-2
 2.3 Existing Conditions, No Project Alternative, and No Action Alternative (Existing Conditions/No Project/No Action Condition) 2-8
 2.4 Sites Reservoir Alternatives 2-12
 3. Description of the Sites Reservoir Project Alternatives 3-1
 3.1 Sites Reservoir Project Features and Facilities 3-2
 3.2 Construction and Operation/Maintenance Common to All Alternatives 3-92
 3.3 Diversion and Reservoir Operations Common to All Action Alternatives 3-102
 3.4 Proposed Operations by Alternative 3-110
 3.5 Environmental Commitments Included as Part of the Project and Alternatives 3-113
 4. Environmental Compliance and Permit Summary 4-1
 4.1 Federal Policies or Approvals 4-1
 4.2 State Policies or Approvals 4-14
 4.3 Local/Regional Policies or Approvals 4-21
 4.4 Primary Permits and Authorizations 4-22
 5. Guide to the Resource Analyses 5-1
 5.1 Introduction 5-1
 5.2 Establishment of the Base Condition for the Environmental Setting/Affected Environment 5-2
 5.3 Project Facilities Evaluated 5-3
 5.4 Alternatives Analysis 5-4
 5.5 Types of Impacts 5-6
 5.6 Determination of Significance of Impacts 5-7
 5.7 Mitigation Measure Development and Implementation 5-7
 5.8 Topics Eliminated from Further Analytical Consideration. 5-8
 5.9 Tools, Analytical Methods, and Applications 5-8
 5.10 Limitations of the Modeling Tools and Analytical Methods 5-18
 6. Surface Water Resources 6-1
 6.1 Introduction 6-1
 Chapters Pages
 6.2 Environmental Setting/Affected Environment. 6-1
 6.3 Environmental Impacts/Environmental Consequences 6-33
 6.4 Evaluation of Changes to CVP/SWP Operational Flexibility 6-54
 7. Surface Water Quality 7-1
 7.1 Introduction 7-1
 7.2 Environmental Setting/Affected Environment. 7-2
 7.3 Environmental Impacts/Environmental Consequences 7-29
 7.4 Mitigation Measures 7-84
 8. Fluvial Geomorphology and Riparian Habitat 8-1
 8.1 Introduction 8-1
 8.2 Environmental Setting/Affected Environment 8-1
 8.3 Environmental Impacts/Environmental Consequences 8-15
 8.4 Mitigation Measures 8-30
 9. Flood Control and Management 9-1
 9.1 Introduction 9-1
 9.2 Environmental Setting/Affected Environment 9-1
 9.3 Environmental Impacts/Environmental Consequences 9-14
 9.4 Mitigation Measures 9-41
 10. Groundwater Resources 10-1
 10.1 Introduction 10-1
 10.2 Environmental Setting/Affected Environment 10-1
 10.3 Environmental Impacts/Environmental Consequences 10-26
 10.4 Mitigation Measures 10-55
 11. Groundwater Quality 11-1
 11.1 Introduction 11-1
 11.2 Environmental Setting/Affected Environment 11-1
 11.3 Environmental Impacts/Environmental Consequences 11-14
 11.4 Mitigation Measures 11-35
 12. Aquatic Biological Resources 12-1
 12.1 Introduction 12-1
 12.2 Environmental Setting/Affected Environment 12-1
 12.3 Environmental Impacts/Environmental Consequences 12-51
 12.4 Mitigation Measures 12-114
 13. Botanical Resources 13-1
 13.1 Introduction 13-1
 13.2 Environmental Setting/Affected Environment. 13-1
 13.3 Environmental Impacts/Environmental Consequences 13-44
 13.4 Mitigation Measures 13-112
 14. Terrestrial Biological Resources 14-1
 14.1 Introduction 14-1
 14.2 Environmental Setting/Affected Environment. 14-1
 14.3 Environmental Impacts/Environmental Consequences 14-44
 14.4 Mitigation Measures 14-126
 15. Wetlands and Other Waters 15-1
 15.1 Introduction 15-1
 15.2 Environmental Setting/Affected Environment. 15-1
 15.3 Environmental Impacts/Environmental Consequences 15-13
 15.4 Mitigation Measures 15-53
 16. Geology, Minerals, Soils, and Paleontology 16-1
 16.1 Introduction 16-1
 Chapters Pages
 16.2 Environmental Setting/Affected Environment. 16-1
 16.3 Environmental Impacts/Environmental Consequences 16-28
 16.4 Mitigation Measures 16-62
 17. Faults and Seismicity 17-1
 17.1 Introduction 17-1
 17.2 Environmental Setting/Affected Environment. 17-1
 17.3 Environmental Impacts/Environmental Consequences 17-24
 17.4 Mitigation Measures 17-31
 18. Cultural/Tribal Cultural Resources 18-1
 18.1 Introduction 18-1
 18.2 Affected Environment 18-1
 18.3 Environmental Impacts/Environmental Consequences 18-36
 18.4 Mitigation Measures 18-56
 19. Indian Trust Assets 19-1
 19.1 Introduction 19-1
 19.2 Regulatory Background for ITAs 19-1
 19.3 Environmental Setting/Affected Environment 19-2
 19.4 Environmental Impacts/Environmental Consequences 19-7
 19.5 Mitigation Measures 19-9
 20. Land Use 20-1
 20.1 Introduction 20-1
 20.2 Environmental Setting/Affected Environment 20-1
 20.3 Environmental Impacts/Environmental Consequences 20-18
 20.4 Mitigation Measures 20-39
 21. Recreation Resources 21-1
 21.1 Introduction 21-1
 21.2 Environmental Setting/Affected Environment 21-1
 21.3 Environmental Impacts/Environmental Consequences 21-23
 21.4 Mitigation Measures 21-59
 22. Socioeconomics 22-1
 22.1 Introduction 22-1
 22.2 Environmental Setting/Affected Environment 22-1
 22.3 Environmental Impacts/Environmental Consequences 22-14
 22.4 Mitigation Measures 22-68
 23. Environmental Justice 23-1
 23.1 Introduction 23-1
 23.2 Environmental Setting/Affected Environment. 23-1
 23.3 Environmental Impacts/Environmental Consequences 23-7
 23.4 Mitigation Measures 23-19
 24. Air Quality 24-1
 24.1 Introduction 24-1
 24.2 Environmental Setting/Affected Environment. 24-1
 24.3 Environmental Impacts/Environmental Consequences 24-12
 24.4 Mitigation Measures 24-30
 25. Climate Change and Greenhouse Gas Emissions 25-1
 25.1 Introduction 25-1
 25.2 Background 25-2
 25.3 Greenhouse Gas Emissions. 25-6
 25.4 Climate Change. 25-25
 Chapters Pages
 26. Navigation, Transportation, and Traffic 26-1
 26.1 Introduction 26-1
 26.2 Environmental Setting/Affected Environment. 26-1
 26.3 Environmental Impacts/Environmental Consequences 26-18
 26.4 Mitigation Measures 26-40
 27. Noise 27-1
 27.1 Introduction 27-1
 27.2 Environmental Setting/Affected Environment. 27-1
 27.3 Environmental Impacts/Environmental Consequences 27-7
 27.4 Mitigation Measures 27-35
 28. Public Health and Environmental Hazards 28-1
 28.1 Introduction 28-1
 28.2 Environmental Setting/Affected Environment 28-1
 28.3 Environmental Impacts/Environmental Consequences 28-18
 28.4 Mitigation Measures 28-34
 29. Public Services and Utilities 29-1
 29.1 Introduction 29-1
 29.2 Environmental Setting/Affected Environment 29-1
 29.3 Environmental Impacts/Environmental Consequences 29-15
 29.4 Mitigation Measures 29-34
 30. Visual Resources 30-1
 30.1 Introduction 30-1
 30.2 Environmental Setting/Affected Environment 30-1
 30.3 Environmental Impacts/Environmental Consequences 30-15
 30.4 Mitigation Measures 30-39
 31. Power Production and Energy 31-1
 31.1 Introduction 31-1
 31.2 Environmental Impacts/Environmental Consequences 31-20
 31.3 Mitigation Measures 31-49
 32. Relationship Between Short-term Uses and Long-term Productivity 32-1
 32.1 Introduction 32-1
 32.2 Short-term and Long-term Effects of the Alternatives 32-1
 32.3 Conclusion 32-5
 33. Irreversible or Irretrievable Resource Commitments 33-1
 33.1 Introduction 33-1
 33.2 Commitments of Resources by the Project's Action Alternatives 33-1
 33.3 Potential Environmental Accidents 33-3
 33.4 Commitment of Future Generations to Similar Uses 33-4
 34. Growth-inducing Impacts 34-1
 34.1 Introduction 34-1
 34.2 Environmental Impacts/Environmental Consequences and Growth-inducement Potential 34-2
 34.3 Mitigation Measures 34-26
 35. Cumulative Impacts 35-1
 35.1 Introduction 35-1
 35.2 Cumulative Project Selection 35-2
 35.3 Cumulative Effects Analysis by Resource. 35-15
 36. Consultation and Coordination 36-1
 36.1 Introduction 36-1
 36.2 Notice of Preparation and Notice of Intent 36-1
 Chapters Pages
 36.3 Public Scoping 36-1
 36.4 Consultation 36-3
 36.5 Coordination 36-6
 36.6 Draft EIR/EIS and Project/Action Approval Process 36-10
 37. References 37-1
 37.1 Chapter 1 Introduction 37-1
 37.2 Chapter 2 Alternatives Analysis 37-2
 37.3 Chapter 3 Description of the Sites Reservoir Project Alternatives 37-3
 37.4 Chapter 4 Environmental Compliance and Permit Summary 37-3
 37.5 Chapter 5 Guide to the Resource Analyses 37-3
 37.6 Chapter 6 Surface Water Resources 37-4
 37.7 Chapter 7 Surface Water Quality 37-7
 37.8 Chapter 8 Fluvial Geomorphology and Riparian Habitat 37-13
 37.9 Chapter 9 Flood Control and Management 37-13
 37.10 Chapter 10 Groundwater Resources 37-14
 37.11 Chapter 11 Groundwater Quality 37-15
 37.12 Chapter 12 Aquatic Biological Resources 37-17
 37.13 Chapter 13 Botanical Resources 37-36
 37.14 Chapter 14 Terrestrial Biological Resources 37-38
 37.15 Chapter 15 Wetlands and Other Waters 37-43
 37.16 Chapter 16 Geology, Minerals, Soils, and Paleontology 37-44
 37.17 Chapter 17 Faults and Seismicity 37-46
 37.18 Chapter 18 Cultural/Tribal Cultural Resources 37-50
 37.19 Chapter 19 Indian Trust Assets 37-54
 37.20 Chapter 20 Land Use 37-54
 37.21 Chapter 21 Recreation Resources 37-55
 37.22 Chapter 22 Socioeconomics 37-59
 37.23 Chapter 23 Environmental Justice 37-61
 37.24 Chapter 24 Air Quality 37-62
 37.25 Chapter 25 Climate Change and Greenhouse Gas Emissions 37-64
 37.26 Chapter 26 Navigation, Transportation, and Traffic 37-69
 37.27 Chapter 27 Noise 37-70
 37.28 Chapter 28 Public Health and Environmental Hazards 37-71
 37.29 Chapter 29 Public Services and Utilities 37-73
 37.30 Chapter 30 Visual Resources 37-77
 37.31 Chapter 31 Power Production and Energy. 37-77
 37.32 Chapter 32 Relationship Between Short-term Uses and Long-term Productivity 37-80
 37.33 Chapter 33 Irreversible or Irretrievable Commitments 37-80
 37.34 Chapter 34 Growth-inducing Impacts 37-80
 37.35 Chapter 35 Cumulative Impacts. 37-81
 37.36 Chapter 36 Consultation and Coordination 37-82
 38. List of Preparers and Contributors 38-1
 38.1 Introduction 38-1
 38.2 Contributors to the Draft EIR/EIS 38-1
 38.3 Contributors to the Preliminary Administrative Draft EIR/EIS 38-11
 39. EIR/EIS Document Distribution 39-1

 ## Glossary

 ## Appendixes

 Appendix 1 Introduction
 1A Mitigation Monitoring Plan
 Appendix 2 Alternatives Analysis
 2A Alternatives Screening Process
 Appendix 4 Environmental Compliance and Permit Summary
 4A Environmental Compliance
 Appendix 6 Surface Water Resources
 6A Modeling of Alternatives
 6B Water Resources System Modeling
 6B1 Project Operations
 6B2 River Operations
 6B3 Delta Operations
 6B4 Regional Deliveries
 6C Upper Sacramento River Daily River Flow and Operations Modeling
 6D Sensitivity Analysis Using the Latest CALSIM II Model
 Appendix 7 Surface Water Quality
 7A California State Water Resources Control Board Constituents of Concern of Water Bodies in the Study Area
 7B Central Valley Regional Water Quality Control Board Basin Plan Criteria
 7C Surface Water Quality Analysis for Electrical Conductivity at Proposed Intakes
 7D Sacramento-San Joaquin Delta Modeling
 7E River Temperature Modeling
 7F Sites Reservoir Discharge Temperature Modeling
 Appendix 8 Fluvial Geomorphology and Riparian Habitat
 8A Sedimentation and River Hydraulics Modeling
 8B Sacramento River Ecological Flows Tool
 Appendix 10 Groundwater Resources
 10A Groundwater Modeling
 Appendix 11 Groundwater Quality
 11A Groundwater Study Results 2007
 Appendix 12 Aquatic Biological Resources
 12A Aquatic Species Life Histories
 12B Fisheries Impact Assessment Methodology
 12C Fisheries Impact Summary
 12D Water Temperature Index Value Selection Rationale
 12E Fisheries Water Temperature Assessment Summary Tables
 12F Reservoir Water Surface Elevation Summary Tables
 12G Smelt Analysis
 12H Early Life-Stage Salmon Mortality Modeling
 12I Salmonid Population Modeling
 12J Winter Run Chinook Salmon Life Cycle Modeling

 12K Delta Passage Modeling
 12L Weighted Useable Area Analysis
 12M Sturgeon Analysis
 12N Yolo and Sutter Bypass Flow and Weir Spill Analysis
 Appendix 13 Botanical Resources
 13A Special-Status Plant Species Potentially Occurring in Secondary Study Area Aquatic Habitats
 Appendix 16 Geology, Minerals, Soils, and Paleontology
 16A Soil Types within the Primary Study Area
 16B Colusa County Fossil Sites
 16C Results of the Paleontological Resources Literature Review
 Appendix 21 Recreation Resources
 21A Impact of Sites Reservoir Project Operations on Recreation-Day Benefit Values
 21B Impact of Sites Reservoir Project Operations on Usability of Reservoir Boat Ramps
 Appendix 22 Socioeconomics
 22A Economics Analytical Framework
 22B Reporting Metrics Tool
 22C Regional Economics Modeling
 22D Urban Water Supply Economics Modeling
 22E Urban Water Quality Economics Modeling
 22F Agricultural Supply Economics Modeling
 Appendix 24 Air Quality
 24A Methodology for Air Quality and GHG Emissions Calculations
 Appendix 25 Climate Change and Greenhouse Gas Emissions
 25A Climate Change and Sea Level Rise Sensitivity Analysis
 25B Climate Change Sensitivity Analysis using WSIP Climate Change Projections
 Appendix 28 Public Health and Environmental Hazards
 28A California Superfund and Brownfield Sites
 28B Mosquitoes and Other Vectors
 28C Environmental Records Searches
 Appendix 31 Power Production and Energy
 31A Power Planning Study (PARO)
 31B CVP-SWP Power Modeling
 Appendix 34 Growth Inducing Impacts
 34A Growth-Inducing Considerations for Municipal and Industrial Water Users
 Appendix 36 Consultation and Coordination
 36A Supplemental Scoping Report
 36B Scoping Report

 ## Tables

 Pages
 1-1 Primary Anticipated Permits, Approvals, and Authorizations for the Sites Reservoir Project. 1-17
 2-1 Summary of Dams and Embankment Volume of Potential Sites Reservoir Storage Sizes 2-15
 2-2 Conveyance Facilities Alternatives Considered for Sites Reservoir. 2-16
 2-3 Sacramento River Direct Release Potential for the Sites Reservoir Conveyance Options 2-18
 2-4 Sites Reservoir Storage and Conveyance Options Combinations 2-20
 2-5 Preliminary Sites Reservoir Storage and Conveyance Options Combinations 2-21
 3-1 Comparison of New Project Facilities and Features and Existing Facilities Relied Upon 3-3
 3-2 Permanent Facility Footprint - Alternative A 3-9
 3-3 Characteristics of Proposed 1.3-MAF Sites Reservoir Dams for Alternative A. 3-13
 3-4 Sites Reservoir Project Onsite or Nearby Dam Materials 3-14
 3-5 Sites Reservoir Inlet/Outlet Structure Tower Details 3-26
 3-6 Sites Pumping-generating Plant Configuration for Alternative A 3-28
 3-7 Characteristics of Project Roadways and South Bridge Approaches. 3-35
 3-8 Proposed South Bridge Characteristics 3-37
 3-9 Characteristics of Proposed Minor Structures 3-37
 3-10 Approximate Number of Facilities at the Recreation Areas 3-46
 3-11 Aboveground Features Associated with the Proposed Delevan Pipeline 3-73
 3-12 Permanent Facility Footprint - Alternative B 3-77
 3-13 Characteristics of the Proposed Sites Reservoir Dams for Alternative B (and Alternatives C and D) 3-79
 3-14 Proposed Sites Pumping-generating Plant Configuration for Alternative B 3-81
 3-15 Permanent Facility Footprint - Alternative C. 3-83
 3-16 Sites Pumping-generating Plant Configuration for Alternative C 3-84
 3-17 Permanent Facility Footprint - Alternative C 1 3-84
 3-18 Permanent Facility Footprint - Alternative D 3-87
 3-19 Approximate Number of Facilities at the Proposed Recreation Areas 3-88
 3-20 Estimated Construction Durations and Equipment Days for Construction of Sites Reservoir Project 3-93
 3-21 Expected Roadway Access Routes to Project Facilities 3-95
 3-22 Project-related Construction Personnel and Highway Truck Trips 3-98
 3-23 Estimated Equipment Hours for Operation and Maintenance of Sites Reservoir Project 3-100
 3-24 Description of Proposed Seasonal Schedule for Project Operations 3-103
 3-25 Comparison of Project Operations by Alternative 3-111
 4-1 Applicable Federal, State, and Local Permits and Approvals 4-24
 5-1 Impact Naming Convention for each of the Resources Evaluated 5-5
 5-2 Overview of Sites Reservoir Project EIR/EIS Modeling Tools, Analytical Methods, and Applications 5-9
 6-1 Summary of CVP and SWP Existing Conditions/No Project/No Action Condition Demands (TAF/Year) 6-12
 6-2 Trinity River Record of Decision Annual Flow Volumes and Peak Flows 6-15
 6-3 Stone Corral Creek Daily and Monthly Flows Near Sites, USGS 11390672 Period of Record 4/1/1958 - 9/30/1964 and 10/1/1965-9/30/1985 Drainage Area = 38.2 Square Miles 6-32
 6-4 Colusa Basin Drain Daily and Monthly Flows at Highway 20 Period of Record 11/1/1944- 9/30/1994 Drainage Area $=973$ square miles 6-33
 Tables Pages
 6-5 Annual CVP Deliveries (TAF) Alternatives A, B, C, and D Compared to the Existing Conditions/No Project/No Action Condition 6-39
 6-6 Annual SWP Regional Deliveries (TAF) Alternatives A, B, C, and D Compared to the Existing Conditions/No Project/No Action Condition 6-41
 6-7 Sites Reservoir End of Month Storage (TAF) Alternatives A, B, C, and D Compared to the Existing Conditions/No Project/No Action Condition. 6-52
 6-8 Delevan Pipeline Intake/Discharge Facilities Monthly Flow (cfs) Alternatives A, B, C, and D Compared to the Existing Conditions/No Project/No Action Condition 6-53
 6-9 Total Annual North-of-the-Delta Storage (TAF) 6-55
 7-1 Designated Beneficial Uses within the Extended, Secondary, and Primary Study Areas 7-3
 7-2 Water Quality Objectives for Temperature in the Trinity River 7-11
 7-3 Trinity River Temperature Criteria for the Hoopa Valley Indian Reservation 7-12
 7-4 Water Quality Objectives for Temperature in the Sacramento River 7-14
 9-1 Sacramento River Basin Multi-Purpose Flood Management Reservoirs 9-3
 9-2 Sacramento River Leveed Capacity 9-9
 9-3 Feather River Leveed Capacity 9-9
 10-1 Major Lithologic Units of the Sacramento Valley 10-9
 10-2 Wells Located within a 1-mile Radius of the Proposed Sites Reservoir Footprint 10-18
 10-3 Summary of Well Data by Well Type for Wells Located within a 1-mile Radius of the Sites Reservoir Footprint 10-19
 10-4 Wells Located within a 1-mile Radius of the Proposed Holthouse Reservoir Complex and Terminal Regulating Reservoir Pipeline 10-20
 10-5 Wells Located within 1 Mile of the Delevan Pipeline and Associated Facilities 10-21
 10-6 Wells Located within a 1-mile Radius of the Terminal Regulating Reservoir Complex 10-25
 12-1 Fish Species of Management Concern in Export Service Area Reservoirs in the Extended Study Area 12-4
 12-2 Species of Management Concern in the Secondary Study Area 12-6
 12-3 Fish Species of Management Concern in the Primary Study Area 12-45
 12-4 Project Facilities in the Primary Study Area and the Potentially Affected Waterways 12-46
 12-5 Fish Species Observed by CDFW during Sampling Efforts in the Proposed Sites Reservoir Inundation Area 12-49
 12-6 Fish Species Observed by CDFW during Sampling Efforts in the Colusa Basin Drain 12-50
 12-7 Construction- and Operation-related Impact Indicators. 12-66
 12-8 Summary of Mitigation Measures for Sites Reservoir Project Impacts on Aquatic Biological Resources 12-114
 13-1 Invasive Weed Species Potentially Present in Wildlife Refuges Receiving Level 4 Water Supply in the Extended Study Area 13-3
 13-2 Special-status Species Potentially Present in the Extended Study Area 13-6
 13-3 Manual of California Vegetation Alliances in the Secondary Study Area 13-9
 13-4 Number of Special-status Plant Species by Rank in the Secondary Study Area 13-10
 13-5 Number of Special-status Plant Species by Region and Status. 13-13
 13-6 Vegetation Types within the Primary Study Area 13-31
 13-7 Vegetation Types at Each Project Facility Location. 13-35
 13-8 Noxious Weed Species Known or Likely to Occur in the Primary Study Area 13-36
 13-9 Federal- and State-listed Plant Species with Potential to Occur in the Primary Study Area 13-40
 13-10 CNPS Rare Plant Rank 1, 2, and 3 Plant Species with Potential to Occur in the Primary Study Area 13-41
 13-11 Special-status Plant Species and Occurrences Found during Field Surveys by Species for Surveyed Primary Study Area 13-43
 Tables Pages
 13-12 Permanent Vegetation Loss Due to the Construction of the 1.3-MAF Sites Reservoir and Associated Dams: Alternative A 13-65
 13-13 Permanent Vegetation Loss and Temporary Disturbance Due to the Construction of Recreation Areas and Associated Electrical Distribution Lines: Alternative A 13-70
 13-14 Permanent Vegetation Loss and Temporary Disturbance Due to the Construction of the Road Relocations and South Bridge: Alternative A 13-73
 13-15 Permanent Vegetation Loss Due to Construction of the Sites Pumping/Generating Plant, Sites Reservoir Inlet/Outlet Structure, Sites Electrical Switchyard, and the Field Office Maintenance Yard: Alternative A 13-78
 13-16 Permanent Vegetation Loss and Temporary Disturbance Due to the Construction of the Holthouse Reservoir Complex: Alternative A 13-81
 13-17 Temporary Disturbance of Vegetation Communities Due to Modifications of the Glenn-Colusa Irrigation District Canal Facilities: Alternative A 13-85
 13-18 Permanent Vegetation Loss and Temporary Disturbance Due to the Construction of the Terminal Regulating Reservoir Facilities: Alternative A 13-87
 13-19 Permanent Vegetation Loss and Temporary Disturbance Due to the Construction of the Delevan and Terminal Regulating Reservoir Pipelines, Terminal Regulating Reservoir Pipeline Road, and Delevan Pipeline Electrical Switchyard: Alternative A. 13-88
 13-20 Temporary Disturbance of Vegetation Due to the Construction of the Sites/Delevan Overhead Power Line: Alternative A 13-92
 13-21 Permanent Vegetation Loss Due to the Construction of the Delevan Pipeline Intake/ Discharge Facilities: Alternative A 13-95
 13-22 Acres of Vegetation Types Within the Project Buffer: Alternative A 13-97
 13-23 Acres of Vegetation Types Subject to Alternative A Construction Impacts 13-99
 13-24 Permanent Vegetation Loss Due to the Construction and Filling of the 1.8-MAF Sites Reservoir and Associated Dams: Alternative B Compared to Alternative A 13-104
 13-25 Temporary Disturbance of Vegetation Due to the Construction of the Sites/Delevan Overhead Power Line: Alternative B Compared to Alternative A 13-105
 13-26 Permanent Vegetation Loss Due to the Construction of the Delevan Pipeline Discharge Facilities: Alternative B Compared to the Alternative A Delevan Pipeline Intake/ Discharge Facilities 13-106
 13-27 Acres of Vegetation Subject to Alternative B Construction Impacts 13-107
 13-28 Acres of Vegetation Types Subject to Alternative C Construction Impacts 13-109
 13-29 Acres of Vegetation Types Subject to Alternative D Construction Impacts from Delevan Overhead Power Line and Substation 13-111
 13-30 Summary of Mitigation Measures for North-of-the-Delta Offstream Storage Project Impacts on Botanical Resources 13-112
 14-1 Wildlife Habitat Types within the Primary Study Area 14-18
 14-2 Wildlife Habitat Types at Each Project Facility Location 14-22
 14-3 State- and Federally Listed Terrestrial Wildlife Species that Potentially Occur in the Primary Study Area. 14-23
 14-4 Nearest Bank Swallow Colony Locations to the Delevan Pipeline Intake/Discharge Facilities 14-26
 14-5 Terrestrial Wildlife Species of Special Concern that Potentially Occur in the Primary Study Area 14-29
 14-6 Commercially or Recreationally Important Wildlife Species that May Occur within the Primary Study Area 14-42
 14-7 Acres of Wildlife Habitat Subject to Direct Permanent Loss from the Construction and Filling of the 1.3-MAF Sites Reservoir and Associated Dams: Alternative A 14-69
 Tables Pages
 14-8 Avian Species Expected to Benefit from an Increase in Open Water Habitat within the Sites Reservoir Inundation Area 14-71
 14-9 Permanent Wildlife Habitat Loss and Temporary Disturbance Due to the Construction of the Recreation Areas and Associated Electrical Distribution Lines: Alternative A 14-76
 14-10 Permanent Wildlife Habitat Loss and Temporary Disturbance Due to the Construction of the Road Relocations and South Bridge: Alternative A 14-79
 14-11 Acres of Wildlife Habitat Subject to Direct and Permanent Habitat Loss from Construction of the Sites Pumping/Generating Plant, Sites Reservoir Inlet/Outlet Structure, Sites Electrical Switchyard, and the Field Office Maintenance Yard: Alternative A. 14-84
 14-12 Permanent Wildlife Habitat Loss and Temporary Disturbance Due to the Construction of the Holthouse Reservoir Complex: Alternative A 14-87
 14-13 Temporary Disturbance of Wildlife Habitat Due to Modifications of the Glenn-Colusa Irrigation District Canal Facilities: Alternative A 14-91
 14-14 Permanent Wildlife Habitat Loss and Temporary Disturbance Due to the Construction of the Terminal Regulating Reservoir Facilities: Alternative A 14-93
 14-15 Permanent Wildlife Habitat Loss and Temporary Disturbance Due to the Construction of the Delevan and Terminal Regulating Reservoir Pipelines, Terminal Regulating Reservoir Pipeline Road, and Delevan Pipeline Electrical Switchyard: Alternative A 14-96
 14-16 Temporary Disturbance of Wildlife Habitat from Construction of the Sites/Delevan Overhead Power Line: Alternative A 14-101
 14-17 Permanent Wildlife Habitat Loss Due to the Construction of the Delevan Pipeline Intake/Discharge Facilities: Alternative A 14-104
 14-18 Acres of Wildlife Habitat within the Project Buffer: Alternative A 14-108
 14-19 Acres of Wildlife Habitat Subject to Alternative A Construction Impacts 14-110
 14-20 Permanent Wildlife Habitat Loss Due to the Construction and Filling of the 1.8-MAF Sites Reservoir and Associated Dams: Alternative B Compared to Alternative A 14-116
 14-21 Temporary Disturbance of Wildlife Habitat Due to the Construction of the Sites/Delevan Overhead Power Line: Alternative B Compared to Alternative A 14-117
 14-22 Direct and Permanent Wildlife Habitat Loss Due to the Construction of the Delevan Pipeline Discharge Facility: Alternative B Compared to the Alternative A Delevan Pipeline Intake/Discharge Facilities 14-119
 14-23 Acres of Wildlife Habitat Subject to Alternative B Construction Impacts 14-120
 14-24 Acres of Wildlife Habitat Subject to Alternative C Construction Impacts 14-122
 14-25 Acres of Wildlife Habitat Subject to Direct Permanent Loss from the Construction and Operational Impacts from the Delevan Overhead Power Line and Substation: Alternative D. $14-125$
 14-26 Summary of Mitigation Measures for NODOS Project Impacts to Terrestrial Biological Resources 14-126
 14-27 Avoidance Distances and Restrictions for Nesting Species. 14-130
 15-1 Potentially Affected Wetlands and Other Waters in the Extended Study Area (National Wetlands Inventory Types) 15-2
 15-2 Potentially Affected Waters in the Secondary Study Area: Rivers and Streams 15-4
 15-3 Potentially Affected Waters in the Secondary Study Area: Lakes and Reservoirs 15-5
 15-4 Potentially Affected Waters in the Secondary Study Area: Wetlands 15-5
 15-5 Presence of Wetlands and Other Waters at Each Proposed Project Facility 15-7
 15-6 Acre Summary of Wetlands and Other Waters in the Primary Study Area 15-8
 15-7 Direct Loss of Wetlands and Other Waters Due to the Construction of the 1.3-MAF Sites Reservoir Inundation Area and Dams $15-20$
 15-8 Direct Loss of Wetlands and Other Waters Due to the Construction of the Recreation Areas $15-23$
 Tables Pages
 15-9 Direct Loss of Wetlands and Other Waters Due to the Construction of the Road Relocations and South Bridge. 15-26
 15-10 Direct Loss of Wetlands and Other Waters Due to the Construction of the Sites Reservoir Inlet/Outlet Structure, Sites Pumping/Generating Plant, Sites Electrical Switchyard, Tunnel from Sites Pumping/Generating Plant to Sites Reservoir Inlet/Outlet Structure, and Field Office Maintenance Yard. 15-29
 15-11 Direct Loss of Wetlands and Other Waters Due to the Construction of the Holthouse Reservoir Complex 15-30
 15-12 Direct Loss of Wetlands and Other Waters Due to the Construction of the TRR, TRR Pumping/Generating Plant, TRR Electrical Switchyard, and the GCID Main Canal Connection to the TRR 15-33
 15-13 Direct Loss of Wetlands and Other Waters Due to the Construction of the Sites/Delevan Overhead Power Line East of the Sites Electrical Switchyard 15-34
 15-14 Loss of Wetlands and Other Waters Due to the Construction of the Delevan Pipeline, Terminal Regulating Reservoir Pipeline, Terminal Regulating Reservoir Pipeline Road, and Delevan Pipeline Electrical Switchyard 15-36
 15-15 Direct Loss of Wetlands and Other Waters Due to the Construction of the Delevan Pipeline Intake/Discharge Facilities. 15-39
 15-16 Affected Acres of Wetlands and Other Waters for All Project Facilities: Alternative A 15-42
 15-17 Direct Loss of Wetlands and Other Waters Due to the Construction of the 1.8-MAF Sites Reservoir Inundation Area and Dams 15-44
 15-18 Direct Loss of Wetlands and Other Waters Due to the Construction of the Delevan Pipeline Discharge Facilities 15-47
 15-19 Affected Acres of Wetlands and Other Waters for All Project Facilities: Alternative B 15-49
 15-20 Affected Acres of Wetlands and Other Waters for All Project Facilities: Alternative C 15-51
 15-21 Summary of Mitigation Measures for Sites Reservoir Project Impacts to Wetlands and Other Waters 15-54
 16-1 Fossils and Fossil Locations within the Extended Study Area 16-5
 16-2 Fossils and Fossil Locations within the Secondary Study Area 16-10
 16-3 Coast Range Rock Units in the Primary Study Area 16-13
 16-4 Major Soil Types at Sites Reservoir (Alternative A) 16-18
 16-5 Major Soil Types at Sites Reservoir (Alternatives B, C, and D) 16-18
 16-6 Results of Paleontological Records Search by Geological Unit for the Primary Study Area 16-23
 16-7 Great Valley Sequence Units in the Primary Study Area that Yield Megafossils 16-24
 16-8 Paleontological Sensitivity of the Rock Units within 1 Mile of Any Proposed Primary Study Area Project Facility 16-27
 16-9 Summary of Mitigation Measures for Sites Reservoir Project Impacts to Paleontological Resources 16-62
 17-1 Comparison of Fault Activity Classification between the California Geological Survey and Division of Safety of Dams 17-2
 17-2 Comparison of Richter Magnitude and Modified Mercalli Intensity 17-3
 17-3 Regional Faults in the Secondary Study Area 17-8
 17-4 Faults in Proximity to the Proposed Sites Reservoir and Sites and Golden Gate Dam sites 17-13
 18-1 Built Environment Resources Identified Outside of the Sites Reservoir Inundation Area in the Primary Study Area 18-21
 18-2 Native American Consultation Per AB 52 18-24
 18-3 Summary of Mitigation Measures for Project Impacts on Cultural Resources 18-56
 19-1 Federally Recognized Tribes in the Vicinity of the Extended, Secondary, and Primary Study Areas Organized by County 19-3
 Tables Pages
 20-1 Glenn County 2012-2014 Land Use Conversion 20-4
 20-2 Colusa County 2012-2014 Land Use Conversion 20-6
 20-3 Zoning Designations and Acreage of Impacts - Alternative A 20-29
 20-4 FMMP Designations and Acreage of Impacts - Alternative A 20-31
 20-5 Zoning Designations and Acreage of Impacts - Alternative B. 20-33
 20-6 FMMP Designations and Acreage of Impacts - Alternative B. 20-35
 20-7 Zoning Designations and Acreage of Impacts - Alternative D Overhead Power Line and Substation 20-39
 20-8 FMMP Designations and Acreage of Impacts - Alternative D Overhead Power Line and Substation 20-39
 20-9 Summary of Mitigation Measures for Project Impacts on Land Use. 20-40
 21-1 Recreation Use and Capacity at Reservoirs in the Extended Study Area 21-3
 21-2 San Luis Reservoir State Recreation Area Boat Ramp Bottom Elevations 21-6
 21-3 Recreation Use and Capacity at Reservoirs in the Secondary Study Area 21-7
 21-4 Trinity Lake Boat Ramp Bottom Elevations 21-10
 21-5 Shasta Lake Boat Ramp Bottom Elevations 21-11
 21-6A Recreation Sites and Amenities on the Sacramento River from Red Bluff to Colusa 21-13
 21-6B Recreation Sites and Amenities on the Sacramento River from Red Bluff to Colusa 21-15
 21-7 Lake Oroville Boat Ramp Bottom Elevations 21-18
 21-8 Folsom Lake Boat Ramp Bottom Elevations 21-20
 22-1 Counties in Water Delivery Regions - Extended Study Area 22-2
 22-2 Historical, Current, and Projected Population and Average Annual Growth Rate within the Extended Study Area and California. 22-2
 22-3 Economic Activity within the Extended Study Area and California in 2015 (2015 Dollars) 22-3
 22-4 Average Irrigated Acreage and Annual Value of Production (2008 to 2010) within the Extended Study Area (2010 Dollars) 22-3
 22-5 Counties in Water Delivery Regions - Secondary Study Area. 22-4
 22-6 Historical, Current, and Projected Population and Average Annual Growth Rate within the Secondary Study Area and California 22-4
 22-7 Economic Activity within the Secondary Study Area and California in 2015 (2015 Dollars) 22-5
 22-8 Historical, Current, and Projected Population and Average Annual Growth Rate within the Primary Study Area and California 22-6
 22-9 Age Distribution within the Primary Study Area Counties and California 22-7
 22-10 Housing Distribution within the Primary Study Area and California 22-7
 22-11 Personal Income and Industry Earnings within the Primary Study Area and California in 2015 (2015 Dollars) 22-8
 22-12 Employment within the Primary Study Area and California in 2015 22-9
 22-13 Employment by Industry for the Primary Study Area - Glenn County 22-9
 22-14 Employment by Industry for the Primary Study Area - Colusa County 22-10
 22-15 Demographics of the Primary Study Area 22-10
 22-16 Glenn County General Fund Revenues and Expenditures 22-11
 22-17 Colusa County General Fund Revenues and Expenditures 22-12
 22-18 Glenn County Average Agricultural Production, 2012 to 2015 (2015 Dollars) 22-13
 22-19 Colusa County Average Agricultural Production, 2012 to 2015 (2015 Dollars) 22-13
 22-20 Permanent Change in Extended Study Area Regional Employment and Income
 Associated with Implementation of Alternative A when Compared to the Existing Conditions/No Project/No Action Condition 22-21
 Tables Pages
 22-21 Change in Acres and Value of Agricultural Production Associated with Implementation of Alternative A when Compared to the Existing Conditions/No Project/No Action Condition 22-23
 22-22 Change in Volume and Cost of Groundwater Pumping Associated with Implementation of Alternative A when Compared to the Existing Conditions/No Project/No Action Condition 22-24
 22-23 Change in M\&I Water Supply Deliveries and Costs from Alternative A when Compared to the Existing Conditions/No Project/No Action Condition 22-25
 22-24 Change in M\&I Water Supply Salinity Costs Associated with Implementation of Alternative A when Compared to the Change from the Existing Conditions/No Project/ No Action Condition 22-26
 22-25 Temporary Change in Regional Employment and Income Associated with Implementation of Alternative A when Compared to the Existing Conditions/No Project/No Action Condition 22-27
 22-26 Permanent Change in Regional Employment and Income Associated with Implementation of Alternative A when Compared to the Existing Conditions/No Project/No Action Condition 22-28
 22-27 Change in Property Tax Receipts Associated with Implementation of Alternative A when Compared to the Existing Conditions/No Project/No Action Condition 22-30
 22-28 Estimated Sites Reservoir Recreation Visitation and Expenditures Associated with Implementation of Alternative A 22-30
 22-29 Change in Crop Acres and Value of Agricultural Production Associated with Implementation of Alternative A when Compared to the Existing Conditions/No Project/ No Action Condition 22-31
 22-30 Change in Extended Study Area Regional Employment and Income Associated with Implementation of Alternative B when Compared to the Existing Conditions/No Project/ No Action Condition 22-33
 22-31 Change in Acres and Value of Agricultural Production Associated with Implementation of Alternative B when Compared to the Existing Conditions/No Project/No Action Condition 22-35
 22-32 Change in Volume and Cost of Groundwater Pumping Associated with Implementation of Alternative B when Compared to the Existing Conditions/No Project/No Action Condition 22-36
 22-33 Change in M\&I Water Supply Deliveries and Costs from Alternative B when Compared to the Existing Conditions/No Project/No Action Condition 22-37
 22-34 Change in M\&I Water Supply Salinity Costs Associated with Implementation of Alternative B when Compared to the Change from the Existing Conditions/No Project/ No Action Condition 22-38
 22-35 Temporary Change in Regional Employment and Income Associated with Implementation of Alternative B when Compared to the Existing Conditions/No Project/No Action Condition $22-40$
 22-36 Permanent Change in Regional Employment and Income Associated with Implementation of Alternative B when Compared to the Existing Conditions/No Project/No Action Condition 22-41
 22-37 Estimated Sites Reservoir Recreation Visitation and Expenditures Associated with Implementation of Alternative B 22-43
 22-38 Change in Crop Acres and Value of Agricultural Production Associated with Implementation of Alternative B when Compared to the Existing Conditions/No Project/ No Action Condition 22-44
 Tables Pages
 22-39 Change in Extended Study Area Regional Employment and Income Associated with Implementation of Alternative C when Compared to the Existing Conditions/No Project/ No Action Condition 22-45
 22-40 Change in Acres and Value of Agricultural Production Associated with Implementation of Alternative C when Compared to the Existing Conditions/No Project/No Action Condition 22-47
 22-41 Change in Volume and Cost of Groundwater Pumping Associated with Implementation of Alternative C when Compared to the Existing Conditions/No Project/No Action Condition 22-48
 22-42 Change in M\&I Water Supply Deliveries and Costs from Alternative C when Compared to the Existing Conditions/No Project/No Action Condition 22-49
 22-43 Change in M\&I Water Supply Salinity Costs Associated with Implementation of Alternative C when Compared to the Change from the Existing Conditions/No Project/ No Action Condition 22-50
 22-44 Temporary Change in Regional Employment and Income Associated with Implementation of Alternative C when Compared to the Existing Conditions/No Project/No Action Condition 22-52
 22-45 Permanent Change in Regional Employment and Income Associated with Implementation of Alternative C when Compared to the Existing Conditions/No Project/No Action Condition 22-52
 22-46 Estimated Sites Reservoir Recreation Visitation and Expenditures Associated with Implementation of Alternative C 22-54
 22-47 Change in Crop Acres and Value of Agricultural Production Associated with Implementation of Alternative C when Compared to the Existing Conditions/No Project/ No Action Condition 22-55
 22-48 Change in Extended Study Area Regional Employment and Income Associated with Implementation of Alternative C when Compared to the Existing Conditions/No Project/ No Action Condition 22-57
 22-49 Change in Acres and Value of Agricultural Production Associated with Implementation of Alternative D when Compared to the Existing Conditions/No Project/No Action Condition 22-58
 22-50 Change in Volume and Cost of Groundwater Pumping Associated with Implementation of Alternative D when Compared to the Existing Conditions/No Project/No Action Condition 22-59
 22-51 Change in M\&I Water Supply Deliveries and Costs from Alternative D when Compared to the Existing Conditions/No Project/No Action Condition 22-61
 22-52 Change in M\&I Water Supply Salinity Costs Associated with Implementation of Alternative D when Compared to the Change from the Existing Conditions/No Project/ No Action Condition 22-62
 22-53 Temporary Change in Regional Employment and Income Associated with Implementation of Alternative D when Compared to the Existing Conditions/No Project/No Action Condition 22-63
 22-54 Permanent Change in Regional Employment and Income Associated with Implementation of Alternative D when Compared to the Existing Conditions/No Project/No Action Condition 22-64
 22-55 Estimated Sites Reservoir Recreation Visitation and Expenditures Associated with Implementation of Alternative D 22-66
 22-56 Change in Crop Acres and Value of Agricultural Production Associated with Implementation of Alternative D when Compared to the Existing Conditions/No Project/ No Action Condition 22-67
 Tables Pages
 23-1 Race and Ethnicity of the State of California and the Counties that Are Located within the Extended Study Area 23-3
 23-2 Race and Ethnicity of the State of California and the Counties that Are Located within the Secondary Study Area 23-5
 23-3 Race and Ethnicity of Glenn and Colusa Counties and the State of California 23-6
 23-4 Income and Poverty 2008-2012 Five-year Estimate - Glenn and Colusa Counties and the State of California 23-7
 24-1 Ambient Air Quality Standards 24-2
 24-2 State Attainment Status for the Two Counties that Compose the Primary Study Area (Glenn and Colusa) 24-4
 24-3 2015 Estimated Annual Average Emissions (tons per day) for the Sacramento Valley Air Basin and Glenn and Colusa Counties 24-7
 24-4 Number of Days State 1-hour and 8-hour and Federal 8-hour Ozone Standards Were Exceeded, and Maximum Ozone Concentrations Measured, in Glenn and Colusa Counties (2004 to 2015) 24-8
 24-5 $\quad \mathrm{PM}_{10}$ Concentrations in Glenn and Colusa Counties (2004 to 2015) 24-9
 24-6 Tehama County Air Pollution Control District Thresholds of Significance for Criteria Pollutants of Concern 24-14
 24-7 Estimated Average Daily Unmitigated Emission Rates for Criteria Pollutants by Year for Construction of Alternative A Within the Primary Study Area 24-20
 24-8 Estimated Total Average Daily Unmitigated Emission Rates for Operation and Maintenance of Proposed Facilities Within the Primary Study Area Under All Alternatives (lb/day) 24-21
 24-9 Estimated Total Average Daily Unmitigated Emission Rates for Periodic Holthouse Reservoir Sediment Removal Within the Primary Study Area Under All Alternatives (lb/day for 167 days) 24-22
 24-10 Estimated Average Daily Unmitigated Emission Rates for Criteria Pollutants by Year for Construction of Alternatives B, C, and C ${ }_{1}$ 24-26
 24-11 Estimated Average Daily Unmitigated Emission Rates for Criteria Pollutants by Year for Construction of Alternative D Within the Primary Study Area 24-30
 24-12 Summary of Mitigation Measures for Potential Project Impacts to Air Quality 24-31
 25-1 Global, National, and Statewide Annual GHG Emissions Inventories 25-8
 25-2 Estimated Total GHG Emissions from Construction of Alternative A (Metric Tons $\mathrm{CO}_{2} \mathrm{e}$). 25-15
 25-3 Indirect GHG Emissions from Net Long-Term Electricity Use for the Existing Conditions/ No Project/No Action Condition, and Alternatives A, B, C, C 1 , and D. 25-16
 25-4 Estimated Total GHG Emissions from Construction of Alternative B (Metric Tons CO_{2} e) 25-19
 25-5 Estimated Total GHG Emissions from Construction of Alternative C (Metric Tons CO_{2} e) 25-20
 25-6 Estimated Total GHG Emissions from Construction of Alternative D (Metric Tons $\mathrm{CO}_{2} \mathrm{e}$)... 25-22
 25-7 Summary of Mitigation Measures for Project Impacts from Greenhouse Gas Emissions 25-25
 25-8 Climatic Conditions in Glenn and Colusa Counties 25-26
 25-9 Sea Level Rise Projections and Ranges for San Francisco, California 2030, 2050, and 2100 25-30
 26-1 Pavement Condition Categories and Criteria 26-2
 26-2 Roadway Classifications for Glenn County 26-5
 26-3 General LOS Criteria for Roadways 26-6
 26-4 Glenn and Colusa County Average Daily Traffic Level of Service Criteria 26-7
 26-5 Major Roadways in the Secondary Study Area 26-8
 26-6 Characteristics of Roadways in Tehama County that Are Main Access Routes to the Proposed Pump Installation Site at the Red Bluff Pumping Plant 26-8
 26-7 ADT for Selected Roads in Tehama County 26-9
 Tables Pages
 26-8 Expected Roadway Access Routes to Project Facilities 26-10
 26-9 Characteristics of Roadways in Glenn County that are Main Access Routes to Project Facilities 26-13
 26-10 2015 ADT for Selected Roads in Glenn County 26-14
 26-11 Characteristics of Roadways in Colusa County that are Main Access Routes to Project Facilities 26-15
 26-12 2015 ADT for Selected Roads in Colusa County 26-16
 26-13 Peak Daily Construction Trips 26-22
 26-14 Alternative A Construction LOS 26-28
 26-15 Alternative A Operations and Maintenance LOS 26-29
 26-16 Alternative B Construction LOS 26-35
 27-1 Typical Sound Levels Measured in the Environment and Industry. 27-2
 27-2 Construction Equipment Noise Levels 27-11
 27-3 Construction Equipment Noise Levels Versus Distance 27-13
 28-1 Distribution of Mosquitoes in Counties that Comprise the Extended Study Area 28-5
 28-2 Distribution of Mosquitoes in Counties that Comprise the Secondary Study Area 28-13
 28-3 Distribution of Mosquitoes in Counties that Comprise the Primary Study Area 28-17
 29-1 Glenn County Schools 29-4
 29-2 Glenn County School Bus Routes 29-5
 29-3 Colusa County Schools 29-6
 29-4 Colusa County School Bus Routes 29-7
 29-5 Glenn County Water Supply Statistics 29-9
 29-6 Active Water Systems in Glenn County 29-9
 29-7 Colusa County Water Supply Statistics 29-11
 29-8 Active Water Systems in Colusa County 29-11
 30-1 Visual Character of the Proposed Recreation Areas 30-9
 30-2 Visual Impact Significance Summary 30-19
 31-1 2016 and 2015 Total System Electric Generation 31-4
 31-2 California Energy Demand Update, 2016 Forecasts of Statewide Electricity Demand 31-13
 31-3 Central Valley Project Power Plants, Capacities, and Historical Annual Generation 31-16
 31-4 Project Maximum Pumping Demand by Alternative 31-26
 31-5 Project Maximum Generating Capacity by Alternative 31-26
 31-6 Summary of Project Optimized Hydropower Operations, including Pumped-storage Operations 31-27
 31-7 CVP, SWP, and Proposed Project Facilities Energy Use (in GWh) - Alternative A 31-35
 31-8 CVP, SWP, and Proposed Project Facilities Energy Use (in GWh) - Alternative B 31-39
 31-9 CVP, SWP, and Proposed Project Facilities Energy Use (in GWh) - Alternative C 31-42
 31-10 CVP, SWP, and Proposed Project Facilities Energy Use (in GWh) - Alternative C C_{1} 31-45
 31-11 CVP, SWP, and Proposed Project Facilities Energy Use (in GWh) - Alternative D 31-47
 32-1 Short-term and Long-term Effects of Alternatives A, B, C, C 1 , and D by Environmental Resource 32-2
 34-1 Water Supply and Demand Estimates for Currently Participating Municipal and Industrial Water Agencies/Districts 34-3
 34-2 Quantity of Sites Reservoir Project Water Requested by M\&I Participant 34-4
 34-3 Summary of Changes in Water Supplies to Municipal and Industrial Water Users under Alternative A as Compared to the Existing Conditions/No Project/No Action Condition 34-6
 34-4 Projected Difference Between Water Supply and Demand by Agency/District - Alternative A 34-7
 34-5 Summary of Changes in Water Supplies to Municipal and Industrial Water Users under Alternative B as Compared to the Existing Conditions/No Project/No Action Condition 34-13
 Tables Pages
 34-6 Projected Difference Between Water Supply and Demand by Agency/District - Alternative B 34-14
 34-7 Summary of Changes in Water Supplies to Municipal and Industrial Water Users under Alternative C as Compared to the Existing Conditions/No Project/No Action Condition 34-17
 34-8 Projected Difference Between Water Supply and Demand by Agency/District - Alternative C 34-18
 34-9 Summary of Changes in Water Supplies to Municipal and Industrial Water Users under Alternative D as Compared to the Existing Conditions/No Project/No Action Condition 34-22
 34-10 Projected Difference Between Water Supply and Demand by Agency/District - Alternative D 34-23
 35-1 Present and Reasonably Foreseeable Future Actions Included in the Cumulative Impacts Analysis, by Resource Area 35-3
 36-1 NODOS Project Public Scoping Meetings 36-2
 36-2 Sacramento River Flow Regime Technical Advisory Group Participants 36-4
 36-3 Sites Reservoir Project MOU Signatories 36-6
 38-1 Sites Project Authority Staff Contributors to the Draft EIR/EIS 38-1
 38-2 California Department of Water Resources Staff Contributors to the Draft EIR/EIS 38-2
 38-3 Bureau of Reclamation Staff Contributors to the Draft EIR/EIS 38-3
 38-4 U.S. Fish and Wildlife Staff Contributors to the Draft EIR/EIS 38-5
 38-5 CH2M HILL Staff Contributors to the Draft EIR/EIS 38-5
 38-6 AECOM Staff Contributors to the Draft EIR/EIS 38-10
 38-7 Horizon Water and Environment Staff Contributor to the Draft EIR/EIS 38-11
 38-8 California Department of Water Resources Staff Contributors to the Preliminary Administrative Draft EIR/EIS. 38-11
 38-9 Bureau of Reclamation Staff Contributors to the Preliminary Administrative Draft EIR/EIS 38-13
 38-10 Authority Staff Contributors to the 2013 Preliminary Administrative Draft EIR/EIS 38-16
 38-11 Consultant Contributors to the 2013 Draft EIR/EIS 38-17
 39-1 Sites Reservoir Project Draft EIR/EIS Locations of Availability for Printed Copies. 39-1

 ## Figures

 Pages
 1-1 Proposed Sites Reservoir Project Location 1-3
 1-2 Proposed Sites Reservoir Project Facilities 1-4
 1-3 Primary, Secondary, and Extended Study Areas 1-23
 1-4 Level 4 Wildlife Refuges in the Extended Study Area 1-25
 1-5 Secondary Study Area 1-27
 1-6A Alternative A Primary Study Area 1-28
 1-6B Alternative B Primary Study Area 1-29
 1-6C Alternative C Primary Study Area 1-30
 $1-6 \mathrm{C}_{1} \quad$ Alternative C C_{1} Primary Study Area 1-31
 1-6D Alternative D Primary Study Area 1-32
 2-1 Location of the Four Potential Reservoir Alternatives 2-5
 2-2 Sites Reservoir Alternative Project Features 2-13
 2-3 Sites Reservoir Alternative Conveyance Project Features 2-14
 2-4 Potential Conveyance Alternatives for Sites Reservoir Alternative 2-17
 3-1 Proposed Project/Proposed Action Facilities - All Alternatives 3-11
 3-2 Golden Gate Dam Cross Section Showing Grouting 3-15
 3-3 Sites Dam Cross Section Showing Grouting 3-16
 3-4 Saddle Dams 1, 2, 4 and 9 Cross Sections Showing Grouting (Typical) 3-17
 3-5 Saddle Dams 3, 5, 6, 7, and 8 Cross Sections Showing Grouting (Typical) 3-18
 3-6 Potential Quarry Locations within and near the Proposed Sites Reservoir Inundation Area 3-19
 3-7 Proposed Sites Reservoir Inlet/Outlet Structure, Holthouse Reservoir, and Associated Facilities 3-25
 3-8A Proposed Access Routes to Project Facilities 3-32
 3-8B Proposed Access Routes to Project Facilities 3-33
 3-9A Proposed Saddle Dam Recreation Area and Facilities 3-40
 3-9B Proposed Stone Corral Recreation Area and Facilities 3-41
 3-9C Proposed Lurline Headwaters Recreation Area and Facilities 3-42
 3-9D Proposed Antelope Island Recreation Area and Facilities 3-43
 3-9E Proposed Peninsula Hills Recreation Area and Facilities 3-44
 3-9F Proposed Boat Ramp Recreation Area 3-45
 3-10 Proposed Sites Reservoir Inlet/Outlet Structure, Holthouse Reservoir, and Associated Facilities, Alternatives A, B, C, and D 3-48
 3-11 Location of the Proposed Pump Installation at Red Bluff Pumping Plant 3-53
 3-12 Proposed Terminal Regulating Reservoir and Associated Facilities Alternatives A, B, C and C_{1} 3-56
 3-13A Delevan Pipeline Intake/Discharge Facilities 3-66
 3-13B Proposed Delevan Pipeline Intake/Discharge Facilities - Alternatives A, C, C,$~ D$ 3-67
 3-13C Proposed Delevan Pipeline Discharge Facility Alternative B 3-68
 3-14 Proposed Sites Reservoir Inlet/Outlet Structure, Holthouse Reservoir, and Associated Facilities, Alternative C_{1} 3-86
 3-15 Proposed Terminal Regulating Reservoir and Associated Facilities 3-90
 5-1 Information Flow among Models and General Application and Use of Output for Resource Evaluations 5-16
 6-1A Northern California Major Water Supply Facilities 6-2Figures
 6-1B San Francisco Bay Area, San Joaquin Valley, and Tulare Lake Major Water Supply Facilities 6-3
 6-1C Central Coast and Southern California Major Water Supply Facilities 6-4
 7-1 Selected Delta Water Quality Compliance Stations 7-36
 8-1 Sacramento River Reaches for Geomorphology Analysis 8-5
 8-2 Sacramento River Channel Changes at and near River Mile 158.5 8-14
 9-1 Overview of SPFC Project Works 9-2
 9-2A Sacramento Valley Flood Control System Estimated Channel Capacity (North) 9-4
 9-2B Sacramento Valley Flood Control System Estimated Channel Capacity (South) 9-5
 9-3 100-Year Floodplain Delineation Relative to the Project Facilities 9-6
 9-4 100-Year Inundation Areas Relative to the Project Facilities. 9-11
 9-5 Dam Break Inundation Area for the Project Facilities 9-22
 10-1 Hydrologic Regions of California 10-3
 10-2 Subbasins of the Sacramento Valley Groundwater Basin 10-13
 10-3 Spring 2016 Groundwater Elevation Contour Map 10-14
 10-4 Fall 2015 Groundwater Elevation Contour Map. 10-15
 10-5 Change in Groundwater Elevation Spring 2004 to Spring 2014. 10-16
 10-6A CVHM-Forecast Sacramento River Stages and Groundwater Elevations after 24.8 Years for Alternative A and Existing Conditions/No Project/No Action Condition 10-34
 10-6B Groundwater-Surface Water Exchange Differences between Sites Alternative A and Existing Conditions/No Project/No Action Condition 10-35
 10-7A CVHM-Forecast Sacramento River Stages and Groundwater Elevations after 24.8 Years for Alternative B and Existing Conditions/No Project/No Action Condition 10-44
 10-7B Groundwater-Surface Water Exchange Differences between Sites Alternative B and Existing Conditions/No Project/No Action Condition 10-45
 10-8A Simulated Groundwater Elevations Versus Time near the SACFEM ${ }_{2013}$ Model Boundary 10-48
 10-8B Simulated Groundwater Elevations Versus Time at the Orchards Southeast of Funks Creek $10-49$
 10-9A Simulated Increase in Groundwater Level Due to Seepage from Sites and Holthouse Reservoirs, Alternative B Shallow Aquifer, February 1980 $10-51$
 10-9B Simulated Increase in Groundwater Level Due to Seepage from Sites and Holthouse Reservoirs, Alternative B Shallow Aquifer, April 1983 10-52
 11-1A Simulated Change in Groundwater Flow Direction Due to Seepage from Sites and Holthouse Reservoirs Alternative B, Shallow Aquifer, February 1980 11-31
 11-1B Simulated Change in Groundwater Flow Direction Due to Seepage from Sites and Holthouse Reservoirs Alternative B, Shallow Aquifer, April 1983 11-32
 12-1 Sacramento River Watershed 12-5
 12-2 Feather River Watershed 12-19
 12-3 Trinity River Watershed 12-27
 12-4 American River Watershed 12-30
 12-5 Waterways within the Primary Study Area. 12-48
 12-6 Proposed Project Facility Locations 12-85
 12-7 Proposed Project Facility Locations 12-87
 12-8 Proposed Project Facility Locations 12-98
 12-9 Proposed Project Facility Locations 12-99
 13-1 Secondary Study Area Regions for Analysis of Potential Special-status Plant Species 13-12
 13-2 Vegetation Types near Project Facility Locations 13-29
 13-3 Riparian Sites along Funks Creek Impacted by Dams 13-79
 13-4 Alkaline Wetland Area Overlapping with Holthouse Reservoir Complex 13-83
 13-5 Former Alkaline Wetland in Delevan Pipeline Construction Disturbance Area 13-90
 Figures Pages
 16-1 Geomorphic Provinces of California 16-2
 16-2 Generalized Geologic Map and Rock Units Within the Primary Study Area. 16-11
 17-1 Simplified Fault Activity in California 17-6
 17-2 Regional Faults 17-7
 17-3 Regional Seismicity 17-11
 17-4 Faults in the Vicinity of Project Dam Sites 17-15
 17-5 Faults near Golden Gate Dam Site 17-16
 17-6 Faults near Sites Dam Site 17-17
 17-7 Median and 84th Percentile Deterministic Response Spectra 17-19
 17-8 DSOD Consequence-hazard Matrix. 17-20
 18-1 Archeological Region and Subregion Boundaries 18-3
 18-2 Native American Tribal Land Boundaries 18-7
 20-1 Glenn and Colusa County Zoning Designations within Construction Footprint 20-9
 20-2 Glenn and Colusa County Zoning Designations within Permanent Footprint 20-10
 20-3 Agricultural Land Designations within Construction Footprint 20-11
 20-4 Agricultural Land Designations within Permanent Footprint 20-12
 20-5 Colusa County Zoning Designations within Overhead Power Line Alignment (Alternative D) 20-16
 20-6 Agricultural Land Designations within Overhead Power Line Alignment (Alternative D) 20-17
 21-1 Existing Lakes and Reservoirs in the Extended Study Area 21-4
 21-2 Existing Lakes and Reservoirs in the Secondary Study Area 21-9
 21-3 Project Operations - Reservoir Point Rating Graph 21-27
 23-1 Primary Study Area Minority Population Distribution 23-13
 23-2 Primary Study Area Low-income Population Distribution 23-17
 24-1 Project Location Relative to Air Basins and Air Districts 24-5
 25-1 The Greenhouse Gas Effect 25-3
 25-2 Graphical Depiction of the Analytical Process for Incorporating Climate Change into the CALSIM II Model for Water Resources Planning Purposes 25-37
 26-1 Construction and Maintenance Access Routes to Project Facilities 26-3
 30-1A Sites Reservoir Photo Locations 30-41
 30-1B Holthouse Reservoir Complex and TRR Complex Photo Locations 30-42
 30-1C Delevan Overhead Power Line, Delevan Pipeline, and Delevan Pipeline Intake/Discharge Facilities Photo Locations 30-43
 30-1D RBPP and GCID Facilities Photo Locations 30-44
 30-2A Northern Portion of Sites Reservoir Inundation Area and Saddle Dam Recreation Area Landscape Character Photo 30-45
 30-2B Sites Reservoir Inundation Area Landscape Character Photos 30-47
 30-2C Sites Reservoir Inundation Area Landscape Character Photos 30-48
 30-2D Golden Gate Dam Landscape Character Photos 30-49
 30-2E Golden Gate Dam and Sites Dam Landscape Character Photos 30-50
 30-2F Sites Dam and Saddle Dams 1 and 2 Landscape Character Photos 30-51
 30-2G Saddle Dam 3 Landscape Character Photo 30-52
 30-2H Stone Corral Recreation Area Landscape Character Photo 30-53
 30-2I Peninsula Hills Recreation Area Landscape Character Photo 30-54
 30-2J Peninsula Hills and Antelope Island Recreation Areas Landscape Character Photos 30-55
 30-2K Lurline Headwaters Recreation Area and South Bridge Landscape Character Photos 30-56
 30-2L Sites Reservoir Pumping/Generating Plant and Inlet/Outlet Structure Landscape Character Photos 30-57
 30-2M Field Office Maintenance Yard and Existing Funks Reservoir Landscape Character Photo 30-59
 30-2N Holthouse Reservoir Complex Landscape Character Photo 30-60
 Figures
 30-2O Proposed GCID Canal Headgate Structure and Canal Lining Location Landscape Character Photo 30-61
 30-2P GCID Canal Railroad Siphon Replacement Landscape Character Photos 30-63
 30-2Q Red Bluff Pumping Plant and TRR Facilities Landscape Character Photos 30-64
 30-2R Terminal Regulating Reservoir Landscape Character Photos 30-65
 30-2S Sites/Delevan Overhead Power Line and Delevan Pipeline Landscape Character Photo 30-67
 30-2T Delevan Overhead Power Line and Delevan Pipeline Landscape Character Photo 30-68
 30-2U Delevan Pipeline Intake/Discharge Facilities and Communication Towers Landscape Character Photos 30-69
 30-2V Overhead Power Line (Alternate Alignment) Landscape Character Photo 30-71
 30-2W Boat Ramp Landscape Character Photo 30-72
 31-1 Western Electricity Coordinating Council, 2015 Non-coincident Peak Demand by Balancing Authority Area 31-3
 31-2 Installed In-State Electric Generation Capacity by Fuel Type 31-6
 31-3 California Electric Transmission System 31-11
 31-4 Regional Transmission Lines and Substations. 31-21

 ## Benefit Calculation, Monetization, and Resiliency Tab

 ## Attachment 4: Existing Mitigation and Compliance

 For each net public benefit claimed, where applicable, identify any existing environmental mitigation or compliance obligations that are accounted for in each net public benefit as of the date of the CalSim-II model product in section 6004(a)(1).

 - Applicants that use the CalSim-II and DSM2 models to analyze their projects can indicate "within models" for any existing environmental mitigation and compliance obligations contained in those models.
 - If applicable to their claimed net public benefit such projects shall also list and account for the non-flow related mitigation and compliance obligations of the State Water Project and Central Valley Project.

 | STATUS: | FINAL | PREPARER: | J HERRIN | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A4 | CHECKER: | R THOMSON | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | | PAGE: | 1 |

 ## Table of Contents

 ## Attachment 4: Existing Mitigation and Compliance

 Operations to Avoid and Mitigate Impacts... 4

 | STATUS: | FINAL | PREPARER: | J HERRIN | PHASE: | 1 | VERSION: | C | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A4 | CHECKER: | R THOMSON | DATE: | 2017 AUGUST | | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIPAPPLICATION | | | |
 | NOTES: | | | | | PAGE: | 2 | OF | 6 |

 # Acronyms and Abbreviations

 | CDFW | California Department of Fish and Wildlife |
 | :--- | :--- |
 | cfs | cubic feet per second |
 | NMFS | National Marine Fisheries Service |
 | RBPP | Red Bluff Pumping Plant |

 | STATUS: | FINAL | PREPARER: | J HERRIN | PHASE: | 1 | VERSION: | C | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A4 | CHECKER: | R THOMSON | DATE: | 2017 AUGUST | | | |
 | CAVEAT: | | QAVC: | | REF/FILE \#: | WSIP APPLICATION | | | |
 | NOTES: | | | | | PAGE: | 3 | OF | 6 |

 ## Introduction

 This attachment describes how existing environmental mitigation and compliance obligations were handled in the WSIP application for Sites Reservoir.

 All modeling for current, 2030, and 2070 with-project and without-project conditions presented in this application used the CalSim-II and DSM2 model products provided by the Commission for the WSIP application. The Sites Project does not modify, or in any other manner change the existing environmental mitigation and compliance obligations included within in these models.

 Net public benefits were monetized for the following purposes:

 - Ecosystem enhancement
 - Recreation
 - Flood Damage Reduction

 Costs for all mitigation actions (flow-related and non-flow related obligations) identified in the draft environmental document, are included in the Basis of Estimate Report (see Sites_A8 Estimate under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB). The Mitigation Monitoring Plan is Appendix 1A in the Draft EIR/EIS (Posted at http://sitesproject.org/information/DraftEIR-EIS).

 There are no additional mitigation or compliance obligations for recreation and flood control benefits. Potential ecological impacts are addressed through both operational constraints and mitigation actions. These are further elaborated on below.

 ## Operations to Avoid and Mitigate Ecosystem Impacts

 The proposed operation of the Sites Project incorporates additional mitigation and operational constraints to flexibly to adapt to a range of hydrologic conditions, to minimize impacts to prior right holders and the environment, to address various future uncertainties, and to allow for consideration of a range of future water management actions. The proposed operations include compliance with existing criteria and the addition of constraints that are not included in existing regulations. The proposed operational scenario incorporates three primary components:

 1. Operating criteria for diversion of water when all other regulatory criteria are met (including diversion rate, duration of the diversion, the season of diversion and the water year type of the diversion) from the Sacramento River to fill the Sites Reservoir
 2. Operating criteria for timing and rate of releases of water to achieve the primary objectives of the Project (and associated benefits) in specific year types (such as drought or driest periods) and other hydrologic conditions
 3. Project cooperative operations with the CVP and SWP operations and facilities

 The proposed Sites Reservoir would be filled through the diversion of Sacramento River water that originates from unregulated tributaries to the Sacramento River downstream from Keswick Dam. Sacramento River water would be diverted at the existing Hamilton City and Red Bluff diversion locations. Sacramento River water would also be diverted via a new Delevan intake and pipeline. Flows available for diversion are considered river flows in addition to those required to meet the following:

 - Senior downstream water rights, existing CVP and SWP and other water rights diversions including SWP Article 21 (interruptible supply), and other more senior flow priorities (diversions associated with Freeport Regional Water Project and Los Vaqueros Reservoir)

 - Existing regulatory requirements including State Water Resources Control Board D-1641, VPIA 3406(b)(2), the 2008 U.S. Fish and Wildlife Service biological opinion, and the 2009 National Marine Fisheries Service biological opinion and other instream flow requirements
 - Flow conditions needed to maintain and protect anadromous fish survival and Delta water quality

 Sacramento River flow diversions to Sites Reservoir would only take place when flow monitoring indicates that bypass flows are present in the river because of storm event flows. Several existing and additional proposed bypass flow criteria were assumed at specified locations, as part of the Project. These flow criteria are designed to make certain that available water would be diverted into Sites Reservoir to maintain and protect existing downstream water uses and environmental resources, as follows.

 - A bypass flow of 3,250 cfs downstream from Red Bluff Diversion Dam must be present to maintain lows in the upper Sacramento River that are required in State Water Resources Control Board WR 90-5 to prevent dewatering salmonid redds and maintain water temperatures. Diversions at RBPP for filling Sites Reservoir would only be allowed when flows in the river are above the 3,250 cfs bypass flow criteria.
 - Diversions at the Hamilton City intake for Glenn-Colusa Canal currently require a bypass flow of 4,000 cfs to prevent fish entrainment. Diversions at RBPP and Glenn-Colusa Canal intake for filling Sites Reservoir would only be allowed when flows in the river are above the 4,000-cfs bypass flow requirement downstream from Hamilton City.
 - Diversions for filling Sites Reservoir would only be allowed when flows below Wilkins Slough were above $5,000 \mathrm{cfs}$, given the current minimum flow requirements. Wilkins Slough Navigation Control Point minimum flows currently range from 3,250 to $5,000 \mathrm{cfs}$, depending on hydrologic conditions.
 - Diversions for filling Sites Reservoir would only be allowed when a Sacramento River flow of 15,000 cfs is present at Freeport in January; 13,000 cfs in December and February through June; and 11,000 cfs in all other months. This flow threshold protects and maintains existing downstream water uses and water quality in the Delta.

 This operating strategy greatly reduces the impact associated with diversions.
 To further address the potential for impacts to anadromous fish migration and impacts resulting from fish exposure to the proposed diversion facilities, the Project shall establish and fund an ongoing juvenile salmon trapping program and data collection network to collect real-time data to inform the operation of Sites diversions on behalf of minimizing potential fish impacts. The program shall be developed in coordination with CDFW and NMFS, and designed to augment and draw from other ongoing fish and environmental data collection efforts in the Sacramento River. The data collection and monitoring program is intended to inform the ongoing refinement of fish protection operations.

 Based on proposed ongoing monitoring for fish presence, the Project shall protect naturally occurring, storm-induced pulse flows in the Sacramento River from October through May to minimize mortality of out-migrating juvenile winter-, spring-, fall- and late fall-run Chinook salmon, and steelhead. Fish protection shall be accomplished by managing diversions at the three Project diversion points during those pulse flow events that stimulate an important spike in juvenile salmon out-migration.

 When a pulse in flow is followed by a rapid increase in juvenile salmon downstream migration, as detected by the monitoring program, the Sites Project will do the following:

 - Manage diversions to limit potential impacts to juvenile salmon in the Sacramento River. The allowable level of diversion will be determined based on the results of fish monitoring and flow

 | STATUS: | FINAL | PREPARER: | J HERRIN | PHASE: | 1 |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A4 | CHECKER: | R THOMSON | DATE: | 2017 |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSI |
 | NOTES: | | | | PAGE: | 5 |

 conditions, and different diversion rates may be assigned to operations during daylight and nighttime hours.

 - The above limitations will apply to each diversion, and operations at each facility will be managed independently to fine-tune fish protection, to the extent possible. The limitations on diversion will remain in effect until real-time monitoring associated with that facility indicates that the outmigration pulse in juvenile salmon has past.

 Pulse flows during periods of peak out-migration are expected to provide flow continuity between the upper and lower Sacramento River that will help support fish migration. It is recognized that research regarding the benefits of pulse flows is ongoing, and results of the Project monitoring program as well as further research and adaptive management will be needed to refine the pulse flow protection strategy.

 This measure is expected to reduce potential mortality of juvenile salmon from the Sites Project during their peak out-migration periods by accomplishing the following: (1) minimizing the effects on fish exposed to the diversion facilities, (2) minimizing diversion-related effects on survival, and (3) minimizing reductions in migration travel time.

 For impact analysis and simulation modeling purposes, pulse flow events are assumed to be initiated when the 3 -day trailing average Bend Bridge flow exceeds $15,000 \mathrm{cfs}$. Such an event would be considered a "qualified" event limiting diversion if the pulse flow was greater than 15,000 cfs for 7 to 10 days. A pulse flow event would be considered terminated under the following conditions: (1) the 3-day trailing average flow remained greater than 15,000 cfs for 7 to 10 days after initiation (constituting a qualified pulse event), or (2) the 3-day trailing average flow dropped below $15,000 \mathrm{cfs}$ before reaching the 7-day duration (not a qualified event). Up to one qualified pulse event would be recognized in each month during the pulse protection period to minimize potential impacts on fish migration. Diversions to Sites Reservoir storage would be restricted under the following conditions: (1) pulse conditions exist at Bend Bridge, and a qualified pulse event has not already occurred within the given month, and (2) Bend Bridge flows were less than $25,000 \mathrm{cfs}$ during the pulse event (flows above $25,000 \mathrm{cfs}$ are considered to provide lesser benefits to fish migration).

 | STATUS: | FINAL | PREPARER: | J HERRIN | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A4 | CHECKER: | R THOMSON | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | | PAGE: | 6 |

 ## Benefit Calculation, Monetization, and Resiliency Tab

 ## Attachment 5: Physical and Monetized Benefits

 Provide additional information that supports the physical and monetary quantification of the public and non-public benefits and impacts of the project as required by subsection 6004(a)(4) of the regulations. This includes data, assumptions, analytical methods and modeling results, calculations and relevant sources of information. For reference documents or studies relied upon, applicants may provide links to an existing website in lieu of attaching those documents to the application.

 WSIP Application Instructions, March 2017

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | | PAGE: | 1 |

 ## Table of Contents

 Benefit Calculation, Monetization, and Resiliency Tab 1
 Attachment 5: Physical and Monetized Benefits 1
 Acronyms and Abbreviations 5
 A5.1 All Benefits 7
 A5.1.1.a Analytic Methods 7
 A5.1.1.b Data and Assumptions 11
 A5.1.1.c Calculations 15
 A5.1.1.d Modeling Results 18
 A5.2 Ecosystem Improvement (WSIP Eligible Benefits) 18
 A5.2.1 Anadromous Fish 19
 A5.2.2 Incremental Level 4 Refuge Water Supply 25
 A5.2.3 Lake Oroville Coldwater Pool 29
 A5.2.4 Yolo Bypass 32
 A5.3 Recreation (WSIP Eligible Benefit) 35
 A5.3.1.a Analytic Methods 35
 A5.3.1.b Data and Assumptions 36
 A5.3.1.c Calculations 37
 A5.3.1.d Modeling Results (Selected Monetization Approach) 38
 A5.4 Flood Reduction (WSIP Eligible Benefit) 38
 A5.4.1.a Analytic Methods 39
 A5.4.1.b Data and Assumptions 40
 A5.4.1.c Calculations 42
 A5.4.1.d Modeling Results (Selected Monetization Approach) 42
 A5.5 Water Supply (Non-Proposition 1 Eligible Benefit) 43
 A5.5.1 M\&I Water Supply 43
 A5.5.2 Agricultural Water Supply 50
 A5.5.3 Recaptured Water Supply 54
 A5.5.4 Total Water Supply 56
 A5.6 Hydropower - System-wide (Non-Proposition 1 Benefit) 57
 A5.6.1.a Analytic Methods 57
 A5.6.1.b Data and Assumptions 58
 A5.6.1.c Calculations 59
 A5.6.1.d Modeling Results (Selected Monetization Approach) 60

 | STATUS: | FINAL |
 | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 |
 | CAVEAT: | |

 | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: | D |
 | :--- | :--- | :--- | :---: | :---: | :---: |
 | CHECKER: | J HERRIN | DATE: | 2017 | AUGUST | |
 | QAVQ: | | REF/FILE \#: | WSIP APPLICATION | | |
 | | | PAGE: | 2 | OF | 60 |

 Tables
 Table A5-1. Summary of Quantified Physical Benefits and Monetization Approaches 8
 Table A5-2. Water-Year Type Incidence Rates by Hydrologic Region: 2030 and 2070 12
 Table A5-3. WSIP Unit Water Values by Water Year and Location (\$/AF) 12
 Table A5-4. Benefit Start Dates with Percentage of 2030 Benefits 14
 Table A5-5. Water-Year Type Incidence Rates: Sacramento River Hydrologic Region 15
 Table A5-6. North-of-the-Delta Agricultural Water Deliveries (TAF/year) 16
 Table A5-7. Adjusted WSIP Unit Water Values (\$/AF) 17
 Table A5-8. Summary of Quantified Water Use by Purpose (TAF/year) 18
 Table A5-9. Ecosystem Physical Benefits Quantified and Monetized 18
 Table A5-10. SALMOD Results for 2030 and 2070 (TAF/year) 22
 Table A5-11. Salmon Production and Annual Costs for Shasta Lake Dam Raise Scenarios 23
 Table A5-12. Estimated Anadromous Fish Benefits: Alternative Cost (2015\$) 23
 Table A5-13. Estimated Anadromous Fish Benefits: WSIP Unit Water Values (2015\$) 24
 Table A5-14. Estimated Anadromous Fish Benefits: WSIP Unit Fish Values (2015\$) 25
 Table A5-15. Anadromous Fish Benefits: Least-Cost Alternative (2015\$; \$1,000s) 25
 Table A5-16. Incremental Level 4 Refuge Water Supply Increases (2030 and 2070) (TAF/year) 26
 Table A5-17. Incremental Level 4 Refuge Supply Benefit Valuation: WSIP Unit Water Values (2015\$; \$1,000s) 27
 Table A5-18. Annual Benefits and Cost for Enlargement of Shasta Lake: CP4A (2014\$; \$millions) 28
 Table A5-19. Single Purpose Cost for Enlargement of Shasta Lake: CP4A (\$1,000s) 28
 Table A5-20. Incremental Level 4 Refuge Supply Benefit Valuation: Alternative Cost Approach (2015\$; \$1,000s) 29
 Table A5-21. Incremental Level 4 Refuge Benefits: WSIP Unit Water Values (2015\$; \$1,000s) 29
 Table A5-22. Lake Oroville Storage Increases for 2030 and 2070 (TAF/year) 31
 Table A5-23. Lake Oroville Coldwater Pool Benefit Valuation: WSIP Unit Water Values (2015\$; \$1,000s) 31
 Table A5-24. Lake Oroville Coldwater Pool Benefit Valuation: Alternative Cost Approach (2015\$; $\$ 1,000$ s) 32
 Table A5-25. Lake Oroville Coldwater Pool Benefits: WSIP Unit Water Values (2015\$; \$1,000s) 32
 Table A5-26. Yolo Bypass Flow Increases for 2030 and 2070 (TAF/year) 34
 Table A5-27. Yolo Bypass Flows Benefit Valuation: WSIP Unit Water Values (2015\$; \$1,000s) 34
 Table A5-28. Yolo Bypass Flows Benefit Valuation: Alternative Cost Approach (2015\$; $\$ 1,000$ s) 35
 Table A5-29. Yolo Bypass Supply Benefits: WSIP Unit Water Values (2015\$; \$1,000s) 35
 Table A5-30. Annual Recreation Visitation by Primary Activity 37
 Table A5-31. Annual Recreation Benefits (2015\$; \$1,000s) 38
 Table A5-32. Estimated Annual Recreation Benefits (2015\$; \$1,000s) 38
 Table A5-33. Projected Damages per Acre: 100-Year Flood Event (2015\$; \$1,000s) 40
 Table A5-34. Avoided Cost Assumptions and Estimates: 100-Year Flood Event (2015\$; \$1,000s) 41
 Table A5-35. Flood Benefits by Event and Impact Category (2015\$; \$1,000s) 42
 Table A5-36. EAD Calculation (2015\$; \$1,000s) 42
 Table A5-37. Flood Reduction Benefits (2015\$; \$1,000s) 42
 Table A5-38. Increase in Water Supply Deliveries (TAF/year) 46
 Table A5-39. M\&I Water Supply Benefits: 2030 CWEST Modeling Detailed Model Results (2015\$; \$1,000s) 47
 Table A5-40. M\&I Water Supply Benefits: 2070 CWEST Modeling Detailed Model Results (2015\$; \$1,000s) 47
 Table A5-41. M\&I Water Supply Benefit Valuation: CWEST Water Values (2015\$; \$1,000s) 49

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: |
 | :--- | :--- | :--- | :--- | :--- | $\mathbf{1}$ VERSION: \quad D

 Table A5-42. M\&I Water Supply Benefit Valuation: WSIP Unit Water Values (2015\$; \$1,000s) 49
 Table A5-43. M\&I Water Supply Benefits: CWEST Modeling (2015\$; \$1,000s) 50
 Table A5-44. Agricultural Water Supply Benefit Valuation: WSIP Unit Water Values (2015\$; $\mathbf{\$ 1 , 0 0 0 s) . .}$ 52
 Table A5-45. Agricultural Water Supply Benefit Valuation: 2030 SWAP Values (2010\$; $\mathbf{1 , 0 0 0}$ s) 52
 Table A5-46. Agricultural Water Supply Benefit Valuation: 2070 SWAP Values (2010\$; \$1,000s) 53
 Table A5-47. Incremental Agricultural Water Supply Benefit Valuation: SWAP (SGMA) Values (2015\$; \$1,000s) 53
 Table A5-48. Agricultural Water Supply Benefits: WSIP Unit Water Values (2015\$; \$1,000s) 54
 Table A5-49. Recaptured Water Supply Benefit Valuation: CWEST Water Values (2015\$; \$1,000s). 55
 Table A5-50. Recaptured Water Supply Benefit Valuation: WSIP Unit Water Values (2015\$; \$1,000s).. 55
 Table A5-51. Recaptured Water Supply Benefits: CWEST Modeling (2015\$; \$1,000s) 56
 Table A5-52. Total Water Supply Benefits: CWEST Results and WSIP Unit Water Values (2015\$; $\mathbf{\$ 1 , 0 0 0 s)}$ 56
 Table A5-53. Sites Reservoir Pumping Use and Power Generation 59
 Table A5-54. Sites Reservoir Power Costs and Generation Revenues (2015\$; \$1,000s) 59
 Table A5-55. Hydropower Benefits (2015\$; \$1,000s) 60
 Figures
 Figure A5-1. Percentage Increase in Fish Species Average Production for 2030 and 2070. 22

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIPAPPLICATION | |
 | NOTES: | | | | PAGE: | 4 | OF |

 ## Acronyms and Abbreviations

 | \$/AF | dollar value per acre-foot |
 | :---: | :---: |
 | AS | Ancillary Services |
 | AS WSIP | Water Storage Investment Program |
 | CEC | California Energy Commission |
 | CP4A | Comprehensive Plan 4A |
 | CPI-U | consumer price index for California |
 | CPUC | California Public Utilities Commission |
 | CVP | Central Valley Project |
 | CWC | California Water Commission |
 | CWEST | California Water Economics Spreadsheet Tool |
 | DWR | California Department of Water Resources |
 | EAD | Expected Annual Damages |
 | EPM | Energy Portfolio Model |
 | EPRI | Electric Power Research Institute's |
 | F-RAM | Flood Rapid Assessment Model |
 | I-5 | Interstate 5 |
 | IEPR | Integrated Energy Policy Report |
 | LRS | Loads and Resources Subcommittee |
 | LTO EIS | Coordinated Long Term Operation of the Central Valley Project and State Water Project Environmental Impact Statement |
 | LTPP | Long Term Procurement Plan |
 | M \& | municipal and industrial |
 | NOD | north of the Delta |
 | O\&M | operation and maintenance |
 | PARO | Power and Risk Office (DWR) |
 | PLEXOS | PLEXOS ${ }^{\circledR}$ Integrated Energy Model |
 | project | Sites Reservoir Project |
 | Reclamation | United States Bureau of Reclamation |
 | RPS | Renewable Portfolio Standard |
 | RUVD | Recreation Use Values Database |
 | SALMOD | Salmon Population Model |
 | SGMA | Sustainable Groundwater Management Act |

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAVQ: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | PAGE: | 5 |

 SLWRI Shasta Lake Water Resource Investigation
 SOD south of the Delta

 SWAP Statewide Agricultural Production
 SWP State Water Project
 TAF thousand acre-feet
 TEPPC Transmission Expansion Planning Policy Committee

 Technical Reference
 UWMP
 Urban Water Management Plan

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIPAPPLICATION | |
 | NOTES: | | | | PAGE: | 6 | OF |

 ## A5.1 All Benefits

 This section provides an overview of the analytic approaches, data, and calculations used for two or more of the benefit purposes to quantify their economic benefits. Subsequent sections discuss the analyses specific to the individual benefit purposes in more detail.

 Table A5-1 shows the Sites Reservoir Project (project) purposes and benefits quantified and monetized for the Water Storage Investment Program (WSIP) Application. The key data, assumptions and analytical methods used to determine each project purpose's physical and monetary benefits are provided below. The following methodology discussion also describes the modeling results, calculations, and relevant information sources for the benefit analysis.

 ## A5.1.1.a Analytic Methods

 Table A5-1 shows (1) the analytic methods used to determine the monetized economic benefits for the WSIP Application and (2) the alternate methodologies considered for use for the economic benefit valuation analysis. In most cases, analyses using the alternate methodologies were also performed to evaluate their suitability for the WSIP Application's final benefit determination and to estimate the findings with their use.

 The discussion of analytic methods in the following sections identifies and describes the analytic methods selected for use in the WSIP benefit value determination and those that were not selected.

 Similarly, the discussion of the data, calculations, and modeling results below identifies and describes benefit valuation approaches that were selected and those that were not.

 ## CALSIM II

 The economic benefit analyses for project-provided water supply relied on CALSIM II modeling to quantify the project's expected future water deliveries under different water-year conditions. The California Water Commission's WSIP Technical Reference (November 2016) (TR) recognizes CALSIM II as "the model most capable of providing inter-regional or statewide analysis of water operations in the Central Valley of California." The WSIP TR also provides a detailed description of the CALSIM II model approach and use (TR, Section 4.3.8.9 and Appendix B).

 Per WSIP TR recommendations, CALSIM II modeling was used to determine the project's future water supply deliveries under different water-year conditions to its expected water users and locations. The CALSIM II operational studies determined future water deliveries for both 2030 and 2070 conditions. The CALSIM II analysis also incorporated the WSIP TR required future climate change assumptions to determine its 2070 future water system operations and deliveries.

 The CALSIM II analysis both accounts for water conveyance losses and recognizes water system operating constraints (both infrastructure and scheduling) to determine the water quantities that can be delivered to water users (whether municipal and industrial [M\&I], agricultural, or for environmental improvement purposes).

 Unless otherwise noted, CALSIM II was used to determine the water quantities that support the benefit valuation of the project purposes.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | | |
 | CAVEAT: | | QA/QC: | 2017 AUGUST | | | |
 | NOTES: | | | REF/FILE \#: | WSIP APPLICATION | | PAGE: |

 Table A5-1. Summary of Quantified Physical Benefits and Monetization Approaches

 | Benefit Type | Quantified Use | Physical Benefit Quantified | Selected Monetization Approach | Alternative Monetization Approaches |
 | :---: | :---: | :---: | :---: | :---: |
 | WSIP Public Benefits | Ecosystem Improvement - Anadromous Fish | Habitat Units | Alternative Cost | WSIP Unit Water Values; WSIP Unit Fish Values |
 | | Ecosystem Improvement - Incremental Level 4 Refuge Water | Increased Deliveries | WSIP Unit Water Values | Alternative Cost |
 | | Ecosystem Improvement - Oroville Coldwater | Stored Water | WSIP Unit Water Values | Alternative Cost |
 | | Ecosystem Improvement - Yolo Bypass | Delivered Water | WSIP Unit Water Values | Alternative Cost |
 | | Recreation | Visitation | Facilities Assessment and Unit Day Values | WSIP Recreational Visitation Model |
 | | Flood Control | Flood Damage Reduction | Avoided Cost Savings | HEC-FDA |
 | Non-WSIP Benefits | Water Supply - M\&I, Agricultural, and Recaptured | Increased Deliveries | CWEST Modeling (M\&I and Recaptured); WSIP Unit Water Values (Agricultural) | WSIP Unit Water Values (M\&I and recaptured); SWAP (Agricultural) |
 | | Hydropower | Generated Power | PARO/PLEXOS Modeling | - |

 CWEST = California Water Economics Spreadsheet Tool
 HEC-FDA = Hydrologic Engineering Center Flood Damage Reduction Analysis
 M\&I = municipal and industrial
 PARO = Power and Risk Office (DWR)
 PLEXOS = PLEXOS ${ }^{\text {® }}$ Integrated Energy Model
 WSIP = Water Storage Investment Program

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | PAGE: | 8 | OF |

 ## Alternative Cost

 The WSIP TR identified the Alternative Cost approach as an acceptable monetization approach for determining the economic benefit value for both WSIP public benefits and non-WSIP benefits. The Alternative Cost-benefit value for a project benefit is "the cost of the least-cost means of providing at least the same amount of physical benefit" (TR, Section 5.3).

 In accordance with WSIP TR guidance, two alternative projects were identified and analyzed to provide comparable physical benefits as those that would be produced by Sites Reservoir: Shasta Lake Water Resource Investigation (SLWRI or "Shasta Raise") and the proposed Auburn Dam Project. Due to its location on the Sacramento River upstream of Sites Reservoir, Shasta could readily provide water to the same end users as Sites Reservoir. The Auburn Dam would be on the American River, which is a tributary to the Sacramento River and therefore could also serve most of the benefit purposes of the Sites Reservoir. In addition, both alternative projects are large water storage projects that would provide major quantities of new water supplies. Given the large magnitude of the necessary water supplies for the project's benefit purposes, it is highly unlikely that they could be obtained from existing water users, and if such long-term water transfers occurred, they would result in major adverse economic externalities (e.g., major reductions in agricultural-sector activity).

 The United States Bureau of Reclamation (Reclamation) previously analyzed both alternative projects and determined them to be technically and economically feasible. Of the two, Shasta Raise has been most recently analyzed with its final feasibility study completed in 2015. Raising Shasta Lake Dam is projected to be substantially less costly to construct than Auburn Dam. In addition, there are major environmental concerns and other constraints to future construction of Auburn Dam. These concerns and constraints greatly reduce the likelihood that Auburn Dam would be authorized, funded, and constructed.

 Consequently, Shasta Raise was determined to be the lower-cost and more-feasible alternative project. Enlargement of Lake Shasta was also determined to be the least-cost means to obtain similar ecosystem improvement and water supply outcomes. Therefore, the Shasta Raise was used as the basis for all Alternative Cost analyses for Sites Reservoir.

 ## WISP Unit Water Values

 The California Water Commission (CWC) provided unit values for water were used to estimate the willingness to pay for several of the project's ecosystem improvement benefit purposes in accordance with the Technical Memorandum (TM) guidance (TR, Appendix D). WSIP Unit Water Values were also used to determine the economic benefits from the project's future agricultural water supply increases. The unit values were then adjusted as appropriate to account for the delivered water's additional benefit value to its users represented by the conveyance costs expected to be incurred in addition to the water transfer cost. This approach is consistent with the benefit valuation methodologies recently used by the feasibility analyses for Reclamation's Draft Upper San Joaquin River Basin Storage Investigation (2015) and Shasta Lake Water Resource Investigation (2015). Both these analyses used a similar water transfer data set and model to develop base Unit Water Values that were then adjusted to include applicable conveyance costs and carriage losses to determine the full benefit value of the project's water supplies to its water users.

 However, the Sites Reservoir benefits valuation analysis conservatively only increased the WSIP unit water benefit values to account for the additional conveyance energy costs. As discussed below, a

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | PAGE: | 9 |

 majority of the project's expected water users are likely to be SWP water contractors that may be able to obtain their future deliveries through the SWP with minimal non-energy conveyance costs. The CalSim 2 water modeling incorporates allowance for water system losses in its calculation of the delivery quantities. It was unclear from the WSIP TM whether and to what extent its unit water values (i.e. its transfer transactions) implicitly included any allowances for significant delivery water losses in their transactions and in the absence if information on the general nature of the transfers it was considered potentially speculative to apply any such adjustment. Consequently, the Sites Reservoir made no delivery water loss adjustment to increase the WSIP unit benefit value as a conservative assumption.

 However, if a 25 percent adjustment to the unit water benefit value (similar to that used by the Shasta Lake Water Resource Water Investigation Feasibility Analysis), was applied the corresponding benefit values for the benefit-purpose would be similarly increased. This would result in higher benefit values for the project and increased benefit cost and public benefit ratio findings for the project.

 The WSIP TM guidance also notes an important limitation to the use of its unit values:
 "(U)nit water values are appropriate for relatively small incremental amounts of water supply relative to the existing water uses available as feasible alternative sources. If an action or water supply will provide a large amount of water relative to available alternative sources, then the unit values in Table 5-5 may not be appropriate."

 As the WSIP TM acknowledges, there are several reasons why, under certain circumstances, the WSIP unit values would undervalue the benefits for specific water uses. The WSIP unit values implicitly assume that there would be a sufficient number of willing sellers for the price and quantity of water that could supply the water being valued. This assumption may be difficult to meet for large quantities of water (especially those quantities required for the project's anadromous fish or M\&I deliveries).

 The project would provide long-term, reliable deliveries. Such deliveries would contrast with the current water transfer market, which predominantly consists of limited-term contracts and where the demand, supply, and prices vary considerably depending on the recent and projected water-year type. The Sites Reservoir has been designed to add more than 340 thousand acre-feet (TAF) in new long-term water supplies to California's water supply for ecosystem improvements and water users through the state. Consequently, the project's total quantity of new water and that provided for its individual benefit purposes generally exceed past water transfer quantities. Therefore, it is highly unlikely that the water transfers implicit in the WSIP unit water values could actually occur-or be achieved-in a manner that would result in comparable water quantities and reliability as that provided by the project.

 Furthermore, as the WSIP TM also notes, there may be major third-party effects (e.g., externalities or related adverse effects on employees and other businesses in related economic sectors) that are not represented in the unit water values, which focus on the compensation to water sellers. Major and/or long-term reallocations of water use resulting from water transfers can be expected to potentially result in direct and indirect economic impacts to the region's workers, supporting businesses, and consumers. The WSIP unit water values are predominantly derived from past water transfers and are therefore solely based on the financial relationship between the water buyer and sellers. As a result, these values incorporate costs or losses to third-party entities or the larger economy. Inclusion of any additional third-party costs would be expected to increase the unit values and hence the benefit values of other water sources. As a result, the WSIP unit water values are considered conservative benefit valuations for the project's new water supply.

 As discussed below, Alternative Cost analysis for benefit monetization reported considerably higher benefit water use benefit values. Nonetheless, to be conservative in its analysis and findings, the WSIP benefit value analysis has selected WSIP unit water values to monetize the benefits of several of its ecosystem improvement purposes and future increased agricultural water deliveries.

 ## LTGEN/SWP

 Conveyance energy costs for the majority of locations expected to receive water supply deliveries were calculated by using the LTGen/SWP power with the Sites CALSIM II operations model. Conveyance cost information from the California Department of Water Resources (DWR), as reported in 2016 unit costs for State Water Project (SWP) system deliveries, was also evaluated.

 ## WSIP Technical Reference Guidelines

 Generally, the Sites Reservoir benefit valuation analysis closely follows the WSIP TR guidelines. As shown in Table A5-1, WSIP unit water values were used to estimate the economic benefit values for several project purposes. As permitted by the guidelines, alternate benefit valuation approaches can also be used, provided they are technically sound and adequately justified.

 The rationale for each selected benefit monetization approach is provided below. Generally, additional analyses using the alternate methodologies were also performed to better understand the sensitivity of the findings of each benefit analysis. Consequently, the findings for both the selected and the alternate benefit monetization approaches are presented and discussed below.

 Other key WSIP requirements generally applied to the benefit analysis include:

 - A planning horizon totaling 100 years (including the project construction period) (Consequently, future project benefits were determined for the 93-year operating period of 2030 to 2122.)
 - A discount rate of 3.5 percent to determine annualized average benefit values, net present values, and applicable interest during construction costs (TR, Section 5.2.4)
 - Analysis of benefits and costs in constant 2015 dollars and adjusted to 2015 price levels (TR, Section 5.2.5)
 - Escalation of pre-2015 cost and benefit values into constant 2015 dollars using the yearly average consumer price index for California (CPI-U) (TR, Section 5.2.6)

 Whenever possible, future real energy costs were escalated 1.7 percent annually to 2024 (TR, Section 5.2.7). In cases where this energy price escalation could not be incorporated into the model analysis, additional analysis was performed to determine adjustments to the analysis results to approximate the expected effects of the prescribed future escalation in real energy prices.

 ## A5.1.1.b Data and Assumptions

 ## Water Supply Quantities

 The CALSIM II modeling analysis accounts for water conveyance losses in its quantification of delivered water supplies. Consequently, no water loss adjustments were applied to WSIP Unit Water Values. Table A5-2 shows the 2030 and 2070 water-year incidence rates for both the Sacramento River and the San Joaquin River Hydrologic Regions. The 2070 water-year frequencies have been adjusted to account for the WSIP-required climate change assumptions (TR, Section 2.12 and Appendix A).

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | PAGE: | 11 |

 Table A5-2. Water-Year Type Incidence Rates by Hydrologic Region: 2030 and 2070

 | Year Type | | Hydrologic Region | | | | |
|---|---|---|---|---|---|---|
 | | | Sacramento River | | San Joaquin River | | |
 | | | $\mathbf{2 0 7 0}$ | $\mathbf{2 0 3 0}$ | $\mathbf{2 0 7 0}$ | |
 | Wet | 30% | 32% | 26% | 18% | |
 | Above Normal | 15% | 13% | 20% | 21% | |
 | Below Normal | 21% | 16% | 15% | 11% | |
 | Dry | 20% | 24% | 18% | 16% | |
 | Critical | 15% | 15% | 22% | 34% | |
 | Total | 100% | 100% | 100% | 100% | |

 Source: Calculated from historical hydrologic year type information.
 Note: Total may not sum exactly due to rounding.

 The Sacramento River Hydrologic Region water-year incidence rates were used in the CALSIM II modeling to determine the Sites Reservoir water delivery quantities.

 ## Water Supply Benefit Values

 Table A5-3 provides the WSIP-recommended unit water values, as discussed in Section 5.3 .3 (and more extensively in Appendix D) of the WSIP TR. The WSIP Unit Water Values shown below were based for statistical analysis of past water transfers and application of the Statewide Agricultural Production Model (SWAP), including assumptions to account for the effects of future implementation of the Sustainable Groundwater Management Act (SGMA).

 As discussed in the WSIP TR, the unit water values are also based on actual past water transfer transactions and sale prices, which generally require the buyer to also cover the conveyance costs for the deliveries. As a result, the full water price paid by the water buyer will be the combined sales price and the conveyance costs. This combined price also more accurately represents the water user's full willingness to pay for the supplied water.

 Table A5-3. WSIP Unit Water Values by Water Year and Location (\$/AF)

 | Water-Year Type | Sacramento Valley | Delta Export |
 | :--- | :---: | :---: |
 | $\mathbf{2 0 3 0}$ - Unit Water Values (\$/AF) | | |
 | Wet | $\$ 145$ | $\$ 205$ |
 | Above Normal | $\$ 190$ | $\$ 255$ |
 | Below Normal | $\$ 255$ | $\$ 265$ |
 | Dry | $\$ 275$ | $\$ 285$ |
 | Critical | $\$ 345$ | $\$ 360$ |
 | 2045 - Unit Water Values (\$/AF) | | |
 | Wet | $\$ 150$ | $\$ 415$ |
 | Above Normal | $\$ 200$ | $\$ 520$ |
 | Below Normal | $\$ 265$ | $\$ 635$ |
 | Dry | $\$ 285$ | $\$ 675$ |
 | Critical | $\$ 355$ | $\$ 1,055$ |

 Source: WSIP TR, Appendix D, Table D6, Page D-11.

 The CALSIM II analysis also accounts for the ability of the state's water system to deliver the water supplies to the expected users. The majority of the project's water supply deliveries will be for either

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | PAGE: | 12 |

 north-of-the-Delta (NOD) users or south-of-the-Delta (SOD) users through the SWP to its water contractors. The conveyance costs for NOD users will be minor, both in terms of wheeling costs and energy use. To be conservative in the attributed benefits, they were assumed to be zero and the WSIP values for Sacramento Valley users were not adjusted. However, as discussed in more detail below, the energy necessary to convey water to SOD users will be a significant expense and will indicate additional willingness-to-pay value to the WSIP Unit Water Values. As a result, to represent the full value of water supplied to end users, the expected conveyance energy costs to those end users are added to the WSIP Unit Water Values to represent their actual willingness to pay and full benefit value.

 The SWP generally has considerable unused service capacity (which CALSIM II has accounted for in its operational modeling). The current annual fees and charges for SWP water contractors are determined to ensure full recovery of the SWP system's annual capital and operating costs. For a variety of reasons, the SWP generally cannot provide its contractors with their full Table A allocation. As a result, SWP water contractors are expected to incur only the marginal cost of their system use to convey deliveries because they already fully meet their annual required capital share. The marginal cost for SWP users will be predominantly the additional energy use because cost increases for other system operation and maintenance ($O \& M$) components would be minor. As a result, the benefit analysis conservatively limits its adjustments of WSIP Unit Water Values to SOD users' expected energy costs for conveyance. The actual values are discussed further in Section A5.1.1.c.

 Table A5-4 provides the expected benefit start date and the percentage of their 2030 levels. The majority of benefits are expected to start in 2030, except for anadromous fish, Yolo Bypass, and flood damage reduction, as partial benefits will begin before the end of construction. In the case of hydropower (system) and recreation, a short initial ramp-up period is expected before their operations reach their full 2030 benefit levels in 2032.

 The additional benefits occurring before the project operations begin in 2030 are not included in the annualized (2030 to 2122) values calculated for each benefit category below and are not reported in their modeling result. Consequently, the pre-operation benefits are also not included in the Sites_A3 Physical Monetized under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB, results. This approach was used to facilitate comparisons both between the study-year results (i.e., 2030 and 2070) with the annualized value and between different benefit categories.

 Although the pre-construction benefits are relatively minor, they nonetheless should be included when determining the project's total benefits. Consequently, the pre-construction benefits are shown in Future Economic Benefit in Sites_A6 Annual Benefits Table under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB, and factored into the project's total net benefit value, benefitcost ratio, and public benefit ratio calculations in Sites_A10 Allocation under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB, and Physical and Economic Benefits Summary in Sites_A11 Benefits Table under the BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | | PAGE: | 13 |

 Table A5-4. Benefit Start Dates with Percentage of 2030 Benefits

 | Year | Anadromous Fish | Incremental Level 4 Refuge | Oroville
 Coldwater Pool | Yolo Bypass | Recreation | Flood Control | Water Supply | Hydropower (System) | Total Benefits |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 2024 | - | - | - | - | - | - | - | - | - |
 | 2025 | - | - | - | - | - | - | - | - | - |
 | 2026 | 10\% | - | - | 10\% | - | 50\% | - | - | 10\% |
 | 2027 | 15\% | - | - | 15\% | - | 50\% | - | - | 10\% |
 | 2028 | 20\% | - | - | 30\% | - | 100\% | - | - | 24\% |
 | 2029 | 30\% | - | - | 50\% | - | 100\% | - | - | 24\% |
 | 2030 | 100\% | 100\% | 100\% | 100\% | 50\% | 100\% | 100\% | 50\% | 97\% |
 | 2031 | 100\% | 100\% | 100\% | 100\% | 50\% | 100\% | 100\% | 50\% | 97\% |
 | 2032 | 100\% | 100\% | 100\% | 100\% | 100\% | 100\% | 100\% | 100\% | 100\% |
 | 2033 | 100\% | 100\% | 100\% | 100\% | 100\% | 100\% | 100\% | 100\% | 100\% |

 ## A5.1.1.c Calculations

 ## Water Supply Projections

 The CALSIM II model results for 2030 and 2070 were used as the basis for determining both future annual water use quantities during the interim period (i.e., 2031 to 2069) and the subsequent post-2070 period.

 For the interim period, straight-line interpolation between the 2030 and 2070 model results was used to determine the expected 2031 to 2069 annual values for applicable project purposes.

 Annual averages for each intervening year were calculated based on appropriate weighting of the wateryear type for the Sacramento River Hydrologic Region (Table A5-5). The weightings for the interim period are determined as straight-line interpolations between the 2030 and the 2070 model results. The 2070 water quantities are used for all years after 2070. The 2070 water-year frequencies have been adjusted to account for the WSIP-required climate change assumptions (TR, Section 2.12; Appendix A).

 Table A5-5. Water-Year Type Incidence Rates: Sacramento River Hydrologic Region

 | Year | Wet | Above Normal | Below Normal | Dry | Critical | Avg. Water Year |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 2030 | 30\% | 15\% | 21\% | 20\% | 15\% | 100\% |
 | 2031 | 31\% | 15\% | 21\% | 20\% | 15\% | 100\% |
 | 2032 | 31\% | 15\% | 20\% | 20\% | 15\% | 100\% |
 | 2033 | 31\% | 15\% | 20\% | 20\% | 15\% | 100\% |
 | 2034 | 31\% | 15\% | 20\% | 20\% | 15\% | 100\% |
 | \ldots | ... | ... | ... | ... | ... | ... |
 | ... | ... | ... | ... | ... | ... | ... |
 | 2066 | 32\% | 14\% | 16\% | 24\% | 15\% | 100\% |
 | 2067 | 32\% | 14\% | 16\% | 24\% | 15\% | 100\% |
 | 2068 | 32\% | 13\% | 16\% | 24\% | 15\% | 100\% |
 | 2069 | 32\% | 13\% | 16\% | 24\% | 15\% | 100\% |
 | 2070 | 32\% | 13\% | 16\% | 24\% | 15\% | 100\% |
 | 2071 | 32\% | 13\% | 16\% | 24\% | 15\% | 100\% |
 | 2072 | 32\% | 13\% | 16\% | 24\% | 15\% | 100\% |

 Source: Based on historical hydrologic year type information.
 Table A5-6 provides a representative calculation of the annual average based on the interpolation of the CALSIM II 2030 and 2070 water quantity projections for north-of-the-Delta agriculture water supplies.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | PAGE: | 15 |

 Table A5-6. North-of-the-Delta Agricultural Water Deliveries (TAF/year)

 | Year | Wet | Above Normal | Below Normal | Dry | Critical | Avg. Water Year |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 2030 | 62 | 86 | 125 | 157 | 153 | 110 |
 | 2031 | 63 | 87 | 125 | 157 | 152 | 111 |
 | 2032 | 64 | 89 | 126 | 158 | 152 | 112 |
 | 2033 | 65 | 90 | 127 | 158 | 151 | 112 |
 | 2034 | 66 | 92 | 127 | 158 | 151 | 113 |
 | ... | ... | ... | ... | ... | ... | ... |
 | ... | ... | ... | ... | ... | ... | ... |
 | 2066 | 105 | 140 | 149 | 161 | 135 | 135 |
 | 2067 | 106 | 141 | 150 | 161 | 134 | 135 |
 | 2068 | 107 | 143 | 151 | 161 | 134 | 136 |
 | 2069 | 109 | 144 | 151 | 161 | 133 | 137 |
 | 2070 | 110 | 146 | 152 | 161 | 133 | 137 |
 | 2071 | 110 | 146 | 152 | 161 | 133 | 137 |
 | 2072 | 110 | 146 | 152 | 161 | 133 | 137 |

 ## Estimated Annual WSIP Unit Water Values

 Unit Water Values were interpolated on a straight-line basis between 2030 and 2045 to derive water annual unit estimates for each year between 2031 and 2044. The 2030 unit values were used for all years before 2030. The 2045 unit values were used for all years after 2045.

 The average water-year value is calculated based on hydrologic regions, with Sacramento Valley prices based on the Sacramento River Hydrologic Region and the Delta Export value based on the San Joaquin River Hydrologic Region. As the relative weightings during the interim period are determined by straightline interpolation between the 2030 and the 2070 model results, the average annual value can vary through 2070. Table A5-7 provides a representative selection of these values.

 Water sold to south-of-the-Delta water users will also necessarily incur the conveyance energy cost. This cost is in addition to the WSIP Unit Water Values, which were largely determined based on past water transfer transactions. Buyers typically negotiate purchase of the water from the seller's location. As a result, the buyer then incurs the wheeling and energy cost to convey the water to its location. As discussed previously, the conveyance energy costs estimates were based almost entirely on LTGEN/SWP energy use modeling. DWR data were used to project the conveyance energy cost only for American Canyon water district deliveries, which was not estimated by the LTGEN/SWP energy use models.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIPAPPLICATION | |
 | NOTES: | | | | PAGE: | 16 | OF |

 Table A5-7. Adjusted WSIP Unit Water Values (\$/AF)

 | Year | WSIP Unit Water Value | | Average Conveyance Energy Cost ${ }^{\text {a }}$ | Adjusted WSIP Unit Water Value | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Sacramento Valley | Delta Export | | Sacramento Valley | Delta Export |
 | 2028 | \$229 | \$272 | \$185 | \$229 | \$457 |
 | 2029 | \$230 | \$298 | \$185 | \$230 | \$483 |
 | 2030 | \$229 | \$272 | \$185 | \$229 | \$457 |
 | 2031 | \$230 | \$298 | \$185 | \$230 | \$483 |
 | 2032 | \$230 | \$323 | \$185 | \$230 | \$508 |
 | 2033 | \$231 | \$348 | \$185 | \$231 | \$533 |
 | 2034 | \$231 | \$373 | \$185 | \$231 | \$558 |
 | ... | ... | ... | ... | ... | ... |
 | ... | ... | ... | ... | \ldots | \ldots |
 | 2043 | \$235 | \$546 | \$185 | \$235 | \$731 |
 | 2042 | \$236 | \$570 | \$185 | \$236 | \$755 |
 | 2043 | \$236 | \$594 | \$185 | \$236 | \$779 |
 | 2044 | \$237 | \$619 | \$185 | \$237 | \$804 |
 | 2045 | \$238 | \$643 | \$185 | \$238 | \$828 |
 | 2046 | \$238 | \$642 | \$185 | \$238 | \$827 |
 | 2047 | \$238 | \$641 | \$185 | \$238 | \$826 |
 | ... | ... | ... | ... | ... | ... |
 | ... | ... | ... | ... | ... | ... |
 | 2066 | \$238 | \$625 | \$185 | \$238 | \$810 |
 | 2067 | \$238 | \$624 | \$185 | \$238 | \$809 |
 | 2068 | \$238 | \$623 | \$185 | \$238 | \$808 |
 | 2069 | \$238 | \$622 | \$185 | \$238 | \$807 |
 | 2070 | \$238 | \$621 | \$185 | \$238 | \$806 |
 | 2071 | \$238 | \$621 | \$185 | \$238 | \$806 |
 | 2072 | \$238 | \$621 | \$185 | \$238 | \$806 |

 Source: WSIP TR, Table D6, Page D-11 and LTGEN/SWP energy use modeling.
 ${ }^{\text {a }}$ Average conveyance cost for deliveries to south-of-the-Delta water contractors based on LTGEN/SWP energy use modeling.

 - No conveyance adjustment was applied to north-of-the-Delta deliveries because the energy use for those water quantities would be limited.
 - No conveyance cost adjustment was made for agricultural water supplied to north-of-the-Delta users (per discussion in Section A5.1.1.b, above).
 - The estimated average conveyance energy cost for south-of-the-Delta agricultural water users was \$185/AF.
 - Unit Water Values were interpolated on a straight-line basis between 2030 and 2045. Constant Unit Water Values were applied after 2045. Note that average water values still change between 2045 and 2070 based on changing water supply quantities due to climate change.
 - San Joaquin River Hydrologic Region water-year incidence rates are used to determine applicable unit values for Delta export deliveries.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | PAGE: | 17 |

 The WISP Unit Water Values (see Table A5-3) were applied to the CALSIM II projected future water supply quantities (interpolated between 2030 and 2070). The WISP unit water values were also applied based on (1) expected water-year type frequencies and (2) use location. Based on these factors, weighted average unit prices were calculated specifically for each year in the study period. The WSIP Unit Water Values were also adjusted to include the additional conveyance energy cost required for its future use, as shown in Table A5-7.

 ## A5.1.1.d Modeling Results

 Table A5-8 shows the summary results of the average water quantities used by each project purpose. Several purposes are water non-consumptive and/or indirectly rely on project-related water (e.g., hydropower, recreation); consequently, they do not have any applicable assigned water use quantities.

 Table A5-8. Summary of Quantified Water Use by Purpose (TAF/year)

 | Period | WSIP Public Benefits | | | Non-WSIP Benefits | | | Total Water |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Coldwater Pool ${ }^{\text {a }}$ | Yolo Bypass | Incremental Level 4 Refuge | Agricultural Water Supply | M\&I Water Supply | Recaptured Water Supply | |
 | 2030 | 109 | 39 | 35 | 137 | 106 | 11 | 437 |
 | 2045 | 102 | 39 | 33 | 148 | 110 | 11 | 443 |
 | 2070 | 90 | 39 | 31 | 167 | 117 | 11 | 455 |
 | $\begin{array}{\|l\|} \hline \text { Average } \\ (2030-2122) \end{array}$ | 94 | 39 | 32 | 161 | 114 | 11 | 451 |

 ${ }^{\text {a }}$ Includes coldwater pool improvements for both Shasta Lake and Lake Oroville
 The modeling results for each specific project purpose are reported and discussed under their corresponding section below.

 ## A5.2 Ecosystem Improvement (WSIP Eligible Benefits)

 Sites Reservoir would provide a variety of ecosystem benefits. Four distinct ecosystem benefits were quantified and monetized. Table A5-9 summarizes the physical benefits that were quantified and monetarized for the WSIP Application.

 Table A5-9. Ecosystem Physical Benefits Quantified and Monetized

 | Benefit Category | Location | Physical Benefit Monetized |
 | :--- | :--- | :--- |
 | Anadromous Fish | Sacramento River watershed between
 Keswick Dam and Red Bluff | Increase in habitat units as determined
 by SALMOD |
 | Incremental Level 4 Refuge Water
 Supply | National Wildlife Refuges, State Wildlife
 Areas, and privately managed wetlands | Increase in Incremental Level 4 refuge
 water supplies to achieve optimum
 habitat management |
 | Lake Oroville Coldwater Pool | Lake Oroville | Additional water stored in Lake Oroville
 to provide temperature and flow
 improvements for anadromous fish |
 | Yolo Bypass Flows | Yolo Bypass discharging to the
 Sacramento River | August through October releases from
 Sites Reservoir to Yolo Bypass |

 The specific analysis approach and results for each ecosystem improvement purpose are provided below.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | PAGE: | 18 |

 ## A5.2.1 Anadromous Fish

 Sites Reservoir provides a variety of benefits to anadromous fish. The Salmon Population Model (SALMOD) results were used to determine the cost of an alternative project to raise the dam at Shasta Lake to estimate the benefits to anadromous fish.

 ## A5.2.1.a Analytic Methods

 ## Salmon Population Model (SALMOD)

 SALMOD simulates the dynamics of the freshwater life history of anadromous and resident salmonid populations using streamflow, water temperature, and habitat type. SALMOD combines flow and temperature information to forecast the population of Chinook salmon in the Sacramento River watershed between Keswick Dam and Bend Bridge, near Red Bluff. It provides potential fish production values reflecting the suitability of riverine habitat for Winter-run, Spring-run, Fall-run, and Late-Fall-run Chinook salmon. The model simulates salmon habitat conditions in the Sacramento River between Keswick Dam and Bend Bridge.

 ## Alternative Cost - Shasta Lake Dam Raise (WSIP Benefit Monetization Approach)

 Sites Reservoir would enhance future water temperature and flow conditions in the Sacramento River as a means of improving the riverine ecosystem. The economic benefits of the project's contributions to anadromous fish survival were estimated based on the Alternative Cost approach. As discussed in Section A5.1.1.a, this approach involves identifying the next-best (i.e., least-cost) alternative project to achieve the same outcomes (i.e., increasing salmon habitat) and using its development cost to represent the project's benefits.

 Unlike other possible benefit valuation approaches (e.g., use of WSIP Unit Water Values), the Alternative Cost approach relies on direct comparisons of the two projects' expected fishery benefits for the Sacramento River as modeled by SALMOD. The Alternative Cost approach also represents a more permanent and reliable basis for the fish habitat improvement than that represented by reliance on future water transfers and changes in future water use.

 Consequently, it was considered that the Alternative Cost of the Shasta Lake Dam raise would provide the most direct and reliable benefit valuation, and therefore this method was selected for use in the WSIP benefit valuation of the project's anadromous fish benefits.

 ## WSIP Unit Water Values (Alternate Monetization Approach)

 As previously discussed in Section A5.1.1.a, WSIP Unit Water Values modeling can also be used to determine the project's ecosystem benefits. However, to represent the project's anadromous fish benefits, the project's expected habitat unit improvements were not determined directly but instead were based on an estimated equivalent water quantity that would allow Shasta Lake to maintain its coldwater pool sufficiently and deliver the water supplies necessary to improve the fishery habitat conditions along the Sacramento River.

 Based on the estimated water supply quantities, adjusted WSIP Unit Water Values can be applied to derive a corresponding anadromous fish benefit valuation. The appropriate Unit Water Values for the benefit valuation should be based on the expected likely source of the water to be "transferred" to replace the reduced Shasta deliveries.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 19 | OF | 60 |

 ## WSIP Unit Fish Values (Alternate Monetization Approach)

 The WSIP TR also provides guidance on benefit valuations for fishery recovery benefits based on escapement projections for winter-run and spring-run Chinook salmon (TR, Section 5.4.2.2; Appendix E). The WSIP TR indicates that a benefit of $\$ 100,000$ per fish-year (one fish escaping one year) is reasonable. The TR recommended value for non-listed fall-run Chinook salmon is \$2,500 per fish-year.

 Although SALMOD and other fish models can be used to project future increases in smolt and juvenile salmon populations, no fish models are available to project the project-related future improvement in escapement for the Sacramento River. However, general estimates of expected juvenile fish survival rates were used to derive preliminary anadromous fish benefit values based on the WSIP Unit Fish Values.

 ## A5.2.1.b Data and Assumptions

 The cost of the most likely feasible alternative to the Sites Reservoir was based on various Shasta Lake Dam raises operated solely for the purpose of increasing the number of salmon smolt in the Sacramento River. As discussed in Section A5.1.1.a, the Shasta Lake Dam raise is considered a feasible alternate source based on the key factor that its additional surface storage could ensure the availability of a greater and new supply of coldwater to reduce downstream water temperatures on the Sacramento River. The Shasta Lake Dam raise would benefit the same anadromous fish populations' locations and therefore result in the same ecosystem improvement outcomes. The Shasta Lake Dam raise could thereby also achieve the same benefits as Sites Reservoir would. Furthermore, recent extensive planning and analysis for the Shasta Lake Dam raise provides greater confidence in both the accuracy of its construction cost estimates and its potential implementation viability.

 Nevertheless, the Shasta Lake Dam raise cost estimates are expected to result in conservative Alternative Cost-benefit valuations because the 2015 Final Feasibility Report construction cost estimates likely underestimate the actual full construction cost for its future storage expansion. Higher construction costs (or reduced ecosystem improvement outcomes) for the Shasta Lake Dam raise alternative would increase the Alternative Cost benefit values attributable for the Sites Reservoir project.

 Key factors contributing to the Alternative Cost approach's underestimate of the project's benefit values include:

 - The 2015 construction cost estimates do not factor in the full costs that would be necessary for project development. Given the project's unavoidable adverse wild and scenic river impacts and the current level of known opposition to the project, actual development of the project may be expected to be more costly and time-consuming than anticipated by the Feasibility Study analysis. The costs for overcoming the likely environmental and legal challenges to the project could significantly increase its overall future development cost.
 - The schedule necessary to complete any expansion of Shasta Lake would be expected to be considerably longer than the schedule to complete Sites Reservoir not only because of the previously discussed environmental and legal challenges expected for a Shasta Lake Dam raise, but also because of the need to rely on Federal appropriations. On a present value basis, all else being equal, a 10-year delay in construction completion would result in nearly a 30 percent comparative reduction in the project's first year of benefits.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIPAPPLICATION | |
 | NOTES: | | | | PAGE: | 20 | OF |

 - Salmon populations within the Sacramento River and other related water systems are in decline and their future viability threatened by deterioration in river and habit conditions. Delayed development would result in further declines in fishery habitat and Chinook populations before any projectrelated ecosystem improvements would occur. The resulting habitat and population losses would reduce the comparative effectiveness of the eventual Shasta Lake expansion. In this case, the unit benefit cost of the Shasta Lake alternative would increase and result in a higher Alternative Cost benefit valuation for the project.
 - The WSIP 2030 baseline scenario presumes overly optimistic Shasta Lake storage levels and coldwater conditions. It is equally probable that the future 2030 conditions at Lake Shasta will in fact have lower storage conditions. Past and current Federal government operation and management of the Central Valley Project (CVP) suggest that actual future 2030 conditions for Shasta Lake would be expected to have lower storage levels and reduced coldwater conditions. As a result, the project's comparative ecosystem improvement is underestimated, which reduces its quantified physical improvements and related benefit values. Furthermore, the near-term occurrence of this benefit diminishment results in a greater underestimate in the benefit valuation because the present value calculations give greater weight to the project's early-year benefits.

 These factors indicate that the benefit value for Sites Reservoir as derived from the Alternative Cost approach applied to the Shasta Lake Dam raise should be recognized as conservative benefit valuations that likely understate the actual full benefit values of the ecosystem improvements resulting from Sites Reservoir.

 ## A5.2.1.c Calculations

 ## Fish Population Projections

 Table A5-10 presents the projected increases in future fish population and habitat units by type of fish for 2030, 2070, and the annual average in the 2030 to 2122 study period. The SALMOD results show that the project would result in greatly increased future anadromous fish habitat improvements. This outcome is largely attributable to the projected deterioration in future water conditions for salmon species as a result of future climate change effects.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 21 | OF | 60 |

 Table A5-10. SALMOD Results for 2030 and 2070 (TAF/year)

 | Run | No Action (\# of fish/yr) | Average Increase (\# of fish/yr) | Habitat Units | Dry Yr Increase (\# of fish/yr) | Critical Yr
 Increase
 (\# of fish/yr) | Dry \& Critical Yr Increase (\# of fish/yr) |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 2030 SALMOD Results | | | | | | |
 | Fall-Run Chinook | 32,275,104 | 435,138 | 435 | 19,893 | 1,493,430 | 609,308 |
 | Late Fall-Run Chinook | 7,911,118 | 70,188 | 70 | 57,277 | 208,800 | 117,886 |
 | Winter-Run Chinook | 3,892,177 | 20,627 | 21 | -62,557 | 207,285 | 45,380 |
 | Spring-Run Chinook | 866,601 | 13,331 | 13 | 14,088 | 40,324 | 24,582 |
 | Total All Runs | | 539,284 | 539 | 28,701 | 1,949,839 | 797,156 |
 | 2070 SALMOD Results | | | | | | |
 | Fall-Run Chinook | 27,506,156 | 1,454,968 | 1,455 | 2,574,746 | 3,427,234 | 2,915,741 |
 | Late Fall-Run Chinook | 7,525,505 | 235,595 | 236 | 169,866 | 1,137,267 | 556,826 |
 | Winter-Run Chinook | 3,711,513 | 84,433 | 84 | -12,471 | 673,467 | 261,904 |
 | Spring-Run Chinook | 688,048 | 47,068 | 47 | 69,601 | 42,975 | 58,951 |
 | Total All Runs | | 1,822,064 | 1,822 | 2,801,742 | 5,280,943 | 3,793,422 |
 | Average (2030-2122) | | | | | | |
 | Long-Term Average | | 1,539,301 | 1,539 | 2,190,480 | 4,546,667 | 3,132,955 |

 Figure A5-1 shows the percentage growth in population increase projected for each fish-type population in both 2030 and 2070.

 Figure A5-1. Percentage Increase in Fish Species Average Production for 2030 and 2070
 As shown in Table A5-10, in 2030, 6.3 percent of the fish population increase would be composed of the Federal-protected Winter- and Spring-run Chinook, increasing to 7.2 percent in 2070. For the purposes

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | | PAGE: |

 of the WSIP Unit Fish Value approach, it was assumed 1 percent of the increased fish population would subsequently return as adults to spawn.

 ## Alternative Cost (Selected Monetization Approach)

 Sites Reservoir's anadromous fish benefits were estimated based on the least-cost alternative of expanding Shasta Lake's future storage with a 12.5-foot raise of Shasta Dam as a single-purpose water storage project that would provide increased habitat units.

 The base construction cost for the Shasta Lake Dam raise was obtained from the 2015 Shasta Lake Water Resource Investigation Feasibility Study. The costs were adjusted into 2015 dollar terms and annualized using a 3.5 percent discount rate in accordance with the WSIP TR requirements. Table A5-11 shows the estimated single-purpose cost for six Shasta Lake Dam raise alternatives with their projected habitat unit improvement and the corresponding unit cost per habitat unit.

 Table A5-11. Salmon Production and Annual Costs for Shasta Lake Dam Raise Scenarios

 | Dam Raise (feet) | Habitat Units (HU) ${ }^{\text {a }}$ | 2014\$ | | 2015\$ | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | Annual Cost $\text { (} \$ 1,000 \mathrm{~s})$ | Cost per Habitat Unit (\$/HU) | $\begin{aligned} & \text { Annual Cost } \\ & (\$ 1,000 \mathrm{~s})^{\text {b }} \end{aligned}$ | Cost per Habitat Unit (\$/HU) |
 | 0.5 | 63 | \$35,585 | \$564,840 | \$36,103 | \$573,059 |
 | 1.7 | 212 | \$36,407 | \$171,729 | \$36,936 | \$174,228 |
 | 3.2 | 381 | \$37,771 | \$99,137 | \$38,321 | \$100,580 |
 | 6.5 | 684 | \$40,831 | \$59,694 | \$41,425 | \$60,563 |
 | 12.5 | 988 | \$46,295 | \$46,857 | \$46,968 | \$47,539 |
 | 18.5 | 975 | \$51,761 | \$53,088 | \$52,514 | \$53,860 |

 Source: Reclamation, Shasta Lake Water Resource Investigation Feasibility Study (2015).
 ${ }^{\text {a }}$ Each habitat unit equals 1,000 additional salmon produced.
 ${ }^{\text {b }}$ Costs have been adjusted into 2015 dollars and are based on a 3.5 percent annual discount rate.
 Table A5-11 indicates that the 12.5 -foot dam raise at Shasta Lake Dam is both the most-productive alternative, with 988 new habitat units, and the most cost-effective, with a unit cost of $\$ 47,539$ per habitat unit. This unit value was applied as a conservative benefit value estimate for Sites Reservoir's anadromous fish benefit.

 Table A5-12 shows the project's 2030, 2045, 2070, and annualized average over the project's entire 2030 to 2122 study period based on their corresponding SALMOD-projected increase in future habitat units. As shown in Table A5-12, the project's future increase in habitat units is projected to be up to 1,822 in 2070 and average 1,539 habitat units over the 93 -year study period for the project.
 Table A5-12. Estimated Anadromous Fish Benefits: Alternative Cost (2015\$)

 | Year | Fishery Improvement Habitat Unit | Benefit Value | |
 | :---: | :---: | :---: | :---: |
 | | | Unit Value
 \$/Habitat Unit | $\begin{gathered} \hline \text { Total } \\ (\$ 1,000 \mathrm{~s}) \end{gathered}$ |
 | 2030 | 539 | \$47,539 | \$25,637 |
 | 2045 | 1020 | \$47,539 | \$48,505 |
 | 2070 | 1,822 | \$47,539 | \$86,619 |
 | Annualized (2030-2122) ${ }^{\text {a }}$ | 1,539 | - | \$56,985 |

 Annualized average benefit value is calculated using net present value over 93 years and a 3.5 percent discount rate.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | PAGE: | 23 |

 The project's future habitat conditions would average 551 habitat units (56 percent increase) more than those provided by the 12.5-foot Shasta Lake Dam raise. The 2070 habitat conditions would be nearly 834 habitat units (84 percent increase) higher than the Shasta Lake Dam raise would achieve.

 Nonetheless, the 12.5-foot Shasta Lake Dam raise benefit value was used because (1) no other alternative projects could be identified that would result in comparable higher habitat improvements for the Sacramento River; and (2) no other suitable project could be developed in conjunction with the 12.5-foot Shasta Lake Dam raise to provide the additional 834 habitat units in 2070 . Furthermore, the fish habitat improvement results for the 18.5-foot raise suggest that any further economies of scale are unlikely to occur with higher raises of the Shasta Lake Dam.

 As a result, it was considered reasonable and conservative to use the unit benefit value from the Shasta Lake Dam raise to estimate future anadromous fish benefits at Sites Reservoir.

 ## WSIP Unit Water Values (Alternative Monetization Method)

 Preliminary operational analysis determined that for 2030 conditions an approximately 83 TAF increase in end-of-September storage at Shasta Lake should be sufficient to result in the coldwater improvements necessary to achieve the corresponding 539 habitat unit increase. Under 2070 conditions, approximately a 59 TAF increase in end-of-September storage at Shasta Lake should be sufficient to result in the coldwater improvements necessary to achieve the corresponding 1,822 habitat unit increase. As discussed in Section A5.2.1.b, above, these values are expected to be conservative.

 The economic benefits of the increase in anadromous fish were also estimated using the adjusted WSIP unit water values (see Table A5-7) applied to the projected average annual delivery quantities on a year-by-year basis over the project's entire 2030 to 2122 study period. WSIP unit water values are for Delta export and include conveyance energy adjustment because the water would otherwise be used in the south-of-the-Delta area. Table A5-13 shows the estimated annual benefit values of future anadromous fish in 2030, 2045, 2070 and as an annualized average over the project's entire 2030 to 2122 study period.

 Table A5-13. Estimated Anadromous Fish Benefits: WSIP Unit Water Values (2015\$)

 | Year | Fishery Improvement (Supply Equivalent) TAF | Benefit Value | |
 | :---: | :---: | :---: | :---: |
 | | | WSIP Unit Water Value $\$ / A F$ | $\begin{aligned} & \text { Total } \\ & (\$ 1,000 \mathrm{~s}) \end{aligned}$ |
 | 2030 | 83 | \$457 | \$38,042 |
 | 2045 | 74 | \$828 | \$61,408 |
 | $2070{ }^{\text {b }}$ | 59 | \$806 | \$47,684 |
 | Annualized (2030-2122) ${ }^{\text {a }}$ | 65 | - | \$51,069 |

 ${ }^{\text {a }}$ Annualized average benefit value is calculated using net present value over 93 years and a 3.5 percent discount rate.
 ${ }^{\mathrm{b}}$ The 2070 unit value is lower than the 2045 unit value because of the change in the hydrological year type incidence result in a wetter average year.

 However, these benefit values do not account for any adverse economic effects of such a permanent and major shift in water use (e.g., for agricultural-dependent businesses and workers) that would increase the societal value of the continued use of the water for agricultural production. Allowances for that and other factors (e.g., difficulty and limited options for increasing habitat units) can be expected to explain the differential between the WSIP unit and Alternative Cost benefit value estimates.

 ## WSIP Unit Fish Values (Alternative Monetization Method)

 The project's anadromous fish economic benefits were also estimated using the WSIP Unit Fish Values (Section A5.2.1.a). Unit fish values for Fall-run, Winter-run, and Spring-run Chinook salmon were applied to their expected project-related increases in their 2030 and 2070 populations. Table A5-14 shows the estimated annual benefit values of future anadromous fish increases in 2030, 2045, 2070, and as an annualized average over the project's entire 2030 to 2122 study period.

 Table A5-14. Estimated Anadromous Fish Benefits: WSIP Unit Fish Values (2015\$)

 | Year | Fishery Improvement | | Benefit Value | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | | WSIP Unit Fish Value | Total |
 | | Fall-Run Chinook | Winter- \& Spring-Run Chinook | \$1,000/Fish | (\$1,000s) |
 | 2030 | 5,053 | 340 | \$2.5/\$100 | \$46,591 |
 | 2045 | 9,498 | 705 | \$2.5/\$100 | \$94,281 |
 | 2070 | 16,906 | 1,315 | \$2.5/\$100 | \$173,765 |
 | Annualized (2030-2122) ${ }^{\text {a }}$ | 14,293 | 1,100 | - | \$111,966 |

 ${ }^{\text {a }}$ Annualized average benefit value is calculated using net present value over 93 years at a 3.5 percent discount rate.
 The WSIP Unit Fish Value approach resulted in much higher benefit value estimates than those obtained from the Alternative Cost approach. Therefore, as a conservative assumption and in accordance with WSIP TM guidance, WSIP Unit Fish Value approach was not used to estimate Sites Reservoir's anadromous fish benefits.

 ## A5.2.1.d Modeling Results (Selected Monetization Approach)

 Table A5-15 shows Sites Reservoir's anadromous water supply benefits as estimated based on the 12.5foot raise of Shasta Dam as the least-cost alternative to the project.

 Table A5-15. Anadromous Fish Benefits: Least-Cost Alternative (2015\$; $\mathbf{1 , 0 0 0 s}$)

 | Alternative | Annual Benefits $^{\text {a }}$ | | ${ }^{*}$ Annualized Benefit ${ }^{\text {b }}$ |
 | :--- | :---: | :---: | :---: |
 | | $\mathbf{2 0 3 0}$ | $\mathbf{2 0 7 0}$ | |
 | Average Conditions ${ }^{\text {c }}$ | $\$ 25,637$ | $\$ 86,619$ | $\$ 56,985^{\text {a }}$ |
 | Sites Reservoir | | | |

 ${ }^{\text {a }}$ Based on 12.5 -foot raise of Shasta Dam as the Alternative Cost for achieving the ecosystem improvement.
 ${ }^{\mathrm{b}}$ Annualized benefits are interpolated annual physical benefits between 2030 and 2070 and then constant after 2070.
 Annualized benefits calculated as net present value over 93 years at a 3.5 percent discount rate.
 ${ }^{\text {c }}$ Averaged over the entire hydrologic sequence (1922 to 2003).
 The project's Anadromous Fish benefits were estimated to increase from $\$ 25.6$ million in 2030 to approximately $\$ 86.6$ million in 2070 . The corresponding annualized benefit for the future 2031 to 2132 operating period was estimated to be $\$ 57.0$ million. As discussed above this was based on an estimated average unit benefit value of $\$ 47,539$ per habitat unit.

 ## A5.2.2 Incremental Level 4 Refuge Water Supply

 Sites Reservoir will increase water deliveries for Incremental Level 4 Refuge needs located south-of-theDelta.

 ## A5.2.2.a Analytic Methods

 ## CALSIM II

 As previously discussed in Section A5.1, CALSIM II modeling was used to determine the project's 2030 and 2070 Incremental Level 4 water supply deliveries by location under different water-year conditions.

 ## WISP Unit Water Values (Selected Monetization Approach)

 As previously discussed in Section A5.1 All Benefits, WSIP Unit Water Value modeling is an approved benefit monetization approach and it was used to determine the project's 2030 and 2070 Incremental Level 4 Refuge water supply benefit values under different water-year conditions.

 ## Alternative Cost (Alternate Monetization Approach)

 As previously discussed in Section A5.1 All Benefits, the Alternative Cost method can be used to determine the project's 2030 and 2070 ecosystem improvement benefits of increased Incremental Level 4 Refuge deliveries under different water-year conditions. Shasta Lake Dam raise has been determined to be the least cost alternative for the project.

 ## A5.2.2.b Data and Assumptions

 Future increase in Incremental Level 4 Refuge supplies are not associated with any existing mitigation or compliance requirements per WSIP requirements (TR Section 8.1). Consequently, the project's ecosystem improvements represent new environmental benefits that would not otherwise be achieved.

 ## A5.2.2.c Calculations

 ## Project Water Use

 Table A5-16 shows improved deliveries to National Wildlife Refuges, State Wildlife Areas, and privately managed wetlands projected in 2030, 2070, and the annual average in the 2030 to 2122 study period.

 Table A5-16. Incremental Level 4 Refuge Water Supply Increases (2030 and 2070) (TAF/year)

 The changes in the Incremental Level 4 Refuge supply deliveries were interpolated between 2030 and 2070 to project the future refuge water supplies on an annual basis. In accordance with WSIP Technical Reference guidance, post 2070 deliveries were assumed to occur at 2070 levels.

 Consistent with the approach used to determine the benefit values for Yolo Bypass supply, the annual average water quantities were based on use of the Sacramento River Hydrologic Region's water-year incidence rates during the 2030 to 2070 study period.

 ## WISP Water Unit Values (Selected Monetization Approach)

 The economic benefits of the increase future water deliveries for Incremental Level 4 Refuges were estimated using the adjusted WSIP Unit Water Values (see Table A5-7) applied to the projected average annual delivery quantities on a year by year basis over the project's entire 2030 to 2122 study period. The Delta Export adjusted WSIP Unit Water Values were used for the Incremental Level 4 Water Refuge benefit because the majority of the Refuges are located south-of-the-Delta and the project supplied water would otherwise be used for south-of-the-Delta deliveries.

 Table A5-17 shows the estimated annual benefit values of future Incremental Level 4 Refuge deliveries in 2030, 2045, 2070 and as an annualized average over the project's entire 2030 to 2122 study period.
 Table A5-17. Incremental Level 4 Refuge Supply Benefit Valuation: WSIP Unit Water Values (2015\$; \$1,000s)

 | Year | Incremental Level 4 Refuge Deliveries TAF | Benefit Value | |
 | :---: | :---: | :---: | :---: |
 | | | WSIP Unit Water Value ${ }^{\text {b }}$ \$/AF | $\begin{aligned} & \text { Total } \\ & (\$ 1,000 s) \end{aligned}$ |
 | 2030 | 35 | \$457 | \$16,047 |
 | 2045 | 33 | \$828 | \$27,644 |
 | 2070 ${ }^{\text {c }}$ | 31 | \$806 | \$24,634 |
 | Annualized (2030-2122) ${ }^{\text {a }}$ | 32 | - | \$23,811 |

 ${ }^{a}$ Annualized benefit value is calculated using net present value for 93 years at a 3.5 percent discount rate.
 ${ }^{\mathrm{b}}$ Adjusted WSIP Unit Water Values for Delta export supplies.
 ${ }^{\text {c }}$ The 2070 unit value is lower than the 2045 unit value because of the change in the hydrological year type incidence result in a wetter average year.

 ## Alternative Cost (Alternate Monetization Approach)

 The economic benefits of the increase water deliveries to Incremental Level 4 Refuge were also estimated on an Alternative Cost basis. The Alternative Cost for achieving the Incremental Level 4 Refuge deliveries' ecosystem benefits is based on the cost of a Shasta Lake Dam raise developed and operated solely for the purpose of providing the water quantities necessary for the Incremental Level 4 Refuge supply purpose.
 As discussed in Section A5.1.1.a, the Shasta Lake Dam raise was determined to be a reasonable and feasible alternate source due both to its potential ability to provide the necessary large quantities of new water supplies and its location which ensures that it could provide the same Incremental Level 4 Refuge supply deliveries and therefore result in the same ecosystem improvement outcomes. Furthermore, recent extensive planning and analysis has been completed for the Shasta Lake Raise which provides more confidence in both the accuracy of its construction cost estimates and its potential implementation viability.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | PAGE: | 27 |

 The Alternative Cost was estimated on a per acre-foot unit basis using the 2015 Shasta Lake Water Resource Investigation Feasibility Study (2015) dam raise alternatives and cost estimates. The feasibility study evaluated six different dam raise alternatives and the Comprehensive Plan 4A (CP4A) alternative was selected as the National Economic Development Plan.

 The CP4A alternative would construct an 18.5 foot Shasta Lake dam raise to provide 634,000 TAF in additional reservoir storage capacity, augmented spawning gravel and reserve 30 percent of the new storage capacity to increase its coldwater pool.

 The per acre cost for both M\&I and agricultural water supply purposes were determined by dividing each's single purpose cost estimated full annualized cost (i.e., including both O\&M and construction) by its expected average water-year supply quantity.

 The CP4A alternative's $\$ 9.4$ million total annual O\&M cost was allocated between its numerous benefit purposes proportionally based on their relative benefit values as shown in Table A5-18.

 Table A5-18. Annual Benefits and Cost for Enlargement of Shasta Lake: CP4A (2014\$; \$millions)

 | CP4A | Anadromous Fish | Water Supply | Hydropower | Recreation | Total |
 | :--- | :---: | :---: | :---: | :---: | :---: |
 | Benefits | $\$ 33$ | $\$ 27$ | $\$ 14$ | $\$ 14$ | $\$ 89$ |
 | O\&M | $\$ 4$ | $\$ 3$ | $\$ 2$ | $\$ 2$ | $\$ 9.4$ |

 Source: Tables 4-7 and 4-8, SLWRI 2015.
 The $\$ 3$ million water supply O\&M cost was further split proportionally between the agricultural and M\&I uses based on their average annual water supply quantities. The resulting $O \& M$ costs were then added to the single purpose annualized construction costs. The resulting annual water supply cost estimates were then converted from their reported 2014 dollar cost estimates into 2015 dollar terms. No adjustment to the annualized costs was necessary since the Shasta Feasibility Study used the same 3.5 percent discount rate as that required by the WSIP TR guidelines.

 Table A5-19 shows the annualized single purpose costs, the average year water deliveries, and the unit benefit value estimated for both agricultural and M\&I water supply for the CP4A Shasta Lake 18.5 foot dam raise alternative. To be conservative, the Alternative Cost approach selected for Sites Reservoir was based on the lower water supply unit cost for Shasta Lake's agricultural supply. This alternate cost was used to value the economic benefits of Sites Reservoir's future 32 TAF of increased average annual Incremental Level 4 Refuge supply deliveries.

 Table A5-19. Single Purpose Cost for Enlargement of Shasta Lake: CP4A (\$1,000s)

 | Water Use | $\begin{aligned} & \text { Deliveries } \\ & \text { (Average Year) } \\ & \text { (TAF/yr) } \end{aligned}$ | Annualized Cost (2014\$) | | Total Annualized Cost (2015\$) | Alternative Cost: Unit Benefit Value (\$/AF) |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | Construction | O\&M | | |
 | Agricultural | 31.4 | \$43,600 | \$1,741 | \$46,001 | \$1,465 |
 | M \& | 19.9 | \$44,500 | \$1,103 | \$46,267 | \$2,325 |

 Source: Tables ES-7 and 4-5, SLWRI 2015.
 The estimated annualized unit cost for the enlargement of Shasta Lake was determined to be $\$ 1,465$ per acre foot. This annual cost represents the Alternative Cost for the Sites Reservoir and was then used to estimate the total benefit value for the future Incremental Level 4 Refuge deliveries in 2030, 2045, 2070 and the annualized average over the project's full 2030 to 2122 study period. Table A5-20 shows the resulting estimated benefit values of Sites Reservoir's future Incremental Level 4 Refuge deliveries using

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | | |
 | CAVEAT: | | QA/QC: | 2017 AUGUST | | | |
 | NOTES: | | | REF/FILE \#: | WSIP APPLICATION | PAGE: | 28 |

 this Alternative Cost approach. The Alternative Cost approach resulted in much higher benefit value estimates than those obtained from the WSIP Unit Water Value approach. Therefore, as a conservative assumption and in accordance with WSIP TM guidance, the Alternative Cost approach was not used to estimate Sites Reservoir's Incremental Level 4 Refuge and similar Ecosystem Improvements.

 Table A5-20. Incremental Level 4 Refuge Supply Benefit Valuation: Alternative Cost Approach (2015\$; \$1,000s)

 | Year | Incremental Level 4 Refuge Deliveries
 TAF | Benefit Value | |
 | :---: | :---: | :---: | :---: |
 | | | Alternate Cost - Unit Value \$/AF | $\begin{aligned} & \text { Total } \\ & (\$ 1,000 s) \end{aligned}$ |
 | 2030 | 35 | \$1,465 | \$51,418 |
 | 2045 | 33 | \$1,465 | \$48,927 |
 | 2070 | 31 | \$1,465 | \$44,774 |
 | Annualized (2030-2122) ${ }^{\text {a }}$ | 32 | - | \$48,055 |

 ${ }^{\text {a }}$ Annualized benefit value was calculated using net present value over 93 years at a 3.5 percent discount rate.

 ## A5.2.2.d Modeling Results (Selected Monetization Approach)

 Table A5-21 shows Sites Reservoir's Incremental Level 4 refuge water supply benefits as estimated based on WSIP Unit Water Values.

 Table A5-21. Incremental Level 4 Refuge Benefits: WSIP Unit Water Values (2015\$; \$1,000s)

 | Alternative | Annual Benefits $^{\text {a }}$ | | | |
 | :--- | :---: | :---: | :---: | :---: |
 | | Annualized Benefit $^{\text {b }}$ | | | |
 | Average Conditions ${ }^{\text {c }}$ | $\mathbf{2 0 3 0}$ | $\mathbf{2 0 7 0}$ | | |
 | Sites Reservoir | $\$ 16,047$ | $\$ 24,634$ | $\$ 23,811$ | |

 ${ }^{\text {a }}$ Based on WSIP Unit Water Values adjusted by water-year type, expected delivery location and conveyance energy costs.
 ${ }^{\text {b }}$ Annualized benefits assume interpolated annual physical benefits between 2030 and 2070, and then constant annual benefits after 2070. WSIP Unit Water Values interpolated between 2030 and 2045, after which 2045 unit values are used.
 ${ }^{c}$ Averaged over the entire hydrologic sequence (1922 to 2003).
 The project's Incremental Level 4 Refuge water supply benefits were estimated to increase from $\$ 16.0$ million in 2030 to approximately $\$ 24.6$ million in 2070 . The corresponding annualized benefit for the future 2030 to 2132 operating period was estimated to be $\$ 23.8$ million. This is equal to an estimated average unit benefit value of $\$ 781$ per acre foot for the Incremental Level 4 refuge benefits. This valuation reflects the comparatively high benefit values for future south-of-the-Delta water uses.

 ## A5.2.3 Lake Oroville Coldwater Pool

 Improvements to the coldwater pool and downstream releases to assist migrating fish would be beneficial to salmon, steelhead, and other fish in the lower Feather River. The benefits to Anadromous Fish were anticipated to be less than the benefits downstream from Shasta Lake, but nevertheless significant. The storage increase based on CALSIM II modeling is characterized below.

 Sites Reservoir will enhance future water temperature and flow conditions in the American River as a means of improving the riverine ecosystem. Sites will achieve these ecosystem improvements by enabling Lake Oroville to delay some of its water deliveries which will increase its coldwater pool conditions and subsequently improve water temperatures of its water releases.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | PAGE: | 29 | OF |

 ## A5.2.3.a Analytic Methods
 CALSIM II

 As previously discussed in Section A5.1, CALSIM II modeling was used to determine the project's 2030 and 2070 water quantity increases to improve Lake Oroville Coldwater Pool conditions.

 ## WSIP Unit Water Values (Selected Monetization Approach)

 The SALMOD model does not include the Feather River area. No other fishery models for American River exist and therefore the habitat or fish population increase from future improvements in Lake Oroville's coldwater pool improvements cannot be directly evaluated. Consequently, the benefit value of fishery improvements within the Feather River watershed were evaluated based on an opportunity cost to secure an equivalent amount of storage in Lake Oroville.

 The economic benefits of the project's contributions to anadromous fish survival were estimated based on use of the WSIP Unit Water Values to determine the value of the water that would otherwise be needed to be withheld in Lake Oroville to improve its coldwater pool and temperature conditions of its water releases.

 As previously discussed in Section A5.1 All Benefits, WSIP Unit Water Values modeling was used to determine the project's 2030 and 2070 water benefit values for the Lake Oroville Coldwater Pool under different water-year conditions.

 The WISP unit value benefit method used to value the water supply necessary for the projected Lake Oroville coldwater pool improvements was the same as that used for the Incremental Level 4 Refuge supplies benefits (Section A5.2.2). The Lake Oroville benefit valuation analysis also similarly used the adjusted Unit Water Values for south-of-the-Delta supplies applied to the CALSIM II determined water quantities determined specifically necessary to achieve Lake Oroville's coldwater benefits.

 ## Alternative Cost (Alternate Monetization Approach)

 As previously discussed in Section A5.1 All Benefits and for Incremental Level 4 Refuge purposes (Section A5.2.2), an Alternative Cost method can be used to determine the project's 2030 and 2070 ecosystem improvement benefits under different water-year conditions. Furthermore, given the comparability of their estimated future water quantity needs (annual averages of 30 TAF for Oroville Coldwater Pool and 32 TAF for Incremental Level 4 Refuges); the Alternative Cost analysis for the Oroville Coldwater Pool benefits was very similar to that performed for the Incremental Level 4 Refuge supply increases.

 ## A5.2.3.b Data and Assumptions

 Lake Oroville's late spring and early summer water deliveries that would instead be met Sites Reservoir water releases would generally be for south-of-the-Delta water users. Consequently, south-of-the-Delta WSIP Unit Water Values were used to represent the benefit value of those releases which would otherwise need to be cancelled.

 Similarly, based on Lake Oroville current water supplies, for the purposes of the benefit valuation it is assumed that the water supply that would otherwise need to be retained (and therefore not delivered) would be south-of-the-Delta deliveries. Consequently, south-of-the-Delta WSIP Unit Water Values were used to represent the benefit value of those releases which would otherwise need to be retained.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | PAGE: | 30 |

 ## A5.2.3.c Calculations

 ## Projected Water Use

 Table A5-22 shows the projected future increase in annual end of May water storage for Lake Oroville projected by CALSIM II.

 Table A5-22. Lake Oroville Storage Increases
 for 2030 and 2070 (TAF/year)

 | Water-Year Type | Quantity | |
 | :--- | :---: | :---: |
 | 2030 Results | | |
 | Full | 26 | |
 | Dry | 38 | |
 | Critical | 83 | |
 | 2070 Results | 31 | |
 | Full | 39 | |
 | Dry | 111 | |
 | Critical | | |
 | Average (2030-2122) | | |
 | Long-Term | 30 | |
 | | | |

 Source: CALSIM II.

 ## WISP Unit Water Values (Selected Monetization Approach)

 The economic benefits of the increase future water deliveries for Lake Oroville coldwater pool were estimated using the adjusted WSIP Unit Water Values (see Table A5-7) applied to the projected average annual delivery quantities on a year by year basis over the project's entire 2030 to 2122 study period. Table A5-23 shows the estimated annual benefit values of future Lake Oroville coldwater pool improvements in 2030, 2045, 2070 and the annualized average over the project's full 2030 to 2122 study period.

 Table A5-23. Lake Oroville Coldwater Pool Benefit Valuation: WSIP Unit Water Values (2015\$; \$1,000s)

 | Year | Lake Oroville Coldwater Pool Deliveries
 TAF | Benefit Value | |
 | :---: | :---: | :---: | :---: |
 | | | WSIP Unit Water Value $\$ / A F$ | $\begin{gathered} \text { Total } \\ (\$ 1,000 \mathrm{~s}) \end{gathered}$ |
 | 2030 | 26 | \$457 | \$11,814 |
 | 2045 | 28 | \$828 | \$22,986 |
 | $2070{ }^{\text {b }}$ | 31 | \$806 | \$24,976 |
 | Annualized (2030-2122) ${ }^{\text {a }}$ | 30 | - | \$20,987 |

 ${ }^{\text {a }}$ Annualized benefit value was calculated using net present value over 93 years at a 3.5 percent discount rate.
 ${ }^{\mathrm{b}}$ The 2070 unit value is lower than the 2045 unit value because of the change in the hydrological year type incidence result in a wetter average year.

 ## Alternative Cost (Alternate Monetization Approach)

 As discussed above, the Alternative Cost approach for monetization of the project's future Incremental Lake Oroville Coldwater Pool deliveries was the same as that used for the project's Incremental Level 4 Refuge deliveries in Section A5.2.2. As a result, an estimated annualized per acre foot unit cost for the

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | PAGE: | 31 |

 enlargement of Shasta Lake of $\$ 1,465 / \mathrm{AF}$ was used to estimate the total benefit value for the Lake Oroville coldwater pool deliveries in 2030, 2045, 2070 and the annualized average over the project's full 2030 to 2122 study period.

 Table A5-24 shows the estimate the benefit values of Sites Reservoir's future Lake Oroville coldwater pool deliveries using the Alternative Cost approach.

 Table A5-24. Lake Oroville Coldwater Pool Benefit Valuation: Alternative Cost Approach (2015\$; \$1,000s)

 | Year | Lake Oroville Coldwater Pool Deliveries
 TAF | Benefit Value | |
 | :---: | :---: | :---: | :---: |
 | | | Alternate Cost - Unit Value \$/AF | $\begin{aligned} & \text { Total } \\ & (\$ 1,000 s) \end{aligned}$ |
 | 2030 | 26 | \$1,465 | \$37,857 |
 | 2045 | 28 | \$1,465 | \$40,683 |
 | 2070 | 31 | \$1,465 | \$45,394 |
 | Annualized (2030-2122) ${ }^{\text {a }}$ | 30 | - | \$41,731 |

 ${ }^{\text {a }}$ Annualized benefit value is calculated using net present value over 93 years and 3.5 percent discount rate.

 ## A5.2.3.d Modeling Results (Selected Monetization Approach)

 Table A5-25 presents the estimate benefits values for the projected future increases in Lake Oroville's coldwater pool.

 Table A5-25. Lake Oroville Coldwater Pool Benefits: WSIP Unit Water Values (2015\$; \$1,000s)

 | Alternative | Annual Benefits ${ }^{\text {a }}$ | | Annualized Benefit ${ }^{\text {b }}$ |
 | :---: | :---: | :---: | :---: |
 | | 2030 | 2070 | |
 | Average Conditions ${ }^{\text {c }}$ | | | |
 | Sites Reservoir | \$11,814 | \$24,976 | \$20,987 |

 ${ }^{\text {a }}$ Based on WSIP Unit Water Values adjusted by water-year type, expected delivery location, and conveyance energy costs.
 ${ }^{b}$ Annualized benefits assume interpolated annual physical benefits between 2030 and 2070 and then constant annual benefits after 2070. WSIP Unit Water Values interpolated between 2030 and 2045, after which 2045 unit values are used.
 ${ }^{c}$ Averaged over the entire hydrologic sequence (1922 to 2003).
 The project's Lake Oroville coldwater pool benefits were estimated to increase from $\$ 11.8$ million in 2030 to $\$ 25.0$ million in 2070. The corresponding annualized benefit for the future 2030 to 2132 operating period was estimated to be $\$ 21.0$ million. This is equal to an estimated average unit benefit value of $\$ 1,465$ per acre foot. This valuation reflects the comparatively high benefit values for future south-of-the-Delta water uses.

 ## A5.2.4 Yolo Bypass

 Sites Reservoir will increase water deliveries to the Yolo Bypass which are expected to result in ecosystem improvements.

 In 2016, DWR performed a North Delta Food Web Study in 2016 in collaboration with Federal and local water agencies. The study addressed the Delta Smelt Resiliency Strategy (California Department of Natural Resources, July 2016) recommendation for North Delta food web adaptive management projects. The resulting fall flows in the Yolo Bypass successfully produced a phytoplankton bloom, the major food source for endangered Delta smelt.

 The Cache Slough area that receives water from the Yolo Bypass is the only place in the Delta estuary where the Delta smelt population is increasing. The purpose of this action is to help increase desirable

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QAVQC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | PAGE: | 32 |

 food sources for Delta smelt in the lower Cache Slough and lower Sacramento River areas. This should improve Delta smelt growth and condition as they mature into adults, thereby increasing Delta smelt abundance.

 The Sites Reservoir Project will provide two pulses of flow of at least 400 cfs each over a two to three week period into the Yolo Bypass (via the Colusa basin drain past the Wallace Weir and Ridge Cut into the Tule Drain) that will flow through the Toe drain and out to the Sacramento River. Each flow pulse made into the Colusa basin Drain would total about 20 TAF in each two to three week period resulting in an average total flow of 39 TAF per year. The flow pulses would be adaptively managed but are currently thought to occur in late summer and early fall (e.g., August and September). The water deliveries would not have to occur every year but would be desirable in most years.

 ## A5.2.4.a Analytic Methods

 CALSIM II
 As previously discussed (see Section A5.1 All Benefits), CALSIM II modeling was used to determine the project's 2030 and 2070 water quantities for Yolo Bypass deliveries and ecosystem improvement under different water-year conditions.

 ## WSIP Unit Water Values (Selected Monetization Approach)

 The WISP unit value benefit method used to value the water supply necessary for the Yolo Bypass water supplies was the same as that used for both the Incremental Level 4 Refuge supplies benefits (Section A5.2.2) and Lake Oroville coldwater pool improvements. However, the Yolo Bypass benefit valuation analysis instead used the lower Unit Water Values for Sacramento Valley water supplies applied to the CALSIM II determined water delivery quantities.

 ## Alternative Cost (Alternate Monetization Approach)

 As previously discussed and applied to both the project's Incremental Level 4 Refuge supply and Lake Oroville coldwater purposes, an Alternative Cost method can be used to determine the project's 2030 and 2070 ecosystem improvement benefits from increased Yolo Bypass deliveries under different wateryear conditions. Shasta Lake Dam raise has been determined to be least cost alternative.
 Furthermore, given the comparability of their estimated future water quantity needs (annual averages of 39 TAF for Yolo Bypass and 32 TAF for Incremental Level 4 Refuges), the Alternative Cost analysis for the Yolo Bypass benefits was very similar to that performed for the Incremental Level 4 Refuge supply increases.

 ## A5.2.4.b Data and Assumptions

 It was assumed that the water provided for the purpose of increasing Yolo Bypass flows would otherwise likely be delivered to south-of-the-Delta water contractors. Consequently, south-of-the-Delta unit values were used for the benefit valuation of the Yolo Bypass flows.

 ## A5.2.4.c Calculations

 ## Projected Water Supply Requirements

 Table A5-26 shows the projected future increase in annual water flows for Yolo Bypass for 2030, 2070, and the annual average for the 2030 to 2122 study period.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | PAGE: | 33 | OF |

 Table A5-26. Yolo Bypass Flow Increases for 2030 and 2070 (TAF/year)

 | Water Year Type | Quantity |
 | :--- | :---: |
 | 2030 Results | |
 | Full (All Water Years) | 39 |
 | Dry | 33 |
 | Critical | 5 |
 | 2070 Results | |
 | Full (All Water Years) | 39 |
 | Dry | |
 | Critical | 33 |
 | Average (2030-2122) | 8 |
 | Long-Term | |

 ## WSIP Unit Water Values (Selected Monetization Approach)

 The economic benefits of the increase future water deliveries to the Yolo Bypass were estimated using the unadjusted WSIP Unit Water Values (see Table A5-7) applied to the projected average annual delivery quantities on a year by year basis over the project's entire 2030 to 2122 study period. The Sacramento Valley WSIP Unit Water Values are used. These values do not include any conveyance cost benefit adjustment and were used since it was presumed that the necessary water supplies would otherwise be expected to be obtained from Sacramento Valley agricultural water users.

 Table A5-27 shows the estimated annual benefit values of future Yolo Bypass deliveries in 2030, 2045, 2070 and their annualized average quantity and benefit value over the project's entire 2030 to 2122 study period.

 Table A5-27. Yolo Bypass Flows Benefit Valuation: WSIP Unit Water Values (2015\$; \$1,000s)

 | Year | Yolo Bypass Deliveries TAF | Benefit Value | |
 | :---: | :---: | :---: | :---: |
 | | | WSIP Unit Water Value $\$ / A F$ | $\begin{aligned} & \text { Total } \\ & (\$ 1,000 s) \end{aligned}$ |
 | 2030 | 39 | \$229 | \$8,845 |
 | 2045 | 39 | \$238 | \$9,190 |
 | 2070 | 39 | \$238 | \$9,220 |
 | Annualized (2030-2122) ${ }^{\text {a }}$ | 39 | - | \$9,117 |

 ${ }^{\text {a }}$ Annualized benefit value was calculated using net present value over 93 years at a 3.5 percent discount rate.

 ## Alternative Cost (Alternate Monetization Approach)

 The Alternative Cost approach for monetization of the project's future Incremental Level 4 Refuge deliveries was also performed. As a result, an estimated annualized per acre foot unit cost for the enlargement of Shasta Lake of $\$ 1,465 / \mathrm{AF}$ was used to estimate the total benefit value for the Incremental Level 4 Refuge deliveries in 2030, 2045, 2070 and the annualized average over the project's entire 2030 to 2122 study period. Table A5-28 shows the results from use of the Alternative Cost approach to estimate the benefit values of Sites Reservoir's future Yolo Bypass deliveries.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 34 | OF | 60 |

 Table A5-28. Yolo Bypass Flows Benefit Valuation: Alternative Cost Approach (2015\$; \$1,000s)

 | Year | Yolo Bypass Deliveries TAF | Benefit Value | |
 | :---: | :---: | :---: | :---: |
 | | | Alternate Cost - Unit Value \$/AF | $\begin{gathered} \text { Total } \\ (\$ 1,000 \mathrm{~s}) \end{gathered}$ |
 | 2030 | 39 | \$1,465 | \$56,577 |
 | 2045 | 39 | \$1,465 | \$56,654 |
 | 2070 | 39 | \$1,465 | \$56,783 |
 | Average (2030-2122) ${ }^{\text {a }}$ | 39 | - | \$56,683 |

 ${ }^{\text {a }}$ Annualized benefit value is calculated using net present value over 93 years at a 3.5% discount rate.

 ## A5.2.4.d Modeling Results (Selected Monetization Approach)

 Table A5-29 shows Sites Reservoir's Yolo Bypass water supply benefits as estimated based on the use of the applicable adjusted WSIP Unit Water Values (see Table A5-7).

 Table A5-29. Yolo Bypass Supply Benefits: WSIP Unit Water Values (2015\$; \$1,000s)

 | Alternative | Annual Benefits $^{\text {a }}$ | | ${ }^{*}$ Annualized Benefit ${ }^{\text {b }}$ |
 | :--- | :---: | :---: | :---: |
 | | $\mathbf{2 0 3 0}$ | $\mathbf{2 0 7 0}$ | |
 | Average Conditions ${ }^{\text {c }}$ | $\$ 8,845$ | $\$ 9,220$ | $\$ 9,117$ |
 | Sites Reservoir | | | |

 ${ }^{\text {a }}$ Based on WSIP Unit Water Values adjusted by water-year type, expected delivery location, and conveyance energy costs.
 ${ }^{\text {b }}$ Annualized benefits assume interpolated annual physical benefits between 2030 and 2070 and then constant annual benefits after 2070. WSIP Unit Water Values interpolated between 2030 and 2045, after which 2045 unit values are used.
 ${ }^{c}$ Averaged over the entire hydrologic sequence (1922 to 2003).

 The project’s Yolo Bypass supply benefits were estimated to remain relatively unchanged between 2030 ($\$ 8.8$ million) and 2070 ($\$ 9.2$ million). The corresponding annualized benefit for the future 2030 to 2132 operating period was estimated to be $\$ 9.1$ million. This is equal to an estimated average unit benefit value of $\$ 237$ per acre foot for the future ecosystem benefits from the Yolo Bypass. This valuation reflects the comparatively lower benefit values for future north-of-the-Delta water uses.

 ## A5.3 Recreation (WSIP Eligible Benefit)

 Development of the Sites Reservoir would provide new recreational facilities and opportunities.

 ## A5.3.1.a Analytic Methods

 ## Facilities-Based Visitation Model

 Recreation benefits were valued using visitation estimates for the new recreational areas planned for the Sites Project. Annual visitation was estimated using a facilities-based approach that accounts for Sites planned facilities, carrying capacity, the regional population of potential users, surface acreage of the reservoir and fluctuations in storage throughout the year, as well as the amenities and visitation levels of substitute reservoirs in the region. Additional information and recreation analysis is available in Appendix C of the NODOS Draft Feasibility Study (USBR 2017). These variables for consideration are consistent with those outlined in the WSIP Technical Reference (TR Section 5.4.5). Annual visitation was calculated as a measure of total visitor days, which represents one person visiting for any part or all of a calendar day. This metric is commonly used to inform recreational benefits, and should not be confused with a recreational visit, which could last for more than one calendar day (e.g., camping).

 ## WSIP Recreational Visitation Model

 A sample WSIP Visitation Model was obtained from CWC and considerable efforts was made to apply the model in accordance with the technical guidance provided by the WSIP Technical Appendix (TR Section 5.4.5). The required inputs were obtained and run through the model, but the model results did not fall within the expected range. The WSIP Recreational Visitation model's visitation estimates were highly sensitive to a few of the model variables including; the number of boat lanes, the regional population of potential users, and the reservoir's surface acreage. Collectively, these factors indicated that Sites was too dissimilar from the other recreation facilities that were used to construct and benchmark the WSIP Visitation Model to permit the model's use. As a result, the facilities-based approach was instead used to project Sites Reservoir's future visitation levels.

 ## User Day Values (Selected Monetization Approach)

 Recreation benefits were quantified using unit day values from the Recreation Use Values Database (RUVD) for North America (Rosenberger 2016) and the U.S. Forest Service (Loomis 2005). Both of these resources provided a meta-analysis of hundreds of studies that estimated the use value of recreation activities in the U.S. over the past half-century. These recreation use value estimates reflect the average net willingness-to-pay or consumer surplus, in per person per activity day units for different activities and regions in the U.S. This benefit measure was considered to be consistent with the WSIP Technical Reference guidance (TR Section 5.4.5).

 The WSIP Technical Report also suggests possible use of USACE Unit Day Values (TR Section 5.4.5.7) as unit day values for recreation. However, these unit values are national recreation use value estimates while the U.S. Forest Service values are for recreation use within the Western Pacific region. In addition, the USACE data identifies only four general recreational use categories while the U.S. Forest Service data provides specific use values for more than a dozen different recreation categories applicable to the project. Consequently, it was determined that the U.S. Forest would provide a more accurate estimate of Sites Reservoir's future recreation use benefits and were therefore used for the recreation benefit value analysis.

 The selected U.S. Forest Service unit values were then applied to the visitation projections to determine the total annual user benefits for recreation at Sites Reservoir. The net recreational benefit for the project was then calculated by accounting for the potential substitution of recreational use from nearby reservoirs.

 ## A5.3.1.b Data and Assumptions

 Table A5-30 presents the annual visitor day estimates and unit day values by activity-type.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | PAGE: | 36 | OF |

 Table A5-30. Annual Recreation Visitation by Primary Activity

 | Activity | Annual Visitor-Days | Unit Day Values |
 | :--- | :---: | :---: |
 | Shore fishing | 16,254 | $\$ 86.23$ |
 | Boat fishing | 8,407 | $\$ 86.23$ |
 | Picnicking | 15,457 | $\$ 42.96$ |
 | Camping | 27,514 | $\$ 47.51$ |
 | Sightseeing | 36,992 | $\$ 51.29$ |
 | Swimming / beach use | 42,223 | $\$ 44.11$ |
 | Walking | 5,418 | $\$ 72.33$ |
 | Bicycling/Motorcycling | 2,429 | $\$ 94.26$ |
 | Boating / water-skiing | 29,145 | $\$ 52.48$ |
 | Hunting | 560 | $\$ 72.29$ |
 | Other | 2,429 | $\$ 40.77$ |
 | Total | $\mathbf{1 8 6 , 8 2 9}$ | $\$ 46.81$ (avg.) |

 A majority of the unit day estimates that were incorporated in this analysis come from the most recent 2016 study (Rosenberger 2016), using Western Region values (as defined by U.S. Census regions). Only in a few cases the 2005 activity values (Loomis 2005) used, as the reported activity types more accurately reflected the planned recreational uses at Sites (e.g., horseback riding).

 The databases informing the unit day value estimates do not contain information on marginal values for changes in site quality, condition or other factors that would allow for adjusting the net willingness to pay estimates with consideration of the unique attributes of Sites. However, these are average values, and have been endorsed for use by Federal actors such as the U.S. Bureau of Reclamation for estimating recreational benefits at reservoirs in California.

 It is assumed that 80 percent of visitor days at Sites represent new recreational visits, and that the remaining 20 percent of visits reflect existing recreational visitor days that would have occurred at nearby reservoirs. This substitution factor is considered conservative given the limited number of reservoirs in the area, as well as results from the WSIP Visitation. As detailed in the WSIP Technical Reference (Appendix F), the acreage of nearby reservoirs did not significantly affect day visitation, except for a small, but measurable contribution in the fall months. In addition, even for those people who have recreated elsewhere (particularly at overcrowded facilities) and shift their trip to Sites, the quality of the recreational experience at Sites Reservoir may be higher, thereby generating additional recreation benefits that are not captured in this analysis.

 ## A5.3.1.c Calculations

 Table A5-31 presents the results of the recreation benefits analysis for both a scenario with no substitution and the assumed substitution level of 20 percent. The estimated annual visitor days assumed in this analysis is approximately 187,000.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 37 | OF | 60 |

 Table A5-31. Annual Recreation Benefits (2015\$; \$1,000s)

 | Activity | | Unit Day Values
 ($\mathbf{\$ / d a y)}$ | Annual Benefits (\$1,000s) | |
 | :--- | :---: | :---: | :---: | :---: |
 | | Annual Visitor Days | | 20\% Substitution | |
 | Shore fishing | 16,254 | $\$ 86.23$ | $\$ 1,402$ | $\$ 1,121$ |
 | Boat fishing | 8,407 | $\$ 86.23$ | $\$ 725$ | $\$ 580$ |
 | Picnicking | 15,457 | $\$ 42.96$ | $\$ 664$ | $\$ 531$ |
 | Camping | 27,514 | $\$ 47.51$ | $\$ 1,307$ | $\$ 1,046$ |
 | Sightseeing | 36,992 | $\$ 51.29$ | $\$ 1,897$ | $\$ 1,518$ |
 | Swimming / beach use | 42,223 | $\$ 44.11$ | $\$ 1,863$ | $\$ 1,490$ |
 | Walking | 5,418 | $\$ 72.33$ | $\$ 392$ | $\$ 314$ |
 | Bicycling/Motorcycling | 2,429 | $\$ 94.26$ | $\$ 229$ | $\$ 183$ |
 | Boating / water-skiing | 29,145 | $\$ 52.48$ | $\$ 1,530$ | $\$ 1,224$ |
 | Hunting | 560 | $\$ 72.29$ | $\$ 41$ | $\$ 32$ |
 | Other | 2,429 | $\$ 40.77$ | $\$ 99$ | $\$ 79$ |
 | Total | $\mathbf{1 8 6 , 8 2 9}$ | $\$ 46.81$ (avg.) | $\$ 8,746$ | $\$ 6,997$ |

 ## A5.3.1.d Modeling Results (Selected Monetization Approach)

 Table A5-32 presents the results of the recreation benefits analysis.
 Table A5-32. Estimated Annual Recreation Benefits (2015\$; \$1,000s)

 | Alternative | Annual Benefits ${ }^{\text {a }}$ | | Annualized Benefit ${ }^{\text {b }}$ |
 | :---: | :---: | :---: | :---: |
 | | 2030 | 2070 | |
 | Average Conditions ${ }^{\text {c }}$ | | | |
 | Sites Reservoir | \$6,997 | \$6,997 | \$6,754 |

 ${ }^{\text {a }}$ Annual benefits reflect consumer surplus value for various recreational activities supported by Sites Reservoir and water operation scenarios under year 2030 and year 2070 levels of development. Benefits were attributed for only 75 percent of future visitation expected as new recreational use after accounting for potential substitution effects on other reservoirs in the region.
 ${ }^{\mathrm{b}}$ Annualized benefits represent avoided costs relative to the Future No Project conditions over the planning horizon (2030 to 2122). Annual average is less than 2030 and 2070 values due to initial short ramp-up period before full benefits are generated.
 ${ }^{c}$ Averaged over the entire hydrologic sequence (1922 to 2003).
 The project's future recreation benefits were estimated to be approximately $\$ 7.1$ million in 2030. Although future population growth might be expected increase future recreation demand and visitation, it was conservatively assumed that 2030 level of benefits would remain constant throughout the future 2030 to 2132 operating period. As a result, the annualized benefit over the 2030 to 2132 operating period was estimated to be $\$ 6.9$ million (slightly reduced due to an assumed 50 percent operation during its first two operating years).

 ## A5.4 Flood Reduction (WSIP Eligible Benefit)

 Development of the Sites project would reduce the magnitude of flood events in the area along Funks Creek and Stone Corral Creek, providing a direct public benefit. Flood damage reduction benefits were estimated based on avoided costs. In the case of the Sites project, flood damage costs would be reduced for the Town of Maxwell's residential, commercial and public structures and contents. In addition, the project would reduce flood damages to adjacent agricultural lands and flood-related closures to

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5: | CHECKER: | J HERRIN | DATE: | 2O17 AUGUST |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | PAGE: | 38 |

 Interstate 5 (I-5) and State Route (SR) 20. Other flood damage savings include avoided clean-up, emergency response, and disruption costs for workers and businesses.

 ## A5.4.1.a Analytic Methods

 The benefit value of the project-related flood damage reduction was estimated based on the annualized net cost savings of flood damages for the future "with Project" conditions compared to the existing "No Action" conditions. The resulting Expected Annual Damages (EAD) savings was estimated based on hydraulic analysis that quantified the project-related reduction in flood impacted areas and flooding severity for six different flood event types (ranging from 5 -year to 500-year flood events). GIS land use analysis inventoried the impacted areas. This approach corresponds to the "avoided cost" approach described in the WSIP Technical Reference report (TR Section 5.4.3).

 Flood reduction benefits were estimated for current hydraulic conditions to represent the expected 2030 conditions. No adjustments in the hydraulic modeling or other analytic methods were used to project 2070 conditions (including Climate Change) since the flood damage benefits are relatively limited and difficulty in quantifying the changes in future flood events' magnitude.

 As a result, the 2030 flood reduction benefits are applied for 2070. This was considered a conservation assumption since the WSIP's future climate changes conditions project more frequent and severe wet water years. This can be expected to result in more frequent flood events of greater magnitude.

 ## Hydraulic Analysis

 A HEC-RAS 2-D hydraulic model was used develop with and with-out project floodplains for the 5-, 10-, $25-, 50-, 100-$, and 500 -year flood events. A 50 percent capture scenario of runoff was used to inform the benefit analysis. While the HEC-RAS model was geographically constrained to lands west of I-5 (location of Maxwell), additional hydraulic modeling was conducted for the primarily agriculturally zoned lands east of the l-5.

 ## Land Use Analysis

 HEC-RAS floodplains were imported into GIS and overlaid on parcel data from Colusa County to identify lands, structures, and infrastructure exposed to flooding under with-project and without-project conditions. The acreage exposed to flooding was calculated for each event, and summarized by primary land use type. Further analysis was done to identify parcels and their respective land use characteristics to estimate avoided costs for each event.

 ## Expected Annual Damages (Selected Monetization Approach)

 The damage costs for each flood event were determined using cost-estimating approaches and data from USACE, FEMA and DWR's Flood Rapid Assessment Model (F-RAM). Expected annual damages were estimated by calculating total avoided costs (i.e., without project damages minus with project damages) for each of the six events modeled, then multiplying the sum of each interval probability by the average damage in that interval, followed by summing over all interval probabilities. This approach is consistent with the WSIP Technical Reference guidance (TR Section 5.4.3).

 ## HEC-FDA and Other Flood Damage Models (Alternative Monetization Approach)

 More detailed and extensive flood analysis and modeling (such as HEC-FDA or similar models outlined in the WSIP Technical Reference Section 5.4.3) was not performed because: (1) there is not a substantial urban flood reduction and (2) the flood benefits are a relatively small proportion of the project's total

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: | D |
 | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | | PAGE: | 39 | OF | 60 |

 benefits. These more extensive and probabilistic analysis offered by these other models are generally used for more densely populated and urban areas and was not expected they would substantially change the benefit valuation for the project.

 ## A5.4.1.b Data and Assumptions

 Figure A5-2 shows the expected area of flooding for a 100-Year Flood Event. Three primary categories of avoided flood damage costs were analyzed: (1) agriculture; (2) structures and contents; and (3) transportation.

 ## Agriculture

 Agricultural damages were modeled based on crop loss estimates. Values were estimated for representative crop types in the Central Valley and account for both short-duration and long-duration flood events. The short duration (i.e., less than 5 days of inundation) per acre estimates, which include both weighted average crop income losses and land cleanup and rehabilitation costs, were applied to the equivalent crop types and acreage across the modeled flood events. The primary crop types in modeled floodplains include rice, pasture, tomatoes, and alfalfa.

 Table A5-33 shows the acres at risk by crop type for a 100-yr flood event with their corresponding crop damage estimates used to estimate the agricultural flood damages.

 Table A5-33. Projected Damages per Acre: 100-Year Flood Event (2015\$; \$1,000s)

 | Crop Type | Average Annual Damages $(\$ / a c)^{a}$ | Land Cleanup and Rehabilitation (\$/ac) | Total Damage per Acre (\$/ac) ${ }^{b}$ | Reduced Flood Area
 (ac) | Total Damages (\$1,000s) |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Rice | \$245 | \$262 | \$508 | 6,035 | \$3,066 |
 | Almonds | \$1,746 | \$262 | \$2,008 | 266 | \$534 |
 | Tomatoes | \$1,096 | \$253 | \$1,349 | 731 | \$986 |
 | Wine Grapes | \$3,498 | \$253 | \$3,751 | 15 | \$55 |
 | Alfalfa | \$269 | \$262 | \$532 | 731 | \$389 |
 | Pasture | -\$16 | \$293 | \$277 | 1,779 | \$493 |
 | Other | \$0 | \$265 | \$265 | 15 | \$4 |
 | Total | | | | 9,570 | \$5,526 |

 Sources: DWR, Flood Rapid Assessment Model (F-RAM). Developed by URS (November 2008); USACE, National Economic Development Manual Series (2010); USACE, Sutter Basin Feasibility Report (2013).
 ${ }^{a}$ Weight averages calculated based on expected crop income losses, variable costs not expended, and probability of flooding on a monthly basis.
 ${ }^{\mathrm{b}}$ Represents a short-term flood event, which typically results in only limited damages to perennial crops.

 ## Structures and Contents

 Structures and content damages were modeled according to principles and guidelines prescribed by the USACE (USACE 2010). All structures intersecting with a floodplain in the Town of Maxwell were categorized as either residential or non-residential, based on the attribute data embedded in the Colusa County parcel file, and are assumed to have only one story. This taxonomy was used to assign specific damage functions to estimate both structures and content losses. Structure value was estimated by applying regional construction cost per square foot factors developed by Marshall \& Swift to the reported structure size(s). The extent of damage (in this case, estimated replacement costs), were determined by multiplying the estimated structure value by depth damage curves and content-to-

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | PAGE: | 40 |

 structure ratios used by USACE economists in the Sacramento District (USACE 2013). A constant flood depth of 5 feet above the first floor's elevation was assumed across all event types.

 Indirect damages to account for cleanup costs, temporary housing, relocation assistance and other potential emergency costs were modeled as a proportion of direct damages, in this case 25 percent, according to estimates provided in the F-RAM model documentation.

 It should be noted that damages to structures and contents represent full replacement value, not the depreciated value. This approach, used by FEMA, more accurately reflects the true cost to replace the damaged asset.

 Only structures in the Town of Maxwell were included in this assessment of flood damages. There are additional structures scattered across the agriculturally zoned parcels outside of the Town center that would also be subject to damage but are not included to be conservative.

 Table A5-34 shows the depth damage functions, indirect cost assumption, square footage of residential and non-residential structures that would avoid damage during a 100-year flood event from the without-project conditions compared to the with-project conditions. The damage estimates also include estimated avoided secondary damages (e.g., emergency response).

 Table A5-34. Avoided Cost Assumptions and Estimates: 100-Year Flood Event (2015\$; \$1,000s)

 | Structure Type | Structure $^{\mathbf{a}}$ | Content $^{\mathbf{a}}$ | Indirect $^{\mathbf{b}}$ | Square Feet $^{\mathbf{c}}$ | Avoided Damage |
 | :--- | :---: | ---: | ---: | ---: | :---: |
 | Residential (1-story) | 53% | 29% | 25% | 76,584 | $\$ 11,701$ |
 | Non-Residential (1-story) | 31% | 100% | 25% | 52,666 | $\$ 12,470$ |
 | Total Avoided Costs | | | | | $\$ 24,171$ |

 Sources: DWR, Flood Rapid Assessment Model (F-RAM). Developed by URS (November 2008); USACE, National Economic Development Manual Series (2010); USACE, Sutter Basin Feasibility Report (2013).
 ${ }^{\text {a }}$ Assumes 5 -foot flood depth based on Sutter Basin Feasibility Report (USACE 2013).
 ${ }^{b}$ F-RAM indirect cost factor.
 ${ }^{\text {c }}$ The difference in building square feet impacted by the 100-year flood event between without-project and with-project conditions.

 ## Transportation

 The roads I-5, adjacent to the Town of Maxwell, and SR 20, between I5 and the City of Colusa, are subject to flood related closures. The damages stemming from transportation disruptions were modeled according to USACE guidance (USACE 1991), accounting for the value (i.e., opportunity cost) of time. Data on average daily trips at the identified transportation corridors, vehicle mileage costs, and median household income for adjacent counties were applied to assumptions on trip type (i.e., work, social, recreation, personal business, vacation) distributions by weekday and weekend, distance to reroute, and duration of delay. Collectively this information informed a daily weighted average damage estimate for both the I-5 and State Route 20. A one-day closure was assumed for all six flood events modeled.

 Additional roadway repair damages were estimated using assumptions of the amount of roadway exposed, and cost-per-mile factors for different roadway classifications. Indirect damages to account for cleanup costs, emergency costs, and losses from disruption to employment and commerce were modeled as a proportion of direct damages, in this case 50 percent. Both repair and indirect damages were informed according to estimates provided in the F-RAM model documentation.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 41 | OF | 60 |

 ## A5.4.1.c Calculations

 Table A5-35 presents the estimated avoided costs across the primary damage categories for the six flood events modeled.

 Table A5-35. Flood Benefits by Event and Impact Category (2015\$; \$1,000s)

 | Flood Type | Agriculture | Structure and Contents | Transportation | Total |
 | :--- | :---: | :---: | :---: | :---: |
 | $500-$ Year | $\$ 4,856$ | $\$ 10,199$ | $\$ 1,365$ | $\$ 16,420$ |
 | $100-$ Year ${ }^{\text {a }}$ | $\$ 5,526$ | $\$ 24,171$ | $\$ 1,552$ | $\$ 31,249$ |
 | $50-$ Year | $\$ 5,959$ | $\$ 23,337$ | $\$ 1,690$ | $\$ 30,986$ |
 | $25-$ Year | $\$ 6,323$ | $\$ 11,472$ | $\$ 1,767$ | $\$ 19,562$ |
 | $10-Y e a r$ | $\$ 5,829$ | $\$ 7,912$ | $\$ 1,570$ | $\$ 15,311$ |
 | $5-$ Year | $\$ 5,211$ | $\$ 24,546$ | $\$ 1,410$ | $\$ 31,167$ |

 Sources DWR, Flood Rapid Assessment Model (F-RAM). Developed by URS (November 2008); USACE, National Economic Development Manual Series (2010); USACE, Sutter Basin Feasibility Report (2013).
 ${ }^{a}$ Values shown in Tables A5-33 and A5-34.
 Table A5-36 presents the steps that were taken to calculate the EAD (described above), integrating the damages across the six flood events modeled.

 Table A5-36. EAD Calculation (2015\$; \$1,000s)

 | Frequency | Interval | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | EAD |
 | 0.002 | | \$16,420 | | | \$4,377 |
 | | 0.008 | | \$23,835 | \$191 | |
 | 0.01 | \longrightarrow | \$31,249 | | | \$4,187 |
 | | 0.010 | | \$31,118 | \$311 | |
 | 0.02 | \longrightarrow | \$30,986 | | | \$3,876 |
 | | 0.020 | | \$25,274 | \$505 | |
 | 0.04 | \longrightarrow | \$19,562 | | | \$3,370 |
 | | 0.060 | | \$17,437 | \$1,046 | |
 | 0.1 | \longrightarrow | \$15,311 | | | \$2,324 |
 | | 0.100 | | \$23,239 | \$2,324 | |
 | 0.2 | \longrightarrow | \$31,167 | | | |

 ## A5.4.1.d Modeling Results (Selected Monetization Approach)

 Table A5-37 presents the estimated benefit value of the project-related flood damage reduction.
 Table A5-37. Flood Reduction Benefits (2015\$; \$1,000s)

 | Alternative | Annual Benefits ${ }^{\text {a }}$ | | Annualized Benefit ${ }^{\text {b }}$ | |
 | :--- | :---: | :---: | :---: | :---: |
 | | $\mathbf{2 0 3 0}$ | $\mathbf{2 0 7 0}$ | | |
 | Average Conditions ${ }^{\mathrm{c}}$ | $\$ 4,377$ | $\$ 4,377$ | $\$ 4,377$ | |
 | Sites Reservoir | | | | |

 a Based on the project-related reduction in expected annual damages from future flood events.
 ${ }^{\text {b }}$ Annualized benefits interpolated annual physical benefits between 2030 and 2070, and then constant annual benefits after 2070.
 ${ }^{\text {c }}$ Averaged over the entire hydrologic sequence (1922 to 2003).

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2O17 AUGUST |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | PAGE: | 42 |

 The project's future flood reduction benefits were estimated to be $\$ 4.4$ million in 2030. It was conservative assumed that 2030 benefit values would remain constant throughout the future 2030 to 2132 operating period. As a result, the annualized benefit for the future 2030 to 2132 operating period was estimated to be $\$ 4.4$ million.

 ## A5.5 Water Supply (Non-Proposition 1 Eligible Benefit)

 Increased future water deliveries and improved water supply reliability are expected to be the project's largest non-public benefit. The project's water supply improvements are expected to ultimately serve both agricultural producers (located both north- and south-of-the-Delta) and south-of-the-Delta M\&। users. The benefit valuation analysis assumes that the majority (approximately 58 percent) of the project water deliveries will be for agricultural use. This was considered a realistic characterization of the JPA current partnering water contractors and conservative assumption given the far higher value placed on M\&I water supplies.

 In addition, it is expected that Sites Reservoir will be able to recapture some quantities of the Shasta's future deliveries that are scheduled as a result of the project's coldwater pool benefits. It is currently envisioned that the reclaimed would be allocated to JPA and used to provide supplementary water deliveries for south-of-the-Delta M\&I users. The sales revenues from the reclaimed water supplies would then be used to cover the O\&M costs assigned to the project's various public benefits. The water supply benefit analysis therefore accordingly analyzed the project's future water deliveries separately and then combined the findings to report a single overall water supply benefit value.

 ## A5.5.1 M\&I Water Supply

 Sites Reservoir will improve future water supply reliability for M\&I water users predominantly located south of the Delta.

 ## A5.5.1.a Analytic Methods

 Two approaches that provide M\&I water supply benefits at 2030 and 2070 conditions in average annual value (2015 dollars): Economic Model Approach: California Water Economics Spreadsheet Tool (CWEST) and Unit Value Approach using WISP provided Unit Water Values as dollar value per acre-foot.

 The M\&I water supply benefit analysis relies on CALSIM II modeling to quantify the project's expected future M\&I deliveries under different water-year conditions. CWEST modelling to determine the project's future M\&I water supply benefits. Consequently, the economic benefits of increased future M\&I water deliveries were estimated on a "willingness to pay" basis.

 ## CALSIM II

 As previously discussed in Section A5.1, CALSIM II modeling was used to determine the project's 2030 and $2070 \mathrm{M} \&$ I water supply deliveries by location under different water-year conditions. The water quantities for the intervening years were interpolated individually by purpose, water-year type and location.

 The WSIP 2030 and 2070 without Project CALSIM II model runs were compared to the WSIP 2030 and 2070 with Project CALSIM II model runs to quantify the annual deliveries to Sites Project Participants. Delivery is the calculated quantity at the location of each Sites Project Participant after accounting for conveyance losses, consistent with WSIP TR Guidelines (TM Section 4.12.3).

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | PAGE: | 43 |

 ## CWEST (California Water Economics Spreadsheet Tool) (Selected Monetization Approach)

 CWEST was developed for the US Bureau of Reclamation's Coordinated Long Term Operation of the Central Valley Project and State Water Project Environmental Impact Statement (LTO EIS) Environmental Consequences analysis.

 CWEST is an economic benefit valuation tool developed to provide consistent and transparent analysis of economic benefits of M\&I water supplies for CVP contractors and SWP Table A contract holders. CWEST is an economic simulation and optimization tool that represents each individual CVP and SWP M\&I water user's decision making under 2030 and 2070 conditions based on publicly available information. CWEST determines how CVP and SWP M\&I water users will meet their 2030 and 2070 water demand levels at their minimum economic cost given their supply constraints and alternatives. Detailed technical discussion of the CWEST model is available from the Appendix 19A of the Draft Long Term Operation EIS (USBR 2015).

 CWEST quantifies M\&I water supply benefit by simulating the water management decisions made at the district or agency level. The model's objective is to select each Sites Project participant's set of management actions that meet their annual water demand at the lowest cost. The estimated cost difference between the with and without Sites Reservoir scenarios determines the project's M\&I water supply benefit. Similar to the other existing California M\&I water economics tools, CWEST minimizes the total costs of meeting annual M\&I water demands subject to applicable operational and supply constraints. These costs include:

 - Conveyance and operations costs;
 - Existing and new permanent supplies, transfer or other option costs;
 - Local surface and groundwater operations;
 - Lost water sales revenues; and
 - End-user shortage costs.

 CWEST incorporates level of demand, quantity and type of local water supplies, and costs for both 2030 and 2070 development conditions into its benefit value estimates.

 CWEST was selected to estimate M\&I water supply benefits in the WSIP application based on the criteria in Technical Reference document Section 4.12 Water Supply Analysis (CWC, 2016). CWEST was updated for the WSIP benefit valuation analysis to evaluate nine representative participants for the M\&I Sites Project. The updates to CWEST include 2030 and 2070 analysis using 2015 UWMP data, inclusion of only Sites Project participants, and all relevant assumptions outlined in the CWC Technical Reference document. Appendix 19A of the LTO EIS details the economic tool's development history, methodology, and assumptions (Reclamation, 2015).

 ## WSIP Unit Water Values (Alternate Benefit Monetization Approach)

 As previously discussed in Section A5.1 All Benefits, WSIP Unit Water Values modeling is an approved benefit monetization approach and it was used to determine the project's 2030 and 2070 M\&l water supply benefit values under different water-year conditions.

 This approach applies a dollar value per acre-foot (\$/AF) values for water by region, water-year type, and future condition. Conveyance costs were included in the benefit calculation to better represent the full willingness to pay by south-of-the-Delta water contractors.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | | PAGE: | 44 |

 As the WSIP TM acknowledges, there are several reasons and factors that may ensure that the WSIP unit values would undervalue the M\&I benefits. As previously discussed in Section A5.1.1.a, the WSIP unit values implicitly assume that there would be a sufficient number of willing sellers for the price and quantity of water that could supply the water being valued. This assumption may be difficult to meet for large quantities water (especially such as those required for the project's M\&I deliveries).

 The project would provide long-term and reliable deliveries. This contrasts with the current water transfer market which predominantly consists of limited term contracts and where the demand, supply and prices vary considerably depending on the recent and projected water-year type.

 The third-party costs of water transfers are not included in the Unit Water Values. Major and/or longterm reallocations of water use resulting from water transfers can be expected to potentially result in direct and indirect economic impacts to the region's workers, supporting businesses and consumers. The WSIP Unit Water Values are predominantly derived from past water transfer and therefore based on the financial relationship solely between the water buyer and sellers. As a result, it does incorporate any costs or losses to third-party entities or the larger economy. Inclusion of any additional third-party costs would be expected to increase the unit values and hence the benefit values or other water sources.

 ## A5.5.1.b Data and Assumptions

 The major update to CWEST was removing non- Sites Project Participants from the model and including any Sites Project Participants that were not including in the existing version on the model. CWEST updates for the WSIP application allows for analysis at 2030 and 2070 and is in 2015 dollars. The main data source for the update was individual Sites Project participants Urban Water Management Plans (UWMPs).

 ## A5.5.1.c Calculations

 ## Water Supply Projections

 Table A5-38 shows the estimated water deliveries by water-year type projected in 2030, 2070, and the annual average in the 2030 to 2122 operating period.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | PAGE: | 45 | OF |

 Table A5-38. Increase in Water Supply Deliveries (TAF/year)

 | Period | NOD Agriculture | SOD Agriculture | SOD M\&I | SOD Recaptured | Total |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | 2030 Results | | | | | |
 | Long-Term Average | 110 | 25 | 106 | 11 | 254 |
 | Wet | 62 | 5 | 15 | | 82 |
 | Above Normal | 86 | 68 | 52 | | 144 |
 | Below Normal | 125 | 28 | 121 | | 273 |
 | Dry | 157 | 56 | 213 | | 426 |
 | Critical | 153 | 53 | 185 | | 391 |
 | 2070 Results | | | | | |
 | Long-Term Average | 137 | 30 | 117 | 11 | 295 |
 | Wet | 110 | 5 | 15 | | 130 |
 | Above Normal | 146 | 12 | 72 | | 230 |
 | Below Normal | 152 | 26 | 116 | | 294 |
 | Dry | 161 | 69 | 257 | | 488 |
 | Critical | 133 | 41 | 145 | | 319 |
 | 2030-2122 Results | | | | | |
 | Long-Term Average | 131 | 29 | 114 | 11 | 286 |

 Source: CALSIM II.
 Note: Values may not sum due to rounding.

 ## CWEST Model Results (Selected Monetization Approach)

 Tables A5-39 and A5-40 show the detailed CWEST modeling results for the project under the future 2030 and 2070 without Project CALSIM II model runs and the WSIP 2030 and 2070 with Project CALSIM II model runs. Similar to many impact models, CWEST generally evaluates the conditions and estimates outcomes for both a "with project" and "without project" scenarios. The project's impacts are then determined by the differences between the two scenarios.

 Both tables show the average annual delivery and conveyance cost for each of the representative M\&। water users. The delivery cost is subtracted from the total estimated benefit for each M\&I water user from their expected cost savings gained by using the project water supply rather than other alternate sources. The tables also show potential water supply quantity from their alternate water sources (e.g.,

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIPAPPLICATION | |
 | NOTES: | | | | PAGE: | 46 | OF |

 Table A5-39. M\&I Water Supply Benefits: 2030 CWEST Modeling Detailed Model Results (2015\$; \$1,000s)

 | Benefit Factor | Representative Water Districts and Agencies | | | | | | | | | Total |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Castaic Lake | Zone 7 | Santa Clara Valley | Antelope Valley-East Kern | San Gorgonio Pass | Desert | Coachella Valley | San
 Bernardino Valley | City of American Canyon | |
 | Average Deliveries (TAF/Yr) | 4.0 | 16.2 | 19.4 | 1.6 | 11.3 | 5.3 | 21.4 | 24.3 | 2.6 | 106 |
 | Delivery Cost | -\$602 | -\$1,041 | -\$1,219 | -\$300 | -\$2,097 | -\$974 | -\$3,969 | -\$4,494 | -\$197 | -\$14,892 |
 | New Supply (TAF/Yr) | 0 | -4.7 | -3.4 | 0 | -1.6 | -0.5 | -2.1 | -1.5 | 0 | -14 |
 | Annualized New Supply Costs | \$0 | \$4,090 | \$1,106 | \$0 | \$1,469 | \$223 | \$981 | \$575 | \$2 | \$8,446 |
 | Surface/GW Storage Costs | \$0 | \$81 | \$563 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$644 |
 | Lost Water Sales Revenues | \$221 | \$2,193 | \$1,469 | \$102 | \$335 | \$219 | \$900 | \$1,302 | \$112 | \$6,852 |
 | Transfer Costs | \$359 | \$1,143 | \$175 | \$0 | \$926 | \$0 | \$0 | \$0 | \$223 | \$2,827 |
 | Shortage Costs | \$300 | \$9,784 | \$7,175 | \$1,834 | \$1,553 | \$1,480 | \$3,467 | \$518 | \$53 | \$26,165 |
 | GW pumping savings | \$665 | \$304 | \$0 | \$114 | \$0 | \$411 | \$5,336 | \$7,285 | \$0 | \$14,115 |
 | Excess Water Savings | \$13 | \$48 | \$485 | \$105 | \$1,265 | \$517 | \$0 | \$0 | \$147 | \$2,580 |
 | Average Annual Cost | \$957 | \$16,601 | \$9,754 | \$1,856 | \$3,451 | \$1,876 | \$6,715 | \$5,187 | \$340 | \$46,737 |

 Table A5-40. M\&I Water Supply Benefits: 2070 CWEST Modeling Detailed Model Results (2015\$; \$1,000s)

 | Benefit Factor | Representative Water Districts and Agencies | | | | | | | | | Total |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Castaic Lake | Zone 7 | Santa Clara Valley | Antelope Valley-East Kern | San Gorgonio Pass | Desert | Coachella Valley | San Bernardino Valley | City of American Canyon | |
 | Average Deliveries (TAF/Yr) | 4.5 | 17.8 | 21.4 | 1.8 | 12.5 | 5.8 | 23.6 | 26.7 | 2.8 | 117 |
 | Delivery Cost | -\$663 | -\$1,147 | -\$1,348 | -\$330 | -\$2,308 | -\$1,072 | -\$4,369 | -\$4,946 | -\$217 | -\$16,400 |
 | New Supply (TAF/Yr) | 0 | -3.9 | -20.5 | 0 | -2.8 | -2.0 | -18.1 | -22.3 | 0 | -70 |
 | Annualized New Supply Costs | \$179 | \$5,344 | \$41,092 | \$0 | \$5,228 | \$1,924 | \$23,414 | \$30,178 | \$18 | \$107,376 |
 | Surface/GW Storage Costs | \$0 | -\$119 | \$213 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$94 |
 | Lost Water Sales Revenues | \$350 | \$2,277 | -\$786 | \$85 | \$299 | \$141 | \$438 | \$2,738 | \$126 | \$5,668 |
 | Transfer Costs | \$976 | \$3,445 | -\$225 | \$0 | \$810 | \$0 | \$0 | \$0 | \$903 | \$5,909 |
 | Shortage Costs | \$127 | \$21,652 | \$7,085 | \$3,474 | \$1,460 | \$6,421 | \$17,818 | \$14,263 | \$177 | \$72,476 |
 | GW pumping savings | \$626 | \$312 | \$0 | \$95 | \$0 | \$442 | -\$129 | -\$433 | \$0 | \$914 |
 | Excess Water Savings | \$0 | \$0 | \$0 | \$20 | \$1,489 | \$110 | \$0 | \$0 | \$136 | \$1,756 |
 | Average Annual Cost | \$1,596 | \$31,763 | \$46,031 | \$3,345 | \$6,978 | \$7,967 | \$37,171 | \$41,799 | \$1,143 | \$177,793 |

 conservation, recycling, and desalination). These are the alternate supplies that can be adopted as management actions to reduce their future water shortage costs. The new supply quantity is a key decision variable in the CWEST model analysis.

 As shown in Tables A5-39 and A5-40, the CWEST analysis projects that between 2030 and 2070, Sites Reservoir's annual M\&I net supply benefits would increase from $\$ 46.7$ million to $\$ 177.8$ million. Unsurprisingly the majority of the M\&I benefits would be gained by the four water agencies that would receive the largest M\&I deliveries.

 The largest share of the Sites Reservoir's projected 2030 M\&I benefits would be expected to result from its avoided shortage costs which would total $\$ 26.2$ million and would account for 42.5 percent of the total benefits. The other important sources of M\&I benefits in 2030 would be savings in groundwater pumping costs ($\$ 14.1$ million), avoided development costs for other new supply sources ($\$ 8.4$ million) and reduced water purchase costs ($\$ 6.9$ million). Together these additional three cost savings categories would account for 47.7 percent of the project's total M\&l benefits.

 In 2070 the project's benefits from avoided shortage costs are projected to increase to approximately $\$ 72.5$ million but would account for only 37.3 percent of the $\$ 177.8$ million in total benefits. Instead the avoided development of other new supply sources would result in $\$ 107.4$ million cost savings and the largest share (55.3 percent) of the project's 2070 M\&I benefits.

 Table A5-41 summarizes M\&I Water Supply benefit values from the CWEST modeling. The equivalent Unit Water Values for M\&I are estimated to be \$440 per acre foot in 2030 and $\$ 1,521$ in 2070.

 Table A5-41. M\&I Water Supply Benefit Valuation: CWEST Water Values (2015\$; $\$ 1,000 \mathrm{~s}$)

 | | | Benefit Value | |
 | :--- | :---: | :---: | :---: |
 | | M\&I | CWEST | Total |
 | | Year | TAF | (\$1,000s) |
 | 2030 | 106 | $\$ 440$ | $\$ 46,737$ |
 | 2045 | 110 | $\$ 874$ | $\$ 95,883$ |
 | 2070 | 117 | $\$ 1521$ | $\$ 177,793$ |
 | Annualized (2030-2122) ${ }^{\text {a }}$ | $\mathbf{1 1 4}$ | - | $\$ 114,107$ |

 Note
 ${ }^{2}$ Annualized benefit value is calculated using net present value over 93 years and 3.5% discount rate.

 ## WSIP Unit Water Values (Alterative Monetization Approach)

 The economic benefits of the increase future water deliveries for M\&I were estimated using the adjusted WSIP Unit Water Values (see Table A5-7) applied to the projected average annual delivery quantities on a year by year basis over the project's entire 2030 to 2122 study period. Table A5-42 shows the estimated annual benefit values of future M\&I water supply in 2030, 2045, 2070 and the annualized average over the project's full 2030 to 2122 study period.

 Table A5-42. M\&I Water Supply Benefit Valuation: WSIP Unit Water Values (2015\$; \$1,000s)

 | Year | M\&I Water Supply TAF | Benefit Value | |
 | :---: | :---: | :---: | :---: |
 | | | WSIP Unit Water Value \$/AF | $\begin{gathered} \text { Total } \\ (\$ 1,000 \mathrm{~s}) \end{gathered}$ |
 | 2030 | 106 | \$457 | \$48,517 |
 | 2045 | 110 | \$828 | \$90,761 |
 | 2070 ${ }^{\text {b }}$ | 117 | \$806 | \$94,208 |
 | Annualized (2030-2122) ${ }^{\text {a }}$ | 114 | - | \$81,742 |

 ${ }^{\text {a }}$ Annualized benefit value is calculated using net present value over 93 years and 3.5 percent discount rate.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | | | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | | | |
 | CAVEAT: | | QA/QC: | 2017 AUGUST | | | | |
 | NOTES: | | | REF/FILE \#: | WSIP APPLICATION | | PAGE: | 49 |

 ${ }^{\mathrm{b}}$ The 2070 unit value is lower than the 2045 unit value because of the change in the hydrological year type incidence result in a wetter average year.

 ## A5.5.1.d Modeling Results (Selected Monetization Approach)

 Table A5-43 shows the estimated future M\&I water supply benefit values obtained from the CWEST for 2030 and 2070.

 Table A5-43. M\&I Water Supply Benefits: CWEST Modeling (2015\$; $\mathbf{\$ 1 , 0 0 0 s)}$

 | Alternative | Annual Benefits ${ }^{\text {a }}$ | | Annualized Benefit ${ }^{\text {b }}$ |
 | :---: | :---: | :---: | :---: |
 | | 2030 | 2070 | |
 | Average Conditions ${ }^{\text {c }}$ | | | |
 | Sites Reservoir | \$46,737 | \$177,793 | \$114,107 |

 Source: CWEST
 a Based on CWEST Modeling adjusted by water-year type, expected delivery location and conveyance energy costs.
 b Annualized benefits represent avoided costs relative to the Future No Project conditions over the planning horizon (2030 to 2122), and are adjusted for expected variations in surface area conditions.
 c Averaged over the entire hydrologic sequence (1922 to 2003).
 The model results indicate an increase in M\&I benefits from $\$ 46.7$ million in 2030 to $\$ 177.8$ million in 2070. The corresponding annualized benefit for the future 2030 to 2132 operating period is estimated to be $\$ 114.1$ million. This is equal to an estimated average unit benefit value for M\&I of $\$ 1,302$ per acre foot.

 The major increase in future M\&I benefits is only partly the result of the 11 TAF (10.4 percent) increase in 2070 average annual $\mathrm{M} \& I$ deliveries that are projected to occur as a result of future climate change conditions enabling greater diversions of Sacramento River flows.

 Instead major factors driving the M\&I benefit increase are increased water demand, reduced water availability from other water supplies (including groundwater depletion and climate change reductions in future Sierra snowpack levels) and the limited availability of alternate water sources.

 ## A5.5.2 Agricultural Water Supply

 Sites Reservoir will improve water supply reliability to agricultural water users, particularly during dry years. Over 80 percent of the future agricultural water deliveries are current expected to be for water contractors located within the Sacramento Valley. The remaining agricultural deliveries are expected to be for south-of-the-Delta agricultural water users.

 ## A5.5.2.a Analytic Methods

 CALSIM II
 As previously discussed in Section A5.1 All Benefits, CALSIM II modeling was used to determine the project's 2030 and 2070 agricultural water supply deliveries by location under different water-year conditions.

 ## WISP Unit Water Values (Selected Monetization Approach)

 WSIP Unit Water Value modeling was used to determine the project's 2030 and 2070 agricultural water supply prices under different water-year conditions. The WISP unit value benefit approach used to value the project's future increases in agricultural water supplies was the same as that used for the Incremental Level 4 refuge, Lake Oroville coldwater pool and Yolo Bypass supply benefits (Sections A5.2.2-4). The agricultural benefit valuation analysis also similarly used the adjusted Unit Water Values (for the south-of-the-Delta deliveries) and the Sacramento Valley values (its future north-of-the-Delta

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | | |
 | CAVEAT: | | QA/QC: | 2O17 AUGUST | | | |
 | NOTES: | | | REF/FILE \#: | WSIP APPLICATION | | PAGE: |

 deliveries) correspondingly applied to the CALSIM II determined future agricultural water supply quantities.

 ## LTGEN/SWP

 As previously discussed in Section A5.1 All Benefits, LTGEN/SWP was used to determine the project's 2030 and 2070 average conveyance energy costs and when appropriate adjust the water benefit values for south-of-the-Delta deliveries.

 ## SWAP Model (Alternate Monetization Approach)

 The SWAP model is a regional agricultural production and economic optimization model that simulates the decisions of farmers across 93 percent of agricultural land in California. The model assumes that farmers maximize profits (revenue minus cost) by choosing total input use (e.g., total crop acres) and input use intensity (e.g., applied water per acre) subject to market, resource, and technical constraints.

 Although the SWAP model is not specifically recommended in the WSIP TM Section 5 - Monetizing the Value of Project Benefits, the CWC discussed the SWAP model in Appendix D - Unit Values for Water. The CWC also provided the SWAP version 6.1 model for public use. The Sites Reservoir his version of the SWAP model was used to provide an alternative benefit value of the project's agricultural benefits. As discussed in the WSIP TM (Appendix D), the model was calibrated using 2010 crop acreage and water use information. Crop prices and cost data from 2011 and 2012 were used to calibrate it is economic factors.

 However, for reasons discussed below, it was determined that the SWAP Model majorly misrepresented and underestimated the project's future agricultural benefit values. As a result, the SWAP model was not selected as the monetization approach to determine Sites Reservoir's agricultural benefits for the WSIP application.

 ## A5.5.2.b Data and Assumptions

 In addition to the Appendix D discussion of the SWAP model and its relationship to the WSIP Unit Water Values, extensive discussion of the SWAP model's methodology, data sources and assumptions are available in agency technical reports and the technical appendices of several recent federal feasibility studies of proposed water storage project and water management programs in California. The SWAP Model Update and Application to Federal Feasibility Analysis provides a comprehensive overview of the SWAP model and its application (USBR/DWR 2012). The Final Modeling Appendix to the Shasta Lake Water Resources Investigation also provides extensive discussion of the SWAP Model and its use for economic valuation of agricultural water supply increases (USBR 2014).

 ## A5.5.2.c Calculations

 ## Water Quantities

 Table A5-38 shows the estimated agricultural water deliveries by water-year type projected in 2030, 2070, and the annual average in the 2030 to 2122 operating period.

 ## WSIP Unit Water Values

 Future adjusted WSIP Unit Water Values by water-year type and location are previously shown in Table A5-7. As previously discussed in Section A5.1, future annual agricultural water supply quantities were interpolated based on water-year type and location.

 The adjusted WSIP Unit Water Values were used for south-of-the-Delta use (i.e. including expected conveyance energy cost necessary to deliver the agricultural water) (Table A5-44). No conveyance

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | VERSION: | D |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | | |
 | CAVEAT: | | QA/QC: | 2017 AUGUST | | | |
 | NOTES: | | | REF/FILE \#: | WSIP APPLICATION | PAGE: | 51 |

 energy cost adjustments were applied to the locally supplied agricultural water (i.e. for north-of-theDelta agricultural water users) since the energy need for their deliveries will be minor.

 Table A5-44. Agricultural Water Supply Benefit Valuation: WSIP Unit Water Values (2015\$; \$1,000s)

 | Year | | Agricultural Supply | | Benefit Value | |
 | :--- | :---: | :---: | :---: | :---: | :---: |
 | | | | WSIP Unit Water Value ${ }^{\text {b }}$ | Total | |
 | | | SOD (TAF) | \$/AF | (\$1,000s) | |
 | 2030 | 110 | 27 | $\$ 229 / \$ 457$ | $\$ 37,443$ | |
 | 2045 | 121 | 28 | $\$ 238 / \$ 828$ | $\$ 51,732$ | |
 | $2070^{\text {b }}$ | 137 | 30 | $\$ 238 / \$ 806$ | $\$ 56,995$ | |
 | Annualized (2030-2122) $^{\text {a }}$ | $\mathbf{1 3 1}$ | $\mathbf{2 9}$ | - | $\$ 50,188$ | |

 ${ }^{a}$ Annualized benefit value is calculated using net present value over 93 years at a 3.5 percent discount rate.
 ${ }^{b}$ The 2070 unit value is lower than the 2045 unit value because of the change in the hydrological year type incidence result in a wetter average year.

 ## SWAP Model (Alternate Monetization Approach)

 The Sites Reservoir SWAP analysis used the CWC provided SWAP version 6.1 model without any modifications to its model code or baseline data. Review of the CWC SWAP model concluded that the water supply portfolios in the Sacramento Valley, especially Tehama and Colusa Counties, were not consistent with their actual current and future conditions. The CWC SWAP model was not updated to more accurately quantify existing or future Sacramento Valley baseline water supply portfolios due to time constraints, data limitations, and fundamental concerns about SWAP's applicability for determining the project's agricultural supply benefits.

 The uncorrected CWC SWAP model was nonetheless run to estimate the project's agricultural supply benefits. Tables A5-45 and A5-46 show the SWAP model results for 2030 and 2070 conditions.

 Table A5-45. Agricultural Water Supply Benefit Valuation: 2030 SWAP Values (2010\$; \$1,000s)

 | Benefit Factor | 2030 Conditions (Average Water Year) | | |
 | :---: | :---: | :---: | :---: |
 | | Without Project | With Project | Difference |
 | Total Surface Water Use (TAF) Income Over Expenses | $\begin{array}{r} 14,099 \\ \$ 12,337,876 \end{array}$ | $\begin{array}{r} 14,127 \\ \$ 12,339,675 \end{array}$ | $\begin{array}{r} 27.9 \\ \$ 1,799 \end{array}$ |
 | Groundwater Total Cost ${ }^{\text {a }}$
 Groundwater Pumped (TAF) | $\begin{array}{r} \$ 462,889 \\ 4,384 \end{array}$ | $\begin{array}{r} \$ 462,889 \\ 4,384 \end{array}$ | $\begin{array}{r} \$ 0 \\ 0 \end{array}$ |
 | Acres Irrigated (1,000s)
 Variable Fallow Expenses ${ }^{\text {b }}$ | $6,148$
 na | $6,154$
 na | $\begin{array}{r} 6.9 \\ (\$ 263) \end{array}$ |
 | Consumer Surplus Change | | | \$7,451 |
 | NODOS NED Benefits | | | \$9,513 |

 ${ }^{a}$ Decreased groundwater use and costs represent avoided cost benefits for the project.
 ${ }^{b}$ Decreased variable fallow expenses represent avoided cost benefits for the project.

 Table A5-46. Agricultural Water Supply Benefit Valuation: 2070 SWAP Values (2010\$; \$1,000s)

 | Benefit Factor | 2070 Conditions (Average Water Year) | | |
 | :---: | :---: | :---: | :---: |
 | | Without Project | With Project | Difference |
 | Total Surface Water Use (TAF) | 13,532 | 13,661 | 129 |
 | Income Over Expenses | \$13,250,159 | \$13,257,471 | \$7,312 |
 | Groundwater Total Cost ${ }^{\text {a }}$ | \$599,805 | \$598,563 | (\$1,242) |
 | Groundwater Pumped (TAF) | 4,356 | 4,346 | (10.3) |
 | Acres Irrigated (1,000s) | 5,946 | 5,973 | 27.5 |
 | Variable Fallow Expenses ${ }^{\text {b }}$ | na | Na | $(\$ 1,046)$ |
 | Consumer Surplus Change | | | \$22,211 |
 | NODOS NED Benefits | | | \$31,811 |

 ${ }^{a}$ Decreased groundwater use and costs represent avoided cost benefits for the project.
 ${ }^{\mathrm{b}}$ Decreased variable fallow expenses represent avoided cost benefits for the project.
 Total surface water use reported in the tables were solved within the model and may not represent the total surface water available to agriculture calculated in CALSIM II. Therefore, the difference in total surface water use between the without project and with project does not match with the reported Sites water deliveries in Table A5-44. There are multiple influences on the quantity of surface water use within SWAP such as technology, crop prices, groundwater pumping constraints from SGMA, and the price of surface water deliveries. These results further resigned the use the CWC provided SWAP model to estimate the benefits of agricultural water supply.

 The largest share of the agricultural water benefit estimated by SWAP is expected from the consumer surplus benefits from the increased agricultural production enabled by the project's water deliveries. This corresponds to the total net value for food consumers obtain from the increased food production (and includes the value above the market price that many consumers may possess).

 The other major source of agricultural benefit results from gains in the "income over expenses" (or producer surplus) generated by the increase and/or change in the agricultural activity enabled by the additional agricultural water supplies.

 The SWAP agricultural supply benefit estimates in Tables A5-45 and A5-46 are shown in 2010 dollar terms. These values were adjusted into 2015 dollar terms using the Consumer Price Index and their results are summarized in Table A5-47. Table A5-47 also shows the corresponding annualized average benefit value of the agricultural benefits based on the SWAP analysis.
 Table A5-47. Incremental Agricultural Water Supply Benefit Valuation: SWAP (SGMA) Values (2015\$; \$1,000s)

 | Year | Agricultural Supply TAF | Benefit Value | |
 | :---: | :---: | :---: | :---: |
 | | | SWAP (SGMA) Water Value $\$ / A F^{b}$ | $\begin{gathered} \text { Total } \\ (\$ 1,000 \mathrm{~s}) \end{gathered}$ |
 | 2030 | 137 | \$76 | \$10,465 |
 | 2045 | 148 | \$132 | \$19,664 |
 | 2070 | 167 | \$209 | \$34,996 |
 | Annualized (2030-2122) ${ }^{\text {a }}$ | 161 | - | \$23,075 |

 ## Note

 ${ }^{\text {a }}$ Annualized benefit value is calculated using net present value over 93 years and 3.5 percent discount.
 ${ }^{\text {b }}$ Water value is based on total TAF; SWAP underestimates north-of-the-Delta water use.

 The CWC SWAP model was determined inadequate to quantify agricultural water supply benefits largely due to its incorrect baseline Sacramento Valley water supply, use and pricing assumptions.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | | | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | | | |
 | CAVEAT: | | QA/QC: | 2017 AUGUST | | | | |
 | NOTES: | | | REF/FILE \#: | WSIP APPLICATION | | PAGE: | 53 |

 ## A5.5.2.d Modeling Results (Selected Monetization Approach)

 The estimated total benefit value was estimated based on the expected future average hydrological year type and the WSIP Unit Water Values applicable based on the use location of the delivered agricultural water. Table A5-48 shows the estimated future agricultural water supply benefit values.

 Table A5-48. Agricultural Water Supply Benefits: WSIP Unit Water Values (2015\$; \$1,000s)

 | Alternative | Annual Benefits ${ }^{\text {a }}$ | | Annualized
 Benefit (\$) ${ }^{\text {b }}$ |
 | :---: | :---: | :---: | :---: |
 | | 2030 | 2070 | |
 | Average Water Conditions ${ }^{\text {c }}$ | | | |
 | Sites Reservoir | \$37,443 | \$56,995 | \$50,188 |

 ${ }^{\text {a }}$ Based on WSIP Unit Water Values adjusted by water-year type, expected delivery location, and conveyance energy costs.
 ${ }^{\text {b }}$ Annualized benefits assume interpolated annual physical benefits between 2030 and 2070 and then constant annual benefits after 2070. WSIP Unit Water Values interpolated between 2030 and 2045, after which 2045 unit values are used.
 ${ }^{\text {c }}$ Averaged over the entire hydrologic sequence (1922 to 2003).
 The agricultural supply analysis estimates that future agricultural benefits will increase from $\$ 37.4$ million in 2030 to approximately $\$ 57.0$ million in 2070 . The corresponding annualized benefit for the future 2030 to 2132 operating period is estimated to be $\$ 50.2$ million. This is equal to an estimated average unit benefit value of $\$ 337$ per acre foot for agricultural water use. This benefit valuation reflects the high proportion of future north-of-the-Delta agricultural use envisioned by the project.

 ## A5.5.3 Recaptured Water Supply

 Sites Reservoir will also collect limited quantities of additional "Recaptured" water related to its releases supporting its anadromous fish deliveries. Rescheduled Shasta Lake deliveries that occur when Sacramento River flows exceed its required "maintenance" levels would add "surplus" supplies that Sites Reservoir would be entitled and able to divert without adversely affect the downstream river conditions or deliveries.

 These recaptured water quantities are expected to average approximately 10 TAF per year and would be assigned to the JPA. The JPA would sell the recaptured water predominantly to south-of-the-Delta M\&I water contractors. The recaptured water's sales revenues will then be used to cover the future annual O\&M expenses assigned to the public benefit uses.

 ## A5.5.3.a Analytic Methods

 CALSIM II
 As previously discussed in Section A5.1 All Benefits, CALSIM II modeling was used to determine the project's 2030 and 2070 recaptured water quantities and its supply deliveries by location under different water-year conditions.

 ## CWEST Model Results (Selected Monetization Approach)

 The recaptured water is expected to be predominantly delivered to south-of-the-Delta water contractors and will therefore represent supplemental M\&I deliveries. Therefore, the M\&I analyses and findings (Section A5.5.1) are similarly applicable to the recaptured water supplies.

 ## WSIP Unit Water Values (Alternate Benefit Monetization Approach)

 As previously discussed above, WSIP Unit Water Values modeling for the M\&I analysis (Section A5.5.1) are similarly applicable to the recaptured water supplies.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | | |
 | CAVEAT: | | QA/QC: | 2017 AUGUST | | | |
 | NOTES: | | | REF/FILE \#: | WSIP APPLICATION | | PAGE: |

 ## A5.5.3.b Data and Assumptions

 The data and assumptions for the M\&I analysis (Section A5.5.1) are similarly applicable to the recaptured water supplies.

 ## A5.5.3.c Calculations

 ## Water Supply Projections

 The future recaptured water supply quantities determined by CALSIM II are shown above in Table A5-44.

 ## CWEST Model Results (Selected Monetization Approach)

 Unit benefit values for the project's M\&I deliveries were estimated based on the M\&I supply's average quantities and CWEST benefit value estimates under future 2030, 2045 and 2070 conditions. Table A5-49 shows the estimated unit values. These unit M\&I benefit values were applied to their corresponding project future water delivery quantity to determine benefit value estimates for the project's recapture water supplies under future 2030, 2045 and 2070 conditions. Table A5-49 shows the estimated benefit values for the project's future recaptured water supply.

 Table A5-49. Recaptured Water Supply Benefit Valuation: CWEST Water Values (2015\$; \$1,000s)

 | Year | Recaptured Water Supply TAF | Benefit Value | |
 | :---: | :---: | :---: | :---: |
 | | | $\begin{aligned} & \hline \text { CWEST } \\ & \text { \$/AF } \end{aligned}$ | $\begin{gathered} \hline \text { Total } \\ (\$ 1,000 \mathrm{~s}) \\ \hline \end{gathered}$ |
 | 2030 | 11 | \$440 | \$4,845 |
 | 2045 | 11 | \$874 | \$9,619 |
 | 2070 | 11 | \$1521 | \$16,733 |
 | Annualized (2030-2122) ${ }^{\text {a }}$ | 11 | - | \$11,123 |

 ${ }^{\text {a }}$ Annualized benefit value is calculated using net present value over 93 years at a 3.5 percent discount rate.

 ## WSIP Unit Water Values (Alternative Monetization Approach)

 The WSIP Unit Water Value analysis for the recaptured water supplies was the same as that applied to the project's M\&I supplies. The recaptured water supply's economic benefits were estimated using the adjusted WSIP Unit Water Values (see Table A5-7) applied to the projected average annual delivery quantities on a year by year basis over the project's entire 2030 to 2122 study period.

 Table A5-50 shows the estimated annual benefit values of future recaptured water supply in 2030, 2045, 2070 and the annualized average over the project's full 2030 to 2122 study period.

 Table A5-50. Recaptured Water Supply Benefit Valuation: WSIP Unit Water Values (2015\$; \$1,000s)

 | Year | Recaptured Water Supply TAF | Benefit Value | |
 | :---: | :---: | :---: | :---: |
 | | | WSIP Unit Water Value \$/AF | $\begin{gathered} \text { Total } \\ (\$ 1,000 s) \end{gathered}$ |
 | 2030 | 11 | \$457 | \$5,029 |
 | 2045 | 11 | \$828 | \$9,619 |
 | 2070 ${ }^{\text {b }}$ | 11 | \$806 | \$8,866 |
 | Annualized (2030-2122) ${ }^{\text {a }}$ | 11 | - | \$8,038 |

 ${ }^{a}$ Annualized benefit value is calculated using net present value over 93 years at a 3.5 percent discount rate.
 ${ }^{\text {b }}$ The 2070 unit value is lower than the 2045 unit value because of the change in the hydrological year type incidence result in a wetter average year.

 ## A5.5.3.d Modeling Results (Selected Monetization Approach)

 Table A5-51 shows the estimated future recaptured water supply benefit values obtained based on the CWEST values for 2030 and 2070.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSI ON: | D |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 | AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP | APPLICAT | |
 | NOTES: | | | | PAGE: | 55 | OF | 60 |

 Table A5-51. Recaptured Water Supply Benefits: CWEST Modeling (2015\$; \$1,000s)

 | Alternative | Annual Benefits ${ }^{\text {a }}$ | | Annualized Benefit ${ }^{\text {b }}$ |
 | :---: | :---: | :---: | :---: |
 | | 2030 | 2070 | |
 | Average Conditions ${ }^{\text {c }}$ | | | |
 | Sites Reservoir | \$4,845 | \$16,733 | \$11,123 |

 Source: CWEST.
 ${ }^{\text {a }}$ Based on CWEST modeling adjusted by water-year type, expected delivery location, and conveyance energy costs.
 ${ }^{\mathrm{b}}$ Annualized benefits represent avoided costs relative to the Future No Project conditions over the planning horizon (2030 to 2122) and are adjusted for expected variations in surface area conditions.
 ${ }^{\text {c }}$ Averaged over the entire hydrologic sequence (1922 to 2003).
 The model results indicate an increase in recaptured water supply benefits from $\$ 4.8$ million in 2030 to $\$ 16.7$ million in 2070. The corresponding annualized benefit for the future 2030 to 2132 operating period is estimated to be $\$ 11.1$ million. This is equal to an estimated average unit benefit value for Recaptured Water Supply of $\$ 1,302$ per acre foot.

 Same as it is for M\&I, the major increase in recaptured water supply benefits is driven by increased water demand, reduced deliveries from other water supplies (including groundwater depletion and climate change reductions in future Sierra snowpack levels) and the limited availability of alternate water sources.

 ## A5.5.4 Total Water Supply

 The project's total water supply reliability benefits are shown in Table A5-52. The total water supply benefit is the project's combined agricultural water supply benefits (estimated using adjusted WSIP Unit Water Values) and its M\&I and recaptured water supply benefits (estimated by the CWEST model).

 Table A5-52. Total Water Supply Benefits: CWEST Results and WSIP Unit Water Values (2015\$; \$1,000s)

 | Alternative | Annual Benefits $^{\text {a }}$ | | ${ }^{*}$ Annualized Benefit ${ }^{\text {b }}$ |
 | :--- | :---: | :---: | :---: |
 | | 2030 | $\mathbf{2 0 7 0}$ | |
 | Average Conditions ${ }^{\text {c }}$ | $\$ 89,024$ | $\$ 251,521$ | $\$ 175,418$ |
 | Sites Reservoir | | | |

 ${ }^{\text {a }}$ Based on CWEST model results and WSIP Unit Water Values adjusted by water-year type, expected delivery locations, and conveyance energy costs.
 ${ }^{\text {b }}$ Annualized benefits assume interpolated annual physical benefits between 2030 and 2070 and then constant annual benefits after 2070. WSIP Unit Water Values interpolated between 2030 and 2045, after which 2045 unit values are used.
 ${ }^{\text {c }}$ Averaged over the entire hydrologic sequence (1922 to 2003).
 Based on the assumed water use split between agricultural, M\&l and recapture water use and their use location, the water supply analysis estimate that the project's future water supply benefits will increase from $\$ 89.0$ million to $\$ 251.5$ million in between 2030 and 2070. The corresponding annualized benefit over the entire future 2030 to 2132 operating period is estimated to be $\$ 175.4$ million. This is equivalent to a $\$ 760$ per acre foot average water supply unit benefit value.

 Based on the benefit value differentials, the water supply analysis also indicates the project's total water supply benefits could be increased under different water use allocation that increase south-of-the-Delta and/or M\&I water deliveries.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | VERSION: | D |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | | |
 | CAVEAT: | | QA/QC: | 2017 AUGUST | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | PAGE: | 56 | OF | 60 |

 The proposed Sites Reservoir project will include new hydropower capacity, generation and pump-back facilities. The seasonal water diversions for the reservoir require power while subsequent water releases would generate power. A pump-back component of the project operations was also modeled and pumpback operations would occur throughout the year as conditions allow.

 The hydropower facilities will enable the Sites Reservoir to generate power from its water releases to offset its pumping costs. The pump-back operations were designed to enhance the project's economic performance by capturing opportunities offered by the energy market (energy price differentials between on-peak and off-peak hours). The pump-back facilities also provide the support and products needed to integrate renewable energy (e.g., wind and solar) and thereby potential result in ancillary service ${ }^{1}$ and system-wide capacity ${ }^{2}$ benefits for the state's power system.

 ## A5.6.1.a Analytic Methods

 Future hydropower benefits were modeled by both DWR's Power and Risk Office (PARO) and by Bureau of Reclamation Contractors using the PLEXOS model. These non-public benefits are very difficult to forecast due to a rapidly changing market for valuing ancillary and system-wide capacity benefits due to the rapid and extensive new development of wind and solar resources. The revenue variability for hydropower generation over the last decade can be seen by looking at the fluctuations in the State Water Project past hydropower revenues (add source).

 ## DWR PARO Analysis:

 DWR's PARO analysis modeled Sites Reservoir's future incidental and optimized hydropower operation strategies. The incidental scenario that assumes that pumping and generation are scheduled according to expected demand for water deliveries. The optimization scheme maintains the alternatives' operations, constraints, and assumptions as envisioned by the water operations modeling team, but optimizes operations to maximize the Power Portfolio value of the assets.

 PARO used two power portfolio models to estimate the costs and revenues from hydropower facilities' operations: Electric Power Research Institute's (EPRI) Energy Portfolio Model (EPM), Version 5; and the EPRI's Fast Fit model, Version 2.5.

 ## Energy Portfolio Model (Selected Monetization Approach)

 PARO used the EPRI (EPM, Version 5, as a power portfolio model to project the Reservoir future power costs and revenues. EPM is a computer software model designed to help businesses manage value and risk in the power and energy markets.

 The EPM translates the facility operations and underlying commodity prices into a representative set of financial instruments and incorporated into the EPM to determine the probabilistic monetary value of the power portfolio under the study's operational scenario. The EPM provides a set of templates to facilitate describing and evaluating common types of power and fuel contracts (supply contracts,

 standard and customized forward, and option contracts). The model characterizes each commodity market by a forward price curve and a term volatility structure. The model also uses a correlation matrix to characterize the behavior of pairs of commodity markets.

 ## EPRI's Fast Fit Model

 EPRI's Fast Fit Model (Version 2.5) was used to characterize the needed power, fuel price volatilities, pricing structures, and the correlations between the different energy markets in which the hydropower facility would participate, or would compete with.

 ## PLEXOS (Selected Monetization Approach)

 Toolson and Zhang's PLEXOS ${ }^{\circledR}$ Integrated Energy Model (PLEXOS) analysis also evaluated the project’s expected net changes in hydropower capacity, generation, and ancillary services in Western Interconnection electrical power grid. PLEXOS is a power market simulation model that was used to estimate Sites Reservoir's future Ancillary Services (AS) and system-wide capacity performance and benefits.

 In addition to projecting Sites Reservoir's future hydropower operations and benefits, PLEXOS also forecast energy and ancillary service power market prices for the year 2022 when the 33 percent Renewable Portfolio Standard (RPS), mandated by California law, will have been implemented.

 ## A5.6.1.b Data and Assumptions

 The PLEXOS hydropower benefit study used findings from the California Public Utilities Commission (CPUC) 2012 Long Term Procurement Plan (LTPP) proceedings as the basis for the majority of the assumptions. This study reflects the inputs from multiple resources and has been reviewed by multiple stakeholders in the California power sector. WECC's Transmission Expansion Planning Policy Committee (TEPPC) oversees and maintains a public database for production cost and related analysis. In the LTPP study the latest TEPPC 2022 base case, along with the 2012 WECC Loads and Resources Subcommittee (LRS)'s report, were used for the majority of the assumptions.

 The assumptions for the California energy market were further updated with CPUC's inputs from 2010 LTPP assumptions, RPS, and scenario selection tool; with California Energy Commission (CEC)'s inputs on load forecast from Integrated Energy Policy Report (IEPR) and natural gas price forecast; with California ISO's inputs on generator data and operation data, etc.

 The PLEXOS analysis used the 2012 LTPP Base Case's 2022 base energy monthly price projections. Their energy prices varied from $\$ 32.85$ per MWh to $\$ 51.07$ per MWh (in 2015 dollars) with a mean value of $\$ 41.60$ per MWh.

 The WSIP hydropower benefit analysis assumed that:

 - The PLEXOS AS and Capacity values for 2025 can be applied as a conservative estimate of Sites Reservoir's future annual values
 - PLEXOS assumes that future power market prices will stabilize once the RPS is achieved.
 - Increases in future real energy prices (per WSIP energy escalation requirement) would be expected to increase ancillary service and system-wide value capacity benefit values.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIPAPPLICATION | |
 | NOTES: | | | | PAGE: | 58 | OF |

 ## A5.6.1.c Calculations

 ## Energy Use and Hydropower Generation

 Table A5-53 shows the PARO analysis estimates of Sites Reservoir's annualized average future pumping costs and hydropower revenues.

 Table A5-53. Sites Reservoir Pumping Use and Power Generation

 | | Total Pumping (MWh) | | | Generation (MWh) | |
 | :--- | :---: | :---: | :---: | :---: | :---: |
 | | On-Peak | Off-Peak | Pump-Back | On-Peak | Off-Peak |
 | Q1 Average | 21,285 | 113,368 | 21,441 | 17,814 | 0 |
 | Q2 Average | 5,296 | 15,650 | 56,563 | 71,244 | 351 |
 | Q3 Average | 3,147 | 3,275 | 27,391 | 77,496 | 526 |
 | Q4 Average | 8,957 | 22,982 | 31,323 | 48,111 | 0 |
 | Annual Average | 38,685 | 155,275 | 136,718 | 214,665 | 877 |

 ## Power Costs and Hydropower Revenues

 Table A5-54 shows the PARO analysis estimates of Sites Reservoir's annualized average future pumping costs and hydropower revenues. The PARO analysis determined that the estimated net energy cost for the Site Reservoir future operations would average $\$ 1.7$ million per year.

 Table A5-54. Sites Reservoir Power Costs and Generation Revenues (2015\$; \$1,000s)

 | Facility | Hydropower Operations | |
 | :---: | :---: | :---: |
 | | Incidental | Optimized |
 | Pumping Operations - Revenues (Costs) | | |
 | T-C Canal Pumping | (\$303) | (\$303) |
 | GCID Pumping | (\$486) | (\$486) |
 | Delevan Pipeline Intake Facilities | $(\$ 1,628)$ | $(\$ 1,628)$ |
 | TRR Pumping | (\$603) | (\$603) |
 | Sites Pumping | $(\$ 8,675)$ | $(\$ 7,975)$ |
 | Subtotal | $(\$ 11,695)$ | $(\$ 10,995)$ |
 | Generation - Revenues (Costs) | | |
 | Sites Generation | \$5,960 | \$6,434 |
 | TRR Generation | \$464 | \$464 |
 | Sacramento River Generation | \$2,017 | \$2,017 |
 | Subtotal | \$8,442 | \$8,916 |
 | Pump-Back Operations - Revenues (Costs) | | |
 | Pump-Back during Diversion Cycle | N/A | \$127 |
 | Pump-Back during Release Cycle | N/A | \$66 |
 | Pure Pump-Back Operations Cycle | N/A | \$156 |
 | Subtotal | | \$349 |
 | Total Net Revenues (Costs) | $(\$ 3,253)$ | $(\$ 1,730)$ |

 GCID = Glenn-Colusa Irrigation District
 N/A = not applicable
 T-C = Tehama-Colusa
 TRR = Terminal Regulating Reservoir

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | | |
 | CAVEAT: | | QA/QC: | 2O17 AUGUST | | | |
 | NOTES: | | | REF/FILE \#: | WSIP APPLICATION | | PAGE: |

 The reservoir's projected energy costs are recognized in its operating and maintenance cost, and were consequently not included in the hydropower system benefit values shown in Table A5-55.

 ## A5.6.1.d Modeling Results (Selected Monetization Approach)

 PLEXOS hydropower analysis confirmed DWR's direct energy benefit and cost results. The PLEXOS modeling also determined that the proposed hydropower facilities could be expected to result in substantial ancillary service and system-wide capacity benefits. Table A5-55 shows the estimated future combined ancillary service and system-wide capacity benefits from Sites Reservoir's hydropower operations.

 Table A5-55. Hydropower Benefits (2015\$; \$1,000s)

 | Alternative | Annual Benefits $^{\text {a }}$ | | ${ }^{*}$ Annualized Benefit $^{\text {b }}$ |
 | :--- | :---: | :---: | :---: |
 | | $\mathbf{2 0 3 0}$ | $\mathbf{2 0 7 0}$ | |
 | Average Conditions ${ }^{\text {c }}$ | $\$ 20,183$ | $\$ 20,183$ | $\$ 19,483$ |
 | Sites Reservoir | | | |

 ${ }^{\text {a }}$ Based on projected ancillary service and system-wide capacity benefits. Note that facility pumping costs and generation revenues are included in the facilities' annual O\&M costs.
 ${ }^{\mathrm{b}}$ Annualized benefit is interpolated annual physical benefits between 2030 and 2070 and held constant after 2070. Annual average is less than 2030 and 2070 values due to the initial short ramp-up period before full benefits are generated.
 ${ }^{\text {c }}$ Averaged over the entire hydrologic sequence (1922 to 2003).
 The PLEXOS analysis also estimated annual ancillary service benefits of approximately $\$ 2.4$ million and system-wide capacity benefits of $\$ 17.8$ million per year. As a result, combined ancillary services and system-wide capacity benefits of $\$ 20.2$ million are potentially attributable to the project's hydropower operations.

 | STATUS: | FINAL | PREPARER: | N CARLSON | PHASE: | 1 | VERSION: |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | | | | PAGE: | 60 | OF |

 ## Feasibility and Implementation Risk Tab

 ## Attachment 5: Summary of Environmental Impacts and Tribal Consultation

 Summarize the project's impacts on environmental or cultural resources and how the project will mitigate or minimize impacts to those resources, or identify where in the CEQA document this information can be found. If any environmental or cultural impacts will not be fully mitigated, explain. See regulations section 6003(a)(1)(T).

 If applicable, identify whether Tribal consultation has been initiated for the project. If it has, provide supporting documentation, or identify the location in the CEQA document. If consultation has not been initiated, state whether consultation is expected and when consultation is expected to be initiated. See regulations section 6003(a)(1)(U).

 WSIP Application Instructions, March 2017
 Response
 This attachment describes the environmental (see Section A. 5 on Page 2) and cultural impacts (see Tribal Consultation on Page 34) associated with Sites Project, as well as the initiated tribal consultations with tribes affected by the implementation of Sites Reservoir and its associated facilities.

 | STATUS: | FINAL | PREPARER: | L BLACK | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A5 | CHECKER: | J HERRIN | DATE: | 2017 A | | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP A | CATION | |
 | NOTES: | | | | PAGE: | 1 | OF | 33 |

 ## Table of Contents

 Attachment 5: Summary of Environmental Impacts and Tribal Consultation 1
 Summary of Environmental Impacts and Tribal Consultation 4
 Environmental Commitments Included as Part of the Project 4
 Identified Significant and Unavoidable Impacts 5
 Growth-inducing Impacts 6
 Cumulative Impacts 6
 References 33

 ## Tables

 Table 1. Summary of Environmental Effects by Resource 8
 Table 1. Native American Consultation 32

 | STATUS: | FINAL | PREPARER: | L BLACK | PHASE: | 1 | VERSION: |
 | :--- | :--- | :---: | ---: | :---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAVQ: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 2 | OF | 33 |

 ## Acronyms and Abbreviations

 | BMP | best management practices |
 | :--- | :--- |
 | CDFW | California Department of Fish and Wildlife |
 | CEQA | California Environmental Quality Act |
 | CNPS | California Native Plant Society |
 | CO | carbon monoxide |
 | CRHR | California Register of Historical Resources |
 | CVP | Central Valley Project |
 | EIR | Environmental Impact Report |
 | EIS | Environmental Impact Statement |
 | ESA | Environmental Site Assessment |
 | GCID | Glenn-Colusa Irrigation District |
 | GHG | greenhouse gas |
 | M\&I | municipal and industrial |
 | NAHC | California Native American Heritage Commission |
 | NEPA | National Environmental Policy Act |
 | NO | nitrogen oxide |
 | NRHP | National Register of Historic Places |
 | PM 10 | particulate matter less than 10 microns in diameter |
 | PM | particulate matter with an aerodynamic diameter of 2.5 microns or less |
 | PRC | Public Resources Code |
 | ROG | reactive organic gas |
 | RWQCB | Regional Water Quality Control Board |
 | SO | sulfur oxide |
 | SWP | State Water Project |
 | TRR | Terminal Regulating Reservoir |
 | USACE | U.S. Army Corps of Engineers |
 | USFWS | U.S. Fish and Wildlife Service |
 | WEAP | Worker Environmental Awareness Program |

 | STATUS: | FINAL | Preparer: | L BLACK | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A5 | CHECKER: | J HERRIN | DATE: | 2017 A | UST | |
 | CAVEAT: | | QAQC: | | REF/FILE \#: | WSIP A | ICATION | |
 | NOTES: | | | | PAGE: | 3 | of | 33 |

 ## Summary of Environmental Impacts and Tribal Consultation

 (Relevant Excerpts from the Executive Summary of the Draft Environmental Impact Report [EIR]/Environmental Impact Statement [EIS])

 ## Environmental Commitments Included as Part of the Project

 The Authority and Reclamation would incorporate a number of standardized environmental measures, plans, protocols, and best management practices as environmental commitments as part of the Project. The Authority and Reclamation would also coordinate planning, engineering, design and construction, operation, and maintenance phases of the Project with applicable resource agencies. The following environmental commitments would be incorporated for any Project-related construction as well as operations/maintenance (as appropriate) activities:

 - Worker Environmental Awareness Program (WEAP)
 - Environmental Site Assessment (ESA)
 - Construction Management Procedures
 - Fire Safety and Suppression
 - Construction Equipment, Truck, and Traffic Management
 - Stormwater Pollution Prevention Plan, Erosion Control, Management, and Dewatering
 - Compliance with the Requirements of Regional Water Quality Control Board (RWQCB) Order No. 5-00-175
 - Spill Prevention and Hazardous Materials Management
 - Mosquito and Vector Control
 - Groundwater/Dewatering Water Supply
 - Visual/Aesthetic Design, Construction, and Operation Practices
 - Emergency Action Plan

 ## Summary of Potential Environmental Effects and Mitigation Commitments

 The Project would affect environmental resources in all three study areas to varying degrees, with most impacts potentially occurring in the Primary Study Area. Anticipated impacts would vary from construction-related effects that would be less than significant or would be reduced to less-thansignificant levels through mitigation to those that would remain significant and unavoidable despite proposed mitigation measures. In addition, many effects of the Project would be beneficial, particularly related to improved water supply reliability in drier years and potential ecosystem benefits.

 Table 1 (provided at the end of this attachment) summarizes the impacts by environmental resource, the level of significance of the impact prior to mitigation, the proposed mitigation measure (as applicable), and the level of significance of the impact after mitigation. The proposed Project Mitigation Monitoring Plan is included as Appendix 1A of the Draft EIR/EIS.

 | STATUS: | FINAL | PREPARER: | L BLACK | PHASE: | 1 | VERSION: |
 | :--- | :--- | :---: | :--- | :---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAQC: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 4 | OF | 33 |

 ## Identified Significant and Unavoidable Impacts

 As shown in Table 1, the proposed Project would likely result in the following potentially significant and unavoidable direct and indirect impacts.

 ## Terrestrial Biological Resources (Golden Eagle)

 Construction and filling of the proposed Sites Reservoir Inundation Area, as well as construction of the proposed Recreation Areas, would result in the permanent loss of foraging and nesting habitat for the golden eagle. Although implementation of compensatory mitigation including land preservation and/or acquisition is proposed, these measures would not reduce this loss of habitat to less-than-significant levels.

 ## Cultural Resources (Historical and Tribal Resources, Human Remains)

 Construction of the proposed Project facilities would affect built historical and tribal resources, as well as human remains associated with a designated cemetery and adjacent areas. If these resources and/or areas are determined to be eligible for listing in the California Register of Historical Resources or National Register of Historic Places, mitigation measures would not reduce the impact to less-thansignificant levels.

 ## Land Use (Community of Sites, Existing Land Uses, Zoning, and Designations)

 Construction and filling of the proposed Sites Reservoir Inundation Area would result in the physical division of the community of Sites, resulting in a significant and unavoidable impact. Construction of the proposed Project facilities would result in conflicts or incompatibilities with existing and designated land uses and existing zoning for agricultural, as well as the conversion of Prime Farmland, Unique Farmland or Farmland of Statewide Importance to non-agricultural use, resulting in significant and unavoidable impacts. Implementation of mitigation measures would not reduce these impacts to less-thansignificant levels.

 ## Air Quality (PM_{10}, ROG, and NO_{x})

 Construction activities associated with all proposed Primary Study Area Project facilities, as well as activities (such as use of roads, recreation, electricity generation and consumption, and sediment dredging) associated with the long-term operation and maintenance of the Project, would result in significant and unavoidable emissions of particulate matter less than 10 microns in diameter (PM_{10}), reactive organic gas (ROG), and nitrogen oxide $\left(\mathrm{NO}_{\mathrm{x}}\right)$.

 ## Climate Change and Greenhouse Gas Emissions

 The greenhouse gas (GHG) emissions estimated for construction, operation, and maintenance of the Project when compared to applicable county standards would contribute to a cumulatively considerable effect that would be significant and unavoidable.

 ## Visual Resources (Terminal Regulating Reservoir)

 The proposed Terminal Regulating Reservoir (TRR) and associated TRR facilities would be visually dominant and in high contrast to the surrounding landscape, resulting in a significant and unavoidable impact on a scenic vista.

 | STATUS: | FINAL | PREPARER: | L BLACK | PHASE: | 1 | VERSION: |
 | :--- | :--- | :---: | :--- | :---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAQQ: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 5 | OF | 33 |

 ## Growth-inducing Impacts

 Implementation of the Project would improve water supply reliability for agricultural, urban, and environmental uses; provide more options for water management; increase recreational opportunities; and increase temporary and permanent employment opportunities. These Project-related changes would not be expected to result in growth-inducing effects as described below.

 ## Improved Water Supply Reliability for Urban, Agricultural, and Refuge Uses

 The expected increase in water deliveries in Dry and Critical years (to primarily State Water Project (SWP) municipal and industrial water users) associated with Project implementation would be anticipated to result in the decreased need for water transfers and/or decreased groundwater pumping in dryer years. Such dry year actions are generally identified in Urban Water Management Plans and would be expected to be required relatively less often with the implementation of the Project. Given long-term average water supplies (including normal and wetter years) are not projected to increase as part of Project implementation, increased dry year water supply reliability is not expected to be growth inducing.

 The expected increase in water deliveries to agricultural water users in the Primary and Extended Study Areas in Dry and Critical years is anticipated to decrease the need for water transfers and groundwater pumping and associated land idling. Improved dry year water supply reliability is not expected to be growth inducing, and would not promote conversion of agricultural lands to urban uses.

 Refuge water supplies would be similar to the Existing Conditions/No Project/No Action Condition, with the source potentially changing to some degree to be provided by the Project and to a lesser degree through water transfers. Regardless, such changes would not result in growth inducement.

 ## Increased Temporary and Permanent Employment Opportunities

 The expected magnitude of Project-related increased employment opportunities in the agricultural sector would be less than 1 percent, when compared to the regional economy of the Extended Study Area, and is therefore not anticipated to result in growth-inducing impacts. Although the expected increased water supply deliveries could result in increased employment and other economic benefits, the effects on housing and population are expected to be minor in the Extended Study Area, when compared to the total housing and population.

 Project construction and operation would be expected to result in a minor increase in jobs and population in the Primary Study Area, which could be accommodated within available housing units. An adequate housing supply exists to accommodate the change in population; thus, this expected increase associated with Project implementation is not anticipated to be growth inducing.

 ## Improved Recreational Opportunities

 Expected Project-related increased recreation expenditures would represent less than 0.2 percent of total industrial expenditures in the Primary Study Area and are, therefore, not anticipated to increase growth within the entire Primary Study Area.

 ## Cumulative Impacts

 The California Code of Regulations' Guidelines for the Implementation of the California Environmental Quality Act (CEQA Guidelines) and federal National Environmental Policy Act (NEPA) regulations require that the cumulative impacts of a proposed project be addressed in an Environmental Impact

 | STATUS: | FINAL | PREPARER: | L BLACK | PHASE: | 1 | VERSION: |
 | :--- | :--- | ---: | :--- | ---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A5 | CHECKER: | JHERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 6 | | |

 Report/Environmental Impact Statement (EIR/EIS). Cumulative impacts are impacts on the environment that result from the incremental impacts of a proposed action when added to other past, present, and reasonably foreseeable future actions.

 The cumulative impact assessment for the Project considered projects and programs identified under Existing Conditions (which includes the current effects of past projects) and reasonably foreseeable and probable future projects. The criterion for considering whether a project was reasonably foreseeable and probable in this EIR/EIS was whether the project had been defined in adequate detail, either through the completion of publicly available preliminary evaluations, feasibility studies, or draft environmental and engineering documents, to estimate potential impacts.

 Projects considered in the cumulative impacts analysis included 7 multi-region projects and actions; 7 water supply, water quality, and hydropower projects and actions in the vicinity of the proposed Project facilities and/or potentially affected by Central Valley Project (CVP) and SWP operations; and 5 ecosystem improvement projects and actions in the vicinity of the proposed Project facilities and/or potentially affected by CVP and SWP operations (refer to Chapter 35 Cumulative Impacts in the Draft EIR/EIS for the names and descriptions of each of project considered).

 Implementation of the Project would not result in the cumulatively considerable incremental contribution to an overall significant cumulative adverse effects.

 | STATUS: | FINAL | PREPARER: | L BLACK | PHASE: | 1 | VERSION: |
 | :--- | :--- | :---: | :--- | :---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A5 | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QAQC: | REF/FILE \#: | WSIP APPLICATION | | |
 | NOTES: | | | PAGE: | 7 | OF | 33 |

 Table 1. Summary of Environmental Effects by Resource

 | Impact | Anticipated Impact in Comparison to Existing Conditions/No Action/No Project Condition Prior to Mitigation | | | | | | Recommended Mitigation Measure | Level of Significance after Mitigation |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | A | | B | c | C_{1} | D | | |
 | 6. Surface Water Resources | | | | | | | | |
 | Impact Water Supply-1: A Substantial Decrease in Average Annual CVP or SWP Deliveries Compared to Deliveries Associated with the Existing Conditions/No Project/No Action Condition | | | | | | | | |
 | Extended, Secondary, and Primary Study Areas | | | | | | | | |
 | CVP Contract Deliveries | | | | | | | | |
 | Annual Long-term Averages | N | | N | NI | N | N | N/A | N/A |
 | Annual Dry- and Critical-year Averages | N | | N | N | Beneficial | N | N/A | N/A |
 | SWP Contract Deliveries | | | | | | | | |
 | Annual Long-term Averages | NI | | N | NI | NI | NI | N/A | N/A |
 | Annual Dry- and Critical-years Averages | Beneficial | | Beneficial | Beneficial | Beneficial | Beneficial | N/A | N/A |
 | CVP/SWP Operational Flexibility | Beneficial | | Beneficial | Beneficial | Beneficial | Beneficial | N/A | N/A |
 | 7. Surface Water Quality | | | | | | | | |
 | | | | | | | | | |
 | Extended Study Area | LS | | LS | LS | LS | LS | N/A | N/A |
 | Secondary Study Area | | | | | | | | |
 | Sacramento River from Shasta Lake and Keswick Reservoir to Freeport | | | | | | | | |
 | Water Temperatures | LS | | LS | LS | LS | LS | N/A | N/A |
 | Mercury, Nutrients, Salinity, and Dissolved Oxygen | N | | NI | N | NI | N | N/A | N/A |
 | Yolo Bypass | LS | | LS | LS | LS | LS | N/A | N/A |
 | Sacramento-San Joaquin Delta, Suisun Bay, and Suisun Marsh | | | | | | | | |
 | Salinity and Dissolved Oxygen Concentrations | LS | | LS | LS | LS | LS | N/A | N/A |
 | Mercury and Selenium | N | | N | N | NI | NI | N/A | N/A |
 | Primary Study Area | | | | | | | | |
 | Construction within Natural Surface Waters (Golden Gate and Sites Dams and Delevan Intake/Discharge Facility) | LS | | LS | LS | LS | LS | N/A | N/A |
 | Construction within Man-made Surface Waters (Funks/Holthouse Reservoir and GCID Canal) |) LS | | LS | LS | LS | LS | N/A | N/A |
 | Construction on Currently Dry Land and Other General Construction Activities | LS | | LS | LS | LS | LS | N/A | N/A |
 | Operations of Facilities with Open Water Surfaces (Sites, Holthouse, and Terminal Regulating Reservoirs and the GCID and Tehama-Colusa) | g LS | | LS | LS | LS | LS | N/A | N/A |
 | Operations of Delevan Intake/Discharge Facility | LS | | LS | LS | LS | LS | N/A | N/A |
 | Operations of Facilities on Dry Land | LS | | LS | LS | LS | LS | N/A | N/A |
 | 8. Fluvial Geomorphology and Riparian Habitat | | | | | | | | |
 | Impact Geom-1: Substantial Alteration of Natural River Geomorphic Processes | | | | | | | | |
 | Extended Study Area | NI | | NI | NI | NI | NI | N/A | N/A |
 | Secondary Study Area | LS | | LS | LS | LS | LS | N/A | N/A |
 | Primary Study Area | LS | | LS | LS | LS | LS | N/A | N/A |
 | Impact Geom-2: Substantial Alteration of Natural River Meandering, Bank Erosion, and Deposition, and Substantial Alteration of Riparian Vegetation and Habitat Complexity | | | | | | | | |
 | Extended Study Area | NI | | NI | NI | NI | NI | N/A | N/A |
 | Secondary Study Area | LS | | LS | LS | LS | LS | N/A | N/A |
 | Primary Study Area | LS | | LS | LS | LS | LS | N/A | N/A |
 | STATUS: FINAL PREPARER: LBLACK | PHASE: 1 VERSION:
 DATE: 2017 AUGUST
 REFFILE \#: WSIP APPLICATION | | A | | | | | |
 | PURPOSE: CaVEAT: | | | | | | | | |
 | NOTES: | PagE: 8 | of | 33 | | | | | |

 | Impact | Anticipated Impact in Comparison to Existing Conditions/No Action/No Project Condition Prior to Mitigation | | | | | Recommended Mitigation Measure | Level of Significance after Mitigation |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | A | B | c | C_{1} | D | | |
 | Impact Geom-3: Substantial Alteration of the Amount of Large Woody Debris, Boulders, Shaded Riverine Aquatic Habitat, or Spawning Gravel in Rivers, with Effects on Fish Habitat | | | | | | | |
 | Extended Study Area | NI | NI | NI | NI | NI | N/A | N/A |
 | Secondary Study Area | LS | LS | LS | LS | LS | N/A | N/A |
 | Primary Study Area | LS | LS | LS | LS | LS | N/A | N/A |
 | 9. Flood Control | | | | | | | |
 | Impact Flood-1: Substantially Alter the Existing Drainage Pattern of the Site or Project Area, Including through the Alteration of the Course of a Stream or River, or Substantially Increase the Rate or Amount of Surface Runoff in a Manner which Would Result in Flooding On- or Off-site | | | | | | | |
 | Extended Study Area | N | NI | NI | NI | NI | N/A | N/A |
 | Secondary Study Area | N | NI | NI | NI | NI | N/A | N/A |
 | Primary Study Area | LS | LS | Ls | Ls | Ls | N/A | N/A |
 | Impact Flood-2: Place within a 100-year Flood Hazard Area Structures which Could Impede or Redirect Flood Flows | | | | | | | |
 | Extended Study Area | N | NI | N | NI | NI | N/A | N/A |
 | Secondary Study Area | NI | NI | NI | N | NI | N/A | N/A |
 | Primary Study Area | | | | | | | |
 | Sites Reservoir Inundation Area, Sites Reservoir Dams, Recreation Areas | NI | NI | N | NI | NI | N/A | N/A |
 | Sites Pumping/Generating Plant, Tunnel, Sites Reservoir Inlet/Outlet Structure, Sites Electrical Switchyard, Field Office Maintenance Yard, Road Relocations and South Bridge, GCID Canal Facilities Modifications, Holthouse Reservoir Complex, Holthouse Reservoir Electrical Switchyard, TRR, TRR Pumping/Generating Plant, TRR Electrical Switchyard, GCID Canal Connection to the TRR, TRR Pipeline, TRR Pipeline Road, Sites/Delevan Overhead Power Line, Delevan Pipeline Electrical Switchyard, Delevan Pipeline, Delevan Pipeline Intake/Discharge Facility | LS | LS | LS | LS | LS | N/A | N/A |
 | Project Buffer | NI | NI | N | NI | NI | N/A | N/A |
 | Impact Flood-3: Expose People or Structures to a Significant Risk of Loss, Injury, or Death from Flooding, Including Flooding as a Result of the Failure of a Levee or Dam | | | | | | | |
 | Extended Study Area | NI | N | NI | NI | NI | N/A | N/A |
 | Secondary Study Area | LS | LS | LS | Ls | LS | N/A | N/A |
 | Primary Study Area | | | | | | | |
 | Sites Reservoir Inundation Area, Sites Reservoir Dams, Delevan Pipeline Electrical Switchyard, Holthouse Reservoir Complex, Holthouse Reservoir Electrical Switchyard, TRR, TRR Pumping/Generating Plant, TRR Electrical Switchyard, GCID Canal Connection to the TRR, TRR Pipeline, TRR Pipeline Road, Delevan Pipeline Discharge/Intake Facilities | Ls | LS | LS | LS | Ls | N/A | N/A |
 | Sites Pumping/Generating Plant, Tunnel, Sites Reservoir Inlet/Outlet Structure, Sites Electrical Switchyard, Field Office Maintenance Yard, Recreation Areas, Road Relocations and South Bridge, GCID Canal Facilities Modifications, Sites/Delevan Overhead Power Line, Delevan Pipeline, Project Buffer | N | N | NI | NI | NI | N/A | N/A |
 | 10. Groundwater Resources | | | | | | | |
 | Impact GW Res-1: Substantial Depletion of Groundwater Supplies or Substantial Interference with Groundwater Recharge Resulting in a Net Deficitit in Aquifer Volume or a Lowering of the Local Groundwater Table Level, Causing Effects on Existing Land Uses or Planned Uses | | | | | | | |
 | Extended Study Area | Beneficial | Beneficial | Beneficial | Beneficial | Beneficial | N/A | N/A |
 | Secondary Study Area | | | | | | | |
 | Reservoir Storage/Flow Regime Changes/Surface Water Use | Beneficial | Beneficial | Beneficial | Beneficial | Beneficial | N/A | N/A |
 | Pump Installation at the Red Bluff Pumping Plant | NI | NI | NI | NI | NI | N/A | N/A |
 | Primary Study Area | | | | | | | |
 | Recreation Areas, Project Buffer, GCID Canal Facilities Modifications | N | N | NI | NI | NI | N/A | N/A |
 | Sites Reservoir Inundation Area, Sites Reservoir Dams, Road Relocations and South Bridge, Holthouse Reservoir Complex, TRR Electrical Switchyard, GCID Canal Connection to the TRR, | LS | LS | LS | LS | LS | N/A | N/A |

 | Status: | FINAL | PREPARER: L BLACK | PHASE: | 1 | VERSION: |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: caveat: | FEASIBLILTY AND IMPLEMENTATION RISK A5 | CHECKER: J HERRIN QAOC: | | $2017 \mathrm{Al}$ | UST LCATION |

 PURPoSE: FEASIBILITY AND IMPLEMENTATION RISK A5 CHECKER: J HERRIN

 | Impact | Anticipated Impact in Comparison to Existing Conditions/No Action/No Project Condition Prior to Mitigation | | | | | Recommended Mitigation Measure | Level of Significance after Mitigation |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | A | B | c | C_{1} | D | | |
 | Chamise; Other Land Cover | LS | LS | LS | LS | LS | N/A | N/A |
 | Road Relocations and South Bridge | | | | | | | |
 | Annual Grassland; Blue Oak Woodland; Riparian Vegetation | s | s | S | s | s | Bot-1a | Ls |
 | Chamise; Mixed Chaparral; Other Land Cover | LS | LS | LS | LS | LS | N/A | N/A |
 | Sites Pumping/Generating Plant, Sites Electrical Switchyard, Sites Reservoir Inlet/Outlet Structure, and Field Office Maintenance Yard | | | | | | | |
 | Annual Grassland; Riparian Vegetation; Other Land Cover | LS | LS | LS | LS | LS | N/A | N/A |
 | Holthouse Reservoir Complex and Holthouse Reservoir Electrical Switchyard | | | | | | | |
 | Annual Grassland, Alkaline Wetland, Riparian Vegetation | s | s | s | s | s | Bot-1a; Bot-1b: Conduct Groundwater Hydrological Studies | Ls |
 | Other Land Cover | LS | LS | LS | LS | LS | N/A | N/A |
 | GCID Canal Facilities Modifications | LS | LS | LS | LS | LS | N/A | N/A |
 | TRR, TRR Pimping/Generating Plant, TRR Electrical Switchyard, GCID Canal Connection to the TRR | N | N | N | N | NI | N/A | N/A |
 | Delevan Pipeline, TRR Pipeline, TRR Pipeline Road, and Delevan Pipeline Electrical Switchyard | | | | | | | |
 | Alkaline Wetland; Other Land Cover | LS | LS | LS | LS | LS | N/A | N/A |
 | Freshwater Emergent Marsh | s | s | s | s | s | Bot-1a | LS |
 | Sites/Delevan Transmission Line | | | | | | | |
 | Annual Grassland | LS | LS | LS | LS | LS | N/A | N/A |
 | Riparian Veg | s | s | s | s | s | Bot-1a | LS |
 | Delevan Pipeline Intake/Discharge Facilities | | | | | | | |
 | Riparian Scrub | LS | LS | LS | LS | LS | N/A | N/A |
 | Fremont Cottonwood Forest | s | s | s | S | s | Bot-1a | LS |
 | Project Buffer | | | | | | | |
 | Annual Grassland, Blue Oak Woodland, Canal, Chamise, Ponds and Valley-Foothill Riparian | s | s | s | s | s | Bot-1a | LS |
 | Agriculture; Urban/Disturbed Land | N | NI | NI | N | N | N/A | N/A |
 | Impact Bot-2: A Substantial Adverse Effect, Either Directly or Through Habitat Modifications, on any Species Identified as a Candidate, Sensitive, or Special-status Species in Local or Regional Plans, Policies, or Regulations, or by CDFW or USFWS | | | | | | | |
 | Extended Study Area | NI | NI | NI | NI | NI | N/A | N/A |
 | Secondary Study Area | LS | LS | LS | LS | LS | N/A | N/A |
 | Primary Study Area | | | | | | | |
 | Sites Reservoir Inundation Area, Sites Reservoir Dams, Recreation Areas, Road Relocations and South Bridge, Sites Pumping/Generating Plant; Sites Electrical Switchyard; Sites Reservoir Inlet/ Outlet Structure; Field Office Maintenance Yard, Delevan Pipeline, TRR Pipeline, TRR Pipeline Road, Delevan Pipeline Electrical Switchyard, Sites/Delevan Overhead Power Line, Project Buffer | s | s | s | s | s | Bot 2: Conduct Preconstruction Surveys for Special-status Plants; if Found, Compensate According to USFWS, CDFW, and CNPS Guidelines | LS |
 | Holthouse Reservoir Complex, Holthouse Reservoir Electrical Switchyard | s | s | s | s | s | Bot-1b; Bot 2 | LS |
 | GCID Canal Facilities Modifications | N | N | NI | N | NI | N/A | N/A |
 | TRR, TRR Pumping/Generating Plant, TRR Electrical Switchyard, GCID Canal Connection to TRR | LS | LS | LS | LS | LS | N/A | |
 | Delevan Pipeline Intake/Discharge Facilities | LS | LS | LS | LS | LS | N/A | N/A |

 | Status: | FINAL | PREPARER: LBLACK | PHASE: | 1 | VErsion: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: caveat. | FEASIBILITY AND IMPLEMENTATION RISK A5 | $\underset{\substack{\text { checkre } \\ \text { OAOC: }}}{ }$ J HERRIN | DATE: 2017 AUGUST REFIFLE\#: WSIP APPLICATION | | | |
 | notes: | | | PagE: | 12 | of | 33 |

 | Impact | Anticipated Impact in Comparison to Existing Conditions/No Action/No Project Condition Prior to Mitigation | | | | | Recommended Mitigation Measure | Level of Significance after Mitigation |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | A | B | c | C_{1} | D | | |
 | Impact Bot-3: An Increase in Potential for the Invasion or Spread of Noxious Weed Species | | | | | | | |
 | Extended Study Area | N | NI | N | NI | N | N/A | N/A |
 | Secondary Study Area | | | | | | | |
 | Trinity Lake, Shasta Lake, Lake Oroville, Folsom Lake, Trinity River, Klamath downstream of Trinity River, Spring Creek, Lewiston Lake; Whiskeytown Lake, Clear Creek, Keswick Reservoir; Lake Natoma; Thermalito Complex, San Pablo Bay, San Francisco Bay | NI | NI | NI | NI | NI | N/A | N/A |
 | Sacramento River, Sacramento-San Joaquin Delta, Suisun Bay, Feather River; American River, Sutter Bypass; Yolo Bypass | LS | LS | LS | Ls | Ls | N/A | N/A |
 | Primary Study Area | | | | | | | |
 | Sites Reservoir Inundation Area, Sites Reservoir Dams, Recreation Areas, Road Relocations and South Bridge, Sites Pumping/Generating Plant; Sites Electrical Switchyard; Sites Reservoir Inlet/ Outlet Structure; Field Office Maintenance Yard, Holthouse Reservoir Complex and Holthouse Reservoir Electrical Switchyard, Delevan Pipeline Intake/Discharge Facilities, TRR Pipeline, TRR Pipeline Road, Project Buffer | S | s | S | s | s | Bot-3a: Implement Preventive Actions by Following Weed Control BMPs; Minimize Exposed Ground; Reduce Weed Seed by Removal of On-site and Off-site weeds | LS |
 | GCID Canal Facilities Modifications, TRR, TRR Pumping/Generating Plant, TRR Electrical Switchyard, GCID Canal Connection to the TRR | NI | NI | NI | NI | NI | N/A | N/A |
 | Delevan Pipeline, Sites/Delevan Overhead Power Line | s | s | s | s | s | Bot-3b: Implement Avoidance Measures in Areas Adjacent to the Delevan National Wildlife | Ls |
 | Impact Bot-4: Indirect Impacts to Native Plants from Human Disturbance | | | | | | | |
 | Extended Study Area | N | NI | N | NI | NI | N/A | N/A |
 | Secondary Study Area | N | NI | N | NI | NI | N/A | N/A |
 | Primary Study Area | | | | | | | |
 | Sites Reservoir Inundation Area, Sites Reservoir Dams, Recreation Areas, Road Relocations and South Bridge, Holthouse Reservoir Complex and Holthouse Reservoir Electrical Switchyard; Delevan Pipeline, TRR Pipeline, TRR Pipeline Road, and Delevan Pipeline Electrical Switchyard, Project Buffer | s | s | s | s | s | Bot-2 | Ls |
 | Sites Pumping/Generating Plant; Sites Electrical Switchyard; Sites Reservoir Inlet/Outlet Structure; Field Office Maintenance Yard, Sites/Delevan Overhead Transmission Line, Delevan Pipeline Intake/Discharge Facilities | LS | LS | LS | LS | LS | N/A | N/A |
 | GCID Canal Facilities Modifications, TRR, TRR Pimping/Generating Plant, TRR Electrical Switchyard, GCID Canal Connection to the TRR | NI | NI | NI | NI | NI | N/A | N/A |
 | Preservation Policy or Ordinance | | | | | | | |
 | Extended Study Area, Secondary Study Area, and Primary Study Area | NI | NI | NI | NI | NI | N/A | N/A |
 | 14. Terrestrial Biological Resources | | | | | | | |
 | Impact Wild-1: A Substantial Adverse Effect, Including Alteration of Habitat Suitability, on any Wildlife Habitat, Especially Riparian Habitat or Other Sensitive Natural Communities Identified in Local or Regional Plans, Policies, Regulations, or by CDFW or USFWS. | | | | | | | |
 | Extended Study Area | | | | | | | |
 | Agricultural, Municipal, and Industrial Water Use | LS | LS | LS | LS | Ls | N/A | N/A |
 | Wildlife Refuge Water Use | N | NI | NI | NI | NI | N/A | N/A |
 | San Luis Reservoir | LS | LS | LS | LS | LS | N/A | N/A |
 | Secondary Study Area | | | | | | | |
 | Trinity Lake, Shasta Lake, Lake Oroville, Folsom Lake, Lewiston Lake, Whiskeytown Lake, Keswick Reservoir, Clear Creek, Lake Natoma, and the Thermalito Complex; Spring Creek, San Pablo Bay, San Francisco Bay | NI | NI | NI | NI | NI | N/A | N/A |

 | Status: | FINAL | PREPARER: | L black | PHASE: | 1 | version: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | FEASIBLILY AND IMPLEMENTATION RISK A5 | CHECKER: J Herrin | | DATE: 2017 AUGUST
 REFFIFLE \#: WSIP APPLICATION | | | |
 | Caveat: | | | | | | | |
 | notes: | | | | PAGE: | 13 | ${ }^{\circ} \mathrm{F}$ | 33 |

 | Impact | Anticipated Impact in Comparison to Existing Conditions/No Action/No Project Condition Prior to Mitigation | | | | | Recommended Mitigation Measure | Level of Significance after Mitigation |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | A | B | c | C_{1} | D | | |
 | Deciduous Orchard; Urban/Disturbed | LS | LS | LS | LS | LS | N/A | N/A |
 | Sites/Delevan Overhead Power Line | | | | | | | |
 | Annual Grassland; Barren; Dryland Grain and Seed Crops; Valley Foothill Riparian | s | s | s | s | s | Wild-1a; Wild-1b | LS |
 | Canal | NI | NI | NI | N | NI | N/A | N/A |
 | Delevan Pipeline Intake Facilities | | | | | | | |
 | Canal; Urban/Disturbed | LS | N/A | LS | LS | LS | N/A | N/A |
 | Deciduous Orchard; Riverine: Valley Foothill Riparian | s | N/A | s | | s | Wild-1a | LS |
 | Project Buffer | | | | | | | |
 | Annual Grassland, Barren, Blue Oak Woodland, Canal, Chamise-Redshank Chaparral, Lacustrine, Valley Foothill Riparian; Deciduous Orchard, Dryland Grain and Seed Crops, Irrigated Row and Field Crops, Pasture, Rice; | s | s | s | s | s | Wild-1a; Wild-1b | LS |
 | Urban/Disturbed | LS | LS | LS | LS | LS | N/A | N/A |
 | Delevan Pipeline Discharge Facility | | | | | | | |
 | Canal; Urban/Disturbed | LS | LS | LS | LS | LS | N/A | N/A |
 | Deciduous Orchard; Riverine: Valley Foothill Riparian | S | s | s | S | S | Wild-1a | Ls |
 | Impact Wiild-2: A Substantial Adverse Effect, Including Mortality, Either Directly or through Habitat Modifications, on any Species Identified as a Candidate, Sensitive, or Special-status Species in Local or Regional Plans, Policies, or Regulations, or by CDFW or USFWS | | | | | | | |
 | Extended Study Area | | | | | | | |
 | Agricultural, Municipal, and Industrial Water Use, San Luis Reservoir | LS | LS | LS | LS | LS | N/A | N/A |
 | Wildlife Refuge Water Use | NI | NI | NI | N | NI | N/A | N/A |
 | Secondary Study Area | | | | | | | |
 | Trinity Lake, Shasta Lake, Lake Oroville, Folsom Lake, Lewiston Lake, Whiskeytown Lake, Keswick Reservoir, Spring Creek, Clear Creek, Lake Natoma, Thermalito Complex, San Pablo Bay, San Francisco Bay | NI | NI | NI | N | NI | N/A | N/A |
 | Trinity River; Klamath River downstream of the Trinity River; Sacramento River; Sutter Bypass; Yolo Bypass; Feather River; American River; Sacramento-San Joaquin Delta, and Suisun Bay | LS | LS | LS | LS | LS | N/A | N/A |
 | Sacramento River | | | | | | | |
 | Pump Installation at the Red Bluff Pumping Plant | LS | LS | LS | LS | LS | N/A | N/A |
 | Operation | LS | LS | LS | LS | LS | N/A | N/A |
 | Primary Study Area | | | | | | | |
 | Sites Reservoir Inundation Area, Sites Reservoir Dams | | | | | | | |
 | Migratory Birds and Roosting Bats | 5 | s | s | s | s | Wild-2a: Prepare and Implement a Bird and Bat Conservation Strategy | LS |
 | Bald Eagle | s | s | s | s | s | Wild-2b: Obtain Permit for Bald Eagle Nest Tree Removal, Remove Nest Tree Outside of Breeding Season, and Create Habitat | LS |
 | Golden Eagle | s | s | s | s | s | Wild-2e: Implement Avoidance and Minimization Measures at Historical or Active Golden Eagle Nest Sites. Conduct Satellite Telemetry Studies Pre and Post Construction to Determine Territory Size. Prepare a Golden Eagle Protection and Monitoring Plan. Mitigate for Loss of Annual Grassland Foraging | su |

 | Status: | FINAL | PREPARER: L BLACK | PHASE: | 1 | VErsion: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | pURPOSE: CAVEAT: | FEASIBILITY AND IMPLEMENTATION RISK A5 | CHECKER: J HERRIN QAOC: | $\begin{aligned} & \text { DATE: } \\ & \text { REF/FILE \#: } \end{aligned}$ | 2017 AU WSIP A | UST ICATION | |
 | notes: | | | PAGE: | 16 | ${ }_{0}$ | |

 | Impact | Anticipated Impact in Comparison to Existing Conditions/No Action/No Project Condition Prior to Mitigation | | | | | Recommended Mitigation Measure | Level of Significance after Mitigation |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | A | B | c | C_{1} | D | | |
 | Western Pond Turtle | S | S | s | S | S | Wild-2i | LS |
 | Western Yellow-Billed Cuckoo | NI | NI | N | NI | NI | N/A | N/A |
 | Sites/Delevan Overhead Power Line | Ls | Ls | LS | Ls | LS | NA | N/A |
 | Delevan Pipeline Intake Facilities | | | | | | | |
 | Bank Swallow | NI | N/A | NI | NI | NI | N/A | N/A |
 | Ringtail | S | N/A | s | S | S | Wild-2f: Implement Protective Actions to Minimize Impacts to the Ringtail, and Restore Connectivity of Riparian Corridor
 Wild-3c: Restore Riparian Habitat Connectivity | Ls |
 | Valley Elderberry Longhorn Beetle | s | N/A | s | s | s | Wild-2g | LS |
 | Western Yellow-billed Cuckoo | s | N/A | S | S | S | Wild 2j: Conduct Preconstruction Surveys for the Western Yellowbilled Cuckoo and Schedule Construction Activities to Avoid Impacts to Nest Sites | LS |
 | Project Buffer | s | s | s | s | s | Wild-1a; Wild-1b; Wild-2a | LS |
 | Delevan Pipeline Discharge Facility | | | | | | | |
 | Bank Swallow | NI | NI | NI | NI | NI | N/A | N/A |
 | Ringtail | s | s | s | s | s | Wild-2e; Wild-3c | LS |
 | Valley Elderberry Longhorn Beetle | s | s | S | S | s | Wild-2f | LS |
 | Western Yellow-billed Cuckoo | S | S | S | S | S | Wild-2i | LS |
 | Impact Wild-3: Substantial Interference with the Movement of any Native Resident or Migratory Wildlife Species, or with Established Native Resident or Migratory Wildlife Corridors, or Impede the Use of Native Wildlife Nursery Sites | | | | | | | |
 | Extended Study Area | | | | | | | |
 | Agricultural, Municipal, and Industrial Water Use, San Luis Reservoir | LS | LS | LS | LS | LS | N/A | N/A |
 | Wildlife Refuge Water Use | NI | NI | NI | NI | N | N/A | N/A |
 | Secondary Study Area | | | | | | | |
 | Trinity Lake, Shasta Lake, Lake Oroville, Folsom Lake, Lewiston Lake, Whiskeytown Lake, Keswick Reservoir, Spring Creek, Clear Creek, Lake Natoma, Thermalito Complex, San Pablo Bay, San Francisco Bay | NI | NI | NI | NI | NI | N/A | N/A |
 | Trinity River; Klamath River downstream of the Trinity River; Sacramento River; Sutter Bypass; Yolo Bypass; Feather River; American River; Sacramento-San Joaquin Delta, and Suisun Bay | LS | LS | LS | LS | LS | N/A | N/A |
 | Sacramento River | | | | | | | |
 | Pump Installation at the Red Bluff Pumping Plant | LS | LS | LS | LS | LS | N/A | N/A |
 | Operation | LS | LS | LS | LS | LS | N/A | N/A |
 | Primary Study Area | | | | | | | |
 | Sites Reservoir Inundation Area, Sites Reservoir Dams | LS | LS | LS | LS | LS | N/A | N/A |
 | Recreation Areas | LS | LS | LS | LS | LS | N/A | N/A |
 | Road Relocations and South Bridge | LS | LS | LS | LS | LS | N/A | N/A |
 | Sites Pumping/Generating Plant, Sites Electrical Switchyard, Sites Reservoir Inlet/Outlet Structure, Field Office Maintenance Yard | LS | LS | LS | LS | LS | N/A | N/A |
 | Tunnel from Sites Pumping/Generating Plant to Sites Reservoir Inlet/Outlet Structure | NI | NI | NI | | NI | N/A | N/A |

 | Status: | FINAL | PREPARER: LBLACK | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | FEASIBLILTY AND IMPLEMENTATION RISK A5 | | DATE: 2017 AUGUST
 REFFFLLE\#: WSIP APPLICATION | | | |
 | Caveat: | | | | | | |
 | notes: | | | PAGE: | 17 | of | 33 |

 | Impact | Anticipated Impact in Comparison to Existing Conditions/No Action/No Project Condition Prior to Mitigation | | | | | Recommended Mitigation Measure | Level of Significance after Mitigation |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | A | B | c | C_{1} | D | | |
 | | | | | | | Occur | |
 | Stock Ponds | s | s | s | s | s | Wet-1c: Restore Ponds to Original Condition, or Implement Other Compensatory Mitigation Measures pursuant to USACE Determination within the Same Hydrologic Unit in which the Ponds Occur | N/A |
 | Recreation Areas | | | | | | | |
 | Streams | s | s | s | s | s | Wet-1a | LS |
 | Ponds | LS | LS | LS | LS | LS | N/A | N/A |
 | Road Relocations and South Bridge | | | | | | | |
 | Streams | S | S | s | S | S | Wet-1a | LS |
 | Ponds | LS | LS | LS | LS | LS | N/A | N/A |
 | Sites Pumping/Generating Plant, Sites Electrical Switchyard, Tunnel, Sites Reservoir Inlet/Outlet Structure, Field Maintenance Office | | | | | | | |
 | Streams | S | s | s | s | S | Wet-1a | LS |
 | Ponds | LS | N | LS | Ls | LS | N/A | N/A |
 | Holthouse Reservoir Complex | | | | | | | |
 | Streams | s | s | s | s | s | Wet-1a | LS |
 | Funks Reservoir | s | s | s | s | s | Wet-1c | LS |
 | Holthouse Reservoir Electrical Switchyard | s | N | s | S | s | N/A | N/A |
 | TRR, TRR Pumping/Generating Plant, TRR Electrical Switchyard, GCID Canal Connection to the TRR | | | | | | | |
 | Ditches and Canals | LS | NI | LS | LS | LS | N/A | N/A |
 | Sites/Delevan Overhead Power Line | | | | | | | |
 | Streams | LS | LS | LS | LS | LS | N/A | N/A |
 | Ponds | LS | LS | LS | LS | LS | N/A | N/A |
 | TRR Pipeline, TRR Pipeline Road, Delevan Pipeline Electrical Switchyard, Delevan Pipeline | | | | | | | |
 | Streams | LS | LS | LS | LS | LS | N/A | N/A |
 | Ponds | s | S | S | S | s | Wet-1c | LS |
 | Ditches and Canals | s | s | s | s | s | Wet-1b: Reroute Drainage Ditches and Canals to Ensure Continued Hydrological Connection, or Implement Other Compensatory Mitigation Measures per USACE Determination | LS |
 | Delevan Pipeline Intake Facilities | | | | | | | |
 | Streams | s | N/A | s | s | s | Wet-1a | LS |
 | Project Buffer | LS | LS | LS | LS | LS | N/A | LS |
 | Delevan Pipeline Discharge Facilities | | | | | | | |
 | Streams | N/A | s | N/A | N/A | N/A | Wet-1a | LS |
 | | | | | | | | |
 | Extended Study Area | | | | | | | |
 | Wildlife Refuge Water Use, San Luis Reservoir | NI | N | NI | NI | N | N/A | N/A |
 | Secondary Study Area | | | | | | | |

 | STATUS: | FINAL | preparer: Lblack | PHASE: | 1 | VEPSION: | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPoSE: | FEASIBLITY AND IMPLEMENTATION RISK A5 | CHECKER: J HERRIN | DATE: | 2017 AUGUST WSIP APPLICATION | | |
 | caveat: | | qaOC: | REFFFLLE \#: | | | |
 | notes: | | | PAGE: | 19 | of | |

 | Impact | Anticipated Impact in Comparison to Existing Conditions/No Action/No Project Condition Prior to Mitigation | | | | | Recommended Mitigation Measure | Level of Significance after Mitigation |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | A | B | c | C_{1} | D | | |
 | | | | | | | Sites by Capping | |
 | Impact Cul-2: A Substantial Adverse Change in the Significance of a Historical Resource of the Built Environment | | | | | | | |
 | Extended Study Area | NI | NI | NI | NI | NI | N/A | N/A |
 | Secondary Study Area | LS | LS | LS | LS | LS | N/A | N/A |
 | Primary Study Area | | | | | | | |
 | Sites Reservoir Inundation Area, Sites Reservoir Dams; TRR, TRR Pumping/Generating Plant, TRR Electrical Switchyard, GCID Canal Connection to the TRR, Delevan Transmission Line, Delevan Pipeline, TRR Pipeline, TRR Pipeline Road, Delevan Pipeline Electrical Switchyard, Delevan Pipeline Intake Facilities; Project Buffer; Overhead Power Lines and Substations, Holthouse Reservoir Complex and Holthouse Reservoir Electrical Switchyard | s | s | s | s | s | Cul-1a
 Cul-2a: Follow the Secretary of the Interior's Standards for the Treatment of Historical Resources/Historic Properties
 Cul-2b: Record Built Environment Resources | SU (if eligible for CRHR or NRHP listing) |
 | Impact Cul-3: Disturb a Traditional Cultural Property or a Tribal Cultural Resource as defined in PCR section 21074 | | | | | | | |
 | Extended Study Area | LS | LS | LS | LS | LS | N/A | N/A |
 | Secondary Study Area | LS | LS | LS | LS | LS | N/A | N/A |
 | Primary Study Area | | | | | | | |
 | Sites Reservoir Inundation Area, Sites Reservoir Dams; TRR, TRR Pumping/Generating Plant, TRR Electrical Switchyard, GCID Canal Connection to the TRR, Delevan Transmission Line, Delevan Pipeline, TRR Pipeline, TRR Pipeline Road, Delevan Pipeline Electrical Switchyard, Delevan Pipeline Intake Facilities; Project Buffer; Overhead Power Lines and Substations, GCID Canal Facilities Modifications | s | s | s | s | s | Cul-1a
 Cul-3: Consult with Affected Communities Regarding How to Mitigate for Impacts on TCPs/TCRs | SU (if eligible for CRHR or NRHP listing) |
 | Impact Cul-4: Disturb Human Remains, including those Interred Outside of Dedicated Cemeteries | | | | | | | |
 | Extended Study Area | LS | LS | LS | LS | LS | N/A | N/A |
 | Secondary Study Area | LS | LS | LS | LS | LS | N/A | N/A |
 | Primary Study Area | s | s | s | s | s | Cul-1a
 Cul-4a: Relocation of Dedicated or Known Cemeteries
 Cul-4b: Immediately Halt Construction if Human Remains Are Discovered and Implement a Burial Treatment Plan | SU (if eligible for CRHR or NRHP listing) |
 | 19. Indian Trust Assets | | | | | | | |
 | Extended, Secondary, and Primary Study Areas | LS | LS | LS | LS | LS | N/A | N/A |
 | 20. Land Use - CONFIRMING IMPACT CALLS WITH COUNTIES | | | | | | | |
 | Impact Land-1: Physical Division of an Established Community | | | | | | | |
 | Extended Study Area | NI | N | N | N | N | N/A | N/A |
 | Secondary Study Area | NI | N | N | N | N | N/A | N/A |
 | Primary Study Area | | | | | | | |
 | Sites Reservoir Inundation Area and Sites Reservoir Dams (construction, operation, and maintenance effects on the town of Sites) | s | s | S | s | s | No Feasible Mitigation | su |
 | Impact Land-2: Conflict with an Applicable Land Use Plan, Policy, or Regulation of an Agency with Jurisdiction over the Project Adopted for the Purpose of Avoiding or Mitigating an Environmental Effect | | | | | | | |
 | Extended Study Area | NI | N | N | NI | N | N/A | N/A |
 | Secondary Study Area | NI | N | N | N | N | N/A | N/A |
 | Primary Study Area | | | | | | | |

 | Status: | FINAL | PREPARER: L BLACK | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPose: | FEASIBLIITY AND IMPLEMENTATION RISK A5 | CHECKER: J HERRIN | DATE: | 2017 AUGUST WSIP APPLICATION | | |
 | caveat: | | Qa CC: | REFFFILE \#: | | | |
 | notes: | | | PAGE: | 23 | of | 33 |

 | Impact | Anticipated Impact in Comparison to Existing Conditions/No Action/No Project Condition Prior to Mitigation | | | | | Recommended Mitigation Measure | Level of Significance after Mitigation |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | A | B | c | C_{1} | D | | |
 | Sites Reservoir Inundation Area and Sites Reservoir Dams; Recreation Areas; Road Relocations; South Bridge, and TRR Pipeline Road; Sites Pumping/Generating Plant; Sites Electrical Switchyard; Tunnel from Sites Pumping/Generating Plant to Sites Inlet/Outlet Structure; Sites Reservoir Inlet/Outlet Structure; Field Office Maintenance Yard; Asphalt Batch Plant; Holthouse Reservoir Complex; Holthouse Reservoir Electrical Switchyard; Delevan Pipeline Electrical Switchyard; TRR; TRR Pumping/Generating Plant; GCID Canal Connection to the TRR; TRR Electrical Switchyard; Delevan Pipeline Intake Facilities; Delevan Pipeline Discharge Facility (construction, operation, and maintenance) | S | S | s | S | S | Land-2: Work with Glenn and Colusa Counties to Modify or Amend Counties General Plans and/or Zoning Ordinances to Bring lands into Consistency with the Proposed Project Land Uses | su |
 | 51104(g)) | | | | | | | |
 | Extended Study Area | N | NI | NI | NI | NI | N/A | N/A |
 | Secondary Study Area | N | NI | N | NI | N | N/A | N/A |
 | Primary Study Area | N | NI | N | NI | N | N/A | N/A |
 | Impact Land-4: Involve Other Changes in the Existing Environment which, Because of their Location or Nature, could Result in Conversion of Farmland to Non-agricultural Use or Conversion of Forest Land to Non-forest Use | | | | | | | |
 | Extended Study Area | N | NI | N | NI | N | N/A | N/A |
 | Secondary Study Area | N | NI | N | NI | N | N/A | N/A |
 | Primary Study Area | LS | LS | LS | LS | LS | N/A | Ls |
 | Impact Land-5: Changes in Land Use that are Considered to be Incompatible with the Existing Land Uses Adjacent to the Project Facilities | | | | | | | |
 | Extended Study Area | N | NI | NI | NI | NI | N/A | N/A |
 | Secondary Study Area | N | N | N | NI | N | N/A | N/A |
 | Primary Study Area | N | N | N | NI | N | N/A | N/A |
 | Impact Land-6: Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as Shown on the Maps Prepared Pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to Non-agricultural Use | | | | | | | |
 | Extended Study Area | NI | NI | N | NI | N | N/A | N/A |
 | Secondary Study Area | N | N | N | NI | N | N/A | N/A |
 | Primary Study Area | s | s | s | NI | s | No Feasible Mitigation | SU |
 | Impact Land-7: Permanent Conflict with Existing Zoning for Agricultural Use, and/or the Permanent Conversion of Lands that have a Williamson Act Contract | | | | | | | |
 | Extended Study Area | N | NI | N | NI | N | N/A | N/A |
 | Secondary Study Area | N | NI | N | NI | N | N/A | N/A |
 | Primary Study Area | | | | | | | |
 | Sites Reservoir Inundation Area and Sites Reservoir Dams; Recreation Areas; Road Relocations; South Bridge, and TRR Pipeline Road; Sites Pumping/Generating Plant; Sites Electrical Switchyard; Tunnel from Sites Pumping/Generating Plant to Sites Inlet/Outlet Structure; Sites Reservoir Inlet/Outlet Structure; Field Office Maintenance Yard; Asphalt Batch Plant; Holthouse Reservoir Complex; Holthouse Reservoir Electrical Switchyard; Delevan Pipeline Electrical Switchyard; TRR; TRR Pumping/Generating Plant; GCID Canal Connection to the TRR; TRR Electrical Switchyard; Delevan Pipeline Intake Facilities; Delevan Pipeline Discharge Facility (construction, operation, and maintenance) | s | s | s | s | s | Land-7a: Acquire Lands through Eminent Domain or Work with Land Owners to Acquire Properties and
 Pay Any Cancellation Fees Associated with Removing Lands from Williamson Act Contracts
 Land-7b: For Land Permanently Acquired other than by Eminent Domain, Seek County Approvals to Rescind Williamson Act Contracts and Enter in Open Space Contracts or Open Space Easements | Ls |
 | 21. Recreation Resources | | | | | | | |
 | Impact Rec-1: Increase the Use of Existing Neighborhood and Regional Parks or Other Recreational Facilities such that Substantial Physical Deterioration of the Facility would Occur or be Accelerated | | | | | | | |
 | Extended Study Area | NI | NI | Ni | NI | N | N/A | N/A |
 | Secondary Study Area | N | NI | Ni | NI | N | N/A | N/A |

 | Status: | FINAL | Preparer: Lblack | PHASE: | 1 | VERSION: | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PUEPOSE: | FEASIBLITY AND IMPLEMENTATION RISK A5 | CHECKER: J HERRIN | | 2017 A | | |
 | Caveat: | | QAOC: | REFFILIE \#: | WSIP A | ICATION | |
 | Notes: | | | PAGE: | 24 | | |

 | Impact | Anticipated Impact in Comparison to Existing Conditions/No Action/No Project Condition Prior to Mitigation | | | | | Recommended Mitigation Measure | Level of Significance after Mitigation |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | A | B | c | C_{1} | D | | |
 | | | | | | | Exhaust Emissions | ROG) |
 | | | | | | | | LS (for Emissions of $\mathrm{SO}_{x}, \mathrm{CO}$, and $\mathrm{PM}_{2.5}$) |
 | Impact Air Qual-2: Expose Sensitive Receptors to Substantial Pollutant Concentrations | | | | | | | |
 | Extended and Secondary Study Areas | NI | NI | NI | NI | NI | N/A | N/A |
 | Primary Study Area | LS | LS | LS | LS | LS | N/A | N/A |
 | Impact Air Qual-3: Create Objectionable Odors Affecting a Substantial Number of People | | | | | | | |
 | Extended and Secondary Study Areas | NI | NI | NI | NI | NI | N/A | N/A |
 | Primary Study Area | LS | LS | LS | LS | LS | N/A | N/A |
 | 25. Climate Change and Greenhouse Gas Emissions - TO BE COMPLETED | | | | | | | |
 | Impact GHG-1: Generation of Cumulative GHG Emissions | | | | | | | |
 | Extended, Secondary, and Primary Study Areas | | | | | | | |
 | Construction, Operation, and Maintenance of the Proposed Project | s | S | S | s | s | No Feasible Mitigation | su |
 | Open Water Surfaces and Tailraces | LS | LS | LS | LS | LS | N/A | N/A |
 | 26. Navigation, Transportation, and Traffic | | | | | | | |
 | Impact Nav-1: Conflict with Navigation Along any of the Navigable Waterways within the Extended, Secondary, and Primary Study Areas | | | | | | | |
 | Extended and Secondary Study Areas | N | NI | NI | NI | NI | N/A | N/A |
 | Primary Study Area (Delevan Complex) | LS | LS | LS | LS | LS | N/A | N/A |
 | Impact Trans-1: Conflict with an Applicable Plan, Ordinance, or Policy Establishing Measures of Effectiveness for the Performance of the Circulation System, Considering all Modes of Transportation | | | | | | | |
 | Extended and Secondary Study Areas | N | NI | NI | NI | NI | N/A | N/A |
 | Primary Study Area | LS | LS | LS | LS | LS | N/A | N/A |
 | Impact Trans-2: Conflict with an Applicable Congestion Management Program, Including, but not Limited to, Level of Service Standards and Travel Demand Measures, or Other Standards Established by the County Congestion Management Agency for Designated Roads or Highways | | | | | | | |
 | Extended and Secondary Study Areas | N | NI | NI | NI | NI | N/A | N/A |
 | Primary Study Area | LS | LS | LS | LS | LS | N/A | N/A |
 | Impact Trans-3: Substantially Increase Hazards Due to a Design Feature or Incompatible Uses | | | | | | | |
 | Extended and Secondary Study Areas | NI | NI | NI | NI | NI | N/A | N/A |
 | Primary Study Area | LS | LS | LS | LS | LS | N/A | N/A |
 | Impact Trans-4: Result in Inadequate Emergency Access | | | | | | | |
 | Extended and Secondary Study Areas | N | NI | N | NI | NI | N/A | N/A |
 | Primary Study Area | LS | LS | LS | LS | LS | N/A | N/A |
 | Impact Trans-5: Conflict with Adopted Policies, Plans, or Programs Regarding Public Transit, Bicycle, or Pedestrian Facilities, or Otherwise Decrease the Performance or Safety of Such Facilities | | | | | | | |
 | Extended and Secondary Study Areas | NI | NI | NI | NI | NI | N/A | N/A |
 | Primary Study Area | LS | LS | LS | LS | LS | N/A | N/A |
 | 27. Noise | | | | | | | |
 | Impact Noise-1: Expose Persons to or Generation of Noise Levels in Excess of Established Standards | | | | | | | |
 | Extended Study Area | N | NI | NI | NI | NI | N/A | N/A |
 | Secondary Study Area | | | | | | | |
 | Trinity Lake, Lewiston Lake, Trinity River, Klamath River downstream of the Trinity River, Whiskeytown Lake, Spring Creek, Shasta Lake, Keswick Reservoir, Clear Creek, Lake Oroville, Thermalito Complex; Feather River; Sutter Bypass; Yolo Bypass; Folsom Lake; Lake Natoma; American River; Sacramento-San Joaquin Delta; Suisun Bay; San Pablo Bay; San Francisco Bay | NI | NI | N | NI | NI | N/A | N/A |

 | Impact | Anticipated Impact in Comparison to Existing Conditions/No Action/No Project Condition Prior to Mitigation | | | | | Recommended Mitigation Measure | Level of Significance after Mitigation |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | A | B | c | C_{1} | D | | |
 | Secondary and Primary Study Areas | NI | N | NI | NI | NI | N/A | N/A |
 | Impact Pub Health-4: Create a Significant Hazard to the Public or the Environment from the Project being Located on a Listed Hazardous Materials Site | | | | | | | |
 | Extended and Secondary Study Areas | NI | NI | NI | NI | NI | N/A | N/A |
 | Primary Study Area | LS | LS | LS | LS | LS | N/A | N/A |
 | Impact Pub Health-5: Effects on Adopted Emergency Response Plan or Emergency Evacuation Plan Implementation | | | | | | | |
 | Extended Study Area | NI | NI | NI | NI | NI | N/A | N/A |
 | Secondary and Primary Study Areas | LS | LS | LS | LS | LS | N/A | N/A |
 | Impact Pub Health-6: Expose People or Structures to a Significant Risk of Loss, Injury, or Death from Wildand Fires | | | | | | | |
 | Extended and Secondary Study Areas | NI | N | NI | NI | NI | N/A | N/A |
 | Primary Study Area | LS | LS | LS | LS | LS | N/A | N/A |
 | Impact Pub Health-7: Create a Safety Hazard for People Residing or Working in the Project Area (if Located within an Airport Land Use Plan or within 2 Miles of a Public Airport or Public Use Airport if no Plan has been Adopted) | | | | | | | |
 | Extended and Secondary Study Areas | N | N | NI | NI | NI | N/A | N/A |
 | Primary Study Area | N | N | NI | NI | N | N/A | N/A |
 | Impact Pub Health-8: Creation of a safety hazard for people residing or working in the Project area (if located within the vicinity of a private airstrip). | | | | | | | |
 | Extended, Secondary, and Primary Study Areas | N | N | NI | N | N | N/A | N/A |
 | Impact Pub Health-9: Expose People to an Increased Risk of Mosquito-borne or Other Vector-borne Illnesses, or Increased Exposure to Nuisance Problems | | | | | | | |
 | Extended and Secondary Study Areas | NI | NI | NI | NI | NI | N/A | N/A |
 | Primary Study Area | LS | LS | LS | LS | LS | N/A | N/A |
 | 29. Public Services and Utilities | | | | | | | |
 | to Maintain Acceptable Service Ratios, Response Times, or Other Performance Objectives for the Following Public Services: Fire Protection, Police Protection, Schools, Parks, and/or Other Public Facilities, and Disruptions to Local or Regional Utility Services | | | | | | | |
 | Extended, Secondary, and Primary Study Areas | N | N | NI | NI | NI | N/A | N/A |
 | Impact Services-2: A Decline in Property Tax or Fee Revenues that Would Lead to a Substantial Decrease in Public Services | | | | | | | |
 | Extended and Secondary Study Areas | N | N | NI | NI | NI | N/A | N/A |
 | Primary Study Area | LS | LS | LS | LS | LS | N/A | N/A |
 | Impact Services-3: Exceed the Wastewater Treatment Requirements of the Applicable Regional Water Quality Control Board | | | | | | | |
 | Extended, Secondary, and Primary Study Areas | N | N | NI | N | NI | N/A | N/A |
 | Impact Services-4: The Need for Expansion of Existing Wastewater Treatment, Water Treatment, Stormwater, and/or Landfill Facilities | | | | | | | |
 | Extended, Secondary, and Primary Study Areas | N | N | NI | N | NI | N/A | N/A |
 | Impact Services-5: Require New or Expanded Water Supply Entitlements and Resources | | | | | | | |
 | Extended and Secondary Study Areas | LS | LS | LS | LS | LS | N/A | N/A |
 | Primary Study Area | LS | LS | LS | LS | LS | N/A | N/A |
 | Impact Services-6: Non-compliance with Federal, State, and Local Statutes and Regulations Related to Solid Waste | | | | | | | |
 | Extended, Secondary, and Primary Study Areas | N | N | NI | N | N | N/A | N/A |
 | 30. Visual Resources | | | | | | | |
 | Impact Vis-1: A Substantial Adverse Effect on a Scenic Vista | | | | | | | |
 | Extended, Secondary, and Primary Study Areas | N | N | NI | NI | NI | N/A | N/A |
 | Impact Vis-2: Substantial Damage to Scenic Resources, Including, but not Limited to, Trees, Rock Outcroppings, and Historic Buildings within a State Scenic Highway | | | | | | | |
 | Extended Study Area | | | | | | | |
 | Agricultural Water Use, Municipal and Industrial Water Use, and Wildlife Refuge Water Use | N | N | NI | N | N | N/A | N/A |

 LS = less than significant
 N/A = not applicable
 $\mathrm{NI}=$ no impact
 $\mathrm{S}=$ significant
 SU = significant and unavoidable
 BMP = best management practices
 CDFW = California Department of Fish and Wildlife
 CNPS = California Native Plant Society
 $C O=$ carbon monoxide
 CRHR = California Register of Historical Resources
 CVP = Central Valley Project
 GCID = Glenn-Colusa Irrigation District
 GHG = greenhouse gas
 $M \& I=$ municipal and industrial
 $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides
 NRHP = National Register of Historic Places
 $\mathrm{PM}_{10}=$ respirable particulate matter with an aerodynamic diameter of 10 microns or less
 $\mathrm{PM}_{2.5}=$ respirable particulate matter with an aerodynamic diameter of 2.5 microns or less
 SOX = sulfur oxide
 SWP = State Water Project
 TRR = Terminal Regulating Reservoir
 USACE = U.S. Army Corps of Engineers
 USFWS $=$ U.S. Fish and Wildlife Service

 | Status: | FINAL | PREPARER: L BLACK | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | FEASIBLLTY AND IMPLEMENTATION RISK A5 | CHECER: J HERRIN | DATE: | 2017 AUGUST WSIP APPLICATION | | |
 | caveat: | | | REFFFLIE \#: | | | |
 | notes: | | | PAGE: | 31 | of | 33 |

 ## Tribal Consultation

 Consultation with Native American tribes was initiated. The Authority contacted the California Native American Heritage Commission (NAHC) on January 27, 2017, with a request for a list of tribes that have a traditional and cultural affiliation with the Primary Study Area. Table 2 summarizes the information NAHC provided on February 8, 2017, under Public Resources Code (PRC) Section 21080.3.1.

 Table 2. Native American Consultation

 | Tribe | Contact | Notification Letter | Tribal Response | Consultation Actions
 to Date |
 | :--- | :--- | :--- | :--- | :--- |
 | Colusa Indian
 Community Council
 (Cachil Dehe Band of
 Wintun Indians) | Oscar Serrano,
 Principal Engineer | February 10, 2017 | Letter requesting
 consultation was
 received by the
 Authority on February
 6, 2017. | The Authority sent a
 letter in preparation
 for an initial meeting
 on March 6, 2017. |
 | Cortina Indian
 Rancheria of Wintun
 Indians | Charlie Wright,
 Chairperson | February 10, 2017 | No response, to date. | |
 | Estom Yumeka Maidu
 Tribe of the Enterprise
 Rancheria | Glenda Nelson,
 Chairperson | February 10, 2017 | No response, to date. | |
 | Grindstone Indian
 Rancheria of Wintun-
 Wailaki | Ronald Kirk,
 Chairperson | February 10, 2017 | No response, to date. | |
 | Mechoopda Indian
 Tribe | Denis. E. Ramirez,
 Chairperson | February 10, 2017 | No response, to date. | |
 | Paskenta Band of
 Nomlaki Indians | Andrew Alejandre
 Chairperson | February 10, 2017 | No response, to date. | |
 | Yoche Dehe Wintun
 Nation | Leland Kinter,
 Chairperson | February 10, 2017 | No response, to date. | |

 The Colusa Indian Community Council, the governing body of the Cachil Dehe Band of Wintun Indians, had previously notified the Authority that they wished to be notified of projects, pursuant to PRC Section 21080.3 in a letter dated January 3, 2017. Furthermore, the tribe contacted the Authority by letter dated February 6, 2017, in which they expressed their desire to consult on the Project. The Authority responded, by letter on March 6, 2017, acknowledging receipt of the request for consultation letter and informing the tribe that they would be in contact soon to set up a meeting date.

 Although not prepared for PRC Section 21080.3 . 1 consultation, the Cortina Band of Wintun Indians prepared a report in 2010 (Cortina, 2010) to outline their concerns about the Project. In addition to expressing concerns about fish and water associated with the Project, the tribe provided recommendations regarding cultural resources, including, among other recommendations, the following (Cortina, 2010):

 - "The Cortina Band wishes to be consulted at all phases of planning and build out to ensure that impacts on cultural resources are mitigated or avoided. When impacts are unavoidable, the Cortina Band wishes to be involved in determining the best course of action. In particular, the Site's [sic] Reservoir has a need for site testing, borings, and soil column sampling to ensure that cultural resources are not adversely impacted."
 - "There is the potential for the project to increase the availability of crafts materials, medicines and foods from riparian and wetland areas. Cortina would like to be consulted on the biological mitigations and enhancements to ensure the tribal perspective is considered in these processes."

 | STATUS: | FINAL | PREPARER: | L BLACK | PHASE: |
 | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A5 | CHECKER: | J HERRIN | DATE: |
 | CAVEAT: | | QA/QC: | RERSION: A | AUGUST |
 | NOTES: | | | PAGE: | 32 |

 The Authority will continue to consult with tribes that have a traditional and cultural affiliation with the Primary Study Area throughout development and construction of the Project.

 ## ADD AB52

 ## References

 Cortina. 2010

 | STATUS: | FINAL | PREPARER: | L BLACK | PHASE: | 1 | VERSION: | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | FEASIBILITY AND IMPLEMENTATION RISK A5 | CHECKER: | J HERRIN | DATE: | 2017 A | | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP A | CATION | |
 | NOTES: | | | | PAGE: | 33 | OF | 33 |

 ## Benefit Calculation, Monetization, and Resiliency Tab

 ## Attachment A6: Future Economic Benefit

 Attach a table displaying each future economic benefit in 2015 dollars for each year of the planning horizon as required by section 6004(a)(4)(A) of the regulations.

 WSIP Application Instructions, March 2017

 | STATUS: | FINAL | PREPARER: | G DURNIN | PHASE: | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PURPOSE: | BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A6 | CHECKER: | N CARLSON | DATE: | 2017 AUGUST |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION |
 | NOTES: | | | PAGE: | 1 | OF |

 Table A6-1. Annualized Average Benefit Value Summary by Beneficiary (2015\$; \$1000s)

 Annualized Average (2030-2122)
 PV - Early Operations Benefits (2026-2029)
 Adjusted Annualized Average (2030-2122) ${ }^{\text {a }}$
 Total PV Benefit Adjusted (2030-2122) ${ }^{\text {a }}$

 | WSIP Public Benefits | | | | | | | | Non-Proposition 1 Eligible Benefits | | | | | | Total Benefits |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Total Ecosystem Improvement | | | | | Recreation | $\begin{aligned} & \text { Flood } \\ & \text { Control } \end{aligned}$ | Total Non-
 Prop. 1
 Benefits | Water Supply | | | | Hydropower (System) | |
 | Total WSIP Public Benefits | Total Ecosystem Improvement | Anadromous Fish \& Other Aquatic | Incremental
 Level 4 Refuge | Oroville Coldwater Pool | Yolo Bypass | | | | Total Water Supply | M\&I Water Supply | Agricultural Water Supply | Recaptured Water | | |
 | \$73,717 | \$62,343 | \$25,637 | \$16,047 | \$11,814 | \$8,845 | \$6,997 | \$4,377 | \$109,207 | \$89,024 | \$46,737 | \$37,443 | \$4,845 | \$20,183 | \$182,925 |
 | \$119,700 | \$108,325 | \$48,505 | \$27,644 | \$22,986 | \$9,190 | \$6,997 | \$4,377 | \$177,417 | \$157,234 | \$95,883 | \$51,732 | \$9,619 | \$20,183 | \$297,116 |
 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | \$3,461,487 | \$3,145,717 | \$1,616,392 | \$675,417 | \$595,293 | \$258,615 | \$191,604 | \$124,167 | \$5,528,427 | \$4,975,773 | \$3,236,668 | \$1,423,594 | \$315,512 | \$552,653 | \$8,989,914 |
 | \$122,033 | \$110,900 | \$56,985 | \$23,811 | \$20,987 | \$9,117 | \$6,755 | \$4,377 | \$194,902 | \$175,418 | \$114,107 | \$50,188 | \$11,123 | \$19,483 | \$316,934 |
 | \$44,722 | \$30,564 | \$20,658 | \$0 | \$0 | \$9,905 | \$0 | \$14,158 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$44,722 |
 | \$123,609 | \$111,978 | \$57,713 | \$23,811 | \$20,987 | \$9,467 | \$6,755 | \$4,877 | \$194,902 | \$175,418 | \$114,107 | \$50,188 | \$11,123 | \$19,483 | \$318,511 |
 | \$3,506,198 | \$3,176,280 | \$1,637,050 | \$675,417 | \$595,293 | \$268,520 | \$191,592 | \$138,325 | \$5,528,380 | \$4,975,727 | \$3,236,668 | \$1,424,238 | \$314,821 | \$552,653 | \$9,034,577 |

 Notes:
 \&l $=-$ municicipal and industria
 $\mathrm{PV}=$ present value
 WSIP $=$ Water Storage Investment Program

 \[

 $$
 \begin{aligned}
 & \text { PREPARER: G DURNIN PHASE: } 1 \text { VERSION: } \\
 & \text { CHECKER: n CARLSON DATE: } 2017 \text { AUGUST } \\
 & \text { QAOC: } \quad \text { REFFLLE \#: WSIP APPLICATION }
 \end{aligned}
 $$
 \]

 者

 | | Year | $\begin{gathered} \text { PV Factor } \\ (2030) \end{gathered}$ | Total WSIP Public Benefits | Total Ecosystem Improvement | Anadromous Fish \& Other Aquatic | $\begin{array}{\|c\|} \hline \text { Incremental } \\ \text { Level 4 } \\ \text { Refuge } \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { Oroville } \\ \text { Coldwater } \end{array}$ Pool | Yolo Bypass | Recreation | Flood Control | Total Non-
 Prop. 1
 Benefits | Total Water Supply | M\&I Water Supply | Agricultural Water Supply | Recaptured Water | Hydropower (System) | Total Benefits |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | 2075 | 0.213 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2076 | 0.205 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2077 | 0.199 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$21,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2078 | 0.192 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2079 | 0.185 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2080 | 0.179 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2081 | 0.173 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$21,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2082 | 0.167 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$21,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2083 | 0.161 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$21,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2084 | 0.156 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2085 | 0.151 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2086 | 0.146 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2087 | 0.141 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2088 | 0.136 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2089 | 0.131 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2090 | 0.127 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$21,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2091 | 0.123 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2092 | 0.118 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2093 | 0.114 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2094 | 0.111 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2095 | 0.107 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2096 | 0.103 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2097 | 0.100 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2098 | 0.096 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2099 | 0.093 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$21,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2100 | 0.090 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2101 | 0.087 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$21,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2102 | 0.084 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$21,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2103 | 0.081 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$21,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2104 | 0.078 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2105 | 0.076 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2106 | 0.073 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2107 | 0.071 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2108 | 0.068 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$21,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2109 | 0.066 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2110 | 0.064 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2111 | 0.062 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2112 | 0.060 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2113 | 0.058 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2114 | 0.056 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2115 | 0.054 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2116 | 0.052 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$21,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2117 | 0.050 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2118 | 0.048 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2119 | 0.047 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2120 | 0.045 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$21,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | | 2121 | 0.044 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |
 | End of 100-Year Study Period | 2122 | 0.042 | \$156,824 | \$145,449 | \$86,619 | \$24,634 | \$24,976 | \$9,220 | \$6,997 | \$4,377 | \$271,704 | \$251,521 | \$177,793 | \$56,995 | \$16,733 | \$20,183 | \$428,527 |

 End of 100 -Year Study Period M\&I $=-$ municipal and industrial
 WSIP $=$ Waters Storage Investment Program

    ```
    STATUS: FINAL 
    PREPARER: G DURNIN PHASE: 1 VERSION:
    NOTES:
    CHECER: N NURINON DATE: 2017 AUGUST
    ```


 This file was submitted to the California Water Commission as a Microsoft Excel file. It has been converted to a PDF format for ease of access on our website.
 A copy of the Excel file can be obtained by submitting a request to CWC@water.ca.gov.

 | TAB | ATTACHMENTS | FILE NAME |
 | :---: | :---: | :---: |
 | Applicant Information Tab | None | 00_Sites Applicant Information TAB |
 | Projects Tab | None | 00_Sites Project TAB |
 | Eligibility and General Project Information Tab | | 00_Sites Eligibility TAB |
 | | A1 Executive Summary | Sites_A1 ExecSum |
 | | A2 Resolution | Sites_A2 Resolution |
 | | A3 Project Description | Sites_A3 Project Description |
 | | A4.A Drawing Package | Sites_A4 Drawings |
 | | A5 Correctness and Truthfulness | Sites_A2 Resolution |
 | | A6.A Application Index | Sites_A6A Application Index |
 | | A6.B Water Management Plans | Sites_A6B WMPs |
 | | A6.C Groundwater Management | Sites_A6C Groundwater Basins |
 | | A6.D Modeling Results Compendium | Sites_A6D Modeling |
 | | A6.E Support Letters | Sites_A6E Letters |
 | Physical Public Benefits Tab | | 00_Sites Physical Benefits TAB |
 | | A1 Ecosystem Priorities | |
 | | A1 Ecosystem Priorites Worksheets | Sites_A1 Ecosystem Priorities |
 | | A2 Ecosystem Documentation | |
 | | A2 Ecosystem Documentation Priorities | Sites_A2 Ecosystem Documentation |
 | | A1 Water Quality Priorities | |
 | | A1 Water Quality General Questions | Sites_A1 WQ General Questions |
 | | A1 Water Quality Priority 1 | Sites_A1 WQ Priority 1 |
 | | A1 Water Quality Priority 6 | Sites_A1 WQ Priority 6 |
 | | A1 Water Quality Priority 7 | Sites_A1 WQ Priority 7 |
 | | A1 Water Quality Priority 9 | Sites_A1 WQ Priority 9 |
 | | A2 Water Quality Documentation | |
 | | A2 Water Quality Documentation Priority 1 | Sites_A2 Documentation WQ Priority 1 |
 | | A2 Water Quality Documentation Priority 6 | Sites_A2 Documentation WQ Priority 6 |
 | | A2 Water Quality Documentation Priority 9 | Sites_A2 Documentation WQ Priority 9 |
 | | A2 Water Quality Maps | Sites_A2 WQ Maps |
 | | A1 Flood Control | Sites_A1 Flood Control |
 | | A1 Recreation Visitation | Sites_A1 Recreation Visitation |
 | | A2 Recreation | Sites_A2 Recreation |
 | Feasibility and Implementation Risk Tab | | 00_Sites Feasibility TAB |
 | | A1 Feasibility Studies | Sites_A1 Feasibility |
 | | A2 List of Permits | Sites_A2 Permits |
 | | A3 Schedule | Sites_A3 Schedule |
 | | A4 Environmental Document | Sites_A4 Environmental |
 | | A5 Impact Summary and Tribal Coordination | Sites_A5 Impacts and Tribal |
 | Benefit Calculation, Monetization, and Resiliency Tab | | 00_Sites Monetization TAB |
 | | A1 Model Assumptions | Sites_A1 Modeling |
 | | A2 Operations Plan | Sites_A2 Operations |
 | | A3 Physical and Monetized Benefits | Sites_A3 Physical Monetized |
 | | A4 Mitigation and Compliance | Sites_A4 Mitigation |
 | | A5 Economics Documentation | Sites_A5 Documentation |
 | | A6 Future Economic Benefits | Sites_A6 Annual Benefits Table |
 | | A7 Non Monetized Benefits | Sites_A7 Non_Monetized |
 | | A8 Cost Estimate | Sites_A8 Estimate |
 | | A9 Benefit Cost Analysis | Sites_A9 BCA Results |
 | | A10 Cost Allocation | Sites_A10 Allocation |
 | | A11 Physical and Economic Benefits Summa | Sites_A11 Benefits Table |
 | | A12 Uncertainty Analysis | Sites_A12 Uncertainty |
 | Program Requirements Tab | | 00_Sites Program TAB |
 | | A1 Measurable Improvements | Sites_A1 Measurable Benefits |
 | | A2 Cost Effectiveness | Site_A2 Cost Effectiveness |
 | Early Funding Request Tab | | 00_Sites Early Funding TAB |
 | | A1 Schedule, Scope of Work, Budget | Sites_A1 Scope |

 ## Status of Urban and Agricultural Water Management Plans for Sites Participating Agencies

 (ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB Question 5)

 | Agencies | Urban or Ag? | Posted on DWR Website? | Date Submitted | Status |
 | :---: | :---: | :---: | :---: | :---: |
 | Combined TC-6 (4-M Water District, Cortina Water District, Dunnigan Water District, LaGrande Water District, Maxwell Irrigation District, Proberta Water District) | N/A (Exception Dunningan and Maxwell) | N/A | N/A | N/A |
 | American Canyon | Urban | Yes | 6/28/2016 | Under Review |
 | Antelope Valley - East Kern Water Agency | Urban | Yes | 6/28/2016 | Under Review |
 | California Water Service | Urban | Yes | $\begin{aligned} & \text { 6/16/2016, } \\ & 6 / 27 / 2016, \\ & 6 / 28 / 2016 \end{aligned}$ | Under Review or Review Completed |
 | Carter Municipal Water Company | N/A | N/A | N/A | N/A |
 | Castaic Lake Water Agency | Urban | Yes | 6/29/2016 | Under Review |
 | Colusa County Water District | Ag | Yes | 5/2/2017 | Under Review |
 | Colusa County | Ag | N/A | | |
 | Coachella Valley Water District | Urban | Yes | 7/1/2016 | Review Completed |
 | Desert Water Agency | Urban | Yes | 6/29/2016 | Not approved |
 | Glenn-Colusa Irrigation District | Ag | Yes | 12/16/2016 | Under Review |
 | Garden Highway Mutual Water Company | Ag | Yes | Aug-14 | |
 | Glenn County | N/A | N/A | N/A | N/A |
 | Metropolitan Water District | Urban | Yes | 5/24/2016 | Review Completed |
 | Orland-Artois Water District | Ag | Yes | 4/25/2017 | Under Review |
 | Pacific Resources Mutual Water Company | N/A | N/A | N/A | N/A |
 | Placer County Water Agency and the City of Roseville | Urban | Yes | $\begin{aligned} & \text { 5/25/2016 } \\ & \text { (Rosevile), } \\ & \text { 06/15/2016 } \\ & \text { (PCWA } \end{aligned}$ | Review Completed (Roseville), Under Review (PCWA) |
 | Davis Water District | Urban | Yes | 6/13/2016 | Review Completed |
 | Reclamation District 108 | Ag | Yes | 1/6/2017 | Under Review |
 | San Bernadino Valley Municipal Water District | Urban | Yes | 7/1/2016 | Under Review |
 | San Gorgonio Pass Water Agency | Urban | Yes | 3/21/2017 | Under Review |
 | Santa Clara Valley Water District | Urban | Yes | 6/20/2016 | Review Completed |
 | Tehama-Colusa Canal Authority | N/A | N/A | N/A | N/A |
 | Western Canal Water District | Ag | Yes | 2/26/2016 | Review Completed |
 | Westside Water District | Urban | Yes | 9/21/2016 | Review Completed |
 | Wheeler Ridge-Maricopa Water Service District | Ag | Yes | 4/6/2016 | Review Completed |
 | Zone 7 Water Agency | Urban | Yes | 4/1/2016 | Review Completed |

 | STATUS: | FINAL | PREPARER: | A FERRINI | PHASE: | 1 VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB | CHECKER: | J HERRIN | DATE: | 2017 AUGUST | |
 | CAVEAT: | | QA/QC: | | REF/FILE \#: | WSIP APPLICATION | |
 | NOTES: | SITES_A6B | | | PAGE: | 1 OF | 2 |

 This page intentionally left blank.

 ## Eligibility and Project Information Tab

 ## Attachment 6: Groundwater Basins Affected by the Sites Reservoir Project

 Q. 6 - Does the proposed project affect groundwater basins, as defined by Water Code section 10722 et seq.? If not, enter "Not Applicable"; if so, identify the affected groundwater basins and describe how the project would be integrated with future GSP(s). Explain how the project would reduce, eliminate, or have an effect on undesirable results (as defined in regulations section 6001(a)(85)) within the affected groundwater basin(s). Describe how the applicant would work with GSA(s) or adjudicated participants of the basin. See regulations section 6003(a)(1)(K).

 No groundwater benefits have been monetized; however, the Sites Reservoir project would potentially beneficially affect groundwater basins within service areas of project participants, particularly those within the Sacramento River Hydrologic Region. Some of the participants are designated as a Groundwater Sustainability Agency (GSA) for affected groundwater basins, including but not limited to Colusa County, Colusa County Water District, Santa Clara Valley Water District, and Zone 7 Water Agency. Many other agencies participating in the Sites Project also participate in Groundwater Sustainability Agencies. These member agencies will be involved in the future integration of the Sites Project into their respective Groundwater Sustainability Plans (GSPs). Coachella Valley Water District, Desert Water Agency, Santa Clara Valley Water District, and Zone 7 Water Agency have each submitted prescribed Alternatives to a GSP, consisting of groundwater management plans or an analysis of basin conditions. The Sites Reservoir Project could be incorporated into future updates of these Alternatives.

 In addition, Sites participants: Desert Water Agency, California Water Service, San Bernardino Valley Municipal Water District, Metropolitan Water District of Southern California and San Gorgonio Pass Water Agency are affiliated with adjudicated groundwater basins. Antelope Valley - East Kern Water Agency is affiliated with a groundwater basin that is pending adjudication. Water deliveries from the Sites Reservoir Project could be incorporated into the management strategy for these basins. The associated operations by participating agencies with adjudicated basins would be included in annual monitoring and reporting activities.

 Undesirable conditions include chronic lowering of groundwater levels; reduction of groundwater storage, seawater intrusion; degraded water quality; land subsidence; and depletions of interconnected surface water. The Sites Reservoir project has the potential to improve these undesirable results within groundwater basins associated with its participants.

 Table A.6-1 presents a listing of groundwater basins that could be beneficially affected by the project, depending on the exact application of the Sites Project deliveries to those regions. In order to retain water management flexibility at a local level, Sites Project deliveries are not specifically designated for a specific use. Figures A.6-1 through A.6-3 show the location these groundwater basins in relation to service areas of the current Sites Project participants. A further discussion how the project would reduce undesirable results within the affected groundwater basins is presented below.

 ## Reduction of groundwater storage and chronic lowering of groundwater levels

 As shown in Table A.6-1, significant decline in groundwater levels or overdraft has been reported in many groundwater basins overlaid by the service areas of Sites Project participants. In general, the Sites Reservoir project would result in an increased use of surface water and could decrease use of groundwater through conjunctive use and management operations by its participants. These operations would increase surface water deliveries and change the timing of available surface and groundwater supplies by providing Sites participants with surface water for storage, use or replenishment (typically in

 | STATUS: | FINAL | PREPARER: | N SMITH | PHASE: | 1 | VERSION: | A |
 | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB | CHECKER: | JHERRIN | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | REF/FILE \#: | WSIP APPLICATION | | | |
 | NOTES: | SITES_A6C | | PAGE: | 1 | OF | 12 | |

 above normal and wet year conditions) and then recovering a portion of the water during periods of water supply shortages (in dry and critical year conditions). These changes would improve operational flexibility on a regional basis while providing a water supply benefit that could increase groundwater storage and reduce chronic lowering of groundwater levels.

 Table A.6-2 presents the average annual increase in water deliveries by hydrologic region based on the current Sites Project participants and their water delivery requests. The Sacramento River Hydrologic Region would receive the greatest water supply benefits, primarily for agricultural uses. It should be noted that the modeled allocation of water to each hydrologic region is an approximation of how the flows would be distributed. The actual distribution would vary based on the final participants of the project and their level of participation. The project would improve groundwater sustainability by supplying surface water for replenishment to enhance aquifer storage recovery. Replenishment of groundwater can be accomplished using direct recharge and in-lieu recharge. Replenishment occurs when a groundwater basin is managed so that recharge is increased when compared with existing or baseline conditions, and ultimately groundwater levels are either maintained or improved. Direct recharge includes direct spreading of water on land surfaces and aquifer injection. In-lieu recharge may also be accomplished by providing an alternative source to users who would normally use groundwater, thereby leaving groundwater in place for later use and increasing the potential to improve groundwater levels.

 Recent research by the University of California on the flooding of agricultural lands to increase groundwater replenishment has led to the development of a Soil Agricultural Groundwater Banking Index (SAGBI) and an associated map application (available at http://casoilresource.lawr.ucdavis.edu/sagbi/). The SAGBI identifies the suitability of soils for additional on-farm groundwater recharge in California. Much of the service areas of Sites participants within the Sacramento Valley are identified as having excellent or good potential for groundwater recharge (Figure A.6-4). Should a local groundwater bank be created, Sites Reservoir has the potential to provide water at rates and times to improve its effectiveness and include the banking of water within the aquifer system for future use, which can improve various undesirable aquifer conditions.

 ## Seawater intrusion and degraded water quality

 There are several groundwater basins within and overlain by the Sites Project participant's service area that are experiencing salt water intrusion and other water quality degradation issues (See Table A.6-1). Over-pumping may result in inversion of the groundwater flow causing expanded saltwater intrusion. Supplemental surface supplies provided by the project and conjunctive use management practices by project participants may result in reduced groundwater pumping that can assist with reducing the potential for seawater intrusion and water quality degradation. Conjunctive use could enable blending of surface and groundwater which could result in higher quality supply of water. Utilizing better quality surface water for direct recharge of groundwater may also result in groundwater quality improvements.

 ## Land subsidence

 Recent drought conditions have led to relatively large declines in groundwater levels throughout the state and within groundwater basins affiliated with Sites participants. Conjunctive use operations by Sites participants to increase water levels would also reduce inelastic (permanent) land subsidence.

 ## Depletions of interconnected surface water

 The interconnection of surface water features and groundwater are important for maintaining ecosystems and wetland habitat, particularly in the Sacramento Valley. Chronic lowering of water levels due to over pumping and stream diversions result in depletions of interconnected surface water and

 | STATUS: | FINAL | PREPARER: | N SMITH | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB | CHECKER: | J HERRIN | DATE: | 2017 A | UST | |
 | caveat: | | QAQC: | | REF/FILE \#: | WSIP A | ICATION | |
 | NOTES: | SITES_A6C | | | PAGE: | 2 | OF | 12 |

 groundwater in some areas. Groundwater basins potentially affected by the project that provide important connections to surface water are identified in Table A.6-1. The Sites Reservoir project would allow for greater operational flexibility to support maintaining hydrologic connection between surface water and groundwater. Conjunctive use practices by Sites participants could reduce surface water diversions and improve surface water flows by using stored groundwater during dry and critical periods. In addition, supplemental water supplies from the Sites Reservoir project would assist with improving aquifer storage and groundwater levels.

 | STATUS: | FINAL | PREPARER: | N SMITH | PHASE: | 1 | VERSI ON: | A |
 | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB | CHECKER: | JHERRIN | DATE: | 2017 AUGUST | | |
 | CAVEAT: | | QAQC: | REF/FILE \#: | WSIP APPLICATION | | | |
 | NOTES: | SITES_A6C | | PAGE: | 3 | OF | 12 | |

 | Table A.6-1. Groundwater Basins Potentially Affected by the Sites Reservoir Project | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Hydrologic Region | $\begin{gathered} \hline \text { Basin } \\ \text { Number } \\ \hline \end{gathered}$ | Basin/Sub Basin Name | Groundwater Basin Rating | Sites Participant | Comments/Existing Undesirable Groundwater Conditions |
 | San Francisco Bay | 2-02.03 | NAPA-SONOMA VALLEY | Very Low | American Canyon County WSA | -- |
 | San Francisco Bay | 2-10 | LIVERMORE VALLEY | Medium | California Water Service Co. | Some areas have boron concentrations exceeding $2 \mathrm{mg} / \mathrm{L}$ (Bulletin 118). |
 | | | | | Zone 7 Water Agency | |
 | San Francisco Bay | 2-11 | SUNOL VALLEY | Very Low | Zone 7 Water Agency | -- |
 | San Francisco Bay | 2-32 | VIIITACION VALLEY | Very Low | California Water Service Co. | -- |
 | San Francisco Bay | 2-35 | WESTSIDE | Very Low | California Water Service Co. | -- |
 | San Francisco Bay | 2-9.02 | SANTA CLARA VALLEY - SANTA CLARA | Medium | California Water Service Co. | Elevated nitrate in some wells in the southern portion of the Basin. |
 | | | | | Santa Clara Valley Water District | |
 | San Francisco Bay | 2-9.03 | SANTA CLARA VALLEY - SAN MATEO PLAIN | Very Low | California Water Service Co. | -- |
 | Central Coast | 3-03.01 | GILROY-HOLLISTER VALLEY - LLAGAS AREA | High | Santa Clara Valley Water District | Nitrate has impacted a significant number of private domestic wells across the Llagas Subbasin due to historic and ongoing sources including agricultural activities and septic systems. |
 | Central Coast | 3-03.03 | GILROY-HOLLISTER VALLEY - HOLLISTER AREA | Medium | Santa Clara Valley Water District | West portion of the basin has an impermeable barrier to groundwater flow. Salinity, nitrate, boron, hardness, and trace elements. |
 | Central Coast | 3-03.04 | GILROY-HOLLISTER VALLEY - SAN JUAN BAUTISTA AREA | Medium | Santa Clara Valley Water District | Salinity, nitrate, boron, hardness, and trace elements occasionally exceed drinking water standards. |
 | Central Coast | 3-04.01 | SALINAS VALLEY - 180/400 FOOT AQUIFER | High | California Water Service Co. | Critically overdrafted basin. |
 | Central Coast | 3-04.02 | SALINAS VALLEY - EAST SIDE AQUIFER | High | California Water Service Co. | Coastal basin with saline intrusion in both 180-Foot and 400-Foot aquifers due to excessive groundwater pumping. |
 | Central Coast | 3-04.05 | SALINAS VALLEY - FOREBAY AQUIFER | Medium | California Water Service Co. | Poor quality water along the eastern side of subbasin. Water system above MCL for inorganics and nitrates (Bulletin 118). |
 | Central Coast | 3-04.09 | SALINAS VALLEY - LANGLEY AREA | Medium | California Water Service Co. | Portion of the subbasin has been affected by elevated nitrate levels in shallow aquifers |
 | Central Coast | 3-04.10 | SALINAS VALLEY - CORRAL DE TIERRA AREA | Medium | California Water Service Co. | Lowering of water levels, TDS, hardness |
 | South Coast | 4-05 | ACTON VALLEY | Very Low | Antelope Valley - East Kern Water Agency | -- |
 | South Coast | 4-06 | PLEASANT VALLEY | High | Metropolitan Water District | Critically over drafted basin; Discharge of poor quality groundwater from dewatering wells and effluent discharge from the wastewater treatment facility into the Arroyo Simi have led to rising water levels in the basin along with higher TDS and Chloride levels. |
 | South Coast | 4-07 | ARROYO SANTA ROSA VALLEY | Medium | Metropolitan Water District | Elevated sulfates, nitrates, and TDS in the basin.(Bulletin 118) |
 | South Coast | 4-08 | LAS POSAS VALLEY | High | Metropolitan Water District | TDS is generally high in this basin. REH - Pubic Comment includes reports of subsidence, overdraft and saline intrusion (chloride from adjacent basin). |
 | South Coast | 4-09 | SIMI VALLEY | Low | Metropolitan Water District | -- |
 | South Coast | 4-10 | CONEJO | Low | California Water Service Co. | -- |
 | South Coast | 4-10 | CONEJO | Low | Metropolitan Water District | -- |
 | South Coast | 4-11.01 | COASTAL PLAIN OF LOS ANGELES - SANTA MONICA | Medium | Metropolitan Water District | MTBE contamination has led to significant reduction in groundwater production and locally high TDS. |
 | South Coast | 4-11.02 | COASTAL PLAIN OF LOS ANGELES | Very Low | Metropolitan Water District | -- |
 | South Coast | 4-11.03 | COASTAL PLAIN OF LOS ANGELES - WEST COAST | Medium | California Water Service Co. | Adjudicated basin. Basin in overdraft since 1960's. Saline intrusion problems. A seawater barrier project is in effect to reduce seawater intrusion. |
 | | | | | Metropolitan Water District | |
 | South Coast | 4-11.04 | COASTAL PLAIN OF LOS ANGELES - CENTRAL | High | California Water Service Co. | Adjudicated basin. Basin was adjudicated in the early 1960's due to overdraft. Several public supply wells are known to be impacted by various water quality issues. |
 | | | | | Metropolitan Water District | |
 | South Coast | 4-12 | SAN FERNANDO VALLEY | Medium | Metropolitan Water District | Adjudicated basin. Several public supply wells have shown contamination (Bulletin 118) |
 | South Coast | 4-13 | SAN GABRIEL VALLEY | High | Metropolitan Water District | Superfund sites are present within the basin and other areas with water quality impacts are known. |
 | South Coast | 4-15 | tierra rejada | Very Low | Metropolitan Water District | -- |
 | South Coast | 4-16 | HIDDEN VALLEY | Very Low | California Water Service Co. | -- |
 | | | | | Metropolitan Water District | |
 | South Coast | 4-18 | HUNGRY VALLEY | Very Low | Antelope Valley - East Kern Water Agency | -- |
 | South Coast | 4-19 | THOUSAND OAKS AREA | Very Low | California Water Service Co. | -- |
 | | | | | Metropolitan Water District | |
 | South Coast | 4-20 | RUSSELL VALLEY | Very Low | California Water Service Co. | -- |
 | South Coast | 4-22 | MALIBU VALLEY | Very Low | Metropolitan Water District | -- |
 | South Coast | 4-23 | RAYMOND | Medium | Metropolitan Water District | Water quality impacts and a superfund site. |
 | South Coast | 4-4.02 | SANTA CLARA RIVER VALLEY - OXNARD | High | Metropolitan Water District | Saline intrusion, nitrates, pesticides, and PCBs have impacted some water wells per (Bulletin 118). |
 | South Coast | 4-4.03 | SANTA CLARA RIVER VALLEY - MOUND | Medium | Metropolitan Water District | Some primary and secondary inorganic contaminants above the MCL (Bulletin 118). |
 | South Coast | 4-4.06 | SANTA CLARA RIVER VALLEY - PIRU | High | Castaic Lake Water Agency | Groundwater quality impacts: nitrates, storm runoff, leaking tanks, etc. (Bulletin 118). High Selenium and other inorganics, average TDS was 1450 $\mathrm{mg} / \mathrm{L} /$ |

 | Hydrologic Region | $\begin{array}{\|c\|} \hline \text { Basin } \\ \text { Number } \\ \hline \end{array}$ | Basin/Sub Basin Name | Groundwater
 Basin Rating | Sites Participant | Comments/Existing Undesirable Groundwater Conditions |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | South Coast | 8-02.06 | UPPER SANTA ANA VALLEY - BUNKER HILL | High | San Bernardino Valley Municipal Water District | Adjudicated basin (Western San Bernardino). The Bunker Hill sub-basin is impacted with PCE and TCE from the Newmark Superfund site and with perchlorate from the Crafton-Redlands plume. |
 | South Coast | 8-02.07 | UPPER SANTA ANA VALLEY - YUCAIPA | Medium | San Bernardino Valley Municipal Water District
 San Gorgonio Pass Water Agency | Overdraft. Documented impacts of nitrates and sulfates. (Bulletin 118) |
 | South Coast | 8-02.08 | UPPER SANTA ANA VALLEY - SAN TIMOTEO | Medium | Metropolitan Water District San Bernardino Valley Municipal Water District
 San Gorgonio Pass Water Agency | Parts of the subbasin are adjudicated. Locally high nitrates and salinity (Bulletin 118). GAMA reported upper basin water quality issues. |
 | South Coast | 8-02.09 | UPPER SANTA ANA VALLEY - TEMESCAL | Medium | Metropolitan Water District | Groundwater quality impaired by nitrates and inorganics in some wells (Bulletin 118). |
 | South Coast | 8-04 | ELSINORE | High | Metropolitan Water District | High TDS due to Nitrate and Sulfate in some portions of the basin. Some fluoride impacts to groundwater (Bulletin 118). Study done for Elsinore Basin groundwater Advisory Committee (Nov. 2012) indicates an average annual groundwater budget deficit of 1,800 af/yr for the last 11 years. Between 1990 and 2000 cumulative deficit was 19,000 af. |
 | South Coast | 8-05 | SAN JACINTO | High | Metropolitan Water District San Bernardino Valley Municipal Water District | Adjudicated basin. Basin is in overdraft (MWD). Groundwater quality issues documented in DWR B-118. Pumping has increased some contaminant distribution in the basin. |
 | South Coast | 8-06 | HEMET LAKE VALLEY | Very Low | Desert Water Agency Metropolitan Water District | -- |
 | South Coast | 8-08 | SEVEN OAKS VALLEY | Very Low | San Bernardino Valley Municipal Water District | -- |
 | South Coast | 9-01 | SAN JUAN VALLEY | Low | Metropolitan Water District | -- |
 | South Coast | 9-02 | SAN MATEO VALLEY | Very Low | Metropolitan Water District | -- |
 | South Coast | 9-03 | SAN ONOFRE VALLEY | Very Low | Metropolitan Water District | -- |
 | South Coast | 9-04 | SANTA MARGARITA VALLEY | Medium | Metropolitan Water District | Adjudicated basin (Federal). Groundwater in surface water part of basin is marginal to inferior for domestic and agricultural uses (Bulletin 118). Mg, SO4, Cl, NO3, and TDS concentrations are locally high for domestic. Use; CI, B, and TDS are locally high for ag use (Bulletin 118). |
 | South Coast | 9-05 | TEMECULA VALLEY | High | Metropolitan Water District | Adjudicated basin (Federal). Groundwater source is impaired in various parts of the basin due to elevated nitrates, fluoride, sulfates, TDS, and VOCs (Bulletin 118). |
 | South Coast | 9-07 | SAN LUIS REY VALLEY | Medium | Metropolitan Water District | TDS is a concern according to MWD. B-118 indicates problems with nitrates, inorganics, radiologicals, and VOCs. Desalination generally required in all areas of the basin. |
 | South Coast | 9-09 | ESCONDIDO VALLEY | Very Low | Metropolitan Water District | -- |
 | South Coast | 9-10 | SAN PASQUAL VALLEY | Medium | Metropolitan Water District | Nitrate problems are widespread (Bulletin 118). TDS is also known to be high in places. During dry years, the basin has experienced water level declines up to 20 feet in one year. |
 | South Coast | 9-11 | SANTA MARIA VALLEY | Very Low | Metropolitan Water District | -- |
 | South Coast | 9-12 | SAN DIEGUITO CREEK | Very Low | Metropolitan Water District | -- |
 | South Coast | 9-13 | POWAY VALLEY | Very Low | Metropolitan Water District | -- |
 | South Coast | 9-14 | MISSION VALLEY | Very Low | Metropolitan Water District | -- |
 | South Coast | 9-15 | SAN DIEGO RIVER VALLEY | Medium | Metropolitan Water District | High Nitrates, Iron and Manganese treatment is required, high TDS ($>3,000 \mathrm{mg} / \mathrm{/}$) in western portion of basin |
 | South Coast | 9-16 | el CAJon Valley | Very Low | Metropolitan Water District | -- |
 | South Coast | 9-22 | BATIQUITOS LAGOON VALLEY | Very Low | Metropolitan Water District | -- |
 | South Coast | 9-23 | SAN ELIJO VALLEY | Very Low | Metropolitan Water District | -- |
 | South Coast | 9-32 | SAN MARCOS AREA | Very Low | Metropolitan Water District | -- |
 | South Coast | 9-33 | COASTAL PLAIN OF SAN DIEGO | Low | Metropolitan Water District | -- |

 | Status: | FINAL | PREPARER: | N SMITH | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: CAVEAT: | eligiblity and general project information tab | CHECKER: QAOC: | J herrin | DATE: REF/FILE \#: | 2017 AU | UST IICATION | |
 | notes: | SITES_A6C | | | Page: | 7 | of | 12 |

 Table A.6-2. Increases in Deliveries by Hydrologic Region with the Sites Project

 | CalSim II Modeled Beneficiaries | Average Increase in Deliveries (TAF/yr) | Dry and Critical Increase in Deliveries (TAF/yr) | Average Increase in Deliveries (TAF/yr) | Dry and Critical Increase in Deliveries (TAF/yr) | Average Increase in Deliveries (TAF/yr) | Dry and Critical Increase in Deliveries (TAF/yr) |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Sacramento River Hydrologic Region | 2015 | | 2030 | | 2070 | |
 | Supplemental Water to CVP Settlement Contractors | 2 | 6 | 2 | 5 | 1 | 4 |
 | Supplemental Water for CVP Service Area Ag | 67 | 119 | 96 | 137 | 121 | 132 |
 | Supplemental Water for CVP Service Area M\&I | 0 | 0 | 0 | 0 | 0 | 0 |
 | Supplemental Water for SWP Service Area M\&1 | 0 | 0 | 0 | 0 | 0 | 0 |
 | Supplemental Water for SWP Service Area Feather River Service Area | 3 | 2 | 4 | 5 | 4 | 4 |
 | Supplemental Water for County of Colusa | 7 | 8 | 8 | 9 | 8 | 8 |
 | Colusa Basin (Incremental Level 4 Refuge Water Supply) | 1 | 0 | 1 | 0 | 1 | 0 |
 | Total | 80 | 136 | 111 | 155 | 136 | 148 |
 | San Joaquin River Hydrologic Region | 2015 | | 2030 | | 2070 | |
 | Supplemental Water for CVP Service Area Ag | 0 | 0 | 0 | 0 | 0 | 0 |
 | Mendota Pool (Incremental Level 4 Refuge Water Supply) | 29 | 13 | 28 | 10 | 25 | 8 |
 | San Francisco Bay Hydrologic Region | 2015 | | 2030 | | 2070 | |
 | Supplemental Water for CVP Service Area Ag | 0 | 0 | 0 | 0 | 0 | 0 |
 | Supplemental Water for SWP Service Area M\&/ | 35 | 72 | 38 | 72 | 42 | 77 |
 | Central Coast Hydrologic Region | 2015 | | 2030 | | 2070 | |
 | Supplemental Water for SWP Service Area M\&1 | 0 | 0 | 0 | 0 | 0 | 0 |
 | Tulare Lake Hydrologic Region | 2015 | | 2030 | | 2070 | |
 | Supplemental Water for CVP Service Area Ag | 12 | 28 | 13 | 27 | 15 | 29 |
 | Supplemental Water for SWP Service Area M\&1 | 0 | 0 | 0 | 0 | 0 | 0 |
 | Supplemental Water for SWP Service Area Ag | 12 | 28 | 13 | 27 | 15 | 29 |
 | Tulare Basin (Incremental Level 4 Refuge Water Supply) | 7 | 3 | 6 | 2 | 6 | 2 |
 | Total | 31 | 58 | 33 | 57 | 36 | 61 |
 | South Lahontan Hydrologic Region | 2015 | | 2030 | | 2070 | |
 | Supplemental Water for SWP Service Area M\&1 | 1 | 3 | 2 | 3 | 2 | 3 |
 | South Coast Hydrologic Region | 2015 | | 2030 | | 2070 | |
 | Supplemental Water for SWP Service Area M\&1 | 60 | 126 | 67 | 126 | 73 | 134 |
 | Supplemental Water for SWP Service Area Ag | 0 | 0 | 0 | 0 | 0 | 0 |
 | Delta Environmental Water Quality | 2015 | | 2030 | | 2070 | |
 | Upstream and Delta Inflow | 73 | 72 | 73 | 78 | 68 | 79 |

 Source: Prepared by AECOM 2017
 Figure A6-1. Potentially Affected Groundwater Basins in Sites Participants Service Areas - Northern California

 | Status: | FINAL | PREPARER: | N SMITH | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPose: | ELIGIBILITY AND GENERAL PROJECT Information tab | CHECKER: | J Herrin | DATE: | 2017 AL | UST | |
 | caveat: | | qadc: | | REFFFLIE \#: | WSIP AP | ication | |
 | notes: | SITES_A6C | | | Page: | 9 | of | 12 |

 Figure A6-2. Potentially Affected Groundwater Basins in Sites Participants Service Areas - Central California

 | status: | FINAL | PREPARER: | NSMITH | PHASE: | 1 | VERSIION: |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: | ELIGIBILITY AND GENERAL PROJECT Information tab | CHECKER: | J Herrin | date: | 2017 A | |
 | Caveat: | | qaoc: | | REFFFLE\# \#: | WSIP A | _ICATION |
 | notes: | SITES AGC | | | PAGE: | 10 | of |

 Figure A6-3. Potentially Affected Groundwater Basins in Sites Participants Service Areas - Southern California

 | Status: | FINAL | PREPARER: | NSMITH | PHASE: | 1 | VERSION: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE:
 caveat. | ELIGIBILITY AND GENERAL PROJECT Information tab | CHECKER: | J Herrin | | 2017 AU WSIP AP | UST ICATION | |
 | notes: | SITES_AGC | | | Page: | 11 | of | 12 |

 aurce: https ://casoiresource.lawr.ucdavis.edu/sagbi/
 Figure A6-4. Soil Agricultural Groundwater Banking Index Map

 | STATUS: | FINAL | PREPARER: | N SMITH | PHASE: | 1 | version: | A |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PURPOSE: CAVEAT: | ELIGIBILITY AND GENERAL PROJECT INFORMATION TAB | CHECKER: | J HERRIN | $\begin{aligned} & \text { DATE: } \\ & \text { REFFILLE \# } \end{aligned}$ | 2017 A WSIP AP | UST ICATION | |
 | NOTES: | SITES A6C | | | PAGE: | 12 | of | 2 |

 ## Sites_A6.D. Modeling Results Compendium

 Table of Contents Page
 Performance Measures Scorecard for Sites Reservoir Potential Beneficiaries 1
 Salmonid Population Modeling (SALMOD) 2015 38
 Salmonid Population Modeling (SALMOD) 2030 51
 Salmonid Population Modeling (SALMOD) 2070 64
 Delta Modeling DCR with Project vs DCR 2015 without Project 77
 Delta Modeling WSIP 2030 with Project vs WSIP 2030 without Project 139
 Delta Modeling WSIP 2070 with Project vs WSIP 2070 without Project 201
 Delta Operations DCR 2015 with Project vs DCR 2015 without Project 263
 Delta Operations WSIP 2030 with Project vs WSIP 2030 without Project 345
 Delta Operations WSIP 2070 with Project vs WSIP 2070 without Project 427
 Regional Deliveries DCR 2015 with Project vs without Project 509
 Regional Deliveries WSIP 2030 with Project vs without Project 517
 Regional Deliveries WSIP 2070 with Project vs without Project 525
 Project Operations DCR 2015 with Project vs DCR 2015 without Project 533
 Project Operations WSIP 2030 with Project vs without Project 589
 Project Operations WSIP 2070 with Project vs without Project 646
 River Operations DCR 2015 with Project vs DCR 2015 without Project 703
 River Operations WSIP 2030 with Project vs without Project 885
 River Operations WSIP 2070 with Project vs without Project 1,067
 Temperature Results DCR 2015 with Project vs DCR 2015 without Project. 1,249
 Temperature Results WSIP 2030 with Project vs without Project 1,329
 Temperature Results WSIP 2070 with Project vs without Project 1,409

 Note that the Delta Modeling DCR with Project vs DCR 2015 without Project (pg 77) is the basis of the Current Conditions Analysis.

 Performance Measures Scorecard for Sites Reservoir Potential Beneficiaries (non-economic measures)

 | | DCR 2015 $\underset{ }{\text { Wroject }}$ Project | DCR 2015 with Project | DCR 2015 with ProjectReservoir minus DCR 2015 without Project | | WSIP 2030 without Project | WSIP 2030 with Project | WSIP 2030 with ProjectReservoir minus WSIP 2030 without Project | | WSIP 2070 Project | WSIP 2070 with Project | WSIP 2070 with ProjectReservoir minus WSIP 2070 without Project | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
 | | | | Difference | Relative Difference | | | Difference | Relative Difference | | | Difference | Relative Difference |
 | Benefit - Water Supply | | | | | | | | | | | | |
 | SWP Contractors | | | | | | | | | | | | |
 | State Water Project (SWP) water supply reliability | | | | | | | | | | | | |
 | ${ }_{\text {SWP Contrators }}^{\text {Deliveres (WSSWP) }}$ | | | | | | | | | | | | |
 |
 | Annual (TAFY) | | | | | | | | | | | | |
 | Full Simulation Period | 2,638 | 2,638 | 0 | 0.0\% | 2,573 | 2,573 | 0 | 0.0\% | 2,398 | 2,398 | 0 | 0.0\% |
 | Dry | 2,023 | 2,023 | 0 | 0.0\% | 1,881 | 1,881 | 0 | 0.0\% | 1,737 | 1,737 | 0 | 0.0\% |
 | Critical | 1,209 | 1,209 | 0 | 0.0\% | 1,105 | 1.105 | 0 | 0.0\% | 861 | 861 | 0 | 0.0\% |
 | SWP SOD M\&I Service Contractors Allocations (WS-SWP) | | | | | | | | | | | | |
 |
 | Annual (fracion) | | | | | | | | | | | | |
 | Full Simulion Period | 0.63 | 0.63 | 0.00 | 0.0\% | 0.62 | 0.62 | 0.00 | 0.0\% | 0.57 | 0.57 | 0.00 | 0.0\% |
 | Dry | 0.48 | 0.48 | 0.00 | 0.0\% | 0.44 | 0.44 | 0.00 | 0.0\% | 0.40 | 0.40 | 0.00 | 0.0\% |
 | CVP Contractors | | | | | | | | | | | | |
 |
 | Central Valley Project (CVP) water supply reliability | | | | | | | | | | | | |
 | CVP Ag and M\&I Service, Settlement, and Exchange Contractors Deliveries (WS-CVP) | | | | | | | | | | | | |
 |
 | Annal (TAFYY) | | | | | | | | | | | | |
 | Full Simuation Period | 4,461 | 4,467 | 6 | 0.1\% | 4,286 | 4,280 | -6 | -0.1\% | 3,914 | 3,916 | 2 | 0.1\% |
 | Dry | 4,107 | 4,120 | 13 | 0.3\% | 3,855 | 3,863 | 8 | 0.2\% | ${ }^{3,683}$ | 3,657 | ${ }^{25}$ | -0.7\% |
 | Critical | 3,356 | 3,364 | 8 | 0.2\% | 3,385 | 3,412 | 27 | 0.8\% | 3,135 | 3,161 | 26 | 0.8\% |
 | CVP SOD Ag Service Contractors Allocations (WS-CVP) | | | | | | | | | | | | |
 |
 | Annua (tracion) | | | | | | | | | | | | |
 | Full Simuation Period | 0.50 | 0.50 | 0.00 | 0.5\% | 0.44 | 0.44 | 0.00 | -0.6\% | 0.29 | 0.29 | 0.00 | 0.4\% |
 | Dry | 0.33 | 0.34 | 0.00 | 1.5\% | 0.23 | 0.23 | 0.01 | 2.8\% | 0.16 | 0.16 | -0.01 | -4.0\% |
 | Critical | 0.13 | 0.13 | 0.00 | 1.9\% | 0.11 | 0.12 | 0.00 | 1.7\% | 0.04 | 0.04 | 0.00 | 1.5\% |
 | Sites deliveries to Project Participants | | | | | | | | | | | | |
 | Deliveries from Sites Reservoir to project participants | | | | | | | | | | | | |
 | Sites deliveries to Sacramento Valley Sites Project Participants (TCCA, GCID, RD 108, County of Colusa, and Western Canal WD)Delivery (WS-NDS) | | | | | | | | | | | | |
 |
 | Annual (TAFYM) | | | | | | | | | | | | |
 | Full Simulution Period | 0 | 79 | 79 | N/A | 0 | 110 | 110 | N/A | 0 | 137 | ${ }^{137}$ | NA |
 | Dry | 0 | 135 | 135 | N/A | 0 | 157 | 157 | N/A | 0 | 161 | 161 | NA |
 | Critical | 0 | 136 | 136 | N/A | 0 | 153 | 153 | N/ | 0 | 133 | ${ }_{133}$ | N/ |
 | | | | | | | | | | | | | |
 | Anvual (TAFSY) | | | | | | | | | | | | |
 | Full Simulion Period | 0 | 120 | 120 | N/ | 0 | 134 | 134 | N/ | 0 | 148 | 148 | NA |
 | Dry | 0 | 306 | 306 | N/A | 0 | 269 | 269 | N/A | 0 | 326 | 326 | N/A |
 | Critical | 0 | 181 | 181 | N/A | 0 | 238 | 238 | N/A | 0 | 186 | 186 | N/ |
 | Total Water Supply
 Total deliveries from Sites Reservoir. SWP , and CVP | | | | | | | | | | | | |
 |
 | Total Deliveries from Sites Reservoir, SWP, and CVP Delivery (WS-NDS)
 Annual (TAF/yr) | | | | | | | | | | | | |
 |
 | Full Simulution Period | 7,099 | 7,304 | 205 | 2.9\% | 6,859 | 7,097 | 238 | 3.5\% | 6,312 | 6,599 | 287 | 4.6\% |
 | | 6,130 4.565 | \% $\begin{aligned} & 6.584 \\ & 4.891\end{aligned}$ | ${ }_{326}^{454}$ | 7.4\% | 5,736 4.489 | 6,171 4008 | 435 418 | ${ }_{\text {7.6\% }}$ | 5.420 3 3 | 5.882 4.341 | 462 346 | ${ }^{8.5 \%}$ |
 | | | 4.891 | 326 | 7.1\% | 4.489 | 4.908 | | | | | | 8.7\% |

 | | DCR 2015 withoutProject Project | DCR 2015 with Project | $\begin{aligned} & \text { DCR } 2015 \text { with Project } \\ & \text { Reservoir minus DCR } 2015 \end{aligned}$without Project | | WSIP 2030 Project Project | WSIP 2030 with Project | WSIP 2030 with ProjectReservoir minus WSIP 2030 without Project | | WSIP 2070without Project | WSIP 2070 with Project | WSIP 2070 with ProjectReservoir minus WSIP 2070 without Project | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
 | | | | Difference | Relative Difference | | | Difference | Relative Difference | | | Difference | Relative Difference |
 | Shasta Lake Cold Water Pool Benefit - Ecosystem Enhancement Storage Account (EESA) Actions | | | | | | | | | | | | |
 |
 | Shasta Reservoir May storage levels, and increased coldwater pool in storage, with particular emphasis on Below Normal, Dry and Critical water year types. | | | | | | | | | | | | |
 | Trinity Lake End-of-Month Storage (SW-01) | | | | | | | | | | | | |
 |
 | Full Simulation Period | 1,835 | 1.845 | 10 | 0.6\% | 1.826 | 1.827 | 1 | 0.1\% | 1.689 | 1.693 | 5 | 0.3\% |
 | Dry | 1,646 | 1,649 | 3 | 0.2\% | 1,636 | 1,626 | -11 | -0.6\% | 1,453 | 1,471 | 17 | 1.2\% |
 | Critical | 1,119 | 1,135 | 16 | 1.4\% | 1,201 | 1,217 | 16 | 1.3\% | 1,016 | 1,024 | 9 | 0.9\% |
 | September (TAF) | | | | | | | | | | | | |
 | Full simuation Period | 1,401 | 1,397 | -4 | -0.3\% | 1,320 | 1,312 | -8 | -0.6\% | 1,152 | 1,149 | ${ }^{-3}$ | -0.3\% |
 | Dry | ${ }^{1,150}$ | 1.146 | -4 | -0.3\% | 1,104 | 1,093 | -11 | -1.0\% | 903 | 913 | 10 | 1.1\% |
 | Critical | 741 | 749 | 8 | 1.1\% | 800 | 807 | 7 | 0.9\% | 627 | 673 | 47 | 7.5\% |
 | Shasta Lake | | | | | | | | | | | | |
 | End.o-Month Storage (SW-May (TAF) | | | | | | | | | | | | |
 | Full Simuation Period | 3,952 | 4,023 | 71 | 1.8\% | 3,950 | 4,009 | 59 | 1.5\% | 3,681 | 3,761 | 80 | 2.2\% |
 | Dry | 3,730 | 3,822 | 92 | 2.5\% | 3,663 | ${ }^{3,765}$ | 101 | 2.8\% | 3,386 | 3.478 | 92 | 2.7\% |
 | Critical | ${ }^{2,486}$ | 2,744 | 258 | 10.4\% | ${ }_{2,787}$ | 2,953 | 166 | 6.0\% | ${ }_{2,157}$ | 2,428 | 271 | 12.6\% |
 | $\underset{\text { September (TAF) }}{\text { Ful Simulion Period }}$ | 2.655 | 2.779 | 124 | 4.7\% | 2.544 | 2.627 | ${ }^{83}$ | 3.3\% | 2.262 | 2.321 | 59 | 2.6\% |
 | Dry | 2,490 | 2.630 | 140 | 5.6\% | ${ }_{2}^{2,457}$ | ${ }_{2}^{2,514}$ | 57 | 2.3\% | ${ }_{2,167}^{2,262}$ | 2,224 | 56 | 2.6\% |
 | Critical | 1,343 | 1.562 | 219 | 16.3\% | 1.515 | 1.696 | 181 | 12.0\% | 971 | 1,219 | 247 | 25.5\% |

 | | DCR 2015without Project | DCR 2015 with Project | DCR 2015 with ProjectReservoir minus DCR 2015 without Project | | WSIP 2030 Project | WSIP 2030 with Project | WSIP 2030 with ProjectReservoir minus WSIP 2030 without Project | | WSIP 2070without Project | WSIP 2070 with Project | $\begin{gathered} \text { WSIP } 2070 \text { with Project } \\ \text { Reservoir minus WSIP } 2070 \\ \text { without Project } \end{gathered}$ | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
 | | | | Difference | Relative Difference | | | Difference | Relative Difference | | | Difference | Relative Difference |
 | Folsom Lake Cold Water Pool | | | | | | | | | | | | |
 | American River. | | | | | | | | | | | | |
 | Folsom Lake | | | | | | | | | | | | |
 |
 | May (TAF) | | | | | | | | | | | | |
 | Full simulation Period | 838 | 841 | 3 | 0.4\% | 769 | 764 | 4 | -0.5\% | 679 | 677 | -2 | 0.3\% |
 | Dry | 765 | 775 | 10 | 1.3\% | 699 | 692 | -8 | -1.1\% | 601 | 607 | 6 | 1.0\% |
 | Critical | 480 | 489 | , | 1.9\% | 476 | 473 | ${ }^{-3}$ | -0.6\% | 407 | 401 | 5 | -1.3\% |
 | September (TAF) | | | | | | | | | | | | |
 | Full Simulation Period | 505 | 532 | 27 | 5.3\% | 428 | 447 | 19 | 4.5\% | 377 | 396 | 19 | 5.2\% |
 | Dry | 426 | 465 | 39 | 9.1\% | ${ }^{71}$ | 410 | 38 | 10.4\% | 349 | ${ }^{373}$ | 24 | 6.7\% |
 | Critical | 265 | 278 | 13 | 4.7\% | 293 | 289 | -4 | -1.4\% | 235 | 246 | 11 | 4.8\% |
 | American River at Watt Ave Monthly Temperature (SQ-19) | | | | | | | | | | | | |
 |
 | Full Simulation Period | | | -0.9 | | 70.6 | 69.9 | ${ }^{-0.6}$ | | 71.9 | 71.2 | ${ }^{-0.7}$ | |
 | Dry | 68.0 | 67.2 | -0.8 | -1.2\% | 70.7 | 70.5 | -0.2 | -0.4\% | ${ }^{72} 2$ | 71.9 | -0.3 | -0.4\% |
 | Critical | 71.6 | 70.2 | -1.4 | -2.0\% | 73.6 | 73.1 | -0.5 | -0.7\% | 75.6 | 74.7 | -0.9 | -1.2\% |
 | Yolo Bypass Flow Improvement | | | | | | | | | | | | |
 | Increase flows in the Yolo Bypass by 400 cfs in August, September, and October to promote food production for Delta Smelt | | | | | | | | | | | | |
 | Yolo Bypass Flow | | | | | | | | | | | | |
 | | | | | | | | | | | | | |
 |
 | Full Simulation Period | 15 | | | | 17 | 56 | 39 | | 18 | 57 | 39 | 211.6\% |
 | Dry | 14 | 47 | ${ }^{33}$ | 241.6\% | 24 | 57 | ${ }^{3}$ | 139.2\% | 22 | 56 | ${ }^{3}$ | 148.3\% |
 | Critical | 14 | 23 | 9 | 64.2\% | 13 | 18 | 5 | 33.5\% | 14 | 22 | | 55.1\% |

 | | DCR 2015without Project | DCR 2015 with Project | DCR 2015 with ProjectReservoir minus DCR 2015 without Project | | WSIP 2030 Project Proje | WSIP 2030 with Project | WSIP 2030 with ProjectReservoir minus WSIP 2030 without Project | | WSIP 2070without Project | WSIP 2070 with Project | WSIP 2070 with ProjectReservoir minus WSIP 2070 without Project | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
 | | | | Difference | Relative Difference | | | Difference | Relative Differenc | | | Difference | Relative Difference |
 | Lake Oroville Cold Water Pool | | | | | | | | | | | | |
 | Improve the reliability of coldwater pool storage in Oroville Reservoir to improve water temperature suitability for juvenile steelhead and spring-run Chinook salmon over-summer rearing, and fall-run Chinook salmon spawning inthe lower Feather River from May through November. | | | | | | | | | | | | |
 | Lake Oroville
 End-of-Month Storage (SW-18) | | | | | | | | | | | | |
 |
 | Full Simulation Period | 2.814 | 2,849 | ${ }^{35}$ | 1.2\% | 2.760 | 2,786 | 26 | 0.9\% | 2,620 | 2,651 | ${ }^{31}$ | 1.2\% |
 | Dry | 2,204 | 2,304 | 100 | 4.5\% | 2,294 | 2,332 | 38 | 1.7\% | 2,167 | 2,206 | 39 | 1.8\% |
 | Critical | 1.444 | 1,502 | 58 | 4.0\% | 1,527 | 1,611 | ${ }^{83}$ | 5.5\% | 1,507 | 1,618 | 111 | 7.4\% |
 | | | | | | | | | | | | | |
 | Ful Simulion Period | 1,677 | 1,763 | ${ }^{86}$ | 5.1\% | 1,469 | 1,528 | 59 | 4.0\% | 1,287 | 1,383 | 96 | 7.4\% |
 | Dry | 1,153 | 1,258 | 104 | 9.0\% | 1,146 | 1,195 | 49 | 4.3\% | 1,140 | 1,147 | 7 | 0.6\% |
 | Critical | 898 | 967 | 69 | 7.7\% | 901 | 924 | 23 | 2.6\% | 903 | 979 | 76 | 8.4\% |
 | Stabilize Sacramento River Fall Flows | | | | | | | | | | | | |
 | Stabilize flows in the Sacramento River between Keswick Dam and the Red Bluff Diversion Dam to minimize dewatering of fall-run Chinook salmon redds. | | | | | | | | | | | | |
 | Sacramento River below KeswickMonhty | | | | | | | | | | | | |
 |
 | Noo-eep (cfis) | | | | | | | | | | | | |
 | Full Simuation Period | 7,998 | 8,336 | ${ }^{338}$ | 4.2\% | 8,454 | 8.663 | 209 | 2.5\% | 8,704 | 8,997 | ${ }^{93}$ | 1.1\% |
 | Below Normal | 5,429 | 5,809 | 380 | 7.0\% | 5,020 | 5,189 | 169 | 3.4\% | 5,764 | 5,891 | 127 | 2.2\% |
 | Dry | 4,412 | 4,747 | 334 | 7.6\% | 4,003 | 5,098 | 495 | 10.3\% | 4,253 | 4,417 | 163 | 3.3\% |
 | Critical | 4.190 | 4.027 | 163 | -3.9\% | 3,893 | 3,939 | 46 | 1.2\% | 3,944 | 4.152 | 208 | 5.3\% |
 | Level 4 Water Supply for Wiidlife Refuges | | | | | | | | | | | | |
 | Refuge level 4 water supply needs | | | | | | | | | | | | |
 | Federal Wididitif RefugesLevel Waeres Suppies from Sites (ws.cVp) | | | | | | | | | | | | |
 |
 | Level A Water Suppies foom Stes (WS-CVP)Annual (TARFII) | | | | | | | | | | | | |
 | Full Simulation Period | 0 | 37 | 37 | N/A | 0 | 35 | ${ }^{35}$ | N/A | 0 | 31 | ${ }^{31}$ | N/A |
 | Dry | 0 | 22 | 22 | N/A | 0 | ${ }^{21}$ | ${ }^{21}$ | N/A | 0 | 16 | 16 | N/A |
 | critical | 0 | 9 | 9 | N/ | 0 | 1 | 1 | N/ | 0 | 1 | | N/ |
 | Additional Water Storage | | | | | | | | | | | | |
 | Additonal Water Storage | | | | | | | | | | | | |
 | Provide additional suffrace storage across the Sacramento Valley water resources system | | | | | | | | | | | | |
 | Trinity Lake, Shasta Lake, Lake Oroville and Folsom Lake and Sites Reservoir Total Combined End-of-Month Storage (SW-01, 07, 18, 24 and OP-09) May (TAF) \square | | | | | | | | | | | | |
 |
 |
 | Ful Simulation Period | 9,439 | 11,007 | ${ }^{1,568}$ | ${ }^{16.6 \%}$ | ${ }^{9,304}$ | 10,845 | ${ }^{1,541}$ | ${ }^{16.6 \%}$ | 8.670 | ${ }^{10,173}$ | ${ }^{1,503}$ | ${ }^{17.3 \%}$ |
 | Dry | 8,346 | 9,857 | 1.511 | 18.1\% | 8,293 | 9,723 | 1,430 | 17.2\% | 7,607 | 9,037 | 1,430 | 18.8\% |
 | | | | | | | | | | | | | |
 |
 | Ful Simulation Period | ${ }^{6,338}$ | 7,566 | ${ }^{1,329}$ | ${ }^{21.3 \%}$ | 5,761 | 7,007 | ${ }^{1,246}$ | ${ }^{21.6 \%}$ | 5,077 | 6,262 | ${ }^{1,185}$ | ${ }^{23.3 \%}$ |
 | Dry | 5,218 | 6,287 | 1,068 | 20.5\% | 5,078 | 6,057 | 978 | 19.3\% | 4,560 | 5,519 | ${ }^{959}$ | 21.0\% |
 | critical | 3,247 | 3,958 | 712 | 21.9\% | 3.509 | 4.179 | 670 | 19.1\% | 2.736 | 3.449 | 713 | 26.1\% |

 Funks Reservoir to Sites Reservoir, Annual Diversion to Fill Storage
 Long-term Average and Average by Water Year Type

 | Alternative:
 vs.
 Basis of Comparison: | Annual Diversion to Fill Storage (TAF) | | |
 | :---: | :---: | :---: | :---: |
 | | DCR 2015 without Project vs. DCR 2015 with Project | WSIP 2030 without
 Project
 vs.
 WSIP 2030 with Project | WSIP 2070 withou
 Project
 vs.
 WSIP 2070 with Project |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 0 | 0 |
 | Alterative | -- | 552 | 588 |
 | Difference | -- | 552 | 588 |
 | Percent Difference ${ }^{3}$ | -- | | |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Comparison | 0 | 0 | 0 |
 | Alterative | 0 | 672 | 715 |
 | Difference | 0 | 672 | 715 |
 | Percent Difiference | | | |
 | Above Normal | | | |
 | Basis of Comparison | 0 | 0 | 0 |
 | Alterative | 0 | 572 | 717 |
 | Difference | 0 | 572 | 717 |
 | Percent Difference | | | |
 | Below Normal | | | |
 | Basis of Comparison | 0 | 0 | 0 |
 | Alterative | 0 | 528 | 607 |
 | Difference | 0 | 528 | 607 |
 | Percent Difference | | | |
 | Dry | | | |
 | Basis of Comparison | 0 | 0 | 0 |
 | Altemative | 0 | 578 | 551 |
 | Difference | 0 | 578 | 551 |
 | Percent Difference | | | |
 | Critical | | | |
 | Basis of Compaison | 0 | 0 | 0 |
 | Alterative | 0 | 281 | 236 |
 | Difference | 0 | 281 | 236 |
 | Percent Difference | | | |
 | 1 Based on the 82 -year simulation period | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | |
 | 3 Relative difference of the monthy average | | | |

 1 Based on the 82 -year simulation period

 Sites Reservoir, End of Month Storage Long-term Average and Average by Water Year Type

 | Alternative:
 vs.
 Basis of Comparison: | DCR 2015 without
 Project
 vs.
 DCR 2015 with
 Project | WSIP 2030 without
 Project
 VS.
 WSIP 2030 with Project | WSIP 2070 without
 Project
 vs.
 WSIP 2070 with Project |
 | :---: | :---: | :---: | :---: |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 0 | 0 |
 | Alterative | -- | 1,459 | 1,390 |
 | Difference | -- | 1,459 | 1,390 |
 | Percent Difference ${ }^{3}$ | -. | | |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Comparison | 0 | 0 | 0 |
 | Altemative | 0 | 1,730 | 1,710 |
 | Difference | 0 | 1,730 | 1,710 |
 | Percent Difference | | | |
 | Above Normal | | | |
 | Basis of Comparison | 0 | 0 | 0 |
 | Altemative | 0 | 1,680 | 1,622 |
 | Difference | 0 | 1,680 | 1,622 |
 | Percent Difference | | | |
 | Below Normal | | | |
 | Basis of Comparison | 0 | 0 | 0 |
 | Alterative | 0 | 1,504 | 1,423 |
 | Difference | 0 | 1,504 | 1,423 |
 | Percent Difiference | | | |
 | Dry | | | |
 | Basis of Comparison | 0 | 0 | 0 |
 | Alternative | 0 | 1,309 | 1,276 |
 | Difference | 0 | 1,309 | 1,276 |
 | Percent Difference | | | |
 | Critical | | | |
 | Basis of Comparison | 0 | 0 | 0 |
 | Alterative | 0 | 810 | 637 |
 | Difference | 0 | 810 | 637 |
 | Percent Difiference | | | |
 | 1 Based on the 82 -year simulation period | | | |
 | 2 As defined by the Sacramento Valley $40-30-30$ Index Water Year Hydrologic Classificaion (SWRCB D-1641, 1999) | | | |
 | 3 Relative difference of the monthly average | | | |

 1 Based on the 82 -year simulation period

 Sites Reservoir, End of Month Storage Long-term Average and Average by Water Year Type

 | Alternative:
 vs.
 Basis of Comparison: | DCR 2015 without Project vs. DCR 2015 with Project | WSIP 2030 without Project vs. WSIP 2030 with Project | WSIP 2070 without Project vs. WSIP 2070 with Project |
 | :---: | :---: | :---: | :---: |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 0 | 0 |
 | Alterative | -- | 1,093 | 1,013 |
 | Difference | -- | 1,093 | 1,013 |
 | Percent Difiference ${ }^{3}$ | -- | | |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Comparison | 0 | 0 | 0 |
 | Alterative | 0 | 1,552 | 1,436 |
 | Difference | 0 | 1,552 | 1,436 |
 | Percent Difiference | | | |
 | Above Normal | | | |
 | Basis of Comparison | 0 | 0 | 0 |
 | Alterative | 0 | 1,200 | 1,107 |
 | Difference | 0 | 1,200 | 1,107 |
 | Percent Difference | | | |
 | Below Normal | | | |
 | Basis of Comparison | 0 | 0 | 0 |
 | Alterative | 0 | 1,019 | 948 |
 | Difference | 0 | 1,019 | 948 |
 | Percent Difference | | | |
 | Dry | | | |
 | Basis of Comparison | 0 | 0 | 0 |
 | Alterative | 0 | 845 | 862 |
 | Difference | 0 | 845 | 862 |
 | Percent Difference | | | |
 | Critical | | | |
 | Basis of Comparison | 0 | 0 | 0 |
 | Alterative | 0 | 464 | 332 |
 | Difference | 0 | 464 | 332 |
 | Percent Difference | | | |
 | 1 Based on the 82 -year simulation period | | | |
 | 2 As defined by the Sacramento Valley $40-30-30$ Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | |
 | 3 Relative difference of the monthly average | | | |

 1 Based on the 82 -year simulation period

 X2, Monthly Position
 Long-term Average and Average by Water Year Type July through August Average
 DCR 2015 without WSIP 2030 without WSIP 2070 without Project Project Project

 | Alternative:
 vs.
 Basis of Comparison: | | | WSIP 2070 withou Project vs. WSIP 2070 with Project |
 | :---: | :---: | :---: | :---: |
 | | DCR | WSIP 2030 without | |
 | | Project | Project | |
 | | vs. | vs. | |
 | | DCR 2015 with | WSIP 2030 with | |
 | | Project | Project | |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 87 | 88 |
 | Alterative | -- | 87 | 87 |
 | Difference | -- | 0 | 0 |
 | Percent Difference ${ }^{3}$ | -- | 0.0\% | -0.4\% |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Comparison | -- | 84 | 85 |
 | Altemative | -- | 84 | 84 |
 | Difference | -- | 0 | 0 |
 | Percent Difference | -- | 0.0\% | -0.2\% |
 | Above Normal | | | |
 | Basis of Comparison | -- | 84 | 84 |
 | Altemative | -- | 84 | 84 |
 | Difference | -- | 0 | 0 |
 | Percent Difference | -- | -0.1\% | -0.5\% |
 | Below Normal | | | |
 | Basis of Comparison | -- | 86 | 87 |
 | Altemative | -- | 86 | 86 |
 | Difference | -- | 0 | 0 |
 | Percent Difiference | -- | 0.0\% | -0.3\% |
 | Dry | | | |
 | Basis of Comparison | -- | 90 | 91 |
 | Atemative | -- | 90 | 90 |
 | Difference | -- | 0 | -1 |
 | Percent Difference | -- | 0.0\% | -0.7\% |
 | Critical | | | |
 | Basis of Comparison | -- | 93 | 93 |
 | Altemative | -- | 92 | 93 |
 | Difference | -- | 0 | 0 |
 | Percent Difference | -- | 0.0\% | -0.5\% |
 | 1 Based on the 82 -year simulation period | | | |
 | 2 As defined by the Sacramento Valley $40.30 \cdot 30$ Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | |
 | 3 Relative difference of the monthly verage | | | |

 Sacramento River at Bonnyview Bridge, July through September Average Temperature Long-term Average and Average by Water Year Type

 Sacramento River at Bonnyview, Monthly Temperature - July through September Average

 1 Based on the 82 -year simulation period

 Sacramento River at Balls Ferry, July through September Average Temperature
 Long-term Average and Average by Water Year Type

 | Alternative:
 vs.
 Basis of Comparison: | July through September Average Temperature | | |
 | :---: | :---: | :---: | :---: |
 | | DCR 2015 without
 Project
 vs.
 DCR 2015 with Project | WSIP 2030 without
 Project
 vs.
 WSIP 2030 with Project | WSIP 2070 without
 Project
 vs.
 WSIP 2070 with Project |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 55 | 56 |
 | Alterative | -- | 55 | 56 |
 | Difference | -- | 0 | 0 |
 | Percent Difference ${ }^{3}$ | -- | -0.1\% | -0.9\% |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Comparison | 0 | 54 | 55 |
 | Alternaive | 0 | 54 | 55 |
 | Difference | 0 | 0 | 0 |
 | Percent Difference | | 0.4\% | -0.1\% |
 | Above Normal | | | |
 | Basis of Comparison | 0 | 54 | 55 |
 | Altemative | 0 | 54 | 55 |
 | Difference | 0 | 0 | 0 |
 | Percent Difference | | 0.3\% | 0.1\% |
 | Below Normal | | | |
 | Basis of Comparison | 0 | 55 | 56 |
 | Alterative | 0 | 55 | 56 |
 | Difference | 0 | 0 | -1 |
 | Percent Difference | | 0.0\% | -1.0\% |
 | Dry | | | |
 | Basis of Comparison | 0 | 56 | 57 |
 | Altemative | 0 | 56 | 56 |
 | Difference | 0 | 0 | -1 |
 | Percent Difference | | -0.4\% | -1.0\% |
 | Critical | | | |
 | Basis of Comparison | 0 | 58 | 62 |
 | Altemative | 0 | 57 | 60 |
 | Difference | 0 | -1 | -2 |
 | Percent Difference | | -1.1\% | -2.7\% |
 | 1 Based on the 82 -year simulation period | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | |

 Sacramento River at Jellys Ferry, July through September Average Temperature
 Long-term Average and Average by Water Year Type

 | Alternative:
 vs.
 Basis of Comparison: | July through September Average Temperature | | |
 | :---: | :---: | :---: | :---: |
 | | DCR 2015 without
 Project
 vs.
 DCR 2015 with Project | WSIP 2030 without
 Project
 vs.
 WSIP 2030 with Project | WSIP 2070 without
 Project
 vs.
 WSIP 2070 with Project |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 57 | 58 |
 | Alterative | -- | 57 | 57 |
 | Difference | -- | 0 | -1 |
 | Percent Difference ${ }^{3}$ | -- | -0.1\% | -0.9\% |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Comparison | 0 | 55 | 56 |
 | Alternaive | 0 | 56 | 56 |
 | Difference | 0 | 0 | 0 |
 | Percent Difference | | 0.3\% | -0.2\% |
 | Above Normal | | | |
 | Basis of Comparison | 0 | 55 | 56 |
 | Alterative | 0 | 56 | 56 |
 | Difference | 0 | 0 | 0 |
 | Percent Difference | | 0.3\% | 0.1\% |
 | Below Normal | | | |
 | Basis of Comparison | 0 | 56 | 58 |
 | Atemative | 0 | 56 | 57 |
 | Difference | 0 | 0 | -1 |
 | Percent Difference | | -0.1\% | -1.2\% |
 | Dry | | | |
 | Basis of Comparison | 0 | 57 | 58 |
 | Altemative | 0 | 57 | 58 |
 | Difference | 0 | 0 | -1 |
 | Percent Difference | | -0.5\% | -1.1\% |
 | Critical | | | |
 | Basis of Comparison | 0 | 59 | 63 |
 | Altemative | 0 | 59 | 61 |
 | Difference | 0 | -1 | -2 |
 | Percent Difference | | -1.0\% | -2.5\% |
 | 1 Based on the 82 -year simulation period | | | |
 | 2 As defined by the Sacramento Valley $40-30$-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | |

 Sacramento River at Jellys Ferry, Monthly Temperature - July through September Average

 Sacramento River at Bend Bridge, July through September Average Temperature
 Long-term Average and Average by Water Year Type

 | Alternative:
 vs.
 Basis of Comparison: | July through September Average Temperature | | |
 | :---: | :---: | :---: | :---: |
 | | DCR 2015 without Project vs. DCR 2015 with Project | WSIP 2030 without
 Project
 vs.
 WSIP 2030 with Project | WSIP 2070 without Project vs. WSIP 2070 with Project |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 58 | 59 |
 | Alterative | -- | 58 | 58 |
 | Difference | -- | 0 | -1 |
 | Percent Difference ${ }^{3}$ | -- | -0.2\% | -0.9\% |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Comparison | 0 | 56 | 57 |
 | Altemative | 0 | 57 | 57 |
 | Difference | 0 | 0 | 0 |
 | Percent Difference | | 0.3\% | -0.3\% |
 | Above Normal | | | |
 | Basis of Comparison | 0 | 56 | 57 |
 | Altemative | 0 | 57 | 57 |
 | Difference | 0 | 0 | 0 |
 | Percent Difference | | 0.4\% | 0.1\% |
 | Below Normal | | | |
 | Basis of Comparison | 0 | 57 | 59 |
 | Altemative | 0 | 57 | 58 |
 | Difference | 0 | 0 | -1 |
 | Percent Difference | | -0.1\% | -1.2\% |
 | Dry | | | |
 | Basis of Comparison | 0 | 58 | 59 |
 | Altemative | 0 | 58 | 59 |
 | Difference | 0 | 0 | -1 |
 | Percent ifiference | | -0.6\% | -1.1\% |
 | Critical | | | |
 | Basis of Comparison | 0 | 60 | 64 |
 | Altemative | 0 | 60 | 62 |
 | Difference | 0 | -1 | -1 |
 | Percent Difiference | | -1.0\% | -2.3\% |
 | 1 Based on the 82 -year simulation period | | | |
 | 2 As defined by the Sacramento Valley 40 -30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | |
 | 3 Relative difference of the monthly average | | | |

 Sacramento River at Bend Bridge, Monthly Temperature - July through September Average

 American River at Watt Avenue, July through September Average Temperature
 Long-term Average and Average by Water Year Type

 1 Based on the 82 -year simulation period

 Clifton Court Forebay, Monthly EC
 Long-term Average and Average by Water Year Type

 | Long-erm Average and Average by Water Year Type | | | |
 | :---: | :---: | :---: | :---: |
 | | August Through October Monthly EC (UMHOS/CM) | | |
 | $\begin{gathered} \text { Alternative: } \\ \text { vs. } \\ \text { Basis of Comparison: } \end{gathered}$ | DCR 2015 without
 Project
 vs.
 DCR 2015 with Project | WSIP 2030 without
 Project
 vs.
 WSIP 2030 with Project | WSIP 2070 without
 Project
 vs.
 WSIP 2070 with Project |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 378 | 384 |
 | Aterative | -- | 379 | 382 |
 | Difference | -- | 1 | -2 |
 | Percent Difference ${ }^{3}$ | -- | 0.2\% | -0.5\% |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Comparison | -- | 260 | 261 |
 | Aternaive | -- | 260 | 261 |
 | Difference | -- | 0 | 0 |
 | Percent Difference | -- | 0.1\% | 0.0\% |
 | Above Normal | | | |
 | Basis of Comparison | -- | 336 | 329 |
 | Atemative | -- | 336 | 329 |
 | Difference | -- | 0 | 0 |
 | Percent Difference | -- | 0.1\% | 0.0\% |
 | Below Normal | | | |
 | Basis of Comparison | -- | 382 | 382 |
 | Aternaive | -- | 382 | 379 |
 | Difference | -- | 0 | -3 |
 | Percent Difference | -- | 0.0\% | -0.8\% |
 | Dry | | | |
 | Basis of Comparison | -- | 464 | 467 |
 | Atemative | -- | 466 | 465 |
 | Difference | -- | 3 | -3 |
 | Percent Difference | -- | 0.5\% | -0.6\% |
 | Critical | | | |
 | Basis of Comparison | -- | 543 | 563 |
 | Atternaive | -- | 545 | 558 |
 | Difference | -- | 2 | -5 |
 | Percent Difference | -- | 0.3\% | -0.8\% |
 | 1 Based on the 82 -year simulation period | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classificaion (SWRCB D-1641, 1999) | | | |
 | 3 Relative difference of the monthy | | | |

 1 Based on the 82 -year simulation period

 Delta Mendota Canal at Jones Pumping Plant, Monthly EC

 | Delta Mendota Canal at Jones Pumping Plant, Monthly EC Long-term Average and Average by Water Year Type | | | |
 | :---: | :---: | :---: | :---: |
 | Alternative:
 vs.
 Basis of Comparison: | August Through October
 Monthly EC (UMHOS/CM) | | |
 | | | | |
 | | DCR 2015 without | WSIP 2030 without | WSIP 2070 without |
 | | Project | Project | Project |
 | | vs. | vs. | vs. |
 | | DCR 2015 with | WSIP 2030 with | WSIP 2070 with |
 | | Project | Project | Project |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 403 | 410 |
 | Alterative | -- | 403 | 411 |
 | Difference | -- | 1 | 1 |
 | Percent Difference ${ }^{3}$ | -- | 0.2\% | 0.2\% |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Comparison | -- | 274 | 285 |
 | Alterative | -- | 274 | 285 |
 | Difference | -- | 0 | 0 |
 | Percent Difference | -- | 0.1\% | 0.1\% |
 | Above Normal | | | |
 | Basis of Comparison | -- | 364 | 368 |
 | Alterative | -- | 364 | 368 |
 | Difference | -- | 0 | 0 |
 | Percent Difference | -- | 0.1\% | 0.0\% |
 | Below Normal | | | |
 | Basis of Comparison | -- | 410 | 412 |
 | Alterative | -- | 410 | 412 |
 | Difference | -- | 0 | 0 |
 | Percent Difference | -- | 0.0\% | 0.0\% |
 | Dry | | | |
 | Basis of Comparison | -- | 505 | 497 |
 | Altemative | -- | 506 | 499 |
 | Difference | -- | 1 | 2 |
 | Percent Difference | -- | 0.3\% | 0.5\% |
 | Critical | | | |
 | Basis of Comparison | -- | 563 | 574 |
 | Alternative | -- | 566 | 574 |
 | Difference | -- | 3 | 1 |
 | Percent Difference | - | 0.6\% | 0.1\% |
 | 1 Based on the 82 -vear simulation period | | | |
 | 2 As defined by the Sacramento Valley 40 -30.30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | |
 | 3 Relative difference of the monthly average | | | |

 Delta Mendota Canal at Jones Pumping Plant, Monthly EC - August Through October

 1 Based on the 82 -year simulation period

 Trinity River below Lewiston Dam, July through September Average Temperature
 Long-term Average and Average by Water Year Type

 Clear Creek at Igo, July through September Average Temperature
 Long-term Average and Average by Water Year Type

 | Alternative:
 vs.
 Basis of Comparison: | July through September Average Temperature | | |
 | :---: | :---: | :---: | :---: |
 | | DCR 2015 without Project vs. DCR 2015 with Project | WSIP 2030 without Project vs. WSIP 2030 with Project | WSIP 2070 without
 Project
 vs.
 WSIP 2070 with Project |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 55 | 56 |
 | Altemative | -- | 55 | 56 |
 | Difference | -- | 0 | 0 |
 | Percent Difference ${ }^{3}$ | -- | -0.2\% | 0.1\% |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Comparison | 0 | 54 | 55 |
 | Alterative | 0 | 54 | 55 |
 | Difference | 0 | 0 | 0 |
 | Percent Difference | | -0.2\% | 0.7\% |
 | Above Normal | | | |
 | Basis of Comparison | 0 | 54 | 55 |
 | Altemative | 0 | 54 | 55 |
 | Difference | 0 | 0 | 0 |
 | Percent Difference | | -0.2\% | -0.4\% |
 | Below Normal | | | |
 | Basis of Comparison | 0 | 55 | 55 |
 | Altemative | 0 | 54 | 55 |
 | Difference | 0 | 0 | 0 |
 | Percent ifiference | | -0.2\% | 0.4\% |
 | Dry | | | |
 | Basis of Comparison | 0 | 55 | 56 |
 | Altemative | 0 | 55 | 56 |
 | Difference | 0 | 0 | 0 |
 | Percent Difference | | -0.2\% | 0.1\% |
 | Critical | | | |
 | Basis of Comparison | 0 | 57 | 58 |
 | Altemative | 0 | 57 | 58 |
 | Difference | 0 | 0 | 0 |
 | Percent Difference | | -0.2\% | -0.4\% |
 | 1 Based on the 82 -year simulation period | | | |
 | 2 As defined by the Sacramento Valley 40 -30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | |
 | 3 Relative difference of the monthly average | | | |

 Clear Creek at Igo, Monthly Temperature - July through September Average

 1 Based on the 82 -year simulation period

 Trinity Lake, End of Month Storage Long-term Average and Average by Water Year Type

 | Alternative:
 vs.
 Basis of Comparison: | DCR 2015 without
 Project
 vs.
 DCR 2015 with Project | WSIP 2030 without
 Project
 vs.
 WSIP 2030 with Project | WSIP 2070 without
 Project
 vs.
 WSIP 2070 with Project |
 | :---: | :---: | :---: | :---: |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Compaison | -- | 1,826 | 1,689 |
 | Alterative | -- | 1,827 | 1,693 |
 | Difference | -- | 1 | 5 |
 | Percent Difference ${ }^{3}$ | -- | 0.1\% | 0.3\% |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Compaison | 0 | 2,167 | 2,058 |
 | Alterative | 0 | 2,172 | 2,056 |
 | Difference | 0 | 5 | -3 |
 | Percent Difference | | 0.2\% | -0.1\% |
 | Above Normal | | | |
 | Basis of Compaison | 0 | 2,057 | 1,968 |
 | Alterative | 0 | 2,067 | 1,975 |
 | Difference | 0 | 9 | 8 |
 | Percent Difference | | 0.5\% | 0.4\% |
 | Below Normal | | | |
 | Basis of Compaison | 0 | 1,781 | 1,697 |
 | Alterative | 0 | 1,770 | 1,691 |
 | Difference | 0 | -11 | -7 |
 | Percent Difference | | -0.6\% | -0.4\% |
 | Dry | | | |
 | Basis of Compaison | 0 | 1,636 | 1,453 |
 | Alterative | 0 | 1,626 | 1,471 |
 | Difference | 0 | -11 | 17 |
 | Percent Difference | | -0.6\% | 1.2\% |
 | Critical | | | |
 | Basis of Compaison | 0 | 1,201 | 1,016 |
 | Alterative | 0 | 1,217 | 1,024 |
 | Difference | 0 | 16 | 9 |
 | Percent Difference | | 1.3\% | 0.9\% |
 | 1 Based on the 82 -vear simulation period | | | |
 | 2 As defined by the Sacramento Valley $40-30$-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | |
 | 3 Relative difference of the monthy average | | | |

 1 Based on the 82 -year simulation period

 Trinity Lake, End of Month Storage Long-term Average and Average by Water Year Type

 | Alternative:
 vs.
 Basis of Comparison: | DCR 2015 without
 Project
 vs.
 DCR 2015 with
 Project | WSIP 2030 without
 Project
 vS.
 WSIP 2030 with Project | WSIP 2070 withou
 Project
 vs.
 WSIP 2070 with Project |
 | :---: | :---: | :---: | :---: |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 1,320 | 1,152 |
 | Alterative | -- | 1,312 | 1,149 |
 | Difference | -- | -8 | -3 |
 | Percent Difiference ${ }^{3}$ | -- | -0.6\% | -0.3\% |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Comparison | 0 | 1,626 | 1,456 |
 | Alterative | 0 | 1,608 | 1,434 |
 | Difference | 0 | -18 | -22 |
 | Percent Difiference | | -1.1\% | -1.5\% |
 | Above Normal | | | |
 | Basis of Comparison | 0 | 1,511 | 1,420 |
 | Alterative | 0 | 1,527 | 1,395 |
 | Difference | 0 | 16 | -25 |
 | Percent Difference | | 1.0\% | -1.8\% |
 | Below Normal | | | |
 | Basis of Comparison | 0 | 1,306 | 1,181 |
 | Alterative | 0 | 1,289 | 1,170 |
 | Difference | 0 | -17 | -11 |
 | Percent Difference | | -1.3\% | -0.9\% |
 | Dry | | | |
 | Basis of Comparison | 0 | 1,104 | 903 |
 | Alterative | 0 | 1,093 | 913 |
 | Difference | 0 | -11 | 10 |
 | Percent Difference | | -1.0\% | 1.1\% |
 | Critical | | | |
 | Basis of Comparison | 0 | 800 | 627 |
 | Alterative | 0 | 807 | 673 |
 | Difference | 0 | 7 | 47 |
 | Percent Difiference | | 0.9\% | 7.5\% |
 | 1 Based on the 82 -year simulation period | | | |
 | 2 As defined by the Sacramento Valley $40-30-30$ Index Water Year Hydrologic Classificaion (SWRCB D-1641, 1999) | | | |
 | 3 Relative difference of the monthy average | | | |

 1 Based on the 82 -year simulation period

 Trinity Lake, Shasta Lake, Lake Oroville, Folsom Lake and Sites Reservoir, End of Month Storage Long-term Average and Average by Water Year Type

 | Alternative:
 vs. Basis of Comparison: | DCR 2015 without Project vs. DCR 2015 with Project | WSIP 2030 without
 Project
 VS.
 WSIP 2030 with Project | WSIP 2070 without
 Project
 vS.
 WSIP 2070 with Project |
 | :---: | :---: | :---: | :---: |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 9,304 | 8,670 |
 | Alterative | -- | 10,845 | 10,173 |
 | Difference | -- | 1,541 | 1,503 |
 | Percent Difference ${ }^{3}$ | -- | 16.6\% | 17.3\% |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Compatison | 0 | 10,835 | 10,353 |
 | Altemative | 0 | 12,585 | 12,070 |
 | Difference | 0 | 1,750 | 1,718 |
 | Percent Difference | | 16.1\% | 16.6\% |
 | Above Normal | | | |
 | Basis of Comparison | 0 | 10,537 | 10,173 |
 | Altemative | 0 | 12,266 | 11,815 |
 | Difference | 0 | 1,729 | 1,642 |
 | Percent Difference | | 16.4\% | 16.1\% |
 | Below Normal | | | |
 | Basis of Comparison | 0 | 9,474 | 8,974 |
 | Alternative | 0 | 11,011 | 10,488 |
 | Difference | 0 | 1,538 | 1,514 |
 | Percent Difference | | 16.2\% | 16.9\% |
 | Dry | | | |
 | Basis of Compaison | 0 | 8,293 | 7,607 |
 | Altemative | 0 | 9,723 | 9,037 |
 | Difference | 0 | 1,430 | 1,430 |
 | Percent ifiference | | 17.2\% | 18.8\% |
 | Critical | | | |
 | Basis of Compaison | 0 | 5,991 | 5,087 |
 | Altemative | 0 | 7,063 | 6,109 |
 | Difference | 0 | 1,072 | 1,022 |
 | Percent ifiference | | 17.9\% | 20.1\% |
 | 1 Based on the 82 -year simulation period | | | |
 | 2 As defined by the Sacramento Valley $40.30 \cdot 30$ Index Water Year Hyyrologic Classification (SWRCB D.1641, 1999) | | | |
 | 3 Relative difference of the monthly average | | | |

 Trinity Lake, Shasta Lake, Lake Oroville, Folsom Lake and Sites Reservoir, End of Month Storage - May

 1 Based on the 82 -year simulation period

 Trinity Lake, Shasta Lake, Lake Oroville, Folsom Lake and Sites Reservoir, End of Month Storage
 Long-term Average and Average by Water Year Type

 | Alternative:
 vs.
 Basis of Comparison: | DCR 2015 without
 Project
 vs.
 DCR 2015 with Project | WSIP 2030 without
 Project
 vs.
 WSIP 2030 with Project | WSIP 2070 withou
 Project
 vs.
 WSIP 2070 with Project |
 | :---: | :---: | :---: | :---: |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 5,761 | 5,077 |
 | Alternative | -- | 7,007 | 6,262 |
 | Difference | -- | 1,246 | 1,185 |
 | Percent Difference ${ }^{3}$ | -- | 21.6\% | 23.3\% |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Comparison | 0 | 6,910 | 6,019 |
 | Altemative | 0 | 8,505 | 7,541 |
 | Difference | 0 | 1,596 | 1,522 |
 | Percent Difference | | 23.1\% | 25.3\% |
 | Above Normal | | | |
 | Basis of Compaison | 0 | 6,424 | 5,917 |
 | Altemative | 0 | 7,931 | 7,299 |
 | Difference | 0 | 1,507 | 1,381 |
 | Percent Difference | | 23.5\% | 23.3\% |
 | Below Normal | | | |
 | Basis of Comparison | 0 | 5,837 | 5,440 |
 | Altemative | 0 | 7,042 | 6,565 |
 | Difference | 0 | 1,205 | 1,125 |
 | Percent Difference | | 20.6\% | 20.7\% |
 | Dry | | | |
 | Basis of Comparison | 0 | 5,078 | 4,560 |
 | Altemative | 0 | 6,057 | 5,519 |
 | Difference | 0 | 978 | 959 |
 | Percent Difference | | 19.3\% | 21.0\% |
 | Critical | | | |
 | Basis of Comparison | 0 | 3,509 | 2,736 |
 | Altemative | 0 | 4,179 | 3,449 |
 | Difference | 0 | 670 | 713 |
 | Percent Difference | | 19.1\% | 26.1\% |
 | 1 Based on the 82 -year simulation period | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | |
 | 3 Relative difference of the monthy average | | | |

 Trinity Lake, Shasta Lake, Lake Oroville, Folsom Lake and Sites Reservoir, End of Month Storage - September

 Shasta Lake, End of Month Storage Long-term Average and Average by Water Year Type

 | Alternative:
 vs.
 Basis of Comparison: | DCR 2015 without Project vs. DCR 2015 with Project | WSIP 2030 without Project vs. WSIP 2030 with Project | WSIP 2070 without Project vs. WSIP 2070 with Project |
 | :---: | :---: | :---: | :---: |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 3,950 | 3,681 |
 | Alterative | -- | 4,009 | 3,761 |
 | Difference | -- | 59 | 80 |
 | Percent Difiference ${ }^{3}$ | -- | 1.5\% | 2.2\% |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Comparison | 0 | 4,387 | 4,228 |
 | Altemative | 0 | 4,405 | 4,242 |
 | Difference | 0 | 18 | 14 |
 | Percent Difference | | 0.4\% | 0.3\% |
 | Above Normal | | | |
 | Basis of Comparison | 0 | 4,322 | 4,271 |
 | Altemative | 0 | 4,359 | 4,289 |
 | Difference | 0 | 37 | 18 |
 | Percent Difference | | 0.9\% | 0.4\% |
 | Below Normal | | | |
 | Basis of Comparison | 0 | 4,133 | 3,949 |
 | Altemative | 0 | 4,155 | 4,018 |
 | Difference | 0 | 22 | 69 |
 | Percent Difference | | 0.5\% | 1.8\% |
 | Dry | | | |
 | Basis of Comparison | 0 | 3,663 | 3,386 |
 | Alterative | 0 | 3,765 | 3,478 |
 | Difference | 0 | 101 | 92 |
 | Percent Difference | | 2.8\% | 2.7\% |
 | Critical | | | |
 | Basis of Comparison | 0 | 2,787 | 2,157 |
 | Aternaive | 0 | 2,953 | 2,428 |
 | Difference | 0 | 166 | 271 |
 | Percent Difiference | | 6.0\% | 12.6\% |
 | 1 Based on the 82 -year simulation period | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classificaion (SWRCE D-1641, 1999) | | | |
 | 3 Relative difference of the monthly average | | | |

 1 Based on the 82 -year simulation period

 Shasta Lake, End of Month Storage Long-term Average and Average by Water Year Type

 | Alternative:
 vs.
 Basis of Comparison: | DCR 2015 without
 Project
 vs.
 DCR 2015 with Project | WSIP 2030 without
 Project
 vs.
 WSIP 2030 with Project | WSIP 2070 without
 Project
 vs.
 WSIP 2070 with Project |
 | :---: | :---: | :---: | :---: |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 2,544 | 2,262 |
 | Alterative | -- | 2,627 | 2,321 |
 | Difference | -- | 83 | 59 |
 | Percent Difference ${ }^{3}$ | .- | 3.3\% | 2.6\% |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Comparison | 0 | 2,837 | 2,552 |
 | Alterative | 0 | 2,855 | 2,544 |
 | Difference | 0 | 18 | -8 |
 | Percent Difference | | 0.6\% | -0.3\% |
 | Above Normal | | | |
 | Basis of Compaison | 0 | 2,758 | 2,686 |
 | Altemative | 0 | 2,940 | 2,789 |
 | Difference | 0 | 182 | 104 |
 | Percent Difference | | 6.6\% | 3.9\% |
 | Below Normal | | | |
 | Basis of Compaison | 0 | 2,771 | 2,658 |
 | Alternaive | 0 | 2,836 | 2,646 |
 | Difference | 0 | 65 | -13 |
 | Percent Difiference | | 2.3\% | -0.5\% |
 | Dry | | | |
 | Basis of Comparison | 0 | 2,457 | 2,167 |
 | Alterative | 0 | 2,514 | 2,224 |
 | Difference | 0 | 57 | 56 |
 | Percent Difference | | 2.3\% | 2.6\% |
 | Critical | | | |
 | Basis of Compaison | 0 | 1,515 | 971 |
 | Altemative | 0 | 1,696 | 1,219 |
 | Difference | 0 | 181 | 247 |
 | Percent Difiference | | 12.0\% | 25.5\% |
 | 1 Based on the 82 -vear simulation period | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | |
 | 3 Relative difference of the monthy average | | | |

 1 Based on the 82 -year simulation period

 Sacramento River below Keswick Reservoir, Average Flow, Nov-Fel
 Long-term Average and Average by Water Year Type

 | verage and Average by Water Year Type | | | |
 | :---: | :---: | :---: | :---: |
 | Alternative:
 vs.
 Basis of Comparison: | Average Flow, Nov-Feb (CFS) | | |
 | | DCR 2015 without Project | WSIP 2030 without Project | WSIP 2070 without Project |
 | | vs. | vs. | vs. |
 | | DCR 2015 with | WSIP 2030 with | WSIP 2070 with |
 | | Project | Project | Project |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | 7,998 | 8,454 | 8,704 |
 | Alterative | 8,336 | 8,663 | 8,797 |
 | Difference | 338 | 209 | 93 |
 | Percent Difference ${ }^{3}$ | 4.2\% | 2.5\% | 1.1\% |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Comparison | 13,323 | 15,060 | 15,391 |
 | Alterative | 13,911 | 15,293 | 15,366 |
 | Difference | 588 | 233 | -25 |
 | Percent Difference | 4.4\% | 1.5\% | -0.2\% |
 | Above Normal | | | |
 | Basis of Comparison | 8,641 | 9,252 | 9,662 |
 | Altemative | 8,895 | 9,247 | 9,737 |
 | Difference | 254 | -5 | 75 |
 | Percent Difference | 2.9\% | -0.1\% | 0.8\% |
 | Below Normal | | | |
 | Basis of Comparison | 5,429 | 5,020 | 5,764 |
 | Altemative | 5,809 | 5,189 | 5,891 |
 | Difference | 380 | 169 | 127 |
 | Percent Difference | 7.0\% | 3.4\% | 2.2\% |
 | Dry | | | |
 | Basis of Comparison | 4,412 | 4,603 | 4,253 |
 | Altemative | 4,747 | 5,098 | 4,417 |
 | Difference | 334 | 495 | 163 |
 | Percent Difference | 7.6\% | 10.8\% | 3.8\% |
 | Critical | | | |
 | Basis of Comparison | 4,190 | 3,893 | 3,944 |
 | Altemative | 4,027 | 3,939 | 4,152 |
 | Difference | -163 | 46 | 208 |
 | Percent Difference | -3.9\% | 1.2\% | 5.3\% |
 | 1 Based on the 82 -year simulation period | | | |
 | 2 As defined by the Sacramento Valley $40-30-30$ Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | |
 | 3 Relative difference of the monthly average | | | |

 1 Based on the 82 -year simulation period

 Lake Oroville, End of Month Storage Long-term Average and Average by Water Year Type

 1 Based on the 82 -year simulation period

 Lake Oroville, End of Month Storage Long-term Average and Average by Water Year Type

 | Alternative:
 vs.
 Basis of Comparison: | DCR 2015 without Project vs. DCR 2015 with Project | WSIP 2030 without
 Project
 vs.
 WSIP 2030 with Project | WSIP 2070 withou
 Project
 vs.
 WSIP 2070 with Project |
 | :---: | :---: | :---: | :---: |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 1,469 | 1,287 |
 | Altemative | -- | 1,528 | 1,383 |
 | Difference | -- | 59 | 96 |
 | Percent Difference ${ }^{3}$ | -- | 4.0\% | 7.4\% |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Comparison | 0 | 1,938 | 1,585 |
 | Alterative | 0 | 1,974 | 1,695 |
 | Difference | 0 | 36 | 110 |
 | Percent Difiference | | 1.8\% | 6.9\% |
 | Above Normal | | | |
 | Basis of Comparison | 0 | 1,697 | 1,392 |
 | Alterative | 0 | 1,778 | 1,549 |
 | Difference | 0 | 81 | 157 |
 | Percent Difference | | 4.8\% | 11.3\% |
 | Below Normal | | | |
 | Basis of Comparison | 0 | 1,323 | 1,184 |
 | Alterative | 0 | 1,435 | 1,353 |
 | Difference | 0 | 112 | 170 |
 | Percent Difiference | | 8.4\% | 14.3\% |
 | Dry | | | |
 | Basis of Comparison | 0 | 1,146 | 1,140 |
 | Alterative | 0 | 1,195 | 1,147 |
 | Difference | 0 | 49 | 7 |
 | Percent Difference | | 4.3\% | 0.6\% |
 | Critical | | | |
 | Basis of Comparison | 0 | 901 | 903 |
 | Alterative | 0 | 924 | 979 |
 | Difference | 0 | 23 | 76 |
 | Percent Difiference | | 2.6\% | 8.4\% |
 | 1 Based on the 82 -year simulation period | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | |
 | 3 Relative difference of the monthy average | | | |

 Folsom Lake, End of Month Storage Long-term Average and Average by Water Year Type

 | Alternative:
 vs.
 Basis of Comparison: | DCR 2015 without Project vs. DCR 2015 with Project | WSIP 2030 without Project vs. WSIP 2030 with Project | WSIP 2070 without Project vs. WSIP 2070 with Project |
 | :---: | :---: | :---: | :---: |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Compaison | -- | 769 | 679 |
 | Alterative | -- | 764 | 677 |
 | Difference | -- | -4 | -2 |
 | Percent Difference ${ }^{3}$ | -- | -0.5\% | -0.3\% |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Bais of Comparison | 0 | 898 | 808 |
 | Alterative | 0 | 896 | 805 |
 | Difference | 0 | -2 | -3 |
 | Percent Difiterence | | -0.2\% | -0.4\% |
 | Above Normal | | | |
 | Basis of Compaison | 0 | 844 | 768 |
 | Alterative | 0 | 841 | 764 |
 | Difference | 0 | -3 | -4 |
 | Percent Difference | | -0.4\% | -0.6\% |
 | Below Normal | | | |
 | Basis of Compaison | 0 | 796 | 719 |
 | Alterative | 0 | 790 | 713 |
 | Difference | 0 | -6 | -6 |
 | Percent Difference | | -0.7\% | -0.9\% |
 | Dry | | | |
 | Basis of Comparison | 0 | 699 | 601 |
 | Altemative | 0 | 692 | 607 |
 | Difference | 0 | -8 | , |
 | Peicent Difference | | -1.1\% | 1.0\% |
 | Critical | | | |
 | Basis of Compaison | 0 | 476 | 407 |
 | Alterative | 0 | 473 | 401 |
 | Difference | 0 | -3 | -5 |
 | Percent Difiterence | | -0.6\% | -1.3\% |

 As defined by the Sacramento Valley $40-30$-30 Index Waler Year Hydrologic Classification (SWRCB D-1641, 1999
 3 Relative difference of the monthly average

 1 Based on the 82 -year simulation period

 Folsom Lake, End of Month Storage Long-term Average and Average by Water Year Type

 | Alternative:
 vs.
 Basis of Comparison: | DCR 2015 without Project vs. DCR 2015 with Project | WSIP 2030 without
 Project
 vs.
 WSIP 2030 with Project | WSIP 2070 withou
 Project
 vs.
 WSIP 2070 with Project |
 | :---: | :---: | :---: | :---: |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 428 | 377 |
 | Altemative | -- | 447 | 396 |
 | Difference | -- | 19 | 19 |
 | Percent Difference ${ }^{3}$ | -- | 4.5\% | 5.2\% |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Comparison | 0 | 508 | 425 |
 | Alterative | 0 | 516 | 431 |
 | Difference | 0 | 9 | 6 |
 | Percent Difiference | | 1.7\% | 1.5\% |
 | Above Normal | | | |
 | Basis of Comparison | 0 | 459 | 420 |
 | Alterative | 0 | 487 | 459 |
 | Difference | 0 | 28 | 39 |
 | Percent Difference | | 6.2\% | 9.3\% |
 | Below Normal | | | |
 | Basis of Comparison | 0 | 437 | 417 |
 | Alterative | 0 | 464 | 448 |
 | Difference | 0 | 27 | 31 |
 | Percent Difiference | | 6.1\% | 7.4\% |
 | Dry | | | |
 | Basis of Comparison | 0 | 371 | 349 |
 | Alterative | 0 | 410 | 373 |
 | Difference | 0 | 38 | 24 |
 | Percent Difference | | 10.4\% | 6.7\% |
 | Critical | | | |
 | Basis of Comparison | 0 | 293 | 235 |
 | Alterative | 0 | 289 | 246 |
 | Difference | 0 | -4 | 11 |
 | Percent Difiference | | -1.4\% | 4.8\% |
 | 1 Based on the 82 -year simulation period | | | |
 | 2 As defined by the Sacramento Valley $40-30-30$ Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | |
 | 3 Relative difference of the monthy average | | | |

 1 Based on the 82 -year simulation period

 Yolo Bypass, Volume, Aug-Oct
 Long-term Average and Average by Water Year Type

 | | Long-term Average and Average by Water Year Type | | | | |
 | :--- | :--- | :--- | :--- | :---: | :---: |
 | | | | | | Volume, Aug-Oct (TAF) |

 1 Based on the 82 -year simulation period

 SacramentolSan Joaquin River Delta, Delta Outflow, Seasonal - May-Dec
 Long-term Average and Average by Water Year Type

 1 Based on the 82 -year simulation period

 | | Annual Deliveries (TAF/Yr) | | |
 | :---: | :---: | :---: | :---: |
 | Alternative: | DCR 2015 without Project | WSIP 2030 without Project | WSIP 2070 without Project |
 | vs. | vs. | vs. | vs. |
 | Basis of Comparison: | DCR 2015 with | WSIP 2030 with | WSIP 2070 with |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 4,286 | 3,914 |
 | Alternative | -- | 4,280 | 3,916 |
 | Difference | -- | -6 | 2 |
 | Percent Difference ${ }^{3}$ | -- | -0.1\% | 0.1\% |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Compaison | -- | 4,908 | 4,423 |
 | Alterative | -- | 4,897 | 4,434 |
 | Difference | -- | -11 | 11 |
 | Percent Difference | -- | -0.2\% | 0.3\% |
 | Above Normal | | | |
 | Basis of Comparison | -- | 4,234 | 3,753 |
 | Alterative | -- | 4,217 | 3,743 |
 | Difference | -- | -17 | -10 |
 | Percent Difference | -- | -0.4\% | -0.3\% |
 | Below Normal | | | |
 | Basis of Comparison | -- | 4,197 | 3,808 |
 | Alterative | -- | 4,168 | 3,823 |
 | Difference | -- | -28 | 15 |
 | Percent Difference | -- | -0.7\% | 0.4\% |
 | Dry | | | |
 | Basis of Comparison | -- | 3,855 | 3,683 |
 | Alternative | -- | 3,863 | 3,657 |
 | Difference | -- | 8 | -25 |
 | Percent Difference | -- | 0.2\% | -0.7\% |
 | Critical | | | |
 | Basis of Comparison | -- | 3,385 | 3,135 |
 | Alterative | -- | 3,412 | 3,161 |
 | Difference | -- | 27 | 26 |
 | Percent Difference | -- | 0.8\% | 0.8\% |
 | 1 Based on the 82 -vear simulation period | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | |
 | 3 Relative difference of the monthly average | | | |

 CVP SOD Ag Allocation
 Long-term Average and Average by Water Year Type

 | Alternative:
 vs.
 Basis of Comparison: | Annual Allocation (fraction) | | |
 | :---: | :---: | :---: | :---: |
 | | DCR 2015 without Project vs. DCR 2015 with Project | WSIP 2030 without
 Project
 vs.
 WSIP 2030 with Project | WSIP 2070 without
 Project
 vs.
 WSIP 2070 with Project |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 0.44 | 0.29 |
 | Altemative | -- | 0.44 | 0.29 |
 | Difference | -- | 0.00 | 0.00 |
 | Percent Difference ${ }^{3}$ | -- | -0.6\% | 0.4\% |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Comparison | -- | 0.71 | 0.51 |
 | Alternaive | -- | 0.71 | 0.51 |
 | Difference | -- | 0.00 | 0.01 |
 | Percent Difference | -- | -0.3\% | 1.1\% |
 | Above Normal | | | |
 | Basis of Comparison | -- | 0.52 | 0.34 |
 | Altemative | -- | 0.51 | 0.34 |
 | Difference | -- | -0.01 | 0.00 |
 | Percent Difference | -- | -1.9\% | -0.9\% |
 | Below Normal | | | |
 | Basis of Comparison | -- | 0.39 | 0.23 |
 | Alternaive | -- | 0.37 | 0.23 |
 | Difference | -- | -0.01 | 0.01 |
 | Percent Difiference | -- | -2.8\% | 3.5\% |
 | Dry | | | |
 | Basis of Comparison | -- | 0.23 | 0.16 |
 | Altemative | -- | 0.23 | 0.16 |
 | Difference | -- | 0.01 | -0.01 |
 | Percent Difference | -- | 2.8\% | -4.0\% |
 | Critical | | | |
 | Basis of Compaison | -- | 0.11 | 0.04 |
 | Altemative | -- | 0.12 | 0.04 |
 | Difference | -- | 0.00 | 0.00 |
 | Percent Difference | -- | 1.7\% | 1.5\% |
 | 1 Based on the 82 -year simulation period | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | |
 | 3 Relative difference of the monthy average | | | |

 CVP Refuge Level 4 Deliveries from Sites Long-term Average and Average by Water Year Type

 | Alternative:
 vs.
 Basis of Comparison: | Annual Deliveries (TAF/Yr) | | |
 | :---: | :---: | :---: | :---: |
 | | DCR 2015 without
 Project
 vs.
 DCR 2015 with Project | WSIP 2030 without
 Project
 vs.
 WSIP 2030 with Project | WSIP 2070 withou
 Project
 vs.
 WSIP 2070 with Project |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 0 | 0 |
 | Altemative | -- | 35 | 31 |
 | Difference | -- | 35 | 31 |
 | Percent Difference ${ }^{3}$ | -- | | |
 | Water Year Types ${ }^{2}$ | | | |
 | wet | | | |
 | Basis of Comparison | -- | 0 | 0 |
 | Alterative | -- | 53 | 51 |
 | Difference | -- | 53 | 51 |
 | Percent Difference | -- | | |
 | Above Normal | | | |
 | Basis of Comparison | -- | 0 | 0 |
 | Alterative | -- | 43 | 37 |
 | Difference | -- | 43 | 37 |
 | Percent Difference | .- | | |
 | Below Normal | | | |
 | Basis of Comparison | -- | 0 | 0 |
 | Alterative | -- | 38 | 34 |
 | Difference | -- | 38 | 34 |
 | Percent Difference | -- | | |
 | Dry | | | |
 | Basis of Comparison | -- | 0 | 0 |
 | Altemative | -- | 21 | 16 |
 | Difference | -- | 21 | 16 |
 | Percent Difference | -- | | |
 | Critical | | | |
 | Basis of Compaison | -- | 0 | 0 |
 | Alterative | -- | 1 | 1 |
 | Difference | -- | 1 | 1 |
 | Percent Difference | -- | | |
 | 1 Based on the 82 -year simulation period | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | |
 | 3 Relative difierence of the monthly average | | | |

 SWP Contract Deliveries
 Long-term Average and Average by Water Year Type

 | Alternative:
 vs.
 Basis of Comparison: | Annual Deliveries (TAF/Yr) | | |
 | :---: | :---: | :---: | :---: |
 | | DCR 2015 without
 Project
 vs.
 DCR 2015 with Project | WSIP 2030 without
 Project
 vs.
 WSIP 2030 with Project | WSIP 2070 without
 Project
 vs.
 WSIP 2070 with Project |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 2,573 | 2,398 |
 | Alterative | -- | 2,573 | 2,398 |
 | Difference | -- | 0 | 0 |
 | Percent Difference ${ }^{3}$ | -- | 0.0\% | 0.0\% |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | | | |
 | Basis of Comparison | -- | 3,500 | 3,391 |
 | Altemative | -- | 3,500 | 3,391 |
 | Difference | -- | 0 | 0 |
 | Percent Difference | -- | 0.0\% | 0.0\% |
 | Above Normal | | | |
 | Basis of Comparison | -- | 2,813 | 2,691 |
 | Altemative | -- | 2,813 | 2,691 |
 | Difference | -- | 0 | 0 |
 | Percent Difference | -- | 0.0\% | 0.0\% |
 | Below Normal | | | |
 | Basis of Comparison | -- | 2,579 | 2,414 |
 | Altemative | -- | 2,579 | 2,414 |
 | Difference | -- | 0 | 0 |
 | Percent Difference | -- | 0.0\% | 0.0\% |
 | Dry | | | |
 | Basis of Comparison | -- | 1,881 | 1,737 |
 | Altemative | -- | 1,881 | 1,737 |
 | Difference | -- | 0 | 0 |
 | Percent Difference | -- | 0.0\% | 0.0\% |
 | Critical | | | |
 | Basis of Comparison | -- | 1,105 | 861 |
 | Alterative | -- | 1,105 | 861 |
 | Difference | -- | 0 | 0 |
 | Percent Difference | -- | 0.0\% | 0.0\% |
 | 1 Based on the 82 -year simulation period | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | |
 | 3 Relative difference of the monthly average | | | |

 SWP SOD M\&1 Allocation
 Long-term Average and Average by Water Year Type

 | | Annual Allocation (fraction) | | |
 | :---: | :---: | :---: | :---: |
 | Alternative: | DCR 2015 without Project Project | WSIP 2030 without Project | WSIP 2070 without Project |
 | vs. | vs. | vs. | vs. |
 | Basis of Comparison: | DCR 2015 with | WSIP 2030 with | WSIP 2070 with |
 | | Project | Project | Project |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | | | |
 | Basis of Comparison | -- | 0.62 | 0.57 |
 | Alterative | -- | 0.62 | 0.57 |
 | Difference | -- | 0.00 | 0.00 |
 | Percent Difference ${ }^{3}$ | -. | 0.0\% | 0.0\% |
 | Water Year Types ${ }^{2}$ | | | |
 | wet | | | |
 | Basis of Comparison | -- | 0.86 | 0.81 |
 | Alterative | -- | 0.86 | 0.81 |
 | Difference | -- | 0.00 | 0.00 |
 | Percent Difiference | -- | 0.0\% | 0.0\% |
 | Above Normal | | | |
 | Basis of Comparison | -- | 0.68 | 0.65 |
 | Altemative | -- | 0.68 | 0.65 |
 | Difference | -- | 0.00 | 0.00 |
 | Percent Difference | -- | 0.0\% | 0.0\% |
 | Below Normal | | | |
 | Basis of Comparison | -- | 0.60 | 0.57 |
 | Alterative | -- | 0.60 | 0.57 |
 | Difference | -- | 0.00 | 0.00 |
 | Percent Difference | -- | 0.0\% | 0.0\% |
 | Dry | | | |
 | Basis of Comparison | -- | 0.44 | 0.40 |
 | Altemative | -- | 0.44 | 0.40 |
 | Difference | -- | 0.00 | 0.00 |
 | Percent Difference | -- | 0.0\% | 0.0\% |
 | Critical | | | |
 | Basis of Comparison | -- | 0.25 | 0.20 |
 | Alterative | -- | 0.25 | 0.20 |
 | Difference | -- | 0.00 | 0.00 |
 | Percent Difiference | -- | 0.0\% | 0.0\% |
 | 1 Based on the 82 -year simulation period | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | |
 | 3 Relative difference of the monthy average | | | |

 ## Salmonid Population Modeling (SALMOD)
 2015

 Table AQ-02-8a-1
 Annual Potential Production for Fall-Run Chinook Salmon
 Long-term Average and Average by Water Year Type Annual Production

 | Analysis Period | Annual Potential Production (\# of Fish/year) |
 | :--- | :---: |
 | | |
 | Full Simulation Period ${ }^{1}$ | |
 | DCR 2015 Without Project | $32,663,737$ |
 | DCR 2015 With Project (051617) | $32,993,352$ |
 | Difference | 329,615 |
 | Percent Difference ${ }^{3}$ | 1.0 |
 | | |
 | Wet (31.7\%) | |
 | DCR 2015 Without Project | |
 | DCR 2015 With Project (051617) | $30,343,621$ |
 | Difference | $29,765,437$ |
 | Percent Difference | $-578,184$ |
 | Above Normal (14.6\%) Types ${ }^{2}$ | -1.9 |
 | DCR 2015 Without Project | |
 | DCR 2015 With Project (051617) | $29,239,706$ |
 | Difference | $30,110,663$ |
 | Percent Difference | 870,957 |
 | Below Normal (17.1\%) | 3.0 |
 | DCR 2015 Without Project | |
 | DCR 2015 With Project (051617) | $33,465,942$ |
 | Difference | $33,740,108$ |
 | Percent Difference | 274,166 |
 | Dry (22\%) | 0.8 |
 | DCR 2015 Without Project | |
 | DCR 2015 With Project (051617) | $35,657,446$ |
 | Difference | $36,072,396$ |
 | Percent Difference | 414,949 |
 | Critical (14.6\%) | 1.2 |
 | DCR 2015 Without Project | |
 | DCR 2015 With Project (051617) | $35,117,542$ |
 | Difference | $36,899,624$ |
 | Percent Difference | $1,782,083$ |
 | 1 Based on the 80-year simulation period | 5.1 |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years | |
 | may not correspond to the biological years in SALMOD. | |
 | 3 Relative difference of the annual average | |

 Table AQ-02-8a-2

 | Annual Production of Listed Life-stages for Fall-Run Chinook Salmon | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term Average and Average by Water Year Type Annual Production | | | | | |
 | | Annual Production (\# of Fish/year) | | | | |
 | Analysis Period | Eggs | Fry | Pre-Smolt | ImmatureSmolt | Juvenile (Pre \& Immature Smolt) |
 | Long-term | | | | | |
 | Full Simulation Period ${ }^{1}$ | | | | | |
 | DCR 2015 Without Project | 77,803,237 | 44,618,403 | 33,910,911 | 32,663,916 | 66,574,827 |
 | DCR 2015 With Project (051617) | 78,274,991 | 45,025,504 | 34,310,885 | 32,993,417 | 67,304,302 |
 | Difference | 471,754 | 407,101 | 399,973 | 329,501 | 729,475 |
 | Percent Difference ${ }^{3}$ | 0.6 | 0.9 | 1.2 | 1.0 | 1.1 |
 | Water Year Types ${ }^{2}$ | | | | | |
 | Wet (31.7\%) | | | | | |
 | DCR 2015 Without Project | 69,760,561 | 40,620,329 | 31,119,264 | 30,344,171 | 61,463,435 |
 | DCR 2015 With Project (051617) | 67,239,504 | 39,927,226 | 30,551,537 | 29,765,635 | 60,317,171 |
 | Difference | -2,521,057 | -693,103 | -567,728 | -578,536 | -1,146,264 |
 | Percent Difference | -3.6 | -1.7 | -1.8 | -1.9 | -1.9 |
 | Above Normal (14.6\%) | | | | | |
 | DCR 2015 Without Project | 70,896,206 | 39,563,140 | 30,196,996 | 29,239,704 | 59,436,700 |
 | DCR 2015 With Project (051617) | 72,634,504 | 40,782,910 | 31,119,507 | 30,110,661 | 61,230,168 |
 | Difference | 1,738,298 | 1,219,770 | 922,511 | 870,957 | 1,793,468 |
 | Percent Difference | 2.5 | 3.1 | 3.1 | 3.0 | 3.0 |
 | Below Normal (17.1\%) | | | | | |
 | DCR 2015 Without Project | 80,421,879 | 45,569,435 | 34,684,481 | 33,465,943 | 68,150,425 |
 | DCR 2015 With Project (051617) | 81,458,792 | 45,739,124 | 34,992,476 | 33,740,114 | 68,732,590 |
 | Difference | 1,036,912 | 169,689 | 307,995 | 274,170 | 582,165 |
 | Percent Difference | 1.3 | 0.4 | 0.9 | 0.8 | 0.9 |
 | Dry (22\%) | | | | | |
 | DCR 2015 Without Project | 86,974,532 | 49,173,977 | 37,172,370 | 35,657,449 | 72,829,819 |
 | DCR 2015 With Project (051617) | 88,670,223 | 49,677,709 | 37,677,322 | 36,072,397 | 73,749,718 |
 | Difference | 1,695,690 | 503,732 | 504,952 | 414,948 | 919,899 |
 | Percent Difference | 1.9 | 1.0 | 1.4 | 1.2 | 1.3 |
 | Critical (14.6\%) | | | | | |
 | DCR 2015 Without Project | 84,172,870 | 49,550,716 | 37,259,723 | 35,117,539 | 72,377,262 |
 | DCR 2015 With Project (051617) | 87,578,337 | 51,796,403 | 39,270,774 | 36,899,626 | 76,170,400 |
 | Difference | 3,405,467 | 2,245,687 | 2,011,051 | 1,782,086 | 3,793,138 |
 | Percent Difference | 4.0 | 4.5 | 5.4 | 5.1 | 5.2 |
 | 1 Based on the 80-year simulation period | | | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years may not correspond to the biological years in SALMOD. | | | | | |
 | 3 Relative difference of the annual average | | | | | |

 Table AQ-02-8b-1
 Annual Potential Production for LateFall-Run Chinook Salmon
 Long-term Average and Average by Water Year Type Annual Production

 | Analysis Period | Annual Potential Production (\# of Fish/year) |
 | :---: | :---: |
 | Long-term | |
 | Full Simulation Period ${ }^{1}$ | |
 | DCR 2015 Without Project | 7,942,822 |
 | DCR 2015 With Project (051617) | 7,967,398 |
 | Difference | 24,576 |
 | Percent Difference ${ }^{3}$ | 0.3 |
 | Water Year Types ${ }^{2}$ | |
 | Wet (31.7\%) | |
 | DCR 2015 Without Project | 7,653,405 |
 | DCR 2015 With Project (051617) | 7,531,757 |
 | Difference | -121,648 |
 | Percent Difference | -1.6 |
 | Above Normal (14.6\%) | |
 | DCR 2015 Without Project | 7,862,673 |
 | DCR 2015 With Project (051617) | 7,926,092 |
 | Difference | 63,419 |
 | Percent Difference | 0.8 |
 | Below Normal (17.1\%) | |
 | DCR 2015 Without Project | 8,186,535 |
 | DCR 2015 With Project (051617) | 8,120,262 |
 | Difference | -66,273 |
 | Percent Difference | -0.8 |
 | Dry (2\%) | |
 | DCR 2015 Without Project | 8,275,816 |
 | DCR 2015 With Project (051617) | 8,323,874 |
 | Difference | 48,059 |
 | Percent Difference | 0.6 |
 | Critical (14.6\%) | |
 | DCR 2015 Without Project | 7,852,860 |
 | DCR 2015 With Project (051617) | 8,232,653 |
 | Difference | 379,793 |
 | Percent Difference | 4.8 |
 | 1 Based on the 80-year simulation period | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years may not correspond to the biological years in SALMOD. | |

 Table AQ-02-8b-2

 | Annual Production of Listed Life-stages for LateFall-Run Chinook Salmon | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term Average and Average by Water Year Type Annual Production | | | | | |
 | Annual Production (\# of Fish/year) | | | | | |
 | Analysis Period | Eggs | Fry | Pre-Smolt | ImmatureSmolt | Juvenile (Pre
 \& Immature Smolt) |
 | Long-term | | | | | |
 | Full Simulation Period ${ }^{1}$ | | | | | |
 | DCR 2015 Without Project | 16,882,193 | 11,167,565 | 8,408,372 | 7,942,822 | 16,351,194 |
 | DCR 2015 With Project (051617) | 16,876,915 | 11,164,400 | 8,419,651 | 7,967,398 | 16,387,049 |
 | Difference | -5,277 | -3,165 | 11,280 | 24,576 | 35,856 |
 | Percent Difference ${ }^{3}$ | 0.0 | 0.0 | 0.1 | 0.3 | 0.2 |
 | Water Year Types ${ }^{2}$ | | | | | |
 | Wet (31.7\%) | | | | | |
 | DCR 2015 Without Project | 15,135,984 | 10,503,544 | 7,898,711 | 7,653,405 | 15,552,115 |
 | DCR 2015 With Project (051617) | 14,938,880 | 10,340,398 | 7,769,106 | 7,531,757 | 15,300,863 |
 | Difference | -197,103 | -163,146 | -129,605 | -121,648 | -251,253 |
 | Percent Difference | -1.3 | -1.6 | -1.6 | -1.6 | -1.6 |
 | Above Normal (14.6\%) | | | | | |
 | DCR 2015 Without Project | 16,366,102 | 10,860,637 | 8,167,582 | 7,862,673 | 16,030,255 |
 | DCR 2015 With Project (051617) | 16,374,603 | 10,983,392 | 8,235,093 | 7,926,092 | 16,161,185 |
 | Difference | 8,501 | 122,755 | 67,511 | 63,419 | 130,930 |
 | Percent Difference | 0.1 | 1.1 | 0.8 | 0.8 | 0.8 |
 | Below Normal (17.1\%) | | | | | |
 | DCR 2015 Without Project | 17,644,235 | 11,381,473 | 8,606,333 | 8,186,535 | 16,792,868 |
 | DCR 2015 With Project (051617) | 17,699,742 | 11,331,703 | 8,546,025 | 8,120,262 | 16,666,287 |
 | Difference | 55,507 | -49,770 | -60,308 | -66,273 | -126,581 |
 | Percent Difference | 0.3 | -0.4 | -0.7 | -0.8 | -0.8 |
 | Dry (22\%) | | | | | |
 | DCR 2015 Without Project | 18,077,008 | 11,615,538 | 8,826,684 | 8,275,816 | 17,102,499 |
 | DCR 2015 With Project (051617) | 18,155,236 | 11,705,190 | 8,869,482 | 8,323,874 | 17,193,356 |
 | Difference | 78,228 | 89,651 | 42,798 | 48,059 | 90,857 |
 | Percent Difference | 0.4 | 0.8 | 0.5 | 0.6 | 0.5 |
 | Critical (14.6\%) | | | | | |
 | DCR 2015 Without Project | 18,414,449 | 11,940,527 | 8,854,873 | 7,852,860 | 16,707,733 |
 | DCR 2015 With Project (051617) | 18,617,141 | 12,094,206 | 9,160,784 | 8,232,653 | 17,393,437 |
 | Difference | 202,691 | 153,679 | 305,911 | 379,793 | 685,704 |
 | Percent Difference | 1.1 | 1.3 | 3.5 | 4.8 | 4.1 |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years may not correspond to the biological years in SALMOD. | | | | | |
 | 3 Relative difference of the annual average | | | | | |

 Table AQ-02-8d-1

 ## Annual Potential Production for Spring-Run Chinook Salmon

 Long-term Average and Average by Water Year Type Annual Production

 | Analysis Period | Annual Potential Production (\# of Fish/year) |
 | :---: | :---: |
 | Long-term | |
 | Full Simulation Period ${ }^{1}$ | |
 | DCR 2015 Without Project | 858,364 |
 | DCR 2015 With Project (051617) | 883,808 |
 | Difference | 25,445 |
 | Percent Difference ${ }^{3}$ | 3.0 |
 | Water Year Types ${ }^{2}$ | |
 | Wet (31.7\%) | |
 | DCR 2015 Without Project | 943,293 |
 | DCR 2015 With Project (051617) | 943,286 |
 | Difference | -7 |
 | Percent Difference | 0.0 |
 | Above Normal (14.6\%) | |
 | DCR 2015 Without Project | 942,215 |
 | DCR 2015 With Project (051617) | 939,371 |
 | Difference | -2,844 |
 | Percent Difference | -0.3 |
 | Below Normal (17.1\%) | |
 | DCR 2015 Without Project | 917,698 |
 | DCR 2015 With Project (051617) | 924,965 |
 | Difference | 7,267 |
 | Percent Difference | 0.8 |
 | Dry (2\%) | |
 | DCR 2015 Without Project | 894,594 |
 | DCR 2015 With Project (051617) | 922,840 |
 | Difference | 28,246 |
 | Percent Difference | 3.2 |
 | Critical (14.6\%) | |
 | DCR 2015 Without Project | 476,936 |
 | DCR 2015 With Project (051617) | 600,697 |
 | Difference | 123,761 |
 | Percent Difference | 25.9 |
 | 1 Based on the 80-year simulation period | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years may not correspond to the biological years in SALMOD. | |

 | Annual Production of Listed Life-stages for Spring-Run Chinook Salmon | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term Average and Average by Water Year Type Annual Production | | | | | |
 | | Annual Production (\# of Fish/year) | | | | |
 | Analysis Period | Eggs | Fry | Pre-Smolt | ImmatureSmolt | Juvenile (Pre
 \& Immature Smolt) |
 | Long-term | | | | | |
 | Full Simulation Period ${ }^{1}$ | | | | | |
 | DCR 2015 Without Project | 1,391,233 | 1,158,474 | 860,081 | 858,364 | 1,718,445 |
 | DCR 2015 With Project (051617) | 1,430,076 | 1,190,255 | 885,303 | 883,808 | 1,769,111 |
 | Difference | 38,843 | 31,782 | 25,221 | 25,445 | 50,666 |
 | Percent Difference ${ }^{3}$ | 2.8 | 2.7 | 2.9 | 3.0 | 2.9 |
 | Water Year Types ${ }^{2}$ | | | | | |
 | Wet (31.7\%) | | | | | |
 | DCR 2015 Without Project | 1,516,434 | 1,265,416 | 944,328 | 943,293 | 1,887,621 |
 | DCR 2015 With Project (051617) | 1,515,484 | 1,265,639 | 944,443 | 943,286 | 1,887,730 |
 | Difference | -950 | 223 | 115 | -7 | 108 |
 | Percent Difference | -0.1 | 0.0 | 0.0 | 0.0 | 0.0 |
 | Above Normal (14.6\%) | | | | | |
 | DCR 2015 Without Project | 1,525,966 | 1,265,682 | 943,484 | 942,215 | 1,885,699 |
 | DCR 2015 With Project (051617) | 1,515,791 | 1,258,335 | 940,686 | 939,371 | 1,880,056 |
 | Difference | -10,175 | -7,347 | -2,798 | -2,844 | -5,642 |
 | Percent Difference | -0.7 | -0.6 | -0.3 | -0.3 | -0.3 |
 | Below Normal (17.1\%) | | | | | |
 | DCR 2015 Without Project | 1,495,139 | 1,238,148 | 918,956 | 917,698 | 1,836,654 |
 | DCR 2015 With Project (051617) | 1,504,900 | 1,243,144 | 925,893 | 924,965 | 1,850,858 |
 | Difference | 9,761 | 4,997 | 6,937 | 7,267 | 14,204 |
 | Percent Difference | 0.7 | 0.4 | 0.8 | 0.8 | 0.8 |
 | Dry (22\%) | | | | | |
 | DCR 2015 Without Project | 1,462,556 | 1,217,483 | 896,539 | 894,594 | 1,791,133 |
 | DCR 2015 With Project (051617) | 1,505,090 | 1,250,245 | 924,201 | 922,840 | 1,847,041 |
 | Difference | 42,533 | 32,762 | 27,662 | 28,246 | 55,908 |
 | Percent Difference | 2.9 | 2.7 | 3.1 | 3.2 | 3.1 |
 | Critical (14.6\%) | | | | | |
 | DCR 2015 Without Project | 774,196 | 651,941 | 480,759 | 476,936 | 957,695 |
 | DCR 2015 With Project (051617) | 972,892 | 817,828 | 603,937 | 600,697 | 1,204,634 |
 | Difference | 198,696 | 165,887 | 123,177 | 123,761 | 246,938 |
 | Percent Difference | 25.7 | 25.4 | 25.6 | 25.9 | 25.8 |
 | 1 Based on the 80-year simulation period | | | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years may not correspond to the biological years in SALMOD. | | | | | |
 | 3 Relative difference of the annual average | | | | | |

 Table AQ-02-8c-1
 Annual Potential Production for Winter-Run Chinook Salmon
 Long-term Average and Average by Water Year Type Annual Production

 | Analysis Period | Annual Potential Production (\# of Fish/year) |
 | :---: | :---: |
 | Long-term | |
 | Full Simulation Period ${ }^{1}$ | |
 | DCR 2015 Without Project | 3,838,180 |
 | DCR 2015 With Project (051617) | 3,873,715 |
 | Difference | 35,535 |
 | Percent Difference ${ }^{3}$ | 0.9 |
 | Water Year Types ${ }^{2}$ | |
 | Wet (31.7\%) | |
 | DCR 2015 Without Project | 3,722,904 |
 | DCR 2015 With Project (051617) | 3,739,101 |
 | Difference | 16,197 |
 | Percent Difference | 0.4 |
 | Above Normal (14.6\%) | |
 | DCR 2015 Without Project | 3,819,400 |
 | DCR 2015 With Project (051617) | 3,869,508 |
 | Difference | 50,109 |
 | Percent Difference | 1.3 |
 | Below Normal (17.1\%) | |
 | DCR 2015 Without Project | 3,931,343 |
 | DCR 2015 With Project (051617) | 3,921,616 |
 | Difference | -9,728 |
 | Percent Difference | -0.2 |
 | Dry (2\%) | |
 | DCR 2015 Without Project | 4,031,025 |
 | DCR 2015 With Project (051617) | 3,983,576 |
 | Difference | -47,449 |
 | Percent Difference | -1.2 |
 | Critical (14.6\%) | |
 | DCR 2015 Without Project | 3,723,269 |
 | DCR 2015 With Project (051617) | 3,957,714 |
 | Difference | 234,445 |
 | Percent Difference | 6.3 |
 | 1 Based on the 80-year simulation period | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years may not correspond to the biological years in SALMOD. | |
 | 3 Relative difference of the annual average | |

 Table AQ-02-8c-2

 | Annual Production of Listed Life-stages for Winter-Run Chinook Salmon | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term Average and Average by Water Year Type Annual Production | | | | | |
 | Annual Production (\# of Fish/year) | | | | | |
 | Analysis Period | Eggs | Fry | Pre-Smolt | ImmatureSmolt | Juvenile (Pre
 \& Immature Smolt) |
 | Long-term | | | | | |
 | Full Simulation Period ${ }^{1}$ | | | | | |
 | DCR 2015 Without Project | 7,050,825 | 5,283,327 | 3,956,560 | 3,838,180 | 7,794,740 |
 | DCR 2015 With Project (051617) | 7,124,753 | 5,317,736 | 3,987,282 | 3,873,715 | 7,860,997 |
 | Difference | 73,928 | 34,410 | 30,721 | 35,535 | 66,257 |
 | Percent Difference ${ }^{3}$ | 1.0 | 0.7 | 0.8 | 0.9 | 0.9 |
 | Water Year Types ${ }^{2}$ | | | | | |
 | Wet (31.7\%) | | | | | |
 | DCR 2015 Without Project | 7,021,895 | 5,045,600 | 3,788,572 | 3,722,904 | 7,511,476 |
 | DCR 2015 With Project (051617) | 7,034,337 | 5,061,366 | 3,806,329 | 3,739,101 | 7,545,430 |
 | Difference | 12,443 | 15,766 | 17,757 | 16,197 | 33,954 |
 | Percent Difference | 0.2 | 0.3 | 0.5 | 0.4 | 0.5 |
 | Above Normal (14.6\%) | | | | | |
 | DCR 2015 Without Project | 7,032,327 | 5,218,753 | 3,903,816 | 3,819,400 | 7,723,215 |
 | DCR 2015 With Project (051617) | 7,048,226 | 5,281,173 | 3,949,989 | 3,869,508 | 7,819,497 |
 | Difference | 15,899 | 62,420 | 46,173 | 50,109 | 96,281 |
 | Percent Difference | 0.2 | 1.2 | 1.2 | 1.3 | 1.2 |
 | Below Normal (17.1\%) | | | | | |
 | DCR 2015 Without Project | 6,979,442 | 5,383,720 | 4,021,036 | 3,931,343 | 7,952,380 |
 | DCR 2015 With Project (051617) | 7,042,296 | 5,371,137 | 4,007,215 | 3,921,616 | 7,928,831 |
 | Difference | 62,854 | -12,583 | -13,821 | -9,728 | -23,549 |
 | Percent Difference | 0.9 | -0.2 | -0.3 | -0.2 | -0.3 |
 | Dry (22\%) | | | | | |
 | DCR 2015 Without Project | 7,111,812 | 5,542,021 | 4,172,395 | 4,031,025 | 8,203,420 |
 | DCR 2015 With Project (051617) | 7,179,382 | 5,472,533 | 4,110,099 | 3,983,576 | 8,093,675 |
 | Difference | 67,570 | -69,487 | -62,296 | -47,449 | -109,745 |
 | Percent Difference | 1.0 | -1.3 | -1.5 | -1.2 | -1.3 |
 | Critical (14.6\%) | | | | | |
 | DCR 2015 Without Project | 7,127,344 | 5,373,983 | 3,987,898 | 3,723,269 | 7,711,167 |
 | DCR 2015 With Project (051617) | 7,409,610 | 5,625,125 | 4,216,285 | 3,957,714 | 8,173,999 |
 | Difference | 282,267 | 251,142 | 228,388 | 234,445 | 462,832 |
 | Percent Difference | 4.0 | 4.7 | 5.7 | 6.3 | 6.0 |
 | 1 Based on the 80-year simulation period | | | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years may not correspond to the biological years in SALMOD. | | | | | |
 | 3 Relative difference of the annual average | | | | | |

 ## Salmonid Population Modeling (SALMOD) 2030

 Table AQ-02-8a-1
 Annual Potential Production for Fall-Run Chinook Salmon

 ## Long-term Average and Average by Water Year Type Annual Production

 | Analysis Period | Annual Potential Production (\# of Fish/year) |
 | :--- | :---: |
 | | |
 | Full Simulation Period ${ }^{1}$ | |
 | WSIP 2030 Without Project | $32,275,104$ |
 | WSIP 2030 With Project (051217) | $32,710,242$ |
 | Difference | 435,138 |
 | Percent Difference ${ }^{3}$ | 1.3 |
 | | |
 | Wet (30.5\%) | |
 | WSIP 2030 Without Project | |
 | WSIP 2030 With Project (051217) | $28,240,499$ |
 | Difference | $28,267,749$ |
 | Percent Difference | 27,250 |
 | Above Normal (14.6\%) | 0.1 |
 | WSIP 2030 Without Project | |
 | WSIP 2030 With Project (051217) | $30,240,037$ |
 | Difference | $31,628,088$ |
 | Percent Difference | $1,388,051$ |
 | Below Normal (20.7\%) | 4.6 |
 | WSIP 2030 Without Project | |
 | WSIP 2030 With Project (051217) | $35,133,596$ |
 | Difference | $35,251,822$ |
 | Percent Difference | 118,227 |
 | Dry (19.5\%) | 0.3 |
 | WSIP 2030 Without Project | |
 | WSIP 2030 With Project (051217) | $35,836,178$ |
 | Difference | $35,856,071$ |
 | Percent Difference | 19,893 |
 | Critical (14.6\%) | 0.1 |
 | WSIP 2030 Without Project | |
 | WSIP 2030 With Project (051217) | $33,578,791$ |
 | Difference | $35,072,220$ |
 | Percent Difference | $1,493,430$ |
 | 1 Based on the 80-year simulation period | 4.4 |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years | |
 | may not correspond to the biological years in SALMOD. | |
 | 3 Relative difference of the annual average | |

 Table AQ-02-8a-2

 | Annual Production of Listed Life-stages for Fall-Run Chinook Salmon | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term Average and Average by Water Year Type Annual Production | | | | | |
 | | Annual Production (\# of Fish/year) | | | | |
 | Analysis Period | Eggs | Fry | Pre-Smolt | ImmatureSmolt | Juvenile (Pre \& Immature Smolt) |
 | Long-term | | | | | |
 | Full Simulation Period ${ }^{1}$ | | | | | |
 | WSIP 2030 Without Project | 79,443,619 | 45,269,976 | 34,083,716 | 32,275,187 | 66,358,903 |
 | WSIP 2030 With Project (051217) | 80,356,973 | 45,708,740 | 34,568,671 | 32,710,684 | 67,279,354 |
 | Difference | 913,354 | 438,764 | 484,955 | 435,496 | 920,451 |
 | Percent Difference ${ }^{3}$ | 1.1 | 1.0 | 1.4 | 1.3 | 1.4 |
 | Water Year Types ${ }^{2}$ | | | | | |
 | Wet (30.5\%) | | | | | |
 | WSIP 2030 Without Project | 65,156,412 | 38,640,096 | 29,378,681 | 28,240,761 | 57,619,442 |
 | WSIP 2030 With Project (051217) | 64,804,116 | 38,596,966 | 29,408,073 | 28,269,163 | 57,677,236 |
 | Difference | -352,296 | -43,130 | 29,392 | 28,401 | 57,793 |
 | Percent Difference | -0.5 | -0.1 | 0.1 | 0.1 | 0.1 |
 | Above Normal (14.6\%) | | | | | |
 | WSIP 2030 Without Project | 76,295,161 | 41,391,963 | 31,487,320 | 30,240,037 | 61,727,357 |
 | WSIP 2030 With Project (051217) | 78,894,198 | 43,074,418 | 32,948,145 | 31,628,094 | 64,576,239 |
 | Difference | 2,599,038 | 1,682,456 | 1,460,825 | 1,388,057 | 2,848,882 |
 | Percent Difference | 3.4 | 4.1 | 4.6 | 4.6 | 4.6 |
 | Below Normal (20.7\%) | | | | | |
 | WSIP 2030 Without Project | 88,610,179 | 49,393,005 | 37,095,083 | 35,133,600 | 72,228,683 |
 | WSIP 2030 With Project (051217) | 88,908,284 | 49,465,647 | 37,261,624 | 35,251,825 | 72,513,450 |
 | Difference | 298,105 | 72,642 | 166,542 | 118,225 | 284,767 |
 | Percent Difference | 0.3 | 0.1 | 0.4 | 0.3 | 0.4 |
 | Dry (19.5\%) | | | | | |
 | WSIP 2030 Without Project | 91,054,630 | 50,877,217 | 38,096,724 | 35,836,180 | 73,932,904 |
 | WSIP 2030 With Project (051217) | 92,093,730 | 50,600,466 | 38,104,695 | 35,856,066 | 73,960,761 |
 | Difference | 1,039,100 | -276,750 | 7,971 | 19,886 | 27,857 |
 | Percent Difference | 1.1 | -0.5 | 0.0 | 0.1 | 0.0 |
 | Critical (14.6\%) | | | | | |
 | WSIP 2030 Without Project | 83,365,039 | 48,996,628 | 36,432,754 | 33,578,792 | 70,011,546 |
 | WSIP 2030 With Project (051217) | 86,214,369 | 50,875,619 | 38,140,636 | 35,072,217 | 73,212,853 |
 | Difference | 2,849,331 | 1,878,991 | 1,707,882 | 1,493,425 | 3,201,307 |
 | Percent Difference | 3.4 | 3.8 | 4.7 | 4.4 | 4.6 |
 | 1 Based on the 80-year simulation period | | | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years may not correspond to the biological years in SALMOD. | | | | | |
 | 3 Relative difference of the annual average | | | | | |

 Table AQ-02-8b-1
 Annual Potential Production for LateFall-Run Chinook Salmon
 Long-term Average and Average by Water Year Type Annual Production

 | Analysis Period | Annual Potential Production (\# of Fish/year) |
 | :--- | :---: |
 | | |
 | Full Simulation Period ${ }^{1}$ | |
 | WSIP 2030 Without Project | $7,911,118$ |
 | WSIP 2030 With Project (051217) | $7,981,306$ |
 | Difference | 70,188 |
 | Percent Difference ${ }^{3}$ | 0.9 |
 | | |
 | Wet (30.5\%) | |
 | WSIP 2030 Without Project | $7,230,840$ |
 | WSIP 2030 With Project (051217) | $7,268,667$ |
 | Difference | 37,827 |
 | Percent Difference | 0.5 |
 | Above Normal (14.6\%) | |
 | WSIP 2030 Without Project | |
 | WSIP 2030 With Project (051217) | $7,931,158$ |
 | Difference | $7,992,643$ |
 | Percent Difference | 61,484 |
 | Below Normal (20.7\%) | 0.8 |
 | WSIP 2030 Without Project | $8,308,688$ |
 | WSIP 2030 With Project (051217) | $8,345,895$ |
 | Difference | 37,207 |
 | Percent Difference | 0.4 |
 | Dry (19.5\%) | |
 | WSIP 2030 Without Project | $8,426,092$ |
 | WSIP 2030 With Project (051217) | $8,483,369$ |
 | Difference | 57,277 |
 | Percent Difference | 0.7 |
 | Critical (14.6\%) | $8,061,806$ |
 | WSIP 2030 Without Project | $8,270,606$ |
 | WSIP 2030 With Project (051217) | 208,800 |
 | Difference | 2.6 |
 | Percent Difference | |
 | 1 Based on the 80-year simulation period | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years | |
 | may not correspond to the biological years in SALMOD. | |
 | 3 Relative difference of the annual average | |

 Table AQ-02-8b-2

 | Annual Production of Listed Life-stages for LateFall-Run Chinook Salmon | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term Average and Average by Water Year Type Annual Production | | | | | |
 | Annual Production (\# of Fish/year) | | | | | |
 | Analysis Period | Eggs | Fry | Pre-Smolt | ImmatureSmolt | Juvenile (Pre
 \& Immature Smolt) |
 | Long-term | | | | | |
 | Full Simulation Period ${ }^{1}$ | | | | | |
 | WSIP 2030 Without Project | 17,100,672 | 11,311,933 | 8,564,206 | 7,911,118 | 16,475,324 |
 | WSIP 2030 With Project (051217) | 17,130,007 | 11,366,687 | 8,641,303 | 7,981,306 | 16,622,609 |
 | Difference | 29,335 | 54,754 | 77,097 | 70,188 | 147,285 |
 | Percent Difference ${ }^{3}$ | 0.2 | 0.5 | 0.9 | 0.9 | 0.9 |
 | Water Year Types ${ }^{2}$ | | | | | |
 | Wet (30.5\%) | | | | | |
 | WSIP 2030 Without Project | 14,539,487 | 10,027,004 | 7,587,635 | 7,230,840 | 14,818,475 |
 | WSIP 2030 With Project (051217) | 14,588,326 | 10,089,136 | 7,643,073 | 7,268,667 | 14,911,741 |
 | Difference | 48,839 | 62,132 | 55,438 | 37,827 | 93,265 |
 | Percent Difference | 0.3 | 0.6 | 0.7 | 0.5 | 0.6 |
 | Above Normal (14.6\%) | | | | | |
 | WSIP 2030 Without Project | 16,536,550 | 11,042,596 | 8,350,149 | 7,931,158 | 16,281,307 |
 | WSIP 2030 With Project (051217) | 16,481,666 | 11,157,058 | 8,443,774 | 7,992,643 | 16,436,416 |
 | Difference | -54,884 | 114,462 | 93,625 | 61,484 | 155,109 |
 | Percent Difference | -0.3 | 1.0 | 1.1 | 0.8 | 1.0 |
 | Below Normal (20.7\%) | | | | | |
 | WSIP 2030 Without Project | 18,375,255 | 11,788,247 | 8,964,110 | 8,308,688 | 17,272,798 |
 | WSIP 2030 With Project (051217) | 18,384,341 | 11,836,729 | 9,014,607 | 8,345,895 | 17,360,502 |
 | Difference | 9,086 | 48,482 | 50,497 | 37,207 | 87,704 |
 | Percent Difference | 0.0 | 0.4 | 0.6 | 0.4 | 0.5 |
 | Dry (19.5\%) | | | | | |
 | WSIP 2030 Without Project | 18,593,504 | 12,073,512 | 9,202,716 | 8,426,092 | 17,628,808 |
 | WSIP 2030 With Project (051217) | 18,618,506 | 12,144,904 | 9,264,072 | 8,483,369 | 17,747,441 |
 | Difference | 25,003 | 71,393 | 61,356 | 57,277 | 118,633 |
 | Percent Difference | 0.1 | 0.6 | 0.7 | 0.7 | 0.7 |
 | Critical (14.6\%) | | | | | |
 | WSIP 2030 Without Project | 19,110,476 | 12,523,101 | 9,359,231 | 8,061,806 | 17,421,037 |
 | WSIP 2030 With Project (051217) | 19,203,824 | 12,499,430 | 9,526,348 | 8,270,606 | 17,796,954 |
 | Difference | 93,348 | -23,671 | 167,118 | 208,800 | 375,918 |
 | Percent Difference | 0.5 | -0.2 | 1.8 | 2.6 | 2.2 |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years may not correspond to the biological years in SALMOD. | | | | | |
 | 3 Relative difference of the annual average | | | | | |

 Table AQ-02-8d-1

 ## Annual Potential Production for Spring-Run Chinook Salmon

 ## Long-term Average and Average by Water Year Type Annual Production

 | Analysis Period | Annual Potential Production (\# of Fish/year) |
 | :---: | :---: |
 | Long-term | |
 | Full Simulation Period ${ }^{1}$ | |
 | WSIP 2030 Without Project | 866,601 |
 | WSIP 2030 With Project (051217) | 879,932 |
 | Difference | 13,331 |
 | Percent Difference ${ }^{3}$ | 1.5 |
 | Water Year Types ${ }^{2}$ | |
 | Wet (30.5\%) | |
 | WSIP 2030 Without Project | 951,527 |
 | WSIP 2030 With Project (051217) | 952,634 |
 | Difference | 1,108 |
 | Percent Difference | 0.1 |
 | Above Normal (14.6\%) | |
 | WSIP 2030 Without Project | 955,109 |
 | WSIP 2030 With Project (051217) | 958,285 |
 | Difference | 3,175 |
 | Percent Difference | 0.3 |
 | Below Normal (20.7\%) | |
 | WSIP 2030 Without Project | 918,215 |
 | WSIP 2030 With Project (051217) | 936,626 |
 | Difference | 18,412 |
 | Percent Difference | 2.0 |
 | Dry (19.5\%) | |
 | WSIP 2030 Without Project | 882,511 |
 | WSIP 2030 With Project (051217) | 896,598 |
 | Difference | 14,088 |
 | Percent Difference | 1.6 |
 | Critical (14.6\%) | |
 | WSIP 2030 Without Project | 518,507 |
 | WSIP 2030 With Project (051217) | 558,831 |
 | Difference | 40,324 |
 | Percent Difference | 7.8 |
 | 1 Based on the 80-year simulation period | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years may not correspond to the biological years in SALMOD. | |

 | Annual Production of Listed Life-stages for Spring-Run Chinook Salmon | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term Average and Average by Water Year Type Annual Production | | | | | |
 | | Annual Production (\# of Fish/year) | | | | |
 | Analysis Period | Eggs | Fry | Pre-Smolt | ImmatureSmolt | Juvenile (Pre \& Immature Smolt) |
 | Long-term | | | | | |
 | Full Simulation Period ${ }^{1}$ | | | | | |
 | WSIP 2030 Without Project | 1,394,544 | 1,173,437 | 870,789 | 866,601 | 1,737,390 |
 | WSIP 2030 With Project (051217) | 1,416,061 | 1,191,964 | 884,155 | 879,932 | 1,764,087 |
 | Difference | 21,517 | 18,527 | 13,366 | 13,331 | 26,697 |
 | Percent Difference ${ }^{3}$ | 1.5 | 1.6 | 1.5 | 1.5 | 1.5 |
 | Water Year Types ${ }^{2}$ | | | | | |
 | Wet (30.5\%) | | | | | |
 | WSIP 2030 Without Project | 1,523,144 | 1,280,774 | 954,638 | 951,527 | 1,906,164 |
 | WSIP 2030 With Project (051217) | 1,526,975 | 1,284,280 | 956,006 | 952,634 | 1,908,640 |
 | Difference | 3,831 | 3,506 | 1,368 | 1,108 | 2,476 |
 | Percent Difference | 0.3 | 0.3 | 0.1 | 0.1 | 0.1 |
 | Above Normal (14.6\%) | | | | | |
 | WSIP 2030 Without Project | 1,528,094 | 1,284,734 | 958,939 | 955,109 | 1,914,048 |
 | WSIP 2030 With Project (051217) | 1,534,466 | 1,290,182 | 962,187 | 958,285 | 1,920,471 |
 | Difference | 6,372 | 5,448 | 3,248 | 3,175 | 6,423 |
 | Percent Difference | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 |
 | Below Normal (20.7\%) | | | | | |
 | WSIP 2030 Without Project | 1,479,117 | 1,244,509 | 922,737 | 918,215 | 1,840,951 |
 | WSIP 2030 With Project (051217) | 1,508,118 | 1,269,834 | 941,086 | 936,626 | 1,877,712 |
 | Difference | 29,001 | 25,325 | 18,349 | 18,412 | 36,761 |
 | Percent Difference | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
 | Dry (19.5\%) | | | | | |
 | WSIP 2030 Without Project | 1,432,080 | 1,203,993 | 886,742 | 882,511 | 1,769,253 |
 | WSIP 2030 With Project (051217) | 1,453,038 | 1,221,996 | 900,574 | 896,598 | 1,797,172 |
 | Difference | 20,958 | 18,003 | 13,832 | 14,088 | 27,920 |
 | Percent Difference | 1.5 | 1.5 | 1.6 | 1.6 | 1.6 |
 | Critical (14.6\%) | | | | | |
 | WSIP 2030 Without Project | 841,392 | 712,289 | 524,766 | 518,507 | 1,043,273 |
 | WSIP 2030 With Project (051217) | 904,407 | 765,737 | 565,136 | 558,831 | 1,123,966 |
 | Difference | 63,015 | 53,448 | 40,369 | 40,324 | 80,693 |
 | Percent Difference | 7.5 | 7.5 | 7.7 | 7.8 | 7.7 |
 | 1 Based on the 80-year simulation period | | | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years may not correspond to the biological years in SALMOD. | | | | | |
 | 3 Relative difference of the annual average | | | | | |

 Table AQ-02-8c-1
 Annual Potential Production for Winter-Run Chinook Salmon
 Long-term Average and Average by Water Year Type Annual Production

 | Analysis Period | Annual Potential Production (\# of Fish/year) |
 | :--- | :---: |
 | | |
 | Full Simulation Period ${ }^{1}$ | |
 | WSIP 2030 Without Project | $3,892,177$ |
 | WSIP 2030 With Project (051217) | $3,912,804$ |
 | Difference | 20,627 |
 | Percent Difference ${ }^{3}$ | 0.5 |
 | | |
 | Wet (30.5\%) | |
 | WSIP 2030 Without Project | $3,797,669$ |
 | WSIP 2030 With Project (051217) | $3,801,471$ |
 | Difference | 3,802 |
 | Percent Difference | 0.1 |
 | Above Normal (14.6\%) Types ${ }^{2}$ | |
 | WSIP 2030 Without Project | $3,880,737$ |
 | WSIP 2030 With Project (051217) | $3,924,831$ |
 | Difference | 44,094 |
 | Percent Difference | 1.1 |
 | Below Normal (20.7\%) | |
 | WSIP 2030 Without Project | $4,024,236$ |
 | WSIP 2030 With Project (051217) | $3,998,208$ |
 | Difference | $-26,028$ |
 | Percent Difference | -0.6 |
 | Dry (19.5\%) | |
 | WSIP 2030 Without Project | $4,058,132$ |
 | WSIP 2030 With Project (051217) | $3,995,575$ |
 | Difference | $-62,557$ |
 | Percent Difference | -1.5 |
 | Critical (14.6\%) | |
 | WSIP 2030 Without Project | $3,702,206$ |
 | WSIP 2030 With Project (051217) | $3,909,491$ |
 | Difference | 207,285 |
 | Percent Difference | 5.6 |
 | 1 Based on the 80-year simulation period | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years | |
 | may not correspond to the biological years in SALMOD. | |
 | 3 Relative difference of the annual average | |

 Table AQ-02-8c-2

 | Annual Production of Listed Life-stages for Winter-Run Chinook Salmon | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term Average and Average by Water Year Type Annual Production | | | | | |
 | | Annual Production (\# of Fish/year) | | | | |
 | Analysis Period | Eggs | Fry | Pre-Smolt | ImmatureSmolt | Juvenile (Pre \& Immature Smolt) |
 | Long-term | | | | | |
 | Full Simulation Period ${ }^{1}$ | | | | | |
 | WSIP 2030 Without Project | 7,225,619 | 5,388,310 | 4,063,626 | 3,892,177 | 7,955,803 |
 | WSIP 2030 With Project (051217) | 7,325,431 | 5,413,423 | 4,093,700 | 3,912,804 | 8,006,504 |
 | Difference | 99,811 | 25,113 | 30,075 | 20,627 | 50,701 |
 | Percent Difference ${ }^{3}$ | 1.4 | 0.5 | 0.7 | 0.5 | 0.6 |
 | Water Year Types ${ }^{2}$ | | | | | |
 | Wet (30.5\%) | | | | | |
 | WSIP 2030 Without Project | 7,168,230 | 5,184,032 | 3,905,606 | 3,797,669 | 7,703,274 |
 | WSIP 2030 With Project (051217) | 7,201,365 | 5,198,627 | 3,921,946 | 3,801,471 | 7,723,417 |
 | Difference | 33,135 | 14,595 | 16,340 | 3,802 | 20,143 |
 | Percent Difference | 0.5 | 0.3 | 0.4 | 0.1 | 0.3 |
 | Above Normal (14.6\%) | | | | | |
 | WSIP 2030 Without Project | 7,227,275 | 5,317,833 | 4,006,276 | 3,880,737 | 7,887,013 |
 | WSIP 2030 With Project (051217) | 7,267,864 | 5,389,827 | 4,062,984 | 3,924,831 | 7,987,815 |
 | Difference | 40,590 | 71,994 | 56,708 | 44,094 | 100,801 |
 | Percent Difference | 0.6 | 1.4 | 1.4 | 1.1 | 1.3 |
 | Below Normal (20.7\%) | | | | | |
 | WSIP 2030 Without Project | 7,277,585 | 5,543,564 | 4,191,000 | 4,024,236 | 8,215,236 |
 | WSIP 2030 With Project (051217) | 7,360,459 | 5,513,254 | 4,172,051 | 3,998,208 | 8,170,258 |
 | Difference | 82,875 | -30,309 | -18,949 | -26,028 | -44,977 |
 | Percent Difference | 1.1 | -0.5 | -0.5 | -0.6 | -0.5 |
 | Dry (19.5\%) | | | | | |
 | WSIP 2030 Without Project | 7,330,627 | 5,619,760 | 4,272,463 | 4,058,132 | 8,330,595 |
 | WSIP 2030 With Project (051217) | 7,411,917 | 5,535,073 | 4,208,187 | 3,995,575 | 8,203,763 |
 | Difference | 81,291 | -84,687 | -64,275 | -62,557 | -126,832 |
 | Percent Difference | 1.1 | -1.5 | -1.5 | -1.5 | -1.5 |
 | Critical (14.6\%) | | | | | |
 | WSIP 2030 Without Project | 7,134,367 | 5,362,891 | 3,997,123 | 3,702,206 | 7,699,328 |
 | WSIP 2030 With Project (051217) | 7,474,651 | 5,587,237 | 4,222,561 | 3,909,491 | 8,132,052 |
 | Difference | 340,285 | 224,347 | 225,438 | 207,285 | 432,723 |
 | Percent Difference | 4.8 | 4.2 | 5.6 | 5.6 | 5.6 |
 | 1 Based on the 80-year simulation period | | | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years may not correspond to the biological years in SALMOD. | | | | | |
 | 3 Relative difference of the annual average | | | | | |

 Salmonid Population Modeling (SALMOD)

 Table AQ-02-8a-1
 Annual Potential Production for Fall-Run Chinook Salmon

 ## Long-term Average and Average by Water Year Type Annual Production

 | Analysis Period | Annual Potential Production (\# of Fish/year) |
 | :---: | :---: |
 | Long-term | |
 | Full Simulation Period ${ }^{1}$ | |
 | WSIP 2070 Without Project | 27,506,156 |
 | WSIP 2070 With Project (051617) | 28,961,125 |
 | Difference | 1,454,968 |
 | Percent Difference ${ }^{3}$ | 5.3 |
 | Water Year Types ${ }^{2}$ | |
 | Wet (31.7\%) | |
 | WSIP 2070 Without Project | 25,412,923 |
 | WSIP 2070 With Project (051617) | 25,480,397 |
 | Difference | 67,474 |
 | Percent Difference | 0.3 |
 | Above Normal (13.4\%) | |
 | WSIP 2070 Without Project | 29,812,869 |
 | WSIP 2070 With Project (051617) | 30,256,786 |
 | Difference | 443,918 |
 | Percent Difference | 1.5 |
 | Below Normal (15.9\%) | |
 | WSIP 2070 Without Project | 31,245,608 |
 | WSIP 2070 With Project (051617) | 32,632,236 |
 | Difference | 1,386,628 |
 | Percent Difference | 4.4 |
 | Dry (24.4\%) | |
 | WSIP 2070 Without Project | 29,025,341 |
 | WSIP 2070 With Project (051617) | 31,600,086 |
 | Difference | 2,574,746 |
 | Percent Difference | 8.9 |
 | Critical (14.6\%) | |
 | WSIP 2070 Without Project | 23,728,415 |
 | WSIP 2070 With Project (051617) | 27,155,649 |
 | Difference | 3,427,234 |
 | Percent Difference | 14.4 |
 | 1 Based on the 80-year simulation period | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years may not correspond to the biological years in SALMOD. | |

 | Annual Production of Listed Life-stages for Fall-Run Chinook Salmon | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term Average and Average by Water Year Type Annual Production | | | | | |
 | Annual Production (\# of Fish/year) | | | | | |
 | Analysis Period | Eggs | Fry | Pre-Smolt | ImmatureSmolt | Juvenile (Pre
 \& Immature Smolt) |
 | Long-term | | | | | |
 | Full Simulation Period ${ }^{1}$ | | | | | |
 | WSIP 2070 Without Project | 66,802,729 | 39,745,462 | 29,738,072 | 27,506,157 | 57,244,229 |
 | WSIP 2070 With Project (051617) | 70,469,314 | 41,700,760 | 31,341,021 | 28,961,123 | 60,302,144 |
 | Difference | 3,666,584 | 1,955,298 | 1,602,949 | 1,454,966 | 3,057,915 |
 | Percent Difference ${ }^{3}$ | 5.5 | 4.9 | 5.4 | 5.3 | 5.3 |
 | Water Year Types ${ }^{2}$ | | | | | |
 | Wet (31.7\%) | | | | | |
 | WSIP 2070 Without Project | 57,688,581 | 35,849,822 | 26,954,465 | 25,412,922 | 52,367,387 |
 | WSIP 2070 With Project (051617) | 57,908,428 | 35,816,967 | 27,037,528 | 25,480,390 | 52,517,918 |
 | Difference | 219,847 | -32,855 | 83,063 | 67,468 | 150,531 |
 | Percent Difference | 0.4 | -0.1 | 0.3 | 0.3 | 0.3 |
 | Above Normal (13.4\%) | | | | | |
 | WSIP 2070 Without Project | 79,133,395 | 42,164,394 | 31,719,612 | 29,812,866 | 61,532,478 |
 | WSIP 2070 With Project (051617) | 80,504,051 | 42,644,584 | 32,235,112 | 30,256,787 | 62,491,899 |
 | Difference | 1,370,656 | 480,190 | 515,501 | 443,921 | 959,421 |
 | Percent Difference | 1.7 | 1.1 | 1.6 | 1.5 | 1.6 |
 | Below Normal (15.9\%) | | | | | |
 | WSIP 2070 Without Project | 80,795,468 | 45,240,251 | 33,853,155 | 31,245,608 | 65,098,764 |
 | WSIP 2070 With Project (051617) | 83,952,001 | 46,680,104 | 35,174,583 | 32,632,231 | 67,806,814 |
 | Difference | 3,156,533 | 1,439,853 | 1,321,428 | 1,386,623 | 2,708,051 |
 | Percent Difference | 3.9 | 3.2 | 3.9 | 4.4 | 4.2 |
 | Dry (24.4\%) | | | | | |
 | WSIP 2070 Without Project | 70,971,933 | 42,370,664 | 31,610,881 | 29,025,347 | 60,636,228 |
 | WSIP 2070 With Project (051617) | 77,502,762 | 46,142,480 | 34,532,123 | 31,600,087 | 66,132,210 |
 | Difference | 6,530,830 | 3,771,816 | 2,921,242 | 2,574,740 | 5,495,983 |
 | Percent Difference | 9.2 | 8.9 | 9.2 | 8.9 | 9.1 |
 | Critical (14.6\%) | | | | | |
 | WSIP 2070 Without Project | 55,194,579 | 36,043,794 | 26,703,713 | 23,728,412 | 50,432,125 |
 | WSIP 2070 With Project (051617) | 63,829,854 | 40,943,956 | 30,523,160 | 27,155,656 | 57,678,816 |
 | Difference | 8,635,275 | 4,900,161 | 3,819,447 | 3,427,244 | 7,246,690 |
 | Percent Difference | 15.6 | 13.6 | 14.3 | 14.4 | 14.4 |
 | 1 Based on the 80-year simulation period | | | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years may not correspond to the biological years in SALMOD. | | | | | |
 | 3 Relative difference of the annual average | | | | | |

 Table AQ-02-8b-1
 Annual Potential Production for LateFall-Run Chinook Salmon
 Long-term Average and Average by Water Year Type Annual Production

 | Analysis Period | Annual Potential Production (\# of Fish/year) |
 | :--- | :---: |
 | | |
 | Full Simulation Period ${ }^{1}$ | |
 | WSIP 2070 Without Project | $7,525,505$ |
 | WSIP 2070 With Project (051617) | $7,761,100$ |
 | Difference | 235,595 |
 | Percent Difference ${ }^{3}$ | 3.1 |
 | | |
 | Wet (31.7\%) | |
 | WSIP 2070 Without Project | $7,192,368$ |
 | WSIP 2070 With Project (051617) | $7,198,300$ |
 | Difference | 5,932 |
 | Percent Difference | 0.1 |
 | Above Normal (13.4\%) | |
 | WSIP 2070 Without Project | $7,907,833$ |
 | WSIP 2070 With Project (051617) | $7,982,971$ |
 | Difference | 75,138 |
 | Percent Difference | 1.0 |
 | Below Normal (15.9\%) | |
 | WSIP 2070 Without Project | $8,424,622$ |
 | WSIP 2070 With Project (051617) | $8,499,441$ |
 | Difference | 74,820 |
 | Percent Difference | 0.9 |
 | Dry (24.4\%) | |
 | WSIP 2070 Without Project | $8,391,552$ |
 | WSIP 2070 With Project (051617) | $8,561,417$ |
 | Difference | 169,866 |
 | Percent Difference | 2.0 |
 | Critical (14.6\%) | |
 | WSIP 2070 Without Project | $5,543,102$ |
 | WSIP 2070 With Project (051617) | $6,680,369$ |
 | Difference | $1,137,267$ |
 | Percent Difference | 20.5 |
 | 1 Based on the 80-year simulation period | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years | |
 | may not correspond to the biological years in SALMOD. | |
 | 3 Relative difference of the annual average | |

 Table AQ-02-8b-2

 | Annual Production of Listed Life-stages for LateFall-Run Chinook Salmon | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term Average and Average by Water Year Type Annual Production | | | | | |
 | Annual Production (\# of Fish/year) | | | | | |
 | Analysis Period | Eggs | Fry | Pre-Smolt | ImmatureSmolt | Juvenile (Pre
 \& Immature Smolt) |
 | Long-term | | | | | |
 | Full Simulation Period ${ }^{1}$ | | | | | |
 | WSIP 2070 Without Project | 17,320,979 | 11,552,665 | 8,525,730 | 7,525,505 | 16,051,235 |
 | WSIP 2070 With Project (051617) | 17,423,148 | 11,661,940 | 8,705,389 | 7,761,100 | 16,466,489 |
 | Difference | 102,170 | 109,275 | 179,659 | 235,595 | 415,254 |
 | Percent Difference ${ }^{3}$ | 0.6 | 0.9 | 2.1 | 3.1 | 2.6 |
 | Water Year Types ${ }^{2}$ | | | | | |
 | Wet (31.7\%) | | | | | |
 | WSIP 2070 Without Project | 14,468,941 | 10,106,996 | 7,663,658 | 7,192,368 | 14,856,026 |
 | WSIP 2070 With Project (051617) | 14,513,491 | 10,129,672 | 7,684,042 | 7,198,300 | 14,882,341 |
 | Difference | 44,550 | 22,677 | 20,384 | 5,932 | 26,315 |
 | Percent Difference | 0.3 | 0.2 | 0.3 | 0.1 | 0.2 |
 | Above Normal (13.4\%) | | | | | |
 | WSIP 2070 Without Project | 16,294,129 | 11,178,837 | 8,480,413 | 7,907,833 | 16,388,246 |
 | WSIP 2070 With Project (051617) | 16,337,543 | 11,317,107 | 8,584,625 | 7,982,971 | 16,567,596 |
 | Difference | 43,414 | 138,270 | 104,212 | 75,138 | 179,350 |
 | Percent Difference | 0.3 | 1.2 | 1.2 | 1.0 | 1.1 |
 | Below Normal (15.9\%) | | | | | |
 | WSIP 2070 Without Project | 18,895,626 | 12,234,839 | 9,314,698 | 8,424,622 | 17,739,320 |
 | WSIP 2070 With Project (051617) | 18,947,648 | 12,288,131 | 9,362,074 | 8,499,441 | 17,861,515 |
 | Difference | 52,022 | 53,292 | 47,376 | 74,820 | 122,195 |
 | Percent Difference | 0.3 | 0.4 | 0.5 | 0.9 | 0.7 |
 | Dry (24.4\%) | | | | | |
 | WSIP 2070 Without Project | 19,144,710 | 12,450,690 | 9,486,442 | 8,391,552 | 17,877,994 |
 | WSIP 2070 With Project (051617) | 19,319,273 | 12,643,389 | 9,634,702 | 8,561,417 | 18,196,119 |
 | Difference | 174,564 | 192,698 | 148,259 | 169,866 | 318,125 |
 | Percent Difference | 0.9 | 1.5 | 1.6 | 2.0 | 1.8 |
 | Critical (14.6\%) | | | | | |
 | WSIP 2070 Without Project | 19,525,110 | 12,729,589 | 7,971,637 | 5,543,102 | 13,514,739 |
 | WSIP 2070 With Project (051617) | 19,729,859 | 12,926,357 | 8,748,617 | 6,680,369 | 15,428,985 |
 | Difference | 204,749 | 196,769 | 776,980 | 1,137,267 | 1,914,247 |
 | Percent Difference | 1.0 | 1.5 | 9.7 | 20.5 | 14.2 |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years may not correspond to the biological years in SALMOD. | | | | | |
 | 3 Relative difference of the annual average | | | | | |

 Table AQ-02-8d-1

 ## Annual Potential Production for Spring-Run Chinook Salmon

 ## Long-term Average and Average by Water Year Type Annual Production

 | Analysis Period | Annual Potential Production (\# of Fish/year) |
 | :---: | :---: |
 | Long-term | |
 | Full Simulation Period ${ }^{1}$ | |
 | WSIP 2070 Without Project | 688,048 |
 | WSIP 2070 With Project (051617) | 735,116 |
 | Difference | 47,068 |
 | Percent Difference ${ }^{3}$ | 6.8 |
 | Water Year Types ${ }^{2}$ | |
 | Wet (31.7\%) | |
 | WSIP 2070 Without Project | 841,504 |
 | WSIP 2070 With Project (051617) | 880,853 |
 | Difference | 39,348 |
 | Percent Difference | 4.7 |
 | Above Normal (13.4\%) | |
 | WSIP 2070 Without Project | 940,188 |
 | WSIP 2070 With Project (051617) | 940,334 |
 | Difference | 145 |
 | Percent Difference | 0.0 |
 | Below Normal (15.9\%) | |
 | WSIP 2070 Without Project | 824,432 |
 | WSIP 2070 With Project (051617) | 893,867 |
 | Difference | 69,435 |
 | Percent Difference | 8.4 |
 | Dry (24.4\%) | |
 | WSIP 2070 Without Project | 661,298 |
 | WSIP 2070 With Project (051617) | 730,899 |
 | Difference | 69,601 |
 | Percent Difference | 10.5 |
 | Critical (14.6\%) | |
 | WSIP 2070 Without Project | 53,644 |
 | WSIP 2070 With Project (051617) | 96,619 |
 | Difference | 42,975 |
 | Percent Difference | 80.1 |
 | 1 Based on the 80-year simulation period | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years may not correspond to the biological years in SALMOD. | |

 Table AQ-02-8d-2

 | Annual Production of Listed Life-stages for Spring-Run Chinook Salmon | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term Average and Average by Water Year Type Annual Production | | | | | |
 | | Annual Production (\# of Fish/year) | | | | |
 | Analysis Period | Eggs | Fry | Pre-Smolt | ImmatureSmolt | Juvenile (Pre \& Immature Smolt) |
 | Long-term | | | | | |
 | Full Simulation Period ${ }^{1}$ | | | | | |
 | WSIP 2070 Without Project | 1,100,788 | 934,223 | 695,287 | 688,048 | 1,383,336 |
 | WSIP 2070 With Project (051617) | 1,172,288 | 995,815 | 742,841 | 735,116 | 1,477,957 |
 | Difference | 71,500 | 61,592 | 47,554 | 47,068 | 94,622 |
 | Percent Difference ${ }^{3}$ | 6.5 | 6.6 | 6.8 | 6.8 | 6.8 |
 | Water Year Types ${ }^{2}$ | | | | | |
 | Wet (31.7\%) | | | | | |
 | WSIP 2070 Without Project | 1,337,752 | 1,135,643 | 848,268 | 841,504 | 1,689,772 |
 | WSIP 2070 With Project (051617) | 1,398,534 | 1,186,464 | 887,857 | 880,853 | 1,768,710 |
 | Difference | 60,782 | 50,822 | 39,590 | 39,348 | 78,938 |
 | Percent Difference | 4.5 | 4.5 | 4.7 | 4.7 | 4.7 |
 | Above Normal (13.4\%) | | | | | |
 | WSIP 2070 Without Project | 1,492,664 | 1,266,374 | 949,214 | 940,188 | 1,889,403 |
 | WSIP 2070 With Project (051617) | 1,491,883 | 1,268,031 | 950,507 | 940,334 | 1,890,841 |
 | Difference | -781 | 1,657 | 1,293 | 145 | 1,438 |
 | Percent Difference | -0.1 | 0.1 | 0.1 | 0.0 | 0.1 |
 | Below Normal (15.9\%) | | | | | |
 | WSIP 2070 Without Project | 1,330,477 | 1,127,004 | 833,056 | 824,432 | 1,657,488 |
 | WSIP 2070 With Project (051617) | 1,431,812 | 1,216,078 | 902,685 | 893,867 | 1,796,553 |
 | Difference | 101,335 | 89,074 | 69,629 | 69,435 | 139,065 |
 | Percent Difference | 7.6 | 7.9 | 8.4 | 8.4 | 8.4 |
 | Dry (24.4\%) | | | | | |
 | WSIP 2070 Without Project | 1,067,309 | 906,233 | 670,389 | 661,298 | 1,331,687 |
 | WSIP 2070 With Project (051617) | 1,172,648 | 996,742 | 740,234 | 730,899 | 1,471,133 |
 | Difference | 105,338 | 90,509 | 69,846 | 69,601 | 139,446 |
 | Percent Difference | 9.9 | 10.0 | 10.4 | 10.5 | 10.5 |
 | Critical (14.6\%) | | | | | |
 | WSIP 2070 Without Project | 86,911 | 74,891 | 55,953 | 53,644 | 109,597 |
 | WSIP 2070 With Project (051617) | 155,637 | 134,086 | 100,084 | 96,619 | 196,703 |
 | Difference | 68,725 | 59,195 | 44,131 | 42,975 | 87,106 |
 | Percent Difference | 79.1 | 79.0 | 78.9 | 80.1 | 79.5 |
 | 1 Based on the 80-year simulation period | | | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years may not correspond to the biological years in SALMOD. | | | | | |
 | 3 Relative difference of the annual average | | | | | |

 Table AQ-02-8c-1
 Annual Potential Production for Winter-Run Chinook Salmon
 Long-term Average and Average by Water Year Type Annual Production

 | Analysis Period | Annual Potential Production (\# of Fish/year) |
 | :--- | :---: |
 | | |
 | Full Simulation Period ${ }^{1}$ | |
 | WSIP 2070 Without Project | $3,711,513$ |
 | WSIP 2070 With Project (051617) | $3,795,947$ |
 | Difference | 84,433 |
 | Percent Difference ${ }^{3}$ | 2.3 |
 | | |
 | Wet (31.7\%) | |
 | WSIP 2070 Without Project | $3,797,785$ |
 | WSIP 2070 With Project (051617) | $3,811,750$ |
 | Difference | 13,965 |
 | Percent Difference | 0.4 |
 | Above Normal (13.4\%) | |
 | WSIP 2070 Without Project | $3,975,686$ |
 | WSIP 2070 With Project (051617) | $3,944,356$ |
 | Difference | $-31,330$ |
 | Percent Difference | -0.8 |
 | Below Normal (15.9\%) | |
 | WSIP 2070 Without Project | $4,138,983$ |
 | WSIP 2070 With Project (051617) | $4,045,042$ |
 | Difference | $-93,942$ |
 | Percent Difference | -2.3 |
 | Dry (24.4\%) | |
 | WSIP 2070 Without Project | $4,069,620$ |
 | WSIP 2070 With Project (051617) | $4,057,150$ |
 | Difference | $-12,471$ |
 | Percent Difference | -0.3 |
 | Critical (14.6\%) | |
 | WSIP 2070 Without Project | $2,280,132$ |
 | WSIP 2070 With Project (051617) | $2,953,599$ |
 | Difference | 673,467 |
 | Percent Difference | 29.5 |
 | 1 Based on the 80-year simulation period | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years | |
 | may not correspond to the biological years in SALMOD. | |
 | 3 Relative difference of the annual average | |

 Table AQ-02-8c-2

 | Annual Production of Listed Life-stages for Winter-Run Chinook Salmon | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term Average and Average by Water Year Type Annual Production | | | | | |
 | | Annual Production (\# of Fish/year) | | | | |
 | Analysis Period | Eggs | Fry | Pre-Smolt | ImmatureSmolt | Juvenile (Pre \& Immature Smolt) |
 | Long-term | | | | | |
 | Full Simulation Period ${ }^{1}$ | | | | | |
 | WSIP 2070 Without Project | 7,093,004 | 5,269,738 | 3,920,296 | 3,711,513 | 7,631,810 |
 | WSIP 2070 With Project (051617) | 7,240,949 | 5,346,659 | 4,013,690 | 3,795,947 | 7,809,637 |
 | Difference | 147,945 | 76,921 | 93,394 | 84,433 | 177,827 |
 | Percent Difference ${ }^{3}$ | 2.1 | 1.5 | 2.4 | 2.3 | 2.3 |
 | Water Year Types ${ }^{2}$ | | | | | |
 | Wet (31.7\%) | | | | | |
 | WSIP 2070 Without Project | 7,236,467 | 5,199,552 | 3,948,294 | 3,797,785 | 7,746,079 |
 | WSIP 2070 With Project (051617) | 7,313,715 | 5,230,802 | 3,966,296 | 3,811,750 | 7,778,046 |
 | Difference | 77,248 | 31,250 | 18,002 | 13,965 | 31,967 |
 | Percent Difference | 1.1 | 0.6 | 0.5 | 0.4 | 0.4 |
 | Above Normal (13.4\%) | | | | | |
 | WSIP 2070 Without Project | 7,293,631 | 5,461,924 | 4,147,176 | 3,975,686 | 8,122,862 |
 | WSIP 2070 With Project (051617) | 7,290,566 | 5,428,131 | 4,119,775 | 3,944,356 | 8,064,131 |
 | Difference | -3,066 | -33,794 | -27,401 | -31,330 | -58,731 |
 | Percent Difference | 0.0 | -0.6 | -0.7 | -0.8 | -0.7 |
 | Below Normal (15.9\%) | | | | | |
 | WSIP 2070 Without Project | 7,284,193 | 5,730,207 | 4,366,245 | 4,138,983 | 8,505,228 |
 | WSIP 2070 With Project (051617) | 7,402,222 | 5,602,119 | 4,269,847 | 4,045,042 | 8,314,888 |
 | Difference | 118,029 | -128,088 | -96,398 | -93,942 | -190,340 |
 | Percent Difference | 1.6 | -2.2 | -2.2 | -2.3 | -2.2 |
 | Dry (24.4\%) | | | | | |
 | WSIP 2070 Without Project | 7,426,183 | 5,704,789 | 4,356,553 | 4,069,620 | 8,426,173 |
 | WSIP 2070 With Project (051617) | 7,502,088 | 5,660,478 | 4,341,637 | 4,057,150 | 8,398,786 |
 | Difference | 75,905 | -44,312 | -14,916 | -12,471 | -27,387 |
 | Percent Difference | 1.0 | -0.8 | -0.3 | -0.3 | -0.3 |
 | Critical (14.6\%) | | | | | |
 | WSIP 2070 Without Project | 5,868,493 | 4,076,098 | 2,497,526 | 2,280,132 | 4,777,658 |
 | WSIP 2070 With Project (051617) | 6,445,439 | 4,751,297 | 3,225,237 | 2,953,599 | 6,178,836 |
 | Difference | 576,946 | 675,200 | 727,711 | 673,467 | 1,401,178 |
 | Percent Difference | 9.8 | 16.6 | 29.1 | 29.5 | 29.3 |
 | 1 Based on the 80-year simulation period | | | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB 1995). Water years may not correspond to the biological years in SALMOD. | | | | | |
 | 3 Relative difference of the annual average | | | | | |

 ## Sacramento-San Joaquin Delta Modeling Summary Tables and Bar Charts

 Table SQ-01-a
 K2, Monthly Position
 Long-term Average and Average by Water Year Type

 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly Position (KM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simulion Period' | | | | | | | | | | | | |
 | DCR2015 Whituoul Priject | 88.0 | 82.2 | 77.5 | 68.0 | 62.9 | 64.5 | 66.8 | 71.7 | 79.2 | 83.7 | 89.5 | 83.4 |
 | DCR2015wh Project | 87.1 | 81.9 | 78.1 | 69.0 | 63.8 | 65.3 | 66.9 | 71.8 | 78.9 | 83.6 | 89.0 | 82.7 |
 | Diffeence | -0.9 | -0.2 | 0.7 | 1.0 | 0.9 | 0.9 | 0.1 | 0.0 | -0.3 | -0.1 | -0.4 | -0.7 |
 | Perent ifference? | -1.0\% | -0.3\% | 0.9\% | 1.5\% | 1.5\% | 1.3\% | 0.2\% | 0.1\% | -0.3\% | -0.2\% | -0.5\% | -0.8\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet 3 1.7\%\%) | | | | | | | | | | | | |
 | DCR2015 Whituout Project | 80.9 | 72.2 | 75.1 | 57.1 | 55.3 | 56.9 | 58.1 | 61.1 | 70.1 | 78.4 | 86.5 | 68.7 |
 | DCR2015 win Projed | 80.8 | 72.3 | 75.7 | 57.5 | 55.4 | 57.3 | 58.1 | 61.1 | 69.8 | 78.4 | 86.3 | 68.5 |
 | Diffeene | -0.1 | 0.1 | 0.6 | 0.4 | 0.1 | 0.3 | -0.1 | 0.1 | -0.3 | 0.0 | -0.1 | -0.2 |
 | Perenen ifferene | -0.1\% | 0.1\% | 0.8\% | 0.7\% | 0.2\% | 0.5\% | -0.1\% | 0.1\% | -0.4\% | 0.0\% | -0.2\% | -0.3\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | DCR2015 Whtrut Project | 86.4 | 79.7 | 75.0 | 61.8 | 57.1 | 57.6 | 61.2 | 66.8 | 78.8 | 81.2 | 88.7 | 79.5 |
 | DCR2015 win Project | 85.8 | 79.7 | 76.5 | 62.7 | 57.6 | 58.5 | 61.5 | 66.9 | 78.7 | 81.1 | 88.2 | 79.1 |
 | Diffeene | -0.6 | 0.1 | 1.5 | 0.9 | 0.6 | 1.0 | 0.3 | 0.0 | -0.1 | -0.1 | -0.5 | -0.4 |
 | Perentififeence | -0.7\% | 0.1\% | 2.0\% | 1.4\% | 1.0\% | 1.7\% | 0.4\% | 0.0\% | -0.1\% | -0.1\% | -0.5\% | -0.5\% |
 | Beow Nomal(17.1\%) | | | | | | | | | | | | |
 | DCR2015 WWhtrut Projet | 90.1 | 85.2 | 74.9 | 70.5 | 62.3 | 66.5 | 67.0 | 72.7 | 81.7 | 83.6 | 89.5 | 91.1 |
 | DCR 2015 W.in Project | 88.4 | 83.9 | 75.2 | 72.1 | 62.9 | 68.1 | 67.2 | 73.0 | 81.4 | 83.5 | 89.0 | 90.2 |
 | Difteence | -1.6 | -1.4 | 0.3 | 1.6 | 0.6 | 1.7 | 0.3 | 0.3 | -0.3 | -0.1 | ${ }^{-0.5}$ | -0.9 |
 | Perenen iffeeme | -1.8\% | -1.6\% | 0.4\% | 2.3\% | 0.9\% | 2.5\% | 0.4\% | 0.4\% | -0.4\% | -0.1\% | -0.5\% | -1.0\% |
 | Dry 22% \% | | | | | | | | | | | | |
 | DCR2015 Whituout Projet | 93.2 | 88.7 | 78.1 | 77.1 | 69.4 | 69.6 | 73.5 | 79.4 | 84.1 | 87.8 | 91.7 | 93.4 |
 | DCR2015 Wwh Projet | 91.8 | 88.5 | 79.0 | 78.1 | 70.9 | 71.1 | 73.8 | 79.2 | 84.1 | 87.6 | 90.8 | 91.9 |
 | Diffeence | -1.4 | -0.2 | 0.9 | 1.1 | 1.6 | 1.5 | 0.3 | -0.2 | 0.0 | -0.2 | -0.9 | -1.5 |
 | Perenen iffeeme | -1.5\% | -0.2\% | 1.2\% | 1.4\% | 2.3\% | 2.1\% | 0.4\% | -0.2\% | 0.0\% | -0.3\% | -1.0\% | -1.6\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | DCR2015 Whrtout Projet | 94.8 | 92.9 | 87.0 | 81.0 | 76.1 | 77.6 | 81.0 | 87.1 | 88.9 | 91.8 | 93.3 | 94.9 |
 | DCR2015 WWh Projet | 93.4 | 92.7 | 87.2 | 82.5 | 78.6 | 77.7 | 81.0 | 87.2 | 88.3 | 91.4 | 93.0 | 94.4 |
 | Diffeence | -1.4 | -0.2 | 0.1 | 1.5 | 2.6 | 0.1 | 0.0 | 0.1 | -0.6 | -0.4 | -0.3 | -0.6 |
 | Perentififeence | -1.5\% | -0.2\% | 0.1\% | 1.9\% | 3.4\% | 0.1\% | 0.0\% | 0.1\% | -0.7\% | -0.4\% | -0.4\% | -0.6\% |

 18 assed on the 82 yearas simulution peitiod
 Redavive differene of the monnily aveas

 | Table SQ-21-a
 Sacramento River at Emmaton, Monthly EC Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simulion Period' | | | | | | | | | | | | |
 | OCR 2015 W Wituat Project | 1704.7 | 1348.1 | 882.9 | 410.8 | 235.5 | 216.0 | 233.3 | 318.1 | 529.4 | 671.4 | 1267.8 | 1466.3 |
 | OCR 2015 With Projed | 1432.4 | 1189.0 | 859.7 | 432.4 | 248.8 | 219.7 | 234.2 | 320.3 | 514.6 | 645.3 | 1175.3 | 1267.5 |
 | Diffeene | -272.3 | -159.0 | -23.3 | 21.7 | ${ }_{13.3}$ | 3.7 | 0.9 | 2.3 | -14.8 | -26.1 | -92.5 | -198.8 |
 | Perentififeemes | -16.0\% | -11.8\% | -2.6\% | 5.3\% | 5.7\% | 1.7\% | 0.4\% | 0.7\% | -2.8% | -3.9\% | -7.3\% | -13.6\% |
 | Water Year T Tyes ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (1.7.7\%) | | | | | | | | | | | | |
 | OCR 2195 W Whrout Project | 301.4 | 235.7 | 354.6 | 200.4 | 184.1 | 182.9 | 186.2 | 188.7 | 228.0 | 285.1 | 755.7 | 285.3 |
 | DCR 2015 Want Project | 289.0 | 233.4 | 359.8 | 210.4 | 184.3 | 183.4 | 186.2 | 188.8 | 225.2 | 283.1 | 736.9 | 280.8 |
 | Diffeene | -12.4 | -2.3 | 5.2 | 4.1 | 0.2 | 0.5 | 0.0 | 0.1 | -2.9 | -2.0 | -18.8 | -4.6 |
 | Perenerifiteence | -4.1\% | -1.0\% | 1.5\% | 2.0\% | 0.1\% | 0.3\% | 0.0\% | 0.0\% | -1.3\% | -0.7\% | -2.5\% | -1.6\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | OCR 2015 Wintuour Prijet | 622.5 | 4898 | 467.4 | 275.7 | 195.1 | 184.6 | 190.7 | 198.9 | 316.5 | 331.0 | 813.4 | 473.1 |
 | DCR 2015 W.in Project | 556.9 | 482.6 | 510.1 | 295.5 | 198.1 | 186.2 | 191.4 | 199.0 | 310.4 | 325.7 | 768.9 | 441.7 |
 | Diffeene | -65.6 | -7.2 | 42.6 | 19.7 | 3.0 | 1.6 | 0.7 | 0.0 | -6.1 | -5.3 | -44.5 | -31.4 |
 | Perentififeence | -10.5\% | -1.5\% | 9.1\% | 7.1\% | 1.5\% | 0.9\% | 0.4\% | 0.0\% | -1.9\% | -1.6\% | -5.5\% | -6.6\% |
 | Below Noma (17.7\%) | | | | | | | | | | | | |
 | DCR 2015 Wintuat Proeet | 2103.6 | 1540.3 | 988.5 | 404.2 | 210.0 | 198.1 | 207.4 | 233.1 | 396.9 | 485.8 | 1014.7 | 1704.7 |
 | DCCR2015 Wwin Project | 1660.5 | 1265.2 | 938.0 | 442.0 | 211.4 | 205.0 | 209.1 | 234.8 | 395.0 | 478.1 | 952. | 1460.7 |
 | Difterene | -443.1 | -275.1 | -50.5 | 37.8 | 1.4 | 6.9 | 1.6 | 1.7 | -1.9 | -7.7 | -61.9 | -244.0 |
 | Perentififeence | -21.1\% | -17.9\% | -5.1\% | 9.4\% | 0.7\% | 3.5\% | 0.8\% | 0.7\% | -0.5\% | -1.6\% | -6.1\% | -14.3\% |
 | Dr (22\%) | | | | | | | | | | | | |
 | DCR2015 Wintuat Proed | 2864.4 | 2071.1 | 1204.6 | 534.3 | 273.2 | 224.6 | 240.1 | 320.2 | 582.3 | 824.3 | 1715.3 | 2493.9 |
 | DCR2015 Wat Project | 2341.3 | 1819.2 | 1152.5 | 550.8 | 2898 | 230.4 | 244.9 | 315.7 | 57.6 | 805.6 | 1508.6 | 1975.4 |
 | Diffeence | -523.1 | -251.8 | -52.2 | 16.5 | 16.7 | 5.7 | 4.8 | -4.5 | -3.8 | -18.8 | -206.7 | -518.6 |
 | Perentififeence | -18.3\% | -12.2\% | -4.3\% | 3.1\% | 6.1\% | 2.6\% | 2.0\% | -1.4\% | -0.6\% | -2.3\% | -12.0\% | -20.8\% |
 | Critical (14.6.5\%) | | | | | | | | | | | | |
 | OCR 2015 W Whout Proed | 3622.2 | 3307.6 | 1837.4 | 811.0 | 360.6 | 327.2 | 397.7 | 813.5 | 1470.5 | 1835.8 | 2456.0 | 3198.6 |
 | DCR2015 Wath Proeet | 3155.3 | 2931.8 | 1761.7 | 861.7 | 421.4 | 333.0 | 394.1 | 833.5 | 1389.4 | 1704.2 | 2291.3 | 2944.0 |
 | Diffeence | -466.9 | -375.8 | -75.7 | 50.7 | 60.9 | 5.8 | ${ }^{-3.6}$ | 20.0 | -81.2 | -131.6 | -164.7 | -254.6 |
 | Peremen Diffeence | -12.9\% | -11.4\% | -4.1\% | 6.2\% | 16.9\% | 1.8\% | -0.9\% | 2.5\% | -5.5\% | -7.2\% | -6.7\% | -8.0\% |
 | 1 Based on the 82 yearas simulito period | | | | | | | | | | | | |
 | | | | | | | | | | | | | |
 | | | | | | | | | | | | | |

 | Long-term Average and Average by Water Year Ty | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simudion Pefiod' | | | | | | | | | | | | |
 | DCR2015 Whituoul Priject | 6007.8 | 5181.1 | 3774.7 | 1811.2 | 685.0 | 539.0 | 678.3 | 1169.9 | 2270.6 | 3304.4 | 5382.0 | 5202.4 |
 | DCR2015 wit Project | 5505.8 | 4850.8 | 383.4 | 1970.2 | 803.0 | 592.5 | 69.1 | 1175.0 | 2224.2 | 3242.3 | 5240.5 | 4901.6 |
 | Diffeence | -502.0 | -330.3 | 58.6 | 159.0 | 118.1 | 53.4 | 12.8 | 5.1 | -46.4 | -62.1 | -141.5 | -300.8 |
 | Perentififeence? | -8.4\% | -6.4\% | 1.6\% | 8.8\% | 17.2\% | 9.9\% | 1.9\% | 0.4\% | -2.0\% | -1.9\% | 2.6 | 5\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet(1.7\%\%) | | | | | | | | | | | | |
 | DCR2015 WWhaut Prijet | 1543.3 | 1127.2 | 1837.5 | 368.3 | 200.1 | 200.8 | 218.8 | 278.6 | 703.3 | 1487.7 | 3898.7 | 1174.2 |
 | DCR2015 win Projet | 1501.6 | 1119.9 | 1902.9 | 407.7 | 201.2 | 206.9 | 219.0 | 27.6 | 684.6 | 1470.1 | 3852.7 | 1145.4 |
 | Difteene | -41.7 | -7.3 | 65.4 | 39.3 | 1.1 | 6.1 | 0.2 | 1.0 | -18.7 | -17.7 | -46.0 | -28.8 |
 | Perentififeence | -2.7\% | -0.6\% | 3.6\% | 10.7\% | 0.5\% | 3.0\% | 0.1\% | 0.3\% | -2.7\% | -1.2\% | -1.2\% | -2.5\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | DCR205 WWituout Project | 3492.5 | 2924.6 | 2431.7 | 956.9 | 274.1 | 205.1 | 236.7 | 367.4 | 1453.9 | 1984.9 | 4294.3 | 273.0 |
 | DCR2015 win Project | 3306.2 | 2882.7 | 2704.0 | 1106.6 | 305.8 | 225.9 | 244.4 | 367.1 | 1422.8 | 1951.2 | 4147.3 | 2571.9 |
 | Diffeence | -186.2 | -41.9 | 272.2 | 149.7 | 31.7 | 20.8 | 7.7 | -0.3 | -31.1 | -33.7 | -147.1 | -161.1 |
 | Perenen Difieence | -5.3\% | -1.4\% | 11.2\% | 15.6\% | 11.6\% | 10.2\% | 3.3\% | -0.1\% | -2.1\% | -1.7\% | -3.4\% | -5.9\% |
 | Below Nomal (17.1\%) | | | | | | | | | | | | |
 | DCR2015 WWhtur Prijet | 8001.1 | 6504.4 | 4060.2 | 1895.5 | 437.6 | 381.6 | 438.4 | 753.1 | 2035.7 | 3041.2 | 5073.6 | 6989.4 |
 | DCR2015 win Project | 7164.3 | 5684.3 | 4007.0 | 2154.0 | 473.0 | 462.5 | 462.9 | 771.1 | 2005.9 | 2992.8 | 4908.9 | 6498.5 |
 | Diffeence | -836.7 | -820.1 | -53.2 | 258.6 | 35.4 | 80.8 | 24.5 | 18.0 | -29.8 | -48.4 | -164.6 | -491.0 |
 | Perentififeence | -10.5\% | -12.6\% | -1.3\% | 13.6\% | 8.1\% | 21.2\% | 5.6\% | 2.4\% | -1.5\% | -1.6\% | -3.2\% | -7.0\% |
 | Dr $\left(22^{\%} \%\right)$ | | | | | | | | | | | | |
 | DCR2015 WWraut Proet | 9536.5 | 8034.6 | 4814.4 | 2819.3 | 1080.8 | 674.0 | 839.4 | 1579.1 | 3074.7 | 4565.2 | 6676.4 | 8476.0 |
 | DCR2015 whif Proed | 8632.2 | 7636.1 | 4905.4 | 2993.9 | 1245.2 | 75.2 | 890.8 | 1560.7 | 3055.8 | 458.9 | 6364.4 | 7713.6 |
 | Diffeence | -904.3 | -398.5 | 91.0 | 174.6 | 164.4 | 79.2 | 51.3 | -18.4 | -19.0 | -36.3 | -312.0 | -762.4 |
 | Perenciofiteene | -9.5\% | -5.0\% | 1.9\% | 6.2\% | 15.2\% | 11.7\% | 6.1\% | -1.2% | -0.6\% | -0.8\% | -4.7\% | -9.0\% |
 | Cintical (14.6\%) | | | | | | | | | | | | |
 | DCR2015 WWraut Proet | 10577.6 | 10397.3 | 7422.6 | 4181.3 | 1841.2 | 1586.8 | 2153.3 | 3776.0 | 5550.8 | 6975.6 | 8102.0 | 9403.9 |
 | DCR2015 Whif Projet | 9756.9 | 9752.3 | 7334.8 | 44693 | 2326.0 | 1705.0 | 2127.3 | 3815.8 | 5388.7 | 6734.4 | 8041.8 | 9288.4 |
 | Diffeence | -820.8 | -644.9 | -87.8 | 288.1 | 484.8 | 118.1 | -26.0 | 39.7 | -182.1 | -241.1 | -60.2 | -115.5 |
 | Perenen Difiemence | -7.8\% | -6.2\% | -1.2\% | 6.9\% | 26.3\% | 7.4\% | -1.2\% | 1.1\% | -3.3\% | -3.5\% | -0.7\% | -1.2% |
 | 1 Basedo onte 82 2-yerar imulition period | | | | | | | | | | | | |
 | 2 As defined by the Sacramento Valley 40-30-3 3 Relative difference of the monthly average | | | | | | | | | | | | |

 Sacramento River at Mallard Slough (Chipps sland)), Monthly EC
 Long-term Average and Average by Water Year Type

 | | | | | | | hly EC | MHOS | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |

 Full Simulaion Period

 | OCR 2015 WWin Propect | 8475.5 | 7649.0 | 6255.8 | 3571.4 | 1566.1 | 1213.1 | 1416.8 | 2261.3 | 4029.1 | 5812.8 | 8502.9 | 7748.2 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | Diffeence | -464.2 | -323.9 | 153.8 | 288.4 | 226.8 | 132.9 | 39.7 | 10.0 | -60.9 | -73.4 | -124.5 | -273.1 |

 | Diffeencer | -464.2 | -323.9 | 153.8 | 288.4 | 226.8 | 132.9 | 39.7 | 10.0 | -60.9 | -73.4 | -124.5 | -273.1 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | Perean Difeerences | -5.2% | -4.1% | 2.5% | 8.8% | 16.9% | 12.3% | 2.9% | 0.4% | -1.5% | -12% | -14% | -340 |

 Wet (31.7\%)

 | DCR 2015 Witrout Priject | 3265.2 | 2641.4 | 3469.1 | 597.9 | 230.7 | 256.6 | 312.5 | 493.4 | 1450.9 | 3145.3 | 672.5 | 2611.2 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | DCR 2015 Want Project | 3222.1 | 2645.1 | 3595.4 | 692.9 | 234.2 | 275.5 | 312 | 497 | 1417.6 | 111.3 | 6676.6 | 2551.6 |
 | Diffeene | -43.0 | 3.7 | 126.3 | 94.9 | 3.6 | 18.9 | 0.0 | 3.6 | -33.3 | -33.9 | -43.9 | -59.5 |
 | Perenen iffeence | -1.3\% | 0.1\% | 3.6\% | 15.9\% | 1.5\% | 7.4\% | 0.0\% | 0.7\% | -2.3\% | -1.1\% | -0.7\% | -2.3 |

 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | DCR 2015 Wiftout Pojeat | 6281.3 | 5540.1 | 4412.5 | 1841.5 | 440.7 | 267.4 | 383.9 | 790.0 | 2925.4 | 4178.2 | 7385.1 | 5386.2 |

 $\begin{array}{lllllllllllllllll}\text { Diffeence } & -197.6 & -51.8 & 419.4 & 290.1 & 80.6 & 70.1 & 29.5 & 2.1 & -39.3 & -47.7 & -163.1 & -210.3\end{array}$ | Pecent Difference | -3.1% | -0.9% | 9.5% | 15.8% | 18.3% | 26.2% | 7.7% | 0.3% | -1.3% | -1.1% | -2.2% | -3.9% |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | Selow Nomal (17.1\%) | | | | | | | | | | | | |

 | DCR2015 Wwif Project | | $\begin{array}{llllllllllll}10818.0 & 8934.4 & 6370.7 & 4068.5 & 986.8 & 1032.4 & 1039.3 & 1728.4 & 3952.7 & 5779.7 & 8301.1\end{array}$ | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | $\begin{array}{lllllllllllllll}\text { DCR2015With Project } & 10818.0 & 89344.4 & 6370.7 & 4068.5 & 986.8 & 1032.4 & 1039.3 & 1728.4 & 3952.7 & 5779.7 & 8301.1 & 10231.2 \\ \text { Diffeence } & -773.3 & -977.2 & 21.5 & 433.6 & 101.8 & 198.9 & 77.7 & 43.1 & -51.4 & -74.6 & -166.1 & -460.2\end{array}$

 \qquad ($12 \% /)^{2}$

 DCR 2015 Whi Projed
 piffeence
 $\frac{\text { Perenco Diffeence }}{\text { Critical (14.6\%) }}$
 CCR2015 Wintout Project
 CR 2015 With Projed
 iffeence
 Based on the 82 2year simulition period

 $\begin{array}{lllllllllll}12463.2 & 11399.6 & 7687.3 & 5563.7 & 2611.2 & 1698.8 & 2048.1 & 3317.2 & 5621.5 & 7871.6 & 9976.7 \\ -823055.5\end{array}$ \begin{tabular}{llllllllllll}
 -823.5 \& -310.7 \& 263.3 \& 335.6 \& 342.4 \& 207.3 \& 120.8 \& -21.1 \& -29.1 \& -29.9 \& -262.5 \& -647.4

 -6.2% \& -2.7% \& 3.5% \& 6.4% \& 15.1% \& 13.9% \& 6.3% \& -0.6% \& -0.5% \& -0.4% \& -2.6% \& -5.3%

 \hline

 $\begin{array}{lllllllllllll}14278.7 & 14159.1 & 11225.0 & 7260.6 & 3776.2 & 3348.2 & 4336.3 & 6551.0 & 8732.4 & 10547.3 & 11770.4 & 13064.9\end{array}$ $\begin{array}{llllllllllll}13534.8 & 13526.0 & 11162.8 & 7679.7 & 4605.1 & 3602.2 & 4306.3 & 6590.9 & 8531.1 & 10298.5 & 117655.6 & 130466.3\end{array}$

 -743.9 \& -633.1 \& -62.2 \& 419.1 \& 828.8 \& 254.0 \& -30.0 \& 39.9 \& -201.3 \& -248.7 \& -4.7 \& -18.7

 -5.2% \& -4.5% \& -0.6% \& 5.8% \& 21.9% \& 7.6% \& -0.7% \& 0.6% \& -2.3% \& -2.4% \& 0.0% \& -0.1%

 \hline
 \end{tabular}

 3 Realive difference of the monthy average

 Long.term Average and Average byain

 | Long-term Average and Average | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simulition Period' | | | | | | | | | | | | |
 | OCR 2015 Wiftout Proed | 13730.9 | 12657.9 | 10212.3 | 6405.0 | 3263.7 | 2982.2 | 3685.9 | 5262.8 | 8258.8 | 11078.0 | 14157 | 13118 |
 | OCR2015 With Proeet | 13454.8 | 12499.8 | 10475.9 | 6880.5 | 3676.8 | 3315.1 | 3806.6 | 5291.2 | 8190.3 | 11002.8 | 14093.8 | 12963.1 |
 | Diffeene | -276.1 | -208.1 | 263.6 | 475.6 | 413.1 | 332.8 | 120.7 | 28.3 | -68.4 | -75.2 | -63.3 | -155.5 |
 | Pereat ifferences | -2.0\% | -1.6\% | 2.6\% | 7.4\% | 12.7\% | 11.2\% | 3.3\% | 0.5\% | -0.8\% | -0.7\% | -0.4\% | -1.2\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (31.7\%) | | | | | | | | | | | | |
 | DCR 2015 Without Proied | 7745.0 | 6838.6 | 7095.7 | 1382.6 | 441.5 | 683.3 | 956.8 | 1610.0 | 3981.9 | 7466.9 | 12051 | 700 |
 | DCR2015 Wit Project | 7751.5 | 6881.3 | 7307.8 | 1615.4 | 466.7 | 750.0 | 958.6 | 1624.3 | 3919.5 | 7408.3 | 12031.2 | 6943.2 |
 | Diffeene | 6.5 | 42.7 | 212.1 | 2328 | 25.2 | 66.6 | 1.8 | 14.3 | -62.3 | -58.6 | -20.1 | -63.3 |
 | Perenen ifference | 0.1\% | 0.6\% | 3.0\% | 16.8\% | 5.7\% | 9.7\% | 0.2\% | 0.9\% | -1.6\% | -0.8\% | -0.2\% | -0.9 |
 | Abve Nomal (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 11554.9 | 10547.9 | 8412.4 | 4143.1 | 1224.4 | 824.0 | 1501.4 | 2866.5 | 6869.1 | 9395.5 | 12978.7 | 11094.1 |
 | DCR 2015 Win Projert | 11440.1 | 10530.0 | 8961.0 | 4654.3 | 1440.1 | 1084.1 | 1628.7 | 2885.5 | 6845 | 9346.0 | 12868.4 | 10951.9 |
 | Diffeence | -114.8 | -17.8 | 548.7 | 511.3 | 215.7 | 260.1 | 127.3 | 19.1 | -23.3 | -49.6 | -110.3 | -142.2 |
 | Perenen Diffeence | -1.0\% | -0.2\% | 6.5\% | 12.3\% | 17.6\% | 31.6\% | 8.5\% | 0.7\% | -0.3\% | -0.5\% | -0.8\% | -1.3\% |
 | Below Nomal (17.10\%) | | | | | | | | | | | | |
 | DCR 2015 W Wrtatut Prjeet | 16557.6 | 14756.7 | 10174.6 | 7561.4 | 2694.8 | 2989.4 | 3358.4 | 4947.3 | 8771.2 | 11544.8 | 14247 | 1627 |
 | DCR 2015 Whit Projet | 16080.2 | 14031.8 | 10326.2 | 8358.5 | 3019.4 | 3489.2 | 3601.5 | 5056.4 | 8702.8 | 11451.3 | 14144.6 | 16008.9 |
 | Diffeene | -477.5 | -724.9 | 151.6 | 797.2 | 324.6 | 4998 | 243.1 | 109.1 | -68.4 | -93.4 | -103.2 | -270.4 |
 | Perenen iffeence | -2.9\% | -4.9\% | 1.5\% | 10.5\% | 12.0\% | 16.7\% | 7.2\% | 2.2\% | -0.8\% | -0.8\% | -0.7\% | -1.7 |
 | Dor (22\%) | | | | | | | | | | | | |
 | DCR 2015 W whtout Project | 18158.5 | 1673.3 | 11671.6 | 10093.3 | 5693.5 | 4452.7 | 5548.6 | 7934.4 | 11001.2 | 13724.6 | 15865.6 | 17437.6 |
 | DCR 2015 Winf Projert | 17670.0 | 16622.2 | 12109.2 | 10635.4 | 6364.6 | 4987.2 | 5823.8 | 7925.1 | 10963.5 | 13701.7 | 15726.2 | 17074.5 |
 | Diffeene | -488.5 | -111.0 | 437.6 | 54.1 | 671.1 | 534.5 | 275.2 | -9.3 | -37.7 | -22.9 | -139.4 | -363.1 |
 | Perenen Diffeence | -2.7\% | -0.7\% | 3.7\% | 5.4\% | 11.8\% | 12.0\% | 5.0\% | -0.1\% | -0.3\% | -0.2\% | -0.9\% | -2.1\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | DCR2015 Without Proeet | 18937.4 | 18814.5 | 16620.2 | 12667.1 | 8436.8 | 7907.3 | 9371.1 | 11934.5 | 14203.5 | 16069.9 | 17229.4 | 18220.0 |
 | DCR 2015 Wiff Project | 18441.2 | 18330.4 | 16580.0 | 13157.9 | 9604.2 | 8392.3 | 9368.4 | 11964.8 | 14030.6 | 15876.2 | 17280.0 | 18296 |
 | Diffeene | -496. 2 | -484.1 | -40.2 | 490.8 | 1167.4 | 485.0 | -2.7 | 30.3 | -172.9 | -193.7 | 50.6 | 76.7 |
 | Percen Diffeence | -2.6\% | -2.6\% | -0.2\% | 3.9\% | 13.8\% | 6.1\% | 0.0\% | 0.3\% | -1.2\% | -1.2% | 0.3\% | 0.4\% |

 Based on hese 82Jear simuabion period
 Realive diffeenceor the montily vereag

 | Old River at Rock Slough, Monthly EC Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | Full Simulion Perioc' | | | | | | | | | | | | |
 | OCR 2015 W Whaut Proeat | 556.1 | 533.3 | 542.8 | 515.0 | 365.0 | 295.8 | 328.4 | 326.5 | 270.6 | 331.0 | 473.8 | 613.7 |
 | DCR2015 Wwin Projer | 539.8 | 496.9 | 536.7 | 522.2 | 368.0 | 297.5 | 330.5 | 327.2 | 270.9 | 330.6 | 481.1 | 624.8 |
 | Differene | -16.3 | -36.4 | -6.1 | 7.1 | 3.0 | 1.7 | 2.1 | 0.7 | 0.2 | -0.3 | 7.3 | 11.1 |
 | Peacent Diffeences | -2.9\% | -6.8\% | -1.1\% | 1.4\% | 0.8\% | 0.6\% | 0.6\% | 0.2\% | 0.1\% | -0.1\% | 1.5\% | 1.8\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (3.7.7\%) | | | | | | | | | | | | |
 | DCR2015 Whituour Pried | 248.8 | 233.7 | 266.4 | 348.0 | 333.3 | 280.9 | 284.9 | 287.5 | 244.5 | 236.7 | 338.0 | 475.8 |
 | DCR2015 Wifl Prieet | 243.3 | 231.8 | 270.3 | 360.1 | 338.4 | 280.3 | 285.1 | 287.2 | 244.3 | 236.1 | 335.6 | 459.0 |
 | Diffeence | -5.5 | -1.8 | 3.9 | 12.1 | 5.1 | -0.6 | 0.2 | -0.3 | -0.3 | -0.6 | -2.5 | -16.8 |
 | Perenen Diffeence | -2.2\% | -0.8\% | 1.5\% | 3.5\% | 1.5\% | -0.2\% | 0.1\% | -0.1\% | -0.1\% | -0.3\% | -0.7\% | -3.5% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | OCR 2015 W Whout Prioet | 271.5 | 348.3 | 415.2 | 484.3 | 356.9 | 283.5 | 337.1 | 348.3 | 254.4 | 248.4 | 377.9 | 460.1 |
 | DCR 2015 WWin Project | 268.4 | 351.0 | 417.5 | 531.3 | 361.8 | 284.4 | 338.3 | 349.0 | 254.1 | 248.2 | 369.1 | 442.8 |
 | Diffeence | -3.1 | 2.6 | 2.3 | 47.1 | 4.9 | 0.9 | 1.1 | 0.7 | -0.3 | -0.2 | -8.8 | -17.3 |
 | Perenen Diffeence | -1.1\% | 0.8\% | 0.6\% | 9.7\% | 1.4\% | 0.3\% | 0.3\% | 0.2\% | -0.1\% | -0.1\% | -2.3\% | -3.8\% |
 | Beow Nomal (17.1\%) | | | | | | | | | | | | |
 | OCR 2015 W Whtout Project | 817.5 | 75.9 | 671.1 | 585.3 | 36.5 | 288.7 | 348.3 | 353.8 | 255.6 | 311.1 | 501.4 | 788.3 |
 | DCR2015 Win Priject | 747.4 | 656.6 | 623.5 | 590.3 | 358.5 | 286.5 | 349.4 | 354.4 | 257.9 | 309.5 | 500.6 | 762.0 |
 | Difterene | -70.1 | -102.4 | -47.6 | 5.0 | -2.0 | -2.2 | 1.1 | 0.6 | 2.4 | -1.6 | -0.8 | -26.2 |
 | Perenen Diffeence | -.8.6 | -13.5\% | -7.1\% | 0.8\% | -0.5\% | -0.8\% | 0.3\% | 0.2\% | 0.9\% | -0.5\% | -0.2\% | -3.3\% |
 | Dor $\left(22^{\%} / 6\right.$ | | | | | | | | | | | | |
 | DCR2015 Wintuat Proeat | 803.5 | 70.5 | 679.7 | 569.0 | 364.0 | 300.6 | 369.4 | 348.9 | 271.7 | 419.8 | 600.5 | 727.2 |
 | DCR 2015 WWh Project | 785.1 | 702.4 | 728.8 | 575.8 | 371.3 | 304.5 | 372.9 | 348.9 | 271.3 | 431.9 | 640.6 | 769.9 |
 | Difteence | -18.4 | -7.0 | 49.1 | 6.8 | 7.4 | 3.9 | 3.4 | 0.0 | -0.3 | 12.1 | 34.0 | 42.8 |
 | Perenerififeence | -2.3\% | -1.0\% | 7.2\% | 1.2\% | 2.0\% | 1.3\% | 0.9\% | 0.0\% | -0.1\% | 2.9\% | 5.6\% | 5.9\% |
 | Critical (14.4\%) | | | | | | | | | | | | |
 | OCR 2155 W Whaut Project | 830.5 | 840.1 | 914.5 | 744.6 | 448.4 | 341.6 | 329.1 | 324.0 | 359.4 | 507.6 | 632.6 | 692.2 |
 | DCCR2015 Wwit Project | 843.4 | 722.4 | 843.9 | 704.2 | 444.1 | 350.4 | 335.6 | 328.2 | 359.7 | 490.6 | 646.3 | 788.1 |
 | Diffeene | 12.8 | -117.7 | -70.6 | -40.5 | -4.3 | 8.8 | 6.5 | 4.2 | 0.3 | -17.0 | 13.7 | 95.9 |
 | Perene Diffeerne | 1.5\% | -14.0\% | -7.7\% | -5.4\% | -1.0\% | 2.6\% | 2.0\% | 1.3\% | 0.1\% | -3.3\% | 2.2\% | 13.9\% |

 3 Realive difference of tie monhly verage

 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | Full Simulion Period' | | | | | | | | | | | | |
 | DCR 2015 W Whtout Project | 190.9 | 1929 | 197.5 | 214.1 | 224.5 | 216.3 | 206.6 | 199.0 | 194.6 | 190.8 | 189.7 | 190.7 |
 | OCR 2015 With Project | 189.9 | 1923 | 197.4 | 214.5 | 225.3 | 217.2 | 207.1 | 199.1 | 194.3 | 190.7 | 189.6 | 189.8 |
 | Diffeene | -1.0 | -0.7 | -0.1 | 0.4 | 0.7 | 0.9 | 0.5 | 0.1 | -0.3 | -0.1 | -0.1 | -0.8 |
 | Pereni ifference | -0.5\% | -0.3\% | -0.1\% | 0.2\% | 0.3\% | 0.4\% | 0.2\% | 0.0\% | -0.2\% | -0.1\% | -0.1\% | -0.4\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | We($3.1 .7 \%$) | | | | | | | | | | | | |
 | DCR 2015 W Whtut Project | 187.1 | 190.9 | 192.6 | 217.1 | 225.7 | 212.1 | 200.6 | 192.7 | 189.7 | 187.8 | 188.1 | 188.3 |
 | DCR2015 Wh Project | 187.0 | 190.7 | 192.8 | 217.6 | 226.2 | 212.4 | 200.7 | 192.6 | 189.6 | 187.8 | 188.0 | 188.3 |
 | Diffeene | -0.1 | -0.2 | 0.2 | 0.5 | 0.5 | 0.2 | 0.1 | -0.1 | -0.1 | -0.1 | 0.0 | -0.1 |
 | Perene Diffeerne | -0.1\% | -0.1\% | 0.1\% | 0.2\% | 0.2\% | 0.1\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 W Whatrit Prijet | 187.7 | 190.0 | 198.3 | 221.1 | 229.0 | 214.3 | 201.0 | 193.3 | 190.8 | 188.1 | 188.0 | 188.6 |
 | DCR 2015 Win Project | 187.4 | 189.7 | 198.4 | 22.8 | 230.3 | 215.9 | 201.8 | 193.5 | 190.7 | 188.1 | 187.9 | 188.4 |
 | Diffeene | -0.3 | -0.4 | 0.2 | 0.7 | 1.3 | 1.7 | 0.8 | 0.2 | 0.0 | -0.1 | -0.1 | -0.2 |
 | Pereen Diffeence | -0.1\% | -0.2\% | 0.1\% | 0.3\% | 0.6\% | 0.8\% | 0.4\% | 0.1\% | 0.0\% | 0.0\% | -0.1\% | -0.1\% |
 | Below Noma (17.7\%) | | | | | | | | | | | | |
 | DCR 2015 W Wrtaut Project | 189.2 | 190.9 | 195.3 | 214.0 | 224.6 | 217.7 | 204.1 | 194.4 | 191.3 | 189.2 | 188.8 | 189.0 |
 | DCR2015 Wit Project | 188.7 | 190.1 | 195.1 | 214.6 | 225.6 | 218.8 | 205.3 | 194.7 | 191.4 | 189.2 | 188.8 | 188.8 |
 | Diffeene | -0.5 | -0.7 | -0.1 | 0.6 | 1.0 | 1.1 | 1.2 | 0.3 | 0.1 | 0.0 | 0.0 | -0.2 |
 | Perenen Diffeence | -0.3\% | -0.4\% | -0.1\% | 0.3\% | 0.5\% | 0.5\% | 0.6\% | 0.1\% | 0.1\% | 0.0\% | 0.0\% | -0.1\% |
 | Dry 22% \%) | | | | | | | | | | | | |
 | OCR 2015 WWhout Projed | 194.0 | 195.7 | 200.7 | 209.6 | 223.1 | 220.5 | 212.2 | 201.9 | 194.2 | 190.6 | 188.7 | 191.6 |
 | DCR2015 Wit Project | 192.2 | 194.9 | 199.8 | 210.0 | 223.8 | 221.6 | 212.9 | 202.2 | 194.1 | 190.6 | 188.5 | 189.8 |
 | Diffeence | -1.8 | -0.8 | -0.9 | 0.4 | 0.7 | 1.1 | 0.7 | 0.3 | -0.1 | 0.0 | -0.2 | -1.8 |
 | Pecrentiffeene | -0.9\% | -0.4\% | -0.4\% | 0.2\% | 0.3\% | 0.5\% | 0.3\% | 0.2\% | 0.0\% | 0.0\% | -0.1\% | -0.9\% |
 | Critical (4.4.\%) | | | | | | | | | | | | |
 | DCR 2015 W Whtrut Project | 199.9 | 198.3 | 205.5 | 207.3 | 219.5 | 219.5 | 220.0 | 219.2 | 213.5 | 202.1 | 197.5 | 198.2 |
 | DCR2015 Wht Project | 196.8 | 196.8 | 205.5 | 207.2 | 220.0 | 220.7 | 220.0 | 219.0 | 211.4 | 201.3 | 197.4 | 195.7 |
 | Diffeene | -3.2 | -1.5 | 0.0 | -0.1 | 0.4 | 1.1 | 0.1 | -0.2 | -2.0 | -0.8 | -0.1 | -2.4 |
 | Pecene Diffeerne | -1.6\% | -0.8\% | 0.0\% | 0.0\% | 0.2\% | 0.5\% | 0.0\% | -0.1\% | -1.0\% | -0.4\% | -0.1 | -1.2\% |

 3 Sealive difference of the montly verage

 | Old River a L Los Vaqueros Intake, Monthly EC Long-term Average and Average by Water Year Type | | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Long-term | | | | | | | | | | | | |
 | | | | | | | | | | | | | | |
 | $\stackrel{\square}{\text { Full Simulion Period }}$ ' | | | | | | | | | | | | |
 | OCR 2015 W Wituou Proed | 517.9 | 501.9 | 518.4 | 554.1 | 451.2 | 379.9 | 366.4 | 383.9 | 323.5 | 329.5 | 430.9 | 550.3 |
 | OCR 2015 With Proeet | 509.4 | 474.4 | 511.2 | 559.0 | 4498 | 380.4 | 368.5 | 385.1 | 324.7 | 329.0 | 436.2 | 559.2 |
 | Diffeence | -8.5 | -27.5 | -7.2 | 4.9 | -1.4 | 0.4 | 2.1 | 1.1 | 1.1 | -0.6 | 5.3 | 8.9 |
 | Perene ififeereses | -1.7\% | -5.5\% | -1.4\% | 0.9\% | -0.3\% | 0.1\% | 0.6\% | 0.3\% | 0.4\% | -0.2\% | 1.2\% | 1.6\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (3.7\%\%) | | | | | | | | | | | | |
 | DCR2015 Whituour Pried | 287.6 | 273.0 | 283.5 | 426.4 | 390.3 | 325.4 | 2640 | 291.6 | 281.9 | 264.3 | 319.3 | 450.7 |
 | DCR 2015 Want Project | 281.8 | 2693 | 285.5 | 435.5 | 394.3 | 326.0 | 264.2 | 291.1 | 281.9 | 263.8 | 317.7 | 438.0 |
 | Difteene | -5.8 | -3.7 | 2.0 | 9.1 | 4.0 | 0.6 | 0.2 | -0.6 | 0.0 | -0.5 | ${ }^{-1.6}$ | -12.7 |
 | Percent ifferene | -2.0\% | -1.4\% | 0.7\% | 2.1\% | 1.0\% | 0.2\% | 0.1\% | -0.2\% | 0.0\% | -0.2\% | -0.5\% | -2.8% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | OCR 2015 W Wituat Proed | 294.3 | 351.6 | 411.7 | 548.6 | 459.3 | 351.0 | 329.5 | 370.3 | 305.0 | 267.8 | 344.7 | 439.2 |
 | OCR2015 Win Prjeet | 289.5 | 353.6 | 410.9 | 588.7 | 465.7 | 352.1 | 329.9 | 370.5 | 304.8 | 267.2 | 339.1 | 424.2 |
 | Diffeence | -4.8 | 2.0 | -0.7 | 40.1 | 6.4 | 1.1 | 0.4 | 0.2 | -0.3 | -0.6 | -5.6 | -15.0 |
 | Perent Diffeene | -1.6\% | 0.6\% | -0.2\% | 7.3\% | 1.4\% | 0.3\% | 0.1\% | 0.1\% | -0.1\% | -0.2\% | -1.6\% | -3.4% |
 | Beow Nomal (17.1\%) | | | | | | | | | | | | |
 | DCR 2015 W Whatut Proeat | 720.9 | 676.4 | 635.5 | 610.9 | 462.9 | 381.7 | 367.3 | 410.8 | 313.3 | 305.4 | 446.4 | 680.5 |
 | DCCR2015 Wwin Project | 66.4 | 5998 | 588.3 | 613.6 | 456.2 | 376.2 | 367.1 | 410.4 | 317.6 | 304.6 | 446.0 | 662.1 |
 | Difteence | -52.4 | -76.6 | -47.2 | 2.7 | -6.7 | -5.5 | -0.2 | -0.4 | 4.2 | -0.8 | -0.4 | -18.4 |
 | Perentififeence | -7.3\% | -11.3\% | -7.4\% | 0.4\% | -1.4\% | -1.4\% | -0.1\% | -0.1\% | 1.4\% | -0.3\% | -0.1\% | -2.7% |
 | Dry 22 \%/) | | | | | | | | | | | | |
 | DCR2015 Wintuat Proeat | 710.0 | 64.5 | 640.5 | 588.2 | 456.1 | 415.5 | 467.5 | 464.2 | 343.2 | 385.8 | 545.8 | 631.2 |
 | DCR2015 Wit Proeet | 704.6 | 631.7 | 679.9 | 593.4 | 460.6 | 418.5 | 471.2 | 465.5 | 343.2 | 393.1 | 572.6 | 666.9 |
 | Diffeence | -5.3 | -8.7 | 39.4 | 5.3 | 4.5 | 3.0 | 3.6 | 1.4 | 0.0 | 7.4 | 26.8 | 35.7 |
 | Perenen Diffeence | -0.8\% | -1.4\% | 6.1\% | 0.9\% | 1.0\% | 0.7\% | 0.8\% | 0.3\% | 0.0\% | 1.9\% | 4.9\% | 5.7\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | OCR2015 Wintuat Proeat | 715.5 | 736.7 | 814.3 | 719.3 | 554.5 | 471.8 | 472.8 | 446.0 | 414.5 | 476.6 | 568.3 | 604.3 |
 | DCR 2015 WWh Project | 743.6 | 657.3 | 757.5 | 681.8 | 530.7 | 474.2 | 480.9 | 453.0 | 417.7 | 464.3 | 574.2 | 675.4 |
 | Diffeence | 28.1 | -79.4 | -56.8 | -37.5 | -23.8 | 2.4 | 8.1 | 7.0 | 3.2 | -123 | 5.9 | 71.1 |
 | Perenen Diffeence | 3.9\% | -10.8\% | -7.0\% | -5.2\% | -4.3\% | 0.5\% | 1.7\% | 1.6\% | 0.8\% | -2.6% | 1.0\% | 11.8\% |

 2As defined by the sacamenento valley 40.30

 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | Full Simulation Period' | | | | | | | | | | | | |
 | DCR 2015 W.thout Project | 420.4 | 420.2 | 442.7 | 545.8 | 518.6 | 460.0 | 391.8 | 387.3 | 363.8 | 313.0 | 341.2 | 404.0 |
 | DCR2015 Wif Project | 418.9 | 409.9 | 436.5 | 547.2 | 517.2 | 459.1 | 393.5 | 387.9 | 365.0 | 311.4 | 339.7 | 402.2 |
 | Diffeence | -1.5 | -10.3 | -6.2 | 1.4 | -1.4 | -0.9 | 1.7 | 0.7 | 1.2 | -1.5 | -1.5 | -1.8 |
 | Perenen ifference | -0.4\% | -2.5\% | -1.4% | 0.2\% | -0.3\% | -0.2\% | 0.4\% | 0.2\% | 0.3\% | -0.5\% | -0.4\% | -0.4\% |
 | Water Year Types² | | | | | | | | | | | | |
 | Wet 31.7%) | | | | | | | | | | | | |
 | DCR 2015 W Whturt Project | 342.9 | 335.2 | 311.9 | 4823 | 439.0 | 363.8 | 265.8 | 286.4 | 323.5 | 299.8 | 283.8 | 365.9 |
 | DCR 2015 Wif Project | 338.9 | 331.3 | 310.6 | 487.7 | 443.2 | 362.7 | 265.9 | 285.4 | 323.7 | 299.4 | 283.4 | 360.3 |
 | Diffeene | -3.9 | -4.0 | -1.3 | 5.4 | 4.2 | -1.0 | 0.1 | -1.0 | 0.3 | -0.4 | -0.4 | -5.6 |
 | Pecent iffeeme | -1.1\% | -1.2\% | -0.4\% | 1.1\% | 1.0\% | -0.3\% | 0.0\% | -0.3\% | 0.1\% | -0.1\% | -0.1\% | ${ }_{-1.5 \%}$ |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 W Whturt Project | 328.2 | 356.1 | 388.6 | 554.0 | 540.3 | 432.3 | 341.6 | 364.4 | 356.3 | 291.3 | 284.3 | 349.6 |
 | DCR 2015 Win Project | 323.0 | 355.6 | 384.4 | 571.3 | 543.0 | 433.0 | 342.0 | 364.5 | 356.1 | 290.0 | 283.2 | 342.3 |
 | Diffeence | -5.3 | -0.5 | -4.2 | 17.3 | 2.7 | 0.7 | 0.4 | 0.1 | -0.2 | -1.2 | -1.0 | -7.3 |
 | Perenen Diffence | -1.6\% | -0.1\% | -1.1\% | 3.1\% | 0.5\% | 0.2\% | 0.1\% | 0.0\% | -0.1\% | -0.4\% | -0.4\% | -2.1\% |
 | Below Nomal (17.1\%) | | | | | | | | | | | | |
 | DCR 2015 WWhturt Project | 474.0 | 466.8 | 506.8 | 575.8 | 541.1 | 481.2 | 394.4 | 407.8 | 363.1 | 283.7 | 330.9 | 438.6 |
 | DCR2015 Whin Projet | 456.2 | 443.5 | 479.8 | 577.1 | 539.5 | 478.2 | 393.2 | 407.3 | 366.9 | 284.2 | 330.8 | 432.6 |
 | Diffeence | -17.8 | -23.3 | -27.1 | 1.4 | -1.5 | -3.1 | -1.2 | -0.5 | 3.8 | 0.5 | 0.0 | -6.0 |
 | Perene Difiteene | -3.8\% | -5.0\% | -5.3\% | 0.2\% | -0.3\% | -0.6\% | -0.3\% | -0.1\% | 1.0\% | 0.2\% | 0.0\% | -1.4\% |
 | Dry (22\%) | | | | | | | | | | | | |
 | DCR2015 Without Project | 488.4 | 472.9 | 516.6 | 555.8 | 547.4 | 539.2 | 518.1 | 476.9 | 386.7 | 312.4 | 403.6 | 432.8 |
 | DCR2015 Wh Project | 489.2 | 464.3 | 532.9 | 559.0 | 548.3 | 540.8 | 521.6 | 477.9 | 387.0 | 311.9 | 409.8 | 439.9 |
 | Diffeene | 0.8 | -8.6 | 16.4 | 3.2 | 0.9 | 1.6 | 3.5 | 0.9 | 0.3 | -0.5 | 6.1 | 7.1 |
 | Perenen Diffeence | 0.2\% | -1.8% | 3.2\% | 0.6\% | 0.2\% | 0.3\% | 0.7\% | 0.2\% | 0.1\% | -0.1\% | 1.5\% | 1.6\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Whtrout Project | 515.9 | 535.3 | 594.2 | 625.5 | 599.9 | 552.4 | 522.5 | 470.2 | 425.0 | 398.3 | 440.9 | 457.2 |
 | DCR 2015 Wht Projet | 538.8 | 513.8 | 566.1 | 599.5 | 579.0 | 549.0 | 529.9 | 476.0 | 428.2 | 390.0 | 423.6 | 460.9 |
 | Diffeene | 22.9 | -21.4 | -28.2 | -26.0 | -20.9 | -3.4 | 7.4 | 5.8 | 3.2 | -8.3 | -17.4 | 3.6 |
 | Perenen ifference | 4.4\% | - -4.0% | -4.7\% | -4.2\% | -3.5\% | -0.6\% | 1.4\% | 1.2\% | 0.7\% | -2.1\% | -3.9\% | 0.8\% |

 3 Realive differne of ite montily verage

 Table SQ-31-a
 ton
 Cout Forebay
 Coren, Monthy EC

 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | $\overline{\text { Full Simulion Period }{ }^{\prime}}$ | | | | | | | | | | | | |
 | DCR2015 Whituoul Priject | 487.7 | 476.3 | 499.2 | 560.8 | 499.0 | 430.6 | 388.1 | 384.1 | 371.7 | 331.1 | 398.2 | 498.2 |
 | DCR2015wh Project | 487.9 | 457.0 | 491.5 | 564.4 | 497.4 | 430.5 | 390.1 | 385.6 | 371.7 | 328.8 | 399.6 | 503.3 |
 | Diffeence | 0.2 | -19.4 | -7.6 | 3.6 | -1.6 | -0.1 | 2.0 | 1.5 | 0.0 | -2.3 | 1.4 | 5.1 |
 | Perentififeence? | 0.0\% | -4.1\% | -1.5\% | 0.6\% | -0.3\% | 0.0\% | 0.5\% | 0.4\% | 0.0\% | -0.7\% | 0.3\% | 1.0\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (31.7\%) | | | | | | | | | | | | |
 | DCR2015 Whitrout Project | 319.7 | 297.5 | 300.7 | 446.0 | 404.7 | 339.6 | 277.3 | 276.1 | 307.6 | 279.8 | 304.3 | 426.9 |
 | DCR 2015 Wwh Project | 314.5 | 294.2 | 300.6 | 454.4 | 404.8 | 340.8 | 277.8 | 276.2 | 307.8 | 279.4 | 303.3 | 419.5 |
 | Diffeene | -5.2 | -3.3 | -0.1 | 8.4 | 0.0 | 1.2 | 0.5 | 0.1 | 0.2 | -0.4 | -1.0 | -7.4 |
 | Perenen ifferene | -1.6\% | -1.1\% | 0.0\% | 1.9\% | 0.0\% | 0.3\% | 0.2\% | 0.0\% | 0.1\% | -0.2\% | -0.3\% | -1.7\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | DCR2015 Whtrut Project | 310.0 | 351.4 | 412.1 | 562.9 | 513.8 | 403.2 | 343.4 | 347.6 | 344.2 | 283.7 | 317.8 | 419.7 |
 | DCR2015 Wwimprieet | 304.7 | 352.5 | 408.7 | 593.8 | 520.7 | 404.3 | 343.8 | 347.7 | 344.9 | 283.0 | 314.6 | 406.6 |
 | Diffeence | -5.2 | 1.1 | -3.4 | 30.9 | 6.9 | 1.2 | 0.4 | 0.1 | 0.8 | -0.7 | -3.2 | -13.1 |
 | Perenen Diffeence | -1.7\% | 0.3\% | -0.8\% | 5.5\% | 1.3\% | 0.3\% | 0.1\% | 0.0\% | 0.2\% | -0.2\% | -1.0\% | -3.1\% |
 | Beow Noma((17.1\%) | | | | | | | | | | | | |
 | DCR2015 WWhtrut Projet | 641.1 | 605.2 | 603.0 | 619.1 | 515.6 | 436.8 | 387.3 | 390.8 | 366.9 | 301.3 | 400.6 | 589.0 |
 | DCR2015 whim Proet | 602.9 | 550.0 | 558.0 | 620.1 | 517.1 | 432.5 | 386.9 | 390.7 | 368.4 | 300.9 | 400.4 | 577.3 |
 | Diffeence | -38.2 | -55.2 | -44.9 | 1.0 | 1.6 | -4.3 | -0.4 | -0.1 | 1.4 | -0.4 | -0.2 | -11.7 |
 | Perenen Diffeence | -6.0\% | -9.1\% | -7.5\% | 0.2\% | 0.3\% | -1.0\% | -0.1\% | 0.0\% | 0.4\% | -0.1\% | 0.0\% | -2.0\% |
 | Dr $\left(22^{\%} \%\right)$ | | | | | | | | | | | | |
 | DCR2015 Whituout Projet | 638.7 | 589.3 | 608.4 | 594.5 | 530.3 | 496.0 | 480.3 | 468.9 | 411.3 | 361.0 | 496.5 | 551.1 |
 | DCR2015 Wwh Projet | 644.9 | 575.2 | 638.8 | 599.1 | 532.5 | 498.9 | 483.0 | 472.0 | 410.5 | 363.0 | 515.6 | 5793 |
 | Diffeence | 6.2 | -14.1 | 30.4 | 4.6 | 2.2 | 2.8 | 2.7 | 3.1 | -0.8 | 2.0 | 19.2 | 28.2 |
 | Perenen iffeeme | 1.0\% | -2.4\% | 5.0\% | 0.8\% | 0.4\% | 0.6\% | 0.6\% | 0.7\% | -0.2\% | 0.6\% | 3.9\% | 5.1\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | DCR2015 WWhaut Prijet | 623.9 | 668.9 | 731.4 | 689.1 | 622.0 | 5498 | 535.6 | 519.2 | 484.2 | 479.5 | 531.8 | 546.2 |
 | DCR2015 whif Proet | 677.5 | 628.1 | 689.6 | 656.2 | 599.0 | 546.4 | 544.1 | 524.8 | 482.4 | 462.9 | 518.0 | 581.3 |
 | Diffeene | 53.5 | -40.8 | -41.8 | -32.9 | -23.0 | -3.4 | 8.6 | 5.5 | -1.9 | -16.5 | -13.8 | 35.2 |
 | Pereni ififeence | 8.6\% | -6.1\% | -5.7\% | -4.8\% | -3.7\% | -0.6\% | 1.6\% | 1.1\% | -0.4\% | -3.4\% | -2.6\% | 6.4\% |

 Based on the 82 2year simudation peefiod
 Realive difference of the monhly verens

 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | $\overline{\text { Full Simulation Period }{ }^{\text {a }} \text { ' }}$ | | | | | | | | | | | | |
 | DCR 2015 Wiftout Projet | 495.1 | 491.8 | 569.5 | 622.2 | 572.4 | 502.3 | 394.6 | 407.0 | 380.7 | 358.4 | 421.9 | 507.2 |
 | OCR 2015 Wit Priject | 4897 | 473.7 | 566.2 | 623.7 | 568.7 | 505.0 | 395.0 | 408.2 | 382.8 | 356.4 | 423.9 | 512.1 |
 | Diffeene | -5.4 | -18.1 | -3.3 | 1.6 | -3.7 | 2.7 | 0.4 | 1.2 | 2.1 | -2.0 | 2.0 | 4.9 |
 | Perenen Diffeence? | -1.1\% | -3.7\% | -0.6\% | 0.3\% | -0.6\% | 0.5\% | 0.1\% | 0.3\% | 0.6\% | -0.6\% | 0.5\% | 1.0\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (3.7\%\%) | | | | | | | | | | | | |
 | DCR2015 Wiftuout Project | 343.8 | 339.2 | 415.0 | 520.4 | 421.5 | 345.2 | 268.9 | 293.6 | 336.2 | 320.3 | 331.8 | 430.3 |
 | DCR 2015 Wwit Projed | 338.2 | 334.1 | 415.1 | 523.7 | 421.5 | 345.3 | 269.1 | 293.8 | 336.5 | 319.6 | 330.9 | 422.5 |
 | Diffeene | -5.6 | -5.1 | 0.1 | 3.2 | 0.0 | 0.2 | 0.2 | 0.1 | 0.3 | -0.7 | -0.9 | -7.8 |
 | Perenerififeence | -1.6\% | -1.5\% | 0.0\% | 0.6\% | 0.0\% | 0.0\% | 0.1\% | 0.0\% | 0.1\% | -0.2\% | -0.3\% | -1.8\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | OCR 2015 W Whout Pried | 346.5 | 386.5 | 517.4 | 631.3 | 581.3 | 426.6 | 338.3 | 373.4 | 371.4 | 326.4 | 353.9 | 431.1 |
 | OCR2015 Wat Prjeet | 338.4 | 388.0 | 515.5 | 644.6 | 583.5 | 427.2 | 338.4 | 373.4 | 371.1 | 322.7 | 351.1 | 419.2 |
 | Difteence | ${ }^{-8.1}$ | 1.5 | -1.9 | 13.3 | 2.2 | 0.6 | 0.1 | 0.0 | -0.3 | -3.7 | -2.8 | -11.9 |
 | Perene Difleerne | -2.3\% | 0.4\% | -0.4\% | 2.1\% | 0.4\% | 0.1\% | 0.0\% | 0.0\% | -0.1\% | -1.1\% | -0.8\% | -2.8\% |
 | Betow Nomal (17.1\%) | | | | | | | | | | | | |
 | OCR 2015 W Whatut Proed | 617.7 | 598.7 | 626.3 | 655.2 | 578.6 | 489.7 | 380.9 | 409.0 | 376.8 | 334.4 | 430.2 | 591.1 |
 | DCR2015 W.t. Priject | 585.1 | 551.1 | 602.5 | 660.3 | 574.7 | 487.8 | 380.9 | 409.0 | 385.0 | 333.4 | 428.4 | 579.8 |
 | Differene | -32.6 | -47.6 | -23.8 | 5.1 | -3.8 | -2.0 | 0.0 | 0.1 | 8.2 | -1.0 | -1.8 | -11.3 |
 | Perent Diffeence | -5.3\% | -7.9\% | -3.8\% | 0.8\% | -0.7\% | -0.4\% | 0.0\% | 0.0\% | 2.2\% | -0.3\% | -0.4\% | -1.9\% |
 | Dy (22\%) | | | | | | | | | | | | |
 | DCR2015 Wintuat Proed | 622.0 | 585.8 | 659.6 | 661.4 | 659.6 | 632.4 | 482.8 | 489.6 | 401.7 | 384.6 | 516.0 | 566.1 |
 | DCR2015 Wat Project | 620.6 | 578.6 | 678.6 | 663.3 | 662.2 | 63.7 | 483.1 | 490.9 | 402.8 | 386.5 | 532.2 | 589.6 |
 | Diffeence | ${ }^{-1.4}$ | -7.2 | 19.0 | 1.9 | 2.5 | 1.3 | 0.3 | 1.3 | 1.1 | 1.9 | 16.2 | 23.5 |
 | Perentififeence | -0.2\% | -1.2\% | 2.9\% | 0.3\% | 0.4\% | 0.2\% | 0.1\% | 0.3\% | 0.3\% | 0.5\% | 3.1\% | 4.1\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | DCR 2155 WWhaut Proied | 637.9 | 662.0 | 754.8 | 736.0 | 752.2 | 738.1 | 607.0 | 560.3 | 459.2 | 462.0 | 534.3 | 564.0 |
 | DCR2015 Witi Proeet | 661.7 | 614.5 | 732.9 | 717.7 | 725.6 | 756.1 | 608.8 | 566.2 | 462.1 | 451.6 | 530.4 | 604.0 |
 | Differene | 23.8 | -47.5 | -21.9 | -18.4 | -26.7 | 18.0 | 1.8 | 5.9 | 3.0 | -10.4 | -3.9 | 40.0 |
 | Perenin iffeeme | 3.7\% | -7.2\% | -2.9\% | -2.5\% | -3.5\% | 2.4\% | 0.3\% | 1.1\% | 0.6\% | -2.3\% | -0.7\% | 7.1\% |

 Based on the 82 2-jear simulition period
 0.30 Inder Waier Year Hydrologegic Classification (SWRCCB $0.1641,1999$)

 3 Realive difference of the montily verage

 ## Sacramento-San Joaquin Delta Modeling Exceedance Probability Charts and Tables

 gure SQ-01-b
 X2, Monthly Position

 | $\overline{\substack{\text { Perecent } \\ \text { Proceance } \\ \text { Probility }}}$ | Ociober | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | DCR 2015 Without Proiect | DCR 2015 With Project | Absolute | Relative |
 | | Morthly Position (KM) | Monthly Position (KM) | Difference (kM) | Difference (\%) |
 | -0.0\% | 97.2 | ${ }^{96.6}$ | -0.6 | -0.7\% |
 | 1.2\% | 96.6 | 96.2 | -0.4 | -0.4\% |
 | 2.5\% | 96.2 | 95.6 | -0.6 | -0.7\% |
 | 3.7\% | 96.1 958 | 95.0 | -1.0 | -1.1\% |
 | 4.9\% | ${ }_{95.8}$ | 94.7 | -1.1 | -1.2\% |
 | 6.2\% | 95.0 94.9 | ${ }_{94.5}^{94.5}$ | -0.5 | -0.5\% |
 | 7.4\% | ${ }_{94.9}^{94.9}$ | 94.2 | -0.7 | -0.7\% |
 | 9.9\% | 94.8 | 93.6 | ${ }_{-1.3}$ | -1.3\% |
 | $\xrightarrow{11.1 \%} 1$ | ${ }_{94.5}^{94.7}$ | ${ }_{93.2}^{93.3}$ | -1.4 -1.3 | - -1.5% |
 | 13.6\% | 94.4 | 93.2 | -1.2 | -1.3\% |
 | 14.8\% | 94.3 | 93.0 | -1.3 | -1.4\% |
 | 16.0\% | 94.1 | 93.0 | -1.1 | -1.2\% |
 | (17.3\% | 94.0 | ${ }^{92.8}$ | -1.2 | -1.3\% |
 | 19.8\% | ${ }_{93.8}$ | ${ }_{92.3}$ | -1.5 | -1.6\% |
 | 21.0\% | 93.6 | 92.2 | -1.4 | -1.5\% |
 | 22.2\% | 93.5 | 92.1 | -1.4 | -1.5\% |
 | 23.5\% | 93.4 | 92.1 | -1.3 | -1.4\% |
 | 24.7\% | 93.2 | 92.1 | -1.1. | -1.2\% |
 | ${ }^{255.9 \%}$ | ${ }_{93.1}^{93.2}$ | ${ }_{9}^{92.0}$ | -1.2 | -1.3\% |
 | 28.4\% | ${ }_{93.1}^{93.1}$ | 91.7 | -1.5 | -1.7\% |
 | 29.6\% | 93.0 | 91.5 | ${ }_{-1.6}$ | -1.7\% |
 | 30.9\% | 92.9 92.9 | 91.4 91.0 | -1.5 -1.9 | - ${ }_{-2.0 \%}^{\text {- }}$ - |
 | 33.3\% | 92.8 | 91.0 | -1.8 | -2.0\% |
 | 34.6\% | 92.7 | 90.9 | -1.8 | -1.9\% |
 | 357.0\% | ${ }_{92.4}$ | 90.8 | -1.6 | -1.7\% |
 | 38.3\% | 92.3 | 90.7 | -1.6 | -1.8\% |
 | 39.5\% | 92.1 | 90.5 | -1.6 | -1.7\% |
 | 40.7\% | 91.9 | 90.3 | -1.6 | -1.7\% |
 | 42.0\% | 91.8 | 89.8 | -2.0 | -2.2\% |
 | 43.2\% | 91.7 | 89.8 | -2.0 | -2.2\% |
 | 44.4\% | 91.2 | 89.7 | -1.5 | -1.6\% |
 | ${ }_{46}^{45.7 \%}$ | 91.1 | 89.6 | -1.5 | -1.7\% |
 | ${ }^{46.9 \%}$ | 90.9 | 88.9 | -1.9 | - -1.6% |
 | 49.4\% | 90.3 | 88.9 | -1.4 | -1.6\% |
 | 50.6\% | 90.2 | 88.5 | -1.7 | -1.9\% |
 | | 90.1 893 | 87.8 874 | -2.3 | ${ }_{-2.2 \%}^{-2.5 \%}$ |
 | 年 53.1 \% | 89.3 882 | 87.4 871 | -2.0 | - |
 | 55.6\% | ${ }_{87.9}^{88.2}$ | ${ }_{86.3}$ | -1.5 | -1.7\% |
 | 56.8\% | 87.3 | ${ }^{86.3}$ | -1.0 | -1.2\% |
 | 年58.0\% | ${ }_{860}^{86.5}$ | ${ }_{86.0}^{865}$ | -0.5 | -0.6\% |
 | ${ }^{50.5 \%}$ | ${ }_{85.8}^{86.0}$ | ${ }_{85.3}^{85.3}$ | -0.7 | -0.9\% |
 | 61.7\% | 85.6 | ${ }_{85.0}$ | -0.6 | -0.8\% |
 | 63.0\% | 85.5 | 84.9 | -0.5 | -0.6\% |
 | ${ }^{645.4 \%}$ | 84.8 84.5 | 84.4 84.2 | -0.4 | -0.4\% |
 | ${ }^{66.7 \%}$ | 84.4 | ${ }_{83} 8.7$ | -0.7 | -0.8\% |
 | 67.9\% | 83.0 | 82.5 | -0.5 | -0.5\% |
 | 69.1\% | 83.0 | 82.4 | -0.5 | -0.6\% |
 | 70.4\% | 82.9 826 | 82.4 82.1 | -0.5 | -0.0\% |
 | 71.6\% | ${ }_{826}^{82.6}$ | ${ }_{81.1}^{82.1}$ | -0.4 | -0.5\% |
 | 72.8\% | -82.6 | 81.9 818 | -0.7 | -0.8\% |
 | 75.3\% | ${ }_{81.9}$ | ${ }_{81.4}$ | -0.5 | -0.6\% |
 | 76.5\% | 81.7 | 81.4 | -0.3 | 0.4\% |
 | 77.8\% | 81.7 | 81.4 | -0.3 | -0.4\% |
 | 79.0\% | ${ }_{81}^{81.7}$ | 81.4 | -0.3 | -0.4\% |
 | - | 81.5 81.5 | 81.3 81.3 | -0.2 -0.2 | -0.3\% |
 | 82.7\% | 81.3 | 81.2 | -0.1 | -0.1\% |
 | ${ }^{84.0 \%}$ | ${ }_{812}^{81.3}$ | 81.1 | -0.2 | ${ }^{-0.3 \%}$ |
 | ${ }_{\text {cke }}^{85.2 \%}$ | 81.2 81.0 | 81.0 80.9 | -0.1 | ${ }_{\text {- }}^{0.0 .1 \%}$ |
 | 87.7\% | 80.9 | 80.8 | 0.0 | 0.0\% |
 | 88.9\% | 80.8 | 80.7 | -0.1 | -0.1\% |
 | 90.1\% | 80.8 | 80.5 | -0.3 | -0.4\% |
 | -91.4\% | 80.7 | 80.4 | -0.4 | -0.5\% |
 | 93.8\% | ${ }_{80.1}$ | ${ }_{79} 9.7$ | -0.5 | -0.6\% |
 | 95.1\% | 78.4 | 79.0 | 0.6 | 0.8\% |
 | 96.3\% | 78.4 | 79.0 | 0.6 | 0.8\% |
 | 97.5\% | ${ }_{78.1}$ | ${ }_{778}^{78.8}$ | ${ }^{0.7}$ | 0.9\% |
 | 98.8\% | ${ }_{64.6}$ | 77.1 | 2.5 | 3.3\% |
 | 100.0\% | 64.6 | 62.3 | -2.3 | -3.6\% |

 | $\begin{aligned} & \hline \text { Percent } \\ & \hline \text { Exceedance } \\ & \text { Probobaility } \end{aligned}$ | February | | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (KM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: |
 | | | DCR 2015 With Project | | |
 | | Morthly Position (KM) | Monthly Position (KM) | | |
 | 0.0\% | 88.0 | 88.8 | 0.8 | 0.9\% |
 | 1.2\% | 82.9 | 83.6 | 0.7 | 0.8\% |
 | 2.5\% | 82.9 | 83.2 | 0.3 | 0.3\% |
 | 3.7\% | 82.5 | 82.9 | 0.4 | 0.5\% |
 | 4.9\% | 80.7 | 82.9 | 2.2 | 2.7\% |
 | 6.2\% | 80.5 | 82.2 | 1.7 | 2.1\% |
 | 7.4\% | 80.1 | 81.5 | 1.4 | 1.7\% |
 | 8.6\% | 79.3 | 81.1 | 1.8 | 2.2\% |
 | 9.9\% | ${ }_{78.8}$ | 80.4 | 1.6 | 2.0\% |
 | 11.14\% | 78.6 783 | ${ }_{793}^{79.9}$ | ${ }_{1}^{1.3}$ | 1.6%
 1.30% |
 | 12.3\% 13.6% | ${ }_{78.1}^{78.3}$ | 79.3 789 | ${ }^{1.0}$ | 1.3\% |
 | 14.8\% | ${ }_{77.3}$ | ${ }_{78.4}$ | ${ }_{1.1}^{1.7}$ | 1.4\% |
 | 16.0\% | 75.7 | 78.2 | 2.5 | 33\% |
 | 17.3\% | 74.7 | 78.2 | 3.5 | |
 | 18.5% 19.8% | ${ }_{73,7}^{73.7}$ | ${ }_{7}^{78.1}$ | 4.4 | 6.0\% |
 | 21.0\% | ${ }_{728}$ | ${ }_{75.8}$ | ${ }^{2.7}$ | ${ }^{3.7 \% \%}$ |
 | 22.2\% | 72.0 | 74.1 | 2.0 | 2.8\% |
 | 23.5\% | 71.1 | 73.8 | 2.7 | 3.8\% |
 | 24.7\% | 70.1 | 73.0 | 2.9 | 4.2\% |
 | 25.9\% | 69.9 | 72.9 | ${ }^{37}$ | 4.4\% |
 | 27.2\% | 69.8 | ${ }_{7} 7.1$ | ${ }^{2.3}$ | 3.3\% |
 | 28.4\% | 68.9 | ${ }^{70.3}$ | 1.4 | 2.0\% |
 | 29.6\% | ${ }_{68.8}^{68.8}$ | 69.7 697 | 0.9 12 | 1.4\%\% |
 | 30.9\% | ${ }_{68.5}^{68.5}$ | ${ }_{69.7}^{69.7}$ | ${ }_{1}^{1.2}$ | -1.7\% |
 | 32.1\% | ${ }^{68.1}$ | 69.4 | ${ }_{1}^{1.3}$ | 1.9\% |
 | 33.3\% | 67.6 659 | 69.4 | ${ }^{1.8}$ | 2.7\% |
 | 34.6% 35.8% | ${ }_{65.9} 6$ | ${ }_{67.8}^{675}$ | 2.0 | 3.0\% |
 | 35.8\% | 64.8 647 | ${ }_{670}^{67.5}$ | ${ }_{2}^{2.7}$ | |
 | - ${ }^{37.0 \%}$ 38.3\% | ${ }_{64.7}^{64.7}$ | ${ }_{65.9}^{67.0}$ | 2.2
 1.2 | +3.9\% |
 | 39.5\% | 64.4 | 65.7 | 1.3 | 2.0\% |
 | ${ }^{40.7 \%}$ | 63.9 63.5 | 64.9 64.6 | 1.9 1.2 | +1.5\% |
 | 43.2\% | 62.3 | 64.0 | 1.7 | 2.7\% |
 | ${ }_{4}^{44.4 \%}$ | 61.3 | 63.2 | 1.9 | 3.1\% |
 | ${ }_{46.9 \%}$ | 年59.8 | 61.4 | ${ }_{1.6}^{1.6}$ | ${ }_{2}^{2.7 \%}$ |
 | 48.1\% | 59.5 | 60.9 | 1.4 | 2.3\% |
 | 49.4\% | 59.4 | 60.6 | 1.3 | 2.1\% |
 | 50.6\% | 59.2 | 60.5 | 1.3 | 2.2\% |
 | 51.9\% | 57.4 | 58.0 | 0.6 | 1.0\% |
 | | ${ }_{56.4}^{56.4}$ | $\stackrel{57.4}{565}$ | 1.0 | 1.8\% |
 | 54.3% 5.6% | ¢5.3. | 56.5 | 0.2 | 0.4\% |
 | ${ }_{56.8 \%}^{56.8 \%}$ | 55.3 547 | 55.9
 555
 5. | ${ }^{0.6}$ | -1.1\% |
 | 58.0\% | ${ }_{54.0}$ | 55.2 | ${ }_{1.2}^{0.2}$ | ${ }_{\text {2 }}$ |
 | 59.3\% | 54.0 | 55.2 | 1.2 | 2.2\% |
 | 60.5\% | 54.0 | 54.2 | 0.2 | 0.3\% |
 | 61.7\% 630% | | | 0.0 | 0.0\% |
 | ${ }^{63.0 \%}$ 64.2\% | 54.0 54.0 | 54.0 54.0 | ${ }_{0.0}^{0.0}$ | - 0.0% |
 | 65.4\% | 54.0 | 54.0 | 0.0 | |
 | 66.7\% | 54.0 | 54.0 | 0.0 | 0.0\% |
 | ${ }_{6}^{67.9 \%}$ | 54.0 54.0 | 54.0 | 0.0 | - 0.0% |
 | 70.4\% | 54.0 54.0 | 54.0 54.0 | 0.0 | 0.0\% |
 | 71.6\% | 54.0 | 54.0 | 0.0 | 0.0\% |
 | 72.8\% | 54.0 | 54.0 | 0.0 | 0.0\% |
 | 74.1\% | 54.0 | 54.0 | 0.0 | 0.0\% |
 | 75.3\% | 54.0 | 54.0 | 0.0 | 0.0\% |
 | 76.5\% | 54.0 | 54.0 | 0.0 | 0.0\% |
 | 77.8\% | 54.0 540 | 54.0 54.0 | 0.0 | 0.0\% |
 | 79.0\% | 54.0 54.0 | 54.0 54.0 | 0.0 | 0.0\% |
 | 80.2\% | 54.0 54.0 | 54.0 54.0 | 0.0 0.0 | 0.0.0\% |
 | 82.7\% | 54.0 | 54.0 | 0.0 | 0.0\% |
 | 84.0\% | 54.0 | 54.0 | 0.0 | 0.0\% |
 | 85.2\% | 54.0 54.0 | 54.0 54.0 | 0.0 | 0.0\% |
 | 86.4\% | 54.0 54.0 | 54.0 | 0.0 | 0.0\% |
 | - | 54.0 54.0 | 54.0 54.0 | ${ }_{0}^{0.0}$ | 0.0\% |
 | 90.1\% | 54.0 | 54.0 | 0.0 | 0.0\% |
 | 91.4\% | 54.0 | 54.0 | 0.0 | 0.0\% |
 | 92.6\% | 54.0 540 | 54.0 | 0.0 | 0.0\% |
 | ${ }_{95}^{93.8 \%}$ | 54.0 54.0 | 54.0 54.0 | 0.0 | 0.0\% |
 | 96.3\% | 54.0 | 54.0 | 0.0 | 0.0\% |
 | 97.5\% | 54.0 | 54.0 | 0.0 | 0.0\% |
 | 98.8\% | 54.0 | 54.0 | 0.0 | 0.0\% |
 | 100.0\% | 54.0 | 54.0 | 0.0 | 0.0\% |

 | | | June | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | DCR 2015 Without Proioet | DCR 2015 W With Project | Absolute | Reative |
 | Probability | Monthy Position (KM) | Monthly Position (KM) | Difference | Difference $(\%)$ |
 | 0.0\% | 94.2 | 94.2 | 0.0 | 0.0\% |
 | 1.2\% | 92.9 | 91.7 | -1.2 | -1.3\% |
 | 2.5\% | 92.2 | 91.0 | -1.2 | -1.3\% |
 | 3.7\% | 91.1 | 90.3 | -0.8 | -0.9\% |
 | 4.9\% | 90.1 | 90.1 | 0.0 | 0.0\% |
 | 6.2\% | 90.1 | 89.8 | -0.2 | -0.3\% |
 | 7.4\% | 89.9 | 89.5 | -0.4 | -0.4\% |
 | 8.6\% | 87.7 870 | 87.7 870 | 0.0 | 0.0\% |
 | ${ }^{\text {914.9\% }}$ | 87.0 | 87.0 | -0.1 | -0.1\% |
 | - 11.19% | 86.9 863 | ${ }_{86.9}^{86.9}$ | ${ }^{0.0}$ | 0.0\% |
 | | ${ }_{86.1}^{86.3}$ | 86.6 86.6 | ${ }_{0.5}^{0.3}$ | 0.6\% |
 | 14.8\% | 86.0 | 86.0 | 0.0 | 0.0\% |
 | - 16.0% | ${ }_{85.6}^{85.9}$ | 85.8 85.6 | -0.1 0.0 | -0.0.1\% |
 | 18.5\% | ${ }_{85.3}$ | ${ }_{85.5}$ | 0.2 | 0.3\% |
 | 19.8\% | ${ }^{85.3}$ | 85.1 | -0.2 | -0.2\% |
 | 21.0\% | ${ }_{85.1}^{85}$ | 84.9 | -0.2 | -0.2\% |
 | ${ }^{22.25 \%}$ | 84.8 84.7 | 84.7 | -0.1 | -0.1\% |
 | 24.7\% | 84.7 | ${ }_{84.6}$ | -0.1 | -0.1\% |
 | 25.9\% | 84.6 | 84.5 | -0.2 | -0.2\% |
 | 27.2\% | 84.6 | 84.4 | -0.3 | -0.3\% |
 | 28.4\% | ${ }^{84.6}$ | 84.1 | -0.5 | -0.6\% |
 | 29.6\% | 84.6 845 | 83.9 838 | -0.7 | -0.8\% |
 | ${ }^{30.9 \%}$ 32.1\% | 84.5 84.3 | 83.8 83.7 | -0.6 | -0.7\% |
 | 32.1% 33.3% | 84.3 84.1 | ${ }_{83}^{83.7}$ | -0.5 | -0.6\% |
 | ${ }_{\text {3 }}$ | ${ }_{8}^{84.9}$ | ${ }_{83}^{83.6}$ | -0.4 | -0.0.5\% |
 | | 83.8 838 | 83.6 835 | -0.3 | -0.3\% |
 | 37.0% 38.3% | 83.8 83.6 | 83.5 83.4 | -0.2 | -0.3\% |
 | 39.5\% | ${ }^{83.5}$ | 83.4 | -0.1 | -0.1\% |
 | 40.7\% 420% | 83.4 834 | ${ }_{8}^{83.4}$ | 0.0 | -0.0\% |
 | 43.2\% | ${ }_{83.4} 8$ | ${ }_{83.4} 8$ | -0.1 | -0.1\% |
 | 44.4\% | 83.4 | ${ }^{83.1}$ | -0.3 | -0.4\% |
 | 45.7\% | 83.4
 83
 8 | 83.1 830 | -0.3 | -0.4\% |
 | ${ }^{46.9 \%}$ | ${ }^{83.3}$ | ${ }^{83.0}$ | -0.4 | ${ }_{-0.5 \%}^{-0.5 \%}$ |
 | 49.4\% | 82.9 | ${ }_{82.7}$ | -0.2 | ${ }_{\text {- }}$ |
 | 50.6\% | ${ }_{8}^{828}$ | ${ }_{82}^{82.5}$ | -0.3 | -0.3\% |
 | 51.9\% | ${ }_{8}^{82.7}$ | ${ }_{821}^{82.3}$ | -0.4 | -0.5\% |
 | | ${ }^{82,6}$ | 82.1 | -0.4 | -0.5\% |
 | 54.3% 5.6% | 82.5 82.3 | 82.0 81.9 | -0.5 | -0.6\% |
 | ${ }_{56.8 \%}^{56.8 \%}$ | 82.3 82.2 | 81.9 81.9 | -0.5 -0.3 | -0.4\% |
 | 58.0\% | ${ }_{81.9}$ | 81.6 | -0.3 | -0.4\% |
 | 59.3\% | 81.6 | 81.5 | -0.1 | -0.1\% |
 | 年6.5\% | 81.5 81.5 | 81.5 81.3 | 0.0 -0.2 | -0.0\%\% |
 | 63.0\% | 81.1 | 81.1 | 0.0 | 0.0\% |
 | 64.2% 65.4% | 79.6 | 79.5 | -0.1 | -0.1\% |
 | ${ }_{66.7 \%}^{65.4 \%}$ | ${ }_{79.4}$ | ${ }_{78.6} 78.9$ | -0.4 | -0.9\% |
 | ${ }^{679 \%}$ | 78.95 | 7778 | -1.1 | -1.4\% |
 | 70.4\% | 78.5 78.0 | ${ }_{772}^{77.6}$ | -0.9 | -1.1\% |
 | 71.6\% | 77.6 | 77.2 | -0.4 | -0.5\% |
 | 72.8\% | 77.4 | 77.1 | -0.3 | -0.3\% |
 | 74.1\% | 77.0 | 76.8 | -0.2 | -0.3\% |
 | 75.3\% | 76.0 759 | 76.1 75.4 | 0.2 | 0.2\% |
 | 76.5\% | 75.9 | 75.4 | -0.5 | -0.5\% |
 | 778.8 | 73.4 | 73.1 | -0.3 | -0.5\% |
 | 79.0\% | 71.9 69.8 | 71.7 69.5 | -0.3 -0.3 | -0.4\% |
 | 81.5\% | 69.8 | 69.2 | -0.6 | -0.8\% |
 | 82.7\% | 68.3 | 69.0 | 0.7 | |
 | 84.0\% | ${ }_{68.2}$ | 67.9 | -0.3 | -0.4\% |
 | - 85.2% | 67.3 66.5 | 67.4 66.5 | 0.1 0.0 | - 0.1 \% |
 | 87,7\% | 66.4 | 66.4 | 0.0 | 0.0\% |
 | 88.9\% | 65.4 | 65.4 | 0.0 | ${ }^{0.0 \% \%}$ |
 | 91.4\% | 64.1 | ${ }_{63.5}^{64.7}$ | -0.6 | -0.9\% |
 | 92.6\% | 59.9 | 59.8 | -0.1 | -0.1\% |
 | ${ }^{935.8 \%}$ | ${ }_{58.5}^{59.1}$ | ${ }_{58.3}^{59.1}$ | -0.2 | -0.4\% |
 | 96.3\% | 57.7 | 56.8 | -0.9 | -1.6\% |
 | 97.5\% | 55.8 54.8 | 55.5 | -0.3 | ${ }^{-0.5 \%}$ |
 | 98.8\% 100.0\% | 54.0 54.0 | 54.0 54.0 | 0.0 0.0 | -0.0\% |

 Sacramento River at Emmaton, Monthly EC

 Table SQ－21－b
 Ro Riverat Emmato，Monthly EC

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probabaility } \end{aligned}$ | October | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | DCR 2015 Without | DCR 2015 With Project | Absolute | Relative |
 | | Monthly EC （unuloscm） | Monthy EC （unHosicm） | （UMHOLCMCM） | Difference（\％） |
 | 0．0\％ | MHOSICM） | UMHOSSCM） | ． 336 | －8．0\％ |
 | | 4221.0 | ${ }^{3884.5}$ | | |
 | 1．2\％ | 3945.6 | 3773.2 | －172．3 | －4．4\％ |
 | 2．5\％ | 3917.6 | ${ }^{3771.9}$ | －185．7 | －4．7\％ |
 | 3．7\％ | ${ }^{3866.2}$ | ${ }^{35929}$ | －274．0 | －7．1\％ |
 | 4．9\％ | ${ }^{37877.1}$ | 3476.4 | －310．7 | －8．2\％ |
 | ${ }^{6.2 \%}$ | ${ }_{3}^{3697.4}$ | ${ }_{\text {cke }}^{3324.4}$ | －372．9 | －10．10\％ |
 | 7．4\％ | ${ }^{3696.0}$ | ${ }^{3253.0}$ | －442．9 | ${ }^{-12.0 \%}$ |
 | 8．9\％ | ${ }^{3688.5}$ | ${ }_{3}^{3127.4}$ | －561．1 | －15．2\％ |
 | 9．9\％ | ${ }^{36776.5}$ | 3118.9 | －557．6 | －15．2\％ |
 | 11．19\％ | ${ }^{3632.2}$ | 2969.4 | －662．8 | －18．2\％ |
 | ${ }^{12.3 \%}$ | ${ }^{3401.6}$ | 2922.1 | －479．5 | －14．1\％ |
 | 13．6\％ | 3241.7 | 2788.2 | －453．5 | －14．0\％ |
 | 14．8\％ | ${ }_{3132.9}$ | ${ }^{2662.1}$ | －470．8 | －15．0\％ |
 | 16．0\％ | 3108.4 30658 | ${ }^{2645.4}$ | －4629 | －14．9\％ |
 | 17．3\％ | ${ }^{30655.8}$ | 2634.0 | －431．9 | －14．1\％ |
 | 18．5\％ | ${ }^{3037.5}$ | ${ }^{2613.2}$ | －424．3 | －14．0\％ |
 | 19．8\％ | 3003．6 | 2583.8 | －419．8 | －14．0\％ |
 | 21．0\％ | ${ }_{2}^{2958.8}$ | ${ }^{2411.9}$ | －546．9 | －18．5\％ |
 | 22，2\％ | ${ }_{2}^{2956.3}$ | 2336．2 | ${ }^{-620.2}$ | －21．0\％ |
 | 23．5\％ | ${ }_{2939.1}^{2999.8}$ | 2326.8 22701 | －623．1 | －21．19\％ |
 | 24．7\％ | ${ }_{2}^{2930.1}$ | ${ }^{2270.1}$ | －659．9 | －22．5\％ |
 | 25．9\％ | ${ }^{29866.7}$ | ${ }_{\text {cker }}^{2208.6}$ | －698．1 | －24．0\％ |
 | ${ }^{27.2 \%}$ 28．4\％ | ${ }_{2843}^{2887.0}$ | ${ }_{2}^{21756.7}$ | ${ }^{-690.3}$ | －24．1\％ |
 | 29．6\％ | ${ }_{2815.4}^{2815}$ | 2147.0 | ${ }_{-668.3}$ | －23．7\％ |
 | 30．9\％ | 2544.7 | 2094.2 | －490．5 | －19．0\％ |
 | 32．1\％ | 2588.4 | 2062.1 | －486．3 | －19．1\％ |
 | 33．3\％ | 2523．6 | 2047.2 | －476．3 | －18．9\％ |
 | 34．6\％ | 2520．1 | 2035.4 | －484．7 | －19．2\％ |
 | 35.8% 37.0% | ${ }_{24925}^{24959}$ | ${ }^{2004.0}$ | | －19．7\％ |
 | 37．0\％ | ${ }_{24736}^{2492.5}$ | 1949.6 | －542．9 | －21．8\％ |
 | 38．3\％ | ${ }_{2}^{247396.5}$ | 1939.9 1845 | -533.7 .550 .8 | －21．6\％ |
 | 39．5\％ | $\begin{array}{r}2396.5 \\ \hline 2359\end{array}$ | 1845.8 | －550．8 | －23．0\％ |
 | 40．7\％ | ${ }_{2330.6}^{2356.9}$ | 1810.1 1746.5 | －54．8．8
 .584. | －23．2\％ |
 | ${ }^{42.0 \%}$ | ${ }^{233710.6}$ | ${ }_{1725.7}^{1746.5}$ | －584．2 | ${ }_{-24.0 \%}^{-25.1 \%}$ |
 | 44．4\％ | 2119.4 | 172.11 | ${ }_{-398.3}^{-545.4}$ | －18．8\％ |
 | 45．7\％ | 2104.7 | 1673.2 | －431．5 | －20．5\％ |
 | 46．9\％ | ${ }^{20055}$ | 1490.5 | －514．8 | －25．7\％ |
 | 48．1\％ | 1973.7 188.4 | 1450.0 14367 | －．523．6 | －－26．5\％ |
 | 50．6\％ | 1886.4 1878.5 | ${ }_{1427.3}^{1436.7}$ | ${ }_{\text {－451．2 }}$ | －-24.80% |
 | 51．9\％ | 1850.2 | 1391.0 | －459．2 | －24．8\％ |
 | 53．19\％ 54.36 | 771.3 6837 | 766.3 5865 | －5．0 | － |
 | 54．3\％ | 683.7 674.2 | 588.5 585.6 | －97．2 | － 14.2% |
 | 55．6\％ | 674.2 63.8 | 585.6 58.6 | －88．7 | -13.2% -14.3% |
 | 58．0\％ | 637.7 | 566.0 | －71．7 | －11．2\％ |
 | 59．3\％ | ${ }_{629}^{629}$ | 558．6 | －70．7 | －11．2\％ |
 | － 60.5% | 621.8 6098 | － 538.5 | -83.3
 -85
 8.6 | -13.4% -14.4% |
 | 63．0\％ | 585.6 | 512.1 | ${ }_{-73.5}$ | －12．6\％ |
 | 64．2\％ | ${ }_{5}^{547.6}$ | 509.5 | －38．1 | －7．0\％ |
 | | 526.7 5184 | ${ }_{465.1}^{502.1}$ | －24．6 -53 | －4．7\％ |
 | 67．9\％ | 392.2 | 358.9 | ${ }_{-33.3}$ | ${ }^{-8.5 \%}$ |
 | 69．1\％ | 352.0 | 349.0 | －3．0 | －0．9\％ |
 | 70．4\％ 71.6 | 344.9 342.0 | 322.7 318.7 | －22．2 -23 | －6．4\％ |
 | 72．8\％ | 337.1 | 316.3 | ${ }_{-20.8}$ | －6．2\％ |
 | 74．1\％ | 335.1 | 312.6 | －22．5 | －6．7\％ |
 | 75．3\％ | ${ }_{3322}^{332.6}$ | $\begin{array}{r}310.4 \\ 3084 \\ \hline\end{array}$ | －22．2 | ${ }_{-7}^{-6.7 \%}$ |
 | 77．8\％ | 325.0 | 305.7 | －19．2 | －5．9\％ |
 | 79．0\％ | ${ }^{322.6}$ | 303.9 | －18．7 | －5．8\％ |
 | － | 321.1 320.9 | 302.9 2978 | －${ }_{\text {－}}$－230 | －5．7\％ |
 | 82．7\％ | 320.1 | 296.4 | －23．7 | －7．4\％ |
 | 84．0\％ | 318.0 | 292.6 | －25．5 | －8．0\％ |
 | | 313.4 2974 | 289.1 298 | －21．3 | －6．8\％${ }_{\text {－}}^{\text {－}}$ |
 | 87．7\％ | 29.0 | ${ }_{288.4}^{28.4}$ | ${ }_{-7}$ | －2．6\％ |
 | 88．9\％ | 289.4 | 273.6 | －15．8 | －5．5\％ |
 | 90．19\％ | ${ }_{2818}^{284.4}$ | ${ }_{2720}^{272.1}$ | －12．3 | －4．3\％${ }_{-3}$ |
 | 992．4\％${ }_{\text {92\％}}$ | ${ }_{2817}^{281.8}$ | ${ }_{267}^{272.0}$ | －9．8 | －3．5\％ |
 | 93．8\％ | 277.9 | 255.3 | －22．6 | －8．1\％ |
 | 95．1\％ | 252.9 | ${ }_{2} 24.1$ | －3．8 | －1．5\％ |
 | 96．3\％${ }_{\text {975\％}}$ | 238.2 2334 | ${ }_{2298}^{245.1}$ | 7.0 6.3 | 2．9\％ |
 | 98．8\％ | 222.3 | 228.6 | 6.3 | 2．9\％ |
 | 100．0\％ | 200.7 | 227.2 | 26.5 | 13．2\％ |

 | | November | | | － | December | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {OCR }}^{\text {P2015 Without }}$ Proiect | DCR 2015 With Project | Absolute | | | ${ }_{\text {OCR } 2015 \text { Wethout }}^{\text {Proiect }}$ | DCR 2015 With Project | Absolute | |
 | Proobability | Monthliy EC | Monthy EC | （idiference | Difference（\％） | Hobabili | Monthly EC | Monthly EC | （itierence | Difference（\％） |
 | （\％） | （UMHHOSICM） | （UMHOSCCM） | | | | UMHOSS（CM） | UHH | | |
 | 0．0\％ | 4136.1 | 4094.4 | －41．7 | －1．0\％ | 0．0\％ | 3904.2 | 3668.2 | －236．0 | |
 | 1．2\％ | ${ }^{4131.9}$ | ${ }^{4030.7}$ | －101．2 | －2．4\％ | 1．2\％ | 3548.5 | ${ }^{323577}$ | ${ }^{-312.8}$ | －8．8\％ |
 | 2．5\％ | ${ }^{3995.6}$ | 3301.7 | －693．9 | －17．4\％ | 2．5\％ | ${ }^{2691.5}$ | ${ }^{25877.7}$ | －103．8 | －3．9\％ |
 | 3．7\％ | 37700.1 | 3182.1 | －518．0 | －14．0\％ | 3．7\％ | ${ }^{2660.0}$ | ${ }^{25478.3}$ | －111．8 | －4．2\％ |
 | 4．9\％ | 3669.4 | 3090.5 | －578．9 | －15．8\％ | 4．9\％ | 2530．9 | ${ }^{237272.6}$ | －158．3 | －6．3\％ |
 | 6．2\％ | 3448.2 | 2917.1 | －531．1 | －15．4\％ | 6．2\％ | 2487.4 | ${ }^{2350.0}$ | －137．4 | －5．5\％ |
 | 7．4\％ | ${ }^{3427.9}$ | ${ }^{2838.3}$ | －589．7 | －17．2\％ | 7．4\％ | 2484.4 | 2211.4 | －272．9 | －11．0\％ |
 | 8．6\％ | 3078.0 | ${ }^{2616.5}$ | －461．5 | －15．0\％ | 8．6\％ | 2406.2 | ${ }^{2188.7}$ | －217．5 | －9．0\％ |
 | 9．9\％ | ${ }^{2951.1}$ | 2607.2 | －344．0 | －11．7\％ | 9．9\％ | ${ }^{2404.3}$ | 2177.1 | ${ }^{227.3}$ | －9．5\％ |
 | 11．1\％ | 2933.0 | ${ }^{25951.4}$ | ${ }^{-341.6}$ | －11．6\％ | 11．1\％ | ${ }^{2380.8}$ | ${ }^{2142.9}$ | －237．9 | －10．0\％ |
 | ${ }^{12.3 \%}$ | ${ }^{2893.5}$ | ${ }^{25753.2}$ | ${ }^{-320.3}$ | －11．1\％ | ${ }^{12.3 \%}$ | ${ }^{22555.3}$ | ${ }^{2124.3}$ | －131．0 | －5．8\％ |
 | 13．6\％ | 2798.9 | 2559.7 | －239．2 | －8．5\％ | 13．6\％ | ${ }^{22335.6}$ | 2077.9 | －157．7 | －7．1\％ |
 | 14．8\％ | 27188 | 2554.1 | －164．6 | －6．1\％ | 14．8\％ | ${ }^{2230.8}$ | 2016.4 | －214．4 | －9．7\％ |
 | ${ }^{16.0 \%}$ | ${ }^{2677.5}$ | ${ }_{2483}^{2483}$ | －193．6 | －7．2\％ | 16．0\％ | 2199.8 | 181818.9 | －380．9 | －17．3\％ |
 | ${ }^{17.3 \%}$ | ${ }^{25850.4}$ | 2488.5 | －99．9 | －3．9\％ | 17．3\％ | ${ }_{2}^{2192.8}$ | 1718.2 | －474．6 | －21．6\％ |
 | 18．5\％ | 2552.5 | 2469.5 | －83．0 | －3．3\％ | 18．5\％ | 2139．3 | ${ }^{16988.6}$ | －440．7 | －20．6\％ |
 | 19．8\％ | 2531.0 | ${ }^{2436.5}$ | －94．5 | －3．7\％ | 19．8\％ | 1491.5 | 1585.4 | 93.9 | 6．3\％ |
 | 21．0\％ | 2518.1 | ${ }^{2334.6}$ | －123．5 | －4．9\％ | 21．0\％ | 1401.0 | 1407.9 | 6.9 | 0．5\％ |
 | ${ }^{22.2 \%}$ | ${ }^{2475.8}$ | ${ }^{2312.4}$ | －163．4 | －6．6\％ | ${ }^{22.2 \%}$ | ${ }^{13577.1}$ | ${ }^{13488.3}$ | －8．8 | －0．6\％ |
 | 23．5\％ | ${ }^{2466.2}$ | ${ }_{2223.2}^{22312}$ | －243．0 | －9．9\％ | 23．5\％ | 1277.9 | 1308.4 | 30.4 | 2.40 |
 | 24．7\％ | ${ }^{2372.3}$ | 2214.4 | －158．0 | －6．7\％ | 24．7\％ | 1054．2 | 1255.0 | 20.8 | 19.0 |
 | 25．9\％ | ${ }^{2311.8}$ | ${ }^{1972.0}$ | －339．8 | －14．7\％ | 25．9\％ | 996.0 | ${ }^{1198.6}$ | ${ }_{2026}$ | 20．3\％ |
 | 27．2\％ | ${ }^{2307.8}$ | 1967.3 | －340．5 | －14．8\％ | 27．2\％ | ${ }_{925.6}$ | ${ }_{1141.7}$ | 216.2 | ${ }^{23.4}$ |
 | 28．4\％ | ${ }^{22655.1}$ | 1996.4 | －318．7 | －14．1\％ | 28．4\％ | ${ }_{7727}$ | 1061.7 | 165.4 | 18．5\％ |
 | 30．9\％ | ${ }_{2}^{2255.8}$ | 1925.1 | －30．7 | －14．7\％ | 29．6\％ | 72.7 | ${ }_{832.5}^{862.5}$ | ${ }_{79.8}$ | 11．6\％ |
 | 32．1\％ | ${ }_{2}^{2150.3}$ | ${ }^{101799.4}$ | －－370．9 | －12．3\％ | 30．9\％ | 740.3 | ${ }_{8}^{831.4}$ | ${ }_{81.1}^{73.2}$ | 111．0\％ |
 | 33．3\％ | 2145.8 | 1770.7 | －375．1 | －17．5\％ | 33．3\％ | 700.3 | 755.0 | 54.7 | 7．8\％ |
 | 34．6\％ | 2133.5 | 1683.9 | －449．6 | －21．1\％ | 34．\％ | 698.0 | 724.1 | 26.2 | 3．8\％ |
 | 35．8\％ | ${ }_{20}^{20959}$ | 1662.3 13776 | －433．4 | －－20．7\％ | 35．8\％ | 685.0 6725 | ${ }_{6}^{681.3}$ | －3．7 | ${ }_{\text {－}}^{\text {－0．0\％}}$ |
 | 37．0\％ | 2073.9 | ${ }^{1377.6}$ | －696．4 | －33．6\％ | 37．0\％ | 672.5 | 671.6 | －1．0 | －0．1\％ |
 | 38．3\％ | ${ }^{1822.6}$ | ${ }_{121377}^{1237}$ | －608．9 | －33．4\％ | 38．3\％ | 647.8 | 658.0 | 10.2 | 1．6\％ |
 | 30．7\％ | 1541.8 | 1197.7 | －344．1 | －2．3． | 39．7\％ | 644.3 | 656.4 | 12.1 | 1．9\％ |
 | 42．0\％ | 14880.4 | 1126.6 | ${ }_{-353.9}$ | －23．9\％ | 42．0\％ | 6399 | 644.1 | 1.7 | 0．3\％ |
 | 43．2\％ | 1468.2 | 1063.2 | －405．0 | －27．6\％ | 43．2\％ | 589.0 | 633.8 | 44.8 | 7．6\％ |
 | 44．4\％ | 1391.2 | 1047.0 | －344．1 | －24．7\％ | 44．4\％ | 583.6 | 630.2 | 46.5 | 8．0\％ |
 | 45．7\％ | 1308.1 8748 | －959．2 | -348.9 -225 | －26．7\％ | 45．7\％ | 569.0 5518 | 582.0 5658 | 13.0 14.0 | 2．3\％ |
 | 46．9\％ | 874.8 | ${ }^{852.3}$ | －22．5 | －2．6\％ | 46．9\％ | 551．8 | 565.8 | 14.0 | 2．5\％ |
 | 48．19\％ | ${ }_{5272.1}^{692}$ | 766.5 | 74.4 | 10．7\％ | 48．1\％ | 504.7 | 500.2 | －4．5 | －0．9\％ |
 | 50．6\％ | ${ }_{468.9}$ | 446.5 | －－2．4 | － | 50．6\％ | ${ }_{4959}$ | 494.5 | －2．2 | －0．4\％ |
 | 51．9\％ | 460.5 | 445.2 | －15．3 | －3．3\％ | 51．9\％ | 494.3 | 491.0 | －3．4 | －0．7\％ |
 | 53．1\％ | 459.0 | 441.2 | －17．8 | －3．9\％ | 53．1\％ | 469.4 | 490.2 | 20.8 | 4．4\％ |
 | 54．3\％ | 450.3 | 434.6 | －15．7 | －3．5\％ | 54．3\％ | 464.2 | 487.7 | ${ }^{23.5}$ | 5．1\％ |
 | 年55．6\％ | ${ }_{4449}^{446}$ | ${ }_{4}^{434.3}$ | -12.4 -160 | － $\begin{aligned} & -2.8 \% \\ & -3.6 \%\end{aligned}$ | 55．6\％ | ${ }_{453.1}^{453.9}$ | 466.8 4640 | 12.9 109 | 2．8\％ |
 | | 444.9 | ${ }_{4159}^{429}$ | -16.0 -248 | －3．6\％ | 56．8\％ | ${ }_{4483}{ }_{4}$ | 464.0 4597 | 10.9 | 2．4\％ |
 | 年58．3\％ | ${ }_{410.8}^{440.7}$ | ${ }_{4}^{415.9}$ | －24．8 -12.0 | －5．6\％\％ | | ${ }_{448.1}^{448.1}$ | ${ }_{4}^{459.7}$ | ${ }_{-42}^{11.6}$ | ${ }_{\text {2 }}$ 2．6\％ |
 | 60．5\％ | 406.9 | 389.1 | －17．8 | ${ }^{-4.4 \%}$ | 60．5\％ | 429.4 | 433.7 | 4.3 | 1．0\％ |
 | 61．7\％ | 406.7 | 359.7 | －47．0 | －11．6\％ | 61．7\％ | 424.0 | 427.7 | 3.7 | 0．9\％ |
 | 63．0\％ | 368.3 3195 | 334.5 310.9 | -3.7 -87 | －－9．2\％ | －63．0\％ | 397.0 3083 | 417.0 3985 | ${ }_{902}^{20.0}$ | 5．0\％ |
 | 64.2% 65.4% | 319.5 3085 | ${ }_{3}^{310.9}$ | －8．7 | －-2.78% | 64.2% 654% | 308．3 | 398.5 3681 | 90.2 78.5 | ${ }^{29.2 \%}$ |
 | | 308.5 2824 | ${ }_{2724}^{292.2}$ | －16．3 | －$-.53 \%$ | | ${ }_{2779}^{289.6}$ | 368.1 3523 | 78.5 74.4 | ${ }_{\text {cke }}^{27.19 \%}$ |
 | 66．9\％ | ${ }_{274.2}^{282.4}$ | ${ }_{260.8}^{272.4}$ | －10．4 | ${ }^{-3.5 \% \%}$ | －6．7．9\％ | 277.9 273.1 | 352.3 318.3 | 74.4 45.1 | ${ }^{26.8 \% \%}$ |
 | 69．1\％ | 272.7 | 258.9 | －13．8 | －5．1\％ | 69．1\％ | 256.1 | 315.0 | 58.9 | 23．0\％ |
 | 70．4\％ | ${ }^{255.0}$ | ${ }^{254.4}$ | －3．6 | －1．4\％ | 70．4\％ | 24.8 | ${ }^{283.3}$ | 40.5 | |
 | 71．6\％ | 257.4 2538 | 252.3
 2508
 208 | －5．1 | －2．0\％ | 71．6\％ | ${ }_{2}^{24.7}$ | ${ }_{2}^{252.2}$ | 11.5 | 4．8\％ |
 | －72．8\％ | 253.8 2459 | ${ }_{2469}^{250.8}$ | $\begin{array}{r}-3.1 \\ 1.1 \\ \hline\end{array}$ | － $\begin{aligned} & -1.2 \% \\ & 0.4 \%\end{aligned}$ | 72．8\％ | ${ }_{2}^{238.5}$ | ${ }_{2271}^{235.1}$ | -3.4 .9 | -1.4% 4.4% |
 | 74．3\％ | ${ }_{245.4}^{24.9}$ | ${ }_{243.9}^{24.9}$ | －1．5 | －0．6\％ | 75．3\％ | ${ }_{215.9}^{21.6}$ | ${ }_{29,3}^{221.1}$ | ${ }_{3.4}^{9.6}$ | 1．6\％ |
 | 76．5\％ | 24.8 | 242.0 | －0．9 | －0．4\％ | 76．5\％ | 212.2 | 219.2 | 7.0 | 3．3\％ |
 | 77．8\％${ }^{79.0 \%}$ | ${ }_{241.4}^{242.5}$ | 239.4 237.6 | -3.1 -3.8 | －1．3\％ | 77．8\％ | 210.5 2075 | ${ }_{2098}^{216.1}$ | 5.6
 ${ }_{23}$ | 2．7\％ |
 | 80．2\％ | 238.7 | 236.7 | －2．1 | | 80．2\％ | 206.2 | 20.0 | 2.8 | 1．4\％ |
 | 81．5\％ | 238.0 | 235.1 | －2．9 | －1．2\％ | 81．5\％ | 204.1 | 208.2 | 4.1 | 2．0\％ |
 | 82.7% 84.0% | ${ }_{2351}^{236.0}$ | ${ }_{233,}^{234}$ | －1．5 | －0．0\％ | 82．7\％ 84.00 | 200.7 1976 | ${ }_{2000}^{201.3}$ | 0.6 2.4 | ${ }_{1}^{0.3 \%}$ |
 | 85．2\％ | 234.4 | 232.4 | －2．0 | | 85．2\％ | 197.0 | 194.9 | －2．1 | －1．0\％ |
 | 86．4\％ | ${ }^{232.4}$ | ${ }^{231.4}$ | －1．0 | －0．4\％ | 86．4\％ | 185.8 | 191.3 | 5.5 | 2．9\％ |
 | 887．7\％ | ${ }_{2283}^{230.6}$ | 229.2 2264 | －1．4 | －0．0\％\％ | 87．7\％ | $\begin{array}{r}185.1 \\ 1828 \\ \hline\end{array}$ | $\begin{array}{r}186.6 \\ 1854 \\ \hline 184\end{array}$ | $\begin{array}{r}1.4 \\ 2.4 \\ \hline\end{array}$ | －${ }_{\text {0，}}^{1.8 \%}$ |
 | 90．1\％ | 227.1 | ${ }_{22}^{226.2}$ | －0．9 | －0．4\％ | 90．1\％ | ${ }^{182.6}$ | 182.6 | 0.0 | 0．0\％ |
 | 91．4\％ | 226.0 | 224.9 | －1．1 | －0．5\％ | 91．4\％ | 182.3 | 181.4 | －0．9 | －0．5\％ |
 | － 92.6% | 220.9 2196 | 223．3 | 2.5 0.4 | － 1.1% | － 92.6% | 181.3 1809 | 181.1 1810 | －0．2 | － |
 | 95．1\％ | 209.3 | 217.1 | 7.8 | 3．7\％ | 95．1\％ | 180.7 | 181.0 | 0.3 | 0．1\％ |
 | 96．3\％ | ${ }_{128.6}$ | 196.2 | ${ }^{-6.4}$ | －3．1\％ | 96．3\％ | 180.7 | ${ }^{180.8}$ | 0.1 | 0．1\％ |
 | 97．5\％ | 186.1 | 190.0 | ${ }^{3.8}$ | 2．1\％ | 97．5\％ | 17798 | 17795 | －0．3 | －0．1\％ |
 | 98．8\％ 1000% | 188.0 1790 | 188.4 1789 | ${ }_{-0 .}^{2.3}$ | 艮 | 98．8\％ 1000% | 179.0 1789 | 179.0 178.8 | －0．0 | －0．0\％ |

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabbility } \end{gathered}$ | January | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {DCR } 2015 \text { Without }}^{\text {Proiect }}$ | DCR 2015 With Project | Absolute | |
 | | Monthly EC | Monthy EC | Difference （UWHOSCCM） | Difference（\％） |
 | | （UMHosicm） | （UMHOSSCM） | | |
 | 0．0\％ | 1456.2 | 1456.9 | 0.7 | 0．1\％ |
 | 1．2\％ | 1449.2 | 1417.2 | －32．0 | －2．2\％ |
 | 2．5\％ | 1083.3 | 1374.2 | 290.9 | 26．9\％ |
 | 3．7\％ | 1024.2 | 1095.5 | 71.3 | 7．0\％ |
 | 4．9\％ | 1021.3 | 1056.3 | 35.0 | 3．4\％ |
 | 6．2\％ | 958.5 | 973.1 | 14.6 | 1．5\％ |
 | 7．4\％ | 886.5 | 951.6 | 65.1 | 7．3\％ |
 | 8．9\％ | 861.9 | 872.4 | ${ }^{10.6}$ | 1．2\％ |
 | 9．9\％ | 849.7 | 872.0 | 22.3 | 2．6\％ |
 | 11．19\％ | ${ }_{813.0}^{8130}$ | 815.7 | 2.7 | 0．3\％ |
 | 12．3\％ | 813.0 | 808.8 | -4.2 | －0．5\％ |
 | 13．6\％ | ${ }_{812.4}^{818.3}$ | 771.6 | －40．8 | －5．0\％ |
 | 14．8\％ | 787.3 | 756.9 | －30．4 | －3．9\％ |
 | 16．0\％ | ${ }_{7683}$ | 752.6 | －15．7 | －2．0\％ |
 | 17．3\％ | ${ }^{683.2}$ | 720.7 | 37.5 | 5．5\％ |
 | 18．5\％ | 666.0 | ${ }_{6}^{677.6}$ | ${ }_{31.5}^{13,5}$ | 1．7\％ |
 | 19．8\％ | ${ }_{641.7}$ | ${ }_{6}^{675.3}$ | ${ }^{33.6}$ | 5．2\％ |
 | 21．0\％ | ${ }_{6}^{639.7}$ | ${ }_{656.6}$ | 17.0 | 2．7\％ |
 | | ${ }_{6}^{633.3}$ | ${ }^{642.4}$ | 9.1 | 1．4\％ |
 | ${ }^{234.7 \%}$ | ${ }_{507.2}^{605.2}$ | － 63.22 .1 | 27.1 14.7 | ${ }^{4.5 \%}$ |
 | 25．9\％ | 568.6 | 599.1 | 30.5 | 5．4\％ |
 | 27．2\％ | 490.0 | 563.5 | 73.5 | 15．0\％ |
 | 28．4\％ | 473.2 | 551.2 | 78.0 | 16．5\％ |
 | 29．6\％ | 473.1 | 547.1 | 73.9 | 15．6\％ |
 | 30．9\％ | 46.5 | 518.9 | 58.4 | 12．7\％ |
 | 32．1\％ | ${ }^{431.5}$ | 479.6 | 48.1 | 11．1\％ |
 | 33．3\％ | 336.6 | 468.8 4648 | 72.2 840 | 18．2\％ |
 | 34．6\％ | 380.8
 3793 | 464.8 | 84.0 | ${ }^{22.1 \%}$ |
 | 35．8\％ | 379.3 3676 | ${ }_{3189}^{489}$ | 39.6 296 | ${ }_{\text {ckich }}^{10.4 \%}$ |
 | 37．0\％ | ${ }_{367.6}$ | 397．2 | ${ }_{521}^{29.6}$ | 8．1\％ 152\％ |
 | 38．3\％ | ${ }_{3}^{341.6}$ | 393.7 3906 | ${ }_{712}^{52.1}$ | ${ }_{\text {cke }}^{15.2 \%}$ |
 | 39．7\％ | 319.3 313.9 | 390.6 369.8 | 71.2 559 | |
 | 42．0\％ | 310.5 | 342.5 | 32.0 | 10．3\％ |
 | 43．2\％ | 300.1 | 338.8 | 38.7 | 12．9\％ |
 | 44．4\％ | 294.6 | 324.7 | 30.1 | 10．2\％ |
 | 45．7\％ | ${ }_{2}^{2877}$ | 319．3 | 31.6 354 354 | 11．0\％ |
 | 46．9\％ | ${ }_{279.8}^{283.6}$ | 319.1 298.4 | 35.4 18.6 | 6．6\％ |
 | 49．4\％ | 279.8 279.4 | ${ }_{297.7}^{298.4}$ | 18.6 18.3 | 6．6\％ |
 | 50．6\％ | 257.6 | 296.0 | 38.4 | 14．9\％ |
 | 51．9\％ | 256.5 | 291.8 | 35.3 | 13．8\％ |
 | 53．1\％ | ${ }_{26.1} 24.1$ | 27.1 | 24.9 | 10．1\％ |
 | 54．3\％ | ${ }^{237.1}$ | ${ }^{254.4}$ | 17.3 | 7．3\％ |
 | 55．6\％ | ${ }_{2280}^{234}$ | ${ }_{\text {253，}}^{253}$ | 19.0
 251 | 8.1% 110% |
 | 58．0\％ | ${ }_{222.6}^{228.0}$ | ${ }_{245.7}^{253.1}$ | ${ }_{23.1}^{25.1}$ | 11．0\％ |
 | 59．3\％ | 219.2 | ${ }_{23,3}^{2317}$ | 11.2 | 5．1\％ |
 | 60．5\％ | 218.0 | 227.0 | 9.0 | 4．1\％ |
 | 61．7\％ | 212.1 | 221.5 | 9.3 | 4．4\％ |
 | （ 63.0% | ${ }_{2058}^{200.6}$ | ${ }_{2120}^{219.1}$ | ${ }_{6.2}^{12.5}$ | |
 | 65．4\％ | 205.3 | 207.8 | ${ }^{2} .5$ | 1．2\％ |
 | 66．7\％ | 205.1 | 206.9 | 1.8 | 0．9\％ |
 | －67．9\％ | $\begin{array}{r}204.8 \\ 1971 \\ \hline 1\end{array}$ | ${ }_{2028}^{203.3}$ | -1.5
 5.8 | － |
 | 70．4\％ | 194.9 | 200.3 | 5.4 | 2．8\％ |
 | 71．6\％ | 193.0 | 199.0 | 3.0 | 1．5\％ |
 | － 72.8 .8 | ${ }_{191.5}^{191.5}$ | 194.3
 1940 | ${ }_{26}^{2.8}$ | －${ }_{\text {1．5\％}}^{1.5 \%}$ |
 | 75．3\％ | 191.2 | 193.5 | 2.2 | 1．2\％ |
 | 76．5\％ | 190.4 | 192.2 | 1.9 | 1．0\％ |
 | 77．8\％ | 190.4 | 191.3 | 1.0 | 0．5\％ |
 | 79．0\％ | 189.9 | 190.0 | 0.1 | 0．0\％ |
 | －${ }_{\text {80．2\％}}$ | 188.2 188.2 1 | 189.4 188.6 | 1.2 0.4 | －${ }_{\text {0，}}^{0.2 \%}$ |
 | 82．7\％ | 187.1 | 187.8 | 0.7 | 0．4\％ |
 | 84．0\％ | 187.0 | 187.7 | 0.7 | 0．4\％ |
 | | 186.4 1858 18.8 | 186.4 1859 | ${ }_{0}^{0.0}$ | 0．0\％ |
 | 87．7\％ | 184.0 | 184.0 | 0.0 | 0．0\％ |
 | 88．9\％ | 183.3 | 183.3 | 0.0 | 0．0\％ |
 | 90．1\％ | 182.7 182. | 183.3 1828 | 0.5 | 0．3\％ |
 | 91．4\％ | 182.4 | 182.8 | 0.5 | 0．2\％ |
 | － 92.26% | 181.8 181.7 | 182.4
 181.8 | 0.6 0.0 | － 0.3% |
 | 95．1\％ | 181.0 | 181.2 | 0.3 | 0．1\％ |
 | 96．3\％ | 180.5 | 180.8 | 0.3 | 0．2\％ |
 | 97．5\％ | 180.4 | 180.5 | 0.1 | 0．1\％ |
 | 988．8\％ 100．0\％ | 1880.3 178.9 | 180.3 178.9 | ${ }_{0.0}^{0.0}$ | 0．0\％ |

 | Table $S Q-21-\mathrm{b}$ |
 | :--- |
 | to |
 | Riverat Ematon, Monthly $E C$ |

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {DCR }}^{\text {O2015 Without }}$ Proiet | DCR 2015 With Project | Absolute | |
 | | Monthly EC | Monthy EC | (itierence | Difference (\%) |
 | | (UMHOSCM) | (UMHOSSCM) | | |
 | 0.0\% | 745.6 | 859.2 | 113.6 | 15.2\% |
 | 1.2\% | 729.6 | 795.3 | 65.7 | 9.0\% |
 | 2.5\% | 593.6 | 720.3 | ${ }^{126.7}$ | 21.3\% |
 | 3.7\% | 500.5 | 556.8 | 56.3 | 11.2\% |
 | 4.9\% | 472.7 | 508.5 | 35.9 | 7.6\% |
 | ${ }_{\text {c }} 6.2 \%$ | 436.9 3829 | 507.5
 325 | ${ }^{70.6}$ | ${ }_{\text {l }}^{16.2 \%}$ |
 | 7.4\% | 382.9 | ${ }^{432.5}$ | 49.5 | ${ }^{12.29 \%}$ |
 | 8.6\% | 335.1 3168 | 378.5 3889 | ${ }_{23.4}^{43.4}$ | 13.0\% |
 | 9.9\% | 316.8 | ${ }_{338.9}$ | ${ }_{22.1}^{22.1}$ | 7.0\% |
 | 11.1\% | 308.7 3828 | 331.7 | 23.0 | 7.5% 145% |
 | ${ }^{12.3 \%}$ | 282.4 | ${ }_{323.3}$ | 41.0 | 14.5\% |
 | 13.6\% | 280.1 | 314.3
 34.2 | 34.2 58 | 12.2\% |
 | 14.8\% | 255.9 | 314.2 | ${ }_{58,3}$ | 22.8\% |
 | 16.0\% | 243.9 | 281.5 2778 | 37.6 369 | 15.4% 1550 |
 | 17.3\% | 240.9 | 277.8 | ${ }^{36.9}$ | 15.3\% |
 | 18.5\% | 239.4 2373 | ${ }_{270}^{27.5}$ | 37.2 329 | 15.5\% |
 | 19.8\% | ${ }_{2}^{237.3}$ | ${ }_{25.3}^{270.3}$ | 32.9 | 13.9\% |
 | 21.0\% | ${ }_{2}^{235.5}$ | 256.0 | ${ }^{20.5}$ | 8.7\% |
 | 22,2\% | 230.1 | 249.0 | 18.8 | ${ }^{8.2 \%}$ |
 | ${ }^{23.5 \%}$ | 229.1 | ${ }_{23}^{243}$ | 14.2 | - ${ }^{6.2 \%}$ |
 | ${ }^{24.59 \%}$ | 228.0 2272 | 233.3 2329 | 5.4 | ${ }_{2}^{2.5 \%}$ |
 | ${ }^{25.7 .2 \%}$ | ${ }_{225.9}^{227.2}$ | ${ }_{231.7}^{232.9}$ | 5.8 | ${ }_{2.6 \%}^{2.5 \%}$ |
 | 28.4\% | 222.9 | ${ }^{231.3}$ | 8.5 | 3.8\% |
 | 29.6\% | 219.1 | 228.5 | 9.5 | 4.3\% |
 | 30.9\% | 218.2 | 227.2 | 9.0 | 4.1\% |
 | 32.1\% | 211.2 | 224.8 | 8.6 | 4.0\% |
 | 33.3% 34.6% | 212.4 | ${ }_{222.1}^{222.1}$ | 9.7 | |
 | 34.6\% | 212.1 | ${ }^{220.3}$ | 8.3 | 3.9\% |
 | 35.8% 37.0% | ${ }_{210}^{2108}$ | ${ }_{2188}^{2187}$ | 7.8 | |
 | 37.0\% | ${ }^{210.2}$ | ${ }_{2}^{218.2}$ | 7.9 | ${ }^{3.3 \%}$ |
 | 38.3\% | 208.0 | ${ }_{214.6}^{214.6}$ | 7.7 | 年3.7\% |
 | 39.5\% | 207.8 | 214.9 | 7.1 | 3.4\% 1.3% |
 | 40.7. ${ }^{40 \%}$ | ${ }_{2}^{202.2}$ | ${ }^{200.8}$ | ${ }_{3.2}^{2.7}$ | 1.3\% |
 | 43.2\% 44. | 199.3 1991 | ${ }_{2025}^{203.1}$ | 3.8
 3.4
 1 | ${ }^{1.9 \%}$ |
 | ${ }^{44.75 \%}$ | 199.1 1989 | 202.5 200.8 | ${ }^{3.4}$ | - |
 | 46.9\% | 197.6 | 200.7 | 3.0 | 1.5\% |
 | 48.1\% | 195.6 1948 | 200.2 1989 | 4.6 | 2.3\% |
 | 49.4\% | 194.8
 1943
 1 | 198.9 198.5 | ${ }_{4}^{4.0}$ | ${ }_{\text {2.1\% }}^{2.1 \%}$ |
 | 51.9\% | ${ }_{193.7}^{193.7}$ | 195.7 | ${ }_{2.0}^{4.2}$ | ${ }^{2.0 \%}$ |
 | 53.1\% | ${ }^{193.3}$ | 195.2 | 1.8 | 0.9\% |
 | 54.3\% | 192.4 | 193.4 | ${ }_{1}^{1.0}$ | 0.5\% |
 | 55.6\% | 192.0 191.0 | 1993.3 193.1 | ${ }_{21}^{1.3}$ | 0.7\% |
 | 56.8\% | 190.0
 10.0 | ${ }_{1}^{193.1}$ | 2.1 2.0 | 1.1.1\% |
 | 59.3\% | 1899 | 191.9 | 2.0 | 1.1\% |
 | | 189.1 1889 | 190.1 1899 | ${ }_{10}^{0.9}$ | ${ }_{0}^{0.5 \%}$ |
 | 63.0\% | 188.7 | 189.3 | 0.6 | 0.3\% |
 | 64.2\% | ${ }^{187.5}$ | ${ }^{1877}$ | 0.2 | 0.1\% |
 | 析 65.4% | 187.1 1869 | $\begin{array}{r}187.4 \\ 1870 \\ \hline 1\end{array}$ | ${ }^{0.3}$ | 0.2\% |
 | 67.9\% | 186.8 | 187.0 | 0.2 | 0.1\% |
 | 69.1\% | 184.9 | 186.9 | 2.0 | 1.1\% |
 | 70.4\% | $\begin{array}{r}184.8 \\ 1846 \\ \hline\end{array}$ | 186.4 1850 | 1.6 0.4 | 0.8\% |
 | 72.8\% | 184.5 | 185.0 | 0.5 | 0.3\% |
 | 74.1\% | 184.5 | 184.8 | 0.3 | 0.2\% |
 | 75.3\% | $\begin{array}{r}184.3 \\ 1843 \\ \hline 184\end{array}$ | $\begin{array}{r}184.7 \\ 184.5 \\ \hline\end{array}$ | 0.4 0.3 | ${ }_{\text {c }}^{0.2 \%}$ |
 | 77.8\% | 184.1 | 184.3 | 0.2 | 0.1\% |
 | 79.0\% | 183.8 | 184.2 | 0.3 | 0.2\% |
 | 81.5\% | 183.8 183.5 | 183.7
 183.4 | -0.1 -0.1 | 0.0\% |
 | 82.7\% | 183.4 | 183.2 | -0.2 | -0.1\% |
 | 84.0\% | 183.2 | 183.0 | -0.2 | -0.1\% |
 | | $\begin{array}{r}182.9 \\ 1828 \\ \hline\end{array}$ | 182.7 1827 | -0.2 -0.0 | -0.1\% |
 | 87.7\% | 182.6 | 182.5 | -0.1 | -0.1\% |
 | 88.9\% | 182.4 | 182.4 | -0.1 | 0.0\% |
 | 90.19\% | $\begin{array}{r}182.1 \\ 1818 \\ \hline 18\end{array}$ | 182.1 1820 | ${ }_{0}^{0.0}$ | -0.0\% |
 | 92.6\% | 181.8 | 181.8 | 0.0 | 0.0\% |
 | 93.8\% | 181.1 | 181.6 | 0.5 | 0.3\% |
 | ${ }^{95517 \%}$ | 180.9 180.6 | 181.4 1810 | 0.6 0.4 | 0.3\% |
 | 97.5\% | 180.6 | 180.6 | 0.0 | 0.0\% |
 | 98.8\% | 180.2 178.1 | 180.4 178.1 | 0.2 0.0 | - 0.0 \% |

 | | | Warch | | Probabili | April | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Percent | DCR 2015 Without | DCR 2015 With Project | | | nt | DCR 2015 Without | DCR 2015 With Project | | |
 | ceedare | | | ${ }_{\text {abs }}^{\text {absiute }}$ | Relative | | Proiect | | ${ }_{\text {Absolute }}$ | Relative |
 | Probability | Monthly EC | Monthly EC | (UMHOSSCM) | Difference (\%) | Probability | Monthly EC | Monthly EC | (UMHOSSCM) | Difference (\%) |
 | 0.0\% | 584.0 | 596.8 | 12.8 | 2.2\% | 0.0\% | ${ }^{643.1}$ | 678.2 | 35.1 | 5.5\% |
 | 1.2\% | 465.8 | 447.9 | 17.8 | 3.8\% | 1.2\% | 589.3 | 559 | | |
 | 2.5\% | 416.1 | 394.4 | -21.7 | -5.2\% | 2.5\% | 524.6 | 2 | 4.6 | |
 | 3.7\% | 3.1 | 3.2 | 0.1 | 0.0\% | 3.7\% | 430.9 | 438.4 | 7.5 | |
 | 4.9\% | 342.7 | 0.6 | 17.9 | 5.2\% | 4.9\% | 421.7 | 430.4 | 8.7 | |
 | ${ }^{6.2 \%}$ | 335.0 | 348.8 | 13.8 | 4.1\% | 6.2\% | 383.8 | 367.4 | 16.5 | -4.3\% |
 | 7.4\% | 333.7 | 344.6 | 10.8 | 3.2\% | 7.4\% | | | | |
 | -8.6\% | 328.5
 300.4 | 309.3 303.3 | -19.1 2.9 | - ${ }_{\text {- }}^{\text {1.0\% }}$ | 9.9\% | 366.6 345.9 | 346.4 336.1 | -20.1 | -. $-.58 \%$ |
 | 11.1\% | 288.9 | 299.7 | 10.8 | 3.8\% | 11.1\% | 325.3 | 328.5 | 3.2 | 1.0\% |
 | 12.3\% | 284.9 | 299.1 | 14.2 | 5.0\% | 12.3 | 297.0 | | | |
 | 13.6\% | 246.4 | 274.7 | 28.3 | 11.5\% | 13.6\% | 294.3 | 296.1 | 1.8 | 0.6\% |
 | 14.8\% | 239.7 | 258.6 | 19.0 | 7.9 | 14.8\% | | | | |
 | 16.0\% | 239.5 | 251.0 | 11.5 | 4.8\% | 16.0\% | 290.3 | 289.4 | -0.9 | |
 | 17.3\% | 232.2 | 245.3 | 13.1 | 5.6\% | 17.3\% | 279 | 284.9 | 5.8 | |
 | 18.5\% | 229.7 | ${ }^{239.8}$ | ${ }^{10.1}$ | 4.4\% | 18.5\% | 274.5 | 283.7 | 9.3 | 3.4\% |
 | - ${ }^{19.8 \%}$ | ${ }_{226.2}^{226.4}$ | ${ }_{230.3}^{231.4}$ | 4.1 | ${ }_{1.8 \%}^{2.2 \%}$ | - ${ }^{19.8 \%}$ | ${ }_{250.5}^{257.4}$ | ${ }_{261.9}^{264.2}$ | ${ }_{16.4}^{6.9}$ | ${ }_{4.5 \%}^{2.7 \%}$ |
 | 22.2\% | 221.4 | 229.7 | 8.3 | 3.7\% | 22.2\% | 235.6 | 254.3 | 18.7 | 7.9\% |
 | 23.5\% | 211.6 | 218.8 | 7.2 | 3.4\% | 23.5\% | 231.2 | 239.1 | 7.9 | 3.4\% |
 | 24.7\% | | 213.3 | 7.8 | 3.8\% | 24.7\% | 228.9 | | 2.4 | |
 | ${ }^{257.9 \%}$ | ${ }_{200.2}^{201.7}$ | ${ }_{208 .}^{209.5}$ | 7.8 8.0 | 3.0\% | ${ }^{25.7 .9 \%}$ | ${ }_{217.5}^{218.0}$ | ${ }_{217.9}^{228.2}$ | 10.2 0.4 | 0.2\% |
 | 28.4\% | 196.7 | 206.4 | 9.7 | 4.9\% | 28.4\% | 215.3 | 217.5 | 2.2 | 1.0\% |
 | 29.6\% | 196.5 | 205.4 | 8.9 | 4.5\% | 29.6\% | 213.3 | 214.4 | 1.1 | 0.5\% |
 | 30.9\% | 196.3 | 203.7 | 7.4 | 3.8\% | 30.9\% | 212.5 | 211.7 | -0.8 | -0.4 |
 | 32.19\% | 196.1 | 203.5 | 7.4 | 3.8\% | 32.1\% | 2097 | 211.4 | 1.7 | 0.8\% |
 | ${ }_{\text {3 }}$ | ${ }_{195.0}^{195.2}$ | ${ }_{203.3}^{203.3}$ | 8.1 8.3 | ${ }_{4}^{4.3 \%}$ | 34.6\% | ${ }_{20,5}^{20.4}$ | ${ }_{2}^{210.4}$ | 1.9 1.9 | 0.7\% |
 | 35.8\% | 194.7 | 202.8 | 8.2 | 4.2\% | 35.8\% | 206.1 | 207.3 | 1.1 | 0.6\% |
 | 37.0\% | 193.8 | 202.7 | 8.9 | 4.6\% | 37.0\% | 205.8 | 207.0 | 1.3 | 0.6\% |
 | 38.3\% | 193.7 | 201.8 | 8.1 | 4.2\% | 38.3\% | 204.8 | 207.0 | 2.1 | 1.0\% |
 | 39.5\% | 193.4 | 199.9 | 6.6 | 3.4\% | 39.5\% | 204.8 | 206.3 | 1.5 | 0.7\% |
 | 40.7\% | 192.4 | 199.2 | ${ }_{6} 6.8$ | 3.5\% | 40.7\% | 2033 | ${ }^{205.2}$ | 1.9 | 0.9\% |
 | 43.2\% | ${ }_{191.0}$ | ${ }_{1}^{1996.4}$ | 5.4 | 3.8\% | -42.2\% | ${ }_{2028}^{203.0}$ | 204.8 2038 | ${ }_{1.1}^{1.8}$ | 0.5\% |
 | 44.4\% | 190.7 | 193.7 | 3.1 | 1.6\% | 44.4\% | 202.6 | 202.0 | -0.6 | -0.3\% |
 | 45.7\% | 190.2 | 1937 | 3.5 | 1.8\% | 45.7\% | 201.4 | 201.4 | 0.0 | 0.0\% |
 | 46.9\% | 189.9 | 193.0 | ${ }^{3.2}$ | 1.7\% | 46.9\% | 200.2 | 200.5 | 0.3 | 0.1\% |
 | 48.1\% | 189.6 | 192.4 | 2.7 | 1.4\% | 48.1\% | 198.5 | 198.6 | 0.1 | 0.0\% |
 | 49.4\% | 189.4 | 191.6 | 2.2 | 1.2\% | 49.4\% | 198.3 | 198.5 | 0.2 | 0.1\% |
 | 50.9\% | ${ }_{189.1}^{189.3}$ | ${ }_{191.3}^{191.3}$ | ${ }_{2}^{2.2}$ | 1.2\% | 51.9\% | ${ }^{1987.5}$ | 198.4 198.1 | 0.6 | 0.3\% |
 | 53.1\% | 188.9 | 191.0 | 2.1 | 1.1\% | 53.1\% | 194.4 | 197.7 | 3.4 | 1.7\% |
 | 54.3\% | 188.0 | 190.8 | 2.8 | 1.5\% | 54.3\% | 193.5 | 196.2 | 2.7 | 1.4\% |
 | 55.6\% | 187.8 | 190.7 | 2.8 | 1.5\% | 55.6\% | 193.2 | 195.3 | 2.0 | 1.1\% |
 | 56.8\% | ${ }^{187.3}$ | 190.6 | ${ }^{3.3}$ | 1.8\% | 56.8\% | 191.9 | 194.1 | ${ }^{2.1}$ | 1.1\% |
 | 59.3\% | ${ }^{1878.5}$ | 189.7 189.4 | ${ }_{2}^{2.9}$ | 1.6\% | 59.3\% | ${ }_{1919}^{199.5}$ | 199.1 193.2 | 2.2
 1.8 | - |
 | 60.5\% | 186.4 | 186.8 | 0.4 | 0.2\% | 60.5\% | 191.1 | 191.5 | 0.4 | 0.2\% |
 | 61.7\% | 185.8 | 186.6 | 0.7 | 0.4\% | 61.7\% | 191.0 | 191.4 | 0.4 | 0.2\% |
 | 63.0\% | 185.7 | 186.1 | 0.4 | 0.2\% | 63.0\% | 190.4 | 191.0 | 0.6 | 0.3\% |
 | 64.2% 65.4% | 184.7 | 185.8 | 1.1 | 0.6\% | 64.2\% | 190.1 | 190.4 | ${ }^{0.3}$ | 0.2\% |
 | ${ }_{6}^{65.7 \%}$ | 184.3 184.0 | 185.5 185.5 | ${ }_{1.4}^{1.2}$ | 0.8\% | | 189.8 189.5 | 190.4 190.3 | ${ }_{0.9}^{0.6}$ | 0.5\% |
 | 67.9\% | 183.8 | 184.6 | 0.7 | 0.4\% | 67.9\% | 189.4 | 190.3 | 0.9 | 0.5\% |
 | 69.1\% | 183.7 | 184.3 | 0.6 | 0.3\% | 69.1\% | 189.1 | 190.1 | 1.0 | 0.5\% |
 | 70.4\% | 183.6 | 184.0 | 0.4 | 0.2\% | 70.4\% | 189.1 | 189.5 | 0.4 | 0.2\% |
 | 71.6\% | 183.1 | 183.9 | 0.8 | 0.4\% | 71.6\% | 188.5 | 188.6 | 0.1 | 0.1\% |
 | 74.1\% | ${ }_{182.5}^{182.9}$ | 183.6 183.6 | 1.1 | 0.6\% | 74.1\% | 188.0 187.3 | ${ }_{187.7}^{1879}$ | -0.4 | 0.2\% |
 | 75.3\% | 182.2 | 182.7 | 0.5 | 0.3\% | 75.3\% | 187.2 | 187.2 | 0.1 | 0.0\% |
 | 76.5\% | 188.1 | ${ }^{182.5}$ | 0.4 | 0.2\% | 7.6.5 | ${ }^{186.7}$ | 187.1 | 0.4 | 0.2\% |
 | 77.8\% | 181.9 | 182.3 | 0.4 | 0.2\% | 77.8\% | 185.2 | 186.7 | 1.5 | 0.8\% |
 | 89.0\% | 181.7 | ${ }^{182.1}$ | 0.4 | 0.3\% | - | 184.8 | 185.2 | ${ }^{0.4}$ | ${ }^{0.2 \%}$ |
 | 81.5\% | 181.5 | 182.0 | 0.6 | 0.3\% | 81.5\% | ${ }_{183.6}$ | ${ }_{184.4}^{184.8}$ | 0.8 | 0.4\% |
 | 82.7\% | 181.4 | 182.0 | 0.5 | 0.3\% | 82.7\% | 183.1 | 183.2 | 0.1 | 0.1\% |
 | 84.0\% | 181.4 | 181.4 | 0.0 | 0.0\% | 84.0\% | 182.9 | 183.1 | 0.2 | 0.1\% |
 | 85.2\% | 181.3 | 181.3 | 0.1 | 0.0\% | 85.2\% | 182.4 | 182.5 | 0.1 | 0.1\% |
 | -86.4\% | 181.0 | 181.1 | 0.1 | 0.1\% | ${ }^{86.4 \%}$ | 181.8 | 182.2 | 0.4 | 0.2\% |
 | 88.9\% | 181.0 | 180.6 | -0.4 | -0.2\% | 88.9\% | 181.4 | 181.8 | 0.5 | 0.3\% |
 | 90.1\% | ${ }^{180.5}$ | 180.5 | 0.0 | 0.0\% | 90.1\% | 181.2 | 181.4 | 0.2 | 0.1\% |
 | ${ }^{91.4 \%}$ | 180.4 | 180.5 | 0.1 | 0.1\% | ${ }^{91.4 \%}$ | 181.1 | 181.1 | 0.0 | 0.0\% |
 | ${ }_{93}^{92.8 \%}$ | 180.3 180.3 | 180.4 180.3 | 0.1 0.0 | -0.0\% | ${ }_{93.8 \%}^{92.6 \%}$ | 180.6 180.5 | $\begin{array}{r}180.6 \\ 180.4 \\ \hline\end{array}$ | 0.0 -0.1 | - 0.0% |
 | 95.1\% | 180.2 | 180.1 | -0.1 | -0.1\% | 95.1\% | 179.6 | 179.6 | 0.0 | 0.0\% |
 | 96.3\% | 179.9 | 179.6 | -0.3 | -0.2\% | 96.3\% | ${ }_{179.3}^{179.3}$ | 179.5 | 0.2 | 0.1\% |
 | 97.5\% | ${ }^{17996}$ | 179.6 | 0.0 | 0.0\% | 97.5\% | 179.2 | 179.4 | 0.2 | 0.1\% |
 | 100.0\% | 179.0 | 179.1 | 0.1 | 0.0\% | 100.0\% | 178.4 | 178.4 | 0.0 | 0.0\% |

 | | | |
 | :---: | :---: | :---: | :---: |
 | | | |

 $\xrightarrow{\text { Table } S Q-21-b}$

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {DCR }}^{\text {O2015 Wethout }}$ Proiet | DCR 2015 With Project | | $\begin{gathered} \text { Relative } \\ \text { Difference (\% } \end{gathered}$ |
 | | Monthly EC | Monthly EC | | |
 | (\%) | UMHOSS(CM) | maosim | | |
 | 0.0\% | 2630.5 | 2646.3 | 15.7 | 0.6\% |
 | ${ }^{1.2 \%}$ | ${ }_{2}^{2434.4}$ | ${ }^{21996.6}$ | ${ }^{-237.8}$ | -9.8 |
 | 2.5\% | ${ }_{21055}^{2155.2}$ | 2003 | | |
 | 4.9\% | ${ }_{1659.8}^{2105.7}$ | ${ }^{19573.4}$ | ${ }_{-86.3}$ | -5.2\% |
 | ${ }_{\text {c }} 6.2 \%$ | 1454.6 11423 | 1447.4 13488 | -7.2. -746 | -0.5\% |
 | 7.4\% | 1423.4 | 1348.8 | -74.6 | -5.2\% |
 | 8.9.9\% 9.9 | 857.7 810.6 | 857.5 799.5 | -0.1 -110 | - ${ }_{-1.4 \%}$ |
 | 11.1\% | 795.7 | 772.7 | -23.1 | -2.9\% |
 | 12.3\% | 766.8 | 727.3 | -39.6 | -5.2\% |
 | 13.6% 14.8% | 734.2 7070 | 679.4 6743 | -54.7 -327 | - -7.5% |
 | 16.0\% | 694.1 | 664.1 | -30.0 | -4.3\% |
 | 17.3\% | 675.4 | 661.0 | -14.3 | -2.1\% |
 | (19.5\% | 660.8 629 | 644.0 6172 | $\begin{array}{r}-16.8 \\ -126 \\ \hline\end{array}$ | - ${ }_{-2.25 \%}$ |
 | 21.0\% | 628.5 | 611.5 | -16.9 | -2.7\% |
 | 22.2\% | 616.5 | 608.6 | -7.9 | -1.3\% |
 | ${ }_{\text {24, }}^{23.5 \%}$ | 616.2
 6074 | 607.3 595.1 | -8.9 -123 | - -1.46 |
 | 25.9\% | 590.4 | 59.1 | 0.8 | 0.1\% |
 | 27.2\% | 582.5 | 591.0 | 8.5 | 1.5\% |
 | 28.9\% ${ }^{28.6 \%}$ | 568.8 568.5 | 590.7 568.7 | 21.9 0.2 | |
 | 30.9\% | 568.1 | 565.3 | | |
 | 32.1\% | 566.8 | 563.3 | ${ }_{-3.5}$ | 0.6\% |
 | - ${ }_{\text {3 }} 3.3 .6 \%$ | ${ }_{541.6}^{554.0}$ | 555.4 548.3 | 1.4 6.6 | - ${ }_{\text {0, }}$ |
 | 35.8\% | 533.0 | 533.1 | 0.0 | 0.0\% |
 | 37.0\% | 508.6 | 521.3 | 12.7 | 2.5\% |
 | 39.5\% | 494.8 | 498.2 | -3.8 -5.6 | - ${ }_{\text {- }}^{\text {-1.1\% }}$ |
 | 40.7\% | 430.8 | 428.2 | -2.6 | -0.6\% |
 | 42.0\% | ${ }^{420.4}$ | 417.8 | -2.5 | -0.6\% |
 | 44.4\% | ${ }_{4215.6}$ | 411.7 | -8.4. | - -1.10% |
 | 45.7\% | 415.4 | 405.4 | -10.0 | -2.4\% |
 | 46.9\% | 406.5 | 403.0 | -3.5 | -0.9\% |
 | 49.4\% | ${ }_{402.6}^{406.2}$ | ${ }^{401.7}$ | --4.7 | -1.9\% |
 | 50.6\% | 387.2 | 386.1 | -1.1 | -0.3\% |
 | 51.9\% | 383.8 | 374.0 | -9.8 | -2.6\% |
 | 53.1\% | 374.0 371.1 | 369.6 367.9 | -4.4 -3.3 | - |
 | 55.6\% | 370.9 | 335.7 | -35.2 | -9.5\% |
 | | 340.0 | 322.4 | -17.6 | -5.2\% |
 | 59.3\% | 322.2 300.0 | ${ }_{276.5}^{28.9}$ | - $\begin{aligned} & \text {-36.3 } \\ & -23.4\end{aligned}$ | -11.3\% |
 | 60.5\% | 286.7 | 275.1 | -11.6 | -4.0\% |
 | 61.7\% | 284.7 | 271.6 | -13.1 | -4.6\% |
 | 64.2\% | ${ }_{275.4}^{282.9}$ | ${ }_{264.1}^{269.5}$ | -13.5 -11.3 | -4.8\%\% |
 | 65.4\% | 274.9 | 251.9 | -23.0 | -8.4\% |
 | 66.7\% | 257.6 | ${ }_{251.4}^{2514}$ | -6.2 | -2.4\% |
 | 69.1\% | ${ }_{243.1}^{24.1}$ | ${ }_{243.1}^{24.3}$ | -0.0 | 0.0\% |
 | 70.4\% | 242.9 | 233.5 | -9.4 | -3.9\% |
 | 71.6\% | ${ }^{235.0}$ | ${ }^{226.4}$ | -8.6 | -3.6\% |
 | 74.1\% | ${ }_{220.3}^{223.9}$ | ${ }_{217.7}^{225.9}$ | -2.7 | -1.2\% |
 | 75.3\% | 210.2 | 205.0 | -5.2 | -2.5\% |
 | 76.5\% | 200.6 | 2019 | 1.3 | 0.6\% |
 | 79.0\% | 1997.5 197 | ${ }_{196.8}$ | -0.6 | ${ }^{-0.3 \%}$ |
 | 80.2\% | 196.2 | 193.4 | -2.8 | -1.4\% |
 | ${ }^{81.5 \%}$ | 193.4 | 193.0 | -0.4 | -0.2\% |
 | 82.7\% | 190.2 186.6 | 198.5
 188.5 | 0.0 1.9 | - |
 | 85.2\% | 186.1 | 186.9 | 0.7 | 0.4\% |
 | 88.7\% | 185.9 | | -0.1 | 0.0\% |
 | 88.9\% | 185.0 185.0 | 185.6 185.2 | 0.1 | 0.1\% |
 | 90.1\% | 183.8 | 185.1 | 1.2 | 0.7\% |
 | | 181.8 | 181.8
 1808 | 0.0 | 0.0\% |
 | 993.8\% | 180.6 | ${ }_{180.5}^{180.8}$ | -0.2 | ${ }^{-0.1 \%}$ |
 | 95.1\% | 180.1 | 179.9 | -0.2 | -0.1\% |
 | 99.3\% | 179.7 179.0 | 179.2 179.1 | -0.4 | ${ }^{-0.1 \%}$ |
 | 98.8\% | 178.1 | 177.9 | -02 | -0, 1% |
 | 100.0\% | 177.5 | 177. | ${ }_{0.0}$ | 0.0 |

 | Pluy Probahily of exceedance | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Percent | ${ }^{\text {DCR } 2015 \text { Without }}$ | DCR 2015 With Project | | | Percent | DCR 2015 Without | DCR 2015 With Project | | |
 | Exceadance | Proiect Monthly EC | Monthly EC | Difference (UMHOS | Difference ${ }^{\text {Refitu }}$ | Exceeadace | Monthly EC | Monthy EC | Difference (U\#HOSOSCM) | Difference ${ }^{\text {Refaty }}$ |
 | 0.0\% | ${ }^{2843.2}$ | ${ }^{2814.9}$ | -28.3 | -1.0\% | 0.0\% | ${ }^{282666}$ | ${ }^{2844.5}$ | 15.9 | 0.6\% |
 | 1.2\% | 2671.8 | 2221.7 | | -16.8\% | 1.2\% | 2646.3 | 2662 | | |
 | 2.5\% | 2584.1 | 1991.6 | -592.5 | -22.9\% | 2.5\% | 2587.8 | 243 | 2.5 | -5.9\% |
 | 3.7\% | 1922.1 | 1956.1 | 33.9 | 1.8\% | 3.7\% | 2503 | 239 | -107.3 | |
 | 4.9\% | 1870.1 | 1842.7 | -27.4 | -1.5\% | 4.9\% | 2475 | 239 | -80.9 | |
 | 6.2\% | 1662.6 | 1609.5 | -53.1 | -3.2\% | 6.2\% | 2499.4 | 2377 | | |
 | 7.4\% | 1471.8 | 50.4 | 78.6 | 5.3\% | 7.4\% | 2444 | 231 | -132.8 | |
 | 8.6\% | 1462.6 | ${ }^{149913}$ | 28.6 | 2.0\% | 8.6\% | 2431.2 | 2259.9 | -171.3 | -7.0\% |
 | 9.9\% | 1434.7 | 1373.4 | -61.3 | -4.3\% | 9.9\% | 2348.5 | ${ }^{2152.6}$ | -195.9 | -8.3\% |
 | $\xrightarrow{11.10 \%} 1$ | 1426.5 1409.6 | 1306.9 1228.0 | ${ }_{-181.7}^{-19.6}$ | -8.4.4. | ${ }^{11.19 \%} 1$ | ${ }_{22261.9}^{2290.5}$ | 2033.0 1956 | ${ }_{\text {- }}^{\text {- } 305.1}$ | --11.2%
 -1.55% |
 | 13.6\% | 1269.9 | 1063.5 | -206.3 | -16.2\% | 13.6\% | 2206.4 | 1833.9 | -372.5 | -16.9\% |
 | 14.8\% | 1045.3 | 1024.9 | -20.4 | -2.0\% | 14.8\% | 1966.6 | 1739.6 | | |
 | 16.0\% | 1012.5 | 942.9 | -69.6 | -6.9\% | 16.0\% | 1865.1 | 1726.3 | -138.8 | -7.4\% |
 | 17.3\% | 957.0 | ${ }_{832.0}^{938}$ | -25.0 | -2.6\% | 17.3\% | ${ }^{18883.5}$ | ${ }^{1682.0}$ | -181.5 | -9.7\% |
 | 19.8\% | 857.4 | ${ }_{848.8}$ | ${ }_{-8.7}$ | -1.0\% | 19.8\% | ${ }^{18825.1}$ | ${ }_{1673.1}^{166.3}$ | -152.0 | -8.3\% |
 | 21.0\% | 854.6 | 842.1 | -12.5 | -1.5\% | 21.0\% | 1796.6 | 1656.6 | -140.0 | |
 | 22.2\% | 826.2 | 835.6 | 9.4 | 1.1\% | 22.2\% | 1783.9 | 1637.7 | 146.2 | |
 | ${ }^{23.5 \%}$ | 824.8 816.4 | ${ }_{8}^{831.6}$ | ${ }^{6.8}$ | 0.8\% | 23.5\% | 1779.9 | ${ }^{15966.7}$ | -183.2 | -10.3\% |
 | - $24.7 .7 \%$ | 816.4
 800.4 | 825.0 774.3 | ${ }_{-26.1}^{8.6}$ | - ${ }_{\text {1.1\% }}^{\text {-3\% }}$ | 22.9\% | 1745.4 1741.8 | 1579.1 1528.8 | ${ }_{\text {-212.9 }}$ | - -1.52% |
 | 27.2\% | 783.4 | 761.7 | -21.7 | -2.8\% | ${ }^{27.2 \%}$ | 1705.3 | 1522.0 | ${ }_{-184}$ | -12.8\% |
 | 28.4\% | 778.5 | 744.6 | -33.8 | -4.3\% | ${ }^{28.4 \%}$ | 17001.3 | ${ }^{1488.3}$ | -213.0 | |
 | 29.6\% | ${ }^{761.5}$ | 740.6 | 20.9 | -2.7\% | 29.6\% | 1683.8 | 1434.2 | 2996 | |
 | 30.9\% | 759.2 7439 | ${ }_{7}^{74.0}$ | -19.2 | -2.5\% | 30.9\% | ${ }^{164997}$ | 1394.5 13474 | -255.2 | -15.5\% |
 | 32.1\% | 743.9 723.2 | 735.0 725.8 | -8.6 | -1.4\% | 332.1\% | 1643.9 1526.8 | 1347.4 1182.5 | ${ }_{-344.3}^{-296.5}$ | - |
 | 34.6\% | 722.7 | 725.4 | 2.8 | 0.4\% | 34.6\% | 1525.9 | 1117.6 | -408.3 | -26.8\% |
 | 35.8\% | 666.5 | 600.9 | -65.6 | -9.8\% | 35.8\% | 1222.5 | 1109.1 | -113.3 | -9.3\% |
 | 37.0\% | | | ${ }^{-3.0}$ | -0.5\% | 37.0\% | 1203.0 | 1093.6 | -109.4 | -9.1\% |
 | 38.5\% | ${ }_{5}^{5390.7}$ | ${ }_{530.1}^{54.7}$ | 2.0 -0.2 | 0.0\% 0 | 38.3\% | 1177.0 1083.3 | ${ }^{1084.7}$ | -92.3 -17.8 | - -1.8% |
 | 40.7\% | 525.5 | 525.3 | -0.3 | -0.1\% | 40.7\% | 1083.2 | 1055.9 | -27.2 | -2.5\% |
 | 42.0\% | 517.9 | 507.8 | -10.2 | -2.0\% | 42.0\% | 1080.8 | 1002.2 | -78.6 | -7.3\% |
 | 43.2\% | 516.5 | 503.5 | -13.0 | -2.5\% | 43.2\% | 1054.7 | 982.5 | -72.2 | -6.8\% |
 | ${ }^{44.4 \%}$ | 505.9 | 502.0 | -3.9 | -0.8\% | 44.4\% | 1038.7 | 965.8 | -72.8 | -7.0\% |
 | 45.9\% | ${ }_{4633.8}^{503.9}$ | ${ }_{460.6}^{471.1}$ | -32.8 | ${ }^{-6.7 \%}$ | 46.9\% | 1037.9 1029.9 | ${ }_{953.1}^{961.0}$ | -76.9 -75.9 | -7.4\% |
 | 48.1\% | 461.9 | 451.5 | -10.4 | -2.3\% | 48.1\% | 984.3 | 937.9 | -46.3 | -4.7\% |
 | 49.4\% | 451.6 | 451.3 | -0.2 | -0.1\% | 49.4\% | 966.3 | 936.2 | -30.1 | -3.1\% |
 | 50.6\% | 451.3 | 428.5 | -22.8 | -5.0\% | 50.6\% | 963.4 | 930.8 | -32.6 | -3.4\% |
 | 51.9\% | 414.4 | 416.9 | 2.5 | 0.6\% | 51.9\% | 954.0 | 919.4 | -34.6 | -3.6\% |
 | 53.1\% | 387.3 382.4 | 372.9 | -14.3 | -3.7\% | 53.1\% | 943.4 | 895.9 | -47.4 | -5.0\% |
 | 54.3\% | 382.4 375.5 | 372.2 370.0 | -5.5 | --1.5\% | 54.6\% | ${ }_{934.3}^{935.7}$ | ${ }_{884.4}^{884.6}$ | -51.2 | ${ }_{\text {-5.3\% }}-5$ |
 | 56.8\% | 371.6 | 354.0 | -17.6 | -4.7\% | 56.8\% | 928.8 | 884.1 | -44.7 | -4.8\% |
 | 58.0\% | 355.7 | 349.2 | -6.5 | -1.8\% | 58.0\% | 909.0 | 860.9 | -48.2 | -5.3\% |
 | 59.3\% | 353.2 | 348.1 | -5.1 | -1.5\% | 59.3\% | 903.5 | 859.9 | -43.6 | -4.8\% |
 | 60.5\% | 348.1 346.9 | 341.5 339.0 | -6.6 | ${ }_{-2,5 \%}^{-1.9 \%}$ | - ${ }_{\text {60.5\% }}^{617 \%}$ | ${ }_{897.7}^{901.8}$ | 850.4 846.9 | $\begin{array}{r}-51.4 \\ -507 \\ \hline 0\end{array}$ | -5.7\% |
 | 63.0\% | 344.8 | 338.3 | -6.5 | -1.9\% | 63.0\% | ${ }_{855.2}$ | 840.0 | -45.2 | -5.1\% |
 | 64.2\% | 344.7 | 335.4 | -9.3 | -2.7\% | 64.2\% | 882.1 | 836.1 | -46.0 | -5.2\% |
 | 65.4\% | 344.5 | 3337 | -11.9 | -3.2\% | 65.4\% | 869.4 | ${ }_{835.1}$ | -34.3 | -3.9\% |
 | 66.7\% | 343.7 3393 | 332.2 329.4 | -11.5 | -3.3\% | 66.7\% 679% | 864.5 863.9 | 834.7 832.9 | -29.8 -310 | -3.4\% |
 | 69.1\% | 331.9 | 328.5 | ${ }_{-3.4}$ | -1.0\% | 69.1\% | 851.2 | 830.6 | -20.6 | -2.4\% |
 | 70.4\% | 331.7 | 328.4 | -3.3 | -1.0\% | 70.4\% | 849.2 | 823.0 | -26.3 | -3.1\% |
 | 71.6\% | 324.2
 347 | ${ }_{323.1}^{323.1}$ | -1.1 | -0.3\% | 71.6\% | 838.3 | 820.5 | -17.8 | -2.1\% |
 | 72.8\% | 317.4 315.3 | 320.1 317.4 | ${ }_{2.1}^{2.7}$ | 0.7\% 0 | 72.8\% | 837.8 834.9 | 819.2 812.5 | -18.6 -22.4 | -2.2% -2.7% |
 | 75.3\% | 308.1 | 308.9 | 0.8 | 0.3\% | 75.3\% | ${ }_{827.4}$ | 798.9 | -28.5 | ${ }_{-3.4 \%}$ |
 | 76.5\% | 307.5 | 306.0 | -1.5 | -0.5\% | 76.5\% | 812.1 | 781.4 | -30.7 | -3.8\% |
 | 77.8\% | 305.8 | 304.6 | -1.2 | -0.4\% | 77.8\% | 810.8 | 777.8 | -34.1 | -4.2\% |
 | 89.2\% | 304.8 300.5 | ${ }_{301.4}^{302.6}$ | -2.3 0.9 | | -79.0\% | 801.5 800.6 | 774.5 74.4 | | |
 | 81.5\% | 284.4 | 283.1 | ${ }_{-1.3}$ | -0.5\% | 81.5\% | 794.5 | 738.1 | -56.3 | -7.1\% |
 | 82.7\% | 283.0 | 2797 | -3.2 | -1.1\% | 82.7\% | ${ }_{765.6}$ | 734.5 | -31.1 | -4.1\% |
 | 84.0\% | 275.0 272.7 | ${ }_{273.7}^{279.4}$ | 4.4 | 1.6\% 0.4% | 84.0% 85.2% | 763.3 757.0 | 718.1 7149 | -45.2 | -5.9\% |
 | 86.4\% | 272.4 | 272.6 | 0.2 | 0.1\% | ${ }_{86.4 \%}$ | 756.7 | 7414 | -42.2 | -5.6\% |
 | 877\% | 271.6 | 271.6 | 0.0 | 0.0\% | 87.7\% | 756.7 | 705.9 | -50.8 | -6.7\% |
 | ${ }^{88.1 \%}$ | ${ }^{2669.4}$ | 269.6 269.4 | -3.0 | ${ }^{0.1 \%}$ | 88.9\% | 754.0 749.7 | 702.2 697.5 | -51.8 | -7.0\% |
 | 91.4\% | 26.1 | 258.6 | -2.5 | -0.9\% | 91.4\% | 749.5 | 695.0 | -54.6 | -7.3\% |
 | 92.6\% | 254.9 2397 | 255.5 | 0.5 | 0.2\% | 92.6\% | 703.1 | 688.7 | -14.5 | -2.1\% |
 | 95.1\% | ${ }_{29} 23.7$ | ${ }_{221.1}^{239.7}$ | ${ }^{1.4}$ | -0.6\% | ${ }^{93.5 \%} 9$ | ${ }_{573.3}^{692.3}$ | 650.0 588.2 | -42.3 | -6.6\% |
 | 96.3\% | 205.0 | 201.1 | -4.0 | -1.9\% | 96.3\% | 508.6 | 554.0 | 45.4 | 8.9\% |
 | 97.5\% | 195.9 | 195.1 | -0.8 | -0.4\% | 97.5\% | 255.6 | 322.8 | 67.2 | 26.3\% |
 | 98.8\% 100.0\% | 189.0 187.4 | 189.1 187.5 | 0.2 0.0 | 0.0\% | 98.8\% 100.\% | 205.4 189.7 | 198.8 188.1 | ${ }_{-1.7}^{-6.6}$ | - |

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probobaility } \end{aligned}$ | September | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{0} C R 2015$ Without | DCR 2015 With Project | Absolute | Relative |
 | | Monthly EC | Monthy EC | (untosicm) | Difference (\%) |
 | ${ }^{(\% .0)}$ | ${ }^{37200}$ | 30818 | 38.2 | |
 | | | 368.8 | | |
 | ${ }^{\text {2.5\% }}$ | ${ }_{3}^{3591.8}$ | ${ }^{3332.5}$ | ${ }_{-597}$ | |
 | 3.7\% | 3251.0 | 33199 | | |
 | 4.9\% | ${ }^{32310.8}$ | ${ }_{316778}$ | -69.0 | |
 | 6.2\% | 3170.2 | 3143.6 | -26.5 | -.8\% |
 | 7.4\% | 3169.4 | 2832.3 | -337.1 | 10.6\% |
 | 8.6\% | 3143.2 | 2777.3 | -365 | 11.6 |
 | 9.9\% | 3131.0 | 2725.1 | -405.9 | 13.0 |
 | 11.1\% | 3087.5 | 2617.5 | -470 | 15.2\% |
 | 2\% | 2988.8 | 2477.7 | 511.2 | 17.1\% |
 | 13.6\% | 2864.7 | 2378.1 | -486.7 | 17.0\% |
 | 14.8\% | 2814.9 | 2337.9 | -438.9 | 15.6\% |
 | 16.0\% | 2781.4 | 2329.5 | -451.9 | 16.2\% |
 | 17.3\% | 2748.0 | 2279.1 | -469.0 | 17.1\% |
 | 18.5\% | 2743.4 | 2252.5 | -490.9 | -17.9\% |
 | 19.8\% | 2682.4 | 2172.1 | 510.2 | 19.0 |
 | 21.0\% | ${ }^{2669.3}$ | 2146.7 | -522.6 | 19.6\% |
 | 22.2\% | 2642.5 | 2135.8 | 506.7 | 19.2\% |
 | 23.5\% | ${ }^{26277.9}$ | 2130.6 | -497.3 | 18.9\% |
 | 24.7\% | 2568.4 | 2065.5 | 502.9 | 19.6 |
 | 25.9\% | 2565.0 | 2034.4 | -530.7 | 20.7\% |
 | 27.2\% | 2518.3 | 1873.1 | -645.1 | ${ }^{25.6}$ |
 | 28.4\% | 2494.1 | 1865.5 | -628.6 | 25.2\% |
 | 29.6\% | 2392.9 | 1844.4 | 548.5 | 22.9 |
 | 30.9\% | 2383.8 | 1829.6 | -554.2 | -23.2\% |
 | 32.1\% | ${ }^{2348.6}$ | 1793.2 | 555.5 | 23.7\% |
 | 33.3\% | 2335.9 | 1777.1 | -558.8 | -23.9\% |
 | 34.6\% | ${ }^{2326.8}$ | 1701.0 | ${ }^{625.8}$ | 26.9\% |
 | 35.7\% | ${ }^{22699.9}$ | ${ }^{1667.1}$ | -602.9 | 26.6\% |
 | 37.0\% | ${ }^{22255.7}$ | ${ }^{1567.6}$ | -658.1 | 29.6\% |
 | 38.3\% | ${ }^{1923.0}$ | ${ }^{15488.2}$ | -374.8 | 19.5\% |
 | 39.5\% | 1743.6 | 15337.7 | -205.9 | 111.8\% |
 | 40.7\% | ${ }^{16466.2}$ | 1498.0 | -148.2 | -9.0\% |
 | 42.0\% | ${ }^{16323}$ | 1470.0 | -162.3 | -9.9\% |
 | 43.2\% | ${ }^{16059.9}$ | 1438.1 | -167.9 | 10.5\% |
 | 44.4\% | 1583.7 | ${ }^{141553}$ | -168.5 | 10.6\% |
 | 45.7\% | ${ }^{15331.3}$ | ${ }^{1337.3}$ | -194.0 | 12.7\% |
 | 46.9\% | 1463.6 | ${ }^{1326.1}$ | -137.5 | ${ }^{-9.4 \%}$ |
 | 48.1\% | 1445.9 | ${ }^{130559}$ | -140.0 | -9.7\% |
 | 49.4\% | 1434.5 | ${ }^{1273.6}$ | -160.9 | 11.2\% |
 | 50.6\% | ${ }^{14323}$ | 1271.2 | -161.1 | -11.2\% |
 | 51.9\% | ${ }^{1413.3}$ | 1248.6 | -164.7 | 111.7\% |
 | 53.1\% | 1399.5 5 | 1105.2 | -294.3 | 21.0\% |
 | 54.3\% | 523.7 | ${ }^{487.8}$ | -35.9 | ${ }^{-6.9 \%}$ |
 | 55.6\% | 516.5 | 478.5 | -38.0 | -7.4\% |
 | 56.8\% | 504.3 | ${ }^{472.6}$ | -31.8 | -6.3\% |
 | 58.0\% | 502,3 | 466.8 | -35.4 | -7.1\% |
 | 59.3\% | 501.1 | 458.4 | -42.7 | 8.5\% |
 | 60.5\% | 494.9 | 454.0 | -40.9 | -8.3\% |
 | 61.7\% | 461.3 | 442.2 | -19.2 | -4.2\% |
 | 63.0\% | 459.9 | ${ }^{431.9}$ | -28.0 | -6.1\% |
 | 64.2\% | 455.1 | ${ }^{424.2}$ | -30.9 | -6.8\% |
 | 65.4\% | 435.4 | ${ }^{417,3}$ | -18.1 | -4.2\% |
 | ${ }^{66.7 \%}$ | ${ }^{426.2}$ | ${ }_{393.8}$ | -32.3 | 6\% |
 | 67.9\% | 396.5 | ${ }_{372.6}$ | -23.9 | -6.0\% |
 | 69.1\% | 340.4 | 327.4 | 13.0 | -3.8\% |
 | 70.4\% | 320.9 | 320.9 | 0.0 | 0.0\% |
 | 71.6\% | 315.6 | ${ }^{313.4}$ | ${ }^{2.2}$ | -0.7\% |
 | 72.8\% | 313.8 | ${ }^{310.5}$ | -3.2 | -1.0\% |
 | 74.1\% | 313.1 | ${ }^{307.6}$ | -5.5 | -1.8\% |
 | 75.3\% | 312.4 | ${ }_{3023}$ | -10.1 | -3.2\% |
 | 76.5\% | 305.8 | ${ }^{301.7}$ | -4.1 | -1.3\% |
 | 77.8\% | 303.8 | 301.3 | -2.5 | -0.8\% |
 | 79.0\% | 302.8 | 299.8 | -3.0 | .0\% |
 | 80.2\% | 302.5 | ${ }_{2988}^{2988}$ | -3.7 | -1.2\% |
 | 81.5\% | 302.5 | 29.6 | 4.8 | .6\% |
 | 82.7\% | ${ }^{301.3}$ | 295.6 | -5.7 | -1.9\% |
 | 84.0\% | 299.1 | 294.3 | 4.8 | .6\% |
 | 85.2\% | 29.0 | 291.4 | -3.6 | 1.2\% |
 | 86.4\% | 294.0 | ${ }_{2723}^{282.4}$ | ${ }^{11.6}$ | 3.9\% |
 | 87.7\% | 29.7 | ${ }_{278.3}$ | 13.4 | 57\% |
 | 88.9\% | 29.1 | ${ }_{273}^{27.5}$ | -16.6 | -5.7\% |
 | 90.19\% | ${ }_{2729}^{282.1}$ | ${ }_{2701}^{270.3}$ | 11.9 | 21\% |
 | 91.4\% | 276.0 | 270.1 | 5.9 | 2.1\% |
 | 92.6\% | ${ }^{269.9}$ | ${ }_{265}^{2658}$ | -4.1 | , |
 | 93.8\% | 269.1 | 265.1 | 5.0 | .9\% |
 | 95.1\% | 264.4 | 258.3 | -6.0 | 2.3\% |
 | -96.3\% | 247.2 | ${ }^{252.6}$ | 5.5 | , |
 | 97.5\% | 230.1 | ${ }^{244.1}$ | 14.0 | 1\% |
 | | 1982.2 182.2 | 193.9 182.9 | 1.7 0.7 | 0.4\% |

 Figure SQ-22-b
 Sacramento River at Collinsville, Monthly EC

 Table $S Q-22-b$
 oriverat Collinssuile，Monthly $E C$

 | | | trober | | |
 | :---: | :---: | :---: | :---: | :---: |
 | ${ }_{\substack{\text { Perceent } \\ \text { Excedance }}}^{\text {a }}$ | ${ }_{\text {dCR }}^{\text {D } 2015 \text { Without }}$ Proeat | DCR 2015 With Project | Absolu | |
 | Probability | Monthly EC | Monthy EC | （itierence | Difference（\％） |
 | （\％） | （UMHOSSCM） | （UMHOSSCM） | | |
 | 0．0\％ | 11400.6 | 11093.5 | －307．2 | －2．7\％ |
 | 1．2\％ | 11103.4 | 11028.2 | －75．1 | －0．7\％ |
 | 2．5\％ | 11081.1 | 10825.8 | －255．3 | －2．3\％ |
 | 3．7\％ | 11037.4 | 10624.2 | －413．2 | －3．7\％ |
 | 4．9\％ | 10858.1 | 10286.4 | －571．6 | 5．3\％ |
 | ${ }^{6.2 \%}$ | 10882.3 10788 | 10208.5
 9884 | －593．8 | －5．5\％ |
 | 7．4\％ | 10708.4 | 9883.4 | －824．9 | －7．7\％ |
 | 8．6\％ | 10629.7 10595 | ${ }_{9}^{9640.7}$ | －．989．0 | －．．3\％ |
 | 9．9\％ | 10590.5 | ${ }^{9636.6}$ | －953．9 | －9．0\％ |
 | 11．19\％ | 10531.8 | 95338.4 | －993．5 | －9．4\％ |
 | 12．3\％ | ${ }^{104330.9}$ | 9490．6 | －940．3 | －9．0\％ |
 | 13．6\％ | ${ }^{1000657}$ | ${ }^{97299.1}$ | －786．6 | －7．7\％ |
 | 14．8\％ | 9937.3 | 91977 | －739．7 | －7．4\％ |
 | 16．0\％ | ${ }^{9914.9}$ | 9178.5 | －736．4 | －7．4\％ |
 | 17．3\％ | ${ }^{99077.8}$ | ${ }_{898119}^{8981.9}$ | －．925．9 | －9．3\％ |
 | 18．5\％ | 99577 | 8914.3 | －943．5 | －9．6\％ |
 | 19．8\％ | 9770.6 | ${ }^{8900.3}$ | ${ }^{-870.3}$ | －8．9\％ |
 | 21．0\％ | ${ }_{97181}^{976.5}$ | 8763.8 87183 | －1005．7 | －10．3\％ |
 | 22．2\％ | 9718.1 | ${ }_{87937} 878$ | －999．8 | －10．3\％ |
 | ${ }^{23.5 \%}$ | ${ }_{9}^{9678.9}$ | ${ }_{8}^{8693.7}$ | －985．3 | －10．2\％ |
 | 24．7\％ | ${ }_{9}^{96666.2}$ | ${ }^{8682.0}$ | －984．2 | － $\begin{aligned} & \text {－10．2\％} \\ & -10.0 \%\end{aligned}$ |
 | 27．2\％ | ${ }^{963383.4}$ | ${ }_{8512.8}^{862.9}$ | － 110.60 .5 | －10．0\％ |
 | 28．4\％ | 9569.4 | ${ }^{8378.0}$ | －1191．4 | －12．5\％ |
 | 29．6\％ | 9557.3 | 8369.7 | －1187．7 | －12．4\％ |
 | 30．9\％ | ${ }^{9320.3}$ | ${ }^{8220.3}$ | －11100．0 | －11．8\％ |
 | 32．1\％ | 9106.8 | ${ }_{8}^{8190.6}$ | －916．2 | －10．1\％ |
 | 33．3\％ | ${ }_{8815.8}^{9050.6}$ | 8183.1 8099.7 | －867．5 | －9．9\％ |
 | 34.6% 358% | ${ }^{8815.8}$ | ${ }_{8}^{8099.7}$ | －716．1 | －8．1\％ |
 | 35．8\％ | ${ }_{87781}^{878.2}$ | ${ }^{8038.5}$ | －746．7 | －8．5\％ |
 | 37.0% 38.3% | ${ }_{8}^{87783} 1$ | 7895．4 | －882．8 | －10．1\％ |
 | 38．5\％ | ${ }_{8647.7}^{8673.7}$ | ${ }^{78800.6}$ | －793．2 -840.0 | ${ }^{-9.97 \%}$ |
 | 40．7\％ | 8615.9 | 7750．6 | －865．3 | －10．0\％ |
 | 42．0\％ | 8614.7 | 7728.8 | －886．0 | －10．3\％ |
 | 43．2\％ | 8555.3 | ${ }^{7622.3}$ | －933．0 | －10．9\％ |
 | 44．4\％ | 8159.3 | 7464.9 | －694．4 | －8．5\％ |
 | 45．7\％ | ${ }_{8}^{8158.3}$ | 7340.4 7085 | $\begin{array}{r}-817.9 \\ -1057 \\ \hline\end{array}$ | －${ }^{-10.0 \%}$ |
 | ${ }^{46.9 \%}$ | ${ }_{8}^{814119}$ | 7085.0 | －1057．0 | －13．0\％ |
 | 48．19\％ | ${ }^{8113.6}$ | ${ }^{6930.5}$ | －1183．1 | －14．6\％ |
 | 49．4\％ | ${ }_{79667.8}$ | 6922.0 6842.5 | －1167．1 | -14.4% -14.15 |
 | 51．9\％ | 7900.7 | ${ }_{63428}^{632.8}$ | －1557．8 | －19．7\％ |
 | 53．1\％ | 3970.2 | 3365.8 | ${ }_{-4.4}$ | －0．1\％ |
 | 54．3\％ | 3657.1 | 3519.4 | －137．7 | －3．8\％ |
 | 年55．6\％ | 3621.1 36027 | 3394.0 3590 | ${ }_{-}^{-224.1}$ | －6．3\％ |
 | 56．0\％ | ${ }_{3}^{3602.7}{ }_{352.9}$ | 3359.0 3307.3 | ${ }_{-285.6}^{-243.8}$ | ${ }_{-7.9 \%}^{-6.8 \%}$ |
 | 59．3\％ | 3591.5 | 3304.0 | ${ }_{-287.6}$ | ${ }^{-8.0 \%}$ |
 | 60．5\％ | 3436.4 | 3287.2 | －149．2 | －4．3\％ |
 | 61．7\％ | 3407.4 | 3242.1 | －165．3 | －4．9\％ |
 | －63．0\％ | 3401.4 32912 | ${ }_{\substack{3187.6 \\ 31412}}$ | -213.8 -1499 | －${ }_{-4.36 \%}^{-6.3 \%}$ |
 | 65．4\％ | ${ }^{3263.7}$ | 3121.1 | －142．6 | －4．4\％ |
 | 66．7\％ | 3074.1 | 2846.1 | －227．9 | －7．4\％ |
 | －67．9\％ | 1937.8 18413 | ${ }^{18377.0}$ | －-100.8 | －${ }_{-2.5 \%}$ |
 | 70．4\％ | 1771.0 | 1665.1 | －105．9 | －6．0\％ |
 | 71．6\％ | 1759.1 | 1658.9 | －100．2 | －5．7\％ |
 | 72．8\％ | 17778.1 1718.8 | 1628．4 | －98．7 | －5．7\％ |
 | 75．3\％ | 1679.7 | ${ }^{15969.6}$ | ${ }_{-83.1}$ | －5．0\％ |
 | 76．5\％ | 1679.3 | 1591.9 | －87．5 | －5．2\％ |
 | 77．8\％ | 1671.7 16601 | ${ }^{1581.2}$ | －90．5 | －5．5\％ |
 | 80．2\％ | 1652.6 | 1569.9 | ${ }_{-82.7}$ | －5．0\％ |
 | 81．5\％ | 1615.2 | 1566.9 | －48．2 | －3．0\％ |
 | － 82.7% | － $\begin{aligned} & 1614.3 \\ & 16063\end{aligned}$ | ${ }^{1557.0}$ | $\begin{array}{r}-57.3 \\ -753 \\ \hline\end{array}$ | －3．5\％ |
 | 84．0\％ | ${ }^{1606.3}$ | 1531.0 | －75．3 | －4．7\％ |
 | ${ }_{\text {8 }} 8.4 .4 \%$ | ${ }_{\text {1529．3 }}^{1509}$ | 1502.1 1494.8 | － 84.7
 -3.6 | ${ }_{-2.3 \%}^{-5.3 \%}$ |
 | 87．7\％ | 15250.9 | 1494.6 | －26．3 | －1．7\％ |
 | 88．9\％ | 1520.0 | 1465.6 | －54．4 | －3．6\％ |
 | ${ }_{9}^{90.14 \%}$ | 1518.2 14808 | 1431.8 14102 | －86．3 | － 5.7 －${ }^{-4 \% \%}$ |
 | 92．6\％ | ${ }^{14666.6}$ | 1343.0 | －123．6 | －8．4\％ |
 | ${ }^{93.58 \%}$ | 1311.9 | 1340.9 | 29.0 | 2．2\％ |
 | ${ }_{9}^{95.1 \%}$ | 13055.2 12495 | 1331．3 11925 | $\begin{array}{r}26.1 \\ -570 \\ \hline\end{array}$ | ${ }_{-4.6 \%}^{2.0 \%}$ |
 | 97．5\％ | 1082.3 | 1161.0 | 78.7 | 7．3\％ |
 | 98．8\％ 100．0\％ | ${ }_{7}^{1077.2}$ | 1091.2 913.0 | ${ }_{126.0}^{14.0}$ | 1.3% 16.1% |

 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
 \hline \multicolumn{10}{|c|}{Cm} \\
 \hline \multirow[t]{3}{*}{\[
 \begin{gathered}
 \text { Percent } \\
 \text { Exceedance } \\
 \text { Probability }
 \end{gathered}
 \]} \& DCR 2015 Without \& DCR 2015 With Project \& \& \& \multirow[t]{3}{*}{} \& \multicolumn{2}{|l|}{DCP2} \& Absolute \& \\
 \hline \& Proiect \& \& Aifiterence \& Relative \& \& \& \& Difference \& Rela \\
 \hline \& Monthly EC （UMHOS／CM \& Monthly EC （UмноS \& （UuHtosicm） \& erence 0 \& \& Monthy EC \& Monthy EC \& （untosicm） \& Hference（\％） \\
 \hline 0．0\％ \& 11735.4 \& 11708.7 \& －26．7 \& －0．2\％ \& 0．0\％ \& 11409.9 \& 10996.7 \& ．413．2 \& －3．6\％ \\
 \hline 1．2\％ \& 99．2 \& 11462.0 \& －137．2 \& －1．2\％ \& 1.29 \& 10950 \& 1030 \& \& \\
 \hline 2．5\％ \& 11509.9 \& 10347.8 \& －1162．1 \& －10．1\％ \& 2．5\％ \& 9740.7 \& \& \& \\
 \hline 3．7\％ \& 10856.7 \& 10230.5 \& 26．3 \& 5．8\％ \& 3．7\％ \& 939 \& 9179.4 \& \& \\
 \hline 4．9\％ \& 10847.5 \& 90．5 \& －857．1 \& 7．9\％ \& 4．9\％ \& 925 \& 9151.0 \& \& \\
 \hline 6．2\％ \& 10720.0 \& 02.0 \& －1118．0 \& 10．4\％ \& 6．2\％ \& 9219.8 \& 8893.2 \& 326.6 \& \\
 \hline 7．4\％ \& 10463.7 \& 94937 \& 970 \& －9．3\％ \& 7．4\％ \& 9126.3 \& 8758.8 \& ． 5 \& \\
 \hline 8．6\％ \& 10037.8 \& 9476.3 \& 561.5 \& 5．6\％ \& 8．6\％ \& 9108.3 \& 8700.5 \& －407．8 \& \\
 \hline 9．9\％ \& 9775.0 \& 9475 \& －299．7 \& 1\％ \& 9．9\％ \& 905 \& \& \& \\
 \hline 11．1\％ \& 9763.3 \& 16.2 \& 547.1 \& 5．6\％ \& 11．1\％ \& 9025.8 \& 8664.2 \& －361．6 \& 0\％ \\
 \hline 12．3\％ \& 9659.6 \& 9198.4 \& －461．2 \& －4．8\％ \& 12．3\％ \& 8900.2 \& 8577.3 \& 22．9 \& \\
 \hline 13．6\％ \& 9597.2 \& 9187.2 \& 410.0 \& 4．3\％ \& 13．6\％ \& 8879.2 \& 8338.6 \& －540．6 \& 1\％ \\
 \hline 14．8\％ \& 9546.8 \& 9111.6 \& －435．2 \& －4．6\％ \& 14．8\％ \& 8859.4 \& 833 \& 退 \& －5．9\％ \\
 \hline 16．0\％ \& \({ }^{9510.6}\) \& \({ }^{90800.0}\) \& －430．6 \& －4．5\％ \& 16．0\％ \& 8781.0 \& 7896.7 \& －884．3 \& 8．1\％ \\
 \hline 17．3\％ \& 9435.1 \& 9067.7 \& 367.4 \& 3．9\％ \& 17．3\％ \& 8725.0 \& 763 \& 1092.4 \& 12．5\％ \\
 \hline 18．5\％ \& \({ }^{9430.7}\) \& \({ }^{9050.6}\) \& －380．2 \& －4．0\％ \& 18．5\％ \& \({ }^{8646.5}\) \& \({ }^{74877.6}\) \& 1158.8 \& 13．4\％ \\
 \hline 19．8\％ \& 9312.5 \& 20.6 \& 21．9 \& 3．1\％ \& 19．8\％ \& 7198.2 \& 7363.6 \& 165.4 \& 2．3\％ \\
 \hline \({ }^{21.0 \%}\) \& 9136.4 \& \({ }^{9002.1}\) \& －134．3 \& －1．5\％ \& \({ }_{2}^{21.2 .2 \%}\) \& \({ }_{6}^{6727.2}\) \& \({ }_{6}^{6969.3}\) \& \({ }^{242.1}\) \& 3．6\％ \\
 \hline \({ }_{2}^{22.5 \%}\) \& \({ }_{9}^{911084.5}\) \& 8903.2
 8806.3 \& \({ }_{-277.8}^{-207.2}\) \& －\({ }_{\text {－}}^{\text {－3．1\％}}\) \& \({ }^{22.2 .5 \%}\) \& 析 66242.9 \& 6805.5
 6706.2 \& 113.4
 81.3 \& \({ }^{1.2 \%}\) \\
 \hline 24．7\％ \& 8977.9 \& 8525.5 \& \({ }^{-452.5}\) \& －5．0\％ \& 24．7\％ \& 5679.8 \& 6624.7 \& 944.9 \& 16．6\％ \\
 \hline 25．9\％ \& 8931.8 \& \({ }^{8366.4}\) \& －565．4 \& －6．3\％ \& 25．9\％ \& 5412.6 \& 6299.3 \& 886.8 \& 16．4\％ \\
 \hline 27．2\％ \& 8998.0 \& 8303.2 \& －614．8 \& －6．9\％ \& 27．2\％ \& 5389.2 \& 6202.2 \& 813.0 \& 15．1\％ \\
 \hline \({ }_{\text {29．6\％}}^{28.4 \%}\) \& \({ }_{8}^{88877.1}\) \& \({ }_{81644.0}^{8094}\) \& -781.1
 -782.4 \& －8．8\％ \& 28．6\％ \& \({ }_{4}^{4550.3}\) \& 年5007．8．1 \& \({ }_{465.8}^{873.6}\) \& － 18.5 \\
 \hline 30．9\％ \& 8813.5 \& 8086.3 \& －727．3 \& －8．3\％ \& 30．9\％ \& 4243.7 \& 4986.0 \& 742.3 \& 17．5\％ \\
 \hline 32．1\％ \& 8703.1 \& 8040.6 \& －662．5 \& －7．6\％ \& 32．1\％ \& 4213.0 \& 4504.9 \& 291.9 \& 6．9\％ \\
 \hline 33．3\％ \& 8599.9 \& 8039.9 \& －560．0 \& －6．5\％ \& 33．3\％ \& 4104.4 \& 4266.0 \& 161.6 \& 3．9\％ \\
 \hline 34．6\％ \& 8565.8 \& 7857.5 \& －708．3 \& 8．3\％ \& 34．6\％ \& 4098.0 \& 4191.4 \& 93.4 \& 2．3\％ \\
 \hline 35．8\％ \& \({ }^{8549.0}\) \& \({ }^{7652.3}\) \& \({ }^{-896.7}\) \& －10．5\％ \& 35．8\％ \& 4016.5 \& 4168.4 \& 151.9 \& 3．8\％ \\
 \hline 37．0\％ \& 8545.3 \& 6702.3 \& －1843．0 \& －21．6\％ \& 37．0\％ \& 4010.1 \& 4140.9 \& 130.7 \& 3．3\％ \\
 \hline 38．3\％ \& 7974.7 \& \({ }^{663332}\) \& －1341．6 \& －16．8\％ \& 38．3\％ \& \({ }^{3886.5}\) \& 4061.5 \& 175.0 \& 4．5\％ \\
 \hline 39．5\％ \& 7674.9 \& 6603.0 \& －1071．9 \& －14．0\％ \& 39．5\％ \& 3850.9 \& 4030.4 \& 179.5 \& 4．7\％ \\
 \hline 40．7\％ \& 7385.9 \& 6588.2 \& －837．8 \& －11．3\％ \& 40．7\％ \& 3749.0 \& 4000.7 \& 251.7 \& 6．7\％ \\
 \hline 42．0\％ \& 7306.6 \& 6466.2 \& －840．5 \& －11．5\％ \& 42．0\％ \& 3773.2 \& 3987.7 \& 251.5 \& 6．7\％ \\
 \hline 43．2\％ \& 7278.9 \& \({ }^{6327.7}\) \& －951．1 \& －13．1\％ \& 43．2\％ \& 3518.8 \& 3924.7 \& 405.9 \& 11．5\％ \\
 \hline 44．4\％ \& \({ }^{6730.8}\) \& \({ }_{5}^{5660.1}\) \& －1070．7 \& －15．9\％ \& 44．4\％ \& 3482.7 \& \({ }^{3691.8}\) \& 209.1 \& 6．0\％ \\
 \hline 45．7\％ \& \({ }^{6401.5}\) \& \({ }_{5}^{5285.6}\) \& －1115．9 \& －17．4\％ \& 45．7\％ \& \({ }^{3241.6}\) \& 3452.5 \& 211.0 \& 6．5\％ \\
 \hline 46．9\％ \& 4953.0 \& 5225.4 \& 272.4 \& 5．5\％ \& 46．9\％ \& 3150.8 \& 3450.6 \& 299.9 \& 9．5\％ \\
 \hline 48．1\％ \& 4170．2 \& \({ }^{4810.0}\) \& \({ }^{639.8}\) \& 15．3\％ \& 48．1\％ \& \({ }^{3144.3}\) \& \({ }_{3}^{3131.6}\) \& －12．8 \& \％ \\
 \hline 49．4\％ \& \({ }^{3429.8}\) \& 2941.0 \& －488．8 \& －14．3\％ \& 49．4\％ \& \({ }^{3129.5}\) \& 3038.7 \& －90．8 \& －2．9\％ \\
 \hline 50．6\％ \& 2997．3 \& \({ }^{2923.9}\) \& －73．4 \& －2．4\％ \& 50．6\％ \& 3077.2 \& \({ }^{3015.7}\) \& －61．5 \& －2．0\％ \\
 \hline 51．9\％ \& \({ }^{2900.3}\) \& \({ }^{2874.8}\) \& －65．4 \& －2．2\％ \& 51．9\％ \& \({ }^{3041.1}\) \& \({ }^{29995}\) \& －45．9 \& －1．5\％ \\
 \hline 53．19\％ \& 2903.0 \& 2853.5 \& －49．5 \& －1．7\％ \& 53．1\％ \& \({ }^{30355.2}\) \& \({ }^{2963.1}\) \& －72．1 \& －2．4\％ \\
 \hline 54．3\％ \& \({ }_{283}^{2878.3}\) \& \({ }^{2796.0}\) \& －82．3 \& －2．9\％ \& 54．3\％ \& 2945.4 \& 2944.2 \& －1．2 \& 0．0\％ \\
 \hline 55．6\％ \& \begin{tabular}{l}
 2830.3 \\
 2830 \\
 \hline
 \end{tabular} \& \({ }_{27671}^{2788.9}\) \& －41．4 \& －1．5\％ \& 55．6\％ \& \({ }^{2855.0}\) \& \({ }^{29397.1}\) \& \({ }^{82.1}\) \& 2\％ \\
 \hline 56．8\％ \& \({ }^{2830.2}\) \& \({ }^{2767.1}\) \& －63．1 \& －2．2\％ \& 56．8\％ \& 2888.4 \& \({ }^{2916.5}\) \& 68.1 \& 2．4\％ \\
 \hline 58．0\％ \& \({ }_{27121}^{2783.2}\) \& \({ }_{26719}^{2731.3}\) \& －52．0 \& －1．9\％ \& 58．0\％ \& \({ }^{2730.8}\) \& 2830．3 \& 99.6 \& 3．6\％ \\
 \hline 59．3\％ \& 2772.1 \& \({ }^{2671.9}\) \& －40．2 \& －1．5\％ \& 59．3\％ \& \({ }^{2724.2}\) \& 2744.7 \& 20.4 \& 0．7\％ \\
 \hline 60．5\％ \& \({ }_{2}^{2700.9}\) \& 2589.3
 23780 \& －117．6 \& －4．3\％ \& 60．5\％ \& 2702.0 \& \({ }_{2}^{27271.0}\) \& 24.0 \& 0．9\％ \\
 \hline 61．7\％ \& 2630.1 \& 2378.0 \& －252．1 \& －9．6\％ \& 61．7\％ \& 2676.5 \& 2711.4 \& 34.9 \& 1．3\％ \\
 \hline 63．0\％ \& \({ }^{24244.1}\) \& 1753.1
 15977 \& －671．0 \& \({ }^{-27.7 \%}\) \& 63．0\％ \& 2531.2
 15972 \& 2561.7
 2547 \& 30.5 \& 1．2\％ \\
 \hline 64．2\％ \& \({ }^{1626.9}\) \& 1597.7 \& －29．2 \& －1．8\％ \& 64．2\％ \& 1597.9 \& 2544.9 \& 947.0 \& 59．3\％ \\
 \hline \({ }^{65.4 \%}\) 6．7\％ \& 1528.1
 1519.3 \& \({ }_{1}^{14886.1}\) \& －42．0 \& \({ }_{-2.7 \%}^{-2.7 \%}\) \& \({ }^{65.4 \%}\) \& 1264．7
 1156.1 \& \({ }_{22117.5}^{229.5}\) \& 964.8
 961.3 \& －\({ }_{\text {76．3\％}}^{\text {83，}}\) \\
 \hline 67．9\％ \& 1464.0 \& 1450.7 \& －13．3 \& －0．9\％ \& 67．9\％ \& 1071.8 \& 1785.2 \& 713.4 \& 66．6\％ \\
 \hline 69．1\％ \& 1427.2 \& 1397.2 \& －30．0 \& －2．1\％ \& 69．1\％ \& 991.0 \& 1174.2 \& 183.2 \& 18．5\％ \\
 \hline 70．4\％ \& 1415.9 \& 1348．2 \& －67．8 \& －4．8\％ \& 70．4\％ \& \({ }_{9888} 9\) \& \({ }^{10653.3}\) \& 74.5 \& 7．5\％ \\
 \hline 71．6\％ \& \({ }^{13902.8}\) \& 12997 \& －91．2 \& －6．6\％ \& 71．6\％ \& \({ }^{840.3}\) \& 1058.2 \& 217.9 \& 25．9\％ \\
 \hline 72．8\％ \& \({ }^{13422.2}\) \& \({ }^{1272726}\) \& －69．6 \& －5．2\％ \& 72．8\％ \& \({ }_{838.5}\) \& 1030.4 \& 退 \& 22．9\％ \\
 \hline 75．3\％ \& 1317.1
 1258.1 \& 1234.5
 1226.3 \& －76．6 \& \({ }_{\text {－}} .5 .5 \%\) \& 75．3\％ \& 768.2
 757.4 \& \({ }_{\text {1023．8 }}^{1023}\) \& \({ }_{2301}^{255.6}\) \& 33．3\％ \\
 \hline 76．5\％ \& 1247.8 \& 1225.5 \& －22．3 \& －1．8\％ \& 76．5\％ \& 707.7 \& 826.0 \& 118.3 \& 16．7\％ \\
 \hline 77．8\％ \& 1218.3 \& 1199.4 \& －18．8 \& －1．5\％ \& 77．8\％ \& 656.1 \& 537.1 \& －119．0 \& 18．1\％ \\
 \hline 79．0\％ \& 1217.9 \& \({ }^{119993}\) \& －18．6 \& －1．5\％ \& 79．0\％ \& 480.1 \& 458.8 \& －21．3 \& －4．4\％ \\
 \hline 80．2\％ \& 1204.8 \& \({ }^{1168.6}\) \& －36．2 \& －3．0\％ \& 80．2\％ \& 453.8 \& 455.4 \& 1.6 \& 0．3\％ \\
 \hline 81．5\％ \& 1189.7 \& 1167.3 \& －22．4 \& －1．9\％ \& 81．5\％ \& 445.0 \& 450.8 \& 5.8 \& 1．3\％ \\
 \hline 820\％ \& 1185.0
 1173.8 \& \({ }^{11160.0}\) \& －\({ }_{-14.6}\) \& \({ }_{\text {－}}^{-2.2 \%}\) \& － \& 439.5
 397.7 \& \({ }_{382.5}^{445.2}\) \& \begin{tabular}{l}
 5.8 \\
 .152 \\
 \hline 1
 \end{tabular} \& － \(1.3 \%\) \\
 \hline 85．2\％ \& 1164.8 \& 1131.8 \& \& 2．8\％ \& 85．2\％ \& 384.8 \& 380.7 \& －4．1 \& －1．1\％ \\
 \hline 86．4\％ \& 1160.0 \& 1126.3 \& －33．7 \& －2．9\％ \& 86．4\％ \& 256.3 \& 295.6 \& 39.4 \& 15．4\％ \\
 \hline 877\％ \& 1122.4 \& \({ }^{1123.8}\) \& 17.3 \& 0．1\％ \& 87．7\％ \& 223.9 \& 228.2 \& 4.3 \& 1．9\％ \\
 \hline 88．9\％ \& 1121.7 \& 1104.6 \& －17．1 \& －1．5\％ \& 88．9\％ \& 219.7 \& 221.2 \& 1.6 \& 0．7\％ \\
 \hline 90．1\％ 9 \& \({ }_{1}^{10877.2}\) \& \begin{tabular}{l}
 1094.0 \\
 10888 \\
 \\
 \hline
 \end{tabular} \& 6.8 \& 0．6\％ \& \({ }^{90.14 \%}\) \& \({ }_{219.5}^{219}\) \& 218.2 \& －1．2 \& －0．6\％ \\
 \hline \({ }_{9} 9.26 \%\) \& 1037.1
 1019.0 \& \({ }^{10868.8}\) \& \({ }_{-70}\) \& － \& 92．6\％ \& 212.8
 203.6 \& \({ }_{203}^{208.2}\) \& －4．6 \& －2．2\％ \\
 \hline 93．8\％ \& 763.1 \& 980.0 \& 216.9 \& 28．4\％ \& 93．8\％ \& 202.3 \& 194.8 \& －7．5 \& －3．7\％ \\
 \hline 95．1\％ \& 682.4 \& 629.6 \& －52．8 \& －7．7\％ \& 95．1\％ \& 188.4 \& 189.0 \& 0.6 \& \\
 \hline 96．3\％ \& 682.2 \& 619.7 \& －62．5 \& －9．2\％ \& 96．3\％ \& 188.2 \& 188.3 \& 0.1 \& \\
 \hline \({ }^{98.58 \%}\) \& 358.5

 2583 \& ${ }^{363.6}$ \& 5.1 \& 1．4\％ \& 97．5\％ \& 187.1 \& 185.9 \& －1．1 \&

 \hline 100．0\％ \& ${ }_{223}^{20.8}$ \& ${ }_{225.1}$ \& 1.3 \& \& 100．0\％ \& 181.8 \& 181.9 \& 0.1 \&

 \hline
 \end{tabular}

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[b]{3}{*}{\[
 \begin{array}{|l}
 \text { Percent } \\
 \text { Exceedance } \\
 \text { Probability }
 \end{array}
 \]} \& \multicolumn{4}{|c|}{January} \\
 \hline \& \({ }_{\text {d }}^{\text {DCR } 2015 \text { W Without }}\) Proiect \& DCR 2015 With Project \& Absolute \& \\
 \hline \& Monthly EC \& Monthly EC \& （unteresce \& Difference（\％） \\
 \hline （\％） \& （UMHOSICM） \& UMHOSCM） \& \& \\
 \hline 0．0\％ \& 6502.8 \& 7059.5 \& 556.7 \& 8．6\％ \\
 \hline 1．2\％ \& 6401.4 \& \({ }^{6382.1}\) \& －19．3 \& －0．3\％ \\
 \hline 2．5\％ \& 5864.6 \& \({ }^{6172.5}\) \& \({ }^{307.9}\) \& 5．3\％ \\
 \hline 3．7\％ \& 5565.6 \& 5783.9 \& 218.4 \& 3．9\％ \\
 \hline 4．9\％ \& 5562.7 \& \({ }_{5613.3}\) \& 50.6 \& 0．9\％ \\
 \hline 6．2\％ \& 5081.8 \& 5371.9 \& 290.1 \& 5．7\％ \\
 \hline 7．4\％ \& 4920.7 \& \({ }_{5}^{5226.8}\) \& 306.1 \& \({ }^{6.2 \%}\) \\
 \hline 8．6\％ \& 4703.1 \& \({ }^{5032.9}\) \& 329.7 \& 7．0\％ \\
 \hline \({ }^{9.9 \%}\) \& 4676.3 \& 4707.1 \& \({ }^{30.8}\) \& 0．7\％ \\
 \hline 11．1\％ \& 4614.5 \& 4685.9 \& 71.4 \& 1．5\％ \\
 \hline \({ }^{12.3 \%}\) \& 4606.9 \& 4470.8 \& －136．1 \& －3．0\％ \\
 \hline 13．6\％ \& 44837 \& 4468.2 \& －15．4 \& －0．3\％ \\
 \hline 14．8\％ \& 4437.8 \& 4410.3 \& －27．5 \& 6\％ \\
 \hline 16．0\％ \& \({ }^{436559}\) \& 4380.2 \& 14.4 \& 0．3\％ \\
 \hline 17．3\％ \& \({ }^{3920.5}\) \& \({ }_{4}^{4302.5}\) \& \({ }^{381.9}\) \& \({ }^{\text {9．7．7\％}}\) \\
 \hline 18．5\％ \& 33919.9 \& \({ }^{4026.7}\) \& 106.8 \& 2．7\％ \\
 \hline 19．8\％ \& 3977.1 \& 3914.9 \& －2．3 \& －0．1\％ \\
 \hline 21．0\％ \& \({ }^{3772.2}\) \& \({ }^{3881.3}\) \& 179.1 \& 4．8\％ \\
 \hline \({ }^{22.2 \%}\) \& \({ }^{3618.8}\) \& 3794.0 \& 175.1 \& 4．8\％ \\
 \hline 23．5\％ \& \({ }^{355511}\) \& 3681.7
 35169 \& \begin{tabular}{l}
 126.5 \\
 \hline 457
 \end{tabular} \& 3．6\％ \\
 \hline \({ }^{24.79 \%}\) \& \({ }^{3471.2}\) \& \({ }^{3516.9}\) \& 45.7 \& \({ }_{\text {1．3\％}}\) \\
 \hline 25．9\％ \& \({ }^{3321.4}\) \& \({ }_{3}^{3503.4}\) \& 182．0 \& 5．5\％ \\
 \hline 27．2\％ \& \({ }^{2877.4}\) \& \({ }^{3442.3}\) \& 564.9 \& 19．6\％ \\
 \hline 28．4\％ \& \({ }^{2842.3}\) \& \({ }_{3}^{3322.7}\) \& \({ }^{489.5}\) \& \({ }^{16.9 \%}\) \\
 \hline 29．6\％ \& \({ }^{2625.2}\) \& \({ }_{3178.0}\) \& 55.8 \& \({ }^{21.19 \%}\) \\
 \hline 30．9\％ \& \({ }^{26220.0}\) \& 3110.7 \& 490.7 \& 18．7\％ \\
 \hline 32．1\％ \& \({ }^{24288.6}\) \& \({ }_{2786.6}^{2826.6}\) \& 398.0
 56.4 \& \({ }^{16.46 \%}\) \\
 \hline 33．3\％ \& \({ }_{2}^{2219.6}\) \& 2286.0 \& 566.4 \& \({ }^{25.5 \%}\) \\
 \hline 34．6\％ \& \({ }^{2187.2}\) \& \({ }^{25330.8}\) \& \({ }^{343.6}\) \& \({ }^{15.7 \%}\) \\
 \hline 35．8\％ \& 1914.7 \& \({ }^{2298.7}\) \& \({ }_{387.9}\) \& 20．19\％ \\
 \hline 37．0\％ \& 1532.4 \& 2205.0 \& \({ }^{672.7}\) \& 43．9\％ \\
 \hline 38．3\％ \& 1484.1 \& 1878.0 \& 393.9 \& 26．5\％ \\
 \hline 39．5\％ \& 1414.8 \& 1828.9 \& 414.1 \& \({ }^{29.3 \%}\) \\
 \hline 40．7\％ \& \({ }^{1390.6}\) \& \({ }^{1677.6}\) \& 28.0 \& 20．6\％ \\
 \hline 42．0\％ \& 1367.4 \& 1599.9 \& \({ }^{224.5}\) \& 18．4\％ \\
 \hline 43．2\％ \& \({ }^{1342.0}\) \& 1580.8

 15588 \& ${ }^{235.8}$ \& 17．8\％

 \hline 44．4．9 \& 1198.8 \& 1553.8 \& 355.1 \& 29．6\％

 \hline 45．79\％ \& 1187.7 \& 11406.4 \& 218.7 \& ${ }^{18.4 \%}$

 \hline 46．9\％ \& 1158.7 \& ${ }^{1369.0}$ \& ${ }^{217.3}$ \& 18．2\％

 \hline 48．19\％ \& ${ }^{115152.2}$ \& ＋1323．3 \& 171．2 \& 14．9\％

 \hline 4．94\％ \& 1102.4 \& ${ }_{122977}^{1297}$ \& 196.3 \& 17．7\％

 \hline 50．6\％ \& ${ }_{9321}$ \& 1227.7
 12202 \& ${ }_{3715}^{295}$ \& 31.7%
 447%

 \hline 51．9\％ \& 837.1 \& 1202.9 \& 371.8 \& 4．77\％

 \hline 53．1\％ \& 780.1 \& ${ }_{9}^{996.6}$ \& 216.6 \& 27．8\％

 \hline 54．3\％ \& ${ }_{724.4}$ \& ${ }_{979.3}^{993}$ \& ${ }^{266.0}$ \& ${ }^{36.7 \%}$

 \hline 55．6\％ \& 71.9 \& ${ }_{925}^{973.1}$ \& ${ }_{261.2}^{265}$ \& ${ }^{36.7 \%}$

 \hline 56．8\％ \& 659.9 \& ${ }^{925.2}$ \& \&

 \hline 58．0\％ \& 626．5 \& ${ }^{872.1}$ \& 245.6

 186.6 \& ${ }^{39.2 \%}$

 \hline 59．3\％ \& 49.2 \& ${ }_{562.5}$ \& ${ }^{186.4}$ \& 38．0\％

 \hline 60．5\％ \& 445.5 \& ${ }^{526.7}$ \& 81.3 \&

 \hline 61．30\％ \& 404.8
 3463 \& \& \& ${ }_{273 \%}^{20.0 \%}$

 \hline 684．2\％ \& ${ }_{3}^{343.1}$ \& ${ }_{386.8}^{440.7}$ \& ${ }_{53.7}$ \& 16．1\％

 \hline 65．4\％ \& 285.9 \& 366.9 \& 81.0 \& 28．3\％

 \hline 66．7\％ \& 268.4 \& 325.7 \& 57.3 \& 21．3\％

 \hline 67．9\％ \& ${ }_{2523}^{2523}$ \& 286.9 \& ${ }^{34.6}$ \& 13．7\％

 \hline 69．1\％ \& ${ }^{231.1}$ \& 282.4 \& 51.4 \& 22．2\％

 \hline 70．4\％ \& ${ }_{2211}^{222.3}$ \& ${ }_{2221}^{2374}$ \& 15.1
 0.9 \&

 \hline \& 218.9 \& ${ }_{221.9}^{22.9}$ \& 3.0 \& 1．4\％

 \hline 74．1\％ \& 210.6 \& 217.2 \& 6.5 \& 3．1\％

 \hline 75．3\％ \& 209.2 \& ${ }_{2154}^{2154}$ \& ${ }^{6.2}$ \& 3．0\％

 \hline 76．5\％ \& 20.5 \& 210.4 \& 3.9 \& 1．9\％

 \hline 77．8\％ \& ${ }_{2038}^{2057}$ \& 209.9
 2090 \& 4.1
 5.2 \& ${ }_{2}^{2.0 \%}$

 \hline 80．2\％ \& 202.4 \& 205.6 \& 3.2 \& 6\％

 \hline 81．5\％ \& 199.9 \& 204.6 \& 4.7 \& 2．4\％

 \hline 82．7\％ \& 198.7 \& 200.1 \& 1.4 \& 0．7\％

 \hline 84．0\％ \& 195.9 \& 196.0 \& 0.1 \& 0．1\％

 \hline － 85.20 \& 192．9 \& 193.7 \& 0.8 \& 0．4\％

 \hline ${ }^{86.4 \%}$ \& 192.8 \& 192.8 \& 0.0 \& 0．0\％

 \hline 87．7\％ \& 192.7 \& ${ }_{1929}^{1928}$ \& 0.1 \& 0．0\％

 \hline 88．9\％ \& 190.9 \& 191.1 \& 0.2 \& 0．1\％

 \hline 90．17\％ \& 190.1 \& ${ }^{190.9}$ \& 0.8 \& 0．4\％

 \hline 91．4\％ \& 189.9 \& 190.8 \& 0.9 \& 0．5\％

 \hline 92．6\％ \& 187．5 \& 187．9 \& 0.4 \& 0．2\％\％

 \hline 93．8\％ \& 185.8 \& 186.7 \& 0.9 \& 0．5\％

 \hline 95．1\％ \& 185.3 \& 186.0 \& 0.7 \& 0．4\％

 \hline 96．3\％ \& 185.1 \& ${ }^{185.4}$ \& ${ }^{0.3}$ \& 0．2\％

 \hline 97．5\％ \& 184.4 \& 185.0 \& 0.6 \& 0．3\％

 \hline $\begin{array}{r}958 \\ \text { 100．0\％} \\ \hline\end{array}$ \& 1882.
 180.7 \& 188.3
 180.7 \& 0.0
 0.0 \& － 0.0%

 \hline
 \end{tabular}

 Table $S Q-22-b$
 o Riverat Colinsuille, Monthly $E C$

 \begin{tabular}{|c|c|c|c|c|}
 \hline \& \& February \& \& \\
 \hline \({ }_{\text {Percent }}^{\text {Pexeenance }}\) \& \({ }_{\text {dCR }}^{\text {P } 2015 \text { Without }}\) Proeat \& DCR 2015 With Project \& Absolute \& \\
 \hline Probability \& Monthly EC \& Monthy EC \& (itierence \& Difference (\%) \\
 \hline (\%) \& (UMHOSSCM) \& (UMHOSCM) \& (UnHosicm) \& \\
 \hline 0.0\% \& 4254.9 \& 4958.1 \& 703.2 \& 16.5\% \\
 \hline 1.2\% \& 4077.2 \& 4424.6 \& 347.4 \& 8.5\% \\
 \hline 2.5\% \& \({ }^{3333.6}\) \& 4076.1 \& 742.5 \& 22.3\% \\
 \hline 3.7\% \& 3185.7 \& \({ }^{3581.3}\) \& 395.6 \& 12.4\% \\
 \hline 4.9\% \& 2976.8 \& 3225.6 \& 248.8 \& 8.4\% \\
 \hline \({ }^{6.2 \%}\) \& \({ }_{2}^{28266.3}\) \& 3211.4
 2568 \& \({ }^{365.1}\) \& +12.8\% \\
 \hline 7.4\% \& 2226.1 \& \({ }^{2560.8}\) \& 334.7 \& 15.0\% \\
 \hline 8.6\% \& 1858.3
 17781 \& \({ }_{20411}^{2173.7}\) \& 315.5 \& 17.0\% \\
 \hline 9.9\% \& 1778.1 \& \({ }^{2041.1}\) \& 263.0 \& 14.8\% \\
 \hline 11.19\% \& \(\begin{array}{r}15622.8 \\ \hline 1425\end{array}\) \& 1987.3 \& 424.4 \& \({ }^{27.2 \%}\) \\
 \hline 12.3\% \& 1426.5 \& 1819.1 \& \({ }^{392.6}\) \& \({ }^{27.5 \%}\) \\
 \hline 13.6\% \& 1408.8 \& 1810.9 \& 402.0 \& 28.5\% \\
 \hline 14.8\% \& 1225.0 \& 1520.6 \& \({ }_{\text {cher }}^{298.6}\) \& 24.19\% \\
 \hline 16.0\% \& 1098.7 \& \({ }^{1506.8}\) \& 408.1 \& 37.19\% \\
 \hline 17.3\% \& 1096.8 \& 1460.2 \& 363.4 \& 33.1\% \\
 \hline 18.5\% \& 974.3 \& \({ }^{14199.3}\) \& \({ }_{273.0}^{44.0}\) \& 45.7\% \\
 \hline 19.8\% \& 912.7 \& 11855 \& \({ }_{273.2}^{27764}\) \& 29.9\% \\
 \hline 21.0\% \& 891.1
 8445 \& 1167.5
 11485 \& 276.4 \& 31.0\% \\
 \hline 22.2\% \& 844.5 \& \({ }^{1148.5}\) \& 304.0 \& 36.0\% \\
 \hline \({ }^{23.5 \%}\) \& \({ }^{808.5}\) \& \({ }^{11255.2}\) \& 316.7 \& 39.2\% \\
 \hline 22.9\% \& 702.1 \& 955.4 \& 253.4
 1755 \& \({ }^{36.1 \%}\) 25.1\% \\
 \hline 27.2\% \& 602.6 \& 808.5 \& 205.9 \& 34.2\% \\
 \hline 28.4\% \& 599.8 \& 710.3 \& 110.4 \& 18.4\% \\
 \hline 29.6\% \& 5919 \& 661.7 \& 69.8 \& 11.8\% \\
 \hline 30.9\% \& 550.8 \& \({ }^{650.1}\) \& 99.3 \& 18.0\% \\
 \hline 32.1\% \& 469.8 \& 604.2
 577.2 \& 134.4 \& 28.6\% \\
 \hline \(33.3 \%\)
 \(34.6 \%\) \& 466.8
 459.4 \& \begin{tabular}{l}
 577.3 \\
 577 \\
 \hline
 \end{tabular} \& 110.4
 68.5 \& 23.7\% \\
 \hline \(34.6 \%\)
 \(358 \%\) \& 459.4 \& 527.9 \& \({ }^{68.5}\) \& 14.9\% \\
 \hline 35.8\% \& \(\begin{array}{r}377.6 \\ 365 \\ \hline\end{array}\) \& 489.9 \& \({ }^{113.3}\) \& 30.19\% \\
 \hline 37.0\% \& \({ }_{365.6}\) \& 464.2 \& 98.6 \& 27.0\% \\
 \hline 38.3\% \& 362.6
 3590 \& 437.5
 3939 \& 74.9 \& 20.7\% \\
 \hline \(39.5 \%\)
 \(40.7 \%\) \& \({ }_{359.0}\) \& 393.9 \& 34.9 \& 9.7\% \\
 \hline - \(40.7 \%\) \& 351.6
 3513 \& 388.1
 3741 \& 36.4 \& 10.4\% \\
 \hline 42.0\%
 \(43.2 \%\) \& \({ }^{351.3}\) \& 374.1 \& \({ }^{22.9}\) \& 6.5\% \\
 \hline 43.2\% \& \({ }_{3}^{328.0}\) \& 358.9
 3418 \& 30.9 \& 9.4\% \\
 \hline 44.4\% \& \({ }_{3}^{311.2}\) \& 341.8 \& 30.6 \& 9.8\% \\
 \hline 45.7\% \& 310.3 \& 340.4
 3273 \& 30.1
 319 \& 9.7\% \\
 \hline \({ }^{46.9 \%}\) \& 289.3
 2870 \& 327.3
 3247 \& 31.9
 377 \& \({ }^{10.8 \%}\) 13.1\% \\
 \hline 49.4\% \& \({ }_{284}^{284}\) \& 320.5 \& 33.7
 35.8 \& \({ }^{13.12 \%}\) \\
 \hline 50.6\% \& 260.8 \& 315.8 \& 55.0 \& 21.1\% \\
 \hline 51.9\% \& 246.7 \& 307.8 \& 61.0 \& 24.7\% \\
 \hline 53.19\% \& \({ }_{2265}^{244}\) \& \({ }_{254}^{275}\) \& - 37.6 \& \({ }^{12.5 \%}\) \\
 \hline 54.5\% \& \({ }_{217.5}^{226.5}\) \& \({ }_{248.7}^{254}\) \& \({ }_{31,7}^{27.7}\) \& \(12.2 \%\)
 \(14.3 \%\) \\
 \hline 56.8\% \& 215.5 \& \({ }_{220.7}^{248.7}\) \& 31.2
 5.2 \& - \({ }^{14.4 \%}\) \\
 \hline \& \({ }_{213.2}^{214.6}\) \& \({ }_{217.6}^{218.1}\) \& \({ }_{4.4}^{3.5}\) \& - \(1.6 \%\) \\
 \hline 50.5\% \& \({ }_{211.9}^{213.2}\) \& 217.6
 216.6 \& 4.4
 4.7 \& \({ }_{2.2 \%}^{2.19}\) \\
 \hline 61.7\% \& 210.8 \& 214.1 \& 3.3 \& 1.6\% \\
 \hline -63.0\% \& \({ }_{2051}^{209.5}\) \& \({ }_{211.0}^{2110}\) \& 1.5
 59 \& 0.7\% \\
 \hline 65.4\% \& 205.1 \& 206.6 \& 1.5 \& 0.7\% \\
 \hline 66.7\% \& 204.2 \& 205.4 \& 1.1 \& 0.6\% \\
 \hline 67.9\% \& \({ }_{201.2}^{201.4}\) \& \({ }_{202.7}^{203.6}\) \& \({ }_{1}^{2.2}\) \& +1.1\% \\
 \hline 70.4\% \& 198.1 \& 201.2 \& 3.1 \& 1.5\% \\
 \hline 71.6\% \& 197.8 \& 199.0 \& 1.2 \& 0.6\% \\
 \hline 72.8\% \& 196.7

 196.6 \& | 198.8 |
 | :--- |
 | 198.6 | \& 2.1

 19 \& +1.1\%

 \hline 75.3\% \& 195.3 \& 196.0 \& 0.7 \& 0.3\%

 \hline 76.5\% \& 193.5 \& 195.2 \& 1.7 \& 0.9\%

 \hline 77.8\% \& 193.1

 1927 \& | 1995.2 |
 | :--- |
 | 1934 |
 | 18 | \& 2.1

 0.7 \& - 1.1 \%

 \hline 80.2\% \& 191.8 \& 193.0 \& 1.2 \& 0.6\%

 \hline 81.5\% \& 191.4 \& 192.3 \& 0.9 \& 0.5\%

 \hline - 82.7% \& 191.0
 1909 \& 191.0
 1907 \& -0.0 \& -0.0\%

 \hline 85.2\% \& 190.3 \& 190.2 \& -0.1 \& 0.0\%

 \hline 86.4\% \& 189.8 \& 190.0 \& 0.2 \& 0.1\%

 \hline 87.7%
 889% \& 189.6
 1888 \& 189.8
 1897 \& ${ }_{0}^{0.2}$ \& ${ }_{0}^{0.5 \%}$

 \hline 90.1\% \& 188.8 \& 189.2 \& 0.4 \& 0.2\%

 \hline 914\% \& 188.0 \& 188.4 \& 0.4 \& 0.2\%

 \hline 93. 92.8% \& 187.9
 187.4 \& 188.0
 187.2 \& 0.1
 -0.3 \& -0.1\% ${ }_{\text {- }}^{\text {- } 1 \%}$

 \hline 95.1\% \& 186.9 \& 187.0 \& 0.1 \& 0.1\%

 \hline 96.3\% \& 186.4 \& 186.3 \& -0.1 \& 0.0\%

 \hline 97.5\% \& 186.3 \& 188.1
 1851 \& -0.1 \& -0.1\%

 \hline 100.0\% \& ${ }_{18,1}^{185}$ \& ${ }_{1}^{185.4}$ \& 0.0
 0.0 \& 0.0\%

 \hline
 \end{tabular}

 | | March | | | | April | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Percent | DCR 2015 Without | DCR 2015 With Project | $\begin{gathered} \text { Absolute } \\ \text { (ifference } \\ \text { (UMHOSICM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | Percent
 $\begin{array}{c}\text { Exceedance } \\ \text { Probability }\end{array}$ | $\begin{gathered} \text { DCR 2015 Without } \\ \text { Poroiet } \\ \text { Month ECC } \\ \text { (UnHHOSCCM) } \end{gathered}$ | DCR 2015 With Project$\left.\begin{array}{c}\text { Monthy } \\ \text { (UMHOSCCM) }\end{array}\right)$ | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOS/CM) } \end{gathered}$ | $\begin{aligned} & \text { Relative } \\ & \text { Difference (\%) } \end{aligned}$ |
 | Probability | Monthily EC | Monthly EC | | | | | | | |
 | (19) | 32346 | 35976 | | 8.4% | \% | | | | |
 | | | | | 8.4\% | | | | | ${ }^{4.3 \%}$ |
 | 1.2\% | 278.4 | ${ }_{2251.3}$ | 17.9 | 7.8\% | 1.2\% | ${ }^{3002729}$ | ${ }^{3} 3034.7$ | -88.2 | |
 | 2.5\% | 2269.8 | 256.7 | -3.1 | ${ }^{-0.1 \%}$ | 2.5\% | 3007 | | | |
 | 3.70\% | 2059.9 | 2180.1 | 1158 | ${ }^{6.2 \% \%}$ | 3.7\% | ${ }_{2}^{2507.6}$ | ${ }_{2}^{22595.2}$ | 17.7 | 0.7\% |
 | 4.9\% | | | 15.8 | 5.9\% | 4.9\% | 2278 | | 1755 | |
 | 6.2\% | 17454 | 1969.1 | ${ }_{7120}^{125}$ | ${ }^{6.8 \%}$ | 6.2\% | ${ }_{221811}$ | 2095.0 | -10.5 | -1.7\% |
 | 8.6\% | 1716.9 | 1729.7 | 12.9 | 0.7\% | 8.6\% | 2089.5 | 1935.1 | -154.5 | |
 | 9.9\% | 1586.0 | 1556.1 | -30.0 | 1.9\% | 9.9\% | 1863.9 | | | |
 | 11.1\% | 1553.0 | 1551.9 | -1.1 | 0.1\% | 11.1\% | 1717.5 | 1724.4 | 6.9 | |
 | 12.3\% | 1297.3 | 1509.4 | 212.0 | 16.3\% | 12.3\% | 1586.3 | 1578.1 | 8.2 | |
 | 13.6\% | 1108.5 | 1506.2 | 7 | 5.9\% | 13.6\% | 1538.9 | 1572.8 | | |
 | 14.8\% | 1075.3 | 1307.4 | 232.1 | 21.6\% | 14.8\% | 1494.2 | 1518.0 | 23.7 | |
 | 16.0\% | 1009.5 | 1085.8 | 6.3 | \%\% | 16.0\% | 1462.9 | 1497.8 | 4.8 | |
 | 17.3\% | 960.8 | 975.1 | 14.2 | 1.5\% | 17.3\% | 1423.6 | 1464.9 | 41.3 | |
 | 18.5\% | 945.1 | 950.4 | 5.3 | 0.6\% | 18.5\% | 1131.5 | 1246.5 | 115.0 | 10.2 |
 | 19.8\% | 928.0 | 913.0 | 15.0 | 1.6\% | 19.8\% | 1104.2 | 1179.9 | 5.7 | |
 | 21.0\% | 602.7 | 741.4 | 138.7 | 23.0\% | 21.0\% | 965.7 | 1173.8 | 208.1 | 21.5\% |
 | 22.2\% | 500.6 | 659.1 | 158.5 | 31.7\% | 22.2\% | 861.3 | 999 | 137.7 | |
 | 23.5\%\% | 460.4 | 649.0 | 188.6 | 41.0\% | 23.5\% | ${ }^{735.3}$ | 862.0 | ${ }^{126.7}$ | 17.2\% |
 | | | | | ${ }^{36.77 \%}$ | ${ }^{24.7 \%}$ | | | | |
 | 227.2\% | ${ }_{4299.2}^{446.4}$ | 603.9 586.1 | 157.5 156.9 | ${ }_{\substack{3 \\ 35.56 \%}}$ | 257.9\% | 684.8 661.1 | 687.8 668.5 | 2.4 7.9 | - |
 | 28.4\% | 414.3 | 507.9 | 93.6 | 22.6\% | 28.4\% | 650.5 | 661.9 | 11.4 | |
 | 29.6\% | 405.2 | 502.0 | 96.8 | 23.9\% | 29.6\% | 571.3 | 593.8 | 22.5 | |
 | 30.9\% | 377.7 | 489.3 | 111.6 | 29.5\% | 30.9\% | 570.0 | 592.5 | 22.6 | 4.0\% |
 | | | 484.4 | | | | | | | |
 | 34.6\% | 333.9 | 430.8 | 96.9 | 29.0\% | 34.6\% | 504.2 | ${ }_{491.6}^{507.8}$ | - ${ }^{-43.4}$ | |
 | 35.8\% | 311.9 | 429.7 | 117.8 | 37.8\% | 35.8\% | 437.2 | 4888.7 | - | -11.8\% |
 | 37.0\% | 311.5 | 424.9 | 113.4 | 36.4\% | 37.0\% | 433.8 | 465.6 | 31.8 | 7.3\% |
 | 38.3\% | 298.4 | 397.0 | 98.6 | 33.0\% | 38.3\% | 428.4 | 437.2 | 8.8 | 2.16 |
 | 39.5\% | 296.4 | 386.9 | 90.5 | 30.5\% | 39.5\% | 414.9 | 431.1 | 16.1 | 3.9\% |
 | ${ }_{4}^{40.7 \% \%}$ | 292.3 | 360.0 | 67.7 | 23.2\% | 40.7\% | 394.1 | 419.3 | 25.1 | 6.4\% |
 | 43.2\% | 288.9 28.0 | ${ }_{333.2}^{357.7}$ | ${ }_{47.1}^{68.7}$ | ${ }_{\text {cke }}^{\text {23.8\% }} 1$ | ${ }^{43.2 \%}$ | 365.8 347.0 | 414.0 392.9 | ${ }_{45.9}^{48.2}$ | 13.2\% |
 | 44.4\% | 284.3 | 313.2 | 28.9 | 10.2\% | 44.4\% | 330.4 | 365.9 | 35.5 | 10.8\% |
 | 45.7\% | 284.3 | 304.1 | 19.9 | 7.0\% | 45.7\% | 315.2 | 355.1 | 40.0 | 12.7\% |
 | 46.9\% | 246.6 | 298.3 | 51.6 | 20.9\% | 46.9\% | 301.3 | 316.6 | 15.3 | 5.1\% |
 | 48.1\% | 245.5 | 283.7 | 38.2 | 15.6\% | 48.1\% | 293.8 | 315.6 | 21.8 | 7.4\% |
 | 49.4\% | 238.0 | 264.9 | 26.9 | 11.3\% | 49.4\% | 287.8 | 312.1 | 24.3 | 8.4\% |
 | 55.6\% | 237.5 | 264.8 | 27.4 | 11.5\% | 50.6\% | 286.5 | 311.3 | 24.8 | 8.79 |
 | 51.9\% | ${ }_{2}^{231.6}$ | ${ }^{263.3}$ | 31.7 | 13.7\% | 51.9\% | 283.4 | 288.5 | 5.1 | 1.8\% |
 | 53.1\% | 231.4 | 258.0 | 26.6 | 11.5\% | 53.1\% | 280.7 | 286.6 | 5.9 | 2.19 |
 | 54.3\% | 228.1 | 253.4 | ${ }^{25.3}$ | 11.1\% | 54.3\% | 271.0 | 283.3 | 12.4 | 4.6\% |
 | 55.6\% | 222.3 | 244.5 | ${ }^{22.2}$ | 10.0\% | 55.6\% | 263.9 | 279.8 | 15.9 | 6.0\% |
 | 56.8\% | 217.7 | ${ }^{236.0}$ | 18.3 | 8.4\% | 56.8\% | 242.0 | 274.4 | 32.4 | 13.4\% |
 | 58.0\% | 216.0 | ${ }^{227.3}$ | ${ }^{11.3}$ | 5.2\% | 58.0\% | ${ }^{237.3}$ | 264.3 | 27.1 | 11.4\% |
 | 59.3\% | 215.5 | 219.0 | 3.5 | 1.6\% | 59.3\% | 236.8 | 245.1 | 8.3 | 3.5\% |
 | ${ }^{66.5 \% \%}$ | 207.8 | 218.4 | 10.5 | 5.1\% | 60.5\% | 236.5 | 242.6 | 6.1 | 2.6% |
 | ${ }^{61.7 \%}$ | 206.5 | 216.4 | 9.9 | 4.8\% | 61.7\% | 228.6 | 241.0 | 12.4 | 5.46 |
 | ${ }^{63.0 \%}$ | 200.1 | 207.1 | 7.0 | 3.5\% | 63.0\% | 227.7 | 228.5 | 0.7 | 0.3\% |
 | 64.2\% | 200.0 | 204.3 | 4.3 | 2.2\% | 64.2\% | 225.9 | 228.3 | 2.3 | 1.0\% |
 | ${ }^{65.4 \%}$ | 199.2 | 201.6 | 2.4 | 1.2\% | 65.4\% | 219.6 | 220.2 | 0.7 | 0.36 |
 | ${ }^{66.7 \%}$ | 199.2 | 200.6 | 1.5 | 0.7\% | 66.7\% | 219.4 | 219.5 | 0.1 | 0.1\% |
 | ${ }^{67.9 \%}$ | 196.7 | 200.3 | ${ }^{3.5}$ | 1.8\% | 67.9\% | 215.8 | 218.5 | 2.7 | 1.28 |
 | 69.1\% | 194.0 | 196.8 | 2.8 | 1.4\% | 69.1\% | 215.1 | 214.8 | -0.2 | -0.1\% |
 | 70.4\% | 192.9 | 192.8 | -0.1 | -0.1\% | 70.4\% | ${ }^{212,5}$ | 212.2 | -0.3 | 0.1\% |
 | 71.6\% | 192.5 | 192.1 | -0.4 | -0.2\% | 71.6\% | 212.0 | 210.5 | -1.5 | -0.7\% |
 | 72.8.1\% | ${ }_{191.1}^{191.5}$ | 192.0 191.6 | 0.5 0.5 | | 72.8\% | 209.5 2049 | 210.2 2093 | ${ }_{4}^{0.7}$ | - ${ }_{\text {0, }}$ |
 | 75.3\% | 190.6 | 191.4 | 0.8 | 0.4\% | 75.3\% | 204.0 | 208.9 | 4.9 | 2.4\% |
 | 76.5\% | 189.7 | 191.1 | 1.4 | 0.7\% | 76.5\% | 201.9 | 204.0 | 2.0 | 1.0\% |
 | 77.8\% | 189.5 | 191.0 | 1.5 | 0.8\% | 77.8\% | 201.6 | 202.0 | 0.3 | 0.2\% |
 | 79.0\% | 189.4 | 190.4 | 1.0 | 0.5\% | 79.0\% | 200.3 | 200.4 | 0.1 | 0.0\% |
 | 881.5\% | ${ }_{189.0}^{189.2}$ | 189.3 189.1 | 0.1 0.1 | - ${ }_{\text {0.0\% }}^{0.1 \%}$ | 80, ${ }_{\text {80, }}$ | 197.1 197.0 | 198.4 197.1 | 1.3 0.2 | 0.1. 0.0 |
 | 82.7\% | 188.5 | 188.9 | | 0.2\% | 82.7\% | 195.8 | 196.1 | 0.3 | 0.2\% |
 | 84.0\% | 188.3 | 188.7 | 0.4 | 0.2\% | 84.0\% | 193.7 | 193.9 | 0.2 | 0.1\% |
 | 85.2\% | 1877 | 188.6 | 0.9 | 0.5\% | 85.2\% | 193.0 | 193.8 | 0.8 | 0.4\% |
 | 887.7\% | 187.5 187.2 | 188.6 | 1.1 | ${ }_{\text {en }}^{0.5 \%}$ | ${ }^{86.4 \%}$ | 192.4 | 193.3 | ${ }^{0.8}$ | 0.4\% |
 | 888.9\% | 187.2 187.0 | 188.2 187.7 | 1.0 0.7 | ${ }^{0.5 \%}$ | 87.7\% | 192.1 190.6 | ${ }_{1919}^{192.7}$ | 0.6 1.2 | 0.6\% |
 | 90.1\% | 187.0 | 187.1 | 0.1 | 0.0\% | 90.1\% | 190.2 | 190.6 | 0.4 | 0.2\% |
 | 91.4\% | 186.3 | 187.0 | 0.7 | 0.4\% | 91.4\% | 188.8 | 189.0 | 0.2 | 0.1\% |
 | 92.6\% | 186.1 1857 | ${ }^{186.2}$ | 0.1 | 0.0\% | 92.6\% | 187.9 | 188.0 | 0.1 | 0.0\% |
 | 995.1\% | ${ }_{1855.7}^{185.7}$ | 185.7 185.7 | 0.0 0.0 | ${ }^{0.0 \% \%}$ | ${ }_{95.1 \%}^{93.8 \%}$ | 187.1
 1865 | 187.7 | 0.6 | - 0.4% |
 | 96.3\% | 184.7 | 184.2 | -0.5 | -0.3\% | 96.3\% | 186.4 | 186.4 | 0.0 | 0.0\% |
 | 97.5\% | 183.0 | 183.0 | 0.0 | 0.0\% | 97.5\% | 185.9 | 186.4 | 0.6 | 0.3\% |
 | | 182.1 181.4 | 182.1 181.8 | ${ }_{0}^{0.0}$ | ${ }^{0.0 \% \%}$ | | 1851.7 18.7 | 185.8 181.8 | | 0.0.1\% |

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabbility } \end{gathered}$ | Way | | | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\substack{\text { DCR } 2015 \text { Without } \\ \text { Proiect }}}$ | DCR 2015 With Project | $\begin{gathered} \text { Absolute } \\ \text { cifference } \\ \text { (uMHOSCCM) } \end{gathered}$ | |
 | | Monthly EC | Monthy EC | | |
 | | (UMHHSSCM) | (UMHOSSCM) | | |
 | 0.0\% | 5817.2 | 5884.8 | 67.6 | 1.2\% |
 | 1.2\% | 5616.8 | 5622.6 | 5.9 | 0.1\% |
 | 2.5\% | 4901.1 | ${ }^{5346.6}$ | 445.5 | 9.1\% |
 | 3.7\% | 4856.2 | 4976 | 120.6 | 2.5\% |
 | 4.9\% | ${ }^{3455.2}$ | ${ }^{3332.0}$ | -123.2 | -3.6\% |
 | 6.2\% | 3332.7 | ${ }^{3282.3}$ | -50.5 | -1.5\% |
 | 7.4\% | ${ }^{3243.3}$ | 3282.0 | 38.6 | 1.2\% |
 | 8.9\% | ${ }^{31888.7}$ | 3216.0 | ${ }^{27.3}$ | 0.9\% |
 | 9.9\% | 2969.7 | 2921.2 | -48.5 | -1.6\% |
 | 11.19\% | 2778.4 | 27177 | ${ }^{932}$ | 0.3\% |
 | 12.3\% | 2673.9 | 2650.7 | -23.2 | -0.9\% |
 | 13.6\% | ${ }^{2633.2}$ | ${ }^{2637.6}$ | 4.5 | 0.2\% |
 | 14.8\% | 2624.2 | 2636.5 | ${ }^{12.3}$ | 0.5\% |
 | 16.0\% | 2434.5 | ${ }^{2403.8}$ | -30.7 | -1.3\% |
 | 17.3\% | 22177.8 | ${ }^{2191.6}$ | -26.2 | -1.2\% |
 | 18.5\% | 2177.1 | 2166.6 | -10.4 | -0.5\% |
 | 19.8\% | 2166.6 1998.5 | 2002.7 19714 | -163.9 | -7.6\% |
 | ${ }_{21}^{21.0 \%}$ | ${ }^{19938.5}$ | 1971.4 1929.3 | ${ }_{-10.3}$ | -1.4\% |
 | 23.5\% | 1864.2 | ${ }_{1923.5}$ | -10.2 | ${ }^{-2.2 \%}$ |
 | 24.7\% | 172.1 | 1852.1 | 132.0 | 7.7\% |
 | 25.9\% | 1643.7 | 1653.1 | 9.4 | 0.6\% |
 | 27.2\% | 1592.8 | 1561.3 | -31.5 | -2.0\% |
 | 28.4\% | 1555.2 | 1500.7 | -54.5 | -3.5\% |
 | 29.6\% | 1530.2 | 1465.8 | -64.4 | -4.2\% |
 | 30.9\% | ${ }^{1444.8}$ | ${ }^{14412.6}$ | -3.3 | -0.2\% |
 | 32.1\% | ${ }^{1441.3}$ | 1427.2 | -14.2 | -1.0\% |
 | 33.3\% | 1423.6 | 1414.2 | -9.5 | -0.7\% |
 | 34.6\% | 1109.9 | 1026.9 | -83.0 | -7.5\% |
 | - $\begin{array}{r}35.8 \% \\ 370 \%\end{array}$ | 1025.9
 9164 | (1020.9 | -5.0 360 | --0.5\% |
 | | 916.4 8827 | ${ }_{9}^{952.4}$ | 36.0 | 3.9\% |
 | 30.5\% | ${ }_{887.0}^{882.7}$ | ${ }_{8} 914.9$ | 32.3 14.2 | 1.7\% |
 | 40.7\% | 850.9 | ${ }_{861.1}$ | 10.2 | 1.2\% |
 | 42.0\% | 846.9 | 853.4 | 6.6 | 0.8\% |
 | 43.2\% | 686.4 | 796.7 | 110.3 | 16.1\% |
 | 44.4\% | ${ }_{6}^{683.0}$ | ${ }_{6}^{682.7}$ | -0.3 | 0.0\% |
 | ${ }^{45.7 \%}$ | 588.8 5822 | 588.6 5750 | -0.2 | - |
 | 48.1\% | ${ }_{535.3}^{582.2}$ | ${ }_{5378.4}^{57.0}$ | -7.2 3.1 | -1.6\% |
 | 49.4\% | 518.2 | 519.2 | 1.0 | 0.2\% |
 | 50.6\% | 504.4 | 465.2 | -39.3 | -7.8\% |
 | 51.9\% | 422.6 | 424.0 | 1.4 | 0.3\% |
 | - 53.10% | ${ }_{385}^{398}$ | ${ }_{4007}^{413.1}$ | 15.0
 154
 1 | 3.8\% |
 | | 385.3 374.8 | 400.7 375.9 | 15.4 1.1 | 4.0\%\% |
 | 55.6\% | ${ }_{374.3}$ | ${ }_{370.5}^{37.9}$ | ${ }_{-3.1}^{1.1}$ | -1.0\% |
 | 58.0\% | 367.9 3697 | 370.1 | 2.2 | 0.6\% |
 | 59.3\% | 359.7
 3568 | 362.0
 3606 | ${ }^{2.3}$ | 0.6\% |
 | ${ }^{60.5 \%}$ | 356.8 3360 | 360.6 3363 | ${ }_{0.3}^{3.7}$ | - |
 | 63.0\% | 332.5 | 332.9 | 0.4 | 0.1\% |
 | 64.2\% | 299.6 | 3037 | 4.1 | 1.4\% |
 | - $\begin{aligned} & 65.4 \% \\ & 66.7 \%\end{aligned}$ | ${ }_{293}^{294}$ | 300.3 2988 | ${ }_{3.1}^{6.2}$ | 2.1\% |
 | 67.9\% | 292.2 | 292.6 | 0.4 | 0.2\% |
 | 69.1\% | 266.1 | 267.4 | 1.3 | 0.5\% |
 | 70.4\% | 252.5 | 259.9 | 7.4 | 2.9\% |
 | 71.6\% | 2498 | 251.7 | 1.9 | 0.8\% |
 | - 72.8% | 234.0 2340 | ${ }_{234.4}^{2514}$ | 17.4 0.6 | 7.4\% |
 | 75.3\% | 212.9 | ${ }_{221.3}$ | 8.4 | 3.9\% |
 | 76.5\% | 211.7 | 217.7 | 6.1 | 2.9\% |
 | 77.8\% | 211.5 | 211.5 | 0.0 | 0.0\% |
 | 79.0\% | 210.5 | 208.8 | -1.7 | -0.8\% |
 | - ${ }_{\text {80.2\% }}$ | ${ }_{203 .}^{205.4}$ | ${ }_{2058}^{206.7}$ | 1.4 2.6 | - ${ }_{\text {O }}^{0.7 \%}$ |
 | 82.7\% | 197.4 | 197.6 | 0.2 | 0.1\% |
 | 84.0\% | 196.7 | 196.8 | 0.1 | 0.0\% |
 | 85.2\% | ${ }^{192.6}$ | 194.0 | ${ }^{1.3}$ | 0.7\% |
 | 86.4\% | 192.2 | 192.7 | 0.5 | 0.3\% |
 | 笛 8 87.7\% | 199.9 189.5 | 191.9 189.7 | ${ }_{0}^{0.0}$ | 0.1\% |
 | 90.1\% | 188.1 | 188.2 | 0.0 | 0.0\% |
 | 91.4\% | 183.1 | 183.2 | 0.1 | 0.1\% |
 | 92.6\% | 181.7 | 181.5 | -0.1 | -0.1\% |
 | 93.8\% | 181.5 | 181.4 | -0.1 | -0.1\% |
 | 95.17\% | 181.4 | 181.4 | -0.1 | 0.0\% |
 | 96.3\% | 180.4 180.4 | 180.4 180.4 180 | 0.0 | -0.0\% |
 | 98.8\% | 180.3 | 180.3 | 0.0 | 0.0\% |
 | 100.0\% | 177.5 | 177.7 | 0.2 | 0.1\% |

 Table $S Q-22-b$
 o Riverat Colinsuvile，Monthly $E C$

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {OCR } 2015 \text { Without }}$ | DCR 2015 With Project | Absolute | |
 | | Monthly EC | Monthly EC | （itierersce | ference（\％） |
 | （\％） | UnHosicm） | ， | | |
 | 0．0\％ | 8118.8 | 8155.5 | 36.8 | 0．5\％ |
 | 1．2\％ | ${ }^{7696.7}$ | ${ }^{7293.1}$ | －403．5 | －5．2 |
 | 2．5\％ | ${ }_{7179.3}$ | 7045．3 | －134．0 | |
 | 3．9\％ | 76035.7 6051 | 58831．4 589 | ${ }_{-2039}$ | －3．4．0\％ |
 | 6．2\％ | 5764.4 | 5745.8 | | |
 | 7．4\％ | 5352.0 | 5204.4 | －147．7 | －2．8\％ |
 | － | ${ }_{4}^{4170.8}$ | ${ }_{3}^{4137.4}$ | －－3．4．4 | －－．8\％\％ |
 | 9．9\％ | ${ }^{4009.3}$ | 3395.0 | －94．2 | －2．4\％ |
 | ${ }^{11.19 \%} 1$ | ${ }_{\text {3865．1 }}^{3911.4}$ | 3889．9 | － $\begin{array}{r}\text {－21．5 } \\ -138.8\end{array}$ | －0．6\％ |
 | 13．6\％ | ${ }^{3757.0}$ | ${ }^{3623.2}$ | －133．9 | －3．6\％ |
 | 14．8\％ | ${ }_{3}^{3623.7}$ | ${ }^{3535.6}$ | －88．1 | －2．4\％ |
 | 年 $\begin{aligned} & 16.0 \% \\ & 173 \%\end{aligned}$ | － $\begin{aligned} & 3532.9 \\ & 3520.2\end{aligned}$ | 3404.4 3288.7 | ${ }_{-}^{-123.5}$ | －3．6\％${ }_{-6.6 \%}$ |
 | 18．5\％ | ${ }_{3425.0}$ | ${ }_{3286.9}$ | －138．1 | －4．0\％ |
 | 19．8\％ | 3326.8 | ${ }_{3255.7}$ | －71．1 | －2．1\％ |
 | ${ }_{22}^{21.0 \%}$ | ${ }_{3}^{3313.4}$ | ${ }_{\text {3 }}^{3254.1}$ | － 59.4 | －1．8\％ |
 | 23．5\％ | | | －19．9 | －0．6\％ |
 | 24．7\％ | ${ }^{3225.4}$ | 3226.5 | 1.1 | 0．0\％ |
 | 227．2\％ | ${ }_{3178.3}^{3212.7}$ | 3215.5 31991 | 2.8 208 | 0．1\％ |
 | 28．4\％ | 3162.4 | ${ }^{3173.5}$ | 11.2 | 0．4\％ |
 | 29．6\％ | ${ }^{3152.1}$ | ${ }^{3127.8}$ | －24．2 | －0．8\％ |
 | 332．1\％ | ${ }_{\substack{3151.1 \\ 3064.5}}$ | ${ }_{3069.1}^{3089.5}$ | －61．6
 8 | －2．1\％ |
 | 33．3\％ | 3054.2 | 3063.0 | 8.8 | 0．3\％ |
 | 34．6\％ | ${ }^{2981.7}$ | 2981.7 | 0.0 | 0．0\％ |
 | 37．0\％ | ${ }_{2}^{29764.9}$ | ${ }_{22989.0}^{2977.3}$ | 673．6 133.1 | 2．3\％${ }^{2.8 \%}$ |
 | 38．3\％ | 2707.8 | 2766 | 58.5 | 2．2\％ |
 | 39．5\％ | 2612.9 | 2646.4 | 33.5 | 1．3\％ |
 | 40．7\％ 42. | ${ }_{2315.8}^{2412.1}$ | ${ }_{2284.7}^{2297.6}$ | －314．4 -312 | －${ }_{-1.3 \%}$ |
 | 43．2\％ | 2304.1 | 2241.2 | －62．9 | －2．7\％ |
 | 44．4\％ | 2149.9 | 2190.7 | 40.9 | 1．9\％ |
 | 455．7\％ | ${ }_{2144.5}^{2149.5}$ | ${ }_{2131.1}^{2162.5}$ | 13.0 -13.1 | －0．6\％ |
 | 48．1\％ | 2108.8 | 2110.5 | 1.7 | 0．1\％ |
 | 49．4\％ | 2103.8 | ${ }^{2105.8}$ | 2.0 | 0．1\％ |
 | 50．6\％ | ${ }_{207208}^{2073.4}$ | ${ }_{2012.9}^{2074.1}$ | ${ }_{-59.9}^{0.6}$ | －0．0\％ |
 | 53．1\％ | 1965.3 | 1950.9 | －14．4 | －0．7\％ |
 | 54．3\％ | 1907.1 | 1802.7 | －104．4 | －5．5\％ |
 | 55．6\％ | ${ }^{1864.2}{ }_{1857.2}$ | 16968.7 1547.8 | －365．5 | －8．9\％\％ |
 | 58．0\％ | 1539.7 | 1466.1 | －73．6 | |
 | 59．3\％ | 1456.3 | 1377.4 | －78．9 | －5．4\％ |
 | 60．5\％ | 13888.8 1370.4 | 13688.0 1319.6 | -20.8 -50.8 | ${ }^{-1.5 \%}$ |
 | 63．0\％ | 1369.1 | 1231.8 | －137．3 | 10．0\％ |
 | 64．2\％ | 1367.5 | 1190.8 | －176．7 | －12．9\％ |
 | 65．4\％ | 1291.2 1230.2 | 11186.8 1184.5 | －
 -45.7
 － | －8．7\％ |
 | 67．9\％ | 1127.9 | 1130.5 | 2.6 | 0．2\％ |
 | 69．1\％ | 11066.9 | 1028.4 | | |
 | 70．4\％ | 8877．2 | 984.4 911.9 | －65．2 | ${ }_{\text {cke }}^{\text {2．8\％}}$ |
 | 72．8\％ | 839.2 | 765.6 | ${ }^{-73.6}$ | －8．8\％ |
 | 74．19\％ | | | | |
 | 75．3\％ | 612.7 611.5 | 639.2 554.0 | 26.5 -57.5 | －9．4\％ |
 | 77．8\％ | 545．2 | 513.5 | －31．7 | －5．8\％ |
 | 79．0\％ | | | | |
 | ${ }_{8}^{80.5 \%}$ | ${ }_{4218.7}$ | ${ }_{421.8}^{4856}$ | －7．9 | －${ }_{\text {－}}^{\text {－} 1.8 \%}$ |
 | 82．7\％ | ${ }^{302.3}$ | 333.9 | 27.7 | 9．0\％ |
 | 84.0% 852% | ${ }_{2827}^{292.1}$ | ${ }_{292}^{292.6}$ | 0.4 | |
 | 85．4\％ | ${ }_{280.6}^{28.7}$ | ${ }_{282.4}^{292 .}$ | 1.8 | 0．6\％ |
 | 87．7\％ | 264.3 | 282.0 | 17.7 | 6．7\％ |
 | － | | ${ }_{1982}^{225.1}$ | ${ }^{-10.5}$ | －4．4\％ |
 | 91．4\％ | 193.4 | 191.6 | －1．8 | －0．9\％ |
 | 92．6\％ | 191.6 | 191.6 | 0.0 | 0．0\％ |
 | 93．8\％ | 186.8 | 186.6 | －0．3 | －0．1\％ |
 | 95．19\％ | 186.4 | 185.9 | －0．5 | －0．2\％ |
 | ${ }^{96.5 \%}$ | 185.1 185.1 | 185.5 183.9 | －1．4 | 0．2\％ |
 | 98．8\％ | 181.1 | 181.0 | 0.1 | －0．1\％ |
 | 100．0\％ | 181.0 | 180.7 | －0．2 | －0．1\％ |

 | | | July | | Probabl | eeance | | August | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Percent | DCR 2015 Without | DCR 2015 With Project | | | Percent | DCR 2015 Without | DCR 2015 With Project | Absoute | |
 | | Proiect | | disterence | | | Proiect | | Difference | Relat |
 | Probability | Monthly EC | Monthly EC | （UMHOSSCMCM） | erence（\％） | Probability | Monthly EC | Monthly EC | （UMHOSSCM） | Difference（\％） |
 | 0．0\％ | ${ }^{8754.8}$ | ${ }^{8764.5}$ | 9.7 | 0．1\％ | 0．0\％ | 9203.5 | 9293.9 | 90.4 | 1．0\％ |
 | 1．2\％ | 8517.3 | 7969.3 | 548.0 | 6．4\％ | 1．2\％ | 8411.8 | 858 | | |
 | 2．5\％ | 838 | 7516.9 | 866.1 | －10．3\％ | 2．5\％ | 8359.4 | 830 | | |
 | 3．7\％ | 7538.6 | 7454.2 | 84.3 | 1．1\％ | 3．7\％ | 8302 | | | |
 | 4．9\％ | 7488 | 7422.2 | －62．1 | －0．8\％ | 4．9\％ | 8102.6 | 823 | | |
 | 6．2\％ | 7262.4 | 7140.4 | －121．9 | 1．7\％ | 6．2\％ | 8032.8 | 8133.5 | 100.8 | |
 | 7．4\％ | 6354.9 | 6462.1 | 107.2 | 1．7\％ | 7．4\％ | 7973 | | 24.6 | |
 | 8．6\％ | 6047.0 | 6153.1 | 106.0 | 1．8\％ | 8．6\％ | 7951.0 | 7990.4 | 39.4 | |
 | 9．9\％ | 603 | 5811.5 | 0．4 | 3．7\％ | 9．9\％ | 7889.9 | | | |
 | 11．1\％ | 5782.4 | 5760.5 | 21.9 | 0．4\％ | 11．1\％ | 7888.5 | 7487.0 | 361.6 | |
 | 12．3\％ | 5780.9 | 5332.2 | 8.7 | 8\％ | 12．3\％ | | 746 | | |
 | 13．6\％ | 5769.3 | 5125.4 | －643．9 | －11．2\％ | 13．6\％ | 7442.1 | 6998.2 | －443．9 | \％ |
 | 14．8\％ | 5184.4 | 5026.4 | 8.0 | －3．0\％ | 14．8\％ | 7044.0 | 6961.8 | 82.2 | |
 | 16．0\％ | 4968.6 | 5000.7 | 32.2 | 0．6\％ | 16．0\％ | 6984.2 | 6784.4 | －199．7 | \％ |
 | 17．3\％ | 4920.3 | 4817.5 | 2.8 | 2．1\％ | 17．3\％ | 6906.6 | 6711.6 | | |
 | 18．5\％ | 4881.6 | 4775.7 | －106．0 | －2．2\％ | 18．5\％ | 6857.1 | 6704.5 | －152．6 | 2．2\％ |
 | 19．8\％ | 4770.3 | 4764.3 | －6．0 | －0．1\％ | 19．8\％ | 6844.2 | 6687.1 | 157.2 | \％ |
 | 21．0\％ | ${ }^{4724.6}$ | ${ }^{46877}$ | －36．9 | －0．8\％ | 21．0\％ | 6815.0 | 6658.5 | －156．5 | 2．3\％ |
 | ${ }^{22.2 \%}$ | 4659.9 | 4677.6 | 17.7 | 0．4\％ | 22．2\％ | 6760.2 | ${ }^{6626.6}$ | ${ }_{1}^{133.6}$ | 2．0\％ |
 | ${ }_{\text {24．7\％}}$ | ${ }_{4577.2}^{4644.7}$ | ${ }_{46344.8}^{4643.5}$ | -1.2 57.6 | 1．3\％ | ${ }^{23.4 .7 \%}$ | 6751.4 6778.8 | ${ }_{64556.6}^{654.1}$ | ${ }_{-292.2}$ | ${ }_{\text {－}}^{\text {－}}$－3\％ 3 \％ |
 | 25．9\％ | 4540.8 | 4514.6 | －26．2 | －0．6\％ | 25．9\％ | 6704.8 | 6444.0 | －260．8 | －3．9\％ |
 | 27．2\％ | 4499.8 | 4402.7 | －96．1 | －2．1\％ | 27．2\％ | 6695.1 | 6426.5 | －268．6 | －4．0\％ |
 | 28．4\％ | 4450.7 | 4393.8 | －56．9 | －1．3\％ | 28．4\％ | 6683.1 | 6399.8 | －333．3 | －5．0\％ |
 | 29．6\％ | 4425.8 | 4383.9 | －41．8 | －0．9\％ | 29．6\％ | 6677.7 | 6305.5 | －371．2 | －5．6\％ |
 | 30．9\％ | ${ }_{4367.4}^{43714}$ | ${ }_{4}^{43823.0}$ | －84．5 | －1．9\％ | 30．3\％ | ${ }_{64644.8}^{6640.7}$ | 60970．4 | －${ }_{\text {－}}^{\text {－369．8 }}$ | ${ }_{-5.7 \%}^{-7.10}$ |
 | 33．3\％ | 4291.2 | 4280.7 | －10．6 | －0．2\％ | 33．3\％ | 6417.2 | 5590.1 | －827．1 | －12．9\％ |
 | 34．6\％ | 4258.0 | 4263.2 | 5.2 | 0．1\％ | 34．6\％ | 6355.9 | 5557.8 | －798．1 | －12．6\％ |
 | 35．8\％ | ${ }^{3637.7}$ | 3528.7 | －109．0 | －3．0\％ | 35．8\％ | ${ }_{5}^{5226.3}$ | ${ }^{5506.4}$ | －319．9 | －5．5\％ |
 | 37．0\％ | 3488.7 | 3469.8 | －18．9 | －0．5\％ | 37．0\％ | 5511.4 | 5475.2 | －36．2 | －0．7\％ |
 | 38．3\％ | 3310.9 | ${ }^{3325.7}$ | 14.8 | 0．4\％ | 38．3\％ | 5296.1 | 5209.8 | －86．3 | －1．6\％ |
 | 39．5\％ | ${ }^{3287.6}$ | 3325．4 | 37.8 | 1．2\％ | 39．5\％ | 5278.1 | 5143.2 | －135．0 | －2．6\％ |
 | 40．7\％ | 3284.5 | ${ }^{3259.1}$ | －25．4 | －0．8\％ | 40．7\％ | 5275.9 | 5081.6 | －194．2 | －3．7\％ |
 | 42．0\％ | ${ }^{3270.0}$ | 3142.2 | －127．8 | －3．9\％ | 42．0\％ | 5275.2 | 5049.5 | －225．7 | －4．3\％ |
 | 43．2\％ | 3164.1 31527 | ${ }_{3}^{3129.3}$ | －34．7 | －1．1\％ | 43．2\％ | ${ }^{5242.0}$ | 5040.1 | －201．9 | －3．9\％ |
 | 44．4\％ | ${ }_{3}^{3152.7}$ | ${ }^{3088.5}$ | －64．2 | －2．0\％ | 44．4\％ | 5178.6 | 5027.4 | －151．2 | －2．9\％ |
 | 45．7\％ | ${ }^{31388.2}$ | 2296.7 | －181．5 | －5．8\％ | 45．7\％ | 5125.7 | 4901.5 | －224．2 | －4．4\％ |
 | 46．9\％ | 2299.9 | ${ }^{2934.2}$ | －35．7 | －1．2\％ | 46．9\％ | 5119.6 | 4878.5 | －241．1 | －4．7\％ |
 | 48．1\％ | 2290.6 | ${ }^{29333.2}$ | －7．4 | －0．3\％ | 48．1\％ | 4927.2 | 4874.0 | －53．2 | －1．1\％ |
 | 49．4\％ | ${ }^{29355.4}$ | 2917.1 | －18．3 | －0．6\％ | 49．4\％ | 4870.3 | 4840.0 | －30．3 | －0．6\％ |
 | 50．6\％ | 2917.7 | 2765.5 | －152．2 | －5．2\％ | 50．6\％ | 4869.8 | ${ }^{4816.3}$ | －53．5 | －1．1\％ |
 | 51．9\％ | ${ }^{2566.7}$ | ${ }^{25900} 2$ | 23.4 | 0．9\％ | 51．9\％ | 4850.0 | 4787.2 | －62．8 | －1．3\％ |
 | 53．1\％ | 2458.3 | 2370.2 | －88．2 | －3．6\％ | 53．1\％ | 4828.5 | 4756.0 | －72．5 | －1．5\％ |
 | 54．3\％ | 2373.5 | 2348.8 | －24．7 | －1．0\％ | 54．3\％ | 4785.8 | 4650.1 | －135．7 | －2．8\％ |
 | 55．6\％ | 2349.7 | ${ }^{2330.0}$ | －19．7 | －0．8\％ | 55．6\％ | 4775.5 | ${ }^{4633.8}$ | －141．7 | －3．0\％ |
 | 56．8\％ | ${ }^{2344.6}$ | ${ }_{21458}^{2168.5}$ | －176．2 | －7．5\％ | 56．8\％ | 4721.5 | 4557.1 | －164．5 | －3．5\％ |
 | 58．0\％ | ${ }_{2196.1}^{2196}$ | ${ }_{2}^{2145.7}$ | －50．4 | ${ }_{-2.3 \%}$ | 58．0\％ | 4702.2 | 4500.8 | －201．4 | －4．3\％ |
 | 59．3\％ | 2151.8 | 2120.5 | －31．3 | －1．5\％ | 59．3\％ | 4699.0 | 4497.8 | －201．2 | －4．3\％ |
 | 60．5\％ | 2149.7 | 2091.4 | －58．2 | －2．7\％ | 60．5\％ | ${ }^{4673.5}$ | 4494．8 | －178．6 | －3．8\％ |
 | 61．7\％ | 2148.4 | 2078.9 | －69．6 | －3．2\％ | 61．7\％ | 4669.3 | 4493.3 | －176．0 | －3．8\％ |
 | 63．0\％ | ${ }_{2144.2}^{2142}$ | ${ }_{20615}^{2061.7}$ | －82．6 | －3．9\％ | 63．0\％ | ${ }_{4}^{4655.2}$ | ${ }^{4478.5}$ | －176．7 | －3．8\％ |
 | 64．2\％ | ${ }^{2142.2}$ | 2061.5 | －80．7 | －3．8\％ | 64．2\％ | 4567.1 | 4474.2 | －92．8 | －2．0\％ |
 | 65．4\％ | 2124．5 | ${ }^{20565.5}$ | －680 | －3．2\％ | ${ }^{65.4 \%}$ | 4498.8 | 4469.3 | －29．5 | －0．7\％ |
 | ${ }^{66.77 \%}$ | 2100.4 | 2050.5 | －49．9 | －2．4\％ | ${ }^{66.7 \%}$ | 4468.5 | 4464.7 | －3．8 | 0．1\％ |
 | 67．9\％ | 2100.0 2079 | 2044．2 | －55．8 | ${ }_{-2.7 \%}$ | 67．9\％ | 4459.2 | 4464.5 | 5.3 | 0．1\％ |
 | 69．1\％ | 2079.0 | 2038.5 | －40．5 | －1．9\％ | 69．1\％ | 4441.8 | 4441.0 | －0．8 | 0．0\％ |
 | 70．4\％ | ${ }^{2060.2}$ | ${ }_{2}^{2026.1}$ | －34．1 | －1．7\％ | 70．4\％ | ${ }^{4436.1}$ | ${ }^{43733.2}$ | －62．9 | －1．4\％ |
 | 71．6\％ | 2004.2 | 2010.5 | ${ }^{6.3}$ | 0．3\％ | 71．6\％ | 4386.7 | 4323.1 | －63．5 | －1．4\％ |
 | 72．8\％ | ${ }^{199325}$ | ${ }^{2010.1}$ | 17.4 | 0．9\％ | 72．8\％ | ${ }_{4}^{4373.7}$ | ${ }^{42922.0}$ | －817．7 | －1．9\％ |
 | 74．1．9\％ | ${ }^{19335}$ | 11950.4 | 14.9 | 0．8\％ | 74．1\％ | ${ }^{43633.5}$ | ${ }_{42350.5}^{4260.5}$ | －103．0 | －2．4\％ |
 | 76．5\％ | 1855.2 | ${ }_{1863.3}$ | 8.1 | 0．4\％ | 76．5\％ | 4310.0 | ${ }_{42228.8}^{42505}$ | －81．2 | －1．9\％ |
 | 77．8\％ | 1772.7 | 1750.7 | －22．0 | －1．2\％ | 77．8\％ | 4304.1 | 4152.4 | －151．7 | |
 | 79．0\％ | 1760.4 | 1747.0 | －13．4 | －0．8\％ | 79．0\％ | 4239.2 | 4084.0 | －155．1 | －3．7\％ |
 | 80．2\％ | 1744.0 | 1744.7 | ${ }^{0.6}$ | 0．0\％ | 80．2\％ | 4205.6 | 4065.2 | －140．4 | －3．3\％ |
 | | 17711.1 1507.5 | 1660.4 1532.7 | －50．7 | －3．7\％ | －${ }_{\text {812．5\％}}^{8.7 \%}$ | 4196.5 4170.9 | 4017.5 3990.6 | －179．1 | －4．3\％ |
 | 84．0\％ | 1470.7 | 1513.7 | 43.0 | 2．9\％ | 84．0\％ | 4155.4 | ${ }_{3950.6} 390$ | －204．8 | －4．9\％ |
 | 85．2\％ | 1443.2 | 1471.8 | 28.7 | 2．0\％ | 85．2\％ | 4155 | 3942.5 | －172．6 | －4．2\％ |
 | 86．4\％ | 1411.4 | 1443.7 | 32.2 | 2．3\％ | 86．4\％ | ${ }^{4106.0}$ | ${ }^{3933.5}$ | ${ }^{-167.5}$ | －4．1\％ |
 | 87．7\％ | 1381.2 | 1383.0 | 1.8 | 0．1\％ | 877\％ | 4081.3 | ${ }^{3935.7}$ | －145．6 | －3．6\％ |
 | 88．9\％ | 1320.6 | 1280.9 | －39．7 | －3．0\％ | 88．9\％ | 4075.6 | ${ }^{3928.7}$ | －146．9 | －3．6\％ |
 | 90．1\％ | 1263.0 11991 | 1245.1 12009 | －17．9 | －1．4\％ | ${ }^{90.14 \%}$ | ${ }^{4063.5}$ | ${ }^{3908.5}$ | －155．0 | －3．8\％ |
 | 992．6\％ | ${ }^{1199.1}$ | 1200.9 | 1.8 | 0．1\％ | 91．4\％ | ${ }_{3030.9}$ | 3840.0 | －190．9 | －4．7\％ |
 | 93．8\％ | ${ }^{10255.0}$ | ${ }^{1044.3}$ | -1.0 0.1 | ${ }^{-0.0 \%}$ | 93．8\％ | ${ }_{3}^{38735.5}$ | ${ }_{\text {3 }}^{38690.0}$ | $\begin{array}{r}-3.5 \\ -115.8 \\ \hline\end{array}$ | ${ }_{\text {－}}^{\text {－．}}$－1\％ 1% |
 | 95．1\％ | 836.1 | 844.2 | 8.1 | 1．0\％ | 95．1\％ | 3160.2 | 3423.0 | 262.8 | 8．3\％ |
 | 96．3\％ | ${ }^{465.8}$ | 415.2 | －50．6 | －10．9\％ | 96．3\％ | ${ }^{30655.0}$ | ${ }^{3046.3}$ | －18．6 | －．6\％ |
 | ${ }_{98.8 \%}^{97.5 \%}$ | 256.3 211.8 | 250.1 212.6 | －6．3 | － 2.4% | 97．5\％${ }^{97.8 \%}$ | ${ }_{713.8}^{1260.6}$ | 1698.7 620.1 | 438.1 | ${ }^{34.8 \%}$－131\％ |
 | 100．0\％ | 202.4 | 202.6 | 0.2 | 0．1\％ | 100．0\％ | 399.8 | 367.1 | －32．7 | ${ }_{-8.2 \%}$ |

 | $\begin{gathered} \text { Percent } \\ \text { Excedance } \\ \text { Probobaility } \end{gathered}$ | September | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{0} C R 2015$ Without | DCR 2015 With Project | Absolute | Relative |
 | | Monthl E E | Monthy EC | （untosicm） | Difference（\％） |
 | ${ }^{(\% .0)}$ | ${ }^{1015158.5}$ | ， | －1129 | |
 | | | | | |
 | | 9897.2 | | | |
 | 2．5\％ | ${ }^{9654.8}$ | ${ }^{9769.5}$ | 14.7 | |
 | 3．7\％ | 9530.2 | 9594．5 | 64.2 | |
 | 4．9\％ | ${ }^{9384.6}$ | ${ }^{93999}$ | 15.3 | |
 | 6．2\％ | ${ }^{9367.3}$ | 9365.0 | －2．3 | |
 | 7．4\％ | ${ }^{93335.9}$ | 9338.4 | 12.5 | 0．1\％ |
 | 8．6\％ | ${ }^{93335.5}$ | ${ }^{92455.2}$ | －90．3 | |
 | 9．9\％ | 88.2 | ${ }^{9112.5}$ | －175．7 | －1．9\％ |
 | 11．1\％ | ${ }^{9212.9}$ | 8907.9 | －305 | －3．3\％ |
 | 3\％ | 9080.9 | 8880.6 | 400.3 | |
 | 13．6\％ | 8976.6 | ${ }^{8560.8}$ | －415 | |
 | 8\％ | 8960.4 | 8492.0 | －468．4 | |
 | 16．0\％ | 8947.3 | 8400.2 | －547．1 | －6．19 |
 | 17．3\％ | 8853.5 | 8323.9 | 529.6 | －6．0\％ |
 | 18．5\％ | 8889.2 | 8283.0 | 546.3 | ${ }^{6.2}$ |
 | 19．8\％ | 8786.4 | 8143.8 | ${ }^{642.6}$ | －7．3\％ |
 | 21．0\％ | 8760.5 | 8104.1 | 656．4 | －7．5 |
 | 22．2\％ | 8640.9 | 8081.8 | 559.1 | 6．5\％ |
 | 23．5\％ | 8662.9 | 8041.2 | －581．7 | 6．7\％ |
 | 24．7\％ | 8619.9 | 7964.5 | 655．4 | ${ }^{-7.6}$ |
 | 25．9\％ | 88604.3 | ${ }^{7842.0}$ | 762.4 | 8．9\％ |
 | 27．2\％ | 8663.2 | ${ }^{7650.7}$ | 952．6 | 11.1 |
 | 28．4\％ | 8445.9 | ${ }^{7579.5}$ | －866．4 | 10．3\％ |
 | 29．6\％ | 8440.0 | ${ }^{7532.7}$ | ${ }^{907.3}$ | 10．8\％ |
 | 30．9\％ | 8410.9 | ${ }^{7407.0}$ | －1003．9 | 11．9\％ |
 | 32．1\％ | 8350.0 | ${ }^{7303.1}$ | 1046.9 | 12．5\％ |
 | 33．3\％ | 8224.5 | ${ }^{7264.8}$ | －959．7 | －11．7\％ |
 | 34．6\％ | 8140.4 | ${ }^{7247.6}$ | 892.8 | 11．0\％ |
 | 35．7\％ | ${ }^{8036.2}$ | 7072.7 | －963．5 | 12．0\％ |
 | 37．0\％ | 7913.7 | 6882.4 | 10923 | 13．8\％ |
 | 38．3\％ | 7773.1 | 6765.4 | －1007．8 | 13．0\％ |
 | 39．5\％ | ${ }^{7216.9}$ | 6733.3 | －483．6 | ${ }^{-6.7 \%}$ |
 | 40．7\％ | 70057 | ${ }^{67799.6}$ | －296．1 | －4．2\％ |
 | 42．0\％ | 6970.1 | ${ }^{6608.8}$ | ${ }^{-361.3}$ | 5．2\％ |
 | 43．2\％ | ${ }_{6}^{6879.2}$ | ${ }_{6}^{6350.7}$ | －348．5 | 5．1\％ |
 | 44．4\％ | 6793.2 | ${ }^{6450.5}$ | －342．8 | －5．0\％ |
 | 45．7\％ | ${ }_{6}^{6700.4}$ | ${ }^{62283}$ | －472．1 | －7．0\％ |
 | 46．9\％ | 6552.5 | 6139.8 | －412．7 | －6．3\％ |
 | 48．1\％ | ${ }_{6}^{65070}$ | ${ }^{6102.0}$ | －408．6 | 6．3\％ |
 | 49．4\％ | ${ }^{6503.8}$ | ${ }^{6062.2}$ | －441．6 | －6．8\％ |
 | 50．6\％ | ${ }^{6366.3}$ | ${ }^{6042.5}$ | －323．8 | 5．1\％ |
 | 51．9\％ | ${ }^{6320.3}$ | 5913.7 | －406．5 | ${ }^{-6.4 \%}$ |
 | 53．1\％ | ${ }^{6262.9}$ | ${ }_{5461.8}$ | －801．1 | 12．8\％ |
 | 54．3\％ | ${ }^{3043.6}$ | ${ }^{2781.6}$ | －262．0 | －8．6\％ |
 | 55．6\％ | 2942.7 | ${ }^{277275.9}$ | －176．8 | －6．0\％ |
 | 56．8\％ | 2915.0 | ${ }^{2727.5}$ | －187．5 | －6．4\％ |
 | 58．0\％ | 2888.0 | ${ }^{27275.2}$ | －162．8 | －5．6\％ |
 | 59．3\％ | ${ }^{2810.5}$ | ${ }^{2772.4}$ | －108．1 | ．8\％ |
 | 60．5\％ | 2871.1 | ${ }^{2625.9}$ | －175．1 | －6．3\％ |
 | 61．7\％ | ${ }^{21377.4}$ | ${ }^{2615.2}$ | ${ }^{-122.2}$ | －4．5\％ |
 | 63．0\％ | ${ }^{2715.2}$ | 2613.4 | －101．8 | －3．8\％ |
 | 64．2\％ | ${ }^{2626.6}$ | 2439．4 | －187．2 | 1\％ |
 | 65．4\％ | ${ }^{25277.0}$ | ${ }^{2393.1}$ | －133．9 | －5．3\％ |
 | ${ }^{66.7 \%}$ | ${ }^{2517.5}$ | ${ }^{23355.3}$ | ${ }_{182.3}$ | 2\％ |
 | 67．9\％ | ${ }^{2271.4}$ | 2138.1 15021 | －133．3 | －5．9\％ |
 | 69．1\％ | ${ }^{15955.8}$ | ${ }^{1502.1}$ | －93．7 | \％ |
 | 70．4\％ | 1511.0 | ${ }^{1490.5}$ | －20．5 | －1．4\％ |
 | 71．6\％ | 1390.6 | ${ }^{1376.1}$ | 14.5 | －0\％ |
 | 72．8\％ | ${ }^{13331.0}$ | ${ }^{1329.3}$ | －1．6 | －0．1\％ |
 | 74．1\％ | ${ }^{12988.5}$ | ${ }^{12939.6}$ | －4．9 | |
 | 75．3\％ | ${ }^{12955.6}$ | ${ }^{12888.5}$ | －7．1 | ${ }^{-0.5}$ |
 | 76．5\％ | ${ }^{12933.7}$ | ${ }^{1279.3}$ | 14.4 | －1．1\％ |
 | 77．8\％ | ${ }^{12991.2}$ | $\begin{array}{r}1274.6 \\ \hline 12585\end{array}$ | －16．6 | ${ }^{-1.3 \%}$ |
 | 79．0\％ | ${ }^{1290.1}$ | ${ }^{12565.8}$ | 33.3 | 6\％ |
 | － 80.2% | ${ }^{12499.0}$ | ${ }^{12535.5}$ | 4.5 | 0．4\％\％ |
 | 81．5\％ | ${ }_{1239.7}^{1239}$ | 1209.0 | 30．6 | 5\％ |
 | － 82.7% | ${ }^{12127.6}$ | ${ }^{11855.3}$ | －323 | 粏 |
 | 84．0\％ | ${ }^{12099.7}$ | 1182.1 | 27．6 | 迷 |
 | 85．2\％ | ${ }^{12055.3}$ | 1170.8 | 34.6 | \％ |
 | 86．4\％ | ${ }^{1200.8}$ | 1168.4 | 32．4 | 2．7\％ |
 | 87．7\％ | ${ }_{1200.1}^{120.1}$ | ${ }^{111312}$ | －68．9 | \％ |
 | 88．9\％ | 1174.6 | ${ }^{1123.3}$ | 51.3 | 4．4\％ |
 | 90．19\％ | 1167.6 | 1101.8 | －65．7 | |
 | 91．4\％ | 1150.4 | 1082.5 | 67.9 | 5．9\％ |
 | 92．6\％ | 11097.2 | ${ }^{1068.6}$ | 28．6 | 源 |
 | ${ }^{93.8 \%}$ | 1075.8 | 1017.0 | 58.8 | 5\％ |
 | 95．1\％ | 1071.2 | 1012.7 | 58.5 | 5．5\％ |
 | －96．3\％ | 1041.7 | ${ }_{966.5}$ | －45．3 | 4．3\％ |
 | 97．5\％ | 977.6 | 967.3 | 10.3 | （1\％ |
 | | 600．3 353.0 | ${ }^{644.5}$ | ${ }_{22.3}^{44.2}$ | （7．4\％ |

 Figure SQ-23-b
 Sacramento River at Mallard Slough (Chipps Island)), Monthly EC

 | $\begin{gathered} \text { Percent } \\ \text { Exceade } \\ \text { Probability } \end{gathered}$ | October | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\mathrm{DCR}} 2015$ Without | DCR 2015 With Project | Absolute | Relative |
 | | Monthly EC | Monthly EC | (ititerence | Sfference (\%) |
 | 0.0\% | ${ }^{14966.7}$ | 148804.5 | ${ }^{-162.2}$ | |
 | 1.2\% | 14795.9 | 14784.0 | -12 | -0.19 |
 | 2.5\% | 14734.0 | 14554.9 | -179 | -1.2\% |
 | 3.7\% | 14712.9 | 14324.4 | -388 | -2.6\% |
 | 4.9\% | 14617.0 | 13997.2 | -6197 | -4.2\% |
 | 7.4\% | - 144431.6 | 13944.2
 13715.8 | - 517.4 .691 .3 | - ${ }_{-4.8 \%}^{-3.8 \%}$ |
 | 8.6\% | 14341.0 | 13450.0 | -891.0 | -6.2\% |
 | 9.9\% | 14290.5 | 13347.0 | -943 | |
 | 11.1\% | 14213.2 | 13314.4 | -898.7 | -6.3\% |
 | 12.3\% | 14129.5 | ${ }^{13295.6}$ | -833.9 | \% |
 | 13.6\% | 137439 | ${ }^{130288.3}$ | -715.6 | -5.5\% |
 | 14.8\% | 13704.9 | 13018.6 | -686.3 | |
 | 17.3\% | ${ }_{13626.0}$ | ${ }_{12789.2}^{12099}$ | ${ }_{\text {- }}^{\text {-1736. }}$ | -5.1\% |
 | 18.5\% | ${ }^{13622,4}$ | ${ }^{12768.2}$ | -854.2 | -6.3\% |
 | 19.8\% | ${ }^{13541.5}$ | ${ }^{12735.8}$ | -805.8 | -6.0\% |
 | 220\% | 13447.8 13526 1342 | | ${ }^{-859.6}$ | -6.4\% |
 | 22.25\% | 1344215 | 125578 | -853.4 | |
 | 24.7\% | 13434.1 | 12579.3 | ${ }_{-854.8}$ | -6.4\% |
 | 25.9\% | 13411.4 | 12508.5 | -902.9 | -6.7\% |
 | | ${ }^{133777.1}$ | ${ }^{124335.5}$ | -941.6 | |
 | 29.6\% | ${ }_{13556.5}^{13350.0}$ | +122231.9 | -1093.4 | -7.8\%\% |
 | 30.9\% | ${ }^{13141.1}$ | 12140.9 | -1000.2 | -7.6\% |
 | 32.1\% | ${ }^{12933.1}$ | 12053.8 | -879.3 | -6.8\% |
 | | 12888.5
 126182 | 119988.4 119927 | -890.1 | -6.9\% |
 | 34.6\% | ${ }^{1265484}$ | | | |
 | 370\% | ${ }^{12554.8}$ | 11877.0 | - -769.8 | -5.4\% |
 | 38.3\% | 12474.2 | 11728.6 | -745.6 | -6.0\% |
 | 39.5\% | 12399.8 | 11717.7 | -682.1 | -5.5\% |
 | 40.7\% | ${ }^{12360.3}$ | 11680.3 | -680.0 | -5.5\% |
 | 42.0\% | ${ }^{122933.4}$ | 11460.9 | ${ }^{-832.5}$ | -6.8\% |
 | ${ }_{4}^{43.24 \%}$ | 122268.3
 12260.2 | 11456.1 11318.0 | - -7410.2 | ${ }_{\text {- }}^{-6.6 \%}$ |
 | 45.7\% | ${ }^{1194993}$ | 11048.7 | -900.5 | -7.7\% |
 | 46.9\% | 11927.0 | 11008.1 | -918.8 | -7.7\% |
 | 48.1\% 4.4 | 118388.9
 11834 | 10810.1 108028 | -1028.8 -1031.8 | -8.7\% |
 | 50.6\% | 11793.9 | 10750.5 | ${ }^{-1043.4}$ | -8.8\% |
 | 51.9\% | 11727.1 | 10237.6 | -1489.5 | -12.7\% |
 | 53.1\% | 6764.6 | 6770.0 | 5.4 | 0.1\% |
 | 54.3\% | ${ }_{6}^{6451.8}$ | ${ }_{\text {cher }}^{6385.8}$ | -66.0 | -1.0\% |
 | ${ }_{5}^{56.8 \%}$ | ${ }_{6}^{64430.4}$ | ${ }_{6169.1}^{675.3}$ | ${ }_{-267.3}{ }^{-275.1}$ | ${ }_{-4.2 \%}$ |
 | 58.0\% | ${ }^{6430.3}$ | 6128.1 | -302.1 | -4.7\% |
 | 59.3\% | 6415.6 | 6113.4 | ${ }^{-302.2}$ | -4.7\% |
 | 60.5\% | ${ }^{6222.9}$ | 6109.3 | -113.6 | -1.8\% |
 | | 6199.3 61807 | ${ }_{5}^{6097.6}$ | -101.7 | ${ }^{-1.6 \%}$ |
 | 64.2\% | 6171.0 | ${ }_{5899.6}^{5969}$ | ${ }_{-271.4}^{-24.5}$ | -4.4\% |
 | 65.4\% | 5985.0 | 5811.7 | -173.3 | -2.9\% |
 | 66.7\% | 5667.9 | 5408.3 | -259.7 | -4.6\% |
 | 67.9\% | ${ }_{3}^{3792.5}$ | ${ }^{36777.3}$ | -115.2 | -3.0\% |
 | 79.19\% | 3711.8 3625.2 | | -83.9 | -2.3\% |
 | 71.6\% | ${ }_{3561.5}$ | ${ }_{3436.5}^{3475}$ | -135.0 -1250 | -3.5\% |
 | 72.8\% | 3559.1 | 3423.1 | -136.0 | -3.8\% |
 | 74.1\% | ${ }^{3530.0}$ | 3417.9 | -112.1 | -3.2\% |
 | 75.3\% | 3466.2 | ${ }^{33833.0}$ | -83.2 | -2.4\% |
 | 76.5\% | ${ }^{3455.5}$ | ${ }_{3}^{334332}$ | -112.3 | -3.3\% |
 | 79.0\% | 3409.8 | ${ }_{3314.3} 332$ | -95.4 | -2.8\% |
 | 80.2\% | ${ }^{3380.0}$ | 3306.2 | -73.8 | -2.2\% |
 | 81.5\% | ${ }^{3375.1}$ | 3285.6 | -89.5 | -2.7\% |
 | 82.7\% | ${ }^{3371.9}$ | ${ }^{3264.3}$ | -107.6 | -3.2\% |
 | 84.0\% | 3338.7 | ${ }^{32555.8}$ | -82.9 | -2.5\% |
 | - | 33306.4 | 3219.2 3199.4 | ${ }^{-920}$ | ${ }_{-3.2 \%}^{-2.8 \%}$ |
 | 87.7\% | 3290.5 | ${ }_{3}^{3199.4}$ | -92.1 | --3.8\% |
 | 88.9\% | 3289.3 | 3175.5 | -113.8 | -3.5\% |
 | 90.1\% | ${ }^{3230.6}$ | ${ }^{3137.3}$ | -93.3 | -2.9\% |
 | 914.4\% | ${ }^{3218.7}$ | ${ }^{3104.3}$ | -114.4 | -3.6\% |
 | 92.6\% | 3178.8 | ${ }^{3054.2}$ | -124.6 | -3.9\% |
 | 93.8\% | 2984.1 | 3010.8 | 26.7 | 0.9\% |
 | 95.1\% | 2945.9 | 2984.0 | 38.1 | 1.3\% |
 | 96.3\% | 2619.3 | 2807.1 | 187.8 | 7.2\% |
 | 97.5\% | 2536.5 | 2705.9 | 169.4 | 6.7\% |
 | 98.8\% 1000\% | 2521.4 | 2625.8 | 104.3 | 4.1\% |
 | 100.0\% | 1,994.4 | $1,840.6$ | -153.8 | -7.7\% |

 | PercentExceedanceProbability | January | | | RelativeDifference $(\%)$ |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{0} C R 2015$ Without | DCR 2015 With Project | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOSSM) } \end{gathered}$ | |
 | | Monthly EC | Monthly EC | | |
 | ${ }^{(\% .0)}$ | (UMHOSICM) 102932 | (UMHOSSCM) | 7072 | |
 | | | | | |
 | 2.5\% | ${ }_{96944}$ | ${ }_{99112}$ | ${ }^{-8172}$ | |
 | 3.7\% | 9396 | 9698 | | |
 | 4.9\% | 9283.4 | ${ }_{916669}$ | 116.5 | |
 | 6.2\% | 8690.1 | 9055 | 3651 | |
 | 7.4\% | 8485.2 | ${ }_{8937.5}$ | 452.3 | |
 | 8.6\% | 8223.7 | 8676.2 | 452.5 | |
 | 9,9 | 8211.0 | 8278.2 | 67.2 | |
 | 11.1\% | 7976.2 | 8202.7 | 226.5 | 2.8\% |
 | 2\% | 7934.3 | 7846.2 | -88.1 | -1.1\% |
 | 13.6\% | 7830.1 | 7794.4 | -35.7 | .5\% |
 | 8\% | 7709.0 | 7754.1 | 45.1 | |
 | 16.0\% | 7605.7 | 7753.0 | 147.2 | 1.9\% |
 | 17.3\% | ${ }^{7326.8}$ | 7692.3 | 365.5 | |
 | 18.5\% | ${ }^{71116.6}$ | ${ }^{7365.1}$ | 248.5 | 3.5\% |
 | 19.8\% | 7077.1 | 7308.4 | 231.3 | 3.3\% |
 | 21.0\% | 6761.5 | 7048.4 | 286.9 | 4.2\% |
 | 22.2\% | 6720.0 | 7028.3 | 308.3 | 4.6\% |
 | 23.5\% | 6564.9 | 6788.3 | 223.4 | 3.4\% |
 | 24.7\% | 6477.7 | 6512.2 | 34.5 | 0.5\% |
 | 25.9\% | 6346.5 | 6487.9 | 141.3 | 2.2\% |
 | 27.2\% | 5659.7 | ${ }^{6437.6}$ | 777.9 | 13.7 |
 | 28.4\% | ${ }^{5593.5}$ | 6395.3 | 801.7 | 14.3\% |
 | 29.6\% | 5222.6 | 6176.4 | ${ }_{953.7}$ | 18.3\% |
 | 30.9\% | 5197.0 | 5993.4 | 746.3 | 14.4\% |
 | 32.1\% | 4936.9 | 5507.9 | 571.0 | 11.6 |
 | 33.3\% | 4589.7 | 5505.7 | 916.0 | 20.0\% |
 | 34.6\% | ${ }^{4276.8}$ | 5143.9 | 867.1 | 20.3\% |
 | 35.7\% | 4148.1 | ${ }^{4860.5}$ | 712.4 | 17.2\% |
 | 37.0\% | ${ }^{3394.3}$ | 4557.2 | 1162.8 | 34.3\% |
 | 38.3\% | ${ }^{3244.5}$ | 3974.8 | 730.3 | 22.5\% |
 | 39.5\% | ${ }^{3072.2}$ | ${ }^{3696.0}$ | 623.8 | 20.3\% |
 | 40.7\% | ${ }^{28377.2}$ | ${ }^{3661.7}$ | ${ }^{824.5}$ | 29.1\% |
 | 42.0\% | 2830.7 | ${ }_{3366.7}$ | 536.0 | 18.9\% |
 | 43.2\% | ${ }_{2}^{2672.7}$ | ${ }^{3324.8}$ | 652.2 | 24.4\% |
 | 44.4\% | ${ }^{2576.0}$ | ${ }^{3059.5}$ | 483.5 | 18.8\% |
 | 45.7\% | 2557.4 | ${ }^{2953.5}$ | 396.2 | 15.5\% |
 | 46.9\% | ${ }^{2502.3}$ | 2928.7 | ${ }^{426.4}$ | 17.0\% |
 | 48.1\% | ${ }^{2403.1}$ | ${ }^{29291.6}$ | 517.4 | 21.6\% |
 | 49.4\% | 2140.2 | 2913.2 | 773.0 | 36.1\% |
 | 50.6\% | ${ }^{2115.4}$ | ${ }^{26833}$ | 567.9 | 26.8\% |
 | 51.9\% | ${ }^{1988.3}$ | 2497.6 | 509.3 | 25.6\% |
 | 53.1\% | ${ }^{1843.5}$ | 2499.5 | ${ }^{606.0}$ | 32.9\% |
 | 54.3\% | 1786.7 | ${ }^{2369.6}$ | 582.9 | 32.6\% |
 | 55.6\% | 1618.1 | ${ }^{236003}$ | ${ }^{742.2}$ | 45.9\% |
 | 56.8\% | 1512.1 | ${ }^{2038.3}$ | ${ }_{526.2}$ | 34.8\% |
 | 58.0\% | ${ }^{14844.7}$ | ${ }^{1696.3}$ | 211.6 | 14.3\% |
 | 59.3\% | ${ }^{1219.8}$ | ${ }^{16966.2}$ | ${ }^{476.4}$ | 39.1\% |
 | 60.5\% | 1030.2 | 1291.7 | ${ }^{261.5}$ | 25.4\% |
 | 61.7\% | ${ }^{625.0}$ | 868.4 | 243.3 | 38.9\% |
 | 63.0\% | 580.2 | 831.6 | 251.4 | 43.3\% |
 | 64.2\% | 549.9 | ${ }^{691.7}$ | 141.7 | 5.8\% |
 | 65.4\% | ${ }^{506.3}$ | 590.5 | 84.2 | ${ }^{16.6 \%}$ |
 | ${ }^{66.7 \%}$ | 415.2 | ${ }_{5222}$ | 106.9 | 25.7\% |
 | 67.9\% | 346.0 | 494.2 | 148.2 | ${ }^{42.8 \%}$ |
 | 69.1\% | 338.0 | 404.6 | ${ }^{66.6}$ | 崖.7\% |
 | 70.4\% | 321.8 | 379.6 | 57.8 | 18.0\% |
 | 71.6\% | ${ }_{28,8}^{288.8}$ | ${ }_{39}^{3693}$ | 80.5 | 27.9\% |
 | 72.8\% | ${ }_{27.5}^{287.3}$ | 327.2 | 39.9 | 13.9\% |
 | 74.19\% | ${ }_{23}^{27.5}$ | ${ }^{264.1}$ | 7.4 | 7\% |
 | 75.3\% | 2309 | ${ }_{256.4}^{256}$ | 25.5 | 11.1\% |
 | 76.5\% | ${ }_{229.8}^{2298}$ | ${ }_{2}^{239.4}$ | ${ }_{9} 9$ | \% |
 | 77.8\% | ${ }_{228.7}^{228.7}$ | ${ }^{231.3}$ | ${ }^{2.6}$ | 1\% |
 | 79.0\% | ${ }^{224.6}$ | 228.5 | 3.9 | , |
 | 80.2\% | 218.3 | ${ }_{228.5}^{228.5}$ | 10.1 | 6\% |
 | 81.5\% | 277.0 | 28.1 | 1.1 | 0.5\% |
 | - 82.7% | ${ }^{208.5}$ | 210.0 | 1.5 | 0.7\% |
 | 84.0\% | ${ }^{203.6}$ | 204.6 | 1.0 | .5\% |
 | 85.2\% | 203.0 | 203.0 | 0.0 | 0.0\% |
 | 86.4\% | 201.0 | 202.2 | 1.2 | 0.6\% |
 | 87.7\% | 198.0 | 198.2 | 0.2 | 0.1\% |
 | 88.9\% | 196.8 | 198.2 | ${ }^{1.4}$ | 0.7\% |
 | 90.19\% | 195.3 | 197.9 | ${ }^{2.6}$ | 1.3\% |
 | 91.4\% | 199.2 | 197.2 | 2.0 | 10\% |
 | 92.6\% | 194.9 | ${ }^{196.0}$ | 1.1 | 0.6\% |
 | 93.8\% | 192.5 | ${ }^{195.2}$ | 2.7 | ${ }^{\text {1.4\% }}$ |
 | 95.1\% | 192.0 | 195.1 | ${ }^{3.0}$ | 1.6\% |
 | 96.3\% | 190.6 | 190.6 | 0.0 | 0.0\% |
 | 97.5\% | 190.0 | 190.4 | ${ }^{0.3}$ | \% |
 | 98.8\% 1000% | 187.5 184.0 | 188.1 184.0 | ${ }_{0}^{0.6}$ | .0.3\% |

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[t]{2}{*}{} \& \multicolumn{4}{|c|}{February} \\
 \hline \& \({ }_{\substack{\text { DCR } 2015 \text { Wethout } \\ \text { Proiect }}}\) \& DCR 2015 With Project \& Absolute \& \\
 \hline Probability \& Monthly EC \& Monthly EC \& Difference
 (unHosicm) \& Difference (\%) \\
 \hline (\%) \& \begin{tabular}{l}
 UnHosicm) \\
 \hline 7332
 \end{tabular} \& (UMHOSSCM) \& 720 \& \\
 \hline 12\% \& \({ }_{7}^{75327.2}\) \& \({ }^{8509.2}\) \& \({ }_{38120}\) \& \({ }_{5}^{12.3 \%}\) \\
 \hline 2.5\% \& 6233.9 \& 7302.1 \& 1068. \& \\
 \hline 3.7\% \& 6091.9 \& 6781.4 \& 689.6 \& 11.3\% \\
 \hline 4.9\% \& 5846.4 \& 6180.8 \& 334.4 \& 5.7\% \\
 \hline \({ }^{6.2 \%}\) \& 5735.9 \& \({ }_{5}^{6146.24}\) \& 410.3
 5130 \& 7.2\% \\
 \hline 7.4\% \& 4631.4 \& 5144.4 \& 513.0 \& 11.1\% \\
 \hline - \begin{tabular}{l}
 8.9\%\% \\
 \hline \(9.9 \%\)
 \end{tabular} \& \({ }_{38836}^{414.8}\) \& \({ }_{44950.7}^{4595}\) \& 450.9
 5267 \& 10.9\%
 \(13.6 \%\) \\
 \hline \({ }^{\text {9.9\% }}\) \& 3883.6
 35489 \& \({ }^{4410.3}\) \& \({ }^{526.7}\) \& (13.6\% \\
 \hline - \(11.14 \%\) \& 3548.9
 3303.0 \& 4351.2
 4033.8 \& 802.4
 730.9 \& \({ }_{2}^{22.2 \%}\) \\
 \hline 13.6\% \& 3172.4 \& 3964.4 \& 791.9 \& 25.0\% \\
 \hline 14.8\% \& \({ }_{2711.2}^{29412}\) \& \({ }_{3}^{3492.1}\) \& \({ }_{5}^{551.8}\) \& 18.7\% \\
 \hline 年 \(\begin{aligned} \& 16.0 \% \\ \& 173 \%\end{aligned}\) \& \({ }_{26042}^{2718.3}\) \& 3349.8
 3276.4 \& 631.5
 6722 \& \({ }_{\text {cher }}^{23.2 \%}\) \\
 \hline 18.5\% \& \({ }^{2359.6}\) \& 3119.6 \& 760.0 \& 32.2\% \\
 \hline 19.8\% \& \({ }^{2246.3}\) \& 2772.0 \& 525.7 \& \({ }^{23.4 \%}\) \\
 \hline \({ }_{22}^{21.0 \%}\) \& \({ }_{2054.9}^{2144.0}\) \& 2771.8
 27510 \& 627.8
 6920 \& - \({ }_{\text {293.3\% }}\) \\
 \hline 23.5\% \& \({ }^{2935.6}\) \& 2702.8 \& 767.1 \& 39.6\% \\
 \hline 24.7\% \& 1789.8 \& 2305.7 \& 515.9 \& 28.8\% \\
 \hline 25.9\% \& 1676.9
 15176 \& 2170.7
 19223 \& \({ }_{404.6}^{493}\) \& \({ }_{\text {cke }}^{29.4 \%}\) \\
 \hline 28.4\% \& 1452.3 \& 1888.6 \& 356.3 \& 24.5\% \\
 \hline 29.6\% \& 1191.4 \& 1727.9 \& 536.4 \& 45.0\% \\
 \hline - \({ }_{\text {30, }}^{30.9 \%}\) \& 1179.8
 11009 \& 14077.7
 13372 \& 227.9

 2363 \& +19.3\%

 \hline 33.3\% \& 1065.7 \& 1256.5 \& 190.9 \& 17.9\%

 \hline 34.6\% \& 837.5 \& 1226.4 \& 388.8 \& 46.4\%

 \hline - ${ }^{35.8 \%}$ \& 831.1
 825.7 \& ${ }_{9}^{1223.5}$ \& ${ }_{95.3}^{392.5}$ \& ${ }^{47.2 \%}$

 \hline 38.3\% \& 810.3 \& 897.3 \& 87.0 \& 10.7\%

 \hline 39.5\% \& 726.0 \& 892.5 \& 166.5 \& 22.9\%

 \hline - ${ }^{40.7 \%}$ \& 721.9
 680.9 \& 818.0
 812.9 \& \&

 \hline 43.2\% \& 623.4 \& 736.8 \& 113.4 \& 18.2\%

 \hline \& 587.0 \& 707.2 \& ${ }^{120.2}$ \& 20.5\%

 \hline 45.7\% \& 539.9
 530.8 \& 696.1
 649.9 \& 156.2
 119.1 \& ${ }_{\text {22.4\% }}^{28.9 \%}$

 \hline 48.1\% \& 492.3 \& 592.4 \& 100.2 \& 20.3\%

 \hline ${ }^{4.94 \%}$ \& 479.5 \& 554.9 \& 75.3 \& ${ }^{15.7 \%}$

 \hline 51.9\% \& ${ }_{4}^{457.2}$ \& ${ }_{518.9}^{538.7}$ \& ${ }_{8}^{82.7}$ \& 188.7\%

 \hline 53.1\% \& 373.2 \& 513.5 \& 140.3 \& 37.6\%

 \hline 54.3%
 5.5% \& ${ }^{354.5}$ \& 460.7 \& 106.2 \& 29.9\%

 \hline 55.6\% \& | 347.4 |
 | :--- |
 | 344.8 | \& 433.5

 374.7 \& ${ }_{29.9}^{86.1}$ \& ${ }_{\text {cki.7\% }}^{24.8 \%}$

 \hline 58.0\% \& 334.6 \& 349.5 \& 14.8 \& 4.4\%

 \hline 59.3\% \& ${ }^{266.0}$ \& 290.9 \& ${ }^{24.8}$ \& ${ }^{9.3 \%}$

 \hline -60.5\% \& ${ }_{225.8}^{24.2}$ \& ${ }_{241.5}^{261.7}$ \& 18.6
 15.6 \& - ${ }_{\text {7.9\% }}$

 \hline 63.0\% \& 225.1 \& ${ }_{23}^{235.8}$ \& 10.7 \& 4.7\%

 \hline ${ }^{64.2 \%}$ \& ${ }_{2223}^{2223}$ \& ${ }_{20}^{230.7}$ \& 8.3 \& 3.7\%

 \hline ${ }^{65.4 \%}$ \& ${ }_{220.5}^{221.3}$ \& ${ }_{229.3}^{229.4}$ \& 8.1
 8.8 \& 4.0\%

 \hline 67.9\% \& 220.1 \& 225.8 \& 5.7 \& 2.6\%

 \hline 69.1\% \& 218.8 \& ${ }_{2}^{223.6}$ \& \& ${ }_{3}^{2.2 \%}$

 \hline 70.4.6\% \& 216.8
 214.5 \& ${ }_{220.6}^{223.5}$ \& ${ }_{6.1}^{6.7}$ \& ${ }^{3.9 \%}$

 \hline 72.8\% \& 213.0 \& 216.7 \& 3.7 \& 1.8\%

 \hline 74.1\% \& ${ }^{212.0}$ \& 215.1 \& \&

 \hline 76.5\% \& ${ }_{210.1}^{210.3}$ \& ${ }_{211.6}^{21.7}$ \& ${ }_{1.5}^{1.4}$ \& 0.7\%

 \hline 77.8\% \& 207.7 \& 210.5 \& 2.8 \& 1.4\%

 \hline 79.0\% \& 207.2 \& ${ }^{210.3}$ \& 3.1 \& ${ }^{1.5 \%}$

 \hline 80.15\% \& ${ }_{2019}^{203.6}$ \& ${ }_{202.7}^{207.1}$ \& ${ }^{3.5}$ \& 0.4\%

 \hline 82.7\% \& 199.3 \& 201.3 \& 2.1 \& 1.0\%

 \hline 84.0\% \& 198.6 \& 199.0 \& 0.4 \& 0.2\%

 \hline - \& ${ }_{196.4}^{197.0}$ \& ${ }_{194.4}^{197.0}$ \& -2.0 \& -1.0\%

 \hline 87.7\% \& 193.9 \& 194.1 \& 0.2 \& 0.1\%

 \hline 88.9\% \& 193.7 \& 193.7 \& 0.0 \& 0.0\%

 \hline 90.14\% \& ${ }_{193.5}^{193.6}$ \& ${ }_{1933}^{193.5}$ \& -0.1
 -0.2 \& -0.1\%

 \hline 92.6\% \& 192.4 \& 192.6 \& 0.3 \& 0.1\%

 \hline 93.8\% \& 191.5 \& 192.4 \& 0.9 \& 0.5\%

 \hline 95.1\% \& 191.5 \& 192.3 \& 0.9 \& 0.4\%

 \hline 96.3\% \& 191.0 \& 191.9 \& 0.9 \& 0.5\%

 \hline 97.5\% \& 190.7 \& 191.2 \& 0.5 \& 0.3\%

 \hline 98.8\% \& 187.3
 185.8 \& 187.3
 185.8 \& ${ }_{0.0}^{0.0}$ \& -

 \hline
 \end{tabular}

 | | ${ }^{\text {a }}$ - ${ }^{\text {may }}$ | | $\begin{aligned} & \text { Absolute } \\ & \text { (Diference } \\ & \text { (Uuntosicm) } \end{aligned}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent | | CR 2015 | | |
 | Probability | Monthly EC | Monthly EC | | |
 | (\%) | (UnHosicm) | (UMHOSSCM) | | 1.0\% |
 | 1.2\% | | 8821.4 | -132 | |
 | 2.5\% | 8015.8 | 8501.8 | 485 | 6.1\% |
 | 3.7\% | 7851.4 | 8013.9 | | |
 | 4.9\% | 6192.7 | 6114.6 | -78.1 | |
 | 6.2\% | 5985.5 | 5953.6 | 31.8 | |
 | 7.4\% | 5955.0 | 5920.7 | 34.3 | |
 | 8.6\% | 5918.7 | 5888.5 | -30.2 | |
 | 9.9\% | 559 | 9.0 | -71.6 | |
 | 11.1\% | 5124.9 | 5142.2 | 17.3 | 0.3\% |
 | 12.3\% | 5109.3 | 5140.4 | 31.0 | |
 | -13.6\% | 5062.3 | 5083.1 | 20.8 | 0.4\% |
 | 14.8\% | 5006.2 | 4950.1 | -56.1 | -1.1\% |
 | 17.3\% | 4491.5 | ${ }_{4514.5}^{401.5}$ | ${ }_{23.0}$ | 0.5\% |
 | 18.5\% | 4481.7 | 4482.2 | 0.5 | 0.0\% |
 | 19.8\% | 4341.6 | 4137.7 | 204.0 | -4.7\% |
 | 21.0\% | 4065.0 | 4045.4 | 19.6 | |
 | 22.2\% | 3999.3 | 4032.5 | 33.2 | 0.8\% |
 | 23.5\% | 3905.0 | ${ }^{3892.6}$ | -12.5 | -0.3\% |
 | 24.7\% | ${ }^{3661.5}$ | 3890.2 | 228.6 | 6.2\% |
 | 25.9\% | 3495.0 | 3515.9 | 20.9 | 0.6\% |
 | \% | 3400.9 | 3378.1 | 22.8 | 7\% |
 | 28.4\% | ${ }_{\text {3 }}^{3393.6}$ | ${ }^{3342.8}$ | - -14.8 | -1.5\% |
 | 30.9\% | ${ }^{3220.9}$ | ${ }_{3179.2}$ | -41.7 | -1.3\% |
 | 32.1\% | 3173.4 | 3178.2 | 4.9 | 0.2\% |
 | 33.3\% | 3132.5 | 3086.6 | -45.9 | -1.5\% |
 | 34.6\% | 2596.9 | 2444.0 | | -5.9\% |
 | 35.8\% | 2442.2 | ${ }^{24247.0}$ | -15.2 | -0.6\% |
 | 37.0\% | 2130.2 | 2267.2 | 137.0 | 6.4\% |
 | 38.3\% | 2107.3 | 2140.0 | 32.7 | 1.6\% |
 | 39.5\% | 2066.1 | 2082.3 | 16.2 | 0.8\% |
 | 40.7\% | 2034.4 | ${ }^{2066.8}$ | 32.4 | 1.6\% |
 | 42.0\% | 1957.5 | 2062.6 | 105.1 | 5.4\% |
 | 43.2\% | 1720.4 | 1883.6 | 163.2 | 9.5\% |
 | 44.4\% | 1684.4 | 1684.0 | -0.3 | 0.0\% |
 | 45.7\% | 1459.8 | 1454.3 | -5.5 | -0.4\% |
 | 46.9\% | 1454.8 | 1443.0 | -11.8 | -0.8\% |
 | 48.1\% | ${ }^{13522.3}$ | 1361.2 | 8.9 | 0.7\% |
 | 49.4\% | 1320.6 | 1323.9 | 3.2 | 0.2\% |
 | 50.6\% | 1201.9 | 1113.2 | -88.8 | -7.4\% |
 | 51.9\% | 1050.5 | 1054.9 | 4.5 | 0.4\% |
 | 53.1\% | 950.2 | 995.7 | 45.5 | 4.8\% |
 | 54.3\% | 923.3 | 971.0 | 47.7 | 5.2\% |
 | 55.6\% | 889.2 | 895.9 | 6.8 | 0.8\% |
 | 56.8\% | 888.8 | 882.2 | -6.6 | -0.7\% |
 | 58.0\% | 879.4 | 874.8 | -4.6 | -0.5\% |
 | 59.3\% | 851.8 | 862.9 | 11.1 | 1.3\% |
 | 60.5\% | 825.8 | ${ }^{833.3}$ | 7.5 | 0.9\% |
 | 61.7\% | 772.1 | 773.0 | 0.8 | 1\% |
 | 63.0\% | 769.3 | 770.2 | 0.9 | 0.1\% |
 | ${ }^{64.2 \%}$ | 647.4 | 664.0 | 16.7 | 6\% |
 | 65.4\% | 623.5 | 641.3 | 17.7 | 2.8\% |
 | ${ }^{66.7 \%}$ | 620.3 | ${ }^{632.3}$ | 12.0 | 9\% |
 | 67.9\% | 598.4 | 600.1 | 1.7 | 0.3\% |
 | 69.1\% | 536.1 | 541.3 | 5.2 | 10\% |
 | 70.4\% | 519.9 | 526.7 | 6.8 | 13\% |
 | 71.6\% | 483.8 | 510.8 | 27.1 | 5.6\% |
 | 72.8\% | 407.1 | 437.0 | 29.8 | 7.3\% |
 | 74.1\% | 368.1 | 410.2 | 42.1 | 11.4\% |
 | 75.3\% | 338.7 | 370.9 | 32.2 | ${ }^{9.5 \%}$ |
 | 76.5\% | 319.9 | 366.9 | 47.0 | 14.7\% |
 | 77.8\% | 315.4 | ${ }^{323.3}$ | 7.9 | 2.5\% |
 | 79.0\% | 2923 | 295.1 | 2.8 | 1.0\% |
 | 80.2\% | 288.4 | 288.4 | -0.1 | 0.0\% |
 | 81.5\% | 285.8 | 283.2 | -2.6 | -0.9\% |
 | - 82.78 | 220.0 | 229.6 | 9.6 | 4.3\% |
 | 84.0\% | 214.9 | 215.7 | 0.9 | 0.4\% |
 | 85.2\% | 212.0 | 212.3 | 0.3 | 0.1\% |
 | 86.4\% | 199.8 | 199.9 | 0.0 | 0.0\% |
 | 877\% | 199.4 | 199.6 | 0.2 | 0.1\% |
 | 88.9\% | 194.2 | 194.4 | 0.2 | 0.1\% |
 | 90.1\% | 191.7 | 191.9 | 0.1 | 0.1\% |
 | 91.4\% | 189.2 | 187.7 | 1.5 | -0.8\% |
 | 92.6\% | 185.4 | 185.6 | 0.2 | 0.1\% |
 | 93.8\% | 183.5 | ${ }^{183.6}$ | 0.1 | 0.1\% |
 | 95.1\% | 182.4 | ${ }^{182.3}$ | 0.0 | 0.0\% |
 | ${ }^{96.3 \%}$ | 182.0 | 182.1 | 0.1 | 0.0\% |
 | 97.5\% | 181.4 | 181.4 | 0.0 | .0\% |
 | 98.8\% | 181.2 | 181.3 | 0.0 | 0.0\% |
 | 100.0\% | 178.3 | 178.5 | 0.2 | 0.1\% |

 | $\begin{gathered} \text { Percent } \\ \hline \begin{array}{c} \text { Exceedance } \\ \text { Probobability } \end{array} \\ \hline \end{gathered}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | $\underbrace{}_{\substack{\text { DCR } 2015 \text { Wethout } \\ \text { Proiet }}}$ | DCR 2015 With Project | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOS/CM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | | ${ }^{\text {Monthly }}$ EC | Monthy EC | | |
 | （\％） | UMHHOSCM | UMHOSCM | | |
 | 12\％ | | 11677.5 | 44.3 | ${ }^{0.4 \%}$ |
 | ${ }_{\text {2．5\％}}^{1.2 \%}$ | 117172.9 | ${ }_{10564.2}^{1077.1}$ | ${ }_{-25.7}^{-4.6}$ | ${ }^{-3.6 \%}$ |
 | 3．7\％ | 10585.0 | 10312.1 | －272．9 | －2．6\％ |
 | 4．9\％ | 9243.2 | 9008.8 | －234．4 | －2．5\％ |
 | 6．2\％ | ${ }^{8956.3}$ | 8936.0 | －20．3 | －0．2\％ |
 | 7．4\％ | ${ }^{8416.8}$ | 8260.7 | －156．0 | －1．9\％ |
 | －8．9\％\％
 9.9% | ${ }_{7066.3}^{7234.6}$ | ${ }_{68876.2}^{7197.2}$ | － -197.5 -190 | ${ }_{-}^{-0.5 \%}$ |
 | ${ }^{9.9 \%}$ | ${ }^{7066.3}$ | ${ }_{6}^{6876.3}$ | －190．0 | －2．7\％ |
 | 11．1\％ | 6840.4 67758 | ${ }_{66657}^{678.1}$ | －${ }^{-510.3}$ | －－．8．6\％ |
 | | ${ }_{6} 6775.8$ | ${ }_{6}^{6665.7}$ | －110．1 | －-1.6%
 -3.0% |
 | 13．6\％
 14.8% | 6799.0 6508.9 | ¢6072．5 | -100.7 -10.4 | －－3．6\％ |
 | 16．0\％ | ${ }_{6}^{6321.8}$ | ${ }_{6023.2}$ | －358．6 | －5．6\％ |
 | 17．3\％ | ${ }^{6325.1}$ | 6015.2 | －309．9 | －4．9\％ |
 | － $\begin{aligned} & 18.5 \% \\ & 1989 \%\end{aligned}$ | 6207．0 60277 | 5966．3 59497 | -240.7 -780 | －-1.9% |
 | 21．0\％ | ${ }_{5955.6}$ | 5940.6 | －15．1 | －0．3\％ |
 | 22．2\％ | ${ }^{5949.6}$ | 5937.3 | －12．4 | －0．2\％ |
 | ${ }_{2}^{23.5 \%}$ | 5875.9 5846.0 | 5880.3 5878.9 | 4.4 329 | － 0.1% |
 | 25．9\％ | ${ }_{5845.3}$ | 5849.8 | 4.4 | 0．1\％ |
 | 27．2\％ | 5882.3 | 5836.9 | 16.6 | 0．3\％ |
 | ${ }_{29.6 \%}^{28.4 \%}$ | 5818.6 572.2 | 5804.4 57424 | －14．2 | |
 | 30．9\％ | 5722.6 | 5709.4 | －13．3 | －0．2\％ |
 | 32．1\％ | 5703.5 | 5694.6 | －9．0 | －0．2\％ |
 | 根34．6\％ | 5699.6 5610 | 5618.6 55859 | -80.9 24 | － $0.4 .4 \%$ |
 | 35．8\％ | 5430.8 | 5561.0 | ${ }_{130.2}$ | 2．4\％ |
 | | 5315.2 | 5410.3 | 95.0 | 1．8\％ |
 | 38．5\％\％ | 5121.0 4880.8 | 管5318．0．2 | 197.1 139.4 | －${ }_{\text {3，}}^{\text {2．9\％}}$ |
 | 40．7\％ | 4709.7 | 4605.3 | －104．4 | －2．2\％ |
 | 42．0\％ | 4614.4 | ${ }^{4495.3}$ | －119．2 | －2．6\％ |
 | 44．4\％ | ${ }_{4}^{4560.5}$ | ${ }_{4}^{44751.2}$ | －89．3 | －${ }_{\text {－2．5\％}}$ |
 | 45．7\％ | 4163.4 | 4182.2 | 18.8 | 0．5\％ |
 | | 4158.6 | 4159.4 | 0.9 | 0．0\％ |
 | 48．1\％ 4.4 | ${ }_{4}^{41113.4}$ | ${ }_{41113.1}^{4135.9}$ | ${ }_{-1.8}^{2.5}$ | － 0.0% |
 | 50．6\％ | 4082.0 | 4071.6 | －10．4 | －0．3\％ |
 | 51．9\％ | 4009.4 | ${ }^{3968.2}$ | －41．2 | －1．0\％ |
 | 年53．13\％ | 3994.8 3919.5 | ${ }_{\text {3597．0 }}^{3925.2}$ | －${ }_{-329.5}$ | ${ }_{-8,7.7}^{-1.7 \%}$ |
 | 55．6\％ | 3721.0 | 3493.8 | -227.2 | －6．1\％ |
 | 56．8\％ | ${ }^{3671.0}$ | 3288.0 | －383．0 | －10．4\％ |
 | | 3272.1 3210.0 | ${ }_{\text {3 }}^{32929.4}$ | ${ }_{-136.3}^{-42.7}$ | －${ }_{-1.3 \%}$ |
 | 60．5\％ | 3030.7 | 2959.8 | －70．9 | －2．3\％ |
 | ${ }^{61.7 \%}$ | 2987．8 | ${ }^{28886.1}$ | －101．7 | －3．4\％ |
 | －63．2\％ | ${ }_{2}^{299791.6}$ | ${ }^{2682.9}$ | ${ }^{-200.7}$ | －${ }_{\text {－}}^{\text {－}}$－3\％\％ |
 | 65．4\％ | 2759.7 | 2628.5 | －131．2 | －4．8\％ |
 | ${ }^{66.7 \%}$ | ${ }^{27355.1}$ | ${ }^{25750.1}$ | －165．0 | －6．0\％ |
 | 67．9\％ | 2565．6 2407 | ${ }_{2274.4}^{2530.7}$ | ${ }^{-35.0}{ }^{-133.4}$ | ${ }^{-1.45 \%}$ |
 | 70．4\％ | ${ }^{2311.2}$ | 2266.0 | －45．1 | －2．0\％ |
 | 71．6\％ | ${ }_{2}^{2133.9}$ | 2180.9 | 47.0 | ${ }^{2.2 \%}$ |
 | 74．1\％ | ${ }_{1}^{200151.1}$ | ${ }^{18564.9}$ | ${ }_{-9.5}$ | －0．5\％ |
 | 75．3\％ | 1517.1 | 1592.9 | 75.8 | 5．0\％ |
 | 76．5\％ | ${ }^{1426.8}$ | ${ }^{1306.1}$ | | －8．5\％ |
 | 779．8\％ | | ${ }_{11242.6}^{1290.7}$ | -56.3
 -80.8 | －4．4\％ |
 | 80．2\％ | 1284.8 | 1216.1 | 3．6 | －5．3\％ |
 | 81．5\％ | 1022.8 | 1004.1 | －18．7 | －1．8\％ |
 | 82．7\％ | ${ }_{753.6}$ | 793.2 | 39.7 | 5．3\％ |
 | 84．0\％ | ${ }^{637.6}$ | | ${ }^{69.6}$ | |
 | 88．4\％ | ${ }_{608.4}^{629.4}$ | ${ }_{633.2}^{639.0}$ | ${ }_{29} 9.6$ | 4．1\％ |
 | 87．7\％ | 584.7 | 606.2 | 21.5 | 3．7\％ |
 | 88．9\％ | 445.1 | 401.4 | －43．7 | －9．8\％ |
 | 90．14\％ | 270.1 250.0 | ${ }_{251.0}^{258.5}$ | -11.7 1.0 | －4．4\％ 0 |
 | 92．6\％ | ${ }_{2210.6}^{220.6}$ | 220.7 | 0.1 | 0．0\％ |
 | ${ }^{935.8 \%}$ | 214.3 210.0 | ${ }_{2057}^{209.0}$ | －5．3 | －2．5\％ |
 | ${ }_{96.3 \%}$ | 208.8 | 204.6 | ${ }_{-4.2}$ | －2．0\％ |
 | 97．5\％ | ${ }_{203.6}$ | 201.7 | －1．9 | |
 | 98．8\％ | 186．6 | 187.1 1820 | 0.5 | |
 | 100．0\％ | | 182.0 | 0.0 | |

 | PereentPreadanceProbability | September | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | DCR 2015 With Project | Absolute | Reative |
 | | Monthy E C | Monthly EC | （ifiference | Difference（\％） |
 | （\％）${ }^{(\%) \%}$ | （UnHOSICM） | － | ． 1283 | |
 | 1．2\％ | 135139 | 13653 | | |
 | 2．5\％ | 133119 | 134464 | 134.5 | |
 | 3．7\％ | 13181.7 | 13277.7 | 96.0 | 0．7\％ |
 | 4．9\％ | 13146.9 | 13190.3 | 43.4 | 0．3\％ |
 | 6．2\％ | 13028.7 | 13132.3 | 103.6 | |
 | 7．4\％ | 13016.9 | 13075.1 | 58.2 | |
 | 8．6\％ | 12974.0 | 13043.2 | 69.3 | |
 | 9．9\％ | 12942.8 | 12975.7 | 2．9 | |
 | 11．1\％ | 12832.6 | ${ }^{12631.5}$ | 201.1 | |
 | 12．3\％ | 12682.1 | 12582.8 | －99．3 | －0．8\％ |
 | 13．6\％ | ${ }^{126777.6}$ | 12265.4 | －412．3 | ${ }^{3.3}$ |
 | 14．8\％ | 12627.4 | 12250.0 | 377.4 | |
 | 16．0\％ | ${ }^{125552.4}$ | ${ }^{121880.1}$ | －372．2 | －3．0\％ |
 | 17．3\％ | 12551.3 | 12136.8 | －414．5 | －3．3\％ |
 | 18．5\％ | 12517.9 | 12025.1 | －492．9 | －3．9\％ |
 | 19．8\％ | 12461.0 | 11932.4 | －528．5 | 4．2\％ |
 | 21．0\％ | 12395.7 | 11900.6 | －495．1 | 4.0 |
 | 22．2\％ | 12344.0 | 11889.1 | －454．9 | －3．7\％ |
 | 23．5\％ | ${ }^{12310.7}$ | ${ }^{111853.3}$ | 457.4 | －3．7\％ |
 | 24．7\％ | 12256.2 | 11804.9 | －451．3 | －3．7\％ |
 | 25．9\％ | ${ }^{122224,3}$ | 11629.8 | －594．5 | －4．9\％ |
 | 27．2\％ | 12205.4 | 11528.1 | －677．3 | ${ }^{5.5}$ |
 | 28．4\％ | ${ }_{121855}^{12185}$ | ${ }_{11355.8}^{11398}$ | 789.8 | 6．5\％ |
 | 29．6\％ | 12130.6 | 11355.9 | －774．7 | 6．4\％ |
 | 30．9\％ | ${ }^{120477.1}$ | 11183.4 | 863.6 | －7．2\％ |
 | 32．1\％ | 12009.8 | 11120.1 | 889.7 | －7．4\％ |
 | 33．3\％ | 11987.5 | 111062.1 | －925．4 | －7．7\％ |
 | 34．6\％ | 11764.2 | 10962.9 | ${ }^{801.3}$ | 6．8\％ |
 | 35．8\％ | ${ }_{111672.6}^{1189}$ | 107988.7 | －873．9 | －7．5\％ |
 | 37．0\％ | 11608.7 | 10583.8 | 1024.9 | 8．8\％ |
 | 38．3\％ | 11482.1 | 10531.0 | －951．0 | 8．3\％ |
 | 39．5\％ | 10999.0 | 10519．3 | 470.7 | －4．3\％ |
 | 40．7\％ | 10757.2 | 10464.6 | －292．6 | －2．7\％ |
 | 42．0\％ | 10722.7 | 10421.3 | ${ }^{-301.5}$ | －2．8\％ |
 | 43．2\％ | 10617.9 | 1032200 | －297．9 | －2．8\％ |
 | 44．4\％ | 10498.6 | 10223.6 | 275.0 | －2．6\％ |
 | 45．7\％ | 104099．4 | 9949.9 | －459．4 | －4．4\％ |
 | 46．9\％ | 10306.7 | 9868.7 | －438．1 | －4．3\％ |
 | 48．1\％ | 10267.5 | 9813.0 | －454．4 | －4．4\％ |
 | 49．4\％ | 10248.0 | 9788.4 | －459．6 | －4．5\％ |
 | 50．6\％ | 10044.0 | 9786.6 | －257．4 | －2．6\％ |
 | 51．9\％ | 10028.4 | 9604.2 | －424．2 | －4．2\％ |
 | 53．1\％ | 9899．4 | ${ }^{9083.8}$ | －815．7 | 8．2\％ |
 | 54．3\％ | ${ }^{5792.6}$ | ${ }^{5470.3}$ | ${ }^{-322.2}$ | －5．6\％ |
 | 55．6\％ | 5700.6 | 5462.8 | －237．9 | 4．2\％ |
 | 56．8\％ | 5650.9 | 5400.6 | ${ }^{250.3}$ | －4．4\％ |
 | 58．0\％ | 5564.1 | 53881.1 | －1829 | －3．3\％ |
 | 59．3\％ | 5529.7 | 5354.1 | －175．6 | －3．2\％ |
 | 60．5\％ | 5482.0 | ${ }_{5}^{5305.5}$ | －176．5 | －3．2\％ |
 | ${ }^{61.7 \%}$ | 5415.1 | 5251.2 | －163．9 | －3．0\％ |
 | 63．0\％ | ${ }_{5}^{5380.9}$ | ${ }_{5}^{5243.0}$ | －137．9 | －2．6\％ |
 | ${ }^{64.2 \%}$ | 5274.0 | 5025.0 | 249.0 | －4．7\％ |
 | 65．4\％ | 5171.7 | 4910.6 | －261．1 | －5．0\％ |
 | ${ }^{66.7 \%}$ | 5041.0 | 4853.5 | －187．5 | －3．7\％ |
 | 67．9\％ | ${ }^{4632.1}$ | ${ }^{4453.5}$ | －178．6 | －3．9\％ |
 | 69．1\％ | 3330．4 | ${ }^{3180.6}$ | 149.8 | －4．5\％ |
 | 70．4\％ | ${ }^{3155.3}$ | 3094.0 | －61．3 | －1．9\％ |
 | 71．6\％ | ${ }^{3003.4}$ | ${ }_{2}^{2999.8}$ | －53．6 | 1．8\％ |
 | 72．8\％ | ${ }^{2938.0}$ | ${ }_{2}^{2933.6}$ | －4．4． | －0．2\％ |
 | 74．1\％ | 2889.0 | ${ }^{2933.5}$ | 54.5 | 1．9\％ |
 | 75．3\％ | ${ }^{2853.4}$ | 2840.7 | －12．7 | －0．4\％ |
 | 76．5\％ | 284.1 | ${ }^{2808.8}$ | －38．3 | ${ }^{-1.3 \%}$ |
 | 77．8\％ | ${ }^{28282.8}$ | ${ }_{2756.5}$ | －46．2 | 1．6\％ |
 | 79．0\％ | ${ }_{2724.1}^{2829}$ | ${ }^{2756.6}$ | 67.4 | 2．4\％ |
 | 80．2\％ | 22793.7 | ${ }_{25473}^{2754}$ | －39．1 | －1．4\％ |
 | 81．5\％ | 27497 | ${ }^{2697.3}$ | 52．4 | 1．9\％ |
 | 82．7\％ | 2747.0 | ${ }^{2650.0}$ | －97．0 | 3．5\％ |
 | 84．0\％ | ${ }^{2772.2}$ | ${ }^{2648.7}$ | 93．4 | ．4\％ |
 | 85．2\％ | ${ }_{2736.4}$ | ${ }^{25959.1}$ | －141．3 | 5．2\％ |
 | ${ }^{86.4 \%}$ | 2704.8 | ${ }^{258991}$ | －115．8 | 4．3\％ |
 | 限 87.7% | ${ }^{26355.8}$ | 2573.8 25279 | －62．0 | 2．4\％ |
 | ${ }^{88.9 \%}$ | ${ }^{2596.0}$ | ${ }_{2}^{2527.9}$ | ${ }^{668.0}$ | ${ }^{2.6 \%}$ |
 | 90．1\％ | ${ }_{2553}^{258}$ | ${ }^{2488.7}$ | －65．1 | 2．5\％ |
 | ${ }^{91.4 \%}$ | ${ }^{2529.4}$ | ${ }^{246667}$ | 62.7 | 2．5\％ |
 | 92．6\％ | 2467.0 | ${ }^{23227.9}$ | －139．1 | 5．6\％ |
 | －93．8\％ | ${ }_{2}^{246392}$ | ${ }_{\text {2 }}^{2326.4}$ | ${ }^{136.8}$ | ${ }^{-5.6 \%}$ |
 | 95．1\％ | ${ }_{22390}^{2439}$ | ${ }^{22296.7}$ | 133．0 | 5．5\％ |
 | 97．5\％ | ${ }_{2330.6}^{2329}$ | ${ }_{2193}^{2274}$ | －56．5 | 2．4\％ |
 | 97．5\％ | ${ }^{2248.3}$ | 1160.3 | 88.0 | －3．9\％ |
 | | ${ }_{9} 9$ | ${ }_{9}^{1998.0}$ | ¢ ${ }^{113.3}$ | 7．5\％ |

 Figure SQ-24-b
 Sacramento River at Port Chicago (Roe Island), Monthly EC

 | Percent
 Exceedance
 Probability | October | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {DCR } 2015}$ Without | DCR 2015 With Project | Absolute | |
 | | Monthly EC | Monthly EC | （itierersce | fference（\％） |
 | （\％） | （umHosicm） | （UnHosicm） | | |
 | 0．0\％ | 19438.3 | 19514.6 | 76.3 | 0．4\％ |
 | 1．2\％ | ${ }^{193785}$ | 19390.1 | ${ }^{11.8}$ | 0.1 |
 | 2．5\％ | 19355.8 | 19220.1 | －1357 | |
 | 3．7\％ | 19258.4 | 190559 | －2025 | |
 | 4．9\％ | 19157.7 | 18677.0 | －480．6 | |
 | 7．4\％ | ${ }_{1900272}^{1987}$ | 18648.0 185994 | －${ }_{-438.3}$ | ${ }_{-2.3 \%}^{-2.2 \%}$ |
 | 8．6\％ | 18988.8 | 18421.0 | －567．8 | －3．0\％ |
 | 9．9\％ | 18921.8 | 18394.3 | －527．5 | －2．8\％ |
 | ${ }^{11.1 \%}$ | 18887.8
 18578
 | 18221.4
 181256 | ${ }_{\text {－}}^{-646.4}$ | －3．4\％ |
 | －${ }^{12.3 \%} \times 1.6 \%$ | 18757.8 | ${ }^{181255.6}$ | | |
 | 14．8\％ | ${ }_{184466.5}^{1846}$ | 178977．0 | －－499．4 | －2．4\％ |
 | 16．0\％ | 18420.6 184157 1 | 17973.5
 179313
 1 | － 4.447 .2 | －2．4\％ |
 | 18．5\％ | 18412.5 | 17925.0 | －487．5 | ${ }_{-2.6 \%}$ |
 | 19．8\％ | 18392.0 | 17923.4 | －468．5 | －2．5\％ |
 | ${ }_{2}^{21.0 \%}$ | 18379.7 183362 | 17842.5 177697 | －${ }_{-566.5}$ | － |
 | 23．5\％ | 18329.8 | 17745.2 | －584．6 | －3．2\％ |
 | 24．7\％ | 18232.0 | 17700.6 | －525．3 | －2．9\％ |
 | 27．7．2\％ | 18195.6 18180.7 | （17668．8 | ${ }_{\text {－}}^{\text {－522．9 }}$ | ${ }_{-2.9 \%}^{-2.9 \%}$ |
 | 28．4\％ | 18111.8 | 17526.6 | －585．2 | －3．2\％ |
 | 29．6\％ | 18107.9 | 17437.2 | －670．7 | －3．7\％ |
 | －${ }^{30.9 \%}$ | 17999.4 17921.8 | 17366.5
 173463 | ${ }_{-575.9}^{-582.9}$ | －3．3\％${ }_{-3.2 \%}$ |
 | 33．3\％ | 17870.7 | 17283.5 | －587．3 | －3．3\％ |
 | | 17686.9 | 17247.0 | －439．9 | －2．5\％ |
 | 37．0\％ | 17612.4 | ${ }_{17225.7}^{1727.0}$ | ${ }_{\text {－386．7 }}^{\text {－387．3 }}$ | ${ }_{-2.2 \%}^{-2.2 \%}$ |
 | 38．3\％ | 17539.8 | 17191.6 | －348．2 | －2．0\％ |
 | | 17451.0 | | －317．5 | －1．8\％ |
 | ${ }^{40.7 \%}$ | 174070
 17365.6
 1 | 16979.6 168864 | ${ }^{-42793}$ | ${ }_{-2.8 \%}^{-2.5 \%}$ |
 | 43．2\％ | 17291.0 | 16828.6 | －462．3 | ${ }_{-2.7 \%}$ |
 | | 17139.9 | | －460．0 | －2．7\％ |
 | 45．7\％ | 17112.2
 17098.5
 1 | 16673.3 16563.5 | － -535.9 | －${ }_{-2.1 \%}^{-2.6 \%}$ |
 | 48．1\％ | 17095.2 | 16517.7 | －577．5 | 3．4\％ |
 | | | | －750．8 | －4．4\％ |
 | 50．1．9\％ | 16938.1 16823.8 | 16318.3 16887.7 | －
 -539.1
 －19．8 | －3．3\％ |
 | 53．1\％ | 11876.0 | 11910.4 | 34.4 | 0．3\％ |
 | 54．3\％ | 11857.9 | 11700.1 | －157．8 | －1．3\％ |
 | 56．8\％ | ${ }_{111881.7}$ | 11643.7 11629.9 | ${ }_{\text {－}}^{\text {－163．7 }}$ | ${ }^{-1.4 \% \%}$ |
 | 58．0\％ | 11679.3 | 11625.9 | －53．4 | －0．5\％ |
 | 59．3\％ | 11664.4 | 11541.6 | －122．8 | －1．1\％ |
 | 笛60．5\％ | 11662.0 11507.5 | 11464.9 11459.8 | －－197．1 | －0．4\％ |
 | 63．0\％ | 11497.4 | 11360.7 | －136．7 | －1．2\％ |
 | ${ }^{64.2 \%}$ | 11488.9 | 11311.2 | －177．7 | －1．5\％ |
 | | 11173.2 10763.2 | 11039.6 10593.4 | －133．6 -1698 | －1．6\％ |
 | 67．9\％ | ${ }^{8353.9}$ | 8295.4 | －58．6 | 0．7\％ |
 | 69．19\％ | 8201.2 | 8140.8 | －60．4 | －0．7\％ |
 | 70．1．6\％ | ${ }_{8}^{81987.4}$ | 8117.2 8099.6 | -80.2
 -86.4
 8 | －1．1\％ |
 | 72．8\％ | 8132.2 | 8012.1 | －120．0 | －1．5\％ |
 | | 8091.1 | 8003.9 | －87．2 | |
 | 75．3\％ | ${ }_{7}^{89787.0}$ | ${ }_{79292.5}^{7998.4}$ | －79．9 | －0．0\％ |
 | 77．8\％ | 7924.4 | 7996.8 | －17．5 | －0．2\％ |
 | | | | －74．5 | －0．9\％ |
 | － | 7871.8 7888.2 | 7831.8 7782.8 | －39．9． －85 | ${ }^{-0.1 .1 \%}$ |
 | 82．7\％ | 7850.8 | 7776.4 | －74．4 | －0．9\％ |
 | －84．0\％ | 7847.4 7846.7 | 7768.6 77626 | －78．7 | |
 | ${ }_{\text {86．4\％}}$ | ${ }_{7806.9} 780.7$ | 7715.2 | －91．7 | －1．2\％ |
 | 87．7\％ | 7776.9 | 7686.2 | －90．7 | －1．2\％ |
 | 88．9\％ | 7754.1 | 7664.9 | －89．3 | －1．2\％ |
 | 90．1\％ | 7661.3 | 7625.7 | －35．6 | －0．5\％ |
 | －${ }_{\text {92．6\％}}^{91.4 \%}$ | ${ }_{763612}^{7636}$ | 7568.8 75498 | －67．8 | －0．9\％ |
 | 93．8\％ | ${ }_{7445.8} 70.2$ | 7541.0 | ${ }_{95.3}$ | 1．3\％ |
 | 95．1\％ | 7377.4 | 7432.7 | 55.3 | 0．7\％ |
 | 96．3\％ | 7053.4 | ${ }_{7}^{7263.0}$ | 209.6 | 3．0\％ |
 | 97．5\％${ }_{\text {98．8\％}}$ | ${ }^{688997}$ | 7156.4 | ${ }^{286.7}$ | ${ }^{4.2 \%}$ |
 | 100．0\％ | ${ }_{6}^{6.011 .7}$ | ${ }_{4,930.1}$ | ${ }_{-1,081.6}$ | 18．0\％ |

 | Percent | November | | | | ecember | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | DCR 2015 Without | DCR 2015 With Project | | | $\xrightarrow{\text { Percent }}$ Excedance | DCR 2015 Without | DCR 2015 With Project | Absolute | |
 | Probabaily | Monthly EC | Monthly EC | （itiference | Herence（\％） | Probability | Montly ${ }^{\text {M C }}$ | Montly E EC | （itiference | fference（\％） |
 | （\％） | UnHos | 108 | | | （\％） | 10 | （unHosicm） | | |
 | 12\％ | 19877.9 | 19843.1 | 25.3 | －17\％ | 0．0\％ | ${ }^{1943550.0}$ | 19042.1 | ${ }^{-382.9}$ | ${ }^{-2.0 \%}$ |
 | 1．2\％ | 19674.9 | 19545.1 | －129．8 | －0．7\％ | 1．2\％ | 19300.3 | 18668.6 | ${ }^{-631.6}$ | |
 | 2．5\％ | 19592.4 | 18990.2 | ${ }^{-602.2}$ | －3．1\％ | 2．5\％ | 18390.2 | 18022.6 | －3670 | |
 | 3．79\％ | 19194.9 | 186093 | ${ }^{-585.6}$ | －3．1\％ | 3．7\％ | 18108.9 | 18002.0 | －1069 | |
 | 4．9\％ | 19095.1 | 185277.8 | －567．3 | －3．5\％ | 4．9\％ | 18087.0 | 17822 | ${ }^{-264.8}$ | －1．5\％ |
 | 6．2\％ | 19060.3 | 18388.6 | －671．8 | －3．5\％ | 6．2\％ | 18030.3 | 17882.4 | | |
 | 7．4\％ | 18765．2 | 18219.7 | ${ }^{-545.6}$ | －2．9\％ | ${ }^{7.4 \%}$ | 18028．1 | 17787．85 | －246．3 | |
 | 8．9\％ | ${ }_{1853845}$ | 18208．4 | －330．2 | ${ }^{-1.8 \%}$ | 8．6\％ | 17963.1 | 17738．5 | ${ }^{-2224.6}$ | －1．5\％ |
 | 11．1\％ | 18265.0 | 17993.6 | －271．4 | －1．5\％ | 11．1\％ | 17954．2 | 17597．0 | -3657.2 -3 | －－2．0\％ |
 | 12．3\％ | 18212.1 | 17969.4 | －242．7 | －1．3\％ | 12．3\％ | 17928.1 | 17545.4 | －382．7 | －2．1\％ |
 | | 18173.2
 181428 | 178555
 178259
 1 | －317．5 -3168 | －-1.7% | | 17872.3 177787 | 17463.0
 173894 | －－40933 | ${ }_{-2,2 \%}^{-2.3 \%}$ |
 | 14．8\％ | 18142.8 | ${ }^{1787559}$ | －316．8 | －1．7\％ | 14．8\％ | 17778.7 | 17389.4 | ${ }^{-38993}$ | －2．2\％ |
 | 117．0\％ | 18132.0 181315 | 177763.3
 17728.3 | | ${ }_{-2.2 \%}^{-2.0 \%}$ | （17．3\％ | 17619.3
 176122
 1 | 17345.8 17326.3 | ${ }_{-285.5}^{-273.5}$ | －－1．6\％ |
 | | 18131.5 18131.0 | ${ }_{1771428.3}$ | －403．3 | ${ }_{-2.3 \%}^{-2.2 \%}$ | 17．5\％ | 177612.2 17513.2 | 17326.3 16816.9 | ${ }_{\text {－}}^{\text {－}}$－ 895.9 | －1．6\％ |
 | 19．8\％ | 18072.3 | 17709.8 | ${ }_{-362.5}$ | ${ }_{-2.0 \%}$ | 19．8\％ | 16620.5 | 16755.4 | 134.9 | 0．8\％ |
 | 21．0\％ | 18027.1 179950 | 17683．7 | －343．5 | －1．9\％ | 21．0\％ | 16321．6 | 16570.0 165177 | 248.4 2248 | 1．5\％ |
 | 22．5\％ | 17920.4 | 17591.9 | ${ }^{-328.5}$ | －1．8\％ | 22．5\％ | 16241.1 | 16481.2 | | ${ }^{1.5 \%}$ |
 | 24．7\％ | 17922.2 | 17529.7 | －390．4 | －2．2\％ | 24．7\％ | 15588.7 | 16236.5 | 647.8 | 4．2\％ |
 | 227．2\％ | 17723.0 17641.4 | 17432.1
 17385.5 | -290.8
 -2558 | －1．5\％ | ${ }^{25.59 \%}$ | 15059.3
 14844 | 16048.9 15540.5 | 989.6 6963 | 6．6\％ |
 | | 17590.8 | 17337.5 | ${ }_{-253.3}$ | －1．4\％ | 28．4\％ | 13859.3 | 15310.9 | 1451.6 | |
 | 29．6\％ | 17589.7 | 17335.0 | －254．6 | －1．4\％ | 29．6\％ | 13579.0 | 15006.2 | 1427.2 | 10．5\％ |
 | 30．9\％ | 17558.2 | 17214.1 171597 | －344．0 | －2．0\％ | 30．9\％ | ${ }^{13452.9}$ | 14933.1 | 1480.2 | 11．0\％ |
 | 32．1\％ | 17499.0 | 17159.7 | －339．3 | －1．9\％ | 32．1\％ | 13248.3 | 13944.6 | 696.3 | 5．3\％ |
 | | 17490.1
 17475 | 17147.6 17079.6 | －342．5 | ${ }_{-2}^{-2.0 \%}$ | 33.3% 34.6% | 13242.0
 131329 | 13789.1
 138848 | 547.1 5520 | 4．1\％ |
 | 35．8\％ | 17376.3 | 17065.8 | -310.5 | －1．8\％ | 35．8\％ | 12776.1 | 13585.4 | 809.3 | 6．3\％ |
 | 37．0\％ | 17290.7 | 16746.3 | －544．5 | －3．1\％ | 37．0\％ | 12639.6 | 13459.0 | 819.4 | 5\％ |
 | 38．5\％ | 17112.2 16976.4 | 16555.5 16529.8 | ${ }_{-.546 .7}$ | －3．3\％ | 38．3\％${ }^{3}$ | 1256999 12499.0 | 13000.3 12598.5 | 430.4 99.6 | 3．4\％\％ |
 | 40．7\％ | 16832.4 | 16451.7 | －380．7 | －2．3\％ | 40．7\％ | 12404.0 | 12578.8 | 174.7 | 1．4\％ |
 | 42．0\％ | 16723.9 | 16298.4 | －425．5 | －2．5\％ | 42．0\％ | 12261.4 | 12572.0 | 310.6 | 2．5\％ |
 | 44．4\％ | 16514.4 15619.0 | 15404.8 15180.8 | －-1109.6 | －6．7\％ | ${ }^{43.2 \%} 4$ | 11983.0 11915.2 | 12470.8 12327.4 | ${ }^{487.9}$ | ${ }_{3.5 \%}^{4.1 \%}$ |
 | 45．7\％ | 15416.3 | 14832.6 | －583．7 | －3．8\％ | 45．7\％ | 11718.2 | 11399.9 | －318．4 | －2．7\％ |
 | 46．9\％ | 14423.0 | 14574.7 | 151.8 | 1．1\％ | 46．9\％ | 11651.4 | 11388.4 | －263．0 | －2．3\％ |
 | 49．4\％ | 13352.0 12518.3 | 14572.4 11494.7 | －12023．7 | ${ }_{-8.2 \%}^{9.1 \%}$ | ${ }^{48.1 \%} 4.4 \%$ | 11437.0 10978.4 | 11371.0 109460 | －－66．4 | －${ }_{\text {－}}^{\text {－0．3\％}}$ |
 | 50．6\％ | 11229.6 | 11220.8 | －8．8 | －0．1\％ | 50．6\％ | 10803.8 | 10700.7 | －103．1 | －1．0\％ |
 | 51．9\％ | 11173.5 | 11144.3 | －29．2 | －0．3\％ | 51．9\％ | 10741.0 | 10655．1 | －85．9 | －0．8\％ |
 | 55．3\％ | 11146.3 11050.9 | 11094.2
 11023 | $\begin{array}{r}-52.1 \\ -27.6 \\ \hline\end{array}$ | －0．0．2\％ | 54．3\％ | ${ }_{10662.4}^{10695}$ | 10602.6 10545.6 | －-192.6 | －${ }_{\text {－}}$ |
 | 55．6\％ | 10982.5 | 10933.0 | －49．5 | －0．5\％ | 55．6\％ | 10445.9 | 10414.2 | －31．7 | －0．3\％ |
 | ${ }^{56.8 \%}$ | 10960.9 | 10882.9 | －78．0 | ${ }^{-0.7 \%}$ | 56．8\％ | 10404.1 | 10401.9 | －2．2 | 0．0\％ |
 | 55．3\％ | ${ }_{10}^{109335.7}$ | 10879.0 10871.2 | －54．7． | ${ }^{-0.5 \%}$ | | 10274.8 10050.3 | 10332.5 10304.7 | 97，
 294.4 | ${ }_{\text {2 }}^{\text {2．5\％}}$ |
 | 60．5\％ | 10914.4 | 107077 | －206．7 | －1．9\％ | 60．5\％ | 10028.6 | 102997 | 271.1 | 2．7\％ |
 | 61．7\％ | 10655.2 | 10275.8 | －379．4 | ${ }^{-3.6 \%}$ | 61．7\％ | ${ }^{9932.2}$ | 10273.0 | 340.8 | 3．4\％ |
 | 664．2\％ | ${ }_{84246.6}^{10362}$ | 8773.4 8380.8 | -1622.7
 -438 | － | （ 63.0% | 9850.5 8186.7 | 10133.8 10076.2 | 283.4 1889.5 | ${ }^{2.9 \%}$ |
 | 65．4\％ | 8175.8 | 8156.9 | －18．9 | －0．2\％ | 65．4\％ | 7911.5 | 9879.6 | 1988.1 | 24．9\％ |
 | 66．7\％ | 7946.1 | 8841.1 | 95.0 | 1．2\％ | 66．7\％ | 7291.6 | 9879.5 | 2587.9 | 35．5\％ |
 | 669．9\％ | ${ }^{78555.1}$ | 7880.9 7729.6 | 5．88． | －0．6\％ | － 67.9% | 析 67777.6 | 89935．3 | ${ }_{\text {cher }}^{2157.8}$ | － |
 | 70．4\％ | 7700.8 | 7659.6 | －41．2 | －0．5\％ | 70．4\％ | 5826.9 | 6716.2 | 889.3 | 15．3\％ |
 | 77．6\％ | 7696.0 | 7649.5 | －46．5 | －0．6\％ | 71．6\％ | 5794.4 | ${ }^{6665.4}$ | 877.0 | 15．0\％ |
 | 774．1\％ | 7546.0 7544.8 | ${ }_{7}^{76035.1}$ | ${ }_{\text {－491．}}$ | －0．9\％\％ | － $72.8 .1 \%$ | 55773．6 | 6604．8 6197.1 | 831.1 626.7 | ${ }^{14.4 .2 \%}$ |
 | 75．3\％ | 7525.0 | 7884.2 | －40．8 | －0．5\％ | 75．3\％ | 4807.4 | 6130.4 | 1323.0 | 27．5\％ |
 | 76．5\％ | 7507.9 | ${ }_{7}^{7481.3}$ | ${ }^{-26.6}$ | ${ }^{-0.4 \%}$ | 76．5\％ | 4898.1 | 4788.5 | 70.4 | ${ }^{1.5 \%}$ |
 | 779．0\％ | ${ }_{7368.3}^{7375.3}$ | ${ }_{7321.7}^{7475.5}$ | 100.3 -46.6 | － | 77．0\％ | 4135.0 4026.2 | ${ }_{3}^{4984.0}$ | ${ }_{\text {－42．2 }}^{580.7}$ | －1．0\％ |
 | 80．2\％ | 7357.0 | 7318.4 | －38．6 | －0．5\％ | 80．2\％ | 3313.0 | ${ }^{3034.2}$ | －278．8 | －8．4\％ |
 | 81．5\％ | 7350.0 | ${ }_{7311.8}^{73377}$ | －38．2 | －0．5\％ | 81．5\％ | 2999.5 | ${ }_{26338}^{2638.9}$ | ${ }^{-352.7}$ | －11．8\％ |
 | 884．0\％ | ${ }_{721282.8}^{7282.1}$ | 71934.7 7197 | －47．4 | ${ }^{-0.7 \% \%}$ | － | 2694.0 1931.2 | 2623．4 1913.7 | -70.6 -17.5 | ${ }_{-0.9 \%}^{-2.9 \%}$ |
 | 85．2\％ | 7208.8 | 7176.7 | －32．1 | －0．4\％ | 85．2\％ | 1558.1 | 1770.0 | 141.9 | 9．1\％ |
 | ${ }^{88.4 \%}$ | 7167.0 | 7169.4 | | 0．0\％ | ${ }^{86.44 \%}$ | 1519.0 | | | |
 | 888．9\％ | ${ }^{71095.1}$ | ${ }_{7}^{713055.0}$ | 24.9 -2.0 | －0．4\％\％ | － $\begin{aligned} & 87.7 \% \\ & 88.9 \%\end{aligned}$ | 1405．1 1309.6 | ${ }_{1}^{12271.8}$ | ${ }_{-86.3}^{-133}$ | ${ }^{-9.56 \%}$ |
 | 90．1\％ | ${ }_{\text {c }}^{6963.1}$ | 6919．7 | －4．4．4 | －0．6\％ | 90．1\％ | 899.5 | 1054.5 | ${ }^{155.0}$ | 17．2\％ |
 | －91．4\％ | ${ }^{6953.8}$ | ${ }_{6}^{69989.4}$ | －45．4 | ${ }_{\text {－}}^{0.9 \% \%}$ | | 814.2 | | | ${ }^{24.3 \%}$ |
 | 93．8\％ | ${ }_{5787.6} 6$ | ${ }_{6650.2}$ | 862.6 | 14．9\％ | 93．8\％ | ${ }_{514.8}^{62.8}$ | ${ }_{533.1}^{53.3}$ | ${ }_{18.3}$ | 3．6\％ |
 | 95．1\％ | 5382.1 | 5167.1 | －215．1 | －4．0\％ | 95．1\％ | 298.6 | 311.9 | ${ }^{13.3}$ | |
 | 967．5\％ | ${ }^{3269.1}$ | ${ }_{19997.3}^{2980.6}$ | 184．9 | －7．8\％ | 97．5\％ | ${ }_{240.5}^{275.9}$ | ${ }_{2358}^{200.6}$ | ${ }_{-4.7}$ | |
 | 98．8\％ 100．0\％ | 1784.8 671.4 | 1922.9 667.4 | －138．2 | － | 98．8\％ 100．0\％ | 203.5 185.3 | ${ }_{185.3}^{206.2}$ | ${ }_{-0.1}^{2.7}$ | |

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probabilily } \end{aligned}$ | January | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | $\underset{\text { DCR } 2015 \text { Without }}{\text { Proiet }}$ | DCR 2015 With Project | Absolute | Relative |
 | | Monthly EC | Monthy EC | （UWHOSICM） | Iference（\％） |
 | \％） | （UMHOSOCM） | UMHosicm | | 3．6\％ |
 | 0．0\％ | 15944.0 | 16512.4 | 568.4 | |
 | 1．2\％ | 15936.0 | 15747.4 | －188．6 | －1．2\％ |
 | 2．5\％ | ${ }^{15355.2}$ | 15580.7 | 225.4 | 1．5\％ |
 | 3．7\％ | 15285.0 | 15297.9 | 13.0 | 0．1\％ |
 | 4．9\％ | 148988 | 14932.8 | 33.9 | 0．2\％ |
 | 6．2\％ | 14496.4 | ${ }^{147733.9}$ | 207.5 | 1．4\％ |
 | 7．4\％ | 14351.9 | 14633.3 | 281.4 | 2．0\％ |
 | 8．6\％ | 14205.2 | 14428.1 | 222.8 | 1．6\％ |
 | 9．9\％ | ${ }^{139988.6}$ | 14172.2 | 173.6 | 1．2\％ |
 | 11．19\％ | 13690.6 13487 | 141422.5 | 452.0 | 3．3\％ |
 | 12．3\％ | ${ }^{13487.3}$ | ${ }^{13877.5}$ | 390.2 | 2．9\％ |
 | 13．6\％ | ${ }^{134477.6}$ | 13695.5
 13325 | 287.9 | 2．1\％ |
 | 14．8\％ | ${ }^{13342.0}$ | ${ }^{13333.1}$ | －8．9 | －0．1\％ |
 | 16．0\％ | ${ }^{130233.5}$ | 13294．4 | ${ }_{2}^{270.8}$ | 2．1\％ |
 | 17．3\％ | 12996.1 | ${ }^{132333.3}$ | 237.2 | 1．8\％ |
 | 18．5\％ | 12826．4 | 132307
 12928 | 404.3 | 3．2\％ |
 | 19．8\％ | ${ }^{12551.1}$ | ${ }^{12982.8}$ | 431.6 | 3．4\％ |
 | 21．0\％ | ${ }^{1254999}$ | 12946.5 | ${ }_{306.7}$ | ${ }^{3.2 \%}$ |
 | 22．2\％ | 1230228
 121975
 1 | 12510.1 | 2077 | 1．7\％ |
 | 23．5\％ | ${ }^{121979.5}$ | ${ }^{123655.1}$ | ${ }^{167.6}$ | 1．4\％ |
 | 24．7\％ | ${ }^{119344.8}$ | ${ }^{12351.3}$ | 416.5 | 3．5\％ |
 | 25．9\％ | ${ }^{119353.3}$ | 12012.1 | 78.9 | 0．7\％ |
 | 27．2\％ | 11350.3 | 11974.6 | ${ }_{624}^{624}$ | 5．5\％ |
 | 28．4\％ | ${ }^{110652.9}$ | ${ }^{118909.6}$ | ${ }^{827.8}$ | 7．5\％ |
 | 29．6\％ | 10552.1 | 11878.1 | 1326.1 | 12．6\％ |
 | 30．9\％ | 10449.1 | ${ }^{113221.1}$ | ${ }_{8}^{872.1}$ | 8．3\％ |
 | 32．1\％ | 10311．6 | ${ }^{10965.2}$ | ${ }^{653.5}$ | 6．3\％ |
 | 33．3\％ | 9788.7 | 10880.3 | 1071.6 | 10．9\％ |
 | 34．6\％ | ${ }_{9}^{9492.6}$ | 10774.1 | ${ }^{12111.6}$ | ${ }^{12.28 \%}$ |
 | 35．8\％ | ${ }^{94355.3}$ | 10635.9 103532 | ${ }^{1200.6}$ | 127\％ |
 | 退37．3\％ | 8506.5 8169.2 | 10353．2 | 1846.7
 807
 8 | 21．7\％ |
 | 39．5\％ | 7470.7 | 8574.6 | 1103.9 | 14．8\％ |
 | 40．7\％ | 6998.7 | 8301.5 | 1302.8 | 18．6\％ |
 | 42．0\％ | 6819.7 | 8039.3 | 1219.6 | 17．9\％ |
 | 43．2\％ | ${ }_{6}^{6773.3}$ | ${ }^{8022.4}$ | 1319.0
 11204
 1 | 19．7\％ |
 | 44．4\％ | ${ }^{6694.9}$ | ${ }_{7815.3}$ | 1120.4 | 16．7\％ |
 | 45．7\％ | 6655.3 6480 | 7645.3 75824 | 990.0 | 14．9\％ |
 | 48．1\％ | ${ }_{6}^{6430.5}$ | ${ }_{7}^{7582.4}$ | 1101.8 10394 | 17．0\％ |
 | 49．4\％ | 6091.1 | 7228.3 | 1137．2 | 18．7\％ |
 | 50．6\％ | 6068.1 | 7062.8 | 994.8 | 16．4\％ |
 | 51．9\％ | ${ }_{5}^{5936.3}$ | 7054.2 | 1117.9 | 18．8\％ |
 | 53．1\％ | 5381．3 | ${ }^{6889.1}$ | 1007.9 | 17．2\％ |
 | 54．3\％ | ${ }_{48923}^{5382.1}$ | 6760.9 5953.5 | ${ }_{1}^{1378.9}$ | 25．6\％ |
 | 56．8\％ | 4775.9 | 5476.1 | 700.2 | 14．7\％ |
 | 58．0\％ | ${ }^{4358.6}$ | 5417.0 | 1058.5 | 24．3\％ |
 | 59．3\％ | ${ }^{38355.1}$ | 4596．9 | 761.8 | 19．9\％ |
 | ${ }^{60.5 \%}$ | ${ }^{3675.2}$ | ${ }^{42866.2}$ | 611．0 | 16．6\％ |
 | 6．3．0\％ | ${ }_{1}^{24995.6}$ | ${ }_{2091.4}^{3309.7}$ | 890.1 495.8 | －${ }_{\text {36．8\％}}$ |
 | 64．2\％ | 1580．6 | ${ }^{2045.3}$ | 464.7 | 29．4\％ |
 | 65．4\％ | 1439.1 | 1887.6 | 448.5 | 31．2\％ |
 | ${ }_{\text {c }}^{66.7 \%}$ | ${ }^{13677.6}$ | ${ }^{1715.0}$ | 347．4 | 25．4\％ |
 | 67．9\％ | 1282.0 1048.9 | 1593.6 1412.4 | 311.6
 363.4 | 24．3\％ |
 | 70．4\％ | 1000.1 | 1228.0 | 227.9 | 22．8\％ |
 | 71．6\％ | 885.9 | 848.9 | －36．9 | －4．2\％ |
 | 72．8\％ | ${ }^{845.6} 6$ | 844.3 758.1 | -1.3 138.0 | ${ }_{223 \%}^{-0.2 \%}$ |
 | 75．3\％ | 605.2 | 743.9 | 138.7 | 22．9\％ |
 | 76．5\％ | 496.9 | 598.3 | 101.4 | 20．4\％ |
 | 77．8\％ | ${ }_{4283}^{470.3}$ | 564．8 5012 | 94.5 728 | 20．1\％ |
 | 80．2\％ | 405.8 | 425.0 | 19.3 | 4．7\％ |
 | 81．5\％ | 383.3 | 413.3 | 30.1 | 7．8\％ |
 | 82．7\％ 840% | 338.1 3267 | 389.6 372.0 | ${ }_{453}^{51.5}$ | （15．2\％ |
 | 85．2\％ | 263.9 | 268.7 | 4.8 | |
 | 86．4\％ | 249.2 | 268.3 | 19.0 | |
 | 87.7% 88.9% | ${ }_{2429}^{2432}$ | 244.0 2489 | 10.8 6.0 | |
 | 90．1\％ | 225.5 | 229.5 | 4.0 | |
 | 91．4\％ | 217.5 | 224.8 | 7.3 | |
 | ${ }_{93.8 \%}^{92.6 \%}$ | 216.9 210.6 | ${ }_{212.3}^{217.4}$ | 0.5 1.7 | |
 | 95．1\％ | 201.7 | 201.7 | 0.0 | |
 | 96．3\％ | 200.8 | 201.4 | 0.6 | |
 | 97．5\％ | 190.6 | 190.9 | ${ }^{0.3}$ | |
 | 98．8\％ 100\％ | 187.8 1837 | 188.9 1837 | 1.1 0.0 | |

 $\underset{\text { at Port Chicago Ree }}{\text { Table }}$
 Sacramento Rive a a Port Chicago (Roe slsand), Monthy EC

 | | | February | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | ${ }_{\text {dCR }}^{\text {D } 2015 \text { Without }}$ Proeat | DCR 2015 With Project | Absolute | |
 | Probability | Monthly EC | Monthy EC | Ditierence | Difference (\%) |
 | (\%) | (UMHOSSCM) | (UMHOSSCM) | | |
 | 0.0\% | 13193.5 | 14191.6 | 998.2 | 7.6\% |
 | 1.2\% | 13015.3 | 13303.3 | 288.0 | 2.2\% |
 | 2.5\% | 11780.6 | 12923.2 | 1142.6 | 9.7\% |
 | 3.7\% | 11479.5 | 12516.5 | 1037.0 | 9.0\% |
 | 4.9\% | 11411.1 | 11756.2 | 345.1 | 3.0\% |
 | 6.2\% | 11387.1 | 11536.2 | 149.1 | 1.3\% |
 | 7.4\% | 10051.2 | 10645.0 | 593.8 | 5.9\% |
 | 8.6\% | ${ }^{9679.8}$ | 10055.1 | ${ }_{8156}^{375.3}$ | 3.9\% |
 | 9.9\% | 9105.8 | 9921.5 | 815.6 | 9.0\% |
 | 11.19\% | ${ }_{8781.1}$ | ${ }^{9843.6}$ | ${ }_{1172.5}$ | 13.5\% |
 | 12.3\% | 8343.9 | 93887 | 1043.7 | 12.5\% |
 | 13.6\% | 7965.8 | 9193.5 | 1227.7 | 15.4\% |
 | 14.8\% | 7779.8 | ${ }^{8639.5}$ | 869.7 853 | ${ }^{11.2 \%}$ |
 | 16.0\% | ${ }^{73733} 5$ | 8227.0 | 853.2 | 11.6\% |
 | 17.3\% | ${ }^{6976.5}$ | 8205.6 | 1229.1 | 17.6\% |
 | 18.5\% | ${ }^{6667.3}$ | 7462.5
 7343 | 795.2 | 11.9\% |
 | 19.8\% | ${ }^{6414.9}$ | 7333.0 | 928.0
 1053
 18 | 14.5\% |
 | 21.0\% | 6271.6 61734 | 7324.8 | 1053.2 10858 | 16.8\% |
 | 22.2\% | ${ }^{6173.4}$ | ${ }_{7}^{725959}$ | ${ }^{1085.8}$ | 17.6\% |
 | ${ }^{23.4 .7 \%}$ | ${ }_{5}^{55725.4}$ | 7053.7 65079 | -1328.5
 935 | - $\begin{aligned} & 23.2 \% \\ & 16.8 \%\end{aligned}$ |
 | 25.9\% | 5245.9 | 6411.2 | 1165.3 | 22.2\% |
 | 27.2\% | 5206.1 | 5786.3 | 580.3 | 11.1\% |
 | 28.4\% | 4728.2 | 5742.2 | 1014.0 | 21.4\% |
 | 29.6\% | 4497.4 | 5724.0 | 1226.7 | 27.3\% |
 | 30.9\% | 3813.2
 3592 | 4760.3 | | 24.8\% |
 | 32.19\% | 3582.6
 3887 | ${ }^{4566.0}$ | ${ }_{983.5}^{983}$ | 27.5\% |
 | 33.3% 34.6% | 3487.7 3 3 | ${ }^{4468.2}$ | 980.6 | 28.1\% |
 | 34.6% 358% | 3348.5 | ${ }^{4170.8}$ | ${ }^{822.3}$ | 24.6\% |
 | 35.8\% | ${ }_{3}^{3264.4}$ | 3764.3 3486 | ${ }_{2289}^{4999}$ | - 15.3 \% |
 | 37.0% 38.3% | ${ }^{3220.3}$ | ${ }^{3448.6}$ | ${ }_{328}^{228.3}$ | 7.11\% |
 | 38.5\% | ${ }^{30451.7}$ | 3 3406.3 | 360.7 274.0 | 9.0\% |
 | 40.7\% | 2567.3 | 3292.9 | 725.6 | 28.3\% |
 | 42.0\% | 2526.7 | 3075.8 | 549.1 | 21.7\% |
 | 43.2\% | 2420.0 | 3049.9 | 629.8 | 26.0\% |
 | 44.4\% | 11999.1 | ${ }^{22338.8}$ | 319.7 | 16.7\% |
 | 45.7\% | 1890.7 16584 | ${ }_{21495}^{2231.3}$ | 340.6 4911 | (18.0\% |
 | ${ }^{46.9 \%}$ | 1658.4 | 2149.5 | 49.1 | 29.6\% |
 | 48.19\% | ${ }_{1}^{162772}$ | ${ }_{2084}^{2083}$ | ${ }_{456.3}$ | 28.0\% |
 | 49.4\% | 1617.5
 1583
 150 | 2064.7 19262 | ${ }_{343}^{44.3}$ | ${ }_{217.7 \%}^{27.7 \%}$ |
 | 50.9\% | 115893.1 149.1 | 1926.2 1708.9 | 343.2 20.8 | 21.7% 14.0% |
 | 53.19\% | ${ }_{1}^{1464.9}$ | 1614.1
 1605 | 149.2 3434 | +10.2\% |
 | 54.3\% | ${ }_{126211}^{12621}$ | ${ }_{\text {1 }}^{16055}$ | 343.4 | ${ }_{2}^{27.2 \%}$ |
 | 55.8\% | 1241.1 1172.4 | 1583.2 1360.4 | 342.1 188.0 | ${ }_{\text {l }}^{\text {17.0\% }}$ |
 | 58.0\% | 1009.8 | ${ }^{1104.5}$ | 94.7 | 9.4\% |
 | 59.3\% | 899.0 669 | ${ }_{8817}^{992.3}$ | 93.2. | 10.4\% |
 | 60.5\% | 669.2 | 881.7 6644 | ${ }_{612}^{2125}$ | 31.7% 10.1% |
 | 63.0\% | ${ }_{567.7}^{603.4}$ | 604.4 699.8 | ${ }_{82.1}$ | 10.5\% |
 | 64.2\% | 539.6 | 568.0 | 28.4 | 5.3\% |
 | 析 65.4% | ${ }_{4671.2}^{47}$ | 528.7 5276 | 57.5 598 | 12.2% 128% |
 | 67.9\% | 419.8 | 474.8 | 55.0 | 13.1\% |
 | 69.1\% | 350.8 | 400.9 | 50.1 | 14.3\% |
 | 70.4\% | 332.0 3083 | 344.0 343.1 | 12.0 347 | ${ }^{3.6 \%}$ |
 | 72.8\% | 296.1 | 322.8 | 26.7 | 9.0\% |
 | 74.1\% | 271.3 | 314.4 | 43.1 | 15.9\% |
 | 75.3\% | 263.4 2457 | 264.2 2590 | 0.8 13.3 1 | 年.3\%\% |
 | 77.8\% | 243.7 | 256.8 | ${ }_{13.1}$ | 5.4\% |
 | 79.0\% | 229.9 | 251.0 | 21.1 | 9.2\% |
 | - | ${ }_{2164}^{221.3}$ | ${ }_{2229}^{2348}$ | 13.4 6.4 | |
 | 82.7\% | 215.8 | ${ }_{2228}^{2228}$ | 6.9 | 3.2\% |
 | 84.0\% | 214.5 | 214.3 | -0.2 | -0.1\% |
 | 85.4\% | ${ }_{210.4}^{212.7}$ | 213.8 210.7 | 1.1 0.3 | 0.5\% |
 | 87.7\% | 208.1 | 210.0 | 1.9 | 0.9\% |
 | 88.9\% | 206.7 | 208.2 | 1.5 | 0.7\% |
 | ${ }_{9}^{90.14 \%}$ | 205.8 2050 | ${ }_{2050}^{2056}$ | -0.2 | -0.1\% |
 | 92.6\% | 201.5 | 200.0 | -1.5 | -0.8\% |
 | 93.8\% | 197.8 | 198.2 | 0.4 | 0.2\% |
 | ${ }^{956.3 \%}$ | 197.0 196.9 | $\begin{array}{r}198.1 \\ \hline 1976 \\ \hline\end{array}$ | 1.1 0.7 | 0.6\% |
 | 97.5\% | 196.3 | 196.4 | 0.1 | 0.0\% |
 | 988.8\% 100.0\% | 192.8 184.9 | 194.5 184.9 | 1.7 0.0 | 0.0\% |

 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
 \hline \multicolumn{10}{|c|}{of Ex} \\
 \hline \& \& Warch \& \multirow[b]{3}{*}{\[
 \begin{gathered}
 \text { Absolute } \\
 \text { (ifference } \\
 \text { (UMHOSSM) }
 \end{gathered}
 \]} \& \multirow[b]{3}{*}{\[
 \begin{gathered}
 \text { Relative } \\
 \text { Difference (\%) }
 \end{gathered}
 \]} \& \multirow[b]{3}{*}{\[
 \begin{gathered}
 \text { Percent } \\
 \text { Exceadance } \\
 \text { Probability }
 \end{gathered}
 \]} \& \& Apprl \& \multirow[b]{3}{*}{\[
 \begin{gathered}
 \text { Absolute } \\
 \text { civferenee } \\
 \text { (unHosicic) }
 \end{gathered}
 \]} \& \multirow[b]{3}{*}{\[
 \begin{gathered}
 \text { Relative } \\
 \text { Difference (\%) }
 \end{gathered}
 \]} \\
 \hline Percent
 Exceedance \& DCC 2015 Without
 Proiect \& DCR 2015 \& \& \& \& DCR 2015 Without
 Proiect \& DCR 2015 With Project \& \& \\
 \hline Proabaility \& Monthy \({ }_{\text {c }}\) \& Monthly EC \& \& \& \& Monthly EC
 (unHos \((200)\) \& Monthy EC \& \& \\
 \hline \& (UnHosicm) \({ }_{\text {1794. }}\) \& 12478.5 \& 683.9 \& 58\% \& 0.0\% \& \({ }^{121930}\) \& \({ }^{1246574}\) \& \& \\
 \hline 1.2\% \& 101124 \& 105039 \& \& 39\% \& 1.2\% \& 111802 \& 11258 \& \& \\
 \hline 2.5\% \& 9521.1 \& 9916.8 \& 395.7 \& 4.2\% \& 2.5\% \& 11133.2 \& 10821.7 \& -311.4 \& -2.8\% \\
 \hline 3.7\% \& 9401.7 \& 9848.8 \& 447.1 \& 4.8\% \& 3.7\% \& 10379.6 \& 10487.8 \& 108.1 \& 1.0\% \\
 \hline 4.9\% \& 9090.0 \& 9567.0 \& 477.0 \& 5.2\% \& 4.9\% \& 10333.3 \& 10298.6 \& -34.7 \& \\
 \hline 6.2\% \& 9058.9 \& 9274.3 \& 215.4 \& 2.4\% \& 6.2\% \& 9911.7 \& 9670.1 \& -241.6 \& \\
 \hline 7.4\% \& 9051.4 \& 9201.6 \& 150.2 \& 1.7\% \& 7.4\% \& 9655.6 \& 9582.7 \& -72.8 \& -0.8\% \\
 \hline 8.6\% \& 9034.5 \& 9139.0 \& 104.5 \& 1.2\% \& 8.6\% \& 9647.7 \& 9.5 \& -428.2 \& -4.4\% \\
 \hline 9.9\% \& 8566.7 \& 8576.9 \& 10.2 \& 0.1\% \& 9.9\% \& 9030.8 \& 9132.9 \& 102.1 \& 1.1\% \\
 \hline 11.1\% \& 8527.4 \& 26.2 \& -1.2 \& 0.0\% \& 11.1\% \& \({ }^{8847.8}\) \& 8875.1 \& 27.3 \& 0.3\% \\
 \hline 12.3\% \& 7502.9 \& 8501.4 \& 998.5 \& 13.3\% \& 12.3\% \& 8716.3 \& 8588.3 \& \({ }^{128.0}\) \& -1.5 \\
 \hline 13.6\% \& 7189.6 \& 8072.7 \& \({ }^{883.1}\) \& 123\% \& 13.6\% \& 8634.7 \& 8560.2 \& -74.5 \& -0.9\% \\
 \hline 14.8\% \& 7163.1 \& 7914.8 \& 751.7 \& 10.5\% \& 14.8\% \& 8287.2 \& 8484.5 \& 197.3 \& 2.4\% \\
 \hline 16.0\% \& 7142.1 \& 7376.9 \& \begin{tabular}{l}
 234.8 \\
 72.8 \\
 \hline
 \end{tabular} \& 3.3\% \& 16.0\% \& 7813.9 \& 8332.5 \& 518.6 \& 6.6\% \\
 \hline 17.3\% \& 6851.7 \& 6924.1 \& 72.5 \& 1.1\% \& 17.3\% \& 7787.2 \& 7842.4 \& 55.3 \& \(0.7 \%\) \\
 \hline 18.5\% \& 6836.0 \& 6873.4 \& 37.4 \& 0.5\% \& 18.5\% \& 6980.8 \& 7515.9 \& 535.1 \& 7.7\% \\
 \hline 19.8\% \& 6642.5 \& 6568.9 \& -73.6 \& -1.1\% \& 19.8\% \& 6738.9 \& 7239.4 \& 500.5 \& 7.4\% \\
 \hline 21.0\% \& 4450.6 \& 5427.4 \& 976.8 \& 21.9\% \& 21.0\% \& 6410.5 \& 6850.2 \& 439.7 \& 6.9\% \\
 \hline 22.2\% \& 4408.1 \& 5424.6 \& 1016.5 \& 23.1\% \& 22.2\% \& 6370.2 \& 6697.0 \& 326.9 \& 5.1\% \\
 \hline 23.5\% \& 3994.7 \& 5010.3 \& \({ }^{11055.6}\) \& \({ }^{28.3 \%}\) \& 23.5\% \& 5755.7 \& 6413.4 \& 657.7 \& 11.4\% \\
 \hline 24.7\% \& \({ }^{3877.8}\) \& 4939.1 \& 1062.3 \& 27.4\% \& 24.7\% \& 5381.7 \& 5685.3 \& 303.6 \& 5.6\% \\
 \hline 25.9\% \& \({ }^{3837.7}\) \& 4780.4 \& 942.7 \& 24.6\% \& 25.9\% \& \({ }^{5366.3}\) \& 5630.8 \& 264.5 \& 4.9\% \\
 \hline 27.2\% \& \({ }^{3762.4}\) \& 4649.1 \& 886.7 \& 23.6\% \& 27.2\% \& \({ }^{4861.8}\) \& 4996.3 \& 134.5 \& 2.8\% \\
 \hline 28.4\% \& \({ }^{35888.8}\) \& \({ }^{436007}\) \& 772.0 \& 21.5\% \& 28.4\% \& 4899.0 \& 4915.6 \& 106.5 \& 2.2\% \\
 \hline 29.6\% \& \({ }^{3450.7}\) \& 4177.9 \& 727.2 \& 21.1\% \& 29.6\% \& 4788.0 \& 4873.2 \& 85.3 \& 1.8\% \\
 \hline 332.1\% \& 3440.0
 3380.0 \& \({ }_{4}^{4007.4}\) \& \begin{tabular}{l}
 567.4 \\
 6254 \\
 \hline
 \end{tabular} \& - \({ }^{16.5 \%}\) 18.5\% \& - \({ }^{30.9 \%}\) \& \({ }_{47009}^{4740}\) \& \({ }_{47958}^{4867.0}\) \& \({ }^{126.8}\) \& \({ }^{2.7 \%}\) \\
 \hline 33.3\% \& \({ }^{3322.3}\) \& 4003.4 \& 681.2 \& 20.5\% \& 33.3\% \& 4659.7 \& 4737.4 \& 77.7 \& 1.7\% \\
 \hline 34.6\% \& 3224.7 \& 3969.3 \& 744.6 \& 23.1\% \& 34.6\% \& 4658.8 \& 4578.0 \& -80.8 \& -1.7\% \\
 \hline 35.8\% \& 3197.1
 30577 \& \({ }^{3870.8}\) \& \(\begin{array}{r}673.6 \\ \hline 7845 \\ \hline\end{array}\) \& 21.1\% \& 35.8\% \& \({ }^{4266.8}\) \& \({ }^{4552.4}\) \& \({ }^{2856}\) \& - \(6.7 \%\) \\
 \hline 37.0\% \& 3057.7 \& 3842.2 \& 784.5 \& 25.7\% \& 37.\% \& 3977.9 \& 4426.0 \& 448.1 \& 11.3\% \\
 \hline 38.3\% \& \({ }^{3015.3}\) \& 3726.0 \& 710.7 \& 23.6\% \& 38.3\% \& \({ }^{3822.7}\) \& 4019.9 \& 197.1 \& 5.2\% \\
 \hline 39.5\% \& \({ }^{2968.5}\) \& \({ }^{3650.8}\) \& 682.3 \& 23.0\% \& 39.5\% \& \({ }^{3651.3}\) \& \({ }^{3990.5}\) \& 339.2 \& 9.3\% \\
 \hline 40.7\% \& \({ }^{2934.2}\) \& \({ }^{3340.8}\) \& 400.6 \& 13.9\% \& 40.7\% \& \({ }^{3567.5}\) \& \({ }^{3823.2}\) \& 255.7 \& 7.2\% \\
 \hline 42.0\% \& \({ }^{2922.8}\) \& 3229.5 \& 306.6 \& 10.5\% \& 42.0\% \& \({ }^{3563.0}\) \& 3749.0 \& 186.0 \& 5.2\% \\
 \hline 43.2\% \& 2828.4 \& \({ }^{31688.9}\) \& \({ }_{5}^{342.5}\) \& \({ }^{12.19 \%}\) \& 43.2\% \& \({ }^{3416.8}\) \& 3628.4 \& 211.6 \& 6.2\% \\
 \hline 44.4\% \& \({ }^{2433.1}\) \& 2977.3 \& 544.2 \& 22.4\% \& 44.4\% \& \({ }^{33055.4}\) \& \({ }^{3585.1}\) \& 279.8 \& 8.5\% \\
 \hline 45.7\% \& \({ }^{2240.7}\) \& \({ }^{2863.6}\) \& \({ }_{622.8}\) \& 27.8\% \& 45.7\% \& 2980.2 \& \({ }^{34221.7}\) \& 441.5 \& 14.8\% \\
 \hline 46.9\% \& 2007.1 \& \({ }^{26833}\) \& 676.2 \& 33.7\% \& 46.9\% \& \({ }^{2973.7}\) \& 3298.0 \& \({ }^{324.3}\) \& 10.9\% \\
 \hline 48.1\% \& \({ }^{1909.7}\) \& \({ }^{25533}\) \& \({ }^{643.6}\) \& 33.7\% \& 48.1\% \& \({ }^{2950.8}\) \& 3139.4 \& \({ }^{188.6}\) \& 6.4\% \\
 \hline 49.4\% \& 1905.9 \& \({ }^{25322.8}\) \& 626.9 \& 32.9\% \& 49.4\% \& 2770.2 \& 2977.5 \& \({ }^{237.3}\) \& 8.7\% \\
 \hline 50.6\% \& \({ }^{17177.1}\) \& \({ }^{2224.2}\) \& 507.1 \& 29.5\% \& 50.6\% \& 2648.2 \& 2965.0 \& \({ }^{316.8}\) \& 12.0\% \\
 \hline 51.9\% \& 1663.5 \& 2174.0 \& 510.5 \& 30.7\% \& 51.9\% \& \({ }^{2572.6}\) \& \({ }^{2731.6}\) \& 159.0 \& 6.2\% \\
 \hline 53.1\% \& 1633.1 \& \({ }^{2046.2}\) \& \({ }^{413.1}\) \& 25.3\% \& 53.1\% \& \({ }_{\text {2569.8 }}\) \& \({ }^{2722.1}\) \& 152.3 \& 5.9\% \\
 \hline 54.3\% \& 1553.9 \& 1921.9 \& 368.0 \& 23.7\% \& 54.3\% \& \({ }^{25255.3}\) \& 2594.7 \& 69.4 \& 2.7\% \\
 \hline 55.6\% \& 1406.1 \& 1783.0 \& 377.0 \& 26.8\% \& 55.6\% \& \({ }^{23881.9}\) \& \({ }^{2574.2}\) \& \({ }^{192.3}\) \& 8.1\% \\
 \hline 56.8\% \& \({ }^{1326.1}\) \& 1746.6 \& \({ }^{420.5}\) \& \({ }^{31.7 \%}\) \& 56.8\% \& 1957.9 \& \({ }^{2566.4}\) \& 608.5 \& \({ }^{31.1 \%}\) \\
 \hline 58.0\% \& \({ }^{13133.9}\) \& 11672.6 \& \({ }_{358.7}\) \& 27.3\% \& 58.0\% \& 1933.8 \& 2470.0 \& \({ }_{566.3}\) \& 27.7\% \\
 \hline 59.3\% \& 1257.9 \& 1473.4 \& 215.5 \& 17.1\% \& 59.3\% \& 1870.8 \& 1984.9 \& 114.1 \& 6.19\% \\
 \hline 60.5\% \& 1138.4 \& \({ }^{1416.5}\) \& \({ }^{278.1}\) \& 24.4\% \& 60.5\% \& 1880.8 \& 1959.9 \& 99.1 \& 5.3\% \\
 \hline 6117\% \& 1103.5 \& 1315.2 \& 211.7 \& 19.2\% \& \({ }^{61.7 \%}\) \& 1854.7 \& \({ }^{1642.6}\) \& 212.0 \& -114\% \\
 \hline 63.0\% \& 1026.5 \& 994.0 \& -32.4 \& -3.2\% \& 63.0\% \& 1627.2 \& 1598.3 \& -22.9 \& -1.4\% \\
 \hline \({ }^{64.2 \%}\) \& \({ }_{765.7}\) \& 978.3 \& 12.6 \& 1.3\% \& \({ }^{64.2 \%}\) \& 1599.4 \& \({ }^{1580.8}\) \& -18.6 \& -1.2\% \\
 \hline 65.4\% \& 730.9 \& 894.9 \& 164.1 \& 22.5\% \& 65.4\% \& 1475.0 \& \({ }^{1562.3}\) \& \({ }^{87.3}\) \& 5.9\% \\
 \hline \({ }^{66.77 \%}\) \& \({ }^{706.5}\) \& \({ }_{734.6}\) \& 28.1 \& 4.0\% \& \({ }^{66.7 \%}\) \& 1463.1 \& 1489.4 \& \({ }^{26.3}\) \& 1.8\% \\
 \hline 67.9\% \& 586.5 \& \({ }_{7}^{734.3}\) \& 147.8 \& 25.2\% \& 67.9\% \& 1281.0 \& \({ }^{13266.2}\) \& 45.2 \& 3.5\% \\
 \hline \({ }^{69.19 \%}\) \& \({ }_{5}^{573.6}\) \& \({ }^{707.4}\) \& \({ }^{133.8}\) \& \({ }^{23.3 \%}\) \& 69.1\% \& 1227.4 \& 1270.4 \& 43.0 \& 3.5\% \\
 \hline 70.4\% \& 528.9 \& 586.3 \& 57.4 \& 10.8\% \& 70.4\% \& 11777.8 \& \({ }^{123997}\) \& 62.0 \& 3\% \\
 \hline 71.6\% \& 515.9 \& 574.5 \& 58.6 \& 11.4\% \& 71.6\% \& 1140.2 \& 1185.0 \& 44.8 \& 3.9\% \\
 \hline 72.8\% \& 388.5

 2987 \& 490.4 \& ${ }^{102.0}$ \& 26.3\% \& 72.8\% \& ${ }_{6029} 902$ \& ${ }_{7}^{906.1}$ \& ${ }^{3.2}$ \& 0.4\%\%

 \hline 74.1\% \& 2997 \& 301.9 \& 2.3 \& 0.8\% \& 74.1\% \& 667.7 \& ${ }^{783.3}$ \& 115.6 \& 17.3\%

 \hline 75.3\% \& ${ }_{267 .}^{295}$ \& ${ }_{2598}^{292.2}$ \& -3.1
 -7 \& - -1.1% \& 75.3\% \& ${ }_{5}^{631.5}$ \& 678.2 \& 46.7 \& ${ }^{7.4 \%}$

 \hline 76.5\% \& ${ }_{26}^{267.7}$ \& ${ }^{2559.8}$ \& -7.9 \& -3.0\% \& 76.5\% \& 589.0 \& ${ }^{672.9}$ \& 83.8 \& 14.2\%

 \hline 77.8\% \& ${ }_{2}^{242.7}$ \& ${ }^{25574}$ \& 14.7 \& 6.0\% \& 77.8\% \& 535.6 \& 56.7 \& ${ }^{25.1}$ \& 4.7\%

 \hline 79.0\% \& ${ }_{2372}^{237}$ \& ${ }_{251.8}$ \& 14.6 \& ${ }^{6.1 \%}$ \& 79.0\% \& 448.8 \& 542.3 \& ${ }^{93.4}$ \& 20.8\%

 \hline 80.2\% \& ${ }_{2}^{233.6}$ \& ${ }_{2685}^{246.2}$ \& ${ }_{1}^{12.6}$ \& 5.4\% \& 80.2\% \& ${ }^{413.1}$ \& 449.0 \& 35.9 \& ${ }^{8.75}$

 \hline ${ }^{81.5 \%}$ \& ${ }_{229}^{229}$ \& ${ }_{23.6}^{237.6}$ \& 7.7 \& 3.3\% \& 81.5\% \& 379.2 \& 438.0 \& 58.8 \& 15.5\%

 \hline - 82.7% \& ${ }_{2271}^{229.6}$ \& ${ }_{2214}^{230.5}$ \& | 0.8 |
 | :--- |
 | .57 | \& 0.4\%\% \& 82.7\% \& 369.9 \& 400.1 \& 30.3 \& ${ }_{5}^{8.2 \%}$

 \hline 84.0\% \& ${ }^{2227.1}$ \& 221.4 \& -5.7 \& -2.5\% \& 84.0\% \& ${ }_{388.5}$ \& ${ }^{367.0}$ \& 20.5 \& 5.9\%

 \hline 85.2\% \& ${ }_{2073}^{20.3}$ \& ${ }_{2081}^{209.5}$ \& ${ }^{0.1}$ \& 0.1\% \& 85.2\% \& ${ }^{2753}$ \& ${ }_{264.4}^{2724}$ \& -0.9 \& -0.3\%

 \hline 887.7\% \& ${ }_{2073}$ \& 20.1 \& 0.8 \& 0.4\% \& ${ }^{86.4 \%}$ \& ${ }^{255.6}$ \& 264.1 \& 6.5 \& 2.5\%

 \hline 88.9\% \& ${ }_{205.7}^{20.7}$ \& 20.6 \& 0.0 \& 0.0\% \& 88.9\% \& ${ }_{25,2}$ \& 233.4 \& ${ }_{8.2}$ \& 3.6\%

 \hline 90.1\% \& 203.8 \& 205.6 \& 1.9 \& 0.9\% \& \& 222.6 \& 222.7 \& 0.2 \& 0.1\%

 \hline 91.4\% \& 199.1 \& 201.9 \& 2.8 \& 1.4\% \& 91.4\% \& 207.6 \& 207.8 \& 0.2 \& 0.1\%

 \hline 92.6\% \& 199.0
 1975 \& 198.4
 1976 \& -0.6 \& -0.3\% \& 92.6\% \& 204.9
 2031 \& 205.4

 2053 \& 0.4 \& ${ }_{\text {N }}$

 \hline 955.1\% \& ${ }^{197.0}$ \& 199.6
 1976 \& 0.1
 3.6 \& 1.8\% \& ${ }^{93.1 \%}$ \& 203.1 \& ${ }_{203}^{205.3}$ \& ${ }_{2}^{2.2}$ \& -1.1\%

 \hline 96.3\% \& 193.7 \& 195.6 \& 1.8 \& 0.9\% \& 96.3\% \& 197.8 \& 198.2 \& 0.4 \& 0.2\%

 \hline 97.5\% \& 192.6 \& 194.4 \& 1.8 \& 0.9\% \& \& 194.3 \& 198.1 \& 3.9 \& 2.0\%

 \hline -988\% \& ${ }_{192.2}^{192.4}$ \& 199.2
 192.7 \& 1.8
 0.6 \& 0.3\% \& \& 194.3
 188.0 \& 194.9
 188.1 \& 0.6
 0.1 \& -

 \hline
 \end{tabular}

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[b]{3}{*}{\[
 \begin{array}{|l}
 \text { Percent } \\
 \text { Exceedance } \\
 \text { Probability }
 \end{array}
 \]} \& \multicolumn{4}{|c|}{May} \\
 \hline \& \({ }_{\text {d }}^{\text {DCR } 2015 \text { Without }}\) Proiet \& DCR 2015 With Project \& \multirow[t]{2}{*}{\[
 \begin{gathered}
 \text { Absolute } \\
 \text { Difference } \\
 \text { (UMHOSSCM) }
 \end{gathered}
 \]} \& \multirow[t]{2}{*}{\[
 \begin{gathered}
 \text { Relative } \\
 \text { Difference (\%) }
 \end{gathered}
 \]} \\
 \hline \& Monthly EC \& Monthly EC \& \& \\
 \hline (\%) \& (UuHosicm) \& UnHosicm) \& \& \\
 \hline 0.0\% \& 14429.1 \& 14533.4 \& 105.3 \& 0.7\% \\
 \hline 1.2\% \& 14217.9 \& 14185.4 \& -32.6 \& \({ }^{-0.2 \%}\) \\
 \hline 2.5\% \& 13533.9 \& 13963.4 \& \({ }^{429.5}\) \& 3.2\% \\
 \hline 3.9\% \& \begin{tabular}{l}
 111484.0 \\
 11624 \\
 \hline
 \end{tabular} \& \({ }_{\text {1 }}^{1133774.4}\) \& 186.5
 1496 \& 1.3\% \\
 \hline 6.2\% \& 11586.9 \& 11394.3 \& -192.6 \& -1.7\% \\
 \hline 7.4\% \& 11443.3 \& 11311.1 \& -132.2 \& -1.2\% \\
 \hline (8.6\% \& 11195.4
 11094
 1 \& 11126.6
 110078 \& \begin{tabular}{l}
 -68.8 \\
 -870 \\
 \hline 8
 \end{tabular} \& \({ }_{-0.8 \%}^{0.0 .8 \%}\) \\
 \hline 9.9\% \& 111094.8 \& \({ }^{11007.8}\) \& -87.0 \& -0.8\% \\
 \hline 12.3\% \& 10581.5
 10418.2 \& 10629.2
 104468 \& 47.8
 28.6 \& \({ }_{\text {en }}^{0.5 \%}\) \\
 \hline 13.6\% \& 10252.0 \& 10281.5 \& 29.5 \& 0.3\% \\
 \hline 14.8\% \& 10190.6 \& 10151.9 \& -38.7 \& 0.4\% \\
 \hline - \(16.0 \%\) \& 10100.9

 98505 \& \& -71.6
 1.6 \& -0.7\%

 \hline 18.5\% \& ${ }_{9753.5}$ \& 9782.5 \& 29.0 \& 0.3\%

 \hline 19.8\% \& 9285.8 \& 9271.0 \& -14.9 \& -0.2\%

 \hline ${ }^{21.0 \%}$ \& ${ }_{\text {8983, }}^{9075}$ \& 9047.4
 89732 \& -28.5 \& -0.3\%

 \hline 23.5\% \& ${ }_{8722.2}$ \& 8918.7 \& 196.5 \& 2.3\%

 \hline 24.7\% \& 8535.8 \& 8595.1 \& 59.3 \& 0.7\%

 \hline 25.9\% \& 8284.4
 82302 \& 8322.6
 81576 \& - 38.2 \& -0.5\%

 \hline 28.4\% \& 8064.8 \& 8086.5 \& 21.7 \& 0.3

 \hline 29.6\% \& 8051.9 \& 8052.4 \& 0.5 \& 0.0\%

 \hline - $\begin{aligned} & 30.9 \% \\ & 32.1 \%\end{aligned}$ \& 8039.4
 7836.5 \& 7844.2
 7709.4 \& - $\begin{aligned} & -195.2 \\ & -127.1\end{aligned}$ \& --.4.6\%

 \hline 33.3\% \& 7659.4 \& 7600.6 \& -52.8 \& -0.7

 \hline 34.6\% \& 7104.5 \& 6831.6 \& -272.9 \& -3.8\%

 \hline 35.9\% \& ${ }^{6688.0}$ \& ${ }^{6690.9}$ \& 3.0 \& 0.0\%

 \hline 37.0%
 383% \& 6312.0
 60965 \& ${ }_{\text {cre }}^{63355.6}$ \& 63.6
 239.9 \&

 \hline 30.5\% \& ${ }_{5955.6} 6$ \& ${ }_{6045.1}$ \& ${ }_{86.5}$ \& 1.5\%

 \hline 40.7\% \& 5784.1 \& 6023.8 \& 239.7 \& 4.1\%

 \hline \& 5704.1 \& ${ }_{5}^{57759}$ \& \& 1.3\%

 \hline 44.4\% \& ${ }_{5}^{5332.8}$ \& ${ }_{53694.7}^{5696}$ \& 274.9
 -0.5 \& S.1\%

 \hline 45.7\% \& ${ }_{5012.3}$ \& 4980.5 \& -31.8 \& -0.6\%

 \hline 46.9\% \& 4825.3 \& 4848.6 \& 23.3 \& 0.5\%

 \hline 48.1\% 4.4 \& ${ }_{4}^{4741.4}$ \& ${ }_{46771.6}^{470.1}$ \& -1.2
 10.6 \& - ${ }_{\text {0.2\% }}^{0.0 \%}$

 \hline 50.6\% \& 4109.8 \& 4033.1 \& -76.7 \& -1.9\%

 \hline \& 4020.5 \& 3938.4 \& -82, \& -2.0\%

 \hline 54.3\% \& ${ }_{3553.3}^{3740.0}$ \& ${ }_{3}^{3864.7}{ }_{3680}$ \& ${ }_{1}^{1227.5}$ \& 3.6\%

 \hline 55.6\% \& 3512.9 \& ${ }^{35574.3}$ \& 61.4 \& 1.7\%

 \hline \& ${ }^{3497.2}$ \& 3461.9 \& -35.4 \& -1.0\%

 \hline 59.3\% \& ${ }_{3431.7}^{3422.7}$ \& ${ }_{3439.3}$ \& 7.6 \& 0.2\%

 \hline 60.5\% \& ${ }^{3306.2}$ \& 3327.8 \& 21.6 \& 0.7\%

 \hline ${ }^{61.7 \%}$ \& ${ }^{3212.9}$ \& ${ }^{3214.8}$ \& 1.9 \& 0.1\%

 \hline - 63.0% \& 3204.2
 2846.2 \& 3206.0
 29228 \& 1.8
 76.6 \& 2.7\%

 \hline 65.4\% \& 2646.6 \& 2711.5 \& 64.9 \& 2.5\%

 \hline ${ }^{66.7 \%}$ \& ${ }_{2}^{2631.4}$ \& ${ }^{2659.0}$ \& \& 1.0\%

 \hline 69.1\% \& ${ }_{2}^{2391.4}$ \& ${ }_{2}^{2402.3}$ \& 27.8
 10.8 \& 0.5\%

 \hline 70.4\% \& 2354.4 \& 2388.0 \& 25.6 \& 1.1\%

 \hline 71.6\% \& ${ }^{2153.8}$ \& \& \& 5.0\%

 \hline - $72.8 .1 \%$ \& ${ }_{1}^{17222.5}$ \& 1911.0
 1870.4 \& 188.5
 247.7 \&

 \hline 75.3\% \& 1603.2 \& 1744.8 \& 141.6 \& 8.8\%

 \hline \& ${ }^{14888.8}$ \& \& \& ${ }^{16.6 \%}$

 \hline 77.8\% \& | 1374.2 |
 | :--- |
 | 1372.6 | \& 15333.3

 1337.1 \& 159.1
 -35.4 \& ${ }_{\text {-2.6\% }}^{11.6 \%}$

 \hline 80.2\% \& 1319.1 \& 1187.2 \& -131.8 \& -10.0\%

 \hline \& | 1145.0 |
 | :--- |
 | 788. | \& \& \&

 \hline 840\% \& ${ }_{6} 687.5$ \& ${ }_{636.9}$ \& ${ }_{9.3}$ \& 1.5\%

 \hline 85.2\% \& 608.1 \& 612.4 \& 4.3 \& 0.7\%

 \hline ${ }^{86.4 \%}$ \& 407.4 \& 409.6 \& 2.3 \& 0.6\%

 \hline 88.9\% \& ${ }_{398.5}^{402.6}$ \& 398.2
 378.8 \& -4.4.8 \& - ${ }_{\text {- }}^{\text {-1.0\% }}$

 \hline 90.1\% \& 347.2 \& 349.2 \& 2.0 \& 0.6\%

 \hline 91.4\% \& 308.2 \& 310.8 \& 2.6 \&

 \hline 92.6\% \& 305.9 \& 308.4 \& 2.4 \&

 \hline ${ }^{935.1 \%}$ \& 285.4 \& 287.6 \& 2.2 \& 0.8\%

 \hline 96.3\% \& 2511.6 \& ${ }_{212.3}^{251.8}$ \& 0.4
 0.6 \&

 \hline 97.5\% \& 209.7 \& 210.5 \& 0.8 \&

 \hline 98.8\% \& 198.8
 1878 \& 199.0 \& 0.2 \&

 \hline \& \& \& \&

 \hline
 \end{tabular}

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[b]{3}{*}{\[
 \begin{gathered}
 \text { Percent } \\
 \begin{array}{c}
 \text { Exceedance } \\
 \text { Probability }
 \end{array}
 \end{gathered}
 \]} \& \multicolumn{4}{|c|}{June} \\
 \hline \& \({ }_{\text {DCR } 2015 \text { Without }}^{\text {Proiet }}\) \& DCR 2015 With Project \& Absolute \& \\
 \hline \& Monthly EC \& Monthly EC \& (itierence \& ference (\%) \\
 \hline (\%) \& UMHosicm) \& UnHosicm) \& \& \\
 \hline 0.0\% \& 16724.6 \& 16769.8 \& 45.2 \& 0.3\% \\
 \hline 1.2\% \& 16516.2 \& \({ }^{16227.3}\) \& 288.8 \& -1.7 \\
 \hline 2.5\% \& 16104.3 \& 16193.1 \& 88.9 \& 0.6\% \\
 \hline 3.7\% \& 15882.1 \& 15626.2 \& -201.9 \& \\
 \hline 4.9\% \& 14496.1 \& 14272.2 \& \({ }^{-223.9}\) \& \\
 \hline 6.2\%\% \& 14262.7
 137008 \& \begin{tabular}{l}
 14244.1 \\
 13568 \\
 \hline
 \end{tabular} \& -18.7 \& -0.1\% \\
 \hline 7.4\% \& 13700.8 \& \& \& \\
 \hline 9.9\% \& 12924.9
 12828.4 \& \({ }_{12590.2}^{12896.5}\) \& -238. \& -0.19\% \\
 \hline 11.1\% \& 12546.6 \& 12409.1 \& -137.6 \& -1.1\% \\
 \hline \({ }^{12.3 \%}\) \& \({ }^{124599.2}\) \& 12278.9 \& -180.3 \& -1.4\% \\
 \hline P13.6\%
 \(14.8 \%\) \& 122688.8
 121429 \& 12140.4
 120707 \& -128.4 \& - \(-1.0 \%\) \\
 \hline 16.0\% \& \& \& \& \\
 \hline 17.3\% \& 11752.2 \& \({ }_{11501.1}^{1152.5}\) \& \({ }_{\text {-251.2 }}\) \& \({ }_{-2.4 \%}^{-4.4 \%}\) \\
 \hline 18.5\% \& 11741.1 \& \({ }_{114439}^{1149}\) \& -267.3 \& -2.3\% \\
 \hline 19.8\% \& 11526.9 \& 11461.6 \& -65.3 \& -0.6\% \\
 \hline 222.2\% \& (113343.2 \& 11449.0
 11350.3
 1 \& 22.6
 7.1 \& - \(0.2 \%\) \\
 \hline 23.5\% \& \({ }^{1133015}\) \& 113199.5
 112381 \& 18.0 \& 0.2\% \\
 \hline 24.7\% \& 11287.9 \& 11238.1 \& -49, \& -0.4\% \\
 \hline 227.2\% \& 1123189
 11189 \& \begin{tabular}{l}
 11237.5 \\
 111944 \\
 \hline 1
 \end{tabular} \& \({ }_{54}^{6.1}\) \& 0.1\% \\
 \hline 28.4\% \& 11171.9 \& 11177.6 \& 5.8 \& 0.1\% \\
 \hline \& 111066.9 \& 111072.4 \& 5.5 \& 0.0\% \\
 \hline 32.9\%\% \& 11064.0
 10948.7 \& \begin{tabular}{l}
 11059.8 \\
 11033.6 \\
 \hline 1
 \end{tabular} \& -4.4.9 \& 0.0.8\% \\
 \hline 33.3\% \& 10920.7 \& 10948.7 \& 27.9 \& 0.3\% \\
 \hline \& 10828.9 \& 10800.8 \& -28.1 \& -0.3\% \\
 \hline 337.0\% \& 107968.3
 10771.5 \& 10745.3
 10736.7 \& -51.0
 -34.8 \& -0.0.3\% \\
 \hline 38.3\% \& 10451.7 \& 10726.8 \& 275.1 \& 2.6\% \\
 \hline 39.5\% \& 9903.1 \& 10312.2 \& 409.1 \& 4.1\% \\
 \hline 40.7\% \& 9879.6 \& 9892.4 \& 12.8 \& 0.19 \\
 \hline \& 9864.1 \& 9608.8 \& -255.4 \& -2.6\% \\
 \hline 年4.4.4\% \& \({ }_{9123.4}^{9670.9}\) \& \({ }_{9}^{95661.9}\) \& -108.0 \& - \(0.14 \%\) \\
 \hline 45.7\% \& 9076.6 \& 9124.1 \& 47.5 \& 0.5\% \\
 \hline \& \({ }^{9030.3}\) \& 9051.8 \& 21.5 \& 0.2\% \\
 \hline 49.4\% \& 8961.3
 8952.6 \& \({ }_{\text {8950.9 }}^{8955}\) \& -6.0. \& -0.0\% \\
 \hline 50.6\% \& 8946.8 \& 8905.8 \& -41.0 \& -0.5\% \\
 \hline 55.9\% \& 8914.1 \& 8702.5 \& -211.6 \& -2.4\% \\
 \hline 年5.1\%\% \& \({ }_{8}^{8749.8}\) \& 8581.2
 82398 \& -168.6 \& -1.9\% \\
 \hline 55.3\% \& 8682.0
 8412.5 \& ¢ \({ }_{\text {8157.1 }}^{8239.8}\) \& \({ }_{-255.4}^{-42.2}\) \& \({ }_{-3.0 \%}^{-5.1 \%}\) \\
 \hline 56.8\% \& \({ }_{8225.8}\) \& 8138.5 \& \({ }_{-87.3}\) \& -1.1\% \\
 \hline 58.0\% \& 8223.5 \& 7870.0 \& -353.5 \& -4.3\% \\
 \hline \& 7759.1 \& 7797.8 \& 38.7 \& 0.5\% \\
 \hline 661.7\% \& \({ }_{7461.7}^{7680.0}\) \& \({ }^{73543.4}\) \& -118.4 \& \({ }_{-1.6 \%}^{-4.2 \%}\) \\
 \hline 63.0\% \& 7340.5 \& 7259.7 \& -80.9 \& -1.1\% \\
 \hline \& \({ }^{7} 7096.2\) \& 6988.8 \& -107.4 \& -1.5\% \\
 \hline 66.7\% \& 6886.4 \& \({ }_{6843.3}^{6892.0}\) \& \({ }_{-43.1}\) \& \({ }^{-2.5 \%}\) \\
 \hline 67.9\% \& 6504.1 \& 6290.7 \& -213.4 \& -3.3\% \\
 \hline 69.1\% \& \& \& \& \\
 \hline 771.6\% \& \({ }_{62006}^{625}\) \& ¢ 6 6151.2 \& \({ }_{\text {-55.3 }}\) \& -0.9\% \\
 \hline 72.8\% \& 5904.0 \& 5663.1 \& -240.8 \& -4.1\% \\
 \hline \& \& \& \& \\
 \hline 77.5\% \& \({ }_{4572.1}^{492.1}\) \& \({ }_{4500.4}^{5159.5}\) \& \({ }_{-656.7}^{186.7}\) \& \({ }^{3.8 \%}\) \\
 \hline 77.8\% \& 4481.5 \& 4316.9 \& -164.6 \& -3.7\% \\
 \hline 89.0\% \& 4454.1 \& \({ }^{4275.9}\) \& -178.2 \& -4.0\% \\
 \hline \({ }^{81.5 \%}\) \& \({ }_{3682.2}^{402.1}\) \& \({ }_{3642.2}^{4234.6}\) \& \({ }_{\text {- }}\) \& - \\
 \hline 82.7\% \& 3326.9 \& 3253.4 \& -73.5 \& -2.2\% \\
 \hline 88.0\% \& 2772.0 \& 3191.4 \& 419.4 \& 15.1\% \\
 \hline 88.2\% \& \({ }_{2666.2}^{2675.2}\) \& 27848.8
 26804 \& \(\begin{array}{r}109.6 \\ \hline 14.2\end{array}\) \& \({ }^{4.1 \%}\) \\
 \hline \({ }^{88.7 \% \%}\) \& \({ }_{2550.4}^{2060.2}\) \& \({ }_{2533.9}^{260.4}\) \& -16.5 \& -0.6\% \\
 \hline 88.9\% \& 2149.4 \& 1962.2 \& -187.2 \& -8.7\% \\
 \hline 90.1\% \& 1242.0 \& 1163.3 \& -78.7 \& -6.3\% \\
 \hline 92.4\%\% \& 1032.5 \& 1041.0 \& 8.5 \& 0.8\% \\
 \hline 93.8\% \({ }^{92.6 \%}\) \& \({ }_{8805.0}^{806.8}\) \& 807.5
 696.9 \& 0.7
 108.1 \& \({ }_{\text {- }} 0.13 .4 \%\) \\
 \hline 95.1\% \& 698.0 \& 688.6 \& -9.4 \& -1.3\% \\
 \hline \({ }^{99.3 \% \%}\) \& 689.8 \& 656.4 \& -33.5 \& -4.9\% \\
 \hline 97.5\%\% \& 649.4 \& 630.9

 2253 \& -18.5 \& -2.9\%

 \hline 100.0\% \& 217.3 \& 217.8 \& 0.5 \&

 \hline
 \end{tabular}

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[b]{3}{*}{$$
 \begin{gathered}
 \text { Percent } \\
 \text { Exceedance } \\
 \text { Probability }
 \end{gathered}
 $$} \& \multicolumn{4}{|c|}{September}

 \hline \& DCR 2015 Without \& DCR 2015 With Project \& \multirow[t]{2}{*}{$$
 \begin{gathered}
 \text { Absolute } \\
 \text { Aiffererce } \\
 \text { (UMHOSCM) }
 \end{gathered}
 $$} \& \multirow[t]{2}{*}{Relative
 Difference (\%)}

 \hline \& Monthly $¢$ EC \& Monthly EC \& \&

 \hline ${ }^{(0.0)}$ \& ${ }_{\text {(UMHOSICM) }} 188329$) \& \& . 191 \&

 \hline 12\% \& \& \& \&

 \hline \& \& \& \&

 \hline 2.5\% \& 18475.6 \& 18521.6 \& 46.0 \&

 \hline 3.7\% \& ${ }^{183225.8}$ \& 18453 \& 127.7 \&

 \hline 4.9\% \& 18325.5 \& 18403.8 \& 78.3 \&

 \hline 7.4\% \& 182474 \& 18360.9 \& ${ }^{113.5}$ \&

 \hline 8.6\% \& 18044.5 \& 18352.4 \& 307.8 \& 1.7\%

 \hline 9.9\% \& 18044.3 \& 18254.3 \& 210.0 \& 1.2\%

 \hline 11.1\% \& 17984.5 \& 18023.3 \& 38.8 \& 0.2\%

 \hline 12.3\% \& 17952.8 \& 17941.0 \& -11.8 \&

 \hline 13.6\% \& 17883.5 \& 17716.4 \& -167.1 \& -0.9\%

 \hline 14.8\% \& 17881.7 \& 17666.7 \& 215.0 \& 2\%

 \hline 16.0\% \& 17835.6 \& 17565.0 \& -270.6 \& -1.5\%

 \hline 17.3\% \& 17782.8 \& 17549.5 \& 233.3 \& -1.3\%

 \hline 18.5\% \& 177712.9 \& 17882.4 \& 230.5 \& -1.3\%

 \hline 19.8\% \& 17628.3 \& 17419.3 \& 2090 \& -1.28

 \hline 21.0\% \& 176617.8 \& ${ }^{173655}$ \& 252.7 \& -1.4\%

 \hline 22.2\% \& 17567.5 \& 17337.7 \& 229.8 \& 1.3\%

 \hline 23.5\% \& 17562.8 \& ${ }^{17328.6}$ \& 234.1 \& 1.36

 \hline 24.7\% \& 17523.1 \& 17260.4 \& ${ }^{262.6}$ \& -1.5\%

 \hline 25.9\% \& 17519.4 \& 17209.3 \& ${ }^{-310.1}$ \& ${ }^{1.88}$

 \hline 27.2\% \& 17515.5 \& 17180.2 \& ${ }^{-335.3}$ \& -1.9\%

 \hline 28.4\% \& 17493.6 \& ${ }^{16982.1}$ \& 511.5 \& -2.9\%

 \hline 29.6\% \& 17353.6 \& 16954.2 \& -399.4 \& -2.3\%

 \hline 30.9\% \& 17338.7 \& ${ }^{16900.0}$ \& -448.8 \& -2.6\%

 \hline 32.1\% \& 17332.1 \& 16833.0 \& -499.1 \& -2.9\%

 \hline 33.3\% \& 177330.7 \& 16615.5 \& -615.1 \& ${ }^{-3.6 \%}$

 \hline 34.6\% \& 17085.7 \& 16550.7 \& -535.0 \& -3.1\%

 \hline 35.8\% \& 16999.4 \& 16319.2 \& -672.1 \& -4.0\%

 \hline 37.0\% \& 16925.5 \& 16301.6 \& -623.9 \& -3.7\%

 \hline 38.3\% \& 16791.0 \& 16298.3 \& -492.7 \& -2.9\%

 \hline 39.5\% \& 16571.9 \& 16262.8 \& -309.1 \& -1.9\%

 \hline 40.7\% \& 16394.7 \& 16216.5 \& -178.2 \& -1.1\%

 \hline 42.0\% \& 16378.6 \& 16189.8 \& -188.8 \& -1.2\%

 \hline 43.2\% \& 16233.5 \& 16119.2 \& -114.3 \& -0.7\%

 \hline 44.4\% \& 16181.1 \& 16024.0 \& -157.0 \& -1.0\%

 \hline 45.7\% \& 16034.0 \& 15810.9 \& ${ }^{223.1}$ \& -1.4\%

 \hline 46.9\% \& 16030.5 \& 15803.5 \& ${ }^{227.1}$ \& -1.4\%

 \hline 48.1\% \& 16019.6 \& 15777.8 \& -241.8 \& -1.5\%

 \hline 49.4\% \& 16001.7 \& 15722.6 \& -279.2 \& -1.7\%

 \hline 50.6\% \& ${ }^{15814.3}$ \& 15632.6

 15592 \& -181.7 \& -1.1\%

 \hline 51.9\% \& 15779.9 \& 15509.2 \& -270.7 \& -1.7\%

 \hline 53.1\% \& 15577.3 \& 15044.6 \& -532.7 \& -3.4\%

 \hline 54.3\% \& 11490.7 \& 11271.6 \& -219.1 \& -1.9\%

 \hline 55.6\% \& ${ }^{114055.2}$ \& 11270.1 \& -135.1 \& -1.2\%

 \hline 56.8\% \& ${ }^{111333.4}$ \& ${ }^{11262.1}$ \& -71.4 \& -0.6\%

 \hline 58.0\% \& 11327.9 \& 11195.4 \& -132.6 \& -1.2\%

 \hline 59.3\% \& 11306.9 \& 11128.5 \& -178.5 \& -1.6\%

 \hline 60.5\% \& 111236.5 \& 111098.6 \& -137.9 \& -1.2\%

 \hline ${ }^{61.7 \%}$ \& 11174.1 \& 11056.2 \& -117.9 \& -1.1\%

 \hline 63.0\% \& 11156.9 \& 10983.2 \& -173.7 \& -1.6\%

 \hline ${ }^{64.2 \%}$ \& 11040.8 \& 109622.6 \& -78.2 \& -0.7\%

 \hline 65.4\% \& 10975.6 \& 10786.7 \& -188.9 \& -1.7\%

 \hline ${ }^{66.7 \%}$ \& 10599.5 \& 10432.6 \& -166.9 \& \%

 \hline 67.9\% \& 10081.5 \& ${ }^{9975.3}$ \& -106.2 \& -1.1\%

 \hline 69.1\% \& 8200.9 \& ${ }_{1701.3}$ \& -99.6 \& 2\%

 \hline 70.4\% \& ${ }_{7}^{77384.8}$ \& 7701.7 \& -37.1 \& -0.5\%

 \hline 71.6\% \& 7674.4 \& 7598.5 \& -75.9 \& \%

 \hline 72.8\% \& | 7587.1 |
 | :--- |
 | 7544 | \& ${ }_{7}^{7596.9}$ \& ${ }^{9.8}$ \& 0.1\%

 \hline 74.1\% \& 7584.4 \& 7584.3 \& -0.1 \& 0.0\%

 \hline 75.3\% \& 7532.2 \& 7494.4 \& -37.9 \& -0.5\%

 \hline ${ }^{76.5 \%}$ \& 7498.4 \& 7488.1 \& -10.4 \& 0.1\%

 \hline 77.8\% \& ${ }^{7460.8}$ \& 7435.6 \& -25.2 \& 0.3\%

 \hline 79.0\% \& ${ }_{7349.1}$ \& ${ }^{728228}$ \& ${ }^{66.3}$ \& -0.9\%

 \hline 80.2\% \& 73848 \& ${ }_{7}^{7272.0}$ \& -76.3 \& -1.0\%

 \hline 81.5\% \& 7341.7 \& ${ }^{2218.5}$ \& -123.2 \& 1.7\%

 \hline - \& 7310.6
 72870 \& ${ }_{7205.4} 72$ \& -105.2 \& 1.4\%

 \hline 84.0\% \& ${ }^{7287.0}$ \& ${ }^{7164.3}$ \& ${ }_{122,8}^{1228}$ \& 1.7\%

 \hline 85.2\% \& ${ }_{7}^{727356}$ \& ${ }^{7136.3}$ \& -137.3 \& -1.9\%

 \hline ${ }^{86.46}$ \& ${ }^{7225.6}$ \& | 7119.8 |
 | :--- |
 | 6387 | \& 105.8 \& (1.5\%

 \hline 877\% \& ${ }^{6967.5}$ \& ${ }^{6330.7}$ \& 136.8 \& 2.0\%

 \hline ${ }^{88.9 \%}$ \& ${ }^{6873.1}$ \& ${ }_{6}^{6792.5}$ \& 80.6 \& 1.2\%

 \hline 90.19\% \& 6846.7 \& 6757.5 \& -893 \& -1.3\%

 \hline ${ }^{91.4 \%}$ \& 6791.6 \& ${ }_{6}^{6712.4}$ \& 79.2 \&

 \hline 92.6\% \& ${ }^{6756.6}$ \& ${ }_{6615.8}^{6615}$ \& -140.8 \& -2.1\%

 \hline -93.8\% \& ${ }^{6753.2}$ \& ${ }_{6}^{6610.3}$ \& -122.9 \& 2.1\%

 \hline 95.1\% \& ${ }_{6}^{6607.1}$ \& ${ }^{647997}$ \& -127.4 \& -1.9\%

 \hline -96.3\% ${ }^{975 \%}$ \& ${ }_{6520.0} 6$ \& ${ }^{6455.7}$ \& ${ }^{-64.3}$ \&

 \hline \& 6518.3
 53486 \& 6312.3
 55962 \& ${ }^{-200.0}$ \& ${ }^{3.2 \%}$

 \hline -98.8\% \& \& ${ }_{3}^{55959.2}$ \& ${ }_{188.4}^{247.6}$ \& 4.9\%\%

 \hline
 \end{tabular}

 San Joaquin River at Jersey Point, Monthly EC

 Table $\mathrm{SQ}-25-\mathrm{b}$
 in
 River at Jersey Point，Monthly EC

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | Octobe | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | DCR 2015 With Project | Absolute | |
 | | Monthly EC | Monthy EC | （umbicm） | ference（\％） |
 | （\％） | ， | mincicm | | |
 | 0．0\％ | | 2732 | －104．0 | 3．7\％ |
 | －1．2\％ | 2821.0 27507 | 2510．2 | －${ }_{\text {－258．3 }}$ | －9．4．0 |
 | 3．7\％ | 2631.6 | 24327 | －－1989 | |
 | 4．9\％ | 2562.7 | ${ }_{2402.8}^{24.8}$ | －159．9 | － |
 | ${ }^{6.2 \%}$ | 2444.7 | 2381.6 | －63．1 | －2．6\％ |
 | 7．4\％ | 2434.1 | ${ }^{23776.5}$ | －57．6 | －2．4\％ |
 | －${ }_{\text {9．9\％\％}}$ | ${ }_{2}^{2400.2}$ | ${ }_{2316.2}^{2374.5}$ | －25．6 -81.0 | －${ }_{-3.14 \%}$ |
 | 11．1\％ | 2372.4 | ${ }^{2295.3}$ | －77．1 | －3．2\％ |
 | ${ }^{12.3 \%}$ | 2360.9 | 2289.7 | －71．2 | －3．0\％ |
 | | 2339.5 230.2 | ${ }_{2253.5}^{2278.2}$ | -81.2 -86.6 | －3．7\％ |
 | 16．0\％ | 2336.2 | 2247.5 | －88．7 | －3．8\％ |
 | 17．3\％ | 2291.4 | 2184.1 | －107．4 | －4．7\％ |
 | 年 18.85% | ${ }_{22262.6}^{2279.7}$ | ${ }_{2}^{21688.3}$ | -11.4 -103.6 | ${ }_{-4.9 \%}^{-4.9 \%}$ |
 | 21．0\％ | 2262.2 | 2015.4 | －246．8 | －10．9\％ |
 | ${ }^{22.2 \%}$ | 2256．4 | 2012.9 | －243．5 | －10．8\％ |
 | －${ }^{23.5 \%}$ | ${ }_{2241.9}^{2255.2}$ | 2000．6 | ${ }_{\text {－}}$ | |
 | 25．9\％ | 2204.3 | 1951.2 | －253．2 | －11．5\％ |
 | 27．2\％ | ${ }_{2180.6}$ | 1945.4 | －235．2 | －10．8\％ |
 | －${ }^{28.4 \%}$ 29．6\％ | ${ }_{2}^{21414.2}$ | 1853.7 1849.7 | －287．6 -278.6 | －-13.48 |
 | 30．9\％ | 2120.6 | 1841.8 | －278．8 | －13．1\％ |
 | ${ }^{32.1 \%}$ | 2111.4 | 1836.7 | －274．7 | －13．0\％ |
 | 㐌33．6\％ | 2102.8 2100.8 | 1834.1 1799.3 | －-268.7
 -301.4 | －${ }^{-12.8 \%}$ |
 | 35．8\％ | 2095.3 | 1784.8 | －310．5 | －14．8\％ |
 | 37．0\％ | 2092.9 | 1775.7 | －317．2 | －15．2\％ |
 | 38．3．3\％ | ${ }_{2058.5}^{2078.4}$ | 1776.9 178.4 | ${ }_{-200.1}$ | －14．8\％ |
 | 40．7\％ | 2057.6 | 1753.1 | －304．5 | －14．8\％ |
 | 42．0\％ | ${ }^{2052.9}$ | ${ }^{17393}$ | －313．6 | －15．3\％ |
 | ${ }^{43.2 \%}$ | 2012.3 2005.8 | ${ }^{16855}{ }_{1657.2}$ | －327．3 -348.6 | －16．3\％ |
 | 45．7\％ | 2002.4 | 1652.6 | －349．8 | －17．5\％ |
 | 46．9\％ | 1948.2 | 1639.3 | －308．9 | －15．9\％ |
 | 48．1\％ 4.4 | 1937.6 | 1636.3 | －301．4 | －-15.6% |
 | | | 15881.7 | | |
 | 51．9\％ | ${ }_{1625.1}^{1685}$ | ${ }_{1121.5}^{147.5}$ | ${ }_{\text {－503．7 }}^{\text {－306．5 }}$ | －-31.0% |
 | 53．1\％ | 1298.7 | ${ }^{11107.3}$ | －191．4 | －14．7\％ |
 | 54．3\％ | 995.6 | 996.0 | 0.4 | 0．0\％ |
 | 55．6\％ | 714.8 639.7 | 705.8 649.8 | -9.0 10.2 | －1．6\％ |
 | 58．0\％ | 558.7 | 632.1 | 73.4 | 13．1\％ |
 | | 539.7 | ${ }_{5}^{601.2}$ | 61.5 | ${ }^{11.4 \%}$ |
 | 析 60.5% | 533．9 535.2 | 514.0 510.6 | -21.9 -24.5 | －4．4．6\％ |
 | 63．0\％ | 511.6 | 495.0 | －16．6 | －3．2\％ |
 | 64．2\％ 654. | 502.4 | 467.4 | －35．1 | －7．0\％ |
 | ${ }_{6}^{65.7 \%}$ | ${ }_{444.3}$ | ${ }_{462.9}$ | ${ }_{18.6}^{6.7}$ | 4．2\％ |
 | 67．9\％ | 404.5 | ${ }^{435.8}$ | 31.4 | 7．8\％ |
 | 69．1\％ | 391.6 3667 | ${ }^{394.3}$ | ${ }^{2} 7$ | 0．7\％ |
 | 71．6\％ | 30.9 | 324.9 | －16．1 | －4．7\％ |
 | 72．8\％ | 331.5 | 324.5 | －7．0 | －2．1\％ |
 | 74．1／\％ | ${ }^{327.4}$ | 320．2 | －7．2 | －2．2\％ |
 | 76．5\％ | 319.2 | ${ }_{3212.2}$ | －7．0 | －2．2\％ |
 | 77．8\％ | 318.9 3158 | 311.9 | 7.0 | 2．2\％ |
 | 79．0\％ | 315.8 | 306.9 | －8．9 | －2．8\％ |
 | 80．1．${ }^{80.2 \%}$ | ${ }_{307.7}^{3096}$ | ${ }_{296.9}^{306.4}$ | -3.3 -10.7 | －1．1\％\％ |
 | 82．7\％ | 304.0 | 295.9 | 8.1 | |
 | 84．0\％ | 303.1 | 288.5 | －14．6 | －4．8\％ |
 | －${ }_{\text {85．2\％}}$ | 301.0 2097 | ${ }_{284}^{289}$ | －13．1 | －4．4\％ |
 | ${ }^{80.7 \%}$ | ${ }_{293.6}^{299.7}$ | ${ }_{281.5}^{2849}$ | －12．1 | －4．1\％ |
 | 88．9\％ | 291.8 | ${ }^{278.3}$ | －13．5 | －4．6\％ |
 | 90．4\％ | ${ }_{2915}^{295}$ | ${ }_{273}^{2737}$ | －17．8 | －6．1\％ |
 | ${ }_{92.6 \%}$ | ${ }_{283}^{285}$ | ${ }_{26} 27.3$ | －15．0 | －5．3\％ |
 | 93．8\％ | 278.9 | ${ }_{263.2}^{265.3}$ | ${ }_{\text {－18．7 }}$ | －5．6\％ |
 | 95．1\％ | 278.8
 2587
 258 | ${ }^{263.0}$ | －15．8 | －5．7\％ |
 | 97．5\％ | ${ }_{225.5}^{258.7}$ | $\begin{array}{r}257.4 \\ 2551 \\ \hline 251\end{array}$ | － | ${ }^{-0.5 \% \%}$ |
 | 998．8\％ | ${ }_{224.7}^{224}$ | ${ }_{234.7}$ | 290 | \％ |
 | 100．0\％ | 210.0 | 220.4 | 10.4 | 5．0\％ |

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabilily } \end{gathered}$ | Novemer | | | Probablil | $\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{aligned}$ | December | | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOSICM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | DCR 2015 Without | DCR 2015 With Project | | | | DCR 2015 Without | DCR 2015 With Project | | |
 | | Proiect | Monthl EC | Pifiterece | Rifference ${ }^{\text {R }}$（\％） | | Proiect | Monthly EC | | |
 | | （UMHOSSCM） | （UMHOSICM） | | | | （UMHOSICM） | （UMHOSSCM） | | |
 | 0．0\％ | 2885.5 | ${ }^{2853.8}$ | ${ }^{-31.7}$ | －1．1\％ | 0．0\％ | 2944.3 | 2753.3 | －190．9 | －6．5\％ |
 | 1．2\％ | 2799.4 | 2615.8 | 183.5 | －6．6\％ | 1．2\％ | 2748.3 | 2646 | | |
 | 2．5\％ | 2736.6 | 2515.6 | －221．0 | －8．1\％ | 2．5\％ | 2731.6 | 2535.9 | ． 7 | |
 | 3．7\％ | 2663.9 | 2511.3 | －152．6 | 5．7\％ | 3．7\％ | 2704.8 | 2531.4 | 73．4 | 6．4\％ |
 | 4．9\％ | 2602.1 | 2503.1 | －98．9 | －3．8\％ | 4．9\％ | 2698.1 | 2511.9 | 8． 1 | |
 | 6．2\％ | 2562.6 | 2414.7 | －147．9 | 5．8\％ | 6．2\％ | 2517.1 | ${ }^{2502.8}$ | －14．3 | 0．6\％ |
 | 7．4\％ | 255 | 2387.6 | －163．0 | －6．4\％ | 7．4\％ | 2512.0 | 2432.6 | 年． | |
 | 8．6\％ | 2474.2 | 2376.6 | 97．5 | －9\％ | 8．6\％ | 2408.1 | 2294.7 | 113．3 | 4．7\％ |
 | 9．9\％ | 2431.9 | 2309.5 | －122．4 | －5．0\％ | 9．9\％ | 2363.8 | 3.7 | 110.1 | |
 | 11．1\％ | 2407.8 | ${ }^{2306.3}$ | －101．4 | －4．2\％ | 11．1\％ | 2358.9 | 2129.1 | 年9．8 | 9．7\％ |
 | 12.3 | 2356.5 | 2212.3 | －144．2 | －6．1\％ | 123\％ | 2316.2 | 2123.6 | 192.6 | |
 | 13．6\％ | 2302.4 | 2143.7 | －158．7 | 5．9\％ | 13．6\％ | 2203.5 | 2109.3 | 94.1 | 4．3\％ |
 | 14．8\％ | 2300.6 | 3.1 | 207．6 | －9．0\％ | 14．8\％ | 2188.3 | 2084.8 | 103.5 | －4．7\％ |
 | 16．0\％ | 2295.5 | 2087.1 | －208．3 | －9．1\％ | 16．0\％ | 2118.0 | 2084.3 | －33．7 | 1．6\％ |
 | 17．3\％ | 2294.2 | ${ }^{2068.6}$ | 225．6 | －9．8\％ | 17．3\％ | 2056.8 | 1971.3 | －85．5 | －4．2 |
 | （18．5\％ | ${ }_{2}^{226471}$ | ${ }_{20417}^{2068}$ | －203．0 -1903 | －9．0\％ | 18．5\％ | ${ }_{20350}^{2045}$ | 1925.2 19155 | －119．7 | －5．9\％ |
 | － 19.8 \％ | ${ }^{22210.2}$ | ${ }_{2}^{20236.8}$ | －190．3 | －8．8\％ | 19．8\％ | ${ }^{20395.0} 19$ | ${ }_{19193.5}^{1915.5}$ | －-14.2 | －$-.5 .9 \%$ |
 | 22．2\％ | 2189.7 | 2000.9 | －188．8 | －8．6\％ | 22．2\％ | 1986.9 | 1901.8 | －85．1 | －4．3\％ |
 | 23．5\％ | 2156.2 | 1998.8 | －157．3 | －7．3\％ | 23．5\％ | 1843.0 | 1892.1 | 49.1 | 2．7\％ |
 | 24．7\％ | 2154.1 | 1994.3 | 59．8 | －7．4\％ | 24．7\％ | 1772.2 | 1831.4 | 129.2 | 7．6\％ |
 | －25．9\％ | ${ }_{2129.7}^{2142.4}$ | ${ }^{19892.6}$ | －159．9 -155.2 | －7．3\％ | ${ }^{257.9 \%}$ | 1688.4 1620.4 | 1811.6 1779.6 | 123.3 159.2 | 9．8\％ |
 | 28．4\％ | 2120.4 | 1954.7 | －165．8 | －7．8\％ | 28．4\％ | 1577.1 | 1729.3 | 152.3 | 9．7\％ |
 | 29．6\％ | 2041.6 | 1935.2 | －106．4 | －5．2\％ | 29．6\％ | 1572.6 | 1717.7 | 145.2 | 9．2\％ |
 | 30．9\％ | 2029.8 | 1878.7 | －151．1 | －7．4\％ | 30．9\％ | 1507.3 | 1664.7 | 157.4 | 10．4\％ |
 | 32．1\％ | 2024.0 | 1873.5 | －150．4 | －7．4\％ | 32．1\％ | 1441.9 | 1539.0 | 97.1 | 6．7\％ |
 | 33．3\％ | 2022.6 | 1840.4 | －182．1 | －9．0\％ | 33．3\％ | 1404.0 | 1526.1 | 122.1 | 8．7\％ |
 | 34．6\％ | 2016.2 | 1824.4 | －191．9 | －9．5\％ | 34．6\％ | 1294.7 | 1503.7 | 208.9 | 16．1\％ |
 | 35．7\％ | 2000.6 | 1790．8 | －209．8 | －10．5\％ | 35．8\％ | ${ }^{12477.9}$ | ${ }^{1486.8}$ | 238.9 | 19．1\％ |
 | 37．0\％ | 1937.4 | 1736.2 | －201．2 | －10．4\％ | 37．\％ | 1207.5 | 1286.5 | 79.0 | 6．5\％ |
 | 38．3\％ | 1936.4 | ${ }^{1722.8}$ | －213．6 | －11．0\％ | 38．3\％ | ${ }^{12055.3}$ | 1236.1 | 30.8 | 2．6\％ |
 | 39．5\％ | 1926.8 | 1696.3 | －230．6 | －12．0\％ | 39．5\％ | 1201.2 | 1214.2 | 13.0 | 1．1\％ |
 | 40．7\％ | 1910.6 | 1659.9 | －250．7 | －13．1\％ | 40．7\％ | 1170.3 | 1188.2 | 17.8 | 1．5\％ |
 | 42．0\％ | 1878.9 | 1658.0 | －220．9 | －11．8\％ | 42．0\％ | 1170.1 | 1166.3 | －3．8 | 0．3\％ |
 | 43．2\％ | 1825.5 | 1657.4 | －168．2 | －9．2\％ | 43．2\％ | 1136.7 | 1114.9 | －21．9 | －1．9\％ |
 | 44．4\％ | 1810.8 | 1596.9 | －213．9 | －11．8\％ | 44．4\％ | 1058.8 | 1104.9 | 46.1 | 4．3\％ |
 | 45．7\％ | 1757.6 | 1525.1 | －232．5 | －13．2\％ | 45．7\％ | 1034.7 | 958.2 | | －7．4\％ |
 | 46．9\％ | 1674.2 | 1522.9 | －151．3 | －9．0\％ | 46．9\％ | 851.2 | 856.1 | 4.9 | 0．6\％ |
 | 48．1\％ | 1550.0 | 1468.4 | －81．7 | －5．3\％ | 48．1\％ | 839.4 | 834.5 | －5．0 | ${ }^{-0.6 \%}$ |
 | 49．4\％ | 1414.7 | 1378.8 | －35．9 | －2．5\％ | 49．4\％ | 828.0 | 826.2 | －1．8 | －0．2\％ |
 | 50．6\％ | 1232.2 | 1148.5 | －83，7 | －6．8\％ | 50．6\％ | 793.0 | 799.0 | 6.0 | 0．8\％ |
 | 51．9\％ | ${ }^{1225.2}$ | ${ }^{1133.6}$ | －91．6 | －7．5\％ | 51．9\％ | 788.4 | 753.8 | －34．5 | －4．4\％ |
 | 53．1\％ | 1067.3 | 894.3 | －173．1 | －16．2\％ | 53．1\％ | 770.0 | 746.5 | －23．5 | －3．1\％ |
 | 54．3\％ 55.6% | 911.8 | 883.0 | －28．8 | －3．2\％ | 54．3\％ | ${ }_{755.3}$ | ${ }^{746.5}$ | －8．8 | －1．2\％ |
 | 55．8\％ | ${ }_{739.5}^{8959}$ | ${ }_{6}^{847.2}$ | ${ }_{-62.3}$ | ${ }_{\text {－}}^{\text {－}}$－4\％ 4 \％ | 55．8\％ | 754.9 753 | 743.9 | －9．4 | －1．3\％ |
 | 58．0\％ | 708.4 | 655.1 | －53．4 | －7．5\％ | 58．0\％ | 748.9 | 734.8 | －14．1 | －1．9\％ |
 | 59．3\％ | 672.6 | 648.1 | －24．5 | －3．6\％ | 59．3\％ | ${ }^{728.3}$ | 724.5 | －3．9 | －0．5\％ |
 | 60．5\％ | 616.3 | 585.6 | －30．7 | －5．0\％ | 60．5\％ | 713.9 | 715.0 | 1.1 | 0．2\％ |
 | 61．7\％ | 594.8 | 523.4 | －71．4 | －12．0\％ | 61．7\％ | 675.1 | 701.1 | 26.0 | 3．9\％ |
 | 63．0\％ | 503．5 | 513.2 | ${ }^{9.8}$ | ${ }^{1.9 \%}$ | 63．0\％ | ${ }^{642.5}$ | 699.0 | 56.5 | 8．8\％ |
 | 64．2\％ $6.4 .4 \%$ | 492.2 | 469.5 | ${ }^{-22.8}$ | －4．6\％ | 64．2\％ | ${ }^{633.4}$ | 688.4 | 54.9 | ${ }^{8.7 \%}$ |
 | ${ }_{66.7 \%}^{65.4 \%}$ | ${ }_{411.9}^{474.3}$ | ${ }_{457.0}^{465}$ | －9．1． | ${ }^{-11.0 \%}$ | ${ }^{65.4 \%}$ | ${ }_{574.4}^{584.7}$ | ${ }_{679.1}^{688.0}$ | 103.3 104.7 | 18．2\％ |
 | 67．9\％ | ${ }^{381.6}$ | 415.5 | 33.9 | 8．9\％ | 67．9\％ | 513.8 | 649.5 | 135.7 | 26．4\％ |
 | 69．1\％ | 373.1 | 386.7 | ${ }^{13.6}$ | 3．7\％ | 69．1\％ | 513.6 | 558.6 | 45.0 | 8．8\％ |
 | 70．4\％ | 336.2 | 369.4 | 33.2 | 9．9\％ | 70．4\％ | 491.1 | 555.9 | 64.8 | 13．2\％ |
 | 71．6\％ | 335.9 | 366.8 | 31.0 | 9．2\％ | 71．6\％ | 445.9 | 484.0 | 38.1 | 8．5\％ |
 | － $72.81 .1 \%$ | 333.4 320.0 | 358.3 3001 | 24.9 | 㐌．5\％\％ | －72．8\％ | 436．2 | 449.0 435 | ${ }^{12.7}$ | ${ }_{1}^{2.9 \%}$ |
 | 75．3\％ | 319.1 | 336.0 | 16.9 | 5．3\％ | 75．3\％ | ${ }_{421.6}$ | 389.8 | －31．8 | |
 | 76．5\％ | 308.1 | 329.6 | 21.4 | 7．0\％ | 76．5\％ | 391.6 | 362.3 | －29．3 | －7．5\％ |
 | 77．8\％ | 300．6 | 309.0 | ${ }_{2}^{2.3}$ | 0．8\％ | 77．8\％ | 327.8 30.8 | 350．1 | ${ }_{179}^{22.3}$ | 6．8\％ |
 | 89．0\％ | 302.1 | 304.5 | 2.4 | 0．8\％ | 79．0\％ | 310.1 | 328.0 | 17.9 | 5．8\％ |
 | 81．5\％ | 295.7 | 301.9 | 6.2 | 2．1\％ | 81．5\％ | ${ }_{262.7}^{20.6}$ | ${ }_{291.1}$ | ${ }_{28.4}$ | 10．8\％ |
 | 82．7\％ | 295.3 | 301.2 | 5.9 | 2．0\％ | 82．7\％ | 252.6 | 261.4 | 8.8 | 3．5\％ |
 | 84．0\％ | 293.3 | 294.8 | 1.6 | 0．5\％ | 84．0\％ | 249.1 | ${ }^{260.3}$ | 11.2 | 4．5\％ |
 | 85．2\％ | 292.4 | 294．5 | 2.1 | 0．7\％ | 85．2\％ | ${ }^{246.7}$ | ${ }_{252.3}^{2518}$ | 5.6 | 2．3\％ |
 | － | ${ }_{295}^{289.6}$ | ${ }^{282.9}$ | －6．7 | －2．3\％ | 86．4\％ | ${ }^{243.3}$ | ${ }_{2}^{237.0}$ | －12．4 | －5．1\％ |
 | 88．9\％ | 284.3 | ${ }_{280.6}^{282.5}$ | ${ }_{-3.7}$ | －1．3\％ | 88．9\％ | 216.6 | ${ }_{220.1}^{227.8}$ | ${ }_{3}{ }^{-3.5}$ | －1．6\％ |
 | 90．1\％ | 274.3 | 278.4 | 4.1 | 1．5\％ | 90．1\％ | 214.8 | 214.7 | －0．1 | －0．1\％ |
 | 914\％ | 274.0 | 263.8 | －10．2 | －3．7\％ | 914\％ | 214.3 | ${ }^{213.2}$ | －1．1 | －0．5\％ |
 | 92．6\％ | ${ }_{243}^{27.7}$ | ${ }_{255}^{255}$ | －15．6 | －5．8\％ | 92．6\％ | 213.1 | ${ }^{212,9}$ | －0．2 | －0．1\％ |
 | 93．8\％ | 243.7 | ${ }^{235.0}$ | －8．7 | －3．6\％ | 93．8\％ | 211.7 | 212.1 | 0.4 | 0．2\％ |
 | ${ }_{96.3 \%}^{95.1 \%}$ | 224.9 | ${ }^{225.9}$ | 1.0 | 0．4\％ | 95．1\％ | ${ }^{206.3}$ | 205.8 | －0．4 | －0．2\％ |
 | 96．5\％ | ${ }_{215.7}^{216.4}$ | ${ }_{213.6}^{222.9}$ | －2．1 | －1．0\％ | ${ }^{96.5 \%}$ | ${ }_{199.5}^{203.6}$ | ${ }_{199.6}^{209.4}$ | 0.1 | 0．1\％ |
 | 98．8\％ | 203.4 | 211.8 | 8.4 | 4．1\％ | 98．8\％ | 195.8 | 196.7 | 1.0 | 0．5\％ |
 | 100．0\％ | 198.3 | 200.1 | 1.8 | 0．9\％ | 100．0\％ | 192.1 | 190.4 | －1．7 | －0．9\％ |

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[b]{3}{*}{Percent
 Exceedance
 Probability} \& \multicolumn{4}{|c|}{January} \\
 \hline \& \& DCR 2015 With Project \& Absolute \& \\
 \hline \& Monthly EC \& Monthly EC \& （iflerence \& Difference（\％） \\
 \hline （\％） \& （UMHOSSCO） \& UMHOSSCM） \& \& \\
 \hline \& 1656.5 \& \({ }^{1559.5}\) \& －97．0 \& \\
 \hline 1．2\％ \& 1644.9 \& 1508.6 \& －136．4 \& －8．3\％ \\
 \hline 2．5\％ \& 15999 \& 1500.8 \& －98．9 \& \％ \\
 \hline 3．7\％ \& 1599.0 \& 1388.0 \& －211．0 \& \({ }^{13.2 \%}\) \\
 \hline 4．9\％ \& \({ }^{1553.5}\) \& \({ }^{13855.6}\) \& －167．9 \& 10．8\％ \\
 \hline 6．2\％ \& \({ }^{13566.7}\) \& \({ }^{13822.3}\) \& \({ }^{25.6}\) \& 1．9\％ \\
 \hline 7．4\％ \& \({ }_{1}^{1350.1}\) \& \({ }^{1362.0}\) \& 11.8 \& 0．9\％ \\
 \hline 8．6\％ \& \({ }^{13155.1}\) \& \({ }^{13619}\) \& 46.8 \& 3．6\％ \\
 \hline \({ }^{9.9 \%}\) \& \({ }^{1249.7}\) \& \({ }^{1278.5}\) \& 28.8 \& \({ }^{2.3 \%}\) \\
 \hline 11．1\％ \& \({ }^{12422.1}\) \& \({ }^{12333.5}\) \& －8．6 \& －0．7\％ \\
 \hline \({ }^{12.3 \%}\) \& \({ }_{12057}^{1205}\) \& 11163.9 \& －41．8 \& －3．5\％ \\
 \hline 13．6\％ \& 1170.8 \& 1158.2 \& －12．7 \& －1．1\％ \\
 \hline 14．8\％ \& 1118.6 \& \({ }^{11488.0}\) \& 29.4 \& 2．6\％ \\
 \hline 16．0\％ \& 11048 \& \({ }^{1112.3}\) \& 7.5 \& 0．7\％ \\
 \hline 17．3\％ \& 1087．6 \& 10997 \& \({ }_{12.1}^{12.1}\) \& 1．1\％ \\
 \hline 18．5\％ \& \({ }^{10824.8}\) \& \({ }^{1087.0}\) \& \({ }^{2.2}\) \& 0．2\％ \\
 \hline 19．8\％ \& 1022.1 \& 1073.3 \& 51.2 \& 5．0\％ \\
 \hline 21．0\％ \& \({ }^{1001.3}\) \& \({ }^{1060.7}\) \& 59.4 \& 5．9\％ \\
 \hline \({ }^{22.2 \%}\) \& 992.4 \& 1033.0 \& 40.6 \& 4．1\％ \\
 \hline 23．5\％ \& 955.6 \& 992.4 \& \({ }_{36.8}^{36.8}\) \& 3．9\％ \\
 \hline \({ }^{24.79 \%}\) \& \({ }^{930.6}\) \& 988.8 \& 58.2 \& 6．3\％ \\
 \hline 25．9\％ \& 928.9 \& 965.4 \& \({ }_{56.6}\) \& 3．9\％ \\
 \hline 27．2\％ \& 908.8 \& 964.0 \& 55.2 \& \({ }^{6.1 \%}\) \\
 \hline 28．4\％ \& 874.9 \& \({ }_{936.9}\) \& 61.9 \& 7．1\％ \\
 \hline 29．6\％ \& 85.5 \& \({ }^{879.3}\) \& \({ }^{23.8}\) \& 2．8\％ \\
 \hline 30．9\％ \& 814.9 \& \({ }_{8}^{818.2}\) \& 3.2 \& 0．4\％ \\
 \hline 32．1\％ \& 807.1 \& 816.1 \& 9.0 \& 1．1\％ \\
 \hline 33．3\％ \& 763.7 \& \({ }_{8}^{812.0}\) \& 48.3 \& 6．3\％ \\
 \hline 34．6\％ \& 701.0 \& \({ }_{802.8}\) \& 101.8 \& 14．5\％ \\
 \hline 35．8\％ \& \({ }_{6578}^{687}\) \& \({ }_{7}^{801.6}\) \& 114.4 \& 16．7\％ \\
 \hline 37．0\％ \& 657.8 \& 797.6 \& \({ }_{1}^{139.7}\) \& 21．2\％ \\
 \hline 38．3\％ \& 647.1 \& 768.7 \& \({ }_{121.6}\) \& 18．8\％ \\
 \hline 39．5\％ \& \({ }^{600.2}\) \& 746.1 \& 145.9 \& \({ }^{24.3 \%}\) \\
 \hline 40．7\％ \& 598.3 \& \({ }^{688.4}\) \& 90.1 \& 15．1\％ \\
 \hline 42．0\％ \& 583.1 \& \({ }^{683.7}\) \& 100.6 \& 17．3\％ \\
 \hline 43．2\％ \& 574.7 \& \({ }^{681.2}\) \& 100.6 \& 18．5\％ \\
 \hline 44．4．9 \& 572.1 \& 614.6 \& 42.5 \& \({ }_{1} 7.47 \%\) \\
 \hline 45．7\％ \& \({ }_{5237}^{537}\) \& 610.8
 599 \& 73.4 \& \({ }^{13.7 \%}\) \\
 \hline 46．9\％ \& 52.3 \& 599.5 \& 78.2 \& 15．0\％ \\
 \hline 48．1\％ \& 4995 \& 566.7
 5571 \& 71.2 \& \({ }^{14.44 \%}\) \\
 \hline 4．94\％ \& 492.4 \& 557.1 \& 64.7 \& 13．1\％ \\
 \hline 50．6\％ \& \({ }_{458.6}\) \& 545．6 \& 87.0 \& \({ }^{19.0 \%}\) \\
 \hline 51．9\％ \& 439.3 \& 515.7 \& 76.4 \& 17．4\％ \\
 \hline 53．1\％ \& \({ }_{\text {coser }}^{403.8}\) \& \({ }_{4012}^{465}\) \& \({ }_{61.5}^{61.5}\) \& 15．2\％ \\
 \hline 54．3\％ \& 396．8 \& 407.3 \& 4.5 \& 1．1\％ \\
 \hline 55．6\％ \& 378.1
 3697 \& \(\begin{array}{r}397.0 \\ 395 \\ \hline\end{array}\) \& 18.9 \& 5．0\％ \\
 \hline 56．8\％ \& \({ }^{369.7}\) \& \({ }^{3959}\) \& \& 6．9\％ \\
 \hline 58．0\％\％ \& \({ }^{354.7}\) \& 399．4 \& 39.7 \& \({ }^{11.2 \%}\) \\
 \hline 59．5\％ \& \begin{tabular}{l}
 338.8 \\
 3154 \\
 \hline
 \end{tabular} \& \({ }_{3711}\) \& 38.9
 557 \& \({ }^{11.57 \%}\) \\
 \hline \({ }_{6}^{6.17 \%}\) \& \({ }_{312.5}\) \& \({ }^{379.1}\) \& \({ }_{56.6}^{55.7}\) \& 18．1\％ \\
 \hline 63．0\％ \& 310.9 \& 353.0 \& 42.1 \& 13．5\％ \\
 \hline 64．2\％ \& \({ }^{302.6}\) \& 325.7 \& \({ }^{23.1}\) \& 7．6\％ \\
 \hline 65．4\％ \& 291.6 \& 316.8 \& \({ }^{25.1}\) \& 8．6\％ \\
 \hline \({ }^{66.7 \%}\) \& \({ }^{281.2}\) \& 294.4 \& 13.2 \& 4．7\％ \\
 \hline 67．9\％ \& 275.6
 274.6 \& 274.4
 272.8 \& －1．28 \& －0．4\％ \\
 \hline 70．4\％ \& 261.7 \& 271.5 \& \({ }_{9.7}\) \& 3．7\％ \\
 \hline 71．6\％ \& 261.1 \& 263.6 \& 2.5 \& 1．0\％ \\
 \hline 72．8\％ \& 255.8 \& 262.8 \& \& 2．7\％ \\
 \hline 74．1\％ \& 254.1 \& 262.6 \& 8.5 \& 3．3\％ \\
 \hline 75．3\％ \& \({ }_{245}^{245}\) \& 259.4

 2558 \& ${ }_{14.2}$ \& 5．8\％

 \hline 76．5\％ \& ${ }^{243.5}$ \& ${ }^{255.8}$ \& ${ }^{12,3}$ \& 5．1\％

 \hline 77．8\％ \& ${ }_{2350}^{243.2}$ \& | 255.0 |
 | :--- |
 | 245 | \& 11.9

 102
 102 \& 4．9\％\％

 \hline 80．2\％ \& 235.0 \& 236.6 \& \& 0．7\％

 \hline 81．5\％ \& 233.0 \& 236.3 \& ${ }_{3.3}$ \& 1．4\％

 \hline 82．7\％ \& 232.0 \& 234.3 \& 2.2 \& 1．0\％

 \hline 84．0\％ \& 230.9 \& ${ }_{233.7}^{233}$ \& 2.8 \& 1．2\％

 \hline 85．2\％ \& ${ }_{2298}^{2298}$ \& ${ }_{231}^{232.3}$ \& ${ }_{3}^{2.6}$ \& ${ }^{1.19 \%}$

 \hline ${ }^{86.4 \%}$ \& 227.4 \& 23.1 \& \& 1．6\％

 \hline －87．70\％ \& ${ }_{225}^{225}$ \& ${ }_{2254}^{225.7}$ \& －0．1 \& －0．1\％

 \hline 88．9\％ \& 225.5 \& ${ }_{225.4}^{225.4}$ \& ${ }^{0.0}$ \& 0．0\％

 \hline 90．17\％ \& ${ }_{215}^{22.2}$ \& ${ }^{223.2}$ \& ${ }_{2} 2.9$ \& 1．3\％\％

 \hline 91．4\％ \& 215.0 \& 216.0 \& 1.1 \& 0．5\％

 \hline －92．6\％ \& ${ }^{214.6}$ \& 216．0 \& 1.4 \& 0．6\％

 \hline 93．8\％ \& 210.8 \& ${ }^{212.4}$ \& 1.6 \& 0．8\％

 \hline 95．1\％ \& 20.2 \& ${ }^{210.3}$ \& 1.1 \& 0．5\％

 \hline 96．3\％ \& 208.5 \& 20.1 \& －0．4 \& －0．2\％

 \hline 97．5\％ \& 204.6 \& 204.6 \& 0.0 \& 0．0\％

 \hline $\begin{array}{r}958 \\ \text { 100．0\％} \\ \hline\end{array}$ \& 200.9 \& ${ }_{201.3}^{203.1}$ \& －0．4 \& 0．2\％

 \hline
 \end{tabular}

 Table $\mathrm{SQ}-25-\mathrm{b}$
 in
 River at Jersey Point, Monthly EC

 | $\begin{gathered} \text { Percent } \\ \text { Excedance } \\ \text { Probability } \end{gathered}$ | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {OCR } 2015 ~ W ~ W i t h o u t ~}$ | DCR 2015 With Project | Absolute | |
 | | Monthly EC | Monthly EC | (itierersce | ference (\%) |
 | (\%) | (unHosicm | MHO | | |
 | 0.0\% | 776.4 | 876.0 | 99.6 | 12.8\% |
 | 1.2\% | ${ }_{721.3}$ | ${ }_{781.5}^{852.5}$ | 131.1 | 18.2\% |
 | 2.5\%\% | 718.6 | ${ }_{693} 78.7$ | 63.1 | ${ }^{8.8 \%}$ |
 | 3.9\% | ${ }_{6587}^{667}$ | 693.6 6755 | ${ }_{168}^{26.1}$ | ${ }^{3.5 \%}$ |
 | 6.2\% | 585.3 | 664.3 | 79.0 | 13.5\% |
 | 7.4\% | 532.4 | 562.3 | 29.9 | 5.6\% |
 | - ${ }_{\text {8.9\% }}$ | 518.8 489 | 554.3 538.6 | ${ }_{493}^{35.5}$ | 6.8\% 10.1% |
 | ${ }^{9.9 \%}$ | 4893 | 538.6 | | |
 | 12.3\% | ${ }_{491.2}$ | ${ }_{472.9}$ | ${ }_{31.8}^{48.8}$ | 7.2\% |
 | +13.9\% | ${ }_{408.1}^{41.5}$ | ${ }_{4}^{458.3}$ | 46.8 395 | - |
 | 16.0\% | 396.3 | 443.1 | 46.8 | 11.8\% |
 | 17.3\% | 388.6 | 419.4 | 30.8 | 7.9\% |
 | 18.5% 1988% | 378.5 365.2 | 413.2 3000 | 34.6 24.8 | |
 | 21.0\% | 344.5 | 363.2 | ${ }_{18.6}$ | 5.4\% |
 | 22.2\% | 343.4 | 353.0 | 9.7 | 2.8\% |
 | ${ }^{23.5 \%}$ | $\begin{array}{r}343.1 \\ 3156 \\ \hline\end{array}$ | 336.4 3324 | -6.7 | - |
 | 25.9\% | 312.9 | 332.1 | 19.2 | 6.1\% |
 | 27.2\% | ${ }^{311.3}$ | 330.5 | 19.1 | 6.1\% |
 | 28.4\% | ${ }_{304.0}^{305.1}$ | ${ }_{317.1}^{326.1}$ | 21.0 13.2 | 年.3\% |
 | 30.9\% | 301.5 | 305.9 | 4.4 | 1.4\% |
 | ${ }^{32.1 \%}$ | 295.1 | 305.1 | 10.1 | 3.4\% |
 | 34.6\% | ${ }_{293.4}^{294.2}$ | 304.2 3028 | $\stackrel{10.4}{9.0}$ | ${ }_{3.2 \%}^{3.4 \%}$ |
 | 35.8\% | 291.6 | 301.2 | 9.5 | 3.3\% |
 | | | 299.9 | | 4.2\% |
 | 30.5\% | 287.5 279.8 | ${ }_{298.6}$ | ${ }_{118.8}$ | 6.7\% |
 | 40.7\% | 277.6 | 296.2 | 18.6 | 6.7\% |
 | | | 295.5 | | |
 | 44.4\% | ${ }^{274.4}$ | 294.5 | ${ }_{20.1}^{19.7}$ | 7.3\% |
 | 45.7\% | 27.1 | 287.7 | 16.6 | 6.1\% |
 | | | ${ }^{284.8}$ | | |
 | 49.4\% | ${ }_{269.3}^{2707}$ | ${ }_{277.6}^{283.2}$ | ${ }_{8.3}^{12.4}$ | 3.1\% |
 | 50.6\% | 269.0 | 272.6 | 3.7 | 1.4\% |
 | 51.9\% | 268.3 | ${ }^{272.4}$ | | 1.5\% |
 | 54.3\% | ${ }_{259.0}^{266.1}$ | ${ }_{270.5}^{270.6}$ | ${ }_{11.5}^{4.5}$ | ${ }_{\text {4.4\% }}^{1.7 \%}$ |
 | 55.6\% | 258.0 | 270.3 | 12.3 | 4.8\% |
 | 56.8\% | ${ }_{252.7}^{256.8}$ | 265.2 263.0 | 8.3
 10.4 | ${ }^{3.2 \%}$ |
 | 59.3\% | 250.7 | 261.8 | 11.2 | 4.5\% |
 | 60.5\% | 250.6 | 257.8
 2507
 207 | 7.2 | 2.9\% |
 | 63.0\% | ${ }_{246.6}^{24.9}$ | 246.4 | -0.3 | -0.1\% |
 | 64.2\% | 24.8 | 246.1 | ${ }^{3.4}$ | 1.4\% |
 | | 242.4 | ${ }_{24.4}^{244.4}$ | 2.0 | 0.8\% |
 | 6.7.9\% | ${ }_{238.2}^{24.5}$ | ${ }_{20}^{24.8}$ | ${ }_{2.5}^{2.8}$ | ${ }_{\text {l }}$ |
 | 69.1\% | 236.5 | 239.0 | ${ }_{2.4}^{2.5}$ | 1.0\% |
 | 70.4\% | ${ }_{2}^{236.0}$ | ${ }_{2}^{236.2}$ | 0.2 | 0.1\% |
 | 772.8\% | | | -2.3 | |
 | 74.1\% | ${ }_{226.8}^{229.7}$ | ${ }_{229.9}^{230.7}$ | ${ }_{3.1}^{1.1}$ | - ${ }_{\text {1.4\% }}^{0.15}$ |
 | 75.3\% | ${ }^{224.8}$ | 229.0 | 4.3 | 1.9\% |
 | 76.7.8\% | ${ }_{220.8}^{224.7}$ | ${ }^{2223.9}$ | 3.3 2.7 | - 1.2% |
 | 79.0\% | 220.2 | 221.0 | ${ }_{0}^{2.8}$ | 0.4\% |
 | 80.2\% | 21931 | 220.5 | 1.2 | 0.5\% |
 | | ${ }_{2191}^{2191}$ | | | |
 | 84.0\% | 218.0 | ${ }_{219.1}^{220.0}$ | 1.1 | 0.5\% |
 | 85.2\% | 217.6 | 218.7 | 1.1 | 0.5\% |
 | 86.4\% | 216.8 | 218.2 | 1.4 | 0.6\% |
 | | ${ }_{215}^{2156}$ | ${ }_{2150}^{216.0}$ | ${ }^{0.5}$ | -0.2\% |
 | ${ }_{90.1 \%}$ | 215.2 | 215.2 | 0.0 | 0.0\% |
 | 91.4\% | 211.6 | 213.1 | 1.5 | 0.7\% |
 | 92.6\% | 211.5 | 211.6 | 0.2 | 0.1\% |
 | ${ }^{93.8 \%}$ | 208.1 2078 | 208.8 2081 | 0.6 | ${ }_{0}^{0.3 \%}$ |
 | ${ }_{9}^{956.13 \%}$ | 207.8 207.6 | 208.1 207.8 | ${ }_{0}^{0.3}$ | 0.1\% |
 | 97.5\% | 203.6 | 203.6 | 0.0 | 0.0\% |
 | 98.8\% | 201.4 | 203.5 | 2.1 | 1.0\% |
 | 100.0\% | 199.8 | 199.9 | 0.0 | 0.0\% |

 | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | $\begin{gathered} \text { Percent } \\ \text { Exceoder } \\ \text { Probabily } \end{gathered}$ | | March | | $\begin{aligned} & \text { Relative } \\ & \text { Difference (\%) } \end{aligned}$ | $\begin{gathered} \text { Percent } \\ \text { Exceadance } \\ \text { Probability } \\ \text { Oelily } \end{gathered}$ | April | | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOS/CM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | | DCR 2015 Without | DCR 2015 With Project | | | | DCR 2015 Without | DCR 2015 With Project | | |
 | | | Monthy EC | Difference (UMHOS/CM) | | | Monthly EC | Monthy EC | | |
 | ${ }^{(\% .0 \%)}$ | ${ }_{\text {(UMHOSOSCM) }}^{456.0}$ | 5859 | 1298 | 28.5\% | 0.0\% | ${ }^{4626}$ | | | |
 | 1.2\% | 427.0 | 479 | 528 | 124\% | 12\% | \% 8 | 9093 | | . |
 | 2.5\% | 335.9 | 3530 | 171 | 5.1\% | 2.5\% | 386 | 3894 | 33 | |
 | 3.7\% | 329.6 | 348.7 | 19.1 | 5.8\% | 3.7\% | 361.1 | 358.6 | -2.5 | -0.7\% |
 | 4.9\% | 329.0 | 332.4 | 3.4 | 1.0\% | 4.9\% | 322.5 | 314.7 | -7.8 | -2.4\% |
 | 6.2\% | 324.7 | 331.5 | 6.8 | 2.1\% | 6.2\% | 316.4 | 313.1 | -3.3 | 1.1\% |
 | 7.4\% | ${ }^{322.3}$ | 328.3 | 5.9 | 1.8\% | 7.4\% | 314.0 | 300.5 | 13.6 | -4.3\% |
 | 8.6\% | 317.8 | 327.6 | 9.8 | 3.1\% | 8.6\% | 306.8 | 1.9 | -14.9 | |
 | 9.9\% | 315.8 | 318.1 | 2.4 | 0.7\% | 9.9\% | 287.3 | 286.3 | -1.0 | |
 | 11.1\% | 295.3 | 304.1 | 8.8 | 3.0\% | 11.1\% | 283.2 | 283.9 | 0.7 | 0.2\% |
 | 12.3\% | 291.5 | 295.8 | 4.3 | 1.5\% | 12.3\% | 274.2 | 275.6 | 1.4 | 0.5\% |
 | 13.6\% | 289.5 | 293.9 | 4.4 | 1.5\% | 13.6\% | 272.2 | 274.7 | 2.6 | 9\% |
 | 14.8\% | 282.8 | 293.3 | 10.5 | 3.7\% | 14.8\% | 271.7 | 274.1 | 2.4 | 0.9\% |
 | 117.3\% | ${ }_{278.1}^{282.1}$ | 290.0 | 7.9 | ${ }_{4}^{2.8 \%}$ | - 11.0% | ${ }^{268.0}$ | ${ }_{2677}^{27.5}$ | 5.5 | 2.0\% |
 | 18.5\% | 275.8 | 285.2 | 9.5 | 3.4\% | 18.5\% | 262.2 | 266.6 | 4.4 | 1.7\% |
 | 19.8\% | 271.8 | 279.3 | 7.5 | 2.8\% | 19.8\% | 261.9 | 263.2 | 1.3 | 0.5\% |
 | 21.0\% | 267.4 | 277.2 | 9.8 | 3.6\% | 21.0\% | 260.2 | ${ }^{262.1}$ | 1.9 | 0.7\% |
 | 22.2\% | 265.7 | 276.2 | 10.5 | 4.0\% | 22.2\% | 259.5 | 261.9 | 2.4 | 0.9\% |
 | 224.7\% | 262.0 259.9 | ${ }_{267.1}^{268.7}$ | ${ }_{72}^{6.7}$ | ${ }_{\text {2.8\% }}^{2.8 \%}$ | ${ }_{\text {24, }}^{23.5 \%}$ | 258.0 258.0 | 261.8 2615 | ${ }_{3}^{3.7}$ | 1.4\% |
 | 25.9\% | 259.6 | 264.7 | 5.0 | 1.9\% | 25.9\% | 257.5 | 260.3 | 2.8 | 1.1\% |
 | 27.2\% | 259.1 | 260.8 | 1.7 | 0.6\% | 27.2\% | 257.1 | 257.6 | 0.4 | 0.2\% |
 | 28.4\% | 257.5 254.4 | ${ }^{260.2}$ | ${ }_{2}^{27}$ | 1.0\% | 28.4\% | 254.7 2512 | $\begin{array}{r}257.0 \\ \hline 257\end{array}$ | 23 34 3 | 0.9\% |
 | 29.6\% | 254.4 | 256.6 | 2.3 | 0.9\% | 29.6\% | 251.2 | 254.7 | 3.4 | 1.4\% |
 | ${ }_{3}^{32.9 \%}$ | 250.9 248.4 | 253.6 253.1 | ${ }_{4.7}^{2.7}$ | 1.9\% | - 3 30.9\% | 250.7 250.7 | ${ }_{\text {252.6 }}^{253}$ | 2.5 1.9 | - |
 | 33.3\% | 244.1 | 250.8 | 6.8 | 2.8\% | 33.3\% | 246.7 | 251.1 | 4.4 | 1.8\% |
 | 34.6\% | 244.0 | 250.2 | 6.2 | 2.5\% | 34.6\% | 246.4 | 250.1 | 3.8 | 1.5\% |
 | 35.5\% | 239.5 | 247.1
 245
 25 | ${ }^{7.6}$ | 3.2\% | 35.8\% | ${ }_{24}^{24.8}$ | 249.5 2988 | 4.8 | 1.9\% |
 | 37.0\% | 239.2 | 245.5 | 6.3 | 2.6\% | 37.\% | 243.7 | 248.8 | 5.1 | 2.1\% |
 | 38.3\% | 237.6 | 24.0 | 7.5 | 3.1\% | 38.3\% | ${ }_{243}^{243}$ | 246.8 2468 | ${ }^{3} 4$ | 1.5\% |
 | 39.5\% | 237.0 2365 | 24.5 | ${ }^{7.5}$ | 3.2\% | 3.95\% | ${ }_{222.3}^{2423}$ | ${ }_{264}^{2468}$ | 4.4 | 1.8\% |
 | 40.7\% | 236.5 2353 | ${ }_{23}^{2420}$ | ${ }^{5.6}$ | 2.4\% | 40.7\% | 2420 | ${ }_{24}^{246.6}$ | 4.6 | 1.9\% |
 | 42.0\% | ${ }_{2}^{235.3}$ | 23.8 | 4.5 | 1.9\% | 42.0\% | 241.9 | ${ }_{23}^{24.2}$ | 1.3 | 0.5\% |
 | 43.2\% | ${ }_{2}^{234.9}$ | 238.9 2384 | 4.0 | 1.7\% | 43.2\% | 240.6 20.6 | ${ }_{242}^{242.2}$ | ${ }_{1}^{1.6}$ | 0.7\% |
 | 44.4\% | ${ }^{234.6}$ | 238.4 | ${ }^{3.8}$ | ${ }^{1.6 \%}$ | ${ }^{44.4 \%}$ | 24.4 20.4 | ${ }_{2}^{242.1}$ | 1.7 | 0.7\% |
 | ${ }^{45.7 \%}$ | 233.6 2334 | 238.1 | 4.5 | 1.9\% | 45.7\% | 239.4 2392 | 240.8 20.8 | 1.5 | 0.6\% |
 | 4.9\%\% | 233.4 | 237.4 | 3.9 15 | 1.7\% | 46.9\% | 239.2 | ${ }^{240.4}$ | 1.11 | 0.5\% |
 | 48.1\% | ${ }_{2}^{2329}$ | ${ }_{2345}^{2345}$ | 1.5 | 0.7\% | 48.1\% | ${ }_{2}^{238.1}$ | ${ }_{239.2}^{2397}$ | 1.1 | 0.5\% |
 | 49.4\% | ${ }^{232.3}$ | ${ }^{234.3}$ | 2.0 | 0.9\% | 49.4\% | 236.4 | 238.7 | 2.3 | 1.0\% |
 | 55.9\% | 230.8 2308 | ${ }_{23}^{233.2}$ | ${ }^{2} 17$ | 1.0\% | 50.6\% | 235.5 2345 | 237.6 | 2.1 | 0.9\% |
 | 55.9\% | 232.6 227.9 | 232.3 230.7 | $\begin{array}{r}1.7 \\ \hline 2 \\ \hline 2\end{array}$ | - ${ }_{\text {1.7\% }}$ | 56.9\%\% | 234.4 2335 | 237.4 235.5 | ${ }^{3.0}$ | 1.3\% |
 | 54.3\% | 227.7 | 229.8 | 2.2 | 0.9\% | 54.3\% | ${ }_{233.2}^{235}$ | ${ }_{2355}^{235.5}$ | 2.2 | 1.0\% |
 | 55.6\% | 226.6 | 229.8 | 3.2 | 1.4\% | 55.6\% | 233.0 | 235.0 | 2.0 | 0.9\% |
 | 56.8\% | 226.2 | 229.4 | 3.2 | 1.4\% | 56.8\% | 232.6 | 233.7 | 1.2 | 0.5\% |
 | 58.0\% | 223.3 | 229.4 | 6.1 | 2.7\% | 58.0\% | ${ }_{2}^{232.5}$ | ${ }_{23,31}^{233.3}$ | 0.8 | 0.4\% |
 | 59.3\% | ${ }^{222.4}$ | ${ }_{225}^{225.7}$ | ${ }^{3.3}$ | ${ }^{1.5 \%}$ | 59.3\% | ${ }^{232.2}$ | ${ }^{233.1}$ | 0.9 | 0.4\% |
 | 661.7\% | ${ }_{221.7}^{222.7}$ | ${ }_{224.8}^{225.5}$ | ${ }_{3.1}$ | 1.4\% | 661.7\% | ${ }_{229.8}^{232.1}$ | ${ }_{232.5}^{23.8}$ | 2.7 | 1.2\% |
 | 63.0\% | 221.4 | 224.5 | 3.1 | 1.4\% | 63.0\% | 229.7 | 230.8 | 1.0 | 0.5\% |
 | 64.2\% | 220.9 | 223.3 | 2.4 | 1.1\% | 64.2\% | 229.5 | 229.8 | 0.3 | 0.1\% |
 | ${ }^{65.4 \%}$ | ${ }_{2199}^{220.3}$ | ${ }_{222.1}^{222.1}$ | 1.8 | 0.8\% | 65.4\% | ${ }_{2}^{228.6}$ | 229.6 2087 | 1.0 | 0.4\% |
 | 66.9\% | 219.9 219.6 | 2220.7 220.5 | 0.9 0.9 | 0.4\% ${ }_{\text {0.4\% }}$ | 66.7\% | ${ }_{228.5}^{228.6}$ | ${ }_{228.6}^{228.7}$ | ${ }^{0.1}$ | 0.0\% |
 | 69.1\% | 217.7 | 220.1 | 2.4 | 1.1\% | 69.1\% | ${ }_{227.3}^{223}$ | ${ }_{228.6}$ | 1.3 | 0.6\% |
 | 70.4\% | 217.4 | 220.0 | 2.6 | 1.2\% | 70.4\% | 225.9 | 227.3 | 1.4 | |
 | 71.6\% | 215.6 | 219.2 | 3.6 | 1.7\% | 71.6\% | 224.8 | 225.9 | 1.2 | 0.5\% |
 | 72.8\% | ${ }_{214.3}^{214.3}$ | ${ }_{2178}^{218.3}$ | ${ }^{3.0}$ | 1.4\% | -72.8\% | ${ }_{223.1}^{224.5}$ | ${ }_{223}^{224.3}$ | -0.2 | -0.1\% |
 | 75.3\% | 214.2 2129 | 217.9 215.2 | | 1.1\% | | | ${ }^{2233.2}$ | ${ }_{10}^{0.2}$ | ${ }_{0}^{0.1 \%}$ |
 | 76.5\% | 211.2 | 214.9 | 3.7 | 1.7\% | 76.5\% | ${ }^{222.1}$ | 223.1 | 1.0 | 0.4\% |
 | 77.8\% | 210.8 | 214.4 | 3.7 | 1.7\% | | 221.9 | 222.7 | 0.8 | 0.4\% |
 | 79.0\% | 210.5 | 212.9 | 2.4 | 1.1\% | 79.0\% | 220.9 | 222.4 | 1.5 | 0.7\% |
 | 80.2\% | 210.1 2097 | 212.4 | ${ }^{2.4}$ | 1.1\% | 80.2\% | ${ }_{219.9}^{219.5}$ | ${ }_{222.4}^{222.4}$ | ${ }^{2} 8$ | - 1.3% |
 | ${ }_{82}^{82.7 \%}$ | 208.1 | ${ }_{2099}$ | ${ }_{1.8}^{1.2}$ | ${ }^{0.96 \%}$ | | ${ }_{219.4}^{219.4}$ | ${ }_{220.5}^{222.5}$ | ${ }_{1}^{1.1}$ | ${ }_{0}^{0.5 \%}$ |
 | 84.0\% | 205.0 | 208.2 | 3.1 | 1.5\% | 84.0\% | 218.0 | 219.8 | 1.8 | 0.8\% |
 | 85.2\% | 205.0 | 206.9 | 1.9 | 0.9\% | | 217.6 | 219.5 | 1.9 | 0.9\% |
 | 86.4\% | 203.9 | 206.2 | 2.4 | 1.2\% | 86.4\% | 216.2 | 218.0 | 1.8 | 0.8\% |
 | 87.7\% | 203.6 2035 | ${ }_{2051}^{205.3}$ | ${ }_{1}^{1.7}$ | 0.8\% | | ${ }_{\substack{215.8 \\ 2157}}$ | 217.4 | 1.6 | 0.7\% |
 | ${ }^{\text {90.1\% }}$ | 202.6 | 204.7 | ${ }_{2.0}^{1.6}$ | ${ }_{1.0 \%}^{0.8 \%}$ | ${ }^{80.1 \%}$ | ${ }_{214.8}^{215.7}$ | 2115.5 215.8 | | |
 | 91.4\% | 201.1 | 203.7 | 2.6 | 1.3\% | 91.4\% | 214.5 | 215.2 | 0.7 | 0.3\% |
 | 92.6\% | 199.8 1994 | ${ }_{1}^{201.2}$ | 1.4 | 0.7\% | 92.6\% | ${ }_{214.2}^{214.2}$ | ${ }_{214.8}^{214.8}$ | 0.6 | 0.3\% |
 | 959.1\% | ${ }_{198.9}^{199.4}$ | ${ }_{199.5}^{199.8}$ | 0.4 | 0.3\% | 93.8.1\% | 214.2
 212.5 | ${ }_{2121.6}^{214.7}$ | 0.5 0.1 | - ${ }_{\text {0.3\% }}^{0.3 \%}$ |
 | 96.3\% | 197.3 | 197.3 | 0.0 | 0.0\% | 96.3\% | ${ }^{211.8}$ | 211.9 | 0.0 | 0.0\% |
 | 97.5\% | 196.9 | 196.9 | 0.0 | 0.0\% | 97.5\% | 202.2 | 202.3 | 0.1 | 0.0\% |
 | 988\%\% | ${ }_{1}^{195.7}$ | 199.8 195.2 | 0.0 -0.4 | -0.0\% | | 200.5 198.4 | 201.1 198.5 | ${ }_{0}^{0.6}$ | - 0.1% |

 | $\begin{gathered} \text { Percent } \\ \text { Excedance } \\ \text { Probobaility } \end{gathered}$ | May | | | RelativeDifference $(\%)$ |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{0} C R 2015$ Without | DCR 2015 With Project | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UuHOSICM) } \end{gathered}$ | |
 | | Monthly EC | Monthly EC | | |
 | ${ }^{(\% .0)}$ | (UMHOSCM | (UMHOSSCM) | | |
 | | 77 | | | |
 | ${ }^{\text {2.5\% }}$ | 6997 | 7917 | 30.2 | |
 | 3.7\% | 6973 | 7235 | | |
 | 4.9\% | 452.5 | 451.7 | -0.8 | |
 | 6.2\% | 412.7 | 403.0 | -97 | |
 | 7.4\% | 406.5 | 394.6 | -11.9 | -2.9\% |
 | 8.6\% | 396.7 | 389.1 | -7.5 | -2.9\% |
 | 9.9\% | 380.1 | 388.5 | 8.3 | 2.2\% |
 | 11.1\% | 8.3 | 379.8 | 1.6 | 0.4\% |
 | 12.3\% | 357.2 | 354.2 | ${ }^{3.0}$ | -0.8\% |
 | 13.\% | 331.4 | 332.7 | 1.3 | 0.4\% |
 | 8\% | 326.9 | 328.4 | 1.6 | 0.5 |
 | 16.0\% | ${ }^{325.3}$ | 320.7 | -4.6 | -1.4\% |
 | 17.3\% | 319.8 | 309.1 | 10.7 | 3.3\% |
 | 18.5\% | 310.1 | 308.2 | 1.9 | -0.6\% |
 | 19.8\% | 303.4 | 300.0 | ${ }^{-3.3}$ | -1.1\% |
 | 21.0\% | 295.1 | 295.3 | 0.2 | 0.18 |
 | 22.2\% | 286.0 | 286.6 | 0.6 | 0.2\% |
 | 23.5\% | 280.8 | 282.7 | 1.9 | 0.7\% |
 | 24.7\% | 273.5 | 281.0 | 7.5 | 2.7\% |
 | 25.9\% | 273.2 | 273.8 | 0.6 | ${ }^{0.2 \%}$ |
 | 27.2\% | 270.2 | 270.6 | 0.4 | 0.1\% |
 | 28.4\% | 269.2 | 270.4 | 1.2 | 0.4\% |
 | 29.6\% | 268.8 | 268.1 | -0.7 | -0.3\% |
 | 30.9\% | 267.8 | 267.7 | -0.1 | 0.0\% |
 | 32.1\% | 266.9 | ${ }^{267.3}$ | 0.4 | 0.2\% |
 | 33.3\% | 264.9 | 264.0 | -0.9 | -0.3\% |
 | 34.6\% | 263.7 | ${ }^{262.3}$ | -1.3 | -0.5\% |
 | 35.8\% | 260.9 | 260.1 | -0.8 | -0.3\% |
 | 37.0\% | 259.9 | 257.6 | ${ }^{2.3}$ | -0.9\% |
 | 38.3\% | 254.4 | 256.4 | 2.0 | 0.8\% |
 | 39.5\% | 253.5 | 255.7 | ${ }^{2.2}$ | 0.9\% |
 | 40.7\% | 251.4 | ${ }^{253.6}$ | ${ }^{2.3}$ | 0.9\% |
 | 42.0\% | 249.9 | 251.6 | 1.7 | 0.7\% |
 | 43.2\% | 244.2 | 244.5 | ${ }^{0.3}$ | 0.1\% |
 | 44.4\% | 244.0 | 244.2 | 0.2 | 0.1\% |
 | 45.7\% | 243.0 | 243.9 | 1.0 | 0.4\% |
 | 46.9\% | ${ }^{2429}$ | ${ }^{242.6}$ | -0.3 | -0.1\% |
 | 48.1\% | 241.7 | ${ }_{214}^{2417}$ | 0.0 | 0.0\% |
 | 49.4\% | 241.4 | 241.7 | ${ }^{0.3}$ | 0.1\% |
 | 50.6\% | ${ }^{241.2}$ | ${ }^{241.3}$ | 0.1 | 0.0\% |
 | 51.9\% | ${ }^{241.2}$ | ${ }^{241.3}$ | 0.1 | 0.0\% |
 | 53.1\% | 240.2 | 240.4 | 0.2 | 0.1\% |
 | 54.3\% | 240.0 | ${ }^{240.3}$ | 0.4 | 0.2\% |
 | 55.6\% | 239.2 | ${ }^{240.2}$ | 0.9 | 0.4\% |
 | 56.8\% | ${ }_{238.3}^{238.3}$ | ${ }^{239.0}$ | 0.7 | 0.3\% |
 | 58.0\% | ${ }_{2}^{237.1}$ | ${ }^{238.2}$ | 1.0 | 0.4\% |
 | 59.3\% | ${ }^{237.0}$ | ${ }_{2}^{237.3}$ | ${ }^{0.3}$ | 1\% |
 | 60.5\% | ${ }_{236.2}^{2367}$ | ${ }_{235.7}^{235}$ | -0.5 | -0.2\% |
 | 61.7\% | ${ }_{235.7}^{2357}$ | ${ }_{2}^{235.1}$ | -0.6 | -0.2\% |
 | 63.0\% | ${ }_{235.1}^{233}$ | ${ }^{235.1}$ | -0.1 | 0.0\% |
 | 64.2\% | ${ }^{232.6}$ | ${ }_{23,8}^{233}$ | 1.2 | 5\% |
 | 65.4\% | ${ }^{232.6}$ | 231.9 | -0.7 | -0.3\% |
 | ${ }^{66.7 \%}$ | ${ }^{231.5}$ | ${ }_{231.4}^{2314}$ | -0.1 | -0.1\% |
 | 67.9\% | ${ }_{2288}^{231.3}$ | ${ }_{2}^{231.3}$ | 0.0 | 0.0\% |
 | 69.1\% | ${ }^{228.8}$ | ${ }^{229.5}$ | 0.6 | 3\% |
 | 70.4\% | 228.1 | ${ }^{228.8}$ | 0.7 | 0.3\% |
 | 71.6\% | 228.0 | ${ }^{228.2}$ | ${ }^{0.3}$ | 0.1\% |
 | 72.8\% | ${ }^{2227.0}$ | ${ }_{2271}^{228.1}$ | 1.2 | 0.5\% |
 | 74.1\% | ${ }^{226.3}$ | ${ }_{227.1}^{227}$ | 0.8 | 0.4\% |
 | 75.3\% | ${ }_{222.1}^{222.1}$ | ${ }_{226.3}^{2263}$ | 0.2 | 0.1\% |
 | 76.5\% | ${ }^{225.6}$ | ${ }^{224.6}$ | -1.1 | -0.5\% |
 | 77.8\% | ${ }_{2232}^{223}$ | ${ }_{\text {223, }}^{223}$ | 0.5 | 0.2\% |
 | 79.0\% | ${ }_{222.7}^{222.7}$ | ${ }^{233.2}$ | 0.4 | 0.2\% |
 | 80.2\% | ${ }^{2222.2}$ | ${ }_{222.5}^{222.5}$ | 0.4 | 0.2\% |
 | 81.5\% | ${ }^{222.0}$ | ${ }_{222.1}^{222.1}$ | 0.1 | 0.0\% |
 | - 82.7% | ${ }_{221.8}^{2218}$ | ${ }_{221.1}^{221.1}$ | -0.7 | -0.3\% |
 | 84.0\%\% | ${ }^{221.0}$ | 221.0 | -0.1 | 0.0\% |
 | 85.2\% | 220.9 | 220.9 | 0.0 | 0.0\% |
 | ${ }^{86.44 \%}$ | 219.8 | 220.2 | 0.4 | 0.2\% |
 | 87.7\% | ${ }_{218}^{2187}$ | 219.9 | 1.1 | , 1% |
 | 88.9\% | ${ }^{211.3}$ | 21.5 | 0.2 | 0.1\% |
 | 90.19\% | 200.9 | 201.0 | 0.2 | 0.1\% |
 | 91.4\% | 190.0 | ${ }^{190.1}$ | 0.1 | 0.0\% |
 | 92.6\% | ${ }^{188.2}$ | ${ }^{188.3}$ | 0.1 | 01\% |
 | 93.8\% | 187.3 | 187.5 | 0.1 | 0.1\% |
 | 95.1\% | 186.7 | 188.8 | 0.1 | 0.1\% |
 | 96.3\% | ${ }_{185.3}$ | 185.5 | 0.2 | 0.1\% |
 | , | 184.7 | 1848.8 | 0.2 | .1\% |
 | | 1827 177.3 | 182.7 177.6 | -0.3 | - 0.2% |

 Table $\mathrm{SQ}-25-\mathrm{b}$
 in
 River at Jersey Point，Monthly EC

 | $\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {cher }}^{\text {DCR }}$ 2015 Without | DCR 2015 With Project | Absolute | |
 | | Monthly EC | Monthly Ec | （itiererce | ference（\％） |
 | （\％） | MHOSICM | ${ }^{10406}$ | 132 | |
 | 12\％ | 120．4 | 140．6 | | 0．9\％ |
 | 2．5\％ | ${ }_{1120.4}^{1294.8}$ | ${ }^{11104.3}$ | －${ }_{-131.5}$ | －10．2\％ |
 | 3．7\％ | 1128.5 | 1052.8 | －75．7 | －6．7\％ |
 | 4．9\％ | 956.8 | 951.4 | 5 | |
 | ${ }^{6.2 \%}$ | 856.1 | 810.6 | －45．6 | －5．3\％ |
 | 7．4\％ | ${ }_{705.8} 7037$ | ${ }_{596.3}^{669 .}$ | －36．6 | －5．2\％ |
 | －${ }_{\text {9．9\％\％}}$ | ${ }_{518.5}^{603.7}$ | ${ }_{540.0}^{596.1}$ | -7.6 21.5 | －${ }^{-1.15 \%}$ |
 | 11．1\％ | 482.8 | 486.0 | 3.1 | 0．6\％ |
 | 12．3\％ | 468.8 | 483.7 | 15.0 | 3．2\％ |
 | 14．8\％ | ${ }_{499.2}^{45.6}$ | ${ }_{442.5}^{450.8}$ | －6．8 | －1．5\％ |
 | 16．0\％ | 442.7 | 423.2 | －19．5 | －4．4\％ |
 | 17．3\％ | 440.7 | 421.4 | －19．3 | |
 | 俍 ${ }^{\text {18．5\％\％}}$ | ${ }_{4282.0}^{422.7}$ | 417.9 416.3 | －10．1 | －-1.4% |
 | 21．0\％ | 415.8 | 413.5 | －2．3 | －0．5\％ |
 | 22．2\％ | 415.0 | 412.6 | －2．4 | |
 | 224．7\％ | ${ }_{4}^{412.2}$ | ${ }_{405.4}^{411.8}$ | －－．${ }_{-2.1}$ | －0．0．${ }^{-0.5 \%}$ |
 | 25．9\％ | 404.3 | 401.2 | －3．1 | |
 | 27．2\％ | 397.3 | 393.8 | －3．5 | －0．9\％ |
 | 28．4\％ | 391.5 | 392.5 | 1.0 | 0．3\％ |
 | | 388.7 384.2 | ${ }_{384.2}^{390.7}$ | | |
 | 32．1\％ | ${ }_{381.3}$ | ${ }_{378.0}$ | ${ }_{-3} .3$ | －0．9\％ |
 | 33．3\％ | ${ }^{376.2}$ | 351.4 | －24．9 | －6．6\％ |
 | 34．5\％ | ${ }_{355.8}$ | 350.2 | －5．6 | －1．6\％ |
 | 37．0\％ | 352.2 341.7 | ${ }_{341.4}^{350.0}$ | -2.3 -0.4 | －0．0．${ }^{-0.1 \%}$ |
 | 38．3\％ | 341.5 | 340.5 | －1．0 | －0．3\％ |
 | 39．5\％ | 333.3 | 333．2 | －0．1 | 0．0\％ |
 | ${ }^{4.72 \%}$ | 333.2 3 | 330.2 | －3．0 | －0．9\％ |
 | | ${ }^{328.6}$ | ${ }_{328.6}$ | | |
 | 4．4．4\％ | ${ }_{322.6}$ | ${ }_{321.9}$ | －0．7 | ${ }^{-0.2 \%}$ |
 | 45．7\％ | 319.3 | 318.7 | －0．6 | －0．2\％ |
 | | ${ }^{316.0}$ | 312.2 | －3．8 | －1．2\％ |
 | 48．4\％ | ${ }_{300.8}^{306.3}$ | 304.4 300.2 | －1．9 | ${ }^{-0.6 \%}$ |
 | 50．6\％ | 300.3 | 300.1 | －0．3 | －0．1\％ |
 | 51．9\％ | 299.9 | 290.6 | －9．3 | －3．1\％ |
 | ${ }_{\text {54，}}^{53.19 \%}$ | ${ }_{285.3}^{293.8}$ | 286.4 286.1 | -7.4 0.8 0.8 | －2．3\％ |
 | 55．6\％ | 283.6 | 271.8 | －11．9 | －4．2\％ |
 | 55．8\％ | 280.8 | 258.3 | －22．5 | －8．0\％ |
 | 58．0\％ | 264.5 258.4 | 253.8 251.6 | －10．7 -6.8 | －－2．6\％ |
 | 60．5\％ | 257.0 | 250.9 | －6．1 | |
 | 61．7\％ | 253.3 | 250.5 | －2．8 | －1．1\％ |
 | －63．0\％ | 250.3 | 243.9 | －6．4 | －－2．6\％ |
 | ${ }^{64.24 \%}$ | ${ }_{243.5}^{24.8}$ | ${ }_{234.3}^{234.7}$ | －12．0 | －4．8\％ |
 | ${ }^{6.7} \mathbf{6 . 7 \%}$ | 239.2 | ${ }_{232.7}^{232.7}$ | －6．4 | －2．7\％ |
 | 67．9\％ | 235.6 229.4 | ${ }_{222.7}^{232.7}$ | －3．0 | － |
 | 70．4\％ | 229.4 229.9 | ${ }_{225.4}^{2227.7}$ | －1．5 | ${ }^{-0.7 \%}$ |
 | 71．6\％ | 225.2 | ${ }_{225.3}^{225.3}$ | 0.1 | 0．0\％ |
 | 72．8\％ | ${ }_{221.4}^{224.1}$ | ${ }_{2210}^{223.0}$ | -1.1 -0.3 | －0．0．0\％ |
 | 75．3\％ | 216.3 | 214.6 | －1．7 | －0．8\％ |
 | 76．5\％ | 214.4 | 214.2 | －0．2 | －0．1\％ |
 | 77．8\％ 7 | 214.2 2139 | 214.0 213.9 | －0．2 | －0．0．1\％ |
 | 89．2\％ | 213.9 210.5 | 213.9 210.2 | －0．3 | －0．1\％ |
 | 81．5\％ | 210.3 | 209.8 | -0.6 | －0．3\％ |
 | － 82.7% | 208.8 2076 | 209.1 20.9 | 0.2 | 0．1\％ |
 | 84．0\％ | ${ }_{2076}^{2076}$ | | －0．7 | －0．4\％ |
 | 86．4\％ | ${ }_{206.2}^{207.0}$ | ${ }_{206.2}^{200.4}$ | －0．0 | －0．0\％ |
 | 877\％ | 20.0 | 205.4 | 0.4 | 0．2\％ |
 | 88．9\％ | ${ }^{204.3}$ | 204.7 | 0.4 | 0．2\％ |
 | 91．4\％ | ${ }_{201.9}^{204.2}$ | ${ }_{201.6}^{204.3}$ | ${ }_{-0.3}$ | －0．2\％ |
 | 92．6\％ | 201.0 | 200.8 | －0．2 | －0．1\％ |
 | －${ }_{\text {93，}}^{93 \%}$ | 198.5 | | 0.8 | － $\begin{aligned} & \text { 0．4\％} \\ & -0.1 \%\end{aligned}$ |
 | 956．3\％ | ${ }^{1988.0}$ | ${ }^{197.8}$ | －0．5 | －0．2\％ |
 | 97．5\％ | 195.0 | 195.0 | 0.1 | 0．0\％ |
 | 100．0\％ | ${ }_{186.7}^{198.8}$ | ${ }_{188.5}^{199.9}$ | －0．2 | －0．1\％ |

 | | | Seprember | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent | DCR 2015 Without | DCR 2015 With Project | Absolute | |
 | Probability | Monthly EC | Monthly EC | （itiference | Difference（\％） |
 | （\％） | UMHOSCIC19 | ${ }^{296656}$ | 1466 | |
 | 1．2\％ | 2880 | 29540 | 174.0 | |
 | 2．5\％ | 2648.2 | 2849.8 | 201.6 | |
 | 3．7\％ | ${ }^{26417}$ | 2787.4 | ${ }_{6517}^{651}$ | 2．5\％ |
 | 6．2\％ | ${ }^{26592.0}$ | ${ }^{26520.6}$ | 24．2 | 0．9\％ |
 | 7．4\％ | ${ }^{2536.6}$ | ${ }^{2596.5}$ | 29．8．8 | 2．4\％ |
 | 9．9\％\％ | ${ }_{2}^{25933.8}$ | ${ }_{2534.2}^{2593.2}$ | 89.5 40.9 | －${ }^{3.6 \% \%}$ |
 | 11．1\％ | 2481.1 | 2498.0 | 16.9 | 0．7\％ |
 | 12．3\％ | 2441.1 | 2487.9 | 46.7 | 1．9\％ |
 | 年14．8\％ | 241999 2388 | ${ }_{2477.4}^{2480.8}$ | ${ }_{98.8}^{60.9}$ | ${ }_{4.2 \%}^{2.5 \%}$ |
 | 16．0\％ | ${ }_{2}^{23753}$ | ${ }^{2453.5}$ | 78.3 | 年3\％ |
 | 17．3\％ | ${ }^{2373.8}$ | ${ }^{2452.0}$ | 78.1 | 3．3\％ |
 | 18．5\％${ }^{\text {198\％}}$ | ${ }_{2343.1}^{2358.4}$ | ${ }_{2438.0}^{2447.5}$ | 89.1 94.9 | 3．8\％\％ |
 | 21．0\％ | 2342.7 | 2381.9 | 39.2 | 1．7\％ |
 | 22．2\％ | 2340.7 | 2381.0 | 40.3 | 1．7\％ |
 | 224．7\％ | ${ }_{2304.6}^{2312.2}$ | ${ }_{2361.8}^{2362.8}$ | 50.6 57.2 | ${ }_{2.5 \%}^{2.2 \%}$ |
 | 25．9\％ | 2296.0 | 2350.7 | 54.7 | 2．4\％ |
 | 27．2\％ | ${ }^{22888.4}$ | ${ }^{2335.5}$ | 47.1 | 2．1\％ |
 | 29．6\％ | ${ }_{2271.6}^{2273.7}$ | ${ }_{2}^{23991.4}$ | 45.7 19.4 | 2．9\％ |
 | 30．9\％ | 2266.9 | 2282.8 | 16.0 | 0．7\％ |
 | 32．1\％ | ${ }^{22488.2}$ | 2266.4 | 18.2 | 0．8\％ |
 | 34．6\％ | ${ }_{22128.5}^{220.1}$ | ${ }_{2223,4}^{224.0}$ | ${ }_{94.9}$ | 4．5\％ |
 | 35．8\％ | 2111.5 | 2194.4 | 83.0 | 3．9\％ |
 | | 2106.9 | ${ }^{2181.6}$ | 77.6 | 3．5\％ |
 | 39．5\％ | ${ }_{2050.3}^{2054.8}$ | ${ }_{21217.6}^{2161.9}$ | 77.3 | 3．8\％ |
 | 40．7\％ | 1993.7 | 2107.7 | 114.1 | 5．7\％ |
 | | | 2092.1 | | |
 | 44．4\％ | 18860.7 | ${ }_{2081.4}^{2021}$ | ${ }_{220.6}^{120.4}$ | 11．9\％ |
 | 45．7\％ | ${ }^{1832.3}$ | 2052.5 | 220.3 | 12．0\％ |
 | | 1831.1 | ${ }^{19882.6}$ | 151.4 | 8．3\％ |
 | 49．4\％ | ${ }_{1803.8}^{1821.3}$ | ${ }^{19902.3}$ | ${ }_{98.5}^{160.1}$ | 5．5\％ |
 | 50．6\％ | 1773.2 | 1898.5 | ${ }^{125.3}$ | 7．1\％ |
 | | 1772.1 | | | |
 | 54．3\％ | ${ }^{1071.8}$ | ${ }^{1850.0}$ | －0．7 | － |
 | 55．6\％ | 1052．8 | 1040.1 | －12．7 | －1．2\％ |
 | 55．8\％ | 1038.5 1006.6 | ${ }^{1008.9}$ | ${ }_{-2.1}^{-29.6}$ | －-2.2% |
 | 59．3\％ | 1002.8 | 1001.6 | －1．1 | －0．1\％ |
 | 60．7\％ | ${ }_{9919}^{996.3}$ | ${ }_{989}^{999}$ | － 3.0 | －0．3\％ |
 | 63．0\％ | ${ }_{983.7}^{99.9}$ | ${ }_{973.0}^{989.7}$ | －2．0．7
 10.7 | ${ }_{\text {－}}^{-0.1 \%}$ |
 | 64．2\％ | 982.4 | 966.8 | －15．5 | －1．6\％ |
 | 66．7\％ | ${ }_{979.7}^{981.5}$ | ${ }_{940.4}^{966.6}$ | － -39.9 -3.9 | －1．5\％ |
 | 67．9\％ | 973.2 | 933.4 | －39．8 | －4．1\％ |
 | 69．1\％ | ${ }_{9653} 970.7$ | ${ }^{924.0}$ | | |
 | 71．6\％ | ${ }_{953.0}$ | 912.9 | ${ }_{-40.1}$ | －4．2\％ |
 | 72．8\％ | 945.7 | 909.7 | －36．0 | －3．8\％ |
 | 75．3\％ | ${ }_{930.8}^{931.7}$ | ${ }_{895.2}^{902.2}$ | -29.5 -35.6 | ${ }_{-3.8 \%}^{-3.2 \%}$ |
 | 76．5\％ | 927.6 | ${ }_{880.7} 880.7$ | －46．9 | －5．1\％ |
 | 77．0\％\％ | ${ }_{922.0}^{926.6}$ | 870.3 866.8 | －56．2 | －6．0．0\％ |
 | 80．2\％ | 912.1 | 866.2 | | －5．0\％ |
 | 81．5\％ | 910.3 | 858.7 | －51．7 | －5．7\％ |
 | 884．0\％ | ${ }_{886.5}^{904.9}$ | ${ }_{8}^{854.7}$ | －50．3 | －．7．2\％ |
 | 85．2\％ | 882.8 | 800.8 | －82．0 | －9．3\％ |
 | ${ }^{86.4 \%} 8$ | ${ }_{847.9}^{863.4}$ | ${ }_{788.5}^{793.7}$ | －59．3 | －－7．0\％ |
 | 88．9\％ | 818.7 | 745.9 | －72．8 | －8．9\％ |
 | 90．1\％ | 788.2 7750 | 652.9 5376 | －135．3 | －17．2\％ |
 | －92．4\％ | ${ }_{668.9} 775.0$ | 531．6 514.6 | | － |
 | 93．8\％ | 517.5 | 492.2 | －25．3 | ${ }^{-4.9 \%}$ |
 | 955．1\％ | 493.8 | ${ }^{487.8}$ | －6．0 | －1．2\％ |
 | 97．5\％ | 275.1 | 385.9 | ${ }_{60.8}$ | 22．1\％ |
 | 98．8\％ | 198.8 | 197.4 | －1．4 | ${ }_{-0.78}$ |
 | 100．0\％ | 184.8 | 184.9 | 0.1 | 0．1\％ |

 Figure SQ-27-b
 Old River at Rock Slough, Monthly EC

 | Percent | Ocrober | | | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {DCR } 2015 \text { Wethout }}$ | DCR 2015 With Project | Absolute | |
 | Probability | Montiliy EC | Monthly EC | Difference (UWHOSCM) | |
 | (\%) | (UMHOSSCM) | (UMHOSSCM) | | |
 | 0.0\% | 970.2 | 942.9 | ${ }^{-27.3}$ | -2.8\% |
 | 1.2\% | 929.4 | 940.1 | 10.7 | 1.1\% |
 | 2.5\% | 920.8 | 929.9 | 9.1 | 1.0\% |
 | 3.7\% | 914.9 | ${ }_{9}^{908.6}$ | ${ }_{-6.3}$ | -0.7\% |
 | 4.9\% | 907.7 | ${ }^{903.0}$ | -4.7 | -0.7\% |
 | ${ }^{6.2 \%}$ | 894.3
 885 | 900.2 | 5.9
 4.5 | 0.7\% |
 | 7.4\% | 885.5 | 890.0 | 4.5 | 0.5\% |
 | 8.6\% | 882.1 | 881.4 | -0.7 | -0.1\% |
 | 9.9\% | 879.5 | 877.7 | -1.8 | ${ }^{-0.2 \%}$ |
 | 11.19\% | ${ }^{870.3}$ | 869.9 | -0.4 | 0.0\% |
 | ${ }^{12.3 \%}$ | ${ }_{859.8}$ | 859.1 | -0.7 | -0.1\% |
 | 13.6\% | ${ }_{858.8}^{854}$ | 845.6 | -13.2 -35 | -1.5\% |
 | 14.8\% | ${ }^{845.6}$ | ${ }_{8}^{842.1}$ | -3.5 | -0.4\% |
 | 16.0\% | ${ }_{8}^{843.6}$ | 822.8 822 8 | -20.8 | -2.5\% |
 | 17.3\% | ${ }^{841.4}$ | ${ }_{822.2}$ | -19.2 | -2.3\% |
 | 18.5\% | 839.7 | 818.2 8155 815 | -21.5 | -2.6\% |
 | 19.8\% | 838.0 | ${ }_{8}^{815.5}$ | -22.5 | -2.7\% |
 | 21.0\% | 834.2 | 810.8 8085 | -23.4 -235 -2.5 | -2.8\% |
 | 22.2\% | ${ }^{832.0}$ | 808.5 8054 | -23.5 | -2.8\% |
 | 23.5\% | 829.5 | 805.4 | -24.0 | -2.9\% |
 | 24.7\% | ${ }^{829.1}$ | 801.0 7990 | -28.1 -288 | -3.4\% |
 | 25.9\% | 827.8 820.8 | 799.0 7984 | -28.8 | -3.5\% |
 | ${ }^{27.2 \%}$ | 820.9 | 798.4 | -22.5 | -2.7\% |
 | ${ }^{28.49 \%}$ | 819.3 819.1 | ${ }_{7918}^{797.7}$ | -21.6 ${ }_{-273}$ | ${ }_{-3.3 \%}^{-2.6 \%}$ |
 | 30.9\% | ${ }_{814.3}^{818}$ | 786.5 | -27.8 | -3.4\% |
 | 32.1\% | 805.9 | 781.6 | -24.4 | -3.0\% |
 | 33.3\% | 794.0 | 769.5 | -24.5 | -3.1\% |
 | 34.5\% | 79.0 | 757.7 | -38.3 | -4.2\% |
 | 35.8\% | 782.0 7772 | 740.2 740.1 | -41.8 | -5.3\% |
 | 37.0\% | 777.2 7739 | 740.1 7393 | -37.1 | -4.8\% ${ }_{-4.5 \%}$ |
 | 38.5\% | 773.9 | 739.3 738.1 | -34.5 -23.9 | ${ }_{-}^{-4.5 \%}$ |
 | 40.7\% | 758.0 | ${ }^{732.5}$ | -25.5 | -3.4\% |
 | 42.0\% | 756.9 | 710.2 | -46.6 | -6.2\% |
 | 43.2\% | 749.8 | 705.5 | -44.3 | -5.9\% |
 | 44.4\% | 749.4 | ${ }^{680.1}$ | -69.3 | -9.2\% |
 | 45.7\% | 737.2 | ${ }_{6}^{675.8}$ | -61.4 | -8.3\% |
 | ${ }^{46.9 \%}$ | 730.0 708.1 | 660.2 6554 | -69.8 | -9.7.4\% |
 | 49.4\% | 707.3 | ${ }_{654.8}^{655}$ | -52.5 | -7.4\% |
 | 50.6\% | 702.7 | 648.9 | -53.7 | -7.7\% |
 | 51.9\% | 692.9 | 639.6 | -53.3 | -7.7\% |
 | 53.19\% | ${ }_{408.9}^{681.9}$ | 618.4 4073 | -70.5 | -10.2\% |
 | 54.3\% | 401.6 282.0 | ${ }_{278.6}$ | - 5.7 | -1.4\% |
 | 56.8\% | ${ }_{280.1}^{282.0}$ | 275.6 | -3.5 | -1.1.2\% |
 | 年58.0\% | 279.8 2737 | ${ }_{2728}^{274}$ | | |
 | 59.3\% | ${ }_{273.6}^{273.7}$ | 272.8 270.8 | -0.9 | -0.0.3\% |
 | 61.7\% | 271.5 | ${ }_{266.3}^{27.8}$ | - -2.2 | -1.0\% |
 | 63.0\% | 271.4 | 266.1 | -5.3 | -1.9\% |
 | 64.2\% | 2698 | ${ }_{2628}^{2628}$ | -7.0 | -2.6\% |
 | | 269.0 2685 | 261.8 2614 | -7.1. | -2.6\% ${ }_{-2.7 \%}$ |
 | 6.7.7\% | ${ }_{268.2}^{268.5}$ | ${ }_{261.0}^{261.4}$ | -7.1 -7.2 | - |
 | 69.1\% | 266.5 | 260.9 | -5.7 | -2.1\% |
 | 70.4\% | 266.0 2649 | 260.9 260.4 | -5.2 | --1.9\% |
 | 72.8\% | ${ }_{264.1}^{264.9}$ | ${ }_{20.1}^{260.4}$ | ${ }_{-4.0}$ | -1.5\% |
 | 74.1\% | 262.9 | 259.4 | -3.6 | -1.4\% |
 | 75.3\% | ${ }_{2615}^{262.5}$ | 258.0 256.9 | ${ }_{-4.5}$ | - -1.7% |
 | 77.8\% | 261.1 | 252.0 | -9.0 | ${ }^{-3.5 \%}$ |
 | 79.0\% | 258.2 | 249.2 | -9.0 | -3.5\% |
 | - | 256.0 2522 | ${ }_{246.3}^{248.7}$ | -7.3 -59 | --2.9\% |
 | 82.7\% | 252.0 | 245.6 | ${ }_{-6.4}$ | -2.6\% |
 | 84.0\% | 250.5 | 245.5 | -5.1 | -2.0\% |
 | | ${ }_{2492}^{24.5}$ | ${ }_{243.6}^{244.8}$ | -.4.7 | --1.9\% |
 | 87.7\% | 247.5 | 233.4 | -14.1 | -5.7\% |
 | 88.9\% | 243.0 | 232.1 | -10.8 | -4.5\% |
 | ${ }_{9}^{90.14 \%}$ | 239.0 234 | ${ }_{2301}^{231.1}$ | -7.9 -7 | - ${ }_{-1.3 \%}$ |
 | 92.6\% | 231.6 | 22.1 | -10.5 | -4.5\% |
 | 93.8\% | 222.3 | 220.5 | -1.7 | -0.8\% |
 | 95.1\% ${ }_{9} 9$ | ${ }_{2064}^{221.5}$ | 218.0 2125 | -3.5 | - |
 | ${ }^{96.3 \%}$ | 20.4 199.7 | ${ }_{2014}^{212.5}$ | 6.1 1.7 | 3.9\% |
 | 98.8\% | 199.3 | 198.6 | -0.7 | -0.4\% |
 | 100.0\% | 196.7 | 195.4 | -1.2 | -0.6\% |

 | $\begin{aligned} & \text { Percent } \\ & \hline \text { Exceedance } \\ & \text { Probobalily } \end{aligned}$ | Novemer | | | Probablil | $\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{aligned}$ | December | | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOSICM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | DCR 2015 Without | DCR 2015 With Project | | | | DCR 2015 Without | DCR 2015 With Project | | |
 | | ${ }_{\text {Moroiect }}^{\text {Prom }}$ | Morthy EC | Pifiteres | | | Proiect | Monthly EC | | |
 | | (UMHOSCM) | (UMHOSCICM) | | | | (UuHHosicm) | (UMHHOSCM) | | |
 | 0.0\% | 1055.9 | 955.1 | 100.9 | -9.6\% | 0.0\% | 1021.4 | 1128.6 | 107.3 | 10.5\% |
 | 1.2\% | 998.5 | 1.3 | 77.2 | 7.7\% | 1.2\% | 1017.0 | 1029.0 | 12.0 | |
 | 2.5\% | 962.8 | 890.8 | -72.0 | -7.5\% | 2.5\% | 1003.4 | 1006.5 | 3.0 | 0.3\% |
 | 3.7\% | 962.2 | 884.6 | -77.6 | -8.1\% | 3.7\% | 958.8 | 8. 2 | 29.4 | 3.1\% |
 | 4.9\% | 919.5 | 873.6 | 46.0 | -5.0\% | 4.9\% | 951.9 | 982.6 | 30.7 | |
 | ${ }_{7}^{6.4 \%}$ | 892.0 885.5 | ${ }_{8651.9}^{864}$ | -30.1
 -31.8 | -3.4\% | 7.4\% | ${ }_{9235.2}^{934.6}$ | ${ }_{896.9}^{974.3}$ | 39.7 -29.2 | - ${ }_{\text {- }}^{\text {- }}$. 1% |
 | 8.6\% | 867.1 | 816.9 | 50.1 | -5.8\% | 8.6\% | 923 | 885 | -38.5 | -4.2\% |
 | 9.9\% | 863.2 | 815.2 | -48.0 | -5.6\% | 9.9\% | 918.0 | 884.5 | -33.4 | |
 | 11.1\% | 861.7 | 813.7 | -48.1 | 5.6\% | 11.1\% | 916.6 | 884.3 | -32.3 | -3.5 |
 | 12.3 | 841.6 | 796.3 | -45.3 | -5.4\% | 12.3\% | 905.5 | 880.2 | -25.3 | |
 | 13.6\% | 824.8 | 772.6 | 52.2 | -6.3\% | 13.6\% | 897.8 | 879.5 | 18.3 | |
 | 14.8 | 824.0 | 750.9 | 73.1 | -8.9\% | 14.8\% | 894.2 | 872.4 | 21.8 | |
 | 16.0\% | 814.4 | 730.0 | -84.4 | -10.4\% | 16.0\% | 878.4 | ${ }_{865.6}$ | -10.8 | -1.2\% |
 | | | 714.0 | | | | | | -13.6 | |
 | 19.8\% | ${ }_{806.9}$ | 707.7 | -99.3 | ${ }_{\text {-12.3\% }}$ | 19.8\% | 861.5 | ${ }_{845.3}$ | -16.3 | -1.9\% |
 | 21.0\% | 787.5 | 707.3 | -80.2 | -10.2\% | 21.0\% | 861.0 | 843.3 | -17.7 | -2.1\% |
 | 22.2\% | 779.3 | 705.9 | 73.3 | -9.4\% | 22.2\% | 850.6 | 834.5 | -16.1 | |
 | 23.5\% | 776.7 | 701.7 | -74.9 | -9.6\% | 23.5\% | 840.6 | 828.0 | -12.6 | -1.5\% |
 | 224.7\% | 766.4 | 701.5 | -64.9 | -8.5\% | 24.7\% | 832.1 | 814.4 | -17.7 | |
 | 227.2\% | 763.2 751.2 | 691.0 689.9 | -72.2. -61.3 | ${ }_{-8.9 \%}$ | ${ }^{257.9 \%}$ | 826.3 811.4 | ${ }_{797.3}^{8136}$ | -12.6 -14.1 | -1.7\% |
 | 28.4\% | 732.8 | 680.8 | -52.0 | -7.1\% | 28.4\% | 792.8 | 790.3 | -2.6 | -0.3\% |
 | 29.6\% | 725.0 | 680.6 | 44.4 | -6.1\% | 29.6\% | 776.3 | 767.2 | -9.1 | ${ }^{1.2}$ |
 | 30.9\% | 722.8 | 676.4 | -46.5 | -6.4\% | 30.9\% | 769.9 | 750.4 | -19.5 | -2.5\% |
 | 32.1\% | 714.4 | 673.1 | -41.3 | -5.8\% | 32.1\% | 765.8 | 724.8 | -41.1 | |
 | | ${ }_{712.3}$ | 672.4 | -39.9 | -5.6\% | 33.3\% | 764.2 | 720.8 | -43.3 | -5.7\% |
 | 335.8\% | ${ }_{708.8}$ | ${ }_{667.7}^{669.5}$ | -40.1 | -5.8\% | 34.6\% | 754.8 7 | ${ }_{692.7}^{710.1}$ | --46.4 | -7.4\% |
 | 37.0\% | 707.1 | 633.9 | -73.1 | -10.3\% | 37.0\% | 735.3 | 690.4 | -44.8 | -6.1\% |
 | 38.3\% | 703.0 | 633.8 | -69.2 | -9.8\% | 38.3\% | 712.6 | 644.3 | -68.3 | -9.6\% |
 | 39.5\% | 702.2 | 629.2 | -72.9 | -10.4\% | 39.5\% | 702.3 | 637.1 | -65.3 | -9.3\% |
 | 40.7\% | 694.2 | 616.7 | -77.5 | -11.2\% | 40.7\% | 651.7 | ${ }^{626.3}$ | -25.4 | -3.9\% |
 | 42.0\% | 691.6 | 616.3 | -75.3 | -10.9\% | 42.0\% | ${ }^{636.7}$ | 615.3 | -21.4 | -3.4\% |
 | ${ }_{44.4 \%}^{43.2 \%}$ | 684.0 679.4 | ${ }_{5}^{590.3}$ | $\begin{array}{r}\text {-93.8 } \\ -93.2 \\ \hline\end{array}$ | ${ }_{-13.7 \%}^{-13.7 \%}$ | ${ }_{4}^{43.4 \%}$ | 570.0 520.1 | ${ }_{548.6}^{549.4}$ | -20.6 | ${ }^{-3.5 \%}$ |
 | 45.7\% | 675.9 | 572.8 | -103.1 | -15.3\% | 45.7\% | 513.7 | 519.6 | 5.9 | 1.1\% |
 | 46.9\% | 629.9 | 569.2 | -60.7 | -9.6\% | 46.9\% | 485.7 | 483.6 | -2.1 | 4\% |
 | 48.1\% | 626.5 | 562.5 | -64.0 | -10.2\% | 48.1\% | 481.8 | 441.6 | -40.2 | 8.4\% |
 | 49.4\% | 612.2 | 552.3 | -59.9 | -9.8\% | 49.4\% | 452.4 | 418.9 | -33.5 | -7.4\% |
 | 50.6\% | 591.4 | 537.6 | -53.8 | -9.1\% | 50.6\% | 423.5 | 408.1 | -15.4 | -3.6\% |
 | 55.9\%\% | 570.7 | 530.1 | -40.6 | -7.1\% | 51.9\% | 408.4 | 403.6 | -4.8 | ${ }^{-1.12 \%}$ |
 | ${ }^{53.3 \%}$ | ${ }_{531.5}^{566.7}$ | ${ }_{4731.4}$ | ${ }_{-58.1}$ | - | 54.3\% | ${ }_{383.3}^{407.3}$ | ${ }_{307.7}^{40.4}$ | -6.9.5 | - ${ }_{\text {3.8\% }}$ |
 | 55.6\% | 410.0 | 419.2 | 9.2 | 2.2\% | 55.6\% | 359.6 | 385.5 | 25.9 | 7.2\% |
 | 56.8\% | 386.8 | ${ }_{355.3}$ | -31.5 | -8.1\% | 56.8\% | 349.8 | 376.2 | 26.3 | 7.5\% |
 | 58.0\% | 363.4 | 353.3 | -10.1 | -2.8\% | 58.0\% | 342.7 | 350.8 | 8.1 | 2.4\% |
 | 59.3\% | 331.6 | 303.0 | -28.6 | -8.6\% | 59.3\% | 329.2 | 343.1 | 13.8 | 4.2\% |
 | ${ }^{60.5 \%}$ | ${ }_{2813}$ | 298.5 | -9.0 | -2.9\% | 60.5\% | 321.2 | 335.2 | 13.9 | 4.3\% |
 | 63.0\% | ${ }_{276.2}^{281.3}$ | ${ }_{276.1}^{28.8}$ | -0.2 | ${ }_{\text {-0.1\% }}^{-0.2 \%}$ | 61.30\% | ${ }_{\text {cker }}^{315.9}$ | ${ }_{311.8}$ | -1.30 | ${ }^{-0.4 \%}$ |
 | 64.2\% | 255.8 | 271.7 | 15.9 | 6.2\% | 64.2\% | 312.5 | 311.4 | -1.1 | -0.4\% |
 | ${ }^{65.4 \%}$ | ${ }_{253.9}^{253}$ | 264.6 | 10.7 | 4.3\% | ${ }^{65.4 \%}$ | 305.2 3038 | 310.1 | 4.9 | 1.6\% |
 | ${ }^{66.7 \%} \times$ | ${ }_{252.7}^{252.7}$ | ${ }_{252.0}^{262.0}$ | ${ }^{9.3}$ | ${ }^{3.7 \%}$ | ${ }^{66.7 \%}$ | 303.8 | 309.7 | 5.9 | 1.9\% |
 | 67.1\% | ${ }_{247.2}^{250.1}$ | ${ }_{248.4}^{251.3}$ | ${ }_{1.3}^{5.2}$ | ${ }_{\text {2.5\% }}^{2.17}$ | 69.1\% | ${ }_{298.4}$ | ${ }_{299.4}^{309.1}$ | 1.0 | 0.3\% |
 | 70.4\% | 245.1 | 246.4 | 1.3 | 0.5\% | 70.4\% | 298.2 | 299.4 | 1.1 | 0.4\% |
 | 71.6\% | ${ }^{242.8}$ | ${ }^{245.2}$ | 2.5 | 1.0\% | 71.6\% | 294.1 | 294.5 | 0.4 | 0.1\% |
 | 72.8\% | 242.0 | 244.6 | 2.6 | 1.1\% | 72.8\% | 290.9 | 294.0 | 3.1 | 1.1\% |
 | 74.1\% | 2410 | 237.0 | -4.0 | -1.7\% | 74.1\% | 288.3 | 292.5 | 4.2 | 1.5\% |
 | 75.3\%\% | 240.0 238.7 | ${ }_{23513}^{236.5}$ | -3.3 | ${ }^{-1.5 \%}$ | 75.3\% | ${ }_{2858}^{288.0}$ | ${ }_{2875}^{290.3}$ | ${ }_{17}^{2.2}$ | 0.8\% |
 | 77.8\% | 238.1 | ${ }_{235}^{235}$ | -2.8 | -1.2\% | 77.8\% | 284.7 | 285.1 | 0.4 | 0.1\% |
 | 79.0\% | 236.9 | 233.9 | -3.0 | -1.3\% | 79.0\% | 283.3 | 281.8 | -1.5 | -0.5\% |
 | 80.2\% | ${ }_{2}^{235.2}$ | ${ }^{233.2}$ | -2.0 | -0.8\% | 80.2\% | ${ }_{2723}^{2823}$ | 277.7 | -4.6 | -1.6\% |
 | 882.7\% | ${ }_{233,}^{233}$ | 232.9 2325 | -0.9 | -0.4\% | 81.5\% | 274.3 | ${ }_{2}^{273.7}$ | -0.6 | -0.2\% |
 | 84.0\% | ${ }_{232.5}^{233.5}$ | ${ }_{230.9}^{2329}$ | -1.6 | -0.7\% | 84.0\% | ${ }_{262.1}^{2624}$ | 266.6 | 4.5 | 1.7\% |
 | 85.2\% | 23.7 | 230.5 | -1.2 | -0.5\% | 85.2\% | 261.8 | 265.0 | 3.2 | 1.2\% |
 | ${ }^{86.7 \%}$ | ${ }_{231.7}^{2317}$ | 230.2 | -1.4 | -0.6\% | 86.4\% | ${ }^{256.6}$ | ${ }^{257.4}$ | 0.8 | 0.3\% |
 | 877\%\% | 231.6 2308 | ${ }_{2294}^{229.5}$ | -2.1 | -0.9\% | 877\% | ${ }^{256.4}$ | 253.9 | -2.5 | -1.0\% |
 | 88.9\% ${ }^{80.1 \%}$ | ${ }_{22308}^{238}$ | 229.4 | -1.5 | ${ }^{-0.6 \%}$ | 88.9\% | ${ }_{29,6}^{2496}$ | 244.9 | -4.7 | -1.9\% |
 | 99.4\% | ${ }_{226.8}$ | 226.2 | -0.6 | -0.3\% | 91.4\% | ${ }_{23,2}^{239}$ | 24.0 | 5.9 | 2.5\% |
 | - 92.6% | 226.4 | ${ }_{2218}^{225.1}$ | -1.31 | -0.6\% | 92.6\% | ${ }_{2251}^{226.3}$ | $\begin{array}{r}238.4 \\ 28.4 \\ \hline 26.3\end{array}$ | ${ }^{12.2}$ | 5.4\% |
 | 93.8\% | 224.9 | 221.8 | -3.1 | -1.4\% | 93.8\% | 225.1 | 226.3 | 1.2 | 0.5\% |
 | 99.3\% | 224.7 | 220.9 | -3.9 | -1.7\% | 95.1\% | 223.9 | 226.0 | 2.2 | 1.0\% |
 | 97.5\% | 22.8 | 217.4 | ${ }_{-3.4}$ | ${ }^{-1.5 \%}$ | 97.5\% | ${ }_{220.9}$ | ${ }_{22,5}^{224.5}$ | 2.6 | 1.2\% |
 | 98.8\% | 220.7 | 216.0 | -4.7 | -2.1\% | 98.8\% | 211.5 | 211.3 | -0.2 | 0.1\% |
 | 100.0\% | 215.0 | 212.4 | -2.7 | -1.2\% | 100.0\% | 201.9 | 199.9 | -2.0 | -1.0\% |

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probabbility } \end{aligned}$ | January | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | DCR 2015 Without | DCR 2015 With Project | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOSOCM) } \end{gathered}$ | |
 | | Monthly EC | Monthly EC | | |
 | ${ }^{(\% .0 \%)}$ | (UMHOSSCM) | (UMHOSLCM) | . 619 | |
 | | | | | |
 | 2.5\% | 998.1 | 984.1 | | |
 | 3.7\% | 984.1 | 89.6 | | |
 | 4.9\% | 982.8 | 863.4 | 1194 | \% |
 | 6.2\% | 915.2 | 856.5 | -587 | -6.4\% |
 | 7.4\% | 909.1 | 823.3 | ${ }_{-85} 8$ | -9.4\% |
 | 8.6\% | 879.3 | 819.4 | -59.8 | -6.8\% |
 | 9.9\% | 815.9 | 816.3 | 0.4 | 0.0\% |
 | 11.1\% | 807.1 | 798.1 | -8.9 | .1\% |
 | 12.3\% | 795.0 | 782.8 | 12.2 | -1.5\% |
 | 13.6\% | 772.4 | 782.4 | 9.9 | 1.3\% |
 | 14.8\% | 766.7 | 757.1 | -9.6 | -1.3\% |
 | 16.0\% | 736.9 | 734.8 | -2.1 | -0.3\% |
 | 17.3\% | 734.5 | 729.5 | -5.0 | -0.7\% |
 | 18.5\% | ${ }_{732.2}$ | 725.5 | -6.7 | -0.9 |
 | 19.8\% | 722.8 | 685.4 | -37.3 | -5.2\% |
 | 21.0\% | 675.9 | 674.3 | -1.6 | -0.2\% |
 | 22.2\% | 666.0 | 670.2 | 4.2 | 0.6\% |
 | 23.5\% | ${ }^{660.3}$ | 639.0 | 21.2 | -3.2\% |
 | 24.7\% | 654.3 | 636.0 | -18.3 | -2.8\% |
 | 25.9\% | 620.9 | 634.3 | ${ }^{13.3}$ | 2.1\% |
 | 27.2\% | 609.2 | 629.8 | 20.7 | 3.4\% |
 | 28.4\% | 607.5 | 628.3 | 20.8 | 3.4\% |
 | 29.6\% | 603.4 | 627.0 | ${ }^{23.6}$ | 3.9\% |
 | 30.9\% | 590.1 | 617.8 | 27.6 | 4.7\% |
 | 32.1\% | 599.0 | 609.5 | 19.4 | 3.3\% |
 | 33.3\% | 577.4 | ${ }_{602.8}^{608}$ | 29.4 | 5.1\% |
 | 34.6\% | 571.5 | 598.7 | 27.2 | 4.8\% |
 | 35.7\% | 555.3 | 597.4 | 32.1 | 5.7\% |
 | 37.0\% | 553.4 | 593.2 | 39.8 | 7.2\% |
 | 38.3\% | 549.1 | 588.4 | 37.3 | 6.8\% |
 | 39.5\% | 544.5 | 574.1 | 29.6 | 5.4\% |
 | 40.7\% | 527.9 5092 | 572.1 | 44.2 | 8.4\% |
 | 42.0\% | 506.2 | 561.6 | 55.4 | 10.9\% |
 | 43.2\% | 500.0 | 557.5 | 57.5 | 11.5\% |
 | 44.4\% | 496.7 | 555.8 | 59.1 | 11.9\% |
 | 45.7\% | 496.1 | 549.0 | 52.9 | 10.7\% |
 | 46.9\% | 483.4 | 546.9 | 63.5 | 13.1\% |
 | 48.1\% | 483.2 | 535.3 | 52.1 | 10.8\% |
 | 49.4\% | 458.5 | 513.9 | 55.4 | 12.1\% |
 | 50.6\% | 454.0 | 505.0 | 51.0 | 11.2\% |
 | 51.9\% | 445.2 | 504.6 | 59.5 | 13.4\% |
 | 53.1\% | 437.0 | 502.7 | 65.7 | 15.0\% |
 | 54.3\% | 436.7 | 497.8 | 61.1 | 14.0\% |
 | 55.6\% | ${ }_{432.6}$ | 481.8 | 49.2 | 11.4\% |
 | 56.8\% | 418.8 | 478.4 | 59.6 | 14.2\% |
 | 58.0\% | 418.5 | 458.5 | 40.0 | 9.6\% |
 | 59.3\% | 415.5 | 440.9 | 25.4 | 6.1\% |
 | 60.5\% | ${ }^{415.1}$ | 436.5 | 21.4 | 5.2\% |
 | 61.7\% | 397.1 | ${ }^{422.2}$ | 25.1 | 6.3\% |
 | 63.0\% | 390.9 | 395.3 3983 | 4.5 | 1.1\% |
 | ${ }^{64.2 \%}$ | 378.9 | 383.2 | 4.4 | 1.2\% |
 | 65.4\% | 375.5 | 377.8 | 1.4 | 0.4\% |
 | ${ }^{66.7 \%}$ | 371.6 | ${ }^{373.0}$ | 1.4 | 0.4\% |
 | -67.9\% | 361.2 3588 | 359.2
 354.6 | -2.0 | -0.5\% |
 | 69.17\% | 358.8 | ${ }^{354.6}$ | -4.2 | 2\%\% |
 | 70.4\%\% | 346.6 | 347.4 | 0.8 | 0.2\% |
 | | 346.5 338.9 | 347.0 | ${ }^{25}$ | 0.7\% |
 | 74.1\% | 325.5 | 338.5 | 13.0 | 4.0\% |
 | 75.3\% | 324.4 | 325.4 | 1.0 | 0.3\% |
 | 76.5\% | 322.4 | 325.0 | 2.7 | 0.8\% |
 | 77.\% | 319.4 | 322.6 | | 1.0\% |
 | 79.0\% | 316.1 | 319.0 | 2.9 | .9\% |
 | 80.2\% | 307.6 | 317.4 | 9.8 | 3.2\% |
 | 81.5\% | 306.1 | 316.5 | 10.4 | 3.4\% |
 | 82.7\% | ${ }_{303.1}$ | 31300 | 9.9 | 3.3\% |
 | 84.0% 85.2% | ${ }_{298}^{2988}$ | 309.0 | 10.2 | - |
 | - ${ }_{\text {85.2\% }}$ | 291.8 2886 | 306.2 300.4 | 14.4 | 4.19\% |
 | 87.7\% | 286.3 | 295.7 | 9.4 | 3.3\% |
 | 88.9\% | 284.4 | 291.7 | 7.3 | 2.6\% |
 | 90.1\% | 280.7 | 289.0 | 8.3 | 3.0\% |
 | 91.4\% | 273.1 | 285.5 | 12.4 | 4.5\% |
 | 92.6\% | 272.5 | 274.1 | 1.6 | 0.6\% |
 | 93.8\% | 265.0 | 269.9 | 4.9 | 1.8\% |
 | 95.1\% | 265.0 | 269.6 | 4.6 | 1.7\% |
 | 96.3\% | 261.4 | 264.4 | ${ }^{3.0}$ | 1.2\% |
 | 97.5\% | 258.9 | 261.4 | 2.5 | 1.0\% |
 | 98.8\% | ${ }_{2413}^{249.4}$ | ${ }_{2419}^{259.1}$ | ${ }_{0}^{9.7}$ | 3.9\% |

 Table SQ-27-b

 | $\begin{gathered} \text { Percent } \\ \hline \text { Excedance } \\ \text { Probability } \end{gathered}$ | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {DCR } 2015 \text { Pithout }}^{\text {Proiect }}$ | DCR 2 | | Relative |
 | | Monthy E C | Monthly EC | (itiference | Difference (\%) |
 | ${ }^{(\% .0 \%}$ | UnHosicm) | SICM) | | |
 | | | | | |
 | | 618.2 | 603.4 | | |
 | 2.5\% | 579.3 | 554.5 | 24.8 | -4.3\% |
 | 3.7\% | 575.8 | 543.4 | -32.4 | |
 | 4.9\% | 550.9 | 537.3 | -13.6 | |
 | 6.2\% | 519.7 | 522.5 | 2.8 | 0.5\% |
 | 7.4\% | 514.4 | 512.4 | -2.0 | -0.4\% |
 | 8.6\% | 514.3 | 507.2 | 7.1 | -1.4\% |
 | 9.9\% | 498.0 | 505.1 | 7.2 | 1.4\% |
 | 11.1\% | 483.4 | 494.6 | 11.2 | 2.3 |
 | 12.3\% | 479.9 | 466.5 | -13.4 | -2.8\% |
 | 13.6\% | 462.4 | 465.5 | 3.1 | 0.7\% |
 | 14.8\% | 450.8 | 463.8 | 13.0 | 2.9\% |
 | 16.0\% | 447.6 | 456.4 | 8.8 | 2.0% |
 | 17.3\% | 442.2 | 453.8 | 11.6 | 2.6\% |
 | 18.5\% | 441.2 | 451.8 | 10.6 | 2.48 |
 | 19.8\% | 440.9 | 450.8 | 10.0 | 2.3 |
 | 21.0\% | 435.7 | 450.4 | 14.7 | 3.4\% |
 | 22.2\% | 433.6 | 446.7 | 13.1 | 3.0\% |
 | 23.5\% | 432.8 | 441.7 | 8.9 | 2.0\% |
 | 24.7\% | 430.9 | 433.2 | ${ }^{2.3}$ | 0.5\% |
 | 25.9\% | 425.6 | 415.9 | 9.6 | -2.3\% |
 | 27.2\% | 413.3 | 415.1 | 1.8 | 0.4\% |
 | 28.4\% | 405.2 | 409.3 | 4.1 | 1.0\% |
 | 29.6\% | 403.7 | 408.1 | 4.5 | 1.10 |
 | 30.9\% | 403.5 | 407.9 | 4.4 | 1.1\% |
 | 32.1\% | 395.5 | 404.3 | 8.8 | ${ }^{2} 2.2 \%$ |
 | 33.3\% | 390.4 | 403.8 | 13.4 | 3.4\% |
 | 34.6\% | 386.5 | 394.1 | 7.6 | 2.0\% |
 | 35.8\% | ${ }^{382,3}$ | 388.2 | 5.9 | 1.5\% |
 | 37.0\% | 374.1 | 387.1 | 13.0 | 3.5\% |
 | 38.3\% | 373.1 | 381.9 | 8.8 | 2.4\% |
 | 39.5\% | 372.0 | 374.1 | 2.2 | 0.6\% |
 | 40.7\% | ${ }^{367.8}$ | 373.9 | 6.1 | 1.7\% |
 | 42.0\% | 366.2 | ${ }^{373.3}$ | 7.1 | 1.9\% |
 | 43.2\% | 363.8 | 369.5 | 5.7 | 1.6\% |
 | 44.4\% | 356.4 | ${ }^{368.1}$ | 11.8 | 3.3\% |
 | 45.7\% | 356.1 | 359.9 | 3.9 | 1.1\% |
 | 46.9\% | 354.4 | ${ }^{357.4}$ | 3.0 | 0.9\% |
 | 48.1\% | 351.0 | ${ }^{357.0}$ | 5.9 | 1.7\% |
 | 49.4\% | 348.6 | 352.5 | 3.9 | 1.1\% |
 | 50.6\% | 342.8 | 348.9 | 6.1 | 1.8\% |
 | 51.9\% | 336.4 | 341.6 | 5.2 | 1.5\% |
 | 53.1\% | 330.3 | 340.8 | 10.5 | 3.2\% |
 | 54.3\% | 329.6 | 339.1 | 9.4 | 2.9\% |
 | 55.6\% | 324.1 | 333.0 | 8.9 | 2.7\% |
 | 56.8\% | 321.0 | ${ }^{332.2}$ | 11.2 | 3.5\% |
 | 58.0\% | 318.7 | ${ }^{320.3}$ | 1.6 | 0.5\% |
 | 59.3\% | 314.7 | 319.4 | 4.7 | 1.5\% |
 | 60.5\% | 311.7 | ${ }_{318.3}$ | 6.6 | 2.1\% |
 | 617.7\% | 3097 | 317.6 | 8.0 | 2.6\% |
 | 63.0\% | 307.8 | 310.8 | 2.9 | 1.0\% |
 | 64.2\% | 307.8 | 309.8 | 2.0 | 0.6\% |
 | 65.4\% | 306.7 | 308.4 | 1.7 | 0.6\% |
 | ${ }^{66.7 \%}$ | 306.2 | ${ }^{303.7}$ | 2.5 | ${ }^{0.8 \%}$ |
 | 67.9\% | 301.2 | 303.5 | 2.4 | 0.8\% |
 | 69.1\% | 300.9 | 301.0 | 0.1 | 0.0\% |
 | 70.4\% | 299.6 | 299.8 | 0.2 | 0.1\% |
 | 71.6\% | 298.3 | 298.7 | 0.4 | 0.1\% |
 | 72.8\% | 296.8 | 296.8 | 0.0 | -0.0\% |
 | 74.1\% | ${ }_{293.7}^{2937}$ | 296.8 | 3.1 | 1.1\% |
 | 75.3\% | 292.7 | 296.8 | 4.1 | ${ }^{1.4 \% \%}$ |
 | 76.5\% | 290.7 | 294.3 | 3.6 | 1.2\% |
 | 77.8\% | 289.0 | 293.6 | 4.5 | - 1.6% |
 | 79.0\% | 285.7 | ${ }^{286.7}$ | 1.0 | 0.3\% |
 | 80.2\% | 283.7 | 285.2 | 1.4 | 0.5\% |
 | 81.5\% | ${ }_{281.8}^{2818}$ | 287.1 | ${ }^{-0.7}$ | -0.3\% |
 | - 82.7% | 278.2 | 276.4 | -1.8 | -0.7\% |
 | 84.0\% | ${ }_{27}^{27.6}$ | ${ }_{2756}$ | ${ }^{3} .0$ | 1.1\% |
 | 85.2\% | 27.4 | ${ }^{277.7}$ | 3.4 | 1.2\% |
 | ${ }^{86.4 \%}$ | ${ }^{271.3}$ | 272.9 | 1.6 | 0.6\% |
 | 87.7\% | ${ }^{268.3}$ | ${ }_{2672}^{27.6}$ | ${ }^{2.3}$ | 0.8\% 0 |
 | 88.9\% | ${ }^{266.8}$ | ${ }^{2659.2}$ | 0.4 | 0.2\% |
 | 90.1\% | 265.0 | ${ }_{2638}^{2651}$ | 0.1 | 0.0\% |
 | ${ }^{91.44 \%}$ | 264.0 | 263.8 | -0.2 | 0.1\% |
 | 92.6\% | ${ }^{262.5}$ | ${ }^{262.4}$ | -0.1 | . 0.0% |
 | 93.8\% | 25.1 | 255.0 | 4.9 | 1.9\% |
 | 95.17\% | 250.4 | 251.2 | 0.8 | 0.3\% |
 | ${ }^{96.75 \%}$ | 248.6 | ${ }^{2550.2}$ | 1.5 | 0.6\% |
 | ${ }_{98.8 \%}^{97.5 \%}$ | 24.8 | ${ }^{245.3}$ | 0.5 | 0.2\% |
 | | ${ }_{223.6}^{224.1}$ | ${ }_{223.6}^{2253}$ | -1.4 | 0.0\% |

 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
 \hline \& \& Warch \& \& Probabl \& \multicolumn{5}{|l|}{April} \\
 \hline Percent \& DCR 2015 Without \& DCR 2015 With Project \& \& \& ent \& DCR 2015 Without \& DCR 2015 With Project \& \& \\
 \hline creedance \& \& \& Absolute \& Relative \& \& Proiect \& \& \({ }_{\text {Absolute }}\) \& Realive \\
 \hline Probability \& Monthly EC \& Monthly EC \& (UMHOSSCMM) \& fference (\%) \& Probability \& Monthly EC \& Monthly EC \& (UMHOSCSCM) \& Difference (\%) \\
 \hline 0.0\% \& 467.5 \& 471.4 \& 3.9 \& 0.8\% \& 0.0\% \& 474.4 \& 474.9 \& 0.4 \& 0.1\% \\
 \hline 1.2\% \& 452.9 \& 447.5 \& -5.5 \& -1.2\% \& 1.2\% \& 473.8 \& 444.3 \& -29.5 \& \\
 \hline 2.5\% \& 451.2 \& 426.8 \& -24.3 \& -5.4\% \& 2.5\% \& 441.0 \& 4434 \& 24 \& \\
 \hline 3.7\% \& 418.8 \& 34.9 \& \& -5.7\% \& 3.7\% \& 430.7 \& 430.8 \& 0.1 \& \\
 \hline 4.9\% \& 407.3 \& 394.9 \& -12.5 \& 3.1\% \& 4.9\% \& 418.6 \& 425 \& 6.7 \& \\
 \hline 6.2\% \& 398.6 \& 394.8 \& -3.8 \& 0.9\% \& 6.2\% \& 407.8 \& 420.4 \& 12.5 \& \\
 \hline 7.4\% \& 39 \& \& 2.2 \& 0.6\% \& 7.4\% \& 407.1 \& 408.8 \& 1.7 \& \\
 \hline 8.6\% \& 386.5 \& 385.2 \& -1.3 \& 0.3\% \& 8.6\% \& 391.9 \& 408.6 \& 16.8 \& 4.3\% \\
 \hline 9.9\% \& 370.2 \& 370.1 \& -0.1 \& 0.0\% \& 9.9\% \& 391.3 \& \& 2.3 \& \\
 \hline 11.19\% \& 370.0 \& 364.7 \& -5.3 \& 1.4\% \& 11.1\% \& 390.0 \& \({ }^{392.3}\) \& 2.3 \& 0.6\% \\
 \hline \({ }^{12.3 \%}\) \& 367.4 \& 364.2 \& -3.1 \& 0.9\% \& 12.3\% \& \& \& \& \\
 \hline - \(13.6 \%\) \& 358.9
 356.5 \& 358.9
 357.4 \& \begin{tabular}{l}
 -0.9 \\
 \hline 0.9
 \end{tabular} \& 0.2\% \& - \(13.48 \%\) \& 386.3
 380.9 \& 387.6
 385.6 \& 1.3
 4.7 \& \({ }_{\text {l }} 0.2 \%\) \% \\
 \hline 16.0\% \& 353.1 \& 356.1 \& 3.0 \& 0.8\% \& 16.0\% \& 379.4 \& 382.7 \& 3.3 \& 0.9\% \\
 \hline 17.3\% \& 353.0 \& 349.0 \& -3.9 \& 1.1\% \& 17.3\% \& 377.0 \& 380.8 \& 3.8 \& \\
 \hline 18.5\% \& 348.8 \& 347.2 \& -1.6 \& -0.5\% \& 18.5\% \& 371.9 \& 378.4 \& 6.5 \& 1.7\% \\
 \hline 19.8\% \& 341.8 \& 347.1 \& 5.4 \& 1.6\% \& 19.8\% \& 369.8 \& 374.1 \& 4.3 \& \\
 \hline 21.0\% \& 330.8
 30.1 \& 338.1
 3868 \& 7.3 \& 2.2\% \& 21.0\% \& 368.5 \& 373.5 \& 5.0 \& 1.4\% \\
 \hline \({ }^{22.2 .5 \%}\) \& 323.1
 322.5 \& \({ }_{332.2}^{336.8}\) \& 13.7
 9.7 \& 4.3\% \& \({ }^{22.25 \%}\) \& \({ }_{368.1}^{368.1}\) \& 369.7
 368.0 \& 1.6
 0.9 \& 0.2\% \\
 \hline 24.7\% \& 321.6 \& 332.1 \& 10.5 \& 3.3\% \& 24.7\% \& 365.9 \& 366.9 \& 1.0 \& 0.3\% \\
 \hline 25.9\% \& 318.6 \& 327.5 \& 8.9 \& 2.8\% \& 25.9\% \& 363.7 \& 364.4 \& 0.7 \& 0.2\% \\
 \hline 27.2\% \& 315.3 \& 327.1 \& 11.8 \& 3.7\% \& 27.2\% \& 357.0 \& 359.0 \& 2.0 \& 0.5\% \\
 \hline \({ }^{28.4 .6 \%}\) \& \begin{tabular}{l}
 314.6 \\
 312.5 \\
 \hline
 \end{tabular} \& 319.2
 318.5 \& \({ }_{6.0}^{4.6}\) \& 1.9\% \& 28.4\% \& \({ }_{355.5}^{357.0}\) \& \({ }_{356.3}^{357.3}\) \& \begin{tabular}{l}
 0.4 \\
 0.8 \\
 \hline
 \end{tabular} \& 0.2\% \\
 \hline 30.9\% \& 311.8 \& 315.3 \& 3.5 \& 1.1\% \& 30.9\% \& 355.4 \& 355.3 \& -0.1 \& 0.0\% \\
 \hline 32.1\% \& 304.2 \& 311.9 \& 7.7 \& 2.5\% \& 32.1\% \& 351.5 \& 354.0 \& 2.5 \& 0.7\% \\
 \hline 33.3\% \& 301.7 \& 310.8 \& 9.1 \& 3.0\% \& 33.3\% \& 344.4 \& 350.3 \& 5.9 \& 1.7\% \\
 \hline 34.6\% \& 300.7 \& 305.7 \& 5.0 \& 1.7\% \& 34.6\% \& 343.6 \& 346.3 \& 2.7 \& 0.8\% \\
 \hline 年35.8\% \& \(\begin{array}{r}300.0 \\ \hline\end{array}\) \& \({ }^{300.1}\) \& 0.2 \& 0.1\% \& 35.8\% \& \({ }^{342.3}\) \& 346.0 \& 3.7 \& 1.19\% \\
 \hline 37.0\% \& \({ }_{297.0}^{297.1}\) \& \({ }_{298.1}^{29.8}\) \& \({ }_{1.2}^{2.7}\) \& 0.4\% \& 37.3\% \& 342.1
 340.1 \& 344.0 \& 1.8
 2.1 \& 0.6\% \\
 \hline 39.5\% \& 296.4 \& 297.6 \& 1.2 \& 0.4\% \& 3.5\% \& 340.0 \& 341.7 \& 1.7 \& 0.5\% \\
 \hline 40.7\% \& 296.0 \& 296.9 \& 0.9 \& 0.3\% \& 40.7\% \& 339.0 \& 338.9 \& -0.1 \& 0.0\% \\
 \hline 42.0\% \& 294.8 \& 296.1 \& 1.3 \& 0.4\% \& 42.0\% \& 337.1 \& 338.0 \& 0.9 \& 0.3\% \\
 \hline 43.2\% \& 292.4 \& 293.0 \& 0.6 \& 0.2\% \& 43.2\% \& 336.5 \& 337.7 \& 1.2 \& 0.3\% \\
 \hline 44.4\% \& \({ }_{292} 290\) \& 292.4 \& 0.4 \& 0.1\% \& 44.4\% \& 335.9 \& 336.6 \& 0.7 \& 0.2\% \\
 \hline 45.7\% \& 291.1 \& 2920 \& 0.9 \& 0.3\% \& 45.7\% \& 335.2 \& 336.5 \& 1.4 \& 0.4\% \\
 \hline 46.9\% \& 290.7 \& \({ }^{289.8}\) \& -0.9 \& -0.3\% \& 46.9\% \& 332.5 \& 332.9 \& 0.4 \& 0.1\% \\
 \hline 48.19\% \& 290.0 \& 289.7 \& -0.2 \& -0.1\% \& 48.1\% \& 331.3 \& 329.5 \& -1.8 \& -0.6\% \\
 \hline 49.4\% \& \({ }^{285.9}\) \& \({ }^{288.9}\) \& 3.0 \& 1.1\% \& 49.4\% \& \({ }^{326.3}\) \& 328.1 \& 1.8 \& 0.5\% \\
 \hline 50.6\% \& 285.9 \& 285.6 \& -0.2 \& -0.1\% \& 50.6\% \& 326.1 \& 326.2 \& 0.1 \& 0.0\% \\
 \hline 51.9\% \& 283.4 \& \({ }^{284.5}\) \& 1.1 \& 0.4\% \& 51.9\% \& 325.4 \& 326.0 \& 0.7 \& 0.2\% \\
 \hline 53.1\% \& 280.4 \& 284.2 \& 3.8 \& 1.3\% \& 53.1\% \& 324.8 \& 325.5 \& 0.7 \& 0.2\% \\
 \hline 54.3\% \& 279.5 \& 283.4 \& 3.9 \& 1.4\% \& 54.3\% \& 322.6 \& 325.2 \& 2.6 \& 0.8\% \\
 \hline 55.6\% \& 278.4 \& 283.2 \& 4.7 \& 1.7\% \& 55.6\% \& 322.2 \& 325.0 \& 2.8 \& 0.9\% \\
 \hline 56.8\% \& \({ }^{277.5}\) \& \({ }^{282.4}\) \& 4.9 \& 1.8\% \& 56.8\% \& 321.9 \& 322.4 \& 0.6 \& 0.2\% \\
 \hline 58.0\% \& 276.4 \& \({ }^{287.0}\) \& \({ }^{3.6}\) \& 1.3\% \& 58.0\% \& 321.5 \& 322.4 \& 0.9 \& 0.3\% \\
 \hline 59.3\% \& 276.4 \& 278.4 \& 2.1 \& 0.7\% \& 59.3\% \& 320.2 \& 322.3 \& 2.1 \& 0.7\% \\
 \hline 60.5\% \& 275.7 \& 278.0 \& 2.3 \& 0.8\% \& 60.5\% \& 319.7 \& 321.8 \& 2.1 \& 0.7\% \\
 \hline 61.7\% \& 272.7 \& 277.8 \& 5.1 \& 1.9\% \& 61.7\% \& 318.2 \& \({ }^{320.3}\) \& 2.1 \& 0.6\% \\
 \hline 63.0\% \& 268.3 \& 276.3 \& 8.0 \& 3.0\% \& 63.0\% \& 318.1 \& 318.5 \& 0.4 \& 0.1\% \\
 \hline 64.2\% \& 266.1 \& 270.3 \& 4.2 \& 1.6\% \& 64.2\% \& 317.5 \& 318.3 \& 0.8 \& 0.2\% \\
 \hline 65.4\% \& 263.8 \& 268.8 \& 5.1 \& 1.9\% \& 65.4\% \& 317.2 \& 318.0 \& 0.8 \& 0.2\% \\
 \hline \({ }^{66.77 \%}\) \& 262.4 \& 267.9 \& 5.5 \& 2.1\% \& 66.7\% \& 316.3 \& 317.6 \& 1.3 \& 0.4\% \\
 \hline 67.9\% \& 261.8 \& 263.5 \& 1.7 \& 0.7\% \& 67.9\% \& \({ }^{315.6}\) \& 316.1 \& 0.5 \& 0.1\% \\
 \hline 69.1\% \& 261.0 \& 263.3 \& 2.3 \& 0.9\% \& 69.1\% \& 314.1 \& 314.0 \& -0.2 \& -0.1\% \\
 \hline 70.4\% \& 259.8 \& 262.2 \& 2.4 \& 0.9\% \& 70.4\% \& 301.3 \& 310.8 \& 9.5 \& 3.1\% \\
 \hline 71.6\% \& 259.6 \& 259.9 \& 0.3 \& 0.1\% \& 71.6\% \& 298.2 \& 303.2 \& 5.0 \& 1.7\% \\
 \hline 72.8\% \& \({ }_{258.7}^{2589}\) \& \({ }^{259.3}\) \& 0.5 \& 0.2\% \& 72.8\% \& \({ }^{296.1}\) \& \({ }^{302.2}\) \& 6.1 \& 2.1\% \\
 \hline 74.1\% \& 258.0 \& 258.2 \& 0.2 \& 0.1\% \& 74.1\% \& 295.9 \& 301.3 \& 5.4 \& 1.8\% \\
 \hline 75.5\% \& 254.4

 2528 \& $\begin{array}{r}258.1 \\ 2574 \\ \hline\end{array}$ \& ${ }_{4}^{3.7}$ \& -1.5\% \& 75.3\% \& ${ }_{293}^{2988}$ \& ${ }_{295}^{2989}$ \& 4.2 \& 1.4\%

 \hline 77.8\% \& 251.6 \& 254.4 \& 2.8 \& 1.1\% \& 77.8\% \& 291.9 \& ${ }_{295.6}$ \& ${ }_{3.7}$ \& 1.3\%

 \hline 79.0\% \& 251.3 \& 251.4 \& 0.1 \& 0.0\% \& 79.0\% \& 291.2 \& 294.8 \& 3.6 \& 1.2\%

 \hline 80.2\% \& 245.3 \& ${ }_{264.4}^{2454}$ \& 1.1 \& 0.4\% \& 80.2\% \& ${ }_{286}^{2863}$ \& 291.2 \& 4.9 \& 1.7\%\%

 \hline 81.5\% \& 242.9 \& 245.4 \& 2.5 \& 1.0\% \& 81.5\% \& 284.3 \& 288.6 \& 4.3 \& 1.5\%

 \hline 822.7\% \& 240.1
 239.6 \& 243.0
 241.4 \& 2.8
 1.7 \& - ${ }_{\text {1.7\% }}^{\text {0.7\% }}$ \& 827.0\% \& ${ }_{2795}^{2798}$ \& ${ }_{2835}^{288.1}$ \& 8.3 \& 3.0\%

 \hline 85.2\% \& 239.2 \& 240.0 \& 0.8 \& 0.3\% \& 85.2\% \& 273.2 \& 278.6 \& 5.4 \& 2.0\%

 \hline 86.4\% \& 237.7 \& 239.7 \& 2.0 \& 0.8\% \& 86.4\% \& 270.8 \& 270.9 \& 0.1 \& 0.0\%

 \hline 87.7\% \& ${ }^{237.1}$ \& ${ }^{233.8}$ \& 1.7 \& 0.7\% \& 877\% \& ${ }_{26916}^{269.6}$ \& 264.3 \& -5.3 \& -2.0\%

 \hline 88.9\% \& ${ }^{236.6}$ \& ${ }^{237.2}$ \& ${ }^{0.6}$ \& 0.3\% \& 88.9\% \& 261.2 \& 263.9 \& 2.6 \& 1.0\%

 \hline ${ }^{90.14 \%}$ \& ${ }^{233.3}$ \& ${ }^{236.6}$ \& ${ }^{3.3}$ \& 1.4\% \& 90.1\% \& 258.1 \& ${ }^{258.4}$ \& ${ }^{0.3}$ \& 0.1\%

 \hline 992.6\% \& ${ }_{293}^{229.5}$ \& ${ }^{233.5}$ \& 4.0 \& \& ${ }^{91.4 \%}$ \& ${ }^{246.1}$ \& 257.7 \& 11.6 \& 4.7\%

 \hline 93.8\% \& ${ }_{228.5}^{229}$ \& 230.2 \& 1.8 \& 0.8\% \& 93.8\% \& ${ }_{227.1}^{24.6}$ \& ${ }_{227.6}$ \& 0.5 \& 0.2\%

 \hline 95.1\% \& 228.4 \& 228.8 \& 0.4 \& 0.2\% \& 95.1\% \& 219.3 \& 220.1 \& 0.8 \& 0.4\%

 \hline 96.3\% \& 227.7 \& ${ }_{227.9}^{227}$ \& 0.2 \& 0.1\% \& 96.3\% \& ${ }_{215.8}^{215.8}$ \& 215.9 \& 0.1 \& 0.0\%

 \hline 998.8\% \& 224.6
 216.7 \& 224.4
 216.8 \& -0.2 \& - \& ${ }_{98.8 \%}^{97.5 \%}$ \& ${ }^{212.0}$ \& ${ }_{2037}^{212.4}$ \& 0.4 \& 0.2\%

 \hline 100.0\% \& 214.3 \& 216.4 \& 2.1 \& 1.0\% \& 100.0\% \& 194.7 \& 194.9 \& 0.2 \& 0.1\%

 \hline
 \end{tabular}

 | PercentExcedanceProbability | Way | | | RelitiveDifference $(\%)$ |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{0} C R 2015$ Without | DCR 2015 With Project | $\begin{gathered} \text { Absolute } \\ \text { (ivference } \\ \text { (UnHosicicm) } \end{gathered}$ | |
 | | Monthl E E | Monthly EC | | |
 | ${ }^{(\% .0)}$ | ${ }^{413.6}$ | (${ }^{\text {anmosicm) }}$ | 04 | |
 | | | | | |
 | 1.2\% | 409.2 | 411.4 | | |
 | 2.5\% | 401.9 | 398.8 | ${ }^{3.1}$ | |
 | 3.7\% | 400.6 | 398.8 | -1.8 | |
 | 4.9\% | 398.8 | 399,2 | -4.6 | |
 | 7.4\% | ${ }_{387.1}$ | ${ }_{356.7}$ | ${ }_{1.4}$ | -0.4\% |
 | 8.6\% | 384.6 | 385.7 | 1.0 | 0.3\% |
 | 9.9\% | 384.6 | 384.0 | -0.6 | -0.2\% |
 | 11.1\% | 380.5 | 379.2 | -1.3 | -0.36 |
 | 3\% | 376.1 | 377.8 | 1.7 | 0.5\% |
 | 13.6\% | 373.8 | 377.5 | ${ }^{3.8}$ | 1.0\% |
 | 8\% | ${ }^{373.3}$ | 372.1 | -1.2 | 0.3\% |
 | 16.0\% | 371.7 | 369.4 | ${ }^{2.3}$ | -0.6\% |
 | 17.3\% | 369.7 | 366.4 | ${ }^{-3.3}$ | -0.9\% |
 | 18.5\% | 369.3 | 365.4 | 4.0 | -1.1\% |
 | 19.8\% | 366.6 | 364.4 | -2.2 | -0.6\% |
 | 21.0\% | 364.4 | 363.7 | -0.7 | -0.2\% |
 | 22.2\% | 364.2 | ${ }^{363.7}$ | -0.5 | -0.19 |
 | 23.5\% | 362.8 | 362.1 | -0.7 | 0.2\% |
 | 24.7\% | ${ }^{360.2}$ | ${ }^{360.2}$ | 0.1 | 0.0\% |
 | 25.9\% | 359.2 | 359.7 | 0.5 | 0.1\% |
 | 27.2\% | 359.0 | 359.2 | 0.2 | 0.1\% |
 | 28.4\% | 359.0 | 358.4 | ${ }^{0.6}$ | -0.2 |
 | 29.6\% | 358.9 | ${ }_{356.6}$ | -2.4 | -0.7\% |
 | 30.9\% | 357.9 | ${ }_{356.3}$ | -1.6 | -0.4 |
 | 32.1\% | 357.1 | 354.9 | ${ }^{2} \cdot 1$ | -0.6\% |
 | 33.3\% | 356.1 | 354.6 | -1.4 | -0.4\% |
 | 34.6\% | ${ }^{353.6}$ | ${ }_{352.2}^{352}$ | -1.3 | -0.4\% |
 | 35.8\% | 352.9 | 352.2 | -0.7 | 0.2\% |
 | 37.0\% | ${ }^{352.6}$ | 350.0 | -2.6 | -0.7\% |
 | 38.3\% | 348.2 | 349.4 | 1.2 | 0.4\% |
 | 39.5\% | 347.9 | 348.0 | 0.1 | 0.0\% |
 | 40.7\% | 344.2 | 347.9 | ${ }^{3.7}$ | 1.1\% |
 | 42.0\% | 344.1 | 346.7 | 2.5 | 0.7\% |
 | 43.2\% | 343.1 | 346.2 | 3.1 | 0.9\% |
 | 44.4\% | ${ }_{342,3}$ | 344.4 | 2.1 | 0.6\% |
 | 45.7\% | 342.2 | 342.5 | 0.3 | 0.1\% |
 | 46.9\% | 341.8 | 341.5 | -0.2 | -0.1\% |
 | 48.1\% | 341.5 | 340.5 | 1.0 | -0.3\% |
 | 49.4\% | 340.9 | 339.7 | -1.2 | -0.3\% |
 | 50.6\% | 339.2 | 339.3 | 0.1 | 0.0\% |
 | 51.9\% | 338.8 | 339.1 | 0.3 | 0.1\% |
 | 53.1\% | 337.1 | 338.9 | 1.7 | 0.5\% |
 | 54.3\% | 337.0 | 388.2 | 1.2 | 0.4\% |
 | 55.6\% | 336.7 | 337.0 | ${ }^{0.3}$ | 0.1\% |
 | 56.8\% | 333.7 | ${ }^{336.8}$ | 3.1 | 0.9\% |
 | 58.0\% | 333.4 | 333.8 | 0.4 | 0.1\% |
 | 59.3\% | 331.1 | ${ }^{331.6}$ | 0.5 | 2\% |
 | 60.5\% | 330.6 | 331.5 | 0.9 | 0.3\% |
 | 61.7\% | 329.9 | ${ }^{331.3}$ | 1.4 | 0.4\% |
 | 63.0\% | 329.8 | 329.9 | 0.0 | 0.0\% |
 | 64.2\% | ${ }_{328.5}$ | 329.4 | 0.9 | 0.3\% |
 | 65.4\% | ${ }_{327.6}$ | ${ }^{327.6}$ | 0.0 | 0.0\% |
 | ${ }^{66.7 \%}$ | ${ }^{325.6}$ | ${ }_{327.5}^{3275}$ | 1.9 | 0.6\% |
 | 67.9\% | -325.6 | 325.4
 354 | -0.2 | -0.1\% |
 | 69.1\% | ${ }^{322.2}$ | ${ }^{325.4}$ | ${ }^{3.2}$ | 0\% |
 | 70.4\% | 321.0 | 322.8 3218 | ${ }^{1.8}$ | 0.6\% |
 | 71.6\% | 319.5 | ${ }^{321.8}$ | ${ }^{2.3}$ | 7\% |
 | 72.8\% | 308.6 | 321.1 | 12.5 | 4.1\% |
 | 74.1\% | 308.5 | 308.6 | 0.1 | 0\% |
 | 75.3\% | 305.0 | 305.5 | 0.5 | 2\% |
 | 76.5\% | 301.9 | 303.8 | 1.9 | \%\% |
 | 77.8\% | ${ }_{292}^{294}$ | 302.0 | 7.7 | 厚\% |
 | 79.0\% | 292.2 | 300.6 | 8.3 | 9\% |
 | 80.2\% | ${ }_{288}^{288.0}$ | 291.0 | 3.0 | 1.0\% |
 | 81.5\% | ${ }^{283.2}$ | 289.5 | $6^{6.3}$ | 2.2\% |
 | - 82.7% | 281.8 | ${ }^{282.4}$ | 0.6 | 0.2\% |
 | 84.0\% | 276.9 | 277.9 | 0.1 | \% |
 | 85.2\% | ${ }^{274.3}$ | 273.9 | -0.4 | -0.1\% |
 | 86.4\% | 268.2 | ${ }_{273.4}^{273}$ | 5.2 | \% |
 | 87.7\% | ${ }^{2626.6}$ | ${ }^{267.3}$ | 4.7 | 1.8\% |
 | 88.9\% | ${ }_{260.2}^{263}$ | 26.7 | 0.5 | 0.2\% |
 | 90.19\% | ${ }_{2117}^{235}$ | ${ }^{236.1}$ | 0.9 | 0.4\% |
 | 91.4\% | ${ }^{211.7}$ | 212.0 | 0.2 | 0.1\% |
 | 92.6\% | 209.2 | 20.6 2096 | 0.4 | 0.2\% |
 | 93.8\% | 208.5 | 2093 | 0.7 | 0.4\% |
 | 95.1\% | ${ }^{202.5}$ | 2026 | 0.1 | 0.1\% |
 | ${ }^{96.3 \%}$ | 199.2 | 1999 | 0.7 | 0.4\% |
 | 97.5\% | ${ }^{195.2}$ | 195.7 | 0.5 | 3\% |
 | 98.8\% | ${ }_{169.2}^{188.2}$ | ${ }_{1703}^{18.5}$ | ${ }_{0}^{0.3}$ | ${ }_{0}^{0.2 \%}$ |

 Table SQ－27－b

 | | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {OCR } 2015 ~ W ~ W i t h o u t ~}$ | DCR 2015 With Project | Absolute | |
 | Probability | Monthly EC | Monthly EC | （itierersce | fference（\％） |
 | ［9］ | （umHosicm） | 込 | | |
 | 0．0\％ | 499.9 | 493.1 | －6．7 | －1．3\％ |
 | 1．2\％ | 490.0 | ${ }_{484.6}^{44.6}$ | －5．4 | －1．18 |
 | 2．5\％ | 432.1 | 442.3 | 12.2 | |
 | 3．7\％ | 418.7 | 428.4 3262 | 9．4．6 | |
 | 4．9\％ | ${ }^{330.4}$ | ${ }_{3}^{326.2}$ | －4．2 | |
 | 7．4\％ | 318.8 3116 | ${ }_{311.3}$ | －1．1． | ${ }^{-0.1 \%}$ |
 | 8．6\％ | 309.4 | 309.7 | 0.3 | 0．1\％ |
 | 9．9\％ | 308.0 | 308.5 | 0.5 | 0．2\％ |
 | － 11.14% | 307.0 3055 | 300.0 3022 | -1.0 -32 | －0．3\％ |
 | 13．6\％ | | | | |
 | －14．8\％ | 297.7 | ${ }_{297.5}^{3024}$ | ${ }_{-0.1}^{2.8}$ | 0．0\％ |
 | （17．0\％ | 294.6 2907 | 294.5 2917 | -0.2 10 | －0．1\％ |
 | 18．5\％ | 290.5 | 288.6 | －1．9 | －0．6\％ |
 | 19．8\％ | 286.9 | 283.6 | －3．3 | －1．1\％ |
 | ${ }_{2}^{21.0 \%}$ | 278.6
 2778 | ${ }_{2776}^{278.6}$ | －0．0 | －0．0\％ |
 | 23．5\％ | 275.7 | 276.8 | 1.2 | 0．4\％ |
 | 24．7\％ | 274.9 | 275.7 | 0.8 | 0．3\％ |
 | 27．7．2\％ | 274.8 273.5 | 277.6 273.0 | －1．1． | －0．2\％ |
 | 28．4\％ | 272.2 | 271.6 | －0．6 | －0．2\％ |
 | | 270.3 | 270.3 | 0.0 | 0．0\％ |
 | ${ }^{30.1 \%}$ | $\stackrel{270.9}{ }$ | 270.0 268.2 | －1．7 | －0．6\％ |
 | 33．3\％ | 268.3 | 266.8 | －1．4 | －0．5\％ |
 | | 267.3 | 266.7 | | ${ }^{-0.2 \%}$ |
 | 37．0\％ | ${ }_{264.5}^{265.6}$ | ${ }_{265.8}^{265.8}$ | 0.2 1.3 | 0．5\％ |
 | 38．3\％ | 264.4 | 264.9 | 0.5 | 0．2\％ |
 | | 263.9 | 264.5 | | 0．2\％ |
 | 42．0\％ | ${ }_{263.5}^{263.7}$ | ${ }_{263.7}^{263.7}$ | ${ }_{0.2} 0$ | 0．1\％ |
 | 43．2\％ | 262.4 | 262.4 | 0.0 | 0．0\％ |
 | | 261.9 | 262.2 | ${ }^{0.3}$ | 0．1\％ |
 | 45．7\％ | 261.1 259.6 | ${ }_{261.1}^{261.1}$ | 0.0 1.5 | 0．0\％ |
 | 48．1\％ | 259.4 | 259.0 | －0．4 | －0．2\％ |
 | | 257.9 | 257.7 | －0．2 | －0．1\％ |
 | 年 50.0% \％ | ${ }_{256.7}^{257.2}$ | 257.1 257.0 | －0．3 | －0．1\％ |
 | 53．1\％ | 256.7 | 256.9 | 0.2 | 0．1\％ |
 | 54．3\％ | ${ }^{256.6}$ | ${ }^{256.7}$ | 0.1 | 0．0\％ |
 | 55．6\％ | 255.6 255.4 | 256.4 25.3 | －0．1 | 0．0\％ |
 | 58．0\％ | 255.4 | 255.1 | －0．2 | －0．1\％ |
 | 59．3\％ | ${ }^{254.8}$ | ${ }^{254.8}$ | 0.0 | 0．0\％ |
 | | ${ }_{254.2}^{254.7}$ | 254.7 254.6 | 0.0 0.4 | － 0.10% |
 | 63．0\％ | 253.7 | ${ }^{253.4}$ | －0．4 | －0．1\％ |
 | ${ }^{64.2 \%}$ | 253．3 | 251.3 | －2．1 | －0．8\％ |
 | ${ }^{65.4 \%}$ | 251.6 250.8 | ${ }_{250.9}^{251.1}$ | -0.5
 0.2 | －0．1\％ |
 | 67．9\％ | 250.6 | 250.3 | －0．3 | |
 | 69．1\％ | 250.3 | 250.3 | 0.0 | 0\％ |
 | 70．4\％ | 249.4 | 2497 | 0.3 | － |
 | 72．8\％ | ${ }_{248.1}^{24.1}$ | ${ }_{248.2}^{24.2}$ | 0.1 | 0．0\％ |
 | 74．1\％ | 247.3 | 247.5 | 0.3 | 0．1\％ |
 | 75．3\％ | 24.8 245 245 | 247.4
 246. | 0.6 | 0．3\％ |
 | | | ${ }^{246.6}$ | | 0．6\％ |
 | 79．0\％ | ${ }_{241.7}^{24.7}$ | ${ }_{244.1}^{24.1}$ | ${ }_{2.4}^{1.0}$ | 1．0\％ |
 | 80．2\％ | 241.3 | 243.2 | 1.9 | 0．8\％ |
 | －${ }^{81.5 \%}$ | | 241.9 | ${ }^{3.3}$ | ${ }^{1.49 \%}$ |
 | 84．0\％ | ${ }_{236.0}^{2366}$ | ${ }_{238.4}^{24.1}$ | ${ }_{2.4}^{4.5}$ | －1．0\％ |
 | 85．2\％ | 234.4 | 238.0 | 3.6 | 1．5\％ |
 | 86．4\％ | 234.2 | 236.1 | 1.9 | 0．3\％ |
 | 87.7% 88.9% | 233.6 | 234.4 | 0.8 | 0．3\％ |
 | －${ }^{88.9 \%}$ | ${ }_{23,1}^{233.4}$ | ${ }^{234.3}$ | 0.9 | 0．4\％ |
 | 91．4\％ | 233.0 | ${ }_{233.7}^{24.7}$ | 0.8 | 0．3\％ |
 | 92．6\％ | 231.7 | 232.4 | 0.7 | 0．3\％ |
 | 93．\％ | 231.6 | 231.2 | －0．4 | －0．2\％ |
 | 95．1\％ | 231.4 | 231.0 | －0．3 | －0．1\％ |
 | 96．3\％ | 230.0 | 230.2 | 0.2 | 0．1\％ |
 | 97．5\％ | ${ }_{223,5}^{225.5}$ | ${ }_{2187}^{225.7}$ | 0.2 | － |
 | 100．0\％ | 215.3 | 215.2 | －0．1 | 0．0\％ |

 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
 \hline \& \& \& \& Probab \& \multicolumn{5}{|c|}{August} \\
 \hline Percent \& DCR 2015 Without \& \({ }^{\text {DCR } 2015 ~ W i t h ~ P r o j e c t ~}\) \& \& \& ent \& DCR 2015 Without \& \({ }_{\text {DCR }} 2015\) With Proust \& \& \\
 \hline Excedance \& Proiect \& \& Absolute \& \& \& Proiect \& DCR 2015 With Project \& \({ }^{\text {Absolute }}\) \& Relative \\
 \hline Probability \& Monthly EC \& Monthly EC \& （UMHOSSCM） \& ference（\％） \& Probability \& Monthly EC \& Monthly EC \& （UMHOSSCM） \& Difference（\％） \\
 \hline 0．0\％ \& 785.2 \& 790.4 \& 5.2 \& 0．7\％ \& 0．0\％ \& \({ }^{950.6}\) \& 966.5 \& 15.9 \& 1．7\％ \\
 \hline 1．2\％ \& 757.7 \& 757.6 \& －0．2 \& 0．0\％ \& 1．2\％ \& 883.4 \& 901 \& \& \\
 \hline 2．5\％ \& 622.1 \& 615.1 \& －7．0 \& －1．1\％ \& 2．5\％ \& 753.5 \& \& 55.8 \& \\
 \hline 3．7\％ \& 607.8 \& 602.3 \& －5．5 \& 0．9\％ \& 3．7\％ \& 745.3 \& \& \& \\
 \hline 4．9\％ \& 606.2 \& 586.2 \& －20．0 \& －3．3\％ \& 4．9\％ \& 743.5 \& \& 1.2 \& \\
 \hline 6．2\％ \& 587.0 \& 565．7 \& －14．2 \& －2．5\％ \& 6．2\％ \& 739.9 \& 742.4 \& ． 5 \& 3\％ \\
 \hline 7．4\％ \& 571.7 \& 527．4 \& －44．3 \& －7．7\％ \& 7．4\％ \& 714.0 \& \& \& 1．9\％ \\
 \hline －8．6\％ \& 523．6
 5133 \& 522.4
 503.9 \& -1.2
 -9.4 \& －0．2\％\(-1.8 \%\) \& 9．9\％ \& 711.4
 698.5 \& 724.2
 711.1 \& \begin{tabular}{l}
 12.8 \\
 125 \\
 \hline 1
 \end{tabular} \& － \(1.8 \%\) \\
 \hline 11．1\％ \& 490.0 \& 487.4 \& \(-2.6\) \& －0．5\％ \& 11．1\％ \& 682.5 \& 698 \& 15.7 \& 2．3\％ \\
 \hline 12．3\％ \& 489.1 \& 476.6 \& －12．5 \& 2．6\％ \& 12．3\％ \& 676.2 \& 681.2 \& ． 0 \& \\
 \hline 13．6\％ \& 468.2 \& 469.9 \& 1.7 \& 0．4\％ \& 13．6\％ \& 650.2 \& 677.5 \& 27.4 \& 4．2\％ \\
 \hline 14．8\％ \& 464.9 \& 460.9 \& －4．1 \& －0．9\％ \& 14．8\％ \& 640.2 \& 658 \& 18.5 \& \\
 \hline 16．0\％ \& 456.6 \& 455.1 \& －1．5 \& －0．3\％ \& 16．0\％ \& 634.4 \& 658.7 \& \({ }^{24.2}\) \& 3．8\％ \\
 \hline 18．5\％ \& 437.8
 4368 \& 437.6
 4340 \& －－． \& －0．6\％ \& \({ }^{17.3 .5 \%}\) \& 634.1
 628.0 \& \({ }_{641.9}^{64.9}\) \& 14.8
 13.9 \& \({ }_{22 \%}^{2.3 \%}\) \\
 \hline 19．8\％ \& 431.3 \& 430.7 \& －0．6 \& \({ }^{-0.1 \%}\) \& 19．8\％ \& 609.6 \& 640.0 \& 30.4 \& 5．0\％ \\
 \hline 21．0\％ \& 424.0 \& 428.4 \& 4.5 \& 1．1\％ \& 21．0\％ \& 600.8 \& 619.1 \& 18.3 \& 3．0\％ \\
 \hline \& \& \({ }_{425.6}\) \& \({ }^{37.8}\) \& 9．7\％ \& \& \& 500.5 \& 8.1 \& \({ }^{3.19 \%}\) \\
 \hline \({ }^{234.7 \%}\) \& 383.5
 371.6 \& 414.3
 393.3 \& 30.9
 21.7 \& 5．8\％ \& \({ }^{234.7 \%}\) \& \({ }_{561.7}^{571.8}\) \& \({ }_{566.7}^{586.0}\) \& 14.2
 5.0 \& 2．9\％ \\
 \hline 25．9\％ \& 371.5 \& 375.2 \& 3.7 \& 1．0\％ \& 25．9\％ \& 560.5 \& 560.9 \& 0.4 \& 0．1\％ \\
 \hline 27．2\％ \& 364.9 \& 370.3 \& 5.3 \& 1．5\％ \& 27．2\％ \& 553.6 \& 559.8 \& 6.2 \& \\
 \hline 28．4\％ \& \({ }_{3623}^{3623}\) \& \({ }^{361.2}\) \& －1．2 \& －0．3\％ \& 28．4\％ \& \begin{tabular}{l}
 546.7 \\
 545 \\
 \hline
 \end{tabular} \& 558.9 \& \({ }^{12.2}\) \& 2．2\％ \\
 \hline －\({ }^{29.9 \% \%}\) \& \({ }_{352.7}^{353.3}\) \& 352.9
 350.0 \& －．2．8 \& \({ }^{-0.8 \%}\) \& －\({ }^{29.9 \% \%}\) \& \({ }_{541.3}^{54.4}\) \& \({ }_{544.7}^{533.2}\) \& \({ }_{3.4}^{7.8}\) \& 1．4\％\％ \\
 \hline 32．1\％ \& 348.9 \& 348.9 \& 0.0 \& 0．0\％ \& 32．1\％ \& 529.4 \& 543.2 \& 13.8 \& 2．6\％ \\
 \hline 33．3\％ \& 346.8 \& 348.8 \& 2.0 \& 0．6\％ \& 33．3\％ \& 529.0 \& 536.4 \& 7.4 \& 1．4\％ \\
 \hline 34．6\％ \& 341.7 \& 346.8 \& 5.2 \& 1．5\％ \& 34．6\％ \& 512.7 \& 528.7 \& 16.0 \& 3．1\％ \\
 \hline 35．8\％ \& 330.4 \& 338.0 \& 7.6 \& 2．3\％ \& 35．8\％ \& 508.3 \& 528.7 \& 20.4 \& 4．0\％ \\
 \hline \(37.0 \%\)
 \(383 \%\) \& 320.7 \& 337．2 \& 16.4 \& 5．1\％ \& 37．0\％ \& 497.8 \& 521.8 \& \({ }^{24.1}\) \& 4．8\％ \\
 \hline 38．5\％ \& \({ }_{308.1}^{309.5}\) \& \({ }_{309.7}^{312.5}\) \& \begin{tabular}{l}
 2.6 \\
 1.6 \\
 \hline
 \end{tabular} \& 0．5\％ \& 38．3\％ \& 499.8 \& \({ }_{\text {chers }}^{518.3}\) \& 23.5
 6.3 \& 1．3\％ \\
 \hline 40．7\％ \& 304.8 \& 302.1 \& －2．7 \& －0．9\％ \& 40．7\％ \& 490.2 \& 493.1 \& 2.9 \& 0．6\％ \\
 \hline 42．0\％ \& 303.4 \& 300.8 \& \(-2.6\) \& －0．9\％ \& 42．0\％ \& 489.9 \& 487.4 \& －2．5 \& －0．5\％ \\
 \hline 43．2\％ \& 300.8 \& 296.1 \& －4．6 \& －1．5\％ \& 43．2\％ \& 489.2 \& 481.6 \& －7．5 \& －1．5\％ \\
 \hline 44．4\％ \& 300．3 \& 294.0 \& －6．3 \& －2．1\％ \& 44．4\％ \& 469.9 \& 478.5 \& 8.5 \& 1．8\％ \\
 \hline 45．7\％\％ \& 2997 \& 293.8 \& －5．9 \& －2．0\％ \& 45．7\％ \& \({ }^{468.2}\) \& 476.1 \& 7.9 \& 1．7\％ \\
 \hline \({ }_{48.1 \%}^{46.9 \%}\) \& \({ }_{282.1}^{298.3}\) \& \({ }_{280.3}^{2860}\) \& －1．9 \& －－．7\％ \& 48．1\％ \& \({ }_{441.9}^{447.2}\) \& 4745.0 \& 28.8
 33.1 \& \({ }^{6.5 \%}\) \\
 \hline 49．4\％ \& 280.3 \& 270.8 \& －9．5 \& －3．4\％ \& 49．4\％ \& 440.9 \& 473.0 \& 32.1 \& 7．3\％ \\
 \hline 50．6\％ \& 267.8 \& 267.7 \& －0．1 \& 0．0\％ \& 50．6\％ \& 430.8 \& 442.1 \& \({ }^{11.3}\) \& 2．6\％ \\
 \hline 51．9\％ \& 267.4 \& 266.7 \& －0．8 \& －0．3\％ \& 51．9\％ \& 422.3 \& 441.1 \& 18.8 \& 4．5\％ \\
 \hline 53．1\％ \& \({ }^{265.6}\) \& 266.1 \& 0.5 \& 0．2\％ \& 53．1\％ \& 420.2 \& 439.2 \& 19.0 \& 4．5\％ \\
 \hline 54．3\％ \& 265.2 \& 264.1 \& －1．1 \& －0．4\％ \& 54．3\％ \& 418.0 \& 438.5 \& 20.4 \& 4．9\％ \\
 \hline 55．8\％ \& \({ }_{264.5}^{265.0}\) \& \({ }_{262.6}^{263.5}\) \& －1．8 \& \({ }^{-0.0 \% \%}\) \& 55．6\％ \& \({ }_{411.8}^{416.9}\) \& \({ }_{434.3}^{4360}\) \& \({ }^{19.4}\) \& 5．4\％ \\
 \hline 58．0\％ \& 259.4 \& 261.5 \& 2.1 \& 0．8\％ \& 58．0\％ \& 407.7 \& 434.2 \& 26.5 \& 6．5\％ \\
 \hline 59．3\％ \& 259．2 \& 260.7 \& 1.5 \& 0．6\％ \& 59．3\％ \& 407.5 \& \({ }^{432.6}\) \& 25.0 \& 6．1\％ \\
 \hline 60．5\％ \& 258.8 \& 260.4 \& 1.6 \& 0．6\％ \& 60．5\％ \& 403.4 \& 401.5 \& －1．9 \& －0．5\％ \\
 \hline 61．7\％ \& 256.1

 255 \& 259.9 \& 3.9 \& 1．5\％ \& 61．7\％ \& 401.0 \& 339.0 \& －6．9 \& －1．7\％

 \hline 63．2\％ \& ${ }_{254.1}^{25.5}$ \& ${ }_{254.4}^{257.4}$ \& ${ }_{0}^{1.8}$ \& 0．1\％ \& 64．2\％ \& ${ }_{389.2}^{396.2}$ \& ${ }_{385.0}^{388.7}$ \& ${ }_{-4.2}$ \& －1．1\％

 \hline 65．4\％ \& 253.6 \& 254.1 \& 0.4 \& 0．2\％ \& 65．4\％ \& 378.6 \& 378.1 \& －0．5 \& －0．1\％

 \hline 66．7\％ \& 253.5 \& 253.0 \& －0．5 \& －0．2\％ \& 66．7\％ \& 377.6 \& ${ }^{373.2}$ \& －4．4 \& －1．2\％

 \hline 67．9\％ \& 253.0
 251.0 \& 251.8
 250.5 \& -1.2
 -0.5 \& ${ }^{-0.5 \%}$ \& －67．9\％${ }^{69.1 \%}$ \& 376.9
 376.8 \& 370.3
 3692 \& －6．6 \& －1．8\％

 \hline 70．4\％ \& 24.3 \& 248.7 \& 2.4 \& 1．0\％ \& 70．4\％ \& 376.4 \& 369.2 \& －7．2 \& －1．9\％

 \hline 71．6\％ \& 244.8 \& 248.7 \& 3.9 \& 1．6\％ \& 71．6\％ \& 370.1 \& 369.2 \& －0．9 \& －0．3\％

 \hline 72．8\％ \& 240.6 \& ${ }_{2}^{24.1}$ \& －0．5 \& －0．2\％ \& 72．8\％ \& ${ }_{369.1}^{3651}$ \& ${ }_{362.0}^{3620}$ \& －7．2 \& －1．9\％

 \hline － 74.15% \& ${ }_{235.7}^{238.0}$ \& ${ }_{235.3}^{236.7}$ \& －1．3 \& ${ }^{-0.5 \%}$ \& （74．19\％ \& 365.1
 364.7 \& ${ }_{361.7}$ \& －3．4 \& －0．9\％

 \hline 76．5\％ \& 235.0 \& ${ }_{234}^{234}$ \& －0．7 \& －0．3\％ \& 7．5\％ \& 362.9 \& ${ }_{354.0}$ \& －8．9 \& ${ }^{-0.5 \%}$

 \hline 77．8\％ \& 234.9 \& 233.5 \& －1．4 \& －0．6\％ \& 77．\％ \& 353.6 \& 350.2 \& －3．4 \& －1．0\％

 \hline 79．0\％ \& 234.0 \& ${ }_{232}^{232}$ \& －1．7 \& －0．7\％ \& 79．0\％ \& 352.3 \& 345.6 \& －6．7 \& －1．9\％

 \hline 80．1．5\％ \& 2330.6
 230.0 \& 231.2
 230.0 \& 0.6
 0.1 \& 0．0．0\％ \& 80．${ }_{\text {80．2\％}}$ \& 349.2
 347.9 \& 341.5
 340.3 \& -7.6
 -7.6 \& ${ }_{-2.2 \%}^{-2.2 \%}$

 \hline 82．7\％ \& 228.5 \& 228.4 \& －0．1 \& 0．0\％ \& 82．7\％ \& 345.7 \& 338.0 \& －7．7 \& －2．2\％

 \hline 84．0\％ \& 228.2 \& 228.0 \& －0．1 \& －0．1\％ \& 84．0\％ \& 338.4 \& 337.1 \& －1．2 \& －0．4\％

 \hline 85．2\％ \& 22776 \& ${ }^{227.2}$ \& －0．4 \& －0．2\％ \& 85．2\％ \& ${ }_{3}^{335.2}$ \& 334.8 \& －0．5 \& －0．1\％

 \hline ${ }^{86.7 \%}$ \& ${ }_{224.7}^{2227}$ \& ${ }_{224.5}^{222.1}$ \& －0．2 \& ${ }^{-0.1 \%}$ \& ${ }^{864.7 \%}$ \& ${ }_{329.7}$ \& ${ }_{3919}$ \& －9．9 \& －3．0\％

 \hline 88．9\％ \& 224.2 \& 224.1 \& －0．1 \& －0．1\％ \& 88．9\％ \& 328.9 \& 319.8 \& －9．0 \& －2．7\％

 \hline 90．1\％ \& 223.8 \& ${ }^{222.0}$ \& －1．8 \& －0．8\％ \& 90．1\％ \& 315.3 \& 313.6 \& －1．7 \& －0．6\％

 \hline ${ }_{9} 9.26 \%$ \& ${ }_{220.8}^{221.4}$ \& ${ }_{220.5}^{221.3}$ \& －0．3 \& －0．1\％ \& 99．6\％ \& ${ }_{297.2}$ \& ${ }_{292}{ }^{304.8}$ \& ${ }_{-5.1}$ \& ${ }_{\text {－1．7\％}}$

 \hline 93．8\％ \& 220.2 \& 220.2 \& 0.0 \& 0．0\％ \& 93．8\％ \& 294.6 \& 259.7 \& －34．9 \& －11．8\％

 \hline 95．1\％ \& 220.2 \& 2198 \& －0．3 \& －0．2\％ \& 95．1\％ \& ${ }_{2223}^{2623}$ \& 258.0 \& －4．3 \& －1．6\％

 \hline ${ }_{\text {97．5\％}}^{96.3 \%}$ \& 218.0
 216.8 \& 217.0
 216.4 \& -1.0
 -0.3 \& －0．0．0\％ \& 96．3\％${ }^{97.5 \%}$ \& ${ }_{213.4}^{232.3}$ \& ${ }_{218.4}^{24.0}$ \& 11.6
 5 \& 5．0\％

 \hline 98．8\％ \& 215.8 \& 216.2 \& 0.5 \& \& 98．8\％ \& ${ }_{210.7}$ \& 210.1 \& －0．5 \&

 \hline 100．0\％ \& 211.7 \& 214.0 \& 2.2 \& 1．1\％ \& 100．0\％ \& 209.4 \& 209.1 \& －0．3 \& －0．1\％

 \hline
 \end{tabular}

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | September | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | DCR 2015 Without | DCR 2015 With Project | Absolute | |
 | | Monthly EC | Monthy EC | Difference （UMHOSCICM） | Difference（\％） |
 | （\％） | （UnHosici | UMHHSOSCM | 229 | |
 | 1．2\％ | ${ }_{914,3}^{922.9}$ | ${ }_{9365}^{945.8}$ | ${ }_{222}^{22.9}$ | 24\％ |
 | 2．5\％ | 881.9 | ${ }_{908.7}$ | ${ }_{26.8}^{22.2}$ | 3．0\％ |
 | 3．7\％ | 853.1 | 900.5 | 47.4 | 5．6\％ |
 | 4．9\％ | ${ }_{846}^{846}$ | 878.7 | 32.5 | 3．8\％ |
 | ${ }_{\text {c }}^{6.2 \%}$ | 843.8 8392 | 856．4 | ${ }_{124}^{12.6}$ | 1．5\％ |
 | 7．4\％ | ${ }^{839.2}$ | ${ }_{8}^{851.6}$ | ${ }^{12.4}$ | ${ }^{1.5 \%}$ |
 | 8．9\％ | 836．2 | 834．1 | －2．1 | －0．2\％ |
 | 9．9\％ | ${ }^{823.4}$ | 829.9 8227 | 6.5 24 | 0．8\％ |
 | 11．1\％ 12．3\％ | 820.3 816.3 | ${ }_{8}^{822.7}$ | 2.4 -1.9 | －0．2\％ |
 | 13．6\％ | 814．6 | ${ }_{8}^{813.5}$ | －1．1． | －0．1\％ |
 | 16．8．\％ | ${ }_{792.4}^{814.0}$ | 809.3 808.3 | -4.7
 15.8 | |
 | 17．3\％ | 791.8 | 804.4 | 12.6 | 1．6\％ |
 | （18．5\％ | 788.5 7884 | 789.9 7874 | 1.5 -1.0 | － |
 | 21．0\％ | 787.0 | 783.5 | －3．5 | －0．4\％ |
 | 22．2\％ | 772.8 | 782.8 | 10.0 | 1．3\％ |
 | ${ }_{2}^{23.5 \%}$ | 772.8 7693 | ${ }_{7753}^{777.2}$ | 4.4 6.0 | －${ }_{\text {0．6\％}}^{0.8 \%}$ |
 | 25．9\％ | 761.1 | 773.7 | 12.7 | 1．7\％ |
 | 27．2\％ | 760.8 | 767.2 | 6.5 | 0．8\％ |
 | － 28.48% | 758.3 7550 | 765.4 7639 | 7.1 89 | ${ }_{1}^{0.9 \%}$ |
 | 30．9\％ | 747．2 | 763.7 | 16.5 | 2．2\％ |
 | 32．1\％ | 743.5 | 762.7 | 19.3 | 2．6\％ |
 | 年 33.3% | 732.9 7327 | 759.1 756.0 | ${ }_{23,}^{26.2}$ | 俍3．6\％ |
 | 35．8\％ | 726.4 | 754.2 | 27.7 | 3．8\％ |
 | 37．\％ | 718.9 | 750.6 | 31.8 | 4．4\％ |
 | 㐌38．5\％ | 691.6 656.2 | 749.4 70.9 | 57.9 84.7 | （8．4\％ |
 | 40．7\％ | 651.0 | 737.4 | 86.4 | 13．3\％ |
 | 42．0\％ | 650.0 | 731.2 | 81.2 | 12．5\％ |
 | － 43.2% \％ | 640.8 638.3 | 729.3 7726.1 | 88.5 87.7 | － |
 | 45．7\％ | 630.6 | 706.7 | 76.2 | 12．1\％ |
 | 46．9\％ | 627.0 | 703.7 | 76.6 | 12．2\％ |
 | 48．19\％ | 624.1 600.2 | 651.6 640.7 | 27.4 40.6 | 4.4% 6.8% |
 | 50．6\％ | 597.5 | 640.6 | 43.1 | 7．2\％ |
 | 51．9\％ | 589.4 | ${ }^{638.5}$ | 49.1 | 8．3\％ |
 | 54．3\％ | ${ }_{5877.1}^{58.3}$ | $\stackrel{603.2}{597.9}$ | ${ }_{20.8}^{20.0}$ | 3．6\％ |
 | 55．6\％ | 574.2 | 594.6 | 20.5 | 3．6\％ |
 | 56．8\％ | 568.1 | ${ }_{583.1}$ | 15.0 | ${ }^{2.6 \%}$ |
 | 59．3\％ | ${ }_{5}^{5547 .}$ | ${ }_{570.5}^{582.3}$ | ${ }_{23.4}^{26.0}$ | 4．3\％ |
 | 60．5\％ | 544.6 | 567.0 | 22.5 | 4．1\％ |
 | ${ }^{61.7 \%}$ | 537.7 | 558.2 | ${ }^{20.5}$ | ${ }^{3.8 \%}$ |
 | －63．2\％ | ${ }_{535.1}^{536.0}$ | ${ }_{5377.3}^{54.8}$ | 7.9
 2 | －${ }^{1.4 \%}$ |
 | 65．4\％ | 532.0 | 534.5 | 2.5 | 0．5\％ |
 | ${ }^{66.7 \%}$ | 530.9 5275 | ${ }_{5228}^{528.3}$ | －2．6 | ${ }^{-0.5 \%}$ |
 | ${ }^{67.9 \%}$ | ${ }_{521.3}^{527.5}$ | 522.5 508.2 | －5．0． -13.1 | ${ }_{-2.5 \%}^{-1.0 \%}$ |
 | 70．4\％ | 519.4 | 507.4 | －12．1 | －2．3\％ |
 | 71．6\％ | 517.4 | 479.8 | | －7．3\％ |
 | 74．1\％ | ${ }_{501.8}^{508.6}$ | ${ }_{464.1}^{472.5}$ | －36．1． -37.7 | －7．5\％ |
 | 75．3\％ | 492.2 | 458.1 | －34．1 | －6．9\％ |
 | 76．5\％ | 474.7 | 457．2 | －17．4 | |
 | 77．8\％ | ${ }_{471.6}^{474.4}$ | ${ }_{451.6}^{455}$ | －19．4 -20.0 | －4．2\％ |
 | 80．2\％ | 470.3 | 446.7 | －23．6 | －5．0\％ |
 | 81．5\％ | ${ }^{466.5}$ | 442.1 | －18．5 | |
 | － | ${ }_{457.2}^{457.3}$ | 433.4 418.6 | －38．9 -38.6 | －8．4\％ |
 | 85．2\％ | 453.9 | 418.1 | －35．7 | －7．9\％ |
 | － 86.480 | 450.6 4303 | ${ }_{4029}^{413.9}$ | －36．7 | |
 | 88．9\％ | 415.9 | 398.9 | －17．0 | ${ }^{-6.1 \%}$ |
 | 90．1\％ | 413.9 | 388.7 | －25．2 | －6．1\％ |
 | 91．4\％ | 407.8 | 388．4 | 19.4 | －4．7\％ |
 | 93．8\％ | ${ }_{3}^{396.3}$ | ${ }_{356.4}^{387.2}$ | －16．4 | ${ }_{-4.4 \%}^{-2.4 \%}$ |
 | 95．1\％ | 300.9 | 323.3 | 22.4 | 7．5\％ |
 | 96．3\％ | 298.1 | 275.1 | －23．0 | －7．7\％ |
 | 97．5\％ | ${ }^{202.1}$ | ${ }^{2559.7}$ | 53.6 | ${ }^{26.5 \%}$ |
 | 100．0\％ | ${ }_{189.3}^{192.8}$ | 198.4 189.2 | 0．0 | －0．0\％ |

 Figure SQ-28-b
 North Bay Aqueduct Intake (Barker Slough), Monthly EC

 Table SQ－28－b

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[b]{3}{*}{\[
 \begin{gathered}
 \text { Percent } \\
 \text { Excedance } \\
 \text { Probability }
 \end{gathered}
 \]} \& \multicolumn{4}{|c|}{October} \\
 \hline \& \({ }^{\text {OCR } 2015 ~ W ~ W i t h o u t ~}\) \& DCR 2015 With Project \& Absolute \& \\
 \hline \& Monthly EC \& Monthly EC \& （itierersce \& fference（\％） \\
 \hline ［9］ \& UMHO \& 込 \& \& \\
 \hline 0．0\％ \& 204.8 \& 203.4 \& \({ }^{-1.3}\) \& －0．7\％ \\
 \hline \({ }^{1.2 \%}\) \& 204.5 \& 2023 \& －2．2 \& －1．1\％ \\
 \hline 2．5\％ \& 204.1 \& 20.5 \& －3．6 \& \\
 \hline 3．7\％ \& 202.4 \& 198.5
 1972 \& － 50 \& －25 \\
 \hline 4．9\％ \& \({ }^{202.2}\) \& \({ }^{197.2}\) \& \& \\
 \hline 7．4\％ \& \({ }_{201.2}^{2019}\) \& \begin{tabular}{l}
 196.9 \\
 1968 \\
 \hline
 \end{tabular} \& －5．4． \& \({ }_{-2.2 \%}^{-2.5 \%}\) \\
 \hline 8．6\％ \& 199.2 \& 196.2 \& －3．0 \& －1．5\％ \\
 \hline 9．9\％ \& 198.3 \& 195.7 \& －2．7 \& －1．3\％ \\
 \hline － \(11.14 \%\) \& 197.4
 1973 \& 195.5

 1951 \& -1.9
 -23 \& －

 \hline －${ }_{\text {123\％}}^{12.6 \%}$ \& 197.3 \& 195.1
 194.4 \& －2．38 \&

 \hline 14．8\％ \& ${ }_{197.2}^{197.2}$ \& ${ }_{194.3}^{194.4}$ \& －2．8 \& －1．4\％

 \hline 16．0\％ \& 197.0
 196.2 \& 193.8
 193.2 \& -3.2
 -30 \& －1．6\％

 \hline 18．5\％ \& 196.0 \& 193.0 \& －3．1 \& －1．6\％

 \hline 19．8\％ \& 196.0 \& 192.7 \& －3．3 \& －1．7\％

 \hline ${ }_{2}^{21.0 \%}$ \& 195.6
 195．2 \& 192.6
 1922 \& －3．0 \& －1．6\％

 \hline 23．5\％ \& 194.3 \& 192.1 \& －2．2 \& －1．1\％

 \hline 24．7\％ \& 194.3 \& 192.1 \& －2．2 \& －1．1\％

 \hline ${ }^{25.7 .2 \%}$ \& 199.1
 192.9 \& 192.0
 192.0 \& －2．19 \& －0．5\％

 \hline 28．4\％ \& 192.3 \& 191.5 \& －0．8 \& －0．4\％

 \hline \& 192.0 \& 190.9 \& －1．2 \& －0．6\％

 \hline 30．9\％ \& 191.9
 190.9 \& 190.7
 190.6 \& -1.2
 -0.3 \& ${ }^{-0.0 .1 \%}$

 \hline 33．3\％ \& 190.6 \& 190.5 \& －0．1 \& 0．0\％

 \hline \& 190.5 \& 190.3 \& \& －0．1\％

 \hline 37．0\％ \& 190.4
 190.4 \& 1990.0
 1900 \& －0．4 \& ${ }^{-0.2 \%}$

 \hline 38．3\％ \& 190.3 \& 190.0 \& －0．3 \& －0．2\％

 \hline \& 190.2 \& 189.9 \& －0．3 \& －0．1\％

 \hline 42．0\％ \& ${ }_{189.8}^{190.0}$ \& ${ }_{189.6}^{189.8}$ \& －0．2 \& ${ }^{-0.1 \%}$

 \hline 43．2\％ \& 189.8 \& 189.5 \& －0．3 \& －0．2\％

 \hline \& \& 189.2 \& \& －0．3\％

 \hline 45．7\％ \& 1899.3
 189.3 \& 189.0
 188.9 \& -0.3
 -0.4 \& －0．0．2\％

 \hline 48．1\％ \& 188.9 \& 188.9 \& －0．1 \& O20

 \hline 4．94\％ \& 188.9 \& 188.8 \& －0．1 \& 0．0\％

 \hline 年 50.0% \％ \& $\begin{array}{r}188.9 \\ 188.8 \\ \hline\end{array}$ \& | 188.7 |
 | :--- |
 | 188.4 | \& -0.2

 -0.4 \& －${ }^{-0.1 \%}$

 \hline 53．1\％ \& 188.6 \& 188.3 \& －0．3 \& －0．2\％

 \hline 54．3\％ \& 188.6 \& 188.3 \& －0．3 \& －0．2\％

 \hline 年55．8\％ \& | 188.5 |
 | :--- |
 | 188.4 | \& $\begin{array}{r}188.2 \\ 188.1 \\ \hline\end{array}$ \& －0．3 \& －-0.1%

 \hline 58．0\％ \& 188.4 \& 188.1 \& －0．4 \& －0．2\％

 \hline \& \& \& －0．3 \& ${ }^{-0.2 \%}$

 \hline 61．7\％ \& 188.2
 188.2 \& 188.0
 188.0 \& -0.2
 -0.2 \& ${ }^{-0.1 \%}$

 \hline 63．0\％ \& 188.1 \& 187.9 \& －0．2 \& －0．1\％

 \hline \& \& 1878.8 \& \&

 \hline ${ }_{6.7 \%} 6.7$ \& ${ }_{187.9}^{18.0}$ \& 1887.7
 187 \& －0．2 \& ${ }^{-0.1 \%}$

 \hline 67．9\％ \& 187.8 \& 1877 \& －0．2 \& －0．1\％

 \hline 70．4\％ \& $\begin{array}{r}1877 \\ 187.6 \\ \hline\end{array}$ \& 1887.5
 187.5 \& －0．2 \& ${ }_{\text {－}}^{-0.1 \%}$

 \hline 71．6\％ \& 187.5 \& 187.4 \& －0．1 \& －0．1\％

 \hline 72．8\％ \& 187.5 \& 187.4 \& －0．2 \& －0．1\％

 \hline \& \& ${ }_{187.3}^{187.3}$ \& －0．2 \& －0．1\％

 \hline 76．5\％ \& ${ }_{187.4}^{187.4}$ \& ${ }_{187.1}^{187.1}$ \& －0．2 \& ${ }^{-0.1 \%}$

 \hline 77．8\％ \& ${ }^{18774}$ \& ${ }^{187.1}$ \& －0．3 \& －0．2\％

 \hline 79．0\％ \& 187.3 \& 186.9 \& －0．4 \& －0．2\％

 \hline 80．${ }_{\text {80，}}$ \& 187.2

 187.2 \& | 186.9 |
 | :--- |
 | 186.8 | \& -0.4

 -0.4 \& －0．0．2\％

 \hline 82．7\％ \& 187.0 \& 186.7 \& －0．4 \& －0．2\％

 \hline － 84.0 \％ \& 186.8
 186.7 \& 186.5
 186.5 \& -0.3
 -0.2 \& －0．2\％

 \hline －${ }_{\text {86．4\％}}$ \& ${ }_{186.7}^{186.7}$ \& ${ }_{188.3}^{186.5}$ \& －0．3 \& ${ }^{-0.2 \%}$

 \hline 87．7\％ \& 186.6 \& 186.2 \& －0．4 \& －0．2\％

 \hline 88．9\％ \& 186.1 \& 186.0 \& 0.0 \& 0．0\％

 \hline 90．1\％ \& 186.0 \& 185.8 \& －0．2 \& －0．1\％

 \hline 91．4\％${ }_{\text {926\％}}$ \& 185.8 \& 185.7 \& －0．1 \& －0．1\％

 \hline ${ }_{93.8 \%}^{92.6 \%}$ \& 185.6
 185.4 \& 185.4
 185.3 \& －0．1 \& ${ }^{-0.1 \%}$

 \hline 95．1\％ \& 185.4 \& 184.9 \& －0．5 \& －0．3\％

 \hline 96．3\％ \& 185.1 \& 184.8 \& －0．3 \& －0．1\％

 \hline 97．5\％ \& 184.7 \& 184.8 \& 0.1 \& 0．1\％

 \hline 988．8\％
 100．0\％ \& 184.4
 183.3 \& 184.0
 183.1 \& －0．4 \& ${ }^{-0.1 \%}$

 \hline
 \end{tabular}

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{gathered}$ | November | | | | $\begin{gathered} \text { Percent } \\ \text { Exceadance } \\ \text { Probability } \end{gathered}$ | Jecember | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {DCR } 2015 \text { Without }}$ | DCR | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOS/CM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | | OCR 2015 WithoutPoriectMontly EC（UMHOS／CM） | DCR 2015 With ProjectMonthy EC | $\begin{gathered} \text { Absolute } \\ \text { Differen } \\ \text { (iuntosicicm) } \end{gathered}$ | $\begin{aligned} & \text { Refeative } \\ & \text { Difference (\%) } \end{aligned}$ |
 | | Monthy EC | Monthy EC （unHoscm） | | | | | | | |
 | | ${ }^{2075}$ | ${ }^{2051}$ | －24 | 12\％ | 0．0\％ | | | 07 | |
 | 12\％ | 2047 | 2029 | | | 12\％ | 2254 | 225 | 11 | ． 5 \％ |
 | 2．5\％ | 203.7 | 201.2 | －2．5 | －1．3\％ | 2．5\％ | ${ }_{220.1}$ | ${ }_{223,3}$ | 3.2 | 1.58 |
 | 3．7\％ | 203.2 | 201.2 | －2．0 | －1．0\％ | 3．7\％ | 212 | | | |
 | 4．9\％ | 202.3 | 9.6 | －2．7 | 1．3\％ | 4．9\％ | 212.5 | 212.6 | 0.1 | 0．0\％ |
 | 6．2\％ | 201.5 | 199.2 | －2．3 | －1．1\％ | 6．2\％ | 212.4 | 212.1 | －0．3 | －0．1\％ |
 | 7．4\％ | 201.5 | 198.9 | －2．5 | 1．2\％ | 7．4\％ | 212.1 | 211.7 | －0．4 | －0．2\％ |
 | 8．6\％ | 201.4 | 198.2 | －3．2 | －1．6\％ | 8．6\％ | 211.9 | 210 | －1．8 | －0．9\％ |
 | 9．9\％ | 200.5 | 198.2 | －2．4 | 1．2\％ | 9．9\％ | 210.1 | 209.6 | －0．4 | －0．2\％ |
 | 11．1\％ | 200.0 | 197.8 | －2．2 | －1．1\％ | 11．1\％ | 209.9 | 207.7 | －2．2 | 1.1 |
 | 12．3\％ | 199.9 | 197.6 | －2．3 | ．1\％ | 12．3\％ | 206.1 | 206.3 | 0.2 | 0.19 |
 | 13．6\％ | 199.6 | 197.3 | －2．3 | －1．1\％ | 13．6\％ | 206.0 | 205.6 | －0．4 | －0．2\％ |
 | 14．8\％ | 199.0 | 196.9 | －2．1 | 1．1\％ | 14．8\％ | 205.5 | 205.6 | 0.1 | 0.19 |
 | 16．0\％ | 198.4 | 196.8 | －1．6 | －0．7\％ | 16．0\％ | 205.3 | 203.6 | 1.7 | －0．8\％ |
 | 17．3\％ | 198.2 | 196.7 | －1．5 | －0．7\％ | 17．3\％ | 205.0 | 203.4 | －1．7 | －0．8\％ |
 | 18．5\％ | 197.5 | 196.7 | －0．8 | －0．4\％ | 18．5\％ | 204.4 | 203.2 | －1．2 | －0．6\％ |
 | 19．8\％ | 197.0 | 196.6 | －0．4 | －0．2\％ | 19．8\％ | 203.5 | 203.0 | －0．5 | －0．3\％ |
 | 21．0\％ | 196.1 | 196.2 | 0.2 | 0．1\％ | 21．0\％ | 203.0 | 202.9 | －0．1 | 0．0\％ |
 | 22．2\％ | 196.0 | 196.1 | 0.1 | 0．1\％ | 22．2\％ | 202.9 | ${ }^{202.6}$ | －0．3 | －0．2\％ |
 | 23．5\％ | 196.0 | 195.7 | －0．3 | －0．2\％ | 23．5\％ | 202.8 | 201.8 | －1．0 | －0．5\％ |
 | 24．7\％ | 195.9 | 195.5 | －0．4 | －0．2\％ | 24．7\％ | 2028 | 201.7 | －1．1 | －0．5\％ |
 | 25．9\％ | 195.6 | 195.4 | －0．3 | －0．1\％ | 25．9\％ | 202.1 | 201.6 | －0．5 | －0．2\％ |
 | 27．2\％ | 195.5 | 195.1 | －0．4 | －0．2\％ | 27．2\％ | 201.4 | 201.4 | 0.0 | 0．0\％ |
 | 28．4\％ | 195.4 | 195.1 | －0．3 | －0．2\％ | 28．4\％ | 201.2 | 200.7 | －0．5 | －0．2\％ |
 | 29．6\％ | 195.3 | 195.0 | －0．3 | －0．2\％ | 29．6\％ | 201.0 | 200.6 | －0．4 | －0．2\％ |
 | 30．9\％ | 195.1 | 194.8 | －0．3 | －0．2\％ | 30．9\％ | 200.9 | 200.6 | －0．3 | －0．2\％ |
 | 32．1\％ | 195.0 | 194.7 | －0．3 | －0．1\％ | 32．1\％ | 200.8 | 200.2 | －0．6 | －0．3\％ |
 | 33．3\％ | 194.9 | 1994.4 | －0．5 | －0．3\％ | 33．3\％ | 200.7 | 199.7 | －1．0 | －0．5\％ |
 | 34．6\％ | 194.7 | 193.8 | －0．9 | －0．5\％ | 34．6\％ | 200.3 | 199，2 | －1．1 | －0．5\％ |
 | 35．8\％ | 194.5 | 193.7 | －0．8 | －0．4\％ | 35．8\％ | 199.9 | 199.1 | －0．9 | －0．4\％ |
 | 37．0\％ | 194.4 | 193.5 | －0．9 | －0．4\％ | 37．0\％ | 199.5 | 199.0 | －0．6 | －0．3\％ |
 | 38．3\％ | 193.1 | 193.1 | 0.0 | 0．0\％ | 38．3\％ | 199.0 | 198.6 | －0．4 | －0．2\％ |
 | 39．5\％ | 193.1 | 192.9 | －0．2 | －0．1\％ | 39．5\％ | 198.9 | 198.4 | －0．5 | －0．3\％ |
 | 40．7\％ | 193.0 | 1928 | －0．2 | －0．1\％ | 40．7\％ | 198.8 | 197.9 | －0．9 | －0．4\％ |
 | 42．0\％ | 192.8 | 192.5 | －0．3 | －0．1\％ | 42．0\％ | 198.6 | 197.1 | －1．5 | －0．7\％ |
 | 43．2\％ | ${ }^{1922.6}$ | 192.2 | －0．4 | －0．2\％ | 43．2\％ | 198.1 | 197.1 | －1．0 | －0．5\％ |
 | 44．4\％ | 192.1 | 192.1 | 0.0 | 0．0\％ | 44．4\％ | 197.6 | 197.0 | －0．6 | －0．3\％ |
 | 45．7\％ | ${ }^{191.6}$ | 191.8 | 0.2 | 0．1\％ | 45．7\％ | 197.3 | 196.9 | －0．4 | －0．2\％ |
 | 46．9\％ | 191.5 | 191.6 | 0.1 | 0．0\％ | 46．9\％ | 197.0 | 196.9 | －0．2 | －0．1\％ |
 | 48．1\％ | 191.5 | 191．4 | 0.0 | 0．0\％ | 48．1\％ | 197.0 | 196.7 | －0．3 | －0．1\％ |
 | 49．4\％ | 191.4 | 191.3 | －0．2 | －0．1\％ | 49．4\％ | 196.4 | 196.5 | 0.1 | 0．0\％ |
 | 50．6\％ | 191.4 | 199.1 | －0．2 | －0．1\％ | 50．6\％ | 196.4 | 196.4 | 0.0 | 0．0\％ |
 | 51．9\％ | 191.3 | 191.1 | －0．2 | －0．1\％ | 51．9\％ | 196.1 | 195.9 | －0．2 | －0．1\％ |
 | 53．1\％ | ${ }^{191.3}$ | 191.0 | －0．3 | －0．1\％ | 53．1\％ | 196.1 | 195.3 | －0．8 | －0．4\％ |
 | 54．3\％ | 191.2 | 191.0 | －0．2 | －0．1\％ | 54．3\％ | 194.9 | 194.9 | －0．1 | 0．0\％ |
 | 55．6\％ | 191.2 | 190.7 | －0．5 | －0．2\％ | 55．6\％ | 194.6 | 194.9 | ${ }^{0.3}$ | 0．2\％ |
 | 56．8\％ | 190.7 | 190.7 | 0.0 | 0．0\％ | 56．8\％ | 194.5 | 194.7 | 0.2 | 0．1\％ |
 | 58．0\％ | 190.5 | 190.1 | －0．3 | －0．2\％ | 58．0\％ | 194.2 | 194.7 | 0.5 | 0．3\％ |
 | 59．3\％ | 190.4 | 190.0 | －0．4 | －0．2\％ | 59．3\％ | 194.1 | 194.4 | 0.2 | 0．1\％ |
 | 60．5\％ | 190.3 | 190.0 | －0．3 | －0．1\％ | 60．5\％ | 194.1 | 194.0 | －0．1 | 0．0\％ |
 | 61．7\％ | 189.9 | 190.0 | 0.0 | 0．0\％ | 61．7\％ | 193.7 | 193.6 | －0．1 | －0．1\％ |
 | 63．0\％ | 189.9 | 189.9 | 0.1 | 0．0\％ | 63．0\％ | 193.4 | 193.5 | 0.1 | 0．0\％ |
 | ${ }^{64.2 \%}$ | 189.8 | 189.6 | －0．2 | －0．1\％ | 64．2\％ | 193.2 | 193.2 | 0.0 | 0．0\％ |
 | ${ }^{65.4 \%}$ | 189.8 1885 | ${ }^{189.4}$ | －0．4 | －0．2\％ | 65．4\％ | 1928 | 192.9 | 0.2 | 0．1\％ |
 | ${ }^{66.7 \%}$ | 189.5 | 1893 | －0．2 | －0．1\％ | 66．7\％ | ${ }^{192.6}$ | 192.6 | 0.0 | 0．0\％ |
 | 67．9\％ | 189.4 | 1893 | －0．1 | －0．1\％ | 67．9\％ | ${ }^{192.3}$ | ${ }^{192.6}$ | 0.3 | 0．1\％ |
 | 69．1\％ | 189.4 | 189.1 | －0．3 | －0．1\％ | 69．1\％ | 191.3 | 192.0 | 0.7 | 0．4\％ |
 | 70．4\％ | ${ }^{1893}$ | 189.0 | －0．3 | －0．2\％ | 70．4\％ | 191.1 | 191.9 | 0.8 | 0．4\％ |
 | 71．6\％ | 189.2 | 189.0 | －0．3 | －0．1\％ | 71．6\％ | 190.3 | 191.9 | 1.6 | 0．8\％ |
 | 72．8\％ | ${ }^{189.2}$ | 188．9 | －0．3 | －0．2\％ | 72．8\％ | ${ }^{190.2}$ | 191.8 | 1.6 | 0．8\％ |
 | 74．1\％ | 189.2 | 188.8 | －0．4 | －0．2\％ | 74．1\％ | 190.2 | 190.7 | 0.5 | 0．2\％ |
 | 75．3\％ | 189.1 1890 | 188.8 1887 | －0．4 | －0．0．2\％ | 76．5\％ | 190.0 1900 | ${ }^{190.2}$ | 0.2 | 0．1\％ |
 | 77．8\％ | 189.0 | 188.6 | －0．4 | －0．2\％ | | 189.1 | 190.0 | 0.9 | 0．5\％ |
 | 79．0\％ | 188.8 | 188.5 | －0．3 | －0．2\％ | 79．0\％ | 188.7 | 189.8 | 1.1 | 0．6\％ |
 | 80．2\％ | 188.7 | 188.4 | －0．4 | －0．2\％ | 80．2\％ | 188.2 | 188.3 | 0.1 | 0．0\％ |
 | 81．5\％ | 188.6 | 188.3 | －0．3 | －0．2\％ | 81．5\％ | 188.2 | 188.1 | －0．1 | 0．0\％ |
 | 82．7\％ | 188.3 | 188.1 | －0．2 | －0．1\％ | 82．7\％ | 188.1 | 188.1 | 0.0 | 0．0\％ |
 | 84．0\％ | 188.1 | 18777 | －0．4 | －0．2\％ | 84．0\％ | 188.0 | 187.8 | －0．1 | －0．1\％ |
 | 85．2\％ | 188．0 | 187.7 1877 | －0．4 | －0．2\％ | 85．2\％ | ${ }^{187.4}$ | ${ }^{1878}$ | 0.3 | 0．2\％ |
 | －${ }^{86.4 \%}$ | 188.0 | 187.7 | －0．3 | －0．2\％ | ${ }^{88.4 \%}$ | ${ }^{187.3}$ | 187.4 | 0.2 | 0．1\％ |
 | 88．9\％ | 187.8 | 187.5 | －0．3 | －0．1\％ | 88．9\％ | 187.0 | 187.1 | 0.1 | 0．1\％ |
 | 90．1\％ | 187.7 | 187.5 | －0．3 | －0．2\％ | 90．1\％ | ${ }^{187.0}$ | 187.0 | 0.1 | 0．0\％ |
 | 91．4\％ | 187.6 | 187.4 | －0．2 | －0．1\％ | 91．4\％ | 186.9 | 186.8 | －0．1 | －0．1\％ |
 | 92．6\％ | 187.5 1875 | 187.4 1872 | －0．2 | －0．1\％ | 92．6\％ | 186.8 1887 | ${ }^{1886.8}$ | －0．1 | 0\％ |
 | ${ }^{935.1 \%}$ | ${ }^{187.5}$ | ${ }^{187.2}$ | －0．3 | － | 93．8\％ | 186.7 | ${ }^{1886.6}$ | 0.0 | －0．3\％ |
 | 96．3\％ | 187.0 | 186.8 | －0．1 | ${ }^{-0.1 \%}$ | 96．3\％ | 186.2 | 186.0 | －0．2 | －0．1\％ |
 | 97．5\％ | 186.8 | 186.2 | －0．6 | 0．3\％ | 97．5\％ | 185.6 | 185.5 | －0．1 | 0．0\％ |
 | 98．8\％ | $\begin{array}{r}186.0 \\ \hline 185\end{array}$ | $\begin{array}{r}184.7 \\ \hline 845 \\ \hline\end{array}$ | －1．3 | －0．7\％ | 98．8\％ | 184.7 1843 | 184.6 1843 | 0.0 | 0．0\％ |

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | January | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | DCR 2015 With Project | Absolute | |
 | | Monthly EC | Monthy EC | Difference （UWHOSCCM） | Difference（\％） |
 | | （UMHOSSCM） | （UMHOSSCM） | | |
 | 0．0\％ | 261.7 | 262.4 | 0.7 | 0．3\％ |
 | 1．2\％ | 256.6 | 260.6 | 4.1 | 1．6\％ |
 | 2．5\％ | 254.3 | 254.3 | 0.0 | 0．0\％ |
 | 3．7\％ | 250.0 | 251.2 | 1.2 | 0．5\％ |
 | 4．9\％ | 247.0 | 249.3 | 2.3 | 0．9\％ |
 | 6．2\％ | 24.7 | 241.8 | 0.1 | 0．0\％ |
 | 7．4\％ | 241.4 | 240.9 | －0．5 | －0．2\％ |
 | 8．6\％ | 239.4 | 24.6 | 1.2 | 0．5\％ |
 | 9．9\％ | 237.3 | 238.0 | 0.6 | 0．3\％ |
 | 11．19\％ | ${ }_{2}^{234.7}$ | ${ }_{235}^{2354}$ | 0.6 | 0．3\％ |
 | 12．3\％ | 234.2 | 234.4 | 0.2 | 0．1\％ |
 | 13．6\％ | 2335 | ${ }^{234.2}$ | 0.7 | 0．3\％ |
 | 14．8\％ | 233.0 | ${ }^{234.2}$ | 1.2 | 0．5\％ |
 | 16．0\％ | 230.4 | ${ }^{2325}$ | 2.1 | 0．9\％ |
 | 17．3\％ | 230.0 | ${ }_{2}^{230.7}$ | 0.7 | 0．3\％ |
 | 18．5\％ | 230.0 | ${ }_{2}^{230.3}$ | ${ }^{0.3}$ | 0．1\％ |
 | 19．8\％ | 229.0 | 228.0 | －1．0 | －0．4\％ |
 | 21．0\％ | ${ }^{2227.0}$ | ${ }_{222.5}^{222.5}$ | －0．4 | －0．2\％ |
 | ${ }^{23.5 \%}$ | ${ }_{223.5}^{223.0}$ | ${ }_{222.8}^{223.2}$ | －－2．4 | －－0．3\％ |
 | ${ }_{24.7 \%}^{20.5}$ | ${ }_{223.1}^{22.5}$ | ${ }_{222.1}^{22.8}$ | －1．0 | －0．5\％ |
 | 25．9\％ | 22.18 | 221.9 | 0.1 | 0．0\％ |
 | 27．2\％ | 221.2 | 221.1 | －0．1 | 0．0\％ |
 | 28．4\％ | 220.7 | 221.1 | 0.3 | 0．2\％ |
 | 29．6\％ | 220.7 | 220.9 | 0.2 | 0．1\％ |
 | 30．9\％ | ${ }_{220.5}^{220.5}$ | ${ }_{220.1}^{220.7}$ | －0．2 | 0．1\％ |
 | 32．1\％ | ${ }_{218.4}^{220.4}$ | ${ }_{2185}^{220.1}$ | －0．3 | －0．1\％ |
 | 34．6\％ | 217.9 | 218.4 | 0.4 | 0．2\％ |
 | 35．8\％ | 217.7 | 217.7 | 0.0 | 0．0\％ |
 | 37．0\％ | 217.1 | 217.5 | 0.4 | 0．2\％ |
 | 38．3\％ | ${ }_{215}^{216.6}$ | ${ }_{217.3}^{217.3}$ | 0.8 | 0．4\％ |
 | 39．5\％ | ${ }_{2155}^{2153}$ | ${ }_{217.0}$ | 0.7 | 0．3\％ |
 | 40．7\％ | ${ }_{2}^{213.5}$ | ${ }_{2}^{213.6}$ | 0.1 0.3 | 0．0\％ |
 | 42．0\％ | ${ }_{2131}^{213.3}$ | ${ }_{2135}^{2136}$ | ${ }^{0.3}$ | 0．1\％ |
 | 43．2\％ | ${ }_{2121}^{212}$ | 212.5 2109 | －0．5 | 0．2\％ |
 | ${ }^{44.4 \%}$ | 211.4 210.5 | 210.9 2109 | －0．5 | －0．2\％ |
 | 4．9．9\％ | ${ }_{210.2}^{210.5}$ | ${ }_{210.7}^{210.9}$ | 0.5 | 0．2\％ |
 | 48．1\％ | 209.6 | 210.4 | 0.8 | 0．4\％ |
 | 49．4\％ | 209.4 | 210.3 | 0.9 | 0．4\％ |
 | 50．6\％ | 209.0 | 2097 | 0.7 | 0．3\％ |
 | 51．9\％ | 208.9 | 209.4 | 0.5 | 0．2\％ |
 | 53．19\％ | ${ }_{208}^{2083}$ | 209.0 2089 | 0.7 | |
 | 54．3\％ | ${ }_{207.2}^{208.0}$ | ${ }_{208.4}^{208.9}$ | ${ }^{0.9}$ | 0．4\％\％ |
 | 56．8\％ | 207.2 | 207.6 | 0.4 | 0．2\％ |
 | 58．0\％ | 207.0 | 207.5 | 0.5 | 0．2\％ |
 | 59．3\％ | 206.5 | 206.9 | 0.4 | 0．2\％ |
 | －${ }_{60.5 \%}^{617 \%}$ | 206.4 2060 | ${ }_{2065}^{200.8}$ | 0.4 0.5 | ${ }_{\text {cose }}^{0.2 \%}$ |
 | 63．0\％ | 205.7 | 206.1 | 0.4 | 0．2\％ |
 | 64．2\％ | 205.4 | 20.1 | 0.6 | 0．3\％ |
 | | ${ }_{2049}^{2054}$ | ${ }_{2056}^{205.8}$ | ${ }_{0}^{0.5}$ | ${ }_{\text {en }}^{0.3 \%}$ |
 | 67．9\％ | 203.1 | ${ }_{205.5}^{205.6}$ | ${ }_{2.3}$ | 1．2\％ |
 | 69．1\％ | 203.1 | 204.5 | 1.4 | 0．7\％ |
 | 70．4\％ | 202.5 | 202.5 | 0.0 | 0．0\％ |
 | 71．6\％ | 2023 | 202.2 | －0．1 | －0．1\％ |
 | － 72.8 .8 | ${ }_{2016}^{2020}$ | ${ }_{2019}^{2020}$ | 0．0 | －0．0\％ |
 | 75．3\％ | 2013 | 201.6 | 0.4 | 0．2\％ |
 | 76．5\％ | 200.9 | 201.2 | 0.3 | 0．1\％ |
 | 77．8\％ | 200.7 | 201.2 | 0.5 | 0．2\％ |
 | 79．0\％ | 200.6 | 200.5 | －0．2 | －0．1\％ |
 | －${ }_{\text {80．2\％}}$ | $\begin{array}{r}199.6 \\ 1993 \\ \hline 189\end{array}$ | 199.6 1990 | －0．1 | －0．0\％ |
 | 82．7\％ | 198.5 | 198.4 | | |
 | 84．0\％ | 198.3 | 198.0 | －0．3 | －0．1\％ |
 | 85．2\％ | 198.2 | 197．6 | －0．6 | －0．3\％ |
 | 86．4\％ | 197.8 | 197.3 | －0．5 | －0．3\％ |
 | 87.7% 889% | 197.6 1972 | 197.1 1969 | －0．5 | ${ }_{\text {－}}^{-0.2 \%}$ |
 | 90．1\％ | 196.8 | 196.8 | 0.0 | 0．0\％ |
 | 91．4\％ | 196.7 | 196.8 | 0.0 | 0．0\％ |
 | 92．6\％ | 196.5 | 196.7 | 0.2 | 0．1\％ |
 | 93．8\％ | 195.9 | 196.4 | 0.5 | 0．3\％ |
 | 95．1\％ | 195.7 | 195.9 | 0.1 | 0．1\％ |
 | 96．3\％ | 194.5 | 195.7 | 1.2 | 0．6\％ |
 | 97．5\％ | 194.4 | 194.5 | 0.0 | 0．0\％ |
 | －98．8\％ | 194.4 186.4 | 1994.4 1940 | ${ }_{7.6}^{0.0}$ | 4．1\％ |

 Table SQ－28－b

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[b]{3}{*}{\begin{tabular}{l}
 \hline Percent \\
 Exceedance \\
 Probability
 \end{tabular}} \& \multicolumn{4}{|c|}{February} \\
 \hline \& \({ }^{\text {DCR } 2015}\) Without \& DCR 2015 With Project \& Absolute \& \\
 \hline \& Monthly EC \& Monthly EC \& （itierersce \& fference（\％） \\
 \hline ［9］ \& UMH2 \& 边 \& \& \\
 \hline 0．0\％ \& 282.7 \& 285.6 \& 2.9 \& 1．0\％ \\
 \hline \({ }^{1.2 \%}\) \& \({ }_{268.1}\) \& 272.0
 2653 \& 3.9 \& 1．5\％ \\
 \hline 2．5\％ \& \({ }^{2654.4}\) \& \({ }^{265.3}\) \& 0.9 \& \\
 \hline 3．9\％ \& 253.9
 2527 \& \({ }_{253.3}^{254.7}\) \& 0.9 \& 0．2\％ \\
 \hline 6．2\％ \& 251.5 \& 253.1 \& 1.6 \& 0．6\％ \\
 \hline 7．4\％ \& 250.8 \& 250.6 \& －0．1 \& －0．1\％ \\
 \hline －\({ }_{\text {8．9\％}}\) \& \({ }_{248.1}^{250.1}\) \& 249.6
 2494 \& \begin{tabular}{l}
 -0.5 \\
 \hline 0.8 \\
 \hline
 \end{tabular} \& －0．2\％ \\
 \hline \({ }^{9.9 \%}\) \& \({ }_{24.6}^{248.6}\) \& 24.4 \& －0．8 \& 0．9\％ \\
 \hline 12．3\％ \& \({ }_{242.1}^{24.0}\) \& \({ }_{243.5}^{24.2}\) \& \({ }_{1.4}^{2.2}\) \& 0．6\％ \\
 \hline ＋13．6\％ \& \({ }_{241.8}^{24.0}\) \& \({ }_{242.5}^{242.5}\) \& 0.5
 0.7 \& 0．2\％ \\
 \hline 16．0\％ \& 241.8 \& 242.5 \& 0.7 \& 0．3\％ \\
 \hline \& 241.7 \& 242.4 \& 0.7 \& 0．3\％ \\
 \hline \(18.5 \%\)
 \(1988 \%\) \& 240.8
 240.4 \& \({ }_{241.5}^{241.5}\) \& 0.7
 0.9 \& － \(0.3 \%\) \\
 \hline 21．0\％ \& \({ }^{239.6}\) \& 241.0 \& 1.5 \& 0．6\％ \\
 \hline \({ }^{22.2 \%}\) \& 238.2 \& 240.8 \& 2.7 \& 1．1\％ \\
 \hline \({ }^{23.5 \%}\) \& 237.4
 237.0 \& 239.1
 239.0 \& 1.7
 1.9 \& 0．7\％ 0 \\
 \hline 25．9\％ \& 237.0 \& \({ }_{2378}^{2378}\) \& 0.9 \& 0．4\％ \\
 \hline 27．2\％ \& 236.9 \& 237.7 \& 0.9 \& 0．4\％ \\
 \hline 28．4\％ \& \({ }_{235.7}^{236.4}\) \& \({ }_{236.9}^{237.5}\) \& 1.1
 1.2 \& 0．5\％ \\
 \hline 30．9\％ \& \({ }_{234.2}\) \& 236.0 \& 1.9 \& 0．8\％ \\
 \hline 32．1\％ \& 234.1 \& 234.1 \& 0.1 \& 0．0\％ \\
 \hline 34．6\％ \& \({ }_{230.9}^{233.5}\) \& \({ }_{232.7}^{233.7}\) \& \({ }_{1.7}^{0.2}\) \& 0．8\％ \\
 \hline 35．8\％ \& 230.5 \& 231.0 \& 0.5 \& 0．2\％ \\
 \hline \& 228.0 \& 229.1 \& \& \\
 \hline 笛38．3\％ \& 227.9
 226.6 \& 2228.8
 227.0 \& 1.0
 0.4 \& － \(0.4 \%\) \\
 \hline 40．7\％ \& 226.6 \& 226.7 \& 0.1 \& 0．0\％ \\
 \hline \& \({ }_{225.8}^{225}\) \& \({ }^{226.3}\) \& 0.6 \& 0．3\％ \\
 \hline － \(43.2 \%\) \& \({ }_{\text {225．2 }}^{225.6}\) \& \begin{tabular}{l}
 225.8 \\
 225.8 \\
 \hline
 \end{tabular} \& 0.2
 0.5 \& 0．2\％ \\
 \hline 45．7\％ \& 225.0 \& \({ }^{225.3}\) \& 0.4 \& 0．2\％ \\
 \hline \& 221.8 \& 225.3 \& 3.5 \& 1．6\％ \\
 \hline 48．1\％ 4.4 \& \({ }_{221.3}^{221.4}\) \& \begin{tabular}{l}
 223.1 \\
 222.8 \\
 \hline
 \end{tabular} \& \begin{tabular}{l}
 1.7 \\
 1.5 \\
 \hline
 \end{tabular} \& 0．7\％ \\
 \hline 50．6\％ \& 220.9 \& 222.4 \& 1.5 \& ． 70 \\
 \hline 51．9\％ \& 220.5 \& 222.2 \& 1.8 \& 0．8\％ \\
 \hline 54．3\％ \& 220.1
 220.0 \& \({ }_{220.6}^{222.6}\) \& 1.5
 0.4 \& \({ }_{0}^{0.7 \% \%}\) \\
 \hline 55．6\％ \& 218.5 \& 218.9 \& 0.4 \& \\
 \hline 56．8\％ \& 217.1 \& 217.9 \& 0.8 \& \\
 \hline \& \({ }_{216.6}\) \& 216.2 \& －0．4 \& －0．2\％ \\
 \hline 60．5\％ \& \({ }_{2157}^{216.3}\) \& 215.9
 2159 \& －0．3 \& \\
 \hline 61．7\％ \& 215.5 \& 215.7 \& 0.3 \& 0．1\％ \\
 \hline － \(63.0 \%\) \& \({ }_{2154}^{2154}\) \& \({ }_{2150}^{215}\) \& 0.1 \& －0．0\％ \\
 \hline \({ }^{64.2 \%}\) 6．4\％ \& \({ }_{2137}^{215.4}\) \& \({ }_{213.8}^{215.0}\) \& \& \\
 \hline 66．7\％ \& 213.7 \& 213.4 \& －0．2 \& －0．1\％ \\
 \hline 67．9\％ \& \({ }_{\text {213，}}^{213}\) \& \({ }_{213,}^{213.3}\) \& －0．3 \& －0．1\％ \\
 \hline 70．4\％ \& \({ }_{212.7}^{213.2}\) \& 213.2
 212.9 \& －0．1 \& － \(0.0 \%\) \\
 \hline 71．6\％ \& 212.4 \& 212.8 \& 0.4 \& 0．2\％ \\
 \hline 72．8\％ \& \({ }_{211.7}^{2117}\) \& 212.1 \& 0.4 \& 0．2\％ \\
 \hline 75．3\％ \& \& \({ }_{211.8}^{211.8}\) \& \({ }^{0.3}\) \& 0．1\％ \\
 \hline 76．5\％ \& 209.7 \& \({ }_{211.1}^{211.5}\) \& \begin{tabular}{l}
 1．4 \\
 1.4 \\
 \hline 0.3 \\
 \hline 1
 \end{tabular} \& 0．7\％ \\
 \hline 77．8\％ \& 209.5 \& 209.8 \& 0.3 \& 0．1\％ \\
 \hline \& \& \& \& \\
 \hline 80．5\％ \& \({ }_{208.9}^{209.2}\) \& \({ }_{209.4}^{209.5}\) \& 0．4 \& 0．2\％ \\
 \hline 82．7\％ \& 208.9 \& 209.2 \& 0.3 \& 0．1\％ \\
 \hline \(84.0 \%\)
 \(852 \%\) \& 207.0 \& \({ }_{2069}^{207.3}\) \& 0．3 \& － \(0.1 \%\) \\
 \hline 80．4\％ \& \({ }_{206.3}^{200.8}\) \& \({ }_{20,8}^{200.9}\) \& 0.5 \& 0．3\％ \\
 \hline 87．7\％ \& 204.5 \& 204.6 \& 0.0 \& 0．0\％ \\
 \hline 88．9\％ \& 203.4 \& 204.4 \& 1.0 \& 0．5\％ \\
 \hline 90．1\％ 9 \& 203.4 \& 203.9 \& 0.5 \& 0．3\％ \\
 \hline －\({ }_{\text {92．6\％}}^{91.4 \%}\) \& \({ }_{2021}^{203.3}\) \& 203.4

 2026 \& 0.0 \& －

 \hline 93．8\％ \& 2020 \& ${ }_{202.1}^{202 .}$ \& 0.1 \& 0．0\％

 \hline 95．1\％ \& 201.9 \& 202.0 \& 0.1 \& 0．0\％

 \hline 96．3\％ \& 200.3 \& 200.9 \& 0.7 \& 0．3\％

 \hline 97．5\％ \& 198.9 \& 199．1 \& 0.1 \& 0．1\％

 \hline 988．8\％
 100．0\％ \& 1997.5
 196.0 \& 1997.8
 195.4 \& 0.3
 -0.6 \& －

 \hline
 \end{tabular}

 | $\begin{gathered} \text { Percernt } \\ \text { Execedane } \\ \text { Probabability } \end{gathered}$ | Warch | | | | April | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {DCR } 2015 \text { Without }}$ | DCR 2015 With Project | $\begin{gathered} \text { Absolute } \\ \text { (ilference } \\ \text { (UMHOS/CM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | $\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Pxeedance } \\ \text { Probabily } \\ \text { (obe } \end{array} \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { DCR } 2015 \text { Without } \\ \text { Proiect } \\ \hline \text { Monthly EC } \\ \text { (UMHOS/CM) } \\ \hline \end{gathered}$ | DCR 2015 With Project
 $\begin{array}{c}\text { Monthy } \\ \text {（UMHOSC（CW）}\end{array}$ | $\begin{gathered} \text { Absolute } \\ \text { Aifference } \\ \text { (UMHOSCM) } \end{gathered}$ | $\begin{aligned} & \text { Rifelative } \\ & \text { Difference (\%) } \end{aligned}$ |
 | | Monothly EC | Monthy EC | | | | | | | |
 | （\％） | （UMHOSSCM） | － 2 Hosicm | | | | | | | |
 | 0．0\％ | ${ }^{251.5}$ | 254.2 | 2.8 | 1．1\％ | | ${ }^{245,3}$ | | ${ }^{-7.5}$ | －3．1\％ |
 | 1．2\％ | 250.6 | ${ }_{2507}^{251.5}$ | 1.0 | 0．4\％ | 1．2\％ | ${ }_{2321}^{2359}$ | ${ }_{23,1}^{2356}$ | －0．3 | ${ }^{-0.1 \%}$ |
 | 2．5\％ | 249.1 | 250.7 | 1.6 | 0．6\％ | 2．5\％ | ${ }^{232.1}$ | ${ }_{23,1}^{233.1}$ | 1.0 | 0．5\％ |
 | 4．9\％ | ${ }_{241.6}^{24.7}$ | ${ }_{244.5}$ | 2.9 | 1．2\％ | 4．9\％ | ${ }_{231.7}^{232.7}$ | ${ }_{232.2}^{232.2}$ | 0.5 | 0．2\％ |
 | 6．2\％ | 240.3 | 241.1 | 0.9 | 0．4\％ | 6．2\％ | ${ }^{230.3}$ | 229.6 | －0．7 | －0．3\％ |
 | 7．4\％ | ${ }_{2}^{239.4}$ | ${ }^{240.6}$ | 1.2 | 0．5\％ | 7．4\％ | ${ }^{227.4}$ | ${ }_{2}^{229.4}$ | 2.0 | 0．9\％ |
 | 8．6\％ | ${ }_{2}^{236.8}$ | 239.8 | 3.0 | 1．3\％ | 8．6\％ | ${ }_{224.1}^{222.1}$ | ${ }^{225.4}$ | ${ }^{1.3}$ | 0．6\％ |
 | 9．9\％ | 236.8
 2358
 254 | ${ }^{2338}$ | 2.0 | 0．9\％ | 9．9\％ | ${ }_{221.2}^{221.2}$ | 224.6 | ${ }^{3.4}$ | ${ }_{1.50 \%}^{1.50}$ |
 | 12．3\％ | ${ }_{234.4}^{235.6}$ | ${ }_{236.9}^{237.6}$ | 2.5
 2.0 | －${ }^{0.1 .1 \%}$ | 112．3\％ | ${ }_{220.2}^{220.3}$ | ${ }_{221.6}^{223.1}$ | ${ }_{1.4}^{2.9}$ | 0．6\％ |
 | 13．6\％ | ${ }_{2}^{234.4}$ | 236.5 2364 | ${ }_{3}^{2.1}$ | 0．9\％ | | ${ }_{2174}^{2177}$ | ${ }_{2174}^{220.5}$ | 2.8 | 1．3\％ |
 | 14．8\％ | ${ }_{23.1}^{233.1}$ | ${ }_{234}^{2364}$ | 3.3 18 | 年．4\％ | 14．8\％ | ${ }_{2168}^{217.4}$ | 217.4 216.4 | 0.0 -0.4 | －0．0\％ |
 | （16．3\％ | ${ }_{231.4}^{23.1}$ | 234.0 2335 | 1.8
 2.1 | － 0.8% | 117．0\％ | ${ }_{214.6}^{214.8}$ | 216.4 216.1 | －0．4
 1.5 | －0．7\％ |
 | 18．5\％ | 23.8 | 233.5 | 2.6 | 1．1\％ | 18．5\％ | 214.4 | 214.6 | 0.2 | 0．1\％ |
 | 19．8\％ | ${ }_{230.8}^{2302}$ | ${ }_{23.1}^{233.1}$ | 2.2 | 1．0\％ | 19．8\％ | 212.4 | 214.3 | 1.9 | 0．9\％ |
 | 220．0\％ | $\begin{array}{r}230.2 \\ 2302 \\ \hline 202\end{array}$ | ${ }_{2316}^{232.2}$ | 2.0 14 | 0．9\％ | 221．2\％ | 211.4 211.2 | ${ }_{2121}^{212.1}$ | ${ }_{0}^{0.7}$ | 0．3\％ |
 | 22．5\％ | ${ }_{230.2}^{2302}$ | 231.5 | 1.3 | 0．6\％ | 23．5\％ | 210.4 | 211.8 | 1.4 | 0．6\％ |
 | 24．7\％ | 229.9 | 230.9 | 1.0 | 0．4\％ | 24．7\％ | 210.1 | 211.7 | 1.5 | 0．7\％ |
 | 27．9\％\％ | ${ }_{2253}^{228.9}$ | ${ }_{2254}^{230.5}$ | ${ }^{1.6}$ | 0．7\％ | 227．2\％ | 210.0 2088 | 211.2 2100 | ${ }_{13}^{1.1}$ | 0．5\％ |
 | 28．4\％ | ${ }_{224.6}^{229}$ | ${ }_{225.2}^{235}$ | 0.5 | 0．2\％ | 28．4\％ | 208.6 | 210.0 | 1.4 | 0．7\％ |
 | 29．6\％ | 222.8 | 223.8 | 1.0 | 0．5\％ | 29．6\％ | 208.4 | 209.8 | 1.4 | 0．7\％ |
 | 330．9\％ | ${ }_{220.3}^{222.6}$ | ${ }_{2202}^{223.1}$ | 0.5 -0.1 | － 0.2% | ${ }_{3}^{30.9 \%}$ | 208.4 2084 | ${ }_{2091}^{209.8}$ | 1.4 0.7 0.7 | － 0.7% |
 | 33．3\％ | 219.4 | 219.5 | 0.1 | 0．0\％ | 33．3\％ | 208.3 | 208.8 | 0.5 | 0．2\％ |
 | 34．6\％ | 218.1 | 218.7 | 0.6 | 0．3\％ | 34．6\％ | 208.3 | 208.6 | 0.3 | 0．2\％ |
 | 37．0\％ | 217.9 217.3 | ${ }_{218.2}^{218.5}$ | 0.6 0.9 | － 0.4% | 357．0\％ | 207.8 2078 | ${ }_{208.3}^{208.4}$ | ${ }_{0}^{0.7}$ | ${ }_{0}^{0.3 \%}$ |
 | 38．3\％ | 217.0 | 218.1 | 1.2 | 0．5\％ | 38．3\％ | 207.7 | 208.2 | 0.4 | 0．2\％ |
 | 39．5\％ | 216.9 | 218.0 | 1.2 | 0．5\％ | 39．5\％ | 207.6 | 208.1 | 0.5 | 0．2\％ |
 | 420．0\％ | 216.8 216.5 | 217.1 217.0 | 0.2 0.5 | ${ }^{0.2 \%}$ | 420．0\％ | ${ }_{207.2}^{207.3}$ | ${ }_{207.7}^{207.9}$ | 0.6 0.5 | ${ }_{0}^{0.3 \%}$ |
 | 43．2\％ | 216.2 | 216.8 | 0.6 | 0．3\％ | 43．2\％ | 207.1 | 207.7 | 0.6 | 0．3\％ |
 | 44．4\％ | ${ }^{215.6}$ | ${ }_{216.1}$ | 0.4 | 0．2\％ | 44．4\％ | 207.1 | 207.7 | 0.6 | 0．3\％ |
 | 46．9\％ | ${ }_{215.4}^{215.6}$ | ${ }_{215.7}^{216.1}$ | ${ }_{0.3}^{0.5}$ | ${ }_{0.1 \%}^{0.2 \%}$ | 46．9\％ | ${ }_{200.6}^{200.6}$ | ${ }_{206.4}^{200.8}$ | －0．2 | －0．1\％ |
 | 48．1\％ | 214.8 | 215.5 | 0.7 | 0．3\％ | 48．1\％ | 206.2 | 206.3 | 0.1 | 0．0\％ |
 | 49．4\％ | 214.6 | 215.4 | 0.7 | 0．3\％ | 49．4\％ | 205.9 | 206.2 | 0.3 | 0．2\％ |
 | 551．9\％ | ${ }_{21212.6}^{213.5}$ | ${ }_{213.4}^{214.6}$ | 1.1 0.8 | ${ }^{0.4 \%}$ | 551．9\％ | ${ }_{204.6}^{205.0}$ | ${ }_{205.1}^{205.5}$ | 0.5 0.5 | －${ }_{\text {0．2\％}}^{0.3 \%}$ |
 | 53．1\％ | 212.0 | 212.2 | 0.1 | 0．1\％ | 53．1\％ | 204.6 | 204.8 | 0.2 | 0．1\％ |
 | 54．3\％ | 211.5 | 212.1 | 0.7 | 0．3\％ | 54．3\％ | 203.4 | 204.0 | 0.5 | 0．3\％ |
 | 55．8．8\％ | 211.0 2096 | 211.3 210.7 | 0.4 1.1 | ${ }_{0}^{0.5 \%}$ | 556．8\％ | ${ }_{202.6}^{203.3}$ | ${ }_{203.1}^{203.3}$ | 0.0 0.5 | － 0.0% |
 | 58．0\％ | 209.6 | 210.6 | 1.0 | 0．5\％ | 58．0\％ | 2019 | 202.7 | 0.8 | 0．4\％ |
 | 59．3\％ | 2093 | 2097 | 0.4 | 0．2\％ | 59．3\％ | 201.7 | 202.4 | 0.6 | 0．3\％ |
 | 66．7．7\％ | ${ }_{208.4}^{208.9}$ | ${ }_{209.4}^{209.6}$ | 0.7 0.9 | － 0.4% | 66．7\％\％ | ${ }_{201.3}^{201.5}$ | ${ }_{201.7}^{2017}$ | 0.2 0.4 | － 0.2 \％ |
 | 63．0\％ | 208.2 | 209.3 | 1.1 | 0．5\％ | 63．0\％ | 200.6 | 201.0 | 0.4 | 0．2\％ |
 | 64．2\％ | 207.4 | 208.6 | 1.2 | 0．6\％ | 64．2\％ | 200.6 | 200.6 | 0.0 | 0．0\％ |
 | | 207.4 206.9 | ${ }_{207.7}^{208.1}$ | ${ }_{0}^{0.8}$ | － 0.4% | 66．7\％\％ | ${ }_{200 .}^{200.5}$ | ${ }_{200.3}^{200.3}$ | -0.2 0.1 | －0．0\％ |
 | 67．9\％ | 206.9 | 207.6 | 0.7 | 0．4\％ | 67．9\％ | 200.2 | 200.1 | 0.0 | 0．0\％ |
 | 69．1\％ | ${ }^{206.8}$ | ${ }^{207.3}$ | 0.5 | 0．2\％ | 69．1\％ | 199.9 | 199.9 | 0.0 | 0．0\％ |
 | 7．1．6\％ | ${ }_{206.2}^{200.3}$ | ${ }_{206.9}^{206.9}$ | ${ }_{0}^{0.6}$ | ${ }_{0}^{0.3 \%}$ | 71．6\％ | 1999.5 199.0 | ${ }_{199.1}^{199.7}$ | 0.3 0.1 | 0．1\％ |
 | 72．8\％ | 206.0 | 206.7 | 0.7 | 0．3\％ | 72．8\％ | 198.5 | 199.0 | 0.5 | 0．3\％ |
 | 74．19\％ | 204.9 | ${ }^{200.4}$ | 1.5 | 0．7\％ | 74．1\％ | 198.5 | 198.8 | ${ }^{0.3}$ | 0．2\％ |
 | 76．5\％ | ${ }_{2}^{204.2}$ | ${ }_{204.0}^{204.5}$ | －0．1 | ${ }^{-0.1 \%}$ | 76．5\％ | ${ }^{1989.1}$ | ${ }_{1}^{198.8}$ | 0.6 0.2 | 0．1\％ |
 | 77．8\％ | 203.4 | 203.6 | 0.2 | 0．1\％ | 77．8\％ | 197.1 | 198.1 | 0.9 | 0．5\％ |
 | 89．0\％ | ${ }_{203.2}^{203.3}$ | 203.5 203.4 | ${ }_{0}^{0.2}$ | － 0.1% | 890．2\％ | 196.9
 196.8 | 197.4 197.3 | 0.5 0.5 | －${ }_{\text {en }}^{0.3 \%}$ |
 | 81．5\％ | ${ }_{202.3}^{202.2}$ | ${ }_{203.2}^{203.4}$ | ${ }_{0.9}$ | 0．5\％ | ${ }_{81.5 \%}^{80.5 \%}$ | ${ }_{196.5}^{190.5}$ | 197.0 | 0.5 | 0．3\％ |
 | 82．7\％ | 2023 | 203.1 | 0.8 | 0．4\％ | 82．7\％ | 196.1 | 196.9 | 0.7 | 0．4\％ |
 | 84．0\％ | 202.2 | ${ }_{2025}^{202.7}$ | | ${ }^{0.3 \%}$ | | | ${ }^{196.8}$ | ${ }^{0.8}$ | 0．4\％ |
 | 80．4\％ | ${ }_{201.8}^{202.8}$ | ${ }_{202.2}^{202.5}$ | ${ }_{0}^{0.5}$ | 0．2\％ | 886．4\％ | 196.0 196.0 | 199.8 196.2 | 0.8 0.2 | 0．4\％ |
 | 87．7\％ | 201.5 | 2019 | 0.4 | 0．2\％ | 87．7\％ | 195.9 | 195.9 | 0.0 | 0．0\％ |
 | －${ }^{88.9 \%}$ | 201.3 200.0 | 201.6 199.9 | 0.3 -0.1 | －0．1\％ | 88．9\％ | 1995.8 195.7 | ${ }_{195.5}^{195.7}$ | －0．1 | － |
 | 91．4\％ | 200.0 | 199.9 | －0．1 | 0．0\％ | 91．4\％ | 195.5 | 195.4 | －0．1 | 0．0\％ |
 | －${ }_{93,8 \%}^{92.6 \%}$ | 199.9 198.2 | 199.6 199.2 | -0.3
 1.0 | ${ }^{-0.5 \%}$ | 92．6\％${ }_{\text {93，}}$ | 195.4 194.7 | 195.2 195.0 | ${ }_{0}^{-0.3}$ | －0．1\％ |
 | 95．1\％ | 198.1 | 199.0 | 1.0 | 0．5\％ | 95．1\％ | ${ }_{194.5}$ | 194.7 | 0.1 | 0．1\％ |
 | 96．3\％ | 197.7 | 198.2 | 0.5 | 0．2\％ | 96．3\％ | 194.4 | 194.3 | －0．1 | 0．0\％ |
 | 97．5\％ | ${ }_{1971}^{197.2}$ | 197.4 1972 | 0.2 | 0．1\％ | 998．5\％ | 193.9 1924 | ${ }_{1930}^{194.0}$ | 0.1 | 0．1\％ |
 | | 193.4 | ${ }_{193.3}^{199.2}$ | | 0．0\％ | | ${ }_{1}^{199.4}$ | ${ }_{1919.8}^{1930}$ | ${ }_{1.3}^{0.6}$ | 0．3\％ |

 | $\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probabability } \end{array} \end{aligned}$ | Way | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {DCR } 2015 \text { Without }}^{\text {Proiect }}$ | DCR 2015 With Project | Absolute | Rela |
 | | Monthly EC | Monthly EC | Difference （unHoscm） | Difference（\％） |
 | （\％） | （UMHOSSCM） | UMHOSICI | 162 | 63\％ |
 | 12\％ | 24.3 | 23.6 | －2 | ${ }_{-6} 8.0$ |
 | 2．5\％ | 226.7 | 233.3 | 6.5 | 29\％ |
 | 3．7\％ | 224.7 | 227.5 | 2.8 | 1．2\％ |
 | 4．9\％ | 219.9 | 225.2 | 5.3 | 2．4\％ |
 | 7．4\％ | 218.9 217.6 | 219.0 217.6 | 0.1 0.0 | 0．0\％ |
 | 8．6\％ | 215.1 | 215.5 | 0.4 | 0．2\％ |
 | 9．9\％ | 213.7 | 212.9 | －0．8 | －0．4\％ |
 | ${ }_{\text {l }}$ | 208.8 2079 | ${ }_{208.8}^{208.8}$ | 0.0 0.9 | 0．4\％ |
 | 13．6\％ | 2078 | 208.2 | 0.4 | 0．2\％ |
 | 14．8\％ | 207.0 | 207.6 | 0.6 | 0．3\％ |
 | － 16.0 \％ | 206.0 2055 | ${ }_{207}^{207.1}$ | ${ }_{1}^{1.0}$ | 0．5\％ |
 | ${ }^{17.3 \%}$ | 205.5 | | | 0．6\％ |
 | 19．8\％ | ${ }_{203.2}^{204.2}$ | 20.0 2036 | 1.8 0.4 | 0．9\％ |
 | 21．0\％ | 2028 | 203.3 | 0.5 | 0．3\％ |
 | 22．2\％ | 201.8 | 202.8 | 1.0 | 0．5\％ |
 | ${ }^{23.55 \%}$ | 201.8 | ${ }_{2}^{202.5}$ | 0.7 | 0．3\％ |
 | ${ }^{24.79 \%}$ | 20.1 | ${ }^{202,4}$ | 1.3 | 0．7\％ |
 | 25．7．2\％ | ${ }_{200.6}^{200.6}$ | ${ }_{201.6}^{201.7}$ | 1.1 1.0 | ${ }^{0.5 \%}$ |
 | 28．4\％ | 200.4 | 200.5 | 0.0 | 0．0\％ |
 | 29．6\％ | 198.8 | 200.4 | 1.6 | 0．8\％ |
 | 30．9\％ | 198.3 | 198.7 | 0.4 | 0．2\％ |
 | ${ }^{32.19 \%}$ | 198.0 | 198.1 | 0.2 | 0．1\％ |
 | 34．6\％ | 198.0 198.0 | 198.1 198.0 | 0.0 | 0．0\％ |
 | 35．\％ | 197.5 | 197.8 | 0.3 | 0．2\％ |
 | 37．0\％ | 197.4 | 197.8 | 0.4 | 0．2\％ |
 | 38．3\％ | 197.4 | 197.5 | 0.2 | 0．1\％ |
 | 39．5\％ | 197.1 | 197.5 | 0.4 | 0．2\％ |
 | 40．7\％ | 197.0 | 197.2 | 0.2 | 0．1\％ |
 | 42．0\％ | 196.5 | | | |
 | ${ }^{43.24 \%}$ | 190.2 | 196.5 | 0．1 | 0．1\％ |
 | ${ }^{457 \% \%}$ | 1959 | ${ }^{196.0}$ | | 0．1\％ |
 | 46．9\％ | 195.8 | 196.0 | 0.2 | 0．1\％ |
 | 48．1\％ | 195.6 | 195.1 | －0．4 | －0．2\％ |
 | 49．4\％ | ${ }^{19593}$ | 195.0 | －0．3 | －0．1\％ |
 | 50．1．9\％ | ${ }_{194.7}^{195.2}$ | 194.8 194.5 | -0.4 -0.2 | －0．1\％ |
 | 53．1\％ | 194.7 | 194.2 | －0．4 | －0．2\％ |
 | 54．3\％ | 194.4 | 194.2 | －0．2 | －0．1\％ |
 | 55．8\％ | 1994.3 194.2 | 1994.2 194.1 | －0．1 | ${ }^{-0.0 \%}$ |
 | 58．\％ | 194.0 | 194.1 | 0.1 | 0．1\％ |
 | 59．3\％ | 194.0 | 194.1 | 0.2 | 0．1\％ |
 | 析 60.5% | 193.9 193.8 | 194.0 193.8 | 0.1 0.0 | 0．0\％ |
 | 63．0\％ | 193.8 | 193.8 | 0.0 | 0．0\％ |
 | 64．2\％ | 193.2 | 193.3 | 0.2 | 0．1\％ |
 | | 193．2 | ${ }_{193.2}^{193.2}$ | 0.0 | 0．0\％ |
 | ${ }^{66.7 \%}$ | 193.1 1930 | ${ }_{1939}^{193.1}$ | | |
 | 67．1\％ | 1992.9 | ${ }^{1939.0}$ | 0.1 | 0．0\％ |
 | 70．4\％ | 192.8 | 192.8 | 0.1 | 0．0\％ |
 | 71．6\％ | ${ }_{1929}^{1927}$ | ${ }_{1928}^{1928}$ | 0.1 | 0．0\％ |
 | 74．1\％ | ${ }_{192.7}^{192.7}$ | ${ }_{192.5}^{192.8}$ | －0．2 | －0．1\％ |
 | 75．3\％ | 192.5 | 192.4 | －0．1 | －0．1\％ |
 | 76．5\％ | ${ }_{1922}^{192.3}$ | ${ }^{192.2}$ | －0．1 | －0．1\％ |
 | 77．0\％ | 192.2 1919 | 192.2 1919 | 0.0 | 0．0\％ |
 | 80．2\％ | 191.8 | 191.6 | －0．2 | －0．1\％ |
 | 81．5\％ | 191.6 | 191.6 | 0.0 | 0．0\％ |
 | 82．7\％ | 191.6 | 191.5 | －0．1 | 0．0\％ |
 | 84．0\％ | 191.1 | 191.1 | 0.1 | 0．0\％ |
 | | 190.9 190.4 | ${ }_{191.0}^{191.0}$ | 0.1 0.5 | ${ }_{0}^{0.3 \%}$ |
 | 87．7\％ | 190.4 | 190.5 | 0.1 | \％ |
 | 88．9\％ | 190.4 | 190.4 | 0.0 | 0．0\％ |
 | 90．1\％ | 190.3 | 190.3 | 0.1 | 0．1\％ |
 | －91．4\％ | 190.2 | 190.3 | 0.1 | －0．0\％ |
 | －${ }_{\text {93．8\％}}$ | 189.8 189.3 | 190.0 189.7 | 0．4 | 0．2\％ |
 | 95．1\％ | 189.1 | 189.7 | 0.6 | 0．3\％ |
 | 96．3\％ | 189.0 | 189.0 | 0.0 | 0．0\％ |
 | 97．5\％ | 189.0 | 189.0 | 0.0 | 0．0\％ |
 | 988．8\％ 100．0\％ | 187.6 188.3 | 1887.5 187.1 | －0．8 | －0．4\％ |

 Table SQ-28-b

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[b]{3}{*}{\[
 \begin{gathered}
 \text { Percent } \\
 \text { Excedance } \\
 \text { Probability }
 \end{gathered}
 \]} \& \multicolumn{4}{|c|}{June} \\
 \hline \& \({ }^{\text {OCR } 2015 ~ W ~ W i t h o u t ~}\) \& DCR 2015 With Project \& Absolute \& \\
 \hline \& Monthly EC \& Monthly EC \& (itierersce \& fference (\%) \\
 \hline (\%) \& UMHOSSCM) \& \& \& \\
 \hline 0.0\% \& 234.9 \& 228.6 \& -6.3 \& -2.7\% \\
 \hline \({ }^{1.2 \%}\) \& \({ }_{2259}^{2296}\) \& 227.4 \& -2.28 \& -0.9\% \\
 \hline 2.5\% \& \({ }_{222.7}^{225.7}\) \& \({ }_{2214}^{22.4}\) \& -3.3 \& \\
 \hline 3.9\% \& \({ }_{2219}^{222.2}\) \& \({ }_{221.8}^{221.8}\) \& -0.4 \& \({ }_{-2.4 \%}^{-0.2 \%}\) \\
 \hline 6.2\% \& 214.3 \& 214.3 \& 0.0 \& 0.0\% \\
 \hline 7.4\% \& 213.2 \& 211.2 \& -2.0 \& -0.9\% \\
 \hline - \({ }_{\text {8.9\% }}\) \& 211.2
 1996 \& 206.1
 1995 \& \begin{tabular}{l}
 -5.1 \\
 \hline 0
 \end{tabular} \& - \(\begin{aligned} \& -2.4 \% \\ \& 0.0 \%\end{aligned}\) \\
 \hline 9.9\% \& 199.6 \& 199.5 \& \& 0.0\% \\
 \hline \({ }^{11.12 \%}\) \& 198.8
 1986 \& 1988.7
 1985 \& -0.1 \& \({ }^{-0.1 \%}\) \\
 \hline 13.6\% \& 198.5 \& 198.4 \& 0.0 \& 0.0\% \\
 \hline 14.8\% \& 198.0 \& 197.8 \& -0.2 \& -0.1\% \\
 \hline (17.0\% \& 197.9
 1962 \& 197.0

 1963 \& -1.0
 0.1 \& -0.0.5\%

 \hline 18.5\% \& 195.5 \& 195.6 \& 0.1 \& 0.0\%

 \hline 19.8\% \& 195.5 \& 195.2 \& -0.3 \& -0.1\%

 \hline ${ }_{2}^{21.0 \%}$ \& $\begin{array}{r}194.5 \\ 194.4 \\ \hline\end{array}$ \& 194.5
 1943 \& -0.0 \& -

 \hline 23.5\% \& 194.2 \& 194.2 \& 0.0 \& 0.0\%

 \hline 24.7\% \& 194.0 \& 194.0 \& 0.0 \& 0.0\%

 \hline 27.7.2\% \& ${ }_{193.5}^{193.7}$ \& 193.8
 193.6 \& 0.1
 0.2 \& 0.1\%

 \hline 28.4\% \& 193.4 \& 193.4 \& 0.0 \& 0.0\%

 \hline \& 193.4 \& 193.4 \& 0.0 \& 0.0\%

 \hline ${ }^{30.1 \%}$ \& ${ }_{193.3}^{193.4}$ \& 193.4
 193.3 \& 0.0
 0.0 \& 0.0\%

 \hline 33.3\% \& 193.3 \& 193.3 \& 0.1 \& 0.0\%

 \hline \& 193.2 \& 193.3 \& \& 0.1\%

 \hline 37.0\% \& 193.0
 192.8 \& ${ }_{193.1}^{193.1}$ \& 0.1
 0.2 \& 0.1\%

 \hline 38.3\% \& 192.6 \& 192.9 \& 0.3 \& 0.2\%

 \hline \& \& 192.8 \& 0.2 \& 0.1\%

 \hline 42.0\% \& ${ }_{192.1}^{192.2}$ \& ${ }_{192.3}^{192.5}$ \& 0.2 \& 0.1\%

 \hline 43.2\% \& 192.1 \& 192.2 \& 0.1 \& 0.1\%

 \hline \& \& \& \&

 \hline 46.9\% \& ${ }_{191.8}^{192.0}$ \& ${ }_{192.0}^{192.0}$ \& ${ }_{0}^{0.1}$ \& 0.1\%

 \hline 48.1\% \& 191.7 \& 191.9 \& 0.2 \& 0.1\%

 \hline \& \& 191.8 \& \&

 \hline 51.9\% \& ${ }_{191.6}$ \& ${ }_{191.5}^{191.6}$ \& -0.1 \& 0.0\%

 \hline 53.1\% \& 191.4 \& 191.4 \& 0.0 \& 0.0\%

 \hline 54.3\% \& 191.4 \& 191.4 \& 0.0 \& 0.0\%

 \hline 55.6\% \& ${ }_{191.3}^{191.3}$ \& ${ }_{191.1}^{191.2}$ \& -0.2 \& ${ }^{-0.1 \%}$

 \hline 58.0\% \& 191.2 \& 191.1 \& -0.1 \& 0.0\%

 \hline \& 191.1 \& 191.1 \& 0.0 \& 0.0\%

 \hline 61.7\% \& 191.0 \& 191.0
 1909 \& -0.1 \& ${ }^{0.0 .1 \%}$

 \hline 63.0\% \& 190.8 \& 190.8 \& 0.0 \& 0.0\%

 \hline \& \& 190.8 \& \& 0.0\%

 \hline ${ }_{66.7 \%}^{65.4 \%}$ \& 190.7
 190.7 \& 190.7
 190.5 \& 0.0
 -0.2 \& -0.0\%

 \hline 67.9\% \& 190.6 \& 190.4 \& -0.1 \& -0.1\%

 \hline \& \& \& \&

 \hline 70.1.4\% \& 190.4
 190.3 \& 190.3
 190.0 \& -0.1
 -0.2 \& -0.0\%

 \hline 72.8\% \& 190.2 \& 190.0 \& -0.2 \& -0.1\%

 \hline \& \& \& \&

 \hline 7.7.3\% \& | 189.8 |
 | :--- |
 | 189.6 | \& 189.8

 189.7 \& -0.1
 0.1 \& 0.0\%

 \hline 77.8\% \& 189.5 \& 189.5 \& 0.0 \& 0.0\%

 \hline \& \& \& -0.1 \& 0.0\%

 \hline ${ }^{81.5 \%}$ \& ${ }_{189.3}^{189.3}$ \& 189.4
 189.3 \& 0.1 \& 0.0\%

 \hline 82.7\% \& 189.3 \& 1993 \& 0.0 \& 0.0\%

 \hline - ${ }^{845 \% \%}$ \& \& \& \&

 \hline 80.4\% \& ${ }_{188.7}^{189.7}$ \& ${ }_{188.7}^{180.8}$ \& 0.0 \& 0.0\%

 \hline 87.7\% \& 188.6 \& 188.5 \& -0.1 \& 0.0\%

 \hline 88.9\% \& 188.4 \& 188.5 \& 0.1 \& 0.0\%

 \hline 90.1\% 9 \& 188.3 \& 188.3 \& 0.0 \& 0.0\%

 \hline \& 188.3 \& 188.3 \& 0.0 \& 0.0\%

 \hline 93.8\% \& ${ }_{188.7}^{188.2}$ \& $\begin{array}{r}188.2 \\ 187.6 \\ \hline\end{array}$ \& 0.0 \& 0.0\%

 \hline 95.1\% \& 187.1 \& 187.1 \& 0.0 \& 0.0\%

 \hline 96.3\% \& 186.8 \& 186.7 \& -0.1 \& -0.1\%

 \hline 97.5\% \& 188.6 \& 188.6 \& 0.0 \& 0.0\%

 \hline 988.8\%
 100.0\% \& 186.5
 186.5 \& 186.5
 188.5 \& 0.0
 0.0 \& 0.0\%

 \hline
 \end{tabular}

 | | Juy | | | | August | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | DCR 2015 Without | DCR 2015 With Project | | | | 2015 Without | DCR 2015 With Project | Absolu | |
 | Exceaance | Montiliy EC | Monthy EC | (iliference | Difference (\%) | Heobability | ${ }_{\text {Mronthed }}^{\text {Prec }}$ | Monthly EC | Difference | Differencene (\%) |
 | (\%) | (UMHOSCCM) | (UnHosicm) | (UMHOSICM) | | | UMHOSICM) | (UMHos(cm) | | |
 | 0.0\% | 205.2 | 205.2 | 0.0 | 0.0\% | 0.0\% | 200.5 | 199.4 | ${ }^{-1.1}$ | -0.6\% |
 | 1.2\% | 2048 | 204.7 | -0.1 | | 1.2\% | 199.9 | 198 | | |
 | 2.5\% | 204.0 | 203.8 | -0.2 | -0.1\% | 2.5\% | 199.8 | 198 | 0.9 | 0.5\% |
 | 3.7\% | 203.7 | 202.4 | -1.3 | -0.6\% | 3.7\% | 199.0 | 198.6 | 5 | |
 | 4.9\% | 202.5 | 202.3 | -0.2 | -0.1\% | 4.9\% | 198.3 | 197.8 | 0.5 | -0.3\% |
 | 6.2\% | 202.4 | 201.7 | -0.7 | -0.3\% | 6.2\% | 198.0 | 197 | -0.3 | -0.1\% |
 | 7.4\% | 202.3 | 201.5 | -0.8 | . 4% | 7.4\% | . 1 | 197 | 0.0 | 0.0\% |
 | 8.6\% | 202.0 | 201.4 | -0.5 | -0.3\% | 8.6\% | 196.6 | 197 | 0.5 | 0.2\% |
 | 9.9\% | 201.6 | 200.8 | -0.8 | 4\% | 9.9\% | 196.5 | 196.3 | 0.2 | -0.1\% |
 | 11.1\% | 200.9 | 198.8 | -2.1 | -1.0\% | 11.1\% | 195.6 | 196.3 | 0.7 | 0.4\% |
 | 12.3\% | 199.3 | 196.8 | -2.5 | 3\% | 12.3\% | 195.1 | 195.6 | 0.6 | 0.3\% |
 | 13.6\% | 196.5 | 196.6 | 0.0 | 0.0\% | 13.6\% | 193.4 | 194.7 | 1.3 | 0.7\% |
 | 14.8\% | 191.9 | 191.9 | 0.0 | 0.0\% | 14.8\% | 190.7 | 191.1 | 0.4 | 0.26 |
 | 16.0\% | 191.9 | 191.6 | -0.3 | -0.1\% | 16.0\% | 190.5 | 190.4 | -0.1 | -0.1\% |
 | 17.3\% | 191.7 | 191.6 | -0.1 | -0.1\% | 17.3\% | 190.3 | 190.3 | 0.0 | 0.0% |
 | 18.5\% | 191.5 | 191.5 | -0.1 | 0.0\% | 18.5\% | 190.3 | 190.0 | -0.3 | -0.2\% |
 | 19.8\% | 191.5 | 191.4 | -0.1 | -0.1\% | 19.8\% | 190.1 | 189.6 | -0.5 | -0.3\% |
 | 21.0\% | 191.5 | 191.3 | -0.1 | -0.1\% | 21.0\% | 189.9 | 189.5 | -0.3 | -0.2\% |
 | 22.2\% | 191.4 | 191.1 | -0.3 | -0.2\% | 22.2\% | 189.6 | 189.3 | -0.4 | -0.2\% |
 | 23.5\% | 191.4 | 190.9 | -0.5 | -0.3\% | 23.5\% | 189.5 | 189.3 | 0.2 | -0.19 |
 | 24.7\% | 191.0 | 190.8 | -0.1 | -0.1\% | 24.7\% | 189.4 | 189.2 | -0.1 | -0.1\% |
 | 25.9\% | 190.9 | 190.5 | -0.4 | -0.2\% | 25.9\% | 189.4 | 189.2 | -0.2 | -0.19 |
 | 27.2\% | 190.7 | 190.4 | -0.2 | -0.1\% | 27.2\% | 189.3 | 189.2 | -0.1 | -0.1\% |
 | 28.4\% | 190.5 | 190.4 | -0.1 | -0.1\% | 28.4\% | 189.3 | 189.2 | -0.1 | -0.18 |
 | 29.6\% | 190.4 | 190.3 | -0.2 | -0.1\% | 29.6\% | 189.2 | 189.1 | -0.1 | -0.1\% |
 | 30.9\% | 190.3 | 190.2 | -0.1 | -0.1\% | 30.9\% | 189.2 | 188.9 | -0.4 | -0.2\% |
 | 32.1\% | 190.3 | 190.2 | -0.1 | 0.0\% | 32.1\% | 189.2 | 188.9 | -0.3 | -0.2\% |
 | 33.3\% | 190.2 | 190.1 | -0.1 | -0.1\% | 33.3\% | 189.1 | 188.9 | -0.2 | -0.1\% |
 | 34.6\% | 190.2 | 190.1 | -0.1 | -0.1\% | 34.6\% | 189.0 | 188.8 | -0.2 | -0.1\% |
 | 35.7\% | 190.1 | 190.0 | -0.1 | -0.1\% | 35.8\% | 189.0 | 188.8 | -0.2 | -0.1\% |
 | 37.0\% | 190.1 | 190.0 | -0.1 | -0.1\% | 37.0\% | 188.9 | 188.8 | -0.2 | -0.1\% |
 | 38.3\% | 190.1 | 189.8 | -0.3 | -0.1\% | 38.3\% | 188.9 | 188.7 | -0.2 | -0.1\% |
 | 39.5\% | 189.8 | 1897 | -0.1 | 0.0\% | 39.5\% | 188.9 | 188.7 | -0.2 | -0.1\% |
 | 40.7\% | 1897 | 1897 | 0.0 | 0.0\% | 40.7\% | 188.9 | 188.7 | -0.2 | -0.1\% |
 | 42.0\% | 189.6 | 1897 | 0.0 | 0.0\% | 42.0\% | 188.8 | 188.6 | -0.3 | -0.1\% |
 | 43.2\% | ${ }^{189.6}$ | ${ }^{18996}$ | 0.0 | 0.0\% | 43.2\% | 188.8 | 188.5 | -0.3 | 0.1\% |
 | 44.4\% | 189.5 | 189.6 | 0.1 | 0.0\% | 44.4\% | 188.8 | 188.5 | -0.3 | -0.1\% |
 | 45.7\% | 189.4 | 189.6 | 0.1 | 0.1\% | 45.7\% | 188.8 | 188.5 | -0.3 | -0.1\% |
 | 46.9\% | 189.4 | 189.4 | 0.1 | 0.0\% | 46.9\% | 188.7 | 188.4 | -0.3 | -0.2\% |
 | 48.1\% | ${ }^{189.3}$ | ${ }^{18993}$ | 0.0 | 0.0\% | 48.1\% | 188.5 | 188.4 | -0.1 | 0.0\% |
 | 49.4\% | 189.2 | 189.3 | 0.1 | 0.1\% | 49.4\% | 188.5 | 188.4 | -0.1 | -0.1\% |
 | 50.6\% | 189.1 | ${ }^{1899.2}$ | 0.1 | 0.1\% | 50.6\% | 188.5 | 188.4 | -0.1 | -0.1\% |
 | 51.9\% | 189.1 | 189.2 | 0.1 | 0.0\% | 51.9\% | 188.4 | 188.3 | -0.2 | -0.1\% |
 | 53.1\% | 189.0 | 189.1 | 0.1 | 0.1\% | 53.1\% | 188.4 | ${ }^{188.3}$ | -0.1 | -0.1\% |
 | 54.3\% | 188.8 | 189.0 | ${ }^{0.3}$ | 0.1\% | 54.3\% | 188.4 | 188.3 | -0.1 | 0.1\% |
 | 55.6\% | 188.5 | 188.8 | 0.2 | 0.1\% | 55.6\% | ${ }^{188.2}$ | ${ }^{188.3}$ | 0.0 | 0.0\% |
 | 56.8\% | 188.5 | 188.6 | 0.1 | 0.0\% | 56.8\% | 188.2 | 188.3 | 0.0 | 0.0\% |
 | 58.0\% | 188.5 | 188.5 | 0.1 | 0.0\% | 58.0\% | ${ }^{188.2}$ | 188.2 | 0.0 | 0.0\% |
 | 59.3\% | 188.4 | 188.5 | 0.1 | 0.0\% | 59.3\% | 188.2 | 188.2 | 0.1 | 0.0\% |
 | 60.5\% | 188.4 | 188.3 | -0.1 | -0.1\% | 60.5\% | 188.2 | 188.2 | 0.1 | 0.0\% |
 | 61.7\% | 188.4 | 188.3 | -0.1 | 0.0\% | 61.7\% | 188.1 | 188.2 | 0.1 | 0.0\% |
 | 63.0\% | ${ }^{188.3}$ | 188.3 | 0.0 | 0.0\% | 63.0\% | 188.0 | 188.1 | 0.0 | 0.0\% |
 | ${ }^{64.2 \%}$ | 188.2 | 188.2 | 0.0 | 0.0\% | 64.2\% | 188.0 | 188.1 | 0.0 | 0.0\% |
 | 65.4\% | 188.1 | 188.2 | 0.1 | 0.0\% | 65.4\% | 188.0 | 188.0 | 0.0 | 0.0\% |
 | ${ }^{66.7 \%}$ | 188.1 | 188.2 | 0.1 | 0.0\% | 66.7\% | 188.0 | 188.0 | 0.0 | 0.0\% |
 | 67.9\% | 188.1 | 188.2 | 0.1 | 0.0\% | 67.9\% | 187.9 | 187.9 | 0.0 | 0.0\% |
 | 69.1\% | 188.1 | 188.1 | 0.0 | 0.0\% | 69.1\% | 187.9 | 187.9 | 0.0 | 0\% |
 | 70.4\% | 188.1 | 188.1 | 0.0 | 0.0\% | 70.4\% | ${ }^{187.8}$ | 187.9 | 0.0 | 0.0\% |
 | 71.6\% | 188.0 | 188.1 | 0.0 | 0.0\% | 71.6\% | ${ }^{187.8}$ | ${ }^{187.8}$ | 0.0 | 0.0\% |
 | 72.8\% | 188.0 | 188.1 | 0.0 | 0.0\% | 72.8\% | ${ }^{187.8}$ | ${ }^{1877}$ | 0.0 | 0.0\% |
 | 74.1\% | 188.0 | 188.0 | 0.1 | 0.0\% | 74.1\% | ${ }^{187.8}$ | 187.7 | 0.0 | 0.0\% |
 | 75.3\% | 187.9 | 188.0 | 0.1 | 0.0\% | 75.3\% | 1877 | 1877 | 0.0 | 0\% |
 | 76.5\% | 187.9 | 187.9 | 0.0 | 0.0\% | 77.5\% | 187.7 | 187.7 | 0.0 | 0.0\% |
 | 77.8\% | ${ }^{1877}$ | ${ }^{1877} 8$ | 0.0 | 0.0\% | 77.8\% | ${ }^{18777}$ | ${ }^{187.6}$ | -0.1 | 0\% |
 | 79.0\% | 187.7 | 187.8 | 0.1 | 0.1\% | 79.0\% | 1877 | 187.6 | -0.1 | 0\% |
 | 80.2\% | ${ }^{187.6}$ | 1887.7 | 0.0 | 0.0\% | 80.2\% | ${ }^{187.6}$ | ${ }^{187.6}$ | 0.0 | \% |
 | ${ }^{81.5 \%}$ | 187.6 | ${ }^{187.6}$ | 0.0 | 0.0\% | 81.5\% | ${ }^{187.6}$ | ${ }^{187.6}$ | -0.1 | 0.0\% |
 | 82.7\% | ${ }^{187.6}$ | ${ }^{1877.6}$ | -0.1 | 0.0\% | 82.7\% | ${ }^{187.6}$ | 187.5 | -0.1 | \% |
 | 84.0\% | ${ }^{187.6}$ | ${ }^{187.6}$ | -0.1 | 0.0\% | 84.0\% | 187.5 | ${ }^{187.5}$ | . 0 | 0.0\% |
 | 85.2\% | ${ }^{18775}$ | 187.5 | 0.1 | 0.0\% | 85.2\% | ${ }^{187.5}$ | 187.5 | 0.0 | 0.0\% |
 | ${ }^{86.4 \%}$ | 187.5 | 187.5 | 0.0 | 0.0\% | 86.4\% | 187.5 | ${ }^{187.5}$ | .0 | 0.0\% |
 | 87.7\% | ${ }^{187.4}$ | 187.4 | 0.0 | 0.0\% | 87.7\% | 187.4 | 187.4 | 0.0 | 0.0\% |
 | 88.9\% | ${ }^{187.3}$ | 187.4 | 0.1 | 0.1\% | 88.9\% | 187.4 | 187.4 | 0.0 | 0.0\% |
 | 90.1\% | ${ }^{187.2}$ | ${ }^{1877.2}$ | 0.0 | 0.0\% | 90.1\% | 187.4 | ${ }^{187.2}$ | -0.2 | -0.1\% |
 | 914\% | 187.1 | 187.1 | 0.0 | 0.0\% | 91.4\% | 187.3 | 187.1 | 0.1 | -0.1\% |
 | 92.6\% | 187.1 | 187.1 | 0.0 | 0.0\% | 92.6\% | ${ }_{187.2}^{187}$ | ${ }^{187.1}$ | -0.1 | 0\%\% |
 | 93.8\% | ${ }_{186.6}^{1864}$ | ${ }^{186.5}$ | -0.1 | -0.1\% | 93.8\% | 187.2 | 187.1 | -0.1 | -0.1\% |
 | | 186.4 | 188.2 | -0.2 | -0.1\% | 95.1\% | 187.1 | 187.0 | -0.1 | 0.0\% |
 | 97.5\% | ${ }^{186.3}$ | $\begin{array}{r}186.1 \\ \hline 859\end{array}$ | -0.2 | -0.1\% | 99.3\% | ${ }_{187.1}^{187.1}$ | 187.0 | -0.1 | 0.0\% |
 | 98.8\% | 185.8 | 185.8 | . 0 | \% | 98.8\% | 188.5 | 186.5 | 0.0 | |
 | 100.0\% | 185.7 | 185.8 | 0.1 | 0.1\% | 100.0\% | 186.5 | 186.4 | -0.1 | 0.0\% |

 | $\begin{aligned} & \text { Percent } \\ & \hline \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | September | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | DCR 2015 Without | DCR 2015 With Project | Absolute | Realive |
 | | Monthly EC | Monthly EC | (untosicm) | Difference (\%) |
 | ${ }^{(\% .0 \%)}$ | (UnHosicm) | (UMHOSSCM) | -12 | |
 | 12\% | 20.0 | | | |
 | 2.5\% | 1996 | 198.4 | -1.3 | |
 | 3.7\% | 199.4 | 1978 | . 6 | |
 | 4.9\% | 198.9 | 1978 | 11 | -0.5\% |
 | 6.2\% | 198.6 | 197.5 | -1.1 | -0.6\% |
 | 7.4\% | 198.4 | 197.5 | -0.9 | -..5\% |
 | 8.6\% | 197.9 | 197.3 | -0.7 | -0.3\% |
 | 9.9\% | 197.9 | 194.0 | -3.8 | -1.9\% |
 | 11.1\% | 197.7 | 193.4 | -4.4 | -2.2\% |
 | 12.3\% | 195.9 | 192.9 | ${ }^{3.0}$ | -1.5 |
 | 13.6\% | 195.3 | 191.9 | -3.4 | -1.8\% |
 | 14.8\% | 194.3 | 191.8 | -2.5 | -1.3\% |
 | 16.0\% | 194.1 | 191.7 | -2.4 | -1.2 |
 | 17.3\% | 193.8 | 191.7 | -2.1 | -1.1\% |
 | 18.5\% | 193.6 | 191.6 | -2.0 | -1.0\% |
 | 19.8\% | 193.1 | 191.2 | -1.9 | -1.0\% |
 | 21.0\% | 192.9 | 190.5 | -2.4 | ${ }^{-1.36}$ |
 | 22.2\% | 192.8 | 190.5 | -2.3 | -1.2\% |
 | 23.5\% | 192.4 | 190.1 | -2.4 | -1.2\% |
 | 24.7\% | 192.4 | 189.9 | -2.5 | ${ }^{-1.36}$ |
 | 25.9\% | 192.0 | 1897 | -2.3 | -1.2\% |
 | 27.2\% | 192.0 | 1897 | -2.3 | -1.2\% |
 | 28.4\% | 191.7 | 189.6 | -2.0 | -1.10 |
 | 29.6\% | 191.6 | 189.6 | -1.9 | -1.0\% |
 | 30.9\% | 191.4 | 189.6 | -1.7 | -0.9\% |
 | 32.1\% | 190.2 | 189.4 | -0.8 | -0.4\% |
 | 33.3\% | 190.0 | 189.4 | -0.6 | ${ }^{-0.3}$ |
 | 34.6\% | 189.7 | 189.4 | -0.3 | -0.2\% |
 | 35.7\% | 1897 | ${ }^{18993}$ | -0.4 | -0.2 |
 | 37.0\% | 1897 | 189.3 | -0.4 | -0.2\% |
 | 38.3\% | 189.6 | 189.2 | -0.4 | -0.2\% |
 | 39.5\% | 189.6 | 189.2 | -0.4 | -0.2\% |
 | 40.7\% | 189.4 | 189.1 | -0.2 | -0.1\% |
 | 42.0\% | 189.4 | 188.9 | -0.4 | -0.2\% |
 | 43.2\% | 189.3 | 188.9 | -0.3 | -0.2\% |
 | 44.4\% | 189.1 | 188.7 | -0.3 | -0.2\% |
 | 45.7\% | 189.1 | 188.7 | -0.3 | -0.2\% |
 | 46.9\% | 189.0 | 188.7 | -0.3 | -0.1\% |
 | 48.1\% | 188.9 | 1887 | -0.3 | -0.1\% |
 | 49.4\% | 188.9 | 188.7 | -0.3 | -0.1\% |
 | 50.6\% | 188.9 | 188.6 | -0.3 | -0.1\% |
 | 51.9\% | 188.8 | 188.6 | -0.2 | -0.1\% |
 | 53.1\% | 188.8 | 188.6 | -0.2 | -0.1\% |
 | 54.3\% | 188.8 | 188.6 | -0.2 | -0.1\% |
 | 55.6\% | 188.7 | 188.6 | -0.2 | -0.1\% |
 | 56.8\% | 188.7 | 188.5 | -0.2 | -0.1\% |
 | 58.0\% | 188.7 | 188.5 | -0.2 | -0.1\% |
 | 59.3\% | 188.7 | 188.5 | -0.2 | -0.1\% |
 | 60.5\% | 188.6 | 188.4 | -0.2 | -0.1\% |
 | 61.7\% | 188.6 | 188.4 | -0.2 | .1\% |
 | 63.0\% | 188.6 | 188.4 | -0.2 | -0.1\% |
 | 64.2\% | 188.6 | 188.4 | ${ }^{-0.2}$ | .1\% |
 | 65.4\% | 188.5 | 188.4 | -0.2 | -0.1\% |
 | ${ }^{66.7 \%}$ | 188.5 | 188.3 | -0.2 | 1\% |
 | 67.9\% | 188.5 | 1883
 188 | -0.1 | -0.1\% |
 | 69.1\% | 188.5 | 188.3 | -0.2 | -0.1\% |
 | 70.4\% | 188.4 | ${ }^{188.3}$ | -0.2 | -0.1\% |
 | 71.6\% | 188.4 | 188.2 | -0.2 | 1\% |
 | 72.8\% | 188.4 | 188.2 | -0.2 | -0.1\% |
 | ${ }^{74.1 \%}$ | 188.4 | 188.2 | 0.2 | |
 | 75.3\% | 188.4 | $\begin{array}{r}188.2 \\ \hline 1882\end{array}$ | -0.2 | -0.1\% |
 | 76.5\% | 188.4 | 188.2 | ${ }^{0.2}$ | -0.1\% |
 | 77.8\% | 188.4 | 188.2 188.1 | -0.2 | -0.1\% |
 | 79.0\% | 188.4 | 188.1 | -0.3 | -0.2\% |
 | 80.2\% | 188.3 | ${ }^{188.0}$ | -0.4 | -0.2\% |
 | 81.5\% | 188.2 | 187.9 | -0.2 | -0.1\% |
 | 82.7\% | 188.2 | 187.9 1878 | -0.3 | -0.2\% |
 | 84.0\% | 188.1 | 1878 | -0.3 | 0.1\% |
 | 85.2\% | 187.9 | 187.8
 1878 | -0.1 | -0.1\% |
 | ${ }^{86.4 \%}$ | 187.9 | 1878 | -0.2 | -0.1\% |
 | 87.7\% | 187.9 | 187.8
 1877
 187 | -0.1 | -0.1\% |
 | 88.9\% | 187.8 | 187.7 | 0.1 | 0.0\% |
 | 90.19\% | ${ }^{187.8}$ | ${ }^{1877.6}$ | -0.2 | -0.1\% |
 | 91.4\% | 1878.8 | ${ }^{1877.6}$ | -0.2 | -0.1\% |
 | 92.6\% | 187.7 | 187.5 187.5 | -0.3 | -0.1\% |
 | 93.8\% | 187.7 | 187.4 187.4 | -0.2 | -0.1\% |
 | 95.1\% | 187.5 | ${ }^{187.3}$ | -0.2 | -0.1\% |
 | ${ }^{96.3 \%}$ | 187.4 | 187.2 | -0.2 | -0.1\% |
 | 97.5\% | 187.3 | 187.1 | -0.2 | .1\% |
 | 98.8\% | 186.2 1853 | $\begin{array}{r}186.4 \\ \hline 852\end{array}$ | 0.2 | 0.1\% |

 Figure SQ-29-b
 Old River at Los Vaqueros Intake, Monthly EC

 Table SQ－29－b
 at Los Vaueuros intake，

 | $\begin{gathered} \text { Percent } \\ \text { Excedance } \\ \text { Probability } \end{gathered}$ | October | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | DCR 2015 Without | DCR 2015 With Project | Absolute | Reative |
 | | Monthly EC | Monthly EC | （itierernce | Difference（\％） |
 | ${ }^{(1.0)}$ | （UMHOSSCM） | （UMHOSOSCM） | | |
 | | | 89．． | | |
 | | 801.4 | | | |
 | 2．5\％ | 798.1 | 818.8 | 20.8 | |
 | 3．7\％ | 791.3 | 809.4 | 18.1 | |
 | 4．9\％ | 788.8 | 786 | －2．7 | |
 | 6．2\％ | 776.4 | ${ }^{783.3}$ | 6.9 | |
 | 7．4\％ | 763.9 | 770.6 | 6.7 | 0．9\％ |
 | 8．6\％ | 763.8 | 768.6 | 4.8 | |
 | 9．9\％ | 762.5 | 768.0 | 5.4 | 0．7\％ |
 | 11．1\％ | ${ }^{752.5}$ | ${ }^{766.3}$ | 13.8 | 1．8\％ |
 | 12．3\％ | 751.5 | 754.0 | 2.6 | |
 | 13．6\％ | 747.8 | 746.8 | －1．0 | －0．1 |
 | 14．8\％ | 747.2 | 744.8 | －2．4 | 0．3\％ |
 | 16．0\％ | 745.1 | 741.9 | －3．2 | 0.4 |
 | 17．3\％ | 740.3 | 724.4 | －15．9 | －2．1\％ |
 | 18．5\％ | ${ }^{739.5}$ | 724.0 | －15．5 | －2．18 |
 | 19．8\％ | 735.5 | ${ }^{723.3}$ | －12．2 | －1．7 |
 | 21．0\％ | 735.0 | 719.8 | －15．2 | －2．1 |
 | 22．2\％ | 728.2 | 717.7 | －10．5 | －1．4\％ |
 | 23．5\％ | 728.0 | 714.8 | －13．3 | ${ }^{1.88}$ |
 | 24．7\％ | ${ }^{727.4}$ | 712.1 | －15．4 | 2．1\％ |
 | 25．9\％ | 727.2 | 710.7 | －16．5 | ${ }^{2} .23$ |
 | 27．2\％ | 724.0 | ${ }^{707.3}$ | －16．7 | 2．3\％ |
 | 28．4\％ | 718.2 | 703.9 | －14．3 | －2．0\％ |
 | 29．6\％ | 713.7 | 695.4 | －18．3 | －2．6\％ |
 | 30．9\％ | 712.7 | ${ }^{690.7}$ | －22，1 | ${ }^{3.19}$ |
 | 32．1\％ | 711.9 | 690.2 | －21．7 | －3．0\％ |
 | 33．3\％ | 709.5 | 684.8 | －24．6 | －3．5\％ |
 | 34．6\％ | 707.9 | ${ }^{682,8}$ | －25．1 | －3．5\％ |
 | 35．8\％ | 696.1 | 681.2 | －14．9 | －2．1\％ |
 | 37．0\％ | 688.0 | 674.8 | －11．2 | －1．6\％ |
 | 38．3\％ | 675.0 | 665.3 | －9．7 | －1．4\％ |
 | 39．5\％ | 669.7 | 655.1 | －14．6 | －2．2\％ |
 | 40．7\％ | 664.1 | ${ }^{651.4}$ | －12．7 | －1．9\％ |
 | 42．0\％ | 663.7 | 641.7 | －22．0 | －3．3\％ |
 | 43．2\％ | ${ }^{653.8}$ | ${ }^{641.3}$ | －12．5 | －1．9\％ |
 | 44．4\％ | ${ }^{652.6}$ | 628.2 | －24．3 | －3．7\％ |
 | 45．7\％ | 648.5 | ${ }_{625.5}$ | －23．0 | －3．6\％ |
 | 46．9\％ | 642.7 | ${ }^{625.2}$ | －17．5 | －2．7\％ |
 | 48．1\％ | 639.0 | 602．2 | －36．8 | －5．8\％ |
 | 49．4\％ | 635.7 | 598.1 | －37．7 | 5．9\％ |
 | 50．6\％ | 621.4 | 597．1 | －24，3 | －3．9\％ |
 | 51．9\％ | 611.0 | 579.5 | －31．5 | －5．2\％ |
 | 53．1\％ | 608.7 | 564.0 | －44， | 7．3\％ |
 | 54．3\％ | ${ }_{379.3}$ | 382.9 | 3.7 | 1．0\％ |
 | 55．6\％ | 327.7 | 324.9 | －2．8 | －0．9\％ |
 | 56．8\％ | ${ }_{322.6}$ | ${ }_{322.1}$ | －0．5 | ${ }^{0.2 \%}$ |
 | 58．0\％ | 317.4 | 319.6 | 2.2 | 0．7\％ |
 | 59．3\％ | 317.0 | 318.3 | 1.3 | 0．4\％ |
 | 60．5\％ | ${ }_{316.6}$ | 3097 | －6．9 | －2．2\％ |
 | 617．7\％ | 315.3 | 305.0 | －10．3 | －3．3\％ |
 | 63．0\％ | 314.9 | 303．4 | 11.5 | －3．6\％ |
 | 64．2\％ | 311.7 | 302.6 | －9．1 | －2．9\％ |
 | 65．4\％ | 311.6 | ${ }^{302.6}$ | －9．1 | －2．9\％ |
 | ${ }^{66.7 \%}$ | 310.5 | 300.9 | -9.6 | 3．1\％ |
 | 67．9\％ | 306.2 | 300.1 | －6．1 | －2．0\％ |
 | 69．1\％ | 304.5 | 295.5 | －9．0 | 年\％ |
 | 70．4\％ | ${ }^{304.2}$ | 286.8 2887 | －17．4 | 5．7\％ |
 | 71．6\％ | 301.0 | ${ }^{286.7}$ | －14．3 | 4．7\％ |
 | 72．8\％ | 297.0 | 285.9 | 11.1 | ${ }^{-3.7 \%}$ |
 | 74．1\％ | 294.0 | 285.6 | －8．4 | 迷 |
 | 75．3\％ | 291.3 | 284.5 | －6．8 | －2．3\％ |
 | 76．5\％ | 290.0 | 284.4 | 5.6 | 源 |
 | 77．8\％ | 289.6 | 283.9 | －5．7 | 2．0\％ |
 | 79．0\％ | ${ }^{288.8}$ | 282.9 | 5.9 | 2．0\％ |
 | 80．2\％ | ${ }^{287.9}$ | ${ }^{281.8}$ | －6．1 | 2．1\％ |
 | 81．5\％ | ${ }^{287.3}$ | 287.2 | 6.0 | 2．1\％ |
 | 82．7\％ | 287.0 | ${ }_{278.8}^{278}$ | －8．2 | 2．9\％ |
 | －${ }^{84.0 \%}$ 85．2\％ | ${ }_{284}^{284}$ | ${ }_{278.5}^{278.5}$ | －5．9 | －2．1\％ |
 | 80．4\％ | ${ }_{280.6}^{2838}$ | ${ }_{276.0}^{276.3}$ | －7．6 | －1．6\％ |
 | 87．7\％ | 279.1 | 268.9 | －10．2 | 3．7\％ |
 | 88．9\％ | 278.8 | 268.7 | －10．0 | －3．6\％ |
 | 90．1\％ | 270.7 2882 | 266.7 2643 | 4.0 | 1．5\％ |
 | 914\％ | 268．2 | 264.3 | 3.9 | |
 | 92．6\％ | 265.5 2654 | ${ }_{261.5}^{261.5}$ | －4， | 1．5\％ |
 | 93．8\％ | ${ }^{265.4}$ | ${ }^{2651.3}$ | 4.1 | 6\％ |
 | 95．1\％ | 257．9 | 259．8 | 2.0 | 0．8\％ |
 | 97．5\％${ }^{96.3 \%}$ | ${ }_{25}^{24.3}$ | ${ }^{255.2}$ | 5.9 | ${ }^{2.4 \% \%}$ |
 | 98．8\％ | ${ }_{220.3}$ | ${ }_{221.6}^{220.6}$ | 1.4 | |
 | 100．0\％ | 207.5 | 205.9 | －1．6 | －0．8\％ |

 | Probability of Ex eedance | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probobalility } \end{aligned}$ | DCR 2015 Without | DCR 2015 With Project | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOS/CM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | $\begin{gathered} \text { Percent } \\ \text { Exceance } \\ \text { Probability } \end{gathered}$ | DCR 2015 Without December | | | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | | ${ }_{\text {Montien }}^{\text {Mriect }}$ | Monthly EC | | | | | DCR 2015 With Project
 $\substack{\text { Monthly } \\ \text {（unHosicw }}$ | $\begin{gathered} \text { Absolute } \\ \text { (ifference } \\ \text { (UWHOSICM) } \end{gathered}$ | |
 | | （UnHosicm） | （UnHosicm） | | | | | | | |
 | 0．0\％ | 891.0 | 808.5 | 82.5 | －9．3\％ | 0．0\％ | | | 88.8 | 9．5\％ |
 | 1．2\％ | 886.7 | 805.9 | 80.8 | 9．1\％ | 1．2\％ | 888.7 | 913.9 | ${ }^{25.2}$ | |
 | 2．5\％ | 813.8 | 789.0 | －24．9 | 3．1\％ | 2．5\％ | 856.3 | 913.0 | 56.8 | |
 | 3．7\％ | 8097 | 763.7 | －46．0 | －5．7\％ | 3．7\％ | 845.5 | 891.3 | 45.8 | 5．4\％ |
 | 4．9\％ | 789.4 | 760.0 | －29．4 | －3．7\％ | 4．9\％ | 828.2 | | 41.3 | |
 | 6．2\％ | 774.1 | 757.1 | －17．0 | －2．2\％ | 6．2\％ | 824.5 | 852.9 | 28.4 | 3．4\％ |
 | 7．4\％ | 764.0 | 751.1 | －13．0 | －1．7\％ | 7．4\％ | 823.1 | 821.5 | －1．6 | |
 | 8．6\％ | 760.0 | 722.8 | 37．2 | －4．9\％ | 8．6\％ | 821.3 | 790.8 | －30．5 | －3．7\％ |
 | 9．9\％ | 749.4 | 710.9 | 38.5 | －5．1\％ | 9．9\％ | 806.7 | 789.4 | －17．4 | －2．2\％ |
 | 11．1\％ | 743.4 | 706.5 | －36．9 | －5．0\％ | 11．1\％ | 806.0 | 782.0 | 4．0 | －3．0\％ |
 | 12．3\％ | 740.2 | 702.2 | 8.0 | －5．1\％ | 12．3\％ | 803.2 | 773.2 | －30．0 | －3．7 |
 | 13．6\％ | 733.8 | 675.7 | －58．1 | －7．9\％ | 13．6\％ | 799.2 | 766.2 | 2.9 | －4．1\％ |
 | 14．8\％ | 722.2 | 674.7 | －47． | －6．6\％ | 14．8\％ | 797.1 | 760.7 | －36．4 | －4．6\％ |
 | 16．0\％ | 719.0 | 656.4 | －62．6 | －8．7\％ | 16．0\％ | 796.3 | 757.6 | 3．6 | －4．9\％ |
 | 17．3\％ | 713.8 | 644.2 | 69.6 | －9．8\％ | 17．3\％ | 792.7 | 754.5 | －38．2 | －4．8\％ |
 | 18．5\％ | 706.0 | 644.2 | －61．8 | －8．8\％ | 18．5\％ | 788.6 | 750.9 | 7.7 | －4．88 |
 | 19．8\％ | 703.0 | 640.3 | －62．8 | －8．9\％ | 19．8\％ | 785.5 | 750.2 | －35．3 | －4．5\％ |
 | 21．0\％ | ${ }^{695.5}$ | 638.4 | －57．1 | －8．2\％ | 21．0\％ | 771.0 | 743.7 | 27．3 | －3．5\％ |
 | 22．2\％ | 689.2 | 636.9 | －52．3 | －7．6\％ | 22．2\％ | 759.3 | 739.2 | －20．1 | －2．6\％ |
 | 23．5\％ | 682.9 | 629.7 | －53．2 | －7．8\％ | 23．5\％ | 754.0 | 739.0 | －15．1 | －2．0\％ |
 | 24．7\％ | 680.9 | 629.6 | －51．2 | －7．5\％ | 24．7\％ | 753.8 | 734.6 | 9.2 | －2．5\％ |
 | 25．9\％ | 678.3 | ${ }^{629.0}$ | －49．4 | －7．3\％ | 25．9\％ | 753.8 | 718.3 | －35．4 | －4．7\％ |
 | 27．2\％ | 659.6 | 628.7 | －30．9 | －4．7\％ | 27．2\％ | 744.2 | 706.9 | －37．3 | －5．0\％ |
 | 28．4\％ | 658.7 | 627.2 | －31．5 | －4．8\％ | 28．4\％ | 741.7 | 699.1 | －42．7 | －5．8\％ |
 | 29．6\％ | 656.3 | 624.1 | －32．2 | －4．9\％ | 29．6\％ | 733.7 | 695.6 | －38．1 | 5．2\％ |
 | 30．9\％ | 655.7 | 617.6 | －38．1 | －5．8\％ | 30．9\％ | 693.5 | 679.6 | －13．9 | －2．0\％ |
 | 32．1\％ | 655.1 | 614.7 | －40．4 | －6．2\％ | 32．1\％ | 683.6 | 669.2 | －14．5 | －2．1\％ |
 | 33．3\％ | 646.6 | 608.5 | －38．2 | －5．9\％ | 33．3\％ | 672.5 | 661.3 | －11．3 | －1．7 |
 | 34．6\％ | 640.7 | ${ }^{603.2}$ | －37．5 | －5．9\％ | 34．6\％ | 671.7 | 649.0 | －22．8 | －3．4\％ |
 | 35．8\％ | 639.8 | 593.5 | －46．3 | －7．2\％ | 35．8\％ | 671.4 | 636.0 | －35．5 | －5．3\％ |
 | 37．0\％ | ${ }^{639.3}$ | 591.7 | －47．6 | －7．4\％ | 37．0\％ | 671.2 | 634.7 | －36．5 | －5．4\％ |
 | 38．3\％ | 635.2 | 587.0 | －48．2 | －7．6\％ | 38．3\％ | 667.2 | 634.4 | －32．8 | －4．9\％ |
 | 39．5\％ | ${ }^{632.5}$ | 586.8 | －45．8 | －7．2\％ | 39．5\％ | 662.7 | 630.6 | －32．1 | －4．8\％ |
 | 40．7\％ | 629.1 | 586.2 | －42．9 | －6．8\％ | 40．7\％ | 658.6 | 586.4 | －72．2 | －11．0\％ |
 | 42．0\％ | 619.5 | 582.2 | －37．3 | －6．0\％ | 42．0\％ | 598.5 | 575.2 | －23．3 | －3．9\％ |
 | 43．2\％ | 616.7 | 578.8 | －38．0 | －6．2\％ | 43．2\％ | 591.5 | 574.8 | －16．6 | 8\％ |
 | 44．4\％ | 614.5 | 570.1 | －44．4 | －7．2\％ | 44．4\％ | 555.8 | 570.3 | 14.4 | 2．6\％ |
 | 45．7\％ | 613.8 | 538.9 | －75．0 | －12．2\％ | 45．7\％ | 555.4 | 554.7 | －0．8 | －0．1\％ |
 | 46．9\％ | 586.4 | 537.0 | －49．4 | －8．4\％ | 46．9\％ | 536.0 | 468.5 | －67．5 | －12．6\％ |
 | 48．19\％ | 584.5 | 525.9 | －58．7 | －10．0\％ | 48．1\％ | 445.6 | 435.2 | －10．4 | －2．3\％ |
 | 49．4\％ | 577.9 | 511.6 | －66．3 | －11．5\％ | 49．4\％ | 434.2 | 434.4 | 0.2 | 0．1\％ |
 | 50．6\％ | 57.5 | 505.6 | －65．0 | －11．4\％ | 50．6\％ | 409.6 | 427.5 | 17.9 | 4．4\％ |
 | 51．9\％ | 554.1 | 497.3 | －56．8 | －10．3\％ | 51．9\％ | 392.0 | 424.7 | 32.7 | 8．4\％ |
 | 54．3\％ | 553.9 4671 | ${ }_{462.9}^{465.9}$ | －88．0 | －15．9\％ | 53．1\％ | 389．4 | 401.7 | 12.2 | 3．1\％ |
 | 55．6\％ | 389.2 | 396.2 | 7.0 | 1．8\％ | 55．6\％ | 381.1 | ${ }_{384.3}$ | 3.2 | 0．8\％ |
 | 56．8\％ | 368.8 | 359.3 | －9．4 | －2．6\％ | 56．8\％ | 380.2 | 374.5 | －5．7 | －1．5\％ |
 | 58．0\％ | 366.5
 3325 | ${ }_{345}^{345}$ | －21．3 | －5．8\％ | 58．0\％ | ${ }_{372.0}^{372.0}$ | 361.0 | －15．0 | －4．0\％ |
 | 59．3\％ | ${ }^{333.5}$ | 317.9 | －15．6 | －4．7\％ | 59．3\％ | 372.6 | 360.6 | －12．0 | －3．2\％ |
 | 60．5\％ | 324.0 | 313.7 | －10．3 | －3．2\％ | 60．5\％ | 363.6 | 358.5 | －5．1 | －1．4\％ |
 | 6．3．0\％ | 309.6 3059 | ${ }^{303.7}$ | －5．9 | －1．0\％ | 61．7\％ 6.0% | 359.9 3429 | 354.4 3425 | －5．5 | －1．5\％ |
 | 64．2\％ | 296.9 | 295.4 | －1．4 | －0．5\％ | 64．2\％ | 335.2 | 327.5 | －7．8 | －2．3\％ |
 | 65．4\％ | 296.6 | 295.0 | －1．5 | －0．5\％ | 65．4\％ | 332.0 | 325.2 | －6．9 | －2．1\％ |
 | 66．7\％ | 296.6 | 292.0 | -4.6 | －1．5\％ | ${ }^{66.7 \%}$ | 329.1 | 324.0 | －5．0 | －1．5\％ |
 | 67．9\％ | 296.4 | 291.1 | －5．3 | －1．8\％ | 67．9\％ | 325.7 | 319.6 | －6． 1 | －1．9\％ |
 | 69．1\％ | 293.6 | 290.3 | －3．2 | －1．1\％ | 69．1\％ | 299.8 | 304.1 | 4.2 | 1．4\％ |
 | 70．4\％ | 286.5 | 289.1 | ${ }^{2.6}$ | 0．9\％ | 70．4\％ | 299.2 | 303.8 | 4.7 | 6\％ |
 | 72．8\％ | 285.8 2849 | ${ }_{2796} 28.7$ | ${ }^{1.9}$ | ${ }^{\text {－}}$－1．9\％ | 71．6\％ | ${ }_{2973}^{297.5}$ | ${ }^{303.3}$ | 5.9 | ${ }^{2.0 \%}$ |
 | 74．1\％ | 282.7 | 278.9 | －．3．8 | －1．3\％ | 74．1\％ | 295.3 | 297.8 | 2.5 | 0．9\％ |
 | 75．3\％ | 281.0 | 278.4 | －2．6 | －0．9\％ | 75．3\％ | 294.7 | 295.6 | 1.0 | 0．3\％ |
 | 76．5\％ | 278.5 | 277.0 | －1．5 | －0．5\％ | 76．5\％ | 290.3 | 293.5 | 3.2 | 1．1\％ |
 | 777．8\％ | 274.0 | 275.7 | 1.7 | 0．6\％ | 77．8\％ | 289.1 | 291.3 | 2.1 | 0．7\％ |
 | 79．0\％ | 272.8 | 275.0 | 2.2 | 0．8\％ | 79．0\％ | 288.4 | 289.8 | 1.4 | 0．5\％ |
 | －${ }_{\text {80．2\％}}$ | 272.8 271.2 | 273.6 273.1 | 0.8 1.9 | － 0.7% | －${ }_{\text {80．2\％}}$ | ${ }_{283.9}^{287.9}$ | ${ }_{286.2}^{286.2}$ | $\begin{array}{r}1.1 .7 \\ \hline 2 \\ \hline 1\end{array}$ | －0．6\％ |
 | 82．7\％ | 270.4 | 272.8 | 2.4 | 0．9\％ | 82．7\％ | 283.4 | 285.0 | 1.5 | 0．5\％ |
 | 84．0\％ | 270.2 | 269.3 | －0．9 | －0．3\％ | 84．0\％ | 283.1 | 284.3 | 1.2 | 0．4\％ |
 | 85．2\％ | ${ }_{2690}^{268.0}$ | ${ }_{2679}^{2679}$ | －1．0 | －0．4\％ | 85．2\％ | ${ }_{2825}^{2827}$ | 283.9 2815 | 1.2 | 0．4\％ |
 | 86．4\％ | 267.2 | 267.7 | 0.5 | 0．2\％ | 86．4\％ | 282.5 | 281.5 | －1．0 | －0．4\％ |
 | 877\％\％ | 265.8 | ${ }^{267.5}$ | 1.6 | 0．6\％ | 877\％ | 281.4 | 276.7 | －4．7 | －1．7\％ |
 | 88．9\％ | 265.8 | 267.2 | 1.4 | 0．5\％ | 88．9\％ | 278.1 | 27.5 | －1．5 | 0．5\％ |
 | 90．1\％ | ${ }^{2655}$ | ${ }^{265.8}$ | 0.1 | 0．1\％ | 90．1\％ | 276.1 | 278.2 | 0.1 | 0．0\％ |
 | 91．4\％ | 265.4 | 264.7 | －0．7 | －0．3\％ | 91．4\％ | 275.6 | 275.8 | 0.2 | 0．1\％ |
 | ${ }_{93}^{92.8 \%}$ | 264.6 264.1 | ${ }_{259.3}^{263.7}$ | －0．9 | －0．4\％${ }_{\text {－}}$ | | ${ }_{268.1}^{271.1}$ | 275.8 2687 | 4.6 | 1．7\％ |
 | 95．1\％ | 262.8 | 256.5 | －6．2 | －2．4\％ | 95．1\％ | 259.5 | 264.2 | 4.7 | 1．8\％ |
 | 96．3\％ | 262.7 | 252.4 | 10.3 | 3．9\％ | 96．3\％ | 255.2 | 263.4 | 8.2 | 3．2\％ |
 | 97．5\％ | 262.4 | 242.4 | 19.9 | －7．6\％ | 97．5\％ | 246.5 | 253.9 | 7.4 | 3．0\％ |
 | 98．8\％ | ${ }_{29.1}^{249.1}$ | ${ }_{2308}^{24.8}$ | －8．3 | －3．3\％ | 98．8\％ | ${ }_{23,5}^{24.5}$ | ${ }_{2387}^{2397}$ | －1．8 | －0．7\％ |
 | | | | | | | | | | |

 | | | |
 | :--- | :--- | :--- | :--- |
 | | | |

 Table SQ-29-b

 | $\begin{gathered} \text { Percent } \\ \hline \text { Excedance } \\ \text { Probability } \end{gathered}$ | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | DCR 2015 With Project | $\begin{gathered} \text { Absolute } \\ \text { Difievee } \\ \text { (iviforicicm) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | | Monthy E C | Monthly EC | | |
 | ${ }^{(1.0)}$ | (UnHOSICM) | (UMHOSOSCM) | - -246 2 | |
 | | | | | |
 | | 717.3 | 675.1 | -42 | |
 | 2.5\% | 688.2 | 662.9 | -25.2 | |
 | 3.7\% | 675.8 | 649.1 | 26.7 | |
 | 4.9\% | 672.3 | 636.4 | -35.8 | |
 | 6.2\% | 643.4 | 629.2 | -14.2 | |
 | 7.4\% | 640.2 | 615.4 | -24.8 | |
 | 8.6\% | 631.7 | 598.3 | -33.5 | -5.3\% |
 | 9.9\% | 605.6 | 595.4 | -10.2 | |
 | 11.1\% | 597.5 | 590.0 | 7.5 | ${ }^{1.3}$ |
 | 12.3\% | 585.0 | 584.2 | -0.7 | -0.1\% |
 | 13.6\% | 584.4 | 570.5 | -13.8 | 2.4 |
 | 14.8\% | 583.1 | 566.5 | -16.6 | -2.9\% |
 | 16.0\% | 571.9 | 557.8 | -14.1 | -2.5\% |
 | 17.3\% | 564.4 | 539.8 | -24.6 | 4.4 |
 | 18.5\% | 557.6 | 529.2 | -28.5 | -5.1\% |
 | 19.8\% | 538.7 | 525.5 | -13.1 | 2.4 |
 | 21.0\% | 533.2 | 524.2 | -9.0 | -1.7\% |
 | 22.2\% | 531.8 | 522.9 | -8.9 | 1.7 |
 | 23.5\% | 510.1 | 522.5 | 12.3 | 2.4 |
 | 24.7\% | 509.6 | 5093 | -0.2 | 0.0% |
 | 25.9\% | 500.2 | 499,3 | -0.9 | -0.2\% |
 | 27.2\% | 496.6 | 499.1 | 2.5 | 0.56 |
 | 28.4\% | 487.1 | 493.3 | 6.2 | 1.3\% |
 | 29.6\% | 486.2 | 486.2 | ${ }^{0.0}$ | 0.0\% |
 | 30.9\% | 482.6 | 484.9 | ${ }^{2.3}$ | 0.5\% |
 | 32.1\% | 479.1 | ${ }^{481.6}$ | 2.6 | 0.5\% |
 | 33.3\% | 477.4 | 481.5 | 4.0 | 0.8\% |
 | 34.6\% | 472.0 | 468.8 | ${ }^{-3.2}$ | -0.7\% |
 | 35.8\% | 465.5 | 467.4 | 1.9 | 0.48 |
 | 37.0\% | ${ }^{465.2}$ | ${ }^{467.3}$ | 2.1 | 0.5\% |
 | 38.3\% | 459.1 | 465.2 | 6.1 | 1.3\% |
 | 39.5\% | 457.7 | 459.8 | 2.1 | 0.5\% |
 | 40.7\% | 451.9 | 458.9 | 6.9 | 1.5\% |
 | 42.0\% | 450.4 | 458.4 | 8.0 | 1.8\% |
 | 43.2\% | 448.8 | 458.1 | 9.2 | 2.1\% |
 | 44.4\% | 447.0 | 455.5 | 8.5 | 1.9\% |
 | 45.7\% | 439.0 | 450.4 | 11.4 | 2.6\% |
 | 46.9\% | 438.8 | 448.8 | 10.0 | 2.3\% |
 | 48.1\% | 433.8 | 448.4 | 14.6 | 3.4\% |
 | 49.4\% | 430.7 | 440.0 | ${ }^{9.3}$ | 2.2\% |
 | 50.6\% | 428.8 | 434.1 | 5.3 | 1.2\% |
 | 51.9\% | 426.9 | 433.9 | 6.9 | 1.6\% |
 | 53.1\% | 425.6 | 429.9 | 4.3 | 1.0\% |
 | 54.3\% | ${ }_{423.8}$ | 427.8 | 4.0 | 0.9\% |
 | 55.6\% | 417.7 | 427.6 | 9.9 | 24\% |
 | 56.8\% | 417.0 | ${ }^{426.3}$ | ${ }^{9.4}$ | 2.3\% |
 | 58.0\% | 414.2 | 419.2 | 5.1 | 2\% |
 | 59.3\% | 409.4 | 499.2 | 9.8 | 24\% |
 | 60.5\% | 404.8 | 413.8 | 9.1 | 2\% |
 | 617.7\% | 404.5 | 410.8 | 6.3 | ,6\% |
 | 63.0\% | 399.6 | 410.7 | 11.1 | 2.8\% |
 | 64.2\% | 3993 | 405.8 | 6.5 | 18\% |
 | 65.4\% | 394.9 | 403.0 | ${ }_{8}^{8.1}$ | 2.1\% |
 | ${ }^{66.7 \%}$ | 391.8 | 399.4 | 7.6 | , |
 | 67.9\% | 389.4 | 398.6 | 9.1 | 迆 |
 | 69.1\% | 389.4 | 397.0 | 7.6 | 20\% |
 | 70.4\% | 387.8 | 389.8 | 3.0 | 0.8\% |
 | 71.6\% | 377.6 | 376.7 | -1.0 | -0.3\% |
 | 72.8\% | 376.4 | 376.5 | ${ }^{0.1}$ | 0.0\% |
 | 74.1\% | 365.7 | 368.1 | ${ }^{2.4}$ | \% 6 |
 | 75.3\% | 360.9 | 366.1 | 5.1 | ${ }^{1.4 \% \%}$ |
 | 76.5\% | 35.7 | ${ }^{364.6}$ | 6.8 | \% |
 | 77.8\% | ${ }^{356.8}$ | 357.2 | 0.4 | 0.1\% |
 | 79.0\% | 355.9 | ${ }_{356.6}$ | 0.7 | 2\% |
 | 80.2\% | 354.9 | 355.7 | 0.8 | 2\% |
 | 81.5\% | 347.6 | 349.0 | 1.3 | 退 |
 | 82.7\% | 346.9 | 348.3 | 1.4 | 0.4\% |
 | 84.0\% | 346.9 | 347.9 | 1.0 | 0.3\% |
 | 85.2\% | 346.6 3364 | 342.1 359 | ${ }^{-4.6}$ | -1.3\% |
 | 86.4\% | ${ }_{336.4}$ | 335.9 | -0.6 | -2\% |
 | 87.7\% | 330.7 | ${ }^{331.0}$ | ${ }^{0.3}$ | 0.1\% |
 | 88.9\% | ${ }^{330.6}$ | 330.9 | 0.4 | 1\% |
 | 90.1\% | 329.7 | ${ }^{330.5}$ | 0.8 | 2\%\% |
 | ${ }^{91.44 \%}$ | ${ }^{321.1}$ | 326.7 | 5.6 | , |
 | 92.6\% | 319.7 | 320.0 | ${ }^{0.3}$ | 0.1\% |
 | ${ }^{93.8 \%}$ | 315.1 | 315.1 | 0.0 | 0.0\% |
 | 95.1\% | 3097 | 309.1 | ${ }^{-0.6}$ | 0.2\% |
 | 96.3\% | ${ }^{305.3}$ | 306.4 | 1.1 | |
 | 97.5\% | 296.0 | 296.0 | 0.0 | \% |
 | 98.8\% | ${ }_{270.5}^{295.1}$ | 294.5 26.9 | ${ }_{-3.6}$ | - ${ }_{\text {- }}^{\substack{0.3 \% \\ 0.0 \%}}$ |
 | | | | | |

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | Way | | | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: |
 | | | DCR 2015 With Project | $\begin{gathered} \text { Absolute } \\ \text { cifference } \\ \text { (uMHOSCCM) } \end{gathered}$ | |
 | | Monthly EC | Monthy EC | | |
 | | (UMHOSSCM) | (UMHOSSCM) | | |
 | 0.0\% | 559.9 | 549.0 | -11.0 | -2.0\% |
 | 1.2\% | 544.5 | 544.3 | -0.3 | -0.1\% |
 | 2.5\% | 541.6 | 541.9 | 0.3 | 0.1\% |
 | 3.7\% | 534.0 | 536.2 | 2.1 | 0.4\% |
 | 4.9\% | 514.8 | 515.8 | 1.0 | 0.2\% |
 | 6.2\% | 503.1 | 515.2 | 12.1 | 2.4\% |
 | 7.4\% | 493.3 | 504.9 | 11.6 | 2.4\% |
 | 8.6\% | 492.3 | 490.0 | -2.3 | -0.5\% |
 | 9.9\% | 487.1 | 487.3 | 0.2 | 0.0\% |
 | 11.19\% | 482.9 | 473.5 | -9.4 | -1.9\% |
 | 12.3\% | 482.5 | 473.0 | -9.5 | -2.0\% |
 | 13.6\% | 478.9 | 471.5 | -7.4 | -1.5\% |
 | 14.8\% | 474.3 | 470.3 | -4.1 | -0.9\% |
 | 16.0\% | ${ }_{466} 6$ | 4695 | 3.2 | 0.7\% |
 | 17.3\% | 463.4 | 465.3 | 1.9 | 0.4\% |
 | 18.5\% | ${ }_{458.2}$ | 464.6 | 6.4 | 1.4\% |
 | 19.8\% | 457.2 | ${ }_{457.6}$ | 0.4 | 0.1\% |
 | 21.0\% | ${ }_{456.7}$ | 457.4 | 0.7 | 0.2\% |
 | | ${ }_{456.5}$ | 457.1 | ${ }^{0.6}$ | 0.1\% |
 | ${ }^{234.7 \%}$ | ${ }_{450.9}^{451.2}$ | ${ }_{451.6}^{455}$ | 4.3 0.7 | - |
 | 25.9\% | 450.1 | 450.5 | 0.4 | 0.1\% |
 | 27.2\% | 447.7 | 450.5 | 2.8 | 0.6\% |
 | 28.4\% | 445.9 | 449.3 | 3.4 | 0.8\% |
 | 29.6\% | 445.4 | 449.3 | 3.9 | 0.9\% |
 | 30.9\% | 444.2 | 446.3 | ${ }^{2.1}$ | 0.5\% |
 | 32.1\% | 441.6 | 444.8 | ${ }^{3.2}$ | 0.7\% |
 | 33.3\% | 44.0 | 440.8 | ${ }^{0.8}$ | 0.2\% |
 | 34.6\% | 438.3 | 440.0 | 1.7 | 0.4\% |
 | 35.9\% | 433.4 | 436.7 434.4 | ${ }_{4}^{3.3}$ | - 0.8% |
 | 37.0\% | ${ }_{4}^{429.9}$ | ${ }^{434.4}$ | 4.5 5 | 1.0\% |
 | 38.3\% | 424.8 | 429.9 4295 | ${ }_{7} 50$ | -1.7\% |
 | 39.5\% | ${ }_{4222.5}^{4147}$ | ${ }_{429.5}^{4295}$ | 7.0 | 1.7\% |
 | 420.0\% | 414.7 | ${ }_{414.5}^{426.0}$ | 11.3
 6.4 | 1.6\% |
 | 43.2\% | 406.2 | 410.4 | 4.2 | 1.0\% |
 | 44.4\% | 405.0 | 405.6 | 0.7 | 0.2\% |
 | 45.7\% | 397.6 | 402.9 | 5.31 | 1.3\% |
 | 46.9\% | 397.4 3965 | ${ }^{402.5}$ | 5.1 | 1.3\% |
 | 48.1\% | 396.5 3964 | 397.6 3987 | ${ }^{1.1}$ | 0.3\% |
 | 49.4\% | 396.4 388.0 | 339.7 395.9 | ${ }_{79}^{0.3}$ | 2.1\% |
 | 51.9\% | 385.7 | 390.1 | 4.4 | 1.1\% |
 | 53.1\% | 383.1 | ${ }_{388.3}$ | 5.2 | 1.4\% |
 | 54.3\% | 380.4 | 380.5 | 0.1 | 0.0\% |
 | 55.6\% | 379.8 378.5 | 379.8 3788 | ${ }^{0.0}$ | 0.0\% |
 | 58.0\% | 378.5 375.8 | 378.8
 378.5 | 0.4 .0 2.7 | 0.7\% |
 | 59.3\% | 375.0 | 375.7 | 0.7 | 0.2\% |
 | 60.5\% | 375.0 | 375.3 | 0.3 | 0.1\% |
 | 61.7\% | 374.5 | 375.0 | 0.5 | 0.1\% |
 | -63.0\% | 372.0 371.9 | 369.8 368.2 | ${ }_{-37}-2.2$ | - |
 | 65.4\% | 369.3 | 367.9 | ${ }_{-1.4}$ | -0.4\% |
 | 66.7\% | 368.3 | 367.2 | -1.0 | -0.3\% |
 | -67.9\% | 367.8
 3662 | - $\begin{aligned} & 366.2 \\ & 3657\end{aligned}$ | -1.6 | -0.4\% |
 | 70.4\% | ${ }_{362.7}$ | ${ }_{362.7}$ | | ${ }^{-0.0 \%}$ |
 | 71.6\% | 360.8 | 360.4 | -0.3 | -0.1\% |
 | 72.8\% | ${ }_{3}^{354.7}$ | 354.7
 34.5 | | 0.0\% |
 | 74.1\% | 345.1 | ${ }^{343.5}$ | -1.6 | -0.4\% |
 | 75.3\% 765% | 342.0 337.9 | 342.7 3379 | ${ }_{0}^{0.7}$ | - |
 | 77.8\% | 323.7 | ${ }_{323.8}$ | | 0.0\% |
 | 79.0\% | 322.8 | 322.9 | 0.1 | 0.0\% |
 | 80.2\% | 32.0 3198 | 320.0
 3180 | 0.0 | 0.0\% |
 | 81.5\% | 318.2 | 318.2 | 0.1 | 0.0\% |
 | 82.7\% 840% | 314.2 3095 | -314.3
 3102 | ${ }_{0}^{0.1}$ | 0.0\% |
 | 85.2\% | 287.3 | 287.4 | 0.1 | 0.0\% |
 | 86.4\% | 262.1 | 263.4 | 1.3 | 0.5\% |
 | 87.7\% | 250.0 | ${ }_{20.0}^{250.0}$ | 0.0 | 0.0\% |
 | 88.9\% | 241.5 | 241.7 | 0.2 | 0.1\% |
 | 90.1\% 9 | ${ }_{2019}^{2119}$ | ${ }_{2023}^{212.7}$ | ${ }_{0}^{0.8}$ | 0.4\% |
 | 92.6\% | 196.7 | 196.8 | 0.2 | 0.1\% |
 | 93.8\% | 189.0 | 189.2 | 0.2 | 0.1\% |
 | 95.1\% | 188.3 | 188.8 | 0.5 | 0.3\% |
 | 96.3\% | 185.6 | 186.3 | 0.7 | 0.4\% |
 | 97.5\% | 177.9 | 178.3 | 0.4 | 0.2\% |
 | 988.8\% 100.0\% | 175.5 15.9 | 175.8 157.3 | 0.3 0.4 | ${ }_{0}^{0.2 \%}$ |

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[b]{3}{*}{\[
 \begin{gathered}
 \text { Percent } \\
 \text { Exceedance } \\
 \text { Probability }
 \end{gathered}
 \]} \& \multicolumn{4}{|c|}{June} \\
 \hline \& \({ }_{\text {dCR }} \mathbf{2 0 1 5 \text { Without }}\) \& DCR 2015 With Project \& olute \& \\
 \hline \& Monthly EC \& Monthly EC \& (ititerence \& Difference (\%) \\
 \hline 0.0\% \& 498.1 \& 500.3 \& \({ }^{2.2}\) \& 0.4\% \\
 \hline 1.2\% \& 490.8 \& 485.6 \& -5.1 \& \\
 \hline 2.5\% \& 451.9 \& 466.2 \& 14.3 \& 3.2 \\
 \hline 3.7\% \& 450.7 \& 454.2 \& 3.4 \& \\
 \hline 4.9\% \& 429.7 \& 430.1 \& 0.3 \& \(01 \%\) \\
 \hline 6.2\% \& 426.7 \& 426.3 \& -0.4 \& -0.1\% \\
 \hline 7.4\% \& 412.4 \& 412.4 \& 0.0 \& 0.0\% \\
 \hline 9.9\% \& 410.3
 400.6 \& \({ }_{4071.7}^{411.7}\) \& \begin{tabular}{l}
 1.4 \\
 6.5 \\
 \hline
 \end{tabular} \& - \({ }^{0.6 \%}\) \\
 \hline 11.1\% \& 399.5 \& 404.0 \& 4.4 \& 1.1\% \\
 \hline 12.3\% \& 397.0 \& 401.8 \& 4.8 \& 1.2\% \\
 \hline 13.6\% \& 392.2 \& 396.9 \& 4.7 \& \\
 \hline 14.8\% \& 386.5 \& 386.9 \& 0.4 \& 0.1\% \\
 \hline - \& \begin{tabular}{l}
 369.5 \\
 360.6 \\
 \hline
 \end{tabular} \& 368.4
 363.2 \& -1.1
 2.6 \& -0.7\% \\
 \hline 18.5\% \& 357.5 \& 359.5 \& 2.0 \& 0.6\% \\
 \hline 1.8\% \& 344.0 \& 343.5 \& -0.5 \& \\
 \hline \({ }_{2}^{21.0 \%}\) \& \({ }^{342.1}\) \& 339.5 \& \(-2.7\) \& -0.8\% \\
 \hline -22.2\% \& \& 339.1 \& -0.6 \& \({ }^{-0.2 \%}\) \\
 \hline \({ }^{23.4 .5 \%}\) \& 339.5
 336.1 \& 338.5
 388.0 \& -1.0
 1.9 \& -0.6\% \\
 \hline 25.9\% \& 336.0 \& \begin{tabular}{l}
 3328 \\
 3228 \\
 \hline
 \end{tabular} \& -3.1 \& -0.9\% \\
 \hline \& \& \({ }^{332.8}\) \& 1.2 \& 0.4\% \\
 \hline 29.6\% \& \({ }_{330.2}\) \& 331.0
 330.8 \& -0.6 \& \({ }^{-0.2 \%}\) \\
 \hline 30.9\% \& 328.6 \& 330.0 \& 1.4 \& 0.4\% \\
 \hline 32.1\% \& \({ }_{328.5}\) \& 329.8 \& 1.3 \& 0.4\% \\
 \hline 隹33.3\% \& 327.8
 327.0 \& 327.8
 326.5 \& -0.4 \& -0.0\% \\
 \hline 35.8\% \& 326.4 \& 326.0 \& -0.3 \& -0.1\% \\
 \hline 37.0\% \& \& 325.8 \& 0.0 \& 0.0\% \\
 \hline 38.3\% \& 325.4
 323.9 \& 325.6
 324.9 \& 0.2
 0.9 \& 0.3\% \\
 \hline 40.7\% \& 323.1 \& 324.8 \& 1.6 \& \\
 \hline 42.0\% \& 321.7 \& 323.3 \& 1.5 \& 0.5\% \\
 \hline \({ }^{43.2 \%} 4\) \& 315.8 \& \({ }_{321.1}\) \& 5.3 \& 1.7\% \\
 \hline \& \& \& \& \\
 \hline 4.9\% \& 313.0 \& \({ }_{315.3}\) \& \({ }_{2.3}\) \& 0.7\% \\
 \hline 48.1\% \& 312.9 \& 314.0 \& 1.2 \& 0.4\% \\
 \hline \& \& \({ }_{311.0}^{314}\) \& 1.0 \& 0.3\% \\
 \hline 51.9\% \& 310.1 \& 311.4 \& \({ }_{1.3}\) \& 0.4\% \\
 \hline 53.1\% \& 308.6
 38.6 \& 310.6
 30.6 \& 1.9 \& 0.6\% \\
 \hline \& \& \& 2.1 \& 0.7\% \\
 \hline 56.8\% \& 307.1 \& 307.7 \& \({ }_{0.6}^{2.8}\) \& 0.2\% \\
 \hline 58.0\% \& 306.0
 3053 \& \begin{tabular}{l}
 307.5 \\
 \hline 373
 \end{tabular} \& 1.6 \& 0.5\% \\
 \hline \& \& \({ }^{307.3}\) \& 1.9 \& 0.6\% \\
 \hline 61.7\% \& 304.9 \& \({ }_{305.4}\) \& \({ }_{0}^{1.0}\) \& 0.2\% \\
 \hline -63.0\% \& 304.0
 303 \& 304.8
 303 \& 0.8 \& 0.3\% \\
 \hline \& \& \& \& \\
 \hline 66.7\% \& 302.5 \& 303.0 \& 0.5 \& 0.2\% \\
 \hline 67.9\% \& 302.5 \& 302.4 \& -0.1 \& 0.0\% \\
 \hline \& 301.8

 2979 \& \& \&

 \hline 71.6\% \& 297.6 \& 301.2 \& ${ }_{3.6}$ \& 1.2\%

 \hline 72.8\% \& 296.5 \& 298.3 \& 1.8 \& 0.6\%

 \hline \& ${ }_{294}^{294.5}$ \& \& \& -

 \hline 76.5\% \& 293.1 \& 294.5 \& 1.4 \& 0.5\%

 \hline 77.8\% \& 291.6 \& 294.5 \& 2.9 \& 1.0\%

 \hline 79.0\% \& 290.7 \& 292.0 \& 1.3 \& ,

 \hline - ${ }_{\text {80,2\% }} 8.5$ \& 287.5 \& 291.2 \& 3.6 \& 1.3\%

 \hline - \& 286.4 \& 287.4 \& 1.0 \& - ${ }_{\text {0.3\% }}$

 \hline - \& ${ }_{283.3}^{286.4}$ \& ${ }_{282.5}^{287.1}$ \& 0.7
 -0.8 \& - ${ }_{\text {- }}^{\text {0.3\% }}$

 \hline 85.2\% \& 280.7 \& 280.5 \& -0.2 \& -0.1\%

 \hline 86.4\% \& 280.4 \& 280.4 \& 0.0 \& 0.0\%

 \hline 87.7\% \& 275.3 \& 274.4 \& -0.9 \& -0.3\%

 \hline - ${ }^{88.9 \%}$ 90.1\% \& 266.9 \& 267.4 \& 0.5 \& ${ }_{\text {en }}^{0.2 \%}$

 \hline 91.4\% \& ${ }_{261.2}^{266.1}$ \& ${ }_{261.3}^{266.4}$ \& 0.1 \& - 0.0 0\%

 \hline 92.6\% \& 255.8 \& 256.1 \& 0.3 \& 0.1\%

 \hline 93.8\% \& 255.4 \& 255.8 \& 0.4 \& 0.1\%

 \hline 95.1\% \& 252.2 \& 252.4 \& 0.2 \& 0.1\%

 \hline 97.5\% \& 247.4 \& ${ }_{2}^{247.6}$ \& 0.1 \& - 0.0%

 \hline 98.8\% \& 238.7 \& 238.9 \& 0.1 \& 0.1\%

 \hline 100.0\% \& 210.1 \& 208.9 \& -1.1 \& 0.5\%

 \hline
 \end{tabular}

 | | September | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | DCR 2015 Without | DCR 2015 With Project | $\begin{gathered} \text { Absolute } \\ \text { cifference } \\ \text { (uMHOSCCM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | | Monthly EC | Monthly EC | | |
 | la | 7929 | 817 | | |
 | , | 72.2 | \%1.2 | 19.5 | 2.5\% |
 | 1.2\% | 781.9 | 79.5 | 17.6 | ${ }_{2}^{2.2 \%}$ |
 | 2.5\% | 75.5 | 74.6 | | |
 | 3.7\% | ${ }_{731.6}$ | 765.1 | 33.4 | 4.6 |
 | | | 745.1 | 14.8 | |
 | 7.4\% | ${ }_{7} 726.6$ | ${ }_{722.2}$ | ${ }_{-4.4}$ | -0.6\% |
 | 8.6\% | 705.3 | 718.0 | 12.6 | 1.8\% |
 | 9.9\% | 704.0 | 716.9 | 12.8 | $1.8{ }^{\circ}$ |
 | 11.1\% | 703.0 | 709.9 | 7.0 | 1.0% |
 | 12.3\% | 699.7 | 707.7 | 7.9 | . |
 | 13.6\% | 696.9 | 7028 | 5.9 | 0.8\% |
 | 14.8\% | 695.7 | ${ }_{693.6}$ | -2.1 | -0.3\% |
 | -16.3\% | 695.3 688.2 | ${ }_{684.8}^{685}$ | - | ${ }^{-1.5 \%}$ |
 | 18.5\% | 686.8 | 683.8 | -3.0 | -0.4\% |
 | 19.8\% | 678.1 | 682.8 | 4.7 | 0.7\% |
 | 21.0\% | 676.0 | 678.7 | 2.7 | 0.4\% |
 | ${ }^{22.2 \%}$ | ${ }^{663.1}$ | 67774 | 14.3 | ${ }^{2.2 \%}$ |
 | ${ }_{\text {24, }}^{23.5 \%}$ | 661.8 659.3 | 677.7 672.6 | 11.9 13.3 | - ${ }_{\text {2.0\% }}^{\text {2.0\% }}$ |
 | 25.9\% | 654.8 | 672.3 | 17.6 | 2.7\% |
 | 27.2\% | 654.5 | 670.4 | 15.9 | 2.4\% |
 | ${ }^{28.49 \%}$ | ${ }^{651.9}$ | 66.0 | 14.1 | 2.2\% |
 | | 649.1 | 662.0 | | |
 | 32.1\% | ${ }_{638.7}$ | ${ }_{661.5}^{661.9}$ | ${ }_{22.8} 17.9$ | ${ }^{2.8 \%}$ |
 | 33.3\% | 634.3 | 661.4 | 27.1 | 4.3\% |
 | 34.6\% | 625.6 | 660.3 | 34.6 | 5.5\% |
 | 35.8\% | 625.0 618.2 | ${ }_{6464.6}^{646}$ | 21.9 28.4 | ${ }^{3.5 \%}$ |
 | 38.3\% | 618.1 | 646.3 | 28.2 | 4.6\% |
 | 39.5\% | 610.1 | 645.8 | 35.7 | 5.9\% |
 | 40.7\% | 593.3 | ${ }_{6}^{644.9}$ | 51.6 | 8.7\% |
 | | | | 49.0 | 8.3\% |
 | 44.4\% | ${ }_{563.6}$ | ${ }_{677.0}$ | ${ }_{63.3}$ | 11.2\% |
 | 45.7\% | 562.9 | 620.3 | 57.4 | 10.2\% |
 | -46.9\% | ${ }_{561.1}$ | 614.0 | 52.9 | 9.4\% |
 | ${ }_{49.4 \%}^{48.1 \%}$ | 560.4 559.8 | ${ }_{5}^{609.3}$ | 45.9 33.3 | ${ }_{\text {5 }} 8.9 \%$ |
 | 50.6\% | 559.4 | 563.5 | 4.1 | 0.7\% |
 | 51.9\% | 548.3 | 561.0 | 12.7 | 2.3\% |
 | 54.3\% | 548.0 534.3 | ${ }_{5565.9}^{56.0}$ | 11.9 21.6 | ${ }_{\text {4.0\% }}^{2.2 \%}$ |
 | 55.6\% | 527.1 | 538.4 | 11.3 | 2.1\% |
 | 56.8\% | 517.8 | 536.9 | 19.1 | 3.7\% |
 | - $\begin{aligned} & 58.0 \% \\ & 59.3 \%\end{aligned}$ | 500.9 499.0 | 527.9 521.9 | 27.1 22.9 | 5.4\%\% |
 | 㐌 6.59% | 4998.0 | 521.9 515.6 | 22.9 17.6 | ${ }_{3.5 \%}^{4.6 \%}$ |
 | 61.7\% | 495.5 | 506.6 | 11.1 | 2.2\% |
 | 6.3.0\% | 494.5 | 498.6 | 4.1 | 0.8\% |
 | ${ }^{64.2 \%}$ | 494.2 | 497.0 | 2.8 | ${ }_{\text {en }} 0.6 \%$ |
 | ${ }_{66.7 \%}^{65.4 \%}$ | ${ }_{484.9}^{488.1}$ | ${ }_{492.6}$ | 8.7 7.7 | 1.6\% |
 | 67.9\% | 484.6 | 488.7 | 4.1 | 0.9\% |
 | 69.1\% | 480.5 | 483.8 | 3.3 | 0.7\% |
 | 70.4\% | ${ }_{474.4}^{474}$ | 474.0 | -0.4 | --.4.6\% |
 | 71.2\%\% | ${ }_{471.3}^{471.7}$ | ${ }_{447.6}^{449.9}$ | ${ }_{-23.7}^{-21.7}$ | -5.0\% |
 | 74.1\% | 471.0 | 441.3 | -29.6 | -6.3\% |
 | 75.3\% | 464.0 | 436.9 | -27.1 | -5.8\% |
 | 77.8\% | ${ }_{451.1}^{452.6}$ | ${ }_{433.2}^{436.6}$ | -15.9 -17.9 | -3.5\% |
 | 79.0\% | 446.3 | 431.2 | -15.1 | -3.4\% |
 | 80.2\% | 445.9 | 426.9 | -19.0 | -4.3\% |
 | 81.5\% | 437.0 | 425.0 | -12.1 | -2.8\% |
 | - 88. | ${ }_{436.3}^{436.8}$ | ${ }_{4114.3}^{421.6}$ | - ${ }_{\text {-22.0 }}$ | -5.0\% |
 | 85.2\% | 436.3 | 405.5 | -30.8 | -7.1\% |
 | 86.4\% | 434.1 | 400.9 | -33.2 | -7.6\% |
 | 87.7\% | 407.9 | 397.1 | -10.8 | -2.7\% |
 | 88.9\% | 401.1 | 388.8 | -12.3 | -3.1\% |
 | 90.1\% 9 | 3969 | ${ }^{382.5}$ | -14.5 | -3.6\% |
 | 914.4\% | ${ }^{393.5}$ | 377.8 | 15.7 | -4.0\% |
 | 92.6\% | ${ }_{377}^{379}$ | 372.8 | -6.5 | -1.7\% |
 | 995.1\% | 377.2 298.8 | ${ }^{363.4}$ | -13.9 | -3.7\% |
 | 96.3\% | ${ }_{297.3}^{290.8}$ | ${ }_{275.2}$ | -22.1 | -7.4\% |
 | 97.5\% | 22.8 | 262.4 | 41.6 | 18.8\% |
 | 98.8\% 1000% | ${ }_{2008}^{214.7}$ | ${ }_{2008}^{214.5}$ | -0.2 | --0.1\% |
 | 100.0\% | | 200.8 | | |

 Figure SQ-30-b
 Victoria Canal at Alternative Intake, Monthly EC

 | $\begin{gathered} \text { Percent } \\ \hline \text { Exceedance } \\ \text { Probability } \end{gathered}$ | Octobe | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | DCR 2015 With Project | Absolute | |
 | | Monthly EC | Monthy EC | （UMHOLSCM） | ference（\％） |
 | （\％） | ， | Hosil | | |
 | 0．0\％ | 580.8 | 602 | 21.2 | 3．7\％ |
 | －1．2\％ | 558.2
 5505 | 592.2
 583.8 | 34.0 33.3 | 6．1\％ |
 | 3．7\％ | 541.6 | 5525 | 10.9 | 2．0\％ |
 | 4．9\％ | 536.6 | 551.6 | 15.0 | 2．8\％ |
 | 6．2\％ | 524.7 | 551.3 | 26.6 | 5．1\％ |
 | 7．4\％ | 516.2 | ${ }_{543,7}$ | ${ }^{27.6}$ | 5．3\％ |
 | ${ }_{\text {9．9\％}}^{8.9 \%}$ | 512．1 510.6 | ${ }_{541.3}^{54.7}$ | ${ }_{30.7}^{29.5}$ | 6．0\％ |
 | 11．1\％ | 510.4 | 522.4 | 12.0 | 2．4\％ |
 | ${ }^{12.3 \%}$ | 509.5 | 517．2 | 7.7 | 1．5\％ |
 | | 507．0 505.5 | 514．3 505.5 | 7.3 0.0 | － |
 | 16．0\％ | 505．2 | 504.0 | －1．1 | －0．2\％ |
 | 17．3\％ | 504.6 | 498.3 | －6．3 | －1．2\％ |
 | － 18.58% | ${ }_{498.7}$ | ${ }_{497.1}^{498.3}$ | －－4．5 | ${ }^{-0.8 \%}$ |
 | 21．0\％ | 498.6 | 494.2 | －4．4 | －0．9\％ |
 | ${ }^{22.2 \%}$ | 497.6 | 493.0 | －4．6 | －0．9\％ |
 | －${ }^{23.5 \%}$ | ${ }_{493.6}^{497.2}$ | ${ }_{490.1}^{492.3}$ | －－4．9 | －-1.0% |
 | 25．9\％ | 493.6 | 488.6 | －4．9 | －1．0\％ |
 | 27．2\％ | 493.1 | 488.2 | －4．9 | －1．0\％ |
 | －${ }^{28.4 \%}$ 29．6\％ | ${ }_{491.3}^{491.4}$ | ${ }_{483.9}^{485.5}$ | －－7．4 | －1．1．5\％ |
 | 30．9\％ | 490.4 | 483.7 | －6．7 | －1．4\％ |
 | ${ }^{32.1 \%}$ | 4897 | 480.9 | 8.7 | －1．8\％ |
 | 㐌33．6\％ | 486.4 486.0 | ${ }_{479.2}^{480.2}$ | -6.2 -6.8 | －1．1．4\％ |
 | 35．8\％ | 479.1 | 471.5 | －7．6 | －1．6\％ |
 | 37．0\％ | 473.7 | 470.7 | | |
 | 38．3．3\％ | 469.3 468.0 | ${ }_{461.5}^{469}$ | 0.7 -6.5 | －1．4\％ |
 | 40．7\％ | 462.9 | 458.7 | －4．2 | －0．9\％ |
 | 42．0\％ | 460.5 | ${ }^{452.4}$ | －8．1 | ${ }^{-1.8 \%}$ |
 | ${ }^{43.2 \%}$ | ${ }_{457.9}^{459.5}$ | ${ }_{451.2}^{452.3}$ | -7.2 -6.7 | ${ }^{-1.1 .5 \%}$ |
 | 45．7\％ | 457.2 | 444.8 | －12．4 | －2．7\％ |
 | | 451.0 | 439.4 | | 2．6\％ |
 | 49．4\％ | 444.6 | 432．2 | －94．4 | －3．2\％ |
 | 50．6\％ | 443.0 | 429.7 | －13．3 | －3．0\％ |
 | | 430.2 | ${ }^{423.1}$ | | －1．7\％ |
 | 54．3\％ | 429.2 382.7 | 404.9 382.9 | -24.3 0.2 | －5．0\％ |
 | 55．6\％ | 378.1 | 377.8 | －0．3 | －0．1\％ |
 | | | ${ }^{374.4}$ | －0．5 | －0．1\％ |
 | 59．3\％ | 374.0 372.9 | 374.1 369.2 | ${ }_{-3.7}$ | －1．0\％ |
 | ${ }^{60.5 \%}$ | 372.7 | 367.0 3631 | －5．7 | －1．5\％ |
 | 61．7\％ | | ${ }^{363.1}$ | －8．8 | －2．4\％ |
 | 64．2\％ | 368.9 368.2 | ${ }_{357.9}^{362.0}$ | －60．3 | －2．8\％ |
 | ${ }^{65.4 \%}$ | ${ }^{361.3}$ | 355.0 354 | －6．2 | －1．7\％ |
 | 66．7\％ | | 348.8 | | |
 | 69．1\％ | ${ }_{352.2}$ | 344.1 | ${ }_{-7.8}$ | －2．2\％ |
 | 70．4\％ | 350.2 30.2 | ${ }^{342.2}$ | －8．0 | －2．3\％ |
 | 71．6\％ | 349．4 | 340.8 | －8．6 | －2．5\％ |
 | 74．1\％ | 344.3 | 338.1 | －6．2 | －1．8\％ |
 | 75．3\％ | 343.1 | 337.8 373 | －5．4 | －1．6\％ |
 | 7778\％ | 340.7 | ${ }^{337.3}$ | －3．4 | －1．0\％ |
 | 79．0\％ | 3439.5 | 3334.4 | －3．7 | ${ }^{-1.4 \%}$ |
 | 80．2\％ | 338.0 3376 | 332.6 3225 | －5．4 | －1．6\％ |
 | 81．5\％ | ${ }^{337.6}$ | ${ }^{332.5}$ | －5．2 | ${ }^{-1.5 \%}$ |
 | 84．0\％ | 336．0 ${ }_{\text {333．0 }}$ | 330.8 30.7 | －5．4 | －0．7\％ |
 | 85．2\％ | ${ }^{331.3}$ | 329.6 | －1．7 | －．．5\％ |
 | －${ }^{86.4 \%}$ | ${ }^{3226.1}$ | ${ }^{322.0}$ | -4.1 | |
 | 88．9\％ | ${ }_{322.5}^{325.6}$ | ${ }_{321.2}$ | －2．3 | －0．7\％ |
 | 90．1\％ 9 | 322.0 | 317.2 | －4．9 | －1．5\％ |
 | 92．6\％ | ${ }^{321.7}$ | ${ }^{316.6}$ | －5．1 | －1．10\％ |
 | 93．8\％ | 317.0 | 313.2 | －3．9 | －1．2\％ |
 | 95．1\％ | ${ }^{312.3}$ | 311.4 | －0．9 | －0．3\％ |
 | 97．5\％ | 3028 2797 | $\begin{array}{r}302.6 \\ \\ 2838 \\ \hline\end{array}$ | ${ }_{4} .0 .3$ | ${ }^{-0.5 \%}$ |
 | 998．8\％ | 2601 | 236.4 | ${ }_{0} .3$ | 1．1\％ |
 | 100．0\％ | 216.3 | 215.9 | －0．5 | －0．2\％ |

 Table $\mathrm{SQ}-30-\mathrm{b}$
 at A Alemative Intake，Monthy EC
 Victoria Canal at A Alterative Intake，Monthy EC
 Probability of Exceedance

 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
 \hline \multirow[b]{3}{*}{\[
 \begin{gathered}
 \text { Percent } \\
 \hline \begin{array}{c}
 \text { Excedance } \\
 \text { Probabability }
 \end{array} \\
 \hline
 \end{gathered}
 \]} \& \multicolumn{4}{|c|}{November} \& \multicolumn{5}{|l|}{December} \\
 \hline \& \({ }_{\substack{\text { DCR } 2015 \text { Without } \\ \text { Proiet }}}\) \& DCR 2015 With Project \& \& \& \& \({ }^{\text {DCR 2015 }}\) Pithout \& DCR 2015 With Project \& te \& \\
 \hline \& Moothly EC \& Monthly EC \& （ifference \& Aference（\％） \& dobabii \& Monthly E EC \& Montly EC \& （ifiterese \& ference（\％） \\
 \hline （\％） \& （UMHOSSCM） \& 5952 \& \({ }^{-20.5}\) \& －3．4\％ \& （\％） \& 7121 \& 756.6 \& 445 \& \\
 \hline 1．2\％ \& 558.5 \& 552.7 \& －5．7 \& －1．0\％ \& 1．2\％ \& 6917 \& 659 \& 323 \& －4．7\％ \\
 \hline 2．5\％ \& 554.1 \& 543.8 \& －10．3 \& －1．9\％ \& 2．5\％ \& 639.9 \& 648 \& 8.7 \& \\
 \hline 3．7\％ \& 553.5 \& 539.2 \& －14．3 \& －2．6\％ \& 3．7\％ \& 619.3 \& 621.2 \& 2.0 \& 0．3\％ \\
 \hline 4．9\％ \& 550.7 \& 528.8 \& －21．9 \& －4．0\％ \& 4．9\％ \& 605.1 \& 618.9 \& 13.8 \& 2．3\％ \\
 \hline 6．2\％ \(7.4 \%\) \& 548.7
 548.6 \& \({ }_{523.1}^{526.2}\) \& －22．5
 -2.5 \& \({ }_{-4.7 \%}^{-4.7 \%}\) \& 7．4\％\％ \& 604.3
 600.4 \& 616.0
 605.0 \& 11.6
 4.6 \& － \(0.8 \%\) \\
 \hline 8．6\％ \& 544.7 \& 520.9 \& －23．8 \& －4．4\％ \& 8．6\％ \& 600.3 \& 595.7 \& －4．6 \& －0．88 \\
 \hline 9．9\％ \& 538.2 \& 514.4 \& －23．7 \& －4．4\％ \& 9．9\％ \& 595.0 \& 583.4 \& －11．6 \& －1．9\％ \\
 \hline 年 \& 537.7
 536.8 \& 511．3
 511.1 \& －26．3
 -25.7 \& －4．4．8\％ \& －\({ }_{\text {11．12\％}}^{12.3 \%}\) \& 589．1
 587.1 \& 573.1
 568.7 \& －16．0 \& \({ }_{-3.1 \%}^{-2.7 \%}\) \\
 \hline 13．6\％ \& 528.7 \& 506.7 \& －22．0 \& －4．2\％ \& 13．6\％ \& 585.7 \& 558.9 \& －26．9 \& －4．6\％ \\
 \hline 14．8\％ \& 518.3 \& 501.5 \& －16．7 \& －3．2\％ \& 14．8\％ \& 584.1 \& 556.4 \& －27．7 \& 7\％ \\
 \hline \({ }^{16.0 \%}\) \& 508.7 \& 495.8 \& －12．9 \& －2．5\％ \& \({ }^{16.0 \%}\) \& 578.2 \& 552.4 \& －25．8 \& －4．5\％ \\
 \hline 17．3\％ \& 502．3 \& 495.4 \& －6．9 \& －1．4\％ \& 17．3\％ \& 576.0 \& 548.3 \& －27．7 \& －4．8\％ \\
 \hline 18．5\％\％ \& \({ }_{492.2}^{501.5}\) \& \({ }_{489.2}^{491.2}\) \& －10．3
 -3.0 \& －0．6\％ \& 俍 \({ }^{18.5 \% \%}\) \& 575.7
 569.8 \& 547.5
 546.7 \& -28.3
 -2.1 \& －－4．9\％ \\
 \hline 21．0\％ \& 490.4 \& 485.0 \& －5．4 \& －1．1\％ \& 21．0\％ \& 564.0 \& 541.4 \& －22．6 \& －4．0\％ \\
 \hline \({ }^{22.2 \%}\) \& 486.1 \& 480.2 \& －5．9 \& －1．2\％ \& \({ }^{22.2 \%}\) \& 552.2 \& 538.0 \& －14．1 \& －2．6\％ \\
 \hline 24．7．7\％ \& 484.4
 483.2 \& \({ }_{473.3}^{474.2}\) \& -90.2
 -9.8 \& \({ }_{-2.0 \%}^{-2.1 \%}\) \& 24．7\％\％ \& 550.6
 541.3 \& 532．1
 531.7 \& －18．5 \& － \\
 \hline 25．9\％ \& 478.2 \& 472.3 \& －5．9 \& －1．2\％ \& 25．9\％ \& 537.7 \& 529.5 \& －8，1 \& －1．5\％ \\
 \hline \({ }^{27.2 \%}\) \& 478.0 \& 469.4 \& －6．6 \& －1．4\％ \& 27．2\％ \& \({ }^{536.3}\) \& 529.5 \& －6．8 \& －1．3\％ \\
 \hline 29．6\％ \& \({ }_{473.7}^{475.2}\) \& \({ }_{465.0}^{468.2}\) \& -7.0
 -8.7 \& －1．1．8\％ \& －\({ }_{\text {28．4\％}}\) \& 534.5
 531.7 \& 528．6
 59.1 \& －5．9． \& －－1．4\％ \\
 \hline 30．9\％ \& 471.1 \& 464.3 \& \(-6.8\) \& －1．4\％ \& 30．9\％ \& 530.5 \& 518.3 \& －12．2 \& －23\％ \\
 \hline 32．1\％ \& 470.2 \& 462.3 \& －7．9 \& －1．7\％ \& 32．1\％ \& 524.8 \& 513.2 \& 15 \& \\
 \hline 33．3\％\％ \& 468.8 \& 461.4 \& －7．4 \& －1．6\％ \& 33．3\％ \& 521．9 \& \(\underset{513.1}{510.1}\) \& －8．8 \& －1．7\％ \\
 \hline 34．6\％ \& 467.0 \& 457.9 \& \& －2．0\％ \& 34．6\％ \& 521.2 \& 510.3 \& －11．0 \& －2．1\％ \\
 \hline 37．0\％ \& \({ }_{454.1}^{466.2}\) \& \({ }_{456.1}^{457.1}\) \& -9.1
 1.9 \& － \(0.4 \%\) \& 375．0\％ \& 520.4
 59.8 \& \({ }_{498.2}^{508.1}\) \& －12．3 \& －\(-4.4 \%\) \\
 \hline 38．3\％ \& 454.1 \& 455.4 \& 1.3 \& 0．3\％ \& 38．3\％ \& 517.8 \& 496.2 \& 21.6 \& －4．2\％ \\
 \hline 39．5\％ \& 451.7 \& 448.6 \& －3．2 \& －0．7\％ \& 39．5\％ \& 510.3 \& 495.9 \& 14.4 \& 年\％ \\
 \hline \({ }^{40.7 \%}\) \& 451.6 \& 444.2 \& －7．38 \& －1．6\％ \& 40．7\％ \& 501.4 \& 492.8 \& －8．6 \& －1．7\％ \\
 \hline \& \& \& \& －2．6\％ \& \& 500.3 \& \& \& \\
 \hline 44．4\％ \& \({ }_{450.3}\) \& 4320.7 \& －29．6 \& －6．6\％ \& 44．4\％ \& \({ }_{486.2}\) \& \({ }_{473.0}\) \& －13．1 \& －2．7\％ \\
 \hline 45．7\％ \& 448.4 \& 416.3 \& －32．1 \& －7．2\％ \& 45．7\％ \& 484.9 \& 470.8 \& －14．0 \& －2．9\％ \\
 \hline 46．9\％ \& 447.4 \& 416.3 \& －31．1 \& －7．0\％ \& 46．9\％ \& 463.8 \& 463.1 \& －0．7 \& －0．1\％ \\
 \hline 48．4\％\％ \& \({ }_{445.4}^{446.7}\) \& \({ }_{4029}^{415.8}\) \& －31．0
 -42.4 \& －－9．9\％ \& \({ }^{48.19 \%}\) \& \({ }_{439.2}^{458.5}\) \& \({ }_{4}^{4598.4}\) \& \begin{tabular}{l}
 0.7 \\
 \hline 0.9
 \end{tabular} \& －0．2\％ \\
 \hline 50．6\％ \& 444.0 \& 401.8 \& －42．2 \& －9．5\％ \& 50．6\％ \& 436.6 \& 433.0 \& \({ }^{3} .6\) \& 8\％ \\
 \hline \({ }_{\text {51．9\％}}\) \& 4393 \& 399.0 \& －40．4 \& －9．9\％ \& 51．9\％ \& \({ }_{4}^{417.5}\) \& \({ }^{422.3}\) \& 4.8 \& 1．2\％ \\
 \hline 55．3\％ \& 435.0
 376.8 \& 394.0
 367.3 \& －40．9 \& －－．2．5\％ \& \& \({ }^{412.1}\) \& \({ }_{404.4}^{405.5}\) \& -6.6
 1.4 \& －1．3\％ \\
 \hline 55．6\％ \& 375.1 \& 365.9 \& \(-9.2\) \& －2．4\％ \& 55．6\％ \& 390.6 \& 386.6 \& －4．0 \& －1．0\％ \\
 \hline 55．8\％ \& \({ }^{368.6}\) \& \({ }^{365.8}\) \& －2．8 \& －0．8\％ \& 56．8\％ \& \({ }_{374.8}\) \& \({ }_{3725}\) \& 1.0 \& 0．3\％ \\
 \hline 59．3\％ \& 367.9 \& 364.2 \& \({ }_{-3.7}\) \& \({ }_{-1.0 \%}\) \& 59．3\％ \& 374.5 \& \({ }_{370.4}^{3728}\) \& －4．2 \& \({ }^{-0.1 .1 \%}\) \\
 \hline 60．5\％ \& 364.6 \& 360.3 \& －4．3 \& －1．2\％ \& 60．5\％ \& 377.1 \& 368.1 \& －3．0 \& －0．8\％ \\
 \hline 61．7\％ \& 359.6
 3590 \& \(\begin{array}{r}359.1 \\ 3585 \\ \hline\end{array}\) \& －0．6 \& －0．2\％ \& \({ }^{61.7 \%}\) \& \begin{tabular}{l}
 368.5 \\
 \hline
 \end{tabular} \& \({ }_{364.6}^{364}\) \& \(-3.8\) \& －1．0\％ \\
 \hline 64．2\％ \& 359.0
 358.9 \& 355.5
 35.2 \& －－．7 \& －1．0\％ \& 63．2\％ \& 364.9
 354.8 \& \({ }_{\text {3 }}^{353.4}\) \& －1．4 \& \({ }^{-0.4 \%}\) \\
 \hline 65．4\％ \& 357.6 \& 355.0 \& －2．6 \& －0．7\％ \& 65．4\％ \& \({ }^{355.1}\) \& 352.8 \& －0．3 \& －0．1\％ \\
 \hline \({ }^{66.7 \%}\) \& \begin{tabular}{l}
 355.8 \\
 355 \\
 \hline
 \end{tabular} \& 354．0 \& －1．81 \& －0．5\％ \& \({ }^{66.7 \%}\) \& \({ }^{353.0}\) \& 348.3 \& －4．7 \& －1．3\％ \\
 \hline 69．1\％ \& \({ }_{355.5}^{35.7}\) \& \({ }_{348.1}\) \& －5．4 \& \({ }^{-1.5 \%}\) \& 69．1\％ \& \begin{tabular}{l}
 348.5 \\
 \hline
 \end{tabular} \& 3399.5 \& 1.0 \& －0．3\％ \\
 \hline 70．4\％ \& 352.5 \& 345.9 \& －6．6 \& －1．9\％ \& 70．4\％ \& 338.2 \& 337.7 \& －0．4 \& －0．1\％ \\
 \hline 71．6\％ \& 352.1
 3479 \& \(\begin{array}{r}344.4 \\ 343 \\ \hline\end{array}\) \& \& －\(-1.2 \%\) \& 71．6\％ \& \({ }^{336.8}\) \& 335.6
 355 \& －1．3 \& －0．4\％ \\
 \hline 74．1\％ \& 345.8 \& 341.7 \& \({ }_{-4.4}\) \& －1．2\％ \& 74．1\％ \& 334.2
 30.5 \& \({ }^{3350.5}\) \& 0.1 \& 0．0\％ \\
 \hline 75．3\％ \& 344.5 \& 341.4 \& －3．1 \& －0．9\％ \& 75．3\％ \& 327.8
 3 \& 328.7 \& 0.8 \& 0．3\％ \\
 \hline 777．8\％ \& 344.0
 342.9 \& 341.1
 340.7 \& －2．9 \& －0．7\％ \& 77．8\％ \& 325.5
 323.2 \& 323.9
 316.6 \& －1．6 \& \\
 \hline 79．0\％ \& 342.6 \& 339.8 \& －2．8 \& －0．8\％ \& 79．0\％ \& 317.0 \& 315.6 \& －1．5 \& \({ }^{-0.5 \%}\) \\
 \hline 80．2\％ \& 341.6
 3409 \& \({ }_{\text {cher }}^{338.5}\) \& －3．1 \& －0．9\％ \& 80．2\％ \& 313.9
 3109 \& 311.8
 3078 \& －2．1 \& －0．7\％ \\
 \hline 81．5\％ \& 340.9
 3393 \& 337.2
 3344 \& \& \& － \& 310.9
 3105 \& \({ }^{307.9}\) \& －2．9 \& －0．9\％ \\
 \hline 84．0\％ \& \({ }_{337.3}\) \& 334．3 \& －3．0 \& －0．9\％ \& 84．0\％ \& 305.8 \& \({ }_{303.4}^{30.2}\) \& －2．4 \& －0．8\％ \\
 \hline 85．2\％ \& \({ }^{337.1}\) \& 333.6 \& －3．5 \& －1．0\％ \& 85．2\％ \& \({ }^{305.2}\) \& 303.1 \& －2．1 \& －0．7\％ \\
 \hline \({ }^{86.4 \%}\) \& 336.8
 3366 \& \({ }^{331.4}\) \& －5．4 \& －1．0\％ \& \({ }^{86.4 \%}\) \& \({ }^{304.3}\) \& 300.5

 2900 \& －．38 \& －1．15\％

 \hline 88．9\％ \& ${ }_{336.1}$ \& ${ }_{325.9}$ \& －10．1 \& ${ }_{\text {－}}$ \& 88．9\％ \& ${ }^{300.5}$ \& ${ }_{293.7}^{290.7}$ \& －4．2 \& －1．1\％

 \hline ${ }^{90.1 \%}$ \& －332．5 \& 325.6
 3522 \& －6．9 \& －2．1\％ \& 90．1\％ \& 291．2 \& ${ }_{2917}^{292.7}$ \& 1.5 \& 0．5\％

 \hline ${ }_{92.6 \%}^{99.4 \%}$ \& 328.3
 3268 \& 322.9
 322.4 \& －5．4 \& －1．10\％ \& 9， 9.44% \& ${ }^{2899.8}$ \& 291.3
 2890 \& 1.5 \& 0．5\％

 \hline ${ }_{93.8 \%}^{92.8 \%}$ \& ${ }_{325.0}$ \& ${ }_{321.7}^{322.4}$ \& ${ }_{-3,3}$ \& －1．0\％ \& 93．8\％ \& ${ }_{28,7}^{289.7}$ \& ${ }_{287.5}^{289.0}$ \& －1．2 \& －0．4\％

 \hline 95．1\％ \& 319.3 \& 320.9 \& 1.5 \& 0．5\％ \& 95．1\％ \& 288.1 \& 287.0 \& －1．0 \& －0．4\％

 \hline 97．5\％ \& 313.5
 297.7 \& ${ }^{3298.3}$ \& ${ }_{0.6}^{6.7}$ \& ${ }_{0.2 \%}^{2.2 \%}$ \& 97．5\％ \& ${ }^{288.7}$ \& 288.8
 282.9 \& －1．28 \& －0．6\％

 \hline 98．8\％ \& 224.8 \& 225.0 \& 0.1 \& 0．1\％ \& 98．8\％ \& 284.1 \& 279.9 \& 4.2 \& －1．5\％

 \hline 100．0\％ \& 202.8 \& 200.6 \& 3.8 \& 1．9\％ \& 100．0\％ \& 232.3 \& 232.9 \& 0.6 \& 0．3\％

 \hline
 \end{tabular}

 | $\begin{array}{\|c} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{array}$ | January | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | DCC 2015 Without Proiect | DCR 2015 With Project | | |
 | | Monthly EC | Monthy EC | （ititerence | Difference（\％） |
 | （\％） 0 \％ | | 7711 | 455 | －5．6\％ |
 | 1．2\％ | 790.8 | 757.3 | －33．5 | －4．2\％ |
 | 2．5\％ | 786.8 | 741.8 | －45．0 | |
 | 3．7\％ | 767.8 | 731.1 | －36．7 | －4．8\％ |
 | 4．9\％ | 747.0 | 728.4 | －18．6 | －2．5\％ |
 | 6．2\％ | ${ }_{739.9}$ | 716.7 | －23．2 | －3．1\％ |
 | 7．4\％ | 722.6 | 715.1 | －7．5 | －1．0\％ |
 | 8．6\％ | 715.8 6993 | 711.8 | －4．0． | －0．9\％ |
 | 9．9\％ | 6993 | 705.8 | 6.5 | 0．9\％ |
 | 11．1\％ | 697．1 | ${ }_{693.7}^{696}$ | －3．3 | －0．5\％ |
 | 12．3\％ | 689.6 | 666.5 | －23．1 | －3．4\％ |
 | 13．6\％ | ${ }^{681.8}$ | 665．4 | －16．4 | －2．4\％ |
 | 14．8\％ | 677．1 | ${ }_{659.9}^{659}$ | －16．3 | －2．4\％ |
 | 16．0\％ | 673．5 | 659.8 6439 | －14．7 | －2．2\％ |
 | 17．3\％ | ${ }_{6438}^{6725}$ | 643.9 | －28．6 | －4．2\％ |
 | 18．5\％ | ${ }_{6}^{643.8}$ | 641.7 | －2．1 | －0．3\％ |
 | 19．8\％ | ${ }_{6}^{634.8}$ | ${ }^{639.0}$ | 4.2 | 0．7\％ |
 | 221．0\％ | 633．6 | ${ }_{6}^{632.2}$ | －1．4 | －0．2\％ |
 | 22．5\％ | 629.8 6160 | ${ }^{631.7}$ | 1.9 | － |
 | 24．7\％ | 615.9 | 600.9 | －14．9 | ${ }^{-1.4 \%}$ |
 | 22．9\％ | 595.8 594.8 | 599.0 595.4 | 3.1 | 0．5\％ |
 | ${ }^{27.2 \%}$ | 594．0 | 595.4 | 1.4 | 0．2\％ |
 | ${ }_{\text {2，}}$ | ${ }_{5}^{590.7}$ | ${ }_{589.1}^{590.4}$ | －1．6 | |
 | 30．9\％ | 589.8 | 588.5 | －1．2 | －0．2\％ |
 | 32．1\％ | 581.0 | 584.5 | 3.5 | 0．6\％ |
 | | 578.6 571.8 | 583.5 5821 | $\stackrel{4}{40}$ | － |
 | 34．6\％ | ${ }_{571.1}$ | ${ }_{58}^{58.1}$ | ${ }^{10.3}$ | ${ }^{1.8 \%}$ |
 | 37．0\％ | 571.5 | 580.2 | 8.6 | 1．5\％ |
 | 38．3\％ | 569.7 568.7 | 576.5 5778 | ${ }_{6}^{6.8}$ | 1．2\％ |
 | 39．5\％ | 568.4 5603 | 574.8 5732 | ${ }^{6.4}$ | 1．11\％ |
 | 40．7\％ | 560.3 559.0 | 573.2 5707 | 13.0 116 | 2．3\％ |
 | 43．2\％ | 559.0 5420 | ${ }_{5689}^{57}$ | 11.6 26.9 | 2．1\％ |
 | 44．4\％ | 539.9 | 557.5 | 17.6 | 3．3\％ |
 | 45．7\％ | 539.3 5361 | 556.2 5516 | 16.9
 155
 15 | 3．1\％ |
 | 46．9\％ | ${ }_{534.1}^{536.1}$ | 551.6 5423 | ${ }^{15.5}$ | ${ }_{1}^{2.9 \%}$ |
 | ${ }_{4}^{48.4 \%}$ | 532．7 | 542．2 | 74.8
 14.8 | 1．4\％${ }^{1.8 \%}$ |
 | 50．6\％ | 524．2 | | $\begin{array}{r}14.5 \\ \hline 132\end{array}$ | 2．8\％ |
 | 53．1\％ | 5213．5 | ${ }_{524.3}^{535.2}$ | 13.2 10.9 | 2．1\％ |
 | 54．3\％ | 509.7 | 522.1 | 12.4 | 2．4\％ |
 | 55．6\％ | 509.5 509.1 | 513.0 510.8 | 3.5 | 0．7\％ |
 | 58．0\％ | 508.5 | 508.9 | 0.4 | 0．1\％ |
 | 59．3\％ | 502.2 | 508.2 | 6.0 | 1．2\％ |
 | －6．5\％ | 501.8 4999 | 507.5 5024 | ${ }_{25}^{5.7}$ | － 1.1% |
 | | 486.0 | 502.3 | 16.3 | 3．3\％ |
 | 64．2\％ | 485.9 | 496.7 | 10.8 | 2．2\％ |
 | 65．4\％ 6.7 | ${ }_{484.5}^{484}$ | 4990.0 4905 | ${ }_{1}^{11.5}$ | －${ }_{1}^{2.4 \%}$ |
 | 67．9\％ | 480.5 | 486.4 | 5.9 | 1．2\％ |
 | 69．1\％ | 480.3 | 485.9 | 5.6 | 1．2\％ |
 | 70．4\％ | ${ }_{4793}^{480.1}$ | 484.6 4829 | ${ }_{3.6}^{4.5}$ | ${ }_{0}^{0.9 \%}$ |
 | 72．8\％ | 475.8 | 482.8 | 7.0 | 1．5\％ |
 | 74．1\％ | 472.9 | 481.6 | 8.7 | 1．8\％ |
 | 75．3\％ | ${ }_{471.8}^{472.4}$ | ${ }_{480.8}^{481.0}$ | ${ }_{8}^{8.6}$ | 1．9\％ |
 | 77．8\％ | 469.0 | 477.6 | 8.7 | 1．8\％ |
 | 79．0\％ | 468．9 | ${ }_{473.6}^{473.6}$ | ${ }_{5}^{4.6}$ | 1．0\％ |
 | － | ${ }_{4678.8}^{468.1}$ | ${ }_{469.5}^{473.1}$ | 5.0 1.7 | 0．4\％ |
 | 822．7\％ | ${ }_{46.8}^{46.8}$ | 468.1 | 1.4 | 0．3\％ |
 | 885．2\％ | ${ }_{450.6}^{451.2}$ | ${ }_{4510}^{466.9}$ | | 3．5\％ |
 | ${ }_{85.4 \%}$ | ${ }_{4477.6}$ | ${ }_{494.0}^{451}$ | 2．1
 0.3 | 0．5\％ |
 | 887．7\％ | 444．9 | 446.5 | 1.6 | 0．4\％ |
 | ${ }^{88.9 \%}$ | ${ }_{4}^{438.1}$ | ${ }_{4322}^{438.3}$ | 0.2 3.0 | 0．1\％ |
 | 91．4\％ | ${ }_{420.3}^{42.3}$ | ${ }_{430.1}^{432}$ | ${ }_{9.8}^{3.0}$ | 2．3\％ |
 | 932．6\％ | 400．4 398.1 | 428.7 407.0 | 22.4 8.9 | 2．5．2\％ |
 | 95．1\％ | 394.4 | 394.9 | 0.5 | 0．1\％ |
 | 96．3\％ | ${ }^{368.5}$ | 377.6 3568 | 9.1 | 2．5\％ |
 | 97．5\％ | ${ }^{354.0}$ | 359.8 3428 | 6.8 | 1．9\％ |
 | －${ }^{\text {90．8．0\％}}$ | ${ }_{256.2}$ | ${ }_{256.4}$ | 0.1 | 0．1\％ |

 Table $\mathrm{SQ}-30-\mathrm{b}$
 at A Alemative Intake, Monthy EC

 | | | February | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent | DCR 2015 Without | DCR 2015 With Project | Absolute | |
 | Probability | Monthly EC | Monthy EC | (untosicm) | Herere |
 | (\%) | ${ }_{8}$ | 7999 | 177 | |
 | | 817.6 | 79.9 | -1.1 | -2.2\% |
 | 2.5\% | 731.2 697.6 | ${ }_{695.3}^{706.2}$ | -25.0 | --.4 .46
 -0.3% |
 | 3.7\% | 685.0 | 683.4 | -1.6 | -0.2\% |
 | 4.9\% | 682.8 | 672.0 | -10.8 | |
 | 6.2\% 7 | ${ }_{668.6}^{675.2}$ | 669.4 637.3 | -5.8. -31.3 | - |
 | 8.6\% | 666.9 | 6333 | -336 | |
 | 9.9\% | 658.6 | 630.0 | -28.7 | -4.4\% |
 | 11.2\% ${ }^{\text {12, }}$ | 631.0 629.0 | 629.7 612.0 | -1.3 -17.0 | - ${ }_{-2.2 \%}^{-0.7 \%}$ |
 | 13.6\% | 620.0 | 603.5 | -16.5 | -2.7\% |
 | 14.8\% | 6197 | 590.0 | -29.7 | -4.8\% |
 | - 11.0 \% ${ }^{\text {17.3\% }}$ | 613.6 612.2 | 588.5 583.1 | ${ }_{-29.1}$ | -4.1\% ${ }_{-4}$ |
 | 18.5\% | 603.0 | 582.3 | -20.7 | |
 | 19.8\% | 593.4 | 578.2 | -15.2 | -2.6\% |
 | ${ }^{21.0 \%}$ | 589.4 580.8 | ${ }_{575.3}^{577.7}$ | -11.7 | -2.0\% |
 | 23.5\% | 578.6 | 574.9 | -3.6 | -0.6\% |
 | 24.7\% | 572.1 | 572.7 | 0.5 | 0.1\% |
 | 227.2\% | ${ }_{566.1}^{568.1}$ | 568.6 566.1 | ${ }_{0.1}^{0.5}$ | - 0.11% |
 | 28.4\% | 563.7 | 563.6 | -0.1 | 0.0\% |
 | 29.6\% | 563.7 | 562.6 | -1.1 | -0.2\% |
 | 30.9\% | ${ }_{563.0}^{563}$ | 565.4 | -0.5 -.25 | -0.4\% |
 | 33.3\% | 561.4 | 557.6 | -3.8 | -0.7\% |
 | 34.6\% | 561.2 | 554.1 | -7.2 | -1.38 |
 | 35.8\% ${ }_{\text {37 }}$ | 558.5 | 555.4 | -5.1 | -0.9\% |
 | 38.3\% | 552.6 549.8 | 550.4 550.4 | -2.2 0.6 | -0.4\% |
 | 39.5\% | 544.7 | 548.9 | 4.2 | 0.8\% |
 | ${ }_{4}^{42.0 \% \%}$ | ${ }_{539.3}^{539.6}$ | ${ }_{543.5}^{54.9}$ | ${ }_{4.2}^{4.3}$ | 0.8\% |
 | 43.2\% | 535.9 | 543.3 | 7.4 | 1.4\% |
 | 4.4.7\% | 531.3 527.6 | 532.8 532.6 | 1.5 5.0 | - |
 | 46.9\% | 525.9 | 532.0 | 1.2 | 0.2\% |
 | 49.4\% | 520.5 5147 | 525.8 524.4 | 5.2 | 1.0\% |
 | 50.6\% | ${ }_{512.3}^{514.7}$ | 524.4 520.1 | ${ }_{7.9}^{9.7}$ | ${ }_{1}^{1.9 \%}$ |
 | 51.9\% | 509.7 | 519.6 | 9.8 | 1.9\% |
 | 554.3\% | ${ }_{505.5}^{506.2}$ | ${ }_{514.7}^{514.7}$ | ${ }_{8.2}^{8.5}$ | 1.6\% |
 | 55.6\% | 505.1 | 513.1 | 7.9 | 1.6\% |
 | 56.8\% 5 | ${ }_{503.4}^{503}$ | ${ }_{505.7}^{507.2}$ | ${ }_{2.4}^{2.7}$ | ${ }_{0}^{0.5 \%}$ |
 | 59.3\% | 502.9 | 505.3 | 2.4 | 0.5\% |
 | 60.7\% | 502.8 5015 | 504.3 504.1 | ${ }^{1.5}$ | ${ }_{0}^{0.3 \% \%}$ |
 | 6.3.0\% | ${ }_{499.7}^{501.5}$ | ${ }_{502.2}^{504.1}$ | ${ }_{2.5}^{2.6}$ | 0.5\% |
 | 64.2\% | 498.9 | 502.0 | ${ }^{2.2}$ | 0.6\% |
 | 65.4\% | 499.9 496.9 | ${ }_{490.9}$ | 3.8 3.0 | 0.8\% |
 | 67.9\% | 496.1 | 499.0 | 2.9 | 0.6\% |
 | 70.4\% | ${ }_{488.5}^{492.6}$ | 4997.8 | ${ }_{9.1}^{6.2}$ | - |
 | 71.6\% | 483.7 | 487.2 | 3.6 | 0.7\% |
 | 72.8\% | ${ }_{474.1}^{481.2}$ | ${ }_{483.8}^{487.0}$ | 5.8 9.6 | li. ${ }^{1.2 \%}$ |
 | 75.3\% | 472.1 | 482.4 | 10.3 | 2.2\% |
 | 76.5\% | 471.9 | 480.8 | 8.9 | 1.9\% |
 | 779.8\% | 459.3 | ${ }_{460.9}^{474.4}$ | 15.0 1.7 | ${ }^{3.3 \%}$ |
 | 80.2\% | 447.7 | 460.1 | ${ }^{12.5}$ | 2.8\% |
 | - 81.50 | 420.8 | 451.0 | 30.2 | + $\begin{aligned} & 7.4 \% \\ & 0.4 \%\end{aligned}$ |
 | 84.0\% | 419.3 | 420.4 | 1.1 | 0.3\% |
 | 85.2\% | 407.4 | 419.9 | ${ }^{12.5}$ | 3.1\% |
 | ${ }^{86.44 \%}$ | 400.2 | | | |
 | 88.9\% | 383.2 | 383.4 | ${ }_{0} .3$ | 0.1\% |
 | 90.1\% | ${ }^{380.4}$ | 380.7 36.5 | 0.3 | 0.1\% |
 | ${ }_{92.6 \%}^{91.4 \%}$ | ${ }_{352.1}^{36.0}$ | ${ }_{345.8}^{366.5}$ | -0.4 | ${ }_{\text {- }}^{-0.8 \%}$ |
 | 93.8\% | 345.3 | 342.0 | -3.3 | -1.0\% |
 | 95.1\% ${ }_{963 \%}$ | 341.6 356 | 342.0 | ${ }^{0.3}$ | 0.1\% |
 | 97.5\% | ${ }_{297.5}^{3357}$ | ${ }_{296.8}^{338.3}$ | -0.7 | -0.2\% |
 | 98.8\% | 296.1 | 296.2 | 0.1 | 0.0\% |
 | 100.0\% | 200.7 | 200.9 | 0.1 | 0.1\% |

 ctoria Canal a a Altemative Intake, Monthly EC
 Probability
 of Exceadance

 | $\begin{aligned} & \text { Percent } \\ & \text { Excedance } \\ & \text { Probobability } \end{aligned}$ | | March | | | Appril | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {dCR }} \mathbf{2} 2015$ Without | DCR 2015 With Project | Absolute | | | ${ }_{\text {dCR }}$ 2015 Without | DCR 2015 With Project | Absolute | |
 | | Monthly EC | Monthly EC | (umHosicm) | Difference (\%) | Probability | Monthly EC | Monthly EC | (uitererce | Ifference (\%) |
 | (0) | Cosio | 68 | | | (\%) | 6345 | 635 | 06 | |
 | .0\% | 69.9 | | -9.9 | -1.4\% | . 2 \% | 634.5 | 635.0 | 0.6 | 0.1\% |
 | 2.5\% | 677.1 661.0 | 660.6 657.2 | -10.5 -3.9 | ${ }^{-1.6 \%}$ | ${ }_{2}^{1.5 \%}$ | 634.4 619.2 | 633.8 626.0 | -0.6 6.8 | -0.1\% |
 | 3.7\% | 635.7 | 626.5 | -9.3 | -1.5\% | 3.7\% | 615.6 | 624.4 | 8.8 | |
 | 4.9\% | 618.0 | 619.4 | 1.4 | 0.2\% | 4.9\% | 604.1 | 616.6 | 12.5 | |
 | 6.2\% | 605.3 | 611.0 | 5.7 | 0.9\% | 6.2\% | 601.5 | 590.3 | -11.2 | -1.9\% |
 | 7.4\% | 595.4 | 594.6 | -0.8 | -0.1\% | 7.4\% | 598.5 | 588.2 | -10.3 | -1.7\% |
 | - ${ }_{\text {8.9\%\% }}$ | 585.3 581.0 | 588.8 577.7 | -3.2
 .2 | -0.6\% | - ${ }_{\text {8.9.9\% }}$ | 584.4 574.2 | 587.5 577.3 | ${ }_{3.1}^{3.1}$ | 0.5\% |
 | 11.1\% | 577.6 | 577.7 | 0.1 | 0.0\% | 11.1\% | 553.4 | 575.5 | 22.1 | 4.0\% |
 | 12.3\% | 577.1 | 570.4 | -6.7 | -1.2\% | 12.3\% | 548.2 | 552.8 | 4.6 | 0.8\% |
 | | 573.7 570.3 | 569.9 566.5 | -3.8 -3.8 | - | | ${ }_{531.0}^{538.8}$ | 539.7 588.9 | 1.0 -2.1 | -0.2\% |
 | 16.0\% | 568.7 | 560.5 | -8.1 | -1.4\% | 16.0\% | 530.0 | 525.7 | -4.4 | -0.8\% |
 | 17.3\% | 564.2 | 560.1 | -4.1 | -0.7\% | 17.3\% | 524.1 | 522.4 | | 3\% |
 | 18.5\% | 560.2 | 559.3 | -0.9 | -0.2\% | 18.5\% | 517.2 | 513.2 | -4.0 | -0.8\% |
 | 19.8\% | 557.8 | 556.9 | -0.9 | -0.2\% | 19.8\% | 513.1 | 508.3 | -4.9 | -1.0\% |
 | 222.2\% | 549.8 545.1 | 539.6 535.9 | -10.2 -9.2 | - -1.9% | ${ }^{21.0 \%}$ | 507.3 496.7 | ${ }_{499.8}^{503.7}$ | -3.1 | -0.7\% |
 | 23.5\% | 542.6 | 532.1 | -10.5 | -1.9\% | 23.5\% | 494.9 | 496.0 | 1.1 | 0.2\% |
 | 24.7\% | 532.6 | 53.3 | -2.3 | -0.4\% | 24.7\% | 492.3 | 493.5 | 1.2 | |
 | 25.9\% | 529.0 | 528.8 | -0.3 | -0.1\% | 25.9\% | 488.6 | 489.4 | 0.8 | |
 | 27.2\% | 527.7 | 524.5 | -3.1 | -0.6\% | 27.2\% | 485.4 | 484.9 | -0.5 | |
 | 28.6\% | 526.0 522.3 | 523.7 522.9 | -2.2 0.7 | -0.4\% | 28.4\% 2.6 | 483.1 483.0 | ${ }_{482.5}^{483.5}$ | 0.4 -0.5 | -0.1\% |
 | 30.9\% | 522.2 | 518.4 | -3.8 | -0.7\% | 30.9\% | 480.6 | 482.2 | 1.7 | 0.3\% |
 | 32.1\% | 514.1 | 508.3 | -5.7 | -1.1\% | 32.1\% | 462.6 | 479.2 | 16.6 | |
 | 33.3\% | 512.5 | 504.9 | -7.5 | -1.5\% | 33.3\% | 462.1 | 472.8 | 10.6 | 2.3\% |
 | 34.6\% | 503.0 | 504.2 | 1.2 | 0.2\% | 34.6\% | 461.8 | 469.4 | | |
 | 357.0\% | ${ }_{501.3}^{502.6}$ | 500.1 | -0.3 -1.2 | -0.0.2\% | 退35.8\% | ${ }_{453.0}^{456.6}$ | ${ }_{453.8}^{46.6}$ | 10.0 0.8 | 2.2\% |
 | 38.3\% | 498.3 | 496.8 | -1.5 | -0.3\% | 38.3\% | 437.9 | 450.2 | 12.3 | 2.8 |
 | 39.5\% | 497.5 | 494.2 | -3.3 | -0.7\% | 39.5\% | 43.0 | 438.9 | 8.9 | |
 | 40.7\% | 493.5 | 492.5 | -0.9 | -0.2\% | 40.7\% | 423.6 | 437.7 | 14.1 | 3.3\% |
 | 42.0\% | 491.7 | 491.3 | -0.4 | -0.1\% | 42.0\% | 416.7 | 430.1 | 13.3 | 3.2\% |
 | 44.4\% | ${ }_{490.4}^{490.4}$ | 4990.8 489.6 | 0.4 0.6 | -0.1\% | 43.2\% | ${ }_{411.1}^{415.8}$ | ${ }_{4}^{427.4}$ | 11.5 5.3 | ${ }_{\text {l }}^{\text {2.3\% }}$ |
 | 45.7\% | 483.6 | 488.2 | 4.6 | 0.9\% | 45.7\% | 407.2 | 408.2 | 1.0 | |
 | 46.9\% | 477.4 | 484.7 | 7.2 | 1.5\% | 46.9\% | 403.8 | 404.5 | 0.7 | |
 | 48.1\% | 476.8 | 479.6 | 2.8 | 0.6\% | 48.1\% | 392.0 | 392.5 | 0.5 | 0.1\% |
 | 49.4\% | 470.7 | 477.9 | 7.3 | 1.5\% | 49.4\% | 381.1 | 381.4 | | 0.1\% |
 | 50.9\% | ${ }_{465.1}^{46.7}$ | ${ }_{471.1}^{472.4}$ | 2.7 5.9 | - ${ }^{0.6 \%}$ | 50.6\% | ${ }_{362.7}^{365.6}$ | 364.0 363.7 | -1.6 1.0 | -0.3\% |
 | 53.1\% | 456.6 | 465.9 | 9.4 | 2.0\% | 53.1\% | 354.1 | 353.2 | -0.9 | -0.2\% |
 | 54.3\% | 452.1 | 459.0 | 6.9 | 1.5\% | 54.3\% | 348.2 | 348.2 | 0.0 | |
 | 55.6\% | 448.5 | 453.3 | 4.8 | 1.1\% | 55.6\% | 348.1 | 348.1 | 0.0 | 0.0\% |
 | ${ }^{56.8 \%}$ | 445.1 | 448.7 | 3.6 | 0.8\% | 56.8\% | 345.8 | 345.7 | -0.1 | 0.0\% |
 | 58.0\%\% | ${ }_{444.0}^{44.5}$ | ${ }_{4465.5}^{446.3}$ | 1.8 1.5 | - ${ }_{\text {e. }}$ | 年58.3\% | 335.1 334.6 | 336.5 334.3 | 1.3 -0.4 | -0.4\% |
 | 60.5\% | 442.4 | 444.5 | 2.1 | 0.5\% | 60.5\% | 334.6 | 333.9 | -0.6 | -0.2\% |
 | ${ }^{61.7 \%}$ | | 442.0 | | 0.0\% | ${ }^{61.7 \%}$ | ${ }_{3}^{323.7}$ | ${ }_{3}^{323.2}$ | -0.5 | ${ }^{-0.2 \%}$ |
 | 664.2\% | ${ }_{424.5}^{4388}$ | ${ }_{4}^{435.9}$ | 0.1 1.3 | 0.3\% | -63.0\% | 317.5 314.7 | 317.8 314.7 | 0.3 0.1 | - 0.0% |
 | 65.4\% | 421.9 | 421.7 | -0.1 | 0.0\% | 65.4\% | 311.1 | 311.4 | 0.3 | 0.1\% |
 | ${ }_{6}^{66.7 \%}$ | 415.4 | 419.5 | 4.1 | 1.0\% | ${ }^{66.77 \%}$ | 308.2 | 308.4 | 0.2 | 0.1\% |
 | 69.1\% | ${ }_{412.5}^{413.1}$ | ${ }_{4113.7}$ | 1.2 | 0.3\% | 69.1\% | ${ }_{306.1}^{306.6}$ | ${ }_{306.1}^{30.6}$ | 0.0 | 0.0\% |
 | 70.4\% | 411.1 | 410.9 | -0.2 | 0.0\% | 70.4\% | 301.2 | 300.8 | -0.4 | -0.1\% |
 | 71.6\% ${ }^{\text {72.8\% }}$ | ${ }^{400.6}$ | ${ }^{402.6}$ | | | | ${ }^{300.3}$ | 300.1 | -0.2 | -0.1\% |
 | 74.1\% | 375.5 | ${ }_{374.8}$ | ${ }_{-0.7}^{0.6}$ | -0.2\% | 74.1\% | ${ }_{207.5}$ | ${ }_{297.5}^{299.2}$ | -1.0 | -0.0\% |
 | 75.3\% | 369.9 | ${ }^{371.3}$ | 1.4 | 0.4\% | 75.3\% | 295.4 | 295.7 | 0.2 | 0.1\% |
 | 7778\% | ${ }^{361.8}$ | 361.9 | 0.1 | 0.0\% | ${ }^{76.5 \%}$ | ${ }_{293}^{2935}$ | ${ }_{2925}^{293.5}$ | 0.1 | 0.0\% |
 | 79.0\% | ${ }_{357.4}$ | ${ }_{357.4}$ | 0.0 | ${ }_{0}^{0.0 \%}$ | 79.0\% | ${ }_{281.3}^{292.6}$ | ${ }_{282.5}^{292.7}$ | 1.2 | 0.4\% |
 | 80.2\% | 355.9 | 356.4 | 0.6 | 0.2\% | 80.2\% | 279.2 | ${ }^{279.3}$ | 0.1 | 0.0\% |
 | 881.7\% | 348.3 3459 | 348.1 | | | | ${ }^{278.8}$ | ${ }^{279.0}$ | | |
 | 84.0\% | 3355 | 3399.1 | 3.5 | 1.0\% | 822.0\% | ${ }_{267.4}^{27.5}$ | ${ }_{267.3}^{274.7}$ | -0.1 | 0.0\% |
 | 88.2\% | 333.6 3329 | ${ }_{3}^{3327}$ | 0.1 | 0.0\% | 85.2\% | 264.9 | 264.9 | 0.0 | 0.0\% |
 | 80.4\% | ${ }^{332.9}$ | ${ }_{332.7}^{332.7}$ | | | | ${ }_{251}^{255.5}$ | ${ }_{234.4}^{255.7}$ | ${ }^{0.2}$ | -0.3\% |
 | 88.9\% | 330.1 | 325.4 | -4.8 | -1.4\% | 88.9\% | ${ }_{23,7}^{235.1}$ | ${ }_{234.0}^{234.4}$ | -0.3 | - ${ }_{\text {0.1\% }}$ |
 | ${ }^{90.1 \%}$ | ${ }^{322.9}$ | 319.9 | -3.0 | -0.9\% | 90.1\% | ${ }_{2}^{288.2}$ | ${ }_{278}^{228.5}$ | 0.3 | 0.1\% |
 | 92.6\% | 319.8 3130 | 313.5 3112 | ${ }_{-17}$ | | | ${ }_{2152}^{216.7}$ | ${ }_{2100}^{217.2}$ | 0.6 | ${ }^{0.3 \% \%}$ |
 | 993.8\% | 310.9 | 290.2 | -20.7 | -6.6\% | 93.8\% | ${ }_{206.0}^{215.2}$ | ${ }_{206.2}^{210.0}$ | 0.2 | 0.1\% |
 | 95.1\% | 2897 | 288.8 | -0.9 | -0.3\% | 95.1\% | 193.4 | 193.7 | 0.3 | 0.2\% |
 | 9975\% | 288.6 247.9 | 288.6 247.9 | -0.1 | -0.0\% | -96.5\% | 192.4
 $\begin{array}{l}1898\end{array}$ | ${ }_{1901}^{190.7}$ | -0.6 | -0.1\% |
 | 98.8\% | ${ }_{232.1}^{24.9}$ | 232.1 | -0.1 | 0.0\% | 98.8\% | 189.8 | 199.0 | 0.2 | 0.1\% |
 | 100.0\% | 221.6 | 222.0 | 0.4 | 0.2\% | 100.0\% | 178.6 | 178.8 | 0.1 | 0.1\% |

 | | | | |
 | :---: | :---: | :---: | :---: |

 Table SQ-30-b
 Talle SQ-3O-b
 Victoria Canal at Alterative Itake, Monthly EC
 Porbabily

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {OCR } 2015 \text { Without }}$ | DCR 2015 With Project | Absolute | |
 | | Monthly EC | Monthly EC | (itierersce | ference (\%) |
 | (\%) | UnHosicm) | masicia | | |
 | 0.0\% | 476.4 | 482.6 | 6.2 | 1.3\% |
 | ${ }^{1.2 \%}$ | ${ }_{4}^{472.2}$ | 466.0 45.3 | ${ }^{-6.2}$ | -1.3\% |
 | 2.5\% | 456.1 | 456.3 | 0.2 | \% |
 | 3.9\% | ${ }_{444.1}^{447}$ | ${ }_{4474}^{45.6}$ | ${ }_{3 .}^{8.2}$ | -1.7\% |
 | 6.2\% | 444.0 | 440.9 | -3.1 | -0.7\% |
 | 7.4\% | 441.1 | 439.2 | -1.9 | -0.4\% |
 | 8.6\% | ${ }^{433.8}$ | 438.8 4357 | ${ }^{0.0}$ | -0.0\% |
 | 11.1\% | 427.4 | 430.5 | 3.1 | 0.7\% |
 | 12.3\% | 427.4 | 429.0 | 1.6 | 0.4\% |
 | 俍 $\begin{aligned} & 13.6 \% \\ & 148 \%\end{aligned}$ | 423.8 420.9 | ${ }_{422.0}^{427}$ | 4.2 6.2 | - ${ }_{\text {1.5\% }}$ |
 | 16.0\% | 420.5 | 424.1 | 3.7 | 0.9\% |
 | 17.3\% | 419.9 | 421.2 | 1.2 | 0.3\% |
 | - $\begin{aligned} & 18.5 \% \\ & 1989 \%\end{aligned}$ | 415.0 3968 | ${ }_{396.7}^{420.7}$ | 5.8
 0.0
 0 | - 1.4% |
 | 21.0\% | 389.3 | 392.8 | 3.5 | 0.9\% |
 | 22.2\% | 389.0 | 3897 | 0.7 | 0.2\% |
 | ${ }_{2}^{23.5 \%}$ | 384.3
 3824 | 387.9 3849 | 3.6 2.5 | ${ }_{0}^{0.9 \% \%}$ |
 | 25.9\% | 378.7 | 383.4 | 4.7 | 1.2\% |
 | 27.2\% | ${ }^{3777.3}$ | 378.6 | 1.3 | 0.3\% |
 | 229.6\% | 377.3 376.8 | 378.6 378.4 | 1.6 1.6 | 0.4\% 0 |
 | 30.9\% | 376.1 | 377.4 | 1.3 | 0.4\% |
 | 32.1\% | ${ }_{3}^{375.6}$ | 377.0 | 0.4 | 0.1\% |
 | 334.6\% | ${ }_{3}^{375.3}$ | ${ }_{372.9}^{374.7}$ | -0.6 -1.2 | - ${ }_{\text {- }}^{-0.3 \%}$ |
 | 35.8\% | 373.8 | 372.8 | -1.0 | -0.3\% |
 | | ${ }^{372.8}$ | ${ }^{372.4}$ | -0.4 | -0.1\% |
 | 39.5\% | 369.9 369.3 | 371.8 371.8 | 1.9 2.4 | 0.7\% 0 |
 | 40.7\% | 369.2 | 370.1 | 0.9 | 0.2\% |
 | 42.0\% | ${ }^{367.3}$ | ${ }^{369.3}$ | 1.9 | 0.5\% |
 | 44.4\% | 366.9 366.1 | 369.2 367.9 | 2.7 1.7 | - 0.5% |
 | 45.7\% | 365.0 | 366.1 | 1.1 | 0.3\% |
 | | ${ }^{364.4}$ | ${ }_{365.7}$ | 1.3 | 0.4\% |
 | 49.4\% | 364.0 363.3 | 365.6 365.2 | 1.6 1.9 | - ${ }_{\text {0.5\% }}$ |
 | 50.6\% | 362.3 | 361.6 | -0.8 | -0.2\% |
 | 51.9\% | 361.3 | 361.6 | 0.2 | 0.1\% |
 | ${ }_{5}^{53.3 \%}$ | ${ }_{360.6}$ | 361.4 360.8 | 0.3 0.3 | - 0.1% |
 | 55.6\% | 360.5 | ${ }_{360.3}$ | -0.2 | -0.1\% |
 | 56.8\% | 359.0
 358.5 | 359.8
 359.5 | 0.8 1.0 | - |
 | 59.3\% | 356.9 | 358.8 | 1.9 | 0.5\% |
 | 60.5\% | 355.1 3531 | 355.1 | 3.0 | 0.9\% |
 | 61.7\% | | | 1.9 | 0.5\% |
 | 64.2\% | ${ }_{352.1}$ | ${ }_{352.3}$ | 0.3 | - |
 | 65.4\% | 350.2 | 351.7 | 1.5 | 0.4\% |
 | 66.7\% 67.9% | | 351.6 348.2 | 3.5 0.2 | |
 | 69.1\% | 347.7 | 347.8 | 0.2 | 0.1\% |
 | 70.4\% | 346.7 | 347.4 | 0.7 | 0.2\% |
 | 71.6\% | ${ }^{3446.6}$ | | | |
 | 72.8.1\% | 344.2
 343 | 344.9 346.6 | 0.7 3.4 | - |
 | 75.3\% | 340.5 | 345.7 | 5.2 | 1.5\% |
 | 76.5\% | 339.8 | | | |
 | 7.9.0\% | ${ }^{337.7}$ | ${ }_{339.8}$ | ${ }_{2.1}^{1.3}$ | 0.6\% |
 | 80.2\% | ${ }^{337.6}$ | 337.2 | -0.5 | -0.1\% |
 | 81.5\% | 337.4 | ${ }_{353.8}$ | -1.5 | -0.5\% |
 | 84.0\% | ${ }_{328.4}$ | ${ }_{329.3}^{332.6}$ | 3.2 0.9 | 0.3\% |
 | 85.2\% | 325.5 | 326.2 | 0.7 | 0.2\% |
 | - 86.48% | $\begin{array}{r}324.7 \\ 3151 \\ \hline\end{array}$ | 324.7 340. | 0.0 | 0.0\% |
 | 88.9\% | 301.5 | 301.6 | -4.1 | -1.0\% |
 | 90.1\% | 300.1 | 300.4 | 0.3 | 0.1\% |
 | - 91.4% | 288.4 | 289.4 | 1.0 | 0.3\% |
 | 93.8\% | ${ }_{284.6}^{287.7}$ | ${ }_{285.3}^{288.4}$ | 0.8 0.7 | - ${ }_{\text {0.2\% }}^{0.3 \%}$ |
 | 95.1\% | 281.2 | 281.7 | 0.5 | 0.2\% |
 | 96.3\% | ${ }^{279.0}$ | 279.7 | 0.7 | 0.3\% |
 | 97.5\% ${ }_{\text {98.8\% }}$ | 259.0 | 259.4 | 0.4 | 0.1\% |
 | 100.0\% | ${ }_{208.4}^{24.9}$ | 206.9 | ${ }_{-1.6}$ | -0.8\% |

 | $\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{aligned}$ | Seplember | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | DCR 2015 With Project | Absolute | Relative |
 | | Monthly EC | Monthly EC | (idiference | ference (1) |
 | (\%) | 5175 | 5126 | 48 | |
 | | 519\% | 512.3 | | -.9\% |
 | 2.5\% | ${ }_{483.9}$ | ${ }_{493.9}$ | ${ }_{10.4}^{6.4}$ | 2.1\% |
 | 3.7\% | 482.9 | 493.2 | 10.3 | 2.1\% |
 | 4.9\% | 480.1 | 483.4 | 3.3 | 0.7\% |
 | 7.4\% | ${ }_{473.6}^{479.0}$ | ${ }_{470.9}^{471.7}$ | -7.4 -2.7 | - |
 | 8.6\% | 472.9 | 470.4 | -2.5 | 5\% |
 | 9.9\% | 469.5 | 469.4 | -0.1 | 0.0\% |
 | -11.1\% | 467.6 464.6 | 468.1 467.6 | 0.5 3.1 | 0.7\% |
 | 13.6\% | 462.1 | 463.7 | 1.6 | 0.4\% |
 | 14.8\% | 461.5 | 463.5 | 1.9 | |
 | - $\begin{aligned} & \text { 16.0\% } \\ & 17.3 \%\end{aligned}$ | ${ }_{454.1}^{461.4}$ | ${ }_{459.3}^{460.9}$ | -0.5
 5.2 | -0.1\% |
 | 18.5\% | 453.9 | 457.0 | 3.2 | 0.7\% |
 | 19.8\% | 453.7 | 453.7 | 0.0 | 0.0\% |
 | ${ }_{2}^{21.0 \%}$ | ${ }_{450.5}^{452.8}$ | ${ }_{450.7}^{450.2}$ | -2.6 -0.8 | -0.0.2\% |
 | 23.5\% | 449.8 | 449.3 | -0.5 | -0.1\% |
 | 24.7\% | 449.2 | 445.6 | -3.6 | -0.8\% |
 | 27.2\% | 448.1 | 438.5 | --3.6 | ${ }_{-2.1 \%}^{-0.9 \%}$ |
 | 28.4\% | 446.7 | 437.0 4360 | -917 | -2.2\% |
 | 29.6\% | 446.0 | 436.9 | -9.1 | -2.0\% |
 | 32.1\% | 440.5 | ${ }_{435.2}^{436.0}$ | -6.3 | -1.2\% |
 | 33.3\% | 440.3 | 434.7 | -5.6 | -1.3\% |
 | | 439.8 | 434.6 | 5.1 | -1.2\% |
 | 35.0\% | ${ }_{434.1}$ | ${ }_{434.4}^{434.4}$ | -1.3 | ${ }^{0.1 \%}$ |
 | 38.3\% | 431.2 | 433.3 | 2.1 | 05 |
 | | 431.1 | 432.4 | 1.4 | 0.3\% |
 | 42.0\% | 429.2 | ${ }_{430.5}^{432.4}$ | ${ }_{1.3}^{1.6}$ | 0.3\% |
 | 43.2\% | 427.9 | 427.6 | -0.2 | -0.1\% |
 | | | ${ }^{426.3}$ | -0.9 | -0.2\% |
 | 45.9\% | 424.1 | ${ }_{423.5}^{42.9}$ | ${ }_{-0.6}^{1.7}$ | -0.1\% |
 | 48.1\% | 423.1 | 423.5 | 0.4 | 0.1\% |
 | | | 423.0 | 4.5 | 1.1\% |
 | 50.9\% | ${ }_{412.4}^{412.6}$ | ${ }_{4}^{4215.5}$ | 8.9 8.9 | ${ }_{0.6 \%}^{2.2 \%}$ |
 | 53.1\% | 412.0 | 413.2 | 1.2 | 0.3\% |
 | 54.3\% | 411.9 | 413.2 | 1.2 | 0.3\% |
 | 55.8\% | ${ }_{400.8}$ | ${ }_{409.3}$ | ${ }_{2} .5$ | 0.6\% |
 | 58.0\% | 406.7 | 403.7 | -2.9 | -0.7\% |
 | | | | | |
 | 61.7% | 398.6 | 393.9 | 5.3 | 1.4\% |
 | 63.0\% | 388.0 | 387.4 3 | -0.6 | -0.1\% |
 | 64.2\% | 387.9 386.0 | 385.7 382.0 | --2.10 | --0.0\% |
 | 66.7\% | 383.1 | 378.3 | -4.7 | -1.2\% |
 | 67.9\% | 381.8
 3808 | 377.9 376.0 | -3.9 | -1.0\% |
 | 70.4\% | ${ }_{376.3}$ | 365.6 | -40.7 | -2.8\% |
 | 71.6\% | ${ }^{377.6}$ | ${ }^{362.3}$ | -11.3 | -3.0\% |
 | 74.1\% | 373.0 360.3 | ${ }_{354.1}^{355.2}$ | - ${ }_{-6.3}$ | - ${ }_{-1.8 \%}$ |
 | 75.3\% | 358.7 | 353.6 | -5.0 | -1.4\% |
 | 76.5\% 778 | $\begin{array}{r}357.5 \\ 3565 \\ \hline\end{array}$ | 351.6 349.4 | -5.91 | -1.2\% ${ }_{-2,0 \%}$ |
 | 79.0\% | 355.5 | 349.0 | -6.5 | -1.8\% |
 | 80.2\% | $\begin{array}{r}354.5 \\ 354.5 \\ \hline\end{array}$ | ${ }^{347.3}$ | -7.28 | ${ }_{-2.5 \%}^{-2.0 \%}$ |
 | 82.7\% | 350.8 | 345.2 | -5.6 | -1.6\% |
 | 84.0\% | 345.4 | 344.0 | -1.4 | -0.4\% |
 | - 85.2% | 344.2 3437 | 340.7 3550 | -.35 -87 | -1.0\% |
 | 87.7\% | 3393 | ${ }_{334}{ }^{3}$ | -5.0 | -1.5\% |
 | 88.9\% | 338.2 | ${ }^{330.3}$ | -8.0 | -2.4\% |
 | 90.19\% | $\begin{array}{r}331.8 \\ 325 \\ \hline\end{array}$ | 321.9 3209 | -9.9 | -3.0\% |
 | 92.6\% | ${ }_{324.8}$ | ${ }_{319.6}$ | -5.2 | -1.6\% |
 | 93.8\% | 323.8 | 317.8 | -6.0 | -1.9\% |
 | 95.1\% | ${ }^{282.3}$ | 290.2 | 7.9 | 2.8\% |
 | ${ }^{96.5 \%}$ | 259.9 | ${ }_{253.1}^{265.2}$ | ${ }_{2.2}$ | 3.9\% |
 | 98.\% | 249.1 | 251.3 | ${ }_{2} 2.3$ | 0.9\% |
 | 100.0\% | 212.3 | 212.4 | 0.1 | 0.0\% |

 Figure SQ-31-b
 Clifton Court Forebay, Monthly EC

 | $\begin{gathered} \text { Percent } \\ \text { Excedance } \\ \text { Probability } \end{gathered}$ | October | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {DCR } 2015}$ Without | DCR 2015 With Project | Absolute | |
 | | Monthly EC | Monthly EC | (itierersce | ference (\%) |
 | [9] | (UMHOSSICM) | Mro | | |
 | 0.0\% | 757.5 | 797.7 | 40.2 | 5.3\% |
 | ${ }^{1.2 \%}$ | ${ }_{733.7}^{73}$ | 763.9 7634 | 30.2 330 | 4.19\% |
 | 2.5\%\% | ${ }^{730.5}$ | 763.4 7383 | 33.0 | 4.5\% |
 | 3.9\% | 686.5 6864 | 738.3 7775 | 51.8 | 7.5\% |
 | 6.2\% | 684.0 | 714.5 | 30.4 | 4.4\% |
 | 7.4\% | 681.0 | 709.3 | 28.2 | 4.1\% |
 | - ${ }_{\text {8.9\% }}$ | 679.3 678.3 | ${ }_{683.9}^{695}$ | 16.1
 5.6 | 2.4\% |
 | 9.9\% | ${ }_{6787}^{678}$ | 683.9 679 | 5.6 | 0.8\% |
 | 11.23\% | 675.7 674.1 | 679.8 6798 | 4.0 5.6 | 0.8\%\% |
 | 13.6\% | ${ }_{672.2}^{672.2}$ | ${ }_{668.9}$ | -3.3 | -0.5\% |
 | 14.8\% | 672.0 | 665.3 | -6.7 | -1.0\% |
 | (17.0\% | 671.9 670.9 | 660.8
 6585 | -11.1 -124 | -1.6\% |
 | 18.5\% | 670.2 | 653.9 | -16.3 | -2.4\% |
 | 19.8\% | 669.5 | 652.2 | -17.3 | -2.6\% |
 | ${ }_{2}^{21.0 \%}$ | 662.9 6597 | 652.0 6493 | -10.9 -10.4 | - -1.7% |
 | 23.5\% | 654.4 | 649.1 | -5.2 | -0.8\% |
 | 24.7\% | 648.5 | 646.3 | -2.2 | -0.3\% |
 | 27.7.2\% | ${ }_{645.7}^{647.2}$ | ${ }_{6}^{644.7}$ | -2.85 | -0.4\% |
 | 28.4\% | 643.8 | 642.6 | -1.3 | -0.2\% |
 | | 642.5 | 641.1 | -1.3 | -0.2\% |
 | - ${ }^{30.9 \%}$ | 632.0 628 | 634.2
 688.8 | ${ }_{0.2}^{2.2}$ | - 0.3% |
 | 33.3\% | 626.2 | 626.0 | -0.1 | 0.0\% |
 | | 609.9 | 610.4 | 0.6 | 0.1\% |
 | 年35.8\% | cos.6
 592.4 | 605.5 605.4 | $\begin{array}{r}-0.2 \\ 13.0 \\ \hline\end{array}$ | - |
 | 38.3\% | 591.7 | 603.8 | 12.1 | 2.0\% |
 | 39.5\% | 587.6 | 589.8 | 2.1 | 0.4\% |
 | 42.0\% | ${ }_{585.8}^{587.0}$ | ${ }_{585.5}^{587.0}$ | -0.3 | -0.1\% |
 | 43.2\% | 583.5 | 584.5 | 1.0 | 0.2\% |
 | | 583.1 | ${ }_{582.6}$ | -0.4 | -0.1\% |
 | 45.7\% | 576.3 560.1 | 579.6 569.8 | ${ }_{9.7}^{3.3}$ | - $\begin{aligned} & \text { 0.6\%\% } \\ & \text { 1.7\% }\end{aligned}$ |
 | 48.1\% | 549.2 | 560.0 | 10.8 | 2.0\% |
 | | 548.2 | 552.4 | 4.3 | 0.8\% |
 | 51.9\% | 543.9 583.2 | ${ }_{532.0}^{54.7}$ | -6.1 | -1.1\% |
 | 53.1\% | 534.7 | 520.6 | -14.1 | -2.6\% |
 | 54.3\% | 372.1 | 365.7 | -6.4 | -1.7\% |
 | 55.8\% | 361.1 356.6 | ${ }_{\text {cke }}^{364.6}$ | 3.4 4.4 | 1.2\% |
 | 58.0\% | 358.1 | 360.1 | 2.0 | 0.6\% |
 | 59.3\% | ${ }_{3}^{356.2}$ | 356.0 | -0.2 | ${ }^{\text {0.0\% }}$ |
 | 61.7\% | ${ }_{352.9}$ | 354.2 | -30.7 | ${ }^{-1.10 \%}$ |
 | 63.0\% | ${ }_{352.8}^{352.8}$ | 339.7 | -13.1 | 3.7\% |
 | ${ }^{64.2 \%}$ | ${ }_{352.3}$ | ${ }_{338.7}$ | -13.6 | -3.9\% |
 | 66.7% | 343.1 | ${ }_{336.7}$ | -6.4 | -1.9\% |
 | 67.9\% | 342.4 | 325.5 | -16.8 | -4.9\% |
 | 69.1\% | | ${ }^{319.6}$ | | -6.6\% |
 | 70.1.6\% | 329.8 325.7 | 319.6 3189 | -10.2 | -3.1\% |
 | 72.8\% | 323.7 | 317.6 | -6.1 | -1.9\% |
 | | ${ }^{322.4}$ | 313.7 | -8.7 | -2.7\% |
 | 76.5\% | ${ }_{321.3}^{322.2}$ | ${ }_{311.8}$ | -9.5 | -3.0\% |
 | 77.8\% | 319.6 | 307.3 | -12.2 | -3.8\% |
 | 79.0\% | 314.3 | 304.4 | -9.9 | 3.1\% |
 | 80.2\% | 311.6 | 304.0 | -7.6 | -2.4\% |
 | - ${ }^{81.5 \%}$ | ${ }_{311.6}$ | | -9.6 | |
 | 84.0\% | ${ }_{305.6}$ | ${ }_{299.4}^{29.9}$ | -6.2 | -2.0\% |
 | 85.2\% | 304.8 | 298.2 | -6.6 | -2.2\% |
 | 86.4\% | 300.8 | 298.0 | -2.8 | -0.9\% |
 | 877\% | 300.3 | 297.7 | -2.7 | -0.9\% |
 | | ${ }_{2993}^{2997}$ | 296.9 | -2.8 | ${ }^{-0.9 \%}$ |
 | 91.4\% | ${ }_{293}{ }^{293}$ | 2959 | 2.1 | 0.7\% |
 | 92.6\% | 288.5 | 292.2 | 3.7 | 1.3\% |
 | 93.\% | 285.5 | 286.3 | 0.8 | 0.3\% |
 | 95.1\% | 282.4 | 282.4 | 0.1 | 0.0\% |
 | 96.3\% | 271.4 | 280.4 | 9.0 | 3.3\% |
 | 97.5\% ${ }^{98.8 \%}$ | 245.3 | 247.4 | 2.1 | 0.9\% |
 | 100.0\% | 235.1 | ${ }_{23}^{23,4}$ | ${ }_{-1.7}$ | -0.8\% |

 | | | November | | Probabl | edance | | December | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Percent | DCR 2015 Without | DCR 2015 With Project | | | Percent | DCR 2015 Without | DCR 2015 With Project | | |
 | Exxeedance | Proiect | Monthly EC | Difference | Rifference ${ }^{\text {Refite }}$ | Exceedance | | Monthly EC | Difference | Lifference $(\%)$ |
 | \% | (uMHOSICM) | (UMHOSICM) | | | (\%) | (UMHOSICM) | (UMHOSSCM) | | |
 | 0.0\% | 88.0 | ${ }^{726.3}$ | -58.7 | 7.5\% | 0.0\% | 857.8 | 930 | 73.1 | 8.5\% |
 | 1.2\% | 748.7 | 7.0 | 31.7 | 4.2\% | 1.2\% | 851.0 | 824.0 | | |
 | 2.5\% | 711.6 | 701.8 | -9.9 | 1.4\% | 2.5\% | 786.6 | 823.7 | 37.1 | |
 | 3.7\% | 700.1 | 6.6 | -3.5 | .5\% | 3.7\% | 771.6 | 801.9 | 30.3 | |
 | 4.9\% | 698.2 | 675.4 | 22.8 | -3.3\% | 4.9\% | 751.9 | 767.7 | 15.8 | |
 | 6.2\% | 6977 | 662.8 | 34.9 | 5.0\% | 6.2\% | 747.1 | 758.3 | 11.1 | |
 | 7.4\% | 677.8 | 656.4 | -21.4 | 3.2\% | 7.4\% | 744.5 | | 5.0 | |
 | 8.6\% | 671.5 | 654.1 | 17.4 | , 6 \% | 8.6\% | 740.5 | 729.0 | 11.6 | |
 | 9.9\% | 669.0 | 653 | -15.8 | 2.4\% | 9.9\% | (3.3 | 710.7 | | |
 | 11.1\% | 666.5 | ${ }^{628.1}$ | 38.4 | 5.8\% | 11.1\% | ${ }^{726.3}$ | 705.0 | 1.3 | -2.9\% |
 | 12.3\% | 663.9 | 627.3 | -36.6 | 5.5\% | 12.3\% | 726.1 | 705.0 | | |
 | 13.6\% | 661.8 | 625.5 | 36.3 | 5.5\% | 13.6\% | 717.9 | 689.4 | 28.5 | -4.0\% |
 | 14.8\% | 657.5 | 625.5 | -32.0 | -4.9\% | 14.8\% | 716.6 | 682.2 | -34.4 | |
 | 16.0\% | 650.9 | 624.0 | 26.8 | -4.1\% | 16.0\% | 714.5 | 678.4 | -36.1 | -5.1\% |
 | 17.3\% | 649.1 | 612.3 | -36.8 | .7\% | 17.3\% | 700.7 | 673.1 | | |
 | 18.5\% | 648.6 | 608.4 | -40.3 | -6.2\% | 18.5\% | 700.0 | 668.0 | -32.0 | -4.6\% |
 | 19.8\% | 622.4 | 605.1 | -17.3 | 2.8\% | 19.8\% | 699.8 | 665.4 | 4.4 | -4.9\% |
 | 21.0\% | 617.6 | 594.5 | 23.1 | -3.7\% | 21.0\% | 694.5 | 653.9 | -40.5 | 5.88 |
 | 22.2\% | 614.0 | 589.9 | -24.1 | 3.9\% | 22.2\% | 691.5 | 650.1 | -41.4 | 6.0\% |
 | 23.5\% | 606.8 | 584.5 | -22.3 | -3.7\% | 23.5\% | 687.9 | 648.5 | -39.4 | -5.7\% |
 | 24.7\% | 605.8 | 582.5 | 23.3 | 3.9\% | 24.7\% | 669.0 | 647.3 | -21.8 | -3.3\% |
 | 25.9\% | ${ }_{603.9}^{609}$ | 579.4 577.4 | -24.6 | -4.1\% | 25.7\% | ${ }_{669.0}$ | 642.8 | -26.3 | 3.9\% |
 | -27.2\% | 600.0 | 577.9 | 2.1 | 3.7\% | 27.2\% | ${ }^{653.3}$ | 641.0 | | -1.9\% |
 | - 28.4 .48 | 599.8 596.8 | 577.6 576.8 | -20.0 | -3.7\%\% | - 28.8 .4 \% | 647.9 647.5 | 636.6 6365 | -11.4 | -1.8\% |
 | 30.9\% | 596.4 | 577.0 | -20.4 | -3.4\% | 30.9\% | 646.7 | 628.6 | -18.1 | -2.8\% |
 | 32.1\% | 595.4 | 575.0 | -20.4 | -3.4\% | 32.1\% | 633.7 | 622.4 | -11.3 | -1.8\% |
 | 33.3\% | 591.0 | 577.8 | -17.2 | -2.9\% | 33.3\% | 629.7 | 622.0 | -7.7 | -1.2\% |
 | 34.6\% | 586.4 | 571.2 | -15.2 | -2.6\% | 34.6\% | 623.0 | 621.3 | -1.6 | -0.3\% |
 | 35.8\% | 586.3 | 570.9 | -15.3 | -2.6\% | 35.8\% | 621.8 | 620.7 | -1.1 | -0.2\% |
 | 37.0\% | 585.5 | 562.1 | -23.3 | -4.0\% | 37.0\% | 616.9 | 610.2 | -6.7 | -1.1\% |
 | 38.3\% | 585.1 | 561.3 | 23.8 | -4.1\% | 38.3\% | 611.4 | 607.6 | -3.8 | -0.6 |
 | 39.5\% | 579.5 | 546.3 | -33.2 | -5.7\% | 39.5\% | 610.2 | 580.1 | -30.1 | -4.9\% |
 | 40.7\% | 577.9 | 543.5 | -34.4 | -5.9\% | 40.7\% | 605.7 | 578.6 | -27.1 | ${ }_{-4.5 \%}$ |
 | 42.0\% | 571.9 | 538.3 | -33.6 | -5.9\% | 42.0\% | 594.7 | 562.8 | -31.9 | -5.4\% |
 | 43.2\% | 571.7 | ${ }_{522.5}^{52.5}$ | -45.2 | -7.9\% | 43.2\% | 589.9 | 560.6 | -29.3 | -5.0\% |
 | 44.4\% | 577.5 | 524.3 | -46.2 | -8.1\% | 44.4\% | 584.4 | 559.6 | -24.8 | -4.2\% |
 | 45.7\% | 570.4 | 519.8 | -50.6 | -8.9\% | 45.7\% | 572.1 | 527.7 | -44.4 | -7.88 |
 | 46.9\% | 570.1 | 504.2 | -65.9 | -11.6\% | 46.9\% | 551.4 | 509.8 | -41.6 | -7.5\% |
 | 48.19\% | 566.3 | 497.2 | -69.2 | -12.2\% | 48.1\% | 489.8 | 487.0 | -2.7 | -0.6\% |
 | 49.4\% | 562.8 | 493.4 | -69.4 | -12.3\% | 49.4\% | 431.2 | 473.2 | 42.0 | 9.7\% |
 | 50.6\% | 548.5 | 466.4 | -82.2 | -15.0\% | 50.6\% | 425.0 | 452.6 | 27.6 | 6.5\% |
 | 51.9\% | 540.0 | 462.0 | -78.0 | -14.5\% | 51.9\% | 423.1 | 416.1 | -7.1 | -1.7\% |
 | 53.1\% | 518.4 | 450.1 | -68.3 | -13.2\% | 53.1\% | 421.0 | 402.8 | -18.2 | -4.3\% |
 | 54.3\% | 413.0 | ${ }^{412.0}$ | -1.0 | -0.2\% | 54.3\% | ${ }^{415.8}$ | 3993 | -16.6 | -4.0\% |
 | 55.6\% | 368.4 | 374.2 | 5.8 | 1.6\% | 55.6\% | 399.8 | 398.7 | -1.1 | -0.3\% |
 | 56.8\% | ${ }_{3}^{360.6}$ | 356.4 | -4.2 | -1.2\% | 56.8\% | ${ }^{398.9}$ | 389.5 | -9.5 | -2.4\% |
 | 58.0\% | ${ }^{352.0}$ | 335.6 | -16.4 | -4.7\% | 58.0\% | 3793 | 374.3 | -5.0 | -1.3\% |
 | 59.3\% | 347.9 | 329.5 | -18.4 | -5.3\% | 59.3\% | 372.8 | 366.7 | -6.2 | -1.7\% |
 | 60.5\% | 334.0 | 327.1 | -7.0 | -2.1\% | 60.5\% | ${ }^{365.1}$ | 361.3 | -3.8 | -1.0\% |
 | 61.7\% | ${ }^{331.3}$ | 325.7 | -5.6 | -1.7\% | 61.7\% | 352.9 | 356.5 | 3.5 | 1.0\% |
 | 63.0\% | 328.5 | ${ }^{323.1}$ | -5.5 | -1.7\% | 63.0\% | 350.0 | 342.7 | -7.3 | -2.1\% |
 | 64.2\% | ${ }_{3}^{327.5}$ | ${ }^{322.0}$ | -5.5 | -1.7\% | 64.2\% | 348.0 | ${ }^{337.6}$ | -10.4 | -3.0\% |
 | 65.4\% | ${ }_{326.7}$ | 319.1 | -7.6 | -2.3\% | 65.4\% | 337.8 | 335.5 | -2.3 | -0.7\% |
 | ${ }^{66.7 \%}$ | ${ }^{323.1}$ | 318.5 | -4.6 | -1.4\% | ${ }^{66.7 \%}$ | ${ }_{335.5}$ | 335.1 | -0.4 | -0.1\% |
 | 67.9\% | ${ }^{323.1}$ | 317.7 | -5.5 | -1.7\% | 67.9\% | 335.3 | 335.1 | -0.2 | -0.1\% |
 | 69.1\% | 319.2 | 316.7 | -2.5 | -0.8\% | 69.1\% | 334.2 | 335.0 | 0.8 | 0.2\% |
 | 70.4\% | 315.1 | 314.3 | -0.8 | -0.2\% | 70.4\% | 333.9 | 331.0 | -2.9 | \% |
 | 71.6\% | 314.3 | 310.7 | -3.5 | -1.1\% | 71.6\% | 333.5 | 330.6 | 2.9 | -0.9\% |
 | 72.8\% | 312.5 | 310.1 | -2.4 | -0.8\% | 72.8\% | 329.9 | 329.5 | -0.4 | -0.7\% |
 | 74.1\% | 311.8 | 309.4 | -2.4 | -0.8\% | 74.1\% | 321.4 | 323.6 | 2.2 | 0.7\% |
 | ${ }_{7}^{75.5 \%}$ | 3096 | 306.1 | -3.5 | -1.1\% | 75.3\% | 317.0 | 321.0 | 4.0 | 1.3\% |
 | 76.5\% | 309.5 | 304.5 | -5.0 | -1.6\% | 76.5\% | 316.0 | 314.5 | -1.5 | -0.5\% |
 | 77.8\% | 309.0 | 302.0 | -7.0 | -2.3\% | 777.8\% | 315.3 | 313.6 | -1.7 | -0.5\% |
 | 79.0\% | ${ }^{300.6}$ | ${ }^{301.7}$ | -4.9 | -1.6\% | 79.0\% | 308.5 | 308.6 | 0.1 | 0.0\% |
 | - ${ }_{8}^{80.2 \% \%}$ | 303.1 | 301.3 | -1.7 | -0.6\% | 80.2\% | 304.7 | 307.0 | 2.3 | 0.7\% |
 | 81.5\% | 300.6 | 300.9 | 0.3 | 0.1\% | 81.5\% | 303.6 | 305.2 | 1.6 | 0.5\% |
 | 884.0\% | 299.6 | 2977 | -1.9 | -0.6\% | 82.7\% | 300.7 | 301.8 | 1.1 | 0.4\% |
 | 84.0\% | 298.9 | 296.9 | -2.0 | -0.7\% | 84.0\% | 300.6 | 299.9 | -0.7 | 0.2\% |
 | 8.2\% | 298.0 | 296.8 | -1.3 | -0.4\% | 85.2\% | 299.4 | 298.6 | -0.9 | -0.3\% |
 | 88.4\% | ${ }^{296.6}$ | ${ }^{296.6}$ | -0.1 | 0.0\% | 86.4\% | 299.4 | 296.4 | ${ }^{3.0}$ | 1.0\% |
 | 887.9\% | 294.5 | 2957 | ${ }^{1.3}$ | 0.4\% | 877\% | 298.0 | 295.8 | -2.2 | -0.7\% |
 | 88.9\% | ${ }_{2}^{293.5}$ | 293.7 | 0.2 | 0.1\% | 88.9\% | 295.9 | 295.4 | -0.5 | -0.2\% |
 | 99.14\% | 292.0 | 293.0 | 1.0 | 0.4\% | 90.1\% | 2925 | 2920 | -0.5 | -0.2\% |
 | 91.4\% | ${ }_{291.8}^{2918}$ | 291.5 | -0.3 | -0.1\% | 91.4\% | 292.4 | 290.0 | -2.4 | -0.8\% |
 | 993.8\% | ${ }_{291.3}^{291.7}$ | 288.5 28.7 | -2.2 -2.6 | ${ }_{\text {- }}^{-0.9 \% \%}$ | ${ }_{9}^{92.8 \%}$ | 298.2 287.4 | $\xrightarrow{289.9}$ | -1.2 0.4 | -0.4\% |
 | 95.1\% | 29.2 | 287.0 | ${ }_{-4.2}$ | -1.4\% | 95.1\% | 280.9 | 284.7 | 3.8 | 1.4\% |
 | 96.3\% | 285.8 | 281.3 | -4.5 | 1.6\% | 96.3\% | 280.4 | 280.3 | -0.2 | 0.1\% |
 | 97.5\% | 267.5 | 262.6 | -4.9 | -1.8\% | 97.5\% | 276.9 | 278.7 | 1.8 | 0.6\% |
 | 98.8\% | ${ }_{1947}^{226.2}$ | ${ }_{2285}^{227.4}$ | 1.1 138 | 0.5\% | 98.8\% | ${ }_{22}^{275.7}$ | 277.5 | 1.9 | 0.7\% |
 | | | | | | 100.0\% | | | 0.0 | 0.0\% |

 | | Januar | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | DCR 2015 Without | DCR 2015 With Project | Absolut | Realive |
 | | Monthly EC | Monthly EC | (itiference | Hfere |
 | ${ }^{(0.0)}$ | (UMHOSIC ${ }_{902}$ | (UMHOSSCOM) | . 315 | -3.5\% |
 | 1.2\% | 9929 | 854 | , | |
 | 2.5\% | ${ }_{893}$ | 835.7 | -57.6 | |
 | 3.7\% | 876.5 | 826.4 | -50.1 | -5.7\% |
 | 4.9\% | 847.2 | 824.9 | -22.3 | -2.6\% |
 | 6.2\% | 837.1 | 810.0 | -27.1 | -3.2\% |
 | 7.4\% | 820.0 | 775.5 | -44.5 | |
 | 8.6\% | 797.0 | 770.9 | -26.2 | |
 | 9.9\% | 796.9 | 758.3 | -38.6 | -4.8\% |
 | 11.1\% | 780.7 | 753. | -27.7 | -3.5\% |
 | 12.3\% | 763.0 | 749.2 | -13.8 | -1.8\% |
 | 13.6\% | 753.1 | 739.5 | -13.6 | ${ }^{-1.8}$ |
 | 14.8\% | 746.0 | 736. | -9.9 | -1.3\% |
 | 16.0\% | 740.5 | ${ }^{728.3}$ | -12.2 | -1.7\% |
 | 17.3\% | 733.5 | 724.1 | -9.4 | -1.3\% |
 | 18.5\% | 711.5 | ${ }^{722,3}$ | 10.8 | 1.58 |
 | 19.8\% | 710.5 | 719.2 | 8.8 | 1.2\% |
 | 21.0\% | 690.1 | 717.4 | 27.3 | 4.0% |
 | 22.2\% | 688.1 | 685.2 | -2.9 | -0.4\% |
 | 23.5\% | 684.7 | 677.9 | ${ }^{-6.7}$ | -1.0\% |
 | 24.7\% | 674.1 | 677.4 | ${ }^{3.3}$ | 0.5\% |
 | 25.9\% | 669.1 | 674.6 | 5.5 | 0.8\% |
 | 27.2\% | 656.0 | 663.5 | 7.5 | 1.1\% |
 | 28.4\% | 636.9 | 653.5 | 16.6 | 2.6\% |
 | 29.6\% | 626.5 | 639.4 | 12.9 | ${ }^{2.17 \%}$ |
 | 30.9\% | 607.4 | 636.0 | 28.5 | 4.7\% |
 | 33.3\% | 599.4 | 629.7 | ${ }_{30.3}$ | 5.1\% |
 | 34.6\% | 594.7 | 629.4 | 34.7 | 5.8\% |
 | 35.8\% | 593.8 | 625.8 | 32.0 | 5.4\% |
 | 37.0\% | 587.4 | 618.9 | ${ }^{31.6}$ | 5.4\% |
 | 38.3\% | 581.7 | 599.9 | 18.2 | 3.1\% |
 | 39.5\% | 579.1 | 595.3 | 16.1 | 2.8\% |
 | ${ }^{40.7 \%}$ | 554.2 5479 | 560.6 5520 | 6.4 | 1.2\% |
 | 43.2\% | 546.5 | 550.6 | 4.1 | 0.7\% |
 | 44.4\% | 541.8 | 549.2 | 7.3 | 1.4\% |
 | 45.7\% | 538.7 | 541.0 | 2.3 | 0.4\% |
 | 46.9\% | 533.8 | 539.9 | 6.2 | 1.2\% |
 | 48.1\% | 531.4 | 5397 | 8.3 | 1.6\% |
 | 49.4\% | 526.4 | ${ }_{538.5}$ | ${ }^{12.0}$ | ${ }^{2.3 \%}$ |
 | 50.19\% | 525.8
 555 | 537.4 5322 | 11.6 | ${ }_{1}^{2.2 \%}$ |
 | 53.1\% | 524.5 | 530.7 | 6.1 | 1.2\% |
 | 54.3\% | 523.2 | 530.4 | 7.2 | 1.4\% |
 | 55.6\% | 512.3 | 527.8 | 15.5 | 3.0\% |
 | 56.8\% | 510.2 | 521.2 | 11.0 | 2.2\% |
 | 58.0\% | 500.4 | 512.1 | 11.7 | 2.3\% |
 | 59.5\% | 495.6 | 502.8 | 7.2 | ${ }^{1.5 \%}$ |
 | ${ }_{61.7 \%}$ | 4993.3 | ${ }_{4959.7}$ | ${ }_{2.3}^{6.5}$ | 0.5\% |
 | 63.0\% | 491.6 | 494.1 | 2.5 | 0.5\% |
 | 64.2\% | 489.3 | 493.2 | 3.9 | 0.8\% |
 | -65.4\% | 4883 487 | 491.4 | 3.1 | 0.6\% |
 | ${ }^{66.7 \%}$ | 4837 | 490.6 | 6.9 | 1.4\% |
 | 67.9\% | 477.7 | 487.9 | 10.2 | 2.1\% |
 | 69.1\% | 470.6 | 478.2 | 7.6 | 1.6\% |
 | 70.4\% | 4693 | 471.0 | 1.7 | 0.4\% |
 | 71.8\% | 465.0 | 469.1 | 4.1 | 0.9\% |
 | 74.1\% | 447.0 | 468.7 | ${ }_{21.8}$ | 4.9\% |
 | 75.3\% | 435.6 | 460.1 | 24.5 | 5.6\% |
 | 76.5\% | 435.1 | 457.8 | 22.7 | 5.2\% |
 | 77.8\% | ${ }_{434.5}^{434.5}$ | ${ }_{4467}^{447}$ | 13.3 | 3.1\% |
 | 79.0\% | 434.4 | 446.7 | ${ }^{12.3}$ | 2.8\% |
 | 80.2\% | 430.1 | 445.1 | 15.0 | 3.5\% |
 | 81.5\% | 423.7 | 442.6 | 18.9 | 4.5\% |
 | 82.7\% | 419.5 | 435.0 | 15.6 | 3.7\% |
 | 84.0\% | ${ }^{419.2}$ | 430.7 | 11.5 | ${ }_{\text {21\% }}^{2.7 \%}$ |
 | 86.4\% | 411.6 | 427.7 | ${ }_{16.2}$ | 3.9\% |
 | 87.7\% | 407.2 | 414.3 | 7.1 | 1.7\% |
 | 88.9\% | 406.8 | 407.9 | 1.1 | 0.3\% |
 | 90.19\% | ${ }_{3021}^{402.8}$ | 404.3 3957 | 1.5 | 0.4\% |
 | ${ }^{91.4 \%}$ | 395.1 | 395.7 | 0.6 | 0.2\% |
 | ${ }_{9}^{92.8 \%}$ | ${ }_{378.7}^{386.2}$ | 386.3 379.3 | 0.1 0.6 | ${ }_{0}^{0.2 \%}$ |
 | 95.1\% | 351.1 | 351.6 | 0.5 | 0.1\% |
 | 96.3\% | 330.6 | 345.4 | 14.9 | 4.5\% |
 | 97.5\% | 302.0 | 302.7 | 0.6 | 0.2\% |
 | 98.8\% 100.0\% | ${ }_{254.5}^{2829}$ | 283.0 254.6 | 0.1 0.1 | 0.0\% |

 | $\begin{gathered} \text { Percent } \\ \text { Excedance } \\ \text { Probability } \end{gathered}$ | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {OCR } 2015 ~ W ~ W i t h o u t ~}$ | DCR 2015 With Project | Absolute | |
 | | Monthly EC | Monthly EC | (itierersce | fference (\%) |
 | (\%) | cm) | | | |
 | 0.0\% | 877.0 | 848.4 | -28.5 | -3.3\% |
 | 1.2\% | 7963 | 744.8 | -51.5 | ${ }^{-6.5}$ |
 | 2.5\% | ${ }_{746.5}$ | ${ }^{697.6}$ | -8.9 | |
 | 3.7\% | 74.7 | 695.9 6912 | -44.8 | . 0 \% |
 | 4.9\% | ${ }_{7} 712.8$ | ${ }_{6621} 6$ | | -3.0\%\% |
 | 7.4\% | 70.5 671.0 | ${ }_{6}^{662.8}$ | -48.4 | ${ }_{\text {- }}^{\text {- } 2.7 \%}$ |
 | 8.6\% | 663.8 659.4 | 641.7 6389 | -22.0 | -3.3\% |
 | 9.9\% | 659.4 6409 | 638.9 6201 | -20.5 | -3.1\% |
 | 11.23\% | 640.9 625.4 | 620.1 6199 | - -5.5 | ${ }^{-3.9 \%}$ |
 | 13.6\% | ${ }_{604.3}^{603}$ | 619.2 | 14.9 | 2.5\% |
 | 14.8\% | 593.3 | 609.0 | 15.7 | 2.6\% |
 | (17.0\% | 591.9 591.8 | 592.4
 5886 | -0.6 | - ${ }_{\text {0.1\% }}$ |
 | 18.5\% | 585.6 | 587.8 | 2.2 | 0.4\% |
 | 19.8\% | 584.1 | 571.9 | ${ }^{-12.3}$ | -2.1\% |
 | ${ }_{2}^{21.0 \%}$ | 576.7 572.0 | 559.3 559.1 | -17.4 | -3.0\% |
 | 23.5\% | 555.8 | 559.1 | 3.2 | 0.6\% |
 | 24.7\% | 554.2 | 558.8 | 4.6 | 0.8\% |
 | 27.7.2\% | 553.1 552.7 | 555.5 554.8 | 5.4 2.0 | - |
 | 28.4\% | 548.7 | 552.6 | 3.9 | 0.7\% |
 | | 542.8 | 551.2 | 8.5 | 1.6\% |
 | 30.9\% | 542.1.2 54.2 | 550.9 548.9 | ${ }_{7.7}^{8.8}$ | 1.4\% |
 | 33.3\% | 538.1 | 543.1 | 4.9 | 0.9\% |
 | | 531.4 | 540.4 | 9.0 | |
 | 37.0\% | ${ }_{5272.2}^{529.6}$ | 540.3 534.5 | 10.6
 .4 | ${ }_{\text {1.4\% }}^{2.0 \%}$ |
 | 38.3\% | 526.9 | 530.9 | 4.0 | 0.8\% |
 | | 519.4 | 526.1 | 6.7 | 1.3\% |
 | 42.0\% | ${ }_{517.1}^{517.4}$ | 520.5 516.5 | ${ }_{-0.5}^{3.1}$ | -0.1\% |
 | 43.2\% | 507.5 | 511.4 | 3.9 | 0.8\% |
 | | | 505.8 | 4.0 | 0.8\% |
 | 46.9\% | ${ }_{494.8}$ | ${ }_{499.9}$ | ${ }_{3.0}^{2.7}$ | 0.6\% |
 | 48.1\% | 492.9 | 497.7 | 4.8 | 1.0\% |
 | | | | | 1.1\% |
 | 51.9\% | ${ }_{485.0}$ | ${ }_{496.0}^{497.2}$ | 11.6 11.0 | ${ }_{2.3 \%}^{2.4 \%}$ |
 | 53.1\% | 483.2 | 492.9 | 9.7 | 2.0\% |
 | 54.3\% | | | | 1.9\% |
 | 56.8\% | 4775.7 | 4887.1 | ${ }_{11.3}^{14.4}$ | 2.4\% |
 | 58.0\% | 472.5 | 482.7 | 10.2 | 2.2\% |
 | 年 59.3% | ${ }^{472.2}$ | 487.2 | 8.0 | 1.7\% |
 | 61.7\% | ${ }_{469.4}^{469.6}$ | ${ }_{475.5}^{478.8}$ | 9.1 6.1 | 2.0\% |
 | 63.0\% | 465.3 | 472.9 | 7.7 | 1.6\% |
 | | | | 8.0 | 1.7\% |
 | ${ }_{66.7 \%}^{65.4 \%}$ | ${ }_{461.9}^{4631}$ | ${ }_{461.0}$ | -0.9 | -0.2\% |
 | 679\% | 444.3 | 451.8 | 5.6 | 1.2\% |
 | 69.1\% | 444.6 | | ${ }^{2} 29$ | ${ }^{0.7 \%}$ |
 | 71.6\% | 440.8 | 442.4 | ${ }_{1.6}^{5.2}$ | 0.4\% |
 | 72.8\% | 428.6 423 | 428.9 | ${ }^{0.3}$ | 0.1\% |
 | | | | | |
 | 76.5\% | ${ }_{417.0}$ | ${ }_{412120}^{42.9}$ | -5.0 | -1.2\% |
 | 77.8\% | 410.4 | 410.9 | 0.5 | 0.1\% |
 | - | 406.5 | | | 0.1\% |
 | ${ }^{81.5 \%}$ | ${ }_{392.8}$ | ${ }_{398.4}$ | ¢0.6 5.5 | 1.4\% |
 | 82.7\% | 387.9 | 387.9 | 0.0 | 0.0\% |
 | 84.0% 852% | ${ }_{386.8}^{388.8}$ | 383.2 | -3.6 | ${ }^{-0.9 \%}$ |
 | | 382.3 379.0 | 380.5 399.8 | -1.7 0.8 | -0.2\% |
 | 87.7\% | 371.3 | 371.6 | 0.3 | 0.1\% |
 | 88.9\% | 369.2 | 369.2 | 0.0 | 0.0\% |
 | 90.1\% | 348.9 | 349.2 | 0.3 | 0.1\% |
 | 91.4\% ${ }_{\text {92.6\% }}$ | ${ }_{3}^{343.5}$ | 343.1 | 0.5 | 0.2\% |
 | 93.8\% | 336.2 | ${ }_{335.7}^{337.6}$ | -0.4 | -0.1\% |
 | 95.1\% | 329.4 | 331.3 | 1.9 | 0.6\% |
 | 96.3\% | 327.4 325 | 329.7 298 | ${ }^{2.3}$ | 0.7\% |
 | 97.5\% | 295 | ${ }^{297.8}$ | -0.9 | -0.3\% |
 | 988.8\% 100.0\% | 273.4 181.6 | ${ }_{181.9}^{2739}$ | 0.4 0.3 | ${ }_{0}^{0.2 \%}$ |

 | PercentExceedanceProbability | April | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | $\underset{\substack{\text { DCR } 2015 \text { Without } \\ \text { Proiet }}}{\text { and }}$ | DCR 2015 With Project | Absolute | |
 | | Monthy E C | Monthy EC | (uiteresicem) | Difference (\%) |
 | | MHosicm | | 0.5 | -0.1\% |
 | 1.2\% | 650.4 | ${ }_{643.1}$ | -73 | -1\% |
 | 2.5\% | 617.9 | 601.0 | -16.8 | ${ }_{-2.7 \%}$ |
 | 3.7\% | 604.5 | 595.1 | -9.4 | -1.6\% |
 | 4.9\% | ${ }_{58726}$ | 584.4 | 1.8 | 0.3\% |
 | 6.2\% | 577.5 | 572.1 | -5.4 | -0.9\% |
 | 7.4\% | 566.5 | 567.6 | 1.1 | 0.2\% |
 | 8.6\% | 562.4 5854 | 565.6 | 3.2 | 0.6\% |
 | ${ }^{\text {9.9\%\% }}$ | 558.5 5414 | 560.1 5455 | ${ }_{4}^{1.6}$ | 0.3\% |
 | - ${ }_{\text {11.1.3\% }}$ | 541.4 536.1 | 545.5 536.4 | ${ }_{0.3}^{4.0}$ | 0.7\% |
 | ${ }^{1.23 .6 \%}$ | ${ }_{535.4}^{536.1}$ | ${ }_{534.8}^{536}$ | -0.6 | -0.1\% |
 | 14.8\% | 524.7 | 514.2 | -10.5 | -2.0\% |
 | 16.0\% | 492.2 | 509.0 | 16.8 | 3.4\% |
 | - 17.3 17.3\% | ${ }_{472.3}^{475.6}$ | ${ }_{492.2}^{493}$ | 17.6 19.9 | 3.7\% |
 | 18.5\% | ${ }_{470.8}^{472.3}$ | ${ }_{495.0}^{492}$ | 19.9 4.2 | 4.2\% |
 | 21.0\% | 470.3 | 473.3 | ${ }^{3.0}$ | 0.6\% |
 | ${ }_{22.5 \%}^{22.2 \%}$ | 468.6 | 477.4 | $\begin{array}{r}2.8 \\ \hline\end{array}$ | 0.6\% |
 | ${ }^{23.47 \%}$ | ${ }_{461.3}^{467}$ | ${ }_{4}^{477.6}$ | 3.5 5.7 | - 0.7 \% |
 | 25.9\% | ${ }_{4}^{455.1}$ | 465.9 | 10.8 | 2.4\% |
 | 28.4\% | 443.8 | 453.8 | 10.0 | 2.3\% |
 | 29.6\% | 443.2 | 449.2 | 6.0 | 1.4\% |
 | - | ${ }_{434.4}^{442.6}$ | ${ }_{444.5}^{447.2}$ | 4.6 10.1 | - |
 | 33.3\% | 431.6 | 437.4 | 5.8 | 1.3\% |
 | 34.6\% | 431.1 | ${ }^{433.6}$ | 4.5 | 1.0\% |
 | | ${ }_{422.1}^{429}$ | ${ }_{4217}^{432.5}$ | 10.4 23 | ${ }_{0}^{2.5 \%}$ |
 | 38.3\% | 413.0 | 419.7 | 6.6 | 1.6\% |
 | 39.5\% | ${ }_{4122}^{412.5}$ | 413.4 4129 | 1.0 0.7 | 0.2\% |
 | 40.7\% | ${ }_{410.0}^{412.2}$ | ${ }_{412.3}^{412.9}$ | ${ }_{2.2}^{0.7}$ | ${ }_{0}^{0.5 \%}$ |
 | 43.2\% | 408.7 | 410.8 | 2.2 184 | 0.5\% |
 | ${ }^{44.4 \%}$ | 391.0 3902 | 409.5 3917 | 18.4 1.5 1 | |
 | 45.7\% | 390.2 389.5 | ${ }_{391.1}^{391.7}$ | 1.5 1.5 | 0.4\% 0 |
 | 48.1\% | 389.5 3888 | 300.7 | 1.3 | 0.3\% |
 | 49.4\% | 388.8 3824 | 390.5 3825 | 1.8 0.1 0.8 | - 0.5% |
 | 51.9\% | ${ }_{377.1}$ | ${ }_{374.3}$ | ${ }_{-2.7}^{0.1}$ | -0.7\% |
 | 53.1\% | ${ }_{3695}^{365}$ | 369.8 | 0.4 | 0.1\% |
 | | 365.3 354.6 | $\begin{array}{r}365.2 \\ 355.5 \\ \hline\end{array}$ | -0.1 | 0.0\% |
 | 56.8\% | 354.6 | 354.7 | 0.1 | 0.0\% |
 | 58.0\% | 347.4 | ${ }_{34.3}^{345}$ | 0.8 | 0.2\% |
 | | 345.6 3352 | 345.6 3369 | ${ }^{0.0}$ | 0.0\% |
 | 61.7\% | ${ }_{333.8}$ | 334.0 | ${ }_{0} 0.1$ | 0.0\% |
 | 63.0\% | ${ }_{\text {3 }}$ 333.2 | ${ }_{3}^{333.2}$ | 0.0 | 0.0\% |
 | | 331.3 327.5 | 331.3 3275 | -0.1 | 0.0\% |
 | ${ }_{6.7}^{6.7 \%}$ | 317.9 | 323.0 | 5.1 | 1.6\% |
 | -67.9\% | 317.1
 317.1 | 317.7 317.4 | 0.5 0.3 | ${ }^{0.2 \%}$ |
 | 70.4\% | 316.4 | 317.1 | 0.8 | 0.3\% |
 | 71.6\% | 315.1 | 317.1 | 2.0 | 0.6\% |
 | 74.1\% | ${ }_{300.6}^{309.5}$ | ${ }_{300.6}^{309.7}$ | 0.2 0.0 | 0.0\% |
 | 75.3\% | 305.6 | 305.4 | -0.2 | -0.1\% |
 | 76.7.8\% | 304.8 303.0 | 304.8 303.2 | 0.0 0.2 | - 0.0% |
 | 79.0\% | 302.5 | 302.6 | 0.2 | 0.1\% |
 | - ${ }_{\text {80.2\% }}$ | ${ }_{2782}^{283.2}$ | ${ }_{278.1}^{283.1}$ | -0.1 | 0.0\% |
 | 82.7\% | 277.2 | 277.1 | 0.0 | 0.0\% |
 | 84.0\% | 266.8 | 267.3 | 0.4 | 0.2\% |
 | - | 265.1 263.8 | ${ }_{264.4}^{265.2}$ | 0.1 0.7 | 0.3\% |
 | 87.7\% | 255.8 | 256.5 | 0.7 | 0.3\% |
 | ${ }^{88.9 \%}$ | ${ }_{246.1}^{24.7}$ | 250.4 247.4 | 0.6
 1.3 | ${ }^{0.5 \%}$ |
 | 91.4\% | 246.0 | 246.8 | 0.7 | 0.3\% |
 | -92.6\% | ${ }_{2439}^{24.0}$ | ${ }_{244.2}^{24.3}$ | 0.3 0.2 | 0.1\% |
 | 95.1\% | 24.7 | 247.7 | ${ }_{0.6}^{0.2}$ | 0.3\% |
 | 96.3\% | 211.0 | 211.5 | 0.5 | 0.2\% |
 | 987.5\% | 203.5 1959 | 204.2 196.0 | 0.7 0.1 | - |
 | 100.0\% | 188.7 | 189.0 | 0.2 | 0.1\% |

 | $\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{aligned}$ | Way | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | DCR 2015 With Project | $\begin{gathered} \text { Absolute } \\ \text { (Difference } \\ \text { (UMHOSICM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | | Monthly EC | Monthly EC | | |
 | (\%) | ${ }_{\text {anosic }}$ | 640 | 59 | |
 | 12\% | ${ }_{5678} 63$ | 64.0 | ${ }^{127}$ | ${ }^{2} \mathbf{2}$ \% |
 | 2.5\% | 559.3 | ${ }_{557.8}$ | ${ }_{-1.4}$ | -0.3\% |
 | 3.7\% | 557.1 | 548.5 | -8.6 | -1.5 |
 | 4.9\% | 541.4 | 543.2 | 1.8 | |
 | 7.4\% | ${ }_{524.5}^{540.5}$ | 539.7 521.8 | --7.9 | - ${ }_{-1.4 \%}^{-0.2 \%}$ |
 | 8.6\% | 527.1 | 517.3 | -9.9 | -19\% |
 | 9.9\% | 516.7 | 510.2 | -6.6 | -1.3\% |
 | 11.19\% | 515.5
 5085 | 509.4 50.6 | -6.1. | -1.2\% |
 | 13.6\% | 508.4 | 503.3 | -5.1 | 0\% |
 | 14.8\% | 497.0 | 503.2 | 6.2 | 1.2\% |
 | 17.3\% | ${ }_{4919}$ | ${ }_{494.8}^{501.1}$ | 6.9
 6.9 | - ${ }^{1.46 \%}$ |
 | 18.5\% | 490.6 | 494.3 | 3.7 | 0.8\% |
 | 19.8\% | 490.5 | 490.6 | 0.1 | 0.0\% |
 | 22.2\% | ${ }_{477.0}^{489}$ | 4990.5 | 1.2 13.3 | ${ }_{\text {2.8\% }}^{0.8 \%}$ |
 | 23.5\% | 464.7 | 490.0 | ${ }^{25.3}$ | 5.4\% |
 | 24.7\% | 461.6 | 483.5 | 21.9 | 4.7\% |
 | ${ }_{27.2 \%}$ | ${ }_{458.3}^{460.5}$ | ${ }_{4633.3}^{463.7}$ | 3.2 5.0 | - ${ }_{\text {1.7\% }}$ |
 | 28.4\% | 455.2 | 459.6 | 4.4 | 1.0 |
 | 29.6\% | ${ }^{452.6}$ | 459.0 | 6.4 | 1.4\% |
 | 32.1\% | 451.0 | ${ }_{455.2}$ | 4.2 | 0.9\% |
 | 33.3\% | 446.0 | 449.9 | 3.8 | |
 | ${ }^{34.6 \%}$ | 437.5 | 446.2 | 8.6 | |
 | 35.8\% | ${ }_{4332.6}$ | ${ }_{435.2}^{443.6}$ | 8.6 2.7 | 2.6\% |
 | 38.3\% | 430.8 | 435.0 | 4.2 | |
 | 39.5\% | 422.2 | 431.9 | 9.7 | |
 | 40.7\% | 418.8 | 422.0 | 3.2 | 0.8\% |
 | 42.0\% | ${ }_{416.5}^{418.5}$ | ${ }_{416.9}^{418.9}$ | -0.3 | ${ }^{0.1 \%}$ |
 | 44.4\% | 401.9 | 401.8 | -0.1 | 0.0\% |
 | 45.7\% | 385.7 | 386.0 | 0.4 | 0.1\% |
 | ${ }^{46.9 \%}$ | 385.4 384.2 | 385.4 382.5 | -1.6 | -0.4\% |
 | 49.4\% | 373.0 | ${ }^{372.3}$ | -0.7 | -0.2\% |
 | | ${ }^{371.3}$ | 371.5 364.4 | 0.2 | 0.1\% |
 | 53.1\% | ${ }_{362.5}^{364.7}$ | 364.4 362.5 | -0.3 0.0 | -0.1\% |
 | 54.3\% | 360.8 | 360.8 | 0.0 | 0.0\% |
 | 55.8\% | 352.1 351.6 | 351.8 351.7 | -0.3 0.1 | -0.0\% |
 | 58.0\% | 351.1 | 350.4 | -0.8 | -0.2\% |
 | 60.5\% | ${ }_{347.1}^{34.0}$ | 348.7 347.2 | -0.0 | -0.0\% |
 | 61.7\% | 347.0 | 347.1 | 0.0 | 0.0\% |
 | | 345.4
 3438 | ${ }_{3435}^{34.5}$ | 0.0 | 0.0\% |
 | | 343.8 341.7 | 343.6 341.2 | -0.5 | -0.1\% |
 | 66.7\% | 334.8 | 334.8 | 0.0 | 0.0\% |
 | ${ }_{6}^{67.9 \%}$ | ${ }^{334.7}$ | 334.2
 344 | -0.6 | -0.0.2\% |
 | 70.4\% | ${ }_{329.3}$ | ${ }_{329.3}$ | -0.1 | 0.0\% |
 | 71.6\% | 325.7 | 322.6 | 0.9 | 0.3\% |
 | - 78.12% | 323.6 322.9 | ${ }_{32228}^{323.5}$ | -0.1 | 0.0\% |
 | 75.3\% | 318.9 | 319.0 | 0.1 | 0.0\% |
 | ${ }^{76.5 \%}$ | ${ }_{3171}^{317.8}$ | ${ }^{318.0}$ | 0.2 | -0.1\% |
 | 79.0\% | 316.6 | 316.7 | 0.1 | 0.0\% |
 | 80.2\% | 312.2 | ${ }^{312.3}$ | 0.2 | 0.1\% |
 | ${ }^{81.5 \%}$ | 311.5 | ${ }^{311.6}$ | 0.1 | 0.0\% |
 | - 8 82.0\% | ${ }_{295.3}^{295.4}$ | ${ }_{295.4}^{296.5}$ | 1.1 0.1 | 0.0\% |
 | 85.2\% | 280.9 | 28.0 | 0.1 | 0.0\% |
 | ${ }^{80.47}$ | ${ }_{2598}^{259.8}$ | 259.8 2584 | 0.0 | 0.0\% |
 | 88.9\% | 240.9 | ${ }_{241.1}^{20.4}$ | ${ }_{0.2}$ | 0.1\% |
 | 90.1\% | 215.7 | ${ }^{216.3}$ | 0.6 | 0.3\% |
 | 92.6\% | ${ }_{196.4}$ | 20.1 196.6 | 0.3 0.1 | ${ }^{0.1 \%}$ |
 | 93.8\% | 193.5 | 194.0 | 0.5 | 0.2\% |
 | 95.1\% | 186.0 1834 | 186.3 1887 | ${ }^{0.3}$ | |
 | ${ }^{96.5 \%}$ | ${ }_{178.1}^{183.4}$ | ${ }_{1}^{1878.5}$ | ${ }_{0.4}^{0.3}$ | 0.2\% |
 | 98.\% | 177.0 | 177.4 | 0.4 | 0.2\% |
 | 100.0\% | 166.3 | 166.5 | 0.2 | 0.1\% |

 | $\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {cher }}^{\text {DCR } 2015 \text { Without }}$ Proiet | DCR 2015 With Project | $\begin{gathered} \text { Absolute } \\ \begin{array}{c} \text { Difference } \\ \text { (UMHOSOS/CM) } \end{array} . \end{gathered}$ | RelativeDifference (\%) |
 | | Monthl $E C$ C | Monthly EC | | |
 | ${ }^{(1.0)}$ | 5580 | (UnHosicm) | | |
 | | | | | |
 | 1.2\% | 549.0 | 527.5 | | |
 | 2.5\% | 527.0 | 523.8 | ${ }^{3.2}$ | |
 | 3.7\% | 516.0 | 501 | | |
 | 4.9\% | 501.4 | 501.7 | 0.2 | |
 | 6.2\% | 498.7 | 501.5 | 2.8 | |
 | 7.4\% | 492.8 | 498.5 | 5.7 | 1.2\% |
 | 8.6\% | 492.2 | 487.0 | -5.2 | |
 | 9.9\% | 482.1 | 483.9 | 1.8 | |
 | 11.1\% | 472.6 | 483.1 | 10.6 | |
 | 12.3\% | 470.4 | 476.6 | 6.2 | 1.3\% |
 | 13.6\% | 453.7 | 468.5 | 14.7 | 3.2\% |
 | 14.8\% | 452.4 | 455.2 | 2.7 | |
 | 16.0\% | 446.5 | 452.1 | 5.5 | 1.2\% |
 | 17.3\% | 431.4 | 429.0 | -2.4 | -0.6 |
 | 18.5\% | 426.8 | 423.2 | -3.6 | -0.8\% |
 | 19.8\% | 423.5 | 423.2 | -0.3 | -0.1\% |
 | 21.0\% | 422.3 | 412.4 | -9.8 | -2.3\% |
 | 22.2\% | 419.8 | 398.7 | -21.1 | -5.0\% |
 | 23.5\% | 414.7 | 397.2 | -17.5 | -4.2\% |
 | 24.7\% | 413.8 | 396.4 | 17.4 | -4.2\% |
 | 25.9\% | 33966 | 394.6 | -2.0 | 0.5\% |
 | 27.2\% | 395.6 | 393.8 | -1.8 | -0.5\% |
 | 28.4\% | 394.9 | 393.0 | -1.9 | -0.5\% |
 | 29.6\% | 394.3 | 392.7 | -1.6 | -0.4\% |
 | 30.9\% | 393.5 | 392.6 | -0.9 | -0.2\% |
 | 32.1\% | 392.4 | 391.8 | -0.6 | -0.2\% |
 | 33.3\% | 391.8 | 391.8 | 0.0 | 0.0\% |
 | 34.6\% | 388.6 | 390.1 | 1.5 | 0.4\% |
 | 35.8\% | 386.0 | ${ }^{388.1}$ | 2.1 | 0.6\% |
 | 37.0\% | 385.8 | 387.2 | 1.3 | 0.3\% |
 | 38.3\% | 382.1 | 386.7 | 4.6 | 1.2\% |
 | 39.5\% | 378.6 | 385.4 | ${ }^{6.8}$ | 1.8\% |
 | 40.7\% | 374.7 | ${ }_{381.8}$ | 7.0 | 1.9\% |
 | 42.0\% | 373.9 | 371.8 | -2.0 | -0.5\% |
 | 43.2\% | ${ }^{367.7}$ | 370.8 | 3.2 | 0.9\% |
 | 44.4\% | 365.0 | 370.6 | 5.5 | 1.5\% |
 | 45.7\% | ${ }^{363.5}$ | 370.4 | 6.8 | 1.9\% |
 | 46.9\% | ${ }^{363.0}$ | 367.6 | 4.6 | 1.3\% |
 | 48.1\% | 359.9 | 365.1 | 5.3 | 1.5\% |
 | 49.4\% | 358.2 | ${ }^{363.4}$ | 5.2 | 1.4\% |
 | 50.6\% | ${ }_{355.3}$ | ${ }^{357.1}$ | 1.8 | 0.5\% |
 | 51.9\% | ${ }^{353.7}$ | 353.9 | 0.2 | 0.1\% |
 | 53.1\% | ${ }^{350.6}$ | 352.9 | ${ }^{2.3}$ | 0.7\% |
 | 54.3\% | ${ }^{350.5}$ | ${ }^{351.6}$ | 1.1 | 0.3\% |
 | 55.6\% | 350.0 | ${ }^{351.4}$ | 1.4 | 0.4\% |
 | 56.8\% | 347.2 | 347.7 | 0.6 | 0.2\% |
 | 58.0\% | ${ }^{345.2}$ | 347.7 | 2.4 | 0.7\% |
 | 59.3\% | ${ }^{345.2}$ | 343.7 | -1.5 | -0.4\% |
 | 60.5\% | ${ }^{343,3}$ | 343.1 | -0.2 | -0.1\% |
 | 61.7\% | 343.1 | 341.3 | -1.9 | -0.5\% |
 | 63.0\% | 341.2 | 340.8 | -0.4 | -0.1\% |
 | ${ }^{64.2 \%}$ | 340.2 | 339.9 | -0.3 | -0.1\% |
 | 65.4\% | 339.6 | 339.5 | -0.1 | 0.0\% |
 | ${ }^{66.7 \%}$ | 338.4 | 339.1 | 0.7 | 0.2\% |
 | 67.9\% | 337.3 | ${ }^{336.8}$ | -0.5 | -0.1\% |
 | 69.1\% | ${ }_{336.7}$ | ${ }_{336.7}$ | 0.0 | 0.0\% |
 | 70.4\% | ${ }^{336.6}$ | 336.7 3595 | 0.0 | 0.0\% |
 | 71.6\% | ${ }^{336.1}$ | 335.9 | -0.2 | -0.1\% |
 | 72.8\% | 333.4 | 333.4 | 0.0 | 0.0\% |
 | 74.1\% | 330.7 | ${ }_{329.9}$ | -0.7 | -0.2\% |
 | 75.3\% | 329.1 | ${ }_{328.3}$ | -0.8 | -0.2\% |
 | 76.5\% | ${ }_{327.8}$ | 327.9 | 0.1 | 0.0\% |
 | 77.8\% | ${ }_{327.5}$ | 327.9 | 0.4 | 0.1\% |
 | 79.0\% | ${ }^{327.2}$ | 326.0 | -1.2 | -.4\% |
 | 80.2\% | 325.1 | 323.6 | -1.6 | 0.5\% |
 | 81.5\% | 322.7 | ${ }_{321.8}$ | -0.9 | -3.3\% |
 | 82.7\% | 321.4 | ${ }^{321.3}$ | -0.1 | 0.0\% |
 | 84.0\% | 320.1 | 320.4 | ${ }^{0.3}$ | 0.1\% |
 | 85.2\% | 319.6 | 319.6 | 0.0 | .0\% |
 | ${ }^{86.4 \%}$ | 315.6 | 316.6 | 1.0 | 0.3\% |
 | 87.7\% | ${ }_{285}^{2985}$ | ${ }^{2986}$ | 0.1 | 0.0\% |
 | 88.9\% | 285.9 | 286.1 | 0.1 | 0.0\% |
 | 90.1\% | ${ }^{2874}$ | 287.8 | 0.5 | \% |
 | ${ }^{91.44 \%}$ | 278.3 | 279.0 | 0.7 | .2\% |
 | 92.6\% | 275.9 | 276.4 | 0.6 | \% |
 | 93.8\% | ${ }_{2677}^{2702}$ | ${ }_{2685}^{27.5}$ | 0.3 | .1\% |
 | 95.17\% | 267.7 | 268.2 | 0.5 | .2\% |
 | ${ }^{96.3 \%}$ | ${ }^{265.5}$ | 265.9 | ${ }^{0.3}$ | .1\%\% |
 | | 250.2 | 250.8 | 0.6 | 0.2\% |
 | 988.8\% | ${ }_{2}^{225.7}$ | ${ }_{206.7}^{224.2}$ | ${ }_{1.1}^{0.5}$ | 0.5\% |

 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
 \hline \multirow[b]{2}{*}{Percent} \& \multicolumn{3}{|c|}{Juy} \& Probal \& \multicolumn{5}{|c|}{August} \\
 \hline \& DCR 2015 Without \& DCR 2015 With Proiect \& \multirow[t]{3}{*}{\[
 \begin{gathered}
 \text { Absolute } \\
 \text { (ifference } \\
 \text { (UMHOSICM) }
 \end{gathered}
 \]} \& \multirow[b]{3}{*}{\[
 \begin{gathered}
 \text { Relative } \\
 \text { Difference (\%) }
 \end{gathered}
 \]} \& \multirow[t]{3}{*}{\[
 \begin{aligned}
 \& \text { Percent } \\
 \& \text { Exceedance } \\
 \& \text { Probabaility }
 \end{aligned}
 \]} \& \multirow[t]{3}{*}{} \& \multirow[t]{4}{*}{DCR 2015 With Project
 \begin{tabular}{c}
 Monthy \\
 (UMHOSCCOM)
 \end{tabular}
 (} \& \multirow[t]{3}{*}{\[
 \begin{gathered}
 \text { Absolute } \\
 \text { Difference } \\
 \text { (UMHOSSCM) }
 \end{gathered}
 \]} \& \multirow[b]{3}{*}{\[
 \begin{gathered}
 \text { Relative } \\
 \text { Difference (\%) }
 \end{gathered}
 \]} \\
 \hline Exceedance \& Proiect \& DCR 2015 With Project \& \& \& \& \& \& \& \\
 \hline Probability \& Monthly EC \& Monthly EC \& \& \& \& \& \& \& \\
 \hline 0.0\% \& \({ }_{5} 5\) \& 575.5 \& 0.0 \& 0.0\% \& 0.0\% \& \[
 \frac{(\text { UMHOSTCMI) }}{782.4}
 \] \& \& 4.9 \& 0.6\% \\
 \hline 12\% \& \& \& \& \& \& \& \& \& \\
 \hline 2.5\% \& 552 \& \& \& 46\% \& 25\% \& 220 \& 1298 \& . 1 \& \\
 \hline 2.5\% \& 552.0 \& 526.8 \& -25.2 \& -4.6\% \& 2.5\% \& 622.6 \& 626.7 \& 4.1 \& 0.7\% \\
 \hline 3.7\% \& 544.3 \& 502.8 \& -41.4 \& -7.6\% \& 3.7\% \& 609.8 \& \({ }^{607.6}\) \& -2.2 \& -0.4\% \\
 \hline 4.9\% \& 503.6 \& 495.5 \& -8.1 \& -1.6\% \& 4.9\% \& \({ }_{5857.0}\) \& 587.9 \& 2.9 \& 0.5\% \\
 \hline 6.2\% \& 473.7 \& 464.3 \& -9.4 \& -2.0\% \& 6.2\% \& 577.2 \& 577.0 \& -0.3 \& 0.0\% \\
 \hline 7.4\% \& 451.7 \& 450.7 \& -1.0 \& -0.2\% \& 7.4\% \& 564.7 \& 566.2 \& 1.6 \& 0.3\% \\
 \hline 8.6\% \& 488.2 \& 448.0 \& -0.2 \& 0.0\% \& 8.6\% \& 563.6 \& 565.0 \& 1.4 \& 0.2\% \\
 \hline 9.9\% \& 448.0 \& 444.2 \& -3.8 \& -0.8\% \& 9.9\% \& 561.2 \& 559.1 \& -2.2 \& -0.4\% \\
 \hline 11.1\% \& 442.4 \& 433.3 \& -9.2 \& -2.1\% \& 11.1\% \& 549.7 \& 557.7 \& 8.0 \& 1.5\% \\
 \hline 12.3\% \& \({ }^{436.2}\) \& 411.3 \& -25.0 \& -5.7\% \& \({ }^{12.3 \%}\) \& 542.0 \& 549.1 \& 7.0 \& 1.3\% \\
 \hline 13.6\% \& \({ }^{410.8}\) \& 409.9 \& -1.0 \& -0.2\% \& 13.6\% \& 541.9 \& 544.7 \& \({ }^{2.8}\) \& 0.5\% \\
 \hline 14.8\% \& 395.9 \& \({ }^{402.1}\) \& 6.2 \& 1.6\% \& 14.8\% \& 538.4 \& 534.0 \& -4.3 \& -0.8\% \\
 \hline \({ }^{16.0 \%}\) \& 395.2 \& 398.2 \& \({ }^{3.0}\) \& 0.8\% \& 16.0\% \& 528.1 \& 529.7 \& 1.6 \& 0.3\% \\
 \hline 17.3\% \& \({ }_{387.9}\) \& 380.7 \& -7.2 \& -1.9\% \& \({ }^{17.3 \%}\) \& 526.9 \& 527.4 \& 0.5 \& 0.1\% \\
 \hline 18.5\% \& 377.1 \& 378.4 \& \({ }^{1.3}\) \& 0.3\% \& 18.5\% \& 524.6 \& 526.3 \& 1.7 \& \({ }^{0.36}\) \\
 \hline 19.8\% \& 376.1 \& \({ }^{373} 3\) \& -2.9 \& -0.8\% \& 19.8\% \& 518.2 \& 514.9 \& \({ }^{-3.3}\) \& -0.6\% \\
 \hline 21.0\% \& \({ }^{366.4}\) \& 368.4 \& 2.0 \& 0.5\% \& 21.0\% \& 507.7 \& 513.0 \& \({ }_{5}^{5.2}\) \& 1.0\% \\
 \hline \({ }^{22.2 \%}\) \& 364.6 \& \({ }^{366.0}\) \& 1.5 \& 0.4\% \& \({ }^{22.2 \%}\) \& 499.5 \& 496.7 \& 17.2 \& 3.6\% \\
 \hline 23.5\% \& 363.1 \& \({ }^{358.5}\) \& -4.6 \& -1.3\% \& 23.5\% \& 459.1 \& \({ }^{483.3}\) \& \({ }^{24.2}\) \& 5.3\% \\
 \hline \({ }^{24.7 \%}\) \& \({ }^{363.1}\) \& 358.0 \& -5.1 \& -1.4\% \& 24.7\% \& 456.4 \& \({ }^{455.5}\) \& 19.1 \& 4.2\% \\
 \hline 225.9\% \& \({ }^{360.3}\) \& \({ }^{357.7}\) \& -2.6 \& -0.7\% \& 25.9\% \& 448.4 \& 4697 \& 21.3 \& 4.8\% \\
 \hline 27.2\% \& \({ }^{357.5}\) \& \({ }^{352.4}\) \& -5.1 \& -1.4\% \& 27.2\% \& 439.8 \& \({ }^{438.7}\) \& -1.1 \& -0.2\% \\
 \hline 28.4\% \& 350.2 \& 346.8 \& -3.4 \& -1.0\% \& 28.4\% \& \({ }^{432.4}\) \& 434.7 \& \({ }^{2.3}\) \& 0.5\% \\
 \hline 29.6\% \& \({ }^{336.2}\) \& \({ }_{336.8}\) \& 0.6 \& 0.2\% \& 29.6\% \& 428.8 \& \({ }_{432.8}\) \& 4.0 \& 0.9\% \\
 \hline 30.9\% \& \({ }_{3}^{332.5}\) \& \({ }_{332.7}^{332}\) \& \(-0.8\) \& -0.2\% \& 30.9\% \& \({ }_{424.1}\) \& \({ }^{427.5}\) \& 3.4 \& 0.8\% \\
 \hline 32.1\% \& \({ }^{327.8}\) \& \({ }^{331.3}\) \& \({ }^{3.6}\) \& 1.1\% \& 32.1\% \& 417.3 \& 418.0 \& 0.7 \& 0.2\% \\
 \hline 33.3\% \& \({ }^{322.1}\) \& \({ }^{332.6}\) \& 4.6 \& 1.4\% \& 33.3\% \& \({ }_{411.9}\) \& 412.6 \& 0.6 \& 0.2\% \\
 \hline 33.6\% \& \({ }_{322.9}\) \& \({ }_{323.2}\) \& \({ }^{0.3}\) \& 0.1\% \& 34.6\% \& 411.7 \& 408.7 \& \({ }^{3.0}\) \& \({ }^{-0.7 \%}\) \\
 \hline 35.8\% \& 320.2
 3220 \& \begin{tabular}{l}
 320.8 \\
 3198 \\
 \hline 1
 \end{tabular} \& 0.6 \& 0.2\% \& \({ }^{35.8 \%}\) \& 409.4 \& 407.5 \& -1.9 \& -0.5\% \\
 \hline 37.0\% \& 320.0 \& \({ }_{318.8}\) \& -1.2 \& \({ }^{-0.4 \%}\) \& 37.0\% \& 409.1 \& 406.9 \& -2.2 \& -0.5\% \\
 \hline \({ }^{38.3 \%}\) \& 319.6 \& 317.7 \& -1.9 \& -0.6\% \& 38.3\% \& 406.7 \& 399.2 \& -7.5 \& -1.9\% \\
 \hline 39.5\% \& 318.7 \& 317.4 \& -1.3 \& -0.4\% \& 39.5\% \& 397.4 \& \({ }^{397.2}\) \& -0.2 \& -0.1\% \\
 \hline 4.7\% \& 318.5 \& \({ }^{316.3}\) \& -2.3 \& -0.7\% \& 40.7\% \& 393.7 \& 395.1 \& 1.4 \& - \(0.3 \%\) \\
 \hline 42.0\% \& \({ }_{316.9}\) \& \({ }^{316.2}\) \& -0.7 \& -0.2\% \& 42.0\% \& \({ }^{392.4}\) \& 392.8 \& 0.4 \& 0.1\% \\
 \hline 43.2\% \& 316.2 \& 316.2 \& 0.0 \& 0.0\% \& 43.2\% \& 390.1 \& 388.1 \& -2.0 \& -0.5\% \\
 \hline 44.4\% \& 314.7 \& \({ }^{314.6}\) \& -0.2 \& -0.1\% \& 44.4\% \& 388.8
 38.8 \& \({ }^{388.1}\) \& -0.7 \& \({ }^{0.2 \%}\) \\
 \hline 45.7\% \& 344.5 \& 314.2 \& \(-0.3\) \& -0.1\% \& 45.7\% \& 386.7 \& \({ }^{38773}\) \& 0.6 \& 0.2\% \\
 \hline 46.9\% \& 314.1 \& 308.7 \& -5.4 \& -1.7\% \& 46.9\% \& \({ }^{388.0}\) \& \({ }^{387.3}\) \& \({ }^{1.3}\) \& 0.3\% \\
 \hline 48.1\% \& 309.0 \& \({ }^{308.4}\) \& -0.6 \& -0.2\% \& 48.1\% \& 381.4 \& 384.6 \& \({ }^{3.2}\) \& 0.8\% \\
 \hline 49.4\% \& 308.1 \& \({ }_{308.2}\) \& 0.1 \& 0.0\% \& 4.94\% \& \begin{tabular}{l}
 359.0 \\
 3585 \\
 \hline
 \end{tabular} \& 380.9 \& 21.9 \& \({ }_{5}^{6.1 \%}\) \\
 \hline \& \({ }^{307.7}\) \& \({ }_{307.3}\) \& -0.4 \& -0.1\% \& 50.6\% \& \({ }^{3558}\) \& 378.1 \& 19.8 \& \\
 \hline 51.9\% \& 307.2 \& \({ }_{305.3}\) \& -1.9 \& -0.6\% \& 51.9\% \& 352.7 \& \begin{tabular}{l}
 364.7 \\
 355 \\
 \hline
 \end{tabular} \& 12.0 \& 3.4\% \\
 \hline 55.1\% \& 305.4 \& \({ }_{304.7}\) \& -0.7 \& \({ }^{-0.2 \%}\) \& 53.1\% \& 352.6
 3524 \& \({ }_{3565}^{355.5}\) \& \({ }_{2}^{2.8}\) \& 0.8\% \\
 \hline 55.3\% \& 304.6
 3039 \& \begin{tabular}{|c}
 303.3 \\
 3001
 \end{tabular} \& --1.3 \& -0.4\% \& 54.3\% \& 352.4
 3480 \& \(\begin{array}{r}354.6 \\ 3458 \\ \hline\end{array}\) \& \({ }_{-2.2}^{2.2}\) \& 0.6\% \\
 \hline 56.8\% \& \({ }_{302.9}\) \& \({ }_{298 .}\) \& -4.6 \& \({ }^{-1.5 \%}\) \& 55.8\% \& 344.8 \& 345.8
 345.2 \& -2.6 \& -0.5\% \\
 \hline 58.0\% \& 300.6 \& 297.9 \& \(-2.8\) \& -0.9\% \& 58.0\% \& 344.2 \& 344.5 \& 0.2 \& 0.1\% \\
 \hline 59.3\% \& 299.9 \& 297.6 \& \(-2.3\) \& -0.8\% \& 59.3\% \& 341.0 \& 341.8 \& 0.8 \& 0.2\% \\
 \hline 60.5\% \& 293.9 \& 292.5 \& -1.4 \& -0.5\% \& 60.5\% \& 338.7 \& 337.5 \& -1.2 \& -0.4\% \\
 \hline \({ }^{61.7 \%}\) \& \({ }^{292.5}\) \& 290.5 \& -2.0 \& -0.7\% \& 61.7\% \& 332.1 \& 336.2 \& 4.0 \& 1.2\% \\
 \hline \({ }^{63.0 \%}\) \& 290.2 \& \({ }_{289}^{2901}\) \& 0.0 \& 0.0\% \& 63.0\% \& 327.0 \& \({ }^{331.8}\) \& 4.8 \& 1.5\% \\
 \hline 64.2\% \& \({ }^{288.8}\) \& 289.2 \& 0.4 \& 0.1\% \& 64.2\% \& 324.0 \& 325.6 \& 1.6 \& 0.5\% \\
 \hline \({ }^{65.4 \%}\) \& 287.9
 2858 \& \({ }_{285}^{2850}\) \& \(-2.9\) \& -1.0\% \& \({ }^{65.4 \%}\) \& 320.9
 308 \& \({ }_{322.8}\) \& 1.8 \& 0.6\% \\
 \hline 66.7\% \& 285.8 \& 284.2 \& -1.6 \& -0.6\% \& 66.7\% \& 318.8 \& 319.3 \& 0.5 \& 0.2\% \\
 \hline 67.9\% \& 284.3 \& \({ }_{28.1}^{282.1}\) \& -2.21 \& -0.8\% \& 67.9\% \& 318.3 \& 314.2 \& -4.0 \& -1.3\% \\
 \hline 70.4\% \& \({ }_{283.7}^{284.2}\) \& 281.0
 281.0 \& --2.7 \& \({ }^{-1.10 \%}\) \& 69.1\% \& 317.0
 314.7 \& 314.1
 312.0 \& -2.9 \& -0.9\% \\
 \hline 71.6\% \& 282.5 \& 280.8 \& -1.7 \& -0.6\% \& 71.6\% \& 313.0 \& 311.0 \& -2.0 \& -0.6\% \\
 \hline 72.8\% \& 281.4 \& 280.6 \& \(-0.8\) \& -0.3\% \& 72.8\% \& 312.4 \& 310.5 \& \(-2.0\) \& -0.6\% \\
 \hline 74.1\% \& 280.7 \& 279.6 \& -1.1 \& -0.4\% \& 74.1\% \& 312.0 \& 309.5 \& -2.6 \& -0.8\% \\
 \hline 75.3\% \& 279.7 \& 279.3 \& -0.4 \& -0.1\% \& 75.3\% \& 311.3 \& 309.4 \& -1.9 \& -0.6\% \\
 \hline 76.5\% \& 278.9 \& 278.5 \& -0.4 \& -0.1\% \& 76.5\% \& 309.9 \& 309.3 \& -0.6 \& -0.2\% \\
 \hline 77.8\% \& 277.1 \& 277.1 \& 0.0 \& 0.0\% \& 77.8\% \& 309.7 \& 306.9 \& -2.7 \& -0.9\% \\
 \hline 79.0\% \& 276.2 \& 275.7 \& -0.5 \& -0.2\% \& 79.0\% \& 309.5 \& 306.9 \& -2.6 \& -0.9\% \\
 \hline \({ }^{80.2 \%}\) \& \({ }_{275.1}^{278.0}\) \& \({ }_{274.8}^{275.5}\) \& -0.5 \& -0.0.2\% \& - \({ }_{\text {80,2\% }}^{815 \%}\) \& \(\begin{array}{r}309.1 \\ 3078 \\ \hline\end{array}\) \& 304.6
 3037 \& -4.68 \& -1.5\% \({ }_{-13 \%}\) \\
 \hline 82.7\% \& 274.1 \& 273.3 \& -0.8 \& -0.3\% \& 82.7\% \& 306.7 \& 301.6 \& -5.2 \& -1.7\% \\
 \hline 84.0\% \& 273.7 \& 272.5 \& -1.2 \& -0.4\% \& 84.0\% \& 305.2 \& 301.4 \& \({ }_{-3.8}\) \& -1.2\% \\
 \hline 85.2\% \& 27.4 \& 271.0 \& -0.4 \& -0.1\% \& 85.2\% \& 302.3 \& 298.3 \& -4.1 \& -1.3\% \\
 \hline 86.4\% \& 269.6 \& 270.0 \& 0.4 \& 0.2\% \& 86.4\% \& 300.3 \& 297.1 \& -3.2 \& -1.1\% \\
 \hline 887.9\% \& \({ }_{2673}^{268.4}\) \& 268.4

 2676 \& ${ }_{0.3}^{0.0}$ \& - ${ }_{\text {0.0\% }}^{0.1 \%}$ \& 87.7\% \& 300.1
 2974 \& 299.0
 2947 \& -.32 \& -

 \hline 90.1\% \& 265.9 \& 265.5 \& -0.5 \& -0.2\% \& 90.1\% \& 296.3 \& 299.4 \& -1.9 \& -0.7\%

 \hline 91.4\% \& 265.1 \& 264.5 \& -0.6 \& -0.2\% \& 91.4\% \& 294.6 \& 292.6 \& -2.0 \& -0.7\%

 \hline 993.8\% \& ${ }_{254.6}^{255.2}$ \& ${ }_{255.0}^{261.0}$ \& 5.8
 0.9 \& ${ }_{0}^{2.4 \%}$ \& -92.6\% ${ }_{93,8 \%}$ \& ${ }_{2913}^{293.4}$ \& ${ }_{2826}^{290.1}$ \& -3.3 \& -1.1\%

 \hline 95.1\% \& ${ }_{253.9}^{254}$ \& ${ }_{254.3}^{255}$ \& 0.4 \& 0.2\% \& ${ }^{955.1 \%}$ \& 277.4 \& ${ }_{275.9}^{28.9}$ \& -1.4 \& ${ }^{-0.5 \%}$

 \hline 96.3\% \& 249.4 \& 249.6 \& 0.2 \& 0.1\% \& 96.3\% \& 271.6 \& 275.6 \& 4.0 \&

 \hline 97.5\% \& 246.1 \& 245.6 \& -0.5 \& -0.2\% \& 97.5\% \& 249.0 \& 250.4 \& 1.4 \& 0.6\%

 \hline 98.8\%
 1000% \& ${ }_{220.7}^{24.7}$ \& ${ }_{220.4}^{24.5}$ \& -1.2 \& ${ }_{\text {- }}^{0.5 \%}$ \& 98.8\% \& ${ }_{2199}^{248.4}$ \& ${ }_{2199}^{24.6}$ \& 0.2 \& 0.1\%

 \hline \& \& \& \& \& \& \& 219.9 \& -0.1 \& 0.0\%

 \hline
 \end{tabular}

 | | | Seprember | | |
 | :---: | :---: | :---: | :---: | :---: |
 | ${ }_{\text {Percent }}$ Exceance | $\underbrace{\text { Proiect }}_{\text {DCR } 2015 \text { Without }}$ | DCR 2015 With Project | Absolute | |
 | Probability | Monthly EC | Monthly EC | (ifierence | fierence (\%) |
 | (\%) | (unHosicm) | 7019 | 39 | |
 | 1.2\% | 660.1 | 6831 | ${ }_{230}$ | |
 | 2.5\% | 650.7 | 666.9 | ${ }_{16.2}^{25}$ | ${ }^{2.5 \%}$ |
 | 3.7\% | 636.3 | 640.3 | 4.0 | |
 | 4.9\% | 634.2 | 630.2 | -4.0 | |
 | 7.4\% | 631.4 627.3 | 629.2 68.1 | -2.2 0.8 | -0.4\% |
 | 8.6\% | 617.0 | 623.5 | 6.4 | 1.0\% |
 | 9.9\% | 610.9 | 619.3 | 8.4 | 1.4\% |
 | 12.3\% | ${ }_{6}^{6108.7}$ | 611.8 617.8 | 8.1
 8.6
 8. | - ${ }_{\text {1.5\% }}^{\text {1.5\% }}$ |
 | 13.6\% | 604.2 | 605.8 | 1.6 | 0.3\% |
 | 14.8\% | 602.8 | 599.3 | -3.5 | |
 | - 17.0% | 602.7 600.5 | 599.2 593 | -8.6 | - -1.4% |
 | 18.5\% | 596.3 | 593.8 | -2.5 | -0.4\% |
 | 19.8\% | 595.3 | 589.7 | -5.6 | -0.9\% |
 | 22.2\% | ${ }_{591.7}^{594.9}$ | ${ }_{588.4}^{586.2}$ | -8.7 | ${ }^{-1.5 \%}$ |
 | 23.5\% | 581.5 | 584.2 | 2.7 | 0.5\% |
 | 24.7\% | 576.9 | 583.9 | 6.9 | 1.2\% |
 | 227.2\% | 574.3 567.4 | 588.0. 579 | 51.9 11.9 | - ${ }_{\text {2.1. }}^{1.1 \%}$ |
 | 28.4\% | 567.4 | 576.8 | 9.3 | 1.6\% |
 | 29.6\% | ${ }_{566.9}^{5617}$ | 574.3 | 7.4 | 1.3\% |
 | 330.1\% | ${ }_{5601.7}^{560.1}$ | ${ }_{572.5}^{572.7}$ | 10.9 12.5 | 2.2\% |
 | 33.3\% | 559.9 | 571.7 | 11.8 | 2.1\% |
 | 34.6\% | 557.9 | 568.9 | 11.0 | 2.0\% |
 | 37.0\% | ${ }_{551.1}^{551.8}$ | ${ }_{\text {ckes. }}^{565.4}$ | 13.5 14.0 | ${ }_{2.5 \%}^{2.5 \%}$ |
 | 38.3\% | 549.5 | 564.3 | 14.8 | 2.7\% |
 | | ${ }_{5}^{537.5}$ | 560.3 | ${ }_{228}^{22.8}$ | 4.2\% |
 | 420.0\% | ${ }_{5}^{532.2}$ | 559.9 550.4 | 27.7 18.4 | ${ }_{3.5 \%}^{5.5 \%}$ |
 | 43.2\% | 526.5 | 549.3 | 22.8 | 4.3\% |
 | | 523.9 | 549.2 | ${ }^{25.3}$ | 4.8\% |
 | 45.9\% | ${ }_{519.6}$ | ${ }_{545.7}^{54.1}$ | ${ }_{26.1}^{24.2}$ | 5.0\% |
 | 48.1\% | 516.5 | 544.7 | 28.2 | 5.5\% |
 | 49.4\% | 512.0 | ${ }_{5}^{538.2}$ | ${ }_{26}^{26.3}$ | 5.1\% |
 | 50.9\% | 509.5 | ${ }_{5}^{527.0}$ | 17.5 10.8 | ${ }^{3.4 \%}$ |
 | 53.1\% | 501.3 | 510.2 | 8.9 | 1.8\% |
 | 54.3\% | 495.0 | 505.3 | 10.3 | 2.1\% |
 | 55.8\% | ${ }_{483.2}^{485}$ | ${ }_{497.4}^{498.1}$ | 14.2 | ${ }_{2}^{2.9 \%}$ |
 | 58.0\% | 463.7 | 487.9 | 24.2 | 5.2\% |
 | 59.3\% | 463.1 | ${ }^{487.6}$ | ${ }^{24.5}$ | 5.3\% |
 | 61.7\% | 459.3 | 463.0 | ${ }_{3.7} 1.7$ | ${ }^{2.8 \%}$ |
 | 63.0\% | 459.1 | 462.7 | 3.6 | 0.8\% |
 | | ${ }_{452.8}^{454}$ | ${ }_{459.8}^{461.7}$ | 7.0 | ${ }_{\text {1.6\% }}^{1.5 \%}$ |
 | 66.7\% | 451.9 | 457.7 | 5.8 | 1.3\% |
 | -67.9\% | 443.8 443.0 | 456.9 4567 | 13.0 137 | 2.9\% |
 | - $79.10 .4 \%$ | ${ }_{442.8}^{443.0}$ | ${ }_{442.8}^{456.7}$ | 13.7 0.0 | - ${ }_{\text {3.0\% }}$ |
 | 71.6\% | 438.9 | 435.0 | -3.9 | -0.9\% |
 | 74.1\% | ${ }_{430.9}^{437.5}$ | ${ }_{4}^{424.9}$ | -12.7 -6.7 | --1.6\% |
 | 75.3\% | 430.4 | 422.1 | -8.3 | -1.9\% |
 | 76.5\% | ${ }^{428.6}$ | 418.8 | -9.7 | -2.3\% |
 | 799.0\% | ${ }_{422.4}^{424.7}$ | ${ }_{41414.4}^{41.6}$ | -7.1 -8.1 | -1.9\% |
 | 80.2\% | 422.0 | 410.9 | -11.1 | -2.6\% |
 | ${ }_{82.7 \%}$ | ${ }_{416.2}^{420.1}$ | ${ }_{4090.5}^{409.5}$ | -10.6 -7.2 | -2.5\% |
 | 84.0\% | 415.5 | 402.2 | -13.3 | -3.2\% |
 | - | ${ }_{411.5}^{412.1}$ | ${ }_{395.7}^{397.2}$ | -14.8 | -3.6\% |
 | 8.7.7\% | 389.1 | ${ }_{355.3}$ | ${ }_{-3.9}$ | -1.0\% |
 | 88.9\% | 386.6 | ${ }_{375.1}$ | -11.5 | -3.0\% |
 | 90.11\% | 381.0 379.7 | 370.4
 366.8 | -10.6 | -2.8\% |
 | 92.6\% | 378.8 | ${ }_{366.7}$ | | -3.2\% |
 | 93.8\% | 362.4 | 357.0 | -5.4 | -1.5\% |
 | 955.1\% | ${ }_{2948}^{2951}$ | ${ }^{311.7}$ | 16.7 | 5.7\% |
 | 96.5\% | ${ }_{234.3}^{294.8}$ | 273.0 26.6 | 21.8 32.3 | -7.4\% |
 | 98.8\% | 231.1 | 231.1 | 0.0 | 0.0\% |
 | 100.0\% | 208.7 | 208.7 | 0.0 | 0.0\% |

 Figure SQ-32-b
 Delta Mendota Canal at Jones Pumping Plant, Monthly EC

 Detta Mendotat Canal at Jones sumping Plant, Monthly EC

 | $\begin{gathered} \text { Percent } \\ \hline \text { Excedance } \\ \text { Probability } \end{gathered}$ | October | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | DCR 2015 With Project | Absolute | Relative |
 | | Monthly EC | Monthly EC | (itiference | Difference (\%) |
 | 0.0\% | (UMHOSSCM) | sicm) | | |
 | 0.0\% | 712.8 | ${ }^{740.3}$ | ${ }^{27.6}$ | 3.9\% |
 | 1.2\% | 699.6 | ${ }_{7} 7$ | | |
 | 2.5\% | 698.6 | 710.3 | 11.7 | |
 | 3.7\% | 696.7 | 703.7 | 7.0 | 1.0\% |
 | 4.9\% | 663.8 | 690.6 | 26.7 | 4.0\% |
 | 6.2\% | 663.8 | 685 | 21.8 | 3.3\% |
 | 7.4\% | 660.3 | ${ }^{682} 3$ | 22.0 | 3.3\% |
 | 8.6\% | 655.5 | 675.9 | 20.4 | 3.1\% |
 | 9.9\% | 654.9 | 665.1 | 10.1 | 1.5\% |
 | 11.1\% | 653.1 | 657.9 | 4.8 | 0.7\% |
 | 12.3\% | 652.8 | 655.4 | 2.6 | 0.4\% |
 | 13.6\% | 648.9 | 652.1 | 3.2 | 0.5\% |
 | 14.8\% | 648.2 | 648.5 | 0.3 | 0.0\% |
 | 16.0\% | 645.5 | 646.8 | 1.3 | 0.28 |
 | 17.3\% | 644.6 | 640.9 | ${ }^{3.7}$ | ${ }^{0.6}$ |
 | 18.5\% | 644.1 | 639.0 | -5.1 | -0.8 |
 | 19.8\% | 642.6 | 635.9 | -6.7 | -1.0\% |
 | 21.0\% | 642.3 | 631.5 | -10.8 | -1.7 |
 | 22.2\% | 641.4 | ${ }^{625.6}$ | -15.8 | -2.5\% |
 | 23.5\% | 641.2 | ${ }^{623.8}$ | 17.4 | -2.7 |
 | 24.7\% | 633.8 | ${ }^{621.3}$ | -12.4 | -2.0\% |
 | 25.9\% | ${ }^{632.6}$ | 616.8 | -15.8 | -2.5\% |
 | 27.2\% | 631.2 | 613.8 | -17.4 | -2.8\% |
 | 28.4\% | 630.9 | 612.7 | -18.2 | -2.9\% |
 | 29.6\% | 630.4 | 609.2 | -21.2 | ${ }^{-3.46}$ |
 | 30.9\% | 624.4 | 609.1 | -15.3 | -2.48 |
 | 32.1\% | 622.3 | 607.8 | -14.6 | -2.3\% |
 | 33.3\% | 618.5 | 606.7 | -11.8 | -1.9\% |
 | 34.6\% | 611.9 | ${ }^{6059.8}$ | -6.1 | -1.0\% |
 | 35.8\% | 609.5 | 599.2 | -10.3 | -1.7\% |
 | 37.0\% | 602.8 | 591.7 | -11.2 | -1.9\% |
 | 38.3\% | 602.4 | 588.7 | -13.7 | 2.3\% |
 | 39.5\% | 586.7 | 586.0 | -0.6 | -0.1\% |
 | 40.7\% | 582.4 | ${ }_{582.3}$ | 0.0 | 0.0\% |
 | 42.0\% | 581.8 | 575.0 | -6.8 | -1.2\% |
 | 43.2\% | 580.2 | 570.4 | -9.8 | -1.7\% |
 | 44.4\% | 578.6 | 562.5 | -16.1 | 2.8\% |
 | 45.7\% | 578.1 | 558.4 | -19.8 | -3.4\% |
 | 46.9\% | 572.5 | 557.1 | -15.4 | -2.7\% |
 | 48.1\% | 567.8 | ${ }_{556.7}$ | -11.1 | -2.0\% |
 | 49.4\% | 565.6 | 546.2 | -19.5 | -3.4\% |
 | 50.6\% | 560.8 | 538.3 | -22.5 | -4.0\% |
 | 51.9\% | 546.0 | 532.7 | -13.4 | 2.5\% |
 | 53.1\% | 537.0 | 506.6 | -30.4 | -5.7\% |
 | 54.3\% | 400.7 | 391.2 | -9.5 | 2.4\% |
 | 55.6\% | 400.3 | 39.1 | -9.2 | -2.3\% |
 | 56.8\% | 389.8 | ${ }^{390.3}$ | 0.5 | 0.17\% |
 | 58.0\% | ${ }_{3}^{389.3}$ | ${ }^{3828}$ | -6.5 | -1.7\% |
 | 59.3\% | ${ }^{378.5}$ | ${ }_{3875}$ | 4.0 | 1.1\% |
 | 60.5\% | 378.0 | 377.9 | -0.1 | 0.0\% |
 | 617.7\% | ${ }^{375.3}$ | ${ }^{373.5}$ | -1.81 | -0.5\% |
 | 63.0\% | ${ }^{3773.3}$ | 362.2 | -11.1 | -3.0\% |
 | 64.2\% | ${ }^{372.5}$ | ${ }^{360.2}$ | -12.3 | ${ }^{3.3 \%}$ |
 | 65.4\% | ${ }^{367.1}$ | ${ }^{359.3}$ | -7.7 | -2.1\% |
 | ${ }^{66.7 \%}$ | ${ }^{361.6}$ | 354.9 | -6.7 | -1.9\% |
 | 67.9\% | 359.4 | 354.4 | -5.0 | -1.4\% |
 | 69.1\% | ${ }^{359.3}$ | ${ }^{353.3}$ | -6.1 | 1.7\% |
 | 70.4\% | ${ }^{359.1}$ | 347.5 3 | -11.5 | 3.2\% |
 | 71.6\% | ${ }^{357.3}$ | 342.8 | -14.5 | -4.1\% |
 | 72.8\% | 357.0 | 342.6 | -14.5 | -4.1\% |
 | 74.1\% | 354.8 | 340.8 | 14.0 | 3.9\% |
 | 75.3\% | 349.6 | 340.7 | -9.0 | -2.6\% |
 | 76.5\% | 346.7 | 340.6 | -6.1 | ${ }^{-1.8 \%}$ |
 | 77.8\% | 346.3 | ${ }^{336.9}$ | -9.5 | -2.7\% |
 | 79.0\% | 345.2 | 334.7 | -10.5 | 3.0\% |
 | 80.2\% | 345.0 | 334,1 | -10.9 | -3.1\% |
 | 81.5\% | 343.8 | ${ }^{331.5}$ | ${ }^{-12.3}$ | -3.6\% |
 | 82.7\% | 342.0 | 330.6
 308
 292 | -11.5 | 3.3\% |
 | 84.0\% | 340.9 | 329.8 | 11.1 | -3.3\% |
 | 85.2\% | ${ }_{338.3}$ | ${ }^{328.2}$ | -10.2 | -3.7\% |
 | 86.4\% | ${ }^{336.3}$ | ${ }^{327.2}$ | -9.1 | -2.7\% |
 | 87.7\% | ${ }_{332.2}$ | 327.0 | -5.2 | -1.6\% |
 | 88.9\% | ${ }^{331.7}$ | ${ }^{326.3}$ | -5.4 | 1.6\% |
 | 90.1\% | 327.9 | 325.7 | .2.2 | -0.7\% |
 | ${ }^{91.44 \%}$ | ${ }_{322.1}$ | 324.0 | 1.9 | 0.6\% |
 | 92.6\% | 321.7 | ${ }_{327.6}$ | -1.2 | -0.4\% |
 | ${ }^{93.8 \%}$ | 318.4 | 317.9 | -0.5 | 0.2\% |
 | 95.17\% | 317.8 | 316.0 | -1.8 | 0.6\% |
 | 96.3.5\% | 317.1 | 310.0 | ${ }^{-6.1}$ | -1.9\% |
 | 97.5\% | 274.3 | 276.2 | 1.9 | ${ }^{0.7 \%}$ |
 | | ${ }_{201.6}^{2659}$ | ${ }_{201.1}^{267.3}$ | | -0.5\% |

 | | November | | | | December | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {DCR } 2015 \text { Without }}^{\text {Proiet }}$ | DCR 2015 With Project | Absolute | | | ${ }_{\text {dCR }}^{\text {P2015 Without }}$ Proiect | OCR 2015 With Project | Absolute | |
 | Probability | Monthly EC | Monthly EC | (itiference | Difference (\%) | Probability | Monthly EC | Monthy EC | (ifterence | Difference (\%) |
 | 0 | (Unhosicm) | $\frac{\text { UnHosich }}{7039}$ | -54.1 | -7.1\% | 0.0\% | 8221 | (920) | | |
 | 1.2\% | 751.3 | 703.1 | -48.2 | -6.4\% | 1.2\% | 784.1 | 805.2 | 211 | 27% |
 | 2.5\% | 707.9 | 701.9 | -6.0 | -0.8\% | 2.5\% | 784.0 | 798.7 | 14.7 | 1.9\% |
 | 3.7\% | 697.8 | 672.1 | -25.7 | -3.7\% | 3.7\% | 778.8 | 792.0 | 13.2 | \% |
 | 4.9\% | 694.6 | 663.2 | -31.5 | -4.5\% | 4.9\% | 775.2 | 776.8 | 1.5 | \% |
 | 6.2\% | 679.7 | 645.4 | -34.3 | -5.0\% | 6.2\% | 762.6 | 764.2 | 1.7 | 0.2\% |
 | 7.4\% | 674.8 | 639.2 | -35.5 | -5.3\% | 7.4\% | ${ }_{762.5}$ | 761.7 | -0.8 | -0.1\% |
 | 8.6\% | 670.5 | 636.0 | -34.4 | -5.1\% | 8.6\% | ${ }_{7647} 75$ | ${ }^{740.8}$ | -15.9 | -2.1\% |
 | 9.9\% | 669.2 | 635.4 | -33.8 | -5.0\% | 9.9\% | 747.8 | ${ }_{7577}^{7357}$ | -12.2 | -1.6\% |
 | 11.1\% | 668.2 | 629.2 | -39.0 | -5.8\% | 11.1\% | 744.7 | ${ }^{727.8}$ | -16.9 | -2.3\% |
 | 12.3\% | 651.2 | ${ }^{622.1}$ | -29.1 | -4.5\% | ${ }^{12.3 \%}$ | 741.9 | 726.8 | -15.1 | -2.0\% |
 | 13.6\% | 648.4 | 622.0 | -26.4 | -4.1\% | 13.6\% | 741.4 | 721.8 | -19.6 | -2.6\% |
 | 14.8\% | 646.0 | 620.0 | -26.0 | -4.0\% | 14.8\% | 740.1 | ${ }_{713.4} 71$ | ${ }^{-26.7}$ | -3.6\% |
 | 16.0\% | 640.0 | 506.5 | -33.6 | -5.2\% | 16.0\% | 734.6 | 711.2 | -23.5 | -3.2\% |
 | ${ }^{17.3 \%}$ | ${ }^{638.0}$ | 594.8 | -43.1 | -6.8\% | 17.3\% | ${ }^{732.8}$ | 708.6 | -25.2 | -3.4\% |
 | 18.5\% | ${ }^{637.3}$ | 594.3 | -43.1 | -6.8\% | 18.5\% | ${ }_{724.5}$ | 705.0 | -19.5 | -2.7\% |
 | 19.8\% | 618.0 | 587.1 | -30.9 | -5.0\% | 19.8\% | 720.9 | ${ }_{702.6}$ | -18.3 | -2.5\% |
 | 21.0\% | 608.0 | 586.3 | -21.7 | -3.6\% | 21.0\% | 715.1 | 700.3 | -14.9 | -2.1\% |
 | ${ }^{22.2 \%}$ | 603.5 | 585.6 | -17.9 | -3.0\% | ${ }^{22.2 \%}$ | 709.1 | ${ }^{6959} 8$ | -13.3 | -1.9\% |
 | ${ }^{23.5 \%}$ | 602.8 | ${ }_{581.5}$ | -21.3 | -3.5\% | 23.5\% | ${ }^{699.3}$ | 695.8 | -3.5 | -0.5\% |
 | 24.7\% | 600.4 | 581.1 | -19.3 | ${ }^{-3.2 \%}$ | 24.7\% | 697.0 | 693.3 | -3.7 | -0.5\% |
 | 25.9\% | 598.1 | 587.0 | -17.1 | -2.9\% | 25.9\% | ${ }_{696.2}$ | 692.4 | -3.9 | -0.6\% |
 | 27.2\% | 596.4 | 577.9 | -18.5 | ${ }^{-3.1 \%}$ | ${ }^{27.2 \%}$ | ${ }^{695.2}$ | 690.7 | -4.6 | -0.7\% |
 | 28.4\% | 595.1 | 577.3 | -17.8 | -3.0\% | 28.4\% | 691.2 | 689.7 6958 | -1.5 | -0.2\% |
 | 29.6\% | 594.6 | 576.2 | -18.4 | ${ }^{-3.1 \%}$ | 29.6\% | 6897 | 685.8 | -3.9 | -0.6\% |
 | 30.9\% | ${ }_{589.3}$ | 571.9 | -17.3 | -2.9\% | 30.9\% | ${ }_{687.1}$ | ${ }^{684.6}$ | -2.4 | -0.4\% |
 | 32.1\% | 588.2 | 570.3 | -17.9 | -3.0\% | 32.1\% | 684.7 | ${ }_{6789} 68.9$ | -0.8 | -0.1\% |
 | 33.3\% | 585.9 | 570.2 | -15.7 | -2.7\% | 33.3\% | ${ }_{6897}^{687}$ | ${ }_{6}^{676.8}$ | -7.3 | -1.1\% |
 | 34.6\% | ${ }_{581.3}$ | 569.1 | -12.2 | -2.1\% | 34.6\% | 679.7 | ${ }^{673.2}$ | -6.5 | -1.0\% |
 | ${ }^{35.8 \%}$ | 588.0 | 559.0 | -10.9 | -1.9\% | 35.9\% | 678.4 | 668.0 | -10.4 | -1.5\% |
 | 37.0\% | 579.6 | 562.8 | -16.7 | -2.9\% | 37.0\% | ${ }^{673.6}$ | ${ }^{650.2}$ | 23.4 | ${ }^{-3.5 \%}$ |
 | 38.3\% | 579.6 | 561.2 | -18.3 | -3.2\% | 38.3\% | ${ }^{668.3}$ | ${ }^{64777}$ | -20.6 | -3.1\% |
 | 39.5\% | 575.8 | 552.9 | ${ }^{-23.0}$ | -4.0\% | 3.95\% | ${ }_{662.6}$ | ${ }_{629.5}$ | -20.2 | -3.0\% |
 | 40.7\% | 572.2 | 550.3 | -21.8 | -3.8\% | 40.7\% | 660.0 | 639.1 | -20.9 | -3.2\% |
 | 42.0\% | 570.3 | ${ }_{536.9}$ | -33.4 | -5.9\% | ${ }^{42.0 \%}$ | ${ }_{6}^{632.5}$ | ${ }_{638.9}^{635}$ | ${ }_{5}^{3.3}$ | 0.5\% |
 | 43.2\% | 568.1 5643 | ${ }_{535.3}$ | -32.8 | -5.8\% | 43.2\% | ${ }^{629.6}$ | ${ }_{635.2}$ | 5.6 | 0.9\% |
 | 44.4\% | 564.3 | 531.2 | -33.0 | -5.9\% | 44.4\% | ${ }_{628.1}$ | ${ }^{613.6}$ | -14.5 | ${ }^{-2.3 \%}$ |
 | 45.7\% | 563.7 | 531.0 | -32.7 | -5.8\% | 45.7\% | 610.1 | ${ }^{612.6}$ | ${ }_{7}^{2.5}$ | 0.4\% |
 | 46.9\% | 559.8 | 524.8 | -34.9 | ${ }^{-6.2 \%}$ | 46.9\% | 560.3 554 | 568.0 555.0 | ${ }^{7.7}$ | 1.4\% |
 | 48.19\% | ${ }_{555.6}$ | 51.1 | -4.5 | ${ }^{-8.2 \%}$ | 48.1\% | 554.6
 5393 | 555.9 5423 | ${ }^{1.3}$ | 0.2\% |
 | 4.94\% | 555.2 | 507.3 | -4.9 | -8.6\% | 4.94\% | 539.3
 5773 | 542.3 533 | 3.0 | ${ }^{0.6 \%}$ |
 | 50.6\% | 554.0 | 491.3 | -61.7 | -11.2\% | 50.6\% | ${ }_{527.3}$ | 533.9 | 6.7 | - |
 | 55.9\% | 542.1 | 488.0 | -58.1 | -10.6\% | 51.9\% | ${ }_{5229}^{529}$ | 510.5
 5054 | -12.3 | -2.4\% |
 | 53.19\% | 527.3 | 458.0 | -69.4 | -13.2\% | 53.1\% | 507.6 | 505.4 | -2.2 | -0.4\% |
 | 55.6\% | ${ }_{4473}$ | ${ }_{4231}$ | -1.1. | ${ }_{-54 \%}^{-0.3 \%}$ | 54.3% 55.6% | ${ }_{5056}^{505.7}$ | 505.4 5040 | -0.4 | ${ }_{-0.0}^{-0.1 \%}$ |
 | 55.8\% | ${ }_{423.6}$ | ${ }_{417.7}^{423.1}$ | -6.0 | ${ }^{-1.4 \%}$ | 56.8\% | ${ }_{504.5}$ | ${ }_{500.7}^{504}$ | - ${ }_{-1.6}$ | -0.8\% |
 | 58.0\% | 417.7 | 413.7 | -4.0 | -1.0\% | 58.0\% | 496.4 | 498.1 | 1.7 | 0.3\% |
 | 59.3\% | 403.4 | 408.7 | 5.3 | 1.3\% | 59.3\% | 489.7 | 488.0 | -1.7 | -0.3\% |
 | 60.5\% | 402.3 | 389.0 | -13.3 | -3.3\% | 60.5\% | 489.0 | 485.8 | -3.2 | -0.7\% |
 | ${ }^{61.7 \%}$ | ${ }_{393} 3$ | 386.4 | -6.9 | -1.8\% | 61.7\% | 481.8 | 483.9 | 2.1 | 0.4\% |
 | 66.0\% | | 378.6 | -13.6 | -3.5\% | 63.0\% | 480.9 | 477.9 | -3.0 | |
 | ${ }^{66.2 \%}$ | 387.2 | 367.6 3655 | -19.6 | -5.1\% | 64.2% 65.4% | ${ }_{4722}$ | 477.8 | -2.4 | ${ }_{-2.5 \%}^{-0.5 \%}$ |
 | ${ }_{66.7 \%}^{65.7 \%}$ | 3869.9 | ${ }_{361.3}^{363.5}$ | -8.1 | ${ }_{-2.2 \%}^{-4 .}$ | ${ }_{66.1 \%}^{65.4 \%}$ | ${ }_{459.2}^{472}$ | ${ }_{457.2}^{4611}$ | -2.0 | - -2.4% |
 | 67.9\% | 365.7 | 360.7 | -5.1 | -1.4\% | 67.9\% | 458.7 | 456.2 | -2.4 | -0.5\% |
 | 69.1\% | 363.0 | 359.0 | -4.0 | -1.1\% | 69.1\% | 458.1 | 455.0 | -3.1 | -0.7\% |
 | 77.4\% | 352.1 3497 | 354.1
 354 | 2.0 4.4 | 0.6\% | 70.4\% | 454.9 4525 | 454.3 4513 | -0.7 | -0.1\% |
 | 72.8\% | 344.7 348.8 | ${ }_{342.5}$ | ${ }_{-6.3}^{4.4}$ | ${ }^{1.3 \% \%}$ | | ${ }_{4}^{452.5}$ | 451.3 40.9 | -.1.6 | -0.3\% |
 | 74.1\% | 343.5 | 342.4 | -1.1 | -0.3\% | 74.1\% | 443.1 | 439.2 | ${ }_{-3.9}$ | -0.9\% |
 | ${ }^{75.3 \%}$ | ${ }^{343.2}$ | 341.0 | -2.2 | -0.6\% | 75.3\% | 432.0 | 429.9 | -2.1 | -0.5\% |
 | 76.5\% | ${ }^{342.5}$ | 339.9 | -2.6 | -0.8\% | 76.5\% | 428.9 | 429.5 | 0.6 | 0.1\% |
 | 779.0\% | 340.5 300.4 | 339.1 338.5 | -1.4 -1.8 | -0.0\%\% | 77.8\% | 428.9 427.5 | 427.3 427.2 | -1.7 -0.3 | -0.4\% |
 | 80.2\% | 338.6 | 338.2 | -0.4 | -0.1\% | 80.2\% | 425.9 | 426.8 | 0.9 | |
 | 81.5\% | 337.9 | 335.4 | -2.4 | -0.7\% | 81.5\% | 425.8 | 426.1 | 0.3 | 0.1\% |
 | 82.7\% | 337.1 3365 | ${ }_{333.4}^{333}$ | -3.78 | -1.1\% | 82.7\% | 424.3 | 424.2 | -0.1 | 0.0\% |
 | ${ }^{84.0 \%}$ | ${ }_{336.5}^{3356}$ | ${ }_{333.1}^{334}$ | -3.3 | -1.0\% | 84.0\% | ${ }^{423.4}$ | 422.4 | -1.0 | -0.2\% |
 | 86.4\% | 335.6 333.8 | 331.3 331.0 | - ${ }_{-2.8}$ | - | - | ${ }_{422.5}^{42.1}$ | 421.8 421.8 | -0.3 | -0.1\% |
 | 87.7\% | 333.5 | 329.7 | ${ }^{-3.8}$ | -1.1\% | ${ }^{87.7 \%}$ | 420.8 | 421.4 | 0.6 | 0.1\% |
 | 88.9\% | 332.9 | 329.1 | ${ }^{-3.8}$ | -1.1\% | 88.9\% | 420.2 | 420.0 | -0.3 | -0.1\% |
 | 90.1\%\% | 329.7 | 328.3 3275 | -1.4 | -0.4\% | ${ }_{9}^{90.14 \%}$ | 420.2 4197 | 418.4 4172 | -1.7 -26 | -0.0.4\% |
 | ${ }^{92.6 \%}$ | ${ }_{322.7}^{32.7}$ | 325.3 324 | -0.4 | -0.1\% | 92.6\% | 413.8 | 414.8 | 1.0 | 0.2\% |
 | 93.8\% | 324.3 | 324.4 | 0.2 | 0.1\% | 93.8\% | 410.8 | 410.5 | -0.3 | -0.1\% |
 | 95.1\% | 322.0 | 324.2 | 2.2 | 0.7\% | 95.1\% | 404.8 | 410.0 | 5.2 | 1.3\% |
 | 96.3\% | ${ }^{321.8}$ | 324.2 | 2.4 | 0.7\% | ${ }^{96.3 \%}$ | ${ }_{3}^{347.2}$ | ${ }^{347.2}$ | 0.1 | 0.0\% |
 | 97.5\% | 303.1 | 299.0 | -4.1 | -1.4\% | 97.5\% | ${ }_{337.5}$ | ${ }^{333.6}$ | 0.2 | 0.0\% |
 | 年 $\begin{aligned} & \text { 98.8\% } \\ & 1000 \%\end{aligned}$ | 20.9 1760 | 211.1 1749 | ${ }_{-1,}^{1.2}$ | -0.6\% | 98.8\% 100.0\% | ${ }_{2523}^{275.3}$ | 275.8 2519 | 0.5 .03 | -0.2\% |

 | $\underset{\substack{\text { Percerent } \\ \text { Expeobabe } \\ \text { Probility }}}{ }$ | January | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {der }}^{\text {OCR 2015 Without }}$ Proet | DCR 2015 With Project | | Relative |
 | | Monthly EC | Monthly EC | (${ }_{\text {difierence }}$ | Difference (\%) |
 | 0.0\% | ${ }^{914.2}$ | ${ }^{832.5}$ | ${ }^{81.7}$ | -8.9\% |
 | 1.2\% | 850.0 | 812 | | |
 | 2.5\% | 846.3 | 788.0 | -58.3 | 6.9\% |
 | 3.7\% | 826.2 | 786.7 | 39.5 | |
 | 4.9\% | 823.6 | 783.4 | -40.1 | |
 | 6.2\% | 794.8 | ${ }^{782.2}$ | 12.7 | |
 | 7.4\% | 790.1 | 778.3 | -11.8 | |
 | 8.6\% | 790.1 | 777.0 | -13.1 | |
 | 9.9\% | 779.4 | 776.9 | | |
 | - 11.10% | ${ }_{775.4}^{775}$ | 767.9 | -7.5 | - |
 | 13.6\% | 765.2 | 756.5 | -8.7 | -1.1\% |
 | 14.8\% | 755.5 | 751.1 | -4.4 | -0.6\% |
 | 16.0\% | 754.5 | 745.6 | -8.9 | -1.2\% |
 | | | ${ }_{745.3}$ | 4.9 | 0.7\% |
 | - ${ }^{18.5 \%}$ 198\% | 739.0 733.1 | 745.2 744.3 | 6.3 11.2 | 1.5\% |
 | 21.0\% | ${ }^{732.5}$ | 740.6 | 8.2 | 1.1\% |
 | 22.2\% | 729.7 | 728.4 | ${ }^{1.3}$ | |
 | 23.5\% | ${ }^{725.7}$ | 726.6 | 0.9 | 0.1\% |
 | 24.7\% | 719.3 | 722.4 | 3.1 | |
 | 25.7\% | 717.8 | 721.6 | 3.8 | 0.5\% |
 | | 708.6 | 720.7 | 12.1 | ${ }^{1.7 \%}$ |
 | - 28.4 .4 \% | 699.6 699.1 | 719.4 706.2 | 19.8 70 | ${ }_{\text {cke }}^{2.8 \%}$ |
 | 30.9\% | 688.4 | 701.6 | 13.2 | 1.9\% |
 | 32.1\% | 679.5 | 696.9 | 17.4 | 2.6\% |
 | 33.3\% | ${ }_{677.6}$ | 688.6 | 15.0 | 2.2\% |
 | 34.6\% | 672.3 | 678.8 | 6.4 | 1.0\% |
 | 35.8\% | 670.0 | 676.4 | 6.4 | 1.0\% |
 | 37.0\% | 663.8 | 676.1 | 12.3 | 1.9\% |
 | 38.3\% | 661.7 | 664.4 | 2.7 | 0.4\% |
 | 39.5\% | 658.6 | 663.2 | 4.7 | 0.7\% |
 | 40.7\% | 654.4 | 658.4 | 4.0 | 0.6\% |
 | 42.0\% | 648.5 | 655.1 | 6.6 | 1.0\% |
 | 43.2\% | 645.9 | 651.9 | 6.0 | 0.9\% |
 | 44.4\% | 638.7 | 648.5 | 9.7 | 1.5\% |
 | 45.7\% | 638.0 | 647.2 | 9.2 | 1.4\% |
 | 46.9\% | 637.9 | 641.8 | 3.9 | 0.6\% |
 | 48.1\% | 632.5 | 641.6 | 9.1 | 1.4\% |
 | 49.4\% | 625.6 | 640.2 | 14.6 | 2.3\% |
 | 50.6\% | ${ }^{623.1}$ | 637.5 | 14.5 | 2.3\% |
 | 51.9\% | 622.0 | 626.9 | 4.9 | 0.8\% |
 | 53.1\% | 614.3 | 625.5 | 11.1 | 1.8\% |
 | 54.3\% | 611.3 | ${ }^{625.2}$ | 13.9 | 2.3\% |
 | 55.6\% | 610.8 | 618.8 | 8.0 | 1.3\% |
 | 56.8\% | 607.3 | 614.6 | 7.3 | 1.2\% |
 | 58.0\% | 601.8 | 613.1 | 11.3 | 1.9\% |
 | 59.3\% | ${ }^{601.1}$ | ${ }^{612.5}$ | 11.4 | 1.9\% |
 | 60.5\% | 596.9 | 610.3 | 13.4 | 2.3\% |
 | 61.7\% | 596.7 | 604.9 | 8.2 | 1.4\% |
 | 63.0\% | 589.6 | 602.6 | 13.0 | 2.2\% |
 | 64.2\% | 587.0 | 597.9 | 10.9 | 1.9\% |
 | 65.4\% | 585.8 | 593.9 | 8.0 | 1.4\% |
 | 66.7\% | 581.2 | 593.0 | 11.8 | 0\% |
 | 67.9\% | 573.9 | 590.1 | 16.2 | ${ }_{\text {2, }}$ |
 | 69.1\% | 5693 | 588.7 | 19.4 | 3.4\% |
 | 70.4\% | 569.0 | 579.8 | 10.9 | 1.9\% |
 | 71.6\% | 560.3 | 569.2 | 8.9 | 6\% |
 | 72.8\% | 558.4 | 568.8 | 10.4 | 1.9\%\% |
 | 74.1\% | 545.4 | 558.8 | 13.4 | 2.5\% |
 | 75.3\% | 541.7 | 541.9 | 0.2 | 0.0\% |
 | 76.5\% | 539.9 | 541.4 | 1.5 | 0.3\% |
 | 77.8\% | ${ }_{531.8}$ | 5331.0 | -0.8 | -0.1\% |
 | 79.0\% | 528.3 | 527.0 | -1.3 | 0.2\% |
 | 80.2\% | 524.4 | 524.7 | 0.3 | 0.1\% |
 | 81.5\% | 524.1 | ${ }^{523.7}$ | -0.3 | -0.1\% |
 | 82.7\% | 523.8 | 522.2 | -1.6 | -0.3\% |
 | 84.0\% | 508.6 | 507.0 | 1.6 | -0.3\% |
 | 85.2\% | 500.5 | 506.8 | 0.3 | 0.1\% |
 | 86.4\% | 506.0 | 506.5 | 0.5 | 0.1\% |
 | 87.7\% | 503.1 | 504.8 | 1.7 | 0.3\% |
 | 88.9\% | 495.0 | 503.8 | 8.9 | 1.8\% |
 | 90.19\% | 480.5 | 480.9 | 0.3 | 0.1\% |
 | 914\% | 411.6 | 409.9 | 1.7 | -0.4\% |
 | 92.6\% | 408.8 | 408.9 | 0.2 | 0.0\% |
 | 93.8\% | 399.8 | 405.1 | 5.2 | 1.3\% |
 | 95.1\% | 376.2 | 377.2 | 1.0 | 0.3\% |
 | ${ }^{96.3 \%}$ | 338.1 | 339.1 | 1.0 | 0.3\% |
 | 97.5\% | 317.4 | 317.9 | 0.5 | 0.1\% |
 | 98.8\% | ${ }_{302.6}$ | ${ }_{3}^{302.6}$ | 0.0 | 0.0\% |
 | 100.0\% | 276.0 | 276.1 | 0.2 | 0.1\% |

 Table SQ-32-b

 | | | February | | |
 | :---: | :---: | :---: | :---: | :---: |
 | ${ }_{\text {Percent }}^{\text {Pexeenance }}$ | ${ }_{\text {dCR }}^{\text {P } 2015 \text { Without }}$ Proeat | DCR 2015 With Project | Absolute | |
 | Probability | Monthly EC | Monthy EC | (itierence | Difference (\%) |
 | (\%) | (UMHOSICM) | (UMHosicm) | | |
 | 0.0\% | 895.8 | 846.8 | -49.0 | -5.5\% |
 | 1.2\% | 862.5 | 838.1 | -24.4 | -2.8\% |
 | 2.5\% | 854.3 | 804.1 | -50.2 | -5.9\% |
 | 3.7\% | 851.8 | 782.0 | -69.8 | -8.2\% |
 | 4.9\% | 822.6 | 780.5 | -42.1 | -5.1\% |
 | ${ }^{6.2 \%}$ | 802.9 7832 | 777.6
 7755 | -26.4 -77 | -3.3\% |
 | 7.4\% | 783.2 | 775.5 | -7.7 | -1.0\% |
 | 8.6\% | 782.5 7798 | 762.5 7596 | -20.0 | -2.6\% |
 | 9.9\% | 779.8 | ${ }_{759.6}$ | -20.2 | -2.6\% |
 | 11.19\% | 772.1 | 748.8 | -23.2 | -3.0\% |
 | 12.3\% | 749.3 | 739.1 | -10.3 | -1.4\% |
 | 13.6\% | 729.1 | ${ }_{723.1}^{721}$ | -6.0 | -0.8\% |
 | 14.8\% | 712.2 | 712.4 | 0.2 | 0.0\% |
 | 16.0\% | 712.1 | 711.6 | -0.6 | -0.1\% |
 | 17.3\% | 705.1 | 700.6 | 1.5 | 0.2\% |
 | 18.5\% | 704.2 | 704.7 | 0.4 | 0.1\% |
 | 19.8\% | 699.6 | ${ }^{703.6}$ | 4.0 | 0.6\% |
 | 21.0\% | ${ }^{692.4}$ | ${ }_{693}^{693}$ | -1.1. | -0.2\% |
 | 22.2\% | 690.9 | 683.9 | -7.0 | -1.0\% |
 | ${ }^{23.4 .7 \%}$ | 690.8 686.0 | 678.9 678.6 | - -7.9 | -1.7\% |
 | 25.9\% | 681.2 | 675.4 | -5.8 | -0.9\% |
 | 27.2\% | 675.7 | 666.3 | -9.3 | -1.4\% |
 | 28.4\% | 668.3 | 665.5 | -2.8 | -0.4\% |
 | 29.6\% | ${ }_{664.2}^{662}$ | ${ }_{65575}^{6657}$ | ${ }^{1.3}$ | 0.2\% |
 | 30.9\% | 662.1 660.6 | 657.7 6556 | -4.4 | -0.7\% |
 | 32.1\% | ${ }^{660.6}$ | ${ }^{655.6}$ | -5.0 | ${ }^{-0.8 \%}$ |
 | 33.3\% | ${ }_{656.4}^{6547}$ | ${ }_{6}^{654.3}$ | -2.19 | -0.3\% |
 | 34.6% 358% | 643.7 | 648.6 | 4.9 | 0.8\% |
 | 35.8\% | 643.3 | ${ }_{644.2}^{648}$ | 2.9 | 0.4\% |
 | 37.0\% | ${ }^{638.3}$ | 640.2 | 1.9 | 0.3\% |
 | 38.3\% | 636.5 6324 | 637.3 | ${ }_{4}^{0.8}$ | 0.1\% |
 | 39.5\% | ${ }_{6}^{632.4}$ | ${ }^{636.7}$ | 4.3 | - 0.7% |
 | 40.7. ${ }^{40 \%}$ | ${ }_{6}^{623.6}$ | 632.2 629.1 | ${ }_{5.7}^{8.7}$ | 1.4\% |
 | 43.2\% | 620.2 | 628.0 | 7.8 | 1.3\% |
 | 44.4\% | 617.1 | 623.1 | 6.0 | 1.0\% |
 | 45.7\% | 613.3 6129 | 析18.5 | ${ }_{4}^{5.2}$ | 0.9\% |
 | ${ }^{46.9 \%}$ | 612.9 | 617.7 | 4.8 | ${ }_{\text {en }}$ 0.8\% |
 | 48.1\% 4.4 | ${ }_{604.4}^{604}$ | ${ }_{6}^{617.1}$ | 12.7 ${ }_{4}{ }^{1} 8$ | 2.1\% |
 | 49.4\% | 601.9 600.4 | 600.3 604.8 | ${ }_{4}^{4.3}$ | 0.7\% 0 |
 | 50.9\% | ${ }_{600.4}^{600.4}$ | 604.8 602.4 | ${ }_{2.3}^{4.3}$ | 0.7\% 0 |
 | 53.19\% | 593.5 5877 | 600.5 596.4 | 8.1 88 | -1.4\% |
 | 54.5\% | 587.7 582.0 | 596.4 588.0 | 8.7 6.0 | 1.5\% |
 | 56.8\% | 578.5 | 578.6 | ${ }_{0.1}^{6.0}$ | 0.0\% |
 | 58.0\% | 574.8 | 573.5 558.1 | -1.3 | -0.2\% |
 | 59.3\% | 549.2 | 558.1 | -11.0 | -1.9\% |
 | 60.5\% | 544.7 538.2 | 547.6 5387 | 2.9 0.5 | 0.5\% |
 | 63.0\% | 527.3 | 530.8 | 3.5 | 0.7\% |
 | 64.2\% | 523.3 | 524.9 | 1.6 | 0.3\% |
 | | 515.2 | 515.2 | ${ }_{0}^{0.0}$ | - 0.0% |
 | 67.9\% | 495.0 | 495.4 | 0.4 | 0.1\% |
 | 69.1\% | 494.4 | 494.9 | 0.5 | 0.1\% |
 | 70.4\% | ${ }_{460.3}^{479.0}$ | ${ }_{466.2}^{474.9}$ | -4.1 5.9 | -0.3\% |
 | 72.8\% | 458.2 | 461.6 | 3.5 | 0.8\% |
 | 74.1\% | 455.6 | 455.9 | 0.3 | 0.1\% |
 | 75.3\% | ${ }_{4513}^{452.5}$ | ${ }_{452.3}^{452.9}$ | ${ }^{0.3}$ | 0.1\% |
 | 77.8\% | 439.4 | 437.5 | -1.9 | -0.4\% |
 | 79.0\% | 437.3 | 436.4 | -0.9 | -0.2\% |
 | - | ${ }_{4}^{434.6}$ | ${ }_{432.1}^{43.1}$ | -1.5 | -0.0.0\% |
 | 82.7\% | 432.6 | 429.3 | -3.3 | -0.8\% |
 | 84.0\% | 408.0 | 407.5 | -0.5 | -0.1\% |
 | 85.4\% | 382.9 364.8 | ${ }_{\text {cher }}^{383.2}$ | 0.3 0.4 | - ${ }_{\text {0.1\% }}^{0.1 \%}$ |
 | 87.7\% | ${ }^{361.3}$ | 360.7 | -0.6 | -0.2\% |
 | 88.9\% | 358.1 | 358.5 | 0.4 | 0.1\% |
 | ${ }_{9}^{90.14 \%}$ | 337.1 3295 | 337.3 3302 | ${ }_{0}^{0.2}$ | - ${ }_{0}^{0.1 \%}$ |
 | 92.6\% | 326.1 36.1 | 326.2 | 0.1 | 0.0\% |
 | ${ }^{93.58 \%}$ | 319.4 | 320.2 | 0.8 | 0.3\% |
 | ${ }^{956.3 \%}$ | ${ }_{2664}^{2860}$ | ${ }_{266.3}^{286.1}$ | 0.0 -0.0 | - |
 | 97.5\% | ${ }_{263.7}^{260.4}$ | ${ }_{263}^{263}$ | 0.0 | 0.0\% |
 | 98.8\% 100.0\% | 230.7 180.7 | 231.0 180.5 | 0.3 -0.2 | -0.1\% |

 | $\begin{array}{\|c} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{array}$ | May | | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOSOSCM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: |
 | | DCR 2015 Without | DCR 2015 With Project | | |
 | | Monthly EC | Monthly EC | | |
 | (\%) | (UnHosici | (UMHOSSCM) | 147 | 2.5\% |
 | 1.2\% | 5819 | 5929 | 11 | 2.0\% |
 | 2.5\% | 572.5 | 575.2 | 27 | |
 | 3.7\% | 570.3 | 575.0 | 4.7 | 0.8\% |
 | 4.9\% | 569.5 | 572.5 | 3.0 | 0.5\% |
 | 6.2\% | 559.4 | 564.4 | 50 | |
 | 7.4\% | 558.9 | 560. | 1.9 | |
 | 8.6\% | 554.6 | 556 | 2.2 | |
 | 9.9\% | 554.4 | 554.9 | 0.5 | |
 | 11.1\% | 553.4 | 554. | 1.4 | |
 | 12.3\% | 553.1 | 554.8 | 1.6 | 0.3 |
 | 13.6\% | 551.6 | 551.3 | -0.2 | 0.0\% |
 | 14.8\% | 545.9 | 544.6 | ${ }^{1.3}$ | -0.2 |
 | 16.0\% | 544.3 | 543.6 | -0.7 | -0.1\% |
 | 17.3\% | 540.6 | 540.7 | 0.1 | 0.0 |
 | 18.5\% | 539.3 | 539.3 | 0.0 | 0.0 |
 | 19.8\% | 534.5 | 539.1 | 4.6 | 0.9\% |
 | ${ }^{21.0 \%}$ | 521.7 | 535.0 | 13.2 | 2.5\% |
 | 23.5\% | 510.9 | 522.0 | 11.1 | 2.2\% |
 | 24.7\% | 507.3 | 510.7 | 3.4 | 0.7\% |
 | 25.9\% | 497.9 | 497.8 | -0.1 | 0.0\% |
 | 27.2\% | 483.0 | 482.9 | 0.0 | 0.0\% |
 | 28.4\% | 481.1 | 481.0 | -0.1 | 0.0\% |
 | 29.6\% | 480.7 | 480.9 | 0.1 | 0.0\% |
 | 320.1\% | ${ }_{466.1}$ | 468.1 | 2.0 | 0.4\% |
 | 33.3\% | 460.0 | 460.0 | 0.0 | 0.0\% |
 | 34.6\% | 452.7 | 452.7 | 0.1 | 0.0\% |
 | 35.8\% | 451.9 | 451.9 | 0.0 | 0.0\% |
 | 37.0\% | 450.8 | 450.7 | -0.1 | 0.0\% |
 | 38.3\% | 448.8 | 448.8 | 0.0 | 0.0\% |
 | 39.7\% | 447.5 | 447.5 | 0.0 | 0.0\% |
 | ${ }_{4}^{40.7 \%}$ | 477.2 | 447.2 | 0.0 | 0.0\% |
 | 43.2\% | 439.3 | 439.3 | 0.0 | 0.0\% |
 | 44.4\% | 430.2 | 430.2 | 0.0 | 0.0\% |
 | 45.7\% | 423.9 | 424.2 | 0.3 | 0.1\% |
 | 46.9\% | 421.6 | ${ }^{421.6}$ | 0.0 | 0.0\% |
 | 48.1\% | 407.9 | 407.6 | -0.3 | -0.1\% |
 | 49.4\% | 404.1 | 404.3 | 0.2 | 0.1\% |
 | | 403.6 4002 | 403.6 | 0.0 | 0.0\% |
 | 53.1\% | 380.0 | 380.0 | 0.0 | 0.0\% |
 | 54.3\% | 377.6 | 377.5 | 0.0 | 0.0\% |
 | 55.6\% | 377.3 | 377.5 | 0.1 | 0.0\% |
 | 56.8\% | ${ }^{377.4}$ | 376.4 | 0.1 | 0.0\% |
 | 58.0\% | 377.3 | ${ }^{3772.3}$ | 0.0 | 0.0\% |
 | 59.5\% | ${ }^{3773.0}$ | ${ }^{372726}$ | -0.4 | -0.1\% |
 | ${ }_{61.7 \%}$ | 370.7 | 370.6 | -0.1 | 0.0\% |
 | 63.0\% | 369.5 | 369.6 | 0.1 | 0.0\% |
 | 64.2\% | 368.9 | 368.8 | -0.1 | 0.0\% |
 | -65.4\% | 367.2 | 367.0 3667 | -0.2 | -0.1\% |
 | ${ }^{66.7 \%}$ | 366 | 366.7 | 0.0 | 0.0\% |
 | 67.9\% | 364.2 | ${ }^{364.0}$ | -0.1 | 0.0\% |
 | 70.4\% | ${ }_{363.2}^{362 .}$ | ${ }^{363.2}$ | 0.0 | 0.0\% |
 | 71.6\% | ${ }_{362.1}$ | ${ }_{362.1}^{362.0}$ | 0.0 | 0.0\% |
 | 72.8\% | ${ }^{352.4}$ | 352.5 | 0.1 | 0.0\% |
 | 74.1\% | 350.8 | 351.5 | 0.6 | 0.2\% |
 | -75.3\% | 347.1 | 347.1 3730 | 0.0 | 0.0\% |
 | ${ }^{76.5 \%}$ | 343.0 3308 | ${ }^{343.0}$ | 0.0 | 0.0\% |
 | 77.8\% | 330.8 | 331.0 | 0.1 | 0.0\% |
 | 89.0\% | ${ }^{3228.8}$ | ${ }^{329.0}$ | 0.1 | 0.0\% |
 | 80.15\% | ${ }_{323.6}^{3250}$ | ${ }_{323.7}^{3250}$ | ${ }_{0}^{0.1}$ | 0.0\% |
 | 82.7\% | ${ }^{316.3}$ | 317.1 | 0.8 | 0.3\% |
 | 84.0\% | 295.0 | 295.1 | 0.1 | 0.0\% |
 | 85.2\% | ${ }_{26}^{271.6}$ | ${ }_{262.6}^{272.6}$ | 1.0 | 0.4\% |
 | 86.4\% | 262.0 | 262.0 | 0.0 | 0.0\% |
 | 877\% | ${ }_{251.0}^{260.0}$ | 260.1 251.2 | 0.1 0.2 | 0.0\% |
 | 90.1\% | 220.3 | 221.0 | 0.7 | 0.3\% |
 | 91.4\% | 206.6 | 207.0 | 0.3 | 0.2\% |
 | 92.6\% | ${ }^{2039}$ | 203.8 1094 | 0.1 0.5 | 0.0\% |
 | 93.8\% | 199.0 | 199.4 | 0.5 | 0.2\% |
 | ${ }^{96.3 \%}$ | 195.2 1915 | ${ }_{1917}^{195.3}$ | 0.1 | - ${ }^{0.0 \%}$ |
 | 97.5\% | 186.5 | 186.8 | 0.3 | 0.2\% |
 | 98.8\% 100.0\% | 179.7 163.6 | 180.1 163.8 | 0.4 0.2 | ${ }_{0}^{0.2 \%}$ |

 Table SQ-32-b

 | | | June | | |
 | :---: | :---: | :---: | :---: | :---: |
 | ${ }_{\text {Percent }}^{\text {Pexeenance }}$ | ${ }_{\text {dCR }}^{\text {D } 2015 \text { Without }}$ Proeat | DCR 2015 With Project | Absolute | |
 | Probability | Monthly EC | Monthy EC | (itierence | Difference (\%) |
 | (\%) | (UMHOSICM) | (UMHosicm) | | |
 | 0.0\% | 525.8 | 534.2 | 8.5 | 1.6\% |
 | 1.2\% | 518.0 | 512.3 | -5.7 | -1.1\% |
 | 2.5\% | 512.1 | 504.7 | -7.4 | -1.4\% |
 | 3.7\% | 498.3 | 501.0 | 2.7 | 0.5\% |
 | 4.9\% | 494.1 | 497.8 | 3.7 | 0.7\% |
 | ${ }^{6.2 \%}$ | ${ }_{4919}^{493}$ | 494.1 | ${ }^{0.2}$ | 0.0\%\% |
 | 7.4\% | 491.2 | 489.0 | -2.2 | -0.5\% |
 | 8.6\% | 483.0 478.4 | 487.7 4781 | 4.7 | 1.0\% |
 | 9.9\% | 478.4 | 478.1 | -0.2 | 0.0\% |
 | 11.1\% | 476.4 4659 | 477.2 | -0.8 | - 0.7 \% |
 | 12.3\% | 465.9 | 473.6 | 7.8 8.5 | 1.7\% |
 | 13.6\% | 443.5 | 452.1 | 8.5 | -1.9\% |
 | 14.8\% | 433.6 | 443.2 | ${ }^{6.6}$ | ${ }^{1.5 \%}$ |
 | 16.0\% | 433.5 | 434.3 | 0.7 | 0.2\% |
 | 17.3\% | 424.8 | 426.9 | 2.1 | 0.5\% |
 | 18.5\% | 419.0 | 424.4 | 5.4 | 1.3\% |
 | 19.8\% | 417.6 | 419.4 | ${ }^{1.8}$ | 0.4\% |
 | 21.0\% | 408.1 | 418.4 | 10.2 | 2.5\% |
 | 22.2\% | 406.9 | 409.6 | ${ }^{2.8}$ | 0.7\% |
 | ${ }^{23.4 .7 \%}$ | ${ }_{404.8}^{406.8}$ | ${ }^{40907.0}$ | ${ }_{36}^{2.2}$ | 0.9\% |
 | 25.9\% | 401.3 | 406.9 | 5.6 | 1.4\% |
 | 27.2\% | 394.8 | 402.2 | 7.5 | 1.9\% |
 | 28.4\% | 393.6 3927 | ${ }_{401.0}^{400}$ | 7.4 | 1.9\% |
 | 29.6\% | 392.7 | 400.1 | 7.4 | 1.9\% |
 | 30.9\% | 390.8 308 | 3950 | 4.2 | 1.1\% |
 | 32.19% 33.3% | 389.3 | 394.2 | 4.9 | 1.3\% |
 | 33.3% 34.6% | ${ }_{386.0}^{386.3}$ | 389.8 3892 | ${ }_{33}^{3.5}$ | 0.9\% |
 | 34.6% 358% | 386.0 | ${ }^{389.2}$ | ${ }^{3.3}$ | 0.8\% |
 | 35.8\% | 385.8 384.5 | 388.6
 3858 | 2.8 13 | 0.7\% |
 | 37.0\% | 384.5 | 385.8 | 1.3 | 0.3\% |
 | 38.3\% | 384.3 384 | $\begin{array}{r}385.6 \\ 355 \\ \hline\end{array}$ | ${ }^{1.3}$ | 0.3\% |
 | 39.5% 40.7% | ${ }^{384.3}$ | ${ }_{385.5}$ | 1.3 | 0.3\% |
 | - 40.7% | 383.6 3810 | 384.7 384. | ${ }^{1.1}$ | 0.3\% |
 | 42.0\% | ${ }_{387.0}$ | 384.3 | 3.4 | 0.9\% |
 | 43.2\% 44.4% | ${ }_{377.3}^{378.6}$ | 383.8 3801 | ${ }^{5.2}$ | 1.4\% |
 | ${ }^{44.4 \%}$ | 377.3 376.4 | 380.1 377.8 | 2.9 14 | 0.8\% |
 | 46.9\% | 375.8 | 377.2 | ${ }_{1.5}^{1.4}$ | 0.4\% |
 | 48.1\% | ${ }_{375.3}^{375}$ | 377.5 | 1.3 | 0.3\% |
 | 49.4\% | ${ }_{\text {ckin }}^{373}$ | ${ }^{377.0}$ | ${ }_{2}^{2.8}$ | 0.8\% |
 | | 371.8 3707 | 375.4 3753 | ${ }^{3.6}$ | 1.0\% |
 | 51.9\% | 370.7 370.4 | ${ }_{3737}^{375.3}$ | 4.6 3.2 | - 1.2% |
 | ${ }_{5}^{53.3 \%}$ | 370.4 369.8 | ${ }_{372.6}^{37.7}$ | ${ }_{2.8}^{3.2}$ | 0.8\% |
 | 55.6\% | 369.5 | 371.7 | 2.2 | 0.6\% |
 | 56.8\% | 369.4 | 377.0 | 0.6 | 0.2\% |
 | | 368.0 36.7 | 369.0 3690 | ${ }_{2}^{1.0}$ | 0.3\% |
 | 60.5\% | ${ }_{366.2}^{36.7}$ | 366.6 | ${ }_{0.5}^{2.3}$ | 0.1\% |
 | ${ }^{61.7 \%}$ | 365.8 | 365.6 | -0.2 | -0.1\% |
 | - 63.0% | 365.8
 3656 | 365.6 3656 | -0.2 | -0.0\% |
 | 65.4\% | 364.4 | 365.5 | 1.1 | 0.3\% |
 | 66.7\% | 362.7 | 365.3 | 2.6 | 0.7\% |
 | 67.9\% | 361.4 359.2 | 364.7 359.2 | 3.3 0 | -0.9\% |
 | 70.4\% | 356.5 | 358.9 | 2.3 | 0.7\% |
 | 71.6\% | 356.5 | 357.1 | 0.7 | 0.2\% |
 | 72.8\% | ${ }_{352.1}^{356.3}$ | 356.3 355.9 | -0.1 3.8 | - |
 | 75.3\% | 350.7 | 355.9 | 5.2 | 1.5\% |
 | 76.5\% | 350.0 | 350.4 | 0.5 | 0.1\% |
 | 77.8\% | 349.8 348.9 | 350.1 3889 | 0.2 | - 0.1% |
 | 80.2\% | 338.1 | 341.9 | 3.9 | 1.1\% |
 | 81.5\% | 337.8 | 338.1 | 0.3 | 0.1\% |
 | - 82.7% | ${ }_{3367}^{337.3}$ | 336.4 355.2 | -0.9 | -0.0.0\% |
 | 85.2\% | 335.1 | 335.1 | 0.0 | 0.0\% |
 | 86.4\% | 331.9 | 332.2 | 0.3 | 0.1\% |
 | 87.7% 889% | 328.2 3225 | ${ }_{3227}^{328.2}$ | ${ }_{0}^{0.0}$ | - ${ }_{\text {0,0\% }}^{0.0 \%}$ |
 | 90.1\% | 315.8 | 316.3 | 0.5 | 0.1\% |
 | 914\% | 313.2 | 314.3 | 1.1 | 0.4\% |
 | 93. 92.8 \% | 310.9 3026 | 308.8 303.5 | -2.1 1.0 | ${ }_{\text {- }}^{\text {- }}$-.7\%\% |
 | 95.1\% | 291.7 | 292.7 | 1.0 | 0.4\% |
 | 96.3\% | 286.0 | 28.8 | 0.8 | 0.3\% |
 | 97.5\% | 260.0 | ${ }^{260.7}$ | 0.8 | 0.3\% |
 | 100.0\% | ${ }_{214.0}^{2328}$ | ${ }_{214.6}^{233.1}$ | ${ }_{0.6}^{0.3}$ | 0.3\% |

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[b]{4}{*}{\[
 \begin{aligned}
 \& \text { Percent } \\
 \& \text { Exceedance } \\
 \& \text { Probabalility }
 \end{aligned}
 \]} \& \multicolumn{4}{|c|}{September} \\
 \hline \& DCR 2015 Without \& DCR 2015 With Project \& Absolute \& \\
 \hline \& Monthly EC \& Monthy EC \& (ifference \& Difference (\%) \\
 \hline \& (UMHOSCM) \& (UMHOSSCM) \& \& \\
 \hline 0.0\% \& 695.4 \& 706.5 \& 11.1 \& 1.6\% \\
 \hline 1.2\% \& 663.4 \& 680.6 \& 17.2 \& 2.6\% \\
 \hline 2.5\% \& 653.1 \& 673.4 \& 20.3 \& 3.1\% \\
 \hline 3.7\% \& 640.9 \& 663.1 \& \({ }^{22.2}\) \& 3.5\% \\
 \hline 4.9\% \& 635.5 \& 658.2 \& 22.6 \& 3.6\% \\
 \hline 6.2\% \& 634.2 \& 634.6 \& -0.4 \& 0.1\% \\
 \hline 7.4\% \& 629.6 \& 631.8 \& 2.2 \& 0.3\% \\
 \hline 8.6\% \& 626.9 \& \({ }_{\text {che }}^{630.3}\) \& \({ }^{3.4}\) \& 0.5\% \\
 \hline 9.9\% \& 615.7 \& 627.1 \& 11.3 \& 1.8\% \\
 \hline 11.1\% \& 613.1 \& \({ }_{621.7}^{621.7}\) \& 8.5 \& 1.4\% \\
 \hline 12.3\% \& 612.9 \& 621.4 \& 8.5 \& 1.4\% \\
 \hline 13.6\% \& \({ }^{609.0}\) \& \({ }_{619.1}^{612}\) \& 10.1 \& 1.7\%\% \\
 \hline 14.8\% \& 602.4 \& 612.4 \& 9.9 \& 1.7\% \\
 \hline 16.0\% \& 601.4 \& \({ }^{609.4}\) \& 8.0 \& 1.3\% \\
 \hline 17.3\% \& 599.6 \& 604.3 \& 4.7 \& 0.8\% \\
 \hline 18.5\% \& 59983 \& \({ }_{6029}^{6029}\) \& 4.6 \& 0.8\% \\
 \hline 19.8\% \& 597.7 \& \({ }^{601.7}\) \& 4.0 \& \({ }^{0.7 \%}\) \\
 \hline \({ }_{2}^{21.0 \%}\) \& 594.0
 5917 \& 600.5
 5979 \& \({ }_{6.1}^{6.5}\) \& -1.1\% \\
 \hline \({ }_{22.5}^{22.2 \%}\) \& 59.7
 5898 \& 597.9
 5936 \& \({ }^{6.1}\) \& - \({ }_{\text {1.0\% }}\) \\
 \hline \({ }^{234.7 \%}\) \& \({ }_{588.3}^{589.8}\) \& \(\stackrel{593.6}{590.9}\) \& \begin{tabular}{l}
 3.8 \\
 4.6 \\
 \hline
 \end{tabular} \& 0.8\% \\
 \hline 25.9\% \& 5882 \& 589.2 \& 7.0 \& 1.2\% \\
 \hline 27.2\% \& 579.0 \& 589.2 \& 10.2 \& 1.8\% \\
 \hline 28.4\% \& 578.5 \& 588.7 \& 10.2 \& 1.8\% \\
 \hline 29.6\% \& 577.3 \& 586.3 \& 9.1 \& 1.1.\% \\
 \hline - 3 30.9\% \& 567.1
 5621 \& 年588.2 \& 19.1
 217 \& 年3.4\% \\
 \hline \(32.1 \%\)
 \(3.3 \%\) \& 562.1
 560.2 \& \({ }_{581.7}^{583.7}\) \& \({ }_{21,}^{21.7}\) \& 3.8\% \\
 \hline 33.6\% \& 558.4 \& \({ }_{576.9}^{5817}\) \& \({ }_{18.5}^{21.5}\) \& 3.3\% \\
 \hline 33.8\% \& 558.0
 556.6 \& 575.9
 572.4 \& 17.9
 158 \& \\
 \hline 38.3\% \& 553.5 \& 570.9 \& 17.3 \& 3.1\% \\
 \hline 39.5\% \& 551.5 \& 567.3 \& 15.8 \& 2.9\% \\
 \hline 40.7\% \& 549.5
 5490 \& 565.0
 5614 \& 15.4
 124
 12. \& \({ }_{2}^{2.8 \%}\) \\
 \hline 43.2\% \& 541.5 \& 559.2 \& 17.7 \& 3.3\% \\
 \hline 44.4\% \& 537.6 \& 559.1 \& 21.5 \& 4.0\% \\
 \hline 45.7\% \& 530.7
 5232 \& 557.2
 548.9 \& \({ }_{257}^{26.5}\) \& 5.0\% \\
 \hline 48.1\% \& 522.3 \& 548.3 \& 25.9 \& 5.0\% \\
 \hline 49.4\% \& 520.5 \& 531.3 \& 10.8 \& 2.1\% \\
 \hline \& 514.1
 513.4 \& 529.0
 522 \& 14.9
 8.8 \& - \\
 \hline 53.1\% \& 511.4 \& 520.0 \& 8.6 \& 1.7\% \\
 \hline 54.3\% \& 511.4 \& 508.4 \& -3.0 \& -0.6\% \\
 \hline 55.6\% \& 493.1 \& 507.6 \& 14.6 \& 3.0\% \\
 \hline 56.8\% \& 492.4
 4807 \& 500.8
 4959 \& 14.4
 152
 15, \& \({ }_{3.9 \%}\) \\
 \hline 59.3\% \& 480.0 \& 495.1 \& 15.1 \& 3.1\% \\
 \hline \({ }^{60.5 \%}\) \& 474.9 \& 488.8 \& 13.9 \& 2.9\% \\
 \hline 61.7\% \& 474.8 \& \({ }_{473.5}\) \& -1.2 \& -0.3\% \\
 \hline \& 477.2
 468.8 \& \({ }_{464.9}^{470.6}\) \& 0.4
 -1.9 \& 0.1\% \\
 \hline 65.4\% \& 466.7 \& 462.6 \& -4.1 \& -0.9\% \\
 \hline \({ }^{66.7 \%}\) \& 465.5 \& 459.3 \& -6.2 \& -1.3\% \\
 \hline 67.9\% \& \({ }_{457.5}^{4637}\) \& \({ }_{457.1}^{458.0}\) \& -5.4 \& - \(-1.2 \%\) \\
 \hline 70.4\% \& 456.4 \& 449.8 \& -6.7 \& -1.5\% \\
 \hline 71.6\% \& 455.6 \& 440.0 \& -15.6 \& -3.4\% \\
 \hline 72.8\% \& 454.8 \& 430.2 \& -24.5 \& -5.4\% \\
 \hline 75.3\% \& \({ }_{446.0}\) \& \({ }_{428.7}\) \& -17. \& -3.9\% \\
 \hline 76.5\% \& 443.0 \& 427.9 \& -15.1 \& -3.4\% \\
 \hline 77.8\% \& 437.7 \& 426.0
 423 \& -11.6 \& -2.7\% \\
 \hline 79.0\% \& \({ }^{429.6}\) \& 423.2 \& -6.4 \& -1.5\% \\
 \hline - \& 428.8
 427.9 \& 418.9
 4135 \& -9.9.4 \& \({ }_{-3.4 \%}^{-2.3 \%}\) \\
 \hline 82.7\% \& 427.3 \& 410.6 \& -16.7 \& \\
 \hline 84.0\% \& 426.5 \& 409.2 \& -17.4 \& -4.1\% \\
 \hline 85.2\% \& \({ }_{4} 22.6\) \& 408.1 \& -14.5 \& -3.4\% \\
 \hline \({ }^{86.4 \%}\) \& 419.6 \& 407.9 \& \& -2.8\% \\
 \hline 887.7\% \& 404.3
 403.0 \& 3989.6
 398.2 \& -5.8 \& -1.4\% \\
 \hline 90.1\% \& 400.5 \& 386.3 \& -14.2 \& -3.5\% \\
 \hline 91.4\% \& 393.2 \& \({ }_{382.9}\) \& 10.2 \& -2.6\% \\
 \hline 923.6\% \& \begin{tabular}{l}
 378.5 \\
 369.4 \\
 \hline
 \end{tabular} \& \begin{tabular}{l}
 374.4 \\
 361.8 \\
 \hline
 \end{tabular} \& -4.6 \& -1.1\% \\
 \hline 95.1\% \& 311.2 \& 322.7 \& 11.5 \& 3.7\% \\
 \hline 96.3\% \& \({ }_{2558}^{2759}\) \& 309.8

 2585 \& ${ }^{33.9}$ \& ${ }^{12.3 \%}$

 \hline 97.5\% \& ${ }_{2585}^{2658}$ \& ${ }^{255.5}$ \& -7.3 \& -2.7\%

 \hline 100.0\% \& ${ }_{221.1}^{20.5}$ \& ${ }_{221.1}^{25.6}$ \& - \& -0.0\%

 \hline
 \end{tabular}

 ## Sacramento-San Joaquin Delta Modeling Summary Tables and Bar Charts

 | X2, Monthly Position
 Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly Position (KM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | | | | | | | | | | | | | |
 | WSIP 2303 W Whtout Priject | 87.8 | 83.1 | 77.0 | 67.4 | 61.9 | 63.7 | 68.1 | 75.7 | 83.4 | 83.7 | 90.4 | 84.4 |
 | WSIP 2030 Win Project | 86.9 | 82.9 | 77.8 | 68.3 | 62.6 | 64.4 | 68.2 | 75.8 | 82.9 | 83.6 | 89.9 | 83.6 |
 | Diffeence | -1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 |
 | Peacent Diffeences | -1.0\% | -0.2\% | 1.0\% | 1.4\% | 1.1\% | 1.1\% | 0.0\% | 0.0\% | -0.5\% | -0.2\% | -0.6\% | -1.0\% |
 | Water Year Types² | | | | | | | | | | | | |
 | Wet (30.5\%) | | | | | | | | | | | | |
 | Wsip 2030 Without Pried | 80.0 | 74.5 | 73.7 | 55.8 | 55.1 | 57.3 | 59.2 | 67.6 | 79.7 | 79.3 | 88.6 | 69.4 |
 | WSIP 2030 Win Projet | 79.8 | 74.7 | 74.8 | 56.2 | 55.2 | 57.6 | 59.3 | 67.4 | 79.3 | 79.4 | 88.3 | 69.2 |
 | Diffeence | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 | Perent Diffeence | -0.3\% | 0.2\% | 1.4\% | 0.8\% | 0.1\% | 0.5\% | 0.2\% | -0.2\% | -0.5\% | 0.1\% | -0.3\% | -0.2\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2303 W Whtout Pried | 84.8 | 80.1 | 78.3 | 60.6 | 57.0 | 57.9 | 63.8 | 72.5 | 83.5 | 79.8 | 89.0 | 80.8 |
 | WSPP 2030 Wif Projet | 84.1 | 80.0 | 79.1 | 61.4 | 57.2 | 58.6 | 64.0 | 72.7 | 83.5 | 79.5 | 88.6 | 80.3 |
 | Diffeence | -1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
 | Percent Differne | -0.8\% | -0.1\% | 1.1\% | 1.4\% | 0.5\% | 1.1\% | 0.3\% | 0.3\% | 0.0\% | -0.4\% | -0.5\% | -0.6\% |
 | Beow Nomal 20.7%) | | | | | | | | | | | | |
 | WSIP 2030 W Whout Priject | 93.0 | 88.8 | 77.8 | 70.2 | 63.3 | 64.2 | 68.4 | 75.9 | 84.0 | 82.5 | 90.0 | 92.9 |
 | WSPIP 2030 Win Projet | 90.9 | 88.3 | 77.3 | 71.6 | 63.8 | 65.4 | 68.5 | 76.1 | 83.6 | 82.5 | 89.4 | 91.2 |
 | Diffeence | -2 | 0 | -1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | -2 |
 | Perent Diffeence | -2.2\% | -0.5\% | -0.7\% | 2.0\% | 0.8\% | 1.8\% | 0.2\% | 0.2\% | -0.4\% | 0.0\% | -0.6\% | -1.8\% |
 | Dr (19.5\%) | | | | | | | | | | | | |
 | Wsip 2030 Without Priect | 90.1 | 84.7 | 74.6 | 76.3 | 65.0 | 68.3 | 75.2 | 81.8 | 84.8 | 88.5 | 92.1 | 93.5 |
 | WSIP 2308 Winif Proet | 89.2 | 84.0 | 75.6 | 77.6 | 66.8 | 69.2 | 75.1 | 81.9 | 84.3 | 88.2 | 91.1 | 92.3 |
 | Diffeence | -1 | -1 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | -1 | -1 |
 | Perentififferne | -1.1\% | -0.8\% | 1.3\% | 1.7\% | 2.8\% | 1.3\% | -0.1\% | 0.0\% | -0.5\% | -0.3\% | -1.1\% | -1.3\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2308 W wifout Proet | 96.5 | 93.8 | 84.6 | 82.3 | 74.8 | 75.7 | 81.4 | 87.7 | 88.2 | 92.1 | 93.9 | 95.4 |
 | WSPP 2030 Wif Projet | 95.8 | 94.0 | 86.4 | 83.2 | 75.9 | 76.7 | 81.1 | 87.6 | 87.0 | 91.5 | 93.4 | 94.7 |
 | Diffeence | -1 | 0 | 2 | 1 | 1 | 1 | 0 | 0 | -1 | -1 | 0 | -1 |
 | Percen ififferne | -0.7\% | 0.2\% | 2.1\% | 1.1\% | 1.4\% | 1.2\% | -0.4\% | -0.1\% | -1.4\% | -0.7\% | -0.5\% | -0.8\% |

 3 Realive difference oftre montly verage

 | Table SQ-21-a
 Sacramento River at Emmaton, Monthly EC Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | Full Simuliton Period ${ }^{1}$ | | | | | | | | | | | | |
 | WSPP 2303 W Whout Priect | 1917.0 | 1553.6 | 936.6 | 446.5 | 242.9 | 208.1 | 237.4 | 361.1 | 633.0 | 710.3 | 1353.9 | 1635.6 |
 | WSIP 2030 W Wh Prijet | 1614.2 | 1394.7 | 923.7 | 459.4 | 247.0 | 211.8 | 237.1 | 356.2 | 598.2 | 665.0 | 1247.9 | 1387.4 |
 | Diffeence | -302.8 | -159.0 | -12.9 | 12.9 | 4.1 | 3.7 | -0.4 | -4.9 | -34.8 | -45.3 | -106.0 | -248.2 |
 | Pecent ififeences | -15.8\% | -10.2\% | -1.4\% | 2.9\% | 1.7\% | 1.8\% | -0.1\% | -1.4\% | -5.5\% | -6.4\% | -7.8\% | -15.2\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (30.5\%) | | | | | | | | | | | | |
 | Wsip 2030 Without Pried | 281.6 | 248.7 | 388.3 | 190.6 | 181.9 | 183.1 | 188.5 | 209.9 | 371.1 | 333.0 | 860.9 | 326.3 |
 | WSIP 2030 Win Projet | 269.1 | 245.3 | 409.3 | 194.5 | 182.1 | 183.6 | 188.7 | 208.5 | 363.6 | 332.2 | 839.2 | 317.9 |
 | Diffeeree | -12.5 | -3.4 | 21.0 | 3.9 | 0.2 | 0.5 | 0.2 | -1.4 | -7.5 | -0.9 | -21.8 | -8.5 |
 | Perenerififeence | -4.4\% | -1.4% | 5.4\% | 2.1\% | 0.1\% | 0.3\% | 0.1\% | -0.7\% | -2.0% | -0.3\% | -2.5\% | -2.6% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2303 W Whout Priject | 593.0 | 471.9 | 573.3 | 270.7 | 188.5 | 183.2 | 193.3 | 222.7 | 443.6 | 349.4 | 820.9 | 589.2 |
 | WSIP 2303 Win Projet | 531.1 | 453.5 | 572.6 | 281.7 | 189.6 | 184.4 | 194.3 | 223.5 | 436.3 | 344.2 | 776.8 | 533.2 |
 | Diffeere | -61.9 | -18.4 | -0.7 | 11.0 | 1.1 | 1.3 | 0.9 | 0.8 | -7.3 | -5.2 | -44.1 | -56.0 |
 | Perentififeence | -10.4\% | -3.9\% | -0.1\% | 4.1\% | 0.6\% | 0.7\% | 0.5\% | 0.4\% | -1.6\% | -1.5\% | -5.44 | -9.5\% |
 | Below Nomal (20.7\%) | | | | | | | | | | | | |
 | WSIP 2030 W Wrout Prijet | 2714.9 | 2098.2 | 1318.0 | 412.7 | 221.9 | 194.1 | 212.0 | 275.6 | 550.2 | 488.1 | 1048 | 2158.1 |
 | WSPIP 2030 Win Projet | 2032.5 | 1759.6 | 1148.8 | 410.6 | 222.5 | 200.1 | 212.1 | 274.5 | 533.7 | 483.2 | 970.9 | 178.3 |
 | Diffeence | -682.5 | -338.6 | -169.1 | -2.1 | 0.6 | 6.0 | 0.1 | -1.1 | -16.5 | -4.9 | -78.0 | -499.8 |
 | Perentififeence | -25.1\% | -16.1\% | -12.8\% | -0.5\% | 0.3\% | 3.1\% | 0.1\% | -0.4\% | -3.0\% | -1.0\% | -7.4\% | -20.8\% |
 | Dry (19.5\%) | | | | | | | | | | | | |
 | WSIP 2030 Wiftout Prijet | 2838.7 | 1976.9 | 1059.8 | 571.7 | 241.1 | 212.6 | 245.6 | 385.9 | 657.2 | 948.9 | 1842.8 | 2578.8 |
 | WSIP 2030 Win Projet | 2338.4 | 1668.8 | 1004.3 | 606.5 | 257.3 | 215.9 | 246.8 | 376.2 | 627.6 | 886.7 | 1612.3 | 2089.6 |
 | Diffeere | -500.2 | -308.0 | -55.5 | 34.8 | 16.2 | 3.3 | 1.2 | -9.7 | -29.6 | -62.2 | -230.5 | -489.2 |
 | Perentififeene | -17.6\% | -15.6\% | -5.2\% | 6.1\% | 6.7\% | 1.5\% | 0.5\% | -2.5\% | -4.5\% | -6.6\% | -12.5\% | -19.0\% |
 | Cintical (4.4.6\%) | | | | | | | | | | | | |
 | WSIP 2308 W without Proet | 4289.0 | 4018.4 | 1738.1 | 1036.5 | 456.8 | 299.0 | 408.7 | 902.5 | 1452.8 | 1853.6 | 2694.0 | 3411.9 |
 | WSIP 2308 W Win Projet | 3941.6 | 3848.0 | 1920.2 | 1061.7 | 460.5 | 309.3 | 403.2 | 885.5 | 1300.7 | 1641.3 | 2477.1 | 3078.7 |
 | Diffeere | -347.4 | -170.4 | 182.1 | 25.2 | 3.7 | 10.3 | -5.5 | -17.0 | -152.1 | -212.3 | -216.9 | -333.2 |
 | Peren inifferne | -.8.1\% | -4.2\% | 10.5\% | 2.4\% | 0.8\% | 3.4\% | -1.3\% | -1.9\% | -10.5\% | -11.5\% | -8.1\% | -9.8\% |
 | 18 Basedo onte 82 2-verar inulition peind | | | | | | | | | | | | |
 | 2 As defined by the Sacramento Valley 40 :3 3 Realivive difference of the monthly averas | dex Waere | artyratogic | Cassificioio | (SWRCB | 1641,1999 | | | | | | | |

 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simulion Period ${ }^{\text {a }}$ | | | | | | | | | | | | |
 | Wsip 2303 Without Priject | 62293 | 5501.7 | 3811.1 | 1857.4 | 652.5 | 453.9 | 685.7 | 1429.4 | 2873.1 | 3454.0 | 5490.8 | 5572.7 |
 | WSPIP 2030 Wit Projet | 5713.2 | 5209.3 | 3898.2 | 1970.6 | 707.4 | 495.4 | 689.5 | 1414.7 | 2768.3 | 3343.5 | 5311.8 | 5179.4 |
 | Diffeene | -516.1 | -292.4 | 87.1 | 113.2 | 54.9 | 41.5 | 3.7 | -14.7 | -104.9 | -110.5 | -179.0 | -393.4 |
 | Perent ifferences | -8.3\% | -5.3\% | 2.3\% | 6.1\% | 8.4\% | 9.1\% | 0.5\% | -1.0\% | -3.7\% | -3.2\% | -3.3\% | -7.1% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wef(30.5\%) | | | | | | | | | | | | |
 | WSIP 2030 W Whtout Pried | 1390.4 | 1269.3 | 1885.2 | 242.7 | 190.0 | 209.9 | 243.4 | 479.2 | 1692.3 | 1911.1 | 4267.3 | 1439.4 |
 | WSIP 2030 Win Prijet | 1330.5 | 1250.9 | 2028.2 | 280.8 | 191.7 | 214.8 | 244.6 | 467.4 | 1648.2 | 1902.2 | 4217.4 | 1382.7 |
 | Diffeene | -59.9 | -18.4 | 143.0 | 38.1 | 1.6 | 5.0 | 1.3 | -11.8 | -44.2 | -8.9 | -49.9 | -56.7 |
 | Perentitiffeence | -4.3\% | -1.5\% | 7.6\% | 15.7\% | 0.9\% | 2.4\% | 0.5\% | -2.5% | -2.6% | -0.5\% | -1.2\% | -3.9\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2303 W Whtout Project | 3288.6 | 2885.3 | 2969.3 | 875.8 | 224.3 | 232.9 | 283.3 | 623.2 | 2197.9 | 2077.1 | 4151.3 | 3163.5 |
 | WSPIP 2030 Win Projet | 3092.2 | 2801.0 | 3057.8 | 96.9 | 234.0 | 25.7 | 292.6 | 631.9 | 2197.3 | 2037.7 | 4006.6 | 2951.0 |
 | Difteence | -196.4 | -84.3 | 88.6 | 91.1 | 9.7 | 23.9 | 9.3 | 8.7 | -0.6 | -39.4 | -144.6 | -212.5 |
 | Perent Diffeence | -6.0\% | -2.9\% | 3.0\% | 10.4\% | 4.3\% | 10.2\% | 3.3\% | 1.4\% | 0.0\% | -1.9\% | -3.5\% | -6.7\% |
 | Beow Nomal 12.7% \%) | | | | | | | | | | | | |
 | WSIP 2030 Wiftout Project | 9169.0 | 7897.7 | 4982.3 | 1922.9 | 53.4 | 335.0 | 491.8 | 1111.7 | 2804.3 | 2992.1 | 4951.1 | 7654.0 |
 | WSIP 2030 Win Projet | 7952.1 | 7230.1 | 4604.4 | 2004.1 | 561.3 | 393.5 | 498.9 | 1108.2 | 2745.4 | 2966.2 | 4789.5 | 6884.0 |
 | Diffeene | -1216.9 | -667.6 | -37.9 | 81.2 | 29.9 | 58.6 | 7.0 | -3.5 | -58.9 | -25.9 | -161.5 | -770.0 |
 | Perent iffeeme | -13.3\% | -8.5\% | -7.6\% | 4.2\% | 5.6\% | | 1.4\% | -0.3\% | -2.1\% | -0.9\% | -3.3\% | -10.1\% |
 | Dry (19.5\%) | | | | | | | | | | | | |
 | WSIP 2308 Wiftout Prijet | 8945.7 | 7116.1 | 4000.4 | 2845.3 | 7397 | 514.0 | 862.9 | 1962.3 | 3389.2 | 4793.6 | 6807.7 | 8522.3 |
 | WSP1P 2030 Win Projer | 8179.2 | 6521.9 | 4026.3 | 3102.3 | 891.8 | 559.3 | 877.5 | 1944.2 | 3283.8 | 4658.1 | 6460.3 | 7820.4 |
 | Difteence | -766.5 | -594.2 | 25.9 | 257.0 | 152.1 | 45.3 | 14.6 | -18.1 | -105.4 | -135.4 | -347.3 | -701.9 |
 | Perentififferne | -8.6\% | - -8.4% | 0.6\% | 9.0\% | 20.6\% | 8.8\% | 1.7\% | -0.9\% | -3.1\% | -2.8\% | -5.1\% | -8.2\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | Wsip 2030 Wiftuout Project | 11464.9 | 11388.6 | 6753.8 | 4793.0 | 2099.1 | 1271.6 | 2048.3 | 3955.1 | 5417.8 | 6913.4 | 8388.4 | 9712.0 |
 | WSIP 2308 Winim Projet | 11005.3 | 11251.3 | 7463.5 | 4938.4 | 2216.1 | 1377.8 | 2032.3 | 3899.2 | 5017.8 | 6433.4 | 8105.3 | 9381.2 |
 | Diffeence | -459.7 | -137.3 | 7097 | 145.4 | 117.0 | 106.1 | -16.0 | -55.9 | -400.1 | -480.0 | -283.0 | -330.8 |
 | Percen Diffeence | -4.0\% | -1.2\% | 10.5\% | 3.0\% | 5.6\% | 8.3\% | -0.8\% | -1.4\% | -7.4\% | -6.9\% | -3.4\% | -3.4\% |
 | 1 Basedo ontee 82 yearas inulition peitiod | | | | | | | | | | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 3 Relative difference of the monthly average | | | | | | | | | | | | |

 Sacramento River at Mallard Slough (Chipps Island)), Monthly EC
 Long-term Average and Average by Water Year Type

 Table SQ.24-a
 Sacramento River at Port Chicago (Roe Island), Monthly EC
 Long-term Average and Average by Water Year Yype

 | | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | Full Simuliton Period' | | | | | | | | | | | | |
 | | 13920.5 | 13011.6 | 10243.2 | 6235.4 | 2941.8 | 2680.2 | 3887.1 | 6416.9 | 10121.4 | 11775.8 | 14436.9 | 13738.0 |
 | wsip 2030 Wifit Projet | 13633.0 | 12845.6 | 10553.2 | 6670.4 | 3241.2 | 2946 | 3964.2 | 6421.3 | 9984.7 | 11650 | 14331.9 | 13503.2 |
 | Diffeence | -287.5 | -166.0 | 310.1 | 434.9 | 2993 | 266.5 | 77.1 | 4.5 | -136.8 | -125.8 | -105.0 | -234.8 |
 | Peacent Diffeences | -2.1\% | -1.3\% | 3.0\% | 7.0\% | 10.2\% | 9.9\% | 2.0\% | 0.1\% | -1.4\% | -1.1\% | -0.7\% | ${ }^{-1.7 \%}$ |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (30.5\%) | | | | | | | | | | | | |
 | WSIP 2383 W Without Pried | 7600.1 | 7330.1 | 6972.6 | 920.2 | 377.5 | 771.3 | 1246.7 | 3076.1 | 7471.4 | 9243.1 | 12903.1 | 7752.3 |
 | WSIP 2030 Wifit Prieet | 7540.3 | 7332.5 | 7331.4 | 1111.1 | 400.3 | 824.7 | 1268.0 | 3051.2 | 7348.9 | 9216.2 | 12894.5 | 7659.7 |
 | Diffeene | -59.9 | 2.4 | 358.8 | 190.9 | 22.8 | 53.4 | 21.4 | -24.9 | -122.5 | -26.9 | -8.6 | -92.7 |
 | Perenen Diffeence | -0.8\% | 0.0\% | 5.1\% | 20.7\% | | 6.9\% | 1.7\% | -0.8\% | -1.6\% | -0.3\% | -0.1\% | -1.2\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2380 W Witout Prieet | 11439.2 | 10584.5 | 9607.7 | 3591.8 | 855.7 | 1179.5 | 2092.6 | 4475.8 | 9112.5 | 9843.6 | 12810.8 | 11783.1 |
 | WSIP 2030 Wifit Prieet | 11303.9 | 10512.5 | 9968.7 | 3930.4 | 958.2 | 1359.4 | 2173.3 | 4544.6 | 9168.1 | 9752.9 | 12674.3 | 11592.3 |
 | Diffeene | -135.3 | -72.0 | 360.9 | 338.6 | 1025 | 179.9 | 80.7 | 68.8 | 55.6 | -90.8 | -136.5 | -190.8 |
 | Perent iffeence | -1.2\% | -0.7\% | 3.8\% | 9.4\% | 12.0\% | 15.3\% | 3.9\% | 1.5\% | 0.6\% | -0.9\% | -1.1\% | -1.6% |
 | Beolow Noma (20.7\%) | | | | | | | | | | | | |
 | WSIP 230 W Witiout Prieet | 17882.7 | 16632.1 | 11770.3 | 7589.0 | 3101.5 | 2520.0 | 3558.0 | 6234.1 | 10394.3 | 11689.5 | 14085.8 | 16803.1 |
 | Wsip 2030 Wiff Projet | 17174.0 | 16300.9 | 11583.0 | 8082.1 | 3347.0 | 2850.8 | 3686.4 | 6280.5 | 10325.8 | 11641.1 | 13993.7 | 16357.6 |
 | Diffeence | -708.7 | -331.3 | -187.3 | 493.1 | 24.5 | 330.8 | 128.5 | 46.5 | -68.5 | -48.4 | -92.1 | -445.5 |
 | Perenen Diffeence | -4.0\% | -2.0\% | -1.6\% | 6.5\% | 7.9\% | 13.1\% | 3.6\% | 0.7\% | -0.7\% | -0.4\% | -0.7\% | -2.7\% |
 | Dr (19.5\%) | | | | | | | | | | | | |
 | WSIP 2300 Witiout Proed | 17131.8 | 14869.6 | 9942.8 | 9888.7 | 4180.3 | 3636.7 | 5809.1 | 8943.9 | 11692.5 | 14043.8 | 16094.1 | 17655.5 |
 | WSIP 2330 With Project | 16790.6 | 14483.1 | 10253.0 | 10726.0 | 4943.6 | 4070.1 | 5935.3 | 8964.1 | 11555.2 | 13907.0 | 15898.8 | 17298.7 |
 | Diffeene | -341.2 | -386.5 | 310.2 | 837.3 | 763.3 | 433.4 | 126.1 | 20.2 | -137.4 | -136.8 | -195.3 | -356.8 |
 | Perenen iffeence | -2.0\% | -2.6% | 3.1\% | 8.5\% | 18.3\% | 11.9\% | 2.2\% | 0.2\% | -1.2\% | -1.0\% | -1.2\% | -2.0\% |
 | Cinitalal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2 230 W Wifout Proect | 19674.2 | 19688.6 | 15929.4 | 13164.0 | 8492.9 | 7109.6 | 9085.6 | 12207.5 | 14170.0 | 16082.4 | 17546.2 | 18597.6 |
 | WSIP 2030 Wifit Prieet | 19428.7 | 19586.0 | 16791.5 | 13584.8 | 9022.7 | 7592.8 | 9137.2 | 12128.3 | 13715.0 | 15620.9 | 17374.1 | 18483.5 |
 | Diffeene | -245.5 | -82.6 | 862.1 | 420.9 | 529.8 | 483.2 | 51.6 | -79.2 | -455.0 | -461.5 | -172.1 | -114.1 |
 | Perenen Diffeence | -1.2\% | -0.4\% | 5.4\% | 3.2\% | 6.2\% | 6.8\% | 0.6\% | -0.6\% | -3.2\% | -2.9\% | -1.0\% | -0.6\% |
 | 1 Bsase on the 82 2vear simulioin period | | | | | | | | | | | | |
 | 2 As defined by the Sacramento Valley
 3 Relative difference of the monthly ave | ndex Wate | aratydologic | Clasififation | WRC | 41, 1981 | | | | | | | |

 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | | | | | | | | | | | | | |
 | WSIP 2303 W.ituot Project | 1506.3 | 1432.6 | 1125.4 | 637.4 | 317.5 | 238.2 | 244.5 | 298.2 | 421.1 | 798.7 | 1331.4 | 1670.1 |
 | WSIP 2030 Wif Projer | 1379.0 | 1376.2 | 1130.2 | 648.6 | 321.2 | 24.4 | 245.5 | 296.1 | 404.4 | 799.5 | 1349.7 | 1664.3 |
 | Diffeence | -127.3 | -56.4 | 4.9 | 11.2 | 3.7 | 3.2 | 1.0 | -2.1 | -16.7 | 0.7 | 18.3 | -5.8 |
 | Perenen Diffeence? | -8.5\% | -3.9\% | 0.4\% | 1.8\% | 1.2\% | 1.3\% | 0.4\% | -0.7\% | -4.0\% | 0.1\% | 1.4\% | -0.3\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (30.5\%) | | | | | | | | | | | | |
 | WSIP 2038 W Without Priedt | 268.7 | 284.8 | 527.2 | 245.1 | 227.2 | 216.8 | 221.5 | 221.6 | 284.1 | 391.6 | 1055.8 | 740.1 |
 | WSPP 2030 Wif Projet | 267.8 | 288.9 | 558.0 | 256.2 | 228.2 | 217.3 | 221.8 | 221.6 | 282.4 | 401.5 | 1051.3 | 730.9 |
 | Diffeence | -0.9 | 4.1 | 30.8 | 11.1 | 1.0 | 0.5 | 0.3 | 0.0 | -1.7 | 9.9 | -4.5 | -9.2 |
 | Percent ififeence | -0.3\% | 1.4\% | 5.8\% | 4.5\% | 0.4\% | 0.2\% | 0.1\% | 0.0\% | -0.6\% | 2.5\% | -0.4\% | -1.2% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2303 W Without Prject | 471.2 | 567.1 | 837.2 | 421.1 | 244.2 | 212.0 | 224.0 | 241.3 | 331.3 | 436.8 | 1063.4 | 890.1 |
 | WSPIP 2030 Win Projer | 463.2 | 581.4 | 85.0 | 435.0 | 248.8 | 214.1 | 224.9 | 241.7 | 330.1 | 44.8 | 1029.7 | 862.7 |
 | Diffeence | -8.0 | 14.3 | 17.9 | 13.9 | 4.5 | 2.1 | 0.9 | 0.4 | -1.2 | 7.9 | -33.7 | -27.5 |
 | Percent iffeerne | -1.7\% | 2.5\% | 2.1\% | 3.3\% | 1.9\% | 1.0\% | 0.4\% | 0.2\% | -0.4\% | 1.8\% | -3.2\% | -3.1% |
 | Below Nomal (20.7\%) | | | | | | | | | | | | |
 | WSIP 2303 W Without Project | 2443.6 | 2179.9 | 1530.9 | 696.7 | 283.8 | 229.3 | 235.2 | 257.9 | 391.0 | 784.9 | 1325.7 | 2346.9 |
 | wSPP 2030 Wit Projed | 2143.8 | 2007.8 | 1402.4 | 664.2 | 283.7 | 234.2 | 236.4 | 257.5 | 383.2 | 784.4 | 1345.7 | 2264.5 |
 | Diffeence | -299.8 | -172.1 | -128.5 | -32.5 | -0.2 | 4.9 | 1.2 | -0.4 | -7.7 | -0.4 | 19.9 | -82.4 |
 | Perenen iffeeme | -12.3\% | -7.9\% | -8.4\% | -4.7\% | -0.1\% | 2.1\% | 0.5\% | -0.2\% | -2.0\% | -0.1\% | 1.5\% | -3.5\% |
 | Dr (19.5\%) | | | | | | | | | | | | |
 | Wsip 2030 W Whout Priect | 2229.2 | 1939.8 | 1266.7 | 825.0 | 347.4 | 243.3 | 248.2 | 306.5 | 435.8 | 1167.8 | 1608.8 | 2448.1 |
 | WSPP 2030 Win Projet | 2026.1 | 1799.1 | 1262.6 | 876.1 | 365.9 | 250.1 | 251.7 | 303.6 | 421.2 | 1217.9 | 1676.9 | 2474.6 |
 | Diffeence | -203.1 | -140.7 | -4.1 | 51.1 | 18.5 | 6.8 | 3.4 | -2.9 | -14.7 | 50.1 | 68.1 | 26.5 |
 | Perenen Diffeene | -9.1\% | -7.3\% | -0.3\% | 6.2\% | 5.3\% | 2.8\% | 1.4\% | -0.9\% | -3.4\% | 4.3\% | 4.2\% | 1.1\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2303 W Wituot Project | 2828.3 | 2954.1 | 1896.8 | 1336.9 | 587.0 | 315.1 | 321.0 | 560.4 | 819.5 | 1536.4 | 1811.9 | 2391.5 |
 | WSIP 2030 Win Prijet | 2663.5 | 2977.5 | 2035.5 | 1354.4 | 581.2 | 317.6 | 320.0 | 550.4 | 740.3 | 1446.6 | 1860.9 | 2479.6 |
 | Diffeere | -164.7 | 23.4 | 138.6 | 17.4 | -5.8 | 2.5 | -1.0 | -10.0 | -79.2 | -8998 | 49.0 | 88.1 |
 | Parenififferene | -5.8\% | 0.8\% | 7.3\% | 1.3\% | -1.0\% | 0.8\% | -0.3\% | -1.8\% | -9.7\% | -5.8\% | 2.7\% | 3.7\% |

 SRealive differnee of ite montily verage

 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simuliton Period ${ }^{\text {d }}$ | | | | | | | | | | | | |
 | WSIP 230 W Without Prieed | 614.9 | 586.6 | 562.9 | 514.6 | 375.6 | 298.5 | 320.7 | 315.9 | 276.9 | 327.9 | 458.0 | 637.6 |
 | wsip 2030 Wifit Proiet | 584.5 | 558.2 | 561.6 | 517.6 | 382.2 | 302.9 | 323.7 | 316.8 | 275.2 | 328.9 | 467.5 | 640.6 |
 | Diffeence | -30.5 | -28.5 | -1.3 | 3.0 | 6.6 | 4.5 | 3.0 | 0.9 | -1.7 | 1.0 | 9.5 | 3.0 |
 | Perenen Diffeence? | -5.0\% | -4.9\% | -0.2\% | 0.6\% | 1.7\% | 1.5\% | 0.9\% | 0.3\% | -0.6\% | 0.3\% | 2.1\% | 0.5\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet 30.5%) | | | | | | | | | | | | |
 | Wsip 2330 W Witout Prieet | 250.5 | 229.8 | 270.9 | 332.5 | 320.5 | 269.9 | 279.5 | 273.3 | 248.0 | 244.2 | 332.0 | 468.0 |
 | wsip 2030 Wifit Projet | 246.5 | 227.3 | 275.1 | 340.4 | 324.5 | 27.1 | 279.6 | 27.7 | 247.2 | 250.6 | 336.1 | 465.9 |
 | Diffeene | -4.0 | -2.5 | 4.2 | 8.0 | 4.0 | 1.2 | 0.1 | 0.5 | -0.8 | 6.4 | 4.0 | -2.1 |
 | Perentififence | -1.6\% | -1.1\% | 1.6\% | 2.4\% | 1.3\% | 0.4\% | 0.0\% | 0.2\% | -0.3\% | 2.6\% | 1.2\% | -0.4\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2380 Without Proed | 263.5 | 287.3 | 375.6 | 436.6 | 330.1 | 255.3 | 318.3 | 339.9 | 261.8 | 249.0 | 343.1 | 461.7 |
 | Wsip 2030 Wifi Prijet | 257.2 | 290.4 | 377.8 | 453.5 | 345.9 | 260.3 | 319.7 | 340.1 | 261.1 | 248.9 | 339.6 | 445.4 |
 | Diffeene | -6.2 | 3.1 | 2.2 | 16.8 | 15.8 | 4.9 | 1.4 | 0.2 | -0.7 | -0.1 | -3.5 | -16.3 |
 | Perenen ifference | -2.4\% | 1.1\% | 0.6\% | 3.9\% | 4.8\% | 1.9\% | 0.4\% | 0.1\% | -0.3\% | 0.0\% | -1.0\% | -3.5\% |
 | Beow Nomal (20.7\%) | | | | | | | | | | | | |
 | WSIP 230 W Witiout Prieet | 884.4 | 815.9 | 746.2 | 593.4 | 365.9 | 300.5 | 331.6 | 328.1 | 261.5 | 321.8 | 449.1 | 772.3 |
 | WSIP 2330 With Priject | 807.4 | 755.7 | 700.2 | 563.9 | 362.1 | 303.8 | 333.0 | 328.2 | 261.1 | 321.5 | 459.5 | 771.0 |
 | Diffeene | -77.0 | -60.2 | -45.9 | -29.5 | -3.8 | 3.3 | 1.4 | 0.0 | -0.4 | -0.4 | 10.4 | ${ }^{-1.3}$ |
 | Perentiffeence | -.8.7\% | -7.4\% | -6.2\% | -5.0\% | -1.0\% | 1.1\% | 0.4\% | 0.0\% | -0.2\% | -0.1\% | 2.3\% | -0.2\% |
 | Dy (19.9\%) | | | | | | | | | | | | |
 | Wsip 230 W Wifiout Prject | 87.6 | 739.2 | 642.4 | 564.6 | 390.7 | 304.2 | 354.5 | 335.0 | 275.7 | 397.8 | 588.2 | 779.0 |
 | WSIP 2030 With Prieat | 829.3 | 687.9 | 640.5 | 58.2 | 402.7 | 314.6 | 3628 | 337.5 | 274.4 | 409.1 | 621.7 | 796.7 |
 | Diffeene | -41.3 | -51.2 | -1.9 | 21.6 | 11.9 | 10.4 | 8.3 | 2.5 | -1.3 | 11.2 | 33.5 | 17.7 |
 | Perenen ifferene | -4.7% | -6.9\% | -0.3\% | 3.8\% | 3.1\% | 3.4\% | 2.3\% | 0.7\% | -0.5\% | 2.8\% | 5.7\% | 2.3\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | Wsip 230 W Wiftout Priect | 1002.9 | 1101.3 | 993.0 | 793.5 | 52.5 | 390.7 | 348.1 | 338.0 | 375.5 | 496.8 | 674.6 | 787.6 |
 | WSIP 2030 Wifit Prijet | 973.5 | 1062.7 | 1040.9 | 793.7 | 539.6 | 395.2 | 353.9 | 339.8 | 369.0 | 475.9 | 675.3 | 806.7 |
 | Diffeene | -29.5 | -38.6 | 47.9 | 0.2 | 10.1 | 4.5 | 5.8 | 1.7 | -6.5 | -21.0 | 0.7 | 19.1 |
 | Perenen Diffeence | -2.9\% | -3.5\% | 4.8\% | 0.0\% | 1.9\% | 1.2\% | 1.7\% | 0.5\% | -1.7% | -4.2\% | 0.1\% | 2.4\% |

 | -29.5 | -38.6 | 47.9 | 0.2 | 10.1 | 4.5 | 5.8 | 1.7 | -6.5 | -21.0 | 0.7 | 19.1 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 3 Realive difference of ite monhly verege

 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | | | | | | | | | | | | | |
 | Wsip 2303 Without Priject | 191.5 | 193.6 | 197.5 | 212.6 | 222.3 | 215.0 | 206.6 | 200.7 | 195.8 | 191.2 | 189.8 | 190.8 |
 | WSIP 2303 Winf Projet | 190.0 | 192.0 | 196.8 | 212.8 | 223.1 | 215.8 | 207.5 | 200.9 | 195.5 | 190.8 | 189.6 | 190.1 |
 | Diffeeree | -1.5 | -1.6 | -0.7 | 0.2 | 0.8 | 0.7 | 0.9 | 0.2 | -0.3 | -0.4 | -0.2 | -0.7 |
 | Percent Difleemese | -0.8\% | -0.8\% | -0.4\% | 0.1\% | 0.4\% | 0.3\% | 0.4\% | 0.1\% | -0.2\% | -0.2\% | -0.1\% | -0.4\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (30.5\%) | | | | | | | | | | | | |
 | WSIP 2030 Wiftout Prijet | 187.4 | 190.9 | 193.6 | 217.6 | 225.1 | 213.0 | 201.5 | 194.4 | 192.2 | 188.9 | 188.2 | 188.6 |
 | WSIP 2030 Winf Prijet | 187.2 | 190.7 | 193.8 | 218.1 | 225.5 | 212.7 | 201.5 | 194.3 | 192.0 | 188.7 | 188.2 | 188.5 |
 | Diffeene | -0.2 | -0.3 | 0.1 | 0.5 | 0.4 | -0.3 | 0.0 | -0.1 | -0.2 | -0.1 | 0.0 | -0.1 |
 | Percent ififeence | -0.1\% | -0.1\% | 0.1\% | 0.2\% | 0.2\% | -0.2\% | 0.0\% | -0.1\% | -0.1\% | -0.1\% | 0.0\% | -0.1\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2308 W Wifout Pried | 188.2 | 189.9 | 195.4 | 215.3 | 223.4 | 210.1 | 199.1 | 194.2 | 191.7 | 188.6 | 187.9 | 188.9 |
 | WSPIP 2080 Winf Projet | 18.0 | 189.6 | 195.7 | 215.1 | 224.3 | 210.3 | 199.3 | 194.4 | 191.8 | 188.6 | 187.9 | 188.8 |
 | Diffeence | -0.3 | -0.3 | 0.3 | -0.2 | 0.9 | 0.2 | 0.2 | 0.2 | 0.1 | 0.0 | 0.0 | -0.1 |
 | Perent Diffeeme | -0.1\% | -0.2\% | 0.2\% | -0.1\% | 0.4\% | 0.1\% | 0.1\% | 0.1\% | 0.0\% | 0.0\% | 0.0\% | -0.1\% |
 | Below Nomal (20.7\%) | | | | | | | | | | | | |
 | WSIP 2308 Wiftrut Project | 189.4 | 190.8 | 195.5 | 212.4 | 219.3 | 211.9 | 203.7 | 195.4 | 192.3 | 188.8 | 188.3 | 189.0 |
 | WSIP 2030 Win Prijet | 188.4 | 189.8 | 195.0 | 212.6 | 220.5 | 213.5 | 204.6 | 195.5 | 192.2 | 188.6 | 188.1 | 188.5 |
 | Difteence | -1.0 | -1.0 | -0.6 | 0.2 | 1.2 | 1.6 | 0.9 | 0.1 | -0.1 | -0.1 | -0.2 | -0.5 |
 | Perent Diffeence | -0.5\% | -0.5\% | -0.3\% | 0.1\% | 0.5\% | 0.7\% | 0.4\% | 0.1\% | -0.1\% | -0.1\% | -0.1\% | -0.3\% |
 | Dr (19.5\%) | | | | | | | | | | | | |
 | WSPP 2030 Wiftout Project | 194.3 | 196.9 | 200.5 | 208.1 | 223.8 | 222.7 | 212.8 | 203.8 | 194.8 | 190.7 | 189.0 | 191.7 |
 | WSIP 2303 Wini Projet | 191.1 | 193.7 | 198.1 | 208.6 | 224.8 | 223.6 | 214.4 | 203.9 | 194.5 | 190.5 | 188.5 | 189.9 |
 | Difteence | -3.2 | -3.2 | -2.4 | 0.5 | 1.0 | 0.8 | 1.6 | 0.2 | -0.3 | -0.2 | -0.5 | -1.8 |
 | Perent Diffeence | -1.7\% | -1.6\% | -1.2\% | 0.2\% | 0.5\% | 0.4\% | 0.8\% | 0.1\% | -0.2\% | -0.1\% | -0.2\% | -0.9\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 Wiftrout Project | 202.4 | 202.2 | 200.8 | 205.7 | 217.6 | 218.4 | 220.7 | 223.9 | 213.8 | 203.1 | 198.2 | 198.6 |
 | WSIP 2030 Win Prijet | 198.4 | 197.7 | 205.1 | 204.9 | 218.4 | 220.5 | 223.3 | 225.0 | 212.3 | 201.0 | 197.8 | 197.4 |
 | Diffeene | -4.0 | -4.5 | -1.7 | -0.7 | 0.8 | 2.2 | 2.7 | 1.1 | -1.5 | -2.0 | -0.4 | -1.3 |
 | Perenot Differene | -2.0\% | -2.2\% | -0.8\% | -0.4\% | 0.4\% | 1.0\% | 1.2\% | 0.5\% | -0.7\% | -1.0\% | -0.2\% | -0.6\% |

 3 Realive difference of the montly verage

 | Old River at Los Vaqueros Intake, Monthly EC Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | $\overline{\text { Full Simution Period' }}$ | | | | | | | | | | | | |
 | WSPP 2303 W Whout Priect | 562.7 | 540.7 | 529.3 | 549.5 | 458.5 | 385.6 | 361.3 | 369.6 | 328.4 | 328.7 | 413.3 | 564.1 |
 | WSIP 2030 Win Projert | 543.2 | 517.6 | 527.7 | 549.4 | 466.0 | 39.2 | 364.7 | 371.4 | 328.2 | 328.2 | 421.6 | 568.9 |
 | Diffeence | -19.5 | -23.1 | ${ }^{-1.6}$ | -0.1 | 7.5 | 5.6 | 3.4 | 1.7 | -0.2 | -0.5 | 8.3 | 4.7 |
 | Perene tifferences | -3.5\% | -4.3% | -0.3\% | 0.0\% | 1.6\% | 1.4\% | 0.9\% | 0.5\% | -0.1\% | -0.1\% | 2.0\% | 0.8\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wef(30.5\%) | | | | | | | | | | | | |
 | WSIP 2303 W Whtout Pried | 297.3 | 271.6 | 285.0 | 396.5 | 368.8 | 318.0 | 259.7 | 271.0 | 287.7 | 276.5 | 314.0 | 446.7 |
 | WSIP 2030 Win Projet | 291.5 | 267.0 | 287.0 | 400.6 | 373.0 | 318.6 | 259.8 | 27.3 | 286.3 | 281.3 | 318.2 | 445.3 |
 | Difteene | -5.8 | -4.6 | 2.0 | 4.2 | 4.2 | 0.7 | 0.1 | 0.2 | -1.4 | 4.8 | 4.2 | ${ }^{-1.4}$ |
 | Perent Diffeence | -2.0\% | -1.7% | 0.7\% | 1.0\% | 1.1\% | 0.2\% | 0.0\% | 0.1\% | -0.5\% | 1.7\% | 1.3\% | -0.3\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2303 W Whtout Pried | 299.8 | 309.3 | 372.1 | 498.3 | 414.9 | 307.3 | 312.2 | 356.7 | 315.0 | 275.9 | 317.9 | 438.6 |
 | WSIP 2303 Win Projet | 291.9 | 309.9 | 372.8 | 511.6 | 437.0 | 315.5 | 312.7 | 357.2 | 314.3 | 273.8 | 315.3 | 425.7 |
 | Diffeence | -7.9 | 0.6 | 0.6 | 13.2 | 22.1 | 8.2 | 0.5 | 0.4 | -0.7 | -2.1 | -2.5 | -12.9 |
 | Percent iffeerne | -2.6\% | 0.2\% | 0.2\% | 2.7\% | 5.3\% | 2.7\% | 0.2\% | 0.1\% | -0.2\% | -0.8\% | -0.8\% | -2.9\% |
 | Beow Nomal 20.7%) | | | | | | | | | | | | |
 | WSPP 2030 W Whout Priject | 765.6 | 718.5 | 680.7 | 615.9 | 465.4 | 398.0 | 372.9 | 390.9 | 314.4 | 312.3 | 402.9 | 658.1 |
 | WSPIP 2030 Win Projet | 713.8 | 672.5 | 646.3 | 590.0 | 461.6 | 400.1 | 372.9 | 390.8 | 314.2 | 311.6 | 410.0 | 661.6 |
 | Diffeence | -51.8 | -46.0 | -34.4 | -25.9 | -3.7 | 2.1 | 0.0 | 0.0 | -0.1 | -0.7 | 7.2 | 3.5 |
 | Perent Diffeence | -6.8\% | -6.4\% | -5.1\% | -4.2\% | -0.8\% | 0.5\% | 0.0\% | 0.0\% | 0.0\% | -0.2\% | 1.8\% | 0.5\% |
 | Dr (19.5\%) | | | | | | | | | | | | |
 | WSPP 2303 W Whout Priect | 759.5 | 662.0 | 592.3 | 584.8 | 498.7 | 419.9 | 436.1 | 443.3 | 344.1 | 371.3 | 523.1 | 665.2 |
 | WSPP 2030 Win Projet | 737.5 | 621.2 | 591.2 | 600.3 | 510.3 | 433.9 | 446.4 | 447.2 | 344.3 | 375.3 | 550.4 | 682.8 |
 | Diffeence | -22.0 | -40.7 | -1.2 | 15.4 | 11.6 | 13.9 | 10.3 | 3.9 | 0.1 | 4.0 | 27.3 | 17.6 |
 | Perene Diffeence | -2.9\% | -6.2\% | -0.2\% | 2.6\% | 2.3\% | 3.3\% | 2.4\% | 0.9\% | 0.0\% | 1.1\% | 5.2\% | 2.6\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSPP 2303 W Whout Priect | 828.7 | 919.0 | 896.6 | 778.5 | 625.8 | 541.3 | 506.1 | 459.8 | 425.5 | 456.5 | 583.7 | 666.3 |
 | WSIP 2030 Whin Prijet | 818.2 | 889.8 | 931.1 | 771.7 | 636.0 | 548.3 | 514.8 | 465.4 | 427.4 | 441.1 | 587.6 | 686.1 |
 | Diffeence | -10.5 | -29.2 | 34.6 | -6.8 | 10.2 | 7.0 | 8.6 | 5.6 | 2.0 | -15.4 | 3.9 | 19.8 |
 | Perentififeence | -1.3\% | -3.2\% | 3.9\% | -0.9\% | 1.6\% | 1.3\% | 1.7\% | 1.2\% | 0.5\% | -3.4\% | 0.7\% | 3.0\% |

 2As defined by te se sacamento valley 40.31

 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | $\overbrace{\text { Full Simulition Period }{ }^{1} \text { L Long-term }}$ | | | | | | | | | | | | |
 | | 439.2 | 433.0 | 442.4 | 529.5 | 500.5 | 445.4 | 384.5 | 372.3 | 364.3 | 317.3 | 328.9 | 404.9 |
 | WSIP 2030 Wifiprojert | 431.7 | 423.0 | 441.2 | 528.6 | 502.6 | 448.5 | 387.5 | 374.0 | 364.8 | 314.6 | 329.7 | 403.3 |
 | Diffeence | -7.4 | -10.0 | -1.2 | -0.8 | 2.1 | 3.2 | 3.0 | 1.7 | 0.5 | -2.7 | 0.8 | ${ }_{-1.6}$ |
 | Perentififeence? | -1.7\% | -2.3% | -0.3\% | -0.2\% | 0.4\% | 0.7\% | 0.8\% | 0.5\% | 0.1\% | -0.9\% | 0.2\% | -0.4\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (30.5\%) | | | | | | | | | | | | |
 | WSIP 2380 W Wituot Priect | 352.9 | 338.4 | 311.7 | 437.9 | 383.3 | 336.0 | 260.2 | 266.3 | 329.4 | 323.6 | 283.4 | 363.9 |
 | WSIP 2030 Wifitrojert | 34.7 | 333.8 | 310.7 | 442.9 | 384.7 | 336.1 | 260.3 | 266.6 | 328.7 | 326.2 | 286.9 | 364.1 |
 | Diffeene | -4.1 | -4.6 | -1.0 | 5.1 | 1.4 | 0.1 | 0.1 | 0.3 | -0.7 | 2.6 | 3.5 | 0.2 |
 | Perenerififeence | -1.2\% | -1.4\% | -0.3\% | 1.2\% | 0.4\% | 0.0\% | 0.0\% | 0.1\% | -0.2\% | 0.8\% | 1.2\% | 0.1\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2330 W Without Priedt | 347.1 | 348.8 | 360.9 | 498.8 | 468.6 | 355.2 | 319.7 | 348.9 | 365.3 | 308.6 | 272.2 | 349.8 |
 | wSIP 2030 With Project | 339.7 | 345.8 | 359.0 | 501.3 | 479.2 | 359.0 | 320.1 | 349.4 | 365.4 | 304.5 | 270.7 | 343.0 |
 | Diffeence | -7.4 | -3.0 | -1.9 | 2.5 | 10.6 | 3.8 | 0.4 | 0.5 | 0.1 | -4.0 | -1.5 | -6.8 |
 | Perentififeence | -2.1\% | -0.9\% | -0.5\% | 0.5\% | 2.3\% | 1.1\% | 0.1\% | 0.1\% | 0.0\% | -1.3\% | -0.6\% | -1.9\% |
 | Below Nomal 20.7% \% | | | | | | | | | | | | |
 | WSIP 2300 Wirinut Project | 488.3 | 479.8 | 508.0 | 570.9 | 532.9 | 475.8 | 399.9 | 388.3 | 351.4 | 278.6 | 306.1 | 423.0 |
 | wsP 2030 wit Projed | 473.4 | 468.6 | 494.8 | 557.0 | 522.5 | 476.0 | 400.3 | 388.3 | 351.5 | 277.5 | 306.6 | 425.7 |
 | Differene | -14.9 | -11.2 | -13.2 | -13.9 | -10.4 | 0.2 | 0.4 | 0.1 | 0.1 | -1.1 | 0.5 | 2.7 |
 | Perenen iffeeme | -3.1\% | -2.3\% | -2.6\% | -2.4\% | -2.0\% | 0.0\% | 0.1\% | 0.0\% | 0.0\% | -0.4\% | 0.2\% | 0.6\% |
 | Dr (19.5\%) | | | | | | | | | | | | |
 | WSIP 2303 W Without Prject | 508.1 | 472.8 | 472.9 | 549.1 | 569.2 | 536.5 | 487.1 | 457.9 | 383.3 | 3097 | 387.2 | 441.8 |
 | wsP 2030 wit Projet | 501.0 | 457.2 | 476.6 | 555.2 | 575.9 | 543.9 | 496.2 | 462.0 | 384.1 | 303.4 | 392.9 | 441.5 |
 | Diffeence | -7.1 | -15.7 | 3.8 | 6.1 | 6.7 | 7.3 | 9.0 | 4.1 | 0.8 | -6.3 | 5.7 | -0.3 |
 | Perentififeence | -1.4\% | -.3.3\% | 0.8\% | 1.1\% | 1.2\% | 1.4\% | 1.9\% | 0.9\% | 0.2\% | -2.0\% | 1.5\% | -0.1\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSPI 2380 Witrout Proect | 549.4 | 594.8 | 662.8 | 666.2 | 638.7 | 598.7 | 54.9 | 479.7 | 429.3 | 378.0 | 435.1 | 470.8 |
 | wsip 2030 wit Projet | 545.3 | 575.7 | 672.2 | 658.9 | 645.6 | 606.3 | 557.2 | 485.0 | 432.7 | 368.1 | 426.6 | 462.6 |
 | Diffeence | -4.1 | -19.1 | 9.4 | -7.3 | 6.9 | 7.5 | 7.3 | 5.3 | 3.4 | -9.9 | -8.5 | -8.2 |
 | Perenen ifferene | -0.7\% | -3.2\% | 1.4\% | -1.1\% | 1.1\% | 1.3\% | 1.3\% | 1.1\% | 0.8\% | -2.6\% | -2.0\% | -1.7\% |

 3 Realive differnee of ite montily verage

 | Table SQ-31-a |
 | :---: |

 Clifton Court Forebay, Monthly EC

 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOS/CM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simudion Period' | | | | | | | | | | | | |
 | WSIP 2303 W Witout Priject | 522.4 | 506.3 | 508.2 | 551.2 | 489.1 | 426.3 | 385.7 | 377.7 | 372.9 | 335.7 | 379.4 | 504.0 |
 | WSIP 2030 Winf Projert | 512.4 | 486.1 | 506.1 | 549.9 | 492.5 | 430.5 | 388.6 | 378.6 | 371.6 | 331.9 | 384.7 | 508.8 |
 | Diffeence | -10.0 | -20.2 | -2.0 | -1.4 | 3.4 | 4.2 | 2.9 | 0.9 | -1.3 | -3.8 | 5.3 | 4.8 |
 | Perentififeence? | -1.9\% | -4.0\% | -0.4\% | -0.2\% | 0.7\% | 1.0\% | 0.7\% | 0.2\% | -0.4\% | -1.1\% | 1.4\% | 1.0\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (30.5\%) | | | | | | | | | | | | |
 | WSIP 2303 W Witrout Priedt | 333.0 | 301.7 | 305.4 | 406.8 | 359.5 | 319.2 | 270.8 | 260.1 | 306.2 | 303.8 | 300.2 | 428.5 |
 | wsip 2030 With Project | 327.1 | 296.9 | 305.3 | 413.2 | 359.3 | 319.1 | 270.9 | 260.3 | 306.7 | 307.4 | 304.6 | 427.7 |
 | Difteene | -5.9 | -4.7 | -0.2 | 6.4 | -0.3 | -0.2 | 0.1 | 0.2 | 0.4 | 3.6 | 4.4 | -0.8 |
 | Perentififeence | -1.8\% | -1.6\% | -0.1\% | 1.6\% | -0.1\% | 0.0\% | 0.0\% | 0.1\% | 0.1\% | 1.2\% | 1.5\% | -0.2\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2303 W Whtout Priect | 325.9 | 325.5 | 376.6 | 497.2 | 446.5 | 335.7 | 315.8 | 335.9 | 351.2 | 300.7 | 297.5 | 418.5 |
 | WSIP 2030 Wif Projet | 316.7 | 323.9 | 376.6 | 501.5 | 453.1 | 3398 | 316.5 | 336.2 | 349.5 | 297.0 | 295.5 | 408.3 |
 | Diffeene | -9.2 | ${ }_{-1.6}$ | 0.0 | 4.3 | 6.6 | 4.1 | 0.7 | 0.4 | -1.7 | -3.7 | -2.0 | -10.3 |
 | Perentififeence | -2.8\% | -0.5\% | 0.0\% | 0.9\% | 1.5\% | 1.2\% | 0.2\% | 0.1\% | -0.5\% | -1.2\% | -0.7\% | -2.5\% |
 | Below Nomal 20.7%) | | | | | | | | | | | | |
 | WSIP 2030 W Without Prject | 671.3 | 640.5 | 626.7 | 616.7 | 517.8 | 437.6 | 386.6 | 382.3 | 360.3 | 305.3 | 364.4 | 560.0 |
 | WSIP 2030 Wifiproject | 637.1 | 603.6 | 602.1 | 596.7 | 508.7 | 437.1 | 386.1 | 382.3 | 359.7 | 304.1 | 368.6 | 567.6 |
 | Diffeence | -34.1 | -36.9 | -24.5 | -20.1 | -9.1 | -0.5 | -0.4 | 0.0 | -0.6 | -1.2 | 4.2 | 7.6 |
 | Perentififeence | -5.1\% | -5.8\% | -3.9\% | -3.3\% | -1.7\% | -0.1\% | -0.1\% | 0.0\% | -0.2\% | -0.4\% | 1.2\% | 1.4\% |
 | Dr (19.5\%) | | | | | | | | | | | | |
 | WSIP 2338 W Witrout Priect | 673.8 | 604.3 | 558.7 | 591.1 | 563.5 | 507.7 | 467.8 | 463.8 | 415.1 | 359.2 | 472.9 | 571.0 |
 | wspr 2030 with Projer | 668.1 | 568.6 | 557.4 | 600.6 | 573.2 | 518.3 | 476.9 | 466.3 | 4093 | 350.2 | 490.9 | 586.3 |
 | Diffeence | -5.7 | -35.6 | -1.4 | 9.5 | 9.8 | 10.6 | 9.2 | 2.6 | -5.8 | -8.9 | 18.0 | 15.3 |
 | Perenen iffeeme | -0.9\% | -5.9\% | -0.2\% | 1.6\% | 1.7\% | 2.1\% | 2.0\% | 0.5\% | -1.4\% | -2.5\% | 3.8\% | 2.7\% |
 | Cintical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2383 W Wibut Proeet | 700.5 | 792.4 | 826.8 | 759.9 | 661.9 | 615.6 | 584.4 | 543.2 | 495.1 | 448.9 | 522.8 | 577.8 |
 | wsip 2030 Wititroject | 7098 | 765.8 | 849.7 | 748.9 | 679.2 | 627.1 | 591.4 | 545.0 | 495.5 | 432.5 | 522.0 | 591.7 |
 | Diffeene | 9.2 | -26.6 | 22.9 | -11.1 | 17.3 | 11.6 | 7.0 | 1.8 | 0.3 | -16.4 | -0.8 | 13.9 |
 | Perentibifeme | 1.3\% | -3.4\% | 2.8\% | -1.5\% | 2.6\% | 1.9\% | 1.2\% | 0.3\% | 0.1\% | -3.6\% | -0.2\% | 2.4\% |

 Readive differene of the montily wereage

 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Fuul Simulion Period' | | | | | | | | | | | | |
 | WSIP 2303 W Wibut Project | 527.6 | 518.3 | 568.4 | 602.4 | 556.7 | 495.3 | 392.6 | 402.6 | 402.1 | 380.0 | 416.4 | 518.3 |
 | WSIP 2030 Win Project | 514.0 | 501.5 | 567.5 | 601.1 | 564.0 | 498.4 | 393.2 | 403.5 | 404.2 | 378.0 | 419.1 | 52.5 |
 | Diffeerce | -13.6 | -16.9 | -0.8 | -1.3 | 7.3 | 3.1 | 0.6 | 0.9 | 2.1 | -2.0 | 2.7 | 2.2 |
 | Pecent ifferences | -2.6\% | -3.3\% | -0.1\% | -0.2\% | 1.3\% | 0.6\% | 0.2\% | 0.2\% | 0.5\% | -0.5\% | 0.6\% | 0.4\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (30.5\%) | | | | | | | | | | | | |
 | Wsip 2303 Without Priect | 363.6 | 344.9 | 417.8 | 461.1 | 372.4 | 329.4 | 264.5 | 273.8 | 368.7 | 374.7 | 339.3 | 434.7 |
 | WSIP 2030 Win Projet | 354.8 | 338.7 | 418.0 | 463.9 | 373.2 | 329.9 | 264.6 | 274.0 | 370.3 | 377.8 | 342.4 | 433.6 |
 | Diffeene | -8.8 | -6.2 | 0.2 | 2.7 | 0.8 | 0.5 | 0.1 | 0.2 | 1.7 | 3.2 | 3.1 | -1.1 |
 | Perentififeence | -2.4\% | -1.8% | 0.0\% | 0.6\% | 0.2\% | 0.2\% | 0.0\% | 0.1\% | 0.4\% | 0.9\% | 0.9\% | -0.3\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2303 W Wituout Prject | 365.3 | 376.8 | 496.5 | 554.4 | 463.3 | 356.1 | 320.9 | 364.1 | 409.2 | 374.2 | 344.7 | 439.2 |
 | WSPP 2030 Wit Projet | 357.6 | 372.8 | 494.2 | 557.0 | 470.5 | 357.5 | 321.2 | 364.4 | 411.0 | 364.1 | 341.7 | 425.9 |
 | Diffeence | -7.6 | -4.0 | -2.3 | 2.6 | 7.1 | 1.4 | 0.3 | 0.3 | 1.8 | -10.1 | -3.1 | -13.3 |
 | Perentififeence | -2.1\% | -1.1\% | -0.5\% | 0.5\% | 1.5\% | 0.4\% | 0.1\% | 0.1\% | 0.4\% | -2.7% | -0.9\% | -3.0\% |
 | Below Nomal 20.7% \% | | | | | | | | | | | | |
 | WSIP 2303 Without Project | 642.3 | 626.2 | 647.5 | 667.0 | 590.5 | 502.9 | 375.1 | 409.9 | 382.4 | 342.8 | 409.3 | 573.8 |
 | WSPIP 2030 Win Projert | 613.0 | 597.5 | 631.6 | 652.1 | 599.2 | 503.5 | 375.3 | 409.9 | 383.0 | 341.2 | 409.5 | 57.5 |
 | Diffeence | -29.3 | -28.7 | -15.8 | -14.9 | 8.7 | 0.6 | 0.3 | 0.0 | 0.6 | -1.6 | 0.2 | 4.7 |
 | Perentififeence | -4.6\% | -4.6\% | -2.4% | -2.2% | 1.5\% | 0.1\% | 0.1\% | 0.0\% | 0.2\% | -0.5\% | 0.0\% | 0.8\% |
 | $\overline{\text { Dr (19.5\%) }}$ | | | | | | | | | | | | |
 | Wsip 2030 Without Priect | 652.0 | 589.4 | 598.5 | 662.2 | 703.2 | 618.4 | 491.2 | 504.7 | 413.9 | 383.2 | 498.9 | 586.9 |
 | WSPP 2030 Win Projet | 639.6 | 562.7 | 598.0 | 67.0 | 704.0 | 626.8 | 492.9 | 506.1 | 416.3 | 383.2 | 512.9 | 598.0 |
 | Diffeerce | -12.4 | -26.7 | -0.4 | 7.8 | 0.8 | 8.5 | 1.7 | 1.4 | 2.4 | 0.0 | 14.0 | 11.1 |
 | Perent ififeence | -1.9\% | -4.5\% | -0.1\% | 1.2\% | 0.1\% | 1.4\% | 0.3\% | 0.3\% | 0.6\% | 0.0\% | 2.8\% | 1.9\% |
 | Cintical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 W Whout Priect | 703.3 | 773.8 | 801.8 | 773.1 | 790.7 | 805.5 | 624.7 | 562.9 | 477.0 | 445.7 | 54.8 | 601.4 |
 | wsP 2030 wit Projet | 694.3 | 751.5 | 821.0 | 767.1 | 818.1 | 812.1 | 625.6 | 566.3 | 482.1 | 437.6 | 544.8 | 610.9 |
 | Diffeere | -9.0 | -22.3 | 19.2 | -6.0 | 27.4 | 6.6 | 0.9 | 3.4 | 5.0 | -8.0 | -4.0 | 9.5 |
 | Perentibifeme | -1.3\% | -2.9\% | 2.4\% | -.0.8\% | 3.5\% | 0.8\% | 0.1\% | 0.6\% | 1.1\% | -1.8\% | -0.7\% | 1.6\% |

 Realive difference of the monhly wereag

 ## Sacramento-San Joaquin Delta Modeling Exceedance Probability Charts and Tables

 Figure SQ-01-b
 X2, Monthly Position

 Figure SQ-21-b
 Sacramento River at Emmaton, Monthly EC

 Table $S Q-21-b$
 to River at Emato，Monthly EC

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedane } \\ & \text { Probability } \end{aligned}$ | October | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {WSIP }}^{\text {2030 }}$ Proiectithout | WSIP 2030 With Project | Absolute | |
 | | Monthly EC | Monthy EC | （UMHOSCMCM） | ference（\％） |
 | （\％） | UMHOS | ， | | |
 | | | | 243.8 | 5．2\％ |
 | 1．2\％ | ${ }^{4569.1}$ | 4406.7 | －162．3 | |
 | | 4530.7 | 4397 | －139．1 | |
 | 3．7\％\％ | ${ }_{429293}^{4294}$ | ${ }_{4098.5}^{4234.5}$ | －160．6 | －${ }_{\text {－}}^{\text {－}}$－1．4\％ |
 | 6．2\％ | 4223.1 | 4064.3 | －158．8 | －3．8 |
 | 7．4\％ | 4203.4 | 4038.8 | －164．6 | |
 | 8．6\％ | 4188.2 | ${ }^{3731.3}$ | －456．9 | －10．9\％ |
 | ${ }^{9.9 \%}$ | 4173.8 | ${ }^{3511.3}$ | －662．5 | －15．9\％ |
 | ${ }^{11.1 \%}$ | ${ }_{41412.2}^{414.2}$ | ${ }_{\text {34833．2 }}$ | －656．8 -639.0 | －15．9\％ |
 | 13．2\％ | 4037.0 | 3381.5 | ${ }^{-655.5}$ | －16．2\％ |
 | 14．8\％ | ${ }^{3489.0}$ | ${ }^{3233.9}$ | －255．1 | －7．3\％ |
 | | ${ }_{3}^{3452.2}$ | ${ }_{\text {3052．6 }}^{3078.9}$ | | －-10.8% |
 | 18．5\％ | ${ }^{3355.2}$ | ${ }^{2801.4}$ | －553．8 | －16．5\％ |
 | 19．8\％ | ${ }^{3347.3}$ | 2768.5 | －578．8 | －17．3\％ |
 | ${ }^{21.0 \%}$ | 3286.9 3246.8 | ${ }_{2686.3}^{2758.7}$ | －528．2 | －-16.10% |
 | 23．5\％ | 3242.2 | 2628.0 | －614．2 | －18．9\％ |
 | 24．7\％ | 3224.6 | 2610.8 | －613．8 | －19．0\％ |
 | 25．9\％ | 3221.2 | ${ }^{2550.9}$ | ${ }^{-677.3}$ | －20．8\％ |
 | | ${ }^{3216.5}$ | | | －21．19\％ |
 | 20．6\％ | ${ }_{3}^{321857.1}$ | 2509.6 2389.8 | ${ }_{\text {－}}^{\text {－797．}}$ | － |
 | 30．9\％ | 3175.3 | ${ }^{2379.3}$ | －796．0 | －25．1\％ |
 | 32．1\％ | 3151.6 | 2314.7 | －836．8 | －26．6\％ |
 | 33．3\％ | 3149.7 | ${ }^{2279.8}$ | －869．9 | －27．6\％ |
 | 34．6\％ | 3094.2 | ${ }^{2274.2}$ | －820．0 | －26．5\％ |
 | 年35．8\％ | ${ }^{3027.2}$ | ${ }^{22677.1}$ | －760．1 | －25．1\％ |
 | | | ${ }^{2217.9}$ | ${ }^{-726.3}$ | |
 | 30．5\％ | ${ }_{2}^{2954.9}$ | ${ }_{2165.3}^{2190.4}$ | －589．6 | － |
 | 40．7\％ | 2715.5 | 2125.1 | －590．3 | －21．7\％ |
 | 42．0\％ | 2693.9 | ${ }^{2062.7}$ | －631．3 | －23．4\％ |
 | ${ }^{43.2 \%}$ | ${ }^{2686.2}$ | ${ }^{2033.3}$ | －652．9 | |
 | 45．7\％ | ${ }_{2580}^{2507}$ | 18556 | －724．4 | －28．1\％ |
 | 46．9\％ | 2455.1 | 1841.3 | －613．8 | －25．0\％ |
 | 48．1\％ | 2409.5 | 1763.9 | －645．6 | －26．8\％ |
 | 49．4\％ 50.6% | | ${ }^{17099.2}$ | | ${ }^{-28.19 \%}$ |
 | 50．9\％ | 2113.1 1116.6 | 1617.4 634.6 | ${ }^{-4995.7}$ | －－23．5\％ |
 | 53．1\％ | ${ }_{6}^{680.0}$ | ${ }^{609.6}$ | －70．3 | －10．3\％ |
 | 54.3% 5.5% 56\％ | 673.1 | 600.7 | －72．4 | －10．8\％ |
 | 55．6\％ | ${ }_{6}^{646.5}$ | ${ }_{5717}^{575}$ | －71．2 | －11．0\％ |
 | 58．0\％ | 628.5 | 560.1 | －68．4 | －10．9\％ |
 | 59．3\％ | 620.8 | 556.3 | －64．4 | －10．4\％ |
 | 析 60.5% | 616.8 | 545.9 | －70．9 | － 11.5% |
 | 析 61.7% | ${ }^{610.4}$ | 545．6 | －64．8 | －10．6\％ |
 | 64．2\％ | 579.9 | ${ }_{537.7}^{54.8}$ | －42．2 | －7．3\％ |
 | 65．4\％ | 576.1 | 516.6 | －59．4 | －10．3\％ |
 | 66．7\％ | | 494.0 | 32.0 | －6．9\％ |
 | －67．9\％ | 337.4 335.7 | 315.2 308.0 | ${ }_{-27.8}$ | －6．3\％ |
 | 70．4\％ | 308．9 | 300.1 20.1 | －8．9 | 2．9\％ |
 | 71．6\％ | ${ }_{29.3}^{2993}$ | ${ }^{288.1}$ | －13．2 | －4．4\％ |
 | 74．1\％ | 296.7 | ${ }_{282.5}^{28.6}$ | －14．3 | －4．8\％ |
 | 75．3\％ | 295.0 | 282.1 | －13．0 | －4．4\％ |
 | ${ }^{76.5 \%}$ | 29.5 | ${ }_{277.9}^{2789}$ | －14．6 | －5．0\％ |
 | 79．0\％ | ${ }_{286.8}^{287.0}$ | ${ }_{274.2}^{27.2}$ | －10．8 | －4．4\％ |
 | 80．2\％ | 286.2 2825 | 270.0 289. | －16．2 | 5．6\％ |
 | 81．5\％ | 282.5 | 269.4 | －13．2 | －4．7\％ |
 | － | ${ }^{282.0}$ | 266.9 265.1 | －15．1 | －5．1\％ |
 | 85．2\％ | 273.9 | 264.6 | －9．2 | |
 | 86．4\％ | 273.8 | 262.1 | －11．7 | 4．3\％ |
 | 87.7% 88.9% | ${ }^{268.8}$ | 256.1 | －12．7 | －4．7\％ |
 | －88．1\％ | ${ }_{26}^{267.9}$ | ${ }_{2537}^{25.2}$ | －12．7 | ${ }_{-4.4 \%}^{-4.6 \%}$ |
 | 91．4\％ | 265.6 | ${ }_{252.8}^{250.8}$ | －12．8 | －4．8\％ |
 | 92．6\％ | ${ }^{260.2}$ | 252.5 2497 | －7．81 | |
 | 93．8\％ | ${ }_{2598}^{2598}$ | 2497 | －10．1 | 3．9\％ |
 | ${ }_{\text {96．3\％}} 95$ | 259.2 257.8 | ${ }_{246.8}^{247.8}$ | －11．4 -11.0 | －4．4\％ |
 | 97．5\％ | 253.6 | 242.9 | －10．6 | －4．2\％ |
 | 98．8\％ 100．0\％ | ${ }_{2}^{229.9}$ | 240.1 24.9 | －5．0 | －${ }_{-2.3 \%}^{6.0 \%}$ |

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probobaility } \end{gathered}$ | January | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {WSIP 2030 }}^{\text {Proiecthout }}$ | WSIP 2030 With Project | Absolute | |
 | | Monthly EC | Monthly EC | （idiference | Difference（\％） |
 | （\％） | ${ }^{\text {UMMHOSCM }}$ | UnHosicm | 3185 | |
 | 12\％ | ${ }_{18776} 2036$ | ${ }_{1832}^{2046}$ | －450 | |
 | 2．5\％ | 1621.3 | ${ }_{1625.2}$ | 3.9 | 0．2\％ |
 | 3．7\％ | 1259.1 | 1086.7 | －172．5 | 13．7\％ |
 | 4．9\％ | 1200.4 | 1079.7 | －120．7 | －10．1\％ |
 | ${ }^{6.2 \%}$ | 1117.8 | 1058.1 | －59．7 | －5．3\％ |
 | 7．4\％ | 953.8 | 1028.9 | 75.1 | 7．9\％ |
 | 8．9\％\％ | ${ }_{907.6}^{927.6}$ | ${ }_{938.2}^{982.0}$ | 54.4 30.6 | 3．4\％ |
 | 11．1\％ | 863.1 | 889.3 | 26.2 | 3．0\％ |
 | 12．3\％ | 861.0 | 846.1 | －14．9 | －1．7\％ |
 | －13．6\％ | 845.8 7834 | 749.1 | －96．7 | －114\％ |
 | 14．8\％ | 783.4 | 738.5 | －45．0 | －5．7\％ |
 | －${ }^{16.7 .3 \%}$ | ${ }_{749.4} 7$ | 736.3 734.0 | －15．4 | ${ }_{-2.1 \%}^{-2.0 \%}$ |
 | 18．5\％ | 715.0 | 715.6 | 0.6 | 0．1\％ |
 | 19．8\％ | 708.1 | 686.3 | －21．8 | －3．1\％ |
 | ${ }_{2}^{21.0 \%}$ | 670.4 654.1 | 664.0 662.1 | －6．4 8.0 | －1．2\％ |
 | 23．5\％ | 653.5 | 643.8 | -9.6 | －1．5\％ |
 | ${ }^{24.79 \%}$ | 616.0 | 633.9 | 17.9 | 2．9\％ |
 | 25．9\％ | ${ }_{\text {cher }}^{593.2}$ | 627.9 619.9 | 34.7 40.3 | |
 | 28．4\％ | 535.4 | 580.7 | 45.3 | 8．5\％ |
 | 29．6\％ | ${ }_{5}^{527.3}$ | 562.7 | 35.4 | ${ }^{6.7 \%}$ |
 | 32．1\％ | ${ }_{493.8}$ | ${ }_{517.5}^{536.0}$ | ${ }_{23.7}^{15.8}$ | 4．8\％ |
 | 33．3\％ | 400.6 | 500.3 | 93.7 | 23．0\％ |
 | 34．6\％ | 377.9 | 465.9 | 88.0 | ${ }^{23.3 \%}$ |
 | 退35．8\％ | 350.1 349.9 | ${ }_{383.3}^{418.3}$ | ${ }_{33.4}^{68.1}$ | ${ }_{\text {9，6\％}}^{\text {9，}}$ |
 | 38．3\％ | 319.5 | 367.7 | 48.2 | 15．1\％ |
 | 39．5\％ | 317.3 | 364.8 | 47.5 | 15.0 |
 | 40．7\％ | 306.4 | 349.4 | ${ }^{43.0}$ | 14．0\％ |
 | 42．0\％ | 291.2 | ${ }^{343.1}$ | 51.9 | 17．8\％ |
 | ${ }_{4}^{43.2 \%}$ | 288.2 274.2 | 340.3 311.0 | 52.1 36.8 | －18．4\％ |
 | 45．7\％ | 273.1 | 309.8 | 36.7 | 13．4\％ |
 | 46．9\％ | 2630 | 29.6 | ${ }^{36.6}$ | 13．9\％ |
 | ${ }_{4}^{48.4 \%}$ | 262.6 238.6 | 288.4 287.6 | ${ }_{48.9}^{25.8}$ | 20．5\％ |
 | 50．6\％ | 238.5 | 280.3 | 41.8 | 17．5\％ |
 | | ${ }_{2375}^{233.3}$ | ${ }_{25}^{273.3}$ | 40.0 | 17．1\％ |
 | 54．3\％ | ${ }_{223.3}^{227.5}$ | ${ }_{242.0}^{252.3}$ | 24.8 18.8 | 8．4\％ |
 | 55．\％ | 220.6 | 233.1 | 12.5 | 5．7\％ |
 | 56．8\％ | ${ }^{213.5}$ | ${ }_{228.5}^{228.5}$ | 15.0 | 7．0\％ |
 | 59．3\％ | ${ }_{2077}^{2097}$ | ${ }_{224.8}^{226.9}$ | ${ }_{17.2}$ | 8．3\％ |
 | 60．5\％ | 2037 | 212.1 | 8.4 | 4．1\％ |
 | ${ }^{61.7 \%}$ | 203.2 | ${ }_{20}^{210.0}$ | ${ }_{6}^{6.8}$ | 3．3\％ |
 | 64．2\％ | ${ }_{201.7}^{202.4}$ | ${ }_{205.0}^{209.3}$ | ${ }_{3.3}^{6.8}$ | ${ }^{3.6 \%}$ |
 | 65．4\％ | 200.5 | 203.5 | ${ }^{3.0}$ | 1．5\％ |
 | ${ }^{66.7 \%}$ | ${ }^{197.5}$ | 201.1 | ${ }^{3.6}$ | － 1.8% |
 | 69．1\％ | ${ }_{192.5}^{1939}$ | ${ }_{195.6}^{190.4}$ | ${ }_{3.0}^{2.4}$ | 1．6\％ |
 | 70．4\％ | 192.4 | 194.5 | 2.1 | 1．1\％ |
 | 71．6\％ | 190.5 | ${ }^{19292}$ | | 0．9\％\％ |
 | 74．1\％ | ${ }_{188.7}^{189.0}$ | 1899.6 189.0 | ${ }_{0.3}$ | 0．1\％ |
 | 75．3\％ | 188.5 | 188.9 | 0.5 | 0．2\％ |
 | 76．5\％ | ${ }^{188.2}$ | 188.4 | ${ }^{0.3}$ | ${ }^{0.1 \%}$ |
 | 79．0\％ | ${ }_{187.3}^{1877}$ | ${ }_{187.6}^{187.9}$ | 0．3 | 0．2\％ |
 | 80．2\％ | 187.2 | 187.2 | 0.0 | 0．0\％ |
 | 81．5\％ | 184.9 | 186.1 | 1.3 | 0．7\％ |
 | －${ }_{\text {82，}} 8.7 \%$ | ${ }_{184.5}^{184.7}$ | 185.3 184.8 | 0．6 | ${ }_{0}^{0.3 \%}$ |
 | 85．2\％ | 184.4 | ． 5 | 0.1 | |
 | 86．4\％ | 183.6 | 184.5 | 0.9 | 0．5\％ |
 | 877\％ | 182.9 | 183.6
 1825 | 0.7 | 0．4\％ |
 | －${ }^{8019.9}$ | ${ }^{182.5}$ | ${ }_{1815} 18.9$ | 0.4 | ${ }^{0.2 \%}$ |
 | 91．4\％ | ${ }_{181.2}^{1813}$ | ${ }_{181.3}^{18.5}$ | 0．2 | ${ }_{\text {one }}^{0.1 \%}$ |
 | 92．6\％ | 180.6 | 180.8 | 0.2 | 0．1\％ |
 | 955．1\％ | $\begin{array}{r}180.5 \\ \hline 180.4 \\ \hline\end{array}$ | 180.7 | 0.2 | 0．1\％ |
 | ${ }_{9}^{956.13 \%}$ | 180.4
 180.3 | 180.6
 180.4
 18 | 0.2 0.1 | ${ }^{0.1 \% \%}$ |
 | 97．5\％ | 180.0 | 180.2 | 0.2 | 0．1\％ |
 | $\begin{array}{r}\text { 988．8\％} \\ \hline \\ \hline\end{array}$ | ${ }_{178.6}^{179.7}$ | ${ }_{178.7}^{19.8}$ | ${ }_{0}^{0.1}$ | 0．0\％ |

 Table $S Q-21-\mathrm{b}$
 to River at Emmato, Monthly EC

 | $\begin{gathered} \text { Percent } \\ \text { Excedance } \\ \text { Probability } \end{gathered}$ | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Without | WSIP 2030 With Project | Absolute | |
 | | Monthly EC | Monthy EC | (ititerence | Hference (\%) |
 | (\%) | UMH | Mre | | |
 | 0.0\% | 1302.3 | 1218.0 | -84.3 | -6.5\% |
 | ${ }^{1.2 \%}$ | ${ }^{11055.1}$ | 997.3 | -107.8 | -9.9\% |
 | 2.5\%\% | 595.4 | 609.9 5501 | 14.6 | 2.4\% |
 | 3.9\% | ${ }_{4424}^{468.9}$ | 550.1 | 81.2 | - ${ }_{\text {0.0\% }}$ |
 | 6.2\% | 433.7 | 440.0 | 6.4 | 1.5\% |
 | 7.4\% | 361.6 | 406.2 | 44.6 | 123\% |
 | - ${ }_{\text {8.9\% }}$ | 343.7 332.1 | 358.4 3497 | 14.7 176 | |
 | ${ }^{9.9 \%}$ | ${ }_{3}^{332.1}$ | 349.7 348 | 17.6 | ${ }_{\text {5 }}^{\text {11.6\% }}$ |
 | 11.13\% | 312.0 288.3 | 348.3 312.7 | 36.3 24.4 | - 11.6% |
 | +13.9\% | ${ }_{2758}^{28.8}$ | 303.6 3023 | 16.8 26.5 | 9.8.6\% |
 | 16.0\% | 270.7 | 276.3 | 5.6 | 2.1\% |
 | ${ }^{17.3 \%}$ | ${ }^{242.1}$ | 268.1 | 26.0 | 10.8\% |
 | - 18.5% | ${ }_{223.0}^{233.0}$ | ${ }_{242.0}^{251.1}$ | 18.1 19.1 | 8.8\%\% |
 | 21.0\% | ${ }_{221.6}^{221.6}$ | ${ }_{225}^{23.7}$ | 17.1 | 7.7\% |
 | ${ }^{22.2 \%}$ | 215.8 | 225.2 | 9.4 | 4.4\% |
 | - ${ }^{23.4 \% \%}$ | 214.6 2129 | ${ }_{222.1}^{223.0}$ | 8.4 8.2 | 3.3\% |
 | 25.9\% | 211.3 | 218.6 | 7.2 | 3.4\% |
 | 27.2\% | 211.2 | 218.0 | 6.9 | 3.3\% |
 | 28.4\% | ${ }_{208.5}^{210.5}$ | ${ }_{216.5}^{217.3}$ | 6.8 7.9 | ${ }_{\text {3.8\% }}^{3.2 \%}$ |
 | 30.9\% | 206.0 | 216.3 | 10.3 | 5.0\% |
 | 32.1\% | 206.0 | 213.4 | 7.5 | 3.6\% |
 | 34.6\% | ${ }_{202.0}^{205.3}$ | ${ }_{206.0}^{211.7}$ | 6.4 4.0 | 3.0\% |
 | 35.8\% | 201.4 | 204.7 | 3.3 | 1.6\% |
 | | 198.9 | 204.4 | ${ }_{5}^{5.4}$ | |
 | 30.5\% | ${ }_{197.0}^{1997}$ | ${ }_{201.5}^{203.0}$ | ${ }_{4.5}^{5.2}$ | ${ }_{\text {2,3\% }}^{2.6 \%}$ |
 | 40.7\% | 196.1 | 201.1 | 5.1 | 2.6\% |
 | | | 199.1 | | |
 | 44.4\% | ${ }_{194.8}^{194.9}$ | ${ }_{197.0}^{197.7}$ | ${ }_{2.1}^{2.8}$ | 1.1\% |
 | 45.7\% | 194.1 | 196.9 | 2.8 | 1.4\% |
 | | | | 2.4 | 1.2\% |
 | 49.4\% | ${ }_{1919}$ | ${ }_{194.6}^{190 .}$ | ${ }_{2.8}^{4.3}$ | 1.4\% |
 | 50.6\% | 191.8 | 194.4 | 2.6 | 1.3\% |
 | | 189.6 | 193.2 | | ${ }^{1.9 \%}$ |
 | 54.3\% | 188.8
 188.4 | ${ }_{190.9}^{19.3}$ | ${ }_{2.5}^{2.5}$ | 1.3\% |
 | 55.\% \% | ${ }_{188.3}$ | 190.5 | 2.2 | 1.2\% |
 | | | | | |
 | 59.3\% | 187.2 | ${ }_{18778}^{189}$ | 1.7 0.6 | 0.3\% |
 | 60.5\% | 186.6 | 187.3 | 0.7 | 0.4\% |
 | | | | | 0.3\% |
 | 64.2\% | ${ }_{185.1}^{185.2}$ | ${ }_{188.4}^{186.6}$ | ${ }_{1.3}^{1.4}$ | 0.7\% |
 | 65.4\% | 184.7 | 185.6 | 0.9 | 0.5\% |
 | 66.7\% 679% | | | | 0.3\% |
 | 69.1\% | ${ }_{184.2}^{184.3}$ | $\begin{array}{r}184.7 \\ 184.6 \\ \hline\end{array}$ | 0.4 | 0.2\% |
 | 70.4\% | 184.1 | 184.5 | 0.4 | 0.2\% |
 | | | | | |
 | 74.1\% | ${ }_{183.6}^{184.0}$ | 184.2 184.0 | ${ }_{0}^{0.5}$ | 0.2\% |
 | 75.3\% | ${ }_{183.3}$ | ${ }_{183.3}$ | 0.0 | 0.0\% |
 | | | | | |
 | 79.0\% | ${ }_{182.5}^{182.7}$ | 188.0 182.7 | 0.4 | 0.1\% |
 | 80.2\% | 182.4 | 182.5 | 0.1 | 0.1\% |
 | - ${ }_{\text {815 }}$ | 182.3 | 182.5 | 0.1 | 0.1\% |
 | - | 182.3 182.2 | 182.3 182.1 | -0.1 0.0 | -0.0\% |
 | 85.2\% | 182.0 | 182.0 | 0.0 | 0\% |
 | 86.4\% | 181.7 | 181.9 | 0.1 | 0.1\% |
 | 87.7% 880% | 181.7 | 181.9 | 0.2 | 0.1\% |
 | 88.9\% ${ }^{80.1 \%}$ | 181.5 | 181.7 | 0.2 | 0.1\% |
 | 90.4\% | 181.4 180.6 | 181.7 180.7 | 0.3 0.1 | ${ }_{0}^{0.2 \%}$ |
 | 92.6\% | 180.4 | 180.5 | 0.1 | 0.0\% |
 | 93.8\% | 180.3 | 180.5 | 0.2 | 0.1\% |
 | ${ }_{995}^{95.1 \%}$ | 180.2 | 180.3 | 0.1 | 0.1\% |
 | 96.3\% ${ }^{96.5 \%}$ | 180.0 179.0 | 179.9 179.5 | -0.5 | ${ }^{-0.1 \%}$ |
 | 98.8\% | 178.4 | 178.4 | 0.0 | 0.0\% |
 | 100.0\% | 177.2 | 177.2 | 0.0 | 0.0\% |

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probabbility } \end{aligned}$ | May | | | ${ }^{\text {Rifeatarave }}$ (\%) |
 | :---: | :---: | :---: | :---: | :---: |
 | | | WSIP 2030 With Project | $\begin{gathered} \text { Absolute } \\ \text { Differene } \\ \text { (iuntosicm) } \end{gathered}$ | |
 | | Monthly EC | Monthly EC | | |
 | ${ }^{(\% .0 \%)}$ | $\xrightarrow{\text { (UnHOSCM) }} 173397$ | (UMHOSSCM) | . 273 | -16\% |
 | | | | | |
 | 2.5\% | ${ }_{14759}^{1638.1}$ | 117430 | 429 | |
 | 3.7\% | 1053.3 | 88.5 | | |
 | 4.9\% | 715.4 | 717.0 | 176 | 0.26 |
 | 6.2\% | 644.0 | 651.7 | 77 | ${ }^{12 \%}$ |
 | 7.4\% | 637.7 | 636.8 | -0.9 | -0.1\% |
 | 8.6\% | 621.0 | 626.0 | 5.0 | 0.8\% |
 | 9.9\% | 604.1 | 598.5 | .5.6 | -0.9\% |
 | 11.1\% | 594.4 | 584.1 | -10.3 | -1.7\% |
 | 12.3\% | 579.2 | 577.3 | -2.0 | -0.3 |
 | 13.6\% | 559.4 | 513.6 | -45.8 | -8.2\% |
 | 14.8\% | 527.2 | 499.7 | 27.6 | -5.2\% |
 | 16.0\% | 519.2 | 451.0 | -68.2 | -13.1\% |
 | 17.3\% | 476.4 | 435.0 | -41.5 | -8.7\% |
 | 18.5\% | 453.3 | 427.8 | -25.6 | -5.6 |
 | 19.8\% | 436.2 | 420.9 | 15.3 | -3.5 |
 | 21.0\% | 433.2 | 419.5 | -13.8 | -3.2\% |
 | 22.2\% | 419.9 | 410.2 | -9.7 | -2.3\% |
 | 23.5\% | 409.9 | 400.2 | -9.8 | -2.4\% |
 | 24.7\% | 408.3 | 399.8 | -8.5 | -2.1\% |
 | 25.9\% | 401.4 | 397.2 | ${ }_{-4.2}$ | -1.0\% |
 | 27.2\% | 398.4 | 396.0 | -2.4 | -0.6 |
 | 28.4\% | 395.4 | 383.7 | 11.7 | -3.0\% |
 | 29.6\% | ${ }^{367.3}$ | ${ }^{351.4}$ | -15.9 | -4.3\% |
 | 30.9\% | 364.7 | 350.1 | 14.7 | -4.0\% |
 | 32.1\% | 329.7 | 325.1 | -4.7 | -1.48 |
 | 33.3\% | 317.8 | ${ }^{321.1}$ | ${ }^{3.3}$ | 1.1\% |
 | 34.6\% | 316.9 | 319.2 | 2.2 | 0.7\% |
 | 35.8\% | 314.2 | 314.1 | -0.1 | 0.0\% |
 | 37.0\% | 304.2 | 301.5 | -2.7 | -0.9\% |
 | 38.3\% | 294.5 | 2976 | 3.0 | 1.0\% |
 | 39.5\% | 2929 | 296.6 | 3.7 | 1.3\% |
 | 40.7\% | ${ }_{274.2}^{284}$ | 294.2 | 10.0 | 3.5\% |
 | 42.0\% | 277.9 | 286.2 | 8.3 | 3.0\% |
 | 43.2\% | 269.0 | ${ }_{279}^{2859}$ | ${ }^{16.9}$ | 6.3\% |
 | 44.4\% | 266.6 | 279.4 | 12.8 | 4.8\% |
 | 45.7\% | ${ }_{263.5}^{263.5}$ | 268.1 | ${ }^{4.6}$ | 1.7\% |
 | 46.9\% | ${ }_{2} 24.7$ | 264.6 | 15.9 | 6.4\% |
 | 48.1\% | 247.4 | 250.3 | 3.0 | 1.2\% |
 | 49.4\% | 241.8 | ${ }^{246.8}$ | 5.1 | 2.1\% |
 | 50.6\% | 241.2 | ${ }_{243}^{2438}$ | 2.6 | 1.1\% |
 | 51.9\% | ${ }^{241.1}$ | 241.8 | 0.7 | 0.3\% |
 | 53.1\% | ${ }_{237}^{2398}$ | 239.4 | -0.4 | -0.2\% |
 | 54.3\% | 237.7 | ${ }^{2393}$ | 1.6 | 0.7\% |
 | 55.6\% | ${ }_{23}^{2330}$ | ${ }_{233}^{233}$ | 0.0 | 0.0\% |
 | 56.8\% | ${ }^{231.5}$ | ${ }^{233.0}$ | 1.4 | 0.6\% |
 | 58.0\% | ${ }^{231.3}$ | ${ }^{231.8}$ | 0.4 | 0.2\% |
 | 59.3\% | ${ }^{229.6}$ | 230.5 | 0.9 | 0.4\% |
 | 60.5\% | ${ }_{229.4}^{229.4}$ | ${ }_{2}^{229.1}$ | -0.3 | -0.1\% |
 | 61.7\% | ${ }^{227.9}$ | ${ }_{225.7}^{225}$ | ${ }^{2.2}$ | -1.0\% |
 | 63.0\% | ${ }^{224.2}$ | ${ }^{225.5}$ | 1.2 | 0.5\% |
 | ${ }^{64.2 \%}$ | ${ }_{223}^{223.8}$ | ${ }^{223.9}$ | ${ }^{0.1}$ | 0.0\% |
 | - 65.4 \% | ${ }_{219}^{223.0}$ | ${ }_{2205}^{220.9}$ | -2.2 | -1.0\% |
 | ${ }^{66.7 \%}$ | ${ }^{219.6}$ | ${ }^{220.5}$ | ${ }^{0.8}$ | 4\% |
 | -67.9\% | ${ }_{2180}^{2193}$ | ${ }_{2184}^{219.5}$ | 0.2 | 0.1\% |
 | 69.1\% | 218.0 | ${ }^{218.4}$ | ${ }^{0.3}$ | 0.1\% |
 | 70.4\% | 215.0 | 215.7 | 0.7 | 0.3\% |
 | 71.6\% | 214.5 | 215.0 | 0.5 | 0.2\% |
 | 72.8\% | ${ }_{2095}^{212.1}$ | ${ }^{213,7}$ | $\begin{array}{r}1.6 \\ \hline .5 \\ \hline\end{array}$ | 0.8\% |
 | 74.1\% | 20.5 | 210.0 | 0.5 | 0.3\% |
 | 75.3\% | ${ }^{207.8}$ | 207.7 | -0.1 | -0.19 |
 | ${ }^{76.5 \%}$ | 199.9 | 202.4 | 2.5 | 1.2\% |
 | 77.8\% | 198.7 | 200.4 | 1.7 | 0.8\% |
 | 79.0\% | 198.3 | 199.4 | 1.1 | 0.6\% |
 | 80.2\% | 193.1 | 196.9 | ${ }^{3.7}$ | .9\% |
 | ${ }^{81.5 \%}$ | 192.6 | 192.9 | 0.2 | 0.1\% |
 | 82.7\% | 191.5 | 191.6 | 0.1 | 1\% |
 | 84.0\% | 189.9 | 189.9 | 0.0 | 0.0\% |
 | 85.2\% | ${ }^{188.6}$ | 188.7 1888 | 4 | \% |
 | ${ }^{86.4 \%}$ | 187.4 | 187.8
 1858 | 0.4 | 0.2\% |
 | 87.7\% | 185.6 | 185.8
 1854 | 0.2 | 0.1\% |
 | 88.9\% | 185.1 | 185.4
 1854 | ${ }^{0.3}$ | 0.1\% |
 | 90.19\% | 184.5 | 185.4 | 0.9 | 0.5\% |
 | 91.4\% | 184.1 | 184.4 | ${ }^{0.3}$ | 0.2\% |
 | 92.6\% | 182.4 | ${ }^{182.3}$ | 0.0 | |
 | 93.8\% | 181.6 | 181.6 | 0.0 | 0.0\% |
 | 95.1\% | 187.5 | 187.6 | 0.1 | 0.1\% |
 | 96.3\% | 179.1 | 179.0 | -0.1 | .0\% |
 | 5\% | 178.4 | 178.5 | 0.0 | 0.0\% |
 | | 178.0 176.7 | 178.0 178.8 | 0.0 0.1 | 0.0\% |

 $\xrightarrow{\text { Table } S Q-21-b}$

 | $\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | WSIP 2030 With Project | Absolute | Reative |
 | | Monthl $E C$ C | Monthly E C | (umitiesicem) | Difference (\%) |
 | ${ }^{(\%) \%}$ | (UMHOSICM) | - | | |
 | | | | | |
 | | | | | |
 | 2.5\% | 2589.0 | 2190.9 | -398.1 | |
 | 3.7\% | 2262.8 | 1850 | 412.6 | |
 | 4.9\% | 913.5 | 956.1 | 42.5 | 4.7\% |
 | 6.2\% | 909.8 | 914.8 | 5.0 | |
 | 7.4\% | 906.6 | 893 | 12.9 | -1.4\% |
 | 8.6\% | 885.7 | ${ }^{872.5}$ | -13.2 | -1.5\% |
 | 9.9\% | 881.3 | 783.6 | 97.6 | -11.1\% |
 | 11.1\% | 848.5 | 761.7 | 86.8 | -10.28 |
 | 12.3\% | 830.1 | 743.9 | 86.2 | 10. |
 | 13.6\% | 785.4 | 740.6 | 44.8 | -5.7\% |
 | 14.8\% | 775.3 | 735.4 | 39.9 | -5.1\% |
 | 16.0\% | ${ }^{767.4}$ | 700.5 | -67.0 | -8.7\% |
 | 17.3\% | 751.2 | 693.4 | -57.8 | -7.7\% |
 | 18.5\% | 749.0 | 681.0 | -68.0 | -9.1\% |
 | 19.8\% | 738.0 | 680.7 | -57.3 | -7.8\% |
 | 21.0\% | ${ }^{736.2}$ | 673.1 | -63.0 | -8.6\% |
 | 22.2\% | 705.9 | 668.5 | -37.4 | -5.3\% |
 | 23.5\% | 693.0 | ${ }^{653.1}$ | -39.9 | 5.8\% |
 | 24.7\% | 692.8 | 650.8 | ${ }^{-42.0}$ | -6.1\% |
 | 25.9\% | 686.9 | ${ }_{646.3}$ | 40.5 | 5.9 |
 | 27.2\% | 666.5 | 645.6 | ${ }^{20.9}$ | -3.1\% |
 | 28.4\% | 664.3 | ${ }^{636.5}$ | 27.8 | -4.2\% |
 | 29.6\% | 661.8 | 630.2 | 31.5 | -4.8\% |
 | 30.9\% | ${ }^{659.3}$ | 628.6 | -30.7 | -4.7\% |
 | 32.1\% | 657.1 | 613.1 | -44.0 | -6.7\% |
 | 33.3\% | ${ }^{643.2}$ | 599.7 | 43.5 | -6.8\% |
 | 34.6\% | 638.2 | 596.2 | -42.0 | -6.6\% |
 | 35.8\% | ${ }_{6}^{637.7}$ | 590.4 | -47.4 | -7.4\% |
 | 37.0\% | 634.0 | 576.8 | -57.2 | -9.0\% |
 | 38.3\% | 627.7 | 576.4 | -51.3 | -8.2\% |
 | 39.5\% | 604.1 | 575.7 | -28.4 | -4.7\% |
 | 40.7\% | 599.6 | 572.4 | -27.2 | -4.5\% |
 | 42.0\% | 595.0 | 568.7 | -26.3 | -4.4\% |
 | 43.2\% | 599.4 | 564.1 5595 | -30.3 | -5.1\% |
 | 44.4\% | 594.1 | 558.5 | -35.5 | -6.0\% |
 | 45.7\% | 576.7 | 555.6 5593 | -21.1 | -3.7\% |
 | 46.9\% | 574.7 | 553.3 | -21.4 | -3.7\% |
 | 48.1\% | 571.8
 565 | 548.3
 50.3 | -23.5 | -4.1\% |
 | 49.4\% | 553.7 | 540.3 | -13.5 | -2.4\% |
 | 50.6\% | 552.8 | 537.4 | -15.4 | -2.8\% |
 | 51.9\% | 550.0 | 531.9 | -18.1 | -3.3\% |
 | 53.1\% | 544.9 | 531.4 | -13.5 | -2.5\% |
 | 54.3\% | 543.7 | 525.5 | -18.3 | -3.4\% |
 | 55.6\% | 543.1 | 520.6 50.6 | -22.5 | -4.1\% |
 | 56.8\% | 542.5 | 520.4 | -22.0 | -4.1\% |
 | 58.0\% | 521.3 | 520.4 | -0.9 | -0.2\% |
 | 59.3\% | 505.7 | 495.1 | -10.6 | -2.1\% |
 | 60.5\% | 4897 | 488.9 | -10.8 | -2.2\% |
 | 61.7\% | 487.2 | 462.0 | ${ }^{25.2}$ | -5.2\% |
 | 63.0\% | 480.9 | 459.4 | -21.5 | -4.5\% |
 | ${ }^{64.2 \%}$ | ${ }^{473.6}$ | 455.7 | -18.0 | -3.8\% |
 | 65.4\% | 470.5 | 451.1 | -19.4 | 4.1\% |
 | ${ }^{66.7 \%}$ | 446.6 | 443.1 | -3.5 | -0.8\% |
 | 67.9\% | 437.7 | 433.3 | -4.4 | -1.0\% |
 | 69.1\% | 428.9 | ${ }_{426.4}$ | -2.5 | -0.6\% |
 | 70.4\% | ${ }^{423.1}$ | 421.9 | -1.2 | -0.3\% |
 | 71.6\% | 418.4 | 418.4 | 0.0 | 0.0\% |
 | 72.8\% | 410.7 | 416.3 | 5.6 | 1.4\% |
 | 74.1\% | 404.7 | 407.5 | ${ }^{2.8}$ | 0.7\% |
 | 75.3\% | 401.0 | 404.8 | 3.9 | 1.0\% |
 | 76.5\% | 365.4 | ${ }^{338.6}$ | 26.8 | 7.3\% |
 | 77.8\% | ${ }^{364.7}$ | 334.9 | -29.8 | -8.2\% |
 | 79.0\% | 359.8 | ${ }^{330.6}$ | 29.1 | 8.7\% |
 | 80.2\% | ${ }^{337.3}$ | ${ }^{328.2}$ | -9.1 | -2.7\% |
 | 81.5\% | ${ }_{332.9}$ | ${ }^{327.3}$ | 5.7 | 1.7\% |
 | 82.7\% | ${ }^{310.3}$ | 294.9 | -15.5 | -5.0\% |
 | 84.0\% | 307.6 | ${ }^{286.6}$ | 21.0 | -6.8\% |
 | 85.2\% | 290.9 | ${ }_{262.6}^{262.6}$ | -28.3 | 9.7\% |
 | ${ }^{86.4 \%}$ | 289.2 | 262.0 | 27.2 | ${ }^{-9.4 \%}$ |
 | 87.7\% | ${ }_{271.8}$ | 261.0 | -10.8 | 4.0\% |
 | 88.9\% | 264.1 | ${ }^{253.3}$ | 10.8 | 4.1\% |
 | 90.1\% | ${ }^{2515}$ | 247.4 | -8.2 | -3.2\% |
 | ${ }^{91.44 \%}$ | 21.7 | 240.7 | 29.0 | ${ }^{13.7 \%}$ |
 | 92.6\% | 205.9 | 202.5 | ${ }_{-3.3}$ | 1.6\% |
 | 93.8\% | 204.9 | 201.2 | -3.7 | 1.8\% |
 | ${ }^{956.1 \%}$ | 195.8 | 195.9 | 0.1 | 0.1\% |
 | ${ }^{96.3 \%}$ | 193.4 | 191.5 | -1.9 | -1.0\% |
 | 98.5\% | 192.6 | 190.9 | 1.7 | \% |
 | | ${ }_{18818}^{188.5}$ | 1881.6
 | | ${ }_{\text {- }}^{-0.1 \%}$ |

 | $\begin{gathered} \text { Percernt } \\ \text { Exceeder } \\ \text { Probababily } \end{gathered}$ | September | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Without | WSIP 2030 With Project | Absolute | |
 | | Monthly EC | Monthy EC | Difierence (UMHOSCM) | Difference (\%) |
 | (\%) | (UnHosicm | UMHO | | |
 | 0.0\% | 3816.4 | ${ }^{3643.3}$ | -173.1 | -4.5\% |
 | 1.2\% | 3603.0 | 3395.0 | -208.0 | -5.8\% |
 | ${ }^{2.5 \%}$ | ${ }_{3}^{3521.6}$ | ${ }^{33588.1}$ | -163.5 | -4.4.\% |
 | 3.7\%\% | 3511.0 35109 | ${ }_{\text {cke }}^{3346.4}$ | -164.6 | -4.7\% |
 | 6.2\% | 3478.6 | ${ }_{3158.3}$ | ${ }^{-3220.3}$ | -9.2\% |
 | 7.4\% | 3438.4 | 3080.0 | -358.4 | -10.4\% |
 | 8.6\% | ${ }^{3391.3}$ | 3046.6 | -344.7 | -10.2\% |
 | 9.9\% | 3387.8 | ${ }^{3025.6}$ | -362.2 | -10.7\% |
 | 年11.19\% | ${ }_{\text {3 }}^{33388.8}$ | ${ }_{2683.5}^{2684.5}$ | -654.3 | - -19.6% |
 | +12.3\% | ${ }_{\substack{3232.3 \\ 32277}}$ | | -548.4 | |
 | - 13.8% | ${ }_{3168.5}^{327.7}$ | ${ }_{2639.1}^{2673.0}$ | ${ }_{\text {-529.4 }}$ | -16.7\% |
 | 16.0\% | ${ }^{3036.1}$ | 2495.5 | -540.6 | -17.8\% |
 | 17.3\% | 3025.9 | 2444.1 | -581.7 | -19.2\% |
 | | ${ }_{2}^{294107}$ | 2301.5 22820 | - -640.2 -628 | - 21.8% |
 | 21.0\% | 2888.6 | 2204.7 | -683.9 | -23.7\% |
 | 22.2\% | ${ }^{2832.3}$ | 2201.8 | ${ }_{-630.6}$ | -22.3\% |
 | ${ }_{\text {2 }}^{23.5 \%}$ | ${ }_{27174}^{2734}$ | 20977.8 20909 | - ${ }_{-636.4}$ | - |
 | 25.9\% | 2682.5 | 2086.7 | -599.8 | -2.2\% |
 | 27.2\% | 2669.4 | 2050.1 | -619.4 | -23.2\% |
 | - 28.4 .4 \% | ${ }_{2549.9}^{251.5}$ | ${ }^{19777.0}$ | -588.5 | -22.8\% |
 | 30.9\% | 2538.5 | 1913.2 | -625.4 | -24.6\% |
 | 32.1\% | ${ }_{2523.3}^{253}$ | 1906.5 | -616.7 | 24.4\% |
 | 33.3\% | 2456.3 | 1902.6 | -553.7 | -22.5\% |
 | 34.6\% | ${ }^{2283.1}$ | 1900.4 | -382.7 | -16.8\% |
 | 335.0\% | ${ }_{2}^{225175.6}$ | ${ }_{\text {liser }}^{1886.7}$ | - -2964.5 | - $\begin{aligned} & -16.2 \% \\ & -1.3 \%\end{aligned}$ |
 | 38.3\% | 2117.7 | 1884.6 | -233.2 | -11.0\% |
 | 39.5\% | 2114.2 | 1706.2 | ${ }_{-408.0}$ | -19.3 |
 | 40.7\% | 2097.2 | 1705.4 | -391.8 | -18.7\% |
 | 42.0\% | 2054.0 | ${ }^{1677.6}$ | -382.5 | -18.6\% |
 | - 43.2% \% | 2028.4
 1922.8 | 1657.2 1588.8 | - ${ }_{\text {- }}^{\text {-374.0 }}$ | - -18.3% |
 | 45.7\% | 1876.3 | 1553.0 | ${ }^{-323.3}$ | -17.2\% |
 | 46.9\% | 1874.8 | 1539.7 | -335.1 | -17.9\% |
 | 48.1\% 4.4 | 1834.2 1831.9 | - 15352.3 | ${ }_{\text {- }}^{\text {-301.9 }}$ | - ${ }^{-16.5 \%}$ |
 | 50.6\% | 1730.6 | 1453.2 | -277.4 | -16.0\% |
 | | 1726.9 | ${ }^{139663}$ | -330.7 | -19.1\% |
 | 㐌53.3\% | 1675.3 1602.6 | 13488.5 1248.7 | ${ }_{\text {-353.9 }}^{\text {-36.7 }}$ | - |
 | 55.6\% | 761.5 | 641.8 | -119.8 | -15.7\% |
 | 56.8\% | 663.8 6369 | 598.2 5668 | -65.6 | -9.9\% |
 | 59.3\% | 607.9 | 548.8 | -59.2 | -9.7\% |
 | 60.5\% | 580.8 5807 | 534.2 | -46.7 | -8.0\% |
 | ${ }^{61.7 \%}$ | 588.7 | | | |
 | - 63.2% | ${ }_{547.9}^{57.7}$ | 519.4 519.6 | ${ }_{-31.3}^{\text {-53.3 }}$ | -5.7\% |
 | 65.4\% | 543.7 | 503.9 | -39.8 | -7.3\% |
 | ${ }^{66.7 \%}$ | ${ }_{534.3}$ | 498.9 | -44.4 | ${ }^{-8.2 \%}$ |
 | 69.1\% | ${ }_{500.3}^{531.2}$ | ${ }_{4589.7}^{49.4}$ | -40.8 | -7.7\%\% |
 | 70.4\% | 370.7 | 370.3 | -0.4 | -0.1\% |
 | 71.6\% | 351.2 | ${ }^{355.8}$ | | 1.3\% |
 | 72.8\% | ${ }_{346.3}^{348.7}$ | ${ }_{333.1}^{340.1}$ | -8.5 | - ${ }_{\text {- }}^{\text {-.8\% }}$ |
 | 75.3\% | 341.8 | 3392 | -12.6 | -3.7\% |
 | 76.5\% | ${ }^{336.5}$ | | | |
 | 77.8\% | ${ }_{332.9}^{333.2}$ | 326.6 325.5 | --6.4 | ${ }_{-2.2 \%}^{2.0 \%}$ |
 | 80.2\% | 330.1 | 323.7 | -6.4 | -1.9\% |
 | 81.5\% | 328.0 | 323.3 | -4.7 | -1.4\% |
 | 82.7\% | 326.7 | 314.7 | -12.0 | -3.7\% |
 | -84.0\% | 324.4 3220 | 312.6 3122 | -11.8 | |
 | 86.4\% | ${ }_{321.7}$ | 309.8
 0.8 | -91.9 | -3.7\% |
 | 87.7\% | 320.8 | 308.4 | -12.4 | -3.9\% |
 | 88.9\% | 318.0 | 307.8 | 10.2 | -3.2\% |
 | 90.1\% | 314.6 | 307.8 | -6.8 | 2.2\% |
 | 91.4\% | 314.3 | 307.8 | -6.6 | -2.1% -1.9% |
 | - ${ }_{93.8 \%}^{92.6 \%}$ | ${ }_{312.3}^{313.1}$ | ${ }_{305.5}^{307.1}$ | -6.0. | ${ }^{-1.9 \%}$ |
 | 95.1\% | 312.1 | 304.8 | -7.3 | 2.3\% |
 | 96.3\% | 312.0 | 302.1 | -9.9 | -3.2\% |
 | 998.5\% | 310.2 3089 | 298.0 2975 | 12.2 | -3.9\% |
 | 100.0\% | ${ }_{307.6}$ | ${ }_{295.8}^{295}$ | ${ }_{-11.8}$ | -3.8\% |

 Figure SQ-22-b
 Sacramento River at Collinsville, Monthly EC

 Table $S Q-22-b$
 o Riverat Colinsuille，Monthly $E C$

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | October | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {WSIP }}^{\text {2030 }}$ Proiectithout | WSIP 2030 With Project | Absolute | |
 | | Monthly EC | Monthly EC | （UMHOSCOM） | ference（\％） |
 | （\％） | （1054m | （1） | | |
 | | | | 244.5 | －2．0\％ |
 | 1．2\％ | 11802.8 | 11613.4 | 189.4 | |
 | 2．5\％ | | | | |
 | 3．7\％ | ${ }_{11567.2}$ | ${ }^{11456.6}$ | －200．6 | －1．7\％ |
 | 4．9\％ | 28．6 | 11451.8 | －76．8 | |
 | 年．2\％\％ | － 114273.6 | 11250.3 11231.8 | －177．3 -1048 | －1．9\％\％ |
 | 8．6\％ | 11314.3 | 10636.8 | －677．5 | －6．0\％ |
 | ${ }^{9.9 \%}$ | 11267.3 | 10595．4 | －671．8 | －6．0\％ |
 | ${ }^{11.1 \%}$ | 11266.8 11244.1 | 10296.4 10166.9 | － 97070.4 | －8．6\％\％ |
 | 13．6\％ | 11024.6 | 10040.7 | －－983．9 | －8．9 |
 | 14．8\％ | 377．0 | 9966.5 | －410．5 | －4．0\％ |
 | 16．0\％ | 10365.0 | 9822.1 | －542．9 | －5．2\％ |
 | 17．3\％ | 10361.2 | 9757．3 | －603．8 | －5．8\％ |
 | 年 $18.8 .8 \%$ | 10215.9 10149.5 | ${ }_{9393.1}^{9408.5}$ | | －7．7．9\％ |
 | 21．0\％ | 10123.5 | ${ }^{9387.2}$ | －736．3 | －7．3\％ |
 | 22．2\％ | 10098.4 | 9282.0 | －816．4 | －8．1\％ |
 | ${ }^{23.5 \%}$ | 10059.6 10042.4 | ${ }_{9}^{9180.1}$ | －${ }_{\text {－}}^{\text {－}}$－905．2． | －8．7\％${ }_{-9.0 \%}$ |
 | 25．9\％ | 10035.4 | 9128.7 | －906．7 | 9．0\％ |
 | 27．2\％ | 10034.0 | 9096.2 | －937．8 | －9．3\％ |
 | 28．4\％ | 10009.9 | 9019.5 | －990．4 | －9．9\％ |
 | 29．6\％ | 10009．3 | 8999.2 | | |
 | 321\％ | 900354 | ${ }_{8}^{86969}$ | －1256．3 | |
 | ${ }^{32.15}$ | 9955.4 | ${ }^{8609.7}$ | －1205．7 | |
 | 34．6\％ | ${ }_{9846.1}^{984.1}$ | ${ }_{8518.1}^{8024.1}$ | －1228．1 | －12．5\％ |
 | 35．8\％ | 9841.8 | ${ }^{8498.3}$ | -1343.5 | －13．7\％ |
 | 37．0\％ | 9633.4 | 8477.8 | －1155．6 | －12．0\％ |
 | 笛38．3\％ | ${ }_{\text {9525．0 }}^{953}$ | ${ }_{8}^{8447.5}$ | －1077．5 | －11．3\％ |
 | | ${ }^{950332}$ | | －1228．1 | －12．9\％ |
 | 42．0\％ | ${ }_{9317.8}^{933.0}$ | ${ }_{8221.9}^{829.1}$ | －1095．9 | －11．8\％ |
 | 43．2\％ | 9305.8 | ${ }^{8214.3}$ | －1091．5 | －11．7\％ |
 | 44．4\％ | 9095.9 | 7806.5 | －1289．4 | －14．2\％ |
 | 45.7% 46.9% | ${ }^{89988.3}$ | 788047 | －1143．6 | -122.8% -153% |
 | | ${ }_{8}^{8720.0}$ | 7384.7 | | |
 | 49．4\％ | ${ }_{8647.8}^{87}$ | ${ }_{7203.5}^{720.6}$ | ${ }^{-14444.3}$ | ${ }_{-16.7 \%}$ |
 | 50．6\％ | 8451.3 | 7171.2 | -1280.1 | －15．1\％ |
 | 51．9\％ | 5467.5 | ${ }^{3527.4}$ | －1940．1 | －35．5\％ |
 | 54．3\％ | ${ }_{\text {3 }}^{36595.4}$ | ${ }_{\text {3 }}^{3} \mathbf{3 4 6 3 . 1}$ | ${ }_{-232.3}^{-22.8}$ | －6．5\％ |
 | 55．6\％ | ${ }^{3587.0}$ | ${ }^{3359.5}$ | －227．5 | －6．3\％ |
 | | ${ }^{35671.6}$ | ${ }^{3303.2}$ | －258．4 | －7．3\％ |
 | 58．3\％ | 3473.4 3430.0 | ${ }_{\text {3273．4 }}^{3297}$ | －156．6 | －5．6\％ |
 | 60．5\％ | ${ }^{3405.9}$ | ${ }^{3234.9}$ | －170．9 | －5．0\％ |
 | 年1．7\％ | ${ }^{33877.2}$ | ${ }^{3217.0}$ | －170．2 | －5．0\％ |
 | －63．0\％ | ${ }_{3}^{33739.0}$ | 3147.0 3088.7 | ${ }_{-260.5}^{-226.0}$ | － 7.8% |
 | 65．4\％ | 3291.2 | 3076.1 | －215．1 | －6．5\％ |
 | － 66.7% | ${ }^{2361.1}$ | ${ }^{2897.3}$ | 536．2 | ${ }^{22.77 \%}$ |
 | －67．9\％ | 1658.0 1621.4 | 15366.1 1534.5 | －${ }_{-86.8}^{122.0}$ | －5．4\％ |
 | 70．4\％ | 1540.5 | 1491.7 | －48．8 | |
 | 71．6\％ | 1535.9 | 1457.7 | －78．2 | 1\％ |
 | 72．8\％ | 1490.2 | 1452.0 | －38．1 | －2．6\％ |
 | 74.1% 753% | 1476.6 | ${ }^{13933.2}$ | －83．4 | |
 | 7． 7.5% | ${ }_{1}^{14557.0}$ | 13322.3 1379.9 | －74．6． | －5．2\％ |
 | 77．8\％ | ${ }^{14159.5}$ | ${ }^{1371.0}$ | －44．5 | －3．1\％ |
 | 79．0\％ | 1407.4 | $\begin{array}{r}1352.9 \\ \hline 1335\end{array}$ | －54．5 | |
 | 81．5\％ | 1399.7 | ${ }_{\text {13384，}}^{13385}$ | －65．2 | ${ }_{\text {－4，}}^{-4 \%}$ |
 | 82．7\％ | 13959 | 1334．3 | －61．5 | －4．4\％ |
 | －852\％ | ${ }^{1379.7}$ | ${ }^{13288.4}$ | | |
 | 86．4\％ | 1369.7 | ${ }_{1313.1}^{132.7}$ | －56．6 | －4．1\％ |
 | 877\％ | 1368.2 13635 1 | 1300.9 12007 | －67．3 | －4．9\％ |
 | －${ }^{\text {90．1\％}}$ | ${ }^{1363.5}$ | ${ }_{1290.7}$ | | |
 | 91．4\％ | 1307.6 | 1231.5 | －76．2 | －5．8\％ |
 | 92．6\％ | 1302.9 12991 | 1229.8 12127 | －73．2 | －5．6\％ |
 | 995．1\％ | 12999.1 12826 | ${ }_{12212.7}^{122077}$ | ${ }_{-76.5}$ | －5．8\％ |
 | 96．3\％ | ${ }_{1273.5}$ | 1190.5 | －83．1 | －6．5\％ |
 | 97．5\％ | 125288
 028 | ${ }^{1186.7}$ | －66．1 | 5．3\％ |
 | 100．0\％ | ${ }_{6}{ }_{683.7}$ | 1584.4 | ${ }_{\text {－}}^{\text {－35．1 }}$ | －5．6\％ |

 | | November | | | － | December | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | WSIP P3030 Without | WSIP 2030 With Project | Absolute | | Perent | WSIP 2030 Wethout | WSIP 2030 With Project | Absolute | |
 | Probability | Monthly EC | Monthly EC | Difference （UuHOSOSM） | Difference（\％） | treabaility | Monother EC | Monthy EC | Difference （UuHHOSCM） | Difference（\％） |
 | （\％） | （UMHOSSCM） | （UMHHSSICM） | | | （\％） | UMHHSSCM） | UMHHSSCM） | | |
 | 0．0\％ | 12229.5 | ${ }^{12130.2}$ | －99．3 | | 0．0\％ | 11317.5 | ${ }^{11323.4}$ | 5.9 | 0．1\％ |
 | 1．2\％ | ${ }^{1215252.5}$ | ${ }^{121222.4}$ | －30．0 | －0．2\％ | 1．2\％ | 10201.8 | 10469.7 | 267.8 | |
 | 2．5\％ | 12130.7 | 12039.4 | －91．3 | －0．8\％ | 2．5\％ | 9774.6 | 9764.0 | －10．5 | －0．1\％ |
 | 3．7\％ | ${ }^{12128.3}$ | 12034．2 | －94．0 | －0．8\％ | 3．7\％ | 9773.9 | 9399.5 | －314．4 | －3．2\％ |
 | 4．9\％ | 11984.8 | 11944.8 | －40．1 | －0．3\％ | 4．9\％ | ${ }^{9560.7}$ | 9388.2 | －172．5 | 源 |
 | 6．2\％ | 11955.7 | 11793.2 | －162．5 | －1．4\％ | 6．2\％ | ${ }^{9525.6}$ | ${ }^{9289.0}$ | －236．5 | －2．5\％ |
 | 7．4\％ | 11938.0 | 11632.9 | －305．1 | －2．6\％ | 7．4\％ | ${ }^{94999.0}$ | ${ }^{9132.3}$ | 析 | －3．9\％ |
 | 8．6\％ | ${ }^{1186993}$ | 11305.4 | －563．8 | －4．8\％ | 8．6\％ | ${ }^{9393.3}$ | ${ }^{905173}$ | －342．1 | －3．6\％ |
 | 9．9\％ | 11587.8 | 11131.5 | －456．2 | －3．9\％ | 9．9\％ | 9358.7 | 8977.7 | －381．0 | －4．1\％ |
 | 11．1\％ | 113001.1 | 10886.9 | －414．2 | －3．7\％ | 11．1\％ | ${ }^{9241.2}$ | ${ }^{8953.0}$ | －288．2 | －3．1\％ |
 | 12．3\％ | 10709.2 | 10114.2 | －594．9 | －5．6\％ | ${ }^{12.3 \%}$ | 9200.9 | 8817.6 | －383．3 | －4．2\％ |
 | 13．6\％ | 10324.5 | 1010339 | －220．5 | －2．1\％ | 13．6\％ | 9138.2 | ${ }^{8506.8}$ | －631．4 | －6．9\％ |
 | 14．8\％ | 10261.8 | 9936.4 | －325．3 | －3．2\％ | 14．8\％ | ${ }^{9123.5}$ | 8257.0 | －866．5 | －9．5\％ |
 | ${ }^{16.0 \%}$ | 10244.4 | 9929.9 | －314．5 | －3．1\％ | 16．0\％ | ${ }^{90455.9}$ | ${ }^{8086.5}$ | －959．3 | －10．6\％ |
 | 17．3\％ | 10095.3 | 9571.3 | －524．1 | －5．2\％ | 17．3\％ | ${ }^{8650.3}$ | ${ }^{7969.8}$ | －680．6 | －7．9\％ |
 | 18．5\％ | 9930．6 | 9413.0 | －517．6 | －5．2\％ | 18．5\％ | ${ }^{805992}$ | 7953．3 | －105．8 | －1．3\％ |
 | 19．8\％ | 9830．2 | ${ }^{938855}$ | －444．7 | －4．5\％ | 19．8\％ | ${ }^{7673.5}$ | 7304.0 | －369．5 | －4．8\％ |
 | 21．0\％ | 9749.8 | 9191.9 | －557．9 | －5．7\％ | 21．0\％ | ${ }^{6454.6}$ | 7054.1 | 599.5 | 9．3\％ |
 | 22．2\％ | 9636.6 | 9109.6 | －527．1 | －5．5\％ | ${ }^{22.2 \%}$ | ${ }^{6304.1}$ | ${ }^{6730.9}$ | ${ }^{426.8}$ | 6．8\％ |
 | 23．5\％ | 9629.1 | 9075.4 | －553．7 | －5．8\％ | 23．5\％ | 5984.8 | ${ }^{6523.6}$ | 538.8 | 9．0\％ |
 | ${ }^{24.7 \%}$ | ${ }^{9624.5}$ | 9016.5 | －607．9 | ${ }^{-6.3 \%}$ | ${ }^{24.7 \%}$ | 5147.9 | ${ }^{64332.5}$ | ${ }^{12848.6}$ | 25．0\％ |
 | 25．9\％ | ${ }^{9601.5}$ | 8919.8 | －681．7 | －7．1\％ | 25．9\％ | 5126.0 | ${ }^{5843.8}$ | 717.8 | 14．0\％ |
 | 27．2\％ | 9553.1 | 8631.0 | ${ }_{-922.0}$ | －9．7\％ | 27．2\％ | 5090.3 | 5475.6 | ${ }^{385.3}$ | 7．6\％ |
 | 28．4\％ | ${ }^{9511.3}$ | 8465.6 | －1045．7 | －11．0\％ | 28．4\％ | ${ }^{48773.2}$ | 5253．0 | 379.9 | 7．8\％ |
 | 29．6\％ | 9491.2 | 8459.8 | －1031．5 | －10．9\％ | 29．6\％ | 4774.8 | 5053.8 | 278.9 | 5．8\％ |
 | 30．9\％ | 9351.4 | ${ }^{83655} 5$ | －985．9 | －10．5\％ | 30．9\％ | 4759.6 | 4783.8 | ${ }^{24.1}$ | 0．5\％ |
 | 32．1\％ | ${ }^{9246.9}$ | ${ }^{8357.2}$ | －889．6 | －9．6\％ | 32．1\％ | 4576.4 | 4694.1 | 117.7 | ${ }^{2.6 \%}$ |
 | 33．3\％ | ${ }^{91955}$ | ${ }^{8201.5}$ | －994．1 | －10．8\％ | 33．3\％ | 4545.9 | 4610.5 | 64.5 | 1．4\％ |
 | 34．6\％ | 9129.5 | 8109.7 | －1019．8 | －11．2\％ | 34．6\％ | ${ }^{4480.2}$ | 4583.0 | 102.8 | ${ }^{2.3 \%}$ |
 | 35．8\％ | ${ }^{8822.3}$ | 8031.1 | －791．1 | －9．0\％ | 35．8\％ | ${ }^{44655.3}$ | 4416.9 | －48．3 | －1．1\％ |
 | 37．0\％ | ${ }_{7900.5}$ | ${ }_{7} 8029.2$ | －161．3 | －2．0\％ | 37．0\％ | 4035.0 | 4209.1 | 174.1 | 4．3\％ |
 | 38．3\％ | 7907.7 | ${ }^{7522.5}$ | －335．1 | －4．2\％ | 38．3\％ | ${ }^{3945.1}$ | ${ }^{41885.5}$ | 240．4 | 6．1\％ |
 | ${ }^{39.5 \%}$ | 7893.2 | 7026.9 | －866．4 | －11．0\％ | 39．5\％ | ${ }^{38877.2}$ | ${ }^{3942.8}$ | 55.5 | ${ }^{1.4 \%}$ |
 | 40．7\％ | 7670.1 | ${ }^{6844.6}$ | －825．6 | －10．8\％ | 40．7\％ | 3779.7 | ${ }^{3822.4}$ | 42.8 | 1．1\％ |
 | 42．0\％ | 6620.5 | ${ }^{6336.8}$ | －283．7 | －4．3\％ | 42．0\％ | ${ }^{3744.3}$ | ${ }^{3812.9}$ | ${ }_{68.6}$ | 1．8\％ |
 | 43．2\％ | ${ }_{6368.8}$ | 5765.1 | －603．8 | －9．5\％ | 43．2\％ | ${ }^{3699.4}$ | 3750.1 | 50.8 | 1．4\％ |
 | 44．4\％ | 5790.1 | 4928.8 | －861．3 | －14．9\％ | 44．4．\％ | ${ }^{3576.3}$ | ${ }^{3684.0}$ | 107.7 | 3．0\％ |
 | 45．7\％ | 5040.1 | 4173.5 | －866．7 | －17．2\％ | 45．7\％ | ${ }^{3536.5}$ | ${ }_{3625.3}$ | 88.8 | 2．5\％ |
 | 46．9\％ | 4785.6 | 4086.8 | －698．8 | －14．6\％ | 46．9\％ | ${ }^{35350.4}$ | 3575.0 | 44.6 | ${ }^{1.3 \%}$ |
 | 48．1\％ | ${ }^{4561.4}$ | 3792.9 | －768．5 | －16．8\％ | 48．1\％ | 3459.9 | ${ }^{3514.1}$ | 54.2 | 1．6\％ |
 | 49．4\％ | ${ }^{3524.4}$ | ${ }^{3233.0}$ | －121．4 | ${ }^{-3.3 \%}$ | 4．4．4\％ | 3200.7 | 3497.0 | 29.2 | 9．3\％ |
 | 50．6\％ | ${ }^{3286.6}$ | 3210.0 | －16．6 | －2，3\％ | 50．6\％ | ${ }_{3153.4}$ | ${ }^{3321.0}$ | ${ }_{1519}^{15.6}$ | 5．0\％ |
 | 51．9\％ | 3279.1 | 3176.9 | －102．2 | ${ }^{-3.1 \%}$ | 51．9\％ | 314.18 | 32601 | 118.3 | 3．8\％ |
 | 55．1\％ | 3158.2 | ${ }_{3126.8}$ | -31.4 | －1．0\％ | 53．1\％ | ${ }^{3055.2}$ | 3241.0 | ${ }_{1858}^{1878}$ | ${ }^{6.15 \%}$ |
 | 54．3\％ | 3149.1 | 3039.4 | －109．8 | －3．5\％ | 54．3\％ | ${ }^{3036.6}$ | ${ }^{3234.3}$ | 197.8 | 6．5\％ |
 | | ${ }_{3131.8}$ | ${ }_{2064}^{29864}$ | －145．4 | －4．6\％ | 55．6\％ | ${ }_{2}^{2934.8}$ | ${ }_{3}^{3225.6}$ | 290.8 | 9．9\％ |
 | 56．8\％ | 3077.6 | 2964.4 | －113．2 | －3．7\％ | 56．8\％ | ${ }^{2874.5}$ | 3078.4 | 203.9 | 7．1\％ |
 | 55．0\％ | ${ }^{3060.4}$ | ${ }_{20214}^{29314}$ | －117．3 | －3．3\％ | 58．0\％ | 2701．4 | ${ }_{3}^{3276.5}$ | ${ }_{373.1}^{375}$ | 13．9\％ |
 | 59．3\％ | 3036．4 | 2921.4 | －115．1 | ${ }^{-3.8 \%}$ | 59．3\％ | 2239.4 | ${ }^{3013.3}$ | ${ }^{373.8}$ | ${ }^{14.24 \%}$ |
 | ${ }^{60.5 \%}$ | ${ }_{2817.2}^{2947}$ | ${ }_{2}^{2887.1}$ | －60．1 | －2．0\％ | 60．5\％ | ${ }^{2398.0}$ | ${ }_{2}^{2974.7}$ | 577.8 | 24．19\％ |
 | 6.7 .7 | 2816.5 | 2887.1 | －9．4 | －0．3\％ | 61．7\％ | ${ }^{2308.8}$ | ${ }_{2879.4}$ | 570.6 | 24．7\％ |
 | 63．0\％ | ${ }_{2581.4}^{2583}$ | ${ }_{22060}^{2274}$ | －307．3 | －11．9\％ | 63．0\％ | ${ }^{19988.4}$ | ${ }_{2}^{2684.7}$ | | 34．3\％ |
 | 64．2\％ | ${ }^{20473.3}$ | 2000.6 | 17.3 | ${ }^{0.8 \%}$ | 64．2\％ | ${ }^{16652.0}$ | ${ }_{214.6}^{220.6}$ | 543.6 | ${ }^{32.77 \%}$ |
 | ${ }^{65.4 \%}$ | 1774．4 | 1726.1 | －48．3 | －2．7\％ | 65．4\％ | 11655.9 | 216.1 | ${ }^{460.2}$ | ${ }^{27.8 \%}$ |
 | ${ }^{66.7 \%}$ | 1734.6 | ${ }^{1689.3}$ | －45．2 | －2．6\％ | ${ }^{66.77 \%}$ | ${ }^{1324.9}$ | ${ }^{2041.8}$ | 716.9 | 54．1\％ |
 | ${ }^{66.9 \%}$ | 1559.1 15279 | 11625.5 | 56.4 | 3．6\％ | 67．9\％ | ${ }_{1277.9}^{122828}$ | ${ }^{1662.3}$ | ${ }^{3854}$ | 30．19\％ |
 | 69．1\％ | ${ }_{1527.9}$ | 1537.0 | 3.1 | ${ }^{0.2 \%}$ | 69．1\％ | ${ }^{12252.8}$ | 11620.1 | 357．2 | ${ }^{28.3 \%}$ |
 | 71．4\％ | 11478．5 | 1496.7 1155 | －3．84 | －0．3\％ | 70．4\％ | ${ }_{9}^{959.5}$ | （1068．6 | 109.1
 257 | 11．4\％ |
 | 72．8\％ | | 1450.3 | －28．4 | －1．9\％ | 7．5．6\％ | ${ }^{947.1}$ | ${ }_{8548} 972.8$ | | ${ }_{58}^{2.7 \%}$ |
 | 74．1\％ | ${ }_{1}^{14444.9}$ | ${ }_{1}^{14250.9}$ | －30．2 -19.0 | ${ }_{-1.3 \%}^{-2.17 \%}$ | 74．1\％ | ${ }_{693.0}^{807.5}$ | ${ }_{684.5}^{854.4}$ | －8．4 | ${ }^{5.8 \%}$ |
 | 75．3\％ | 1439.7 13890 | 1412.4 13564 | －27．2 | －1．9\％ | 75．3\％ | ${ }_{459.8}$ | ${ }_{\text {ckin }}^{687.3}$ | 127.6
 1295
 1 | |
 | 76．5\％ | ${ }^{1389.0}$ | 1356.4 12845 | －32．6 | ${ }_{-21 \%}^{-2.3 \%}$ | 76．5\％ | 457．6 | 587.1 4832 | 129.5
 350
 10. | 28．3\％ |
 | 79．0\％ | 1311.9 13093 | 1284.5
 1260.8
 1 | －27．4 -48.5 | －${ }_{-2.7 \%}$ | 79．0\％ | ${ }_{435.2}^{448.1}$ | 483.2 463.0 | 35.0 27.9 | － |
 | 80．2\％ | 1265.4 | 1250.8 | －14．6 | －1．2\％ | 80．2\％ | 413.9 | 441.1 | 27.2 | 6．6\％ |
 | 81．5\％ | 1258.5 | 1234.5 | －23．9 | －1．9\％ | 81．5\％ | 397.1 | 427.0 | 29.9 | 7．5\％ |
 | | ${ }^{1248.0}$ | ${ }^{1226.9}$ | －21．1 | －1．7\％ | 82．7\％ | 386．1 | ${ }_{426.6}$ | ${ }^{40.5}$ | 10．5\％ |
 | 84．0\％ | ${ }^{1237.4}$ | 1209.0 | －28．4 | －2．3\％ | 84．0\％ | 375.1 | 414.4 | 39.3 | 10．5\％ |
 | 85．2\％ | 1221.3 11977 | 1203,1
 1125.2 | －18．2 -2.5 | －1．5\％ | 隹 85.2% | 304.8
 2658 | ${ }_{2823}^{327.5}$ | 22.7 16.5 | 7．5\％ |
 | 87．7\％ | 1196.0 | 1169.6 | －26．4 | －2．2\％ | 87．7\％ | 245.6 | 259.4 | 13.8 | 5．6\％ |
 | 88．9\％ | 1159.9 | 1169.1 | 9.2 | 0．8\％ | 88．9\％ | 244.5 | ${ }^{240.0}$ | －4．5 | －1．8\％ |
 | 99．1\％ | 1153.8 11360 | ${ }^{1140.3}$ | $\begin{array}{r}\text {－} \\ -15.5 \\ \hline 15.6\end{array}$ | －-1.2%－ 4 \％ | ${ }_{9}^{90.14 \%}$ | ${ }_{218.2}^{228.6}$ | ${ }_{221.2}^{227.8}$ | －0．8 | －0．4\％ |
 | 92．6\％ | ${ }^{1130.3}$ | ${ }^{1113.3}$ | －17．0 | －1．5\％ | 92．6\％ | 204.4 | 204.2 | －0．2 | －0．1\％ |
 | 93．8\％ | 1026.5 | 998.0 | －28．5 | 2．8\％ | 93．8\％ | 197.8 | 199.0 | 1.2 | 0．6\％ |
 | ${ }^{95.1 \%}$ | 950.0 | 7478 | －202．2 | －21．3\％ | 95．1\％ | 185.4 | 185.4 | 0.0 | |
 | 97．5\％ | ${ }_{293.9}^{326.3}$ | ${ }_{315.9}$ | ${ }_{22.1}^{11.4}$ | 7．5\％ | －96．3\％ | 184.8
 1810 | 1850 180.9 | －0．1 | |
 | 988\％ | 231.0 | 229.8 | －1．2 | | 98．8\％ | 180.7 | 180.7 | 0.0 | |
 | 100．0\％ | 201.0 | 213.8 | 12.8 | | 100．0\％ | 180.3 | 180.4 | 0.1 | |

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probobaility } \end{gathered}$ | January | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {WSIP }}^{\text {2030 }}$ Proiectithout | WSII 2030 With Project | Absolute | |
 | | Monthly EC | Monthly EC | （idiference | Difference（\％） |
 | （\％） | ${ }^{\text {cumbosich }}$ | ${ }^{\text {UnHOSSCM }} 9$ | 5964 | 70\％ |
 | 12\％ | ${ }^{8} 79946$ | ${ }^{7} 896$ | －99．4 | －12\％ |
 | 2．5\％ | 7356.3 | 7348.8 | －7．6 | 迷 |
 | 3．7\％ | ${ }^{6325.3}$ | 5822.5 | －502．9 | －8．0\％ |
 | 4．9\％ | 6083.2 | 5517.6 | －565．6 | －9．3\％ |
 | ${ }^{6.2 \%}$ | 5497.8 | ${ }_{5}^{5470.1}$ | －27．8 | －0．5\％ |
 | | 4884.4 | ${ }^{53343.0}$ | 458.6 | 9．4\％ |
 | 8．6\％ | ${ }_{4}^{47833} \mathbf{4 7}$ | ${ }_{4}^{500723.1}$ | 223.6
 19.4 | 0．4\％ |
 | 11．1\％ | 4703.7 | 4629.0 | －74．7 | －1．6\％ |
 | 12．3\％ | 4665.6 | 4553.1 | －112 | －2．4\％ |
 | －13．6\％ | ${ }^{4650.8}$ | 4399.1 | -251.7 | －5．4\％ |
 | 14．8\％ | ${ }^{4291.2}$ | 4308.2 | 16.9 | 0．4\％ |
 | － $\begin{aligned} & \text { 16．0\％} \\ & 17.3 \%\end{aligned}$ | 4102.8 4038.8 | ${ }_{4}^{41355.8}$ | 32.9 -2.9 | －0．8\％ |
 | 18．5\％ | 3931.7 | 3996.1 | 64.3 | 1．6\％ |
 | 19．8\％ | ${ }^{3847.3}$ | ${ }^{3932.1}$ | 84.8 | 2．2\％ |
 | ${ }^{21.0 \%}$ | 3790.8 3784.4 | ${ }_{3}^{3822.5}$ | 31.7 34.9 | － |
 | 23．5\％ | 3779.8 | ${ }^{3733.3}$ | －46．5 | －1．2\％ |
 | ${ }^{24.79 \%}$ | 3344.4 | ${ }^{3713.6}$ | 369.3 | 11．0\％ |
 | 25．7．2\％ | 3276.0
 3262.5 | 3581.6
 3520.8 | － $\begin{aligned} & 305.6 \\ & 205.4\end{aligned}$ | 7．9\％ |
 | 28．4\％ | ${ }^{3054.3}$ | ${ }^{3342.8}$ | 288.5 | 9．4\％ |
 | 29．6\％ | 3028.2 | 3151.5 | 123.3 | 4．1\％ |
 | 30．9\％ | 3008.7 | 3024.7 | 16.0 | 0．5\％ |
 | 32．1\％ | 2535.0 | 2924.9 | 389.9 | 15．4\％ |
 | 34．6\％ | ${ }_{1719.3}^{239.5}$ | 2872.5 2289.1 | ${ }_{5699.8}^{553.0}$ | ${ }_{3}^{23.1 \%}$ |
 | 35．8\％ | 1460.4 | 2220.8 | 740.4 | 50．7\％ |
 | 37．0\％ | 1389.1 | 1828.0 | 439.0 | ${ }^{31.6 \%}$ |
 | 年 38.3% | ${ }^{1350.5}$ | ${ }^{1693.4}$ | 343.0 308 | ${ }_{\text {cker }}^{\text {25．4\％}}$ |
 | ${ }^{39.5 \%}$ | ${ }_{1} 133438$ | ${ }_{1}^{1464.8}$ | ${ }_{330.0}^{20.2}$ | 29．1\％ |
 | 42．0\％ | 1084.0 | 1459．4 | 375.4 | 34．6\％ |
 | 43．2\％ | 1075.0 | 1446.6 | ${ }^{371.6}$ | 34．6\％ |
 | 44．4\％ | 1066.6 | 1422.5 | 355.9 | ${ }^{33.4 \%}$ |
 | － 4.5 | ${ }_{9916.2}^{970.7}$ | 1341.8
 1335.4
 18. | ${ }_{419.2}^{371.1}$ | ${ }^{38.2 \%}$ 45．7\％ |
 | 48．1\％ | 841.5 | 1239.5 | 397.9 | 473\％ |
 | 49．4\％ | 834.9 | 1149.0 | 344.1 | ${ }^{37.6 \%}$ |
 | －${ }_{\text {50．6\％}}$ | 825.9 820.0 | ${ }_{9}^{10311.6}$ | ${ }_{91.3}^{212.7}$ | －${ }_{\text {11．1\％}}$ |
 | 53．1\％ | 798.6 | 909.3 | 110.8 | 13．9\％ |
 | 54．3\％ | 570.5 | 872.5 | 301.9 | 52．9\％ |
 | 55．6\％ | ${ }_{453.1}^{477.8}$ | 757.4 642.6 | 2799.6 189.5 | 58．1．8\％ |
 | 58．0\％ | 404.5 | 564.0 | 159.5 | 39．4\％ |
 | 59．3\％ | 341.6 | 517.1 | 175.5 | 51．4\％ |
 | 60．5\％ | 322.1 | 402.7 | 80.7 | 25．0\％ |
 | 61．7\％ | ${ }_{254}^{284}$ | ${ }^{333.7}$ | 49.6 | －17．7\％ |
 | － $63.4 .2 \%$ | 259.9 252.3 | 330.1 280.6 | 70.3 28.3 | － 21.2% |
 | 65．4\％ | 245.9 | 273.9 | 27.9 | 11．4\％ |
 | －66．7\％ | 231.0 | ${ }_{24.6}^{251.6}$ | ${ }_{117}^{26.6}$ | 年1．5\％ |
 | 69．1\％ | ${ }_{225.2}^{230.2}$ | ${ }_{228.2}^{24.9}$ | 11.7
 3.0 | ＋1．3\％ |
 | 70．4\％ | 212.5 | 221.8 | 9.4 | 4．4\％ |
 | 71．6\％ | 21.5 | ${ }^{214.9}$ | 7.3 | ${ }^{3.5 \%}$ |
 | 74．1\％ | ${ }_{202.3}^{204.4}$ | ${ }_{209.2}^{214.3}$ | 9.9 6.9 | ${ }_{\text {3．4\％}}^{4.8 \%}$ |
 | 75．3\％ | 200.6 | 202.0 | 1.4 | 0．7\％ |
 | 76．5\％ | ${ }^{196.2}$ | 201．2 | 5.0 | 2．5\％ |
 | 77．0\％ | 195.9 195.5 | 198.4 196.4 | ${ }_{0}^{2.5}$ | － |
 | 80．2\％ | 194.9 | 5．8 | 0.9 | |
 | 81．5\％ | 194.9 | 195.1 | 0.2 | 0．1\％ |
 | 82．7\％ | 194.8 | 195.0 | 0.2 | 0．1\％ |
 | 84．0\％ | 192.1 | 192.4 | ${ }^{0.4}$ | 0．2\％ |
 | ${ }^{85.2 \%}$ 86．4\％ | 191.4 190.9 | 192.2 191.8 | 0.8 0.9 | ${ }^{0.5 \%}$ |
 | 87．7\％ | 189.3 | 191.4 | 2.1 | 1．1\％ |
 | 88．9\％ | ${ }^{189.0}$ | ${ }^{189.6}$ | 0.6 | ${ }^{0.3 \%}$ |
 | 90．14\％ | 186.3
 185.5 | 186.5 186.3 | 0.1 0.8 | － 0.4% |
 | 92．6\％ | 185.3 | 185.9 | 0.5 | 0．3\％ |
 | 955．1\％ | $\begin{array}{r}185.1 \\ 1847 \\ \hline\end{array}$ | 18598
 1848
 188 | 0.7 | 0．4\％ |
 | 96．3\％ | 184.3 | 184.4 | 0.1 | 0．1\％ |
 | 97．5\％ | 182.9 | 183.1 | 0.2 | 0．1\％ |
 | 100．0\％ | 188.2
 180.5 | $\begin{array}{r}188.5 \\ \hline 18\end{array}$ | 0．4 | － |

 Table $S Q-22-b$
 o Riverat Colinsuvile，Monthly $E C$

 | | | February | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent | WSIP 2030 Without | WSIP 2030 With Project | Absolute | |
 | Probability | Monthly EC | Monthy EC | （itiference | Aference（\％） |
 | （\％） | UMHHSOCM | 59 | －482 | |
 | 1．2\％ | 51725 | | ${ }_{-316.7}$ | －1． |
 | 2．5\％ | 3545.8 | 3644.5 | 94.7 | 2．7\％ |
 | 3．7\％ | 2724.6 | 3456.5 | 732.0 | 26．9\％ |
 | 4．9\％ | | 2612.1 | －13．4 | －0．5\％ |
 | 7．4\％ | ${ }_{1823.5}^{2555}$ | ${ }_{21388.3}^{2488.3}$ | -97.2 314.8 | －${ }^{-3.8 \%}$ |
 | 8．6\％ | 1670.6 | 2044.8 | 374.2 | 22．4\％ |
 | 9．9\％ | 1598.7 | 1720.9 | ${ }^{122.2}$ | 7．6\％ |
 | －${ }_{\text {l }}^{\text {11．1\％}}$ 12\％ | ${ }^{15079} \mathbf{1 3 8 7 . 4}$ | 1720.8 17024 | 212.9 315.1 | －${ }^{14.14 \%}$ |
 | 13．6\％ | 1346.0 | 1657.6 | 311.7 | 23.2 |
 | 14．8\％ | 1340.6 | 1584.6 | 244 | |
 | 16．0\％ | ${ }_{861.8}^{861.8}$ | 1153.5 | 291.7 | 33．8\％ |
 | 年 $17.3 \% \%$ | 861.4 661.7 | ${ }_{852.8}^{898.2}$ | 36.8 361．1 19.1 | ${ }_{\text {2 }}{ }_{28,9 \%}$ |
 | 18．5\％${ }^{\text {198\％}}$ | 661.7 644.8 | ${ }_{839.3}^{852.8}$ | 199.1 194.5 | 280\％ |
 | 21．0\％ | 571.3 | 834.0 | 262.7 | 46．0\％ |
 | 22．2\％ | 553.6 | 750.6 | 197.0 | 35．\％ |
 | ${ }_{224.7 \%}^{23.5 \%}$ | ${ }_{464.5}^{486.0}$ | 647.9 572.2 | 161.9 107.7 | |
 | 25．9\％ | 461.7 | 559.9 | 98.3 | 21．3\％ |
 | 27．2\％ | 438.1 | 554.0 | 115.8 | 26．4\％ |
 | 229．6\％ | ${ }_{400.7}^{423.6}$ | 4994．8 | 71.2 75.4 | 16.8%
 18.8% |
 | 30．9\％ | 385.1 | 467.4 | 82.3 | 21．4\％ |
 | 32．1\％ | 375.9 | 436.8 | 60.9 | 16．2\％ |
 | 33．6\％ | 349.1 | ${ }_{422.0}$ | ${ }_{72.9}$ | 20．9\％ |
 | 35．8\％ | 347.5 | 392.5 | 45.0 | 12．9\％ |
 | | ${ }^{347.2}$ | ${ }_{392.1}$ | 45.0 | ${ }^{12.9 \%}$ |
 | 39．5\％ | ${ }_{336.5}$ | ${ }_{350.3}$ | ${ }_{13.8}$ | 4．1\％ |
 | 40．7\％ | 283.5 | 340.8 | 57.3 | 20．2\％ |
 | | ${ }_{27}^{2827}$ | ${ }^{339.6}$ | | ${ }^{20.19 \%}$ |
 | 44．4\％ | ${ }_{259.4}$ | 3319.5 | ${ }_{60.1}$ | 23．2\％ |
 | 45．7\％ | ${ }_{2}^{243.3}$ | 299.5 | 56.2 | 23．1\％ |
 | | | ${ }^{2543}$ | | |
 | 49．4\％ | ${ }_{228.6}^{229.0}$ | ${ }_{2425}^{24.3}$ | ${ }_{13.8}^{18.8}$ | 6．1\％ |
 | 50．6\％ | 22.17 | 240.4 | 18.8 | 8．5\％ |
 | ${ }_{\text {5 }}^{51.9 \%}$ | ${ }_{2215}^{22.5}$ | ${ }_{223}^{232.6}$ | 11.1 | 5．0\％ |
 | 54．3\％ | ${ }_{220.0}^{221.4}$ | ${ }_{229.1}^{232.0}$ | ${ }_{9.1}^{10.6}$ | 4．2\％ |
 | 55．6\％ | 219.0 | 222.5 | 7.5 | 3．4\％ |
 | 56．8\％ | 217.7 | ${ }_{2192}^{223.9}$ | | ${ }_{32 \%}^{2.9 \%}$ |
 | 59．3\％ | 210.9 | 215.0 | 4.1 | 2．0\％ |
 | 60．5\％ | 210.7 | 214.4 | 3.6 | 1．7\％ |
 | ${ }^{61.7 \%}$ | ${ }_{2011}^{203.1}$ | ${ }_{2123}^{212.9}$ | ${ }^{9} 112$ | ${ }^{4.8 \%}$ |
 | 68．2\％ | ${ }_{200.7}^{2017}$ | ${ }_{211.4}^{212.3}$ | ${ }_{10.7}^{11.2}$ | 5．3\％ |
 | 65．4\％ | 198.9 | 205.3 | 6.4 | 3．2\％ |
 | ${ }^{66.77 \%}$ | $\begin{array}{r}198.3 \\ \hline 195 \\ \hline 1\end{array}$ | ${ }^{203.0}$ | | ${ }_{1}^{2.4 \%}$ |
 | 69．1\％ | 1939 | 196.5 | 2.5 | 1．3\％ |
 | 70．4\％ | 193.6 | 194.4 | 0.8 | 0．4\％ |
 | 71．6\％ | ${ }_{1931}^{193.5}$ | 194.4 1943 | | 0．5\％ |
 | 74．1\％ | 192.6 | 193.9 | 1.3 | 0．7\％ |
 | 75．3\％ | 192.1 | 192.9 | 0.8 | 0．4\％ |
 | 76．5\％ | 190.8 | 191.4 | 0.6 | 0．3\％ |
 | 79．0\％ | 190.3 | ${ }_{190.2}$ | －0．0 | 0．0\％ |
 | 80．2\％ | 189.5 | 189.5 | 0.0 | 0．0\％ |
 | 81．5\％ | 189.4 | 189.4 | 0.0 | 0．0\％ |
 | 84．0\％ | 188.4 | 188.7 | 0.4 | 0．2\％ |
 | 85．2\％ | ${ }^{187.6}$ | 188.3
 182 | 0.7 | 0．4\％ |
 | ${ }^{86.44 \%}$ | ${ }_{187.1}$ | ${ }^{188.2}$ | 0.6 | 0．3\％ |
 | 88．9\％ | 188.3 | 188.3 | 0.0 | 0．0\％ |
 | 90．1\％ | $\begin{array}{r}185.7 \\ \hline 857\end{array}$ | $\begin{array}{r}186.2 \\ 1882 \\ \hline 18 .\end{array}$ | 0．5 | 0．3\％ |
 | ${ }_{92.6 \%}^{91.4 \%}$ | 185.7
 185.5 | 186.2
 185.7 | ${ }_{0.1}^{0.5}$ | 0．1\％ |
 | 93．8\％ | 185.1 | 185.3 | 0.1 | 0．1\％ |
 | 95．1\％${ }_{963 \%}$ | 184.8
 185 | 1884.7 | －0．1 | ${ }^{-0.1 \%}$ |
 | 97．5\％ | 183.5
 183.0 | 188.7
 183.4 | 0.3 | 0．2\％ |
 | 98．8\％ | 182.5 | 182.5 | 0.0 | 0．0\％ |
 | 100．0\％ | 179.4 | 179.4 | 0.0 | 0．0\％ |

 | April | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | $\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$ | WSIP 2030 Wethout | WSIP 2030 With Project | | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | $\begin{gathered} \text { Percent } \\ \text { Exceance } \\ \text { Probability } \end{gathered}$ | | WSIP 2030 With Project | $\begin{gathered} \text { Absolute } \\ \text { Aifference } \\ \text { (UMHOSICM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | | Monthly EC | Monthly EC | Difference （UMHOS | | | | Monthy EC | | |
 | 0．0\％ | ${ }_{3} 3883.7$ | ${ }_{3} 34669$ | －136．9 | | 0．0\％ | | （31．9 | －38．3 | －1．0\％ |
 | 1．2\％ | 2126.0 | 2301.9 | 175.9 | 8．3\％ | 1．2\％ | 3182.5 | 3183.8 | 1.3 | 0.0 |
 | 2．5\％ | 退15． | 1847.3 | 132.3 | 7．7\％ | 2．5\％ | 3065 | 297 | －93．0 | |
 | 3．7\％ | ${ }^{1327.3}$ | 1660.2 | 332.9 | 25．1\％ | 3．7\％ | 2679 | 264 | | |
 | 4．9\％ | 1233.2 | 57．0 | 323.8 | 26．3\％ | 4．9\％ | 2441 | 240 | | |
 | ${ }^{6.2 \%}$ | ${ }^{1200.3}$ | 1374.9 | 174.7 | 14．6\％ | 6．2\％ | 1900.0 | 1861.1 | －38．9 | －2．0\％ |
 | 7．4\％ | 1113.9 | 1319.9 | 206.0 | 18．5\％ | 7．4\％ | 1831.3 | ${ }^{1846.0}$ | | 0．8\％ |
 | 9．9\％ | 10887.5 | ${ }_{1159.7}^{12409}$ | ${ }_{72.1}$ | 6．6\％ | 9．9\％ | ${ }_{1}^{15995.4}$ | ${ }_{1}^{1564.7}$ | －30．5 | －1．9\％ |
 | 11．1\％ | 1085.1 | 1130.9 | 45.7 | 4．2\％ | 11．1\％ | 1503.8 | 1532.3 | 28.5 | 1.9 |
 | 12．3\％ | 1030.9 | 10971 | 66.2 | $6.4{ }^{\circ}$ | 123 | 144 | 149 | | |
 | 13．6\％ | 1013.5 | 1075.4 | 61.9 | 6．1\％ | 13．6\％ | 1406.9 | 1499.4 | ${ }_{92.6}$ | 6．6\％ |
 | － | ${ }_{9457}^{970.9}$ | 1062.5 1062.3 | 91.6 116.6 | ${ }^{9.42 \%}$ | 14．8\％ 16.0% | 1382.9 1158.1 | ${ }^{141788.2}$ | ${ }_{91.9}^{95.3}$ | ${ }^{\text {7．9．9\％}}$ |
 | 17．3\％ | 813.2 | 869.4 | 56.1 | 6．9\％ | 17．3\％ | 1154.0 | 1119.6 | －34．4 | －3．0\％ |
 | 18．5\％ | 603.4 | 648.1 | 44.6 | 7．4\％ | 18．5\％ | 1035.5 | 1001.1 | －34．4 | |
 | 19．8\％ | 566.2 | 604.5 | 38.3 | 6．8\％ | 19．8\％ | 1008.0 | 992.6 | －15．5 | －1．5\％ |
 | ${ }_{2}^{21.0 \%}$ | 510.2 490.6 | ${ }_{541.1}^{541.4}$ | 31.3 50.5 | －${ }_{\text {6．1\％}}^{\text {10．3\％}}$ | ${ }_{2}^{21.2 .2 \%}$ | 964.3 915.6 | ${ }_{930.9}^{933.3}$ | -31.0
 15.3 | ${ }^{-3.7 \% \%}$ |
 | 23．5\％ | 449.5 | 531.1 | 81.6 | 18．2\％ | 23．5\％ | 862.5 | 921.1 | 58.6 | 6．8\％ |
 | 24．7\％ | 418.2 | 503.3 | 85.1 | 20．4\％ | 24．7\％ | 808.1 | 863.5 | 55.5 | 6．9\％ |
 | ${ }^{25.9 \%}$ | ${ }_{3}^{411.9}$ | ${ }_{443.3}^{485}$ | 73.9 55.6 | 14．4\％ | ${ }^{25.7 .2 \%}$ | ${ }_{700.7}^{708.8}$ | 740.5 7818 | 31.7
 11.4 | 1．6\％ |
 | 28．4\％ | 377.6 | 421.1 | 43.5 | 11．5\％ | 28．4\％ | 699.6 | 69.2 | －8．4 | |
 | 29．6\％ | 360.5 | 415.5 | 55.0 | 15．3\％ | 29．6\％ | 696.1 | 8.6 | －37．5 | 5．4\％ |
 | 30．9\％ | 354.5 3 | 414.4 | 59.9 | 16．9\％ | 30．9\％ | 663.0 | 627.4 | －35．5 | |
 | 32．1\％ | 340.8 | 408.8 | ${ }^{68.0}$ | 20．0\％ | 32．1\％ | 634.0 | ${ }^{623.2}$ | －10．8 | －1．7\％ |
 | 34．6\％ | 320.8 317.9 | ${ }_{388.7}^{404.9}$ | 84.1 70.8 | ${ }_{2}^{26.3 \%}$ | 33．6\％ | ci9．5 596.4 | $\begin{array}{r}\text { ¢ } \\ 567.0 \\ \hline\end{array}$ | ${ }_{-29.3}^{1.6}$ | － $0.3 .9 \%$ |
 | 35．8\％ | 309.1 | 355.6 | 46.5 | 15．0\％ | 35．8\％ | 549.5 | 560.0 | ${ }_{10.5}$ | －4．9\％ |
 | 37．0\％ | 294.8 | 344.5 | 49.7 | 16．9\％ | 37．\％ | 536.6 | 556.5 | 19.9 | 3．7\％ |
 | 38．3\％ | ${ }_{2651}^{280.9}$ | 340.7 | 59.8 | 21．3\％ | 38．3\％ | 536.3 | 546.4 | 10.1 | |
 | 39．5\％ | 265.1 | 321.2 | 56.1 | 21．1\％ | 39．5\％ | 514.1 | 525.5 | 11.4 | 2．2\％ |
 | ${ }^{40.7 \%}$ | ${ }_{257.4}^{263.2}$ | 311.5 306.7 | ${ }_{49.3}^{48.3}$ | －${ }^{18.4 .2 \%}$ | 40．7\％ | ${ }_{4}^{517.0}$ | ${ }_{5131.7}^{515.1}$ | $\stackrel{4.0}{36.9}$ | 7．7\％ |
 | 43．2\％ | 25.7 | 306.0 | 55.3 | 22．1\％ | 43．2\％ | 452.7 | 512.1 | 59.4 | 13．1\％ |
 | 44．4\％ | 248.2 | 299.5 | 51.3 | 20．7\％ | 44．4\％ | 447.7 | 459.9 | 12.2 | 2．7\％ |
 | 45．7\％ | 246.3 | 295.9 | 49.5 | 20．1\％ | 45．7\％ | 437.4 | 441.9 | 4.5 | 1．0\％ |
 | 46．9\％ | ${ }^{245.5}$ | ${ }^{281.2}$ | 35.7 | 14．5\％ | 46．9\％ | 382.0 | 404.1 | 22.1 | 5．8\％ |
 | 48．1\％ 4.4 | 237.9 233.9 | ${ }_{\text {cher }}^{265.2}$ | 27.3 25.8 | － 11.5 | 48．1\％ 4. | 369.3 3692 | 404.0 4022 | 34.7 33.0 | 9．4\％ |
 | 50．6\％ | 228.5 | ${ }_{257.7}^{259}$ | 29.2 | 12．8\％ | 50．6\％ | 369.2 364.5 | 380.7 | 33.0 16.3 | 8．5\％ |
 | 51．9\％ | 225.4 | 25.1 | 24.7 | 10．9\％ | 51．9\％ | 353.5 | 354.5 | 1.0 | 0．3\％ |
 | 53．1\％ | 222.3 | ${ }^{231.6}$ | 9.3 | 4．2\％ | 53．1\％ | 348.3 | 340.9 | －7．4 | －2．1\％ |
 | 54．3\％ | 217.5 | 226.2 | 8.6 | 4．0\％ | 54．3\％ | 320.2 | ${ }^{330.3}$ | 10.1 | 3．1\％ |
 | 55．6\％ | 205.4 205.2 | 220.6 219.0 | 15.2 13.8 | 7.4% 6.7% | 55．6\％ | 301.5 3003 | ${ }^{321.9}$ | 20．4 | 6．8\％ |
 | 58．0\％ | ${ }_{205.0}^{205.2}$ | ${ }_{210.3}$ | 5.2 | 2．5\％ | 58．0\％ | 384.2 | ${ }_{292.9}^{299.6}$ | ${ }_{8.8}$ | ${ }_{3.1 \%}^{-0.2 \%}$ |
 | 59．3\％ | 201.6 | 209.6 | 8.0 | 3．9\％ | 59．3\％ | 268.0 | 290.6 | 22.6 | 8．4\％ |
 | 60．5\％ | 200.9 | 206.3 | 5.4 | 2．7\％ | 60．5\％ | ${ }^{2473}$ | 269.8 | ${ }^{22.5}$ | 9．1\％ |
 | ${ }^{61.7 \%}$ | 197.3 | 20.8 | 3.4 | 1．7\％ | 61．7\％ | 237.9 | 251.1 | 13.2 | 5．6\％ |
 | －6．3\％ | 195.6 195.2 | 196.4 196.2 | 0.8 0.9 | － 0.5% | 63．0\％ | 236.7 234.1 | 249.0 238.9 | 12.3 48 | 5．2\％ |
 | 65．4\％ | 194.2 | 195.7 | 1.5 | 0．8\％ | 65．4\％ | 230.1 | 236.6 | 6.6 | 2．8\％ |
 | 66．7\％ | 193.4 | 194.9 | 1.4 | 0．7\％ | 66．7\％ | 229.4 | 236.4 | 6.9 | 3．0\％ |
 | 67．9\％ | 193.2 | 194.0 | 0.8 | 0．4\％ | 67．9\％ | 223.4 | ${ }_{2} 234.5$ | ${ }^{11.1}$ | 5．0\％ |
 | 69．1\％ | 193.2 191.4 | 193.6 1932 | 0.4 | － $\begin{aligned} & \text { 0．2\％} \\ & 1.0 \%\end{aligned}$ | 69．1\％ | ${ }_{208.8}^{217.9}$ | ${ }_{212.7}^{219.7}$ | ${ }^{1.8}$ | 0．8\％ |
 | 71．6\％ | 190.8 | 192.5 | 1.7 | 0．9\％ | 71．6\％ | 205.9 | 208.5 | 2.6 | 1．3\％ |
 | 72．8\％ | 190.8 | 190.9 | 0.1 | 0．1\％ | 72．8\％ | 205.0 | 206.8 | 1.8 | 0．9\％ |
 | 74．1\％ | 189.9 | 190.6 | 0.7 | 0．4\％ | 74．1\％ | 203.0 | 205.3 | 2.3 | 1．1\％ |
 | 75．3\％ | 188.8 1887 | 190.3 | 1.4 | 0．8\％ | 75．3\％ | ${ }_{2018}^{2029}$ | 203.6 | 0.7 | 0．3\％ |
 | 76．5\％ 77.8% | 188.7 188.3 | 190.3 188.7 | 1.5 0.4 | 0．2\％ 0 | 76．5\％ | 201.8 201.2 | ${ }_{2020}^{203.0}$ | ${ }^{1.2}$ | 0．6\％ |
 | 79．0\％ | 188.2 | 188.6 | 0.4 | 0．2\％ | 79．0\％ | 199.7 | 201.4 | 1.7 | 0．8\％ |
 | 80．2\％ | 188.2 | 188.5 | 0.3 | 0．2\％ | 80．2\％ | 199.6 | 199.7 | 0.1 | 0．0\％ |
 | －${ }_{\text {815 }}^{8.5 \%}$ 827\％ | $\begin{array}{r}187.9 \\ 187.5 \\ \hline\end{array}$ | 188.2 188.1 | 0.3 0.5 | ${ }_{0}^{0.3 \%}$ | －${ }_{\text {81．5\％}}$ | 199.8 1959 | 196.9 196.3 | ${ }^{0.1}$ | 0．0\％ |
 | 84．0\％ | 187.0 | 1877 | 0.7 | 0．4\％ | 84．0\％ | 195.8 | 195.8 | 0.0 | 0．0\％ |
 | 85．2\％ | 186.7 | ${ }^{187.3}$ | 0.7 | 0．4\％ | 85．2\％ | 195.0 | 195.7 | 0.7 | 0．4\％ |
 | －${ }^{86.4 \%}$ 87．7\％ | 188.1 186.1 | 186.3 186.1 | 0．1 | 0．0．0\％ | 86．4\％${ }^{8.7 \%}$ | 194.5 194.2 | 199.6 195.2 | 1.1 0.9 | ${ }^{0.5 \%}$ |
 | 88．9\％ | 185.7 | 186.0 | 0.4 | 0．2\％ | 88．9\％ | 192.5 | 192.6 | 0.1 | 0．0\％ |
 | 90．1\％ | ${ }_{185.6}$ | 186.0 | 0.4 | 0．2\％ | 90．1\％ | 190.1 | 192.2 | 2.1 | 1．1\％ |
 | 92．6\％ | 185.3 184.6 | 185.4 184.6 | 0.1 0.0 | －0．0\％ | 992．6\％ | 189.1 188.2 | 190.9 188.2 | 1.8 0.0 | 1．0\％ |
 | 93．8\％ | 184.6 | 184.6 | －0．1 | 0．0\％ | 93．8\％ | 186.4 | 188.2 | －0．2 | －0．1\％ |
 | 95．1\％ | 183.8 | 184.4 | 0.5 | 0．3\％ | 95．1\％ | 185.7 | 185.7 | 0.0 | 0．0\％ |
 | 96．3\％${ }_{97.5 \%}$ | 182.8 181.7 | 182.8 181.7 | 0.0 0.0 | －0．0\％ | ${ }_{9}^{96.3 \%}$ | 185.4 185.3 | ${ }_{185.3}^{185.6}$ | 0.2 0.0 | － 0.1 \％ |
 | 98．8\％ | 181.1 | 181.4 | ${ }_{0.3}$ | 0．2\％ | 98．8\％ | ${ }_{182.6}^{185.3}$ | ${ }_{182.7}^{185.3}$ | 0.1 | 0．1\％ |
 | | | | | 0．0\％ | | | | | |

 | $\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probabaility } \end{array} \end{gathered}$ | May | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Weithout | WSIP 2030 With Project | Absolute | Relative |
 | | Monthly EC | Monthy EC | Difierence （UMHOSCM） | Difference（\％） |
 | （\％） | UMH | UMHO | | |
 | 0．0\％ | 6185.7 | 6149.8 | －35．9 | －0．6\％ |
 | 1．2\％ | ${ }^{6019.0}$ | 6030．4 | 11.3 | 0．2\％ |
 | ${ }^{2.5 \%}$ | ${ }^{5634.7}$ | ${ }_{\text {cken }}^{569.4}$ | －25．3 | －0．4\％ |
 | 3．7\％\％ | ${ }_{3675.6}^{4341.4}$ | ${ }_{\text {cke }}^{3888.4}$ | $\begin{array}{r}\text {－433．0 } \\ \hline\end{array}$ | －10．4\％ |
 | 6．2\％ | ${ }^{3230.6}$ | ${ }_{3252.7}$ | 22.1 | 0．7\％ |
 | 7．4\％ | 3173.7 | ${ }^{3189.7}$ | 16.0 | 0．5\％ |
 | 8．6\％ | 3130.4 31280 | 3124.3 31069 | －6．1． | －0．0．2\％ |
 | ${ }^{\text {9．9\％}}$ | ${ }^{3128.0}$ | ${ }_{3}^{3106.9}$ | －21．1 | －0．7\％ |
 | 年11．19\％ | （3103.8
 3083 | ${ }_{3023.6}^{3032.6}$ | -71.3 -593 | －2．3\％ |
 | －${ }_{\text {12．3\％}}^{12.6 \%}$ | 3083．2 | 3023.9 27014 | －59．3 -539 | |
 | 14．8\％ | 2727．2 | 2650.7 | －76．4 | －2．8\％ |
 | 16．0\％ | ${ }^{2655.1}$ | 2450．0 | －195．1 | －7．4\％ |
 | 17．3\％ | 2555.9 | 2368.2 | －187．7 | －7．3\％ |
 | | ${ }_{237378}^{2479}$ | ${ }_{2}^{233889}$ | －-140.3 | －5．7\％ |
 | 21．0\％ | 2278.2 | 2252.1 | －26．1 | －1．1\％ |
 | 22．2\％ | 2268.1 | ${ }^{2246.9}$ | －21．2 | －0．9\％ |
 | 23．5\％ | ${ }^{22333}$ | 2106.9 | －126．9 | －5．7\％ |
 | 24．7\％ | 2183.8 | ${ }^{2094.3}$ | －89．5 | －4．1\％ |
 | 25．9\％ | ${ }_{20835}^{2153.1}$ | ${ }_{2020.1}^{2092.1}$ | －61．0 | －${ }_{-3.80 \%}$ |
 | 28．4\％ | 2069.5 | 1990.9 | －78．6 | －3．8\％ |
 | 29．6\％ | 1949.9 | 1869.8 | －80．1 | －4．1\％ |
 | － $\begin{aligned} & 30.9 \% \\ & 32.1 \%\end{aligned}$ | ${ }^{19091.5}$ | 1824.0 1676.2 | -77.4 -58.0 | ${ }_{-3.3 \%}^{-4.3 \%}$ |
 | 33．3\％ | 1635.8 | 1644.4 | 8.6 | 0．5\％ |
 | 34．6\％ | 1616.2 | 1614.8 | －1．4 | －0．1\％ |
 | 35．8\％ | 1497.7 | 1522.6 | 24.9 | 1．7\％ |
 | 37．0\％ | 1466.6 | 1454.4 | －12．2 | －0．8\％ |
 | 30．5\％ | ${ }^{14350.9}$ | 1443.7
 1391.4
 1 | 16.7 40.5 | 俍 |
 | 40．7\％ | 1338.1 | 1350.8 | 12.8 | 1．0\％ |
 | 42．0\％ | 1192.7 | ${ }^{1324.3}$ | 131.6 | 11．0\％ |
 | － 43.2% \％ | 11755.2 1088.7 | 1320.1 12079 | 144.9 119.3 | ${ }^{12.3 \% \%}$ |
 | 45．7\％ | 1065.0 | 1186.5 | 121.5 | 11．4\％ |
 | 46．9\％ | 1039.3 | 1098.2 | 58.9 | 5．7\％ |
 | 48．1\％ 4.4 | ${ }_{9}^{928.4}$ | ${ }_{921.8}^{961.5}$ | 33.2
 13.8 | 3．5\％\％ |
 | 50．6\％ | 905.4 | 880.9 | －24．4 | －2．7\％ |
 | | | | －9．3 | |
 | 㐌53．3\％ | ${ }_{843.1}^{872.6}$ | ${ }_{8}^{848.1}$ | －24．5 | －1．0\％ |
 | 55．\％\％ | ${ }^{824.3}$ | 833.1 | 8.8 | 1．1\％ |
 | 56．8\％ | 771.3 | 760.5 | 10.8 | －1．4\％ |
 | | 757.6
 741.8 | 758.7
 790.8 | 1.1
 -22.0 | － |
 | 60．5\％ | 709.6 | 714.8 | 5.2 | 0．7\％ |
 | 61．7\％ | 702.5 | 697.6 | －4．9 | 0．7\％ |
 | －63．0\％ | 681.0 | ${ }_{675.3}$ | －5．8 | －0．8\％ |
 | ${ }^{64.2 \%}$ | 672.1 | 674.2 | 2.2 | 0．3\％ |
 | ${ }_{6}^{65.7 \%}$ | 645.2 603.5 | 668.0 621.2 | ${ }_{17.7}^{22.8}$ | 2．9\％ |
 | 67．9\％ | 557.8 | 568.6 | 10.9 | 1．9\％ |
 | 69．1\％ | ${ }_{521.6}^{521.6}$ | ${ }_{5234}^{534}$ | 12.7 | 2．4\％ |
 | 77．6\％ | ${ }_{483.7}^{521.6}$ | ${ }_{484.9}^{521.4}$ | －1．3 | 0．3\％ |
 | 72．8\％ | 462.6 | 461.6 | －1．0 | －0．2\％ |
 | | ${ }_{4088}$ | | 4.3 | |
 | 75．5\％ | ${ }_{408.5}^{408.8}$ | ${ }_{414.0}^{414.0}$ | ${ }_{10.7}^{9.2}$ | ${ }_{\text {2．7．}}^{2.2 \%}$ |
 | 77．8\％ | 281.2 | 316.0 | 34.8 | 12．4\％ |
 | 79．0\％ | 264.9 | 275.1 | 10.2 | 3．9\％ |
 | 80．2\％ | 240.9 | 273.5 | 32.6 | 13．5\％ |
 | | | ${ }^{240.9}$ | ${ }^{2.2}$ | 0．9\％ |
 | － | ${ }^{2222.0}$ | ${ }_{228.5}^{229.2}$ | 1.8 6.5 | －${ }_{\text {2．9\％}}^{\text {0．9\％}}$ |
 | 85．2\％ | 216.6 | 222.6 | 6.0 | 2．8\％ |
 | 86．4\％ | 212.5 | 217.0 | 4.6 | 2．1\％ |
 | 87．7\％ | 2095 | 209．8 | ${ }^{0.3}$ | 0．1\％ |
 | －${ }^{88.9 \%}$ | 207.9 1989 | 209.7 1995 | 1.8 | 0．8\％ |
 | 91．4\％ | 196.8 | 197.5 | 0.7 | 0．4\％ |
 | 92．6\％ | 195.1 | 194.9 | －0．2 | －0．1\％ |
 | 93．\％ | 192.4 | 192.4 | 0.0 | 0．0\％ |
 | 95．1\％ | 191.1 | 191.3 | 0.1 | 0．1\％ |
 | 96．3\％ | 183.8 | 183.8 | 0.0 | 0．0\％ |
 | 97．5\％ | 182.0 | 182.1 | 0.1 | 0．1\％ |
 | －98．8\％ | 182.0 179.5 | 182.1 189.7 | 0.1 0.2 | － |

 Table $S Q-22-b$
 o Riverat Colinsuille，Monthly $E C$

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Without | WSIP 2030 With Project | Absolute | |
 | | Monthly EC | Monthly EC | （itierersce | ference（\％） |
 | ［9］ | UMHOSSCM） | ， | | |
 | 0．0\％ | 8534.9 | 8519.7 | －15．1 | －0．2\％ |
 | 1．2\％\％ | ${ }_{7}^{8098.8}$ | ${ }_{78095} 78$ | －289 | ${ }^{-3.6}$ |
 | 2．5\％ | 7940.0 | ${ }^{7045.6}$ | | |
 | 3．9\％ | ${ }_{4413.2}^{72350}$ | 6446.9 4414 | －588．1 1.5 | －8．1\％ |
 | 6．2\％ | 4238.7 | 4353.1 | 114.4 | \％ |
 | 7．4\％ | 4237.0 | 4242.0 | 5.0 | 0．1\％ |
 | － | ${ }_{4141456}^{419.0}$ | | -117.2 -3170 | －－2．8\％ |
 | ${ }^{9.9 \%}$ | ${ }^{41477.6}$ | ${ }^{3830.6}$ | ${ }^{-317.0}$ | －7．7．6\％ |
 | ${ }^{11.19 \%} 1$ | ${ }_{4059.2}^{4125.3}$ | 3817.0 3779.6 | －308．3 －279．6 | －7．9\％ |
 | 13．6\％ | 3944.4 | 3764.1 | －180．4 | －4．6\％ |
 | 14．8\％ | ${ }^{3866.2}$ | 3758.0 | －108．2 | －2．8\％ |
 | 年 $\begin{aligned} & 16.0 \% \\ & 173 \%\end{aligned}$ | ${ }_{\text {cke }}^{38387.2}$ | ${ }_{\text {3 }}^{3574.5}$ | －262．7 .3056 | －6．8\％ |
 | 18．5\％ | ${ }_{3820.5}$ | 3518.0 | ${ }_{-302.5}$ | |
 | 19．8\％ | 3789.0 | 35503.4 | ${ }_{-285.6}$ | －7．5\％ |
 | ${ }_{22}^{21.0 \%}$ | （3630．6 | 3417．9 | -212.6 -1550 | －-4.9% |
 | 23．5\％ | ${ }^{3511.3}$ | 3405.9 | －105．4 | －3．0\％ |
 | 24．7\％ | ${ }^{3507.8}$ | 3400.9 | －106．9 | －3．0\％ |
 | 227．2\％ | ${ }_{34337}^{3487.9}$ | ${ }^{337321.4}$ | － $\begin{aligned} & \text {－114．} \\ & -114\end{aligned}$ | －3．3\％ |
 | 28．4\％ | ${ }_{3427.8}$ | 3279.6 | －148．2 | |
 | 29．6\％ | 3427.4 | 3275.6 | －151．8 | |
 | 30．9\％ | ${ }^{3375.0}$ | ${ }^{3271.7}$ | －103．3 | －3．1\％ |
 | －${ }_{\text {32，}} \begin{aligned} & \text { 323\％}\end{aligned}$ | 3372.7
 33271 | 3271.6 32565 | －101．1 | |
 | 34．6\％ | 3314.6 | ${ }_{3166.8}^{326.5}$ | －147．8 | ${ }^{-2.5 \%}$ |
 | 35．8\％ | 3293.1 | ${ }^{3143.0}$ | －150．1 | －4．6\％ |
 | | ${ }^{3258.3}$ | ${ }_{3}^{3105.8}$ | －152．5 | －4．7\％ |
 | 39．5\％ | ${ }_{3166.0}^{3254.1}$ | － $\begin{aligned} & 3081.3 \\ & 3021.2\end{aligned}$ | －142．8 | －${ }_{-4.3 \%}$ |
 | 40．7\％ | 3157.9 | 2994.2 | －163．7 | －5．2\％ |
 | 42．0\％ | 3078.2 | 2949.5 | －128．8 | －4．2\％ |
 | 434．4\％ | ${ }_{2}^{3974.5}$ | ${ }^{2986.3}$ | ${ }_{-111.2}^{-96.7}$ | ${ }^{-3.3 \%}$ |
 | 45．7\％ | 2892.5 | ${ }^{2862.3}$ | －30．2 | －1．0\％ |
 | | ${ }^{2882.2}$ | ${ }^{2837.2}$ | －45．0 | －1．6\％ |
 | 49．4\％ | ${ }_{2841.0}^{283.7}$ | ${ }_{2826.3}^{282.0}$ | ${ }_{-14.7}$ | ${ }^{-0.5 \%}$ |
 | 50．6\％ | 2839.4 | 2817.7 | －21．8 | －0．8\％ |
 | 51．9\％ | ${ }^{277555}$ | 2764.4 | －0．7 | 0．0\％ |
 | 年53．13\％ | ${ }_{2}^{27372.5}$ | ${ }_{22639.4}^{2669.6}$ | －65．9 -83.7 | ${ }_{-3.1 \%}^{-2.4 \%}$ |
 | 55．6\％ | 2713.8 | 2609.0 | －104．8 | －3．9\％ |
 | 56．8\％ | ${ }^{26877.8}$ | ${ }^{2580.5}$ | －107．3 | －4．0\％ |
 | 59．3\％ | ${ }_{2647.1}^{2062.6}$ | ${ }_{2554.4}^{250.9}$ | －92．8 | ${ }^{-3.5 \%}$ |
 | 60．5\％ | 2572.5 | ${ }^{2541.7}$ | －30．8 | －1．2\％ |
 | 61．7\％ | ${ }^{2544.0}$ | ${ }^{2528.0}$ | －15．9 | －0．6\％ |
 | －63．0\％ | ${ }^{25258.0}$ | 22565．0 24 | －-3.0 .6 | ${ }_{-2.0 \%}^{-0.10 \%}$ |
 | 65．4\％ | 2505.3 | 2421.1 | －84．2 | －3．4\％ |
 | ${ }^{66.7 \%}$ | ${ }^{2472.0}$ | ${ }_{2219.9}$ | －52．1 | －2．1\％ |
 | 67．9\％ | ${ }_{2}^{2314.7}$ | | －42．4 | －1．8\％ |
 | 70．4\％ | ${ }^{2222.7}$ | 2240.0 | 17.2 | 0．8\％ |
 | 71．6\％ | | | | ${ }^{-0.2 \%}$ |
 | 72．8．1\％ | ${ }_{20296.6}^{2146.7}$ | ${ }_{2021.8}^{2198.2}$ | 51.5 -7.8 | ${ }_{\text {－}}$ |
 | 75．3\％ | 1954.0 | 1939.9 | －14．1 | －0．7\％ |
 | 76．5\％ | 18814.2 | 1726.1 | －88．1 | |
 | 7．9．0\％ | ${ }_{1643.0}^{1604.9}$ | ${ }^{1559.9}$ | ${ }_{-83.5}^{-24.0}$ | －5．1\％ |
 | 80．2\％ | 1636.5 | 1498.6 | －137．9 | －8．4\％ |
 | 81．5\％ | 1549.9 | | －58．0 | |
 | － | ${ }^{150393.2}{ }_{1}^{1490.2}$ | 1484.0 1403.0 | －19．2） | － |
 | 85．2\％ | 1464.7 | 1220.8 | －244．0 | －16．7\％ |
 | － 86.48% | ${ }_{1}^{12559.9}$ | ${ }^{1150.5}$ | －105．4 | －8．4\％ |
 | 88．9\％ | 1102.9 | 1051.4 | ${ }_{-51.5}$ | － $4.7 .7 \%$ |
 | 90．1\％ | 1089.3 | 1051.2 | －38．1 | －3．5 |
 | 91．4\％ | 691.8 | 976.9 | 285.1 | 41．2\％ |
 | －92．6\％ | 627.8 578.8 | 577.8 | －50．0 | －8．0\％ |
 | 95．1\％ | ${ }_{450.6}$ | ${ }_{428.9}$ | ${ }_{-21.6}^{-5.6}$ | ${ }^{-1.0 \% \%}$ |
 | 96．3\％ | 433.8 | 402.9 | －30．9 | －7．1\％ |
 | 97．5\％ | ${ }_{3816}^{383}$ | 367.5 | －16．1 | －4．2\％ |
 | 100．0\％ | 189.9 | ${ }_{189.4}$ | －0．5 | －0．3\％ |

 | $\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{aligned}$ | September | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Without | WSII 2030 With Project | Absolute | |
 | | Monthly EC | Monthly EC | （ ${ }^{\text {diference }}$ | ference（\％） |
 | （\％） | SICM | 943 | －388 | |
 | | 99636 | 98036 | －160 | |
 | | ${ }_{9844} 983.6$ | ${ }_{9} 97729$ | －714 | |
 | 37\％ | ${ }_{9824.1}$ | ${ }_{9675}{ }^{\text {a }}$ | －1488 | |
 | 4．9\％ | 9800.1 | ${ }^{9625.2}$ | －174 | |
 | 6．2\％ | 9752.7 | 9592.6 | －160．1 | |
 | 7．4\％ | 9720.6 | 9458.5 | －262．1 | －2．7\％ |
 | 8．9\％\％ | ${ }_{96877.1}^{970.0}$ | ${ }_{92429.3}^{9392}$ | －-443.9 | －－3．6\％ |
 | 11．1\％ | 9686.2 | 8879.7 | －806．5 | －8．3\％ |
 | ${ }^{12.3 \%}$ | 9463.5 | 8852.9 | | |
 | 隹 $\begin{aligned} & 13.6 \% \\ & 14.8 \%\end{aligned}$ | ${ }_{9}^{93932.5}$ | 8845.5 8783.4 | －－508．1 | －$-.4 .4 \%$ |
 | 16．0\％ | 9141.6 | 8518.5 | －623．1 | －6．8\％ |
 | 17．3\％ | 9104.4 | 8490.6 | －613．7 | －6．7\％ |
 | 18．5\％ | 9078.1 | 8274.8 | －803．3 | 8．8\％ |
 | 19．8\％ | 9034.8 | 8189.4 | －845．4 | －9．4\％ |
 | ${ }^{21.0 \%}$ | ${ }_{\text {8897．}}^{8975}$ | 8155.7 8019.0 | － -879.8 -878.2 | －9．9\％ |
 | 23．5\％ | 8865.8 | 7803.4 | －1062．5 | |
 | 24．7\％ | 8859.2 | 7699.2 | －1160．0 | |
 | 25．9\％ | 8656.8 | 7692.7 | －964．1 | －11．1\％ |
 | 27．2\％ | ${ }^{8550.1}$ | ${ }_{7}^{7633.8}$ | －916．3 | －10．7\％ |
 | 29．6\％ | ${ }_{83312.7}^{83001}$ | ${ }^{75697.8}$ | －745．2 | －9．9\％\％ |
 | 30．9\％ | ${ }^{8286.5}$ | 7510.1 | －776．4 | |
 | ${ }^{32.10 \%}$ | 8233.9 | 7483.8 | －750．1 | |
 | 34．6\％ | ${ }_{8139.6}$ | ${ }_{7374.5}^{7391.0}$ | －765．2 | ${ }_{-9.4 \%}^{-9.7 \%}$ |
 | 35．8\％ | 7860.5 | 7360.7 | －499．8 | ， |
 | ${ }^{37.0 \%}$ | 7854.6 | ${ }^{73555.8}$ | －498．8 | －6．4\％ |
 | 30．5\％ | ${ }^{7} 7754.24$ | ${ }_{6982.8}^{7288.7}$ | ${ }_{-771.4}^{-520.7}$ | ${ }_{-0.9 \%}^{-6.9 \%}$ |
 | 40．7\％ | 7700.6 | 6929.6 | －771．0 | －10．0\％ |
 | | 7664.3 | ${ }^{6896.3}$ | －767．9 | －10．0\％ |
 | 4．4．4\％ | ${ }_{7402.0}$ | ${ }_{6750.1}^{673.0}$ | －651．9 | －－8．8\％ |
 | 45．7\％ | 7335.6 | 6691.2 | －644．4 | |
 | 46．9\％ | 7329.0 | ${ }^{6632.5}$ | －696．5 | |
 | ${ }_{4}^{48.14 \%}$ | 7282.0 7063.8 | ${ }_{65525.4}^{654.6}$ | －538．4 | －－9．76\％ |
 | 50．6\％ | 7009.2 | 6418.7 | －590．5 | －8．4\％ |
 | 51．9\％ | 6977.5 | 6198.0 | －779．4 | －11．2\％ |
 | 53．19\％ | 6874.9 | ${ }^{6104.0}$ | －770．9 | －11．2\％ |
 | 54．6\％ | 6682.9 3481.0 | ${ }_{3262.5}^{5189.0}$ | ${ }_{-218.5}^{-894.0}$ | －-6.34% |
 | 56．8\％ | 3293.1 | ${ }_{3121.0}$ | －172．2 | －5．2\％ |
 | | ${ }^{32855}$ | 3030.9 30088 | －254．7 | －7．7\％ |
 | 60．5\％ | 3880.0 3250.9 | 3008.8 3003.9 | ${ }_{-247.0}^{-271.2}$ | －8．3\％ |
 | 61．7\％ | 3233.1 | 2936.4 | －296．7 | －9．2\％ |
 | －63．0\％ | ${ }^{3143.0}$ | ${ }^{29288.7}$ | －214．3 | －6．8\％ |
 | | 3056．3 302．4 | ${ }_{2884.5}^{2890.2}$ | －166．1 －14．0 | －-5.4% |
 | 66．7\％ | 3018.4 | 2865.9 | －152．5 | －5．1\％ |
 | － $\begin{aligned} & 67.9 \% \\ & 69.1 \%\end{aligned}$ | ${ }^{30059.2}$ | ${ }_{2681.3}^{2798.0}$ | ${ }_{-208.9}$ | －6．9\％ |
 | 70．4\％ | ${ }_{1609.9}^{2090}$ | ${ }_{1}^{2558.8}$ | －51．1 | －3．2\％ |
 | 71．6\％ | 1595.7 | 1534.2 | －61．5 | －3．9\％ |
 | 74．1\％ | ${ }_{\text {15875．1 }}^{15959}$ | ${ }^{153332}$ 1529．6 | －－55．9 | －－3．9\％ |
 | 75．3\％ | 1531.8 | 1491.9 | －39．9 | －2．6\％ |
 | 76．5\％ | 1526.4 | 1491.0 | －35．4 | －2．3\％ |
 | 77．8\％ | 1525.9 15170 | 1484．3 | －41．7 | －2．7\％ |
 | 80．2\％ | 1509.9 | 1416.5 | －93．4 | －6．2\％ |
 | 81．5\％ | 1503.8 | 1410.5 | －93．3 | －6．2\％ |
 | － 82.78% | 14399.7 11294 | 1407.5 1394.6 | -32.2 -348 | ${ }_{-2.2 \%}^{-2.2 \%}$ |
 | －${ }^{84.0 \%}$ | ${ }_{1403.3}^{1429.4}$ | 1334.6 1368.1 | －34．8 -35.2 | －2．5\％ |
 | 86．4\％ | 1400.8 | ${ }^{1368.1}$ | －32．7 | －2．3\％ |
 | 877\％ | ${ }^{1396.5}$ | ${ }^{13377.8}$ | －58．7 | －4．2\％ |
 | －${ }^{88.9 .9 \%}$ | 13989.4 1389.2 | li31．6 1328．4 | －-59.8 | －4．4\％ |
 | 91．4\％ | 1381.6 | 1304.9 | －76．7 | －5．6\％ |
 | 92．6\％ | ${ }^{13555.3}$ | ${ }^{1294.5}$ | －60．8 | －4．5\％ |
 | －93．8\％${ }^{951 \%}$ | ${ }^{13535.1}$ | ${ }^{12871.1}$ | －72．0 | |
 | ${ }^{965.3 \%}$ | 1335.6 1332.0 | 1277.0 1259.0 | －-73.0 | ${ }_{-5.5 \%}^{-4.4 \%}$ |
 | 97．5\％ | ${ }_{1}^{1312.7}$ | 1249.9 | －62．8 | －4．8\％ |
 | －${ }^{\text {908．8\％}}$ | 1.274 .1
 104.7 | ${ }_{1,227.3}^{1238.1}$ | － | ${ }_{\text {－}}-3.7 \%$ |

 Figure SQ-23-b
 Sacramento River at Mallard Slough (Chipps Island)), Monthly EC

 Sacramento River at Malarard Slough（（Chipps ssand）），Monthy EC

 | Percent
 Exceedance
 Probability | Ocrober | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Without | WSIP 2030 With Project | Absolute | |
 | | Monthly EC | Monthly EC | （itierence | fference（\％） |
 | （\％） | cm） | （UnHosicm） | | |
 | 0．0\％ | 15477.7 | 15376.0 | －101．7 | －0．7\％ |
 | ${ }^{1.2 \%}$ | 15433．0 | 15245.0
 15243 | －188．0 | |
 | 2．5\％ | ${ }^{153577.4}$ | ${ }^{15243.3}$ | －124 | |
 | 3．7\％ | 15328.6 | 15207．3 151271 | －121．3 | |
 | 4．9\％ | ${ }_{152995}$ | | | |
 | 7．4\％ | ${ }_{14975.3}^{1505.7}$ | 14931.8 14922.5 | －－529 | －0．0．8\％ |
 | 8．6\％ | 14958.3 | 14383.0 | －575．3 | －3．8\％ |
 | 9．9\％ | 14948.7 | 14343.2 | －605．6 | －4．1\％ |
 | ${ }^{11.1 \%}$ | 14928.7
 148978 | 14120.5
 130064
 1 | －808．2 | －5．4\％${ }_{\text {－}}^{\text {－} 7 \%}$ |
 | －${ }^{12.3 \%} \times 1.6 \%$ | ${ }_{147874}^{1487}$ | 13906.4 137760 | ${ }^{-9991.5}$ | －6．7\％ |
 | － $13.4 .8 \%$ | 147433.1 14059.8 | 13776.0 1372.9 | ${ }_{\text {－287．0 }}$ | ${ }_{-2.0 \%}^{-6.6 \%}$ |
 | 16．0\％ | 14055.4 | 13640.8
 1355
 1 | －414．6 | －3．0\％ |
 | 17．3\％ | 14014.3 | 13550.5 | －463．8 | －3．3\％ |
 | －${ }^{18.5 \% \%}$ | ${ }_{1}^{1395943.1}$ | 13275.2
 13250.6 | ${ }_{\text {－682．7 }}^{-683}$ | － |
 | 21．0\％ | ${ }^{139399.1}$ | 13125.4 | －813．7 | －5．8\％ |
 | ${ }^{22.2 \%}$ | 13898.1 | 13112.8 | －785．3 | －5．7\％ |
 | ${ }^{23.5 \%}$ | 13839.6
 13794
 1 | 13050.0 130435 | －789．6 | －5．7\％${ }_{-54 \%}$ |
 | 25．9\％ | ${ }^{13765.1}$ | ${ }^{13013.3}$ | －751．8 | －5．5\％ |
 | 27．2\％ | ${ }^{13755.3}$ | 12993.0 | －762．3 | －5．5\％ |
 | | 1370595 13656 | ${ }_{12819.6}^{12936.2}$ | －769．3 -875.9 | －5．6\％${ }_{-6.4 \%}$ |
 | 30．9\％ | 136991.6 | 12691.1 | －1000．5 | －7．3\％ |
 | 32．1\％ | 13684.9 | 12467.1 | －1217．8 | －8．9\％ |
 | 年33．3\％ | 13636.3
 13604 | 12419.7 12371.9 | -1216.6 -1233.0 | －8．9\％ |
 | 35．8\％ | 13602.8 | 12366.2 | -1236.7 | －9．1\％ |
 | | | 12358.1 | －1199．4 | －8．8\％ |
 | 38．5\％ | ${ }^{133308.8}{ }_{1}^{1346.7}$ | 122323
 12286.5 | －1076．6 | －-7.3% |
 | 40．7\％ | 13126.6 | 12170.5 | －956．0 | －7．3\％ |
 | | | 12146.0 | －927．0 | －7．1\％ |
 | 44．4\％ | 12990.8
 12711.8 | 12067.3
 11772.1 | -923.5 -999.6 | －7．7．8\％ |
 | 45．7\％ | 12889.1 | 11635.7 | －1053．4 | －8．3\％ |
 | | | | －1293．7 | －10．3\％ |
 | 48．1\％ 4.4 | 12441.2 12394.9 | 11128.7
 10981.8 | － 14312.5 -1431 | －-10.5% |
 | 50．6\％ | 12347.8 | 10927.6 | －1420．2 | －11．5\％ |
 | 51．9\％ | 9010.2 | ${ }^{65622.1}$ | －2488．1 | －27．2\％ |
 | 㐌53．3\％ | 6492.1 6477.0 | ${ }_{\text {c }}^{6247.1}$ | －24．0 -254 | － |
 | 55．\％\％ | 6475.1 | ${ }^{6173.8}$ | ${ }^{-301.3}$ | －4．7\％ |
 | | | | ${ }^{262.5}$ | －4．1\％ |
 | 年 $58.3 .0 \%$ | | ¢6049．3 | －192．8 -177.2 | －3．8\％\％ |
 | 60．5\％ | ${ }^{6209.6}$ | 5998.0 | －211．6 | －3．4\％ |
 | ${ }^{61.7 \%}$ | 6171.1 | ${ }^{5994.3}$ | －176．8 | 2．9\％ |
 | －63．0\％ | 6167.8 6166.1 | 5912.2 5884.0 | －255．6 .282 .1 | －4．4\％ |
 | 65．4\％ | 6083.7 | 5835.5 | －248．2 | |
 | 66．7\％ | 4690.0 | 5620.8 | 930.8 | 19．8\％ |
 | 67．9\％ | 3417.2 | ${ }^{3271.0}$ | ${ }^{146.1}$ | －4．4．8\％ |
 | 70．4\％ | ${ }_{3}^{3864.6}$ | ${ }_{3226.7}^{324.7}$ | －38．0 | |
 | 71．6\％ | ${ }^{3225.2}$ | ${ }^{3147.2}$ | －78．0 | －2．4\％ |
 | 72．8\％ | 3196.0 | ${ }_{3}^{3136.3}$ | －59．7 | －1．9\％ |
 | | 3194.1 | | | |
 | 76．5\％ | 3148.5 | ${ }_{3052.3}^{3054}$ | －96．2 | －3．1\％ |
 | 77．8\％ | ${ }^{3140.8}$ | ${ }^{3040.3}$ | －100．5 | －3．2\％ |
 | | | | | |
 | 81．5\％ | ${ }_{3086.9}$ | ${ }^{39090.7}$ | －96．2 | ${ }_{\text {－}}$ |
 | 82．7\％ | 3082.0 | 2977.5 | －104．5 | －3．4\％ |
 | 84．0\％ | 3054.7 | 2977.0 | －77．7 | 2．5\％ |
 | 85．2\％ | 3049.2 | 2963.2 | －86．0 | －2．8\％ |
 | － $\begin{aligned} & 86.4 \% \\ & 877 \%\end{aligned}$ | ${ }^{3046.2}$ | ${ }^{29464.3}$ | －99．9 | －3．3\％ |
 | 88．9\％ | ${ }_{2961.2}$ | ${ }_{2852.3}^{2953.7}$ | －10．9 | －3．7\％ |
 | 90．1\％ | 2948.7 | 2848.7 | －100．0 | \％ |
 | 91．4\％ | 2938.4 | 2827.2 | 111.1 | －3．8\％ |
 | 92．6\％ | 2932.2 | 2826.8 | －105．5 | －3．6\％ |
 | ${ }_{\text {951\％}}^{93.8 \%}$ | 2901.1 | 2815.0 | －86．1 | －3．0\％ |
 | 96．3\％ | 2894.2 | 2773.5 | ${ }_{-120.7}$ | －4．2\％ |
 | 97．5\％ | ${ }^{2853.6}$ | 2748.5 | －105．1 | －3．7\％ |
 | 98．8\％ | 2346.6 | 2631.2 | 284.6 | 12．1\％ |
 | 100．0\％ | 1，063．4 | 991.5 | －71．9 | －6．8\％ |

 | | | | | | | | December | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | $\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$ | WSIP 2030 WithoutProiect | WSIP 2030 W Wth Project | $\begin{gathered} \text { Absolute } \\ \text { diveference } \\ \text { (UMHOSICM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | \qquad | | WSIP 2030 With Project | | Realiveifference（\％） |
 | | | | | | | | | | |
 | | （UMHOSICM） | （U） | | | | | （Monthy EC | | |
 | 0．0\％ | | 15797.4 | －107．1 | 0．7\％ | | | ${ }^{5102.4}$ | 17.2 | 0．1\％ |
 | 1．2\％ | 15744.4 | 15786.2 | 41.9 | 0．3\％ | 1．2\％ | 14061.6 | 14276.7 | 215.1 | |
 | 2．5\％ | 15736.7 | 82.7 | －54．0 | －0．3\％ | 2．5\％ | 1348 | | 29.5 | |
 | 3．7\％ | 15730.7 | 15647.7 | －83．0 | －0．5\％ | 3．7\％ | 13882.6 | 13334.6 | －14 | |
 | 4．9\％ | 658．2 | 15612.7 | －45．4 | －0．3\％ | 4．9\％ | 13439 | | | |
 | ${ }^{\text {7．4\％}}$ | ${ }_{15579.2}$ | ${ }_{153377.1}^{1500.1}$ | ${ }_{-202.1}$ | －1．3\％ | ${ }_{7}^{6.4 \%}$ | | ${ }_{13027.2}^{132187}$ | －181．9 | 俍 |
 | 8．6\％ | 15546.6 | 15061.2 | －485．4 | －3．1\％ | 8．6\％ | 13325.7 | 12976.7 | 9900 | |
 | 9．9\％ | 15249.5 | 14978.8 | －270．6 | －1．8\％ | 9．9\％ | 13324.0 | | | |
 | 11．1\％ | 15140.3 | 14584.8 | －555．5 | ．7\％ | 11．1\％ | 13123.2 | 12851.1 | | |
 | 12．3\％ | 14805.3 | 14317.3 | 8.0 | －3．3\％ | 12．3\％ | 13115．2 | 4.8 | ． 4 | |
 | 13．6\％ | 14069.8 | ${ }^{13854.3}$ | －215．5 | 1．5\％ | 13．6\％ | 13054.7 | ${ }^{12555.3}$ | －499．4 | |
 | 14．8\％ | 14016.2 | 13771.1 | －245．1 | －1．7\％ | 14．8\％ | 12971.3 | 12161.9 | －809．4 | |
 | 16．0\％ | 13974.7 | 13739.5 | －235．3 | －1．7\％ | 16．0\％ | ${ }^{12915.6}$ | 12046.2 | －869．4 | －6．7\％ |
 | 17．3\％ | 13847．9 | 13350.7 | －497．2 | | 17．3\％ | 12614.1 | 11987．6 | －626．4 | |
 | 19．8\％ | ${ }_{13888.6}$ | ${ }_{1}^{131190.4}$ | －-569.2 | －4．2\％ | 19．8\％ | ${ }^{1115559.0}$ | ${ }_{111409.8}$ | －159．2 | －1．4\％ |
 | 21．0\％ | 13561.0 | 13057.8 | －503．2 | －3．7\％ | 21．0\％ | 10320.4 | 11033.4 | 713.0 | |
 | 22．2\％ | 13547.8 | 13023.5 | －524．3 | －3．9\％ | 22．2\％ | 10241.9 | 10760.1 | 518.1 | |
 | 23．5\％ | 13472.9 | 12963.1 | －09．9 | －3．8\％ | 23．5\％ | 9794.1 | 10493.5 | 9.4 | 7．1\％ |
 | 24．7\％ | 13357.5 | 12951.2 | －406．4 | －3．0\％ | 24．7\％ | 8817.5 | 103977 | 1580.2 | |
 | 25．9\％ | 13299.9 | 12944.3 | －355．6 | －2．7\％ | 25．9\％ | 8713.9 | 9664.6 | 950.8 | 10．9\％ |
 | － $28.4 .2 \%$ | 13293.8
 13293.4
 1 | 12524.9 12504.7 | -788.9 -788.7 | －5．8．9\％ | ${ }^{27.2 \%}$ | 8373.9 8238 | ${ }_{8853.2}^{9249.1}$ | 875.2 614.6 | －10．5\％ |
 | 29．6\％ | 13261.2 | 12325.5 | ${ }_{-935.7}$ | －7．1\％ | 29．6\％ | 8138.0 | 8626.5 | 488.5 | 6．0\％ |
 | 30．9\％ | ${ }^{132222.1}$ | ${ }_{1}^{123022.3}$ | －949．8． | －7．2\％ | 30．9\％ | 8019.9 | 8041.1 | 21.2 | 0．3\％ |
 | | 13239.0 | | | | | | | | ${ }^{-1.4 \%}$ |
 | 334．6\％ | | 12151.9 12113.4 | －${ }_{-846.5}$ | －-7.5%
 -6.5% | 33．6\％ | ${ }_{76886.4}^{7721.7}$ | 7871.1 7622.0 | ${ }_{\text {－64．4 }}^{149.4}$ | －0．9\％ |
 | 35．8\％ | 12717.9 | 12046.7 | －671．1 | －5．3\％ | 35．8\％ | 7516.6 | ${ }_{7522.3}$ | －5．7 | 0．1\％ |
 | 37．0\％ | 12237.9 | 11966.7 | －271．2 | －2．2\％ | 37．\％ | 7317.7 | 7411.2 | 93.5 | 1.3 |
 | 38．3\％ | 11891.2 | 11788.5 | －102．6 | －0．9\％ | 38．3\％ | 7084.5 | 7381.5 | 297.0 | 2\％ |
 | 39．5\％ | 11780.2 | 11189.8 | －590．4 | －5．0\％ | 39．5\％ | 6864.9 | 7097．0 | 232.1 | |
 | 40．7\％ | 11638.4 | 10860.9 | －777．6 | －6．7\％ | 40．7\％ | 6821.8 | 7080.4 | 258.7 | 3．8\％ |
 | ${ }^{42.0 \%}$ | 10543.8 | 10321.3 | －222．5 | －2．1\％ | 42．0\％ | 6636.5 | 6852.2 | 215.7 | 3．3\％ |
 | ${ }_{4}^{43.4 \%}$ | 1016．2 ${ }_{9433.1}$ | ${ }_{8446.1}^{9590.4}$ | $\begin{array}{r}\text {－} \\ -9257.8 \\ \hline 98.8\end{array}$ | －-1.2% | －43．4\％ | ${ }_{6468.2}^{659.5}$ | 65998．1 | 228.9 129.9 | ${ }^{3.5 \%}$ |
 | 45．7\％ | 8521.6 | 7658.3 | -863.3 | －10．1\％ | 45．7\％ | 6331.7 | 6490.1 | 158.4 | 2．5\％ |
 | 46．9\％ | 8271.9 | 7207.1 | －1064．8 | －12．9\％ | 46．9\％ | 6253.6 | 6484.8 | 231.1 | 3．7\％ |
 | 48．1\％ | 8125.3 | 7057.1 | －1068．1 | －13．1\％ | 48．1\％ | 6177.1 | 6427.1 | 250.0 | 4．0\％ |
 | 49．4\％ | ${ }^{6243.9}$ | ${ }^{6111.6}$ | －132．3 | －2．1\％ | 49．4\％ | 6156.2 | 6310.2 | 154.0 | 2．5\％ |
 | 50．6\％ | ${ }^{6224.3}$ | 6093.2 | －131．1 | －2．1\％ | 50．6\％ | 6056．0 | 6172.5 | 116.5 | 1．9\％ |
 | 51．9\％ | ${ }^{61556.0}$ | ${ }^{6054.4}$ | －101．6 | －1．7\％ | 51．9\％ | 6016.9 | 6132.2 | 115.3 | 1．9\％ |
 | 53．1\％ | 5972.4 | 5903.0 | －69．4 | －1．2\％ | 53．1\％ | 5880.1 | 6029.6 | 149.5 | 2．5\％ |
 | 54．3\％ | 5957.7 | 5844.5 | －113．2 | －1．9\％ | 54．3\％ | 5641.1 | ${ }^{5875.5}$ | 234.3 | 4．2\％ |
 | 55．6\％ | 5956.3 | 5798.6 | －157．7 | －2．6\％ | 55．6\％ | 5434.1 | 5832.0 | 397.9 | 7．3\％ |
 | 56．8\％ | 5926.0 | 5795.5 | －130．5 | －2．2\％ | 56．8\％ | 5388.7 | 5830.3 | 441.6 | 8．2\％ |
 | 58．0\％ | 5915.1 | 5795.0 | －120．0 | －2．0\％ | 58．0\％ | 5336.9 | 5641.0 | 280.1 | 5．2\％ |
 | 59．3\％ | 5897.1 | 5739.7 | －157．4 | －2．7\％ | 59．3\％ | 5298.7 | 5626.2 | 327.5 | 6．2\％ |
 | 60．5\％ | 5814.1 5334.4 | ${ }_{53327.3}^{573.2}$ | －77．8 | － | － $\begin{aligned} & \text { 60．5\％} \\ & 617 \%\end{aligned}$ | ${ }_{46268.1}^{4646}$ | | 901.8 856.4 | ${ }^{19.4 .5 \%}$ |
 | 63．0\％ | 5187.3 | 4746.9 | －440．5 | ${ }^{-8.5 \%}$ | 63．0\％ | ${ }_{41655}^{4628}$ | 5408.5 | ${ }_{1}^{1242.7}$ | 29．8\％ |
 | 64．2\％ | 4216.2 | 4255.5 | 39.3 | 0．9\％ | 64．2\％ | 3609.4 | 4733.6 | 1124.2 | 31．1\％ |
 | 65．4\％ | ${ }^{3816.7}$ | ${ }^{3772.0}$ | －54．7 | －1．4\％ | ${ }^{65.4 \%}$ | ${ }^{3662.4}$ | 4470.3 | 867.9 | 24．1\％ |
 | ${ }^{66.77 \%}$ | ${ }^{3796.7}$ | 3738.6 | －58．1 | －1．5\％ | ${ }^{66.7 \%}$ | 3169.6 | 4254.2 | 1084.6 | 34．2\％ |
 | － 67.9% | 3511.2 3374.5 | ${ }_{3}^{34551.0}$ | ${ }_{-3.4}^{-56.3}$ | ${ }^{-1.6 \%}$ | －67．9\％ | | （3667．6 | 654.2 547.6 | 21.7% 187% |
 | 70．4\％ | 3372.1 | ${ }_{3329.6}$ | －42．4 | ${ }^{-1.3 \%}$ | 70．4\％ | ${ }^{22355.2}$ | ${ }_{2500.3}$ | 265.1 | 11．9\％ |
 | 71．6\％ | 3300.7 | 3261.1 | －39．7 | －1．2\％ | 71．6\％ | 1791.2 | 2377.1 | 585.9 | 32．7\％ |
 | 72．8\％ | 3259.5 | 3234.9 | －24．6 | －0．8\％ | 728\％ | 16617 | ${ }^{16454.7}$ | －16．0 | －1．0\％ |
 | 75．3\％ | 3108.9 30978 | ${ }_{3053.3}^{3102.8}$ | －6．0． | －－1．4\％ | 74．3\％ | 11827.9 11828 | 1524.2 1466.1 | 146.3 283 | 10．6\％ |
 | 76．5\％ | 3079.1 | 3051.1 | －28．0 | －0．9\％ | 76．5\％ | 1036.3 | ${ }_{1213.4}$ | 177.1 | 17．1\％ |
 | 77．8\％ | 3032.0 | 2959.3 | －72．7 | －2．4\％ | 77．8\％ | 946.6 | 1087.4 | 140.8 | 14．9\％ |
 | 79．0\％ | 2993.5 | 2955.9 | －37．6 | 1．3\％ | 79．0\％ | 853.3 | 967.6 | 114.3 | 13．4\％ |
 | －${ }_{\text {80．2\％}}$ | 2953.3 | ${ }^{2953.6}$ | 0.3 | 0．0\％ | 80．2\％ | 830.1 | 871.6 | 41.6 | 5．0\％ |
 | －${ }_{\text {822．7\％}}$ | ${ }_{2}^{2944.8}$ | ${ }_{2918.3}^{2918.7}$ | ${ }_{-23.4}^{-28.1}$ | －1．0\％ | －${ }^{81.5 \%}$ 827\％ | 762.3 720.0 | 870.8 7555 | 108.4
 35.5 | 14．2\％ |
 | 84．0\％ | 2919.2 | 2891.7 | ${ }_{-27.6}$ | －0．9\％ | 84．0\％ | 668.3 | 725.5 | 57.2 | 8．6\％ |
 | 85．\％ | 2832.4 | 2888.8 | 56.3 | 2．0\％ | 85．2\％ | 592.5 | 658.6 | 66.1 | 11．2\％ |
 | 86．4\％ | 2817.2 | 2795.1 | －22．1 | －0．8\％ | 86．4\％ | 475.3 | 545.0 | 70.7 | 14．9\％ |
 | 877．7\％ | ${ }_{2}^{28833} \mathbf{2} 8$ | 2781.4 27701 | -3.5 -13.6 | －-1.2% | 87.7% 889% | 449.0 4357 | 508.3 490.6 | 59.3 54.9 | 13.2% 12.26 |
 | 90．1\％ | 2777.1 | 2757.7 | －19．4 | －0．7\％ | 90．1\％ | 353.4 | 319.3 | 34．0 | －9．6\％ |
 | 91．4\％ | 2738.6 | 2720.4 | －18．3 | －0．7\％ | 91．4\％ | 296.0 | 306.2 | 10.2 | |
 | 92．6\％ | 2720.4 | ${ }^{2686.2}$ | －34．2 | －1．3\％ | 92．6\％ | ${ }_{20}^{24.5}$ | 2403 | －0．3 | |
 | ${ }^{93.5 \%} 9$ | ${ }^{25822.6}$ | 2337．4 137.5 | -45.2
 35.8 | －${ }_{-2.1 .4 \%}^{-1.4 \%}$ | ${ }^{93.51 \%}$ | 211.6 190.0 | 213.0 190.5 | 1.4 0.5 | |
 | 96．3\％ | 603.9 | 728.1 | 124.1 | 20．6\％ | 96．3\％ | 188.4 | 188.5 | 0.2 | |
 | 97．5\％ | 579.5 | 551.9 | 27.6 | －4．8\％ | 97．5\％ | 185.3 | 185.2 | －0．1 | |
 | 98．8\％ 100．0\％ | 337.8 238.6 | 341.4 285.1 | 3.6 46.5 | | 98．8\％ 100．\％ | 182.9 181.3 | 182.2 181.6 | | |

 | | | January | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedanc | $\xrightarrow{\text { WSIP } 2 \text { 2030 Without }}$ Proiet | WSII 2030 With Project | | |
 | Probability | Monthly EC | Monthy EC | （itiference | ference（\％） |
 | 0．0\％ | ${ }_{\text {chen }} 12418.4$ | ${ }^{13010} \mathbf{3}$ | 591.9 | 4．8\％ |
 | 1．2\％ | 12020.2 | 11926.1 | －94， | －0．8 |
 | 2．5\％ | 11262.9 | 11239.1 | －23．8 | －0．2\％ |
 | 3．7\％ | 10218.1 | 9691.6 | －526．5 | －5．2\％ |
 | 4．9\％ | 9895.8 | ${ }^{9251.9}$ | －643．9 | －6．5\％ |
 | ${ }^{6.2 \%}$ | 9002.5 8303 | 8967.5 88494 | -35.0 546.4 | －0．4\％ |
 | 7．4\％ | ${ }^{8303.0}$ | 8849.4 | 546.4 | 6．6\％ |
 | 8．6\％ | 8246.0 82129 | ${ }_{8}^{8446.1}$ | ${ }_{4}^{200.1}$ | 2．4\％ |
 | 9．9\％ | 8212.9 | 8172.5 | －40．3 | －0．5\％ |
 | 11．19\％ | ${ }^{8162.4}$ | 88021.2 | －141．2 | －1．7\％ |
 | 12．3\％ | 8099.5 | 7928.4 | －171．1 | －2．1\％ |
 | 13．6\％ | ${ }^{8022.8}$ | 7994.5 | －118．2 | －1．5\％ |
 | 14．8\％ | 7695.8 | 7698.1 | 2.3 | 0．0\％ |
 | 16．0\％ | 7311.2 71859 | 7578.1 72798 | | 3．7\％ |
 | 17．3\％ | 7185.9 | 7279.8 | 93.9 | 1．3\％ |
 | 18．5\％ | 7072.1 | ${ }^{7276.5}$ | 204.5 | 2．9\％ |
 | 19．8\％ | ${ }^{704550}$ | 7223.4 | 178.4 | 2．5\％ |
 | 21．0\％ | 6908.9 6879 | ${ }_{6}^{7015.2}$ | 106.4
 54.8 | 1．5\％ |
 | 22．2\％ | 6879.3 68734 | ${ }_{6}^{6934.1}$ | 54.8 59 | 0．8\％ |
 | ${ }^{23.75 \%}$ | ${ }_{6}^{68331.4}$ | ${ }_{68802.3}^{692.4}$ | － 471.2 | 7．8\％ |
 | 25．9\％ | 6216.6 | 6659.2 | 442.6 | 7．1\％ |
 | 27．2\％ | 6194.1 | 6516.9 | 322.8 | 5．2\％ |
 | 28．4\％ | ${ }_{5}^{5939.4}$ | ${ }^{6340.8}$ | ${ }_{301.5}^{4045}$ | |
 | 29．6\％ | 5812.2 58107 | ${ }^{6156.9}$ | 344.7 -215 | 5．9\％ |
 | ${ }_{3}^{30.1 \%}$ | ${ }_{48821.8}^{5810.7}$ | 5789.2 5654 | －21．5 8324 | －0．4\％ |
 | | ${ }^{4821.8}$ | 5654.2 5594 | 832.4 | 17．3\％ |
 | 34．6\％ | ${ }_{34699.5}^{4658.4}$ | ${ }^{5504.1}$ | 845.7
 10072 | － |
 | 35．8\％ | 3106.5 | 4457.4 | 1350.9 | 43．5\％ |
 | 37．0\％ | 2946.2 | 3808.7 | 862.5 | 29．3\％ |
 | | ${ }_{2}^{2834.4}$ | ${ }^{36588.0}$ | 823.7 7661 | 29．1\％ |
 | 33．5\％ | ${ }_{24339}^{251.5}$ | ${ }_{3}^{333718}$ | 766.1 | 29．8\％ |
 | 420．0\％ | ${ }_{2}^{24333.9}$ | 3221.8 3093.8 | 787.9 6729 | 32．4\％ |
 | 42．2\％ | ${ }_{2}^{2420.9}$ | 3093.8
 3008 | ${ }_{7672.9}^{672.9}$ | 27．8\％ |
 | 443．4\％ | ${ }^{2240.6}$ | ${ }^{3008.2}$ | 767．6 | 34．3\％ |
 | 45．7\％ | ${ }_{2042.4}^{230.6}$ | ${ }_{2288.6}^{201.6}$ | 884.2 | 4．3．3\％ |
 | 46．9\％ | 1983.0 | 2778.2 | 795.1 | 40．1\％ |
 | 4．1\％ | 1964.9 | 2500.2 | 535.4 | 27．2\％ |
 | 49．4\％ | ${ }^{1920.1}$ | ${ }_{2000.9}^{24021}$ | 480.8 | 25．0\％ |
 | | 1894.3 16479 | ${ }_{20763}^{2162.1}$ | ${ }_{428.8}^{2678}$ | 14．1\％ |
 | 551．9\％ | 1647.9 1516.9 | 2076．3 1899.6 | ${ }_{3}^{428.4}$ | ${ }_{25}^{26.0 \%}$ |
 | 54．3\％ | 13776 | 1846.5 | 470.1 | 34．1\％ |
 | 55．6\％ | 1139.2 | 1682.6 | 543.4 | 47．7\％ |
 | 55．8\％ | ${ }^{978.4}$ | 1649.0 | 670．6 | 68．5\％ |
 | 55．3\％ | ${ }_{720.6}^{877.2}$ | ${ }_{923.8}^{1172.1}$ | ${ }_{203.1}^{294}$ | |
 | 60．5\％ | 524.1 | ${ }^{872.1}$ | 346.0 | 6．0\％\％ |
 | 61．7\％ | 470.1 | 728.9 | 258.8 | 55．0\％ |
 | 64．2\％ | 393.1 381.5 | ${ }_{406.3}^{489.6}$ | 96.4 24.9 | 24．5\％ |
 | 65．4\％ | 343.5 | 4023 | 58．8 | 17．1\％ |
 | 66．7\％ | 303.9 | 389.2 | ${ }^{85.3}$ | 28．1\％ |
 | 69．1\％ | 303.6 289.4 | ${ }_{351.4}^{378.6}$ | 75.0 62.0 | 24．7\％ |
 | 70．4\％ | 285.1 | 311.1 | 26.0 | 9．1\％ |
 | 71．6\％ | ${ }^{2523}$ | 274.9 | 22.5 | 8．9\％ |
 | 72．8\％ | ${ }_{2326}^{2374}$ | ${ }_{2520}^{268.1}$ | 30.7 194 19 | －${ }_{8}^{12.3 \%}$ |
 | 75．3\％ | 221.8 | ${ }_{229.4}^{2029}$ | 7.6 | 3．4\％ |
 | 76．5\％ | 219.0 | 226.8 | 7.8 | 3．6\％ |
 | 77．8\％ | ${ }_{213,}^{217.7}$ | ${ }_{2184}^{220.3}$ | －2．6 | |
 | 80．2\％ | 210.9 | 210.3 | －0．6 | －0．3\％ |
 | 81．5\％ | 2030 | 2036 | 0.7 | 0．3\％ |
 | 82．7\％ 84.0% | 1999 1993 | ${ }_{201}^{2018}$ | 1.9 0.8 | － 1.0% |
 | 85．2\％ | 198.9 | 199.2 | ${ }_{0} 0.3$ | 0．1\％ |
 | ${ }^{86.4 \%}$ | 197.8 | 198.2 | 0.4 | 0．2\％ |
 | 87．9\％ | 196.1 194.2 | 194.7 194.7 | 1.6 0.5 | 0．3\％ |
 | 90．1\％ | 193.8 | 194.5 | 0.7 | 0．4\％ |
 | 91．4\％ | 193.4 | 194.3 | 0.9 | 0．5\％ |
 | 993．8\％ | 191.8 189.2 | 192.2 191.6 | 0.4 2.4 | －${ }_{\text {1．2\％}} 0$ |
 | 95．1\％ | 189.1 | 189.8 | 0.7 | 0．4\％ |
 | 996．3\％ | 187.6 1874 18 | $\begin{array}{r}188.1 \\ \hline 1879\end{array}$ | 0.5 0.5 | 0．3\％ |
 | 98．8\％ | 186.7 | 186.9 | 0.2 | 0．1\％ |
 | 100．0\％ | 183.9 | 183.9 | 0.0 | 0．0\％ |

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[b]{3}{*}{$$
 \begin{gathered}
 \text { Percent } \\
 \begin{array}{c}
 \text { Excedance } \\
 \text { Probability }
 \end{array}
 \end{gathered}
 $$} \& \multicolumn{4}{|c|}{February}

 \hline \& ${ }_{\text {WSIIP }}^{\text {2030 }}$ Proithout \& WSIIP 2030 With Project \& Absolute \&

 \hline \& Montily EC \& Monthly EC \& Difference
 (UMHOSCM) \& Hference (\%)

 \hline (\%) \& MHPOSLCM \& UMHOSCCM) \& \&

 \hline \& 10202.6 \& ${ }^{9629.1}$ \& -573.5 \& -5.6\%

 \hline ${ }^{1.25 \%}$ \& 8635.9
 6592.4 \& 8252.8
 6722.8 \& ${ }^{-383.1}$ \& ${ }^{-4.4 \%}$

 \hline 3.7\% \& 5523.9 \& 6551.6 \& 1027.7 \& 18.6\%

 \hline 4.9\% \& 5275.0 \& 5253.4 \& -21.5 \& -0.4\%

 \hline -6.2\% \& \& ${ }_{4}^{5053.9}$ \& -152.1

 5239 \& ${ }_{\text {- }}^{\text {-2,5\% }}$

 \hline 7.4\% \& 3893.3
 3795 \& 4417.3
 43934 \& 523.9
 6839 \& 13.5%
 18.4%

 \hline 8.6\% \& 3799.5
 3512.8 \& ${ }_{3}^{43983.4}$ \& 683.9
 375.4 \& 18.4\%

 \hline 11.1\% \& 3440.5 \& ${ }^{3727.2}$ \& 286.7 \& 8.3\%

 \hline 12.3\% \& 3139.7 \& ${ }^{3721.3}$ \& 581.6 \& 18.5\%

 \hline 13.6%
 14.8% \& 3097.3
 29395 \& (3600.3 \& 503.0
 646.1 \& - $\begin{aligned} & 16.2 \% \\ & 220 \%\end{aligned}$

 \hline 14.8.\% \& ${ }^{2088.2}$ \& ${ }_{2727.3}^{355.7}$ \& ${ }_{635.0}^{64.1}$ \& 30.4\%

 \hline 17.3\% \& 1624.3 \& 2073.2 \& 448.9 \& 27.6\%

 \hline 18.5%
 1988% \& 1510.8
 14336 \& ${ }_{\substack{2048.2 \\ 18787}}^{2203}$ \& 537.4
 445.2 \& 年

 \hline 21.0\% \& 1396.5 \& 1804.5 \& 408.0 \& 29.2\%

 \hline 22.2\% \& 1252.2 \& 1720.2 \& 468.0 \& 37.4\%

 \hline ${ }^{23.5 \%}$ \& ${ }^{12488.7}$ \& 1660.9
 14425 \& 412.1
 3870 \&

 \hline 25.9\% \& 1006.4 \& 1279.0 \& 272.6 \& 27.1\%

 \hline 27.2\% \& 1002.4 \& 1265.5 \& 263.1 \& 26.2\%

 \hline 28.4. \& 997.4
 9848 \& 1204.4
 1060 \& 207.0
 75.5 \& -

 \hline 30.9\% \& 832.4 \& 1051.8 \& 219.5 \& 26.4\%

 \hline 32.1\% \& 793.5 \& 1045.9 \& 252.5 \& 31.8\%

 \hline 㐌33.6\% \& ${ }_{709.9}^{778.9}$ \& ${ }_{953.5}^{979.9}$ \& 201.0
 244.0 \& ${ }_{3}^{25.4 \%}$

 \hline 35.8\% \& 705.3 \& 843.4 \& 138.1 \& 19.6\%

 \hline 37.0\% \& 626.3 \& 806.9 \& 180.7 \& 28.9\%

 \hline 38.3\% \& 611.4
 609.0 \& ${ }_{7}^{795.9}$ \& 184.4
 133.9 \& 30.3\%

 \hline 40.7\% \& 564.3 \& 678.5 \& 114.2 \& 20.2\%

 \hline ${ }^{42.0 \%}$ \& 547.7 \& ${ }_{647.6}$ \& 99.9 \& 18.2\%

 \hline ${ }^{43.4 \%}$ \& - 454.9 \& ${ }_{5}^{555.9}$ \& ${ }_{98.3}^{19.7}$ \& 21.5\%

 \hline 45.7\% \& 427.3 \& 510.3 \& 83.0 \& 19.4\%

 \hline 46.9\% \& 414.5 \& 464.1 \& 49.5 \& 12.0\%

 \hline ${ }_{4}^{48.4 \%}$ \& ${ }_{392.4}^{412.7}$ \& 413.7
 399.0 \& 1.0
 6.5 \& ${ }_{\text {1.7\% }}^{0.2 \%}$

 \hline 50.6\% \& 311.1 \& 398.7 \& 87.6 \& 28.19\%

 \hline 51.9\% \& 309.4 \& 377.5 \& 67.1 \& ${ }^{21.77 \%}$

 \hline 54.3\% \& ${ }_{303.1}^{309.0}$ \& 374.0
 350.2 \& ${ }_{47.1}^{65.0}$ \& ${ }_{\text {15, }}^{\text {11.5\% }}$

 \hline 55.6\% \& 289.8 \& 332.1 \& 42.3 \& 14.6\%

 \hline 56.8\% \& 287.2 \& 314.0 \& ${ }^{26.8}$ \& ${ }^{9.3 \%}$

 \hline 59.3\% \& 269.4
 26.1 \& 311.8
 311.8 \& 42.4
 45.7 \& - 1 17.7\%

 \hline 60.5\% \& 264.5 \& 304.6 \& 40.2 \& 15.2\%

 \hline ${ }^{61.7 \%}$ \& ${ }^{257.8}$ \& ${ }^{286.9}$ \& 29.1 \& 11.3\%

 \hline - $63.4 .2 \%$ \& ${ }_{2}^{221.5}$ \& ${ }_{225.9}^{228.0}$ \& 6.2
 10.4 \& ${ }_{4.8 \%}^{2.8 \%}$

 \hline 65.4\% \& 214.8 \& 223.2 \& 8.4 \& 3.9\%

 \hline ${ }^{66.7 \%}$ \& 213.7 \& 218.0 \& 4.3 \& 2.0\%

 \hline 679.9\% \& ${ }_{211.0}^{21.7}$ \& 217.4
 217.0 \& ${ }_{6.1}^{5.7}$ \& ${ }^{2.9 \%}$

 \hline 70.4\% \& 210.9 \& 211.2 \& 0.3 \& 0.1\%

 \hline 71.6\% \& 209.4 \& 210.1 \& \& 0.3\%

 \hline 74.1\% \& ${ }_{207.3}^{207.8}$ \& ${ }_{208.4}^{20.5}$ \& 1.0 \& ${ }^{0.5 \%}$

 \hline 75.3\% \& 205.8 \& 207.2 \& 1.4 \& 0.7\%

 \hline 776\% \& ${ }_{2019}^{205.7}$ \& ${ }_{203.7}^{205.7}$ \& 0.0
 1.7 \& -0.8\%

 \hline 79.0\% \& 201.3 \& 202.3 \& 1.1 \& 0.5\%

 \hline - 80.2% \& 198.6 \& 201.3 \& 2.7 \& 1.3\%

 \hline 81.5\% \& 198.0
 197.2 \& 198.7
 197.7 \& 0.7
 0.5 \& -

 \hline 84.0\% \& 197.0 \& 197.2 \& 0.2 \& 0.1\%

 \hline 85.2\% \& 196.8
 194 \& 196.8
 1948 \& -0.1 \& 0.0\%

 \hline 86.4\% \& 194.2
 191.8 \& 199.1
 192.0 \& -0.1 \& - ${ }_{\text {0.1\% }}^{0.1 \%}$

 \hline 88.9\% \& 191.6 \& 192.0 \& 0.4 \& 0.2\%

 \hline 90.1\% \& 191.0 \& 191.8 \& 0.8 \& 0.4\%

 \hline 992.4\% ${ }_{\text {92\% }}$ \& 189.6
 189.3 \& 199.5
 190.4 \& 1.9
 1.1 \& -

 \hline 93.8\% \& 189.0 \& 189.5 \& 0.6 \& 0.3\%

 \hline 95.1\% \& 188.7 \& 189.3 \& 0.6 \& 0.3\%

 \hline ${ }^{96.3 \%} 9$ \& 187.7
 187.6 \& 188.2
 187.0 \& 0.5
 -0.6 \& -0.3\% ${ }_{\text {- }}$

 \hline 98.8\% \& 186.8 \& 186.8 \& 0.0 \& 0.0\%

 \hline 100.0\% \& 184.8 \& 184.8 \& 0.0 \& 0.0\%

 \hline
 \end{tabular}

 | $\begin{aligned} & \text { Percent } \\ & \hline \text { Exceedance } \\ & \text { Probabalily } \end{aligned}$ | Way | | | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Wuthout | WSIP 2030 With Project | $\begin{gathered} \text { Absolute } \\ \text { Aifference } \\ \text { (UMHOSCM) } \end{gathered}$ | |
 | | ${ }_{\text {Morintiec }}^{\text {Pro }}$ | Monthy EC | | |
 | | (UMHosicm) | (UMHOSLCM) | | |
 | 0.0\% | 9506.5 | 9468.6 | -37.9 | -0.4\% |
 | 1.2\% | 9278.9 | 9271.9 | -7.0 | -0.1\% |
 | 2.5\% | ${ }_{8808.8}$ | 8791.7 | -17.0 | -0.2\% |
 | 3.7\% | 7167.4 | 6621.8 | -545.6 | 7.6\% |
 | 4.9\% | 6558.7 | 6565.5 | 6.8 | 0.1\% |
 | 6.2\% | 5856.5 | ${ }_{5}^{5872.6}$ | 16.1 | 0.3\% |
 | 7.4\% | ${ }_{5851.3}$ | ${ }_{5826.3}$ | -25.0 | 0.4\% |
 | 8.9\% | 5804.7 | ${ }_{5}^{5776.9}$ | -37.8 | -0.7\% |
 | 9.9\% | 5698.2 | 56778.2 | -20.0 | -0.4\% |
 | 11.1\% | 5671.6 5654 | ${ }_{5}^{5559.9}$ | -81.8 | -1.4\% |
 | 12.3\% | 5566.4 | 5500.6 | -59.8 | -1.1\% |
 | 13.6\% | 5238.4 | 5169.3 | -69.1 | -1.3\% |
 | 14.8\% | 5107.0 | 4999.4 | -107.5 | -2.1\% |
 | 16.0\% | 4919.5 | 4795.4 | -124.1 | -2.5\% |
 | 17.3\% | 4888.1 | 4749.2 | -138.8 | -2.8\% |
 | 18.5\% | 4847.2 | 4799.9 | -127.2 | -2.6\% |
 | 19.8\% | 4751.3 | 4571.2 | -180.1 | -3.8\% |
 | 21.0\% | 4573.7 | 4461.5 | -112.2 | -2.5\% |
 | 22.2\% | 4499.8 | 4353.2 | -146.7 | -3.3\% |
 | ${ }^{23.5 \%}$ | ${ }^{4381.4}$ | 4333.4 | -58.1 | -1.3\% |
 | 24.7\% | 43771.5 | 4244.4 | -127.1 | -2.9\% |
 | 25.9\% | 4307.1 | 4199.5 | -107.6 | -2.5\% |
 | 27.2\% | 4268.1 | 4045.3 | -222.8 | -5.2\% |
 | 28.4\% | 4084.7 | 3355.9 | | -3.2\% |
 | 29.6\% | ${ }^{40099} 3$ | 3889.9 | -119.4 | -3.0\% |
 | 30.9\% | 3872.3 36569 | 3759.9 35997 | -112.4 | -2.9\% |
 | ${ }^{32.1 \%}$ | 3656.9 3095 | ${ }^{3539.7}$ | -117.2 | -3.2\% |
 | ${ }_{\text {3 }}{ }_{34.6 \%}$ | 3494.5 3485.5 | 3507.9 3484.2 | -13.4 | 0.4\% |
 | 35.8\% | 3275.9 | 3316.5 | 40.5 | 1.2\% |
 | 37.0\% | 3217.8 | 3202.8 | -15.0 | -0.5\% |
 | 38.3\% | 3149.4 | 3169.9 | 20.4 | 0.6\% |
 | 39.5\% | 2991.6 | 3001.2 | 9.5 | 0.3\% |
 | 40.7\% | ${ }_{2}^{2964.7}$ | 2971.4 | ${ }^{677}$ | 0.2\% |
 | 42.0\% | ${ }^{2689.6}$ | 2966.9 | 277.4 | 10.3\% |
 | 43.2\% | ${ }_{2}^{2626.7}$ | ${ }^{2871989}$ | ${ }_{2472}^{272.2}$ | 10.4\% |
 | 44.4\% | ${ }^{247242.4}$ | 2719.7 | 247.4 | 10.0\% |
 | 45.7\% | ${ }^{24366.7}$ | ${ }^{2646.7}$ | 209.9 | 8.6\% |
 | 46.9\% | ${ }^{2390.7}$ | ${ }^{29088.1}$ | 107.4 | 4.5\% |
 | 48.1\% | ${ }_{2}^{2169.5}$ | ${ }_{2}^{2022.7}$ | 33.2 | 1.5\% |
 | 4.9.4\% | ${ }^{2130.2}$ | 2140.1 | 9.9 | 0.5\% |
 | 50.6\% | 2086.1 | 2040.8 2017 | -45.3 | -2.2\% |
 | ${ }^{51.9 \%} 5$ | ${ }_{2018.9}^{2071.1}$ | ${ }_{2011.7}^{2011.7}$ | -59.4 | - -2.9% |
 | 54.3\% | 1997.3 | 2009.9 | ${ }^{-8.7}$ | 0.6\% |
 | 55.\% \% | 1993.8 | 2007.2 | 13.4 | 0.7\% |
 | 56.8\% | 1891.0 | 1929.4 | 38.4 | 2.0\% |
 | 58.0\% | ${ }_{1}^{1852.5}$ | ${ }^{17799.4}$ | -63.1 | -3.4\% |
 | 59.3\% | 1819.1 | 1775.2 | -103.9 | -5.7\% |
 | ¢0.5\% | ${ }^{1694.9}$ | ${ }^{1672.4}$ | -22.6 | -1.3\% |
 | 61.7\% 6 | ${ }^{1614.0}$ | ${ }_{1}^{162152.1}$ | 8.2 | 0.5\% |
 | 64.2\% | ${ }^{15599.4}$ | ${ }^{16606.1}$ | ${ }_{46.8}^{23.6}$ | 3.0\% |
 | 65.4\% | 1499.5 | 1542.0 | 42.5 | 2.8\% |
 | 66.7\% | 1487.6 | 1540.1 | ${ }_{52.4}$ | 3.5\% |
 | 67.9\% | 1316.8 12763 | 1344.4 13072 | 27.6 309 | 2.1\% |
 | 69.1\% 70.4% | ${ }^{12768.3}$ | 1307.2 1178.9 | 30.9 | 2.4\% |
 | 71.6\% | 1171.8 | 1171.4 | -0.4 | 0.0\% |
 | -72.8\% | 1041.4 0935 | ${ }^{1039.3}$ | -2.1 394 | -0.2\% |
 | 74.19\% | ${ }_{957.5}^{993}$ | 1032.9 9713 | 39.4 | 4.0\% |
 | 7.5.5\% | ${ }_{9}^{957.8}$ | ${ }_{977.3}^{971.3}$ | 13.7 9.6 | 1.4.0\% |
 | 77.\% | 559.4 | 675.5 | ${ }_{106.1}$ | 18.6\% |
 | 79.0\% | 527.6 | 566.8 | 39.2 | 7.4\% |
 | 80.2\% | 436.3 | 548.0 | 111.7 | 25.6\% |
 | 81.5\% | 430.1 | 445.5 | 15.4 | 3.6\% |
 | - $\begin{aligned} & 82.7 \% \\ & 84.0 \%\end{aligned}$ | ${ }_{353.3}^{429.1}$ | ${ }^{436.2}$ | ${ }_{74.1}^{7}$ | 1.7\% |
 | 84.2\% | ${ }_{350.5}^{353.3}$ | 427.6 356.2 | 74.4 5.8 | 21.6\% |
 | 86.4\% | 307.6 | 309.4 | 1.9 | 0.6\% |
 | 877\%\% | 295.7 2809 | 303.9 284 | ${ }_{31}^{8.2}$ | ${ }^{2.8 \%}$ |
 | ${ }_{90.1 \%}$ | ${ }_{270.6}^{280.9}$ | 284.0 272.6 | 3.1 2.0 | 0.8\% |
 | 91.4\% | 251.2 | 253.7 | 2.5 | 1.0\% |
 | 92.6\% | ${ }_{2271}^{2417}$ | ${ }_{2273}^{24.7}$ | -0.9 | -0.4\% |
 | 95.1\% | ${ }_{212.8}^{227.1}$ | ${ }_{213.4}^{221.3}$ | 0.2 0.6 | 0.13\% |
 | 96.3\% | 197.1 | 197.2 | 0.1 | 0.1\% |
 | 97.5\% | 192.0 | 192.5 | 0.5 | 0.3\% |
 | 98.8\% 1000% | 183.9 181.2 | 184.0 181.6 | ${ }_{0}^{0.4}$ | - 0.2 \% |

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | WSIIP 203 W With Project | Absolute | Relative |
 | | Monthly EC | Monthly EC | (iiference | Difference (\%) |
 | 0.0\% | UMHOSSCM) | UMHOSSCM) | | |
 | 0.0\% | 12023.9 | 12007.9 | -16.0 | -0.1\% |
 | 1.2\% | 11590.2 | 11307.0 | | |
 | 2.5\% | 11431.9 | 10376.5 | 105 | |
 | 3.7\% | 10608.4 | 10121.2 | -487.2 | |
 | 4.9\% | 7502.8 | 7474.6 | -28,1 | |
 | 6.2\% | 7299.1 | 7435.4 | 136.3 | 1.9\% |
 | 7.4\% | 7264.1 | ${ }^{7302.7}$ | 38.6 | |
 | 8.6\% | 7230.1 | 7031.7 | -198 | |
 | 9.9\% | 7183.2 | 6783.6 | -419.6 | |
 | 11.1\% | 7095.5 | 6695.2 | 400.3 | |
 | 12.3\% | 7069.8 | 6678.0 | -391.9 | |
 | 13.6\% | 6882.3 | 6642.2 | -240.1 | ${ }^{3.5}$ |
 | 14.8\% | 6779.4 | 6591.2 | -188.2 | |
 | 16.0\% | ${ }^{6750.1}$ | ${ }^{6405.2}$ | -344.9 | -5.1\% |
 | 17.3\% | 6722.7 | 6325.9 | -396.8 | -5.9\% |
 | 18.5\% | 6714.3 | 6323.4 | -391.0 | 5.8\% |
 | 19.8\% | 6707.0 | 6308.6 | -398.5 | -5.9\% |
 | 210\% | 6487.2 | 6164.0 | -323.1 | -5.0\% |
 | 22.2\% | 6394.0 | ${ }_{6}^{6127.9}$ | -266.1 | -4.2\% |
 | 23.5\% | 6309.1 | 6121.7 | -187.4 | ${ }^{3} .0$ |
 | 24.7\% | 6264.8 | ${ }^{6070.2}$ | -194.6 | ${ }^{3.19}$ |
 | 25.9\% | $6^{6246.8}$ | 6026.1 | -220.7 | -3.5\% |
 | 27.2\% | 6198.5 | ${ }^{6000.0}$ | -198.5 | ${ }^{-3.2 \%}$ |
 | 28.4\% | 6184.7 | 5995.9 | -188.8 | -3.1\% |
 | 29.6\% | 6156.5 | 5971.7 | -184.7 | -3.0\% |
 | 30.9\% | 6105.0 | 5948.3 | -156.7 | 2.6\% |
 | 32.1\% | 5999.7 | 5935.4 | -64.3 | -1.1\% |
 | 33.3\% | 5996.7 | ${ }_{5}^{5933.1}$ | -63.6 | -1.1\% |
 | 34.6\% | 5978.3 | 5817.9 | -160.5 | -2.7\% |
 | 35.8\% | ${ }^{595953}$ | 5796.9 | -156.0 | -2.6\% |
 | 37.0\% | 5950.4 | 5796.2 | -154.2 | -2.6\% |
 | 38.3\% | 5791.7 | ${ }_{5607.5}$ | -184.2 | -3.2\% |
 | 39.5\% | 5786.2 | ${ }^{5604.3}$ | -181.8 | -3.1\% |
 | 40.7\% | 5764.7 | ${ }^{5598.5}$ | -166.2 | -2.9\% |
 | 42.0\% | 5609.2 | 5577.4 | -31.8 | -0.6\% |
 | 43.2\% | 5574.9 5295 | 5526.1 | -48.8 | -0.9\% |
 | 44.4\% | 5525.4 | 5394.2 | -131.2 | -2.4\% |
 | 45.7\% | ${ }_{5}^{5345.6}$ | ${ }_{5}^{5256.9}$ | -88.6 | -1.7\% |
 | 46.9\% | 5298.5 | 5246.2 | -52.3 | -1.0\% |
 | 48.1\% | 5281.7 | 5234.6 | -47.1 | -0.9\% |
 | 49.4\% | 5233.4 | ${ }^{5221.3}$ | -12.1 | -0.2\% |
 | 50.6\% | ${ }^{5201.3}$ | 5202.2 | 0.9 | 0.0\% |
 | 51.9\% | 5193.5 | 5170.2 | ${ }^{-23.3}$ | -0.4\% |
 | 53.1\% | 5104.9 | 5095.7 | -9.2 | -0.2\% |
 | 54.3\% | 5068.1 | 4954.5 | -113.6 | 2.2\% |
 | 55.6\% | 5053.2 | 4920.1 | -133.1 | -2.6\% |
 | 56.8\% | 4993.3 | ${ }^{4893.7}$ | -99.6 | -2.0\% |
 | 58.0\% | 4987.2 | 4892.7 | -94.5 | , |
 | 59.3\% | 4982.6 | 4861.9 | -120.7 | -2.4\% |
 | 60.5\% | 4913.1 | 4833.4 | -79.8 | .6\% |
 | 617.7\% | 4889.5 | ${ }^{4798.2}$ | -91.4 | -1.9\% |
 | 63.0\% | 4876.9 | 4797.2 | -99.7 | \% |
 | 64.2\% | 4829.6 | 4771.7 | -57.8 | \% |
 | 65.4\% | ${ }^{4768.8}$ | 4751.1 | 17.8 | -0.4\% |
 | ${ }^{66.7 \%}$ | 4704.6 | ${ }^{4713.7}$ | 9.1 | 2\% |
 | 67.9\% | 4679.6 | ${ }^{46677.4}$ | ${ }^{-12.2}$ | -0.3\% |
 | 69.1\% | 4596.0 | ${ }^{4537.8}$ | -58.3 | 3\% |
 | 70.4\% | 4415.1 | ${ }^{4442.4}$ | 27.3 | 0.6\% |
 | 71.6\% | ${ }^{4374.8}$ | ${ }^{4372.9}$ | 1.9 | 0\% |
 | 72.8\% | ${ }^{42288.3}$ | ${ }^{4300.6}$ | 72.4 | 7\% |
 | 74.1\% | ${ }^{3935.3}$ | ${ }^{393335}$ | 1.9 | 0\% |
 | 75.3\% | $\begin{array}{r}3660.6 \\ \hline 580\end{array}$ | ${ }_{3}^{3572.8}$ | -87.8 | -2.4\% |
 | 76.5\% | ${ }^{3580.1}$ | ${ }^{3566.0}$ | -20.1 | , 6% |
 | 77.8\% | ${ }^{34855.8}$ | ${ }^{3451.5}$ | -37.3 | -1.0\% |
 | 79.0\% | 3280.7 | 3200.9 | 9,8 | 4\% |
 | 80.2\% | 3209.0
 315.4 | ${ }^{31055}$ | -103.5 | -3.2\% |
 | 81.5\% | 3155.4 | ${ }^{3072.5}$ | 82.9 | \% |
 | 82.7\% | 3152.1 | 2999.0 | -161.1 | -5.1\% |
 | 84.0\% | ${ }^{3086.6}$ | ${ }^{293656}$ | -149.7 | 4.8\% |
 | 85.2\% | ${ }_{3}^{3062.4}$ | 2703.4 | -358.9 | -11.7\% |
 | 86.4\% | 2708.3 | ${ }^{2608.9}$ | -99.5 | -3.7\% |
 | 87.7\% | 2610.5 | ${ }^{2380.3}$ | 230.1 | -8.8\% |
 | 88.9\% | 2438.4 | ${ }^{236996}$ | -68.8 | ${ }^{-2.8 \%}$ |
 | 90.1\% | ${ }^{2421.3}$ | 2335.9 | -85.4 | \% |
 | ${ }^{91.44 \%}$ | 11674.9 | 2244.4 | ${ }_{569.4}$ | 34.0\% |
 | 92.6\% | 1525.1 | ${ }^{1410.8}$ | -114.3 | -7.5\% |
 | ${ }^{93.8 \%}$ | 1408.8 | ${ }^{1403.3}$ | 5.5 | -0.4\% |
 | 95.1\% | 1108.9 | 1056.5 | -52.4 | \% |
 | ${ }^{96.3 \%}$ | 999.7 | ${ }^{988.5}$ | 77.1 | \% |
 | 97.5\% | 925.4 | 883.1 | 42.3 | 4.6\% |
 | 98.8\% | 344.7 220.0 | ${ }_{216.6}^{279.9}$ | -64.9 | -18.8\% |

 | | September | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | WSIP 2033 With Project | | Reative |
 | Probability | Monthy E C | Monthly EC | (ititeren | Difference (\%) |
 | 0\% | (UMHOSCM) | SSCM) | | |
 | 0.0\% | 13941.1 | 13891.5 | -49.6 | 0.4\% |
 | 1.2\% | 13631.9 | 13549 | | |
 | 2.5\% | 13544.6 | 13540.5 | -6.1 | |
 | 3.7\% | 13513.0 | 13394.0 | | |
 | 4.9\% | 13508.3 | 13382 | -125.6 | |
 | ${ }^{6.2 \%}$ | ${ }^{13445.5}$ | ${ }^{13351.9}$ | -93, | |
 | 7.4\% | 13364.2 | 13176.2 | -188.1 | |
 | 8.6\% | 13349.8 | 13086.4 | -263.4 | |
 | 9.9\% | 13332.4 | 12985.6 | ${ }^{346.8}$ | |
 | 11.1\% | ${ }^{133221.3}$ | 12700.5 | -620.8 | -4.7\% |
 | 12.3\% | 13133.1 | 12617.6 | -515.5 | |
 | 13.6\% | 12948.0 | ${ }^{12600.0}$ | 979 | |
 | 14.8\% | 12797.1 | 12527.1 | -270.0 | -2.1\% |
 | 16.0\% | 127888.4 | ${ }^{123088.4}$ | -480.0 | |
 | 17.3\% | 12773.3 | 12283.8 | -489.5 | |
 | 18.5\% | 12773.1 | 12084.2 | -689.0 | -5.4\% |
 | 19.8\% | 12704.4 | 12054.3 | -650.2 | -5.1\% |
 | 21.0\% | 12609.5 | 111954.5 | -65.0 | -5.2\% |
 | 22.2\% | 12607.5 | 11793.1 | -814.4 | -6.5\% |
 | 23.5\% | 12593.5 | 11575.6 | -1017.9 | 1\% |
 | 24.7\% | 12542.4 | 11559.5 | -982.9 | -7.8 |
 | 25.9\% | ${ }^{12472.1}$ | 11438.2 | -1033.9 | -8.3\% |
 | 27.2\% | 12118.0 | 11424.7 | -693.3 | -5.7\% |
 | 28.4\% | ${ }^{11948.1}$ | ${ }^{111396.6}$ | -551.5 | -4.6\% |
 | 29.6\% | 11936.0 | 11335.1 | -600.9 | |
 | 30.9\% | 11932.8 | 11298.1 | -634.7 | -5.3\% |
 | 32.1\% | 11890.5 | 11166.1 | -724.3 | -6.1 |
 | 33.3\% | 11888.0 | ${ }_{11122.1}$ | -685.9 | -5.8\% |
 | 34.6\% | 11673.7 | 111098.4 | -575.4 | -4.9\% |
 | 35.8\% | ${ }_{11627.5}$ | 11075.4 | -552.1 | -4.7\% |
 | 37.0\% | 115993 | 11065.4 | -533.9 | \% |
 | 38.3\% | ${ }_{1151515}$ | 10999.8 | -515.7 | -4.5\% |
 | 39.5\% | 11411.2 | 10747.5 | -663.6 | -5.8\% |
 | 40.7\% | 11370.4 | 10647.9 | -722.4 | -6.4\% |
 | 42.0\% | 11346.9 | 10615.7 | -731.2 | -6.4\% |
 | 43.2\% | ${ }^{11212996}$ | 1059697 | -702.9 | -6.2\% |
 | 44.4\% | 11161.4 | 10499.8 | -661.7 | \% |
 | 45.7\% | 11129.1 | 10411.5 | -717.6 | -6.4\% |
 | 46.9\% | 10990.1 | 10358.8 | -631.3 | -5.7\% |
 | 48.1\% | 10949.5 | 10348.2 | -601.3 | -5.5\% |
 | 49.4\% | 107193 | 10237.1 | -482.2 | -4.5\% |
 | 50.6\% | 106999 | 10162.1 | -537.8 | -5.0\% |
 | 51.9\% | 10699.0 | 9892.7 | -797.4 | -7.5\% |
 | 53.1\% | 10562.5 | 9888.5 | -754.0 | -7.1\% |
 | 54.3\% | 10388.0 | ${ }^{9451.9}$ | -936.1 | -9.0\% |
 | 55.6\% | 6274.7 | 6023.2 | -251.5 | -4.0\% |
 | 56.8\% | 6156.5 | 5864.9 | -291.6 | \% |
 | 58.0\% | 6089.4 | 5816.3 | -273.0 | -4.5\% |
 | 59.3\% | 6056.9 | 5759.9 | -296.9 | \% |
 | 60.5\% | 6053.2 | 5742.1 | -311.1 | -5.1\% |
 | ${ }^{61.7 \%}$ | ${ }^{6048.9}$ | ${ }^{5684.0}$ | -364.9 | -6.0\% |
 | 63.0\% | 5931.1 | ${ }_{56776.6}$ | -254.5 | -4.3\% |
 | ${ }^{64.2 \%}$ | ${ }^{5868.3}$ | ${ }_{5630.1}$ | -238.2 | \% |
 | - $65.4 .4 \%$ | 5811.9 | 5613.3 | -198.6 | -3.4\% |
 | ${ }^{66.79 \%}$ | ${ }^{5882.0}$ | ${ }_{5609.9}$ | -192.1 | -3.3\% |
 | 67.9\% | 5793.6 | 5524.6 | -269.1 | -4.6\% |
 | 69.1\% | 5700.5 | 5424.4 | -276.1 | 8\% |
 | 70.4\% | 3357.7 | ${ }^{3207.8}$ | -149.9 | -4.5\% |
 | 71.6\% | 3262.7 | ${ }^{3151.6}$ | -111.1 | -3.4\% |
 | 72.8\% | 3202.9 | 3141.5 | -61.4 | -1.9\% |
 | 74.1\% | 3188.0 | 3141.0 | -47.0 | -1.5\% |
 | 75.3\% | ${ }^{3170.0}$ | ${ }^{3126.5}$ | -43.5 | -1.4\% |
 | 76.5\% | 3167.6 | ${ }^{3103.6}$ | -64.0 | 2.0\% |
 | 77.8\% | ${ }^{3165.5}$ | 3090.8 | -74.6 | -2.4\% |
 | 79.0\% | ${ }_{3162.8}$ | ${ }^{3089.4}$ | 73.5 | |
 | 80.2\% | ${ }^{3141.4}$ | ${ }^{3034.3}$ | -107.1 | -3.4\% |
 | 81.5\% | ${ }^{31355.9}$ | ${ }_{3}^{3016.6}$ | 119.3 | -3.8\% |
 | - 82.7% | ${ }_{30852}^{3082}$ | 2997.2 20935 | -85.1 | 2.8\% |
 | 84.0\% | 3053.2 | ${ }^{2983.5}$ | -69.6 | |
 | 85.2\% | ${ }_{3}^{3047.4}$ | ${ }_{2976.8}$ | ${ }^{-70.6}$ | -2.3\% |
 | ${ }^{86.4 \%}$ | ${ }^{3043.9}$ | ${ }^{2966.3}$ | 82.6 | |
 | 87.7\% | ${ }^{3006.4}$ | ${ }^{2936.6}$ | -69.8 | -2.3\% |
 | 88.9\% | ${ }^{2983.3}$ | ${ }^{28991.3}$ | -92.0 | .19\% |
 | 90.1\% | 2979.9 | ${ }^{2863.2}$ | -116.8 | |
 | ${ }^{91.44 \%}$ | ${ }_{2051.1}^{29610}$ | ${ }_{28377}^{2847}$ | 113.3 | 3.8\% |
 | ${ }_{93.8 \%}^{92.6 \%}$ | 2954.0 | ${ }^{2837.6}$ | -116.4 | -3.9\% |
 | 93.8\% | ${ }_{29188}^{2950.5}$ | 2818.9 | -131.6 | 5\% |
 | 95.1\% | 2918.8 | 2833.0 | -115.8 | \% |
 | 96.3% 97.5% | ${ }^{2914.3}$ | ${ }_{2}^{2766.9}$ | -147.4 | 5.1\% |
 | | | 2756.3 | 41.0 | -4.9\% |
 | | ${ }_{2,824.5}^{2841.5}$ | ${ }_{2,752.6}^{2753.2}$ | -71.9 | ${ }_{-2.5 \%}^{-3.10}$ |

 Figure SQ-24-b
 Sacramento River at Port Chicago (Roe Island), Monthly EC

 \begin{tabular}{|c|c|c|c|c|}
 \hline \& \& Ocrober \& \&

 \hline ${ }_{\text {Percent }}^{\substack{\text { Pxceedance }}}$ \& WSII 2030 Without \& WSIP 2030 With Project \& Absolute \&

 \hline Probability \& Monthly EC \& Monthly EC \& （itierersce \& ference（\％）

 \hline （\％） \& （UuHOSOSCM） \& （UnHoSicm） \& \&

 \hline 0．0\％ \& 20047.7 \& 19918.1 \& －129．6 \& 0．6\％

 \hline 1．2\％ \& 19932.7

 198185 \& ${ }^{1986338}$ \& －68．9 \&

 \hline 2．5\％ \& 19818.5 \& 19837.1 \& 18.6 \&

 \hline 3．7\％ \& 19887．4 \& 19880.2
 196958 \& -7.2
 -817 \&

 \hline 4．9\％ \& 19781.9 \& \& \&

 \hline 7．4\％ \& ${ }_{19579.2}^{19619}$ \& ${ }_{195996.7}^{1960.6}$ \& －17．6 \& 0．1\％

 \hline 8．9\％ \& 19565.3 \& 19161.3 \& －404．0 \& －2．1\％

 \hline 9．9\％ \& 19564.0 \& 19123.7 \& －400．3 \& －2．3\％

 \hline 11．1\％ \& 19557.8
 194173 \& 19079.5
 188160 \& －－478．3 \& －

 \hline －${ }_{\text {123\％}}^{12.6 \%}$ \& 19417.3
 19400.2 \& 18816.0
 1876.5 \& －601．3 \& －3．3\％${ }_{-3.2 \%}$

 \hline － 14.8% \& 184078．6 \& ${ }^{187755.2}$ \& －－123．5 \& －${ }_{\text {－}}^{\text {－}} \mathrm{-}$

 \hline 16．0\％ \& 18872.1
 188618 \& 18690.6
 18569 \& － 181.5
 -2924 \& －1．0\％

 \hline 18．5\％ \& 18842.0 \& 18415.7 \& ${ }_{-426.3}$ \& －2．3\％

 \hline 19．8\％ \& 18834.2 \& 18399.4 \& －434．9 \& －2．3\％

 \hline ${ }_{2}^{21.0 \%}$ \& 18775.0

 187370 \& | 18322.9 |
 | :--- |
 | 182118 | \& －452．1 \& －2．4\％

 \hline 23．5\％ \& 18729.4 \& 18209．2 \& －520．2 \& －2．8\％

 \hline 24．7\％ \& 18660.3 \& 18180.3 \& －480．0 \& －2．6\％

 \hline 25．9\％ \& | 18639.9 |
 | :--- |
 | 18555 |
 | 1 | \& | 18175.8 |
 | :--- |
 | 18063 | \& －${ }^{-4694.1}$ \& －2．5\％

 \hline 28．4\％ \& 18545.7 \& 18017.1 \& －528．5 \& －2．8\％

 \hline 29．6\％ \& 18539.8 \& 18003.4 \& －536．4 \& －2．9\％

 \hline －${ }^{30.9 \%}$ \& 18505.4
 18500.3 \& 17970.6
 179150 \& ${ }_{\text {－}}^{\text {－535．7 }}$ \& ${ }_{-3.2 \%}^{-2.9 \%}$

 \hline 33．3\％ \& 18463.6 \& 17825.0 \& －638．7 \& －3．5\％

 \hline 34．6\％ \& 18463.1 \& 17749.2 \& －714．0 \& －3．9\％

 \hline 年35．8\％ \& 18451.8
 18427.8 \& 17737.4
 17719.6 \& －714．4
 .708 .2 \& －3．9\％\％

 \hline 38．3\％ \& 18278.0 \& 17653.4 \& －624．6 \& 3．4\％

 \hline 39．5\％ \& 18172.7 \& 17617.9 \& －554．8 \& －3．1\％

 \hline ${ }^{40.7 \%}$ \& 18153.0
 17965.5 \& 17579.3

 17539.7 \& | － |
 | :--- |
 | -4273.7 |
 | -4.8 | \& ${ }_{-2.4 \%}^{-3.2 \%}$

 \hline 43．2\％ \& 17952.7 \& 17524.0 \& －428．8 \& －2．4\％

 \hline \& 17833.0 \& 17329.1 \& －504．0 \& －2．8\％

 \hline 45．7\％ \& 17777.1
 17676.5 \& 170190.0
 16990.5 \& －758．1
 .686 .0 \& －${ }_{-3.9 \%}^{-4.9 \%}$

 \hline 48．1\％ \& 17803.8 \& 16883.4 \& －720．3 \& －4．1\％

 \hline \& 17551.5 \& \& －791．8 \& －4．5\％

 \hline 50．1．9\％ \& ＋14532．6 \& ${ }_{1}^{164977.7} 1$ \& －1034．8
 -2185.9 \& －-1.9%

 \hline 53．1\％ \& 12039.5 \& 11902.9 \& －136．6 \& －1．1\％

 \hline 54．3\％ \& 11956.9 \& \& －199．9 \& －1．7\％

 \hline 55．6\％ \& 11887.8
 11823.1 \& ${ }_{1}^{117166.3}$ \& －111．6 \& －${ }_{\text {－}}$

 \hline 58．0\％ \& 11820.1 \& 11649.3 \& －170．8 \& －1．4\％

 \hline 年 59.3% \& 11721.8 \& 11618.0 \& －103．9 \& －0．9\％

 \hline 60．5\％ \& ${ }_{1116417.4}^{11651}$ \& ＋11557．8 \& －153．2 \&

 \hline 63．0\％ \& 11615.1 \& 11494.0 \& －121．1 \& －1．0\％

 \hline 64.2%
 654% \& \& 114991．2 \& \& －0．5\％

 \hline 65．7\％ \& 110254.5 \& 11375．3 \& -151.6
 1120.7 \& －1．9\％

 \hline 67．9\％ \& 8074.0 \& 8026.5 \& －47．5 \& －0．6\％

 \hline \& \& 7918.8 \& －132．0 \& ${ }^{-1.1 .6 \%}$

 \hline 70．1．6\％ \& ${ }_{7903.5}^{7961.5}$ \& ${ }^{7859.9}$ \& －－100．6 \& －1．1\％\％

 \hline 72．8\％ \& 7876.5 \& 7789.1 \& －87．4 \& －1．1\％

 \hline \& \& \& \& －0．6\％

 \hline 75．3\％ \& ${ }_{\text {7 }}^{77237.7}$ \& ${ }_{7}^{7736.4}$ \& －40．8
 8.4 \& ${ }^{-0.15 \%}$

 \hline 77．8\％ \& 7705.7 \& 7625.7 \& －80．1 \& －1．0\％

 \hline \& ${ }_{7} 7675.4$ \& ${ }^{7588.9}$ \& \&

 \hline 81．5\％ \& ${ }_{7616.8}^{764.0}$ \& ${ }_{7554.7}^{7504}$ \& －65．1 \& ${ }^{-0.8 \%}$

 \hline 82．7\％ \& 7611.2 \& 7515.5 \& －95．7 \& －1．3\％

 \hline －${ }^{845 \% \%}$ \& ${ }_{7} 7604.8$ \& ${ }^{7514.5}$ \& －90．4 \&

 \hline 80．4\％ \& ${ }_{7}^{7588.6}$ \& ${ }_{7502.3}^{754.4}$ \& －84．3 \& ${ }^{-1.1 \%}$

 \hline 877\％ \& ${ }^{7551.2}$ \& ${ }^{749574}$ \& －85．5 \& －1．1\％

 \hline \& 7544.8 \& 7457.4 \& －87．4 \& ${ }^{-1.12 \%}$

 \hline 91．4\％ \& ${ }_{7469.7} 7$ \& ${ }_{7381.1}^{747.2}$ \& －88．6 \& －1．2\％

 \hline 92．6\％ \& 7468.3 \& 7371.6 \& －96．6 \& －1．3\％

 \hline 93．8\％ \& 7433.5 \& 7365.9 \& －67．6 \& －0．9\％

 \hline 95．1\％ \& 7432.1 \& 7349.6 \& －82．5 \& －1．1\％

 \hline 96．3\％ \& 7424.5 \& 7337.5 \& －87．0 \& －1．2\％

 \hline 998．8\％ \& 7380.9
 65788 \& ${ }^{7294.8}$ \& －86．0 \& －1．2\％

 \hline 100．0\％ \& $\underset{\text { 2，479．4 }}{ }$ \& ${ }_{2,245.8}^{6051}$ \& －233．6 \& －9．4\％

 \hline
 \end{tabular}

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | November | | | | $\begin{gathered} \text { Percent } \\ \text { Exceadance } \\ \text { Probability } \end{gathered}$ | Jecember | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | WSII 2030 Without | WSIP 2030 With Prom | $\begin{gathered} \text { Absolute } \\ \substack{\text { Difference } \\ \text { (UMHOSICM) }} \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | | | WSII 2030 With Project
 Monthly EC | $\begin{gathered} \text { Absolute } \\ \text { Differen } \\ \text { (iuntosicicm) } \end{gathered}$ | $\begin{aligned} & \text { Refeative } \\ & \text { Difference (\%) } \end{aligned}$ |
 | | Monthy $E C$ C | Monthy EC （unHosical | | | | | | | |
 | （\％） | （203360 | 202438 | －922 | 0．5\％ | 0．0\％ | | 96504 | 274 | 0．1\％ |
 | 12\％ | 201136 | 1227 | 91 | 0\％ | 12\％ | 190139 | 190911 | 772 | ． |
 | 25\％ | 200376 | 201016 | 639 | 0．3\％ | 25\％ | 184995 | 184355 | | |
 | 3．7\％ | 20024.5 | 20017.3 | －7．2 | 0．0\％ | 3．7\％ | 18497.5 | 18433.9 | －63．6 | －0．3\％ |
 | 4．9\％ | 19994.0 | 20002.5 | 8.5 | 0．0\％ | 4．9\％ | 18469.0 | 18393.4 | －75．6 | －0．4\％ |
 | 6．2\％ | 19976.2 | 19985.7 | 9.4 | 0．0\％ | 6．2\％ | 18460.2 | 18166.4 | －293．8 | －1．6 |
 | 7．4\％ | 19967.6 | 19783.8 | ${ }^{183.8}$ | －0．9\％ | 7．4\％ | 18394.4 | 18157.5 | －236．9 | －1．3\％ |
 | 8．6\％ | 19966.0 | 19700.7 | －259．3 | －1．3\％ | 8．6\％ | 18278.0 | 18134.0 | －144．0 | －0．8\％ |
 | 9．9\％ | 19831.2 | 19534.1 | －297．1 | －1．5\％ | 9．9\％ | 18241.4 | 18083.6 | －157．8 | －0．9\％ |
 | 11．1\％ | 19705.1 | 19448.2 | －286．9 | －1．5\％ | 11．1\％ | 18236.2 | 17959.6 | －276．7 | －1．5\％ |
 | 12．3\％ | 19887.0 | 19204.6 | －482．4 | －2．5\％ | 12．3\％ | 18140.7 | 17893.6 | －247．1 | －1．4\％ |
 | 13．6\％ | 18741.1 | 18885.9 | －55．2 | －0．3\％ | 13．6\％ | 18078.3 | 17828.9 | 299．4 | －1．4\％ |
 | 14．8\％ | 18709.3 | 8656.1 | 53．2 | －0．3\％ | 14．8\％ | 18026.9 | 17616.7 | －410．3 | －2．3\％ |
 | 16．0\％ | 18700.1 | 18618.9 | －81．2 | －0．4\％ | 16．0\％ | 17988.9 | 17558.6 | －430．3 | －2．4\％ |
 | 17．3\％ | 18675.7 | 18211.0 | －464．7 | －2．5\％ | 17．3\％ | 17843.8 | 17535.2 | －308．5 | －1．7\％ |
 | 18．5\％ | 18623.1 | 18172.5 | －450．6 | －2．4\％ | 18．5\％ | 17286.0 | ${ }^{17265.3}$ | －20．7 | －0．1\％ |
 | 19．8\％ | 18808.9 | 18158.5 | －450．3 | －2．4\％ | 19．8\％ | 17024.0 | 17052.5 | 28.5 | 0．2\％ |
 | 21．0\％ | 18588.2 | 181577.4 | －430．9 | －2．3\％ | 21．0\％ | 16134.8 | 16683.2 | 548.4 | 3．4\％ |
 | 22．2\％ | 18437.0 | 18075.7 | －361．3 | －2．0\％ | 22．2\％ | 16111.4 | 16669.4 | 558.0 | 3．5\％ |
 | ${ }^{23.5 \%}$ | 18411.7 18396 | ${ }^{180066.6}$ | -345.1 .3484 | －1．9\％ | 23．5\％ | 15609.6 | 16504.6 | 895.0 | 5．7\％ |
 | 25．9\％ | 18286.9 | 18005.5 | -281.3 | －1．5\％ | 25．9\％ | 14870.9 | 15759.8 | 888.8 | 6．0\％ |
 | 27．2\％ | 18249.5 | 17974.5 | －275．1 | －1．5\％ | 27．2\％ | 14307.8 | 15444.1 | 1136.3 | 7．9\％ |
 | 28．4\％ | 18229.9 | 17873.6 | －356．3 | －2．0\％ | 28．4\％ | 13964.2 | 14996.0 | 1031.8 | 7．4\％ |
 | 29．6\％ | 18152.9 | 17787.1 | －365．8 | －2．0\％ | 29．6\％ | 13580.7 | 14362.5 | 781.8 | 5．8\％ |
 | 30．9\％ | 18145.2 | 17723.5 | －421．6 | －2．3\％ | 30．9\％ | ${ }^{135531.2}$ | ${ }^{135331.8}$ | 0.7 | 0．0\％ |
 | 32．1\％ | 18095.7 | 17687.7 | －408．0 | －2．3\％ | 32．1\％ | ${ }^{13528.3}$ | 13432.8 | －99．5 | －0．7\％ |
 | 隹 33.3% | 18069.7 17989 | ${ }^{176688.7}$ | －401．1 | － | 33．3\％ | ${ }^{13451.4}$ | 13348.0 | －103．3 | －0．8\％ |
 | 35．8\％ | 17867.6 | 17459.9 | －407．7 | －2．3\％ | 35．8\％ | 13112.1 | 13231.7 | 119.6 | 0．9\％ |
 | 37．0\％ | 17652.6 | 17428.2 | －224．4 | －1．3\％ | 37．0\％ | 12913.2 | 13047.7 | 134.5 | 1．0\％ |
 | 38．3\％ | 17313.2 170355 | 17219．8 | －93．4 | －0．5\％ | 38．3\％ | ${ }^{127330.8}$ | ${ }^{129292.4}$ | ${ }_{5}^{211.7}$ | 1．7\％ |
 | 39．5\％ | 17035.5 | 17037.7 | 2.2 | 0．0\％ | 39．5\％ | 12376.6 | 12893.0 | 516.4 | 4．2\％ |
 | 40．7\％ | 16984.0 | 16752.9 | －231．2 | －1．4\％ | 40．7\％ | 12236.6 | 12734.1 | 497.6 | 4．1\％ |
 | 4．4．2\％ | 16203.3 | 161699.3 | －33．9 | ${ }^{-0.2 \%}$ | 42．0\％ | ${ }^{122233.3}$ | 12493.6 | ${ }^{270.3}$ | ${ }^{2.2 \%}$ |
 | 4．4．4\％ | ${ }_{15143.1}^{1512.2}$ | ${ }_{14471.1}$ | -643.2 -672.0 | ${ }^{-0.44 \%}$ | 4．4．4\％ | ${ }_{111894.2}^{122712}$ | ${ }_{12172.8}^{12302.2}$ | ${ }^{1878.7}$ | ${ }^{\text {2．3\％}}$ |
 | 45．7\％ | 14204.0 | 13616.9 | －587．2 | －4．1\％ | 45．7\％ | 11836.3 | 12099．6 | 263.4 | 2．2\％ |
 | 46．9\％ | 14043.2 | 13159.1 | －884．1 | －6．3\％ | 46．9\％ | 11818.3 | 11995.5 | 177.2 | 1．5\％ |
 | 48．1\％ | 1399000 | ${ }^{1269598}$ | －1294．2 | －9．3\％ | 48．1\％ | 11639.9 | 11814.1 | 174．2 | 1．5\％ |
 | 49．4\％ | 11736.6 | 11632.5 | －104．1 | －0．9\％ | 49．4\％ | 11402.2 | 11780.1 | 377.9 | 3．3\％ |
 | 50．6\％ | 11677.5 | ${ }_{116350.8}$ | －40．7 | －0．3\％ | 50．6\％ | 11293.7 | 11724.0 | 430.4 | 3．8\％ |
 | 53．1\％ | 11650.4 11499.0 | 1154.3 | －110．1 | －0．9\％ | 51．9\％ | 11152.7 | 11618.1 | ${ }^{465.4}$ | ${ }^{4.2 \%}$ |
 | 54．3\％ | 11428.6 | 11342.2 | －86．4 | －0．8\％ | 54．3\％ | 10926.7 | 11112.4 | ${ }_{185.7}$ | 1．7\％ |
 | 55．6\％ | 11413.1 | 11335.6 | －77．5 | －0．7\％ | 55．6\％ | 10889.6 | 11014.7 | 125.1 | 1．1\％ |
 | 56．8\％ | 11410.1 | 11331.5 | －78．6 | －0．7\％ | 56．8\％ | 10755.9 | 10937.3 | 181.4 | 1．7\％ |
 | 58．0\％ | 11385.8 | 11328.2 112715 | －57．7 | －0．5\％ | 58．0\％ | 10462.4 | 10861.8 | 399.3
 3905 | 3．8\％ |
 | 59．3\％ | 11319．0 | 11271.5 | －47．4 | －0．4\％ | 59．3\％ | 10450．8 | 10741.3 | ${ }_{788}^{290.5}$ | 2．8\％ |
 | ${ }^{60.5 \%}$ | ${ }^{112959.2}$ | ${ }^{112260.0}$ | －35．2 | －0．3\％ | ${ }^{60.5 \%}$ | ${ }_{9}^{99479}$ | 10736.1 | $\begin{array}{r}789.1 \\ \hline 975\end{array}$ | 7．9\％ |
 | －61．7\％ | 10692.1 10520.5 | 10516.6 10370.0 | －175．5 | －1．1．4\％ | 61．7\％ | ${ }_{9}^{99659.8}$ | 10667.4 | ${ }^{977.5}$ | 10．1\％ |
 | 64．2\％ | 9168.4 | 9247.0 | 78.6 | 0．9\％ | 64．2\％ | ${ }_{8752.3}$ | 102844.4 | ${ }_{1}^{1532.1}$ | 17．5\％ |
 | 65．4\％ | 8852.8 | 8818.7 | －34．1 | －0．4\％ | 65．4\％ | 8423.0 | 9716.9 | 1293.9 | 15．4\％ |
 | 66．7\％ | 8768.3 | 8731.1 | －37．2 | －0．4\％ | 66．7\％ | 8077.6 | 9293.3 | 1215.6 | 15．0\％ |
 | 67．9\％ | ${ }_{8}^{8381.1}$ | 8334.0 8389 | －47．1 | －0．0\％ | 67．9\％ | 773414 | ${ }^{90099}$ | 1270.9 6955 | 16．4\％ |
 | 69．1\％ | 8267.0
 8878
 8 | ${ }^{8238.9}$ | －28．1 | －0．3\％ | 69．1\％ | ${ }^{7541.4}$ | ${ }_{\text {8236．9 }} 823$ | 695.5 4681 | ${ }^{9.2 \%}$ |
 | 70．4\％ | ${ }_{8}^{81877} 8$ | ${ }_{\substack{8186.3 \\ 88227}}$ | －1．5 | 0．0\％ | 70．4\％ | 6474．3 59003 | ${ }_{6}^{6942.5}$ | 468.1
 957 | 7.2% 175% |
 | 71．6\％ | 8150.0 8032.7 | 8122.7 8019.7 | －27．3 | －0．3\％ | 71．6\％ | ${ }_{4}^{5690.3}$ | ${ }_{\text {cher }}^{6866.0}$ | ${ }_{\text {1062．2 }}^{995.7}$ | －${ }_{\text {17．5\％}}$ |
 | 74．1\％ | 7915.6 | 7874.2 | －41．5 | ${ }^{-0.5 \%}$ | 74．1\％ | 4073.0 | 4760.3 | ${ }^{687.3}$ | 16．9\％ |
 | 75．3\％ | 7708.8 | 7642.7 | －66．1 | －0．9\％ | | 3675.9 | 3933.0 | 257.2 | 7．0\％ |
 | 76．5\％ | 7659.2 | 7630.9 | －28．2 | －0．4\％ | 76．5\％ | 3110.8 | 3907.8 | 797.0 | 25．6\％ |
 | 77．8\％ | ${ }_{76215}^{7642.7}$ | 7590.0 75853 | -52.7
 -362
 － | －0．7\％ | 77．8\％ | ${ }_{3}^{30433}$ | ${ }_{\substack{3577.0 \\ 31697}}$ | $\begin{array}{r}533.0 \\ \hline 1365\end{array}$ | 17．5\％ |
 | 79．0\％ | ${ }_{7}^{7621.5}$ | ${ }_{7}^{75555}{ }^{7}$ | －36．2 | －0．5\％ | 79．0\％ | ${ }^{3033.2}$ | ${ }_{3}^{3169.7}$ | 136.5 154 159 | 4．5\％ |
 | － | 7617.2 75801 | 7566.3 7545 | －50．9 | －0．7\％ | － 80.2% | 2947.6 28385 | ${ }_{2}^{2963.0}$ | 15.4 | 0．5\％ |
 | －81．5\％ | ${ }_{7505.7}^{750.1}$ | ${ }_{7}^{7994.5}$ | －${ }_{\text {－} 25.7}$ | ${ }^{-0.3 \%}$ | －${ }^{81.5 \%}$ 82\％ | ${ }_{2}^{28383.5}$ | ${ }_{2888.3}^{2958.1}$ | 119．6 | ${ }_{\text {a }}^{4.2 \%}$ |
 | 84．0\％ | 7501.6 | 7464.4 | －37．2 | －0．5\％ | 84．0\％ | 2069.4 | ${ }^{23388.0}$ | 268.5 | 13．0\％ |
 | 85．2\％ | ${ }^{7411.3}$ | ${ }^{7353.6}$ | －57．7 | －0．8\％ | 85．2\％ | 1950.9 | ${ }^{2243.5}$ | 292.6 | 15．0\％ |
 | 86．4\％ | ${ }^{7337.9}$ | 7344.6 | 6.7 | 0．1\％ | 86．4\％ | 1857.9 | 2229.3 | 371.4 | 20．0\％ |
 | 877\％\％ | 7310．3 | 7316．6 | 6.3 | 0．1\％ | | ${ }^{1240.8}$ | 1363.7 10785 | 122.9 225 | 9．9\％ |
 | 90．1\％ | 7236.7 | $\begin{array}{r}7270.0 \\ \hline 7020\end{array}$ | ${ }_{33,3}$ | －0．5\％ | ${ }^{80.1 \%}$ | ${ }^{10521.7}$ | ${ }_{9}^{1076.8}$ | ${ }^{22.5}$ | $\xrightarrow{2.17 \%}$ 10．4\％ |
 | 91．4\％ | 7206.5 | 7182.4 | －24．1 | －0．3\％ | 91．4\％ | 811.4 | 732.0 | －79．4 | －9．8\％ |
 | 92．6\％ | 7134.9 66139 | 7100.4 67930 | －34．5 | －0．9\％ | 92．6\％ | 556.0 3312 | 556.7 3401 | 0．7 | 0．1\％ |
 | ${ }^{935.8 \%}$ | 6613.9 | ${ }^{6793.0}$ | 179.1 | 2．7\％ | ${ }^{93.8 \%}$ | ${ }^{331.2}$ | 340.1 | 8.9 | |
 | 956．3\％ | 4301.9 2404 | 3594.9 2775.0 | －7707．1 370.5 | －16．4\％ | ${ }_{96.3 \%}^{95.1 \%}$ | ${ }_{229.2}^{251.7}$ | ${ }_{238.7}^{254.7}$ | 3.0 8.9 | |
 | 97．5\％ | 1684.7 | ${ }^{1611.5}$ | －73．2 | ${ }^{-4.3 \%}$ | 97．5\％ | 224.8 | ${ }_{224.1}^{20.1}$ | ${ }_{-0.7}$ | |
 | 98．8\％ | ${ }_{7868} 84.0$ | 1023.0 913． | 181.0 1265 | ${ }_{\text {2 }}^{21.5 \%}$ | 98．8\％ | 206.4 1887 | 208.3 1888 | 2.0 | |

 | $\begin{gathered} \text { Percent } \\ \text { Exxecance } \\ \text { Probababily } \end{gathered}$ | January | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Wethout | WSII 2033 With Project | Absolute | Reativ |
 | | Monthly EC | Monthly EC | （ifierence | fference（\％） |
 | 0．0\％ | 17885.8 | 18139.6 | 453.8 | 2．6\％ |
 | 1．2\％ | 54．4 | 17442.4 | | |
 | 2．5\％ | 22.0 | 16672.7 | －49．3 | |
 | 3．7\％ | 15909.1 | 15568.2 | | |
 | 4．9\％ | 549.0 | 15040.0 | | |
 | 6．2\％ | 14424.0 | 14495.1 | 71.1 | |
 | 7．4\％ | 14247.1 | 1359. | 112.3 | |
 | 8．6\％ | 14155.8 | 14212.9 | | |
 | 9．9\％ | 14124.4 | 14124.6 | 0.2 | |
 | 11．1\％ | 14076.3 | 13953.5 | 122.8 | |
 | 12.3 | 345．6 | 13951.9 | ， | |
 | 13．6\％ | 13629.4 | 13772.2 | 142.9 | |
 | 4．8\％ | 565.6 | 656．7 | 91.1 | |
 | 16．0\％ | 13256.2 | 13474.4 | 218.2 | |
 | 17．3\％ | 899．0 | 13280.3 | 383.3 | |
 | 18．5\％ | 12805.5 | 13213.4 | 407.9 | |
 | 19．8\％ | 564．3 | 13147.7 | 583.4 | |
 | 21．0\％ | 12530.2 | 12809.4 | 279.1 | 2．2\％ |
 | 22．2\％ | 12482.2 | 12518.0 | 35.8 | |
 | 23．5\％ | 12438.5 | 12498.8 | 60.3 | 0．5\％ |
 | 24．7\％ | 12197.8 | 12456.4 | 258.6 | |
 | 25．9\％ | 12020.3 | 12414.7 | 394.5 | 3．3\％ |
 | 27．2\％ | 11880.7 | 12075.7 | 195.0 | |
 | 28．4\％ | 11774.5 | 12055.0 | 280.5 | 2．4\％ |
 | 29．6\％ | 11381.3 | 12029.9 | 648.6 | |
 | 30．9\％ | 11201.0 | 11384.6 | 183.6 | 1．6\％ |
 | 32．1\％ | 10279．2 | 11308.8 | 1029 | |
 | 33．3\％ | 9835.7 | 11191.1 | 1355.4 | 13．8\％ |
 | 34．6\％ | 7984.4 | 9624.7 | 1640.4 | |
 | 35．8\％ | 7798.5 | 9465.5 | 1667.0 | 21．4\％ |
 | 37．\％ | 7208.8 | 8727.7 | 1518.9 | 21．1\％ |
 | 38．3\％ | 7145.7 | 8690.2 | 1544.5 | 21．6\％ |
 | 39．5\％ | 7138.2 | 8663.2 | 1485.0 | 20．8\％ |
 | 40．7\％ | 6750．0 | 8063.2 | 1313.2 | 19．5\％ |
 | 42．0\％ | 6505.0 | 7933.0 | 1428.0 | 22．0\％ |
 | 43．2\％ | ${ }_{6342.0}$ | 7440.2 | 1098.1 | 17．3\％ |
 | 44．4\％ | 6151.1 | 7425.9 | 1274.8 | 20．7\％ |
 | 45．7\％ | ${ }^{5632.6}$ | 6977 | 1345.1 | 23．9\％ |
 | 46．9\％ | ${ }_{5628.3}$ | 6899.5 | 1271.2 | 22．6\％ |
 | 48．1\％ | 5496.7 | ${ }^{6400.3}$ | 903.6 | 16．4\％ |
 | 49．4\％ | 5433.4 | 6288.1 | 844.7 | 15．5\％ |
 | 50．6\％ | 4891.7 | ${ }^{6284.1}$ | 1392.4 | 28．5\％ |
 | 51．9\％ | 4704．4 | 5875.2 | 1170.7 | 24．9\％ |
 | 53．1\％ | 4297.0 | 5723.0 | 1425.9 | 33．2\％ |
 | 54．3\％ | 4291.7 | 5430.9 | 1139.2 | 26．5\％ |
 | 55．6\％ | 3887.0 | 4875.7 | 988.7 | 25．4\％ |
 | 56．8\％ | ${ }^{3886.9}$ | ${ }^{4381.2}$ | 494.3 | 12．7\％ |
 | 58．0\％ | 2926.7 | 37760.6 | 833.9 | 28．5\％ |
 | 59．3\％ | ${ }^{28282.0}$ | 3628.0 | 766.0 | 26．8\％ |
 | 60．5\％ | 2259.5 | 3199.4 | 939.9 | 41．6\％ |
 | 61．7\％ | ${ }^{1685.6}$ | 2056.0 | 370.3 | 22．0\％ |
 | 63．0\％ | 1425.2 | 1840.0 | 414.9 | 29．1\％ |
 | 64．2\％ | 1292.4 | 1767.5 | 475.1 | 36．8\％ |
 | 65．4\％ | 1031.5 | ${ }^{12088.6}$ | 177.1 | 17．2\％ |
 | ${ }^{66.7 \%}$ | 969.0 | ${ }^{1203.8}$ | 234.8 | 24．2\％ |
 | 67．9\％ | 949．1 | ${ }^{11555.0}$ | ${ }^{205.9}$ | ． 7% |
 | 69．1\％ | 902.5 | 1085.8 | ${ }^{183.3}$ | ${ }^{20.37 \%}$ |
 | 70．4．6\％ | ${ }_{654.0}$ | 1054.5 810.8 | ${ }_{156.8}^{228.6}$ | ${ }_{\text {24．0\％}}$ |
 | 72．8\％ | 622.1 | 670.3 | 48.2 | 7．7\％ |
 | 74．1\％ | 565.1 | 664.0 | 98.9 | 17．5\％ |
 | 75．3\％ | 543.8 | 609.7 | 66.0 | 12．1\％ |
 | 76．5\％ | 464.4 | 497.3 | 32.9 | 7．1\％ |
 | 77．8\％ | 425.2 | 475.5 | 50.3 | 11．8\％ |
 | 79．0\％ | 378.2 | ${ }^{446.8}$ | ${ }^{68.6}$ | 18．1\％ |
 | 80\％${ }_{\text {80，}}$ | 360.6 346.5 | 376.8 362.5 | 16.2 16.0 | 4．5\％\％ |
 | 82．7\％ | 330.6 | 345.2 | 14.5 | 4．4\％ |
 | 84．0\％ | 321.2 | 329.8 | 8.6 | 2．7\％ |
 | 85．2\％ | 313.9 | 314.6 | 0.7 | 0．2\％ |
 | 86．4\％ | 281.0 | 302.2 | 21.2 | |
 | －${ }^{87.7 \%}$ | ${ }_{2624}^{267.3}$ | 271.9 2650 | 4.6 | |
 | 90．1\％ | 231.9 | 236.0 | 4.1 | |
 | 91．4\％ | 23.6 | 232.9 | 2.2 | |
 | 92．6\％ | 230.3 | 232.1 | 1.9 | |
 | 93．8\％ | 211.9 | 216.8 | 4.9 | |
 | 95．1\％ | 198.7 | 198.9 | 0.2 | |
 | 96．3\％ | ${ }^{195.5}$ | 196.8 | 1.4 | |
 | －98．5\％ | $\begin{array}{r}192.5 \\ 192.4 \\ \hline\end{array}$ | ${ }_{1}^{1993.3}$ | 1.8 1.0 | |
 | 100．0\％ | 191.1 | 191.2 | 0.0 | |

 Table SQ-24-b

 \begin{tabular}{|c|c|c|c|c|}
 \hline \& \& February \& \&

 \hline ${ }_{\substack{\text { Perceent } \\ \text { Excedance }}}^{\text {a }}$ \& ${ }_{\text {WSIP }}^{\text {2030 }}$ Pricthout \& WSIP 2030 With Project \& Absolute \&

 \hline Probability \& Monthly EC \& Monthy EC \& (itiference \& Difference (\%)

 \hline (\%) \& (UMHOSSCM) \& (UMHOSSCM) \& \&

 \hline 0.0\% \& 15791.2 \& 15295.1 \& -496.0 \& -3.1\%

 \hline 1.2\% \& 14283.2 \& 13930.2 \& -353.0 \& -2.5\%

 \hline 2.5\% \& 12131.3 \& 12281.7 \& 150.4 \& 1.2\%

 \hline 3.7\% \& 11188.2 \& ${ }^{12270.2}$ \& 1082.0 \& 9.7\%

 \hline 4.9\% \& 10816.2 \& 10787.9 \& -28.3 \& 0.3\%

 \hline 6.2\% \& 10792.3 \& 10573.8 \& -218.5 \& -2.0\%

 \hline 7.4\% \& 9096.8 \& ${ }^{9899.3}$ \& 802.5 \& 8.8\%

 \hline 8.6\% \& ${ }^{8926.5}$ \& ${ }_{9}^{9779.9}$ \& -814.5 \& 9.6\%

 \hline 9.9\% \& 8889.9 \& 9404.8 \& 514.9 \& 5.8\%

 \hline 11.19\% \& 8409.3 \& 8980.6 \& 571.3 \& 6.8\%

 \hline 12.3\% \& 8126.1 \& 8883.9 \& 757.8 \& 9.3\%

 \hline 13.6\% \& 8069.5 \& 8835.9 \& 766.4 \& 9.5\%

 \hline 14.8\% \& 7398.0 \& ${ }^{8555.8}$ \& 1157.8
 11072 \& 15.7\%

 \hline 16.0\% \& 6140.1 \& ${ }^{7247.3}$ \& ${ }^{1107.2}$ \& 18.0\%

 \hline 17.3\% \& 4943.6 \& ${ }_{6313.5}$ \& 1369.9 \& 27.7\%

 \hline 18.5\% \& ${ }^{4736.4}$ \& 6112.8 \& ${ }^{1376.4}$ \& 29.17\%

 \hline 19.8\% \& ${ }^{47255.8}$ \& ${ }_{5}^{5558.2}$ \& ${ }_{8}^{832.3}$ \& 17.6\%

 \hline 21.0\% \& ${ }^{46877}$ \& 5502.6 \& ${ }^{815.1}$ \& 17.4\%

 \hline ${ }_{2}^{22.2 \%}$ \& 4368.7 \& 5454.2 \& ${ }^{10855.5}$ \& ${ }_{212 \%}^{24.8 \%}$

 \hline ${ }^{23.4 .7 \%}$ \& ${ }_{40377.8}^{4141.6}$ \& 5018.5
 4788.9 \& ${ }_{731.1}^{876.8}$ \& - ${ }_{\text {21.2\% }}^{18.1 \%}$

 \hline 25.9\% \& 4033.6 \& 4431.6 \& 398.0 \& 9.9\%

 \hline 27.2\% \& 3920.1 \& 4430.8 \& 510.8 \& 13.0\%

 \hline 28.4\% \& 3555.2 \& 4329.1 \& 773.9 \& 21.8\%

 \hline 29.6\% \& 3539.8

 3 \& ${ }_{1293.1}$ \& 589.3
 7755 \& 16.6\%

 \hline 30.9\% \& ${ }^{32877}$ \& 4063.3 \& 775.5 \& 23.6\%

 \hline 32.1\% \& ${ }^{3260.0}$ \& 3978.1 \& 718.1 \& ${ }_{\text {2 }}^{22.0 \%}$

 \hline 33.3%
 34.6% \& ${ }^{28350}$ \& ${ }_{3}^{3772.4}$ \& ${ }^{927.4}$ \& 327\%

 \hline 34.6\% \& 2829.6 \& ${ }^{3226.2}$ \& 339.6 \& 14.0\%

 \hline 35.8\% \& 2741.4 \& 3201.3 \& 459.9 \& 16.8\%

 \hline 37.0\% \& 2698.0 \& 3198.6 \& 500.6 \& 18.6\%

 \hline 38.3\% \& ${ }_{2}^{2448.2}$ \& | 2884.8 |
 | :--- |
 | 2885 | \& ${ }_{\text {che }}^{436.6}$ \& 17.8\%

 \hline 39.5\% \& ${ }^{2276.2}$ \& 2881.5 \& ${ }^{6055} 3$ \& 26.6\%

 \hline 40.7\%
 42.0% \& ${ }^{2108.5}$ \& ${ }^{22977.5}$ \& 189.0 \& 9.0\%

 \hline 42.0\% \& 2044.2 \& 2112.2 \& 68.0 \& 3.3\%

 \hline 43.2\% \& ${ }^{1866.5}$ \& ${ }^{1886.0}$ \& 19.5 \& 1.0\%

 \hline 44.4%
 45% \& 1662.0 \& 1873.1 \& 211.1 \& ${ }^{12.7 \%}$

 \hline 45.7\% \& 1604.9
 14715 \& ${ }^{1793.2}$ \& 188.2 \& 117.7\%

 \hline 46.9\% \& 1471.5
 14078 \& ${ }_{16616}^{174.9}$ \& 269.4
 2539 \& 18.3%
 18.0%

 \hline 4.4.4\% \& 14077.8
 1343.7 \& 11661.6
 1549.9 \& ${ }_{206.2}^{253.9}$ \& - 18.3%

 \hline 50.6\% \& ${ }^{12515}$ \& 1534.8 \& 2829 \& 22.6\%

 \hline 51.9\% \& 1229.9 \& 1527.0 \& 297.1 \& 24.2\%

 \hline 53.1\% \& 1207.7 \& 1466.5 \& 258.8 \& 21.4\%

 \hline 54.3\% \& ${ }^{11922.6}$ \& 1441.0 \& ${ }_{248}^{24.4}$ \& 20.8\%

 \hline 55.6\% \& ${ }_{1}^{11635.2}$ \& ${ }^{1406.4}$ \& ${ }_{232}^{243}$ \& 20.9\%

 \hline 56.8\% \& 1135.4
 1007.0 \& 1367.6

 1199.7 \& | 232.2 |
 | :--- |
 | 192.8 | \& 20.5\%

 \hline 59.3\% \& 11047.0
 5
 5 \& ${ }^{687.3}$ \& 192.8
 39.6 \& 6.1\%

 \hline ${ }^{60.5 \%}$ \& 592.5
 5579 \& ${ }_{6}^{682.7}$ \& 90.2 \&

 \hline 61.7\% \& 557.9
 552.4 \& 681.4 \& ${ }_{\text {cha }}^{123.5}$ \& ${ }^{22.19 \%}$

 \hline 63.0\% \& 552.4
 552.0 \& 622.1
 593.7 \& ${ }_{41.7}^{69.7}$ \& 7.6\%

 \hline 65.4\% \& 548.8 \& 553.0 \& 4.2 \& 0.8\%

 \hline 66.7\% \& 545.4 \& 551.9 \& 6.4 \& 1.2\%

 \hline 67.9\% \& ${ }_{341.7}^{3790}$ \& 390.1
 345.9 \& 11.1
 4.2 \& ${ }_{12 \%}^{2.9 \%}$

 \hline 70.4\% \& 330.9 \& 345.7 \& 14.9 \& 4.5\%

 \hline 71.6\% \& 293.9 \& 337.1 \& 43.3 \& 14.7\%

 \hline 72.8\% \& ${ }_{274.3}^{284.4}$ \& ${ }_{293}^{302.5}$ \& 18.1
 190 \& 年.4\%

 \hline 75.3\% \& 259.5 \& 268.9 \& 9.4 \& 3.6\%

 \hline 76.5\% \& 247.5 \& 249.5 \& 2.0 \& 0.8\%

 \hline 77.8\% \& ${ }_{2343}^{2436}$ \& ${ }_{2298}^{24.5}$ \& ${ }_{-4.9}$ \& -1.6\%

 \hline 80.2\% \& 221.5 \& 227.6 \& 6.1 \& 2.7\%

 \hline 815.5\% \& 220.3 \& 224.9 \& 4.6 \& 2.1\%

 \hline - 82.7% \& 219.7
 2155 \& ${ }_{2223}^{224.6}$ \& 4.9
 6.9 \& ${ }_{3,2 \%}^{2.2 \%}$

 \hline 85.2\% \& 214.1 \& 218.3 \& 4.2 \& 2.0\%

 \hline 86.4\% \& 208.7 \& 2097 \& 0.9 \& 0.5\%

 \hline 87.7%
 889% \& 208.6
 2079 \& ${ }_{2089}^{209.1}$ \& ${ }_{1}^{0.5}$ \& 0.2\% 0

 \hline 90.1\% \& 207.8 \& 208.6 \& 0.7 \& 0.4\%

 \hline 914.4\% \& 207.6 \& 208.0 \& 0.4 \& 0.2\%

 \hline ${ }_{93.8 \%}^{92.6 \%}$ \& ${ }_{203.8}^{205.6}$ \& ${ }_{203.9}^{205.6}$ \& 0.0 \& 0.0\%

 \hline 95.1\% \& 202.6 \& 203.3 \& 0.7 \& 0.3\%

 \hline 96.3\% \& 198.5 \& 2023 \& 3.7 \& 1.9\%

 \hline 97.5\% \& 198.0 \& 2020 \& 4.0 \& 2.0\%

 \hline 100.0\% \& ${ }_{185.3}^{19.2}$ \& | 198.4 |
 | :--- |
 | 19 | \& 1.9

 0.0 \& 1.0\%

 \hline
 \end{tabular}

 | | March | | | | April | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | 2030 Without | WSIP 2030 With Project | Absolute | | Percent | 2030 Without | WSIP 2030 With Project | | |
 | Exceaance | ${ }_{\text {Pronthec }}^{\text {Prom }}$ | Monthy EC | Difierence | Difference (\%) | Exceeance | ${ }_{\text {Proited }}^{\text {Praty }}$ EC | Monthy EC | Difierence | Difference (\%) |
 | (\%) | (UMHOSCCM) | (UuHHosicm) | (UMHOSSCM) | | | (UMHHSICM) | (UuHosicm) | | |
 | 0.0\% | 12354.4 | 12106.7 | 247.7 | | | 12768.7 | 12692.3 | -76.4 | |
 | 1.2\% | 9755.9 | 10163.6 | 407.7 | 4.2\% | 1.2\% | 11457.1 | 11491.6 | 34.5 | |
 | 2.5\% | 8486.7 | 8876.0 | 389.3 | 4.6\% | 2.5\% | 10941.9 | 1077 | -162.1 | |
 | 3.7\% | 8096.2 | 88 | 765.4 | 9.5\% | 3.7\% | 10535.2 | 10479.7 | -55.5 | |
 | 4.9\% | 7444.1 | 8510.8 | 1066.7 | 14.3\% | 4.9\% | 10266.3 | 10225.0 | -41.3 | -0.4 |
 | 6.2\% | 7416.3 | 8117.2 | 700.8 | 9.4\% | 6.2\% | 9255.1 | 9007.3 | 247.8 | -2.7 |
 | 7.4\% | 7378.6 | 8075.1 | 696.5 | 9.4\% | 7.4\% | 9061.4 | 8940.4 | -120.9 | -1.3\% |
 | 8.6\% | 7210.2 | 7880.8 | 670.6 | 9.3\% | 8.6\% | 8906.9 | 8850.7 | -56.2 | -0.6 |
 | 9.9\% | 7200.0 | 7651.6 | 445.6 | 6.2\% | 9.9\% | 8290.7 | 8438.0 | 147.3 | 1.8\% |
 | 11.1\% | 7178.5 | 7443.2 | 264.7 | 3.7\% | 11.1\% | 8090.5 | 3.4 | 2.9 | 3.4\% |
 | 12.3\% | 7072.9 | ${ }^{7312.6}$ | 239.7 | 3.4\% | 12.3\% | 8035.2 | 8279.8 | 244.5 | 3.0\% |
 | 13.6\% | 6978.8 | 7223.4 | 244.5 | 3.5\% | 13.6\% | 7928.4 | 8213.9 | 285.5 | 3.6\% |
 | 14.8\% | 6945.8 | ${ }^{6837.0}$ | -108.7 | 1.6\% | 14.8\% | 7917.7 | 7988.4 | 70.7 | 0.9\% |
 | 16.0\% | 6132.5 | ${ }_{6602.6}$ | 470.1 | 7.7\% | 16.0\% | 7188.3 | 7561.4 | 3.0 | 5.2\% |
 | 17.3\% | 5332.0 | 5767.7 | 435.7 | 8.2\% | 17.3\% | 7094.3 | 7053.9 | -40.4 | -0.6\% |
 | 18.5\% | 4729.7 | 5339.2 | 609.4 | 12.9\% | 18.5\% | ${ }^{6859.2}$ | 6855.9 | 3.3 | 0.0\% |
 | 19.8\% | 4721.0 | 5255.2 | 534.2 | 11.3\% | 19.8\% | ${ }^{6806.9}$ | 6838.5 | 31.6 | 0.5\% |
 | 21.0\% | 4622.0 | 4890.0 | 268.0 | 5.8\% | 21.0\% | ${ }^{6322.8}$ | 6577.4 | 194.6 | 3.0\% |
 | 22.2\% | 4240.0 | 4788.8 | 548.8 | 12.9\% | 22.2\% | 6252.5 | 6396.7 | 144.2 | 2.3\% |
 | 23.5\% | ${ }^{4229.1}$ | 4550.4 | 351.3 | 8.3\% | 23.5\% | 6048.1 | 6088.5 | 40.4 | 0.76 |
 | 24.7\% | 4197.2 | 4532.4 | 335.2 | 8.0\% | 24.7\% | 5764.0 | 5849.5 | 85.4 | 1.5\% |
 | 25.9\% | 4001.0 | ${ }^{4220.8}$ | ${ }_{2197}^{2197}$ | 5.5\% | 25.9\% | 5688.5 | 5811.9 | 123.4 | ${ }^{2.2 \%}$ |
 | 27.2\% | ${ }^{3903.2}$ | 4120.9 | 217.7 | 5.6\% | 27.2\% | 5357.7 | 5524.6 | 166.9 | 3.1\% |
 | 28.4\% | 3778.1 | ${ }^{40077.2}$ | 289.2 | 7.8\% | 28.4\% | ${ }^{5354.8}$ | 5487.5 | 132.7 | 2.5\% |
 | 29.6\% | 3514.1 | 3907.1 | 393.0 | 11.2\% | 29.6\% | 5311.5 | ${ }^{5356.3}$ | 44.7 | 0.8\% |
 | 30.9\% | ${ }^{3251.6}$ | 37706.4 | 454.8 | 14.0\% | 30.9\% | 5283.4 | 5261.1 | -22.4 | -0.4 |
 | 32.1\% | ${ }^{3218.0}$ | 3771.0 | 483.0 | 15.0\% | 32.1\% | 5026.3 | 4969.4 | -56.8 | -1.1\% |
 | 33.3\% | ${ }^{3207.3}$ | ${ }^{37700.5}$ | 493.2 | 15.4\% | 33.3\% | 4957.2 | 4922.0 | -35.2 | -0.7\% |
 | 34.6\% | ${ }^{3150.9}$ | ${ }^{3653.9}$ | 503.1 | 16.0\% | 34.6\% | 4899.3 | 4897.0 | -2.3 | 0.0\% |
 | 35.7\% | ${ }^{3043.3}$ | ${ }^{3565575}$ | 522.2 | 17.2\% | 35.8\% | 4768.0 | 4861.8 | 93.7 | 2.0\% |
 | 37.0\% | 2850.3 | 3457.7 | 607.5 | 21.3\% | 37.0\% | 4536.1 | ${ }^{4776.3}$ | 240.2 | 5.3\% |
 | 38.3\% | ${ }^{28277.9}$ | 3451.9 | ${ }^{624.0}$ | 22.1\% | 38.3\% | 4461.3 | 4740.0 | 278.7 | 6.2\% |
 | 39.5\% | 2766.4 | ${ }^{3349.3}$ | 582.9 | ${ }^{21.1 \%}$ | 39.5\% | ${ }^{4370.5}$ | 4662.7 | 292.2 | 6.7\% |
 | 40.7\% | 2634.9 | 31017 | 466.8 | 17.7\% | 40.7\% | 4302.2 | 4526.7 | 224.5 | 5.2\% |
 | 42.0\% | 2445.0 | 3088.9 | 643.8 | 26.3\% | 42.0\% | ${ }^{42655} 7$ | 4400.0 | 134.3 | 3.1\% |
 | 43.2\% | ${ }_{2368.7}^{23685}$ | 2280.5 | ${ }_{5}^{611.8}$ | 25.8\% | 43.2\% | 4220.5 | 4247.3 | 26.8 | 0.6\% |
 | 44.4\% | ${ }^{23655.8}$ | 2988.7 | 542.9 | 22.9\% | 44.4\% | 4052.0 | 4226.7 | 174.7 | 4.3\% |
 | 45.7\% | ${ }^{2214.3}$ | 2884.1 | 639.8 | 28.9\% | 45.7\% | 4020.4 | 4141.1 | 120.7 | 3.0\% |
 | 46.9\% | 2172.7 | ${ }^{2821.6}$ | 648.8 | 29.9\% | 46.9\% | ${ }^{3946.6}$ | 4095.6 | 149.1 | 3.8\% |
 | 48.1\% | 1937.4 | ${ }^{2440.6}$ | 503.2 | ${ }^{26.0 \%}$ | 48.1\% | 3776.2 | 4024.2 | 248.1 | 6.6\% |
 | 49.4\% | 1483.1 | 1996.6 | 513.5 | 34.6\% | 49.4\% | ${ }^{3525.3}$ | ${ }^{3899.6}$ | 374.3 | 10.6\% |
 | 50.6\% | 1474.1 | ${ }^{1930.6}$ | ${ }^{457.5}$ | 31.0\% | 50.6\% | ${ }^{3237.2}$ | ${ }^{3329.8}$ | 92.6 | 2.9\% |
 | 51.9\% | ${ }^{13441.6}$ | 1619.8 | 278.2 | 20.7\% | 51.9\% | ${ }^{3114.0}$ | ${ }^{3128.6}$ | 14.5 | 0.5\% |
 | 53.1\% | ${ }^{1257.0}$ | ${ }^{1474.9}$ | 217.9 | 17.3\% | 53.1\% | ${ }^{3003.1}$ | ${ }^{3020.1}$ | 17.0 | 0.6\% |
 | 54.3\% | 1214.1 | 1347.2 | 133.1 | 11.0\% | 54.3\% | ${ }^{2939.8}$ | ${ }^{3018.8}$ | 79.0 | 2.7\% |
 | 55.6\% | 1029.7 | ${ }^{12877.1}$ | ${ }^{257.4}$ | 25.0\% | 55.6\% | ${ }^{2845.7}$ | ${ }^{2802.4}$ | -43.3 | -1.5\% |
 | 56.8\% | 1013.7 | ${ }^{1268.0}$ | ${ }^{254.3}$ | 25.1\% | 56.8\% | 2551.0 | ${ }^{27655.7}$ | 214.6 | 8.4\% |
 | 58.0\% | 919.8 | ${ }^{1140.5}$ | 220.7 | 24.0\% | 58.0\% | 2547.0 | ${ }^{2590.4}$ | 43.4 | 1.7\% |
 | 59.3\% | 915.0 | 1117.0 | 2020 | ${ }^{22.1 \%}$ | 59.3\% | 2149.6 | ${ }^{2554.1}$ | 404.5 | 18.8\% |
 | 60.5\% | 910.0 | ${ }^{1087.6}$ | 177.6 | 19.5\% | 60.5\% | ${ }^{21333.5}$ | ${ }^{2316.5}$ | 183.0 | 8.6\% |
 | 61.7\% | 809.9 | 1012.9 | 203.0 | 25.1\% | 61.7\% | 2058.3 | 2157.3 | 99.0 | 4.8\% |
 | 63.0\% | ${ }_{70.5}$ | ${ }_{7}^{813.4}$ | 52.9 | 7.0\% | 63.0\% | ${ }^{2012.6}$ | 2156.5 | 143.8 | 7.1\% |
 | ${ }^{64.2 \%}$ | 731.1 | ${ }^{739.7}$ | 8.7 | 1.2\% | ${ }^{64.2 \%}$ | ${ }^{19855.8}$ | ${ }^{2034.3}$ | 48.5 | 2.4\% |
 | 65.4\% | 575.8 | 583.4 | 7.6 | 1.3\% | 65.4\% | 17771.0 | ${ }^{2017.6}$ | 246.6 | 13.9\% |
 | ${ }^{66.7 \%}$ | 548.1 | ${ }^{573.5}$ | ${ }^{25.4}$ | 4.6\% | ${ }^{66.7 \%}$ | 1705.9 | 1781.3 | 75.4 | 4.4\% |
 | 67.9\% | 532.6 | 567.0 | 34.4 | 6.5\% | 67.9\% | 1419.7 | 1709.0 | ${ }^{289.2}$ | 20.4\% |
 | 69.1\% | 494.6 | 560.5 | 65.9 | ${ }^{13.3 \%}$ | 69.1\% | ${ }^{1294.3}$ | 1477.2 | 176.8 | 13.7 |
 | 70.4\% | ${ }^{452.1}$ | 508.9 | 56.8 | 12.6\% | 70.4\% | ${ }^{12291.1}$ | ${ }^{13477.6}$ | 56.6 | 4.4\% |
 | 71.6\% | 397.3 | ${ }^{431.2}$ | 33.9 | 8.5\% | 71.6\% | ${ }^{1286.8}$ | 1288.4 | 1.6 | 0.1\% |
 | 72.8\% | ${ }_{361.4}$ | 397.1 | ${ }^{35.7}$ | 9.9\% | 72.8\% | ${ }^{1216.8}$ | ${ }^{1243.1}$ | ${ }^{26.3}$ | 2.2\% |
 | 74.1\% | 357.2 | ${ }^{383.1}$ | ${ }^{25.8}$ | 7.2\% | 74.1\% | 1203.0 | ${ }^{1241.5}$ | 38.5 | 3.2\% |
 | 75.3\% | 338.2 | 358.1 | 20.0 | 5.9\% | 75.3\% | 1014.6 | 1022.0 | 7.3 | 0.7\% |
 | 76.5\% | ${ }^{281.6}$ | ${ }_{271.6}$ | 0.0 | 0.0\% | 78.5\% | ${ }^{964.5}$ | 971.9 | 7.4 | 0.8\% |
 | 77.8\% | ${ }^{266.0}$ | ${ }^{272.9}$ | 6.9 | 2.6\% | 77.8\% | 672.5 | 672.7 | 0.2 | 0.0\% |
 | 79.0\% | ${ }_{256.7}^{2521}$ | 259.2 | 2.5 | ${ }^{1.0 \%}$ | 79.0\% | 644.0 | 642.4 | ${ }^{1.6}$ | 0.2\% |
 | 80.2\% | ${ }_{2524}^{2524}$ | ${ }_{2568}^{2568}$ | 4.4 | 1.7\% | 80.2\% | 573.2 | 638.4 58.4 | ${ }_{65.2}$ | 11.4\% |
 | ${ }^{81.5 \%}$ | 251.8 | ${ }_{233.5}^{253}$ | 1.8 | ${ }^{0.75 \%}$ | 81.5\% | 567.4 | 585.5 | 18.1 | 3.2\% |
 | 82.7\% | ${ }_{20.5}^{240.5}$ | ${ }_{2}^{244.1}$ | 3.6 | 1.5\% | 82.7\% | 518.4 | 577.6 | 59.1 | 11.4\% |
 | 84.0\% | ${ }_{238.3}^{238}$ | ${ }^{238.5}$ | 0.2 | 0.1\% | 84.0\% | 4493 | 451.4 | 2.1 | 0.5\% |
 | 85.2\% | ${ }_{234}^{234}$ | ${ }_{235.2}^{2332}$ | 0.5 | 0.2\% | 85.2\% | 391.3 | ${ }_{326.6}$ | ${ }_{35.3}$ | 9.0\% |
 | ${ }^{86.4 \%}$ | ${ }_{232.6}^{232}$ | ${ }_{233.9}^{233}$ | 1.3 | 0.5\% | ${ }^{86.4 \%}$ | 349.1 | 365.5 | 16.4 | 4.7\% |
 | 87.7\% | ${ }_{231.7}^{233}$ | ${ }_{232.1}^{232}$ | 0.4 | 0.2\% | 87.7\% | 341.1 | 349.9 | 8.8 8.8 | |
 | 88.9\% | ${ }_{225}^{23.9}$ | ${ }_{231.6}^{2316}$ | 0.7 | ${ }_{\text {0,3\% }}$ | 88.9\% | 298.4 | 315.6 | 17.2 | 5.8\% |
 | 90.1\% | ${ }_{2259}^{2259}$ | ${ }_{20}^{230.6}$ | 4.7 | 2.1\% | 90.1\% | 283.3 | 306.6 | ${ }^{23.3}$ | ${ }_{1} 8.2 \%$ |
 | ${ }^{92.6 \%}$ | 218.1 | ${ }^{218.3}$ | ${ }^{0.2}$ | 0.1\% | ${ }^{91.4 \%}$ | ${ }^{280.3}$ | ${ }_{283}^{283}$ | ${ }^{3.2}$ | ${ }^{1.15 \%}$ |
 | 93.8\% | ${ }_{201.3}^{201 .}$ | 201.2 | 0.0 | 0.0\% | 93.8\% | 263.9 | ${ }_{263.8}^{262}$ | -0.1 | 0.0\% |
 | 95.1\% | 199.4 | 199.5 | 0.0 | 0.0\% | 95.1\% | 255.5 | 261.4 | 6.0 | 2.3\% |
 | 96.3\% | 196.2 | 197.2 | 1.0 | 0.5\% | 96.3\% | ${ }_{2390}^{2490}$ | 24.0 | 0.0 | 0.0\% |
 | 97.5\% | 194.8 | 197.1 | ${ }^{2.3}$ | 1.2\% | | 234.2 | ${ }^{234.1}$ | -0.1 | -0.1\% |
 | 988.8\% | ${ }_{1929}^{194.4}$ | ${ }_{193}^{194}$ | 0.0 | ${ }^{0.0 \% \%}$ | 98.8\% | 192.6 1901 | 193.1 1908 | ${ }_{0}^{0.5}$ | |

 | PercentExceedanceProbability | WSP 2030wtent May | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Without | WSIP 2030 With Project | Absolute | Relative |
 | | Monthly EC | Monthly EC | | Difference (\%) |
 | 0,0\% | 14922.7 | ${ }^{18887.6}$ | ${ }^{35.0}$ | -0.2\% |
 | 1.2\% | 14711.3 | 14687.8 | | |
 | 2.5\% | 14339.9 | 14335.0 | -5.0 | 0.0\% |
 | 3.7\% | 2992.6 | 12339.6 | 153 | |
 | 4.9\% | 12333.7 | 11951.6 | | |
 | 6.2\% | 11436.7 | 11412.4 | 24.3 | |
 | 7.4\% | 390.4 | 11376.4 | -14.0 | |
 | 8.6\% | 11226.5 | 11118.0 | 108.5 | |
 | 9.9\% | 11030.5 | 11018.7 | 11.8 | |
 | 11.1\% | 989.7 | 10099.2 | 80.5 | |
 | 12.3\% | 10843.5 | 10797.0 | 46.5 | |
 | 13.6\% | 772.4 | 10706.4 | -66.0 | |
 | 14.8\% | 10442.6 | 10313.7 | | |
 | 16.0\% | ${ }^{10290.0}$ | 10283.2 | -6.9 | 1\% |
 | 17.3\% | 10147.3 | 10067.4 | -79.9 | |
 | 18.5\% | 10137.4 | 10029.1 | 108.3 | 1\% |
 | 8\% | 9835.7 | 9801.8 | | |
 | 21.0\% | 9812.4 | ${ }^{9581.5}$ | 230.9 | 4\% |
 | 22.2\% | 670.3 | 9579.7 | -90.6 | |
 | 23.5\% | 9626.1 | ${ }^{95022.3}$ | ${ }^{123.8}$ | 3\% |
 | \% | ${ }^{9562.5}$ | 9251.2 | 311.3 | |
 | ${ }^{25.7 .2 \%}$ | ${ }_{99243.3}^{9442.3}$ | ¢8996.3 | 208.0 247.0 | -2.2\% |
 | 28.4\% | 9141.9 | ${ }_{8923.6}$ | -218.4 | -2.4\% |
 | 29.6\% | 9005.5 | 8823.6 | 181.9 | -2.0\% |
 | 30.9\% | 8757.7 | ${ }^{8623.6}$ | -134.1 | -1.5\% |
 | 32.1\% | 8544.2 | 8484.3 | -59.9 | 7\% |
 | 33.3\% | 8484.8 | 8347.0 | -137.8 | -1.6\% |
 | 34.6\% | 8275.6 | 8293.2 | 17.6 | 0.2\% |
 | 35.8\% | 8152.9 | 8208.7 | 55.9 | 0.7\% |
 | 37.0\% | 7885.8 | 7875.1 | -10.8 | 0.1\% |
 | 38.3\% | 7841.3 | 7855.0 | 13.7 | 0.2\% |
 | 39.5\% | 7575.7 | 7572.6 | -3.1 | 0.0\% |
 | 40.7\% | 7498.6 | 7552.8 | 54.2 | 0.7\% |
 | 42.0\% | 7216.8 | 7507.4 | 290.7 | 0\% |
 | 43.2\% | 6949.6 | 7420.7 | 471.0 | 6.8\% |
 | 44.4\% | ${ }^{6666.9}$ | ${ }^{72688.8}$ | 601.9 | 9.0\% |
 | 45.7\% | 6658.0 | 6980.9 | 322.9 | 4.8\% |
 | 46.9\% | 6607.5 | 6757.3 | 149.8 | 2.3\% |
 | 48.1\% | 6369.8 | 6425.5 | 55.7 | 0.9\% |
 | 49.4\% | 6294.4 | 6178.3 | 116.1 | 8\% |
 | 50.6\% | 610.1 | 6151.7 | 41.7 | 0.7\% |
 | 51.9\% | ${ }^{6039.7}$ | ${ }^{6113.8}$ | 74.0 | 1.2\% |
 | 53.1\% | 5912.6 | 5934.0 | 21.4 | 0.4\% |
 | 54.3\% | 5888.5 | ${ }_{5888.3}$ | -0.2 | 0.0\% |
 | 55.6\% | ${ }^{5866.2}$ | 5815.0 | -51.2 | -0.9\% |
 | 56.8\% | 5859.6 | 5750.5 | 109.1 | -1.9\% |
 | 58.0\% | 5719.7 | ${ }_{5497.6}$ | 222.1 | -3.9\% |
 | 59.3\% | ${ }_{5}^{5571.8}$ | 5317.0 | -254.8 | -4.6\% |
 | 60.5\% | 5280.3 | 5293.7 | 13.4 | 0.3\% |
 | 61.7\% | 5241.5 | ${ }^{5258.6}$ | 17.1 | 0.3\% |
 | 63.0\% | 5047.1 | 5125.8 | 78.7 | 1.6\% |
 | 64.2\% | 4872.8 | 5014.3 | 141.5 | 9\% |
 | 65.4\% | 4840.6 | 4882.9 | 42.3 | 0.9\% |
 | 66.7\% | 4709.0 | 4841.0 | 132.0 | 8\% |
 | 67.9\% | ${ }^{4566.8}$ | 4633.9 | 67.1 | 1.5\% |
 | 69.1\% | 4390.3 | 4462.9 | 72.6 | 7\% |
 | 70.4\% | ${ }_{4}^{4232.8}$ | 4222.0 | -10.9 | -0.3\% |
 | 71.6\% | 4020.1 | 4118.0 | 97.9 | 2.4\% |
 | 72.8\% | ${ }^{3842.4}$ | ${ }^{3849.8}$ | 7.4 | 0.2\% |
 | 74.1\% | 3555.4 | ${ }^{3588.5}$ | 33.0 | 0.9\% |
 | 75.3\% | ${ }^{35333.2}$ | 3528.7 | -4.5 | -0.7\% |
 | 76.5\% | ${ }^{3267.1}$ | 3289.2 | 22.1 | 0.7\% |
 | 77.8\% | 2519.1 | 2768.7 | 249.6 | 9.9\% |
 | 79.0\% | 2456.6 | 2674.7 | 218.2 | 8.9\% |
 | 80.2\% | 2153.6 | 2366.5 | 212.9 | ${ }^{\text {9,9\%\% }}$ |
 | 81.5\% | 1981.2 | ${ }^{2193.5}$ | 212.4 | 10.7\% |
 | 82.7\% | 1926.5 | ${ }^{2168.8}$ | 242.4 | ${ }^{12.6 \%}$ |
 | 84.0\% | 1784.6 | 2002.6 | 218.0 | 12.2\% |
 | 85.2\% | 1627.5 | 1641.6 | 14.2 | 9\% |
 | 86.4\% | 1455.6 | 1470.0 | 11.4 | 0.8\% |
 | 87.7\% | ${ }^{1325.6}$ | 1378.8 | 53.2 | 4.0\% |
 | 88.9\% | ${ }^{1212.6}$ | ${ }^{1229.0}$ | 16.4 | 1.3\% |
 | 90.1\% | ${ }^{1160.1}$ | ${ }^{11755.3}$ | 15.2 | 1.3\% |
 | 91.4\% | 1129.6 | 1149.5 | 19.9 | 1.8\% |
 | 92.6\% | 1067.9 | 1060.0 | 7.9 | -0.7\% |
 | 93.8\% | ${ }^{931.1}$ | ${ }^{934.2}$ | 3.2 | 0.3\% |
 | 95.1\% | 711.4 | 716.9 | 5.5 | 0.8\% |
 | ${ }^{96.3 \%}$ | 573.7 | 575.6 | ${ }^{2.0}$ | 0.3\% |
 | 97.5\% | 567.7 | 575.4 | 7.7 | 1.4\% |
 | 98.8\% | 318.7 | 320.0 | 1.3 | |
 | 100.0\% | 283.0 | 292.7 | 9.8 | |

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Without | WSIP 2030 With Project | Absolute | |
 | | Monthly EC | Monthly EC | （ Difference | ference（\％） |
 | （\％） | （UMHHOSCM） | （1） | | |
 | 0．0\％ | | | －14．8 | －0．1\％ |
 | 1．2\％ | 16975.1 | 16756.1 | －219．1 | －1．3\％ |
 | 2．5\％ | 16929.3 | 15870.9 | 105 | |
 | 3．7\％ | 15909.9 | 15678.3 | －231．5 | －1．5\％ |
 | 4．9\％ | 13124.4 | | ${ }^{6} 7.3$ | |
 | 年．2\％\％ | 13100.3 13078 | 13102.8 13076.9 | ${ }_{-1.1}^{2.5}$ | 0．0\％ |
 | 8．6\％ | 12946.8 | 12583.6 | －363．2 | －2．8\％ |
 | 9．9\％ | 12889.8 | 12884.1 | －405．8 | －3．1\％ |
 | ${ }^{11.1 \%}$ | 12781.6 12654.3 | ${ }_{12267.2}^{12423.1}$ | ${ }_{\text {－}}^{\text {－387．}}$ | ${ }_{-3.1 \%}^{-2.7 \%}$ |
 | 13．6\％ | 12482.2 | 12149.6 | ${ }^{-332.6}$ | －2．7\％ |
 | 14．8\％ | 12470.4 | 12086.1 | －384．3 | －3．1\％ |
 | 16．0\％ | ${ }^{12441.7}$ | 120097 | －432．0 | －3．5\％ |
 | | 12419.0 | 11970.2 | －448．8 | －3．6\％ |
 | 119．8\％ | $\underset{12225.7}{12298}$ | 11951.1
 11916.8
 1 | ${ }_{-308.9}^{-347}$ | ${ }_{-2.5 \%}^{-2.8 \%}$ |
 | 21．0\％ | 12111.2 | 11751.4 | －359．8 | －3．0\％ |
 | ${ }^{22.2 \%}$ | 12051.9 | 11744.8 | －307．1 | －2．5\％ |
 | 24．7\％ | ${ }^{11195908.4}$ | 11741.7 11678.0 | ${ }_{-230.4}^{-217.3}$ | －1．19\％ |
 | 25．9\％ | 11866.8 | 11574.9 | －291．9 | －2．5\％ |
 | 27．2\％ | 11862.2 | 11559.5 | －302．6 | －2．6\％ |
 | 28．4\％ | 117695.1 | ${ }^{11149551}$ | －－299．8 | －2．5\％ |
 | 29．6\％ | | | －77．4 | |
 | ${ }^{32.1 \%}$ | ${ }_{112499.5}$ | 114000.3 | －99．2 | －0．9\％ |
 | 33．3\％ | 11445.3 | 11384.5 | －60．8 | －0．5\％ |
 | 34．6\％ | 11436.3 | 11380.8 | －55．5 | －0．5\％ |
 | 35．8\％ | 11397.0 | 11373.5 | －23．5 | －0．2\％ |
 | 37．0\％ | 11385.9 | 11361.2 | －24．8 | －0．2\％ |
 | 38．3\％ | 11373．6 | 111155.9 111552 | ${ }^{-217.7}$ | －1．9\％ |
 | | | | | |
 | 42．0\％ | 111471.9 | 11047.4 | －24．5 | ${ }^{-0.2 \%}$ |
 | 43．2\％ | 10972.3 | 10903.8 | －68．5 | －0．6\％ |
 | 44．4\％ | 10903.8 | 10833.0 | －70．8 | ${ }^{-0.6 \%}$ |
 | 45．7\％ | 10806．4 | ${ }_{105575}^{1055}$ | －248．9 | －2．3\％ |
 | 46．9\％ | 106699.5 10565.5 | 10551.5 10534.9 | － 68.0 -30.6 | －0．3\％ |
 | 49．4\％ | 10547.4 | 10504.3 | －43．2 | －0．4\％ |
 | 50．6\％ | 10491.3 | 10451.8 | －39．5 | －0．4\％ |
 | 51．9\％ | 10442.6 | 10449.9 | 7.3 | 0．1\％ |
 | 年53．1\％ | ${ }^{104388.4}$ | 10373.3 10326.6 | －65．2 | |
 | 55．6\％ | 100298.4 | 10325.8 | 27．4 | 0．3\％ |
 | 56．8\％ | 10271.7 | 10282.8 | 11.0 | 0．1\％ |
 | 58．0\％ | ${ }^{10251.4}$ | ${ }^{1022226}$ | 11.2 | 0．1\％ |
 | 59．3\％ | 10221.7 | | | 0．3\％ |
 | 笛 60.5% | 10200.2 10160.5 | 100588.6 9969 | ${ }_{\text {－}}^{\text {－190．6 }}$ | －1．9\％${ }_{\text {－}}^{\text {－}}$ |
 | 63．0\％ | 10138.5 | 9963.9 | －174．6 | －1．7\％ |
 | 64.2% 654% | 10057.7 | ${ }^{9960.0}$ | | －1．0\％ |
 | －65．4\％ | 10046.0 9933.6 | ${ }_{99332.9}^{9911.3}$ | ${ }_{-100.7}^{-134.7}$ | －1．0\％ |
 | 67．9\％ | 9757.8 | ${ }^{9806.3}$ | 48.5 | 0．5\％ |
 | 69．1\％ | 9634.1 | ${ }^{9625.6}$ | －8．5 | 0．1\％ |
 | 70．6\％ | ${ }_{9548.1}^{959.0}$ | ${ }_{9}^{95568.9}$ | -20.2 2.3 | －0．0\％ |
 | 72．8\％ | 9300 | 9384.6 | 4.3 | |
 | 74．1\％ | 8678.8 | 8695.1 | 16.2 | 2\％ |
 | 75．3\％ | 8465.0 | 8432.2 | －32．8 | 0．4\％ |
 | 76．5\％ | ${ }^{82259.1}$ | ${ }_{7}^{8185.6}$ | －39．5 | －0．5\％ |
 | 79．0\％ | 7795．8 | ${ }^{78653.0}$ | －95．9 | － |
 | 80．2\％ | 7728.2 | ${ }^{7472.0}$ | －256．2 | －3．3\％ |
 | ${ }^{80270 \%}$ | ${ }^{76888.2}$ | ${ }^{7299.6}$ | | |
 | － | ${ }_{7326.5}^{7373.3}$ | ${ }_{71025}^{7236.2}$ | － －224．0 －25．0 | － |
 | 85．2\％ | ${ }_{7}^{72634}$ | 7066.5 | －197．1 | －2．7\％ |
 | ${ }^{80.47 \%}$ | ${ }^{7049.0}$ | 7020.9 | | |
 | 88．9\％ | 6600.0 | 6440.4 | －165．6 | －2．5\％ |
 | 90．1\％ | 6562.1 5303 | ${ }_{\text {cke }}^{6366.1}$ | －196．0 | －3．0\％ |
 | 92．6\％ | ${ }_{5}^{5303.7}$ | | 966．0 | 18．2\％ |
 | 93．8\％ | ${ }_{4622.3}^{50.9}$ | ${ }_{4628.8}^{48.7}$ | ${ }_{6.5}^{231.2}$ | －4．19\％ |
 | 95．1\％ | ${ }^{41777.2}$ | ${ }^{4062.6}$ | －144．6 | －2．7\％ |
 | 96．5\％ | ${ }_{3472.6}^{359.7}$ | ${ }^{34351.0}$ | －98．6 | ${ }_{-2.8 \%}^{-2.8 \%}$ |
 | 998．8\％ | 1624.8 | 12265.6 | －3592 | －2210 |
 | 100．0\％ | 856.3 | 822.9 | ${ }_{-33.3}$ | －3．9\％ |

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceadance } \\ & \text { Probability } \end{aligned}$ | September | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSSP 2030 Without | WSIP 2030 With Project | | Relative |
 | | Monthly EC | Monthly EC | （ifierence | ference（\％） |
 | 10 | （1） | （UnHosich | ． 1335 | |
 | | | | | |
 | | | | | |
 | 2．5\％ | 18734.5 | 18783.8 | 49.3 | |
 | \％ | 18700.6 | 8681.9 | | |
 | 4．9\％ | 18638.5 | 18666.4 | 27.8 | |
 | 6．2\％ | 635.8 | 18659.5 | 23.7 | |
 | 7．4\％ | 18556.0 | 18539.2 | －16．8 | |
 | 8．6\％ | 531.3 | 18455.7 | －75．6 | |
 | 9．9\％ | 24.1 | 4437 | －86．4 | |
 | 11．1\％ | 91.9 | 18259.6 | 232.3 | |
 | 12．3\％ | 46.4 | 036．7 | 409.7 | |
 | 13．6\％ | 166.8 | 17987.0 | | |
 | | 18139.9 | 943.9 | 960 | |
 | 16．0\％ | 18097.7 | 17863.9 | 233.8 | |
 | 17．3\％ | 17978.9 | 18.6 | 0.2 | |
 | 18．5\％ | 17971.3 | 17650.6 | 320．6 | |
 | | 17965.6 | 17636.1 | | |
 | 21．0\％ | 17948.1 | 17501.2 | 446.8 | |
 | 22.2 | 46．5 | 174 | －511．7 | |
 | 23．5\％ | 17925.4 | 17302.9 | －622．5 | －3．5\％ |
 | 4．7\％ | 17839.9 | 172 | 577．3 | |
 | 25．9\％ | 17829.1 | 17211.8 | －617．3 | －3．5\％ |
 | 27．2\％ | 17418.4 | 17126. | 291.9 | |
 | 28．4\％ | 17413.7 | 17072.7 | －341．0 | |
 | 29．6\％ | 17312.4 | 16990. | 321 | |
 | 30．9\％ | 17293．2 | 16890.5 | －402．7 | 2．3\％ |
 | 32．1\％ | 17270.5 | 16859.7 | －410．8 | |
 | 33．3\％ | 17244.8 | 16833.3 | －411．5 | 2．4\％ |
 | 34．6\％ | 17237.7 | 16792.1 | －445．6 | |
 | 35．8\％ | 171010 | 16664.4 | －436．6 | －2．6\％ |
 | 37．0\％ | 17004.7 | 16622.6 | －382．1 | |
 | 38．3\％ | 16994.9 | 16616.4 | -378.5 | \％ |
 | 39．5\％ | 16947.8 | 16600.5 | ${ }^{-347.3}$ | |
 | 40．7\％ | 16925.4 | 1649999 | －425．5 | 2．5\％ |
 | 42．0\％ | 16856.8 | 16488.2 | －388．6 | |
 | 43．2\％ | 16843.0 | 16358.6 | －484．4 | －2．9\％ |
 | 44．4\％ | 16838.2 | 16343.1 | －495．0 | |
 | 45．7\％ | 18803.6 | 16263.7 | －539．9 | \％ |
 | 46．9\％ | 16636.7 | 16204.7 | －432．0 | |
 | 48．1\％ | 16520.0 | 16173.2 | －346．9 | 2．1\％ |
 | 49．4\％ | 16478.7 | 16147.6 | －331．1 | |
 | 50．6\％ | 16374.0 | 16060.8 | －313．2 | －1．9\％ |
 | 51．9\％ | 16340.3 | 15810.6 | －529．7 | |
 | 53．1\％ | 16226.4 | 15804.0 | －422．4 | 2．6\％ |
 | 54．3\％ | 16197.1 | 15492.0 | －705．1 | \％ |
 | 55．6\％ | 12024.7 | 11801.9 | －222．8 | －1．9\％ |
 | 5．8\％ | ${ }^{11967.3}$ | ${ }^{11797.3}$ | －170．0 | |
 | 58．0\％ | 11854.8 | 11679.9 | －174．9 | －1．5\％ |
 | 9．3\％ | 11808.7 | 11675.3 | －133．5 | －1．1\％ |
 | 60．5\％ | 11801.3 | 11614.1 | －187．2 | 源 |
 | 61．7\％ | 11790.5 | 11588.2 | －206．3 | |
 | 63．0\％ | 11786.1 | 11524.3 | －261．7 | －2．2\％ |
 | 64．2\％ | 11733.4 | 11509.5 | －223．9 | 1.96 |
 | 65．4\％ | 11694.8 | 11505.4 | －189．4 | －1．6\％ |
 | ${ }^{66.7 \%}$ | 11680.8 | 11503.8 | 17.0 | |
 | 67．9\％ | 11654.3 | 11456.9 | －197．4 | －1．7\％ |
 | 69．1\％ | 11600.4 | 11455.0 | －145．4 | |
 | 70．4\％ | ${ }_{\text {81822．8 }}$ | ${ }_{87595} 8$ | －107．1 | 3\％ |
 | 71．6\％ | 7973．3 | 7914.7 | －58．6 | 0．7\％ |
 | 72．8\％ | 7969.5 | 7833.0 | －136．5 | 7\％ |
 | 74．1\％ | 7946.4 | 7804.6 | －141．8 | 1．8\％ |
 | 75．3\％ | 7934.5 | 7801.1 | －133．4 | －1．7\％ |
 | 76．5\％ | 7921.8 | 7789.7 | －132．0 | －1．7\％ |
 | 77．8\％ | 7864.5 | 7785.1 | －79．3 | －1．0\％ |
 | 79．0\％ | 7841.0 | 7783.8 | －57．3 | 0．7\％ |
 | 80．2\％ | 7813.7 | 7779.7 | －34．0 | |
 | 81．5\％ | 7803.7 | 7737．6 | 66．0 | －0．8\％ |
 | 82．7\％ | 7784．1 | 7715.1 | －68．9 | |
 | 84．0\％ | ${ }^{7772.2}$ | 7710.9 | －61．3 | 0．8\％ |
 | 85．2\％ | 7776.4 | 7710.7 | －55．7 | －0．7\％ |
 | 86．4\％ | 7754．0 | 7688.5 | 65．5 | －0．8\％ |
 | 87．7\％ | 7734.0 | 7674.0 | －60．0 | |
 | 88．9\％ | 7721．2 | ${ }^{7648.0}$ | －73．2 | －0．9\％ |
 | 90．1\％ | 7703.8 | ${ }^{7562.7}$ | －141．1 | －1．8\％ |
 | 91．4\％ | ${ }^{7644.8}$ | ${ }^{75377.8}$ | －107．0 | 1．4\％ |
 | 92．6\％ | 7599.5 | ${ }^{7527.9}$ | －71．6 | |
 | 93．8\％ | ${ }_{7590.5}^{759}$ | 7506.7 | －83．8 | 1．1\％ |
 | 95．1\％ | 7581.7 | ${ }^{7456.3}$ | －125．4 | 1．7\％ |
 | ${ }^{96.3 \%}$ | 7570.2 | ${ }^{7455.6}$ | －114．7 | |
 | 97．5\％ | 7515.1 | 7433.6 | －81．5 | ， |
 | 9．8\％ | ${ }^{7422.8}$ | ${ }^{7303.3}$ | 119．4 | |
 | 100．0\％ | 7，397．0 | 7，255．2 | －141．9 | －1．9\％ |

 Figure SQ-25-b
 San Joaquin River at Jersey Point, Monthly EC

 Table $\mathrm{SQ}-25-\mathrm{b}$
 in
 River at Jersey Point，Monthly EC

 | Percent
 Exceedance
 Probability | Ocrober | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Without | WSIP 2030 With Project | Absolute | |
 | | Monthly EC | Monthly EC | （itierersce | fference（\％） |
 | （\％） | UMH | me | | |
 | 0．0\％ | 3212.7 | ${ }^{3145.3}$ | －67．4 | －2．1\％ |
 | 1．2\％ | ${ }^{3190.3}$ | 3056.4 | －133．9 | －4．2\％ |
 | 2．5\％ | ${ }^{3050.4}$ | 3003.4 | －53．1 | |
 | 3．7\％ | ${ }_{2}^{2992.15}$ | ${ }_{291729}^{2947.6}$ | － 4.74 .5 | |
 | 4．9\％ | ${ }_{291.5}^{2991.5}$ | ${ }_{2911}^{2912.9}$ | －78．6 | |
 | 7．4\％ | ${ }_{28894}^{2918.7}$ | ${ }_{28461}^{2919}$ | －7．1．3 | ${ }^{-1.5 \%}$ |
 | 8．6\％ | 2850.0 | 2734.4 | －115．7 | －4．1\％ |
 | 9．9\％ | 2799.8 | ${ }^{2727.6}$ | －72．2 | －2．6\％ |
 | － 11.14% | ${ }_{2}^{27988.8}$ | ${ }_{2}^{2681.3}$ | -117.4 -1419 | －${ }_{-5.4 \%}$ |
 | －${ }_{\text {12，}}^{12.6 \%}$ | ${ }_{2734.8}^{2766.7}$ | ${ }_{2623,8}^{2624.8}$ | －141．9 | ${ }^{-5.1 \%}$ |
 | － $13.4 .8 \%$ | 2734．8．8 2672.4 | ${ }^{26593.9}$ | －111．2 | －.$- .17 \%$ |
 | 16．0\％ | ${ }_{2622.3}^{2625}$ | 2523.5 250．3 | －138．8 | －5．2\％ |
 | 17．3\％ | 2650.1 | 2504.3 | －145．8 | －5．5\％ |
 | （18．5\％ | 2645.1 26407 | 2501.0
 2464 | -144.1 -1759 | －5．4\％ |
 | 21．0\％ | 2622.9 | 2434.1 | －188．8 | －7．2\％ |
 | 22．2\％ | 2603.0 | 2406.2 | －196．7 | －7．6\％ |
 | ${ }^{23.5 \%}$ | 压2600．2 | ${ }^{23860.8}$ | ${ }_{-258.1}^{-213.4}$ | －8．2\％\％ |
 | 25．9\％ | 2587.2 | 2311.6 | ${ }^{-275.6}$ | －10．7\％ |
 | 27．2\％ | 2580.8 | 2244.7 | －336．1 | －13．0\％ |
 | 28．4．6\％ | ${ }_{2485.6}^{2535.2}$ | ${ }_{2}^{22288.4}$ | －300．8 .276 .6 | －${ }_{\text {－}}$ |
 | 30．9\％ | 2448.2 | 2178.3 | －269．9 | －11．04 |
 | 32．1\％ | 2444.4 | 2162.3 | －282．1 | －11．5\％ |
 | 33．3\％ | 2427.4 | 2139.7 | －2877 | －11．9\％ |
 | | 2421.7 | 2103.9 | －317．8 | －13．19\％ |
 | 年35．8\％ | ${ }_{2368.3}^{2401.1}$ | ${ }_{2}^{21091.1}$ | －300．0 -271.1 | －${ }_{\text {－}}$－12．5\％ |
 | 38．3\％ | ${ }^{2360.2}$ | 2077.0 | －283．3 | －12．0\％ |
 | 39．5\％ | 2309.1 | 2046.9 | －262．2 | －11．4\％ |
 | ${ }^{40.7 \%}$ | ${ }_{2277.9}^{2293.7}$ | ${ }_{2}^{20004.4}$ | －249．3 -2698 | －-10.9% |
 | 43．2\％ | 2257.2 | 1942.0 | －315．2 | －14．0\％ |
 | 44．4\％ | 2241.8 | 1852.0 | －389．8 | －17．4\％ |
 | 45.7% 469% | ${ }_{22395}^{2239}$ | ${ }^{18155.2}$ | －424．7 | －19．0\％ |
 | ${ }^{46.9 \%}$ | ${ }_{22007}^{2215.6}$ | ${ }_{175989}^{1769.8}$ | －445．8 | － |
 | 49．4\％ | 2184.5 | 1608.0 | －576．5 | －26．4\％ |
 | 50．6\％ | 2183.2 | ${ }^{1369.0}$ | －814．1 | －37．3\％ |
 | 年51．9\％ | | | －356．0 | －29．3\％ |
 | 54．3\％ | 848.2 797.9 | ${ }_{780.7}^{829.1}$ | －17．1 | ${ }_{-2.2 \%}^{-2.2 \%}$ |
 | 55．\％\％ | 725.5 | ${ }_{595.2}$ | －30．3 | －4．2\％ |
 | | ${ }^{637.6}$ | 587．2 | －50．4 | －7．9\％ |
 | 59．3\％ | ${ }_{505.5}^{549.6}$ | ${ }_{517.5}^{526.7}$ | -22.9 12.0 | －4．4\％ |
 | 60．5\％ | 473.3 | 483.1 | 9.8 | 1\％ |
 | ${ }^{61.7 \%}$ | 440.3 | 447.7 | 7.4 | 7\％ |
 | －63．0\％ | 431.4 430.7 | ${ }_{405.3}^{43.9}$ | 1.5
 25.5 | －5．3\％ |
 | 65．4\％ | 392.9 | 388.3 | －4．7 | |
 | 66．7\％ | 386.7 | 380.2 | －6．5 | －1．7\％ |
 | －67．9\％ | 371.6 | ${ }^{373.6}$ | 2．0 | 0．5\％ |
 | 70．4\％ | 355．4 | ${ }^{342.0}$ | －13．4 | －3．7\％ |
 | 71．6\％ | ${ }_{321.7}^{351 .}$ | ${ }_{3006.6}^{323.5}$ | －85．1 | ${ }_{-8.7 \%}^{-2.4 \%}$ |
 | 72．8\％ | 306.6 | ${ }^{305.2}$ | -1.5 | 0．5\％ |
 | | | | －1．4 | ${ }^{-0.5 \%}$ |
 | 76．5\％ | ${ }_{208.1}$ | ${ }_{209.4}^{302.9}$ | 1.9 1.9 | 0．4\％ |
 | 77．8\％ | 293.0 | 296.7 | 3.7 | 3\％ |
 | 79．0\％ | 292.3 | 285.7 | －6．6 | 2．3\％ |
 | 80．2\％ | ${ }^{281.7}$ | ${ }^{285.5}$ | 3.8 | 1．4\％ |
 | －${ }^{81.5 \%}$ | ${ }_{277}^{280.3}$ | | 4.7 | －1．7\％ |
 | 840\％ | 2767.3 | ${ }_{272.8}^{273.4}$ | －3．5 | ${ }_{\text {2．1\％}}^{-1.1 \%}$ |
 | 85．2\％ | 267.1 | 268.8 | 1.7 | 0．6\％ |
 | 86．4\％ | 256.2 | 254.1 | －2．1 | \％ |
 | 877\％ | 255.3 | 251.6 | －3．7 | －1．5\％ |
 | 88．9\％ | 252.2 | 251.5 | －0．8 | －0．3\％ |
 | 90．1\％ | 245.3 | 250.8 | 5.5 | 2．2\％ |
 | 91．4\％${ }_{\text {926\％}}$ | 241.8 | ${ }^{236.2}$ | －5．6 | ${ }_{-0.3 \%}^{-2.7 \%}$ |
 | －92．8\％${ }_{9}^{92.8 \%}$ | ${ }_{226.9}^{236.6}$ | ${ }_{2288.4}^{2350}$ | -1.6 1.5 | －0．7\％ |
 | 95．1\％ | 222.4 | 227.4 | 5.0 | 2．3\％ |
 | 96．3\％ | 217.7 | 219.8 | 2.2 | 1．0\％ |
 | 97．5\％ | 216.4 | 215.4 | －1．1 | －0．5\％ |
 | 988．8\％ 100.0% | 212.4 1921 | 2138 198 | 1.4 | ${ }_{1}^{0.6 \%}$ |
 | 100．0\％ | | | 2.4 | |

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | November | | | | $\begin{gathered} \text { Percent } \\ \text { Exceadace } \\ \text { Probability } \\ \text { Dulil } \end{gathered}$ | December | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2330 Wethout | WSIP 2030 With Project | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOS/CMM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | | | WSIP 2030 With Project$\left.\begin{array}{c}\text { Monthy } \\ \text {（UMHOSCCM）}\end{array}\right)$ | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOSSCM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | | Monthly EC | Monthly EC | | | | | | | |
 | （\％） | NHHOSLCM | （UMHOSCCM | | | | | | 815 | |
 | 0．0\％ | 3 353．5 | ${ }^{3} 9654$ | 16.4 | 0．4\％ | 0．0\％ | 2748 | | 10．5 | ${ }_{37 \%}$ |
 | 1．2\％ | 3428.4 | ${ }^{3654.2}$ | ${ }^{225.8}$ | 6．6\％ | 1．2\％ | 27474 | ${ }_{2786.7}$ | 102.2 | 3．7\％ |
 | 2．5\％ | ${ }^{3309.9}$ | 3258.2 | －51．7 | －1．6\％ | 2．5\％ | ${ }^{2727.4}$ | ${ }_{2}^{2878.4}$ | 64.1 | |
 | 3．7\％ | 3218.8 | 3190.1 | －28．7 | －0．9\％ | 3．7\％ | ${ }_{26797}^{2671}$ | 2776.7 | 97.6 | |
 | 4．9\％ | ${ }^{3138.9}$ | 3167.5 | ${ }^{28.6}$ | 0．9\％ | 4．9\％ | ${ }^{2677.4}$ | ${ }^{2686.4}$ | 8.9 | |
 | \％．2\％ | 3129.3 3070.5 | 3129.6 3029 | ${ }_{-40.3}$ | －1．3\％ | － 7.2% | ${ }_{2635.1}^{2662.9}$ | ${ }_{2642.7}^{2642.8}$ | -20.1 5 | －0．0\％\％ |
 | 8．6\％ | ${ }_{3050.0}$ | 3029.2 | －20．8 | －0．7\％ | 8．6\％ | 2504.1 | ${ }^{2624.8}$ | 120.6 | 4．8\％ |
 | 9．9\％ | 2959.9 | 2984.5 | 24.6 | 0．8\％ | 9．9\％ | 2499.9 | 2528.9 | 29.0 | 1．2\％ |
 | 年1．19\％ | ${ }_{28559}^{2888.1}$ | ${ }_{26613}^{2708.2}$ | -189.9 -1947 | －6．6\％ | 年11．1\％ | 2483.8 24192 | 2091.9 2090 | －392．0 | － $\begin{aligned} & -15.8 \% \\ & -13.6 \%\end{aligned}$ |
 | ＋12．3\％ | ${ }_{27}^{28559}$ | ${ }_{26537}^{2661.3}$ | －194．7 | －6．8\％${ }_{-}^{-6.5 \%}$ | | ${ }_{2}^{2419.2}$ | ${ }_{20471}^{2090}$ | －329．2 | －${ }^{-13.6 \%}$ |
 | － 13.6% | ${ }_{2}^{2749.4}$ | 2653.7 25959 | －95．7 | ${ }^{-3.5 \%}$ | | ${ }_{2}^{23988.3}$ | ${ }_{20037.1}^{2037}$ | ${ }_{\text {－}}^{\text {－}}$－351．22 | －$-14.6 \%$ |
 | 16．0\％ | ${ }_{2696.9}^{2729}$ | ${ }_{2571.7}^{2051}$ | ${ }_{-125.1}$ | ${ }^{-4.6 \%}$ | 16．0\％ | 2282.1 | 2029.7 | ${ }_{-252.4}$ | －11．1\％ |
 | 17．3\％ | ${ }^{268559}$ | 2557.4 | －128．5 | －4．8\％ | 17．3\％ | 2274.0 | ${ }^{1975.5}$ | －298．6 | －13．1\％ |
 | （18．5\％ | ${ }_{26126}^{2635.4}$ | ${ }_{2335.0}^{2444.0}$ | －-121.4 | -7.3% -106% | 18．5\％ 198\％ | 2165.0 19010 | 1903.6 18913 | ${ }_{-9.6}^{-261.5}$ | －12．1\％ |
 | 21．0\％ | ${ }_{25063}^{260.6}$ | ${ }_{\text {23293 }}^{2335.6}$ | | －71\％ | 21．0\％ | ${ }^{19910.0}$ | ${ }_{1865.6}$ | | |
 | 22．2\％ | ${ }_{2462.3}^{200.3}$ | ${ }_{22859}^{2395}$ | －176．4 | －7．2\％ | 22．2\％ | 1785.2 | ${ }^{18845.9}$ | 60．7 | 3．4\％ |
 | ${ }^{234.5 \%}$ | ${ }_{2}^{24348.0}$ | ${ }_{22265.7}^{2275}$ | －172．6 | －－7．0\％ | ${ }_{24.7}^{23.5 \%}$ | 17356.0 1656.6 | 1719.0 17011 | -16.9 445 | －1．0\％ |
 | 25．9\％ | 2323.4 | 2235.5 | －87．8 | －3．8\％ | 25．9\％ | 1626.9 | 1667.3 | 40.4 | 2．5\％ |
 | 27．2\％ | 2291.5 | 2233.9 | －57．5 | －2．5\％ | 27．2\％ | 1559.7 | 1660.4 | 100.7 | 6．5\％ |
 | 28．4\％ | ${ }_{22855}^{2290.5}$ | ${ }_{21890}^{2211.9}$ | -78.4 -965 | －${ }_{-4.4 \%}$ | 28．6\％ | 1524.1 1436.5 | 1649.2 16119 | 125.2 175.4 | 8.2% 122% |
 | 30．9\％ | 2270.9 | 2175.1 | －95．7 | －4．2\％ | 30．9\％ | 1418.3 | 1411.5 | －6．8 | －0．5\％ |
 | 32．1\％ | 2255.0 | 2170.8 | －84．1 | －3．7\％ | 32．1\％ | 1345.3 | 1377.9 | 32.6 | 2．4\％ |
 | 33．3\％ | 2188.4 20898 | ${ }_{21643}^{2165.8}$ | ${ }_{74.6}$ | －${ }_{\text {－}}^{\text {－}}$ ． 6% \％ | | ${ }_{1}^{12727.7}$ | 1353.9 13045 | 56.2 322 | 4．3\％ |
 | 35．8\％ | 2082.9 | 2023.9 | －59．1 | －2．8\％ | 35．8\％ | 1235.9 | ${ }_{1273.3}^{123.5}$ | ${ }_{37.3}$ | 3．0\％ |
 | 37．0\％ | 2079.6 | 2015.2 | －64．4 | －3．1\％ | 37．0\％ | 1234.8 | 1253.7 | 18.9 | 1．5\％ |
 | 39．5\％ | ${ }_{2034.4}^{2007.6}$ | 1971.0 1941.8 | ${ }_{-929.5}^{\text {－96．7 }}$ | －4．4\％ | 339．5\％ | 1207.0 1102.0 | 1163.8 11626 | －43．2 | －${ }_{\text {5．5\％}}^{\text {－3．6\％}}$ |
 | 40．7\％ | 2010.6 | 1814.4 | －196．2 | －9．8\％ | 40．7\％ | 1096.1 | 1160.3 | 64.3 | 5．9\％ |
 | 42．0\％ | 2010.0 | 1665.1 | －344．9 | －17．2\％ | 42．0\％ | 1059.5 | 1074.6 | 15.1 | 1．4\％ |
 | 434．4\％ | ${ }^{16925.9}$ | ${ }_{1546.1}^{1580.7}$ | －－719．6 | ${ }^{-20.9 \%}$ | 44．4\％ | 1037.6 1036.6 | 1068.3 1039.6 | 30.7 3.0 | |
 | 45．7\％ | 1597.7 | 1444.4 | －153．4 | －9．6\％ | 45．7\％ | 1014.1 | 983.3 | －30．8 | －3．0\％ |
 | 46．9\％ | 1587.0 | 1407.3 | －179．8 | －11．3\％ | 46．9\％ | 974.1 | ${ }^{963.0}$ | －11．1 | －1．1\％ |
 | 49．4\％ | ${ }_{11421.7}^{1491.4}$ | ${ }_{12022}^{1250.9}$ | ${ }_{-219.5}^{-24.0}$ | －15．4\％ | 49．4\％ | ${ }_{9220.3}^{927.7}$ | ${ }_{995.2}^{920.8}$ | －6．9．9 | － |
 | 50．6\％ | 1246.6 | 875.6 | －371．0 | －29．8\％ | 50．6\％ | 902.6 | 891.1 | －11．5 | －1．3\％ |
 | 51．9\％ | 927.7 | 866.8 | －60．9 | －6．6\％ | 51．9\％ | 895.2 | 876.4 | －18．8 | －2．1\％ |
 | 53．19\％ | 901.0 886.7 | ${ }_{8}^{859.5}$ | －-4.1 .6 | －－6．6\％ | 554．3\％ | ${ }_{833.5}^{866.9}$ | ${ }_{853.6}^{855.2}$ | -11.7 20.1 | － $\begin{aligned} & -1.4 \% \\ & 2.4 \%\end{aligned}$ |
 | 55．6\％ | 716.7 | 795.2 | 78.5 | 10．9\％ | 55．6\％ | 829.3 | 849.4 | 20， | ， |
 | 56．8\％ | 678.1 | ${ }^{687.0}$ | 8.9 | 1．3\％ | 56．8\％ | 813.2 | 841.6 | 28.4 | 3．5\％ |
 | 59．3\％ | ${ }_{539.9}$ | ${ }_{593.9}^{666.3}$ | ${ }_{54.0}^{23.6}$ | － | ${ }^{58.0 \%}$ | ${ }_{790.5}^{798.8}$ | 838.1 828.6 | 39.2 38.0 | 4．9\％\％ |
 | 60．5\％ | 498.0 | 505.0 | 7.0 | 1．4\％ | 60．5\％ | 738.0 | 819.1 | 81.0 | 11．0\％ |
 | ${ }^{61.7 \%}$ | 49.0 | 479.3 | －11．7 | －2．4\％ | ${ }^{61.7 \%}$ | 723.9 | 819.0 | 95.1 | |
 | 6．4．2\％ | ${ }_{413.4}$ | ${ }_{454.9}^{457.8}$ | 30.7 41.5 | － 10.2% | －63．0\％ | ${ }_{7}^{701.4}$ | ${ }_{793.1}^{797.2}$ | ${ }_{9}^{92.7}$ | ${ }^{13.2 \%}$ |
 | 65．4\％ | 406.4 | 425.3 | 19.0 | 4．7\％ | 65．4\％ | 636.5 | 736.9 | 100.4 | 15．8\％ |
 | ${ }^{66.7 \%}$ | ${ }^{392.2}$ | ${ }_{382.5}$ | －9．8 | －2．5\％ | ${ }^{66.7 \%}$ | ${ }^{606.2}$ | 727.4 | ${ }^{121.2}$ | 20．0\％ |
 | 67．9\％ | 366.9 365.0 | 377.3 368.8 | 10.4 3.8 | 2．8\％ | 67．9\％ | ${ }_{531.9}^{534.2}$ | cres． 598.3 | 150.9 66.4 | ${ }_{\text {2 }}^{28.3 \%}$ |
 | 70．4\％ | 360.6 | 359.1 | －1．6 | －0．4\％ | 70．4\％ | 528.1 | 533.4 | 5.3 | 1．0\％ |
 | 71．6\％ | ${ }_{358.2}$ | 349.2 | －9．1 | | 71．6\％ | ${ }^{472.0}$ | 5530.9 | 58．9 | ${ }^{12.5 \%}$ |
 | 72．8． 7 | 341.8 327.7 | 340.0
 337.1 | -1.8
 9.4 | ${ }^{-0.9 \% \%}$ | 72．8\％ | 458.2 366.8 | 515.0 488.9 | 56．8． 122.1 | |
 | 75．3\％ | 321.7 | 326.3 | 4.6 | 1．4\％ | 75．3\％ | 362.7 | 454.9 | 92.2 | 25．4\％ |
 | 76．5\％ | 298.7 | ${ }^{322.5}$ | ${ }_{138}^{23.8}$ | 8．0\％ | | ${ }^{356.7}$ | | | |
 | 797．0\％ | ${ }_{284.7}^{293.2}$ | 307.3 301.5 | 14.1
 16.8 | 5．9\％ | 79．0\％ | 309.8
 303.4 | 314.6 297.8 | ${ }_{-5.6}^{4.8}$ | －1．8\％\％ |
 | 80．2\％ | 284.3 | 2898 | 5.5 | 1．9\％ | 80．2\％ | 253.6 | 275.3 | 21.7 | 8．5\％ |
 | 81．5\％ | ${ }_{28,9}^{283.6}$ | ${ }_{2787}^{284.3}$ | 0．7 | ${ }^{0.2 \%}$ | 81．5\％ | | 251．9 | ${ }^{5.5}$ | |
 | 884．0\％ | 281.9 280.8 | ${ }_{278.2}^{278.7}$ | －3．7 | ${ }^{-1.10 \%}$ | 884．0\％ | ${ }_{244.1}^{244.2}$ | 246.4 245．6 | 2.2 1.4 | 0．6\％ |
 | 85．2\％ | 278.4 | 277.1 | －1．3 | －0．5\％ | 85．2\％ | 237.6 | 241.9 | 4.3 | 1．8\％ |
 | －86．4\％ | 268.2 266.9 | 271.6 259.1 | 3.4 -7.7 | 1.3%
 -2.9% | －${ }^{86.4 \%}$ 87．7\％ | ${ }^{2224.1}$ | 224.2 28.9 | －－5．5 | －0．5\％ |
 | 88．9\％ | 252.7 | 258.8 | 6.1 | 2．4\％ | 88．9\％ | 212.6 | 214.2 | 1.7 | 0．8\％ |
 | 90．1\％ | 249.6 | 256.7 | 7.0 | 2．8\％ | 90．1\％ | 212.1 | 213.6 | 1.5 | 0．7\％ |
 | 992．4\％${ }_{\text {92\％}}$ | 24.7 241.5 | ${ }_{253.2}^{254.1}$ | ${ }_{16.7}^{6.2}$ | ${ }_{\text {4．8\％}}^{2.5 \%}$ | ${ }_{\text {92，}}^{99.4 \%}$ | $\begin{array}{r}210.1 \\ 203.6 \\ \hline\end{array}$ | ${ }_{206.3}^{210.7}$ | 0.6 2.7 | －${ }_{\text {1．3\％}}$ |
 | 93．8\％ | 234.1 | 240.4 | 6.3 | 2．7\％ | 93．8\％ | 202.1 | 202.4 | 0.3 | 0．2\％ |
 | 95．1\％ | 224.5 | 240.3 | 15.9 | 7．1\％ | 95．1\％ | 201.6 | 202.1 | 0.5 | 0．2\％ |
 | 997．5\％ | 217.6 215.1 | ${ }_{220.9}^{222.0}$ | 4.3 5.8 | ${ }^{2.7} 2.0 \%$ | 997．5\％ | 201.6 200.1 | 201.3 200.3 | -0.2 0.1 | －0．1\％ |
 | 98．8\％ | 196.9 | 196.0 | -0.8 | －0．4\％ | 98．8\％ | 195.1 | 193.2 | -1.8 | －0．9\％ |
 | 100．0\％ | 195.3 | 194.2 | －1．1 | －0．6\％ | 100．0\％ | 190.7 | 191.2 | 0.5 | 0．3\％ |

 | $\begin{gathered} \hline \text { Pereent } \\ \hline \text { Preadnce } \\ \text { Probability } \end{gathered}$ | nuar | | | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Without | WSIP 2030 With Project | $\begin{gathered} \text { Absolute } \\ \text { (ifference } \\ \text { (UMHOSSICM) } \end{gathered}$ | |
 | | ${ }_{\text {Montinec }}^{\text {Prec }}$ | Monthly EC | | |
 | | （UuHosicm） | （UMHOSLCM） | | |
 | 0．0\％ | 2234.3 | 2219.2 | －15．1 | －0．7\％ |
 | 1．2\％ | 1770.5 | 1958.5 | 188.0 | 10．6\％ |
 | 2．5\％ | 1767.4 | 1781.4 | 14.0 | 0．8\％ |
 | 3．7\％ | 1667.7 | 1536.4 | －131．4 | －7．9\％ |
 | 4．9\％ | 1639.8 | 1495.4 | －144．4 | －8．8\％ |
 | 6．2\％ | ${ }_{1}^{1558.1}$ | 1482.0 | －106．2 | －6．7\％ |
 | 7．4\％ | 1537.0 | 1468.2 | －68．8 | －4．5\％ |
 | 8．6\％ | 1527.7 | 1425.7 | －102．0 | －6．7\％ |
 | 9．9\％ | 1312.9 | 1499.2 | 96.3 | 7．3\％ |
 | 11．1\％ | 1286.7 | 1321.7 | 35.0 | 2．7\％ |
 | 12．3\％ | 1261.4 | 1305.3 | 43.8 | 3．5\％ |
 | 13．6\％ | 1221.5 | 1280.6 | 59.1 | 4．8\％ |
 | 14．8\％ | 1217.5 | 1197.4 | －20．1 | －1．6\％ |
 | 16．0\％ | 1184.8 | 1141.0 | －43．7 | －3．7\％ |
 | 17．3\％ | 1172.0 | 1133.9 | －38．1 | －3．3\％ |
 | 18．5\％ | 1162.2 | 1052.9 | －109．4 | －9．4\％ |
 | 19．8\％ | 1160.9 | 1048.0 | －112．9 | －9．7\％ |
 | 21．0\％ | ${ }^{1158.3}$ | 1006.1 | －152．2 | －13．1\％ |
 | 22．2\％ | 1146.3 | 985.3 | －160．9 | －14．0\％ |
 | 23．5\％ | 1015.8 | 974.7 | －41．1 | －4．0\％ |
 | 24．7\％ | 916.7 | 953.9 | 37.2 | 4．1\％ |
 | 25．9\％ | 910.8 | 942.4 | 31.5 2.5 | 3．5\％ |
 | 27．2\％ | 894.5 | 922.7 | 28.2 | 3．2\％ |
 | 28．4\％ | 862.0 | 908.3 | 46.3 | 5．4\％ |
 | 29．6\％ | 854.5 | 906.1 | 51.6 | 6．0\％ |
 | 30．9\％ | 825.1 | 836.9 | 11.9 | 1．4\％ |
 | 32．1\％ | 76.0 | 822.7 | 62.7 | 8．2\％ |
 | 33．3\％ | 723.8 | 766.3 | 42.5 | 5．9\％ |
 | 34．6\％ | 716.5 | 747.5 | 31.0 | 4．3\％ |
 | 35．9\％ | ${ }_{6}^{6923}$ | 679.7 6705 | －12．5 | － |
 | 37．0\％ | 647.9 | 670.5 | 22.6 | 3．5\％ |
 | 38．3\％ | 587.6 | 660.5 | 72.8 | 12．4\％ |
 | 39．5\％ | 576.9 | 617.4 | 40.5 | 7．0\％ |
 | 40．7\％ | 551.3 | ${ }_{615.2}$ | 63.9 | 11．6\％ |
 | 42．0\％ | 537.4 | 607.1 | 69.7 | 13．0\％ |
 | 43．2\％ | 524.4 | 605.1 | 80.7 | 15．4\％ |
 | 44．4\％ | 511.2 | 578.8 | 67.6 | 13．2\％ |
 | 45．7\％ | 494.8 | 571.2 | 76.4 | 15．4\％ |
 | 46．9\％ | 407.4 | 508.5 | 101.1 | 24．8\％ |
 | 48．1\％ | 394.7 3753 | 4956 | 101.0 | 25．9\％ |
 | 4．9．4\％ | 375．3 | 448.7 | 73.4 | 19．6\％ |
 | 50．6\％ | 366．8 | 445.4 | 78.6 54.1 | 21．4\％ |
 | 51．9\％ | ${ }^{365.0}$ | 414.1 | 54.1 | 15．0\％ |
 | 53．1\％ | 355．3 | 413.5 | 55．2 | 16．4\％ |
 | 54．3\％ | ${ }^{352.1}$ | 402.9 | 50.7 | 14．4\％ |
 | 55．6\％ | 324.5 3046 | 40.4 | 75.9 434 | 23．4\％ |
 | 56．8\％ | 304.6 | 348.0 | 43.4 | 14．2\％ |
 | 58．0\％ | 296.5 290.5 | 344．2 | 47.7 | 16．1\％ |
 | 59．3\％ | 290.2 | ${ }_{3}^{330.6}$ | ${ }^{40.4}$ | 13．9\％ |
 | 60．5\％ | 289.0 2888 | 321.3 3027 | 32.3 140 | 112\％ |
 | 61.7% 63.0% | 288.8 284.0 | 302.7 3023 | 14.0 | 4．8\％ |
 | 64．2\％ | ${ }_{28,0}^{2840}$ | ${ }_{208.4}$ | 18.3 16.4 | ${ }_{5}^{6.4 \% \%}$ |
 | 65．4\％ | 272.6 | 289.7 | 17.1 | 6．3\％ |
 | 66．7\％ | 267.9 | 281.2 | ${ }^{13.3}$ | 5．0\％ |
 | 67．9\％ | 264．3 | 272.7 2646 | 8.4 | 3．2\％ |
 | 69．1\％ 70.4% | ${ }_{254.0}^{260.2}$ | 264.6 261.2 | ${ }_{7.3}^{4.3}$ | 1．7\％ |
 | 71．6\％ | ${ }_{253.3}^{254}$ | 256.7 | 3.4 | 1．3\％ |
 | 72．8\％ | ${ }_{2451}^{253.2}$ | 255.3
 2524
 24 | ${ }_{6}^{2.1}$ | 0．8\％ |
 | 74．3\％ | ${ }_{244.1}^{246.1}$ | $\begin{array}{r}252.4 \\ 247 \\ \hline\end{array}$ | 6.3 | ${ }^{2.6 \%}$ |
 | 76．5\％ | 237.5 | 246.6 | 9.1 | 3．8\％ |
 | 77．\％ | 234.0 | 241.1 | 7.1 | 3．0\％ |
 | 79．0\％ | ${ }_{2329}^{2329}$ | ${ }^{234.2}$ | 1.3 | 0．6\％ |
 | 80．2\％ | ${ }_{2}^{232.5}$ | 232.5 2299 | 0.0 | 0．0\％ |
 | ${ }_{82.7 \%}$ | ${ }_{228.4}$ | ${ }_{228.6}$ | 0.2 | 0．1\％ |
 | 84．0\％ | 226.1 | 227.2 | 1.1 | 0．5\％ |
 | 85．2\％ | 221．5 | ${ }^{222.4}$ | 0.9 | 0．4\％ |
 | ${ }^{87.7 \%}$ | 216.8 | 216.8 | 0.0 | 0．0\％ |
 | 88．9\％ | 215.3 | 215.6 | 0.3 | 0．1\％ |
 | 90．1\％ | 211．3 | 214.7 2137 | 3.4 | 1．6\％ |
 | 92．6\％ | ${ }_{210.1}^{210.1}$ | ${ }_{213.0}^{213.7}$ | ${ }_{2.9}$ | 1．4\％ |
 | 93．8\％ | 209.4 | 211.8 | 2.4 | 1．2\％ |
 | 95．1\％ | 207.9 | 2097 | 1.8 | 0．9\％ |
 | 96．3\％ | 206．3 | 207．2 | 0.9 | 0．4\％ |
 | 98．8\％ | ${ }_{2028}^{206.2}$ | ${ }_{2028}^{2050}$ | －1．0 | －0．0\％ |
 | 100．0\％ | 200.2 | 200.5 | 0.3 | 0．1\％ |

 Table $\mathrm{SQ}-25-\mathrm{b}$
 in
 River at Jersey Point, Monthly EC

 | $\begin{gathered} \text { Percent } \\ \hline \text { Exceedance } \\ \text { Probability } \end{gathered}$ | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | Proiect | WSIP 2030 With Project | | Relative |
 | | Monthly EC | Monthly EC | (itierernce | Difference (\%) |
 | ${ }^{(1.0)}$ | (m) | - | | |
 | | | | | |
 | | 997.8 | 974.5 | | |
 | 2.5\% | 957.7 | 956.1 | -1.5 | -0.2\% |
 | 3.7\% | 694.5 | 775.9 | 81.4 | 11.7\% |
 | 4.9\% | 652.2 | 647.3 | -4.9 | -0.7\% |
 | 6.2\% | 571.5 | 576.4 | 5.0 | 0.9\% |
 | 7.4\% | 541.0 | 544.2 | 3.2 | 0.6\% |
 | 8.6\% | 528.4 | 505.4 | -23.0 | ${ }^{4.4}$ |
 | 9.9\% | 478.8 | 501.1 | 22.4 | 4.7\% |
 | 11.1\% | 472.0 | 497.0 | 25.1 | 5.3\% |
 | 12.3\% | 452.7 | 462.5 | 9.8 | 2.2\% |
 | 13.6\% | 424.9 | 445.7 | 20.7 | 4.9\% |
 | 14.8\% | 403.5 | 433.1 | 29.5 | 7.3\% |
 | 16.0\% | 388.9 | 423.9 | 35.0 | 9.0\% |
 | 17.3\% | 384.6 | 399.1 | 14.5 | 3.8\% |
 | 18.5\% | 375.8 | 384.8 | 9.0 | 2.48 |
 | 19.8\% | 373.8 | ${ }^{372.6}$ | -1.2 | -0.3\% |
 | 21.0\% | 363.3 | 347.3 | -16.0 | ${ }^{4.44}$ |
 | 22.2\% | 3493 | ${ }^{345.3}$ | -4.0 | -1.1\% |
 | 23.5\% | 318.8 | 333.2 | 14.4 | 4.5\% |
 | 24.7\% | 317.5 | ${ }^{326.5}$ | 9.0 | 2.8\% |
 | 25.9\% | 316.5 | 322.6 | 6.1 | 1.9\% |
 | 27.2\% | 298.9 | 310.7 | 11.8 | 3.9\% |
 | 28.4\% | 297.3 | 306.0 | 8.7 | 2.9\% |
 | 29.6\% | 291.1 | 305.4 | 14.3 | 4.9\% |
 | 30.9\% | 288.2 | 302.5 | 14.3 | 4.9\% |
 | 32.1\% | 285.0 | 299,2 | 14.3 | 5.0\% |
 | 33.3\% | 278.4 | 288.9 | 10.4 | 3.8\% |
 | 34.6\% | 270.4 | 288.6 | 18.2 | 6.7\% |
 | 35.8\% | 2698 | 280.4 | 10.6 | 3.9\% |
 | 37.0\% | 268.8 | 280.0 | 11.2 | 4.2\% |
 | 38.3\% | 266.6 | 279.9 | ${ }^{13.4}$ | 5.0\% |
 | 39.5\% | 264.9 | 270.3 | 5.3 | 2.0\% |
 | 40.7\% | 264.5 | ${ }^{269.3}$ | 4.8 | 1.8\% |
 | 42.0\% | 263.0 | 268.5 | 5.5 | 2.1\% |
 | 43.2\% | ${ }^{262.6}$ | 266.9 | 4.3 | 1.6\% |
 | 44.4\% | ${ }^{262.3}$ | ${ }^{263.3}$ | 1.0 | 0.4\% |
 | 45.7\% | 259.0 | ${ }^{263.3}$ | 4.2 | 1.6\% |
 | 46.9\% | 257.4 | 262.3 | 4.9 | 1.9\% |
 | 48.1\% | 254.1 | 261.0 | 7.0 | 2.7\% |
 | 49.4\% | ${ }^{253.4}$ | ${ }^{260.3}$ | ${ }^{6.8}$ | 2.7\% |
 | 50.6\% | ${ }_{252.2}$ | 260.0 | 7.8 | 3.1\% |
 | 51.9\% | ${ }_{251.7}$ | ${ }^{258.6}$ | 6.9 | ${ }^{2.7 \%}$ |
 | 53.1\% | ${ }_{29,8}^{249.8}$ | 256.6 | 6.8 | 2.7\% |
 | 54.3\% | 247.1 | ${ }_{266.3}$ | 9.2 | 3.7\% |
 | 55.6\% | 246.6 | 255.4 | 8.8 | 3.6\% |
 | 56.8\% | 246.0 | ${ }^{254.4}$ | 8.4 | 3.4\% |
 | 58.0\% | 242.5 | 254.1 | 11.7 | 4.8\% |
 | 59.3\% | 240.4 | 253.6 | ${ }^{13.2}$ | 5.5\% |
 | 60.5\% | 24.0 | 250.4 | 10.4 | 4.3\% |
 | 617.7\% | ${ }_{2357}^{2357}$ | 248.1 | ${ }^{12.3}$ | 5.2\% |
 | 63.0\% | ${ }^{235.7}$ | 241.5 | ${ }^{5.8}$ | 2.5\% |
 | 64.2\% | ${ }^{234.6}$ | ${ }^{240.1}$ | 5.5 | 2.3\% |
 | ${ }^{65.4 \%}$ | ${ }_{203}^{230.3}$ | ${ }_{2}^{236.8}$ | ${ }^{6.6}$ | ${ }_{25}^{2.9 \%}$ |
 | ${ }^{66.7 \%}$ | 230.1 | ${ }^{235.9}$ | 5.8 | 2.5\% |
 | 67.9\% | ${ }_{227.9}^{227.9}$ | ${ }_{2558}^{235.8}$ | 6.9 | 3.0\% |
 | 69.1\% | 227.4 | ${ }^{235.2}$ | ${ }_{7} 7$ | 退 |
 | 70.4\% | ${ }_{226.3}^{226.3}$ | ${ }_{23,5}^{2335}$ | 7.2 | ${ }^{3.2 \%}$ |
 | 71.6\% | ${ }_{225.4}^{225.4}$ | ${ }^{231.2}$ | 5.9 | 源 |
 | 72.8\% | ${ }^{22250}$ | ${ }_{2}^{230.1}$ | 5.0 | 2.2\% |
 | 74.1\% | ${ }_{224.6}^{224.6}$ | ${ }^{226.3}$ | 1.7 | 0.8\% |
 | 75.3\% | 221.7 | ${ }_{223.4}^{223}$ | 1.6 | 0.7\% |
 | 76.5\% | ${ }^{220.4}$ | ${ }^{221.6}$ | 1.1 | 0.5\% |
 | 77.8\% | 219.6 | 221.2 | 1.5 | ${ }^{0.7 \%}$ |
 | 79.0\% | 218.0 | ${ }^{220.6}$ | 2.6 | 1.2\% |
 | 80.2\% | 215.0 | ${ }^{219.3}$ | 4.2 | 2.0\% |
 | ${ }^{81.5 \%}$ | 214.1 | 215.5 | 1.4 | \% |
 | 82.7\% | 211.6 | 214.1 | ${ }_{2}^{2.4}$ | 1.2\% |
 | 84.0\% | ${ }^{211.4}$ | ${ }^{211.5}$ | 2.1 | ${ }^{1.0 \%}$ |
 | 85.2\% | 211.3 | 211.3 | 0.0 | 0.0\% |
 | ${ }^{86.47 \%}$ | 210.8 | 211.3 | 0.5 | 0.2\% |
 | 87.7\% | 2089 | ${ }_{208.6}^{210.5}$ | ${ }^{1.6}$ | - ${ }_{\text {0.8\% }}^{0.1 \%}$ |
 | 88.9\% | 208.9 | 208.6 | -0.2 | 0.1\% |
 | 90.1\% 9 | 208.0 | 208.4 | 0.4 | ${ }^{0.2 \%}$ |
 | 91.4\% | 207.8 | 208.0 | 0.2 | 0.1\% |
 | 92.6\% | 207.2 | 207.1 | -0.1 | 0.0\% |
 | 93.8\% | 206.4 | ${ }^{2006.6}$ | 0.2 | 0.1\% |
 | 95.1\% | 206.1 | 206.2 | 0.0 | 0.0\% |
 | 96.5\% ${ }^{96.5 \%}$ | 203.2 | 203.2 | -0.1 | -0.0\% |
 | 97.5\% | | 201.9 | | .0\% |
 | $\begin{array}{r}\text { 98.8\% } \\ \text { 10.0\% } \\ \hline\end{array}$ | ${ }_{198.3}^{201.1}$ | ${ }_{199.0}^{201.1}$ | -0.8 | |

 | PercentExceedanceProbability | May | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 20330 Without | WSIP 2030 With Project | Absolute | |
 | | Monthly EC | Monthly EC | (idiference | Difference (\%) |
 | | UMHOSICM) | | | |
 | 0.0\% | 1016.9 | 78.1 | 38.8 | ${ }^{-3.8{ }^{6}}$ |
 | 1.2\% | 919.2 | 919.4 | 0.2 | |
 | 2.5\% | 880.3 | 880.3 | 19.9 | |
 | 3.7\% | 623.4 | 543.3 | | |
 | 4.9\% | 469.8 | 472.9 | 3.1 | |
 | 6.2\% | 464.1 | 464.9 | 0.9 | |
 | 7.4\% | 427.3 | 429.6 | 2.3 | 0.5\% |
 | 8.6\% | 412.9 | 413.8 | 0.9 | |
 | 9.9\% | 410.6 | 394.0 | 16.6 | -4.0\% |
 | 11.1\% | 389.1 | 387.8 | -1.3 | -0.3\% |
 | 12.3\% | 386.9 | 3828 | 4.1 | -1.1\% |
 | 13.6\% | 383.2 | 378.0 | -5.2 | -1.3\% |
 | 8\% | 365.0 | 357.7 | 7.3 | -2.0\% |
 | 16.0\% | 354.4 | 347.1 | -7.3 | -2.18 |
 | 17.3\% | 350.2 | 329.0 | -21.2 | 6.1\% |
 | 18.5\% | 335.1 | 326.2 | 8.9 | -2.7\% |
 | 19.8\% | 328.5 | 319.1 | 9.5 | -2.9\% |
 | 21.0\% | 319.2 | 316.8 | -2.4 | -0.8\% |
 | 22.2\% | 318.6 | 314.5 | -4.1 | -1.3\% |
 | 23.5\% | 316.3 | 310.0 | ${ }^{6.3}$ | -2.0\% |
 | 24.7\% | 314.4 | 306.6 | -7.8 | -2.5\% |
 | 25.9\% | 304.8 | 300.6 | 4.2 | -1.4\% |
 | 27.2\% | 296.8 | 291.9 | -4.9 | -1.7\% |
 | 28.4\% | 296.4 | 290.6 | -5.8 | 2.0\% |
 | 29.6\% | 290.4 | 290.3 | -0.1 | 0.0\% |
 | 30.9\% | 286.5 | ${ }^{281.3}$ | 5.2 | ${ }^{1.88 \%}$ |
 | 32.1\% | ${ }^{283.6}$ | 279.9 | -3.7 | -1.3\% |
 | 33.3\% | ${ }^{277.6}$ | 278.4 | -1.2 | 0.4\% |
 | 34.6\% | 279.0 | 276.6 | -2.4 | -0.9\% |
 | 35.8\% | 273.9 | ${ }_{2}^{273.6}$ | -0.3 | -0.1\% |
 | 37.0\% | 267.8 | 269.1 | 1.2 | 0.5\% |
 | 38.3\% | 264.7 | 268.6 28.6 | 3.8 | 1.5\% |
 | 39.5\% | 261.7 | 268.3 | 6.7 | 2.5\% |
 | 40.7\% | ${ }^{2651.2}$ | ${ }_{262.0}^{2629}$ | ${ }^{0.8}$ | 0.3\% |
 | 42.0\% | 259.0 | ${ }^{261.3}$ | 2.2 | 0.9\% |
 | 43.2\% | ${ }^{258.2}$ | 259.7 295 | 1.4 | 0.5\% |
 | 44.4\% | 257.7 | 259.4 | 1.7 | 0.7\% |
 | 45.7\% | ${ }^{256.4}$ | $\begin{array}{r}258.8 \\ 2588 \\ \hline 258\end{array}$ | 2.4 | 0.9\% |
 | 46.9\% | 256.4 | 258.2 | 1.8 | 0.7\% |
 | 48.1\% | ${ }^{252.6}$ | 257.5 255 | 4.9 | 1.9\% |
 | 49.4\% | 251.5 | ${ }^{256.3}$ | 4.8 | 1.9\% |
 | 50.6\% | 250.2 | 250.6 2503 | 0.4 | 0.2\% |
 | 51.9\% | 2497 | 250.3 | 0.6 | 0.3\% |
 | 53.1\% | 248.1 | 249.0 | 0.9 | 0.3\% |
 | 54.3\% | 248.1 | 248.7 | 0.6 | 0.3\% |
 | 55.6\% | 247.6 | 247.4 | ${ }^{-0.3}$ | -0.1\% |
 | 56.8\% | 2469 | 246.9 | 0.0 | \% |
 | 58.0\% | ${ }^{246.2}$ | ${ }^{246.6}$ | 0.4 | 0.2\% |
 | 59.3\% | 245.7 | ${ }^{246.2}$ | 0.4 | 2\% |
 | 60.5\% | ${ }_{2} 245$ | ${ }^{245.8}$ | 0.1 | 0.0\% |
 | 61.7\% | 244.5 | ${ }_{2} 245.7$ | ${ }^{1.3}$ | 5\% |
 | 63.0\% | 244.0 | ${ }^{245.1}$ | 1.2 | 0.5\% |
 | 64.2\% | ${ }^{243.3}$ | ${ }^{244.3}$ | 1.0 | 4\% |
 | 65.4\% | 243.0 | 244.2 | 1.2 | 0.5\% |
 | ${ }^{66.7 \%}$ | 242.0 | 243.9 | 1.9 | 0.8\% |
 | 67.9\% | 241.5 | ${ }^{242.4}$ | 0.9 | 0.4\% |
 | 69.1\% | ${ }^{240.7}$ | ${ }^{242,3}$ | 1.6 | \%\% |
 | 70.4\% | 240.0 | 240.8 | 0.8 | 0.3\% |
 | 71.6\% | ${ }_{235}^{235}$ | ${ }_{2357}^{2357}$ | 0.2 | 0.1\% |
 | 72.8\% | ${ }_{232.7}^{232}$ | ${ }_{232.7}^{2325}$ | ${ }^{0.0}$ | 0.0\% |
 | 74.1\% | ${ }^{230.9}$ | ${ }^{232.5}$ | 1.6 | 0.7\% |
 | 75.3\% | ${ }^{230.8}$ | 231.6 2298 | 0.9 | 0.4\% |
 | 76.5\% | 229.8 | ${ }^{229.9}$ | 0.0 | 0.0\% |
 | 77.8\% | ${ }_{2228.5}^{227.5}$ | ${ }_{2275}^{228.5}$ | 0.0 | 0.0\% |
 | 79.0\% | ${ }_{227.6}^{227.6}$ | ${ }^{227.6}$ | 0.1 | 0.0\% |
 | - 80.2% | ${ }^{227.4}$ | ${ }_{227.5}^{227}$ | 0.1 | 0.0\% |
 | ${ }^{81.5 \%}$ | ${ }^{226.2}$ | ${ }^{226.3}$ | 0.0 | 0.0\% |
 | - 82.7% | ${ }_{223.0}^{224.0}$ | ${ }^{225.0}$ | 1.0 | 0.4\% |
 | 84.0\% | ${ }^{223.3}$ | ${ }^{224.2}$ | ${ }^{0.8}$ | 0.4\% |
 | 85.2\% | 221.1 | 221.6 | 0.5 | 0.2\% |
 | 86.4\% | 218.7 | 218.4 | -0.3 | -0.1\% |
 | 87.7\% | ${ }^{217.2}$ | 217.2 | 0.0 | 0.0\% |
 | 88.9\% | ${ }^{203.2}$ | ${ }^{203.6}$ | 0.4 | 0.2\% |
 | 90.1\% | 197.8 | 198.1 | 0.3 | 0.2\% |
 | 91.4\% | 196.4 | 196.7 | 0.3 | 0.2\% |
 | 92.6\% | 196.0 | ${ }^{196.1}$ | 0.1 | (1\% |
 | 93.8\% | 190.1 | 190.2 | 0.1 | 0.1\% |
 | 95.1\% | 187.8 | 188.2 | 0.4 | 0.2\% |
 | 96.3\% | 185.2 | 185.3 | 0.2 | 0.1\% |
 | | 183.0 | 183.3 | . 3 | .1\% |
 | | 188.7 181.9 | 188.9 182.2 | ${ }_{0.3}^{0.3}$ | - |

 Table $\mathrm{SQ}-25-\mathrm{b}$
 in
 River at Jersey Point, Monthly EC

 | | | |
 | :--- | :--- | :--- | :--- |
 | | | |

 | | | Seprember | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent | WSIP 2030 Without | WSIP 2030 With Project | Absolute | |
 | Probability | Monthly EC | Monthly EC | (itiference | Difference (\%) |
 | (\%) | UMHOSCCM | UMHOSCCM | 80 | |
 | 1.2\% | ${ }_{2715.6}$ | 2798.2 | ${ }_{826}$ | 3.0\% |
 | 2.5\% | 2693.8 | 2755.0 | 61.2 | 2.3\% |
 | 3.7\% | ${ }^{2638.3}$ | 2779 | 81.4 | 3.1\% |
 | 4.9\% | 2631.4 | 2677.6 | 45.2 | 1.7\% |
 | 7.4\% | 2619.8 2619.3 | ${ }_{2658.6}^{2676.1}$ | 56.3 39.3 | 2.1\%\% |
 | 8.6\% | 2615.2 | 2590.4 | -24.8 | -0.9\% |
 | 9.9\% | 2604.2 | 2589.1 | -15.1 | -0.6\% |
 | 11.1\% ${ }^{\text {12.3\% }}$ | ${ }_{2555.3}^{2593.5}$ | ${ }_{2}^{2550.4}$ | -33.1
 7.2 | - ${ }^{-1.3 \%}$ |
 | 13.6\% | 2528.1 | 2558.0 | 30.0 | 1.2\% |
 | 14.8\% | 2510.7 | 2488.1 | -30.5 | -1.2\% |
 | 117.3\% | 2501.6 | ${ }_{2}^{24559.7}$ | $\begin{array}{r}\text { - } \\ -6.9 .9 \\ \hline 6.4\end{array}$ | -1.8\% -2.4 |
 | 18.5\% | 2498.3 | 2428.5 | -69.8 | -2.8\% |
 | 19.8\% | 2482.9 | 2417.7 | -65.2 | -2.6\% |
 | 22.0\% | ${ }_{2}^{24558.5}$ | ${ }_{2}^{24160.4}$ | -42.1 | - |
 | 23.5\% | 2455.5 | 2401.2 | -54.3 | -2.2\% |
 | 24.7\% | 2422.4 | 2391.0 | -51.5 | -2.1\% |
 | 27.2\% | ${ }_{2399.3}^{2426.1}$ | ${ }_{2369.7}^{2378.5}$ | - -29.7 -296 | - |
 | 28.4\% | ${ }^{2391.5}$ | 2368.1 | -23.4 | -1.0\% |
 | 29.6\% | 2379.9 | ${ }_{2}^{2353.8}$ | -26.1 | -1.1\% |
 | 332.1\% | ${ }_{2344.3}^{2354.4}$ | ${ }_{2344.9}^{2351.2}$ | -3.3 -3.4 | -0.1\% |
 | 33.3\% | ${ }^{2343.8}$ | 2327.3 | -16.5 | -0.7\% |
 | 34.6\% | 2322.5 | ${ }^{2324.5}$ | 2.0 | 0.1\% |
 | 37.0\% | ${ }_{2}^{2272.4}$ | ${ }_{2311.1}^{23312.3}$ | 32.2 38.7 | 1.7\% |
 | 38.3\% | 2249.6 | 2307.3 | 57.7 | 2.6\% |
 | | ${ }_{22217}^{2242.7}$ | ${ }^{2304.0}$ | ${ }^{61.3}$ | 2.7\% |
 | 42.0\% | ${ }_{22226.1}^{2241.1}$ | ${ }_{2251.7}^{2203.7}$ | ${ }_{25.6}^{22.0}$ | 1.1.\% |
 | 43.2\% | 2219.1 | 2218.0 | -1.1 | 0.0\% |
 | | | 2200.2 21988 | 6.1 | 0.3\% |
 | 46.9\% | ${ }_{2176.5}^{2186.7}$ | ${ }_{21855.7}^{2195.8}$ | 9.1 | 0.4\% |
 | 48.1\% | 2148.9 | 2184.7 | 35.8 | 1.7\% |
 | 49.4\% | ${ }^{2127.3}$ | ${ }_{2151.8}$ | ${ }^{24.5}$ | ${ }^{1.2 \%}$ |
 | 51.9\% | ${ }_{2040.8}^{2040}$ | 2015.0 | ${ }_{-25.9}$ | ${ }_{-1.3 \%}^{2.10}$ |
 | 53.1\% | 2004.1 | 2004.3 | 0.2 | 0.0\% |
 | 54.3\% | ${ }^{1954.9}$ | 11991.9 | 36.9 | 1.9\% |
 | 55.8\% | ${ }_{11113.1}^{126.6}$ | 1109.1 | -4.0 | -0.4\% |
 | 58.0\% | 1110.6 | 1096.4 | -14.1 | -1.3\% |
 | | 1108.9 | ${ }^{102095}$ | -79.8 | -7.2\% |
 | 61.7\% | 1069.9 | ${ }_{988.0}$ | -81.9 | -7.7\% |
 | 63.0\% | 1045.6 | 985.8 | -59.8 | -5.7\% |
 | 㐌.2\% | ${ }_{989} 996$ | ${ }^{986.8}$ | -15.3 | -1.5\% |
 | 66.7\% | ${ }_{955.1}$ | ${ }_{964.5}^{90.2}$ | -8.6 | -0.9\% |
 | 67.9\% | 915.7 | 945.6 | 29.9 | 3.3\% |
 | | ${ }^{915.5}$ | ${ }^{9228.7}$ | 13.3 | ${ }^{1.4 \%}$ |
 | 71.6\% | ${ }_{897.7}^{903.3}$ | ${ }_{895.3}^{922.1}$ | -2.4 | ${ }^{2.10 \%}$ |
 | 72.8\% | 892.0 | 884.0 | -7.9 | -0.9\% |
 | 74.3\% | ${ }_{889.2}^{898}$ | ${ }^{864.0}$ | -26.3 | -2.9\% |
 | 75.5\% | ${ }_{872.6}$ | 854.2 | -18.4 | -2.1\% |
 | 77.8\% | 869.6 | 845.8 | -23.8 | -2.7\% |
 | 79.0\% | 851.9 | ${ }^{833.4}$ | -18.5 | -2.2\% |
 | 81.5\% | 889.6 | 799.9 | ${ }_{-29.7}$ | -3.6\% |
 | 82.7\% | 813.1 | 796.7 | -16.3 | -2.0\% |
 | 885.2\% | 727.8 6928 | 686.1 639.7 | - ${ }_{\text {- }}^{\text {-4,2.7 }}$ | --5.7\% |
 | 86.4\% | 590.3 | 621.2 | 30.8 | 5.2\% |
 | | | 615.4 | ${ }^{46.8}$ | 8.2\% |
 | - ${ }^{88.98 \%}$ | ${ }_{512.9}^{512.0}$ | 520.0 515.8 | 8.0 5.0 | - ${ }^{1.02 \%}$ |
 | 91.4\% | 508.5 | 511.6 | 3.1 | 0.6\% |
 | 92.6\% | ${ }_{402.5}$ | 510.3 | 7.7
 155 | 1.5\% |
 | 95.1\% | ${ }_{458.9}$ | 500.6 460.5 | 15.7 1.7 | 0.4\% |
 | 96.3\% | 448.4 | 433.8 | -14.6 | -3.3\% |
 | 98.8\% | ${ }_{415.9}^{423.1}$ | 429.6 3945 | ${ }_{-214} 6.5$ | ${ }_{\text {l }}^{\text {1.5\% }}$ |
 | 100.0\% | 370.4 | ${ }_{325.5}$ | -44.8 | -12.1\% |

 Figure SQ-27-b
 Old River at Rock Slough, Monthly EC

 Table SQ－27－b
 Ther

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[b]{3}{*}{$$
 \begin{gathered}
 \text { Percent } \\
 \text { Excedance } \\
 \text { Probability }
 \end{gathered}
 $$} \& \multicolumn{4}{|c|}{October}

 \hline \& WSIP 2030 Without \& WSIP 2030 With Project \& Absolute \& Relative

 \hline \& Monthly EC \& Monthly EC \& （umbos／cm） \& Difference（\％）

 \hline 0．0\％ \& UMHOSSCM） \& OSCM） \& \&

 \hline 0．0\％ \& 1104.0 \& ${ }^{1112.1}$ \& 8.2 \& 0．7\％

 \hline 1．2\％ \& 1102.5 \& 1080.9 \& \&

 \hline 2．5\％ \& 1095.9 \& 1033.9 \& －62．1 \&

 \hline 3．7\％ \& 1061.5 \& 1029.6 \& －31．9 \&

 \hline 4．9\％ \& 1043.4 \& 1020 \& －23．2 \&

 \hline 6．2\％ \& 1042.9 \& 1004.3 \& －38．6 \& －3．7\％

 \hline 7．4\％ \& 1011.4 \& 1000.6 \& －10．8 \&

 \hline 8．6\％ \& 1004.4 \& 996.2 \& －8．3 \& －0．8\％

 \hline 9．9\％ \& 1003.1 \& 961.4 \& －41．7 \& －4．2\％

 \hline 11．1\％ \& 999.2 \& 957.1 \& －42．1 \& ${ }_{4}^{4.28}$

 \hline 12．3\％ \& 993.9 \& 954.6 \& －39．3 \&

 \hline 13．6\％ \& 984.8 \& 944.8 \& －40．0 \& －4．1\％

 \hline 14．8\％ \& 977.5 \& 941.0 \& －36．5 \&

 \hline 16．0\％ \& 969.0 \& 939.0 \& －30．0 \& ${ }^{3} 11$

 \hline 17．3\％ \& 952.5 \& ${ }_{335.8}$ \& －16．7 \&

 \hline 18．5\％ \& 945.0 \& 902.6 \& －42．5 \& －4．5\％

 \hline 19．8\％ \& 944.6 \& 878.3 \& －66．3 \&

 \hline 21．0\％ \& 940.4 \& 871.2 \& －69．2 \& 7．4

 \hline 22．2\％ \& 938.8 \& 857.1 \& －81．7 \& 8．7\％

 \hline 23．5\％ \& ${ }_{935.6}$ \& 855.9 \& －79．7 \& 8．5\％

 \hline 24．7\％ \& 925.4 \& 854.0 \& －71．4 \& ${ }^{-7.7}$

 \hline 25．9\％ \& 924.4 \& 853.5 \& －70．9 \& －7．7\％

 \hline 27．2\％ \& ${ }^{922.2}$ \& 849.6 \& －72．6 \& －7．9\％

 \hline 28．4\％ \& 902.6 \& 847.1 \& －55．5 \& －6．1\％

 \hline 29．6\％ \& 902.2 \& 846.5 \& －55．7 \& －6．2\％

 \hline 30．9\％ \& 894.4 \& 843.5 \& －50．8 \& －5．7\％

 \hline 32．1\％ \& ${ }^{892.3}$ \& 843.1 \& －49．1 \& 5．5\％

 \hline 33．3\％ \& 875.1 \& 835.1 \& －40．0 \& 4．6\％

 \hline 34．6\％ \& 874.3 \& ${ }^{832.3}$ \& －42．0 \& －4．8\％

 \hline 35．8\％ \& 868.2 \& 832.2 \& －36．0 \& 4．19

 \hline 37．0\％ \& 861.0 \& 825.7 \& －35．3 \& －4．1\％

 \hline 38．3\％ \& 859.2 \& 824.1 \& －35．0 \& 4．1\％

 \hline 39．5\％ \& 857.1 \& 818.3 \& －38．9 \& －4．5\％

 \hline 40．7\％ \& 856.4 \& 817.7 \& －38．7 \& 4．5\％

 \hline 42．0\％ \& 847.8 \& 806.9 \& －40．9 \& －4．8\％

 \hline 43．2\％ \& ${ }^{834.6}$ \& 784．6 \& －50．0 \& －6．0\％

 \hline 44．4\％ \& 833.7 \& 776.9 \& －56．8 \& －6．8\％

 \hline 45．7\％ \& 833.6 \& 742.9 \& －90．7 \& 10．9

 \hline 46．9\％ \& 811.1 \& 740.6 \& －70．5 \& －8．7\％

 \hline 48．1\％ \& 810.4 \& 676.5 \& －134．0 \& 16．5\％

 \hline 49．4\％ \& 796.0 \& 668.9 \& －127．2 \& －16．0\％

 \hline 50．6\％ \& 795.9 \& 660.8 \& 135.1 \& －17．0\％

 \hline 51．9\％ \& 724.8 \& 650．2 \& －74．6 \& －10．3\％

 \hline 53．1\％ \& 702.3 \& ${ }^{631.8}$ \& －70．5 \& －10．0\％

 \hline 54．3\％ \& 544.3 \& 537.7 \& －6．7 \& －1．2\％

 \hline 55．6\％ \& 310.4 \& 308.4 \& －2．0 \& －0．6\％

 \hline 56．8\％ \& 291.9 \& ${ }^{285.0}$ \& －6．8 \& ${ }^{2.3 \%}$

 \hline 58．0\％ \& 29.5 \& ${ }_{278.8}$ \& －9．7 \& －3．3\％

 \hline 59．3\％ \& ${ }^{287.0}$ \& 277.2 \& －10．7 \& －3．7\％

 \hline 60．5\％ \& ${ }^{283.7}$ \& ${ }^{2775.5}$ \& －8．1 \& －2．9\％

 \hline 617．7\％ \& ${ }^{282.9}$ \& ${ }^{273.3}$ \& －9．6 \& －3．4\％

 \hline 63．0\％ \& ${ }_{273}^{2817}$ \& ${ }_{271.7}^{2727}$ \& －9．0 \& －3．2\％\％

 \hline 64．2\％ \& ${ }^{273.0}$ \& ${ }^{271.6}$ \& －1．5 \& －0．5\％

 \hline 65．4\％ \& ${ }_{2712}^{272.7}$ \& 271．4 \& －11 \& 0．5\％

 \hline ${ }^{66.7 \%}$ \& ${ }^{271.3}$ \& 270.2 \& －1．1 \& 0．4\％

 \hline 67．9\％ \& 270.0 \& ${ }^{267.8}$ \& －2．2 \& －0．8\％

 \hline 69．1\％ \& ${ }^{268.4}$ \& 265.4 \& ${ }^{-3.0}$ \& －1．1\％

 \hline 70．4\％ \& ${ }^{267.2}$ \& ${ }^{263.8}$ \& ${ }^{-3}$ \& －1．3\％

 \hline 71．6\％ \& ${ }^{267.0}$ \& ${ }^{262.2}$ \& －4．8 \& －1．8\％

 \hline 72．8\％ \& ${ }_{26,6}^{266.6}$ \& ${ }^{261.9}$ \& －4．7 \& －1．8\％

 \hline 74．1\％ \& 262.8 \& 258.9 \& 3.9 \& 5\％

 \hline 75．3\％ \& 257．4 \& ${ }^{258.8}$ \& 1.5 \& 0．6\％

 \hline 76．5\％ \& ${ }^{255.2}$ \& 257．1 \& －0．1 \& 0．0\％

 \hline 77．8\％ \& ${ }_{255.1}^{2551}$ \& 252．9 \& －2．2 \& －0．9\％

 \hline 79．0\％ \& ${ }^{253.6}$ \& ${ }^{252.8}$ \& －0．9 \& －．3\％

 \hline 80．2\％ \& ${ }_{253.1}^{2531}$ \& 250.9 \& ${ }^{2.3}$ \& －0．9\％

 \hline 81．5\％ \& ${ }_{2529}^{2529}$ \& 24.5 \& －5．4 \& 2．1\％

 \hline － 82.7% \& 251.7 \& ${ }^{246.2}$ \& －5．5 \& 2．2\％

 \hline 84．0\％ \& ${ }_{246.6}$ \& 239.9 \& －6．7 \& 源

 \hline 85．2\％ \& ${ }_{245}^{24.3}$ \& ${ }_{23,3}^{2393}$ \& －5．9 \& 浐

 \hline 86．4\％ \& 244.1 \& 237．2 \& 6.9 \& 退

 \hline 87．7\％ \& 24.5 \& 236.7

 2334 \& －6．8 \& －2．8\％

 \hline 88．9\％ \& 240.2 \& ${ }_{23,4}^{23.4}$ \& ${ }_{-6.7}$ \& 2．8\％

 \hline 90．1\％ \& 239.9 \& ${ }_{222.7}^{2327}$ \& －7．2 \& 51\％

 \hline ${ }^{91.44 \%}$ \& ${ }^{234.3}$ \& 222.4 \& 11.9 \& 1\％

 \hline 92．6\％ \& ${ }_{2228}^{2268}$ \& ${ }_{20.8}^{220.8}$ \& －6．0 \& 20\％

 \hline ${ }^{93.8 \%}$ \& ${ }_{2227}^{223.6}$ \& ${ }_{21711}$ \& ${ }^{4.6}$ \& －2．0\％

 \hline 95．1\％ \& ${ }^{222.7}$ \& ${ }^{217.1}$ \& 5.6 \& －2．5\％

 \hline 96．3\％ \& 220.8 \& 213.9 \& －6．9 \& －3．1\％

 \hline 97．5\％ \& 215.9 \& 213.9 \& －2．0 \& 0．9\％

 \hline 98.8%
 1000% \& ${ }_{1911}^{202.3}$ \& 201.0
 190. \& －1．4 \& －0．7\％

 \hline \& \& \& \&

 \hline
 \end{tabular}

 | | | November | | Proba | ceadance | | December | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2 230 Welthout | WSIP 2030 With Project | Absolute | | Percent | WSIP 2030 Without | WSIP 2030 With Project | Absolute | Relative |
 | Probability | Monthly EC | Monthly EC | （ifterence | Difference（\％） | Probability | Monthly EC | Monthly EC | （ifference | Hference（\％） |
 | 0．0\％ | ${ }^{1276.4}$ | ${ }^{13088.7}$ | ${ }^{32.3}$ | 2．5\％ | 0．0\％ | ${ }^{1200.2}$ | ${ }_{1}^{118776}$ | ${ }^{-12.6}$ | 1．1\％ |
 | 1．2\％ | 1231.8 | 1265.1 | 33.3 | 2．7\％ | 1．2\％ | 1083.7 | 1138.3 | 54.6 | |
 | 2．5\％ | 1199.3 | 1211.7 | 12.4 | 1．0\％ | 2．5\％ | 1071.6 | 1093.4 | 21.8 | 2．0\％ |
 | 3．7\％ | 1184.1 | 通 | －4．1 | －0．3\％ | 3．7\％ | 1069.8 | 2.4 | | 1．2\％ |
 | 4．9\％ | 1136 | 1143.2 | 6.9 | 0．6\％ | 4．9\％ | 1060.7 | 107 | 15.3 | |
 | 7．4\％ | 1133.2 1126.0 | 1121.7 1099.3 | －11．5 -26.7 | －－．4．4\％ | 7．2\％ | 1059.5 10550 | （1072．3 | $\begin{array}{r}12.9 \\ 13.3 \\ \hline\end{array}$ | 1.2%
 1.3%
 1 |
 | 8．6\％ | 1082.0 | 1095.5 | 13.5 | 1．2\％ | 8．6\％ | 1052.7 | 1063.1 | 10.4 | |
 | 9．9\％ | 1072.7 | 1067.0 | －5．7 | －0．5\％ | 9．9\％ | 1024.3 | | 35.2 | |
 | 11．1\％ | 1037.2 | 1046.2 | 9.1 | 0．9\％ | 11．1\％ | 1017.0 | 1037.8 | 20.7 | |
 | 12．3\％ | 1027.1 | 1033.8 | 6.7 | ． 7% | 12．3\％ | 997.1 | 1034.4 | 37.3 | |
 | 13．6\％ | 1026.5 | 994.2 | 32．3 | ．1\％ | 13．6\％ | 983.2 | 1002.0 | 18.8 | |
 | 14.8 | 22.1 | 988.1 | －34．0 | ．3\％ | 14．8\％ | 951.6 | 997.4 | 45.8 | \％\％ |
 | 16．0\％ | 1006．3 | ${ }_{933.9} 9$ | －72．4 | －7．2\％ | 16．0\％ | 941.0 | 988.5 | 47.6 | 5．1\％ |
 | | | 907.2 | －51．4 | | | | | | |
 | 19．8\％ | 997.0 | ${ }_{880.3}$ | ${ }_{-26.7}$ | －2．9\％ | 19．8\％ | ${ }_{923.6}^{928.1}$ | ${ }_{960.2}^{9040}$ | 35.6 | 4．0\％ |
 | 21．0\％ | 897.7 | 835.9 | －61．8 | －6．9\％ | 21．0\％ | 911.2 | 916.8 | 5.7 | 0．6\％ |
 | 22．2\％ | 884.1 | 827.8 | －56．3 | －6．4\％ | 22．2\％ | 907.1 | 902.7 | －4．4 | |
 | － 23.5% | ${ }_{833}^{849.2}$ | 805.7 7802 | －43．5 | －5．1\％ | 23．5\％ | 887．3 | 889．4 | ${ }^{2.2}$ | 0．2\％ |
 | 24．9\％ | 833.3 833.0 | 780.2 779.0 | -53.2 -54.1 | ${ }_{-6.5 \%}^{-6.4 \%}$ | 24．9\％ | ${ }_{872.5}^{878.6}$ | ${ }_{800.5}^{832.8}$ | －-66.8 | －7．6\％ |
 | 27．2\％ | 829.2 | 774.7 | －54．5 | －6．6\％ | 27．2\％ | 871.3 | ${ }_{803.9}$ | －67．5 | －7．7\％ |
 | 28．4\％ | 814.8 | 772.5 | －42．3 | －5．2\％ | 28．4\％ | 862.2 | 801.8 | －60．4 | －7．0\％ |
 | 29．6\％ | 805.4 | ${ }^{767.6}$ | 37.8 | －4．7\％ | 29．6\％ | 849.4 | 796.9 | －52．5 | －6．2\％ |
 | 320．1\％ | ${ }_{797.1}^{798.7}$ | 760.4 759.4 | -38.2 -37 | －4．8\％\％ | 30．9\％ | ${ }_{796.2}^{802.7}$ | 794.2 752.0 | －8．4． | －-5.6% |
 | 33．3\％ | 783.4 | 752.2 | －31．2 | －4．0\％ | 33．3\％ | 763.3 | 749.8 | －13．5 | －1．8\％ |
 | 34．6\％ | 783.4 | 750.4 | －33．0 | －4．2\％ | 34．6\％ | 750.7 | 652.1 | －98．6 | －13．1\％ |
 | 35．8\％ | 781.2 | 725.8 | －55．4 | －7．1\％ | 35．8\％ | 720.2 | 634.8 | －85．5 | －11．9\％ |
 | 37．0\％ | 780.4 | 699.2 | －81．2 | －10．4\％ | 37．\％ | 683.7 | 617.8 | －65．9 | －9．6 |
 | 38．3\％ | 787.2 | ${ }^{693.4}$ | －86．8 | －11．1\％ | 38．3\％ | 656.2 5 | 595．6 | －60．6 | －9．2\％ |
 | 40．7\％ | 769.6 | 662.4 | －107．2 | －13．9\％ | 40．7\％ | 578.5 | 566.5 | －12．0 | －2．1\％ |
 | 42．0\％ | 758.3 | 655.8 | －102．5 | －13．5\％ | 42．0\％ | 575.6 | 559.1 | －16．5 | －2．9\％ |
 | 43．2\％ | ${ }^{750.1}$ | 648.0 | －102．1 | －13．6\％ | 43．2\％ | 574.6 | 517.1 | －57．5 | －10．0\％ |
 | 44．4\％ | ${ }_{7393}$ | 630.5 | －108．8 | －14．7\％ | 44．4\％ | 519.8 | 511.7 | －8．1 | －1．6\％ |
 | 45．7\％ | 717.1 | 600.0 | －111．1 | －15．5\％ | 45．7\％ | 472.8 | 493.9 | 21.1 | 4．5\％ |
 | 46．9\％ | 716.2 | 569.0 | －147．2 | －20．6\％ | 46．9\％ | 443.8 | 493.3 | 49.5 | |
 | 48．4\％ | ${ }_{676.3}$ | ${ }_{503.5}^{538.9}$ | －165．1 -1728 | －23．6\％ | 49．4\％ | ${ }_{4199.6}$ | ${ }_{441.4}^{449}$ | ${ }_{21.7}^{23.7}$ | ${ }_{5}^{5.2 \%}$ |
 | 50．6\％ | 611.6 | 503.1 | －108．5 | －17．7\％ | 50．6\％ | 414.2 | 421.3 | 7.1 | 1．7\％ |
 | 51．9\％ | 593.9 | 453.1 | －140．8 | －23．7\％ | 51．9\％ | 397.3 | 402.7 | 5.4 | 1．4\％ |
 | 53．1\％ | 437.2 | 434.2 | －3．0 | －0．7\％ | 53．1\％ | 385.5 | 401.0 | 15.5 | 4．0\％ |
 | 54．3\％ | 419.7 | ${ }^{398.6}$ | －21．2 | －5．0\％ | 54．3\％ | ${ }^{384.3}$ | 391.7 3977 | 7.4 | 1．9\％ |
 | 55．8\％ | 314.9 289.5 | ${ }_{300.1}^{329.0}$ | 14.1 16.6 | 5．7\％ | 55．8\％ | ${ }_{363.7}^{3823}$ | 378.7 374.8 | －3．5 11.1 | －${ }_{\text {3．0\％}}$ |
 | 58．0\％ | 289.4 | 304.1 | 14.7 | 5．1\％ | 58．0\％ | 362.4 | 354.6 | －7．8 | －2．1\％ |
 | 59．3\％ | 276.4 | 278.6 | 2.2 | 0．8\％ | 59．3\％ | 350.0 | 343.9 | －6．0 | －1．7\％ |
 | 60．5\％ | 271.9 | 273.4 | 1.6 | 0．6\％ | 60．5\％ | 345.0 | 329.9 | －15．1 | －4．4\％ |
 | 61．7\％ | 260.7 | 262.0 | 1.4 | 0．5\％ | 61．7\％ | 339.1 | 322.6 | －16．6 | －4．9\％ |
 | －63．0\％ | 252.2 250.7 | 254.6 2487 | －2．4 | 1．0\％ | 63．0\％ | 324.9 3229 | 320．0 | －4．9 | －1．5\％ |
 | ${ }^{64.24 \%}$ | ${ }_{248.1}^{200.7}$ | ${ }_{244.2}^{24.7}$ | －－2．0 | ${ }^{-1.6 \%}$ | 6．5．4\％ | ${ }_{322.4}$ | ${ }_{318.6}$ | －1．8 | －0．6\％ |
 | 66．7\％ | 24.1 | 24.9 | －3．2 | －1．3\％ | 66．7\％ | 315.1 | 318.2 | 3.0 | 1．0\％ |
 | 67．9\％ | 24.9 | ${ }_{23}^{238.6}$ | －3．3 | －1．4\％ | 67．9\％ | 314.8 | 318.0 387 | ${ }^{3.2}$ | 1．0\％ |
 | － $79.10 .4 \%$ | ${ }^{237.9}$ | ${ }^{238.5}$ | 0.6 | 0．2\％ | 69．1\％ | ${ }^{312.6}$ | 317.9 | 5.3 | ${ }^{1.7 \%}$ |
 | 7．1．6\％ | ${ }_{236.8}^{237.5}$ | ${ }_{237.7}^{238.0}$ | 0.9 | 0．4\％ | 7．1．6\％ | ${ }_{308.1}$ | ${ }_{312.4}^{31.8}$ | ${ }_{4.3}^{6.3}$ | 1．4\％ |
 | 72．8\％ | 236.7 | 236.6 | －0．1 | 0．0\％ | 72．8\％ | 305.2 | 310.8 | 5.6 | 1．8\％ |
 | 74．1\％ | ${ }^{235.6}$ | ${ }^{236.5}$ | 0.9 | 0．4\％ | 74．1\％ | 304.7 | 309.0 | 4.4 | 1．4\％ |
 | 75．3\％ | ${ }^{235.5}$ | 233.5 | －2．0 | －0．8\％ | 75．3\％ | 300.9 | 305.7 | 4.8 | 1．6\％ |
 | 76．5\％ | 234.3 | 231.4 | －2．9 | －1．2\％ | 76．5\％ | 292.8 | 296.3 | 3.5 | 1．2\％ |
 | 779．8\％ | ${ }_{232.1}^{232.6}$ | 230.1 229.5 | －2．6 | －${ }_{-1.1 \%}$ | － 77.8% | ${ }_{273.1}^{281.8}$ | 282.7 288.3 | 0.9
 5 | 0．3\％ |
 | 80．2\％ | 230.9 | 226.6 | ${ }_{-4}$ | －1．8\％ | 80．2\％ | 26.5 | 276.7 | 16.2 | 6．2\％ |
 | 81．5\％ | 229.4 | 226.5 | －2．9 | －1．3\％ | 81．5\％ | 257.7 | 275.6 | 17.9 | 6．9\％ |
 | 82．7\％ | ${ }_{228.2}^{227.2}$ | ${ }_{225.1}^{222.1}$ | －3．1 | －1．4\％ | 82．7\％ | 252．9 | ${ }^{265.5}$ | 7.7 | 3．0\％ |
 | －${ }^{84.0 \%}$ | 227.0 225.9 | 222．4 223．8 | －2．6 | －1．9\％ | 84．0\％ | ${ }^{252.0}$ | ${ }^{256.0}$ | 4.0 | ${ }^{1.6 \%}$ |
 | ${ }_{86.4 \%}$ | ${ }_{225.0}$ | 223.5 | －1．6 | －0．7\％ | ${ }_{86.4 \%}$ | ${ }_{241.9}$ | 24.9 | 2.0 | 0．8\％ |
 | 87．7\％ | 224.8 | 222.6 | －2．2 | －1．0\％ | 87．7\％ | 239.8 | 241.9 | 2.1 | 0．9\％ |
 | 88．9\％ | 223.9 | 222.0 | －1．9 | －0．8\％ | 88．9\％ | ${ }^{238.3}$ | 239.0 | 0.7 | 0．3\％ |
 | 90．1\％ | ${ }_{2223}^{223}$ | ${ }_{221.7}^{221.7}$ | －1．7 | －0．8\％ | 90．1\％ | ${ }_{23,5}^{2335}$ | 237.8
 238
 2 | 4.3 | ${ }^{1.8 \%}$ |
 | 92．6\％ | ${ }_{221.9}^{222.0}$ | ${ }_{220.5}^{221.6}$ | －14 | ${ }^{-0.6 \%}$ | 921．4\％ | ${ }_{221.1}^{225.9}$ | ${ }_{2254}^{232.8}$ | ${ }^{6.9}$ | ＋1．9\％ |
 | 93．8\％ | 22.17 | 218.3 | －3．4 | －1．6\％ | 93．8\％ | 220.5 | 22.1 | 0.6 | 0．3\％ |
 | 95．1\％ | 22.6 | 216.7 | －4．0 | －1．8\％ | 95．1\％ | 218.5 | 220.8 | 2.3 | 1．1\％ |
 | ${ }^{96.3 \%}$ | 220.0 | 214.8 | －5．2 | －2．4\％ | 96．3\％ | ${ }^{218.3}$ | 216.4 | －2．0 | －0．9\％ |
 | 97．5\％ | ${ }^{213.6}$ | 214.1 | 0.5 | 0．2\％ | 97．5\％ | 215.9 | ${ }_{214.7}^{215.1}$ | －0．8 | －0．0\％\％ |
 | 100．0\％ | 207.3 | 207.5 | 0.2 | 0．1\％ | 100．0\％ | 213.3 | 213.5 | 0.2 | 0．1\％ |

 | $\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$ | January | | | ${ }^{\text {difereative }}$（\％） |
 | :---: | :---: | :---: | :---: | :---: |
 | | | WSIP 2030 With Project | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOSSM) } \end{gathered}$ | |
 | | Monthly EC | Monthly EC | | |
 | ${ }^{(\% .0)}$ | （UnHosicm） | （UMHOSOCM） | －48 | |
 | | | | | |
 | | 18.8 | 1007.6 | | |
 | 2．5\％ | 981.7 | 1006.4 | 24.6 | |
 | 3．7\％ | 962.3 | 990.6 | 28.4 | |
 | 4．9\％ | 949.2 | 980.2 | 31.0 | |
 | ${ }^{6.2 \%}$ | 905.0 | 965.9 | 60.9 | |
 | 7．4\％ | 889.0 | 916.7 | 27.6 | 3．1\％ |
 | 8．6\％ | 880.9 | 852.6 | 28.3 | －3．2\％ |
 | 9．9\％ | 879.1 | 791.4 | －87， | |
 | 11．1\％ | 864.2 | 783.5 | 80.7 | 9．36 |
 | 12．3\％ | 850.3 | 774.4 | －75．9 | －8．9\％ |
 | 13．6\％ | 842.5 | 744.5 | －98．0 | 11．6\％ |
 | 14．8\％ | 818.6 | 740.8 | －77．8 | －9．5\％ |
 | 16．0\％ | ${ }^{802,3}$ | 734.7 | －67．6 | 8．4 |
 | 17．3\％ | 796.2 | 719.0 | －77．3 | －9．7\％ |
 | 18．5\％ | 796.1 | 714.2 | －81．9 | 10．3\％ |
 | 19．8\％ | 792.7 | 705.1 | －87．6 | 11．1\％ |
 | 21．0\％ | 778.4 | 690.1 | 88.3 | 11．3\％ |
 | 22．2\％ | 738.7 | 675.8 | －62．9 | －8．5\％ |
 | 23．5\％ | 720.1 | ${ }^{673.3}$ | 46.8 | 6．5\％ |
 | 24．7\％ | 678.1 | 663.2 | －14．9 | 2．2\％ |
 | 25．9\％ | 661.0 | 637.9 | －23．2 | ${ }^{3.5 \%}$ |
 | 27．2\％ | 637.9 | ${ }^{625.2}$ | 12.7 | －2．0\％ |
 | 28．4\％ | 637.7 | 622.9 | 14.8 | 2．3\％ |
 | 29．6\％ | 616.0 | 610.9 | －5．1 | －0．8\％ |
 | 30．9\％ | 605.0 | 583.5 | －21．5 | －3．6\％ |
 | 32．1\％ | 601.9 | 570.9 | －31．0 | －5．2\％ |
 | 33．3\％ | 546．1 | 566.0 | 19.9 | 3．6\％ |
 | 34．6\％ | 542.0 | 563.0 | 21.0 | 3．9\％ |
 | 35．7\％ | ${ }_{539.3}$ | 559．4 | 20.1 | 3．7\％ |
 | 37．0\％ | 526.0 | 552.9 | ${ }^{26.9}$ | 5．1\％ |
 | 38．3\％ | 508.9 | 546.0 | 37.1 | 7．3\％ |
 | 39．5\％ | 495.6 | 540.4 | 44.9 | 9．1\％ |
 | 40．7\％ | 488.4 | ${ }_{5}^{529.5}$ | 41.1 | 8．4\％ |
 | 42．0\％ | 487.5 | ${ }_{526.6}$ | 39.1 | 8．0\％ |
 | 43．2\％ | ${ }^{486.3}$ | 522.7 | 36.4 | 7．5\％ |
 | 44．4\％ | 481.8 | 520.0 | 38.2 | 7．9\％ |
 | 45．7\％ | 474.5 | 502.2 | ${ }^{27.6}$ | 5．8\％ |
 | 46．9\％ | 468.3 | 498.1 | 29.8 | 6．4\％ |
 | 48．1\％ | 444.1 | 495.2 | 51.0 | 11．5\％ |
 | 49．4\％ | 441.4 | 492.4 | 51.1 | 11．6\％ |
 | 50．6\％ | 440.6 | 492.3 | 51.6 | 11．7\％ |
 | 51．9\％ | 440.5 | 492.1 | 51.5 | 11．7\％ |
 | 53．1\％ | 434.9 | 490.6 | 55.7 | 12．8\％ |
 | 54．3\％ | 434.1 | ${ }^{466.3}$ | 32.2 | 7．4\％ |
 | 55．6\％ | ${ }^{427.3}$ | ${ }^{464.1}$ | 36.7 | 8．6\％ |
 | 56．8\％ | ${ }_{469.8}$ | 456.0 | 39.3 | 9．4\％ |
 | 58．0\％ | 391.7 | 444.9 | 53.2 | ${ }^{13.6 \%}$ |
 | 59．3\％ | 383.2 | ${ }^{426.1}$ | 42.9 | 11．2\％ |
 | 60．5\％ | ${ }_{368.7}$ | 391.0 | ${ }_{22}^{22.2}$ | 6．0\％ |
 | 61．7\％ | ${ }^{362.1}$ | 389.7 | ${ }^{27.6}$ | 7．6\％ |
 | 63．0\％ | 361.9 | ${ }_{3887}$ | 26.9 | 7．4\％ |
 | 64．2\％ | 359．2 | 387.2 | 28.0 | 8\％ |
 | 65．4\％ | 355.0 | ${ }_{3857}^{387}$ | ${ }^{3027}$ | 8．6\％ |
 | ${ }^{66.7 \%}$ | 354.7 | 376.9 | 22.2 | 3\％ |
 | 67．9\％ | ${ }_{3}^{342.8}$ | 372.6 3632 | 29.8 | ${ }^{8.7 \% \%}$ |
 | 69．1\％ | 337．0 | 363．2 | 26.2 | 8\％ |
 | 70．4\％ | 333．4 | 354．6 | 21.2 | 6．3\％ |
 | 71．6\％ | ${ }_{328.3}$ | 343．2 | 14.9 | 5\％ |
 | 72．8\％ | 327.2 | 343.1 | 15.9 | 4．9\％ |
 | 74．1\％ | ${ }^{322.6}$ | 337．4 | 16.8 | 2\％ |
 | 75．3\％ | 320.1 | 334.0 | 13.8 | 3\％ |
 | 76．5\％ | 319.0 | 321.0 | 1.9 | 6\％ |
 | 77．8\％ | 317.9 | 318.9 | 1.0 | 0．3\％ |
 | 79．0\％ | 313.2 | 318.6 | 5.5 | 8\％ |
 | 80．2\％ | 308.2 | 313.0 | 4.9 | 1．6\％ |
 | 81．5\％ | 307.4 | 307．4 | ${ }^{0.0}$ | 0．0\％ |
 | － 82.7% | ${ }_{295}^{2958}$ | 298.6 298 | ${ }^{2.8}$ | 0．9\％ |
 | 84．2\％ | ${ }^{294.5}$ | ${ }^{294.2}$ | －0．3 | －0．1\％ |
 | 80．4\％ | ${ }_{285.0}^{2902}$ | ${ }_{200.1}^{290.9}$ | 0.6 5.1 | 1．8\％ |
 | 87．7\％ | 281.9 | 284.9 | 3.0 | 1．0\％ |
 | 88．9\％ | 278.0 | 281.6 | 3.6 | 1．3\％ |
 | 90．1\％ | 275.9 | 279.1 | 3.1 | 1．1\％ |
 | 91．4\％ | 274.6 | 277.9 | ${ }_{3} 3$ | 1．2\％ |
 | 92．\％ | 271.4 | 267.6 | －3．8 | －1．4\％ |
 | 93．8\％ | 251.0 | 249.1 | 1.9 | －0．8\％ |
 | 95．1\％ | 247.7 | 249.0 | 1.3 | 0．5\％ |
 | 96．3\％ | 245.7 | 248.2 | 2.4 | 1．0\％ |
 | 97．5\％ | 244.8 | 247.3 | 2.5 | 1．0\％ |
 | ．8\％ | 243.8 | 24.2 | 2.6 | |
 | 100．0\％ | 240.8 | 240.8 | 0.1 | 0．0\％ |

 Table SQ－27－b

 | PercentExcedanceProbability | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {WSSP }}$ 2030 Without | SIIP 2030 With | | Relativ |
 | | Monthly EC | Monthy EC | Difference （UMHOSCM） | Hference（\％） |
 | （\％） | （UnHosicm） | （UMHOSSCM） | | |
 | ， 20 | | 84.3 | 9.7 | 1．2\％ |
 | 1．2\％\％ | 762.0 | 792.5 | 30.5 | |
 | 2．5\％ | 757.8 | 759.4 | 1.6 | 0．2\％ |
 | 3．7\％\％ | 702.2 6234 | 757.4 572. | 55.3 | 7．9\％ 10，7\％ |
 | 4．9\％ | ${ }^{623.4}$ | | | |
 | 7．4\％ | 556.2 | ${ }_{535.0}$ | －20．2 | －3．6\％ |
 | 8．6\％ | 548.2 | ${ }^{533.9}$ | －14．3 | 2．0 |
 | 9．9\％ | 524.1 | 515.9 | －8．2 | －16\％ |
 | 11．1\％ | 514.3 | 513.9 | 0.4 | －0．1\％ |
 | 12．3\％ | 508.4 | 513.0 | 4.6 | |
 | 13．6\％ | 485.4 | 509.7 | 24.3 | 5．0\％ |
 | 14．8\％ | 478.6 | 509.1 | 30.5 | |
 | 16．0\％ 17.3% | 475.0 | 4797 | 4.7 | －1．4\％ |
 | 18．5\％ | 470.2 | 464.5 | －5．7 | －1．2\％ |
 | 19．8\％ | 470.0 | 459.8 | －10．1 | －2．2\％ |
 | 21．0\％ | 467.6 | 458.8 | -8.8 | －1．9\％ |
 | | 464.9 | 451.2 | －13．7 | 2．9\％ |
 | ${ }^{23.5 \%}$ | ${ }_{433.9}^{454.4}$ | ${ }_{441.6}^{442.7}$ | 11.7
 1.7 | ${ }_{\text {1．8\％}}^{-2.8 \%}$ |
 | 25．9\％ | 428.3 | 438.6 | 10.3 | 2．4\％ |
 | 27．2\％ | 403.6 | 430.1 | 26.5 | 6．6\％ |
 | 28．4\％ | 401.4 | 425.4 | 23.9 | 6．0\％ |
 | 29．6\％ | 400.9 | 409.2 | 8.3 | 2．1\％ |
 | 30．9\％ | 397.4 | 402.0 | 4.6 | 1．2\％ |
 | 32．1\％ | 390.7 | 401.5 | 10.8 | |
 | 33．3\％ | 388.4 | 400.9 | 12.5 | 3．2\％ |
 | 34．6\％ | 384.8 | 397.5 | 12.7 | 3．3\％ |
 | 35．8\％ | 382.9 | 395.0 | 12.1 | 3．2\％ |
 | 37．0\％ | 382.0 | 388.4 | 6.4 | \％ |
 | 年38．3\％ | 380.9 | 388.2 | 7.2 | 1．9\％ |
 | 39．5\％ | 377.8 | ${ }^{387.3}$ | 9.5 | 2．5\％ |
 | 40．7\％ | 376.5 | 386.3 | 9.8 | 2．6\％ |
 | 42．0\％ | 372.0 | 385.7 | 13.7 | 3．7\％ |
 | 43．2\％ | 370.5 | 384.6 | 14.2 | 3．8\％ |
 | 44．4\％ | 364.3 | 383.9 | 19.6 | |
 | 45．7\％ | 360.6 | 379.0 | 18.5 | 5．1\％ |
 | 46．9\％ | 351.9 | 370.2 | 18.2 | 5．2\％ |
 | 48．19\％ | 347.4 | ${ }_{365.3}$ | 18.0 | 5．2\％ |
 | 4．94\％ | 344.7 | ${ }^{360.8}$ | 16.1 | 4．7\％ |
 | 50．6\％ | 341.6 | 360.7 | 19.1 | 5．6\％ |
 | 51．9\％ | 341.5 | ${ }^{348.3}$ | 6.8 | 2．0\％ |
 | 53．1\％ | 340.0 | 348.0 | 8.0 | 2．4\％ |
 | 54．3\％ | 339．1 | 347.0 | 8.0 | 2．4\％ |
 | 年55．6\％ | 327.9 | 345.4 | 17.4 | 5．3\％ |
 | 56．8\％ | ${ }_{322.5}^{322.5}$ | 342.6 | ${ }^{20.1}$ | 6．2\％ |
 | 年58．0\％ | 322.0 | 340.1 | 18.1 | 5．6\％ |
 | 59．3\％ | ${ }^{315.2}$ | ${ }^{336.2}$ | ${ }^{21.0}$ | 6．7\％ |
 | ${ }^{60.5 \%}$ | 314.8 | 330.1 | 15.3 | 4．9\％ |
 | ${ }^{61.7 \%}$ | 312．9 | ${ }_{320.0}$ | 7.1 | 2．3\％ |
 | 63．0\％ | 305.8 | 317.0 | 11.2 | 3．7\％ |
 | 64．2\％ | ${ }^{305.8}$ | 316.1 | ${ }^{10.4}$ | 4\％ |
 | －65．4\％ | 302.1 | 314.2 | 12.1 | 4．0\％ |
 | ${ }^{66.7 \%}$ | 298.7 | 313.7 | 15.0 | 5．0\％ |
 | 67．9\％ | 297.0 | 306.9 | 9.9 | 3．3\％ |
 | 69．19\％ | 296.7 | 303.8 | 7.1 | 2．4\％ |
 | 70．4\％ | 295.0 | 302.3 | 7.2 | 2．5\％ |
 | 71．6\％ | 294.8 | 300.7 | ${ }^{6} 9$ | 2．0\％ |
 | 72．8\％ | 292.1 | 299.7 | 7.6 | 2．6\％ |
 | 74．1\％ | 29.4 | 295.4 | 5.0 | 1．7\％ |
 | 75．3\％ | 285.6 | 291.1 | 5.5 | 1．9\％ |
 | 76．5\％ | 284.0 | 289.7 | 5.6 | 2．0\％ |
 | 77．8\％ | 281.5 | 285.9 | 4.4 | 1．5\％ |
 | 79．0\％ | 274.1 | 283.9 | 9.9 | 3．6\％ |
 | － 80.2% | 268.6 | 280.6 | 11.9 | 4．4\％ |
 | 81．5\％ | 267.1 | 273.4 | 6.3 | 2．4\％ |
 | 820．7\％ | 264.4 | 272.6 | 8.2 | 3．1\％ |
 | 85．2\％ | 260.3 | 260.3 | | |
 | 86．4\％ | 259.7 | 259.3 | －0．4 | －0．1\％ |
 | 87．7\％ | 256.0 | 258.6 | 2.6 | 1．0\％ |
 | 88．9\％ | 254.0 | 256.1 | ${ }^{2.0}$ | 0．8\％ |
 | 90．1\％ | 252．2 | 255.4 | 3.2 | 1．3\％ |
 | 91．4\％ | 250.7 | ${ }^{252.5}$ | 1.8 | 0．7\％ |
 | ${ }_{93.8 \%}^{92.6 \%}$ | 250．6 | 250.5 | －0．1 | 0．0\％ |
 | 95．1\％ | 24.1 | ${ }_{240.3}$ | －1．7 | －0．7\％ |
 | 96．3\％ | 239.7 | 236.5 | ${ }^{3.2}$ | 1．3\％ |
 | 97．5\％ | 235.6 | 232.7 | －2．9 | 1．2\％ |
 | 98．8\％ | 226.2 | ${ }^{226.2}$ | 0.0 | 0．0\％ |
 | 100．0\％ | 216.4 | 217.0 | 0.7 | 0．3\％ |

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probobaility } \end{gathered}$ | Way | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP P3030 Without | WSIP 2030 With Project | Absolute | |
 | | ${ }_{\text {Montind }}^{\text {Prec }}$ EC | Monthly EC | Difference （UWHOSCM） | Difference（\％） |
 | | （UuHosicm） | （UMHHSSICM） | | |
 | 0．0\％ | 419.8 | 419.8 | 0.0 | 0．0\％ |
 | 1．2\％ | 405.6 | 405.1 | －0．5 | －0．1\％ |
 | 2．5\％ | 402.1 | 400.1 | －2．0 | －0．5\％ |
 | 3．7\％ | 398.8 | 398.9 | 0.1 | 0．0\％ |
 | 4．9\％ | 391.9 | 392.6 | 0.6 | 0．2\％ |
 | 6．2\％ | 388.4 | 388.7 | ${ }^{0.3}$ | 0．1\％ |
 | 7．4\％ | 380.3 | ${ }_{386.2}$ | 5.9 | 1．6\％ |
 | 8．6\％ | 378.0 | ${ }_{377.0}^{3780}$ | 0.1 | 0．0\％ |
 | 9．9\％ | 377.1 | 377.1 | 0.0 | 0．0\％ |
 | 11．1\％ | 376．0 | 373.0 | －3．0 | －0．8\％ |
 | 12．3\％ | 373.9 | 372.8 | －1．1 | －0．3\％ |
 | 13．6\％ | 3724 | 372.7 3724 | 0.3 | 0．1\％ |
 | 14．8\％ | 372.0 | 372.4 | 0.4 | 0．1\％ |
 | 16．0\％ | 371.8 | ${ }_{3717}^{372}$ | 0.4 | 0．1\％ |
 | 17．3\％ | 371.5 | 371.7 | 0.2 | 0．0\％ |
 | 18．5\％ | 366.9 36.9 | 367.0
 65 | 0.1 | 0．0\％ |
 | 19．8\％ | ${ }^{366.5}$ | ${ }_{365.6}$ | －0．9 | －0．3\％ |
 | 21．0\％ | 363.8 363 | ${ }^{364.5}$ | 0.6 | 0．2\％ |
 | 22．2\％ | ${ }^{363.3}$ | 364.0 | 0.8 | 0．2\％ |
 | 23．5\％ | 363．2 | － 363.2 | 0.0 | 0．0\％ |
 | 24．7\％ | 363.0 | ${ }^{363.2}$ | 0.2 | 0．1\％ |
 | 25．9\％ | 359.8
 3595 | 361.1 3605 | 1.3 | 0．4\％ |
 | 27.2% 28.4% | 359.5 357.3 | 360.5 3572 | 1.0 | －${ }_{\text {0．0\％}}$ |
 | ${ }^{20.6 \%}$ | 356.9 | 356.8 | －0．1 | 0．0\％ |
 | 30．9\％ | 353.9 | 354.5 | 0.5 | 0．2\％ |
 | 32．1\％ | 349.9 | 352.0 | 2.1 | 0．6\％ |
 | 33．3\％ | ${ }_{347.2}^{343}$ | ${ }_{350.5}^{354}$ | 3.2 | 0．9\％ |
 | | 343.3 3430 | 344.2 344 | ${ }_{12}{ }_{1}$ | －1．3\％ |
 | 37．0\％ | 341.2 | 341.3 | 0.2 | 0．1\％ |
 | 38．3\％ | 3393 | 339.3 | 0.0 | 0．0\％ |
 | 39．5\％ | 335.4 | 335.9 | 0.5 | 0．1\％ |
 | 40．7\％ | ${ }_{3}^{335.3}$ | ${ }_{3}^{335.5}$ | 0.2 | 0．1\％ |
 | ${ }^{42.2 \%}$ | 334.6
 330.8 | ${ }_{331.8}^{334.8}$ | 0.2 | －${ }_{\text {0．1\％}}^{0.1 \%}$ |
 | 44．4\％ | 328.1 | 328.5 | 0．4 | 0．1\％ |
 | 45．7\％ | 328.0 | 328.1 | 0.2 | 0．0\％ |
 | 46．9\％ | 325.8 | 325.9 | 0.1 | 0．0\％ |
 | 48．1\％ | 324．2 | 325.7
 3245 | 1.5 | 0．5\％ |
 | 49．4\％ | 323．8 | ${ }^{324.5}$ | 0.7 | 0．2\％ |
 | 50．6\％ 51.9% | 32.9 320.1 | 321.0 320.3 | -0.8 0.2 | －0．0．3\％ |
 | 53．1\％ | ${ }_{3219.4}$ | ${ }_{319.3}$ | －0．1 | 0．0\％ |
 | 54．3\％ | 319.1 | 316.8 | －2．3 | －0．7\％ |
 | 55．\％ | 316.5 | 314.5 | －2．0 | －0．6\％ |
 | 56．8\％ | 312.8 | 313.1 | 0.3 | 0．1\％ |
 | （58．0\％ | 310.2 | 312．8 | ${ }^{2.6}$ | 0．9\％ |
 | 59．3\％ | 309.2 307.9 | 310.9 309.2 | 1.7 1.3 1 | 0．4\％ |
 | 61．7\％ | 306.8 | 308.9 | 2.1 | 0．7\％ |
 | 63．0\％ | 300.8 | 307.4 | 0.6 | 0．2\％ |
 | 64．2\％ | 303.1 | 306.7 | 3.6 | 1．2\％ |
 | ${ }^{65.4 \%}$ | 302.8 3000 | ${ }_{3043}^{3043}$ | ${ }_{4}^{1.5}$ | 0．5\％ |
 | －6．7．9\％ | 30.0 208.2 | 304.3 298.2 | 4.2 0.0 | ＋1．4\％ |
 | 69．1\％ | ${ }_{296.2}^{209}$ | 296.9 | 0.7 | 0．2\％ |
 | 70．4\％ | 295.6 | 296.1 | 0.5 | 0．2\％ |
 | 71．6\％ | 295.3 | 295.7 | 0.4 | 0．1\％ |
 | | 293.5 2906 | ${ }_{2928}^{293.1}$ | －0．4 | －0．0．1\％ |
 | 75．3\％ | 289.7 | 292.1 | ${ }_{2}^{2.3}$ | 0．8\％ |
 | 76．5\％ | 288.5 | 291.4 | 3.0 | 1．0\％ |
 | － 77.8% | 284.1 2830 | ${ }_{2862}^{290.6}$ | ${ }_{3 .}^{6.5}$ | －${ }_{12 \%}$ |
 | 80．2\％ | 2823 | 282.9 | 0.6 | 0．2\％ |
 | 81．5\％ | 279.9 | 282.1 | 2.2 | 0．8\％ |
 | － 82.78 | 275.8 2750 | ${ }_{276.9}^{279.9}$ | 4.2 1.4 | －${ }_{\text {l }}^{\text {1．5\％}}$ |
 | 85．2\％ | 264.4 | 272.1 | 7.7 | 2．9\％ |
 | 86．4\％ | 260.8 | 261.0 | 0.2 | 0．1\％ |
 | －87．7\％${ }^{88.9 \%}$ | ${ }_{225.1}^{239.4}$ | ${ }_{226.8}^{239.7}$ | 0.2 1.8 | 0．1\％ |
 | 90．1\％ | 214.6 | 215.0 | 0.4 | 0．2\％ |
 | 91．4\％ | 214.1 | 214.9 | 0.8 | 0．4\％ |
 | － 92.6 9\％\％ | 208.4 198.2 | 210.0 1988 | － 1.6 | －${ }_{\text {0．8\％}}^{0.3 \%}$ |
 | 95．1\％ | 191.3 | 191.6 | 0.3 | 0．2\％ |
 | 96．3\％ | 182.7 | 183.6 | 0.9 | 0．5\％ |
 | 97．5\％ | 181.7 | 182.1 | 0.5 | 0．3\％ |
 | 98．8\％ 1000% | 179.7 178.0 | $\begin{array}{r}180.1 \\ 178 . \\ \hline\end{array}$ | ${ }_{0}^{0.4}$ | ${ }_{0}^{0.2 \%}$ |

 Table SQ－27－b
 at

 | | June | | $\begin{gathered} \text { Absolute } \\ \text { (iffererece } \\ \text { (UMHOSOSCM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2033 Without | WSIP 2030 With Project | | |
 | Probability | Monthy EC | Monthly EC | | |
 | 0．0\％ | （UMHOSSCM） | S（CM） | | |
 | 0．0\％ | 560.6 | 546.0 | －14．5 | －2．6\％ |
 | 1．2\％ | 548.7 | 542.4 | －6．3 | |
 | 2．5\％ | 496.2 | 463.0 | 33．1 | －6．7\％ |
 | 3．7\％ | 426.2 | 403 | 22．3 | |
 | 4．9\％ | 334.4 | 334.7 | 0.3 | 0．1\％ |
 | 6．2\％ | 321.3 | 322.0 | 0.7 | 0．2\％ |
 | 7．4\％ | 313.2 | 306.9 | －6．3 | －2．\％ |
 | 8．6\％ | 310.8 | 306.8 | －4．0 | －1．3\％ |
 | 9．9\％ | 309.8 | 306.1 | 3.7 | －1．2\％ |
 | 11．1\％ | 307.0 | ${ }^{305.3}$ | －1．7 | －0．5\％ |
 | 12．3\％ | 303.0 | 302.7 | ${ }^{0.3}$ | －0．1\％ |
 | 13．6\％ | 301.4 | 299.0 | －2．4 | －0．8 |
 | 14．8\％ | 295.5 | 295.6 | 0.2 | 0．1\％ |
 | 16．0\％ | 295.4 | 289.2 | －6．1 | －2．1\％ |
 | 17．3\％ | 290.6 | 288.8 | ${ }^{1.8}$ | －0．6\％ |
 | 18．5\％ | 288.7 | 286.8 | －1．9 | －0．6\％ |
 | 19．8\％ | 288.2 | 286.7 | －1．5 | ${ }^{0.5}$ |
 | 21．0\％ | 287.5 | 286.2 | －1．3 | 0．4\％ |
 | 22．2\％ | 286.5 | 286.1 | －0．4 | －0．1\％ |
 | 23．5\％ | 286.0 | ${ }^{285.5}$ | －0．4 | －0．2\％ |
 | 24．7\％ | 285.1 | ${ }^{283.3}$ | －1．8 | －0．6\％ |
 | 25．9\％ | ${ }^{284.6}$ | ${ }^{281.3}$ | －3．3 | －1．2\％ |
 | 27．2\％ | 282.5 | ${ }^{287.2}$ | －1．3 | －0．5\％ |
 | 28．4\％ | 278.7 | 278.4 | －0．3 | 0．1\％ |
 | 29．6\％ | 275.4 | 278.2 | 2.8 | 1．0\％ |
 | 30．9\％ | 274.1 | 275.0 | 1.0 | 0．4\％ |
 | 32．1\％ | 272.8 | 274.1 | 1.3 | 0．5\％ |
 | 33．3\％ | 272.7 | 277.0 | ${ }^{0.3}$ | 0．1\％ |
 | 34．6\％ | 271.8 | ${ }_{271.4}^{2714}$ | －0．3 | －0．1\％ |
 | 35．8\％ | 27.4 | 270．8 | －0．7 | －0．2\％ |
 | 37．0\％ | 271.3 | ${ }^{277.7}$ | －0．7 | －0．2\％ |
 | 38．3\％ | 271.1 | 270.4 | －0．7 | 0．3\％ |
 | 39．5\％ | 270.8 | 269.3 | －1．5 | －0．6\％ |
 | 40．7\％ | 270.5 | ${ }^{267.6}$ | －3．0 | －1．1\％ |
 | 42．0\％ | 269.4 | ${ }^{267.3}$ | －2．1 | －0．8\％ |
 | 43．2\％ | ${ }^{267.9}$ | 267.1 | －0．8 | －0．3\％ |
 | 44．4\％ | 267.2 | ${ }^{266.3}$ | －0．9 | －0．3\％ |
 | 45．7\％ | ${ }^{267.0}$ | ${ }_{265.6}^{2685}$ | －1．5 | －0．6\％ |
 | 46．9\％ | 267.0 | ${ }^{265.3}$ | －1．7 | －0．6\％ |
 | 48．1\％ | ${ }^{266.0}$ | 264.8 | －1．3 | －0．5\％ |
 | 49．4\％ | 265.2 | 263.2 | －2．0 | －0．8\％ |
 | 50．6\％ | 264.6 | 263．2 | －1．5 | －0．5\％ |
 | 51．9\％ | 264.3 | 263.0 | －1．3 | 0．5\％ |
 | 53．1\％ | ${ }^{263.5}$ | ${ }^{262.9}$ | －0．5 | 0．2\％ |
 | 54．3\％ | 262.1 | 262.2 | 0.1 | 0．0\％ |
 | 55．6\％ | ${ }^{261.3}$ | 261.3 | 0.1 | 0．0\％ |
 | 56．8\％ | ${ }^{260.4}$ | ${ }^{260.5}$ | 0.1 | 0．0\％ |
 | 58．0\％ | 258.9 | ${ }^{260.2}$ | ${ }^{1.3}$ | 0．5\％ |
 | 59．3\％ | ${ }^{258.9}$ | ${ }^{259.9}$ | 1.0 | 0．4\％ |
 | 60．5\％ | ${ }^{258.5}$ | ${ }^{259.3}$ | 0.7 | 0．3\％ |
 | 61．7\％ | ${ }^{257.9}$ | ${ }^{259.2}$ | 1.2 | 0．5\％ |
 | 63．0\％ | 257.8 | 258．4 | 0.6 | 0．2\％ |
 | ${ }^{64.2 \%}$ | ${ }^{257.6}$ | ${ }^{258.4}$ | 0.8 | 0．3\％ |
 | 65．4\％ | 256.7 | ${ }^{257.7}$ | 1.1 | 0．4\％ |
 | ${ }^{66.7 \%}$ | ${ }^{256.6}$ | ${ }^{256.5}$ | －0．1 | 0．0\％ |
 | 67．9\％ | 256．2 | ${ }^{256.4}$ | 0.2 | 0．1\％ |
 | 69．1\％ | ${ }^{254.8}$ | ${ }^{256.1}$ | 1.3 | 0．5\％ |
 | 70．4\％ | ${ }^{254.7}$ | 255.4
 2545 | 0.7 | 0．3\％ |
 | 71．6\％ | ${ }^{254.7}$ | ${ }^{254.5}$ | －0．1 | －0．1\％ |
 | 72．8\％ | ${ }^{255.6}$ | ${ }^{254.3}$ | 0.7 | 0．3\％ |
 | 74．1\％ | ${ }^{253.2}$ | ${ }_{253.0}$ | －0．3 | －0．1\％ |
 | 75．3\％ | ${ }_{252.6}^{252.6}$ | ${ }^{252.5}$ | －0．1 | －0．1\％ |
 | 76．5\％ | ${ }^{252.2}$ | ${ }^{250.6}$ | －1．6 | －0．6\％ |
 | 77．8\％ | ${ }^{251.8}$ | 250.4 | -1.4 | －0．5\％ |
 | 79．0\％ | 251.2 | ${ }^{249.6}$ | －1．6 | －0．6\％ |
 | 80．2\％ | ${ }_{249}^{2492}$ | ${ }^{246.2}$ | －3．1 | －1．2\％ |
 | 81．5\％ | ${ }_{266.2}^{246}$ | 245.5 | －0．7 | －0．3\％ |
 | 82．7\％ | 245.1 | ${ }_{24.0}^{2450}$ | －0．2 | －0．1\％ |
 | 84．0\％ | ${ }_{2} 243.4$ | ${ }^{243.4}$ | 0.0 | 0．0\％ |
 | 85．2\％ | ${ }_{2}^{243.1}$ | ${ }^{242.5}$ | －0．6 | －0．2\％ |
 | ${ }^{86.47 \%}$ | 242.0 | ${ }^{242.4}$ | 0.4 | 0．2\％ |
 | 87．7\％ | 241.8 | ${ }_{223.0}^{2429}$ | 0.2 | 0．1\％ |
 | 88．9\％ | ${ }^{238.6}$ | ${ }^{236.9}$ | －1．7 | ${ }^{-0.7 \%}$ |
 | 90．1\％ | ${ }_{2}^{236.8}$ | ${ }_{26,7}^{236.7}$ | －0．1 | 0．0\％ |
 | ${ }^{91.44 \%}$ | ${ }_{2371}^{238.8}$ | ${ }^{236.6}$ | －0．1 | －0．1\％ |
 | 92．6\％ | ${ }_{227.1}^{222.1}$ | ${ }_{226.7}^{226.7}$ | －0．4 | －0．2\％ |
 | ${ }^{93.8 \%}$ | ${ }_{226.9}^{226.9}$ | 224.1 | －2．8 | 2\％ |
 | 95．17\％ | ${ }^{224.1}$ | ${ }^{223.6}$ | －0．5 | ${ }^{-0.2 \%}$ |
 | ${ }^{96.5 \%}$ | ${ }_{2218}^{222.3}$ | ${ }_{2178}^{2217}$ | －0．6 | －0．3\％ |
 | | 29.8 | 217.8 | －2．0 | 0．9\％ |
 | 98．8\％ 100．0\％ | 210.4 203.6 | 210.6 2038 | 0.2 0.2 | 0．1\％ |

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{gathered}$ | | Juy | $\begin{gathered} \text { Absolute } \\ \text { (ifference } \\ \text { (UMHOS/CM) } \end{gathered}$ | | $\begin{array}{\|c} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{array}$ | WSIP 2030 WithoutPorietMonty（UnHHOSCM）EC | August | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOSICM) } \end{gathered}$ | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Without | WSIP 2030 With Project | | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | | | WSIP 2030 With Project Monthly EC
 （UMHOS／CM） | | |
 | | Monthly EC | Monthly EC | | | | | | | Difference（\％） |
 | （\％） | ${ }^{\text {nhorsicm }}$ | （UuHHOSCM | | | （10） | | | | |
 | 0．0\％ | 716.7 | 701.7 | －15．0 | ${ }^{-2.1 \%}$ | 0．0\％ | ${ }_{779.8}^{859}$ | ${ }_{8}^{873.5}$ | ${ }_{13.7}^{13.7}$ | ${ }_{\text {1．7．6\％}}$ |
 | 1．2\％ | ${ }_{6}^{681.9}$ | 688.0 6223 | －28．4 | ${ }^{0.94 \%}$ | 1．2\％ | 779.0 | ${ }_{7859}^{834}$ | 55．0 | ${ }_{2}^{7.1 \%}$ |
 | 3．7\％ | 648.8 | 611.2 | ${ }_{-37.7}$ | －5．8\％ | 3．7\％ | 746.1 | ${ }_{782.5}$ | 36.4 | 4．9\％ |
 | 4．9\％ | 574.6 | 575.5 | 0.9 | 0．2\％ | 4．9\％ | 729.5 | 766.1 | 36.5 | 5．0\％ |
 | － 7.2% | ${ }_{468.0}^{490.9}$ | ${ }_{4734}^{4877}$ | -3.2
 5.3 | ${ }_{\text {1．1\％}}^{0.07 \%}$ | － 7.2% | 724.8 714.8 | 749.5 7435 | 24.6
 28.
 1 | 3．4\％ |
 | 7．4\％ | 468.0 | 473.4 | ${ }^{5.3}$ | 1．1\％ | 7．4\％ | 714.8 | ${ }^{7415.5}$ | ${ }^{28.7}$ | 4．0\％ |
 | 9．9\％ | ${ }_{462.7}^{4660}$ | 472.6 463.0 | ${ }_{0.2}^{6.6}$ | －1．1\％ | 9．9\％ | 703.4 698.1 | 771578 | 12.4 9.7 | 年．8\％\％ |
 | 11．19\％ | 44.5 | 454.9 | 14.4 | 3．3\％ | 11．19\％ | ${ }_{6}^{685.8}$ | 694.0 | 8.2 | 1．2\％ |
 | 12．3\％ | 434.6 | 454.8 | ${ }^{20.2}$ | 4．6\％ | ${ }^{12.3 \%}$ | 685.15 | 685.6 | 0.5 | 0．1\％ |
 | 13.6% 14.8% | 433.4 425.6 | ${ }_{436.2}^{44.7}$ | 12.4 10.6 | ${ }_{2}^{2.9 \%}$ | 年 $\begin{aligned} & 13.6 \% \\ & 14.8 \%\end{aligned}$ | 674.5 6540 | ${ }_{668.2}^{682.3}$ | 7.8 14.1 | － 1.2% |
 | 16．0\％ | 422.9 | 434.4 | 11.5 | 2．7\％ | 14．0\％ | 638.7 | 655.8 | 17.0 | 2．7\％ |
 | 17．3\％ | 420.2 | 431.4 | 11.3 | 2．7\％ | 17．3\％ | 636.2 | 651.7 | 15.4 | 2．4\％ |
 | － | ${ }_{415.5}^{416.5}$ | 427.0 411.6 | 10.5
 ${ }_{-38}$ | 2．5\％ | 18．5\％ 198\％ | 636.1 6352 | ${ }_{6}^{641.3}$ | － 5.2 | － |
 | 21．0\％ | 412.4 | 391.6 | －20．8 | －5．0\％ | 21．0\％ | 633.8 | 612.1 | －21．6 | －3．4\％ |
 | 22．2\％ | 406.8 | 390.3 | －16．6 | －4．1\％ | 22．2\％ | 611.7 | 605.7 | －6．0 | －1．0\％ |
 | ${ }^{234.7 \%}$ | ${ }_{3}^{401.8}$ | ${ }_{3}^{379.5}$ | ${ }_{4.1}^{22.3}$ | －$-.5 .5 \%$ | ${ }_{\text {2 }}^{23.5 \%}$ | 594．6 5570 | 569.2 557.6 | －25．4 | －4．3\％ |
 | 25．9\％ | 354.6 | 365.0 | 10.3 | 2．9\％ | 25．9\％ | 506.5 | 538.9 | 32.4 | 6．4\％ |
 | 27．2\％ | 353.0 | 352.7 | －0．3 | －0．1\％ | 27．2\％ | 504.4 | 517.1 | 12.8 | 2．5\％ |
 | 28．4\％\％ | 347.4 346.3 | 348.3 346.1 | 0.9 -0.2 | －0．2\％
 -0.1% | 28．4\％ | 400．3 | 507.9 506.2 | 7.7 6.8 | 1．5\％ 1.4 |
 | 30．9\％ | 345.8 | 345.5 | －0．4 | －0．1\％ | 30．9\％ | 496.3 | 504.7 | 8.5 | 1．7\％ |
 | 32．1\％ | 336.6 | 344.1 | 7.5 | 2．2\％ | 32．1\％ | 489.5 | 504.7 | 15.1 | 3．1\％ |
 | 34．6\％ | ${ }_{325.2}^{336.5}$ | 338.5 337.0 | 2.0 11.7 | －${ }_{\text {3．6\％\％}}$ | 33．3\％ | ${ }_{484.5}^{488.7}$ | ${ }_{495.7}^{497}$ | 8.4 11.2 | － 1.7% |
 | 35．8\％ | 323.1 | 333.7 | 10.6 | 3．3\％ | 35．8\％ | 481.1 | 490.1 | 8.9 | 1．9\％ |
 | 37．0\％ | 319.5 | ${ }_{331.7}$ | ${ }^{12.2}$ | 3．8\％ | 37．0\％ | 469.8 | 486.0 | 16.1 | 3．4\％ |
 | 39．5\％ | 314.7 | ${ }_{320.2}$ | ${ }_{5.5}^{9.6}$ | 1．7\％ | 38．3\％ | ${ }_{464.2}^{466.0}$ | ${ }_{477.9}^{480.9}$ | 14.1
 13.8 | 3．0\％ |
 | 40．7\％ | 313.5 | 320.2 | 6.7 | 2．1\％ | 40．7\％ | 452.6 | 475.7 | 23.0 | 5．1\％ |
 | 42．0\％ | 312.4 | 319.8 | | 2．4\％ | 42．0\％ | 445.4 | 474.2 | | 6．5\％ |
 | 44．4\％ | ${ }_{300.6}$ | ${ }_{3}^{317.5}$ | 6.7 10.8 | ${ }_{\text {3．5\％}}^{2.10 \%}$ | 43．2\％\％ | ${ }_{427.4}^{44.6}$ | ${ }_{468.3}^{470.3}$ | ${ }_{40.9}^{29.7}$ | ${ }_{9.6 \%}^{6.7 \%}$ |
 | 45．7\％ | 300.6 | 310.3 | 3.7 | 1．2\％ | 45．7\％ | 427.3 | 463.7 | 36.4 | 8．5\％ |
 | 46．9\％ | 305.7 | 305.8 | 0.1 | 0．0\％ | 46．9\％ | 424.7 | 460.5 | 35.8 | 8．4\％ |
 | 49．4\％ | ${ }_{295.1}$ | ${ }_{302.3}^{302 .}$ | － 7.2 | － 2.4% | 49．4\％ | ${ }_{419.6}^{42.0}$ | ${ }_{444.6}^{444.9}$ | 22.9 25.0 | 5.4% 6.0% |
 | 50．6\％ | 294.3 | 301.4 | 7.2 | 2．4\％ | 50．6\％ | 419.1 | 427.6 | 8.5 | 2．0\％ |
 | | ${ }_{2} 292.8$ | 290.1 | －2．8 | －0．9\％ | 51．9\％ | 404.7 | ${ }^{421.1}$ | 16.4 | 4．0\％ |
 | 54．3\％ | ${ }_{282}^{29.3}$ | 288.9 277.6 | －1．88 | －${ }_{\text {－}}$ | 54．3\％ | ${ }_{403.0}^{404.6}$ | ${ }_{409.0}^{416.3}$ | 11.8 6.0 | 1．5\％ |
 | 55．6\％ | 266.0 | 273.5 | 7.5 | 2．8\％ | 55．6\％ | 398.1 | 407.6 | 9.4 | 2．4\％ |
 | 56．8\％ | 264.5 | 265.7 | 1.3 | 0．5\％ | 56．8\％ | 395．3 | 406.3 | 11.0 | 2．8\％ |
 | 59．3\％ | 263.1 | ${ }_{264.5}^{262.3}$ | 1.4 | 0．5\％ | 59．3\％ | ${ }_{376.4}$ | ${ }_{398.7}^{404.1}$ | ${ }_{22.3}^{11.5}$ | ${ }_{5}^{2.9 \%}$ |
 | 60．5\％ | 259.9 | 262.0 | 2.1 | 0．8\％ | 60．5\％ | 371.2 | 396.2 | 24.9 | 6．7\％ |
 | ${ }^{61.7 \%}$ | ${ }^{259.1}$ | 259.1 255 255 | 0.0 | 0．0\％ | 61．7\％ | ${ }_{369.3}$ | 385.9 | 16.6 | 4．5\％ |
 | 64．2\％ | 255.8 | ${ }_{25.4}^{25.5}$ | －0．4 | ${ }^{-1.1 \%}$ | 64．2\％ | ${ }_{362.3}$ | ${ }_{362.7}^{3817}$ | 17.2 0.4 | 0．1\％ |
 | 65．4\％ | ${ }^{255.2}$ | ${ }_{255.1}^{255}$ | －0．1 | －0．1\％ | 65．4\％ | 362.1 | 362.7 | 0.6 | 0．2\％ |
 | 66．7\％ 67.9% | 253.9 2530 | 254．6 253 | 0.6 0.7 | ${ }_{\text {en }}^{0.3 \%}$ | 66．7\％ 67.9% | 361.7 354.6 | 360.6 355.7 | -1.1
 1.1 | |
 | 69．1\％ | ${ }_{251.8}^{253}$ | ${ }_{250.9}^{25.8}$ | －0．9 | －0．4\％ | 6．9．1\％ | ${ }_{351.0}$ | 3551.5 | 0.6 | 0．2\％ |
 | 70．4\％ | ${ }_{250.2}^{258.2}$ | ${ }_{24.6}^{2489}$ | －1．6 | －0．7\％ | 70．4\％ | 346.1 | ${ }^{351.5}$ | 5.5 | 1．6\％ |
 | 71.6% 77.8% | 248.6 246.9 | ${ }_{246.7}^{24.9}$ | －0．7 | ${ }^{-0.3 \%}$ | 71．6\％ | 344.4 339.6 | 351.2 348.9 | 6.8 9.4 | |
 | 74．1\％ | 245.8 | 246.3 | 0.5 | 0．2\％ | 74．1\％ | 338.8 | 344.5 | 5.7 | 1．7\％ |
 | 75．3\％ | 244.8 | 244.8 | 0.0 | 0．0\％ | 75．3\％ | 333.5 | 344.0 | 10.5 | 3．1\％ |
 | 76．7．8\％ | ${ }_{243}^{244.6}$ | 24.3 243.4 | －1．14 | －0．0．2\％ | 76．5\％ | ${ }_{331.1}^{332.3}$ | $\begin{array}{r}337.1 \\ 324.8 \\ \hline\end{array}$ | ${ }_{-6.3}^{4.7}$ | 1．4\％\％ |
 | 79．0\％ | 243.0 | 243.1 | 0.1 | 0．0\％ | 79．0\％ | 327.4 | 324.1 | ${ }_{-3,3}$ | －1．0\％ |
 | 80．2\％ | 2427 | 243.0 | 0.2 | 0．1\％ | 80．2\％ | 325.0 | 322.8 | －2．2 | －0．7\％ |
 | ${ }^{88.7 \%}$ | ${ }_{242.3}^{24.3}$ | ${ }_{242.0}^{242.2}$ | －0．1 | －0．1\％ | －${ }_{\text {827．7\％}}$ | 324.6 320.3 | 321.6 316.6 | -3.0 -38 | －0．9\％ |
 | 84．0\％ | 242.2 | 241.2 | －1．0 | －0．4\％ | 84．0\％ | 319.4 | 316.1 | ${ }_{-3.3}$ | －1．0\％ |
 | 85．2\％ | 241.2 | 241.2 | 0.0 | 0．0\％ | 85．2\％ | 317.1 | 314.9 | －2．2 | －0．7\％ |
 | － | 24.2
 240.8 | ${ }_{240.6}^{240.7}$ | -0.4 -0.2 | ${ }^{-0.1 \%}$ | －${ }^{86.4 \%}$ 87．7\％ | 314.5 314.0 | 314.5
 30.3 | － 0.7 | －1．2\％ |
 | 88．9\％ | 240.2 | 239.9 | －0．3 | －0．1\％ | 88．9\％ | 306.1 | 309.7 | 3.6 | 1．2\％ |
 | 90．1\％ | 239.9 | 2393 | －0．7 | －0．3\％ | 90．1\％ | 299.8 | ${ }^{303.3}$ | 3.5 | 1．2\％ |
 | 92．6\％ | 23,6 2379 | 238.5 2345 | －1．24 | ${ }^{-0.5 \%}$ | －${ }_{\text {92．6\％}}^{91.4 \%}$ | ${ }_{295}^{299.8}$ | ${ }_{2934}^{297.2}$ | －2．6 | ${ }^{-0.9 \%}$ |
 | 93．8\％ | 2328 | 233.8 | 0.9 | 0．4\％ | 93．8\％ | ${ }_{292.1}$ | ${ }_{292.6}^{292.4}$ | ${ }_{0}$ | 0．2\％ |
 | 95．1\％ | 230.1 | 232.7 | 2.6 | 1．1\％ | 95．1\％ | 291.3 | 290.1 | －1．1 | －0．4\％ |
 | 96．3\％ | 226.8 | ${ }^{227.2}$ | ${ }^{0.4}$ | 0．2\％ | 96．3\％ | ${ }_{2716}^{276.6}$ | ${ }_{261.5}^{2815}$ | 4.9 | 1．8\％ |
 | 97．5\％ | 226.8 2264 | 227.1 2269 | 0.3 0.5 | 0．2\％ | 97．5\％ | ${ }_{2695}^{27.9}$ | 261.1 259 | －10．8 | －4．0\％ |
 | 100．0\％ | ${ }_{225.7}^{220.4}$ | ${ }_{226.9}^{226.9}$ | ${ }_{1.1}$ | 0．5\％ | 100．0\％ | ${ }_{261.6}^{269.5}$ | ${ }_{250.6}^{2551}$ | －11．1 | ${ }_{-}$ |

 | PercentExcedanceProbability | September | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSII 2303 Without | WSIP 2030 With Project | Absolute | Relative |
 | | Monthl E E | Monthly EC | （untesicm） | Difference（\％） |
 | ${ }^{(\% .0)}$ | 9562 | （untosicm） | 34.4 | |
 | | 556．2 | | | |
 | ${ }_{\text {2，}}^{\text {2．}}$（1．2\％ | 9904 | 95.2 | 7.2 | |
 | 3．7\％ | 88.4 | 8912 | 89 | |
 | 4．9\％ | ${ }_{875.2}$ | ${ }_{882.2}^{8912}$ | 7.9 | |
 | 6．2\％ | 875.0 | 877.5 | 2.5 | |
 | 7．4\％ | 873.1 | 876.0 | 2.9 | 0．3\％ |
 | 8．6\％ | 866.8 | 860.6 | －6．2 | －0．7\％ |
 | 9．9\％ | 863.6 | 853.2 | 104 | －1．2\％ |
 | 11．1\％ | ${ }^{858.6}$ | 843.6 | －15．0 | －1．7\％ |
 | 3\％ | 850．4 | 843.5 | 7.0 | |
 | 13．6\％ | 848.9 | 839.6 | 9．4 | －1．1\％ |
 | 8\％ | 834.2 | 838.0 | 3.8 | 0．5\％ |
 | 16．0\％ | 834.1 | 835.9 | 1.8 | 0．2\％ |
 | 17．3\％ | 826.8 | 831.7 | 4.9 | 0．6\％ |
 | 18．5\％ | 825.7 | 814.1 | －11．5 | －1．4\％ |
 | 19．8\％ | 820.9 | 804.2 | 16.7 | －2．0\％ |
 | 21．0\％ | 804.2 | 802.4 | -1.9 | －0．2\％ |
 | 22．2\％ | 802.0 | 800.4 | 1.5 | 0．2\％ |
 | 23．5\％ | 799.8 | ${ }^{787.6}$ | 12.2 | ${ }^{1.5}$ |
 | 24．7\％ | 797.8 | 785.4 | 12.5 | ${ }^{-1.6 \%}$ |
 | 25．9\％ | 792.1 | 784.9 | －7．2 | －0．9\％ |
 | 27．2\％ | 792.0 | 780.6 | 11.4 | ${ }^{1.4} 4$ |
 | 28．4\％ | 787.0 | 777.4 | －9．5 | －1．2 |
 | 29．6\％ | ${ }^{785.1}$ | 774.6 | 10.5 | －1．3\％ |
 | 30．9\％ | 773.3 | 770.2 | －3．0 | －0．4 |
 | 32．1\％ | 767.7 | 768.8 | 1.1 | 0．1\％ |
 | 33．3\％ | 764.8 | 759.9 | 4.9 | －0．6\％ |
 | 34．6\％ | ${ }^{764.6}$ | 758.2 | －6．4 | －0．8\％ |
 | 35．7\％ | ${ }_{7593}$ | ${ }_{752.1}^{754.1}$ | 7.2 | －1．0\％ |
 | 37．0\％ | 746.6 | 744.1 | －2．5 | －0．3\％ |
 | 38．3\％ | 734.9 | 743.3 | 8.4 | 1．1\％ |
 | 39．5\％ | 730.4 | 736.8 | 6.4 | 0．9\％ |
 | 40．7\％ | ${ }_{728.9}$ | 734.1 | 5.2 | 0．7\％ |
 | 42．0\％ | 724.2 | 733.4 | 9.1 | 1．3\％ |
 | 43．2\％ | 715.4 | 730．9 | 15.5 | 2．2\％ |
 | 44．4\％ | 687．2 | ${ }^{723.6}$ | 36.4 | 5．3\％ |
 | 45．7\％ | 675.6 | ${ }_{721.7}$ | 46.1 | 6．8\％ |
 | 46．9\％ | 654.1 | 714.1 | 60.1 | 9．2\％ |
 | 48．1\％ | ${ }^{646.7}$ | 712.0 | 65.4 | 10．1\％ |
 | 49．4\％ | 645.9 | 707.3 | 61.4 | 9．5\％ |
 | 50．6\％ | ${ }^{645.0}$ | 698.4 | 53.4 | 8．3\％ |
 | 51．9\％ | 642.9 | 697.4 | 54.4 | 8．5\％ |
 | 53．1\％ | 597．6 | 667.7 | 70.1 | 11．7\％ |
 | 54．3\％ | 594.8 | 647.3 | 52.5 | 8．8\％ |
 | 55．6\％ | 588.9 | 615.0 | 26.1 | 4．4\％ |
 | 56．8\％ | 586.6 | 585.5 | －1．2 | －0．2\％ |
 | 58．0\％ | 585.4 | 569.5 | －15．8 | －2．7\％ |
 | 59．3\％ | 572.1 | ${ }^{567.1}$ | －5．0 | 9\％ |
 | 60．5\％ | 564.0 | 559.0 | －5．0 | －0．9\％ |
 | 61．7\％ | 552.0 | 551.7 | ${ }_{-0.3}$ | －0．1\％ |
 | 63．0\％ | 538.2 | 543.4 | ${ }^{5.2}$ | 1．0\％ |
 | 64．2\％ | 533.6 | 540.8 | 7.2 | 4\％ |
 | 65．4\％ | 532．4 | ${ }_{533.5}$ | ${ }^{1.2}$ | 0．2\％ |
 | ${ }^{66.7 \%}$ | 524．2 | 518.7 | 5.6 | 1\％ |
 | 67．9\％ | 514.0 | 518.6 | 4.6 | 0．9\％ |
 | 69．19\％ | 508.6 5075 | 507.8 5097 | －0．8 | 0．2\％ |
 | 70．4\％ | 507.5 | 506.3 | －1．2 | －0．2\％ |
 | 71．6\％ | 497.2 | 497.7 | 0．5 | 1\％ |
 | 72．8\％ | 495.6 | 484.4 | 11.2 | －2．3\％ |
 | 74．1\％ | 483.9 | 477.9 | 6.0 | ．2\％ |
 | 75．3\％ | 48.3 | 487.0 | －13．3 | 57\％ |
 | ${ }^{76.5 \%}$ | 478.9 | 451.5 | 27．4 | ．7\％ |
 | 77．8\％ | ${ }_{488.3}$ | ${ }_{450.6}$ | 27．7 | 45\％ |
 | 79．0\％ | 464.3 | 443.3 | 21．0 | －4．5\％ |
 | 80．2\％ | 451.5 | ${ }_{40.8}^{40.8}$ | －10．7 | －2．4\％ |
 | 81．5\％ | 449.1 | 435．4 | 3.7 | －3．1\％ |
 | 82．7\％ | 448.1 | ${ }^{434.8}$ | －13．4 | －3．0\％ |
 | 84．0\％ | 439.2 | ${ }^{423.6}$ | 5．6 | 源 |
 | 85．2\％ | ${ }^{436.4}$ | 422.0 | －14．4 | －3．3\％ |
 | 86．4\％ | 434.6 | ${ }^{422.0}$ | 12.7 | 厚 |
 | 87．7\％ | ${ }_{3029}$ | ${ }^{409.5}$ | ${ }^{6.6}$ | 1．6\％ |
 | 88．9\％ | 397．0 | ${ }^{397.8}$ | 0.8 | ${ }^{0.2 \%}$ |
 | 90．19\％ | 39.5 | 397.1 | ${ }^{6.6}$ | ${ }_{1}^{1.7 \%}$ |
 | 91．4\％ | 384.7 | 391.7 | 7.0 | \％ |
 | 92．6\％ | ${ }_{387.4}$ | 376.1 | －7．3 | －1．9\％ |
 | ${ }^{93.8 \%}$ | ${ }^{379.3}$ | 372.0 | 7.3 | 9\％ |
 | 95．1\％ | 379.1 | 369.1 | 9.9 | 2．6\％ |
 | ${ }^{96.3 \%}$ | ${ }^{368.7}$ | ${ }^{364.4}$ | ${ }_{-4}$ | 1．2\％ |
 | 97．5\％ | 357．6 | 360．3 | ． 7 | \％ |
 | 988．8\％ | ${ }^{32571}$ | ${ }_{3}^{318.0}$ | －11．8 | －3．6\％ |

 Figure SQ-28-b
 North Bay Aqueduct Intake (Barker Slough), Monthly EC

 Table SQ－28－b

 \begin{tabular}{|c|c|c|c|c|}
 \hline \& \& Ocrober \& \& \\
 \hline \({ }_{\text {Percent }}^{\text {Pexcedance }}\) \& WSIIP 2030 Wethout \& WSIP 2030 With Project \& Absolute \& \\
 \hline Probability \& Monthly EC \& Monthy EC \& （itierence \& Difference（\％） \\
 \hline （\％） \& （UMHOSSCM） \& （UMHosicm） \& \& \\
 \hline 0．0\％ \& 206.1 \& 202.7 \& －3．4 \& －1．6\％ \\
 \hline 1．2\％ \& 205.3 \& 202.5 \& －2．8 \& －1．4\％ \\
 \hline 2．5\％ \& 204.1 \& 201.2 \& －2．9 \& －1．4\％ \\
 \hline 3．7\％ \& 203.5 \& 200.7 \& －2．8 \& －1．4\％ \\
 \hline 4．9\％ \& 203.2 \& 199.8 \& －3．4 \& －1．7\％ \\
 \hline \({ }^{6.2 \%}\) \& \({ }_{202}^{2027}\) \& 1997
 1978 \& \({ }_{-3}-3\) \& －1．5\％ \\
 \hline 7．4\％ \& 202.4 \& 197.8 \& －4．6 \& －2．3\％ \\
 \hline 8．6\％ \& \({ }^{201.5}\) \& 197.4
 1969 \& －4．1． \& －2．0\％ \\
 \hline 9．9\％ \& 201.0 \& 196.9 \& \(-4.1\) \& －2．0\％ \\
 \hline 11．19\％ \& 201.0 \& 196.9 \& －4．1 \& －2．0\％ \\
 \hline 12．3\％ \& 200.1 \& 195.5 \& －4．6 \& －2．3\％ \\
 \hline 13．6\％ \& 198.7 \& 194.9 \& －3．8 \& －1．9\％ \\
 \hline 14．8\％ \& 198.1 \& 194.4 \& -3.7
 -38 \& －1．9\％ \\
 \hline 16．0\％ \& 198.0 \& 194.2 \& －3．8 \& －1．9\％ \\
 \hline 17．3\％ \& 198.0 \& 194.1 \& －3．9 \& \({ }_{-2.0 \%}\) \\
 \hline 18．5\％ \& 197.6 \& 193.4 \& －4．2 \& －2．1\％ \\
 \hline 19．8\％ \& 197.6 \& 193．2 \& －4．3 \& －2．2\％ \\
 \hline 21．0\％ \& 197.5 \& 192．3 \& －5．2 \& －2．6\％ \\
 \hline 22．2\％ \& 197.4 \& 190.8 \& －6．6 \& －3．4\％ \\
 \hline \({ }^{23.4 .7 \%}\) \& 195.6
 195.2 \& \begin{tabular}{l}
 190.8 \\
 190.6 \\
 \hline
 \end{tabular} \& －4．8 \& \({ }_{-2.4 \%}^{-2.5 \%}\) \\
 \hline 25．9\％ \& 194.4 \& 190.5 \& －3．9 \& －2．0\％ \\
 \hline 27．2\％ \& 191.9 \& 190.4 \& －1．4 \& －0．7\％ \\
 \hline 28．4\％ \& 191.8
 1914 \& 190.0
 1900 \& －1．88 \& －0．9\％ \\
 \hline 29．6\％ \& 191.4 \& 190.0 \& －1．4 \& －0．7\％ \\
 \hline 30．9\％ \& 191.4 \& 1899 \& －1．5 \& －0．8\％ \\
 \hline 32．1\％ \& 191.0 \& 189.8 \& \(-1.2\) \& －0．6\％ \\
 \hline \(33.3 \%\)
 \(34.6 \%\) \& 190.9
 190.8 \& 189.7
 1897 \& －1．1． \& －0．6\％ \\
 \hline 34．6\％ \& 190.8 \& 1897 \& －1．2 \& －0．6\％ \\
 \hline 35．8\％ \& 190.4
 190.4 \& 189.5
 1895 \& －0．9 \& －0．4\％ \\
 \hline \(37.0 \%\)
 \(38.3 \%\) \& 190．4 \& 189.5 \& －0．9 \& －0．5\％ \\
 \hline 38．5\％ \& 190.1
 190.0 \& 189.5
 189.4 \& －0．5 \& \({ }^{-0.3 \%}\) \\
 \hline 40．7\％ \& 190.0 \& 189.4 \& －0．5 \& －0．3\％ \\
 \hline 42．0\％ \& 189.9 \& 189.4 \& －0．5 \& －0．2\％ \\
 \hline 43．2\％ \& 189.9 \& 189.2 \& －0．6 \& －0．3\％ \\
 \hline 44．4\％ \& 189.6
 1896 \& 189.1
 1889 \& －0．6 \& －0．3\％ \\
 \hline 45．7\％ \& 189.6
 1895 \& 188.9
 1889 \& －0．7 \& －0．4\％ \\
 \hline \({ }^{46.9 \%}\) \& 189.5
 1895 \& 188.9

 188 \& －0．6 \& －0．3\％

 \hline ${ }_{4}^{48.4 \%}$ \& ${ }_{189.3}^{1895}$ \& | 188.8 |
 | :--- |
 | 188.8 | \& －0．5 \& ${ }^{-0.3 \%}$

 \hline 50．6\％ \& 189.3 \& 188.7 \& －0．6 \& －0．3\％

 \hline 51．9\％ \& 1893 \& 188.6
 1885 \& －0．7 \& －0．4\％

 \hline 年 53.13% \& 189．2 \& 188.5
 1883 \& －0．7 \& －0．4\％

 \hline 55．6\％ \& 189.2
 189.1 \& $\begin{array}{r}188.3 \\ 188.2 \\ \hline\end{array}$ \& －0．8 \&

 \hline 56．8\％ \& 188.9 \& 188.2 \& －0．7 \& －0．3\％

 \hline 年58．0\％ \& 188.9
 1888 \& 188.2
 188.1
 1 \& －0．6 \& －0．3\％

 \hline 50．5\％ \& | 188.8 |
 | :--- |
 | 188.6 | \& $\begin{array}{r}188.1 \\ 188.1 \\ \hline\end{array}$ \& -0.6

 -0.5 \&

 \hline 61．7\％ \& ${ }^{188.6}$ \& 188.0 \& －0．6 \& ${ }^{-0.3 \%}$

 \hline 63．0\％ \& 188.5
 188.5 \& 187.9
 187.8 \& -0.7
 -0.6 \& －0．3\％

 \hline 65．4\％ \& 188.4 \& 187.8 \& －0．6 \& －0．3\％

 \hline 66．7\％ \& 188.3 \& 187.8 \& －0．5 \& －0．3\％

 \hline 67．9\％ \& 188.1

 188.1 \& | 187.8 |
 | :--- |
 | 187.8 | \& -0.4

 -0.4 \& －0．0\％

 \hline 70．4\％ \& 188.0 \& 187.5 \& －0．5 \& －0．3\％

 \hline 71．6\％ \& 188.0 \& 187.5 \& －0．5 \& －0．3\％

 \hline 72．8\％ \& 1878
 1878
 188 \& $\begin{array}{r}187.4 \\ 1873 \\ \hline 18\end{array}$ \& -0.4
 -0.06 \& －0．0．2\％

 \hline 75．3\％ \& 1877 \& 187.2 \& －0．5 \& －0．3\％

 \hline 76．5\％ \& 187.7 \& 187.2 \& －0．5 \& －0．3\％

 \hline 77．8\％ \& $\begin{array}{r}187.6 \\ 1874 \\ \hline\end{array}$ \& $\begin{array}{r}187.1 \\ 1868 \\ \hline\end{array}$ \& | -0.5 |
 | :--- |
 | -0.5 | \& －0．0．3\％

 \hline 80．2\％ \& 187.3 \& 186.7 \& －0．7 \& －0．3\％

 \hline 81．5\％ \& 186.8 \& 186.6 \& －0．2 \& －0．1\％

 \hline － 82.7% \& 186.7
 186.6 \& 186.6
 1865 \& -0.1
 -0.1 \& －0．0．1\％

 \hline 85．2\％ \& 186.6 \& 186.5 \& －0．1 \& 0．0\％

 \hline 86．4\％ \& 186.5 \& 186.3 \& －0．2 \& －0．1\％

 \hline 88．9\％ \& 186.3
 186.3 \& 1886.2
 186.2 \& -0.1
 -0.1 \& －

 \hline 90．1\％ \& 186.2 \& 186.0 \& －0．2 \& －0．1\％

 \hline 914\％ \& 186.1 \& 185.9 \& －0．3 \& －0．2\％

 \hline 93． 92.8 \％ \& 186.1
 186.0 \& 185.7
 185.6 \& -0.4
 -0.4 \& －

 \hline 95．1\％ \& 185.8 \& 185.4 \& －0．4 \& －0．2\％

 \hline 96．3\％ \& 185．5 \& ${ }^{185.3}$ \& －0．2 \& －0．1\％

 \hline 97．5\％ \& ${ }^{185.3}$ \& 185.0 \& －0．3 \& －0．2\％

 \hline 100．0\％ \& | 185.1 |
 | :--- |
 | 184.6 | \& 184.3

 183.9 \& －0．8 \& ${ }_{\text {－}}^{-0.4 \%}$

 \hline
 \end{tabular}

 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
 \hline \multirow[b]{3}{*}{$$
 \begin{gathered}
 \text { Percent } \\
 \begin{array}{c}
 \text { Exceedance } \\
 \text { Probability }
 \end{array}
 \end{gathered}
 $$} \& \multicolumn{4}{|l|}{November} \& \multirow[b]{3}{*}{$$
 \underset{\substack{\text { Excerent } \\ \text { Proconability }}}{\text { Prect }}
 $$} \& \multicolumn{4}{|c|}{Jecember}

 \hline \& WSIP 2030 Without \& WSIP 2030 With Project \& \multirow[t]{2}{*}{$$
 \begin{gathered}
 \text { Absolute } \\
 \text { (Difference } \\
 \text { (UMHOSICM) }
 \end{gathered}
 $$} \& \multirow[t]{2}{*}{$$
 \begin{gathered}
 \text { Relative } \\
 \text { Difference (\%) }
 \end{gathered}
 $$} \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{$\underset{\text { Monthy EC }}{\text { WSII } 2030 \text { With Proct }}$} \& \multirow[t]{2}{*}{$$
 \begin{gathered}
 \text { Absolute } \\
 \text { Difference } \\
 \text { (UMHOS/CM) }
 \end{gathered}
 $$} \& \multirow[t]{2}{*}{$$
 \begin{aligned}
 & \text { Refeative } \\
 & \text { Difference (\%) }
 \end{aligned}
 $$}

 \hline \& \& Monthly EC
 （untos
 cw） \& \& \& \& \& \& \&

 \hline \& 2087 \& 2039 \& －48 \& 23\％ \& （\％） \& 2354 \& \& ． 08 \&

 \hline \& \& \& \& \& \& \& \& \&

 \hline 2．5\％ \& 204.9 \& ${ }_{202.1}^{202.7}$ \& －2．8 \& －1．3\％ \& 2．5\％ \& ${ }_{222.5}^{224}$ \& ${ }_{218.2}^{24.6}$ \& ${ }_{-4.2}$ \& －1．9\％

 \hline 3．7\％ \& 204.8 \& 201.4 \& －3．4 \& －1．6\％ \& 3．7\％ \& 215.5 \& 215.0 \& －0．5 \& －0．2\％

 \hline 4．9\％ \& 204.7 \& 201.2 \& －3．5 \& －1．7\％ \& 4．9\％ \& 211.7 \& 212.1 \& 0.3 \& 0．2\％

 \hline 6．2\％ \& 204.1 \& 201.0 \& －3．1 \& －1．5\％ \& 6．2\％ \& 211.5 \& 211.4 \& －0．1 \&

 \hline 7．4\％ \& 203.9 \& 200.6 \& －3．4 \& －1．6\％ \& 7．4\％ \& 210.7 \& 210 \& 01 \& 0．1\％

 \hline 8．6\％ \& 202.5 \& 200.5 \& －2．0 \& －1．0\％ \& 8．6\％ \& 210.3 \& 210.3 \& 0.0 \& 0

 \hline 9．9\％ \& 202.5 \& 199.4 \& －3．1 \& 1．5\％ \& 9．9\％ \& 207.6 \& 207.7 \& 0.1 \& 0．0\％

 \hline 11．1\％ \& 202.2 \& 199.2 \& －3．0 \& －1．5\％ \& 11．1\％ \& 207.3 \& 205.6 \& －1．7 \& －0．8

 \hline 12．3\％ \& 202.0 \& 198.8 \& －3．2 \& －1．6\％ \& 12．3\％ \& 205.6 \& 204.9 \& －0．7 \& －0．3

 \hline 13．6\％ \& 201.9 \& 198.6 \& －3．4 \& －1．7\％ \& 13．6\％ \& 205.3 \& 204.5 \& －0．8 \& －0．4

 \hline 14．8\％ \& 201.4 \& 198.1 \& －3．3 \& －1．7\％ \& 14．8\％ \& 205.1 \& 203.6 \& －1．5 \& －0．79

 \hline 16．0\％ \& 201.3 \& 198.0 \& －3．3 \& －1．7\％ \& 16．0\％ \& 204.9 \& 203.5 \& －1．3 \& －0．79

 \hline 17．3\％ \& 201.2 \& 197.4 \& －3．8 \& －1．9\％ \& 17．3\％ \& 204.6 \& 203.4 \& －1．2 \& －0．6\％

 \hline 18．5\％ \& 200.5 \& 196.8 \& －3．7 \& －1．9\％ \& 18．5\％ \& 204.5 \& 202.6 \& －1．9 \& －0．9\％

 \hline 19．8\％ \& 200.2 \& 196.5 \& －3．7 \& －1．8\％ \& 19．8\％ \& 203.8 \& 202.5 \& －1．3 \& －0．6\％

 \hline 21．0\％ \& 200.1 \& 195.9 \& －4．2 \& －2．1\％ \& 21．0\％ \& 203.3 \& 202.4 \& －0．9 \& －0．4

 \hline 22．2\％ \& 199.0 \& 195.8 \& －3．2 \& －1．6\％ \& 22．2\％ \& 203.0 \& 202.1 \& －0．9 \& －0．5\％

 \hline 23．5\％ \& 198.3 \& 195.4 \& －2．9 \& －1．4\％ \& 23．5\％ \& 202.9 \& 202.0 \& －0．9 \& －0．4

 \hline 24．7\％ \& 197.7 \& 194.7 \& －3．0 \& －1．5\％ \& 24．7\％ \& 202.0 \& 201.5 \& －0．5 \& －0．2\％

 \hline 27．2\％ \& 197.7
 1969 \& 194.7 \& －3．0 \& －1．5\％ \& 25．9\％ \& 201.8 \& 20.8 \& －1．0 \& －0．5\％

 \hline 28．4\％ \& 196.8 \& 193.7 \& －3．1 \& －1．6\％ \& 28．4\％ \& 201.3 \& 200.0 \& －1．2 \& －0．6\％

 \hline 29．6\％ \& 196.3 \& 193.6 \& －2．7 \& －1．4\％ \& 29．6\％ \& 200.7 \& 199.3 \& －1．5 \& －0．7\％

 \hline 30．9\％ \& 196.1 \& 193.6 \& －2．5 \& －1．3\％ \& 30．9\％ \& 200.7 \& 198.6 \& －2．1 \& －1．0\％

 \hline 32．1\％ \& 196.0 \& 193.3 \& －2．7 \& －1．4\％ \& 32．1\％ \& 200.6 \& 198.5 \& －2．1 \& －1．0\％

 \hline 334．6\％ \& 195.2
 1051 \& 193.2
 1929 \& －2．0 \& －－1．1\％ \& 年 $\begin{aligned} & 33.3 \% \\ & 34.6 \%\end{aligned}$ \& 200.1
 1999 \& 198.5
 1984 \& －1．6 \& －0．8\％

 \hline 35．8\％ \& 194.7 \& 192.5 \& －2．3 \& －1．2\％ \& 35．8\％ \& 199.9 \& 198.2 \& －1．7 \& －0．8\％

 \hline 37．0\％ \& 194.3 \& 192.1 \& －2．2 \& －1．1\％ \& 37．0\％ \& 199.8 \& 198.2 \& －1．6 \& －0．8\％

 \hline 38．3\％ \& 194.2 \& 192.1 \& －2．18 \& －1．1\％ \& 38．3\％ \& 198.9 \& 197.5 \& －1．4 \& －0．7\％

 \hline 39．5\％ \& 193.8 \& 191.6 \& －2．2 \& －1．1\％ \& 39．5\％ \& 198.6 \& 197.5 \& －1．1 \& －0．6\％

 \hline 42．0\％ \& ${ }_{193.1}^{193.2}$ \& 191.5
 191.2 \& －1．7 \& －1．0\％ \& ${ }^{40.7 \%}$ \& 198.5

 1980 \& 197.4
 197.0 \& －1．1． \& －0．6\％

 \hline 43．2\％ \& 192.6 \& 191.0 \& －1．6 \& －0．8\％ \& 43．2\％ \& 197.9 \& 196.9 \& －1．0 \& －0．5\％

 \hline 44．4\％ \& 192.5 \& 191.0 \& －1．6 \& －0．8\％ \& 44．4\％ \& 197.7 \& 196.8 \& －0．9 \& －0．5\％

 \hline ${ }^{45.7 \%}$ \& 192.0
 1919 \& 190.9 \& -1.1 \& －0．6\％ \& 45．7\％ \& 197．2 \& 196.7 \& －0．5 \& －0．3\％

 \hline 46．9\％ \& 191.9 \& 190.8 \& －1．1 \& －0．6\％ \& 46．9\％ \& 196.9 \& 196.5 \& －0．5 \& －0．2\％

 \hline 49．4\％ \& 191.9
 191.7 \& 190.7
 190.5 \& －1．2） \& －0．0．7\％ \& 48．19\％ \& 196.4
 196.4 \& 199.1
 195.6 \& －0．3 \& －0．0．2\％

 \hline 50．6\％ \& 191.6 \& 190.5 \& －1．1 \& －0．6\％ \& 50．6\％ \& 196.3 \& 195.6 \& －0．7 \& －0．3\％

 \hline 51．9\％ \& 191.3 \& 190.4 \& －0．9 \& －0．5\％ \& 51．9\％ \& 195.8 \& 195.4 \& －0．4 \& －0．2\％

 \hline 53．1\％ \& 191.3 \& 190.3 \& －1．0 \& －0．5\％ \& 53．1\％ \& 195.4 \& 195．2 \& －0．2 \& －0．1\％

 \hline 54．3\％ \& 191.0 \& 190.2 \& －0．8 \& －0．4\％ \& 54．3\％ \& 195.3 \& 195.2 \& －0．1 \& －0．1\％

 \hline 55．6\％ \& 190.9 \& 190.1 \& －0．8 \& －0．4\％ \& 55．6\％ \& 195.0 \& 199．2 \& 0.2 \& 0．1\％

 \hline 56．8\％ \& 190.8
 190.5 \& 189.8
 1896 \& -1.0 \& －0．5\％ \& 56．8\％ \& 195.0 \& 194．6 \& －0．4 \& －0．2\％

 \hline 59．3\％ \& ${ }_{190.1}^{19.5}$ \& 189.6
 189.4 \& －0．7 \& ${ }^{-0.4 \%}$ \& 58．3\％ \& ${ }_{193.4}^{194.3}$ \& ${ }_{1939.9}^{194.5}$ \& 0．2 \& － 0.3%

 \hline 60．5\％ \& 190.0 \& 189.2 \& －0．9 \& －0．5\％ \& 60．5\％ \& 193.2 \& 193.2 \& 0.0 \& 0．0\％

 \hline 61．7\％ \& 189.9 \& 189.1 \& －0．8 \& －0．4\％ \& 61．7\％ \& 193.1 \& 193.1 \& 0.0 \& 0．0\％

 \hline 63．0\％ \& 189.7
 1895 \& 189.1 \& －0．6 \& －0．3\％ \& 63．0\％ \& 193.0 \& 193.0 \& 0.0 \& 0．0\％

 \hline 64．2\％ \& 189.5
 1893 \& 189.0 \& －0．5 \& ${ }^{-0.3 \%}$ \& 64．2\％ \& 193.0 \& 192.9 \& －0．1 \& 0．0\％

 \hline ${ }^{65.4 \%}$ \& | 1893 |
 | :--- |
 | 193 | \& 188.8

 1888 \& －0．5 \& －0．3\％ \& 65．4\％ \& 192.9 \& 192.1 \& －0．8 \& －0．4\％

 \hline 㐌66．7\％ \& 189.3

 189.1 \& | 188.8 |
 | :--- |
 | 188.8 | \& －0．5 \& ${ }^{-0.2 \%}$ \& 66．7\％

 67.9% \& ${ }_{192.5}^{192.6}$ \& 191.6
 190.9 \& －1．0 \& －0．5\％

 \hline 69．1\％ \& 189.1 \& 188.8 \& －0．4 \& －0．2\％ \& 69．1\％ \& 191.9 \& 190.4 \& －1．5 \& －0．8\％

 \hline 70．4\％ \& 189.1 \& 188.7 \& －0．4 \& －0．2\％ \& 70．4\％ \& 191.6 \& 190.4 \& －1．2 \& －0．6\％

 \hline 71．6\％ \& 189.0 \& 188.7 \& －0．3 \& －0．2\％ \& 71．6\％ \& 190.9 \& 190.0 \& －0．9 \& －0．5\％

 \hline 72．8\％ \& 188.9
 1888 \& 188.7
 188. \& －0．2 \& －0．1\％ \& 72．8\％ \& 190.5
 109.4 \& 189.9
 1897 \& －0．6 \& －0．3\％

 \hline 77．3\％ \& | 188.8 |
 | :--- |
 | 188.8 | \& 188.6

 188.4 \& －0．2 \& ${ }^{-0.2 \%}$ \& 74．19\％
 75.3% \& 190.4 \& 1897 \& －0．7 \& －0．4\％

 \hline 76．5\％ \& 188.8 \& 188.3 \& －0．5 \& ${ }^{-0.3 \%}$ \& 76．5\％ \& 189.9 \& 189.1 \& －0．8 \& －0．4\％

 \hline 77．8\％ \& 188.7
 1885 \& 188.3
 188 \& －0．4 \& －0．2\％ \& \& 189.9 \& 189.0 \& －0．8 \& －0．4\％

 \hline 79．0\％ \& 188.5 \& 188.2 \& －0．3 \& －0．1\％ \& 79．0\％ \& 189.6 \& 188.8 \& －0．8 \& －0．4\％

 \hline 80．2\％ \& 188.5

 1885 \& | 188.2 |
 | :--- |
 | 881 | \& －0．3 \& －0．2\％ \& 80．2\％ \& 189.4

 1889 \& 188.7
 1886 \& －0．7 \& －0．4\％

 \hline 81．5\％ \& 188．5 \& 188.1 \& －0．4 \& －0．2\％ \& 81．5\％ \& 188.9 \& | 188.6 |
 | :--- |
 | 188 | \& －0．3 \& －0．1\％

 \hline 828．7\％ \& 188.4
 188.3 \& 188.0
 188.0 \& -0.4
 -0.3 \& －0．0．2\％ \& 827\％ \& 188.9
 188.5 \& 188.3
 188.1 \& -0.6
 -0.3 \& －0．0．3\％

 \hline 85．2\％ \& 188.2 \& 187.9 \& －0．3 \& －0．1\％ \& 85．2\％ \& 188.3 \& 188.0 \& －0．3 \& －0．2\％

 \hline 86．4\％ \& 188.1 \& 187.7 \& －0．4 \& －0．2\％ \& 86．4\％ \& 188.1 \& 187.8 \& －0．3 \& －0．2\％

 \hline 87．7\％ \& 188.0

 1879 \& ${ }^{187.3}$ \& －0．6 \& －0．3\％ \& \& | 187.8 |
 | :--- |
 | 1878 |
 | 18. | \& $\begin{array}{r}187.6 \\ \hline 87.6\end{array}$ \& －0．1 \& －0．1\％

 \hline ${ }^{80.1 \%}$ \& ${ }_{187.4}^{187.9}$ \& 187.1
 18.9 \& －0．6 \& ${ }^{-0.4 \% \%}$ \& ${ }^{88.9 \%}$ \& 1887.8
 187.7 \& 187.6
 187.6 \& －0．1 \& ${ }^{-0.1 \%}$

 \hline 914．4\％ \& ${ }^{187.3}$ \& 186.6 \& －0．7 \& －0．4\％ \& 91．4\％ \& 187.7 \& 187.5 \& －0．1 \& －0．1\％

 \hline 92．6\％ \& ${ }^{187.3}$ \& 186.6 \& －0．7 \& －0．4\％ \& 92．6\％ \& 187.6 \& ${ }^{187.3}$ \& －0．2 \& －0．1\％

 \hline 93．8\％ \& 187.1 \& 186.6 \& －0．5 \& －0．3\％ \& 93．8\％ \& 187.4 \& 186.9 \& －0．5 \& －0．3\％

 \hline 95．1\％ \& 186.8 \& 186.5 \& －0．3 \& －0．2\％ \& 95．1\％ \& 186.9 \& | 186.8 |
 | :--- |
 | 1883 | \& －0．1 \& 0．0\％

 \hline ${ }^{99.3 \%}$ \& ${ }^{1886.7}$ \& 186.4

 1863 \& －0．3 \& －0．2\％ \& 96．3\％ \& | 188.6 |
 | :--- |
 | 859 |
 | 189 | \& 186．3 \& －0．3 \& ${ }^{-0.1 \%}$

 \hline 97．5\％${ }_{\text {98．8\％}}$ \& 186.6

 186.3 \& | 186.3 |
 | :--- |
 | 184.8 | \& $\begin{array}{r}-0.4 \\ -15 \\ \hline\end{array}$ \& －0．0．0\％ \& 97．5\％ \& 185.9

 1856 \& 185.6
 1856 \& -0.2
 0.1 \& －0．0\％

 \hline 100．0\％ \& ${ }_{185.3}^{106.3}$ \& $\begin{array}{r}184.7 \\ \hline 184\end{array}$ \& －0．6 \& －0．3\％ \& 100．0\％ \& ${ }_{1}^{1856.5}$ \& ${ }_{185.5}^{185.6}$ \& 0.1 \& 0．0\％

 \hline
 \end{tabular}

 | $\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$ | January | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {WSIP }}$ 2033 ${ }_{\text {Proithect }}$ | WSIP 2030 With Project | Absolut | |
 | | Monthly EC | Monthly EC | （idiference | Difference（\％） |
 | | （UMHosicm） | （UMHOSSCM） | | |
 | 0．0\％ | 258.7 | 259.9 | 1.2 | 0．5\％ |
 | 1．2\％ | 250.8 | 256.4 | 5.7 | 2．3\％ |
 | 2．5\％ | 249.8 | 249.6 | －0．2 | －0．1\％ |
 | 3．7\％ | 246.4 | 248.1 | 1.7 | 0．7\％ |
 | 4．9\％ | 241.4 | 243.8 | 2.5 | 1．0\％ |
 | 6．2\％ | 240.4 | ${ }_{238.1}^{2375}$ | －2．4 | －1．0\％ |
 | 7．4\％ | 238.0 | 237.5 | －0．6 | －0．2\％ |
 | 8．9\％ | ${ }_{23,1}^{2354}$ | ${ }_{236.1}^{2335}$ | 0.6 | 0．3\％ |
 | 9．9\％ | 234.1 | 233.5 | －0．5 | －0．2\％ |
 | 11．19\％ | ${ }_{23,1}^{233}$ | ${ }_{23}^{23.1}$ | －0．6 | －0．2\％ |
 | ${ }^{12.3 \%}$ | 231.1 | 230.0 | －1．1 | －0．5\％ |
 | 13．6\％ | 229.2 | 228.8 | －0．4 | －0．2\％ |
 | 14．8\％ | 228.8 | 228.4 | －0．4 | －0．2\％ |
 | 16．0\％ | 228.5 | 228.4 | －0．1 | －0．1\％ |
 | 17．3\％ | 228.4 | 226.5 | -1.9 | －0．8\％ |
 | 18．5\％ | 226.2 | ${ }_{226.2}^{226.2}$ | 0.0 | 0．0\％ |
 | 19．8\％ | 222．0 | 226．2 | 0.2 | 0．1\％ |
 | 21．0\％ | ${ }_{225.8}^{2258}$ | ${ }_{225.9}^{222.9}$ | 0.2 | 0．1\％ |
 | ${ }^{22.2 \%}$ | ${ }_{2220}^{225.6}$ | ${ }_{223}^{223.4}$ | －2．1 | －1．0\％ |
 | ${ }^{23.47 \%}$ | ${ }_{220.7}^{222.0}$ | ${ }_{221.4}^{222.3}$ | 0.3 0.7 | 0．3\％ |
 | 25．9\％ | 219.3 | 221.4 | 2.1 | 0．9\％ |
 | 27．2\％ | 219.3 | 220.2 | 0.9 | 0．4\％ |
 | 28．4\％ | ${ }_{219.2}^{219.2}$ | 219.8 | 0.6 | 0．3\％ |
 | 29．\％ | ${ }_{217.6}$ | 219.2 | 1.6 | 0．7\％ |
 | 30．9\％ | 217.3 | 2188 | 1.5 | 0．7\％ |
 | 32．1\％ | 215.1 | ${ }_{2178}^{2178}$ | 2.7 | 1．2\％ |
 | 33．3\％ | 214.4 | 214.3 | 1.9 | 0．9\％ |
 | 34．6\％ | ${ }_{214.3}^{214}$ | 214.9 | 0.6 | 0．3\％ |
 | 33．8\％ | 214．2 | ${ }_{214.6}^{214.6}$ | ${ }^{0.3}$ | 0．2\％ |
 | 38．3\％ | ${ }_{2137}^{2139}$ | ${ }_{214.2}^{214.2}$ | ${ }^{0.3}$ | 0．2\％ |
 | 38．5\％ | ${ }_{213.3}^{213.7}$ | ${ }_{213.2}^{214.1}$ | －0．4 | ${ }_{\text {－0．1\％}}^{0.2 \%}$ |
 | 40．7\％ | 211.6 | ${ }_{211.6}$ | 0.0 | 0．0\％ |
 | 42．0\％ | 211.2 | 211.5 | 0.4 | 0．2\％ |
 | 43．2\％ | 21.6 | 210.8 | 0.2 | 0．1\％ |
 | 44．4\％ | 210.0 | 210.5 | 0.4 | 0．2\％ |
 | 45．7\％ | 209.6 2085 | 210.1 2087 | 0.5 | 0．2\％ |
 | 48．1\％ | 208.5 208.5 | ${ }_{208.1}^{208.7}$ | 0.1 -0.4 | －0．1\％ |
 | 49．4\％ | 208.5 | 208.0 | －0．5 | －0．2\％ |
 | 50．6\％ | 207.6 | 2077 | 0.0 | 0．0\％ |
 | 51．9\％ | ${ }^{207.1}$ | ${ }_{2077}^{2074}$ | ${ }^{0.3}$ | 0．1\％ |
 | 53．1\％ | 207．1 | 2073 | 0.3 | 0．1\％ |
 | 55．6\％ | ${ }_{206.4}^{20.9}$ | ${ }_{206.2}^{200.9}$ | －0．1 | －0．1\％ |
 | 56．8\％ | 205.9 | 206.2 | 0.3 | 0．2\％ |
 | 58．0\％ | ${ }_{2055}^{205.5}$ | 20.1 2059 | ${ }^{0.5}$ | 0．3\％ |
 | 60．5\％ | 204.8 | 205.3 | 0.5 | 0．3\％ |
 | 61．7\％ | 204.5 | 205.2 | 0.8 | 0．4\％ |
 | －63．0\％ | 204.4 2039 | ${ }_{2048}^{2050}$ | ${ }^{0} 0.6$ | ${ }_{0}^{0.3 \%}$ |
 | 65．4\％ | 203.0 | 2028 | －0．2 | －0．1\％ |
 | 66．7\％ | 202.4 | 202.6 | 0.2 | 0．1\％ |
 | －67．9\％ | ${ }_{2019}^{202.3}$ | 202.4 2020 | ${ }_{0}^{0.1}$ | －${ }_{\text {0．1\％}}^{0.1 \%}$ |
 | 70．4\％ | 2017 | 201.6 | －0．1 | －0．1\％ |
 | 71．6\％ | 201.6 | 201.5 | －0．1 | －0．1\％ |
 | －${ }_{\text {74，}}^{72.8 \%}$ | ${ }_{2015}^{201.6}$ | ${ }_{200.1}^{201.1}$ | －0．5 | －-0.2%
 -0.3% |
 | 75．3\％ | 201.3 | 20.4 | －0．9 | －0．4\％ |
 | 76．5\％ | 201.1 | 200.1 | -1.0 | －0．5\％ |
 | 77．8\％ | ${ }_{200 .}^{200.9}$ | 200.1 1999 | －0．8 | － |
 | 80．2\％ | 199.9 | 199.8 | －0．1 | －0．1\％ |
 | 81．5\％ | 199.7 | 199.7 | 0.1 | 0．0\％ |
 | | 19996 1995 | 198.7 1987 | －0．8 | － $\begin{aligned} & -0.4 \% \\ & -0.4 \%\end{aligned}$ |
 | 85．2\％ | 198.9 | 198.4 | －0．5 | －0．2\％ |
 | 86．4\％ | 198.8 | 198.1 | －0．7 | －0．4\％ |
 | 888．7\％ | 198.6 1985 | 197.9 1977 | －0．7 | －0．4\％ |
 | 90．1\％ | 197.8 | 197.4 | －0．5 | －0．2\％ |
 | 914\％ | 196.6 | 196.8 | 0.3 | 0．1\％ |
 | 93．${ }_{\text {93，}}$ | 196.2
 195.8 | 1996.3 196.1 | ${ }_{0.3}^{0.1}$ | － 0.2 \％ |
 | 95．1\％ | 195.5 | 195.6 | 0.1 | 0．0\％ |
 | 96．3\％ | 194.5 | 194.9 | 0.4 | 0．2\％ |
 | 97．5\％ | 194.4 194 | 194.5 | 0.1 | 0．0\％ |
 | － 98.8% | 194.4 193.5 | 194.3
 1939 | －0．4 | 0．2\％ |

 Table SQ－28－b

 | | | February | | |
 | :---: | :---: | :---: | :---: | :---: |
 | ${ }_{\text {Percent }}^{\text {Pexcedance }}$ | ${ }_{\text {WSIP }}^{\text {2030 }}$ Pricthout | WSIP 2030 With Project | Absolute | |
 | Probability | Monthly EC | Monthy EC | （itierence | Difference（\％） |
 | （\％） | （UMHOSSCM） | （UMHOSSCM） | | |
 | 0．0\％ | 278.4 | 280.5 | 2.1 | 0．8\％ |
 | 1．2\％ | 264.7 | 268.5 | 3.9 | 1．5\％ |
 | 2．5\％ | 258.5 | 259.5 | 1.0 | 0．4\％ |
 | 3．7\％ | 253.1 | 252.8 | －0．3 | －0．1\％ |
 | 4．9\％ | 252.0 | 251.1 | －0．9 | －0．4\％ |
 | ${ }^{6.2 \%}$ | ${ }_{250.4}^{250.4}$ | 251.1 2479 | －0．7 | －${ }_{\text {O }}$ |
 | 7．4\％ | 245.1 | 247.9 | 2.9 | 1．2\％ |
 | 8．6\％ | 24.3 | ${ }_{245}^{24.8}$ | 1.4
 27 | ${ }^{0.6 \%}$ |
 | 9．9\％ | 24.0 | 244.7 | 2.7 | 1．1\％ |
 | 11．19\％ | ${ }_{241.8}^{2418}$ | 242.2 | 0.4 | 0．2\％ |
 | 12．3\％ | 241.0 | ${ }_{2421}$ | 1.1
 05 | 0．4\％ |
 | 13．6\％ | 241.0 | 241.5 | 0.5 | 0．2\％ |
 | 14．8\％ | 240.5 | 240.9 | 0．4 | 0．2\％ |
 | 16．0\％ | ${ }_{20}^{24.4}$ | 240.7 | 0.3 | 0．1\％ |
 | 17．3\％ | ${ }_{237.0}^{235}$ | 238.5 | 1.6 | 0．7\％ |
 | 18．5\％ | ${ }_{235}^{2357}$ | 238.4 | 2.7 | 1．1\％ |
 | 19．8\％ | ${ }_{23.6}^{2354}$ | ${ }^{237.0}$ | 1.4 | 0．7\％ |
 | 21．0\％ | ${ }_{2345}^{2345}$ | ${ }_{2}^{236.5}$ | 1.6 | 0．7\％ |
 | 22．2\％ | ${ }_{234}^{2345}$ | ${ }_{2}^{235.9}$ | ${ }_{1}^{1.4}$ | 0．6\％ |
 | ${ }^{23.5 \%}$ | 234.4 | 235.6
 2344
 234 | 1.2 | 0．5\％ |
 | 24．7\％ | ${ }_{23.9}^{233.9}$ | 234．4 | 0.6 | －${ }_{\text {0．2\％}}^{0.3 \%}$ |
 | ${ }^{257.2 \%}$ | ${ }_{231.4}^{233.4}$ | ${ }_{233.3}^{234.1}$ | 0.6 1.9 | 0．8\％ |
 | 28．4\％ | 231.2 | 233.0 | 1.8 | 0．8\％ |
 | 29．6\％ | 229.7 | ${ }^{232.1}$ | ${ }_{25}^{2.3}$ | ${ }^{1.0 \%}$ |
 | 30．9\％ | ${ }_{229.6}^{229.6}$ | ${ }_{232}^{2320}$ | 2.5 | 年．1\％ |
 | 32．1\％ | 2293 | 231.2 | 1.9 | 0．8\％ |
 | 33.3% 34.6% | 227.8
 273
 273 | ${ }_{2}^{228.8}$ | 1.0 | 0．4\％ |
 | 34.6% 358% | ${ }_{227.3}^{227.3}$ | 228.4 | 1.0 | 0．5\％ |
 | 35．8\％ | $\begin{array}{r}227.0 \\ 2208 \\ \hline\end{array}$ | ${ }_{2288}^{228.3}$ | 1.2 | 0．5\％ |
 | 37．0\％ | 226.8 | 226.8 | 0.0 | 0．0\％ |
 | 38．3\％ | ${ }_{225.4}^{225.7}$ | ${ }_{2}^{226.2}$ | 0.5 0.7 | 0．2\％ |
 | 39．5\％ | ${ }_{\text {225．4 }}^{225}$ | ${ }_{225.3}^{226.1}$ | 0.7 | － 0.3% |
 | 40．7．${ }^{40 \%}$ | ${ }_{225.1}^{225.3}$ | ${ }_{224.8}^{225.3}$ | －0．3 | －0．1\％ |
 | ${ }^{43.2 \%}$ | ${ }_{\text {224．6 }}^{224}$ | ${ }_{223.6}^{224.6}$ | －0．0 | －0．0\％ |
 | 44．4\％ | ${ }^{224.4}$ | ${ }_{223}^{223.5}$ | －0．9 | － |
 | 4．9．9\％ | ${ }_{223.1}^{223.3}$ | ${ }_{222.3}^{223.1}$ | －0．7 | －0．3\％ |
 | 48．19\％ | 220.9 2198 | ${ }_{221.8}^{2217}$ | 0.9 18 | 0．4\％ |
 | 49．4\％ | 219.8 | 22.17 | 1.8 | 0．8\％ |
 | 50．1．9\％ | ${ }_{219.5}^{219.5}$ | ${ }_{219}^{220.2}$ | 0.7 | 0．3\％ |
 | 53．1\％ | 217.7 2178 | 218.9 2179 | 0.2
 1.2 | 0．5\％ |
 | 54．3\％ | 217.6 | 217.7 | 0.1 | 0．0\％ |
 | 年55．6\％ | ${ }_{2150}^{2157}$ | ${ }_{215}^{215.8}$ | 0.1 | |
 | 56．8\％ | 215.0 214.8 | ${ }_{215.2}^{215.2}$ | 0.2 0.4 | 0．2\％ |
 | 59．3\％ | 214.7 | 215.2 214.9 | 0.4 0.2 | 0．1\％ 0 |
 | 60．5\％ | ${ }_{213.9}^{214.1}$ | ${ }_{214.6}^{214.7}$ | 0.5 0.8 | 0．3\％ 0 |
 | 63．0\％ | 212.8 | 214.1 | 1.3 | 0．6\％ |
 | 64．2\％ | ${ }_{2126}$ | 213.7 | 1.1 | 0．5\％ |
 | 65．4\％ | ${ }_{212.2}^{212.6}$ | ${ }_{213.2}^{213.6}$ | 1.1 1.0 | 0．5\％ |
 | 67．9\％ | 212.2 | 212.9 | 0.7 | 0．3\％ |
 | 69．1\％ | 212.0 | 212.8 | 0.8 | 0．4\％ |
 | 70．4\％ | 210.9 210.8 | ${ }_{212.0}^{212.1}$ | ${ }_{1}^{1.2}$ | 0．6\％ |
 | 72．8\％ | 210.6 | 211.8 | 1.2 | 0．6\％ |
 | 74．1\％ | 210.4 | 211.3 | 0.9 | 0．4\％ |
 | 75．3\％ | ${ }_{2093}^{2099}$ | ${ }_{2092}^{210.7}$ | 0.8 -0.1 | －0．4\％ |
 | 77．8\％ | 209.0 | 20.1 | 0.0 | 0．0\％ |
 | 79．0\％ | 208.5 | 208.7 | 0.2 | 0．1\％ |
 | － | ${ }_{2067}^{207.1}$ | ${ }_{2078}^{2087}$ | ${ }_{1}^{1.6}$ | 0．8\％ 0 |
 | 82．7\％ | 205.8 | 206.7 | 0.8 | 0．4\％ |
 | 84．0\％ | 205.4 | 206.0 | 0.7 | 0．3\％ |
 | | ${ }_{2045}^{205.0}$ | 206.0 2052 | 1.0 0.8 | 0．5\％ |
 | 87，7\％ | 204.1 | 2045 | 0.5 | 0．2\％ |
 | 88．9\％ | 204.0 | 204.0 | 0.0 | 0．0\％ |
 | ${ }_{9}^{90.14 \%}$ | ${ }_{2023}^{202.5}$ | ${ }_{2024}^{203.3}$ | ${ }_{0}^{0.7}$ | － |
 | 92．6\％ | 201.8 | 201.8 | 0.0 | 0．0\％ |
 | ${ }^{93.58 \%}$ | 201.4 | 201.3 | －0．1 | －0．1\％ |
 | ${ }_{9}^{95.1 \%}$ | 200.9 1990 | 200.8 1999 | -0.1
 0.8 | －0．1\％ |
 | 97．5\％ | 197.9 | 197.6 | －0．3 | －0．1\％ |
 | 988．8\％ 100．0\％ | ${ }_{196.3}^{197.3}$ | 197.6 196.2 | ${ }_{0.0}^{0.3}$ | 0．0．0\％ |

 | Percent | March | | | | Aprif | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 W Without | WSIP 2030 With Project | | | Percent | WSIP 2030 Without | WSIP 2030 With Project | Abso | |
 | Exceaance | Monothly EC | Monthy EC | Difference | Difference（\％） | （xceeaanct | ${ }_{\text {Mronthed }}^{\text {Proc }}$ | Monthly EC | Dififerne | Difference $(\%)$ |
 | （\％） | （UuHosicm） | （UnHosicm） | （UnHosicm） | | | UMHOSICM） | UMHOSS（CM） | | |
 | 0．0\％ | 255.8 | 252.8 | －3．0 | －1．2\％ | 0．0\％ | 243.4 | 243.5 | 0.1 | 0．0\％ |
 | 1．2\％ | 252.3 | 252.6 | 0.2 | 0．1\％ | 1．2\％ | 235.9 | 237.4 | 1.4 | |
 | 2．5\％ | 247.4 | 250.3 | 2.9 | 1．2\％ | 2．5\％ | 234.3 | 234.5 | 0.1 | |
 | 3．7\％ | 246.8 | 8.7 | 1.9 | 0．8\％ | 3．7\％ | 232.6 | | 1.7 | |
 | 4．9\％ | 241.5 | 248.6 | 7.1 | 3．0\％ | 4．9\％ | 231.8 | 232 | 0.8 | |
 | 6．2\％ | 241.4 | 240.6 | －0．9 | －0．4\％ | 6．2\％ | 228.6 | 232.1 | 3.5 | |
 | 7．4\％ | 2393 | 239.9 | 0.6 | 0．3\％ | 7．4\％ | 228.3 | 229.8 | 1.5 | 0．7\％ |
 | 8．6\％ | 236.2 | 7．3 | 1.1 | 0．5\％ | 8．6\％ | 226.8 | 229.0 | 2.2 | 1．0\％ |
 | 9．9\％ | 235.8 | 237.2 | 1.4 | 0．6\％ | 9．9\％ | 226.4 | 227.1 | 0.7 | 0．3\％ |
 | 11．1\％ | 235.2 | 236.1 | 0.9 | 0．4\％ | 11．1\％ | 224.2 | 225.4 | 1.1 | 0.5 |
 | 12．3\％ | 235.0 | 233.6 | －1．4 | －0．6\％ | 12．3\％ | 222.6 | 225.0 | 2.4 | 1.19 |
 | 13．6\％ | 234.3 | 233.3 | －1．0 | －0．4\％ | 13．6\％ | 220.2 | 223.9 | 3.7 | 1.78 |
 | 14．8\％ | 233.3 | 232.4 | －0．9 | －0．4\％ | 14．8\％ | 219.9 | 223.0 | 3.1 | 1.46 |
 | － 16.0% | ${ }_{20.7}^{230.7}$ | ${ }_{231.5}^{239}$ | 0.8 | 0．3\％ | 16．0\％ | 218.6 | 221.5 | 2.9 | ${ }^{1.3 \% \%}$ |
 | 18．5\％ | 229.1 | 230.0 | 0.9 | 0．4\％ | 18．5\％ | 214.3 | 221.4 | 7.1 | 3．3\％ |
 | 19．8\％ | 227.6 | 229.8 | 2.1 | 0．9\％ | 19．8\％ | 212.5 | 218.2 | 5.7 | 2．7\％ |
 | 21．0\％ | 227.6 | 229.1 | 1.6 | 0．7\％ | 21．0\％ | 212.1 | 215.1 | 3.0 | 1．4\％ |
 | 22．2\％ | 227.5 | 229.1 | 1.6 | 0．7\％ | 22．2\％ | 211.5 | 213.7 | 2.2 | 1．1\％ |
 | 23．5\％ | 227．2 | ${ }_{2}^{227.7}$ | 0.5 | 0．2\％ | 23．5\％ | 211.0 | 212.5 | 1.5 | 0.7% |
 | 24．7\％ | 224.5 | 225.0 | 0.5 | 0．2\％ | 24．7\％ | 210.0 | 211.4 | 1.4 | 0．7\％ |
 | ${ }^{25.7 .2 \%}$ | ${ }_{2229.9}^{223.6}$ | ${ }_{224}^{2245}$ | 0.9 | 0．4\％ | 25．9\％ | 20.9 | 210.7 | 0.8 | 0．4\％ |
 | 28．4\％ | 219.9 | 220.8 | 0.9 | 0．4\％ | 28．4\％ | 208.9 | 210.0 | 1.1 | 0．5\％ |
 | 29．6\％ | 219.8 | 219.8 | 0.1 | 0．0\％ | 29．6\％ | 208.8 | 209.2 | 0.4 | 0．2\％ |
 | 30．9\％ | ${ }_{2179}^{2193}$ | 219.4 | 0.1 | 0．1\％ | 30．9\％ | 208.6 | 209.0 | 0.5 | 0．2\％ |
 | 32．1\％ | 217.8 | 219.2 | 1.4 | 0．6\％ | 32．1\％ | 208.5 | 208.5 | 0.0 | 0．0\％ |
 | 33．3\％ | 217.3 | 218.5 | 1.2 | 0．5\％ | 33．3\％ | 207.8 | 208.3 | 0.5 | 0．3\％ |
 | 退34．6\％ | 27.2 | 217.7 | 0.5 | 0．2\％ | 34．6\％ | 207.7 | 208.0 | 0.3 | 0．2\％ |
 | 35．0\％ | ${ }_{216.2}^{216.8}$ | 211.9 | 0.7 | 0．3\％ | 357．\％\％ | ${ }_{207.2}^{207.3}$ | ${ }_{207.7}^{20.0}$ | 0.5 | 0．2\％ |
 | 38．3\％ | 215.5 | 216.9 | 1.4 | 0．6\％ | 38．3\％ | 206.9 | 207.5 | 0.7 | 0．3\％ |
 | 39．5\％ | 214.9 | 216.6 | 1.7 | 0．8\％ | 39．5\％ | 206.7 | 207.3 | 0.6 | 0．3\％ |
 | 40．7\％ | ${ }_{214.6}^{214.6}$ | ${ }_{216.6}^{216.6}$ | 2.0 | 0．9\％ | 40．7\％ | 20.4 | 207．1 | 0.8 | 0．4\％ |
 | 42．0\％ | 214.3 | ${ }^{216.3}$ | 1.9 | 0．9\％ | 42．0\％ | 206.2 | 206.7 | 0.6 | 0．3\％ |
 | 43．2\％ | ${ }^{213.6}$ | ${ }_{2153}^{216.2}$ | ${ }_{28}^{2.7}$ | ${ }^{1.2 \%}$ | 43．2\％ | 2059 | ${ }_{206.6}^{200.6}$ | 0.7 | 0．3\％ |
 | ${ }^{44.5 \%}$ | | | ${ }^{2.8}$ | 1．3\％ | 44．4\％ | 205.7 | 206.2 | 0.5 | 0．2\％ |
 | 45．9\％ | ${ }_{211.9}^{212.9}$ | ${ }_{213.5}^{215.2}$ | 1.6 | 0．7\％ | 45．9\％ | ${ }_{205.3}^{2057}$ | ${ }_{206.0}^{200.1}$ | 0.7 | 0．3\％ |
 | 48．1\％ | 211.8 | 212.8 | 1.0 | 0．5\％ | 48．1\％ | 204.9 | 205.8 | 0.8 | 0．4\％ |
 | 49．4\％ | 211.6 | 212.5 | 1.0 | 0．5\％ | 49．4\％ | 204.7 | 205.7 | 1.0 | 0．5\％ |
 | 50．6\％ | 211.5 211.5 | ${ }_{21212}^{212.3}$ | 0.8 | 0．4\％ | 50．6\％ | 204.2 | ${ }_{205}^{2055}$ | 1.2 | 0．6\％ |
 | 51．9\％ | 211.1 | 212.2 | 1.1 | 0．5\％ | 51．9\％ | 204.1 | 205.0 | 0.8 | 0．4\％ |
 | 53．1\％ | 210.9 | 211.4 | 0.4 | 0．2\％ | 53．1\％ | 204.1 | 204.9 | 0.8 | 0．4\％ |
 | 54．6\％ | 209.5 | 210.6 | 1.1 | 0．5\％ | 54．3\％ | ${ }^{202.8}$ | 203.4 | 0.6 | 0．3\％ |
 | 56．8\％ | ${ }_{209.2}^{209.2}$ | 209.9 | 0.7 | 0．3\％ | 56．8\％ | 201.6 | ${ }_{201.9}^{20.9}$ | 0.4 | 0．2\％ |
 | 58．0\％ | 208.5 | 209.8 | 1.3 | 0．6\％ | 58．0\％ | 201.2 | 201.8 | 0.6 | 0．3\％ |
 | 59．3\％ | 208.5 | 209.2 | 0.7 | 0．3\％ | 59．3\％ | 201.1 | 201.6 | 0.5 | 0．2\％ |
 | 60．5\％ | ${ }_{2085}^{208.5}$ | 208．5 | 0.0 | 0．0\％ | ${ }^{60.5 \%}$ | 201.0 | 201.4 | 0.5 | 0．2\％ |
 | 61．7\％ | 208.1 | 208.3 | 0.2 | 0．1\％ | 61．7\％ | 200.7 | 201.1 | 0.4 | 0．2\％ |
 | 63．0\％ | ${ }_{2073}^{2073}$ | 207．5 | 0．2 | 0．1\％ | 63．0\％ | ${ }^{200.7}$ | 200.9 | 0.2 | 0．1\％ |
 | 64.2% 65.4% | 207．2 | 2069 | －0．3 | －0．1\％ | 64．2\％ | 199.8 | 200.8 | 1.0 | 0．5\％ |
 | ${ }^{65.7 \%}$ | ${ }_{205.7}^{205.9}$ | ${ }_{206.1}^{200.2}$ | ${ }_{0.5}^{0.3}$ | 0．2\％ | ${ }_{66.1 \%}^{65.4 \%}$ | 1999.6 1996 | ${ }_{200.4}^{200.5}$ | ${ }_{0}^{0.7}$ | － 0.4% |
 | 67．9\％ | 205.6 | 206.0 | 0.4 | 0．2\％ | 67．9\％ | 199.2 | 199.9 | 0.7 | 0．4\％ |
 | 69．1\％ | 205.3 | 205.9 | 0.6 | 0．3\％ | 69．1\％ | 198.9 | 199.5 | 0.6 | 0．3\％ |
 | 70．4\％ | 205.1 | 2048 | －0．2 | －0．1\％ | 70．4\％ | 198.5 1985 | 199.1 | 0．6 | 0．3\％ |
 | 71．6\％ | 205.0 | 204.8 | －0．2 | －0．1\％ | 71．6\％ | 198.5 | 198.7 | 0.2 | 0．1\％ |
 | －72．8\％ | 20.0 | ${ }_{2048}^{2048}$ | －0．2 | －0．1\％ | 72．8\％ | 198.3 1982 | 198.4 | ${ }_{0}^{0.1}$ | 0．0\％ |
 | 74．1\％ | 204.1 | 204.7 | ${ }^{0.6}$ | 0．3\％ | 74．1\％ | 198.2 | 198.3 | ${ }^{0.1}$ | 0．1\％ |
 | －75．3\％ | 203.0 | ${ }_{204}^{204.7}$ | 1.6 13 13 | 0．8\％ | 75．3\％ | 198.1 1979 | 197.9 197.4 | －0．1 | －0．1\％ |
 | 76．5\％ | 202.9 | 204.1 | ${ }_{1}^{1.3}$ | 0．6\％ | 76．5\％ | 197.9 | 197.4 | －0．5 | －0．3\％ |
 | 77.8% 790% | 202.5 2024 | ${ }_{203.3}^{203.8}$ | ${ }^{1.3}$ | 0．6\％ | 77．8\％ | 197.5 197.4 | 197.4 1973 | －0．1 | |
 | 79．0\％ 80.2% | 202.4 202.2 | ${ }_{203.1}^{203.3}$ | 0.8 | 0．4\％ 0 | 89．0\％ | 197.4 | 197．3 | 0.0 | 0．0\％ |
 | 81．5\％ | ${ }_{202.2}^{202.2}$ | ${ }_{203.0}^{203.1}$ | 0.8 | 0．4\％ | 80．1．2\％ | ${ }_{197.3}^{197.3}$ | ${ }_{197.1}^{197.3}$ | －0．2 | －0．1\％ |
 | 82．7\％ | 202.0 | 202.5 | 0.5 | 0．2\％ | 82．7\％ | 196.9 | 197.0 | 0.0 | 0．0\％ |
 | 84．0\％ | 201.6 | 202.0 | 0.4 | 0．2\％ | 84．0\％ | 196.8 | 196.6 | －0．2 | －0．1\％ |
 | 85．2\％ | 201.6 2015 | ${ }_{2015}^{2019}$ | ${ }^{0.3}$ | 0．2\％ | 85．2\％ | 196．2 | 199．6 | ${ }^{0.3}$ | 0．2\％ |
 | ${ }^{86.4 \%} 8$ | ${ }_{201.5}^{201.5}$ | ${ }_{201.4}^{201.5}$ | ${ }_{0}^{0.0}$ | 0．0\％ | ${ }^{86.4 \%} 8$ | 195.9 195.5 | 199.8 195.4 | －0．1 | ${ }^{-0.1 \%}$ |
 | 88．9\％ | 201.3 | 200.8 | －0．5 | －0．3\％ | 88．9\％ | 195.4 | 195.3 | －0．1 | －0．1\％ |
 | 90．1\％ | 200.4 | 200.2 | －0．1 | －0．1\％ | 90．1\％ | 195.3 | 195.3 | 0.0 | 0．0\％ |
 | 91．4\％ | 199.7 | 199.7 | 0.0 | 0．0\％ | 91．4\％ | 194.7 | 195.0 | 0.3 | 0．1\％ |
 | 92．6\％ | 199.6 1983 | 199．6 | －0．1 | 0．0\％ | 92．6\％ | 194.6 1943 | 194.6 194.4 | 0.0 | 0．0\％ |
 | ${ }_{9} 93.1 \%$ | 198.3 196.9 | 199.8 196.6 | －1．4 | ${ }^{-0.7 \%}$ | ${ }^{93.85 \%}$ | 194.3 194.3 | 194.4 194.1 | 0.0 0.0 | －0．1\％ |
 | 96．3\％ | 196.4 | 196.5 | 0.1 | 0．1\％ | 96．3\％ | 194.3 | 193.9 | －0．4 | －0．2\％ |
 | 97．5\％ | 196.1 | 196.4 | ${ }^{0.3}$ | 0．2\％ | 97．5\％ | 193.5 | 1933 | －0．2 | －0．1\％ |
 | 98．8\％ | 195.2 1939 | 195.4 193.9 | 0.2 | － | 98．8\％ 1000% | 193.0 1900 | 192.7 1911 | $\begin{array}{r}-0.3 \\ \hline 11\end{array}$ | －0．2\％ |

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[b]{4}{*}{$$
 \begin{aligned}
 & \text { Percent } \\
 & \text { Exceedance } \\
 & \text { Probability }
 \end{aligned}
 $$} \& \multicolumn{3}{|c|}{May} \& \multirow[b]{4}{*}{$$
 \begin{gathered}
 \text { Relative } \\
 \text { Difference (\%) }
 \end{gathered}
 $$}

 \hline \& \& WSIP 2030 With Project \& \multirow[t]{3}{*}{$$
 \begin{gathered}
 \text { Absolute } \\
 \text { cifference } \\
 \text { (uMHOSCCM) }
 \end{gathered}
 $$} \&

 \hline \& Monthly EC \& Monthy EC \& \&

 \hline \& （UMHOSSCM） \& （UMHOSSCM） \& \&

 \hline 0．0\％ \& 253.7 \& 255.0 \& 1.3 \& 0．5\％

 \hline 1．2\％ \& 240.2 \& 245.0 \& 4.8 \& 2．0\％

 \hline 2．5\％ \& 235.5 \& 238.5 \& 3.0 \& 1．3\％

 \hline 3．7\％ \& 227.1 \& 232.4 \& 5.3 \& 2．3\％

 \hline 4．9\％ \& 225.0 \& 225.1 \& 0.1 \& 0．0\％

 \hline 6．2\％ \& 222.6 \& 223.7 \& 1.0 \& 0．5\％

 \hline 7．4\％ \& 219.6 \& 219.6 \& 0.0 \& 0．0\％

 \hline 8．6\％ \& 218.5 \& 219.0 \& 0.5 \& 0．2\％

 \hline 9．9\％ \& 218.5 \& 218.6 \& 0.1 \& 0．1\％

 \hline 11．19\％ \& 214.7 \& 214.7 \& 0.0 \& 0．0\％

 \hline 12．3\％ \& 213.8 \& 213.3 \& －0．6 \& －0．3\％

 \hline 13．6\％ \& 2129 \& 212.5 \& －0．4 \& －0．2\％

 \hline 14．8\％ \& 212.1 \& 210.4 \& -1.7 \& －0．8\％

 \hline 117．0\％ \& 209.4 \& 209.5 \& 0.1 \& 0．0\％

 \hline 17．3\％ \& 206.9 \& 208.5 \& 1.6 \& 0．8\％

 \hline 18．5\％ \& 206.8 \& 207.0 \& 0.2 \& 0．1\％

 \hline 19．8\％ \& 206.2 \& 20.8 \& 0.5 \& 0．3\％

 \hline 21．0\％ \& 205.7 \& 2063 \& 0.6 \& 0．3\％

 \hline 22．5\％ \& ${ }_{2055}^{2056}$ \& 20.8 \& 0.2 \& 0．1\％

 \hline ${ }^{234.5 \%}$ \& ${ }_{203.7}^{205.5}$ \& ${ }_{203.2}^{205.5}$ \& －0．5 \& －0．0\％

 \hline 25．9\％ \& 2027 \& 202.8 \& 0.1 \& 0．1\％

 \hline 27．2\％ \& 2020 \& 202.4 \& 0.4 \& 0．2\％

 \hline 28．4\％ \& 201.8 \& 202.0 \& 0.1 \& 0．1\％

 \hline 29．6\％ \& 201.8 \& 201.4 \& －0．4 \& －0．2\％

 \hline 30．9\％ \& 201.8 \& 201.3 \& －0．5 \& －0．2\％

 \hline 32．1\％ \& 201.3 \& 200.8 \& －0．6 \& －0．3\％

 \hline 33．3\％ \& 200.1 \& 200.0 \& －0．1 \& 0．0\％

 \hline 335．8\％ \& 199.8
 1989 \& 199.9 \& 0． 2 \& 0．1\％

 \hline 337．0\％ \& 198.9
 198.4 \& 1999.4
 199.2 \& 0.5
 0.8 \& 0．4\％

 \hline 38．3\％ \& 198.4 \& 198.2 \& －0．1 \& －0．1\％

 \hline 39．5\％ \& 197.8 \& 197.9 \& 0.0 \& 0．0\％

 \hline 40．7\％ \& 197.7 \& 197.6 \& 0.0 \& 0．0\％

 \hline 42．0\％ \& 197．6 \& 197.4 \& －0．2 \& －0．1\％

 \hline 43．2\％ \& 197.3
 1973 \& 197．3 \& 0.0 \& 0．0\％

 \hline 44．4\％ \& 197.3 \& 197.2 \& 0.0 \& 0．0\％

 \hline \& 197.1
 1970 \& 197.1
 1970 \& 0.0 \& 0．0\％

 \hline 46．9\％ \& 197.0
 196.8 \& 197.0
 196.5 \& 0.0
 -0.4 \& －0．0\％

 \hline 49．4\％ \& 196.4 \& 196.4 \& 0.0 \& 0．0\％

 \hline 50．6\％ \& ${ }^{196.3}$ \& 195.9 \& －0．5 \& －0．2\％

 \hline 51．9\％ \& 196.3 \& 195.6 \& －0．6 \& －0．3\％

 \hline 53．1\％ \& 196.1 \& 195.6 \& －0．5 \& －0．2\％

 \hline 54．3\％ \& 195.8 \& ${ }^{1956}$ \& －0．2 \& －0．1\％

 \hline 年5．6\％\％ \& 195.6
 1956 \& $\begin{array}{r}195.6 \\ 1955 \\ \hline\end{array}$ \& －0．1 \& －0．0\％

 \hline 58．0\％ \& 195.3 \& 195.4 \& 0.1 \& 0．0\％

 \hline 59．3\％ \& 195.1 \& 195.2 \& 0.1 \& 0．1\％

 \hline 60．5\％ \& 194.9
 1949 \& 195.1
 1950 \& ${ }_{0}^{0.2}$ \& － 0.1%

 \hline 63．0\％ \& 194.7 \& 194.8 \& 0.1 \& 0．1\％

 \hline 64．2\％ \& 194.5 \& 194.5 \& 0.0 \& 0．0\％

 \hline 66．7\％ \& 194.5
 194.4 \& 194.4
 194.2 \& －0．1 \& －0．0\％

 \hline 67．9\％ \& 194.4 \& 194.1 \& －0．2 \& －0．1\％

 \hline 69．1\％ \& 194.3 \& 194.1 \& －0．2 \& －0．1\％

 \hline 70．4\％ \& 194.1 \& 194.1 \& 0.0 \& 0．0\％

 \hline 71．6\％ \& 194.1 \& 194.1 \& 0.0 \& 0．0\％

 \hline － 72.8% \& 194.0
 1932 \& 193.9

 1936 \& －0．1 \& －0．1\％

 \hline 75．3\％ \& 193.2 \& 193.3 \& 0.1 \& 0．1\％

 \hline 76．5\％ \& 193.0 \& 193.2 \& 0.3 \& 0．1\％

 \hline 77．8\％ \& 192.9 \& 192.9 \& 0.1 \& 0．0\％

 \hline 79．0\％ \& 192.8 \& 192.9 \& 0.0 \& 0．0\％

 \hline ${ }_{8}^{80.5 \%}$ \& 192.4
 1924 \& 192.7
 1924 \& ${ }_{0}^{0.3}$ \& －

 \hline 82．7\％ \& 192.3 \& 192.3 \& 0.0 \& 0．0\％

 \hline 84．0\％ \& 192.3 \& 192.3 \& 0.0 \& 0．0\％

 \hline 85．2\％ \& 192.1 \& 192.2 \& 0.1 \& 0．1\％

 \hline 86．4\％ \& 192.1 \& 192.0 \& －0．1 \& －0．1\％

 \hline 888．7\％ \& ${ }_{1916}^{191.6}$ \& 192.0
 1919 \& ${ }^{0.4}$ \& － 0.2%

 \hline 90．1\％ \& 191.3 \& 191.5 \& 0.2 \& 0．1\％

 \hline 91．4\％ \& 190.9 \& 191.5 \& 0.6 \& 0．3\％

 \hline － 92.26% \& 190.9
 190.7 \& 191.0
 190.9 \& 0.1
 0.2 \& － 0.0%

 \hline 95．1\％ \& 190.1 \& 190.4 \& 0.3 \& 0．2\％

 \hline 96．3\％ \& 189.8 \& 190.1 \& 0.3 \& 0．2\％

 \hline 97．5\％ \& 189.5 \& 189.9 \& 0.4 \& 0．2\％

 \hline －98．8\％ \& 188.2
 186.0 \& 186.9
 186.4 \& －1．4 \& ${ }^{-0.7 \%}$

 \hline
 \end{tabular}

 Table SQ-28-b

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {WSIP }}$ 2030 Without | WSIP 2030 With Project | Absolute | |
 | | Monthly EC | Monthly EC | (ifterence | ference (\%) |
 | \% | (0minoscm) | mosin | | |
 | 0.0\% | 235.8 | 228.9 | -6.9 | -2.9\% |
 | 2.5\% | ${ }_{222.2}^{2301}$ | ${ }_{221.2}^{222.2}$ | -1.0 | -0.5\% |
 | 3.7\% | 220.9 | 217.9 | -3.0 | -1.4\% |
 | 4.9\% | 218.6 | 217.1 | -1.5 | -0.7\% |
 | 7.4\% | ${ }_{213.1}^{216.1}$ | ${ }_{21214.8}^{214.6}$ | -1.5 -0.3 | ${ }^{-0.7 \%}$ |
 | 8.6\% | 208.8 | 208.7 | -0.1 | 0.0\% |
 | 9.9\% | 205.2 | 206.1 | 0.9 | 0.4\% |
 | ${ }^{11.1 \%}$ | 200.3 199.9 | ${ }^{200.8}$ | 4.5 0.4 | ${ }_{\text {2, }}^{\text {2.2\% }}$ |
 | 13.2\% | 198.4 | 198.3 | -0.2 | -0.1\% |
 | 14.8\% | 198.4 | 197.7 | -0.7 | -0.3\% |
 | - 11.0 \% ${ }^{16 \%}$ | ${ }_{197.7}^{197.8}$ | 1997.4 197.3 | -0.4 | ${ }^{-0.2 \%}$ |
 | 18.5\% | 197.4 | 197.0 | -0.4 | -0.2\% |
 | 19.8\% | 197.3 | 197.0 | -0.3 | -0.2\% |
 | ${ }^{2} 2.2 .2 \%$ | 199.3 1959 | 199.3
 1958
 10.8 | -0.1 | 0.0\% |
 | 23.5\% | 195.9 | 195.3 | -0.6 | -0.3\% |
 | 24.7\% | 195.3 | 194.9 | -0.4 | -0.2\% |
 | 25.7.2\% | 195.2 194.9 | 194.9 194.8 | -0.3 | -0.1\% |
 | 28.4\% | 194.8 | 194.7 | -0.1 | 0.0\% |
 | 29.6\% | 194.7 | 194.3 | -0.4 | ${ }^{-0.2 \%}$ |
 | 30.3\% | 1994.6 194.5 | 194.2 194.2 | -0.4 -0.3 | -0.0.2\% |
 | 33.3\% | 194.4 | 194.1 | -0.3 | -0.2\% |
 | 34.6\% | 194.3 | 194.1 | -0.2 | -0.1\% |
 | 年35.8\% | 1994.2 194.1 | 199.1 194.1 | -0.1 0.0 | 0.0\%\% |
 | 38.3\% | 194.0 | 193.7 | -0.3 | -0.2\% |
 | 39.5\% | 194.0 | 193.6 | -0.4 | -0.2\% |
 | ${ }^{40.72 \%}$ | 193.6 193.4 | 193.4 193.2 | -0.2 -0.2 | ${ }^{-0.1 \%}$ |
 | 43.2\% | 193.2 | 193.2 | 0.0 | 0.0\% |
 | | | | | 0.0\% |
 | - $4.5 .7 \%$ | ${ }_{193.1}^{193.1}$ | 193.1 193.0 | 0.0 0.0 | 0.0\% |
 | 48.1\% | 193.0 | 193.0 | -0.1 | 0.0\% |
 | | | | -0.1 | |
 | 51.9\% | 193.0 1929 | 192.8 192.7 | -0.3 | ${ }^{-0.1 \%}$ |
 | 53.1\% | 192.6 | 192.6 | 0.0 | 0.0\% |
 | | 192.4 | 192.4 | | 0.0\% |
 | 56.8\% | ${ }_{192.2}$ | ${ }_{192.1}^{192.2}$ | -0.1 | -0.1\% |
 | 58.0\% | 192.2 | 192.1 | -0.1 | -0.1\% |
 | | 192.2 | 192.0 | -0.2 | -0.1\% |
 | 60.7\% | 192.1 192.1 | ${ }_{192.0}^{192.0}$ | -0.1 | -0.1\% |
 | 63.0\% | 192.1 | 192.0 | -0.1 | -0.1\% |
 | 64.2\% 654. | 192.0 | 191.9 | -0.1 | -0.1\% |
 | ${ }_{6}^{65.7 \%}$ | ${ }_{1919}^{192.9}$ | ${ }_{191.7}$ | -0.2 | -0.1\% |
 | 67.9\% | 191.8 | 191.6 | -0.1 | -0.1\% |
 | 69.1\% | 191.7 | 191.6 | -0.1 | |
 | 71.6\% | 191.7 | ${ }_{191.4}^{191.5}$ | -0.3 | -0.2\% |
 | 72.8\% | 191.7 1916 | 191.4 | -0.3 | -0.1\% |
 | 753.3\% | ${ }^{191.6}$ | 191.4 | -0.3 | -0.1\% |
 | 76.5\% | 191.6 | 191.2 | -0.4 | -0.2\% |
 | 77.8\% | 191.4 | 191.2 | -0.2 | -0.1\% |
 | 79.0\% | ${ }^{191.3}$ | 191.2 | -0.2 | |
 | 81.5\% | 191.2 | 191.1 | -0.1 | ${ }^{-0.1 \%}$ |
 | 82.7% 880% | 191.2 | 191.1 | -0.1 | -0.1\% |
 | 85.2\% | 19.1 | 191.0 | -0.1 | |
 | 80.4\% | 190.7 | ${ }_{190.9}^{190.9}$ | 0.2 | 0.1\% |
 | 877\% | 190.7 | 190.7 | 0.0 | 0.0\% |
 | ${ }^{80.1 \%}$ | 190.6 | 190.6 | 0.0 | 0.0\% |
 | 91.4\% | 190.1 | 190.1 | 0.0 | 0.0\% |
 | - 92.6% | 190.0 1894 | 189.9 | -0.1 | -0.1\% |
 | 95.1\% | ${ }_{189.1}^{189.4}$ | ${ }_{189.1}^{189.6}$ | 0.2 0.0 | 0.0\% |
 | 96.3\% | 189.0 | 188.9 | 0.0 | 0.0\% |
 | -97.5\% ${ }_{\text {988\% }}$ | $\begin{array}{r}188.6 \\ \hline 1879\end{array}$ | ${ }_{188.7}^{1887}$ | 0.0 | 0.0\%\% |
 | 100.0\% | 186.9 | 186.9 | ${ }_{0}^{0.1}$ | 0.0\% |

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | Juy | | | | August | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Wuthout | WSIP 2030 With Project | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOSICMM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabability } \end{gathered}$ | | Wsil 2 230 With Project
 Monthly | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOS/CM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | | Monothly EC | Monthy EC | | | | | | | |
 | (\%) | (CM) | HOSCM | | | $\underset{\substack{(\%)_{0} \\ 00_{2}}}{ }$ | | | | |
 | 0.0\% | 210.6 | 207.5 | -3.1 | -1.5\% | 0.0\% | 200.9 | 201.9 | 1.0 | 0.5\% |
 | 1.2\% | 207.5 | 205.4 | -2.0 | -1.0\% | 1.2\% | 199.9 | 199.7 | -0.1 | |
 | 2.5\% | 205.8 | 205.0 | -0.8 | -0.4\% | 2.5\% | 199 | 199.5 | .0 | |
 | 3.7\% | 205.5 | 202.5 | -3.0 | -1.4\% | 3.7\% | 199 | 1987 | -0.2 | |
 | 4.9\% | 202.5 | 202.3 | -0.1 | -0.1\% | 4.9\% | 198.8 | 197.9 | -0.9 | |
 | 6.2\% | 202.5 | 202.2 | -0.3 | -0.1\% | 6.2\% | 198 | 197.6 | -1.1 | |
 | 7.4\% | ${ }^{202.3}$ | 20.8 | -1.5 | -0.8\% | 7.4\% | 198.4 | 197 | 0.9 | |
 | 8.6\% | 202.1 | 199.2 | -2.9 | -1.4\% | 8.6\% | 198.1 | 196.7 | -1.5 | |
 | 9.9\% | 201.0 | 198.1 | -2.9 | -1.4\% | 9.9\% | 197.1 | 196.2 | -0.8 | |
 | 11.1\% | 200.8 | 197.3 | -3.5 | -1.7\% | 11.1\% | 196.5 | 196.1 | -0.4 | |
 | 12.3\% | 200.2 | 196.6 | -3.6 | -1.8\% | 12.3\% | 196.4 | 195.9 | 0.5 | |
 | 13.6\% | 196.0 | 195.6 | -0.5 | -0.2\% | 13.6\% | 195.5 | 195.7 | 0.2 | 0.1\% |
 | 14.8\% | 192.0 | 191.5 | -0.5 | -0.3\% | 14.8\% | 190.7 | 190.0 | 0.7 | |
 | 16.0\% | 191.9 | 191.4 | -0.5 | -0.2\% | 16.0\% | 190.7 | 190.0 | -0.7 | -0.4 |
 | 17.3\% | 191.6 | 191.3 | -0.3 | -0.2\% | 17.3\% | 190.6 | 189.7 | -0.9 | -0.5\% |
 | 18.5\% | 191.5 | 191.1 | -0.4 | -0.2\% | 18.5\% | 190.6 | 189.7 | -0.9 | -0.5 |
 | 19.8\% | 191.4 | 191.1 | -0.3 | -0.2\% | 19.8\% | 190.2 | 189.6 | -0.6 | -0.3\% |
 | 21.0\% | 191.4 | 190.7 | -0.6 | -0.3\% | 21.0\% | 190.1 | 189.4 | -0.8 | -0.4 |
 | 22.2\% | 191.2 | 190.7 | -0.6 | -0.3\% | 22.2\% | 190.0 | 189.4 | -0.6 | -0.3\% |
 | 23.5\% | 191.2 | 190.5 | -0.7 | -0.4\% | ${ }^{23.5 \%}$ | 189.9 1897 | 189.3 | -0.6 | -0.3\% |
 | 25.9\% | 190.7 | 190.4 | -0.3 | -0.2\% | 25.9\% | 1897 | 189.1 | -0.5 | -0.3\% |
 | 27.2\% | 190.6 | 190.3 | -0.3 | -0.2\% | 27.2\% | 189.4 | 189.1 | -0.2 | -0.1\% |
 | 28.4\% | 190.3 | 190.2 | -0.1 | 0.0\% | 28.4\% | 189.2 | 189.1 | -0.2 | -0.1\% |
 | 29.6\% | 190.3 | 190.2 | -0.1 | 0.0\% | 29.6\% | 189.2 | 189.1 | -0.1 | -0.1\% |
 | 30.9\% | 190.2 | 190.1 | -0.2 | -0.1\% | 30.9\% | 189.1 | 189.0 | -0.1 | 0.0\% |
 | 32.1\% ${ }^{3}$ | 190.2 | 190.0 | -0.2 | -0.1\% | 32.1\% | 189.1 | 189.0 | -0.1 | 0.0\% |
 | ${ }_{\text {3 }}$ | 190.2 190.1 | 190.9 189.9 | -0.2 | ${ }^{-0.1 \%}$ | 334.6\% | 189.0 188.9 | 1899.0 189.0 | ${ }_{0}^{0.1}$ | 0.0\% |
 | 35.8\% | 190.1 | 189.9 | -0.2 | -0.1\% | 35.8\% | 188.9 | 188.9 | 0.0 | 0.0\% |
 | 37.0\% | 189.9 | 189.7 | -0.2 | -0.1\% | 37.0\% | 188.7 | 188.7 | 0.0 | 0.0\% |
 | 38.3\% | 189.9 | 189.7 | -0.2 | -0.1\% | 38.3\% | 188.7 | 188.7 | 0.0 | 0.0\% |
 | 39.5\% | 189.8 | 189.6 | -0.2 | -0.1\% | 39.5\% | 188.6 | 188.6 | 0.0 | 0.0\% |
 | 40.7\% | 1897 | 189.6 | -0.1 | -0.1\% | 40.7\% | 188.6 | 188.5 | -0.1 | 0.0\% |
 | 4.4.2\% | 189.7 | 189.5 | -0.1 | -0.1\% | 42.0\% | 188.6 | 188.5 | -0.1 | 0.0\% |
 | 44.4\% | 189.6 189.4 | ${ }_{189.4}^{189.5}$ | 0.0 | 0.0\% | 4.4.4\% | ${ }^{188.5}$ | 188.5 188.4 | -0.1 | 0.0\% |
 | 45.7\% | 189.4 | 189.4 | 0.0 | 0.0\% | 45.7\% | 188.5 | 188.4 | -0.1 | -0.1\% |
 | 46.9\% | 189.4 | 189.4 | 0.0 | 0.0\% | 46.9\% | 188.4 | 188.4 | -0.1 | -0.1\% |
 | 48.1\% | ${ }^{18993}$ | 189.3 | -0.1 | 0.0\% | 48.1\% | 188.4 | 188.3 | -0.1 | -0.1\% |
 | 49.4\% | 1893 | 189.2 | -0.1 | -0.1\% | 49.4\% | 188.4 | 188.2 | -0.1 | -0.1\% |
 | 50.6\% | 189.3 1892 | 189.1 1891 | -0.1 | -0.1\% | | 188.3 1883 | 188.2 1882 | -0.1 | -0.1\% |
 | 53.1\% | 189.2 | 189.1 | -0.1 | 0.0\% | 53.1\% | 188.3 | 188.1 | -0.1 | -0.1\% |
 | 54.3\% | 189.1 | 189.1 | -0.1 | 0.0\% | 54.3\% | 188.2 | 188.1 | -0.1 | -0.1\% |
 | 55.6\% | 189.1 | 189.0 | -0.1 | 0.0\% | 55.6\% | 188.2 188.1 | 188.1 1881 | -0.1 | 0.0\% |
 | 56.8\% | 189.1 | 189.0 | -0.1 | -0.1\% | 56.8\% | 188.1 | 188.1 | 0.0 | 0.0\% |
 | 58.0\% | 189.1 | 189.0 | -0.1 | -0.1\% | 58.0\% | 188.1 | 188.1 | 0.0 | 0.0\% |
 | 59.5\% | 189.0 | 188.9 | -0.1 | -0.1\% | ${ }^{59.3 \%}$ | 188.1 | 188.1 | 0.0 | 0.0\% |
 | 61.7\% | 188.9 | 188.8 | -0.1 | -0.1\% | 61.7\% | 188.1 | ${ }_{188.1}^{18.1}$ | 0.0 | 0.0\% |
 | 63.0\% | 188.9 | 188.6 | -0.2 | -0.1\% | 63.0\% | 188.0 | 188.0 | -0.1 | 0.0\% |
 | 64.2\% | 188.8 | 188.6 | -0.2 | -0.1\% | 64.2\% | 188.0 | 188.0 | -0.1 | 0.0\% |
 | 65.4\% | 188.6 | 188.6
 1885 | 0.0 | 0.0\% | ${ }^{65.4 \%}$ | 188.0 1879 | $\begin{array}{r}1879 \\ \hline 1878\end{array}$ | -0.1 | -0.1\% |
 | 66.7\% | 188.6 | 188.5 | -0.1 | -0.1\% | 66.7\% | 187.9 | 187.8 | -0.1 | -0.1\% |
 | 67.9\% | 188.6 1886 | 188.5
 885 | -0.1 | 0.0\% | 67.9\% | 187.9 1878 | $\begin{array}{r}187.8 \\ 1878 \\ \hline 188\end{array}$ | -0.1 | -0.1\% |
 | 69.1\% | $\begin{array}{r}188.6 \\ 188.6 \\ \hline\end{array}$ | 188.5
 188.5 | -0.1 | 0.0\% | -69.1\% | $\begin{array}{r}187.8 \\ 1878 \\ \hline 188\end{array}$ | 187.8
 1878
 188 | -0.1 | 0.0\% |
 | 71.6\% | 188.5 | 188.5 | 0.0 | 0.0\% | 71.6\% | 187.8 | ${ }_{187.8}^{187.8}$ | -0.1 | 0.0\% |
 | 72.8\% | 188.5 | 188.5 | 0.0 | 0.0\% | 72.8\% | 1878 | 187.7 | -0.1 | 0.0\% |
 | 74.1\% | 188.4 | 188.5 | 0.0 | 0.0\% | 74.1\% | 1878 | 187.7 | -0.1 | 0.0\% |
 | 75.3\% | 188.4
 88.4 | 188.4 1884 | 0.0 | 0.0\% | - 78.3% \% | 187.8
 1878
 1 | 187.7 1877 | -0.1 | 0.0\% |
 | 76.5\% | ${ }^{188.4}$ | 188.4 | 0.0 | 0.0\% | 76.5\% | 187.8 1878 1878 | 187.7 1877 | -0.1 | 0.0\% |
 | 77.8\% | 188.3 1883 | 188.3 1883 | 0.0 | 0.0\% | -77.8\% | $\begin{array}{r}187.8 \\ 1877 \\ \hline 1\end{array}$ | 187.7 1876 | -0.1 | 0.0\% |
 | 79.0\% 80.2% | 1888.3 188.3 | 188.3 188.2 | 0.0 -0.1 | | - 78.0 \% | $\begin{array}{r}187.7 \\ 1877 \\ \hline\end{array}$ | ${ }^{187.6}$ | -0.1 | ${ }_{-0.1 \%}^{-0.1 \%}$ |
 | 81.5\% | 188.3 | 188.2 | -0.1 | 0.0\% | 81.5\% | 187.7 | ${ }_{187.6}^{18.6}$ | -0.1 | -0.1\% |
 | 82.7\% | 188.2 | 188.1 | 0.0 | 0.0\% | | 187.7 | 187.6 | -0.1 | -0.1\% |
 | 84.0\% | 188.1 | 188.1 | -0.1 | 0.0\% | 84.0\% | 187.7 | 187.5 | -0.2 | -0.1\% |
 | 85.2\% | 188.1 188.1 | 188.1 1880 | -0.1 | 0.0\% | 85.2\% | $\begin{array}{r}187.5 \\ \hline 1875 \\ \hline\end{array}$ | 187.5 187.4 | 0.0 | 0.0\% |
 | ${ }_{8}^{86.7 \%}$ | 188.1 188.1 | 188.0 188.0 | -0.1 | 0.0\% | 887.7\% | $\begin{array}{r}187.5 \\ \hline 185 \\ \hline\end{array}$ | $\begin{array}{r}187.4 \\ \hline 1874\end{array}$ | -0.1 | - |
 | 88.9\% | 188.0 | 187.9 | -0.1 | -0.1\% | 88.9\% | 187.2 | 187.3 | 0.1 | 0.0\% |
 | 90.1\% | 188.0 1879 | 187.9 1878 | -0.1 | 0.0\% | ${ }^{90.14 \%}$ | 187.2 1872 | 187.2 1872 | 0.0 | 0.0\% |
 | 914.4\% ${ }_{\text {926\% }}$ | $\begin{array}{r}187.9 \\ 187.8 \\ \hline\end{array}$ | 187.8 1877 | -0.1 | -0.1\% | 992.6\% | ${ }^{187.2}$ | ${ }^{187.2}$ | 0.0 | -0.0\% |
 | 93.8\% | 187.7 | 187.6 | 0.0 | 0.0\% | 93.8\% | 187.2 | 187.1 | 0.0 | 0.0\% |
 | 95.1\% | 187.6 | 187.6 | 0.0 | 0.0\% | 95.1\% | 187.1 | 187.1 | 0.0 | 0.0\% |
 | 96.3\% | ${ }^{187.6}$ | ${ }^{187.6}$ | 0.0 | 0.0\% | 96.3\% | 187.1 | 186.9 | -0.2 | -0.1\% |
 | 97.5\% | ${ }^{187.6}$ | ${ }^{187.6}$ | 0.0 | 0.0\% | 97.5\% | 186.9 1869 | 186.8 1888 | -0.1 | 0.0\% |
 | 98.8\% | 187.4 1873 | 187.4 1872 | 0.0 | 0.0\% | 98.8\% | 186.9 1865 | 186.8 1867 | -0.1 | ${ }^{-0.1 \%}$ |

 | PercentExceedanceProbability | Seplember | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {WSIP }}$ 2033 Without | WSIP 2030 With Project | | Relative |
 | | Monthly EC | Monthly EC | (ifierence | Difference (\%) |
 | 0.0\% | 203.3 | ${ }^{200.6}$ | ${ }^{-2.7}$ | -1.3\% |
 | 1.2\% | 200.5 | 198.6 | | |
 | 2.5\% | 199.5 | 198.2 | 1.3 | 0.6\% |
 | 3.7\% | 199.5 | 198.1 | 1.4 | |
 | 4.9\% | 199.1 | 198.0 | 1.1 | |
 | 6.2\% | 198.8 | 198.0 | 0.8 | |
 | 7.4\% | 198.8 | 197.8 | 0.9 | |
 | 8.6\% | 198.4 | 197.7 | 0.7 | |
 | 9.9\% | 198.0 | 197.5 | -0.5 | |
 | 11.1\% | 198.0 | 197.4 | 0.6 | |
 | 12.3\% | 196.1 | 194.6 | | |
 | 13.6\% | 195.0 | 193.6 | 1.4 | |
 | 14.8\% | 194.7 | 192.2 | 2.5 | |
 | - 16.0% | 193.9 1939 | 191.9 191.7 | -2.0 | -1.0\% |
 | | | | | |
 | 19.8\% | ${ }_{193.6}$ | 190.7 190.1 | -3.5 | |
 | 21.0\% | 193.5 | 190.1 | -3.4 | -1.8\% |
 | 22.2\% | 193.5 | 190.1 | -3.4 | -1.7\% |
 | 23.5\% | 193.4 | 190.1 | -3.4 | 7\% |
 | 24.7\% | 192.5 | 190.0 | -2.5 | |
 | 25.7\% | 191.6 | 190.0 | -1.6 | -0.8\% |
 | 27.2\% | 190.9 | 189.9 | 1.0 | . 5% |
 | - 28.4 .4 \% | 190.4 190.1 | 189.7 1896 | -0.8 -0.5 | -0.0\%\% |
 | 30.9\% | 190.0 | 189.6 | -0.4 | -0.2\% |
 | 32.1\% | 190.0 | 189.5 | -0.5 | -0.3\% |
 | 33.3\% | 190.0 | 189.4 | -0.6 | -0.3\% |
 | 34.6\% | 189.9 | 189.3 | -0.6 | 0.3\% |
 | 35.8\% | 189.6 | ${ }^{189.3}$ | -0.3 | -0.2\% |
 | 37.0\% | 189.5 | 189.3 | -0.3 | 0.1\% |
 | 38.3\% | 189.5 | 189.2 | -0.3 | 0.2\% |
 | 39.5\% | 189.4 | 189.2 | -0.2 | -0.1\% |
 | 40.7\% | 189.4 | 189.1 | -0.2 | -0.1\% |
 | 42.0\% | 189.4 | 189.1 | -0.3 | 0.1\% |
 | 43.2\% | 189.3 | 189.0 | -0.3 | -0.2\% |
 | 44.4\% | 1893 | 189.0 | -0.3 | 0.1\% |
 | 45.7\% | 189.3 | 189.0 | -0.3 | -0.1\% |
 | 46.9\% | 189.3 | 189.0 | -0.3 | -0.1\% |
 | 48.1\% | 189.3 | 189.0 | -0.3 | -0.1\% |
 | 49.4\% | 189.2 | 189.0 | -0.2 | -0.1\% |
 | 50.6\% | 189.1 | 188.9 | -0.2 | -0.1\% |
 | 51.9\% | 189.1 | 188.9 | -0.2 | -0.1\% |
 | 53.1\% | 189.1 | 188.9 | -0.2 | -0.1\% |
 | 54.3\% | 189.1 | 188.8 | -0.3 | -0.1\% |
 | 55.6\% | 189.0 | 188.8 | -0.2 | -0.1\% |
 | 56.8\% | 189.0 | 188.7 | -0.2 | -0.1\% |
 | 58.0\% | 188.9 | 188.7 | -0.2 | -0.1\% |
 | 59.3\% | 188.9 | 188.7 | -0.2 | -0.1\% |
 | 60.5\% | 188.8 | 188.7 | -0.1 | -0.1\% |
 | 61.7\% | 188.8 | 188.7 | 0.1 | 0.1\% |
 | 63.0\% | 188.8 | 188.6 1886 | -0.1 | -0.1\% |
 | 64.2\% | 188.7 | 188.6 | -0.1 | 0.1\% |
 | 65.4\% | 188.7 | 188.6
 185 | -0.1 | -0.1\% |
 | 66.7\% | 188.7 | 188.5 | -0.2 | 0.1\% |
 | 67.9\% | 188.6 | 188.5 | -0.2 | -0.1\% |
 | 69.1\% | 188.6 | 188.4 | -0.2 | 0.1\% |
 | 70.4\% | 188.6 | 188.4 | -0.3 | -0.1\% |
 | 71.6\% | 188.6 | 188.4 | -0.2 | -0.1\% |
 | 72.8\% | 188.5 | ${ }^{188.3}$ | -0.2 | -0.1\% |
 | 74.1\% | 188.5 | 188.3 | -0.1 | 0.1\% |
 | 75.3\% | 188.4 | 188.3 | -0.1 | -0.1\% |
 | 76.5\% | 188.4 | 188.3 | -0.1 | 0.1\% |
 | 77.8\% | 188.4 | 188.3 | -0.1 | -0.1\% |
 | 79.0\% | 188.4 | 188.3 | -0.1 | -0.1\% |
 | 80.2\% | 188.3 | 188.2 | -0.1 | -0.1\% |
 | 81.5\% | 188.2 | 188.2 | 0.0 | 0.0\% |
 | 82.7\% | 188.2 | 188.2 | 0.0 | 0.0\% |
 | 84.0\% | 188.1 | 188.1 | -0.1 | 0.0\% |
 | 85.2\% | 188.1 | 188.0 | 0.2 | -0.1\% |
 | 86.4\% | 188.1 | 187.9 | -0.2 | 0.1\% |
 | 87.7\% | 188.1 | 187.9 | 0.2 | -0.1\% |
 | 88.9\% | 188.1 | 187.8 | -0.3 | -0.1\% |
 | 90.1\% | 188.1 | 187.6 | 0.5 | 0.2\% |
 | 914\% | 187.9 | 187.6 | 0.3 | -0.2\% |
 | 92.6\% | 187.8 | ${ }^{187.5}$ | -0.4 | -0.2\% |
 | 93.8\% | 187.5 | 187.5 | -0.1 | 0.0\% |
 | 95.1\% | 187.5 | 187.4 | 0.1 | 0.0\% |
 | ${ }^{96.3 \%}$ | 187.5 | ${ }^{187.3}$ | -0.1 | -0.1\% |
 | 97.5\% | 187.4 | 187.1 | -0.3 | .1\% |
 | 98.8\% | 187.0 | 186.7 1859 | -0.3 | ${ }^{-0.2 \%}$ |
 | 100.0\% | 185.9 | 185.9 | -0.1 | 0.0\% |

 Figure SQ-29-b
 Old River at Los Vaqueros Intake, Monthly EC

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | Ocrober | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2033 Without | WSIP 2030 With Project | Absolute | Relative |
 | | Monthly EC | Monthly EC | （itiference | Difference（\％） |
 | －0．0\％ | ${ }^{\text {914 }}$ | （UMHASCOM） | －07 | |
 | | 崖． | | ． 7 | －．1\％ |
 | －1．2\％ | 902.1 | 9092 | | |
 | 2．5\％ | ${ }^{895.8}$ | 883.8 | 12.0 | 1．3\％ |
 | 3．7\％\％ | 895.5 8649 | 861．2 | －34．2 | －3．8\％ |
 | 4．9\％ | | | | |
 | 7．4\％ | ${ }_{863.7}^{8630}$ | ${ }_{8}^{852.6}$ | 251 | －1．3\％ |
 | | | | | |
 | 9．9\％\％ | 855.6 851.6 | 834.6 822.5 | ${ }_{-29.1}$ | －${ }_{\text {－}}^{\text {－2．4\％}}$ |
 | 11．1\％ | 838.4 | 819.4 | －19．1 | －2．3 |
 | 12．3\％ | 838.2 | 818.4 | －19．8 | |
 | 13．6\％ | 834.3 | 805.4 | －28．9 | －3．5\％ |
 | 14．8\％ | 814.5 | 797.0 | 17.5 | －2．2\％ |
 | 16．0\％ | 811.7 | 790.9 | 20.8 | 析 |
 | 17．3\％ | 811.7 | 782 | | |
 | 18．5\％ | 810.1 | 776.5 | －33．6 | －4．1\％ |
 | 19．8\％ | 802.7 | 774.0 | | |
 | 21．0\％ | 799.1 | 773.9 | －25．2 | |
 | 22．2\％ | 797.2 | 765.6 | －31．5 | －4．0\％ |
 | 23．5\％ | 796.4 | 764.1 | －32．3 | 4．1\％ |
 | 24．7\％ | 791.4 | 760 | | |
 | 25．9\％ | 788.3 | 749.0 | －39．4 | 5．0\％ |
 | 27．2\％ | 787.9 | 745.8 | －42．1 | |
 | 28．4\％ | 785.8 | 744.3 | －41．5 | 仡 |
 | 29．6\％ | 774.7 | 743.2 | －31．5 | 4．1\％ |
 | 30．9\％ | 773.7 | 738.5 | －35．2 | －4．7\％ |
 | 32．1\％ | 762.9 | 734.8 | －28．1 | |
 | 33．3\％ | 748.4 | 728.8 | －19．6 | 2．6\％ |
 | 34．6\％ | 747.1 | 725.6 | －21．5 | |
 | 35．8\％ | 747.0 | 722.3 | －24．7 | ．3．3\％ |
 | 37．0\％ | 746.9 | 718.2 | －28．7 | 3．8\％ |
 | 38．3\％ | 745.3 | 716.1 | －29．2 | ${ }^{3} .9$ |
 | 39．5\％ | 741.0 | 714.3 | 26.7 | －3．6\％ |
 | 40．7\％ | 728.0 | 710.9 | －17．1 | 3\％ |
 | 42．0\％ | ${ }^{727.3}$ | 709.0 | －18．3 | 2．5\％ |
 | 43．2\％ | ${ }^{724.2}$ | 703.4 | －20．8 | 2．9\％ |
 | 44．4\％ | ${ }^{720.3}$ | 683.1 | －37．1 | 5．2\％ |
 | 45．7\％ | 717.0 | 678.5 | －38．5 | 5．4\％ |
 | 46．9\％ | 709.4 | 661.2 | －48．1 | 6．8\％ |
 | 48．19\％ | 702.7 | 650.6 | －52．2 | |
 | 4．94\％ | 693.5 | 632.4 | －61．1 | 8．8\％ |
 | 50．6\％ | 683.8 | 619.9 | －63．9 | －9．46 |
 | 51．9\％ | 680.1 | 602.7 | －77．3 | 11．4\％ |
 | 53．1\％ | 676.5 | 581.2 | －95．3 | 14．1\％ |
 | 54．3\％ | 546.1 | 541.7 | －4．4 | 0．8\％ |
 | 年5．5\％ | 345.8 | 330.3 | －15．4 | －4．5\％ |
 | 56．8\％ | 338.2 | 330.1 | －8．1 | 2．4\％ |
 | 年58．0\％ | 331.9 | 329.1 | 2.8 | －0．8\％ |
 | 59．3\％ | ${ }^{325.3}$ | 322.8 | －2．5 | －0．8\％ |
 | 60．5\％ | 318.6 | 316.2 | －2．3 | 0．7\％ |
 | ${ }^{61.7 \%}$ | 318.3 | 315.7 | －2．7 | －0．8\％ |
 | －63．0\％ | 318.2 | 314.7 | －3．5 | －1．1\％ |
 | 64．2\％ | 313.7 | 312.7 | 1.0 | 0．3\％ |
 | －65．4\％ | 313.1 | 312.4 | －0．7 | －0．2\％ |
 | ${ }^{66.7 \%}$ | 310.6 | 309.3 | 1.3 | 0．4\％ |
 | －67．9\％ | 310.4 | 306.5 | －3．9 | －1．3\％ |
 | 69．19\％ | 310.3 | 305.6 | 4.7 | 5\％ |
 | 70．4\％ | 310.2 | 302.7 | 7.5 | －2．4\％ |
 | 71．6\％ | 3093 | 302.3 | 7.1 | 2．3\％ |
 | 72．8\％ | 309.1 | 301.7 | －7．4 | 年\％ |
 | 74．1\％ | 308.8 | 300.4 | 8.3 | 2．7\％ |
 | 75．3\％ | 308.1 | 298.6 | －9．5 | 3．1\％ |
 | 76．5\％ | 307.1 | 296.4 | 10.7 | 3．5\％ |
 | 77．8\％ | 304.9 | 296.0 | －8．9 | －2．9\％ |
 | 79．0\％ | 298.3 | 295.1 | ${ }^{3.3}$ | 1．1\％ |
 | － 80.2% | 298.2 | 292.0 | －6．3 | －2．1\％ |
 | 81．5\％ | 297.1 | 285.9 | 11.2 | 3．8\％ |
 | － 82.7% | 296.4 | 284.6 | －11．8 | －4．0\％ |
 | 84．0\％ | 294.1 | 284.3 | -9.7 | 3．3\％ |
 | 85．2\％ | 292.9 | 283.7 | －9．2 | 3．1\％ |
 | 86．4\％ | 290.8 | 281.5 | －9．3 | 3．2\％ |
 | 877\％ | 290.7 | 281.4 | 9.3 | 3．2\％ |
 | 88．9\％ | 286.8 | ${ }^{280.3}$ | －6．6 | 2．3\％ |
 | 90．1\％ 9 | 283.8 | 276.5 | 7．3 | 2．6\％ |
 | 91．4\％ | ${ }^{282.9}$ | 274.6 | 8.3 | 2．9\％ |
 | 92．6\％ | ${ }^{281.7}$ | 270.6 | －11．1 | 3．9\％ |
 | 93．8\％ | 276.9 | 270.5 | －6．4 | 2．3\％ |
 | 95．1\％ | 276.8 | 268.5 | －8．4 | 3．0\％ |
 | 96．3\％ | 276.6 | ${ }^{265.3}$ | 11.3 | 4．1\％ |
 | 97．5\％ | 258.7 | 255.7 | －3．1 | 1．2\％ |
 | 98．8\％ | ${ }_{2}^{229.9}$ | 229.7 | －0．2 | －0．1\％ |
 | 100．0\％ | 205.4 | 205.1 | －0．3 | －0．2\％ |

 | Probalily of Exceedance | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | $\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probabalily } \end{array} \end{aligned}$ | WSIP 2030 Without | WSIP 2030 With Project | Absolute | | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | WSIP 2030 Without | WSIP 2030 With Project | Absolute | |
 | | ${ }_{\text {Montient }}^{\text {Proiec }}$ | Monthy EC | Sifference | Difference ${ }^{\text {Refate }}$ | | ${ }_{\text {Montiont }}^{\text {Proc }}$ | Monthy EC | Difference | Difference（\％） |
 | （\％） | （UnHosicm） | （UnHosicm） | （UMHOSSCO） | | | UMHosicm） | UMHHOS（CM） | （UMHOSCM） | |
 | 0．0\％ | 1033.0 | 1091.0 | 58.0 | 5．6\％ | 0．0\％ | 1001.6 | 1051.2 | 49.6 | 4．9\％ |
 | 1．2\％ | 1026.5 | 1022.7 | －3．7 | 0．4\％ | 1．2\％ | 982.0 | 988.6 | 6.5 | |
 | 2．5\％ | 980.4 | 979.2 | －1．2 | －0．1\％ | 2．5\％ | 974.9 | 983.1 | 8.2 | |
 | 3．7\％ | 974.1 | 978.3 | 4.2 | 0．4\％ | 3．7\％ | 956.1 | 980.2 | 24.1 | 5\％ |
 | 4．9\％ | 937.8 | 977.1 | 39.4 | 4．2\％ | 4．9\％ | 936.0 | 978.9 | 42.8 | |
 | 6．2\％ | 934.6 | 972.1 | 37.4 | 4．0\％ | 6．2\％ | ${ }_{925.3}$ | 954.5 | 29.2 | 3．2\％ |
 | 7．4\％ | 922.7 | 944.1 | 21.4 | 2.3 | 7．4\％ | 921.7 | 941.3 | 19.6 | |
 | 8．6\％ | 916.2 | 926.7 | 10.5 | 1．2\％ | 8．6\％ | 906.6 | 914.0 | 7.4 | 8\％ |
 | 9．9\％ | 907.7 | 903.4 | －4．3 | ．5\％ | 9．9\％ | 905.8 | 913.9 | 8.1 | 0．9\％ |
 | 11．1\％ | 894.5 | 893.9 | －0．6 | －0．1\％ | 11．1\％ | 876.2 | 910.2 | 33.9 | 3．9\％ |
 | 12．3\％ | 884.2 | 884.1 | －0．1 | 0．0\％ | 12．3\％ | 863.2 | 902.3 | 39.2 | 4．5\％ |
 | 13．6\％ | 882.4 | 851.2 | －31．2 | 3．5\％ | 13．6\％ | 854.7 | 897.1 | 42.4 | 5．0\％ |
 | 14．8\％ | 877.5 | 820.9 | －56．5 | －6．4\％ | 14．8\％ | 852.2 | 881.2 | 29.0 | 3．4\％ |
 | 16．0\％ | 866.5 | 805.5 | －61．0 | －7．0\％ | 16．0\％ | 846.2 | 870.2 | 24.0 | 2.88 |
 | 17．3\％ | 812.8 | 784.8 | 27.9 | －3．4\％ | 17．3\％ | 844.4 | 854.1 | 9.7 | 1．2\％ |
 | 18．5\％ | 802.6 | 774.7 | 27．9 | －3．5\％ | 18．5\％ | 840.2 | 848.8 | 8.7 | 1.0% |
 | 19．8\％ | 795.5 | 764.8 | －30．6 | －3．8\％ | 19．8\％ | 839.0 | 834.9 | －4．1 | －0．5\％ |
 | 21．0\％ | 788.5 | 728.7 | －59．8 | －7．6\％ | 21．0\％ | 815.7 | 824.0 | 8.3 | 1．0\％ |
 | 22．2\％ | 767.0 | 717.6 | －49．4 | －6．4\％ | 22．2\％ | 800.0 | 823.6 | 23.7 | 3．0\％ |
 | 23．5\％ | 744.9 | 705.9 | －39．0 | －5．2\％ | 23．5\％ | 799.7 | 779.2 | －20．5 | －2．6\％ |
 | 24．7\％ | ${ }^{729.7}$ | 688.1 | －41．5 | －5．7\％ | 24．7\％ | 788.9 | 768.5 | －20．4 | －2．6\％ |
 | 25．9\％ | 722.9 | 680.4 | －42．5 | －5．9\％ | 25．9\％ | 785.5 | 751.1 | －34．4 | 4．40 |
 | 27．2\％ | 717.7 | 677.3 | －40．5 | －5．6\％ | 27．2\％ | 770.7 | 734.2 | －36．5 | －4．7\％ |
 | 28．4\％ | 714.6 | 677.2 | －37．4 | －5．2\％ | 28．4\％ | 766.1 | 732.5 | －33．6 | －4．4 |
 | 29．6\％ | 709.7 | 676.7 | －33．0 | －4．7\％ | 29．6\％ | 749.8 | 721.9 | －27．9 | －3．7\％ |
 | 30．9\％ | ${ }^{702.1}$ | 675.1 | －27．0 | －3．8\％ | 30．9\％ | 719.2 | 714.0 | －5．2 | －0．7\％ |
 | 32．1\％ | 701.0 | 673.8 | －27．2 | －3．9\％ | 32．1\％ | 719.2 | 706.7 | －12．4 | －1．7\％ |
 | 33．3\％ | 697.5 | 662.2 | －35．2 | －5．0\％ | 33．3\％ | 699.9 | 666.8 | －33．2 | －4．7\％ |
 | 34．6\％ | 695.5 | 658.7 | －36．7 | －5．3\％ | 34．6\％ | 690.3 | 609.5 | －80．8 | －11．7\％ |
 | 35．8\％ | 694.4 | 648.6 | －45．8 | －6．6\％ | 35．8\％ | 667.9 | 586.2 | －81．7 | －12．2\％ |
 | 37．0\％ | 692.9 | 616.2 | －76．6 | －11．1\％ | 37．0\％ | 666.2 | 579.3 | －86．8 | －13．0\％ |
 | 38．3\％ | 678.8 | 616.0 | －62．7 | －9．2\％ | 38．3\％ | 661.4 | 577.3 | －84．1 | －12．7\％ |
 | 39．5\％ | 678.1 | 613.8 | －64．3 | －9．5\％ | 39．5\％ | 614.1 | 574.0 | －40．1 | －6．5\％ |
 | 40．7\％ | ${ }_{6}^{672.2}$ | ${ }^{6088.6}$ | －63．6 | －9．5\％ | 40．7\％ | 588.9 | 559.8 | －29．2 | －5．0\％ |
 | 42．0\％ | ${ }^{669.3}$ | 607.5 | －61．8 | －9．2\％ | 42．0\％ | 567.1 | 546.3 | －20．8 | －3．7\％ |
 | 43．2\％ | 667.5 | 580.0 | －87．5 | －13．1\％ | 43．2\％ | 534.3 | 545.7 | 11.4 | 2．1\％ |
 | 44．4\％ | 666.5 | 570.5 | －96．1 | －14．4\％ | 44．4\％ | 513.3 | 529.4 | 16.1 | 3．1\％ |
 | 45．7\％ | ${ }^{663.6}$ | 556.7 | －106．8 | －16．1\％ | 45．7\％ | 463.6 | 503.9 | 40.2 | 8．7\％ |
 | 46．9\％ | ${ }^{649.3}$ | 539.7 | －109．6 | －16．9\％ | 46．9\％ | 442.1 | 456.5 | 14.4 | 3．3\％ |
 | 48．1\％ | 649.1 | 509.4 | －139．7 | －21．5\％ | 48．1\％ | 426.4 | 424.5 | －1．9 | －0．4\％ |
 | 49．4\％ | ${ }^{619.0}$ | 503.9 | －115．1 | －18．6\％ | 49．4\％ | 419.6 | 418.3 | －1．3 | －0．3\％ |
 | 50．6\％ | 578.2 | 487.3 | －90．9 | －15．7\％ | 50．6\％ | 382.5 | 399.3 | 16.8 | 4．4\％ |
 | 51．9\％ | 548.7 | 431.9 | －116．8 | －21．3\％ | 51．9\％ | 380.5 | 387.1 | 6.7 | 1．8\％ |
 | 53．19\％ | 423.5 | 421.9 | －1．6 | －0．4\％ | 53．1\％ | 372.8 | 386.8 | 14.0 | 3．8\％ |
 | 54．3\％ | 399.1 | 383.1 | －16．0 | －4．0\％ | 54．3\％ | 365.8 | 370.6 | 4.8 | 1．3\％ |
 | 55．6\％ | ${ }_{321.6}$ | 332.4 | 10.8 | 3．4\％ | 55．6\％ | ${ }^{363.9}$ | ${ }^{368.3}$ | 4.4 | 1．2\％ |
 | 56．8\％ | 319.0 | 320.1 | 1.1 | 0．3\％ | 56．8\％ | 363.7 | 359.1 | 4.5 | －1．2\％ |
 | 58．0\％ | 316.9 | 319.6 | 2.7 | 0．9\％ | 58．0\％ | ${ }^{363.0}$ | 355.4 | －7．6 | －2．1\％ |
 | 59．3\％ | 308.1 | 314.6 | 6.5 | 2．1\％ | 59．3\％ | 359.3 | 345.1 | －14．1 | －3．9\％ |
 | 60．5\％ | 307.9 | 299.9 | －7．9 | －2．6\％ | ${ }^{60.5 \%}$ | 357．4 | 343.9 | －13．5 | －3．8\％ |
 | | 303.2 2973 | ${ }_{295}^{295.8}$ | －7．44 | －－0．6\％ | ${ }^{61.7 \%}$ | ${ }_{3239} 34.9$ | 337．6 | -127 | －3．5\％ |
 | 64．2\％ | 293.3 | 290.5 | －2．8 | －1．0\％ | 64．2\％ | 317.1 | 319.2 | 2.0 | 0．6\％ |
 | 65．4\％ | 292.8 | 286.1 | －6．7 | －2．3\％ | 65．4\％ | 314.7 | 319.0 | 4.2 | 1．3\％ |
 | ${ }^{66.7 \%}$ | ${ }^{287.1}$ | ${ }^{283.6}$ | －3．5 | －1．2\％ | ${ }^{66.7 \%}$ | 310.4 | 316.8 | 6.4 | 2．0\％ |
 | 67．9\％ | 284.5 2837 | 279．8 | －4．7 | －1．6\％ | 67．9\％ | 310.1 | 314.9 | 4.8 | 5\％ |
 | 69．1\％ | 283.7 | 279.5 | －4．2 | －1．5\％ | 69．1\％ | 306.1 | 307.3 | 1.3 | 0．4\％ |
 | 70．4\％ | 282.1 281.7 | ${ }_{275.1}^{278.7}$ | －3．4 | ${ }_{\text {－}}^{\text {－1．3\％}}$ | 70．4\％ | 305.9 305.8 | 306.9 3048 | 1.0 -1.0 | －0．3\％ |
 | 72．8\％ | 2815 | 274.6 | －7．0 | －2．5\％ | 72．8\％ | 305.6 | 304.7 | －0．9 | －0．3\％ |
 | 74．1\％ | 278.4 | 274.1 | －4．3 | －1．5\％ | 74．1\％ | 305.4 | 303.7 | －1．7 | －0．6\％ |
 | 75．3\％ | ${ }_{277.1}^{277.1}$ | 273.8
 2735
 275 | －3．3 | －1．2\％ | 75．3\％ | 304.4 30.5 | 303.3 3019 | －1．1． | －0．4\％ |
 | 76．5\％ | 277.1 | 273.5 | －3．6 | －1．3\％ | 76．5\％ | 302.5 | 301.9 | －0．5 | 0．2\％ |
 | 79．0\％ | ${ }_{275.0}^{27.1}$ | ${ }_{273.0}^{27.1}$ | －2．00 | －0．7\％ | 79．0\％ | 30.4 299.8 | 300.8 | 1.0 | 0．3\％ |
 | 80．2\％ | 274.7 | 270.2 | | －1．7\％ | 80．2\％ | 289.4 | 298.1 | | |
 | 81．5\％ | 272.1 | 269.4 | －2．7 | －1．0\％ | 81．5\％ | 287.9 | 287.2 | －0．7 | －0．2\％ |
 | 827\％ | 272.0 2718 | 268．8 | －3．28 | －1．2\％ | 827\％ | 285.9 | ${ }_{2}^{285.2}$ | －0．7 | －0．3\％ |
 | 84．0\％ | 271.8 | 268.0 | －3．8 | －1．4\％ | 84．0\％ | 285.9 | 283.6 | －2．3 | －0．8\％ |
 | 85．2\％ | ${ }_{2678}^{268.8}$ | ${ }^{266.4}$ | －2．4 | －0．9\％ | 85．2\％ | ${ }_{271.2}^{2812}$ | ${ }_{278}^{278.3}$ | －2．8 | －1．0\％ |
 | 86．4\％ | ${ }^{267.0}$ | 264.1 | －2．8 | －1．1\％ | 86．4\％ | 278.1 | 277.8 | －0．3 | －0．1\％ |
 | 87．7\％ | ${ }_{263.1}^{265.5}$ | ${ }_{2628}^{262.8}$ | －2．7 | －1．0\％ | 877\％\％ | ${ }_{278.1}^{2781}$ | ${ }^{277.1}$ | 1.0 | 0．4\％ |
 | 88．9\％ | 263.1 | ${ }^{260.8}$ | －2．3 | －0．9\％ | 88．9\％ | 274.7 | 276.3 | 1.7 | 0．6\％ |
 | 90．19\％ | 260.8
 2602 | ${ }_{2589}^{260.1}$ | －0．7 | －0．3\％ | 90．1\％ | 2697 | ${ }_{273.3}^{273}$ | 3.7 | 1．4\％ |
 | 914\％ | 260.2 | 258.9 | －1．3 | －0．5\％ | 91．4\％ | ${ }^{263.8}$ | 266.4 | 2.6 | 1．0\％ |
 | 92．6\％ | 257.5
 25.5
 2.8 | ${ }_{254}^{2551}$ | －2．4 | －0．9\％ | 92．6\％ | ${ }_{259.2}^{259.2}$ | 258．4 | －0．8 | －0．3\％ |
 | 93．8\％ | 256.2 | 254.8 | －1．4 | －0．6\％ | 93．8\％ | 256.9 | 254.4 | －2．5 | －1．0\％ |
 | 95．1\％ | ${ }^{248.1}$ | 253.8 | 5.7 | 2．3\％ | 95．1\％ | 254.0 | 252.9 | －1．1 | －0．4\％ |
 | ${ }^{96.75 \%}$ | 2477.3 247.2 | 245.0
 242.8 | －－2．4 | －${ }_{\text {－}}^{\text {－}}$－9\％\％ | ${ }^{96.3 \%}$ | ${ }_{223.6}^{235.5}$ | ${ }_{223.6}^{247.5}$ | 12.1 0.0 | 5．1\％ |
 | 98．8\％ | 246.6 | 235.3 | －11．3 | －4．6\％ | 98．8\％ | 211.5 | 211.4 | －0．1 | 0．1\％ |
 | 100．0\％ | 221.9 | 221.9 | 0.1 | 0．0\％ | 100．0\％ | 200.8 | 201.0 | 0.2 | 0．1\％ |

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | January | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {WSSP }}^{\text {2030 }}$ Proithout | WSIP 2030 With Project | Absolute | |
 | | Monthly EC | Monthly EC | （itiference | Difference（\％） |
 | | （UMHOSSCM） | （UMHOOSCM） | | |
 | 0．0\％ | 1028.4 | 1024.3 | －4．1 | －0．4\％ |
 | 1．2\％ | 970.0 | 1015.6 | 45.6 | 4．7\％ |
 | 2．5\％ | 939.3 | 957.0 | 17.7 | 1．9\％ |
 | 3．7\％ | 911.9 | 927.2 | 15.3 | 1．7\％ |
 | 4．9\％ | 903.9 | 919.2 | 15.2 | 1．7\％ |
 | －6．2\％ | ${ }_{889} 88$ | 909.7 | 20.7 | 2．3\％ |
 | 7．4\％ | 867.6 | 894.4 | 26.8 | 3．1\％ |
 | 8．6\％ | 862.0 | 868.8 | 6.7 | 0．8\％ |
 | 9．9\％ | 833.0 | 814.5 | －18．5 | －2．2\％ |
 | 11．19\％ | 826.7 | 761.8 | －64．9 | －7．9\％ |
 | 12．3\％ | 821.4 | 729.9 | －91．5 | －11．1\％ |
 | 13．6\％ | 820.0 | 726.9 | －93．0 | －11．3\％ |
 | 14．8\％ | 813.9 | 724.9 | －89．0 | －10．9\％ |
 | －16．0\％ | 811.9 | ${ }_{723} 72.4$ | －88．5 | －10．9\％ |
 | 17．3\％ | 811.6 | 711.3 | －100．3 | －12．4\％ |
 | 18．5\％ | 782.9 | 681.0 | －101．9 | －13．0\％ |
 | （19．8\％ | ${ }_{750.5}^{772.3}$ | 679.8 678.3 | －92．4 | －12．0\％ |
 | ${ }_{2}^{21.2 .2 \%}$ | ${ }_{725.3}^{750.5}$ | 678.3 661.5 | -72.2 -63.8 | ${ }_{-8.8 \%}^{-9.8 \%}$ |
 | 23．5\％ | 690.6 | ${ }_{651.6}$ | － $\begin{array}{r}\text {－39．8 } \\ -3.0\end{array}$ | ${ }_{\text {－}}^{\text {－}}$－7\％\％ |
 | 24．7\％ | 660.1 | 646.7 | －13．4 | －2．0\％ |
 | 25．9\％ | 634.1 | 636.0 | 1.9 | 0．3\％ |
 | ${ }^{27.2 \%}$ | ${ }_{630.9}$ | ${ }^{634.4}$ | 3.5 | 0．6\％ |
 | 28．4\％ | 615.0 | ${ }_{631.5}^{63,5}$ | 16.4 | 2．7\％ |
 | 29．6\％ | 614.9 | ${ }^{630.7}$ | 15.7 | 2．6\％ |
 | 30．9\％ | 610.5 6095 | 624.4 623 | 13.9 141 | 2．3\％ |
 | 32．1\％ | 609.5 | ${ }_{6}^{623.6}$ | 14.1 | ${ }^{2.3 \% \%}$ |
 | 33．3\％ | 601.4 6014 | ${ }_{6}^{611.6}$ | $\begin{array}{r}10.2 \\ 5.5 \\ \hline\end{array}$ | 1．7\％ |
 | 34．6\％ | ${ }^{601.4}$ | ${ }_{600.8}^{604 .}$ | 5.5 | － |
 | 35．8\％ | 584.0 567.6 | 604.1 6011 | 20.1 335 | 3．4\％ |
 | 37．0\％ | 567．6 | ${ }_{501.1}^{609.1}$ | 33.5 | 5．9\％\％ |
 | － 38.3% | 558.9 5554 | 595.4 5925 | 36.5
 371 | 6．5\％ |
 | －39．5\％ | 555.4 554.3 | ${ }_{5}^{592.5}$ | 37.1 229 | 6．7\％${ }^{6.1 \%}$ |
 | 42．0\％ | ${ }_{550.2}$ | 565.0 | 14.8 | 2．7\％ |
 | 43．2\％ | 541.9 | 559.5 | 17.6 | 3．3\％ |
 | 44．4\％ | 532.9 | 559.2 | 26.3 | 4．9\％ |
 | － 45.7% | ${ }_{5}^{529.8}$ | 557.3 554.1 | ${ }_{320}^{27.5}$ | 5．2\％ |
 | ${ }^{46.1 \%}$ | ${ }_{512}^{522.2}$ | ${ }_{549.1}^{554}$ | 32.0 369 | ${ }_{\text {7．2\％}}^{6.1 \%}$ |
 | 49．4\％ | 503.5 | 533.4 | 30.0 | 6．0\％ |
 | 50．6\％ | 502.8 | 520.4 | 17.6 | 3．5\％ |
 | 51．9\％ | 496.4 | 500.6 | 10.1 | 2．0\％ |
 | － 53.10% | 487.8 4835 | 505．2 | 17.4 207 | 3．6\％ |
 | | ${ }_{482.3}^{483.5}$ | ${ }_{489.3}^{504.2}$ | 20.7 7.1 | 1．5\％ |
 | 56．8\％ | 479.7 | 488.0 | 6.3 | 1．3\％ |
 | 58．0\％ | 468.8 | 481.9 | 13.1 | 2．8\％ |
 | 59．3\％ | 468.1 | 481.8 | 13.7 | 2．9\％ |
 | ${ }^{60.5 \%}$ | 459.4 454 | ${ }_{4728}^{473.1}$ | 13.7 179 | 3．0\％ |
 | 63．0\％ | 450.4 | 460.2 | 9.8 | 2．2\％ |
 | 64．2\％ | 446.6 | 453.5 | 6.8 | 1．5\％ |
 | ${ }^{65.4 \%} \begin{aligned} & 667 \%\end{aligned}$ | 440.7 4394 | 449.4 446.4 | ${ }_{70}^{8.7}$ | －${ }_{\text {1．0\％}}$ |
 | 67．9\％ | 435.1 | 440.9 | 5.7 | 1．3\％ |
 | 69．1\％ | 426.7 | 437.7 | 11.0 | 2．6\％ |
 | －70．4\％ | ${ }_{408.1}^{421.9}$ | 436.1 4274 | $\begin{array}{r}14.1 \\ 19.3 \\ \hline\end{array}$ | |
 | 72．8\％ | 405.9 | 427.0 | 21.1 | 5．2\％ |
 | 74．1\％ | 405.4 | 422.7 | 17.3 | 4．3\％ |
 | － $7.3 .3 \%$ | 398.4 3969 | ${ }_{4}^{421.4}$ | 23.0 8.8 | 5．8\％ |
 | 77．8\％ | 393.7 | 405.4 | 11.7 | 3．0\％ |
 | 79．0\％ | 386.7 | 386.7 | 0.0 | 0．0\％ |
 | －${ }_{\text {80．2\％}}^{815 \%}$ | 383.5 373.6 | 385.4
 3779 | ${ }_{4 .}^{1.8}$ | ${ }_{\text {12\％}}^{0.5 \%}$ |
 | 815\％ | ${ }^{373.6}$ | 377.9 | 4.3 | 1．2\％ |
 | 82．7\％ 840% | － $\begin{aligned} & 357.8 \\ & 346.3\end{aligned}$ | ${ }_{372.1}^{372.2}$ | $\begin{array}{r}14.4 \\ 258 \\ \hline 1\end{array}$ | 7．0\％ |
 | 85．2\％ | 345.7 | 357.9 | 12.2 | 3．5\％ |
 | 86．4\％ | 344.9 | 348.6 | 3.7 | 1．1\％ |
 | 887．7\％ | 344.1 328.6 | ${ }_{323.1}^{343.1}$ | -1.0 -5.5 | －${ }_{-17 \%}^{-0.3 \%}$ |
 | 90．1\％ | 323.4 | 322.3 | －1．1 | －0．3\％ |
 | 91．4\％ | 322.3 | 321.8 | －0．5 | －0．2\％ |
 | 92．6\％${ }_{93.8 \%}$ | 316.9 316.2 | 319.1 317.5 | 2.1 1.3 | 0．7\％ |
 | 95．1\％ | 315.3 | 317.2 | 2.0 | 0．6\％ |
 | － 96.3% | 303.9 279.5 | ${ }_{279.7}^{29.3}$ | -4.6 0.2 | －${ }^{-1.15 \%}$ |
 | 998．8\％ | 275.1 | 264.1 | －1．0 | －0．4\％ |
 | 100．0\％ | 231.3 | 231.4 | 0.1 | 0．0\％ |

 | PercentExcedanceProbability | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {WSSP }}$ 2030 Without | SIIP 2030 With | | Relative |
 | | Monthly EC | Monthy EC | （itiererce | Difference（\％） |
 | （10\％ | 8911 | （UnHosich | 38 | |
 | | | | ．${ }^{\text {d }}$ | ${ }^{-0.4 \%}$ |
 | 1．2\％\％ | 822.3 | 833 | | |
 | 2．5\％ | 784.8 | 827.6 | 42.8 | \％ |
 | 3．7\％\％ | 728．2 | 771.8 | 43.6 | － 6.0% |
 | 6．9\％ | | P992 | | |
 | 7．4\％ | 705.8 688.5 | 667．6 649.4 | －39．1 | －5．4\％ |
 | 8．6\％ | 679.1 | 636.4 | －42．7 | －6．3\％ |
 | 9．9\％ | 633.2 | 632.6 | －0．6 | 0．1\％ |
 | 11．1\％ | 626.5 | 630.7 | 4.2 | 0．75 |
 | 12．3\％ | 607.0 | 603.9 | －3．2 | ．5\％ |
 | 13．6\％ | 602.4 | 599.7 | 2.8 | －0．5\％ |
 | 14．8\％ | 592.5 | 598.1 | 5.6 | 0．9\％ |
 | 16．0\％ | 585.5 | 585.3 | 0.2 | 0．0\％ |
 | ＋17．3\％ | 578.6 | 582.6 | 4.1 | ${ }^{0.7 \%}$ |
 | | 578.0 | 581．5 | 3.4 | 0．3\％ |
 | －${ }^{19.8 \% \%}$ | | | 1.8 | |
 | ${ }_{2}^{21.0 \%}$ | $\stackrel{567.0}{562.9}$ | ${ }_{557.9}^{562.5}$ | －4．5 | ${ }^{-0.9 \%}$ |
 | 23．5\％ | 561.7 | 539.4 | －22．3 | －4．0\％ |
 | 24．7\％ | 534.2 | 538.3 | 4.1 | 0．8\％ |
 | 25．9\％ | 522.8 | 535.8 | 13.0 | 2．5\％ |
 | 27．2\％ | 515.0 | 534.0 | 19.0 | |
 | 28．4\％ | 514.0 | 529.7 | 15.7 | 3．1\％ |
 | 29．6\％ | 511.8 | 526.6 | 14.9 | 2．9\％ |
 | 30．9\％ | 510.7 | 519.5 | 8.8 | 1．7\％ |
 | 32．1\％ | 510.1 | 519.1 | 9.0 | 1．8\％ |
 | 33．3\％ | 505.4 | 513.4 | 8.0 | 1．6\％ |
 | 34．6\％ | 490.8 | 510.1 | 19.2 | 3．9\％ |
 | 35．8\％ | 489.1 | 509.7 | 20.7 | 4．2\％ |
 | 37．0\％ | 481.0 | 509.0 | 28.1 | 5．8\％ |
 | 年38．3\％ | 479.6 | 506.8 | 27.2 | 5．7\％ |
 | 39．5\％ | 473.1 | 505.8 | 32.6 | 6．9\％ |
 | 40．7\％ | 468.3 | 495.5 | 27.3 | 5．8\％ |
 | 42．0\％ | 467.4 | 491.7 | 24.3 | 5．2\％ |
 | 43．2\％ | 465.6 | 485.4 | 19.8 | 4．3\％ |
 | 44．4\％ | 464.4 | 484.3 | 19.9 | 4．3\％ |
 | 45．7\％ | 460.6 | 480.4 | 19.8 | 4．3\％ |
 | 46．9\％ | 458.4 | 473.4 | 14.9 | 3．3\％ |
 | 48．19\％ | 455.6 | 467.5 | 11.9 | 2．6\％ |
 | 49．4\％ | 455.5 | 460.8 | 5.3 | 1．2\％ |
 | 50．6\％ | 453.9 | 455.4 | 1.5 | 0．3\％ |
 | 51．9\％ | 442.2 | 454.5 | 12.3 | 2．8\％ |
 | 53．1\％ | 423.5 | 452.9 | 29.4 | 6．9\％ |
 | 54．3\％ | 414.4 | 450.0 | 35.6 | 8．6\％ |
 | 年55．6\％ | 410.6 | 444.8 | 34.1 | 8．3\％ |
 | 56．8\％ | 409.7 | 435．3 | ${ }^{25.6}$ | 6．3\％ |
 | 年58．0\％ | 408.3 | 429.4 | 21.1 | 5．2\％ |
 | 59．3\％ | 408.2 | ${ }^{426.4}$ | ${ }^{18.2}$ | 4．5\％ |
 | 60．5\％ | 407.2 | 419.8 | ${ }^{12.6}$ | 3．1\％ |
 | ${ }^{61.7 \%}$ | 404.2 | 416.5 | ${ }^{12.3}$ | 3．1\％ |
 | －63．0\％ | 402.9 | 412.8 | 9.9 | 2．5\％ |
 | 64．2\％ | 402.9 | 408.6 | 5.7 | 1．4\％ |
 | 65．4\％ | 399.6 | 408.2 | 8.5 | 2．1\％ |
 | ${ }^{66.77 \%}$ | 396.8 3977 | 403.8 | 7.0 | 1．8\％ |
 | 67．9\％ | 377.7 | 401.1 | 23.5 | 6．2\％ |
 | 69．1\％ | ${ }^{369.1}$ | ${ }^{397.8}$ | ${ }^{28.7}$ | 7．8\％ |
 | 70．4\％ | 354.5 | 381.3 | 26.8 | 7．6\％ |
 | 71．6\％ | 351．4 | ${ }_{355.3}$ | 3.8 | 1．1\％ |
 | 72．8\％ | 347.2 | 352.9 | 5.6 | 1．6\％ |
 | 74．1\％ | 345.0 | 349.6 | 4.6 | 3\％ |
 | 75．3\％ | 344.1 | 345.0 | 0.9 | 0．3\％ |
 | 76．5\％ | 338.5 3237 | 327.0 | ${ }^{11.6}$ | 3．4\％ |
 | 77．8\％ | 323.7 | 326.6 | 2.9 | 0．9\％ |
 | 79．0\％ | 322.7 | 323.7 | 1.0 | 0．3\％ |
 | 80．2\％ | 320.9 | 320.7 | －0．2 | 0．1\％ |
 | －${ }^{81.5 \%}$ 82．7\％ | 318.7 | 319.4 | 0.7 | 0．2\％ |
 | 820．7\％ | 317.8 317.2 | 318.2 316.9 | 0.4 -0.2 | － |
 | 85．2\％ | 313.7 | 307.6 | －6．1 | －1．9\％ |
 | 86．4\％ | 307.5 | 302.4 | －5．1 | 1．7\％ |
 | 87．7\％ | 302.7 | 300.6 | －2．1 | 0．7\％ |
 | 88．9\％ | 301.1 | 298.9 | －2．2 | 0．7\％ |
 | 90．1\％ | ${ }^{298.8}$ | 298.0 | －0．7 | 0．2\％ |
 | 9，91．4\％${ }_{\text {92．6\％}}$ | ${ }^{297.2}$ | 297.4 | 0.2 | 0．1\％ |
 | 93．3．8\％ | ${ }_{2918}^{293}$ | ${ }^{293.5}$ | 0.2 | 0．1\％ |
 | 95．1\％ | 285.8 | 286.0 | 0.2 | 0．1\％ |
 | 96．3\％ | 283.8 | 283.9 | 0.1 | ．0\％ |
 | 97．5\％ | 283.7 | 282.9 | －0．8 | ．3\％ |
 | 98．8\％ | 274.8 | 274.6 | －0．1 | 0．0\％ |
 | 100．0\％ | 208.9 | 210.3 | 1.4 | 0．7\％ |

 | －March | | | | | April | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Percent | WSIP 2030 Without | WSIP 2030 With Project | $\begin{gathered} \text { Absolute } \\ \text { (ifference } \\ \text { (UMHOS } \text { (CM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | $\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { PEceenance } \\ \text { Probabily } \\ \text { Prob) } \end{array} \\ & \hline \end{aligned}$ | | WSIP 2030 With Project
 Monthly
 （UMHOSC／CM） | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOSICMM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | Probability | Montly EC | Monthly EC | | | | | | | |
 | 0．0\％ | | 742.2 | | | | | | | |
 | 1．2\％ | 699.3 | 683.3 | －16．0 | －2．3\％ | 1.29 | 568.5 | 563 | －5．5 | －1．0\％ |
 | 2．5\％ | 679.4 | 681.9 | 2.5 | 0．4\％ | 2．5\％ | 554.5 | 555 | 0.8 | \％ |
 | 3．7\％ | 634.1 | 604.8 | －29．3 | －4．6\％ | 3．7\％ | 544.8 | 554.6 | 9.8 | 1．8\％ |
 | 4．9\％ | 604.5 | 594.6 | －9．8 | －1．6\％ | 4．9\％ | 536.2 | 536 | 0.8 | 0．1\％ |
 | ${ }^{6.2 \%}$ | 597.7 | ${ }_{568.3}$ | －29．5 | －4．9\％ | ${ }^{6.2 \%}$ | 534．2 | ${ }_{5}^{535.8}$ | 2.7 | 0．5\％ |
 | 7．4\％ | 555．2 | 566.7 | 11.5 | 2．1\％ | 7．4\％ | 522.0 | 523.8 | 1.8 | 0．3\％ |
 | 9．9\％ | ${ }_{530.7}^{553.5}$ | ${ }_{556.3}^{558.2}$ | ${ }^{25.6}$ | 4．8\％ | 9．9\％ | 521.8 515.6 | 515．3 514.2 | －1．4 | ${ }^{-1.2 \%}$ |
 | 11．1\％ | 517.3 | 529.2 | 11.9 | 2．3\％ | 11．1\％ | 505.3 | 505.4 | 0.0 | 0.0% |
 | 12．3\％ | 515.4 | 515.9 | 0.5 | 0．1\％ | 12．3\％ | 500.6 | 503.1 | 2.6 | |
 | 13．6\％ | 510.9 | 515.9 | 5.0 | 1．0\％ | 13．6\％ | 482.0 | 499.0 | | |
 | 14．8\％ | 488.7 | 512.5 | 23.8 | 4．9\％ | 14．8\％ | 468.3 | 491.8 | 23.5 | |
 | 16．0\％ | 484.0 | 492.4 | 8.4 | 1．7\％ | 16．0\％ | 467.9 | 489.7 | 21.7 | 4．6\％ |
 | 17．3\％ | 479.3 | 487.5 | 8.3 | 1．7\％ | 17．3\％ | 464.4 | 486.3 | 21.9 | 4．7\％ |
 | 18．5\％ | ${ }_{456.9}^{468.3}$ | ${ }_{480.7}^{483.6}$ | 15.3 23.8 | 5．2\％ | 18．5\％ | 460.0 457.0 | ${ }_{481.7}^{482.5}$ | ${ }_{24.7}^{22.6}$ | 5．4\％ |
 | 21．0\％ | 450.0 | 470.0 | 20.0 | 4．4\％ | 21．0\％ | 455.6 | 471.4 | 14.8 | 3．2\％ |
 | 22．2\％ | 448.7 | 467.5 | 18.8 | 4．2\％ | 22．2\％ | 452.6 | 467.9 | 15.3 | 3．4\％ |
 | 23．5\％ | 446.9 | 459.5 | 12.6 | 2．8\％ | 23．5\％ | 452.3 | 461.6 | ${ }^{9.3}$ | 2．0\％ |
 | 24．7\％ | 441.8 | ${ }_{4}^{42.6}$ | | 2．4\％ | ${ }^{24.79 \%}$ | | 455.4 | | |
 | 27．2\％ | 4399.5 | 444.5 | 6.0 | 1．4\％ | ${ }^{25.7 .2 \%}$ | ${ }_{435.3}^{439.4}$ | 4439.7 | ${ }_{4.4}^{2.5}$ | － |
 | 28．4\％ | 435.3 | 441.6 | 6.3 | 1．4\％ | 28．4\％ | 426.1 | 437.6 | 11.5 | 2．7\％ |
 | 29．6\％ | ${ }^{432.0}$ | 437．4 | 5.5 | ${ }^{1.3 \%}$ | 29．6\％ | 423.2 | 427.5 | 4.3 | ${ }^{1.0 \%}$ |
 | 330．1\％ | ${ }_{4223.2}^{429.6}$ | 436.5 433.0 | 6.9 9.9 | ${ }_{\text {2．3\％}}^{1.6 \%}$ | 30．9\％ | ${ }_{4123.9}^{420.0}$ | ${ }_{422.8}^{426.8}$ | 6．8 12.6 | － |
 | 33．3\％ | 418.5 | 428.0 | 9.5 | 2．3\％ | 33．3\％ | 411.5 | 417.4 | 5.9 | |
 | 34．6\％ | 415.2 | 424.9 | 9.7 | 2．3\％ | 34．6\％ | 406.3 | 414.4 | 8.1 | |
 | 35．8．${ }^{35 \%}$ | ${ }_{408.3}^{412.8}$ | ${ }_{4244.6}^{424.7}$ | 11.9 6.3 | ${ }_{\text {1．5\％}}^{2.9 \%}$ | 退35．8\％ | ${ }_{399.5}^{402.8}$ | ${ }_{403.2}^{412.6}$ | ${ }_{3.7}^{9.7}$ | － |
 | 38．3\％ | 391.1 | 409.2 | 18.1 | 4．6\％ | 38．3\％ | 394.6 | 400.1 | 5.4 | 1．4\％ |
 | 39．5\％ | 388.7 | 400.2 | ${ }^{11.5}$ | 2．9\％ | 39．5\％ | 392.9 | 398.3 | 5.4 | 1．4\％ |
 | ${ }_{4}^{42.0 \% \%}$ | 383.7 3807 | 397.2 3927 | 13.5 120 | ${ }^{3.5 \%}$ | 40．7\％ 420% | 392.3 3920 | 393.9 3925 | 1.6
 0.5 | 0．4\％ |
 | 43．2\％ | ${ }_{3} 389.6$ | ${ }_{389.1}$ | ${ }_{9.5}$ | ${ }_{2.5 \%}^{\text {3．2\％}}$ | 43．2\％ | ${ }_{391.0}$ | ${ }_{390.5}$ | －0．4 | －0．1\％ |
 | 44．4\％ | 378.1 | 380.5 | 2.4 | 0．6\％ | 4．4\％ | 375.8 | 379.6 | 3.8 | 1．0\％ |
 | 45．7\％ | 369.5 | 379.2 | 9.8 | 2．6\％ | 45．7\％ | ${ }^{377.3}$ | 376.8 | 3.5 | 0．9\％ |
 | | | 378.7 | ${ }^{9.6}$ | 2．6\％ | | 370．2 | ${ }^{377.5}$ | ${ }^{0.3}$ | 0．1\％ |
 | 49．4\％ | ${ }_{362.4}^{366.1}$ | 378.6 376.2 | 12.6 13.7 | 3．8\％ | 48．4\％ | ${ }_{359.6}^{365.4}$ | ${ }_{360.7}^{366.2}$ | 0.8 1.1 | ${ }_{0}^{0.3 \%}$ |
 | 50．6\％ | 355.8 | 374.2 | 18.4 | 5．2\％ | 50．6\％ | 356.2 | ${ }^{356.3}$ | 0.1 | 0．0\％ |
 | 551．9\％ | 349.3 3975 | 374．2 | ${ }^{24.9}$ | 7．1\％ | 51．9\％ | 349．6 | 350．5 | 1.0 | 0．3\％ |
 | 554．3\％ | ${ }_{346.7}^{347}$ | ${ }_{366.9}^{369.4}$ | 21.9 20.2 | ${ }_{5}^{6.8 \%}$ | 54．3\％ | ${ }_{341.4}^{342.7}$ | ${ }_{341.5}^{342.7}$ | ${ }_{0}^{0.0}$ | ${ }^{0.0 \% \%}$ |
 | 55．6\％ | 346.3 | 361.3 | 15.0 | 4．3\％ | 55．6\％ | 334.8 | 335.1 | ${ }^{0.3}$ | 0．1\％ |
 | ${ }^{55.8 \%}$ | ${ }^{345.5}$ | 351．5 | 6.0 | 1．7\％ | 56．8\％ | 334.2 | 334.4 | 0.2 | 0．1\％ |
 | 559．3\％ | 341.5 300.6 | ${ }_{350.3}^{350.4}$ | ${ }_{9.7}^{9.0}$ | ${ }_{\text {2，}}^{2.8 \%}$ | 58．3\％ | 328.5 318.0 | 329.3 318.0 | 0.8 0.0 | ${ }_{\text {en }}^{0.0 \%}$ |
 | 60．5\％ | 336.2 | 346.0 | 9.8 | 2．9\％ | 60．5\％ | 312.7 | 315.0 | 2.3 | 0．8\％ |
 | | 335.6 334.1 | ${ }_{3}^{343.1}$ | 7.5 3.0 | ${ }_{\text {en }}^{\text {2．9\％}}$ | － 61.7% | 312.4 308.7 | 312.6 308.7 | 0.2 | |
 | 64．2\％ | 332.8 | 333.6 | 0.7 | 0．2\％ | 64．2\％ | 307.4 | 308.2 | 0.8 | 0．2\％ |
 | 65．4\％ | ${ }_{3}^{330.3}$ | 331．4 | 1.0 | 0．3\％ | ${ }^{65.4 \%}$ | 304．3 | 307.5 3051 | 3.2 | 1．1\％ |
 | | | | | | | | | | |
 | 69．1\％ | ${ }_{\text {cke }}^{3226.2}$ | ${ }_{323.1}^{326.7}$ | 0.4 -0.5 | －0．2\％ | －67．9\％ | ${ }_{293.8}^{297.4}$ | ${ }_{294.3}^{297.6}$ | 0.1 0.4 | 0．1\％ |
 | 70．4\％ | 319.1 | 318.5 | －0．7 | －0．2\％ | 70．4\％ | 290.7 | 289.1 | －1．5 | －0．5\％ |
 | 71．6\％ | 313.1 | 313.4 | 0.3 | 0．1\％ | 71．6\％ | 284.5 | 284.6 | 0.1 | 0．0\％ |
 | 72．8\％ | 310.5 308.1 | 311.8 310.9 | ${ }^{1.4}$ | 0．4\％ | 72．8\％ | 274.9 274.4 | ${ }_{274.5}^{274}$ | 0.1 | ${ }^{0.0 \%}$ |
 | 75．3\％ | 307.1 | 309.9 | 2.9 | 0．9\％ | 75．3\％ | 274.3 | 274.4 | 0.1 | 0．0\％ |
 | 76．5\％ | 305.7 | 308.9 | 3.2 | 1．0\％ | 76．5\％ | 269.4 | 270.0 | 0.7 | 0．2\％ |
 | 77．8\％ | 304.2 | 305.2 | 1.0 | 0．3\％ | 77．8\％ | 268.8 | 268.8 | 0.0 | 0．0\％ |
 | 79．0\％ | 299.9 | 299.8 | －0．1 | 0．0\％ | 79．0\％ | 263.3 | 263.3 | 0.0 | 0．0\％ |
 | 80．2\％ | 293.2 | 297.0 | 3.8 | 1．3\％ | 80．2\％ | 263.1 | ${ }^{263.2}$ | 0.1 | 0．0\％ |
 | 882．7\％ | ${ }_{283}^{288.8}$ | ${ }_{2883}^{293.5}$ | ${ }_{50} 4$ | ${ }_{1}^{1.6 \%}$ | － | 256.8 2494 | ${ }^{257.3}$ | － 0.5 | ${ }_{\text {－}}^{0.2 \%}$ |
 | 84．0\％ | 281.6 | 284.3 | 2.8 | 1．0\％ | 84．0\％ | ${ }_{247.1}^{24.4}$ | ${ }_{247.1}^{24.0}$ | －1．4 | －0．0\％ |
 | 85．2\％ | 277.4 | 279.1 | 1.8 | 0．6\％ | 85．2\％ | 244.8 | 244.5 | －0．2 | －0．1\％ |
 | 86．4\％ | 270.0 | 270.2 | 0.2 | 0．1\％ | 86．4\％ | 241.2 | 241.2 | 0.1 | 0．0\％ |
 | 87．7\％ | 265.9 | 265.9 | 0.0 | 0．0\％ | 877\％ | 239.5 | 239.3 | －0．3 | －0．1\％ |
 | 88．9\％ | 263.1
 25.4 | 263.2 2588 | 0.1 | 0．1\％ | － | ${ }_{2193}^{220.7}$ | 221．1 | 0.4 | ${ }_{\text {coin }}^{0.2 \%}$ |
 | 91．4\％ | ${ }_{257.0}^{258.4}$ | ${ }_{256.7}^{258.8}$ | －0．3 | －0．1\％ | 91．4\％ | ${ }_{216.2}^{219.3}$ | 216.5 | 0.3 | 0．1\％ |
 | 92．6\％ | 253.6 | 253.7 | 0.2 | 0．1\％ | 92．6\％ | 215.5 | 215.8 | 0.2 | 0．1\％ |
 | 93．8\％ | 252.1 | 252.1 | －0．1 | 0．0\％ | 93．8\％ | 214.7 | 215.4 | 0.7 | 0．3\％ |
 | 95．1\％ | 234.7 | 236.2 | 1.5 | 0．6\％ | 95．1\％ | 214.0 | 214.7 | 0.7 | 0．3\％ |
 | 99．3\％ | ${ }^{234.7}$ | 234.9 | 0.2 | 0．1\％ | 96．3\％ | 188.9 | 189.2 | 0.3 | 0．2\％ |
 | 98．8\％ | 227.3 226.1 | ${ }_{226.0}^{226.2}$ | -1.1 -0.2 | － | 998．8\％ | $\begin{array}{r}188.6 \\ \hline 1779\end{array}$ | $\begin{array}{r}188.0 \\ 1774 \\ \hline\end{array}$ | －0．6 | |
 | 98．8\％ | ${ }_{204.1}^{226.1}$ | ${ }_{204.1}^{226.0}$ | －0．0 | ${ }_{\text {－}}^{\text {0．0\％}}$ | 98．8\％ | ${ }_{166.1}^{177.9}$ | ${ }_{166.9}^{177.4}$ | －0．8 | －0．5\％ |

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probabaility } \end{aligned}$ | May | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 W Wthout | WSIP 2030 With Project | Absolute | |
 | | Monthly EC | Monthly EC | Difference （UMHOSCCM） | Difference（\％） |
 | | （UMHOSSCM） | ${ }_{\text {（UMHOSSCM }}$ | 6.7 | 1．3\％ |
 | 1．2\％ | 520.2 | 526.4 | 6.2 | 1．2\％ |
 | 2．5\％ | 509.8 5908 | 519．9 | 10.1 | 2．0\％ |
 | 3．7\％ | 508.8
 505 | 509.7 | 0.9 | 0．2\％ |
 | 4．9\％ | 505.8 | 506.6 | 0.8 | 0．2\％ |
 | 7．4\％ | ${ }_{504.5}$ | ${ }_{500.3}$ | －4．2 | －0．8\％ |
 | 8．6\％ | 494.9 | 499.4 | 4.6 | 0．9\％ |
 | 9．9\％ | 490.9 | 496.7 | 5.9 | 1.2 |
 | 11．19\％ | 4859
 845 | ＋483．6 | －23 | －0．5\％ |
 | ${ }^{12.3 \%}$ | 484.5 | ${ }^{481.3}$ | －3．2 | －0．7\％ |
 | 13．6\％ 14．8\％ | ${ }_{469.3}^{483.6}$ | ${ }_{473.6}^{475.1}$ | -8.4 4.4 | －1．9\％ |
 | 16．0\％ | 463.5 | 463.9 | 0.3 | 0．1\％ |
 | 17．3\％ | 460.6 | 461.5 | 0.9 | 0．2\％ |
 | 18．5\％ | 458.9 | 454.3 | －4．6 | －1．0\％ |
 | 19．8\％ | ${ }^{452.0}$ | 453.7 | | |
 | 212．2\％ | 448.9 | 4499.1 | －0．8 | ${ }^{-0.2 \%}$ |
 | 23．5\％ | 445.3 | 445.7 | 0.4 | 0．1\％ |
 | 24．7\％ | 443.1 | 443.8 | 0.7 | 0．2\％ |
 | 25．9\％ | ${ }_{4351}^{436.3}$ | ${ }_{442.7}^{443}$ | 7.4 | －1．7\％ |
 | 28．44\％ | ${ }_{425.4}$ | ${ }_{437.0}^{4420}$ | ${ }_{1}^{64.6}$ | |
 | 29．6\％ | 424.3 | 436.6 | 12.2 | 2．9\％ |
 | 30．9\％ | 422.8 | ${ }^{429.3}$ | 6.5 | 1．5\％ |
 | | | 422.8 | 0.4 | 0．1\％ |
 | 34．6\％ | 417.5 | 418.7 | ${ }_{12} .2$ | 0．3\％ |
 | 35．8\％ | 415.8 | 418.4 | 2.6 | 0．6\％ |
 | | 413.9 | 412.9 | -1.0 | ${ }^{-0.2 \%}$ |
 | 30．5\％ | 402.7 | 408.8 | 6.1 | 1．5\％ |
 | 40．7\％ | 400.9 | 403.2 | ${ }^{2.3}$ | |
 | | ${ }^{396.8}$ | 403.1 | 6.3 | ${ }_{1}^{1.6 \%}$ |
 | 44．4\％ | ${ }_{395.8}$ | 307.9 | 2.1 | 0．5\％ |
 | 45．7\％ | 395.3 | 397.0 | 17 | 0．4\％ |
 | | | 396.0 | 3.0 | 0．8\％ |
 | 49．4\％ | ${ }_{391.9}$ | 392.2 | ${ }_{0.3}^{0.3}$ | 0．1\％ |
 | 50．6\％ | 391.2 | 392.1 | 0.9 | 0．2\％ |
 | | | ${ }_{3}^{391.5}$ | 5.3 | 1．4\％ |
 | 54．3\％ | ${ }_{3}^{387.0}$ | ${ }_{383.9}$ | ${ }_{6.9}^{2.6}$ | 1．8\％ |
 | 55．\％ | 374.8 | 383.5 | 8.8 | 2．3\％ |
 | | | | | |
 | 58．3\％ | ${ }_{371.4}^{371 .}$ | 371.5 371.2 | －0．3 | ${ }^{-0.1 \%}$ |
 | 60．5\％ | 369.4 | 370.5 | 1.1 | 0．3\％ |
 | 61．7\％ | 368.2 | 369.4 | 1.3 | |
 | －63．2\％ | ${ }_{363.4}^{363.7}$ | ${ }_{362.9}^{364.1}$ | －0．4 | －0．1\％ |
 | 65．4\％ | 359.2 | 359.1 | －0．1 | 0．0\％ |
 | －66．7\％ | 354．6 | 354．6 | 0.1 | |
 | 69．1\％ | ${ }_{335.7}^{337.8}$ | ${ }_{335.8}^{338.0}$ | 0.2 0.1 | － 0.10% |
 | 70．4\％ | 333.6 | 333.6 | 0.0 | 0．0\％ |
 | 71．6\％ | 326.0 | 326.0 | 0.0 | 0．0\％ |
 | 72．8\％ | 322.5 | 322.5 | 0.0 | 0．0\％ |
 | 74．1\％ | 317.4 | 317.4 | 0.0 | 0．0\％ |
 | 7． 7.5% | 305.6 303.2 | ${ }_{303.3}^{305.6}$ | 0.0 0.1 | 0．0\％ |
 | 77．8\％ | 302.3 | 302.4 | 0.1 | 0．0\％ |
 | 79．0\％ | 279.7 | 281.1 | 1.4 | 0．5\％ |
 | 80．2\％ | 275.3 | 276.7 | 1.5 | 0．5\％ |
 | 81．5\％ | 2693 | 269.4 | 0.0 | 0．0\％\％ |
 | 84．0\％ | 266.8 259.7 | 268.1
 259.8 | 1.4 0.1 | 0．0\％ |
 | 85．2\％ | 249.4 | 250.2 | 0.8 | 0．3\％ |
 | 86．4\％ | 245.6 | 245.8 | 0.2 | 0．1\％ |
 | 87．7\％ | 216.6 | 216.9 | ${ }^{0.3}$ | 0．1\％ |
 | 88．9\％ | 204.6 | ${ }^{205.2}$ | 0.6 | 0．3\％ |
 | 90．19\％ | 201.8 | 202.2 | 0.4 | 0．2\％ |
 | 914．4\％ | 200.5 | 201.4 | 0.9 | 0．4\％ |
 | 92．6\％ | 196.0 | 196.4 | 0.4 | 0．2\％ |
 | 93．8\％ | 185.4 | 185.7 | 0.3 | 0．2\％ |
 | 95．1\％ | 183.1 | 183.4 | 0.3 | 0．2\％ |
 | 96．3\％ | 168.7 | 168.9 | 0.2 | 0．1\％ |
 | 97．5\％ | 165.5 | 165.8 | 0.3 | －${ }_{\text {en }}^{0.2 \%}$ |
 | 988．8\％ | 163.8 160.2 | 163.9 160.5 | ${ }_{0.4}^{0.1}$ | 0．2\％ |

 | $\begin{gathered} \text { Percent } \\ \hline \text { Excedance } \\ \text { Probability } \end{gathered}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {WSSP }}$ 2030 Without | WSIP 2030 With Project | （e） $\begin{gathered}\text { Absolute } \\ \text { Diferene } \\ \text {（untosicm）}\end{gathered}$ | Relative Difference（\％） |
 | | Monthly EC | Monthy EC | | |
 | －0．0\％ | 5225 | （ $5202{ }^{\text {a }}$ | | |
 | | S2．2 | 52.2 | 0.0 | 0．0\％ |
 | －${ }_{2}^{1.2 \%}$ | ${ }^{521.5}$ | 516.9 | ${ }^{-4.7}$ | ${ }_{-0.09 \%}^{-0.9 \%}$ |
 | 2．5\％ | 4429 | 493.6 | | |
 | 4．9\％ | 441.1 | 443.1 | 2.1 | 0．5\％ |
 | 6．2\％ | 439.4 | 431.9 | －7．5 | －1．7\％ |
 | 7．4\％ | 427.3 | 426.4 | －0．9 | |
 | 8．6\％ | 404.2 | 402.9 | 1.3 | －0．3\％ |
 | 9．9\％ | 399.1 | 399.9 | 0.7 | 0．2\％ |
 | ${ }^{11.12 \%}$ | 394.4 | 398.6 | 4.2 | 1．1\％ |
 | ${ }^{12.3 \%}$ | 392.2 | 395．4 | 3.2 | 0．8\％ |
 | | 385.6 380.1 | 386.9 380.3 | 1.3 0.1 | 0．0\％ |
 | 16．0\％ | 370.4 | 367.4 | 3.0 | －0．8 |
 | 17.3 | 366.0 | 366.8 | 0.8 | |
 | 18．5\％ | 363.2 | 364.5 | 1.3 | 0．4\％ |
 | 19．8\％ | 358.6 | 360. | 1.4 | |
 | 21．0\％ | 358.1 | 352.2 | 5.9 | －1．6\％ |
 | 22．2\％ | 346.5 | 346.7 | 0.2 | 0．1\％ |
 | ${ }^{23.5 \%}$ | 345．2 | 344.8 | －0．4 | ${ }^{-0.1 \%}$ |
 | 25．9\％ | 342.9 | 342.3 | －0．5 | －0．2\％ |
 | 27．2\％ | 341.5 | 342.2 | 0.6 | 0．2\％ |
 | 28．4\％ | 338.4 3337 | 338.3
 359 | －0．1 | \％ |
 | 29．6\％ | 333.7 | 335.9 | 2.1 | 0．6\％ |
 | 30．9\％ | 333.6 | ${ }_{333.6}$ | 0.0 | 0．0\％ |
 | 32．1\％ | 330.8 | 332.3 | 1.5 | 0．5\％ |
 | 33．3\％ | 329.7 | 331.4 | 1.6 | 0．5\％ |
 | 34．6\％ | 329.7 | 331.3 | 1.6 | 0．5\％ |
 | 35．8\％ | 326.7 | 330.1 | 3.4 | 1．0\％ |
 | 37．0\％ | 325.9 | 328.7 | 2.9 | 0．9\％ |
 | 年38．3\％ | 324.4 | 327.1 | 2.7 | 0．8\％ |
 | 39．5\％ | 321.0 | 326.3 | 5.2 | 1．6\％ |
 | 40．7\％ | 319.8 | 322.1 | 2.3 | 0．7\％ |
 | 42．0\％ | 319.5 | 320.2 | 0.7 | 0．2\％ |
 | 43．2\％ | 319.5 | 319.1 | －0．4 | －0．1\％ |
 | 44．4\％ | 319.1 | 319.0 | －0．1 | 0．0\％ |
 | 45．7\％ | 316.8 | 318.7 | 1.9 | 0．6\％ |
 | 46．9\％ | 315.9 | 318.5 | 2.5 | 0．8\％ |
 | 48．19\％ | 315.8 | 317.7 | 1.9 | 0．6\％ |
 | 4．9．4\％ | 315.7 | 317.3 | 1.7 | 0．5\％ |
 | 50．6\％ | 314.9 | 316.7 | 1.8 | 0．6\％ |
 | 51．9\％ | 314.0 | 315.6 | 1.6 | 0．5\％ |
 | 53．1\％ | 313.8 | 315.3 | 1.5 | 0．5\％ |
 | 54．3\％ | 313.8 | 315.3 | 1.5 | 0．5\％ |
 | 年55．6\％ | 313.4 | 314.9 | 1.4 | 0．5\％ |
 | 56．8\％ | 312.1 | 313.0 | 0.9 | 0．3\％ |
 | 年58．0\％ | 311.9 | 312.8 | 0.9 | 0．3\％ |
 | 59．3\％ | 311.9 | 312.5 | 0.7 | 2\％ |
 | 60．5\％ | 311.8 | 311.8 | 0.0 | 0．0\％ |
 | ${ }^{61.7 \%}$ | 311.3 | 311.4 | 0.1 | 0．0\％ |
 | 63．0\％ | 311.2 | 309.0 | －2．2 | －0．7\％ |
 | 64．2\％ | 310.3 | 308.1 | －2．1 | 0．7\％ |
 | －65．4\％ | 309.1 | 308.1 | －1．0 | 0．3\％ |
 | ${ }^{66.7 \%}$ | 307.7 | 306.9 | －0．8 | 0．3\％ |
 | －67．9\％ | 300.6 | 306.1 | －0．6 | －0．2\％ |
 | 69．1\％ | 306.6 | 305.9 | －0．7 | 0．2\％ |
 | 70．4\％ | 3063 | 305.5 | －0．8 | 0．3\％ |
 | 71．6\％ | 306.3 | 304.7 | －1．6 | 0．5\％ |
 | 72．8\％ | 301.0 | 300.6 | －0．4 | 0．1\％ |
 | 74．1\％ 75.3% | 299.0 | 298.4 | －0．7 | －0．2\％ |
 | 76．5\％ | ${ }_{296.2}^{298.4}$ | ${ }_{296.3}^{296.8}$ | -1.6 0.1 | －0．0\％ |
 | 77．8\％ | 295.7 | 294.5 | －1．2 | |
 | 79．0\％ | 294.2 | 293.8 | －0．4 | －0．1\％ |
 | 80．2\％ | 294.1 | 293.1 | －1．0 | 0．3\％ |
 | 81．5\％ | 292.0 | 292.1 | 0.2 | 0．1\％ |
 | － 82.7% | 291.6 | 292.0 | 0.4 | 0．1\％ |
 | 84．0\％ | 279.9 | 279.5 | ${ }^{0.4}$ | －0．2\％ |
 | 85．2\％ | 278.2 | 276.3 | －1．9 | 0．7\％ |
 | ${ }^{86.4 \%}$ | ${ }^{2727.4}$ | ${ }^{275.5}$ | －0．8 | 0．3\％ |
 | 877\％ | 272.1 | 268.7 | －3．4 | －1．2\％ |
 | 88．9\％ | ${ }^{266.0}$ | 266.4 | 0.4 | 0．1\％ |
 | 90．1\％ 9 | 265.8 | 264.7 | －1．2 | －0．4\％ |
 | 91．4\％ | ${ }_{263.7}^{2637}$ | ${ }^{263.6}$ | 0.1 | 0．0\％ |
 | 92．6\％${ }_{\text {938．8\％}}$ | 262.5 | 262.6 | 0.1 | 0．0\％ |
 | 93．8\％ | ${ }^{255.6}$ | ${ }^{2554.4}$ | 1.3 | 0．5\％ |
 | 95．1\％ | ${ }^{252.3}$ | 252.2 | 0.0 | 0．0\％ |
 | 96．3\％ | 248.7 | 245.9 | －2．8 | －1．7\％ |
 | 97．5\％ | 245.6 | 243.9 | －1．7 | 0．7\％ |
 | 98．8\％ 100．0\％ | 24.3 | ${ }^{242.3}$ | －1．5 | ${ }^{-0.6 \%}$ |
 | 100．0\％ | 242.6 | 232.9 | －9．7 | －4．0\％ |

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probabaility } \end{aligned}$ | September | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 W Wthout | WSIP 2030 With Project | Absolute | |
 | | Monthly EC | Monthly EC | Difference （UMHOSCCM） | Difference（\％） |
 | 0．0\％ | 812.4 | ${ }_{\text {833，3 }}$ | 21.0 | 2．6\％ |
 | 1．2\％ | 796.7 | 818.3 | 21.5 | 2．7\％ |
 | 2．5\％ | 772.9 | 763.0 | －9．9 | －1．3\％ |
 | 3．7\％ | 748.9 | 754.3 | 5.3 | 0.7 |
 | 4．9\％ | 740.4 | 75.2 | 11.9 | 1.6 |
 | ${ }^{6.2 \%}$ | 738.1 | 745.0 | 6.9 | 0．9\％ |
 | 7．4\％ | ${ }^{732.6}$ | ${ }^{742.8}$ | 10.2 | 1．4\％ |
 | 8．9\％ | 731.3 726.8 | 733.3 725.8 | 1.9 -1.0 | －0．1\％ |
 | 11．1\％ | 724.9 | 725.5 | 0.6 | 0．1\％ |
 | 12．3\％ | 720.8 | 724.4 | 3.5 | 0．5\％ |
 | 13．4\％\％ | 720.2 7193 | ${ }_{7} 72.9$ | ${ }^{2.7}$ | 0．4\％ |
 | 14．8\％ | 719.3 | 716.0 | －3．3 | |
 | 17．3\％ | ${ }_{703.7}^{70.0}$ | ${ }_{712.5}^{715.7}$ | 8.8 | 1．3\％ |
 | 18．5\％ | 697.0 | 694.2 | －2．9 | －0．4\％ |
 | 19．8\％ | 689.6 | 688.1 | －1．5 | －0．2\％ |
 | 21．0\％ | 689.1 6885 | 687.8 | －1．3 | －0．2\％ |
 | ${ }^{22.2 \%}$ | ${ }_{688.5}$ | ${ }_{67}^{684.8}$ | －1．7 | ${ }^{-0.2 \%}$ |
 | ${ }_{\text {24，}}^{23.5 \%}$ | 685.7 678.6 | 679.9 675.1 | －5．8） | －0．8\％ |
 | 25．9\％ | 678.5 | 674.5 | －4．0 | －0．6\％ |
 | 27．2\％ | 677.9 | 669.2 | －8．7 | －1．3\％ |
 | 28．4\％ | ${ }_{\text {cher }}^{675}$ | 668.3 6634 | －7．2 | －1．1\％ |
 | ， | | | | |
 | 32．1\％ | 654.6 | ${ }_{651.3}^{652.3}$ | －3．3 | ${ }^{-0.5 \%}$ |
 | 33．3\％ | 654.5 | 648.7 | －5．8 | －0．9\％ |
 | 34．6\％ | 653.6 | 645.4 | －8．2 | －1．3\％ |
 | 年35．8\％ | ${ }_{642.7}^{652}$ | ${ }_{645.3}^{642}$ | －7．3 | －1．1\％ |
 | 3．0\％ | ${ }_{6215}$ | 64.9 | 1.4 | |
 | 39．5\％ | 620.4 | 637.8 | 17.4 | 2．8\％ |
 | 40．7\％ | 620.2 | 631．5 | 11.3 | 1．8\％ |
 | 42．0\％ | | | 18.0
 153
 18 | 3．0\％ |
 | 43．4．4\％ | 608．3 594.4 | 623.6 622.4 | 15.3 28.0 | ${ }^{2.5 \%}$ |
 | 45．7\％ | 592.6 | 620.2 | 27.6 | 4．7\％ |
 | 46．9\％ | 578.4 | 616.4 | 38.1 | ${ }^{6.6 \%}$ |
 | ${ }_{49.4 \%}^{48.1 \%}$ | ${ }_{554.4}^{554.7}$ | 614.2 604.5 | 59.5 50.1 | ${ }_{9.0 \%}^{10.7 \%}$ |
 | 50．6\％ | 551.8 | 600.9 | 49.2 | 8．9\％ |
 | 51．9\％ | 550.3 | 597.8 | 47.6 | 8．6\％ |
 | 年 53.19% | 547.3 5725 | 599．3 | 49.0 | 9．0\％ |
 | 54．6\％ | 542.5 528.2 | ${ }_{541.8}^{57.9}$ | 37.4 13.6 | 2．6\％ |
 | 56．8\％ | 527.6 | 535.7 | 8.1 | 1．5\％ |
 | 58．0\％ | 519.1 | 533.6 | 14.4 | 2．8\％ |
 | | | | 8.78 | ${ }^{1.75 \%}$ |
 | －${ }^{60.5 \%}$ | 513.4 503.0 | 521．2 514.8 | 11.7 11.7 | 2．3\％ |
 | 63．0\％ | 502.3 | 506.7 | 4.3 | 0．9\％ |
 | 64.2% 65.4% | 502.1 | ${ }^{503.5}$ | | － |
 | ${ }_{66.7 \%}^{65.4 \%}$ | ${ }_{484.7}^{49.2}$ | ${ }_{486.1}^{49.9}$ | -7.4
 1.4 | ${ }^{-1.5 \%}$ |
 | 67．9\％ | 473.5 | 481.1 | 7.6 | 1．6\％ |
 | 69．1\％ | ${ }_{471.6}^{472.1}$ | ${ }_{471.2}^{478.6}$ | 6.4 -0.3 | － |
 | 71．6\％ | 464.8 | 464.1 | －0．7 | ${ }^{-0.1 \%}$ |
 | 72．8\％ | 460.6 | 450.1 | －10．6 | －2．3\％ |
 | 75．3\％ | ${ }_{452.9}$ | ${ }_{441.8}^{447.2}$ | －11．6 | －2．5\％ |
 | 76．5\％ | 448.2 | 435.7 | －12．6 | －2．8\％ |
 | 77．8\％ | 447.1 | 433.6 | －13．5 | －3．0\％ |
 | 89．0\％ | 441.0 436.2 | ${ }_{4241.4}^{424.6}$ | -16.4 -14.9 | |
 | 81．5\％ | 422.8 | 419.2 | ${ }_{-3.6}$ | －0．9\％ |
 | 82．7\％ | 422.8 | 414.9 | －7．9 | －1．9\％ |
 | 84．0\％ | 420.2 | 411.0 | －9．2 | －2．2\％ |
 | 85．2\％ | 417.0 | 411.0 | －6．0 | －1．4\％ |
 | 86．4\％ | 411.8 | 402.9 | －8．9 | －2．2\％ |
 | 877\％ | 402.7 | 402.0 | －0．7 | －0．2\％ |
 | 88．9\％ | ${ }^{402.1}$ | 396.5 | －5．6 | －1．4\％ |
 | 90．1\％ | 392.8 | 395.0 | 2.1 | 0．5\％ |
 | 914．4\％ | 390.5 | 389.0 | －1．4 | －0．4\％ |
 | 92．6\％ | 385.8 | 380.9 | －5．0 | －1．3\％ |
 | 93．8\％ | 381.1 | 376.9 | －4．2 | －1．1\％ |
 | 95．1\％ | 380.3 | 374.8 | 5.5 | －1．4\％ |
 | 96．3\％ | 374.2 | ${ }^{366.0}$ | －8．2 | －2．2\％ |
 | 97．5\％ | ${ }_{3}^{354.7}$ | ${ }^{357.6}$ | 2.9 | －0．8\％ |
 | 98．8\％ | ${ }_{259.0}^{339.1}$ | ${ }_{243.3}^{330.3}$ | －8．7． | ${ }_{-6.1 \%}^{-2.6 \%}$ |

 Figure SQ-30-b
 Victoria Canal at Alternative Intake, Monthly EC

 | | | October | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent | WSIP 2030 Wethout | WSIP 2030 With Project | Absolute | |
 | Proabaility | Montiliy EC | Monthly EC | Difference
 （UMHOS／CM） | Difference（\％） |
 | 0，0\％ | 5855 | （ontesicm） | 40. | |
 | | | 25．6 | ． | 6．8\％ |
 | 2．5\％ | 581．7 580.0 | 588.0 576.0 | －6．${ }_{4}$. | －0．7\％ |
 | 3．7\％ | 579.0 | 562.8 | －16．2 | ． 2.8 |
 | 4．9\％ | 576.0 | 552.2 | 23．8 | －4．14 |
 | ${ }^{6.2 \%}$ | 566.4 | 549.7 | －16．7 | 2．9\％ |
 | 7．4\％ | | | －11．1 | －2．0\％ |
 | 9．9\％ | 549.8 548.7 | 534．9 529.7 | -14.9 -18.9 | －－2．5\％ |
 | 11．1\％ | 542.5 | 526.3 | －16．2 | －3．0\％ |
 | 12．3\％ | 540.4 | 524.8 | －15．7 | |
 | 13．6\％ | 534.3 | 522．4 | －11．9 | －2．2\％ |
 | 14．8\％ | 532.2 | 519.0 | －13．2 | 5\％ |
 | － 11.0 \％${ }^{16 \%}$ | ${ }_{\text {cke }}^{527.1}$ | 517．8 512.9 | －9．0．2 | ${ }_{-2.0 \%}^{-1.8 \%}$ |
 | 18．5\％ | 519.4 | 512.7 | －6．7 | －1．3\％ |
 | 19．8\％ | 516.9 | 511.0 | －5．9 | －1．1\％ |
 | 21．0\％ | 516.2 | 509.1 | 7.0 | －1．4\％ |
 | ${ }^{22.2 .5 \%}$ | 515.6 | 508.9 | －6．6 | －1．3\％ |
 | ${ }^{23.75 \%}$ | ${ }_{511.5}^{515}$ | 507．0 504.6 | －8．4 | －1．4\％ |
 | 25．9\％ | 509.6 | 502.9 | －6．7 | －1．3\％ |
 | 27．2\％ | 506.4 | 501.3 | －5．1 | －1．0\％ |
 | 28．4\％ | 504.5 54.4 | 500.8 | －3．7 | －0．7\％ |
 | 29．6\％ | 504.4 | 500.3 | －4．1 | －0．8\％ |
 | － 30.9 3．1\％ | 501.6 | 491.0 | －10．5 | －2．1\％ |
 | ${ }^{32.3 \%}$ | ${ }_{499.7}$ | ${ }_{486.4}^{489.0}$ | －12．0 -13.2 | －2．4\％ |
 | 34．6\％ | 495.3 | 484.9 | －10．4 | －2．1\％ |
 | 35．8\％ | 491.9 | 484.5 | －7．4 | －1．5\％ |
 | 37．0\％ | 488.4 | 483.0 | －5．4 | －1．1\％ |
 | 隹 $\begin{aligned} & 38.3 \% \\ & 395 \%\end{aligned}$ | 486.4 | 482.8 | －3．5 | －0．7\％ |
 | 39．7\％ | ${ }_{485.7}^{485.7}$ | ${ }_{478.9}$ | －－4．9 | －1．4\％ |
 | 42．0\％ | 483.6 | 478.2 | －5．4 | －1．1\％ |
 | 43．2\％ | 481.5 | 474.8 | －6．7 | －1．4\％ |
 | 44．4\％ | 481.0 | 467.8 | －13．2 | －2．7\％ |
 | 45．7\％ | 476.6 | 464.3 | －12．2 | －2．6\％ |
 | 46．1\％ | 474.1 | 463.8 | －10．3 | －2．2\％ |
 | 48．4\％ | 468.9 | ${ }^{453.8}$ | －15．1 | －3．2\％ |
 | 50．6\％ | 465.3 | 443.2 | －22．1 | －4．7\％ |
 | 51．9\％ | 461.5 | 439.7 | －21．7 | －4．7\％ |
 | 53．1\％ | 445.1 | ${ }^{4334.7}$ | －10．4 | 2．3\％ |
 | 54．3\％ | 444.9 | 433.5 | －11．4 | －2．6\％ |
 | 55．6\％ | 387.1 | 388.9 | 1.8 | 0．5\％ |
 | 56．8\％ | 383.2 | ${ }_{380.8}$ | －2．4 | －0．6\％ |
 | 59．3\％ | 381.4 381.4 | ${ }_{375.3}^{377.5}$ | －3．9 | ${ }^{-1.0 \% \%}$ |
 | 60．5\％ | 379.9 | 374.3 | －5．6 | －1．5\％ |
 | 61．7\％ | 379.2 | 374.0 | －5．2 | －1．4\％ |
 | 63．0\％ | 376．4 | 369.9 | －6．4 | －1．7\％ |
 | 64．2\％ | 373.4 | 369.1 | －4．2 | －1．1\％ |
 | ${ }_{6}^{65.7 \%}$ | 372.4 3685 | 367.0 363 | －5．4 | 1．4\％ |
 | 67．9\％ | 366.5 | 358．4 | ${ }_{-8.1}$ | －2．2\％ |
 | 69．1\％ | 364.6 | 358.2 | －6．3 | －1．7\％ |
 | 70．4\％ | 364.1 | 356.8 | －7．2 | －2．0\％ |
 | 71．6\％ | ${ }^{363.3}$ | 354.9 | －8．4 | 2．3\％ |
 | 72．8\％ | ${ }_{361.7}^{361.7}$ | $\begin{array}{r}354.9 \\ 354.4 \\ \hline\end{array}$ | －6．9 | －1．9\％ |
 | 75．3\％ | 358.5 | 352.7 | | －1．6\％ |
 | 76．5\％ | 357.7 | 351.8 | －5．9 | －1．7\％ |
 | 77．8\％ | 357．3 | 351.7 | －5．6 | －1．6\％ |
 | 79．0\％ | 356.2 | 351.6 | －4．6 | 1．3\％ |
 | 80．1．5\％ | 354.9 354.8 | 350.9 346.9 | －3．99 | －1．1\％ |
 | 82．7\％ | 353.1 | 346.7 | | －1．8\％ |
 | 84．0\％ | 351.5 | 344.2 | －7．3 | －2．1\％ |
 | 85．2\％ | 349.4 | 341.1 | －8．3 | 2．4\％ |
 | 86．4\％ | 348.6 | 340.9 | －7．7 | －2．2\％ |
 | －${ }^{87.7 \%}$ 88．9\％ | ${ }_{3337.5}^{338.6}$ | 335.5 334.2 | －3．1 | －0．9\％ |
 | 90．1\％ | 334.0 | 328.1 | －5．9 | 1．8\％ |
 | 91．4\％ | 333.5 | 327.4 | －6．1 | －1．8\％ |
 | 92．6\％ | 331．4 | 327．4 | －4．0 | －1．2\％ |
 | ${ }^{93.8 \%} 9$ | 330.2 | ${ }_{325.7}$ | －4．5 | ${ }^{-1.4 \%}$ |
 | 96．3\％ | 327.2 | 324.5 | －2．7 | －0．8\％ |
 | 97．5\％ | 326.6 | 316.9 | －9．7 | 3．0\％ |
 | 98．8\％ | ${ }_{216.2}^{275.7}$ | ${ }_{216.2}^{277.2}$ | 1.5 0.0 | 0．0\％ |

 | ${ }_{\text {Percent }}$ Exceedance | November | | | | $\begin{gathered} \text { Percent } \\ \text { Exceadne } \\ \text { Probababily } \\ \text { lifat } \end{gathered}$ | December | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | WSIP 2030 WithoutProiectMonthly EC（UMHOS／CM） | | $\begin{gathered} \text { Absolute } \\ \text { (ifference } \\ \text { (UMHOSICM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference }(\%) \end{gathered}$ |
 | | | Wsip 2030 Win Projec | | | | | | |
 | Probability
 （\％ | Monthy EC （UMHOSCCM） | Monthly EC （UMHOS／CM） | | | | | | |
 | 0．0\％ | 666.2 | 686.2 | 20.0 | 3．0\％ | 0．0\％ | | 728.5 | 21.1 | 2．9\％ |
 | 1．2\％ | 634.6 | 665.0 | 30.4 | 4．8\％ | 1．2\％ | 715.8 | 746.6 | 30.8 | 4．3\％ |
 | 2．5\％ | 633.4 | 635.4 | 1.9 | 0．3\％ | 2．5\％ | 715.3 | 718.5 | 3.2 | 0．4\％ |
 | 3．7\％ | ${ }_{619.1}^{619.1}$ | －635．2 | 16.1 10.9 | ${ }_{1}^{2.8 \%}$ | 3．7\％ | 710.1 7013 | 699.1 6960 | －11．0 | －－1．5\％ |
 | 4．9\％ | 616.3 6107 | 627.2 6157 | 10．9 | 1．8\％ | 4．9\％ | 701.3 6902 | 699．0 6933 | －5．3 | ${ }^{-0.8 \%}$ |
 | ${ }^{6.2 \%}$ | 610.7 5958 | 615.7 593.4 | － 5.0 | ${ }_{-0.8 \%}^{0.8 \%}$ | 6．2\％ 74 | 690.2 6594 | ${ }_{678.1}^{693.3}$ | 3.1 187 | － 0.4% |
 | 7．4\％ | 595.8 | 593．4 | －2．5 | －0．4\％ | 7．4\％ | ${ }_{659.4}^{6517}$ | ${ }^{678.1}$ | 18.7 153 | 2．8\％ |
 | 8．6\％ | 588.0 581.8 | 584.7 576.2 | －－3．3 | － | 8．6\％ | 651.7 6378 | 667.0 659.4 | 15.3 217 | 2．4\％ |
 | 9．9\％ | 581.8 | 576．2 | －5．6 | －1．0\％ | ${ }^{9.9 \%}$ | 637.8 6129 | 659.4 656.2 | 21.7 43.3 | 3．4\％ |
 | 11．1\％ | 578.0 5743 | 569.7 5667 | －6．4 | －-1.14% | 11．1\％ | 612.9 6073 | 656.2 654.0 | ${ }_{467}^{43.3}$ | 7．1\％ |
 | ${ }^{12.36 \%}$ | 574.3 572.2 | 566．7 553.2 | －7．9． -19.1 | －3．3\％ | －${ }_{\text {123\％}}^{12.3 \%}$ | 607．3 606.9 | 654.0 622.8 | 46.7 15.9 | |
 | 14．8\％ | 558.4 | 547．9 | －10．5 | － | －14．8\％ | 600.9 60.0 | ${ }_{6}^{6214.5}$ | 15.5
 8.9 | 1．4\％ |
 | 16．0\％ | ${ }_{555.1}^{553}$ | 543.2 | －11．8 | －2．1\％ | 16．0\％ | 596．4 | ${ }_{510.6}$ | 14.2 | 2．4\％ |
 | 17．3\％ | 553．3 | 52.8 | －26．6 | －4．8\％ | 17．3\％ | 589.8 | 594.6 | 4.8 | 0．8\％ |
 | 18．5\％ | 527.5 59.0 519.0 | 523．5 ${ }_{513.7}$ | －4．0． | － | － 18.5% | 587．4 5819 | 583.6
 580.8 | -3.8 -11 | －0．0\％${ }_{-0.2 \%}$ |
 | 21．0\％ | 514.3 | 503.4 | －10．8 | －2．1\％ | 21．0\％ | 571.2 | 573.6 | 2.3 | 0．4\％ |
 | 22．2\％ | 512.0 | 496.1 | －15．9 | －3．1\％ | 22．2\％ | 569.8 | 573.0 | 3.2 | 0．6\％ |
 | ${ }^{23.5 \%}$ | 508．3 5039 | ${ }_{486.9}^{490.9}$ | -17.4 -173 | －3．4\％${ }_{-3.4}$ | ${ }_{24}^{23.5 \%}$ | 567．2 5549 | 556.6 5510 | －10．6 -39 | －-1.9% |
 | 25．9\％ | 499.3 | 484.3 | －15．0 | －3．0\％ | 24．9\％ | ${ }_{553.4}$ | 549.9 | ${ }_{-3.5}$ | |
 | 27．2\％ | 498.1 | 482.2 | －15．9 | －3．2\％ | 27．2\％ | 552.0 | 545.9 | －6．1 | －1．1\％ |
 | 28．4\％ | 496.4 | 480.7 | －15．7 | －3．2\％ | 28．4\％ | 544．9 | 541.3 5957 | －3．6 | －0．7\％ |
 | 29．6\％ | 495.0 | 468.0 | －27．0 | －5．5\％ | 29．6\％ | 544.7 | 535.7 | -9.1 | －1．7\％ |
 | 俍32．9\％\％ | 494.2 494.0 | 467.4 458.6 | －26．7 -354 | －5．4\％ | － 30.9% | $\begin{array}{r}539.7 \\ 5396 \\ \hline\end{array}$ | ${ }_{521.5}^{528.5}$ | －11．2 -182 | － |
 | 33．3\％ | 493.9 | 455.5 | －38．5 | －7．8\％ | 33．3\％ | 529.2 | 500.1 | －29．2 | －5．5\％ |
 | 34．6\％ | 492.5 | 455.4 | －37．2 | －7．5\％ | 34．6\％ | 527.4 | 494.9 | －32．5 | －6．2\％ |
 | 357．0\％ | ${ }_{488.1}^{492.2}$ | ${ }_{441.1}^{44.7}$ | －48．5 | －9．9\％ | －${ }^{35.8 \%}$ | 527．4 522.0 | 499.4 487.8 | －36．0 -34.2 | －6．6\％${ }_{-6}-6.5$ |
 | 383\％ | 468.4 | 440.3 | －28．1 | －6．0\％ | 38．3\％ | 516.4 | 486.5 | －29．9 | －5．8\％ |
 | 39．5\％ | 466.8 | 438.8 | －28．0 | －6．0\％ | 39．5\％ | 507.9 | 484.2 | －23．7 | －4．7\％ |
 | 420．0\％ | ${ }_{457.6}^{465.8}$ | 433.5 429.6 | －32．3 -28.0 | －6．9\％ | ${ }^{40.7 \%}$ | ${ }_{400.0}$ | ${ }_{460.6}^{465.6}$ | －34．4
 -30.4 | ${ }_{-6.9 \%}^{-6.9 \%}$ |
 | 43．2\％ | 441.6 | 429.3 | －12．4 | －2．8\％ | 43．2\％ | 440.8 | 458.0 | 17.2 | 3．9\％ |
 | 44．4\％ | 439.9 | 426.6 | －13．3 | －3．0\％ | 44．4\％ | 439.2 | 430.3 | －8．9 | －2．0\％ |
 | ${ }^{4.75 \%}$ | ${ }_{436.9}$ | 421.9 | －14．9 | －3．4\％ | 45．7\％ | ${ }^{431.6}$ | ${ }^{428.9}$ | －2．7 | －0．5\％ |
 | 46．9\％ | ${ }^{428.1}$ | 409.9 | | －4．3\％ | 46．9\％ | 423.5 | 425.6 | | |
 | 48．4\％ 4 | ${ }_{424.1}^{427}$ | ${ }_{400.5}^{402.9}$ | －24．2 | －-5.5% | 48．1\％ 4.4 | ${ }_{395.7}^{419.0}$ | 406.1 391.6 | －
 -4.1 | － |
 | 50．6\％ | 421.1 | 395.7 | －25．4 | －6．0\％ | 50．6\％ | 388.3 | 381.5 | －6．8 | |
 | 51．9\％ | 419.4 | 386.9 | ${ }_{-32.5}$ | －7．8\％ | 51．9\％ | 383.2 | 381.0 | －2．2 | ．6\％ |
 | 53．1\％ | 386.9 | 385.8 | －1．1 | －0．3\％ | 53．1\％ | 381.7 | 372.8 | －8．9 | －2．3\％ |
 | | 377.5 | ${ }^{374.1}$ | －3．4 | －0．9\％ | 54．3\％ | 379.8 | ${ }_{372.4}$ | －7．4 | －2．0\％ |
 | 556．8\％ | 376.4 374.4 | 370.3 369.4 | －5．0 | －1．1．6\％ | 55．6\％ | 375.5 369.9 | 371.2 369.7 | -4.3 -0.1 | － |
 | 58．0\％ | 372.7 | 368.4 | －4．3 | －1．2\％ | 58．0\％ | 365.7 | 368.5 | 2.8 | 0．8\％ |
 | 59．3\％ | 370.4 | 361.2 | －9．2 | －2．5\％ | 59．3\％ | 363.0 | 368.2 | 5.2 | 1．4\％ |
 | 60．7\％ | 370.1 365.3 | 359.7 358.7 | －10．4 | －－1．8\％ | 60．5\％ | 360.6 350.7 | 368.0 363.5 | 7.3
 12.8
 1 | ${ }_{3.6 \%}^{2.0 \%}$ |
 | 63．0\％ | 364.6 | 357.7 | －6．9 | －1．9\％ | 63．0\％ | 350.0 | 362.2 | 12.2 | 3．5\％ |
 | 64．2\％ | ${ }^{364.1}$ | ${ }^{357.6}$ | －6．5 | －1．8\％ | ${ }^{64.2 \%}$ | 349.4 | 350.4 | 1.0 | 0．3\％ |
 | 66．7\％\％ | 362.7 361.8 | 357.4 356.6 | －5．1 | －1．1．9\％ | 析 65.4% | ${ }_{341.5}^{346.7}$ | 340.8 340.1 | －-1.4 | － |
 | 67．9\％ | 360.4 | 350.5 | -9.9 | －2．7\％ | 67．9\％ | 337.4 | 339.2 | 1.8 | 0．5\％ |
 | 69．1\％ | 359.3
 358. | ${ }^{350.5}$ | －8．8 | －2．5\％ | 69．1\％ | ${ }^{336.4}$ | ${ }_{335.3}$ | －1．0 | －0．3\％ |
 | 71．6\％ | ${ }_{356.4}^{358.6}$ | ${ }_{349.5}^{350.2}$ | －8．9 | －－1．9\％ | 70．1．4\％ | ${ }_{3}^{332.6}$ | ${ }_{331.3}^{3319}$ | 1.3 4.5 | －${ }_{\text {1．4\％}}^{0.4 \%}$ |
 | 72．8\％ | 355.7 | 348.3 | －7．4 | －2．1\％ | 728 | 326.6 | 326.5 | －0．1 | |
 | 74．1\％ | 351.2 | 347.9 | －3．4 | －1．0\％ | 74．1\％ | 325.2 | 325.7 | 0.5 | 0．1\％ |
 | 75．5\％ | 350.4
 346.8 | 341.0 340.9 | －9．4 | －2．7\％ | 75．3\％ | 324.5 3235 | 324.7 3234 | 0.1 | 0．0\％ |
 | 76．5\％ | ${ }_{3}^{344.8}$ | | | | | 323．5 | ${ }^{323.4}$ | | |
 | 79．0\％ | ${ }_{342.2}^{344.7}$ | 339.2 338.3 | -5.5 -5.9 | ${ }_{\text {－}}^{-1.1 .1 \%}$ | 779．0\％ | 323.0 318.5 | 317.9 317.8 | －5．7 | ${ }^{-1.6 \%}$ |
 | 80．2\％ | 338.8 | 336.9 | －1．9 | －0．6\％ | 80．2\％ | 310.7 | 305.9 | －4．8 | －1．5\％ |
 | 81．5\％ | 338.5 | 335.2 | －3．3 | －1．0\％ | 81．5\％ | ${ }^{307.3}$ | 302.8 | －4．5 | －1．5\％ |
 | 82.7% 840% | 335.7 3348 | ${ }_{333}^{33,6}$ | －2．1 | －0．6\％ | 82.7% 840% | 305.3 3040 | 302.5 3016 | －2．8 | －0．9\％ |
 | 85．2\％ | ${ }_{377.8}$ | 328.2 | －0．4 | 0．1\％ | 85．2\％ | 303.8 | 301.5 | －2．3 | －0．8\％ |
 | 86．4\％ | 327.1 | 328.1 | 0.9 | 0．3\％ | 86．4\％ | 297.5 | 298.6 | 1.1 | 0．4\％ |
 | 87．7\％ | 323.7 322.7 | 323．7 | 0.0 | 0．0\％ | 877\％ | 293.3 | 29.9 | －1．5 | －0．5\％ |
 | 80．9\％ | $\begin{array}{r}322.6 \\ 3208 \\ \hline\end{array}$ | － 322.2 | －0．3 | ${ }^{-0.1 \%}$ | 88．9\％ | ${ }_{2872}^{292.8}$ | ${ }_{2861}^{291.2}$ | | |
 | 91．4\％ | ${ }_{315.3}$ | ${ }_{314.9}$ | －0．4 | －0．1\％ | 91．4\％ | ${ }_{284.5}^{287.2}$ | 286.1 2838 | －1．1 | |
 | 92．6\％ | 311.7 | 309.3 | －2．4 | －0．8\％ | 92．6\％ | 282.2 | ${ }_{277.6}^{201.6}$ | －4．6 | －1．6\％ |
 | 93．8\％ | 311.4 | 308.8 | －2．5 | －0．8\％ | 93．8\％ | 270.7 | 273.4 | 2.7 | 1．0\％ |
 | 95．1\％ | 310.7 | 307.5 | －3．2 | －1．0\％ | 95．1\％ | 266.4 | 270.9 | 4.5 | 1．7\％ |
 | 96．3\％ | 304.2 | 307.4 | 3.3 | 1．1\％ | 96．3\％ | 255.3 | 263.9 | 8.7 | 3．4\％ |
 | 97．5\％ | 284.3 | 282.5 | －1．8 | －0．6\％ | 97．5\％ | 224.5 | 224.4 | 0.0 | 0．0\％ |
 | 98．\％\％ | ${ }_{20.5}^{24.5}$ | ${ }_{2212}^{242.6}$ | －1．9 | －0．8\％ | 98．8\％ | $\begin{array}{r}2090 \\ \hline 1984\end{array}$ | ${ }_{198}^{208.8}$ | －0．2 | ${ }^{-0.1 \%}$ |
 | | | | | | 100．0\％ | 198.4 | 198.6 | 0.2 | 0．1\％ |

 \begin{tabular}{|c|c|c|c|c|}
 \hline \& \& January \& \& \\
 \hline Percent \& WSIP 2030 Without \& WSIP 2030 With Project \& Absolute \& \\
 \hline Probability \& Monthly EC \& Monthly EC \& （itiference \& Difference（\％） \\
 \hline （\％） \& 797 \& \({ }_{8} 8\) \& \({ }_{466}\) \& \\
 \hline \& \& 8939 \& 42.7 \& 5．8\％ \\
 \hline 2．5\％ \& \({ }_{760.5}^{76.5}\) \& 792.2
 767.2 \& \({ }_{6.7}^{22.7}\) \& 2．9\％ \\
 \hline 3．7\％ \& 754.8 \& 759.0 \& 4.2 \& 0．6\％ \\
 \hline 4．9\％ \& 750.7 \& 741.9 \& －8．8 \& \\
 \hline \({ }_{7}^{6.2 \%}\) \& 737.2
 7034 \& 734.7
 730.1 \& -2.4
 26.7 \& －0．3\％ \\
 \hline 8．6\％ \& 700.8 \& 727.2 \& 26.4 \& 3．8\％ \\
 \hline 9．9\％ \& 699.9 \& 697.7 \& \(-2.2\) \& －0．3\％ \\
 \hline 11．1\％\({ }^{\text {12．3\％}}\) \& 699.7
 691.0 \& 684.9
 679.0 \& －10．7 \& －\(-1.7 \%\) \\
 \hline 13．6\％ \& 689.0 \& 650.2 \& －38．8 \& －5．6\％ \\
 \hline 14．8\％ \& 685.4 \& 647.1 \& －38．3 \& －5．5\％ \\
 \hline 117．3\％ \& 678.5
 672.5 \& 639.7
 639.0 \& －38．8
 -33.5 \& －5．7\％\({ }^{-5.0 \%}\) \\
 \hline 18．5\％ \& 670.8 \& 631.9 \& －38．8 \& －5．8\％ \\
 \hline 19．8\％ \& 643.2 \& 630.8 \& －12．5 \& －1．9\％ \\
 \hline 22．0\％ \& 643.1
 640.1 \& 623.0
 617.5 \& \begin{tabular}{l}
 -20.1 \\
 -2.6 \\
 \hline
 \end{tabular} \& －\({ }_{-3.5 \%}\) \\
 \hline 23．5\％ \& 639.7 \& 610.5 \& －29．2 \& －4．6\％ \\
 \hline 24．7\％ \& \({ }_{6}^{613.8}\) \& 600.0 \& －13．9 \& －2．3\％ \\
 \hline 227．2\％ \& \({ }_{594.3}^{597.8}\) \& \({ }_{594.7}^{595.7}\) \& -2.1
 0.3 \& －0．1\％ \\
 \hline 28．4\％ \& 593.0 \& 591.0 \& －2．0 \& －0．3\％ \\
 \hline 29．6\％ \& 591.0 \& 589.9 \& －1．1． \& －0．2\％ \\
 \hline 32．1\％ \& \({ }_{585.6}\) \& \({ }_{575.2}^{575.7}\) \& －14．9 \& \({ }_{\text {－}}^{-2.8 \%}\) \\
 \hline 33．3\％ \& 580.5 \& 570.8 \& －9．7 \& －1．7\％ \\
 \hline \& 569.2 \& 554．7 \& －14．5 \& －2．5\％ \\
 \hline 37．0\％ \& 555.4 \& 54.9 \& －8．5 \& －1．5\％ \\
 \hline 38．3\％ \& 553.5 \& 545.3 \& －8．1 \& －1．5\％ \\
 \hline \& 544.1 \& \begin{tabular}{l}
 540.5 \\
 50.5 \\
 \hline
 \end{tabular} \& －3．6 \& －0．7\％ \\
 \hline 42．0\％ \& 540.0 \& \({ }_{532.3}^{539}\) \& \({ }_{-7.6}\) \& －－1．4\％ \\
 \hline 43．2\％ \& 538.4 \& 529.0 \& \(-9.4\) \& －1．7\％ \\
 \hline \& 538.0 \& \({ }_{525.7}^{525}\) \& －12．3 \& －2．3\％ \\
 \hline 46．9\％ \& 5329.8 \& \({ }_{524.8}^{52.3}\) \& －5．1 \& －1．0\％ \\
 \hline 48．1\％ \& 526.4 \& 522.9 \& －3．5 \& －0．7\％ \\
 \hline 49．4\％ \& 521.7 \& \({ }_{5}^{517.8}\) \& －2．9 \& \({ }^{-0.0 \% \%}\) \\
 \hline 551．9\％ \& 517.9
 515.0 \& \({ }_{513.0}^{517.4}\) \& －－2．0 \& \({ }^{-0.4 \%}\) \\
 \hline 53．1\％ \& 514.2 \& 512.9 \& －1．3 \& －0．3\％ \\
 \hline \& \& \({ }_{511.2}^{510}\) \& \({ }^{0.4}\) \& 0．1\％ \\
 \hline 55．8\％ \& \({ }_{500.6}^{508.7}\) \& \({ }_{509.6}\) \& \({ }_{9.0}^{1.9}\) \& 1．8\％ \\
 \hline 58．0\％ \& 499.0 \& 505.8 \& 6.8 \& 1．4\％ \\
 \hline 56．5\％ \& \({ }_{495.7}^{498.7}\) \& \({ }_{500.3}^{500.4}\) \& \({ }_{4.7}^{5.5}\) \& － \\
 \hline 61．7\％ \& 494.8 \& 500.3 \& 5.5 \& 1．1\％ \\
 \hline 664．2\％ \& \({ }_{4828}^{485.7}\) \& 4999．4 \& \({ }_{13.5}^{13.7}\) \& 2．8\％ \\
 \hline 65．4\％ \& 480.5 \& 490.0 \& 9.5 \& 2．0\％ \\
 \hline 析 \(6.7 .9 \%\) \& \({ }_{4776.6}\) \& \({ }_{484.1}^{486.5}\) \& \({ }_{7.6}^{7.3}\) \& 1．5\％ \\
 \hline 69．1\％ \& 475.0 \& 477.8 \& 2.8 \& 0．6\％ \\
 \hline 70．4\％ \& \({ }_{457.9}^{467.9}\) \& \({ }_{4752}^{477}\) \& 9，79 \& 2．1\％ \\
 \hline 72．8\％ \& 446.3 \& \& \& \\
 \hline 74．1\％ \& 446.1 \& 450.8 \& 4.7 \& 1．1\％ \\
 \hline 76．5\％ \& \({ }_{433.2}^{44.6}\) \& \({ }_{446.2}^{44.7}\) \& \begin{tabular}{l}
 3.2 \\
 13.0 \\
 \hline 1
 \end{tabular} \& 3．0\％ \\
 \hline 77．8\％ \& 427.5 \& 436.3 \& 8.8 \& 2．1\％ \\
 \hline 79．0\％ \& 422.9 \& 433.5 \& 10.6 \& 2．5\％ \\
 \hline \({ }^{88.50 \%}\) \& \({ }_{4141.5}^{42.2}\) \& \({ }_{4288.0}^{431.7}\) \& 9.5
 13.6 \& \({ }_{3.3 \%}^{2.2 \%}\) \\
 \hline 82．7\％ \& 412.5 \& 422.9 \& 10.4 \& 2．5\％ \\
 \hline 885．2\％ \& \({ }_{400.2}^{400.5}\) \& 414.7
 414.1 \& 14.2
 14.0 \& 3．6\％\({ }^{3.5 \%}\) \\
 \hline 86．4\％ \& 394.0 \& 413.5 \& 19.6 \& 5．0\％ \\
 \hline 887．9\％ \& 390.2
 389.1 \& \({ }_{385.7}^{395.3}\) \& \({ }_{-34}^{5.1}\) \& － \(1.3 \%\) \\
 \hline 90．1\％ \& 370.8 \& \({ }_{367.7}\) \& \({ }_{-3.0}\) \& －0．8\％ \\
 \hline 91．4\％ \& 358.0 \& 357.9 \& 0.0 \& 0．0\％ \\
 \hline 93．8\％ \& \({ }_{346.2}^{352.8}\) \& 356.8
 346.4 \& \({ }_{0}^{4.0}\) \& 0．1\％ \\
 \hline 95．1\％ \& 324.5 \& 326.0 \& 1.5 \& 0．5\％ \\
 \hline 96．3\％ \& 312.6 \& 313.0 \& 0.4 \& 0．1\％ \\
 \hline 98．8\％ \& 309.4

 2815 \& ${ }_{2096}^{3097}$ \& ${ }_{3} 0.4$ \& 0．1\％

 \hline 100．0\％ \& 235.7 \& ${ }_{235}^{235}$ \& 0.1 \& 0．0\％

 \hline
 \end{tabular}

 Table SQ-30-b

 | $\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Excedance } \\ \text { Probability } \end{array} \end{gathered}$ | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Without | WSIIP 2030 With Project | Absolute | |
 | | Monthly EC | Monthly EC | (itierence | fference (\%) |
 | (\%) | MH2 | (| | |
 | 0.0\% | 842.4 | 840.2 | -2.3 | -0.3\% |
 | ${ }^{1.2 \%}$ | 702.0 | 761.9 | 60.0 147 | 8.5\% |
 | 2.5\%\% | ${ }^{6993}$ | 707.7 | 14.7 | 2.1\% |
 | 3.9\% | ${ }_{6919} 692$ | ${ }_{6823} 690.1$ | -2.4 | -1.4\% |
 | 6.2\% | 685.3 | 657.2 | -28.1 | -4.1\% |
 | 7.4\% | 668.2 | 656.3 | -11.9 | -1.8\% |
 | - ${ }_{\text {8.9\% }}$ | -655.2 | 653.4 6382 | -1.85 | -0.3\% |
 | 11.1\% | 653.7 | ${ }_{6353}^{638.2}$ | | |
 | 12.3\% | 640.9 | ${ }_{633.9}$ | ${ }_{-7.0}$ | -1.1\% |
 | 13.6% 14.8% | 631.4 622.4 | 633.3 6326 | 1.9 | 0.3\% |
 | 16.0\% | 618.9 | ${ }_{620.7}$ | 1.8 | 0.3\% |
 | 17.3\% | 616.0 | 617.8 | 1.8 | 0.3\% |
 | +18.5\% | 614.1 610.7 | 607.9 605.2 | -6.5 | ${ }^{-1.0 \% \%}$ |
 | 21.0\% | 609.5 | 601.5 | -8.0 | -1.3\% |
 | ${ }^{22.2 \%}$ | 608.1 | 600.1 | -8.0 | -1.3\% |
 | - 23.5% | 60013 593 | 594.9 5939 | -6.4 0.5 | - ${ }^{-1.1 \%}$ |
 | 25.9\% | 592.9 | 592.0 | -0.9 | -0.1\% |
 | 27.2\% | 589.1 | 589.5 | 0.4 | 0.1\% |
 | | 585.8 578.5 | 589.3 585.7 | ${ }_{7.2}^{3.5}$ | - ${ }_{\text {0, }}$ |
 | 30.9\% | 571.3 | 583.2 | 11.9 | 2.1\% |
 | | 578.3 | 577.1 | 0.8 | 0.1\% |
 | 年33.3\% | 567.6 566.5 | 570.2 | 2.6 2.9 | 0.5\% |
 | 35.8\% | 560.3 | 567.4 | 7.1 | 1.3\% |
 | | 557.0 | 567.1 | | 1.8\% |
 | 30.5\% | 544.6 | ${ }_{5633.2}^{563.2}$ | ${ }_{18.6}^{13.4}$ | 3.4\% |
 | 40.7\% | 540.7 | 558.5 | 17.8 | 3.3\% |
 | | | | 15.5 | 2.9\% |
 | 44.4\% | 529.1 | ${ }_{535.5}^{545.9}$ | ${ }_{9.4}^{16.5}$ | 1.8\% |
 | 45.7\% | 523.2 | 533.4 | 10.3 | 2.0\% |
 | | | ${ }_{531.3}$ | 11.6 | ${ }^{2.2 \%}$ |
 | 49.4\% | 514.2 | ${ }_{520.0}$ | ${ }_{5.9}^{2.7}$ | 1.1\% |
 | 50.6\% | 509.5 | 519.5 | 9.9 | 2.0\% |
 | | | | | 2.4\% |
 | 54.3\% | ${ }_{505.2}$ | 57.6 | 2.9 | ${ }_{0.6 \%}^{2.2 \%}$ |
 | 55.6\% | 501.1 | 507.4 | 6.3 | 1.2\% |
 | 56.8\% | ${ }_{495.3}^{498.9}$ | 504.1 501.9 | | |
 | 59.3\% | 493.4 | 498.0 | ${ }_{4.5}^{6.6}$ | 0.9\% |
 | ${ }^{60.5 \%}$ | 488.1 | 496.0 | 7.9 | 1.6\% |
 | | | 491.4 | 3.4 | 0.7\% |
 | 64.2\% | ${ }_{482.7}^{483.5}$ | ${ }_{488.8}$ | ${ }_{6.1}^{6.6}$ | +1.3\% ${ }^{\text {1.3\% }}$ |
 | 65.4\% | 4793 | 486.9 | 7.6 | 1.6\% |
 | ${ }^{66.7 \%}$ | ${ }^{473.3}$ | 483.7 | 10.3 | 2.2\% |
 | 69.1\% | ${ }_{458.8}$ | 499.9 | ${ }_{-8.8}$ | -1.9\% |
 | 70.4\% | 454.6 | 449.2 | -5.5 | -1.2\% |
 | 71.6\% | | 431.2 | 4.2 | 1.0\% |
 | 74.1\% | ${ }_{425.6}^{42.3}$ | ${ }_{426.0}$ | ${ }_{0.3}^{1.3}$ | 0.1\% |
 | 75.3\% | 414.3 | 419.6 | 5.3 | 1.3\% |
 | 76.5\% | 398.0 3890 | | ${ }^{0.3}$ | 0.1\% |
 | 77.8\% | 389.0 380.6 | 381.4 388.9 | -7.6. -11.7 | ${ }^{-2.0 \%}$ |
 | 80.2\% | 369.3 | 361.8 | -7.5 | -2.0\% |
 | 81.5\% | 356.5 | ${ }^{330.4}$ | -26.2 | -7.3\% |
 | - | 330.4 319.7 | ${ }_{3199.7}^{319.7}$ | -10.7 0.1 | |
 | 85.2\% | 319.4 | 315.7 | -3.7 | -1.1\% |
 | 86.4\% | 313.3 | 314.4 | 1.1 | 0.3\% |
 | 887.7\% | ${ }_{305.7}^{300.7}$ | 308.0 305.5 | 1.3 -0.2 | - 0.4% |
 | 90.1\% | 304.4 | ${ }_{304.4}$ | | 0.0\% |
 | 91.4\% | 301.9 | 301.2 | -0.7 | -0.2\% |
 | 92.6\% | 298.6 | 301.1 | 2.5 | 0.9\% |
 | ${ }^{93.8 \%}$ | ${ }_{2879}^{296.2}$ | 296.9 2885 | 0.7 | 0.2\% |
 | 96.3\% | 287.4 | ${ }_{287.8}^{28.5}$ | 0.4 | 0.1\% |
 | 97.5\% | 285.8 | 286.2 | 0.4 | 0.1\% |
 | 988.8\% 100.0\% | 276.5 194.9 | 276.1 195.0 | $\stackrel{-0.4}{-0.1}$ | -0.0\% |

 | | | Warch | | Probabl | dedance | - | April | | April |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Percent | WSIP 2030 Without | WSIP 2030 With Project | | | Percent | WSIP 2030 Without | WSIP 2030 With Project | Absolute | |
 | | Proiect | | Disference | Relativ | | roiect | | rence | Relative |
 | Probability | Monthly EC | Monthly EC | (UinHorsicm) | Difference (\%) | Probability | Monthly EC
 (UMHOS/CN | Monthly EC (UMHOS/CM | (UMHOSCCM) | Difference (\%) |
 | 0.0\% | 739.3 | 710.3 | -29.0 | 3.9\% | 0.0\% | ${ }^{648.3}$ | ${ }^{637.5}$ | 10.8 | -1.7\% |
 | 1.2\% | 687.8 | 672.1 | -15.7 | 2.3\% | 1.2\% | 592 | 602.0 | | |
 | 2.5\% | 673.3 | 666.2 | -7.1 | 1.1\% | 2.5\% | 586.7 | 586.5 | -0.2 | |
 | 3.7\% | 664.2 | ${ }^{645.3}$ | -18.9 | 2.8\% | 3.7\% | 585.8 | 5 | | - |
 | 4.9\% | 645.4 | 642.7 | -2.8 | 0.4\% | 4.9\% | 582.9 | 585.1 | 2.2 | |
 | ${ }_{7}^{6.4 \%}$ | 642.4 615.3 | 640.8 633.6 | -1.6 18.3 | - ${ }^{0.20 \%}$ | 7.4\% | 582.2 580.4 | 585.0 575.2 | ${ }_{-5.2}^{2.8}$ | ${ }^{0.5 \%}$ |
 | 8.6\% | 2.8 | 632.9 | 30.1 | 5.0\% | 8.6\% | 573. | 574 | | |
 | 9.9\% | 601.2 | 613.7 | 12.5 | 2.1\% | 9.9\% | 569.3 | 573.9 | 4.6 | |
 | 11.1\% | 597.7 | 608.3 | 10.6 | 1.8\% | 11.1\% | 566.9 | 569.3 | 2.4 | 0.4\% |
 | 12.3\% | 597.6 | 607.0 | 9.4 | 1.6\% | 12.3\% | 557.0 | | 11.7 | |
 | 13.6\% | 574.3 | 599.6 | 25.3 | 4.4\% | 13.6\% | 535.9 | 558.3 | 22.4 | 4.2\% |
 | 14.8\% | 568.6 | 599.2 | 30.6 | 5.4\% | 14.8\% | 529.1 | 557.4 | 28.3 | |
 | 16.0\% | 567.3 | 571.7 | 4.5 | 0.8\% | 16.0\% | 517.9 | 546.2 | 8.3 | - |
 | 17.3\% | 7.1 | 569.0 | 2.0 | 0.3\% | 73\% | 513.9 | | | |
 | 18.5% 19.8\% | 566.9 565.5 | 566.3 563.6 | --1.9 | ${ }^{-0.3 \%}$ | 18.5\% | 513.7 511.7 | 529.1 522.0 | 15.3 10.3 | 2.0\% |
 | 21.0\% | 562.1 | 562.8 | 0.6 | 0.1\% | 21.0\% | 504.5 | 518.4 | 13.9 | 2.8\% |
 | 22.2\% | 555.7 | 558.3 | 2.6 | 0.5\% | 22.2\% | 502 | 518 | 5.7 | |
 | 23.5\% | 549.0 | 553.6 | 4.6 | 0.8\% | 23.5\% | 499.4 | 515.1 | 15.7 | 3.1\% |
 | 24.7\% | 542.3 | 543.4 | 1.2 | 0.2\% | 24.7\% | 499.2 | 511.2 | | |
 | 25.9\% | 541.8 | ${ }_{539.3}$ | -2.5 | -0.5\% | 25.9\% | 496.8 | 500.1 | 3.3 | 0.7\% |
 | 27.2\% | 535.6 | 531.8 | ${ }^{-3.8}$ | -0.7\% | 27.2\% | 496.2 | 492.1 | 4.1 | |
 | 28.4\% | 532.2 | 529.9 | -2.3 | -0.4\% | 28.4\% | 486.5 | 491.4 | 4.9 | 1.0 |
 | 29.6\% | 525.1 | 524.2 | -0.9 | -0.2\% | 29.6\% | 477.4 | 479.2 | 1.8 | 0.4\% |
 | 30.9\% | 519.1 | 519.6 | 0.5 | 0.1\% | 30.9\% | 471.8 | 476.2 | 4.4 | 0.9\% |
 | 32.1\% | 515.1 | 516.2 | 1.1 | 0.2\% | 32.1\% | 468.0 | 475.2 | 7.2 | 1.5\% |
 | 33.3\% | 512.6 | 511.9 | -0.7 | -0.1\% | 33.3\% | 467.6 | 469.8 | 2.2 | 0.5\% |
 | 34.6\% | 499.9 | 509.1 | 9.2 | 1.8\% | 34.6\% | 465.2 | 466.4 | 1.2 | 0.2\% |
 | 35.8\% | 499.2 | 503.3 | 4.1 | 0.8\% | 35.8\% | 459.5 | 461.7 | 2.1 | 0.5\% |
 | 37.0\% | 498.5 | 502.3 | 3.8 | 0.8\% | 37.\% | 448.0 | 449.0 | 1.0 | 0.2\% |
 | 38.3\% | 492.2 | 493.7 | 1.5 | 0.3\% | 38.3\% | 433.6 | 434.9 | 1.2 | 0.3\% |
 | 39.5\% | 479.3 | 492.5 | ${ }^{13.2}$ | 2.8\% | 39.5\% | 431.4 | 431.7 | 0.3 | 0.1\% |
 | 40.7\% | 477.1 | 489.6 | 12.5 | 2.6\% | 40.7\% | 427.3 | 430.8 | 3.5 | 0.8\% |
 | 42.0\% | 477.0 | 481.5 | 4.5 | 0.9\% | 42.0\% | 423.5 | 425.8 | ${ }^{2.3}$ | 0.5\% |
 | 43.2\% | 476.5 | 478.5 | 2.1 | 0.4\% | 43.2\% | 412.5 | 413.7 | 1.2 | 0.3\% |
 | 44.4\% | 476.1 | 477.6 | 1.5 | 0.3\% | 44.4\% | 404.6 | 404.6 | 0.0 | 0.0\% |
 | 45.7\% | 473.4 | 476.1 | 2.7 | 0.6\% | 45.7\% | 398.0 | 398.8 | 0.7 | 0.2\% |
 | 46.9\% | 466.4 | 475.6 | 9.1 | 2.0\% | 46.9\% | 388.6 | 388.8 | 0.2 | 0.1\% |
 | 48.1\% | 463.7 | 470.6 | 6.9 | 1.5\% | 48.1\% | 386.7 | 388.2 | 1.5 | 0.4\% |
 | 49.4\% | 460.8 | 465.0 | 4.1 | 0.9\% | 49.4\% | 385.1 | 385.1 | 0.0 | 0.0\% |
 | 50.6\% | 459.4 | 463.5 | 4.1 | 0.9\% | 50.6\% | 381.4 | 381.5 | 0.1 | 0.0\% |
 | 51.9\% | 453.1 | 460.9 | 7.8 | 1.7\% | 51.9\% | 378.3 | 378.4 | 0.0 | 0.0\% |
 | 53.1\% | 446.4 | 460.5 | 14.1 | 3.2\% | 53.1\% | 372.6 | 373.8 | 1.2 | 0.3\% |
 | 54.3\% | 437.2 | 438.4 | 1.2 | 0.3\% | 54.3\% | 359.0 | 359.8 | 0.8 | 0.2\% |
 | 55.6\% | 427.3 | 436.2 | 8.9 | 2.1\% | 55.6\% | 357.8 | 358.1 | 0.4 | 0.1\% |
 | 56.8\% | ${ }^{426.2}$ | 430.7 | 4.4 | 1.0\% | 56.8\% | 347.9 | 348.0 | 0.1 | 0.0\% |
 | 58.0\% | 423.5 | 426.8 | 3.3 | 0.8\% | 58.0\% | 324.7 | 325.1 | 0.4 | 0.1\% |
 | 59.3\% | ${ }^{423.3}$ | 423.8 | 0.5 | 0.1\% | 59.3\% | 318.1 | 318.1 | 0.0 | 0.0\% |
 | 60.5\% | 412.3 | 422.0 | 9.7 | 2.4\% | 60.5\% | 316.2 | 316.2 | 0.0 | 0.0\% |
 | 61.7\% | 398.1 | 411.5 | 13.3 | 3.4\% | 61.7\% | 312.1 | 312.0 | 0.0 | 0.0\% |
 | 63.0\% | 397.2 | 398.0 | 0.8 | 0.2\% | 63.0\% | 306.1 | 306.2 | 0.1 | 0.0\% |
 | 64.2\% | 387.2 | 390.4 | 3.2 | 0.8\% | 64.2\% | 305.8 | 306.1 | 0.3 | 0.1\% |
 | 65.4\% | 381.1 | 390.0 | 8.9 | 2.3\% | 65.4\% | 302.6 | 305.2 | 2.5 | 0.8\% |
 | 66.7\% | 378.6 | 382.2 | 3.6 | 0.9\% | 66.7\% | 296.0 | 297.0 | 1.1 | 0.4\% |
 | 67.9\% | 371.6 | 381.0 | 9.4 | 2.5\% | 67.9\% | 290.7 | 290.9 | 0.1 | 0\% |
 | 69.1\% | 370.6 | 371.1 | 0.5 | 0.1\% | 69.1\% | 285.1 | 285.2 | 0.1 | 0.0\% |
 | 70.4\% | ${ }_{3}^{365.6}$ | 366.2 | 0.6 | 0.2\% | 70.4\% | 284.4 | 284.6 | 0.2 | 0.1\% |
 | 71.6\% | 358.0 | 357.9 | -0.1 | 0.0\% | 71.6\% | 281.2 | 281.2 | 0.0 | 0.0\% |
 | 72.8\% | 338.6 | 340.6 | 2.1 | 0.6\% | 72.8\% | 280.2 | 279.2 | -1.0 | \% |
 | 74.1\% | ${ }^{377.5}$ | 339.7 | ${ }^{2.2}$ | 0.6\% | 74.1\% | 271.0 | 271.1 | 0.1 | 0.0\% |
 | 7.3.5\% | 325.1 | 338.7 | 13.5 | 4.2\% | 75.3\% | 270.2 | 270.3 | 0.2 | 0.1\% |
 | 77.5\% | ${ }_{3}^{323.6}$ | 324.0 | 0.5 | 0.1\% | 76.5\% | 264.2 | 264.3 | 0.1 | 0.0\% |
 | 77.8\% | 317.1 | 315.5 | -1.6 | -0.5\% | 777.8\% | 263.6 | 264.2 | 0.6 | 0.2\% |
 | 79.0\% | ${ }^{313.9}$ | 314.2 | 0.2 | 0.1\% | 79.0\% | 263.5 | 263.5 | 0.0 | 0.0\% |
 | ${ }^{80.2 \%}$ | 313.8 | 314.1 | 0.3 | 0.1\% | 80.2\% | 261.0 | ${ }_{261.1}^{2651}$ | 0.1 | 0.0\% |
 | 81.5\% | ${ }^{313.7}$ | 314.0 | ${ }^{0.3}$ | 0.1\% | 81.5\% | ${ }^{252.7}$ | ${ }^{252.0}$ | -0.7 | 0.3\% |
 | | 303.9 | 305.0 | 1.1 | 0.4\% | 82.7\% | 251.4 | 251.7 | 0.3 | 0.1\% |
 | 84.0\% | 298.5 | ${ }_{3}^{304.2}$ | 5.8 | 1.9\% | 84.0\% | 238.9 | 238.8 | -0.1 | 0.0\% |
 | ${ }^{85.2 \%}$ | 297.5 | 297.7 | 0.2 | 0.1\% | 85.2\% | 237.9 | ${ }^{237.9}$ | 0.1 | \%\% |
 | 88.4\% | 29.9 | 297.0 | ${ }^{0.1}$ | 0.0\% | 86.4\% | 235.1 | 235.1 | 0.0 | 0.0\% |
 | 887.7\% | 294.4 | 294.7 | 0.3 | 0.1\% | 877\% | 234.1 | 234.1 | -0.1 | 0.0\% |
 | 88.9\% | ${ }_{2} 292.7$ | 2929 | 0.2 | 0.1\% | 88.9\% | 220.0 | 220.4 | 0.4 | 0.2\% |
 | 90.1\% | 285.1 | 285.1 | 0.0 | 0.0\% | 90.1\% | 218.7 | 219.0 | 0.3 | 0.1\% |
 | 91.4\% | ${ }_{2773}^{2819}$ | 277.4 | -4.5 | -1.6\% | 91.4\% | 216.5 | 217.1 | 0.6 | 0.3\% |
 | ${ }_{93.8 \%}^{92.6 \%}$ | 277.3 254.6 | ${ }_{254.9}^{277.0}$ | -0.3 | -0.1\% | ${ }_{9}^{92.8 \%}$ | ${ }_{2}^{214.4}$ | ${ }_{213}^{214.4}$ | 0.0 | - ${ }_{\text {0,0\% }}^{0.1 \%}$ |
 | 95.1\% | 234.6 | 237.5 | 2.9 | 1.2\% | 95.1\% | 211.8 | 212.3 | 0.5 | 0.2\% |
 | 96.3\% | 233.6 | 234.0 | 0.4 | 0.2\% | 96.3\% | 184.9 | 184.8 | -0.1 | 0.0\% |
 | 97.5\% | 230.2 | 228.9 | -1.3 | -0.6\% | 97.5\% | 182.7 | 182.9 | 0.2 | 0.1\% |
 | 98.8\% | ${ }_{2029}^{228.5}$ | ${ }_{2031}^{228.5}$ | ${ }^{0.1}$ | 0.0\% | 98.8\% | 178.5 | 178.9 | 0.4 | 0.2\% |
 | 100.0\% | 202.9 | 203.1 | 0.3 | 0.1\% | 100.0\% | 167.0 | 167.7 | 0.7 | 0.4\% |

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[b]{3}{*}{$$
 \begin{aligned}
 & \text { Percent } \\
 & \text { Exceedance } \\
 & \text { Probability }
 \end{aligned}
 $$} \& \multicolumn{3}{|c|}{Way} \& \multirow[b]{4}{*}{$$
 \begin{gathered}
 \text { Relative } \\
 \text { Difference (\%) }
 \end{gathered}
 $$}

 \hline \& \& WSIP 2030 With Project \& \multirow[t]{3}{*}{$$
 \begin{gathered}
 \text { Absolute } \\
 \text { cifference } \\
 \text { (uMHOSCCM) }
 \end{gathered}
 $$} \&

 \hline \& Monthly EC \& Monthy EC \& \&

 \hline \& (UMHOSSCM) \& (UMHOSSCM) \& \&

 \hline 0.0\% \& 542.4 \& 548.9 \& 6.5 \& 1.2\%

 \hline 1.2\% \& 528.6 \& 538.9 \& 10.3 \& 2.0\%

 \hline 2.5\% \& 526.9 \& 529.1 \& 2.1 \& 0.4\%

 \hline 3.7\% \& 514.2 \& 515.3 \& 1.1 \& 0.2\%

 \hline 4.9\% \& 511.2 \& 512.4 \& 1.3 \& 0.2\%

 \hline 6.2\% \& 506.2 \& 507.6 \& 1.4 \& 0.3\%

 \hline 7.4\% \& 506.0 \& 507.5 \& 1.6 \& 0.3\%

 \hline 8.6\% \& 504.6 \& 502.8 \& -1.8 \& -0.4\%

 \hline 9.9\% \& 496.0 \& 499.1 \& 3.1 \& 0.6\%

 \hline 11.19\% \& 495.9 \& 498.2 \& 0.3 \& 0.1\%

 \hline 12.3\% \& 489.3 \& 488.6 \& -0.7 \& -0.1\%

 \hline 13.6\% \& 488.6 \& 487.4 \& -1.3 \& -0.3\%

 \hline 14.8\% \& 488.5 \& 483.2 \& -5.4 \& -1.1\%

 \hline 16.0\% \& 48.5 \& 482.5 \& 2.0 \& 0.4\%

 \hline 17.3\% \& 472.8 \& 473.1 \& 0.3 \& 0.1\%

 \hline 18.5\% \& 455.6 \& 472.7 \& 7.1 \& 1.5\%

 \hline 19.8\% \& 457.5 \& 467.6 \& 10.1 \& ${ }^{2.2 \%}$

 \hline 21.0\% \& 456.0 \& 464.6 \& 8.6 \& 1.9\%

 \hline \& 455.5 \& 453.8 \& ${ }_{8}^{8.2}$ \& ${ }_{1.8 \%}^{1.8 \%}$

 \hline ${ }^{234.7 \%}$ \& ${ }_{450.3}^{4519}$ \& 457.6
 456.0 \& ${ }_{5.7}^{5.7}$ \& - ${ }^{1.3 \%}$

 \hline 25.9\% \& 449.3 \& 455.8 \& 6.5 \& 1.4\%

 \hline 27.2\% \& 448.3 \& 453.7 \& 5.4 \& 1.2\%

 \hline 28.4\% \& 448.2 \& 449.2 \& 1.0 \& 0.2\%

 \hline 29.6\% \& 447.5 \& 448.9 \& 1.4 \& 0.3\%

 \hline 30.9\% \& 447.4 \& 488.3 \& 0.9 \& 0.2\%

 \hline 32.1\% \& 445.6 \& 447.6 \& 2.0 \& 0.4\%

 \hline 33.3\% \& 44.3 \& ${ }_{4419}^{44.9}$ \& ${ }_{71}{ }^{4}$ \& +1.1\%

 \hline 34.6\% \& 434.7 \& 441.9 \& 7.1 \& 1.6\%

 \hline 35.8\% \& ${ }_{4}^{432.9}$ \& ${ }_{4}^{440.7}$ \& 7.8
 126 \&

 \hline 37.0\% \& 422.7 \& 435.2 \& 12.6 \& 3.0\%

 \hline 38.3\% \& 419.8 \& ${ }_{4}^{423.9}$ \& 4.1 \& - 1.0%

 \hline 39.5\% \& 417.6 \& 418.8 \& 1.2 \& 0.3\%

 \hline ${ }^{40.7 \%} 4$ \& 417.0 \& 418.0 \& 1.0 \& 0.2\%

 \hline 43.2\% \& 410.6 \& ${ }_{411.8}^{414.4}$ \& 1.2 \& 0.3\%

 \hline 44.4\% \& 405.9 \& 410.3 \& 4.4 \& 1.1\%

 \hline 45.7\% \& 405.3 \& 406.2 \& 0.9 \& 0.2\%

 \hline 46.9\% \& 393.6 \& 394.2 \& 0.5 \& 0.1\%

 \hline 48.1\% \& 389.2
 3880 \& 3893 \& 0.1 \& 0.0\%

 \hline 49.4\% \& 388.0 \& 388.0 \& 0.0 \& 0.0\%

 \hline \& 386.0
 3850 \& 385.9
 3854 \& -0.1 \& 0.0\%

 \hline 5.5.1\% \& ${ }_{381.1}^{3850}$ \& ${ }_{3}^{3851.4}$ \& 0.4
 0.0 \& - 0.0 0.1\%

 \hline 54.3\% \& 375.6 \& 375.7 \& 0.1 \& 0.0\%

 \hline 55.6\% \& 372.1 \& 372.0 \& 0.0 \& 0.0\%

 \hline 56.8\% \& 371.0 \& 371.0 \& 0.0 \& 0.0\%

 \hline 58.0\% \& 367.4
 3653 \& 367.0
 3653 \& -0.3 \& -0.1\%

 \hline 60.5\% \& ${ }_{357.0}$ \& 365.3
 358.2 \& 1.2 \& 0.3\%

 \hline 61.7\% \& 355.7 \& ${ }_{356.5}$ \& 0.8 \& 0.2\%

 \hline (63.0% \& 354.5
 354.1 \& 354.6
 354.0 \& 0.0 \& -

 \hline 65.4\% \& 345.7 \& 345.7 \& 0.1 \& 0.0\%

 \hline 66.7\% \& ${ }^{342.6}$ \& 343.8 \& 1.2 \& 0.3\%

 \hline -67.9\% \& 327.9
 3274 \& 327.9
 3276 \& ${ }_{0}^{0.0}$ \& - ${ }_{\text {0,0\% }}^{0.1 \%}$

 \hline 70.4\% \& 323.5 \& 323.5 \& 0.0 \& 0.0\%

 \hline 71.6\% \& 321.9 \& 322.1 \& 0.2 \& 0.1\%

 \hline 72.8\% \& 31.3
 308.5 \& 313.2
 308.5 \& 0.0 \& -0.0\%

 \hline 75.3\% \& 298.4 \& 298.4 \& 0.0 \& 0.0\%

 \hline 76.5\% \& 297.8 \& 297.9 \& 0.0 \& 0.0\%

 \hline 77.8\% \& ${ }_{2745}^{293.2}$ \& 293.3
 2758 \& ${ }^{0.1}$ \& -0.0\%

 \hline 80.2\% \& 269.5 \& 270.8 \& 1.4 \& 0.5\%

 \hline 81.5\% \& 264.6 \& 264.6 \& 0.0 \& 0.0\%

 \hline 82.7\%
 840% \& ${ }_{2558}^{261.2}$ \& ${ }_{2559}^{262.5}$ \& ${ }^{1.3}$ \& - ${ }_{\text {en }}^{0.5 \%}$

 \hline 85.2\% \& 246.9 \& ${ }_{247.6}$ \& 0.8 \& 0.3\%

 \hline 86.4\% \& 241.2 \& 241.4 \& 0.2 \& 0.1\%

 \hline 877\% \& 213.3 \& 213.5 \& ${ }^{0.3}$ \& 0.1\%

 \hline 88.9\% \& 200.9 \& 201.5 \& 0.6 \& 0.3\%

 \hline 90.1\% 9 \& 199.2
 1961
 1 \& 199.6

 1967 \& 0.4
 0.7 \& ${ }_{\text {cose }}^{0.3 \%}$

 \hline 92.6\% \& 191.4 \& 192.0 \& 0.6 \& 0.3\%

 \hline 93.8\% \& 184.2 \& 184.4 \& 0.2 \& 0.1\%

 \hline 95.1\% \& 181.9 \& 182.2 \& 0.3 \& 0.2\%

 \hline 96.3\% \& 166.4 \& 166.6 \& 0.2 \& 0.1\%

 \hline 97.5\% \& 164.1 \& 164.4 \& 0.3 \& 0.2\%

 \hline 988.8\%
 100.0\% \& 163.6
 161.3 \& 163.6
 162.1 \& ${ }_{0.8}^{0.0}$ \& 0.5\%

 \hline
 \end{tabular}

 Table SQ-30-b

 | | | June | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | WSIP 2030 Weithout | WSII 2030 With Project | Absolute | |
 | Probability | Monthly EC | Monthy EC | Difference (UMHOSCM) | (erence (\%) |
 | (\%) | mhosicm | minm | | |
 | 0.0\% | \% | 494.8 | 4.5 | 0.9\% |
 | 2.5\% | ${ }_{471.4}^{489.4}$ | ${ }_{463.2}$ | ${ }_{-8.3}$ | -1.8\% |
 | 3.7\% | 460.4 | 461.0 | 0.6 | 0.1\% |
 | 4.9\% | 457.9 | 458.3 | 0.4 | 0.1\% |
 | 7.4\% | ${ }_{427.6}^{438.3}$ | ${ }_{4}^{437.5}$ | -0.9 | ${ }^{-0.3 \%}$ |
 | 8.6\% | 427.3 | 425.7 | -1.6 | -0.4\% |
 | ${ }^{\text {9.9\%\% }}$ | 424.9 | 425.7 | 0.7 | 0.2\% |
 | ${ }^{11.1 \%} \times$ | ${ }_{421.9}^{423.6}$ | ${ }^{425.0}$ | 1.4
 1.6
 1 | - 0.4% |
 | 13.2\% | 420.6 | 422.5 | 1.9 | $0.4{ }^{\circ}$ |
 | 14.8\% | 419.6 | 422.4 | 2.8 | 0.7\% |
 | (17.0\% | 408.2 | 416.3 | 8.1 | 2.0\% |
 | 17.3\% | 407.5 | 409.6 | | 0.5\% |
 | 19.8\% | 400.5 | 3993.2 | --7.0 | ${ }^{-1.4 \% \%}$ |
 | 21.0\% | 397.8 | 391.0 | -6.8 | -1.7\% |
 | ${ }^{22.2 \%}$ | 392.9 | 390.7 | -2.2 | -0.6\% |
 | 24.7\% | ${ }_{387.2}$ | ${ }_{3}^{3887.2}$ | -1.4 0.7 | -0.2\% |
 | 25.9\% | 387.0 | 387.2 | 0.2 | 0.1\% |
 | 27.2\% | 3828 | 382.6 | -0.2 | 0.0\% |
 | 29.6\% | 380.7 | ${ }_{381.3}^{381.8}$ | 0.7 0.6 | 0.2\% |
 | 30.9\% | 379.9 | 380.5 | 0.6 | 0.1\% |
 | 32.19\% | 3793 | 380.4 | 1.1 | 0.3\% |
 | 㐌33.6\% | 379.0 374.2 | 379.4 379.0 | 0.4 4.8 | - ${ }_{\text {0.3\% }}$ |
 | 35.8\% | 373.7 | 374.5 | 0.8 | 0.2 |
 | 37.0\% | 371.9 | 373.0 | 1.1 | 3\% |
 | 38.3\% | 371.4 3677 | ${ }_{3714}$ | ${ }_{0}^{0.8}$ | - ${ }_{\text {N }}$ |
 | 39.7\% | | 37.4 | | |
 | 42.\% | 365.8 | 366.5 | 0.7 | 0.2\% |
 | 43.2\% | 364.0 | 365.7 | 1.7 | 0.5\% |
 | ${ }_{45.7 \%}^{44.4 \%}$ | 363.9 3624 | ${ }_{3651}^{365.7}$ | | |
 | 46.9\% | 362.4 | 364.4 | 2.0 | 0.5\% |
 | 48.19\% | 361.8 3616 | 364.1 | ${ }^{2.3}$ | - 0.6% |
 | 50.6\% | ${ }_{360.6}$ | 363.7 3630 | | |
 | 51.9\% | ${ }_{353.7}$ | 362.8 | ${ }_{9.1}^{2.1}$ | 2.6\% |
 | 54.3\% | 353.2 3531 | 360.1
 3578 | 6.9 | 1.9\% |
 | 55.6\% | | | | |
 | 56.8\% | 352.6 3519 | 354.2 354.0 | ${ }_{2}^{1.7}$ | 0.6\% |
 | 58.0\% | 351.8 | ${ }^{352.6}$ | 0.9 | 0.2\% |
 | 㐌 $6.9 .5 \%$ | 350.4 | ${ }_{352.5}$ | ${ }^{2.1}$ | 0.6\% |
 | 61.7\% | 349.9 | 349.5 | -0.3 | -0.1\% |
 | -63.0\% | ${ }^{349.3}$ | 349.5 | 0.2 | 0.1\% |
 | -64.2\% | 349.0 | ${ }^{348.8}$ | -0.1 | 0.0\% |
 | ${ }^{66.7 \%}$ | 348.0 | 348.7 | 0.7 | 0.2\% |
 | 67.9\% | ${ }^{347.6}$ | ${ }^{348.3}$ | 0.6 | 0.2\% |
 | 70.4\% | 347.2 | 347.4 | 0.2 | 0.19\% |
 | 71.6\% | 343.3 | 346.8 | ${ }_{3.4}$ | 1.0\% |
 | 72.8\% | 343.3 3425 | 342.6 3415 | -0.7 | -0.2\% |
 | 74.1\% | ${ }^{342.5}$ | ${ }^{341.5}$ | | |
 | 76.5\% | ${ }_{337.9}$ | 337.9 | 0.0 | 0.0\% |
 | 77.8\% | ${ }_{3359}^{3359}$ | 335.4 354 | -0.5 | -0.2\% |
 | 79.0\% | | ${ }^{334.1}$ | | |
 | 81.5\% | ${ }_{329.7}$ | 3331.1 | -0.8 | - |
 | 82.7% 880% | 328.9 3271 | $\begin{array}{r}328.8 \\ 372 \\ \hline\end{array}$ | -0.1 | 0.0\% |
 | -84.0\% | ${ }^{3227.1}$ | 327.3 3220 | 0.2 | 0.1\% |
 | 86.4\% | 319.1 | 32.0 | -1.9 | 0.3\% |
 | 87.7% 889% | 312.4 3108 | 312.7 | ${ }^{0.3}$ | 0.1\% |
 | 88.9\% | 310.8 | 310.7 | -0.1 | 0.0\% |
 | 91.4\% | ${ }_{304.3}$ | 304.1 | -0.2 | -0.1\% |
 | - 92.6% | 301.9 295 | 301.9 2059 | 0.0 | 0.0\% |
 | 9551\% | 297.2 | 2959 | 0.7 | -0.3\% |
 | 96.3\% | 277.4 | ${ }_{277.6}^{27.6}$ | -0.2 | 0.1\% |
 | 97.5\% | 276.8 | 276.4 | -0.4 | -0.1\% |
 | 100.0\% | ${ }_{244}^{20.3}$ | ${ }_{232.7}^{202 .}$ | -11.6 | -4.8\% |

 | | | | | Probabl | August | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Percent | WSIP 2030 Without | WSIP 2030 With Project | | | Percent | WSIP 2030 Without | WSIP 2030 With Project | | |
 | ceedance | Proiect | | | Relative | | Pried | | disterence | Relative Difference (\%) |
 | Probability | Monthly EC | Monthly EC | (UMHOSSCM) | Difference (\%) | Probability | Monthly EC (UnHosicm | Monthly EC (UMHOS/C | (UMHOSCOCM) | Difference (\%) |
 | 0.0\% | 494.6 | 497.1 | 2.4 | 0.5\% | 0.0\% | 516.8 | 529.8 | 13.0 | 2.5\% |
 | 1.2\% | 489.7 | 466.3 | ${ }_{23.4}$ | -4.8\% | 1.2\% | 494.5 | 518 | 23.8 | |
 | 2.5\% | 460.8 | 424.2 | -36.6 | -7.9\% | 2.5\% | 493.6 | 485.8 | -7.8 | |
 | 3.7\% | 425.3 | 414.6 | -10.8 | 2.5\% | 3.7\% | 488.8 | 472.7 | 16.1 | |
 | 4.9\% | 421.5 | 399.1 | -22.4 | -5.3\% | 4.9\% | 465.6 | 445.1 | | |
 | 6.2\% | 383.2 | 375.8 | -7.5 | -1.9\% | 6.2\% | 449.1 | 443.7 | | |
 | 7.4\% | 379.7 | 367.7 | -12.0 | -3.2\% | 7.4\% | 432.2 | 437.8 | 5.6 | |
 | 8.6\% | 367.2 | 366.8 | -0.4 | 0.1\% | 8.6\% | 431.6 | 437.3 | 5.6 | |
 | 9.9\% | 366.7 | 366.5 | -0.3 | -0.1\% | 9.9\% | 418.9 | 433.2 | | |
 | 11.1\% | 366.2 | ${ }^{366.3}$ | 0.1 | 0.0\% | 11.1\% | 417.5 | 430.7 | 13.1 | 3.1\% |
 | 12.3\% | 365.3 | 365.0 | -0.3 | -0.1\% | 12.3\% | 416.6 | 2.1 | 5.6 | |
 | 13.6\% | 363.7 | 364.8 | 1.0 | 0.3\% | 13.6\% | 415.9 | 419.8 | 3.9 | 0.9\% |
 | 14.8\% | 360.0 | 364.3 | 4.3 | 1.2\% | 14.8\% | 413.7 | 416.8 | 3.1 | |
 | 16.0\% | 359.2 | 360.8 | 1.6 | 0.5\% | 16.0\% | 407.3 | 405.8 | 1.5 | 0.4 |
 | 17.3\% | 358.5 | 360.1 | 1.7 | 0.5\% | 17.3\% | 402.5 | 404.7 | 2.2 | |
 | 18.5\% | 358.3 | 356.9 | -1.3 | -0.4\% | 18.5\% | 398.2 | 404.7 | 6.5 | 1.6\% |
 | 19.8\% | 358.2 | 356.0 | -2.2 | -0.6\% | 19.8\% | 390.6 | 392.8 | 2.3 | |
 | 21.0\% | ${ }_{353.5}^{352}$ | 353.1 35.1 | -0.4 | -0.1\% | 21.0\% | 388.3 | 384.0 | ${ }^{4.3}$ | -1.1\% |
 | ${ }^{22.2 \%}$ | 352.9 | 350. | -2.9 | 0.8\% | 22.2\% | 377.9 | 376.7 | -1.2 | -0.3 |
 | 23.5\% | 346.1 3450 | 344.8 343.7 | ${ }_{-1.3}$ | -0.2\% | ${ }_{\text {24, }}^{23.5 \%}$ | ${ }_{374.3}^{375.5}$ | 376.0 3749 | ${ }_{0}^{0.6}$ | 0.19\% |
 | 25.9\% | 338.9 | 33990 | 0.1 | 0.0\% | 25.9\% | 370.8 | ${ }_{364.6}$ | ${ }_{-6} .6$ | -17\% |
 | 27.2\% | 338.4 | 338.5 | 0.1 | 0.0\% | 27.2\% | 368.2 | 353.5 | -14.6 | ${ }^{-4.0 \%}$ |
 | 28.4\% | 330.9 | 333.7 | 2.7 | 0.8\% | 28.4\% | 364.1 | 350.8 | -13.3 | -3.7 |
 | 29.6\% | 328.0 | 332.0 | 3.9 | 1.2\% | 29.6\% | 341.5 | 344.2 | 2.6 | 0.8\% |
 | 30.9\% | 325.4 3525 | 331.7 | ${ }^{6.3}$ | 1.9\% | - 3 30.9\% | 333.0 3381 | 341.8 | ${ }^{3} 8$ | -1.1\% |
 | 332.1\% | ${ }_{322.7}^{325.2}$ | 324.4 324.0 | -0.8
 1.3 | - | 33.3\% | ${ }_{323.1}^{3351}$ | 340.1 333.9 | ${ }_{4.1}$ | 1.2\% |
 | 34.6\% | 322.2 | 319.1 | -3.1 | -1.0\% | 34.6\% | 328.5 | 330.4 | 2.0 | 0.6\% |
 | 35.8\% | 322.1 | 315.4 | -6.6 | -2.1\% | 35.8\% | 321.3 | 318.7 | -2.6 | -0.8\% |
 | 37.0\% | 320.3 | 314.8 | -5.5 | -1.7\% | 37.0\% | 319.5 | 318.3 | -1.2 | -0.4\% |
 | 38.3\% | 317.8 | 313.2 | -4.6 | -1.4\% | 38.3\% | 317.3 | 317.5 | 0.2 | 0.0\% |
 | 39.5\% | 316.3 | 312.4 | -3.9 | -1.2\% | 39.5\% | 316.7 | 317.4 | 0.7 | 0.2\% |
 | ${ }^{40.72 \%}$ | 315.8 314.1 | 308.2 307.8 | -7.4 | ${ }^{-2.0 \% \%}$ | 40.2\% | ${ }_{315.7}^{316.1}$ | ${ }_{3}^{317.9}$ | ${ }_{1}^{1.1}$ | 0.4\% |
 | 43.2\% | 314.0 | 307.5 | -6.5 | -2.1\% | 43.2\% | 313.5 | 316.4 | 3.0 | 0.9\% |
 | 44.4\% | 311.9 | 306.9 | -4.9 | -1.6\% | 44.4\% | 312.5 | 316.4 | 3.9 | 1.3\% |
 | 45.7\% | 308.1 | 305.1 | -3.0 | -1.0\% | 45.7\% | 312.4 | 315.9 | 3.4 | 1.1\% |
 | 46.9\% | 308.1 | 303.8 | -4.3 | -1.4\% | 46.9\% | 311.9 | 315.8 | 3.9 | 1.3\% |
 | 48.1\% | 307.4 | 302.0 | -5.4 | -1.8\% | 48.1\% | 311.9 | 314.6 | 2.7 | 0.9\% |
 | 49.4\% | 306.1 | 300.0 | -6.2 | -2.0\% | 49.4\% | 311.1 | 312.8 | 1.7 | 0.6\% |
 | 50.9\% | 304.3 3029 | ${ }_{298.7}^{299.7}$ | -4.4 | ${ }^{-1.4 \% \%}$ | 50.9\% | ${ }_{306.7}^{308.1}$ | ${ }_{309.1}^{312.1}$ | 2.5 | 0.8\% |
 | 53.1\% | 300.5 | 298.5 | -2.1 | -0.7\% | 53.1\% | 305.3 | 308.9 | 3.6 | 1.2\% |
 | 54.3\% | 299.0 | 297.5 | -1.4 | -0.5\% | 54.3\% | 305.3 | 307.9 | 2.6 | 0.9\% |
 | 55.\% | 298.9 | 297.1 | -1.8 | -0.6\% | 55.6\% | 305.1 | 306.2 | 1.1 | 0.4\% |
 | 56.8\% | 298.6 | 296.9 | -1.7 | -0.6\% | 56.8\% | 304.4 | 305.9 | 1.6 | 0.5\% |
 | 58.0\% | 298.0 2954 | ${ }^{295.6}$ | -2.4 | -0.8\% | 58.0\% | 304.1 | 304.6 | 0.4 | 0.1\% |
 | 60.5\% | ${ }_{293.4}^{295.4}$ | ${ }_{293.9}^{294.2}$ | -1.2 | -0.2\% | 60.5\% | ${ }_{301.9}$ | ${ }_{302.1}^{303.8}$ | ${ }_{0.2}^{0.5}$ | 0.1\% |
 | 61.7\% | 292.9 | 29.8 | -1.1 | -0.4\% | 61.7\% | 301.6 | 301.9 | 0.3 | 0.1\% |
 | 63.0\% | 29.4 | 291.5 | 0.1 | 0.0\% | 63.0\% | 298.4 | 301.5 | 3.1 | 1.0\% |
 | 64.2\% | 291.2 | 291.3 | 0.0 | 0.0\% | 64.2\% | 297.7 | 299.7 | 2.0 | 0.7\% |
 | ${ }^{65.4 \%}$ | 291.2 | ${ }_{29.8}^{2898}$ | -1.4 | -0.5\% | 65.4\% | 296.7 | 296.6 | -0.1 | 0.0\% |
 | -66.7\% | 291.1 | ${ }_{299}^{289.1}$ | -2.1 | -0.7\% | ${ }^{66.7 \%}$ | ${ }^{295.6}$ | 2959 | ${ }^{0.2}$ | 0.1\% |
 | 69.1\% | 287.5 | 283.4 | -4.1 | -1.4\% | 69.1\% | ${ }_{292.0}^{292.0}$ | 295.0 | ${ }_{3.0}^{2.3}$ | 1.0\% |
 | 70.4\% | 285.5 | 282.9 | -2.6 | -0.9\% | 70.4\% | 291.0 | 293.4 | 2.4 | 0.8\% |
 | 71.6\% | 282.9 | 281.4 | -1.5 | -0.5\% | 71.6\% | 290.7 | 291.2 | 0.5 | 0.2\% |
 | 72.8\% | 282.5 280.7 | 281.1 279.8 | -1.4 -0.9 | -0.0\%\% | 72.8\% | 284.2 2789 | ${ }_{281 .}^{290.1}$ | ${ }^{6.0}$ | 2.1\% |
 | 75.3\% | 280.5 | 279.7 | -0.8 | -0.3\% | 75.3\% | 276.9 | 280.8 | 4.0 | 1.4\% |
 | 76.5\% | 279.8 | 278.3 | -1.5 | -0.5\% | 76.5\% | 275.7 | 276.2 | 0.5 | 0.2\% |
 | 77.8\% | 277.9 | 277.0 | -0.9 | -0.3\% | 77.8\% | 273.5 | 273.7 | 0.2 | 0.1\% |
 | 79.0\% | 276.5 | 276.6 | 0.1 | 0.1\% | 79.0\% | 271.2 | 273.6 | 2.4 | 0.9\% |
 | 80.2\% | 276.4 | 276.1 | -0.3 | -0.1\% | 80.2\% | 269.0 | 269.8 | 0.8 | 0.3\% |
 | 81.5\% | ${ }_{2757}^{2759}$ | 278.0 | 0.1 | 0.0\% | 81.5\% | 268.1 | 269.6 | 1.4 | 0.5\% |
 | 824.0\% | ${ }_{274.1}^{275}$ | ${ }_{274.8}^{27.9}$ | -0.7 | - 0.3% | 82.7\% | ${ }_{267.7}^{268.1}$ | ${ }_{266.3}^{268.8}$ | ${ }_{-1.4}^{0.7}$ | -0.5\% |
 | 85.2\% | 272.8 | 272.3 | -0.5 | -0.2\% | 85.2\% | 265.0 | 265.9 | 0.9 | 0.3\% |
 | 86.4\% | 272.1 | 269.5 | -2.6 | -1.0\% | 86.4\% | ${ }^{265.4}$ | ${ }_{2593}^{2593}$ | -1.2 | 0.4\% |
 | 87.7\% | 271.6 2789 | 2693 | -2.2 | -0.8\% | 877\% | 259.1 | ${ }^{258.1}$ | -1.0 | -0.4\% |
 | - ${ }^{88.9 \% \%}$ | ${ }_{2697}^{2697}$ | 268.4 | -1.3 | -0.5\% | 88.9\% | ${ }_{259.1}^{259.1}$ | 255.1 | -3.9 | ${ }^{-1.5 \%}$ |
 | 91.4\% | ${ }_{267.3}^{26.4}$ | 267.7 | -0.4 | 0.1\% | 91.4\% | 255.4 | ${ }_{253.8}^{254}$ | ${ }_{-2} .6$ | -1.0\% |
 | 92.6\% | 267.0 | 267.1 | 0.1 | 0.0\% | 92.6\% | 255.7 | 251.7 | -4.1 | -1.6\% |
 | 93.8\% | 266.5 | ${ }_{265}^{265.5}$ | -1.0 | -0.4\% | 93.8\% | ${ }_{254.7}^{254.7}$ | 251.4 | -3.3 | -1.3\% |
 | 95.1\% | 265.9 | 264.8 | -1.2 | -0.4\% | 95.1\% | 251.1 | 250.1 | -0.9 | -0.4\% |
 | -96.7.3\% | ${ }_{264.8}^{265.1}$ | ${ }_{262.5}^{264.2}$ | -0.9 | ${ }^{-0.3 \% \%}$ | 96.3% 97.5% | ${ }_{2498}^{24.1}$ | ${ }_{2479}^{2479}$ | -1.2 | 0.5\% |
 | 98.8\% | 263.7 | 261.4 | -2.3 | -0.9\% | 98.8\% | 248.3 | 245.9 | -2.4 | -1.0\% |
 | 100.0\% | 261.0 | 25.6 | -2.4 | -0.9\% | 100.0\% | 246.8 | 245.4 | -1.5 | -0.6\% |

 | | | |
 | :---: | :---: | :---: | :---: |
 | | | |

 Figure SQ-31-b
 Clifton Court Forebay, Monthly EC

 | Percent
 Exceedance
 Probability | October | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Without | WSIP 2030 With Project | Absolute | |
 | | Monthly EC | Monthly EC | （itierence | fference（\％） |
 | （\％） | （umHosicm） | | | |
 | 0．0\％ | 830.4 | 806.8 | ${ }^{-23.6}$ | －2．8\％ |
 | ${ }^{1.2 \%}$ | ${ }_{766.7}$ | 780.7 7789 | 14.0 14.1 | 1．8\％ |
 | 2．5\％ | 764.8 | 778.9 | 14.1 | 1．8\％ |
 | 3．9\％ | ${ }_{753.5}^{759.5}$ | 761．0 | ${ }^{11.6}$ | －1．6\％ |
 | 6．2\％ | 752.0 | 728.3 | －23．6 | －3．1\％ |
 | 7．4\％ | 745.1 | 725.1 | －19．9 | －2．7\％ |
 | －${ }_{\text {8．9\％}}$ | 740.8
 740. | ${ }_{7117.1}^{717.7}$ | -23.7 -270 | －3．2\％ |
 | 11．1\％ | | 711．4 | | |
 | 12．3\％ | 724.0
 7.7 | 708.6 | －15．4 | ${ }_{-2.1 \%}$ |
 | ＋13．9\％ | ${ }_{7071}^{7157}$ | 707.6 7002 | －8．1 | － |
 | 16．0\％ | 704.4 | 694.3 | －10．1 | －1．4\％ |
 | 17．3\％ | 696.9 | 694.0 | －2．9 | －0．4\％ |
 | 18.5% 1988% | 695.9 6921 | 690.9 689 | －5．1． -25 | －0．7\％ |
 | 21．0\％ | 690.5 | 688.9 | －3．6 | －0．5\％ |
 | 22．2\％ | 690.0 | 671.4 | －18．6 | －2．7\％ |
 | ${ }^{23.5 \%}$ | 689.9 689 | 670.2 670.1 | －1997 | ${ }_{-2.29 \%}^{-2.7 \%}$ |
 | 25．9\％ | 679.3 | 668.2 | －11．1 | －1．6\％ |
 | 27．2\％ | 679.0 | 667.3 | －11．7 | －1．7\％ |
 | 28．4\％ | 677.4 672.8 | ${ }_{659.6}^{666.5}$ | －9．9．2 | ${ }_{-2.0 \%}^{-1.5 \%}$ |
 | 30．9\％ | 663.9 | 657.5 | －6．4 | －1．0\％ |
 | ${ }^{32.1 \%}$ | 663.2 | 6490 | －14．1 | －2．1\％ |
 | 年33．3\％ | 661.0 657.0 | 648.7 646.7 | －12．3 -10.3 | －1．9\％ |
 | 35．8\％ | 656.1 | 643.7 | －12．4 | －1．9\％ |
 | | 652.2 | 641.7 | －10．5 | －1．6\％ |
 | 笛38．3\％ | ¢651．2 | ${ }_{634.3}^{641.1}$ | －10．1 -14.8 | ${ }_{-2.3 \%}^{-1.5 \%}$ |
 | 40．7\％ | 644.3 | 633.2 | －11．1 | －1．7\％ |
 | 42．0\％ | 639.5 | ${ }_{627.5}^{627.5}$ | －12．0 | －1．9\％ |
 | 43．2\％ 44.4 | 析 638.3 | 627．2 6 | －21．1 -2.5 | －-1.7% |
 | 45．7\％ | 627.1 | 625.1 | －1．9 | －0．3\％ |
 | | ${ }^{623.1}$ | ${ }^{604.2}$ | －18．9 | －3．0\％ |
 | 48．1\％ 4.4 | 622.3 6020.5 | 597．8 594.4 | －24．5 -16.1 | －－3．6\％ |
 | 50．6\％ | 608.6 | 588.0 | －28．6 | －4．7\％ |
 | 51．9\％ | | 556．6 | －41．2 | －6．9\％ |
 | 54．3\％ | 561.7 548.8 | ${ }_{546.8}^{54.7}$ | －2．0 | ${ }_{\text {－}}-2.4 \%$ |
 | 55．\％\％ | 380.2 | 381.1 | 0.9 | 0．2\％ |
 | | | | －0．2 | －0．1\％ |
 | 59．3\％ | ${ }_{373.2}^{375}$ | ${ }_{358.7}^{362.5}$ | －13．2 | －3．3\％${ }_{-3.9 \%}$ |
 | ${ }^{60.5 \%}$ | 360.0 356.1 | ${ }^{355.6}$ | －1．3 | －0．4\％ |
 | 61．7\％ | ${ }_{356.1}$ | | －2．2 | －0．6\％ |
 | | 355.8 355.6 | 353.3
 352.0 | －2．4 | ${ }^{-0.0 \%}$ |
 | 65．4\％ | ${ }^{352.8}$ | 349.1 | 3.8 | －1．1\％ |
 | ${ }^{66.7 \%}$ | 350．4 | 343．8 | －6．5 | －1．9\％ |
 | 69．1\％ | 350.0 348.4 | ${ }_{341.5}^{342.6}$ | －7．9 | ${ }_{-2.0 \%}$ |
 | 70．4\％ | 347.8 | 339.4 | －8．4 | －2．4\％ |
 | | | ${ }^{337.9}$ | －6．6 | －1．9\％ |
 | 74．1\％ | 339.8 | ${ }_{321.4}$ | －18．3 | －5．4\％ |
 | 75．3\％ | 331.1 | 320.6 | －10．5 | －3．2\％ |
 | | | | | |
 | 79．0\％ | ${ }_{325.9}$ | 318.9 318.0 | -11.1 -7.9 | －3．4\％ |
 | 80．2\％ | ${ }^{324.5}$ | 317.1 | －7．3 | －2．3\％ |
 | －${ }_{\text {815 }} 8.5 \%$ | 324.4 323.7 | 316.6
 366.4 | 7.8
 7.3 | －2．4\％${ }_{2}^{2.2 \%}$ |
 | 84．0\％ | ${ }_{322.8}$ | 314.5 | －8．3 | ${ }_{-2.6 \%}$ |
 | 85．2\％ | 321.3 | 314.2 | －7．1 | －2．2\％ |
 | －${ }^{86.4 \%}$ | 32.0 .7 320.6 | 314.1 311.6 | -6.6 -9.1 | －2．8\％ |
 | 88．9\％ | 319.1 | 310.9 | －8．2 | －2．6\％ |
 | 90．1\％ | 315.2 | 310.1 | －5．1 | －1．6\％ |
 | 92．4．4\％ | 315.0 314.7 | 309.3 308.1 | －5．7 | －1．8\％ |
 | 93．8\％ | ${ }_{313.3}$ | 305.7 | －7．6 | ${ }_{\text {－2．4\％}}$ |
 | 95．1\％ | 310.4 | 299.3 | －11．1 | －3．6\％ |
 | 96．3\％${ }_{\text {975 }}$ | 304.1 | 298.7 | －5．4 | －1．8\％ |
 | 98．8\％ | 294.9 2457 | $\begin{array}{r}292.2 \\ 245 \\ \hline\end{array}$ | －2．8 | |
 | 100．0\％ | 214.2 | 214.1 | －0．1 | 0．0\％ |

 | $\begin{gathered} \text { Percent } \\ \text { Exceoder } \\ \text { Probabily } \end{gathered}$ | Novemer | | | Probabi | December | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Without | WSIP 2030 With Project | | | Percent | WSIP 2030 Without | WSIP 2030 With Project | Absolute | |
 | | ${ }_{\text {Montiect }}^{\text {Prec }}$ | Monthly EC | Pifiterese | Rifference ${ }^{\text {R }}$（\％） | Exceedance | | Monthly EC | Difference | |
 | | （UMHOSCM） | （UMHOSICM） | | | （\％） | （UMHOSICM） | （UMHHSSCM） | （UMHOSSCM） | |
 | 0．0\％ | 884.0 | 911.5 | 27.5 | 3．1\％ | 0．0\％ | 909.0 | 976.3 | 67.3 | 7．4\％ |
 | 1．2\％ | 3．2 | 3.5 | 35.3 | 4．1\％ | 1．2\％ | 905.2 | 904.6 | | |
 | 2．5\％ | 857.7 | 867.8 | 10.1 | 1．2\％ | 2．5\％ | 900.9 | 898.1 | －2．8 | |
 | 3．7\％ | 845.0 | 838.6 | －6．4 | －0．8\％ | 3．7\％ | 889.5 | 6．6 | 7.1 | |
 | 4．9\％ | 820.7 | 836.5 | 15.8 | 1．9\％ | 4．9\％ | 865.7 | 889.3 | 23.6 | |
 | 6．2\％ | 806.3 | 821.4 | 15.2 | 1．9\％ | 6．2\％ | 824.7 | 886.1 | 61.5 | |
 | 7．4\％ | 790.6 | 808.7 | 18.1 | 2．3\％ | 7．4\％ | 819.6 | 840.9 | 21.3 | |
 | 8．6\％ | 783.9 | ${ }^{787.8}$ | 3.9 | 5\％ | 8．6\％ | 818.2 | 836.1 | 17.9 | |
 | 9．9\％ | 781.6 | 778.4 | －3．3 | －0．4\％ | 9．9\％ | 810.8 | 835 | 24.7 | |
 | 11．1\％ | 776.4 | ${ }^{767.6}$ | －8．8 | －1．1\％ | 11．1\％ | 797.5 | 811.9 | 14.5 | 1．8\％ |
 | ${ }^{12.3 \%}$ | 772.2 | | | | ${ }^{12.3 \%}$ | 791.2 | 803.1 | 11.9 | |
 | 13.6% 14.8% | 762.9 7359 | 730.8 726.9 | －31．6 -9.0 | －-1.2% | 13．6\％ 14．8\％ | ${ }_{764.6}^{778.2}$ | ${ }_{789.0}^{800.4}$ | 22．4． | ${ }_{3.2 \%}^{2.9 \%}$ |
 | 16．0\％ | 733.0 | 705.2 | 27.8 | －3．8\％ | 16．0\％ | 759.5 | 765.7 | 6.2 | 0．8\％ |
 | 17．3\％ | 723.7 | 700.8 | 22.9 | －3．2\％ | 17.3 | 75 | 763.5 | 5.4 | |
 | 18．5\％ | 698.0 | 673.7 | 24．2 | －3．5\％ | 18．5\％ | 741.5 | 740.6 | 0.8 | 0．1\％ |
 | 19．8\％ | 691.5 | 656.1 | 35．4 | －5．1\％ | 19．8\％ | 735.0 | 734.6 | －0．4 | |
 | 21．0\％ | 688.0 | 643.9 | －44．1 | －6．4\％ | 21．0\％ | 718.3 | 715.7 | 2.6 | －0．4\％ |
 | 22．2\％ | 669.6 | ${ }^{633.4}$ | 36.2 | －5．4\％ | 22．2\％ | 714.1 | 707.1 | －6．9 | ．0\％ |
 | ${ }^{234.7 \%}$ | 669．6 665.8 | － $\begin{aligned} & 625.9 \\ & 625.3\end{aligned}$ | ${ }_{-40.4}$ | ${ }_{\text {－}}^{-6.5 \% \%}$ | ${ }_{\text {24．7\％}}$ | 696．9 689.1 | 698.9 696.4 | 1.9 7.9 | －${ }^{0.3 \%}$ |
 | 25．9\％ | 659.7 | 617.8 | －41．9 | －6．4\％ | 25．9\％ | 684.5 | 691.1 | 6.6 | 1．0\％ |
 | 27．2\％ | 648.7 | 614.5 | －34．2 | －5．3\％ | 27．2\％ | 684.1 | 686.5 | 2.4 | 0．4\％ |
 | 28．4\％ | 637.1 | 613.7 | －23．4 | －3．7\％ | 28．4\％ | 683.7 | 675.7 | －8．0 | －1．2\％ |
 | 29．6\％ | 6363 | 610.3 | 26.0 | －4．1\％ | 29．6\％ | 681.1 | 668.9 | －12．2 | ${ }^{1.8}$ |
 | 30．9\％ | 635.5 | 608.7 | －26．8 | －4．2\％ | 30．9\％ | 681.0 | 648.1 | －33．0 | －4．8\％ |
 | 32．1\％ | 632.4 | 594.3 | －38．1 | －6．0\％ | 32．1\％ | 672.2 | 627.8 | 44.5 | |
 | 33．3\％ | 630.3 | 592.1 | －38．2 | －6．1\％ | 33．3\％ | 666.7 | 612.2 | －54．4 | －8．2\％ |
 | 34．6\％ | 628.6 | 590.9 | －37．7 | －6．0\％ | 34．\％ | 640.2 | 593.6 | 46.6 | －7．3\％ |
 | 35．8\％ | 627.4 | 577.0 | －50．4 | －8．0\％ | 35．8\％ | ${ }^{639.3}$ | 584.7 | －54．6 | －8．5\％ |
 | 37．0\％ | 627.1 | 573.3 | －53．8 | －8．6\％ | 37．0\％ | 632.0 | 583.4 | －48．6 | －7．7 |
 | 38．3\％ | 625.2 | 573.2 | －52．0 | －8．3\％ | 38．3\％ | 629.9 | 582.3 | －47．6 | －7．6\％ |
 | 39．5\％ | 620.4 | 547.9 | －72．5 | －11．7\％ | 39．5\％ | 617.9 | 575.5 | －42．4 | －6．9\％ |
 | 40．7\％ | 611.1 | 547.7 | －63．4 | －10．4\％ | 40．7\％ | 617.4 | 560.9 | －56．5 | －9．2\％ |
 | 42．0\％ | 610.5 | 543.9 | －66．6 | －10．9\％ | 42．0\％ | 583.0 | 544.0 | －39．0 | －6．7\％ |
 | 43．2\％ | 607.5 | 524.3 | －83．2 | －13．7\％ | 43．2\％ | 501.1 | 523.8 | 22.6 | 4．5\％ |
 | 44．4\％ | 605.8 | 522.1 | －83．6 | －13．8\％ | 44．4\％ | 493.8 | 503.2 | 9.4 | 1．9\％ |
 | 45．7\％ | 59.7 | 520.9 | －70．8 | －12．0\％ | 45．7\％ | 464.0 | 457.1 | －6．9 | －1．5\％ |
 | 46．9\％ | 590.7 | 516.9 | －73．8 | －12．5\％ | 46．9\％ | 458.9 | 436.6 | －22．3 | －4．9\％ |
 | 48．1\％ | 578.3 | 486.2 | －92．1 | －15．9\％ | 48．1\％ | 422.8 | 425.7 | 2.9 | ．7\％ |
 | 49．4\％ | 575.1 | 484.9 | －90．2 | －15．7\％ | 49．4\％ | 421.0 | 409.1 | －11．9 | －2．8\％ |
 | 50．6\％ | 563.7 | 479.2 | －84．5 | －15．0\％ | 50．6\％ | 410.6 | 404.0 | －6．6 | －1．6\％ |
 | 51．9\％ | 496.9 | 417.8 | －79．1 | －15．9\％ | 51．9\％ | 405.0 | 394.4 | －10．6 | 6\％ |
 | 53．1\％ | 404.7 | 403.9 | －0．7 | －0．2\％ | 53．1\％ | 403.4 | 392.4 | －11．0 | －2．7\％ |
 | 54．3\％ | 375.8 | 364．2 | －11．6 | －3．1\％ | 54．3\％ | 373.7 | 388.6 | 14.8 | 4．0\％ |
 | 55．6\％ | 353．5 | 337.4 3 | －16．1 | －4．6\％ | 55．6\％ | 372.2 | 387.5 | 15.3 | 4．1\％ |
 | 56．8\％ | ${ }_{338.8}$ | 334.4 | －4．4 | －1．3\％ | 56．8\％ | 364.0 | 370.7 | 6.6 | 1．8\％ |
 | 58．0\％ | 335．2 | ${ }^{333,3}$ | －1．9 | －0．6\％ | 58．0\％ | ${ }_{363.8}$ | 370.6 | 6.8 | 1．9\％ |
 | 59．3\％ | 333.9 | 330.0 | －3．9 | －1．2\％ | 59．3\％ | 359.6 | 363.1 | 3.5 | 1．0\％ |
 | 60．5\％ | 333.0 | 329.8 | －3．2 | －1．0\％ | 60．5\％ | 356.5 | 354.3 | －2．2 | －0．6\％ |
 | 61．7\％ | ${ }^{332.1}$ | ${ }_{329} 3$ | －2．8 | －0．8\％ | 61．7\％ | 350.1 | 354.2 | 4.1 | 1．2\％ |
 | 63．0\％ | 325.9 | 327.5 | 1.7 | 0．5\％ | 63．0\％ | 347.5 | 349.5 | 2.0 | 0．6\％ |
 | 64．2\％ | ${ }_{322.3}$ | 320.4 | -2.0 | －0．6\％ | 64．2\％ | 342.7 | 339.7 | －3．0 | 0．9\％ |
 | ${ }^{65.4 \%}$ | 322.2 | 319.3 | －2．9 | －0．9\％ | 65．4\％ | 339.4 | 336.0 | －3．4 | －1．0\％ |
 | 66．7\％ | 320.9 | 317.3 | －3．6 | －1．1\％ | 66．7\％ | 338.1 | 335.8 | －2．3 | 0．7\％ |
 | 67．9\％ | 320.6 | 314.2 | －6．4 | －2．0\％ | 67．9\％ | 335.1 | 334.3 | －0．7 | －0．2\％ |
 | 69．1\％ | ${ }_{317.6}$ | 313.4 | －4．2 | －1．3\％ | 69．1\％ | 331.9 | 330.9 | －1．0 | 0．3\％ |
 | 70．4\％ | 317.3 | 312.4 | －4．9 | －1．6\％ | 70．4\％ | 330.4 | 330.7 | 0.3 | 0．1\％ |
 | 71．6\％ | ${ }_{317.2}$ | 310.5 | －6．7 | －2．1\％ | 71．6\％ | 325.9 | 329.4 | 3.5 | 1．1\％ |
 | 72．8\％ | 317.2 | 310.4 | －6．8 | －2．1\％ | 72．8\％ | 324.7 | 327.3 | ${ }^{2.6}$ | 0．8\％ |
 | 74．1\％ 7.3% | ${ }^{316.6}$ | ${ }_{3093}$ | －7．4 | －2，3\％ | 74．1\％ | 319.6 | 325.4 | 5.9 | 1．8\％ |
 | 76．5\％ | ${ }_{3113.3}^{315}$ | ${ }_{305.4}$ | －7．9 | －2．5\％ | 76．5\％ | 315.9 | ${ }_{311.8}^{31.9}$ | ${ }_{-3.2}$ | －1．0\％ |
 | 77．8\％ | 312.4 | ${ }^{305.2}$ | －7．2 | －2．3\％ | 77．8\％ | 314.7 | 311.3 | －3．3 | －1．1\％ |
 | 79．0\％ | 308.7 | 304.8 | －3．9 | －1．3\％ | 79．0\％ | 312.4 | 311.1 | －1．3 | －0．4\％ |
 | 80．2\％ | 308.7 | 299.3 | －9．4 | －3．0\％ | 80．2\％ | 310.6 | 310.6 | 0.0 | 0．0\％ |
 | － | 300.6 | 298.6 | －2．0 | －0．7\％ | 81．5\％ | 309.5 | 310.0 | 0.5 | 0．2\％ |
 | 84．0\％ | ${ }_{297.7}^{298.5}$ | ${ }_{295.3}^{299.4}$ | －2．4 | ${ }_{\text {－0．8\％}}$ | 824．0\％ | ${ }_{308.0}$ | ${ }_{307.1}$ | －0．9 | ${ }^{-0.3 \%}$ |
 | 85．2\％ | 2977 | 293.2 | －4．6 | －1．5\％ | 85．2\％ | 305.9 | 304.8 | －1．1 | －0．4\％ |
 | 86．4\％ | 293.9 | 292.2 | －1．7 | －0．6\％ | 86．4\％ | 305.9 | 302.8 | ${ }^{3.1}$ | 1．0\％ |
 | 87．7\％ | ${ }_{2921}^{292.7}$ | 292.2 2913 | －0．5 | －0．2\％ | 87．7\％ | 304.2 | 3020 | －2．2 | －0．7\％ |
 | 88．9\％ | ${ }_{2}^{292.1}$ | 29.3 | －0．8 | －0．3\％ | 88．9\％ | 302.1 | 299.4 | －2．8 | －0．9\％ |
 | 901．4\％ | 291.8 288.4 | ${ }_{286.7}^{290.7}$ | －1．1．7 | －0．6\％ | 90．14\％ | ${ }_{292.5}^{298.8}$ | ${ }_{293.8}^{297.7}$ | -1.1
 1.3 | －0．4\％ |
 | 92．6\％ | 284.8 | 283.0 | －1．8 | | | 292.4 | 293.1 | 0.7 | 0．2\％ |
 | 93．8\％ | 279.5 | 278.8 | －0．7 | －0．2\％ | 93．8\％ | 289.1 | 292.7 | 3.6 | 1．2\％ |
 | 95．1\％ | 277．1 | 277.6 | 0.6 | 0．2\％ | 95．1\％ | 2597 | 264.7 | 5.0 | 1．9\％ |
 | 97．5\％ | ${ }_{263.7}^{273.2}$ | ${ }^{273.6}$ | 0．4 | －1．2\％ | 96．3\％ | ${ }_{214.6}^{247}$ | ${ }_{245}^{24.7}$ | －1．9 | ${ }^{0.8 \%}$ |
 | 98．8\％ | 234.9 | 238.5 | 3.6 | 1．5\％ | | 205.5 | 205.5 | －0．1 | 0．0\％ |
 | 100．0\％ | 219.8 | 220.2 | 0.4 | 0．2\％ | 100．0\％ | 198.1 | 198.3 | 0.2 | 0．1\％ |

 | $\begin{aligned} & \hline \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | January | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | WSIP 2033 With Project | Absolute | |
 | | Monthly EC | Monthly EC | （umHosicm） | ference（\％） |
 | （\％） | （ | ， | | |
 | 0．0\％ | 949.4 | 993．2 | 43.8 | 4．6\％ |
 | 1．2\％ | ${ }_{894.4}^{913.0}$ | ${ }_{9051}^{94.6}$ | 31.6 | ${ }_{1}^{3.5 \%}$ |
 | 3．7\％ | 8974 | ${ }_{8727}$ | ${ }^{2} 2$ | 1．2\％ |
 | 4．9\％ | 864.5 | 869.0 | 4.5 | 0．2\％ |
 | 6．2\％ | ${ }^{832.3}$ | 860.5 | 28.2 | 3.4 |
 | 7．4\％ | 831.1 | 858.5 | 27.4 | 3．3\％ |
 | 8．6\％ | 828.4 8269 | 830.6
 8200 | 2．29 | 0．3\％ |
 | 11．1\％ | 825.5 | 725.7 | －99．8 | 12 |
 | 12．3\％ | 801.2 | 723.2 | －78．0 | |
 | 13．6\％ | 799.9 | 723.0 | －76．9 | －9．6\％ |
 | 14．8\％ | ${ }_{789.3}$ | ${ }_{706.9}$ | －82．4 | －10．4\％ |
 | － 11.0 \％${ }^{17.3 \%}$ | 767.1 751.2 | 700.3 698.1 | －50．8 | －-7.7 F |
 | 18．5\％ | 744.8 | 689.5 | －55．4 | －7．4\％ |
 | 19．8\％ | ${ }_{7}^{735.8}$ | ${ }^{687.3}$ | －48．6 | －6．6\％ |
 | ${ }^{21.0 \%}$ | 725.6 687.0 | 686.6 678.3 | －39．0 | －5．4\％ |
 | 23．5\％ | 680.9 | 674.3 | －6．6 | －1．0\％ |
 | 24．7\％ | 664.9 | 663.9 | －1．1 | －0．2\％ |
 | 25．7．2\％ | 655.7 654.0 | 640.4
 635.6 | －18．2 | ${ }_{-2.8 \%}^{-2.8 \%}$ |
 | 28．4\％ | 639.4 | 629.9 | －9．5 | －1．5\％ |
 | 29．6\％ | 625.9 | 629.2 | 3.3 | |
 | 30．9\％ | ${ }^{625.3}$ | 620.5 | －4．8 | －0．8\％ |
 | 32．1\％ | 621.9 | 617.0 | －4．9 | －0．8\％ |
 | 34．6\％ | 595．98 | 613．3 598.0 | 17.4 5.2 | 2．9\％ |
 | 35．8\％ | 590.3 | 594.8 | 4.5 | |
 | 37．0\％ | 587.1 | 585.8 | －1．3 | |
 | | 584.9 | ${ }_{587.5}^{587}$ | －4．4 | －0．8\％ |
 | | | 579.5 577.9 | | |
 | 42．0\％ | ${ }_{559.0}$ | ${ }_{5759.7}$ | 16.4 16.6 | 3．0\％ |
 | 43．2\％ | 556.9 | 566.2 | 9.3 | 1．7\％ |
 | 44．4\％ | 554.2 | 559.4 | 5.2 | 0．9\％ |
 | 46．9\％ | 553.2 546.6 | ${ }_{5}^{544.7}$ | －4．6 | －0．0\％ |
 | 48．1\％ | 532.6 | 544.0 | 11.4 | 2．1\％ |
 | 49．4\％ | 530.8 | 539．2 | 8.4 | ．6\％ |
 | 年 50.19% | 523．2 519.9 | $\stackrel{535.9}{532.2}$ | ＋12．7 | ${ }^{2.4 \%}$ |
 | 53．1\％ | 518.3 | 530.7 | 12.5 | |
 | 54．3\％ | 511.7 | 518.5 | 6.9 | |
 | 年55．6\％ | 503.4 4952 | 515．8 | 12.3 155 | 2．4\％ |
 | 56．8\％ | ${ }_{492.2}^{495.2}$ | ${ }_{\text {497．2 }}$ | | ＋1．0\％ |
 | 59．3\％ | 491.7 | 496.4 | 4.7 | 1．0\％ |
 | 60．5\％ | 489.5 483 | 491.2 | 1.6 | 0．3\％ |
 | － 61.7% | ${ }_{474.2}^{483.2}$ | ${ }_{478.8}^{489.4}$ | | |
 | 64．2\％ | 465.3 | 475.6 | 10.4 | 2．2\％ |
 | | 460．9 | 474.4 | ${ }^{13.5}$ | ${ }_{2}^{2.9 \%}$ |
 | 66．7\％ 67.9% | ${ }_{453.2}^{453.8}$ | ${ }_{465.9}^{467.4}$ | 13.6 12.7 | 2．8\％ |
 | 69．1\％ | 440.0 | 462.9 | ${ }^{23.0}$ | 5．2\％ |
 | 70．4\％ | ${ }_{432.2}^{438.2}$ | 461.9 460.4 | 23.8
 288
 18 | 5．4\％ |
 | 72．8\％ | ${ }_{4}^{4321.6}$ | ${ }_{4020.4}^{460.4}$ | 28.2 18.8 | 年．5\％\％ |
 | 74．1\％ | 414.7 | 439.6 | 24.9 | 6．0\％ |
 | 75．3\％ | ${ }_{404.0}^{404}$ | 421.8 4182 4 | 17.8 16.6 | 4．4\％ |
 | 77．8\％ | 401.6 399.0 | ${ }_{4014}^{418.2}$ | | 4．6\％ |
 | 79．0\％ | 394.3 | 401.0 | 6.7 | 1．7\％ |
 | － | 393.7 3888 | 401.0 3949 | 7.3
 8.1
 8 | 1．9\％ |
 | ${ }^{82.7 \%}$ | ${ }_{384.9}$ | 394.9 389.1 | 8.1 4.2 | －${ }_{\text {2．1\％}}$ |
 | 84．0\％ | ${ }_{3}^{377.6}$ | 377.1 | 0.5 | 0．1\％ |
 | 85．2\％ | 375.1 3669 | 373．8 | －1．4 | 0．4\％ |
 | ${ }^{80.7 \%}$ | ${ }_{366.6}^{3661}$ | 369.4 364.2 | 2.5 -2.4 | －0．7\％ |
 | 88．9\％ | 342.5 | 338.7 | －3．8 | －1．1\％ |
 | 90．19\％ | 338.9 3224 | ${ }_{3311}^{3380}$ | -0.9 8.7 | －0．3\％ |
 | 92．6\％ | ${ }_{321.9}$ | 322.0 | | 0．0\％ |
 | 93．8\％ | 309.1 | 303.4 | －5．6 | －1．8\％ |
 | 95．1\％ | 280.9 | 281.0 2705 | 0.1 | 0．0\％ |
 | －96．5\％ | 270.0 264.2 | 272.5 264.9 | 0.5 0.6 | ${ }_{0}^{0.2 \%}$ |
 | 98．8\％ | 247.5 | 245.9 | －1．5 | －0．6\％ |
 | 100．0\％ | 237.2 | 237.3 | 0.1 | 0．0\％ |

 | $\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{aligned}$ | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {WSIP 2030 }}^{\text {Proithout }}$ Prout | WSIP 2030 With Project | Absolute | |
 | | Monthly EC | Monthy EC | Difference (UMHOSCCM) | Difference (\%) |
 | | (UMHOSCM) | (UMHOSSCM) | | |
 | 0.0\% | 901.8 | 898.1 | -3.7 | -0.4\% |
 | 1.2\% | 766.5 | 856.6 | 90.2 | 11.8\% |
 | 2.5\% | 757.9 | 731.8 | -26.1 | -3.4\% |
 | 3.7\% | 753.6 | 720.3 | -33.3 | -4.4\% |
 | 4.9\% | 748.1 | 707.8 | -40.4 | -5.4\% |
 | 6.2\% | 729.4 | 687.1 | -43.3 | -5.9\% |
 | 7.4\% | 711.8 | 678.0 | -33.8 | -4.7\% |
 | 8.9\% | 704.7 | 663.4 | -41.3 | -5.9\% |
 | 9.9\% | 692.6 | 654.4 | -38.1 | -5.5\% |
 | 11.1\% | 659.3 | 650.9 | -8.4 | -1.3\% |
 | 12.3\% | 646.2 | 647.5 | 1.3 | 0.2\% |
 | 13.6\% | ${ }_{633.0}^{636}$ | ${ }_{639.7}^{634}$ | 1.6 | 0.3\% |
 | 14.8\% | 636.7 | 634.3 | -2.4 | -0.4\% |
 | 16.0\% | ${ }_{6}^{634.8}$ | ${ }_{632}^{632}$ | -2.5 | -0.4\% |
 | 17.3\% | 624.7 | 617.8 | -6.9 | -1.1\% |
 | 18.5\% | 598.5 | ${ }_{6116.6}$ | 18.1 | 3.0\% |
 | 19.8\% | ${ }_{\text {cke }}^{588.6}$ | ${ }^{616.3}$ | ${ }^{27.7}$ | 4.7\% |
 | 21.0\% | 585.3 584.1 | ${ }^{6077}$ | 22.4
 184 | 3.8\% |
 | 22.5\% | ${ }_{5}^{584.1}$ | 602.6 6025 | 18.4 | ${ }^{3.2 \%}$ |
 | 24.7\% | 576.3 | ${ }_{601.1}$ | ${ }_{24.9}$ | 4.3\% |
 | 25.9\% | 573.4 | 593.7 | 20.3 | 3.5\% |
 | 27.2\% | 572.6 | 580.3 | 7.7 | 1.3\% |
 | 28.4\% | ${ }_{5}^{570.7}$ | 578.3 | 7.5 | 1.3\% |
 | 29.6\% | 562.7 5587 | 57779 | 15.2 | ${ }^{2.7 \%}$ |
 | 330.1\% | ${ }_{5}^{5557 .}$ | ${ }_{573.9}^{57.7}$ | 19.0 169 | 笛3.4\% |
 | 33.3\% | 553.1 | 564.4 | 11.3 | 2.0\% |
 | 34.6\% | 543.8 | 558.0 | 14.3 | 2.6\% |
 | 35.8\% | 540.9 | 557.1 | 16.2 | 3.0\% |
 | 37.0\% | 540.1 | 556.3 | 16.2 | 3.0\% |
 | 38.3\% | 530.6 | 547.2 | 16.6 | 3.1\% |
 | 39.5\% | 520.6 | 541.6 | 21.0 | 4.0\% |
 | 40.7\% | 518.8 | 527.5 5235 | 8.7 5 | -1.7\% |
 | 42.0\% | 518.0 | 523.5 | 5.5 | 1.1\% |
 | 44.4\% | 510.1 | $\begin{array}{r}520.1 \\ 5138 \\ \hline\end{array}$ | ${ }^{10.0}$ | 2.0\% |
 | 45.7\% | 509.0 507.6 | 513.6 5123 | ${ }_{4}^{4.6}$ | -0.9\% |
 | 46.9\% | 505.9 | 508.9 | 3.0 | 0.6\% |
 | 48.1\% | 502.6 | 503.6 | 1.0 | 0.2\% |
 | 49.4\% | 496.6 | 501.0 | 4.4 | 0.9\% |
 | | 493.8 4880 | 500.1 498.4 | 6.4 103 | |
 | 55.1\% | ${ }_{474.5}^{488.0}$ | ${ }_{496.9}^{498.4}$ | 10.3 22.4 | 2.7\% ${ }_{\text {4.7\% }}$ |
 | 54.3\% | 471.3 | 493.3 | 21.9 | 4.7\% |
 | 55.6\% | 469.4 | 490.8 | 21.3 | 4.5\% |
 | 56.8\% | 468.9 | 489.1 | 20.2 | 4.3\% |
 | | ${ }_{4678}^{4678}$ | 483.3 4756 | 15.5
 8.3 | |
 | 60.5\% | ${ }_{456.2}^{46}$ | ${ }_{473.5}^{47.6}$ | ${ }^{817.3}$ | 3.8\% |
 | 61.7\% | 453.9 | 467.6 | ${ }^{13.7}$ | 3.0\% |
 | 64.2\% | ${ }_{4}^{453.4}$ | ${ }_{448.7}^{464}$ | 10.9 -28 | 2.4\% |
 | 65.4\% | 446.8 | 437.7 | -9.2 | ${ }_{-2.1 \%}^{-0.0 \%}$ |
 | 66.7\% | 436.2 | 428.0 | -8.2 | -1.9\% |
 | 69.1\% | ${ }_{4}^{433.1}$ | ${ }_{4225.3}^{427}$ | -5.7 | - |
 | 70.4\% | 427.1 | 407.2 | -19.8 | -4.6\% |
 | 71.6\% | 398.9 | 404.5 | 5.6 | 1.4\% |
 | 77.1\% | 396.1 391.0 | 399.4 390.8 | 3.3 -0.0 | ${ }_{\text {- }}^{0.8 \%}$ |
 | 75.3\% | 378.8 | 389.3 | ${ }^{-0.5}$ | 2.8\% |
 | 76.5\% | 361.4 | 361.6 | 0.2 | 0.1\% |
 | 77.8\% | 348.0 3467 | 347.8
 3453 | -0.2) | -0.0.1\% |
 | 80.2\% | 318.3 | 316.7 | -1.6 | -0.5\% |
 | 81.5\% | 316.2 | 314.9 | -1.3 | -0.4\% |
 | | $\begin{array}{r}314.2 \\ 3095 \\ \hline\end{array}$ | 312.6 3096 | -1.6 0.0 | -0.0\% |
 | 85.2\% | 307.5 | 307.6 | 0.1 | 0.0\% |
 | 86.4\% | 302.8 | 302.7 | -0.1 | 0.0\% |
 | | 299.9 298 | ${ }_{293}^{2986}$ | -1.3 | -0.4\% |
 | 88.9\% | 2998 | ${ }^{293.1}$ | -6.7 | -2.2\% |
 | 99.1\% | 294.0 289 | 290.3 2900 | -3.7 0.1 | - |
 | 92.6\% | 289.9 | 288.4 | -1.6 | -0.5\% |
 | 93.8\% | 287.6 | 279.1 | -8.5 | -3.0\% |
 | 95.1\% | 278.2 | 277.5 | -0.8 | -0.3\% |
 | 96.3\% | 274.1 | 274.0 | -0.1 | 0.0\% |
 | 97.5\% | 272.5 | 268.7 | -3.8 | -1.4\% |
 | 98.8\% | ${ }^{263.5} 172.0$ | 263.7 172.2 | ${ }_{0}^{0.2}$ | - 0.1% |

 | | | march | | Probab | eeance | | Aprit | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Percent | WSIP 2030 Without | WSIP 2030 With Project | Absolute | | Percent | WSIP 2030 Without | WSIIP 2030 With Project | Absolute | |
 | Exxcedance | ${ }_{\text {Proiect }}^{\text {Montly }}$ | Monthl EC | Difference | Rifference ${ }^{\text {R }}$ (\%) | | Proiect | Monthly EC | Difference | Difference (\%) |
 | (\%) | (UMHOSICM) | (UMHOSICM) | (UnHoSicm) | | (\%) | (UnHosicm) | (UMHOSSCM) | (UMHOSCCM) | |
 | 0.0\% | 782.5 | 745.0 | ${ }^{-37.5}$ | -4.8\% | 0.0\% | 784.8 | 746.9 | ${ }^{-37.8}$ | -4.8\% |
 | 1.2\% | 736.2 | 735.4 | -0.9 | -0.1\% | 1.2\% | 685.9 | 680.8 | -5.1 | |
 | 2.5\% | 718.7 | 696.9 | 21.8 | -3.0\% | 2.5\% | 663.6 | 666.4 | 2.8 | |
 | 3.7\% | 687.1 | 7.5 | 0.5 | 0.1\% | 3.7\% | 628.5 | 630.8 | 2.3 | |
 | 4.9\% | 686.4 | 669.5 | 17.0 | -2.5\% | 4.9\% | 622.0 | 606.9 | -15.0 | |
 | 6.2\% | 663.8 | 656.1 | -7.7 | -1.2\% | 6.2\% | 589.0 | 592.4 | 3.4 | |
 | 7.4\% | 645.5 | 646.9 | 1.4 | 0.2\% | 7.4\% | 584.0 | 588.1 | 4.1 | |
 | 8.6\% | 607.7 | ${ }^{642.3}$ | 34.6 | 5.7\% | 8.6\% | 583.5 | 581.0 | -2.5 | |
 | 9.9\% | 587.6 | 620.8 | 33.2 | 5.7\% | 9.9\% | 561.8 | 575.1 | 13.3 | |
 | 11.1\% | 584.6 | 620.5 | 35.9 | 6.1\% | 11.1\% | 555.9 | 563.0 | 7.1 | 3\% |
 | 12.3\% | 577.9 | 593.6 | 15.7 | 2.7\% | 12.3\% | 547.3 | 561.7 | 14.4 | |
 | 13.6\% | 568.1 | 583.0 | 14.9 | 2.6\% | 13.6\% | 537.7 | 559.0 | 21.3 | \% |
 | 14.8 | 1.4 | 0.4 | 19.0 | 3.5\% | 14.8\% | 532.2 | 549.1 | 16.9 | |
 | 16.0\% | 550.6 | 559.9 | ${ }^{9.2}$ | 1.7\% | 16.0\% | 517.5 | 544.8 | ${ }^{27.7}$ | 5.3\% |
 | | 549.5 | | | | | | | | |
 | 19.8\% | 548.2 | ${ }_{552.2}$ | ${ }_{4.0}$ | 0.7\% | 19.8\% | 494.9 | 500.0 | 5.1 | 1.0\% |
 | 21.0\% | 540.6 | 550.4 | 9.8 | 1.8\% | 21.0\% | 487.1 | 496.8 | 9.7 | 2.0\% |
 | 22.2\% | 534.9 | 549.5 | 14.6 | 2.7\% | 22.2\% | 481.5 | 496.6 | 15.0 | 3.1\% |
 | 23.5\% | 533.1 | 523.5 | -9.6 | -1.8\% | 23.5\% | 477.9 | 489.9 | 12.1 | 2.5\% |
 | 24.7\% | 513.4 | 518.7 | 5.3 | 1.0\% | 24.7\% | 470.4 | 483.5 | 13.1 | 8\% |
 | ${ }^{25.7 .9 \%}$ | ${ }_{508.1}^{510.7}$ | | ${ }_{3.4}^{4.1}$ | 0.7\% | ${ }^{25.7 .2 \%}$ | ${ }_{458.6}^{468.5}$ | ${ }_{460.5}^{466.1}$ | -2.3 1.9 | -0.4\% |
 | 28.4\% | 494.6 | 505.5 | 10.9 | 2.2\% | 28.4\% | 457.2 | 458.5 | 1.3 | 0.3\% |
 | 29.6\% | 490.5 | 491.3 | 0.8 | 0.2\% | 29.6\% | 442.1 | 453.7 | 11.6 | 2.6\% |
 | 30.9\% | ${ }_{48,1}^{483.1}$ | ${ }_{482.3}$ | ${ }^{6.3}$ | 1.3\% | 30.9\% | 434.9 | ${ }^{442.5}$ | 7.7 | 1.8\% |
 | 332.3\% | 481.9 481.0 | ${ }_{477.0}^{482.1}$ | -4.0 | -0.8\% | -32.1\% | 431.2 429.6 | ${ }_{431.1}^{433.8}$ | 2.5 1.7 | 0.3\% |
 | 34.6\% | 466.1 | 471.7 | 5.6 | 1.2\% | 34.6\% | 427.7 | 430.9 | 3.2 | 0.8\% |
 | 35.8\% | 458.9 | 466.5 | 7.5 | 1.6\% | 35.8\% | 426.1 | 426.7 | 0.7 | 2\% |
 | 37.0\% | 457.3 | 458.9 | 1.6 | 0.4\% | 37.0\% | | 426.1 | 3.2 | 0.8\% |
 | 38.3\% | ${ }_{451.6}^{453.8}$ | ${ }_{452.3}^{458.6}$ | ${ }_{0}^{4.8}$ | -1.1\% | 38.5\% | ${ }_{409.3}$ | ${ }_{408.9}$ | 1.0 -0.5 | ${ }_{\text {- }}^{0.1 \%}$ |
 | 40.7\% | 449.8 | 451.6 | 1.8 | 0.4\% | 40.7\% | 408.0 | 403.3 | -4.6 | -1.1\% |
 | 42.0\% | 436.1 | 449.8 | 13.7 | 3.1\% | 42.0\% | 396.4 | 395.0 | -1.5 | -0.4\% |
 | 43.2\% | 434.1 | 447.1 | 13.0 | 3.0\% | 43.2\% | 391.3 | 392.1 | 0.8 | 0.2\% |
 | 44.4\% | 433.0 | 436.3 | 3.3 | 0.8\% | 44.4\% | 390.5 | 392.0 | 1.6 | 0.4\% |
 | 45.7\% | 427.8 | 435.7 | 7.9 | 1.8\% | 45.7\% | 389.1 | 390.0 | 0.9 | 0.2\% |
 | 46.9\% | 423.5 | 435.2 | 11.7 | 2.8\% | 46.9\% | 389.1 | 389.9 | 0.8 | 0.2\% |
 | 48.1\% | 421.6 | 430.2 | 8.5 | 2.0\% | 48.1\% | 387.4 | 388.7 | 1.3 | 3\% |
 | 49.4\% | 416.2 | 423.9 | 7.7 | 1.8\% | 49.4\% | 375.2 | 377.3 | 2.1 | 6\% |
 | 50.6\% | 411.1 | 417.9 | 6.9 | 1.7\% | 50.6\% | 375.0 | 374.8 | -0.2 | 1\% |
 | 51.9\% | 409.6 | 416.9 | ${ }^{7.3}$ | 1.8\% | 51.9\% | 374.1 | 374.1 | 0.0 | 0.0\% |
 | 53.1\% | 400.0 | 413.8 | ${ }^{13.7}$ | 3.4\% | 53.1\% | 366.0 | 365.8 | -0.2 | -0.1\% |
 | 54.3\% | 396.0 | 408.7 | 12.6 | 3.2\% | 54.3\% | 363.6 | 364.1 | 0.5 | 0.1\% |
 | 55.6\% | 384.3 | 391.3 | 7.0 | 1.8\% | 55.6\% | 361.4 | 364.0 | 2.6 | 0.7\% |
 | 56.8\% | 379.9 | ${ }^{387.6}$ | 7.7 | 2.0\% | 56.8\% | 354.6 | 354.7 | 0.1 | 0.0\% |
 | 58.0\% | 373.0 | 379.8 | 6.9 | 1.8\% | 58.0\% | 341.1 | 341.2 | 0.2 | 0.0\% |
 | 59.3\% | 366.1 | ${ }_{375.7}$ | 9.6 | 2.6\% | 59.3\% | 328.2 | 328.6 | 0.4 | 0.1\% |
 | 60.5\% | 365.5 3551 | 374.1 3698 | 8.6 | ${ }^{2.4 \%}$ | 60.5\% | 327.0 | 327.8 | 0.9 | 0.3\% |
 | 61.7\% | ${ }^{365.1}$ | 369.8 | 4.7 | 1.3\% | 61.7\% | 320.0 | 320.0 | 0.0 | 0.0\% |
 | 63.2\% | ${ }_{356.2}^{356.6}$ | ${ }_{3}^{364.7}$ | 1.5 | ${ }_{\text {2 }}$ | 63.2\% | ${ }_{3}^{3116.4}$ | 319.8 318.4 | 1.4 1.9 | 0.6\% |
 | 65.4\% | 349.1 | 349.7 | 0.6 | 0.2\% | 65.4\% | 313.9 | 315.0 | 1.1 | 0.3\% |
 | 66.7\% | 348.7 | 349.2 | 0.5 | 0.1\% | 66.7\% | 309.7 | 309.6 | -0.1 | \%\% |
 | 67.9\% | 346.6 | 348.7 | 2.2 | 0.6\% | 67.9\% | 301.3 | 308.8 | 7.5 | 2.5\% |
 | 79.4\% | ${ }^{342.2}$ | 347.2 | 4.9 | 1.4\% | 69.1\% | 292.0 | 292.1 | 0.1 | 0.0\% |
 | 7.1.6\% | ${ }_{377.8}^{331.0}$ | 3 329.5 | 1.7 | 0.5\% | 7.1.6\% | ${ }_{277.5}^{2876}$ | ${ }_{274.7}^{287.1}$ | -0.9 | ${ }^{-0.0 \% \%}$ |
 | 72.8\% | 327.4 | 328.8 | 1.3 | 0.4\% | 72.8\% | 273.6 | 273.7 | 0.0 | 0.0\% |
 | 74.1\% | 326.6 | ${ }^{327.3}$ | 0.8 | 0.2\% | 74.1\% | 272.9 | ${ }^{273.1}$ | 0.2 | 0.1\% |
 | 75.3\% | 321.6 | 321.7 | 0.1 | 0.0\% | 75.3\% | 271.3 | 271.3 | 0.0 | 0.0\% |
 | 76.5\% | 315.9 | 313.9 | -2.1 | -0.7\% | 76.5\% | 271.2 | 271.3 | 0.1 | 0.0\% |
 | 77.8\% | 313.3 3114 | 311.8 3077 | -1.6 -37 | ${ }_{\text {- }}^{\text {- }}$ - 0.2% | 77.8\% | $\begin{array}{r}270.4 \\ 2697 \\ \\ \hline\end{array}$ | 271.3 2698 | 0.8 0.1 | - 0.3% |
 | 80.2\% | 305.0 | 306.9 | 1.9 | 0.6\% | 80.2\% | 265.4 | 265.8 | 0.5 | 0.2\% |
 | 81.5\% | 304.9 | 305.5 | 0.5 | 0.2\% | 81.5\% | 258.1 | 258.5 | 0.4 | 0.2\% |
 | 82.7\% | 300.5 | 305.4 | 4.9 | 1.5\% | 82.7\% | 257.4 250.4 | 255.9 | -1.5 | -0.6\% |
 | 84.0\% | 300.4 | 301.8 | 1.4 | 0.5\% | 84.0\% | 250.2 | 250.6 | 0.4 | 0.2\% |
 | - | 299.0 282.6 | 300.4
 282.8 | 1.4 0.2 | 0.1\% | - | 248.8 245.9 | 250.1
 246.3 | 1.3 0.5 | 0.5\% |
 | 87.7\% | 280.5 | 280.8 | 0.4 | 0.1\% | 87.7\% | 244.6 | 244.7 | 0.1 | 0.0\% |
 | 88.9\% | 277.9 | 277.9 | 0.0 | 0.0\% | 88.9\% | 239.1 | 239.4 | 0.3 | 0.1\% |
 | 90.19\% | ${ }_{268.9}^{274.9}$ | 275.0 2683 | 0.2 | 0.1\% | 90.1\% | 237.9 | ${ }_{2}^{237.6}$ | -0.3 | -0.1\% |
 | 992.4\% | 2688.3
 258.4 | 268.3
 258.5 | ${ }_{0.0}^{0.0}$ | 0.0\% | 914.4\% | 230.8 229.2 | ${ }_{229.9}^{230.9}$ | 0.0 0.2 | 0.0\% |
 | 93.8\% | 249.4 | 245.3 | -4.1 | -1.6\% | 93.8\% | 226.5 | 227.0 | 0.5 | 0.2\% |
 | 95.1\% | 2427 | 242.9 | 0.2 | 0.1\% | 95.1\% | ${ }_{225.2}^{225.2}$ | ${ }^{225.6}$ | 0.4 | 0.2\% |
 | 97.5\% | 2227.8 227.0 | ${ }_{2279}^{228.1}$ | ${ }^{0.3}$ | 0.4\% | ${ }^{96.3 \%}$ | ${ }_{1902}^{205.2}$ | 2049 | -0.3 | ${ }^{0.2 \%}$ |
 | 98.8\% | 224.7 | 226.0 | 1.3 | 0.6\% | 98.8\% | 183.8 | 183.1 | -0.8 | |
 | 100.0\% | 211.9 | 212.3 | 0.4 | 0.2\% | 100.0\% | 175.6 | 175.4 | -0.2 | -0.1\% |

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | Way | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {WSSP }}^{\text {2030 }}$ Proithout | WSIP 2030 With Project | Absolute | |
 | | Monthly EC | Monthly EC | (ifterence | Difference (\%) |
 | | (UMHosicm) | (UMHOSSICM) | | |
 | 0.0\% | 680.9 | 657.5 | -23.4 | -3.4\% |
 | 1.2\% | 623.8 | 599.8 | -24.0 | -3.8\% |
 | 2.5\% | 595.4 | 578.7 | -16.7 | -2.8\% |
 | 3.7\% | 579.3 | 578.7 | -0.6 | -0.1\% |
 | 4.9\% | 572.6 | 569.2 | -3.4 | -0.6\% |
 | -6.2\% | ${ }_{561.2}$ | 561.9 5395 | 0.7 | 0.1\% |
 | 7.4\% | 551.0 | 539.5 | -11.5 | -2.1\% |
 | 8.9\% | ${ }_{529.3}$ | ${ }_{5}^{532.6}$ | 7.3 | 1.4\% |
 | 9.9\% | 510.3 | 522.7 | 12.4 | 2.4\% |
 | 11.1\% | 507.7 | ${ }_{5121.6}$ | 11.0 | 2.2\% |
 | 12.3\% | 505.0 | 512.2 | 7.2 | 1.4\% |
 | 13.6\% | 497.9 | 504.0 | 6.1 | 1.2\% |
 | 14.8\% | 499.0 | 499.2 | 3.2 | 0.6\% |
 | -16.0\% | 495.4 | 497.0 | 1.6 | 0.3\% |
 | 17.3\% | 490.0 | 497.0 | 7.0 | 1.4\% |
 | 18.5\% | 487.4 488.4 | ${ }_{492}{ }^{492}$ | 4.9 57 | 1.0\% |
 | - $\begin{aligned} & 19.8 \% \\ & \text { 21.0\% }\end{aligned}$ | ${ }_{474.4}^{486.3}$ | 492.0 | ${ }_{147} 5$ | |
 | 22.2\% | 472.6 | 477.7 | 5.1 | 1.1\% |
 | 23.5\% | 472.4 | 477.8 | 4.5 | 1.0\% |
 | 24.7\% | 468.4 | 476.7 | 8.2 | 1.8\% |
 | 25.9\% | 467.2 | 472.0 | ${ }^{4.8}$ | 1.0\% |
 | ${ }^{27.2 \%}$ | ${ }_{4651}^{465.6}$ | 470.9 | 5.3 | 1.1\% |
 | 28.4\% | 465.1 | 465.5 | 0.4 | 0.1\% |
 | 29.6\% | 463.5 | 463.5 | 0.0 | 0.0\%\% |
 | 30.9\% | 46.1 | 461.0 | -1.2 | -0.3\% |
 | 32.1\% | 453.0 | ${ }_{46.8}^{46.8}$ | 7.8
 158 | 1.7\% |
 | - $\begin{array}{r}33.3 \% \\ 34.6 \%\end{array}$ | ${ }_{4391}^{440.1}$ | ${ }_{441.8}^{45.3}$ | $\begin{array}{r}15.2 \\ \\ \hline 2.7\end{array}$ | 3.4\% |
 | | ${ }_{439.1}^{439}$ | 44.8 | 2.7 | ${ }^{0.6 \%}$ |
 | - ${ }_{\text {37.7.8\% }}$ | ${ }_{4246.6}^{436}$ | ${ }_{429.7}^{437.4}$ | 0.6 5.2 | 1.2\% |
 | 38.3\% | 419.8 | 418.9 | -0.9 | -0.2\% |
 | 39.5\% | 413.2 | 413.7 | 0.5 | 0.1\% |
 | 40.7\% | 396.6 | 396.9 | 0.3 | 0.1\% |
 | 42.0\% | 388.9 | 388.7 388 | -0.2 | 0.0\% |
 | 43.2\% 44. | - $\begin{aligned} & 387.6 \\ & 3797\end{aligned}$ | - 388.4 | 0.8 | 0.2\% |
 | +44.4\% | ${ }_{3}^{379.7}$ | 379.7 | 0.0 | 0.0\% |
 | - $\begin{aligned} & 45.7 \% \\ & 46.9 \%\end{aligned}$ | 378.1 3725 | 378.1 372.1 | 0.1 | 0.0\% |
 | - ${ }_{\text {46.9\% }}$ | 372.5 371.4 | 372.6 3718 | 0.1 0.3 | 0.1\% |
 | ${ }_{4}^{48.4 \%}$ | 371.4 366.6 | 371.8 367.2 | 0.6 | 0.2\% |
 | 50.6\% | 365.7 | 365.8 | 0.1 | 0.0\% |
 | 51.9\% | 357.6 | 357.6 | 0.0 | 0.0\% |
 | 53.1\% | 355.4 | 356.3 | 0.9 | 0.3\% |
 | | 355.0 3588 | 355.3 | ${ }^{0.3}$ | 0.1\% |
 | | - $\begin{aligned} & 353.8 \\ & 352.1\end{aligned}$ | - $\begin{array}{r}354.4 \\ 3521\end{array}$ | 0.5 | 0.2\% |
 | 58.0\% | ${ }_{346.3}$ | 352.1 346.3 | -0.1 0.0 | -0.0\% |
 | 59.3\% | 343.0 | 343.5 | 0.6 | 0.2\% |
 | 60.5\% | 342.7 | 342.4 | -0.3 | -0.1\% |
 | 61.7\% | 342.5 | 342.4 | -0.1 | 0.0\% |
 | - $\begin{aligned} & 63.0 \% \\ & 64.2 \%\end{aligned}$ | ${ }_{325.3}^{338.1}$ | 338.1 325.3 | -0.1 | -0.0\% |
 | 65.4\% | 320.4 | 320.5 | 0.1 | 0.0\% |
 | 66.7\% | 318.8 | 318.9 | 0.1 | 0.0\% |
 | 67.9\% | 317.5 | 317.5 | 0.0 | 0.0\% |
 | 69.1\% | 316.6 | 316.7 | 0.1 | 0.0\% |
 | -70.4\% | 316.5 3134 | 316.7 3135 | ${ }_{0}^{0.1}$ | -0.0\% |
 | 72.8\% | 309.5 | 309.6 | 0.1 | 0.0\% |
 | 74.1\% | 307.0 | 307.0 | 0.0 | 0.0\% |
 | - $7.3 .3 \%$ | 304.0 3010 | 304.0 3011 | ${ }_{0}^{0.0}$ | -0.0\% |
 | 77.8\% | 292.7 | 292.7 | 0.0 | 0.0\% |
 | 79.0\% | 281.7 | 282.7 | 1.0 | 0.4\% |
 | - 80.2% | ${ }_{2771}^{277.5}$ | ${ }_{277}^{278.6}$ | 1.1 | 0.4\% |
 | 815\% | 277.1 | 277.2 | 0.0 | 0.0\% |
 | 82.7\% 840% | 267.6 2638 | 268.7 2638 | 1.2 | - |
 | 85.2\% | 262.6 | 263.2 | 0.6 | 0.2\% |
 | 86.4\% | 2398 | 240.0 | 0.1 | 0.1\% |
 | 887.7\% | ${ }_{2070}^{221.2}$ | ${ }_{201.4}^{2207}$ | ${ }_{0}^{0.1}$ | - 0.1 0. ${ }^{0.3 \%}$ |
 | 90.1\% | 205.2 | 205.6 | 0.4 | 0.2\% |
 | 91.4\% | 190.0 | 190.4 | 0.4 | 0.2\% |
 | 92.6\% | 189.5 1982 | 190.0 188.9 | 0.5 | 0.3\% |
 | ${ }^{93.58 \%}$ | 186.2 | 186.4 | ${ }^{0.2}$ | 0.1\% |
 | 96.3\% | 182.2 176.8 | 182.5 177.1 | ${ }_{0.4}$ | 0.2\% |
 | 97.5\% | 171.1 | 171.1 | 0.1 | 0.0\% |
 | $\begin{array}{r}98.8 \% \\ \text { 100.0\% } \\ \hline\end{array}$ | 168.4 158.2 | 168.2 158.4 | $\stackrel{-0.1}{-0.2}$ | -0.1\% |

 | | | June | | |
 | :---: | :---: | :---: | :---: | :---: |
 | ${ }_{\text {Percent }}^{\text {Exceedance }}$ | WSIP 2030 Without | WSII 2030 With Project | Absolute | |
 | Proabability | Monthly EC | Monthy EC | （itierence | Herence（\％） |
 | \％${ }^{\circ}$ | （UMHoSicm） | （ Mhiosicm | | |
 | 0．0\％ | 610.0 | 596.0 | －14．0 | －2．3\％ |
 | ${ }^{1.2 \%}$ | ${ }_{587.3}^{5878}$ | 554.5 544.4 | －32．8 | －5．6\％ |
 | 2．5\％\％ | ${ }_{5446}$ | 548．4 | －9．1 | ${ }^{-1.6 \%}$ |
 | 3．9\％ | ${ }_{5416}^{54.6}$ | ${ }_{5152}^{545}$ | －2．94 | ${ }_{-4.9 \%}^{-0.9 \%}$ |
 | 6．2\％ | 490.7 | 490.3 | －0．4 | －0．1\％ |
 | 7．4\％ | 488.5 | 488.7 | 0.2 | 0．0\％ |
 | －${ }_{\text {8．9\％}}$ | ${ }_{484.8}^{485}$ | ${ }_{4772}^{48.0}$ | -0.8 -7 | －0．2\％${ }_{\text {－}}^{\text {－}}$ |
 | 11．1\％ | 484.8 | 4781 | | |
 | ${ }_{1}^{12.3 \%}$ | ${ }_{459.2}^{479}$ | ${ }_{466.2}^{464}$ | － 2.0 | －3．4\％ |
 | 13.6% 14.8% | 457.8 4574 | 458.3 4495 | 0.5 -79 | － |
 | 16．0\％ | 455.6 | 431.9 | －23．8 | －5．2\％ |
 | 17．3\％ | 448.1 | 430.4 | －17．7 | －4．0\％ |
 | 18.5% 1988% | ${ }_{4311}^{432.2}$ | ${ }_{4}^{430.1}$ | －2．28 | ${ }_{-1.5 \%}^{-0.5 \%}$ |
 | 21．0\％ | 422.3 | 422.7 | 0.3 | 0．1\％ |
 | ${ }^{22.2 \%}$ | 421.7 | 416.9 | －4．8 | －1．1\％ |
 | ${ }^{23.5 \%}$ | ${ }_{405.3}^{413.6}$ | ${ }_{413.1}^{416.5}$ | ${ }_{7.8}^{2.8}$ | － |
 | 25．9\％ | 404.7 | 405.3 | 0.6 | 0．1\％ |
 | 27．2\％ | 393.8 | 404.9 | | 2．8\％ |
 | ${ }^{28.4 \%}$ 29．6\％ | 393.0 386.2 | ${ }_{393.9}^{3939}$ | 0.9 7.7 | ${ }_{2}^{0.0 \%}$ |
 | 30．9\％ | 382.6 | 393．3 | 10.7 | 2．8\％ |
 | 32．1\％ | 381.5 | 382.1 | 0.7 | 0．2\％ |
 | 年33．3\％ | 378.7 378.6 | 381.7 378.8 | 3.0 0.3 | 0．8\％ |
 | 35．8\％ | 376.0 | 378.8 | 2.8 | 0．7\％ |
 | 37．0\％ | 375.2 | 378.2 | 3.0 | 0．8\％ |
 | 38．5\％ | 375.0 375.0 | 377.5 377.0 | 2.6 2.0 | ${ }_{\text {en }}^{0.5 \%}$ |
 | 40．7\％ | 374.2 | 376.6 | 2.5 | 0．7\％ |
 | 42．0\％ | 374.2 | 374.7 | 0.6 | 0．2\％ |
 | － 43.2% | 369.0 367.1 | 374.0 370.9 | 5.0
 3.8 | －${ }_{\text {1．3\％}}$ |
 | 45．7\％ | 366.8 | 369.4 | 2.5 | 0．7\％ |
 | 46．9\％ | 366.1 | 367.2 | 1.1 | 0．3\％ |
 | 48．1\％ 4.4 | 364.0 361.7 | 361.7 361.2 | -2.3 -0.5 | －0．0．0\％ |
 | 50．6\％ | 360.7 | 360.0 | －0．7 | |
 | 51．9\％ | 360.5 | 359.5 | －1．0 | －0．3\％ |
 | 年 53.19% | 359.7 | 356.8 | -3.0 | －0．8\％ |
 | 55．6\％ | ${ }_{355.3}^{356.5}$ | 355.5 354.6 | －1．0 | －0．3\％ |
 | 56．8\％ | 353.8 | 351.3 | －2．6 | －0．7\％ |
 | | 352．1 | 350．9 | －1．1． | －0．3\％ |
 | ${ }^{59.3 \%}$ | ${ }_{348.4}$ | 348.1 346.6 | －1．8 | －0．9\％ |
 | 61．7\％ | 347.5 | 345.9 | －1．6 | －0．5\％ |
 | －63．0\％ | 346.3 345.4 | 345.8
 354
 15 | －0．6 | －0．2\％ |
 | －6．4．4\％ | 3454 344.5 | 344.3 344.8 | －0．3 | ${ }_{0}^{0.1 \%}$ |
 | 66．7\％ | 344.1 | 344.3 | 0.2 | 0．1\％ |
 | －67．9\％ | 342.4 338.2 | ${ }_{3423}^{342.3}$ | ${ }_{4}^{0.0}$ | 0．0\％ |
 | 70．4\％ | ${ }_{337.3}$ | 341.0 | | 1．1\％ |
 | 71．6\％ | ${ }_{331.8}$ | 336.6 | 4.8 | 1．4\％ |
 | 72．8\％ | 330.3 3279 | 330.1 3284 | －0．1 | 0．0\％ |
 | 75．3\％ | 327.0 | 322.2 | 1.2 | 0．4\％ |
 | 76．5\％ | ${ }_{325.7}$ | ${ }_{327.3}$ | 1.5 | 0．5\％ |
 | 77．8\％ | ${ }_{316.7}^{325.0}$ | | 0．8
 0.3 | 0．2\％ |
 | 80．2\％ | 314.1 | 315.1 | 1.0 | 0．3\％ |
 | 81．5\％ | 313.9 | 314.0 | 0.2 | 0．1\％ |
 | － 82.7% | 311.9 | 308.7 | －3．1 | －1．0\％ |
 | －84．0\％ | 307.4 291.8 | 307.6 291.8 | 0.2 0.0 | － |
 | 86．4\％ | 285.4 | 288.5 | ${ }_{3.1}$ | 1．1\％ |
 | 87．7\％ | 285.3 248 | 286.1 | 0.8 | 0．3\％ |
 | 88．9\％ | ${ }^{284.8}$ | ${ }_{2778}^{279.8}$ | －5．0 | －1．8\％ |
 | 91．4\％ | 272.8 | 271.6 | －1．2 | －0．4\％ |
 | 92．6\％ | 26.3 | 266.7 | －2．6 | －1．0\％ |
 | 93．\％ | 266.4 | 266.1 | －0．3 | －0．1\％ |
 | 95．19\％ | 266.2 | 265.4 | －0．8 | －0．3\％ |
 | ${ }^{96.5 \%}$ | 261.3 250.3 | 261.5 251.1 | 0.3 0.7 | ${ }_{\text {ore }}^{0.3 \%}$ |
 | 98．8\％ | 243.5 | 244.2 | 0.7 | 0．3\％ |
 | 100．0\％ | 224.2 | 223.9 | －0．3 | －0．2\％ |

 | | | | | Probalil | August | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Percent | WSSP 2030 Without | WSIP 2030 With Proiect | | | cent | WSIP 2030 Without | WSIIP 2030 With Project | | |
 | Exceedance | Proiect | WSIP 2030 With Project | | elative | lance | Proiect | WSIP 2030 With Project | ${ }_{\text {Absolute }}$ | |
 | Probability | Monthly EC | Monthy EC | （ivifieresicm） | Difference（\％） | Probability | Monthly EC | Monthy EC | （ifiterence | Difference（\％） |
 | 0．0\％ | 595.2 | 571.3 | －23．9 | －4．0\％ | 0．0\％ | 678.7 | 687.2 | 8.5 | 1．2\％ |
 | 1．2\％ | 588.5 | 565.7 | 22.8 | －3．9\％ | 1．2\％ | 615.5 | 672.5 | | |
 | 2．5\％ | 544.1 | 510.0 | －34．2 | －6．3\％ | 2．5\％ | 612.6 | 618.6 | 6.0 | 1．0\％ |
 | 3．7\％ | 507.2 | 489.7 | 17.5 | －3．4\％ | 3．7\％ | 588.7 | 602.8 | 14.1 | |
 | 4．9\％ | 466.7 | 461.2 | －5．5 | －1．2\％ | 4．9\％ | 586.5 | 566.6 | | |
 | 6．2\％ | 465.9 | 442.9 | 22.9 | －4．9\％ | 6．2\％ | 568.8 | 563.5 | 5.3 | －0．9\％ |
 | 7．4\％ | 441.3 | 407.1 | 34.2 | －7．8\％ | 7．4\％ | 566.2 | 561.0 | 5.2 | |
 | 8．6\％ | 395.4 | 9.0 | －6．4 | －1．6\％ | 8．6\％ | 537.3 | 554.7 | 17.4 | |
 | 9．9\％ | 390.7 | 8.1 | －2．6 | －0．7\％ | 9．9\％ | 534.7 | 550.3 | 15.7 | |
 | 11．19\％ | 381.9 | 379.0 | －2．9 | －0．8\％ | 11．1\％ | 531.7 | 547.7 | 16.0 | 3．0\％ |
 | ${ }^{12.3 \%}$ | 376.6 | | 0.5 | 0．1\％ | 12．3\％ | | 541.4 | 19.5 | 3．7\％ |
 | | 375.3 374.2 | 374.2 369.4 | －4．80 | －1．3\％ | 13.6% 14.8% | 509．3 503.1 | 525．3 519.2 | 16.0 16.1 | ${ }_{3}^{3.2 \%}$ |
 | 16．0\％ | 370.6 | 368.6 | －2．0 | －0．5\％ | 16．0\％ | 501.4 | 518.7 | 17.4 | 3．5\％ |
 | 17．3\％ | 369.9 | 362.7 | －7．3 | －2．0\％ | 17．3\％ | 500.6 | 514.5 | 14.0 | |
 | 18．5\％ | 366.8 | 359.7 | －7．1 | －1．9\％ | 18．5\％ | 499.4 | 510.4 | 11.1 | 2.28 |
 | 19．8\％ | 366.4 | 356.9 | －9．5 | －2．6\％ | 19．8\％ | 480.7 | 488.1 | 7.4 | 1．5\％ |
 | 21．0\％ | 357.2 | 353.9 | －3．3 | －0．9\％ | 21．0\％ | 469.7 | 487.0 | 17.2 | 3．7\％ |
 | 22．2\％ | ${ }^{354.6}$ | ${ }^{353.2}$ | －1．4 | －0．4\％ | 22．2\％ | 451.2 | 477.7 | 26.6 | 5．9\％ |
 | 23．5\％ | 354.2 | 352.5 | －1．7 | －0．5\％ | 23．5\％ | 446.0 | 450.1 | 4.1 | 0．9\％ |
 | 24．7\％ | 347.9 | 351.3 | 3.4 | 1．0\％ | 24．7\％ | 424.3 | 445.6 | 21.3 | 50\％ |
 | 25．9\％ | 347.9 | 349.7 | 1.8 | 0．5\％ | 25．9\％ | 423.4 | 418.3 | －5．1 | －1．2\％ |
 | 27．2\％ | 347.8 | 341.2 | －6．6 | －1．9\％ | 27．2\％ | 415.0 | 407.1 | 7.9 | －1．9\％ |
 | 28．4\％ | 347.7 | 336.4 | －11．3 | －3．3\％ | 28．4\％ | 405.5 | 406.2 | 0.6 | 0．2\％ |
 | 29．6\％ | 346.1 | 336.0 | －10．1 | －2．9\％ | 29．6\％ | 402.1 | 403.3 | 1.2 | 0．3\％ |
 | 30．9\％ | 346.0 | 333.2 | －12．8 | －3．7\％ | 30．9\％ | 390.5 | 396.9 | 6.4 | 1．6\％ |
 | 32．1\％ | 344.5 | 333.0 | －11．5 | －3．3\％ | 32．1\％ | 389.9 | 391.9 | 1.9 | 0．5\％ |
 | 33．3\％ | 339.3 | 331.1 | －8．2 | －2．4\％ | 33．3\％ | 389.2 | 390.6 | 1.4 | 0．4\％ |
 | 34．6\％ | 339.0 | 330.4 | －8．6 | －2．5\％ | 34．\％ | 386.5 | 390.2 | 3.8 | 1．0\％ |
 | 35．7\％ | 333.2 | 330.1 | －3．1 | －0．9\％ | 35．8\％ | 379.9 | 385.4 | 5.5 | 1．5\％ |
 | 37．0\％ | 333.0 | 328.5 | －4．6 | －1．4\％ | 37．\％ | 379.3 | 383.7 | 4.4 | 1．2\％ |
 | | ${ }_{329.6}$ | ${ }^{324.5}$ | －5．1 | ${ }^{-1.5 \%}$ | 38．3\％ | 377.6 | $\begin{array}{r}383.7 \\ \hline 382\end{array}$ | 6.1 | 1．6\％ |
 | 40．7\％ | 325.7 | 321.1 | －4．5 | －1．4\％ | 40．7\％ | 374.1 | 382.2 | 8.0 | 2．1\％ |
 | 42．0\％ | 322.5 | 321.0 | －1．5 | －0．5\％ | 42．0\％ | 372.8 | 381.8 | 9.0 | 2．4\％ |
 | 43．2\％ | 321.8 | 319.7 | －2．1 | －0．6\％ | 43．2\％ | 371.1 | 379.5 | 8.4 | 2．3\％ |
 | 44．4\％ | 320.8 | 319.5 | －1．3 | －0．4\％ | 44．4\％ | 363.0 | 378.6 | 15.6 | 4．3\％ |
 | 45．7\％ | 319.9 | ${ }_{318.6}$ | －1．3 | －0．4\％ | 45．7\％ | 360.2 | 370.9 | 10.8 | 3．0\％ |
 | 46．9\％ | 319.9 | 318.2 | －1．7 | －0．5\％ | 46．9\％ | 358.7 | 363.9 | 5.2 | 1．5\％ |
 | －${ }_{4}^{48.4 \%}$ | 317.4 | 317.1 | －0．3 | －0．1\％ | 48．1\％ | 354.6 | ${ }^{361.2}$ | 6.5 | ${ }_{1}^{1.8 \%}$ |
 | 50．6\％ | 317.0 | 315.4 | －1．6 | －0．5\％ | 50．6\％ | 345.8 | 353.1 | 7.3 | 2．1\％ |
 | 51．9\％ | 316.8 | 315.3 | －1．5 | －0．5\％ | 51．9\％ | 344.5 | 348.3 | 3.8 | 1．1\％ |
 | 53．1\％ | 314.1 | 314.5 | 0.4 | 0．1\％ | 53．1\％ | 337.2 | 343.7 | 6.5 | 1．9\％ |
 | 54．3\％ | ${ }^{313.9}$ | ${ }^{312.5}$ | －1．4 | －0．4\％ | 54．3\％ | 335.8 | 341.5 | 5.7 | 1．7\％ |
 | 55．6\％ | 313.8 | 312.3 | －1．5 | －0．5\％ | 55．6\％ | 333.8 | 339.7 | 6.0 | 1．8\％ |
 | | 313.5 | 311.9 | －1．6 | －0．5\％ | 56．8\％ | ${ }^{333.6}$ | ${ }_{339.3}$ | 5.7 | ${ }_{1}^{1.7 \%}$ |
 | 59．3\％ | ${ }_{311.5}^{312.4}$ | 311.2 310.3 | －1．2 | ${ }^{-0.4 \%}$ | 59．3\％ | ${ }_{332.8}^{333.5}$ | ${ }_{3}^{337.2}$ | ${ }_{4}^{3.7}$ | 1．3\％ |
 | 60．5\％ | 309.3 | 310.1 | 0.8 | 0．3\％ | 60．5\％ | 329.7 | 336.8 | 7.1 | 2．2\％ |
 | 61．7\％ | 308.7 | 3097 | 1.0 | 0．3\％ | 61．7\％ | 325.4 | 330.6 | 5.2 | 1．6\％ |
 | 63．0\％ | 307.0 | 309.0 | 2.0 | 0．7\％ | 63．0\％ | ${ }^{325.3}$ | 330.1 | 4.8 | 1．5\％ |
 | 64．2\％ | 306.6 | 307.3 | 0.6 | 0．2\％ | 64．2\％ | 319.3 | 327.3 | 8.0 | 2．5\％ |
 | ${ }^{65.4 \%}$ | ${ }_{303.6}^{3020}$ | 307.1 306.6 | ${ }_{4}^{3.4}$ | ＋1．19\％ | －65．4\％ | 319．2 | 322.6 329 | ${ }^{3.4}$ | 1．1\％ |
 | －66．9\％ | ${ }_{302.0}$ | ${ }_{3006.4}$ | ${ }_{4.4}^{4.6}$ | 1．5\％ | 66．9\％ | ${ }_{313.5}$ | ${ }_{3217.2}$ | ${ }_{3.7}^{6.8}$ | ${ }_{1}^{2.2 \%}$ |
 | 69．1\％ | 301.8 | 304.3 | 2.5 | 0．8\％ | 69．1\％ | 308.8 | 312.2 | 3.4 | 1．1\％ |
 | 70．4\％ | 301.3 | 304.1 | 2.8 | 0．9\％ | 70．4\％ | ${ }_{305.8}$ | 311.4 | 5.6 | 1．8\％ |
 | 71.6%

 7728% | 300.4 | 302.9 | ${ }^{2.5}$ | 0．8\％ | 71．6\％ | 305.1 | 3096 | 4.5 | ${ }^{1.5 \%}$ |
 | －74．1\％ | ${ }_{298.0}^{298.5}$ | ${ }_{208 .}$ | ${ }_{0.2}^{2.2}$ | 0．1\％ | 74．1\％ | ${ }_{301.9}^{3031}$ | ${ }_{304.9}$ | ${ }_{3.1}^{6.2}$ | 1．0\％ |
 | 75．3\％ | 296.7 | 296.9 | 0.2 | 0．1\％ | 75．3\％ | 299.8 | 302.2 | 2.4 | 0．8\％ |
 | 76．5\％ | 295.7 | 296.5 | 0.8 | 0．3\％ | 76．5\％ | 297.6 | 301.2 | 3.6 | 1．2\％ |
 | －77．8\％ | 295.5 | 293.5 | －2．0 | －0．7\％ | 77．8\％ | 296.8 | 297.6 | 0.8 | 0．3\％ |
 | － $\begin{aligned} & 79.0 \% \\ & 80.2 \%\end{aligned}$ | ${ }_{28.2}^{293.2}$ | 290.0 | －3．2 | －1．1\％ | 79．0\％ | 294.4 | 296.1 | 1.7 | 0．6\％ |
 | 81．5\％ | 287.0 | 286.5 | －0．4 | －0．2\％ | 81．5\％ | 289.7 | ${ }_{283.7}^{285.0}$ | －7．0 | ${ }_{-2.1 \%}^{-2.0 \%}$ |
 | 82．7\％ | 286.5 | 285.6 | －0．9 | －0．3\％ | 82．7\％ | 282.5 | 283.3 | 0.8 | 0．3\％ |
 | 84．0\％ | 286.4 | 284.0 | －2．4 | －0．8\％ | 84．0\％ | 280.6 | 279.9 | －0．7 | 0．2\％ |
 | 85．2\％ | ${ }_{284}^{284}$ | ${ }_{281.8}^{2818}$ | －2．5 | －0．9\％ | 85．2\％ | ${ }^{287.4}$ | ${ }^{27792}$ | －1．2 | －0．4\％ |
 | －${ }^{86.4 \%}$ 877\％ | ${ }^{284.3}$ | 281.0 | －3．3 | －1．1\％ | 86．4\％ | 279.0 | ${ }_{277}^{278.3}$ | －0．7 | －0．2\％ |
 | 88．9\％ | ${ }_{282.7}^{284}$ | ${ }_{280.5}^{280.6}$ | －${ }_{-2.2}$ | －0．8\％ | 887．9\％ | ${ }_{278.0}^{278.3}$ | ${ }_{276.3}^{277.2}$ | －1．17 | －0．0\％\％ |
 | 90．1\％ | 282.0 | 280.5 | －1．5 | －0．5\％ | 90．1\％ | 277.3 | 275.9 | －1．4 | －0．5\％ |
 | 91．4\％ | 279.5 | 279.9 | 0.3 | 0．1\％ | 91．4\％ | 27.9 | 274.6 | －2．3 | －0．8\％ |
 | 92．6\％ | ${ }_{2772}^{277.8}$ | ${ }_{2777}^{277.8}$ | －0．1 | 0．0\％ | 92．6\％ | 276.1 | 274.5 | －1．5 | －0．6\％ |
 | －${ }^{93.85 \%}$ | ${ }_{277.2}^{277.2}$ | 277.2 276.6 | －0．1 | －0．0\％ | ${ }^{93.8 \%} 9$ | ${ }_{2717}^{274}$ | ${ }_{2707}^{27.4}$ | －3．3 | －1．2\％ |
 | 96．3\％ | 270.8 | 270.7 | －0．2 | －0．1\％ | 96．3\％ | 267.6 | 266.6 | －1．0 | －0．4\％ |
 | 97．5\％ | 270.5 | 270.7 | 0.1 | 0．0\％ | 97．5\％ | 267.2 | 263.6 | －3．6 | －1．3\％ |
 | 98．8\％ | 27.0 | ${ }_{267.9}^{2679}$ | -2.1 | －0．8\％ | 98．8\％ | ${ }_{266.3}^{266.3}$ | ${ }_{262.5}^{265}$ | －3．9 | －1．5\％ |
 | 100．0\％ | 267.9 | 266.4 | －1．5 | －0．6\％ | 100．0\％ | 266.2 | 257.0 | －9．2 | －3．5\％ |

 | $\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{aligned}$ | September | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSII 2303 Without | WSIP 2030 With Project | Absolute | Relative |
 | | Monthly EC | Monthly EC | （ititeresce | Sfference（\％） |
 | ${ }^{(\% .0)}$ | （UMHOSSICM） | UMHOSOSCM） | | |
 | | Ses | | | ． 16 |
 | ${ }^{\text {2．5\％}}$ | 66.1 | ${ }_{6637}$ | 17. | |
 | 3．7\％ | 6432 | 648 | 9 | |
 | 4．9\％ | 6424 | 6478 | 5.4 | |
 | 6．2\％ | 6271 | 6392 | 121 | |
 | 7．4\％ | 621.5 | 632.9 | 11.4 | |
 | 8．6\％ | 619.0 | 631.9 | 12.9 | 2．1\％ |
 | 9．9\％ | 618.9 | 627.5 | 8.7 | 1．4\％ |
 | 11．1\％ | 615.0 | 625.4 | 10.4 | 1．7\％ |
 | 12．3\％ | 611.6 | 625.0 | 13.4 | 2．2\％ |
 | 13．6\％ | 609.5 | 623.8 | 14.3 | 2．3\％ |
 | 8\％ | 609.5 | 623.5 | 14.1 | 2．3\％ |
 | 16．0\％ | 608.4 | 614.5 | 6.0 | 1．0\％ |
 | 17．3\％ | 604.9 | 609.6 | 4.6 | 0．8\％ |
 | 18．5\％ | 602.9 | 598.9 | ${ }^{4.0}$ | －0．7 |
 | 19．8\％ | 594.4 | 597.8 | 3.4 | 0．6\％ |
 | 21．0\％ | 592.2 | 592.5 | 0.4 | 0.18 |
 | 22．2\％ | 589.9 | 591.3 | 1.4 | 0．2\％ |
 | 23．5\％ | 585．3 | 588.9 | 3.6 | |
 | 24．7\％ | 584，3 | 586.3 | 2.1 | 0．4\％ |
 | 25．9\％ | 583.8 | 585.5 | 1.7 | 0.3% |
 | 27．2\％ | 583．3 | 578.0 | －5．3 | －0．9 |
 | 28．4\％ | 582.9 | 570.6 | ${ }^{12.3}$ | 2．1\％ |
 | 29．6\％ | 580.3 | 567.8 | 12.6 | 2．2\％ |
 | 30．9\％ | 575.1 | 562.7 | ${ }^{-12.5}$ | －2．28 |
 | 32．1\％ | 575.1 | 561.1 | 14.0 | －2．4\％ |
 | 33．3\％ | 572.5 | 560.4 | 12.1 | －2．1 |
 | 34．6\％ | 563.7 | 553．6 | 10.1 | －1．8\％ |
 | 35．8\％ | 555．3 | 552.7 | －2．6 | －0．5\％ |
 | 37．0\％ | 553.0 | 548.5 | －4．5 | ${ }^{0.8 \%}$ |
 | 38．3\％ | 547．9 | 548.5
 548.5 | 0.6 | 0．1\％ |
 | 39．5\％ | 533.6 | 548.3 | 14.7 | 2．8\％ |
 | 40．7\％ | 533.0 | 547．0 | 14.0 | 2．6\％ |
 | 42．0\％ | 530.4 | 546.4 | 16.0 | 3．0\％ |
 | 43．2\％ | 521.1 | 538.6 | 17.5 | 3．4\％ |
 | 44．4\％ | 515.0 | 536．4 | 21.4 | 4．2\％ |
 | 45．7\％ | 513.6 | 536．1 | ${ }^{22.5}$ | 4．4\％ |
 | 46．9\％ | 510.3 | 533.0 | 22.7 | 4．4\％ |
 | 48．1\％ | 500.7 | ${ }_{525.7}$ | 25.0 | 5．0\％ |
 | 49．4\％ | 491.7 | 520.8 | 29.0 | 5．9\％ |
 | 50．6\％ | 488.7 | 518.3 | 29.6 | 6．1\％ |
 | 51．9\％ | 486.0 | 509.9 | 23.9 | 4．9\％ |
 | 53．1\％ | 482.1 | 509．4 | 27.3 | 5．7\％ |
 | 54．3\％ | 480.9 | 500.5 | 19.6 | 4．1\％ |
 | 55．6\％ | 473.6 | 500.3 | 26.7 | 5．6\％ |
 | 56．8\％ | 472.8 | 494.2 | 21.4 | 4．5\％ |
 | 58．0\％ | 472.1 | ${ }^{487.3}$ | 15.2 | 3．2\％ |
 | 59．3\％ | 471.5 | ${ }^{482.7}$ | 11.2 | 4\％ |
 | 60．5\％ | ${ }^{466.1}$ | 482.1 | 16.0 | 3．4\％ |
 | 61．7\％ | 460.3 | 476.7 | 16.5 | 6\％ |
 | 63．0\％ | 457.0 | 466.0 | 9.0 | 2．0\％ |
 | 64．2\％ | 455.4 | 460.2 | 4.7 | 10\％ |
 | 65．4\％ | 448.3 | 454.9 | 6.6 | 1．5\％ |
 | ${ }^{66.7 \%}$ | 447.4 | 453.6 | 6.2 | 4\％ |
 | 67．9\％ | 440.2 | 453.5 | ${ }^{13.3}$ | 3．0\％ |
 | 69．1\％ | ${ }^{438.1}$ | 440.9 | 2.8 | 6\％ |
 | 70．4\％ | 4337 | 439．2 | 1.5 | 0．4\％ |
 | 71．6\％ | 431.5 | 438.1 | ${ }^{6} .7$ | 5\％ |
 | 72．8\％ | ${ }_{428.9}^{428}$ | ${ }_{433.9}^{433}$ | 7.9 | ${ }^{1.85 \%}$ |
 | 74．1\％ | 426.7 | 433．2 | 6.5 | 1．5\％ |
 | 75．3\％ | 426.1 | ${ }_{429}^{429}$ | 3.2 | 0．7\％ |
 | ${ }^{76.5 \%}$ | 424.7 | 419.9 | －4．8 | ．1\％ |
 | 77．8\％ | ${ }_{418.5}$ | 419.1 | 0.6 | 0．1\％ |
 | 79．0\％ | 418.3 | 417.5 | －0．8 | ．2\％ |
 | 80．2\％ | 417.9 | 410.3 | －7．6 | －1．8\％ |
 | 81．5\％ | 417.2 | 407.8 | 9.4 | 退 2% |
 | － 82.7% | 415.7 | 407.5 | －8．2 | 厚 |
 | 84．0\％ | 410.8 | 4039 | －6．9 | ．7\％ |
 | 85．2\％ | 407.6 | 399.8 3988 | －7．81 | －1．9\％ |
 | 86．4\％ | 405.9 | 393．8 | 12.1 | \％ |
 | 87．7\％ | ${ }_{301.6}$ | 389.9
 397 | 11．7 | －2．9\％ |
 | 88．9\％ | 397．2 | 389.7 | －7．4 | |
 | 90．19\％ | 3929 389 | 386．5 | －6．3 | －1．6\％ |
 | 91．4\％ | 389.9 | 384．6 | 5．3 | 1．4\％ |
 | 92．6\％ | 387.5 38.4 | ${ }_{378}^{378.7}$ | －8．8 | －2．3\％ |
 | ${ }^{93.8 \%}$ | 381.4 | ${ }^{3788.3}$ | －3．1 | －0．8\％ |
 | 95．1\％ | ${ }_{387.8}$ | 369．6 | 11.2 | 2．9\％ |
 | ${ }^{96.3 \%}$ | 377.3 | ${ }^{365.5}$ | 11.8 | 3．1\％ |
 | 97．5\％ | 353．4 | ${ }^{356.6}$ | ${ }^{3.2}$ | 0．9\％ |
 | 98．9\％ | 350.7 2589 | ${ }_{2471}^{344.3}$ | －6．4 | －1．8\％ |

 Figure SQ-32-b
 Delta Mendota Canal at Jones Pumping Plant, Monthly EC

 Table SQ－32－b
 Deta Mendotat Canal at onens Pumping Plant，Monthly EC

 | $\begin{gathered} \text { Percent } \\ \hline \text { Exceedance } \\ \text { Probability } \end{gathered}$ | October | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {WSIP }}^{\text {2030 }}$ Proiectithout | WSIP 2030 With Project | Absolute | |
 | | Monthly EC | Monthly EC | （UMHOSCICM） | ference（\％） |
 | （\％） | （UMHO | Th7 | | |
 | 0．0\％ | 70．2 | 78．7 | 8.5 | 1．1\％ |
 | 1．2\％ | 755.4 | 75.9 | 2.5 | ${ }^{0.36}$ |
 | | 75.3 | 744. | －1．2 | |
 | 3．7\％ | 751.3 | 124.0 | －7．3 | －3．6 |
 | 4．9\％ | 74.1 | 720.7 | －19．4 | |
 | 年．2\％\％ | 722.3 7220 | 708.6 702.3 | ${ }_{-19.7}^{-13.7}$ | ${ }_{\text {－}}^{\text {－1．7\％}}$ |
 | 8．6\％ | 717.7 | 702.3 | －15．4 | －2．2\％ |
 | 9．9\％ | 708.2 | 692.4 | －15．8 | －2．2\％ |
 | ${ }^{11.1 \%}$ | 707.6 702.8 | 685.5 685.0 | －22．1 -17.8 | －${ }_{-2.5 \%}^{-3.1 \%}$ |
 | 13．2\％ | 695.1 | 677.4 | －17．7 | －2．6\％ |
 | 14．8\％ | 691.8 | 675.3 | －16．6 | －2．4\％ |
 | － 16.0% \％ | 688， 6 | 677.4 665.4 | －13．2 -18.1 | －－2．9\％\％ |
 | 18．5\％ | 683.4 | 659.6 | －23．8 | －3．5\％ |
 | 19．8\％ | 682.3 | 657.2 | －25．1 | －3．7\％ |
 | ${ }^{21.0 \%}$ | 674.2 669.4 | 654.4
 653.8 | － 19.8 -15.6 | ${ }_{-2.3 \%}^{-2.9 \%}$ |
 | 23．5\％ | 665.3 | 649.7 | －15．6 | －2．3\％ |
 | 24．7\％ | 664.1 | 647.6 | －16．5 | －2．5\％ |
 | 25．7．2\％ | 662.5 660.4 | 644.8 641.9 | －15．7 | －2．4\％\％ |
 | 28．4\％ | 659.0 | 638.7 | －20．3 | －3．1\％ |
 | 29．6\％ | 645.3 | 638.3 | －7．0 | －1．1\％ |
 | 30．3\％ | ${ }_{644.3}^{64.1}$ | 630.7 630.3 | -14.4 -13.9 | ${ }_{-2.2 \%}^{-2.2 \%}$ |
 | 33．3\％ | 641.5 | 627.4 | －14．0 | 2．2\％ |
 | 34．5\％ | 639.7 | 626.9 | －12．8 | 2．0\％ |
 | 年3．8\％\％ | 639.2 637.4 | 624.2 622.9 | －15．0 -14.5 | ${ }_{2}^{2.3 \% \%}$ |
 | 38．3\％ | 628.6 | 620.2 | －8．5 | －1．3\％ |
 | 39．5\％ | 626.6 | 619.7 | －6．9 | －1．1\％ |
 | ${ }^{40.72 \%}$ | 619．3 619.2 | 617．1 613.3 | －2．9 | － |
 | 43．2\％ | 619.0 | 609.4 | -9.6 | 寿 |
 | 44．4\％ | 618.9 | 603.9 | －15．0 | －2．4\％ |
 | － $4.5 .7 \%$ | 617．4 660.8 | 597．0 581.4 | －20．4 | －${ }_{\text {－}}^{\text {－3．3\％}}$ |
 | 48．1\％ | 604.0 | 563.8 | －40．1 | 6．6\％ |
 | | | 559．1 | －38．0 | －6．4\％ |
 | 51．9\％ | 594．2． 593 | ${ }_{543.8}^{550.1}$ | －49．4 | －8．3\％ |
 | 53．1\％ | 592.6 | 539.3 | －53．3 | －9．0\％ |
 | 54．3\％ | 528.9 | ${ }_{5}^{526.5}$ | －2．3 | －0．4\％ |
 | 55．8\％ | ${ }_{426.3}$ | ${ }_{407.7}^{429.8}$ | －0．6．6 | ${ }_{-4.4 \%}$ |
 | 58．0\％ | ${ }_{421.6}$ | 399.7 | －21．9 | －5．2\％ |
 | | 408.1 | ${ }_{3907}$ | －11．4 | －2．8\％ |
 | 析 60.5% | 390.1 389.8 | ${ }_{3}^{388.7}$ | -9.5 -11.3 | ${ }_{\text {－}}-2.9 \%$ |
 | 63．0\％ | 388.4 384 | ${ }_{378.2}^{377}$ | －10．2 | －2．6\％ |
 | 64.2% 654% | 384．8 | ${ }^{377.2}$ | －7．6 | －2．0\％ |
 | ${ }_{66.7 \%}^{6.4 \%}$ | ${ }_{382.2}$ | ${ }_{373.7}$ | ${ }_{-8.6}$ | ${ }_{\text {－}}^{\text {－2．2\％}}$ |
 | 67．9\％ | 378．1 | 372.4 368.4 | －5．7 | －1．5\％ |
 | 69．1\％ | | | | －1．2\％ |
 | 70．6\％ | 372.4 372.2 | ${ }_{364.9}^{367.1}$ | －5．3 | ${ }^{-1.4 \% \%}$ |
 | 728\％ | 371.4 386.4 | 359.7 3597 | －11．8 | －3．2\％ |
 | 74．1\％ | ${ }^{368.4}$ | 359．4 | | －2．5\％ |
 | 76．5\％ | 366.6 | 359．1 | －8．5 | －2．0\％ |
 | 77．8\％ | 366.0 365 | 355.5 | －7．5 | －2．1\％ |
 | 79．0\％ | ${ }^{365.5}$ | 357.4
 35．4 | －8．1 | －2．2\％ |
 | 81．5\％ | 364.9 | ${ }_{356.5}^{356.8}$ | －8．4 | ${ }_{-2.3 \%}$ |
 | 82．7\％ | 364.1 363 | 355.3
 552 | －8．81 | －2．4\％ |
 | － $\begin{aligned} & 84.0 \% \\ & 852 \%\end{aligned}$ | ${ }^{363.3}$ | 352．2 | | |
 | ${ }_{86.4 \%}$ | 360.2 356.6 | 359.1
 18.1 | －6．9 | － |
 | 877\％ | 355.9
 355 | 347．4 | －8．5 | 2．4\％ |
 | ${ }^{80.9 \%}$ | | 34.1 | －8．8 | －2．5\％ |
 | 91．4\％ | ${ }_{352.8}$ | ${ }_{354.3}$ | －8．5 | ${ }_{-2.1 \%}^{-2.4 \%}$ |
 | － 92.6% | 352.8
 152 | 340.9 30.9 | －11．9 | －3．4\％ |
 | 995．1\％ | ${ }_{342}$ | ${ }_{3321}^{335.2}$ | －9．9 | ${ }_{-3.0 \%}^{-2.9 \%}$ |
 | 96．3\％ | 342.2 339.4 | ${ }_{329.9}$ | －9．5 | －2．8\％ |
 | 97．5\％ | 321.0 | 315.6 | －5．4 | －1．7\％ |
 | 100．0\％ | 194.5 | ${ }_{195.4}$ | 0.9 | 0．5\％ |

 | | | November | | Probabl | December | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Percent | WSSP 2030 Without | WSIP 2030 With Project | | | Percent | WSIP 2030 Without | WSIP 2030 With Project | | |
 | ceednce | Proiect | | Absolute | Relative | | Proiect | | ${ }_{\text {Absolute }}$ | Relative |
 | Probability | Monthly EC | Monthly EC | （UMHOSSCMCM） | Difference（\％ | Probability | Monthly EC | Monthly EC | （UMHHOSCM） | Difference（\％） |
 | 0．0\％ | ${ }^{856.3}$ | 870.0 | 13.7 | 1．6\％ | 0．0\％ | 868.5 | 914.8 | 46.3 | 5．3\％ |
 | 1．2\％ | 838.4 | 834.0 | －4．4 | 0．5\％ | 1．2\％ | 857.0 | 874.2 | | |
 | 2．5\％ | 818.3 | 827.6 | 9.3 | 1．1\％ | 2．5\％ | 855.2 | 863.1 | 7.9 | |
 | 3．7\％ | 786.3 | 821.1 | 34.8 | 4．4\％ | 3．7\％ | 817.7 | | 34.2 | |
 | 4．9\％ | 783.3 | 810.6 | 27.4 | 3．5\％ | 4．9\％ | 810.4 | 846.4 | | |
 | ${ }^{6.2 \%}$ | 7776 | ${ }_{705.2}$ | ${ }^{28.7}$ | ${ }^{3.7 \%}$ | ${ }^{\text {6．2\％}}$ | 801.3 | | ${ }_{177}^{137}$ | 1．7\％ |
 | 7．4\％ | 1．6 | 790.8 | 19.2 | 2.5 | 7．4\％ | 795.7 | 813 | | |
 | 9．9\％ | 768.2 767.1 | 781.7 746.3 | 13.5 -20.8 | ${ }_{\text {－}}^{\text {1．8\％}}$ | 9．9\％ | 792.2 792.0 | ${ }_{887.3}^{811.3}$ | 19.1 15.2 | ${ }^{2.4 \%}$ |
 | 11．1\％ | 760.2 | 745.9 | －14．3 | －1．9\％ | 11．1\％ | 787.9 | 803 | 15.6 | 2．0\％ |
 | 12．3\％ | 753.1 | 745.8 | －7．3 | －1．0\％ | 12．3\％ | 781.1 | 792.3 | 11.2 | |
 | 13．6\％ | 746.3 | ${ }^{712.3}$ | 34．0 | 4．6\％ | 13．6\％ | 781.0 | 790.2 | 9.2 | 2\％ |
 | 14．8\％ | 738.6 | 707.2 | －31．4 | －4．2\％ | 14．8\％ | 775.2 | | 11.2 | |
 | 16．0\％ | 734.9 | 695.4 | －39．5 | －5．4\％ | 16．0\％ | 761.6 | 762.8 | 1.2 | 0．2\％ |
 | －${ }_{\text {18，}}^{17.3 \%}$ | 70.4 688.0 | 693.8 672.1 | － 15.6 -15.9 | ${ }_{-2.3 \%}^{-2.2 \%}$ | ${ }^{17.3 .5 \%}$ | 754.6 75.6 | ${ }_{755.2}^{755.7}$ | ${ }^{1.9}$ | 0．1\％ |
 | 19．8\％ | 676.3 | 657.1 | －19．2 | －2．8\％ | 19．8\％ | 747.5 | 752.6 | 5.1 | 0．7\％ |
 | 21．0\％ | 674.1 | 651.8 | －22．2 | －3．3\％ | 21．0\％ | 746.3 | 743.5 | －2．8 | 0．4\％ |
 | | | | －40．5 | －6．1\％ | | 738.2 | ${ }^{735.2}$ | 3.0 | |
 | ${ }^{234.7 \%}$ | 658.0 647.8 | ${ }_{6}^{617.0}$ | －41．9 | ${ }_{-4}^{-6.9 \%}$ | ${ }^{23.4 \% \%}$ | ${ }_{723.5}^{728.2}$ | ${ }_{724.0}^{726.6}$ | －1．5 | ${ }^{-0.1 \%}$ |
 | 25．9\％ | 642.7 | 612.2 | －30．5 | －4．7\％ | 25．9\％ | 719.6 | 723.0 | 3.4 | 0．5\％ |
 | 27．2\％ | 633.2 | 609.2 | －24．0 | －3．8\％ | 27．2\％ | 719.5 | 721.1 | 1.5 | 0．2\％ |
 | 28．4\％ | 628.7 | 600.2 | －28．5 | －4．5\％ | 28．4\％ | 718.2 | 697.1 | －21．1 | 2．9\％ |
 | 29．6\％ | 627.8 | 593.8 | 34.0 | －5．4\％ | 29．6\％ | 709.8 | 691.2 | －18．6 | －2．6\％ |
 | 30．9\％ | ${ }_{6}^{618.8}$ | 592.5
 58.5 | －26．3 | － | 30．9\％ | 709.1 | ${ }_{682.5}^{682.5}$ | －26．6 | －．3．7\％ |
 | 332．1\％ | － $\begin{aligned} & 616.0 \\ & 615.5\end{aligned}$ | ${ }_{588.1}^{589.5}$ | ${ }_{-27.4}^{-26.6}$ | －－4．4\％ | ${ }^{3} \mathbf{3 2 . 1 9 \%}$ | ${ }_{6} \mathbf{7 0 . 7}$ | ${ }_{652.4}^{667.4}$ | －35．3 | －－5．1\％ |
 | 34．6\％ | 613.6 | 583.3 | －30．3 | －4．9\％ | 34．6\％ | 686.8 | 643.5 | －43．3 | －6．3\％ |
 | 35．8\％ | 613.4 | 581.9 | －31．5 | －5．1\％ | 35．8\％ | 678.0 | 638.7 | －39．4 | －5．8\％ |
 | 37．0\％ | 613.3 | 576.4 | －36．9 | －6．0\％ | 37．\％ | 674.5 | 636.9 | －37．6 | －5．6\％ |
 | 38．3\％ | 607.0 | 565.9 | －41．0 | －6．8\％ | 38．3\％ | 671.7 | 635.7 | －36．0 | －5．4\％ |
 | 39．5\％ | 605.4 | 559.2 | －46．2 | －7．6\％ | 39．5\％ | 653.2 | 625.9 | －27．3 | －4．2\％ |
 | 40．7\％ | 602．2 | 558.1 | －44，1 | －7．3\％ | 40．7\％ | 647.2 | 618.7 | －28．5 | －4．4\％ |
 | 42．0\％ | 599.9 | 538.9 | －61．0 | －10．2\％ | 42．0\％ | 629.5 | 603.6 | －25．9 | －4．1\％ |
 | 43．2\％ | 597.2 | 535.9 | －61．3 | －10．3\％ | 43．2\％ | 573.0 | 601.3 | 28.3 | 4．9\％ |
 | 44．4\％ | 590.3 | 534.5 | －55．8 | －9．5\％ | 44．4\％ | 555.9 | 550.5 | －5．4 | －1．0\％ |
 | 45．7\％ | 583．0 | 523．3 | －59．6 | －10．2\％ | 45．7\％ | 527.8 | 541.1 | 13.3 | 2．5\％ |
 | 46．9\％ | 581.3 | 521.6 | －59．7 | －10．3\％ | 46．9\％ | 520.8 | 528.3 | 7.5 | 1．4\％ |
 | 48．1\％ | 570.5 | 501.2 | －69．3 | －12．1\％ | 48．1\％ | 514.5 | 522.5 | 8.0 | 1．6\％ |
 | 49．4\％ | 556.0 | 493.2 | －62．8 | －11．3\％ | 49．4\％ | 510.4 | 510.5 | 0.1 | 0．0\％ |
 | 50．6\％ | 548.9 | 492.1 | －56．8 | －10．3\％ | 50．6\％ | 507.9 | 508.2 | 0.3 | 0．1\％ |
 | 51．9\％ | 514.0 | 440.1 | －73．9 | －14．4\％ | 51．9\％ | 506．2 | 500.8 | 0.5 | 0．1\％ |
 | 53．1\％ | 434.3 | 432.2 | －2．1 | －0．5\％ | 53．1\％ | 505.1 | 505.7 | 0.7 | 0．1\％ |
 | 54．3\％ | ${ }^{433.1}$ | 430.2 | －3．0 | －0．7\％ | 54．3\％ | 504.3 | 503.5 | －0．8 | －0．2\％ |
 | 55．6\％ | 424.1 | 414.1 | －10．0 | －2．4\％ | 55．6\％ | 501.6 | 501.3 | －0．3 | －0．1\％ |
 | 56．8\％ | 419.0 | 414.0 | －5．0 | －1．2\％ | 56．8\％ | 491.7 | 500.2 | 8.5 | 1．7\％ |
 | 58．0\％ | 413.4 | 402.9 | －10．5 | －2．5\％ | 58．0\％ | 487.7 | 499.9 | 12.2 | 2．5\％ |
 | 59．3\％ | 398.4 | 399.6 | 1.2 | 0．3\％ | 59．3\％ | 480.2 | 480.6 | 0.4 | 0．1\％ |
 | 60．5\％ | 397.2 | 391.1 | －6．0 | －1．5\％ | 60．5\％ | 478.3 | 479.0 | 0.8 | 0．2\％ |
 | 61．7\％ | 393，3 | 385.6 | －7．7 | －1．9\％ | 61．7\％ | 477.4 | 478.3 | 0.9 | 0．2\％ |
 | 63．0\％ | 388.1 | 379.8 | －8．3 | －2．1\％ | 63．0\％ | 474.2 | 470.6 | －3．7 | －0．8\％ |
 | 64．2\％ | 387.1 | 371.7 | －15．4 | －4．0\％ | 64．2\％ | 466.7 | 466.4 | －0．3 | －0．1\％ |
 | ${ }^{65.4 \%}$ | ${ }_{38,4}^{386.4}$ | 371.1 3698 | －15．3 | －3．9\％ | ${ }^{65.4 \%}$ | 465.4 4550 | 461.4 4565 | －4．0 | －0．9\％ |
 | －6．7．9\％ | ${ }_{373.5}^{38.7}$ | ${ }_{368.2}$ | ${ }_{-5.3}$ | ${ }^{-3.4 \%}$ | 66．9\％ | ${ }_{455.0}^{455.0}$ | ${ }_{454.9}$ | 0．0 | 0．0\％ |
 | 69．1\％ | 373.1 | 362.2 | －10．9 | －2．9\％ | 69．1\％ | 454.5 | 452.4 | －2．1 | －0．5\％ |
 | 70．4\％ | 368.4 | ${ }_{351.8}^{351.8}$ | －16．6 | －4．5\％ | 70．4\％ | 453．9 | 451.6 | －2．3 | －0．5\％ |
 | 71．6\％ | 362.4 | 351.2 | －11．2 | －3．1\％ | 71．6\％ | 453.4 | 451.2 | －2．2 | －0．5\％ |
 | 72．8\％ | 360.4 359.9 | 350.7 350.1 | －9．8 | ${ }_{-2.7 \%}^{-2.7 \%}$ | 72．8\％ | ${ }_{4451.0}^{4}$ | ${ }_{450.2}^{458}$ | -0.8 6.0 | ${ }^{-0.2 \%}$ |
 | 75．3\％ | 354.8 | 348.1 | －6．7 | －1．9\％ | 75．3\％ | 441.8 | 438.6 | ${ }^{-3.1}$ | －0．7\％ |
 | 76．5\％ | 352.5 | 347.7 | －4．8 | －1．4\％ | 76．5\％ | 438.2 | 437.3 | －0．9 | －0．2\％ |
 | 77．8\％ | 352.0
 357 | 344.7 | －7．3 | －2．1\％ | 77．8\％ | 438.0 | 437.1 | －0．9 | －0．2\％ |
 | 79．0\％ | 347.3 | 341.2 | －6．1 | －1．8\％ | 79．0\％ | ${ }^{437.6}$ | ${ }^{434.6}$ | 3.0 | －0．7\％ |
 | 80．2\％ | ${ }_{3}^{342.5}$ | 338.3 3863 | －4．1． | －1．2\％ | 80．2\％ | 437．5 | ${ }^{431.3}$ | －6．2 | －1．4\％ |
 | 81．5\％ | 341.6 | ${ }^{336.3}$ | －5．3 | －1．5\％ | 81．5\％ | 433.8 | 429.8 | －4．0 | －0．9\％ |
 | 822．7\％ | 339.9 334.0 | ${ }_{\text {3 }}^{336.2}$ | －3．8 | －0．1\％ | 827\％ 84.0% | ${ }_{4332.1}^{432}$ | ${ }_{4228.8}^{428.8}$ | －－5．4 | －0．9\％ |
 | 85．2\％ | 331.6 | 331.4 | －0．2 | －0．1\％ | 85．2\％ | 430.4 | 425.2 | －5．1 | －1．2\％ |
 | 86．4\％ | 330.2 | 331.1 | 0.9 | 0．3\％ | 86．4\％ | 422.2 | 421.6 | －0．6 | －0．1\％ |
 | 87．7\％ | 329.9 3929 | 328.1 | -1.8 | －0．6\％ | 877\％ | 417.9 | 420．0 | 2.0 | 0．5\％ |
 | ${ }^{80.1 \%}$ | 329.3 326.2 | 327.9 324.2 | －1．4 | －0．0．0\％ | －${ }^{88.9 \%}$ 90．1\％ | 417.1 4026 | 418.2 | 1.1 | 0．3\％ |
 | 91．4\％ | 322.7 | 323.8 | 1.1 | 0．4\％ | 91．4\％ | 398.4 | ${ }_{397.8}$ | －0．6 | －0．2\％ |
 | 92．6\％ | $\underset{\substack{318.8 \\ 36.1}}{ }$ | 322.8 314 | 4.0 | 1．3\％ | 92．6\％ | 366．3 | ${ }^{370.3}$ | 4.0 | 1．1\％ |
 | 93．8\％ | 316.1 | 314.9 | －1．2 | －0．4\％ | 93．8\％ | 330.4 | 330.6 | 0.2 | 0．1\％ |
 | ${ }_{96.3 \%}^{95.1 \%}$ | 309.5 3045 | 306.9 | －2．6 | －0．8\％ | 95．1\％ | 256．9 | 257.8 | 0.8 | 0．3\％ |
 | 96．5\％ | 20．5 20.5 | ${ }_{260.3}^{299.2}$ | －5．4 -0.2 | －${ }^{-1.8 \%}$ | 96．7．5\％ | 234.3 226.2 | ${ }_{226.2}^{2359}$ | 1.6 0.0 | 0．7\％ |
 | 98．8\％ | 209.2 | 210.0 | 0.8 | 0．4\％ | 98．8\％ | 223.5 | 223.8 | 0.4 | 0．2\％ |
 | 100．0\％ | 206.5 | 206.4 | －0．1 | 0．0\％ | 100．0\％ | 200.8 | 201.0 | 0.2 | 0．1\％ |

 | PercentExceedanceProbability | January | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {WSPP }}^{\text {2030 }}$ Proithout | WSIP 2033 With Project | Absolute | |
 | | Monthly EC | Monthy EC | Difierence （UMHOSCM） | Difference（\％） |
 | （\％） | （untosicm | UMHOSICim | | |
 | 0．0\％ | 902.3 | 900.2 | －2．0 | －0．2\％ |
 | 1．2\％ | 873.0 | 866.3 8434 | －6．7 | ${ }^{-0.8 \%}$ |
 | ${ }^{2.5 \%}$ | ${ }^{855.0}$ | ${ }_{841.4}$ | ${ }^{-12.6}$ | |
 | 3．7\％\％ | ${ }_{8153}^{818.3}$ | ${ }_{8351}^{84.4}$ | 23.1
 198 | 2．8\％ |
 | 6．2\％ | 814.4 | 833.8 | 19.4 | 2．4\％ |
 | 7．4\％ | 805.4 | ${ }^{826.3}$ | 20.9 | 2．6\％ |
 | 8．6\％ | 797.5 7969 | 769.2 758.6 | －28．4 | －${ }_{-4.6 \%}$ |
 | ${ }^{9.9 \%}$ | 796.9 7863 | 758.6
 7531 | －38．2 | ${ }_{-4.8 \%}^{4.80 \%}$ |
 | 年1．1\％ | 786.3 7669 | 753.1 7477 | -33.2 -192 | －4．2\％${ }_{-2.5}$ |
 | 13．6\％ | ${ }_{766.3}$ | | | |
 | － 13.8% | ${ }_{765.6}^{76.3}$ | ${ }_{744.7}^{74.5}$ | －20．9 | ${ }_{-2.7 \%}$ |
 | － | 761.8 759.6 | $\begin{array}{r}741.4 \\ 7370 \\ \hline\end{array}$ | －20．4 | |
 | 18．5\％ | 753.0 | | －34．1 | 5\％ |
 | 19．8\％ | 746.9 | 718.8 | －28．2 | －3．8\％ |
 | 21．0\％ | 736.0 7193 | 718.6
 7152
 15. | -17.4 -4.4 | －2．4\％ |
 | 23．5\％ | 718.7 | 698.2 | －20．5 | －2．9\％ |
 | 24．7\％ | 716.0 | 697.7 | －18．2 | 2．5\％ |
 | 25．9\％ | 708.6 | ${ }^{695.3}$ | －13．3 | －1．9\％ |
 | 27．2\％ | 697.4 | 688.5 | －8．9 | －1．3\％ |
 | － 28.4 .4 \％ | 697.3 694.5 | 685.8 682.6 | －11．5 -11.8 | －1．7\％\％ |
 | 30．9\％ | 690.3 | 680.9 | －9．4 | －1．4\％ |
 | 32．1\％ | 689.8 | 678.2 | －11．6 | －1．7\％ |
 | 33．3\％ | ${ }^{686.3}$ | ${ }^{676.9}$ | －9．4 | －1．4\％ |
 | 34．6\％ | | ${ }_{669.5}$ | | |
 | 37．0\％ | ${ }_{666.6}$ | ${ }^{6659.2}$ | －1．85 | － |
 | 38．3\％ | 658.0 | 658.9 | 0.9 | 0．1\％ |
 | 39．5\％ | 657.8 | 652.2 | －5．6 | －0．8\％ |
 | 40．7\％ | 652.7 | 650.1 | －2．6 | －0．4\％ |
 | 42．0\％ | 649.3 6479 | 649.8 6490 | | |
 | 44．4\％ | ${ }_{641.0}$ | ${ }_{646.7}^{64.0}$ | 5.7 | 0．9\％ |
 | 45．7\％ | 639.9 | 646.0 | 6.0 | 0．9\％ |
 | 46．9\％ | 637.6 | $6^{645.2}$ | 7.6 | ${ }_{1}^{1.2 \%}$ |
 | 48．1\％ 4.4 | 634.4 631.8 | 641．9 641.6 | 7.5
 9.9 | 1．2\％\％ |
 | 50．6\％ | 629.2 | 640.2 | 11.0 | 1．7\％ |
 | | 621.5 | ${ }_{636.7}$ | ${ }^{15.1}$ | 2．4\％ |
 | 年53．3\％ | 621.1 608.6 | 634.0 627.1 | 12.9 18.5 | 3．0\％ |
 | 55．6\％ | 603.3 | 626.7 | 23.4 | 3．9\％ |
 | 56．8\％ | 599.9 | 605.3 | 5.3 | 0．9\％ |
 | | 599．8 594.0 | 601.6 601.4 | 4.8
 7.4
 12 | －${ }_{\text {0．8\％}}^{\text {1．3\％}}$ |
 | 60．5\％ | 59.1 | 600.7 | 9.6 | |
 | 61．7\％ | 587.2 | 599.4 | 12.2 | 1\％ |
 | 63．0\％ | 586.8 | 592.0 | 5.2 | 9\％ |
 | ${ }^{64.2 \%}$ | 584.2 | ${ }_{589.1}^{589.1}$ | 3.8 | 0．7\％ |
 | ${ }^{65.4 \%}$ | 581.6 572.4 | ${ }_{5}^{5853.3}$ | 31.7 11.2 | 2．0\％ |
 | 67．9\％ | 565.4 | 572.0 | 6.6 | 1．2\％ |
 | 69．1\％ | 562.6 5 | 56.5 | 2.9 | 0．5\％ |
 | 70．4\％\％ | 544．8 544.7 | 564.0 562.4 | 17.2
 17.8 | 3．3\％ |
 | 72．8\％ | 542.1 | 540.1 | －2．1 | －0．4\％ |
 | | | | | ${ }^{-0.3 \%}$ |
 | 75．5\％ | ${ }_{485.5}^{488.1}$ | ${ }_{489.2}^{498.3}$ | 10.2 3.7 | 2．8\％ |
 | 77．8\％ | 483.8 | 485.5 | 1.8 | 0．4\％ |
 | 79．0\％ | 467.2 | 467.3 | 0.1 | 0．0\％ |
 | 80．2\％ | 459.6 | 460.7 | 1.1 | 0．2\％ |
 | | 454．2 | 454.7 | 1.5 | 0．3\％ |
 | － | ${ }_{401.9}^{448.1}$ | ${ }_{412.3}^{4487}$ | 0.5 10.3 | 2．6\％ |
 | 85．2\％ | 401.8 | 410.3 | 8.5 | 2．1\％ |
 | ${ }^{86.4 \%}$ | 391.5 | 391.4 | －0．1 | 0．0\％ |
 | 888．9\％ | 377.6 363.7 | 378.1 363.9 | 0.4 0.2 | －${ }_{\text {0．1\％}}^{0.1 \%}$ |
 | 90．1\％ | ${ }_{357.4}$ | 356.7 | －0．7 | －0．2\％ |
 | 91．4\％ | 318.6 | 323.0 | 4.4 | 1．4\％ |
 | 92．6\％ | 312.9 | 313.0 | 0.1 | 0．0\％ |
 | 95．1\％ | 308.4 3033 | 304.1 | 4.4 | －1．4\％ |
 | ${ }^{956.1 \%}$ | 303.3 289.8 | ${ }_{2019}^{303.5}$ | 0.1 | 0．0\％ |
 | 97．5\％ | ${ }_{275.6}^{269.6}$ | ${ }_{276.4}^{29.9}$ | ${ }_{0.7}^{2.0}$ | 0．3\％ |
 | 98．8\％ | 267.4 | 267.6 | 0.3 | 0．1\％ |
 | 100．0\％ | 252.9 | 253.0 | 0.1 | 0．0\％ |

 Table SQ-32-b
 Delta Mendota Cana at Jones unping Plant, Monthly EC
 Probabivity of Exceedance

 | | | February | | |
 | :---: | :---: | :---: | :---: | :---: |
 | ${ }_{\text {Percent }}^{\text {Exceedance }}$ | WSII 2030 Owithout | WSIP 2030 With Project | Absolute | |
 | Probability | Monthly EC | Monthy EC | Difference (UMHoSCM) | Difference (\%) |
 | (\%) | (UMHOSCCM) | (UMHOSSCM) | | |
 | 0.0\% | 898.3 | 904.9 | 6.6 | 0.7\% |
 | 1.2\% | 894.9 | 898.4 | 3.5 | 0.4\% |
 | 2.5\% | 884.2 | 895.3 | 11.1 | 1.3\% |
 | 3.7\% | 863.5 | 879.0 | 15.5 | 1.8\% |
 | 4.9\% | 859.6 | 872.7 | 13.1 | 1.5\% |
 | ${ }_{\text {c }} 6.2 \%$ | $\begin{array}{r}841.4 \\ 822 \\ \hline\end{array}$ | 867.7 859 | 26.4 | ${ }_{\text {3 }} \times 1.5$ |
 | 7.4\% | ${ }^{822.2}$ | 859.0 | 36.8
 2.8 | 4.5\% |
 | 8.6\% | 820.7 8195 | -849.8 | ${ }_{18}^{29.1}$ | ${ }_{\text {cke }}^{3.6 \%}$ |
 | 9.9\% | 819.5 | ${ }^{838.1}$ | 18.6 | 2.3\% |
 | 11.1\% | ${ }_{8}^{815.1}$ | 821.5 | ${ }_{9}^{6.4}$ | 0.8\% |
 | 12.3\% | ${ }_{811.6}$ | ${ }^{820.8}$ | ${ }^{9.27}$ | ${ }^{1.19 \%}$ |
 | 13.6\% | 807.6 | 806.9 | -0.7 | -0.1\% |
 | 14.8\% | 796.1 | 798.9 | ${ }^{2.8}$ | 0.3\% |
 | 16.0\% | 789.5 | 7878 7797 | ${ }^{-1.8}$ | -0.2\% |
 | 17.3\% | 772.0 | 779.7 | 7.7
 .9 | 1.0\% |
 | 18.5\% | 771.9 | ${ }_{7574}^{77.7}$ | 2.9 | 0.4\% |
 | 19.8\% | 750.4 | ${ }^{757.3}$ | 6.9 | 0.9\% |
 | 21.0\% | 7116.2 | 751.6 | 35.4 | 4.9\% |
 | 22.2\% | 714.6 | 745.6 | ${ }^{31.1}$ | 4.3\% |
 | 23.5\% | ${ }_{7}^{708.7}$ | 724.1 | $\begin{array}{r}15.4 \\ \hline 5\end{array}$ | 2.2\% |
 | 24.7\% | 702.3 | 707.7 | 5.5 | 0.8\%\% |
 | ${ }^{25.7 .2 \%}$ | 688.6 688.5 | 699.2 698.4 | 10.6 | 1.5\% 1.4 |
 | 28.4\% | 686.2 | 692.1 | 5.9 | 0.9\% |
 | 29.6\% | 681.7 | 683.5 | 1.8 | 0.3\% |
 | 30.9\% | 676.0 | 681.9 | 5.9 | 0.9\% |
 | 32.1\% | 669.0 | 668.7 | -0.3 | 0.0\% |
 | 33.3\% | ${ }_{6653}^{663}$ | ${ }_{666.3}$ | | 0.6\% |
 | 34.6\% | 656.3 | ${ }_{666.8}^{664}$ | ${ }^{10.5}$ | 1.6\% |
 | 35.8% 37.0% | 650.9 647.3 | 664.8 653 | 13.8 6.0 | 2.1\% |
 | 37.0\% | 647.3 6457 | ${ }_{655}^{653}$ | ${ }_{6}^{6.0}$ | 0.9\% |
 | 38.3\% | 645.7 | 651.5 6492 | 5.9 4 4 | 0.9\% |
 | 39.5\% | 644.4 | ${ }_{6459}^{649}$ | 4.8 | 0.7\% |
 | 40.7. ${ }^{40 \%}$ | ${ }_{6}^{641.2}$ | 645.1 643.6 | ${ }_{8.1}^{3.9}$ | 1.3\% |
 | 43.2\% | 625.5 | 638.5 | 13.0 | 2.1\% |
 | 4.4.4\% | ${ }_{623.1}$ | ${ }^{636.2}$ | 13.1 | 2.1\% |
 | 4557\% | 年 $\begin{array}{r}621.3 \\ 5702\end{array}$ | 628.2 6153 | ${ }_{6}^{6.9}$ | -1.1\% |
 | ${ }^{46.9 \%}$ | 570.2 5694 | 615.3 5856 | 45.2 | 7.9\% |
 | 48.1\% 4.4 | 569.4 563.0 | ${ }_{570.7}^{585.6}$ | ${ }_{7.7}^{16.2}$ | - 1.8% |
 | 50.6\% | 554.6 | 563.0 | 8.4 | 1.5\% |
 | 51.9\% | 546.0 | 554.4 | 8.4 | 1.5\% |
 | 53.19\% 54.36 | 542.8 5316 | 549.4 5479 | ${ }_{16.6}$ | |
 | 54.6\% | 531.6 530.9 | 547.9 530.7 | ${ }_{-0.2}^{16.3}$ | - ${ }_{\text {3.0\% }}$ |
 | 56.8\% | 529.7 | 528.2 | -1.6 | -0.3\% |
 | 58.0\% | 523.0 | 523.0 | 0.0 | 0.0\% |
 | 59.3\% | 512.7 | 518.7 | ${ }^{6} 170$ | 1.2\% |
 | 60.5\% | 495.1 489.9 | ${ }_{502.7}^{513.0}$ | 17.9 12.9 | 3.6\% |
 | 63.0\% | 484.4 | 486.9 | 2.5 | 0.5\% |
 | 64.2\% | 482.1 | 483.2 | 1.1 | 0.2\% |
 | | ${ }_{4772}^{478.6}$ | ${ }_{478.5}^{479}$ | ${ }_{13}^{0.5}$ | ${ }_{\text {en }}^{0.1 \%}$ |
 | 67.9\% | 461.6 | 461.5 | 0.0 | 0.0\% |
 | 69.1\% | 446.0 | 446.6 | 0.7 | 0.1\% |
 | 70.4\% | ${ }_{418.8}^{442.2}$ | 446.5 430.4 | $\stackrel{4.3}{11.6}$ | - |
 | 72.8\% | 412.4 | 413.7 | 1.4 | 0.3\% |
 | 74.1\% | 401.1 | 405.8 | 4.8 | 1.2\% |
 | 75.3\% | 400.5 386.6 | 401.2 3867 | ${ }_{0}^{0.6}$ | - |
 | 77.8\% | 379.4 | 381.2 | 1.8 | 0.5\% |
 | 79.0\% | 374.6 | 375.3 | 0.6 | 0.2\% |
 | - | ${ }_{325.1}^{329.1}$ | 329.9 324 | 0.8 -0.9 | ${ }_{-0.2 \%}^{0.2 \%}$ |
 | 827\% | 324.3 | 324.4 | | |
 | 84.0\% | 323.4 | 323.7 | 0.3 | 0.1\% |
 | | 316.1 3026 | 316.2 3095 | 0.1 6.9 | - ${ }_{\text {23\% }}$ |
 | 87.7\% | 29.5 | 300.1 | 0.6 | 0.2\% |
 | 88.9\% | 296.0 | 297.5 | 1.5 | 0.5\% |
 | 90.1\% 9 | ${ }_{27}^{29.4}$ | 2974 | 7.0 | 2.4\% |
 | 92.4\% | 270.3 2545 | 27.9 254.6 | 0.6 0.1 | 0.2\% |
 | 93.8\% | ${ }_{237.2}^{254}$ | ${ }_{237.5}^{254}$ | 0.2 | 0.1\% |
 | 95.1\% | ${ }_{231.1}$ | 228.8 | -2.3 | -1.0\% |
 | 96.3\% ${ }_{\text {97 }}$ | ${ }_{2257}^{227.7}$ | 227.8
 226.2
 1 | 0.1 0.5 | ${ }_{0}^{0.1 \%}$ |
 | 98.8\% | 211.2 | 212.0 | 0.8 | 0.4\% |
 | 100.0\% | 174.5 | 174.0 | -0.4 | -0.2\% |

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | | Warch | | | $\begin{gathered} \text { Percent } \\ \text { Exceadace } \\ \text { Probability } \\ \text { Dulil } \end{gathered}$ | April | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | WSIP 2030 With Project | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (iuntrosicm) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | | | WSII 2 230 With Project Monthly EC
 (UMHOS/ | $\begin{gathered} \text { Absolute } \\ \text { (ifference } \\ \text { (UMHOS } / \text { CM) } \end{gathered}$ | $\begin{aligned} & \text { Relative } \\ & \text { Difference }(\%) \end{aligned}$ |
 | | | Monthy EC | | | | | | | |
 | (\%) | | (UWHOSSCM) | | | | | | | |
 | 0.0\% | | 918.6 | 0.2 | 0.0\% | 0.0\% | 684.3 | 685.2 | 0.9 | 0.1\% |
 | 1.2\% | 914.9 | 913.5 | -1.4 | -0.2\% | 1.2\% | 675.4 | 675.0 | -0.4 | -0.7 |
 | 2.5\% | 905.5 | 899.6 | -5.9 | -0.7\% | 2.5\% | 668.0 | 672 | 4.6 | |
 | 3.7\% | 866.1 | 864.5 | -1.6 | -0.2\% | 3.7\% | 658.5 | 663.3 | 4.8 | |
 | 4.9\% | 864.1 | 836.6 | -27.5 | -3.2\% | 4.9\% | 657.6 | 658 | 0.4 | |
 | 7.2\% | ${ }_{815.2}^{824.3}$ | 832.5 8187 | 8.2 3 | 1.0\% | ${ }^{6.2 \%}$ | ${ }_{6234}^{634}$ | 640.3 | $6^{6.3}$ | 1.0\% |
 | 8.6\% | 811.4 | 814.2 | 2.8 | 0.3\% | 8.6\% | 619.4 | 619.4 | 0.0 | 0.0\% |
 | 9.9\% | 790.8 | 811.5 | 20.7 | 2.6\% | 9.9\% | 617.2 | 618.6 | 1.3 | 0.2\% |
 | 11.1\% | 786.2 | 810.6 | 24.4 | 3.1\% | 11.1\% | 615.8 | 612.9 | -2.8 | -0.5\% |
 | 12.3\% | 778.9 | 795.0 | 16.1 | 2.1\% | 12.3\% | 612.4 | 612.3 | 0.0 | 0.0\% |
 | 13.6\% | 715.6 | 784.7 | 69.1 | 9.7\% | 13.6\% | 600.0 | 600.3 | 0.4 | 0.1\% |
 | 14.8\% | 714.2 | 717.2 | 3.0 | 0.4\% | 14.8\% | 598.8 | 599.1 | 0.3 | 0.0\% |
 | -16.0\% | 700.3 6983 | 716.9 | 16.5 1.9 | 2.4\% | | 589.4 5875 | 589.5 5875 | ${ }_{0}^{0.1}$ | 0.0\% |
 | 17.3\% | 698.3 | 700.2 | 1.9 | 0.3\% | 17.3\% | 587.5 | 587.5 | 0.1 | 0.0\% |
 | -18.5\% | 680.9 6744 | ${ }_{6749} 698$ | ${ }^{17.1}$ | 2.5\% | 18.5\% | 550.5 5285 | 551.2 | 0.7 | 0.1\% |
 | 19.8\% | 674.4 | 674.9 | 0.5 | 0.1\% | 19.8\% | 528.5 | 545.2 | 16.7 | 3.2\% |
 | - 21.0% | ${ }^{6650.0}$ | ${ }_{654.9}^{669}$ | ${ }_{3} 9.9$ | 1.5\% | 21.0\% | ${ }_{5177}^{517}$ | 525.2 | 7.5 -34 | 1.5\% |
 | 22.2\% | 650.6 | 654.3 | 3.6 | 0.6\% | 22.2\% | 517.4 | 514.0 | -3.4 | -0.7\% |
 | - 23.50% | 641.8 633 | 651.4 | ${ }^{9} 9$ | 1.5\% | 23.5\% | 502.6 | 507.7 4092 | ${ }^{5} .1$ | 1.0\% |
 | 24.7\% | 636.3 | 638.8 | 2.5 | 0.4\% | 24.7\% | 500.4 | 496.2 | -4.2 | -0.8\% |
 | - 25.59% | ${ }_{\text {cke }}^{630.8}$ | ${ }_{6}^{624.4}$ | -6.4 | -1.0\% | 25.9\% | 494.3 | ${ }_{4782}^{4957}$ | 1.4 | 0.3\% |
 | ${ }^{27.2 \%}$ | ${ }_{623.1}$ | ${ }_{621.3}^{62185}$ | -1.8 | -0.3\% | 27.2\% | 477.9 | 478.2 | 0.3 | 0.1\% |
 | - 28.4% | ${ }_{6}^{616.4}$ | 618.5 | ${ }_{84}^{2.0}$ | 0.3\% | 28.4\% | ${ }_{4757}^{4767}$ | ${ }_{475.0}^{4775}$ | 0.4 | 0.1\% |
 | - ${ }^{29.6 \%}$ 30.9\% | 609.3 598.4 | 617.8 6077 | 8.4 | 1.4.5\% | 39.6\% | ${ }_{4676}^{4757}$ | ${ }_{468.6}^{475.2}$ | ${ }^{-0.6}$ | |
 | 32.1\% | 595.3 | 595.2 | -0.1 | 0.0\% | 32.1\% | 461.0 | 461.1 | 0.1 | 0.0\% |
 | 33.3\% | 584.3 | 586.1 | 1.8 | 0.3\% | 33.3\% | 448.4 | 448.7 | 0.3 | 0.1\% |
 | 34.6\% | 583.4 | 576.4 | -7.0 | -1.2\% | 34.6\% | 435.6 | 435.7 | 0.1 | 0.0\% |
 | - $\begin{aligned} & 35.8 \% \\ & \text { 370\% }\end{aligned}$ | 575.9 5673 | 576.2 5701 | 0.3 28 | 0.1\% | 35.8\% | ${ }_{4314}^{432.6}$ | ${ }_{431.4}^{432.5}$ | 0.0 | 0.0\% |
 | | ${ }_{5470}^{567.3}$ | ${ }_{5472}^{57}$ | 2.8 | 0.5\% | 37.0\% | ${ }_{4}^{431.4}$ | 431.4 4131 | 0.0 | 0.0\% |
 | - $\begin{array}{r}38.3 \% \\ 3 \\ 395 \%\end{array}$ | 547.0 5371 | 547.2 5378 | 0.2 0.7 | 0.0\% | 38.3\% | ${ }_{4031}^{412.9}$ | ${ }_{403}^{413.1}$ | ${ }_{0}^{0.2}$ | 0.0\% |
 | - ${ }^{39.5 \%}$ \% | 537.1 536.6 | 537.8 536.7 | ${ }_{0}^{0.1}$ | 0.0\% | ${ }^{39.5 \%}$ | 403.1 398.2 | 403.2 308.2 | ${ }_{0.0}^{0.1}$ | 0.0\% |
 | 42.0\% | 534.9 | 532.5 | -2.3 | -0.4\% | 42.0\% | 386.9 | 386.9 | 0.0 | 0.0\% |
 | | 532.7 5277 | 530.8 5248 | -1.98 | -0.4\% | 43.2\% 44. | 382.4 3795 | 382.4 3795 | 0.0 | 0.0\% |
 | 44.4\% | ${ }_{5}^{527.7}$ | 524.8 5223 | -2.8 | ${ }^{-0.5 \%}$ | 44.4\% | ${ }_{379.5}^{373.5}$ | ${ }_{3795}^{379.5}$ | ${ }^{0.0}$ | 0.0\% |
 | 45.9\% | ${ }_{518.3}^{519.0}$ | 520.3 520.0 | 1.8
 1.8
 1 | - 0.3% | 46.9\% | 373.2 370.9 | ${ }_{371.1}^{373.5}$ | ${ }_{0}^{0.3}$ | 0.1\% |
 | 48.1\% | 516.6 | 517.8 | 1.1 | 0.2\% | 48.1\% | 364.6 | 364.7 | 0.0 | 0.0\% |
 | 49.4\% | 495.3 | 496.2 | 0.9 | 0.2\% | 49.4\% | 363.6 | 363.7 | 0.1 | 0.0\% |
 | | 487.0 486.6 | ${ }_{4873}^{495.4}$ | 8.4 | -1.7\% | 50.6\% | 346.9 3459 | 346.9 3460 | 0.0 | 0.0\% |
 | 51.9\% | ${ }_{483}^{486}$ | 487.3 4872 | 0.7 38 | 0.1\% | 51.9\% | 345.9 3434 | 344.0 3433 | 0.1 | 0.0\% |
 | - 53.19% | ${ }_{473.3}^{483.3}$ | 487.2 4840 | 3.8 108 | e.8\% | 53.19\% | ${ }_{3353}^{343.4}$ | ${ }_{3358}^{343.3}$ | 0.0 | 0.0\% |
 | 54.3\% | ${ }_{454.7}^{473.3}$ | ${ }_{464.5}^{484.0}$ | 10.8
 8 | ${ }_{2.2 \%}^{2.3 \%}$ | 54.3\% | ${ }_{335.1}^{335.3}$ | ${ }_{335.2}^{335.8}$ | ${ }_{0.1}^{0.5}$ | - 0.11% |
 | 56.8\% | 444.2 | 444.8 | 0.6 | 0.1\% | 56.8\% | 334.5 | 334.4 | 0.0 | 0.0\% |
 | (58.0\% | ${ }^{433.1}$ | ${ }^{437.5}$ | 4.4 | 1.0\% | 58.0\% | ${ }_{\text {323, }}^{323}$ | -323.5 | 0.0 | 0.0\% |
 | 59.3\% | ${ }_{4019.1}^{419.2}$ | ${ }_{4201.7}^{42.6}$ | 3.4 | 0.2\% | 59.5\% | ${ }_{322.1}^{322.1}$ | ${ }_{322.1}^{32.1}$ | 0.0 0.0 | 0.0\% |
 | 61.7\% | 399.4 | 399.7 | 0.3 | 0.1\% | 61.7\% | 319.7 | 319.6 | -0.1 | 0.0\% |
 | -63.0\% | 350.7 30.5 | ${ }_{\text {357.2 }}^{3}$ | 6.5 | 1.9\% | 63.0\% | 316.8 | 316.8 3168 | ${ }_{0}^{0.0}$ | 0.0\% |
 | | 345.0 340.5 | ${ }_{341.1}^{34.9}$ | 1.0 | - 0.3% | 64.2\% | 316.7 | 316.8 315.0 | ${ }_{2.3}^{0.1}$ | 0.0\%\% |
 | -65.4\% | 340.5 335.9 | 341.1 340.2 | 0.6 4.4 | - ${ }_{\text {1.3\% }}$ | 65.4\% | 3127 3075 | 315.0 307.9 | 2.3 0.4 | 0.7\% 0 |
 | 67.9\% | 332.3 | 339.0 3302 | ${ }^{6} .7$ | 2.0\% | 67.9\% | 3023 | ${ }^{302.3}$ | 0.0 | 0.0\% |
 | -69.1\% | 328.1 320.9 | ${ }_{322.1}^{330.2}$ | ${ }_{1.2}^{2.2}$ | 0.4\% | 70.4\% | 300.8 292.4 | 301.0 292.4 | 0.3 0.0 | |
 | 71.6\% | 319.3 | 320.8 | 1.5 | 0.5\% | 71.6\% | 287.0 | ${ }_{287.0}^{282}$ | 0.0 | 0.0\% |
 | -72.8\% | 318.4 | 318.8 | 0.4 | 0.1\% | 72.8\% | 281.7 2805 | 281.5 2807 | -0.2 | -0.1\% |
 | (74.1\% | 313.2 313.1 | 313.4 313.1 | 0.2 | - 0.0 0.1\% | 74.1\% 7 | ${ }_{273.9}^{280.5}$ | ${ }_{274.0}^{280.7}$ | 0.2 0.0 | - 0.1% |
 | -75.3\% | ${ }_{304.5}^{313.1}$ | 313.1 309.0 | ${ }_{4.5}^{0.0}$ | 1.5\% | 75.3\% | ${ }_{271.7}^{27.9}$ | ${ }_{271.7}^{274.0}$ | ${ }_{0}^{0.0}$ | 0.0\% 0 |
 | 77.8\% | 303.2 | 303.2 | 0.0 | 0.0\% | 77.8\% | 270.5 | 271.0 | 0.5 | 0.2\% |
 | 79.0\% | 294.4 | 294.2 | -0.2 | -0.1\% | 79.0\% | 264.8 | 264.8 | 0.0 | 0.0\% |
 | - ${ }_{\text {80.2\% }}^{815 \%}$ | ${ }_{2825}^{2917}$ | ${ }_{2825}^{2917}$ | 0.0 | - | 800.2\% | 263.9 2584 | ${ }_{260.0}^{2640}$ | ${ }_{2}^{0.1}$ | 0.0\% |
 | 82.7\% | 28.9 | 281.0 | 0.1 | 0.0\% | 82.7\% | 247.4 | 247.3 | -0.1 | -0.1\% |
 | 84.0\% | 271.8 | 271.9 | 0.1 | 0.0\% | 84.0\% | 245.1 | 245.2 | 0.0 | 0.0\% |
 | - ${ }_{\text {85.2\% }}^{8.4 \%}$ | ${ }_{264.7}^{266.0}$ | 266.1 2640 | 0.2 -0.8 | -0.3\% | 85.2\% ${ }_{86.4 \%}$ | ${ }_{241.5}^{244}$ | ${ }_{241.5}^{24.5}$ | 0.0 | -0.0\% |
 | 87.7\% | 263.8 | 263.2 | -0.6 | -0.2\% | 87.7\% | 236.0 | 236.2 | 0.2 | 0.1\% |
 | 88.9\% | 262.6 | 262.6 | 0.0 | 0.0\% | 88.9\% | 226.6 | 226.8 | 0.2 | 0.1\% |
 | - 90.14% | 260.7 2529 | 261.1 253.0 | 0.4 | - | - 90.14% | ${ }_{2208}^{226.3}$ | ${ }_{2208}^{220.7}$ | 0.4 | - 0.2% \% |
 | 92.6\% | 251.8 | 252.1 | 0.3 | 0.1\% | 92.6\% | 22.5 | 219.5 | -1.0 | -0.4\% |
 | 93.8\% | 246.5 | 252.1 | 5.5 | 2.2\% | 93.8\% | 218.5 | 218.5 | 0.0 | 0.0\% |
 | -95.1\% | 2420 | 24.0 | -2.0 | -0.8\% | 95.1\% | 212.9 | 213.4 | 0.4 | 0.2\% |
 | -96.3\% | 232.9 220.5 | ${ }_{220.3}^{232.4}$ | -0.5 | ${ }^{-0.2 \% \%}$ | 96.3\% | 197.0
 183.8 | 196.6
 1838
 16.8 | -0.4 | -0.0\% |
 | 988\%\% | ${ }_{220.4}^{220.4}$ | 219.3 2051 | -1.1. | -0.5\% | 98.8\% | 176.8 | ${ }_{166.9}^{176.9}$ | 0.2 | 0.1\% |
 | 100.0\% | 205.7 | 205.1 | -0.6 | -0.3\% | 100.0\% | 166.7 | 166.3 | -0.4 | -0.2\% |

 | $\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$ | Way | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Wethout | WSIP 2030 With Project | Absolute | |
 | | ${ }_{\text {Mronthly }}^{\text {M }}$ PC | Monthly EC | Difference (UWHOSCM) | Difference (\%) |
 | | (UuHosicm) | (UMHOSSCM) | | |
 | 0.0\% | 605.4 | 608.3 | 2.9 | 0.5\% |
 | 1.2\% | 590.8 | 596.5 | 5.8 | 1.0\% |
 | 2.5\% | 588.8 | ${ }_{592.3}$ | 3.5 | 0.6\% |
 | 3.7\% | 588.6 | 588.9 | ${ }^{2.3}$ | 0.4\% |
 | 4.9\% | 580.4 | 580.4 | 0.0 | 0.0\% |
 | 6.2\% | 578.6 | 579.0 | 0.4 | 0.1\% |
 | 7.4\% | 577.2 | 578.3 | 1.1 | 0.2\% |
 | 8.6\% | 565.2 | 577.9 | 12.8
 18 | 2.3\% |
 | 9.9\% | 562.0 | 565.4 | 3.4 | 0.6\% |
 | 11.1\% | 559.3 | 561.0 5590 | 1.7 0.7 | 0.3\% |
 | 12.3\% | 558.7 | 559.0 | 0.3 | 0.1\% |
 | - 11.36% | 556.6 | ${ }_{5511}^{56.9}$ | O.3
 57 | 0.0\% |
 | 14.8\% | 545.4 | 551.1 | ${ }_{5} 5$ | 1.0\% |
 | -16.0\% | 543.6 5436 | 54.0 5453 | -5.3 | 1.0\% |
 | 17.3\% | 543.6 | 545.3 | 1.8 | 0.3\% |
 | -18.5\% | 539.4 5385 | 543.8 | 4.4 | 0.8\% |
 | 19.8\% | 538.5 | 539.0 | 0.5 | 0.1\% |
 | 21.0\% | 536.0 | 536.8 | ${ }^{0.8}$ | ${ }_{\text {en }} 0.2 \%$ |
 | 22.2\% | ${ }_{525.2}$ | 531.5 525 525 | ${ }^{6.4}$ | 1.2\% |
 | - 23.5% | 525.2 5195 | 525.2 | 0.0 | 0.0\% |
 | -24.7\% | 519.5 | 520.2 | ${ }^{0.7}$ | 0.1\% |
 | - 25.59% | 517.7 5095 | 518.2 5135 | ${ }_{3.5}^{0.5}$ | 0.1\% |
 | | 509.5 4983 | 513.5 | ${ }^{3.9}$ | -0.8\% |
 | 29.6\% | 488.7 | 485.7 | 0.1 | 0.0\% |
 | 30.9\% | 483.6 | 483.5 | 0.0 | 0.0\% |
 | 32.1\% | 471.3 | 471.2 | -0.1 | 0.0\% |
 | - 33.3% | ${ }_{463.9}^{4631}$ | 466.0 4595 | ${ }^{2.2}$ | 0.5\% |
 | | 459.1 | ${ }_{459.2}$ | -3.1 | -0.0\% |
 | 37.0\% | 455.1 | 455.1 | 0.0 | 0.0\% |
 | 38.3\% | 447.5 | 447.1 | -0.4 | -0.1\% |
 | 39.5\% | 446.7 | 446.7 | 0.0 | 0.0\% |
 | 40.7\% | 445.7 | 445.7 | 0.0 | 0.0\% |
 | 42.0\% | 444.6 | 444.7 | 0.0 | 0.0\% |
 | ${ }^{43.2 \%} 4.4 \%$ | ${ }_{431.1}^{436.4}$ | ${ }_{431.0}^{436.5}$ | 0.1 -0.1 | -0.0\% |
 | 4.7\% | 429.3 | 429.3 | 0.0 | 0.0\% |
 | 46.9\% | 404.3 | 404.2 | -0.1 | 0.0\% |
 | 48.1\% | 401.5 | 401.5 | 0.0 | 0.0\% |
 | 4.9.4\% | 401.1 | 401.3 | 0.2 | 0.1\% |
 | 50.6\% | 401.0 3954 | 400.8 3054 | -0.2 | 0.0\% |
 | | 395.4 392.8 | 395.4 3930 | 0.0 | - 0.1% |
 | 54.3\% | 390.8 | 390.9 | 0.0 | 0.0\% |
 | 55.\% | 381.5 | 381.5 | 0.1 | 0.0\% |
 | 56.8\% | 380.0 | 379.9 | -0.1 | 0.0\% |
 | 58.0\% | 378.8 | 378.8 | 0.0 | 0.0\% |
 | 59.3\% | ${ }_{3}^{375.6}$ | ${ }^{374.9}$ | -0.7 | ${ }^{-0.2 \%}$ |
 | - ${ }_{\text {60.5\% }}^{617 \%}$ | ${ }_{3717}^{3740}$ | 374.0 3722 | 0.0 | 0.0\% |
 | 6.3.0\% | 371.7 3628 | 372.2 3629 | 0.1 | ${ }_{0}^{0.2 \%}$ |
 | 64.2\% | 361.8 | 361.7 | -0.1 | 0.0\% |
 | 65.4\% | 359.9 | 359.9 | 0.1 | 0.0\% |
 | 66.7\% | 359.1 | 359.0 | -0.1 | 0.0\% |
 | -67.9\% | 348.1 3394 | 348.3 3395 | 0.2 0.1 | - ${ }_{\text {0.1\% }}^{0.0 \%}$ |
 | -69.1\% | 339.4 338.9 | 339.5 388.9 | ${ }_{0.0}^{0.1}$ | -0.0\% |
 | 71.6\% | 327.5 | 327.6 | 0.0 | 0.0\% |
 | 72.8\% | 318.8 | 318.8 | 0.0 | 0.0\% |
 | 74.1\% | ${ }^{313.1}$ | ${ }^{313.1}$ | 0.0 | 0.0\% |
 | - $7.3 .3 \%$ | 309.8 3081 | 309.9 3082 | ${ }_{0}^{0.1}$ | ${ }^{0.0 \% \%}$ |
 | 77.8\% | 289.1 | 290.4 | 1.3 | 0.5\% |
 | 79.0\% | 284.6 | 286.0 | 1.4 | 0.5\% |
 | - ${ }_{\text {80.2\% }}^{815 \%}$ | ${ }_{275.6}^{280.6}$ | ${ }_{2768}^{280.6}$ | ${ }_{12}^{0.0}$ | -0.0\% |
 | 82.7\% | 270.9 | 270.9 | 0.0 | 0.0\% |
 | 84.0\% | ${ }^{267.1}$ | 267.2 | 0.1 | 0.0\% |
 | - $\begin{aligned} & 85.2 \% \\ & 86.4 \%\end{aligned}$ | 255.1 2539 | 255.3 254.9 | ${ }^{0.2}$ | 0.1\% |
 | 87.7\% | 226.1 | ${ }_{226} 26$ | 0.3 | 0.1\% |
 | 88.9\% | ${ }^{212.6}$ | 213.2 | 0.7 | 0.3\% |
 | - ${ }_{\text {90.14\% }}$ | 212.2
 208.8
 1 | ${ }_{210.1}^{212.3}$ | 0.1 13 | - 0.0% |
 | 92.6\% | 197.0 | 197.6 | 0.6 | 0.3\% |
 | 93.8\% | 191.2 | 191.3 | 0.2 | 0.1\% |
 | 95.1\% | 188.5 | 188.7 | 0.2 | 0.1\% |
 | (96.3% | 179.1 173.1 | 179.4 173.0 | -0.3 | ${ }_{\text {- }}^{0.2 \%}$ |
 | 98.8\% | 172.2 | 172.6 | 0.4 | 0.2\% |
 | 100.0\% | 163.5 | 163.7 | 0.2 | 0.1\% |

 Table SQ-32-b

 \begin{tabular}{|c|c|c|c|c|}
 \hline \& \& June \& \& \\
 \hline \({ }_{\text {Percent }}^{\text {Pexcedance }}\) \& \({ }_{\text {WSIP }}^{\text {2030 }}\) Proithout \& WSIP 2030 With Project \& Absolute \& \\
 \hline Probability \& Monthly EC \& Monthy EC \& (itierence \& Difference (\%) \\
 \hline (\%) \& (UMHOSICM) \& (UMHosicm) \& \& \\
 \hline 0.0\% \& 554.4 \& 556.9 \& 2.6 \& 0.5\% \\
 \hline 1.2\% \& 541.7 \& 544.4 \& 2.7 \& 0.5\% \\
 \hline 2.5\% \& 536.9 \& 538.1 \& 1.2 \& 0.2\% \\
 \hline 3.7\% \& 534.6 \& 536.3 \& 1.7 \& 0.3\% \\
 \hline 4.9\% \& 521.2 \& 521.4 \& 0.1 \& 0.0\% \\
 \hline \({ }^{6.2 \%}\) \& 514.8
 4888 \& 507.9 \& \({ }^{-6.9}\) \& -1.3\% \\
 \hline 7.4\% \& 488.8 \& 490.0 \& 1.2 \& 0.3\% \\
 \hline 8.6\% \& 485.0
 4695 \& \({ }_{4712}^{48.9}\) \& 3.9 \& 0.8\% \\
 \hline 9.9\% \& 469.5 \& 477.2 \& \({ }_{1}^{1.8}\) \& 0.4\% \\
 \hline 11.19\% \& 468.5 \& 470.6 \& 2.1 \& 0.5\% \\
 \hline 12.3\% \& 468.2 \& 466.6 \& -1.6 \& -0.3\% \\
 \hline 13.6\% \& \({ }_{466.2}^{465 .}\) \& 466.3 \& 0.1 \& 0.0\% \\
 \hline 14.8\% \& 465.4 \& 465.8 \& -0.4 \& 0.1\% \\
 \hline 16.0\% \& 461.9 \& 464.9 \& 2.9 \& 0.6\% \\
 \hline 17.3\% \& 456.1 \& 460.4 \& 4.3 \& 1.0\% \\
 \hline 18.5\% \& 453.0
 452. \& 458.8 \& 5 \& -1.3\% \\
 \hline 19.8\% \& 452.4 \& 457.4 \& 5.0 \& 1.19\% \\
 \hline 21.0\% \& 448.0 \& 454.5 \& \({ }_{6}^{6.5}\) \& 1.5\% \\
 \hline \({ }^{22.2 \%}\) 2.5\% \& 444.8 \& 448.3 \& \({ }^{3.5}\) \& 0.8\% \\
 \hline \({ }^{23.47 \%}\) \& \({ }_{432.7}^{438.2}\) \& \({ }_{430.4}^{435.2}\) \& --3.3 \& \({ }^{-0.5 \%}\) \\
 \hline \({ }^{25.9 \%}\) \& \({ }_{424.7}^{428.8}\) \& \({ }_{424.9}^{424.9}\) \& -3.9 \& -0.9\% \\
 \hline 27.2\% \& 424.7 \& 423.5 \& -1.2 \& -0.3\% \\
 \hline 28.4\% \({ }^{29.6 \%}\) \& \({ }_{421.8}^{424}\) \& \({ }_{4}^{421.8}\) \& -2.5 \& -0.6\% \\
 \hline 29.6\% \& 421.8 \& 420.9 \& -0.9 \& -0.2\% \\
 \hline 30.9\% \& \({ }_{420.7}^{420.7}\) \& 420.7
 4194 \& -0.1 \& 0.0\% \\
 \hline 32.1\% \& 420.7 \& 419.4 \& \(-1.3\) \& \({ }^{-0.3 \%}\) \\
 \hline \(33.3 \%\)
 \(34.6 \%\) \& 419.2 \& 414.4 \& \(-4.8\) \& -1.1\% \\
 \hline \(34.6 \%\)
 \(358 \%\) \& 414.4 \& 414.3 \& -0.1 \& 0.0\% \\
 \hline 35.8\% \& \({ }_{409.5}^{409.5}\) \& \({ }_{4086}^{4096}\) \& 0.1 \& 0.0\% \\
 \hline 37.0\% \& \({ }_{400.3}^{409.3}\) \& 408.6
 408.0 \& \(\begin{array}{r}-0.7 \\ 1.6 \\ \hline\end{array}\) \& -0.2\% 0 \\
 \hline 39.5\% \& 404.2 \& 407.6 \& \({ }_{3}^{1.4}\) \& 0.8\% \\
 \hline 40.7\% \& 404.0 \& 407.1 \& 3.1 \& 0.8\% \\
 \hline 42.0\% \& 402.7 \& 403.9 \& 1.3 \& 0.3\% \\
 \hline 43.2\% \& 402.0
 3085 \& \({ }_{402.1}^{402}\) \& 0.0
 2.5 \& 0.0\% \\
 \hline 44.4\% \& 398.5 \& 401.0 \& 2.5 \& 0.6\% \\
 \hline 45.7\% 4.9 \& 398.0
 390.0 \& 400.1 \& \({ }_{2}^{2.1}\) \& 0.5\% \\
 \hline 46.9\% \& 396.9
 394.8 \& 399.0
 398.7 \& \({ }^{2.1}\) \& 0.5\% \\
 \hline 48.4\% \& 394.8
 39.1 \& 398.7
 396.9 \& \begin{tabular}{l}
 3.9 \\
 2.8 \\
 \hline 1
 \end{tabular} \& 1.0\% \\
 \hline 50.6\% \& 393.2 \& 394.6 \& 1.4 \& 0.4\% \\
 \hline 51.9\% \& 393.1 \& 394.4 \& 1.3 \& 0.3\% \\
 \hline 53.1\% \& 392.0
 3900 \& 392.4
 390.5 \& 0.4 \& 0.1\% \\
 \hline 54.5\% \& \({ }_{3878}^{390.0}\) \& \({ }^{390.5}\) \& 0.5 \& 0.4\% 0 \\
 \hline 56.8\% \& 387.8
 38.6

 3988 \& ${ }^{3889.3}$ \& 1.5
 2.4 \& 0.6\%

 \hline \& 383.8
 383.0 \& 388.2
 387.9 \& 4.4
 4.8 \& - 1.2%

 \hline 59.5\% \& ${ }_{388.7}^{383.0}$ \& 388.9
 386.4 \& ${ }_{3.7}^{4.8}$ \& 1.0\%

 \hline 61.7\% \& 382.5 \& 386.1 \& 3.6 \& 1.0\%

 \hline -63.0\% \& 381.9
 380.6 \& 384.4
 383 \& 2.4
 27 \& - 0.6%

 \hline 65.4\% \& 379.1 \& 382.9 \& ${ }_{3}^{2.8}$ \& 1.0\%

 \hline 66.7\% \& 377.8 \& 382.9 \& 5.1 \& 1.3\%

 \hline 67.9\% \& ${ }_{375.9}^{376.2}$ \& 382.2
 380.6 \& ${ }_{4}^{6.0}$ \& - 1.6%

 \hline 70.4\% \& 375.7 \& 380.4 \& 4.7 \& 1.3\%

 \hline 71.6\% \& 375.5 \& 378.1 \& 2.7 \& 0.7\%

 \hline 72.8\% \& 372.5
 369.0 \& 377.8
 377.1 \& ${ }_{8.1}^{5.3}$ \& - 1.4%

 \hline 75.3\% \& 368.6 \& 376.4 \& 7.8 \& 2.1\%

 \hline 76.5\% \& 368.0 \& 376.0 \& 8.0 \& 2.2\%

 \hline 77.8\% \& | 366.4 |
 | :--- |
 | 3656 | \& 375.0

 374.7 \& ${ }^{8.6}$ \& ${ }_{25 \%}^{2.3 \%}$

 \hline 80.2\% \& 365.2 \& 370.9 \& 5.6 \& 1.5\%

 \hline 81.5\% \& 364.2 \& 368.0 \& 3.7 \& 1.0\%

 \hline - 82.7% \& | 362.6 |
 | :--- |
 | 3620 | \& 366.3

 3645 \& 3.7
 24 \& -

 \hline 85.2\% \& 362.0 \& 363.7 \& 1.8 \& 0.5\%

 \hline 86.4\% \& 354.7 \& 356.2 \& 1.5 \& 0.4\%

 \hline 87.7%
 889% \& 354.0
 3437 \& 353.9
 3460 \& 0.0
 23 \& 0.0\%\%

 \hline 90.1\% \& 340.8 \& 343.9 \& 3.1 \& 0.9\%

 \hline 914\% \& 339.7 \& 341.2 \& 1.6 \& 0.5\%

 \hline 93. 92.8% \& ${ }_{323.1}^{324}$ \& 325.2
 322.8 \& 1.0
 -0.4 \& -0.3\%

 \hline 95.1\% \& 309.2 \& 310.3 \& 1.1 \& 0.4\%

 \hline 96.3\% \& 300.4 \& 300.3 \& 0.0 \& 0.0\%

 \hline 97.5\% \& 276.0 \& ${ }^{276.8}$ \& 0.8 \& 0.3\%

 \hline 100.0\% \& ${ }_{23,7}^{255.3}$ \& ${ }_{234.0}^{256.0}$ \& ${ }_{0.4}^{0.7}$ \& 0.2\%

 \hline
 \end{tabular}

 | Juy | | | | | August | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Percent | WSIP 2030 W Wthout | WSIP 2030 With Project | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOSOSM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | $\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Pxeedance } \\ \text { Probability } \end{array} \\ \text { (\%) } \\ \hline \end{gathered}$ | WSII 2030 WithoutPorietMontil EC(UnHHOSCM) | WSIP 2030 With Project$\left.\begin{array}{c}\text { Monthly EC } \\ \text { (UMHOSSCM) }\end{array}\right)$ | $\begin{gathered} \text { Absolute } \\ \text { Differee } \\ \text { (untoricicm) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | Probability | | Monthly EC | | | | | | | |
 | (1) | (enosicm) | (UMHOSTCM) | | | | | | | |
 | 0.0\% | 2.6 | 577.6 | -5.0 | 0.9\% | | | | 9.0 | |
 | 1.2\% | 565.9 | 539.0 | -26.9 | 4.8\% | 1.2\% | 610.9 | 667.7 | 56.8 | |
 | 2.5\% | 550.0 | 537.0 | -13.0 | 2.4\% | 2.5\% | 608.0 | 612.1 | | |
 | 3.7\% | 535.5 | 515.8 | -19.7 | 3.7\% | 3.7\% | 601.1 | 1.5 | 0.4 | |
 | 4.9\% | 2.1 | 463.7 | 1.6 | 0.3\% | 4.9\% | 577.3 | 581.7 | 4.4 | |
 | 6.2\% | 453.9 | 451.6 | -2.3 | -.5\% | 6.2\% | 573.2 | 5.5 | 2.2 | 0.4\% |
 | 7.4\% | 447.2 | 435.7 | 11.5 | 2.6\% | 7.4\% | 573.1 | 568.7 | 4.4 | |
 | 8.6\% | 441.2 | 431.6 | -9.5 | 2.2\% | 8.6\% | 560.6 | 564.6 | 3.9 | 0.7\% |
 | 9.9\% | 423.8 | 425.2 | 1.5 | 0.3\% | 9.9\% | 552.7 | 561.2 | 8.5 | |
 | 11.1\% | 423.5 | 424.8 | 1.4 | 0.3\% | 11.1\% | 548.0 | 559.2 | 11.2 | 2.0\% |
 | 12.3\% | 419.4 | 422.0 | 2.6 | 8.6\% | 12.3\% | 544.0 | 559.0 | 14.9 | 2.7\% |
 | 13.6\% | 419.4 | 419.7 | 0.3 | 0.1\% | 13.6\% | 541.4 | 553.1 | 1.6 | 2.2\% |
 | 14.8\% | 418.8 | 418.7 | 0.0 | .0\% | 14.8\% | 529.4 | 548.5 | 19.1 | 3.6\% |
 | 16.0\% | 411.7 | 418.0 | 6.3 | 1.5\% | 16.0\% | 528.7 | 542.4 | 13.7 | 2.6\% |
 | 17.3\% | 409.9 | 411.7 | 1.9 | 0.5\% | 17.3\% | 528.5 | 539.1 | 10.6 | |
 | 18.5\% | 409.0 | 411.1 | 2.1 | 0.5\% | 18.5\% | 526.3 | 533.9 | 7.6 | 1.48 |
 | 19.8\% | 408.8 | 406.5 | -2.2 | -0.5\% | 19.8\% | 516.5 | 512.1 | -4.4 | |
 | 21.0\% | 408.5 | 405.6 | -2.9 | 0.7\% | 21.0\% | 510.4 | 508.9 | -1.5 | -0.3 |
 | 22.2\% | 407.0 | 404.1 | -2.8 | -0.7\% | 22.2\% | 502.8 | 498.4 | -4.3 | -0.9 |
 | 23.5\% | 405.7 | 404.1 | -1.6 | 0.4\% | 23.5\% | 496.0 | 483.1 | 12.9 | -2.6\% |
 | 24.7\% | 404.1 | 402.7 | -1.4 | -0.3\% | 24.7\% | 472.9 | 469.6 | -3.3 | -0.7\% |
 | 25.9\% | 403.0 | 401.2 | -1.9 | 0.5\% | 25.9\% | 455.1 | 443.0 | -12.1 | -2.7\% |
 | 27.2\% | 398.7 | 398.2 | -0.5 | -0.1\% | 27.2\% | 450.9 | 442.0 | -8.9 | -2.0\% |
 | 28.4\% | 397.7 | 396.8 | -0.9 | 0.2\% | 28.4\% | 450.2 | 437.8 | 12.5 | 2.8\% |
 | 29.6\% | 395.3 | 396.6 | 1.3 | 0.3\% | 29.6\% | 429.5 | 432.0 | 2.5 | 0.6\% |
 | 30.9\% | 393.2 | 391.7 | -1.5 | -0.4\% | 30.9\% | 428.2 | 431.2 | 3.0 | 0.7\% |
 | 32.1\% | 393.2 | 390.7 | -2.4 | -0.6\% | 32.1\% | 425.7 | 430.5 | 4.8 | 1.1\% |
 | 33.3\% | 391.3 | 388.4 | -2.9 | -0.7\% | 33.3\% | 424.3 | 427.7 | 3.4 | 0.8\% |
 | 34.6\% | 387.9 | 386.3 | -1.6 | -0.4\% | 34.6\% | 423.8 | 426.8 | ${ }^{3.0}$ | 0.7\% |
 | 35.8\% | 385.6 | 385.5 | -0.1 | 0.0\% | 35.8\% | 422.7 | 426.6 | 3.9 | \% |
 | 37.0\% | 385.4 | 385.3 | -0.1 | 0.0\% | 37.0\% | 422.4 | 424.8 | 2.5 | 0.6\% |
 | 38.3\% | 383.2 | 384.4 | 1.2 | 0.3\% | 38.3\% | 418.8 | 423.7 | 4.9 | 1.2\% |
 | 39.5\% | 377.6 | 383.1 | 5.5 | 1.5\% | 39.5\% | 416.8 | 421.7 | 4.9 | 1.2\% |
 | 40.7\% | 7.0 | ${ }_{3828}^{3828}$ | 5.8 | 1.5\% | 40.7\% | 416.7 | 420.8 | 4.1 | \% |
 | 42.0\% | 376.4 | 380.3 | 3.9 | 1.0\% | 42.0\% | 415.8 | 420.1 | 4.3 | 1.0\% |
 | 43.2\% | 375.9 | ${ }_{377.5}^{378.5}$ | ${ }^{2.6}$ | 0.7\% | 43.2\% | 410.2 | 419.0 | 8.7 | 2.1\% |
 | 44.4\% | 375.9 | 377.2 | 1.3 | 0.4\% | 44.4\% | 410.2 | 418.7 | 8.5 | 2.1\% |
 | - 45.7% | 374.0 3727 | 377.2 3710 | ${ }^{3.2}$ | 0.9\% | 45.7\% | 408.6 | 414.5 | 6.0 | 1.5\% |
 | 48.1\% | 370.2 | 370.9 | 0.7 | 0.2\% | 48.1\% | 402.5 | 409.4 | ${ }_{6.9}$ | 1.7\% |
 | 49.4\% | 366.8 | 369.7 | 2.9 | 0.8\% | 49.4\% | 394.7 | 404.9 | 10.2 | 2.6\% |
 | 50.6\% | 366.6 | 368.9 | ${ }^{2} 3$ | 0.6\% | 50.6\% | 393.9 | 404.1 | 10.2 | |
 | 51.9\% | 364.6 | 367.1 | 2.5 | 0.7\% | 51.9\% | 392.6 | 394.7 | 2.1 | 0.5\% |
 | 53.1\% | 362.7 | 364.5 | 1.8 | 0.5\% | 53.1\% | 391.6 | 385.3 | ${ }^{6} .3$ | ${ }^{-1.6 \%}$ |
 | 54.3\% | ${ }_{362.5}$ | 364.1 | 1.5 | 0.4\% | 54.3\% | 388.4 | 384.5 | 3.9 | -1.0\% |
 | 55.6\% | ${ }^{362.5}$ | ${ }_{362.6}$ | 0.1 | 0.0\% | 55.6\% | ${ }^{382.1}$ | 383.8 | 1.8 | 0.5% |
 | 56.8\% | ${ }^{357.5}$ | ${ }^{360.2}$ | 2.7 | 0.7\% | 56.8\% | 377.7 | 383.2 | 5.4 | 1.4\% |
 | 58.0\% | ${ }_{356.7}$ | 359.1 | 2.4 | 0.7\% | 58.0\% | ${ }_{376.7}^{372.7}$ | 381.0 | 4.2 | 1.19\% |
 | 59.3\% | 356.4 | ${ }_{356.8}$ | 0.4 | 0.1\% | 59.3\% | 372.2 | 380.0 | 7.8 | 2.1\% |
 | 60.5\% | 354.9 | ${ }^{356.1}$ | 1.2 | 0.3\% | ${ }^{60.5 \%}$ | ${ }^{370.3}$ | 375.0 | 4.7 | 1.3\% |
 | 61.7\% | ${ }^{354.1}$ | ${ }_{354.3}$ | 0.2 | 0.1\% | 61.7\% | 363.8 | 373.0 | 9.2 | 2.5\% |
 | 63.0\% | ${ }_{\text {cher }} 35.3$ | 352.9 | 0.6 | 0.2\% | 63.0\% | ${ }^{361.9}$ | 371.7 | ${ }^{9.8}$ | 2.7\% |
 | 64.2\% | ${ }^{355.1}$ | ${ }^{351.3}$ | 0.2 | 0.1\% | 64.2\% | ${ }^{357.3}$ | 359.6 | ${ }^{2.3}$ | 0.6\% |
 | 65.4\% | 351.0 3500 | ${ }_{351.3}$ | ${ }^{0.3}$ | 0.1\% | 65.4\% | 355.2 | 358.0 | 2.7 | 0.8\% |
 | 66.7\% | 350.9 | 351.2 | 0.4 | 0.1\% | 66.7\% | 353.3 | 352.4 | -0.9 | 0.2\% |
 | 67.9\% | 350.6 3484 | 349.4 | -1.1. | -0.3\% | 67.9\% | 350.8 30.8 | ${ }_{350.8}$ | 0.0 | 0.0\% |
 | 69.1\% | 348.4 | 346.3 | -2.1 | -0.6\% | 69.1\% | 350.5 | 350.6 | 0.1 | 0.0\% |
 | 70.4\% | 347.8 | 345.8 | -2.0 | -0.6\% | 70.4\% | 349.0 | 349.2 | 0.2 | 0.1\% |
 | 71.6\% | 346.9 | 345.7 | -1.2 | -0.3\% | 71.6\% | 345.4 | 346.5 | 1.2 | 0.3\% |
 | 72.8\% | 345.8
 344 | ${ }_{34}^{34.2}$ | -2.6 | -0.8\% | 72.8\% | 345.2 | 345.2 | 0.0 | 0.0\% |
 | 74.1\% | 344.9 | 342.6 | -2.3 | -0.7\% | 74.1\% | 341.8 | 344.0 | 2.2 | 0.6\% |
 | 75.3\% | 344.0 | 341.4 | -2.6 | -0.8\% | 75.3\% | 341.3 | ${ }_{340.3}$ | -1.0 | -0.3\% |
 | 76.5\% | 344.0 | 341.1 | -2.9 | -0.8\% | 76.5\% | 341.2 | 338.2 | ${ }^{3.0}$ | 0.9\% |
 | 77.8\% | ${ }_{342.7}$ | 339.7 | -3.0 | -0.9\% | 77.8\% | 340.2 | 337.8 | -2.4 | -0.7\% |
 | 79.0\% | ${ }^{342.2}$ | 338.3 | -3.9 | -1.1\% | 79.0\% | 335.1 | 335.9 | 0.9 | 0.3\% |
 | 80.2\% | 342.2 | 336.4 | -5.9 | -1.7\% | 80.2\% | 334.8 | 335.1 | 0.4 | 0.1\% |
 | 81.5\% | 341.6 | 336.2 | -5.4 | -1.6\% | 81.5\% | 328.9 | 333.6 | 4.7 | 1.4\% |
 | 82.7\% | 338.2 | 336.0 | -2.2 | -0.7\% | 827\% | 328.6 | 330.4 | 1.8 | 0.5\% |
 | 84.0\% | ${ }^{337.3}$ | ${ }^{332.5}$ | -4.9 | -1.4\% | 84.0\% | 328.1 | 326.7 | -1.4 | -0.4\% |
 | 85.2\% | 335.8 | 332.2 | -3.6 | -1.1\% | 855.2\% | 328.0 | 326.4 | -1.6 | 0.5\% |
 | 86.4\% | ${ }_{3} 35.8$ | 332.0 | -3.7 | -1.1\% | 86.4\% | 326.9 | 325.0 | 1.9 | 0.6\% |
 | 87.7\% | ${ }^{3333} 3$ | 331.6 | -1.7 | -0.5\% | 87.7\% | ${ }_{326.9}$ | 324.9 | -1.9 | 0.6\% |
 | 88.9\% | 332.9 | 330.4 | -2.4 | -0.7\% | 88.9\% | ${ }^{326.3}$ | 324.2 | -2.1 | 0.6\% |
 | 90.1\% | ${ }^{332.6}$ | 326.7 | -5.9 | -1.8\% | 90.1\% | 326.0 | 322.4 | ${ }^{3.6}$ | -1.1\% |
 | 914\% | 332.1 | ${ }^{326.3}$ | -5.8 | -1.7\% | 91.4\% | 325.9 | 321.0 | -4.9 | 1.5\% |
 | 92.6\% | 329.9 | 324.5 | -5.4 | -1.6\% | 92.6\% | 321.7 | 320.5 | -1.1 | -0.3\% |
 | 93.8\% | 327.2 | 321.8 | -5.4 | -1.7\% | 93.8\% | 320.9 | 315.0 | -6.0 | -1.9\% |
 | 95.1\% | 325.0 | 316.8 | -8.2 | -2.5\% | 95.1\% | 315.5 | 314.5 | -1.0 | -0.3\% |
 | 96.3\% | ${ }^{322.9}$ | ${ }_{313.5}$ | -9.4 | -2.9\% | ${ }^{96.3 \%}$ | 315.0 | ${ }_{312.8}$ | -2.2 | -0.7\% |
 | 97.5\% | ${ }_{3}^{318.6}$ | 312.2 | -6.5 | -2.0\% | 97.5\% | 314.9 | 3097 | -5.2 | -1.7\% |
 | 98.8\% 1000% | 317.7 3105 | 308.9 3035 | -8.8 | -2.8\% | 98.8\% | ${ }_{214.0}^{373}$ | 307.3 2691 | ${ }^{-6.8}$ | ${ }^{-2.2 \%}$ |
 | | | | | | | | | | -1.5\% |

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | Seplember | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | WSIP 2030 With Project | | Relative |
 | | Monthly EC | Monthly EC | (ifierence | Difference (\%) |
 | 0.0\% | ${ }^{684.6}$ | 707.2 | ${ }^{22.6}$ | 3.3\% |
 | 1.2\% | 674.7 | 690.0 | 15.3 | |
 | 2.5\% | 662.4 | 664.9 | 2.5 | ${ }_{0} .4 \%$ |
 | 3.7\% | 651.6 | 652.1 | 0.4 | |
 | 4.9\% | 651.2 | 649.7 | 1.5 | |
 | 6.2\% | 646.1 | 648.0 | 1.9 | |
 | 7.4\% | 641.4 | 647.2 | 5.8 | |
 | 8.6\% | 630.9 | 641.0 | 10.1 | |
 | 9.9\% | 630.7 | 640.4 | 9.7 | |
 | 11.1\% | 628.7 | 640.0 | 11.3 | |
 | 12.3\% | 626.3 | 632.5 | 6.2 | |
 | 13.6\% | 624.9 | 631.2 | 6.2 | |
 | 14.8\% | 621.6 | 624.9 | 3.3 | |
 | 16.0\% | 618.2 | 20.2 | 2.1 | |
 | 17.3 | 614.4 | 618.3 | 3.9 | |
 | 18.5\% | 609.2 | 603.2 | 6.0 | |
 | 19.8\% | 602.5 | 597.9 | 4.5 | |
 | 21.0\% | 602.0 | 596.9 | 5.1 | .8\% |
 | 22.2\% | 601.3 | 595.5 | -5.8 | |
 | - 23. | 597.0 596.3 | 595.0 594.7 | -2.08 | ${ }^{-0.3 \%}$ |
 | | | | | |
 | 27.2\% | 591.2 | ${ }_{583.8}$ | -7.4 | -1\% |
 | 28.4\% | 588.5 | 583.4 | -5.2 | -0.9\% |
 | 29.6 | 588.0 | 582.4 | -5.7 | -1.0\% |
 | 30.9\% | 584.5 | 581.1 | -3.4 | 0.6\% |
 | 32.1\% | 582.5 | 580.9 | 1.5 | ${ }^{0.36}$ |
 | 33.3\% | 579.3 | 578.9 | -0.4 | 0.1\% |
 | 34.6\% | 572.5 | 571.2 | 1.3 | 0.2\% |
 | 35.8\% | 570.0 | 567.8 | -2.2 | 0.4\% |
 | 37.0\% | 568.3 | 565.9 | 2.4 | 0.4\% |
 | 38.3\% | 567.7 | 565.5 | -2.2 | 0.4\% |
 | 39.5\% | 551.8 | 565.0 | 13.3 | 2.4\% |
 | 40.7\% | 549.6 | 559.5 | 9.9 | 1.8\% |
 | 42.0\% | 544.2 | 557.1 | 12.9 | 2.4\% |
 | 43.2\% | 540.8 | 556.4 | 15.5 | 9\% |
 | 44.4\% | 540.4 | 556.0 | 15.6 | 2.9\% |
 | 45.7\% | 532.1 | 552.4 | 20.3 | 3.8\% |
 | 46.9\% | 531.5 | 552.1 | 20.6 | 3.9\% |
 | 48.1\% | 518.0 | 550.5 | 32.5 | 6.3\% |
 | 49.4\% | 514.0 | 543.3 | 29.3 | 5.7\% |
 | 50.6\% | 512.4 | 537.5 | 25.1 | 4.9\% |
 | 51.9\% | 512.0 | 532.9 | 20.9 | 4.1\% |
 | 53.1\% | 502.4 | 532.4 | 30.0 | 6.0\% |
 | 54.3\% | 500.3 | ${ }_{529.3}$ | 29.0 | 8\% |
 | 55.6\% | 496.8 | 511.7 | 14.9 | 5\% |
 | 56.8\% | 494.7 | 511.1 | 16.5 | 3\% |
 | 58.0\% | 492.6 | 504.3 | 11.7 | 2.4\% |
 | 59.3\% | 492.2 | 487.3 | -5.0 | -1.0\% |
 | 60.5\% | 484.4 | 483.6 | -0.9 | -0.2\% |
 | 61.7\% | 478.9 | 476.4 | -2.5 | -0.5\% |
 | 63.0\% | 475.3 | 475.8 | 0.6 | 0.1\% |
 | 64.2\% | 474.9 | 474.4 | -0.4 | 0.1\% |
 | 65.4\% | 471.6 | 469.1 | -2.5 | -0.5\% |
 | 66.7\% | 466.6 | 465.9 | -0.7 | 0.1\% |
 | 67.9\% | 462.4 | 461.4 | -0.9 | -0.2\% |
 | 69.1\% | 458.3 | 457.7 | -0.6 | 0.1\% |
 | 70.4\% | 458.3 | 453.4 | 4.9 | -1.1\% |
 | 71.6\% | 452.1 | 448.3 | ${ }^{3} .8$ | 0.8\% |
 | 72.8\% | 447.2 | 445.2 | -2.0 | -0.4\% |
 | 74.1\% | 445.3 | 434.6 | 10.7 | . 4 \% |
 | 75.3\% | 440.9 | ${ }^{434.3}$ | -6.6 | -1.5\% |
 | 76.5\% | 440.1 | 429.6 | 10.5 | . 4 \% |
 | 77.8\% | 438.4 | 428.6 | -9.8 | -2.2\% |
 | 79.0\% | 434.0 | 428.2 | -5.8 | -1.3\% |
 | 80.2\% | 432.1 | 424.7 | -7.4 | -1.7\% |
 | 81.5\% | 429.8 | 422.7 | 7.0 | .6\% |
 | 82.7\% | 425.0 | 422.6 | -2.5 | 0.6\% |
 | 84.0\% | 422.2 | 417.9 | -4.3 | -1.0\% |
 | 85.2\% | 421.1 | 413.4 | -7.7 | -1.8\% |
 | 86.4\% | 418.3 | 407.3 | 11.1 | |
 | 87.7\% | 414.2 | 404.3 | -9.9 | 2.4\% |
 | 88.9\% | 413.0 | 402.5 | 10.5 | 2.5\% |
 | 90.1\% | 409.7 | 401.7 | 8.0 | -2.0\% |
 | 91.4\% | 404.3 | 400.0 | 4.3 | -1.1\% |
 | 92.6\% | 402.4 | 399.4 | 3.0 | -0.7\% |
 | 93.8\% | ${ }^{402,3}$ | 397.7 | 4.7 | 1.2\% |
 | 95.1\% | 401.5 | 390.7 | 10.8 | 2.7\% |
 | 96.3\% | 386.2 | ${ }^{379.3}$ | 6.9 | .8\% |
 | 97.5\% | 371.8 | 369.4 | 2.4 | 6\% |
 | 98.8\% | 336.3 | 337.8 | 1.5 | 0.5\% |
 | 100.0\% | 249.8 | 245.2 | -4.7 | -1.9\% |

 ## Sacramento-San Joaquin Delta Modeling Summary Tables and Bar Charts

 | Table SQ-01-a X2, Monthly Position | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | Analysis Period | Monthly Position (KM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | $\overline{\text { Full Simulion Period' }}$ | | | | | | | | | | | | |
 | WSIP 2780 Wiftout Proet | 87.7 | ${ }^{84} 3$ | 78.0 | 68.1 | 62.7 | 64.5 | 70.1 | 78.1 | 84.1 | 84.1 | 91.1 | 84.9 |
 | WSP1P 2070 Wif Projert | 87.1 | 84.1 | 78.9 | 69.1 | 63.4 | 65.1 | 70.2 | 78.1 | 83.7 | 84.0 | 90.5 | 84.0 |
 | Diffeene | -1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 |
 | Perenen Difference | -0.7\% | -0.1\% | 1.2\% | 1.4\% | 1.0\% | 0.9\% | 0.2\% | 0.0\% | -0.5\% | -0.2\% | -0.6\% | -1.0\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (13.7\%) | | | | | | | | | | | | |
 | WSIP 2070 Wiftout Project | 80.0 | 76.6 | 75.0 | 56.5 | 55.6 | 57.7 | 61.9 | 71.7 | 80.6 | 79.2 | 89.8 | 69.2 |
 | WSIP 207 Winf Prijet | 79.6 | 76.8 | 76.3 | 56.9 | 55.6 | 57.9 | 61.8 | 71.8 | 80.4 | 79.2 | 89.5 | 69.1 |
 | Diffeene | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 | Perean Diffeeme | -0.5\% | 0.2\% | 1.7\% | 0.8\% | 0.1\% | 0.3\% | -0.2\% | 0.2\% | -0.2\% | 0.0\% | -0.4\% | -0.1\% |
 | Above Nomal (13.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Wiftout Prijet | 84.0 | 80.9 | 80.9 | 61.5 | 56.6 | 59.0 | 65.9 | 75.3 | 83.7 | 78.8 | 89.9 | 80.3 |
 | WSIP 270 Wint Projet | 83.4 | 81.0 | 81.5 | 62.4 | 56.9 | 59.5 | 66.2 | 75.3 | 83.6 | 78.4 | 89.6 | 80.1 |
 | Diffeence | -1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
 | Perene Difleerne | -0.7\% | 0.1\% | 0.7\% | 1.4\% | 0.5\% | 0.9\% | 0.4\% | 0.0\% | -0.1\% | -0.6\% | -0.3\% | -0.2\% |
 | Below Noma (15.9\%) | | | | | | | | | | | | |
 | WSIP 2070 Wiftout Priject | 92.4 | 85.5 | 74.5 | 68.9 | 64.2 | 65.8 | 71.9 | 78.1 | 84.5 | 82.5 | 90.6 | 94.4 |
 | WSIP 207\% With Projet | 90.9 | 85.0 | 74.8 | 70.8 | 65.1 | 66.8 | 71.9 | 78.2 | 84.1 | 82.4 | 90.2 | 92.8 |
 | Differene | -2 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | -2 |
 | Perene Difference | -1.7\% | -0.5\% | 0.3\% | 2.7\% | 1.4\% | 1.5\% | 0.0\% | 0.1\% | -0.4\% | -0.1\% | -0.4\% | -1.7\% |
 | Dr (24.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Wiftout Prijet | 92.1 | 89.4 | 78.6 | 78.0 | 66.2 | 67.9 | 74.6 | 81.7 | 85.8 | 89.1 | 92.2 | 94.8 |
 | WSIP 2070 Wini Projet | 91.2 | 89.7 | 78.8 | 78.9 | 67.8 | 69.0 | 75.2 | 81.4 | 84.9 | 88.9 | 91.1 | 93.3 |
 | Diffeence | -1 | 0 | 0 | 1 | 2 | 1 | 1 | 0 | -1 | 0 | -1 | -1 |
 | Perent Diffeence | -0.9\% | 0.3\% | 0.3\% | 1.2\% | 2.4\% | 1.6\% | 0.8\% | -0.4\% | -1.0\% | -0.2\% | -1.2\% | -1.6\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2070 Wiftout Prijet | 95.4 | 93.9 | 84.4 | 81.9 | 76.5 | 77.1 | 82.1 | 88.7 | 89.2 | 93.1 | ${ }^{93.5}$ | 96.2 |
 | WSPIP 270 W Win Projet | 95.7 | 92.7 | 86.8 | 83.3 | 76.8 | 77.3 | 82.0 | 88.7 | 88.4 | 92.7 | 92.9 | 95.1 |
 | Diffeene | 0 | -1 | 2 | 1 | 0 | 0 | 0 | 0 | -1 | 0 | -1 | -1 |
 | Percen Diffeerne | 0.4\% | -1.3\% | 2.9\% | 1.6\% | 0.4\% | 0.3\% | -0.1\% | 0.0\% | -0.9\% | -0.4\% | -0.6\% | -1.2\% |

 SRealive difference of the monthy average

 | Table SQ-21-a
 Sacramento River at Emmaton, Monthly EC Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | $\overline{\text { Full Simulion Period }{ }^{\text {a }} \text { ' }}$ | | | | | | | | | | | | |
 | WSIP 2070 W Witrout Prject | 1969.7 | 1540.0 | 993.9 | 489.0 | 261.1 | 219.6 | 254.5 | 413.2 | 699.1 | 838.7 | 1499.4 | 1846.3 |
 | WSIP 2070 Wititroject | 1729.0 | 1385.2 | 979.4 | 515.5 | 256.3 | 222.3 | 256.1 | 409.1 | 660.6 | 788.5 | 1388.4 | 1541.6 |
 | Diffeence | -240.6 | -154.8 | -14.6 | 26.5 | -4.9 | 2.8 | 1.6 | -4.1 | -38.5 | -50.1 | -111.0 | -304.7 |
 | Perentififeence? | -12.2\% | -10.0\% | -1.5\% | 5.4\% | -1.9\% | 1.3\% | 0.6\% | -1.0\% | -.5.5 | -6.0\% | -7.4\% | -16.5\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet 31.7%) | | | | | | | | | | | | |
 | WSIP 2070 Witrout Project | 294.3 | 286.4 | 506.4 | 195.6 | 181.8 | 183.3 | 192.6 | 240.2 | 362.1 | 350.8 | 1040.4 | 360.5 |
 | wsP 2070 wit Projet | 276.7 | 282.0 | 528.8 | 206.9 | 182.1 | 183.8 | 191.6 | 240.6 | 359.8 | 348.2 | 984 | 351.3 |
 | Diffeene | -17.6 | -4.4 | 22.4 | 11.3 | 0.3 | 0.4 | -1.0 | 0.3 | -2.3 | -2.6 | -56.2 | -9.2 |
 | Pecenerififeence | -6.0\% | -1.5\% | 4.4\% | 5.8\% | 0.2\% | 0.2\% | -0.5\% | 0.1\% | -0.6\% | -0.7\% | -5.4\% | -2.5% |
 | Above Nomal (13.4\%) | | | | | | | | | | | | |
 | WSIP 2070 W Withut Priject | 603.6 | 493.3 | 743.9 | 290.6 | 187.2 | 183.0 | 195.8 | 239.4 | 448.3 | 338.2 | 926.1 | 607.7 |
 | wsP 2070 wit Projet | 544.6 | 476.9 | 732.5 | 315.2 | 188.1 | 183.8 | 197.0 | 240.4 | 445.6 | 323.1 | 873.8 | 586.8 |
 | Diffeence | -59.0 | -16.4 | -11.5 | 24.6 | 0.9 | 0.8 | 1.3 | 1.0 | -2.7 | -15.1 | -52.3 | -20.9 |
 | Perentififeence | -.9.8\% | -3.3\% | -1.5\% | 8.5\% | 0.5\% | 0.4\% | 0.6\% | 0.4\% | -0.6\% | -4.5\% | -5.7\% | -3.4\% |
 | Beow Nomal (15.9\%) | | | | | | | | | | | | |
 | wSIP 2070 W Withut Pried | 2985.4 | 1755.6 | 930.6 | 415.7 | 214.7 | 194.3 | 229.5 | 334.2 | 591.5 | 541.6 | 1213.3 | 2635.0 |
 | wspr 2070 wit Projed | 2352.7 | 1401.4 | 850.7 | 481.7 | 221.6 | 203.2 | 229.8 | 323.3 | 563.5 | 526.8 | 1151.7 | 2139.7 |
 | Diffeence | -632.7 | -354.2 | -79.9 | 66.0 | 6.9 | 8.8 | 0.3 | -10.9 | -28.0 | -14.8 | -61.7 | -495.2 |
 | Perentififeence | -21.2\% | -20.2\% | -8.6\% | 15.9\% | 3.2\% | 4.6\% | 0.1\% | -3.3\% | -4.7\% | -2.7% | -5.1\% | -18.8\% |
 | Dr (24.4\%) | | | | | | | | | | | | |
 | WSIP 2070 W without Priect | 3022.8 | 2304.6 | 1317.1 | 656.7 | 259.9 | 219.9 | 252.7 | 389.3 | 766.5 | 1131.6 | 1920.4 | 2906.7 |
 | wsP 2070 wit Projet | 2566.1 | 2128.4 | 1252.0 | 697.1 | 280.7 | 224.3 | 264.3 | 380.2 | 694.5 | 1048.7 | 1706.0 | 2307.7 |
 | Diffeere | -456.7 | -176.2 | -65.0 | 40.4 | 20.8 | 4.4 | 11.7 | -9.1 | -72.1 | -829 | -214.4 | -59.9 |
 | Perentififeence | -15.1\% | -7.6\% | -4.9\% | 6.2\% | 8.0\% | 2.0\% | 4.6\% | -2.3\% | -9.4\% | -7.3\% | -11.2\% | -20.6\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 270 W Wiftuot Proet | 3996.3 | 3707.5 | 1809.6 | 1106.4 | 553.2 | 358.4 | 472.4 | 1072.4 | 1663.5 | 2188.1 | 2627.2 | 3579.0 |
 | WSPP 2070 Wif Projet | 3890.7 | 3351.8 | 1867.0 | 1101.8 | 476.2 | 358.6 | 464.9 | 106.9 | 1558.2 | 2019.3 | 2462.7 | 3071.0 |
 | Diffeence | -105.6 | -355.6 | 57.5 | -4.6 | -77.0 | 0.2 | -7.6 | -2.5 | -105.3 | -188.8 | -164.5 | -508.0 |
 | Peren inifferne | -2.6\% | -.9.6\% | 3.2\% | -0.4\% | -13.9\% | 0.0\% | -1.6\% | -0.2\% | -6.3\% | -7.7\% | -6.3\% | -14.2\% |
 | 1 Based on the 82 yeear simulito neriod | | | | | | | | | | | | |
 | 2 As defined by the Sacramento Valley $40-3$ 3 Relative difference of the monthly averag | ex Waere | artyrtolog | Cassfifatio | | | | | | | | | |

 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | $\stackrel{\square}{\text { Full Simulion Period }}$ ' ${ }^{\text {a }}$ | | | | | | | | | | | | |
 | WSIP 2070 Wiftrout Prject | 6113.1 | 5381.9 | 3899.2 | 1949.6 | 715.5 | 510.7 | 787.3 | 1670.3 | 3085.5 | 3664.9 | 5685.7 | 5759.0 |
 | WSIP 20\% Winf Projet | 5678.0 | 5140.7 | 4011.8 | 2125.7 | 754.7 | 542.7 | 808.7 | 1657.9 | 2970.5 | 3549.4 | 5479.1 | 5317.0 |
 | Diffeene | -435.1 | -241.1 | 112.6 | 176.2 | 39.2 | 32.0 | 21.4 | -12.4 | -115.0 | -115.5 | -206.6 | -442.0 |
 | Perene ififeereses | -7.1\% | -4.5\% | 2.9\% | 9.0\% | 5.5\% | 6.3\% | 2.7\% | -0.7\% | -3.7\% | -3.2\% | -3.6\% | -7.7 |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet $31.77^{\%}$) | | | | | | | | | | | | |
 | Wsip 2070 W Witout Priect | 1349.4 | 1490.7 | 2263.5 | 298.2 | 193.4 | 215.2 | 280.2 | 712.2 | 1775.4 | 1934.2 | 4597.0 | 1511.5 |
 | WSIP 207 W Whi Prijet | 1279.1 | 1471.8 | 2430.4 | 379.0 | 195.7 | 219.1 | 270.8 | 713.0 | 1763.6 | 1922.5 | 4480.0 | 1455.5 |
 | Diffeene | -70.3 | -18.9 | 166.9 | 80.8 | 2.3 | 3.9 | -9.4 | 0.7 | -11.8 | -11.7 | -117.0 | -56.0 |
 | Perentififferne | -5.2\% | -1.3\% | 7.4\% | 27.1\% | 1.2\% | 1.8\% | -3.3\% | 0.1\% | -0.7\% | -0.6\% | -2.5\% | -3.7\% |
 | Above Nomal (13.4\%) | | | | | | | | | | | | |
 | WSPP 2070 W Whtout Priject | 3083.5 | 2799.9 | 3464.6 | 937.6 | 223.0 | 218.9 | 32.5 | 802.4 | 2331 | 1904.4 | 4231.6 | 3100.0 |
 | WSPP 2070 Wit Projet | 2916.9 | 2746.6 | 3497.6 | 1094.0 | 230.4 | 229.6 | 329.8 | 808.4 | 2318.1 | 1805.0 | 4092.1 | 3001.1 |
 | Diffeence | -166.6 | -53.4 | 33.0 | 156.4 | 7.5 | 10.7 | 9.4 | 6.0 | -13.1 | -99.4 | -139.5 | -98.8 |
 | Perene Diffeence | -5.4\% | -1.9\% | 1.0\% | 16.7\% | 3.3\% | 4.9\% | 2.9\% | 0.7\% | -0.6\% | -5.2\% | -3.3\% | -3.2\% |
 | Betow Nomal (15.9\%) | | | | | | | | | | | | |
 | WSPP 2070 W Whtout Priject | 9204.4 | 6672.5 | 3687.6 | 1772.3 | 451.4 | 361.9 | 688.1 | 1473.3 | 2948.9 | 3080.1 | 5125.6 | 8258.3 |
 | WSIP 2070 win Prijet | 8147.7 | 6034.2 | 3592.9 | 2146.0 | 528.5 | 437.8 | 696.6 | 1437.8 | 2861.3 | 3012.8 | 5016.2 | 7548.4 |
 | Diffeence | -1056.7 | -638.3 | -94.7 | 373.7 | 77.2 | 75.9 | 8.5 | -35.5 | -87.6 | -67.3 | -109.4 | -709.8 |
 | Perent Diffeence | -11.5\% | -9.6\% | -2.6\% | 21.1\% | 17.1\% | | 1.2\% | -2.4% | -3.0\% | -2.2\% | -2.1\% | -8.6\% |
 | Dry $\left(4.44^{5}\right.$) | | | | | | | | | | | | |
 | Wsip 2070 Wiftout Project | 9167.0 | 7925.2 | 4824.7 | 3134.5 | 8693 | 526.8 | 862.0 | 1934.0 | 3642.4 | 5039.1 | 6734.0 | 8776.5 |
 | WSPIP 270 W Win Projet | 8354.9 | 7759.6 | 4800.0 | 3336.4 | 1031.4 | 590.0 | 965.6 | 1908.1 | 3397.5 | 4863.6 | 6377.1 | 7941.7 |
 | Diffeence | -812.1 | -165.6 | -24.7 | 201.9 | 162.1 | 63.2 | 103.6 | -25.9 | -244.9 | -175.5 | -356.9 | -834.9 |
 | Perenen Diffeene | -8.9\% | -2.1\% | -0.5\% | 6.4\% | 18.7\% | 12.0\% | 12.0\% | -1.3\% | -6.7\% | -3.5\% | -5.3\% | -9.5\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 270 Wiftrout Priject | 10772.7 | 10542.1 | 6528.0 | 4672.5 | 2327.9 | 1552.9 | 2297.1 | 4315.4 | 5835.5 | 7371.8 | 8237.1 | 9662.5 |
 | WSIP 207\% Win Projet | 10603.0 | 9951.9 | 7049.6 | 4816.5 | 2230.1 | 1565.4 | 2272.9 | 4305.4 | 5590. 2 | 7064.6 | 7920.0 | 9014.7 |
 | Diffeence | -169.7 | -590.2 | 521.5 | 14.1 | -97.8 | 12.5 | -24.2 | -10.0 | -245.3 | -307.1 | -317.1 | -647.8 |
 | Percen Diffeerne | -1.6\% | -5.6\% | 8.0\% | 3.1\% | -4.2\% | 0.8\% | -1.1\% | -0.2\% | -4.2% | -4.2% | -3.9\% | -6.7\% |
 | | | | | | | | | | | | | |
 | 2 As defined by the Sacramento Valley 40-30-3 3 Relative difference of the monthly average | | | | | | | | | | | | |

 Sacramento River at Mallard Slough (Chipps Island)), Monthly EC
 Long-term Average and Average by Water Year Type

 | noterm Average and Average | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | Full Simution Period ${ }^{\text {a }}$ | | | | | | | | | | | | |
 | WSIP 270 Wiftuout Project | 8985.8 | 8216.3 | 6251.6 | 3371.1 | 1312.9 | 1007.7 | 1617.6 | 3209.2 | 5502.9 | 6389.0 | 8958.1 | 8634.3 |
 | Wsip 2070 With Project | 8565.1 | 8013.4 | 6464.5 | 3683.1 | 1434.2 | 1091.6 | 1667.8 | 3199.7 | 5357.0 | 6251.5 | 8753.6 | 8222.3 |
 | Diffeene | -420.7 | -202.9 | 212.9 | 312.0 | 121.3 | 83.9 | 50.2 | -9.6 | -145.9 | -137.4 | -204.5 | -412.0 |
 | Perenen ifference | -4.7\% | -2.5\% | 3.4\% | 9.3\% | 9.2\% | 8.3\% | 3.1\% | -0.3\% | -2.7\% | -2.2\% | -2.3\% | .4.8\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (317\%) | | | | | | | | | | | | |
 | | | | | | | | | | | | | |
 | WSIP 207\% Wifit Prijet | 2847.6 | 3242.7 | 4226.8 | 624.3 | 231.2 | 307.4 | 477.1 | 1496.5 | 3571.6 | 4017.6 | 7516.9 | 3010.4 |
 | Diffeene | -99.5 | -19.7 | 277.9 | 147.9 | 6.1 | 10.9 | -17.5 | 3.1 | -19.7 | -18.4 | -111.7 | -86.0 |
 | Perenen Diffeence | -3.4\% | -0.6\% | 7.0\% | 31.0\% | | 3.7\% | -3.5\% | 0.2\% | -0.5\% | -0.5\% | -1.5\% | -2.8\% |
 | Above Nomal (13.4\%) | | | | | | | | | | | | |
 | WSIP 270. Without Pijeed | 5652.9 | 5325.5 | 5893.9 | 1710.7 | 294.7 | 326.5 | 646.6 | 1836.2 | 4536.8 | 4051.1 | 7176.4 | 5813.4 |
 | WSSIP 207\% Wifit Proeet | 5464.4 | 5270.1 | 6003.0 | 1995.2 | 316.9 | 362.4 | 674.5 | 1850.6 | 4518.2 | 3893.5 | 7011.8 | 5680.4 |
 | Diffeene | -188.5 | -55.4 | 109.1 | 284.5 | 22.2 | 35.8 | 27.9 | 14.4 | -18.6 | -157.6 | -164.6 | -133.1 |
 | Perenen ifference | -3.3\% | -1.0\% | 1.9\% | 16.6\% | | | 4.3\% | 0.8\% | -0.4\% | -3.9\% | -2.3\% | -2.3% |
 | Below Nomal (15.9\%) | | | | | | | | | | | | |
 | WSIP 2780 Without Pried | 12913.0 | 9989.6 | 5935.4 | 3305.4 | 902.6 | 782.5 | 1536.8 | 3033.5 | 5434.3 | 5851.0 | 8368.0 | 11883.7 |
 | wsip 2070 Wifin Projet | 11944.5 | 9464.6 | 5911.4 | 3947.7 | 1091.5 | 943.1 | 1568.8 | 3003.3 | 5326.4 | 5759.1 | 8268.5 | 11258.0 |
 | Diffeene | -968.5 | -525.1 | -24.0 | 642.2 | 188.9 | 160.6 | 32.0 | -30.2 | -107.9 | -92.0 | -99.5 | -625.7 |
 | Perent Diffeence | -7.5\% | -5.3\% | -0.4\% | 19.4\% | 20.9\% | 20.5\% | 2.1\% | -1.0\% | -2.0\% | -1.6\% | -1.2\% | -5.3\% |
 | Dry (24.4\%) | | | | | | | | | | | | |
 | Wsip 2077 W Without Pried | 12805.5 | 11450.2 | 7407.2 | 5516.7 | 1775.5 | 1129.0 | 1948.9 | 3924.5 | 6421.3 | 8351.7 | 10256.8 | 12450.5 |
 | wsip 2070 Wifin Projet | 12036.4 | 11353.7 | 7446.9 | 5863.7 | 2112.7 | 1305.4 | 2157.1 | 3901.7 | 6098.7 | 8152.6 | 9908.4 | 11697.6 |
 | Diffeene | -769.1 | -96.5 | 39.7 | 346.9 | 337.2 | 176.4 | 208.2 | -22.7 | -322.6 | -199.1 | -348.4 | -752.9 |
 | Perenen Diffeence | -6.0\% | -0.8\% | 0.5\% | 6.3\% | 19.0\% | 15.6\% | 10.7\% | -0.6\% | -5.0\% | -2.4% | -3.4\% | -6.0\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 277 W Without Pried | 14504.4 | 14288.8 | 9985.1 | 7600.1 | 4276.5 | 3215.0 | 4476.5 | 783.8 | 9074.0 | 10941.6 | 11946.8 | 13338.1 |
 | WSIP 2700 With Project | 14349.1 | 13725.5 | 10698.1 | 7936.8 | 4305.0 | 3263.6 | 4449.9 | 7169.2 | 8791.6 | 10618.5 | 11630.5 | 12763.9 |
 | Diffeene | -155.3 | -563.3 | 713.0 | 276.7 | 28.5 | 48.6 | -26.6 | -14.5 | -282.4 | -323.1 | -316.2 | -574.2 |
 | Perenen Differnce | -1.1\% | -3.9\% | 7.1\% | 3.6\% | 0.7\% | 1.5\% | -0.6\% | -0.2\% | -3.1\% | -3.0\% | -2.6\% | -4.3\% |

 1 Bases on the 82. yearas simulaion period
 Realive difierence of the montily werage

 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simulitio Period' | | | | | | | | | | | | |
 | WSIP 2200 W Witout Priject | 13880.8 | 13228.8 | 10619.9 | 6477.9 | 3208.5 | 2999.2 | 4522.8 | 7421.8 | 10874.6 | 12116.3 | 14803.4 | 13973.5 |
 | WSIP 2070 with Projert | 13731.1 | 13150.2 | 10957.6 | 6985.4 | 3508.7 | 3223.6 | 4639.8 | 7433.4 | 10720.9 | 11977.0 | 14664.1 | 13709.9 |
 | Diffeence | -2498 | -78.6 | 337.7 | 507.5 | 300.2 | 224.4 | 117.0 | 11.5 | -153.6 | -139.3 | -139.3 | -263.6 |
 | Perentififeence? | -1.8\% | -0.6\% | 3.2\% | 7.8\% | 9.4\% | 7.5\% | 2.6\% | 0.2\% | -1.4\% | -1.1\% | -0.9\% | -1.9\% |
 | | Water Year Types ${ }^{2}$ | | | | | | | | | | | |
 | Wet 3 17.7\%) | | | | | | | | | | | | |
 | WSIP 2070 Witrut Project | 7593.1 | 7995.9 | 7699.3 | 1244.9 | 503.4 | 890.4 | 1774.5 | 4418.7 | 8427.8 | 9445.7 | 13424.4 | 7834 |
 | wsP 2070 wit Projet | 7512.6 | 8016.2 | 8135.3 | 1504.9 | 528.9 | 931.8 | 1760.3 | 4434.9 | 8394.7 | 9419.8 | 13363.5 | 7762.9 |
 | Diffeence | -80.5 | 20.3 | 436.0 | 260.0 | 25.5 | 41.4 | -14.1 | 16.1 | -33.1 | -25.9 | -60.9 | -71.9 |
 | Perentififeence | -1.1\% | 0.3\% | 5.7\% | 20.9\% | | 4.7\% | -0.8\% | 0.4\% | -0.4\% | -0.3\% | -0.5\% | -0.9\% |
 | Above Nomal (13.4\%) | | | | | | | | | | | | |
 | WSIP 270 W Without Priect | 11056.3 | 10611.8 | 10587.5 | 3904.8 | 798.7 | 1183.4 | 2613.6 | 5552.1 | 9856.0 | 9591.7 | 12950.9 | 11734.2 |
 | wsip 2070 wif Projet | 10937.6 | 10605.8 | 10844.7 | 4385.1 | 885.6 | 1315.3 | 2720.0 | 5596.4 | 9835.2 | 9380.8 | 12799.5 | 11635.1 |
 | Diffeence | -118.7 | -6.0 | 257.2 | 480.2 | 86.9 | 131.9 | 106.4 | 44.3 | -20.8 | -210.9 | -151.3 | -99.0 |
 | Perentififeene | -1.1\% | -0.1\% | 2.4\% | 12.3\% | 10.9\% | 11.1\% | 4.1\% | 0.8\% | -0.2\% | -2.2\% | -1.2\% | -0.8\% |
 | Beow Noma (15.9\%) | | | | | | | | | | | | |
 | WSIP 2070 Wiftout Project | 18118.7 | 15151.1 | 1014.9 | 7115.8 | 2996.2 | 2986.8 | 4785.1 | 7498.6 | 10979.0 | 11816.6 | 14337.2 | 17497 |
 | WsPr 2070 Win Project | 17593.5 | 14995.6 | 10265.9 | 8102.9 | 3461.1 | 3346.5 | 4888.5 | 7519.7 | 10877.7 | 11711.0 | 14281.8 | 17128.3 |
 | Diffeence | -525.2 | -155.6 | 151.0 | 987.1 | 464.9 | 359.7 | 103.4 | 21.0 | -101.3 | -105.6 | -55.4 | -369.1 |
 | Perenen Diffeence | -2.9\% | -1.0\% | 1.5\% | 13.9\% | 15.5\% | 12.0\% | 2.2\% | 0.3\% | -0.9\% | -0.9\% | -0.4\% | -2.1\% |
 | Dr (24.4\%) | | | | | | | | | | | | |
 | WSIP 2 270 W Witrout Priect | 17916.9 | 16634.9 | 11787.8 | 10355.8 | 4742.4 | 3786.4 | 5834.7 | 9052.2 | 12188.3 | 14411.9 | 16164.3 | 18010.8 |
 | wsip 2070 wit Projer | 17447.5 | 16640.2 | 11924.6 | 10939.9 | 5417.7 | 4271.5 | 6214.0 | 9050.7 | 11816.1 | 14217.7 | 15920.9 | 17522.7 |
 | Diffeence | -469.4 | 5.3 | 136.9 | 584.1 | 675.4 | 485.1 | 379.3 | -1.5 | -352.3 | -194.2 | -243.4 | -488.1 |
 | Perenen Diffeence | -2.6\% | 0.0\% | 1.2\% | 5.6\% | 14.2\% | 12.8\% | 6.5\% | 0.0\% | -2.9\% | -1.3\% | -1.5\% | -2.7\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2270 W Wibut Proect | 19458.9 | 19206.4 | 15578.0 | 13020.5 | 8952.4 | 7934.3 | 9756.9 | 12842.1 | 14840.1 | 16715.5 | 17726.1 | 18780.6 |
 | Wsip 2070 wis Project | 19386.7 | 18790.2 | 16313.6 | 13442.1 | 9239.5 | 8058.9 | 9745.5 | 12825.1 | 14578.0 | 16450.9 | 17510.5 | 18439.1 |
 | Diffeene | -72.2 | -416.2 | 735.7 | 421.6 | 287.1 | 124.6 | -11.4 | -17.0 | -262.0 | -264.6 | -215.6 | -341.4 |
 | Perentibifeence | -0.4\% | -2.2\% | 4.7\% | 3.2\% | 3.2\% | 1.6\% | -0.1\% | -0.1\% | -1.8\% | -1.6\% | -1.2\% | -1.8 |
 | 1 Basedod on te 822year simulito neeiod | | | | | | | | | | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 3 Relative difference of the monthly average | | | | | | | | | | | | |
 | | | | | | | | | | | | | |

 | San Joaquin River at Jersey Point, Monthly EC Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simuliton Period ${ }^{\text {d }}$ | | | | | | | | | | | | |
 | WSIP 270 W Wiftuof Projet | 1384.7 | 1292.0 | 1072.0 | 630.5 | 323.6 | 244.1 | 251.8 | 322.9 | 456.2 | 779.2 | 1315.9 | 1734.5 |
 | WSIP 2070 Win Projet | 1252.2 | 1205.8 | 1118.2 | 680.7 | 322.2 | 244.3 | 25.4 | 321.9 | 440.0 | 781.7 | 1303.4 | 1676.7 |
 | Diffeene | -132.5 | -86.2 | 46.2 | 50.2 | -1.4 | 0.2 | 0.6 | -1.0 | -16.1 | 2.5 | -12.5 | -57.8 |
 | Peacent Diffeences | -9.6\% | -6.7\% | 4.3\% | 8.0\% | -0.4\% | 0.1\% | 0.2\% | -0.3\% | -3.5\% | 0.3\% | -0.9\% | -3.3% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet 31.7%) | | | | | | | | | | | | |
 | WSIP 207\% Wiftrout Pried | 269.4 | 273.9 | 591.3 | 257.5 | 224.2 | 212.8 | 218.4 | 227.9 | 280.4 | 349.8 | 1137.7 | 805.7 |
 | WSIP 207\% Wifit Projet | 267.8 | 272.7 | 638.7 | 284.6 | 226.0 | 213.2 | 218.0 | 227.7 | 278.7 | 348.9 | 1130.6 | 785.8 |
 | Diffeene | -1.6 | -1.3 | 47.4 | 27.1 | 1.8 | 0.5 | -0.4 | -0.2 | -1.7 | -0.9 | -7.1 | -19.8 |
 | Perenen iffeence | -0.6\% | -0.5\% | 8.0\% | 10.5\% | 0.8\% | 0.2\% | -0.2\% | -0.1\% | -0.6\% | -0.3\% | -0.6\% | -2.5% |
 | Above Nomal (1344\%) | | | | | | | | | | | | |
 | WSIP 270 W Without Prieed | 426.3 | 54.5 | 917.5 | 427.0 | 2423 | 208.2 | 218.8 | 23.6 | 338.8 | 364.8 | 1005.1 | 878.3 |
 | WSIP 2070 Witr Project | 410.7 | 556.0 | 916.5 | 471.4 | 245.5 | 210.0 | 220.1 | 240.2 | 338.1 | 385.9 | 1012.9 | 852.3 |
 | Diffeene | -15.6 | 11.4 | -1.0 | 44.4 | 3.2 | 1.8 | 1.3 | 0.5 | -0.6 | 21.1 | 7.8 | -26.0 |
 | Perent iffeence | -3.6\% | 2.1\% | -0.1\% | 10.4\% | 1.3\% | 0.9\% | 0.6\% | 0.2\% | -0.2\% | 5.8\% | 0.8\% | -3.0\% |
 | Below Nomal (15.9\%) | | | | | | | | | | | | |
 | WSIP 270 W Witout Proed | 2180.8 | 1817.4 | 1163.0 | 656.6 | 267.8 | 225.7 | 23.9 | 282.7 | 402.3 | 672.0 | 1244.1 | 2524.9 |
 | WSIP 207\% Wifit Priject | 1837.8 | 1504.3 | 1207.6 | 762.1 | 283.2 | 232.7 | 236.8 | 280.2 | 395.1 | 674.5 | 1268.7 | 2467.9 |
 | Diffeence | -343.0 | -313.2 | 44.6 | 105.5 | 15.4 | 7.0 | 2.9 | -2.6 | -7.2 | 2.5 | 24.6 | -57.0 |
 | Perenen Diffeence | -15.7\% | -17.2\% | 3.8\% | 16.1\% | 5.8\% | 3.1\% | 1.2\% | -0.9\% | -1.8\% | 0.4\% | 2.0\% | -2.3% |
 | Dr (24.4\%) | | | | | | | | | | | | |
 | WSIP 270 Witiout Prieet | 2127.5 | 1949.2 | 1327.6 | 839.8 | 355.4 | 2498 | 259.1 | 312.4 | 483.5 | 1115.0 | 1417.7 | 2457.4 |
 | WSIP 2070 Wifit Prijet | 1910.3 | 1979.2 | 1362.9 | 901.8 | 375.6 | 255.3 | 261.7 | 310.4 | 453.1 | 1146.0 | 1436.0 | 2418.6 |
 | Diffeence | -217.2 | 30.0 | 35.3 | 62.0 | 20.1 | 5.5 | 2.5 | -2.0 | -30.4 | 31.0 | 18.3 | -38.8 |
 | Perenen Diffeence | -10.2\% | 1.5\% | 2.7\% | 7.4\% | 5.7\% | 2.2\% | 1.0\% | -0.6\% | -6.3\% | 2.8\% | 1.3\% | -1.6\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2077 W Wirtout Priect | 2579.5 | 2518.2 | 1730.6 | 1248.1 | 621.1 | 355.5 | 361.7 | 666.2 | 957.4 | 1646.0 | 1895.1 | 2471.0 |
 | WSIP 207\% Wifit Priject | 2425.1 | 2210.9 | 1837.0 | 1273.9 | 554.2 | 337.4 | 358.2 | 665.6 | 910.0 | 1591.2 | 1760.7 | 2268.9 |
 | Diffeene | -154.4 | -307.4 | 106.4 | 25.8 | -66.9 | -18.1 | -3.5 | -0.6 | -47.4 | -54.8 | -134.4 | -202.1 |
 | Pereen Diffeence | -6.0\% | -12.2\% | 6.1\% | 2.1\% | -10.8\% | -5.1\% | -1.0\% | -0.1\% | -5.0\% | -3.3\% | -7.1\% | -8.2\% |

 3 Realive differnee of ite montily verage

 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simulion Period ${ }^{\text {a }}$ | | | | | | | | | | | | |
 | WSIP 270 W Wiftuof Projet | 639.5 | 541.0 | 539.9 | 487.7 | 374.7 | 308.2 | 323.2 | 316.9 | 286.6 | 326.5 | 442.8 | 649.4 |
 | WSIP 2070 Wifit Prieat | 596.9 | 506.3 | 533.7 | 518.4 | 379.4 | 306.4 | 323.3 | 315.1 | 283.9 | 325.8 | 448.5 | 639.0 |
 | Diffeene | -42.6 | -34.7 | -6.2 | 30.7 | 4.7 | -1.8 | 0.1 | -1.8 | -2.7 | -0.7 | 5.7 | -10.3 |
 | Percent Difleernes | -6.7\% | -6.4\% | -1.2\% | 6.3\% | 1.3\% | -0.6\% | 0.0\% | -0.6\% | -0.9\% | -0.2\% | 1.3\% | -1.6\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (3,7.7\%) | | | | | | | | | | | | |
 | WSIP 270 W Without Prieet | 280.4 | 248.0 | 281.0 | 332.6 | 302.5 | 270.0 | 267.6 | 269.0 | 244.6 | 242.5 | 339.8 | 519.2 |
 | WSIP 207\% Wifitrojeet | 27.6 | 243.4 | 288.6 | 355.1 | 307.2 | 268.6 | 26.1 | 268.6 | 244.7 | 241.3 | 341.7 | 516.8 |
 | Diffeene | -9.8 | -4.6 | 7.6 | 22.5 | 4.8 | -1.4 | -1.5 | -0.4 | 0.1 | -1.2 | 1.9 | -2.4 |
 | Percen Diffeence | -3.5\% | -1.9\% | 2.7\% | 6.8\% | 1.6\% | -0.5\% | -0.6\% | -0.2\% | 0.0\% | -0.5\% | 0.6\% | -0.5\% |
 | Above Nomal (13.4\%) | | | | | | | | | | | | |
 | WSIP 270 Without Prieet | 260.3 | 281.3 | 378.2 | 414.8 | 324.8 | 25.4 | 301.5 | 321.6 | 257.4 | 242.8 | 312.7 | 449.9 |
 | WSIP 2070 Wifit Prijet | 252.8 | 276.0 | 375.6 | 455.9 | 329.1 | 255.3 | 303.5 | 321.6 | 257.2 | 252.9 | 323.2 | 453.0 |
 | Diffeene | -7.5 | -5.3 | -2.5 | 41.1 | 4.2 | 3.9 | 1.9 | 0.0 | -0.2 | 10.1 | 10.5 | 3.1 |
 | Perenibiffeence | -2.9\% | -1.9\% | -0.7\% | 9.9\% | 1.3\% | 1.6\% | 0.6\% | 0.0\% | -0.1\% | 4.2\% | 3.4\% | 0.7\% |
 | Beolow Noma (15.5\%) | | | | | | | | | | | | |
 | WSIP 270.0 Witiout Prieet | 927.1 | 695.8 | 659.6 | 557.0 | 358.4 | 283.5 | 321.1 | 323.7 | 271.6 | 291.6 | 394.6 | 788.5 |
 | wsip 2070 Wifit Projet | 837.2 | 593.6 | 618.6 | 621.4 | 373.5 | 290.1 | 325.8 | 319.6 | 266.6 | 291.9 | 407.2 | 798.1 |
 | Diffeene | -899 | -102.2 | -41.0 | 64.5 | 15.1 | 6.6 | 4.7 | -4.0 | -5.0 | 0.3 | 12.5 | 9.6 |
 | Pecenen Diffeence | -9.7\% | -14.7\% | -6.2\% | 11.6\% | 4.2\% | 2.3\% | 1.5\% | -1.2\% | -1.8\% | 0.1\% | 3.2\% | 1.2\% |
 | Dr. (24.4\%) | | | | | | | | | | | | |
 | WSIP 270. Witiout Prieet | 903.8 | 703.1 | 672.2 | 523.3 | 4097 | 343.4 | 380.4 | 343.2 | 289.1 | 376.7 | 516.3 | 742.5 |
 | WSIP 2070 Wifit Prijet | 858.1 | 690.3 | 707.6 | 561.6 | 423.3 | 342.9 | 380.0 | 340.2 | 283.8 | 381.6 | 540.0 | 737.5 |
 | Diffeene | -45.7 | -12.8 | 35.3 | 38.4 | 13.6 | -0.5 | -0.4 | -3.0 | -5.3 | 4.9 | 23.7 | -5.0 |
 | Perenen iffeence | -5.1\% | -1.8\% | 5.3\% | 7.3\% | 3.3\% | -0.1\% | -0.1\% | -0.9\% | -1.8\% | 1.3\% | 4.6\% | -0.7\% |
 | Critical (14.0\%) | | | | | | | | | | | | |
 | WSIP 270 W Witout Proed | 1012.7 | 976.2 | 898.8 | 756.0 | 535.8 | 411.2 | 370.6 | 365.5 | 416.5 | 539.6 | 714.6 | 808.4 |
 | wsip 2070 Wifin Projet | 923.4 | 886.0 | 827.5 | 745.5 | 514.8 | 391.8 | 368.5 | 363.2 | 412.4 | 59.8 | 686.8 | 738.0 |
 | Diffeene | -893 | -90.1 | -71.3 | -10.5 | -21.1 | -19.4 | -2.2 | -2.3 | -4.2 | -19.8 | -27.8 | -70.4 |
 | Perene Diffeerne | -.8.8\% | -9.2\% | -7.9\% | -1.4\% | -3.9\% | -4.7\% | -0.6\% | -0.6\% | -1.0\% | -3.7\% | -3.9\% | -.8.7\% |

 | -89.3 | -90.1 | -71.3 | -10.5 | -21.1 | -19.4 | -2.2 | -2.3 | -4.2 | -19.8 | -27.8 | -70.4 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 3 Realive difference of ite monhly verege

 | | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Fuul Simulion Period ${ }^{\text {d }}$ | | | | | | | | | | | | |
 | WSIP 270 W Without Prjeed | 190.5 | 192.5 | 197.0 | 211.2 | 221.1 | 215.7 | 208.7 | 203.1 | 197.6 | 191.2 | 1898 | 190.8 |
 | WSIP 2070 Wiff Priject | 189.3 | 191.4 | 196.5 | 211.5 | 222.0 | 216.1 | 208.7 | 202.6 | 196.9 | 190.8 | 189.4 | 190.0 |
 | Diffeene | -1.2 | ${ }_{-1.1}$ | -0.5 | 0.3 | 0.9 | 0.3 | 0.1 | -0.6 | -0.7 | -0.4 | -0.4 | -0.8 |
 | Perentififeence | -0.6\% | -0.6\% | -0.3\% | 0.1\% | 0.4\% | 0.2\% | 0.0\% | -0.3\% | -0.3\% | -0.2\% | -0.2\% | -0.4\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet 3 1.7\%) | | | | | | | | | | | | |
 | WSIP 2070 W Witrout Pried | 187.5 | 191.3 | 194.6 | 216.4 | 224.0 | 212.1 | 201.8 | 195.6 | 193.1 | 188.9 | 188.4 | 188.9 |
 | WSIP 2070 Wititroject | 187.2 | 190.8 | 194.5 | 216.9 | 225.2 | 212.6 | 202.1 | 195.7 | 192.9 | 188.7 | 188.2 | 188.5 |
 | Diffeence | -0.3 | -0.5 | -0.2 | 0.6 | 1.2 | 0.5 | 0.3 | 0.1 | -0.1 | -0.2 | -0.2 | -0.4 |
 | Pacentifference | -0.2\% | -0.2\% | -0.1\% | 0.3\% | 0.5\% | 0.2\% | 0.1\% | 0.0\% | -0.1\% | -0.1\% | -0.1\% | -0.2\% |
 | Above Noma (13.4\%) | | | | | | | | | | | | |
 | WSIP 270 W Without Pried | 187.7 | 190.0 | 195.8 | 211.9 | 221.8 | 211.2 | 199.3 | 194.3 | 191.4 | 188.1 | 187.9 | 188.9 |
 | WSIP 2070 Wifitroient | 187.5 | 1897 | 196.0 | 212.4 | 222.5 | 211.9 | 199.7 | 194.4 | 191.3 | 188.0 | 187.7 | 188.7 |
 | Diffeene | -0.2 | -0.3 | 0.2 | 0.5 | 0.7 | 0.7 | 0.5 | 0.1 | 0.0 | -0.2 | -0.2 | -0.2 |
 | Pereni iffeence | -0.1\% | -0.2\% | 0.1\% | 0.2\% | 0.3\% | 0.3\% | 0.2\% | 0.1\% | 0.0\% | -0.1\% | -0.1\% | -0.1\% |
 | Beow Nomal (15.9\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Pried | 189.3 | 191.0 | 195.1 | 211.0 | 217.4 | 209.2 | 205.8 | 196.8 | 192.6 | 188.9 | 188.6 | 189.5 |
 | WSIP 207\% Wifitrojert | 188.1 | 189.6 | 194.4 | 211.5 | 218.6 | 210.8 | 205.1 | 196.3 | 192.2 | 188.6 | 188.4 | 189.0 |
 | Diffeence | -1.2 | -1.4 | -0.7 | 0.5 | 1.2 | 1.5 | -0.7 | -0.5 | -0.4 | -0.3 | -0.2 | -0.5 |
 | Parenififferne | -0.6\% | -0.7\% | -0.4\% | 0.2\% | 0.6\% | 0.7\% | -0.4\% | -0.2\% | -0.2\% | -0.2\% | -0.1\% | -0.3\% |
 | Dr. (24.4%) | | | | | | | | | | | | |
 | WSIP 2 27\% Witiout Priect | 192.2 | 193.2 | 197.2 | 208.1 | 221.9 | 223.9 | 217.6 | 208.5 | 194.5 | 190.2 | 188.8 | 191.4 |
 | wsip 2070 winf Projert | 190.5 | 191.9 | 196.5 | 208.5 | 222.2 | 224.2 | 218.0 | 208.0 | 193.8 | 190.0 | 188.2 | 189.7 |
 | Diffeence | -1.7 | ${ }^{-1.3}$ | -0.7 | 0.4 | 0.3 | 0.3 | 0.4 | -0.6 | -0.7 | -0.3 | -0.6 | -1.7 |
 | Perenen ifference | -0.9\% | -0.7\% | -0.4\% | 0.2\% | 0.1\% | 0.1\% | 0.2\% | -0.3\% | -0.3\% | -0.2\% | -0.3\% | -0.9\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 270 W Witout Proed | 198.2 | 197.9 | 205.2 | 204.6 | 216.6 | 221.2 | 220.2 | 225.3 | 223.7 | 2029 | 197.7 | 197.2 |
 | WSIP 2070 Wiffrojeet | 195.1 | 195.6 | 203.8 | 203.6 | 217.7 | 219.6 | 219.9 | 222.6 | 22.9 | 201.5 | 196.7 | 196.0 |
 | Diffeence | -3.1 | -2.3 | -1.4 | -1.0 | 1.0 | -1.5 | -0.4 | -2.6 | -2.9 | -1.5 | -1.0 | -1.2 |
 | Perenelififence | -1.6\% | -1.2\% | -0.7\% | -0.5\% | 0.5\% | -0.7\% | -0.2\% | -1.2% | -1.3\% | -0.7\% | -0.5\% | -0.6\% |

 3 Realive difference of the monthly average

 | Old River at Los Vaqueros Intake, Monthly EC Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOS/CM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | $\stackrel{\square}{\text { Full Simulion Period }}$ ' | | | | | | | | | | | | |
 | Wsip 2070 W.ithout Prject | 583.3 | 511.4 | 510.8 | 518.0 | 451.6 | 392.3 | 365.4 | 373.9 | 339.0 | 334.5 | 398.6 | 563.2 |
 | WSIP 2070 Win Projet | 55.9 | 484.3 | 502.9 | 541.7 | 456.6 | 390.5 | 366.1 | 372.8 | 336.2 | 331.7 | 403.7 | 560.9 |
 | Diffeence | -29.4 | -27.1 | ${ }^{-7.8}$ | 23.7 | 5.0 | -1.8 | 0.8 | -1.1 | -2.8 | -2.8 | 5.0 | -2.3 |
 | Pereat Diffeences | -5.0\% | -5.3\% | -1.5\% | 4.6\% | 1.1\% | -0.5\% | 0.2\% | -0.3\% | -0.8\% | -0.8\% | 1.3\% | -0.4\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet(1.7\%\%) | | | | | | | | | | | | |
 | wsip 2070 W Witout Proed | 340.3 | 304.6 | 298.3 | 393.4 | 341.5 | 295.2 | 250.5 | 278.5 | 2878 | 287.1 | 318.4 | 485.8 |
 | WSIP 2070 Win Projet | 327.4 | 297.7 | 301.4 | 411.7 | 345.6 | 294.6 | 2493 | 278.3 | 288.4 | 286.0 | 319.1 | 485.3 |
 | Diffeence | -12.9 | -6.9 | 3.1 | 18.3 | 4.1 | -0.5 | -1.2 | -0.2 | 0.6 | -1.0 | 0.7 | -0.4 |
 | Perentififeence | -3.8\% | -2.2% | 1.0\% | 4.7\% | 1.2\% | -0.2\% | -0.5\% | -0.1\% | 0.2\% | -0.4\% | 0.2\% | -0.1\% |
 | Above Nomal (13.4\%) | | | | | | | | | | | | |
 | | 300.3 | 309.2 | 371.1 | 465.0 | 395.4 | 309.0 | 303.8 | 351.2 | 308.1 | 277.4 | 292.6 | 422.9 |
 | WSPIP 2070 Win Project | 292.8 | 301.7 | 367.4 | 502.4 | 3998 | 315.5 | 304.8 | 351.2 | 307.8 | 2826 | 300.8 | 427.6 |
 | Diffeence | -7.4 | -7.5 | -3.7 | 37.4 | 4.4 | 6.5 | 0.9 | -0.1 | -0.2 | 5.3 | 8.1 | 4.7 |
 | Percent iffeerne | -2.5\% | -2.4\% | -1.0\% | 8.1\% | 1.1\% | 2.1\% | 0.3\% | 0.0\% | -0.1\% | 1.9\% | 2.8\% | 1.1\% |
 | Beow Nomal (15.9\%) | | | | | | | | | | | | |
 | WSPP 2070 Without Priect | 793.2 | 628.5 | 610.4 | 581.9 | 473.4 | 382.8 | 362.5 | 382.9 | 330.6 | 293.4 | 354.3 | 650.9 |
 | wspr 2070 wit Projed | 740.3 | 550.2 | 573.0 | 625.6 | 491.2 | 392.7 | 364.8 | 379.5 | 322.0 | 291.8 | 363.5 | 667.9 |
 | Diffeence | -52.8 | -78.3 | -37.3 | 43.7 | 17.7 | 9.9 | 2.3 | -3.4 | -8.7 | -1.6 | 9.2 | 17.0 |
 | Perentififeence | -6.7\% | -12.5\% | -6.1\% | 7.5\% | 3.7\% | 2.6\% | 0.6\% | -0.9\% | -2.6\% | -0.5\% | 2.6\% | 2.6\% |
 | Dry $\left(24.4 \%^{\circ}\right)$ | | | | | | | | | | | | |
 | Wsip 270 W Witout Proiect | 773.1 | 630.2 | 614.9 | 542.5 | 506.4 | 470.4 | 456.9 | 441.1 | 359.9 | 361.1 | 460.2 | 621.4 |
 | WSIP 2070 Win Project | 746.9 | 617.3 | 646.5 | 574.1 | 519.3 | 466.6 | 461.5 | 440.6 | 354.8 | 359.0 | 480.5 | 623.5 |
 | Diffeence | -26.2 | -12.9 | 31.5 | 31.5 | 12.9 | -3.8 | 4.5 | -0.5 | -5.2 | -2.1 | 20.3 | 2.0 |
 | Pereni ifferene | -3.4\% | -2.0\% | 5.1\% | 5.8\% | 2.5\% | -0.8\% | 1.0\% | -0.1\% | -1.4\% | -0.6\% | 4.4\% | 0.3\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | Wspr 2070 Without Proed | 825.1 | 820.3 | 817.7 | 726.3 | 626.8 | 559.1 | 521.0 | 479.7 | 452.4 | 489.9 | 615.0 | 667.3 |
 | WSIP 2070 whi Prijet | 760.1 | 762.9 | 748.8 | 714.4 | 607.4 | 537.7 | 518.1 | 477.5 | 4499 | 473.5 | 596.7 | 626.5 |
 | Diffeere | -65.0 | -57.4 | -68.9 | -11.9 | -19.4 | -21.4 | -2.9 | -2.2 | -2.5 | -16.5 | -18.3 | -40.7 |
 | Pereni Difueme | -7.9\% | -7.0\% | -.84\% | -1.6\% | -3.1\% | -3.8\% | -0.6\% | -0.5\% | -0.5\% | -3.4\% | -3.0\% | -6.1\% |

 Esased on the 82 2-year sinulaion peneoc
 30.30 Index Water Yearthydrologic Classification (SWRCB $0.1641,1999)$

 3 Realive difference of the montily verage

 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | $\stackrel{\text { Full Simulition Period }{ }^{1} \text { Long-term }}{ }$ | | | | | | | | | | | | |
 | WSPP 220 W Witrout proet | 460.0 | 438.5 | 441.8 | 507.4 | 477.4 | 434.1 | 382.5 | 374.0 | 367.0 | 328.5 | 322.8 | 401.6 |
 | WSIP 2070 Wif Projert | 448.4 | 425.2 | 432.7 | 517.3 | 48.5 | 432.9 | 383.4 | 373.1 | 365.0 | 323.3 | 322.3 | 397.0 |
 | Diffeence | -11.6 | -13.4 | -9.1 | 9.9 | 3.1 | -1.2 | 0.9 | -0.8 | -1.9 | -5.2 | -0.5 | -4.7 |
 | Perentififeence? | -2.5\% | -3.1\% | -2.1\% | 2.0\% | 0.7\% | -0.3\% | 0.2\% | -0.2\% | -0.5\% | -1.6\% | -0.2\% | -1.2\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet $3.1 .7 \%)$ | | | | | | | | | | | | |
 | WSIP 2 20\% Without Priect | 378.0 | 365.3 | 325.8 | 422.6 | 340.9 | 298.8 | 24.9 | 272.8 | 331.2 | 338.3 | 284.7 | 384.3 |
 | WSIP 20\%o witiprojert | 371.4 | 359.8 | 323.5 | 432.2 | 341.8 | 297.6 | 249.0 | 272.8 | 331.9 | 337.8 | 282.7 | 385.2 |
 | Diffeene | -6.5 | -5.5 | -2.3 | 9.6 | 0.9 | -1.1 | -0.9 | 0.1 | 0.8 | -0.5 | -1.9 | 0.9 |
 | Perenen Diffeence | -1.7\% | -1.5\% | -0.7\% | 2.3\% | 0.3\% | -0.4\% | -0.4\% | 0.0\% | 0.2\% | -0.2\% | -0.7\% | 0.2\% |
 | Above Nomal (13.4\%) | | | | | | | | | | | | |
 | WSPP 2070 Witrout Proect | 340.9 | 353.5 | 358.2 | 482.6 | 426.3 | 338.1 | 307.6 | 343.5 | 350.6 | 310.3 | 259.1 | 334.6 |
 | WsPr 2070 Win Projert | 337.4 | 346.0 | 353.3 | 501.1 | 428.4 | 34.5 | 308.2 | 343.3 | 350.3 | 310.8 | 261.6 | 337.4 |
 | Diffeene | -3.5 | -7.5 | -4.9 | 18.5 | 2.2 | 2.5 | 0.7 | -0.2 | -0.3 | 0.5 | 2.5 | 2.8 |
 | Perentififeence | -1.0\% | -2.1\% | -1.4\% | 3.8\% | 0.5\% | 0.7\% | 0.2\% | -0.1\% | -0.1\% | 0.2\% | 1.0\% | 0.9\% |
 | Betow Nomal (15.9\%) | | | | | | | | | | | | |
 | WSIP 2 20 W Wirutut Proect | 524.3 | 453.3 | 478.0 | 551.0 | 53.8 | 458.9 | 390.0 | 384.2 | 354.1 | 275.4 | 276.3 | 404.8 |
 | wsip 2070 wit Projed | 508.5 | 426.1 | 455.2 | 569.2 | 542.7 | 466.0 | 392.7 | 381.1 | 347.6 | 271.5 | 278.5 | 413.0 |
 | Difteence | -15.7 | -27.1 | -22.8 | 18.2 | 11.9 | 7.1 | 2.6 | -3.1 | -6.5 | -3.9 | 2.2 | 8.3 |
 | Perenen iffeeme | -3.0\% | -6.0\% | -4.8\% | 3.3\% | 2.2\% | 1.5\% | 0.7\% | -0.8\% | -1.8\% | -1.4\% | 0.8\% | 2.0\% |
 | Dr (24.4\%) | | | | | | | | | | | | |
 | WSIP 2070 W Without Prject | 524.0 | 473.7 | 495.1 | 520.7 | 552.2 | 548.3 | 491.4 | 447.6 | 383.9 | 312.9 | 356.9 | 415.5 |
 | wsip 2070 with Project | 515.8 | 462.7 | 509.9 | 539.1 | 562.0 | 545.2 | 494.6 | 446.8 | 381.0 | 303.1 | 360.0 | 404.6 |
 | Diffeence | -8.2 | -10.9 | 14.8 | 18.4 | 9.7 | -3.1 | 3.1 | -0.8 | -3.0 | -9.8 | 3.1 | -10.9 |
 | Perentififeene | -1.6\% | -2.3% | 3.0\% | 3.5\% | 1.8\% | -0.6\% | 0.6\% | -0.2\% | -0.8\% | -3.1\% | 0.9\% | -2.6\% |
 | Critual (14.6\%) | | | | | | | | | | | | |
 | | 570.8 | 600.8 | 641.6 | 644.5 | 637.5 | 598.4 | 548.8 | 487.3 | 445.0 | 407.6 | 457.0 | 474.1 |
 | wsip 2070 wit Projet | 539.7 | 575.7 | 588.9 | 624.4 | 625.9 | 587.8 | 547.9 | 486.4 | 442.4 | 393.0 | 447.9 | 446.8 |
 | Diffeence | -31.2 | -25.0 | -52.7 | -20.1 | -11.6 | -10.6 | -0.9 | -0.9 | -2.6 | -14.6 | -9.1 | -27.3 |
 | Perenin iffeence | -.5.5\% | -4.2\% | -8.2\% | -3.1\% | -1.8\% | -1.8\% | -0.2\% | -0.2\% | -0.6\% | -3.6\% | -2.0\% | -5.8\% |

 3 Realive differne of ite montily verage

 | Table SQ-31-a |
 | :---: |

 C.

 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simudion Period' | | | | | | | | | | | | |
 | WSIP 2070 W Witout Priject | 541.0 | 492.4 | 500.5 | 523.6 | 470.7 | 426.7 | 391.1 | 383.7 | 388.4 | 353.9 | 372.4 | 497.0 |
 | Wsip 2070 win Project | 526.5 | 470.8 | 488.8 | 540.7 | 475.3 | 42.7 | 389.6 | 381.9 | 383.9 | 346.9 | 373.7 | 497.7 |
 | Diffeence | -14.5 | -21.6 | -11.7 | 17.1 | 4.6 | -1.0 | ${ }^{-1.5}$ | -1.7 | -4.4 | -7.0 | 1.3 | 0.8 |
 | Perentififeence? | -2.7% | -4.4\% | -2.3\% | 3.3\% | 1.0\% | -0.2\% | -0.4\% | -0.5\% | -1.1\% | -2.0\% | 0.3\% | 0.2\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet 3 1.7\%\%) | | | | | | | | | | | | |
 | wsip 2 20\% Wintout Pried | 376.6 | 339.0 | 324.5 | 401.6 | 317.6 | 281.8 | 255.2 | 261.1 | 317.1 | 323.8 | 304.9 | 455.8 |
 | wsP 2070 wit Projet | 366.3 | 331.4 | 325.3 | 416.4 | 318.1 | 281.3 | 254.8 | 261.2 | 318.2 | 323.8 | 303.4 | 457.2 |
 | Difteene | -10.3 | -7.6 | 0.8 | 14.8 | 0.6 | -0.4 | -0.4 | 0.1 | 1.0 | 0.0 | -1.4 | 1.4 |
 | Perentififeence | -2.7% | -2.2% | 0.3\% | 3.7\% | 0.2\% | -0.2\% | -0.2\% | 0.0\% | 0.3\% | 0.0\% | -0.5\% | 0.3\% |
 | Above Nomal (13.4\%) | | | | | | | | | | | | |
 | WSPP 2 20 W Witurut Proet | 323.3 | 327.3 | 377.5 | 486.6 | 409.9 | 321.6 | 299.1 | 328.9 | 346.1 | 309.4 | 281.0 | 403.0 |
 | wsip 2070 wif Projet | 320.2 | 319.8 | 371.8 | 518.3 | 413.7 | 324.8 | 301.4 | 328.9 | 345.8 | 309.2 | 284.6 | 409.3 |
 | Differene | -3.1 | -7.5 | -5.7 | 31.8 | 3.8 | 3.1 | 2.2 | 0.0 | -0.3 | -0.2 | 3.6 | 6.3 |
 | Perentififeence | -0.9\% | -2.3% | -1.5\% | 6.5\% | 0.9\% | 1.0\% | 0.7\% | 0.0\% | -0.1\% | -0.1\% | 1.3\% | 1.6\% |
 | Below Nomal (15.9\%) | | | | | | | | | | | | |
 | WSPP 2070 Wirinut Project | 704.7 | 579.2 | 572.9 | 587.6 | 53.7 | 443.7 | 386.9 | 381.6 | 378.8 | 300.8 | 323.0 | 534.2 |
 | WSIP 207\% Wifiproject | 678.6 | 518.4 | 534.5 | 614.1 | 550.3 | 45.5 | 388.8 | 378.7 | 367.3 | 295.4 | 327.2 | 552.5 |
 | Diffeence | -26.0 | -60.8 | -38.4 | 26.6 | 19.6 | 6.8 | 1.9 | -2.9 | -11.5 | -5.4 | 4.2 | 18.2 |
 | Perentififeence | -3.7\% | -10.5\% | -6.7\% | 4.5\% | 3.7\% | 1.5\% | 0.5\% | -0.8\% | -3.0\% | -1.8\% | 1.3\% | 3.4\% |
 | Dr (24.4\%) | | | | | | | | | | | | |
 | WSIP 2 270 W Witrout Priect | 678.6 | 585.1 | 583.8 | 553.8 | 551.5 | 536.0 | 493.9 | 467.2 | 427.7 | 369.9 | 427.4 | 525.4 |
 | wspr 2070 wit Projer | 672.8 | 568.9 | 608.0 | 578.7 | 564.6 | 53.6 | 489.1 | 464.6 | 420.2 | 355.1 | 438.6 | 526.3 |
 | Diffeence | -5.7 | -16.2 | 24.3 | 24.9 | 13.1 | 0.6 | -4.8 | -2.6 | -7.5 | -14.8 | 11.2 | 0.8 |
 | Perenen iffeeme | -0.8\% | -2.8% | 4.2\% | 4.5\% | 2.4\% | 0.1\% | -1.0\% | -0.6\% | -1.8\% | -4.0\% | 2.6\% | 0.2\% |
 | Cinitalal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2270 W Wibut Proect | 690.3 | 727.4 | 777.0 | 702.1 | 65.6 | 63.7 | 602.9 | 562.8 | 526.2 | 490.8 | 564.7 | 584.6 |
 | wsip 2070 with Project | 653.8 | 695.8 | 701.7 | 687.7 | 642.2 | 619.3 | 597.6 | 558.1 | 519.0 | 473.6 | 549.9 | 559.9 |
 | Diffeene | -36.5 | -31.5 | -75.4 | -14.5 | -16.4 | -17.4 | -5.3 | -4.6 | -7.2 | -17.2 | -14.8 | -24.7 |
 | Perentibifeme | -5.3\% | -4.3\% | -9.7\% | -2.1\% | -2.5\% | -2.7% | -.0.9\% | -0.8\% | -1.4\% | -3.5\% | -2.6\% | -4.2\% |

 Realive difference of the monhly average

 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly EC (UMHOSICM) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | Full Simulation Period ${ }^{\text {a }}$ | | | | | | | | | | | | |
 | Wsip 270 W Witout Project | 545.4 | 508.5 | 568.6 | 58.5 | 547.0 | 507.7 | 391.4 | 410.1 | 434.5 | 414.5 | 419.3 | 520.1 |
 | WSIP 2070 Wif Projert | 528.2 | 492.6 | 562.1 | 596.2 | 548.0 | 503.4 | 390.9 | 410.8 | 431.8 | 408.1 | 419.4 | 519.5 |
 | Diffeence | -17.2 | -15.9 | -6.6 | 9.7 | 1.0 | -4.2 | -0.5 | 0.8 | -2.8 | -6.4 | 0.1 | -0.7 |
 | Perenen Difference? | -3.2\% | -3.1\% | -1.2\% | 1.7\% | 0.2\% | -0.8\% | -0.1\% | 0.2\% | -0.6\% | -1.5\% | 0.0\% | -0.1\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet 3 1.7\%) | | | | | | | | | | | | |
 | Wsip 2070 Wiftout Priject | 408.2 | 391.8 | 4397 | 441.7 | 323.7 | 296.4 | 251.7 | 284.7 | 409.3 | 4328 | 363.1 | 466.8 |
 | WSIP 2070 win Prijet | 398.2 | 391.4 | 4392 | 449.6 | 324.8 | 294.9 | 251.5 | 285.0 | 409.2 | 433.0 | 358.4 | 469.7 |
 | Diffeence | -10.0 | -0.4 | -0.5 | 8.0 | 1.1 | ${ }^{-1.5}$ | -0.2 | 0.4 | -0.1 | 0.2 | -4.7 | 3.0 |
 | Perent Diffeence | -2.5\% | -0.1\% | -0.1\% | 1.8\% | 0.3\% | -0.5\% | -0.1\% | 0.1\% | 0.0\% | 0.0\% | -1.3\% | 0.6\% |
 | Above Nomal (13.4\%) | | | | | | | | | | | | |
 | WSPP 2070 W Whtout Pried | 374.3 | 381.4 | 507.0 | 578.8 | 440.9 | 336.7 | 301.8 | 367.7 | 422.8 | 406.5 | 351.1 | 444.9 |
 | WSIP 2070 Win Projet | 377.7 | 374.7 | 501.1 | 593.8 | 442.7 | 339.1 | 302.1 | 367.8 | 421.3 | 392.7 | 347.6 | 450.2 |
 | Diffeence | 3.4 | -6.8 | -6.0 | 15.0 | 1.8 | 2.5 | 0.4 | 0.1 | -1.4 | -13.8 | -3.5 | 5.2 |
 | Percent Differne | 0.9\% | -1.8\% | -1.2\% | 2.6\% | 0.4\% | 0.7\% | 0.1\% | 0.0\% | -0.3\% | -3.4\% | -1.0\% | 1.2\% |
 | Betow Nomal (15.9\%) | | | | | | | | | | | | |
 | WSPP 2070 W Whtout Priject | 651.9 | 559.3 | 595.2 | 660.1 | 625.3 | 532.9 | 381.6 | 411.7 | 414.6 | 354.4 | 382.9 | 561.5 |
 | WSPP 2070 wit Projet | 627.1 | 515.0 | 572.4 | 674.6 | 633.7 | 532.6 | 381.0 | 411.6 | 405.4 | 345.3 | 382.7 | 575.0 |
 | Diffeere | -24.8 | -44.3 | -22.8 | 14.5 | 8.5 | -0.3 | -0.6 | -0.1 | -9.1 | -9.1 | -0.2 | ${ }^{13.5}$ |
 | Perent Diffeence | -3.8\% | -7.9\% | -3.8\% | 2.2\% | 1.4\% | -0.1\% | -0.2\% | 0.0\% | -2.2\% | -2.6\% | -0.1\% | 2.4\% |
 | Dr (24.4\%) | | | | | | | | | | | | |
 | Wsip 2070 W Witout Priject | 653.3 | 578.8 | 634.4 | 6392 | 694.9 | 659.7 | 479.1 | 497.0 | 443.1 | 392.7 | 463.1 | 554.1 |
 | WSIP 2070 Winf Projet | 635.8 | 566.9 | 647.2 | 655.2 | 693.7 | 647.5 | 477.1 | 499.3 | 439.6 | 387.3 | 474.5 | 552.1 |
 | Diffeence | -17.4 | -11.9 | 12.8 | 16.0 | -1.2 | -12.2 | -2.0 | 2.3 | ${ }^{-3.6}$ | -5.3 | 11.4 | -2.0 |
 | Perent Diffeence | -2.7\% | -2.1\% | 2.0\% | 2.5\% | -0.2\% | -1.9\% | -0.4\% | 0.5\% | -0.8\% | -1.4\% | 2.5\% | -0.4\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSPP 2070 W Witout Priect | 704.0 | 705.8 | 766.2 | 739.6 | 796.7 | 841.4 | 640.6 | 573.8 | 507.1 | 483.5 | 569.8 | 603.3 |
 | WSIP 2070 whi Prijet | 660.9 | 672.1 | 731.4 | 7328 | 792.6 | 834.1 | 641.2 | 574.3 | 505.7 | 471.0 | 565.2 | 576.3 |
 | Diffeere | -43.0 | -33.6 | -34.8 | -6.8 | -4.1 | -7.4 | 0.5 | 0.5 | ${ }^{-1.5}$ | -12.5 | -4.5 | -27.0 |
 | Perentififeence | -6.1\% | -4.8\% | -4.5\% | -0.9\% | -0.5\% | -0.9\% | 0.1\% | 0.1\% | -0.3\% | -2.6\% | -0.8\% | -4.5\% |

 Based of the 82 2years simulition period
 30.30 Index Water Yearthydrologic Classification (SWRCB $0.1641,1999)$

 3 Realive difference of tie monhly werage

 ## Sacramento-San Joaquin Delta Modeling Exceedance Probability Charts and Tables

 Figure SQ-01-b
 X2, Monthly Position

 Figure SQ-21-b
 Sacramento River at Emmaton, Monthly EC

 Table $S Q-21-\mathrm{b}$
 to River at Emmato，Monthly EC

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | Ociober | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {WSIP }}^{\text {207 }}$ Prowict Witout | WSIP 207 With Project | Absolute | |
 | | Monthly EC | Monthly EC | （umbiscm） | ference（\％） |
 | （\％） | UMHHSSCM） | （13037m | | |
 | | | 473 | －48．2 | 1．0\％ |
 | 1．2\％\％ | ${ }^{46988.9}$ | 4461.9 | ${ }^{237.1}$ | －5．0\％ |
 | 2．5\％ | 4643.7 | 4437.8 | 205.9 | |
 | 3．7\％\％ | ${ }_{4}^{4574.6}$ | 4258.9 4090.2 | ${ }_{-375.8}$ | －8．4\％ |
 | 6．2\％ | 4167.8 | ${ }^{3872.5}$ | －295．3 | －7．1\％ |
 | 7．4\％ | 4073.1 | ${ }^{3831.8}$ | －241．3 | |
 | 8．6\％ | 3992.4 | ${ }^{3662.4}$ | －330．0 | －8．3\％ |
 | 9．9\％ | ${ }^{3957.8}$ | 3570.0 | －387．8 | －9．8\％ |
 | ${ }^{11.1 \%}$ | 3897.8 3557.3 | ${ }_{3343.1}^{3344}$ | ${ }_{-214.3}^{-53.7}$ | －-14.2% |
 | 13．2\％ | ${ }^{3551.3}$ | ${ }^{3292.3}$ | －259．0 | －7．3\％ |
 | 14．8\％ | ${ }^{3520.3}$ | ${ }^{3291.2}$ | －229．1 | －6．5\％ |
 | | 3484.0 3469.5 | ${ }_{3}^{32711.8}$ | －212．2 -258.2 | ${ }_{-7.4 \%}^{-6.1 \%}$ |
 | 18．5\％ | 3448.5 | 3169.1 | －279．4 | －8．1\％ |
 | 19．8\％ | 3415.4 | ${ }^{3078.0}$ | －337．4 | －9．9\％ |
 | ${ }^{21.0 \%}$ | 3391.8 3354.4 | ${ }_{\text {ckence }}^{3088.6}$ | ${ }_{\text {－}}^{\text {－527．1 }}$ | －9．9\％\％ |
 | 23．5\％ | ${ }^{3323.4}$ | 2819.1 | －504．3 | －15．2 |
 | 24．7\％ | 3307.5 | 2811.3 | －496．3 | －15．0\％ |
 | 25．9\％ | 33017 | ${ }^{2801.4}$ | －500．3 | －15．2\％ |
 | 27．2\％ | 3229.2 | ${ }_{2}^{2799.6}$ | －429．6 | －-13.3% |
 | 20．6\％ | ${ }_{3211.5}^{321.5}$ | ${ }_{2761.2}^{2789.1}$ | －432．4 -450.3 | － |
 | 30．9\％ | $3^{3193.2}$ | 2624.6 | －568．6 | －17．8\％ |
 | 32．1\％ | 3137.0 | 2598.1 | －539．0 | －17．2\％ |
 | 33．3\％ | ${ }_{3}^{3136.1}$ | ${ }^{2578.7}$ | －557．4 | －17．8\％ |
 | 34.6% 358% | ${ }_{3122.7}$ | ${ }^{2561.9}$ | ${ }^{-560.8}$ | |
 | 37．0\％ | ${ }^{30077.1}$ | ${ }_{2455.6}^{2409.9}$ | ${ }_{-551.6}^{-5808}$ | －18．3\％ |
 | 38．3\％ | 2957.7 | 2454.0 | －503．7 | －17．0\％ |
 | 39．5\％ | 2952.7 | 2385.2 | －567．5 | －19．2\％ |
 | 40．7\％ 420% | 2945.9 | ${ }_{\text {2378．8 }}^{2364}$ | －567．1 | －－19．3\％ |
 | ${ }^{42.0 \%}$ | ${ }^{2945.2}$ | ${ }^{2361.2}$ | －583．9 | |
 | 44．4\％ | ${ }_{2784.7}^{2760.7}$ | ${ }_{\text {2316．3 }}^{230.4}$ | ${ }_{-468.5}^{-465.7}$ | －16．76\％ |
 | 45．7\％ | 2777.1 | 2244.5 | －532．6 | －19．2\％ |
 | 46．9\％ | 2686.1 | 2160.8 | －525．3 | 9．6\％ |
 | 48．1\％ 4.4 | ${ }^{25588.6}$ | ${ }^{2078.3}$ | －510．4 | |
 | 59．4\％ | ${ }_{2}^{2576.7}$ | ${ }^{195473}$ | ${ }^{-622.5}$ | |
 | 50．9\％ | ${ }_{23338}^{254.6}$ | ${ }_{1626.4}^{163}$ | －7074 | -28.7 -30 |
 | 53．1\％ | ${ }_{14892}^{2539}$ | 1381.0 | －108．2 | |
 | 54．3\％ | 723.5 | 643.9 | －79．6 | －11．0\％ |
 | 55．6\％ | 703.2 | 640.5 | －62．7 | －8．9\％ |
 | | ${ }^{683.7}$ | 621.0 | －62．7 | －9．2\％ |
 | 58．3\％ | 682.0 657.3 | 615．0 587.0 | －70．3 | －9．8\％\％ |
 | 60．5\％ | 608.5 | 562.7 | －45．7 | ．5\％ |
 | 年1．7\％ | 602.9 | 561.0 | －41．9 | －6．9\％ |
 | －63．0\％ | 595．4 591.6 | 522．4．4 523.8 | -71.0 -67.8 | －-11.96 |
 | 65．4\％ | 577.9 | 501.9 | －76．0 | －13．2\％ |
 | | 344.1 | ${ }^{366.1}$ | 22.0 | 6．4\％ |
 | －67．9\％ | 330.4 324.5 | ${ }_{297.1}^{309.5}$ | －20．9 | －6．5\％ |
 | 70．4\％ | 318.6 | 291.5 | －27．1 | |
 | 71．6\％ | 316.4 | 290.4 | －26．0 | 8．2\％ |
 | 72．8．1\％ | 304．6 | 285.6 | －19．0 | －6．5\％${ }_{-5}^{-6.5 \%}$ |
 | 75．3\％ | 300.1 | ${ }_{283.8}^{284.2}$ | －16．6 | |
 | 7．5\％ | 299.5 | ${ }_{282.3}^{288 .}$ | －17．3 | －5．8\％ |
 | 77．8\％ | 2993 | 281.0 | －18．3 | －6．1\％ |
 | 79．0\％ | 29.6 | ${ }_{279}^{280.6}$ | －15．9 | |
 | 81．5\％ | 294.2 | ${ }_{277.6}^{27.1}$ | －15．6 | －5．6\％ |
 | 82．7\％ | 292.4 | 275．4 | －17．0 | 5．8\％ |
 | － $\begin{aligned} & 84.0 \% \\ & 852 \%\end{aligned}$ | 291.6 | 274.7 | －16．9 | －5．8\％ |
 | －${ }_{\text {85．4\％}}$ | ${ }_{288.9}^{289.5}$ | 277.8 273.5 | －15．4 | －5．3\％ |
 | 877\％ | 286.2 2855 | ${ }_{2715}^{273}$ | －13．0 | －4．5\％ |
 | 88．9\％ | 285.5 | ${ }^{277.5}$ | －14．0 | －4．9\％ |
 | 90．4\％ | ${ }_{283.1}^{284.4}$ | 270.9 270.2 | ${ }_{-12.9}$ | －4．6\％ |
 | 92．6\％ | ${ }_{281.7}^{2817}$ | 268.1 2675 | ${ }^{-13.6}$ | －4．8\％ |
 | 93．8\％ | 281.1 | ${ }^{267.5}$ | －13．6 | －4．3\％ |
 | ${ }_{965}^{95.1 \%^{\prime}}$ | ${ }_{279.0}^{280.7}$ | ${ }_{262.9}^{265.8}$ | －14．9 | －5．8\％ |
 | 97．5\％ | 27.5 | 253．2 | －23．3 | －8．4\％ |
 | 100．0\％ | ${ }_{213.3}^{27.5}$ | ${ }_{20.1}^{250.3}$ | ${ }_{-4.2}$ | －2．0\％ |

 | | November | | | － | December | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2070 Wethout | WSIP 2070 With Project | Absolute | | | Pr 2070 Wethout | WSIP 2070 With Project | Absolute | |
 | Proobability | Monthly EC | Monthy EC | （idiference | Difference（\％） | fobabilit | Monthly EC | Monthly EC | （itierence | Difference（\％） |
 | （\％） | （UuHHos／CM） | （UMHOSCCM） | | | | UMHHOSICM） | UwHOSCM） | （UnHosicm） | |
 | 0．0\％ | 4422.1 | 4274.4 | －167．7 | －3．8\％ | 0．0\％ | 4173.5 | 3995．2 | －178．3 | |
 | 1．2\％ | 4267.2 | 4140.1 | －127．1 | －3．0\％ | 1．2\％ | 3545.4 | 3105.1 | －400．3 | |
 | 2．5\％ | 4068.1 | 3951.9 | －116．2 | －2．9\％ | 2．5\％ | ${ }^{3352.9}$ | 2799.6 | －553．3 | |
 | 3．7\％ | 4030.6 | ${ }^{3875.1}$ | －155．5 | －3．9\％ | 3．7\％ | ${ }^{3175.3}$ | 2778.4 | －397．0 | －12．5\％ |
 | 4．9\％ | ${ }^{4025.6}$ | ${ }^{3666.3}$ | ${ }^{-3599}$ | －8．9\％ | 4．9\％ | 2911.0 | 2613.0 | －298．0 | \％ |
 | 6．2\％ | 3940.2 | ${ }^{3661.0}$ | －279．3 | －7．1\％ | 6．2\％ | 2814.1 | 2430.7 | －383．4 | －13．6\％ |
 | 7．4\％ | ${ }_{3930.7}$ | ${ }^{3611.2}$ | －319．5 | －8．1\％ | 7．4\％ | ${ }^{2689.1}$ | ${ }^{2416.7}$ | －272．4 | －10．1\％ |
 | 8．6\％ | ${ }^{3711.4}$ | 3518.0 | －193．4 | －5．2\％ | 8．6\％ | 2523.0 | ${ }^{2348.6}$ | －174．4 | －6．9\％ |
 | 9．9\％ | ${ }^{3628.9}$ | ${ }^{3198.8}$ | －430．1 | －11．9\％ | 9．9\％ | ${ }^{2444.5}$ | ${ }^{23433.8}$ | －100．7 | －4．1\％ |
 | 11．1\％ | 3508.2 | ${ }^{3027.9}$ | －480．4 | －13．7\％ | 11．1\％ | ${ }^{2379.3}$ | 2267.5 | －111．8 | －4．7\％ |
 | ${ }^{12.3 \%}$ | ${ }^{34688.9}$ | ${ }^{22929.3}$ | －539．7 | －15．6\％ | ${ }^{12.3 \%}$ | ${ }^{23644}$ | ${ }^{2254.8}$ | －109．8 | 源 |
 | 13．6\％ | 329990 | ${ }^{2850,7}$ | －448．3 | －13．6\％ | 13．6\％ | ${ }^{2339.5}$ | 2210.4 | －129．1 | －5．5\％ |
 | 14．8\％ | ${ }^{3272.65}$ | 2829.9 | －442．8 | －13．5\％ | 14．8\％ | ${ }^{2320.8}$ | 2180.5 | －140．3 | －6．0\％ |
 | 16．0\％ | ${ }^{3225.5}$ | 2776.6 | －448．9 | －13．9\％ | 16．0\％ | ${ }^{2124.3}$ | 2166.5 | 42.2 | 2．0\％ |
 | ${ }^{17.3 \%}$ | 3189.2 | ${ }^{27765.4}$ | －423．8 | －13．3\％ | ${ }^{17.3 \%}$ | 1937．9 | ${ }^{1685.6}$ | ${ }^{-252.3}$ | －13．0\％ |
 | 18．5\％ | ${ }^{30533.8}$ | ${ }^{27333.2}$ | ${ }^{-320.6}$ | －10．5\％ | 18．5\％ | 1755.1 | ${ }^{1625.4}$ | －129．6 | －7．4\％ |
 | 19．8\％ | 3017.2 | 2697.9 | －319．3 | －10．6\％ | 19．8\％ | 1478.2 | 1566.1 | 82.8 | 5．6\％ |
 | 21．0\％ | 2988.7 | ${ }^{2602.0}$ | －386．7 | －12．9\％ | 21．0\％ | 1411.1 | 14988.9 | ${ }^{87.8}$ | 6.29 |
 | ${ }^{22.2 \%}$ | 2929.9 | ${ }^{2503.0}$ | －426．9 | －14．6\％ | ${ }^{22.2 \%}$ | 1306.1 | 1459.6 | ${ }^{153.5}$ | 11．8\％ |
 | 23．5\％ | 2889.9 | ${ }_{2468.3}$ | －421．6 | －14．6\％ | 23．5\％ | ${ }^{1293.0}$ | 1399.0 | 106.0 | 8．2\％ |
 | 24．7\％ | ${ }^{2869.2}$ | 2410.8 | －458．4 | －16．0\％ | 24．7\％ | 1218.8 | 131997 | 100.9 | 8．3\％ |
 | 25．9\％ | ${ }_{2856.2}^{2889}$ | 2400.1 | －456．1 | －16．0\％ | 25．9\％ | ${ }^{11411.7}$ | ${ }^{1271.2}$ | 129.5 | 11．3\％ |
 | 27．2\％ | 2743.1 | ${ }^{2226.8}$ | －516．3 | －18．8\％ | 27．2\％ | 1109.7 | ${ }^{118473}$ | 74.6 | 6．7\％ |
 | 28．4\％ | ${ }^{25688.8}$ | ${ }^{2211.0}$ | －357．8 | －13．9\％ | 28．4\％ | ${ }^{10999.6}$ | ${ }^{1147.5}$ | 47.9 | 4．4\％ |
 | 29．6\％ | ${ }^{2509.2}$ | ${ }^{2150.3}$ | －358．9 | －14．3\％ | 29．6\％ | 1093．3 | 1108.9 | 15.6 | ${ }^{1.4 \%}$ |
 | 30．9\％ | ${ }^{2441.3}$ | ${ }^{2126.6}$ | －314．7 | －12．9\％ | 30．9\％ | 1047.6 | 1072.1 | 24.5 | 2．3\％ |
 | 32．19\％ | ${ }^{2381.0}$ | 1989.4 | －399．5 | －16．4\％ | 32．1\％ | 998.6 | 1048.5 | 49.9 | 5．0\％ |
 | 33．3\％ | ${ }_{2}^{2318.5}$ | ${ }^{1866.3}$ | －452．2 | －19．5\％ | 33．3\％ | 993．3 | 1016.5 | ${ }^{23.3}$ | 2．3\％ |
 | 34．6\％ | ${ }^{2289.4}$ | 1867.3 | －428．1 | －18．7\％ | 34．6\％ | 985.1 | 991.9 | ${ }^{6} .7$ | 0．7\％ |
 | 35．7\％ | ${ }_{21817}$ | 1831.3 | ${ }^{-350.3}$ | －16．1\％ | 35．8\％ | 945.9 | 956.8 | 10.9 | 1．2\％ |
 | 38．0\％ | ${ }_{21034}$ | 1809.6 | ${ }^{-325.7}$ | －15．3\％ | 37．0\％ | ${ }_{\text {931．5 }} 93$ | ${ }^{9225.3}$ | －6．3 | ${ }^{-0.7 \%}$ |
 | 39．5\％ | ${ }_{1946.4}^{2193.4}$ | ${ }_{1581.1}^{175.5}$ | －365．3 | ${ }_{-18.8 \%}$ | 39．5\％ | ${ }_{846.1}^{924.3}$ | ${ }_{90505}$ | －2．4．4 | 7．0\％ |
 | 40．7\％ | 1697.4 | 1542.0 | －155．5 | －9．2\％ | 40．7\％ | 819.1 | 891.4 | ${ }^{72} 3$ | 8．8\％ |
 | 42．0\％ | 1635.0 | 1393.9 | －241．1 | －14．7\％ | 42．\％ | 817.0 | 872.7 | 55.6 | 6．8\％ |
 | 43．2\％ | 1441.6 | 1331.9 | －109．7 | －7．6\％ | 43．2\％ | 807.1 | 860.9 | 53.7 | 6．7\％ |
 | 44．4\％ | ${ }^{1320.2}$ | 1294.7 | －25．5 | －1．9\％ | 44．4\％ | 806.4 | 857.4 | 51.0 | ${ }^{6.3 \%}$ |
 | 45．7\％ | ${ }^{1300.5}$ | ${ }^{1146.7}$ | －153．8 | －11．8\％ | 45．7\％ | 784.6 | 826.5 | 41.9 | 5．3\％ |
 | ${ }^{46.9 \%}$ | ${ }^{1162.8}$ | ${ }^{1092.6}$ | －70．2 | －6．0\％ | 46．9\％\％ | 780.8 | ${ }_{700.8}$ | 20.0 | ${ }^{2.6 \%}$ |
 | 49．4\％ | ${ }_{5553}^{67.6}$ | ${ }_{764.9}^{856.2}$ | 182.6 161.6 | 27．6\％ | 49．4\％ | ${ }_{731.1}^{74.1}$ | ${ }_{720.8}^{74.8}$ | ${ }^{-10.6}$ | －1．4\％ |
 | 50．6\％ | 585.0 | 671.3 | 86.2 | 14．7\％ | 50．6\％ | 695.4 | 717.1 | 21.7 | 3．1\％ |
 | 51．9\％ | 559.8 | 559.2 | －0．6 | －0．1\％ | 51．9\％ | 686.6 | 681.8 | －4．8 | 0．7\％ |
 | 53．19\％ | 528．3 | 524.5 5159 | －．38 | －0．7\％ | 53．1\％ 543% | 683.3 6629 | 670.5 6585 | －12．8 | －-1.9% |
 | 54．3\％ | 522.1 | 515.9 | －6．2 | －1．2\％ | 54．3\％ | 662.9 | 658．5 | －4．4 | －0．7\％ |
 | 55．8\％\％ | 520.3 505.6 | 489.5 4846 | － $\begin{array}{r}-30.8 \\ -21.0\end{array}$ | －5．92\％ | 55．6\％ | 652.5 642.9 | 655．5 | 3.0 -155 | －${ }_{-24 \%}$ |
 | 58．0\％ | 489.5 | 481.8 | ${ }_{-7.7}$ | －1．2\％ | 58．0\％ | 627.4 | 621.9 | －5．6 | －0．9\％ |
 | 59．3\％ | 488.8 | 476.4 | －12．5 | －2．6\％ | 59．3\％ | 600.7 | 621.1 | 20.4 | 3．4\％ |
 | 60．5\％ | 481.9 4783 | 468.2 4507 | -13.7 -276 | －2．9\％ | 60．5\％ | 500.0 4072 | 618.4 6080 | 112．4 | ${ }_{4}^{22.2 \%}$ |
 | 61.7% 630% | ${ }_{4607}^{478.3}$ | ${ }_{446}^{450}$ | －-14.6 | －5．8\％ | 61.7% 630% | 407．2 | 608.0 5721 | 200.9 1828 | ${ }_{4}^{4.3 \%}$ |
 | －63．0\％ | 460.7 4296 | ${ }_{4496}^{446}$ | －14．5 -101 | －3．1\％ | －63．0\％ | 389.3 3815 | 572.1 518.2 | $\begin{array}{r}182.8 \\ \hline 1367 \\ \hline 1\end{array}$ | 年 $\begin{aligned} & 46.9 \% \\ & 358 \%\end{aligned}$ |
 | 64．2\％ | 429.6 424.9 | ${ }_{4}^{419.5}$ | －10．1 | －-2.4% | 64．2\％ | ${ }_{364.5}^{381.5}$ | 年 518.2 | 136.7 1380 | 35.8% 37.9% |
 | 66．7\％ | 385.9 | 336.1 | －49．8 | －12．9\％ | 6．7．7\％ | 363.5 | 459.8 | 96.3 | 26．5\％ |
 | 67．9\％ | 346.1 | ${ }^{333.9}$ | －12．1 | －3．5\％ | 67．9\％ | 357.0 | 389.9 | 32.9 | 9．2\％ |
 | 69．1\％ | 338.0 | 333.0 | －4．9 | －1．5\％ | 69．1\％ | 350.9 | 362.9 | 12.0 | 3．4\％ |
 | 70．4\％ | 335.1 3227 | 327.8
 3148 | -7.3 -78 | －2．2\％${ }_{-24 \%}$ | 70．4\％ | 278.9 278.4 | 361.0 341.7 | 63.1 63.3 | $\underset{\substack{21.2 \% \\ 227 \%}}{ }$ |
 | 72．8\％ | ${ }_{318.3}$ | ${ }_{314.5}^{314.8}$ | ${ }_{-3.9}$ | －1．2\％ | | ${ }_{267.7}^{278.4}$ | ${ }_{312.7}$ | ${ }_{45.0}^{63.3}$ | ${ }^{22.7 \%} \times 1.8$ |
 | 74．1\％ | 316.6 | 309.0 | －7．6 | －2．4\％ | 74．1\％ | 26.5 | 279.9 | 19.3 | 7．4\％ |
 | 75．3\％ | 312.6 | 308．6 | －4．1 | －1．3\％ | 75．3\％ | ${ }_{23,3}^{233.3}$ | ${ }_{2398}^{2398}$ | 6.5 | 2．8\％ |
 | 76．5\％ | 309.9 | 307.3 | －2．6 | －0．9\％ | 76．5\％ | 229.9 | ${ }^{237.3}$ | 7.4 | 3．2\％ |
 | 77．8\％ | 309.4 2890 | ${ }_{2}^{304.2}$ | －5．2． | －${ }_{\text {－}}^{\text {－}}$－7\％\％ | 77．8\％ | ${ }_{2129}^{214.3}$ | ${ }_{218.3}^{220.9}$ | 6.6 5.5 | 3．1\％ |
 | 80．2\％ | 28.5 | 271.7 | -9.8 | | 80．2\％ | 201.0 | 208.8 | 7.8 | 3．9\％ |
 | 81．5\％ | 280.6 | ${ }^{263.3}$ | －17．3 | －6．2\％ | 81．5\％ | 200.3 | 206.1 | 5.8 | 2．9\％ |
 | － 8 82．7\％ | ${ }_{2634}^{268.4}$ | 260.0 2543 | －8．4 | －3．19\％ | 82．7\％ 840% | 196.5 1920 | ${ }_{204.1}^{204.2}$ | 7.6 122 128 | 3．9\％ |
 | 85．2\％ | 259.4 | 255.4 | -6.0 | －2．3\％ | 85．2\％ | 191.9 | 199.8 | 7.9 | 4．1\％ |
 | 86．4\％ | 254.4 | 251.6 | －2．8 | －1．1\％ | 86．4\％ | 188.3 | 194.5 | 6.2 | 3．3\％ |
 | 887．7\％ | 253.8
 251.8
 1 | ${ }_{248.8}^{250.8}$ | ${ }_{-3,}{ }^{-3.1}$ | ${ }_{-1.2 \%}^{-1.2 \%}$ | 87．7\％ | $\begin{array}{r}186.7 \\ 1851 \\ \hline 18\end{array}$ | 189.5
 1864 | 2.9 13 | － 1.5% |
 | 90．1\％ | 251.7 | 247.9 | －3．8 | －1．5\％ | 90．1\％ | 184.5 | 185.6 | 1.1 | 0．6\％ |
 | 914\％ | ${ }^{247.5}$ | 241.9 | －5．6 | －2．3\％ | 91．4\％ | 184.1 | 185.4 | 1.3 | 0．7\％ |
 | － 92.6% | ${ }_{2467}^{247.1}$ | 238.5 2379 | -8.6 -8.8 | －3．5\％${ }_{-3}$ | －92．6\％${ }_{93}$ | $\begin{array}{r}184.1 \\ \hline 1816\end{array}$ | 183.6
 1812 | －0．5 | －0．3\％ |
 | 95．1\％ | 242.2 | 236.7 | －5．5 | －2．3\％ | 95．1\％ | 180.9 | 181.0 | 0.1 | 0．1\％ |
 | 96．3\％ | ${ }^{238.2}$ | ${ }^{234.6}$ | －3．5 | －1．5\％ | 96．3\％ | 179.4 1792 | 17796 | ${ }^{0.2}$ | 0．1\％ |
 | 97．5\％ | 199.6 | ${ }^{212.9}$ | ${ }^{13.3}$ | 6．7\％ | 97．5\％ | ${ }^{1779.2}$ | 17795 | ${ }^{0.3}$ | 0．2\％ |
 | 98．8\％ 1000% | 199.6 183 | ${ }_{183.8}^{202.3}$ | 2.7 0.5 | ＋1．3\％ | 98．8\％ 100\％ | 178.2 1779 | 178.2 1779 | ${ }_{\text {－0，}}^{0.0}$ | － |

 | $\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probabaility } \end{array} \end{aligned}$ | January | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2070 Weithout | WSIP 2070 With Project | $\begin{gathered} \text { Absolute } \\ \text { (Difference } \\ \text { (UMHOSICM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference }(\%) \end{gathered}$ |
 | | Monthly EC | Monthly EC | | |
 | （\％） | UMH | ， | | |
 | 0．0\％ | 3146.0 | 2770.2 | －375．8 | －11．9\％ |
 | ${ }^{1.2 \%}$ | 1770.0 | 1881.4 13735 | 91.4 | 5.2 |
 | 2．5\％ | ${ }^{1456.4}$ | 1373.5 1363 | －82．9 | |
 | 3．7\％\％ | ${ }_{\text {cher }}^{11959.7}$ | 1363.9 12069 | 168.2
 373
 1 | ${ }_{3}^{14.2 \%}$ |
 | 6．2\％ | 1164.6 | 1167.1 | 2.5 | 0．2\％ |
 | 7．4\％ | 1124.4 | 1167.0 | 42.6 | 3．8\％ |
 | 8．6\％ | 1111.1 1029 | ${ }^{1100.0}$ | -11.1 239 | － $\begin{aligned} & -1.0 \% \\ & 23 \%\end{aligned}$ |
 | ${ }^{\text {9．9\％}}$ | 1029.9 | 1053.8 | ${ }^{23.9}$ | ${ }^{2.3 \%}$ |
 | ${ }^{11.19 \%}$ 12．3\％ | ${ }^{10037.4}$ | 1018.4 1008.7 | 15.0 30.9 | |
 | 13．6\％ | 946.1 | 1004.9 | 58.8 | ${ }_{6}^{6.2 \%}$ |
 | 14．8\％ | ${ }^{930.5}$ | 990.8 | ${ }^{60.3}$ | 6．5\％ |
 | － 16.0% | 912.9 8979 | －938．9 ${ }_{932}$ | 26.0 34.2 | ${ }_{38 \%}^{2.8 \%}$ |
 | 18．5\％ | 878.7 | 901.9 | ${ }_{23,2}$ | 2．6\％ |
 | 19．8\％ | 872.4 | 897.3 | 24.9 | 2．9\％ |
 | ${ }^{21.0 \%}$ | 836.0 7996 | 884.0 8626 | 48.0 630 | 7．7\％ |
 | 23．5\％ | 727.9 | ${ }_{814.6}$ | ${ }_{86.7}$ | |
 | 24．7\％ | 720.4 | 809.7 | 89.2 | 12．4\％ |
 | 25．9\％ | 694.1
 6778 | 757.3 7314 | 63.2
 53.6 | ${ }_{\text {7 }}^{\text {7．9\％}}$ |
 | 28．4\％ | 677.7 | 716.6 | | |
 | 29．6\％ | 597.8 | 602.2 | 4.4 | 0．7\％ |
 | －${ }^{30.9 \%}$ | ${ }_{539.3}^{554}$ | 578.4 571.2 | 24.3 32.0 | 5．4．9\％ |
 | 33．3\％ | 490.8 | 549.3 | 58.4 | |
 | 34．6\％ | 400.0 | 500.6 | 100.7 | 25．2\％ |
 | ${ }^{35.8 \%}$ | 383.9 | 498.1 | 114.2 | 29．7\％ |
 | 退37．0\％\％ | 369.1 358.2 | ${ }_{480.9}^{49.3}$ | 126.2
 1227
 10. | 34．2\％ |
 | 39．5\％ | 358.2 | 452.9 | 94.8 | 26．5\％ |
 | 40．7\％ | ${ }^{351.8}$ | 426.6 | 74.9 | 21．3\％ |
 | ${ }^{42.2 \%}$ | 322.8 316.6 | 409.5 3953 | ${ }_{788}^{86.7}$ | ${ }^{26.9 \%}$ |
 | 44．4\％ | 311.5 | 352.8 | 41.2 | 13．2\％ |
 | 45．7\％ | ${ }_{2}^{272.6}$ | ${ }^{346.1}$ | 73.5 | 27．0\％ |
 | ${ }_{48.1 \%}^{46.9 \%}$ | ${ }_{263.2}^{265.2}$ | 345.6 342.4 | ${ }^{80.4}$ | ${ }^{30.3 \%}$ |
 | 49．4\％ | 243.7 | 335.3 | 91.6 | 37．6\％ |
 | 50．6\％ | 239.1 | ${ }^{296.5}$ | 57.4 | 24．0\％ |
 | 531．9\％ | 237.2 236.4 | ${ }_{261.3}^{267.8}$ | 30.6 24.9 | ＋12．9\％ |
 | 54．3\％ | 235.5 | 253.2 | 17.7 | 7．5\％ |
 | 年55．8\％ | ${ }_{212.3}^{221.3}$ | 253.1 235 235 | 31.8 228 | 14．4\％ |
 | 58．0\％ | ${ }_{211.7}^{212.7}$ | ${ }_{233.7}^{2351}$ | ${ }_{22.1}^{22.8}$ | 10．4\％ |
 | 59．3\％ | 207.4 | 227.0 | 19.6 | 9．4\％ |
 | 60．5\％ | 2033 | 216.3 | ${ }^{13.0}$ | 6．4\％ |
 | | 201.5 199.6 | ${ }_{204.9}^{20.7}$ | 5.2 5.3 | 2．7\％\％ |
 | 64．2\％ | 199.1 | 204.6 | ${ }_{5.5}^{5}$ | 2．8\％ |
 | 65．4\％ | 198.6 | 201.9 | 3.2 | 1．6\％ |
 | ${ }^{66.7 \%}$ | 198.0 | 201.8 | ${ }^{3.8}$ | 1．9\％ |
 | 67．9\％ | 193.7 192.6 | ${ }_{195.5}^{198.7}$ | 5.0 2.9 | ${ }_{\text {1．5\％}}^{2.5 \%}$ |
 | 70．4\％ | 192.3 | 193.6 | 1.3 | 0．7\％ |
 | 71．6\％ | 189.0 | 191.8 | ${ }^{2} 8$ | 1．5\％ |
 | 72．8\％ | 188.2 188.0 | 1889.9 189.9 | 1.5 0.9 | 0．5\％ |
 | 75．3\％ | 1877 | 187.6 | －0．1 | －0．1\％ |
 | | | | 0.2 | 0．1\％ |
 | 79．0\％ | ${ }_{1856.7}^{185.9}$ | ${ }_{1}^{186.3}$ | ${ }_{0}^{1.6}$ | 0．3\％ |
 | 80．2\％ | 185.5 | 185.6 | 0.0 | 0．0\％ |
 | | 185.1 | | －0．1 | －0．1\％ |
 | 840\％ | 185.9 183.9 | ${ }_{1}^{184.4}$ | －0．5 | 0．3\％ |
 | 85．2\％ | 183.5 | 183.5 | 0.0 | 0．0\％ |
 | 86．4\％ | 182.8 | 183.2 | 0.4 | 0．2\％ |
 | 877．7\％ | 182.1 | 182.6 | 0.5 | 0．3\％ |
 | 80．1\％ | 181.9 180.7 | 182.0 180.3 | 0.2 -0.4 | －0．1\％ |
 | 91．4\％ | 180.1 | 180.3 | 0.2 | 0．1\％ |
 | 92．6\％ | 179.9 | 180.1 | 0.2 | 0．1\％ |
 | －${ }^{93.8 \%}$ | 17795 | 179.5 | 0.0 | 0．0\％ |
 | 96．3\％ | 179.4 | ${ }_{179.4}^{179.5}$ | ${ }_{0}^{0.0}$ | 0．0\％ |
 | 97．5\％ | 179.2 | 179.3 | 0.0 | 0．0\％ |
 | 98．8\％ | 178.7 1778 | 179.0 | 0.3 | 0．1\％ |
 | | | | | |

 Table $S Q-21-\mathrm{b}$
 to River at Emmato, Monthly EC

 | | | February | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent | WSIP 2070 Wethout | WSIP 2070 With Project | Absolute | |
 | Probability | Montily EC | Monthly EC | (ifterence | Herence (\%) |
 | (\%) | UMHOSSCO) | UMHOSSCM) | 10216 | |
 | 1.2\% | ${ }_{11501}^{2019}$ | ${ }_{926.0}$ | ${ }_{-224.1}$ | -19.5\% |
 | 2.5\% | 571.8 | 589.9 | 18.1 | 3.2\% |
 | 3.7\% | 571.1 | 573.3 | 2.2 | 0.4\% |
 | 4.9\% | 430.8 | 535.8 | 105.0 | 24.4\% |
 | 7.4\% | ${ }_{406.9}^{412.8}$ | 503.6 436.0 | ${ }_{29.1}^{90.7}$ | |
 | 8.6\% | 399.8 | 433.2 | 33.4 | $8.3{ }^{\circ}$ |
 | 9.9\% | 381.0 | 424.4 | 43.4 | 11.4\% |
 | 11.1\% | 354.2 | ${ }^{412.0}$ | 57.8 | - 16.3 \% |
 | ${ }^{12.3 \%}$ | 348.0 | ${ }_{39373}$ | 45.4 | |
 | -14.8\% | ${ }_{308.4}$ | ${ }_{3}^{3677.2}$ | 38.3 28.9 | ${ }_{9.4 \%}^{11.7 \%}$ |
 | 16.0\% | ${ }^{286.7}$ | 314.6 | ${ }_{24}^{27.9}$ | 9.7\% |
 | 17.3\% | 253.9 | 298.2 | 44.3 | 17.4\% |
 | 18.5\% 19.8% | ${ }_{243.2}^{251.6}$ | ${ }_{27}^{283.6}$ | 32.0 29.3 | 12.7%
 12.0% |
 | 21.0\% | ${ }^{227.7}$ | 266.9 | 39.2 | 17.2\% |
 | ${ }^{22.2 \%}$ | ${ }^{227.0}$ | 246.4 | 19.3 | 8.5\% |
 | - ${ }^{23.5 \%}$ | ${ }_{225.1}^{224.1}$ | ${ }_{224.1}^{234.0}$ | 9.9 8.9 | 4.4\%\% |
 | 25.9\% | 214.6 | 223.7 | 9.0 | 4.2\% |
 | 27.2\% | ${ }^{212,6}$ | 223.2 | 10.6 | 5.0\% |
 | 28.9\%\% | 210.6 209.4 | ${ }_{220.3}^{220.6}$ | 10.0 10.8 | 5.2\% |
 | 30.9\% | 208.6 | 217.9 | 9.3 | 4.5\% |
 | 32.1\% | 207.4 | 214.1 | 6.7 | ${ }^{3.2 \%}$ |
 | 迷33.3\% | ${ }_{207.3}^{207.4}$ | ${ }_{212.0}^{212.1}$ | 4.7 | ${ }_{\text {2, }}^{2.3 \%}$ |
 | 35.8\% | 206.8 | 210.5 | 3.7 | 1.8\% |
 | 37.0\% | ${ }^{202.9}$ | 210.0 | 7.1 | 3.5\% |
 | 38.3.3\% | ${ }_{200.1}^{202.7}$ | ${ }_{206.5}^{209.3}$ | 6.6 6.3 | ${ }_{3.2 \%}^{3.3 \%}$ |
 | 40.7\% | 1998 | 206.2 | 6.4 | 3.2\% |
 | 42.0\% | | 205.8 | | ${ }^{3.5 \%}$ |
 | 4.4.4\% | ${ }_{196.6}$ | 1999.0 | ${ }_{2.5}^{2.1}$ | 1.3\% |
 | 45.7\% | 195.1 | 197.4 | ${ }^{2.3}$ | 1.2\% |
 | 46.9\% | | 196.5 | | |
 | 49.4\% | 190.1 | ${ }_{193.1}$ | ${ }_{3.0}^{4.7}$ | 1.6\% |
 | 50.6\% | 190.0 | ${ }_{191.2}^{191.2}$ | ${ }^{1.1}$ | 0.6\% |
 | 51.9\% | | | | |
 | 54.3\% | 188.4
 18.8 | 190.1 | ${ }_{1.7}^{2.3}$ | - |
 | 55.6\% | 188.0 | 189.7 | 1.6 | 0.9\% |
 | 年56.8\% | | ${ }^{188.5}$ | | 0.3\% |
 | 59.3\% | 186.5 | ${ }_{1877.6}$ | 1.1 | ${ }_{0}^{0.6 \%}$ |
 | 60.5\% | 186.3
 185 | 187.4 1868 | 1.0 | 0.6\% |
 | 61.7\% 6.0% | | 186.6 | | |
 | 64.2\% | 184.2 | ${ }_{185.6}$ | 1.4 | 0.8\% |
 | 65.4\% | $\begin{array}{r}183.8 \\ 1837 \\ \hline\end{array}$ | 184.7
 184.6 | 0.9 | 0.5\% |
 | 66.7\% | | | | ${ }^{0.4 \%}$ |
 | 69.1\% | 183.6 | 184.1 | ${ }_{0.5}^{0.6}$ | 0.3\% |
 | 70.4\% | 183.4 | 183.9 | 0.5 | 0.3\% |
 | 71.6\% | | 183.0 | 0.0 | |
 | 74.1\% | 182.6 | ${ }_{182.7}$ | ${ }_{0.1}^{0.2}$ | ${ }_{0}^{0.1 \%}$ |
 | 75.3\% | 182.5 | 182.6 | 0.1 | 0.0\% |
 | 76.5\% | 182.1 | ${ }^{182.5}$ | 0.4 | 0.2\% |
 | 79.0\% | 182.0 | ${ }_{182.2}$ | 0.1 | 0.1\% |
 | 80.2\% | 182.0 | 182.1 | 0.1 | 0.0\% |
 | 81.5\% | ${ }_{1819}$ | ${ }_{188.0}$ | 0.1 | 0.1\% |
 | 84.0\% | 181.6 | 181.7 | 0.0 | 0.0\% |
 | 85.2\% | 181.6 1815 | 181.6 1816 | 0.1 | 0.0\% |
 | ${ }^{86.4 \%}$ | 181.5 | ${ }^{181.6}$ | 0.1 | 0.0\% |
 | 88.9\% | 181.4 | 181.4 | 0.1 | 0.0\% |
 | 90.1\% | 180.7 | 180.7 | 0.0 | 0.0\% |
 | -92.4\% | 180.6 179.9 | 180.6 180.2 | ${ }_{0}^{0.3}$ | 0.1\% |
 | 93.8\% | 179.9 | 180.2 | 0.3 | 0.2\% |
 | ${ }_{9}^{956.3 \%}$ | 179.8 179.7 | 180.0 179.6 | 0.2 0.1 | -0.1\% |
 | 97.5\% | 178.9 | 179.3 | 0.4 | 0.2\% |
 | 980.8\% | 177.1 | 177.1 | 0.0 | 0.0\% |

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | Way | | | RelativeDifference (\%) |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2070 Wethout | WSIP 2070 With Project | $\begin{gathered} \text { Absolute } \\ \text { Aifference } \\ \text { (UMHOSCM) } \end{gathered}$ | |
 | | ${ }_{\text {Morinter }}^{\text {Prec }}$ | Monthy EC | | |
 | | (UuHosicm) | (UMHHSSCM) | | |
 | 0.0\% | 2173.5 | 2179.4 | 5.8 | 0.3\% |
 | 1.2\% | 1863.0 | 1808.7 | -54.2 | -2.9\% |
 | 2.5\% | 1588.5 | 1640.2 | 51.7 | 3.3\% |
 | 3.7\% | 1580.2 | 1565.5 | -14.7 | -0.9\% |
 | 4.9\% | 790.2 | 784.9 | -5.3 | -0.7\% |
 | 6.2\% | 777.6 | 780.7 | 3.1 | 0.4\% |
 | 7.4\% | 774.1 | 770.0 | -4.1 | -0.5\% |
 | 8.6\% | 746.5 | 751.0 | 4.4 | 0.6\% |
 | 9.9\% | 690.8 | 696.9 | 6.1 | 0.9\% |
 | 11.1\% | 678.1 | 669.8 | -8.4 | -1.2\% |
 | 12.3\% | 639.8 | 639.5 | -0.3 | 0.0\% |
 | 13.6\% | 566.5 | 552.3 | -14.1 | -2.5\% |
 | 14.8\% | 508.0 | 504.6 | -3.4 | -0.7\% |
 | 16.0\% | 465.0 | 461.0 | -4.0 | -0.9\% |
 | 17.3\% | 460.0 | 455.8 | -1.3 | -0.3\% |
 | 18.5\% | 458.5 | 453.5 | -5.0 | -1.1\% |
 | 19.8\% | 457.9 | 449.0 | ${ }_{-8.8}$ | -1.9\% |
 | 21.0\% | 449.5 | 447.6 | -1.9 | -0.4\% |
 | 22.2\% | 448.0 | 447.4 | -0.6 | -0.1\% |
 | 23.5\% | 446.5 | 438.4 | | -1.8\% |
 | 24.7\% | 439.6 | 436.1 | -3.5 | -0.8\% |
 | -25.9\% | 437.8 | 434.5 | -3.4 | -0.8\% |
 | -27.2\% | 436.1 | 416.2 | -19.9 | -4.6\% |
 | 28.4\% | 434.2 | 415.4 | -18.7 | -4.3\% |
 | 29.6\% | 426.4 | 414.9 | -11.5 | -2.7\% |
 | 30.9\% | 421.0 | 409.3 | -11.7 | -2.8\% |
 | 32.1\% | 420.6 | 403.9 | -16.7 | -4.0\% |
 | 33.3\% | 419.5 | 403.8 | -15.8 | -3.8\% |
 | 34.6\% | 419.5 | 397.4 | -22.1 | -5.3\% |
 | - 3 3.8\% | 414.3 | 389.3 388 | -25.0 | -6.0\% |
 | 37.0\% | 414.2 | 383.2 | -31.0 | -7.5\% |
 | - 3.3\% | 407.9 | ${ }_{\text {cke }}^{374.6}$ | -33.3 | -8.2\% |
 | ${ }^{39.5 \%}$ | 406.1 | ${ }^{365.3}$ | -40.8 | -10.0\% |
 | - 40.7% | ${ }_{302.6}$ | 361.9 319 | -40.6 | -10.1\% |
 | ${ }^{42.3 \%} 4$ | 366.0 | 361.9 | -4.1 | -1.1\% |
 | 44.4\% | 330.8 | 333.6 | ${ }_{2.8}^{2.8}$ | 0.8\% |
 | 45.7\% | 328.1 | 329.6 | 1.6 | 0.5\% |
 | 46.9\% | 326.9 | 316.3 | -10.5 | -3.2\% |
 | 48.1\% | 307.7 | 3097 | 2.0 | 0.6\% |
 | 49.4\% | 304.2 | 308.6 | 4.4 | 1.4\% |
 | 50.6\% | 301.8 2882 | 300.9 288.1 | -0.9 | -0.3\% |
 | 51.9\% | 286.2 | 288.1 | 1.9 | 0.7\% |
 | - 53.14% | 280.6 2805 | 278.0 276.9 | -2.6 -36 | -0.9\% |
 | (${ }_{\text {54.3\% }}$ | 280.5 2759 | 276.9 2729 | -3.6 | - -1.3% |
 | 56.8\% | ${ }_{272.7}^{275}$ | ${ }_{271.8}^{27.9}$ | -0.8 | -0.3\% |
 | 58.0\% | 264.8 | 268.3 | 3.5 | 1.3\% |
 | 59.3\% | 264.2 | 267.0 | 2.7 | 1.0\% |
 | 60.5\% | ${ }_{263}^{2639}$ | ${ }_{264}^{26.7}$ | ${ }_{1}^{2.8}$ | 1.1\% |
 | 61.7% 63.0% | ${ }_{253.6}^{262.8}$ | 264.0 259.2 | 1.2 56 | 0.4\% |
 | 64.2\% | ${ }_{250.2}^{253}$ | ${ }_{254.7}^{250.7}$ | 4.5 | 1.8\% |
 | 65.4\% | 246.1 | 244.4 | -1.7 | -0.7\% |
 | 66.7\% | ${ }^{244.6}$ | 24.7 | -2.9 | -1.2\% |
 | 67.9\% | ${ }_{2}^{228.8}$ | 230.8 203 20.3 | - 2.0 | 0.9\% |
 | 69.1\% 70.4% | ${ }_{215.6}^{226.1}$ | ${ }_{21515}^{220.3}$ | -5.8 | -2.0\% -0.1 |
 | 71.6\% | 214.1 | 215.1 | 1.0 | 0.5\% |
 | 72.8\% | ${ }_{2108}^{212.2}$ | ${ }_{2112}^{212.3}$ | 0.0 | 0.0\% |
 | 74.3\% | 210.8 210.6 | 211.0 209.9 | 0.2 -0.8 | ${ }^{0.1 \%}$ |
 | 76.5\% | 207.7 | 208.9 | 1.1 | 0.5\% |
 | 77.8\% | 207.6 | 207.5 | -0.1 | 0.0\% |
 | 79.0\% | 201.7 | 204.7 | 3.0 | 1.5\% |
 | 80.1.5\% | 200.6 199.8 | ${ }_{200.9}^{201.6}$ | 1.1 1.1 | 0.6\% |
 | 82.7\% | 196.3 | 200.0 | 3.7 | 1.9\% |
 | 84.0\% | 196.2 | 197.0 | 0.8 | 0.4\% |
 | | $\begin{array}{r}196.1 \\ 1955 \\ \hline\end{array}$ | 196.5
 1965 | 0.4 | 0.2\% |
 | ${ }^{80} 7.7 \%$ | ${ }_{190.9}$ | ${ }^{196.5}$ | ${ }_{4}^{1.0}$ | 2.4\% |
 | 88.9\% | 190.6 | 191.4 | 0.8 | 0.4\% |
 | 90.19\% | 190.2 | 190.9 | 0.7 | 0.4\% |
 | 9.2.6\% | 189.9
 186.5 | 190.6 185.9 | | -0.3\% |
 | 93.8\% | 185.6 | 185.8 | 0.2 | 0.1\% |
 | 95.1\% | 184.2 | ${ }^{185.2}$ | 1.0 | 0.5\% |
 | (${ }^{96.3 \%} \begin{aligned} & 975 \%\end{aligned}$ | 184.0 1820 1 | ${ }_{184.2}^{1887}$ | 0.2 | 0.1\% |
 | 998.5\% | 182.0 180.1 | 181.7 180.0 | -0.3 -0.1 | -0.0\% |
 | 100.0\% | 177.1 | 177.3 | 0.2 | 0.1\% |

 Table SQ－21－b
 to Riverat Emmato，Monthly EC

 | PercentExceedanceProbability | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | $\xrightarrow{\text { WSIP 207 O Without }}$ Proiect | WSIP 2070 With Project | Absolute | |
 | | Monthly EC | Monthly EC | （itiererce | Werence \％ |
 | （\％） | （UMHOSICM） | 3 MHOSCO | 50 | |
 | | | 3289 | | 1．7\％ |
 | 1．2\％ | ${ }_{27894}^{283.3}$ | ${ }^{2788.4}$ | －64．9 | －－2．3\％ |
 | 3．7\％ | 2731.0 | 2509 | －222．1 | －8．1\％ |
 | 4．9\％ | ${ }^{1142.0}$ | 1142 | 0.4 | 0．0\％ |
 | 7．4\％ | ${ }^{111165.5}$ | 1116.5 1102.9 | －19．0 | －1．7\％ |
 | 8．6\％ | 1093.6 | 1039.2 | －54．3 | －5．0 |
 | 9．9\％ | 1072.9 | 1013.3 | －59．6 | －5．6\％ |
 | － 11.12% | 1064.9 1008.3 | ${ }_{9}^{951.7}$ | － $\begin{array}{r}\text {－113．2 } \\ -68.3\end{array}$ | －10．6\％ |
 | 13．6\％ | 976.1 | 842.8 | -133.3 | －13．7\％ |
 | 14．8\％ | 948.1 | 840.3 | －107．8 | －11．4\％ |
 | 16．0\％ | 859．4 | 822.0 8098 | － 37.4
 -47.6 | －－5．6\％ |
 | 18．5\％ | 841.6 | 787.0 | －54．6 | －6．5\％ |
 | 19．8\％ | 840.9 | 779.1 | －61．7 | |
 | 222．2\％ | ${ }_{8}^{817.8}$ | 771.3 766.2 | －46．5 | －5．5\％ |
 | 23．5\％ | 805.9 | 741.4 | ${ }_{-64.6}$ | －8．0\％ |
 | 24．7\％ | 803.0 | 709.7 | －93．3 | －11．6\％ |
 | 25．9\％ | 7778.6 | 693．3 | －85．2 | －10．9\％ |
 | 27．2\％ | 772.7 777.6 | 689.9 688.1 | －-89.5 | |
 | 29．6\％ | 743.7 | 679.9 | ${ }_{-63.8}$ | ${ }^{-8.6 \%}$ |
 | 30．9\％ | 738.6 712.6 | 674.9 | －63．6 | －8．6\％ |
 | 33．3\％ | 712.6 703.7 | 672.7 654.0 | -39.9 -49.7 | －-7.6% |
 | 34．6\％ | 696.1 | 654.0 | －42．2 | －6．1\％ |
 | ${ }^{35.8 \%}$ | ${ }_{6928}^{698}$ | ${ }_{6}^{632.6}$ | －60．2 | －8．7\％ |
 | 388．3\％ | 688.3 685.6 | 631.7 624.5 | －56．6 | －8．8\％ |
 | 39．5\％ | 684.0 | 603.0 | －81．0 | －11．8\％ |
 | ${ }^{4.72 \%}$ | ${ }_{6}^{673.6}$ | 577.6 | －97．0 | － $\begin{aligned} & \text {－14．4\％} \\ & -136 \%\end{aligned}$ |
 | 42．0\％ | 664.4 6573 | 574.0 543.1 | －90．4 | |
 | 44．4\％ | 640.3 | 535.8 | －104．5 | －16．3\％ |
 | 46．79\％ | 析 638.2 | ${ }_{531.1}$ | －107．1 | － $\begin{aligned} & \text {－16．8\％} \\ & -150 \%\end{aligned}$ |
 | 48．1\％ | 620．4 598.8 | 527.1 5258 | －93．3 | ${ }^{-15.2 \%}$ |
 | 49．4\％ | 579.3 | 523.0 | －56．3 | －9．7\％ |
 | 550．9\％ | 539．2 | 522．2 | －16．9 | － |
 | 51．1\％ | ${ }_{520.7}^{524}$ | ${ }_{489.4}^{515.2}$ | －8．9．9 -31.3 | －1．7\％ |
 | 54．3\％ | 505.7 | 487.3 | －18．4 | －3．6\％ |
 | 55．6\％ | 489.0 486.0 | ${ }_{485.0}^{485.8}$ | -3.3 -1.0 | ${ }^{-0.7 \%}$ |
 | 58．0\％ | 484.8 | 484.4 | －0．5 | －0．1\％ |
 | 59．5\％ | ${ }_{480.1}^{481.6}$ | ${ }_{480.7}^{483.0}$ | 1.4 0.6 | － 0.1% |
 | 61．7\％ | 472.5 | 471.7 | －0．7 | －0．2\％ |
 | －63．0\％ | ${ }_{466.6}^{471.3}$ | ${ }_{466.2}^{469}$ | －2．1 | －0．4\％ |
 | 65．4\％ | ${ }_{461.9}$ | ${ }_{462.9}$ | 1.0 | 0．2\％ |
 | ${ }^{66.7 \%}$ | 460.9 | 460.9 | 0.0 | 0．0\％ |
 | －67．9\％ | ${ }_{400.1}^{450.5}$ | ${ }_{444.7}^{45.5}$ | 4.6 | ${ }^{1.0} 1.0 \%$ |
 | 70．4\％ | 438.6 | 438.1 | －0．5 | －0．1\％ |
 | 71．6\％ | ${ }_{430.9}^{433.4}$ | 434.4 427.3 | ${ }_{-3.6}^{1.0}$ | －0．8\％ |
 | 74．1\％ | 426.4 | 414.6 | －11．7 | －2．8\％ |
 | 75．3\％ | ${ }_{41212.6}^{414.2}$ | ${ }_{404.5}^{408.4}$ | －5．1 | ${ }_{\text {－}}^{\text {－1．0\％}}$ |
 | 77．8\％ | 403.2 | 396.9 | －6．3 | －1．6\％ |
 | 79．0\％ | 3828 | 392.5 | 9.7 | 2．5\％ |
 | － | 379.7 378.9 | 383.3 381.4 | 3.7 2.5 | － |
 | 82．7\％ | 365.3 | 371.6 | 6.3 | 1．7\％ |
 | 84．0\％ | 365.2 | 358.5 | －6．7 | －1．8\％ |
 | －${ }_{\text {85．2\％}}$ | 362.5 349.6 | 351.8 334.9 | －10．6 | ${ }^{-2.9 \%}$ |
 | 87．7\％ | 324.1 | 324.3 | 0.2 | 0．1\％ |
 | －${ }^{88.9 .9 \%}$ | 304.9 263.0 | ${ }^{3051.4}$ | －1．5 | －0．6\％ |
 | 91．4\％ | 254.8 | 255.9 | 1.1 | 0．4\％ |
 | －${ }_{\text {93，}} 9.6 \%$ | ${ }_{251.1}^{251.6}$ | ${ }_{247.7}^{2519}$ | －3．4 | －1．4\％ |
 | 95．1\％ | 247.0 | 245.9 | －1．2 | －0．5\％ |
 | 96．5\％${ }^{96.5 \%}$ | 239.8
 2316 | 237.3 207 | －2．5 | －－4．7\％ |
 | 98．8\％ | 230.9 | 208.3 | －2．5 | 4．7\％ |
 | 100．0\％ | 183.9 | 181.8 | －2．1 | －1．1\％ |

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probobaility } \end{gathered}$ | September | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2070 Without | WSIP 2070 With Project | Absolute | |
 | | Monthly EC | Monthy EC | Difierence （UMHOSCM） | Difference（\％） |
 | （\％） | UMHOSCM | | | |
 | 0．0\％ | 3938.7 | ${ }^{3787.3}$ | －151．4 | －3．8\％ |
 | 1．2\％ | ${ }^{3926.6}$ | ${ }^{3521.8}$ | －404．8 | －10．3\％ |
 | ${ }^{2.5 \%}$ | ${ }^{38991.8}$ | ${ }_{3}^{3470.5}$ | －421．3 | |
 | 3．7\％ | ${ }^{38388.3}$ | ${ }_{3}^{3371.7}$ | ${ }_{-6136}$ | －12．2\％ |
 | 4．9\％ | ${ }^{3820.6}$ | ${ }^{3207.2}$ | －613．4 | |
 | 6．2\％ | 3739.5 35286 | 3062.9
 3034 | －676．6 | －18．1\％ |
 | 8．6\％ | ${ }_{33981}$ | ${ }^{30763}$ | ${ }_{-4218}$ | ${ }^{-12.4 \%}$ |
 | 9．9\％ | 3313.4 | 2902.4 | －410．9 | －12．4\％ |
 | 11．19\％ | ${ }^{3312.4}$ | 2884.2 | －428．3 | －12．9\％ |
 | 12．3\％ | 3238.1 | 2859.2 | －378．9 | －117\％ |
 | 13．6\％ | ${ }_{3}^{32057}$ | ${ }^{2631.2}$ | －574．5 | －17．9\％ |
 | 14．8\％ | 3193.6 | 2605.6 | －588．0 | －18．4\％ |
 | | ${ }_{\substack{3190.3 \\ 31772}}$ | 2600.8 25953 | ${ }_{-5819}^{-589.5}$ | －${ }_{\text {－}}$－18．5\％ |
 | 18．5\％ | 3173.5 | ${ }_{2592.3}^{2509}$ | －581．2 | －18．3\％ |
 | 19．8\％ | 3137.7 | ${ }_{2572.5}^{202.5}$ | －565．2 | －18．0\％ |
 | ${ }_{2}^{21.0 \%}$ | ${ }_{\substack{3132.2 \\ 3122}}$ | ${ }_{\text {2567．4 }}^{255}$ | -564.8 -5699 | －-18.0% |
 | 23．5\％ | 3107.4 | ${ }_{2515.1}^{2052.1}$ | ${ }_{-592.3}$ | －19．1\％ |
 | 24．7\％ | 3105.0 | 2512.4 | －592．6 | －19．1\％ |
 | 25．9\％ | ${ }^{3037.6}$ | 2457.2 | －580．4 | －19．1\％ |
 | 27．2\％ | 3025.0 | 2435.1 | －589．9 | －19．5\％ |
 | － 28.4 .4 \％ | 3011.2 2955.0 | ${ }_{2388.1}^{2399.9}$ | －-561.3 -66.9 | －${ }_{\text {－}}$－10．3\％ |
 | 30．9\％ | 2943.5 | 2355.0 | －588．5 | －20．0\％ |
 | 32．1\％ | 2913.1 | ${ }^{2345.1}$ | －568．0 | －19．5 |
 | 33．3\％ | ${ }^{2858.3}$ | 2281.0 | －577．3 | －20．2\％ |
 | 34．6\％ | 2843.4 | 2274.3 | －569．0 | －20．0\％ |
 | 35．8\％ | ${ }_{2}^{2826.9}$ | ${ }^{2234.0}$ | －592．9 | －21．0\％ |
 | 37．0\％ | 2874.4 | ${ }^{2230.8}$ | －573．6 | 20．5\％ |
 | － 3 3．3\％ | ${ }_{2725.5}^{279.4}$ | ${ }_{20417}^{292.5}$ | －657．0 | －20．3\％ |
 | 39．5\％ | 2725.5 | 2041.7 | －683．8 | 25.1 |
 | －${ }^{40.7 \%}$ | 2704.8 2693 | ${ }_{2038.8}^{2039.8}$ | －664．9 －65．0 | －${ }_{\text {－24．3\％}}$ |
 | 43．2\％ | 2670.3 | 2024.9 | －645．4 | 24．2\％ |
 | 44．4\％ | 2664.2 | 2012.4 | －651．8 | －24．5\％ |
 | 45．7\％ | 2561.6 | 2003.0 | －558．6 | －21．8\％ |
 | 46．9\％ | ${ }^{2555.3}$ | 1899.2 | －656．1 | －25．7\％ |
 | 48．17\％ | ${ }_{23215}^{250.4}$ | ${ }_{18961.1}$ | ${ }_{5}^{-629.3}$ | －25．0\％ |
 | | 239.5 | 1846.1 | ${ }^{-545.4}$ | |
 | 50．6\％ | ${ }_{2}^{22846.6}$ | 1823.9 1737.8 | －${ }_{\text {－}}^{\text {－}}$－162．2．7 | － |
 | 53．1\％ | 2230.5 | 1673.1 | －557．4 | －25．0\％ |
 | 54．3\％ | ${ }^{1623.8}$ | 1374.1 | ${ }_{-24.7}$ | －15．4\％ |
 | 㐌5．5．8\％ | ${ }_{629.3}^{770.5}$ | 699.1 646.6 | .71 .3 17.4 | －9．3\％ |
 | 58．0\％ | 628.3 | 639.4 | 11.1 | 1．8\％ |
 | 59．3\％ | 625.8 | ${ }^{637.5}$ | 11.6 | 1．9\％ |
 | 笛60．5\％ | 625.8 604.2 | 593.8 572.3 | -32.0 -31.9 | －5．3\％ |
 | 63．0\％ | 583.8 | 566.5 | －17．3 | |
 | 64．2\％ | 568.2 | 559.1 | －9．1 | 1．6\％ |
 | 65．4\％ | 564．1 | ${ }_{546.3}$ | －17．8 | －3．2\％ |
 | ${ }^{66.7 \%}$ | ${ }_{544.2}$ | 501.2 | －43．0 | －7．9\％ |
 | 69．1\％ | ${ }_{455.9}$ | ${ }_{441.4}$ | －47．6 | －3．2\％ |
 | 70．4\％ | 437.2 | 415.0 | 22.3 | 5．1\％ |
 | 71．6\％ | 395.9 | 401.3 | 5.4 | 1．4\％ |
 | 72．8． | ${ }_{381.1}^{393.1}$ | ${ }_{3}^{3862.4}$ | －6．9
 1.4 | ${ }^{-1.8 \%}$ |
 | 75．3\％ | 380.3 | 376.6 | ${ }^{3.8}$ | \％ |
 | 76．5\％ | 367.1 | 374.3 | 7.2 | 2．0\％ |
 | 77．8\％ | 366.7 | 357.8 3 | －8．9 | －2．4\％ |
 | | ${ }^{361.3}$ | | | |
 | 88．5\％ | ${ }_{356.3}$ | ${ }_{347.8}^{34.9}$ | ${ }_{-8.5}$ | －2．4\％ |
 | 82．7\％ | 355.2 | 346.4 | －8．8 | －2．5\％ |
 | 84．0\％ | 354.2 | 346.1 | －8．1 | －2．3\％ |
 | 85．2\％ | ${ }^{352.6}$ | 343.5 | －9．1 | －2．6\％ |
 | 86．4\％ | 350.2 | 343.1 | －7．1 | |
 | －${ }^{877.7 \%}$ | 348.4 348.2 | 339.1 334.8 | －9．3． -13.3 | －3．8\％ |
 | 90．1\％ | 345.5 | 334.8 | －10．7 | －3．1\％ |
 | 91．4\％ | 344.1 | 334.7 | －9．3 | 2．7\％ |
 | 92．6\％ | 342.1 | 330.3 | －11．8 | －3．5\％ |
 | ${ }^{93.8 \%}$ | 336.1 | 328.9 | －7．2 | 2．2\％ |
 | ${ }_{965}^{95.1 \%^{3}}$ | ${ }_{330.7}^{335.2}$ | 324.6 377.5 | －10．6 -13.2 | －3．2\％ |
 | 97．5\％ | 328.4 | 312.8 | －15．6 | －4．8\％ |
 | 98．8\％ | 324.2 | 308.5 | －15．7 | －4．8\％ |
 | 100．0\％ | 322.4 | 307.8 | －14．6 | －4．5 |

 Figure SQ-22-b
 Sacramento River at Collinsville, Monthly EC

 | |
 | :--- | :--- | :--- | :--- |

 | | November | | | － | December | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2070 Wethout | WSIP 2070 With Project | Absolute | | | WSIP 207\％Without | WSIP 2070 With Project | Absolute | |
 | Probability | Monthly EC | Monthly EC | （itiferenee | Difference（\％） | mobability | Monthly EC | Monthly EC | （itference | Difference（\％） |
 | （\％） | （UMHHSSCM） | （UMHHSSCM） | （UnHosicm） | | （\％） | （UMHOSSCM） | （UnHosicm） | （UuHosicm） | |
 | 0．0\％ | 11751.7 | 11237.1 | －514．6 | －4．4\％ | 0．0\％ | 11316.5 | 11118.0 | －198．5 | －1．8\％ |
 | 1．2\％ | 11242.5 | 11236.6 | －5．8 | －0．1\％ | 1．2\％ | 10233.2 | 9401.8 | －831．5 | －8．1\％ |
 | 2．5\％ | 11017.6 | 10840.2 | －177．4 | －1．6\％ | 2．5\％ | 9884.0 | 9328.0 | －556．1 | －5．6\％ |
 | 3．7\％ | 10928.7 | 107833.3 | －145．4 | －1．3\％ | 3．7\％ | 9768.5 | ${ }^{92150.0}$ | －553．5 | －5．7\％ |
 | 4．9\％ | 10914.8 | 10559.2 | －355．6 | －3．3\％ | 4．9\％ | 9497.1 | 8902.7 | －594．4 | 源 |
 | 6．2\％ | 10898.6 | 10485.9 | －412．7 | －3．8\％ | 6．2\％ | 9391.2 | 8690.4 | －700．7 | －7．5\％ |
 | 7．4\％ | 10847.8 | 10453.5 | －394．3 | －3．6\％ | 7．4\％ | ${ }^{8829.8}$ | 8671.9 | －157．9 | －1．8\％ |
 | 8．6\％ | 10630.5 | 99993 | －631．2 | －5．9\％ | 8．6\％ | ${ }_{8812.3}$ | ${ }^{86677.7}$ | －144．6 | －1．6\％ |
 | 9．9\％ | 103137 | 9933．4 | －380．2 | －3．7\％ | 9．9\％ | 8502.7 | 8627.2 | 124.4 | 1．5\％ |
 | 11．1\％ | 10278.8 | ${ }^{9853.6}$ | －425．1 | －4．1\％ | 11．1\％ | 8501.0 | ${ }_{84388.3}$ | ${ }^{-62.7}$ | －0．7\％ |
 | ${ }^{12.3 \%}$ | 10253.6 | 9810.6 | －443．0 | －4．3\％ | ${ }^{12.3 \%}$ | 8475.5 | 8213.3 | ${ }^{2622.3}$ | －3．1\％ |
 | 13．6\％ | 10111.9 | ${ }^{9379.3}$ | －732．6 | －7．2\％ | 13．6\％ | ${ }^{8332.0}$ | 8142.7 | －189．3 | －2．3\％ |
 | 14．8\％ | 9954.9 | 9357.4 | －597．5 | －6．0\％ | 14．8\％ | 8288.7 | 8108.3 | －180．4 | －2．2\％ |
 | ${ }^{16.0 \%}$ | ${ }_{9}^{9977.1}$ | ${ }^{9242.1}$ | －675．0 | －6．8\％\％ | 16．7\％ | ${ }^{78977.6}$ | 7838．4 | －59．2 | －0．7\％ |
 | 17．3\％ | ${ }^{9782.7}$ | 9150.7 | －631．9 | －6．5\％ | 17．3\％ | ${ }^{7276.2}$ | 7113.1 | －163．1 | －2．2\％ |
 | 18．5\％ | ${ }^{97159.2}$ | ${ }_{9}^{9124.8}$ | －590．4 | －6．1\％ | 18．5\％ | 7061．6 | 7053.0 | －8．6 | －0．1\％ |
 | 19．8\％ | 9703.5 | 9052.1 | －651．4 | －6．7\％ | 19．8\％ | 6554.1 | 6998.7 | ${ }^{364.5}$ | 5．6\％ |
 | 21．0\％ | 9700.7 | 9004.8 | －696．0 | －7．2\％ | 21．0\％ | 6174.5 | 6730.1 | 555.6 | 9．0\％ |
 | ${ }^{22.2 \%}$ | ${ }^{9680.3}$ | 8819.3 | －861．0 | －8．9\％ | ${ }^{22.2 \%}$ | ${ }^{61148.8}$ | 6434.9 | 316.1 | 5．2\％ |
 | 23．5\％ | 9585.2 | ${ }^{873337}$ | －852．1 | －8．9\％ | 23．5\％ | 5419.4 | ${ }^{6319.8}$ | 900.4 | ${ }^{16.6}$ |
 | 24．7\％ | 9490.9 | 8677.0 | －813．9 | －8．6\％ | 24．7\％ | 53988.1 | ${ }^{6204.2}$ | 806.1 | 14.9 |
 | 25．9\％ | 9366.4 | 8492.9 | －873．4 | －9．3\％ | 25．9\％ | ${ }_{5}^{5379.6}$ | ${ }_{5}^{5873.6}$ | 494.0 | 9．2\％ |
 | 27．2\％ | ${ }^{9322.1}$ | 8485.2 | －837．0 | －9．0\％ | 27．2\％ | 5284.3 | 574.1 | 456.8 | 8．6\％ |
 | 28．4\％ | ${ }^{91488.2}$ | 8433.1 | －735．1 | －8．0\％ | 28．4\％ | 5112.9 | ${ }_{5}^{5380.7}$ | ${ }_{277.8}$ | 5．2\％ |
 | 29．6\％ | 8907.3 | ${ }^{8259.6}$ | －647．7 | －7．3\％ | 29．6\％ | 4969.1 | ${ }^{5241.1}$ | 272.0 | 5．5\％ |
 | 30．9\％ | ${ }^{8733.6}$ | ${ }_{8}^{8215.7}$ | －517．9 | －5．9\％ | 30．9\％ | ${ }^{4925.4}$ | 5118.4 | 193.0 | 3．9\％ |
 | 32．19\％ | 8628.9 | ${ }_{7839.6}$ | －789．3 | －9．1\％ | 32．1\％ | 4901.9 | 4971.7 | 69.9 | 14\％ |
 | 33．3\％ | 8397.8 | ${ }^{78183}$ | －579．5 | －6．9\％ | 33．3\％ | ${ }^{4877.5}$ | 4876.4 | 5.9 | 0．1\％ |
 | 34．6\％ | ${ }^{8388.0}$ | 7678.6 | －701．4 | －8．4\％ | 34．6\％ | 4774.0 | ${ }^{4802.1}$ | 28.1 | 0．6\％ |
 | 35．7\％ | ${ }^{8371.3}$ | 7554．4 | －756．9 | －9．1\％ | 35．8\％ | 4773.9 | ${ }^{4734.3}$ | －39．6 | －0．8\％ |
 | 37．0\％ | 8278.1 | ${ }^{7384.6}$ | －893．5 | －10．8\％ | 37．0\％ | 4627.9 | 4714.4 | ${ }^{86.5}$ | 1．9\％ |
 | 38．3\％ | 8274.8 | 7318．0 | －956．8 | －11．6\％ | 38．3\％ | ${ }^{4616.5}$ | ${ }^{4655.6}$ | 39.1 | 0．8\％ |
 | 39．5\％ | ${ }_{7}^{7835.2}$ | 7117.2 | －736．0 | －9．4\％ | 39．5\％ | 4326.9 | ${ }^{4620.3}$ | 293.4 | 6．8\％ |
 | 40．7\％ | ${ }^{7320.3}$ | 7175.9 | －304．3 | －4．2\％ | 40．7\％ | ${ }^{426519}$ | ${ }^{4601.6}$ | 340.5 | 8．0\％ |
 | 43．2\％ | ${ }^{6939.0}$ | ${ }_{6061.9}$ | ${ }^{-377.1}$ | －5．4\％ | 42．0\％ | ${ }^{4256.9}$ | 4518.9 | ${ }_{156.0}^{262.0}$ | 6．2\％ |
 | 43．4\％\％ | 6549.0 60124 | 6491.7 62971 | －57．2 | －0．9\％ | 43．2\％ | ${ }_{4247.5}^{42285}$ | ${ }^{4404.2}$ | ${ }^{156.7}$ | ${ }^{3.7 \%}$ |
 | 45．7\％ | 6009.0 | 5994.9 | －14．1 | －0．2\％ | 45．7\％ | 4230.0 | 4259.8 | 29.8 | 0．7\％ |
 | 46．9\％ | 5624.9 | 5454.0 | －170．9 | －3．0\％ | 46．9\％ | 3981.9 | 4156.2 | 174.3 | 4．4\％ |
 | 48．1\％ | 3610.5 | 4774.9 | 1164.4 | 32．2\％ | 48．1\％ | 3981.2 | 3989.2 | 8.0 | 0．2\％ |
 | 49．4\％ | 3517.4 | 4403.3 | 885.9 | 25．2\％ | 4．9．4\％ | 3892.4 | ${ }^{3893.7}$ | 1.3 | 0．0\％ |
 | 50．6\％ | ${ }_{3}^{3196.7}$ | ${ }_{3}^{3629.7}$ | 433．0 | ${ }_{\text {13，}} 13.5$ | 50．6\％ | ${ }^{3825.5}$ | 3660.8 36598 | －164．7 | －4．3\％ |
 | 51．9\％ | ${ }_{3}^{3131.4}$ | 3033．6 | －97．8 | －3．1\％ | 51．9\％ | 3778.9 | ${ }_{\text {3659．8 }}$ | －19．1 | －3．2\％ |
 | 53．1\％ | ${ }_{3}^{312998}$ | 3030.2 3018 | －99．7 | ${ }^{-3.2 \%}$ | 53．1\％ | 3709.5 3545.5 | ${ }_{\text {3631．3 }}$ | －78．1 | －2．1\％ |
 | 54．6\％ | ${ }_{2085}^{3079.7}$ | ${ }^{3018.7}$ | －61．0 | －2．0\％ | 54．3\％ | ${ }_{3}^{3546.5}$ | ${ }^{3472.4}$ | －77．1 | ${ }_{\text {－}}^{\text {－2．1\％}}$ |
 | 56．8\％ | 2916.9 | ${ }_{2846.6}^{2087}$ | －70．3 | －2．4\％ | 56．8\％ | ${ }_{3428.8}$ | ${ }_{3396.3}$ | －32．5 | －0．9\％ |
 | 58．0\％ | 2897.5 | 2828.6 | －68．9 | －2．4\％ | 58．0\％ | 3284.4 | 3384.5 | 100.1 | 3．0\％ |
 | 59．3\％ | 2847.8 | 2823.0 | －24．8 | －0．9\％ | 59．3\％ | 3201.8 | ${ }^{3369.0}$ | 167.1 | 5．2\％ |
 | ${ }_{6}^{60.5 \%}$ | 2835.0 2808 | 2881．2 | -13.8 -7.6 | －0．0\％ | | ${ }_{2}^{2493.4}$ | ${ }^{3286.7}$ | ${ }_{9}^{793.3}$ | 31．8\％ |
 | | 2888.0 23779 | ${ }^{2880.4}$ | －7．6． 2503 | －0．3\％ | 61.7% 630% | ${ }_{21195}^{2270.7}$ | ${ }^{3236.5}$ | ${ }_{\text {¢ }}^{\text {951．7 }}$ | ${ }^{42.5 \%}$ |
 | 64．0\％ | 23377.9 2329 | ${ }_{2}^{262891}$ | －${ }_{\text {250．3 }}$ | 10．5\％ | －63．0\％ | ${ }_{2088}^{2119.5}$ | ${ }_{2071.2}^{2950}$ | 851.7 8637 | ${ }^{40.2 \%} 4$ |
 | 64．4\％ | ${ }_{2044}^{2394}$ | ${ }_{1}^{22994.0}$ | －－59．6 | ${ }_{-2.5 \%}^{-2.10}$ | －64．4\％ | ${ }_{2011.6}^{2086.8}$ | ${ }_{2}^{29719.7}$ | ${ }_{7081}^{863.7}$ | ${ }^{41.4 \%} \times$ |
 | 66．7\％ | 2028.5 | 1972.0 | －56．5 | －2．8\％ | 66．7\％ | 1919.6 | 2601.1 | 681.6 | 35．5\％ |
 | 67．9\％ | 2011.9 | 1957.2 | －54．8 | －2．7\％ | 67．9\％ | 1665.4 | 2388.9 | 723.5 | 43．4\％ |
 | 69．1\％ | ${ }^{199003}$ | 1882.5 | －107．8 | －5．4\％ | 69．1\％ | 1497.7 | 1907.3 | 409.6 | 27．3\％ |
 | 70．4\％ | 1913.7 18825 | 1823.9 1823.5 | -89.8 -590 | －4．7\％${ }_{-3,1 \%}$ | 70．4\％ | 1436.9 1196.5 | 1816.5 15880 | 379.6 3915 | ${ }_{\text {cke }}^{26.4 \%}$ |
 | 72．8\％ | ${ }^{18824.5}$ | 1823.5 1799.4 | ${ }_{-25.2}$ | －3．4\％ | 72．8\％ | 11996.5 1112.0 | 1588.0 1559.7 | 347．7 | 32.7% 40.3% |
 | 74．1\％ | 17995 | 1773.6 | ${ }_{-21.9}$ | －1．2\％ | 74．1\％ | 924.0 | 997.4 | －16．6 | －1．8\％ |
 | 75．3\％ | 1787．6 | 1699.9 | －87．7 | －4．9\％ | 75．3\％ | 826.1 | 825.2 | －0．9 | －0．1\％ |
 | 76．5\％ | 1729.9 | 1665.9 | －64．0 | －3．7\％ | 76．5\％ | 824.1 | 695.5 | －128．7 | －15．6\％ |
 | 77.8% 79.0% | 1723.2 14220 | 1570.3 13909 | －152．9 | －8．9\％ | 77．8\％ | 516.0 4928 | 694.8 6353 | 178.8
 1425 | 34．6\％ |
 | 80．2\％ | 1419.0 | 1390.0 | －29．0 | －2．0\％ | 80．2\％ | 452.3 | 526.8 | 74.5 | 16．5\％ |
 | 81．5\％ | 1403.8 | 1375.6 | －28．2 | －2．0\％ | 81．5\％ | 447.4 | 500.1 | 52.7 | 11．8\％ |
 | 82．7\％ 8400% | | 1368.9
 13142
 1 | －21．4 | －1．5\％ | 822．7\％ 840% | $\begin{array}{r}446.0 \\ \hline 24.7\end{array}$ | ${ }_{4476.6}^{465}$ | 19.9 229 | 年．5\％\％ |
 | 85．2\％ | 1311.4 | 1284.8 | －26．6 | －2．0\％ | 85．2\％ | 301.6 | 446.8 | ${ }_{125.3}$ | 48．2\％ |
 | 86．4\％ | 1311.0 | 1277.8 | －33．1 | －2．5\％ | 86．4\％ | 293.7 | 326.4 | 32.7 | 11．1\％ |
 | 87.7% 88.9% | 1277.4 1258.9 | ${ }^{1259.0}$ | －18．4 -341 | －-1.4% | 87.7% 889% | ${ }_{275.9}^{2819}$ | 309.5 300.3 | 27.6
 250
 2.0 | ${ }_{9.8 \%}^{9.8 \%}$ |
 | 90．1\％ | ${ }^{121818.3}$ | 1213.4 | －5．0． | －0．4\％ | 90．1\％ | 268.8 | 290.0 | 21.2 | 7．9\％ |
 | 914．4\％ | ${ }_{1214.8}^{119.8}$ | ${ }^{12045}$ | －10．1 | －0．8\％ | 91．4\％ | 220.5 | 226.1 | 5.6 | 2．5\％ |
 | ${ }_{93.8 \%}^{92.6 \%}$ | ${ }^{111731.7}$ | ${ }^{11588.1}$ | －33．5 -25.8 | ${ }_{-2.2 \%}^{-2.8 \%}$ | 92．9\％${ }_{\text {93．8\％}}$ | ${ }_{200.7}^{203.9}$ | 203.5 198.4 | －0．4 | －1．2\％ |
 | 95．1\％ | 1153.2 | 810.0 | 343.1 | －29．8\％ | 95．1\％ | 185.9 | 186.5 | 0.6 | |
 | 96．3\％ | ${ }^{785.8}$ | ${ }^{747.5}$ | －38．3 | －4．9\％ | 96．3\％ | 185.2 | 188.1 | 0.9 | |
 | 97．5\％ | 519.9 | 691.9 | 172.0 | 33．1\％ | 97．5\％ | 182.0 | 188.4 | 0.5 | |
 | 98．8\％ 1000% | ${ }_{274}^{49.4}$ | ${ }_{294}^{512.0}$ | ${ }_{20,6}^{21.6}$ | ${ }_{75 \%}^{4.4 \%}$ | 98．8\％ | 181.7 180. | 181.5 1799 | －0．1 | |

 | | | January | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent | WSIP 2070 Without | WSIP 2070 With Project | Absolute | |
 | Probability | Morthly EC | Monthy EC | Difference （UWHOSCM） | Difference（\％） |
 | （\％） | UnHosicm | | ${ }^{-7372}$ | |
 | 1．2\％ | 828 | ${ }_{73886} 9$ | 5059 | 7.4% |
 | 2．5\％ | 6273.7 | 6096.7 | ${ }_{-177.0}$ | －2．8\％ |
 | 3．7\％ | 5769.1 | 6040.9 | 271.8 | 4．7\％ |
 | 4．9\％ | 5679.1 | ${ }^{5625.6}$ | －53．5 | －0．9\％ |
 | 7．4\％ | 5431.9 5400.0 | ¢ ${ }_{5}^{5421.2}$ | －10．7 .7 .3 | －${ }_{\text {－}}^{-0.1 \%}$ |
 | 8．6\％ | 5119.7 | 5349.0 | 229.3 | 4．5\％ |
 | 9．9\％ | ${ }^{4782.6}$ | 5132.1 | 349.5 | 7．3\％ |
 | 11．1\％${ }^{\text {12．3\％}}$ | ${ }_{47724.2}^{472.7}$ | ${ }^{5114.9}$ | 362.2 268.7 | 7．7．7\％ |
 | 13．6\％ | 4714.1 | 4929.2 | 215.1 | 4．6\％ |
 | 14．8\％ | 4710.9 | 4751.5 | 40.6 | 0．9\％ |
 | 117．3\％ | ${ }_{45566.3}^{456.5}$ | ${ }_{47708.4}^{4774}$ | 180.8
 172.1 | 3．8．8\％ |
 | 18．5\％ | 4492.2 | 4670.0 | 177.8 | \％ |
 | 19．8\％ | 4235.5 | 4525.1 | 289.6 | 6．8\％ |
 | 222．2\％ | ${ }_{4159.5}^{4189.2}$ | ${ }_{4}^{4428.7}$ | 239.5 259.7 | 6．7\％\％ |
 | 23．5\％ | 3909.7 | 4217.2 | 307.6 | 7．9\％ |
 | 24．7\％ | ${ }^{3879.3}$ | ${ }^{42155.2}$ | 335.9 | 8．7\％ |
 | 27．2\％ | 3798.9 3720.0 | ${ }^{39650.3}$ | 163.7
 130.3
 1 | ${ }_{3.5 \%}^{4.3 \%}$ |
 | 28．4\％ | 3657.7 | 3774.7 | 117.0 | 3．2\％ |
 | 29．6\％ | ${ }^{3319.1}$ | ${ }^{3560.2}$ | 241.0 | 7．3\％ |
 | 32．1\％ | ${ }_{2}^{32545.8}$ | －${ }_{3116.2}^{3242.8}$ | 8.2 163.4 | 5．5\％ |
 | 33．3\％ | 2665.1 | 2866.4 | 201.3 | 7．6\％ |
 | 34．6\％ | 1692.7 | 2722.0 | 1029.3 | 60．8\％ |
 | 37．0\％ | ${ }_{1611.8}^{1818}$ | ${ }_{2463.8}^{2444.5}$ | ${ }_{851.9}^{773.5}$ | ${ }^{45.79 \%}$ |
 | 38．3\％ | 1537.7 | 2266.0 | 728.2 | 47．4\％ |
 | | ${ }^{1524.3}$ | ${ }^{2201.5}$ | ${ }_{5}^{677.2}$ | 44．4．9 |
 | 42．0\％ | ${ }_{1441.6}^{1445}$ | ${ }^{18548.9}$ | ${ }_{407.3}^{504.1}$ | 28．3\％ |
 | 43．2\％ | 1121.2 | 1838.2 | 717.0 | 64．0\％ |
 | | ${ }^{10922.6}$ | 1684.7 | 592.1 | 54．2\％ |
 | 46．9\％ | 1027.5 | ${ }^{133390.6}$ | ${ }_{302.5}^{360.7}$ | ${ }_{\text {29，4\％}}$ |
 | 48．1\％ | 864.9 | ${ }^{1241.3}$ | 376.4 | 43．5\％ |
 | | ${ }_{8}^{852.9}$ | 1220.9 | 368.0 | |
 | 55．．9\％ | 824.5 660.4 | 11888.5 1082.6 | ${ }_{4264.0}^{364}$ | |
 | 53．1\％ | 650.3 | 833.8 | 183.6 | 28．2\％ |
 | 54．3\％ | ${ }^{627.0}$ | ${ }^{818.3}$ | 191.2 | 30．5\％ |
 | 55．8\％ | 432.9 | ${ }_{757.3}$ | 324．4 | 74．9\％ |
 | 58．0\％ | 354.8 | 644.4 | 289.7 | 81．7\％ |
 | 56．5\％ | 354.4 340.9 | 527．4 416.9 | 172.9 76.1 | ${ }^{48.8 \%}$ 223\％ |
 | 61．7\％ | 319.9 | 361.6 | 41.7 | 13．0\％ |
 | 63．0\％ | 293.9 | 354.7 | 60.8 | 20．7\％ |
 | 析 $6.2 .4 \%$ | ${ }_{258.3}^{273.2}$ | ${ }_{289.2}^{296.3}$ | 23.2 30.9 | 8．5\％ 12．0\％ |
 | 66．7\％ | 245.2 | 2698 | 24.6 | 10．0\％ |
 | 66．1\％ | ${ }_{221.7}^{223.0}$ | ${ }_{232.2}^{259.5}$ | 36.6 10.5 | 16．4\％ |
 | 70．4\％ | 215.0 | 229.9 | 14.9 | 6．9\％ |
 | 71．6\％ | 210.4 | ${ }^{225.3}$ | 14.9 | 7．1\％ |
 | 74．1\％ | ${ }_{209.8}^{209.8}$ | ${ }_{210}^{223.7}$ | 13.9 7.2 | |
 | 75．3\％ | 207.2 | 210.1 | 2.9 | 1．4\％ |
 | 76．5\％ | 198.9 | 204.9 | 6.1 | 3．0\％ |
 | 79．0\％ | 1993.2 1937 | 198.7 197.4 | ${ }_{3.7}^{0.5}$ | ${ }_{\text {l }}$ |
 | 80．2\％ | 192.8 | 192.9 | 0.1 | |
 | 81．5\％ | 192.3 | 192.3 | －0．1 | 0．0\％ |
 | 884．0\％ | ${ }_{191.3}^{192.2}$ | 192.2 192.2 | 0．9 | 0．5\％ |
 | 85．2\％ | 188.7 | 189.4 | 0.6 | |
 | 86．7\％ | 188.6 | 189.2 | 0.6 | 0．3\％ |
 | 888．9\％ | 188.3 187.7 | 188.9 188.2 | ${ }_{0}^{0.5}$ | ${ }_{0}^{0.3 \%}$ |
 | 90．1\％ | 185.3 | 184.8 | －0．6 | －0．3\％ |
 | －92．4\％ | 184.6 182.9 | 184.4
 183.3 | －0．4 | ${ }_{0}^{-0.2 \%}$ |
 | 93．8\％ | 182.7 | 182.9 | 0.3 | 0．1\％ |
 | －95．1\％${ }_{96}$ | 182.3 | 188.7 | 0.4 | 0．2\％ |
 | 97．5\％ | ${ }_{181.3}$ | ${ }_{181.7}$ | 0.4 | 0．2\％ |
 | 98．8\％ | 181.0 | 181.1 | 0.1 | 0．0\％ |
 | 100．0\％ | 179.4 | 179.5 | 0.1 | 0．1\％ |

 Table SQ-22-b
 noto Rive at Collinsuile, Monthly $E C$

 | | | February | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedanc | WSIP 2070 Without | WSIP 2070 With Project | Absolute | |
 | Probability | Monthly EC | Monthy EC | Difference (unHosicm) | ference (\%) |
 | (\%) | UMHOSCCM | (UMHOSSCM) | 305 | |
 | 12\% | 51 | ${ }^{53351}$ | -630.5 | 127\% |
 | 2.5\% | 3113.1 | ${ }^{3115.4}$ | 2.3 | |
 | 3.7\%\% | 29677 | ${ }_{3}^{3105.7}$ | 138.0 | 4.7\% |
 | 4.9\% | | 3078.1 | 601.1 | 24.3\% |
 | 7.4\% | 2310.6 2061.5 | ${ }_{2381.1}^{2827.6}$ | ${ }_{319.9}^{517.0}$ | ${ }_{\text {22, }}^{\text {22.5\% }}$ |
 | 8.6\% | 2017.7 | ${ }^{2265.1}$ | 247.4 | 12.3\% |
 | 9.9\% | 1969.7 | 2200.1 | 2303 | 11.7\% |
 | ${ }^{11.1 \%}$ | 1815.6 1787.0 | ${ }_{2083.6}^{2089.1}$ | ${ }_{296.6}^{273.5}$ | 15.1% 16.6% |
 | 13.2\% | 1615.5 | 1905.7 | 290.2 | 18.0\% |
 | 14.8\% | 1547.9 | 1883.6 | 335.8 | ${ }^{21.7 \%}$ |
 | | 11315.8 896.2 | ${ }_{11385.5}^{1495}$ | 179.9 490.3 | |
 | 18.5\% | 795.1 | 1320.7 | 525.6 | 66.1% |
 | 19.8\% | 786.7 | 1038.4 | 251.8 | 32.0\% |
 | ${ }^{21.0 \%}$ | 785.9 773.0 | ${ }_{969.3}^{980.9}$ | 195.0
 196.4 | ${ }_{\text {cher }}^{24.8 .8 \%}$ |
 | 23.5\% | 552.2 | 666.7 | 114.5 | 20.7\% |
 | 24.7\% | 494.0 | 648.9 | 154.9 | 31.4\% |
 | 25.7.2\% | ${ }_{452.0}^{460.6}$ | 645.7 580.3 | 185.1 128.3 | ${ }^{40.2 \%}$ |
 | 28.4\% | 446.6 | 545.9 | 99.3 | 22.2\% |
 | 29.6\% | 445.7 | 516.1 | 70.4 | 15.8\% |
 | 30.3\% | ${ }_{409.8}^{435.2}$ | 507.9 5 | ${ }_{94.9}^{72.7}$ | |
 | 33.3\% | 406.0 | 494.9 | 88.9 | 21.9\% |
 | 34.6\% | 374.6 | 470.3 | 95.6 | ${ }^{25.55 \%}$ |
 | 年35.8\% | 360.0 345.5 | 4339.0 435.6 | 79.0 90.0 | ${ }_{\text {220, }}^{22.0 \%}$ |
 | 38.3\% | 335.2 | 420.9 | 85.7 | 25.6\% |
 | 39.5\% | ${ }^{332.2}$ | 367.4 | ${ }^{35.2}$ | 10.6\% |
 | ${ }^{40.72 \%}$ | ${ }_{205.7}^{306.8}$ | 340.2
 324.1 | 33.4 28.3 | 9.6\% |
 | 43.2\% | 292.3 | 320.3 | 28.0 | 9.6\% |
 | | ${ }_{2891}^{2897}$ | 320.0 | 30.9 | 10.7\% |
 | 4.9\% | ${ }_{270.4}^{280.7}$ | 249.2 | ${ }_{28.7}$ | 10.6\% |
 | 48.1\% | ${ }_{250.3}^{270.3}$ | 283.9 | ${ }^{13.6}$ | 5.0\% |
 | 4.4.4\% | | ${ }^{277.5}$ | 22.8 | 9.0\% |
 | 51.9\% | ${ }_{236.8}^{252 .}$ | ${ }_{254.6}^{25.7}$ | 17.4
 1 | 7.5\% |
 | 53.1\% | 220.3 | ${ }^{253.9}$ | 33.7 | 15.3\% |
 | | 219.9 | ${ }_{236}^{24.7}$ | ${ }^{26.8}$ | ${ }^{12.2 \%}$ |
 | 55.8\% | ${ }_{209.4}^{212.6}$ | ${ }_{234.4}^{237.8}$ | ${ }_{25.0}^{25.2}$ | 11.9\% |
 | 58.0\% | 2088 | ${ }^{224.2}$ | 15.4 | 7.4\% |
 | | 2083 | ${ }_{214.8}^{214}$ | 6.5 | ${ }^{3.11 \%}$ |
 | 60.7\% | ${ }_{202.5}^{208.2}$ | ${ }_{204.9}^{212.7}$ | ${ }_{2.4}^{4.6}$ | 1.2\% |
 | 63.0\% | 198.6 | 203.0 | 4.3 | 2.2\% |
 | 64.2% 65.4% | 195.8 | ${ }^{200.3}$ | ${ }^{4.5}$ | 2.3\% |
 | ${ }_{66.7 \%}^{6.4 \%}$ | ${ }_{199.1}$ | 1997.2 | 3.9 3.1 | 1.6\% |
 | 67.9\% | 193.3 | 196.0 | 2.6 | 1.4\% |
 | 69.1\% | 192.9 | 194.8 | 1.9 | 1.0\% |
 | 71.6\% | ${ }_{1991.2}$ | 1991.9 1919 | 1.4 0.7 | 0.4\% |
 | 72.8\% | 191.2 | 191.4 | 0.2 | 0.1\% |
 | 74.1\% 7 753% | 190.9 | 191.4 | 0.4 | 0.2\% |
 | 7.5\% | 190.0 | ${ }_{190.8}^{19.2}$ | 1.1 0.8 | 0.4\% |
 | 77.8\% | 189.8 | 190.1 | ${ }^{0.3}$ | 0.1\% |
 | - $\begin{aligned} & 79.0 \% \\ & 802 \%\end{aligned}$ | 189.4 | 190.0 | 0.6 | |
 | 81.5\% | 188.1 | 188.6 | 0.5 | 0.3\% |
 | 82.7\% | $\begin{array}{r}1877 \\ \hline 1875\end{array}$ | 187.8
 187 | 0.2 | 0.1\% |
 | 85.2\% | ${ }^{187.5}$ | ${ }^{187.3}$ | -0.1 | |
 | ${ }_{86.4 \%}$ | ${ }_{188.1}^{18.2}$ | ${ }_{188.1}^{187.0}$ | -0.0 | -0.0\% |
 | 877.7\% | $\begin{array}{r}185.3 \\ \hline 852 \\ \hline 18 .\end{array}$ | 185.9
 855
 85 | ${ }^{0.6}$ | 0.3\% |
 | - ${ }^{88.9 .9 \%}$ | $\begin{array}{r}185.2 \\ 185.1 \\ \hline 185\end{array}$ | $\begin{array}{r}188.5 \\ 185.4 \\ \hline\end{array}$ | ${ }_{0.3}^{0.3}$ | 0.2\% |
 | 91.4\% | 184.9 | 185.3 | 0.4 | 0.2\% |
 | 92.3\% ${ }^{93.8 \%}$ | 184.5 1838 1 | 184.5
 184.
 1 | 0.0 | ${ }_{\text {en }}^{0.0 \%}$ |
 | 95.1\% | ${ }_{183.6}$ | 184.1 | 0.5 | 0.3\% |
 | 96.3\% | 182.7 | 183.3 | 0.6 | 0.3\% |
 | 998.8\% | 182.5 1811 | $\begin{array}{r}183,1 \\ 181.6 \\ \hline\end{array}$ | ${ }^{0.6}$ | 0.3\% |
 | 100.0\% | 179.1 | 179.1 | 0.0 | 0.0\% |

 | Percent | | Warch | | - | Aprit | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {WSIP }}$ 2077 Withent | WSIP 2070 With Project | Absolute | | | WSIP 2070 Pethout | WSIP 2070 With Project | Absolute | |
 | Probability | Monthly EC | Monthly EC | (itiference | Difference (\%) | Probability | Monthly EC | Monthly EC | (ifterence | Difference (\%) |
 | (\%) | (UMHOSCCM) | (UWHOSSCM) | | | (\%) | UMHHSS(CM) | (UMHOSSCM) | | |
 | 0.0\% | 4390.7 | 4453.4 | ${ }^{62.7}$ | 1.4\% | 0.0\% | 4576.0 | 4606.9 | 30.9 | 0.7\% |
 | 1.2\% | ${ }^{2679.1}$ | ${ }^{2734.7}$ | ${ }^{55.6}$ | 2.1\% | 1.2\% | ${ }^{3476.5}$ | ${ }^{3393.0}$ | -83.4 | |
 | 2.5\% | ${ }^{2136.7}$ | 2211.9 | ${ }^{75.1}$ | 3.5\% | 2.5\% | ${ }^{3003.1}$ | 2917.2 | -85.9 | -2.9\% |
 | 3.7\% | ${ }^{17755.0}$ | 1796.6 | 21.6 | 1.2\% | 3.7\% | 2502.1 | 2475.7 | -26.4 | -1.1\% |
 | 4.9\% | ${ }^{1623.3}$ | 1720.8 | 97.5 | 6.0\% | 4.9\% | 2406.1 | ${ }^{2374.9}$ | -31.2 | 3\% |
 | 6.2\% | ${ }^{13339.7}$ | 1679.1 | 339.4 | 25.3\% | 6.2\% | 2291.5 | ${ }^{2286.7}$ | -4.8 | -0.2\% |
 | 7.4\% | 1304.2 | 1505.0 | 200.8 | 15.4\% | 7.4\% | ${ }^{2246.7}$ | 2225.0 | -21.8 | -1.0\% |
 | 8.6\% | ${ }_{1275.7}^{1272}$ | ${ }^{1410.2}$ | 134.5 | 10.5\% | 8.6\% | 2024.7 | ${ }^{1964.8}$ | -59.8 | -3.0\% |
 | 9.9\% | ${ }_{1232.4}^{1230.4}$ | 1357.3 | ${ }^{126.8}$ | 10.3\% | 9.9\% | 1898.6 | 1920.9 | ${ }^{22.4}$ | ${ }^{1.2 \%}$ |
 | 11.19\% | ${ }_{1225.2}^{123}$ | ${ }^{1334.1}$ | 108.9 | 8.9\% | 11.1\% | 1833.7 | 1806.9 | -26.7 | -1.5 |
 | ${ }^{12.3 \%}$ | 1191.3 | 1294.7 | 103.5 | 8.7\% | ${ }^{12.3 \%}$ | 1785.9 | 11751.3 | -34.6 | 9\% |
 | 13.6\% | 1158.4 | ${ }^{12488.5}$ | 90.1 | 7.8\%\% | 13.6\% | 11670.4 | 1726.9 | 56.5 | 3.4\% |
 | 14.8\% | 1114.0 | ${ }^{1233.1}$ | 119.1 | ${ }^{10.7 \%}$ | 14.8\% | ${ }^{1525.2}$ | 1499.9 | ${ }^{-32.3}$ | ${ }^{-2.2 \%}$ |
 | 16.0\% | ${ }^{11000.8}$ | 795.8 | -305.0 | -27.7\% | 16.0\% | 1511.2 | 1481.8 | -29.3 | -1.9\% |
 | ${ }^{17.3 \%}$ | 807.3 | 760.2 | -47.0 | -5.8\% | 17.3\% | 1481.3 | 1439.8 | -41.5 | -2.8\% |
 | 18.5\% | 698.9 | 759.4 | 60.5 | 8.7\% | 18.5\% | ${ }^{14336.6}$ | 1439.4 | 2.8 | 0.2\% |
 | 19.8\% | ${ }^{662.9}$ | ${ }^{755.3}$ | ${ }^{92.4}$ | 13.9\% | 19.8\% | ${ }_{1237.7}^{12375}$ | 1407.7 | 177.0 | 13.7\% |
 | 21.0\% | 495.2 | ${ }_{565.6}^{565}$ | 70.4 | 14.2\% | 21.0\% | ${ }_{1}^{1233.7}$ | 1311.7 | 78.0 | 6.3\% |
 | ${ }^{22.2 \%}$ | 481.9 | 560.7 | 78.8 | 16.4\% | ${ }^{22.2 \%}$ | ${ }^{1114.5}$ | 1300.9 | 186.4 | 16.7\% |
 | 23.5\% | 463.2 | 559.7 | ${ }_{7} 9.4$ | ${ }^{20.75 \%}$ | 23.5\% | ${ }^{10255.3}$ | ${ }^{12433}$ | 218.0 | 21.3\% |
 | ${ }^{24.79 \%}$ | 453.8 | 533.3 | 79.5 | 17.5\% | 24.7\% | 1005.1 | ${ }_{1230.15}^{1235}$ | ${ }^{225.0}$ | ${ }^{22.4}$ |
 | 25.9\% | 444.0 | 495.2 | 51.1 | 11.5\% | 25.9\% | ${ }^{959.6}$ | ${ }_{1}^{115157}$ | 191.9 | 20.0\% |
 | 27.2\% | 437.0 | 438.8 | 1.8 | 0.4\% | 27.2\% | ${ }_{922.2}$ | 1105.7 | 183.5 | 19.9\% |
 | 28.4\% | ${ }^{423.3}$ | ${ }_{436.4}$ | 13.1 | 3.1\% | 28.4\% | ${ }^{886.2}$ | 1036.8 | ${ }^{150.6}$ | 17.0\% |
 | 29.6\% | ${ }^{362.0}$ | 427.0 | 65.0 | 18.0\% | 29.6\% | ${ }_{7723}$ | 1010.0 | 197.6 | ${ }^{24.3 \%}$ |
 | 30.9\% | 359.9 | 405.4 | 45.6 | ${ }^{12.27 \%}$ | 30.9\% | 778.3 | 985.5 | 207.2 | 26.7\% |
 | 32.19\% | ${ }^{354.3}$ | 399.3 | 45.0 | ${ }^{12.77 \%}$ | 32.1\% | 760.9 | ${ }_{799.6}$ | 208.7 | 27.4\% |
 | 33.3\% | 334.3 | 395.2 | 60.9 | ${ }^{18.2 \%}$ | 33.3\% | 734.3 | 781.2 | 47.0 | 6.4\% |
 | 34.6\% | ${ }_{326.6}$ | ${ }^{368.3}$ | 41.8 | ${ }^{12.8 \%}$ | 34.6\% | ${ }^{728.6}$ | 741.5 | 12.9 | 1.8\% |
 | 35.7\% | 315.3 | ${ }_{352.9}$ | 37.6 | 11.9\% | 35.8\% | 681.8 | 685.6 | ${ }^{3.8}$ | 0.6\% |
 | 37.0\% | ${ }^{308.7}$ | 351.7 | ${ }^{43.0}$ | 13.9\% | 37.0\% | ${ }^{646.9}$ | 570.4 | ${ }^{23.5}$ | ${ }^{3.6 \%}$ |
 | 38.3\% | 305.9 | 348.0 | ${ }^{42.1}$ | 13.8\% | 38.3\% | 544.9 | ${ }_{538.7}$ | -106.2 | -16.5\% |
 | 39.5\% | 295.0 | ${ }^{333.8}$ | 38.8 | ${ }^{13.2 \%}$ | 39.5\% | ${ }^{586.0}$ | 518.3 | -69.7 | -11.9\% |
 | 40.7\% | ${ }_{278}^{2878}$ | ${ }_{328.1}$ | ${ }^{40.3}$ | 14.0\% | 40.7\% | 519.2 | 507.9 | -11.3 | ${ }^{-2.2 \%}$ |
 | 42.0\% | 27.4 | ${ }_{322.6}$ | 51.2 | 18.9\% | 42.0\% | 494.1 | 501.9 | 7.9 | ${ }^{1.6 \%}$ |
 | 43.2\% | 265.7 | ${ }^{316.4}$ | 50.8 | 19.19\% | 43.2\% | 472.0 | 481.2 | 9.2 | 1.9\%\% |
 | 44.4.9 | ${ }^{263.6}$ | 315.8 | 52.3 | 19.8\% | 44.4\% | 463.3 | 48.4 | 17.1 | 3.7\% |
 | 45.7\% | ${ }_{24.5}^{2575}$ | 308.0 | 50.5 | 19.7\%\% | 45.7\% | 46.6 | 476.0 | 15.4 | 3.3\% |
 | 46.9\% | 24.8 | 285.9 | 42.1 | 17.3\% | 46.9\% | 450.1 | 46.8 | 16.7 | 3.7\% |
 | 48.19\% | 24.9 | ${ }^{2655}$ | ${ }^{23.2}$ | 9.6\% | 48.1\% | 445.4 | 456.6 | 11.2 | 2.5\% |
 | 4.94\% | 24.1 | ${ }_{2567}^{2567}$ | 15.5 | ${ }^{6.4 \%}$ | 4.94\% | 43.2 | 443.0 | -0.2 | 0.0\% |
 | 50.6\% | ${ }_{2228}^{228}$ | 255.7 | 29.0 | ${ }^{12.8 \%}$ | 50.6\% | ${ }_{424.7}^{424}$ | ${ }_{414.3}$ | -6.4 | -1.5\% |
 | 51.9\% | ${ }_{226.4}^{226.4}$ | ${ }_{22521}$ | 25.7 | 12.3\% | 51.9\% | 414.7 | 419.1 | -0.6 | -0.2\% |
 | 53.19\% | ${ }_{2120.6}^{220.6}$ | 24.1 | 20.4 | 9.3\% | 53.19\% | 398.5 3980 | 395.4 | -3.19 | -0.8\% |
 | 54.3\% | 214.0 | ${ }_{220.7}^{220.7}$ | ${ }^{6.7}$ | 3.1\% | 54.3\% | 396.0 | 392.1 | -3.9 | -1.0\% |
 | 55.6\% | ${ }^{212.2}$ | ${ }_{217.2}$ | 5.1 | 2.4\% | 55.6\% | ${ }^{387.0}$ | 39.0 3793 | ${ }_{3}^{3.9}$ | 1.0\% |
 | 56.8\% | ${ }_{2093}^{2093}$ | 215.8 | 6.5 | 3.1\% | 56.8\% | ${ }^{376.1}$ | ${ }^{379.3}$ | ${ }^{3.2}$ | 0.8\% |
 | 58.0\% | ${ }^{2023}$ | 214.9 | ${ }^{12.6}$ | 6.2\% | 58.0\% | 356.7 3513 | 364.8
 3567 | 8.1 | ${ }^{2.3 \% \%}$ |
 | 59.3\% | 199.2 | 206.7 | 7.4 | 3.7\% | 59.3\% | ${ }^{351.3}$ | 356.7 | ${ }^{5.3}$ | 1.5\% |
 | 60.7\% | 198.9 | ${ }_{203}^{2038}$ | ${ }^{4.8}$ | 2.4\% | 60.5\% | ${ }^{324.7}$ | 342.8
 3253 | ${ }_{217}^{18.2}$ | 5.6\% |
 | ${ }^{61.7 \%}$ | 198.5 | ${ }^{201.2}$ | ${ }^{2.7}$ | 1.4\% | 61.7\% | ${ }^{313.6}$ | ${ }^{335.3}$ | | 6.9\% |
 | 64.2\% | ${ }_{195.6}$ | 197.3 | ${ }_{1}^{1.7}$ | 0.9\% | 64.2\% | 30.9 | 309.1 | ${ }_{2.2}^{2.4}$ | 0.7\% |
 | ${ }^{654.4 \%}$ | 195.0 | 1963 | ${ }_{11}^{1.3}$ | 0.7\% | 65.4\% | ${ }_{267.0}^{270}$ | ${ }_{28,9}^{2865}$ | 16.9 | . 6.2% |
 | ${ }^{66.7 \%}$ | 195.0 | 196.1 | 1.1 | 0.6\% | ${ }^{66.7 \%}$ | 267.7 | ${ }_{257}^{267.5}$ | ${ }^{-0.3}$ | -0.7\% |
 | -67.9\% | ${ }^{193.5}$ | 195.4 1953 | ${ }_{21}^{1.9}$ | -1.0\% | 67.9\% | ${ }_{244}^{246}$ | ${ }_{258}^{258.7}$ | ${ }^{11.7}$ | 7\% |
 | 70.4\% | 191.8 | 193.9 | 2.1 | 1.1\% | 70.4\% | 223.2 | 242.3 | 19.1 | 8.5\% |
 | 71.6\% | 191.3 | 193.3 | 2.0 | 1.0\% | 71.6\% | 222.8 | 226.3 | 3.5 | 1.6\% |
 | -72.8\% | 190.6 1899 | 192.1 1911 | ${ }_{1,2}^{1.5}$ | - 0.8% | 72.8\% | ${ }_{216.0}^{218.5}$ | ${ }_{228.7}^{224.7}$ | ${ }_{22}^{6.2}$ | - ${ }_{\text {2,8\% }}$ |
 | 75.3\% | 189.7 | 190.6 | | | 75.3\% | 215.4 | 215.4 | | 0.0\% |
 | 76.5\% | 189.1 | 190.4 | 1.3 | 0.7\% | 76.5\% | 213.4 | 214.1 | 0.8 | 0.4\% |
 | 778.8\% | 189.1 188.1 | 190.3 1895 | 1.2
 1.4
 1 | 0.6\% | 77.8\% | ${ }_{209}^{213.3}$ | 212.9 2110 | -0.3 | -0.0.2\% |
 | 80.2\% | ${ }_{187.5}^{18.5}$ | 188.9 | ${ }_{1.4}^{1.4}$ | 0.7\% | 80.2\% | 208.9 | 208.9 | 0.1 | |
 | 81.5\% | 187.4 | 1878 | 0.4 | 0.2\% | 81.5\% | 201.9 | 204.9 | 3.0 | 1.5\% |
 | 824.0\% | 188.1
 188.8 | 1877.8
 188.8 | 0.7 0.0 | - | 82.7% 84.0% | ${ }_{199.2}^{200.5}$ | 202.2 199.3 | 1.7 | - |
 | 85.2\% | 186.1 | 186.8 | 0.6 | 0.3\% | 85.2\% | 198.2 | 199.1 | 0.9 | 0.4\% |
 | 86.4\% | 186.1 | 186.2 | 0.1 | 0.1\% | 86.4\% | 195.9 | 198.2 | 2.3 | 1.2\% |
 | - 8 87.7\% | 185.9
 185.8 | 188.2 185.7 | O.2 | - ${ }_{\text {0.1\% }}^{\text {0.1\% }}$ | 87.7% 88.9% | 193.2 1911 | 193.4 192.1 | ${ }^{0.2}$ | 0.1\% |
 | 90.1\% | 185.6 | 185.4 | -0.2 | -0.1\% | 90.1\% | 190.7 | 191.9 | 1.1 | 0.6\% |
 | 914\% | 184.9 | 184.9 | -0.1 | 0.0\% | 91.4\% | 189.2 | 1897 | 0.5 | 0.2\% |
 | 923.8\% | 184.0 183.3 | $\begin{array}{r}184.6 \\ 183.8 \\ \hline\end{array}$ | 0.6 0.6 | - 0.3% | 92.6\% ${ }_{\text {93, }}$ | 187.2
 187.2 | 187.2 187.2 | 0.0 0.0 | - 0.0% |
 | 95.1\% | 182.4 | 182.9 | 0.5 | 0.3\% | 95.1\% | 186.2 | 186.2 | 0.0 | 0.0\% |
 | ${ }^{96.3 \%}$ | 181.5 1815 | ${ }_{181.5}^{181.5}$ | 0.0 | 0.0\% | 96.3\% | 185.9 | ${ }^{185.6}$ | -0.3 | -0.2\% |
 | 97.5\% | 181.5 | 181.4 | 0.0 | 0.0\% | 97.5\% | 184.2 | 184.6 | 0.4 | 0.2\% |
 | 98.8\% 100.0\% | 180.5 180.2 | $\begin{array}{r}180.6 \\ 180.4 \\ \hline\end{array}$ | ${ }_{0}^{0.1}$ | 0.1\% | 98.8\% 100.0\% | 181.7 180.8 | 181.8 180.7 | 0.1
 0.1 | 0.0\% |

 | $\begin{array}{\|l} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{array}$ | May | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2070 Wuthout | WSIP 2070 With Project | Absolute | |
 | | Monthliy EC | Monthy EC | (ifterence | fierence (\%) |
 | | (UMHOSSCM) | (UMHOSSCM) | | |
 | 0.0\% | 6916.4 | 6926.6 | 10.2 | 0.1\% |
 | 1.2\% | 6222.1 | 6107.0 | -115.0 | -1.8\% |
 | 2.5\% | 5842.9 | 5921.1 | 78.2 | 1.3\% |
 | 3.7\% | 5596.7 | 5562.2 | -34.5 | 0.6\% |
 | 4.9\% | 3776.1 | 3754.2 | -21.9 | -0.6\% |
 | 6.2\% | ${ }^{3625.1}$ | ${ }^{3629.1}$ | 4.1 | 0.1\% |
 | 7.4\% | ${ }^{3608.3}$ | ${ }^{3663.4}$ | -4.9 | -0.1\% |
 | 8.6\% | 3583.4 3435 | ${ }^{3588.6}$ | 5.2 | 0.19\% |
 | 9.9\% | ${ }^{3443.5}$ | ${ }^{3460.3}$ | 16.7 | 0.5\% |
 | 11.19\% | 3235.0 | ${ }^{323095}$ | -4.6 | -0.1\% |
 | 12.3\% | 3091.1 | ${ }^{3093.6}$ | 2.5 | 0.1\% |
 | 13.6\% | 2844.1 | ${ }^{27877.6}$ | -56.5 | -2.0\% |
 | 14.8\% | ${ }^{2420.2}$ | 2461.2 | 41.1 | 1.7\% |
 | 16.0\% | 2415.1 | 2411.4 | -3.78 | -0.7\% |
 | 17.3\% | ${ }^{23900}$ | ${ }^{2408.6}$ | 17.8 | 0.7\% |
 | 18.5\% | ${ }^{2377.3}$ | ${ }^{23355.8}$ | -21.5 | -0.9\% |
 | 19.8\% | 2338.1 | ${ }^{23322.2}$ | -5.9 | -0.3\% |
 | 21.0\% | 2318.2 | ${ }^{22938.0}$ | -20.2 | -0.9\% |
 | 22.2\% | ${ }^{233002}$ | ${ }^{2231.0}$ | -69.1 | -3.0\% |
 | 23.5\% | ${ }_{2}^{22887.7}$ | ${ }_{2}^{2228.5}$ | -59.2 | -2.6\% |
 | 24.7\% | ${ }^{2280.1}$ | ${ }^{2203.8}$ | -76.3 | -3.3\% |
 | 25.9\% | ${ }_{227525}^{2275}$ | ${ }_{2}^{2199.8}$ | | -3.3\% |
 | 27.2\% | ${ }^{2272.5}$ | ${ }^{2158.0}$ | -114.5 | -5.0\% |
 | 28.4\% | ${ }_{22419}^{2250.1}$ | ${ }_{21217}^{2147.6}$ | -102.5 | -4.6\% |
 | 29.6\% | ${ }^{22241.9}$ | 2121.7 | -120.1 | -5.4\% |
 | 30.9\% | ${ }_{21713}^{2205.7}$ | ${ }_{2}^{2117.7}$ | -88.0 | -4.0\% |
 | 32.1\% | ${ }_{217127}^{2172}$ | 2109.9 | -61.4 | -2.8\% |
 | 33.3\% | ${ }_{21420.7}^{2142}$ | ${ }_{20352.6}^{2052}$ | -90.19 | -4.2\% |
 | 34.6\% | ${ }^{2140.3}$ | 2038.4 | -1019 | -4.8\% |
 | 35.8\% | ${ }_{20862}^{2122.9}$ | ${ }_{200271}^{2022.2}$ | -100.7 | -4.7\% |
 | 37.0% 38.3% | ${ }_{2}^{2086.2}$ | ${ }^{2007.1}$ | -79.1 | - $-.38 \%$ |
 | 38.5\% | ${ }^{20834.3}$ | ${ }_{\text {1955.1 }}^{1992.2}$ | -117.8 | - -5.0% |
 | 40.7\% | 1944.9 | 1927.5 | -17.4 | -0.9\% |
 | 42.0\% | 1635.2 | 1744.8 | 109.6 | 6.7\% |
 | 43.2\% | 1593.3 | 1572.7 | -20.6 | -1.3\% |
 | 44.4\% | 1558.2 | 1533.0
 1519 | -25.2 | -1.5\% |
 | 45.7\% | 1507.5 14783 | 1514.9 14770 | 7.3 -13 | 0.5\% |
 | 46.9\% | ${ }^{14788.3}$ | 1477.0 1323.9 | -12.3. | -0.4\% ${ }_{-8}$ |
 | ${ }_{49.4 \%}^{48.1 \%}$ | ${ }^{134454.8}$ | 13233.9 1286 | ${ }_{-28.4}^{-121 .}$ | ${ }_{-2.2 \%}^{-8.4}$ |
 | 50.6\% | 1314.4 | 1284.8 | -29.6 | -2.3\% |
 | 51.9\% | 1270.0 | 1283.6 | ${ }^{13.6}$ | 1.1\% |
 | 53.19\% | ${ }_{1}^{1269.7}$ | +1266.9 | -2.88 | -0.2\% |
 | 54.3\% | 1266.7 1198.7 | ${ }_{1}^{1250.1}$ | -16.6 | --1.3%
 3.36 |
 | 56.8\% | 1128.3 | 1226.0 | 97.7 | 8.7\% |
 | 58.0\% | 1107.3 | 1159.7 | 52.4 | 4.7\% |
 | 59.3\% | 1094.5 | 1114.0 | 19.5 | 1.8\% |
 | | 1044.3 1023 | 1108.3 | ${ }^{63.9}$ | 6.1\% |
 | 61.30\% | ${ }^{10297.9}$ | ${ }^{10399.3}$ | 15.1 | 1.2\% |
 | 64.2\% | ${ }^{867.5}$ | 897.6 | 30.1 | 3.5\% |
 | 65.4\% | 835.8 820.0 | 828.6 788.2 | -7.1. -718 | -0.0\% |
 | 67.9\% | 769.9 | 742.1 | -27.7 | -3.6\% |
 | 69.1\% | 731.0 | 724.0 | -7.0 | -1.0\% |
 | 70.4\% | 689.8 623 | 700.0 6687 | 10.2 453 | - ${ }_{73 \%}$ |
 | 72.8\% | 602.4 | 569.0 | -33.4 | -5.5\% |
 | 74.1\% | 547.2 | 559.0 | 11.7 | 2.1\% |
 | 75.3\% | 457.9 4574 | 547.0 474.2 | 89.1 16.8 | |
 | 77.8\% | 456.1 | 467.1 | 11.1 | 2.4\% |
 | 79.0\% | 452.3 | 457.5 | 5.2 | 1.1\% |
 | - ${ }_{\text {80.2\% }}$ | ${ }_{3479}^{412.2}$ | ${ }_{4}^{457.4}$ | ${ }_{64.1}^{45.1}$ | - 10.09% |
 | 82.7\% | 344.6 | 356.7 | 12.0 | 3.5\% |
 | 84.0\% | ${ }_{3}^{335.2}$ | 353.8 | 18.7 | 5.6\% |
 | | 334.5 3227 | 345.0 3395 | 10.6 168 | 年5.2\% |
 | 87.7\% | 278.5 | 278.2 | -0.4 | -0.1\% |
 | 88.9\% | ${ }_{23}^{2724}$ | 276.4 | 4.0 | 1.5\% |
 | ${ }^{90.14 \%}$ | ${ }_{228.4}^{238.8}$ | ${ }_{233.1}^{2450}$ | 6.7 4.7 | ${ }_{\text {2.1\% }}^{2.6 \%}$ |
 | 92.6\% | 217.6 | 227.3 | 9.7 | 4.5\% |
 | ${ }^{93.58 \%}$ | 214.5 | 220.8 | 6.3 | 2.9\% |
 | ${ }_{9}^{95.11 \%}$ | ${ }_{2074}^{2076}$ | ${ }_{203.8}^{209.3}$ | 1.7 -36 | ${ }_{\text {- }}^{\text {0.8\% }}$ |
 | 97.5\% | 191.8 | 191.7 | 0.0 | 0.0\% |
 | 988.8\% 100.0\% | 188.1 179.9 | 187.6 180.3 | -0.5 0.5 | -0.3\% |

 Table $S Q-22-b$
 to Riverat Colinssuile, Monthly EC

 | | | |
 | :--- | :--- | :--- | :--- |
 | | | |

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | September | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {WSSP }}$ Provo Without | WSIP 2070 With Project | Absol | |
 | | Monthly EC | Monthly EC | (unteresce | Difference (\%) |
 | | (UMHOSSCM) | (UMHOSSCM) | | |
 | 0.0\% | 10155.6 | ${ }^{9875.5}$ | -280.1 | -2.8\% |
 | 1.2\% | 10105.8 | 9628.9 | -476.9 | -4.7\% |
 | 2.5\% | 10028.3 | 9586.6 | -441.7 | -4.4\% |
 | 3.7\% | 9947.5 | 9549.7 | -397.8 | -4.0\% |
 | 4.9\% | 9939.9 | ${ }^{9152.6}$ | -787.3 | -7.9\% |
 | 6.2\% | 9908.9 | ${ }_{9}^{9121.8}$ | -787.1 | -7.9\% |
 | 7.4\% | ${ }^{9565.2}$ | 9041.9 | -523.4 | -5.5\% |
 | 8.9\% | ${ }^{9339.1}$ | ${ }^{8985.7}$ | -373.4 | -4.0\% |
 | 9.9\% | ${ }^{9334.9}$ | 8928.1 | -406.8 | -4.4\% |
 | 11.19\% | ${ }^{92933.8}$ | ${ }^{8864.7}$ | -429.1 | -4.6\% |
 | 12.3\% | ${ }^{9286.5}$ | ${ }^{8551.9}$ | -724.5 | -7.8\% |
 | 13.6\% | ${ }^{92677}$ | ${ }^{8508.7}$ | -755.6 | -8.2\% |
 | -14.8\% | 9237.2 | ${ }^{8482.3}$ | -755.0 | -8.2\% |
 | -16.0\% | 91157 | 8438.9 | -676.8 | -7.4\% |
 | 17.3%
 18.5% | 9057.9 89788 | ${ }_{\text {84358.4 }}^{8425}$ | -632.5 | -7.0\% |
 | - 18.5% | ${ }_{8}^{8978.8}$ | 8358.4 8300.5 | -620.5 | - -7.4% |
 | 21.0\% | ${ }_{89198.8}$ | ${ }_{82929} 8$ | ${ }_{-625.9}$ | -7.0\% |
 | ${ }_{2} 2.2 \%$ | 8912.5 | ${ }_{8280.5}^{8232.9}$ | ${ }_{-632.1}$ | -7.1\% |
 | 23.5\% | 8907.0 | 8263.1 | -643.9 | -7.2\% |
 | 24.7\% | 8898.3 | 8238.8 | -659.5 | -7.4\% |
 | 25.9\% | 8895.9 | 8192.5 | -703.4 | -7.9\% |
 | ${ }^{27.2 \%}$ | ${ }^{8894.2}$ | ${ }^{8161.1}$ | -733.2 | ${ }^{-8.2 \%}$ |
 | 28.4\% | 8884.3 88399 | 8120.4
 8005 | -763.9 | -8.6\% |
 | 29.6\% | 8839.9 | ${ }^{8040.5}$ | -799.5 -7885 | -9.0\% |
 | - 30.9% | 8821.5
 8764.4 | 8033.4 80069 | -788.1 -775 | -8.9\% |
 | | ${ }_{8}^{8764.4}$ | ${ }^{8006.9}$ | -757.5 | ${ }_{-8}^{-8.6 \%}$ |
 | - ${ }_{\text {33.6\% }}$ | ${ }^{8758.7}$ | ${ }_{7}^{79932.2}$ | -776.5 | - -1.9% |
 | 35.8\% | 8721.6 | 7769.2 | -952.3 | -10.9\% |
 | 37.0\% | 8640.8 | 7706.9 | -933.9 | -10.8\% |
 | 38.3\% | 8622.0 | 7614.6 | -1007.3 | -11.7\% |
 | 39.5\% | 8603.7 | 7594.1 | -1009.7 | -11.7\% |
 | 40.7\% | 8598.5 | 7546.9 | -10517 | -12.2\% |
 | 42.0\% | ${ }^{85977.8}$ | 7483.0 | -1114.8 | - -13.0% |
 | - 43.2% | ${ }_{8}^{8402.6}$ | 7409.7 73825 | -992.9 | - -11.8% |
 | 44.4\% 45.7% | ${ }_{8}^{8374.7}$ | 7382.5 7360.7 | -992.2 | - -11.8% |
 | -45.7\% | ${ }_{88372.1}^{832.1}$ | ${ }_{7}^{7355.4}$ | -1012.6 | - |
 | 48.1\% | 8097.4 | 7162.3 | -935.0 | -11.5\% |
 | 49.4\% | 8022.3 | 7063.1 | -959.2 | -12.0\% |
 | 50.6\% | 7830.9 | 7018.3 | -812.6 | -10.4\% |
 | 51.9\% | ${ }^{7793.3}$ | 6988.5 | -804.7 | -10.3\% |
 | - 53.10% | 7638.3 6355 | ¢ $\begin{gathered}6545.2 \\ 5924.5\end{gathered}$ | -1093.2 | -14.3\% |
 | | ${ }_{3}^{63775.5}$ | | ${ }_{-5851.0}$ | - -7.1 - ${ }^{-17 \%}$ |
 | 55.6\% | ${ }_{3}^{33369.4}$ | ${ }_{\text {3253.7 }}{ }^{3318.4}$ | -58.0 | --1.6\% |
 | 58.0\% | ${ }^{3248.8}$ | 3219.8 | -29.1 | -0.9\% |
 | 59.3\% | 3241.2 | 3174.1 | -67.1 | -2.1\% |
 | ${ }^{60.5 \%}$ | 3146.6 | 3010.9 30051 | -135.7 -752 | -4.3\% |
 | 63.0\% | 3037.4 | ${ }^{2896.5}$ | -140.9 | -4.6\% |
 | ${ }^{64.2 \%}$ | 2937.3 | 2865.7 | -71.6 | -2.4\% |
 | ${ }^{65.4 \%} \begin{aligned} & 667 \%\end{aligned}$ | ${ }_{28912}^{2921.2}$ | ${ }_{2}^{287774}$ | - -933.8 | - ${ }_{\text {- }}^{\text {- }}$ - 3.2% |
 | 67.9\% | 2879.4 | 2693.6 | -185.8 | -6.5\% |
 | 69.1\% | 1828.8 | 1815.8 | -13.0 | -0.7\% |
 | 70.4\% | 1692.9 | 1652.2 | -40.7 | -2.4\% |
 | 71.6\% | 1633.9 | 1634.7 | 0.8 | 0.0\% |
 | - 72.8% | 1627.0 1626.9 | 1632.1 16087 | -5.1. | - ${ }_{\text {- }}^{\text {- } 1.1 \%}$ |
 | 75.3\% | 1609.3 | 1568.1 | -41.2 | -2.6\% |
 | 76.5\% | 1602.6 | 1545.2 | -57.4 | ${ }^{-3.6 \%}$ |
 | -77.8\% | 1560.1 15547 | 1504.5 11934 | -55.6 | -3.6\% |
 | 79.0\% | 1554.7 | 1493.4 | -61.4 | -3.9\% |
 | ${ }^{80.15 \%}$ | ${ }_{1}^{15228.7}$ | 14844.2 1460.3 | -44.5 | ${ }^{-2.9 \%}$ |
 | 82.7\% | 1504.6 | 1453.5 | -51.1 | -3.4\% |
 | 84.0\% | 1502.6 | 1450.9 | -51.7 | -3.4\% |
 | | 1502.5 14895 | ${ }_{1}^{14423.0}$ | -54.5
 -661 | - ${ }_{-4.6 \%}$ |
 | 87.7\% | 1481.1 | 1413.6 | -67.4 | -4.6\% |
 | 88.9\% | 1476.6 | 1406.8 | -69.7 | -4.7\% |
 | ${ }_{\text {c }}^{90.14 \%}$ | 1464.0 14369 | 1406.8 13467 | -57.2 -902 | --.3.3\% |
 | 92.6\% | 1431.6 | 1339.5 | -92.0 | -6.4\% |
 | 93.8\% | 1418.3 | 1330.3 | -87.9 | -6.2\% |
 | 95.1\% | 1404.7 | 1327.0 | -77.8 | -5.5\% |
 | 96.3\% | 1374.0 | 1322.7 | -51.3 | -3.7\% |
 | 97.5\% | 1361.2 | ${ }^{1300.5}$ | -60.7 | -4.5\% |
 | 100.0\% | ${ }_{1,325.1}^{1430.0}$ | ${ }_{1}^{12249.3}$ | ${ }_{-105.8}^{-85.8}$ | -8.0\% |

 Figure SQ-23-b
 Sacramento River at Mallard Slough (Chipps Island)), Monthly EC

 | $\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Excedance } \\ \text { Probability } \end{array} \end{gathered}$ | Ocrober | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSII 2070 Wewthout | WSIP 2070 With Project | Absolute | |
 | | Monthly EC | Monthy EC | Difierence (unHosicm) | Hference (\%) |
 | (\%) | MHFOSLCM | UMHOSSCM | | |
 | | | 15364.4 | -87.9 | -0.6\% |
 | ${ }^{1.2 \%}$ | - ${ }_{\text {153555.3 }}$ | 1533099 | ${ }_{-264.7}^{-24.4}$ | ${ }_{\text {- }}^{\text {- }}$ - 7.7% |
 | 3.7\% | 15285.4 | 14900.8 | -378.6 | -2.5\% |
 | 4.9\% | ${ }^{14996.3}$ | ${ }^{14657.3}$ | -339.0 | -2.3\% |
 | -6.2\% | 1476614 | 144499 14049 | -320.2 .6124 | ${ }_{-4.2 \%}^{-2.2 \%}$ |
 | 7.4\% | 14661.4 14490 | 140499.0 13993 | - -1212.4 | -4.2\% |
 | 9.9\% | ${ }_{144490.3}^{14326}$ | 13993.7
 139116
 1 | -496.5 | -3.4\% |
 | 11.1\% | 14275.8 | 13773.1 | -502.7 | ${ }^{-3.5 \%}$ |
 | 12.3\% | 14092.0 | ${ }^{13745.8}$ | -346.2 | -2.5\% |
 | 13.6% 14.8% | 139221.3 138538 | 13667.2
 135612
 1 | -224.2 | -1.6\% |
 | 16.0\% | 13803.8 | ${ }_{1} 13571.9$ | ${ }^{-2331.9}$ | ${ }_{-2.4 \%}^{-2.19}$ |
 | 17.3\% | ${ }^{13766.7}$ | ${ }^{13431.2}$ | -335.4 | -2.4\% |
 | (18.5\% | 13758.5 137379 | 133307.3
 132374
 1 | - -500.2 | -3.3\% |
 | 21.0\% | ${ }^{136355.0}$ | ${ }_{1}^{13015.6}$ | -619.4 | ${ }^{-4.5 \%}$ |
 | 22.2\% | 13559.5 | 12917.9 | -641.5 | -4.7\% |
 | ${ }_{24}^{23.5 \%}$ | 13558.0 135431 | 12888.9 127859 | -749.1 -7572 | -5.5\%\% |
 | 25.9\% | ${ }^{1351515}$ | ${ }^{127365}$ | -778.7 | -5.8\% |
 | 27.2\% | ${ }^{134338.8}$ | 12722.4 | -716.4 | -5.3\% |
 | 28.4. | 13379.5 13325 | 12882.0 12559 | - -697.5 -765 | -5.5\% ${ }_{-5}$ |
 | 30.9\% | 13310.4 | 12529.9 | -780.5 | |
 | 32.1\% | 13263.7 | 12456.0 | -807.7 | -6.1\% |
 | 年33.3\% | l 132245.0 1325 | ${ }_{122433}^{12283}$ | --961.8 | -7.7. -7. |
 | 35.8\% | 13211.7 | 12160.0 | -1051.7 | -8.0 |
 | 37.0\% | 13101.2 | 12155.0 | -946.2 | -7.2\% |
 | 38.3\% | 122999.9 12998.7 | 121433.7 12138 | -856.2 | -6.6\% |
 | 40.7\% | 12955.1 | 12077.8 | -877.2 | |
 | 42.0\% | 12954.9 | 11988.5 | -966.4 | -7.5\% |
 | 43.2\% 44.4 | 12937.1 12930.0 | 119288.7
 11845 | -1008.4 -1084.1 | -7.7\% |
 | 45.7\% | 12922.1 | 11752.2 | -1169.9 | -9.1\% |
 | 46.9\% | ${ }^{12904.3}$ | 11546.5 | -1357.8 | |
 | 48.1\% | 12818.8 | ${ }^{11413.2}$ | -1405.6 | -11.0\% |
 | 49.4\% | 122000.7 12022 | 10968.2
 107950 | -1232.5 -12274 | -10.1\% |
 | 51.9\% | ${ }_{112553.4}$ | 10460.4 | -1293.0 | -12.5\% |
 | 53.1\% | 983978 | 10227.9 | 388.1 | 3.9\% |
 | | | 6176.0 | -201.8 | -3.2\% |
 | 55.6\% | ${ }_{6}^{631815.7}$ | 6078.5 6037.0 | -240.1 -178.7 | - |
 | 58.0\% | 6104.5 | 5974.2 | -130.3 | -2.1\% |
 | 59.3\% | ${ }^{6036.6}$ | ${ }_{\text {cker }}^{5838.2}$ | -198.4 | -3.3\% |
 | 年6.5\% | ¢933.4 | 5752.9 5706.0 | -281.1 | -4.7\% |
 | 63.0\% | ${ }_{5}^{5919.3}$ | 5674.9 | -244.5 | -4.1\% |
 | 64.2% 654% | 5750.6 | | | -2.2\% |
 | - 65.4% | ${ }_{3}^{577504.4}$ | 5556.0 3104.5 | -189.4 -.99 | - |
 | 67.9\% | 3061.7 | 3025.6 | -36.1 | -1.2\% |
 | 69.1\% | ${ }^{3053.3}$ | ${ }_{2}^{2997.0}$ | -56.3 | -1.8\% |
 | 70.1.6\% | 3045.8 3011.5 | ${ }_{2}^{29446.9}$ | -98.9 | -3.3\% |
 | 72.8\% | 3005.8 | ${ }^{2905.6}$ | -100.1 | -3.3\% |
 | 74.1\% | ${ }_{2}^{2999.1}$ | | | ${ }^{-3.3 \%}$ |
 | 75.5\% | ${ }^{299987.9}$ | 2894.4 2891.8 | -104.5 -1058 | -3.5\% ${ }_{\text {- }}$ |
 | 77.8\% | 2986.9 | ${ }^{287575}$ | -111.2 | -3.7\% |
 | 79.0\% | | | | |
 | - | ${ }_{2}^{29555.9}$ | ${ }_{2}^{28850.6}$ | -105.2 | -3.6\% |
 | 82.7\% | 2946.8 | ${ }^{2854.0}$ | -92.8 | -3.2\% |
 | 84.0% 852% | | | | |
 | 80.4\% | ${ }_{2923.0}^{294.3}$ | ${ }^{28218.1}$ | ${ }^{-1024.8}$ | -3.6\% |
 | 87.7\% | 22914.9 | 2816.7
 27972 | -98.3 | -3.4\% |
 | 88.9\% | | ${ }_{2}^{2797.2}$ | | |
 | 91.4\% | ${ }^{2873.5}$ | ${ }_{2}^{2790.3}$ | -83.3 | -2.9\% |
 | 92.6\% | ${ }^{2862.3}$ | 2778.8 | -83.6 | -2.9\% |
 | ${ }^{935.8 \%}$ | 2826.5 2793.0 | ${ }^{27741.0}$ | -55.4 | - -1.8% |
 | 96.3\% | 2788.4 | 2704.1 | -84.3 | -3.0\% |
 | 97.5\% | 2364.6
 2368 | ${ }_{267523}^{2671.0}$ | -98.6 | ${ }^{-3.36 \%}$ |
 | 100.0\% | ${ }_{1,746.9}^{254.8}$ | ${ }_{1,692.2}^{2052.3}$ | ${ }_{-54.6}$ | -3.1\% |

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | January | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | WSIP 2070 With Project | | Reative |
 | | Monthly EC | Monthly EC | (ifiference | Difference (\%) |
 | 0.0\% | UMHOSS(CM) | SICM) | | |
 | 0.0\% | 880.7 | ${ }^{12906.8}$ | -773.9 | 5.7\% |
 | 1.2\% | 10616.9 | 11171.4 | | |
 | 2.5\% | 9857.5 | 9679.0 | -178.5 | |
 | 3.7\% | 9477.9 | 9615.8 | 137.9 | |
 | 4.9\% | 9297.3 | 925 | -41.0 | |
 | 6.2\% | 90010.6 | 9070.0 | 59.5 | |
 | 7.4\% | 8859.8 | 8904.3 | 44.4 | |
 | 8.6\% | 8610.0 | 8851.3 | 241.3 | |
 | 9.9\% | 8098.9 | 8690.6 | 591.8 | 7.3\% |
 | 11.1\% | 8079.3 | 8473.0 | 393.7 | 4.9\% |
 | 12.3\% | 7994.6 | 8488.7 | 474.2 | 5.9\% |
 | 13.6\% | 7985.6 | 8291.2 | 305.6 | 3.8\% |
 | 14.8\% | 7888.6 | 8175.8 | 307.2 | 3.9\% |
 | 16.0\% | 7857.6 | ${ }^{8137.3}$ | 279.7 | 3.6\% |
 | 17.3\% | 7789.0 | 8123.4 | 334.4 | 4.3\% |
 | 18.5\% | 7780.3 | 8054.7 | 274.4 | 3.5\% |
 | 19.8\% | 7391.8 | 7807.6 | 415.7 | 5.6\% |
 | 21.0\% | ${ }^{7343.7}$ | 7701.7 | 358.0 | 4.9\% |
 | 22.2\% | 7321.9 | 7701.7 | 379.8 | 5.2\% |
 | 23.5\% | 7150.5 | 7405.4 | 255.0 | 3.6\% |
 | 24.7\% | 7035.5 | 7371.2 | 335.7 | 4.8\% |
 | 25.7\% | ${ }^{6890.3}$ | 7108.0 | 217.7 | 3.2\% |
 | 27.2\% | 6806.7 | 6951.9 | 145.2 | 2.1\% |
 | 28.4\% | 6616.7 | 6770.4 | ${ }^{153.6}$ | 2.3\% |
 | 29.6\% | ${ }^{6363.6}$ | 6714.8 | 351.2 | 5.5\% |
 | 30.9\% | ${ }^{6003.8}$ | ${ }_{6}^{6184.8}$ | 181.0 | 3.0\% |
 | 32.1\% | 5589.9 | 5793.7 | 203.8 | 3.6\% |
 | 33.3\% | 5297.9 | 5459.2 | ${ }^{161.3}$ | 3.0\% |
 | 34.6\% | 3497.3 | 5250.5 | 1753.2 | 50.1\% |
 | 35.8\% | 3497.1 | 4882.8 | 1385.7 | 39.6\% |
 | 37.0\% | 3320.1 | 4819.7 | 1499.5 | 45.2\% |
 | 38.3\% | ${ }^{3254.0}$ | 4508.1 | 1254.1 | 38.5\% |
 | 39.5\% | 3105.7 | 4343.0 | ${ }^{1237.3}$ | 39.8\% |
 | 40.7\% | ${ }^{2844.6}$ | 4023.0 | 1178.4 | 41.4\% |
 | 42.0\% | 2748.3 | ${ }^{3908.8}$ | 1160.5 | 42.2\% |
 | 43.2\% | 2631.3 | 3516.7 | 885.4 | 33.7\% |
 | 44.4\% | 2495.4 | ${ }^{3386.6}$ | 891.2 | 35.7\% |
 | 45.7\% | 2210.8 | 3233.2 | 1022.4 | 46.2\% |
 | 46.9\% | 2161.9 | 2783.1 | ${ }^{621.2}$ | 28.7\% |
 | 48.1\% | 1982.6 | 2483.0 | 500.4 | 25.2\% |
 | 49.4\% | 1939.2 | 2476.4 | 537.2 | 27.7\% |
 | 50.6\% | 1599.4 | 2092.1 | 4927 | 30.8\% |
 | 51.9\% | 1495.6 | 2073.5 | 577.8 | 38.6\% |
 | 53.1\% | 1287.0 | ${ }^{2007.7}$ | ${ }^{720.6}$ | 56.0\% |
 | 54.3\% | 1229.1 | ${ }^{19855.1}$ | 756.1 | 61.5\% |
 | 55.6\% | ${ }^{1174.8}$ | ${ }^{1626.3}$ | ${ }^{451.5}$ | 38.4\% |
 | 56.8\% | 1042.3 | ${ }^{1554.6}$ | 512.2 | 49.1\% |
 | 58.0\% | 811.0 | ${ }^{1404.3}$ | ${ }_{593.3}^{593}$ | 73.2\% |
 | 59.3\% | 653.2 | 892.9 | 2397 | ${ }^{36.77 \%}$ |
 | ${ }^{60.5 \%}$ | ${ }_{645.4}$ | 875.9 | ${ }^{230.5}$ | 35.7\% |
 | ${ }^{61.7 \%}$ | 591.3 | 797.2 | 206.0 | 34.8\% |
 | 63.0\% | 578.9 | 707.2 | ${ }^{128.3}$ | 22.2\% |
 | ${ }^{64.2 \%}$ | 415.5 | 607.4 | 191.8 | 46.2\% |
 | 65.4\% | 377.4 | 409.4 | 32.0 | 8.5\% |
 | ${ }^{66.7 \%}$ | 345.7 | 382.2 | ${ }^{36.6}$ | 0.6\% |
 | 67.9\% | 303.5 | 349.4 | ${ }^{45.8}$ | 15.1\% |
 | 69.1\% | 291.3 | 346.9 | 55.6 | 1\% |
 | 70.4\% | 277.1 | 321.9 | 44.8 | ${ }^{16.2 \%}$ |
 | 71.6\% | 276.4 | 308.8 | ${ }^{32.4}$ | 11.7\% |
 | 72.8\% | ${ }_{261.7}^{2615}$ | ${ }^{300.6}$ | 39.0 | 14.9\% |
 | 74.1\% | ${ }_{25}^{24.8}$ | 298.0 | 52.2 | ${ }^{21.2 \%}$ |
 | 75.3\% | ${ }^{232.7}$ | ${ }_{29.4}^{249.4}$ | 16.7 | 7.2\% |
 | 76.5\% | ${ }^{222.0}$ | ${ }^{246.3}$ | ${ }^{24.3}$ | 1.0\% |
 | 77.8\% | ${ }_{20.3}^{220.3}$ | ${ }_{223.5}^{223}$ | 3.2 | 1.5\% |
 | 79.0\% | 211.9 | 212.9 | 1.0 | 0.5\% |
 | 80.2\% | 207.1 | 207.5 | 0.4 | \% |
 | 81.5\% | 206.9 | 2068 | -0.1 | .1\% |
 | ${ }^{82.7 \%}$ | 196.9 | 197.5
 1968 | 0.5 | 0.3\% |
 | 84.0\% | 196.1 | 196.8 | 0.7 | 0.3\% |
 | 85.2\% | 195.6 | 196.0 | 0.4 | 0.2\% |
 | ${ }^{86.4 \%}$ | 194.7 | 194.7 | 0.0 | 00\% |
 | 877\% | 193.4 | 1994.4 | 1.0 | 0.5\% |
 | ${ }^{88.9 \%}$ | 193.4 | 193.7 | 0.4 | 2\% |
 | 90.1\% | 192.7 | 193.1 | 0.3 | 0.2\% |
 | ${ }^{9.4 .4 \%}$ | ${ }^{191.5}$ | ${ }^{1929.3}$ | 0.8 | 0.4\% |
 | ${ }_{9}^{92.8 \%}$ | 191.2 189.0 | 199.3
 189.4 | 0.2 0.4 | 0.2\% |
 | 95.1\% | 188.7 | 188.3 | -0.3 | -0.2\% |
 | 96.3\% | 186.2 | 187.7 | 1.5 | 0.8\% |
 | 97.5\% | 186.0 | 187.5 | 1.5 | 0.8\% |
 | | 185.9 182.3 | 186.7
 182.5 | 0.8 0.1 | 0.1\% |

 | Percent | Febrany | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSII 2070 Wewthout | WSIP 2070 With Project | Absolute | |
 | Probability | Montily EC | Monthy EC | Difference （UMHOSCM） | Hference（\％） |
 | （\％） | ${ }^{\text {UnHosicm }}$ | （MHHOSICM） | | |
 | | 12469.1 | ${ }^{8949.3}$ | －3519．9 | ${ }^{28.2 \%}$ |
 | 1．2\％ | 8274.0 | 7511.8 | －762．2 | －9．2\％ |
 | 2．5\％${ }_{\text {3．7\％}}$ | ${ }_{563032}^{5930}$ | $\xrightarrow{59936.7}$ | 14.7 302.7 | 5．4\％ |
 | 4．9\％ | 4999.5 | 5851.0 | 851.5 | 17．0\％ |
 | 6．2\％ | 4782.5 | 5531.0 | 748.6 | 15．7\％ |
 | 7．4\％ | ${ }^{4315.4}$ | 4797.4 | 482.0 | 11．2\％ |
 | 8．6\％ | ${ }_{41026}^{4205.2}$ | 4673.5 44968 | 468.3 394.2 | －${ }_{\text {9，}}^{\text {11．6\％}}$ |
 | 9．9\％ | ${ }_{4}^{4102.6}$ | ${ }^{4496.8}$ | ${ }_{371.2}^{394}$ | ${ }^{9.6 \%}$ |
 | － 11.14% | 4006.8 3860.4 | 43789.7 4199.8 | 371.9 339.4 | 8．8\％ |
 | 13．6\％ 14.8% | 3475.5 3328 | ${ }_{4}^{4156.6}$ | 681.1 7034 7 | 19．6\％ |
 | 14．8．8\％ | 3322.8 3002.3 | ${ }_{3340.5}^{4026.2}$ | 703．4 | |
 | 17．3\％ | ${ }^{2112.8}$ | ${ }_{3163.7} 3$ | 1050．9 | 49．7\％ |
 | 18．5\％ | 1988.7 | 2990．4 | 1001.7 | 50．4\％ |
 | 19．8\％ | ${ }^{1857.9}$ | ${ }_{\text {203 }}^{23988}$ | 540.9 | 29．1\％ |
 | 21．0\％ | 1822.4 1670.5 | ${ }_{2147.0}^{2283.2}$ | ${ }_{460.8}^{460.5}$ | ${ }_{\text {28．5\％}}^{25.3 \%}$ |
 | ${ }^{23.5 \%}$ | 1260.7 | 1700.2 | 439.5 | 34．9\％ |
 | 24．7\％ | 1197.0 | 1605.7 | 408.7 | 34．1\％ |
 | 25．9\％ | ${ }_{9616.4}^{947}$ | ${ }_{1}^{14774.5}$ | 528.5 458.3 | |
 | 28．4\％ | 893.6 | ${ }^{1302.1}$ | 408.5 | 45．7\％ |
 | 29．6\％ | ${ }^{846.8}$ | 1220.7 | 373.9 | 44．1\％ |
 | 32．1\％ | 789.0 788.4 | ${ }^{11133.4}$ | 344.4 335.9 | ${ }_{4}^{43.76 \%}$ |
 | 33．3\％ | 779.9 | 1117.7 | 337.8 | 43．3\％ |
 | 34．6\％ | 759.8 | 816.9 | 57.1 | 7．5\％ |
 | 年35．8\％ | ${ }_{743.2}^{756.7}$ | 782.8 762.1 | 26.0 18.9 | －${ }_{\text {2．5\％}}$ |
 | 38．3\％ | 713.4 | 757.9 | 44.5 | 6．2\％ |
 | 39．5\％ | 7098 | 755.9 | 46.1 | 6．5\％ |
 | 40．2\％ | 690.1 614.7 | 735.1 698.9 | ${ }_{84.3}^{45.0}$ | ${ }_{\text {c }}{ }_{\text {13．7\％}}^{6.5 \%}$ |
 | 43．2\％ | 597.4 | 677.1 | 73.8 | 12．3\％ |
 | 44．4\％ | 596．4 | ${ }^{623.2}$ | 26.8 | 4．5\％ |
 | 45．7\％ | ${ }_{521.0}^{561.1}$ | $\stackrel{589.4}{587.3}$ | 28.4 66.2 | 512．7\％ |
 | 48．1\％ | 501.5
 1572 | 574.5 | 73.0 | 14．6\％ |
 | 49．4\％ | 457.2 | 524.2 | 67.0 | ${ }^{14.7 \%}$ |
 | 51．9\％ | ${ }_{360.4}$ | ${ }_{480.0}^{487.1}$ | 48.2 119.6 | －${ }_{\text {33．2\％}}^{11.0 \%}$ |
 | 53．1\％ | 359.0 | 479.2 | 120.2 | 33．5\％ |
 | | ${ }^{334.2}$ | ${ }^{437.8}$ | 103.6 | 31．0\％ |
 | 56．8\％ | ${ }_{282.0}^{296.6}$ | 366.0 355.6 | ${ }_{73.6}^{69.4}$ | ${ }_{\text {cke }}^{\substack{23.4 \% \\ 26.1 \%}}$ |
 | 58．0\％ | ${ }_{251.7}^{251.7}$ | 299.0 | 47.3 | 18．8\％ |
 | 年 59.3% | ${ }_{251.2}^{2512}$ | 264.8 | ${ }^{13.5}$ | 5．4\％\％ |
 | 61．7\％ | 222.8 22.9 | ${ }_{239.0}^{261.2}$ | 33.4 12.1 | |
 | 63．0\％ | 213.4 | ${ }_{230.6}^{232}$ | ${ }_{17}^{17.3}$ | 8．1\％ |
 | ${ }^{64.2 \%}$ | ${ }^{213.2}$ | ${ }^{224.8}$ | 11.7 | ${ }_{5}^{5.5 \%}$ |
 | ${ }_{66.7 \%}$ | ${ }_{208.7}^{212.4}$ | ${ }_{214.5}^{223.3}$ | 10.9 5.7 | ${ }^{5.7 \%}$ |
 | 67．9\％ | 208.5 | 211.7 | 3.1 | 1．5\％ |
 | 69．1\％ | 208.1 | ${ }^{211.3}$ | 3.2 | 1．5\％ |
 | 77．6\％ | ${ }_{207.4}^{207.5}$ | ${ }_{208 .}^{208.6}$ | ${ }^{1.2}$ | ${ }_{0}^{0.4 \%}$ |
 | 72．8\％ | 207.1 | 207.9 | 0.8 | 0．4\％ |
 | 74．1\％ | 206.9 | 207.4 | 0.5 | ${ }^{0.2 \%}$ |
 | 76．5\％ | ${ }_{201.8}^{2029}$ | ${ }_{202.3}^{204.1}$ | 1.2 0.5 | －．3\％ |
 | 77．8\％ | 201.4 | 201.4 | 0.1 | 0．0\％ |
 | 79．0\％ | 201.1 | 201.4 | ${ }^{0.3}$ | 0．1\％ |
 | 81．5\％ | ${ }_{1}^{208.5}$ | ${ }_{198.8}^{20.7}$ | 0.3 | ${ }_{0}^{0.2 \%}$ |
 | 82．7\％ | 197.6 | 198.5 | 0.9 | 0．5\％ |
 | 84.0% 852% | 196.3 | | 0.5 | 0．3\％ |
 | ${ }_{\text {86．4\％}}$ | ${ }_{194.5}^{199.1}$ | ${ }_{194.7}^{199.5}$ | ${ }_{0.3}^{1.4}$ | 0．1\％ |
 | 87．7\％ | 192.6 | 193.5 | 1.0 | 0．5\％ |
 | 88．9\％ | 191．5 | 191.9 | | ${ }^{0.2 \%}$ |
 | 91．4\％ | 189.9 189.1 | ${ }_{1899.9}$ | ${ }_{0}^{0.7}$ | 0．4\％ |
 | 92．6\％ | 188.3 | 189.8 | 1.5 | 0．8\％ |
 | ${ }^{93.8 \%}$ | 187.9 | 188.3 | 0.4 | 0．2\％ |
 | ${ }_{96.3 \%}$ | 187.9 187.4 | ${ }_{1}^{188.3} 1$ | 0.4 | 0．3\％ |
 | 97．5\％ | 187.4 | 187.3 | 0.0 | 0．0\％ |
 | 98．8\％ 1000% | 186.1 1843 | 186.5 1843 | 0．4 | －0．2\％ |
 | | | | 0.0 | 0．0\％ |

 | | | Warch | | | April | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | WSIP 2070 Wethout | WSIP 2070 With Project | | | | WSIP 207\％Without | WSIP 2070 With Project | Absolute | |
 | Probability | Monthly EC | Monthly EC | （umiticesice） | Difference（\％） | Probability | Monthly EC | Monthly EC | （iflerence | Difference（\％） |
 | （\％） | （UMHOSSCM） | （UMHOSSCM） | | | （\％） | （UMHOSSCM） | （UMHOSSCM） | | |
 | 0．0\％ | 7591.0 | 7674.3 | 83.3 | 1．1\％ | 0．0\％ | 7801.6 | 7840.6 | 39.0 | |
 | 1．2\％ | 5164.7 | 5250.8 | 86.1 | 1．7\％ | 1．2\％ | 6300.1 | 6194.3 | －105．8 | －1．7\％ |
 | 2．5\％ | 4278.2 | 4423．4 | 145.2 | 3．4\％ | 2．5\％ | 5516.8 | 5416.4 | －100．4 | －1．8\％ |
 | 3．7\％ | ${ }^{38833.2}$ | 3878.8 | ${ }^{35.7}$ | 0．9\％ | 3．7\％ | 4873.5 | 4838.7 | －34．9 | －0．7\％ |
 | 4．9\％ | ${ }^{3534.9}$ | ${ }^{3753.9}$ | 219.0 | 6．2\％ | 4．9\％ | 4749.4 | 4699.2 | －58．1 | －1．2\％ |
 | 6．2\％ | 3085．4 | ${ }^{3639.5}$ | 554.1 | 18．0\％ | 6．2\％ | ${ }^{45552.3}$ | ${ }^{4569.2}$ | 16.9 | 0．4\％ |
 | 7．4\％ | ${ }^{2929.5}$ | 3347.4 | 417.9 | 14．3\％ | 7．4\％ | 4530.7 | ${ }^{4522.8}$ | －7．8 | －0．2\％ |
 | 8．6\％ | 2847.9 | ${ }^{3215.7}$ | 367.8 | 12．9\％ | 8．6\％ | ${ }^{4193.5}$ | 4099．9 | －97．5 | －2，${ }^{\text {a }}$ |
 | 9．9\％ | ${ }^{2832.8}$ | ${ }^{3096.3}$ | ${ }^{263.5}$ | 9．3\％ | 9．9\％ | 3900.2 | ${ }^{3933.5}$ | 33.3 | 0．9\％ |
 | 11．1\％ | ${ }^{2806.2}$ | 3060．0 | ${ }^{253.8}$ | 9．0\％ | 11．1\％ | ${ }^{3891.3}$ | ${ }_{3844.7}$ | －46．5 | －1．2\％ |
 | ${ }^{12.3 \%}$ | ${ }^{27899} 2$ | ${ }^{28855.2}$ | 96.0 | 3．4\％ | ${ }^{12.3 \%}$ | ${ }^{3843.1}$ | ${ }^{3786.5}$ | －56．6 | －1．5\％ |
 | 13．6\％ | ${ }^{2671.5}$ | ${ }^{2858.5}$ | 187.0 | 7．0\％ | 13．6\％ | 3510．4 | ${ }^{3610.5}$ | 100.1 | 2．9\％ |
 | 14．8\％ | ${ }^{2647.9}$ | 2835.7 | 187.9 | 7．1\％ | 14．8\％ | 339997 | ${ }^{3329.0}$ | －70．8 | －2．1\％ |
 | 16．0\％ | ${ }^{1984.5}$ | ${ }^{19915.8}$ | －68．7 | －3．5\％ | 16．0\％ | ${ }^{3273.1}$ | 3294.4 | 21.3 | 0．7\％ |
 | 17．3\％ | 1942.8 | 1912.5 | －30．4 | －1．6\％ | 17．3\％ | 3244.7 | ${ }^{3142.3}$ | －102．4 | －3．2\％ |
 | 18．5\％ | 1720.6 | 1893.8 | ${ }^{173.2}$ | 10．1\％ | 18．5\％ | ${ }^{3089.8}$ | ${ }^{30366.1}$ | －53．7 | －1．7\％ |
 | 19．8\％ | 1685.8 | 1870.0 | 184.1 | 10．9\％ | 19．8\％ | 2831.4 | ${ }^{3035.0}$ | ${ }^{203.6}$ | 7．2\％ |
 | 21．0\％ | 1285.9 | ${ }^{14997.2}$ | 211.2 | 16．4\％ | 21．0\％ | ${ }^{27633.9}$ | ${ }^{2969.6}$ | ${ }_{5}^{205.6}$ | 7．4\％／ |
 | ${ }^{22.2 \%}$ | 1261.1 | 1397.1 | 130.0 | 10．3\％ | ${ }^{22.2 \%}$ | ${ }^{2375.8}$ | 2893.4 | 517.6 | 21．8\％ |
 | 23．5\％ | ${ }^{11944.6}$ | ${ }^{1354.0}$ | ${ }^{159.5}$ | 13．4\％ | 23．5\％ | ${ }^{235997}$ | ${ }^{2841.1}$ | 481.4 | ${ }^{20.4}$ |
 | 24．7\％ | 1160.4 | ${ }^{12754.4}$ | 115.0 | ${ }^{9.9 \%}$ | 24．7\％ | ${ }^{23388.7}$ | ${ }^{2828.3}$ | ${ }^{489.6}$ | 20．9\％ |
 | 25．9\％ | 1119.0 | ${ }^{12388.8}$ | 119.8 | 10．7\％ | 25．9\％ | ${ }^{23019}$ | ${ }^{2600.1}$ | 298.2 | 13．0\％ |
 | 27．2\％ | 1081.6 | ${ }^{1146.9}$ | 65.3 | 6．0\％ | 27．2\％ | ${ }^{22222.0}$ | ${ }^{2426.2}$ | 204.2 | 9．2\％ |
 | 28．4\％ | 1070.8 | 1120.7 | 49.9 | 4．7\％ | 28．4\％ | ${ }^{2142.5}$ | 2401.4 | 258.9 | ${ }^{12.19 \%}$ |
 | 29．6\％ | 839.3 | 1009.0 | 1697 | ${ }^{20.2 \%}$ | 29．6\％ | 1900.3 | ${ }^{2353.6}$ | 453.3 | 23．9\％ |
 | 30．9\％ | ${ }_{823.7}$ | 1006.8 | 183.1 | ${ }^{22.2 \%}$ | 30．9\％ | 18818.7 | ${ }^{2311.7}$ | 492.9 | ${ }^{27.19}$ |
 | 32．19\％ | 797.6 | ${ }^{993.4}$ | 198.8 | 25．0\％ | 32．1\％ | 1779.6 | ${ }^{2310.0}$ | ${ }^{530.4}$ | 29．8\％ |
 | 33．3\％ | 779.1 | 981.8 | ${ }_{202.6}$ | 26．0\％ | 33．3\％ | 1775.6 | 18805.5 | 29.9 | 1．7\％ |
 | 34．8\％ | 74.1 | 960.0 | 218.0 | ${ }^{29.4 \%}$ | 34．6\％ | 1709.0 | 1784.0 | 75.0 | 4．4\％ |
 | 357．0\％ | 705.5 | ${ }_{802.9}^{803.6}$ | 14.0 97.4 | ${ }_{\text {cke }}^{\text {20．8\％}}$ | 37．0\％ | ${ }^{115977.4}$ | ${ }_{1}^{1588.3}$ | ${ }_{8,7}$ | 0．6\％ |
 | 38．3\％ | 698.9 | 798.8 | 99.9 | 14．3\％ | 38．3\％ | 1517.0 | 1321.7 | －195．3 | －12．9\％ |
 | 39．5\％ | 680.1 | 755.9 | 75.9 | 11．2\％ | 39．5\％ | 1405.0 | 1284.5 | －120．6 | －8．6\％ |
 | 40．7\％ | 638.1 | 747.0 | 109.0 | 17．1\％ | 40．7\％ | 1247.6 | 1263.1 | 15.6 | 1．2\％ |
 | 42．0\％ | 592．2 | ${ }_{714.7}$ | 149.5 | 25．2\％ | 42．0\％ | 1218.4 | ${ }^{12615}$ | ${ }^{43.2}$ | 3．5\％ |
 | 43．2\％ | ${ }_{5}^{579.8}$ | 721.1 7107 | 141．3 | 24．4\％ | 43．2\％ | ${ }^{1196.8}$ | ${ }_{\text {1251．6 }}^{12222}$ | $\begin{array}{r}54.8 \\ \hline 8.8 \\ \hline\end{array}$ | 4．6\％ |
 | ${ }_{45.7 \%}^{44.4}$ | 564.2 | 710.7 | 133.1 | ${ }^{22.9 \%}$ | ${ }^{44.4 \%}$ | 11196.0 | ${ }^{12222.2}$ | ${ }_{656}^{26.2}$ | ${ }_{5}^{2.2 \%}$ |
 | 46．9\％ | 467．9 | 572.7 | 1048 | 22．4\％ | 4．9\％ | 1137.8 | ${ }_{1140.7}$ | 2.9 | 0．3\％ |
 | 48．1\％ | 420.0 | 496.9 | 76.9 | 18．3\％ | 48．1\％ | 1082.6 | 1098.7 | 16.1 | 1．5\％ |
 | 49．4\％ | 402.5 | 495.8 | 93.3 | 23．2\％ | 49．4\％ | 1069.1 | 1084.1 | 14.9 | 1．4\％ |
 | 50．6\％ | 377.0 356.4 | ${ }_{4054}^{467.7}$ | 90.7 490 | 24．0\％ | 年 50.6% | 1033．0 | 1029.0 968.9 | －4．0． | －0．4\％ |
 | 51．9\％ | 356.4 3269 | ${ }_{4}^{405.4}$ | 49.0 | ＋13．7\％ | | ${ }_{9}^{979.3}$ | ${ }_{966.9}^{968}$ | -10.4
 524
 2.4 | －1．1\％ |
 | 53．1\％ | 326.9 3099 | ${ }_{385}^{402.8}$ | 76.0 754 | － 23.2% | 年 53.19% | 914．2 | －96．6 | 52.4 689 | ， 5.7% |
 | 54．3\％ | 309.9 274.1 | ${ }_{3368}^{385}$ | 75.4 627 | － 24.3 \％ | 54．3\％ | ${ }_{883,5}^{886.9}$ | ${ }_{8975}^{955.8}$ | ${ }^{68.9}$ | 7．8\％\％ |
 | 56．8\％ | 272.9 | 29.0 | 17.1 | 6．3\％ | 56．8\％ | ${ }_{861.3}$ | 846.5 | －14．8 | －1．7\％ |
 | 58．0\％ | 269.1 | 287.8 | 18.7 | 6．9\％ | 58．0\％ | ${ }_{8}^{8397}$ | 833.9 | －5．8 | －0．7\％ |
 | 59．3\％ | 261.1 | 278.4 | 17.4 | 6．6\％ | 59．3\％ | 823.4 | 826.6 | 3.1 | 0．4\％ |
 | ${ }_{6}^{60.5 \%}$ | 245.4 2422 | ${ }_{2699}^{277.0}$ | 31.6 276 | ${ }^{12.29 \%}$ | 60．5\％ | 753.3 7500 | 7777.8 | 24.5 24.9 | 隹3．3\％ |
 | | 242.2 2409 | ${ }_{2499}^{2699}$ | 27.6 8.9 | | 61．7\％ 63.0% | 750.0 6921 | 774.9 6993 | 24.9 7.9 | ${ }_{\text {l }}{ }_{10 \%}^{3.3 \%}$ |
 | 63．0\％ | 240.9 2214 | ${ }_{2408}^{249}$ | 8.9 194 | 3．7\％ | －63．0\％ | 692.1 6380 | 699.3 644.2 | ${ }_{6}^{7.2}$ | －1．0\％ |
 | 6．54\％ | ${ }_{218.2}^{21.4}$ | ${ }_{221.5}^{24.8}$ | ${ }_{3.3}^{19.4}$ | 1．5\％ | ${ }^{64.4 \%}$ | － 5437.0 | ${ }_{563.5}^{644}$ | －${ }_{\text {6．}}^{6.2}$ | －1．0\％ |
 | ${ }^{66.7 \%}$ | 211.4 | 215.7 | 4.3 | 2．0\％ | 66．7\％ | 487.6 | 543.2 | 55.5 | 11．4\％ |
 | 67．9\％ | ${ }^{200.6}$ | ${ }^{214.3}$ | 7.8 | 3．8\％ | 67．9\％ | 475.7 | 539.2 | 63.5 | 13．3\％ |
 | 69．1\％ | 205.5 | 212.0 | 6.5 | 3．2\％ | 69．1\％ | 454.0 | 491.8 | 37.7 | 8．3\％ |
 | 70．4\％ | 205.0 2049 | ${ }_{2073}^{207.5}$ | 2.5 24 | － 1.2% | 70．4\％ | 389.8 374.1 | 436.1 3724 | － 46.3 | 11．9\％ |
 | 72．8\％ | ${ }_{203.3}^{204.9}$ | ${ }_{205.7}^{207.3}$ | 2.4 2.4 | 1．2\％ | 72．8\％ | 374.1 3429 | 372.4 348.1 | －1．6 | － |
 | 74．1\％ | 201.4 | 204.2 | ${ }_{2}^{2.8}$ | 1．4\％ | 74．1\％ | 339.9 | 338.3 | －1．6 | －0．5\％ |
 | 75．3\％ | ${ }^{200.5}$ | ${ }_{2015}^{2038}$ | ${ }^{3.3}$ | 1．5\％ | 75．3\％ | 333．3 | 333．2 | －0．1 | 0．0\％ |
 | 76．5\％ | 200.5 | 201.5 | 1.0 | 0．5\％ | 76．5\％ | 305.4 | 319.4 | 14.0 | 4．6\％ |
 | 77.8% 79.0% | 199.6 1992 | 199.9 1996 | ${ }_{0}^{0.4}$ | 0．2\％ | 77．8\％ | 274.6 2656 | 277.4 274.7 | ${ }_{92}^{2.8}$ | |
 | 80．2\％ | 196.5 | 197.8 | 1.3 | 0．7\％ | 80．2\％ | 264.8 | 268.1 | ${ }_{3} 3$ | 1．3\％ |
 | 81．5\％ | 193.4 | 195.2 | 1.7 | 0．9\％ | 81．5\％ | 254.0 | 266.4 | 12.4 | 4．9\％ |
 | 82．7\％ 8400% | 193.4 1926 | $\begin{array}{r}193.8 \\ 193.2 \\ \hline 1\end{array}$ | ${ }_{0}^{0.4}$ | ${ }_{\text {a }}^{0.2 \% \%}$ | 82．7\％ 840% | － 240.2 | 240.0 2372 | －0．2 72 | －0．1\％ |
 | 85．2\％ | 191.1 | 192.5 | 1.4 | 0．7\％ | 85．2\％ | ${ }_{222.2}^{2021}$ | 234.3 | 12.1 | 5．5\％ |
 | 86．4\％ | 191.1 | 191.8 | 0.7 | 0．4\％ | 86．4\％ | 207.4 | 212.6 | 5.2 | 2．5\％ |
 | 87.7% 88.9% | 190.9 190.8 | ${ }_{191.5}^{191.5}$ | 0.6 0.5 | ${ }_{\text {a }}^{0.3 \%}$ | 87．7\％ | 205.1 1996 | ${ }_{2025}^{2089}$ | 3.8 2 28 | －${ }_{1}^{1.9 \%}$ |
 | 90．1\％ | 190.7 | 191.1 | 0.4 | 0．2\％ | 90．1\％ | 197.4 | 200.1 | ${ }_{2}^{2.7}$ | 1．3\％ |
 | 91．4\％ | 189.6 | 190.7 | 1.1 | 0．6\％ | 914\％ | 196.9 | 197.1 | 0.3 | 0．1\％ |
 | 92．6\％${ }_{\text {938\％}}$ | 189.1 1891 | 189.4 1891 | ${ }_{0}^{0.3}$ | － | ${ }_{93,8 \%}^{92.6 \%}$ | $\begin{array}{r}191.2 \\ 1907 \\ \hline\end{array}$ | 191.2 190.4 | 0.0 -0.0 | －0．0\％ |
 | 95．1\％ | 188.4 | 188.5 | 0.1 | 0．1\％ | 95．1\％ | 189.7 | 189.7 | 0.0 | 0．0\％ |
 | 96．3\％ | 188.2 | 188.4 | 0.2 | 0．1\％ | 96．3\％ | 188.5 | 188.5 | 0.0 | 0．0\％ |
 | 97．5\％ | 187.0 | 187.5 | 0.5 | 0．3\％ | 97．5\％ | 186.9 | 187.6 184.4 | 0.7 | 0．4\％ |
 | 98．8\％ 1000% | 184.3 1834 | 184.2 183 | ${ }_{0}^{0.0}$ | － | 98．8\％ | 184.1 1840 | 184.4 1839 | －0．2 | －0．1\％ |

 | $\underset{\substack{\text { Perecent } \\ \text { Exceedance } \\ \text { Proability }}}{\text { ．}}$ | Way | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSII 2070 Without | WSIP 2070 With Project | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UuHOSICM) } \end{gathered}$ | |
 | | Monthy E C | Monthly E E | | |
 | （\％） | ${ }^{103044}$ | | 121 | |
 | | | 3 | | |
 | ${ }^{1.25 \%}$ | 9462.9 | 93327 | | |
 | 2．5\％ | 9063.0 | 91329 | 70.0 | |
 | 3．7\％ | 697．2 | 8659.6 | | |
 | 4．9\％ | ${ }^{6628.3}$ | 6597.9 | －30．4 | |
 | 6．2\％ | 6397．0 | 6426.5 | 29.5 | |
 | 7．4\％ | ${ }^{6387.1}$ | 6352.4 | －34．7 | |
 | 8．6\％ | ${ }^{6297.3}$ | ${ }^{6300.3}$ | 3.1 | |
 | 9．9\％ | 6198.3 | 6217.9 | 19.6 | |
 | 11．1\％ | 5790.6 | 5790.9 | 0.3 | |
 | 3\％ | 658．1 | 5662.9 | 4.8 | |
 | 13．6\％ | 5320.9 | 5242.0 | 78.9 | －1．5\％ |
 | 8\％ | 4703.1 | 4795.8 | 92.7 | |
 | 16．0\％ | 4696.2 | ${ }^{4683.1}$ | －13．1 | －0．3\％ |
 | 17．3\％ | 4689.7 | 4677.5 | ${ }^{-12.2}$ | －0．3\％ |
 | 18．5\％ | ${ }^{4687.6}$ | 4651.7 | －35．9 | －0．8\％ |
 | 19．8\％ | 4625.9 | ${ }^{4626.2}$ | 0.3 | 0．0\％ |
 | 21．0\％ | 4610.8 | ${ }^{4607.0}$ | －3．8 | －0．1 |
 | 22．2\％ | 4587.9 | ${ }^{4511.6}$ | －76．3 | －1．7\％ |
 | 23．5\％ | ${ }^{45355.5}$ | ${ }^{4381.5}$ | 154.0 | －3．4\％ |
 | 24．7\％ | ${ }^{4533.8}$ | ${ }^{4359.8}$ | 174.1 | ${ }^{-3.8 \%}$ |
 | 25．9\％ | 4516.6 | 4358.9 | －157．8 | ${ }^{-3.5}$ |
 | 27．2\％ | ${ }^{4431.3}$ | 4338.6 | 92.7 | －2．1\％ |
 | 28．4\％ | ${ }^{4422.6}$ | 4317.2 | 105．3 | －2．4 |
 | 29．6\％ | 4395.2 | 4205.0 | 190.2 | －4．3\％ |
 | 30．9\％ | 4364.4 | 4191.2 | 173．3 | 4.0 |
 | 32．1\％ | 4364.4 | 4175.0 | 189.4 | －4．3\％ |
 | 33．3\％ | 4329.7 | 4165.9 | ${ }^{163.7}$ | －3．8 |
 | 34．6\％ | 4271.1 | 4147.3 | 123.7 | －2．9\％ |
 | 35．7\％ | 4179.9 | ${ }^{41388.1}$ | －41．8 | －1．0 |
 | 37．0\％ | 4165.2 | 4071.9 | －93．4 | 2．2\％ |
 | 38．3\％ | 4152.8 | 4061.6 | －91．3 | 2．2\％ |
 | 39．5\％ | 4044.1 | ${ }^{4047.3}$ | 3.2 | 0．1\％ |
 | 40．7\％ | 3892.5 | 3907.4 | 14.9 | 0．4\％ |
 | 42．0\％ | ${ }_{3441.6}$ | ${ }^{3615.7}$ | 174.1 | 5．1\％ |
 | 43．2\％ | 3384，4 | ${ }^{3311.0}$ | －73．4 | －2．2\％ |
 | 44．4\％ | ${ }^{3271.5}$ | ${ }^{3295.7}$ | 24.2 | 0．7\％ |
 | 45．7\％ | ${ }_{3}^{3219.3}$ | ${ }^{3204.6}$ | －14．7 | －0．5\％ |
 | 46．9\％ | ${ }_{3186.7}$ | ${ }^{3173.8}$ | －12．9 | －0．4\％ |
 | 48．1\％ | ${ }_{3122.7}$ | ${ }^{2963.1}$ | －159．5 | －5．1\％ |
 | 49．4\％ | ${ }^{2945.5}$ | 2913.7 | －31．7 | －1．1\％ |
 | 50．6\％ | 2937．8 | ${ }^{2831.3}$ | －106．5 | －3．6\％ |
 | 51．9\％ | 2856.8 | ${ }^{2816.2}$ | －40．6 | ．4\％ |
 | 53．1\％ | 2806.5 | 2791.4 | －15．1 | －0．5\％ |
 | 54．3\％ | ${ }^{2761.3}$ | ${ }^{2762.3}$ | 1.0 | 0\％ |
 | 55．6\％ | ${ }^{2628.8}$ | ${ }^{2756.6}$ | ${ }^{127.7}$ | 4．9\％ |
 | 56．8\％ | ${ }^{2529.3}$ | 2730．0 | 200.6 | \％ |
 | 58．0\％ | ${ }^{2520.6}$ | ${ }^{2556.0}$ | 35.4 | 1．4\％ |
 | 59．3\％ | ${ }^{2512.4}$ | 2547.9 | ${ }_{35.6}$ | 4\％ |
 | 60．5\％ | ${ }^{237527}$ | 2494.4 | 118.7 | 5.0% |
 | 61．7\％ | ${ }^{2372.5}$ | 2404.9 | 32.4 | 14\％ |
 | 63．0\％ | ${ }^{2241.6}$ | ${ }^{2304.1}$ | ${ }^{62.5}$ | 2．8\％ |
 | 64．2\％ | 1941.0 | 1973．0 | 32.0 | 6\％ |
 | 65．4\％ | 1918.7 | 1898.2 | －20．5 | －1．1\％ |
 | ${ }^{66.7 \%}$ | 1897.6 | 1788.2 | －09．4 | 8\％ |
 | 67．9\％ | 1828.5 | 17771.8 | －56．7 | －3．1\％ |
 | 69．1\％ | 1773.8 | 1755.1 | －18．7 | 1\％ |
 | 70．4\％ | 1703.7 | 1725.1 | 21.5 | 1．3\％ |
 | 71．6\％ | 1570.5 | 1672.0 | 101.5 | 5\％ |
 | 72．8\％ | ${ }^{14557.8}$ | ${ }^{1412.1}$ | －45．7 | ．1\％ |
 | 74．1\％ | 1265.9 | ${ }^{13322.2}$ | ${ }_{126.3}^{126}$ | \％ |
 | 75．3\％ | 1113.5 | 1267.4
 1588 | 153．9 | 3．8\％ |
 | 76．5\％ | 1083.0 | 1155.8 | 1.7 | ${ }^{6.7 \%}$ |
 | 77．8\％ | ${ }^{1078.0}$ | 1108.1 10953 | 30.1 | 2．8\％ |
 | 79．0\％ | 1070.6 | 1095.3 | 4.7 | 3\％ |
 | 80．2\％ | ${ }_{803}^{9303}$ | 1070．7 | 140.4 | 15．1\％ |
 | 81．5\％ | ${ }_{803.7}$ | ${ }_{3030.1}^{907}$ | 26.4 | 15．7\％ |
 | 82．7\％ | ${ }_{783} 79.2$ | 813.0 8873 | ${ }_{20.8}^{20.8}$ | \％ |
 | 84．0\％ | 783.9 | 807.3 | ${ }^{23.3}$ | 3．0\％ |
 | 85．2\％ | 769.9 7583 | 804．2 | 34．3 | 4．5\％ |
 | 86．4\％ | 758.3 | 791.6 | ${ }^{33.3}$ | 4\％ |
 | 87．7\％ | 57.1 | 569.9 5992 | －1．3 | －0．2\％ |
 | 88．9\％ | 554.8 | 569.2 | 14.4 | 6\％ |
 | 90．19\％ | 478.8 | 504．1 | 25．2 | 5．3\％ |
 | 91．4\％ | 404.9 | ${ }^{435.3}$ | 30.5 | |
 | 92．6\％ | 394.7 | 419.4 | 24.7 | ${ }^{6.3 \%}$ |
 | ${ }^{93.8 \%}$ | ${ }^{373} 3$ | 415.1 | 4.1 | 11．2\％ |
 | 95．1\％ | 332.4 | ${ }^{326.3}$ | －6．1 | 1．8\％ |
 | ${ }^{96.3 \%}$ | 318.4 | ${ }^{313.5}$ | 4.9 | \％ |
 | 97．5\％ | 25．5 | 26.8 | 0.2 | 1\％ |
 | 988．8\％ | ${ }_{1879}^{214.3}$ | 210.8 1904 | －3．4 | $\stackrel{-1.6 \%}{1.4 \%}$ |

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probabaility } \end{aligned}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSII 2070 Weithout | WSIP 2070 With Project | Absolute | |
 | | Montily EC | Monthy EC | Difference (unHosicm) | Hference (\%) |
 | (\%) | UMHosicm | UMHOSICM) | 84.5 | |
 | | 12113.4 | | 84.5 | 0.7\% |
 | ${ }^{1.25 \%}$ | - $\begin{aligned} & 116868.1 \\ & 11653\end{aligned}$ | | ${ }_{-338.7}^{-48.3}$ | ${ }_{\text {-2.9\% }}^{-0.4 \%}$ |
 | 3.7\% | ${ }^{11627.3}$ | 11188.6 | -438.7 | -3.8\% |
 | 4.9\% | 7900.5 | 7927.7 | 27.2 | 0.3\% |
 | -6.2\% | 7873.3 7868.1 | 7889.4 7850.4 | - -1.9 | 0.0\% |
 | 7.4\% | 7868.1 78505 | 7850.4 | -17.7 | -0.2\% |
 | 9.9\% | 7850.5 77720 | 7774.9 | - -74.6 | - ${ }_{\text {- }}^{\text {-1.1\% }}$ |
 | 11.1\% | 7738.7 | ${ }^{7262.3}$ | ${ }^{-476.3}$ | -6.2\% |
 | 12.3\% | 7517.2 | 7215.7 | -301.5 | -4.0\% |
 | 13.6% 14.8% | ${ }_{7}^{7290.4}$ | ${ }_{6883,1}^{7017}$ | ${ }_{-423.5}^{-278.7}$ | -3.8.8\% |
 | 16.0\% | 6904.6 | 6859.0 | ${ }_{-}-45.6$ | -0.7\% |
 | 17.3\% | 6896.5 | 6692.7 | -203.8 | -3.0\% |
 | (18.5\% | 6845.2 68279 | 6568.0 6519.6 | ${ }_{-308.2}^{-277.2}$ | -4.1\% ${ }_{-4}$ |
 | 21.0\% | 6685.9 | ${ }_{6503.8}^{659}$ | -182.2 | ${ }_{-2.7 \%}$ |
 | 22.2\% | 6659.8 | 6435.9 | -223.9 | -3.4\% |
 | ${ }_{2}^{23.5 \%}$ | ${ }^{6613.9}$ | ${ }^{6376.1}$ | -237.8 -2653 | - ${ }_{\text {- }}^{\text {- }}$ - 4.0% |
 | 25.9\% | ${ }^{6446.4}$ | 6324.0 | ${ }_{-122.4}$ | -1.9\% |
 | 27.2\% | 6392.9 | 6304.1 | -88.8 | -1.4\% |
 | 28.4. | | 6297.6 61898 | - $\begin{array}{r}-86.9 \\ -168.4\end{array}$ | - |
 | 30.9\% | ${ }^{6330.9}$ | 6127.6 | -203.3 | -3.2\% |
 | 32.1\% | 6263.2 | 6042.3 | -221.0 | -3.3\% |
 | 年33.3\% | - 6232.4 | | - 204.7 -3918 | -3.3\% |
 | 35.8\% | ${ }^{61158.9}$ | 5712.7 | -456.1 | -7.4\% |
 | 37.0\% | 6158.6 | 5698.4 | -460.2 | -7.5\% |
 | 㐌38.3\% | 6157.6 6112.8 | 5588.9 5544.6 | - ${ }_{\text {- } 5268.2}$ | -9.9\%\% |
 | 40.7\% | 6097.6 | 5575.2 | -522.4 | -8.6\% |
 | 42.0\% | ${ }^{6031.8}$ | 5429.1 | -602.7 | |
 | ${ }^{43.4 \%}$ | 5824.9 5744.1 | ${ }_{5352.5}^{540.4}$ | -499.4 | - -7.8 C |
 | 45.7\% | 5699.3 | 5248.1 | -451.2 | -7.9\% |
 | | ${ }_{5}^{5628.2}$ | ${ }^{5231.6}$ | -390.6 | -7.0\% |
 | 48.1\% 4.4 | 5501.7 5307.5 | 5210.0 5195.9 | ${ }_{\text {- }}^{\text {-211. }}$ - 21.7 | - |
 | 50.6\% | 5275.8 | 5188.5 | -87.3 | -1.7\% |
 | 51.9\% | 5270.7 | 5143.0 | -127.8 | -2.4\% |
 | 54.3\% | ${ }_{5112.2}^{5207.6}$ | 5114.9 5012.9 | -99.3 | -1.1.9\% |
 | 55.6\% | 5039.7 | 4941.8 | -98.0 | -1.9\% |
 | 56.8\% | 49987 | 4906.4 | -92.3 | -1.8\% |
 | 59.3\% | ${ }_{4852.4}^{4877.6}$ | ${ }_{4855.3}^{4892.9}$ | 15.3 2.9 | - 0.1 \% |
 | 60.5\% | 4800.6 | 4773.8 | -26.8 | -0.6\% |
 | ${ }^{61.7 \%}$ | | 4755.4 | 7.6 | 0.2\% |
 | 64.2\% | ${ }_{4719.5}^{4743.6}$ | ${ }_{47006.3}^{475.1}$ | -113.2 | ${ }^{0.2 \% \%}$ |
 | 65.4\% | 4641.8 | 4656.0 | 14.2 | 0.3\% |
 | ${ }^{66.7 \%}$ | ${ }^{45555.6}$ | 45991.1 | 5.5 | 0.1\% |
 | 69.1\% | ${ }_{4547.9}^{459.4}$ | ${ }_{4}^{45310.5}$ | -17.9 | ${ }_{-2.6 \%}^{-0.2 \%}$ |
 | 70.4\% | 4434.1 | 4426.7 | -7.4 | -0.2\% |
 | 71.6\% | 4413.4 | | -48.0 | |
 | 74.1\% | ${ }_{42477.6}^{4324}$ | ${ }_{42655.9}^{42965}$ | ${ }_{18.3}$ | - |
 | 75.3\% | 4242.7 41197 | 42478 | 5.2 | 0.1\% |
 | 76.5\% | ${ }_{4045.9}^{419.7}$ | ${ }_{4}^{42185.9}$ | 95.4
 140.0 | ${ }_{3.5 \%}^{2.3 \%}$ |
 | 79.0\% | 3956.5 | ${ }^{4152.3}$ | 195.7 | 4.9\% |
 | 80.2\% | ${ }_{3}^{3845.6}$ | 3923.5 | 77.9 | 2.0\% |
 | ${ }^{81.5 \%}$ | ${ }^{38355.3}$ | 3889.5 3800.0 | 34.5 44.5 | 1.2\% |
 | 84.0\% | 3719.0 | 3786.1 | ${ }_{67.1}$ | ${ }^{1.8 \%}$ |
 | 85.2\% | ${ }^{3696.5}$ | 3389.1 | -307.4 | -8.3\% |
 | - 86.480 | ${ }_{\text {3 }}^{3384.2}$ | | ${ }^{2.4}$ | ${ }^{0.1 \%}$ |
 | 88.9\% | ${ }_{3244.2}$ | ${ }_{3244.4} 3$ | 0.2 | 0.0\% |
 | 90.1\% | 2801.8 | ${ }^{2943.2}$ | 141.4 | 5.0\% |
 | 992.4\% ${ }_{\text {92\% }}$ | 2710.7 2519.9 | 2779.2 2536.0 | 68.5 16.1 | 0.6\% |
 | 93.8\% | 2463.6 | ${ }_{2381.3}^{2510}$ | -82.4 | -3.3\% |
 | 95.1\% | 2288.2 | ${ }^{2231.2}$ | -57.0 | -2.5\% |
 | 96.3\% ${ }_{\text {97 }}$ | 2244.1 | 2150.9 | -93.2 | -4.2\% |
 | 98.8\% | ${ }_{1722.8}^{2081}$ | 11371.9 | -356.9 | -20.6\% |
 | 100.0\% | 524.2 | 481.2 | -43.0 | ${ }_{-8.2 \%}$ |

 | $\begin{aligned} & \text { Percrent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | September | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP P270 Weithout | WSIP 2070 With Project | Absolute | |
 | | Monthly EC | Monthly EC | (interence | ference (\%) |
 | (\%) | UMHOSSCM) | | | |
 | 0.0\% | 13880.6 | 13571.2 | -229.4 | -1.7\% |
 | 1.2\% | ${ }^{1373476}$ | 13378.3
 13265
 1 | -356.3 | |
 | 2.5\% | ${ }^{137717.4}$ | | | |
 | 3.7\% | ${ }^{135855.5}$ | 13248.5
 12893 | - -637 | |
 | 4.9\% | | | | |
 | 7.4\% | ${ }_{1}^{135389.1}$ | ${ }_{12887.3}^{12887.6}$ | ${ }_{\text {- }}^{-67775}$ | ${ }_{-3.6 \%}$ |
 | 8.6\% | 13044.7 | 12739.6 | -305.2 | -2.3\% |
 | ${ }^{\text {9.9\% }}$ | ${ }^{130332.3}$ | ${ }^{12666.9}$ | -365.3 | -2.8\% |
 | - ${ }_{\text {l1.1\% }}^{12.3 \%}$ | 13025.1 130169 | 12594.7 123031 | - -730.4 | - ${ }_{-5.5 \%}$ |
 | 12.3\% | | | | |
 | 134.8\% | ${ }_{128599}^{12899.7}$ | ${ }_{1218295.5}^{12298.7}$ | -6074.2 | -5.2\% |
 | (17.0\%\% | 127788.8
 12684.4 | 12184.3 121408 | ${ }_{\text {- }}^{\text {-584, }}$ | ${ }_{-4.4 .6 \%}^{4.4}$ |
 | 18.5\% | 12645.3 | 12094.9 | ${ }_{\text {-550.3 }}$ | |
 | 19.8\% | 12627.7 | 12099.5 | -536.2 | -4.2\% |
 | 21.0\% | 12606.4 125578 | ${ }^{1208228}$ | -523.5 | -4.2\% |
 | 22.2\% | 12557.6 | 12047.7 | -510.0 | -4.1\% |
 | ${ }_{224.5}^{23.5}$ | 12554.8 12540.1 | 12019.5 119855 1 | -535.2 | ${ }_{-4.4 \%}^{-4.4 \%}$ |
 | 25.9\% | 12536.9 | 11983.4 | -553.5 | -4.4\% |
 | 27.2\% | 12520.1 | 11924.0 | -596.2 | -4.8\% |
 | 28.9\% ${ }^{28.6 \%}$ | 12500.8 12478.2 | 11889.7 11784.5 | ${ }_{\text {-693.7 }}^{\text {-697. }}$ | ${ }_{-5.5 \%}^{-5.6 \%}$ |
 | 30.9\% | 1247700 | 11758.4 | -711.7 | -5.7\% |
 | 32.1\% | 12414.4 | 11750.5 | -663.9 | -5.3\% |
 | 33.3% 34.6% | 12411.3 12399.4 | 117288.8 11512.6 | -682.5 -886.9 | -.5.7\% |
 | 35.8\% | 12324.7 | 11488.2 | -836.5 | 6.8\% |
 | 37.0\% | 12312.7 | ${ }^{11471.6}$ | -841.1 | -6.8\% |
 | ${ }_{3}^{38.5 \%}$ | 122921.3
 12282.7 | 11441.9
 11332.5 | - -849.4 -.950 .2 | --7.7\% |
 | 40.7\% | 12251.2 | 11219.8 | -1031.4 | 8.4\% |
 | | 12203.6 | 11208.7 | -994.9 | -8.2\% |
 | 44.4\% | ${ }_{1}^{1212128.5}$ | (11206.3 | --948.1 | -7.7.8\% |
 | 45.7\% | 12086.7 | 11090.0 | -996.7 | -8.2\% |
 | | ${ }^{122577.4}$ | 11088.5 | -968.9 | -8.0\% |
 | 49.4\% | ${ }^{1116640.7}$ | ${ }_{\text {1080 }}^{109047.1}$ | ${ }_{-823.5}^{-78.1}$ | --7.1\% |
 | 50.6\% | 11544.8 | 10807.9 | -736.9 | -6.4\% |
 | | | | | |
 | 53.3\% | ${ }_{\text {9927.1 }}^{11262.5}$ | 101888.3 | -1074.2 -376.7 | ${ }_{-3.8 \%}^{-9.5 \%}$ |
 | 55.6\% | 6194.0 | 6148.3 | -45.7 | \% |
 | 56.8\% | 6064.1 | 5991.3 | -72.8 | |
 | 59.3\% | ${ }_{5}^{59999.0}$ | 58874.5 | -124.5 -102.2 | - -1.17% |
 | 60.5\% | 5841.7 | 5684.7 | -157.0 | |
 | 61.7\% | 5793.8 | 5670.8 | -123.1 | .1\% |
 | 64.0\% | 5710.2 | 5522.0 | -188.1 | -3.3\% |
 | 6. $6.4 .4 \%$ | ${ }_{56991.2}^{569.2}$ | 5494.2 5480.1 | -205.0 -111.1 | -3.6\% |
 | 66.7\% | 5554.1 | 5450.3 | -103.8 | -1.9\% |
 | 67.9\% | 55479.1 3479 | ${ }_{3}^{52977.4}$ | ${ }_{-8.4}^{230.3}$ | ${ }^{-4.2 \%}$ |
 | 70.4\% | 3315.8 | 3335.5 | 19.7 | -0.6\% |
 | 71.6\% | 3273.9 | ${ }^{3271.1}$ | -2.8 | -0.1\% |
 | 72.8\% | 3261.4
 32604 | ${ }_{3}^{3197.7}$ | -63.7 | -2.0\% |
 | 75.3\% | ${ }_{3}^{32600.4}$ | 3188.6 3138.6 | -71.8 .78 .9 | |
 | 76.5\% | 3187.5 | 3134.1 | -53.3 | -1.7\% |
 | 77.8\% | 3152.6 | 3120.5 | -32.1 | -1.0\% |
 | | ${ }_{3}^{3142.1}$ | | | |
 | 80.2\% | 3135.0
 3131.5 | 3100.1 3048.8 | -34.9
 -82.8 | - -1.6% |
 | 82.7\% | 3126.5 | 2996.4 | -130.1 | -4.2\% |
 | | 3097.0 30920 | ${ }_{2978.3}^{2981.2}$ | | |
 | ${ }_{8}^{86.4 \%}$ | ${ }_{3055.9}$ | ${ }_{2}^{2970.5}$ | ${ }_{-85.4}$ | -3.8\% |
 | 87.7\% | 3055.9 | 2949.1 | -106.7 | -3.5\% |
 | 88.9\% | 3044.6 | 2945.1 | -99.4 | -3.3\% |
 | ${ }^{90.1 \%}$ | 3040.9 | 2944.7 | -96.2 | -3.2\% |
 | 99.4\% | 3016.1 | ${ }_{2}^{2984.7}$ | -111.3 | -3.7\% |
 | 93.8\% | ${ }_{2961.7}$ | ${ }_{2857.7}^{2047}$ | ${ }^{-104.1}$ | -3.5\% |
 | 95.1\% | 2944.6 | 2834.9 | -109.7 | . |
 | ${ }^{96.3 \%}$ | ${ }^{2905.6}$ | 2801.1 | -104.5 | -3.6\% |
 | 97.5\% | 2904.0 | 2749.2 | -154.9 | -5.3\% |
 | 100.0\% | ${ }_{2,824.1}^{2060.9}$ | $\stackrel{2}{26677.9}$ | $\xrightarrow{-146.1}$ | -5.2\% |

 Figure SQ-24-b
 Sacramento River at Port Chicago (Roe Island), Monthly EC

 | |
 | :--- | :--- | :--- | :--- |

 | $\underset{\substack{\text { Pexceent } \\ \text { Probabability }}}{\text { Prese }}$ | | November | | | | December | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | WSIP 2070 With Project | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOSICM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | | $\begin{gathered} \text { Proiect } \\ \hline \text { Monthly EC } \\ \text { (UMHOS/CM) } \\ \hline \end{gathered}$ | WSIP 2070 With ProjectMonthy EC | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOS/CM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | | | Monthy EC (unHoscm) | | | | | | | |
 | (\%) | ${ }_{20} 201319$ | 1196787 | ${ }_{-4531}$ | | (\%) | | - 105750 | . 1121 | |
 | | | | | | | | | | |
 | 1.2\% | | | | | | | | | |
 | 2.5\% | 19578.5 | 444.5 | 134.0 | 0.7\% | 2.5\% | 18527.8 | 18357.3 | , | |
 | 3.7\% | 19492.5 | 19368.4 | 124.1 | 0.6\% | 3.7\% | 18883.4 | 18215.2 | | |
 | 4.9\% | 19491.8 | 341.4 | 50.4 | | 4.9\% | 18451.7 | 17869.0 | | |
 | 6.2\% | 19490.3 | 19337.9 | -152.4 | 0.8\% | 6.2\% | 18359.5 | 17853.5 | | |
 | 7.4\% | 19329.2 | 19239.1 | -90.1 | 0.5\% | 7.4\% | 18092.3 | 17847.3 | | |
 | 8.6\% | 19327.5 | 19166.4 | -161.1 | .8\% | 8.6\% | 17843.4 | 17777.8 | | |
 | 9.9\% | 19236.1 | 18815.1 | -421.0 | 2.2\% | 9.9\% | 17697.0 | 17744.9 | 47.9 | |
 | 11.1\% | 18958.4 | 18614.6 | 343.7 | 8\% | 11.1\% | 17834.0 | 177998.7 | | |
 | 12.3\% | 18913.0 | 7 5 | 5.5 | -2.1\% | 12.3\% | 17619.6 | 178006.3 | -13.4 | -0.1\% |
 | 13.6\% | 18870.3 | 18285.7 | S34 | 1\% | 13.6\% | 17548.1 | 17553.8 | 5.8 | 0.0\% |
 | 14.8\% | 18868.8 | 262.0 | 500.8 | 3.2\% | 14.8\% | 17478.2 | 17337.7 | 140.5 | -0.8\% |
 | 16.0\% | 18595.8 | 18235.4 | 360.5 | 1.9\% | 16.0\% | 17283.3 | 18860.4 | -422.9 | |
 | 17.3\% | 185991.1 | 18186.3 | 404.8 | 2.2\% | 17.3\% | 16716.8 | 16852.5 | 135.8 | 0.8\% |
 | 18.5\% | 18546.4 | 18109.1 | 437.3 | 2.4\% | 18.5\% | 16497.6 | 16689.3 | 191.6 | 1.2\% |
 | 19.8\% | 18527.8 | 18105.7 | 422.1 | 2.3\% | 19.8\% | 16342.3 | 16507.8 | 165.5 | \% |
 | 21.0\% | 18527.2 | 180893 | -437.9 | 2.4\% | 21.0\% | 15739.1 | 16417.3 | 8.1 | 3\% |
 | 22.2\% | 18512.3 | 18075.9 | -436.4 | 2.4\% | 22.2\% | 15248.7 | 16173.7 | ${ }^{925.0}$ | |
 | 23.5\% | ${ }^{18367.0}$ | 17976.5 | 390.5 | 2.1\% | 23.5\% | 15013.1 | 15987.4 | 974.3 | 5\% |
 | 24.7\% | 182693 | 17971.8 | 297.5 | 1.6\% | 24.7\% | 14906.9 | 15790.6 | 883.7 | \% |
 | 25.9\% | 182495 | 17951.1 | 298.3 | 1.6\% | 25.9\% | 14767.2 | 15732.8 | 965.6 | 5\% |
 | 27.2\% | 18230.4 | 17800.0 | ${ }^{24.5}$ | 2.3\% | 27.2\% | 14272.6 | 15094.0 | ${ }_{821.3}$ | |
 | 28.4\% | 18214.2 | 17694.4 | 519.9 | | 28.4\% | 13902.1 | 14915.4 | 1013.3 | .3\% |
 | 29.6\% | 18046.5 | 17644.3 | 402.2 | 2.2\% | 29.6\% | 13750.1 | 14469.8 | 719.7 | 2\% |
 | 30.9\% | 18019.7 | 17881.4 | ${ }^{588.3}$ | 3.0\% | 30.9\% | ${ }^{13732.3}$ | 14222.1 | 489.8 | 6\% |
 | 32.1\% | 17840.9 | 17343.0 | -497.9 | 2.8\% | 32.1\% | ${ }^{13606.9}$ | 13942.0 | 335.1 | 2.5\% |
 | 33.3\% | 177997 | 17207.6 | -584.1 | -3.3\% | 33.3\% | 13594.2 | 13630.1 | 35.9 | 0.3\% |
 | 34.6\% | 17473.6 | 17194.2 | 279.4 | 1.6\% | 34.6\% | 13578.1 | ${ }^{13562.6}$ | -15.5 | -0.1\% |
 | 35.8\% | 17459.7 | 17175.9 | 283.8 | 1.6\% | 35.8\% | 13567.7 | 13527.5 | -40.1 | -0.3\% |
 | 37.0\% | 17430.3 | 16946.3 | -483.9 | 2.8\% | 37.0\% | 13441.7 | 13521.8 | 80.1 | 0.6\% |
 | 38.3\% | 17276.6 | 16893.2 | 383.4 | -2.2\% | 38.3\% | 13344,4 | 13445.7 | 101.3 | 0.8\% |
 | 39.5\% | 17267.1 | 16785.4 | 481.7 | 2.8\% | 39.5\% | 13262.2 | 13436.8 | 174.7 | 1.3\% |
 | 40.7\% | ${ }^{16654.3}$ | 16762.2 | 107.9 | 0.6\% | 40.7\% | 13233.9 | 13333.9 | 100.0 | 0.8\% |
 | 42.0\% | 16226.1 | 16488.8 | 262.6 | 1.6\% | 42.0\% | 13197.3 | 13250.0 | 52.7 | 0.4\% |
 | 43.2\% | ${ }^{161099.6}$ | 16346.7 | ${ }_{7237}^{237}$ | 1.5\% | 43.2\% | 13166.0 | 13139.9 | -26.0 | -0.2\% |
 | 44.4\% | 15492.4 | 16226.1 | 733.7 | 4.7\% | 44.4\% | 13080.8 | 13078.0 | -2.7 | 0.0\% |
 | 45.7\% | 1526595 15909 | 15762.7 | 497.2 | 3.3\% | 45.7\% | 13059.1 | 13005.5 | -53.6 | -0.4\% |
 | 46.9\% | 15090.7 | 14976.0 | -114.8 | -0.8\% | 46.9\% | 12824.2 | 12870.0 | 45.8 | 0.4\% |
 | 48.1\% | 12588.4 | ${ }^{14327.1}$ | 1740.7 | 13.8\% | 48.1\% | ${ }_{1}^{12373.7}$ | ${ }^{12524.6}$ | ${ }^{150.9}$ | 1.2\% |
 | 49.4\% | 12193.8 | 13577.7 | 1384.0 | 11.3\% | 49.4\% | 12281.8 | 12403.4 | 121.6 | 1.0\% |
 | 50.6\% | 11615.4 | 12207.7 | 5923 | 5.1\% | 50.6\% | 12220.9 | 12164.7 | -56.2 | -0.5\% |
 | 51.9\% | 11494.2 | 11519.0 | 24.8 | 0.2\% | 51.9\% | 12196.4 | 12160.9 | -35.5 | -0.3\% |
 | 53.1\% | 11486.4 | ${ }^{1142556}$ | -60.8 | -0.5\% | 53.1\% | 12066.4 | 12066.4 | 0.0 | 0.0\% |
 | 54.3\% | 11457.6 | 11392.9 | -64.6 | -0.6\% | 54.3\% | ${ }^{1200993}$ | 12018.0 | 8.7 | 0.1\% |
 | 55.6\% | 11442.4 | 111334.4 | -108.0 | -0.9\% | 55.6\% | 1199992 | 11977.4 | -21.8 | -0.2\% |
 | 56.8\% | ${ }^{11200.3}$ | 11125.7 | -74.6 | -0.7\% | 56.8\% | 11992.1 | 11782.7 | -209.4 | -1.7\% |
 | 58.0\% | 11040.4 | ${ }_{11116.1}$ | 75.7 | 0.7\% | 58.0\% | ${ }^{111732.3}$ | 11773.6 | ${ }^{41.4}$ | 4\% |
 | 59.3\% | 11038.1 | 111037.1 | -1.0 | 0.0\% | 59.3\% | 11134.9 | 11723.0 | 588.1 | 3\% |
 | 60.5\% | 10991.9 | 10929.3 | -62.6 | -0.6\% | 60.5\% | 10239.2 | 11357.1 | 1177.9 | 8.9\% |
 | 617\% | 10154.8 | 10152.4 | -2.4 | 0.0\% | 61.7\% | ${ }^{9507.1}$ | 11247.1 | 1740.0 | 8.3\% |
 | 63.0\% | ${ }^{97822.3}$ | 9788.1 | -64.2 | -0.7\% | 63.0\% | 9459.7 | 11238.6 | 1778.9 | 18.8\% |
 | ${ }^{64.2 \%}$ | ${ }^{9427.1}$ | 9567.2 | 140.1 | 1.5\% | 64.2\% | 9410.6 | 11174.0 | 1763.4 | 18.7\% |
 | 65.4\% | ${ }^{9382.5}$ | ${ }^{9366.0}$ | -16.5 | -0.2\% | 65.4\% | ${ }^{9356.7}$ | 11108.7 | 1752.1 | 18.7\% |
 | ${ }^{66.7 \%}$ | ${ }^{9367.3}$ | 9344.0 | ${ }^{-23.3}$ | -0.2\% | ${ }^{66.7 \%}$ | 9119.7 | 10738.3 | 1618.6 | .7\% |
 | 67.9\% | ${ }^{9293.4}$ | 9318.4 | 25.0 | 0.3\% | 67.9\% | 8776.1 | 10656.1 | 1880.0 | 1.4\% |
 | 69.1\% | ${ }^{9281.9}$ | 9270.5 | -11.4 | -0.1\% | 69.1\% | 8439.2 | 9090.7 | ${ }_{7}^{651.5}$ | 7.7\% |
 | 70.4\% | ${ }^{92344.9}$ | 9195.5 | -39.3 | -0.4\% | 70.4\% | ${ }^{8234.3}$ | 8959.2 | 724.9 | 8.8\% |
 | 71.6\% | 9057.8 | ${ }^{9033.8}$ | -24.0 | -0.3\% | 71.6\% | 7358.1 | 8477.3 | ${ }^{1113.3}$ | 15.1\% |
 | 72.8\% | ${ }^{8924.8}$ | 8943.3 | 18.5 | 0.2\% | 72.8\% | 6644.5 | ${ }^{8367.9}$ | 1723.4 | 9\% |
 | 74.1\% | 8893.2 | 8849.7 | -43.5 | -0.5\% | 74.1\% | ${ }^{4986.6}$ | 6460.71 | 1475.1 | 29.6\% |
 | 75.3\% | ${ }^{8883.3}$ | 8877.1 | -62.2 | -0.7\% | 75.3\% | 4963.7 | 5005.1 | 41.4 | 8\% |
 | 76.5\% | 8864.2 | 8772.6 | -91.6 | -1.0\% | 76.5\% | ${ }^{4920.6}$ | 4641.1 | -279.5 | -5.7\% |
 | 77.8\% | ${ }^{8764.7}$ | ${ }_{7} 878.5$ | -46.3 | -0.5\% | 77.8\% | ${ }^{4061.8}$ | 4480.0 | 418.2 | 3\% |
 | 79.0\% | ${ }_{7}^{8025.9}$ | 7981.2 | -44.7 | -0.6\% | 79.0\% | ${ }^{3707.5}$ | ${ }^{4463.8}$ | ${ }_{7573}^{757.3}$ | 20.4\% |
 | 80.2\% | 7997.8 | 7957.1 | -40.8 | -0.5\% | 80.2\% | ${ }^{32533}$ | 4030.7 | 777.4 | 23.9\% |
 | 81.5\% | ${ }^{7963.6}$ | 7943.5 | 20.1 | -0.3\% | 81.5\% | ${ }^{3243.6}$ | ${ }_{3}^{3467.8}$ | ${ }^{224.2}$ | ${ }^{6.9 \%}$ |
 | 82.7\% | 7856.5 | 7831.0 | -25.4 | -0.3\% | 82.7\% | ${ }^{29888.6}$ | ${ }^{31433} 2$ | ${ }^{174.6}$ | 5.9\% |
 | 84.0\% | ${ }^{7829.5}$ | ${ }_{7812.2}$ | -17.3 | -0.2\% | 84.0\% | ${ }^{2577.5}$ | ${ }^{2973.7}$ | 396.2 | 15.4\% |
 | 85.2\% | ${ }^{7822.3}$ | 7880.7 | -21.7 | -0.3\% | 85.2\% | 2377.1 | | 52.5 | 14.8\% |
 | ${ }^{86.4 \%}$ | ${ }^{7816.1}$ | 7778.4 | -7.6 | -0.5\% | ${ }^{86.4 \%}$ | 2011.6 | ${ }^{2440.3}$ | 428.6 | 21.3\% |
 | 87.7\% | 7799.9 | ${ }^{7743.6}$ | -56.3 | -0.7\% | 87.7\% | ${ }^{1559.5}$ | ${ }^{1604.3}$ | 44.7 | ${ }^{2.9 \%}$ |
 | 88.9\% | 7748.0 | 7706.5 | -41.4 | -0.5\% | 88.9\% | 1184.2 | 1574.8 | 390.6 | 33.0\% |
 | 90.1\% | 7620.2 | 7557.6 | ${ }_{\text {-52.6 }}$ | -0.7\% | 90.1\% | 1061.4 | 11770.0 | 108.6 | 2\% |
 | 914\% | 7551.4 | 7536.2 | 15.2 | -2.2\% | 91.4\% | 1018.6 | 1111.6 | 93.0 | ${ }^{\text {9.1\% }}$ |
 | 92.6\% | ${ }_{7412.9}$ | 7404.8 | -8.1 | -0.7\% | 92.6\% | ${ }^{762.3}$ | 761.6 | -0.8 | -0.1\% |
 | 93.8\% | ${ }^{7401.6}$ | ${ }^{7348.3}$ | 53.4 | -0.7\% | ${ }^{93.8 \%}$ | ${ }^{502.0}$ | 543.0 | 41.0 | |
 | 95.1\% | ${ }^{6401.3}$ | 5713.5 | -687.8 | -10.7\% | 95.1\% | 393.3 | ${ }^{420.3}$ | 26.9 | |
 | ${ }^{96.3 \%}$ | ${ }^{4275.6}$ | 5282.9 | ${ }^{1007.3}$ | 23.9\% | ${ }^{96.3 \%}$ | ${ }^{346.2}$ | ${ }^{375.3}$ | 29.1 | |
 | 97.5\% | 4100.7 | ${ }^{4423.6}$ | 322.9 | .9\% | 7.5\% | 340.1 | 362.9 | 22.7 | |
 | 98.8\% | ${ }_{1}^{4045.8}$ | 4062.0 2.964 | ${ }_{416.3}$ | | 98.8\% | ${ }_{1942}^{269.3}$ | ${ }_{1955}^{274.8}$ | ${ }_{13} 5$ | |

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probabaility } \end{gathered}$ | January | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {WSIP }}^{\text {Prop Witithout }}$ | WSIP 2070 With Project | | Relative |
 | | Monthly EC | Monthly EC | (ifference | Hference (\%) |
 | 0.0\% | ${ }_{18} 18764.7$ | ${ }_{18117.6}$ | .647.1 | ${ }^{-3.4 \%}$ |
 | 1.2\% | 16272.2 | 16661.1 | | |
 | 2.5\% | 15360.3 | 15331.6 | -28.7 | |
 | 3.7\% | 15323.9 | 15200.6 | -123 | |
 | 4.9\% | 15046.1 | 150898 | 43.7 | 0.3\% |
 | 6.2\% | 14845.7 | 14974.7 | 129.0 | |
 | 7.4\% | 14592.3 | 14899.2 | 306.9 | |
 | 8.6\% | ${ }^{1455993}$ | 14703.4 | 144.1 | |
 | 9.9\% | 952.3 | 14552.0 | 599.7 | |
 | 11.1\% | 138477 | 14379.2 | 531.7 | |
 | 12.3\% | 777.6 | 14341.0 | 563 | |
 | 13.6\% | 13776.9 | 14203.4 | 426.5 | |
 | 14.8\% | 581.0 | 14197.5 | 616.5 | |
 | 16.0\% | 13520.8 | 14146.4 | 625.6 | |
 | 17.3\% | 3515.8 | 14134.2 | 618.4 | |
 | 18.5\% | ${ }^{1342559}$ | 13785.9 | 360.0 | |
 | 19.8\% | 349.2 | 13629.5 | 280.3 | |
 | 21.0\% | ${ }^{1334410}$ | ${ }^{13532.0}$ | 191.0 | 1.4\% |
 | 22.2\% | 13233.3 | ${ }^{13454.5}$ | 221.2 | |
 | 23.5\% | ${ }^{13151.3}$ | 13229.9 | 78.6 | 0.6\% |
 | 24.7\% | 12835.8 | 12987.4 | 151.5 | |
 | 25.9\% | ${ }_{127699}^{127616}$ | 12892.4 | 122.8 | 1.0\% |
 | 27.2\% | 12681.6 | 12756.5 | 74.9 | |
 | 28.4\% | 12385.0 | 12747.9 | 362.9 | 2.9\% |
 | 29.6\% | 12197.4 | 12502 | 304.6 | |
 | 30.9\% | 11638.7 | 12098.2 | 459.5 | 3.9\% |
 | 32.1\% | 11093.0 | 11364.1 | 27.1 | |
 | 33.3\% | 11060.6 | 10970.8 | -89.8 | -0.8\% |
 | 34.6\% | 8498.5 | 10760.1 | 2261.5 | 26.6\% |
 | 35.8\% | 8298.0 | 10465.8 | 2167.8 | 26.1\% |
 | 37.\% | 8189.1 | 10148.6 | 1959.6 | 23.9\% |
 | 38.3\% | 7772.0 | 9924.6 | 2152.6 | 27.7\% |
 | 39.5\% | 7745.4 | ${ }^{9646.5}$ | 1901.1 | 24.5\% |
 | 40.7\% | 7387.0 | ${ }^{9331.0}$ | 1944.0 | 26.3\% |
 | 42.0\% | 7274.1 | 9154.9 | 1880.9 | 25.9\% |
 | 43.2\% | 77064.4 | 8604.2 | 1539.8 | 21.8\% |
 | 44.4\% | ${ }^{6788.3}$ | 8144.1 | 1355.7 | 20.0\% |
 | 45.7\% | 6548.8 | 7949.6 | 1400.7 | 21.4\% |
 | 46.9\% | 6045.5 | ${ }^{7235.3}$ | 1189.8 | 19.7\% |
 | 48.1\% | ${ }^{5696.3}$ | 6831.1 | 1134.8 | 19.9\% |
 | 49.4\% | 5496.3 | 6510.4 | 1014.1 | 18.5\% |
 | 50.6\% | 5425.1 | 6248.7 | 823.7 | 15.2\% |
 | 51.9\% | ${ }^{4156.3}$ | 6219.1 | ${ }^{2062.7}$ | 49.6\% |
 | 53.1\% | 4136.4 | 5341.4 | ${ }^{12055.0}$ | 29.1\% |
 | 54.3\% | ${ }_{3801.1}$ | 5006.5 | ${ }^{12025.5}$ | 31.7\% |
 | 55.6\% | ${ }^{3560.7}$ | 4775.0 | ${ }^{12144.2}$ | 34.1\% |
 | 56.8\% | ${ }^{3460.1}$ | 4741.0 | 1281.0 | 37.0\% |
 | 58.0\% | ${ }^{32288.4}$ | ${ }^{3551.2}$ | 322.8 | 10.0\% |
 | 59.3\% | ${ }^{2806.5}$ | ${ }^{3412.9}$ | 606.4 | 21.6\% |
 | 60.5\% | 2651.0 | 3346.2 | ${ }^{695.3}$ | 26.2\% |
 | ${ }^{61.7 \%}$ | ${ }^{2608.7}$ | 2972.0 | ${ }^{363.4}$ | 13.9\% |
 | 63.0\% | 2126.7 | 2888.5 | 761.8 | 35.8\% |
 | 64.2\% | ${ }^{1621.1}$ | 2150.9 | 529.8 | 32.7\% |
 | 65.4\% | ${ }^{1361.0}$ | 1684.7 | ${ }_{323.7}$ | 23.8\% |
 | ${ }^{66.7 \%}$ | 1316.2 | 1559.1 | 242.9 | 18.5\% |
 | 67.9\% | ${ }^{1207.5}$ | ${ }^{13188.6}$ | 111.1 | ${ }^{9.2 \%}$ |
 | 69.1\% | ${ }_{724.3}^{924}$ | 1148.8 | 224.5 | 24.3\% |
 | 70.4\% | 71.0 | ${ }^{844.7}$ | 138.7 | ${ }^{18.8 \%}$ |
 | 71.6\% | 706.9 | ${ }_{7817}$ | 79.4 | ${ }^{11.2 \%}$ |
 | 74.1\% | ${ }_{637.1}^{640.0}$ | ${ }_{691.6}$ | ${ }_{54.5}^{77.2}$ | 8.6\% |
 | 75.3\% | 631.9 | 683.5 | 51.6 | 8.2\% |
 | 76.5\% | 575.8 | 668.4 | 92.5 | 16.1\% |
 | 77.8\% | 526.3 | 666.8 | 140.5 | 26.7\% |
 | 79.0\% | ${ }^{521.3}$ | 547.6 | 26.3 | 5.1\% |
 | 80. ${ }_{\text {81.5\% }}$ | 513.3 511.9 | 544.6 | ${ }_{31.3}$ | 6.1\% |
 | 82.7\% | 479.5 | ${ }_{470.1}$ | -9.3 | -1.9\% |
 | 84.0\% | 449.3 | 457.1 | 7.8 | 1.7\% |
 | 85.2\% | ${ }^{376.1}$ | ${ }_{385}^{385}$ | ${ }^{9.6}$ | 47% |
 | 86.4\% | ${ }^{363.6}$ | 380.7 | 17.2 | 4.7\% |
 | 87.7% 880% | 268.6 | 270.9 | ${ }^{2.3}$ | |
 | 88.9\% | ${ }^{258.0}$ | 269.1 | 11.1 | |
 | 90.14\% | ${ }_{240.9}^{256.7}$ | ${ }_{248.7}^{255.2}$ | -1.5
 78 | |
 | 92.6\% | 234.7 | 246.2 | 11.5 | |
 | 93.8\% | 224.3 | 228.1 | 3.8 | |
 | 95.1\% | 194.5 | 196.0 | 1.6 | |
 | 96.3\% | 193.9 | 194.5 | 0.7 | |
 | 97.5\% | 193.2 | 194.5 | 1.3 | |
 | 98.8\% | 192.6 | 194.4 | 1.9 | |
 | 100.0\% | 192.5 | 193.0 | 0.5 | |

 \begin{tabular}{|c|c|c|c|c|}
 \hline \& \& February \& \& \\
 \hline \({ }_{\substack{\text { Perceent } \\ \text { Excedance }}}^{\text {a }}\) \& \({ }_{\text {WSIP }}\) 2070 Without \& WSIP 2070 With Project \& Absolute \& \\
 \hline Probability \& Monthly EC \& Monthy EC \& （ Difference \& Difference（\％） \\
 \hline （\％） \& （UMHOSSCM） \& （UMHOSSCM） \& （UMHOSSCM） \& \\
 \hline 0．0\％ \& 17840.4 \& 14645.8 \& －3194．6 \& －17．9\％ \\
 \hline 1．2\％ \& 13995.2 \& 13318.6 \& －676．7 \& －4．8\％ \\
 \hline 2．5\％ \& 11677.9 \& 11750.8 \& 73.0 \& 0．6\％ \\
 \hline 3．7\％ \& 11125.0 \& 11675.8 \& \({ }^{550.8}\) \& 5．0\％ \\
 \hline 4．9\％ \& 10615.6 \& 11392.9 \& 777.3 \& 7．3\％ \\
 \hline 6．2\％ \& 10377.3 \& \({ }^{112693}\) \& 892.0 \& 8．6\％ \\
 \hline 7．4\％ \& 9812.0 \& 10372.7 \& 560.6 \& 5．7\％ \\
 \hline 8．6\％ \& \({ }_{9}^{9621.3}\) \& 10309．4 \& \& 7．2\％ \\
 \hline 9．9\％ \& 9603.5 \& 9958.1 \& 354.6 \& 3．7\％ \\
 \hline 11．19\％ \& \({ }^{9442.6}\) \& \({ }^{9925.3}\) \& 482.8 \& 5．1\％ \\
 \hline 12．3\％ \& 9228.6 \& 9801.0 \& 572.4 \& 6．2\％ \\
 \hline 13．6\％ \& 8779.7 \& \({ }^{9471.1}\) \& 751.4 \& 8．6\％ \\
 \hline 14．8\％ \& 8884.2 \& 9425.4 \& 1341．2 \& 16．6\％ \\
 \hline 16．0\％ \& 7903.8 \& 8429.2 \& 525.3 \& \\
 \hline 17．3\％ \& \({ }^{6282.7}\) \& 8187.5 \& 1904.8
 11915 \& 30．3\％ \\
 \hline 18．5\％ \& 6251.0
 58222 \& \({ }^{7742.5}\) \& 1499.5 \& 23．9\％ \\
 \hline 19．8\％ \& \({ }_{\text {cke }}^{5822.2}\) \& \({ }^{68899.6}\) \& 987.4 \& 17．0\％ \\
 \hline 21．0\％ \& \({ }_{5694.8}\) \& \({ }^{6629.3}\) \& 934．5 \& 16．4\％ \\
 \hline 22．2\％ \& \({ }_{49477}^{493}\) \& \({ }_{571.1}^{6054}\) \& 1106.5 \& 22．4\％ \\
 \hline 23．5\％ \& \({ }_{4}^{47477.3}\) \& 5711.9
 54294 \& \begin{tabular}{l}
 964.6 \\
 13054 \\
 \hline 1
 \end{tabular} \& 20．3\％ \\
 \hline 24．7\％ \& \({ }^{4124.0}\) \& 5429.4 \& 1305.4 \& 31．7\％ \\
 \hline 25．9\％ \& 3901.0
 3757.8 \& \begin{tabular}{l}
 4918.5 \\
 4894 \\
 \hline
 \end{tabular} \& 11017.5
 11365 \& 26．19\％ \\
 \hline 27．2\％ \& 3757.8
 35446 \& \({ }^{4894.3}\) \& \({ }^{11136.5}\) \& 30．2\％ \\
 \hline 28．4\％ \& 3544.6 \& \({ }_{4}^{4645.6}\) \& \({ }^{11010.0}\) \& 31．1\％ \\
 \hline 29．6\％ \& 3449.1 \& \({ }^{4562.4}\) \& \({ }^{1113.3}\) \& 32．3\％ \\
 \hline 30．9\％ \& \({ }_{3}^{34222.4}\) \& \& \begin{tabular}{l}
 1032.0 \\
 7253 \\
 \hline 7
 \end{tabular} \& 30．2\％ \\
 \hline 32．1\％ \& \({ }_{3}^{3237.1}\) \& \({ }^{39624.4}\) \& \& 22．4\％ \\
 \hline \(33.3 \%\)
 \(34.6 \%\) \& 3232.2
 3200.0 \& \begin{tabular}{l}
 3884.4 \\
 3403 \\
 \hline
 \end{tabular} \& \({ }_{20}^{652.2}\) \& 20．2\％ \\
 \hline 34．6\％ \& \begin{tabular}{l}
 3200.0 \\
 3126 \\
 \hline 120
 \end{tabular} \& 3400.3
 3055 \& 200．3 \& 6．3\％ \\
 \hline 35．8\％ \& \({ }_{\text {21269．1 }}\) \& \begin{tabular}{l}
 3245.5 \\
 3226.4 \\
 \hline
 \end{tabular} \& 119.4
 2673 \& 3．8\％ \\
 \hline 37．0\％ \& 2959.1 \& 3226.4 \& \({ }^{267.3}\) \& 9．0\％ \\
 \hline 38．3\％ \& 2881.1 \& \({ }^{31335.2}\) \& 314．1 \& 11．1\％ \\
 \hline \(39.5 \%\)
 \(40.7 \%\) \& \({ }^{27888.0}\) \& 2960．2 \& 172．2 \& \({ }^{6.2 \%}\) \\
 \hline － \(40.7 \%\) \& \({ }_{\text {2507．6 }}^{25481}\) \& 2889.9 \& 322.4
 3.9 \& \({ }^{12.26 \%}\) \\
 \hline 42．0\％
 \(43.2 \%\) \& \({ }^{2464.1}\) \& 24900 \& \({ }^{529}\) \& 0．2\％ \\
 \hline 43．2\％ \(44.4 \%\) \& 2167.4 \& \({ }^{24899.6}\) \& 322．2 \& 14．9\％ \\
 \hline 44．4\％ \& \({ }^{1929.2}\) \& 2336.9

 22729 \& 407.8 \& ${ }_{\text {21．4\％}}^{21.1 \%}$

 \hline 46．9\％ \& ${ }^{17866.3}$ \& ${ }_{2130.5}^{2729}$ \& 304.4
 364 \& ${ }_{\text {20．6\％}}^{21.4 \%}$

 \hline 48．1\％ \& ${ }^{1762.7}$ \& 2068.3 \& ${ }_{305.6}$ \& 17．3\％

 \hline 49．4\％ \& 1695.3 \& 1978.6 \& 283.3 \& 16．7\％

 \hline 50．6\％ \& 1691.7
 15718 \& ${ }^{18999.0}$ \& 207.3
 1653 \& 12.3%
 105%

 \hline 51．9\％ \& 1571.8
 13408 \& 1737.1
 15190 \& 165.3
 1781
 1 \& －${ }_{\text {10，}}^{10.5 \%}$

 \hline 54．3\％ \& 1340.8
 11270.9 \& 1519.0
 1452.8 \& 178.1
 181.9 \& 13．3\％
 14.3%

 \hline 55．\％\％ \& 1168.5 \& ${ }^{1306.3}$ \& 137.8 \& 11．8\％

 \hline 56．8\％ \& 1103.8 \& 1172.0 \& 68.2 \& 6．2\％

 \hline 年58．0\％ \& ${ }_{885.4}^{936.4}$ \& 1109.6
 11037 \& 173.2
 218.6 \& 18．5\％

 \hline 59．5\％ \& 885.1
 878.9 \& 1103.7

 800.2 \& | 218.6 |
 | :--- |
 | 11.4 | \& 24．3\％

 \hline 61．7\％ \& 829.1 \& 885.2 \& 36．2 \& 4．4\％

 \hline 63．0\％ \& 715.4 \& $\begin{array}{r}827.6 \\ 8175 \\ \hline\end{array}$ \& 1112.2 \& 15．7\％

 \hline 64．2\％ \& 702.8 \& ${ }_{7}^{817.5}$ \& 114.7 \& 16．3\％

 \hline \& ${ }_{478.1}^{691.6}$ \& 738.2
 482.9 \& 46.7
 4.8 \& － 6.7%

 \hline 67．9\％ \& 440.1 \& 477.8 \& 37.7 \& 8．6\％

 \hline 69．1\％ \& 420.5 \& 475.1 \& 54.5 \& 13．0\％

 \hline 70．4\％ \& ${ }_{376.2}^{405.1}$ \& ${ }_{387.9}^{431.3}$ \& 26.2
 11.7 \&

 \hline 72．8\％ \& 371.3 \& 379.8 \& 8.5 \& 2．3\％

 \hline 74．1\％ \& 357.1 \& 371.9 \& 14.8 \& 4．1\％

 \hline 75．3\％ \& 327.5
 311.0 \& 357.8

 3276 \& | 30.2 |
 | :--- |
 | 16.6 | \& ${ }_{5}^{9.2 \%}$

 \hline 77．8\％ \& 306.9 \& 321.8 \& 14.8 \& 4．8\％

 \hline 79．0\％ \& 280.5 \& 291.5 \& 11.0 \& 3．9\％

 \hline － \& ${ }_{244.2}^{255}$ \& ${ }_{2643}^{273.2}$ \& 17.7
 201 \& ${ }_{8.9 \%}^{6.9 \%}$

 \hline 82．7\％ \& 236.0 \& 240.5 \& 4.5 \& 1．9\％

 \hline 84．0\％ \& 217.7 \& 220.5 \& 2.9 \& 1．3\％

 \hline \& ${ }_{214.3}^{217.6}$ \& 219.6
 2190 \& ${ }_{4}^{2.0}$ \& 20\％

 \hline 87，7\％ \& 213.6 \& 217.0 \& 3.4 \& 1．6\％

 \hline 88．9\％ \& 213.1 \& 216.4 \& ${ }^{3.3}$ \& 1．6\％

 \hline ${ }^{90.14 \%}$ \& ${ }_{209.3}^{210.7}$ \& ${ }_{215.6}^{215.6}$ \& 5.0
 6.3 \& ${ }_{3.0 \%}^{2.4 \%}$

 \hline 92．6\％ \& 208.8 \& 210.2 \& 1.4 \& 0．7\％

 \hline ${ }^{93.58 \%}$ \& 207.4 \& 207.9 \& 0.5 \& 0．2\％

 \hline ${ }_{9}^{95.1 \%}$ \& ${ }_{2007}^{2072}$ \& ${ }_{2035}^{207.0}$ \& ${ }^{-0.2}$ \& －0．4\％

 \hline 97．5\％ \& 200.3 \& 200.7 \& 0.4 \& 0．2\％

 \hline 98．8\％
 100．0\％ \& $\begin{array}{r}198.9 \\ 185.3 \\ \hline\end{array}$ \& 198.9
 185.3 \& 0.0
 0.0 \& － 0

 \hline
 \end{tabular}

 | $\underset{\substack{\text { Percent } \\ \text { Erceedance } \\ \text { Probility }}}{\substack{\text { E．}}}$ | march | | | | Aprit | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | | | |
 | | ${ }^{\text {Proiect }}$ | Wsip 20 Onin Projet | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOS/CM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | $\begin{gathered} \text { Percent } \\ \text { Pxedednce } \\ \text { Probabily } \\ \text { Poblif } \end{gathered}$ | | | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOSICM) } \end{gathered}$ | $\begin{aligned} & \text { Refelative } \\ & \text { Difference (\%) } \end{aligned}$ |
 | | Monthly EC
 （UMHOS／CM） | Monthly EC
 （UMHOS／CM） | | | | | | | |
 | 0．0\％ | 13594.3 | 13686.8 | 92.5 | 0．7\％ | | 13740.2 | | 39.4 | 0．3\％ |
 | 1．2\％ | 10913.2 | 11031.5 | 118.4 | 1．1\％ | 1．2\％ | 12084.0 | 11975.9 | －108．1 | －0．9\％ |
 | 2．5\％ | 9515.4 | 9740.1 | 224.6 | 2．4\％ | 2．5\％ | 11068.0 | 10972.7 | －95．3 | －0．9\％ |
 | 3．7\％ | ${ }^{9261.9}$ | ${ }^{9288.5}$ | ${ }^{26.6}$ | 0．3\％ | 3．7\％ | 10514.5 | 104823 | －32．2 | －0．3\％ |
 | 4．9\％ | ${ }^{8762.1}$ | ${ }^{9143.4}$ | 381.3 | 4．4\％ | 4．9\％ | 10191.0 | ${ }^{100989} 5$ | －92．4 | －0．9\％ |
 | － 6.2% | ${ }_{79596.4}^{8270.2}$ | ${ }_{8}^{8950.3}$ | 680.1 5189 | ${ }^{8.2 \% \%}$ | － 7.2% | 101288.8 9834.9 | ${ }^{10085.5}$ | $\begin{array}{r}-43.4 \\ 136.9 \\ \hline\end{array}$ | －0．4\％ |
 | 7．4\％ | 7956.4 | ${ }_{84337}^{8475}$ | 518.9 | ${ }_{\text {6．5\％}}$ | 7．4\％ | ${ }^{9834.9}$ | 9971.8 | ${ }^{136.9}$ | 1．4\％ |
 | 8．9\％ | 7819.4 | ${ }_{8}^{843337}$ | 614.3 | 7．9\％ | 8．9\％ | ${ }_{9}^{957311}$ | 9446.7 | －126．9 | －1．3\％ |
 | ${ }^{\text {9，9\％}}$ | 7786.9 | 8233.7
 8195
 8.9 | ${ }_{50}^{44.8}$ | 5．7\％ | 9．9\％\％ | ${ }_{9}^{9331.1}$ | ${ }_{9}^{9271.3}$ | －69．8 | －0．7\％ |
 | －${ }_{\text {12．1．3\％}}^{12.3}$ | 7690.4 7517.2 | 8199.5 7942.6 | ${ }_{4209.1}$ | 5．7\％ | （11．1\％ | ${ }_{90383.5}^{92345}$ | ${ }_{9}^{90785.5}$ | －69．1 39.9 | －0．7\％ |
 | 13．6\％ | 7459.4 | 7785.0 | 325.6 | 4．4\％ | 13．6\％ | 8619.8 | 8885.3 | 65.5 | 0．8\％ |
 | 14．8\％ | 7204.8 | 7410.4 | 205.6 | 2．9\％ | 14．8\％ | 8530.4 | 8527.2 | ${ }_{-3.1}$ | 0．0\％ |
 | （16．0\％ | 6116．7 58441 | ¢ 6351.4 6253.5 | ${ }_{4094}^{234.7}$ | －${ }_{\text {3 }}^{3.8 \%}$ | （16．0\％ | 8473.0 8163.9 | 8508.9 8054.5 | 35.9 -1094 | － $0.4 .4 \%$ |
 | 18．5\％ | 5653.7 | 6044.2 | 390.4 | 6．9\％ | 18．5\％ | ${ }^{7821.3}$ | 7816.8 | －4．5 | －0．1\％ |
 | 19．8\％ | 5077.8 | 6001.1 | 923.2 | 18．2\％ | 19．8\％ | 7624.6 | 7809.1 | 184.5 | 2．4\％ |
 | ${ }_{2}^{21.2 \%}$ | ${ }_{48826.1}^{4973.8}$ | 5443.3 4970.0 | 469.5 144.0 | 3．0\％\％ | 21．0\％ | 7564.2 69016 | ${ }_{7701.6}^{7732.2}$ | 168.0 800 | ${ }_{\text {c }}^{2.2 \%}$ |
 | 23．5\％ | 4764.8 | 4893.9 | 129.1 | 2．7\％ | 22．5\％ | 6808.1 | 7641.5 | 833.4 | 12．2\％ |
 | 24．7\％ | 4570.3 | 4840.1 | 2698 | 5．9\％ | 24．7\％ | 6744.4 | 7620.9 | 876.6 | 13．0\％ |
 | － 27.5 | ${ }_{4}^{451354.1}$ | ${ }_{45533.8}^{454.7}$ | 28.6 179.0 | 0．6\％ 4 \％ | 2259\％ | 6673.0 64328 | 7195.6 70797 | 522.6 6469 | 7.8% 101% |
 | 28．4\％ | 4019.0 | ${ }_{4383.6}$ | 364.6 | 9．1\％ | 28．4\％ | 6416.1 | 6807.7 | 391.6 | 6．1\％ |
 | 29．6\％ | ${ }^{3566.0}$ | 4209.9 | 643.9 | 18．1\％ | 29．6\％ | 5848.0 | 6759.0 | 911.0 | 15．6\％ |
 | 退 $\begin{aligned} & 30.9 \% \\ & 32.1 \%\end{aligned}$ | ${ }_{34392}^{3488.4}$ | ${ }_{4}^{4149.7}$ | 661.3 7001 | （19．0\％ | － 3 30．9\％ | 5733.6 5710.8 | 6773.0 66997 | －969．4 | 年 $\begin{aligned} & 16.9 \% \\ & 16.8 \%\end{aligned}$ |
 | 33．3\％ | ${ }^{3396.3}$ | 4085.4 | 689.1 | 20．3\％ | 33．3\％ | 5578.4 | 5770.2 | 191.9 | 3．4\％ |
 | 34．6\％ | ${ }_{3}^{3371.5}$ | 3915.2
 38254 | 543.7 508 | 16.1% 153% | 34．6\％ | 5492.0 5900 | 5599.8 55174 | 67.8
 125 | 1．2\％ |
 | 357．\％\％ | ${ }_{3}^{33228.8}$ | ${ }_{3512.9}^{3825.4}$ | ${ }_{284.1}$ | 8．8\％ | 357．8\％ | ${ }_{5332.7}^{5300.9}$ | ${ }_{5}^{51783.4}$ | －39．4 | － |
 | 38．3\％ | 3044.4 | 3414.0 | 369.6 | 12．1\％ | 38．3\％ | 5088.7 | 4919.5 | －169．2 | －．3\％ |
 | 39．5\％ | 3031.4 | ${ }^{3372.3}$ | 340.8 | 11．2\％ | 39．5\％ | 4800.9 | 4907.1 | 106.2 | 2．2\％ |
 | 40．7\％ 42. | ${ }_{2931.5}^{2980.1}$ | ${ }_{3}^{33715.6}$ | 339.5 384.2 | －${ }_{\text {13．1\％}}^{13.1 \%}$ | 40．7\％ | ${ }_{4}^{47677.4}$ | ${ }_{48823.4}^{4881.7}$ | 114.3 251.9 | 2．4\％\％ |
 | 43．2\％ | 2864.9 | 3063.1 | 198.2 | 6．9\％ | 43．2\％ | 4544.1 | ${ }_{4566.2}^{482.4}$ | 22.1 | 0．5\％ |
 | 44．4\％ | ${ }^{2825.7}$ | ${ }^{3060.0}$ | ${ }^{234.3}$ | 8．3\％ | 44．4\％ | 4543.9 | 4548.1 | 4.2 | 0．1\％ |
 | 45．7\％ | ${ }_{2224.7}^{2824.1}$ | ${ }_{2614.1}^{2920.8}$ | ${ }^{9692.4}$ | 3．4\％\％ | ${ }^{45.7 \%}$ | ${ }^{45255.9}$ | ${ }_{4}^{4524.2}$ | -1.8 22.7 | 0．5\％ |
 | 48．1\％ | 2120.6 | 2606.2 | 485.5 | 22．9\％ | 48．1\％ | 4176.0 | 4213.0 | 37.0 | 0．9\％ |
 | 49．4\％ | 2047.3 | 2491.0 | 443.7 | ${ }^{21.7 \%}$ | 49．4\％ | 4084.7 | ${ }^{4158.5}$ | ${ }^{73.8}$ | 1．8\％ |
 | 50．6\％ | 2002.2 1708.1 | ${ }_{21221.5}^{2221.5}$ | ${ }_{413.9}^{219.3}$ | － | 50．19\％ | ${ }_{37093}^{3968.7}$ | ${ }_{4}^{40007.7}$ | ${ }_{297.8}^{43.0}$ | 8．0\％ |
 | 53．1\％ | 1448.0 | 1806.3 | 158.2 | 10．9\％ | 53．1\％ | 3684.6 | 3974.9 | 290.3 | 7．9\％ |
 | 54．3\％ | 1367.8
 1265 | 1494.0 | ${ }^{126.3}$ | 9．2\％ | 54．3\％ | 3617.7 | ${ }^{3675.5}$ | 57.8 | 1．6\％ |
 | 55．6\％ | 1280.5 1263.0 | ${ }^{14651.5}$ | 187.0 188.7 | －${ }_{\text {14．4．9\％}}^{14.9}$ | 55．6\％ | | ${ }_{\text {3 }}^{35574.0}$ | －${ }_{\text {－76．3 }}$ | － |
 | 58．0\％ | 1226.4 | 1358.4 | 132.1 | 10．8\％ | 58．0\％ | 3524.5 | 3448.8 | －75．7 | －2．1\％ |
 | 59．3\％ | ${ }^{11455.8}$ | 1333.4 | 187.6 | 16．4\％ | 59．3\％ | 3477.1 | ${ }^{3397.2}$ | －79．9 | －2．3\％ |
 | － 60.5% | 1110.0 1045.5 | ${ }_{1}^{12354.0}$ | 185.2
 188.5 | 16．7\％ 18．0\％ | 60．5\％ | ${ }_{3}^{3376.5}$ | 3388.4 3219.0 | －147．2 | －${ }^{0.5 \%}$ |
 | 63．0\％ | 932.5 | 1160.1 | 227.6 | 24．4\％ | 63．0\％ | 2981.7 | 3001.1 | 19.4 | 0．7\％ |
 | ${ }^{64.2 \%}$ | ${ }^{929.6}$ | 1048.8 | 119.1 | ${ }^{12.8 \%}$ | 64．2\％ | 2814.7 | 2831.7 | 17.0 | 0．6\％ |
 | | ${ }_{884.6}^{854.6}$ | 944.8 940.0 | 87.2
 92
 2.8 | 10.2% 10.9% | 65．4\％ | ${ }_{2549.8}^{2583}$ | ${ }_{2575.1}^{2826.9}$ | ${ }_{25.3}^{24.0}$ | 9．4\％${ }^{\text {9，0\％}}$ |
 | 67．9\％ | 813.8 | 834.3 | 20.6 | 2．5\％ | 67．9\％ | 2291.0 | 2558.9 | 267.9 | 11．7\％ |
 | 69．1\％ | 756.0 | 783.6 | ${ }^{27.7}$ | 3．7\％ | 69．1\％ | ${ }^{21266.9}$ | ${ }^{238227}$ | 255.8 | 12．0\％ |
 | 7．1．6\％ | ${ }_{555.8}$ | ${ }_{6}^{646.9}$ | 81.3 75.1 | ${ }^{14.4 .5 \%}$ | 70．1．4\％ | ${ }_{2049.5}^{2077.4}$ | 2217.6 2034.9 | 140．2 | － 6.7% |
 | 72．8\％ | 548.3 | 595.5 | ${ }^{47.1}$ | 8．6\％ | 72．8\％ | 1800.5 | ${ }^{1885.0}$ | 4.5 | 0．2\％ |
 | （ $\begin{aligned} & 74.1 \% \\ & \\ & 75.3 \%\end{aligned}$ | 440.7 4378 | 499.4 475.6 | 58.6 37.8 | | 74．1\％ | 1743.4 1666.2 | 17665.3 1665 | 23.9 -0.7 | |
 | 76．5\％ | 436.7 | 440.7 | 4.0 | 0．9\％ | 76．5\％ | 14660.8 | 1548.4 | 87.6 | 6．0\％ |
 | －77．8\％ | 384.8 336.4 | 379.3 3430 | －5．6 | －-1.4%
 2.0% | 77．8\％ | ${ }^{126121.2}$ | ${ }^{14140.3}$ | ${ }_{169}^{14.1}$ | 11．8\％ |
 | 80．2\％ | ${ }_{330.6}$ | ${ }_{342.2}$ | ${ }_{11.6}$ | 3．5\％ | 890．2\％ | ${ }_{1234.9}^{1261.1}$ | ${ }_{1271.7}^{1277.3}$ | 16.2 36.8 | |
 | 81．5\％ | 306.8 | 309.2 | 2.4 | 0．8\％ | 81．5\％ | 1213.7 | 1214.4 | ${ }_{0} 0.7$ | 0．1\％ |
 | － 8 82．7\％ | 297.4 296.2 | 300.2 297.1 | 2.9 0.8 | － | 822．7\％ 840% | 1071.6 9929 | 1114.7 10712 | 43.1 | 4．0\％ |
 | 85．2\％ | 294.5 | 296.1 | 1.6 | 0．5\％ | 85．2\％ | 777.5 | 863.1 | ${ }_{86.6}$ | 11．2\％ |
 | 86．4\％ | 292.0 | 295.2 | 3.2 | 1．1\％ | 86．4\％ | 645.4 | 697.3 | 51.9 | 8．0\％ |
 | 87．7\％ | ${ }_{276.0}^{287.2}$ | ${ }_{287.6}^{294.4}$ | 71.6 11.6 | ${ }_{4.2 \%}^{2.5 \%}$ | 877．7\％ | 560.0 509.4 | ${ }_{546.6}^{60.5}$ | 46.5 37.2 | 8．3\％ |
 | 90．1\％ | 275.6 | 276.1 | 0.5 | 0．2\％ | 90．1\％ | ${ }_{466.7}^{50.7}$ | ${ }_{466.9}$ | 0.2 | 0．0\％ |
 | 91．4\％ | 266.2 | 266.1 | 0.0 | 0．0\％ | 91．4\％ | 463.0 | 463.1 | 0.1 | 0．0\％ |
 | 93．8\％ | ${ }_{214.0}^{225.1}$ | ${ }_{220.7}^{224.7}$ | -0.4 6.0 | －${ }_{\text {2．8\％}}^{-0.8 \%}$ | ${ }_{93.8 \%}^{92.6 \%}$ | 387.3 378.0 | 398.8 392.0 | 11.5 14.0 | 3．7．0\％ |
 | 95．1\％ | 201.5 | 205.9 | 4.4 | 2．2\％ | 95．1\％ | 360.8 | 361.5 | 0.7 | 0．2\％ |
 | ${ }^{96.5 \%}$ | 196.2
 192.4 | 198.7 193.0 | ${ }_{0.6}^{2.5}$ | － | ${ }^{96.5 \%}$ | 350.3 332.5 | 353.9 350.6 | 3.6 18.1 | 5．4\％ |
 | 98．8\％ | 191.3 | 191.9 | 0.6 | 0．3\％ | 98．8\％ | 206.0 | 207.3 | 1.3 | |
 | 100．0\％ | 190.2 | 190.2 | 0.0 | 0．0\％ | 100．0\％ | 199.6 | 199.7 | 0.1 | |

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | Way | | | RelitiveDifference $(\%)$ |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSII 2070 Without | WSIP 2070 With Project | AbslouteDifference（UMHOS／CM） | |
 | | Monthy E C | Monthly E E | | |
 | ${ }^{(\% .0)}$ | ${ }_{\text {（UnHosicm）}}^{158573}$ | （UunHosicm | | |
 | | | | | |
 | 2．5\％ | 150009 148000 | | 125．0 | |
 | 3．7\％ | 142495 | | | |
 | 4．9\％ | 125498 | 12515.5 | －343 | |
 | 6．2\％ | 121473 | 12181 | 339 | |
 | 7．4\％ | 12028.4 | 12044.7 | 16.3 | 0．1\％ |
 | 8．6\％ | 11979.5 | 11932.9 | －46．6 | －0．46 |
 | 9．9\％ | 11913.7 | 11911.2 | ${ }^{2.6}$ | 0．0\％ |
 | 11．1\％ | 11398.2 | 11405.4 | 7.2 | 0．1\％ |
 | 2\％ | 256.8 | 11263.4 | 6.6 | 0．1\％ |
 | 13．6\％ | 10863.3 | 10776.2 | －87．1 | ．8\％ |
 | 8\％ | 10244.4 | 10355.3 | 110.8 | |
 | 16．0\％ | 10179.0 | 10249.4 | 70.4 | 0．7\％ |
 | 17．3\％ | 10154.8 | 10171.2 | 16.4 | 2\％ |
 | 18．5\％ | 10148.0 | 10143.6 | －4．5 | |
 | 19．8\％ | 10133.9 | 10081.9 | －52．1 | －0．5\％ |
 | 21．0\％ | 10102.2 | ${ }^{9969.1}$ | 133.1 | ${ }^{1.3}$ |
 | 22．2\％ | 9958.5 | ${ }^{9911.7}$ | －46．7 | ${ }^{-0.5 \%}$ |
 | 23．5\％ | ${ }^{9954.2}$ | 9806.1 | 148.1 | ${ }^{1.5}$ |
 | 24．7\％ | ${ }^{9920.3}$ | ${ }^{9723.5}$ | －196．8 | －2．0\％ |
 | 25．9\％ | 9882.0 | ${ }^{9659.9}$ | 202.1 | －2．0\％ |
 | 27．2\％ | 9825.4 | ${ }^{9560.3}$ | ${ }^{265.1}$ | －2．7\％ |
 | 28．4\％ | ${ }^{9652.0}$ | 9531.9 | ${ }^{120.2}$ | －1．2 |
 | 29．6\％ | 9636.4 | ${ }^{9501.6}$ | －134．8 | －1．4\％ |
 | 30．9\％ | 9632.9 | 9488.4 | 144.4 | ${ }^{1.5}$ |
 | 32．1\％ | 9614.7 | ${ }_{9} 9467.8$ | 147.0 | －1．5\％ |
 | 33．3\％ | ${ }^{9561.2}$ | ${ }^{9429.1}$ | －132．1 | ${ }^{-1.46}$ |
 | 34．6\％ | 9548.4 | ${ }^{9405.1}$ | －143，4 | －1．5\％ |
 | 35．7\％ | ${ }^{9439.9}$ | ${ }^{93688.3}$ | －71．6 | ${ }^{0.8 \%}$ |
 | 37．0\％ | 9310.1 | ${ }^{92977}$ | －12．3 | －0．1\％ |
 | 38．3\％ | ${ }^{91911.6}$ | ${ }^{9170.3}$ | －21．3 | 0．2\％ |
 | 39．5\％ | 9186.6 | 9039.8 | 146.8 | －1．6\％ |
 | 40．7\％ | ${ }^{8902.2}$ | ${ }^{8926.0}$ | 23.8 | 0．3\％ |
 | 42．0\％ | ${ }^{8515.3}$ | 8754.9 | 239.6 | 2．8\％ |
 | 43．2\％ | ${ }^{8404.6}$ | ${ }^{8303.2}$ | －101．4 | －1．2\％ |
 | 44．4\％ | 8171.0 | ${ }^{7980.5}$ | －190．5 | 2．3\％ |
 | 45．7\％ | 7938.2 | 7972.9 | 34.7 | 0．4\％ |
 | 46．9\％ | 7917.0 | 7947.7 | 30.7 | 0．4\％ |
 | 48．1\％ | 7994.4 | 7821.5 | －92．9 | －1．2\％ |
 | 49．4\％ | 7805.2 | 7789.0 | －16．2 | －0．2\％ |
 | 50．6\％ | ${ }^{7758.5}$ | ${ }_{7}^{7621.8}$ | ${ }^{136.7}$ | －1．8\％ |
 | 51．9\％ | ${ }^{7520.6}$ | ${ }^{7556.1}$ | 35.5 | 0．5\％ |
 | 53．1\％ | 7457．3 | 7434.6 | ${ }^{22.6}$ | －0．3\％ |
 | 54．3\％ | ${ }^{7369.3}$ | 7408.0 | 38.7 | 5\％ |
 | 55．6\％ | 7330.5 | 7339．0 | 8.5 | 0．1\％ |
 | 56．8\％ | 7091.4 | ${ }^{7322.5}$ | 231.1 | 3\％ |
 | 58．0\％ | ${ }^{6963.8}$ | 7107.9 | 144.1 | 2．1\％ |
 | 59．3\％ | 6785．0 | 6919.9 | 134.9 | ， |
 | 60．5\％ | ${ }^{6732.5}$ | 6832.9 | 100.4 | 1．5\％ |
 | 61．7\％ | ${ }^{6593.0}$ | 6655．6 | ${ }_{62.6}$ | \％ |
 | －63．0\％ | 6471.2 59045 | 6607.5 57303 | ${ }_{\text {173．3 }}^{136.3}$ | 2．1\％ |
 | 64．2\％ | 5904.5 | ${ }^{5730.3}$ | －174．1 | |
 | 65．4\％ | 5740.3 | ${ }_{\substack{5687.6 \\ 5847}}$ | －52．7 | －0．9\％ |
 | ${ }^{66.7 \%}$ | 5680．1 | ${ }_{5647.7}$ | ${ }^{-32.5}$ | \％\％ |
 | 67．9\％ | 5679.0 | ${ }_{5}^{5642.5}$ | －36．5 | －0．9\％ |
 | 69．19\％ | 5570.6 5574 | ${ }_{5}^{5634.0}$ | 63.4 | 1\％ |
 | 70．4\％ | 5557．4 | ${ }_{5612.4}$ | 55.0 | 10\％ |
 | 71．6\％ | 5488.7 | ${ }_{5611.1}$ | ${ }^{122,4}$ | \％ |
 | 72．8\％ | 4927．1 | 5100.2 | 173.1 | ${ }^{3.5 \%}$ |
 | 74．1\％ | ${ }^{4284.2}$ | 4825.8 | 547．6 | 2．6\％ |
 | 75．3\％ | ${ }^{421871}$ | ${ }^{43931.4}$ | 173.3 | 1\％ |
 | 76．5\％ | 3977.7 | ${ }^{4232.7}$ | 255.0 | 4\％ |
 | 77．8\％ | ${ }_{385875}$ | ${ }^{4041.1}$ | 183.0 | 7\％ |
 | 79．0\％ | ${ }^{3827.5}$ | 3907．9 | 80.4 | ${ }^{2.1 \%}$ |
 | 80．2\％ | 3572.0 | ${ }^{3827.5}$ | ${ }^{255.6}$ | 7．2\％ |
 | 81．5\％ | 3543.0 | ${ }^{3584.3}$ | 41.2 | 2\％\％ |
 | 82．7\％ | ${ }^{34688.1}$ | ${ }^{3522.5}$ | 52．5 | ${ }^{1.5 \%}$ |
 | 84．0\％ | ${ }^{3370.1}$ | ${ }^{3468.8}$ | 98.7 | 9\％ |
 | 85．2\％ | ${ }^{3329.7}$ | ${ }^{3330.4}$ | 0.8 | 0．0\％ |
 | 86．4\％ | ${ }^{3076.3}$ | ${ }^{3130.7}$ | 54.4 | 8\％ |
 | 87．7\％ | ${ }_{26519}^{2624}$ | ${ }_{2601.2}$ | 49.3 | 1．9\％ |
 | 88．9\％ | ${ }^{2624.3}$ | ${ }^{2665.7}$ | 4.4 | ， |
 | 90．19\％ | ${ }^{2564.7}$ | ${ }^{2620.3}$ | 55.7 | ${ }_{\text {2．2\％}}^{2.2 \%}$ |
 | 91．4\％ | ${ }^{2282.0}$ | ${ }^{2363.3}$ | 81.4 | 3．6\％ |
 | 92．6\％ | ${ }^{20064.3}$ | ${ }^{2349.0}$ | 284.7 | 13．8\％ |
 | ${ }^{93.8 \%}$ | 1995.7 | 2094.6 | 99.0 | |
 | 95．1\％ | 1851.8 | 1749.1 | 102.7 | 5．5\％ |
 | ${ }^{96.3 \%}$ | ${ }^{16322.8}$ | ${ }^{1673.6}$ | 40.8 | 2．5\％ |
 | 97．5\％ | 1329．1 | 1331．2 | 2.1 | 0．2\％ |
 | 98．8\％ | 921．4 | ${ }_{644.4}^{884}$ | -36.9 456 | －4．0\％ |

 $\underset{\text { Thate }}{\text { Tat }}$ SQ－24－b

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2070 Without | WSIP 2070 With Project | Absolute | |
 | | Monthly EC | Monthly EC | （ifterence | ference（\％） |
 | （\％） | （10305cm | minosim | | |
 | 0．0\％ | | | 68.5 | 0．4\％ |
 | 1．2\％ | 17337.0 | 17234.4 | ${ }^{10226}$ | －0．6\％ |
 | 2．5\％ | 17261.1 | 17133.7 | －127．4 | －0．7\％ |
 | 3．70\％ | 17113．3 | 16713.9 13919 | －399．4 19 | －2．3\％ |
 | 6．2\％ | | | | |
 | 7．4\％ | ${ }_{138229.4}^{13729}$ | ${ }_{13895.0}$ | －-34.3 | ${ }^{-0.3 \%}$ |
 | 8．6\％ | 13688.9 | 13592.5 | －96．3 | －0．7\％ |
 | ${ }^{9.9 \%}$ | 13594.8 | 13468.1 | －126．7 | －0．9\％ |
 | ${ }^{11.1 \%}$ | 13572.0 13459.6 | 13003.0
 12961.2 | － $\begin{aligned} & -5969.1 \\ & -498\end{aligned}$ | －4．7\％\％ |
 | 13．6\％ | 13052.5 | 12904.3 | －148．2 | －1．1\％ |
 | 14．8\％ | 12987.5 | 12615.8 | －371．7 | －2．9\％ |
 | 16．0\％ | ${ }^{1279392}$ | 12575.4 | －217．7 | －1．7\％ |
 | | 12674.4 | 12438.5 | －235．9 | －1．9\％ |
 | 年 $18.8 .8 \%$ | 12608．0 12582.1 | 123789 123048 | －229．1 -277.3 | ${ }_{-2.2 \%}^{-1.8 \%}$ |
 | 21．0\％ | ${ }^{12427.5}$ | 12296.6 | －130．8 | －1．1\％ |
 | ${ }^{22.2 \%}$ | 12388.6 | 12284.4 | －104．2 | －0．8\％ |
 | － | － | 122737.6 12156 | －-195.7 | －－．6\％${ }_{\text {－}}$ |
 | 25．9\％ | ${ }^{1229330}$ | ${ }^{122095.3}$ | －197．7 | －1．6\％ |
 | 27．2\％ | 12261.9 | 12070.3 | －191．6 | －1．6\％ |
 | | 12227.0 | 12033.9 | －193．1 | －1．6\％ |
 | | 12199.6 | | －90．6 | －0．7\％ |
 | ${ }^{32.1 \%}$ | ${ }_{12105.9}$ | 111733.0 | ${ }_{-373.9}^{-239}$ | －3．1\％ |
 | 33．3\％ | 12089.3 | 11691.9 | －397．4 | 3．3\％ |
 | 34．6\％ | 11984.6 | 11409.0 | －575．6 | 4．8\％ |
 | 35．8\％ | 11966.1 | 11377.8 | －588．3 | －4．9\％ |
 | 37．0\％ | | 11319.7 | －602．6 | －5．1\％ |
 | 38．3\％ | 11869.4 | ${ }_{111305.2}^{113}$ | －564．2 | －4．8\％\％ |
 | | | | | |
 | 42．0\％ | 11676.2 | 11132.2 | ${ }_{-544.0}^{-549}$ | ${ }^{-4.7 \%}$ |
 | 43．2\％ | 11481.5 | 11155.6 | －424．8 | 3．7\％ |
 | 44．4\％ | 11386.1 | 10976.6 | －409．5 | －3．6\％ |
 | － $4.5 .7 \%$ | 11375.8 11223.7 | 10997.9 10897 | ${ }_{-326.3}^{-447.9}$ | －3．9\％ |
 | 48．1\％ | 11041.4 | 10884.6 | －156．8 | |
 | 49．4\％ | 10956.1 | 10852.0 | －104．1 | －1．0\％ |
 | 50．6\％ | 10904.5 | 10798.2 | －106．3 | －1．0\％ |
 | 51．9\％ | 10864.6 | | －110．3 | －1．0\％ |
 | 54．3\％ | 100354.4 | 100880.7 | －53．8 | －0．9 |
 | 55．6\％ | 10652.4 | 105330.2 | －122．1 | －1．1\％ |
 | 56．8\％ | 10605.8 | 10469.7 | －136．1 | －1．3\％ |
 | 58．0\％ | 10318.2 | 10326.3 | 8.1 | 0．1\％ |
 | 59．3\％ | 10307.1 | | | |
 | 笛 60.5% | 10304.8 100303.5 | 10317.7 10279.6 | 12.9 -23.9 | －0．2\％ |
 | 63．0\％ | ${ }^{10296.0}$ | 10196.5 | －99．6 | －1．0\％ |
 | 64.2% 654% | 10148.7 | 10158.9 | 10.2 | 0．1\％ |
 | －65．4\％ | 100874．2 | ${ }^{101097.1}$ | 19.9 -69.8 | －0．2\％ |
 | 67．9\％ | 9947.1 | ${ }^{9923.1}$ | －24．0 | －0．2\％ |
 | 69．1\％ | 9873.8 | 9873.5 | 4.8 | 0．0\％ |
 | 70．6\％ | ${ }_{96991.6}^{97355}$ | ${ }_{96844.5}^{9756}$ | ${ }_{-7.1}^{20.4}$ | －0．1\％ |
 | 72．8\％ | 9637.3 | 9611.9 | －25．4 | |
 | 74．1\％ | 9520.8 | 9591.2 | 70.5 | \％ |
 | 75．3\％ | 9433.4 | 9500.6 | 67.2 | 0．7\％ |
 | 76．5\％ | ${ }^{9314.0}$ | ${ }_{93327}^{9397}$ | －22．2 | |
 | 79．0\％ | ${ }^{88979.9}$ | ${ }_{8970.0}^{9362.7}$ | ${ }_{90.7}^{470.8}$ | 1．0\％ |
 | 80．2\％ | 8865.2 | 8936.9 | 71.7 | ， |
 | 81．5\％ | 8809.6 | ${ }^{8929.2}$ | 119.6 | 1．4\％ |
 | － | ${ }_{86923}^{8788.7}$ | 8883.6 8701.6 | 174.9 | 0．1\％ |
 | 85．2\％ | 8660 | 8332.9 | 327.8 | |
 | 86．4\％ | 8329.6 | 8314.7 | －14．9 | |
 | 87．7\％ | 8068.3 | 8067.5 | 0.8 | |
 | 88．9\％ | 7916.7 | ${ }_{7} 7921.6$ | 4.9 | 0．1\％ |
 | 90．4\％ | ${ }_{7}^{76550.1}$ | ${ }_{7}^{78328.7}$ | ${ }_{98.0}^{20.7}$ | 1．3\％ |
 | 92．6\％ | 692.5 | 6954.6 | 34.1 | |
 | 93．8\％ | 6903.6 | 6797.4 | 106.2 | －1．5\％ |
 | ${ }_{96.3 \%}^{95.1 \%}$ | ${ }^{6604.4}$ | ${ }^{64855} 6$ | －118．8 | －1．8\％ |
 | ${ }^{96.5 \%}$ | ${ }_{5870.2}^{5988.1}$ | ${ }_{5755.4}$ | － 114.8 -148 | ${ }_{-2.0 \%}$ |
 | 98．8\％ | 5303.4 | 4654.2 | 649.1 | 12．2\％ |
 | 100．0\％ | 2，626．1 | 2.481 .6 | 144.5 | 5．5\％ |

 | $\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probabaility } \end{array} \end{aligned}$ | September | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {WSIP }}$ 2070 Without | WSIP 2070 With Project | Absolute | |
 | | Monthly EC | Monthly EC | （ititernce | ference（\％） |
 | （\％） | UnHosicm | （1） | | |
 | 0．0\％ | 19123.7 | 19019.5 | －104．2 | －0．5\％ |
 | 1．2\％ | 19098.6 | 18926.7 | －171．9 | －0．9 |
 | 2．5\％ | 19088.4 | ${ }^{18766.8}$ | ${ }_{-321.6}$ | |
 | 3．9\％ | 18999.9 18899.6 | ${ }_{1884575}^{18875}$ | ${ }_{\text {－3422 }}^{-276.3}$ | |
 | 6．2\％ | 18919.5 | 18415.0 | －504．6 | －2．7\％ |
 | 7．4\％ | ${ }^{18875.3}$ | 18411.6 | －463．7 | －2．5\％ |
 | （8．6\％ | 18602.1
 18528.8 | 184077.0 18888.1 | －-195.1 | － |
 | ${ }^{\text {9．9\％}}$ | 18528.8 | 18288.1 | ${ }^{-240.6}$ | －1．3\％ |
 | 11．1\％${ }^{123 \%}$ | 18492.4
 183912 | 18281.2
 188824 | ${ }_{-2088}^{-211.2}$ | －-1.14% |
 | ${ }_{\text {l }}^{\text {12．3\％}}$ | | | | |
 | －14．8\％ | ${ }^{1838965.5}$ | ${ }^{1803955.8}$ | -250.2 -279.5 | －1．5\％ |
 | 16．0\％ | 18255.5 | 17979．0 | －276．5 | －1．5\％ |
 | 17．3\％ | 18226.0 | 17959.1 | －266．9 | －1．5\％ |
 | －${ }^{18.5 \%}$ 198\％ | 18299.2 18214.0 | （17906．3 | － -356.2 -312.9 | ${ }_{-2.0 \%}^{-1.7 \%}$ |
 | 21．0\％ | 18176.7 | 17844.9 | －331．8 | －1．8\％ |
 | ${ }^{22.2 \%}$ | 181388.4 | 17844.6 | －293．9 | －1．6\％ |
 | － 23.5 | 18088.2
 188823
 1 | 17820.2 177718 | － 268.1 -3105 | －1．5\％ |
 | 25．9\％ | 18029．2 | 17730.5 | －298．6 | －1．7\％ |
 | 27．2\％ | 18018.5 | 17700.2 | －312．3 | －1．7\％ |
 | 28．4\％ | （18009．3 ${ }_{1802.1}^{1}$ | 17679.3
 17502.6
 1 | －330．1 -499.5 | －1．8\％ |
 | 30．9\％ | 17995.4 | 17499.4 | －496．1 | －2．8\％ |
 | 32．1\％ | 17947.1 | 17450.3 | －496．9 | －2．8\％ |
 | | 179616.7 17902.1 | 174421.4 17411．1 | －-495.4 | －－2．8\％ |
 | 35．8\％ | 17844.9 | 17406.8 | －438．1 | －2．5\％ |
 | 37．0\％ | | 17262．4 | －578．9 | －3．2\％ |
 | 30．5\％ | ${ }_{178804.9}$ | ${ }_{172222.1}^{1724.8}$ | ${ }_{-582.8}^{-577}$ | ${ }_{-3.3 \%}$ |
 | 40．7\％ | 17793.4 | 17197.7 | －595．7 | －3．3\％ |
 | 42．0\％ | 17791.6 | 17126.3 | －665．3 | －3．7\％ |
 | ${ }^{43.2 \%}$ | 177855.7
 17767.1 | 171724.4 17067．1 | － $\begin{aligned} & \text {－600．3 } \\ & \text {－0．0 }\end{aligned}$ | －3．7\％${ }_{-3.9 \%}$ |
 | 45．7\％ | 17740.2 | 16965.1 | －775．1 | －4．4\％ |
 | | | 16964.5 | －760．7 | －4．3\％ |
 | 49．4\％ | ${ }_{174720.8}^{174702}$ | ${ }_{16906.1}^{16967.4}$ | －－414．8 | ${ }_{-2.4 \%}$ |
 | 50．6\％ | 17284.4 | 16805.1 | －479．3 | －2．8\％ |
 | | | 16715.2 | －552．6 | －3．2\％ |
 | 54．3\％ | 169883.8 1588.1 | ${ }_{1}^{162554.9}$ | -134.9 -130 | －0．8\％ |
 | 55．6\％ | ${ }^{121833.3}$ | 12130.0 | －53．2 | －0．4\％ |
 | | | | | －0．2\％ |
 | 年 $58.3 .0 \%$ | 1183336
 11823.4
 1 | 11814.2 11707.0 | －19．5 | －${ }_{\text {－}}^{\text {－0．0\％}}$ |
 | 60．5\％ | 11782.6 | 11600.7 | －175．9 | －1．5\％ |
 | | | | | |
 | －63．0\％ | 11690.6 11644.2 | 115584.2
 11573.5 | －-10.0 .4 | －0．6\％ |
 | 65．4\％ | 11592.0 | 11507.3 | －84．7 | －0．7\％ |
 | ${ }^{66.7 \%}$ | | | | ${ }^{-0.3 \%}$ |
 | 69．1\％ | ${ }_{82008.1}^{1422.5}$ | ${ }_{821926}^{1142.5}$ | ${ }_{8.7}^{230.0}$ | －2．1\％ |
 | 70．4\％ | 8178.3 | 8138.9 | －39．4 | 0．5\％ |
 | 71．6\％ | ${ }^{8130.5}$ | ${ }_{\text {8124．6 }}^{8124}$ | －5．85 | －0．1\％ |
 | 74．1\％ | ${ }_{8042.0}^{8086.2}$ | 8030.7 8019.0 | ${ }_{-23.0}^{\text {－55．5 }}$ | －0．3\％ |
 | 75．3\％ | 8030.9 | 7982.4 | －48．6 | －0．6\％ |
 | | | | －48．0 | －0．6\％ |
 | 77．8\％ | 79288.6 7911.2 | 7902.4 7883.2 | ${ }_{-28.0}^{26.2}$ | －0．4\％ |
 | 80．2\％ | 7886.5 | 7879.6 | －6．9 | －0．1\％ |
 | | 7882.6 78459 | | | |
 | 840\％ | 7819.9 | 7756.4 | －63．3 | －0．8\％ |
 | 85．2\％ | 7875.8 | 7749．0 | －56．8 | －0．7\％ |
 | ${ }^{86.4 \%}$ | 7793.9 | ${ }^{7739.8}$ | | －0．7\％ |
 | 88．9\％ | 7779.6 | ${ }_{7682.1}^{704.3}$ | －97．6 | ${ }^{-1.3 \%}$ |
 | 90．1\％ | 7777.1 | ${ }^{7668.5}$ | －108．5 | －1．4\％ |
 | 91．4\％ | ${ }^{7774.6}$ | ${ }_{76366}^{763.3}$ | －111．3 | －1．4\％ |
 | ${ }_{93.8 \%}^{92.6 \%}$ | 77729.5 | 76363.6 7630.6 | ${ }_{\text {－}}^{\text {－11．8．}}$ | －1．4\％ |
 | 95．1\％ | 7587.2 | 7475.1 | －112．1 | －1．5\％ |
 | 96．3\％ | 7558.0 | 7429.9 | －128．2 | －1．7\％ |
 | 97．5\％ | 7557.9 | ${ }^{7425.0}$ | －132．9 | －1．88 |
 | 100．0\％ | ${ }_{7}^{74394.9}$ | ${ }_{7,247.1}^{732.7}$ | ${ }_{-147.8}$ | －2．0\％ |

 San Joaquin River at Jersey Point, Monthly EC

 Table $\mathrm{SQ}-25-\mathrm{b}$
 in River at Jersey Point, Monthly Ec
 Ec

 \begin{tabular}{|c|c|c|c|c|}
 \hline \& \& october \& \&

 \hline Percent \& WSIP P270 Without \& WSIP 2070 With Project \& Absolute \&

 \hline Probability \& Monthly EC \& Monthly EC \& Difference (UMHOS/CM) \& Difference (\%)

 \hline 0.0\% \& ${ }_{3340.7}$ \& ${ }^{33255.1}$ \& -15.6 \& -0.5\%

 \hline 1.2\% \& \& 2876.4 \& \&

 \hline 2.5\% \& ${ }^{3966.6}$ \& 2788.3 \& -178.3 \& -6.0\%

 \hline 3.7\% \& 2936.0 \& 2726.2 \& -209 \&

 \hline 4.9\% \& 2898.7 \& 2573 \& \&

 \hline 7.4\% \& ${ }^{2651.8}$ \& ${ }^{253228}$ \& -119.0 \& -4.5\%

 \hline 7.4\% \& \& \& 25.5 \&

 \hline 9.9\% \& ${ }_{2}^{2468.8}$ \& ${ }_{2}^{2444.5}$ \& ${ }_{-28.3}$ \& -1.1\%

 \hline 11.1\% \& 2467.9 \& 2434.7 \& -33.2 \& -1.3\%

 \hline ${ }^{12.3 \%}$ \& 2457.5 \& 2376.8 \& -80.7 \&

 \hline 13.6\% \& 2442.9 \& ${ }^{2330.7}$ \& -112.1 \&

 \hline 14.8\% \& 2426.4 \& \& -169 \&

 \hline - 16.0% \& ${ }^{2412.9}$ \& 2247.9 \& -165.0 \& -6.8\%

 \hline - 18.85% \& 2378.9

 2373.0 \& ${ }_{2}^{22186.0}$ \& -176.5
 -187.0 \& -7.9\%

 \hline 19.8\% \& ${ }_{2339.6}^{273}$ \& 2169.1 \& -170.4 \& -7.3\%

 \hline 21.0\% \& ${ }^{23399}$ \& 2108.4 \& -230.9 \& -9.9\%

 \hline \& ${ }^{23335.8}$ \& ${ }^{2035.6}$ \& -300.2 \& -12.9\%

 \hline ${ }_{24.7 \%}^{22.5 \%}$ \& ${ }^{22775.0}$ \& ${ }_{1988.1}^{1985}$ \& -203.7
 -2037 \& -

 \hline 25.9\% \& 2235.9 \& 1931.6 \& -304.2 \& -13.6\%

 \hline 27.2\% \& 2222.0 \& 1913.4 \& -308.6 \& -13.9\%

 \hline 28.4\% \& 2219.0 \& 1887.9 \& -331.0 \& -14.9\%

 \hline 29.6\% \& ${ }^{2211.6}$ \& 1862.4 \& -349.2 \& 15.8

 \hline ${ }^{30.9 \%}$ 32.1\% \& 2200.8 \& 1857.1 \& -343.7 \& -15.6\%

 \hline - ${ }_{\text {32, }} 3.17 \%$ \& ${ }_{2169.9}^{2189.8}$ \& ${ }^{18827.3}$ \& -354.4 \& - ${ }_{\text {- }}^{\text {-15.2\%\% }}$

 \hline 34.6\% \& 2157.1 \& 1787.0 \& -370.1 \& -17.2\%

 \hline 35.8\% \& ${ }_{2142.7}$ \& 1786.5 \& -356.1 \& -16.6\%

 \hline 37.0\% \& 2116.3 \& 1764.7 \& -351.6 \& -16.6\%

 \hline 38.3\% \& 2116.3 \& 1755.2 \& -361.1 \& -17.1\%

 \hline 39.5\% \& 2096.0 \& 17497 \& ${ }^{-346.3}$ \& -16.5\%

 \hline 40.7\% \& ${ }^{2061.5}$ \& ${ }^{1723.3}$ \& -338.3 \& -16.4\%

 \hline 42.0\% \& ${ }^{2035.1}$ \& 1721.0 \& -314.1 \& -15.4\%

 \hline 43.2\% \& 2021.1 \& 1683.8 \& -337.3 \& -16.7\%

 \hline 44.4\% \& ${ }^{2018.6}$ \& 1679.0 \& -339.6 \& -16.8\%

 \hline 45.7\% \& 11995.9 \& 1653.0 \& -342.9 \& -17.2\%

 \hline 46.9\% \& ${ }^{1940.9}$ \& 1640.8 \& -300.1 \& -15.5\%

 \hline 48.19\% \& 11833.3 \& 1535.8
 1525 \& -297.5 \& -16.2\%

 \hline 5.6\%\% \& 1781.0 \& ${ }_{1522.8}$ \& ${ }_{-252.1}$ \& -14.2\%

 \hline 51.9\% \& 17693 \& 1398.7 \& -370.6 \& -20.9\%

 \hline 53.1\% \& 1370.0
 136.7 \& ${ }^{13855}$ \& 15.1 \& 1.1\%

 \hline 54.3\% \& 1366.7 \& 1207.4 \& -159.3 \& -11.7\%

 \hline 55.6\% \& 576.0 \& 487.4 \& -88.6 \& -15.4\%

 \hline 56.8\% \& ${ }_{490.6}$ \& 488.1 \& -4.5 \& -0.9\%

 \hline ${ }_{50.3 \%}$ \& 478.8 \& 463.5 \& -15.3 \& -3.2\%

 \hline 60.5\% \& 468.7 \& 432.4 \& -36.3 \& -7.7\%

 \hline 61.7\% \& 429.9 \& 417.7 \& -12.2 \& -2.8\%

 \hline -63.0\% \& 428.8 \& 411.8 \& -17.0 \& -4.0\%

 \hline 64.2\% \& 334.9 \& ${ }^{406.5}$ \& 11.7 \& 3.0\%

 \hline 66.7\% \& 340.9 \& 340.6 \& -0.3 \& -0.1\%

 \hline 679\% \& ${ }_{3}^{335.3}$ \& ${ }_{3}^{328.6}$ \& -6.7 \& -2.0\%

 \hline 69.1\% \& 315.6 \& 315.6 \& 0.0 \& 0.0\%

 \hline 70.4\% \& 313.9
 3035 \& 312.0
 307.4 \& -1.9
 3.9 \& -0.6\%

 \hline 72.8\% \& 302.3 \& 304.3 \& 2.1 \& 0.7\%

 \hline 74.1\% \& 294.4 \& 302.7 \& 8.3 \& 2.8\%

 \hline 75.3\% \& 293.9
 2915 \& 299.0 \& 5.1 \& 1.7\%

 \hline 76.5\% \& 291.5 \& 294.2 \& 2.7 \& 0.9\%

 \hline 779.8\% \& 2833.7
 283 \& 294.0
 286.5 \& 10.3
 3.1 \& 3.6\%

 \hline 80.2\% \& 277.2 \& 279.8 \& \& 0.9\%

 \hline 81.5\% \& 276.6 \& 278.8 \& 2.2 \& 0.8\%

 \hline - 82.7% \& 272.3
 2700 \& ${ }_{272.2}^{272.2}$ \& -0.1 \& 0.0\%

 \hline 84.8. ${ }^{8.2 \%}$ \& 278.0 \& ${ }^{269.2}$ \& -0.9 \& ${ }^{-0.3 \%}$

 \hline 86.4\% \& ${ }_{266.3}^{20.3}$ \& ${ }_{261.9}$ \& -4.4 \& -1.7\%

 \hline 87.7\% \& 265.2 \& 253.8 \& -11.4 \& -4.3\%

 \hline 88.9\% \& 264.9 \& 252.9 \& -11.9 \& -4.5\%

 \hline 90.1\% \& 254.5 \& 238.4 \& -16.0 \& -6.3\%

 \hline -91.4\% ${ }_{\text {926\% }}$ \& ${ }_{229.8}^{24.5}$ \& ${ }_{226.2}^{226.4}$ \& -18.1
 -3.6 \&

 \hline 93.8\% \& 228.6 \& 224.9 \& -3.8 \& -1.6\%

 \hline 95.1\% \& ${ }^{22263}$ \& ${ }^{2222.6}$ \& -3.7 \& -1.7\%

 \hline 96.3\% \& ${ }_{225}^{225}$ \& ${ }_{222.4}^{222.4}$ \& -2.8 \& -1.3\%

 \hline 98.8\% \& ${ }_{216.5}^{224.2}$ \& 222.2
 220.8 \& ${ }_{4}{ }^{-2.0}$ \& -0.9\%

 \hline 100.0\% \& 215.8 \& 217.1 \& 1.3 \& 0.6\%

 \hline
 \end{tabular}

 | | | January | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent | WSIP 2070 Without | WSIP 2070 With Project | Absolute | |
 | Probability | Monthly EC | Monthly EC | (itiference | Difference (\%) |
 | (\%) | UnHosicm) | MHOSSCM | 3488 | |
 | 1.2\% | ${ }_{17726} 24$ | 18575 | 849 | |
 | 2.5\% | 1500.0 | 1619.9 | 119.9 | |
 | 3.7\% | 1475.0 | 1580.8 | 105.8 | 7.2\% |
 | 4.9\% | 1432.7 | 1448.0 | 15.3 | 1.1\% |
 | 7.4\% | 1399.4 1393.8 | ${ }^{14346.1}$ | 36.7 35.9 | 2.6\% |
 | 8.6\% | 1331.6 | 1427.9 | 96.3 | 7.2\% |
 | 9.9\% | 1307.7 | 1401.0 | 93.3 | 7.1\% |
 | 11.1\% ${ }^{\text {12.3\% }}$ | ${ }_{1}^{12929.3}$ | 1391.7 1369.5 | ${ }_{99} 9.4$ | 7.7.2\% |
 | 13.6\% | 1215.6 | 1332.8 | 117.2 | 9.6\% |
 | 14.8\% | 1173.5 | 1296.8 | 123.3 | 10.5\% |
 | 117.3\% | ${ }^{1153.8}$ | ${ }_{1}^{12935.0}$ | 139.2 123.2 | 12.1% 10.8% |
 | 18.5\% | 1130.7 | 1251.5 | 120.9 | 10.7 |
 | 19.8\% | 1109.9 | 1215.3 | 105.4 | |
 | 21.0\% | 1093.1 | 1188.8 | ${ }_{55}^{95.6}$ | 8.7\% |
 | 22.5\% | 10706.7 106.4 | 1125.7 1103.1 | | |
 | 224.7\% | 1000.4 1030.6 | 11079.9 | ${ }_{49.3}$ | 4.8\% |
 | 25.9\% | 1012.3 | 1068.4 | 56.2 | 5.5\% |
 | 227.4\% | ${ }_{929.7}^{982.2}$ | ${ }_{\text {coser }}^{1028.0}$ | | |
 | 229.6\% | ${ }_{854.7}$ | ${ }_{945.6}$ | 90.9 | 10.6\% |
 | 30.9\% | ${ }_{89} 84.5$ | ${ }^{925.3}$ | 75.8 | 8.9\% |
 | 32.3\% | 801.3 750.2 | ${ }_{851.8}^{9138}$ | 112.5 101.6 | ${ }^{14.5 .5 \%}$ |
 | 34.6\% | 724.3 | ${ }_{806.4}$ | ${ }_{82.1}^{10.0}$ | 11.3\% |
 | | 719.1 6618 | 786.3 7171 | 67.2 553 | 9.3\% |
 | 38.3\% | 661.8 635.5 | 717.1 713.8 | 55.3 78.3 | 8.4.\%
 12.3% |
 | 39.5\% | 631.8 | 709.2 | 77.5 | 12.3\% |
 | 40.7\% | 571.6 | 705.7 | 134.1 | 23.5\% |
 | 43.2\% | ${ }_{505.7}^{535.2}$ | 661.4 618.5 | $\begin{array}{r}126.2 \\ 112.9 \\ \hline 18.9\end{array}$ | ${ }_{22}^{23.6 \%}$ |
 | 44.4\% | 483.5 | 616.9 | 133.4 | 27.6\% |
 | 44.9\% | ${ }_{433.2}^{466.6}$ | 614.3 594.8 | 1461.7 161.6 | |
 | 48.1\% | 432.0 | 586.7 | 154.7 | 35.8\% |
 | 49.4\% | ${ }^{426.7}$ | 585.8 | 159.1 | ${ }^{37.3 \%}$ |
 | 55.9\% | 379.3 | ${ }_{464.4}$ | ${ }_{85.1} 8$ | ${ }_{22.4 \%}^{22.6 \%}$ |
 | 53.1\% | 361.2 | 457.4 | 96.2 | 26.6\% |
 | 55.3\%\% | 330.1 328.8 | 384.6 377.1 | 54.4 48.3 | ${ }^{16.5 \%}$ 14.7\% |
 | 56.8\% | 320.0 | 360.6 | 40.6 | 12.7\% |
 | 559.3\% | 311.0 3020 | 358.9 3379 | 47.9 359 | 15.4% 119% |
 | 60.5\% | 297.5 | 323.2 | ${ }_{25.6}$ | 8.6\% |
 | 61.7\% | 293.5 | 318.4 | 25.0 | 8.5\% |
 | 664.2\% | 281.3 274.0 | ${ }_{293}^{298.8}$ | 17.4
 19.6 | ${ }_{7.2 \%}^{6.2 \%}$ |
 | 65.4\% | 271.3 | 292.6 | 21.4 | 7.9\% |
 | 析 $6.7 .9 \%$ | 270.6 265.1 | 286.0 279.0 | 15.4 13.9 | 5.3\% |
 | 69.1\% | 263.7 | 271.7 | 8.0 | 3.0\% |
 | 71.6\% | 254.3 2498 | ${ }_{261.6}^{262.2}$ | 11.8 | 4.7\% |
 | 72.8\% | 243.7 | 255.4 | 11.6 | 4.8\% |
 | 75.3\% | 24.1 239.6 | 243.8 242 | 10.1 3.3 | ${ }^{4.4 \%}$ |
 | 76.5\% | 236.8 | ${ }_{239.5}^{239}$ | 2.8 | 1.2\% |
 | 77.0\% | ${ }_{229.1}^{236.4}$ | 237.0 230.6 | 0.7 1.5 | - 0.7% |
 | 80.2\% | 228.7 | 228.8 | 0.0 | 0.0\% |
 | 88.5\% | ${ }_{2234}^{227.5}$ | ${ }_{2228}^{228.0}$ | ${ }^{0.6}$ | 0.2\% |
 | 84.0\% | ${ }_{223.4}^{223.4}$ | ${ }_{223.7}^{224}$ | ${ }_{0.3}^{0.8}$ | 0.1\% |
 | 85.2\% | ${ }_{2215}^{222.5}$ | ${ }_{223}^{223}$ | 0.5 | 0.2\% |
 | 88.7\% | ${ }_{221.1}^{221.5}$ | ${ }^{221.2}$ | -0.3 | -0.2\% |
 | 88.9\% | 216.4 | 216.9 | -2.5 | ${ }_{0}^{-1.2 \%}$ |
 | 90.1\% | 216.4 210.5 | 21.9 | ${ }^{0.5}$ | 0.2\% |
 | -92.4\% | ${ }_{208.5}^{210.5}$ | ${ }_{209.9}^{21.8}$ | 1.3
 1.4
 1 | 0.7\% |
 | ${ }^{\text {93.3\% }}$ | 206.5 | 209.5 | 2.9 | 1.4\% |
 | ${ }_{965 \%}^{95.10 \%}$ | 20.0 | 207.1 | 1.0 | 0.5\% |
 | 97.5\% | 204.4 | ${ }_{202.9}^{20.2}$ | -1.6 | ${ }_{-0.8 \%}$ |
 | 98.8\% | 199.0 | 199.1 | 0.1 | 0.1\% |
 | 100.0\% | 197.2 | 197.9 | 0.7 | 0.3\% |

 Table SQ-25-b
 Riverat JJersey Point, Monthy EC

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[b]{3}{*}{\begin{tabular}{l}
 \hline Percent \\
 Exceedance \\
 Probability
 \end{tabular}} \& \multicolumn{4}{|c|}{February} \\
 \hline \& WSIP 2077 Without \& WSIP 2070 With Project \& Absolute \& \\
 \hline \& Monthly EC \& Monthy EC \& (ititerence \& fference (\%) \\
 \hline (\%) \& UMHOSCM \& minosicm \& \& \\
 \hline 0.0\% \& 2420.0 \& 1025.0 \& -1395.0 \& -57.6\% \\
 \hline 1.2\% \& 74.6 \& 994.0 \& 251.5 \& 33.9\% \\
 \hline 2.5\% \& \({ }_{727.3}\) \& 698.3 \& -28.9 \& -4.0\% \\
 \hline 3.9\% \& 707.8
 5817 \& \begin{tabular}{l}
 693.8 \\
 6548 \\
 \hline
 \end{tabular} \& \(\begin{array}{r}\text {-14, } \\ \hline 7\end{array}\) \& \({ }_{1226 \%}^{-2.0 \%}\) \\
 \hline 6.2\% \& 518.9 \& 593.8 \& 74.9 \& 14.4\% \\
 \hline 7.4\% \& 499.8 \& 570.7 \& 71.0 \& 14.2\% \\
 \hline - \({ }_{\text {8.9\% }}\) \& \({ }_{462.4}^{4878}\) \& \({ }_{547.9}^{551.9}\) \& 64.1
 85.1 \& (13.1\% \\
 \hline \({ }^{\text {911.9\% }}\) \& \({ }_{4}^{462.4}\) \& 547.6
 5991 \& 85.1 \& \(18.4 \%\)
 \(153 \%\) \\
 \hline \({ }^{11.12 \%}\) \& \({ }_{400.3}^{459.1}\) \& \({ }_{5006.2}^{529.1}\) \& 70.0
 659 \& \begin{tabular}{l}
 155.3\% \\
 \(15.0 \%\) \\
 \hline
 \end{tabular} \\
 \hline 13.6\% \& 421.4 \& 459.2 \& 37.8 \& 9.0\% \\
 \hline 14.8\% \& 411.7 \& 440.7 \& 29.0 \& 7.0\% \\
 \hline - 16.0 \% \({ }^{\text {17.3\% }}\) \& \({ }_{404.4}^{404}\) \& 426.5
 410.4 \& 22.0
 6.1 \& 1.5\% \\
 \hline 18.5\% \& 371.1 \& 402.4 \& 31.3 \& 8.4\% \\
 \hline 19.8\% \& 367.5 \& 392.3 \& 24.8 \& 6.8\% \\
 \hline \({ }^{21.0 \%}\) \& 361.5
 354.6 \& 371.0
 365.3 \& 9.5
 10.7 \& 3.0\% \\
 \hline 23.5\% \& 349.5 \& 359.0 \& 9.4 \& 2.7\% \\
 \hline 24.7\% \& 348.9 \& \({ }^{353.3}\) \& 4.3 \& 1.2\% \\
 \hline 27.7.2\% \& 343.5
 337.8 \& 344.1
 336.8 \& \({ }_{-1.0}\) \& -0.3\% \\
 \hline 28.4\% \& 329.6 \& \({ }^{323.3}\) \& -6.3 \& -1.9\% \\
 \hline \& 319.3 \& 322.0 \& 2.8 \& 0.9\% \\
 \hline - \({ }^{30.9 \%}\) \& 300.2

 296.6 \& 319.6
 318.0 \& 19.4
 21.5 \& ${ }_{7.2 \%}^{6.5 \%}$

 \hline 33.3\% \& 295.4 \& 315.0 \& 19.6 \& 6.6\%

 \hline \& 288.9 \& ${ }^{309.1}$ \& \&

 \hline 37.0\% \& ${ }_{264.8}^{2787}$ \& ${ }_{297.3}$ \& ${ }_{32.5}^{26.2}$ \& 12.3\%

 \hline 38.3\% \& 258.9 \& 279.3 \& 20.5 \& 7.9\%

 \hline \& \& 276.8 \& \&

 \hline 42.0\% \& ${ }_{256.6}^{25.9}$ \& ${ }_{267.3}^{2737}$ \& 15.7 \& 4.2\%

 \hline 43.2\% \& ${ }^{256.6}$ \& 261.3 \& 4.7 \& 1.8\%

 \hline \& ${ }^{253.1}$ \& ${ }_{20,3}^{260.3}$ \& \& 2.9\%

 \hline 46.9\% \& ${ }_{251.0}^{2515}$ \& ${ }_{258.7}^{259 .}$ \& 8.7
 7.7 \& ${ }^{3.12 \%}$

 \hline 48.1\% \& 250.7 \& ${ }_{256.7}^{256.7}$ \& 6.0 \& 2.4\%

 \hline \& \& ${ }^{256.4}$ \& \&

 \hline 51.9\% \& ${ }_{245.9}^{24.6}$ \& ${ }_{253.4}^{25.8}$ \& 7.5 \& 3.1\%

 \hline 53.1\% \& ${ }_{245}^{245}$ \& ${ }_{2}^{252.6}$ \& 6.8 \& 2.8\%

 \hline \& \& ${ }^{252.1}$ \& 7.2 \& ${ }_{2}^{2.9 \%}$

 \hline 56.8\% \& ${ }_{240.9}$ \& ${ }_{250.3}^{251.6}$ \& ${ }_{9.4}^{6.8}$ \& 3.9\%

 \hline 58.0\% \& 238.9 \& 247.0 \& 8.1 \& 3.4\%

 \hline \& ${ }_{2369}^{2369}$ \& 245.4 \& 8.4 \& 3.6\%

 \hline 61.7\% \& ${ }_{235.2}^{2369}$ \& 243.2
 242.5 \& ${ }_{7.4}^{6.3}$ \& ${ }_{\text {3.1\% }}^{2.7 \%}$

 \hline 63.0\% \& ${ }_{235.1}$ \& 241.4 \& ${ }^{6.3}$ \& 2.7\%

 \hline 64.2%
 654% \& ${ }_{2}^{232.8}$ \& ${ }_{2379}^{2379}$ \& \& ${ }_{21 \%}^{2.2 \%}$

 \hline 66.7% \& ${ }_{232.5}^{232 .}$ \& ${ }_{233.6}^{23,6}$ \& ${ }_{1.1}^{4.8}$ \& 2.5\%

 \hline 67.9\% \& ${ }_{20,5}^{2329}$ \& ${ }_{2328}^{2328}$ \& 2.4 \& 1.0\%

 \hline 69.1\% \& \& ${ }_{2}^{232.6}$ \& ${ }_{2}^{2.8}$ \& ${ }^{1.2 \%}$

 \hline 71.6\% \& ${ }_{227.4}^{228.8}$ \& ${ }_{231.3}^{231.4}$ \& ${ }_{3.9}^{2.7}$ \& 1.7\%

 \hline 72.8\% \& 225.9 \& 229.0 \& 3.2 \& 1.4\%

 \hline \& \& 228.9 \& 3.8 \& ${ }^{1.7 \%}$

 \hline 7.7.3\% \& ${ }_{223.1}^{223.9}$ \& ${ }_{2229}^{228.0}$ \& | 4. |
 | :--- |
 | 3.8 | \& -1.7\%

 \hline 77.8\% \& 221.9 \& 224.6 \& 2.7 \& 1.2\%

 \hline \& \& \& ${ }^{3.2}$ \& ${ }^{1.5 \%}$

 \hline ${ }^{81.5 \%}$ \& 210.4 \& ${ }_{214.3}^{215.6}$ \& 3.9
 3.9 \& ${ }^{2.9 \%}$

 \hline 82.7\% \& 210.0 \& 211.7 \& 1.7 \& 0.8\%

 \hline 84.0\% \& 209.2 \& 210.4 \& 1.2 \& 0.6\%

 \hline \& ${ }_{208.7}^{208.7}$ \& 209.8
 208.8 \& ${ }^{1.1}$ \& e. ${ }_{\text {0. }}^{0.0 \%}$

 \hline 87.7\% \& 206.7 \& 207.8 \& 1.0 \& 0.5\%

 \hline 88.9\% \& 205.7 \& 206.5 \& 0.9 \& 0.4\%

 \hline 90.1\% \& 205.4 \& 205.4 \& 0.0 \& 0.0\%

 \hline \& ${ }_{2039}^{204.5}$ \& ${ }_{204.4}^{205.4}$ \& 0.9 \& 0.4\%

 \hline 93.8\% \& 203.1 \& ${ }_{203.6}^{204.2}$ \& 0.5 \& 0.3\%

 \hline 95.1\% \& 203.1 \& 203.1 \& 0.0 \& 0.0\%

 \hline 96.3\% \& 202.7 \& 202.6 \& -0.1 \& 0.0\%

 \hline 97.5\% \& 20.0 \& 200.1 \& 0.1 \& 0.1\%

 \hline 988.8\%
 100.0\% \& 1997.7
 195.2 \& 198.6
 195.3 \& 0.9
 0.1 \& 0.0\%\%

 \hline
 \end{tabular}

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | Wsp 2rown March | | | | April | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2070 Weithout | WSIP 2070 With Project | | | | WSIP 207\% Without | WSIP 2070 With Project | Absolute | |
 | | Monthly EC | Monthy EC | (idiference | Difference (\%) | Probability | Montiliy EC | Monthly EC | Difference (UMHOSCM) | fiference (\%) |
 | [\%) | He9sici | (UnHosici | 388 | | (\%) | 70939 | 7189 | 91 | |
 | 0.0\% | 69.5 | 70.5 | ${ }^{\text {-25.6 }}$ | | 0.0\% | 1092 | \%88.9 | 9.1 | |
 | 1.2\% | ${ }^{666.5}$ | 400.8 348.4 | ${ }_{-319}^{-2997}$ | -39.0\% | - 1.20% | ${ }_{423.5}^{492.2}$ | ${ }_{401.2}^{483.3}$ | -82.3 | ${ }^{-1.85 \%}$ |
 | ${ }^{2.5 \%}$ | ${ }^{380.2}$ | 348.4 | -3.99 | ${ }^{-8.4 \%}$ | ${ }^{2.5 \%}$ | ${ }^{423.5}$ | 401.2 | | |
 | 3.9\% | ${ }_{331.7}^{344.7}$ | 340.8 3237 | --7.9 | --2.4\% | 4.9\% | ${ }_{342.2}$ | 350.4
 343.5 | 0.8 | 0.2\% |
 | 6.2\% | 315.4 | 322.2 | 6.8 | 2.1\% | 6.2\% | 331.7 | 332.2 | 0.5 | 0.2\% |
 | 7.4\% | 3098 | 322.0 | 12.3 | 4.0\% | 7.4\% | 328.4 | 326.9 | -1.5 | -0.5\% |
 | 8.6\% | 297.4 | 320.0 | 22.6 | 7.6\% | 8.6\% | 318.8 | 319.4 | 0.7 | 0.2\% |
 | 9.9\% | 293.9 | 306.9 | ${ }^{13.0}$ | 4.4\% | ${ }^{9.9 \%}$ | ${ }^{311.9}$ | 313.8 | 1.9 | 0.6\% |
 | -1.13\% | ${ }_{2}^{285.9}$ | ${ }_{2893}^{2959}$ | 9.4 13.1 | 3.8\% | 1123\% | ${ }^{310.2}$ | ${ }_{304.1}^{308.1}$ | -2, | -0.6\% |
 | 13.6\% | 274.3 | 277.1 | 2.8 | 1.0\% | 13.6\% | 29.1 | 294.5 | 3.4 | 1.2\% |
 | 14.8\% | 262.5 | 276.5 | 13.9 | 5.3\% | 14.8\% | 290.2 | 290.4 | 0.3 | 0.1\% |
 | 16.0\% | ${ }_{2626}^{262.2}$ | 273.0 2887 | ${ }^{10.8}$ | 4.1\% | 16.0\% | ${ }_{272}^{286.5}$ | ${ }_{2727}^{289.1}$ | ${ }^{2.6}$ | 0.9\% |
 | 18.5\% | 259.6 2588 | | | | 18.5\% | | | | |
 | 19.8\% | 256.6 | 255.1 | -1.5 | -0.6\% | 19.8\% | 266.1 | 267.4 | 1.2 | 0.5\% |
 | - 21.0% | 253.4 2504 | ${ }_{253}^{254}$ | 1.3
 2
 1 | - ${ }_{12 \%}$ | 21.0\% | ${ }_{2630}^{264}$ | ${ }_{264.9}^{266.2}$ | 2.1 19 | 0.8\% |
 | 23.5\% | ${ }_{247.4}^{204}$ | 251.2 | ${ }_{3} .7$ | 1.5\% | 22.5\% | 262.8 | 262.9 | 0.2 | 0.1\% |
 | 24.7\% | 247.0 | 250.7 | 3.8 | 1.5\% | 24.7\% | 258.5 | 259.1 | 0.7 | 0.3\% |
 | 25.9\% | ${ }_{244.6}^{244.6}$ | ${ }_{248.1}^{248.3}$ | 3.6 3.5 | +1.5\% | 227.2\% | 254.9 2529 | 258.1 2558 | 3.2
 2
 2 | - 1.3% |
 | 28.4\% | 244.5 | 247.6 | 3.1 | 1.3\% | 28.4\% | 248.1 | 250.2 | 2.1 | 0.9\% |
 | 29.6\% | 244.3 | 247.3 | 3.0 | 1.2\% | 29.6\% | 247.5 | 2498 | 2.3 | 0.9\% |
 | 30.9\% | ${ }_{2423}^{2429}$ | 24.0 245.5 | ${ }_{3.1}^{4.1}$ | - 1.7% 1.3\% | ${ }_{3}^{33.9 \%}$ | ${ }_{2454}^{24.0}$ | ${ }_{24,7}^{2495}$ | 3.5
 23
 1 | - 1.4% |
 | 33.3\% | 24.7 | 244.4 | 2.7 | 1.1\% | 33.3\% | 245.4 | 246.5 | 1.1 | 0.4\% |
 | 34.6\% | 240.0 | 243.2 | 3.2 | 1.3\% | 34.6\% | ${ }^{243.5}$ | 246.3 | 2.8 | 1.2\% |
 | 355.8\% | ${ }_{237.1}^{239.8}$ | ${ }_{241.4}^{24.3}$ | ${ }_{4}^{2.4}$ | 1.8\%\% | 337.0\% | ${ }_{242.7}^{243.1}$ | ${ }_{245.3}^{24.7}$ | 2.6 2.6 | -1.1\% |
 | 38.3\% | 237.0 | 241.1 | 4.1 | 1.7\% | 38.3\% | 24.0 | 243.1 | 1.0 | 0.4\% |
 | 39.5\% | 235.4 | 240.9 | 5.6 | 2.4\% | 39.5\% | 239.5 | 242.3 | 2.9 | 1.2\% |
 | 40.7\% 42. | ${ }_{231.9}^{235.1}$ | 233.8 237.3 | 3.7 5.4 | 2.3\% | 42.70\% | ${ }_{2}^{238.7}$ | ${ }_{240.4}^{240.5}$ | 1.8 1.8 1 | -0.7\%\% |
 | 43.2\% | 231.7 | 237.0 | 5.3 | 2.3\% | 43.2\% | 237.7 | 239.0 | 1.3 | 0.5\% |
 | 44.4\% | 2303 | 236.5 | 6.2 | 2.7\% | 44.4\% | 236.8 | 238.7 | | 0.8\% |
 | 45.7\% | ${ }_{228.3}^{228.8}$ | 234.7 230.7 | 5.8 2.4 | 2.5\% | 456.9\% | 236.7 236.6 | 238.7 2375 | 2.0 1.0 | 0.9\% |
 | 48.1\% | 225.6 | 229.1 | 3.5 | 1.6\% | 48.1\% | ${ }^{234.6}$ | 236.6 | 2.0 | |
 | 49.4\% | 222.7 | 227.3 | 4.6 | 2.1\% | 49.4\% | 233.8 | 235.6 | 1.8 | 0.8\% |
 | 50.6\% | ${ }_{218.8}^{220.1}$ | ${ }_{223.5}^{226.0}$ | ${ }_{4.7}^{5.9}$ | 2.7\%\% | 550.9\% | 233.5 231.6 | ${ }_{234.2}^{235.3}$ | 1.8 2.7 | - ${ }^{0.8 \%}$ |
 | 53.1\% | 218.3 | ${ }_{221.6}$ | 3.3 | 1.5\% | 53.1\% | 231.2 | ${ }_{232}{ }^{23}$ | 1.1 | 0.5\% |
 | 54.3\% | 216.9 | 221.3 | 4.4 | 2.0\% | 54.3\% | 229.5 | 231.3 | 1.8 | 0.8\% |
 | 55.6\% | 216.2 | 220.7 | 4.5 | 2.1\% | 55.6\% | ${ }^{228.6}$ | ${ }^{232.0}$ | 1.4 | 0.6\% |
 | 56.8\% | ${ }_{2159}^{216.0}$ | 220.4 219.0 | ${ }_{3.2}^{4.4}$ | ${ }^{2.0 \%}$ | 56.8\% | ${ }_{226.5}^{228.5}$ | ${ }_{228.3}^{229.5}$ | 1.17 | 0.5\% |
 | 59.3\% | 215.7 | 219.0 | 3.3 | 1.5\% | 59.3\% | ${ }_{226.1}^{2265}$ | 222.6 | 0.5 | 0.2\% |
 | 60.5\% | 215.4 | 218.7 | 3.4 | 1.6\% | 60.5\% | ${ }^{225.6}$ | 226.1 | 0.5 | 0.2\% |
 | ${ }^{61.7 \%}$ | 214.9 | ${ }^{217.0}$ | ${ }^{2.1}$ | 1.0\% | 61.7\% | ${ }_{225.2}^{225.2}$ | 226.1 | 0.9 | 0.4\% |
 | 6.4.2\% | ${ }_{214.6}$ | ${ }_{216.6}^{217.0}$ | ${ }_{2}^{2.0}$ | 1.0\% | -63.0\% | ${ }_{224.9}^{225.0}$ | ${ }_{225.8}^{226.1}$ | 1.1 0.9 | 0.4\% |
 | 65.4\% | 214.2 | 214.9 | 0.8 | 0.4\% | 65.4\% | ${ }^{224.3}$ | 225.6 | 1.3 | 0.6\% |
 | ${ }^{66.77 \%}$ | 212.6 | 214.7 | 2.2 | 1.0\% | ${ }^{66.7 \%}$ | 224.2 | 225.0 | 0.8 | 0.4\% |
 | 67.9\% | ${ }_{212.5}^{212.5}$ | ${ }_{213.0}^{214.6}$ | ${ }_{0.5}^{2.1}$ | 0.2\% | 69.9\% | ${ }_{223.5}^{224.0}$ | ${ }^{224.2}$ | 0.2 0.5 | 0.2\% |
 | 70.4\% | 212.1 | 212.8 | 0.7 | 0.3\% | 70.4\% | 223.0 | 221.5 | 1.5 | -0.7\% |
 | 71.6\% | 211.2 | 212.6 | 1.3 | 0.6\% | 71.6\% | 221.6 | 221.0 | -0.6 | -0.3\% |
 | 72.8. 7 | 211.0 209.9 | 212.2 210.3 | 1.2 0.5 | 0.2\% | 72.8\% | 221.2
 219.8 | ${ }_{2218.5}^{220.7}$ | -0.5 | -0.0\%\% |
 | 75.3\% | 209.6 | 209.9 | 0.3 | 0.2\% | 75.3\% | 218.7 | 217.1 | -1.6 | -0.7\% |
 | 76.5\% | 208.5 | 208.7 | 0.2 | 0.1\% | 76.5\% | ${ }^{215.6}$ | 216.2 | 0.6 | |
 | 79.0\% | ${ }_{205.8}^{206.7}$ | ${ }_{207.4}^{2078}$ | 1.6 | 0.8\% | 779.8\% | 215.4 215.0 | ${ }_{2}^{215.5}$ | 0.4 0.5 | ${ }_{0}^{0.2 \%}$ |
 | 80.2\% | 205.7 | 207.2 | 1.5 | 0.8\% | 80.2\% | . | 214.3 | 1.1 | \%\% |
 | 81.5\% | 204.3 | 205.9 | 1.5 | 0.7\% | 81.5\% | 212.8 | 213.3 | 0.5 | 0.2\% |
 | 82.7% 840% | ${ }_{202.8}^{202.8}$ | ${ }_{2031}^{2057}$ | ${ }_{1}^{2} 17$ | 1.4\% | 82.7\% | ${ }_{211.8}^{211.8}$ | ${ }_{211.1}^{213}$ | 1.3 | 0.6\% |
 | 885.2\% | ${ }_{201.1}^{201.4}$ | ${ }_{202.9}^{203.1}$ | 1.7 1.8 | - 0.9% | -84.0\% | 211.3 210.0 | 211.4 211.2 | 0.0 1.2 | 0.6\% |
 | 86.4\% | 201.0 | 2018 | 0.8 | 0.4\% | 86.4\% | 209.0 | 209.8 | 0.8 | 0.4\% |
 | 87.7\% | 200.6 | 200.8 | 0.2 | 0.1\% | 87.7\% | ${ }^{2077}$ | 2097 | 1.9 | 0.9\% |
 | 88.9\% | 20.4 | ${ }_{2007}^{200.7}$ | 0.3 | | 88.9\% | | | | 0.0\% |
 | 991.4\% | ${ }_{199.7}^{20.7}$ | ${ }_{200.6}^{200.7}$ | 1.0 | ${ }_{0}^{0.5 \%}$ | ${ }_{901.4 \%}^{90.1 \%}$ | ${ }_{205.6}^{20.7}$ | ${ }_{205.7}^{200.6}$ | -0.1 | -0.0\% |
 | 92.6\% | 198.8 | 200.3 | 1.5 | 0.8\% | 92.6\% | 201.4 | 201.5 | 0.0 | 0.0\% |
 | 953.1\% | ${ }_{197.2}^{197.7}$ | 199.8 197.6 | 1.2 0.4 | ${ }_{0}^{0.6 \%}$ | 995.1\% | ${ }_{200.7}^{201.0}$ | ${ }_{201.2}^{201.2}$ | 0.2 0.5 | ${ }^{0.2 \%}$ |
 | 96.3\% | 196.9 | 197.3 | 0.3 | 0.2\% | 96.3\% | 197.0 | 197.0 | 0.0 | 0.0\% |
 | 978.8\% | ${ }^{196.5}$ | ${ }^{197.0}$ | ${ }^{0.5}$ | 0.3\% | 978.5\% | 196.9 | 196.2 | -0.7 | -0.4\% |
 | - $98.8 \% \%$ | 194.3 191.6 | ${ }_{191.7}^{192.9}$ | $\stackrel{-1.4}{0.0}$ | $\stackrel{-0.0 \%}{-0.7 \%}$ | 988\% | 189.9 189.0 | 189.9 189.4 | ${ }_{0.4}$ | 0.2\% |

 | | WSTP 2 a wat may | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent | WSIP 2070 Without | WSIP 2070 With Project | | Relative |
 | Probability | Monthly EC | Monthly EC | Difference (UMHOS/CM) | Difference (\%) |
 | ${ }^{(\% .0)}$ | ${ }^{\text {(UMHOSSCM) }} 1$ | (UMHHOSCM ${ }^{1204.7}$ | 0.6 | 0.0\% |
 | 12\% | 10929 | 10587 | | |
 | 2.5\% | 1004.2 | ${ }^{1026.3}$ | ${ }^{22.0}$ | ${ }_{.1 .2 \%}^{2.10}$ |
 | 3.7\%\% | -967.1 | ${ }_{\text {cke }} 956.7$ | -10.4 | -1.1\% |
 | , 2% | | | | |
 | 7.4\% | ${ }_{494.5}$ | 495.6 | 1.1 | 0.2\% |
 | 8.6\% | 489.8 | 495.6 | 5.8 | 1.2\% |
 | 9.9\% | 476.2 | 489.9 | 13.7 | |
 | 11.1\% | 467.3 | 469.5 | 2.1 | 0.9\% |
 | 12.3\% | 407.3 | 407.4 | 0.1 | 0.0\% |
 | 13.6\% | 377.1 | 391.9 | 14.8 | 3.9\% |
 | 14.8\% | 364.6 | 366.4 | 1.7 | 0.5\% |
 | 16.0\% | 358.3 | 363.9 | 5.6 | 1.6\% |
 | 17.3\% | 350.4 | 346.8 | , | |
 | 18.5\% | 348.7 | 339.6 | -9.1 | -2.6\% |
 | 19.8\% | 347.8 | 337.6 | 10.2 | |
 | 21.0\% | 345.3 | 334.2 | -11.1 | -3.2\% |
 | ${ }^{22.2 .2 \%}$ | 344.5 | 333.2 | -11.3 | -3.3\% |
 | ${ }_{\text {24,7\% }}^{23.5 \%}$ | 340.8 337.0 | 329.5 327.8 | -9.2 | ${ }_{-2.7 \%}^{-3 \%}$ |
 | 25.9\% | 331.7 | 326.0 | -5.7 | -1.7\% |
 | 27.2\% | 331.4 | 325.2 | -6.2 | -1.9\% |
 | 28.4\% | 329.4 | 321.0 | -8.5 | -2.6\% |
 | 29.6\% | 326.3 | 320.3 | -5.9 | -1.8\% |
 | 30.9\% | 321.1 | 319.0 | -2.1 | -0.7\% |
 | 32.1% 33 | 320.5 | 317.4 | -3.1 | .0\% |
 | 退33.3\% | 319.8 396 316.6 | ${ }^{314.5}$ | -5.4 | -1.7\% |
 | 35.8\% | 311.2 | 312.1 | 1.0 | 0.3\% |
 | 37.0\% | 309.2 | 309.0 | -0.2 | -0.1\% |
 | 38.3\% | 304.1 | 304.5 | 0.4 | 0.1\% |
 | 39.5\% | 303.2 | 295.7 | -7.6 | -2.5\% |
 | 40.7\% | 295.5 | 293.7 | -1.8 | -0.6\% |
 | 42.0\% | 295.3 | 279.5 | -15.8 | -5.3\% |
 | 43.2\% | 275.7 | 277.6 | 1.9 | 0.7\% |
 | 44.4\% | 274.3 | 273.5 | -0.8 | -0.3\% |
 | 45.7\% | 273.2 | 273.1 | -0.1 | 0.0\% |
 | 46.9\% | 268.1 | 269.1 | 1.0 | 0.4\% |
 | 48.1\% | 266.6 | 269.1 | 2.4 | 0.9\% |
 | 49.4\% | 264.8 | 265.2 | 0.4 | 0.2\% |
 | 50.6\% | 262.2 | 261.0 | -1.2 | -0.5\% |
 | 51.9\% | 261.6 | 260.1 | -1.5 | -0.6\% |
 | 53.1\% | 258.0 | 259.9 | 1.9 | 0.7\% |
 | 54.3\% | 257.1 | 259.2 | 2.1 | 0.8\% |
 | 55.6\% | 257.1 | 258.0 | 0.9 | 0.4\% |
 | 56.8\% | 256.8 | 257.1 | 0.3 | 0.1\% |
 | 58.0\% | 254.9 | 256.4 | 1.5 | 0.6\% |
 | 59.3\% | 254.0 | 254.6 | 0.6 | 0.2\% |
 | 60.5\% | 252.2 | 254.5 | 2.3 | 0.9\% |
 | 61.7\% | 252.0 | 252.7 | 0.7 | 0.3\% |
 | -63.0\% | 247.5 | 247.1 | -0.5 | -0.2\% |
 | 64.2\% | 246.9 | 246.2 | -0.8 | -0.3\% |
 | 65.4\% | 246.2 | 245.8 | -0.4 | -0.2\% |
 | ${ }^{66.7 \%}$ | 241.9 | 242.5 | 0.6 | 0.3\% |
 | 67.9\% | 241.3 | 241.5 | 0.3 | 0.1\% |
 | 69.1\% | 237.0 | 237.2 | 0.2 | 0.1\% |
 | 70.4\% | 236.2 | 236.9 | 0.8 | 0.3\% |
 | 71.6\% | 235.6 | 235.7 | 0.1 | 0.1\% |
 | 72.8\% | 233.4 | 235.4 | 2.0 | 0.8\% |
 | 74.1\% | 229.2 | 234.2 | 5.0 | 2.2\% |
 | 75.3\% | 228.2 | 229.0 | 0.8 | 0.3\% |
 | 76.5\% | 227.5 | 225.5 | -2.0 | -0.9\% |
 | 77.8\% | 225.4 | 225.5 | 0.1 | 0.0\% |
 | 79.0\% | 223.8 | 223.7 | -0.1 | 0.0\% |
 | 80.2\% | ${ }^{223.1}$ | 222.7 | -0.4 | -0.2\% |
 | 81.5\% | 222.2 | 222.6 | 0.4 | 0.2\% |
 | - 82.78 | 221.7 | 221.9 | 0.2 | 0.1\% |
 | 84.0\% | 219.5 | 220.5 | 1.0 | 0.5\% |
 | 85.2\% | 219.0 | 219.6 | 0.6 | 0.3\% |
 | 86.4\% | 217.7 | 217.7 | 0.0 | 0.0\% |
 | 877\% | 215.0 | 215.2 | 0.2 | 0.1\% |
 | 88.9\% | 198.5 | 199.1 | 0.6 | 0.3\% |
 | 90.1\% | 198.0 | 198.7 | 0.7 | 0.3\% |
 | 91.4\% | 195.7 | 195.9 | 0.2 | 0.1\% |
 | 92.6\% | 193.3 | 193.5 | 0.1 | 0.1\% |
 | 93.8\% | 191.0 | 191.1 | 0.1 | 0.1\% |
 | 95.1\% | 190.3 | 190.7 | 0.4 | 0.2\% |
 | ${ }^{96.3 \%}$ | 186.8 | 187.1 | 0.3 | 0.1\% |
 | 97.5\% | 186.8 | 186.7 | 0.0 | 0.0\% |
 | 98.8\% | 185.7 | 185.7 | ${ }^{0.0}$ | 0.0\% |
 | 100.0\% | 179.8 | 180.1 | 0.3 | 0.2\% |

 Table $\mathrm{SQ}-25-\mathrm{b}$
 in
 River at Jersey Point, Monthly EC

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probabability } \end{aligned}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2077 Without | WSIP 2070 With Project | Absolute | |
 | | Monthly EC | Monthly EC | (itiererce | Hference (\%) |
 | (\%) | MHO | | | |
 | 0.0\% | | 1783.2 | ${ }^{34.3}$ | 2.0\% |
 | 2.5\% | ${ }_{1}^{16388.5}$ | 1610.7 1466.8 | -27.8 -147.3 | - |
 | 3.7\% | 1586.3 | 1449.1 | -137.2 | -8.6\% |
 | 4.9\% | 706.8 | 759.8 | 53.0 | 7.5\% |
 | 7.4\% | ${ }_{640.9}^{659}$ | 655.4 626.1 | -4.4.4 | - ${ }_{-2.2 \%}^{-0.7 \%}$ |
 | 8.6\% | 626.6 | 621.3 | -5.3 | -0.9\% |
 | 9.9\% | 615.3 | 602.7 | -12.7 | -2.1\% |
 | ${ }^{11.15 \%}$ 12.3\% | 602.5 602.2 | ${ }_{560.3}^{585.4}$ | -17.1 | --7.0\% |
 | 13.6\% | 588.6 | 556.3 | -32.3 | -5.5\% |
 | 14.8\% | 567.8 | 551.0 | -16.9 | -3.0\% |
 | - ${ }^{16.0 \%}$ 17.3\% | ${ }_{5}^{554.3}$ | ${ }_{5}^{542.1}$ | -12.7 | ${ }_{-2.8 \%}^{-2.2 \%}$ |
 | 18.5\% | 553.0 | 505.5 | -47.5 | -8.6\% |
 | 19.8\% | 526.8 | 497.8 | -28.9 | -5.5\% |
 | ${ }_{222.2 \%}^{21.0 \%}$ | 519.4 507.6 | ${ }_{490 .}^{495}$ | --24.6 | ${ }_{\text {- }}^{-3.5 \%}$ |
 | 23.5\% | 498.2 | 474.2 | -24.1 | -4.8\% |
 | 24.7\% | 492.5 | 477.2 | -21.3 | -4.3\% |
 | 27.2\% | ${ }_{487.2}$ | ${ }_{459.0}^{470.3}$ | -19.3 | ${ }_{\text {- }}^{\text {-5.9\% }}$ |
 | 28.4\% | 482.3 | 453.5 | -28.8 | -6.0\% |
 | 29.6\% | 478.1 | 450.1 | -28.0 | -5.9\% |
 | 32.1\% | ${ }_{467.6}$ | 435.8 | -31.8 | -6.8\% |
 | 33.3\% | 461.1 | 433.2 | -27.9 | -6.1\% |
 | 34.6\% | 452.7 | 431.4 | -21.3 | -4.7\% |
 | 37.0\% | ${ }_{434.8}$ | ${ }_{423.7}^{431.3}$ | -8.0 -11.1 | ${ }_{\text {-2.6\% }}^{-1.8 \%}$ |
 | 38.3\% | 421.5 | 421.4 | -0.1 | 0.0\% |
 | | 417.0 | 403.4 | -13.6 | -3.3\% |
 | 4.2.\% | 409.8 | 338.8 | -23.0 | -5.6\% |
 | 43.2\% | 403.7 | 382.9 | -20.9 | -5.2\% |
 | 44.4\% | 403.2 | ${ }_{381.5}$ | -21.8 | -5.4\% |
 | 45.9\% | 398.4 | 31.8 | -32.0 | -8.0\% |
 | 48.1\% | 397.4 | 359.4 | -38.1 | -9.6\% |
 | | ${ }^{385.7}$ | ${ }^{357.3}$ | -28.4 | -7.4\% |
 | 50.6\% | 383.4 382.3 | 357.0 353.4 | -26.4 -28.9 | -7.6\% |
 | 53.1\% | 377.3 | 352.6 | -24.8 | -6.6\% |
 | 54.3\% | ${ }^{375.4}$ | ${ }^{352.1}$ | -23.3 | -6.2\% |
 | 55.8\%\% | ${ }_{366.7}^{37.0}$ | 342.4 38.1 | -28.6 | --7.8\% |
 | 58.0\% | ${ }^{352.3}$ | 338.0 | -14.4 | -4.1\% |
 | 59.3\% | ${ }^{352.1}$ | ${ }^{333.7}$ | -14.4 | -4.1\% |
 | 61.7\% | 342.6 | 331.9 | -10.7 | ${ }_{\text {- }}-1.4 \%$ |
 | 63.0\% | 340.6 | 324.6 324 | -16.0 | -4.7\% |
 | 64.2% 654% | | ${ }^{324.4}$ | -12.9 | -3.8\% |
 | 66.7\% | 323.9 | 322.4 | -1.6 | -0.5\% |
 | 67.9\% | ${ }^{322.3}$ | 322.4 | 0.0 | 0.0\% |
 | 69.1\% | 322.2 3194 | ${ }^{319.8}$ | -2.3 | -0.7\% |
 | 70.4.6\% | 319.4
 318.6 | 319.6 317.2 | -1.4 | -0.4\% |
 | 72.8\% | 316.8 | 315.5 | -1.3 | -0.4\% |
 | 74.1\% | 316.3 | 31.9 | -4.4 | -1.4\% |
 | 76.5\% | 311.1 | 303.4 | -7.6 | -2.5\% |
 | 77.8\% | 297.3 | 298.7 | 1.4 | 0.5\% |
 | 79.0\% | ${ }_{2917}^{296.6}$ | ${ }_{290}^{296.1}$ | -0.5 | ${ }^{-0.2 \%}$ |
 | - ${ }_{\text {80.1.5\% }}$ | ${ }_{290.7}^{29.7}$ | ${ }_{294.0}^{296.0}$ | ${ }_{3.3}^{4.2}$ | 1.1\% |
 | 822.7\% | 289.8
 2875
 275 | 288.7 2772 | -1.1. | -0.4\% |
 | 84.0\% | ${ }_{2773}^{287.5}$ | ${ }_{2757}^{277.2}$ | -10.2 | ${ }^{-3.6 \%}$ |
 | 86.4\% | ${ }_{263.4}^{27.3}$ | ${ }_{263.1}^{275.7}$ | -1.3 | -0.1\% |
 | 877\% | 262.6
 $\substack{26.6 \\ \hline}$ | ${ }_{261.9}^{2659}$ | -0.6 | -0.2\% |
 | ${ }^{88.99 \%}$ | 256.8 2384 | 256.9 2438 | | 0.0\% |
 | 91.4\% | ${ }_{234}^{23.4}$ | ${ }_{236.7}^{24.7}$ | 2.3 | 1.0\% |
 | 92.6\% | ${ }^{218.4}$ | 211.2 | -2.2 | -1.0\% |
 | ${ }^{935.8 \%}$ | 215.2 214.5 | ${ }_{2082}^{214.5}$ | -0.7 | -0.3\% |
 | 96.3\% | 209.1 | ${ }_{206.5}^{200.2}$ | -2.6 | -1.3\% |
 | 97.5\% | 20.4 | 205.2 | -1.2 | -0.6\% |
 | 100.0\% | ${ }_{197}^{209.5}$ | ${ }_{197.5}^{2038}$ | -2.1 | -1.0\% |

 | | | | | |
 | :--- | :--- | :--- | :--- | :---: |
 | | | | | |
 | | | | | |

 Figure SQ-27-b
 Old River at Rock Slough, Monthly EC

 Table SQ-27-b
 That

 | $\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probabability } \end{array} \end{aligned}$ | October | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | WSIP 2070 With Project | Absolute | |
 | | Monthly EC | Monthly EC | (itiference | Difference (\%) |
 | | (UMHHSSICM) | (UMHOSSCM) | | |
 | 0.0\% | 1251.7 | 1251.5 | -0.1 | 0.0\% |
 | 1.2\% | 1153.9 | 1043.9 | -110.1 | -9.5\% |
 | 2.5\% | 1145.7 | 1036.8 | -108.9 | -9.5\% |
 | 3.7\% | 1071.2 | 1013.5 | -57.6 | -5.4\% |
 | 4.9\% | 1065.7 | 995.8 | -69.9 | -6.6\% |
 | 7.2\% | ${ }^{1034.5}$ | ${ }_{9712}^{9878}$ | -46.7 | ${ }_{-4.4 \%}^{-4.2 \%}$ |
 | 7.4\% | ${ }^{1014.2}$ | 971.2 | -43.0 | -4.2\% |
 | 8.6\% | 1005.4 | ${ }_{9443}^{960.5}$ | -44.9 | ${ }_{-4.5 \%}^{-4.9 \%}$ |
 | 9.9\% | 992.8 | 944.3 | -48.5 | -4.9\% |
 | 11.19\% | ${ }_{988.7}^{9887}$ | ${ }_{939.9}^{939}$ | -48.8 | --4.9\% |
 | ${ }^{12.3 \%}$ | 986.7 | ${ }_{936.3}^{9363}$ | -50.4 | -5.1\% |
 | 13.6\% | 974.7 | ${ }_{936.1}^{933.1}$ | -38.6 | -4.0\% |
 | 14.8\% | 974.4 | ${ }_{9}^{93.4}$ | -44.0 | -4.5\% |
 | 16.0\% | -973.3 | ${ }_{924.8}^{924.8}$ | -46.5 | -4.4\% |
 | 17.3\% | 973.2 | ${ }^{924.2}$ | -49.1 | -5.5\% |
 | 18.5\% | 970.4 | ${ }_{9068}^{913.9}$ | -56.5 -593 | -5.5\% |
 | 19.8\% | 966.1 | 906.8 | -59.3 | -6.1\% |
 | ${ }_{2}^{21.0 \%}$ | ${ }_{9415}^{963}$ | ${ }_{9003}^{903.8}$ | -59.5 -411 | ${ }_{-6.4 \%}^{-4.4 \%}$ |
 | 22.2\% | 94.5 | ${ }^{900.3}$ | -41.1 | -4.4\% |
 | ${ }^{23.5 \%}$ | ${ }_{9347}^{940.5}$ | 899.0 888 | -49.5 | -5.3\% |
 | 24.7\% | ${ }^{934.7}$ | ${ }_{8}^{888.8}$ | -45.9 | -4.9\% ${ }_{-4}$ |
 | 27.2\% | ${ }_{9}^{934.7}$ | ${ }_{8853.5}^{886.6}$ | - -73.4 | ${ }_{-}^{-4.7 \% \%}$ |
 | 28.4\% | 914.5 | 853.4 | -61.2 | -6.7\% |
 | 29.6\% | 910.6 | 847.8 | -62.8 | -6.9\% |
 | - $\begin{aligned} & 30.9 \% \\ & 321 \%\end{aligned}$ | ${ }_{9006.4}^{907.1}$ | ${ }_{\text {cke }}^{834.2}$ | - -6.9 .9 | -7.0\% |
 | 33.3\% | ${ }_{9906.1}^{906.4}$ | ${ }_{836.2}^{839.6}$ | -66.9 | --7.7\% |
 | 34.6\% | ${ }_{904.3}$ | 832.7 | -71.6 | -7.9\% |
 | 35.8\% | ${ }_{8919}^{893.3}$ | ${ }_{808.5}^{815.5}$ | -77.8 -837 | - -7.7% |
 | 38.3\% | 880.4 | 792.2 | -88.3 | -10.0\% |
 | 39.5\% | 880.2 | 787.3 | -92.9 | -10.6\% |
 | - 40.7% | ${ }_{878.1}^{878.6}$ | 783.6 7810 | -95.0 | - |
 | 43.2\% | 869.4 | 776.6 | -92.8 | -10.7\% |
 | 44.4\% | 866.6 | 774.9 | -91.8 | -10.6\% |
 | 45.7\% | 863.6 853.6 | 749.7 7452 | -113.8 -1084 | - ${ }_{\text {- }}$ |
 | 48.1\% | 840.3 | 741.9 | -98.3 | -11.7\% |
 | 49.4\% | 838.5 | 733.4 | -105.1 | -12.5\% |
 | 年 50.0% \% | 823.9 814.6 | 732.1 7317 | -91.8 | - -11.10% |
 | 53.1\% | 799.1 | 711.5 | ${ }_{-87.6}$ | -11.0\% |
 | 54.3\% | 784.2 | 666.6 | -117.5 | -15.0\% |
 | 年5.5\% | 322.6 3218 | 306.1 3058 | -16.4 -159 | -5.1\% |
 | 58.0\% | 321.5 | 298.9 | -22.6 | -7.0\% |
 | 59.3\% | 311.5 | 295.0 | -16.6 | -5.3\% |
 | - 60.5% | 299.9 29.9 | 289.0 28.1 | -10.9 -13.0 | -3.4.4\% |
 | 61.7\% | 299.1 | ${ }^{286.1}$ | -13.0 | -4.4\% |
 | 64.2\% | ${ }_{289.7}^{292.5}$ | ${ }^{288.1}$ | -8.4 -7.5 | --2.6\% |
 | 65.4\% | 288.7 | 281.5 | -7.2 | -2.5\% |
 | 66.7\% | 288.6 | 281.2 | -7.4 | -2.6\% |
 | 67.9\% | 288.5 287.5 | 281.1 278.5 | -6.5 -9.0 | ${ }_{-3.1 \%}^{-2.2 \%}$ |
 | 70.4\% | 284.3 | 277.3 | -7.0 | -2.5\% |
 | 71.6\% | ${ }_{2811}^{282.6}$ | ${ }_{\text {2727 }}^{2728}$ | -9.8 | -3.5\% |
 | 74.1\% | ${ }_{279.6}^{2819}$ | ${ }_{272.6}^{2727}$ | -7.0. | -2.5\% |
 | 75.3\% | 278.9 | 270.9 | -7.9 | -2.8\% |
 | 76.5\% | 277.8 | 270.6 | -7.2 | -2.6\% |
 | 77.8\% | ${ }_{2738}^{278.1}$ | ${ }_{2689}^{269}$ | -7.1. | ${ }_{-1.20 \%}^{-2.6 \%}$ |
 | 80.2\% | ${ }_{272.9}^{27.9}$ | ${ }_{265.9}^{260.7}$ | -7.0 | --2.6\% |
 | 81.5\% | 272.1 | ${ }_{262.1}^{206.9}$ | -10.0 | ${ }_{\text {- }}$ |
 | 82.7\% | 271.8 | 259.8 | -12.0 | -4.4\% |
 | 84.0\% | 269.7 | ${ }^{258.3}$ | -11.4 | -4.2\% |
 | - | 264.4 261.6 | 254.2 251.6 | -10.1 -10.0 | -3.3.8\% |
 | 87.7\% | 259.9 | 250.9 | -9.0 | 5\% |
 | 88.9\% | 257.1 | 249.9 | -7.3 | -2.8\% |
 | 90.1\% | $\begin{array}{r}256.4 \\ \hline 54.4\end{array}$ | ${ }_{248}^{24.6}$ | -7.85 | -3.0\% |
 | ${ }^{91.4 \%}$ | 254.2 | ${ }_{2}^{243.7}$ | -10.5 | -4.1\% |
 | ${ }_{9}^{92.8 .8 \%}$ | 252.2 249.7 | 242.9 240.6 | -9.3 | ${ }^{-3.76 \%}$ |
 | 95.1\% | 244.3 | 239.4 | -4.9 | -2.0\% |
 | ${ }^{96.3 \%}$ | ${ }_{24.9}^{243}$ | ${ }^{237.4}$ | -6.5 | -2.7\% |
 | 9.98\% | ${ }_{2}^{24.0}$ | ${ }_{232}^{237.0}$ | -4.85 | -2.0\% |
 | 100.0\% | ${ }_{196.8}^{296}$ | ${ }_{196.6}$ | -0.2 | -0.1\% |

 | Percent | Novemer | | | Probab | December | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | WSSP 2070 Wethout | WSIP 2070 With Project | | | Percent | WSIP 2070 Without | WSIP 2070 With Project | Absolute | |
 | Exceedance | Proiect | | Aliforence | Relative | | Proiect | | Difference | Rela |
 | Probability | Monthly EC | Monthly EC | (UMHOSOSCM) | Difference (\%) | Probability | Monthly EC | Monthly EC | (UMHOSSCM) | Difference (\%) |
 | 0.0\% | ${ }^{1224.1}$ | 1217.1 | -7.0 | 0.6\% | 0.0\% | 1079.9 | ${ }^{1031.6}$ | -48.4 | -4.5\% |
 | 1.2\% | 1117.3 | 1006.6 | 110.7 | 9.9\% | 1.2\% | 1055.8 | 1027.1 | -28.7 | |
 | 2.5\% | 1079.8 | 962.1 | -117.7 | 10.9\% | 2.5\% | 1047.6 | 10257 | 2.0 | |
 | 3.7\% | 1010.2 | 8.0 | 62.2 | 6.2\% | 3.7\% | 1038.1 | 1023.5 | -14.5 | |
 | 4.9\% | 974.8 | 907.0 | -67.7 | -6.9\% | 4.9\% | 977.4 | 1023 | 45.8 | |
 | 6.2\% | 967.7 | 32.3 | 85.3 | 8.8\% | 6.2\% | 969.0 | 993.5 | 24.6 | 5\% |
 | 7.4\% | 966.6 | 881.4 | -85.2 | -8.8\% | 7.4\% | 956.1 | 951.4 | 4.7 | |
 | 8.6\% | 957.3 | 877.4 | 9.9 | 8.3\% | 8.6\% | 930.9 | 1.0 | 10.1 | |
 | 9.9\% | 942.5 | 870.8 | -71.7 | 7.6\% | 9.9\% | 926 | | 2.8 | |
 | 11.1\% | 906.0 | 870.0 | 35.9 | 4.0\% | 11.1\% | 895.4 | ${ }^{923.1}$ | 27.7 | 3.1\% |
 | 12.3\% | 870.6 | 862.0 | -8.5 | 1.0\% | 12.3\% | 893.3 | | 4.5 | |
 | 13.6\% | 856.0 | 856.1 | . 0 | 0.0\% | 13.6\% | 881.7 | 866.2 | -15.5 | -1.8\% |
 | 14.8\% | 837.7 | 829.5 | -8.3 | -1.0\% | 14.8\% | 869.0 | 4.8 | -4.3 | |
 | 16.0\% | 822.7 | 812.4 | -10.3 | 1.3\% | 16.0\% | 862.8 | 838.0 | 24.8 | \% |
 | 17.3\% | 814.6 | 809.1 | -5.5 | .7\% | 17.3\% | 847.9 | 837.7 | 10.2 | |
 | 18.5\% | 802.9 | 802.3 | -0.6 | -0.1\% | 18.5\% | 831.7 | 825.7 | -6.0 | -0.7\% |
 | 19.8\% | 801.9 | 778.2 | 3,7 | -3.0\% | 19.8\% | 820.4 | 813.1 | 7.3 | |
 | 21.0\% | 793.0 | 754.3 | -37.7 | -4.8\% | 21.0\% | 816.9 | 782.2 | -34.7 | 4.2\% |
 | ${ }^{22.2 \%}$ | 791.9 | 744.0 | -47.9 | -6.1\% | 22.2\% | 816.4 | 775.8 | -40.6 | |
 | ${ }_{\text {24.7\% }}$ | 789.5 78.7 | 744.7 732.6 | -56.2 | --6.1\% | ${ }^{234.7 \%}$ | ${ }_{796.9}^{807.5}$ | ${ }_{768.4}^{77.1}$ | -34.4
 -28.5 | - ${ }_{\text {- }}^{\text {-3.6\% }}$ |
 | 25.9\% | 787.7 | 731.9 | -55.8 | -7.1\% | 25.9\% | 794.3 | 761.6 | -32.7 | -4.1\% |
 | 27.2\% | 788.1 | ${ }^{725.8}$ | -60.3 | -7.7\% | 27.2\% | 769.0 | 761.5 | -7.5 | -1.0\% |
 | 28.4\% | 773.3 | 725.3 | -47.9 | -6.2\% | 28.4\% | 766.9 | 759.5 | -7.4 | -1.0\% |
 | 29.6\% | 768.4 | 717.1 | -51.3 | -6.7\% | 29.6\% | 765.4 | 718.8 | -46.5 | -6.1\% |
 | 320.1\% | 765.8 763.8 | 684.8 682.2 | -81.0 | - | 30.3\% | ${ }_{742.1}^{753.7}$ | 705.8 693.6 | -47.9 | ${ }_{\text {- }}^{-6.5 \%}$ |
 | 33.3\% | 763.0 | 675.1 | -87.9 | -11.5\% | 33.3\% | 738.9 | 656.6 | -82.2 | -11.1\% |
 | 34.6\% | 715.4 | 647.8 | -67.6 | -9.5\% | 34.6\% | 720.1 | 631.1 | -89.1 | -12.4\% |
 | 35.8\% | 715.3 | 625.3 | -90.1 | -12.6\% | 35.8\% | 719.4 | 621.7 | -97.7 | -13.\% |
 | 37.0\% | 696.1 | 624.5 | -71.6 | -10.3\% | 37.0\% | 698.0 | 616.3 | -81.8 | -11.7\% |
 | 38.3\% | 684.0 | 609.8 | -74.2 | -10.8\% | 38.3\% | 663.2 | 608.9 | -54.4 | -8.2\% |
 | 39.5\% | 661.7 | 602.4 | -59.3 | -9.0\% | 39.5\% | 647.8 | 595.8 | -52.0 | -8.0\% |
 | 40.7\% | 659.2 | 600.1 | -59.1 | -9.0\% | 40.7\% | 594.5 | 582.5 | -12.0 | -2.0\% |
 | 42.0\% | ${ }^{653.5}$ | 578.6 | -74.9 | -11.5\% | 42.0\% | 594.2 | 566.5 | -27.8 | -4.7\% |
 | 43.2\% | ${ }_{642.7}$ | 573.4 | -99.3 | -10.8\% | 43.2\% | 578.7 | ${ }_{513.3}$ | -65.3 | -11.3\% |
 | 44.4\% | ${ }^{640.6}$ | ${ }_{569.2}$ | -71.4 | -11.1\% | 44.4\% | 550.2 | 512.2 | -38.0 | -6.9\% |
 | 45.7\% | 631.3 | ${ }_{5657}^{5657}$ | -65.6 | -10.4\% | 45.7\% | 538.9 | 511.6 | -27.3 | -5.1\% |
 | 46.9\% | 628.7 | 554.3 | -74.4 | -11.8\% | 46.9\% | 510.1 | 505.5 | -4.7 | -0.9\% |
 | 48.19\% | 596.4 | 482.5 | -113.9 | -19.1\% | 48.1\% | 497.4 | 501.0 | 3.6 | 0.7\% |
 | 49.4\% | 590.2 | 464.1 | -126.1 | -21.4\% | 49.4\% | ${ }^{424.2}$ | 487.9 | 63.7 | 15.0\% |
 | 50.6\% | 567.0 | 444.2 | -122.8 | -21.7\% | 50.6\% | 422.7 | 468.7 | 45.9 | 10.9\% |
 | 51.9\% | ${ }^{493.6}$ | ${ }_{\text {402.1 }}$ | -91.6 | -18.5\% | 51.9\% | 407.9 | 404.0 | -3.9 | -1.0\% |
 | 53.1\% | ${ }^{405.3}$ | 385.8 | -19.5 | -4.8\% | 53.1\% | 402.2 | 400.2 | -2.0 | -0.5\% |
 | 54.3\% | 365.9 | ${ }_{3525}^{335}$ | -30.4 | -8.3\% | 54.3\% | 392.2 | 391.8 | -0.4 | -0.1\% |
 | 55.6\% | 341.9 | 324.3 | -17.7 | -5.2\% | 55.6\% | 388.0 | 389.4 | 1.3 | 0.3\% |
 | 56.8\% | ${ }_{3}^{315.3}$ | 299.6 | -15.8 | -5.0\% | 56.8\% | 374.0 | 388.4 | 14.4 | 3.8\% |
 | 58.0\% | 313.1 | 2903 | -22,8 | -7.3\% | 58.0\% | 367.5 | 388.3 | ${ }^{18.8}$ | 5.1\% |
 | 59.3\% | 301.2 | 290.1 | -11.1 | -3.7\% | 59.3\% | 345.8 | 377.0 | 31.2 | 9.0\% |
 | 60.5\% | 291.1 | 289.8 | -1.2 | -0.4\% | 60.5\% | 334.0 | 371.9 | 37.8 | 11.3\% |
 | ${ }^{61.7 \%}$ | 286.7 | 283.9 | -2.7 | -0.9\% | 61.7\% | 330.2 | 362.8 | 32.6 | 9.9\% |
 | -63.0\% | ${ }_{283}^{2858}$ | ${ }_{274.9}^{2789}$ | -8.9 | -3.1\% | 63.0\% | 324.5 323 | 360.6
 3598 | 36.2 | ${ }^{11.11 \%}$ |
 | 65.4\% | 274.1 | 269.4 | ${ }_{-4}$ | -1.7\% | 65.4\% | ${ }_{316.7}$ | 340.3 | ${ }_{23.7}$ | 7.5\% |
 | 66.7\% | 27.8 | 268.8 | -5.0 | -1.8\% | 66.7\% | 315.3 | 327.0 | 11.7 | 3.7\% |
 | 679\% | 268.7 | 264.3 | -4.4 | -1.1\% | 67.9\% | 305.2 3038 | 326.0 | ${ }^{20.8}$ | 6.8\% |
 | 69.1\% | 262.3 | 262.6 | 0.3 | 0.1\% | 69.1\% | 303.8 | 324.2 | 20.4 | 6.7\% |
 | 70.4\% | 260.8 2588 | 257.3
 255 | -3.5 | -1.3\% | 70.4\% | 303.7 | 322.8 | 19.0 | 6.3\% |
 | 71.6\% | 253.9 | 255.2 | 1.2 | 0.5\% | 71.6\% | ${ }^{303.5}$ | 309.6 | 6.1 | 2.0\% |
 | 72.8\% | ${ }_{253,7}^{253}$ | 254.6 | 0.9 | 0.4\% | 72.8\% | 3029 | 305.0 | 2.1 | 0.7\% |
 | 74.1\% | 253.6 | 252.4 | -1.1 | -0.5\% | 74.1\% | 302.4 | 304.4 | 2.0 | 0.7\% |
 | 75.3\% | 249.8 | 248.2 | -1.6 | -0.6\% | 75.3\% | 293.0 | 304.0 | 11.0 | 3.7\% |
 | 76.5\% | 249.2 | ${ }^{246.5}$ | -2.7 | -1.1\% | 76.5\% | 292.5 | 302.7 | 10.2 | 3.5\% |
 | 778\% | ${ }_{248}^{2487}$ | ${ }^{246.5}$ | -2.2 | -0.9\% | 77.8\% | 287.5 | 299.2 | 11.7 | 4.1\% |
 | 79.0\% | ${ }^{247.2}$ | ${ }^{246.0}$ | -1.1 | -0.5\% | 79.0\% | 280.9 | 295.4 | 14.6 | 5.2\% |
 | 80.2\% | ${ }_{24.4}^{2464}$ | ${ }_{245}^{245}$ | -0.9 | -0.4\% | 80.2\% | 275.7 | 293.5 | 177. | 6.4\% |
 | 81.5\% | 244.8 | 245.1 | 0.3 | 0.1\% | 81.5\% | 274.5 | 291.6 | 17.1 | 6.2\% |
 | - | 239.4 | 243.0 | 3.6 | 1.5\% | 82.7\% | 266.4 | 280.8 | 14.4 | 5.4\% |
 | 84.0\% | ${ }^{239.3}$ | ${ }_{238.9}^{238.9}$ | -0.4 | ${ }^{-0.2 \%}$ | 84.0\% | 263.0 | 27.0 | 7.1 | 2.7\% |
 | 85.2\% | 233.9 237.0 | ${ }_{236.7}^{237.2}$ | -1.7 -0.3 | ${ }^{-0.7 \%}$ | - | 255.6
 248.4 | ${ }^{254.4}$ | -1.2 | -0.5\% |
 | 87.7\% | 236.4 | 236.6 | 0.2 | 0.1\% | 87.7\% | 247.8 | 247.2 | -0.6 | -0.2\% |
 | 88.9\% | 235.1 | 233.9 | -1.2 | -0.5\% | 88.9\% | 240.2 | 239.7 | -0.4 | -0.2\% |
 | 90.1\% | ${ }^{234.7}$ | ${ }^{233.0}$ | -1.7 | -0.7\% | 90.1\% | 236.9 | ${ }_{2}^{237.9}$ | 1.0 | 0.4\% |
 | 914\% | 234.0 | ${ }^{232.6}$ | -1.4 | -0.6\% | 91.4\% | 234.4 | 235.2 | ${ }^{0.8}$ | 0.4\% |
 | ${ }_{\text {933.8\% }} 9$ | 234.0 230.2 | ${ }_{230.4}^{232.5}$ | -1.5 | ${ }^{-0.1 \%}$ | ${ }_{9}^{92.8 \%}$ | 232.8 226.4 | 234.8
 225.8 | ${ }_{-0.6}^{2.0}$ | -0.8\% |
 | 95.1\% | 230.0 | 229.4 | -0.5 | -0.2\% | 95.1\% | ${ }_{223.3}$ | 221.0 | -2.3 | -1.0\% |
 | 96.3\% | 229.3 | 228.0 | -1.3 | -0.6\% | 96.3\% | 216.5 | 219.9 | 3.4 | 1.6\% |
 | 97.5\% | ${ }_{2251}^{226.1}$ | ${ }^{2225.9}$ | -0.1 | -0.1\% | 97.5\% | 211.0 | 213.1 | 2.1 | 1.0\% |
 | 98.8\% | ${ }_{214.2}^{225.2}$ | ${ }_{213.4}^{221.5}$ | ${ }_{-0.8}^{-3.6}$ | ${ }^{-1.6 \%}$ | 98.8\% | ${ }_{201.2}^{2093}$ | ${ }_{203.3}^{209.5}$ | ${ }_{2.2}^{0.2}$ | - ${ }_{\text {0.1\% }}$ |
 | | | | | | | | | | |

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[t]{3}{*}{$$
 \begin{aligned}
 & \text { Percent } \\
 & \text { Exceedanes } \\
 & \text { Probability }
 \end{aligned}
 $$} \& \multicolumn{4}{|l|}{Wsp 2omene January}

 \hline \& ${ }^{\text {WSIP } 2070 \text { Without }}$ Proect \& WSIP 2070 With Project \& Absolute \& Relative

 \hline \& Monthly EC \& Monthly EC \& (uiterence \& Difference (\%)

 \hline 0.0\% \& ${ }^{10550.7}$ \& ${ }^{1019.1}$ \& ${ }^{31.5}$ \& -3.0\%

 \hline 1.2\% \& 967.5 \& 954 \& \&

 \hline 2.5\% \& ${ }_{9282}^{9325}$ \& ${ }_{9}^{942.0}$ \& ${ }_{-11} 9$ \& 1.0\%

 \hline 3.7\% \& 928.2 \& ${ }^{927.0}$ \& -1.1 \& ${ }^{-0.1 \%}$

 \hline \& \& \& \&

 \hline 7.4\% \& ${ }_{87 \text { 76.9 }}$ \& ${ }_{877.9}^{8980}$ \& 18.7
 1.0 \& 2.1\%

 \hline 8.6\% \& 811.9 \& 860.8 \& 48.9 \& 6.0%

 \hline 9.9\% \& 768.3 \& 848.4 \& 80.1 \&

 \hline 11.1\% \& 726.8 \& 815.3 \& 88.5 \& 12.2\%

 \hline ${ }^{12.3 \%}$ \& 716.5 \& 811.6 \& 95.1 \& 3\%

 \hline - ${ }^{13.6 \%}$ 14.8\% \& 701.9
 696.1 \& ${ }_{772.8}^{800.0}$ \& ${ }_{76.7}^{98.2}$ \& 114.0\%

 \hline 16.0\% \& 676.1 \& 749.7 \& 73.6 \& 10.9

 \hline 17.3\% \& 665.0 \& 728.5 \& 63.5 \& 9.5\%

 \hline 18.5\% \& 655.5 \& 724.1 \& 68.6 \& 10.5\%

 \hline 19.8\% \& 654.4 \& ${ }^{722,3}$ \& 67.9 \& .4\%

 \hline ${ }^{21.0 \%}$ \& 651.9
 643.8 \& 721.2
 699.3 \& 69.3
 555 \&

 \hline ${ }^{23.5 \%}$ \& ${ }_{643.4}$ \& ${ }_{690.4}$ \& 47.1 \& 7.3\%

 \hline 24.7\% \& 629.0 \& 689.8 \& 60.9 \& 9.7\%

 \hline 25.9\% \& 628.3 \& 674.8 \& 46.5 \& 7.4\%

 \hline \& \& \& 48.6 \&

 \hline - 28.96% \& $\stackrel{\text { cher }}{\substack{696.6}}$ \& ${ }_{645.8}^{657.1}$ \& 39.5
 49.2 \& ${ }_{8.2 \%}^{6.4 \%}$

 \hline 30.9\% \& 581.0 \& 640.3 \& 59.3 \& 10.2\%

 \hline 32.1\% \& 579.0 \& 630.7 \& 51.8 \& 8.96

 \hline 33.3\% \& 570.6 \& 585.6 \& 15.0 \& 2.6\%

 \hline 34.6\% \& 564.4 \& 581.4 \& 17.0 \& 3.0\%

 \hline 35.8\% \& 564.1 \& 580.9 \& 16.8 \& 3.0\%

 \hline 37.0\% \& 555.9 \& 577.6 \& 21.7 \& 3.9\%

 \hline 38.3\% \& 524.9 \& 573.6 \& 48.7 \& 9.3\%

 \hline 39.5\% \& 503.9 \& 559.0 \& 55.1 \& 10.9\%

 \hline 40.7\% \& 503.5 \& 558.7 \& 55.2 \& 11.0\%

 \hline 42.0\% \& 498.5 \& 553.0 \& 54.5 \& 10.9\%

 \hline 43.2\% \& 494.5 \& 549.9 \& 55.4 \& 11.2\%

 \hline 44.4\% \& 479.2 \& 540.5 \& 61.3 \& 12.8\%

 \hline 45.7\% \& 445.8 \& 532.4 \& 86.6 \& 19.4\%

 \hline 46.9\% \& 439.7 \& 527.3 \& 87.6 \& 19.9\%

 \hline 48.1\% \& 436.9 \& 502.1 \& 65.2 \& 14.9\%

 \hline 49.4\% \& 421.1 \& 490.1 \& 69.0 \& 16.4\%

 \hline 50.6\% \& 413.3 \& 474.7 \& 61.4 \& 14.9\%

 \hline 51.9\% \& 412.4 \& 455.4 \& 43.0 \& 10.4\%

 \hline 53.1\% \& 412.1 \& 443.0 \& 30.9 \& 7.5\%

 \hline 54.3\% \& ${ }^{411.3}$ \& 439.9 \& ${ }^{28.6}$ \& 7.0\%

 \hline 55.6\% \& 401.8 \& 434.6 \& 32.8 \& 8.2\%

 \hline 56.8\% \& 401.2 \& 431.1 \& 29.9 \& 7.4\%

 \hline 58.0\% \& ${ }_{378.3}$ \& 424.6 \& 46.3 \& ${ }^{12.2 \%}$

 \hline 59.3\% \& 371.2 \& 410.9 \& 39.7 \& 10.7\%

 \hline 60.5\% \& 365.5 \& 407.5 \& 42.0 \& 11.5\%

 \hline 61.7\% \& ${ }^{364.3}$ \& 396.6 \& 32.3 \& 8.9\%

 \hline 63.0\% \& ${ }^{360.3}$ \& 366.8 \& ${ }^{6.5}$ \& 1.8\%

 \hline 64.2\% \& 359.0 \& 366.0 \& 7.0 \& 0\%

 \hline 65.4\% \& ${ }^{352.4}$ \& 365.6 \& 13.3 \& 3.8\%\%

 \hline 66.7\% \& 351.5 \& 363.6 \& 12.2 \& 3.5\%

 \hline 67.9\% \& 3429 \& 354.0 \& 11.0 \& 3.2\%

 \hline 69.1\% \& 341.4 \& 344.3 \& 2.9 \& 0.9\%

 \hline 70.4\% \& 334.5 \& 343.4 \& 8.9 \& 2.7\%

 \hline 71.6\% \& 332.7 \& 336.2 \& 3.5 \& 1.0\%

 \hline 72.8\% \& 328.6 \& 333.2 \& 4.6 \& 1.4\%

 \hline 74.1\% \& 327.0 \& 330.7 \& 3.7 \& 1\%

 \hline 75.3\% \& 315.7 \& 321.9 \& 6.2 \& 2.0\%

 \hline 76.5\% \& 315.2 \& 317.0 \& 1.8 \& 0.6\%

 \hline 77.8\% \& 307.5 \& 315.6 \& 8.1 \& 6\%

 \hline 79.0\% \& 307.1 \& 308.5 \& 1.4 \& 0.4\%

 \hline 80.2\% \& 306.7 \& 308.3 \& 1.6 \& 0.5\%

 \hline 81.5\% \& 304.6 \& ${ }^{305.3}$ \& 0.7 \& 0.2\%

 \hline - 82.7% \& 291.0 \& 293.1 \& 2.1 \& 0.7\%

 \hline 84.0\% \& 290.7 \& 292.3 \& 1.6 \& 0.6\%

 \hline 85.2\% \& 282.6 \& 291.8 \& 9.2 \& 3.3\%

 \hline 86.4\% \& 282.4 \& 286.5 \& 4.0 \& 1.4\%

 \hline 87.7\% \& 280.9 \& 284.8 \& 3.9 \& 1.4\%

 \hline 88.9\% \& 278.1 \& 280.9 \& 2.8 \& 1.0\%

 \hline 90.19\% \& ${ }_{271.9}^{274}$ \& ${ }_{273}^{278.2}$ \& ${ }^{3.4}$ \& 1.2\%

 \hline 914\% \& 271.5 \& 273.9 \& 2.4 \& 0.9\%

 \hline 92.6\% \& 267.0 \& 271.6 \& 4.6 \& 1.7\%

 \hline 93.8\% \& 256.2 \& ${ }^{256.3}$ \& 0.1 \& 0.1\%

 \hline 95.1\% \& 247.6 \& 252.3 \& 4.7 \& 1.9\%

 \hline ${ }^{96.3 \%}$ \& 246.8 \& 249.3 \& 2.5 \& ${ }^{1.0 \%}$

 \hline 97.5\% \& 245.8 \& 240.1 \& -5.7 \& 2.3\%

 \hline 98.8\% \& ${ }_{2}^{236.8}$ \& 237.4

 27.4 \& 0.6 \& 0.3\%

 \hline 100.0\% \& 221.3 \& 221.4 \& 0.1 \& 0.0\%

 \hline
 \end{tabular}

 | $\begin{gathered} \text { Percernt } \\ \text { Exxededane } \\ \text { Probabability } \end{gathered}$ | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2070 Weithout | WSIP 2070 With Project | lute | |
 | | Monthly EC | Monthy EC | (itiference | Hference (\%) |
 | 0.0\% | ${ }^{1114.4}$ | 27.1 | ${ }^{-287.3}$ | -25.8\% |
 | 1.2\% | 7278 | | | |
 | 2.5\% | 705.8 | 690.0 | -15.8 | -2.2\% |
 | 3.7\% | 685.6 | 635.6 | -50.0 | -7.3\% |
 | 4.9\% | 566.0 | 590.0 | 24.0 | |
 | ${ }^{6.2 \%}$ | 554.0 | 570.1 | 16.1 | 2.9\% |
 | 7.4\% | 553.0 | 532.4 | -20 | -3.7\% |
 | 9.9\% | 550.0 538.4 | 531.1 525.9 | -18.9 -12.5 | ${ }_{-2.3 \%}^{-3.4 \%}$ |
 | 11.1\% | 522.3 | 522.2 | 0.0 | 0.0\% |
 | 12.3\% | 514.9 | 515.9 | 1.0 | |
 | 13.6\% | 512.3 | 511.4 | -0.9 | -0.2\% |
 | 14.8\% | 507.6 | 509.1 | 1.4 | ${ }^{0.3 \%}$ |
 | 17.3\% | ${ }_{480.7}$ | ${ }_{492.1}^{507.5}$ | 25.2 11.3 | 2.4\% |
 | 18.5\% | 477.4 | 483.3 | 5.9 | 1.2 |
 | 19.8\% | 464.1 | 480.4 | 16.3 | |
 | 21.0\% | -463.2 | ${ }_{4691}^{470.8}$ | ${ }_{17} 7.6$ | |
 | ${ }^{22.25 \%}$ | 451.9 | 469.1 | 17.2 | 3.8\% |
 | 23.7\% | 443.5 | ${ }_{456.3}$ | 12.8 | 2.9\% |
 | 25.9\% | 427.4 | 449.1 | 21.7 | 5.1\% |
 | 27.2\% | | 444.2 | ${ }^{27.1}$ | ${ }_{7.5 \%}$ |
 | 29.6\% | 410.8 | ${ }_{436.2}^{44.4}$ | 25.4 29.4 | 6.2\% |
 | 30.9\% | 390.1 | 435.5 | 45.4 | 11.6\% |
 | | ${ }^{386.5}$ | | 35.7 | 9.2\% |
 | 34.6\% | 380.5 | ${ }_{409.6}$ | ${ }_{29.1}^{32.4}$ | 7.6\% |
 | 35.8\% | 379.5 | 402.4 | ${ }^{22.9}$ | 6.0\% |
 | | | 398.7 | 19.6 | 5.2\% |
 | 3.9\% | 3778.6 | ${ }_{387.0}$ | 8.4 | 2.2\% |
 | 40.7\% | 377.6 | 386.9 | 9.3 | |
 | 42.0\% | 373.9 | 383.3 | ${ }^{9.3}$ | 2.5\% |
 | 44.4\% | ${ }_{358.7}$ | ${ }_{360.3}$ | 1.6 | 0.5\% |
 | 45.7\% | ${ }_{3}^{349.3}$ | 359.6
 355 | 10.3 | 2.9\% |
 | | | | 9.9 | ${ }^{2.9 \%}$ |
 | 49.4\%\% | 344.2 3436 | 350.6 348.8 | ${ }_{5.2}^{6.5}$ | 1.5\% |
 | 50.6\% | 339.9 | 347.0 | 7.2 | 2.1\% |
 | | | 344.6 | 9.0 | 2.7\% |
 | 54.3\% | 349.0 | 342.4 | ${ }_{23.4}$ | 7.3\% |
 | 55.6\% | 317.6 | 335.5 3312 | 17.9 | 5.6\% |
 | | | | 14.8 | 5.7\% |
 | 59.3\% | 307.1 | ${ }_{322.9}$ | ${ }_{15.8}^{16.6}$ | 5.1\% |
 | 60.5\% | 306.5 | 319.7 3191 | 13.2 135 | 4.3\% |
 | | | ${ }^{319.9}$ | ${ }^{13.5}$ | 4.4\%\% |
 | 64.2\% | 301.2 | 314.1 | 12.9 | 4.3\% |
 | 65.4\% | 300.5 | 309.1 3087 | 8.7 | 2.9\% |
 | ${ }^{66.7 \%}$ | ${ }^{299.3}$ | 308.7 | 9.5 | 㐌3.2\% |
 | 69.1\% | ${ }_{293.4}^{295.6}$ | ${ }_{305.0}$ | ${ }_{11.6}$ | 3.9\% |
 | 70.4\% | 292.2 | 300.7 | 8.5 | 2.9\% |
 | | | | 7.1 | ${ }_{\text {2.9\% }}^{2.5 \%}$ |
 | 74.1\% | 285.1 | 286.8 | 1.7 | 0.6\% |
 | 75.3\% | 284.4 | ${ }^{285.2}$ | 0.7 | 0.3\% |
 | 77.8\% | 283.3 279.2 | ${ }_{2812}^{283.5}$ | ${ }^{0.3}$ | 0.7\% |
 | 79.0\% | 277.9 | 279.2 | 1.4 | 0.5\% |
 | 80.2\% | 25.8 | 261.9 | 3.1 | 1.2\% |
 | 81.5\% | 257.3 | 258.3 | 1.0 | 0.4\% |
 | 82.7\% | 256.7 | 258.0 | 1.3 | 0.5\% |
 | 88.0\% | 254.4 | 257.5 | 3.1 | ${ }_{1}^{1.7 \%}$ |
 | - ${ }_{\text {85.2\% }}$ | ${ }_{2527}^{252.8}$ | 255.0 258.8 | 4.2 | 1.6\% |
 | 87.7\% | 251.2 | ${ }_{253.1}^{250.8}$ | ${ }_{1}^{4.8}$ | 0.7\% |
 | 88.9\% | 24.8 | 251.5 | 1.7 | 0.7\% |
 | 90.1\% | ${ }^{249.2}$ | 249.2 | 0.0 | 0.0\% |
 | 914\% | 246.2 | 246.2 | 0.0 | 0.0\% |
 | -92.6\% ${ }_{93.8 \%}$ | ${ }_{242}^{244}$ | ${ }_{2424}^{245.3}$ | 0.4 | - 0.2% |
 | 95.1\% | 235.8 | 237.9 | 2.0 | 0.9\% |
 | 96.3\% | 234.0 | 237.3 | ${ }^{3} 3$ | 1.4\% |
 | 97.5\% | 221.0 | 221.2 | 0.2 | 0.1\% |
 | 98.8\% | ${ }_{2074}^{216.6}$ | ${ }_{2097}^{211.8}$ | 0.2 | 1.1\% |
 | 100.0\% | 207.4 | 209.7 | 2.2 | 1.1\% |

 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
 \hline \multicolumn{10}{|c|}{Promer Probabily of Exceedance} \\
 \hline \multirow[t]{3}{*}{\[
 \begin{gathered}
 \text { Percent } \\
 \begin{array}{c}
 \text { Exceedance } \\
 \text { Probability }
 \end{array}
 \end{gathered}
 \]} \& WSSP 2070 Without \& WSIP 2070 With Project \& \multirow[t]{3}{*}{\[
 \begin{gathered}
 \text { Absolute } \\
 \text { (ilference } \\
 \text { (UMHOS/CM) }
 \end{gathered}
 \]} \& \multirow[b]{3}{*}{\[
 \begin{gathered}
 \text { Relative } \\
 \text { Difference (\%) }
 \end{gathered}
 \]} \& \multirow[t]{3}{*}{\begin{tabular}{c}
 Percent \\
 Excedance \\
 Probability \\
 \hline
 \end{tabular}} \& \multirow[t]{3}{*}{} \& WSIP 2070 With Project \& \multirow[t]{3}{*}{\[
 \begin{gathered}
 \text { Absolute } \\
 \text { (ifference } \\
 \text { (UMHOSSCM) }
 \end{gathered}
 \]} \& \multirow[b]{3}{*}{\[
 \begin{aligned}
 \& \text { Relative } \\
 \& \text { Difference (\%) }
 \end{aligned}
 \]} \\
 \hline \& \({ }_{\text {Pronect }}^{\text {Montly }}\) EC \& Monthly EC \& \& \& \& \& \& \& \\
 \hline \& (UMHOSICM) \& (UnHosicm) \& \& \& \& \& (UMHOSICM) \& \& \\
 \hline 0.0\% \& 649.4 \& 520.4 \& -129.0 \& -19.9\% \& 0.0\% \& \& 544.5 \& 0.6 \& 0.1\% \\
 \hline 1.2\% \& 539.8 \& 460.4 \& -79.4 \& -14.7\% \& 1.2\% \& 480.9 \& \& -8.2 \& \\
 \hline 2.5\% \& 534.6 \& 457.3 \& -77.2 \& -14.4\% \& 2.5\% \& 464.3 \& 466.4 \& 2.1 \& \\
 \hline 3.7\% \& 492.7 \& 456.9 \& -35.8 \& -7.3\% \& 3.7\% \& 461.3 \& 45 \& \& \\
 \hline 4.9\% \& 476.8 \& 448.4 \& -28.4 \& -6.0\% \& 4.9\% \& 459.6 \& \& \& \\
 \hline 6.2\% \& 460.1 \& 447.7 \& -12.5 \& -2.7\% \& 6.2\% \& 417.3 \& \& 7.4 \& \\
 \hline 7.4\% \& 457.4 \& 442.6 \& -14.8 \& -3.2\% \& 7.4\% \& 416.3 \& \& . 7 \& \\
 \hline 8.6\% \& 431.0 \& 431.6 \& 0.6 \& 0.1\% \& 8.6\% \& 412.1 \& \& 8 \& \\
 \hline 9.9\% \& 428.1 \& 428.5 \& 0.4 \& 0.1\% \& 9.9\% \& 411.0 \& \& \& 3\% \\
 \hline \(\xrightarrow{11.10 \%} 1\) \& \({ }_{422.7}^{42.4}\) \& \({ }_{408.3}^{419.9}\) \& -2.5 \& \({ }_{-3.2 \%}^{-0.6 \%}\) \& \({ }^{11.12 \%}\) \& \({ }_{401.9}^{4036}\) \& 402.6
 398.8 \& -1.1. \& -0.8\% \\
 \hline 13.6\% \& 404.4 \& 405.7 \& 1.3 \& 0.3\% \& 13.6\% \& 380.8 \& 391.4 \& 10.5 \& 2.8\% \\
 \hline 14.8\% \& 393.4 \& 396.2 \& 2.8 \& 0.7\% \& 14.8\% \& 378.1 \& 5. 3 \& 7.2 \& \\
 \hline 16.0\% \& 388.4 \& 393.6 \& 5.2 \& 1.3\% \& 16.0\% \& 373.9 \& \& 9.3 \& \\
 \hline 17.3\% \& 386.8 \& 389.7 \& 2.9 \& 0.8\% \& 17.3\% \& 373.2 \& , 6 \& 4.4 \& \\
 \hline 18.5\% \& 377.1 \& 388.0 \& 10.9 \& 2.9\% \& 18.5\% \& 369.2 \& 5.9 \& 6.7 \& 1.8\% \\
 \hline 19.8\% \& 374.4
 3620 \& 386.7
 3697 \& 12.3
 7.6 \& \({ }^{3.3 \%}\) \& 19.8\% \& 369.2
 3688 \& 375.3
 3693 \& 6.1
 0.5 \& 1.7\% \\
 \hline 22.2\% \& \({ }_{359.2}\) \& 365.8 \& 6.5 \& \({ }_{1.8 \%}\) \& \({ }^{2} 2.2 \%\) \& \({ }_{366.1}\) \& \({ }_{366.7}\) \& \({ }_{0.6}\) \& 0.2\% \\
 \hline 23.5\% \& 355.2 \& 356.8 \& 1.7 \& 0.5\% \& 23.5\% \& 364.6 \& 366.5 \& 2.0 \& \(0.5{ }^{\circ}\) \\
 \hline 24.7\% \& 354.9 \& 338.1 \& 16.8 \& -4.7\% \& 24.7\% \& 363.5 \& 64.6 \& 1.2 \& \\
 \hline 25.9\% \& 346.0
 3323 \& \(\begin{array}{r}337.9 \\ 352 \\ \hline\end{array}\) \& -8.1 \& -2.3\% \& 27.72\% \& 363.2
 3619 \& 363.9
 3615 \& 0.7 \& 0.2\% \\
 \hline - \(\begin{aligned} \& 27.2 \% \\ \& 28.4 \%\end{aligned}\) \& 332.3
 328.3 \& \({ }_{333.1}^{335.2}\) \& 2.8
 4.8 \& - \({ }_{\text {1.9\% }}\) \& \({ }_{\text {28, }}^{27.2 \%}\) \& \({ }_{354.5}^{361.9}\) \& 3661.5
 361.4 \& -0.4
 6.9 \& - \\
 \hline 29.6\% \& 327.0 \& 331.0 \& 4.0 \& 1.2\% \& 29.6\% \& 351.4 \& \({ }_{355.0}\) \& \begin{tabular}{l}
 3.6 \\
 \hline .6
 \end{tabular} \& 1.0\% \\
 \hline 30.9\% \& \({ }^{325.3}\) \& 329.6 \& 4.3 \& 1.3\% \& 30.9\% \& 346.1 \& 347.0 \& 0.9 \& 0.3\% \\
 \hline \& \& \& 0.0 \& 0.0\% \& \& \& 345.5 \& \({ }^{0.1}\) \& 0.0\% \\
 \hline - \({ }_{\text {33.6\% }}\) \& 318.2
 317.2 \& 324.5
 322.8 \& 6.6
 5.6 \& \({ }_{\text {1.8\% }}^{2.0 \%}\) \& 33.6\% \& 340.9
 339.1 \& 343.5
 342.5 \& 2.6
 3.3 \& - \({ }^{0.8 \%}\) \\
 \hline 35.8\% \& 315.9 \& \({ }_{322.6}\) \& 6.6 \& 2.1\% \& 35.8\% \& 337.7 \& 338.9 \& 1.1 \& 0.3\% \\
 \hline 37.0\% \& \& \& 5.6 \& 1.8\% \& 37.0\% \& 336.4 \& 337.9 \& 1.5 \& 4\% \\
 \hline 38.5\% \& 314.3
 311.6 \& \({ }_{316.7}^{317.7}\) \& \({ }_{5.1}^{3.4}\) \& \({ }^{1.15 \%}\) \& 38.3\% \& \({ }_{3}^{335.4}\) \& 332.6
 332.5 \& -2.8 \& -0.8\% \\
 \hline 40.7\% \& 309.3 \& 314.0 \& 4.7 \& 1.5\% \& 40.7\% \& 332.9 \& \({ }_{330.0}\) \& -2.9 \& -0.9\% \\
 \hline 42.0\% \& 308.4 \& 313.7 \& 5.3 \& 1.7\% \& 42.0\% \& 329.5 \& 329.7 \& 0.1 \& 0.0\% \\
 \hline 43.2\% \& \({ }^{3006.3}\) \& 312.9 \& 6.6 \& 2.2\% \& 43.2\% \& 329.5 \& 329.6 \& 0.1 \& 0.0\% \\
 \hline 44.4\% \& \({ }^{300.2}\) \& 309.1 \& 9.0 \& 3.0\% \& 44.4\% \& 328.9 \& 327.7 \& -1.2 \& 0.4\% \\
 \hline 45.7\% \& 289.3
 285.8 \& 306.4

 296.9 \& ${ }_{17}^{17.1}$ \& 5.9\% \& 45.7\% \& 326.7
 3265 \& ${ }_{3}^{326.5}$ \& -0.2 \& 0.0\%

 \hline 48.1\% \& ${ }_{255.8}^{205.8}$ \& ${ }_{295.6}$ \& ${ }_{9} 9$ \& ${ }_{3.4 \%}$ \& 48.1\% \& ${ }_{325.1}$ \& ${ }_{324.4}$ \& -0.7 \& -0.2\%

 \hline 49.4\% \& 284.3 \& 286.2 \& 1.8 \& 0.6\% \& 49.4\% \& 323.8 \& 323.0 \& -0.7 \& -0.2\%

 \hline 50.6\% \& 283.4 \& 285.7 \& ${ }^{2.3}$ \& 0.8\% \& 50.6\% \& 322.6 \& 322.8 \& 0.1 \& 0.0\%

 \hline 51.9\% \& 280.1 \& 285.6 \& 5.5 \& 2.0\% \& 51.9\% \& 322.1 \& 318.6 \& -3.5 \& -1.1\%

 \hline 53.1\% \& 277.9 \& 283.9 \& 6.1 \& 2.2\% \& 53.1\% \& 320.5 \& 314.6 \& -5.9 \& -1.8\%

 \hline 54.3\%
 55
 56% \& ${ }^{277.5}$ \& 281.4 \& 3.9 \& 1.4\% \& 54.3\% \& 318.6 \& 313.6 \& -5.0 \& -1.6\%

 \hline 55.8\% \& 273.9

 272.9 \& ${ }_{275.1}^{27.8}$ \& | 3.9 |
 | :--- |
 | 2 | \& \& 55.8\% \& 313.6

 311.3 \& 307.0
 305.9 \& -5.4 \& --1.7\%

 \hline 58.0\% \& 271.6 \& 272.2 \& 0.6 \& 0.2\% \& 58.0\% \& 309.5 \& 305.9 \& -3.6 \& -1.2\%

 \hline 59.3\% \& 265.0 \& 269.4 \& 4.4 \& 1.7\% \& 59.3\% \& 301.2 \& 301.4 \& 0.2 \& 0.1\%

 \hline 60.5\% \& 264.2 \& 269.4 \& 5.2 \& 2.0\% \& 60.5\% \& 299.8 \& 301.4 \& 1.6 \& 0.5\%

 \hline \& 263.6
 263.6 \& ${ }_{26,1}^{267.1}$ \& ${ }^{3.5}$ \& 1.3\% \& 61.7\% \& ${ }^{297.2}$ \& 300.5 \& ${ }^{3.3}$ \& 1.1\%

 \hline 64.2\% \& 262.6 \& ${ }_{263.2}^{26.3}$ \& ${ }_{0.7}^{2.8}$ \& 0.3\% \& 64.2\% \& ${ }_{296.6}$ \& ${ }_{296.2}^{299.9}$ \& ${ }_{-0.4}^{2.8}$ \& -0.1\%

 \hline 65.4\% \& 262.5 \& 259.3 \& -3.2 \& -1.2\% \& 65.4\% \& 296.5 \& 296.2 \& -0.4 \& -0.1\%

 \hline 66.7\% \& 261.4 \& 259.3 \& -2.1 \& -0.8\% \& 66.7\% \& 295.8 \& 292.6 \& -3.2 \& -1.1\%

 \hline 67.9\% \& 252.1
 20.9 \& 257.7
 253 \& 5.6 \& 2.2\% \& 67.9\% \& 292.2 \& 292.5 \& 0.3 \& 0.1\%

 \hline 70.4\% \& 249.9

 249.6 \& | 253.9 |
 | :--- |
 | 252.2 | \& 4.0

 2.6 \& 1.0\% \& 70.4\% \& ${ }_{287.4}^{292.2}$ \& 288.4
 286.4 \& -4.7 \& -1.6\%

 \hline 71.6\% \& 249.5 \& 251.7 \& ${ }_{2}^{2.2}$ \& 0.9\% \& 71.6\% \& 284.0 \& ${ }_{284.2}^{284}$ \& 0.2 \& 0.1\%

 \hline 72.8\% \& 243.7 \& 250.7 \& 7.0 \& 2.9\% \& 72.8\% \& 2828 \& 282.9 \& 0.1 \& 0.1\%

 \hline 74.1\% \& 241.5 \& 249.6 \& 8.1 \& 3.3\% \& 74.1\% \& 282.3 \& 282.8 \& 0.5 \& 0.2\%

 \hline 75.3\% \& ${ }_{20}^{240.3}$ \& 244.5 \& 4.2 \& 1.7\% \& 75.3\% \& 278.3 \& 282.4 \& 4.1 \& 1.5\%

 \hline 77.8\% \& 231.9
 233.8 \& 240.2
 239.7 \& 1.3
 5.9 \& . ${ }_{2.5 \%}$ \& 76.5\% \& ${ }_{274.9}^{274}$ \& 279.5
 2750 \& 4.6 \& 1.7\%

 \hline 79.0\% \& ${ }_{23,5}^{233.5}$ \& 239.1 \& 5.6 \& 2.4\% \& 79.0\% \& 273.7 \& 273.9 \& 0.2 \& 0.1\%

 \hline 80.2\% \& 232.5 \& 235.7 \& 3.2 \& 1.4\% \& 80.2\% \& 271.4 \& 273.5 \& 2.1 \& 0.8\%

 \hline 81.5\% \& 229.3 \& 233.2 \& 3.8 \& 1.7\% \& 81.5\% \& 271.3 \& 271.4 \& 0.1 \& 0.0\%

 \hline 82.7\% \& 227.9 \& ${ }_{232.7}^{2327}$ \& 4.8 \& 2.1\% \& 82.7\% \& 265.8 \& 266.0 \& 0.3 \& 0.1\%

 \hline 84.2\% \& ${ }^{227.0}$ \& 232.0
 230.4 \& 4.9 \& ${ }_{\text {l }}^{\text {2.9\% }}$ \& - ${ }^{84.0 \%}$ 85.2\% \& 264.9
 264,3 \& 265.5
 263.6 \& 0.6
 -0.7 \&

 \hline 86.4\% \& 224.1 \& ${ }_{224.2}^{2304}$ \& 0.1 \& 0.0\% \& ${ }_{86.4 \%}$ \& 261.2 \& 261.3 \& 0.1 \& 0.1\%

 \hline 87.7\% \& 223.9 \& 224.0 \& 0.1 \& 0.0\% \& 87.7\% \& 258.4 \& 260.2 \& 1.8 \& 0.7\%

 \hline 88.9\% \& ${ }^{223.5}$ \& 223.6 \& 0.1 \& 0.1\% \& 88.9\% \& 257.1 \& 257.4 \& 0.3 \& 0.1\%

 \hline 90.1\% \& 220.9 \& 221.1 \& 0.2 \& 0.1\% \& 90.1\% \& 247.5 \& 247.6 \& 0.1 \& 0.0\%

 \hline 92.6\% \& ${ }_{219.0}^{219.6}$ \& ${ }_{218.4}^{219.7}$ \& -0.6 \& -0.3\% \& 9, ${ }_{\text {92.6\% }} 9$ \& 232.1
 224.5 \& 232.1
 225.3 \& 0.0
 0.9 \& 0.4\%

 \hline 93.8\% \& 218.5 \& 218.4 \& -0.1 \& -0.1\% \& 93.8\% \& 223.6 \& 224.0 \& 0.4 \& 0.2\%

 \hline 95.1\% \& 217.4 \& 215.0 \& -2.5 \& -1.1\% \& 95.1\% \& 217.8 \& 217.5 \& -0.2 \& -0.1\%

 \hline 96.3\% \& 215.0 \& 214.4 \& -0.5 \& -0.3\% \& 96.3\% \& ${ }_{212126}$ \& 208.4 \& -4.2 \& -2.0\%

 \hline 998.5\% \& ${ }_{212.6}^{214.3}$ \& ${ }_{214.1}^{214.3}$ \& 0.0
 1.5 \& 0.7\% \& 99.8\% \& 204.2
 178.6 \& 203.9
 179.9 \& -0.3
 1 \& -0.1\%

 \hline \& 192.8 \& 193.3 \& \& , \& 100.0\% \& 175.9 \& 179.5 \& ${ }_{3.5}$ \& 2.0\%

 \hline
 \end{tabular}

 Table SQ－27－b

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {WSIP }}^{\text {Prop Without }}$ Proct | WSIP 2070 With Proj | （ ${ }_{\text {Absolute }}^{\text {Diteree }}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | | Monthly EC | Monthy EC | | |
 | 0，0\％ | C373 | | 29 | 0．5\％ |
 | | 67．3 | 64.2 | 2.9 | 0．5\％ |
 | －${ }_{2}^{1.2 \%}$ | ${ }_{563.9}$ | ${ }_{5}^{592.7}$ | －1．1． | －1．8\％ |
 | 3．7\％ | 5379 | 555 | －74 | |
 | 3．9\％ | 3505 | 5509 | 7．4 | －1．4\％ |
 | 6．2\％ | | | | |
 | 7．4\％ | 3433．2 | 343.8 | 0.6 | 0．2\％ |
 | 8．6\％ | 340.4 | 338.5 | －1．9 | －0．6\％ |
 | 9．9\％ | 334.0 | 324.6 | －9．4 | |
 | ${ }^{11.19 \%}$ | 329.4 3297 | 324.6 | －4．9 | －1．5\％ |
 | ${ }^{12.3 \%}$ | 328.7 | 321.1 | | 3\％ |
 | － $\begin{aligned} & 13.6 \% \\ & 14.8 \%\end{aligned}$ | ${ }^{323.7}$ | ${ }^{3077.6}$ | －16．1 | －.$- .0 \%$ |
 | －14．6\％ | ${ }_{320.3}$ | | －13．1 | －4．1\％ |
 | －17．3\％ | ${ }_{305.0}^{310.7}$ | ${ }_{209.7}^{300.9}$ | －9．3 | |
 | 18．5\％ | 304.7 | 298.7 | －6．0 | －2．0\％ |
 | 19．8\％ | 303.9 | 297.0 | －6．9 | 2．3\％ |
 | 21．0\％ | 303.0 | 294.7 | －8．3 | －2．7\％ |
 | ${ }^{22.2 \%}$ | 299.4 | 292.4 | －6．9 | 2．3\％ |
 | ${ }^{23.5 \%}$ | ${ }_{296 .}^{2993}$ | ${ }_{290.8}^{29.4}$ | －7．9 | ${ }_{-2.0 \%}^{-2.6 \%}$ |
 | 25．9\％ | 295.8 | 2897 | －6．0 | －2．0\％ |
 | 27．2\％ | 294.4 | 289.3 | －5．2 | －1．8\％ |
 | 28．4\％ | 294.3 | 288.6 | －5．8 | －2．0\％ |
 | 29．6\％ | 292.4 | 287.0 | ${ }^{5.5}$ | －1．9 |
 | 30．9\％ | 291.9 | 286.6 | －5．3 | －1．8\％ |
 | 32．1\％ | 290.1 | 285.9 | －4．3 | ${ }^{1.5}$ |
 | 33．3\％ | 2893 | 285.7 | －3．6 | －1．2\％ |
 | 34．6\％ | 287.3 | 285.1 | 2.2 | －0．8\％ |
 | 35．8\％ | 284.9 | 284.9 | 0.0 | 0．0\％ |
 | 37．0\％ | 284.4 | 282.3 | －2．2 | 0．8\％ |
 | 年38．3\％ | 284.2 | 280.1 | －4．1 | －1．4\％ |
 | 39．5\％ | 283.3 | 278.8 | －4．5 | －1．6\％ |
 | 40．7\％ | 282.1 | 277.5 | －4．6 | －1．6\％ |
 | 42．0\％ | 280.0 | 277.4 | －2．6 | －0．9\％ |
 | 43．2\％ | 279.2 | 276.8 | －2．4 | －0．9\％ |
 | 44．4\％ | 277.8 | 276.7 | －1．1 | 0．4\％ |
 | 45．7\％ | 276.2 | 274.5 | －1．6 | －0．6\％ |
 | ${ }^{46.9 \%}$ | 275.8 | 274.3 | －1．5 | 0．5\％ |
 | 48．1\％ 4.4 | 274.7 | ${ }^{273.5}$ | －1．2 | 0．4\％ |
 | 50．6\％ | ${ }_{273.3}^{27.0}$ | ${ }_{266.2}^{272.8}$ | －1．1． | －0．6\％\％ |
 | 51．9\％ | 271.9 | 265.4 | －6．5 | －2．4\％ |
 | 53．1\％ | 263.6 | 263.8 | 0.1 | 0．1\％ |
 | 54．3\％ | 262.9 | 262.4 | －0．5 | －0．2\％ |
 | 年55．6\％ | 262.4 | 261.5 | －1．0 | 0．4\％ |
 | 56．8\％\％ | ${ }^{260.8}$ | 260.7 | －0．1 | 0．0\％ |
 | 59．3\％ | ${ }_{259.1}^{259.5}$ | ${ }_{258.4}^{260.3}$ | 0.8 -0.7 | －0．3\％ |
 | 60．5\％ | 258.2 | 257.9 | －0．3 | －0．1\％ |
 | 61．7\％ | 255.4 | 256.9 | 1.5 | 0．6\％ |
 | 63．0\％ | 254.1 | 256.3 | 2.3 | 0．9\％ |
 | 64．2\％ | ${ }^{253.9}$ | 254.2 | 0.3 | 0．1\％ |
 | ${ }_{6}^{65.4 \%}$ | 253.8
 258
 25 | 254.1 2552 | 0.4 | 0．1\％ |
 | 6．7．9\％ | ${ }_{252.8}^{252.9}$ | ${ }_{\text {253．1 }}$ | 0.4 0.3 | － 0.1% |
 | 69．1\％ | 251.6 | 253.0 | 1.3 | 0．5\％ |
 | 70．4\％ | 251.0 | ${ }^{251.3}$ | 0.3 | 0．1\％ |
 | 71．6\％ | 250.9 | 251.2 | 0.3 | 0．1\％ |
 | 72．8\％ | 250.8 | 251.2 | 0.4 | 0．1\％ |
 | － 74.15% | ${ }^{250.7}$ | ${ }^{250.8}$ | 0.1 | 0．0\％ |
 | 76．5\％ | ${ }_{246.9}^{250.9}$ | ${ }_{247.0}^{249.7}$ | －0．1 | －0．0\％ |
 | 77．8\％ | 246.7 | 246.8 | 0.1 | 0．1\％ |
 | 79．0\％ | 246.3 | 246.3 | 0.0 | 0．0\％ |
 | 80．2\％ | 241.2 | 241.5 | 0.3 | 0．1\％ |
 | 81．5\％ | 240.8 | 241.2 | 0.4 | 0．2\％ |
 | － 8 82．7\％ | 240.8 2404 | ${ }_{241.1}^{2415}$ | ${ }^{0.3}$ | 0．1\％ |
 | 85．2\％ | 240.4 | ${ }_{240.0}$ | －0．4 | －0．2\％ |
 | 86．4\％ | 239.6 | 238.0 | －1．6 | －0．7\％ |
 | 87．7\％ | 238.5 | ${ }^{237.3}$ | －1．1 | 0．5\％ |
 | 88．9\％ | 237.9 | ${ }^{236.2}$ | －1．8 | －0．7\％ |
 | 90．1\％ | 236.2 | 236.0 | －0．3 | 0．1\％ |
 | 9，91．4\％${ }_{\text {92．6\％}}$ | ${ }_{235}^{235}$ | ${ }^{235.6}$ | 0.3 | 0．1\％ |
 | 93．8\％ | ${ }_{228.4}^{232.0}$ | ${ }_{227.4}^{230.1}$ | －1．0 | －0．4\％ |
 | 95．1\％ | 228.0 | 226.7 | －1．3 | －0．6\％ |
 | 96．3\％ | 212.9 | 212.6 | －0．3 | －0．1\％ |
 | 97．5\％ | ${ }_{2025}^{205.5}$ | 205.8
 2025 | ${ }^{0.3}$ | 0．2\％ |
 | 98．8\％ | ${ }_{201.5}^{202.4}$ | ${ }_{202 .}^{202.5}$ | ${ }_{0}^{0.0}$ | ${ }_{0}^{0.3 \%}$ |
 | | | | | |

 | $\begin{aligned} & \hline \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | August | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {WSSP }}$ Provo Without | WSIP 2070 With Project | Absolute | |
 | | Monthly EC | Monthly EC | （itiferance | Difference（\％） |
 | （\％） | （UuHosicm） | UnHosicm） | | |
 | 0．0\％ | 935.7 | 921.9 | －13．8 | －1．5\％ |
 | ${ }^{1.2 \%}$ | 884.7 | 814．6 | －70．1 | －7．9\％ |
 | 2．5\％ | ${ }_{7503} 80$ | ${ }_{7}^{805.8}$ | ${ }_{4}^{2.4}$ | ${ }^{0.3 \%}$ |
 | 3．79\％ | 750.8 | 792.1 6982 | 41．35 | 5．5\％ |
 | 4．9\％ | ${ }_{725.6}$ | ${ }^{698.2}$ | －27．5 | ${ }^{-3.8 \%}$ |
 | 7．2\％ | ${ }_{6} 7235$ | 687.9 | － 6.0 | －5．2\％ |
 | ${ }^{7} .4 \%$ | ${ }_{666.5}$ | 673．4 | 6.0 | |
 | 9．9\％ | ${ }_{644.4}^{6060}$ | ${ }_{653.6}$ | 9．2 | ${ }^{-1.4 \%}$ |
 | 11．1\％ | ${ }_{6}^{635.1}$ | 631.7 | －3．3 | －0．5\％ |
 | 12．3\％ | 610.2 | 609.0 | －1．1 | －0．2\％ |
 | －13．6\％ | ${ }^{609.4}$ | 602．5 5996 | －-1.9 | －1．1\％ |
 | 16．0\％ | 593.6 | 590.4 | －3．1 | －0．5\％ |
 | 17．3\％ | 584.7 | 589.0 | 4.3 | 0．7\％ |
 | 18．5\％ | 581．2 | 587.0 | 4.8 | 0．8\％ |
 | 19．8\％ | 561.9 | 574.1 | 12.1 | 2．2\％ |
 | ${ }^{21.0 \%}$ | 557.9 555.9 | 570.4 5676 | ＋12．5 | ${ }_{23}^{2.2 \%}$ |
 | 23．5\％ | 547．2 | 562.4 | 15.2 | 2．8\％ |
 | 24．7\％ | 534.8 | 555.8 | 21.0 | 3．9\％ |
 | 25．9\％\％ | 520．9 | 552.1 5410 | 31.1
 259
 25 | |
 | 28．4\％ | 510.2 | 538.7 | 28.5 | 5．6\％ |
 | 29．6\％ | 495.6 | 526.9 | 31.3 | 6．3\％ |
 | － 30.9% | ${ }_{485.0}^{492.2}$ | ${ }_{488.0}^{496.2}$ | ${ }_{3.1}^{4.0}$ | ${ }^{0.8 \%}$ |
 | 33．3\％ | 473.1 | 481.4 | 8.3 | 1．8\％ |
 | | 454.5 | 464.5 | | ${ }^{2.2 \%}$ |
 | 35．0\％ | ${ }_{433.0}^{4436}$ | ${ }_{455.7}^{463.8}$ | ${ }_{22.7}^{20.2}$ | 5．2\％ |
 | 38．3\％ | 432.0 | 449.4 | 17.4 | 4．0\％ |
 | 39．5\％ | 429.6 | 436.8 | 7.2 | 1．7\％ |
 | 40．7\％ | 427．4 | ${ }^{434.5}$ | 7.1 | 1．7\％ |
 | | | | | |
 | 4．3．2\％ | 418.7 | ${ }^{425.6}$ | 6．8 | ${ }^{1.6 \%}$ |
 | 44.47 | 41．2 | 421.4 | | |
 | 46．9\％ | ${ }_{408.3}$ | 407.4 | ${ }_{-0.9}^{6.6}$ | － |
 | 48．1\％ | 403.3 | 406.9 | 3.5 | 0．9\％ |
 | 49．4\％ | 401.1 | 400.0 | ${ }^{1.1}$ | －0．3\％ |
 | 50．6\％ | 400.1 3098 | 399.8
 398 | －1．3 | ${ }^{-0.3 \%}$ |
 | | | | | |
 | 㐌53．1\％ | 378.1
 377.8 | ${ }_{3}^{397.5}$ | 19.7 19.6 | 䰲5．2\％\％ |
 | 55．6\％ | 376.2 | 395.5 | 19.3 | 5．1\％ |
 | 56．8\％ | 376.1 | 386.1 | 10.0 | 6\％ |
 | 58．0\％ | 374.7 | 383.8 | 9.2 | 2．4\％ |
 | 59．3\％ | | ${ }^{381.5}$ | | |
 | 61．7\％ | ${ }_{367.0}$ | ${ }_{375.5}$ | ${ }_{8.6} 7$ | 2．3\％ |
 | 63．0\％ | 366.6 | 369.3 | 2.7 | 0．7\％ |
 | ${ }^{64.2 \%}$ | ${ }_{366.6}^{366}$ | ${ }_{3}^{365.1}$ | －3．5 | －0．9\％ |
 | － 65.4% | 366.2
 356.8 | 359.4 355.0 | －1．78 | ${ }_{\text {－}}^{0.5 \%}$ |
 | 67．9\％ | 351.7 | 353.0 | 1.3 | 0．4\％ |
 | 69．1\％ | 343.5 | 349.4 | 5.9 | 1．7\％ |
 | 70．4\％ | 341.2 | 341.1 | －0．1 | 0．0\％ |
 | 7．6．2\％ | | | 8.6 | 2．6\％ |
 | 72．1\％ | 328.6 327.5 | 338.9
 38.8 | 10.4 11.3 | ${ }_{\text {l }}^{3.5 \% \%}$ |
 | 75．3\％ | 326.2 | 337.9 | 11.7 | 3．6\％ |
 | 76．5\％ | 325.5 | 336.2 | 10.7 | 3．3\％ |
 | 77．8\％ | 320.8 | 3327 | 11.9 | 3．7\％ |
 | 79．0\％ | 319．6 | ${ }_{\text {327．8 }}^{3}$ | 8.2 | 2．6\％ |
 | 81．5\％ | ${ }_{317.3}^{317.8}$ | 319.8 318.1 | ${ }_{0}^{2.8}$ | 0．6\％ |
 | 82．7\％ | 315.0 | 314.9 | 0.1 | 0．0\％ |
 | 84．0\％ | 314.5 | 314.4 | －0．1 | 0．0\％ |
 | 85．2\％ | 310.8 | 311.7 | 0.9 | 0．3\％ |
 | 86．4\％ | 310.7 | 310.8 | 0.1 | 0．0\％ |
 | 877\％ | 297.0 | 307.2 | 10.2 | 3．4\％ |
 | 88．9\％ | 292.8 | 299.3 | 6.4 | 2．2\％ |
 | 90．14\％ | 290.8
 2008 | 298.9 2955 | 8.1 8.7 | 2．8\％ |
 | 92．6\％ | ${ }_{289.3}$ | ${ }_{296.3}^{299.5}$ | 7.1 | ${ }^{2.4 \%}$ |
 | 93．8\％ | 288.8 | 295.2 | 6.4 | 22\％ |
 | 95．1\％ | 285.1 | 288.9 | 3.8 | 1．4\％ |
 | 96．3\％ | 279.3 | 283.0 | 3.7 | 1．3\％ |
 | 97．5\％ | 274.5 | 279.4 | 5.0 | 1．8\％ |
 | 98．8\％ 100.0% | 268.8 254.3 | ${ }_{252.2}^{270.7}$ | －2．20 | －0．7\％ |

 | $\begin{aligned} & \text { Percrent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | September | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP P270 Weithout | WSIP 2070 With Project | $\begin{gathered} \text { Absolute } \\ \text { Aifference } \\ \text { (UMHOSCM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference }(\%) \end{gathered}$ |
 | | Monthly EC | Monthly EC | | |
 | （\％） | UMH | | | |
 | 0．0\％ | 968.9 | 899.4 | －69．6 | －7．2\％ |
 | ${ }^{1.2 \%}$ | ${ }_{933.8}$ | 893.8 888.1 | －4．0． | －4．3\％ |
 | 2．5\％ | ${ }^{924.7}$ | 8877 | －36．6 | |
 | 3．7\％\％ | 879.8 8776 | 877.4 874.5 | －2．4． | －0．3\％ |
 | 6．2\％ | 875.3 | 860.2 | －15．1 | |
 | 7．4\％ | 874.3 | 848.0 | －26．3 | －3．0\％ |
 | 8．6\％ | 863.8 8616 | 841.2
 840.5 | ${ }_{-211}^{-22.6}$ | －2．5\％ |
 | 9．9\％ | 861.6 856.4 | ${ }_{8337}^{840.5}$ | －21．1 | －2．5\％ |
 | ${ }^{11.12 \%}$ | 856.4 852.8 | 833.7
 821.8 | －22．7 -31.0 | －－2．6\％ |
 | 13．6\％ | 850．9 | 820.9 | －30．0 | －3．5\％ |
 | 14．8\％ | ${ }^{850.0}$ | ${ }^{820.3}$ | －29．7 | －3．5\％ |
 | （17．0\％\％ | 842.5 8300 | 820.0 8182 | －22．5 -118 | －-1.74% |
 | 18．5\％ | ${ }_{828.8}$ | 809.9 | －18．8 | |
 | 19．8\％ | 828.4 | 803.4 | －25．0 | －3．0\％ |
 | ${ }_{2}^{21.0 \%}$ | －${ }_{819.2}^{825.2}$ | 803.4 8003 | －21．8 | －－2．6\％ |
 | 23．5\％ | 816.9 | 791.5 | －25．4 | －3．1\％ |
 | | ${ }^{813.6}$ | 791.4 | －22．2 | －2．7\％ |
 | 22．9\％\％ | ${ }_{8}^{813.3}$ | 780.5 766.6 | $\begin{array}{r}\text {－32．8 } \\ -42.6 \\ \hline\end{array}$ | －.$- .3 \%$ |
 | 28．4\％ | 805.1 | 748.1 | －57．0 | －7．1\％ |
 | 29．6\％ | 804.9 | ${ }_{747.9}$ | －57．0 | －7．1\％ |
 | 33．9\％ | 803.6 800.0 | 747.2 743.0 | -56.5 -57.0 | －7．7．0\％ |
 | 33．3\％ | 781.1 | 741.3 | －39．8 | －5．1\％ |
 | 34．6\％ | 765.1 | ${ }_{7}^{732.8}$ | －32．2 | －4．2\％ |
 | 37．0\％ | 778.2 | ${ }_{725.5}^{725.9}$ | ${ }_{-2.7}$ | ${ }^{-0.4 \%}$ |
 | 38．3\％ | 726.3 | 721.8 | －4．6 | －0．6\％ |
 | 39．5\％ | ${ }_{721.2}$ | 709.0 | －12．2 | －1．7\％ |
 | ${ }_{4}^{42.0 \%}$ | ${ }_{701.5}^{706.3}$ | 692.3 688.0 | －14．0 | －2．0\％ |
 | 43．2\％ | 654.1 | 676.5 | 22.4 | |
 | 44．4\％ | 64.8 | 656.4 | 9.6 | |
 | 4．7．9\％ | 645.6 631.9 | 654.0 638.1 | 8.4 6.2 | － 1.30% |
 | 48．1\％ | 630.2 | 638.0 | 7.8 | |
 | 49．4\％ | 626.0 | 629.0 | 3.0 | |
 | ${ }_{\text {5 }}^{50.6 \%}$ | ${ }^{610.0}$ | ${ }_{6227}^{627}$ | 17.7 | 2．9\％ |
 | 553．1\％ | 610.0 603.0 | 622.6 618.3 | 12.6 15.3 | ${ }^{2.1 \%}$ |
 | 54．3\％ | 602.0 | 617.1 | 15.1 | 2．5\％ |
 | 55．6\％ | 597．1 | 598.5 5954 | 1.4 | 0．2\％ |
 | 56．0\％ | 596.4 588.3 | 595.4 595.0 | -1.0 6.7 | ${ }^{-0.12 \%}$ |
 | 59．3\％ | 576.2 | 588.2 | 12.0 | 2．1\％ |
 | ${ }_{\text {c }}^{60.5 \%}$ | 575.1 5559 | 573．9 | －1．1 | －0．2\％ |
 | 6．7．0\％ | 555.9 555.0 | 562.0 560.2 | 6.1 5.2 | 1．1\％ |
 | 64．2\％ | 548.8 | 558.7 | 9.9 | 1．8\％ |
 | 65.4% 667% | 543.2 5415 | 544.6
 5478 | ${ }_{5}^{5.4}$ | 1．0\％ |
 | 67．9\％ | ${ }_{500.1}^{54.5}$ | ${ }_{544.4}$ | ${ }_{4.3}^{6.3}$ | ${ }^{1.2 \% \%}$ |
 | 69．1\％ | 537.6 | 542.3 | 4.8 | 0．9\％ |
 | 70．4\％ | 534．2 | 542.0 5412 | 7.8 | 1．5\％ |
 | 72．8\％ | －${ }_{5231.0}$ | 541.2
 540.6 | ${ }_{11.2}^{10.2}$ | |
 | 74．1\％ | ${ }_{527.6}$ | 526.6 | ${ }_{-1.0}$ | －0．2\％ |
 | 75．3\％ | 521.3 | 521.7 | 0.4 | 0．1\％ |
 | | | 513.1 | | |
 | 77．0\％ | $\stackrel{509.0}{507.1}$ | ${ }_{474.5}^{485.1}$ | -23.9 -32.6 | －4．4\％ |
 | 80．2\％ | 493.1 | 459.5 | －33．6 | －6．8\％ |
 | | ${ }_{478.1}^{480.1}$ | | | |
 | 84．0\％ | ${ }_{467.7}$ | 4548.7 | －19．1 | －4．5\％ |
 | 85．2\％ | 459.4 | 444.4 | －15．1 | －3．3\％ |
 | ${ }^{86.4 \%}$ | 457.8 | 443.1 | －14．7 | －3．2\％ |
 | 87．9\％ | 452.4 443.0 | ${ }_{441.9}^{442.9}$ | －9．0． | －-2.2% |
 | 90．1\％ | 417.7 | 434.7 | 16.9 | 4．0\％ |
 | 91．4\％ | 407.7 | 419.0 | 11.3 | 2．8\％ |
 | 92．6\％ | 403.2 | 413.3 | 10.1 | 2．5\％ |
 | 93．9\％ | 400.8 | 412.3 | 11.6 | 2．9\％ |
 | 96．3\％ | ${ }_{388.3}$ | 407.2 | 18.9
 18 | ＋1．9\％ |
 | 97．5\％ | ${ }^{379.3}$ | 400.3 | 21.0 | 5．5\％ |
 | 98．8\％ | ${ }_{3671.2}^{377}$ | ${ }_{3}^{376.5}$ | ${ }_{4}^{5.3}$ | － 1.4% \％ |
 | | | | | |

 Figure SQ-28-b
 North Bay Aqueduct Intake (Barker Slough), Monthly EC

 Table SQ-28-b

 | | | Ocrober | | |
 | :---: | :---: | :---: | :---: | :---: |
 | ${ }_{\text {Percent }}^{\text {Pexcedance }}$ | ${ }_{\text {WSIP }}^{\text {2070 }}$ Pricthout | WSIP 2070 With Project | Absolute | |
 | Probability | Monthly EC | Monthy EC | (itiference | Difference (\%) |
 | (\%) | (UMHOSICM) | (UMHosicm) | | |
 | 0.0\% | 201.8 | 198.8 | -3.0 | -1.5\% |
 | 1.2\% | 199.9 | 198.6 | -1.3 | -0.7\% |
 | 2.5\% | 199.9 | 196.2 | -3.7 | -1.9\% |
 | 3.7\% | 199.6 | 195.7 | -4.0 | -2.0\% |
 | 4.9\% | 199.5 | 195.4 | -4.1 | -2.1\% |
 | ${ }^{6.2 \%}$ | 198.7 1987 | $\begin{array}{r}195.1 \\ 1948 \\ \hline\end{array}$ | -3.6 | -1.8\% |
 | 7.4\% | 198.7 | 194.8 | -3.9 | -1.9\% |
 | 8.6\% | 198.6 | 194.7
 1945 | -.39 | -1.9\% |
 | 9.9\% | 198.6 | 194.5 | -4.1. | -2.1\% |
 | 11.19\% | 198.1 | 194.2 | -3.9 | ${ }_{-1.20 \%}$ |
 | 12.3\% | 197.4 | 194.0 | -3.4 | -1.7\% |
 | 13.6\% | 197.0 | 193.8 | -3.2 | -1.6\% |
 | 14.8\% | ${ }^{196.6}$ | 193.4 | -3.21 | -1.6\% |
 | 16.0\% | 196.3 | 193.1 | -3.1 | -1.6\% |
 | 17.3\% | 195.9 | 192.8
 1928
 1 | -3.11 | -1.6\% |
 | 18.5\% | 199.8 | 1928 | -3.1 | -1.0\% |
 | 19.8\% | 194.5 | 192.7 | -1.85 | -0.9\% |
 | 21.0\% | 194.4 | 191.9 | -2. | -1.3\% |
 | 22.2\% | 194.0 | 191.9 | -2.15 | -1.1\% |
 | ${ }^{23.5 \%}$ | 1993 | 1919 | -1.5 | -0.8\% |
 | 24.7\% | ${ }^{193.3}$ | 191.7 | -1.6 | - |
 | 25.9\% | 192.8 192.0 | ${ }_{1900.3}^{191.5}$ | -1.3 | -0.7\% |
 | 28.4\% | 191.4 | 189.7 | -1.6 | -0.8\% |
 | 29.6\% | 191.2 | 189.6 | -1.6 | -0.8\% |
 | 30.9\% | 190.7 | 189.5 | -1.2 | -0.6\% |
 | 32.1\% | 190.6 | 189.5 | -1.2 | -0.6\% |
 | 33.3\% | 190.4 | 189.4 | -0.9 | -0.5\% |
 | 34.5\% | 190.3 | 189.4 | -0.9 | -0.5\% |
 | 35.8\% | 190.0 1899 | 189.2 189.1 | -0.9 | -0.5\% |
 | 37.0% 38.3% | 1899 | 189.1 1891 | -0.8 | -0.4\% |
 | 38.5\% | 1899.7 189.6 | 189.1 189.0 | -0.7 | ${ }^{-0.4 \%}$ |
 | 40.7\% | 189.5 | 188.9 | -0.6 | -0.3\% |
 | 42.0\% | 189.5 | 188.9 | -0.7 | -0.3\% |
 | 43.2\% | ${ }^{189.3}$ | 188.8 | -0.4 | -0.2\% |
 | 44.4\% | 189.3 | 188.7 | -0.5 | -0.3\% |
 | 45.7\% | 189.1 189.1 | 188.5 188.4 | -0.6 | - |
 | ${ }^{46.9 \%}$ | 189.1 1890 | 188.4 188.4 | -0.6 | -0.3\% |
 | ${ }_{4}^{48.4 \%}$ | 189.0 1890 | 188.4 188.4 | -0.6 | -0.3\% |
 | 50.6\% | 188.9 | 188.3 | -0.7 | -0.3\% |
 | 51.9\% | 188.9 | 188.2 | -0.7 | -0.4\% |
 | 53.19\% | 1889 1888 | $\begin{array}{r}188.2 \\ 1882 \\ \hline\end{array}$ | -0.7 | |
 | 54.5\% | 188.8
 188.5 | 188.2 188.2 | -0.6 | -0.0.3\% |
 | 56.8\% | 188.5
 18.5 | 188.0
 180.2 | -0.5 | -0.3\% |
 | | 188.4 188.3 | 188.0 188.0 | -0.4 -0.3 | - |
 | 60.5\% | 188.2 | 187.9 | -0.3 | -0.2\% |
 | ${ }^{61.7 \%}$ | 188.0 | 187.8 | -0.2 | -0.1\% |
 | - 63.0% | 187.9 187.9 | 187.7 187.6 | -0.2 -0.0 | -0.1\% |
 | 65.4\% | 187.9 | 187.6 | -0.3 | -0.2\% |
 | 66.7\% | 187.9 | 187.6 | -0.3 | -0.2\% |
 | 67.9\% | 187.8
 187.8 | 187.4 187.4 | -0.4
 -0.4 | -0.0. -0.2% |
 | 70.4\% | 187.6 | 187.3 | -0.3 | -0.1\% |
 | 71.6\% | 187.6 | 187.3 | -0.3 | -0.1\% |
 | 72.8\% | $\begin{array}{r}187.5 \\ 187.5 \\ \hline\end{array}$ | 187.2 187.1 | -0.4 | -0.0.2\% |
 | 75.3\% | 187.4 | 187.0 | -0.4 | -0.2\% |
 | 76.5\% | 187.4 | 187.0 | -0.4 | -0.2\% |
 | 77.8\% | $\begin{array}{r}187.4 \\ \begin{array}{r}1872\end{array} \\ \hline\end{array}$ | 187.0 187.0 | -0.4 -0.0 | - |
 | 80.2\% | 187.2 | 186.9 | -0.3 | -0.1\% |
 | 81.5\% | 186.8 | 186.9 | 0.1 | 0.0\% |
 | - 82.7% | $\begin{array}{r}186.7 \\ 1867 \\ \hline\end{array}$ | 186.6 1865 | -0.1 | -0.0.1\% |
 | 85.2\% | 186.7 | 186.4 | -0.3 | -0.2\% |
 | 86.4\% | 186.6 | 186.4 | -0.3 | -0.1\% |
 | 87.7% 889% | $\begin{array}{r}186.5 \\ 1864 \\ \hline\end{array}$ | 186.3 186.3 | -0.2 -0.0 | --0.1\% |
 | 90.1\% | 186.4 | 186.2 | -0.2 | -0.1\% |
 | 914.4\% | 186.3 | 186.1 | -0.2 | -0.1\% |
 | 93.8\% | 186.3 186.2 | 186.1 186.0 | -0.2 -0.2 | -0.0.1\% |
 | 95.1\% | 186.2 | 185.5 | -0.6 | -0.3\% |
 | 96.3\% | 185.9 1855 | 185.0 | -1.0 | -0.5\% |
 | 97.5\% | 185.5 | 184.7 | -0.7 | -0.4\% |
 | 100.0\% | 185.2
 184.6 | 1884.4
 184.4 | $\stackrel{-0.6}{ }$ | ${ }_{\text {- }}^{-0.1 \%}$ |

 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
 \hline \multirow[b]{3}{*}{$$
 \begin{gathered}
 \text { Exereant } \\
 \hline \text { Eroedance } \\
 \text { Probability }
 \end{gathered}
 $$} \& \multirow[b]{3}{*}{WSIP 207 Pro With
 Prout
 Month
 EC
 EC} \& \multicolumn{3}{|l|}{vember} \& \multirow[b]{3}{*}{$$
 \begin{gathered}
 \text { Percent } \\
 \text { Exceedance } \\
 \text { Probobility }
 \end{gathered}
 $$} \& \multicolumn{4}{|c|}{Jecember}

 \hline \& \& WSIP 2070 With Project \& \multirow[t]{2}{*}{$$
 \begin{gathered}
 \text { Absolute } \\
 \text { (ifference } \\
 \text { (UMHOSICM) }
 \end{gathered}
 $$} \& \multirow[t]{2}{*}{$$
 \begin{gathered}
 \text { Relative } \\
 \text { Difference (\%) }
 \end{gathered}
 $$} \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{$\frac{\text { WSIP } 2070 \text { With Project }}{\text { Monthy }}$} \& \multirow[t]{2}{*}{$$
 \begin{gathered}
 \text { Absolute } \\
 \text { (Difference } \\
 \text { (untrosicm) }
 \end{gathered}
 $$} \& \multirow[t]{2}{*}{$$
 \begin{aligned}
 & \text { Relative } \\
 & \text { Difference (\%) }
 \end{aligned}
 $$}

 \hline \& \& Monthly EC
 (untos
 cw) \& \& \& \& \& \& \&

 \hline \& \& 2074 \& -0.3 \& -0.1\% \& l.0\% \& 2326 \& \& \&

 \hline 12\% \& \& \& \& \& \& \& \& \&

 \hline 2.5\% \& ${ }_{201.3}^{202.3}$ \& 200.1 \& ${ }_{-1.1}$ \& -0.6\% \& 2.5\% \& 218.0 \& 217.4 \& -0.6 \& -0.3\%

 \hline 3.7\% \& 200.2 \& 200.0 \& -0.2 \& -0.1\% \& 3.7\% \& 214.2 \& 213.2 \& -1.0 \&

 \hline 4.9\% \& 200.1 \& 198.2 \& -1.9 \& -0.9\% \& 4.9\% \& 214.2 \& 211.7 \& -2.6 \& -1.2\%

 \hline 6.2\% \& 200.0 \& 198.0 \& -2.0 \& -1.0\% \& 6.2\% \& 211.6 \& 210.6 \& -1.0 \& -0.5\%

 \hline 7.4\% \& 199.6 \& 197.7 \& -1.9 \& -1.0\% \& 7.4\% \& 210.4 \& 210.1 \& -0.3 \& -0.1\%

 \hline 8.9\% \& 199.4 \& 197.4 \& -2.0 \& -1.0\% \& 8.6\% \& 210.0 \& 209.1 \& -1.0 \& -0.5\%

 \hline 9.9\% \& 199.1 \& 196.7 \& -2.5 \& -1.2\% \& 9.9\% \& 207.2 \& 207.3 \& 0.1 \& 0.1\%

 \hline 11.1\% \& 198.7 \& 196.5 \& -2.3 \& -1.1\% \& 11.1\% \& 204.8 \& 204.7 \& \& 0.0\%

 \hline 12.3\% \& 198.7 \& 196.2 \& -2.5 \& -1.2\% \& 12.3\% \& 204.7 \& 204.5 \& -0.1 \& -0.1\%

 \hline 13.6\% \& 198.6 \& 196.1 \& -2.5 \& -1.3\% \& 13.6\% \& 204.5 \& 204.3 \& -0.2 \& -0.1\%

 \hline 14.8\% \& 198.6 \& 195.8 \& -2.7 \& -1.4\% \& 14.8\% \& 204.1 \& 204.3 \& 0.2 \& 0.1\%

 \hline 16.0\% \& 198.3 \& 195.0 \& -3.3 \& -1.7\% \& 16.0\% \& 202.9 \& 202.8 \& -0.1 \& -0.1\%

 \hline 17.3\% \& 197.7 \& 194.9 \& -2.8 \& -1.4\% \& 17.3\% \& 202.4 \& 202.4 \& 0.0 \& 0.0\%

 \hline 18.5\% \& 196.8 \& 194.8 \& -2.0 \& -1.0\% \& 18.5\% \& 2023 \& 201.8 \& -0.5 \& -0.3\%

 \hline 19.8\% \& 196.3 \& 194.5 \& -1.7 \& -0.9\% \& 19.8\% \& 201.7 \& 201.5 \& -0.2 \& -0.1\%

 \hline 21.0\% \& 196.1 \& 194.5 \& -1.7 \& -0.8\% \& 21.0\% \& 201.6 \& 201.3 \& -0.3 \& -0.1\%

 \hline 22.2\% \& 196.0 \& 194.3 \& -1.7 \& -0.9\% \& 22.2\% \& 201.3 \& 200.8 \& -0.6 \& -0.3\%

 \hline 23.5\% \& 195.8 \& 194.2 \& -1.5 \& -0.8\% \& 23.5\% \& 201.3 \& 200.6 \& -0.7 \& -0.3\%

 \hline 24.7\% \& 195.5 \& 194.2 \& -1.3 \& -0.7\% \& 24.7\% \& 201.0 \& 200.5 \& -0.5 \& -0.2\%

 \hline 25.9\% \& 195.4 \& 194.1 \& -1.3 \& -0.6\% \& 25.9\% \& 201.0 \& 200.2 \& -0.8 \& -0.4\%

 \hline 27.2\% \& 195.3 \& 194.1 \& -1.2 \& -0.6\% \& 27.2\% \& 200.9 \& 200.0 \& -0.9 \& -0.5\%

 \hline 28.4\% \& 194.9 \& 193.2 \& -1.7 \& -0.9\% \& 28.4\% \& 200.8 \& 198.9 \& -1.9 \& -0.9\%

 \hline 29.6\% \& 194.9 \& 193.0 \& -1.9 \& -1.0\% \& 29.6\% \& 200.6 \& 198.7 \& -1.9 \& -1.0\%

 \hline 30.9\% \& 194.6 \& 192.9 \& -1.7 \& -0.9\% \& 30.9\% \& 198.6 \& 198.1 \& -0.4 \& -0.2\%

 \hline - ${ }^{32.1 \%}$ 3.3\% \& 194.6
 194.4 \& 192.6
 192.6 \& -2.0 \& - -1.0% \& ${ }^{32.1 \%}$ 33.3\% \& 198.4
 198. \& 198.1

 1980 \& -0.3 \& -0.2\%

 \hline 34.6\% \& 1994.2 \& 192.6 \& -1.6 \& -0.8\% \& 34.6\% \& 198.0 \& 198.0 \& 0.0 \& 0.0\%

 \hline 35.8\% \& 193.3 \& 192.5 \& -0.8 \& -0.4\% \& 35.8\% \& 198.0 \& 197.9 \& -0.1 \& 0.0\%

 \hline 37.0\% \& 192.9 \& 192.4 \& -0.5 \& -0.3\% \& 37.0\% \& 197.7 \& 197.7 \& -0.1 \& 0.0\%

 \hline 38.3\% \& 192.9 \& 191.9 \& -1.0 \& -0.5\% \& 38.3\% \& 197.6 \& 1977 \& 0.1 \& 0.0\%

 \hline 39.5\% \& 192.5 \& 191.5 \& -0.9 \& -0.5\% \& 39.5\% \& 197.5 \& 197.6 \& 0.1 \& 0.1\%

 \hline 40.7\% \& 192.1 \& 191.3 \& -0.7 \& -0.4\% \& 40.7\% \& 196.9 \& 197.3 \& 0.3 \& 0.2\%

 \hline 42.0\% \& 192.0 \& 191.2 \& -0.8 \& -0.4\% \& 42.0\% \& 196.9 \& 196.8 \& -0.1 \& -0.1\%

 \hline 43.2\% \& 191.5 \& 190.9 \& -0.6 \& -0.3\% \& 43.2\% \& 196.9 \& 196.7 \& -0.2 \& -0.1\%

 \hline 44.4\% \& 191.5 \& 190.9
 190.7 \& -0.6 \& -0.3\% \& 44.4%
 45% \& 196.8 \& 196.6 \& -0.1 \& -0.1\%

 \hline 45.7\% \& 199.4
 191.3 \& 190.7
 190.5 \& -0.6 \& -0.0\% \& 45.7\% \& ${ }_{1}^{196.2}$ \& ${ }_{1}^{195.3}$ \& 0.2
 -0.2 \& 0.1\% 0

 \hline 48.1\% \& 191.3 \& 190.4 \& -0.9 \& -0.5\% \& 48.1\% \& 196.1 \& 195.5 \& -0.6 \& -0.3\%

 \hline 49.4\% \& 191.3 \& 190.4 \& -0.9 \& -0.5\% \& 49.4\% \& 195.5 \& 195.4 \& -0.1 \& 0.0\%

 \hline 50.6\% \& 191.1 \& 189.9 \& -1.1 \& -0.6\% \& 50.6\% \& 195.5 \& 195.4 \& -0.1 \& 0.0\%

 \hline 51.9\% \& 190.8 \& 1899 \& -0.8 \& -0.4\% \& 51.9\% \& 195.4 \& 195.3 \& 0.0 \& 0.0\%

 \hline 53.1\% \& 190.7 \& 189.8 \& -0.9 \& -0.5\% \& 53.1\% \& 195.1 \& 194.9 \& -0.2 \& -0.1\%

 \hline 54.3\% \& 190.6 \& 1897 \& -0.9 \& -0.5\% \& 54.3\% \& 194.2 \& 194.5 \& 0.4 \& 0.2\%

 \hline 55.6\% \& 190.5
 1093 \& 189.6 \& -0.9 \& -0.4\% \& 55.6\% \& 193.9 \& 194.4 \& 0.5 \& 0.3\%

 \hline 56.8\% \& 190.3
 190.3 \& 1899.6
 189.5 \& -0.7
 -0.8 \& -0.0.4\% \& 56.8\% \& ${ }_{1}^{1933.9}$ \& ${ }_{193.3}^{193.6}$ \& -0.2 \& -0.0.0\%

 \hline 59.3\% \& 190.2 \& 189.5 \& -0.8 \& ${ }^{-0.4 \%}$ \& 59.3\% \& 193.2 \& 193.2 \& 0.0 \& -0.0\%

 \hline 60.5\% \& 190.1 \& 189.4 \& -0.8 \& -0.4\% \& 60.5\% \& 193.1 \& 193.0 \& -0.1 \& 0.0\%

 \hline 61.7\% \& 190.1 \& 189.2 \& -0.9 \& -0.5\% \& 61.7\% \& 193.0 \& 192.0 \& -1.0 \& -0.5\%

 \hline 63.0\% \& 190.0 \& 189.2 \& -0.8 \& -0.4\% \& 63.0\% \& 192.9 \& 191.8 \& -1.0 \& -0.5\%

 \hline - $\begin{aligned} & \text { 64.2\% } \\ & 65.4 \%\end{aligned}$ \& 1899.6
 189.5 \& 189.2
 189.1 \& -0.4
 -0.4 \& ${ }^{-0.2 \%}$ \& 64.2%
 6.4% \& 192.8
 192.8 \& 1991.6
 191.4 \& -1.3 \& -0.7\%

 \hline 66.7\% \& 189.4 \& 189.0 \& -0.4 \& -0.2\% \& 66.7% \& 192.6 \& 191.0 \& -1.6 \& -0.8\%

 \hline 67.9\% \& 189.3 \& 188.9 \& -0.4 \& -0.2\% \& 67.9\% \& 192.6 \& 190.5 \& -2.1 \& -1.1\%

 \hline 69.1\% \& 189.2 \& 188.8 \& -0.4 \& -0.2\% \& 69.1\% \& 192.2 \& 190.5 \& -1.7 \& -0.9\%

 \hline 70.4\% \& 189.2 \& 188.8 \& -0.4 \& -0.2\% \& 70.4\% \& 191.7 \& 190.4 \& -1.3 \& -0.7\%

 \hline - 71.6% \& 1899.2
 189.1 \& 188.8
 188.7 \& -0.4
 -0.4 \& ${ }^{-0.2 \% \%}$ \& -71.8\% \& ${ }_{191.6}^{191.6}$ \& 190.4
 190.3 \& -1.3
 -13 \& ${ }_{-0}^{-0.7 \%}$

 \hline 74.1\% \& 189.1 \& 188.6 \& -0.5 \& ${ }^{-0.3 \%}$ \& 74.1\% \& 191.5 \& 190.0 \& -1.5 \& -0.8\%

 \hline 75.3\% \& 189.0 \& 188.6 \& -0.5 \& -0.2\% \& 75.3\% \& 191.2 \& 189.9 \& -1.3 \& -0.7\%

 \hline 76.5\% \& 189.0 \& 188.4 \& -0.6 \& -0.3\% \& 76.5\% \& 191.2 \& 189.8 \& -1.3 \& -0.7\%

 \hline 77.8\% \& 188.9

 1889 \& | 188.2 |
 | :--- |
 | 188. | \& -0.8 \& -0.4\% \& 77.8\% \& ${ }^{190.7}$ \& 189.6

 189.4 \& -1.1. \& -0.6\%

 \hline 80.2\% \& ${ }_{188.5}^{188.9}$ \& 188.0
 188.0 \& -0.4 \& \& 79.0\% \& 190.6
 190.3 \& 189.4
 189.3 \& -1.12 \& ${ }^{-0.6 \% \%}$

 \hline 81.5\% \& 188.4 \& 187.9 \& -0.5 \& -0.3\% \& 81.5\% \& 190.2 \& 189.0 \& -1.2 \& -0.6\%

 \hline 82.7\% \& 188.4 \& 187.9
 1879 \& -0.5 \& -0.3\% \& 82.7\% \& 190.2 \& 189.0 \& -1.2 \& -0.6\%

 \hline 85.2\% \& 188.4
 188.3 \& 187.9
 187.7 \& \& \& 85.2\% \& 189.8
 189.3 \& 188.7
 188.3 \& -1.1. \& -0.0.0\%

 \hline 86.4\% \& 188.3 \& 187.6 \& -0.7 \& -0.4\% \& 86.4\% \& 188.7 \& 188.2 \& -0.5 \& -0.3\%

 \hline 87.7\% \& 188.2 \& 187.5 \& -0.6 \& -0.3\% \& 877\% \& 188.7 \& 188.0 \& -0.7 \& -0.4\%

 \hline ${ }^{90.1 \%}$ \& | 188.0 |
 | :--- |
 | 187.8 | \& 187.5

 187.4 \& \& ${ }^{-0.3 \%}$ \& - ${ }^{88.1 \%}$ \& 188.3
 188.2 \& 188.0
 187.8 \& -0.3 \&

 \hline 91.4\% \& 187.8 \& 187.4 \& -0.4 \& -0.2\% \& 91.4\% \& 187.8 \& 187.7 \& -0.1 \& -0.1\%

 \hline 92.6\% \& 1877 \& 187.2 \& -0.5 \& -0.3\% \& 92.6\% \& ${ }^{187.6}$ \& 187.4 \& -0.1 \& -0.1\%

 \hline ${ }_{95.1 \%}^{93.8 \%}$ \& 187.6
 187.4 \& 187.0
 186.8 \& -0.7
 -0.6 \& ${ }^{-0.4 \%}$ \& ${ }^{93.8 \%} 9$ \& 187.6
 187.2 \& 187.2
 187.2 \& -0.3
 0.0 \& ${ }^{-0.2 \%}$

 \hline 96.3\% \& ${ }_{187.0}$ \& 188.5 \& -0.5 \& -0.3\% \& ${ }_{96.3 \%}$ \& ${ }_{187.2}^{18.2}$ \& ${ }_{187.2}^{18.2}$ \& 0.0 \& 0.0\%

 \hline 97.5\% \& 186.7 \& 185.9 \& -0.8 \& -0.4\% \& 97.5\% \& 186.5 \& ${ }^{189.3}$ \& -0.2 \& -0.1\%

 \hline 988\%\% \& +186.3 \& $\begin{array}{r}185.8 \\ 185 \\ \hline\end{array}$ \& -0.4 \& -0.2\% \& 98.8\% \& 186.0

 1858 \& 186.1
 1860 \& ${ }_{0}^{0.1}$ \& 0.1\%

 \hline \& \& \& \& \& \& \& \& \&

 \hline
 \end{tabular}

 | PercentExceedanceProbability | January | | | Difference (\%) ${ }_{\text {Refite }}$ |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2070 Without | WSIP 2070 With Project | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOSOCM) } \end{gathered}$ | |
 | | Monthly E C | Monthly EC | | |
 | ${ }^{(\% .0 \%)}$ | (UnHosicm) | (UMHHOSCM) | 12 | |
 | | | | | |
 | 2.5\% | ${ }_{2457}^{24.9}$ | 24.9 | 4.9 | |
 | 3.7\% | 2433 | 244.4 | 10 | |
 | 4.9\% | 238.9 | 2432 | 44 | |
 | 6.2\% | ${ }_{236.8}$ | 235.8 | -1.0 | |
 | 7.4\% | 234.6 | 234.2 | -0.4 | -0.2\% |
 | 8.6\% | 230.9 | 233.7 | 2.8 | 12% |
 | 9.9\% | 230.4 | 231.0 | 0.6 | |
 | 11.1\% | 230.2 | 230.7 | 0.5 | \% |
 | 12.3\% | 229.7 | 2293 | -0.4 | -0.2\% |
 | 13.6\% | ${ }^{226.3}$ | 228.0 | 1.6 | 0.7\% |
 | 8\% | 224.7 | 226.9 | 2.3 | 1.0\% |
 | 16.0\% | ${ }^{223.8}$ | 224.8 | 1.0 | 0.4\% |
 | 17.3\% | 223.7 | 224.2 | 0.5 | 0.2\% |
 | 18.5\% | ${ }^{223.3}$ | 223.7 | 0.5 | 0.2\% |
 | 19.8\% | 222.6 | 223.7 | 1.0 | 0.5\% |
 | 21.0\% | 221.9 | 222.1 | 0.1 | 0.1\% |
 | 22.2\% | 221.5 | 221.9 | 0.4 | 0.2\% |
 | 23.5\% | 219.1 | 219.6 | 0.4 | 0.2\% |
 | 24.7\% | 218.6 | 218.5 | -0.1 | 0.0\% |
 | 25.9\% | 217.5 | 218.1 | 0.6 | 0.3 |
 | 27.2\% | 217.3 | 218.0 | 0.7 | 0.3\% |
 | 28.4\% | 216.6 | 217.7 | 1.1 | 0.5\% |
 | 29.6\% | 216.2 | 216.9 | 0.7 | 0.3\% |
 | 30.9\% | 215.8 | 216.6 | 0.7 | 0.3\% |
 | 32.1\% | 215.7 | 215.9 | 0.2 | 0.1\% |
 | 33.3\% | 214.8 | 214.9 | 0.1 | 0.0\% |
 | 34.6\% | 213.4 | 214.7 | 1.3 | 0.6\% |
 | 35.7\% | 213.0 | ${ }_{213.1}^{213}$ | 0.1 | 0.1\% |
 | 37.0\% | 212.7 | 212.8 | 0.1 | 0.1\% |
 | 38.3\% | 211.2 | 212.5 | 1.3 | 0.6\% |
 | 39.5\% | 210.5 | 211.1 | 0.6 | 0.3\% |
 | 40.7\% | 210.4 | 210.5 | 0.1 | 0.0\% |
 | 42.0\% | 210.1 | 210.1 | 0.0 | 0.0\% |
 | 43.2\% | 210.0 | 210.0 | -0.1 | 0.0\% |
 | 44.4\% | 208.9 | 209.2 | ${ }^{0.3}$ | 0.1\% |
 | 45.7\% | 208.9 | 2090 | 0.2 | 0.1\% |
 | 46.9\% | 208.8 | 208.9 | 0.1 | 0.1\% |
 | 48.1\% | ${ }^{207.2}$ | 207.6 | 0.4 | 0.2\% |
 | 49.4\% | 207.2 | 206.8 | -0.4 | -0.2\% |
 | 50.6\% | 206.6 | 206.7 | 0.1 | 0.1\% |
 | 51.9\% | 206.4 | 206.5 | 0.1 | 0.1\% |
 | 53.1\% | 206.4 | 206.2 | -0.2 | -0.1\% |
 | 54.3\% | 206.0 | 206.2 | 0.2 | 0.1\% |
 | 55.6\% | 205.8 | 205.4 | -0.4 | -0.2\% |
 | 56.8\% | ${ }^{205.8}$ | ${ }^{205.3}$ | -0.5 | -0.3\% |
 | 58.0\% | 205.2 | 204.5 | -0.7 | -0.3\% |
 | 59.3\% | 204.8 | 204.4 | -0.4 | |
 | ${ }^{60.5 \%}$ | 204.4 | ${ }_{2038}^{203.8}$ | -0.7 | -0.3\% |
 | 61.7\% | 203.4 | 2037 | ${ }^{0.3}$ | 2\% |
 | 63.0\% | 203.1 | ${ }^{203.6}$ | 0.6 | 0.3\% |
 | ${ }^{64.2 \%}$ | ${ }^{202.6}$ | ${ }^{203.3}$ | 0.7 | 3\% |
 | 65.4\% | ${ }^{2023}$ | ${ }^{202.8}$ | 0.4 | 0.2\% |
 | ${ }^{66.7 \%}$ | ${ }^{2023}$ | 202.7 | 0.4 | 2\% |
 | -67.9\% | ${ }_{2021}^{202.3}$ | ${ }_{202.4}^{202.4}$ | 0.1 | 0.19\% |
 | 69.1\% | ${ }^{202.1}$ | ${ }^{202.3}$ | 0.2 | 1\% |
 | 70.4\% | ${ }^{202.1}$ | 201.8 | -0.2 | -0.1\% |
 | 71.6\% | 201.9 | ${ }^{201.3}$ | -0.6 | 3\% |
 | 72.8\% | 201.1 | 201.2 | 0.1 | 0.0\% |
 | ${ }^{74.1 \%}$ | 201.0 | 200.9 | -0.1 | , 0 |
 | 75.3\% | 200.9 | 200.7 | -0.2 | -0.1\% |
 | 76.5\% | 200.9 | 200.4 | 0.5 | -0.2\% |
 | 77.8\% | 200.0 | 1999 | -0.1 | -0.1\% |
 | 79.0\% | 199.4 | 199.0 | -0.4 | 边 |
 | 80.2\% | 199.4 | 1989 | -0.5 | -0.2\% |
 | 81.5\% | 199.4 | 198.9 | -0.5 | 源 |
 | 82.7\% | 198.9 | 198.6 | -0.3 | -0.2\% |
 | 84.0\% | 198.8 | 198.0 | -0.8 | .4\% |
 | 85.2\% | 198.1 | 1978 | -0.3 | -0.1\% |
 | ${ }^{86.4 \%}$ | 197.7 | 197.4 | -0.3 | .1\% |
 | 87.7\% | 197.7 | 197.4 | -0.3 | -0.2\% |
 | 88.9\% | 197.2 | 197.3 | 0.1 | 0.1\% |
 | 90.19\% | 196.7 | 199.5 | -0.2 | -0.1\% |
 | 91.4\% | 196.4 | 195.8 | -0.6 | . ${ }^{\text {a }}$ / |
 | 92.6\% | ${ }^{196.3}$ | ${ }^{1959.8}$ | -0.5 | -0.3\% |
 | 93.8\% | 19596 | ${ }_{1}^{195.4}$ | -0.1 | -0.1\% |
 | 95.1\% | 195.1 | 195.3 | 0.2 | 0.1\% |
 | ${ }^{96.3 \%}$ | 195.1 | 195.0 | -0.1 | -0.1\% |
 | 97.5\% | 194.9 | 194.9 | 0.1 | 0.0\% |
 | 988.8\% | 194.0 193 | ${ }_{1939}^{194.5}$ | 0.6 | 0.3\% |

 Table SQ-28-b

 | | | February | | |
 | :---: | :---: | :---: | :---: | :---: |
 | ${ }_{\text {Percent }}^{\text {Pexcedance }}$ | ${ }_{\text {WSIP }}$ 2070 Without | WSIP 2070 With Project | Absolute | |
 | Probability | Monthly EC | Monthy EC | (itierence | Difference (\%) |
 | (\%) | (UMHOSSCM) | (UMHosicm) | | |
 | 0.0\% | 26.6 | 267.7 | 1.1 | 0.4\% |
 | 1.2\% | 262.6 | 265.9 | 3.3 | 1.2\% |
 | 2.5\% | 254.6 | 255.3 | 0.7 | 0.3\% |
 | 3.7\% | 254.5 | 254.6 | 0.0 | 0.0\% |
 | 4.9\% | 251.5 | 250.4 | -1.1 | -0.4\% |
 | 6.2\% | 248.7 | 250.3 | 1.6 | 0.6\% |
 | 7.4\% | 246.8 | 249.1 | 2.3 | 0.9\% |
 | 8.6\% | ${ }_{24}^{24.8}$ | 244.8 2434 | -0.1 | 0.0\% |
 | 9.9\% | 241.2 | 243.4 | 2.2 | 0.9\% |
 | 11.19\% | 240.6 | 240.9 | 0.3 | 0.1\% |
 | 12.3\% | 240.5 | 240.4 | -0.1 | 0.0\% |
 | 13.6\% | 240.2 | 240.2 | 0.0 | 0.0\% |
 | 14.8\% | ${ }_{2393}$ | ${ }_{2397}^{2397}$ | 0.4 | 0.2\% |
 | 16.0\% | ${ }_{239.1}^{239.9}$ | ${ }^{239.0}$ | -0.1 | 0.0\% |
 | 17.3\% | ${ }_{2369}^{2369}$ | ${ }_{237.2}^{2372}$ | ${ }^{0.3}$ | 0.1\% |
 | 18.5\% | ${ }_{236}^{2358}$ | 237.0 2367 | ${ }^{0.2}$ | 0.1\% |
 | 19.8\% | ${ }_{235}^{2350}$ | ${ }_{2}^{236.7}$ | 1.7 | 0.7\% |
 | 21.0\% | ${ }_{234}^{234}$ | ${ }_{2350}^{2350}$ | 0.2 | 0.1\% |
 | ${ }^{22.2 \%}$ 2.5\% | 233.7 2330 | 234.6
 2328
 2 | 0.9 | - |
 | ${ }^{23.47 \%}$ | ${ }_{231.5}^{233}$ | 232.8 232.5 | 1.1 | ${ }^{-0.5 \%}$ |
 | 25.9\% | 230.7 | ${ }^{232.1}$ | 1.3 | 0.6\% |
 | 27.2\% | 2303 | 231.3 | 1.0 | 0.4\% |
 | 28.4\% | ${ }_{229.9}^{229.9}$ | 230.7
 230.4
 20.4 | 0.8 | 0.3\% |
 | 29.6\% | 229.1 | ${ }^{230.4}$ | 1.4 | 0.6\% |
 | 30.9\% | 228.8 | ${ }_{2}^{229.7}$ | 0.9 | 0.4\% |
 | 32.19% 33.3% | ${ }^{227.6}$ | 229.4 | 1.8 | 0.8\% |
 | 33.3% 34.6% | 227.2 | ${ }^{229.0}$ | 1.7 | 0.8\% |
 | 34.6% 358% | 226.2 | 226.9 | 0.7 | 0.3\% |
 | 35.8\% | ${ }_{\text {2253 }}^{225}$ | ${ }_{2258}^{226.3}$ | 0.8 | 0.4\% |
 | 37.0% 38.3% | ${ }_{224.5}^{225.3}$ | ${ }_{225}^{225.8}$ | ${ }^{0.4}$ | - 0.2% |
 | 39.5\% | ${ }_{224.1}^{224.5}$ | ${ }_{225.1}^{225.7}$ | 1.0 | 0.5\% |
 | - 40.7% | ${ }_{223.0}^{224}$ | ${ }_{224.4}^{224.4}$ | 0.4 | 0.2\% |
 | 42.0\% | 223.6 | 224.1 | 0.4 | 0.2\% |
 | 43.2\% 44.4 | ${ }_{223.4}^{223.5}$ | ${ }_{\text {223.3 }}^{223.8}$ | -0.3 | 0.1\% |
 | 44.4\% | ${ }_{223.4}^{223.4}$ | ${ }_{222.7}^{223.3}$ | -0.2 -0.6 | ${ }_{\text {-0.3\% }}^{-0.1 \%}$ |
 | 46.9\% | 23,4 2192 | ${ }_{221.0}^{222.7}$ | -0.6 1.8 | -0.8\% |
 | 48.19\% | 219.0 2189 | ${ }_{2203}^{220.5}$ | 1.5
 13
 1 | 0.7\% |
 | 49.4\% | 218.9 | ${ }^{220.3}$ | 1.3 | 0.6\% |
 | 50.1.9\% | 218.0 2178 | 219.2 | 1.2 | 0.6\% |
 | 51.9\% | 217.9 2178 | 217.9 217.9 | 0.0 | 0.0\% |
 | 54.3\% | 215.4 | ${ }_{216.2}^{217.9}$ | 0.1 0.8 | 0.4\% |
 | 55.6\% | 215.2 2115 | 215.6 | 0.5 | 0.2\% |
 | 56.8\% | 214.5 | 214.0 | -0.5 | ${ }^{-0.2 \%}$ |
 | 58.3\% | ${ }_{214.1}^{2147}$ | ${ }_{2138}^{2139}$ | -0.3 | -0.1\% 0 |
 | 60.5\% | 213.1 | 213.8 | ${ }_{0.7}^{0.2}$ | 0.3\% |
 | ${ }^{61.7 \%}$ | ${ }_{212.6}$ | 213.5 | 0.9 | 0.4\% |
 | - 63.0% | ${ }_{211.2}^{212.2}$ | ${ }_{213}^{213.5}$ | 1.3
 1.6
 1 | 0.6\% |
 | 65.4\% | 211.4 | 212.9 | ${ }_{1}^{1.5}$ | 0.7\% |
 | 66.7\% | 211.3 | 212.6 | 1.2 | 0.6\% |
 | 67.9\% | 211.1 210.6 | ${ }_{212.2}^{212.3}$ | ${ }_{1}^{1.2}$ | 0.6\% |
 | 70.4\% | 2098 | 211.5 | 1.7 | 0.8\% |
 | 71.6\% | 209.6 | 211.3 | 1.7 | 0.8\% |
 | 72.8\% | ${ }_{209.4}^{209.5}$ | ${ }_{210.7}^{211.1}$ | 1.6 13 | 0.8\% |
 | 75.3\% | 208.9 | 210.0 | 1.0 | 0.5\% |
 | 76.5\% | 208.4 | 2097 | 1.2 | 0.6\% |
 | 77.8\% | 207.9 2076 | ${ }_{208.1}^{209.2}$ | 1.3 0.5 | ${ }_{0}^{0.6 \% \%}$ |
 | 80.2\% | 207.1 | 208.0 | 0.9 | 0.4\% |
 | 81.5\% | 206.2 | 207.9 | 1.7 | 0.8\% |
 | - 82.7% | ${ }_{204.8}^{205.7}$ | 207.6 2063 | 1.9
 1.9
 1 | 0.9\% |
 | 85.2\% | 204.0 | 205.8 | 1.7 | 0.9\% |
 | 86.4\% | 204.0 | 204.7 | 0.7 | 0.3\% |
 | 87.7% 889% | ${ }_{2014}^{2020}$ | ${ }_{2014}^{2020}$ | 0.0 | - |
 | 90.1\% | 200.8 | 201.2 | 0.4 | 0.2\% |
 | 914.4\% | 200.2 | 200.9 | 0.7 | 0.4\% |
 | 93.8\% | 198.8
 198.8
 10.8 | ${ }_{200.3}^{200.3}$ | 1.5 1.5 | 0.8\% |
 | 95.1\% | 197.7 | 199.3 | 1.6 | 0.8\% |
 | 96.3\% | 197.7 | 199.0 | 1.3 | 0.7\% |
 | 97.5\% | 197.5 | 198.2 | 0.7 | 0.4\% |
 | 100.0\% | 195.4 195.4 | ${ }_{195.4}^{197.6}$ | 0.8 0.0 | 0.0\% |

 | Percent | March | | | | Apprit | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2070 Without | WSIP 2070 With Project | | | | 2070 Without | WSIP 2070 With Project | Absol | |
 | Exceaance | Monothly EC | Monthy EC | Difference | Difference (\%) | beabilit | | Monthly EC | Dititerence | Difference (\%) ${ }^{\text {Rof }}$ |
 | mand | (Uumbosicm) | (UMHOSCLCM) | (UMHOSCM) | | ar | UMHosism) | UMHHOS(CM) | (UnHosicm) | |
 | 0.0\% | 258.9 | 261.3 | 2.4 | 0.9\% | 0.0\% | 241.3 | 241.6 | 0.3 | |
 | 1.2\% | 257.7 | 257.5 | -0.2 | -0.1\% | 1.2\% | 235.1 | 241.4 | 6.3 | |
 | 2.5\% | 248.0 | 249.2 | 1.2 | 0.5\% | 2.5\% | 234.9 | 235.8 | 0.9 | |
 | 3.7\% | 244.7 | 248.3 | 3.6 | 1.5\% | 3.7\% | | | 0.9 | |
 | 4.9\% | 240.8 | ${ }^{242.3}$ | 1.4 | 0.6\% | 4.9\% | 233.2 | 231.8 | 1.3 | |
 | 6.2\% | 239.8 | 240.9 | 1.0 | 0.4\% | 6.2\% | 232.0 | 231.7 | -0.3 | -0.19 |
 | 7.4\% | 239.5 | 239.5 | 0.0 | 0.0\% | 7.4\% | 231.5 | 230.2 | 1.3 | -0.6\% |
 | 8.6\% | 238.6 | 237.5 | -1.1 | -0.5\% | 8.6\% | 229.4 | 230 | 0.8 | 0.3\% |
 | 9.9\% | 234.7 | 237.4 | 2.7 | 1.2\% | 9.9\% | 228.2 | 228.4 | 0.1 | 0.1\% |
 | 11.1\% | 234.3 | 236.5 | 2.3 | 1.0\% | 11.1\% | 227.5 | 227.8 | 0.3 | 0.1\% |
 | 12.3\% | 234.0 | 234.5 | 0.4 | 0.2\% | 12.3\% | 226.7 | 226.8 | 0.1 | 0.19 |
 | 13.6\% | 233.4 | 234.1 | 0.6 | 0.3\% | 13.6\% | 226.6 | 225.0 | -1.6 | -0.7\% |
 | 14.8\% | 2329 | 233.5 | 0.6 | 0.3\% | 14.8\% | 225.8 | 224.6 | -1.1 | -0.5 |
 | 16.0\% | ${ }^{231.6}$ | 232.1 | 0.5 | 0.2\% | 16.0\% | 224.4 | 224.6 | 0.2 | 0.19 |
 | 17.3\% | 231.5 | 231.4 | 0.0 | 0.0\% | 17.3\% | 223.3 | 223.2 | -0.1 | 0.0\% |
 | 18.5\% | 228.8 | 229.4 | 0.6 | 0.3\% | 18.5\% | 222.2 | 221.9 | -0.3 | -0.19 |
 | 19.8\% | 228.6 | 228.8 | 0.2 | 0.1\% | 19.8\% | 219.7 | 221.7 | 1.9 | 0.9\% |
 | 21.0\% | ${ }_{228.1}^{2227}$ | 228.2 | 0.1 | 0.1\% | 21.0\% | 219.7 | 220.5 | 0.8 | 0.42 |
 | 22.2\% | 227.2 | 227.8 | 0.6 | 0.3\% | 22.2\% | 219.4 | 219.8 | 0.4 | 0.2\% |
 | ${ }^{23.5 \%}$ | ${ }_{2228.1}^{227.1}$ | ${ }_{225}^{2268}$ | -0.3 | -0.2\% | 23.5\% | ${ }^{217.0}$ | ${ }_{219,2}^{2197}$ | 0.2 | 0.1\% |
 | 25.9\% | 225.0 | 225.6 | 0.6 | 0.3\% | 25.9\% | 216.2 | 213.9 | -2.3 | -1.1\% |
 | 27.2\% | 224.9 | 225.3 | 0.4 | 0.2\% | 27.2\% | 215.4 | 213.9 | -1.5 | -0.7\% |
 | 28.4\% | 224.9 | 223.9 | -1.0 | -0.4\% | 28.4\% | 214.8 | 213.8 | -1.0 | -0.5\% |
 | 29.6\% | 224.7 | 223.5 | -1.2 | -0.5\% | 29.6\% | 214.3 | 213.7 | -0.6 | -0.3\% |
 | 30.9\% | 224.5 | 220.7 | -3.9 | -1.7\% | 30.9\% | 214.1 | 212.1 | -2.0 | -0.9\% |
 | 32.1\% | 223.4 | 219.5 | -4.0 | -1.8\% | 32.1\% | 213.0 | 211.5 | -1.5 | -0.7\% |
 | 333\% | ${ }^{223.4}$ | 219.4 | -4.0 | -1.8\% | 33.3\% | 212.9 | 210.7 | -2.2 | -1.0\% |
 | 34.6\% | 220.2 | 219.3 | -0.9 | -0.4\% | 34.6\% | 212.0 | 210.6 | -1.4 | -0.7\% |
 | 35.7\% | 218.9 | 218.4 | -0.5 | -0.2\% | 35.8\% | 211.1 | 2097 | -1.4 | -0.7\% |
 | 37.0\% | 218.1 | 218.4 | 0.3 | 0.1\% | 37.0\% | 210.6 | 209.0 | -1.6 | -0.7\% |
 | 38.3\% | 217.4 | 218.0 | 0.6 | 0.3\% | 38.3\% | 207.9 | 208.8 | 0.9 | 0.5\% |
 | 39.5\% | 216.9 | 217.1 | 0.2 | 0.1\% | 39.5\% | ${ }^{207.8}$ | ${ }_{2087}^{2087}$ | 0.5 | 0.2\% |
 | 42.0\% | ${ }_{216.4}^{216.5}$ | ${ }_{215.9}^{216.5}$ | -0.5 | -0.2\% | 42.0\% | ${ }_{207.2}^{207.8}$ | ${ }_{207.5}^{2077}$ | -0.3 | 0.1\% |
 | 43.2\% | 215.4 | 215.7 | 0.3 | 0.1\% | 43.2\% | 207.1 | 207.5 | 0.4 | 0.2\% |
 | 44.4\% | 215.4 | 215.4 | 0.0 | 0.0\% | 44.4\% | 207.1 | 207.4 | 0.3 | 0.2\% |
 | 45.7\% | 214.8 | 213.9 | -0.9 | -0.4\% | 45.7\% | 206.9 | 206.9 | 0.0 | 0.0\% |
 | 46.9\% | 214.7 | 213.1 | -1.6 | -0.7\% | 46.9\% | ${ }^{206.3}$ | 206.4 | 0.1 | 0.0\% |
 | 48.1\% | ${ }^{213.5}$ | ${ }^{212.5}$ | -0.9 | -0.4\% | 48.1\% | ${ }^{205.7}$ | 206.4 | 0.7 | 0.3\% |
 | 50.6\% | ${ }_{2121}^{2123}$ | ${ }^{212.2}$ | -0.1 | -0.1\% | 49.4\% | ${ }^{205.3}$ | 205.7 | 0.4 | 0.2\% |
 | 51.9\% | 211.1 | 211.5 | 0.4 | 0.2\% | 51.9\% | 204.9 | ${ }_{205.0}^{205.1}$ | 0.2 | 0.1\% |
 | 53.1\% | 211.0 | 211.5 | 0.5 | 0.2\% | 53.1\% | 204.8 | 204.8 | 0.0 | 0.0\% |
 | 54.3\% | 210.8 | 211.0 | 0.2 | 0.1\% | 54.3\% | 204.4 | 204.2 | -0.2 | -0.1\% |
 | 55.6\% | 210.6 | 210.9 | 0.3 | 0.1\% | 55.6\% | 203.7 | 203.9 | 0.2 | 0.1\% |
 | 56.8\% | 210.3 | 210.7 | 0.4 | 0.2\% | 56.8\% | 203.4 | 203.1 | -0.3 | -0.1\% |
 | 58.0\% | 210.2 | 210.6 | 0.4 | 0.2\% | 58.0\% | ${ }^{202.6}$ | 202.9 | 0.3 | 0.2\% |
 | 59.3\% | 209.9 | 2099 | -0.1 | 0.0\% | 59.3\% | ${ }^{202.3}$ | 201.9 | -0.5 | -0.2\% |
 | 60.5\% | 208.3 | 2098 | 1.4 | 0.7\% | 60.5\% | ${ }^{201.3}$ | 201.6 | 0.3 | 0.2\% |
 | 61.7\% | 208.1 | 208.9 | 0.8 | 0.4\% | 61.7\% | ${ }^{201.3}$ | 201.0 | -0.3 | -0.2\% |
 | -63.0\% | ${ }_{207.1}^{207.5}$ | ${ }_{207.9}^{208.6}$ | 1.1 0.9 | 0.4\% 0 | -63.0\% | 201.2 200.6 | ${ }_{200.6}^{200.7}$ | -0.5 | -0.2\% |
 | 65.4\% | 206.9 | 207.8 | 1.0 | 0.5\% | 65.4\% | 199.5 | 200.2 | 0.8 | 0.4\% |
 | 66.7\% | 205.6 | 207.6 | 2.0 | 1.0\% | 66.7\% | 199.1 | 200.1 | 1.0 | 0.5\% |
 | 67.9\% | 205.4 | ${ }_{206.9}^{2006}$ | 1.5
 1.5 | 0.8\% | 67.9\% | 1989 | 200.0 1998 | 1.1 | 0.5\% |
 | 69.1\% | 205.2 | 206.6 | 1.5 | 0.7\% | 69.1\% | 198.9 | 199.8 | 0.9 | 0.4\% |
 | 70.4\% | ${ }_{204.4}^{2050}$ | ${ }_{205.5}^{205.8}$ | 0.8 1.1 | 0.5\% | 70.1.6\% | 19988 198.6 | 1999.5 199.3 | 0.7 0.7 | - 0.4% |
 | 72.8\% | 204.2 | 205.1 | 0.9 | 0.4\% | 72.8\% | 198.5 | 199.3 | 0.7 | 0.4\% |
 | 74.1\% | 204.1 | 204.3 | 0.2 | 0.1\% | 74.1\% | 198.5 | 198.8 | 0.2 | 0.1\% |
 | -75.3\% | 204.1 | 204.1 | ${ }^{0.0}$ | 0.0\% | 75.3\% | 198.0 1978 | 198.5 1984 | 0.5 | 0.3\% |
 | 76.5\% | 202.7 | 204.0 | 1.3 | 0.7\% | 76.5\% | 197.8 | 198.4 | 0.6 | 0.3\% |
 | 779.8\% | ${ }_{202.2}^{202.3}$ | ${ }_{203.5}^{203.6}$ | 1.3
 1.3
 1 | - 0.7% | 77.0\% | 1997.7 197.6 | ${ }_{197.6}^{197.7}$ | 0.0 | 0.0\% |
 | 80.2\% | 201.7 | 203.2 | 1.5 | 0.7\% | | 197.6 | 197.6 | 0.1 | 0.0\% |
 | 81.5\% | 201.3 | 202.6 | 1.3 | 0.7\% | 81.5\% | 197.5 | 197.1 | -0.4 | -0.2\% |
 | 82.7\% | 201.1 | ${ }_{2022}^{202.2}$ | ${ }_{14}^{1.1}$ | 0.6\% | 82.7% 840% | 197.3 1972 | 197.1 1969 | -0.1 | -0.1\% |
 | -84.0\% | 200.8 | ${ }^{202.2}$ | 1.4 | 0.7\% | 84.0\% | 197.2 | 196.9 | -0.3 | -0.2\% |
 | - 85.2% | 200.5 | ${ }_{201.8}$ | ${ }^{1.3}$ | 0.7\% | 85.2\% | 197.2 | 196.9 | -0.3 | -0.2\% |
 | ${ }^{86.7 \%}$ | 20.4 | 201.7 | ${ }_{1}^{1.3}$ | 0.6\% | ${ }^{86.44 \%}$ | 196.1 | 196.6 | 0.5 | 0.3\% |
 | 88.9\% | 199.7 | 199.5 | -0.2 | -0.1\% | 88.9\% | 195.0 | 195.8 | 0.8 | 0.4\% |
 | 90.1\% | 199.4 | 199.1 | -0.3 | -0.1\% | 90.1\% | 194.9 | 195.5 | 0.6 | 0.3\% |
 | 91.4\% | 199.1 | 198.7 | -0.4 | -0.2\% | 91.4\% | 194.9 | 195.3 | 0.4 | 0.2\% |
 | 92.6\% | 197.1 1968 | 198.1 1979 | 1.0 | 0.5\% | 92.6\% | 194.9 1948 | 194.9 | 0.1 | 0.0\% |
 | 993.1\% | 196.8 196.0 | ${ }_{196.5}^{197.9}$ | 1.1 0.5 | 0.2\% | | 194.8 194.4 | 194.9 194.6 | ${ }_{0.2}^{0.0}$ | 0.1\% |
 | 96.3\% | 195.8 | 196.4 | 0.6 | 0.3\% | 96.3\% | 194.2 | 194.4 | 0.2 | 0.1\% |
 | 97.5\% | 195.4 | 195.7 | ${ }^{0.3}$ | 0.2\% | 97.5\% | 193.6 | 193.5 | -0.1 | -0.1\% |
 | 98.8\% | 193.9 193 | 194.0 192.3 | ${ }_{-1.6}^{0.1}$ | -0.1\% | 988\% | ${ }_{190.3}^{193.0}$ | ${ }_{191.5}^{193.4}$ | ${ }_{1.2}^{0.4}$ | - 0.6% |

 | | | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | | | |

 Table SQ-28-b

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2077 W. Without | WSIP 2070 With Project | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOS/CM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | | Monthy EC | Monthly EC | | |
 | 0.0\% | (UMHOSICM) | | | |
 | | ${ }^{237.5}$ | 236.8 | -0.7 | -0.3\% |
 | 1.2\% | 233.3 | ${ }^{233.4}$ | | |
 | 2.5\% | 232.0 | 228.4 | 3.6 | |
 | 3.7\% | 231.9 | 225.6 | 6.3 | |
 | 4.9\% | 225.8 | 221.2 | 4.6 | -2.0\% |
 | 6.2\% | 223.9 | 219.4 | 4.5 | |
 | 7.4\% | 222.7 | 217.5 | -5.2 | -2.3\% |
 | 8.6\% | 221.0 | 215.9 | -5.1 | |
 | 9.9\% | 219.4 | 214.4 | 5.0 | -2.3\% |
 | 11.1\% | 213.2 | 213.8 | 0.6 | 0.3\% |
 | 12.3\% | 212.7 | 212.7 | 0.0 | 0.0\% |
 | 13.6\% | 211.2 | 211.1 | -0.1 | -0.1\% |
 | 14.8\% | 200.0 | 198.9 | -1.2 | -0.6\% |
 | 16.0\% | 198.9 | 198.6 | -0.3 | -0.2\% |
 | 17.3\% | 198.8 | 198.5 | -0.3 | -0.2\% |
 | 18.5\% | 197.9 | 197.9 | 0.0 | 0.0\% |
 | 19.8\% | 197.7 | 197.8 | 0.1 | 0.1\% |
 | 21.0\% | 197.5 | 196.7 | -0.8 | -0.4\% |
 | 22.2\% | 196.1 | 195.7 | -0.3 | -0.2\% |
 | 23.5\% | 195.7 | 195.6 | -0.1 | 0.0\% |
 | 24.7\% | 195.7 | 195.4 | -0.3 | -0.2\% |
 | 25.9\% | 195.2 | 195.3 | 0.1 | 0.0\% |
 | 27.2\% | 195.2 | 195.1 | -0.1 | -0.1\% |
 | 28.4\% | 195.1 | 195.0 | -0.1 | -0.1\% |
 | 29.6\% | 195.1 | 194.7 | -0.3 | -0.2\% |
 | 30.9\% | 194.7 | 194.7 | -0.1 | 0.0\% |
 | 32.1\% | 194.7 | 194.6 | -0.1 | 0.0\% |
 | 33.3\% | 194.6 | 194.5 | -0.1 | 0.0\% |
 | 34.6\% | 194.4 | 194.4 | 0.1 | 0.0\% |
 | 35.8\% | 194.3 | 194.3 | 0.0 | 0.0\% |
 | 37.0\% | 194.3 | 194.2 | -0.1 | -0.1\% |
 | 38.3\% | 194.3 | 194.1 | -0.2 | -0.1\% |
 | 39.5\% | 194.3 | 193.8 | -0.5 | -0.3\% |
 | 40.7\% | 194.2 | 193.8 | -0.4 | -0.2\% |
 | 42.0\% | 194.0 | 193.7 | -0.4 | -0.2\% |
 | 43.2\% | 194.0 | 193.5 | -0.4 | -0.2\% |
 | 44.4\% | 193.8 | 193.5 | -0.4 | -0.2\% |
 | 45.7\% | 193.7 | ${ }^{19393}$ | -0.4 | -0.2\% |
 | 46.9\% | 193.6 | 193.3 | -0.4 | -0.2\% |
 | 48.1\% | 193.5 | 193.1 | -0.4 | -0.2\% |
 | 49.4\% | 193.5 | 193.1 | -0.4 | -0.2\% |
 | 50.6\% | 193.4 | 193.0 | -0.4 | -0.2\% |
 | 51.9\% | 193.1 | 192.8 | -0.2 | 0.1\% |
 | 53.1\% | 193.1 | 192.7 | -0.4 | 0.2\% |
 | 54.3\% | 193.1 | 192.7 | -0.4 | 0.2\% |
 | 55.6\% | 193.0 | ${ }^{1922.6}$ | -0.3 | -0.2\% |
 | 56.8\% | 193.0 | 192.6 | -0.3 | -0.2\% |
 | 58.0\% | 192.8 | ${ }^{1922.6}$ | -0.2 | 0.1\% |
 | 59.3\% | 192.8 | ${ }^{192.5}$ | -0.3 | -0.2\% |
 | 60.5\% | 192.8 | 192.2 | -0.5 | -0.3\% |
 | 61.7\% | 192.7 | ${ }^{192.1}$ | -0.6 | -0.36 |
 | 63.0\% | 192.6 | 192.1 | -0.6 | -0.3\% |
 | ${ }^{64.2 \%}$ | 192.5 | ${ }^{192.0}$ | -0.4 | -0.2\% |
 | 65.4\% | 192.5 | 191.9 | -0.5 | -0.3\% |
 | ${ }^{66.7 \%}$ | 192.4 | 191.9 | -0.6 | -0.3\% |
 | 67.9\% | 192.3 | 191.5 | -0.7 | -0.4\% |
 | 69.1\% | 192.1 | 191.5 | -0.6 | -0.3\% |
 | 70.4\% | 192.1 | 191.5 | -0.6 | 0.3\% |
 | 71.6\% | 191.9 | 191.4 | -0.5 | -0.3\% |
 | 72.8\% | 1919 | 191.3 | -0.7 | -0.3\% |
 | 74.1\% | 1919 | 191.2 | -0.7 | -0.4\% |
 | 75.3\% | 191.8 | 191.2 | -0.7 | -0.3\% |
 | 76.5\% | 191.5 | 191.1 | -0.4 | -0.2\% |
 | 77.8\% | 191.5 | 191.0 | -0.5 | -0.2\% |
 | 79.0\% | 191.5 | 191.0 | -0.5 | -0.2\% |
 | 80.2\% | 191.2 | 191.0 | -0.2 | -0.1\% |
 | 81.5\% | 191.2 | 190.9 | -0.3 | -0.1\% |
 | 82.7\% | 191.1 | ${ }^{190.8}$ | -0.3 | -0.2\% |
 | 84.0\% | 191.0 | 190.7 | -0.3 | -0.2\% |
 | 85.2\% | 191.0 | 190.7 | -0.3 | -0.2\% |
 | ${ }^{86.47 \%}$ | 191.0 | 190.7 | -0.3 | -0.2\% |
 | 87.7\% | 190.9 | ${ }^{190.7}$ | -0.2 | -0.1\% |
 | 88.9\% | 190.4 | 190.3 | 0.0 | 0.0\% |
 | 90.1\% | 190.4 | 190.3 | -0.1 | -0.1\% |
 | 91.4\% | 190.2 | 190.1 | -0.2 | 0.1\% |
 | 92.6\% | 190.2 | 190.0 | -0.1 | -0.1\% |
 | ${ }^{93.8 \%}$ | 190.1 | 190.0 | -0.1 | 0.0\% |
 | 95.17\% | 190.0 | 190.0 | 0.0 | 0.0\% |
 | 96.3.5\% | 189.8 | 18997 | -0.1 | 0.0\% |
 | 998.5\% | 189.5 | 189.5 | -0.1 | 0.0\% |
 | | 189.4 187.2 | 1897.6 189 | -0.4 | $\stackrel{-0.2 \%}{-0.1 \%}$ |

 | Pen july | | | | | Igust | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | cent | WSIP 2070 Wethout | WSIP 2070 With Project | $\begin{gathered} \text { Absolute } \\ \text { Differerce } \\ \text { (UMHOSCM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | $\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{aligned}$ | WSIP P2070 WWthoutPoroitetMontly EC | $\begin{aligned} & \hline \text { WSIP } 2070 \text { With Project } \\ & \text { Monthly EC } \end{aligned}$ | $\begin{gathered} \text { Absolute } \\ \text { aifference } \\ \text { (uMHOSICM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | Exceaance | Monothly ${ }^{\text {Prec }}$ | Monthy EC | | | | | | | |
 | (\%) | (UuHosicm) | (UnHosicm) | | | | | | | |
 | 0.0\% | 210.8 | 211.0 | 0.2 | 0.1\% | 0.0\% | 202 | 199 | -2.7 | |
 | 1.2\% | 206.2 | 206.3 | 0.1 | 0.0\% | 1.2\% | 199.5 | 199.2 | | |
 | 2.5\% | 205.5 | 205.9 | 0.4 | 0.2\% | 2.5\% | 199.3 | 198.2 | -1.1 | |
 | 3.7\% | 204.1 | 203.7 | -0.4 | 0.2\% | 3.7\% | 199.3 | | 2.3 | |
 | 4.9\% | 204.0 | 202.7 | -1.3 | -0.6\% | 4.9\% | 197.8 | 196.5 | 1.3 | |
 | 6.2\% | 203.5 | 202.2 | -1.3 | -0.6\% | 6.2\% | 197.3 | 196.5 | -0.8 | -0.4\% |
 | 7.4\% | 202.7 | 199.6 | -3.1 | -1.5\% | 7.4\% | 197.1 | 196.4 | -0.6 | -0.3\% |
 | 8.6\% | 202.4 | 197.9 | -4.5 | 2.2\% | 8.6\% | 197.0 | 196 | -0.8 | - |
 | 9.9\% | 2023 | 197.6 | -4.7 | 2.3\% | 9.9\% | 196.9 | 196.0 | -0.9 | -0.5\% |
 | 11.1\% | 198.2 | 197.5 | -0.7 | -0.4\% | 11.1\% | 196.0 | 195.1 | -0.9 | - |
 | 12.3\% | 198.0 | 197.1 | -0.8 | .4\% | 12.3\% | 195.5 | 195.1 | 0.4 | -0.2\% |
 | 13.6\% | 197.6 | 196.3 | -1.3 | -0.6\% | 13.6\% | 194.7 | 194.7 | 0.0 | 0.0\% |
 | 14.8\% | 192.2 | 191.5 | -0.8 | -.4\% | 14.8\% | 190.9 | 190.4 | -0.5 | -0.2\% |
 | 16.0\% | 191.8 | 191.4 | -0.4 | -0.2\% | 16.0\% | 190.8 | 189.9 | -0.9 | - |
 | 17.3\% | 191.4 | 191.3 | -0.1 | -0.1\% | 17.3\% | 190.7 | 189.7 | -0.9 | -0.5\% |
 | 18.5\% | 191.4 | 191.1 | -0.2 | -0.1\% | 18.5\% | 190.6 | 189.7 | -0.9 | -0.5\% |
 | 19.8\% | 191.3 | 190.8 | -0.5 | -0.3\% | 19.8\% | 190.1 | 189.5 | -0.6 | -0.3\% |
 | 21.0\% | 199.1 | 190.7 | -0.4 | -0.2\% | 21.0\% | 190.1 | 189.5 | 0.6 | -0.3\% |
 | 22.2\% | 191.1 | 190.7 | -0.4 | -0.2\% | 22.2\% | 189.8 | 189.4 | -0.4 | -0.2\% |
 | 23.5\% | 191.1 | 190.7 | -0.4 | -0.2\% | 23.5\% | 189.8 | 189.4 | -0.4 | -0.2\% |
 | 24.7\% | 191.0 | 190.4 | -0.5 | -0.3\% | 24.7\% | 189.8 | 189.3 | -0.4 | -0.2\% |
 | 25.9\% | 190.8 | 190.4 | -0.4 | -0.2\% | 25.9\% | 189.8 | 189.3 | -0.5 | -0.3\% |
 | 27.2\% | 190.8 | 190.4 | -0.4 | -0.2\% | 27.2\% | 189.6 | 189.2 | -0.5 | -0.3\% |
 | 28.4\% | 190.7 | 190.4 | -0.4 | -0.2\% | 28.4\% | 189.6 | 189.1 | -0.4 | -0.2\% |
 | 29.6\% | 190.7 | 190.2 | -0.5 | -0.3\% | 29.6\% | 189.5 | 189.1 | -0.3 | -0.2\% |
 | 30.9\% | 190.7 | 190.1 | -0.6 | -0.3\% | 30.9\% | 189.4 | 188.8 | -0.6 | -0.3\% |
 | 32.1\% | 190.1 | 190.0 | 0.0 | 0.0\% | 32.1\% | 189.4 | 188.8 | -0.6 | -0.3\% |
 | 33.3\% | 190.1 | 190.0 | 0.0 | 0.0\% | 33.3\% | 189.4 | 188.8 | -0.6 | -0.3\% |
 | 34.6\% | 190.0 | 190.0 | 0.0 | 0.0\% | 34.6\% | 189.4 | 188.7 | -0.6 | -0.3\% |
 | 35.8\% | 189.9 | 189.9 | 0.0 | 0.0\% | 35.8\% | 189.2 | 188.7 | -0.5 | -0.3\% |
 | 37.0\% | 189.9 | 189.5 | -0.4 | -0.2\% | 37.0\% | 189.1 | 188.7 | -0.4 | -0.2\% |
 | 38.3\% | 189.9 | 189.4 | -0.4 | -0.2\% | 38.3\% | 189.0 | 188.6 | -0.3 | -0.2\% |
 | 39.5\% | 1897 | 189.4 | -0.3 | -0.2\% | 39.5\% | 188.9 | 188.6 | -0.3 | -0.2\% |
 | 40.7\% | 189.5 | 189.4 | -0.1 | -0.1\% | 40.7\% | 188.9 | 188.6 | -0.3 | -0.2\% |
 | 42.0\% | 189.5 | 189.4 | -0.1 | -0.1\% | 42.0\% | 188.7 | 188.6 | -0.1 | -0.1\% |
 | 43.2\% | 189.4 | ${ }^{18993}$ | -0.1 | -0.1\% | 43.2\% | 188.7 | 188.5 | -0.2 | -0.1\% |
 | 44.4\% | 189.4 | 189.3 | -0.1 | -0.1\% | 44.4\% | 188.7 | 188.5 | -0.2 | -0.1\% |
 | 45.7\% | 189.4 | 189.2 | -0.2 | -0.1\% | 45.7\% | 188.7 | 188.5 | -0.2 | -0.1\% |
 | 46.9\% | 189.4 | 189.0 | -0.4 | -0.2\% | 46.9\% | 188.6 | 188.5 | -0.2 | -0.1\% |
 | 48.1\% | 189.4 | 189.0 | -0.4 | -0.2\% | 48.1\% | 188.6 | 188.4 | -0.2 | -0.1\% |
 | 49.4\% | 1893 | 188.9 | -0.4 | -0.2\% | 49.4\% | 188.6 | 188.3 | -0.3 | -0.1\% |
 | 50.6\% | 189.1 | 188.9 | -0.2 | -0.1\% | 50.6\% | 188.6 | 188.3 | -0.3 | -0.2\% |
 | 51.9\% | 189.0 | 188.8 | -0.2 | -0.1\% | 51.9\% | 188.5 | 188.3 | -0.2 | -0.1\% |
 | 53.1\% | 189.0 | 188.8 | -0.2 | -0.1\% | 53.1\% | 188.4 | 188.3 | -0.1 | -0.1\% |
 | 54.3\% | 189.0 | 188.8 | -0.2 | -0.1\% | 54.3\% | 188.4 | 188.3 | -0.1 | -0.1\% |
 | 55.6\% | 188.9 | 188.8 | -0.2 | -0.1\% | 55.6\% | 188.4 | 188.2 | -0.2 | -0.1\% |
 | 56.8\% | 188.9 | 188.7 | -0.2 | -0.1\% | 56.8\% | 188.3 | 188.2 | -0.2 | -0.1\% |
 | 58.0\% | 188.9 | 188.7 | -0.2 | -0.1\% | 58.0\% | ${ }^{188.3}$ | 188.1 | -0.2 | -0.1\% |
 | 59.3\% | 188.8 | 188.7 | -0.1 | -0.1\% | 59.3\% | 188.2 | 188.1 | -0.2 | 0.1\% |
 | 60.5\% | 188.8 | 188.6 | -0.1 | -0.1\% | 60.5\% | 188.2 | 188.1 | -0.2 | -0.1\% |
 | 61.7\% | 188.8 | 188.5 | -0.3 | -0.2\% | 61.7\% | 188.2 | 188.0 | -0.2 | 0.1\% |
 | 63.0\% | 188.7 | 188.5 | -0.2 | -0.1\% | 63.0\% | ${ }^{188.2}$ | 188.0 | -0.2 | -0.1\% |
 | ${ }^{64.2 \%}$ | 188.7 | 188.5 | -0.2 | -0.1\% | ${ }^{64.2 \%}$ | ${ }^{188.2}$ | 187.9 | -0.2 | -0.1\% |
 | 65.4\% | 188.7 | 188.3 | -0.3 | -0.2\% | 65.4\% | 188.2 | 187.9 | -0.3 | -0.2\% |
 | ${ }^{66.7 \%}$ | 188.6 | 188.3 | -0.3 | -0.2\% | ${ }^{66.7 \%}$ | 188.1 | 187.9 | -0.3 | . 1% |
 | 67.9\% | 188.5 | 188.3 | -0.2 | -0.1\% | 67.9\% | 188.1 | ${ }^{187.8}$ | -0.3 | -0.1\% |
 | 69.1\% | ${ }^{188.5}$ | 188.3 | -0.3 | -0.1\% | 69.1\% | 188.1 | ${ }^{187.8}$ | -0.3 | . 2 \% |
 | 70.4\% | 188.5 | 188.2 | -0.3 | -0.2\% | 70.4\% | 188.0 | ${ }^{187.8}$ | -0.2 | -0.1\% |
 | 71.6\% | ${ }^{188.5}$ | 188.2 | -0.3 | -0.2\% | 71.6\% | 188.0 | ${ }^{187.8}$ | -0.2 | 0.1\% |
 | 72.8\% | ${ }^{188.5}$ | 188.1 | -0.3 | -0.2\% | 72.8\% | 188.0 | 1877 | -0.2 | -0.1\% |
 | 74.1\% | ${ }^{188.3}$ | 188.1 | -0.2 | -0.1\% | 74.1\% | 187.9 | 187.7 | ${ }^{-0.1}$ | -0.1\% |
 | 75.3\% | ${ }^{188.3}$ | 188.0 | -0.2 | -0.1\% | 75.3\% | 187.9 | ${ }^{18777}$ | -0.2 | -0.1\% |
 | 76.5\% | 188.2 | 188.0 | -0.2 | -0.1\% | 78.5\% | ${ }^{187.8}$ | 187.7 | -0.2 | -0.1\% |
 | 77.8\% | 188.1 | 188.0 | -0.1 | -0.1\% | 77.8\% | ${ }^{1877}$ | ${ }^{187.6}$ | -0.2 | -0.1\% |
 | 79.0\% | 188.1 | 188.0 | -0.1 | -0.1\% | 79.0\% | 18777 | 187.6 | 0.1 | 0.1\% |
 | 80.2\% | 188.1 | 188.0 | -0.1 | -0.1\% | 80.2\% | ${ }^{18777}$ | ${ }_{187.6}$ | -0.1 | -0.1\% |
 | 81.5\% | 188.0 | 187.9 | -0.1 | 0.0\% | 81.5\% | 187.7 | 187.4 | -0.3 | -0.1\% |
 | 82.7\% | 188.0 | 187.9 | -0.1 | 0.0\% | 82.7\% | ${ }_{18777}^{1877}$ | 187.4 | -0.2 | -0.1\% |
 | 84.0\% | 188.0 | 187.9 | -0.1 | 0.0\% | 84.0\% | 187.7 | 187.4 | -0.2 | 0.1\% |
 | 85.2\% | 188.0 | ${ }^{18778}$ | -0.1 | -0.1\% | 85.2\% | ${ }^{187.6}$ | ${ }^{187.2}$ | -0.4 | -0.2\% |
 | ${ }^{86.4 \%}$ | 187.9 | 187.8 | -0.1 | -0.1\% | ${ }^{86.4 \%}$ | 187.6 | 187.2 | -0.4 | -0.2\% |
 | 87.7\% | 187.9 | ${ }^{187.8}$ | -0.1 | -0.1\% | 87.7\% | ${ }^{187.6}$ | ${ }^{187.2}$ | -0.4 | -0.2\% |
 | 88.9\% | 187.9 | 1878 | -0.1 | -0.1\% | 88.9\% | 187.5 | 187.2 | -0.4 | -0.2\% |
 | 90.1\% | 187.9 | ${ }^{18777}$ | -0.1 | -0.1\% | 90.1\% | 187.4 | ${ }^{187.1}$ | -0.3 | -0.2\% |
 | ${ }^{91.4 \%}$ | 187.8 | 187.7 | -0.1 | -0.1\% | 91.4\% | 187.3 | 187.0 | -0.2 | -0.1\% |
 | 92.6\% | ${ }^{18778}$ | 1877 | -0.1 | -0.1\% | 92.6\% | 187.1 | ${ }^{187.0}$ | -0.1 | |
 | 93.8\% | ${ }^{187.7}$ | 187.6 | -0.1 | 0.0\% | 93.8\% | 187.1 | 186.9 | -0.2 | 0.1\% |
 | | ${ }^{1877.6}$ | 187.4 | -0.2 | -0.1\% | 95.1\% | 187.1 | 186.8 | -0.3 | 0.1\% |
 | 97.5\% | ${ }^{187.6}$ | ${ }^{187.4}$ | -0.2 | -0.1\% | -96.3\% | ${ }_{186.9}^{1869}$ | 186.8 | -0.1 | 0.0\% |
 | 98.8\% | 187.5 | 187.3 | -0.2 | 0.1\% | 98.8\% | 186.6 | 186.2 | -0.4 | -0.2\% |
 | 100.0\% | 187.2 | 187.0 | -0.3 | -0.1\% | 100.0\% | 186.5 | 186.2 | -0.3 | -0.2\% |

 | PercentExceedanceProbability | Seplember | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {WSPP }}$ 2070 Without | WSIP 2070 With Project | | Relative |
 | | Monthly EC | Monthly EC | Difference | Difference (\%) |
 | 0.0\% | ${ }^{203,7}$ | ${ }^{1999.8}$ | ${ }^{-3.9}$ | -1.9\% |
 | 1.2\% | 198.6 | 198.9 | | |
 | 2.5\% | 198.6 | 198.1 | 0.5 | -0.3\% |
 | 3.7\% | 8.6 | 197.8 | -0.8 | |
 | 4.9\% | 198.0 | 197.2 | 0.8 | |
 | 6.2\% | 197.4 | 196.8 | 0.6 | |
 | 7.4\% | 196.6 | 195.4 | 1.2 | |
 | 8.6\% | 196.2 | 194.6 | 1.6 | |
 | 9.9\% | 195.6 | 194.6 | 1.0 | |
 | 11.1\% | 195.5 | ${ }^{19336}$ | 1.9 | |
 | 12.3\% | 195.1 | 193.5 | 1.6 | |
 | 13.6\% | ${ }^{194.3}$ | ${ }^{193.5}$ | -0.9 | 4\% |
 | 14.8\% | 194.2 | 192.5 | | -0.9\% |
 | - 16.0% | 193.9 193.7 | 192.4 192.3 | -1.5 | -0.8\% |
 | 18.5\% | 193.6 | 191.9 | -1.7 | -0.9\% |
 | 19.8\% | 193.6 | 191.7 | -1.9 | -1.0\% |
 | 21.0\% | 193.0 | 190.9 | -2.1 | -1.1\% |
 | ${ }^{22.2 \%}$ | | | | |
 | - 23. | 193.0 192.9 | 190.5 190.3 | -2,
 -2.6 | -1.3\% |
 | 25.9\% | 192.9 | 190.1 | -2.7 | -1.4\% |
 | 27.2\% | 191.3 | 190.1 | -1.2 | -0.6\% |
 | 28.4\% | 191.2 | 189.9 | 1.3 | -0.7\% |
 | 29.6\% | 190.4 | 189.8 | -0.6 | -0.3\% |
 | - $\begin{aligned} & 30.9 \% \\ & 32.1 \%\end{aligned}$ | 190.4 190.3 | 189.8 1897 | -0.7 -0.6 | -0.4\% |
 | 32.3\% | 190.3 | 189.7 | -0.6 | -0.3\% |
 | 34.6\% | 190.3 | 189.6 | -0.7 | -0.4\% |
 | 35.8\% | 189.9 | 189.4 | -0.5 | -0.3\% |
 | 37.0\% | 189.9 | 189.4 | -0.5 | 0.3\% |
 | 38.3\% | 189.8 | 189.3 | -0.5 | -0.3\% |
 | 39.5\% | 189.8 | 189.3 | -0.5 | -0.3\% |
 | 40.7\% | 1897 | 189.3 | -0.4 | -0.2\% |
 | 42.0\% | 189.6 | 189.3 | -0.4 | -0.2\% |
 | 43.2\% | 189.6 | 189.3 | -0.4 | -0.2\% |
 | 44.4\% | 189.6 | 189.2 | -0.4 | -0.2\% |
 | 45.7\% | 189.6 | 189.1 | -0.4 | -0.2\% |
 | 46.9\% | 189.5 | 189.1 | -0.4 | -0.2\% |
 | 48.1\% | 189.5 | 189.1 | -0.4 | -0.2\% |
 | 49.4\% | 189.5 | 189.1 | -0.4 | -0.2\% |
 | 50.6\% | 189.4 | 189.0 | -0.4 | -0.2\% |
 | 51.9\% | 189.4 | 189.0 | -0.4 | -0.2\% |
 | 53.1\% | 189.4 | 188.9 | -0.5 | -0.3\% |
 | 54.3\% | 189.4 | 188.8 | -0.6 | 0.3\% |
 | 55.6\% | 189.3 | 188.7 | -0.6 | -0.3\% |
 | 56.8\% | 189.2 | 188.6 | -0.6 | -0.3\% |
 | 58.0\% | 189.1 | 188.6 | -0.5 | -0.3\% |
 | 59.3\% | 189.1 | 188.6 | -0.5 | -0.3\% |
 | 60.5\% | 189.1 | 188.6 | -0.5 | -0.3\% |
 | 61.7\% | 189.1 | 188.6 | -0.5 | -0.3\% |
 | 63.0\% | 189.1 | 188.6 | -0.5 | -0.3\% |
 | 64.2\% | 189.1 | 188.5 | -0.5 | -0.3\% |
 | 65.4\% | 189.0 | 188.5 | -0.6 | -0.3\% |
 | 66.7\% | 189.0 | 188.4 | -0.5 | -0.3\% |
 | 67.9\% | 188.9 | 188.4 | -0.6 | -0.3\% |
 | 69.1\% | 188.9 | 188.4 | -0.5 | 0.3\% |
 | 70.4\% | 188.9 | 188.4 | -0.5 | -0.3\% |
 | 71.6\% | 188.9 | 188.3 | -0.6 | -0.3\% |
 | 72.8\% | 188.8 | 188.3 | -0.5 | -0.3\% |
 | 74.1\% | 188.7 | 188.3 | -0.5 | 0.3\% |
 | 75.3\% | 188.7 | 188.3 | -0.5 | -0.3\% |
 | 76.5\% | 188.7 | 188.2 | -0.5 | 0.2\% |
 | 77.8\% | 188.7 | 188.2 | -0.5 | 0.2\% |
 | 79.0\% | 188.6 | 188.2 | -0.3 | -0.2\% |
 | 80.2\% | 188.6 | 188.2 | -0.3 | -0.2\% |
 | 81.5\% | 188.5 | 188.2 | -0.4 | 0.2\% |
 | 82.7\% | 188.5 | 188.2 | -0.3 | -0.2\% |
 | 84.0\% | 188.5 | 188.2 | -0.3 | 0.2\% |
 | 85.2\% | 188.4 | 188.1 | -0.3 | 0.2\% |
 | 86.4\% | 188.4 | 188.1 | -0.3 | 0.2\% |
 | 87.7\% | 188.4 | 188.1 | -0.3 | 0.2\% |
 | 88.9\% | 188.4 | 188.0 | -0.4 | 0.2\% |
 | 90.1\% | 188.4 | 188.0 | -0.4 | -0.2\% |
 | 914\% | 188.3 | 187.9 | -0.4 | -0.2\% |
 | 92.6\% | 188.2 | 187.5 | -0.7 | 0.4\% |
 | 93.8\% | 188.2 | 187.4 | -0.8 | 0.4\% |
 | 95.1\% | 187.9 | 187.4 | -0.6 | 0.3\% |
 | 96.3\% | 187.9 | 187.2 | -0.7 | 0.4\% |
 | 97.5\% | 187.7 | 186.9 | -0.8 | 0.4\% |
 | 98.8\% | 187.6 | 188.3 | -1.2 | -0.7\% |
 | 100.0\% | 186.4 | 186.0 | -0.4 | -0.2\% |

 Figure SQ-29-b
 Old River at Los Vaqueros Intake, Monthly EC

 | $\begin{gathered} \text { Percent } \\ \text { Excedance } \\ \text { Probability } \end{gathered}$ | October | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSII 2070 Without | WSIP 2070 With Project | Absolute | Relative |
 | | Monthly EC | Monthly EC | (itierernce | Difference (\%) |
 | 0.0\% | UMHOSSCM) | Ssicm) | | |
 | | 980.9 | 982.1 | 1.2 | 0.1\% |
 | 1.2\% | 901.1 | 847 | | |
 | 2.5\% | 887.7 | 840.3 | -47.4 | |
 | 3.7\% | 873.4 | 832 | -41.3 | |
 | 4.9\% | 866.3 | 820.3 | -46.1 | |
 | 6.2\% | 861.3 | 819.0 | -42.3 | |
 | 7.4\% | 860.9 | 815.7 | -45.2 | |
 | 8.6\% | 841.7 | 814.2 | -27.5 | |
 | 9.9\% | 837.9 | 813.8 | -24.1 | |
 | 11.1\% | 837.7 | 811.1 | -26.6 | |
 | 12.3\% | 836.4 | 805.9 | -30.5 | |
 | 13.6\% | 832.1 | 805.1 | -27.0 | -3.2\% |
 | 14.8\% | 829.9 | 805.0 | -24.8 | -3.0\% |
 | 16.0\% | 828.5 | 799.1 | -29.4 | -3.5\% |
 | 17.3\% | 828.2 | 799.1 | -29.1 | -3.5\% |
 | 18.5\% | 823.8 | 796.4 | -27.5 | -3.3\% |
 | 19.8\% | 817.0 | 790.9 | -26.1 | ${ }^{3.2}$ |
 | 21.0\% | 813.2 | 779.2 | -34.0 | ${ }^{4.2 \%}$ |
 | 22.2\% | 812.1 | 768.0 | -44.1 | 5.4 |
 | 23.5\% | 811.5 | ${ }^{766.3}$ | -45.2 | -5.6\% |
 | 24.7\% | 805.1 | ${ }^{766.3}$ | -38.8 | |
 | 25.9\% | 802.4 | ${ }^{757.0}$ | -45.4 | -5.7\% |
 | 27.2\% | 795.9 | 749.3 | -46.6 | -5.9 |
 | 28.4\% | 789.6 | 744.6 | -45.0 | -5.7\% |
 | 29.6\% | ${ }^{785} 3$ | 744.1 | -41.2 | -5.3\% |
 | 30.9\% | 784.4 | ${ }_{738.1}^{732.1}$ | -46.3 | -5.9\% |
 | 32.1\% | 784.0 | 728.9 | -55.1 | -7.0\% |
 | 33.3\% | 779.9 | ${ }_{727.4}$ | -52.5 | -6.7\% |
 | 34.6\% | 778.9 | ${ }_{720.1}^{720.1}$ | -58.8 | -7.6\% |
 | 35.8\% | 761.0 | 718.7 | -42.3 | -5.6\% |
 | 37.0\% | 758.4 | 708.9 | -49.5 | -6.5\% |
 | 38.3\% | 755.0 | 707.2 | -47.8 | -6.3\% |
 | 39.5\% | 754.4 | ${ }^{702.0}$ | -52.4 | -6.9\% |
 | 40.7\% | ${ }_{740.3}$ | ${ }^{698.3}$ | -42.0 | -5.7\% |
 | 42.0\% | ${ }^{737.1}$ | ${ }^{695.5}$ | -41.6 | 5.6\% |
 | 43.2\% | ${ }_{734.4}$ | 686.6 | -47.9 | -6.5\% |
 | 44.4\% | ${ }^{733.5}$ | 680.1 | -53.4 | -7.3\% |
 | 45.7\% | ${ }_{730.2}$ | 666.9 | -63.2 | -8.7\% |
 | 46.9\% | ${ }^{723.2}$ | 657.4 | -65.8 | -9.1\% |
 | 48.1\% | ${ }_{720.5}$ | 654.2 | ${ }_{-76.3}$ | 9.9\% |
 | 49.4\% | 714.9 | 644.5 | -70.4 | -9.9\% |
 | 50.6\% | 702.9 | 642.4 | -58.5 | -8.3\% |
 | 51.9\% | 680.5 | ${ }^{623.4}$ | -57.0 | 8.4 |
 | 53.1\% | 675.4 | 616.8 | -58.6 | -8.7\% |
 | 54.3\% | 666.0 | 591.8 | -74.2 | -11.19 |
 | 55.6\% | 394.5 | ${ }^{3737.7}$ | -20.9 | -5.36 |
 | 56.8\% | 392.9 | 364.8 | -28.1 | -7.1\% |
 | 58.0\% | 385.7 | 357.0 | -28.7 | -7.4\% |
 | 59.3\% | 372.9 | 356.4 | -16.5 | -4.48 |
 | 60.5\% | 366.5 365 | ${ }^{351.3}$ | -15.2 | -4.2\% |
 | 617.7\% | 354.4 | 346.2 | -8.2 | -2.3\% |
 | 63.0\% | ${ }_{352.7}$ | 343.8 | -8.81 | -2.5\% |
 | 64.2\% | 351.6 | 338.5 | -13.1 | 年\% |
 | 65.4\% | 346.9 | ${ }^{336.4}$ | -10.4 | -3.0\% |
 | ${ }^{66.7 \%}$ | 345.8 | ${ }^{335.5}$ | -10.3 | -3.0\% |
 | 67.9\% | 344.9 | 334,6 | 10.3 | -3.0\% |
 | 69.1\% | 340.4 | 333.0 | -7.4 | , |
 | 70.4\% | 340.3 | ${ }^{332.4}$ | -9.9 | -2.9\% |
 | 71.6\% | 339.6 | ${ }^{327.8}$ | -11.8 | 5\% |
 | 72.8\% | 339.1 | 327.5 | -11.6 | -3.4\% |
 | 74.1\% | 338.1 | ${ }^{326.7}$ | 11.4 | 4\% |
 | 75.3\% | 338.0 | ${ }^{326.1}$ | -11.9 | -3.5\% |
 | 76.5\% | ${ }^{337.8}$ | ${ }^{326.0}$ | 11.8 | 5\% |
 | 77.8\% | ${ }^{335.3}$ | ${ }^{325.3}$ | -9.9 | -3.0\% |
 | 79.0\% | ${ }^{334.6}$ | ${ }_{321.8}$ | -12.8 | 8\% |
 | 80.2\% | ${ }^{332.5}$ | 318.9 | -13.6 | -4.1\% |
 | 81.5\% | ${ }^{332.0}$ | ${ }^{313.3}$ | -18.7 | \%\% |
 | 82.7\% | 330.0 | 3099 | -20.0 | -6.1\% |
 | 84.0\% | 314.6 | 307.8 | 6.8 | 2.2\% |
 | 85.2\% | ${ }_{312.8}$ | 300.2 3060 | -6.6 | |
 | 86.4\% | 311.4 | ${ }^{306.0}$ | -5.4 | \% |
 | 87.7\% | 310.5 | 298.3 | -12.1 | -3.9\% |
 | 88.9\% | 309.0 | 297.4 | 17.6 | |
 | 90.1\% | 304.4 | 296.7 | -7.7 | -2.5\% |
 | ${ }^{91.44 \%}$ | 304.0 | 295.6 | -8.4 | 2.8\% |
 | 92.6\% | ${ }_{201.6}$ | ${ }_{2}^{289.4}$ | ${ }^{-12.3}$ | 4.1\% |
 | ${ }^{93.8 \%}$ | 294.7 | 287.7 | 7.0 | |
 | 95.1\% | ${ }^{283.4}$ | 283.4 | 0.0 | 0.0\% |
 | ${ }^{96.3 \%}$ | ${ }^{283.3}$ | 279.2 | -4.1 | 1.4\% |
 | 97.5\% | 283.0 | 277.3 | -6.7 | -2.4\% |
 | 98.8\% ${ }^{980.0 \%}$ | ${ }_{2}^{2810.4}$ | 274.2 210.0 | -8.1 | - |

 | | | |
 | :---: | :---: | :---: | :---: |
 | | | |

 | $\begin{gathered} \text { Percent } \\ \hline \text { Excedance } \\ \text { Probability } \end{gathered}$ | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | WSIP 2070 With Project | $\begin{gathered} \text { Absolute } \\ \text { (ifference } \\ \text { (UMHOSICM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | | Monthy EC | Monthly EC | | |
 | 0.0\% | (unHosicm) | S(CM) | | |
 | 0.0\% | 986.6 | 853.5 | -133.0 | -13.5\% |
 | 1.2\% | 868.5 | 739.1 | -129.4 | |
 | 2.5\% | 735.2 | 690.2 | -45.0 | |
 | 3.7\% | 729.4 | 680.3 | -49.1 | |
 | 4.9\% | 680.7 | 670.1 | -10.7 | |
 | 6.2\% | 678.5 | 669.7 | -8.8 | |
 | 7.4\% | 648.7 | 647.9 | -0.8 | |
 | 8.6\% | ${ }^{645.1}$ | ${ }^{636} 3$ | -8.8 | |
 | 9.9\% | 612.3 | 627.9 | 15.6 | |
 | 11.1\% | 602.1 | 611.5 | 9.4 | |
 | 12.3\% | 592.4 | 610.9 | 18.5 | |
 | 13.6\% | 590.9 | 609.8 | 18.9 | ${ }^{3.2}$ |
 | 14.8\% | 589.8 | 607.0 | 17.2 | |
 | 16.0\% | 588.2 | 594.8 | 6.6 | 1.16 |
 | 17.3\% | 579.4 | 592.6 | 13.2 | 2.3\% |
 | 18.5\% | 575.8 | 585.7 | 9.9 | 1.78 |
 | 19.8\% | 560.7 | 581.1 | 20.5 | 3.6\% |
 | 21.0\% | 560.4 | 581.0 | 20.6 | 3.7\% |
 | 22.2\% | 558.9 | 573.7 | 14.8 | 2.6 |
 | 23.5\% | 556.5 | 572.9 | 16.4 | ${ }^{3.0}$ |
 | 24.7\% | 549.1 | 561.2 | 12.1 | 2.2\% |
 | 25.9\% | 548.6 | ${ }^{561.1}$ | 12.6 | 2.3\% |
 | 27.2\% | 548.4 | 557.5 | 9.1 | 1.7\% |
 | 28.4\% | 534.5 | 550.7 | ${ }^{16.3}$ | 3.0\% |
 | 29.6\% | 531.4 | 544.0 | ${ }^{12.6}$ | 2.4\% |
 | 30.9\% | 514.5 | ${ }_{536.3}$ | 21.9 | 4.2\% |
 | 32.1\% | 511.0 | 535.9 | 24.8 | 4.9\% |
 | 33.3\% | 510.8 | 534.3 | 23.4 | 4.6\% |
 | 34.6\% | 505.6 | ${ }_{533.6}$ | 27.9 | 5.5\% |
 | 35.8\% | 496.0 | 527.3 | 31.2 | 6.3\% |
 | 37.0\% | 494.9 | 522.7 | 27.8 | 5.6\% |
 | 38.3\% | 476.9 | 512.1 | ${ }^{35.1}$ | 7.4\% |
 | 39.5\% | 475.9 | 503.3 | 27.5 | 5.8\% |
 | 40.7\% | 472.4 | 501.9 | 29.5 | 6.2\% |
 | 42.0\% | 470.6 | 484.4 | 13.8 | 2.9\% |
 | 43.2\% | 466.1 | 483.0 | 16.9 | 3.6\% |
 | 44.4\% | 460.3 | 474.9 | 14.5 | 3.2\% |
 | 45.7\% | 454.2 | 470.5 | 16.2 | 3.6\% |
 | 46.9\% | 449.0 | 469.6 | ${ }^{20.6}$ | 4.6\% |
 | 48.1\% | 448.9 | 461.1 | ${ }^{12,3}$ | 2.7\% |
 | 49.4\% | 447.1 | 454.6 | 7.5 | 1.7\% |
 | 50.6\% | 440.4 | 451.0 | 10.7 | 2.4\% |
 | 51.9\% | 424.5 | 444.6 | 20.1 | 4.7\% |
 | 53.1\% | ${ }^{421.8}$ | 432.1 | ${ }^{10.3}$ | 4\% |
 | 54.3\% | 415.3 | ${ }^{428.4}$ | 13.1 | 3.2\% |
 | 55.6\% | 407.2 | 423.7 | ${ }^{16.5}$ | 4.1\% |
 | 56.8\% | 404.5 | ${ }_{422.7}$ | 18.2 | 4.5\% |
 | 58.0\% | 403.6 | ${ }^{420.2}$ | ${ }^{16.6}$ | 4.19\% |
 | 59.3\% | 401.5 | 409.0 | ${ }_{7} 7.5$ | 9\% |
 | 60.5\% | 400.3 | 407.5 | 7.2 54 | 1.8\% |
 | 617\% | 398.2 | 403.6 | 5.4 | 14\% |
 | 63.0\% | ${ }^{396.2}$ | 395.9 | -0.3 | ${ }^{0.19 \%}$ |
 | 64.2\% | 3923 | 394.2 | 1.9 | 0.5\% |
 | ${ }^{65.4 \%}$ | 391.0 | 393.4 | ${ }^{2.3}$ | ${ }^{0.6 \%}$ |
 | ${ }^{66.7 \%}$ | 385.2 | 390.8 | 5.6 | 14\% |
 | 67.9\% | 380.2 | 3897 | 9.5 | 5\% |
 | 69.1\% | 366.5 | ${ }^{367.1}$ | 0.5 | 1\% |
 | 70.4\% | 365.0 | ${ }^{365.1}$ | 0.1 | 0\%\% |
 | 71.6\% | 361.4 | 362.9 | 1.5 | 4\% |
 | 72.8\% | 337.8 | ${ }^{360.8}$ | ${ }^{23.1}$ | 6.8\% |
 | 74.1\% | ${ }^{337.7}$ | 339.6 | 1.9 | 0.6\% |
 | 75.3\% | ${ }^{33777}$ | ${ }_{336.5}$ | 1.2 | -0.4\% |
 | 76.5\% | 327.5 | 331.9 | 4.3 | 13\% |
 | 77.8\% | ${ }^{322.6}$ | ${ }^{327.6}$ | 5.0 | - 1.6% |
 | 79.0\% | 320.9 | ${ }_{322.6}$ | 1.7 | 5\% |
 | 80.2\% | 314.3 | ${ }^{314.2}$ | -0.1 | 0.0\% |
 | 81.5\% | 308.2 | 313.5 | 5.2 | \% |
 | 82.7\% | 307.1 | 306.9 | -0.3 | -0.1\% |
 | 84.0\% | 29.7 | 2973 | 0.6 | 年 |
 | 85.2\% | 287.0 | ${ }^{287.3}$ | 0.2 | 0.1\% |
 | 86.4\% | ${ }^{286.2}$ | 285.2 | -1.1 | 4\% |
 | 87.7\% | ${ }_{282.7}^{2827}$ | ${ }_{285}^{285}$ | ${ }^{2.3}$ | 0.8\% |
 | 88.9\% | ${ }_{272}^{280.7}$ | 287.2 | 0.5 | \% |
 | 90.1\% | 273.2 | ${ }^{273.6}$ | 0.4 | 0.2\% |
 | ${ }^{91.44 \%}$ | 27.1 | ${ }_{2786}^{27.6}$ | 2.5 | \% |
 | 92.6\% | 2697 | 270.4 | 0.7 | 0.3\% |
 | ${ }^{93.8 \%}$ | ${ }_{267.4}^{268.4}$ | 288.8 | 1.4 | 0.5\% |
 | 95.1\% | ${ }_{26.1}^{2627}$ | 268.1 | 2.0 | 0.8\% |
 | ${ }^{96.3 \%}$ | ${ }_{2}^{237.3}$ | ${ }_{2}^{237.6}$ | 0.3 | 0.1\% |
 | 97.5\% | ${ }^{232.8}$ | ${ }^{232.9}$ | 0.1 | 0.0\% |
 | 98.8% 1000% | 230.3 1829 | 232.7 | 2.4 24 | 1.0\% |
 | | | | | |

 | $\begin{gathered} \text { Percent } \\ \text { Exceade } \\ \text { Probabily } \end{gathered}$ | Way | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {WSIP }}^{\text {207 }}$ Proiectithout | WSIP 2070 With Project | Absolute | |
 | | Monthly EC | Monthy EC | Difference (UMHOSCCM) | Difference (\%) |
 | | (UMHOSSCM) | (UMHOSSCM) | | |
 | 0.0\% | 562.9 | 539.9 | -22.9 | -4.1\% |
 | 1.2\% | 549.4 | 5393 | -10.1 | -1.8\% |
 | 2.5\% | 546.2 | 536.6 | -9.5 | -1.7\% |
 | 3.7\% | 539.7 | 532.9 | -6.8 | -1.3\% |
 | 4.9\% | 533.0 | 518.7 | -14.2 | -2.7\% |
 | 6.2\% | 510.6 | 516.9 | 6.3 | 1.2\% |
 | 7.4\% | 503.8 | 489.1 | -14.7 | -2.9\% |
 | 8.6\% | 494.0 | 484.7 | -9.2 | -1.9\% |
 | 9.9\% | 491.7 | 481.0 | -10.7 | -2.2\% |
 | 11.19\% | 4822 | 479.7 | -2.6 | -0.5\% |
 | 12.3\% | 477.7 | 479.5 | 1.8 | 0.4\% |
 | 13.6\% | 475.7 | 477.0 | 1.3 | 0.3\% |
 | 14.8\% | 473.7 | 460.1 | -13.7 | -2.9\% |
 | 16.0\% | 469.3 | ${ }_{459.8}$ | -9.5 | -2.0\% |
 | 17.3\% | 468.1 | 453.3 | -14.8 | -3.2\% |
 | 18.5\% | 464.7 | 45.9 | -11.8 | -2.5\% |
 | 19.8\% | ${ }_{4}^{457.3}$ | 451.4 | -6.0 | -1.3\% |
 | 21.0\% | ${ }_{455.2}$ | 450.1 | -5.1 | -1.1\% |
 | 223.5\% | ${ }_{449.7}^{452.7}$ | 448.4 | -4.3 | - -1.0% |
 | ${ }_{24.7 \%}^{20.5}$ | 446.1 | 447.0 | 0.9 | 0.2\% |
 | 25.9\% | 439.0 | 444.8 | 5.8 | 1.3\% |
 | 27.2\% | 438.1 | 439.3 | 1.2 | 0.3\% |
 | 28.4\% | 436.9 | 4393 | ${ }^{2.3}$ | 0.5\% |
 | 29.6\% | ${ }^{435.8}$ | 436.8 | 1.0 | 0.2\% |
 | 30.9\% | 429.3 | 433.7 | 4.3 | 1.0\% |
 | 32.1\% | 429.1 | ${ }^{429.5}$ | 0.4 | 0.1\% |
 | 33.3\% | 427.4 | 425.4 | -2.1 | -0.5\% |
 | 34.6\% | 422.7 | 424.9 | 2.2 | 0.5\% |
 | 35.8\% | 420.5 4148 | 422.1 | ${ }_{11}^{1.7}$ | 0.4\% |
 | 37.0\% | 414.8 | 415.9 | 1.1 | 0.3\% |
 | ${ }^{38.3 \%}$ | ${ }_{4}^{4137.3}$ | 410.4 407.0 | -2.8 | ${ }^{-0.0 \%}$ |
 | 40.7\% | 400.6 | 406.1 | 5.5 | 1.4\% |
 | 42.0\% | 399.9 | 401.8 | 1.9 | 0.5\% |
 | 43.2\% | 399.5 | 401.3 | 1.8 | 0.5\% |
 | 44.4\% | 398.1 | 401.1 | 3.0 | 0.8\% |
 | 45.7\% | 397.6 | 400.2 | ${ }_{5}^{2.6}$ | 0.6\% |
 | 46.9\% | 390.6 | 396.2 | 5.6 | 1.4\% |
 | | 390.2 389.6 | 390.2 385.8 | 0.0 -38 | -0.0\% |
 | 50.6\% | 389.6 380.6 | 385.8 384.1 | -3.6 | -1.9\% |
 | 51.9\% | 378.5 | 381.3 | ${ }_{2} .8$ | 0.7\% |
 | 53.1\% | 377.2 | 380.6 | 3.4 | 0.9\% |
 | 54.3\% | 370.9 | 372.6 | 1.7 | 0.5\% |
 | 55.6\% | 369.7 3671 | 371.0 3700 | 1.3 29 | 0.4\% |
 | 58.0\% | ${ }_{364.7}$ | 370.0 367.1 | 2.9 2.4 | 0.7\% |
 | 59.3\% | 364.2 | 366.1 | 2.0 | 0.5\% |
 | 60.5\% | 363.9 | 365.2 | 1.3 | 0.4\% |
 | 61.7\% | 361.6 | 363.8 | 2.3 | 0.6\% |
 | - 63.0% | 360.6 3599 | 362.3
 360.6 | 1.7 0.8 | - ${ }_{0}^{0.5 \%}$ |
 | 65.4\% | 359.0 | 359.8 | 0.8 | 0.2\% |
 | 66.7\% | 356.3 | 356.4 | 0.0 | 0.0\% |
 | 67.9\% | 354.2 3487 | 354.0 3487 | -0.2 0.1 | -0.1\% |
 | 70.4\% | 347.2 | 347.2 | 0.0 | 0.0\% |
 | 71.6\% | 335.5 | 335.7 | 0.2 | 0.0\% |
 | 72.8\% | 334.7 34.0 | 335.7 3347 | 1.0 | 0.3\% |
 | 74.1\% | 334.0 | 334.7 | 0.7 | 0.2\% |
 | ${ }^{75.3 \%}$ | 330.9 3280 | 331.0 3294 | 0.0 1.5 | 0.0\% |
 | 77.8\% | 327.3 | 328.0 | 0.8 | 0.2\% |
 | 79.0\% | 304.6 | 304.8 | 0.2 | 0.1\% |
 | 80.2\% | 281.1 | 282.4 | 1.3 | 0.5\% |
 | 81.5\% | 280.0 | 281.4 | 1.4 | 0.5\% |
 | | ${ }_{2517}^{266.3}$ | ${ }_{2518}^{266.3}$ | 0.0 | - |
 | 85.2\% | 245.5 | 246.3 | 0.8 | 0.3\% |
 | 86.4\% | 232.0 | 232.7 | 0.7 | 0.3\% |
 | 888.7\% | ${ }_{2219}^{228.7}$ | 228.9 2230 | ${ }_{1}^{0.2}$ | ${ }^{0.15 \%}$ |
 | 90.1\% | 1929 | 193.2 | 0.4 | 0.2\% |
 | 91.4\% | 187.6 | 188.1 | 0.5 | 0.2\% |
 | - 92.26% | 187.6 182.9 | 187.9 183.4 | 0.3 0.5 | ${ }_{0}^{0.3 \%}$ |
 | 95.1\% | 178.1 | 178.3 | 0.2 | 0.1\% |
 | 96.3\% | 177.3 | 177.5 | 0.2 | 0.1\% |
 | 97.5\% | 164.3 | 164.7 | 0.3 | 0.2\% |
 | -98.8\% | 159.9 159.1 | 160.2 159.3 | ${ }_{0.2}^{0.3}$ | ${ }_{0}^{0.2 \%}$ |

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[b]{3}{*}{$$
 \begin{gathered}
 \text { Percent } \\
 \hline \text { Excedance } \\
 \text { Probability }
 \end{gathered}
 $$} \& \multicolumn{4}{|c|}{June}

 \hline \& WSSP 2077 Without \& WSIP 2070 With Proj \& Absolute \& Reala

 \hline \& Monthly EC \& Monthly EC \& Difference
 (UMHOSCCM) \& Difference (\%)

 \hline 0.0\% \& 576.5 \& ${ }_{5} 53.8$ \& -2.7 \& 0.5\%

 \hline 1.2\% \& 556.5 \& 543.6 \& -12.9 \&

 \hline 2.5\% \& 508.9 \& 503.3 \& 5.6 \&

 \hline 3.7\% \& 502.2 \& 502.7 \& 0.4 \& 0.1\%

 \hline 4.9\% \& 453.4 \& 451.8 \& 1.6 \&

 \hline 6.2\% \& 451.2 \& 445.4 \& 5.8 \&

 \hline 7.4\% \& 443.8 \& 425.7 \& -18.1 \&

 \hline 8.6\% \& 437.2 \& 423.9 \& -13.3 \& -3.0\%

 \hline 9.9\% \& 426.3 \& 409.7 \& -16.6 \&

 \hline 11.19\% \& 411.7 \& 409.3 \& 2.3 \& -0.6\%

 \hline ${ }^{12.3 \%}$ \& 409.6 \& 408.8 \& -0.8 \& 2\%

 \hline - 13.8% \& ${ }_{4006.4}$ \& ${ }_{4048.8}^{408.3}$ \& -1.6 \& -0.4\%

 \hline 16.0\% \& 404.9 \& 391.4 \& -13.6 \& -3.4\%

 \hline 17.3\% \& 403.7 \& 388.8 \& -14.8 \& 3.7\%

 \hline 18.5\% \& 401.9 \& 382.8 \& -19.1 \& -4.7\%

 \hline 19.8\% \& 386.3 \& 375.5 \& -10.8 \&

 \hline ${ }_{2}^{21.2 .2 \%}$ \& 380.8
 374.1 \& 375.4
 375.2 \& -5.3
 1.2 \& ${ }_{\text {- }}^{\text {-1.3\% }}$

 \hline 23.5\% \& 373.8 \& 365.6 \& -8.1 \& 2.2\%

 \hline 24.7\% \& ${ }^{373.7}$ \& 362.8 \& -10.9 \& -2.9\%

 \hline 25.7\% \& 372.2 \& ${ }_{358.2}$ \& -14.0 \& 3.7\%

 \hline 27.2\% \& 364.8 \& 352.3 \& -12.5 \& -3.4\%

 \hline \& 362.4

 354 \& 351.7 \& -10.7 \& -2.9\%

 \hline 30.9\% \& \& ${ }_{399.7}^{34.7}$ \& -4.7
 -1.7 \& -1.5\%

 \hline 32.1\% \& 351.0 \& 344.8 \& -6.2 \& -1.8\%

 \hline 33.3\% \& 350.4
 3545 \& 343.2 \& -7.2 \& 2.1\%

 \hline 34.6\% \& 347.5 \& 339.6 \& -8.0 \& 2.3\%

 \hline 35.7\% \& 344.7 \& 338.5 \& -6.2 \& -1.8\%

 \hline 37.0%
 383% \& 339.6 \& 338.2 \& -1.4 \& -0.4\%

 \hline 38.3\% \& 338.8 \& ${ }^{337.6}$ \& -1.2 \& -0.3\%

 \hline ${ }^{39.7 \%}$ \& ${ }_{337.7}^{337.8}$ \& ${ }_{3}^{335.5}$ \& --.94 \& ${ }_{-0.6 \%}^{-0.6 \%}$

 \hline 42.0\% \& 335.1 \& 332.4 \& -2.7 \& -0.8\%

 \hline 43.2\% \& 334.9 \& 332.2
 3 \& -2.7 \& -0.8\%

 \hline 44.4\% \& 331.1 \& 327.8 \& -3.3 \& -1.0\%

 \hline 45.7\% \& 328.1 \& 327.3 \& -0.8 \& -0.2\%

 \hline ${ }^{46.9 \%}$ \& 327.5 \& 327.1 \& -0.4 \& -0.1\%

 \hline 48.1\% 4.4 \& ${ }_{3}^{325.2}$ \& 326.4 \& 1.2 \& 0.4\%

 \hline 50.6\% \& ${ }_{324.7}^{325.1}$ \& ${ }_{\text {cher }}^{326.2}$ \& 1.2
 0.3 \& 0.4\%

 \hline 51.9\% \& 318.6 \& 322.0 \& 3.4 \& 1.1\%

 \hline 53.1\% \& 318.3 \& 318.9 \& 0.6 \& 0.2\%

 \hline 54.3\% \& 318.2 \& ${ }_{318.1}$ \& -0.1 \& 0.0\%

 \hline 55.6\% \& ${ }_{318.1}$ \& ${ }^{317.8}$ \& -0.3 \& -0.1\%

 \hline 56.0\% \& 311.9 \& | 317.5 |
 | :--- |
 | 315.8 | \& -0.5 \& -0.0\%

 \hline 59.3\% \& 315.5 \& 315.3 \& -0.2 \& -0.1\%

 \hline 60.5\% \& 311.2 \& 312.2 \& 1.0 \& 0.3\%

 \hline 61.7\% \& 310.4 \& 311.6 \& 1.2 \& 0.4\%

 \hline 63.0\% \& 308.9 \& 309.8 \& 1.0 \& 0.3\%

 \hline -64.2\% \& 304.9 \& ${ }_{307.5}$ \& 2.6 \& 0.8\%

 \hline ${ }_{6}^{65.7 \%}$ \& ${ }_{300.4}^{300.7}$ \& ${ }_{301.0}$ \& 6.3
 0.6 \& ${ }_{\text {2.2\% }}^{2.2 \%}$

 \hline 67.9\% \& 300.1 \& 300.4 \& 0.3 \& 0.1\%

 \hline 69.1\% \& 299.1 \& 298.7 \& -0.3 \& 0.1\%

 \hline 70.4\% \& 295.5 \& 295.7 \& 0.2 \& 0.1\%

 \hline 71.6\% \& ${ }^{295.3}$ \& ${ }^{295.2}$ \& -0.2 \& 0.1\%

 \hline 72.8\% \& ${ }_{295}^{295}$ \& ${ }_{2929}^{2952}$ \& 0.0 \& 0.0\%

 \hline 75.3\% \& 292.4 \& ${ }_{292.4}^{292.6}$ \& 0.0 \& 0.0\%

 \hline 76.5\% \& 292.1 \& 292.3 \& 0.3 \& 0.1\%

 \hline 77.8\% \& 291.3 \& 292.0 \& 0.7 \& 0.2\%

 \hline 79.0\% \& 291.2 \& 290.5 \& -0.7 \& 0.2\%

 \hline - ${ }_{\text {80.2\% }}$ \& 288.6 \& 288.8 \& 0.2 \& 0.1\%

 \hline - \& ${ }^{287.4}$ \& ${ }^{287.7}$ \& 0.3 \& 0.1\%

 \hline 84.0\% \& ${ }_{283.3}^{285.2}$ \& ${ }_{283.3}^{286.2}$ \& 1.0
 0.1 \& 0.0\%

 \hline 85.2\% \& 280.1 \& 280.6 \& 0.5 \& 0.2\%

 \hline 86.4\% \& 280.0 \& 280.3 \& 0.4 \& 0.1\%

 \hline 87.7\% \& 277.1 \& 277.1 \& 0.0 \& 0.0\%

 \hline 88.9\% \& 265.6 \& 264.5 \& -1.1 \& -0.4\%

 \hline ${ }_{9}^{90.14 \%}$ \& 264.6
 262.0 \& 264.3
 261.8 \& -0.2 \& -0.1\%

 \hline 92.6\% \& 261.4 \& 258.6 \& -2.8 \& -1.1\%

 \hline 93.8\% \& 259.6 \& 258.2 \& -1.4 \& -0.6\%

 \hline 95.1\% \& 253.3 \& 253.0 \& -0.3 \& 0.1\%

 \hline 97.5\% \& 250.9 \& 250.1 \& -0.8 \& -0.3\%

 \hline 998.8\% \& ${ }_{241.2}^{24.2}$ \& 241.5
 241.4 \& 0.3 \& 0.1\%

 \hline 100.0\% \& 237.4 \& 238.2 \& 0.7 \& 0.3\%

 \hline
 \end{tabular}

 | | Juy | | | | August | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2077 Oewthout | WSIP 20 | Absolute | | Percent Excedance | WSIP 2070 Wethout | WSIP 2070 With Project | Absolute | |
 | Probability | Monthly EC | Monthly EC | (ifference | Difference (\%) | bability | Monthly EC | Monthy EC | (itiference | Difference (\%) |
 | (\%) | (UMHOSSCM) | (UnHosicm) | ${ }^{35.1}$ | -5.3\% | ${ }^{(\%) 0}$ | (0ncosicm | | | |
 | | | | | | | 764 | | | |
 | 2.5\% | 588.5 | ${ }_{593.2}$ | 4.7 | 0.8\% | 2.5\% | 698.5 | 6895 | 5.6 | |
 | 3.7\% | 577.2 | 568.3 | -8.8 | -1.5\% | 3.7\% | 628.8 | 676 | 476 | |
 | | 569.4 | 537.4 | 32.0 | -5.6\% | 4.9\% | 617.8 | 600.2 | -17.6 | |
 | 6.2\% | 505.4 | 444.8 | -60.6 | -12.0\% | 6.2\% | 614.8 | 599 | -15.0 | |
 | 7.4\% | 448.5 | 431.2 | -17.4 | -3.9\% | 7.4\% | 595.2 | 588.5 | -6.7 | -1.1\% |
 | 8.6\% | 417.5 | 420.1 | 2.7 | 0.6\% | 8.6\% | 574.0 | 585.1 | 11.1 | 1.9\% |
 | 9.9\% | 413.1 | 416.1 | 3.0 | 0.7\% | 9.9\% | 554.2 | 562.9 | 8.7 | 1.6\% |
 | 11.1\% | 406.1 | 404.5 | -1.6 | -0.4\% | 11.1\% | 535.6 | 545.9 | 10.3 | 1.9\% |
 | 12.3\% | 396.1 | 394.3 | -1.8 | -0.5\% | 12.3\% | 532.2 | 535.9 | 3.7 | 0.7\% |
 | 13.6\% | 392.8 | 392.8 | 0.0 | 0.0\% | 13.6\% | 524.7 | 533.1 | 8.4 | 1.6\% |
 | 14.8\% | 389.8 | 390.6 | 0.8 | 0.2\% | 14.8\% | 523.4 | 528.6 | 5.2 | 1.0\% |
 | ${ }^{16.0 \%}$ | 388.1 | 385.7 | -2.4 | -0.6\% | 16.0\% | 522.3 | 526.1 | 3.8 | 0.7\% |
 | 17.3\% | 384.7 | 382.1 | -2.5 | -0.7\% | 17.3\% | 514.8 | 524.0 | 9.1 | 1.8\% |
 | 18.5\% | 380.1 | 381.6 | 1.5 | 0.4\% | 18.5\% | 514.6 | 514.9 | ${ }^{0.3}$ | 0.1\% |
 | 19.8\% | 376.5 | 380.8 | 4.3 | 1.1\% | 19.8\% | 492.7 | 510.3 | 17.6 | 3.6\% |
 | 221.0\% | ${ }_{376.4}$ | 379.8 | 3.4 | 0.9\% | 21.0\% | 490.9 | 508.9 | 17.9 | 3.7\% |
 | 22.2\% | 374.3 | 374.9 | 0.6 | 0.2\% | 22.2\% | 490.4 | 498.8 | 8.5 | 1.7\% |
 | 23.5\% | 373.9 | 369.1 | -4.8 | -1.3\% | 23.5\% | 479.0 | 494.1 | 15.0 | 3.1\% |
 | 24.7\% | 367.7 | 368.9 | 1.1 | 0.3\% | 24.7\% | 475.9 | 493.8 | 17.8 | 3.7\% |
 | 25.9\% | 366.2 | 365.7 | -0.5 | -0.1\% | 25.9\% | 455.2 | 491.9 | ${ }_{37.7}$ | 8.1\% |
 | 27.2\% | 364.0 | ${ }^{363.8}$ | -0.2 | 0.0\% | 27.2\% | 451.1 | 478.6 | 27.5 | 6.1\% |
 | 28.4\% | ${ }_{360.3}$ | 363.2 | 2.9 | 0.8\% | 28.4\% | 4493 | 472.8 | ${ }^{23.5}$ | 5.2\% |
 | 29.6\% | 359.0 | 361.8 | 2.7 | 0.8\% | 29.6\% | 442.6 | 463.1 | 20.5 | 4.6\% |
 | 30.9\% | 355.8 | 358.4 | ${ }^{2.6}$ | 0.7\% | 30.9\% | 434.2 | 439.1 | 4.8 | 1.1\% |
 | 32.1\% | 352.4 | ${ }^{354.3}$ | 1.9 | 0.5\% | 32.1\% | 433.0 | 434.0 | 0.9 | 0.2\% |
 | 33.3\% | 351.0 | 352.9 | 1.9 | 0.6\% | 33.3\% | 426.9 | 425.0 | -2.0 | -0.5\% |
 | 34.6\% | 349.6 | ${ }^{352.3}$ | 2.7 | 0.8\% | 34.6\% | 405.1 | 417.8 | 12.7 | 3.1\% |
 | 35.8\% | 346.7 | 347.6 | 1.0 | 0.3\% | 35.8\% | 398.5 | 417.2 | 18.7 | 4.7\% |
 | 37.0\% | 344.5 | 345.4 | 0.8 | 0.2\% | 37.0\% | 393.4 | 405.1 | ${ }^{11.6}$ | 3.0\% |
 | 38.3\% | 344.0 | 333,3 | -10.7 | -3.1\% | 38.3\% | 393.1 | 395.7 | 2.7 | 0.7\% |
 | 39.5\% | 339.4 | 331.4 | -8.0 | -2.4\% | 39.5\% | 392.9 | 393.7 | 0.8 | 0.2\% |
 | 40.7\% | 336.0 | ${ }^{327.2}$ | -8.8 | -2.6\% | 40.7\% | 388.3 | 393.3 | 4.9 | 1.3\% |
 | 42.0\% | 334.9 | 311.7 | ${ }^{-23.2}$ | -6.9\% | 42.0\% | 382.9 | 391.5 | 8.5 | 2.2\% |
 | 43.2\% | 320.2 | 308.9
 8.9 | -11.3 | -3.5\% | 43.2\% | 380.0 | 382.9 | 2.9 | 0.8\% |
 | 44.4\% | 315.8 | 305.2 | -10.6 | -3.4\% | 44.4\% | 378.2 | ${ }_{382.6}$ | 4.3 | 1.1\% |
 | 45.7\% | 314.4 | 304.1 | -10.3 | -3.3\% | 45.7\% | 377.6 | 378.6 | 1.0 | 0.3\% |
 | 46.9\% | 303.4 | ${ }^{303.1}$ | -0.3 | -0.1\% | 46.9\% | 3776 | 375.9 | -0.7 | -0.2\% |
 | 48.1\% | 301.4 | 300.2 | -1.2 | -0.4\% | 48.1\% | ${ }_{3}^{373.3}$ | ${ }^{373.5}$ | 0.2 | 0.0\% |
 | 49.4\% | 300.5 | 299.0 | -1.5 | -0.5\% | 49.4\% | ${ }^{372.7}$ | 370.6 | -2.0 | -0.5\% |
 | 50.6\% | 2997 | 298.7 | -1.0 | -0.3\% | 50.6\% | ${ }_{366.8}$ | 366.0 | -0.8 | -0.2\% |
 | 51.9\% | ${ }^{298.8}$ | 297.4 | -1.5 | -0.5\% | 51.9\% | ${ }^{359.7}$ | 365.8 | 6.1 | 1.7\% |
 | 53.1\% | 297.8 | 294.5 | -3.3 | -1.1\% | 53.1\% | ${ }_{356.6}$ | ${ }_{365.3}$ | 8.8 | 2.5\% |
 | 54.3\% | ${ }^{295.6}$ | ${ }^{293.6}$ | -1.9 | -0.7\% | 54.3\% | ${ }^{354.3}$ | ${ }_{363.7}$ | 9.4 | 2.7\% |
 | 55.6\% | ${ }^{293.2}$ | 292.7 | -0.5 | -0.2\% | 55.6\% | 346.3 | ${ }^{357.4}$ | 11.2 | 2\% |
 | 56.8\% | 29.1 | ${ }^{292.2}$ | 1.1 | 0.4\% | 56.8\% | ${ }^{338.8}$ | ${ }^{357.1}$ | 18.3 | 5.4\% |
 | 55.0\% | 29.10 | 29.4 | 0.5 | 0.2\% | 58.0\% | ${ }_{338.3}^{338 .}$ | 356.6
 356.3 | 18.3 | 5.4\% |
 | 59.3\% | 290.8 | ${ }^{290.8}$ | | 0.0\% | 59.3\% | ${ }^{337.0}$ | 356.3 | 19.3 | 5.7\% |
 | ${ }^{66.5 \%}$ | 289.1 | 290.2 | 1.1 | 0.4\% | 60.5\% | 334.0 | $\begin{array}{r}337.4 \\ 33.4 \\ \hline\end{array}$ | ${ }^{3} .4$ | ${ }^{1.0 \%}$ |
 | 61.7\% | ${ }^{288.5}$ | ${ }^{287.8}$ | -0.7 | -0.2\% | 61.7\% | 330.9 | 336.3 | ${ }_{5} 5.4$ | 1.6\% |
 | 63.0\% | ${ }_{285}^{285}$ | ${ }_{286.1}^{288.1}$ | -1.1. | -0.4\%\% | 63.0\% | 328.9 328 | ${ }_{\text {3 }} 336.2$ | ${ }_{5}^{7.3}$ | ${ }^{2.2 \%}$ |
 | 64.2\% | ${ }^{285.6}$ | 284.8 | -0.9 | -0.3\% | ${ }^{64.2 \%}$ | ${ }_{326.3}$ | 331.8 | 5.5 | \% |
 | 65.4\% | ${ }^{285.6}$ | 284.7 | -0.9 | -0.3\% | 65.4\% | ${ }_{325.2}$ | ${ }^{324.8}$ | -0.4 | -0.1\% |
 | 5.7\% | 284.5 | 284.6 | 0.2 | 0.1\% | 66.7\% | ${ }^{325.2}$ | 322.9 | -2.3 | .7\% |
 | 67.9\% | ${ }^{2843}$ | ${ }_{28,5}^{283.5}$ | -0.8 | -0.3\% | 67.9\% | ${ }^{3220}$ | ${ }_{322.9}$ | 2.9 | 0.9\% |
 | 69.1\% | ${ }^{283.2}$ | ${ }^{282.6}$ | -0.7 | -0.2\% | 69.1\% | 317.3 | ${ }^{321.6}$ | ${ }^{4.3}$ | 1.4\% |
 | ${ }^{77.4 \%}$ | ${ }_{28,1}^{282.7}$ | ${ }_{28.4}^{2824}$ | -0.3 | -0.1\% | 70.4\% | 311.5 3108 | 319.1 | ${ }^{7} .6$ | 2.4\% |
 | 71.6\% | ${ }_{271.8}^{287}$ | ${ }_{271.3}^{287}$ | -0.5 | -0.2\% | 71.6\% | 310.8 | ${ }_{\text {cher }}^{317.6}$ | ${ }^{6.8}$ | 2.2\% |
 | ${ }^{72.8 \%}$ | 27.5 | ${ }_{279.5}^{2793}$ | 0.1 | 0.0\% | 72.8\% | 309.2 | ${ }_{315.2}^{315}$ | ${ }^{6.0}$ | 1.9\% |
 | 74.1\% | ${ }_{27}^{27.4}$ | ${ }_{279}^{2793}$ | -0.1 | 0.0\% | 74.19\% | 309.1 | 315.0 | 5.9 | 19\% |
 | 75.3\% | 278.5 | ${ }_{278}^{279}$ | 0.7 | 0.2\% | 75.3\% | 308.6 3046 | 309.0 30.1 | ${ }^{0.3}$ | 0.1\% |
 | 76.5\% | ${ }_{278.4}^{2787}$ | ${ }_{278.3}^{278.3}$ | -0.1 | 0.0\% | 76.5\% | 304.1 | 306.1 | 2.1 | \% |
 | 779.8\% | 277.7 | 278.2 | -1.5 | -0.5\% | 77.8\% | 301.5 | 304.1 | ${ }^{2.6}$ | 0.9\% |
 | 79.0\% | 274.0 | 278.1 | ${ }^{2.1}$ | 0.8\% | 79.0\% | 30.11 | 301.6 | 0.5 | 2\% |
 | ${ }^{80.2 \%}$ | 273.8 | 274.0 | ${ }^{2.2}$ | 0.1\% | 80.2\% | 296.7 | 300.9 208 | ${ }^{4.2}$ | 1.4\% |
 | 81.5\% | 27.4 | ${ }_{273.5}^{273}$ | ${ }^{2.1}$ | 0.8\% | ${ }^{81.5 \%}$ | ${ }_{292}^{294.6}$ | 298.4 | ${ }^{3.8}$ | .3\% |
 | 82.7\% | ${ }_{26.1}^{268.8}$ | 27.9 | ${ }^{3.1}$ | 1.2\% | 82.7\% | 292.7 | ${ }_{294}^{294}$ | 1.7 | 0.6\% |
 | 84.0\% | 26.1 | 27.9 | ${ }^{6.8}$ | 2.6\% | 84.0\% | 28997 | ${ }_{29}^{2929}$ | ${ }^{3.0}$ | 1.0\% |
 | 85.2\% | ${ }_{264.3}^{2683}$ | 266.9 | ${ }^{2.1}$ | 1.0\% | 85.2\% | ${ }_{288}^{2887}$ | 29.9 | ${ }^{3.1}$ | 1.1\% |
 | 88.4\% | ${ }^{263.2}$ | ${ }_{262.1}$ | -1.1 | ${ }^{-0.4 \%}$ | ${ }^{86.4 \%}$ | ${ }^{288.0}$ | ${ }_{285}^{2869}$ | -1.19 | 0.4\% |
 | 887.\% | ${ }_{2621}^{2621}$ | 26.4 | -1.7 | -0.6\% | 87.7\% | ${ }_{28,8}^{284}$ | 285.7 | 0.9 | 0.3\% |
 | 88.9\% | ${ }_{261.7}^{2657}$ | 26.2 | 1.5 | -0.6\% | ${ }^{88.9 \%}$ | ${ }_{28.1}^{282.1}$ | ${ }_{284}^{2848}$ | ${ }^{2.7}$ | .0\% |
 | 90.1\% | ${ }_{2597}^{2597}$ | 260.1 | 0.4 | 0.17\% | 90.14\% | ${ }_{280.6}^{288.6}$ | ${ }_{28.4}^{282.4}$ | 1.8
 8 | 0.6\% |
 | 99.4\% | ${ }_{257.7}$ | ${ }_{259.9}^{259.5}$ | 1.8 | 0.76 | 91.4\% | ${ }^{287.6}$ | ${ }_{281.3}$ | 0.8 | 0.3\% |
 | 92.6\% | ${ }_{254}^{257.5}$ | ${ }_{2558}^{258.7}$ | 1.2 | 0.5\% | ${ }^{92.6 \%}$ | 277.7 | 281.1 | 3.4 | .2\% |
 | 93.8\% | ${ }_{254}^{254}$ | ${ }_{255}^{2558}$ | 1.0 | 0.4\% | 93.8\% | 277.1 | ${ }_{278}^{2798}$ | ${ }^{2.7}$ | 1.0\% |
 | 95.1\% | 251.8 | ${ }^{252.0}$ | 0.1 | 0.1\% | 95.1\% | ${ }_{275}^{276.2}$ | ${ }_{273.1}^{278}$ | 1.9 | 0.7\% |
 | ${ }^{99.3 \% \%}$ | ${ }_{251.0}$ | ${ }^{249.3}$ | -1.7 | -0.7\% | ${ }^{96,3 \%}$ | 275.5 | ${ }_{273}^{273}$ | -2.2 | -0.8\% |
 | 97.5\% | ${ }^{246.2}$ | | -0.5 | -0.2\% | \% | 4.8 | 270.9 | 6.1 | 3\% |
 | 年 98.8% | ${ }_{233}^{242.6}$ | ${ }_{2338}^{24.9}$ | $\begin{array}{r}-0.7 \\ 0.4 \\ \hline\end{array}$ | -0.3\% | 年 98.8% | 263.9 2545 | ${ }_{2530}^{264.3}$ | 0.5
 .16 | -0.2\% |

 | | | |
 | :--- | :--- | :--- | :--- |
 | | | |

 Figure SQ-30-b
 Victoria Canal at Alternative Intake, Monthly EC

 Table SQ -3O-b
 al at at atemaive Intake, Monthy EC

 | $\begin{gathered} \text { Percent } \\ \hline \text { Exceedance } \\ \text { Probability } \end{gathered}$ | October | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {WSIP }}^{\text {207 }}$ Prowict Witout | WSIP 2070 With Project | Absolute | |
 | | Monthly EC | Monthly EC | (UMHOLSCM) | ference (\%) |
 | (\%) | OMHO | Ho | | |
 | | 620.5 | 618.9 | -1.6 | 0.3\% |
 | 1.2\% | 618.2 | 583.1 | -35.1 | -5.7 |
 | 2.5\% | 614.2 | 555.1 | | |
 | 3.7\%\% | 611.8 5838 | 572.7 571.5 | - ${ }_{-12.2}$ | ${ }_{-2.1 \%}^{-6.4 \%}$ |
 | 6.2\% | 580.1 | 568.9 | -11.2 | -1.9\% |
 | 7.4\% | 578.1 | 568.7 | -9.3 | |
 | 8.6\% | 569.4 | 563.9 | -5.5 | -1.0\% |
 | 9.9\% | 566.7 | 557.5 | -9.2 | -1.6\% |
 | ${ }^{11.1 \%}$ | ${ }_{562.1}^{566.1}$ | 556.7 554.1 | -9.4 | -1.7\% |
 | 13.2\% | 562.0 | 552.9 | -9.1 | -1.6\% |
 | 14.8\% | 560.1 | 548.1 | -12.1 | -2.2\% |
 | | 557.9 556.7 | 547.3 538.3 | -10.6 -18.4 | -1.9\%\% |
 | 18.5\% | 555.8 | 534.4 | -21.4 | -3.8\% |
 | 19.8\% | 555.0 | 532.8 | -22.1 | -4.0\% |
 | ${ }^{21.0 \%}$ | 547.9 546.5 | 5331.5 530.1 | -16.3 -16.4 | -3.30\% |
 | 23.5\% | 543.9 | 529.3 | -14.7 | -2.7\% |
 | 24.7\% | 541.6 | 528.6 | -13.0 | -2.4\% |
 | 25.7.2\% | 541.5 538.5 | 523.5 588.7 | -18.0 -198 | - |
 | 28.4\% | 537.5 | 517.5 | -20.0 | -3.7\% |
 | 29.6\% | 537.5 | 516.6 | -20.9 | |
 | 30.9\% | 536.9 | 510.5 | -26.4 | -4.9\% |
 | 32.1\% | ${ }_{532.1}$ | 507.0 | -25.1 | -4.7\% |
 | 34.6\% | 519.7 | ${ }_{5}^{503.6}$ | ${ }_{-18.3}$ | --5.5\% |
 | 35.8\% | 510.6 | 500.4 | -10.1 | 2.0\% |
 | | 510.1 | 500.3 | -9.8 | -1.9\% |
 | 38.3.3\% | ${ }_{507.2}^{503.5}$ | ${ }_{499.3}^{4997}$ | -7.5 | -1.5\% |
 | 40.7\% | 503.3 | 492.4 | -10.9 | 2.2\% |
 | 42.0\% | 501.4 | 486.7 | -14.7 | -2.9\% |
 | ${ }^{43.2 \%}$ | ${ }_{494.4}^{497.1}$ | ${ }_{476.3}^{486.5}$ | -10.6 -18.1 | -2.7\% |
 | 45.7\% | 489.6 | 474.2 | -15.4 | -3.1\% |
 | ${ }^{46.9 \%}$ | 488.0 | 474.1 | -13.9 | -2.8\% |
 | ${ }^{48.19 \%}$ | ${ }_{485.4}^{48.8}$ | ${ }_{471.2}^{472.8}$ | -13.0 -14.2 | ${ }_{-2.9 \%}^{-2.7 \%}$ |
 | 50.6\% | 480.5 | 469.0 | -11.5 | , |
 | 51.9\% | 480.5 | 457.4 | -23.1 | -4.8\% |
 | 54.3\% | ${ }_{463.8}^{471.9}$ | ${ }_{4254.4}^{454}$ | - 16.5 -39.0 | -8.4\%\% |
 | 55.6\% | 407.9 | 404.3 | -3.6 | |
 | 56.8\% | 405.4 | 398.5 | -6.8 | .7\% |
 | 58.3\% | ${ }_{401.8}^{4015}$ | 397.4 394.2 | -4.4 | - -1.1% |
 | 60.5\% | 399.1 | 390.4 | ${ }_{-8.7}$ | ${ }_{-2.2 \%}$ |
 | 61.7\% | 399.0 | 387.7 | -8.3 | -2.1\% |
 | -63.0\% | 392.9 3929 | 386.7 3856 | -6.2 | -1.6\% |
 | ${ }^{64.4 \%}$ | ${ }_{390.8}$ | ${ }_{385.3}^{385.6}$ | -7.2 | -1.4\% |
 | 66.7\% | 389.7 | 383.6 | -6.2 | -1.6\% |
 | 67.9\% | 389.0 388.1 | 383.1 3814 | -5.9 | --1.7\% |
 | 70.4\% | ${ }_{3}^{388.1}$ | ${ }_{380.7}^{381.4}$ | -5.9 | -1.4\% |
 | 71.6\% | 385.4 | ${ }_{377.2}$ | -9.2 | -2.4\% |
 | 72.8\% | 385.0 384.4 | 373.6 373.6 | -11.4 | -3.0\% |
 | 75.3\% | ${ }_{384.3}$ | ${ }_{373.5}^{37.6}$ | - | -2.8\% |
 | 76.5\% | 383.9 | ${ }_{372.4}$ | -11.5 | -3.0\% |
 | 77.8\% | 383.0 | ${ }^{372.3}$ | -10.7 | -2.8\% |
 | 89.2\% | 380.9 | ${ }^{371.8}$ | -9.1 | |
 | 81.5\% | 378.0 | ${ }_{368.5}$ | -9.5 | ${ }_{-2.5 \%}$ |
 | 82.7% 880% | 370.4 | 368.2 | -2.2 | -0.6\% |
 | - $\begin{aligned} & 84.0 \% \\ & 852 \%\end{aligned}$ | ${ }^{368.5}$ | ${ }^{363.7}$ | -4.8 | 1.3\% |
 | 80.4\% | ${ }_{350.7}$ | 354.9 3492 | -1.5 | -0.4\% |
 | 87.7% 880% | 344.9 | 343.0 | -1.9 | -0.6\% |
 | ${ }^{80.1 \%}$ | 344.5 | $\begin{array}{r}339.8 \\ \hline 355\end{array}$ | -4.7 | |
 | 91.4\% | 331.7 | 335.5 | ${ }^{-6.7}$ | ${ }^{1.1 .1 \%}$ |
 | 92.6\% | 331.0 | ${ }^{335.3}$ | 4.3 | 1.3\% |
 | 995.1\% | 329.8 3920 | 331.0 324 | 1.2 | - ${ }_{\text {- }}^{\text {- } 4 \%}$ |
 | 96.3\% | 327.0 | 321.4 | -5.6 | -1.7\% |
 | 97.5\% | 326.8 | 319.9 | -6.9 | 2.1\% |
 | (100.0\% | ${ }_{2610.0}$ | ${ }_{216.7}$ | ${ }_{0.6}$ | - 0.3% |

 | | | November | | Probabili | December | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Percent | WSIP 2070 Wethout | WSIP 2070 With Project | | | Percent | WSIP 2070 Without | WSIP 2070 With Project | Absolute | |
 | dance | Proiect | | Differ | Relative | | | | Difference | Relativ |
 | Probability | Monthly EC | Monthly EC | (UMHHOSC(CM) | Difference (\%) | Probability | Monthly EC | Monthly EC | (UMHOSOSCM) | Difference (\%) |
 | 0.0\% | 730.5 | ${ }^{726.5}$ | -4.0 | -0.5\% | 0.0\% | ${ }^{734.5}$ | ${ }^{725.8}$ | -8.7 | -1.2\% |
 | 1.2\% | 670.6 | 634.6 | -36.0 | 5.48 | 1.2\% | 681 | 672 | | |
 | 2.5\% | 669.5 | 595.4 | -74.1 | 11.1\% | 2.5\% | 679.2 | 1.4 | -17.8 | |
 | 3.7\% | 651.2 | 586.5 | 64.8 | 9.9\% | 3.7\% | 665.1 | 660.0 | | |
 | 4.9\% | 603.2 | 585.3 | -17.9 | -3.0\% | 4.9\% | 652.9 | 9.4 | 6.5 | |
 | 6.2\% | 598.3 | 570.6 | 27.7 | 4.6\% | 6.2\% | 652.3 | 642.8 | 9.5 | |
 | 7.4\% | 589.2 | 563.6 | -25.6 | -4.3\% | 7.4\% | 638 | | 7.9 | |
 | 8.6\% | 589.1 | 555.6 | -3.5 | -5.7\% | 8.6\% | 633.5 | 619.0 | 14.6 | |
 | 9.9\% | 584.8 | 552.2 | -32.6 | 5.6\% | 9.9\% | 630.8 | 617.8 | 12.9 | |
 | 11.1\% | 560.1 | 547.5 | 12.6 | 2.3\% | 11.1\% | 622.2 | 613.4 | 8.8 | .4\% |
 | 12.3\% | 541.4 | 543.8 | 2.4 | 0.4\% | 12.3\% | 614.2 | 592.4 | 21.8 | -3.5\% |
 | 13.6\% | 535.5 | 534.2 | 1.3 | .2\% | 13.6\% | 603.6 | 591.3 | 2.3 | 0\% |
 | 14.8\% | 526.0 | 531.3 | 5.3 | 1.0\% | 14.8\% | 601.6 | 585.1 | 16.5 | |
 | 16.0\% | 517.4 | 524.9 | 7.5 | 1.4\% | 16.0\% | 597.3 | 583.2 | 14.1 | 4\% |
 | 17.3\% | 515.9 | 511.4 | -4.5 | -0.9\% | 17.3\% | 593.5 | 573.6 | 19.9 | -3.3\% |
 | 18.5\% | 504.3 | 508.8 | 4.5 | 0.9\% | 18.5\% | 583.4 | 560.6 | 22.7 | -3.9\% |
 | 19.8\% | 504.1 | 497.6 | -6.5 | 1.3\% | 19.8\% | 582.3 | 560.0 | 22.4 | \% |
 | ${ }_{2}^{21.0 \%}$ | ${ }_{4980}^{4993}$ | ${ }_{4899} 496$ | -3.21 | ${ }_{\text {- }}$ | 21.0\% | 575.8 | 54.0 5451 | -29.8 | -5.5\% |
 | ${ }^{22.25 \%}$ | | | | | | | | | |
 | 24.7\% | 493.5 | 475.3 | -18.2 | -3.7\% | 24.7\% | ${ }_{559.5}$ | ${ }_{531.4}$ | 28.1 | -5.0\% |
 | 25.9\% | 488.0 | 470.4 | -17.6 | 3.6\% | 25.9\% | 559.2 | 526.7 | -32.5 | -5.8\% |
 | 27.2\% | 488.6 | 469.4 | -17.2 | 3.5\% | 27.2\% | 548.9 | 524.0 | -24.8 | ${ }^{-4.5 \%}$ |
 | 28.4\% | 486.4 | 467.7 | -18.7 | 3.3\% | 28.4\% | 548.3 | 515.4 | -32.8 | -6.0\% |
 | 29.6\% | 486.1 | 467.2 | -18.9 | -3.9\% | 29.6\% | 547.7 | 512.8 | -34.9 | -6.4\% |
 | 30.9\% | ${ }^{485.3}$ | 457.3 | -28.0 | -5.8\% | 30.9\% | 527.8 | 511.5 | -16.3 | -3.1\% |
 | 32.1\% | 484.0 | 455.8 | -28.2 | -5.8\% | 32.1\% | 526.7 | 510.0 | -16.7 | -3.2\% |
 | 33.3\% | 477.8 | 450.7 | -27.1 | -5.7\% | 33.3\% | 522.5 | 505.1 | -17.4 | -3.3\% |
 | 34.6\% | 475.5 | 447.6 | -27.9 | -5.9\% | 34.6\% | 519.8 | 487.7 | -32.1 | -6.2\% |
 | 35.8\% | 474.6 | 441.7 | -33.0 | -6.9\% | 35.8\% | 515.0 | 486.5 | -28.5 | -5.5\% |
 | 37.0\% | 458.6 | 439.5 | -19.0 | -4.2\% | 37.0\% | 498.0 | 479.2 | -18.8 | -3.8\% |
 | 38.3\% | 456.9 | 439.2 | -17.8 | -3.9\% | 38.3\% | 489.1 | 473.5 | -15.5 | -3.2\% |
 | 39.5\% | 453.9 | 437.9 | -16.1 | -3.5\% | 39.5\% | 473.6 | 459.4 | -14.3 | -3.0\% |
 | 40.7\% | 452.3 | 431.2 | -21.1 | -4.7\% | 40.7\% | 463.1 | 455.9 | -7.3 | -1.6\% |
 | 42.0\% | 449.0 | 420.9 | -28.1 | -6.3\% | 42.0\% | 461.7 | 454.5 | -7.2 | -1.6\% |
 | 43.2\% | 447.4 | ${ }^{420.3}$ | -27.1 | -6.1\% | 43.2\% | 450.0 | 452.4 | 2.4 | 0.5\% |
 | 44.4\% | 446.8 | 420.2 | -26.6 | -6.0\% | 44.4\% | 438.0 | 436.1 | -1.9 | -0.4\% |
 | 45.7\% | 444.9 | 415.4 | -29.5 | -6.6\% | 45.7\% | 429.9 | 429.1 | -0.8 | -0.2\% |
 | 46.9\% | 430.6 | 408.8 | -21.8 | -5.1\% | 46.9\% | 425.7 | 428.2 | 2.6 | 0.6\% |
 | 48.1\% | ${ }_{428.6}$ | 404.7 | -23.8 | -5.6\% | 48.1\% | 415.2 | 415.9 | 0.7 | 0.2\% |
 | 49.4\% | 417.2 | 404.6 | -12.6 | -3.0\% | 49.4\% | 409.5 | 408.2 | -1.3 | -0.3\% |
 | 50.6\% | 417.1 | 402.9 | -14.2 | -3.4\% | 50.6\% | 404.7 | 407.5 | 2.9 | 0.7\% |
 | 51.9\% | 410.4 | 336.6 | -13.8 | -3.4\% | 51.9\% | 395.0 | 397.6 | 2.7 | 0.7\% |
 | 53.1\% | ${ }^{405.7}$ | 396.1 | -9.6 | -2.4\% | 53.1\% | 390.0 | 389.5 | -0.5 | -0.1\% |
 | 54.3\% | 405.3 | 393.6 | -11.6 | -2.9\% | 54.3\% | 3897 | 388.0 | -1.8 | -0.5\% |
 | 55.6\% | 404.0 | 389.4 | -14.6 | -3.6\% | 55.6\% | 386.5 | 382.2 | -4.3 | -1.1\% |
 | 56.8\% | 402.8 | 384.5 | -18.3 | -4.5\% | 56.8\% | 379.5 | 364.9 | -14.6 | -3.8\% |
 | 58.0\% | 39999 | 381.9 | -18.0 | -4.5\% | 58.0\% | 377.6 | 364.1 | -13.4 | 3.6\% |
 | 50.5\% | 398.9 | 381.1 | -17.8 | -4.5\% | 59.3\% | ${ }^{376.5}$ | ${ }^{360.2}$ | -16.2 | -4.3\% |
 | ${ }^{60.17 \%}$ | ${ }_{387.9}^{393.5}$ | 380.5 380.0 | -7.9 | --3.0\% | 60.7\% | ${ }_{364.6}^{365.2}$ | 359.9 359.5 | -5.1 | ${ }^{-1.4 \% \%}$ |
 | 63.0\% | 386.3 | 377.4 | -8.9 | -2.3\% | 63.0\% | 356.0 | 356.9 | 0.9 | 0.2\% |
 | 64.2\% | 385.6 | 374.7 | -10.8 | -2.8\% | 64.2\% | 354.8 | 356.8 | 2.0 | 0.6\% |
 | 65.4\% | 383.7 | 374.3 | -9.4 | -2.4\% | 65.4\% | 354.4 | 351.2 | -3.2 | -0.9\% |
 | - $6.6 .7 \%$ 6.9\% | ${ }_{3}^{383.5}$ | ${ }_{3}^{373.1}$ | -10.4 | -2.7\% | ${ }^{66.7 \%}$ | ${ }_{351.1}$ | ${ }^{350.6}$ | -0.5 | -0.1\% |
 | 69.1\% | 378.3 | 367.4 | -10.9 | -2.9\% | 69.1\% | ${ }_{346.6}$ | 345.9 | -0.7 | ${ }^{-0.4 \%}$ |
 | 70.4\% | 377.7 | 365.7 | -12.0 | -3.2\% | 70.4\% | 342.9 | 341.4 | -1.5 | -0.4\% |
 | 71.6\% | ${ }^{372.6}$ | 362.7 | -9.9 | -2.6\% | 71.6\% | ${ }^{340.7}$ | ${ }_{3}^{335.7}$ | -5.0 | -1.5\% |
 | 72.8\% | 367.9 367.0 | 360.8 358.9 | -7.0 -8.1 | -2.2\%\% | 72.8\% | 337.5 333.5 | 333.7 3280 | -.35 | ${ }^{-1.19 \%}$ |
 | 75.3\% | 363.1 | 358.4 | -4.7 | 1.3\% | 75.3\% | 333.4 | 324.9 | -8.5 | -2.5\% |
 | 76.5\% | 360.4 | 357.6 | -2.8 | -0.8\% | 76.5\% | 333.4 | 323.5 | -9.9 | -3.0\% |
 | 77.8\% | 360.2 | 356.3 359 | -3.8 | -1.1\% | 77.8\% | 329.3 3923 | 321.5 | -7.8 | -2.4\% |
 | 89.2\% | ${ }_{3}^{355.7}$ | 353.9 352.0 | -4.9 | -1.4\% | 89.0\% | 323.2 3231 | ${ }^{319.2}$ | -4.1 | -1.3\% |
 | 81.5\% | 356.7 | 351.8 | -4.9 | ${ }^{-1.4 \%}$ | 81.5\% | 3388.6 | ${ }_{317.2}$ | -1.4 | -0.5\% |
 | 82.7\% | 353.3 | 351.6 | -1.7 | -0.5\% | 82.7\% | 312.9 | 315.8 | 3.0 | 0.9\% |
 | 84.0\% | 348.6 | 349.4 | 0.8 | 0.2\% | 84.0\% | 309.9 | 313.9 | 4.0 | 1.3\% |
 | 85.2\% | 347.1 | 349.2 | 2.1 | 0.6\% | 85.2\% | 309.4 | 308.3 | -1.1 | . 4% |
 | - $\begin{aligned} & 86.4 \% \\ & 87.7 \%\end{aligned}$ | 345.5
 345 | 347.9 | ${ }^{2.5}$ | ${ }_{0}^{0.7 \% \%}$ | 86.4\% | 300.1 | 307.9 | 1.8 | 0.6\% |
 | 88.9\% | 343.1 | 344.0 | 1.8 -2.6 | -0.7\% | 887.9\% | ${ }_{303.1}^{306.0}$ | ${ }_{302.5}^{300.5}$ | -0.5 | -0.2\% |
 | 90.1\% | 340.6 | 338.9 | -1.7 | -0.5\% | 90.1\% | 302.9 | 301.5 | -1.4 | -0.5\% |
 | 91.4\% | 338.6 | 337.4 | -1.2 | -0.4\% | 91.4\% | 301.9 | 299.8 | -2.0 | -0.7\% |
 | 92.6\% | 335.6 | 336.7 | 1.2 | 0.3\% | 92.6\% | 299.5 | 299.5 | 0.0 | 0.0\% |
 | ${ }^{93.8 \%} 9$ | ${ }_{3}^{336.1}$ | ${ }_{32409}$ | -2.4 | -0.7\% | ${ }^{93.8 \%}$ | 296.2 | 286.7 | 9.5 | ${ }^{-3.2 \%}$ |
 | 96.3\% | 321.7 | 314.9 | -6.8 | ${ }_{\text {-2.1\% }}$ | ${ }_{96.3 \%}$ | 238.4 | 244.0 | 5.6 | 2.3\% |
 | 97.5\% | 308.3 | 309.2 | 0.9 | 0.3\% | 97.5\% | ${ }_{2}^{224.7}$ | ${ }^{225.0}$ | ${ }^{0.3}$ | 0.1\% |
 | 98.8\% | ${ }_{2}^{262.1}$ | ${ }_{261.8}^{2372}$ | -0.3 | -0.1\% | 98.8\% | 196.4 | 199.6 | 0.2 | 0.1\% |
 | 100.0\% | 236.6 | 237.2 | 0.5 | 0.2\% | 100.0\% | 191.4 | 192.0 | 0.5 | 0.3\% |

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[b]{3}{*}{\[
 \begin{array}{|c}
 \text { Percent } \\
 \text { Exceedance } \\
 \text { Probabilily }
 \end{array}
 \]} \& \multicolumn{4}{|c|}{January} \\
 \hline \& WSIP 2070 Prithout \& WSIP 2070 With Project \& Absolute \& \\
 \hline \& Monthly EC \& Monthly EC \& Difference
 (UWHOSCM) \& Difference (\%) \\
 \hline (\%) \& (UMHHSSCM 865 \& UMHHOSIC1 \& 179 \& 21\% \\
 \hline 12\% \& 7494 \& 8487 \& 377 \& \(50 \%\) \\
 \hline 2.5\% \& 736.2 \& 739.2 \& 3.0 \& 0.4\% \\
 \hline 3.7\% \& \({ }^{730.3}\) \& 730.6 \& 0.2 \& 0.0\% \\
 \hline 4.9\% \& 703.3 \& 703.4 \& 0.1 \& 0.0\% \\
 \hline 7.4\% \& \({ }_{648.5}^{653.6}\) \& 680.6
 679.1 \& 27.0
 30.5 \& 4.7\%\% \\
 \hline 8.6\% \& 647.3 \& 660.2 \& 12.8 \& 2.0\% \\
 \hline 9.9\% \& 626.3 \& 658.4 \& 32.1 \& 5.1\% \\
 \hline 11.19\% \& 613.6 \& \({ }^{653.3}\) \& 39.7 \& 6.5\% \\
 \hline 12.3\% \& 600.8 \& 631.3 \& 24.6 \& 4.1\% \\
 \hline 俍 \(\begin{aligned} \& 13.6 \% \\ \& 14.8 \%\end{aligned}\) \& \({ }_{601.7}^{601.4}\) \& 623.4
 6616.5 \& 21.7
 15.1 \& 2.5\%\% \\
 \hline 16.0\% \& 601.3 \& 616.1 \& 14.8 \& 2.5\% \\
 \hline 17.3\% \& 599.2 \& 609.0 \& 9.8 \& 1.6\% \\
 \hline 18.5\% \& 597.0
 598.0 \& 600.1 \& 9.1 \& 1.5\% \\
 \hline 19.8\% \& 599.2 \& \& 9.8 \& 1.6\% \\
 \hline \({ }_{2}^{22.2 \%}\) \& 587.3
 580.6 \& 605.1
 602.9 \& \(\begin{array}{r}17.8 \\ 22.3 \\ \hline\end{array}\) \& 3.8\% \\
 \hline 23.5\% \& 579.0 \& 596.2 \& 17.2 \& 3.0\% \\
 \hline 24.7\% \& 576.3 \& 585.1 \& 8.8 \& 1.5\% \\
 \hline 25.9\% \& 575.2 \& 585.0 \& \({ }^{9.8}\) \& 1.7\% \\
 \hline 27.2\% \& 572.5 \& 583.7 \& 11.2 \& 2.0\% \\
 \hline 28.4.4\% \& 571.4
 569.3 \& 577.2
 573.9 \& \begin{tabular}{l}
 5.8 \\
 4.6 \\
 \hline
 \end{tabular} \& - \\
 \hline 30.9\% \& 568.8 \& 571.1 \& \({ }^{2.3}\) \& 0.4\% \\
 \hline 32.1\% \& 566.1 \& \({ }_{564.9}\) \& -1.2 \& -0.2\% \\
 \hline 334.6\% \& \({ }_{561.6}^{5654}\) \& 561.2
 558.6 \& - \({ }_{-4.0}\) \& \({ }_{\text {- }}^{-0.5 \%}\) \\
 \hline 35.8\% \& 559.9 \& 557.5 \& -2.4 \& -0.4\% \\
 \hline 37.\% \& 559.8 \& 555.7 \& -4.1 \& -0.7\% \\
 \hline 38.3\% \& 555.3 \& 553.5 \& -1.8 \& -0.3\% \\
 \hline 39.5\% \& 549.9 \& 552.3 \& \({ }^{2.3}\) \& 0.4\% \\
 \hline \({ }^{40.7 \%}\) \& \({ }_{541.5}^{542.6}\) \& \({ }_{5458.0}^{550.5}\) \& 7.9
 6.5 \& 1.2\% \\
 \hline 43.2\% \& 540.1 \& 545.6 \& 5.4 \& 1.0\% \\
 \hline 44.4\% \& 537.3 \& 541.4 \& 4.1 \& 0.8\% \\
 \hline 45.7\% \& 536.6 \& 540.0 \& 3.5 \& 0.6\% \\
 \hline 46.9\% \& 532.0 \& 540.0 \& 8.0 \& 1.5\% \\
 \hline \({ }_{4}^{48.4 \%}\) \& \({ }_{522.9}^{52.2}\) \& 539.2
 535.6 \& 10.0
 12.7 \& 2.4\% \\
 \hline 50.6\% \& 521.7 \& 530.6 \& 8.9 \& 1.7\% \\
 \hline \& 519.5 \& \({ }_{5}^{529.7}\) \& 10.2 \& \({ }^{2.0 \%}\) \\
 \hline \({ }_{5}^{53.13 \%}\) \& 512.0
 506.9 \& \({ }_{5253.3}^{525}\) \& \begin{tabular}{l}
 13.2 \\
 16.4 \\
 \hline
 \end{tabular} \& \({ }_{3.2 \%}^{2.6 \%}\) \\
 \hline 55.6\% \& 495.8 \& 520.3 \& 24.5 \& 4.9\% \\
 \hline \& 492.0 \& 511.8 \& \& 4.0\% \\
 \hline 58.0\% \& \({ }_{488.6}^{484}\) \& 510.7
 507.4 \& \({ }_{26.8}^{26.2}\) \& \\
 \hline 60.5\% \& 478.0 \& 490.2 \& \({ }^{122} 2\) \& 2.5\% \\
 \hline \({ }^{61.7 \%}\) \& 477.9 \& 489.7 \& 11.9 \& 2.5\% \\
 \hline 64.2\% \& \({ }_{475.6}^{4769}\) \& \({ }_{499.7}^{487}\) \& 4.2 \& 2.9\% \\
 \hline 65.4\% \& 472.9 \& 477.3 \& 4.4 \& 0.9\% \\
 \hline \({ }^{66.7 \%}\) \& 470.8 \& 476.7 \& 5.9 \& \({ }^{1.2 \%}\) \\
 \hline 69.1\% \& \({ }_{467.6}\) \& \({ }_{472.7}^{478.0}\) \& 5.1 \& 1.1\% \\
 \hline 70.4\% \& 466.9 \& 469.7 \& 2.8 \& 0.6\% \\
 \hline 71.6\% \& 464.6 \& 468.5 \& 3.9 \& - \({ }_{\text {0,8\% }}^{310}\) \\
 \hline 74.1\% \& \({ }_{450.7}^{453.8}\) \& \({ }_{467.8}^{467.9}\) \& 14.1
 17.1 \& 3.8\% \\
 \hline 75.3\% \& 436.9 \& 465.2 \& 28.3 \& 6.5\% \\
 \hline 76.5\% \& 433.2 \& 456.6 \& 23.4 \& \({ }^{5.4 \%}\) \\
 \hline 79.0\% \& \({ }_{418.1}^{426.6}\) \& \({ }_{401.1}^{451.6}\) \& \({ }_{22.0}^{25.1}\) \& 5.3\% \\
 \hline 80.2\% \& 417.4 \& 6.6 \& 19.2 \& 4.6\% \\
 \hline 81.5\% \& 408.9 \& 433.0 \& 24.1 \& 5.9\% \\
 \hline 82.7\% \& 408.7 \& 409.3 \& 0.6 \& 0.1\% \\
 \hline 84.0\% \& 401.4 \& 409.0 \& 7.6 \& 1.9\% \\
 \hline \({ }_{86.4 \%}\) \& 301.4
 3814 \& \({ }_{399.3}\) \& \begin{tabular}{l}
 7.9 \\
 \hline
 \end{tabular} \& \({ }_{2.1 \%}^{0.2 \%}\) \\
 \hline 877\% \& 348.7
 3385 \& 351.5
 3382 \& 2.7 \& 0.8\% \\
 \hline 88.9\% \& 338.5 \& \& -0.3 \& \\
 \hline 91.4\% \& 3324.9 \& \({ }_{325.3}^{33.2}\) \& \({ }_{0} 0.4\) \& 0.1\% \\
 \hline 92.6\% \& \begin{tabular}{l}
 324.6 \\
 32.6 \\
 \hline
 \end{tabular} \& 325.1
 3122 \& 0.5 \& 0.2\% \\
 \hline 93.8\% \& 312.2

 2920 \& 312.2

 288.1 \& -3.0 \&

 \hline ${ }_{9}^{956.13 \%}$ \& 292.0
 274.6 \& ${ }_{277.5}^{288.1}$ \& -3.9
 3.0 \& -1.1\%

 \hline 97.5\% \& 270.2 \& 267.5 \& -2.7 \& -1.0\%

 \hline 100.0\% \& $\stackrel{\text { 217.1 }}{24.6}$ \& ${ }_{217.2}^{24.9}$ \& 0.2
 0.1 \& 0.0\%

 \hline
 \end{tabular}

 | $\begin{aligned} & \hline \text { Percent } \\ & \text { Exceedance } \\ & \text { Probabaility } \end{aligned}$ | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2077 Without | WSIP 2070 With Project | Absolute | |
 | | Monthly EC | Monthly EC | （itierence | Difference（\％） |
 | \％） | | 7937 | | |
 | 0．0\％ | ${ }^{843,8}$ | 793.7 | －50．2 | －5．9\％ |
 | 1．2\％ | 783.9 | 701.1 | －82．8 | －10．6\％ |
 | 2．5\％ | 709.1 | ${ }^{688.1}$ | －20．9 | －3．0\％ |
 | ${ }^{3.70 \%}$ | ${ }^{7050}$ | ${ }_{677.1}$ | －27．4 | －1．6\％ |
 | 6．2\％ | 686.6 | 661.2 | －25．4 | －3．7\％ |
 | 7．4\％ | 681.1 | 657.3 | －23．8 | －3．5\％ |
 | | 664.4 632.0 | 647.4 6458 | －17．0 138 | ${ }_{2}^{-2.6 \%}$ |
 | ${ }^{\text {919\％}}$ | 632.0 6154 | ${ }_{6420}^{64.8}$ | 13.8
 2.7 | ${ }^{2.2 \%}$ |
 | | 615.4 612.8 | 642.0 628.5 | 26.7 15.8 | ${ }_{\text {2．6\％}}$ |
 | 13．6\％ | 607.4 | 628.5 | 21.1 | 3．5\％ |
 | 14．8\％ | ${ }^{600.5}$ | 617.2 | 10.7 | 1．8\％ |
 | － | 600．8 595.2 | 616.9 6616.5 | 16.1 21.2 | 2．7\％ |
 | 18．5\％ | 595.2 | 602.6 | 7.5 | 1．3\％ |
 | 19．8\％ | 594.7 | 601.2 | 6.5 | 1．1\％ |
 | ${ }_{22}^{21.0 \%}$ | $\begin{array}{r}599.4 \\ 594 . \\ \hline\end{array}$ | 600．8
 599 | 6.5
 58
 8 | $\xrightarrow{1.1 \%}$ |
 | 23．5\％ | 591.4 | ${ }_{599.4}$ | 7.9 | 1．3\％ |
 | 24．7\％ | 588.3 | 596.1 | 7.7 | 1．3\％ |
 | 25．9\％ | 585.9
 5774 | 589.1 5874 | 3.2 100 | －${ }_{1}^{0.5 \%}$ |
 | 28．4\％ | 575.6 | ${ }_{587.2}$ | 11.6 | 2．0\％ |
 | 29．6\％ | 570.0 | 586.6 | 16.6 | 2．9\％ |
 | 30．9\％ | 568.0 564.8 | ${ }_{585.6}^{580.2}$ | 12.2 10.8 | ${ }^{2.2 \%}$ |
 | 33．3\％ | 554.0 | 575.4 | 21.4 | 3．9\％ |
 | | 553.8 | 567.1 | 13.3 | 2．4\％ |
 | 37．0\％ | ${ }_{5}^{533.0}$ | ${ }_{566.5}^{563.1}$ | ${ }_{23.5}^{27.2}$ | 5．4\％ |
 | 38．3\％ | 530.8 | 556.1 | ${ }_{25.3}$ | 4．8\％ |
 | 39．5\％ | 527.7 5 57 | 553.8 | ${ }^{26.1}$ | 4．9\％ |
 | ${ }^{40.7 \%}$ | 527．2 524.9 | 537.5 535.0 | 10.3 10.2 | ${ }^{2.0 \%}$ |
 | 43．2\％ | 518.2 | 534.6 | 16.3 | 3．2\％ |
 | 44．4\％ | 516.2 | 529.7 | 13.5 | 2．6\％ |
 | 455．7\％ | 515.0 502.1 | 520.6
 513.6 | 5.6 11.4 1 | |
 | 48．1\％ | 496.4 | 502.8 | 6.4 | 1．3\％ |
 | 49．4\％ | 494．3 | ${ }_{5}^{501.6}$ | 7.3 | ${ }^{1.5 \%}$ |
 | 50．6\％ | ${ }_{490.3}^{49.2}$ | 500.2 497.5 | ${ }_{7.1}^{9.0}$ | －${ }_{\text {1．5\％}}^{\text {1．5\％}}$ |
 | 53．1\％ | 490.0 | 496.8 | 6.7 | 1．4\％ |
 | 54．3\％ | 483.5 | 494.5 | 11.0 | 2．3\％ |
 | 55．6\％ | ${ }_{472.7}^{478.1}$ | ${ }_{474.2}^{487.0}$ | 8.9 1.4 | |
 | 58．0\％ | 469.5 | 473.1 | 36 | 0．8\％ |
 | 59．3\％ | 461.3 | 461.6 | 0.3 | 0．1\％ |
 | ${ }_{6}^{60.7 \%}$ | ${ }_{499.3}^{450.5}$ | ${ }_{450.6}^{459}$ | ${ }_{1.3}^{9.2}$ | 2．3\％ |
 | 63．0\％ | 442.4 | 443.5 | 11 | 0．2\％ |
 | 64．2\％ | 441.2 | 442.1 | 0.9 | 0．2\％ |
 | 析 $6.4 \% \%$ | ${ }_{4}^{436.0}$ | 436.9 434.3 | 0.9 0.3 | －${ }_{\text {0．2\％}}^{0.1 \%}$ |
 | 67．9\％ | 425.5 | 425.6 | 0.0 | 0．0\％ |
 | 69．1\％ | 417.6 | 424.1 | 6.5 | 1．6\％ |
 | 7．1．6\％ | 4157.7 | ${ }_{410.5}^{416.5}$ | 1.2
 2.8 | －${ }_{\text {0．7\％}}^{0.7 \%}$ |
 | 72．8\％ | 402.9 | 403.7 | 0.9 | 0．2\％ |
 | 74．19\％ | ${ }_{382.1}$ | 382.4 | 0.3 | 0．1\％ |
 | 75．3\％ | 3771.2 341.9 | 377.2 34.0 | ${ }_{2}^{-0.9}$ | － |
 | 77．8\％ | 338.5 | 338.6 | 0.1 | 0．0\％ |
 | 79．0\％ | 325.1 | 328.1 | 3.0 | 0．9\％ |
 | 80．2\％ | 307.0 | 307.7 | 0.7 | 0．2\％ |
 | 81．5\％ | 304.7 | 298.5 | －6．2 | －2．0\％ |
 | － | 294.8 281.3 | 291.8 28.1 | 0.3 0.5 | － 0.1% |
 | 85．2\％ | 279.0 | 279.2 | 0.2 | 0．1\％ |
 | 86．4\％ | 278.6 | 277.5 | －1．1 | －0．4\％ |
 | 87．7\％ | 276.6 | 272.8 | －3．9 | －1．4\％ |
 | 88．9\％ | 271.2 | 262.1 | －9．0 | －3．3\％ |
 | 90．1\％ 9 | ${ }_{2}^{262.1}$ | 262.0 | 0.0 | 0．0\％ |
 | 92．6\％ | ${ }_{256.2}$ | ${ }_{\text {257．1 }}^{259.2}$ | 2．9 | 0．8\％ |
 | 93．8\％ | 253.2 | 254.0 | 0.8 | 0．3\％ |
 | 95．1\％ | 246.8 | 247.5 | 0.7 | 0．3\％ |
 | 96．3\％ | 239.5 | 239.8 | 0.3 | 0．1\％ |
 | 97．5\％ | 236.0 | 237.3 | 1.3 | 0．6\％ |
 | 98．8\％ 100．0\％ | 234.9 189.5 | 235.2 189.6 | ${ }_{0}^{0.1}$ | － 0.0 0\％ |

 | | Warc | | | Probablil | April | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Percent | WSIP 2070 Without | WSIP 2070 With Project | | | percent | WSIP 2070 Without | WSIP 2077 With Project | Absolute | |
 | Exceedance | Proiect | Monthly EC | Difference | Difference ${ }^{\text {Rela }}$（\％） | Exceadance | | Monthly EC | Difference | ${ }_{\text {R }}^{\text {Relitarence }}$（\％） |
 | Proab） | （UMHOSICM） | （UMHOSICM） | | | | （UMHOSICM） | （UMHOSSCM） | （UMHOSSCM） | |
 | 0．0\％ | ${ }^{24.4}$ | 658.6 | －65．8 | 9．1\％ | 0．0\％ | 669.1 | 619.9 | －49．3 | －7．4\％ |
 | 1．2\％ | 714.1 | 58.5 | 55.5 | \％ | 1．2\％ | 608.9 | 614.1 | 5.2 | |
 | 2．5\％ | 706.7 | 653.7 | －53．0 | 7．5\％ | 2．5\％ | 599.2 | 612.2 | 3.0 | |
 | 3．7\％ | 1.7 | 0．4 | －41．3 | 6．0\％ | 3．7\％ | 598.7 | 609.9 | 11.2 | |
 | 4．9\％ | 650.1 | 646.4 | －3．7 | 0．6\％ | 4．9\％ | 598.6 | 599.1 | 0.5 | |
 | 6．2\％ | 4.8 | 6.0 | 1.2 | 0．2\％ | 6．2\％ | 593．6 | 595.7 | 2.1 | |
 | 7．4\％ | 643.9 | 629.9 | 14.0 | 2．2\％ | 7．4\％ | 584.9 | | 5.2 | |
 | 8．6\％ | 643.1 | 8.2 | 15.0 | 2．3\％ | 8．6\％ | 582.5 | 580.2 | 2.4 | |
 | 9．9\％ | 639.9 | 625.5 | －14．4 | 2．3\％ | 9．9\％ | 576.8 | 578.9 | 2.1 | |
 | 11．1\％ | 609.9 | 9.9 | 0.0 | 0．0\％ | 11．1\％ | 573.9 | 571.0 | 2.9 | |
 | 12．3\％ | 606.0 | 607.8 | 1.8 | 0．3\％ | 12．3\％ | 573.7 | 569.1 | 4.6 | |
 | 13．6\％ | 594.2 | 605.6 | 11.4 | 1．9\％ | 13．6\％ | 568.4 | 568.9 | 0.5 | 0．1\％ |
 | 14．8\％ | 590.3 | 598.0 | 7.8 | 1．3\％ | 14．8\％ | 566.7 | 566.5 | 0.2 | |
 | 16．0\％ | 582.5 | 592.9 | 10.5 | 1．8\％ | 16．0\％ | 548.3 | 549.2 | 0.9 | 0．2\％ |
 | 17．3\％ | 582.2 | 584.8 | 2.6 | 0．4\％ | 17．3\％ | 546.3 | 528.3 | －18．0 | |
 | 18．5\％ | 578.3 | 568.3 | －10．0 | －1．7\％ | 18．5\％ | 537.6 | 522.9 | －14．7 | －2．76 |
 | 19．8\％ | 574.8 | 566.8 | －7．9 | 1．4\％ | 19．8\％ | 534.8 | 521.1 | －13．7 | |
 | 21．0\％ | 569.0 5528 | 562．0 | －7．0 | －1．2\％ | 21．0\％ | 531.1 | 516.8 | －14．3 | 2．7\％ |
 | ${ }^{22.2 \%}$ | 552.8 | 551.8 | －1．0 | 0．2\％ | 22．2\％ | | 515.0 | | |
 | 23．5\％ | 545.1 5443 | ${ }_{5477.5}^{551.5}$ | 6.4
 3.0
 1 | －${ }_{\text {l }}^{\text {1．2\％\％}}$ | 234．7\％ | 年521．3 | 514.1 513.6 | -7.2 -75 | －1．4\％ |
 | 25．9\％ | 529．9 | 537.2 | 7.3 | 1．4\％ | 25．9\％ | 499.6 | 508.9 | 9.3 | 1．9\％ |
 | 27．2\％ | 525.0 | 536.8 | 11.8 | 2．3\％ | 27．2\％ | 496.5 | 502.2 | 5.8 | 1．2\％ |
 | 28．4\％ | 522．3 | 526.9 | 4.6 | 0．9\％ | 28．4\％ | 494.5 | 498.8 | 4.4 | 0．9\％ |
 | 29．6\％ | 510.5 | 525.4 | 14.9 | 2．9\％ | 29．6\％ | 484.5 | 496.3 | 11.8 | 2．4\％ |
 | 30．9\％ | 507.7 | 519.0 | ${ }^{11.3}$ | 2．2\％ | 30．9\％ | 483.6 | 488.0 | 4.4 | 0．9\％ |
 | 32．1\％ | 504．3 | 517.4 | 13.1 | 2．6\％ | 32．1\％ | 483.3 | 486.1 | 2.7 | 0．6\％ |
 | 33．3\％ | 503.6 | 512.9 | 9.3 | 1．9\％ | 33．3\％ | 460.5 | 481.3 | 20.8 | 4．5\％ |
 | 34．6\％ | 497.4 | 506.8 | 9.4 | 1．9\％ | 34．6\％ | 448.4 | 478.9 | 30.5 | 6．8\％ |
 | 35．8\％ | 486.4 | 492.5 | 6.1 | 1．3\％ | 35．8\％ | 447.2 | 461.2 | 13.9 | 3．1\％ |
 | 37．0\％ | 486.2 | 489.7 | 3.5 | 0．7\％ | 37．\％ | 445.0 | 441.0 | －4．1 | －0．9\％ |
 | 38．3\％ | 485.8 | 488.0 | 2.3 | 0．5\％ | 38．3\％ | 442.4 | 435.7 | －6．7 | －1．5\％ |
 | 39．5\％ | 483.4 | 473.6 | －9．8 | －2．0\％ | 39．5\％ | 441.3 | 434.0 | －7．2 | －1．6\％ |
 | 40．7\％ | 467.3 | 469.0 | 1.6 | 0．4\％ | 40．7\％ | 433.9 | 433.0 | －0．9 | －0．2\％ |
 | 42．0\％ | 466.3 | 467.5 | 1.2 | 0．2\％ | 42．0\％ | 433.6 | 425.3 | －8．3 | －1．9\％ |
 | 43．2\％ | 463.5 | 463.0 | －0．4 | －0．1\％ | 43．2\％ | 429.8 | 421.0 | －8．8 | －2．1\％ |
 | 44．4\％ | 463.2 | 462.1 | －1．1 | －0．2\％ | 44．4\％ | 375.6 | 414.8 | 39.1 | 10．4\％ |
 | 45．7\％ | 46.1 | 460.2 | 0.1 | 0．0\％ | 45．7\％ | 375.6 | 380.1 | 4.6 | 1．2\％ |
 | 46．9\％ | 457.3 | 447.9 | －9．4 | －2．0\％ | 46．9\％ | 374.4 | 375.7 | 1.3 | 0．4\％ |
 | 48．1\％ | 439.9 | 440.8 | 0.9 | 0．2\％ | 48．1\％ | ${ }^{356.6}$ | 374.8 | 18.2 | 5．1\％ |
 | 49．4\％ | 435.1 | 437.3 | 2.2 | 0．5\％ | 49．4\％ | 356.1 | 358.4 | 2.2 | 0．6\％ |
 | 50．6\％ | 431.1 | 433.8 | 2.7 | 0．6\％ | 50．6\％ | 345.0 | 346.2 | 1.2 | 0．4\％ |
 | 51．9\％ | 426.8 | 431.5 | 4.7 | 1．1\％ | 51．9\％ | 344.0 | 345.0 | 1.0 | 0．3\％ |
 | 53．1\％ | 419.6 | 425.6 | 6.0 | 1．4\％ | 53．1\％ | 332.5 | 344.0 | 11.6 | 3．5\％ |
 | 54．3\％ | 417.4 | ${ }^{420.3}$ | 2.9 | 0．7\％ | 54．3\％ | 327.5 | 333.1 | 5.6 | 1．7\％ |
 | 55．6\％ | ${ }_{4}^{413.5}$ | 418.3 | 4.8 | 1．2\％ | 55．6\％ | 322.0 | 328.0 | 6.1 | 1．9\％ |
 | 56．8\％ | 410.8 | 417.6 | 6.8 | 1．7\％ | 56．8\％ | 319.1 | 322.0 | 2.9 | 0．9\％ |
 | 58．0\％ | 409.7 | 410.4 | 0.7 | 0．2\％ | 58．0\％ | 316.8 | 316.9 | 0.1 | 0．0\％ |
 | 59．3\％ | ${ }^{405.8}$ | ${ }^{402.6}$ | －3．2 | －0．8\％ | 59．3\％ | 313.0 | 313.0 | 0.0 | 0．0\％ |
 | 60．5\％ | 401.2 | 401.1 | －0．1 | 0．0\％ | 60．5\％ | 310.9 | 311.2 | 0.3 | 0．1\％ |
 | 61．7\％ | ${ }_{392.6}^{3926}$ | 399.8 | 7.1 | 1．8\％ | 61．7\％ | ${ }^{305.2}$ | 308.6 | 3.4 | 1．1\％ |
 | 63．0\％ | ${ }_{373} 38.3$ | 394．2 | 13.9 | 3．7\％ | 63．0\％ | 303.5 | 303.6 | 0.0 | 0．0\％ |
 | 64．2\％ | 373.9 | 374.4 | 0.5 | 0．1\％ | 64．2\％ | 298.6 | 299.6 | 1.1 | 0．4\％ |
 | 65．4\％ | 364.9 | 365.5 | 0.6 | 0．2\％ | 65．4\％ | 289.1 | 289.2 | 0.1 | 0．0\％ |
 | 66．7\％ | 362.4 | 361.6 | －0．8 | －0．2\％ | 66．7\％ | 286.5 | 288.1 | 1.5 | 0．5\％ |
 | 67．9\％ | ${ }_{\text {ckin }}^{3616}$ | 357.7 3538 | －3．9 | －1．1\％ | 67．9\％ | ${ }_{278.8}^{2772.8}$ | 278.9 | 0.1 | 0．0\％ |
 | 69．1\％ | ${ }^{357.1}$ | ${ }_{353.6}$ | －3．6 | －1．0\％ | 69．1\％ | 272.1 | 272.3 | 0.2 | 0．1\％ |
 | 70．4\％ | 341.6 | 341.7 | 0.1 | 0．0\％ | 70．4\％ | 272.0 | 271.9 | －0．1 | 0．0\％ |
 | 71．6\％ | ${ }^{333.0}$ | 333.5 | 0.5 | 0．2\％ | 71．6\％ | 268.3 | 269.4 | 1.1 | 0．4\％ |
 | 72．8\％ | 323.7 | 324，3 | 0.5 | 0．2\％ | 72．8\％ | ${ }^{263.3}$ | 263.2 | －0．1 | 0．0\％ |
 | 74．1\％ | 320.7 | 321.4 | ${ }^{0.7}$ | 0．2\％ | 74．1\％ | 261.9 | 261.9 | 0.0 | 0．0\％ |
 | 75．3\％ | 307.9 | 310.1 | 2.2 | 0．7\％ | 75．3\％ | 261.0 | 261.2 | 0.2 | 0．1\％ |
 | 76．5\％ | ${ }^{302.6}$ | 303．3 | 0.7 | 0．2\％ | 76．5\％ | 260.7 | 260.5 | －0．3 | 0．1\％ |
 | 77．8\％ | ${ }_{205}^{290.3}$ | $\begin{array}{r}301.1 \\ 205 \\ \hline\end{array}$ | 10.7 | 3．7\％ | 77．8\％ | ${ }^{257.3}$ | 257.4 | 0.1 | 0．0\％ |
 | 79．0\％ | ${ }^{285.2}$ | ${ }^{285.2}$ | 0.0 | 0．0\％ | 79．0\％ | 255.0 | 255.0 | 0.0 | 0．0\％ |
 | 80．2\％ | 278.6 | 278.9 | 0.3 | 0．1\％ | 80．2\％ | 248.7 | 249.3 | 0.5 | 0．2\％ |
 | 81．5\％ | ${ }_{274.5}^{275}$ | ${ }^{277.5}$ | 0.0 | 0．0\％ | 81．5\％ | 248.6 | ${ }^{248.6}$ | 0.0 | 0．0\％ |
 | － | 274.2 | 274.7 | 0.4 | 0．2\％ | 82．7\％ | 245.0 | 244.2 | －0．8 | ．3\％ |
 | 84．0\％ | 271．6 | ${ }_{271.8}$ | 0.2 | 0．1\％ | 84．0\％ | 243.5 | 243.6 | 0.1 | 0．0\％ |
 | 8． 8 8．2\％ | ${ }_{267.0}^{268.1}$ | ${ }_{\text {267．2 }}^{268.2}$ | 0.0 | 0．0\％ | － | 241.6 225.1 | ${ }_{224.8}^{248}$ | ${ }^{0.3}$ | 0．1\％ |
 | 87．7\％ | 260.8 | 261.0 | 0.2 | 0．1\％ | 87．7\％ | 215.5 | 215.3 | －0．2 | －0．1\％ |
 | 88．9\％ | 254.7 | 259.4 | 4.7 | 1．9\％ | 88．9\％ | 214.1 | 214.7 | 0.6 | 0．3\％ |
 | 90．1\％ | ${ }^{251.3}$ | ${ }_{251.5}^{222.5}$ | ${ }^{0.2}$ | 0．1\％ | 90．1\％ | 211.5 | 211.5 | 0.0 | 0．0\％ |
 | 914．4\％ | ${ }^{224.9}$ | 228.4 | 3.5 | 1．5\％ | 91．4\％ | 210.4 | 2098 | －0．6 | 0．3\％ |
 | －${ }_{\text {92．6\％}}$ | ${ }_{2}^{223.9}$ | 224.1 | 0.2 | 0．1\％ | 92．6\％ | 201.4 | 201.9 | 0.5 | 0．2\％ |
 | ${ }^{93.85 \%}$ | ${ }_{211.6}^{221.6}$ | 221.7 | ${ }^{0.1}$ | 0．0\％ | 93．8\％ | ${ }^{201.3}$ | 201.6 | 0.3 | ${ }^{0.1 \%}$ |
 | 96．3\％ | 211.4 | 211.6 | 0.3 | 0．1\％ | 96．3\％ | ${ }_{182.7}$ | 182.8 | 0.1 | 0．1\％ |
 | 97．5\％ | 205.4 | 205.6 | 0.2 | 0．1\％ | 97．5\％ | 173.0 | 173.2 | 0.2 | 0．1\％ |
 | 98．8\％ | 198.9 | 199.1 | 0.2 | 0．1\％ | 988．8\％ | ${ }_{165.2}$ | ${ }^{166.2}$ | 1.0 | 0．6\％ |
 | 100．0\％ | 182.2 | 182.4 | 0.2 | 0．1\％ | 100．0\％ | 156.7 | 156.6 | －0．1 | 0．0\％ |

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | Way | | | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {WSIP }}^{\text {Proro Wethout }}$ Proect | WSIP 2070 With Project | $\begin{gathered} \text { Absolute } \\ \text { (utiferee } \\ \text { (unHosic) } \end{gathered}$ | |
 | | Monthly EC | Monthy EC | | |
 | | （UMHOSSCM） | （UMHOSSCM） | | |
 | 0．0\％ | 557.8 | 543.0 | －14．9 | －2．7\％ |
 | 1．2\％ | 556.7 | 540.0 | －16．7 | －3．0\％ |
 | 2．5\％ | 546.0 | 538.3 | －7．7 | －1．4\％ |
 | 3．7\％ | 539.4 | 531.3 | －8．1 | －1．5\％ |
 | 4．9\％ | 535.6 | 526.0 | －9．7 | －1．8\％ |
 | 6．2\％ | 522.1 | 520.6 | －1．5 | －0．3\％ |
 | 7．4\％ | 516.3 | 502.7 | －13．5 | －2．6\％ |
 | 8．6\％ | 501.0 | 493.7 | －7．2 | －1．4\％ |
 | 9．9\％ | 496.7 | 493.5 | －3．2 | －0．6\％ |
 | 11．19\％ | 494.4 | 492.9 | －1．5 | －0．3\％ |
 | 12．3\％ | 490.0 | 485.7 | -4.2 | －0．9\％ |
 | 13．6\％ | 489.9 | 477.5 | －12．4 | －2．5\％ |
 | 14．8\％ | 485.9 | 472.1 | －13．7 | －2．8\％ |
 | 16．0\％ | 471.1 | 469.0 | －2．1 | －0．4\％ |
 | 17．3\％ | 470.0 | 468.3 | -1.7 | －0．4\％ |
 | 18．5\％ | 469.4 | 468.1 | －1．3 | －0．3\％ |
 | 19．8\％ | 468.6 | 466.2 | －2．4 | －0．5\％ |
 | 21．0\％ | 466.8 | 461.1 | －5．7 | －1．2\％ |
 | ${ }^{22.5 \%}$ | ${ }_{458.1}^{460.6}$ | ${ }_{460.1}^{460.5}$ | 0.0 2.0 | 0．0\％ |
 | ${ }_{24.7 \%}^{20.5}$ | 456.1 | 457.7 | 1.6 | 0．4\％ |
 | 25．9\％ | 456.0 | 454.2 | －1．8 | －0．4\％ |
 | 27．2\％ | 455.7 | 452.5 | －3．2 | －0．7\％ |
 | 28．4\％ | ${ }_{46.6}^{446.6}$ | 447.5 | 0.9 | 0．2\％ |
 | 29．6\％ | 445.3 | 445.0 | －0．3 | －0．1\％ |
 | 30．9\％ | 44.6 | 44.6 | 0.0 | 0．0\％ |
 | 32．1\％ | 439.9 | 440.3 | 0.4 | 0．1\％ |
 | 33．3\％ | 436.7 | 430.7 | －5．9 | －1．4\％ |
 | 34．6\％ | ${ }^{427.6}$ | 428.9 | 1.3 | 0．3\％ |
 | 35．9\％ | 42.8 | 428.1 | 1.3 | 0．3\％ |
 | 37．0\％ | 424.0 | ${ }_{4} 42.6$ | ${ }^{0.6}$ | 0．1\％ |
 | 年38．3\％ | ${ }_{4}^{417.5}$ | ${ }_{419.9}^{4192}$ | 2.2 | 0．5\％ |
 | 39．5\％ | 416.0 | 416.2 | 0.1 | 0．0\％\％ |
 | 40．7\％ | ${ }_{4}^{412.5}$ | ${ }_{4}^{413.6}$ | －1．18 | 0．3\％ |
 | 43．2\％ | 409.7 4059 | ${ }_{406.7}^{408.1}$ | $\stackrel{-1.6}{ }$ | －0．2\％ |
 | 44．4\％ | 399.2 | 405.1 | 5.9 | 1．5\％ |
 | 45．7\％ | 396.9 | 397.7 | 0.8 | 0．2\％ |
 | 46．9\％ | 391.2 | 392.2 | 1.0 | 0．3\％ |
 | 48．1\％ | 384．1 | 391.9 384.7 | $\begin{array}{r}7.8 \\ \hline 8\end{array}$ | 2．0\％ |
 | 4．9．4\％ | 381.9 3724 | 384.7 381.9 | 2.9 9.5 | |
 | 50．6\％ | 372.4 3688 | 381.9 3689 | ${ }_{0}^{9.5}$ | 2．5\％ |
 | 51．9\％ | 368.8 363.8 | 368.9 364.8 | 0.1 1.0 | －${ }_{\text {0．3\％}}$ |
 | 54．3\％ | 359.7 | 364.9 | 4.2 | 1．2\％ |
 | 55．\％ | 358.9 | ${ }^{365.4}$ | 4.4 | 1．2\％ |
 | 56．8\％ | 357.8 | 359.3 | 1.5 | 0．4\％ |
 | 58．0\％ | ${ }_{354.9}^{356.9}$ | － $\begin{aligned} & 358.0 \\ & 3553\end{aligned}$ | ${ }^{1.0}$ | 0．3\％ |
 | 60．5\％ | ${ }_{354.1}$ | ${ }_{355.1}^{355.3}$ | 1.0 | 0．3\％ |
 | 61．7\％ | 353.2 | 354.8 | 1.5 | 0．4\％ |
 | 63．0\％ | ${ }^{351.3}$ | 354.6 | 3.3 | 0．9\％ |
 | 64．2\％ | 350.9 | 351.0 | 0.1 | 0．0\％ |
 | | $\begin{array}{r}350.4 \\ 3456 \\ \hline\end{array}$ | 350.6 3456 | 0.2 | － 0.11% |
 | 67．9\％ | 343.3 | 343.3 | 0.0 | 0．0\％ |
 | 69．1\％ | 340.8 | 340.9 | 0.1 | 0．0\％ |
 | 70．4\％ | 335.6 | ${ }_{3}^{335.6}$ | 0.0 | 0．0\％ |
 | 71．6\％ | 334.4 | ${ }^{334.3}$ | －0．1 | 0．0\％ |
 | 72．8\％ | ${ }_{321.7}^{323.0}$ | ${ }_{322.3}^{323.1}$ | ${ }^{0.1}$ | 0．0\％ |
 | 75．3\％ | 321.4 | 321.9 | 0.6 | 0．2\％ |
 | 76．5\％ | 320.4 | 320.5 | 0.1 | 0．0\％ |
 | 77．8\％ | 318.5 | 320．5 | 1.9 | 0．6\％ |
 | 79．0\％ | 296.1 | 296.3 | 0.1 | 0．0\％ |
 | －${ }_{\text {80．2\％}}$ | ${ }_{274.3}^{276.6}$ | 277.8 275.6 | 1.3
 13
 1 | ${ }_{\text {en }}^{0.5 \%}$ |
 | 82．7\％ | 26.6 | 26.7 | 0.1 | 0．0\％ |
 | 84．0\％ | 247.7 | 247.8 | 0.0 | 0．0\％ |
 | 85．2\％ | ${ }_{2272.0}^{242}$ | ${ }_{2281}^{2428}$ | ${ }_{0}^{0.8}$ | 0．3\％ |
 | 86．4\％ | ${ }^{227.4}$ | ${ }_{228.1}^{228.1}$ | 0.7 | 0．3\％ |
 | 87.7% 889% | ${ }_{216.1}^{225.2}$ | ${ }_{2171}^{225.4}$ | 0.2 1.1 | ${ }^{0.15 \%}$ |
 | 90．1\％ | 190.5 | 190.6 | 0.2 | 1\％ |
 | 91．4\％ | 185.2 | 185.5 | 0.2 | 0．1\％ |
 | 92．6\％ | 184.3 | 184.7 | 0.5 | 0．3\％ |
 | 93．8\％ | 180.4 | 180.8 | 0.4 | 0．2\％ |
 | 95．17\％ | 175.6 | 175.8 | 0.2 | 0．1\％ |
 | 96．3\％ | 174.5 | 174.9 | 0.4 | 0．2\％ |
 | 97．5\％ | 163.8 | 164.1 | 0.3 | 0．2\％ |
 | －98．8\％ | 1597.6 157 | 160.4 157.8 | ${ }_{0.2}^{0.5}$ | 0．1\％ |

 Table $\mathrm{SQ}-30-\mathrm{b}$
 at A Alemative Intake, Monthy EC

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | $\xrightarrow{\text { WSIP 207 O Without }}$ Proiect | WSIP 2070 With Project | Absolute | |
 | | Monthly EC | Monthy EC | (UMHOSCICM) | Ifference (\%) |
 | (\%) | ${ }_{\text {masic }}$ | 528] | 47 | |
 | 12\% | 51.9 | 5051 | -118 | |
 | 2.5\% | 473.2 | ${ }_{471.5}$ | -1.8 | -0.4\% |
 | 3.7\% | 471.7 | 470.7 | -1.0 | -0.2\% |
 | 4.9\% | 460.4 | 459.1 | -1.3 | -0.3\% |
 | 7.4\% | ${ }_{447.5}^{457.6}$ | 448.7 436.0 | -8.9. -11.5 | - -1.9% |
 | 8.6\% | 444.5 | 432.6 | -12.0 | -2.7\% |
 | 9.9\% | 433.2 | 427.8 | -5.4 | -1.2\% |
 | - 11.12% | 428.4 426.9 | ${ }_{422.6}^{42.2}$ | -3.20 | - |
 | 13.6\% | 421.5 | 421.8 | 0.3 | 0.1\% |
 | 14.8\% | 419.5 | 419.2 | -0.3 | -0.1\% |
 | 16.0\% | 419.5 416.9 | ${ }_{4}^{414.5}$ | -5.0. -11.3 | - -1.2% |
 | 18.5\% | 412.5 | 404.9 | -7.7 | -1.9\% |
 | 19.8\% | 409.6 | ${ }^{404.4}$ | -5.2 | -1.3\% |
 | ${ }_{222.2 \%}^{21.0 \%}$ | ${ }_{396.3}^{404.4}$ | 3993, 393 | -11.1 -3.2 | --2.8\% |
 | 23.5\% | 395.6 | 392.6 | -3.0 | -0.7\% |
 | 24.7\% | 395.2 | 392.5 | -2.7 | -0.7\% |
 | 227.2\% | 392.8 391.7 | ${ }_{387.7}^{392.5}$ | -0.3 | - ${ }_{\text {- }}^{\text {-0.0\% }}$ |
 | 28.4\% | 391.7 | 386.3 | -5.3 | -1.4 |
 | 29.6\% | 390.9 | 386.1 | -4.8 | -1.2\% |
 | 332.1\% | 385.9 383.7 | 383.9 382.0 | -2.0 -1.7 | -0.0\%\% |
 | 33.3\% | 383.4 | 381.7 | -1.7 | -0.5\% |
 | 34.6\% | 380.7 | 381.0 | 0.3 | 0.18 |
 | ${ }^{35.8 \%}$ | 378.9 | 374.4 | -4.5 | -1.2\% |
 | 388.3\% | 378.9 374.4 | 377.0 371.8 | -5.9 | -0.7\% |
 | 39.5\% | 372.2 | 368.3 | -3.9 | -1.0\% |
 | ${ }^{4.72 \%}$ | 371.7 3695 | 367.9 | -3.9 | -1.0\% |
 | ${ }_{43.2 \%}$ | 369.9 367.9 | 366.2 365.8 | -.31 | ${ }^{-0.9 \%}$ |
 | 44.4\% | 366.6 | ${ }_{365.3}$ | -1.3 | -0.4\% |
 | 46.79\% | 365.6 3637 | 361.3 3589 | -4.3 | ${ }^{-1.2 \%}$ |
 | 46.9\% 4.1 | ${ }_{356.7}^{363.7}$ | 358.9 356.9 | -4.8 | -1.1\% |
 | 49.4\% | 355.3 | 354.9 | 1.6 | 0.4\% |
 | | $\begin{array}{r}352.4 \\ 3508 \\ \hline\end{array}$ | 352.8 3516 | 0.5 | 0.1\% |
 | 51.1\% | 350.8 349.9 | 351.6 350.0 | 0.7 0.1 | - ${ }_{\text {0.2\% }}$ |
 | 54.3\% | 349.8 | 350.0 | 0.2 | 0.1\% |
 | 55.6\% | 348.1 34.9 | 349.3 348.1 | 1.2
 3.2 | - |
 | 58.0\% | 344.7 | 345.0 | 0.3 | 0.1\% |
 | 59.3\% | 344.2 | 344.9 | 0.7 | 0.2\% |
 | 61.7\% | 343.4 | 343.3 | -0.1 | ${ }^{0.0 \%}$ |
 | 63.0\% | 342.5 | 342.4 | -0.1 | 0.0\% |
 | | 344.4. 341.2 | ${ }_{341.8}^{342.2}$ | 0.8 0.7 | ${ }_{0}^{0.2 \%}$ |
 | 66.7\% | 339.0 | 338.8 | -0.3 | -0.1\% |
 | -67.9\% | ${ }_{336.7}^{337.0}$ | 337.3 336.9 | 0.3 0.2 | 0.1\% |
 | 70.4\% | 336.5 | 336.7 | 0.1 | 0.0\% |
 | 71.6\% | ${ }^{336.2}$ | ${ }^{336.5}$ | ${ }^{0.3}$ | 0.1\% |
 | 74.1\% | 334.2 | 334.7 | 0.6 | 0.2\% |
 | 75.3\% | 333.5 | 333.0 | -0.6 | -0.2\% |
 | 76.5\% | ${ }^{331.9}$ | 331.4 3290 | -0.5 | -0.2\% |
 | 79.0\% | 329.0 | 328.9 | 0.0 | 0.0\% |
 | 80.2\% | 328.7 | 328.7 | 0.1 | 0.0\% |
 | 81.5\% | ${ }^{323,4}$ | ${ }^{324.0}$ | 0.6 | 0.2\% |
 | 84.0\% | 321.6 | 320.6 | -1.0 | -0.3\% |
 | 85.2\% | 317.8 377 3 | 318.0 3169 | 0.2 | 0.1\% |
 | ${ }^{86.44 \%}$ | ${ }^{317.2}$ | | -0.2 | ${ }^{-0.1 \%}$ |
 | 88.9\% | 310.9 | 311.5 | 0.6 | 0.2\% |
 | 90.1\% | 310.4 3078 | 31.0 308 | ${ }^{0.6}$ | 0.2\% |
 | 91.4\% | 307.8 3028 | ${ }_{3}^{308.3}$ | | 0.2\% |
 | 93.8\% | 300.2 | 300.4 | 0.2 | 0.1\% |
 | 95.1\% | 294.0 | 294.0 | 0.1 | 0.0\% |
 | ${ }^{96.36 \%}$ | ${ }_{285.2}^{289.7}$ | 298.5 285.6 | 0.7 0.3 | ${ }^{0.3 \%}$ |
 | 98.8\% | 284.6 | 283.0 | -1.6 | -0.6\% |
 | 100.0\% | 280.4 | 280.7 | 0.3 | 0.1\% |

 | Pobability of Exceedance | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | | WSIP 2070 With ProjectMonthly EC(UMHOSCM) (UMHOS/CM) | $\begin{gathered} \text { Absolute } \\ \text { (ifference } \\ \text { (UMHOS/CM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | | WSIP 2070 WithoutPoroietMontly EC(UMHOS/CM) | | $\begin{gathered} \text { Absolute } \\ \text { (ifference } \\ \text { (UMHOSICM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | | | | | | | | | | |
 | (1) | | | | | | | | | |
 | | | | | | | | | | -0.6\% |
 | 1.2\% | 51.7 | 50.3 | -5.4 | -1.1\% | 1.2\% | 539.9 | 507.5 | -32.4 | |
 | | | 49.5 | -10.4 | -2.0\% | 2.5\% | 508 | 491 | | |
 | 4.9\% | 4996.1 | ${ }_{4755.6}$ | -20.5 | ${ }_{\text {-4, }}^{-2.1 \%}$ | 4.9\% | ${ }_{491.3}$ | ${ }_{458.2}$ | -33.1 | -6.7\% |
 | 6.2\% | 484.7 | 461.5 | -23.2 | -4.8\% | 6.2\% | 444.4 | 446.2 | 1.7 | $0.4{ }^{\circ}$ |
 | 7.4\% | 434.5 | 418.5 | -16.0 | -3.7\% | 7.4\% | 430.3 | 445 | 15.6 | |
 | 8.6\% | 401.5 | 400.4 | -1.0 | -0.3\% | 8.6\% | 416.6 | 422.0 | 5.4 | |
 | 9.9\% | 401.3 | 389.5 | 18 | -2.9\% | 9.9\% | 406.8 | 417 | 110 | |
 | 11.1\% | 387.2 | 385.0 | -2.2 | -0.6\% | 11.1\% | 403 | 401.0 | 2.3 | |
 | 12.3\% | 384.3 | 384.9 | 0.7 | 0.2\% | 12.3 | 394 | 395.8 | 1.3 | |
 | 13.6\% | 378.6 | ${ }^{373.3}$ | -5.3 | -1.4\% | 13.6\% | 391.8 | 393.7 | 2.0 | 0.5\% |
 | 14.8\% | 375.1 | ${ }_{3729}^{3729}$ | -2.2 | -0.6\% | 14.8\% | 388.5 | 390.3 | 1.8 | 0.5\% |
 | - $\begin{aligned} & 16.0 \% \\ & 17.3 \%\end{aligned}$ | ${ }_{373.5}^{373.7}$ | ${ }_{369.3}^{370.3}$ | -3.4 -4.2 | - -1.1% | - 16.0% | 384.9 381.2 | 388.0 383.0 | 3.1 1.8 | ${ }_{0}^{0.5 \%}$ |
 | 18.5\% | 370.7 | 365.6 | -5.1 | -1.4\% | 18.5\% | 380.3 | 379.8 | -0.5 | |
 | 19.8\% | 363.6 | 362.8 | -0.8 | -0.2\% | 19.8\% | 380.1 | 379.7 | -0.3 | |
 | 21.0\% | 361.7 | 357.2 | -4.4 | -1.2\% | 21.0\% | 372.8 | 379.6 | 6.7 | 1.8\% |
 | ${ }^{22.2 \%}$ | 360.0 | 356.5 | -3.6 | -1.0\% | 22.2\% | 361.2 | 5.9 | 15.7 | 4.4\% |
 | 23.5\% | 357.5
 3500
 560 | 353.2
 352.4 | -4.38 | -1.2\% | 23.5\% | 360.4 | 376.4 3619 | 16.0 | 4.4\% |
 | 250\% | ${ }_{3557}$ | ${ }_{350.1}$ | -5.5 | -1.6\% | 25.9\% | ${ }_{356.1}^{360.0}$ | ${ }_{356.2}$ | | |
 | 27.2\% | ${ }_{355.2}$ | 348.8 | -6.3 | -1.8\% | 27.2\% | 353.0 | 355.2 | 2.1 | 0.6\% |
 | 28.4\% | 353.5 | 346.9 | -6.7 | -1.9\% | 28.4\% | 352.6 | 354.5 | 1.8 | 0.5\% |
 | 29.6\% | 351.9 | ${ }^{338.9}$ | -13.0 | ${ }^{-3.7 \%}$ | 29.6\% | 351.5 | ${ }_{352.6}$ | 1.2 | 0.3\% |
 | 30.3\% | 350.2 348.7 | 333.6 329.4 | -16.6 -19.4 | --5.6\% | 30.3\% | 349.1 349.0 | 351.2
 347.2 | -1.8 | -0.6\% |
 | 33.3\% | 342.7 | 324.3 | -18.4 | -5.4\% | 33.3\% | 346.8 | 342.9 | -3.9 | |
 | 34.6\% | 342.0 | 321.0 | -21.0 | -6.1\% | 34.6\% | 341.6 | 341.2 | 0.5 | -0.1\% |
 | 35.8\% | 339.4 | 320.2 | -19.2 | -5.7\% | 35.8\% | 338.4 | 334.0 | -4.4 | 3\% |
 | 37.0\% | 337.6 | 319.5 | -18.2 | -5.4\% | 37.0\% | 334.5 | 329.0 | -5.5 | -1.6\% |
 | 38.3\% | 336.4 3339 | $\begin{array}{r}318.7 \\ 3182 \\ \hline\end{array}$ | -17.6 | -5.2\% ${ }_{\text {- }}^{\text {- }}$ | 退 38.38% | 332.3 3309 | 326.2
 3221 | -6.1 | - |
 | 40.7\% | ${ }_{331.4}$ | 317.8 | -13.5 | -4.1\% | 40.7\% | ${ }_{329.6}$ | ${ }_{321.6}$ | -8.0 | |
 | 42.0\% | 330.5 | 317.1 | ${ }_{-13.3}$ | -4.0\% | 42.0\% | ${ }_{327.4}$ | 320.2 | -7.2 | -2.2\% |
 | 43.2\% | 322.5 | 316.7 | -5.9 | -1.8\% | 43.2\% | 322.7 | 320.1 | -2.6 | -0.8\% |
 | ${ }^{44.46}$ | | | -3.4 | 1.1\% | 44.4\% | ${ }^{3220.3}$ | 318.1 3818 | -2.2 | -0.7\% |
 | 46.9\% | 318.0 317.8 | ${ }_{311.7}^{313.2}$ | --4.8 | -1.9\% | 46.9\% | 319.3 315.9 | 318.0 317.7 | -1.3
 1.8 | -0.6\% |
 | 48.1\% | 316.4 | 308.5 | -7.9 | -2.5\% | 48.1\% | 313.7 | 314.6 | 0.8 | |
 | 49.4\% | 315.2 | 307.2 | -8.0 | -2.5\% | 49.4\% | 312.5 | 308.8 | 3.6 | .2\% |
 | 50.6\% | 314.5 | 307.0 | -7.5 | -2.4\% | 50.6\% | 307.4 | 307.6 | 0.2 | 0.1\% |
 | | 313.3 3074 | | -6.5 | ${ }_{-2.1 \%}^{-2.1 \%}$ | | 300.4 | ${ }_{300.8}$ | | 0.2\% |
 | 54.3\% | 307.4 307.4 | ${ }_{300.3}^{301.1}$ | -7.1 | ${ }_{-2.3 \%}^{-2.0 \%}$ | 54.3\% | ${ }^{300.4}$ | 300.3 294.8 | -0.1. 7 | ${ }_{\text {2.7\% }}^{0.0 \%}$ |
 | 55.6\% | 301.8 | 300.0 | -1.8 | -0.6\% | 55.6\% | 286.2 | 291.8 | 5.6 | |
 | 56.8% 58.0% | 29.0 2989 | 299.2 2983 | 0.2 -0.7 | - ${ }_{\text {0.1\% }}$ | 56.8\% | 284.5 2835 | ${ }_{2851}^{285.3}$ | ${ }_{1}^{0.7}$ | - ${ }_{\text {0,3\% }}^{0.6 \%}$ |
 | 59.3\% | 298.9 298.4 | ${ }_{296.8}^{298.3}$ | -1.6 | ${ }_{\text {- }}^{-0.5 \%}$ | 59.3\% | 283.4 283.5 | ${ }_{283.5}^{285.1}$ | ${ }_{1.2}^{1.6}$ | |
 | 60.5\% | 295.8 | 296.4 | 0.6 | 0.2\% | 60.5\% | 280.9 | ${ }^{282.7}$ | 1.8 | 0.6\% |
 | 61.7\% | 294.6 | 292.7 | -1.9 | -0.6\% | 61.7\% | 278.3 | 280.8 | 2.6 | 0.9\% |
 | 63.0\% | 289.8 2885 | 289.8 2885 | ${ }_{0} 0.0$ | 0.0\% | | ${ }_{2765}^{277.3}$ | 280.4 | 3.1 | ${ }^{1.1 \%}$ |
 | | | | | | | | | | |
 | 66.7\% | 287.2 | 286.8 | -0.4 | ${ }_{\text {-0.1\% }}^{-0.0 \%}$ | 66.7\% | ${ }_{274.3}^{27.3}$ | ${ }_{275.2}^{27.1}$ | 0.9 | |
 | 67.9\% | 285.3 | 286.2 | 1.0 | 0.3\% | 67.9\% | 272.1 | 272.0 | | 0.0\% |
 | 69.1\% | 284.9 | 284.7 | -0.2 | -0.1\% | 69.1\% | 268.7 | 269.1 | 0.4 | 0.2\% |
 | 70.4\% | 283.5 | 284.6 | 1.1 | 0.4\% | 70.4\% | 268.5 | 268.5 | -0.1 | 0.0\% |
 | 72.8\% | 281.5
 28.5 | ${ }_{2815}^{282.0}$ | -0.0 | -0.0\% | 71.2.8\% | ${ }_{267.4}^{267.8}$ | ${ }_{267.8}^{2685}$ | | ${ }_{0}^{0.1 \%}$ |
 | 74.1\% | 28.8 | 279.9 | -0.9 | -0.3\% | 74.1\% | 266.5 | 264.8 | -1.7 | -0.6\% |
 | 75.3\% | 279.5 | 278.0 | -1.5 | -0.5\% | 75.3\% | 264.5 | 263.8 | -0.7 | -0.3\% |
 | 77.8\% | 278.3 277.6 | 277.8 277.4 | -0.2 | ${ }_{-0.1 \%}^{-0.2 \%}$ | 777.8\% | ${ }_{261.9}^{2636}$ | ${ }_{263.1}^{263.4}$ | 1.2 | ${ }^{-0.5 \%}$ |
 | 79.0\% | 277.2 | 277.3 | 0.2 | 0.1\% | 79.0\% | 259.0 | 262.3 | 3.3 | 1.3\% |
 | 80.2\% | 276.4 | 276.1 | -0.3 | -0.1\% | 80.2\% | 256.3 | 260.5 | 4.3 | 1.7\% |
 | 81.5\% | 275.5 | 272.7 | -2.9 | -1.0\% | 81.5\% | 255.9 | 257.6 | 1.6 | 0.6\% |
 | 82.7\% | 275.5 | 271.5 | -4.0 | -1.4\% | 82.7\% | 255.4 | ${ }^{253.6}$ | -1.8 | -0.7\% |
 | 84.0\% | 275.3 | 271.4 | -3.9 | -1.4\% | 84.0\% | ${ }^{254.8}$ | ${ }_{252.7}$ | -2.2 | -0.8\% |
 | - | 274.9 2739 | 271.0 288.1 | -.58 | ${ }_{\text {- }}^{-1.14 \%}$ | - | $\begin{array}{r}254.2 \\ 2526 \\ \hline\end{array}$ | 252.5 250 | -1.6 -0.6 | -0.0.0\% |
 | 87.7\% | 271.0 | 266.2 | -4.8 | -1.8\% | 87.7\% | 251.9 | 249.9 | -2.0 | -0.8\% |
 | 88.9\% | 266.7 | 266.1 | -0.6 | -0.2\% | 88.9\% | 251.1 | 249.7 | -1.5 | -0.6\% |
 | 90.1\% | 264.3 | 264.0 | -0.3 | -0.1\% | 90.1\% | 249.0 | 248.0 | -1.0 | -0.4\% |
 | 91.4\% | 264.2 | ${ }^{263.7}$ | -0.6 | -0.2\% | 914\% | 248.4 | ${ }^{247.3}$ | -1.1 | -0.5\% |
 | 92.6\% | 261.6 | 262.4 | 0.8 | 0.3\% | 92.6\% | 247.8 | 247.0 | -0.8 | -0.3\% |
 | ${ }^{93.8 \%} 9$ | 260.3 | 260.8 | 0.5 | ${ }^{0.2 \%}$ | 93.8\% | ${ }_{26}^{24.5}$ | ${ }_{24}^{24.8}$ | 0.4 | 0.1\% |
 | 96.3\% | 259.4 | 260.4 | 1.1 | 0.4\% | 96.3\% | 244.4 | 245.0 | 0.7 | 0.3\% |
 | 97.5\% | 255.6 | 256.0 | 0.3 | 0.1\% | 97.5\% | 243.4 | 244.4 | 1.0 | 0.4\% |
 | 98.8\% | 252.6 | 252.8 | 0.3 | 0.1\% | 98.8\% | 239.9 | 239.3 | 0.5 | -0.2\% |
 | 100.0\% | 251.1 | 252.0 | 0.9 | 0.4\% | 100.0\% | 238.5 | 231.9 | -6.7 | -2.8\% |

 \begin{tabular}{|c|c|c|c|c|}
 \hline \& \& September \& \& \\
 \hline Percent Exceedanc \& \begin{tabular}{c}
 WSIP 2070 Without \\
 Proiect \\
 \hline
 \end{tabular} \& WSIP 2070 With Project \& Absolute \& \\
 \hline Probability \& Monthly EC \& Monthly EC \& Difference
 (unHosicm) \& fference (\%) \\
 \hline (\%) \& UnHosicm) \& (4)SOS(CM) \& 0.5 \& \\
 \hline 1.2\% \& 9. 5 \& 4719 \& \({ }_{-176}\) \& \\
 \hline 2.5\% \& 484.4 \& 460.1 \& -24.3 \& \\
 \hline 3.7\% \& 482.9 \& 457.2 \& -25.7 \& -5.3\% \\
 \hline 4.9\% \& 478.7 \& 456.2 \& -22.6 \& -4.7\% \\
 \hline 7.4\% \& \({ }_{476.1}^{478.2}\) \& \({ }_{451.3}^{451.4}\) \& \({ }_{-24.8}^{-26.8}\) \& \({ }_{-5.2 \%}^{-5.6 \%}\) \\
 \hline 8.6\% \& 472.5 \& 448.0 \& -24.4 \& 5.2\% \\
 \hline 9.9\% \& 465.4 \& 445.5 \& -19.9 \& -4.3\% \\
 \hline 12.3\% \& \({ }_{461.9}^{464.8}\) \& \({ }_{441.3}^{441.8}\) \& -23.0
 -2.5 \& \({ }^{-4.9 \%}\) \\
 \hline 13.6\% \& 459.4 \& 439.6 \& -19.8 \& -4.3 \\
 \hline 14.8\% \& 453.6 \& 438.8 \& -14.8 \& -3.3\% \\
 \hline 17.3\% \& \({ }_{445.6}^{453.1}\) \& \({ }_{438.7}^{438.7}\) \& -14.4 \& - \({ }_{\text {- }}^{\text {- }}\) - \(2.6 \%\) \\
 \hline 18.5\% \& 443.6 \& 436.6 \& -7.0 \& -1.6\% \\
 \hline 19.8\% \& 442.9 \& 435.9 \& -7.1 \& -1.6\% \\
 \hline \({ }_{222.2 \%}^{21.0 \%}\) \& \({ }_{439.2}^{44.0}\) \& \({ }_{4256.7}^{435}\) \& -5.1.4 \& \({ }_{\text {- }}^{-1.8 \%}\) \\
 \hline 23.5\% \& 433.8 \& 425.5 \& \(-8.3\) \& -1.9\% \\
 \hline 24.7\% \& \({ }^{431.5}\) \& 422.9 \& -8.6 \& -2.0\% \\
 \hline 227.2\% \& \({ }_{4}^{437.4}\) \& \({ }_{4221.4}^{42.3}\) \& -8.4 \& -1.9\% \\
 \hline \({ }^{28.4 \%}\) \& 426.6 \& 421.2 \& -5.4 \& -1.3\% \\
 \hline 29.6\% \& 426.2 \& 419.6 \& -6.6 \& -1.6\% \\
 \hline 32.1\% \& \({ }_{424.4}^{424}\) \& 418.7 \& -5.7 \& -1.3\% \\
 \hline 33.3\% \& 422.8 \& 417.9 \& -4.9 \& -1.2\% \\
 \hline 34.6\% \& 419.8 \& \({ }_{416.8}\) \& -3.0 \& -0.7\% \\
 \hline 37.0\% \& \({ }_{4119.7}\) \& \({ }_{415.8}\) \& -0.9 \& \({ }^{-0.0 \%}\) \\
 \hline 38.3\% \& 414.8 \& 415.5 \& 0.7 \& 0.2\% \\
 \hline \& 414.3 \& \({ }_{4}^{43.3}\) \& -1.0 \& -0.2\% \\
 \hline 42.0\% \& 411.9 \& \({ }_{410.2}^{413.1}\) \& 1.3
 -0.7 \& -0.3\% \\
 \hline 43.2\% \& 409.6 \& 407.8 \& -1.8 \& -0.4\% \\
 \hline 44.4\%
 \(4.7 \%\) \& \({ }_{4001.7}^{4086}\) \& \({ }_{4058}^{406.7}\) \& -1.9 \& \({ }^{-0.5 \%}\) \\
 \hline 46.9\% \& 400.5 \& 405.7 \& 5.2 \& 1.3\% \\
 \hline \({ }^{48.1 \%}\) \& 400.0
 3095 \& 403.7 \& \({ }^{3.6}\) \& 0.9\% \\
 \hline 49.4\% \& 399.5
 39.1 \& \({ }_{402.2}^{403}\) \& \({ }_{3.1}^{3.5}\) \& 0.8\% \\
 \hline 51.9\% \& 397.6 \& 401.9 \& 4.2 \& 1.1\% \\
 \hline 554.3\% \& \({ }_{395.3}^{396.5}\) \& 399.6
 3972 \& 3.1
 1.9 \& 0.8\%\% \\
 \hline 55.6\% \& 394.3 \& 397.1 \& 2.8 \& 0.7\% \\
 \hline 56.8\% \& 393.6 \& 396.8 \& 3.2 \& 0.8\% \\
 \hline 58.0\% \& 393.1
 392.6 \& 393.9
 392.0 \& 0.8

 -0.6 \& -0.2\%

 \hline 60.5\% \& 390.5 \& 388.7 \& -1.8 \& -0.5\%

 \hline ${ }^{61.7 \%}$ \& ${ }^{389.2}$ \& \& -3.5 \& ${ }^{-0.9 \%}$

 \hline 64.2\% \& ${ }_{386.7}$ \& ${ }_{385.4}$ \& -2.38 \& ${ }^{-0.3 \%}$

 \hline 65.4\% \& ${ }_{3}^{386.3}$ \& 384.1 \& -2.2 \& -0.6\%

 \hline -66.7\% \& ${ }^{3855}$ \& \& -1.6 \& -0.0.4\%

 \hline 69.1\% \& ${ }_{383.4}$ \& ${ }_{382.4}$ \& -1.0 \& ${ }^{-0.3 \%}$

 \hline 70.4\% \& ${ }^{382,3}$ \& 380.0
 373 \& -2.2 \& -0.6\%

 \hline 71.6\% \& 381.9

 380.7 \& | 373.3 |
 | :--- |
 | 372.8 | \& -7.9 \& ${ }_{-2.1 \%}^{-2.3 \%}$

 \hline 74.1\% \& ${ }_{379.3}$ \& 372.7 \& -6.6 \& -1.7\%

 \hline 75.3\% \& $\begin{array}{r}377.8 \\ 377 \\ \hline\end{array}$ \& 369.4
 3677 \& -8.4 \& -2.2\%

 \hline 77.8\% \& 370.5 \& 366.2 \& -4.3 \& -1.1\%

 \hline 79.0\% \& 365.5 \& 366.1 \& 0.6 \& 0.2\%

 \hline - \& ${ }_{399.8}^{35.1}$ \& ${ }_{354.5}^{362.5}$ \& 7.5
 4.7 \& 2.1\%\%

 \hline 82.7\% \& 348.1 \& 350.7 \& 2.7 \& 0.8\%

 \hline 85.2\% \& ${ }_{344.3}$ \& 349.3

 346.6 \& | 4.9 |
 | :--- |
 | 2.2 |
 | 1 | \& +1.4\%

 \hline 86.4\% \& 343.5 \& 346.2 \& 2.7 \& 0.8\%

 \hline 887.7\% \& 340.7

 338.2 \& | 345.4 |
 | :--- |
 | 388.3 | \& 4.7

 0.0 \& - | 1.4\% |
 | :--- |
 | 0.0% |

 \hline 90.1\% \& 338.0 \& 335.4 \& -2.5 \& -0.8\%

 \hline 91.4\% \& 335.2 \& 333.9 \& -1.3 \& -0.4\%

 \hline 932.6\% \& 333.0
 327.3 \& ${ }_{3226.2}^{327.5}$ \& -5.4
 -1.2 \& - -1.6%

 \hline 95.1\% \& 323.4 \& 322.0 \& -1.4 \& -0.4\%

 \hline 96.3\% \& 314.6 \& 319.2 \& 4.6 \& 1.5\%

 \hline 98.5\% \& 313.6
 3096 \& 316.9
 315.6 \& ${ }^{3.3}$ \& -1.1\%

 \hline 100.0\% \& 298.4 \& 29.7 \& 1.3 \& 0.4\%

 \hline
 \end{tabular}

 Figure SQ-31-b
 Clifton Court Forebay, Monthly EC

 | PercentExceedanceProbability | October | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | WSIP 2070 With Project | Absolut | |
 | | Monthly EC | Monthy EC | (ifference | Difference (\%) |
 | | (UMHOSCM) | (UMHOSSCM) | | |
 | 0.0\% | 793.4 | 788.2 | -5.1 | -0.6\% |
 | 1.2\% | 786.6 | 756.4 | -30.2 | -3.8\% |
 | 2.5\% | 770.8 | 749.0 | -21.9 | -2.8\% |
 | 3.7\% | 769.7 | 747.3 | -22.3 | -2.9\% |
 | 4.9\% | 763.5 | 747.1 | -16.4 | -2.1\% |
 | 6.2\% | 762.7 | 744.6 | -18.1 | -2.4\% |
 | 7.4\% | 759.1 | 741.8 | -17.3 | -2.3\% |
 | 8.6\% | 758.9 7534 | 741.5 | -17.4 | -2.3\% |
 | 9.9\% | 753.4 | 739.0 | -14.4 | -1.9\% |
 | 11.1\% | 753.1 | ${ }_{7}^{720.6}$ | -32.6 | -4.3\% |
 | 12.3\% | 753.0 | 719.6 | -33.4 | -4.4\% |
 | 13.6\% | 751.1 | 714.3 | -36.8 | -4.9\% |
 | 14.8\% | 749.0 | 713.7 | -35.3 | -4.7\% |
 | 16.0\% | 741.0 | 71135 | -27.5 | -3.7\% |
 | 17.3\% | 740.3 | 711.6 | -28.7 | -3.9\% |
 | 18.5\% | 732.0 | 711.0 | -20.9 | -2.9\% |
 | 19.8\% | ${ }_{728.6}$ | 705.0 | -23.6 | -3.2\% |
 | 21.0\% | ${ }_{7177}^{7178}$ | 691.8 | -26.0 | -3.6\% |
 | ${ }^{22.2 \%}$ | 717.7 | 685.9 | -31.8 | -4.4\% |
 | ${ }^{23.75 \%}$ | ${ }_{709.6}^{712.5}$ | 684.9 6828 | -27.6 -26.7 | -3.8\%\% |
 | 25.9\% | 700.6 | 680.0 | -20.6 | -2.9\% |
 | 27.2\% | 699.6 | 679.9 | -19.7 | -2.8\% |
 | 28.4\% | 699.9 | 676.0 | -22.9 | -3.3\% |
 | 29.6\% | ${ }^{696.7}$ | 667.1 | -29.6 | -4.2\% |
 | ${ }^{330.1 \%}$ | 699.3 694.0 | ${ }_{6}^{663.7}$ | -30.6 -30.6 | -4.4\%\% |
 | 33.3\% | 688.5 | 660.2 | -28.3 | -4.1\% |
 | 34.6\% | 686.5 | 650.8 | -35.7 | -5.2\% |
 | 35.9\% | 659.1 | ${ }_{6436}^{643}$ | -15.4 | -2.3\% |
 | 37.\% | 654.9 | ${ }_{\text {cher }}^{637.6}$ | -17.4 | -2.7\% |
 | ${ }_{3}^{38.3 \%}$ | ${ }_{6}^{645.3}$ | 636.7 6362 | -8.6 | - |
 | 30.7\% | ${ }_{6315}^{636.5}$ | ${ }^{636.2}$ | -0.3 | 0.0\% |
 | 42.0\% | 626.2 | 618.5 | ${ }_{-7.8}$ | ${ }^{-1.2 \%}$ |
 | 43.2\% | 624.9 | 612.0 | -12.9 | -2.1\% |
 | 4.4\% | ${ }^{624.5}$ | ${ }^{604.0}$ | -20.5 | -3.3\% |
 | $4.7 \% \%$ 469% | 622.3 585 | 598.5 5984 | -2.9 13.9 | --3.8\% |
 | 48.1\% | $\stackrel{585.3}{582.2}$ | 598.4 5983 | 13.0 16.1 | 2.8\% |
 | 49.4\% | 575.0 | 591.7 | 16.7 | 2.9\% |
 | 55.9\% | ${ }_{5}^{572.6}$ | 567.1 | -5.5 | -1.0\% |
 | 51.9\% | 565.3 564.6 | 550.9 | -14.4 -195 | --2.5\% |
 | 54.3\% | 562.1 | 507.8 | ${ }_{-54.3}$ | -9.7\% |
 | 55.6\% | 416.9 | 408.3 | -8.6 | -2.1\% |
 | ${ }_{\text {cker }}^{56.8}$ | 413.2 | 404.7 | -8.6 | -2.1\% |
 | 59.3\% | ${ }_{409.5}^{4097}$ | 404.3 399 | -5.4 -9.7 | - -1.3% |
 | 60.5\% | 404.9 | 387.9 | -97.0 | ${ }^{-4.2 \%}$ |
 | 61.7\% | 395.1 | 386.6 | -8.5 | -2.2\% |
 | | 390.1 3896 | 386.4 3807 | -3.7 -89 | ${ }_{-2.10 \%}^{-1.0 \%}$ |
 | 65.4\% | 389.4 | 379.9 | -9.4 | -2.4\% |
 | ${ }_{6}^{66.7 \%}$ | 388.9 | 376.5 | -12.4 | -3.2\% |
 | ${ }_{6}^{67.1 \%}$ | 387.3 386.8 | 375.9 373.5 | -11.3 -13.3 | ${ }^{-2.4 \%}$ |
 | 70.4\% | 385.1 | ${ }_{371.3}$ | -13.8 | -3.6\% |
 | 71.6\% | 383.3 | 3697 | -13.6 | -3.6\% |
 | 72.8.1\% | 382.9 380.3 | 367.1 365.5 | -15.8 -148 | -4.1\% |
 | 75.3\% | 379.7 | 363.8 | -15.9 | ${ }^{-4.2 \%}$ |
 | 76.5\% | 374.3 | 363.1 | -11.2 | -3.0\% |
 | 77.8.\% | 373.4 373.2 | 360.8
 360.6 | - $\begin{array}{r}-12.6 \\ -126\end{array}$ | -3.4\% ${ }_{\text {- }}$ |
 | 80.2\% | 369.7 | 360.6 | -9.1 | -2.5\% |
 | 81.5\% | 368.5 | 356.9 | -11.6 | -3.2\% |
 | | 368.0 350.6 | 353.7 3474 | -14.3 -3.2 | -3.9\% |
 | 85.2\% | 344.8 | 341.1 | ${ }_{-3} .8$ | -1.1\% |
 | 86.4\% | 343.1 | 335.1 | -8.0 | -2.3\% |
 | 87.7\% | 329.1 3272 | - ${ }_{325.2}$ | -2.9 -1.5 | -0.0\% |
 | 90.1\% | 325.8 | 322.4 | -3.4 | -1.1\% |
 | 99.4\% | ${ }_{3211}^{322.0}$ | 317.7 | -4.4. | -1.4\% |
 | 993.8\% | ${ }_{315.2}$ | ${ }_{315.1}$ | -5.1 | -1.0\% |
 | 95.1\% | 314.4 | 314.2 | -0.2 | -0.1\% |
 | ${ }^{96.3 \%}$ | 306.9 | 308.9 | 2.1 | 0.7\% |
 | 97.5\% | ${ }_{3}^{305.7}$ | ${ }^{302.0}$ | -3.7 | -1.2\% |
 | 988.8\% | ${ }_{2616.8}$ | ${ }_{217.1}$ | -3.3 | -1.1\% |

 | | | November | | Probablil | December | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Percent | WSIP 2070 Wethout | WSIP 2070 With Project | | | Percent | WSIP 2070 Without | WSIP 2070 With Project | Absolute | |
 | ance | | | Differ | Relative | | | | Difference | Rela |
 | Probability | Monthly EC (UMноS' | Monthly EC (UMHOS/CM | (UuHtosicm) | Difference (\%) | Probability | Monthly EC | Monthy EC | (untosicm) | Difference (\%) |
 | 0.0\% | 851.9 | 877.1 | 25.2 | 3.0\% | 0.0\% | ${ }^{904.5}$ | 863.9 | -40.7 | -4.5\% |
 | 1.2\% | 835.2 | 775.5 | | 7.1\% | 1.2\% | 825 | 826.4 | | |
 | 2.5\% | 767.0 | 758.1 | 8.9 | 1.2\% | 2.5\% | 99 | 800.4 | 9.5 | |
 | 3.7\% | 766.2 | 729.7 | -36.5 | 4.8\% | 3.7\% | 803.2 | 785.3 | | |
 | 4.9\% | 765.1 | 729.6 | -35.4 | -4.6\% | 4.9\% | 795.1 | | | |
 | 6.2\% | 757.5 | 699.4 | 8.2 | 7.7\% | 6.2\% | 794.8 | 782.0 | 12.8 | |
 | 7.4\% | 742.1 | 697.3 | -447 | 6.0\% | 7.4\% | 782.5 | | -8.3 | |
 | 8.6\% | 702.9 | 692.5 | 0.4 | 1.5\% | 8.6\% | 780.9 | 770.0 | 10.9 | |
 | 9.9\% | 677.0 | 688.7 | 1.7 | 1.7\% | 9.9\% | 773.0 | 746.5 | 26.5 | |
 | 11.1\% | 668.1 | 674.4 | 6.3 | 0.9\% | 11.1\% | 766.0 | 735.0 | 31.0 | .1\% |
 | 12.3\% | 666.5 | 662.4 | -4.1 | 0.6\% | 12.3 | 759.2 | 724.2 | 35.0 | -4.6 |
 | 13.6\% | 657.1 | 661.4 | 4.3 | 0.7\% | 13.6\% | 755.5 | 715.5 | -40.0 | -5.3\% |
 | 14.8\% | 655.8 | 651.9 | 3.9 | 0.6\% | 14.8\% | 728.1 | 711.6 | 16.5 | |
 | 16.0\% | 654.5 | 650.0 | -4.5 | -0.7\% | 16.0\% | 725.7 | 705.6 | 20.1 | |
 | 17.3\% | 649.0 | 642.9 | -6.0 | -0.9\% | 17.3\% | 709.7 | 670.4 | 39.3 | 5\% |
 | 18.5\% | 640.2 | 631.5 | -8.7 | 1.4\% | 18.5\% | 708.7 | 669.0 | 39.7 | .6\% |
 | 19.8\% | 634.2 | 623.5 | 10.7 | -1.7\% | 19.8\% | 707.8 | 663.0 | -44.9 | \% |
 | 21.0\% | ${ }_{6}^{6329}$ | 602.0 5991 | -31.0 | -4.9\% | 21.0\% | 685.8 | 658.3 | 27.4 | -4.0\% |
 | 22.2\% | 629.1 | 594.1 | 5.0 | 5.6\% | 22.2\% | 684.3 | 656.9 | -27.5 | -4.0\% |
 | 23.5\% | 627.3 | 592.3 | -35.1 | 5.6\% | 23.5\% | 680.5 | 651.7 | -28.8 | -4.2\% |
 | 24.7\% | 626.5 | 584.7 | 41.8 | 6.7\% | 24.7\% | 679.6 | 644.6 | 35.0 | |
 | 25.9\% | ${ }_{620.6}$ | 576.7 | -43.8 | 7.7\% | 25.9\% | 678.1 | 627.4 | -50.7 | -7.5\% |
 | 27.2\% | 619.2 | 574.2 | -44.9 | 7.3\% | 27.2\% | 675.4 | 624.0 | -51.5 | |
 | 28.4\% | ${ }^{611.5}$ | 571.0 | -40.5 | -6.6\% | 28.4\% | 673.0 | 620.0 | -53.1 | -7.9\% |
 | 29.6\% | 609.8 | 562.8 | -47.0 | 7.7\% | 29.6\% | 669.0 | 614.4 | -54.5 | -8.2\% |
 | 30.9\% | 608.4 | 561.8 | -46.6 | -7.7\% | 30.9\% | 654.9 | 609.9 | -45.0 | -6.9\% |
 | | | | | -8.4\% | | | | -52.2 | -8.0\% |
 | 34.6\% | 593.7 | 551.0 | ${ }_{-42.8}$ | -7.2\% | 34.6\% | 617.9 | 591.7 | ${ }_{-26.3}$ | -4.2\% |
 | 35.8\% | 585.8 | 540.8 | -45.0 | -7.7\% | 35.8\% | 615.4 | 587.0 | -28.4 | -4.6\% |
 | 37.0\% | 585.7 | 538.2 | -47.5 | -8.1\% | 37.0\% | 606.3 | 559.5 | -46.9 | -7.7\% |
 | 38.3\% | 582.6 | 532.7 | -49.9 | -8.6\% | 38.3\% | 596.8 | 556.8 | -40.0 | -6.7\% |
 | 39.5\% | 579.3 | 521.5 | -57.8 | -10.0\% | 39.5\% | 571.1 | 546.5 | -24.6 | -4.3\% |
 | 40.7\% | 578.0 | 521.3 | -56.7 | 9.8\% | 40.7\% | 569.7 | 546.4 | -23.3 | -4.1\% |
 | 42.0\% | 575.8 | 518.6 | -57.2 | -9.9\% | 42.0\% | 543.7 | 544.9 | 1.1 | 0.2\% |
 | 43.2\% | 565.2 | 516.3 | -48.9 | 8.6\% | 43.2\% | 510.6 | 542.2 | 31.6 | 6.2\% |
 | 44.4\% | 560.9 | 510.6 | -50.2 | -9.0\% | 44.4\% | 496.6 | 523.5 | 26.9 | 5.4\% |
 | 45.7\% | 559.7 | 509.6 | -50.1 | -9.0\% | 45.7\% | 496.5 | 508.7 | 12.2 | |
 | 46.9\% | 557.8 | 490.5 | -67.2 | -12.1\% | 46.9\% | 457.1 | 479.7 | 22.7 | 5.0\% |
 | 48.1\% | 521.2 | 485.6 | -35.6 | -6.8\% | 48.1\% | 443.9 | 479.5 | ${ }^{35.6}$ | 8.0 |
 | 49.4\% | 508.0 | 454.8 | -53.2 | -10.5\% | 49.4\% | 434.1 | 421.3 | -12.8 | -2.9\% |
 | 50.6\% | 495.0 | 444.2 | -50.7 | -10.3\% | 50.6\% | 424.6 | 413.8 | -10.8 | -2.6\% |
 | 51.9\% | 491.8 | ${ }^{415.5}$ | -76.3 | -15.5\% | 51.9\% | 415.9 | 409.7 | -6.2 | -1.5\% |
 | 53.1\% | 408.9 | 384,9 | -24.0 | -5.9\% | 53.1\% | 393.0 | 394,1 | 1.1 | 0.3\% |
 | 54.3\% | 400.2 | ${ }^{383.6}$ | -16.6 | -4.1\% | 54.3\% | 391.0 | 390.8 | -0.3 | -0.1\% |
 | 55.6\% | ${ }_{398.6}$ | 379.1 | -19.5 | -4.9\% | 55.6\% | 388.3 | 386.8 | -1.5 | \% |
 | 56.8\% | ${ }^{385.3}$ | 378.2 | -7.1 | -1.8\% | 56.8\% | 385.4 | 368.1 | 17.3 | -4.5\% |
 | 58.0\% | 383.2 | ${ }^{366.2}$ | -17.0 | -4.4\% | 58.0\% | ${ }^{376.8}$ | 367.4 | -9.5 | |
 | 59.3\% | 383.0 | 365.2 | -17.8 | -4.7\% | 59.3\% | 370.2 | 362.8 | -7.3 | -2.0\% |
 | 60.5\% | 367.2 | 359.9 3529 | -7.3 | -2.0\% | 60.5\% | ${ }^{360.1}$ | ${ }^{359.6}$ | -0.5 | -0.1\% |
 | 61.7\% | 358.8 | ${ }^{352.4}$ | -6.4 | -1.8\% | 61.7\% | 352.8 | 358.4 | 5.5 | 1.6\% |
 | 63.0\% | 356.8 3568 | 350.5
 34.5 | -6.2 | -1.7\% | 63.0\% | 351.2 | ${ }_{355.8}$ | 4.6 | 1.3\% |
 | 64.2\% | 356.6 | 348.2 | -8.3 | -2.3\% | 64.2\% | 349.6 | 355.1 | 5.5 | 6\% |
 | 65.4\% | 354.2 | 348.2 | -6.0 | -1.7\% | 65.4\% | 348.5 | ${ }^{352.5}$ | 4.0 | 1.1\% |
 | 66.7\% | 354.1 | 346.8 | -7.3 | -2.0\% | 66.7\% | 348.5 | 351.2 | 2.8 | 0.8\% |
 | 67.9\% | 350.4 | 346.0 3397 | -4.4 | -1.3\% | 67.9\% | 347.0 | | ${ }^{3.8}$ | 1.1\% |
 | 69.1\% | 349.9 | 339.7 | -10.2 | -2.9\% | 69.1\% | 346.9 | 350.5 | 3.7 | 1.1\% |
 | 70.4\% | ${ }^{348.0}$ | 338.6 | -9.4 | -2.7\% | 70.4\% | 346.8
 364 | 346.9 | 0.1 | 0.0\% |
 | 712.8\% | 347.6 3459 | ${ }_{3}^{335.6}$ | -12.0 | -3.4\% | 71.6\% | 346.8 | 342.1 | -4.7 | . 4 \% |
 | 74.1\% | 345.3 | 335.1 | -10.2 | -3.0\% | 74.1\% | 340.3 | 340.4 | 0.1 | 0.0\% |
 | 75.3\% | 337.6 | 329.5 | -8.1 | -2.40 | 75.3\% | 339.3 | 337.4 | -1.9 | |
 | 76.5\% | ${ }^{337.5}$ | 328.3 | -9.3 | -2.7\% | 76.5\% | 338.6 | ${ }^{337.3}$ | -1.3 | -0.4\% |
 | 77.8\% | ${ }^{331.3}$ | 326.4 | -4.9 | -1.5\% | 77.8\% | 338.2 | 337.0 | -1.2 | -0.4\% |
 | 79.0\% | 330.3 | 324.6 | -5.7 | -1.7\% | 79.0\% | 337.3 | 335.2 | -2.1 | -0.6\% |
 | 80.2\% | 328.0 3280 | 323.5 | -4.5 | -1.4\% | 80.2\% | 336.9 | 334.9 | -2.0 | . 6% |
 | 81.5\% | 326.6 | ${ }^{323,4}$ | -3.2 | -1.0\% | 81.5\% | 333.7 | 334.1 | 0.4 | 0.1\% |
 | - ${ }^{82.7 \%}$ | 326.2 | 321.1 | -5.1 | -1.6\% | 82.7\% | 333.7 | 333.0 | -0.6 | 2\% |
 | 84.0\% | 324.9 | 320.7 | -4.2 | 1.3\% | 84.0\% | 330.5 | 330.8 | 0.3 | 0.1\% |
 | - 85.2% | | 320.5 3194 | -4.31 | -1.3\% | 85.2\% | ${ }_{3}^{327.6}$ | 329.8 3954 | 2.2 | 0.7\% |
 | - | 321.4 | 319.4 | -2.1 | -0.0\%\% | ${ }^{86.4 \%}$ | ${ }^{325.0}$ | ${ }_{3}^{355.4}$ | 0.4 | 0.1\% |
 | 88.9\% | 319.9 | 313.9 | -6.1 | -1.9\% | 88.9\% | 308.6 | 314.6 | 6.0 | 1.9\% |
 | 90.1\% | 319.7 | 313.2 | -6.6 | 2.0\% | 90.1\% | 307.6 | 309.9 | ${ }^{2.3}$ | 0.7\% |
 | 91.4\% | 318.5 | 311.2 | -7.3 | 2.3\% | 91.4\% | 294.9 | 295.4 | 0.5 | 0.2\% |
 | 92.6\% | 309.9 | 308.9 | -1.0 | -0.3\% | 92.6\% | 294.5 | 294.0 | 0.5 | -0.2\% |
 | 93.8\% | 309.2 | 307.6 | -1.5 | -0.5\% | 93.8\% | 284.2 | 285.1 | 0.9 | 0.3\% |
 | ${ }^{95.1 \%}$ | ${ }^{302.4}$ | ${ }^{300.4}$ | -2.0 | -0.7\% | 95.19\% | 261.6 2388 | ${ }_{230.6}^{270.6}$ | ${ }^{9.1}$ | 3.5\% |
 | ${ }^{97.5 \%}$ | ${ }_{23,8}^{294.2}$ | ${ }_{288.7}^{292.0}$ | 4.9 | ${ }_{1}$ | ${ }^{96.5 \%}$ | ${ }_{215}^{231.8}$ | ${ }_{215.7}^{230.3}$ | -8.0 | ${ }^{-3.0 \%}$ |
 | 98.8\% | 263.2 | 259.6 | -3.6 | -1.4\% | 98.\%\% | 194.5 | 194.0 | 0.5 | -0.9\% |
 | 100.0\% | 233.8 | 234.1 | 0.3 | 0.1\% | 100.0\% | 193.8 | 193.9 | 0.1 | 0.1\% |

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | January | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2070 Without | WSIP 207 W With Project | | Relative |
 | | Monthly EC | Monthly EC | (ifference | fference (\%) |
 | 0,0\% | 8587 | 9155 | 56 | 6.6\% |
 | 12\% | \% | | | |
 | 2.2\% | 8151 | 86.1 | 54, | |
 | 3.7\% | 7913 | 839.1 | | |
 | 4.9\% | 754.6 | ${ }_{826.6}$ | 71.9 | 9.5\% |
 | 6.2\% | 751.2 | 788.8 | 37.6 | |
 | 7.4\% | 724.9 | 7798 | | |
 | 8.6\% | 722.3 | 758.9 | 36.6 | |
 | 9.9\% | 688.5 | 746.0 | 57.5 | |
 | 11.1\% | 687.0 | 731.8 | 44.8 | 6.5\% |
 | 3\% | 685.3 | 709.9 | 24.6 | |
 | 13.6\% | ${ }_{682,6}$ | 689.4 | 6.7 | 1.0\% |
 | 8\% | 661.2 | 687.1 | 26.0 | 3.9\% |
 | 16.0\% | 661.1 | 688.4 | ${ }^{25.3}$ | 3.8\% |
 | 17.3\% | 649.4 | 677.6 | 27.2 | |
 | 18.5\% | 648.4 | 673.6 | 25.2 | 3.9\% |
 | 9.8\% | 647.9 | 665.4 | 17.5 | |
 | 21.0\% | ${ }^{644.5}$ | 647.4 | 1.0 | 0.1\% |
 | 22.2\% | 645.5 | 640.8 | -4.7 | -0.7\% |
 | 23.5\% | 643.9 | 637.6 | -6.3 | -1.0\% |
 | 24.7\% | ${ }^{642} 3$ | 632.1 | -10.2 | -1.6\% |
 | 25.9\% | 629.0 | 623.2 | -5.9 | -0.9\% |
 | 27.2\% | 628.4 | 616.2 | -12.2 | |
 | 28.4\% | 621.6 | 614.5 | -7.0 | -1.1\% |
 | 29.6\% | 613.9 | 614.1 | 0.2 | 0.0\% |
 | ${ }^{30.99 \%}$ | 612.1 | 613.8 | 1.7 | 0.3\% |
 | 32.1\% | 608.8 | 613.4 | 4.6 | 0.8\% |
 | 33.3\% | ${ }^{607.9}$ | 608.4 | 0.6 | |
 | 34.6\% | 601.7 | 607.7 | 6.0 | 1.0\% |
 | 35.8\% | 590.8 | ${ }^{6006.4}$ | 15.5 | 2.6\% |
 | 37.0\% | 588.6 | 599.9 | 11.3 | 1.9\% |
 | 38.3\% | 580.9 | 598.4 | 17.5 | \% |
 | 39.5\% | 577.0 | 596.7 | 19.7 | 3.4\% |
 | 40.7\% | 575.1 | 593.5 | 18.4 | 2\% |
 | 42.0\% | 566.2 | 588.9 | 22.8 | 4.0\% |
 | 43.2\% | 564.4 | 587.6 | ${ }^{23.3}$ | 4.1\% |
 | 44.4.\% | 561.3 | 582.0 | ${ }^{20.8}$ | 3.7\% |
 | 45.79\% | 544.7 | 572.5 | 27.8 | 5.1\% |
 | 46.9\% | 531.5 | 572.2 | 40.7 | 7.7\% |
 | 48.1\% | 524.0 | 566.9 | 42.8 | 8.2\% |
 | 49.4\% | 523.5 | 554.0 | 30.5 | 5.8\% |
 | 50.6\% | 520.6 | 552.6 | 32.0 | 6.1\% |
 | 51.9\% | 517.8 | 544.6 | 26.8 | 5.2\% |
 | 53.1\% | 511.7 | 539.5 | 27.8 | 5.4\% |
 | 54.3\% | 511.0 | ${ }_{538.7}$ | 27.7 | 5.4\% |
 | 55.6\% | 508.4 | 525.2 | 16.8 | 3.3\% |
 | 56.8\% | ${ }_{506.3}$ | ${ }_{515.5}$ | 9.1 | 1.8\% |
 | 58.0\% | 505.8 | 515.3 | 9.4 | 1.9\% |
 | 59.3\% | 501.0 | 511.8 | 10.8 | 2.2\% |
 | 60.5\% | 487.4 | 504.3 | 16.8 | 3.5\% |
 | 61.7\% | ${ }^{483.3}$ | 501.0 | 17.7 | 3.7\% |
 | -63.0\% | 480.6 | 499.4 | 18.9 | 3.9\% |
 | 64.2\% | 467.9 | 495.7 | 27.8 | 5.9\% |
 | 65.4\% | 467.4 | 490.0 | 22.7 | 4.9\% |
 | ${ }^{66.7 \%}$ | 442.9 | 481.5 | 38.7 | 8.7\% |
 | 67.9\% | 442.7 | 475.8 | ${ }^{33.1}$ | ${ }^{7.5}$ |
 | 69.1\% | 442.0 | 475.3 | 33.2 | 7.5\% |
 | 70.4\% | 437.9 | 450.5 | 12.6 | 2.98 |
 | 71.6\% | 434.6 | 444.3 | 9.8 | 2.2\% |
 | 72.8\% | 425.6 | 442.9 | 17.3 | 4.1\% |
 | 74.1\% | 423.2 | 436.1 | 13.0 | 3.1\% |
 | 75.3\% | 421.6 | 434.7 | 13.2 | 3.18 |
 | 76.5\% | 420.2 | 426.8 | 6.6 | 1.6\% |
 | 77.8\% | 408.8 | ${ }^{426.4}$ | ${ }_{17.6}^{17}$ | 4.3 |
 | 79.0\% | 408.5 | ${ }^{420.5}$ | 12.0 | 2.9\% |
 | - | 405.0 | 409.1 | 4.1 | 1.0\% |
 | 81.5\% | 3877.4 | 403.8 | 16.4 | 4.2\% |
 | 822.7\% | ${ }_{3}^{3857.5}$ | 388.5 376.9 | 3.1 -0.2 | -0.8\% |
 | 85.2\% | 364.8 | 365.6 | 0.8 | 0.2\% |
 | 86.4\% | 363.8 | 364.4 | 0.6 | 0.2\% |
 | 877\% | 337.1 | 344.1 | 7.0 | 2.1\% |
 | 88.9\% | 315.4 | 315.5 | 0.1 | 0.0\% |
 | 90.1\% | ${ }_{2778}^{2978}$ | ${ }^{300.7}$ | 3.0 | 1.0\% |
 | ${ }^{91.4 \%}$ | ${ }_{277.9}^{2729}$ | 278.7 | 0.8 | 0.3\% |
 | 92.6\% | 272.0 | 273.4 | 1.4 | 0.5\% |
 | ${ }^{93.8 \%}$ | 268.5 | 265.0 | -3.5 | -1.3\% |
 | 95.1\% | 264.2 | ${ }^{264.1}$ | 0.0 | 0.0\% |
 | 96.3\% | 255.4 | 255.1 | -0.3 | -0.1\% |
 | 97.5\% | ${ }_{232}^{2379}$ | 238.0 | 0.2 | 0.1\% |
 | 98.8\% | ${ }_{2238}^{232.8}$ | ${ }_{223}^{232.6}$ | -0.2 | -0.1\% |
 | | | 223.9 | 0.1 | |

 | PercentExceedanceProbability | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2070 Wewthout | WSIP 2070 With Project | Absolute | |
 | | Monthly EC | Monthy EC | (itierence | Difference (\%) |
 | | (UMHOSCM) | (UMHOSSICM) | | |
 | 0.0\% | 903.6 | 760.7 | -142.9 | -15.8\% |
 | 1.2\% | 828.1 | 753.7 | -74.4 | -9.0\% |
 | 2.5\% | 760.0 | 722.6 | -37.4 | -4.9\% |
 | 3.7\% | ${ }_{753.2}$ | 716.8 | -36.4 | -4.8\% |
 | 4.9\% | ${ }^{721.3}$ | 716.1 | -5.2 | -0.7\% |
 | ${ }^{6.2 \%}$ | ${ }_{7157}^{721.3}$ | 713.3 7103 | -8.0 | -1.1\% |
 | 7.4\% | 715.7 | 710.3 | -5.4 | -0.8\% |
 | 8.6\% | 668.0 | 677.2 | 9.1 | 1.4\% |
 | 9.9\% | 660.1 | 671.6 | 11.5 | 1.7\% |
 | 11.19\% | ${ }_{653.1}$ | 664.2 | 11.1 | 1.7\% |
 | 12.3\% | 637.0 | ${ }_{6497}^{64}$ | ${ }^{12.8}$ | ${ }^{2.0 \%}$ |
 | 13.6\% | ${ }^{633.9}$ | ${ }^{641.6}$ | 7.6 | - 1.2% |
 | 14.8\% | 627.7 | 637.7 | 10.0 | 1.6\% |
 | 16.0\% | 600.6 | ${ }^{633.2}$ | 26.6 | 4.4\% |
 | 17.3\% | 604.8 | ${ }^{631.2}$ | 26.4 | 4.4\% |
 | 18.5\% | 600.5 5983 | 630.5 | 30.0 317 | 5.0\% |
 | 19.8\% | 599.3 | ${ }_{629.9}$ | 31.7
 15 | 5.3\% |
 | 21.0\% | 599.2 | 623.5 | 25.3
 25 | 4.2\% |
 | 22.2\% | 599.4 | ${ }_{621.8}^{6218}$ | ${ }^{25.3}$ | 4.2\% |
 | 23.5\% | 581.3 | ${ }_{6}^{619.8}$ | 38.5
 4.5 | 年.6\% |
 | 24.7\% | 571.8 | 617.6 | 45.8 | 8.0\% |
 | ${ }^{25.7 .2 \%}$ | 569.3 5678 | 613.5 6000 | ${ }_{42.2}^{44.1}$ | 7.7.4\% |
 | 28.4\% | 551.4 | 597.7 | 46.2 | 8.4\% |
 | 29.6\% | 548.5 | 593.6 | 45.1 | 8.2\% |
 | 30.9\% | 543.8 | 571.9 | 28.1 | 5.2\% |
 | 32.1\% | 537.0 | 570.5 | 33.5 | 6.2\% |
 | 33.3\% | ${ }_{533.9}$ | 547.7 | 13.8 | 2.6\% |
 | 34.6\% | 531.2 5293 | ${ }_{5}^{543.0}$ | 11.8 | 2.2\% |
 | 35.8% 37.0% | 529.3 528.6 | 54.2
 534 | 13.2 6.3 | ${ }^{2.5 \%}$ |
 | 37.0\% | 528.6 528.1 | ${ }_{533.9}^{533}$ | ${ }_{5}^{6.3}$ | 1.2\% |
 | 38.3\% ${ }_{\text {39, }}$ | 528.1 | 533.4 | ${ }_{5} 5.4$ | 1.0\% |
 | 39.5\% | 527.6 5263 | 531.8 5288 | 4.1 | 0.8\% |
 | 40.2\% | ${ }_{522.3}^{526.3}$ | ${ }_{517.7}^{528.0}$ | ${ }_{-4}^{1.7}$ | -0.3\% |
 | 43.2\% | 513.7 | 515.7 | 2.0 | 0.4\% |
 | 44.4\% | 507.0 | 513.2 | 6.2 | 1.2\% |
 | 455.7\% | 503.4 | 507.5 | 4.1 | 0.8\% |
 | ${ }^{46.9 \%}$ | 500.4 489.4 | ${ }_{490.3}^{507}$ | -0.1 | 0.0\% |
 | 49.4\% | 487.0 | 495.1 | 8.1 | 1.7\% |
 | 50.6\% | 486.5 | 487.3 | ${ }^{0.8}$ | 0.2\% |
 | 51.9\% | 48.8 | 484.4 | 3.6 | 0.7\% |
 | 53.1.1\% | ${ }_{462.1}^{474}$ | ${ }_{468.9}^{475.9}$ | 1.5 6.8 | - 0.3% |
 | 55.6\% | 457.1 | 461.4 | 4.3 | 0.9\% |
 | 56.8\% | 454.9 | 454.6 | -0.3 | -0.1\% |
 | | ${ }_{4325}^{4483}$ | ${ }_{4}^{453.2}$ | | 1.1\% |
 | 60.5\% | 429.8 | 430.3 | ${ }_{0}^{3.5}$ | 0.1\% |
 | 61.7\% | 428.6 | 428.8 | 0.2 | 0.0\% |
 | -63.0\% | 416.9 4138 | ${ }_{4}^{425.1}$ | ${ }_{4.0}^{8.2}$ | - |
 | 65.4\% | 408.5 | 414.9 | 6.5 | 1.6\% |
 | ${ }^{66.7 \%}$ | 407.2 | 411.3 | 4.1 | 1.0\% |
 | - 67.9% | 396.5 394.2 | 398.2 3964 | ${ }_{22}^{1.7}$ | ${ }_{\text {en }}^{0.4 \%}$ |
 | 70.4\% | 385.9 | 394.3 | ${ }_{8.3}^{2.2}$ | 2.2\% |
 | 71.6\% | 385.8 | 393.0 | 7.2 | 1.9\% |
 | | 382.8 354.2 | 383.3
 3545 | ${ }_{0}^{0.6}$ | - ${ }_{\text {0.1\% }}$ |
 | 75.3\% | 346.9 | 344.9 | -2.0 | -0.6\% |
 | 76.5\% | ${ }^{312.3}$ | 314.1 | 1.8 | 0.6\% |
 | 77.8\% | 302.6 2973 | 304.2 2979 | ${ }^{1.7}$ | ${ }^{0.5 \%}$ |
 | 80.2\% | 2898 | 290.1 | ${ }_{0} .3$ | 0.1\% |
 | 81.5\% | 285.8 | 286.7 | 0.9 | 0.3\% |
 | - 82.7% | ${ }_{270 .}^{282.6}$ | ${ }_{270.3}^{284.7}$ | ${ }_{0.3}^{2.1}$ | - 0.7% |
 | 85.2\% | 266.9 | 267.7 | 0.8 | 0.3\% |
 | 86.4\% | 263.7 | 263.8 | 0.1 | 0.1\% |
 | 887.7\% | ${ }_{254,1}^{255.4}$ | ${ }_{2537}^{258.2}$ | 2.8 -0.4 | - 1.1% |
 | 90.1\% | 253.5 | 249.9 | -3.6 | -1.4\% |
 | 91.4\% | 245.3 | 243.8 | -1.5 | -0.6\% |
 | 92.6\% | ${ }_{23}^{24.0}$ | 240.4 | -2.7 | -1.1\% |
 | ${ }^{935.8 \%}$ | 239.6 2383 | 240.0 2377 | 0.4
 -0.6
 0 | - |
 | 96.3\% | 237.5 | 233.8 | -3.7 | -1.6\% |
 | 97.5\% | 233.5 2259 | ${ }^{225.9}$ | -7.6 | -3.3\% |
 | 980.8\% 100\% | ${ }_{165.9}^{225.9}$ | ${ }_{166.0}^{221.8}$ | ${ }_{0.1}$ | - |

 | Probabilit | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | $\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$ | Warch | | | | \square | | April | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (UMHOSICCM) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | | WSIP 2070 Wethout | WSIP 2070 With Project | $\begin{gathered} \text { Absolute } \\ \text { (ifference } \\ \text { (UMHOSICM) } \end{gathered}$ | | | | WSIP 2070 With Project | | |
 | | Monthly EC | Monthy EC | | | | | Monthly EC | | |
 | | (UMHOSCCM) | (UnHosicm) | | | | | (UWHOSSCM) | | |
 | 0.0\% | ${ }^{817.2}$ | ${ }^{724.3}$ | -92.9 | -11.4\% | | | ${ }^{731.2}$ | -47.1 | -6.0\% |
 | +1.5\% | ${ }_{7413}^{779.2}$ | 717.4 6990 | -61.7 | -7.9\% | 1.2\% | 719.5 | ${ }_{6}^{670.4}$ | -49.1 | -6.8\% |
 | 2.5\% | 741.3 | 699.0 | -42.4 | -5.7\% | 2.5\% | ${ }^{662.4}$ | 663.7 | 1.3 | |
 | 4.9\% | 721.5 684 | 692.0 | ${ }_{-29}$ | -4.19\% | 3.70\% | 653.2 | ${ }^{653.6}$ | -1.6 | ${ }^{-0.2 \%}$ |
 | 6.2\% | 677.5 | 675.5 | -2.1 | -0.3\% | 6.2\% | 623.0 | 636.4 | 13.4 | 2.2\% |
 | 7.4\% | 664.0 | 654.2 | -9.8 | -1.5\% | 7.4\% | 616.8 | 629.9 | 13.1 | 2.1\% |
 | 8.6\% | 649.2 | 649.4 | 0.3 | 0.0\% | 8.6\% | 609.4 | 623.0 | 13.6 | 2.2\% |
 | 9.9\% | ${ }^{646.3}$ | 641.2 | -5.1 | -0.8\% | 9.9\% | 598.4 | 599.8 | 1.4 | 0.2\% |
 | +11.1\% | ${ }^{637.6}$ | ${ }_{6}^{634.7}$ | -2.8 | -0.4\% | 11.1\% | 598.3 597 | 599.8 | 1.5 | 0.2\% |
 | 13.6\% | ${ }_{606.3}$ | 628.6 | ${ }_{22.3}$ | 3.7\% | 13.6\% | 590.5 | 585.8 | ${ }_{-4.7}$ | ${ }^{-0.8 \%}$ |
 | 14.8\% | 599.5 | 601.1 | 1.7 | 0.3\% | 14.8\% | 579.0 | 585.3 | 6.3 | 1.1\% |
 | 16.0%
 17306 | 599.4
 595 | 595.9 578.9 | -3.6. | -0.6\% | 16.0\% | 573.8 555 5 | 584.9 559.9 | $\begin{array}{r}11.1 \\ \hline\end{array}$ | 1.9\% |
 | 17.3\% | 595.2 | 578.2 | -17.1 | -2.9\% | 17.3\% | 565.2 | 559.4 | -5.7 | -1.0\% |
 | 18.5\% | 569.3 56.7 | 577.1 572.1 | 7.8 59 | 1.4\% | 18.5\% | 549.9 5479 | $\begin{array}{r}550.8 \\ 523 \\ \hline\end{array}$ | -299 | - ${ }_{\text {0.2\% }}$ |
 | 19.8\% | 566.7 | 572.6 | 5.9 | 1.0\% | 19.8\% | 547.9 | 523.0 | -24.9 | -4.5\% |
 | 21.0\% | 565.1 5453 | 571.8 559.1 | ${ }_{6}^{6.7}$ | - 1.2% | 21.0\% | 544.7 54.1 | 510.2 5050 | -39.6 | -6.3\% |
 | 22.2\% | 545.3 | 559.1 | 13.8 | 2.5\% | 22.2\% | 514.1 | 505.0 | -9.1 | -1.8\% |
 | - 23.5% | 542.6 5346 | 556.9 5539 | 14.4 193 | 2.6\% | 23.5\% | 502.9 5017 | 501.5 | -1.3 | -0.3\% |
 | 24.7\% | 534.6 53 | 553.9 | 19.3 | ${ }_{\text {3. }}{ }^{\text {a \% }}$ | 24.7\% | 501.7 | 500.6 | -1.0 | -0.2\% |
 | ${ }^{25.9 \%}$ | ${ }_{5}^{5332.5}$ | ${ }_{544.5}^{544.7}$ | ${ }_{111.7}^{11.3}$ | ${ }_{\text {2.2\% }}^{2.2 \%}$ | 227.2\% | ${ }_{4959.3}$ | 4990.3 | -5.9 | -1.2\% |
 | 28.4\% | 531.7 | 537.9 | 6.2 | 1.2\% | 28.4\% | 483.7 | 484.1 | ${ }_{0} 0.5$ | 0.1\% |
 | 29.6\% | 531.4 | 527.1 | -4.3 | -0.8\% | 29.6\% | 472.9 | 475.0 | 2.1 | 0.4\% |
 | 30.9\% | 526.1 5225 | 526.7 5247 | ${ }^{0.6}$ | 0.1\% | 30.9\% | 457.9 4562 | ${ }_{461.3}^{469}$ | 3.4 | 0.8\% |
 | 32.1\% | 522.5 5132 | 524.7 504.7 | ${ }_{-}^{2.25}$ | ${ }^{0.4 \%}$ | 32.1\% | ${ }_{454.2}$ | 459.2 457.6 | ${ }_{3}^{3.0}$ | 0.7\% |
 | 33.3\% | 513.2 4938 | 504.7 4977 | -8.5 | -1.7\% | 33.3\% | 454.4 4482 | 457.6 | 3.2 | 0.7\% |
 | 34.8\% | ${ }_{480.1}^{493.8}$ | ${ }_{488.1}^{497.7}$ | 4.0 | ${ }^{0.8 \%}$ | 35.8\%\% | 448.2 | 447.7 | -0.5 | -0.1\% |
 | 37.0\% | 477.7 | 481.8 | 4.1 | 0.9\% | 37.0\% | 423.2 | 431.2 | 7.9 | 1.9\% |
 | 38.3\% | 471.7 | 467.4 | -4.3 | -0.9\% | 38.3\% | 421.5 | 418.3 | -3.2 | -0.8\% |
 | 39.5\% | 470.9 | 465.2 | -5.8 | -1.2\% | 39.5\% | 418.8 | 409.9 | -9.0 | -2.1\% |
 | 40.7\% | 460.2 440.0 | ${ }_{4}^{43.6}$ | $\begin{array}{r}-16.6 \\ -32 \\ \hline-25\end{array}$ | -3.6\% | 40.7\% | 409.3 399 | ${ }_{3915}^{400.5}$ | -8.8 | -2.2\% |
 | ${ }^{42.3 .2 \%}$ | 4349.0 | ${ }_{413.4}^{436.8}$ | -3.2 | - ${ }_{-5.7 \%}^{-0.7 \%}$ | 42.2\% | 399.9 3944 | 391.5 3914 | -8.4 -29 | - -2.1% |
 | 44.4\% | 415.5 | 413.0 | -2.5 | -0.6\% | 44.4\% | 390.9 | 390.6 | -0.3 | -0.1\% |
 | 45.7\% | 413.9 | 412.4 | -1.4 | -0.3\% | 45.7\% | 388.2 | 379.2 | -9.0 | -2.3\% |
 | 46.9\% | 409.8 | 411.7 | 1.8 | 0.4\% | 46.9\% | 376.7 | 375.6 | -1.2 | -0.3\% |
 | ${ }^{48.19 \%}$ | ${ }_{3071}^{402.0}$ | ${ }_{4025}^{404}$ | ${ }_{54}^{2.3}$ | 0.6\% | ${ }_{4}^{48.4 \%}$ | 371.1 3630 | ${ }_{3}^{371.2}$ | ${ }_{0}^{0.1}$ | 0.0\% |
 | 50.6\% | 397.1 391.5 | ${ }_{302.5}^{4027}$ | ${ }_{5}^{5.4}$ | +1.4\% | 50.6\% | 363.0 356.6 | 363.1 362.0 | ${ }^{0.1}$ | - ${ }_{\text {0. }}^{\text {1.5\% }}$ |
 | 51.9\% | 390.4 | 392.1 | 1.7 | 0.4\% | 51.9\% | 354.7 | 354.9 | 0.2 | 0.0\% |
 | 53.1\% | 389.3 | 388.0 | -1.3 | -0.3\% | 53.1\% | 351.8 | 352.5 | 0.6 | 0.2\% |
 | 54.3\% | 387.6 | 387.5 | -0.2 | 0.0\% | 54.3\% | 341.9 | 341.7 | -0.2 | -0.1\% |
 | 55.6\% | ${ }_{381.7}^{387}$ | ${ }_{385.8}^{387.0}$ | ${ }_{4}^{-0.1}$ | ${ }_{\text {1, }} 0.0 \%$ | 年5.6\%\% | ${ }_{3321}^{341.3}$ | 341.5 3325 | ${ }^{0.2}$ | 0.1\% |
 | 58.0\% | ${ }^{381.7}{ }^{399.2}$ | ${ }_{383.3}^{385.8}$ | 4.1 | 1.1.1\% | 558.0\% | 332.1 329.1 | 332.5 3298 | 0.3 0.7 | - |
 | 59.3\% | 373.7 | 382.2 | 8.6 | 2.3\% | 59.3\% | 321.2 | 329.5 | 8.3 | 2.6\% |
 | 60.5\% | ${ }_{3}^{372.7}$ | 381.4 | ${ }^{8.8}$ | 2.4\% | 60.5\% | 318.7 | 322.0 | 3.4 | 1.1\% |
 | ${ }^{61.7 \%}$ | ${ }_{\text {cke }}^{367.6}$ | 374.9 | ${ }^{7.3}$ | 2.0\% | 61.7\% | 317.5 | 318.4 | 0.9 | 0.3\% |
 | 63.0\% | 361.3 349.7 | 361.9 359.4 | ${ }^{0.6}$ | | 63.0\% | 308.9 3083 | 309.4 3090 | 0.4 | 0.1\% |
 | 65.4\% | 338.7 | 350.7 | 12.0 | 3.5\% | 65.4\% | 308.0 | 308.0 | 0.0 | 0.0\% |
 | ${ }_{\text {cher }}^{66.7 \%}$ | 337.7 | 338.2 | ${ }^{0.5}$ | 0.1\% | 66.7\% | 2998 2988 | 300.7 | 0.9 | 0.3\% |
 | 67.9\% | 330.3 302.2 | 329.7 323.6 | -0.6 3.3 | ${ }^{-0.0 \%}$ | 67.9\%\% | 287.8 2710 | ${ }_{275.0}^{288.0}$ | ${ }_{4}^{0.2}$ | - 0.1 1\% |
 | 69.4\% | 320.2 38.7 | 323.6 32.2 | 1.5 | 0.5\% | 70.4\% | ${ }_{269.7}^{271.0}$ | ${ }_{271.0}^{27.5}$ | ${ }_{1.3}^{4.5}$ | 0.5\% |
 | 71.6\% | 315.4 | 316.2 | 0.8 | 0.3\% | 71.6\% | ${ }^{268.6}$ | 270.1 | 1.5 | 0.6\% |
 | | 309.3 303.4 | 309.7 304.4 | 0.4 1.0 | 0.3\% | 72.8\% | ${ }_{2651}^{267.3}$ | ${ }_{2651}^{267.4}$ | 0.0 | 0.0\% |
 | 75.3\% | 299.8 | 303.7 | 3.9 | 1.3\% | 75.3\% | 264.7 | 265.0 | 0.3 | 0.1\% |
 | 76.5\% | 294.8 | 300.7 | 5.9 | 2.0\% | 76.5\% | ${ }^{259.3}$ | ${ }^{259.5}$ | 0.2 | 0.1\% |
 | 77.8.0\% | ${ }_{275.7}^{276.3}$ | ${ }_{275.8}^{276.7}$ | 0.4 0.1 | - 0.1 \% | 77.8\%\% | ${ }_{2519}^{2529}$ | 253.0 2527 | 0.1 0.8 | - |
 | 80.2\% | 2697 | 272.2 | 2.5 | 0.9\% | 80.2\% | 247.6 | 24.5 | -0.1 | 0.0\% |
 | 81.5\% | 265.5 | 270.2 | 4.7 | 1.8\% | 81.5\% | 244.6 | 245.4 | 0.9 | 0.4\% |
 | 82.7\% | ${ }_{264.9}^{264.9}$ | ${ }_{264.9}^{265.7}$ | 0.8 1.2 | 0.4\% 0 | 884.0\% | ${ }_{239.5}^{24.8}$ | ${ }_{240.0}^{24.3}$ | -1.4 0.5 | -0.6\% |
 | 85.2\% | 262.4 | 263.1 | 0.8 | 0.3\% | 85.2\% | 238.9 | 240.0 | 1.1 | 0.5\% |
 | 86.4\% | 258.1 | ${ }_{288.5}$ | 0.4 | 0.2\% | 86.4\% | ${ }^{237.2}$ | 237.5 | 0.3 | 0.1\% |
 | 87.7% 88.9% | ${ }_{2254}^{237.5}$ | ${ }_{2251 .}^{24.1}$ | 3.7 -0.4 | - | - 88.78% | ${ }_{222.9}^{229.9}$ | 229.1 2272 | -0.8 | -0.3\% |
 | 90.1\% | 224.9 | 224.5 | -0.4 | -0.2\% | 90.1\% | 224.4 | 224.5 | 0.1 | 0.0\% |
 | 91.4\% | 223.6 | 223.7 | 0.1 | 0.0\% | 91.4\% | 223.4 | 223.7 | 0.2 | 0.1\% |
 | 92.6\% ${ }_{\text {938\% }}$ | 216.0 215.5 | 215.8
 2115 | -0.2 | --0.19\% | 92.6\% ${ }_{93} 9$ | ${ }_{2073}^{216.2}$ | ${ }_{2075}^{2187}$ | ${ }_{0.3}^{2.5}$ | |
 | 95.1\% | 206.7 | 207.2 | 0.4 | 0.2\% | 95.1\% | 207.1 | 207.2 | 0.2 | 0.1\% |
 | 96.3\% ${ }^{975 \%}$ | ${ }_{2011}^{206.7}$ | ${ }_{2013}^{200.5}$ | -0.1 | ${ }^{-0.1 \%}$ | 99.3\%\% | $\begin{array}{r}187.6 \\ 1820 \\ \hline 1\end{array}$ | 187.8 1819 | 0.1 -0.1 | - 0.1% |
 | 98.8\% | 193.8 | 193.5 | -0.3 | -0.2\% | 98.8\% | 171.5 | 172.0 | 0.5 | 0.3\% |
 | 100.0\% | 189.5 | 189.5 | 0.0 | 0.0\% | 100.0\% | 166.0 | 166.0 | 0.0 | 0.0\% |

 | | | May | | |
 | :---: | :---: | :---: | :---: | :---: |
 | ${ }_{\text {Percent }}$ Exceatance | WSSP 2070 Without | WSIP 2070 With Project | Absolute | |
 | Probability | Monthly EC | Monthly EC | (ifierence | fierence (\%) |
 | (\%) | 7095 | 671 | 383 | |
 | 12\% | 66.5 | 629 | -304 | |
 | 2.5\% | 582.7 | 591.3 | 8.6 | 1.5\% |
 | 3.7\% | 581.9 | 579.6 | -2.3 | -0.4 |
 | 4.9\% | 580.3 | 574.9 | | \% |
 | 7.4\% | 579.5 576.5 | 572.8 572.5 | -6.7 | - ${ }_{\text {- }}^{\text {- }}$ - 7% |
 | 8.6\% | 572.1 | 565.1 | -7.0 | |
 | 9.9\% | 551.9 | 550.2 | -1.7 | |
 | ${ }_{\text {l }}^{11.19 \%} 1$ | ${ }_{5}^{5539.6}$ | 547.7 546.7 | -3.2 7.9 | - ${ }_{\text {- }}^{\text {- }}$ - 3% |
 | 13.6\% | 530.8 | 544.9 | 14.1 | 2.7\% |
 | 14.8\% | 530.8 | 528.2 | -2.6 | ${ }_{-0.5}$ |
 | (17.0\% | 526.4 | 525.2 | -1.2 | -0.2\% |
 | (17.5\% | ${ }_{5}^{525.8}$ | 524.0 497.3 | $\begin{array}{r}-1.8 \\ -238 \\ \hline\end{array}$ | -0.3\% |
 | 19.8\% | ${ }_{514.2}$ | ${ }_{492.6}$ | ${ }_{-21.5}^{-23.8}$ | -4.4.2\% |
 | 21.0\% | 502.6 | 489.7 | -12.9 | -2.6\% |
 | ${ }^{22.2 \%}$ | 495.5 | 489.3 | -6.2 | -1.3\% |
 | ${ }_{24.7 \%}$ | ${ }_{485.5}^{48.8}$ | ${ }_{483.4}^{489.1}$ | -2.1 | -0.5\% |
 | 25.9\% | 485.0 | 482.3 | -2.6 | -0.5\% |
 | 27.2\% | 484.1 | 481.9 | -2.3 | -0.5\% |
 | 229.6\% | ${ }_{4687.1}^{468}$ | 480.3 471.8 | 12.3 4.8 | 2.0\% |
 | 30.9\% | 466.2 | 467.5 | 1.2 | ${ }^{0.3}$ |
 | 32.1\% | 464.9 | ${ }_{462.8}$ | -2.1. | -0.5\% |
 | 33.6\% | ${ }_{400.1}$ | 43990 | -1.1 | -0.2\% |
 | 35.8\% | 438.8 | 433.8 | -5.0 | -1.1\% |
 | | 413.0 | 414.5 | 1.5 | 0.4\% |
 | 39.5\% | ${ }_{400.4}$ | ${ }_{406.1}^{410.6}$ | ${ }_{-0.3}^{0.6}$ | -0.1\% |
 | 40.7\% | 404.9 | 404.8 | 0.0 | 0.0\% |
 | | | | -4.3 | -1.1\% |
 | 44.4\% | ${ }_{383.7}$ | 383.0 | ${ }_{-0.7}$ | -0.2\% |
 | 45.7\% | 380.7 | 372.7 | 79 | .1\% |
 | ${ }^{4.9 .9 \%}$ | ${ }^{3737.6}$ | 367.5 | -6.1 | .6\% |
 | 48.4.1\% | 370.9 364.1 | 366.8 363.9 | -4.0 | ${ }^{-1.1 \%}$ |
 | 50.6\% | 357.1 | 361.1 | 4.0 | 1.1\% |
 | 51.9\% | 3497 | ${ }^{350.3}$ | 0.6 | 0.2\% |
 | 54.3\% | 345.2 | 345.3 | 0.0 | 0.0\% |
 | 55.6\% | 343.6 3 | 3429 3297 | -0.8 | -0.2\% |
 | 56.8\% | 339.4 336.5 | 339.7 336.8 | ${ }_{0.2}^{0.3}$ | - |
 | 59.3\% | 335.9 | 336.5 | 0.6 | 0.2\% |
 | 66.5\% | ${ }_{3}^{328.2}$ | 328.4 3253 | 0.1 0.1 | 0.0\% |
 | 6.3.0\% | ${ }_{324.8}$ | ${ }_{324.9}$ | 0.2 | 0.0\% |
 | 64.2\% | 322.5 3225 | 323.7 | 1.2 | 0.4\% |
 | ${ }_{6}^{65.4 \%}$ | 322.5 322.4 | 322.6 322.6 | 0.1 0.1 | ${ }^{0.0 \% \%}$ |
 | 67.9\% | 318.0 | ${ }^{318.3}$ | 0.3 | 0.1\% |
 | - $79.10 .4 \%$ | 315.7 314.8 | 317.1 314.8 | 1.4 0.0 | ${ }^{0.4 \% \%}$ |
 | 71.6\% | ${ }^{313.0}$ | 313.6 | 0.6 | 0.2\% |
 | 72.8. | 309.5 3063 | 309.5 3069 | ${ }^{0.0}$ | 0.0\% |
 | 75.3\% | 304.5 | 304.4 | 0.0 | 0.0\% |
 | 76.5\% | 301.9 | 302.4 | 0.5 | 0.2\% |
 | 799.\% | ${ }_{\text {corer }}^{301.2}$ | ${ }_{292.3}^{301.9}$ | 1.0 0.2 | ${ }_{\text {0.1\% }}^{0.3 \%}$ |
 | 80.2\% | 281.2 | 281.2 | 0.1 | 0.0\% |
 | ${ }^{81.5 \%}$ | ${ }_{2793}^{2793}$ | ${ }_{2801}^{280.2}$ | 0.9 | 0.3\% |
 | 84.0\% | ${ }_{2595}^{27.5}$ | ${ }_{259.6}^{280.6}$ | 0.1 | 0.0\% |
 | 85.2\% | 251.4 | 252.0 | 0.6 | 0.2\% |
 | ${ }^{86.4 \%} 8$ | ${ }^{2227.4}$ | ${ }^{2227.7}$ | 0.4 0.2 | ${ }_{0}^{0.1 \%}$ |
 | 88.9\% | 197.9 | 198.6 | 0.6 | 0.3\% |
 | 90.14\% | 192.0 188.0 | 192.3 188.4 | 0.2 0.5 | 0.1\% |
 | 92.6\% | 187.5 | 187.8 | 0.3 | 0.2\% |
 | 93.\% | 183.4 | 184.0 | 0.5 | 0.3\% |
 | ${ }_{96.3 \%}^{95.1 \%}$ | 176.9 174.7 | 177.1 175.0 | 0.2 0.3 | ${ }^{0.2 \%}$ |
 | 97.5\% | 171.9 | 170.4 | -1.6 | -0.9\% |
 | - ${ }^{\text {908.0.\% }}$ | 165.5
 18.7 | ${ }^{1558.8}$ | ${ }_{0.2}$ | 0.1\% |

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[b]{3}{*}{\[
 \begin{gathered}
 \text { Percent } \\
 \text { Exceedance } \\
 \text { Probability }
 \end{gathered}
 \]} \& \multicolumn{4}{|c|}{June} \\
 \hline \& WSIP 2070 Without \& WSIP 2070 With Project \& Absolute \& \\
 \hline \& Monthly EC \& Monthly Ec \& (itiference \& fierence (\%) \\
 \hline (\%) \& MHO \& UMHOSSCM) \& \& \\
 \hline 0.0\% \& 633.8 \& 620.7 \& -13.1 \& -2.1\% \\
 \hline \({ }^{1.2 \%}\) \& \({ }_{6}^{629.0}\) \& \begin{tabular}{l}
 609.2 \\
 5515 \\
 \hline
 \end{tabular} \& \({ }^{-19.8}\) \& -3.2\% \\
 \hline 2.5\% \& 555.8 \& 554.5 \& -1.3 \& \\
 \hline 3.9\% \& 553.1
 548.6 \& 550.2
 534.1 \& -2.9
 -145 \& -0.5\% \\
 \hline 6.2\% \& 541.1 \& 527.7 \& -13.4 \& -2.5\% \\
 \hline 7.4\% \& 528.9 \& 523.4 \& -5.5 \& -1.0\% \\
 \hline - \({ }_{\text {8.9\% }}\) \& 528.4
 5179 \& 498.8
 498.8 \& -29.6
 -197 \& -5.6\% \\
 \hline 11.1\% \& \& \& \& \\
 \hline 12.3\% \& 4994.6 \& \({ }_{499.8}\) \& \({ }_{-4.7}\) \& -1.0\% \\
 \hline \(13.6 \%\)
 \(14.8 \%\) \& \({ }_{490.1}^{494}\) \& \({ }_{483.4}^{485}\) \& -8.9 \& -1.8\% \\
 \hline 16.0\% \& 490.0 \& \({ }_{467.0}\) \& \({ }_{-23.1}\) \& -4.7\% \\
 \hline 17.3\% \& 485.5 \& 467.0 \& -18.5 \& -3.8\% \\
 \hline - \({ }^{18.5 \%} \times 1.8 \%\) \& \({ }_{482.1}^{484.1}\) \& \({ }_{460.5}^{465.1}\) \& - -1.00 \& \({ }_{-4.5 \%}^{-3.9 \%}\) \\
 \hline 21.0\% \& 472.8 \& 446.3 \& -26.5 \& -5.6\% \\
 \hline \({ }^{22.2 \%}\) \& 470.1 \& 438.0 \& -32.2 \& -6.8\% \\
 \hline - \(23.5 \%\) \& \({ }_{442.4}^{453}\) \& 432.7
 4250 \& -20.6
 -172 \& -4.4.9\% \\
 \hline 25.9\% \& 436.9 \& 424.6 \& -12.3 \& -2.8\% \\
 \hline 27.2\% \& 422.6 \& 422.9 \& 0.3 \& 0.1\% \\
 \hline \& \({ }_{421.4}^{42.0}\) \& \({ }_{421.9}^{42.3}\) \& 0.3
 0.5 \& \({ }^{0.1 \%}\) \\
 \hline 30.9\% \& 419.8 \& 400.8 \& -19.0 \& -4.5\% \\
 \hline \({ }^{32.1 \%}\) \& 418.3 \& 398.3 \& -20.0 \& -4.8\% \\
 \hline 年33.3\% \& 407.9
 400.6 \& 397.1
 391.7 \& -10.8
 -8.8 \& \({ }_{-2.2 \%}^{-2.7 \%}\) \\
 \hline 35.8\% \& 396.2 \& 391.0 \& -5.2 \& -1.3\% \\
 \hline \& 391.8 \& 389.4 \& -2.4 \& \\
 \hline 38.5\% \& \({ }_{384.1}\) \& \({ }_{387.0}\) \& -1.9
 3.0 \& -0.8\% \\
 \hline 40.7\% \& 379.7 \& 384.6 \& 4.9 \& 1.3\% \\
 \hline 42.0\% \& 378.2 \& 382.7 \& 4.5 \& 1.2\% \\
 \hline - \(43.2 \%\) \& 376.9
 375.7 \& 381.8
 379.8 \& 4.8
 4.8 \& - \({ }_{\text {1.1\% }}^{\text {1.1\% }}\) \\
 \hline 45.7\% \& 372.7 \& 379.6 \& 6.9 \& 1.9\% \\
 \hline 46.9\% \& 371.8 \& 372.4 \& 0.6 \& 0.2\% \\
 \hline 48.19\% \& 370.2
 3698 \& \({ }^{377.4}\) \& \({ }^{0.2}\) \& 0.0\% \\
 \hline 50.6\% \& \({ }_{368.5}\) \& \({ }_{368.8}\) \& \({ }_{0.3}^{0.3}\) \& \\
 \hline 51.9\% \& 368.1 \& 368.1 \& 0.0 \& 0.0\% \\
 \hline 53.1\% \& 366.5 \& 367.8 \& \({ }^{1.3}\) \& 0.3\% \\
 \hline \(54.3 \%\)
 \(55.6 \%\) \& \& 363.4 \& -1.3 \& -0.4\% \\
 \hline 56.8\% \& 3659.1 \& 3659.2 \& 0.1 \& 0.0\% \\
 \hline 58.0\% \& \({ }_{355.3}\) \& 356.4 \& 1.1 \& 0.3\% \\
 \hline \& \({ }^{355.2}\) \& \({ }^{356.0}\) \& 0.8 \& \({ }^{0.2 \%}\) \\
 \hline 61.7\% \& \({ }_{352.3}\) \& \({ }_{354.9}\) \& 0.2
 2.6 \& \({ }_{\text {0.7\% }}^{0.1 \%}\) \\
 \hline 63.0\% \& 350.4 \& \({ }^{352.0}\) \& 1.5 \& 0.4\% \\
 \hline \({ }^{64.2 \%}\) \& \& \({ }^{350.3}\) \& \& 0.6\% \\
 \hline \({ }_{66.7 \%}\) \& \({ }_{342.6}\) \& 345.9 \& \({ }_{3.3}^{1.5}\) \& 1.0\% \\
 \hline 679\% \& 339.1 \& 340.9 \& 1.8 \& 0.5\% \\
 \hline 69.1\% \& \({ }^{338.0}\) \& \({ }^{339.8}\) \& 1.8 \& 0.5\% \\
 \hline 71.6\% \& 332.0 \& 3331.5 \& -0.5 \& \({ }^{-0.1 \%}\) \\
 \hline 72.8\% \& 331.2 \& 331.4 \& 0.1 \& 0.0\% \\
 \hline 74.19\% \& 329.4 \& \({ }^{329.5}\) \& \& 0.0\% \\
 \hline 75.3\% \& \begin{tabular}{l}
 328.1 \\
 327.8 \\
 \hline
 \end{tabular} \& 329.2
 327.6 \& 1.1
 -0.1 \& - \({ }_{\text {0.0. }}^{0.0 \%}\) \\
 \hline 77.8\% \& \({ }^{320.3}\) \& 320.5 \& 0.2 \& 0.1\% \\
 \hline 79.0\% \& \& 315.1 \& \& 0.0\% \\
 \hline - \& \begin{tabular}{l}
 313.8 \\
 311.4 \\
 \hline
 \end{tabular} \& 311.1
 310.5 \& -2.7
 -0.9 \& \({ }_{\text {- }}^{0.3 \% \%}\) \\
 \hline 82.7\% \& 310.9 \& 309.1 \& -1.8 \& -0.6\% \\
 \hline \(84.0 \%\)
 \(852 \%\) \& 309.4

 3032 \& \& \&

 \hline 80.4\% \& ${ }_{293.3}$ \& ${ }_{293.1}^{293.4}$ \& -9.2 \& ${ }_{-0.1 \%}$

 \hline 87.7\% \& 292.7 \& 292.8 \& 0.0 \& 0.0\%

 \hline 88.9\% \& 288.8 \& 288.7 \& -0.1 \& 0.0\%

 \hline 90.1\% \& 283.6 \& 285.7 \& 2.1 \& 0.7\%

 \hline -91.4\% ${ }_{\text {92.6\% }}$ \& ${ }_{2757}^{281.2}$ \& ${ }_{276}^{282.6}$ \& 1.4 \& 0.5\%

 \hline 93.8\% \& 275.3 \& 278.5 \& 3.2 \& 1.1\%

 \hline 95.1\% \& 268.8 \& 275.7 \& 6.9 \& 2.6\%

 \hline 96.3\% \& 266.5 \& 274.1 \& 7.6 \& 2.9\%

 \hline 97.5\% \& ${ }^{263.8}$ \& ${ }^{265.8}$ \& 2.0 \& 0.8\%

 \hline 988.8\% \& ${ }_{255.2}^{256.3}$ \& 251.5
 249.0 \& - ${ }_{-6.3}$ \& ${ }_{-}^{-1.4 \%}$

 \hline
 \end{tabular}

 | | | | | Probalil | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Percent | WSSP 2070 Without | WSIP 2070 With Proiect | | | | WSIP 2070 Without | WSIIP 2070 With Project | | |
 | Exceedance | Proiect | WSIP 2070 With Project | | | | Proiect | WSIP 2070 With Project | ${ }_{\text {Absolute }}$ | |
 | Probability | Monthly EC | Monthy EC | (${ }^{\text {cifference }}$ | Difference \% | Probability | Monthly EC | Monthy EC | (ifiterence | Difference (\%) |
 | 0.0\% | 635.9 | 618.5 | ${ }^{-17.3}$ | -2.7\% | 0.0\% | 744.6 | 746.1 | 1.4 | 0.2\% |
 | 1.2\% | 604.5 | 604.4 | -0.1 | 0.0\% | 1.2\% | 682.6 | 617.1 | 65.5 | |
 | 2.5\% | 559.9 | 548.1 | -11.8 | -2.1\% | 2.5\% | 642.5 | 611.4 | | |
 | 3.7\% | 555.5 | 538.7 | -16.8 | -3.0\% | 3.7\% | ${ }^{627.7}$ | | -38.1 | |
 | 4.9\% | 507.2 | 488.7 | -18.5 | -3.7\% | 4.9\% | 585.9 | | 3.5 | |
 | 6.2\% | 491.7 | 8.6 | -3.2 | -0.6\% | 6.2\% | 578.3 | 561.4 | 16.9 | |
 | 7.4\% | 490.3 | 462.3 | 28.0 | -5.7\% | 7.4\% | 537.9 | 542.3 | 4.5 | |
 | 8.6\% | 448.5 | 2,3 | 13.8 | 3.1\% | 8.6\% | 512.5 | 539.4 | 26.9 | |
 | 9.9\% | 443.0 | 443.9 | 1.0 | 0.2\% | 9.9\% | 495.0 | 504.2 | 9.2 | |
 | 11.1\% | 441.4 | 433.0 | -8.4 | -1.9\% | 11.1\% | 488.7 | 498.6 | 9.9 | 2.0\% |
 | ${ }^{12.3 \%}$ | 435.5 | | | -3.7\% | 12.3\% | 485.8 | | 7.8 | |
 | | 433.6 433.0 | ${ }_{402.7}^{41.1}$ | -30.3 | --5.0\% | 13.6\% 14.8% | ${ }_{466.4}^{476.9}$ | 4977.0 | 15.9 10.7 | - ${ }_{\text {2.3\% }}$ |
 | 16.0\% | 430.1 | 379.8 | -50.3 | -11.7\% | 16.0\% | 464.3 | 470.9 | 6.6 | 1.4\% |
 | 17.3 | 428.2 | 378.7 | -49.5 | 11.6\% | 17.3 | 452.0 | 465.9 | 13.8 | |
 | 18.5\% | 411.7 | 376.6 | -35.0 | -8.5\% | 18.5\% | 451.6 | 460.2 | 8.5 | 1.9\% |
 | 19.8\% | 401.8 | | | | | | | | |
 | ${ }_{22}^{21.0 \%}$ | 394.9 392.2 | ${ }_{366.0}^{367.1}$ | -27.2 | --7.7\% | ${ }_{2}^{21.0 \%}$ | ${ }_{436.0}^{44.7}$ | ${ }_{455.8}^{457.2}$ | 15.5 19.7 | ${ }^{3.5 \%}$ |
 | 23.5\% | 389.4 | 364.4 | -25.0 | -6.4\% | 23.5\% | 434.9 | 454.3 | 19.4 | 4.4\% |
 | 24.7\% | 372.3 | 364.0 | -8.3 | -2.2\% | 24.7\% | 432.4 | 443.2 | 10.8 | |
 | 25.9\% | ${ }_{367.1}$ | ${ }_{362.4}$ | -4.7 | -1.3\% | 25.9\% | 423.4 | 442.9 | 19.5 | 4.6\% |
 | 27.2\% | 366.9 | 361.5 | -5.4 | -1.5\% | 27.2\% | 418.9 | 441.1 | 22.2 | |
 | ${ }^{28.4 .6 \%}$ | ${ }_{364.9}^{365.3}$ | 355.9 35.3 | -7.4. | ${ }_{-3.2 \%}^{-2.0 \%}$ | ${ }^{28.49 \%}$ | ${ }_{4115.4}^{416.0}$ | ${ }_{4226.8}^{428.2}$ | 12.2 11.4 1 | ${ }^{2.9 \%}$ |
 | 30.9\% | 363.1 | 352.8 | -10.3 | -2.8\% | 30.9\% | 408.7 | 422.3 | 13.6 | 3.3\% |
 | 32.1\% | 359.0 | 352.8 | -6.2 | -1.7\% | 32.1\% | 404.9 | 391.7 | -13.2 | -3.2\% |
 | 33.3\% | 355.7 | 351.6 | -4.1 | -1.2\% | 33.3\% | 403.3 | 390.2 | -13.1 | -3.2\% |
 | 34.6\% | 352.7 | 348.2 | -4.5 | -1.3\% | 34.6\% | 400.7 | 378.8 | -21.9 | -5.5\% |
 | 35.8\% | ${ }_{351.1}$ | 347.7 | -3.4 | -1.0\% | ${ }^{35.8 \%}$ | ${ }_{392.2}^{392}$ | 377.9 | -14.3 | -3.6\% |
 | 37.0\% | 351.0 349.8 | 344,3 343 | -6.8 | --1.9\% | 38.3\% | 390.2 387.9 | 376.9 376.4 | -11.3 | ${ }_{-2.9 \%}^{-3.4 \%}$ |
 | 39.5\% | 348.6 | 339.4 | -9.2 | -2.6\% | 39.5\% | 380.0 | 371.3 | -8.6 | -2.3\% |
 | 40.7\% | 345.0 | 339.1 | -5.9 | -1.7\% | 40.7\% | 369.2 | 371.1 | 1.9 | 0.5\% |
 | 42.0\% | 344.6 | 338.6 | -6.0 | -1.7\% | 42.0\% | 364.6 | 369.4 | 4.8 | 1.3\% |
 | 43.2\% | 343.9 | 337.7 | -6.2 | -1.8\% | 43.2\% | 361.6 | 362.9 | 1.3 | 0.4\% |
 | 44.4\% | 341.8 | 335.5 | -6.4 | -1.9\% | 44.4\% | 354.1 | 355.1 | 1.1 | 0.3\% |
 | 46.9\% | ${ }_{331.8}^{338.7}$ | ${ }_{3}^{332.4}$ | -4.9 | - ${ }_{\text {- }}$ | 46.9\% | ${ }_{350.0}^{352.3}$ | ${ }_{352.7}^{353.1}$ | ${ }_{2} .8$ | 0.8\% |
 | 48.1\% | 331.5 | 330.2 | -1.4 | -0.4\% | 48.1\% | 343.8 | 350.4 | 6.6 | 1.9\% |
 | 49.4\% | 330.0 | 328.8 | -1.2 | -0.4\% | 49.4\% | 342.5 | 348.9 | 6.5 | 1.9\% |
 | 50.6\% | 329.9 | ${ }^{327.7}$ | -2.2 | -0.7\% | 50.6\% | 337.2 | 346.3 | 9.1 | 2.7\% |
 | 51.9\% | 328.1 | 326.2 | -1.9 | -0.6\% | 51.9\% | 331.2 | 343.4 | 12.2 | 3.7\% |
 | 53.19\% | 327.8 3 | ${ }_{325.9}$ | -1.9 | -0.6\% | 53.1\% | 332.0 | 337.1 | 7.0 | 2.1\% |
 | 55.6\% | ${ }_{321.9}$ | ${ }_{322.1}^{325.2}$ | -1.4 | - 0.1% | 55.6\% | ${ }_{324.3}^{329.2}$ | ${ }_{322.9}$ | -1.6 | -0.8\% |
 | 56.8\% | 321.3 | 319.2 | -2.0 | -0.6\% | 56.8\% | 317.5 | 322.8 | 5.2 | 1.7\% |
 | 58.0\% | 319.9 | 318.4 | -1.5 | -0.5\% | 58.0\% | 312.5 | 321.7 | 9.1 | 2.9\% |
 | 59.3\% | 319.0 | 317.4 | -1.6 | -0.5\% | 59.3\% | 312.5 | 319.1 | 6.6 | 2.1\% |
 | 60.5\% | 318.3 | 316.7 | -1.6 | -0.5\% | 60.5\% | 311.8 | 314.5 | 2.7 | 0.9\% |
 | ${ }^{61.7 \%}$ | 317.9 | ${ }^{316.5}$ | -1.5 | -0.5\% | 6117\% | 303.5 | 314.4 | 11.0 | ${ }^{3.6 \%}$ |
 | 63.2\% | ${ }_{315.6}$ | ${ }_{3}^{315.4}$ | -0.9 | ${ }_{-0.3 \%}^{-0.5 \%}$ | - 63.2 \% | ${ }_{209.5}^{302.8}$ | ${ }_{308.7}^{313.3}$ | 10.5 9.2 | ${ }^{3.5 \%}$ |
 | 65.4\% | 313.1 | 314.2 | 1.1 | 0.3\% | 65.4\% | 298.7 | 301.3 | 2.6 | 0.9\% |
 | 66.7\% | 309.6 | 305.2 | -4.4 | -1.4\% | 66.7\% | 298.4 | 299.5 | 1.1 | 0.4\% |
 | 67.9\% | 309.2 | 304.2 | -5.0 | -1.6\% | 67.9\% | 296.7 | 299.4 | 2.7 | 0.9\% |
 | 69.1\% | 306.4 | 302.1 | -4.4 | -1.4\% | 69.1\% | 296.7 | 298.7 | 2.0 | 0.7\% |
 | 70.4\% | ${ }_{303,5}^{305}$ | ${ }^{301.2}$ | -4.3 | -1.4\% | 70.4\% | ${ }_{296}^{296.4}$ | ${ }_{295}^{298.4}$ | ${ }^{2} .0$ | 0.7\% |
 | 72.8\% | 300.5 | 299.4 | -1.1 | -0.4\% | 72.8\% | 296.0 | 295.4 | -0.6 | -0.2\% |
 | 74.1\% | 300.0 | 298.5 | -1.5 | -0.5\% | 74.1\% | 292.6 | 292.0 | -0.6 | -0.2\% |
 | 75.5\% | 299.9 | 298.4 | -1.5 | -0.5\% | 75.3\% | 291.9 | ${ }_{2857}^{2887}$ | -4.1 | -1.4\% |
 | 77.5\% | 299.8 | 298.3 | -1.5 | -0.5\% | 76.5\% | 291.6 | 285.7 | -6.0 | 2.0\% |
 | 777.8\% | 2997 | 297.2 | -2.5 | -0.8\% | 77.8\% | 285.4 | 284.7 | -0.7 | -0.2\% |
 | 80.2\% | 298.9 | 297.0 | -1.9 | -0.6\% | 79.0\% | ${ }^{282,6}$ | ${ }^{282.5}$ | -0.1 | 0.0\% |
 | 881.5\% | ${ }_{297.1}^{2987}$ | ${ }_{293.9}^{296.3}$ | --2.4 | ${ }^{-0.1 .1 \%}$ | 80.2\% | ${ }_{281.1}^{281.1}$ | ${ }^{281.0}$ | -0.3 -1.6 | -0.0\%\% |
 | 82.7\% | 293.7 | 292.5 | -1.2 | -0.4\% | | 280.7 | 278.5 | -2.2 | |
 | 84.0\% | 292.1 | 292.1 | 0.0 | 0.0\% | 84.0\% | 280.4 | 278.2 | -2.2 | -0.8\% |
 | 85.2\% | 2920 | 29.3 | -0.7 | -0.2\% | 85.2\% | 278.4 | 277.7 | -0.7 | -0.3\% |
 | 887.7\% | ${ }_{287.3}^{288.7}$ | ${ }_{287.1}^{289.6}$ | 0.9 -0.2 | -0.1\% | - ${ }^{86.4 \%}$ 87.7\% | 277.7 276.6 | ${ }_{275.8}^{276.1}$ | -1.6 | -0.3\% |
 | 88.9\% | 285.3 | 286.7 | 1.4 | 0.5\% | 88.9\% | 275.7 | 275.7 | 0.0 | 0.0\% |
 | 90.1\% | ${ }_{2}^{285.1}$ | ${ }_{282}^{2823}$ | -2.8 | -1.0\% | 90.1\% | 274.9 | 272.9 | -2.0 | -0.7\% |
 | 992.6\% | ${ }_{282.4}^{283.3}$ | ${ }_{280.6}^{281.2}$ | -1.8 | ${ }^{-0.7 \%}$ | 92.6\% | ${ }_{272.0}^{27.0}$ | ${ }_{267.2}^{2686}$ | - | -1.8\% |
 | 93.8\% | 282.3 | 279.1 | -3.2 | -1.1\% | 93.8\% | 2693 | 267.0 | -2.3 | -0.8\% |
 | 95.1\% | 272.1 | 275.2 | 3.1 | 1.1\% | 95.1\% | 266.5 | 266.0 | -0.5 | -0.2\% |
 | 997.5\% | 27.17 267.4 | 271.5 271.3 | -0.2 3.9 | -0.4\% | ${ }^{96.5 \%}$ | ${ }_{265.1}^{265.4}$ | 265.0 263.2 | -0.4 | ${ }^{-0.7 \%}$ |
 | 98.8\% | 266.9 | 268.1 | 1.2 | 0.5\% | 98.8\% | 263.8 | 262.5 | -1.3 | -0.5\% |
 | 100.0\% | 260.7 | 262.1 | 1.4 | 0.5\% | 100.0\% | 263.3 | 254.2 | -9.1 | -3.4\% |

 | | September | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | WSII 2070 With Project | | Relatio |
 | | Moonthly EC | Monthly EC | (idiference | fferenc |
 | 0.0\% | UMHOSICM) | | | |
 | 0.0\% | 651.8 | ${ }^{637.3}$ | -14.5 | -2.2\% |
 | 1.2\% | 634.8 | 616. | -18.2 | |
 | 2.5\% | 626.2 | 610.0 | -16.2 | |
 | 3.7\% | 622.4 | 603 | -18.5 | |
 | 4.9\% | 620.6 | 602.2 | -18.4 | |
 | 6.2\% | 614.9 | 597. | -17.7 | |
 | 7.4\% | 610.8 | 595.5 | -15.3 | |
 | 8.6\% | 600.8 | 591. | -15.2 | |
 | 9.9\% | 599.0 | 591.3 | -7.7 | |
 | 11.1\% | 597.1 | 588. | -9.1 | -1.5\% |
 | 12.3\% | 590.6 | 586.7 | -3.9 | 0.7\% |
 | 13.6\% | 588.8 | 586.1 | -2.7 | -0.5\% |
 | 14.8\% | 585.2 | 585.7 | 0.5 | 0.19 |
 | 16.0\% | 579.6 | 585.7 | 6.1 | 1.0% |
 | 17.3\% | 576.9 | 573.2 | -3.8 | -0.7\% |
 | 18.5\% | 574.2 | 571.2 | -2.9 | -0.5 |
 | 19.8\% | 573.2 | 566.9 | -6.3 | -1.1\% |
 | 21.0\% | 571.8 | 563.8 | -7.9 | -1.4\% |
 | 22.2\% | 567.8 | 562.3 | -5.5 | -1.0\% |
 | 23.5\% | 567.1 | 562.1 | -5.1 | -0.9\% |
 | 24.7\% | 566.7 | 557.4 | -9.3 | -1.6\% |
 | 25.7\% | ${ }_{561.1}$ | 553.7 | -7.4 | -1.3\% |
 | 27.2\% | 560.1 | 546.5 | -13.6 | -2.4\% |
 | 28.4\% | 558.6 | 542.6 | -15.9 | -2.9\% |
 | 29.6\% | 552.6 | 541.3 | -11.3 | -2.0\% |
 | 30.9\% | 550.8 | 538.8 | -12.0 | -2.2\% |
 | 32.1\% | 548.4 | 538.5 | -9.9 | -1.8\% |
 | 33.3\% | 543.9 | 535.0 | -9.0 | -1.6\% |
 | 34.6\% | 537.8 | 531.5 | -6.3 | -1.2\% |
 | 35.8\% | 535.8 | 529.7 | -6.1 | -1.1\% |
 | 37.0\% | 530.4 | 529.3 | -1.1 | -0.2\% |
 | 38.3\% | 525.1 | 526.9 | 1.8 | 0.4\% |
 | 39.5\% | 516.3 | 526.5 | 10.3 | 2.0\% |
 | 40.7\% | 508.0 | 521.0 | 13.0 | 2.6\% |
 | 42.0\% | 504.3 | 515.4 | 11.1 | ${ }^{2.2 \%}$ |
 | ${ }^{43.2 \%} 4.4 \%$ | 502.4 | 515.2 | ${ }_{12.8}^{12.8}$ | ${ }_{2}^{2.6 \%}$ |
 | 45.7\% | 501.5 | 511.3 | 9.8 | 2.0\% |
 | 46.9\% | 496.3 | 511.0 | 14.6 | 2.9\% |
 | 48.1\% | 494.2 | 508.5 | 14.3 | 2.9\% |
 | 49.4\% | 492.5 | 497.2 | 4.8 | 1.0\% |
 | 50.6\% | 4923 | 497.2 | 4.9 | 1.0\% |
 | 51.9\% | 483.1 | 495.8 | 12.7 | 2.6\% |
 | 53.1\% | 481.9 | 491.4 | 9.5 | 2.0\% |
 | 54.3\% | 480.4 | 490.2 | ${ }^{9.8}$ | 2.0\% |
 | 55.6\% | 474.1 | 487.5 | 13.5 | 2.8\% |
 | 56.8\% | 472.7 | ${ }^{480.3}$ | 7.6 | 1.6\% |
 | 58.0\% | 468.4 | 479.3 | 10.9 | 2.3\% |
 | 59.3\% | 467.4 | 4777.6 | 10.1 | ${ }^{2.2 \%}$ |
 | ${ }_{61.7 \%}$ | ${ }_{461.8}^{4631}$ | 477.2 | ${ }_{15.3}$ | 3.3\% |
 | 63.0\% | 461.7 | 472.5 | 10.8 | 2.3\% |
 | 64.2\% | 460.5 | 470.5 | 10.0 | 2.2\% |
 | ${ }^{65.4 \%}$ | ${ }_{458.6}$ | 464.5 | 5.8 4.7 | 1.3\% |
 | 66.7\% | 458.3 | 463.0 | 4.7 | 1.0\% |
 | 67.9\% | 455.3 | 46.8 | ${ }^{6.5}$ | 1.4\% |
 | 69.1\% | 453.5 | 456.2 | 2.6 | 0.6\% |
 | 70.4\% | 449.5 | 454.2 | 4.7 | 1.0\% |
 | 71.6\% | 446.7 | 451.5 | 4.8 | 1.1\% |
 | 74.1\% | ${ }_{454.8}^{44.9}$ | ${ }_{488.0}^{449.5}$ | ${ }_{2.2}^{3.6}$ | 0.5\% |
 | 75.3\% | 444.9 | 446.1 | 1.2 | 0.3\% |
 | 76.5\% | 440.4 | 445.2 | 4.8 | 1.1\% |
 | 77.8\% | 436.1 | 440.9 | 4.8 | 1.1\% |
 | 79.0\% | 434.3 | 434.7 | ${ }^{0.4}$ | 0.1\% |
 | 80.2\% | 424.7 | ${ }_{4}^{432.5}$ | 7.8 | 1.8\% |
 | 81.5\% | 421.1 | 418.3 | -2.8 | -0.7\% |
 | - 8 82.7\% | 420.9 419.4 | ${ }_{4}^{418.3}$ | -2, -70 | -0.6\% |
 | 85.2\% | 412.8 | 407.6 | | -1.3\% |
 | 86.4\% | 403.2 | 407.2 | 4.0 | 1.0\% |
 | 887.7\% | 397.7 3961 | 402.4 3048 | ${ }^{4.6}$ | -1.2\% |
 | 88.9\% | 396.1 | 394.8 | ${ }^{1.3}$ | 0.3\% |
 | 90.1\% | 393.7 | 393.9 | 0.2 | 0.1\% |
 | 92.6\% ${ }_{\text {9, }}$ | 397.6 | ${ }^{392.4}$ | 0.8 | 0.2\% |
 | 93.8\% | 376.7 | 390.1 | ${ }_{13.4}$ | 3.5\% |
 | 95.1\% | 375.6 | 386.8 | 11.2 | 3.0\% |
 | 96.3\% | 373.4 | 378.0 3763 | ${ }_{113}^{4.5}$ | - 1.2 \% |
 | 97.5\% | ${ }^{365.1}$ | ${ }_{3725}^{378.3}$ | 11.3 | 3.1\% |
 | 98.8\% | 360.0 356.5 | 373.5 358.5 | 13.5 2.0 | 3.7\% |

 Figure SQ-32-b
 Delta Mendota Canal at Jones Pumping Plant, Monthly EC

 Table SQ-32-b
 Detta Mendota Canal at Jones Pumping Plant, Monthly EC

 | | | Ocrober | | |
 | :---: | :---: | :---: | :---: | :---: |
 | ${ }_{\text {Percent }}^{\text {Pexcedance }}$ | ${ }_{\text {WSIP }}^{\text {2070 }}$ Pricthout | WSIP 2070 With Project | Absolute | |
 | Probability | Monthly EC | Monthly EC | (Difference | Difference (\%) |
 | (\%) | (UMHOSSCM) | (UMHosicm) | | |
 | 0.0\% | 819.2 | 820.7 | 1.5 | 0.2\% |
 | 1.2\% | 742.7 | 708.9 | -33.9 | -4.6\% |
 | 2.5\% | 727.9 | 698.4 | -29.5 | -4.1\% |
 | 3.7\% | 718.8 | 696.6 | -22.1 | -3.1\% |
 | 4.9\% | 717.3 | 694.3 | -23.0 | -3.2\% |
 | ${ }^{6.2 \%}$ | 713.5 7003 | 694.2 6897 | -19.3 | -2.7\% |
 | 7.4\% | 709.3 | ${ }^{689.7}$ | -19.6 | -2.8\% |
 | 8.6\% | 708.1 | 685.8 6818 | -22.3 | -3.1\% |
 | 9.9\% | 703.9 | ${ }^{681.8}$ | -22.1 | -3.1\% |
 | 11.19\% | 698.5 | ${ }^{679.3}$ | -19.2 | -2.8\% |
 | 12.3\% | 697.5 | 676.7 | -20.8 | -3.0\% |
 | 13.6\% | 696.9 | 672.4 | -24.6 | -3.5\% |
 | 14.8\% | 691.8 | ${ }_{672.0}$ | -19.9 | ${ }_{-2.9 \%}$ |
 | 16.0\% | ${ }^{690.5}$ | ${ }_{6}^{671.7}$ | -18.8 | -2.7\% |
 | 17.3\% | 688.0 | ${ }^{663.6}$ | -24.4 | -3.5\% |
 | 18.5\% | ${ }_{684.4}^{682.4}$ | ${ }_{662.4}^{665}$ | -22.0 | -3.2\% |
 | 19.8\% | ${ }_{682.7}^{6827}$ | 656.2 6559 | -26.5 | -3.9\% |
 | 21.0\% | 682.7 6790 | 655.9 653 | -26.8 | -3.9\% |
 | 22.2\% | ${ }^{679.0}$ | ${ }_{6553}^{653}$ | -25.7 | -3.3\% |
 | ${ }^{23.5 \%}$ | 674.2 | 652.3 | -21.9 | -3.3\% |
 | 24.7\% | 672.4 | ${ }_{6484}^{648}$ | -24.0 | -3.4\%\% |
 | ${ }^{257.2 \%}$ | 668.6 688.5 | 644.1 646.0 | -22.5 | -3.4\% |
 | 28.4\% | 667.3 6633 | 643.1 6367 | -24.2 | -3.6\% |
 | 29.6\% | ${ }^{663.3}$ | 636.7 | -26.6 | -4.0\% |
 | 30.9\% | 662.9 657.3 | 633.4 6188 | -29.5 -385 | -4.5\% |
 | 32.19% 33.3% | ${ }^{657.3}$ | 618.8 | -38.5 | -5.9\% |
 | 33.3% 34.6% | 657.2 | ${ }_{617.8}$ | -39.5 | -6.0\% |
 | 34.6% 35.8% | ${ }^{646.4}$ | 616.0 | -30.5 | -4.7\% ${ }_{-51 \%}$ |
 | 35.8\% | 642.9 640.6 | 610.4 608.7 | -32.5 -31.8 | -5.0\% |
 | 38.3\% | 637.1 | 605.5 | -31.6 | -5.0\% |
 | 39.5\% | 633.9 | 605.0 | -28.9 | -4.6\% |
 | 40.7\% | 629.6 | 603.1 | -26.5 | -4.2\% |
 | 42.0\% | ${ }_{626.9}^{625}$ | ${ }^{601.8}$ | -25.0 | -4.0\% |
 | 43.2\% 4.4 | ${ }_{622.4}^{62.4}$ | 599.6 5980 | -25.8 -247 | -4.1\% |
 | 44.4\% | 622.7 620.1 | 598.0 5895 | -24.7 -306 | -4.0\% |
 | 45.7\% 4.9 | 620.1 619.1 | 588.5 58 | $\begin{array}{r}\text {-30.6 } \\ -377 \\ \hline-2.8\end{array}$ | -4.9\% |
 | 46.9\% | ${ }^{619.1}$ | 581.3 5809 | -37.7 | ${ }_{-5.8 \%}^{-6.1 \%}$ |
 | 48.4\% | ${ }_{6}^{610.5}$ | 588.9 580.6 | -35.7 -23.1 | - $-.58 \%$ |
 | 50.6\% | 6001.1 6007 | 571.9 568.3 | -29.3 -324 | -4.9\% |
 | 51.9\% | 600.7 594.8 | 568.3 | -32.4
 -30.4 | -5.4\% |
 | 54.3\% | 594.8 58.6 | 564.4 538.7 | - -3.4 | - -7.4% |
 | 55.6\% | ${ }_{452.7}^{463.4}$ | 444.9 | -13.5 -9.0 | ${ }_{-2.0 \%}^{-2.9 \%}$ |
 | 58.0\% | 449.2 | 438.6 | -10.6 | -2.4\% |
 | 59.3\% | 444.5 | 431.7 | -12.8 | -2.9\% |
 | 60.5\% | 443.8 | 428.6 | -15.2 | -3.4\% ${ }_{-2.6 \%}$ |
 | 63.0\% | 432.5 | ${ }_{424.1}^{42.8}$ | -1.4 | --1.9\% |
 | 64.2\% | 429.1 | 418.0 | -11.1 | -2.6\% |
 | 析 65.4% | ${ }_{4}^{427.6}$ | 415.4 4152 | - $\begin{array}{r}-12.3 \\ -120\end{array}$ | --2.9\% |
 | 67.9\% | 425.4 | 412.6 | -12.8 | -3.0\% |
 | 69.1\% | 424.5 | 409.0 | -15.4 | -3.6\% |
 | 70.4\% | ${ }_{4212.7}^{42.7}$ | ${ }_{4079}^{408.5}$ | -14.1 -138 | ${ }_{-3}^{-3.3 \%}$ |
 | 72.8\% | 416.0 | 406.4 | -9.6 | -2.3\% |
 | 74.1\% | 410.9 | 405.7 | -5.3 | -1.3\% |
 | 75.3\% | ${ }_{405.2}^{409.2}$ | 400.6 4005 | ${ }_{-8.5}$ | - -1.1% |
 | 77.8\% | 404.3 | 397.4 | -6.9 | -1.7\% |
 | 79.0\% | 403.4 | 397.2 | -6.2 | -1.5\% |
 | - | 396.5 3951 | 393.1 3919 | -3.4 | -0.0\% |
 | 82.7\% | 386.7 | 387.5 | 0.8 | 0.2\% |
 | 84.0\% | 382.3 | 380.8 | -1.6 | -0.4\% |
 | 85.4\% | 381.8 379.7 | 380.1 378.9 | -1.7 -0.8 | -0.0.4\% |
 | 87.7\% | 378.4 | 375.4 | -3.0 | -0.8\% |
 | 88.9\% | 377.5 | 373.6 | -3.9 | -1.0\% |
 | ${ }_{9}^{90.14 \%}$ | 374.1 3682 | 371.4 3714 | -2.7 3.2 | -0.7\% |
 | 92.6\% | 368.1 | 369.7 | 1.7 | 0.4\% |
 | ${ }^{93.58 \%}$ | 365.5 | 369.1 | 3.7 | 1.0\% |
 | ${ }^{956.3 \%}$ | 363.4 3596 | 363.0 3597 | -0.3 | -0.1\% |
 | 97.5\% | 355.0 | 355.9 | 0.9 | 0.3\% |
 | 98.8\% 100.0\% | 399.4 198.1 | 349.5 199.2 | 0.1 1.1 | 0.6\% |

 | | November | | | | December | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2070 Wethout | WSIP 2070 With Project | | | | WSIP 2077 Prowthout | WSIP 2070 With Project | Absolute | |
 | Probability | Monthly EC | Monthy EC | (Difference | Difference (\%) | robability | Montily E EC | Monthly EC | (ifference | Difference (\%) |
 | (\%) | (UMHOSSCM) | (UMHOSSCM) | (Uumosicm) | | (\%) | (UMHOSSCM) | UMHHSS(CM) | | |
 | 0.0\% | ${ }_{855.9}$ | ${ }^{798.4}$ | -57.5 | -6.7\% | 0.0\% | 817.4 | ${ }_{8}^{813.8}$ | ${ }^{-3.6}$ | -0.4\% |
 | 1.2\% | 738.2 | 707.7 | -30.6 | -4.1\% | 1.2\% | 794.5 | ${ }_{796.3}$ | 1.8 | 0.2\% |
 | 2.5\% | ${ }_{728.2}$ | 696.1 | -32.1 | -4.4\% | 2.5\% | ${ }_{789.6}$ | 794.5 | 5.0 | 0.6\% |
 | 3.7\% | ${ }_{726.1}$ | 6977 | -34.4 | -4.7\% | 3.7\% | 787.2 | 789.0 | 1.9 | 0.2\% |
 | 4.9\% | 719.5 | 677.2 | -42.3 | -5.9\% | 4.9\% | ${ }_{785.8}$ | 7778 | 7.0 | -0.9\% |
 | 6.2\% | 708.9 | 671.5 | -37.4 | -5.3\% | 6.2\% | 777.0 | 773.7 | -4.3 | -0.5\% |
 | 7.4\% | 702.8 | 670.9 | -31.9 | -4.5\% | 7.4\% | 772.7 | 773.4 | 0.7 | 0.1\% |
 | 8.6\% | 698.6 | 658.3 | -40.3 | -5.8\% | 8.6\% | 768.4 | 766.0 | -2.3 | -0.3\% |
 | 9.9\% | 697.1 | 655.9 | -4.1.1 | -5.9\% | 9.9\% | 767.4 | 764.5 | -3.0 | -0.4\% |
 | 11.1\% | 677.0 | ${ }^{654.3}$ | -22.7 | -3.4\% | 11.1\% | 766.9 | 760.6 | -6.3 | -0.8\% |
 | ${ }^{12.3 \%}$ | 646.8 | ${ }^{652.3}$ | 5.5 | 0.9\% | ${ }^{12.3 \%}$ | ${ }_{758.6}$ | 749.4 | -9.2 | -1.2\% |
 | 13.6\% | 638.7 | 648.9 | 10.2 | 1.6\% | 13.6\% | 758.2 | 722.4 | -35.8 | -4.7\% |
 | 14.8\% | ${ }^{637.0}$ | 645.4 | 8.4 | 1.3\% | 14.8\% | 757.9 | ${ }_{720.1}$ | -37.9 | -5.0\% |
 | | ${ }^{634.7}$ | ${ }^{638.4}$ | 3.7 | 0.6\% | -16.0\% | 740.3 | 718.9 | -21.4 | -2.9\% |
 | 18.5\% | 627.2 | 632.2 | 5.0 | 0.8\% | 18.5\% | 724.1 | 708.0 | -16.1 | -2.2\% |
 | 19.8\% | 625.2 | 614.4 | -10.8 | -1.7\% | 19.8\% | 724.1 | 706.1 | -18.0 | -2.5\% |
 | 21.0\% | 624.4 6238 | 613.3 | -11.1 | -1.8\% | 21.0\% | ${ }_{721.8}^{7218}$ | ${ }_{7055}^{7055}$ | -16.3 | -2.3\% |
 | 22.2\% | ${ }^{623.8}$ | 609.8 | -14.0 | -2.2\% | 22.2\% | ${ }_{721.3}$ | 703.5 | -17.8 | -2.5\% |
 | ${ }^{234.7 \%}$ | 623.7 618.4 | ${ }_{601.6}^{602.5}$ | -21.2. -16.7 | ${ }_{-2.7 \%}^{-3.4 \%}$ | ${ }^{234.7 \%}$ | 718.2 715.6 | ${ }_{700.5}^{701.5}$ | -16.7 | -2.3\% |
 | 25.9\% | 616.2 | 591.6 | -24.6 | -4.0\% | 25.9\% | 713.0 | 697.9 | -15.2 | -2.1\% |
 | 27.2\% | 616.1 | 583.5 | -32.6 | -5.3\% | 27.2\% | 710.7 | 681.8 | -28.9 | -4.1\% |
 | 28.4\% | 604.1 | 568.9 5842 | $\begin{array}{r}-35.2 \\ -362 \\ \hline \text { - }\end{array}$ | -5.8\% | 28.4\% | 710.1 7072 | 680.7 656.7 | -29.5 | -4.2\% |
 | 29.6\% | 600.4 | 564.2 | -36.2 | -6.0\% | 29.6\% | 707.2 | 656.7 | -50.5 | -7.1\% |
 | 30.9\% | 5991.6 | 563.3 5597 | -28.3 | -4.4\% | 30.9\% | 700.5 6968 | 655.1 | -45.4 | -6.5\% |
 | 33.3\% | ${ }_{590.1}^{590.6}$ | ${ }_{555.7}^{559.7}$ | -34.4 | -5.8\% | 33.3\% | 699.8 696.4 | ${ }_{649} 6.2$ | -4.2.5 | -6.1\% |
 | 34.6\% | 583.8 | 547.1 | -36.7 | -6.3\% | 34.6\% | 690.4 | 649.0 | -41.5 | -6.0\% |
 | 35.8\% | 578.8 | 545.6 | -33.2 | -5.7\% | 35.8\% | 669.3 | 646.9 | -22.4 | -3.3\% |
 | 37.0\% | 578.7 | 542.7 | -36.0 | -6.2\% | 37.\% | 651.3 | 643.1 | ${ }_{-8.1}$ | -1.2\% |
 | ${ }_{3}^{38.3 \%}$ | 575.0 5724 | 532.4 5305 | ${ }_{-4.426}{ }^{-419}$ | -7.7\% | | 646.3 6439 | 642.6 6314 | -3.8 -125 | ${ }_{-1.0 \%}^{-0.6 \%}$ |
 | 39.5\% | 572.4 | 530.5 | -41.9 | -7.3\% | 39.5\% | 643.9 | ${ }^{631.4}$ | -12.5 | -1.9\% |
 | 40.7\% | 563.0 561.8 | $\begin{array}{r}526.7 \\ 523 \\ \hline\end{array}$ | -36.3
 -385
 8 | -6.4\% | 40.7\% | 643.8 6057 | 620.2 616.5 | -23.6
 108 | - -3.7% |
 | 43.2\% | 559.8 | 522.4 | ${ }^{-37.4}$ | ${ }^{-6.7 \%}$ | 43.2\% | 580.1 | 615.2 | 35.1 | 6.1\% |
 | 44.4\% | 558.2 | 517.7 | -40.5 | -7.3\% | 44.4\% | 574.1 | 602.0 | 27.9 | 4.9\% |
 | | 548.8 538.5 | 517.2 511.5 | -31.6 | -5.5\% | 45.7\% | 558.6 5480 | 572.7 564.1 | $\begin{array}{r}14.0 \\ 162 \\ \hline 1.2\end{array}$ | 2.5\% |
 | 46.9\% | ${ }_{53}^{53.5}$ | ${ }_{511.5}$ | -27.0 | -5.5\% | 46.9\% | 548.0 | 564.1 | 16.2 | 2.9\% |
 | 49.4\% | ${ }_{5}^{5314.4}$ | ${ }_{495.3}^{501.1}$ | -30.5 -19.1 | ${ }_{\text {- }}^{\text {- }}$-3.7\% | ${ }_{4}^{48.4 \%}$ | 539.8 537.2 | 541.5 518.5 | -187 | ${ }_{\text {- }}^{0.35 \%}$ |
 | 50.6\% | 505.0 | 484.9 | -20.1 | -4.0\% | 50.6\% | 536.6 | 518.2 | -18.4 | -3.4\% |
 | 51.9\% | 493.0 | 464.4 | -28.6 | -5.8\% | 51.9\% | 535.4 | 518.2 | -17.2 | -3.2\% |
 | | ${ }_{4619}^{4639}$ | ${ }_{454.9}^{454}$ | -9.0 | -1.9\% | 年 53.19% | 518.3 513.6 | 516.9 5112 | -1.44 | -0.3\% |
 | 54.3% 55.6% | ${ }_{45519}$ | 454.7 449.4 | -7.2 -58 | ${ }^{-1.1 .6 \%}$ | 54.3% 55% 5, | 513.6 5123 | | -2.4 | ${ }^{-0.5 \%}$ |
 | | ${ }_{454.1}^{455}$ | 449.4 446.8 | -5.81 | -1.3\% | | 512.3 5000 | 510.8 5056 | -1.54 | -0.3\% |
 | 55.8.0\% | ${ }_{450.4}^{454}$ | ${ }_{443.2}^{446.8}$ | -7.7 -72 | ${ }^{-1.7 \%}$ | 56.8\% | 506.0 500.2 | 505.6 500.9 | -0.4 0.7 | -0.1\% |
 | 59.3\% | 445.9 | 436.9 | -9.0 | -2.0\% | 59.3\% | 488.0 | 498.5 | 10.5 | 2.2\% |
 | 60.5\% | 439.6 | 427.8 | -11.8 | -2.7\% | 60.5\% | 487.9 | 493.9 | 6.0 | 1.2\% |
 | 61.7\% | 429.8 | 418.8 | -11.0 | -2.5\% | 61.7\% | 486.2 | 477.8 | -8.4 | -1.7\% |
 | 64.0\% | ${ }_{4}^{423.0}$ | ${ }_{4091}^{4159}$ | -7.1. | - | 63.0\% | ${ }_{4798}^{4858}$ | ${ }_{4721}^{475.8}$ | -10.0 | - -1.1% |
 | 65.4\% | ${ }_{4177.7}^{42.3}$ | ${ }_{408.1}^{409.1}$ | -13.1 -9.6 | -3.3\% | | 479.8 477.9 | ${ }_{472.1}^{472.1}$ | -7.78 | -1.1.2\% |
 | ${ }^{66.7 \%}$ | 414.7 | 405.2 | -9.5 | -2.3\% | 66.7\% | 476.4 | 468.9 | -7.5 | -1.6\% |
 | 67.9\% | ${ }^{412.7}$ | 404.8 | -8.0 | -1.9\% | 67.9\% | 472.6 | 468.3 | -4.3 | -0.9\% |
 | 69.1\% | 409.3 | 403.6 | -5.7 | -1.4\% | 69.1\% | 471.7 | 468.1 | -3.6 | -0.8\% |
 | 70.4\% | 409.1 3990 | 394.2 3934 | - 14.9 -57 | -3.6\% | 70.4\% | ${ }_{463.4}^{464.6}$ | 467.4 4669 | 2.8 3.5 | -0.6\% |
 | 7.2.8\% | 399.0 399.0 | 393.4 391.6 | -5.7 | ${ }^{-1.4 \% \%}$ | 72.8\% | ${ }_{461.7}^{463.4}$ | 466.9 465.6 | 3.5 3.9 | 0.8\% |
 | 74.1\% | 396.1 | 3899 | -6.3 | -1.6\% | 74.1\% | 460.5 | 462.2 | 1.8 | 0.4\% |
 | 75.3\% | 395.6 3 | 389.9 | -5.7 | -1.4\% | 75.3\% | 458.6 | ${ }^{460.6}$ | 1.9 | 0.4\% |
 | 76.5\% | 384.2 | 380.7 | -3.5 | -0.9\% | 76.5\% | 458.0 | 459.6 | 1.6 | 0.4\% |
 | 77.8% 79.0% | 379.9 3792 | ${ }_{3719}^{379.2}$ | -0.7 | -0.0\% ${ }^{-0.9 \%}$ | 77.8\% | ${ }_{454.0}^{456}$ | ${ }_{456.6}^{456}$ | 10.8 20 | 0.2\% 0 |
 | 80.2\% | 379.2 | 371.6 | -7.6 | -2.0\% | 80.2\% | 454.5 | 455.8 | 1.3 | 0.3\% |
 | 81.5\% | ${ }_{375.3}$ | 371.1 | -4.3 | -1.1\% | 81.5\% | 455.3 | 455.7 | 2.4 | 0.5\% |
 | 82.7\% 8400% | 371.9 3710 | 371.0 3694 | -0.8 | -0.0.0\% | 82.7\% 840% | 452.3 450.6 | ${ }_{453.4}^{45.5}$ | 3.2 29 | - 0.7% |
 | 85.2\% | 369.4 | 368.7 | -0.7 | -0.2\% | 85.2\% | 442.5 | 451.1 | 8.6 | 1.9\% |
 | 86.4\% | 366.9 | 366.2 | -0.6 | -0.2\% | 86.4\% | 435.6 | 444.8 | 9.1 | 2.1\% |
 | 887.7\% | - $\begin{aligned} & 365.4 \\ & 360.1\end{aligned}$ | 365.8 363.7 | 0.4 3 3 | - | 87.7\% | ${ }_{439.9}^{43,9}$ | ${ }_{436.6}^{442.5}$ | ${ }_{6}^{8.7}$ | 2.0\% |
 | 90.1\% | 359.3 | 362.0 | 2.7 | 0.8\% | 90.1\% | 424.8 | 435.0 | 10.2 | 2.4\% |
 | 91.4\% | 355.7 | 358.2 | 2.5 | 0.7\% | 91.4\% | 422.3 | ${ }^{423.6}$ | 1.2 | 0.3\% |
 | 92.6\% ${ }_{\text {938\% }}$ | 351.2 350.2 | 357.3
 3511 | ${ }^{6.0}$ | - 1.7% | ${ }_{93,8 \%}^{92.6 \%}$ | 404.8 368.0 | 390.5 368.1 | 14.3
 0.2
 0 | - |
 | 95.1\% | 339.9 | 344.7 | 4.8 | 1.4\% | 95.1\% | 243.2 | 244.1 | 0.9 | 0.4\% |
 | 96.3\% | ${ }_{3}^{332.1}$ | ${ }^{337.2}$ | -1.9 | ${ }^{-0.6 \%}$ | 96.3\% | ${ }_{228}^{228.6}$ | ${ }_{227.5}^{227.5}$ | -1.1 | -0.5\% |
 | 97.5\% | 281.3 | 277.1 | -4.2 | -1.5\% | 97.5\% | ${ }^{226.7}$ | ${ }_{2}^{220.8}$ | 0.1 | 0.0\% |
 | 98.8\% 1000% | ${ }_{232}^{238}$ | ${ }_{2321}^{2390}$ | 0.8 | -0.3\% | 98.8\% | 190.7 | 208.1 1945 | 0.2 -0.1 | -0.1\% |

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | Wsp 2omene January | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {WSIP } 2070 \text { Without }}$ Proect | WSIP 2070 With Project | Absolute | Relative |
 | | Monthly EC | Monthly EC | (ifiteresce | Difference (\%) |
 | 0.0\% | ${ }^{830.1}$ | ${ }^{828.3}$ | ${ }^{-1.8}$ | ${ }^{0.2 \%}$ |
 | 1.2\% | 827.3 | 824. | | |
 | 2.5\% | 815.3 | 811.7 | ${ }^{-3.6}$ | 0.4\% |
 | 3.7\% | 814.7 | 799.9 | 14.8 | |
 | 4.9\% | 783.9 | 793.5 | 9.6 | 1.2\% |
 | 6.2\% | 776.2 | 791.3 | 15.1 | |
 | 7.4\% | 7493 | 777.8 | 28.5 | 3.8\% |
 | 8.6\% | 740.8 | 7777 | 36.9 | |
 | 9.9\% | 733.0 | 777.3 | 44.3 | |
 | ${ }^{11.19 \%}$ | 731.3 | 770.1 7452 | ${ }_{175}^{38.9}$ | 5\% |
 | 13.6\% | ${ }_{7238}$ | 7378 | 14.0 | 1.9\% |
 | -14.8\% | ${ }_{723.3}^{721.3}$ | ${ }_{731.5}^{732.5}$ | 8.1 | 1.1\% |
 | 16.0\% | 711.2 | ${ }^{724.0}$ | 12.9 | ${ }^{1.8 \%}$ |
 | | | ${ }_{72135}^{72.5}$ | 14.8 | ${ }^{2.1 \%}$ |
 | - 18.5% | 703.8 700.8 | 713.5 710.9 | 90.1 10.1 | ${ }^{1.4 \% \%}$ |
 | 21.0\% | 700.6 | 710.4 | 9.8 | 1.4\% |
 | 22.2\% | 696.4 | 707.4 | 11.0 | |
 | 23.5\% | ${ }^{687.5}$ | 703.2 | 15.7 | 2.3\% |
 | 24.7\% | 686.7 | 703.0 | 16.3 | |
 | 25.9\% | 683.3 | 698.7 | 15.3 | 2.2\% |
 | 27.2\% | 679.0 | 697.2 | 18.2 | 2.7\% |
 | 29.6\% | ${ }_{672.7}^{67.1}$ | ${ }_{6}^{697.8}$ | ${ }_{7.1}^{16.5}$ | ${ }^{2.4 \%}$ |
 | 30.9\% | 670.8 | 672.6 | 1.8 | 0.3\% |
 | 32.1\% | 665.9 | 672.5 | 6.6 | 1.0\% |
 | 33.3\% | 657.8 | 666.9 | 9.1 | 1.4\% |
 | 34.6\% | 657.6 | 665.6 | 8.0 | 1.2\% |
 | 35.8\% | 652.9 | 665.0 | 12.1 | 1.9\% |
 | 37.0\% | 651.0 | 661.8 | 10.8 | 1.7\% |
 | 38.3\% | 649.2 | 661.2 | 12.0 | 1.8\% |
 | 39.5\% | 649.0 | 656.4 | 7.5 | 1.2\% |
 | 40.7\% | 644.4 | 654.2 | 9.9 | ${ }^{1.5 \%}$ |
 | 42.0\% | 639.9 | 650.3 | 10.4 | 1.6\% |
 | 43.2\% | 636.7 | 646.8 | 10.1 | 1.6\% |
 | 44.4\% | 635.5 | 644.2 | 8.7 | 1.4\% |
 | 45.7\% | 631.2 | 642.9 | 11.7 | 1.9\% |
 | 46.9\% | ${ }^{629.3}$ | 641.1 | 11.8 | 1.9\% |
 | 48.1\% | 629.1 | 640.9 | 11.8 | 1.9\% |
 | 49.4\% | 627.9 | 640.4 | 12.6 | 2.0\% |
 | 50.6\% | 627.1 | 639.7 | 12.6 | 2.0\% |
 | 51.9\% | 619.8 | ${ }^{637.3}$ | 17.5 | 2.8\% |
 | 53.1\% | 617.8 | 637.0 | 19.3 | 3.1\% |
 | 54.3\% | 617.3 | 635.7 | 18.5 | 3.0\% |
 | 55.6\% | 615.7 | 635.4 | 19.8 | 3.2\% |
 | 56.8\% | 611.4 | 628.1 | 16.7 | 2.7\% |
 | 58.0\% | 609.3 | 622.2 | 12.9 | 2.1\% |
 | 59.3\% | 607.4 | 621.5 | 14.1 | 2.3\% |
 | 60.5\% | 607.4 | 618.2 | 10.7 | 3.8\% |
 | 61.7\% | 595.8 | 617.3 | 21.5 | 3.6\% |
 | 63.0\% | 593.8 | 612.1 | 18.3 | 3.19\% |
 | 64.2\% | 592.7 | 608.4 | 15.8 | 2.7\% |
 | 65.4\% | 590.8 | 607.4 | 16.6 | 2.8\% |
 | 66.7\% | 587.5 | 594.9 | 7.5 | 1.3\% |
 | 67.9\% | 580.2 | 585.8 | 5.7 | 1.0\% |
 | 69.1\% | 565.8 | 579.4 | 13.6 | 2.4\% |
 | 70.4\% | 561.0 | 599.0 | 8.0 | 1.4\% |
 | - 71.6% | 558.4
 552. | 50.4 | 2.1 | 0.4\% |
 | 74.1\% | 534.6 | 534.9 | 0.3 | -1.1\% |
 | 75.3\% | 533.9 | 534.2 | 0.3 | 0.0\% |
 | 76.5\% | 5097 | 512.5 | 2.8 | 0.5\% |
 | 77.8\% | 507.8 | 507.1 | -0.7 | -0.1\% |
 | 79.0\% | 501.9 | 502.1 | 0.1 | 0.0\% |
 | 80.2\% | 451.5 | 453.2 | 1.7 | 0.4\% |
 | 81.5\% | 435.5 | 438.3 | 2.8 | ${ }^{0.6 \%}$ |
 | - 82.78 | 423.3 | 436.6 | 13.3 | 3.1\% |
 | 84.0\% | 406.1 | 406.7 | 0.6 | ${ }^{0.19 \%}$ |
 | 85.2\% | 384.7 | 406.5 | 21.7 | 5.6\% |
 | 86.4\% | 363.5 | ${ }^{363.4}$ | -0.1 | 0.0\% |
 | 877\% | 353.4 | 353.6 | 0.2 | 0.1\% |
 | 88.9\% | 328.8 | 329.0 | 0.1 | 0.0\% |
 | 90.19\% | 318.7 | 318.7 | 0.1 | 0.0\% |
 | 914.4\% | 282.5 | ${ }^{283.3}$ | ${ }^{0.8}$ | ${ }^{0.3 \% \%}$ |
 | 92.6\% | 279.6 | ${ }^{282,3}$ | 2.7 | 1.0\% |
 | 93.8\% | ${ }_{273}^{273.5}$ | ${ }_{272.3}^{280.3}$ | ${ }^{6.8}$ | 2.5\% |
 | 95.1\% | 273.2 | 272.6 | -0.6 | -0.2\% |
 | ${ }^{96.3 \%}$ | 267.6 | 268.1 | 0.5 | 0.2\% |
 | 97.5\% | 256.0 | 256.2 | 0.2 | 1\% |
 | 98.8\% | ${ }^{252,1}$ | ${ }^{253.1}$ | 1.0 | 0.4\% |
 | 100.0\% | 231.6 | 231.7 | 0.1 | 0.0\% |

 Table SQ-32-b
 Deta Mendotat Canal at onenes Pumping Plant, Monthly EC

 | $\begin{gathered} \text { Percent } \\ \text { Excedance } \\ \text { Probability } \end{gathered}$ | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2077 Without | WSIP 2070 With Project | Absolute | |
 | | Monthly EC | Monthy EC | (ititerence | fference (\%) |
 | [9] | UMH | me | | |
 | 0.0\% | ${ }^{942.7}$ | 950.1 | 7.4 | 0.8\% |
 | ${ }^{1.2 \%}$ | 917.4 | ${ }_{874.0}^{890.0}$ | -27.4 | -3.0\% |
 | 2.5\%\% | ${ }_{8798}^{889.6}$ | ${ }_{8774}^{874}$ | -15.5 | -1.7\% |
 | 3.9\% | 879.8 8468 | ${ }^{874.0}$ | -8.7 1 | 0.2\% |
 | 6.2\% | 842.8 | 842.1 | -0.7 | -0.1\% |
 | 7.4\% | 840.4 | 835.9 | -4.5 | -0.5\% |
 | - ${ }_{\text {8.9\% }}$ | 837.0 8358 | 834.6 8297 | --6.3 | -0.3\% |
 | 11.1\% | ${ }_{8237}$ | | | |
 | 12.3\% | 810.0 | 814.2 | 4.2 | 0.5\% |
 | 13.6% 14.8% | 808.4 7963 | 812.8 8126 8 | 4.4 | 0.5\% |
 | 16.0\% | 786.8 | 797.0 | 10.2 | 1.3\% |
 | 17.3\% | 781.5 | 786.4 | 4.9 | 0.6\% |
 | 18.5% 1988% | 774.8 773.0 | 784.4 7819 | ${ }_{8.9}^{9.5}$ | - 1.2% |
 | 21.0\% | 771.0 | 768.2 | -2.8 | -0.4\% |
 | ${ }^{22.2 \%}$ | 768.2 | 767.0 | -1.2 | -0.2\% |
 | - ${ }^{23.4 \% \%}$ | 758.1 756.7 | ${ }_{7}^{757.7}$ | -1.5 | ${ }_{\text {- }}$ |
 | 25.9\% | 735.2 | 739.1 | 3.9 | 0.5\% |
 | 27.2\% | 712.9 | 724.4 | 11.5 | 1.6\% |
 | 28.4\% | 710.4 708.9 | ${ }_{714.7}^{720.0}$ | ${ }_{5.7} 9$ | - ${ }_{\text {0.8\% }}$ |
 | 30.9\% | 696.2 | 713.1 | 16.9 | 2.4\% |
 | ${ }^{32.1 \%}$ | 690.8 | 696.4 | 5.7 | 0.8\% |
 | 年33.3\% | 688.0 675.4 | 693.5 693.3 | 5.5 17.9 | 2.8\% |
 | 35.8\% | 672.7 | 691.2 | 18.5 | 2.8\% |
 | | 670.1 | 680.9 | 10.8 | 1.6\% |
 | 30.5\% | ${ }_{653.3}^{608.8}$ | 667.8 688.7 | -4.7 | ${ }^{-0.7 \%}$ |
 | 40.7\% | 652.3 | 633.4 | -18.8 | -2.9\% |
 | | | 631.1 | -9.9 | -1.5\% |
 | - 43.2% | 631.3 617.9 | 627.1 699.1 | ${ }_{1}^{-4.2}$ | -0.7\% |
 | 45.7\% | 603.2 | 573.3 | -29.9 | -5.0\% |
 | | | 571.4 | 0.6 | 0.1\% |
 | 49.4\% | ${ }_{555.3}^{502.8}$ | ${ }_{564.5}^{569.7}$ | ${ }_{9.2}^{6.9}$ | 1.7\% |
 | 50.6\% | 550.1 | 555.6 | 5.5 | 1.0\% |
 | | | 540.8 | 7.1 | 1.3\% |
 | 54.3\% | 5329 529.4 | ${ }_{518.2}^{530.1}$ | -0.1.2 | ${ }_{-2.1 \%}^{-0.2 \%}$ |
 | 55.\% \% | 508.4 | 509.0 | 0.7 | 0.1\% |
 | | | | 1.8 | |
 | 59.3\% | 474.5 | 488.9 | 4.4
 1 | 0.9\% |
 | ${ }^{60.5 \%}$ | 471.4 | 472.0 | 0.6 | 0.1\% |
 | 61.7\% | | | 1.0 | 0.2\% |
 | 64.2\% | ${ }_{454.6}$ | ${ }_{457.3}$ | ${ }_{2.7} .8$ | 0.6\% |
 | 65.4\% | 449.9 | 451.9 | 2.0 | 0.4\% |
 | 66.7\% 679% | | | -0.4 | -0.1\% |
 | 69.1\% | ${ }_{403.4}^{42.4}$ | ${ }_{406.2}$ | ${ }^{-3.8}$ | -0.7\% |
 | 70.4\% | 391.2 | 404.3 | 13.1 | 3.4\% |
 | | 372.0 | | ${ }^{0.3}$ | 0.1\% |
 | 74.1\% | ${ }_{350.9}$ | ${ }_{\text {coser }}^{361.6}$ | ${ }_{0}^{0.6}$ | 0.0\% |
 | 75.3\% | 324.5 | ${ }_{326.2}$ | 1.7 | 0.5\% |
 | | | | | |
 | 79.0\% | 300.5 | 311.8 307.6 | 1.1
 1.1
 1 | 0.4\% |
 | 80.2\% | 299.1 | 299.3 | 0.2 | 0.1\% |
 | - ${ }^{81.5 \%}$ | | | | 0.0\% |
 | 84.0\% | ${ }_{286.7}^{295.2}$ | ${ }_{286.4}^{295.6}$ | -0.4 | -0.1\% |
 | 85.2\% | 286.4 | 286.1 | -0.3 | -0.1\% |
 | 86.4\% | 256.2 | 256.6 | 0.4 | 0.2\% |
 | 87.7% 88.9% | 255.3 | 255.0 | 0.7 | 0.3\% |
 | - ${ }^{88.9 \%}$ | ${ }^{2525}$ | ${ }^{253.5}$ | 1.0 | 0.4\% |
 | 91.4\% | ${ }_{232.4}$ | ${ }_{232.5}$ | 0.1 | 0.0\% |
 | 92.6\% | 212.8 | 210.9 | -1.8 | -0.9 |
 | 93.\% | 210.7 | 210.6 | 0.0 | 0.0\% |
 | 95.1\% | 210.6 | 208.6 | -2.0 | -0.9\% |
 | 96.3\% | 203.9 | 204.2 | 0.3 | 0.1\% |
 | 97.5\% | ${ }_{120.5}^{205}$ | ${ }^{200.9}$ | 0.4 | ${ }^{0.2 \%}$ |
 | 100.0\% | 169.8 | 169.9 | 0.1 | 0.1\% |

 | $\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Exceedance } \\ \text { Probabaility } \end{array} \end{aligned}$ | ${ }^{\text {may }}$ | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {WSIP }}^{\text {207 }}$ Prowithout | P 2070 With Project | Absolute | Eelat |
 | | Monthly E | Monthly EC | Difference (unHosicm) | ference (\%) |
 | 0.0\% | 604.6 | 602.9 | ${ }^{-1.7}$ | -0.3\% |
 | 1.2\% | 592.6 | 596.6 | 4.0 | |
 | 2.5\% | 590.9 | 593. | 2.1 | |
 | 3.7\% | 587.4 | 584 | | |
 | 4.9\% | 584.0 | 581 | -2.8 | |
 | 7.2\% | 578.9 | 579.9 | 0.9 | 0.2\% |
 | 7.4\% | 578.1 | 578.0 | | |
 | 9.9\% | 571.3 | 568.8 | -2.6 | -0.4\% |
 | 11.1\% | 566.7 | 565.1 | -1.6 | -0.3\% |
 | 12.3 | 561.8 | 563.4 | 1.5 | |
 | 13.6\% | 561.8 | 561.8 | 0.0 | |
 | 14.8\% | 560.7 | 561.2 | 0.4 | |
 | 16.0\% | 554.4 553.7 | $\begin{array}{r}560.0 \\ 555 \\ \hline\end{array}$ | ${ }_{1}^{5.7}$ | 1.0\% |
 | 18.5\% | 549.0 | ${ }_{554.4}$ | 5.4 | 1.0\% |
 | 19.8\% | 548.5 | 550.6 | 2.1 | 0.4\% |
 | 21.0\% | 538.3 | 550.4 | 12.1 | 2.2\% |
 | | | 541.1 | 6.4 | |
 | 24.7\% | ${ }_{53}^{531.8}$ | ${ }_{534.5}^{535.0}$ | ${ }_{3.8}^{3.2}$ | 0.7\% |
 | 25.9\% | 528.7 | 528.6 | ${ }_{-0.1}$ | 0.0\% |
 | 27.2\% | 527.8 | 526.7 | -1.1 | 0.2\% |
 | 28.4\% | 524.4 | 524.6 | 0.1 | 0.0\% |
 | 29.6\% | 513.6 | 518.8 | 5.3 | |
 | 俍30.9\%\% | 507.7 | ${ }_{5}^{513.8}$ | 6.0 | 1.2\% |
 | 32.3\% | ${ }_{478.0}$ | ${ }^{502.3}$ | 0.0 | 0.0\% |
 | 34.6\% | 467.8 | 477.5 | 9.7 | 2.1\% |
 | 35.8\% | 464.3 | 467.9 | 3.6 | 0.8\% |
 | 37.0\% | 464.2 | 461.1 | ${ }^{-3.1}$ | -0.7\% |
 | 38.3\% | 462.8 | 458.1 | -4.8 | -1.0\% |
 | 39.5\% | 459.9 | 457.0 | -2.9 | -0.6\% |
 | 40.7\% ${ }^{40.0 \%}$ | ${ }^{455.6}$ | ${ }^{451.3}$ | 0.7 | 0.1\% |
 | ${ }_{43.2 \%}$ | 440.1 | 438.8 | ${ }_{-1.3}$ | -0.3\% |
 | 44.4\% | 434.2 | 434.7 | 0.5 | 0.1\% |
 | 45.7\% | 426.4 | 424.6 | -1.9 | -0.4\% |
 | 46.9\% | 422.3 | 422.3 | 0.0 | 0.0\% |
 | 48.1\% | 416.6 | 415.1 | -1.5 | -0.4\% |
 | 49.4\% | ${ }^{412.8}$ | 412.8 | 0.0 | 0.0\% |
 | 50.9\% | 401.3 | 401.5 | 0.2 | 0.1\% |
 | 55.1\% | 398.8 | 398.9 | 0.1 | 0.0\% |
 | 54.3\% | 394.3 | 394.4 | 0.1 | 0.0\% |
 | 55.6\% | 393.2 | 393.3 | 0.1 | 0.0\% |
 | 56.8\% | 391.5 | 391.5 | 0.0 | 0.0\% |
 | 58.0\% | 378.9 | 379.0 | 0.0 | 0.0\% |
 | 59.3\% | ${ }_{378.7}^{3785}$ | ${ }_{3778}^{378}$ | -0.2 | -0.1\% |
 | 661.7\% | 375.6 374.2 | ${ }_{374.3}^{37.7}$ | 2.1 0.0 | 0.0\% |
 | 63.0\% | 372.3 | 372.3 | 0.0 | 0.0\% |
 | 64.2\% | ${ }^{370.2}$ | 370.8 | 0.5 | 0.1\% |
 | 65.4\% | 368.2 | 368.1 | -0.1 | 0.0\% |
 | 66.7\% | 361.9 | 361.9 | 0.0 | 0.0\% |
 | 67.9\% | 361.2 | 361.2 | 0.0 | 0.0\% |
 | 69.1\% | 359.5 | 359.5 | 0.0 | 0.0\% |
 | 71.6\% | 344.7
 4.3 | ${ }_{344.3}$ | 0.1 | 0.0\% |
 | 72.8\% | 338.9 | 338.8 | -0.1 | 0.0\% |
 | 74.1\% | ${ }_{3}^{335.6}$ | ${ }_{3}^{337.3}$ | 1.7 | 0.5\% |
 | 75.3\% | 335.2 | 335.8 | 0.6 | 0.2\% |
 | 77.5\% | 333.8
 3188 | ${ }^{33319}$ | 0.0 | 0.0\% |
 | 79.0\% | ${ }_{288.6}$ | ${ }_{290.0}$ | 1.4 | ${ }^{0.5 \%}$ |
 | 80.2\% | 286.2 | 287.3 | 1.2 | 0.4\% |
 | 81.5\% | 278.8 | 278.8 26.5 | 0.0 | 0.0\% |
 | 82.7\% | 266.4 | 266.5 | 0.1 | 0.0\% |
 | 88.0\% | 263.0 2524 | ${ }_{253.1}^{263.1}$ | 0.0 | 0.0\% |
 | ${ }_{88.4 \%}^{85.2 \%}$ | ${ }_{240.7}^{252.4}$ | ${ }_{241.7}^{2531}$ | 1.1 | 0.4\% |
 | 87.7\% | 236.2 | 236.5 | 0.3 | 0.1\% |
 | 88.9\% | 230.3 | 231.2 | 0.9 | 0.4\% |
 | 90.1\% | 197.5 | 198.0 | 0.5 | 0.3\% |
 | ${ }^{99.4 .6 \%}$ | 197.4 | 197.8 | 0.4 | 0.2\% |
 | 93.8\% | 190.2 190.0 | ${ }_{190.4}^{195.7}$ | 0.4 | - |
 | 95.1\% | 184.3 | 184.7 | 0.4 | 0.2\% |
 | ${ }^{96.3 \%}$ | 179.1 | 1797 | 0.6 | 0.3\% |
 | 978.5\% | 173.5 | 173.5 1652 | 0.0 | 0.0\% |
 | - ${ }^{\text {90.8.0\% }}$ | ${ }_{163.3}^{165.1}$ | ${ }_{\text {l }}^{165.5}$ | ${ }_{0.2}^{0.2}$ | 0.1\% |

 Table SQ-32-b
 Delta Mendotat Canal at Jones sumping Plant, Monthly EC

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2077 Without | WSIP 207 With Project | Absolute | |
 | | Monthly EC | Monthly EC | (itierersce | ference (\%) |
 | (\%) | UnHosicm) | | | |
 | 0.0\% | 579.2 | 573.5 | -5.7 | -1.0\% |
 | ${ }^{1.2 \%}$ | 579.1 | ${ }_{563.4}^{5611}$ | -15.7 | -2.7\% |
 | 2.5\% | ${ }_{554.1}^{563.7}$ | 561.1 5551 | -2.6 | 5\% |
 | 4.9\% | ${ }_{550.0}^{554}$ | ${ }_{550.1}^{553.1}$ | -1.0 0.1 | -0.0\% |
 | ${ }^{6.2 \%}$ | 531.6 5309 | 532.4 | ${ }^{0.8}$ | 0.2\% |
 | 7.4\% | 530.9 | ${ }_{53}^{531.5}$ | 0.6 | 0.1\% |
 | ${ }_{9.9 \%}$ | 530.4 513.6 | 530.4 50.5 | ${ }_{-3.1}^{0.0}$ | -0.0\% |
 | 11.19\% | 511.4 | 510.1 | -1.3 | -0.3\% |
 | 12.3\% | 510.1 | 509.9 | -0.2 | 0.0\% |
 | 俍 $\begin{aligned} & 13.6 \% \\ & 148 \%\end{aligned}$ | 508.3
 5058 | ${ }_{4992}^{4997}$ | -8.6 | -1.7\% -1.3% |
 | 16.0\% | 499.5 | 498.2 | -1.3 | -0.3\% |
 | 17.3\% | 498.6 | 497.8 | -0.8 | -0.2\% |
 | - $\begin{aligned} & 18.5 \% \\ & 1989 \%\end{aligned}$ | ${ }_{492}^{497}$ | ${ }_{488.1}^{497}$ | -0.4 | -0.1\% |
 | 21.0\% | 492.0 | 487.0 | -5.1 | -1.0\% |
 | 22.2\% | 489.5 | 482.6 | -6.9 | -1.4\% |
 | ${ }_{224.7 \%}^{23.5 \%}$ | ${ }_{484.3}^{4850}$ | ${ }_{476.4}^{482.2}$ | - -7.8 | -0.6\% ${ }_{-1.6 \%}$ |
 | 25.9\% | 478.8 | 471.1 | -7.7 | -1.6\% |
 | 27.2\% | 476.9 | 457.7 | -19.2 | -4.0\% |
 | 29.6\% | ${ }_{454.5}^{46.3}$ | ${ }_{454.1}^{456.5}$ | -8.8 | -0.1\% |
 | 30.9\% | 454.5 | 451.2 | -3.3 | -0.7\% |
 | 32.1\% | ${ }^{453.1}$ | 450.9 | -2.2 | -0.5\% |
 | 334.6\% | ${ }_{447.9}$ | ${ }_{488.6}^{448.6}$ | -3.4 0.7 | -0.8\% |
 | 35.8\% | 444.6 | 443.1 | -1.6 | -0.4\% |
 | | 439.2 | 438.1 | | -0.3\% |
 | 39.5\% | ${ }_{4359.6}^{439.0}$ | ${ }_{436.9}^{437.3}$ | -1.8 1.3 | -0.3\% |
 | 40.7\% | 435.5 | 435.5 | 0.0 | 0.0\% |
 | 42.0\% | 431.7 | ${ }^{435.3}$ | 3.5 | 0.8\% |
 | 44.4\% | ${ }_{4288.4}^{430.8}$ | ${ }_{430.7}^{434}$ | 3.4
 2.3 | - 0.5% |
 | 45.7\% | 425.6 | 428.4 | 2.7 | 0.6\% |
 | ${ }^{46.9 \%}$ | ${ }_{424.1}^{424.6}$ | ${ }_{423.7}^{426.7}$ | - ${ }_{-0.3}^{2.1}$ | 0.5\% |
 | 49.4\% | 423.0 | ${ }_{423.3}^{42.7}$ | -0.3 | ${ }^{-0.1 \%}$ |
 | | 422.7 4222 | ${ }_{4}^{418.2}$ | -4.5 | -1.1\% |
 | 51.9\% | ${ }_{420.2}^{42.2}$ | 417.0 416.5 | -5.1. -3 | -1.2\% |
 | 54.3\% | 418.4 | 415.8 | -2.6 | -0.6\% |
 | 55.6\% | ${ }_{41517.7}^{417.2}$ | 414.5 414.4 | -2.7 -1.2 | ${ }^{-0.0 .3 \%}$ |
 | 58.0\% | 415.5 | 408.7 | -6.8 | -1.6\% |
 | ${ }^{59.3 \%}$ | ${ }_{41515.2}^{415.3}$ | 408.4 408.3 | -6.9 | ${ }^{-1.7 \%}$ |
 | 61.7\% | 413.5 | 408.2 | -5.3 | -1.3\% |
 | -63.0\% | ${ }_{4}^{413.2}$ | ${ }_{407.7}^{407.7}$ | -5.9 | -1.4\% |
 | 65.4\% | 408.4 | 407.0 | | -0.3\% |
 | 66.7\% | 408.2 | 401.9 | -6.3 | ${ }^{-1.6 \%}$ |
 | 67.9\% | ${ }_{403.1}^{408.2}$ | 398.7 398.1 | -9.5 | --2.3\% |
 | 70.4\% | 401.2 | 395.5 | -5.7 | -1.4\% |
 | 71.6\% | 399.5 | 393.2 | -6.3 | ${ }^{-1.6 \%}$ |
 | 74.1\% | 393.7 | 389.7 | -4.0 | ${ }^{-1.0 \%}$ |
 | 75.3\% | 384.1 | 384.6 | 0.5 | 0.1\% |
 | 76.5\% | | | | |
 | 7.9.\% | ${ }_{380.9}$ | ${ }_{380.5}$ | -0.5 | -0.1\% |
 | 80.2\% | 380.7 | 380.3 | -0.4 | -0.1\% |
 | 81.5\% | 378.4 3759 | | 0.0 | |
 | 84.0\% | ${ }_{374.3}$ | ${ }_{372.6}$ | -.1.7 | ${ }^{-0.5 \%}$ |
 | 85.2\% | 373.4 | 372.4 | -1.0 | -0.3\% |
 | 86.4\% | 373.3 | 372.2 | -1.1 | -0.3\% |
 | 87.7% 880% | 372.0 | 372.1 | 0.0 | 0.0\% |
 | ${ }^{88.9 \%} 9$ | 371.2 | 371.4 | 0.2 | - ${ }_{-2.1 \%}$ |
 | 90.14\% | 368.9 366.8 | ${ }_{358,7}$ | -8.1 | ${ }_{-2.2 \%}$ |
 | 92.6\% | 357.8 | 358.0 | 0.2 | 0.1\% |
 | 93.\% | 353.7 | 353.5 | -0.2 | -0.1\% |
 | 95.19\% | 352.3 | 352.5 | 0.2 | 0.1\% |
 | ${ }^{96.5 \%}$ | 350.5 344.9 | $\begin{array}{r}350.1 \\ 34.6 \\ \hline\end{array}$ | -0.4
 -0.4 | ${ }^{-0.1 \%}$ |
 | 98.8\% | 310.7 | 311.9 | 1.2 | 0.4\% |
 | 100.0\% | 301.8 | 301.5 | -0.3 | -0.1\% |

 # Sacramento-San Joaquin Delta Operations Summary Tables and Bar Charts

 Table SW-31-a

 | Table SW-31-a Yolo Bypass, Monthly Flow | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | | Monthly Flow (CFS) | | | | | | | | | | | |
 | Analysis Period | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | Full Simulion Period' | | | | | | | | | | | | |
 | DCR 2015 W Witout Project | 96 | 367 | 2,961 | 9,378 | 12,300 | 8,114 | 2,477 | 265 | 125 | 48 | 100 | 88 |
 | DCR 2015 Win Priject | 322 | 391 | 2,815 | 8,961 | 12,313 | 7,638 | 2,384 | 244 | 124 | 48 | 281 | 336 |
 | Diffeence | 227 | 24 | -147 | -417 | 13 | -476 | -93 | -21 | 0 | 0 | 181 | 248 |
 | Percent Difference? | | 6.5\% | -4.9\% | -4.4\% | 0.1\% | -5.9\% | -3.8\% | | | | | |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (3.7\%) | | | | | | | | | | | | |
 | DCR 2015 W Witout Project | 86 | 537 | 3,682 | 25,491 | 30,636 | 21,308 | 6,587 | 632 | 251 | 48 | 143 | 128 |
 | DCR 2015 W Wh Project | 365 | 657 | 3,474 | 24,947 | 31,228 | 20,341 | 6,468 | 565 | 250 | 48 | 278 | 458 |
 | Difference | 279 | 120 | -208 | -545 | 592 | -968 | -120 | -67 | -1 | 0 | 135 | 331 |
 | Percent Difference | | | -5.7\% | -2.1\% | 1.9\% | -4.5\% | -1.8\% | | | | | |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 W Witout Project | 37 | 763 | 1,110 | 6,598 | 11,377 | 7,134 | 1,426 | 183 | 66 | 48 | 95 | 65 |
 | DCR 2015 With Priject | 269 | 578 | 1,075 | 5,003 | 10,838 | 6,537 | 1,180 | 183 | 66 | 48 | 388 | 414 |
 | Difference | 232 | -185 | -34 | -995 | -538 | -597 | -246 | 0 | 0 | 0 | 293 | 349 |
 | Percent Difierence | | -24.3\% | -3.1\% | -15.1\% | -4.7\% | -8.4\% | -17.3\% | | | | | |
 | Below Norma (17.1\%) | | | | | | | | | | | | |
 | DCR 2015 W Wtrout Project | 280 | 235 | 2,804 | 964 | 2,810 | 693 | 566 | 67 | 66 | 48 | 114 | 85 |
 | DCR 2015 With Priject | 676 | 283 | 2,423 | 720 | 2,380 | 527 | 455 | 67 | 66 | 48 | 365 | 342 |
 | Difference | 396 | 47 | -381 | -244 | -429 | -166 | -111 | 0 | 0 | 0 | 251 | 257 |
 | Percent Difference | 141.5\% | 20.1\% | -13.6\% | -25.3\% | -15.3\% | -24.0\% | -19.6\% | | | | | |
 | Dry (22%) | | | | | | | | | | | | |
 | DCR 2015 Witrout Project | 43 | 189 | 5,054 | 545 | 1,769 | 697 | 308 | 77 | 67 | 48 | 62 | 65 |
 | DCR 2015 With Proiect | 190 | 211 | 5,006 | 406 | 1,663 | 574 | 308 | 77 | 67 | 48 | 257 | 251 |
 | Difference | 148 | 22 | -47 | -139 | -106 | -123 | 0 | 0 | 0 | 0 | 195 | 186 |
 | Percent Difference | | 11.5\% | -0.9\% | -25.4\% | -6.0\% | -17.6\% | 0.0\% | 0.0\% | | | | |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 W Without Project | 41 | 23 | 295 | 310 | 363 | 292 | 107 | 68 | 64 | 48 | 54 | 67 |
 | DCR 2015 W Wh Project | 69 | 22 | 295 | 128 | 366 | 109 | 107 | 68 | 64 | 48 | 119 | 117 |
 | Difference | 28 | -1 | 0 | -182 | 3 | -183 | 0 | 0 | 0 | 0 | 65 | 50 |
 | Percent Difference | 67.1\% | -6.1\% | 0.0\% | -58.8\% | 0.8\% | -62.7\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 119.6\% | 74.5\% |

 1Based on the 82 yeara simulation period
 3 Realive difference of the monthy verag

 | Table SW-32-a
 Sacramento River at Rio Vista, Monthly Flow Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | | | | | | Monthly | Fow (CFS) | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Sinulition Period' | | | | | | | | | | | | |
 | DCR 2015 Without Project | 6,742 | 12,235 | 21,035 | 35,870 | 44,346 | 34,979 | 21,318 | 15,007 | 10,024 | 10,633 | 7,758 | 12,065 |
 | DCR 2015 W Wif Project | 7,359 | 12,626 | 20,381 | 34,471 | 43,357 | 33,308 | 20,900 | 14,900 | 10,121 | 10,809 | 8,351 | 12,795 |
 | Difference | 617 | 392 | -654 | -1,399 | -989 | -1,671 | -418 | -107 | 97 | 176 | 593 | 730 |
 | Percent Difference | 9.1\% | 3.2\% | -3.1\% | -3.9\% | -2.2\% | -4.8\% | -2.0\% | -0.7\% | 1.0\% | 1.7\% | 7.6 | 6.1\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (31.7\%) | | | | | | | | | | | | |
 | DCR 2015 Wiftout Project | 8,862 | 17,150 | 23,642 | 68,933 | 80,027 | 63,511 | 38,355 | 26,226 | 16,206 | 11,327 | 9,204 | 22,250 |
 | DCR 2015 W Wh Project | 9,135 | 17,545 | 22,804 | 67,697 | 80,104 | 61,821 | 37,925 | 26,017 | 16,525 | 11,351 | 9,303 | 22,133 |
 | Difference | 273 | 396 | -838 | -1,237 | 77 | -1,689 | -430 | -209 | 320 | 24 | 100 | -117 |
 | Percent Difference | 3.1\% | 2.3\% | -3.5\% | -1.8\% | 0.1\% | -2.7\% | -1.1\% | -0.8\% | 2.0\% | 0.2\% | 1.1\% | -0.5\% |
 | Above Norma (14.4\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 7,460 | 15,531 | 19,935 | 39,074 | 50,372 | 42,888 | 22,441 | 16,294 | 10,124 | 12,759 | 9,456 | 13,324 |
 | DCR 2015 WWit Project | 8,262 | 15,198 | 18,767 | 36,643 | 48,741 | 40,576 | 21,577 | 16,278 | 9,755 | 12,915 | 9,687 | 13,828 |
 | Difference | 802 | -333 | -1,168 | -2,432 | -1,631 | -2,312 | -864 | -15 | -369 | 156 | 231 | 503 |
 | Percent Difference | 10.7\% | -2.1\% | -5.9\% | -6.2\% | -3.2\% | -5.4\% | -3.8\% | -0.1\% | -3.6\% | 1.2\% | 2.4\% | 3.8\% |
 | Below Norma (17.1\%) | | | | | | | | | | | | |
 | DCR 2015 WWithut Project | 7,983 | 11,743 | 24,916 | 19,714 | 29,548 | 19,346 | 14,572 | 10,775 | 7,521 | 12,145 | 9,038 | 7,817 |
 | DCR 2015 W Wh Project | 9,208 | 12,760 | 24,190 | 17,966 | 28,260 | 17,248 | 14,011 | 10,411 | 7,59 | 12,227 | 9,457 | 8,585 |
 | Difference | 1,225 | 1,017 | -726 | -1,749 | -1,288 | -2,098 | -561 | -364 | 73 | 82 | 419 | 769 |
 | Percent Difference | 15.3\% | 8.7\% | -2.9\% | -8.9\% | -4.4\% | -10.8\% | -3.9\% | -3.4\% | 1.0\% | 0.7\% | 4.6\% | 9.8\% |
 | Dry $\left(22^{\%} \%\right.$) | | | | | | | | | | | | |
 | DCR 2015 Without Proedt | 4,507 | 8,551 | 22,555 | 14,455 | 20,846 | 16,980 | 10,352 | 7,772 | 6,650 | 10,259 | 5,993 | 5,551 |
 | DCR 2015 With Project | 5,329 | 9,100 | 22,555 | 13,580 | 19,237 | 15,278 | 10,056 | 7,928 | 6,638 | 10,696 | 7,299 | 7,239 |
 | Difference | 823 | 549 | 0 | -875 | -1,609 | -1,702 | -295 | 157 | -12 | 436 | 1,306 | 1,688 |
 | Percent Difference | 18.3\% | 6.4\% | 0.0\% | -6.1\% | -7.7\% | -10.0\% | -2.9\% | 2.0\% | -0.2\% | 4.3\% | 21.8\% | 30.4\% |
 | Critical (14.0\%) | | | | | | | | | | | | |
 | DCR 2015 Wiftout Priject | 3,338 | 4,387 | 9,681 | 11,998 | 13,523 | 10,490 | 7,601 | 5,204 | 4,512 | 5,803 | 4,082 | 3,470 |
 | DCR 2015 WWh Project | 3,494 | 4,531 | 9,042 | 10,901 | 12,145 | 10,041 | 7,641 | 5,127 | 4,784 | 6,046 | 5,242 | 4,780 |
 | Difference | 156 | 144 | -639 | -1,096 | -1,378 | -449 | 40 | -77 | 272 | 243 | 1,160 | 1,310 |
 | Percent Difference | 4.7\% | 3.3\% | -6.6\% | -9.1\% | -10.2\% | -4.3\% | 0.5\% | -1.5\% | 6.0\% | 4.2\% | 28.4\% | 37.8\% |

 2As defined by the Sacaranent Valley $40.30-30$ Io ndex Waier Year Hydrologic Classificaion (SWRCB $D-1641$, 1999)
 3 Realive difference of the montilly vereage

 | Table SW-33-a
 Sacramento/San Joaquin River Delta, Monthly Outflow Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | | | | | | Monthly 0 | utflow (CFS) | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simulition Period' | | | | | | | | | | | | |
 | DCR 2015 W Withut Project | 5,942 | 11,480 | 20,871 | 41,889 | 52,430 | 42,330 | 30,953 | 21,902 | 12,373 | 7,887 | 4,343 | 9,712 |
 | DCR 2015 With Project | 6,446 | 11,581 | 20,055 | 40,312 | 51,190 | 40,594 | 30,492 | 21,779 | 12,611 | 7,915 | 4,489 | 10,064 |
 | Difference | 503 | 101 | -816 | -1,577 | -1,240 | -1,736 | -461 | -123 | 237 | 29 | 146 | 351 |
 | Percent Difference ${ }^{\text {a }}$ | 8.5\% | 0.9\% | -3.9\% | -3.8\% | -2.4\% | -4.1\% | -1.5\% | -0.6\% | 1.9\% | 0.4\% | 3.4\% | 3.6\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (3.7\%\%) | | | | | | | | | | | | |
 | DCR 2015 Without Priject | 8,383 | 18,345 | 23,677 | 83,496 | 95,664 | 78,692 | 55,826 | 39,956 | 22,378 | 11,198 | 5,102 | 19,532 |
 | DCR 2015 With Project | 8,514 | 18,383 | 22,746 | 82,079 | 95,566 | 77,027 | 55,360 | 39,705 | 22,821 | 11,213 | 5,194 | 19,851 |
 | Difference | 131 | 37 | -930 | -1,417 | -98 | -1,665 | -466 | -251 | 443 | 15 | 92 | 320 |
 | Percent Difference | 1.6\% | 0.2\% | -3.9\% | -1.7\% | -0.1\% | -2.1\% | -0.8\% | -0.6\% | 2.0\% | 0.1\% | 1.8\% | 1.6\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 W Witout Project | 5,906 | 13,276 | 18,127 | 46,359 | 60,552 | 50,948 | 32,946 | 23,526 | 11,314 | 9,573 | 4,000 | 11,784 |
 | DCR 2015 With Project | 6,204 | 13,012 | 16,967 | 43,721 | 58,876 | 48,360 | 31,980 | 23,507 | 11,250 | 9,614 | 4,293 | 12,102 |
 | Difference | 298 | -263 | -1,160 | -2,638 | ${ }^{-1,676}$ | -2,588 | -966 | -19 | -64 | 42 | 293 | 318 |
 | Pereent Diffeence | 5.0\% | -2.0\% | -6.4\% | -5.7\% | -2.8\% | -5.1\% | -2.9\% | -0.1\% | -0.6\% | 0.4\% | 7.3\% | 2.7\% |
 | Below Normal (17. \%\%) | | | | | | | | | | | | |
 | DCR 2015 WWithut Project | 5,697 | 9,387 | 26,091 | 21,862 | 35,993 | 22,818 | 22,817 | 15,836 | 7,908 | 7,205 | 4,017 | 3,885 |
 | DCR 2015 W:ith Project | 6,654 | 10,464 | 25,012 | 19,870 | 34,351 | 20,468 | 22,204 | 15,429 | 8,229 | 7,198 | 4,265 | 4,354 |
 | Difference | 957 | 1,076 | -1,079 | -1,992 | -1,642 | $-2,349$ | -613 | -408 | 321 | -7 | 249 | 468 |
 | Percent Difference | 16.8\% | 11.5\% | -4.1\% | -9.1\% | -4.6\% | -10.3\% | -2.7\% | -2.6\% | 4.1\% | -0.1\% | 6.2\% | 12.1\% |
 | Dry (22\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 4,182 | 6,919 | 23,293 | 14,390 | 22,702 | 19,624 | 14,602 | 10,063 | 6,772 | 5,071 | 4,002 | 3,155 |
 | DCR 2015 With Project | 4,717 | 6,798 | 22,567 | 13,365 | 20,873 | 17,811 | 14,270 | 10,226 | 6,756 | 5,098 | 4,276 | 3,652 |
 | Difference | 535 | -121 | -726 | -1,024 | -1,829 | -1,813 | -332 | 163 | -17 | 27 | 274 | 497 |
 | Percent Difference | 12.8\% | -1.7\% | -3.1\% | -7.1\% | -8.1\% | -9.2\% | -2.3\% | 1.6\% | -0.2\% | 0.5\% | 6.8\% | 15.7\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Wiftout Project | 3,617 | 4,092 | 7,813 | 11,886 | 14,407 | 11,750 | 9,089 | 5,997 | 5,368 | 4,046 | 3,937 | 3,000 |
 | DCR 2015 With Project | 4,555 | 3,893 | 7,760 | 10,678 | 12,480 | 11,543 | 9,128 | 5,950 | 5,744 | 4,135 | 3,740 | 3,099 |
 | Difference | 938 | -199 | -54 | -1,208 | -1,927 | -207 | 39 | -46 | 376 | 88 | -197 | 99 |
 | Percent Difference | 25.9\% | -4.9\% | -0.7\% | -10.2\% | -13.4\% | -1.8\% | 0.4\% | -0.8\% | 7.0\% | 2.2\% | -5.0\% | 3.3\% |

 3 Realive differenceo of the monthly vereage

 | Table SW-34-a
 Delta Cross Channel, Monthly Flow | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | Monthly | low (CFS) | | | | | |
 | Analysis Period | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | $\stackrel{\square}{\text { Full Simulition Period }}$ ' | | | | | | | | | | | | |
 | DCR 2015 Wiftout Priject | 4,161 | 3,847 | 4,513 | 5,219 | 6,081 | 5,348 | 4,176 | 3,592 | 5,160 | 7,111 | 5,548 | 5,381 |
 | DCR 2015 With Projed | 4,280 | 3,954 | 4,505 | 5,070 | 5,929 | 5,167 | 4,127 | 3,579 | 5,259 | 7,195 | 5,743 | 5,712 |
 | Difference | 119 | 107 | -8 | -149 | -152 | -182 | -50 | -13 | 99 | 83 | 195 | 332 |
 | Percent Difference | 2.9\% | 2.8\% | -0.2\% | -2.9\% | -2.5\% | -3.4\% | -1.2\% | -0.4\% | 1.9\% | 1.2\% | 3.5\% | 6.2\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (31.7\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 4,522 | 4,155 | 4,929 | 7,737 | 8,696 | 7,659 | 6,128 | 5,241 | 6,179 | 7,445 | 6,221 | 5,694 |
 | DCR 2015 With Project | 4,614 | 4,202 | 4,918 | 7,632 | 8,618 | 7,549 | 6,080 | 5,219 | 6,269 | 7,457 | 6,204 | 5,786 |
 | Difference | 92 | 46 | -11 | -105 | -78 | -110 | -47 | -22 | 89 | 11 | -17 | 92 |
 | Percent Difference | 2.0\% | 1.1\% | -0.2\% | -1.4\% | -0.9\% | -1.4\% | -0.8\% | -0.4\% | 1.4\% | 0.2\% | -0.3\% | 1.6\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 4,543 | 4,255 | 4,577 | 6,088 | 7,104 | 6,700 | 4,512 | 3,797 | 5,047 | 8,126 | 6,348 | 8,099 |
 | DCR 2015 With Project | 4,562 | 4,371 | 4,590 | 5,869 | 6,938 | 6,439 | 4,418 | 3,795 | 5,382 | 8,200 | 6,319 | 8,172 |
 | Differene | 19 | 116 | 13 | -219 | -166 | -261 | -94 | -2 | 334 | 74 | -29 | 73 |
 | Percent Difference | 0.4\% | 2.7\% | 0.3\% | -3.6\% | -2.3\% | -3.9\% | -2.1\% | -0.1\% | 6.6\% | 0.9\% | -0.5\% | 0.9\% |
 | Below Norma (17.1\%) | | | | | | | | | | | | |
 | DCR 2015 Wiftout Priject | 4,582 | 4,063 | 5,043 | 4,076 | 5,273 | 4,110 | 3,448 | 2,985 | 5,091 | 7,836 | 6,146 | 5,469 |
 | DCR 2015 With Projed | 4,783 | 4,193 | 5,013 | 3,848 | 5,143 | 3,816 | 3,380 | 2,929 | 5,122 | 7,875 | 6,225 | 5,712 |
 | Difference | 201 | 131 | -30 | -228 | -131 | -294 | -68 | -55 | 31 | 39 | 80 | 243 |
 | Percent Difference | 4.4\% | 3.2\% | -0.6\% | -5.6\% | -2.5\% | -7.2\% | -2.0\% | -1.9\% | 0.6\% | 0.5\% | 1.3\% | 4.4\% |
 | Dry (22\%) | | | | | | | | | | | | |
 | DCR 2015 Wiftout Proeet | 3,723 | 3,565 | 4,323 | 3,354 | 4,137 | 3,750 | 2,842 | 2,520 | 4,728 | 6,927 | 4,735 | 4,391 |
 | DCR 2015 With Project | 3,912 | 3,766 | 4,341 | 3,242 | 3,908 | 3,510 | 2,797 | 2,544 | 4,723 | 7,134 | 5,262 | 5,114 |
 | Difference | 188 | 200 | 18 | -112 | -229 | -240 | -45 | 24 | -4 | 207 | 526 | 722 |
 | Percent Difference | 5.1\% | 5.6\% | 0.4\% | -3.3\% | -5.5\% | -6.4\% | -1.6\% | 0.9\% | -0.1\% | 3.0\% | 11.1\% | 16.4\% |
 | Citital (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Without Proeat | 3,160 | 2,939 | 3,215 | 3,024 | 3,250 | 2,832 | 2,464 | 2,130 | 3,792 | 4,804 | 3,812 | 3,365 |
 | DCR 2015 With Priject | 3,239 | 3,001 | 3,180 | 2,886 | 3,041 | 2,792 | 2,469 | 2,118 | 3,909 | 4,918 | 4,332 | 3,992 |
 | Difference | 79 | 62 | -35 | -139 | -209 | -40 | 6 | -12 | 117 | 114 | 519 | 628 |
 | Percent Difference | 2.5\% | 2.1\% | -1.1\% | -4.6\% | -6.4\% | -1.4\% | 0.2\% | -0.6\% | 3.1\% | 2.4\% | 13.6\% | 18.7\% |

 3 Realive difference of the montilly vereage

 | Old and Middle River, Monthly Flow Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly Flow (CFS) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simulition Period ${ }^{\text {a }}$ | | | | | | | | | | | | |
 | DCR 2015 W Witout Project | -6,145 | -6,593 | -6,593 | -3,593 | -3,333 | -2,961 | 1,076 | 330 | -3,767 | -9,072 | -8,390 | -8,010 |
 | DCR 2015 W Wh Project | -6,362 | -6,962 | -6,735 | -3,613 | -3,422 | -2,856 | 1,078 | 357 | $-3,725$ | -9,273 | -8,987 | -8,666 |
 | Difference | -217 | -369 | -142 | -20 | -89 | 104 | 2 | 27 | 42 | -201 | -597 | -656 |
 | Percent Difference ${ }^{\text {a }}$ | | | | | | | 0.2\% | 8.1\% | | | | |
 | | | | | Water Y | ear Types ${ }^{2}$ | | | | | | | |
 | Wet(31.7\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | -6,600 | -6,205 | -7,399 | -2,153 | $-2,711$ | $-2,087$ | 2,916 | 1,727 | -4,425 | -8,898 | -10,416 | -9,430 |
 | DCR 2015 With Project | -6,812 | -6,573 | -7,473 | -2,219 | -2,802 | -1,954 | 2,924 | 1,766 | $-4,389$ | -8,914 | -10,409 | -9,110 |
 | Difference | -213 | -367 | -74 | -65 | -91 | 133 | 8 | 39 | 36 | -15 | 7 | 320 |
 | Perent Difference | | | | | | | 0.3\% | 2.3\% | | | | |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 W Witout Project | -7,024 | -8,021 | -7,797 | -3,685 | -2,902 | -4,108 | 1,332 | 520 | -4,824 | -9,833 | -10,812 | -9,748 |
 | DCR 2015 W Wit Project | -7,559 | -8,098 | -7,809 | -3,685 | $-2,779$ | -4,122 | 1,308 | 530 | $-4,854$ | -9,985 | -10,729 | -9,922 |
 | Difference | -535 | -77 | -12 | 0 | 122 | -15 | -25 | 9 | -29 | -152 | 83 | -174 |
 | Perenen Difference | | | | | | | -1.8\% | 1.8\% | | | | |
 | Below Norma (17.1\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | -8,065 | -8,224 | -6,386 | -4,240 | -3,535 | -3,974 | 863 | 76 | -4,227 | -10,907 | -10,233 | -9,414 |
 | DCR 2015 With Project | -8,498 | -8,287 | -6,669 | -4,240 | -3,726 | -3,945 | 875 | 100 | -4,026 | -10,995 | -10,446 | -9,908 |
 | Difference | -433 | -63 | -283 | 0 | -191 | 30 | 12 | 24 | 200 | -88 | -213 | -494 |
 | Pecrent Difference | | | | | | | 1.3\% | 31.3\% | | | | |
 | Dry (22\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | -5,028 | -6,514 | -5,364 | -4,790 | -4,161 | -2,993 | -224 | -715 | -3,227 | -10,100 | -5,832 | -6,615 |
 | DCR 2015 With Project | -5,466 | -7,312 | -6,051 | -4,817 | -4,156 | -2,886 | -214 | -700 | $-3,227$ | -10,647 | -7,271 | $-8,378$ |
 | Difference | -438 | -798 | -687 | -28 | 5 | 107 | 10 | 15 | - | -546 | -1,440 | $-1,762$ |
 | Percent Difference | | | | | | | | | | | | |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Wiftout Project | -3,572 | -4,107 | -5,587 | -4,096 | -3,459 | $-2,399$ | -970 | -949 | -1,542 | -4,929 | -3,240 | -3,719 |
 | DCR 2015 WWh Project | -2,948 | -4,487 | -5,024 | -4,053 | -3,767 | -2,156 | -976 | -909 | -1,542 | -5,155 | -4,993 | -5,460 |
 | Difference | 625 | -380 | 563 | 43 | -307 | 243 | -6 | 39 | 0 | -226 | $-1,753$ | $-1,741$ |

 Total Banks Pumping Plant (SWP and CVP) and Jones Pumping Plant (CVP), Monthly Diversion
 Long-term Average and Average by Water Year Type

 | Analysis Period | Monthly Diversion (CFS) | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simulaion Period' | | | | | | | | | | | | |
 | DCR 2015 W Witout Project | 6,879 | 7,451 | 8,875 | 6,822 | 7,219 | 7,091 | 2,379 | 2,061 | 5,029 | 9,951 | 9,009 | 9,000 |
 | DCR 2015 W Wif Project | 7,115 | 7,836 | 9,030 | 6,846 | 7,313 | 6,976 | 2,369 | 2,057 | 4,983 | 10,177 | 9,643 | 9,711 |
 | Difference | 236 | 385 | 155 | 25 | 94 | -115 | -9 | -4 | -46 | 226 | 635 | 711 |
 | Percent Difference ${ }^{\text {a }}$ | 3.4\% | 5.2\% | 1.7\% | 0.4\% | 1.3\% | -1.6\% | -0.4\% | -0.2\% | -0.9\% | 2.3\% | 7.0\% | 7.9\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (31.7\%) | | | | | | | | | | | | |
 | DCR 2015 W Wrtout Project | 7,612 | 7,364 | 10,600 | 8,116 | 9,469 | 9,748 | 3,363 | 3,064 | 7,921 | 11,430 | 11,697 | 10,876 |
 | DCR 2015 WWH Project | 7,855 | 7,759 | 10,678 | 8,172 | 9,556 | 9,602 | 3,331 | 3,056 | 7,869 | 11,452 | 11,702 | 10,532 |
 | Difference | 243 | 395 | 78 | 56 | 87 | -146 | -31 | -9 | -52 | 22 | 5 | -344 |
 | Percent Difference | 3.2\% | 5.4\% | 0.7\% | 0.7\% | 0.9\% | -1.5\% | -0.9\% | -0.3\% | -0.7\% | 0.2\% | 0.0\% | -3.2% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 W Withut Projet | 7,998 | 9,050 | 9,997 | 6,525 | 7,045 | 8,445 | 2,156 | 1,679 | 6,232 | 10,670 | 11,597 | 10,728 |
 | DCR 2015 W Wif Project | 8,527 | 9,113 | 10,027 | 6,518 | 6,924 | 8,457 | 2,154 | 1,679 | 6,261 | 10,875 | 11,525 | 10,961 |
 | Difference | 529 | 63 | 29 | -6 | -121 | 12 | -1 | 0 | 29 | 205 | -72 | 233 |
 | Percent Difference | 6.6\% | 0.7\% | 0.3\% | -0.1\% | -1.7\% | 0.1\% | -0.1\% | 0.0\% | 0.5\% | 1.9\% | -0.6\% | 2.2\% |
 | Below Normal (17.1\%) | | | | | | | | | | | | |
 | DCR 2015 W Wrout Project | 8,919 | 9,116 | 8,843 | 6,304 | 6,814 | 7,003 | 1,998 | 1,572 | 4,591 | 11,235 | 10,856 | 10,468 |
 | DCR 2015 W Wif Project | 9,364 | 9,150 | 9,155 | 6,317 | 7,024 | 6,970 | 1,998 | 1,572 | 4,374 | 11,359 | 11,087 | 11,006 |
 | Difference | 445 | 34 | 312 | 13 | 210 | -33 | 0 | -1 | -217 | 124 | 231 | 538 |
 | Percent Difference | 5.0\% | 0.4\% | 3.5\% | 0.2\% | 3.1\% | -0.5\% | 0.0\% | 0.0\% | -4.7\% | 1.1\% | 2.1\% | 5.1\% |
 | Dry (22%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 5,536 | 7,206 | 7,014 | 6,495 | 5,971 | 4,785 | 1,892 | 1,638 | 3,067 | 10,075 | 5,977 | 7,336 |
 | DCR 2015 W Wif Project | 6,015 | 8,051 | 7,760 | 6,536 | 5,965 | 4,667 | 1,893 | 1,660 | 3,067 | 10,666 | 7,482 | 9,231 |
 | Difference | 478 | 845 | 747 | 41 | -5 | -118 | 1 | 22 | 0 | 591 | 1,506 | 1,896 |
 | Percent Difference | 8.6\% | 11.7\% | 10.6\% | 0.6\% | -0.1\% | -2.5\% | 0.0\% | 1.4\% | 0.0\% | 5.9\% | 25.2\% | 25.8\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 3,806 | 4,465 | 6,842 | 5,410 | 4,861 | 3,540 | 1,643 | 1,476 | 1,012 | 4,347 | 2,991 | 3,991 |
 | DCR 2015 WWh Project | 3,123 | 4,870 | 6,222 | 5,386 | 5,199 | 3,274 | 1,650 | 1,433 | 1,036 | 4,606 | 4,860 | 5,888 |
 | Difference | -683 | 405 | -620 | -24 | 337 | -266 | 7 | -43 | 24 | 260 | 1,869 | 1,896 |
 | Percent Difference | -17.9\% | 9.1\% | -9.1\% | -0.4\% | 6.9\% | -7.5\% | 0.4\% | -2.9\% | 2.4\% | 6.0\% | 62.5\% | 47.5\% |

 1 Based on the 82 veear simulation period
 3 Realive difference of the monthly verage

 | Jones Pumping Plant (CVP), Monthly Diversion Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly Diversion (CFS) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simulation Period' | | | | | | | | | | | | |
 | DCR 2015 Without Project | 3,591 | 3,581 | 3,908 | 3,177 | 3,170 | 3,040 | 1,192 | 1,044 | 2,546 | 3,973 | 3,835 | 3,901 |
 | DCR 2015 With Project | 3,458 | 3,619 | 3,857 | 3,173 | 3,257 | 3,009 | 1,188 | 1,036 | 2,463 | 4,084 | 4,136 | 4,255 |
 | Difference | -133 | 38 | -51 | -4 | 87 | -31 | -4 | -8 | -83 | 111 | 301 | 354 |
 | Percent Differences | -3.7\% | 1.1\% | -1.3\% | -0.1\% | 2.8\% | -1.0\% | -0.3\% | -0.8\% | -3.3\% | 2.8\% | 7.9\% | 9.1\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (31.7\%) | | | | | | | | | | | | |
 | DCR 2015 Wiftout Project | 3,847 | 3,555 | 4,235 | 3,518 | 3,945 | 3,824 | 1,593 | 1,448 | 3,747 | 4,533 | 4,595 | 4,375 |
 | DCR 2015 With Project | 4,022 | 3,784 | 4,289 | 3,546 | 3,965 | 3,769 | 1,567 | 1,446 | 3,744 | 4,570 | 4,600 | 4,418 |
 | Difference | 174 | 229 | 54 | 28 | 20 | -55 | -26 | -2 | -2 | 37 | 5 | 42 |
 | Percent Difference | 4.5\% | 6.4\% | 1.3\% | 0.8\% | 0.5\% | -1.4\% | -1.7\% | -0.2\% | -0.1\% | 0.8\% | 0.1\% | 1.0\% |
 | Above Normal (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 3,778 | 4,207 | 4,309 | 2,874 | 3,020 | 3,790 | 1,086 | 876 | 3,211 | 4,086 | 4,584 | 4,048 |
 | DCR 2015 With Projed | 4,182 | 4,115 | 4,328 | 3,014 | 3,030 | 3,745 | 1,086 | 876 | 3,268 | 4,412 | 4,512 | 4,365 |
 | Difference | 404 | -91 | 19 | 140 | 10 | -45 | -1 | 0 | 57 | 326 | -72 | 317 |
 | Percent Difference | 10.7\% | -2.2\% | 0.4\% | 4.9\% | 0.3\% | -1.2\% | -0.1\% | 0.0\% | 1.8\% | 8.0\% | -1.6\% | 7.8\% |
 | Below Normal (17.1\%) | | | | | | | | | | | | |
 | DCR 2015 WWithut Project | 3,915 | 4,071 | 4,035 | 3,141 | 2,983 | 2,959 | 988 | 829 | 2,506 | 4,264 | 3,961 | 4,322 |
 | DCR 2015 With Projet | 4,012 | 3,938 | 3,985 | 3,047 | 3,292 | 3,030 | 993 | 829 | 2,162 | 4,384 | 4,227 | 4,454 |
 | Difference | 97 | -133 | -50 | -94 | 308 | 71 | 5 | 0 | -343 | 120 | 266 | 132 |
 | Percent Difference | 2.5\% | -3.3\% | -1.2\% | -3.0\% | 10.3\% | 2.4\% | 0.5\% | 0.0\% | -13.7\% | 2.8\% | 6.7\% | 3.0\% |
 | Dry (22\%) | | | | | | | | | | | | |
 | DCR 2015 Wiftout Priject | 3,372 | 3,612 | 3,484 | 3,242 | 2,997 | 2,351 | 999 | 847 | 1,662 | 4,029 | 3,084 | 3,686 |
 | DCR 2015 With Projet | 2,852 | 3,706 | 3,541 | 3,293 | 2,995 | 2,359 | 999 | 847 | 1,576 | 4,191 | 3,518 | 4,217 |
 | Difference | -520 | 94 | 56 | 51 | -1 | 9 | 0 | 0 | -86 | 162 | 434 | 530 |
 | Percent Difference | -15.4\% | 2.6\% | 1.6\% | 1.6\% | 0.0\% | 0.4\% | 0.0\% | 0.0\% | -5.2% | 4.0\% | 14.1\% | 14.4\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Wiftout Proeat | 2,797 | 2,396 | 3,284 | 2,685 | 2,117 | 1,720 | 957 | 886 | 650 | 2,223 | 2.418 | 2,554 |
 | DCR 2015 With Project | 1,773 | 2,262 | 2,777 | 2,488 | 2,301 | 1,577 | 982 | ${ }^{834}$ | 562 | 2,191 | 3,575 | 3,618 |
 | Difference | -1,024 | -133 | -507 | -197 | 185 | -142 | 25 | -51 | -88 | -32 | 1,157 | 1,063 |
 | Percent Difference | -36.6\% | -5.6\% | -15.4\% | -7.3\% | 8.7\% | -8.3\% | 2.6\% | -5.8\% | -13.5\% | -1.5\% | 47.9\% | 41.6\% |

 3 Readive difference of the monthy weras

 | Banks Pumping Plant (SWP and CVP), Monthly Diversion Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly Diversion (CFS) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simulation Period' | | | | | | | | | | | | |
 | DCR 2015 Without Projet | 3,288 | 3,870 | 4,967 | 3,645 | 4,049 | 4,051 | 1,186 | 1,017 | 2,483 | 5,978 | 5,174 | 5,099 |
 | DCR 2015 With Project | 3,657 | 4,217 | 5,173 | 3,674 | 4,056 | 3,967 | 1,181 | 1,021 | 2,520 | 6,094 | 5,507 | 5,456 |
 | Difference | 369 | 347 | 206 | 29 | 7 | -84 | -5 | 4 | 37 | 115 | 333 | 356 |
 | Percent Difference | 11.2\% | 9.0\% | 4.1\% | 0.8\% | 0.2\% | -2.1\% | -0.4\% | 0.4\% | 1.5\% | 1.9\% | 6.4\% | 7.0\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (31.7\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 3,765 | 3,809 | 6,365 | 4,598 | 5,525 | 5,924 | 1,769 | 1,616 | 4,174 | 6,897 | 7,102 | 6,501 |
 | DCR 2015 With Project | 3,833 | 3,975 | 6,389 | 4,626 | 5,591 | 5,833 | 1,764 | 1,610 | 4,125 | 6,882 | 7,102 | 6,114 |
 | Difference | 68 | 166 | 24 | 28 | 67 | -91 | -5 | -6 | -49 | -15 | 0 | -386 |
 | Pereen Difference | 1.8\% | 4.4\% | 0.4\% | 0.6\% | 1.2\% | -1.5\% | -0.3\% | -0.4\% | -1.2\% | -0.2\% | 0.0\% | -5.9\% |
 | Above Normal (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 4,220 | 4,844 | 5,688 | 3,650 | 4,025 | 4,655 | 1,070 | 803 | 3,021 | 6,585 | 7,013 | 6,680 |
 | DCR 2015 With Projed | 4,345 | 4,998 | 5,699 | 3,504 | 3,894 | 4,712 | 1,069 | 803 | 2,993 | 6,463 | 7,013 | 6,596 |
 | Difference | 125 | 154 | 11 | -146 | -131 | 57 | -1 | 0 | -28 | -121 | 0 | -84 |
 | Percent Difference | 3.0\% | 3.2\% | 0.2\% | -4.0\% | -3.3\% | 1.2\% | -0.1\% | 0.0\% | -0.9\% | -1.8\% | 0.0\% | -1.3\% |
 | Below Normal (17.1\%) | | | | | | | | | | | | |
 | DCR 2015 Wiftout Priject | 5,003 | 5,045 | 4,808 | 3,163 | 3,831 | 4,044 | 1,010 | 743 | 2,086 | 6,971 | 6,895 | 6,146 |
 | DCR 2015 With Projed | 5,352 | 5,213 | 5,170 | 3,270 | 3,732 | 3,940 | 1,005 | 743 | 2,212 | 6,975 | 6,860 | 6,552 |
 | Difference | 349 | 168 | 362 | 107 | -98 | -104 | -5 | 0 | 126 | 4 | -35 | 406 |
 | Percent Difference | 7.0\% | 3.3\% | 7.5\% | 3.4\% | -2.6\% | -2.6\% | -0.5\% | 0.0\% | 6.1\% | 0.1\% | -0.5\% | 6.6\% |
 | Dry (22\%) | | | | | | | | | | | | |
 | DCR 2015 Wiftout Project | 2,164 | 3,594 | 3,529 | 3,253 | 2,974 | 2,434 | 893 | 791 | 1,405 | 6,046 | 2,892 | 3,649 |
 | DCR 2015 With Project | 3,163 | 4,345 | 4,220 | 3,243 | 2,970 | 2,308 | 894 | 813 | 1,491 | 6,475 | 3,964 | 5,015 |
 | Difference | 998 | 751 | 690 | -10 | -4 | -126 | 1 | 22 | 86 | 429 | 1,072 | 1,365 |
 | Percent Difference | 46.1\% | 20.9\% | 19.6\% | -0.3\% | -0.1\% | -5.2\% | 0.1\% | 2.8\% | 6.1\% | 7.1\% | 37.1\% | 37.4\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 WWithout Project | 1,009 | 2,069 | 3,557 | 2,725 | 2,745 | 1,821 | 686 | 591 | 362 | 2,123 | 573 | 1,437 |
 | DCR 2015 With Project | 1,350 | 2,607 | 3,445 | 2,898 | 2,898 | 1,697 | 668 | 599 | 474 | 2,415 | 1,284 | 2,270 |
 | Difference | 341 | 538 | -113 | 173 | 153 | -124 | -18 | 8 | 112 | 292 | 712 | 833 |
 | Pereent Difference | 33.8\% | 26.0\% | -3.2\% | 6.3\% | 5.6\% | -6.8\% | -2.6\% | 1.4\% | 31.0\% | 13.7\% | 124.2\% | 57.9\% |

 bsed on the 82 2year simulation period
 3 Realive difference of the monthy veras

 | Banks Pumping Plant (SWP), Monthly Diversion Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly Diversion (CFS) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simulation Period' | | | | | | | | | | | | |
 | DCR 2015 Wiftout Project | 3,186 | 3,197 | 4,962 | 3,643 | 4,038 | 4,051 | 1,186 | 1,017 | 2,463 | 5,587 | 4,731 | 4,966 |
 | DCR 2015 With Projed | 3,541 | 3,510 | 5,160 | 3,674 | 4,044 | 3,961 | 1,181 | 1,021 | 2,518 | 5,801 | 5,017 | 5,333 |
 | Difference | 355 | 313 | 198 | 31 | 7 | -89 | -5 | 4 | 55 | 214 | 286 | 367 |
 | Percent Difference | 11.1\% | 9.8\% | 4.0\% | 0.9\% | 0.2\% | -2.2\% | -0.4\% | 0.4\% | 2.2\% | 3.8\% | 6.0\% | 7.4\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (31.7\%) | | | | | | | | | | | | |
 | DCR 2015 Without Proedt | 3,765 | 2,366 | 6,352 | 4,590 | 5,501 | 5,924 | 1,769 | 1,616 | 4,114 | 6,620 | 6,680 | 6,501 |
 | DCR 2015 With Priject | 3,833 | 2,424 | 6,351 | 4,626 | 5,572 | 5,816 | 1,764 | 1,610 | 4,117 | 6,602 | 6,680 | 6,114 |
 | Difference | 68 | 58 | -2 | 36 | 71 | -108 | -5 | -6 | 3 | -18 | 0 | -386 |
 | Percent Difference | 1.8\% | 2.5\% | 0.0\% | 0.8\% | 1.3\% | -1.8\% | -0.3\% | -0.4\% | 0.1\% | -0.3\% | 0.0\% | -5.9\% |
 | Above Normal (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 4,220 | 3,374 | 5,688 | 3,650 | 4,025 | 4,655 | 1,070 | 803 | 3,021 | 6,321 | 6,680 | 6,680 |
 | DCR 2015 With Prijet | 4,345 | 3,538 | 5,699 | 3,504 | 3,894 | 4,712 | 1,069 | 803 | 2,993 | 6,275 | 6,680 | 6,596 |
 | Difference | 125 | 164 | 11 | -146 | -131 | 57 | -1 | 0 | -28 | -46 | 0 | -84 |
 | Percent Difference | 3.0\% | 4.9\% | 0.2\% | -4.0\% | -3.3\% | 1.2\% | -0.1\% | 0.0\% | -0.9\% | -0.7\% | 0.0\% | -1.3\% |
 | Below Normal (17.7\%) | | | | | | | | | | | | |
 | DCR 2015 Wiftout Priject | 4,441 | 5,045 | 4,803 | 3,163 | 3,806 | 4,044 | 1,010 | 743 | 2,086 | 6,669 | 6,396 | 5,711 |
 | DCR 2015 With Prijet | 4,731 | 5,212 | 5,165 | 3,270 | 3,700 | 3,940 | 1,005 | 743 | 2,212 | 6,664 | 6,378 | 6,234 |
 | Difference | 290 | 167 | 362 | 107 | -106 | -104 | -5 | 0 | 126 | -5 | -18 | 523 |
 | Percent Difference | 6.5\% | 3.3\% | 7.5\% | 3.4\% | -2.8\% | -2.6\% | -0.5\% | 0.0\% | 6.1\% | -0.1\% | -0.3\% | 9.2\% |
 | Dry (22\%) | | | | | | | | | | | | |
 | DCR 2015 Wiftout Proeet | 2,135 | 3,594 | 3,529 | 3,253 | 2,974 | 2,434 | 893 | 791 | 1,400 | 5,343 | 2,190 | 3,474 |
 | DCR 2015 With Project | 3,120 | 4,339 | 4,220 | 3,243 | 2,970 | 2,308 | 894 | 813 | 1,491 | 6,123 | 3,108 | 4,776 |
 | Difference | 985 | 744 | 690 | -10 | -4 | -126 | 1 | 22 | 91 | 780 | 918 | 1,302 |
 | Percent Difference | 46.1\% | 20.7\% | 19.6\% | -0.3\% | -0.1\% | -5.2\% | 0.1\% | 2.8\% | 6.5\% | 14.6\% | 41.9\% | 37.5\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 1,009 | 2,069 | 3,557 | 2,725 | 2,745 | 1,821 | 686 | 591 | 361 | 1,715 | 429 | 1,294 |
 | DCR 2015 With Priject | 1,344 | 2,607 | 3,445 | 2,898 | 2,898 | 1,697 | 668 | 599 | 474 | 2,101 | 1,028 | 2,161 |
 | Difference | 335 | 538 | -113 | 173 | 153 | -124 | -18 | 8 | 113 | 385 | 599 | 867 |
 | Percent Difference | 33.2\% | 26.0\% | -3.2\% | 6.3\% | 5.6\% | -6.8\% | -2.6\% | 1.4\% | 31.3\% | 22.5\% | 139.5\% | 67.0\% |

 Based on the 8 2-vear simulation period
 3 Reative difference of the monthy verage

 | Table SW-40-a
 Banks Pumping Plant (CVP), Monthly Diversion Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly Diversion (CFS) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | | | | | | | | | | | | | |
 | $\stackrel{\text { Full Simulition Period' }}{ }$ Long-term | | | | | | | | | | | | |
 | DCR 2015 Without Project | 91 | 644 | 4 | 2 | 11 | 0 | 0 | 0 | 19 | 135 | 99 | 56 |
 | DCR 2015 With Project | 102 | 681 | 11 | 0 | 11 | | 0 | 0 | 0 | 57 | 142 | 56 |
 | Differene | 11 | 38 | 7 | -2 | 0 | 5 | 0 | 0 | -19 | -78 | 43 | 0 |
 | Percent Difference | 11.7\% | 5.9\% | | | -0.4\% | | | | -100.0\% | -58.0\% | 43.3\% | -0.3\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet(31.7\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 0 | 1,396 | 12 | 7 | 24 | 0 | 0 | 0 | 60 | 50 | 0 | 0 |
 | DCR 2015 With Project | 0 | 1,540 | 34 | 0 | 19 | 17 | 0 | 0 | 0 | 51 | 0 | 0 |
 | Difference | 0 | 144 | 22 | -7 | -5 | 17 | 0 | 0 | -60 | 1 | 0 | 0 |
 | Pereen Difference | | 10.3\% | | | -19.2\% | | | | -100.0\% | 1.1\% | | |
 | Above Normal (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Without Priject | 0 | 1,374 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 | DCR 2015 W.th Project | 0 | 1,310 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
 | Differene | 0 | -64 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
 | Perean Difiference | | -4.7\% | | | | | | | | | | |
 | Below Normal (17.1\%) | | | | | | | | | | | | |
 | DCR 2015 WWithout Project | 498 | 0 | 0 | 0 | 19 | 0 | 0 | 0 | 0 | 6 | 56 | 328 |
 | DCR 2015 Wiff Project | 552 | 0 | 0 | 0 | 27 | 0 | 0 | 0 | 0 | 14 | 44 | 236 |
 | Difference | 54 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 8 | -12 | -91 |
 | Percent Difference | 10.8\% | | | | 42.4\% | | | | | | -20.8\% | -27.9\% |
 | Dry (22%) | | | | | | | | | | | | |
 | DCR 2015 Without Priject | 29 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 383 | 387 | 0 |
 | DCR 2015 With Project | 36 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 73 | 532 | 70 |
 | Differene | 7 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -310 | 145 | 70 |
 | Pereent Difference | 24.1\% | | | | | | | | | -80.9\% | 37.5\% | |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Wiftout Project | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 233 | 29 | 0 |
 | DCR 2015 With Project | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 150 | 117 | 0 |
 | Differene | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -83 | 88 | 0 |
 | Percent Difference | | | | | | | | | | -35.6\% | | |

 1 Based on the 82 y.yer sinulation period

 3 Realive difference of the monthly average

 | Analysis Period | End of Month Storage (TAF) | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | Full Simulation Period' | | | | | | | | | | | | |
 | DCR 2015 Wiftout Project | 552 | 673 | 940 | 1,202 | 1,418 | 1,603 | 1,431 | 1,100 | 766 | 635 | 491 | 527 |
 | DCR 2015 With Project | 558 | 687 | 956 | 1,216 | 1,433 | 1,608 | 1,426 | 1,081 | 728 | 603 | 485 | 540 |
 | Difference | 6 | 14 | 15 | 14 | 16 | 5 | -5 | -20 | -38 | -32 | -6 | 13 |
 | Percent Difference | 1.1\% | 2.1\% | 1.6\% | 1.2\% | 1.1\% | 0.3\% | -0.3\% | -1.8\% | -4.9\% | -5.0\% | -1.3\% | 2.5\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (31.7\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 703 | 713 | 1,006 | 1,279 | 1,557 | 1,814 | 1,611 | 1,235 | 948 | 771 | 659 | 720 |
 | DCR 2015 With Project | 657 | 684 | 978 | 1,287 | 1,560 | 1,808 | 1,604 | 1,222 | 927 | 749 | 640 | 670 |
 | Difference | -46 | -29 | -28 | 8 | 3 | -5 | -7 | -13 | -21 | -22 | -19 | -50 |
 | Percent Difference | -6.5\% | -4.0\% | -2.8\% | 0.6\% | 0.2\% | -0.3\% | -0.4\% | -1.0\% | -2.2\% | -2.9\% | -2.8\% | -7.0\% |
 | Above Norma (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Wiftout Project | 563 | 678 | 973 | 1,239 | 1,431 | 1,653 | 1,425 | 1,011 | 665 | 500 | 443 | 523 |
 | DCR 2015 W.th Project | 577 | 685 | 979 | 1,249 | 1,438 | 1,659 | 1,427 | 1,002 | 650 | 498 | 434 | 520 |
 | Difference | 14 | ${ }^{\circ}$ | 6 | 10 | 7 | 6 | 2 | -9 | -14 | -2 | -9 | -3 |
 | Percent Difiterence | 2.4\% | 1.1\% | 0.6\% | 0.8\% | 0.5\% | 0.4\% | 0.2\% | -0.9\% | -2.2\% | -0.4\% | -2.1\% | -0.6\% |
 | Below Normal (17.1\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 721 | 961 | 1,243 | 1,181 | 1,383 | 1,580 | 1,386 | 1,027 | 656 | 599 | 550 | 622 |
 | DCR 2015 With Project | 722 | 955 | 1,249 | 1,172 | 1,386 | 1,568 | 1,367 | 994 | 602 | 546 | 506 | 609 |
 | Difference | 1 | -6 | 6 | -9 | 3 | -12 | -19 | -32 | -55 | -53 | -44 | -12 |
 | Percent Difference | 0.1\% | -0.6\% | 0.5\% | -0.7\% | 0.2\% | -0.7\% | -1.4\% | -3.1\% | -8.3\% | -8.9\% | -8.1\% | -2.0\% |
 | Dry (22\%) | | | | | | | | | | | | |
 | DCR 2015 Without Priject | 374 | 569 | 782 | 1,186 | 1,378 | 1,499 | 1,353 | 1,067 | 690 | 631 | 367 | 359 |
 | DCR 2015 With Prijet | 411 | 619 | 854 | 1,221 | 1,404 | 1,512 | 1,337 | 1,020 | 610 | 572 | 356 | 412 |
 | Difference | 36 | 50 | 72 | 35 | 26 | 14 | -15 | -46 | -80 | -59 | -11 | 53 |
 | Percent Difference | 9.8\% | 8.8\% | 9.2\% | 3.0\% | 1.9\% | 0.9\% | -1.1\% | -4.3\% | -11.6\% | -9.4\% | -3.0\% | 14.8\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Wiftout Project | 287 | 400 | 649 | 1,046 | 1,204 | 1,281 | 1,216 | 1,035 | 714 | 521 | 291 | 253 |
 | DCR 2015 With Project | 357 | 481 | 695 | 1,074 | 1,255 | 1,312 | 1,241 | 1,043 | 699 | 505 | 366 | 389 |
 | Difference | 70 | 81 | 46 | 28 | 51 | 32 | 25 | 8 | -14 | -16 | 75 | 136 |
 | Peacent Difference | 24.4\% | 20.2\% | 7.1\% | 2.7\% | 4.2\% | 2.5\% | 2.1\% | 0.8\% | -2.0\% | -3.1\% | 25.6\% | 53.8\% |

 Tasedornimez-versmualon pentiod
 3 Reative difference of the monthy verage

 | Table SW-42-a
 San Luis Reservoir (SWP and CVP), End of Month Elevation Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | End of Month Elevation (FEET) | | | | | | | | | | | |
 | Analysis Period | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | Full Simulation Period' | | | | | | | | | | | | |
 | DCR 2015 Without Project | 400 | 415 | 444 | 470 | 490 | 506 | 491 | 461 | 425 | 411 | 392 | 397 |
 | DCR 2015 With Project | 401 | 417 | 446 | 472 | 491 | 506 | 491 | 459 | 421 | 407 | 392 | 399 |
 | Difference | 1 | 2 | 2 | 1 | 1 | 0 | 0 | -2 | -4 | -4 | 0 | 3 |
 | Percent Difference | 0.3\% | 0.4\% | 0.4\% | 0.3\% | 0.3\% | 0.1\% | -0.1\% | -0.4\% | -1.0\% | -1.0\% | -0.1\% | 0.7\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (3.7\%\%) | | | | | | | | | | | | |
 | DCR 2015 W Withut Project | 419 | 420 | 451 | 477 | 502 | 524 | 507 | 473 | 444 | 425 | 413 | 421 |
 | DCR 2015 With Project | 413 | 416 | 449 | 478 | 502 | 523 | 507 | 472 | 442 | 423 | 411 | 415 |
 | Difference | -5 | -3 | -3 | 1 | 0 | 0 | -1 | -1 | -2 | -3 | -2 | -6 |
 | Pereent Difference | -1.3\% | -0.8\% | -0.6\% | 0.2\% | 0.0\% | -0.1\% | -0.1\% | -0.3\% | -0.5\% | -0.6\% | -0.5\% | -1.4\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 W Witout Project | 405 | 417 | 449 | 473 | 491 | 510 | 491 | 453 | 415 | 394 | 388 | 399 |
 | DCR 2015 With Prijet | 406 | 418 | 450 | 473 | 491 | 511 | 491 | 452 | 413 | 394 | 387 | 399 |
 | Difference | 2 | 1 | 1 | 1 | 1 | 1 | 0 | -1 | -2 | 0 | -1 | 0 |
 | Pereent Diffeence | 0.4\% | 0.3\% | 0.1\% | 0.1\% | 0.1\% | 0.1\% | 0.0\% | -0.2\% | -0.4\% | 0.0\% | -0.3\% | -0.1\% |
 | Below Norma (17.1\%) | | | | | | | | | | | | |
 | DCR 2015 WWithut Project | 422 | 448 | 475 | 469 | 487 | 504 | 487 | 454 | 413 | 406 | 401 | 410 |
 | DCR 2015 With Project | 422 | 447 | 475 | 468 | 487 | 503 | 486 | 451 | 406 | 399 | 395 | 409 |
 | Difference | 0 | -1 | 1 | -1 | 0 | -1 | -2 | -3 | -7 | -7 | -6 | -1 |
 | Percent Difference | 0.0\% | -0.1\% | 0.1\% | -0.2\% | 0.0\% | -0.2% | -0.3\% | -0.7\% | -1.7\% | -1.7\% | -1.4\% | -0.3\% |
 | Dry (22\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 377 | 404 | 428 | 470 | 487 | 498 | 485 | 458 | 418 | 412 | 376 | 374 |
 | DCR 2015 With Project | 382 | 410 | 435 | 473 | 490 | 499 | 484 | 454 | 409 | 405 | 374 | 382 |
 | Difference | 6 | 6 | 7 | 3 | 2 | 1 | -1 | -4 | -9 | -7 | -1 | 9 |
 | Percent Difference | 1.5\% | 1.4\% | 1.7\% | 0.7\% | 0.5\% | 0.2\% | -0.3\% | -1.0\% | -2.2\% | -1.8\% | -0.3\% | 2.3\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Wiftout Project | 364 | 382 | 414 | 455 | 470 | 477 | 472 | 454 | 421 | 398 | 364 | 358 |
 | DCR 2015 With Project | 374 | 392 | 419 | 458 | 475 | 480 | 474 | 455 | 419 | 396 | 375 | 379 |
 | Difference | 10 | 10 | 5 | 3 | 5 | 3 | 2 | 1 | -2 | -2 | 11 | 20 |
 | Pereent Difference | 2.8\% | 2.6\% | 1.1\% | 0.7\% | 1.0\% | 0.6\% | 0.5\% | 0.2\% | -0.5\% | -0.6\% | 3.0\% | 5.7\% |

 1 Based on the 82 verear simulution period
 3 Realive difference of the montly yererge

 San Luis Reservoir (SWP and CVP), End of Month Area

 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | End of Month Area (ACRE) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simulation Period' | | | | | | | | | | | | |
 | DCR 2015 W Without Proed | 7,761 | 8,459 | 9,612 | 10,506 | 11,143 | 11,639 | 11,196 | 10,205 | 8,867 | 8,269 | 7,388 | 7,589 |
 | DCR 2015 With Project | 7.851 | 8,538 | 9,666 | 10,550 | 11,186 | 11,655 | 11,186 | 10,142 | 8.683 | 8,092 | 7,384 | 7,772 |
 | Difference | 90 | 79 | 55 | 44 | 43 | 15 | -10 | -62 | -184 | -177 | -4 | 183 |
 | Percent Difference ${ }^{\text {a }}$ | 1.2\% | 0.9\% | 0.6\% | 0.4\% | 0.4\% | 0.1\% | -0.1\% | -0.6\% | -2.1\% | -2.1\% | -0.1\% | 2.4\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (3.7\%\%) | | | | | | | | | | | | |
 | DCR 2015 W Witout Project | 8,626 | 8,656 | 9,878 | 10,737 | 11,535 | 12,182 | 11,689 | 10,614 | 9,575 | 8,860 | 8,404 | 8,763 |
 | DCR 2015 With Project | 8,392 | 8,523 | 9,781 | 10,760 | 11,535 | 12,167 | 11,668 | 10,571 | 9,490 | 8,747 | 8,308 | 8,495 |
 | Difference | -234 | -133 | -98 | 23 | 0 | -15 | -21 | -43 | -86 | -113 | -96 | -268 |
 | Percent Difference | -2.7\% | -1.5\% | -1.0\% | 0.2\% | 0.0\% | -0.1\% | -0.2\% | -0.4\% | -0.9\% | -1.3\% | -1.1\% | -3.1\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 W Witout Project | 8,141 | 8,626 | 9,825 | 10,569 | 11,171 | 11,773 | 11,189 | 9,933 | 8.445 | 7,547 | 7,318 | 7,875 |
 | DCR 2015 With Project | 8,218 | 8,685 | 9,854 | 10,571 | 11,184 | 11,791 | 11,197 | 9,904 | 8,383 | 7,568 | 7,265 | 7,874 |
 | Differene | 77 | 60 | 30 | 2 | 13 | 18 | 8 | -29 | -62 | 22 | -53 | -2 |
 | Percent Difference | 0.9\% | 0.7\% | 0.3\% | 0.0\% | 0.1\% | 0.2\% | 0.1\% | -0.3\% | -0.7\% | 0.3\% | -0.7\% | 0.0\% |
 | Below Normal (17.1\%) | | | | | | | | | | | | |
 | DCR 2015 WWitrut Project | 8,829 | 9,778 | 10,676 | 10,473 | 11,029 | 11,570 | 11,063 | 9,951 | 8,309 | 8,042 | 7,872 | 8,321 |
 | DCR 2015 With Priject | 8,837 | 9,751 | 10,694 | 10,438 | 11,030 | 11,540 | 11,012 | 9,847 | 7,989 | 7,719 | 7,605 | 8,290 |
 | Difference | 8 | -28 | 18 | -34 | 1 | -31 | -51 | -104 | -320 | -322 | -267 | -31 |
 | Percent Difference | 0.1\% | -0.3\% | 0.2\% | -0.3\% | 0.0\% | -0.3\% | -0.5\% | -1.0\% | -3.9\% | -4.0\% | -3.4\% | -0.4\% |
 | Dry (22%) | | | | | | | | | | | | |
 | DCR 2015 W Witout Project | 6,642 | 8,021 | 8,985 | 10,509 | 11,077 | 11,416 | 11,020 | 10,145 | 8,643 | 8,396 | 6,571 | 6,465 |
 | DCR 2015 With Project | 6,968 | 8,261 | 9,235 | 10,619 | 11,156 | 11,454 | 10,985 | 10,001 | 8,286 | 8,072 | 6,535 | 6,957 |
 | Difference | 325 | 240 | 250 | 109 | 79 | 38 | -35 | -145 | -357 | -324 | -36 | 492 |
 | Percent Difference | 4.9\% | 3.0\% | 2.8\% | 1.0\% | 0.7\% | 0.3\% | -0.3\% | -1.4\% | -4.1\% | -3.9\% | -0.5\% | 7.6\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 W Withut Project | 5,936 | 6,983 | 8,519 | 9,975 | 10,497 | 10,743 | 10,554 | 9,974 | 8,740 | 7,785 | 5,916 | 5,592 |
 | DCR 2015 With Project | 6,484 | 7,423 | 8,678 | 10,098 | 10,660 | 10,844 | 10,635 | 10,007 | 8,640 | 7,664 | 6,514 | 6,720 |
 | Difference | 548 | 439 | 159 | 123 | 164 | 100 | 81 | 34 | -100 | -121 | 598 | 1,128 |
 | Percent Difference | 9.2\% | 6.3\% | 1.9\% | 1.2\% | 1.6\% | 0.9\% | 0.8\% | 0.3\% | -1.1\% | -1.5\% | 10.1\% | 20.2\% |

 ne 2 -yarsmua
 3 Realive dyt
 3 Realive difference of the monthly verage

 | San Luis Reservoir (CVP), End of Month Storage Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | End of Month Storage (TAF) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simulation Period' | | | | | | | | | | | | |
 | DCR 2015 Without Projet | 241 | 363 | 532 | 648 | 732 | 798 | 714 | 553 | 381 | 247 | 159 | 184 |
 | DCR 2015 With Project | 244 | 367 | 531 | 646 | 734 | 796 | 709 | 542 | 360 | 232 | 162 | 202 |
 | Difference | 3 | 4 | -1 | -2 | 1 | -2 | -5 | -10 | -21 | -16 | 3 | 17 |
 | Percent Differences | 1.1\% | 1.0\% | -0.2\% | -0.4\% | 0.2\% | -0.2\% | -0.6\% | -1.8\% | -5.5\% | -6.4\% | 1.8\% | 9.4\% |
 | Water Year Typess ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (31.7\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 264 | 376 | 548 | 669 | 790 | 890 | 808 | 643 | 490 | 301 | 186 | 211 |
 | DCR 2015 Witr Projet | 247 | 375 | 548 | 677 | 798 | 894 | 807 | 637 | 475 | 287 | 176 | 193 |
 | Difference | -17 | -1 | 0 | 8 | 8 | 4 | -1 | -6 | -15 | -15 | -10 | -18 |
 | Percent Difference | -6.5\% | -0.3\% | 0.1\% | 1.2\% | 1.0\% | 0.4\% | -0.1\% | -1.0\% | -3.2\% | -4.8\% | -5.5\% | -8.6\% |
 | Above Normal (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 198 | 350 | 533 | 650 | 732 | 838 | 732 | 535 | 361 | 185 | 111 | 131 |
 | DCR 2015 With Prijet | 218 | 357 | 539 | 646 | 726 | 827 | 719 | 516 | 340 | 185 | 105 | 136 |
 | Difference | 20 | 7 | 6 | -4 | -6 | -11 | -13 | -19 | -20 | 0 | -6 | 5 |
 | Percent Difference | 10.0\% | 2.0\% | 1.1\% | -0.6\% | -0.8\% | -1.3\% | -1.7% | -3.5\% | -5.6\% | 0.0\% | -5.3\% | 3.8\% |
 | Below Normal (17.1\%) | | | | | | | | | | | | |
 | DCR 2015 WWithut Project | 332 | 481 | 664 | 689 | 756 | 817 | 726 | 554 | 381 | 277 | 204 | 257 |
 | DCR 2015 With Projet | 308 | 447 | 625 | 665 | 746 | 810 | 716 | 538 | 338 | 238 | 177 | 233 |
 | Difference | -23 | -34 | -39 | -25 | -10 | -7 | -10 | -16 | -43 | -40 | -27 | -24 |
 | Percent Difference | -7.0\% | -7.1\% | -5.9\% | -3.6\% | -1.3% | -0.9\% | -1.4% | -2.9\% | -11.3\% | -14.3\% | -13.1\% | -9.4\% |
 | Dry (22\%) | | | | | | | | | | | | |
 | DCR 2015 Without Priject | 186 | 314 | 467 | 627 | 702 | 730 | 642 | 478 | 281 | 204 | 112 | 138 |
 | DCR 2015 Wit Project | 188 | 319 | 475 | 631 | 706 | 732 | 641 | 473 | 266 | 193 | 122 | 176 |
 | Difference | 2 | 6 | 8 | 5 | 4 | 2 | 0 | -5 | -15 | -11 | 10 | 38 |
 | Percent Difference | 1.0\% | 1.8\% | 1.7\% | 0.8\% | 0.5\% | 0.3\% | 0.0\% | -1.1\% | -5.4\% | -5.6\% | 9.3\% | 27.5\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 210 | 284 | 442 | 583 | 627 | 639 | 587 | 483 | 312 | 222 | 166 | 165 |
 | DCR 2015 With Project | 270 | 335 | 462 | 576 | 630 | 634 | 582 | 474 | 296 | 210 | 229 | 289 |
 | Difference | 60 | 52 | 20 | -7 | 4 | -6 | -5 | -9 | -16 | -13 | 63 | 124 |
 | Percent Difference | 28.7\% | 18.2\% | 4.5\% | -1.2\% | 0.6\% | -0.9\% | -0.8\% | -2.0\% | -5.2\% | -5.7\% | 37.7\% | 75.4\% |

 Tasedornimez-versmualon pentiod
 3 Realive difference of the monthly verage

 | Table SW-45-a
 San Luis Reservoir (SWP), End of Month Storage Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | End of Month Storage (TAF) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | $\overline{\text { Full Simulion Period }{ }^{\prime}}$ | | | | | | | | | | | | |
 | DCR 2015 W Witout Proect | 311 | 310 | 408 | 554 | 685 | 805 | 717 | 548 | 385 | 387 | 332 | 342 |
 | DCR 2015 With Project | 315 | 320 | 424 | 571 | 700 | 812 | 716 | 538 | 368 | 371 | 323 | 338 |
 | Difference | 3 | 10 | 16 | 17 | 14 | 7 | 0 | -10 | -17 | -16 | -9 | -4 |
 | Percent Difference ${ }^{\text {a }}$ | 1.0\% | 3.3\% | 4.0\% | 3.0\% | 2.1\% | 0.8\% | -0.1\% | -1.8\% | -4.4\% | -4.1\% | -2.8% | -1.2\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet(31.7\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 439 | 337 | 458 | 610 | 767 | 923 | 803 | 592 | 458 | 470 | 473 | 509 |
 | DCR 2015 With Project | 410 | 309 | 430 | 610 | 762 | 914 | 796 | 585 | 452 | 462 | 465 | 477 |
 | Difference | -29 | -27 | -29 | 0 | -5 | -9 | -7 | -6 | -6 | -8 | -8 | -32 |
 | Percent Difference | -6.6\% | -8.2\% | -6.3\% | 0.0\% | -0.6\% | -1.0\% | -0.8\% | -1.0\% | -1.2\% | -1.6\% | -1.8\% | -6.3\% |
 | Above Norma (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Without Project | 365 | 327 | 440 | 589 | 699 | 815 | 693 | 476 | 304 | 314 | 332 | 392 |
 | DCR 2015 With Project | 359 | 328 | 439 | 603 | 712 | 832 | 708 | 486 | 310 | 312 | 329 | 383 |
 | Difference | -6 | 1 | -1 | 14 | 13 | 17 | 15 | 10 | 6 | -2 | -3 | -8 |
 | Percent Difference | -1.6\% | 0.2\% | -0.1\% | 2.4\% | 1.9\% | 2.1\% | 2.2\% | 2.1\% | 1.9\% | -0.7\% | -1.0\% | -2.1\% |
 | Below Normal (17.1\%) | | | | | | | | | | | | |
 | DCR 2015 WWithut Project | 389 | 480 | 579 | 492 | 627 | 763 | 660 | 473 | 275 | 322 | 346 | 364 |
 | DCR 2015 W Wh Project | 413 | 508 | 624 | 508 | 640 | 758 | 651 | 457 | 264 | 309 | 328 | 376 |
 | Difference | 24 | 29 | 45 | 16 | 13 | -5 | -9 | -16 | -12 | -13 | -18 | 12 |
 | Percent Difiference | 6.2\% | 6.0\% | 7.9\% | 3.3\% | 2.0\% | -0.6\% | -1.4\% | -3.4\% | -4.2\% | -4.2\% | -5.1\% | 3.3\% |
 | Dry (22\%) | | | | | | | | | | | | |
 | DCR 2015 WWithout Project | 188 | 256 | 315 | 559 | 676 | 768 | 711 | 588 | 410 | 427 | 255 | 221 |
 | DCR 2015 With Project | 222 | 300 | 379 | 590 | 697 | 780 | 696 | 547 | 344 | 379 | 234 | 236 |
 | Difference | 35 | 44 | 64 | 30 | 22 | 11 | -15 | -41 | -65 | -48 | -22 | 15 |
 | Percent Difference | 18.4\% | 17.3\% | 20.2\% | 5.4\% | 3.3\% | 1.5\% | -2.2\% | -7.0\% | -16.0\% | -11.2\% | -8.4\% | 7.0\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | DCR 2015 Wiftrut Project | 77 | 116 | 207 | 463 | 577 | 641 | 629 | 552 | 401 | 298 | 125 | 88 |
 | DCR 2015 With Project | 87 | 145 | 233 | 498 | 624 | 679 | 659 | 569 | 403 | 295 | 137 | 100 |
 | Difference | 10 | 29 | 26 | 35 | 47 | 37 | 30 | 17 | 2 | -3 | 12 | 12 |
 | Percent Difference | 12.8\% | 25.0\% | 12.6\% | 7.5\% | 8.1\% | 5.8\% | 4.7\% | 3.1\% | 0.4\% | -1.1\% | 9.6\% | 13.4\% |

 1 Based on the 82 veear simulation period
 3 Realive effference of the monntly average

 # Sacramento-San Joaquin Delta Operations Exceedance Probability Charts and Tables

 # Figure SW-30-b

 Sacramento River below Hood, Monthly Flow

 Table SW－30－b
 to Rive below 30 ，Monthly Fow
 probability of Exceedance

 | | | Ociober | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | DCR 2015 Without Proiect | DCR 2015 With Project | Absolute Difference | Relative |
 | Probability | Monthly fow（CFS） | Monthy Fow（CFS） | （CFS） | |
 | 0．0\％ | 32，157 | 33，041 | 884 | 2．7\％ |
 | 1．2\％ | 17，960 | 17，788 | －172 | －1．0\％ |
 | 2．5\％ | 17．835 | 16，824 | －1，011 | －5．7\％ |
 | 3．7\％ | 16，098 | 15，698 | －400 | －2．5\％ |
 | 4．9\％ | 15.506 15.474 | 15.529 15416 | $\begin{array}{r}23 \\ -58 \\ \hline\end{array}$ | 0．1\％ |
 | －6．2\％ | 15.474 15.271 | 15.416 15.104 | －-167 | －0．4\％ |
 | 8．6\％ | 14，681 | 14，734 | 53 | 0．4\％ |
 | 9．9\％ | 14，309 | 14，704 | 396 | 2．8\％ |
 | 11．1\％ | 14，125 | 14.418 | 293 | |
 | 12．3\％ | 14，049 | 14,401 | 351 | 2．9\％ |
 | 13.6% 14.8% | ${ }^{13,996}$ | 14，287 | ${ }^{291}$ | 2．1\％ |
 | 16．0\％ | ${ }_{\text {13，816 }}$ | 13，996 | 181 | 1．3\％ |
 | 17．3\％ | 13，358 | 13，873 | 514 | 3．9\％ |
 | 18．5\％ | 13，323 | 13，679 | 357 | 2．7\％ |
 | 19．8\％ | 13，294 | 13，613 | ${ }^{318}$ | ${ }_{2}^{2.4 \%}$ |
 | 21．0\％ | 13，282 | 13，529 | 248 | 1．9\％ |
 | 22．2\％ | 13，200 | ${ }^{13,410}$ | 210 245 | ${ }_{1}^{1.6 \%}$ |
 | ${ }_{24}^{23.5 \%}$ | ${ }^{13,146}$ | ${ }^{13,391}$ | ${ }^{245}$ | － |
 | 24．7\％ | ${ }^{13,087}$ | ${ }_{\text {13，}}^{13,365}$ | ${ }_{278}^{278}$ | 2．1\％ |
 | 25．9\％ | －13．083 | － 13.343 | 260 241 | 2．0\％ |
 | 28．4\％ | ${ }_{1}^{13,977}$ | $\xrightarrow{13,258}$13,184
 18 | ${ }_{208}^{208}$ | 1．6\％ |
 | 29．6\％ | 12,855 | 13，174 | 320 | 2．5\％ |
 | 30．9\％ | ${ }^{12,751}$ | 13，129 | 378 | 3．0\％ |
 | 32．1\％ | ${ }^{12,724}$ | 13，122 | 398 | ${ }^{3.1 \%}$ |
 | 34．6\％ | ${ }_{\text {12，713 }}$ | ${ }^{13.015}$ | ${ }_{302}$ | 2．4\％ |
 | 35．8\％ | ${ }^{12,711}$ | 12,999 | 287 | 2．3\％ |
 | 隹 $\begin{aligned} & 37.0 \% \\ & 38.3 \%\end{aligned}$ | 12,671 12.545 1 | ${ }^{12,866}$ | 195 | 俍．5\％\％ |
 | 30．5\％ | 12，278 | ${ }_{12,787}$ | 510 | 4．2\％ |
 | 40．7\％ | 12，252 | 12.744 | 492 | 4．0\％ |
 | 42．0\％ | ${ }^{12,009}$ | 12，718 | 709 | 5．9\％ |
 | 43．2\％ | ${ }^{11,1223}$ | 12,594 12583 | ${ }_{6} 670$ | 5．6\％ |
 | 44．4\％ | ${ }^{11,890}$ | 12，583 | ${ }_{604}^{693}$ | ${ }_{51 \%}^{5.8 \%}$ |
 | 45．7\％ | ${ }^{11,738}$ | 12，341 | 604 | 5．1\％ |
 | 46．9\％ | ${ }^{11,729}$ | ${ }^{12,312}$ | ${ }_{7}^{585}$ | 5．3\％ |
 | 48．19\％ | 11，550 | 12，275 | ${ }_{9} 725$ | |
 | 49．4\％ | 11,288 11,219 | 12，252 12,177 | ${ }_{959}^{963}$ | ${ }^{8.5 \%}$ |
 | 51．9\％ | 11，178 | 11，977 | 799 | 7．2\％ |
 | | 10，988 | 11.843 | 855 | 7．7\％ |
 | | 10，861 | 11,700 | 839 | 7．7\％ |
 | 56．8\％ | 10,743 10,705 | ${ }^{11,1,503}$ | ${ }_{798}$ | 8．5\％ |
 | 58．0\％ | 10，642 | 11，434 | 793 | 7．4\％ |
 | 㐌 69.5% | 10,450 10.418 | 11,332 11.063 | 883 645 | 8．4\％${ }_{6}$ |
 | 61．7\％ | 10，120 | 10，999 | 878 | 8．7\％ |
 | 63．0\％ | 9，480 | 10，978 | 1,499 | 15．8\％ |
 | 64．2\％ | ${ }_{\text {9，456 }} 9163$ | 10，751 | 1，295 | 13．7\％ |
 | ${ }^{65.4 \%}$ | 9，1093 | 10．589 10.513 | ${ }^{1} 142461$ | ${ }^{15.5 \%}$ 15．6\％ |
 | 67．9\％ | 8.958 | 10，452 | 1，494 | 16．7\％ |
 | 69．1\％ | 8.741 | 10，385 | 1，644 | 18．8\％ |
 | 70．4\％ | 8,733 | 10，379 | 1，646 | 18．9\％ |
 | 71．6\％ | \％${ }_{8}^{8,484}$ | ${ }_{9}^{9,5855}$ | ${ }_{\substack{1,101 \\ 934}}^{104}$ | －13．0\％ |
 | 74．1\％ | ${ }_{\substack{8,224 \\ 8,242}}^{8,020}$ | ${ }_{9,333}^{9,385}$ | 934
 1,108 | －${ }_{\text {11．0\％}}^{13.5 \%}$ |
 | 75．3\％ | 8,206 | ${ }_{9,327}$ | ${ }^{1,121}$ | 13．7\％ |
 | 76．5\％ | ${ }_{8}^{8,022}$ | 9，098 | 1,076 | 13．4\％ |
 | 77．8\％ | 7，954 | 9，082 | 1，128 | 14．2\％ |
 | 89．0\％ | 7,941 7,927 | 8,978 8,851 | ${ }_{\substack{1,037 \\ 924}}^{1029}$ | |
 | 81．5\％ | 7.916 | 8,181 | 265 | 3．3\％ |
 | － | 7，895 | ${ }_{8,041}^{8,141}$ | 226 146 | 2．8\％ |
 | ${ }^{85.2 \%}$ | 7,882 | ${ }_{8,002}^{8,041}$ | 119 | 1．5\％ |
 | 86．4\％ | ${ }_{7}^{7,877}$ | 7,965 | 88 | 1．1\％ |
 | ${ }^{877.7 \%}$ | 7,856
 7,244 | 7,856
 7434
 1829 | ${ }_{190}^{0}$ | 2．6\％ |
 | 90．1\％ | 7,033 | 7，239 | 207 | 2．9\％ |
 | 91．4\％ | 6，509 | 6．873 | 364 | 5．6\％ |
 | 92．6\％ | 6，444 | －6．730 | ${ }_{121}^{286}$ | 4．4\％ |
 | ${ }_{95.1 \%}^{93.8 \%}$ | ci，6,344
 6,348 | ¢，6，555 | ${ }^{121}$ | 2．2\％ |
 | 96．3\％ | 6,314 | 6，436 | 121 | 1．9\％ |
 | 97．5\％ | 6，190 | 6，434 | ${ }_{2} 245$ | 4．0\％ |
 | 98．8\％ 100\％ | －6，174 | | ${ }_{61}^{249}$ | －${ }_{\text {4，0\％}}$ |

 Table
 TW-30-b
 to Rive below Hod
 Sacramento Rive brolow Hood Monthy foom
 Probability of Fxeedance

 $\begin{array}{lllll}2.5 \% & 72,527 & 72,345 & -182 & -0.3 \% \\ 3.7 \% & 71,656 & 71.066 & -631 & -0.9 \% \\ 688823\end{array}$

 | $\begin{gathered} \text { Percernt } \\ \text { Exceedance } \end{gathered}$ | $\begin{aligned} & \text { DCR 2015 Wisthout } \\ & \hline \text { Provect } \end{aligned}$ | DCR 2015 With Project | Absolute | Relative |
 | :---: | :---: | :---: | :---: | :---: |
 | Probabality | Monthly fow (CFS) | Montly Fow (CFS) | (CF5) | Difference (\%) |
 | 0.0\% | 73.244 | 73,239 | -5 | 0.0\% |
 | 1.2\% | ${ }^{67,856}$ | ${ }^{67,963}$ | ${ }^{107}$ | 0.2\% |
 | 2.5\% | ${ }^{64,406}$ | 64,071 | -335 | -0.5\% |
 | 3.7\% | 57,218 | 56,207 | -1,011 | -1.8\% |
 | 4.9\% | ${ }^{56,220}$ | ${ }^{54,628}$ | -1,591 | -2.8\% |
 | 6.2\% | ${ }^{54,644}$ | ${ }^{54,534}$ | -110 | -0.2\% |
 | 7.4\% | ${ }^{54,614}$ | ${ }^{52,809}$ | -1,805 | -3.3\% |
 | -8.6\%
 9.9% | 54,493 50.680 | 52,612 | -1.881 | -3.5\% |
 | - ${ }^{\text {9.9\% }}$ | 50,680 | ${ }^{49,983}$ | ${ }_{-1937}^{-837}$ | -1.7\% |
 | -11.1\% | ${ }_{46,183}^{49,99}$ | 47,946 46.180 | -1.964 | -3.9\% |
 | 13.6\% | 42,600 | 41,960 | -640 | |
 | 14.8\% | 41,960 | 40,890 | 70 | -2.6\% |
 | - 11.0% | ${ }^{41,620}$ | 40,169 | -1,451 | -.3.5\% |
 | - ${ }^{\text {178.3\% }}$ | ${ }^{40,822} 4$ | ${ }_{\substack{38,738 \\ 38.713}}$ | -2,084 | -5.1\% |
 | 19.8\% | ${ }_{37,318}$ | ${ }_{36,083}$ | ${ }_{-1,235}$ | -3.3\% |
 | 21.0\% | 36,472 | ${ }_{35,617}$ | ${ }_{-85}$ | -2.3\% |
 | ${ }^{22.2 \%}$ | ${ }^{35,606}$ | ${ }^{35,612}$ | ${ }^{63}$ | 0.0\% |
 | 23.5\% | ${ }^{34,814}$ | 33,478 | -1,337 | -3.8\% |
 | 24.7\% | ${ }^{33,113}$ | ${ }^{33,174}$ | 61 | 0.2\% |
 | 25.9\% | ${ }^{25,501}$ | ${ }^{25,194}$ | -307 | |
 | 27.2\% | ${ }_{2}^{25,320}$ | - 23,306 | ${ }^{-1.514}$ | -6.0\% |
 | 28.4.\% | 23,991 | ${ }^{23,758}$ | -232 | |
 | 29.6\% | ${ }_{2}^{23,806}$ | 22,849 | -957 | |
 | 30.9\% | ${ }^{23,693}$ | 22,199 | ${ }^{-1,495}$ | |
 | 32.1\% | ${ }_{2}^{23,519}$ | 22,191 | ${ }_{-1,325}$ | -5.6\% |
 | 344.6\% | ${ }_{\text {22,198 }}^{21879}$ | ${ }_{\substack{21,899 \\ 21868}}$ | -299 | -0.1\% |
 | | ${ }_{21,1879}^{21,89}$ | ${ }_{20,793}^{2,0808}$ | -1,085 | -5.0\% |
 | 37.0\% | 21,852 | 20,290 | -1.562 | -7.1\% |
 | | ${ }^{21,040}$ | ${ }^{20,273}$ | -767 | -3.6\% |
 | 39.7\% | ${ }^{20,986}$ | ${ }^{20,155}$ | -831 | |
 | 4.2.\% | ${ }^{20,041}$ | ${ }_{19,904}$ | -737 | |
 | 43.2\% | ${ }_{19,609}$ | ${ }_{19225}$ | -383 | - |
 | 44.4\% | 18,348 | ${ }_{\text {18,282 }}$ | -66 | -0.4\% |
 | 45.7\% | 18,286 | 18,174 | -112 | |
 | 46.9\% | 18.015 | 17,778 | -238 | -1.3\% |
 | 48.1\% | 16,953 | 16,953 | 0 | 0.0\% |
 | 49.4\% | 16,941 | 16,934 | -7 | 0.0\% |
 | 50.6\% | 16,707 | 16,699 | -8 | 0.0\% |
 | 51.9\% | ${ }^{16,378}$ | 16,381 | 4 | 0.0\% |
 | 53.19\% | ${ }^{15,746}$ | 11,574 | 172 | -1.1\% |
 | 54.3\% | 14,957 | 14,957 | 0 | 0.0\% |
 | 年5.8.8\% | - $\begin{aligned} & 14,134 \\ & 13.910 \\ & 1\end{aligned}$ | ${ }^{14,4866}$ | ${ }_{92}$ | |
 | 58.0\% | ${ }_{\text {13,741 }}^{13,940}$ | 14,002
 13,74
 1 | ${ }_{2}^{92}$ | 0.7\% |
 | 59.3\% | ${ }_{\text {13,471 }}$ | 13,472 | 1 | 0.0\% |
 | ${ }^{60.5 \%}$ | ${ }^{13,147}$ | 13,415 | 268 | 2.0\% |
 | ${ }^{61.77 \%}$ | ${ }^{13,142}$ | ${ }^{13,136}$ | ${ }^{-6}$ | 0.0\% |
 | 64.2\% | ${ }^{12,568}$ | ${ }_{\text {l }}^{12.7904}$ | ${ }_{226}^{296}$ | 1.8\% |
 | 65.4\% | ${ }^{12,566}$ | ${ }_{12,703}$ | 136 | 1.1\% |
 | 66.7\% | 12,475 | 12,569 | 95 | 0.8\% |
 | 67.9\% | 12,329 | 12,461 | ${ }^{133}$ | 1.1\% |
 | 69.1\% | 12,294 | 12,454 | 160 | 1.3\% |
 | 70.4\% | ${ }^{11,960}$ | ${ }^{11,964}$ | 4 | 0.0\% |
 | 71.6\% | ${ }^{11,957}$ | ${ }^{11,960}$ | 3 | 0.0\% |
 | 72.8\% | ${ }^{11,953}$ | ${ }^{111,845}$ | -107 | -0.9\% |
 | 74.19\% | ${ }^{11.840}$ | ${ }^{11,817}$ | ${ }^{-23}$ | ${ }^{-0.2 \%}$ |
 | 75.3\% | 11.471 | 11,651 | 179 | 1.6\% |
 | 76.5\% | 11,455 111369 | 11,478 11171 | 22 | 0.2\% |
 | 77.8\% | 11,369 11170 | ${ }^{111,171}$ | -95 | -1.7\% |
 | -79.0\% | ${ }^{11,170}$ | ${ }^{11,075}$ | -95 | -0.9\% |
 | 80.5\% | 10,995 | 10.839
 10,784
 1 | -35 | ${ }_{\text {- }}^{\text {-1.3\% }}$ |
 | 82.7\% | ${ }^{10,512}$ | ${ }^{10,509}$ | ${ }_{-3}$ | 0.0\% |
 | 84.0\% | 10,509 | 10,371 | -137 | -1.3\% |
 | 85.2\% | 10,371 | 10,222 | 148 | -1.4\% |
 | 86.4\% | 10.136 | 10.058 | 78 | |
 | 87.7\% | 10,001 | 10,004 | 3 | 0.0\% |
 | 88.9\% | 9,885 | 9,885 | 0 | 0.0\% |
 | 90.1\% | 9,627 | 9,828 | 201 | 2.1\% |
 | 914.4\% | 9,622 | 9,625 | 3 | 0.0\% |
 | 92.6\% | 9,550 | ${ }^{9.623}$ | 74 | 0.8\% |
 | 93.8\% | 9,430 | 9,430 | 0 | 0.0\% |
 | 95.1\% | 9,428 | ${ }^{9,428}$ | 0 | 0.0\% |
 | 96.3\% | 9,268 | 8,953 | 314 | -3.4\% |
 | 97.5\% | 8,952 8856 | 8,920 | ${ }^{-33}$ | -0.4\% |
 | 98.8\% | 8,856 8,260 | - ${ }_{8,137}^{8,867}$ | ${ }_{123}^{11}$ | - |

 | May | | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | ${ }_{\text {Percent }}$ Exceedance | ${ }^{\text {DCR } 2015 \text { Without }}$ Proiet | DCR 2015 With Project | $\underset{\substack{\text { Absolute } \\ \text { Difference }}}{\text { a }}$ | Realive |
 | Probability | Monthy Frow (cFs) | Monthy Fow (CFS) | (CFS) | Difference (\%) |
 | 0.0\% | 57,862 | 57,143 | -719 | -1.2\% |
 | 1.2\% | 57,293 | 56,723 | -570 | -1.0\% |
 | 2.5\% | 53.473 | 53,467 | -6 | 0.0\% |
 | 3.7\% | 51,751 | 51,590 | -161 | -0.3\% |
 | 4.9\% | 47,388 | 47,424 | 36 | 0.1\% |
 | 6.2\% | ${ }^{43,854}$ | ${ }^{43.858}$ | 4 | 0.0\% |
 | 7.4\% | 43.564 | ${ }^{43,252}$ | -312 | -0.7\% |
 | 8.6\% | 42,299 40.674 | ${ }_{4}^{42,136}$ | -98 | -0.4\% |
 | 9.9\% | ${ }_{\text {c }}^{40,674}$ | ${ }^{40,576}$ | -981 | -0.2\% |
 | 11.19\% | ${ }_{\text {4, }}^{4.417}$ | ${ }^{40,196}$ | -221 | -0.5\% |
 | +12.3\% | ${ }^{38,950}$ | 38.818
 37905 | -133 | -.3\% |
 | 13.6% 14.8% | ${ }_{\substack{38.082 \\ 36.735}}$ | -37,905
 36.348 | - -178 | ${ }^{-0.5 \%}$ |
 | 16.0\% | ${ }_{31,386}$ | 32,793 | 1.407 | 4.5\% |
 | 17.3\% | 30,918 | ${ }_{30,808}$ | -110 | -0.4 |
 | 1.85\% | 29,220 | 28.478 | -741 | -2.5\% |
 | 19.8\% | 28,657 | 28,173 | 484 | -1.7\% |
 | ${ }^{21.0 \%}$ | 26,801 25,937 | 26.0.030 | 10
 93 | - 0.0% |
 | 22.5\% | ${ }^{25,474}$ | ${ }^{25,489}$ | 15 | 0.1\% |
 | 24.7\% | 24,082 | ${ }_{22,685}$ | -1,397 | -5.8\% |
 | 25.9\% | 22,835 | ${ }^{21,937}$ | -998 | -3.9\% |
 | 27.2\% | 19,987 | 19,884 | -103 | -0.5\% |
 | 28.4\% | 19,317 | ${ }^{18,823}$ | -494 | -2.6\% |
 | 29.9\% | 18,139
 17908
 1898 | ${ }^{17,849}$ | -290 | -1.1.6\% |
 | 30.9\% | 17,908 | 17,655 | -253 | -1.4\% |
 | 32.19\% | | ${ }^{17,623}$ | -244 | -1.4\% |
 | 33.3% 34.6% | ${ }^{17,750}$ | ${ }^{16,326}$ | 1,425 | -8.0\% |
 | 34.6% 35.8% | 16,344 | ${ }_{\text {15,933 }}^{15731}$ | -411 | -2.5\% |
 | 35.8\% | $\begin{array}{r}15.954 \\ 15754 \\ \hline 15\end{array}$ | | ${ }^{-223}$ | -1.4\% |
 | 37.0% 38.3% | 15,734 15.045 | 15.640
 15.023
 10. | -94 | -0.6\% |
 | 38.3\% | ${ }^{15,045}$ | - $11.0,823$ | -22 | --.13\% |
 | 40.7\% | 14,830 | 14,735 | -94 | -0.6\% |
 | 42.0% 432% | ${ }^{14,610}$ | | 0 | 0.0\% |
 | 44.4\% | ${ }_{1}^{14,177}$ | ${ }_{1}^{14,4,187}$ | 9 | 0.1\% |
 | 45.7\% | 13,790 | 14,178 | 388 | 2.8\% |
 | 46.9\% | ${ }^{13,783}$ | ${ }^{13,785}$ | 2 | 0.0\% |
 | 48.1\% | 13,724 | 13.711 | -13 | -0.1\% |
 | 49.4\% | ${ }^{13,690}$ | ${ }^{13,000}$ | -690 | -5.0\% |
 | 51.9\% | 12,787 | 12,794 | 6 | 0.0\% |
 | 53.1\% | 12,304 | 12.479 | 175 | 1.4\% |
 | 54.3\% | +12,228 | 12,225 120204 1 | ${ }^{-3}$ | 0.0\% |
 | 年55.6\% | (12,203 | 12,204 12125 1 | 1 | 0.0\% |
 | | (12,142 | (12.145 | 3 | 0.0\% |
 | ${ }^{58.0 \%}$ | $\underset{\substack{12,134 \\ 12.074 \\ 1}}{ }$ | 12,134 12.080 | ${ }_{6}$ | - 0.0% |
 | 60.5\% | 12,059 | 12.061 | 2 | 0.0\% |
 | 61.7\% | ${ }^{11,985}$ | ${ }^{11,1888}$ | -97 | -0.8\% |
 | - 63.0% | 11,887 11239 | 11.505 11348 | -382 | -3.2\% |
 | ${ }^{64.2 \%}$ 6.4\% | 11,239 10.992 | 11,348 11,239 | 109 247 | 2.3\% |
 | 66.7% | 10,918 | 11,009 | 91 | 0.8\% |
 | 67.9\% | 10,895 | 10,995 | 100 | 0.9\% |
 | 69.1\% | 10.860 10780 10, | 10,973 10.879 | ${ }^{113}$ | 1.0\% |
 | 71.6\% | 10,754 | 10,861 | 107 | 1.0\% |
 | 72.8\% | 10,719 | 10,811 | | 0.9\% |
 | 74.1\% | 10,600 | 10,636 | 36 | 0.3\% |
 | 75.3\% | 10,449 | 10,442 | ${ }^{-8}$ | -0.1\% |
 | 76.5\% | 10,441 | 10,426 | -15 | -0.1\% |
 | 77.8\% | 10.407 | 10,407 | 0 | 0.0\% |
 | 79.0\% 880.2% | 10,404 | 10,373 | -32 | ${ }^{-0.3 \%}$ |
 | 80.2\% | ${ }_{9,505}^{10,044}$ | (10.034 | -10 271 | ${ }^{-0.8 \%}$ |
 | 82.7\% | ${ }_{9,370}$ | 9.501 | 130 | 1.4\% |
 | 84.0\% | 9,149 | 9,455 | 306 | 3.3\% |
 | - | ${ }_{8,9,97}^{9,063}$ | ${ }_{9,218}^{9,374}$ | 311 281 | 3.1.\% |
 | 87.7\% | ${ }_{8,925}$ | 8,926 | 1 | 0.0\% |
 | 88.9\% | 8,868 | ${ }_{8,826}$ | 42 | -0.5\% |
 | 90.1\% 9 | 8,741 | 8,421 | ${ }^{-320}$ | -3.7\% |
 | ${ }^{9.2 .6 \%}$ | ${ }_{8,381}^{8.421}$ | ${ }_{8,400}^{8,405}$ | -16 | -0.2\% |
 | 93.8\% | 8,151 | 8,154 | 3 | 0.0\% |
 | 95.1\% | 7.668 | 7,867 | 199 | 2.6\% |
 | ${ }^{96.75 \%}$ | 7,102 6.775 | | ${ }_{-327}$ | - ${ }_{\text {- }}^{5.6 \%}$ |
 | 98.8\% | 6,587 | 6,257 | -330 | -5.0\% |
 | 100.0\% | 5,339 | 5.553 | 214 | 4.0\% |

 Table SW-30-b
 ento River blow Hood Monthly Fiow
 Probability of Exceedance

 | | | June | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | $\underset{\substack{\text { DCR 2015 } \\ \text { Proiethout }}}{\text { and }}$ | DCR 2015 With Project | Absolute Difference | Relative |
 | Probability | Monthy fow (CFS) | Monthy Flow (CFSS) | (CFF) | |
 | 0.0\% | 59,381 | 59,347 | -34 | -0.1\% |
 | 1.2\% | 48,750 | 48,583 | -167 | -0.3\% |
 | 2.5\% | ${ }^{37,163}$ | ${ }^{37,756}$ | 593 | 1.6\% |
 | 3.7\% | ${ }^{35,596}$ | 36,571 | 976 | 2.7\% |
 | 4.9\% | 33,971
 33.521 | 36,370
 33745 | 2,399 224 | 7.1\% |
 | -6.2\% | 33,521
 33,410 | 33,745
 33.506 | ${ }_{96}^{224}$ | 0.73\% |
 | 8.6\% | 28,250 | 29,250 | 1,000 | 3.5\% |
 | 9.9\% | 25,338 | 24,664 | -673 | -2.7\% |
 | ${ }^{11.12 \%}$ | ${ }_{\text {cke }}^{23,363}$ | ${ }^{24,018}$ | ${ }_{-785}^{655}$ | 2.8\% |
 | 13.6\% | ${ }_{22,863}^{2,01}$ | ${ }_{21,995}^{2,515}$ | -868 | -3.8\% |
 | 14.8\% | ${ }^{21,680}$ | ${ }^{21,668}$ | ${ }^{-11}$ | -0.1\% |
 | 16.0\% | ${ }^{20,346}$ | 20,631 | 285 | 1.4\% |
 | 17.3\% | 20,038 | ${ }^{20,335}$ | 297 | 1.5\% |
 | 18.5\% | ${ }^{19,948}$ | 20.024 | 76 | 0.4\% |
 | 19.8\% | 19,990 | 19,198 | -712 | -3.6\% |
 | 21.0\% | ${ }^{18,903}$ | 19,154 | 251 | 1.3\% |
 | ${ }^{22.2 \%}$ | 18,102 | 18,089 | ${ }^{-13}$ | ${ }^{-0.17 \%}$ |
 | 23.5\% | ${ }^{16,206}$ | ${ }^{16,475}$ | ${ }^{269}$ | 1.7\% |
 | | 15.994 | ${ }^{15.939}$ | ${ }^{25}$ | ${ }^{0.2 \% \%}$ |
 | 25.9\% | ${ }^{15.604}$ | ${ }^{15.864}$ | 260 | |
 | 27.2%
 28.4% | ${ }^{15,392}$ | 15.677 | ${ }^{285}$ | |
 | ${ }^{28.49 \%}$ | ${ }_{\text {cke }}^{15,209}$ | ${ }_{\text {15,382 }}^{154.49}$ | 124
 173 | 0.8\% |
 | 30.9\% | 14,927 | 15,371 | 444 | 3.0\% |
 | 32.1\% | 14,918 | 15,270 | 352 | 2.4\% |
 | | 14,7555 | 144,7985 | 143 | 1.0\% |
 | 35.8\% | ${ }^{14.44785}$ | ${ }^{14,4,619}$ | 140 | 1.10\% |
 | 37.0\% | 14,159 | 14,558 | 399 | 2.8\% |
 | 38.3\% | 14,056 | 14,290 | ${ }^{234}$ | 1.7\% |
 | 39.5\% | 13,759 | 14,115 | 356 | ${ }_{2}^{2.6 \%}$ |
 | 40.7\% | 13,632 | 14,044 | 411 | 3.0\% |
 | 42.0\% | ${ }^{13,620}$ | ${ }^{13,908}$ | 288 | 2.1\% |
 | 43.2\% | ${ }^{13,615}$ | 13,759 | 144 | 1.19\% |
 | 44.4.\% | 13,501 | ${ }^{13,629}$ | 128 | 0.9\% |
 | 45.7\% | ${ }^{13,436}$ | ${ }^{13,532}$ | ${ }^{96}$ | 0.7\% |
 | 46.9\% | 13,431 | ${ }^{13,504}$ | 74 | 0.5\% |
 | ${ }^{48.19}$ | ${ }^{13,402}$ | ${ }^{13,431}$ | 29 | 0.2\% |
 | 4.9.4\% 50.6\% | ${ }^{13,381}$ | ${ }^{13,292}$ | -89 | -0.7\% |
 | 50.19\% | ${ }^{13,317}$ | ${ }^{13,291}$ | ${ }^{-26}$ | ${ }_{\text {- }}^{0.0 \% \%}$ |
 | 53.1\% | 13,291 | 13,164 | -127 | -1.0\% |
 | 54.3\% | ${ }^{13,110}$ | ${ }^{13,145}$ | ${ }_{3}^{35}$ | 0.3\% |
 | 55.8\%\% | ${ }^{13,080}$ | ${ }_{13,076}$ | | |
 | 58.0\% | ${ }_{\text {12, }}^{12,769}$ | ${ }^{13,0760}$ | ${ }_{231}^{231}$ | ${ }_{\text {1.8\% }}^{2.8 \%}$ |
 | 59.3\% | ${ }^{12,741}$ | 13,000 | ${ }_{259}$ | 2.0\% |
 | 60.5\% | 12,708 | 12,956 | 248 | 1.9\% |
 | 61.7\% | ${ }^{12,675}$ | ${ }^{12,741}$ | 66 | 0.5\% |
 | 63.0\% | ${ }^{12,628}$ | 12,709 | 81 | 0.6\% |
 | 64.2\% | 12,502 | 12,687 | 185 | 1.5\% |
 | | ${ }^{12,495}$ | ${ }^{12,618}$ | 124 | 1.0\% |
 | 66.7\% 679% | 12,474 | ${ }^{12,616}$ | 142 | ${ }^{1.19 \%}$ |
 | -67.9\% | ${ }^{12,462}$ | ${ }^{12,502}$ | ${ }^{39}$ | 0.3\% |
 | 69.1\% | ${ }^{12,408}$ | ${ }^{12,483}$ | 75 | 0.6\% |
 | 71.6\% | ${ }_{\substack{12,341 \\ 12,070}}^{12,182}$ | (12,422 | ${ }_{339} 81$ | 2.8\% |
 | 72.8\% | 12,005 | ${ }^{12,343}$ | 339 | 2.8\% |
 | 74.1\% | ${ }^{11,802}$ | 12,270 | ${ }^{468}$ | 4.0\% |
 | 75.3\% | 11,688 | 12,015 | 328 | |
 | 76.5\% | ${ }^{11,671}$ | ${ }^{12,005}$ | ${ }^{333}$ | 2.9\% |
 | 7, 7.80% | ${ }^{11,1484}$ | ${ }^{11,1867}$ | ${ }_{262}^{244}$ | ${ }_{2.3}^{2.1 \%}$ |
 | 80.2\% | 11.047 | 11,666 | ${ }_{620}$ | 5.6\% |
 | 81.5\% | 10,998 | 11,451 | 454 | 4.1\% |
 | | 10,608 | 11,38 | 777 | 7.3\% |
 | 84.0\% | 10,583 | 10,826 | 243 | 2.3\% |
 | 85.2\% | 10,571 | ${ }^{10.571}$ | 0 | 0.0\% |
 | ${ }^{86.4 \%}$ | 10,528 | 10,378 | 149 | -1.4\% |
 | - | 10,378
 10973 | 10,349 | ${ }^{30}$ | -0.3\% |
 | 90.1\% | 9,940 | ${ }_{9,940}$ | 0 | 0.0\% |
 | 91.4\% | 9,455 | 9,455 | 0 | 0.0\% |
 | 92.6\% | 9,269 | 9,287 | 18 | 0.2\% |
 | 93.8\% | ${ }_{8}^{8,200}$ | 8.715 | 695 | 8.7\%\% |
 | -95.1\% ${ }_{9} 9$ | 7.961 | 8,202 | ${ }_{211}^{241}$ | 3.0\% |
 | 96.5\% | ${ }_{7}^{7,794}$ | - | 374 | ${ }_{3.6 \%}^{4.0 \%}$ |
 | 98.8\% | 7,401 | 7,894 | 492 | 6.7\% |
 | 100.0\% | 7,329 | 7,658 | 329 | 4.5\% |

 | $\begin{array}{\|c} \text { EPrecenent } \end{array}$ | ${ }^{\text {D }}$ D 2015 Wisthout | DCR 2015 With Project | Absolue | Relative |
 | :---: | :---: | :---: | :---: | :---: |
 | Proeabaility | Monthly Foied (cFs) | Monthly Fow (CFS) | (cFs) | Difference (\%) |
 | 0.0\% | 19,971 | 20.814 | 843 | 4.2\% |
 | 1.2\% | 19.561 | ${ }^{20,543}$ | 982 | 5.0\% |
 | 2.5\% | 17.465 | ${ }^{17,733}$ | 268 | 1.5\% |
 | 3.7\% | 17,363 | 17,570 | 207 | 1.2\% |
 | 4.9\% | 17,205 | 17,450 | ${ }^{245}$ | 1.4\% |
 | 6.2\% | 17,186 | 17,373 | 187 | 1.1\% |
 | 7.4\% | 17,185 | 17.320 | ${ }^{136}$ | 0.8\% |
 | 8.6\% | 17,143 | 17,178 | ${ }^{35}$ | 0.2\% |
 | 9.9\% | 177112 | ${ }^{17,143}$ | ${ }^{31}$ | 0.2\% |
 | 11.1\% | 17,085 | ${ }^{17,112}$ | ${ }_{32}^{27}$ | 0.2\% |
 | ${ }^{123 \%}$ | 17,040 | ${ }^{17,772}$ | ${ }^{32}$ | 0.2\% |
 | 13.6\% | 16.965 | (17.044 | 79 | 0.5\% |
 | 16.0\% | - 116,0893 | ${ }_{\text {16,931 }}^{16,965}$ | ${ }_{43}^{71}$ | ${ }^{0.4 \% \%}$ |
 | 17.3\% | 16,858 | 16.919 | 61 | 0.4\% |
 | 18.5\% | 16.809 | 16,894 | 85 | 0.5\% |
 | 19.8\% | ${ }^{16,765}$ | 16.809 | ${ }_{130}^{43}$ | ${ }_{\text {c }}^{0.8 \%}$ |
 | 22.2\% | ${ }_{10,650}^{10.650}$ | ${ }_{16,706}^{10.701}$ | 56 | 0.3\% |
 | 23.5\% | 10,604 | 16,674 | 71 | 0.4\% |
 | 24.7\% | 16,482 | 16,661 | 179 | 1.1\% |
 | 25.9\% | 16.469 | 16,455 | -14 | -0.1\% |
 | 27.2\% | ${ }^{16,444}$ | ${ }^{16,428}$ | -16 | -0.1\% |
 | 28.4\% | ${ }^{16,396}$ | ${ }^{16,396}$ | 0 | 0.0\% |
 | 29.6\% | 16,363 | ${ }^{16,396}$ | ${ }^{33}$ | 0.2\% |
 | 30.9\% | ${ }^{16,338}$ | 16,260 | -78 | -0.5\% |
 | 32.1\% | 16,315 | ${ }^{16,085}$ | -229 | -1.4\% |
 | 33.3\% | ${ }^{16,260}$ | ${ }^{16,062}$ | -198 | -1.2\% |
 | 34.6\% | ${ }^{16,063}$ | (10.018 | -45 | -0.3\% |
 | 35.8\% | ${ }^{16,0017}$ | 15,915 | ${ }_{-102}$ | -0.6\% |
 | 37.0\% | 15.915 15.833 | 15.874 15.858 | ${ }^{-41}$ | -0.3\% |
 | ${ }^{38.35 \%}$ | ${ }^{15,8,838}$ | ${ }^{155.8588}$ | 25 51 | 0.3\% |
 | 40.7\% | 15,731 | 15.799 | 68 | 0.4\% |
 | 42.0\% | ${ }^{15,678}$ | 15.731 | 53 | 0.3\% |
 | ${ }^{43.2 \%}$ | ${ }^{15,5666}$ | - ${ }_{\text {15,6.642 }}$ | ${ }_{134}^{12}$ | 0.9\% |
 | 45.7\% | 15,477 | 15.478 | 0 | 0.0\% |
 | 46.9\% | 15.459 | ${ }^{15.452}$ | -8 | -0.1\% |
 | ${ }^{48.19 \%}$ | 15.384 15329 | 15.429 15371 | ${ }_{42}^{46}$ | ${ }_{0}^{0.3 \% \%}$ |
 | 50.6\% | ${ }^{15,3539}$ | ${ }_{\text {l }}^{15,351}$ | ${ }_{32}^{42}$ | ${ }_{0}^{0.3 \%}$ |
 | 51.9\% | 15,260 | 15,310 | 49 | 0.3\% |
 | 53.1\% | ${ }^{15,195}$ | ${ }^{15,261}$ | ${ }_{6}^{66}$ | 0.4\% |
 | 54.3\% | 15,115 | ${ }_{\text {ckis }}^{15.173}$ | ${ }_{54}^{58}$ | 0.4\% |
 | 55.6\% | ${ }^{15,109}$ | ${ }^{15.1726}$ | 64 185 | 0.4\% |
 | 56.8\% | 14,931 14.881 | 15,16 15011 15014 | $\begin{array}{r}185 \\ 130 \\ \hline 1\end{array}$ | 1.2\% |
 | 55.3\% | 14,881 14,805 | 15,011 14,865 | 130 61 | 0.9\% |
 | 60.5\% | 14,426 | 14,630 | 204 | 1.4\% |
 | 61.7\% | 14,190 | 14,602 | 412 | 2.9\% |
 | 63.0\% | ${ }^{13,836}$ | 14,545 | 709 | 5.1\% |
 | 64.2\% | 13,465 13.066 1 | 14.523 14.393 | - $\begin{aligned} & 1,058 \\ & 1.327\end{aligned}$ | 7.9% 10.2% |
 | ${ }_{66.7 \%}^{65.4 \%}$ | ${ }^{11,2,312}$ | ${ }_{14,297}^{14,933}$ | ${ }_{1,1986}^{1,397}$ | ${ }_{\text {16.1\% }}$ |
 | 67.9\% | 12,291 | 14,059 | ${ }_{1}^{1,768}$ | 14.4\% |
 | 69.1\% | ${ }^{12,287}$ | ${ }^{13,089}$ | ${ }_{803}$ | ${ }^{6.5 \%}$ |
 | 70.1.4\% | 11,971 11,468 | - | ${ }_{1}^{1,1,356}$ | ${ }^{9.3 \%}$ |
 | 72.8\% | 11,370 | 12.740 | ${ }^{1,370}$ | 12.0\% |
 | 74.19\% | ${ }^{11,336}$ | ${ }^{12,645}$ | ${ }^{1,309}$ | 11.5\% |
 | 75.3\% | 11,230 | 12.592 | ${ }^{1,362}$ | 12.1\% |
 | 76.5\% | 10,998 | 12,275 | ${ }_{\substack{1,277 \\ 1,310}}^{1}$ | -11.6\% |
 | 77.8.0\% | 10,954 10.879 | 12,265 12.012 | ${ }_{1}^{1,133}$ | - ${ }_{\text {12.0\% }}^{12.4 \%}$ |
 | 80.2\% | 10,557 | 11,944 | ${ }_{1,387}^{1,187}$ | 13.1\% |
 | 81.5\% | 10,281 | 11,910 | 1,629 | 15.8\% |
 | 82.7\% | 9,990 | 11.784 | 1,795 | 18.0\% |
 | 84.0% 852% | 9,904 97988 | 11,472 11,465 | +1,568 | 15.8% 170% |
 | ${ }_{\text {86.4\% }}$ | ${ }_{9,388}^{9,798}$ | ${ }^{111,465}$ | ${ }_{1,612}^{1,667}$ | 17.0\% |
 | 87.7\% | 9,279 | 10.965 | ${ }^{1,686}$ | 18.2\% |
 | 88.9\% | 9,254 | 10,943 | ${ }^{1,1,699}$ | ${ }^{18.2 \%}$ |
 | 901.4\% | ${ }^{9.5650}$ | ${ }^{10,10,188}$ | ${ }_{1}^{1,2629}$ | 19.0\% |
 | 92.6\% | 8.211 | 9,859 | ${ }_{1,647}$ | \% |
 | 93.8\% | 7,847 | 9,758 | 1,912 | 24.4\% |
 | -95.19\% | 7,786
 7414
 7.0 | ${ }_{9}^{9,682}$ | ${ }^{1,897}$ | ${ }^{24.4 \%}$ |
 | -97.5\% | ${ }_{\text {l }}^{7,362}$ | ${ }_{8,941}^{9,319}$ | ${ }_{1,579}^{1,905}$ | ${ }_{\text {21.4\% }}^{25.7 \%}$ |
 | 98.8\% | 7,322 | 8.801 | 1,479 | 20.2 |
 | 100.0\% | 7,304 | 8.062 | 758 | 10.4\% |

 Figure SW-31-b
 Yolo Bypass, Monthly Flow

 ##

 \begin{tabular}{|c|c|c|c|c|}
 \hline \& \& Ociober \& \& \\
 \hline \[
 \begin{gathered}
 \text { Percent } \\
 \text { Exceedance }
 \end{gathered}
 \] \& \(\underset{\substack{\text { DCR 2015 } \\ \text { Proiethout }}}{\text { and }}\) \& DCR 2015 With Project \& Absolute
 Difference \& Reative \\
 \hline Probability \& Monthy fow（CFS） \& Monthy flow（CFS） \& （cFs） \& \\
 \hline 0．0\％ \& 3，405 \& 6，270 \& \({ }^{2,864}\) \& 84．1\％ \\
 \hline 1．2\％ \& 1，201 \& 1，201 \& 0 \& 0．0\％ \\
 \hline 2．5\％ \& 126 \& 449 \& \({ }^{323}\) \& 255．4\％ \\
 \hline 3．7\％ \& 104 \& 390 \& 286 \& 274．6\％ \\
 \hline 4．9\％ \& 76
 64 \& 390
 390 \& 314
 326 \& 413．1\％ \\
 \hline －6．4\％ \& 64
 63 \& 390
 390 \& 326 \& 515．8\％ \\
 \hline 8．6\％ \& \({ }^{63}\) \& 390 \& 327 \& 516．6\％ \\
 \hline 9．9\％ \& 63 \& 390 \& 327 \& \\
 \hline \({ }^{11.12 \%}\) \& \({ }_{63}^{63}\) \& 390
 390 \& 327 \& \\
 \hline 13．6\％ \& \({ }_{63}\) \& 30 \& 327 \& \\
 \hline 14．8\％ \& \({ }_{63}\) \& 390 \& \({ }_{327}^{327}\) \& \\
 \hline 16．0\％ \& 63 \& 390 \& \({ }_{328}\) \& 523．1\％ \\
 \hline 17．3\％ \& 62 \& 390 \& 329 \& 532．0\％ \\
 \hline 18．5\％ \& 62 \& 390 \& 329 \& 534．3\％ \\
 \hline 19．8\％ \& 61 \& 390 \& 329 \& 533．5\％ \\
 \hline 21．0\％ \& 61 \& 390 \& \({ }^{329}\) \& 538．8\％ \\
 \hline 22．2\％ \& 61 \& 390 \& 329 \& 538．8\％ \\
 \hline 23．5\％ \& \({ }_{61}\) \& 390 \& \({ }^{330}\) \& 543．5\％ \\
 \hline 24．7\％ \& 60 \& 390 \& \({ }^{330}\) \& 545．9\％ \\
 \hline 25．9\％ \& 60
 59 \& 390
 390 \& \({ }_{331}^{330}\) \& 550．9\％ \\
 \hline 28．4\％ \& \({ }_{58}\) \& 390 \& \({ }_{33}\) \& 575．5\％ \\
 \hline 29．6\％ \& 58 \& 390 \& 333 \& 577．9\％ \\
 \hline 30．9\％ \& \& \& \& 593．9\％ \\
 \hline \({ }^{32.15 \%}\) \& \begin{tabular}{l}
 54 \\
 54 \\
 \hline
 \end{tabular} \& 390
 390 \& 336
 336 \& 617．4\％ \\
 \hline 34．6\％ \& 54 \& 390 \& 336 \& 622．3\％ \\
 \hline 年35．8\％ \& 54
 53
 54 \& 390 \& \({ }_{337}^{337}\) \& \({ }_{\text {cke }}^{625.2 \%}\) \\
 \hline 37．3\％ \& \({ }_{53}^{53}\) \& \({ }_{390}\) \& \({ }_{337}^{337}\) \& \({ }_{634.3 \%}^{63.2 \%}\) \\
 \hline 39．5\％ \& 53 \& 390 \& 337 \& 637．2\％ \\
 \hline 40．7\％ \& \({ }_{52}^{53}\) \& \({ }^{390}\) \& \({ }_{338} 3\) \& 643．3\％ \\
 \hline 42．0\％ \& 52 \& 390 \& 338 \& \({ }^{648.5 \%}\) \\
 \hline 43．2\％ \& 52 \& 390 \& \({ }^{338}\) \& 653．1\％ \\
 \hline － \(4.4 .4 \%\) \& 50 \& 390 \& 340 \& 676．0\％ \\
 \hline － \(45.7 \%\) \& \({ }_{46}^{49}\) \& 390 \& \({ }_{342}^{342}\) \& 702．6\％ \\
 \hline \({ }^{48.1 \%}\) \& \({ }_{45}^{46}\) \& 390
 390 \& 345
 345 \& 759．1\％ \\
 \hline 49．4\％ \& 45 \& 390 \& 346 \& 771．7\％ \\
 \hline 50．6\％ \& 45 \& 390 \& \({ }_{3}^{346}\) \& 776．2\％ \\
 \hline \& \({ }_{43}^{44}\) \& 390
 390 \& 346
 347 \& 799．1\％ \\
 \hline 54．3\％ \& 43 \& 265 \& 221 \& 512．3\％ \\
 \hline 年55．6\％ \& \({ }_{42}^{42}\) \& \({ }_{122}^{224}\) \& 182 \& \({ }^{429.0 \%}\) \\
 \hline \& \({ }_{40}^{42}\) \& \({ }_{192}^{192}\) \& 150
 146 \& \\
 \hline 59．3\％ \& 40 \& 153 \& 113 \& 284．5\％ \\
 \hline 60．5\％ \& 39 \& 150 \& 110 \& 279．6\％ \\
 \hline 61．7\％ \& 38 \& 75 \& 37 \& 97．3\％ \\
 \hline －63．0\％ \& 38
 37 \& \({ }_{63}^{64}\) \& 26
 26 \& － \(68.2 \%\) \\
 \hline 65．4\％ \& 37 \& \({ }_{63}\) \& \({ }_{27}\) \& 72．9\％ \\
 \hline 66．7\％ \& 36 \& \({ }^{63}\) \& 26 \& 73．2\％ \\
 \hline 67．9\％ \& 30 \& \({ }_{6}^{62}\) \& 32 \& 107．3\％ \\
 \hline 69．1\％ \& \({ }_{26}^{29}\) \& \({ }_{61}^{61}\) \& \(\begin{array}{r}32 \\ 35 \\ \hline\end{array}\) \& 110．6\％ \\
 \hline 71．6\％ \& \({ }^{24}\) \& 61 \& 37 \& 156．6\％ \\
 \hline 72．8\％ \& 22 \& \({ }^{60}\) \& 38 \& 168．6\％ \\
 \hline 74．1\％ \& \({ }^{20}\) \& 54 \& \({ }^{34}\) \& 168．4\％ \\
 \hline 75．3\％ \& 19 \& \begin{tabular}{l}
 53 \\
 53 \\
 \hline
 \end{tabular} \& \(\begin{array}{r}34 \\ 35 \\ \hline\end{array}\) \& 184．4\％ \\
 \hline 76．5\％

 778% \& 18
 17 \& 53
 53
 54 \& 35
 36 \& 189．1\％

 \hline 79．0\％ \& 16 \& 50 \& 35 \& 221．0\％

 \hline －${ }_{\text {80．2\％}}^{815 \%}$ \& 15 \& 46 \& ${ }^{31}$ \& 214．9\％

 \hline ${ }_{\text {822，}}^{81.5 \%}$ \& ${ }_{12}^{14}$ \& ${ }_{44}^{45}$ \& 31
 32 \& 2275\％${ }^{227.5}$

 \hline 84．0\％ \& 12 \& 43 \& 32 \& 264．7\％

 \hline 85．2\％ \& 11 \& ${ }^{42}$ \& ${ }^{31}$ \& 290．3\％

 \hline ${ }^{86.4 \%} 8$ \& 9 \& ${ }_{40}^{40}$ \& 32
 34 \& 隹 $\begin{aligned} & 369.1 \% \\ & 5698 \%\end{aligned}$

 \hline 88．9\％ \& 5 \& 37 \& 32 \& 654．9\％

 \hline 90．1\％ \& 4 \& ${ }^{36}$ \& ${ }^{32}$ \&

 \hline 91．4\％ \& 3 \& ${ }^{26}$ \& ${ }^{23}$ \&

 \hline ${ }_{9}^{92.85 \%}$ \& 3 \& 19 \& 16 \&

 \hline ${ }^{935.1 \%}$ \& ${ }_{2}$ \& \& ${ }_{4}^{4}$ \&

 \hline 96．3\％ \& 1 \& 4 \& 3 \&

 \hline －97．5\％${ }_{\text {98．8\％}}$ \& 0 \& $\begin{array}{r}3 \\ 2 \\ \hline\end{array}$ \& $\begin{array}{r}3 \\ 2 \\ \hline\end{array}$ \&

 \hline 100．0\％ \& 0 \& ？ \& \bigcirc \&

 \hline
 \end{tabular}

 ##

 | | ${ }^{\text {OCR 2015 Without }}$ Febrruary | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | DCR 2015 With Projet | | |
 | | Monthly fow (CFS) | Moontly Flow (CFS) | | |
 | 0.0\% | 123.829 | 125,425 | 1,595 | 1.3\% |
 | 1.2\% | 109,983 | 114,191 | 4,208 | 3.8\% |
 | 2.5\% | 70,534 | 97,250 | 26,716 | 37.9\% |
 | 3.7\% | 69,992 | 69,045 | -46 | -0.1\% |
 | 4.9\% | 67,450 | ${ }^{67,342}$ | -108 | -0.2\% |
 | ${ }^{6.2 \%}$ | 46,738 43582 | 46.819 43288 | -814 | -0.2\% |
 | 7.4\% | ${ }_{\text {c }}^{43,582}$ | ${ }^{43,288}$ | ${ }^{-294}$ | -0.7\% |
 | 8.6\% | 42.662 42385 | ${ }^{43,062}$ | 400 | 0.9\% |
 | ${ }^{\text {9,9\% }}$ | ${ }^{42,385}$ | 40,477 39.865 | -1.908 -2399 | -4.5\% |
 | -11.1\% | 42,264 40.644 | 39,865 38.483 | -2.3999 -2.161 | -5.7\% |
 | 13.6\% | 31,015 | 30,682 | ${ }_{-33}$ | -1.1\% |
 | 14.8\% | 25,977 | 25,841 | -136 | |
 | 16.0\% | ${ }^{25,996}$ | ${ }^{23,588}$ | -2,108 | |
 | 17.3\% | 20,981 | 18,547 | 2,434 | |
 | 18.5\% | 19,059 | 17,338 | -1,722 | -9.08 |
 | 19.8\% | 16,097 | 14,411 | -1,685 | -10.5 |
 | 21.0\% | 14,236 | 14,165 | -71 | -0.5\% |
 | ${ }^{22.2 \%}$ | 12,817 | 10,919 | 1,898 | -14.8\% |
 | ${ }^{23.5 \%}$ | 10,867 | 10,615 | -252 | -2.3\% |
 | 24.7\% | 9,475 | ${ }^{8.653}$ | -822 | -8.7\% |
 | 25.9\% | ${ }_{8}^{8,655}$ | 7,748 | -907 | -10.5\% |
 | 27.2\% | 7,942 | 7,656 | ${ }_{-286}$ | -3.6\% |
 | ${ }^{28.49 \%}$ | 7,936 | 7,580 | -376 | -4.5\% |
 | 29.6\% | ${ }_{7}^{7,858}$ | 6,985 | -873 | -1.19 |
 | 30.9\% | 7,784 | 6,730 | -1,054 | -13.5\% |
 | 32.1\% | 6,907 | 6,656 | -252 | -3.6\% |
 | 33.3\% | 6.859 | ${ }^{6.276}$ | -583 | |
 | 34.6% 3 3 | 6,792 | ¢,245 | -547 | -8,19 |
 | 37.0\% | ${ }_{6,643}^{6.721}$ | | ${ }_{-1,128}$ | -120\% |
 | 38.3\% | 5,359 | 5,358 | | 0.0% |
 | 39.5\% | 5,082 | 5,201 | 118 | |
 | 40.7\% | 3,994 | 3,250 | -744 | |
 | 42.0\% | 3,793 | 3,242 | -551 | -14.5 |
 | 43.2\% | 2,887 | 2,894 | 7 | 0.3\% |
 | 44.4.\% | 2,823 | 2,828 | 5 | 0.2\% |
 | 45.7\% | 2,515 | 2,418 | -97 | -3.9\% |
 | 46.9\% | ${ }_{2}^{2,410}$ | ${ }^{1,890}$ | -520 | |
 | 48.19\% | 2,381 | 1.826 | -554 | -23.3\% |
 | 49.4\% | 2,361 | 1,406 | -955 | -40.4\% |
 | 50.6\% | ${ }^{1,882}$ | ${ }^{1,365}$ | -517 | -27.5\% |
 | 51.9\% | ${ }_{1}^{1.819}$ | 1,277 | -542 | -29.8\% |
 | -53.1\% | 1,703 | ${ }_{9} 971$ | -746 | -43.8\% |
 | | 1,406 1,365 | ${ }_{879}^{911}$ | -496 | |
 | 55.6\% | ${ }_{1}^{1,365}$ | 879 | ${ }_{-486}$ | -35.6\% |
 | 56.8\% | 879 | ${ }_{7}^{782}$ | -97 | |
 | 59.3\% | ¢ 629 | 744 629 | 0 | 0.0\% |
 | 60.5\% | 596 | 596 | 0 | |
 | 61.7\% | 588 | 468 | 120 | |
 | 63.0\% | 468 | 425 | ${ }^{43}$ | |
 | ${ }^{64.2 \%}$ | ${ }^{425}$ | 389 | ${ }^{36}$ | |
 | ${ }^{65.4 \%}$ | 389 389 | 389
 355 | ${ }_{-34}$ | |
 | 67.9\% | 355 | 303 | ${ }^{52}$ | |
 | 69.1\% | 303 | 229 | 74 | |
 | 70.4\% | 229 | ${ }^{227}$ | -2 | |
 | 71.6\% | ${ }^{227}$ | 219 | -8 | |
 | 72.8\% | 219 | 193 | ${ }^{26}$ | |
 | 74.1\% | 193 | 137 | ${ }^{56}$ | |
 | 75.3\% | 137 | 112 | ${ }^{25}$ | |
 | 76.7.8\% | 112 | ${ }^{110}$ | -2 | |
 | 779.0\% | ${ }^{110}$ | 85 | -25 | |
 | -79.0\% | ${ }_{81}^{85}$ | ${ }_{51}^{81}$ | 4 | |
 | ${ }^{81.5 \%}$ | 81 52 | 52 50 | -29 | |
 | 82.7\% | ${ }^{41}$ | 37 | 4 | |
 | 84.0\% | ${ }_{26}^{26}$ | ${ }_{24}^{26}$ | 0 | |
 | - ${ }^{856.2 \%}$ | ${ }_{22}^{26}$ | ${ }_{19}$ | -2 | |
 | ${ }_{87.7 \%}$ | ${ }_{19}^{22}$ | 1 | -38 17 | |
 | 88.9\% | 0 | 0 | 0 | |
 | 90.1\% | 0 | 0 | 0 | |
 | 91.4\% | 0 | 0 | 0 | |
 | 92.6\% | 0 | | 0 | |
 | 93.8\% | 0 | 0 | 0 | |
 | 95.1\% | 0 | 0 | 0 | |
 | 96.3\% | 0 | 0 | 0 | |
 | 97.5\% | 0 | 0 | 0 | |
 | 98.8\% | 0 | 0 | 0 | |

 ##

 Figure SW-32-b
 Sacramento River at Rio Vista, Monthly Flow

 | | | Ociober | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | ${ }_{\substack{\text { DCC } \\ \text { Proinect }}}^{2015 \text { Without }}$ | DCR 2015 With Project | Absolute Difference | Relative |
 | Probability | Monthly Fow (CFFS) | Monthy Fow (CFS) | (CFF) | |
 | 0.0\% | 30,162 | 33,794 | ${ }^{3} .631$ | 12.0\% |
 | 1.2\% | 14,143 | 13,944 | -198 | -1.4\% |
 | 2.5\% | ${ }^{13,985}$ | 12,305 | -1,679 | -12.0\% |
 | 3.7\% | 11,975 | 12,169 | 194 | 1.6\% |
 | 4.9\% | 11,439 10.619 | 11,458 10.617 | 19 -2 | ${ }_{0}^{0.2 \%}$ |
 | -6.4\% | 10.619 10.074 | 10,617 10.550 | $\stackrel{-2}{476}$ | 0.0\%\% |
 | 8.6\% | 9.659 | 10,296 | 637 | 6.6\% |
 | 9.9\% | 9,646 | 9,987 | 342 | 3.5\% |
 | -11.1\% | 9,452 | 9,815 | ${ }^{363}$ | 3.8\% |
 | +12.3\% | ¢ ${ }_{\text {9,339 }}^{9.359}$ | ${ }_{9}^{9.676}$ | 336
 145
 15 | ${ }^{3.6 \%}$ |
 | 14.8\% | 9,000 | ${ }_{9,219}^{9,403}$ | ${ }^{219}$ | |
 | 16.0\% | 8.868 | ${ }_{9}^{9,131}$ | ${ }_{263}$ | 2.4\% |
 | 17.3\% | ${ }_{8,595}$ | 9,080 | 485 | 5.6\% |
 | 18.5\% | 8,550 | 9,079 | 529 | 6.2\% |
 | 19.8\% | 8,309 | 8.973 | 664 | 8.0\% |
 | 21.0\% | 8.196 | 8,960 | 763 | ${ }_{9.3 \%}$ |
 | 22.2\% | 8,118 | 8.804 | 687 | 8.5\% |
 | 23.5\% | 7,989 | 8.688 | 699 | 8.8\% |
 | 24.7\% | ${ }_{7}^{7,965}$ | 8.674 | 709 | 8.9\% |
 | 25.9\% | ${ }_{7}^{7,893}$ | ${ }^{8.526}$ | 633 | 8.0\% |
 | 27.2\% | 7,781 | ${ }_{8}^{8,423}$ | 642 | 8.2\% |
 | 28.4\% | 7,753
 7,654 | ${ }_{8,342}^{8,386}$ | 634 688 | 8.2\% |
 | 30.9\% | 7.474 | 8,202 | 728 | 9.7\% |
 | 32.1\% | 7,461 | 8,146 | 685 | 9.2\% |
 | | 7,459 | 8,098 | 639 589 | 8.6\% |
 | 35.8\% | 7,449 7 | ${ }_{7,971}^{8.029}$ | ${ }_{554}^{580}$ | 7.5\% |
 | 37.0\% | 7,356 | 7,940 | 585 | 7.9\% |
 | 38.3\% | 7,233 | 7,766 | 532 | 7.4\% |
 | 39.5\% | 7,230 | 7,744 | 514 | 7.1% 8.3% |
 | 42.0\% | ¢,902 | 7,602 | 700 | -10.1\% |
 | 43.2\% | 6,824 | 7.536 | 712 | 10.4\% |
 | 44.4\% | 6.695 | 7,517 | 823 | 12.3\% |
 | 45.7\% | 6,679 | 7.478 | 798 | 12.0\% |
 | 46.9\% | 6,657 | 7,473 | 816 | 12.3\% |
 | 48.19\% | ¢,558 | 7,439 7 7 | 881 | +13.4\% |
 | 49.4\% | | 7,344 | ${ }_{899}^{992}$ | 15.6\% |
 | 50.19\% | $\underset{\substack{6,335 \\ 6,271}}{6,14}$ | $\xrightarrow{7,1836}$ | ${ }_{915}^{899}$ | ${ }^{14.46 \%}$ |
 | 53.19\% | ${ }^{6,155}$ | 7,125 | 970 | 15.8\% |
 | 54.3\% | 6,147 | 7.074 | 927 | 15.1\% |
 | 55.6\% | 6.068 6.013 | 7,068 6.902 | 1,000 889 | 16.4.8\% |
 | 58.0\% | 5,960 | 6,842 | 882 | 14.8\% |
 | 59.3\% | 5.813 5,798 5, | | 918 818 | 14.7\% |
 | 61.7\% | 5,572 | 6.494 | 922 | 16.5\% |
 | 63.0\% | ${ }_{\text {5,194 }}^{5}$ | ${ }_{6,468}$ | ${ }^{1,274}$ | 24.5\% |
 | 64.2\% | 5.122 5 5 5 | ¢,431 | ${ }^{1,308}$ | ${ }^{22.5 \%}$ 20.7\% |
 | 66.7% | 5.030 | 6,075 | 1,045 | 20.8\% |
 | 67.9\% | 4,861 | 5,937 | 1,076 | 22.1\% |
 | 69.1\% | 4,756 | 5.817 5642 | 1.061 | 22.3\% |
 | 70.4\% | 4,521 | | -1,120 | 24.8\% |
 | 71.8\%\% | 4,498 4,486 | ${ }_{5}^{5,494}$ | ${ }_{1}^{1,1111}$ | ${ }_{\text {22,5\% }}^{24.7 \%}$ |
 | 74.1\% | 4,360 | ${ }_{5}^{5,280}$ | 920 | 21.1\% |
 | 75.3\% | 4,352 | 5,216 | 864 | 19.8\% |
 | 76.5\% | 4,170 | ${ }_{5,110}$ | 940 | 22.5\% |
 | 778.8\% | ${ }_{4}^{4.047}$ | 5.110
 5.053 | ${ }_{\substack{1,0022 \\ 1,038}}$ | 26.2\% |
 | 80.2\% | 4,012 | 4.854 | 842 | 21.0\% |
 | - | 4,000 4000 | ${ }_{4}^{4,765}$ | ${ }_{653}^{712}$ | 17.8\% |
 | 84.0\% | 4.000 | ${ }_{4,378}^{4,053}$ | ${ }_{378}$ | 9.5\% |
 | 85.2\% | 4,000 | 4,206 | 206 | 5.2\% |
 | 86.4\% | 4,000 | 4,000 | 0 | 0.0\% |
 | 877% 880% | 4,000 | 4,000 | 0 | 0.0\% |
 | ${ }^{88.9 \%} 9$ | | | ${ }_{21}^{430}$ | |
 | 91.4\% | 3,000 | ${ }_{3,284}$ | 284 | 9.5\% |
 | 92.6\% | 3,000 | 3,193 | 193 | 6.4\% |
 | 93.8\% | 3,000 | 3,000 | 0 | 0.0\% |
 | 95.1\% | 3,000 | 3.000 3 | 0 | 0.0\% |
 | 97.5\% | 3,000 | 3,000 | 0 | 0.0\% |
 | 98.8\% 100. | 3,000 3,000 | 3,000 3000 | \bigcirc | 0.0\% |
 | 100.0\% | 3,000 | 3,000 | 0 | 0.0\% |

 | | | February | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | $\underset{\substack{\text { DCR 2015 } \\ \text { Proiethout }}}{\text { and }}$ | DCR 2015 With Project | Absolute Difference | Relative |
 | Probability | Monthly fow（CFS） | Moothly Fow（cFs） | （CFFS） | |
 | 0．0\％ | 184，697 | 186，473 | 1,776 | 1．0\％ |
 | 1．2\％ | 177，775 | 181，981 | ${ }^{4,206}$ | 2．4\％ |
 | 2．5\％ | ${ }^{135,036}$ | 161，149 | 26，113 | 19．3\％ |
 | 3．7\％ | 131，359 | 134，984 | 3，625 | 2．8\％ |
 | 4．9\％ | ${ }^{126,753}$ | ${ }^{126,629}$ | －125 | －0．1\％ |
 | －6．2\％ | 110,648
 105.219 | 110,734
 106227 | 86
 1.008 | －0．1\％ |
 | 8．6\％ | | 106，227 | ${ }_{\substack{1.0088 \\ 3 \\ \hline \\ \hline}}$ | |
 | 9．9\％ | 102，344 | 100，988 | ${ }_{-1,356}$ | －1．3\％ |
 | 11．1\％ | 101，266 | 99，941 | －1，325 | |
 | 12．3\％ | 98，254 | 96，064 | －2，189 | |
 | 13．48\％ | 84，064 | 82,710 | －1，354 | |
 | 14.8%
 16.0% | 83，100 | 80,828 | －2，272 | －2．7\％ |
 | 16．0\％ | 79，000 | 79，180 | 180 | 0．2\％ |
 | 17．3\％ | ${ }^{72,636}$ | ${ }^{69,388}$ | 3，247 | －4．5\％ |
 | 18．5\％ | ${ }^{71,548}$ | ${ }^{68,943}$ | －2，605 | －3．6\％ |
 | 19．8\％ | ${ }^{68,168}$ | ${ }^{68,084}$ | －84 | －0．1\％ |
 | 21．0\％ | ${ }^{62,541}$ | ${ }^{59,832}$ | －2，709 | －4．3\％ |
 | 22．2\％ | ${ }^{61,587}$ | 57，897 | －3，690 | －6．0\％ |
 | 23．5\％ | 58，731 | 57，883 | －848 | －1．4\％ |
 | | （ 58.5838 | 57，738 54.622 | －805 | 免 |
 | 25．9\％ | 58,383 5 5 | 54，622 | －3，761 | |
 | 27．2\％ | ${ }_{5}^{55.533}$ | ${ }_{5}^{54,475}$ | －1，058 | |
 | ${ }^{28.49 \%}$ | ${ }_{\text {c }}^{53,9888}$ | ${ }_{4}^{59,264}$ | －－25 | 0．0\％\％ |
 | 30．9\％ | 49，248 | 47，587 | －1，661 | |
 | 32．1\％ | 48，922 | 46，053 | 2.870 | |
 | 33．3\％ | 47,765 | 45，622 | －2．144 | |
 | 34．6\％ | 47，610 | 45，255 | 355 | |
 | 35．8\％ | 46，375 | 45，088 | －1，286 | |
 | 37．0\％ | 44，800 | 45，064 | 264 | |
 | | 44，666 | ${ }^{42,037}$ | －2，629 | －5．9\％ |
 | 39．5\％ | 42,684 | 39，807 | －2，877 | －6．7\％ |
 | 40．7\％ | ${ }^{42,026}$ | ${ }^{39,533}$ | －2，493 | －5．9\％ |
 | 42．0\％ | 40，178 | ${ }^{38,011}$ | －2，168 | －5．4\％ |
 | 43．2\％ | 39，252 | ${ }^{37} 7899$ | ${ }^{1,3,353}$ | －3．4\％ |
 | 44．4．\％ | ${ }^{38,027}$ | ${ }^{37,027}$ | ${ }^{1,000}$ | －2．6\％ |
 | 45．7\％ | 32，340 | ${ }^{31,062}$ | －1，278 | －4．0\％ |
 | ${ }^{46.9 \%}$ | ${ }^{32,158}$ | ${ }^{28,969}$ | －3，189 | |
 | 48．1\％ | ${ }^{31.049}$ | ${ }_{28,525}^{28,59}$ | －2，4522 | －7．9\％ |
 | 50．6\％ | 30,853 30736 30， | 20， 27.653 | | － |
 | 51．9\％ | ${ }^{29,723}$ | ${ }^{27,073}$ | ${ }^{-2,650}$ | －8．9\％ |
 | 53．19\％ | 29，355 | 27.921 25771 | －3，434 | －11．7\％ |
 | | 28，803 | ${ }_{25}^{25,710}$ | | |
 | 55．8\％\％ | 20，455 | ${ }^{24,1005}$ | 析 | |
 | 58．0\％ | ${ }_{\text {23，}}^{23,606}$ | ${ }_{\text {21，510 }}$ | ${ }_{-1,667}$ | －7．2\％ |
 | 59．3\％ | 23，161 | 20，774 | ${ }_{-2,387}$ | －10．3\％ |
 | 60．5\％ | 22，379 | ${ }^{20,649}$ | －1，731 | －7．7\％ |
 | 61．7\％ | 22，349 | 19，857 | －2，491 | －11．14 |
 | －63．0\％ | ${ }^{21,670}$ | 19，737 | －1，932 | －8．9\％ |
 | 析．2\％${ }^{6.4 \%}$ | 21,586 20834 | 19，116 | ${ }^{2} .4870$ | －11．4\％ |
 | ${ }_{66.7 \%}^{65.4 \%}$ | ${ }_{\text {20，676 }}^{20,34}$ | ${ }^{117,0860}$ | － | －17．5\％ |
 | 67．9\％ | 18.099 | 14.959 | －3，139 | －17．3\％ |
 | 69．1\％ | 16，471 | 14，876 | －1，595 | 7\％ |
 | 70．4\％ | 15，852 | 14，660 | 1，192 | －7．5\％ |
 | 71．6\％ | ${ }^{15,546}$ | 14.647 | －929 | 6．0\％ |
 | 72．1\％ | ${ }_{\text {c }}^{15,5350}$ | － 14.44848 | －756 | ${ }^{-5.50 \%}$ |
 | 75．3\％ | 15.175 | 14，172 | －1，003 | －6．6\％ |
 | 76．5\％ | ${ }^{15,159}$ | ${ }^{13,924}$ | －1，235 | －8．1\％ |
 | 77．8\％ | ${ }^{14,093}$ | 13,543
 12，74 | －550 | －3．9\％ |
 | 79．0\％ | ${ }^{13,956}$ | ${ }_{1}^{12,761}$ | 195 | \％ |
 | ${ }^{80.15 \%}$ | 13，343 | ${ }_{1}^{12,502}$ | －618 | －6．3\％ |
 | ${ }_{\text {827\％}}$ | | ${ }^{12,491}$ | －618 | －4．5\％ |
 | 84．0\％ | ${ }^{12,746}$ | ${ }^{11,718}$ | ${ }_{-1,028}$ | －8．1\％ |
 | 85．2\％ | 12，381 | 11，261 | ${ }_{1,120}$ | －9．0\％ |
 | 86．4\％ | ${ }^{12,005}$ | 11，218 | －788 | －6．6\％ |
 | 877．7\％ | ${ }^{11,658}$ | 10，951 | －707 | －6．1\％ |
 | ${ }^{88.9 \%} 9$ | － | 10,950 10.890 | －252 | ${ }_{-2.4 \%}^{-2.2 \%}$ |
 | 91．4\％ | 11,018 | 10，267 | －751 | －6．8\％ |
 | 92．6\％ | 10.717 | 10，158 | －559 | －5．2\％ |
 | 93．8\％ | 10，681 | 10，120 | 561 | －5．3\％ |
 | 95．19\％ | 10，190 | （10．072 | －118 | －1．2\％ |
 | －96．3\％ | ${ }_{7,571}^{8,262}$ | － | －137 | ${ }^{-1.2 \%}$ |
 | 98．8\％ | 7，309 | 7，502 | 193 | 2．6\％ |
 | 100．0\％ | 6.995 | 6，900 | 5 | 0．1\％ |

 | | Apprl | | $\begin{aligned} & \text { Absolute } \\ & \text { Difference } \end{aligned}$ | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | ${ }_{\substack{\text { DCR } \\ \text { Proiect }}}^{\text {DOtht }}$ | DCR 2015 With Project | | |
 | Probability | Monthy fow（CFS） | Monthy Flow（CFS） | （CFF） | Difference（\％） |
 | 0．0\％ | 103,661 | 103，618 | －44 | 0．0\％ |
 | 1．2\％ | 80.015 | 78，189 | ${ }^{-1,826}$ | 2．3\％ |
 | 2．5\％ | 72,407 | ${ }^{72,677}$ | 270 | 0．4\％ |
 | 3．7\％ | 60.414 | 60，296 | －119 | －0．2\％ |
 | 4．9\％ | 59，393 | 54，027 | －5，366 | －9．0\％ |
 | 6．2\％ | ${ }^{56,565}$ | ${ }^{53,915}$ | －2，650 | －4．7\％ |
 | 7．4\％ | ${ }_{5}^{53,879}$ | 53，724 | －155 | －0．3\％ |
 | － | － 5 5，3244 | | ${ }^{-26}$ | 0．0\％ |
 | 11．1\％ | ${ }^{47,322}$ | 44，949 | －2，374 | |
 | 12．3\％ | 43，186 | 43，184 | | |
 | 13．6\％ | 40，088 | 39，948 | －140 | |
 | 14．8\％ | 39，948 | ${ }^{38,060}$ | 1，88 | |
 | 16．0\％ | ${ }^{39,712}$ | ${ }^{37,080}$ | －2，632 | \％ |
 | 17．3\％ | 37，029 | 37，035 | 6 | \％ |
 | 18．5\％ | 36，810 | ${ }^{35,044}$ | －1，766 | －4．8\％ |
 | 19．8\％ | ${ }^{35,048}$ | ${ }^{34,978}$ | －70 | －0．2\％ |
 | 21．0\％ | ${ }_{34,328}$ | ${ }^{34,382}$ | 53 | 0．2\％ |
 | ${ }^{22.2 \%}$ | ${ }^{32,467}$ | ${ }_{31,726}$ | －742 | －2．3\％ |
 | 23．5\％ | ${ }^{31,545}$ | 29，943 | －1，602 | －5．7\％ |
 | 24．7\％ | ${ }^{31,019}$ | ${ }^{28,622}$ | －2，397 | |
 | 25．9\％ | ${ }^{21,545}$ | ${ }^{21,416}$ | －129 | |
 | 27．2\％ 28.4% | ${ }_{\substack{21,458 \\ 21256}}^{21,4)^{2}}$ | 20，958 19209 | | |
 | 29．6\％ | ${ }_{\text {21，}}^{21,067}$ | 19,209 190045 | －2，047 -2022 | －9．9\％ |
 | 30．9\％ | 20，164 | 18，673 | ${ }_{-1,491}$ | 4\％ |
 | 32．1\％ | 19，953 | 18，622 | －1，331 | －6．7\％ |
 | | 17979 | | | |
 | 34．6\％ | ${ }_{17927}$ | 17，789 | －108 | －0．6\％ |
 | 37．0\％ | 17，819 | 17，329 | －490 | －2．8\％ |
 | 38．3\％ | 17，402 | 17，178 | -224 | －1．3\％ |
 | 39．5\％ | 16，804 | 16，297 | －507 | \％ |
 | 40．7\％ | 10，694 | 16，090 | －604 | －3．6\％ |
 | 42．\％ | 16，185 | ${ }^{15.815}$ | －371 | －2．3\％ |
 | 43．2\％ | ${ }^{15,526}$ | 15，229 | －298 | －1．9\％ |
 | 44．4\％ | 14，437 | 14，380 | －57 | －0．4\％ |
 | 45．7\％ | 14，367 | 14，270 | －97 | －0．7\％ |
 | 46．9\％ | 14，269 | ${ }^{14,063}$ | －206 | －1．4\％ |
 | 48．1\％ | ${ }^{13,405}$ | ${ }^{13,3399}$ | －6 | 0．0\％ |
 | 49．4\％ | 13，311 | ${ }^{13,305}$ | －7 | \％ |
 | 50．6\％ | ${ }^{13,250}$ | 13，249 | 0 | 0\％ |
 | | | － 12,2636 | ${ }^{3}$ | |
 | 53．13\％ | ＋12，125 | ${ }^{11,15754}$ | ${ }^{-149}$ | －1．0\％ |
 | 55．6\％ | 10，837 | 11.402 | 566 | |
 | 56．8\％ | 10，502 | 10，649 | 147 | 4\％ |
 | 58．0\％ | 10.461 | 10，463 | 2 | 0\％ |
 | 59．3\％ | 10，209 | 10，210 | | 0\％ |
 | 60．5\％ | 9，907 | 10，073 | 166 | 1．7\％ |
 | 61．7\％ | 9，856 | 9，851 | －5 | 0．1\％ |
 | 63．0\％ | 9，608 | 9，825 | 217 | 2．3\％ |
 | 64．2\％ | 9，598 | 9，611 | 13 | 0．1\％ |
 | ${ }^{65.4 \%}$ | 9，526 | 9，607 | 81 | 0．9\％ |
 | ${ }^{66.7 \%}$ | 9，450 | 9，586 | ${ }^{136}$ | 1．4\％ |
 | 67．9\％ | ${ }_{\text {9，328 }}^{9,173}$ | ${ }_{9}^{9,527}$ | 199 | 2．19\％ |
 | 69．1\％ | ${ }_{8,194}$ | 9，286 | ${ }^{113}$ | 1．2\％ |
 | 70．4\％ | 8,941 8.934 | 8,945
 8.937 | 4 | 0．0\％ |
 | 71．6\％ | 8，934 | 8，937 | ${ }^{3}$ | 0．0\％ |
 | 74．1\％ | ${ }_{8,851}^{8.698}$ | ${ }_{8,790}^{8.900}$ | ${ }_{-6}$ | －0．7\％ |
 | 75．3\％ | 8.525 | 8，695 | 169 | 2．0\％ |
 | 76．5\％ | 8．509 | ${ }_{8,514}$ | 5 | 0．1\％ |
 | 77．8\％ | 8.401 | 8,219 8 8 | 181 | －2．2\％ |
 | 79．0\％ | 8，219 | 8，198 | -21 | －0．3\％ |
 | ${ }^{80.2150}$ | ${ }_{7}^{8,1988}$ | ${ }^{8.0006}$ | －62 | \％ |
 | ${ }^{812.7 \%}$ | ${ }_{7}^{7,695}$ | ${ }_{7,579}^{8.005}$ | －116 | －1．5\％ |
 | 84．0\％ | 7.579 | 7，459 | －19 | －1．6\％ |
 | 85．2\％ | 7,459 | 7.444 | －15 | －0．2\％ |
 | 86．4\％ | 7，443 | 7，358 | －85 | －1．1\％ |
 | 87．7\％ | 7，242 | 7，245 | 3 | 0．0\％ |
 | 88．9\％ | 7,076 | 7.076 | 0 | 0．0\％ |
 | 90．1\％ | 6，919 | 6，950 | 32 | 0．5\％ |
 | 914．4\％ | ${ }^{6.874}$ | 6，919 | ${ }_{86}^{45}$ | ${ }^{0.7 \% \%}$ |
 | 92．6\％ | ${ }^{6.832}$ | 6.919 | ${ }^{86}$ | ${ }^{1.3 \% \%}$ |
 | 93．8\％ | ${ }^{6,776}$ | ${ }^{6.898}$ | 122 | ${ }^{1.8 \%}$ |
 | 95．1\％ | ${ }_{6}^{6,740}$ | 6，740 | 0 | －${ }_{\text {－}}^{\text {0．8\％}}$ |
 | 997．5\％ | 安．601 | 㐌， 6.352 | －249 | ${ }^{-3.8 \% \%}$ |
 | 98．8\％ | 6，246 | 6，256 | 10 | 0．2\％ |
 | 100．0\％ | 5.766 | 5.659 | 107 | －1．8\％ |

 | June | | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent | ${ }^{\text {OCR } 2015 \text { Wuthout }}$ | DCR 2015 With Project | ${ }_{\text {a }}^{\substack{\text { Absolute } \\ \text { Difference }}}$ | Relative |
 | | Monthly fiow（cFs） | Montly Flow（CFS） | （CFS） | Difference（\％） |
 | 0．0\％ | 53，206 | 53，143 | －63 | －0．1\％ |
 | 1．2\％ | 41，230 | 41,086 | －144 | －0．4\％ |
 | 2．5\％ | ${ }^{30,363}$ | ${ }^{30,877}$ | 515 | 1．7\％ |
 | 3．7\％ | 29，001 | 29，848 | 847 | 2．9\％ |
 | 4．9\％ | ${ }^{27,505}$ | ${ }^{29,588}$ | 2.082 | 7．6\％ |
 | 6．2\％ | 27.149 | 27.439 | 290 | 1．1\％ |
 | 7．4\％ | ${ }^{27,032}$ | 27，020 | ${ }^{-13}$ | 0．0\％ |
 | 8．6\％ | ${ }^{22,522}$ | ${ }^{23,390}$ | 868 | 3．9\％ |
 | 9．9\％ | 20，116 | ${ }^{15,263}$ | －4，853 | －24．1\％ |
 | 11．1\％ | 14.505 | ${ }^{14,966}$ | 461 | 3．2\％ |
 | ${ }^{12.3 \%}$ | 14,347 | ${ }^{13,763}$ | －583 | －4．1\％ |
 | ＋13．3\％ | 13,965
 13.272 | 13,632 13.264 1 | ${ }_{-8}^{-33}$ | －2．4\％ |
 | 16．0\％ | ${ }_{12,334}$ | ${ }^{12,508}$ | 174 | －1．4\％ |
 | 17．3\％ | ${ }^{12,088}$ | ${ }^{12,326}$ | 238 | \％ |
 | 18．5\％ | 12，031 | ${ }_{12,022}^{12,}$ | | |
 | 19．8\％ | ${ }^{12,027}$ | 11.58 | 440 | |
 | 21．0\％ | 11，244 | 11，421 | 177 | |
 | 22．2\％ | 10，766 | 10，75 | －9 | |
 | 23．5\％ | 9，376 | 9，548 | 172 | |
 | 24．7\％ | 9，153 | 9，188 | 35 | |
 | 25．9\％ | －8，829 | 9，014 | 185 | 2．1\％ |
 | 27．2\％ | 8，765 | 9，012 | 24 | 2．8\％ |
 | 28．4\％ | 8，752 | ${ }^{8.795}$ | ${ }^{43}$ | 0．5\％ |
 | 29．6\％ | 8.681 | 8，763 | ${ }^{83}$ | 1．0\％ |
 | 30．9\％ | ${ }_{8}^{8,486}$ | 8，775 | 269 | 3．2\％ |
 | 32．1\％ | ${ }_{8}^{8.406}$ | ${ }_{8}^{8,733}$ | ${ }^{327}$ | ${ }^{3.9 \%}$ |
 | ${ }_{\text {cke }}$ | ${ }_{8}^{8,311}$ | ${ }_{8}^{8.323}$ | 13 110 | ${ }_{1}^{0.2 \%}$ |
 | 35．8\％ | ${ }_{8}^{8,028}$ | ${ }_{8,303}^{8,311}$ | 275 | 3．4\％ |
 | 37．0\％ | 7，953 | 8，175 | ${ }^{222}$ | 2．8\％ |
 | 俍38．5\％ | 7,850
 7,643 | 8,045
 7889
 8. | 195 247 | ${ }_{3.2 \%}^{2.5 \%}$ |
 | 40．7\％ | 7.597 | 7.820 | 222 | |
 | 42．0\％ | 7，502 | 7，746 | 244 | |
 | 4.44% | $\begin{array}{r}7,439 \\ 7 \\ \hline\end{array}$ | 7，004 | 208 | |
 | 45．7\％ | 7，388 | 7,504 | ${ }_{116}^{208}$ | 1．6\％ |
 | 46．9\％ | 7，309 | 7,401 | 92 | 1．3\％ |
 | 48．1\％ | 7，304 | 7，291 | －13 | |
 | 49．4\％ | 7，294 | 7，270 | －24 | －0．38 |
 | | 7，290 | 7，243 | －47 | －0．6\％ |
 | | ${ }_{7}^{7,270}$ | 7，223 | －48 | －0．7\％ |
 | 54．3\％ | 7，223 | 7，164 | －59 | －0．8\％ |
 | 55．\％ | 7，174 | 7,146 | －28 | －0．4\％ |
 | 56．8\％ | 6，938 | 7，118 | 180 | 2．6\％ |
 | | 㐌， 6.899 | 7，072 | ${ }_{172}^{173}$ | 2．5\％ |
 | 年 69.5% | c．6．886 | 7,059 7005 | 172 131 | ${ }_{\text {2，}}$ |
 | | 6，874 | 7，005 | $\begin{array}{r}131 \\ 157 \\ \hline\end{array}$ | 1．9\％ |
 | 61．7\％ | ci， 6 6，80 | 年， 6.940 | 157 | －${ }_{\text {2，3\％}}^{0.1 \%}$ |
 | 64．2\％ | ${ }_{6.830}$ | ${ }_{6,833}$ | 3 | 0．0\％ |
 | 65.4% 667% | 6，7757 | ${ }^{6.832}$ | 75 | ${ }^{1.19 \%}$ |
 | 66．7\％ 67.9% | | | ${ }_{1}^{128}$ | ＋1．9\％ |
 | 69．1\％ | 6,690 | 6，759 | 69 | 1．0\％ |
 | 70．4\％ | 6．659 | ${ }_{6}^{6,714}$ | 55 | 0．8\％ |
 | 71．6\％ | ${ }^{6,392}$ | 6，662 | 269 | 4．2\％ |
 | 72．8\％ | ${ }^{6,383}$ | 6，659 | 276 | 4．3\％ |
 | 75．3\％ | ¢， $\begin{gathered}6,345 \\ 6,185\end{gathered}$ | | 141 | ${ }_{3}^{2.2 \%}$ |
 | 76．5\％ | 6，153 | ${ }_{6,392}$ | 240 | 3．9\％ |
 | 77．8\％ | 6．111 | 6，277 | 166 | 2．7\％ |
 | 79．0\％ | 5.963
 5665 | ¢，184 | ${ }_{4721}^{221}$ | －3．7\％ |
 | － | 5.665
 5.645 | －6,137
 5937 | ${ }_{293}^{472}$ | |
 | － | ¢，5．645 | $\begin{array}{r}5,937 \\ 5 \\ 5 \\ \hline 893\end{array}$ | ${ }_{401}^{293}$ | |
 | 824．7\％ | ${ }_{5,491}^{5,492}$ | ${ }_{5.637}^{5.893}$ | 446
 148 | 2．7\％ |
 | 85．2\％ | 5.469 | ${ }_{5}^{5,493}$ | 24 | 0．4\％ |
 | ${ }^{86.4 \%}$ | ${ }_{5}^{5,467}$ | ${ }_{5}^{5,332}$ | ${ }^{135}$ | －2．5\％ |
 | － 87.78% | ¢， $\begin{gathered}\text { 5，294 } \\ 5.273\end{gathered}$ | ¢， $\begin{gathered}5,294 \\ 5.273\end{gathered}$ | 0 | － 0.0% |
 | 90．1\％ | 4，977 | 4，977 | 0 | 0．0\％ |
 | 91．4\％ | ${ }_{4}^{4.958}$ | 4，958 | 0 | 0．0\％ |
 | 93．8\％ | 3，556 | 4.046 | 489 | 13．8\％ |
 | 95．1\％ | 3，451 | 3，751 | 300 | 8．7\％ |
 | 96．3\％ | －3,381
 3,359 | 3.620
 3.531 | 240 172 | 7．1\％ |
 | 98．8\％ | 3，236 | ${ }_{3,451}$ | 215 | 6．6\％ |
 | 100．0\％ | 3，152 | 3，354 | 202 | 6．4\％ |

 | 1.2% | 14,315 | 14,445 | 130 | 0.9% |
 | :--- | :--- | :--- | :--- | :--- |
 | 2.25% | 14,366 | 14,323 | 16 | 0.1% |
 | 3.7% | 14,294 | 14,306 | 12 | 0.1% |

 | 4.9% | 14,288 | 14,305 | 17 | 0.1% |
 | :--- | :--- | :--- | :--- | :--- |
 | 0.92% | 14.248 | 14.24 | 46 | 0.3% |
 | 7.44% | 14,206 | 14,283 | 77 | 0.5% |

 \begin{tabular}{ccccc}
 17.3% \& 13,467 \& 13,712 \& 245 \& 1.8%

 18.5% \& 13.407 \& 13.50 \& 90 \& 0.7%

 19.8% \& 13,397 \& 13,353 \& -44 \& -0.3%

 \hline

 19．8\％ \& 13,397

 21.0% \& 13,21

 22.2% \& $1,2,87$

 \hline

 22.2% \& | 12,987 |
 | :--- |
 | 23.5% |
 | 24.7% |
 | |

 \hline 12.964

 12.908
 \end{tabular} \qquad

 | 23．5\％ |
 | :--- |
 | $\begin{array}{l}24.7 \% \\ 259 \%\end{array}$ | \qquad | | 294 | 2.3% |
 | :--- | :--- | :--- |
 | | 23 | 0.2% |
 | | 56 | 0.4% |
 | 12.987 | 0.964 | |
 | | -9 | 0.9% |

 | Percent Exceedance | $\begin{gathered} \text { DCR 2015 } \\ \hline \text { Proverthout } \end{gathered}$ | DCR 2015 With Project | Absolute Difference | Relative Difference |
 | :---: | :---: | :---: | :---: | :---: |
 | Proabaility | Monthy Fiow（CFF） | Monthly Fow（CFS） | （CFFS） | |
 | | | | | 5．7\％ |
 | ${ }^{1.25 \%}$ | 11，745 | 12，522 | 51 | 4．9\％ |
 | 2．5\％ | 10，469 | 10．522 | 51 | |
 | \％ | 10，143 | 10，429 | 53 | |
 | 6．2\％ | 10，056 | 10，284 | 228 | 2．3\％ |
 | 7．4\％ | 0，019 | 10202 | 183 | |
 | 8．6\％ | 9.971 | 10.192 | 222 | 20\％ |
 | 9．9\％ | ${ }_{9,896}$ | 10.168 | 273 | 28\％ |
 | 11．1\％ | 9.893 | 10.164 | ${ }_{271}$ | 27\％ |
 | 12．3\％ | 9，884 | 10，140 | 256 | \％\％ |
 | 13．6\％ | 9，850 | 10，086 | 236 | 2．4\％ |
 | 14．8\％ | 9，811 | 10，074 | ${ }^{263}$ | 2．7\％ |
 | 11．0\％ | 9，7750 | 10，062 | 312 | 3．2\％ |
 | 17．3\％ | 9，730 | 10，056 | ${ }^{326}$ | 3．3\％ |
 | 18．5\％ | 9.619 | 10，018 | 399 | |
 | 19．8\％ | 9，610 | －10．009 | 399 364 | ${ }_{3}^{4.2 \%}$ |
 | 2．0\％\％ | 9．609 | 9,973 | 364 | 3．8\％ |
 | 23．5\％ | 9，525 | 9，922 | 398 | |
 | 24．7\％ | ${ }^{9.513}$ | 9，850 | 337 | |
 | 25．9\％ | 9,413 | 9，742 | 329 | |
 | 27．2\％ | 9，380 | 9，730 | 351 | |
 | 28．4\％ | 9，377 | 9，690 | 313 | |
 | 29．6\％ | 9，366 | 9，631 | 264 | 2．8\％ |
 | 30．9\％ | 9，337 | 9，499 | 162 | 1．7\％ |
 | 32．1\％ | 9，281 | 9，413 | 131 | 1．4\％ |
 | 33．3\％ | 9，278 | 9，382 | 104 | 1．1\％ |
 | 34．6\％ | 9，267 | 9，377 | 110 | 1．2\％ |
 | 35．8\％ | 9，260 | 9，352 | 92 | 1．0\％ |
 | 37．0\％ | 9,240 | ${ }_{9,346}$ | 106 | ${ }^{1.19 \%}$ |
 | 38．3\％ | ${ }^{9,158}$ | 9，337 | 179 | 2．0\％ |
 | 39．5\％ | 9，024 | ${ }^{9,337}$ | 313 | 3．5\％ |
 | 40．79\％ | 8，980 | 9，260 | ${ }_{2}^{280}$ | |
 | 42．0\％ | ${ }^{8,962}$ | 9，195 | ${ }^{232}$ | 2．6\％ |
 | － $44.4 .4 \%$ | 8，788 | ${ }_{9,005}^{9,129}$ | 183 307 | ${ }^{2.5 \%}$ |
 | 45．7\％ | 8.716 | 9，087 | 371 | |
 | 46．9\％ | 8，713 | 9,024 | 311 | \％ |
 | 48．1\％ | 8，697 | 9，013 | 317 | |
 | 49．4\％ | 8，629 | 8，993 | 364 | 4．2\％ |
 | 年 50.19% | 8.609 8.576 | 8,966 8.963 | ${ }_{387}^{357}$ | |
 | 53．1\％ | ${ }_{8,571}^{8.576}$ | ${ }_{\text {8，837 }}^{8,963}$ | | 3．1\％ |
 | 54．3\％ | 8.559 | ${ }_{8,692}$ | ${ }_{133}$ | 1．6\％ |
 | 55．6\％ | 8.496 | 8.629 | ${ }^{133}$ | 1．6\％ |
 | 56．8\％ | ${ }_{8,315}^{8,315}$ | ${ }^{8,496}$ | 181 | ${ }^{2.2 \%}$ |
 | 58．0\％ | 8，281 | ${ }_{8}^{8,486}$ | 204 | 2．5\％ |
 | 59．3\％ | ${ }_{8}^{8,245}$ | 8，479 | ${ }_{405}^{233}$ | ${ }_{5}^{2.8 \%}$ |
 | ${ }^{60.5 \%}$ | ${ }^{8.070}$ | ${ }^{8.475}$ | 405 | 5．3\％ |
 | － 61.7% | 7,780
 7,717 | 8，270 | 441 | |
 | 64．2\％ | 7，342 | ${ }_{8,114}^{8,19}$ | 771 | 10．5\％ |
 | 65．4\％ | 7，174 | 8.081 | 908 | 12．7\％ |
 | ${ }^{66.7 \%}$ | 6，644 | 8，054 | 1，410 | 21．2\％ |
 | 69．1\％ | ${ }_{\text {c．}}^{6.648}$ | 7，747 | ${ }_{1}^{1,199}$ | ${ }^{20.3 \% \%}$ |
 | 70．4\％ | 6，297 | 7，209 | 912 | |
 | 71．6\％ | 5，999 | 7，168 | 1，170 | |
 | 72．8\％ | 5，900 | 7，156 | 1，256 | |
 | 74．1\％ | 5，897 | 6，920 | 1，023 | \％${ }^{\text {\％}}$ |
 | 75．3\％ | 5，820 | 6，895 | 1,075 | |
 | 76．5\％ | 5，708 | 6，756 | 1，048 | \％ |
 | 77．8\％ | 5．662 | 6．699 | 1，037 | 18．3\％ |
 | 79．0\％ | 5．645 | ${ }^{6,562}$ | 917 | ${ }^{16.2 \%}$ |
 | 80．2\％ | 5，380 | ${ }^{6.561}$ | 1，182 | 22．0\％ |
 | ${ }^{81.5 \%}$ | 5，152 | 6，458 | ${ }^{1,305}$ | 25．3\％ |
 | 82．7\％ | 5.012 | 6，387 | ${ }^{1,375}$ | ${ }^{27.4 \%}$ |
 | 84．0\％ | 4，940 | 6，321 | ${ }^{1,381}$ | ${ }_{2}^{27.9 \%}$ |
 | －${ }^{85.4 \%}$ | 4．862 | 㐌， 6.064 | ${ }^{1,202}$ | ${ }^{24.5 \% \%}$ |
 | 87．7\％ | 4，509 | 5.677 | ${ }^{1,168}$ | 25．9\％ |
 | 88．9\％ | 4，474 | 5．601 | ${ }^{1,127}$ | ${ }^{25.2 \%}$ |
 | 90．1\％ | 4，285 | ${ }_{\text {cher }}^{5}$ | 1，198 | 28．0\％ |
 | 91．4\％\％ | 4,045
 3,759 | 5,227 4.963 | ${ }_{\substack{1,181 \\ 1,204}}^{1}$ | ${ }_{\text {320，}}^{29.2 \%}$ |
 | 93．8\％ | 3，752 | 4，835 | ${ }_{1}^{1,084}$ | 28．9\％ |
 | 95．1\％ | 3，546 | 83 | ${ }_{1}^{1,236}$ | |
 | 96．3\％ | ${ }^{3,353}$ | 4，721 | ${ }^{1,368}$ | 40．8\％ |
 | 97．5\％ | 3，259 | 4，545 | 1，285 | ．4\％ |
 | | 3，182 | 4，294 | ，113 | |

 | | | Seplember | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | ${ }^{\mathrm{DCR}} \mathbf{2 0 1 5}$ Prowthout | DCR 2015 With Project | Absolute Difference | Relative |
 | Probability | Monthy Flow（CFS） | Monthly Flow（CFSS） | （CFS） | |
 | 0．0\％ | 25，650 | 26，050 | 400 | 1．6\％ |
 | 1．2\％ | ${ }^{24,736}$ | ${ }^{25.448}$ | ${ }^{712}$ | 2．9\％ |
 | 2．5\％ | 24，682 | 25,189 2， | － 506 | ${ }^{2.1 \%}$ |
 | 3．7\％ | 24，677 | ${ }^{25,029}$ | ${ }^{351}$ | 1．4\％ |
 | 4．9\％ | 24，670 | 24,960 24.917 | ${ }_{377}^{290}$ | － 1.2% |
 | ${ }_{7.4 \%}^{6.2 \%}$ | ${ }_{\text {24，}}^{24.531}$ | ${ }_{2}^{24,9917}$ | ${ }_{277}^{376}$ | ＋1．1\％ |
 | 8．6\％ | 24，225 | 24，730 | 505 | 2．1\％ |
 | 9．9\％ | 24，198 | 24，65 | 459 | |
 | 123\％ | 24，106 | 24，625 | 519 | \％ |
 | 13．6\％ | ${ }_{24,023}^{24,003}$ | ${ }_{\text {24，543 }}$ | 520 | ${ }_{2}^{2.2 \%}$ |
 | 14．8\％ | ${ }^{23,923}$ | 24，473 | 550 | 2．3\％ |
 | 16．0\％ | ${ }^{23,910}$ | 24,470 | 560 | 2．3\％ |
 | 17．3\％ | ${ }^{23,860}$ | ${ }^{24,366}$ | 506 | 2．1\％ |
 | 18．5\％ | ${ }^{23,829}$ | ${ }_{24,285}^{24,}$ | 455 | 1．9\％ |
 | 19．8\％ | 23，608 | 24，185 | 577 | 2．4\％ |
 | 21．0\％ | ${ }^{23,468}$ | ${ }^{23,985}$ | 517 | 2．2\％ |
 | 22．2\％ | ${ }_{\text {22，}}^{22,958}$ | ${ }^{23,718}$ | ${ }^{760}$ | 3．3\％ |
 | － 23.50 | ${ }^{22,912}$ | 20,180 | －2，731 | －119\％ |
 | 24．7\％ | 22,745 14762 1 | 14，991 | －7，754 | 34．1\％ |
 | 25．9\％ | ${ }^{14,762}$ | 14，974 | 212 | 1．4\％ |
 | ${ }^{2727.2 \%}$ | －14，966 | ${ }^{14,762}$ | ${ }_{66}^{66}$ | 0．4\％ |
 | 28．4\％${ }_{\text {29．6\％}}$ | － $\begin{aligned} & 14,4,685 \\ & 14,684\end{aligned}$ | 14.761 14.470 | ${ }_{-26}^{66}$ | 0．4\％ |
 | 30．9\％ | ${ }^{14,636}$ | 14，356 | ${ }_{-276}$ | ${ }^{-1.9 \%}$ |
 | 32．1\％ | 14，399 | 14，140 | －259 | 1．8\％ |
 | | 14，053 | 14，065 | 12 | 0．1\％ |
 | 34．8\％ | －13，614 | ${ }_{\text {13，953 }}^{14,051}$ | ${ }_{339}^{182}$ | ${ }_{\text {25\％}}$ |
 | 37．0\％ | ${ }_{13,590}$ | ${ }_{13,863}$ | 273 | 2．0\％ |
 | 38．3\％ | ${ }^{13,383}$ | ${ }^{13,841}$ | 458 | 3．4\％ |
 | 39．5\％ | 13，090 | 13,840 | 750 | |
 | 40．7\％ | 13，019 | 13.749 | 730 | 5．6\％ |
 | 42．0\％ 43.2% | 12,999 | 13，342 | 343 | 2．6\％ |
 | 43.2% 44.4% | ${ }^{12,892}$ | 13，201 | 309 | 2．4\％ |
 | 44．4\％ | 12，789 | ${ }^{12,966}$ | 177 | 1．4\％ |
 | 45．7\％ | 11，916 | －12，873 | 957 | 8．0\％ |
 | ${ }_{4}^{46.9 .9 \%}$ | ${ }_{9}^{9,007}$ | ${ }_{9,602}^{9,710}$ | $\stackrel{595}{595}$ | ${ }_{\text {6．6\％}}^{6.0 \%}$ |
 | 49．4\％ | 8.880 | 9，368 | 488 | 5．5\％ |
 | 50．6\％ | ${ }_{8,792}^{8,571}$ | 9，266 | 474 | 5．4\％ |
 | 年 51.9% | 8.571 8.449 | 9，242 ${ }_{9}^{9}$ | ${ }_{556}^{671}$ | 7．8\％ |
 | 年 53.19% | 8,449 8429 | 9，005 | 556 570 | |
 | 55．\％\％ | 8,146 | 8.755 | 609 | 7．5\％ |
 | | 8.094 | ${ }^{8.646}$ | 552 | 6．8\％ |
 | 59．3\％ | ${ }_{8,033}$ | ${ }_{8,485}^{8.055}$ | ${ }_{452}$ | 5．6\％ |
 | 60．5\％ | 7,907 | ${ }^{8,480}$ | 572 | 7．2\％ |
 | 61.7% 630% | 7,717 | ${ }^{8.467}$ | 750 | 7\％ |
 | 63．0\％ | 6，694 | ${ }_{8,432}$ | 1，738 | |
 | 64．2\％ | 6，611 | 8,218 | 1，607 | 2 |
 | 65．4\％ | 6，603 | 8，200 | 1，596 | 24．2\％ |
 | 66．7\％ 67.9% | 6，206 | ${ }_{8}^{8,165}$ | 1，959 | 31．6\％ |
 | 67．9\％ | 5，959 | 8.081 | 2，122 | 35．6\％ |
 | 69．1\％ | ${ }_{\text {c，}}^{5} 5$ | ${ }_{7}^{7,484}$ | ${ }^{1,575}$ | 7\％ |
 | 70．4\％ | ${ }_{5}^{5.812}$ | 7，297 | 1，4855 | ${ }^{25.5 \%}$ |
 | 71．8\％ | 5．769 5.726 | （7，0944 | （1，495 | ${ }_{\text {cke }}^{25.59 \%}$ |
 | 74．1\％ | ${ }^{5.578}$ | 7，023 | 1，445 | 25．9\％ |
 | 75．3\％ | 5，185 | 6，982 | 1，798 | 34．7\％ |
 | 76．5\％ | 5.000 4.772 | 6.904
 6.754
 6.020 | 1,904 1.982 1 | 38.19% 4.5% |
 | 79．0\％ | ${ }_{4,758}^{4.712}$ | ${ }_{\substack{\text { c，667 }}}^{6,784}$ | ＋1，908 | 40．1\％ |
 | 80．2\％ | 4．528 | ${ }_{6}^{6,221}$ | 2，093 | 46．2\％ |
 | － | 4，484 | ${ }^{6,441}$ | 1，957 | ${ }^{43.77 \%}$ |
 | 84．0\％ | 4，299 | ${ }_{6,273}^{6,292}$ | ${ }_{1}^{1,974}$ | 45．9\％ |
 | 85．2\％ | 4.214 | ${ }^{6,099}$ | ${ }^{1,880}$ | 44．6\％ |
 | 86.4% 87.7% | 4，030 | 6，092 | 2，062 | 51．2\％ |
 | 88．7\％\％ | 4，013 | ${ }^{6} .070$ | ${ }_{2}^{2,058}$ | 51．3\％ |
 | ${ }^{88.1 \%}$ | －3,762
 3,344 | －6．042 | 2,280 2，543 2， | －60．6\％ |
 | 91．4\％ | 3，152 | ${ }_{5.506}^{5.06}$ | 2，353 | 74．7\％ |
 | 92．6\％ | 3，006 | 4，368 | 1，362 | 45．3\％ |
 | 93．8\％ | 3，000 | 4，099 | ${ }^{1,099}$ | 36．6\％ |
 | ${ }_{9}^{95.36 \%}$ | 3,000 3 3 | 3,977
 3 | 977 | － |
 | 97．5\％ | 3，000 | 3，000 | 0 | 0．0\％ |
 | | 3,000 3 3 | 3,000 3000 | 0 | 0．0\％ |
 | | 3.000 | 3，000 | 0 | 0．0\％ |

 Figure SW-33-b
 Sacramento/San Joaquin River Delta, Monthly Outflow

 | $\begin{gathered} \text { Perceent } \\ \text { Exreadabe } \\ \text { Probability } \end{gathered}$ | February | | $\begin{gathered} \text { Absolute } \\ \text { A.ference } \\ \text { (CFSF } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {OCR 2015 }}$ Proiethour | DCR 2015 With Project | | |
 | | Monthy Outtow (CFS) | Monthly Outiow (CFS) | | |
 | 0.0\% | 219,222 | 220,972 | 1,749 | 0.8\% |
 | 1.2\% | 213,228 | 218,089 | 4.861 | 2.3\% |
 | 2.5\% | 183,454 | 182,663 | -790 | -0.4\% |
 | 3.7\% | 144,364 | 174,622 | 30,258 | 21.0\% |
 | 4.9\% | 139,383 | 138,799 | -584 | -0.4\% |
 | 6.2\% | ${ }^{138,927}$ | ${ }^{133,839}$ | -5,087 | -3.7\% |
 | 7.4\% | 134,210 | 132,674 | -1,536 | -1.1\% |
 | 8.6\% | ${ }^{131,943}$ | ${ }^{131,685}$ | -259 | -0.2\% |
 | 9.9\% | ${ }^{123,307}$ | ${ }^{124,331}$ | 1,024 | 0.8\% |
 | 11.19\% | 122.693
 112944
 1029 | 122,780
 111214
 1 | 87 .8280 | 0.1\% |
 | - ${ }_{\text {l }}^{12.3 \%} \times 1.6 \%$ | 113,494 102.278 10 | 111,214 101784 101 | --2,280 | -2.0\% |
 | 14.8\% | - ${ }_{\text {102, }}^{102162}$ | 98,913 | -3,249 | -3.2\% |
 | 16.0\% | ${ }^{95,586}$ | 95.771 | , 18 | |
 | 17.3\% | ${ }^{85,148}$ | 81,585 | -3,563 | -4.2\% |
 | 18.5\% | ${ }^{83,752}$ | ${ }^{81,520}$ | -2,232 | |
 | 19.8\% | 78,527 | ${ }^{79,557}$ | 1,030 | 1.3\% |
 | 21.0\% | 78,473 | 78,418 | -55 | -0.1\% |
 | 22.2\% | 75,664 | 75,607 | 57 | -0.1\% |
 | 23.5\% | ${ }^{72,827}$ | 70,053 | -2,773 | -3.8\% |
 | 24.7\% | ${ }^{72,452}$ | ${ }^{68,786}$ | -3,665 | -5.1\% |
 | 25.9\% | ${ }^{70,845}$ | ${ }_{\text {c }}^{68,556}$ | -2,289 | -3.2\% |
 | 27.2\% | 69,671 | 66,330 | -3,340 | -4.8\% |
 | 28.4\% | 66,907 | ${ }^{65,975}$ | -992 | -1.5\% |
 | 29.6\% | 57.804 | 57,541 | -262 | -0.5\% |
 | - 3 30.9\% | 57,567 | 55.175 | -2,393 | -4.2\% |
 | 32.1\% | 56,525 | 54,311 | -2,214 | -3.9\% |
 | | ${ }^{55,336}$ | 52,949 5 5 | -2,387 | -4.3\% |
 | 34.6%
 3588% | 54,301 | 52,229 | -1,372 | |
 | | 54,057 58.883 | 52,099 51,355 | -1,98 | |
 | -37.3\% | 53,883 52.741 | ${ }_{\text {ckin }}^{51,141}$ | - | -3.0\% |
 | 39.5\% | 52,054 | 49,671 | -1,383 | -4.6\% |
 | 40.7\% | ${ }^{47,372}$ | 45,310 | -2,062 | |
 | 42.0\% | 47,233 | | -3,601 | |
 | 44.4\%\% | ${ }_{44,827}^{46,39}$ | ${ }_{4}^{41,684}$ | - ${ }_{\text {- }}^{\substack{4.2006 \\-3,206}}$ | |
 | 4.5.7\% | 41,769 | 40,351 | -1,419 | -3.4\% |
 | 46.9\% | 40,380 | 39,918 | -463 | -1.1\% |
 | 48.19\% | 39,617 | ${ }^{35,601}$ | -4,015 | -10.1\% |
 | 49.4\% | ${ }^{36,521}$ | ${ }^{34,019}$ | | -6.9\% |
 | 50.6\% | ${ }_{\text {36,150 }} 3$ | ${ }^{33,084}$ | -3,066 | -8.5\% |
 | 51.9\% | ${ }^{36,137}$ | ${ }^{31,910}$ | -4,227 | -11.7\% |
 | - 53.10% | 35,232 | ${ }^{31,829}$ | -3,004 | -9.7\%\% |
 | 年54.3\% | 34,259 | 31,782 | -2,478 | -7.7\% |
 | ${ }_{\text {c }}^{55.6 \% \%}$ | ${ }^{31,043}$ | ${ }^{28,359}$ | -2,684 | -8.80\% |
 | ${ }_{\text {cken }}^{56.8 \%}$ | ${ }_{2}^{26,565}$ | ${ }_{\text {24,097 }}^{24,99}$ | ${ }_{\text {- }}^{\text {-1,946 }}$ | ${ }_{\text {- }}^{\text {-7.5\% }}$ |
 | 59.3\% | 25,467 | 23,560 | -1.908 | -7.5\% |
 | 60.5\% | 24,300
 23744
 1 | 21,992 | -2.608 | -10.7\% |
 | - 61.70% | | ${ }^{21,566}$ | -2,178 | |
 | 63.0\% | ${ }_{2}^{23,217}$ | ${ }^{20,371}$ | -2,846 | -123\% |
 | ${ }^{645.2 \%}$ | ${ }^{22,948}$ | 19,912 | -3,036 | |
 | ${ }_{66.7 \%}^{65.4 \%}$ | ${ }_{21,123}^{22,01}$ | ${ }^{17,6,665}$ | ${ }_{-4,058}$ | -18.7\% |
 | 67.9\% | 18,750 | 17,128 | ${ }_{-1,622}$ | -8.7\% |
 | 69.1\% | 18,388 | ${ }^{16,518}$ | -1,870 | -10.2\% |
 | 70.4\% | 17,936 | 16,256 | ${ }^{-1,680}$ | -9.4\% |
 | 71.6\% | 17,290 | 15,354 | ${ }^{-1,936}$ | -11.2\% |
 | 72.8\% | ${ }^{16.812}$ | ${ }^{15,114}$ | -1,698 | -10.1\% |
 | 74.1\% | ${ }^{15,812}$ | 15.036 | -776 | -4.9\% |
 | -75.3\% | | 14,931 | -721 | -4.6\% |
 | 76.5\% | 15.517 | ${ }^{14,506}$ | -1,011 | -6.5\% |
 | 77.8\% | 14,956 | 14,427 | -529 | -3.5\% |
 | 89.0\% | 14,752 | ${ }_{\text {13,776 }}^{13,727}$ | -975 | -6.6\% |
 | - | ${ }^{14.606}$ | ${ }^{12,777}$ | -1.829 | - ${ }_{\text {- }}$ |
 | - ${ }_{\text {822.7\% }}$ | 14,296 | ${ }^{12,226}$ | -2,070 | 退 |
 | 824.7\% | 13,884 13526 | - 11.5145 | -2,239 | -16.2\% |
 | 85.2\% | ${ }_{12,036}^{11,26}$ | 11,145 | -891 | ${ }^{-7.4 \%}$ |
 | 86.4\% | 11,489 | 11,114 | -375 | 3\% |
 | 87.7\% | ${ }^{111,145}$ | 10,491 | -654 | -5.9\% |
 | 88.9\% | 11,067 | 10,283 | -784 | 1\% |
 | 90.1\% | 10,917 | 9,841 | -1,076 | 9.9\% |
 | | 10,910 | ${ }^{9,834}$ | 1,075 | -9.9\% |
 | ${ }_{93}^{92.6 \%}$ | (10,262 | ${ }_{9,550}^{9.805}$ | - -658 | - 4.4% |
 | 95.1\% | 9,766 | 9,115 | -651 | -6.7\% |
 | 96.3\% | 9,713 | ${ }_{8,636}$ | -1,077 | -11.1\% |
 | 97.5\% | 8.636 | 7,774 | -862 | -10.0\% |
 | 98.8\% | 7,999 | 7,714 | 285 | -3.3\% |
 | 100.0\% | 7,521 | 7,528 | 6 | 0.1\% |

 | | June | | $\begin{aligned} & \text { Absolute } \\ & \text { Differernce } \\ & \text { (CFFS) } \end{aligned}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: |
 | $\begin{gathered} \text { Perceent } \\ \text { Exreadabe } \\ \text { Probability } \end{gathered}$ | ${ }_{\text {Proser }}^{\text {Proiect }}$ | DCR 2015 With Project | | |
 | | Monthy Outtow（CFS） | Monthly Outiow（CFS） | | |
 | 0．0\％ | 69，915 | 69，746 | －169 | －0．2\％ |
 | 1．2\％ | ${ }_{66,247}$ | 67,547 | ${ }^{1,300}$ | 2．0\％ |
 | 2．5\％ | 38，940 | 39，608 | 668 | 1．7\％ |
 | 3．7\％ | 38，738 | ${ }^{39,473}$ | ${ }^{735}$ | 1．9\％ |
 | 4．9\％ | 36，933 | ${ }^{37,944}$ | 1,011 | 2．7\％ |
 | 6．2\％ | ${ }^{35.598}$ | ${ }^{37,162}$ | ${ }^{1,564}$ | 4．4\％ |
 | 7．4\％ | 35，379 | ${ }^{3,364}$ | －115 | 0．0\％ |
 | 8．6\％ | ${ }_{3}^{31,713}$ | ${ }^{31,601}$ | －112 | －0．4\％ |
 | 9．9\％ | 28.819 | 29.819 | 1，001 | 3．5\％ |
 | 11．19\％ | ${ }^{22,075}$ | ${ }_{\text {2 }}^{23,378}$ | － $\begin{array}{r}1,303 \\ -1114\end{array}$ | 5．5\％ |
 | －${ }_{\text {l }}^{12.3 \%} \times 1.6 \%$ | 21,108 20,013 | 19,994 19.980 | －1，114 | －5．3\％ |
 | 13.6% 14.8% | ${ }_{20,006}^{20,013}$ | ${ }^{19,9890}$ | －330 | ${ }_{\text {－}}^{\text {－}}$ |
 | 16．0\％ | 19，120 | ${ }^{18,973}$ | －148 | 0．8\％ |
 | 17．3\％ | 18，987 | 17，766 | 1，221 | |
 | 18．5\％ | 14，854 | 15，106 | 252 | 1．7\％ |
 | 19．8\％ | 13，696 | 14，561 | 865 | 6．3\％ |
 | 21．0\％ | 13，650 | 14，379 | 729 | 5．3\％ |
 | 22．2\％ | ${ }^{13,643}$ | 13，806 | 162 | 1．2\％ |
 | 23．5\％ | 13，182 | ${ }^{13,169}$ | －13 | －0．1\％ |
 | 24．7\％ | 12，111 | 12,764 | 653 | 5.4 |
 | 25．9\％ | ${ }^{11,665}$ | ${ }^{12,129}$ | 464 | 4．0\％ |
 | 27．2\％ | ${ }^{10,926}$ | ${ }^{11,676}$ | 750 | 6．9\％ |
 | 28．4\％ | 10，800 | 11，044 | 244 | 2．3\％ |
 | 29．6\％ | 10，484 | 10，633 | 149 | 1．4\％ |
 | － 3 30．9\％ | （10，096 | 10,128 10.081 | ${ }^{32}$ | ${ }^{0.3 \% \%}$ |
 | 32．1\％ | 9，920 | 10，081 | 161 | ${ }^{\text {1．6\％}}$ |
 | | ${ }^{9,5633}$ | 9，920 | ${ }^{357}$ | ${ }^{3.7 \%}$ |
 | 34.6%
 3588% | 9，383 | 9.643 | 260 | 源 |
 | | 9.000 | 9，5866 | 581 | ${ }^{6.5 \%}$ |
 | 37．0\％ | ${ }_{8,535}^{8.543}$ | 9，484 | | ${ }^{13.2 \%}$ |
 | 39．5\％ | 8 8，157 | ${ }_{9,130}$ | ${ }_{973}$ | 11．9\％ |
 | 40．7\％ | 7，921 | ${ }^{8,341}$ | 420 | 5．3\％ |
 | 42．0\％ | 7，700 | ${ }_{8}^{8,317}$ | 617 | |
 | 44．4\％ | 7,577
 7,533 | 8，173 7,910 | 597
 377 | 50\％ |
 | 45．7\％ | 7.384 | 7801 | 417 | 5.0% |
 | 46．9\％ | 7，262 | 7，700 | 438 | 6．0\％ |
 | 48．1\％ | 7，250 | 7.577 | 327 | 4．5\％ |
 | 49．4\％ | 7，243 | 7,420 | 177 | 2．4\％ |
 | 50．6\％ | 7，243 | 7.320 | 77 | 1．1\％ |
 | 51．9\％ | 7，133 | 7,291 | 157 | ${ }^{2.2 \%}$ |
 | 53．1\％ | 7，100 | 7，243 | 143 | 2．0\％ |
 | 年 54.3% | 7，100 | 7,243
 7133
 7.1 | ${ }_{3}^{143}$ | ${ }^{2.0 \% \%}$ |
 | ${ }_{\text {c }}^{55.6 \% \%}$ | 7.100 | 7，133 | ${ }^{33}$ | 0．5\％ |
 | 58．0\％ | 7,100 | 7,100 7,100 | \bigcirc | 0．0\％ |
 | 59．3\％ | 7,100 | 7,100 | 0 | 0．0\％ |
 | 60．5\％ | 7,100 7100 | 7，100 | 0 | 0．0\％ |
 | ${ }^{61.7 \%}$ | | 7,100 | | |
 | －63．0\％ | 7,100 7,100 | 7,100 7,100 | \bigcirc | －0．0\％ |
 | 65．4\％ | 7，008 | 7，099 | 91 | 1．3\％ |
 | 66．7\％ | 6，932 | 7，026 | 94 | 1．4\％ |
 | －67．9\％ | ${ }_{6,875}^{6,929}$ | － $\begin{aligned} & 6,922 \\ & 6.910\end{aligned}$ | ${ }_{36}^{-7}$ | －0．1\％ |
 | 70．4\％ | 6.846 | 6,875 | ${ }_{29}$ | 0．4\％ |
 | 71．6\％ | 6，753 | 6，784 | 31 | 0．5\％ |
 | 72．8\％ | 6．724 | 6，764 | ${ }^{41}$ | 0．6\％ |
 | 74．1\％ | 6，707 | ${ }^{6.713}$ | 7 | ${ }^{0.19 \%}$ |
 | －75．3\％ | －6．563 | －6，707 | 144 | ${ }^{2.2 \%}$ |
 | 76．5\％ | 6，563 | 6，573 | 10 | 0．2\％ |
 | 77．8\％ | ${ }^{6.4488}$ | 6，563 | 115 | ${ }_{2}^{1.8 \%}$ |
 | 89．0\％ | 6，437 | 6，563 | 176 | ${ }_{1}^{2.0 \%}$ |
 | － | ${ }_{6}^{6,373}$ | ${ }^{6,448}$ | ${ }_{14}$ | |
 | ${ }^{81.75 \%}$ | | | －143 | － |
 | 84．0\％ | 5，938 | 5.968 | 30 | 0．5\％ |
 | 85．2\％ | 5，930 | 年5．910 | －20 | －0．3\％ |
 | ${ }^{86474 \%}$ | ${ }_{5}^{5.970}$ | 5．693 | －217 | －3．7\％ |
 | 88．9\％ | ${ }_{5,538}$ | ${ }_{5,469}^{5.556}$ | － 69 | － |
 | 90．1\％ | 5，469 | 5，209 | －259 | 4．7\％ |
 | 91．4\％ | 4，967 | 5.006 | 39 | 0．8\％ |
 | 92．6\％ | 4，550 | 5.000 | 450 | 9．9\％ |
 | ${ }^{935.8 \%}$ | 4.078 | ${ }_{4}^{4.816}$ | ${ }_{538}^{738}$ | 18．19\％ |
 | 96．3\％ | 4，000 | 4，319 | 319 | 8．0\％ |
 | 97．5\％ | 4，000 | 4，100 | 100 | 2．5\％ |
 | 98．\％ | 4，000 | 4，000 | 0 | 0．0\％ |
 | 100．0\％ | 4，000 | 4，000 | 0 | 0．0\％ |

 Figure SW-34-b
 Delta Cross Channel, Monthly Flow

 ## Table SW-34-b Tross C Chanel, Monthy Flo

 ## Table SW-34-b Tross C Chanel, Monthy Flo

 | Apprl | | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | $\begin{aligned} & \text { DCR 2015.5 Whthout } \\ & \text { Proiect } \\ & \hline \end{aligned}$ | DCR 2015 With Project | Absolute Differenc | |
 | $\xrightarrow{\text { Proabability }}$ | Montly Fow (CFS) | Monthy Fiow (CFs) | (CFS) | |
 | 0.0\% | 10,763 | | | 0.0\% |
 | 2.5\% | ${ }_{9} 5.595$ | 0,005 | | 0.1\% |
 | 3.7\% | 8,696 | 8,512 | | |
 | 40\% | | | 10 | |
 | 4.2\% | ${ }_{8,305}$ | 8291 | 14 | |
 | 74\% | 8302 | 8.063 | 238 | -29\% |
 | 8.6\% | ${ }_{8,286}$ | 8037 | 248 | -2.0\% |
 | 9.9\% | 7,782 | 7.671 | -111 | -1.4\% |
 | 11.1\% | 7,680 | 7421 | -259 | -3.4\% |
 | 12.3\% | 7,188 | 7.187 | 0 | 0.0\% |
 | 13.6\% | 6.714 | 6.630 | -85 | -1.3\% |
 | 14.8\% | 6.630 | 6,489 | -141 | 1\% |
 | 16.0\% | 6,585 | 6,393 | -192 | -2.9\% |
 | 17.3\% | 6,480 | 6,204 | -275 | -4.2\% |
 | 18.9\% | 6,394 | | | |
 | 29.1.\% | ${ }_{5,905}^{6,905}$ | | ${ }_{\text {-113 }}^{-163}$ | ${ }_{\text {- }}^{-2.9 \%}$ |
 | 22.2\% | 5,791 | 5,791 | 1 | 0.0\% |
 | 23.5\% | ${ }_{5}^{5.686}$ | 5,509 | | -3.1\% |
 | 24.9\% | ${ }_{4,456}$ | ${ }_{4.415}^{5}$ | 41 | -0.9\% |
 | 27.2\% | 4,432 | 4,232 | ${ }_{-200}$ | ${ }_{-4.5 \%}$ |
 | 28.4\% | 4,256 | 4,225 | -31 | -0.7\% |
 | 29.6\% | 4,232 | 4,105 | 126 | ${ }^{-3.0}$ |
 | 30.9\% | 4,217 | 4,019 | -197 | -4.7\% |
 | 32.1\% | 4,194 | 4,018 | -175 | -4.2 |
 | 33.3\% | 4.019 | 3,980 | -40 | -1.0\% |
 | 34.6\% | 3,977 | 3,976 | -1 | 0.0\% |
 | ${ }^{35.8 \%}$ | 3,977 | - 3.834 | -143 | -3.6\% |
 | 37.0\% | ${ }^{3,974}$ | 3,767 | -206 | -5.2\% |
 | | - $\begin{aligned} & 3,866 \\ & 3,859\end{aligned}$ | - 3.765 | -110 | -2.68 |
 | 39.5\% | 3,859 | 3,749 | -110 | -2.8\% |
 | ${ }^{40.70}$ | - 3,761 | 3,721 | -39 | -1.0\% |
 | 4.3.2\% | ¢ | - | --51 | -2.6\% |
 | 4.4.4\% | ${ }_{3,511}^{3,671}$ | ${ }_{\substack{3.502}}^{3,502}$ | --91 | -0.2\% |
 | 45.7\% | 3,503 | 3488 | -15 | |
 | | 3,467 | ${ }^{3,435}$ | ${ }^{-31}$ | -0.9\% |
 | 49.4\% | ${ }_{3,325}^{3.327}$ | ${ }_{\substack{3.324}}^{3,327}$ | -1 | 0.0\% |
 | 50.6\% | 3,294 | 3,293 | | |
 | 51.9\% | 3,250 | 3,251 | 0 | 0.0\% |
 | 53.19\% | 3,167 3 3 | 3,144 3 3 | ${ }^{23}$ | -0.7\% |
 | 55.6\% | 3.063
 2.954
 | 3.063
 3.040 | 0 | 0.0\% |
 | 56.8\% | 2,924 | 2,937 | 12 | 0.4\% |
 | 58.0\% | 2,902 | 2,902 | 0 | 0.0\% |
 | 59.3\% | 2.866 | 2,867 | 0 | 0.0\% |
 | 60.5\% | ${ }_{2}^{2,824}$ | 2,859 | ${ }^{35}$ | 1.3\% |
 | ${ }^{61.7 \%}$ | ${ }_{2}^{2,823}$ | ${ }_{2}^{2,822}$ | -1 | 0.0\% |
 | -63.0\% | ${ }_{\text {cker }}^{2.765}$ | 2,804 | ${ }_{39}$ | 1.4\%\% |
 | ${ }^{64.2 \%}$ 6.4\% | ${ }_{\substack{2,747 \\ 2,747}}^{\text {2,72 }}$ | | 30 18 | - |
 | 66.7% | ${ }_{2}^{2,735}$ | ${ }_{2,747}^{2,77}$ | 12 | 0.5\% |
 | ${ }^{67.9 \%}$ | ${ }_{2}^{2,716}$ | ${ }_{2}^{2,733}$ | ${ }_{21}^{18}$ | 0.6\% |
 | 69.1\% | ${ }_{2}^{2,711}$ | ${ }_{\text {2, }}^{2}$ | ${ }^{21}$ | 0.8\% |
 | 71.6\% | ${ }_{2,666}^{2,667}$ | ${ }_{2,667}^{2,667}$ | 0 | 0.0\% |
 | 72.8\% | 2,666 | 2,652 | -14 | 5\% |
 | 74.19\% | 2,651 | 2,648 | -3 | -0.1\% |
 | 75.3\% | 2,602 | 2,626 | ${ }^{24}$ | 0.9\% |
 | 77.8\% | ${ }_{2,589}^{2,000}$ | 2,503 2.563 | ${ }_{-26}$ | 0.1\% |
 | 79.0\% | ${ }_{2,563}$ | ${ }_{2,550}^{2,505}$ | ${ }^{-13}$ | -0.5\% |
 | 80.2\% | 2.539 | 2.519 | ${ }^{21}$ | -0.8\% |
 | ${ }^{81.5 \%}$ | 2,507 | 2.512 | 5 | 0.2\% |
 | - | ${ }_{2}^{2.476}$ | ${ }_{2}^{2.475}$ | 0 | 0.0\% |
 | 84.0\% | ${ }_{2}^{2,475}$ | ${ }_{2}^{2,457}$ | -18 | -0.7\% |
 | - | 2,457 2426 | ${ }_{2}^{2,437}$ | -20 | -0.8\% |
 | 87.7\% | 2,408 | 2,409 | \bigcirc | ${ }_{0}^{-0.4 \%}$ |
 | 88.9\% | ${ }^{2,393}$ | 2,393 | 0 | 0.0\% |
 | 90.1\% | 2,359 | 2,385 | ${ }^{27}$ | 1.1\% |
 | 91.4\% | 2,358 | 2,359 | ${ }_{10}$ | 0.0\% |
 | 938.8\% | ${ }_{2,333}^{2,349}$ | ${ }_{2,333}^{2,358}$ | 10 | - |
 | 95.1\% | ${ }_{2}^{2,332}$ | ${ }_{2}^{2,332}$ | 0 | 0.0\% |
 | ${ }^{96.3 \%}$ | ${ }_{2}^{2,311}$ | ${ }^{2,270}$ | ${ }^{-42}$ | -1.8\% |
 | 98.8\% | ${ }_{\substack{2,257}}^{\substack{2,27 \\ \hline}}$ | (2,258 | | |
 | | | (| | 0.7\% |

 | Percent | DCR 2015 Weithout | DCR 2015 With Project | Absolute | Reative |
 | :---: | :---: | :---: | :---: | :---: |
 | Ercoability | Monthly Fried (CFS) | Monthy Flow (CFS) | (CFS) | |
 | 0.0\% | ${ }^{8,731}$ | 8.636 | -95 | -1.1\% |
 | 1.2\% | 8.655 | ${ }_{8}^{8.580}$ | -75 | -0.9\% |
 | ${ }_{3}^{2.5 \%}$ | ${ }_{\text {\% }}^{8,151}$ | 8,150 7902 7 | -21 | -0.0\% |
 | 3.7\% | ${ }_{7}^{7,923}$ | 7,902 | -21 | -0.3\% |
 | 4.9\% | 7,347 6.880 | ¢,7,352
 681
 189 | 5 | 0.1\% |
 | -6.2\% | 6.880 6.842 | 6.881 6.801 | 1 | |
 | 8.6\% | 6.675 | ${ }_{6,653}^{6,681}$ | -21 | -0.3\% |
 | 9.9\% | 6,460 | 6,447 | -13 | -0.2\% |
 | 11.1\% | 6.426 | 6,397 | 29 | |
 | 12.3\% | 6,232 | 6,215 | 18 | |
 | 13.6% 14.8% | ${ }^{6.118}$ | ${ }^{6.094}$ | ${ }^{23}$ | 0.4\% |
 | 14.8% 16.0% | ${ }_{\text {5,940 }}$ | 5.889 | -51 | ${ }^{-0.9 \%}$ |
 | 16.0% 17.3% | ${ }_{5}^{5,233}$ | 5.419 | 186 | 3.6\% |
 | 1.3.5\% | ${ }_{\text {4,947 }}$ | ${ }_{4,849}$ | -98 | ${ }_{-2.0 \%}^{0.3 \%}$ |
 | 19.8\% | 4.873 | 4.809 | -64 | -1.3\% |
 | 21.0\% | 4.627 | 4.629 | 1 | 0.0\% |
 | ${ }^{22.2 \%}$ | 4.513 | 4.526 | 12 | 0.3\% |
 | ${ }^{23.5 \%}$ | 4,452 | 4,454 | 2 | |
 | 24.7\% | ${ }_{4}^{4,268}$ | 4,084 | -185 | |
 | ${ }^{25.7 .2 \%}$ | 4,104 | - | -19 | - |
 | 28.4\% | 3,639 | ${ }_{3,574}^{3,544}$ | ${ }_{-65}$ | |
 | 29.6\% | 3,483 | 3,445 | ${ }^{38}$ | 1.1\% |
 | - $\begin{aligned} & 30.9 \% \\ & 32.1 \%\end{aligned}$ | - $\begin{aligned} & \text { 3,453 } \\ & \text { 3,477 }\end{aligned}$ | 3,419
 3.415 | -33 | |
 | 33.3\% | 3,432 | ${ }_{3,244}$ | -188 | ${ }^{-5.5 \%}$ |
 | 34.6\% | 3,246 | 3,192 | -54 | |
 | 35.7\% | 3,194 | 3,165 | ${ }^{29}$ | |
 | 37.0\% | 3,165 | 3,153 | 12 | 0.4\% |
 | 38.3\% | 3,074 | 3,071 | -3 | -0.1\% |
 | ${ }^{39.5 \%}$ | ${ }_{\text {3,041 }}^{3,046}$ | 3,046 | - ${ }_{-12}$ | -0.4\% |
 | 42.0\% | 3,017 | 3,017 | 0 | 0.0\% |
 | 43.2\% | 2,975 | 2,975 | 0 | 0.0\% |
 | ${ }^{44.4 \%}$ 4.7\% | 2,960 | 2,961 | 1 | 0.0\% |
 | 45.7\% | 2,909 | 2,960 | 51 | 1.8\% |
 | ${ }^{46.9 \%}$ | 2,908 | 2,908 | 0 | 0.0\% |
 | 49.4\% | ${ }_{2,895}^{2,909}$ | ${ }_{2,804}^{2,08}$ | -91 | ${ }_{-3.1 \%}$ |
 | 50.6\% | 2,794 | ${ }_{2}^{2,793}$ | -2 | -0.1\% |
 | 年 $\begin{aligned} & \text { 51.9\% } \\ & 53.1 \%\end{aligned}$ | ${ }_{2}^{2,776}$ | 2,777
 2,755 | 1 | |
 | 54.3\% | ${ }_{2,702}^{2,712}$ | ${ }_{2,702}^{2,775}$ | ${ }_{0}$ | 0.0\% |
 | 55.6\% | | 2699 | 0 | |
 | | 2,691 | 2,691 | 0 | 0.0\% |
 | 59.3\% | ${ }_{2,682}^{2,090}$ | ${ }_{2,683}$ | 1 | 0.0\% |
 | 60.5\% | 2.680 | 2.680 | 0 | 0.0\% |
 | 61.7\% | 2,670 | 2,657 | ${ }^{13}$ | -0.5\% |
 | 63.0\% | ${ }^{2}, 657$ | 2,607 | -50 | -1.9\% |
 | - ${ }_{\text {64.2\% }}^{6.4 \%}$ | 2,572 | ${ }_{\text {2,586 }}$ | 14 | 0.6\% |
 | ${ }_{66.7 \%}^{65.4 \%}$ | 2,529 | ${ }_{2,541}^{2.572}$ | 12 12 | 0.5\% |
 | 67.9\% | 2,526 | 2,539 | 13 | 0.5\% |
 | 69.19\% | ${ }_{\text {2,522 }}$ | 2,5537 | 15 | 5\% |
 | 70.4\% | 2.511
 2.508 | 2,524 | 13 | 0.5\% |
 | 71.2\%\% | 2.508 2.503 2, | 2,522
 2.515
 2 | 14 | ${ }^{0.5 \% \%}$ |
 | 74.1\% | ${ }_{2,487}^{2,468}$ | ${ }_{2,492}^{2,4}$ | 5 | 0.2\% |
 | 75.3\% | 2,467 | 2.466 | -1 | 0.0\% |
 | 76.5\% | 2,466 | 2,464 | -2 | -0.1\% |
 | 79.0\% | ${ }_{\text {2,461 }}$ | ${ }_{2,457}^{2,462}$ | 4 | ${ }_{-0.2 \%}$ |
 | 80.2\% | 2.414 | 2.412 | | |
 | ${ }^{81.5 \%}$ | 2,343 | ${ }_{2,378}^{2,378}$ | 36 | 1.5\% |
 | 84.0\% | ${ }_{2,296}^{2,295}$ | ${ }_{2,336}^{2,342}$ | 40 | 1.8\% |
 | 85.2\% | 2,284 | ${ }_{2}, 325$ | 41 | 1.8\% |
 | ${ }^{86.4 \%}$ | ${ }^{2,268}$ | ${ }_{2}^{2,305}$ | ${ }^{37}$ | |
 | 877.7\% | 2,266 | ${ }^{2,266}$ | 0 | 0.0\% |
 | 88.9\% | 2, 2, 248 | ${ }_{2}^{2,253}$ | -6 | 0.2\% |
 | ${ }_{\text {91.4\% }}^{90.1 \%}$ | ${ }_{2}^{2,242}$ | 2,199 | 42 | -1.9\% |
 | ${ }_{9} 9.2 .4 \%$ | 2,194 | 2,197 2,197 | ${ }^{-2}$ | ${ }_{0}$ |
 | 93.\% | 2,164 | 2,164 | 0 | 0.0\% |
 | 95.19\% | 2,100 | $\begin{array}{r}2,126 \\ 1982 \\ \hline 1\end{array}$ | ${ }^{26}$ | 1.3\% |
 | 97.5\% | ${ }_{1,982}^{2,925}$ | ${ }_{\text {1,936 }}^{1,988}$ | ${ }_{46}^{43}$ | - |
 | 98.8\% 100.0\% | 1,792 | (1,914 | 44 | 2.2\% 1.6% |

 ## Table $\mathrm{SW}-34$－b ross Chanel Monthy Flow

 | $\begin{gathered} \text { Pererent } \\ \text { Execonce } \\ \text { Probabily } \end{gathered}$ | DCR2015 Without JCune | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | DCR 2015 With Project | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (CFS) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (o) } \end{gathered}$ |
 | | | | | |
 | | | | | 0．1\％ |
 | 1．2\％ | 7,981 | ${ }_{8,367}^{8.37}$ | 386 | 4．8\％ |
 | 2．5\％ | 7，981 | ${ }_{8}^{8,175}$ | 195 | 2．4\％ |
 | 3．7\％ | 7.833 | ${ }^{7} 7788$ | －85 | －1．1\％ |
 | 4．9\％ | 7，527 | ${ }_{7}^{7,576}$ | 49 | 0．6\％ |
 | 6．2\％ | 7，482 | 7．505 | ${ }_{392}^{23}$ | |
 | 7．4\％ | 7，087 | 7,479 7 7 | ${ }^{392}$ | ${ }^{5.5 \%}$ |
 | 8．6\％ | 6，995 6.969 | 7,171 7083 | 176 115 | ${ }_{\text {en }}^{\text {2．5\％}}$ |
 | ${ }^{\text {9，9\％}}$ | 6,969 6.958 6 | 7.083
 6.991 | ${ }_{34}^{115}$ | ${ }_{\text {l }}^{\text {1．5\％\％}}$ |
 | ${ }^{11.12 \%}$ | 6,958 6.659 | 㐌， 6.991 | 34 87 87 | －${ }_{\text {0．5\％}}$ |
 | 13．6\％ | ${ }_{6,421}$ | 6，733 | 312 | 4．9\％ |
 | 14．8\％ | 5，996 | 6.418 | 421 | 70\％ |
 | 16．0\％ | 5.860 | 6，075 | 215 | 3．7\％ |
 | 17．3\％ | 5，789 | 5，939 | 150 | |
 | 18.5% 19.8% 1 | 5，773 | 5．918 | 145 | 2．5\％ |
 | 19．8\％ | 5．681 | 5．891 | 210 | 3．7\％ |
 | ${ }_{2}^{21.0 \%}$ | 5．618 | 5．780 | 162 | 2．9\％ |
 | ${ }^{22.2 .5 \%}$ | ${ }_{\substack{5.586 \\ 5.575}}^{\text {c，}}$ | ¢， $\begin{aligned} & 5,758 \\ & 5,703\end{aligned}$ | ${ }_{128}^{172}$ | ${ }^{3.3 \%}$ |
 | 24．7\％ | 5．564 | 5.623 | 59 | 1．1\％ |
 | 25．9\％ | 5．515 | 5．615 | 100 | 1．8\％ |
 | ${ }^{2772 \%}$ | 5.500
 5480 | | 112 | ${ }^{2.0 \%}$ |
 | 28．4\％ 20.6 | 5,480 5 5488 | 5.582 5.545 5， | 102 | 1．9\％ |
 | 29．6\％ 30.9% | 5.478 5 5 5 | ${ }_{5}^{5.545}$ | 67 | 1．2\％ |
 | 30．9\％ | 5,430 5 5 | ${ }_{\text {5．513 }}$ | 84 | 1．5\％ |
 | 32.19% 33.3% | 5.400 5 547 | 5，472 | ${ }_{82}$ | ${ }^{1.35 \%}$ |
 | 33．3\％ | 5.347 5.253 5 | 5.430 5 5 | ${ }_{1}^{82}$ | 1．5\％ |
 | 34.6% 35.8% | （5,253
 5.222 | 5.389
 5371
 5 | 136 149 | ${ }^{2.6 \%}$ |
 | 第35．8\％ | ¢，5,222
 5,134 | 5.371
 5.292 | 149 157 | 2．9\％ |
 | 38．3\％ | 5.097 | 5.240 | 143 | 280 |
 | 39．5\％ | 5，093 | 5，219 | 126 | |
 | 40．7\％ | 5，099
 5.058 | ${ }_{\substack{5,178 \\ 5,134}}^{\text {c，}}$ | 87 76 | 1．5\％ |
 | 43．2\％ | 5，038 | 5.096 | 57 | 1．1\％ |
 | 44．4\％ | 5，037 | 5.067 | 30 | 0．6\％ |
 | 45．7\％ | ${ }_{5}^{50228}$ | 5，059 | 30 | 0．6\％ |
 | ${ }^{46.9 \%}$ | 5，022 | 5，037 | 15 | 0．3\％ |
 | 48．4\％ | ＋5，903 | 4，9966 | ${ }^{-8}$ | －0．2\％ |
 | 50．6\％ | 4，996 | 4，972 | －23 | －0．5\％ |
 | 51．9\％ | 4，942 | 4，958 | 16 | 0．3\％ |
 | 年3．19\％ | 4，932 | 4，952 | ${ }^{20}$ | 0．4\％ |
 | 54．3\％ 55.6% | 4.850 4.841 | 4，951 | 101 101 | ${ }_{2.1 \%}$ |
 | 55．6\％ | ${ }_{4.833}^{4.841}$ | ${ }_{4}^{4.942}$ | 101 99 | 2．1\％ |
 | 年56．8\％ | ${ }_{4,823}^{4,833}$ | ${ }_{4}^{4,932}$ | ${ }_{86}^{99}$ | 㐌．19\％ |
 | 58．3\％ | ${ }_{4,819}^{4,823}$ | 4，9099 | ${ }_{90}^{86}$ | ＋1．8\％ |
 | 60．5\％ | 4.813 | 4，896 | 83 | 1．7\％ |
 | 61．7\％ | 4，799 | ${ }^{4.8333}$ | ${ }^{34}$ | 0．7\％ |
 | － 63.0% | ${ }_{4.760}^{4.762}$ | ${ }_{4}^{4.823}$ | 61 57 | ＋1．3\％ |
 | 65．4\％ | 4，753 | 4，796 | 43 | 0．9\％ |
 | ${ }^{66.79 \%}$ | 4，750 | 4，796 | 46 | 1．0\％ |
 | 67．9\％ | 4，734 | 4.762 | ${ }^{28}$ | 0．6\％ |
 | 70．4\％ | ${ }_{4,634}$ | ${ }_{4}^{4,7388}$ | ${ }_{104}^{42}$ | ${ }_{\text {2 }}$ |
 | 71．6\％ | 4.614 | 4，734 | 120 | 2．6\％ |
 | 728\％ | 4．554 | 4.715 | 161 | 3．5\％ |
 | 74．19\％ | 4，520 | ${ }^{4,693}$ | 173 | 3．8\％ |
 | 75．3\％ | 4，515 | 4，617 | 102 | ${ }^{2.3 \%}$ |
 | 77．8\％ | ${ }_{4}^{4.4601}$ | ${ }_{4,573}^{4.674}$ | ${ }_{113}^{113}$ | ${ }^{2.5 \%}$ |
 | 79．0\％ | 4，434 | 4．538 | 104 | 2．3\％ |
 | － 80.2% | ${ }_{4}^{4,330}$ | 4.514 4450 | 184 | 4．2\％ |
 | － | ${ }_{4}^{4.316}$ | ${ }_{4}^{4,450}$ | 134 230 230 | 3．1\％ |
 | 84．0\％ | ${ }_{4}^{4,193}$ | ${ }_{4,265}^{4,431}$ | 230 72 | ${ }^{5.7 \%}$ |
 | 85．2\％ | ${ }_{4}^{4.189}$ | 4，189 | ${ }_{4}$ | 0．0\％ |
 | ${ }^{86.4 \%}$ | ${ }_{4}^{4,176}$ | ${ }^{4.132}$ | 44 | －1．1\％ |
 | 88．9\％ | 4，048 | 4,048 | 9 | 0．0\％ |
 | 90．1\％ | 4，002 | 4，002 | 0 | 0．0\％ |
 | 91．4\％ | 3，859 | 3，859 | 0 | 0．0\％ |
 | 92．6\％ | 3，803 | 3．809 | 5 | 0．1\％ |
 | ${ }^{93.85 \%}$ | 3，433 | 3．639 | 206 | ${ }^{6.0 \%}$ |
 | 96．3\％ | 3，366 | 3，459 | ${ }_{93}$ | ${ }_{\text {2．8\％}}^{2.8 \%}$ |
 | 975\％ | －3，328 | 3，409 | 81 | 2．4\％ |
 | 98．8\％ 100．0\％ | （ $\begin{aligned} & 3,250 \\ & 3,228\end{aligned}$ | $\begin{array}{r}3.396 \\ 3 \\ \hline 326\end{array}$ | ${ }_{98}^{146}$ | －${ }_{\text {4．5\％}}$ |
 | 100．0\％ | 3，228 | 3，326 | 98 | 3．0\％ |

 Figure SW-35-b
 Old and Middle River, Monthly Flow

 Table SW-35-b
 nd Midde River, Monthy Fow

 | ${ }_{\text {Execeent }}^{\text {Exedance }}$ | DCR 2015 Without | DCR 2015 With Project | Absolute Difference | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | Exceedance | | DCR 2015 With Project | Difference | Relative Difference (\%) |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Probability | Monthly fow (cFs) | Monthly Fow (CFFS) | (CFF) | | Probability | Montly Flow (CFS) | Monthy Fow (CFS) | ${ }^{\text {(CFFS) }}$ | |
 | - | -2,313 -2.97 | -2,905 | 3 | | - | ${ }_{\text {4, } 4 \text {-456 }}$ | ${ }_{\text {4, }}^{4}$-494 | ${ }^{292}$ | 6.2\% |
 | ${ }_{2}^{1.5 \%}$ | ${ }_{-2,907}$ | - | ${ }_{-388}$ | | ${ }^{1.2 \% \%}$ | ${ }_{1}^{-4.956}$ | ${ }_{-1.964}^{-409}$ | -34 -18 | |
 | - ${ }_{\text {2.7\% }}$ | ${ }_{-3116}$ | | -205 | | 2.5\% | ${ }_{-1,243}^{-1,964}$ | | -181 | |
 | 3.9\% | ${ }_{-3,342}$ | - | -20 | | 3.9\% | - | -2.858 | ${ }_{5} 51$ | |
 | 6.2\% | | -3.492 | -148 | | 6.2\% | -3.468 | ${ }_{-3,31}$ | ${ }^{237}$ | |
 | 7.4\% | ${ }_{\text {-3,429 }}$ | ${ }_{-3,623}^{-3,92}$ | -193 | | 7.4\% | ${ }_{-3,577}$ | ${ }_{-3,466}$ | ${ }_{111}$ | |
 | 8.6\% | -3,515 | -3,773 | -258 | | 8.6\% | -4,092 | -3,630 | 462 | |
 | ${ }^{\text {9.9\% }}$ | -3,785 | -3,853 | -68 | | 9.9\% | -4,606 | -4,090 | 517 | |
 | 11.14\% | ${ }^{-3.8000}$ | -4,097 | -298 | | 11.1\% | 4,710 | -4,097 | 614 | |
 | ${ }^{12.3 \%}$ | ${ }^{-3,3843}$ | -4,354 | -510 | | ${ }^{12.3 \%}$ | 4,717 | -4,670 | 47 | |
 | | -3,857 | -4,355 | -498 | | 13.6\% | 4,743 | -4,759 | -16 | |
 | 14.8% 16.0% | -3,911 | -4,490 | -579 | | 14.8\% | 4,820 | 4,861 | -41 | |
 | -16.7.3\% | -3,918 | -4,623 | -704 | | 16.0\% | 4.832 | -5,002 | 169 | |
 | -17.3\% | -4,103 | -4,996 | -593 | | 17.3\% | -4,987 | -5,008 | -21 | |
 | 18.9\% | -4,181 | -4,715 | -534 | | 18.5\% | -5,201 | -5,011 | 190 | |
 | 19.8\% | -4,244 | -5,123 | -879 | | 19.8\% | -5,264 | -5,095 | 168 | |
 | ${ }_{2}^{21.2 \% \%}$ | -4,354 | -5.181 | ${ }_{-828}$ | | ${ }^{21.0 \%}$ | -5.316 | - 5.5344 | 91 | |
 | ${ }^{23.5 \%}$ | ${ }_{-4}$ | -5, | -425 | | ${ }^{22.25 \%}$ | | | | |
 | ${ }^{24.7 \%}$ | ${ }_{-5,175}^{-4.352}$ | -5,430 | -256 | | ${ }^{24.7 \%}$ | -5.419 | ${ }_{-5.871}$ | ${ }_{-42}$ | |
 | 25.9\% | -5,290 | -5,434 | -144 | | 25.9\% | -5.520 | -5,871 | 351 | |
 | 27.2\% | -5,341 | -5,470 | -128 | | 27.2\% | -5,833 | 71 | | |
 | 28.4\% | -5,360 | 5,626 | 266 | | 28.4\% | -5,871 | 源1 | | |
 | 29.6\% | -5,392 | -5,789 | -397 | | 29.6\% | -5,871 | -5,871 | 0 | |
 | 30.9\% | -5,501 | -5,886 | -385 | | 30.9\% | -5,871 | -5,871 | 0 | |
 | 32.19\% | -5,504 | -6,136 | -631 | | 32.1\% | -5,871 | -5,871 | 0 | |
 | 33.3\% | -5,638 | -6,168 | -530 | | 33.3\% | -5.871 | -5,871 | 0 | |
 | 34.6\% | 5,648 | -6,175 | -527 | | 34.6\% | -5,871 | -5,871 | 0 | |
 | 年35.8\% | -5,832 | -6,182 | -350 | | 35.8\% | -5,871 | -5.871 | 0 | |
 | - ${ }_{\text {37.0\% }}^{37.3 \%}$ | -5,841 | -6,235 | -394 | | 37.0\% | -5,871 | -5.871 | 0 | |
 | 38.3\% | -5.851 | -6.313 | -462 | | 38.3\% | -5.871 | -5.871 | 0 | |
 | 40.7\% | -5,951 | -6,418 | -467 | | 40.7\% | ${ }_{-5,871}$ | ${ }_{-5,871}^{-.871}$ | 0 | |
 | 42.0\% | -6,064 | -6,442 | -379 | | 42.0\% | -5,871 | -5,871 | 0 | |
 | ${ }_{4}^{43.4 \%}$ | ${ }^{-6,095}$ | -6,509 | -414 | | 43.2\% | -5.871 | -5.871 | | |
 | ${ }^{44.45 \%}$ | -6,123 | -6.636 | -413 | | ${ }_{4}^{44.46}$ | ${ }_{5}^{5.871}$ | -5.871 | 0 | |
 | 46.9\% | -6,155 | -6,799 | - 504 | | 45.7\% | -5,871 | -5,871 | | |
 | 48.1\% | ${ }_{-6,251}-1.6$ | ${ }_{-6,764}$ | -513 | | 48.1\% | ${ }_{-5,871}^{-5.871}$ | ${ }_{-5,871}^{-5.871}$ | 0 | |
 | | -6,377 | -6,801 | -425 | | 49.4\% | -5.871 | -5.871 | 0 | |
 | 51.9\% | - | -6,825 | -342 | | 50.9\% | ${ }_{-5.871}^{-5.871}$ | -5, 5 -112 | 241 | |
 | 53.1\% | -6.516 | -6,896 | -379 | | 53.1\% | -5.871 | ${ }_{6,185}$ | 314 | |
 | 54.3\% | -6.534 | -6,907 | -372 | | 54.3\% | -5,871 | -6.229 | 358 | |
 | 55.6\% | -6.591 | -6.945 | -354 | | 55.6\% | -5.872 | -6,282 | 411 | |
 | 56.8\% | -0,615 | -7,000 | -386 | | 56.8\% | -5,993 | -6,428 | 534 | |
 | | -6,673 | -7,095 | -422 | | 58.0\% | -5,938 | -6,431 | 492 | |
 | 59.3\% | -6,776 | -7,280 | -504 | | 59.3\% | -6,401 | -6,554 | 153 | |
 | 60.5\% | -6.810 | -7,292 | -481 | | 60.5\% | -6,513 | -6,627 | 114 | |
 | 61.7\% | - -7.904 | 7.393
 7.788
 -7 | -489 | | 61.7\% | -6.697 | -6.720 | -23 | |
 | 64.2\% | -7.091 | -7,605 | -514 | | 64.2\% | -6,830 | -7,961 | -1,131 | |
 | 65.4\% | -7,165 | -7,625 | -461 | | 65.4\% | -6,889 | -8,768 | -1,879 | |
 | ${ }^{66.7 \%}$ | -7,229 | -7,771 | -542 | | ${ }^{66.7 \%}$ | -7,790 | -8,901 | -1,811 | |
 | -67.9\% | -7.377 -7390 | -7,775 | -329 | | ${ }^{67.9 \%}$ | -7,717 | -9,270 | -1,554 | |
 | -69.1\% | -7.390 -745 | -7,819 | - 428 | | 69.1\% | ${ }_{-8,561}$ | -9,374 | -1,174 | |
 | 71.6\% | $\begin{array}{r}-7.445 \\ -7.540 \\ \hline\end{array}$ | -8,066 | -627 | | 70.4\% | ${ }_{-8,527}$ | -9,399 | -868 | |
 | 72.8\% | -7,786 | -8.561 | -775 | | 72.8\% | ${ }_{-9,068}$ | ${ }_{9.406}$ | ${ }_{338}$ | |
 | 74.1\% | -7,848 | -9,025 | 1,176 | | 74.1\% | -9,155 | 9.416 | 260 | |
 | 75.3\% | -8,307 | -9,072 | -764 | | 75.3\% | -9,355 | -9,462 | 107 | |
 | 76.5\% | -8,392 | -9,081 | -689 | | ${ }^{76.5 \%}$ | -9,368 | -9,483 | -114 | |
 | 79.0\% | ${ }_{-9.171}^{-9.909}$ | ${ }_{-9.458}$ | -287 | | 79.0\% | ${ }_{-9.476}$ | -9.491 | ${ }_{-15}^{-26}$ | |
 | 80.2\% | -9,394 | -9,754 | -360 | | 80.2\% | -9,494 | 9.567 | -73 | |
 | 81.5\% | -9,454 | -9,783 | ${ }^{-328}$ | | 81.5\% | -9,562 | 9,600 | ${ }^{38}$ | |
 | - $\begin{aligned} & 82.7 \% \\ & 880 \%\end{aligned}$ | -9,544 | -9,810 | -266 | | 82.7\% | -9,567 | 9.620 | 53 | |
 | 84.0\% | -9,751 | -9,852 | -100 | | 84.0\% | -9,620 | ${ }^{9,667}$ | ${ }^{-47}$ | |
 | - 8 85.4\% | -9,783 | -9,888 | -105 | | 85.2\% | -9,659 | -9,680 | ${ }^{21}$ | |
 | | -9,852 | -10,018 | -166 | | 86.4\% | -9,677 | -9,680 | ${ }^{-3}$ | |
 | 878.9\% | -9,888 | -10,029 | -134 | | - | -9,6801 | -9,681 | -1 | |
 | 90.1\% | -10,029 | -10,152 | -123 | | 90.1\% | -9,684 | -9,697 | -14 | |
 | 91.4\% | -10,130 | -10,159 | -29 | | 914\% | 9,697 | 9,704 | -7 | |
 | ${ }_{9}^{92.8 .8 \%}$ | -10,152 | -10,218 | -66 | | 92.6\% | -9.704 | -9.720 | -17 | |
 | ${ }^{938.1 \%}$ | -10,170 | -10,238 | -68 | | ${ }^{93.8 \%}$ | -9,707 | -9,746 | -39 | |
 | 96.3\% | -10,223 | -10,264 | ${ }^{-41}$ | | 96.3\% | ${ }_{-9,746}$ | -9,763 | -17 | |
 | 97.5\% ${ }^{98.8 \%}$ | -10,258 | - $-10,2066$ -1032 | ${ }_{-6}-8$ | | 97.5\% | -9,783 | ${ }_{9} 9810$ | ${ }^{27}$ | |
 | 98.8\% | -10,266 | -10,332 | -66 | | 98.8\% | -9.810 | ${ }_{9.838}$ | ${ }^{28}$ | |

 | $\begin{gathered} \text { Percent } \\ \text { Excedance } \end{gathered}$ | $\begin{gathered} \text { OCR } 2015 \text { Without } \\ \text { Proioct } \\ \hline \text { Prot } \end{gathered}$ | DCR 2015 With Project | Absolute Difference | Relative |
 | :---: | :---: | :---: | :---: | :---: |
 | Probability | Monthy Fow（CFS） | Monthy Fow（CFS） | （cFs） | |
 | 0．0\％ | 退 | 25，264 | -24 | ${ }^{-0.1 \%}$ |
 | 1．2\％ | ${ }^{8,164}$ | ${ }^{8.8848}$ | 684 | ${ }^{8.4 \%}$ |
 | 2．5\％\％ | ¢， $\begin{aligned} & \text { 5，452 } \\ & 3,729\end{aligned}$ | 6，053 5,178 | 6014 | 17．0\％ |
 | 4．9\％ | 3，217 | 3，079 | －138 | －4．3\％ |
 | ${ }^{6.2 \%}$ | －108 | －108 | 0 | |
 | 7．4\％ | －582 | －660 | 78 | |
 | ${ }_{\text {9．9\％}}$ | －－899 | －1，150 | －251 | |
 | 11．1\％ | －1，150 | ${ }_{-1,150}$ | | |
 | 12．3\％ | －1，150 | －1，150 | 0 | |
 | 13．6\％ | －1，150 | －1，207 | ${ }^{56}$ | |
 | 14．8\％ | －1，269 | －1，269 | 0 | |
 | 16．0\％ | －1，328 | －1，269 | 59 | |
 | 17．3\％ | －1，506 | ${ }^{-1,328}$ | 178 | |
 | 18．5\％ | －1，566 | －1，506 | 59 | |
 | 19．8\％ | －1，617 | －1．566 | 51 | |
 | ${ }^{21.0 \%}$ | －1．867 | －1，734 | ${ }^{133}$ | |
 | ${ }^{22.52 \%}$ | $-2,024$ $-2,255$ -2.07 | －1，776 | 249 | |
 | 24．7\％ | ${ }_{\text {－2，} 2,23}^{-2,25}$ | ${ }_{\text {－}}^{1,024}$ | 798 | |
 | 25．9\％ | －2，823 | －2，466 | 357 | |
 | 27．2\％ | －2，823 | －2，823 | 0 | |
 | 20．6\％ | －3，219 | ${ }_{2.823}^{-2.823}$ | 397 | |
 | 30．9\％ | ${ }_{-3,287}$ | －3，113 | 174 | |
 | 32．1\％ | 3，306 | －3，200 | | |
 | 33．3\％ | －3．500 | －3，315 | 185 | |
 | 34．6\％ | 3，500 | －3，500 | 0 | |
 | 年35．8\％ | －3，500 | －3，500 | 0 | |
 | 37．0\％ | 3，500 | －3，500 | 0 | |
 | | 3，500 | －3，500 | 0 | |
 | 39．7\％ | －3，500 | －3，500 | 0 | |
 | 40．7\％ | ${ }^{3,500}$ | －3，500 | 0 | |
 | ${ }^{43.2 \%}$ | －3，500 | －3，500 | 0 | |
 | ${ }^{43.4 \%}$ | －3，527 | ${ }_{\text {－}}^{3,500}$ | 27 | |
 | 45．7\％ | －3，549 | －3，500 | 49 | |
 | 46．9\％ | －3，603 | －3，548 | ${ }_{59}^{59}$ | |
 | 48．1\％ 4 \％ | －3．645 | －3，606 | ${ }^{39}$ | |
 | 50．6\％ | －3，854 | －3，790 | ${ }_{64} 64$ | |
 | 51．9\％ | ${ }_{-4,032}$ | ${ }_{-3,854}$ | 178 | |
 | 㐌53．1\％ | ${ }_{-4,4122}$ | －3，941 | 181 | |
 | 54.3%
 5.5% | | | | |
 | 56．8\％ | ${ }_{-4,226}$ | 4,207 | 19 | |
 | 58．0\％ | －4．516 | －4，226 | 290 | |
 | 59．3\％ | －4，593 | 4，344 | 249 | |
 | | －4，857 | 4，389 | 468 | |
 | 61．7\％ | －4，902 | 4，429 | 473 | |
 | － 63.0% | －4，943 | －4．739 | 304 | |
 | 65．4\％ | －5，000 | 4，747 | ${ }_{253}$ | |
 | 66．7\％ | －5，000 | －4，925 | 75 | |
 | 67．9\％ | －5，000 | －5，000 | 0 | |
 | 69．1\％ | ${ }_{5}^{5} .0000$ | －5，000 | 0 | |
 | 71．6\％ | ${ }^{5} 5.000$ | －5，000 | 0 | |
 | 77．2\％ | ${ }_{-5,000}$ | －5，000 | 0 | |
 | 74．1\％ | ${ }_{\text {－5，000 }}$ | ${ }_{\text {－5，000 }}-0.000$ | 0 | |
 | 75．3\％ | －5，000 | －5，000 | 0 | |
 | 76．5\％ | －5，000 | －5，000 | 0 | |
 | 79．0\％ | ${ }_{-5,000}$ | ${ }_{\text {－5，000 }}$ | 0 | |
 | 80．2\％ | 5.000 | －5，000 | 0 | |
 | 81．5\％ | ${ }_{5}^{5}, 000$ | －5，000 | 0 | |
 | 82.7% 84.0% | －5，000 | －5，000 | 0 | |
 | 84．0\％ | 5．000 | 5，000 | 0 | |
 | 85．2\％ | －5，000 | －5，000 | 0 | |
 | －${ }_{\text {86．7．}}^{86 \%}$ | 5，000 | －5，000 | 0 | |
 | 877\％ | －5．000 -5000 | ${ }^{-5.000}$ | 0 | |
 | 90．1\％ | －5，000 | －5，000 | 0 | |
 | 91．4\％ | －5，000 | 5，000 | 0 | |
 | 926\％${ }_{\text {938\％}}$ | －5，000 | －5．000 | 0 | |
 | －${ }_{\text {953．8\％}}$ | －5，000 | －5，000 | 0 | |
 | ${ }_{96.3 \%}$ | ${ }_{5}^{-5,000}$ | ${ }_{5,000}$ | 0 | |
 | 97．5\％ | －5，000 | －5，000 | 0 | |
 | 98．8\％ | －5，000 | 5，000 | 0 | |

 | Percent | DCR 2015 Wetrout | DCR 2015 With Project | | Relative |
 | :---: | :---: | :---: | :---: | :---: |
 | Exceedance | ${ }_{\text {Montly }}^{\text {Proiect }}$（cFs） | Monthy Fow（CFS） | Difference （CFS） | Herence（\％） |
 | 0．0\％ | 8,106 | 8.067 | －39 | －0．5\％ |
 | 1．2\％ | 6，904 | 7.475 | 570 | 8．3\％ |
 | 2．5\％ | 6，123 | 6，110 | －13 | 0．2\％ |
 | 3．7\％ | 5，369 | 5．410 | 41 | 0．8\％ |
 | 4．9\％\％ | 5.369 4.792 | 5.340
 4.778 | －29 | |
 | 6．2\％ | 4，992 | 4，789 | －14 | |
 | 8．6\％ | ${ }_{3,157}$ | ${ }_{3,146}$ | －11 | －0．3\％ |
 | 9．9\％ | 3，053 | 3，046 | 7 | －0．2\％ |
 | 11．1\％ | 2，821 | 2，821 | 0 | |
 | 12．3\％ | 2.809 | 2，807 | －2 | |
 | 13．6\％ | 2，795 | 2，779 | 16 | |
 | 14．8\％ | 2，427 | 2，427 | 0 | 0．0\％ |
 | 16．0\％ | ${ }^{2,226}$ | ${ }_{2}^{2,296}$ | 0 | 0．0\％ |
 | 17．3\％ | ${ }^{2,227}$ | ${ }^{2,227}$ | 1 | 0．0\％ |
 | 18．5\％ | ${ }^{2,211}$ | 2，207 | －5 | －0．2\％ |
 | 19．8\％ | 2，207 | 2，206 | －1 | 0．0\％ |
 | 21．0\％ | ${ }^{2}, 068$ | 2，068 | 0 | 0．0\％ |
 | ${ }^{22.2 \%}$ | ${ }^{1,918}$ | ${ }^{1,9198}$ | 0 | 0．0\％ |
 | 23．5\％ | ${ }^{1,870}$ | ＋1，827 | ${ }^{-4}$ | 2．3\％ |
 | 24．7\％ | ${ }_{1}^{1,827}$ | 1，806 | ${ }^{21}$ | |
 | 25．9\％ | ${ }^{1,714}$ | －1，715 | 0 | |
 | 27．2\％ | ${ }_{1}^{1,711}$ | ${ }_{1}^{1,713}$ | ${ }^{\circ}$ | |
 | ${ }_{29,4 \% \%}$ | ${ }_{1,678}^{1,711}$ | ${ }_{1}^{1,628}$ | － 50 | －3．0\％ |
 | 30．9\％ | 1，628 | 1，569 | －60 | －3．7\％ |
 | 32．1\％ | 1.607 | ${ }^{1.565}$ | －43 | |
 | 33．3\％ | ${ }_{1}^{1,565}$ | ${ }_{1}^{1.544}$ | ${ }^{21}$ | |
 | 34．6\％ | 1，496 | 1，496 | 0 | |
 | 35．8\％ | 1，471 | 1，460 | －10 | |
 | 37．0\％ | 1，460 | 1，456 | 4 | －0．2\％ |
 | 38．3\％ | 1，457 | 1，438 | －18 | －1．3\％ |
 | 39．5\％ | 1，438 | ${ }^{1,426}$ | ${ }^{-12}$ | －0．8\％ |
 | 40．7\％ | 1，435 | 1，400 | －35 | －2．4 |
 | 42．0\％ | 1，426 | ${ }^{1,361}$ | －64 | －4．5\％ |
 | 43．2\％ | ${ }^{1,056}$ | ${ }^{1,056}$ | 0 | 0．0\％ |
 | 44．4．\％ | 1,044 | ${ }^{1,005}$ | ${ }^{39}$ | －3．7\％ |
 | 45．7\％ | 960 | 960 | 0 | 0．0\％ |
 | 46．9\％ | ${ }^{936}$ | 936 | 0 | 0．0\％ |
 | 48．19\％ | 925 | ${ }_{772} 9$ | －17 | |
 | 49．4\％ | 908 | 772 | ${ }^{-136}$ | |
 | 50．6\％ | 620 | 621 | | 0．0\％ |
 | 51．9\％ | 651 | 611 | O | |
 | 54．3\％ | 555 546 | ${ }_{546}^{555}$ | 0 | 0．0\％ |
 | 55．6\％ | 540 | 540 | 0 | |
 | 56．8\％ | 536 | 536 | 0 | |
 | 58．0\％ | 466 | 535 | 69 | 14．7\％ |
 | 59．3\％ | 444 | 512 | 68 | 15．3\％ |
 | 60．5\％ | ${ }^{399}$ | 398 | 0 | －0．1\％ |
 | 61．7\％ | 289 | 362 | 72 | |
 | 63．0\％ | ${ }^{224}$ | 289 | 66 | 29．3\％ |
 | ${ }^{64.2 \%}$ | －48 | －48 | 0 | |
 | 65．4\％ | －82 | －81 | 0 | |
 | ${ }_{66.7 \%}$ | －144 | －144 | 0 | |
 | 67．9\％ | －170 | －170 | 0 | |
 | 69．1\％ | －178 | －185 | 7 | |
 | 70．4\％ | － 298 | － 298 | 0 | |
 | 71．6\％ | －203 | ${ }_{-227}$ | 0 | |
 | 74．1\％ | －220 | ${ }_{-242}$ | ${ }_{3}$ | |
 | 75．3\％ | －255 | －255 | － | |
 | 76．5\％ | －303 | －303 | 0 | |
 | 77．8\％ | －327 | －326 | 0 | |
 | 890\％ | ${ }_{-327}$ | 327 | | |
 | 80．15\％ | ${ }_{-375}$ | ${ }_{-375}$ | 0 | |
 | 82．7\％ | －394 | 394 | 0 | |
 | 84．0\％ | 751 | 752 | 0 | |
 | 85．2\％ | －764 | －764 | 0 | |
 | 86．4\％ | 854 | 854 | 0 | |
 | 877\％ | －965 | －966 | 0 | |
 | 88．9\％ | ${ }^{-1.012}$ | ${ }^{-1,033}$ | 21 | |
 | 90．1\％ | －1，033 | ${ }^{-1,086}$ | －52 | |
 | 91．4\％ | ${ }^{-1,143}$ | －1，143 | 0 | |
 | 92．6\％ | －1，150 | －1．150 | 0 | |
 | 93．8\％ | ${ }^{-1,150}$ | 1，150 | 0 | |
 | 96．3\％ | －－1，150 | －1，150 | 0 | |
 | ${ }^{9} 9.5 \%$ | －－1，259 | －1，150 | 0 | |
 | 98．8\％ | 1，335 | 1，259 | 77 | |
 | 100．0\％ | 1，398 | 1，398 | | |

 Table SW-35-b
 nd Midde River, Sonthy Flow

 | Percent | DCR 2015 Wethout | DCR 2015 With Project | Absoute | Relative |
 | :---: | :---: | :---: | :---: | :---: |
 | Exceedance | ${ }_{\text {Montly }}^{\text {Proiect }}$ (cFs) | Monthly Fiow (CFS) | Difference (CFS) | Difference $(\%)$ |
 | 0.0\% | -1,714 | 2,786 | -1,072 | |
 | 1.2\% | -1,847 | -3,507 | $-1,660$ | |
 | 2.5\% | -2,011 | -3,942 | -1,931 | |
 | 3.7\% | -2,012 | -4,422 | -2,409 | |
 | 4.9\% | --.592 | -4.556 | -1.964 | |
 | -6.4\% | -2.593 ${ }_{-2,637}$ | -4,663 | - | |
 | 8.6\% | ${ }_{-2,708}$ | -5,236 | ${ }_{2} .528$ | |
 | 9.9\% | -3,116 | -5,282 | 2,165 | |
 | 11.1\% | -3,579 | -5,518 | | |
 | 12.3\% | -3,915 | 5,734 | -1,819 | |
 | 13.6\% | -4,021 | -5,818 | -1,797 | |
 | 14.8\% | 4,328 | -6,056 | 1,728 | |
 | 16.7\% | 4,545 | -6,139 | -1,593 | |
 | 17.3\% | -4,874 | -6,184 | -1,310 | |
 | 18.5\% | -5,057 | -6,321 | $-1,265$ | |
 | 19.8\% | -5,236 | -6,332 | -1,096 | |
 | 21.0\% | -5,354 | -6.512 | ${ }^{1} 1,158$ | |
 | ${ }^{22.2 \%}$ | ${ }_{-5,388}$ | -6,702 | -1,314 | |
 | - | -5,7917 | -6.885 | 1,102 | |
 | ${ }^{24.79 \%}$ | -5,917 | -6,917 | 1,000 | |
 | 25.9\% | -6,043 | --7,081 | -1,037 | |
 | 27.2\% 28.4% | ${ }_{-6,302}-6,120$ | -7, 7125 | ${ }_{-8727}^{1,005}$ | |
 | 29.6\% | -6,588 | -7,261 | -674 | |
 | 30.9\% | -6,654 | -7,350 | -696 | |
 | 32.1\% | -7,001 | -7,407 | -407 | |
 | | -7,101 | -7.996 | -815 | |
 | ${ }^{34.6 \%}$ | ${ }_{-7,261}^{-7.151}$ | -8.633 | -1,372 | |
 | 37.0\% | -8,095 | -9,313 | -1,218 | |
 | 38.3\% | -,908 | -9,539 | -631 | |
 | 39.5\% | -9,313 | -9,581 | 268 | |
 | 40.7\% | -9,770 | -9,770 | 0 | |
 | 42.0\% | -9,777 | -9,777 | 0 | |
 | 43.2\% | -9,787 | 9,8.808 | -21 | |
 | 44.4\% | -9,859 | -10,003 | -144 | |
 | 45.7\% | -9,874 | -10,124 | -251 | |
 | 46.9\% | ${ }^{-9,8995}$ | -10,186 | -291 | |
 | 48.1\% ${ }^{4.4 .9}$ | -10,167 | -10,223 | -56 | |
 | 49.4\% | -10,172 | -10,236 | -64 | |
 | 年 50.6% | -10,223 | -10,335 | -112 | |
 | 51.9\% | (10,350 | -10,581 | ${ }_{-231}$ | |
 | 54.3\% | -10,525 | -10,589 | -63 | |
 | 55.6\% | -10,536 | -10,603 | ${ }^{67}$ | |
 | | | -10,607 | -38 | |
 | 59.3\% | -10,580 | ${ }_{-10,634}$ | -54 | |
 | 60.5\% | -10,589 | -10,637 | -48 | |
 | 61.7\% | -10,603 | -10,662 | . 59 | |
 | 63.\% | -10,607 | -10,677 | -70 | |
 | 64.2\% | -10,621 | -10,694 | ${ }^{73}$ | |
 | ${ }^{65.4 \%}$ | -10,662 | -10,698 | ${ }^{-36}$ | |
 | 66.7\% | -10,667 | -10,725 | -58 | |
 | -67.9\% | -10,677 | -10,727 | -50 | |
 | 79.1\% | -10,698 | -10,744 | -45 | |
 | 71.6\% | -10,724 | -10,755 | ${ }^{31}$ | |
 | 72.8\% | ${ }^{-10,744}$ | -10,769 | ${ }_{-25}$ | |
 | 74.1\% | -10,755 | -10,770 | -15 | |
 | 75.3\% | -10,759 | -10,787 | ${ }^{-28}$ | |
 | ${ }^{76.5 \%}$ | -10,770 | -10,790 | ${ }^{20}$ | |
 | 79.0\% | -10,790 | -10.859 | - 69 | |
 | 80.2\% | -10,859 | -10,885 | ${ }^{26}$ | |
 | 81.5\% | -10,885 | -10,933 | 48 | |
 | ${ }^{82.7 \%}$ | -10,903 | -10,988 | 84 | |
 | - ${ }_{\text {84.0\% }}^{8.2 \%}$ | -10,933 | -11,032 | 98 | |
 | - | -10,988 $-11,000$ | $-11,080$ -11083 | ${ }_{-83}$ | |
 | 87.7\% | -11,031 | ${ }^{-11,096}$ | ${ }_{-65}$ | |
 | 88.9\% | -11,080 | -11,127 | -47 | |
 | 90.1\% | -11,083 | -11,137 | -54 | |
 | 914\% | -11,099 | -11,152 | ${ }^{53}$ | |
 | 92.6\% | -11,126 | -11,162 | ${ }^{36}$ | |
 | 93.8\% | -11,129 | -11,223 | -94 | |
 | ${ }^{95.3 \%}$ | - ${ }_{\text {-11,1167 }}$ | - 11,2228 | -87 | |
 | 97.5\% | -11,166 | -11,244 | ${ }_{-79}$ | |
 | 98.8\% | ${ }_{\text {- }}$ | -11,261 | \bigcirc | |

 Figure SW-36-b
 Total Banks Pumping Plant (SWP and CVP) and Jones Pumping Plant (CVP) , Monthly Diversion

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multicolumn{5}{|c|}{October} \\
 \hline Percent Exceedanc \& DCR 2015 Without \& DCR 2015 With Project \& Absolute \& \\
 \hline Probability \& Monthly Divesision \& Montily Diversion \& Difference \& Hference（\％） \\
 \hline 0．0\％ \& \({ }^{\text {（cFs，}} 11.280\) \& \({ }_{\text {（1，FS）}}^{11,280}\) \& ） \& 0．0\％ \\
 \hline 1．2\％ \& 11，280 \& 11，280 \& 0 \& 0．0\％ \\
 \hline 2．5\％ \& 11，280 \& 11，280 \& 0 \& 0．0\％ \\
 \hline 3．7\％ \& 11，056 \& 11，280 \& 224 \& 2．0\％ \\
 \hline 4．9\％ \& 10，754 \& 10，734 \& \({ }^{20}\) \& －0．2\％ \\
 \hline 6．2\％ \& 10，687 \& 10，692 \& 5 \& 0．1\％ \\
 \hline 7．4\％ \& 10，383 \& 10，414 \& 31 \& 0．3\％ \\
 \hline 8．6\％ \& 10，115 \& 10，270 \& 154 \& 1．5\％ \\
 \hline 9．9\％ \& 10，083 \& 10，112 \& \({ }^{29}\) \& 0．3\％ \\
 \hline 11．1\％ \& 9,960 \& \({ }^{9,976}\) \& 16 \& 0．2\％ \\
 \hline \({ }^{12.3 \%}\) \& 9,845 \& \({ }_{9}^{9.872}\) \& 27 \& 0．3\％ \\
 \hline 13．6\％ \& \({ }_{\text {9，478 }}\) \& 9，769 \& \({ }_{721} 29\) \& 3．1\％ \\
 \hline \(14.8 \%\)
 \(160 \%\)
 10， \& 9，023 \& \({ }^{9,745}\) \& 722
 459 \& －\({ }_{\text {8．0\％}}\) \\
 \hline － 17.3 \％ \& \({ }_{8,915}^{9,020}\) \& \({ }_{9,256}^{9,478}\) \& \({ }_{341}^{459}\) \& \({ }_{\text {3，}}^{5.8 \%}\) \\
 \hline \& \& \({ }_{9} 9200\) \& 390 \& 4．4\％ \\
 \hline 19．8\％ \& \({ }_{8,540}^{80}\) \& \({ }_{9}^{9,144}\) \& 604 \& 7．1\％ \\
 \hline 21．0\％ \& 8，456 \& 8.781 \& \& 3.8 \\
 \hline \({ }^{22.2 \%}\) \& 8,420 \& 8.775 \& 356 \& \\
 \hline 2．3．2\％
 24，7\％ \& 8，251 \& \({ }^{8,731}\) \& 480 \& \\
 \hline 24．7\％ \& －8，185 \& ¢，8，718 \({ }_{8,705}\) \& \({ }_{588}^{533}\) \& \({ }_{\text {7．3\％}}^{6.5 \%}\) \\
 \hline 27．2\％ \& 8 8，066 \& \({ }_{8,456}^{8,4,}\) \& 390 \& 4．8\％ \\
 \hline 28．4\％ \& 8.000 \& \({ }_{8,454}\) \& 454 \& 5．7\％ \\
 \hline 29．6\％ \& 7，998 \& \({ }_{8}^{8,366}\) \& 368 \& 4．6\％ \\
 \hline 30．9\％ \& \({ }_{7}^{7,844}\) \& \({ }_{8}^{8,355}\) \& 550 \& 6．5\％ \\
 \hline 32．1\％ \& 7，717 \& \({ }_{8}^{8,313}\) \& 597 \& 7．7\％ \\
 \hline \& 7.691 \& 8，297 \& 606 \& 7．9\％ \\
 \hline 34．6\％ \& 7,690
 7612 \& \({ }_{8}^{8,078}\) \& \({ }_{448}^{388}\) \& 5．0\％ \\
 \hline 35．8\％ \& 7．612 \& 8，054 \& \({ }_{5}^{42}\) \& 5．8\％ \\
 \hline \& 7，491 \& \({ }^{8,000}\) \& 509 \& 年．8\％\％ \\
 \hline 隹 \(38.3 \%\) \& \begin{tabular}{l}
 7,480 \\
 7.254 \\
 \hline
 \end{tabular} \& 7，903 \& \({ }_{429}^{423}\) \& 5．7\％ \\
 \hline 40．7\％ \& \({ }_{7}^{7,248}\) \& 7,689
 7 \& \({ }_{381}\) \& \({ }^{5.3 .3 \%}\) \\
 \hline 42．0\％ \& 7.235 \& 7.622 \& 387 \& 5．3\％ \\
 \hline 43．2\％ 4 4．4\％ \& 7，152 \& \(\begin{array}{r}7,604 \\ 7.657 \\ \hline\end{array}\) \& 453 \& 6．3\％ \\
 \hline \({ }^{44.4 .7 \%}\) \& 7，027 \& 7，567 \& \({ }_{475}^{457}\) \& c．\({ }_{\text {c．4\％}}^{6.8 \%}\) \\
 \hline 46．9\％ \& 6，933 \& 7,490 \& 557 \& 8．0\％ \\
 \hline 48．1\％ \& 6，901 \& 7，433 \& 532 \& 7．7\％ \\
 \hline 49．4\％ \& \({ }^{6,880}\) \& 7，423 \& 543 \& 7．9\％ \\
 \hline \& 6，880 \& \({ }_{7}^{7,373}\) \& 494 \& 7．2\％ \\
 \hline 51．9\％ \& 6，781 \& 7,225 \& 444 \& 6．5\％ \\
 \hline 54．3\％ \& 6，722 \& 7，209 \& 487 \& 7．2\％ \\
 \hline 54．3\％
 5.5
 5 \& 6，687 \& 7,203 \& 516 \& 7．7\％ \\
 \hline 55．6\％ \& \({ }^{6.598}\) \& 7，149 \& 557 \& 8．4\％ \\
 \hline 年56．8\％ \& \& 7,093
 6.979 \& 774
 672 \& ＋12．3\％ \\
 \hline 59．3\％ \& 6,203 \& \({ }_{6,916}^{6,916}\) \& 713 \& 11．5\％ \\
 \hline 60．5\％ \& 6，126 \& 6，834 \& 708 \& 11．6\％ \\
 \hline 61．7\％ \& 6，121 \& 6，757 \& 636 \& 10．4\％ \\
 \hline \(63.0 \%\)
 \(64.2 \%\) \& ¢， \begin{tabular}{l}
 6.082 \\
 5.961 \\
 \hline
 \end{tabular} \& －6．560 \& 478
 590 \& 7．9\％ \\
 \hline \({ }_{6} 6.44 \%\) \& \({ }_{5,884}^{5.961}\) \& \({ }_{6,505}^{6.505}\) \& 671 \& 11．5\％ \\
 \hline \({ }^{66.7 \%}\) \& 5，772 \& \({ }_{6,458}^{6,56}\) \& 686 \& 11．9\％ \\
 \hline \({ }^{67.9 \%}\) \& （ \& 6，390 \& 758
 730 \& \({ }^{13.5 \%}\) \\
 \hline 70．4\％ \& 5，458 \& \({ }_{6,206}^{6,206}\) \& 748 \& 13．7\％ \\
 \hline 71．6\％ \& \({ }_{5,429}\) \& \({ }_{6,033}\) \& 603 \& 11．1\％ \\
 \hline 72．8\％ \& 5，404
 5
 5732 \& \({ }_{6}^{6012}\) \& 608 \& 11．3\％ \\
 \hline 74．19\％ \& \({ }_{5}^{5.372}\) \& \({ }_{\text {c，917 }}\) \& 5474 \& 10．2\％ \\
 \hline 75．3\％ \& \({ }_{5}^{5,3630}\) \& 5，735
 5.475 \& \begin{tabular}{l}
 374 \\
 145 \\
 \hline
 \end{tabular} \& 7．0\％ \\
 \hline 77．8\％ \& 5.070 \& \({ }_{5,398}^{5}\) \& \({ }_{328}\) \& \({ }_{6.5 \%}\) \\
 \hline 79．0\％ \& 5.048 \& \({ }_{5}^{5.306}\) \& 258 \& 5．1\％ \\
 \hline －80．2\％ \& 5.010
 4.990 \& 5.039
 4
 4 \& \({ }^{28}\) \& 0．6\％ \\
 \hline \({ }^{81.5 \%} 8\) \& 4，999 \& 4,990
 4.818 \& \({ }_{-110}\) \& －2．2\％ \\
 \hline 84．0\％ \& 4,929 \& 4.743 \& －186 \& －3．8\％ \\
 \hline 85．2\％ \& ＋\({ }_{4}^{4.823}\) \& 4，652 \& －171 \& －3．6\％ \\
 \hline 86．4\％ \& \({ }_{4,3,308}^{4,403}\) \& \({ }_{4}^{4.638}\) \& \({ }_{-285}^{235}\) \& －6．3\％ \\
 \hline 88．9\％ \& 4,395 \& 3，957 \& －437 \& －10．0\％ \\
 \hline \({ }^{90.14 \%}\) \& \({ }_{4,255}^{4.379}\) \& 3.871
 3666 \& －508 \& － \(11.6 \%\) \\
 \hline 92．6\％ \& 3，957 \& 3，420 \& －538 \& －13．6\％ \\
 \hline 93．8\％ \& \({ }_{\text {3，671 }}\) \& \({ }_{2}^{2,778}\) \& －893 \& －24．3\％ \\
 \hline \({ }_{9}^{95.36 \%}\) \& \({ }^{3,585}\) \& 2.422 \& －1，164 \& －32．5\％ \\
 \hline \({ }^{96.3 \%}\) \& 3,497

 2,920 \& 2,174
 1,846 \& －1，323 ${ }^{-1,074}$ \&

 \hline 98．8\％ \& ${ }_{2,350}^{2,1020}$ \& 1，767 \& ${ }_{-}^{1} 583$ \& －24．8\％

 \hline 100．0\％ \& 2，341 \& 1，277 \& －1，064 \& －45．4\％

 \hline
 \end{tabular}

 | Table SW－36－b
 Total Banks Pumping Plant（SWP and CVP）and Jones Pumping Plant（CVP），Monthly Diversion Probability of Exceedance | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | November | | | | Decen | | | | |
 | | ${ }_{\text {der }}^{\text {DCR } 2015 \text { Without }}$ Proiet | DCR 2015 With Project | Absolute | | | ${ }^{\text {DCR } 2015 \text { Without }}$ Proiect | 2015 With Project | Absolute | Relative |
 | | Monthly Diversion | Monthy Diversion | （ ${ }^{\text {difers）}}$ | Difference $(\%)$ | Probability | Monthly Diversion | Monthy livesision | ${ }_{\text {difler }}^{\substack{\text { Diference } \\ \text {（cFs）}}}$ | Difference（\％） |
 | （6） | （CFF） 11 | （11280 | 0 | 0 \％ | （1） | （crs | （crs） | | |
 | ．0\％ | | | | 0．0\％ | 0．0\％ | | | | 0．0\％ |
 | 1．2\％ | 11，280 | 11，220 | | 0．0\％ | 1．2\％ | 12，278 | 12，278 | | |
 | 2．5\％ | 11280 | 11230 | | 0．0\％ | 2．3\％ | 11283 | 112，185 | | |
 | 4．9\％ | 11280 | 11230 | | 00\％ | （19\％ | 11801 | 11801 | ， | |
 | 6．2\％ | 11280 | 11280 | | 0\％ | 62\％ | 11770 | 11800 | 0 | 0．0\％ |
 | 7．4\％ | 11280 | 11280 | | 00\％ | 6．2\％ | 11748 | 11748 | | 0．3\％ |
 | 8．6\％ | 11280 | 11280 | 0 | 0．0\％ | 86\％ | 11725 | 11725 | | 00\％ |
 | 9．9\％ | 11，280 | 11，280 | 0 | 0．0\％ | 9．9\％ | 11，719 | 11,719 | 0 | 0．0\％ |
 | 11．1\％ | 11，280 | 11，280 | 0 | 0．0\％ | 11．1\％ | 11,717 | 11，719 | 2 | 0．0\％ |
 | 12．3\％ | 11，280 | 11，280 | 0 | 0．0\％ | | 11，693 | 11，693 | 0 | 0．0\％ |
 | 13．6\％ | 11，280 | 11，280 | 0 | 0．0\％ | 13．\％ | 11，686 | 11，686 | 0 | 0．0\％ |
 | 14．8\％ | 11，280 | 11，280 | 0 | 0．0\％ | 14．8\％ | 11,669 | 11，680 | 11 | 0．1\％ |
 | 16．0\％ | 11，280 | 11，280 | 5 | 0．0\％ | 16．0\％ | ${ }^{11,665}$ | ${ }^{11,669}$ | 4 | 0．0\％ |
 | 17．3\％ | 10，716 | 11，280 | 564 547 | 5．3\％ | 17．3\％ | 111.663 | 11，665 | 2 | 0，\％ |
 | 18．5\％ | 10,629 10.470 | 11,176 10,899 | 547 430 | ${ }_{\text {c }}^{5.12 \%}$ | －18．5\％ | ${ }^{111,661}$ | ${ }^{11,663}$ | 3 | 0．0\％ |
 | 21．0\％ | ${ }^{10,157}$ | ${ }_{10,714}$ | | | 210\％ | ${ }^{11,1654}$ | ${ }_{111659}$ | 4 | 0．0\％ |
 | | 10，131 | 10，572 | 441 | 4．4\％ | 22．2\％ | 11，648 | 11，654 | 6 | |
 | 23．5\％ | 9，902 | 10，350 | 448 | 4．5\％ | 23．5\％ | ${ }^{11,642}$ | 11，648 | 6 | |
 | 24．7\％ | 9，661 | 10，207 | 546 | 5．7\％ | 24．7\％ | 11，599 | ${ }^{11,642}$ | ${ }^{43}$ | |
 | 25．9\％ | 9，297 | 10，199 | 903 | 9．7\％ | 25．9\％ | ${ }^{11,582}$ | 11，640 | 57 | |
 | 27.2% 28.4% | 9，222 | 9，966 | 744 | 8．1\％ | 27．2\％ | ${ }^{11,338}$ | 11，605 | 267 | |
 | 20．6\％ | ${ }_{8}^{8,807}$ | ${ }_{\text {g，}}^{\text {g，} 536}$ | ${ }_{1}^{1,029}$ | ${ }_{13,5 \%}^{11.7 \%}$ | ${ }^{28.4 \%}$ | 11，220 | 111.599 | 3200 | |
 | 30．9\％ | 8.313 | ${ }_{9,200}$ | 887 | 10．7\％ | 30．9\％ | ${ }^{11,1,154}$ | 11,371 | ${ }_{217}$ | 1．9\％ |
 | 32．1\％ | 8，188 | 8，847 | 659 | 8．0\％ | 32．1\％ | 10，881 | 11，360 | 479 | 4．4\％ |
 | 33．3\％ | ${ }_{8,177}$ | 8,740 | 562 | 6．9\％ | 33．3\％ | 10.721 | ${ }^{11,346}$ | 625 | 5．8\％ |
 | | 8，129 | ${ }^{8,665}$ | 536 | 6．6\％ | 34．6\％ | 10，430 | 11，303 | 873 | 8．4\％ |
 | 35．8\％ | 8,109 7,980 | ${ }_{\text {8，563 }}^{8,547}$ | ${ }_{567}^{454}$ | ${ }^{5.6 \%}$ | ${ }^{35.8 \%}$ 37．0\％ | ${ }_{\substack{10,825}}^{10,57}$ | －11，215 | ${ }^{1,1,37}$ | －11．5\％ |
 | 38．3\％ | 7.945 | ${ }^{8,379}$ | 434 | 5．5\％ | 38．3\％ | 9，769 | 10，703 | 934 | 9．6\％ |
 | 39．5\％ | 7，895 | 8，276 | 381 | 4．8\％ | 39．5\％ | 9，466 | 10，614 | 1，148 | 12．1\％ |
 | 40．7\％ | ¢，736 | 8，169 | ${ }_{433}^{433}$ | 5．6\％ | 40．7\％ | 9，308 | 9．893 | 585 | 6．3\％ |
 | 4．3．2\％ | 7,5056 7,568 | ${ }_{8,059}^{8,088}$ | ${ }_{493}^{483}$ | | ${ }^{42.0 \%}$ | ${ }_{8}^{9,7705}$ | ${ }_{\text {9，521 }}^{9,765}$ | ${ }_{816}^{625}$ | ${ }_{\text {6．8．8\％}}$ |
 | 44．4\％ | 7，5652 | ${ }_{7,997}^{8,059}$ | 446 | 5．9\％ | 44．4\％ | ${ }_{8,558}^{81}$ | ${ }_{9,500}^{9.921}$ | ${ }_{942}$ | 11．0\％ |
 | 45．7\％ | 7，510 | ${ }_{7}^{7,986}$ | 476 | 6．3\％ | 45．7\％ | ${ }_{8} 8.536$ | 9.428 | 892 | 10．5\％ |
 | 46．9\％ | 7，374 | 7，713 | 339 | 4．6\％ | 46．9\％ | 8，420 | 8，705 | 285 | 3．4\％ |
 | 48．19\％ | 7,330 7 7 | 7.584
 7.568 | ${ }_{326}^{254}$ | 8．5\％ | ${ }^{48.19 \%}$ | ${ }_{8,382}^{8,382}$ | ${ }_{8,536}^{8,556}$ | 174 155 158 | 2．1\％ 1.8 |
 | 50．6\％ | 7，205 | 7.568 | 363 | 5．0\％ | 50．6\％ | ${ }_{8,320}$ | 8,450 | 130 | 1．6\％ |
 | | 7.086 | ${ }^{7,537}$ | 451 | 6．4\％ | 51．9\％ | ${ }_{8,313}$ | 8，382 | 69 | 0．8\％ |
 | 54．3\％ | 7,005
 6.984 | 7,525
 74688 | ${ }_{485}^{521}$ | （7．4\％\％ | ${ }^{534.15 \%}$ | 8,233
 8,113 | ${ }_{8,113}^{8,313}$ | ${ }^{80}$ | 1．0\％ |
 | 55．6\％ | ${ }_{6,858}^{6,984}$ | 7,419 | 562 | ${ }_{8.2 \%}$ | 55．6\％ | ${ }_{8,017}^{8,}$ | 8 8，069 | 51 | 0．6\％ |
 | 56．8\％ | 6，828 | 7，260 | 432 | 6．3\％ | 56．8\％ | 7，943 | 7，996 | 53 | 0．7\％ |
 | 58．0\％ | 6，800 | 7，249 | 449 | 6．6\％ | 58．0\％ | 7，908 | 7.988 | 80 | 1．0\％ |
 | （59．3\％ | | 7,197 7088 7 | 413 | 6．1\％ | 59．3\％ | 7，863 | ${ }_{7}^{7,943}$ | 80 | 1．0\％ |
 | 㐌60．7\％\％ | ¢，6．622 | 7，084 | ${ }_{462}^{426}$ | | － 60.5% | 7,862
 7,850 | 7,937 7 7 | 75 58 | － |
 | 63．0\％ | ${ }_{6.613}$ | 6,980 | 367 | 5．5\％ | 63．0\％ | 7.835 | 7.892 | 57 | 0．7\％ |
 | 64．2\％ | 6.521 | 6，937 | 416 | 6．4\％ | 64．2\％ | 7,716 | 7，880 | 164 | 2．1\％ |
 | | 化，456 | 6，929 | ${ }_{500}^{474}$ | 7．3\％ | 65．4\％ | 7,656 7 7 7643 | 7，855 | 200 104 | 2．6\％ |
 | － $6.7 .9 \%$ | c，6,427
 6,402
 ， | ci，6,826
 6,80 | 500 438 | | － $6.6 .7 \%$ | 7,643 7,688 | 7,837
 7,780 | 194 172 1 | ${ }_{\text {2．3\％}}^{2.5 \%}$ |
 | 69．1\％ | ${ }_{6,331}$ | 6,766 | 435 | 6．9\％ | 69．1\％ | 7,477 | 7,665 | 188 | 2．5\％ |
 | 70．4\％ | ¢，6，279 | | 205 136 | 3．3\％\％ | 70．4\％ | 7，406 | 7，662 | ${ }^{256}$ | ${ }^{3.5 \%}$ |
 | 71．6\％${ }^{72.8 \%}$ | 6，117 5.994 | | 136 249 | ${ }_{\text {2．1\％}}^{2.2 \%}$ | 71．6\％ | 7,398
 7,375 | 7,661
 7,608 | ${ }_{233}^{263}$ | －${ }_{\text {3．6\％}}$ 3．2\％ |
 | 74．1\％ | 5,901 | 6，162 | 261 | 4．4\％ | 74．1\％ | 7,358 | 7,460 | 102 | 1．4\％ |
 | 75．3\％ | 5，588 | 5.974 | 386 | 6．9\％ | 75．3\％ | 7，268 | 7,435 | 167 | 2．3\％ |
 | 76．5\％ | 5,201
 5,158
 18 | 5,900 5,754 | 699 596 | ${ }^{13.4 \%}$ | 76．5\％ | 7,120 7,049 | 7,406 7,375 | 286 326 | 4．0\％\％ |
 | 79．0\％ | 4.841 | 5．596 | 754 | 15．5\％ | 79．0\％ | 6，789 | 7，296 | 506 | 7．5\％ |
 | 80．2\％ | 4，780 | 5.578 | 798 | 16．7\％ | 80．2\％ | 6，776 | 7，120 | 343 | 5．1\％ |
 | 81．5\％ | 4.685 | ${ }_{5}^{5,254}$ | 570 | ${ }^{12.2 \%}$ | 81．5\％ | ${ }^{6,706}$ | ${ }_{6}^{6,834}$ | 128 | 1．9\％ |
 | 827\％ | 4，609 | 5，201 | 592 | 12．9\％ | 82．7\％ | 化，648 | ¢，645 | －37 | 0．0\％ |
 | 84．0\％ | ${ }_{4,392}^{4.584}$ | 5，078
 5,032 | ${ }_{644}^{494}$ | 10．8\％ | 84．0\％ | 析，645 | ${ }_{\text {c，}}^{6.5727}$ | － 117 | ${ }_{-3.2 \%}^{-1.8 \%}$ |
 | 86．4\％ | 4，285 | 4，973 | 688 | 16．1\％ | 86．4\％ | 6，277 | 6，354 | 78 | 1．2\％ |
 | 87．7\％ | 4，177 | 4，788 | 611 | 14．6\％ | 87．7\％ | ${ }_{6}^{6,258}$ | 6，352 | ${ }^{93}$ | 1．5\％ |
 | 88．9\％ | 4，171 | 4，445 | ${ }^{273}$ | ${ }^{6.6 \%}$ | 88．9\％ | 6，179 | ${ }^{6,282}$ | 103 | 1．7\％ |
 | 90．19\％ | － $\begin{aligned} & \text { 4，943 } \\ & \text { ，} 977\end{aligned}$ | ${ }_{4}^{4,2361}$ | $\begin{array}{r}93 \\ 204 \\ \hline\end{array}$ | ${ }_{51 \%}^{2.2 \%}$ | ${ }^{90.14 \%}$ | 6,023
 6.009 | 6,023 5 5 5003 | $\stackrel{0}{-105}$ | －${ }_{\text {－}}^{\text {－} 18 \%}$ |
 | 92．6\％ | 3，817 | 4，139 | 322 | 8．4\％ | 92．6\％ | 5，943 | 5.656 | | ．8\％ |
 | 93．8\％ | 3，756 | 4，104 | 348 | 9．3\％ | 93．8\％ | 5，937 | 5，270 | －667 | －11．2\％ |
 | 955．19\％ | －${ }_{3,597}^{3,593}$ | | 138
 64 | －${ }_{\text {3，8\％}}^{1.8 \%}$ | ${ }_{9}^{95.1 \%}$ | 5.586 4.709 | 4，663 | ${ }_{-11}$ | －16．5\％ |
 | 97．5\％ | ${ }_{3,510}$ | ${ }_{3,531}$ | ${ }_{21}^{64}$ | 0．6\％ | ${ }^{97.5 \%}$ | 4.410 | ${ }_{4,094}^{4,298}$ | ${ }_{-316}$ | ${ }_{-7.2 \%}$ |
 | 98．8\％ | 3，332 | ${ }_{3,502}$ | 169 | 5．1\％ | 98．8\％ | 4，292 | 3，994 | 399 | －9．3\％ |
 | 100．0\％ | 2，999 | 3，001 | 2 | 0．1\％ | 100．0\％ | 3，997 | 3，391 | －606 | －15．2\％ |

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | January | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | DCR 2015 Without Proiect | DCR 2015 With Project | Absolute | Relative |
 | | Monthly Piversion | Monthly Diversion | （c） | Difference（\％） |
 | 0．0\％ | ${ }_{13,100}$ | ${ }^{13,100}$ | 0 | |
 | | | 13100 | | 00\％ |
 | 2．5\％ | 13，100 | 13，100 | 0 | |
 | 3．7\％ | 12，377 | 12，532 | 154 | |
 | 4．9\％ | 11，081 | 11，074 | －7 | |
 | 6．2\％ | 10，315 | 10，308 | －7 | －0．1\％ |
 | 7．4\％ | 10，058 | 10，035 | 23 | －0．2\％ |
 | 8．9\％ | 9，954 | 9，946 | －8 | －0．1\％ |
 | 9．9\％ | 9，691 | 9，691 | 0 | |
 | 11．1\％ | 8，974 | 8，950 | ${ }^{24}$ | －0．3\％ |
 | 12．3\％ | ${ }^{8.669}$ | ${ }^{8,645}$ | ${ }^{25}$ | －0．3\％ |
 | － 13.6 \％ | ${ }_{8}^{8,629}$ | ${ }^{8.629}$ | 0 | 0．0\％ |
 | 14．8\％ | ${ }^{8,222}$ | ${ }_{8,215}$ | －8 | －0．1\％ |
 | － | 8，212 | 8，212 | 0 | 0．0\％ |
 | 17．3\％ | ${ }^{8,104}$ | 8.104 | 0 | 0．0\％ |
 | | ${ }_{8}^{8,092}$ | ${ }_{8}^{8.082}$ | －11 | －0．1\％ |
 | 19．8\％ | 7，926 | ${ }_{7}^{7,926}$ | 0 | 0．0\％ |
 | 21．0\％ | ${ }_{7}^{7,826}$ | 7.831 | 4 | 0．1\％ |
 | ${ }_{2}^{22.2 \%}$ | 7，824 | ${ }_{7}^{7,824}$ | 0 | |
 | － | 7,739
 7,308 | 7,739 7,491 | 0 | |
 | | 7,308 7191 7 | 7,491
 7,308 | 183
 118 | |
 | ${ }^{25.7 .2 \%}$ | 7,175 | 7，191 | 118 118 | 1．6\％ |
 | 28．4\％ | 7，157 | 7,175 | 18 | 0．2\％ |
 | 29．6\％ | 6，956 | 7，136 | 180 | 2．6\％ |
 | 30．9\％ | 6，935 | 6，950 | 15 | |
 | 32．1\％ | 6，919 | 6，935 | 16 | 0．2\％ |
 | 33．3\％ | 6，919 | 6，925 | 6 | 0．1\％ |
 | 34．6\％ | 6，892 | 6，919 | ${ }^{28}$ | |
 | 35．8\％ | 6，831 | 6，888 | 57 | 0．8\％ |
 | 37．0\％ | 6，830 | ${ }^{6.883}$ | 53 | 0．8\％ |
 | | ${ }^{6,826}$ | 6，831 | 5 | 0．1\％ |
 | 39．5\％ | ${ }^{6.825}$ | 6．830 | 5 | 0．1\％ |
 | 40．7\％ | c．i．816 | 6．829 | ${ }_{15}^{13}$ | 0．2\％ |
 | 42．0\％ | 6．811 | ${ }_{6,826}$ | 15 | 0．2\％ |
 | ${ }^{43.2 \%}$ | 6，778 | 6．877 | ${ }^{39}$ | |
 | ${ }^{44.4 \%}$ | 6，757 | 6，783 | ${ }_{18}$ | 0．4\％ |
 | 46．9\％ | ${ }_{\substack{6,752 \\ 6,638}}$ | ${ }_{\text {c，}}^{6,762}$ | 10 | |
 | 46．9\％ | ${ }_{6,638}^{6,67}$ | 6，759 | 111 | |
 | 48．4\％ | 6，607 | ${ }_{6}^{6.618}$ | 11 | 0．2\％ |
 | 50．6\％ | | ${ }_{6}^{6,616}$ | $\stackrel{13}{13}$ | 0．2\％ |
 | 51．9\％ | ${ }_{6.555}^{6.508}$ | ${ }_{6.610}^{0.610}$ | ${ }_{35}$ | 0．5\％ |
 | 年53．19\％ | 6，574 | 6，586 | 11 | |
 | 54．3\％ | 6，527 | 6，583 | 55 | 0．8\％ |
 | 55．6\％ | 6，522 | 6，572 | 50 | 8\％ |
 | 56.8% 580% | 6，501 | ${ }_{6.529}$ | 28 | 0．4\％ |
 | 58．0\％ | 6，473 | 6，514 | 40 | 0．6\％ |
 | 59．3\％ | 6，470 | ${ }^{6.505}$ | ${ }^{35}$ | 0．5\％ |
 | ${ }_{\text {c }}^{60.5 \%} 6$ | 6，445 6.440 | 6，483 6.480 | 38 40 | ${ }^{0.6 \% \%}$ |
 | 63．0\％ | 6.437 | 6.473 | 36 | 0．6\％ |
 | 64．2\％ | 6，431 | 6.470 | 39 | 0．6\％ |
 | | ${ }_{6}^{6.404}$ | 6，446 | 42 | 0．7\％ |
 | 66．7\％ 679% | 6，391 | 6．406 | ${ }^{16}$ | 0．2\％ |
 | 679．9\％ | 㐌，1888 | | 206 | 4．6\％ |
 | 70．4\％ | 6，042 | 6，290 | 248 | 4．1\％ |
 | 71．6\％ | ${ }^{6.004}$ | 6，112 | 108 | 1．8\％ |
 | 74．1\％ | ${ }_{\substack{5,830 \\ 5 \\ 5 \\ \hline 12}}$ | | ${ }_{19} 12$ | 3．6\％ |
 | $74.3{ }^{\circ}$ | | | 19 | 0．3\％ |
 | 76．5\％ | ${ }_{\text {c，729 }}^{5}$ | ¢ ${ }_{\substack{\text { 5，7469 } \\ 5,729}}$ | 0 | 0．0\％ |
 | 77．8\％ | 5.699 | 5.699 | 0 | |
 | 79．0\％ | 5，339 | 5，339 | 0 | 0．0\％ |
 | 80．2\％ | 5，196 | 5，205 | 9 | 0．2\％ |
 | 81．5\％ | 5，122 | 5，025 | －97 | |
 | 82．7\％ | 5，108 | 4，845 | 262 | 5．1\％ |
 | 84．0\％ | 4，845 | 4．814 | －31 | 0．6\％ |
 | 85．2\％ | 4．814 | 4，763 | －51 | －1．1\％ |
 | ${ }^{86.46}$ | 4，763 | 4，745 | －18 | －0．4\％ |
 | － 88.7% | 4．745 | 4，604 | 141 | －3．0\％ |
 | － | 4，604 | 4．569 | ${ }^{35}$ | －0．8\％ |
 | 90．1\％ 9 | 4,569 4.381 | ＋${ }_{4}^{4.513}$ | －56 | －1．2\％ |
 | 91．4\％ | 4，381 | 4．512 | ${ }^{131}$ | 3．0\％ |
 | － 92.68% | 4，337 | 4，390 | ${ }^{53}$ | 1．2\％ |
 | ${ }^{93.88 \%}$ | 4，332 | 4，332 | 0 | |
 | －95．17\％ | ${ }_{4}^{4,309}$ | ${ }_{4}^{4,309}$ | ${ }_{-54}$ | －1．3\％ |
 | 97．5\％ | 4，064 | 4，049 | －14 | －0．4\％ |
 | | 2，130 | 2，159 | 29 | 1．4\％ |
 | 100．0\％ | 1，100 | 1，100 | 0 | 0．0\％ |

 ## Table SW-36-b

 | | | February | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | $\underset{\substack{\text { DCR } 2015 \text { Without } \\ \text { Proiet }}}{\text { and }}$ | DCR 2015 With Project | ${ }^{\text {Absolute }}$ | Relative |
 | Probability | Monthly Diversion | Monthly Diversion | Difference (CFS) | Difference (\%) |
 | ${ }^{\text {O. }}$ (\%) | | | | |
 | 0.0\% | ${ }^{13,100}$ | ${ }^{13,100}$ | 0 | 0.0\% |
 | 2.5\% | ${ }^{13,100}$ | ${ }^{13,100}$ | 0 | 0.0\% |
 | ${ }^{2.5 \%}$ | 13,100 | 11,100 | 0 | -0.0\% |
 | 4.9\% | 12,505 | ${ }^{12,505}$ | 0 | -0.0\% |
 | 6.2\% | 12,160 | 12.448 | 288 | 2.4\% |
 | 7.4\% | ${ }^{11,615}$ | 12,299 | ${ }_{685}^{685}$ | 5.9\% |
 | 9.9\% | ${ }^{11,869}$ | ${ }_{\text {l }}^{112,1615}$ | ${ }_{746}$ | 8.9\% |
 | 11.1\% | 10,703 | 10,869 | 166 | |
 | 12.3\% | 10,453 | 10,453 | 0 | |
 | 13.6\% | 9,845 | 10,373 | 528 | |
 | 14.8% 16.0% | 9,800 | 9,776 | -25 | -0.3\% |
 | - 16.0% | ${ }^{9.591}$ | ${ }^{9.533}$ | -58 | -0.6\% |
 | 17.3\% | ${ }_{9,469}^{9.529}$ | ${ }_{9,501}^{9.529}$ | ${ }_{32}$ | 0.3\% |
 | 19.8\% | 9,447 | 9,469 | 22 | 0.2\% |
 | 21.0\% | 9.427 | 9.447 | 20 | 0.2\% |
 | ${ }^{22.2 \%}$ | 9,289 | ${ }^{9,289}$ | 0 | 0.0\% |
 | 23.5\% | 9,137 | 9,137 | 0 | 0.0\% |
 | 24.7\% | 8,944 | 8,988 8,726 | 44 | 0.5\% |
 | ${ }^{25.59 \%}$ | - 8.726 | 8,726
 8,37 | 0 | 0.0\% |
 | - 27.2 \% 2.4% | ${ }_{8}^{8,387}$ | ${ }^{8,379}$ | -8 | -0.1\% |
 | | -8,325 | 8,325 8,304 | | |
 | 30.9\% | ${ }_{8,233}^{8,304}$ | ${ }_{8,233}^{8,304}$ | 0 | 0.0.0\% |
 | 32.1\% | ${ }_{8,231}^{8,}$ | ${ }_{8,231}$ | 0 | 0.0\% |
 | - 33.3% | 7,883 | 7.883 | 0 | 0.0\% |
 | 34.6% 35.8% | 7,748
 7,687 | 7,748
 7,687 | 0 | 0.0\% |
 | 37.\% | 7.613 | 7.613 | 0 | 0.0\% |
 | 38.3\% | 7,607 | 7.607 | 0 | |
 | 39.5\% | 7,360 | 7,360 | 0 | 0.0\% |
 | ${ }^{40.7 \%}$ | 7,260 | 7,260 7 7 | 0 | 0.0\% |
 | ${ }^{43.2 \%}$ | ${ }_{7,223}^{7,247}$ | 7,247
 7,203 | ${ }_{-20}$ | -0.3\% |
 | 44.4\% | 7,040 | 7,040 | 0 | 0.0\% |
 | 45.7\% | 7,039 | 7,038 | -1 | 0.0\% |
 | 46.9\% | 7,038 | 6,943 | -94 | -1.3\% |
 | ${ }_{4}^{48.19 \%}$ | -6,943 | ¢,851 | -92 | -1.3\% |
 | 49.4\% | ¢, $\begin{gathered}6.851 \\ 6.755\end{gathered}$ | 6,755 | -96 | -1.4\% |
 | 年 50.19% | 6,755 | ${ }_{6}^{6.723}$ | ${ }^{-32}$ | -0.5\% |
 | 53.1\% | ${ }_{\substack{6,719 \\ 6,719}}^{6,68}$ | ¢,699 | -21 | -0.3\% |
 | | 6,699 | 6,695 | -4 | -0.1\% |
 | 55.6\% | ${ }_{6,675}^{6,695}$ | ${ }_{6,675}^{6,676}$ | -19 | -0.3\% |
 | 58.0\% | 6.671 | 6.637 | | |
 | | 6.637 | ${ }^{6,622}$ | -15 | |
 | 61.7\% | ${ }_{6,561}^{6,622}$ | | - -61 | -0.0\% |
 | 63.0\% | ${ }^{6.522}$ | ${ }_{6}^{6,398}$ | -123 | -1.9\% |
 | 64.2% 654% | 6,398 | 6,354 | 44 | -0.7\% |
 | 65.4\% 66.7% | | 6,300 | -29 | -0.5\% |
 | 67.9\% | ${ }_{6,281}$ | ${ }_{6,195}^{6,29}$ | ${ }^{-86}$ | -1.4\% |
 | 69.1\% | 6,142 | 6,137 | -5 | -0.1\% |
 | 70.4\% | 6,137 | ¢,066 | -719 | -1.2\% |
 | 71.6\% | ¢, $\begin{gathered}6,066 \\ 5 \\ 5\end{gathered}$ | ¢, $\begin{gathered}5.916 \\ 5807\end{gathered}$ | -149 | -2.5\% |
 | 72.8.1\% | 5.807 5.600 | 5.807
 5.605 | 0 | 0.0\% |
 | 75.3\% | ${ }_{5,568}^{5}$ | 5,600 | 32 | 0.6\% |
 | 76.5\% | 5,503 | 5,391 | -112 | -2.0\% |
 | 77.8\% | 5.140
 51132 | 5.140
 5.132 | | -0.0\% |
 | 79.0\% | ${ }_{\text {c, }}^{5,132}$ | ${ }_{\substack{5,132 \\ 5,011}}^{\text {c, }}$ | \bigcirc | 0.0.0\% |
 | 81.5\% | 4,998 | 4,998 | 0 | 0.0\% |
 | - 8 82.7\% | ${ }_{4,570}^{4,663}$ | ${ }_{4}^{4.653}$ | \bigcirc | 0.0\% |
 | 85.2\% | 4,492 | 4,530 | 39 | 0.9\% |
 | 86.4\% | 4.462 | 4.492 | 30 | 0.7\% |
 | 877\% | 4,205 | 4.462 | ${ }^{257}$ | 6.1\% |
 | ${ }^{88.9 \%}$ | 4,017 | 4,205 | 189 | ${ }^{4.7 \%}$ |
 | 91.4\% | 3,609 | ${ }_{3,839}$ | ${ }_{231}^{27}$ | 6.4\% |
 | 92.6\% | 3,451 | 3.744 3 3 | ${ }_{323}^{293}$ | 8.5\% |
 | 93.8\% | -3,380
 3,378 | ${ }_{\text {3,703 }}$ | ${ }^{323}$ | 9.6\% |
 | ${ }_{995}^{95.1 \%}$ | - $\begin{aligned} & 3,3781 \\ & 3,101\end{aligned}$ | - $\begin{array}{r}3.612 \\ 3.451\end{array}$ | 234
 350 | |
 | 97.5\% | 3,037 | ${ }_{3,380}$ | 343 | 11.3\% |
 | 98.8\% | 1,881 | 3,256 | ${ }^{1,375}$ | 73.1\% |
 | 100.0\% | 1,153 | 3,101 | 1,948 | 169.0\% |

 | $\begin{gathered} \text { Percerent } \\ \text { Expeoded } \\ \text { Probabily } \end{gathered}$ | ${ }^{\text {DCR } 2015 \text { Without }}$ Proiet | June | | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: |
 | | | DCR 2015 With Project | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (CFSS) } \end{gathered}$ | |
 | | | $\begin{aligned} & \text { Monthly Diversion } \\ & \text { (CFs) } \end{aligned}$ | | |
 | | (CFF) | | | |
 | 0.0\% | 11,280 | | 0 | 0.0\% |
 | 1.2\% | 11,280 | 11,280 | 0 | 0.0\% |
 | 2.5\% | 11,280 11,280 | 11,280 11,280 | 0 | 0.0\% |
 | 3.9\% | ${ }^{111,280}$ | (10,688 | -592 | -5.3\% |
 | 6.2\% | 10,731 | 10,646 | -85 | -0.8 |
 | 7.4\% | 10,647 | 10,147 | -49 | |
 | 8.6\% | 10,197 | 9,853 | -344 | |
 | 9.9\% | 9,852 | 9,716 | -137 | |
 | 11.1\% | 9,501 | 9,501 | | 0.0\% |
 | ${ }^{12.3 \%}$ | ${ }_{8}^{8,710}$ | 9,149 | 240 | 2.7 |
 | 13.6% 14.8% | 8,798 | 8.910 | 112 | |
 | 14.8\% | 8,769 | 8,769 | 0 | 0.0\% |
 | 16.0\% | ${ }_{8,329}$ | ${ }_{8}^{8,329}$ | 0 | 0.0\% |
 | +17.3\% | ${ }^{8,120}$ | ${ }_{8,120}$ | 0 | 0.0\% |
 | 18.9\% ${ }^{18.8 \%}$ | 7.921 | 7,921 | 0 | 0.0\% |
 | 29.1.\% | 7,613 | 7.917 | 304 | 4.0\% |
 | 22.2\% | ${ }_{6}^{6.883}$ | ${ }_{6,843}^{6.884}$ | 0 | 0.0\% |
 | 23.5\% | 6.474 | 6,474 | 0 | 0.0\% |
 | 24.7\% | 6,265 | 6,281 | 15 | 0.2\% |
 | 27.2\% | 6,1220 6.030 | $\underset{\substack{6.046 \\ 6.048 \\ \hline}}{ }$ | $\stackrel{4}{16}$ | -0.1\% |
 | 28.4\% | 5.844 | 5.930 | , | 1.5\% |
 | 29.6\% | 5,805 | 5,844 | 39 | |
 | 30.9\% | 5,785 | 5.805 | 21 | |
 | 32.1\% | 5,755 | 5,787 | 32 | 0.5\% |
 | 33.3\% | 5,737 | 5,755 | 19 | 0.3\% |
 | 34.6\% | 5,707 | 5,707 | 0 | |
 | 35.8\% | 5,705 | 5.705 | 0 | 0.0\% |
 | 38.3\% | 5,769 5 | 5,701
 5.696 | 0 | 0.0\% |
 | 39.5\% | ${ }_{5,686}$ | 5.686 | 0 | 0.0\% |
 | 40.7\% | ¢, 5 5714 | ¢,469 | -2 | 0.0\% |
 | 42.0\% | 5,381 5369 | 5,381 | 0 | 0.0\% |
 | ${ }^{43.2 \%}$ | 5.369 c.350 | 5.369 5 519 | 0 | 0.0\% |
 | ${ }^{4.5 .7 \%}$ | 5,350 5.326 | 5.319 5.280 | -31 | -0.0\% |
 | 46.9\% | ${ }_{5,319}^{50,520}$ | ${ }_{5}^{5.227}$ | -92 | ${ }^{-1.7 \%}$ |
 | 48.19\% | ${ }_{5}^{5,280}$ | 5.110 | -170 | -3.2\% |
 | 49.4\% | 5,227 5110 510 | 5.051 4.728 4.7228 | - ${ }_{-38}$ | -3.4\% |
 | 50.9\% | ${ }_{\substack{5.110 \\ 5,051}}^{5.720}$ | 4.725 | - | -7.5\% |
 | 53.1\% | 4.728 | 4.082 | -646 | -13.7\% |
 | | 4,725 | 4,015 | -710 | -15.0\% |
 | 56.8\% | 4,015 | ${ }_{3,861}^{5,951}$ | -154 | --3.8\% |
 | 58.0\% | 3,952 | 3,727 | -225 | -5.7\% |
 | | 3,861 | 3,720 | -141 | -3.7\% |
 | -60.5\% | 3,719 | 3,702 | 17 | -0.5\% |
 | 61.7\% 63.0% | 3,673 | 3,673 | 0 | 0.0\% |
 | -63.0\% | ${ }^{3,483}$ | ${ }^{3,483}$ | 0 | 0.0\% |
 | 64.2\% | 3,451 | 3,451 | 1 | 0.0\% |
 | 65.4\% | ${ }^{3,396}$ | 3,396 | 0 | 0.0\% |
 | 66.7\% 67.9% | ${ }^{3,386}$ | 3,387 | 1 | 0.0\% |
 | 67.9\% | 3,349
 3,336 | 3,349
 3,336 | 0 | 0.0\% |
 | 70.4\% | ${ }_{\text {3,335 }}^{\substack{\text { 3,366 }}}$ | 3,335 | 0 | 0.0\% |
 | 71.6\% | 3,312 | 3,311 | 0 | 0.0\% |
 | 72.8\% | | | -1 | - |
 | 75.3\% | 3,274 | 3,274 | 0 | 0.0\% |
 | 76.5\% | 3,271 | 3,271 | 0 | 0.0\% |
 | 77.8\% | 3,239 | 3,239 | 0 | 0.0\% |
 | 89.0\% | 3.215 3.170 | 3,215 3,170 | 0 | 0.0\% |
 | 81.5\% | 3,042 | 3,042 | 0 | 0.0\% |
 | - 8 82.7\% | 2,906 | 2,909 | 3 | 0.1\% |
 | 84.0\% | 1,002 | 1,002 | 0 | 0.0\% |
 | 85.2\% | 999 | 999 | 0 | 0.0\% |
 | ${ }^{87.7 \%}$ | 829 | ${ }_{829}$ | 0 | 0.0\% |
 | 88.9\% | ${ }^{728}$ | ${ }^{728}$ | 0 | 0.0\% |
 | 90.1\% | ${ }_{721}^{727}$ | ${ }_{727}^{727}$ | 0 | 0.0\% |
 | 91.4\%\% | ${ }_{6} 21$ | ${ }_{720} 72$ | 0 | ${ }^{0.0 \%}$ |
 | 932.8\% | 644 555 | 709 645 | ${ }_{91}^{65}$ | ${ }_{\text {10,4\% }}^{10.1 \%}$ |
 | 95.1\% | 519 | 561 | 41 | 8.0\% |
 | 96.3\% ${ }^{96.5 \%}$ | ${ }_{453}^{482}$ | ${ }_{453}^{482}$ | 0 | - |
 | 98.8\% | ${ }_{440}^{443}$ | ${ }_{440}$ | 0 | 0.1\% |
 | 100.0\% | 135 | 227 | 92 | |

 Figure SW-37-b
 Jones Pumping Plant (CVP), Monthly Diversion

 | | Ocrober | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | $\begin{gathered} \text { Percent } \\ \substack{\text { Eeceonance } \\ \text { Probability }} \\ \text { Uefo } \end{gathered}$ | DCR 2015 Without Proiect | DCR 2015 With Project | Absolute | |
 | | Monthly \mathbf{i} Version | Montly Diversion | （terence | Difference ${ }^{\circ}$ |
 | （0） | ${ }_{4}$（crs） | （CF5） | 0 | 0．0\％ |
 | 1．2\％ | | 4.600 | 0 | |
 | 2．5\％ | 4，600 | 4,600 | 0 | 0．0\％ |
 | 3．7\％ | 4，600 | 4，600 | 0 | 0．0\％ |
 | 4．9\％ | 4.600 | 4.600 | 0 | |
 | 6．2\％ | 4．600 | 4.600 | 0 | 0．0\％ |
 | 7.4%
 8.6% | 4，600 | 4.600 | 0 | 0．0\％ |
 | 8．9．9\％ | 4.600 | 4，600 | 0 | 0．0\％ |
 | 9．9\％\％ | 4，660 | ${ }_{4,600}^{4,600}$ | 0 | 0．0．0\％ |
 | 12．3\％ | 4，600 | 4，600 | 0 | 0．0\％ |
 | 13．6\％ | 4，600 | 4，600 | 0 | 0．0\％ |
 | 14．8\％ | 4，600 | 4.600 | 0 | 0．0\％ |
 | 16．0\％ 173% | 4.600 4.600 | 4,600 4.600 | 0 | 0．0\％ |
 | 17．3\％ | 4,600 4.600 | 4,600 4.600 | \bigcirc | 0．0\％ |
 | 19．8\％ | 4，542 | 4，600 | 58 | 1．3\％ |
 | 21．0\％ | 4．505 | 4.600 | 95 | 2．1\％ |
 | ${ }_{\text {22，}}^{22.2 \%}$ | ${ }_{4,3,42}^{4,424}$ | 4,600 4.600 | 176 269 | |
 | 24．7\％ | 4,304 | 4.600 | ${ }_{296}$ | 6．9\％ |
 | 25．9\％ | 4，283 | 4，600 | 317 | 7．4\％ |
 | 2．7．2\％ 28．4\％ | 4，255 | 4，600 | 345 | 8．1\％ |
 | 28．4\％${ }_{\text {29．6\％}}$ | ${ }_{4,201}^{4,234}$ | ${ }_{4,3,390}$ | 366 198 | 8．7\％\％ |
 | 30．9\％ | 4，198 | 4，372 | 174 | 4．2\％ |
 | 32．1\％ | 4，183 | 4，367 | 184 | 4．4\％ |
 | 33．3\％ | 4．1228 | 4，354 | ${ }^{226}$ | 5．5\％ |
 | 34．6\％ | 4，120 | 4，341 | ${ }^{221}$ | 5．4\％ |
 | 35．8\％ | 4，086 | 4，309 | ${ }_{2}^{223}$ | 5．5\％ |
 | | 4，028 | 4，299 | 271 | 6．7\％ |
 | 38．3\％ | 3,926 3.911 | 4，270 | 343 391 | 8．7\％ |
 | 39．5\％ | 3，911 | 4，201 | 291 | 7．4\％ |
 | － 40.7% | 3，864 | 4，112 | 248 | 6．4\％ |
 | 42．0\％ | 3.861
 3
 3 | ${ }_{4}^{4.036}$ | 175
 245 | 4．5\％ 6 |
 | 4．4\％ | ${ }_{3}^{3,721}$ | 3，988 | ${ }_{266}$ | 7．2\％ |
 | 4．7．7\％ | － $\begin{aligned} & 3.692 \\ & 3.639\end{aligned}$ | 3，9，978 3.898 | 225 229 | －${ }_{\text {7．1\％}}$ |
 | 48．1\％ | 3，560 | 3，854 | 294 | 8．3\％ |
 | 4．9．4\％ | ${ }^{3.528}$ | 3，717 | 189 | 5．4\％ |
 | 年 50.0% \％ | 3.524 3.504 3， | －3.586
 3.582 | ${ }_{78}^{63}$ | 1．8\％ |
 | 53．1\％ | － | | ${ }_{57}^{78}$ | ${ }_{\text {1．6\％}}$ |
 | 54．3\％ | 3，465 | 3，487 | 22 | 0．6\％ |
 | 年5．6\％ | 3，391 | 3，450 | 58 | 1．7\％ |
 | 56．8\％ | | － 3.411 | 53 | 1．6\％ |
 | 58．0\％ | 3,354
 3,299 | | － 39 | －1．2\％ |
 | 59．3\％ 6．5\％ | 3，299 | 3，220 | －79 | －2．4\％ |
 | 60．5\％ | 3,291
 3,226 | ¢，3.117
 3.115 | －173 | －5．3\％ |
 | 63．0\％ | 3，224 | 3，112 | －112 | ${ }_{-3.5 \%}$ |
 | 64．2\％ | 3，224 | 3，088 | －135 | －4．2\％ |
 | ${ }^{65.4 \%}$ 667\％ | 3，197 | 3.075 3014 3， | －122 | －3．8\％ |
 | － $6.7 .7 \%$ | －3,193
 3,158 | 3.014 3,009 | －179 | －5．6\％ |
 | 69．1\％ | ${ }_{3}$ | ${ }_{2,924}$ | －222 | －7．1\％ |
 | 70．4\％ | 3，134 | 2，894 | | －7．6\％ |
 | 71．8．8\％ | － $\begin{aligned} & 3,1112 \\ & 3,16\end{aligned}$ | 2,770 2.696 | ${ }_{-420}$ | － 11.6% |
 | 74．1\％ | 3，054 | 2,660 | －394 | －12．9\％ |
 | 7．3．3\％ | 3，048 | 2,647 | -400 | －13．1\％ |
 | 7．6．5\％ | 3，039 | 2，601 | －438 | －14．4\％ |
 | 77．8\％ | 2，999 | 2.584 | －415 | －13．8\％ |
 | 79．0\％ 80.2% | 2,979 2.910 | 2.546
 2.528 | －433 | －14．5\％ |
 | － | ${ }_{2,900}$ | ${ }_{2,428}^{2,528}$ | －-472 | －${ }_{\text {－}}$ |
 | 82．7\％ | 2，868 | ${ }_{2}^{2,354}$ | －513 | －17．9\％ |
 | 84．0\％ | 2，830 | 2，319 | －512 | －18．1\％ |
 | － $\begin{aligned} & 85.2 \% \\ & 86.4 \%\end{aligned}$ | 2.795 2.756 | 2，151 2089 | －644 | －23．0\％ |
 | 807\％ | 2,756
 2.746 | 2,089 2,089 | ${ }_{-657}^{-667}$ | ${ }_{-24.29 \%}$ |
 | 88．9\％ | 2，691 | ${ }_{1,874}^{2,189}$ | ${ }_{-817}$ | －30．4\％ |
 | ${ }^{90.14 \%}$ | 2，658 | －${ }_{1}^{1,856}$ | －802 | －30．2\％ |
 | ${ }^{91.46 \%}$ | 2，597 | 1，714 | －884 | －34．0\％ |
 | 93．8\％ | ${ }_{2,050}^{2.577}$ | 1.546 1.461 | －1，031 | －40．0\％ |
 | 95．1\％ | 2,006 | 1，180 | ${ }_{-826}$ | －41．2\％ |
 | ${ }^{96.5 \%}$ | ${ }^{1,980} 1$ | ${ }_{941}^{977}$ | ${ }_{-1,011}^{-1,003}$ | －-50.78% |
 | 98．8\％ | 1，915 | 931 | －984 | －51．4\％ |
 | 100．0\％ | 1，780 | 800 | －．980 | －55．1\％ |

 | $\begin{gathered} \text { Pereent } \\ \text { Exceance } \\ \text { Probability } \end{gathered}$ | November | | | Percent DCR2015 Without December | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {DCC }}^{\text {D } 2015 \text { Without }}$ Proiet | DCR 2015 With Project | $\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (CFSS) } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | $\begin{gathered} \text { Percent } \\ \text { Peceana } \\ \text { Probaby } \\ \hline \end{gathered}$ | | $\begin{gathered} \text { DCR } 2015 \text { With Project } \\ \hline \text { Monthly Diversion } \\ \text { (CFS) } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (CFSS) } \end{aligned}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | | Monthly Piversion | Monthy Diversion | | | | | | | |
 | \％\％ | （CFS） | （CFS） | | | | | | | |
 | 0．0\％ | 4，600 | 4，600 | 0 | 0．0\％ | | 4，600 | 4，6 | 0 | 0．0\％ |
 | － 1.2% | 4,600 4.600 | 4,600 4.600 | \bigcirc | 0．0\％ | 1．2\％\％ | 4，600 | 4，600 | 0 | |
 | ${ }^{2.5 \% \%}$ | 4,6 | 4,600 | 0 | 0．0\％ | 2．5\％ | | | | |
 | 4．9\％ | 4.600 | 4.600 | 0 | 0．0\％ | 4．9\％ | 4.600 | 4.600 | 0 | 0．0\％ |
 | 6．2\％ | 4.600 | 4，600 | 0 | 0．0\％ | 6．2\％ | 4.600 | 4.600 | 0 | 0．0\％ |
 | 7．4\％ | 4，600 | 4，600 | 0 | 0．0\％ | 7．4\％ | 4，600 | 4，600 | 0 | |
 | 8．6\％ | 4，600 | 4，600 | 0 | 0．0\％ | 8．6\％ | 4，600 | 500 | 0 | |
 | 9．9\％ | 4，600 | 4，600 | 0 | 0．0\％ | 9．9\％ | 4，600 | 4，600 | 0 | |
 | 11．1\％ | 4，600 | 4，600 | 0 | 0．0\％ | 11．1\％ | 4，600 | 4，600 | 0 | |
 | 12．3\％ | 4，600 | 4，600 | 0 | 0．0\％ | 12．3\％ | 4，600 | 4，600 | 0 | |
 | 13．6\％ | 4，600 | 4，600 | 0 | 0．0\％ | 13．6\％ | 4，600 | 4，600 | 0 | 0．0\％ |
 | 14．8\％ | 4，600 | 4，600 | 0 | 0．0\％ | 14．8\％ | 4，600 | 4，600 | 0 | 0．0\％ |
 | 16．0\％ | 4，600 | 4，600 | 0 | 0．0\％ | 16．0\％ | 4，600 | 4，600 | 0 | 0\％ |
 | 17．3\％ | 4，600 | 4，600 | 0 | 0．0\％ | 17．3\％ | 4，600 | 4，600 | 0 | 0．0\％ |
 | 18．5\％ | 4，600 | 4，600 | 0 | 0．0\％ | 18．5\％ | 4，600 | 4，600 | 0 | |
 | 19．8\％ | 4，600 | 4，600 | 0 | 0．0\％ | 19．8\％ | 4，600 | 4，600 | 0 | 0．0\％ |
 | 21．0\％ | 4，600 | 4，600 | 0 | 0．0\％ | 21．0\％ | 4，600 | 4，600 | 0 | ．0\％ |
 | ${ }_{\text {23，}}^{22.25 \%}$ | 4,600 4.600 | 4，600 | \bigcirc | 0．0\％ | ${ }_{2}^{22.2 \% \%}$ | 4,600 4.600 | 4，600 | 0 | 0．0\％ |
 | 24．7\％ | 4，600 | 4，600 | 0 | 0．0\％ | 24．7\％ | 4,600 | 4，600 | 0 | 0．0\％ |
 | 25．9\％ | 4，600 | 4，600 | 0 | 0．0\％ | 25．9\％ | 4，600 | 4，600 | 0 | |
 | 27．2\％ | | 4，600 | 0 | 0．0\％ | 27．2\％ | 4，600 | 4，600 | 0 | |
 | ${ }^{20.9 \%}$ | 4.6500 | 4.600 | 0 | 0．0\％ | 29．6\％ | 4.650 | 4.6500 | 0 | 0．0\％ |
 | 30．9\％ | 4，600 | 4，600 | 0 | 0．0\％ | 30．9\％ | 4．529 | 4.600 | 71 | 1．6\％ |
 | 32．1\％ | 4，600 | 4，600 | 0 | 0．0\％ | 32．1\％ | 4，353 | 4，600 | 247 | |
 | 33．3\％ | 4，600 | 4，600 | 0 | 0．0\％ | 33．3\％ | 4．279 | 4．586 | 307 | 2\％ |
 | 34．6\％ | 4，524 | 4，600 | 76 | 1．7\％ | 34．6\％ | 4，268 | 4，458 | 190 | |
 | 37．0\％ | ${ }_{4,351}^{4,391}$ | 4,600 4.600 | ${ }_{249}^{209}$ | 4．8\％\％ | ${ }^{33.8 \%}$ | 4，251 | 4，397 | 146 | ${ }^{3.4 \%}$ |
 | 38．3\％ | 4,295 | 4.600 | 305 | 7．1\％ | 38．3\％ | ${ }_{4,212}^{4.214}$ | ${ }_{4,283}^{4,532}$ | ${ }_{72}$ | 1．7\％ |
 | 39．5\％ | 4，271 | 4，572 | 301 | 7．0\％ | 39．5\％ | 4，198 | 4，278 | 79 | 1．9\％ |
 | 40．7\％ | 4，241 | 4．514 | ${ }_{2}^{273}$ | 6．4\％ | 40．7\％ | ${ }_{4,191}$ | ${ }_{4}^{4.268}$ | 77 | 1．8\％ |
 | 42．0\％ | 4，228 | 4,469 | ${ }^{241}$ | 5．7\％ | 42．0\％ | 4，191 | 4，268 | 77 | 1．8\％ |
 | 43．2\％ | 4，185 | 4，435 | ${ }^{250}$ | 6．0\％ | 43．2\％ | 4，160 | 4，222 | ${ }_{5}^{62}$ | 1．5\％ |
 | ${ }_{45.7 \%}^{44.4 \%}$ | ${ }_{4}^{4,165}$ | ${ }_{4}^{4,467}$ | ${ }_{242}^{250}$ | 5．0\％ | 44．7\％\％ | ${ }_{4}^{4,147}$ | ${ }_{4}^{4,211}$ | ${ }_{51}^{55}$ | － |
 | 46．9\％ | 4，100 | 4，235 | 135 | 3．3\％ | 46．9\％ | 4，123 | 4，171 | 48 | 1．2\％ |
 | 48．1\％ | 4，099 | 4，214 | 116 | 2．8\％ | 48．1\％ | 4，098 | 4，157 | 59 | 1．4\％ |
 | | ${ }_{4,094}^{4,094}$ | 4，119 | 25 36 | 0．6\％ | | ${ }_{4}^{4,096}$ | 4,156 4.110 | 60 17 | 0．4\％ |
 | 51．9\％ | 3，998 | 4，049 | 51 | 1．3\％ | 51．9\％ | 4，056 | 4，056 | 0 | 0．0\％ |
 | 年．3．1\％ | 3，807 | 4，040 | ${ }_{252}^{232}$ | 6．1\％ | | 4，009 | 4，034 | 26 | 0．6\％ |
 | 54．6\％ | | $\xrightarrow{4,036}$ | ${ }_{293}^{252}$ | 7．8\％ | 55．3\％\％ | 3，9971 | 3，9944 | ${ }_{0}^{4}$ | －0．0\％ |
 | 56．8\％ | 3，685 | 3，798 | 113 | 3．1\％ | 56．8\％ | 3，954 | 3，968 | 14 | 0．4\％ |
 | 58．0\％ | ${ }_{3,612}$ | 3，784 | 172 | 4．8\％ | 58．0\％ | 3，931 | 3，954 | ${ }^{23}$ | 0．6\％ |
 | 59．3\％ | ${ }^{3,543}$ | 3，779 | ${ }^{236}$ | 6．7\％ | 59．3\％ | ${ }^{3,931}$ | 3，946 | 15 | 0．4\％ |
 | ${ }_{6}^{60.7 \%}$ | 3,409
 3,400 | 3，637 | 228
 192 | | ${ }^{60.5 \%}$ | 3.917 3 | ${ }^{3,928}$ | 10 | 0．3\％ |
 | 63．0\％ | 3.249 | ${ }_{3,587}$ | 338 | 10．4\％ | 63．0\％ | ${ }_{3,828}$ | 3.890 | 62 | 1．6\％ |
 | 64．2\％ | 3，181 | 3，536 | 355 | 11．1\％ | 64．2\％ | 3，822 | 3，877 | 56 | 1．5\％ |
 | ${ }^{65.4 \%}$ | 3，165 | 3，499 | ${ }_{3}^{333}$ | 10．5\％ | ${ }^{65.4 \%}$ | | | 29 | 0．8\％ |
 | 66．7\％ 679% | 3，117 | 3，490 | ${ }^{373}$ | 12．7\％ | ${ }^{66.7 \%}$ | 3，787 | 3，831 | ${ }^{44}$ | 1．2\％ |
 | 年7．9\％\％ | 3,117
 3,026 | －3,358
 3,242 | ${ }_{216}^{241}$ | 7．7\％\％ | 67．9\％ | 3,739 3 3 | 3，804 | ${ }_{15}^{65}$ | 1．7\％ |
 | 70．4\％ | ${ }_{\text {2，981 }}$ | ${ }_{\substack{3,070}}^{3,242}$ | 216 89 | 3．0\％ | 70．4\％ | 3，703 | 3,54
 3,730 | ${ }_{27}^{15}$ | 0．7\％ |
 | 71．6\％ | 2，933 | 3，065 | 132 | 4．5\％ | 71．6\％ | 3，699 | ${ }^{3,718}$ | 19 | 0．5\％ |
 | 72．8\％ | 2，929 | 2,841 | －89 | －3．0\％ | 72．8\％ | 3，688 | 3，703 | 15 | 4\％ |
 | 74．1．0 | 2，999 | ${ }^{2,743}$ | －176 | －6．0\％ | ${ }^{74.10 \%}$ | ${ }^{3,679}$ | － 3,688 | 9 | \％ |
 | 7．5．5\％ | ${ }_{2}^{2,939}$ | 2，090 | －148 | －．4．4\％ | 75．5\％ | － | － | ${ }_{23}$ | \％ |
 | 76．5\％ | 2，835 | 2，685 | －148 | －5．72\％ | 77．5\％ | 3，560 | 3，564 | ${ }^{3}$ | \％ |
 | 79， | ${ }_{2737}^{2.835}$ | ${ }_{2,511}^{2,59}$ | －226 | －7．7\％ | 77．8\％ | | 3,560 3 3 | 0 | ．0\％ |
 | 80．2\％ | ${ }_{2,601}^{2,157}$ | ${ }_{2,460}^{2.971}$ | ${ }_{-141}$ | －5．4\％ | 80．2\％ | 3，452 | －${ }_{\text {3，322 }}$ | －129 | －3．8\％ |
 | 81．5\％ | 2,464 | 2，369 | －95 | －3．8\％ | ${ }^{81.5 \%}$ | 3，355 | 3，264 | －91 | －2．7\％ |
 | 82．7\％ | 2.449 | 2，236 | －213 | －8．7\％ | 82．7\％ | 3，324 | 2，952 | －372 | －11．2\％ |
 | 84．0\％ | 2.414 | 2，156 | －258 | －10．7\％ | 84．0\％ | ${ }^{3,322}$ | 2,848 | －475 | －14．3\％ |
 | | 2，390 | 2，128 | －262 | －11．0\％ | ${ }^{85.2 \%}$ | 3，303 | 2，817 | －486 | －14．7\％ |
 | 887．7\％ | ${ }^{2,992}$ | 2，008 | －284 | －12．4\％ | ${ }^{86.7 \%}$ | 3，1138 | ${ }^{2,815}$ | ${ }^{-323}$ | － 10.3% |
 | 88．9\％ | ${ }_{2,148}^{2,148}$ | 1，926 | ${ }_{-22}$ | －10．3\％ | 88．9\％ | 3，052 | ${ }_{2,734}$ | ${ }_{-318}$ | －10．4\％ |
 | 90．1\％ | 2,058 | 1，596 | ${ }_{-462}$ | －22．5\％ | 90．1\％ | ${ }_{2,793}$ | 2，645 | －148 | －5．3\％ |
 | 91．4\％ | 2，021 | 1，590 | 431 | －21．3\％ | 91．4\％ | 2，726 | 2，613 | －113 | －4．2\％ |
 | 92．6\％ | 1.601 | 1.555 | －45 | －2．8\％ | 92．6\％ | 2，574 | 2.464 | －110 | －4．3\％ |
 | 93．8\％ | 1，338 | 1，458 | ${ }^{120}$ | 9．0\％ | 93．8\％ | 2，459 | 1，929 | －530 | －21．6\％ |
 | ${ }_{96.36 \%}$ | 1,300 1202 1 | 1,420 1.409 1 | 120 207 | 9．2\％ | | 2，432 | 1,750 1,649 1 | －-788 | －28．0\％ |
 | 99．5\％ | 1,202
 800 | ${ }_{800}$ | ${ }^{207}$ | － | 99．5\％ | ${ }_{2,003}^{2,428}$ | 1,649
 1,602 | －748 | ${ }_{-2.0 \%}^{-32.10 \%}$ |
 | 98．8\％ | 800 800 | 800 600 | ${ }_{-200}^{0}$ | －${ }_{\text {－}}^{\text {0．0\％\％}}$ | 98．8\％ | ＋1，460 | ${ }_{909}^{951}$ | －653 | － 3 －37．0\％ |
 | | | | | | | | | | |

 | $\begin{gathered} \text { EPcrenent } \\ \text { Preance } \\ \text { Probability } \end{gathered}$ | January | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {DCR } 2015 \text { chethout }}^{\text {Proiet }}$ | DCR 2015 With Project | | Reatat |
 | | hly Divers | Monthy Diversion | Difference | Difference（\％） |
 | （\％） | （CFFS） | （CFFS） | 0 | 00% |
 | 12\％ | | | | 0．0\％ |
 | 2．5\％ | 4.600 | 4600 | | |
 | 3．7\％ | 4.600 | 4.600 | 0 | |
 | 4．9\％ | 4，600 | 4，600 | 0 | 0．0\％ |
 | 6．2\％ | 4，600 | 4，600 | 0 | 0．0\％ |
 | 7．4\％ | 4，600 | 4，600 | 0 | 0．0\％ |
 | 8．6\％ | 4，544 | 4，475 | －69 | －1．5\％ |
 | 9．9\％ | 4，487 | ${ }^{4,322}$ | －165 | －3．7\％ |
 | 11．12\％ | 4，335 | 4，320 | －15 | |
 | ${ }^{12.36 \%}$ | 4，315 | 4，315 | 0 | \％ |
 | （13．6\％ | 4，046 | ${ }_{4}^{4,104}$ | －5 | |
 | 10．0\％ | － | ${ }_{3}^{4,041}$ | －5 | 0．0\％ |
 | 17．3\％ | 3，913 | 3，915 | 2 | 0．1\％ |
 | 18．5\％ | 3，912 | 3，912 | 0 | |
 | 19．8\％ | 3，870 | 3，870 | 0 | 0．5\％ |
 | 21．0\％ | 3，619 | 3，745 | 127 | 3．5\％ |
 | ${ }_{\text {22，}}^{22.2 \%}$ | | 3,654 3 3 | 53 47 | ${ }^{1.5 \% \%}$ |
 | 24．7\％ | ${ }_{\text {3，587 }}$ | －${ }_{\text {3，5999 }}$ | | 0．3\％ |
 | 25．9\％ | 3，579 | 3，595 | 17 | 0．5\％ |
 | 27．2\％ | 3，468 | 3，587 | 120 | 3．4\％ |
 | 28．4\％ | 3，460 | 3，568 | 108 | 3．1\％ |
 | 29．9\％ | 3，460 | 3．508 | ${ }^{48}$ | 1．4\％ |
 | 30．9\％ | 退， 3.46 | 3.468 3 3463 | ${ }_{4}^{22}$ | 0．6\％ |
 | 32．1\％ | 3，415 | 3，463 | 4 | 1．4\％\％ |
 | 33．3\％ | 3，415 | 3，460 $\begin{array}{r}3.441 \\ 3\end{array}$ | ${ }^{45}$ | 1．3\％ |
 | 34．6\％ | － 3.413 | 3，441 | 29 3 | 0．8\％ |
 | | | 3，415 | ${ }^{3}$ | 0．1\％ |
 | ${ }^{37.0 \%}$ 38．3\％ | | 3.415 3414 3， | 7 | 0．3\％ |
 | 39．5\％ | 3，395 | ${ }_{3,413}$ | 18 | 0．5\％ |
 | 40．7\％ | 3，389 | 3，409 | 20 | |
 | 4．3．2\％ | ${ }_{\substack{3,376}}^{3,376}$ | ${ }_{\substack{3,392}}^{3,381}$ | 13 5 | 0．1\％ |
 | 44．4\％ | 3，319 | 3，380 | 61 | 1．8\％ |
 | ${ }^{45.77 \%}$ | ${ }^{3,303}$ | 3，308 | | |
 | ${ }^{46.9 \%}$ | 3，302 | 3，306 | 5 | 0．1\％ |
 | 49．4\％ | 3，288 | ${ }_{3,293}$ | 5 | 0．2\％ |
 | 50．6\％ | 3，287 | 3，291 | 4 | 0．1\％ |
 | 51．9\％ | 3，264 | ${ }^{3,286}$ | ${ }^{21}$ | 0．7\％ |
 | 53．1\％ | 3，251 | － 3 3，264 | 14 | 0．4\％ |
 | 54．3\％ | ${ }^{3,237}$ | 3，261 | ${ }^{24}$ | 0．7\％\％ |
 | 年55．6\％ | 3，235 | 3，253 | 17 | 0．5\％ |
 | 56．8\％ | ${ }_{3}^{3,222}$ | 3，251 | ${ }^{28}$ | 0．7\％ |
 | 年58．3\％\％ | 3，220 | －${ }^{3,242}$ | ${ }_{21}^{22}$ | 0．7\％ 0 |
 | 60．5\％ | － $\begin{aligned} & 3,219 \\ & 3,222\end{aligned}$ | －${ }_{3,227}^{3,240}$ | ${ }_{35}^{21}$ | 1．1\％ |
 | 61．7\％ | 3，195 | 3，235 | 40 | 1．2\％ |
 | 63．0\％ | 3，164 | 3，203 | 39 | 1．2\％ |
 | 64．2\％ | 3，094 | 3，197 | 103 | 3．3\％ |
 | 65．4\％ 66.7% | 3,021 3.013 | 3，145 | ${ }_{132}^{174}$ | 5．4．\％ |
 | 67．9\％ | 3，002 | 3，021 | 19 | 0．6\％ |
 | 69．1\％ | 2，915 | 2，915 | 0 | 0．0\％ |
 | 70．4\％ | | 2.873
 2.864
 1 | 0 | 0．0\％\％ |
 | 72．8\％ | ${ }_{2,850}$ | ${ }_{2,850}^{2,864}$ | 0 | 0．0\％ |
 | 74．1\％ | 2，846 | 2，670 | －177 | 6．2\％ |
 | 75．3\％ | 2，682 | 2,603 | －79 | －3．0\％ |
 | 76．5\％ | 2,670 | 2.512 | －157 | －5．9\％ |
 | 77．9\％ | 2，598 | 2，423 | －176 | －6．8\％ |
 | 79．0\％ | 2，554 | ${ }^{2,407}$ | －147 | －5．7\％ |
 | ${ }^{80.15 \%}$ | ${ }_{\substack{2,423}}^{2,423}$ | ${ }_{\text {2，372 }}^{2,381}$ | －-35 | －1．4\％ |
 | 82．7\％ | 2，381 | 2，302 | －79 | －3．3\％ |
 | 84．0\％ | 2，372 | 2，284 | －88 | －3．7\％ |
 | 85．2\％ | ${ }^{2,302}$ | 2，257 | 45 | －2．0\％ |
 | 86．4\％ 877% | | 2，1965 | －89 -24 | －3．9\％ |
 | 88．9\％ | ${ }_{2,169}^{2,190}$ | ${ }_{2,155}^{2,165}$ | －14 | －0．6\％ |
 | 90．1\％ | ${ }_{2}^{2,166}$ | ${ }_{2}^{2,132}$ | －34 | －1．6\％ |
 | ${ }^{91.4 \%}$ | 2，155 | 2，054 | －57 | －4．7\％ |
 | ${ }_{9}^{92.86 \%}$ | 2,081
 2,032 | ${ }_{1}^{2,025}$ | －59 | ${ }_{-2,9 \%}^{-2.9 \%}$ |
 | 95．1\％ | 1,973 | 1.678 | －294 | －14．9\％ |
 | 96．3\％ | 971 | ${ }^{986}$ | 15 | 1．6\％ |
 | 97．5\％ | 818 | 879 | 60 | 7．4\％ |
 | 98．8\％ | 800 | 880 | － | －0．0\％ |
 | 100．0\％ | 481 | 479 | －2 | －0．4\％ |

 | | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | DCR 2015 With Project | Absolute | Reative |
 | | Monthly Divers | Ently Diversion | dita | frence（ |
 | ${ }^{\text {0．0）}}$ | （CFFS） | （CFS） | O | |
 | 1．2\％ | | ${ }_{4}^{4,600}$ | | 0．0\％ |
 | 2．5\％ | | 4.600 | | |
 | 3．7\％ | 4600 | 4600 | | |
 | 4．9\％ | 4，600 | 4.600 | 0 | |
 | 6．2\％ | 4，600 | 4，600 | 0 | 0．0\％ |
 | 7．4\％ | 4，600 | 4，600 | 0 | 0．0\％ |
 | 8．9\％ | 4，600 | 4，600 | 0 | 0．0\％ |
 | 9．9\％\％ | 4，600 | 4，600 | 0 | |
 | ${ }^{19.12 \%}$ | 4,600 4.600 | ${ }_{4.600}^{4.600}$ | 0 | ．0\％ |
 | 13．6\％ | 4.600 | 4,600 | 0 | |
 | 14．8\％ | 4，600 | 4，600 | 0 | 0．0\％ |
 | －16．0\％ | ${ }_{4}^{4.600}$ | 4,600 4.600 | \bigcirc | 0．0\％ |
 | 18．5\％ | 4，600 | 4，600 | 0 | |
 | 19．8\％ | 4，568 | 4，600 | 32 | |
 | ${ }_{2}^{21.0 \%}$ | 4.423 | 4.568 | 145 | 3．3\％ |
 | ${ }^{22.2 .5 \%}$ | ${ }_{4,194}^{4,363}$ | ${ }_{4,239}^{4,363}$ | ${ }_{46}$ | 1．1\％ |
 | 24．7\％ | 4，162 | 4，190 | 27 | 0．7\％ |
 | 25．9\％ | 4，117 | 4，162 | ${ }^{46}$ | 110 |
 | 27．2\％ | 4，115 | ${ }_{4}^{4,141}$ | ${ }^{25}$ | 0．6\％ |
 | ${ }^{28.49 \%}$ | 3，941 | ${ }^{4.1118}$ | ${ }^{176}$ | 7．1．1\％ |
 | 30．9\％ | | 4，115 | ${ }_{309}^{27}$ | 8．1\％ |
 | 32．1\％ | 3．804 | 3，942 | 138 | 3．6\％ |
 | | | －3.843
 3807 | 163
 134
 1 | |
 | 34.6% 358% | 3.673
 3.630 | 3，807 | 134
 174
 1 | |
 | 35．7．${ }^{3}$ | － | －3,804
 3 | ${ }^{174}$ | 4．8\％\％ |
 | 38．3\％ | 3，616 | 3，639 | ${ }_{23}$ | |
 | 39．5\％ | 3，558 | 3，630 | 72 | 2．0\％ |
 | 42．0\％ | 3,519
 3.502 | ${ }_{3,520}$ | 1 | 0．0\％ |
 | 43．2\％ | ${ }^{3,472}$ | 3．519 | 47 | |
 | 44．4\％ | ${ }^{3,425}$ | 3，472 | 46 | |
 | 45．7\％ | ${ }_{\text {3，377 }}^{3,361}$ | 3，425 | ${ }^{48}$ | 1.46 |
 | ${ }^{46.9 \%}$ | 3，361 | ${ }^{3,377}$ | ${ }^{16}$ | 0．5\％ |
 | ${ }_{4}^{48.4 \%}$ | | － $\begin{aligned} & 3,361 \\ & 3,360\end{aligned}$ | $\stackrel{2}{10}$ | 0．3\％ |
 | 50．6\％ | 3，335 | 3，349 | 14 | 0．4\％ |
 | 51．9\％ | ${ }^{3,319}$ | ${ }_{\text {3，338 }}$ | 19 | 0．6\％ |
 | 53．1\％ | 3，311 | 3，337 | ${ }^{26}$ | 0．8\％ |
 | 54．6\％ | 3,281
 3
 3 | 3,319
 3
 3 | 38 79 | |
 | 56．8\％ | 3，199 | ${ }_{3,304}^{3,311}$ | 105 | 3．3\％ |
 | 58．0\％ | 3，191 | 3，281 | 90 | 2．8\％ |
 | 年 69.3% | 3,150 3,140 | 3,215 3,199 | 65 59 | 2．19\％ |
 | 61．7\％ | 3，068 | ${ }_{\text {3，150 }}$ | ${ }_{82}$ | 2．7\％ |
 | 63．0\％ | 3，033 | 3，068 | ${ }^{36}$ | 1．2\％ |
 | | 2，904 | 3．033 | ${ }^{129}$ | ${ }^{4.4 \%}$ |
 | ${ }^{65.7 \%}$ | ${ }_{2,784}^{2,780}$ | ${ }_{\text {3，}}$ | ${ }_{120}$ | 4．3\％ |
 | 67．9\％ | ${ }^{2,765}$ | 2，809 | 44 | |
 | 69．1\％ | 2，570 | 2，800 | 230 | 9\％ |
 | 70．1．6\％ | 2．505 | 2，696 | 190 | 7．6\％ |
 | 72．8\％ | ${ }_{2,331}^{2,499}$ | ${ }_{2,505}^{2.50}$ | 174 | ${ }^{2.8 \%}$ |
 | 74．1\％ | 2，309 | 2，499 | 190 | 8．2\％ |
 | 75．3\％ | 2,305
 2085
 28 | ${ }_{2}^{2,442}$ | 137 46 | 6．0\％ |
 | 76．5\％ | 2，285 | 2，331 | 46 | 2．0\％ |
 | 77．8\％ | 2,246
 2.231
 2 | 2,291 2289 | 46
 57 | ${ }_{2}^{2.0 \%}$ |
 | 79．0\％ 80.2% | 2，231 | 2，289 | 57 | 2．6\％ |
 | － | 2，103 | ${ }_{2}^{2,246}$ | ${ }_{2}^{143}$ | ${ }^{6.8 \%}$ |
 | 82．7\％ | ${ }_{1}^{2,973}$ | ${ }_{2}^{2,103}$ | ${ }_{130}$ | 6．6\％ |
 | 84．0\％ | ${ }_{1}^{1,872}$ | ${ }^{2,008}$ | 136 | 7．3\％ |
 | | 1,804
 1,726 | 1,872 1.819 | 68 93 | 5．4．\％ |
 | 87．7\％ | ${ }^{1,690}$ | ${ }_{1}^{1,806}$ | 116 | 6．9\％ |
 | 88．9\％ | 1,551
 1,254
 1 | 1，726 | 175 | ${ }^{11.3 \%}$ |
 | 91．4\％ | ${ }_{1}^{1,250}$ | ${ }_{1}^{1,601}$ | ${ }_{351}$ | 28．0\％ |
 | 92．6\％ | ${ }^{1,167}$ | ${ }^{1.551}$ | ${ }^{383}$ | 32．9\％ |
 | 955．1\％ | 1,095
 1,055
 1,097 | 1,300 1,194 $\substack{1,09}$ | ${ }^{209}$ | 19．2\％ |
 | 96．3\％ | ${ }_{1,013}$ | 1，001 | ${ }^{-13}$ | －1．2\％ |
 | 97．5\％ | ${ }_{89}^{927}$ | ${ }_{993} 9$ | ${ }^{66}$ | 7．1\％ |
 | 988\％\％ | ${ }_{721}^{800}$ | ${ }_{719} 939$ | 139 | 17．4\％ |
 | 100．0\％ | 721 | 719 | －2 | －0．3\％ |

 | Proche Proablity of Exceedance | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Warch | | | | | Aprll | | | | |
 | ${ }_{\text {Exceedance }}$ | ${ }^{\text {DCR } 2015 \text { Suthout }}$ Proiet | DCR 2015 With Project | | elative | Exceedance | ${ }_{\text {DCC }} \begin{aligned} & \text { 2015 Efrout } \\ & \text { Proiet }\end{aligned}$ | DCR 2015 With Project | Absolute | Relative |
 | Probability | Monthly Diversion | Monthy Diversion | Difference （CFS） | Difference（\％） | Probability | Monthl Diversion | Monthly Diversion | | Difference（\％） |
 | （\％） | ${ }^{\text {（CFFS }}$ 4， | （CFFS） | 0 | 00\％ | （\％） | （CFFS） | ${ }_{\text {（CFFS }}$ | | |
 | 0．0\％ | | | O | | | ， | | | |
 | 1．2\％ | 4.600 | 4，600 | 0 | 0．0\％ | 1．2\％ | ${ }^{2,734}$ | ${ }^{2,726}$ | ${ }^{-8}$ | |
 | 2．5\％ | 4，600 | 4，600 | 0 | 0．0\％ | 2．5\％ | ${ }^{2,722}$ | ${ }^{2,722}$ | 0 | 0．0\％ |
 | 3．7\％ | 4，600 | 4，600 | 0 | 0．0\％ | 3．7\％ | 2，621 | 2，617 | －4 | －0．1\％ |
 | 6．2\％ | 4,600 | 4，600 | 0 | 0．0\％ | 4．9\％ | | 2，497 | | ${ }^{-0.3 \%}$ |
 | 7．4\％ | 4.600 | 4.600 | 0 | 0．0\％ | 7．4\％ | | | ${ }_{-8}$ | －0．4\％ |
 | 8．6\％ | 4，600 | 4，600 | 0 | 0．0\％ | 8．6\％ | ${ }_{1,852}$ | ${ }_{1,847}$ | －6 | 3\％ |
 | | 4，600 | 4，600 | 0 | 0．0\％ | 9．9\％ | 1，751 | 1，747 | 4 | 2\％ |
 | 11．1\％ | 4，600 | 4，600 | | 0．0\％ | 11．1\％ | 1，665 | 1，657 | －8 | －0．5\％ |
 | ${ }^{12.3 \%}$ | 4，600 | 4，600 | 0 | 0．0\％ | 12．3\％ | 1，622 | 1，622 | 0 | 0．0\％ |
 | 13．6\％ | 4，600 | 4，600 | 0 | 0．0\％ | － 13.36% | | 1,604 1.888 1 | 0 | 0．0\％ |
 | －1．9．0\％ | ${ }_{4,600}$ | ${ }_{4,600}^{4,600}$ | 0 | 0．0\％ | 14．8\％ 16.0% | 1,487
 1,426
 1,022 | ＋1，488 | 0 | － 0.0% |
 | 177．3\％ | 4.600 | 4,600 | 0 | 0．0\％ | 17．3\％ | ${ }_{1,392}^{1,420}$ | ${ }_{1,392}^{1,426}$ | 0 | 0．0\％ |
 | 18．5\％ | 4，600 | 4.498 | －102 | －2．2\％ | 18．5\％ | ${ }^{1,377}$ | ${ }^{1,377}$ | 0 | 0．0\％ |
 | 19．8\％ | 4，600 | 4，383 | －217 | －4．7\％ | 19．8\％ | 1，343 | 1，367 | ${ }^{4}$ | 1．8\％ |
 | 21．0\％ | 4．578 | 4，375 | ${ }^{203}$ | －4．4\％ | 21．0\％ | 1，299 | ${ }^{1,343}$ | 44 | 3．4\％ |
 | ${ }^{22.25 \%}$ | ${ }_{4}^{4,257}$ | ${ }_{4}^{4,309}$ | 53 | 1．2\％ | ${ }^{22.2 \%}$ | ${ }_{1}^{1,2255}$ | 1，325 | ${ }^{30}$ | ${ }_{1}^{2.3 \% \%}$ |
 | 24．7\％ | ${ }_{4,216}^{4,234}$ | ${ }_{4}^{4,124}$ | －91 | －2．2\％ | 24．7\％ | ${ }_{1}^{1,270}$ | ${ }_{1}^{1,270}$ | ${ }^{24}$ | 0．0\％ |
 | 25．9\％ | 4,124 | 3，947 | －178 | －4．3\％ | 25．9\％ | 1,246 | ${ }_{1,246}$ | 0 | 0．0\％ |
 | 27．2\％ | 4，116 | 3，909 | －207 | －5．0\％ | 27．2\％ | ${ }_{1}^{1,208}$ | ${ }^{1,208}$ | 0 | 0．0\％ |
 | ${ }^{28.9 \%}$ | ${ }_{4,061}^{4.08}$ | （3.825
 3,745 | －${ }_{\text {－}}$ | －7．8\％ | ${ }^{28.4 .6 \%}$ | ${ }_{1}^{1,200}$ | ${ }_{1,201}^{1,205}$ | ${ }_{1}^{4}$ | 0．1\％ |
 | 30．9\％ | 3，947 | 3，742 | －205 | －5．2\％ | 30．9\％ | 1，194 | 1，200 | 6 | 0．5\％ |
 | 32．1\％ | 3，825 | 3，695 | －130 | －3．4\％ | 32．1\％ | 1，170 | 1，194 | 24 | 2．1\％ |
 | 33．3\％ | 3，742 | 3，689 | －52 | －1．4\％ | 33．3\％ | 1，142 | 1，169 | 27 | 2．4\％ |
 | 34．6\％ | ${ }^{3,695}$ | 3，577 | －118 | －3．2\％ | 34．6\％ | ${ }^{1,1135}$ | ${ }^{1,1165}$ | 30 | 2．6\％ |
 | 35．8\％ | 3，571 | 3，573 | －4 | －0．1\％ | 35．8\％ | ${ }^{1,1124}$ | 1，142 | 18 | ${ }_{\text {l }}^{\text {1．6\％}}$ |
 | 37．0\％ | 3，571 | $\begin{array}{r}3,457 \\ 3 \\ \hline \text { ，456 }\end{array}$ | ${ }^{114}$ | －3．2\％ | 37．0\％ | 1，118 | ${ }_{\substack{1 \\ 1 \\ 1,124 \\ \hline 185 \\ \hline}}$ | ${ }_{19}^{17}$ | 1．8\％\％ |
 | 38．3\％ | 3，457 | 3，456 | 0 | 0．0\％ | 38．3\％ | 1，104 | ＋1，124 | 19 | 1．8\％\％ |
 | 39．7\％ | ${ }_{3,346}^{3,437}$ | － 3,445 | ${ }_{68}$ | ${ }_{\text {2，0\％}}^{0.2 \%}$ | 30．7\％ | ${ }_{1}^{1.099}$ | li，${ }_{1}^{1,101}$ | 17 | － |
 | 42．0\％ | 3，306 | 3，346 | 39 | 1．2\％ | 42．0\％ | 1.097 | 1.099 | 2 | 0．2\％ |
 | ${ }^{43.2 \%}$ | 3，295 | －3，343 | ${ }^{48}$ | 1．5\％ | －43．2\％ | ${ }^{1,096}$ | 1，097 | 1 | 0．1\％ |
 | | | 3，333 | | 2．9\％ | 44．4．9 | ${ }^{1,084}$ | 1,097 | ${ }_{17}^{12}$ | |
 | 46．9\％ | 3，208 | 3，244 | ${ }_{36}$ | 1．1\％ | 46．9\％ | ${ }_{1}^{1,051}$ | 1，079 | ${ }_{28}$ | 2．6\％ |
 | 48．1\％ | 3，154 | 3，238 | 84 | 2．7\％ | 48．1\％ | 1.049 | 1.051 | 2 | 0．2\％ |
 | 49．4\％ | 3，122 | 3，212 | 90 | 2．9\％ | 49．4\％ | 1，044 | 1，049 | 5 | 5\％ |
 | 年 50.19% | 3，011 | 3，061 | 50 | 1．7\％ | 50．6\％ | ${ }^{1,036}$ | ${ }^{1,044}$ | 8 | 0．8\％ |
 | ${ }^{51.9 \%}$ | 2，949 | 2，906 | －35 | ${ }^{-1.5 \%}$ | 53．1\％ | ${ }_{1}^{1,028}$ | ＋1，028 | 0 | 0．0\％ |
 | 54．3\％ | 2，939 | 2,671 | －268 | －9．1\％ | 54．3\％ | 1.028 | 1，028 | 0 | 0．0\％ |
 | 55．\％\％ | 2，906 | 2，656 | －250 | －8．6\％ | 55．6\％ | 1，020 | 1，020 | 0 | 0．0\％ |
 | 56．8\％ | 2，656 | ${ }_{2}^{2,655}$ | －1 | 0．0\％ | 56．8\％ | ${ }^{1,004}$ | ${ }^{1,004}$ | 0 | 0．0\％ |
 | 58．0\％ | 2，594 | ${ }^{2} \mathbf{2}, 638$ | 44 | 1．7\％ | 58．0\％ | 1，002 | 1，002 | 0 | 0．0\％ |
 | 㐌 $6.5 .5 \%$ | ${ }_{\text {2，537 }}^{2.539}$ | ${ }_{2,566}^{2,594}$ | ${ }_{29}^{55}$ | ${ }_{1.2 \%}^{2.2 \%}$ | 59．3\％ | ${ }_{988}^{998}$ | ${ }_{988}^{998}$ | 0 | 0．0\％ |
 | 61．7\％ | ${ }_{2,536}^{2,53}$ | ${ }_{2,564}^{2,560}$ | 27 | 1．1\％ | 61．7\％ | 985 | 985 | 0 | 0．0\％ |
 | 63．0\％ | 2，531 | 2，531 | 0 | 0．0\％ | 63．0\％ | 977 | 977 | 0 | 0．0\％ |
 | 64.2% 65.4% | 2.529
 ${ }_{2.527}$
 | 2.527 2.499 | ${ }_{-28}^{-2}$ | －0．1\％ | 64．2\％ | ${ }_{971}^{976}$ | ${ }_{971}^{976}$ | \bigcirc | 0．0\％\％ |
 | ${ }_{6}^{65.7 \%}$ | ${ }_{2,500}^{2,527}$ | ${ }_{2,474}^{2,499}$ | －26 | －1．0\％ | ${ }_{66.7 \%}^{65.4 \%}$ | 970 | 970 | 0 | 0．0\％ |
 | 67．9\％ | ${ }_{2.458}$ | 2,467 | | 0．3\％ | 67．9\％ | 963 | 963 | | 0\％ |
 | 69．1\％ | 2，429 | 2，444 | 15 | 0．6\％ | 69．1\％ | ${ }_{924} 9$ | ${ }_{9} 924$ | 0 | 0．0\％ |
 | 71．6\％ | ${ }_{2,343}$ | ${ }_{2,385}^{2,404}$ | 42 | 1．8\％ | 71．6\％ | ${ }_{893}$ | ${ }_{893}$ | 0 | 0．0\％ |
 | 72．8\％ | 2,299 | 2，343 | 44 | 1．9\％ | 72．8\％ | 889 | 889 | 0 | 0．0\％ |
 | 74．1\％ | 2，126 | 2，266 | 140 | 6．6\％ | 74．1\％ | 864 | 864 | 0 | 0．0\％ |
 | 76．5\％ | ${ }_{\text {2，095 }}^{\text {1，991 }}$ | ${ }_{\text {2，012 }}^{1,991}$ | －73 | －3．0\％ | 7．7．5\％ | 806 800 | 800 800 | ${ }^{-6}$ | ${ }^{-0.8 \%}$ |
 | 77．8\％ | 1，990 | 1，987 | －3 | －0．2\％ | | 800 | 800 | 0 | 0．0\％ |
 | 79．0\％ | 1，987 | 1，933 | －54 | －2．7\％ | 79．0\％ | 800 | 800 | 0 | 0．0\％ |
 | 80．2\％ | （1，933 | （1，855 | $\begin{array}{r}\text {－} 78 \\ -58 \\ \hline\end{array}$ | －4．0\％ | － | 880 | 8800 | 0 | 0．0\％ |
 | ${ }^{81.5 \%}$ | － 1,835 | 1,797 1770 | －58 | －3．19\％ | 8．15\％ | 880 | 880 | 0 | 0．0\％ |
 | － | ${ }_{1}^{1,7697}$ | 1,770
 1,748 | －27 107 | －${ }_{\text {－}}^{6.5 \%}$ | － 82.78% | 800 800 | 800 800 | 0 | －${ }_{\text {0．0\％}}^{0.0 \%}$ |
 | 85．2\％ | 1.641 | ${ }_{1}^{1,745}$ | 104 | 6．4\％ | 85．2\％ | ${ }_{800} 8$ | ${ }_{800} 8$ | 0 | 0．0\％ |
 | 86．4\％ | 1，525 | 1，499 | -26 | －1．7\％ | 86．4\％ | 800 | 800 | 0 | 0．0\％ |
 | － | 1,499
 1.342
 1 | 1,336
 1,291 | －51 | －10．9\％ | －877．7\％ | 800 800 | 800 800 | 0 | －0．0\％ |
 | 90．1\％ | ${ }_{1}^{1,336}$ | 1.273 | ${ }^{-63}$ | －4．7\％ | 90．1\％ | 800 | 800 | 0 | 0．0\％ |
 | 91．4\％ | 1，291 | 1，204 | －87 | －6．7\％ | 91．4\％ | 800 | 800 | 0 | 0．0\％ |
 | ${ }_{9}^{92.8 \%}$ | ${ }_{1,204}^{1,273}$ | 1,099 1.039 | －183 | －${ }_{\text {－14．4．4\％}}$ | ${ }_{93.8 \%}^{92.6 \%}$ | 800 800 | 800 800 | 0 | ${ }^{0.0 \% \%}$ |
 | 95．1\％ | 1，039 | 1，008 | ${ }^{-31}$ | －3．0\％ | 95．1\％ | 800 | 800 | 0 | 0．0\％ |
 | ${ }^{96.75 \%}$ | 800 800 | 800 800 | 0 | 0．0\％ | 96．3\％ | 800 800 | 800 800 | 0 | 0．0\％ |
 | 98．8\％ | 800 | 800 | | 0．0\％ | 98．8\％ | 800 | 800 | 0 | 0．0\％ |
 | 100．0\％ | 637 | 739 | 102 | 16．1\％ | 100．0\％ | 800 | 800 | 0 | 0．0\％ |

 Figure SW-38-b
 Banks Pumping Plant (SWP and CVP), Monthly Diversion

 Table SW-38-b

 | $\begin{aligned} & \text { Percent } \\ & \hline \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | | $\underset{\text { DCR } 2015 \text { With Project }}{\text { Monthly Diversion }}$ | $\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (CFSS) } \end{aligned}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: |
 | | | | | |
 | ${ }^{\text {0.0. }}$ (\%) | | (tas) | | |
 | ${ }^{0.20 \%}$ | ${ }^{6,680}$ | 容,6880 | 0 | 0.0\% |
 | ${ }_{\text {2 }}$ | ${ }^{6,680}$ | | 0 | |
 | ${ }^{2.7 \% \%}$ | 6,600 | ${ }_{6}^{6.6880}$ | 5 | 0.8\% |
 | 4.9\% | ${ }_{6,456}^{6,026}$ | ${ }_{6}^{6.622}$ | 166 | 2.6\% |
 | 6.2\% | 6,100 | 6,351 | 251 | 4.1\% |
 | 7.4\% | 6,087 | ${ }^{6.035}$ | -52 | 0.9\% |
 | 9.9\% | ${ }_{\text {cke }}^{5.7830}$ | c. 8.854 | 185
 122 | |
 | 11.1\% | ${ }_{5.665}^{5}$ | ${ }_{5.670}^{5}$ | 4 | 0.1\% |
 | 12.3\% | 5.515 | 5.512 | 3 | -0.1\% |
 | 13.6\% | 5,483 | 5,476 | 8 | -0.1\% |
 | 14.8\% | 5,245 | 5,376 | 132 | |
 | 16.0\% | 4.878 | 5,169 | 291 | 6.0\% |
 | 17.3\% | 4,545 | 4.966 | 421 | 9.3\% |
 | 18.5\% | 4,471 | 4,878 | 408 | 9.1\% |
 | 19.8\% | 4,395 | 4,870 | ${ }^{476}$ | 10.8 |
 | 21.0\% | 4,338 | 4,711 | ${ }^{373}$ | 8.6\% |
 | ${ }^{222.2 \%}$ | 4,321 | 4,656 | ${ }^{335}$ | 7.8\% |
 | 23.5\% | 4,315 | 4,600 | 285 | 6.6\% |
 | 24.7\% | 4,303 | 4,566 | ${ }^{263}$ | ${ }^{6.11 \%}$ |
 | 25.9\% | 4,222 | 4,544 | ${ }^{322}$ | ${ }_{7}^{7.6 \%}$ |
 | 27.2\% | 4,210 | 4,529 | 318 | |
 | 29.6\% | ${ }_{4}^{4,120}$ | ${ }_{4.410}^{4.460}$ | ${ }_{290}^{255}$ | ${ }_{7}^{6.10 \%}$ |
 | 30.9\% | 4,009 | 4,405 | ${ }_{396}$ | |
 | 32.1\% | 4,000 | 4,378 | 378 | |
 | 33.3\% | ${ }^{3,998}$ | 4,181 | ${ }^{183}$ | |
 | 34.6\% | 3,951 | 4,175 | 224 | |
 | 35.8\% | 3,930 | 4,155 | 225 | |
 | 37.\% | ${ }^{3,828}$ | 4,126 | 299 | |
 | 38.3\% | 3,820 | 4,118 | 298 | |
 | 39.5\% | ${ }^{3,763}$ | 4,084 | 320 | 8.5\% |
 | 40.7\% | 3,698 | 4,005 | 307 | 8.3\% |
 | 42.0\% | 3,609 | 4,001 | 392 | 10.9\% |
 | 43.2\% | 3,463 | 3,986 | 524 | 15.1\% |
 | 44.4\% | 3,400 | ${ }^{3,856}$ | 456 | ${ }^{13.4 \%}$ |
 | 45.7\% | 3.378 3 3 | 3.854 | 476 | 14.1\% |
 | 46.9\% | ${ }^{3,344}$ | 3,766 | ${ }^{422}$ | 12.6\% |
 | 48.1\% | 3,297 | ${ }^{3.685}$ | 387 | 11.8\% |
 | 50.6\% | 3,296 | ${ }_{3}^{3.621}$ | ${ }_{325}$ | 9.9\% |
 | 51.9\% | ${ }_{3,142}^{3,290}$ | ${ }_{3,614}$ | 472 | 15.0\% |
 | 53.1\% | 3,117 | 3,489 | ${ }^{373}$ | 12.0\% |
 | 54.3\% 5.56% | 3,087 | 3,486 | 399 | |
 | 55.8\% | 3.069 3.015 | 3,478 3,400 | ${ }_{385}$ | +128\% |
 | 58.0\% | 3,010 | 3,365 | 355 | |
 | 59.3\% | 2,941 | 3,262 | 322 | 10.9\% |
 | 60.5\% | 2,858 | 3,262 | 404 | 14.18 |
 | 61.7\% | ${ }^{2,848}$ | 3,249 | 402 | 14.1\% |
 | 63.0\% | 2,779 | 3,217 | 438 | 15.7\% |
 | ${ }^{64.2 \%}$ | ${ }_{2}^{2,632}$ | 3,180 | 548 | |
 | 65.4\% | 2,603 | 3,094 | 492 | 18.9% |
 | 66.7% 679% | 2,590 | ${ }^{3,088}$ | 498 | 19.2\% |
 | -67.9\% | 2,584 | 3,074 | 490 | 19.0\% |
 | 69.1\% 70.4% | ${ }^{2.543}$ | ${ }_{2,963}$ | 419 | 16.5\% |
 | 70.4\% | ${ }_{2}^{2,328}$ | 2,957 | 630 | 27.1\% |
 | 71.28\% | 2,301 | 2,859 | 558 | 24.2\% |
 | 72.1\% | ${ }_{2}^{2,240}$ | 2,840 283 | 600 | |
 | 74.3\% | ${ }_{2}^{2,226}$ | 2,833 | 608 | 3\% |
 | 76.5\% | 2,226
 2135
 2 2, | 2.828
 2773
 2 | ${ }_{602} 638$ | |
 | 7788\% | ${ }_{2}^{2,135}$ | ${ }_{2}$ | 638 | 29.9\% |
 | 77.8\% | 2,079 1.971 | 2,620 | 540 | ${ }^{26.0 \%}$ |
 | 80.2\% | ${ }_{1}^{1,952}$ | ${ }_{2.422}^{2,609}$ | ${ }_{470}$ | ${ }^{324.4 \%}$ |
 | 81.5\% | ${ }^{1,844}$ | 2,389 | 545 | 29.6\% |
 | 82.7\% | ${ }^{1,425}$ | 2,316 | 891 | |
 | 84.0\% | ${ }^{1,265}$ | ${ }^{2,248}$ | 983 | |
 | | 1,245 | 2,205 | 960 | 77.1\% |
 | ${ }^{867 \%}$ | 1,045 | ${ }_{1,973}$ | 928 | 88.8\% |
 | 88.9\% | 1,031 | 1,924 | 892 | 86.5\% |
 | 90.1\% | 929 | 1,297 | 368 | 39.6\% |
 | 914\% | 903 | 1,241 | 338 | 37.4\% |
 | 92.6\% | 7907 | 1,118 | 328 | 41.5\% |
 | 93.8\% | 727 | 857 | 130 | 17.8\% |
 | 95.1\% | 448 | ${ }_{826} 8$ | ${ }^{378}$ | 84.3\% |
 | 96.3\% | ${ }_{372}^{426}$ | 459 | ${ }^{34}$ | 7.9\% |
 | ${ }_{988.8 \%}^{97.5 \%}$ | 372 300 | 300 300 | ${ }^{-72}$ | 19.4\% |
 | 100.0\% | 300 | 300 | 0 | 0.0\% |

 | PercentExceedanceProbability | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {DCroiet }}^{\text {DCR } 2015 \text { Whout }}$ | DCR 2015 With Project | Absolute | |
 | | Montliy Diversion | Monthly Diversion | (itiferse | Difference (\%) |
 | ${ }^{\text {O.O) }}$ | ${ }_{\text {ClFS }}$ | | | 0.0\% |
 | 0.0\% | 8.550 | ${ }^{8.500}$ | 0 | ${ }^{0.0 \%}$ |
 | ${ }_{\text {2 }}$ | ${ }^{8,500}$ | ${ }^{8.500}$ | 0 | |
 | ${ }_{3}^{2.5 \% \%}$ | 8,500 | 8.500 | 0 | |
 | 4.9\% | 8,500 | 8,500 | O | \% |
 | 6.2\% | 8.500 | 7.905 | 595 | -7.0\% |
 | 7.4\% | 7,905 | ${ }_{7}^{7.848}$ | -57 | -0.7\% |
 | ${ }_{\text {9.9\% }}^{\text {8.9\% }}$ | 7.560
 7.505 | 7.699 7.560 | 139
 55 | - 1.8% |
 | 11.1\% | 7.015 | 7.015 | 0 | 0.0\% |
 | 12.3\% | 6,279 | 6,269 | 10 | -0.2\% |
 | 13.6\% | 6,269 | 6,232 | 37 | |
 | 14.8\% | 6,209 | 6,210 | 0 | |
 | - 16.0% | ${ }^{6,178}$ | ${ }^{6.178}$ | 0 | 0.0\% |
 | (17.3\% | ${ }_{5}^{5.983}$ | ${ }_{\text {5,853 }}$ | 130 | -2.2\% |
 | 19.8\% | ${ }_{5,354}^{5.853}$ | ${ }_{\substack{5,176}}^{5.122}$ | -179 | -10.3\% |
 | 21.0\% | 5.245 | 4,977 | 268 | -5.1\% |
 | 22.2\% | 5,200 | 4,933 | 267 | -5.1\% |
 | 23.5\% | 4,929 4899 | 4,929 489 | 0 | 0.0\% |
 | 24.7\% | 4,8699 | 4.8699 | 0 | 0.0\% |
 | 27.2\% | ${ }_{4,689}^{4,847}$ | ${ }_{4}^{4.847}$ | 0 | 0.0\% |
 | 28.4\% | 4,568 | ${ }_{4,568}^{4.689}$ | 0 | -0.0\% |
 | 29.9\% | 4.411 | 4.413 | 2 | 0.1\% |
 | 332.1\% | ${ }_{4}^{4.363}$ | ${ }_{4,363}^{4,411}$ | ${ }_{169}^{48}$ | 1.1\% |
 | 33.3\% | 4.162 | 4.190 | 27 | 0.7\% |
 | 34.6\% | 4,132 | 4,162 | 30 | 7\% |
 | 35.7\% | ${ }_{4,115}^{4.117}$ | ${ }_{4.1115}^{4.117}$ | 0 | |
 | 38.3\% | 3,941 | 3,942 | 0 | 0.0\% |
 | 39.5\% | 3,843 | 3.843 | 0 | 0.0\% |
 | 40.7\% | 3,837 | 3,807 | -30 | -0.8\% |
 | 42.0\% | 3,807 | 3,804 | -3 | 0.1\% |
 | 年4.4.4\% | 3,804 | 3,704 | -99 | -2.6\% |
 | 4.7.7\% | 3, ${ }_{\text {3,880 }}$ | ${ }_{\text {3,630 }}^{3,680}$ | - ${ }_{-50}$ | -1.4\% |
 | 46.9\% | 3,630 | 3,624 | -7 | -0.2\% |
 | 48.19\% | 3.624
 $\mathbf{3} 520$ | 3.520 3.519 | -103 | -2.9\% |
 | 49.4\% 50.6\% | ${ }^{3,520}$ | 3,519 | -1 | 0.0\% |
 | | 3.519 3 3 | 3.509 3 3 | -10 | -0.3\% |
 | ${ }^{51.9 \%}$ | - $\begin{aligned} & \text { 3,472 } \\ & 3 \\ & 3\end{aligned}$ | ${ }^{3,472}$ | -17 | 0.0\%\% |
 | 54.3\% | | | ${ }_{-48}$ | ${ }^{-1.4 \%}$ |
 | | - ${ }_{3}^{3,377}$ | 3,361 | -16 | -0.5\% |
 | 56.8\% | - $\begin{aligned} & 3,361 \\ & 3,360\end{aligned}$ | 3.360 3.349 | -2 -10 | -0.0\% |
 | 59.3\% | 3,349 | ${ }_{3,338}$ | 12 | -0.3\% |
 | 年.5.5\% | 3,335 | 3,337 | 2 | |
 | ${ }^{61.7 \%}$ | 3,319 | 3,319 | 0 | 0\% |
 | | ${ }^{3,311}$ | ${ }^{3,311}$ | 0 | 0.0\% |
 | 65.4\% | $\substack{3,281 \\ 3,199}$ | 3,199 | 0 | 0.0\% |
 | 66.7\% | 3,194 | 3,195 | 0 | 0.0\% |
 | 67.9\% | 3,150 | 3,150 | 0 | 0.0\% |
 | 69.1\% | 3,140 | 3,139 | -1 | 0.0\% |
 | 70.4\% | 3,138 | 3.068
 3056 | ${ }_{-81}$ | -2.2\% |
 | 72.8\% | 3,068 | 3,033 | ${ }_{-35}$ | -1.2\% |
 | 74.1\% | 3,033 | 2,976 | -56 | -1.9\% |
 | 75.3\% | 2,904 | 2,904 | | 0.0\% |
 | 76.5\% | 2.800
 2784
 2 | 2,800 2606 | 88 | 0.0\% |
 | 77.8\% | 2.784
 $\begin{array}{l}2.570\end{array}$ | 2.696 2.570 | ${ }^{-88}$ | -3.2\% |
 | 80.2\% | ${ }_{2,505}^{2.570}$ | ${ }_{2,505}^{2.570}$ | \bigcirc | - |
 | 81.5\% | 2,499 | 2,499 | 0 | 0.0\% |
 | 82.7% 84.0% | 2,331
 2385
 28 | 2,331 2389 | 0 | 0.0\% |
 | ${ }^{845.2 \%}$ | ${ }_{2,246}$ | ${ }_{2,246}$ | ${ }_{0}$ | 0.0\% |
 | 86.4\% | ${ }_{2}^{2} 2,231$ | 2,239 | 8 | 0.3\% |
 | 877\% | 2,103 | ${ }_{2}^{2,231}$ | 128 | 6.1\% |
 | ${ }_{\text {c }}^{\text {88.9\% }}$ 90.1\% | 2,008 | 2,103 | 94 | 4.7\% |
 | 90.14\% | ${ }^{1.872}$ | 2,102 | 230 | 12.3\% |
 | - ${ }_{\text {92, }}^{92.4 \%}$ | ${ }^{1,804}$ | 2,008 | 204 | 11.3\% |
 | ${ }_{93}^{92.8 \%}$ | 1,783 | ${ }^{1.872}$ | 89 | 5.0\% |
 | ${ }^{93.85 \%}$ | ${ }^{1,726}$ | ${ }^{1,806}$ | 80 | 4.7\% |
 | ${ }_{9}^{95.3 \%}$ | +1,690 | 1,726 | 35 | 2.1\% |
 | -96.3\% ${ }_{\text {97.5\% }}$ | 1,551 | ${ }^{1,699}$ | 140 | 9.0\% |
 | ${ }_{98.8 \%}^{97.5 \%}$ | (1,405 | 1,551 | 145 | ${ }^{10.4 \%}$ |
 | 988.8\% 100\%\% | ${ }_{353}^{631}$ | +1,397 | 8,044 1 | ${ }_{\text {l }}{ }_{\text {29,9\% }}^{127.9 \%}$ |

 Table SW-38-b

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[t]{3}{*}{\[
 \begin{gathered}
 \text { Percent } \\
 \begin{array}{c}
 \text { Exceenance } \\
 \text { Probability } \\
 (\%)
 \end{array} \\
 \hline
 \end{gathered}
 \]} \& \multicolumn{4}{|l|}{DCP2015WWmut June} \\
 \hline \& \({ }^{\text {DCR } 2015 \text { Without }}\) Proiet \& DCR 2015 With Project \& Absolute \& \\
 \hline \& \& Monthly Diversion \& Difference \& Hference (\%) \\
 \hline 0.0\% \& \({ }_{6.680}\) \& 6.680 \& 0 \& 0.0\% \\
 \hline 1.2\% \& 6.680 \& \({ }_{6.680}\) \& 0 \& \\
 \hline 2.5\% \& 6,680 \& 6.680 \& 0 \& \\
 \hline 3.7\% \& 6,680 \& 6.680 \& 0 \& \\
 \hline 4.9\% \& 6,680 \& 6,088 \& 592 \& 8.9\% \\
 \hline 6.2\% \& 6,131 \& 6,046 \& -85 \& -1.4\% \\
 \hline 7.4\% \& 6,047 \& 5.547 \& 499 \& 8.3\% \\
 \hline 8.6\% \& 5.597 \& 5,253 \& 344 \& -6.1\% \\
 \hline 9.9\% \& 5,252 \& 5.116 \& 137 \& -2.6\% \\
 \hline 11.1\% \& 4,901 \& 4,901 \& 0 \& 0.0\% \\
 \hline \({ }^{12.3 \%}\) \& 4,645 \& 4,575 \& -71 \& -1.5\% \\
 \hline 13.6\% \& 4,455 \& 4,509 \& 55 \& \% \\
 \hline 14.8\%\% \& 4,399 \& 4,4555 \& 56 \& \% \\
 \hline -17.0\%\% \& 4,385 \& 4,385 \& 0 \& \\
 \hline 18.5\% \& 4,165 \& \({ }_{4}^{4,1650}\) \& 0 \& \\
 \hline 19.8\% \& 3,961 \& 4,051 \& 91 \& 2.3\% \\
 \hline 21.0\% \& 3,799 \& 3.961 \& 161 \& 4.2\% \\
 \hline \({ }^{22.2 \%}\) \& 3,442 \& 3,442 \& 0 \& 0.0\% \\
 \hline \({ }^{224.7 \%}\) \& - \& - \& 0 \& \({ }^{0.00 \%}\) \\
 \hline 25.9\% \& 3,141 \& 2,937 \& 204 \& -6.5\% \\
 \hline 27.2\% \& 3,097 \& 2,893 \& 203 \& -6.6\% \\
 \hline 28.4\% \& 2,922 \& 2,887 \& -35 \& 1.2\% \\
 \hline 29.6\% \& \({ }^{2,892}\) \& \({ }_{2}^{2,878}\) \& -15 \& 0.5\% \\
 \hline 30.9\% \& \begin{tabular}{l}
 2,878 \\
 \hline 283 \\
 \hline
 \end{tabular} \& \({ }^{2,856}\) \& -22 \& -0.8\% \\
 \hline 32.1\% \& \({ }^{2,863}\) \& 2,854 \& -9 \& -0.3\% \\
 \hline 334.6\% \& \({ }_{2}^{2,854}\) \& \({ }_{2}^{2,852}\) \& -1 \& -0.1\% \\
 \hline 34.8\% \& \begin{tabular}{l}
 2,851 \\
 2,736 \\
 \hline 2,
 \end{tabular} \& \begin{tabular}{l}
 2.851 \\
 2.848 \\
 \hline
 \end{tabular} \& \({ }_{113}\) \& 4.1\% \\
 \hline 37.0\% \& 2,690 \& 2,843 \& 153 \& 5.7\% \\
 \hline 38.3\% \& 2,675 \& 2,735 \& \({ }_{31}^{60}\) \& \({ }_{\text {2, }}\) 2\%\% \\
 \hline 39.5\% \& 2,659 \& 2,690

 2
 259 \& 31 \& 1.2\%

 \hline ${ }_{4}^{40.70 \%}$ \& ${ }_{2,534}^{2,640}$ \& 2,659 \& 19 \&

 \hline ${ }_{43.2 \%}^{42.2 \%}$ \& | 2,534 |
 | :--- |
 | 2.526 | \& 2,640 \& 106 \& ${ }_{3}^{4.5 \%}$

 \hline 44.4\% \& ${ }_{2,383}^{2,53}$ \& ${ }_{2,526}^{2,56}$ \& 142 \& 6.0\%

 \hline 45.7\% \& 2,36 \& 2,433 \& 69 \& \%

 \hline 46.9\% \& 2,335 \& 2,379 \& 44 \&

 \hline 48.1\% 49 \& 2,322 \& 2,364 \& 42 \& 1.8\%

 \hline 49.4\%
 50.6\% \& ${ }_{2}^{2,291}$ \& ${ }_{2}^{2,363}$ \& 72 \& 3.1\%

 \hline 50.9\% \& ${ }_{\substack{2,181}}^{2,271}$ \& ${ }_{\text {2,041 }}^{2,085}$ \& ${ }_{-140}$ \& -6.4\%

 \hline 53.1\% \& 2,081 \& 2.008 \& -73 \& -3.5\%

 \hline 54.3\% \& 1,930 \& 1,976 \& 46 \& 2.4\%

 \hline \& 1,917 \& 1,930 \& ${ }^{13}$ \& 0.7\%

 \hline 55.0\% \& | $1,8,747$ |
 | :--- |
 | 1,74 | \& \& ${ }_{120}^{27}$ \& +1.5\%

 \hline 59.3\% \& 1,725 \& ${ }_{1,851}^{1.85}$ \& 126 \& 7.3\%

 \hline 60.5\% \& 1,698 \& 1,837 \& 139 \& 8.2\%

 \hline 61.7\% \& ${ }^{1,675}$ \& ${ }^{1,778}$ \& 103 \& 6.2\%

 \hline 63.0\% \& +1.668 \& +1,726 \& ${ }_{38}^{58}$ \& 3.4\%

 \hline ${ }^{64.2 \%}$ \& 1,668 \& ${ }^{1,698}$ \& ${ }^{30}$ \& ${ }_{1.8 \%}^{1.8 \%}$

 \hline 㐌6.4.7\% \& ${ }_{1}^{1,656}$ \& ${ }_{\substack{1,675 \\ 1,668}}^{\substack{1,089}}$ \& 19 \& -

 \hline 67.9\% \& ${ }^{1,643}$ \& ${ }_{1}^{1,668}$ \& \& 1.5\%

 \hline 69.1\% \& ${ }^{1,637}$ \& 1,656 \& 19 \& 1.1\%

 \hline 71.6\% \& ${ }_{1}^{1.585}$ \& ${ }_{1}^{1,642}$ \& 34
 57 \& ${ }_{3.6 \%}^{2.6 \%}$

 \hline 72.8\% \& ${ }_{1,521}$ \& ${ }_{1,637}$ \& 116 \& 7.6\%

 \hline 74.1\% \& 1,469 \& 1,636 \& 166 \& 3\%

 \hline 75.3\% \& ${ }^{1,385}$ \& ${ }^{1,620}$ \& ${ }^{235}$ \& 17.0\%

 \hline 76.5\% \& 1,369 \& 1,608 \& 239 \& 17.4\%

 \hline 77.8\% \& 1.011 \& 1,521 \& 510 \& 50.5\%

 \hline 79.0\% \& 876 \& 1,511 \& 635 \& 72.4\%

 \hline 80.2\% \& 771 \& 1,270 \& 499 \& 64.8\%

 \hline 81.5%
 827% \& 307 \& 1,156 \& 849 \& 276.6\%

 \hline 82.7%
 840% \& 300 \& 415 \& 115 \& 38.2\%

 \hline 84.0\%
 88.2% \& 300 \& 300 \& 0 \& 0.0\%

 \hline 85.2%
 86.4% \& 300 \& 300 \& 0 \& 0.0\%

 \hline -86.4\% \& 300 \& 300 \& 0 \& 0.0\%

 \hline 88.9\% \& 300 \& 300
 300 \& 0 \& -

 \hline 90.1\% \& 300 \& 300 \& 0 \& 0.0\%

 \hline ${ }^{91.4 \%}$ \& 300 \& 300 \& 0 \& 0.0\%

 \hline -93.8\% \& ${ }_{260}^{27}$ \& 300 \& ${ }_{40}^{23}$ \&

 \hline 95.1\% \& 241 \& 280 \& 39 \& 16.3\%

 \hline ${ }_{\text {963\% }}^{96.3 \%}$ \& ${ }^{226}$ \& ${ }^{241}$ \& ${ }^{15}$ \& 6.6\%

 \hline 98.8\% ${ }_{\text {97\% }}$ \& ${ }_{120}^{202}$ \& | 226 |
 | :--- |
 | 105 | \& 25 \& 12.3\%

 \hline 100.0\% \& 45 \& 97 \& 51 \&

 \hline
 \end{tabular}

 Banks Pumping Plant (SWP), Monthly Diversion

 \begin{tabular}{|c|c|c|c|c|}
 \hline \& \& \& \& \\
 \hline \multirow[t]{2}{*}{\[
 \begin{gathered}
 \text { Percent } \\
 \begin{array}{c}
 \text { Exceedance } \\
 \text { Probability }
 \end{array} \\
 \hline \text { Iol }
 \end{gathered}
 \]} \& \multirow[t]{2}{*}{} \& OCR 2015 With Project \& \multirow[t]{2}{*}{\[
 \begin{gathered}
 \text { Absiolute } \\
 \text { Aiffere } \\
 \text { (CFST) }
 \end{gathered}
 \]} \& \multirow[t]{2}{*}{\[
 \begin{aligned}
 \& \text { Relative } \\
 \& \text { Difference e } \\
 \& \hline
 \end{aligned}
 \]} \\
 \hline \& \& Monthly Diversion \& \& \\
 \hline \％\％ \& （CFS） \& （CFS） \& \& \\
 \hline \({ }^{\text {0．0\％}}\) \& \& \& 0 \& \({ }^{0.0 \%}\) \\
 \hline 1．2\％ \& 6，680 \& 6．680 \& \& \\
 \hline －\({ }_{\text {2．7．7\％}}\) \& \begin{tabular}{l}
 6,680 \\
 6.456 \\
 \hline
 \end{tabular} \& \begin{tabular}{l}
 6.680 \\
 6.680 \\
 \hline
 \end{tabular} \& \({ }_{224}\) \& \\
 \hline 4．9\％ \& 5，762 \& 5.884 \& 122 \& 2．1\％ \\
 \hline 6．2\％ \& 5.665 \& 5．670 \& 4 \& 0．1\％ \\
 \hline 7．4\％ \& 5．515 \& 5，495 \& \({ }^{20}\) \& \％ \\
 \hline 8．6\％ \& 5．440 \& \({ }^{5.376}\) \& \({ }^{64}\) \& －1．2\％ \\
 \hline 9．9\％ \& \({ }_{5}^{5,245}\) \& \({ }_{\text {5 }}^{5}\) ，365 \& 120 \& 2．3\％ \\
 \hline 11．1\％ \& 5．219 \& 5．211 \& 9 \& －0．2\％ \\
 \hline \({ }^{12.3 \%}\) \& 5，165 \& 5，200 \& 35 \& 0．7\％ \\
 \hline 13．6\％ \& 4，878 \& 4，966 \& 87 \& \\
 \hline 14．8\％ \& 4，804 \& \({ }^{4.8878}\) \& \({ }_{24} 7\) \& \％ \\
 \hline 17．3\％ \& \({ }_{4,338}^{4.545}\) \& \({ }_{4.804}^{4.818}\) \& 274
 466 \& 6．0\％ \\
 \hline 18．5\％ \& 4，293 \& 4，656 \& 363 \& 8．4\％ \\
 \hline 19．8\％ \& 4，262 \& 4，600 \& 338 \& \\
 \hline 21．0\％ \& 4，222 \& 4．566 \& \& 8．2\％ \\
 \hline 22．2\％ \& 4，210 \& 4，529 \& 318 \& \\
 \hline 23．5\％ \& 4，120 \& 4．460 \& 340 \& \({ }^{8.2 \%}\) \\
 \hline 24．7\％ \& 4，009 \& 4，410 \& 401 \& \\
 \hline 25．7．2\％ \& 4，000 \& 4.405 \& 405 \& \\
 \hline 俍28．72\％ \& \(\begin{array}{r}3.998 \\ \hline\end{array}\) \& 4，400 \& \({ }^{403}\) \& 10．1\％ \\
 \hline 29．6\％ \& \begin{tabular}{l}
 3.951 \\
 3.930 \\
 \hline
 \end{tabular} \& \({ }^{4.243}\) \& 292 \& 7．4\％\％ \\
 \hline 30．9\％ \& \({ }_{\text {3，929 }}\) \& \({ }_{4}^{4.1175}\) \& \({ }_{246}^{251}\) \& 6．3\％ \\
 \hline 32．1\％ \& \({ }_{3.828}\) \& 4，126 \& 299 \& 7．8\％ \\
 \hline 33．3\％ \& 3．820 \& 4，1188 \& \({ }_{3}^{298}\) \& 7．8\％ \\
 \hline 34．5\％ \& 3,780
 3
 3 \& 4，084 \& \({ }^{304}\) \& 8．0\％ \\
 \hline 35．8\％ \& 3，763 \& 4，005 \& \({ }^{241}\) \& 6．4\％ \\
 \hline \& （3，698 \& 4，001 \& \({ }^{303}\) \& \({ }_{\text {c }}^{8.2 \%}\) \\
 \hline 39．5\％ \& \({ }_{3,676}\) \& \({ }_{3,890}\) \& \({ }_{214}^{291}\) \& 5．8\％ \\
 \hline 40．7\％ \& 3，609 \& \({ }^{3.856}\) \& \({ }^{247}\) \& 6．9\％ \\
 \hline 42．0\％ \& 3，477 \& \({ }^{3.854}\) \& 377 \& \\
 \hline \({ }_{44.4 \%}^{43.2 \%}\) \& 込， \& \({ }_{\substack{3.842 \\ 3,766}}\) \& \({ }_{366}\) \& 107\％ \\
 \hline 45．7\％ \& 3，378 \& 3，685 \& \& \\
 \hline 46．9\％ \& 3，344 \& \({ }_{3.657}\) \& 313 \& 9．4\％ \\
 \hline 48．1\％\％ \& 3，297 \& \({ }^{3.621}\) \& 324 \& 9．8\％ \\
 \hline \& 3，296 \& 3，621 \& \({ }^{325}\) \& 9．9\％ \\
 \hline 551．9\％ \& \({ }_{\substack{3,142 \\ 3,14}}^{\text {2，}}\) \& \({ }_{3,572}^{3.614}\) \& 355
 430 \& \({ }^{10.9 \%}\) \\
 \hline 53．1\％ \& 3，117 \& 3，489 \& 373 \& 12．0\％ \\
 \hline \(54.3 \%\)
 \(5.5 \%\)

 5 \& 3，087 \& ${ }^{3,486}$ \& 399 \& 12．9\％

 \hline 55．6\％ \& 3，069 \& 3，478 \& 409 \& 13．3\％

 \hline \& 3，015 \& 3，400 \& 385 \& 12．8\％

 \hline 年58．0\％ \& 3.010
 2，941 \& ${ }^{3,365}$ \& ${ }^{355}$ \& 11．8\％

 \hline 年6．3．5\％ \& 2，941 \& ${ }_{3,262}$ \& ${ }^{322}$ \& 10．9\％

 \hline － $\begin{aligned} & \text { 60．5\％} \\ & 61.7 \%\end{aligned}$ \& 2，858 \& ${ }_{3,262}$ \& 404 \& 14．1\％

 \hline － 61.79% \& | 2,848 |
 | :--- |
 | 879 | \& ${ }^{3,249}$ \& 402 \& ${ }^{14.19 \%}$

 \hline － 63.2% \& 2,779

 2.632 \& | 3.217 |
 | :--- |
 | 3,180 | \& ${ }_{5}^{438}$ \&

 \hline 65．4\％ \& 2，603 \& 3，094 \& 492
 498 \& ${ }^{18.9 \%}$

 \hline ${ }^{66.7 \%}$ \& 2，590 \& 3，088 \& 498 \& 19．2\％

 \hline －67．9\％ \& ${ }_{2}^{2,584}$ \& 3，074 \& 490 \& \％\％

 \hline 69．19\％ \& | 2，543 |
 | :--- |
 | $\substack{328 \\ \hline \\ \hline \\ \hline \\ \hline}$ | \& ${ }_{2}^{2,963}$ \& 419 \&

 \hline 71．6\％ \& ${ }_{2}^{2,321}$ \& ${ }_{2} 8.959$ \& 558 \& \％

 \hline 72．8\％ \& li，${ }_{2,24}$ \& ${ }_{2,840}^{2,899}$ \& 600 \& 26．8\％

 \hline 74．1\％ \& 2.226 \& ${ }_{2}^{2,833}$ \& 608 \& 27．3\％

 \hline 75．3\％ \& ${ }_{\text {2，226 }}^{2,265}$ \& ${ }_{2}^{2,828}$ \& 602 \& 27．1\％

 \hline 76．5\％ \& 2，135 \& ${ }_{2}^{2,773}$ \& 638 \& 29．9\％

 \hline 778\％ \& 2，079 \& ${ }^{2,620}$ \& 540 \& 26．0\％

 \hline 79．0\％ \& 1，971 \& 2.609 \& 638 \& 32．4\％

 \hline － 80.2% \& 1，952 \& ${ }_{2}^{2,389}$ \& 437 \& 22．4\％

 \hline 81．5\％ \& 1，844 \& 2，316 \& ${ }^{471}$ \& 25．6\％

 \hline 82.7%
 84.0% \& ${ }^{1,4225}$ \& 2，307 \& 882 \& 619\％\％

 \hline －84．0\％ \& ${ }_{1}^{1,265}$ \& 2，248 \& 983 \& 77．7\％

 \hline －${ }_{\text {85．4\％}}$ \& ${ }_{1}^{1,245}$ \& 2，139 \& 894 \& 71．8\％

 \hline ${ }^{86.4 \%}$ \& ${ }^{1}, 1405$ \& ${ }_{1}^{2,110}$ \& 970 \& 85．1\％

 \hline 88．9\％ \& ${ }_{1,031}^{1,045}$ \& ${ }^{1} 1973{ }^{1924}$ \& ${ }_{892} 98$ \& ${ }^{80.8 \%}$

 \hline ${ }^{88.1 \%}$ \& ${ }_{929}^{1,031}$ \& ＋1，924 \& ${ }_{368} 8$ \& ${ }^{86.5 \%}$

 \hline ${ }_{91.4 \%}$ \& ${ }_{903}$ \& ${ }_{\text {1，241 }}^{1,29}$ \& ${ }_{338} 38$ \& ${ }^{3} \mathbf{3 . 4 \%}$

 \hline 92．6\％ \& ${ }_{7}^{790}$ \& 1．118 \& 328 \& 41．5\％

 \hline 93．8\％ \& 727 \& 857 \& 130 \&

 \hline 9563\％ \& 448 \& ${ }_{4} 59$ \& 34 \& 790\％

 \hline 97．5\％ \& 372 \& 300 \& ${ }_{-72}$ \& －19．4\％

 \hline 98．8\％ \& 300 \& 300 \& 0 \& 0．0\％

 \hline 100．0\％ \& 300 \& 300 \& 0 \& 0．0\％

 \hline
 \end{tabular}

 | $\underset{\substack{\text { Excereant } \\ \text { Probabalility }}}{\text { Pere }}$ | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {DCR }}^{\text {D } 2015 \text { Without }}$ | DCR 2015 With Project | | Reative |
 | | thly Divers | Montily Diversion | citiference | Difference（\％） |
 | ${ }^{\text {L\％}}$（\％）\％ | （CFF） | | | |
 | 0．0\％ | ${ }^{8.500}$ | ${ }^{8.500}$ | 0 | 0．0\％ |
 | 1．2\％ | ${ }^{8.500}$ | 8.500 | 0 | |
 | 2．5\％ | 8，500 | ${ }^{8.500}$ | 0 | 0．0\％ |
 | 3．7\％ | 8，500 | 8.500 | 0 | |
 | 4．9\％ | 8.500 | 8，500 | 0 | 0．0\％ |
 | ${ }^{6.2 \%}$ | ${ }_{8}^{8.500}$ | 7.905 | 595 | 7．0\％ |
 | 7．4\％ | 7.905 | ${ }_{7}^{7,848}$ | －57 | －0．7\％ |
 | 8．6\％ | 7，560 | 7，560 | 0 | 0．0\％ |
 | 9．9\％\％ | 7.505 | ${ }_{7}^{7,205}$ | ${ }^{300}$ | \％ |
 | 11．19\％ | 7.015 | 7.015 | 0 | |
 | ${ }^{12.35 \%}$ | 6，279 | 6，269 | －10 | －0．6\％ |
 | 1138\％ | 6，269 | ${ }_{6}^{6,212}$ | ${ }^{-37}$ | 崖 |
 | 16．0\％ | ${ }_{6,178}$ | | 0 | 0．0\％ |
 | 17．3\％ | 5，983 | 5.853 | ${ }^{130}$ | －2．2\％ |
 | 18．5\％ | 5，853 | 5，222 | 632 | 10．8\％ |
 | 19．8\％ | 5，354 | 5，176 | 179 | |
 | 21．0\％ | 5，200 | 4，977 | 223 | 4．3\％ |
 | 22．2\％ | 4，929 | 4，933 | 4 | |
 | 23．5\％ | 4，869 | 4，929 | 60 | 1．2\％ |
 | 24．7\％ | 4，847 | 4．869 | 22 | 0．4\％ |
 | 25．9\％ | 4，689 | 4，847 | 158 | 3．4\％ |
 | 27．2\％ | 4，633 | 4，689 | 56 | 1．2\％ |
 | 28．4\％ | 4，5688 | 4．568 | 0 | 0．0\％ |
 | 29．6\％ | 4，411 | 4，4113 | 2 | 0．1\％ |
 | 30．9\％ | ${ }_{4}^{4,363}$ | ${ }_{4}^{4.311}$ | 48 | 1．1\％ |
 | 32．1\％ | 4，194 | 4，363 | 169 | 4．0\％ |
 | 33．3\％ | ${ }_{4}^{4.162}$ | 4.190 | 27 | 0．7\％ |
 | 34．6\％ | ${ }^{4,132}$ | ${ }^{4.162}$ | 30 | |
 | | ${ }_{4}^{41115}$ | ${ }_{4}^{4.117}$ | 0 | |
 | 38．3\％ | | ${ }_{3}^{4,115}$ | | |
 | 39．5\％ | 3.941
 3.843 | － | 0 | 0．0\％ |
 | 40．7\％ | ${ }_{3}^{3,837}$ | 3．807 | 30 | |
 | 42．0\％ | 3，807 | 3，804 | －3 | 0．19 |
 | 43．2\％ | 3，804 | 3，680 | 124 | |
 | 44．4\％ | 3，680 | ${ }^{3.630}$ | －50 | 1．4\％ |
 | 45．7\％ | 3，630 | 3，624 | －7 | 0．2\％ |
 | 46．9\％ | ${ }^{3,624}$ | ${ }^{3.520}$ | 103 | －2．9\％ |
 | 48．19\％ | 3，520 | 3．519 | －1 | 0．0\％ |
 | 49．4\％ | ${ }^{3.519}$ | 3，509 | 10 | 0．3\％ |
 | 50．9\％ | 3，472 | 3，472 | 0 | 0．0\％ |
 | － 51.9 .9 | 3，443 | ${ }^{3,425}$ | －17 | －0．5\％ |
 | 54．3\％ | 3，425 | ${ }^{3,377}$ | －48 | －1．4\％ |
 | 54．5\％ | ${ }_{3}^{3,377}$ | ${ }^{3,361}$ | ${ }^{16}$ | 0．5\％ |
 | 55．8\％ | ${ }_{\substack{3,361 \\ 3,360}}$ | 3,360 3,349 | －2 | （0\％\％ |
 | 56．0\％ | 3，360 | ${ }_{3,349}$ | －10 | －0．3\％ |
 | 58．3\％ | －3，359 | ${ }_{\text {3，338 }}$ | －22 | |
 | 60．5\％ | －3，349 | － | ${ }_{-17}$ | \％ |
 | ${ }^{60.7 \%}$ | ${ }_{\substack{3,339}}^{3,39}$ | ${ }_{\substack{3,319}}^{3,319}$ | ${ }_{-8}$ | －0．2\％ |
 | 63．0\％ | 3，311 | 3，281 | －30 | 0．9\％ |
 | ${ }^{64.2 \%}$ | 3，281 | 3，246 | ${ }^{-35}$ | －1．1\％ |
 | 66．7\％ | 3，1994 | 3，199 | O | |
 | 6．9．9\％ | －1， | 3150 | | |
 | 69．1\％ | ${ }_{3,140}$ | ${ }_{3,139}$ | －1 | |
 | 70．4\％ | 3，138 | 3，068 | －70 | －2．2\％ |
 | 71．6\％ | 3，137 | 3，056 | 81 | 2．6\％ |
 | 72．8\％ | ${ }^{3,068}$ | 3，033 | ${ }^{35}$ | ${ }^{-1.2 \%}$ |
 | 74.1% 753% | 3，033 | ${ }_{2,976}$ | ${ }^{56}$ | 1．9\％ |
 | 75．3\％${ }^{7}$ | 2，904 | 2，904 | 0 | 0．0\％ |
 | －76．8\％ | ${ }_{2}^{2,800}$ | 2，800 | 0 | 0．0\％ |
 | 77．9\％ | ${ }_{2}^{2.784}$ | ${ }_{2}^{2,696}$ | ${ }^{88}$ | 3．2\％ |
 | 79．0\％ | ${ }_{2}^{2,570}$ | 2，570 | 0 | 0．0\％ |
 | 80．1．5\％ | 2，505 | 2，505 | 0 | 0．0\％ |
 | －${ }^{81.5 \%}$ 8．7\％ | 2，499 | 2，499 | 0 | 0．0\％ |
 | 84．7\％ | 2， | 2，331 | | 0．0\％ |
 | 85．2\％ | ¢ | 2， | ${ }^{3}$ | 2\％ |
 | － 8. | | ${ }_{2,239}^{2,246}$ | ${ }_{8}$ | 0．3\％ |
 | 877\％ | 2.103 | 2，231 | 128 | 1\％ |
 | 88．9\％ | 2.008 | 2.103 | 94 | \％ |
 | 90．1\％ | 1，872 | 2,102 | 230 | 12．3\％ |
 | 91．4\％ | 1，804 | 2，008 | 204 | ．3\％ |
 | 92．6\％ | 1，783 | ${ }^{1.872}$ | 89 | 5．0\％ |
 | 93．8\％ | 1，726 | 1，806 | ${ }^{80}$ | 4．7\％ |
 | 95．1\％ | 1，690 | 1，726 | 35 | 2．1\％ |
 | 96．3\％ | 1，551 | 1，690 | 140 | |
 | 97．5\％ | ${ }^{1,405}$ | 1，551 | 145 | 10．4\％ |
 | 年 $\begin{aligned} & \text { 98．8\％} \\ & 1000 \%\end{aligned}$ | ${ }_{353}^{631}$ | 1，438 | ${ }_{8074} 807$ | 127．9\％ |
 | 100．0\％ | 353 | 1，397 | 1.044 | 299．9\％ |

 | | | Warch | | | | | Apprl | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | DCR 2015 Without Proiect | DCR 2015 With Project | Absolute | | Percent Exceedance | ${ }^{\text {DCC } 2015 \text { Without }} \begin{gathered}\text { Proiect }\end{gathered}$ | DCR 2015 With Project | Absolute | Relative |
 | Proabability （\％） | Monthly Diversion （CFs） cos | Monthly Diversion （CFS） | （cFs） | Difference（\％） | Probability （\％） | Monthly Diversion （CFS） | Monthly Diversion （CFS） | Difference | Difference（\％） |
 | 0．0\％ | ${ }_{7}^{1.561}$ | 7，561 | 0 | 0．0\％ | 0．0\％ | ${ }_{6}^{6.125}$ | ${ }_{6.125}$ | | 0．0\％ |
 | 12\％ | 7561 | 7561 | | 0．0\％ | 12\％ | 3.961 | 3871 | －90 | |
 | 2．5\％ | 7.561 | 7.561 | 0 | 0．0\％ | 2．5\％ | 3，360 | 3，362 | 1 | |
 | 3．7\％ | 7，561 | 7，561 | 0 | 0．0\％ | 3．7\％ | 2.621 | ${ }_{2} 2.617$ | | |
 | 4．9\％ | 7，561 | 7，561 | 0 | 0．0\％ | 4．9\％ | 2.505 | 2，497 | －8 | 3\％ |
 | 6．2\％ | 7，561 | 7，561 | 0 | 0．0\％ | 6．2\％ | 2，241 | 2，237 | 4 | 2\％ |
 | 7．4\％ | 7，561 | 7，561 | 0 | 0．0\％ | 7．4\％ | 2.086 | 2，078 | 8 | 4\％ |
 | 8．6\％ | 7，561 | 7,481 | －80 | －1．1\％ | 8．6\％ | 1，852 | ${ }_{1,847}$ | － 6 | －0．3\％ |
 | 9．9\％ | 7，481 | 6，542 | －939 | 12．6\％ | 9．9\％ | 1，751 | 1，747 | 4 | －0．2\％ |
 | 11．1\％ | 7，057 | 6，473 | －584 | 8．3\％ | 11．1\％ | 1，665 | 1，657 | －8 | －0．5\％ |
 | 12．3\％ | 6，776 | 6，301 | －475 | －7．0\％ | 12．3\％ | 1，622 | ${ }^{1,622}$ | 0 | 0．0\％ |
 | 13．6\％ | ${ }^{6.563}$ | 6，296 | 268 | －4．1\％ | 13．6\％ | 1，604 | 1.604 | 0 | 0．0\％ |
 | 14．8\％ | 6，296 | 6，234 | ${ }^{62}$ | －1．0\％ | 14．8\％ | 1，508 | ${ }^{1,508}$ | 0 | 0.04 |
 | 16．0\％ | 6，234 | 6，231 | －3 | －0．1\％ | 16．0\％ | ${ }^{1,474}$ | ${ }^{1,426}$ | ${ }^{48}$ | －3．3\％ |
 | 17．3\％ | 6，231 | 5，998 | ${ }^{-233}$ | －3．7\％ | 17．3\％ | ${ }^{1,4226}$ | ${ }_{1}^{1,396}$ | －29 | －2．1\％ |
 | 18．5\％ | ${ }_{6}^{6,003}$ | 5．964 | －39 | －0．7\％ | 18．5\％ | ${ }_{1}^{1,392}$ | 1，392 | 0 | \％ |
 | 19．8\％ | 5，964 | 5，955 | －9 | －0．2\％ | 19．8\％ | 1，377 | 1，377 | 0 | 0．0\％ |
 | 21．0\％ | ${ }_{5}^{5.955}$ | ¢ 5.831 | －124 | －2．1\％ | 21．0\％ | ${ }^{1,343}$ | ${ }_{1}^{1,343}$ | 0 | 0．0\％ |
 | ${ }^{22.2 \%}$ | 5．831 | 5，737 | －94 | －1．6\％ | ${ }^{22.2 \%}$ | 1，299 | 1，299 | 0 | 0\％ |
 | － | 5，769 | ¢ | －92 | －1．6\％ | 23．5\％ | ${ }^{1,270}$ | 1，270 | 0 | \％ |
 | 24．9\％ | ${ }_{\substack{\text { 5．692 }}}^{\text {5，699 }}$ | ${ }_{\substack{5.654 \\ 5.594}}^{5.67}$ | － | －17\％ | ${ }^{24.79 \%}$ | ＋1，246 | 1,246 1210 1 1 | 0 | |
 | 257．2\％ | ${ }_{5}^{5.3892}$ | ${ }_{5}^{5.4694}$ | ${ }_{81}$ | ${ }^{-1.5 \%}$ | 27．2\％ | ${ }_{1}^{1,2208}$ | ${ }_{1}^{1,208}$ | 0 | 0．0\％ |
 | 28．4\％ | ${ }_{5,171}$ | 5，388 | | 4．2\％ | 28．4\％ | 1，201 | 1，201 | 0 | 0．0\％ |
 | 29．6\％ | 5.110 | | 275 | | 29．6\％ | | 1，194 | 0 | \％\％ |
 | 30．9\％ | 5，083 | 5，110 | | 0．5\％ | 30．9\％ | 1，172 | | 6 | |
 | 32．1\％ | 5，001 | 5，083 | 82 | 1．6\％ | 32．1\％ | 1，170 | 1，169 | 0 | 0．0\％ |
 | 33．3\％ | 4，995 | 5，001 | 5 | 0．1\％ | 33．3\％ | 1，142 | 1，142 | 0 | 0．0\％ |
 | 34．6\％ | 4．807 | 4，807 | 0 | 0．0\％ | 34．6\％ | 1，135 | 1，135 | 0 | 0\％ |
 | 33．7\％ | 4，750 | 4，750 | 0 | 0．0\％ | 35．8\％ | 1，118 | 1，118 | 0 | 0．0\％ |
 | 37．0\％ | 4，690 | 4，234 | －456 | －9．7\％ | 37．0\％ | 1，104 | 1，101 | 4 | －0．3\％ |
 | 38．3\％ | 4，234 | 4，153 | －81 | －1．9\％ | 383\％ | 1，101 | 1，099 | －2 | －0．2\％ |
 | 39．5\％ | 4，124 | 4，124 | 0 | 0．0\％ | 39．5\％ | 1，099 | 1，097 | －2 | －0．1\％ |
 | 40．7\％ | 4，116 | 3，947 | －169 | －4．1\％ | 40．7\％ | 1，097 | 1，097 | 0 | 0．0\％ |
 | 42．0\％ | 3，947 | 3，883 | ${ }_{-72}$ | －1．6\％ | 42．0\％ | ${ }^{1,096}$ | ${ }^{1,096}$ | 0 | 0．0\％ |
 | 43．2\％ | 3,906 3 3 | 3，834 | －72 | －1．3\％ | 43．2\％ | ${ }^{1,078}$ | 1,079 | 0 | 0．0\％ |
 | ${ }^{44.4 \%}$ | （e，3,838
 3825 | －3,825
 3,742 | －13 | －0．3\％ | ${ }^{44.4 .4}$ | ${ }^{1,0666}$ | ${ }_{1}^{1,074}$ | 8 | 0．8\％ |
 | ${ }^{45.79 \%}$ | （3，825 | （e，3，742
 ， 695 | －83 | －${ }_{-1.2 \%}$ | ${ }^{45.79 \%}$ | ${ }_{1}^{1,052}$ | ${ }_{1}^{1,051}$ | ！ | 0\％\％ |
 | 48．1\％ | 5，745 | 5，695 | －48 | 退 | | 1，051 | 1，059 | | 0．0\％ |
 | 49．4\％ | ${ }_{\text {3，622 }}^{3.695}$ | ${ }_{\substack{3,617 \\ 3,577}}$ | $\begin{array}{r}\text {－78 } \\ -48 \\ \hline\end{array}$ | －-1.2% | ${ }_{49.4 \%}^{48.1 \%}$ | ＋1，049 | 1,049 1.044 1 | 0 | 0．0\％ |
 | 50．6\％ | ${ }_{3,577}$ | 3，532 | －44 | －1．2\％ | 50．6\％ | ${ }_{1,036}$ | ${ }_{1,032}^{1049}$ | －4 | －0．4\％ |
 | 51．9\％ | ${ }_{3,532}$ | 3，457 | －76 | 2．1\％ | 51．9\％ | 1，032 | 1.028 | | －0．3\％ |
 | 53．19\％ | ${ }^{3.525}$ | 3，445 | －80 | 2．3\％ | 53．1\％ | ${ }^{1,028}$ | ${ }^{1,028}$ | 0 | 0．0\％ |
 | 54．3\％ | － $\begin{aligned} & 3.457 \\ & 3,437\end{aligned}$ | 3,429 3,346 | －91 | －0．8\％\％ | 54．3\％ | ＋1，028 | 1，020 | －17 | ${ }_{\text {－}}^{\text {－}}$－0．7\％ |
 | 56．8\％ | 3，425 | 3，319 | －107 | －3．1\％ | 56．8\％ | 1，004 | 1,002 | －2 | －0．2\％ |
 | 58．0\％ | 3，346 | 3，306 | －39 | －1．2\％ | 58．0\％ | 1，002 | 988 | 14 | －1．4\％ |
 | 59．3\％ | ${ }^{3,306}$ | 3，192 | －115 | －3．5\％ | 59．3\％ | 988 | 988 | | －0．1\％ |
 | 60．5\％ | 3，295 | 3，185 | －110 | －3．3\％ | 60．5\％ | 985 | 985 | 0 | 0．0\％ |
 | 61．7\％ | 3，208 | 3，184 | －24 | －0．7\％ | 61．7\％ | 977 | 977 | 0 | 0．0\％ |
 | 63．0\％ | 3，196 | 3，108 | －88 | －2．8\％ | 63．0\％ | 976 | 976 | 0 | 0．0\％ |
 | ${ }^{64.2 \%}$ | 3，191 | 2，949 | －242 | －7．6\％ | 64．2\％ | 971 | 971 | 0 | 0．0\％ |
 | 65．4\％ | 3，122 | 2，906 | －216 | －6．9\％ | 65．4\％ | 970 | 970 | 0 | 0．0\％ |
 | 66．7\％ 679% | 3，108 | ${ }_{2}^{2,671}$ | －437 | 14．1\％ | ${ }^{66.7 \%}$ | 963 | 963 | 0 | 0．0\％ |
 | －67．9\％ | 2,949 2939 | 2，658 | －291 | －9．9\％ | 679\％\％ | 924 | 924 | 0 | 0．0\％ |
 | 69．1\％ | 2，939 | 2，656 | －283 | －9．6\％ | 69．1\％ | 924 | ${ }^{924}$ | 0 | 0．0\％ |
 | 70．4\％ | ${ }_{2}^{2,960}$ | 2，655 | ${ }_{-25}$ | －8．3\％ | ${ }^{70.4 \%}$ | 918 | 893 | ${ }_{-25}$ | 为 |
 | 71．2．8\％ | ${ }_{2,594}^{2,656}$ | 2，594 | －63 | － | 72．8\％ | 889 889 | ${ }_{884}^{889}$ | -3 -25 -2 | －${ }_{-2.8 \%}^{-0.4 \%}$ |
 | 74．1\％ | 2,531 | ${ }_{2,527}^{2,59}$ | －4 | －0．2\％ | 74．1\％ | 864 | 757 | 107 | －12．4\％ |
 | 75．3\％ | 2，527 | ${ }_{2}^{2,447}$ | －80 | 3．2\％ | 75．3\％ | 757 | | 10 | |
 | 76．5\％ | 2，484 | 2.439 | －46 | －1．8\％ | 7．5\％ | 748 | 747 | 0 | ．0\％ |
 | 77．8\％ | 2.447 | 2.421 | －26 | 1．1\％ | 77．8\％ | 740 | 740 | 0 | 1\％ |
 | 79．0\％ | 2，429 | 2，391 | ${ }^{38}$ | 1．6\％ | 79．0\％ | 700 | 700 | 0 | 0．0\％ |
 | － | 2，406 2.343 | 2，385 | －21 | －0．0\％ | 80．2\％ | 7700 | 7700 | 0 | 0．0\％ |
 | ${ }_{82.7 \%}$ | ${ }_{2,343}$ | ${ }_{2,297}^{2,94}$ | －45 | －1．9\％ | ${ }^{82.7 \%}$ | 700 | 700 | 0 | 0．0\％ |
 | 84．0\％ | 2，299 | 2，154 | －145 | 6．3\％ | 84．0\％ | 700 | 700 | 0 | 0．0\％ |
 | 85．2\％ | 2，126 | 1，955 | －172 | 8．1\％ | 85．2\％ | 700 | 700 | 0 | 0．0\％ |
 | 86．4\％ | 1，933 | 1，933 | 0 | 0．0\％ | 86．4\％ | 700 | 700 | 0 | 0．0\％ |
 | 877．7\％ | ＋1，867 | 1，7975 | －71 | －3．8\％ | 87．7\％ | 700 | 700 | 0 | 0．0\％ |
 | － | 1，797 | 1，745 | －51 | －2．9\％ | 88．9\％ | 700 | 700 | 0 | 0．0\％ |
 | ${ }_{\text {914．4\％}}^{90.1 \%}$ | 1,696
 1.695 | 1,735 1,366 | ${ }^{-160}$ | －${ }_{\text {210\％}}^{0.0 \%}$ | ${ }^{90.14 \%}$ | 663 463 | 664 468 | O | 0．1\％ |
 | ${ }_{9} 9.2 .8 \%$ | ${ }_{1}^{1,336}$ | ${ }_{1}^{1,291}$ | －45 | ${ }^{-21.3 \%}$ | ${ }_{9} 9.2 \%$ | ${ }_{300}$ | ${ }_{300}$ | 3 | －${ }_{\text {0．6\％}}$ |
 | 93．8\％ | 1，291 | 1，204 | －87 | －6．7\％ | 93．8\％ | 300 | ${ }^{300}$ | 0 | 0．0\％ |
 | 95．1\％ | 1，204 | 1，090 | －115 | －9．5\％ | 95．1\％ | 300 | 300 | 0 | 0．0\％ |
 | | ${ }_{853}^{1,039}$ | 1,039 1008 1 | ${ }_{155}$ | 0．0\％ 18.8% | 96.3% 975% | 300 300 | 300 300 | \bigcirc | － |
 | 98．8\％ | 300 | ${ }_{300}$ | 0 | 0．0\％ | 98．8\％ | 300 | 300 | 0 | 0．0\％ |
 | 100．0\％ | 300 | 300 | 0 | 0．0\％ | 100．0\％ | 300 | 300 | 0 | 0．0\％ |

 Table SW-39-b

 | $\begin{gathered} \text { Percent } \\ \text { Exceenance } \\ \text { Probobaility } \end{gathered}$ | DCR2015 Wito | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }^{\text {DCR } 2015 \text { Without }}$ | DCR 201 | ${ }_{\text {a }}^{\substack{\text { Absolute } \\ \text { Difference }}}$ | |
 | | Montly Diversion | Monthly Diversion | Difierence (cFs) che | Difference (\%) |
 | \%) | (cFs) | (CFFS) | | |
 | 0.0\% | | | 0 | ${ }^{0.0 \%}$ |
 | 1.2\% | 6,680 | 6,680 | | |
 | 2.5\% | 6,680 | 6,680 | 0 | |
 | 3.7\% | ${ }^{6.680}$ | 6.680 | 0 | 0.0\% |
 | 4.9\% | 6,131 | 6,088 | 44 | -0.7\% |
 | 6.2\% | ${ }_{6}^{6,047}$ | ${ }^{6} .046$ | 0 | 0.0\% |
 | 7.4\% | 5.597 | 5.547 | 49 | -0.9\% |
 | 8.6\% | 5,252 | 5.253 | 0 | 0.0\% |
 | 9.9\% | 5,114 | ${ }^{5.1116}$ | 2 | 0.0\% |
 | 11.1\% | 4,901 | 4,901 | O | 0.0\% |
 | ${ }^{12.3 \%}$ | 4,645 | 4,575 | 71 | ${ }^{-1.5 \%}$ |
 | 13.6\% | 4,455 | 4.5099 | 55 | 1.2\% |
 | 14.8\% | 4,399 | 4,4355 | ${ }^{56}$ | , |
 | (17.3\% | ${ }_{4,165}^{4,385}$ | ${ }_{4,165}^{4.355}$ | 0 | 0.0\% |
 | 18.5\% | 4.060 | 4.060 | 0 | 00\% |
 | 19.8\% | 3,961 | 3,961 | 0 | |
 | 21.0\% | 3,799 | 3.860 | 60 | 16\% |
 | 22.2\% | 3,442 | 3,442 | 0 | |
 | 23.5\% | 3,422 | ${ }^{3.422}$ | 0 | 0.0\% |
 | 24.7\% | 3,237 | 3,237 | 0 | |
 | 25.7.2\% | 3,141 | 2,935 | 207 | -6.6\% |
 | 俍28.72\% | 3,096 | ${ }^{2,893}$ | ${ }^{202}$ | ${ }^{-6.5 \%}$ |
 | 29.6\% | ${ }_{2}^{2,922}$ | 2,887
 2.878 | -35 | -1.2\% |
 | 30.9\% | ${ }_{2,887}^{2,892}$ | ${ }_{2,856}^{2.878}$ | -22 | -0.8\% |
 | 32.1\% | 2.863 | 2.854 | -9 | -0.3\% |
 | 33.3\% | 2,854 | ${ }_{\substack{2,852 \\ 2851}}^{2}$ | -1 | -0.1\% |
 | 34.5\% | ${ }_{\text {2, }}^{2,751}$ | 2,851 | 0 | 0.0\% |
 | 35.8\% | - | ${ }_{2}^{2,848}$ | ${ }_{1}^{113}$ | 4.1\% |
 | ${ }^{37.3 \% \%}$ | 2,690 | 2.843
 2735 | ${ }^{153}$ | ${ }^{5.7 \%}$ |
 | 39.5\% | ${ }_{2,659}^{2.675}$ | ${ }_{2,690}^{2,735}$ | ${ }_{31}^{60}$ | ${ }_{1.2 \%}$ |
 | 40.7\% | 2,640 | 2.659 | 19 | 0.7\% |
 | 42.0\% | 2,534 | 2,640 | 106 | 4.2\% |
 | ${ }_{44.4 \%}^{43.2 \%}$ | ${ }_{2,383}^{2.526}$ | ${ }_{2,526}^{2.613}$ | ${ }_{142}^{88}$ | 6.0\% |
 | 45.7\% | 2,364 | 2,433 | 69 | |
 | 46.9\% | 2,335 | 2,379 | 44 | 9\% |
 | 48.1\% | 2,322 | ${ }_{2}^{2,364}$ | ${ }^{42}$ | 1.8\% |
 | 4.9.4\% | 2,291 | ${ }_{2}^{2,363}$ | 72 | 1\% |
 | 50.9\%\% | 2,271 | ${ }^{2}, 085$ | 186 | -8.2\% |
 | 53.1\% | 2,081 | ${ }_{2,008}^{2,041}$ | -73 | ${ }_{-3.5 \%}^{-6.4 \%}$ |
 | 54.3\% | 1,930 | 1,976 | 46 | 2.4\% |
 | | ${ }_{1}^{1,917}$ | 1,930 | 13 | 0.7\% |
 | 56.8% 580% 50\% | ${ }^{1,837}$ | ${ }^{1,863}$ | 27 | 1.5\% |
 | | 1,740
 1725 | 1,860 1.851 | 120 | 6.9\% |
 | 59.3\% | 1,725 | ${ }^{1.885}$ | ${ }^{126}$ | 7.3\% |
 | ${ }^{61.7 \%}$ | ${ }_{1}^{1,667}$ | ${ }_{1}^{1,778}$ | ${ }_{103}$ | 6.2\% |
 | 63.0\% | 1.668 | 1,726 | 58 | 3.4\% |
 | ${ }^{64.2 \%}$ | ${ }^{1,668}$ | ${ }^{1,698}$ | 30 | 1.8\% |
 | 65.4\% | 1,656 | ${ }^{1,675}$ | | 1.1\% |
 | 66.7\% 67.9% | 1,653
 1,643
 1.60 | +1,668 $\begin{aligned} & 1,688 \\ & 1\end{aligned}$ | 15 25 | - ${ }_{\text {1.9\% }}$ |
 | 69.1\% | ${ }_{1}^{1,637}$ | ${ }_{\text {1,656 }}^{1,068}$ | ${ }_{19}^{25}$ | 1.1\% |
 | 70.4\% | 1,619 | ${ }^{1,653}$ | 34 | 2.1\% |
 | 71.28\% | ${ }_{1}^{1,585}$ | | | 3.6\% |
 | 74.1\% | ${ }_{1}^{1,469}$ | ${ }_{1,636}^{1,636}$ | 166 | 11.3\% |
 | 75.3\% | 1,385 | 1.620 | 235 | 17.0\% |
 | 76.5\% | 1,369 | 1,608 | 239 | 17.4\% |
 | 77.8\% | 919 | ${ }^{1,521}$ | 602 | 65.5\% |
 | 79.0\% | ${ }^{876}$ | ${ }^{1,511}$ | 635 | 72.4\% |
 | - 80.2% | 771 | 1,270 | 499 | ${ }^{64.8 \%}$ |
 | 81.5\% | 300 | 1,156 | ${ }^{556}$ | 285.4\% |
 | 82.7% 84.0% | 300 | 415 | 115 | 38.2\% |
 | 84.0\% | 300 300 | 300 | 0 | 0.0\% |
 | - ${ }_{\text {85.4\% }}$ | 300 | 300 300 | O | 0.0\% |
 | 87.7\% | ${ }_{300}$ | 300 | 0 | - |
 | 88.9\% | 300 | 300 | 0 | 0.0\% |
 | ${ }^{90.11 \%}$ | 300 300 | 300 | 0 | 0.0\% |
 | ${ }^{91.4 \%}$ | 300 | 300 | 0 | 0.0\% |
 | ${ }_{\text {93.8\% }}^{92.0 \%}$ | 260 | 300 | ${ }_{40}^{23}$ | |
 | 95.1\% | ${ }^{241}$ | 280 | 39 | 16.3\% |
 | 96.3\% | ${ }^{226}$ | ${ }^{241}$ | 15 | 6.6\% |
 | 98.8\% | ${ }_{120}^{202}$ | 226 105 | ${ }^{25}$ | 12.3\% |
 | 100.0\% | ${ }_{45}$ | ${ }_{97}$ | ${ }_{51}$ | |

 Banks Pumping Plant (CVP), Monthly Diversion

 Table SW-40-b

 anks Pumping Plant (CVP), Monthly Piversion

 Table SW-40-b

 San Luis Reservoir (SWP and CVP), End of Month Storage

 | PercentExceedancePronaily | October | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {Prosect }} \mathrm{DCR201}$ | DCR 2015 With Project | | Relative |
 | | End of Month Storage | End of Month Storage | (taf) | Difference |
 | 0.0\% | (TAF) | (TAF) | | |
 | 0.0\% | ${ }_{1}^{1,949}$ | ${ }^{1.8388}$ | -11 | ${ }^{-5.77 \%}$ |
 | 1.2\%\% | 1,352 1,150 | ${ }_{1}^{1,361}$ | 9 | 0.7\% |
 | 2.5\% | 1,150 | 1,126 | -24 | |
 | 3.7\% | 1,139 | 998 | -75 | -12.5\% |
 | 4.9\% | 1,064 | 988 | ${ }^{-7}$ | \% |
 | - 7.2% | ${ }_{\text {1, }}^{1.021}$ | ${ }_{971}^{983}$ | $\begin{array}{r}-38 \\ 18 \\ \hline\end{array}$ | |
 | 8.6\% | 912 | 997 | 18 | - |
 | 9.9\% | 885 | 900 | 15 | 1.7\% |
 | 11.1\% | 859 | 892 | 33 | |
 | 12.3\% | 841 | 845 | 4 | 5\% |
 | 13.6\% | 830 | 840 | 10 | 1.2\% |
 | 14.8\% | 819 | 827 | 8 | |
 | 16.0\% | 817 | 809 | ${ }^{-8}$ | -1.08 |
 | 17.3\% | ${ }^{813}$ | ${ }^{783}$ | ${ }^{30}$ | -3.7\% |
 | 18.5\% | 790 | 771 | -19 | -2.4\% |
 | 19.8\% | ${ }^{784}$ | 762 | -22 | -2.8\% |
 | 21.0\% | ${ }^{747}$ | ${ }^{736}$ | -12 | -1.5\% |
 | ${ }^{22.2 \%}$ | ${ }^{728}$ | ${ }^{732}$ | 4 | 0.5\% |
 | 23.5\% | 776 | ${ }^{725}$ | 10 | 1.3\% |
 | 24.7\% | 703 | 705 | 2 | 0.3\% |
 | 25.9\% | 692 | 674 | -18 | |
 | 27.2\% | 680 | 659 | -21 | -3.1\% |
 | ${ }^{28.46 \%}$ | 668 | 658 | -10 | |
 | 30.9\% | ${ }_{660}^{660}$ | 6630 | -19 -29 | -2.8\% |
 | 32.1\% | 656 | 621 | -35 | -5.4\% |
 | 33.3\% | 653 | 615 | -38 | |
 | 34.6\% | 638 | 612 | ${ }^{26}$ | 2\% |
 | 35.8\% | 638 | 602 | | |
 | 37.0\% | 606 | 591 | | -2.6\% |
 | 38.5\% | 601
 596 | 590 | -11 | -1.8\% |
 | 40.7\% | 560 | 576 | 16 | 2.8\% |
 | 42.0\% | 549 | 563 | 13 | 2.4\% |
 | 43.2\% | 547 | 561 | 14 | 2.5\% |
 | ${ }^{44.4 .4 \%}$ | 545 | 555 | 10 | 1.8\% |
 | 45.7\% | 537
 535 | 549 547 | ${ }_{12}^{12}$ | 2.3\% |
 | ${ }^{46.9 \%}$ | ${ }_{5}^{535}$ | 547 | 12 | ${ }^{2.2 \%}$ |
 | 49.4\% | ${ }_{520}^{531}$ | ${ }_{522}^{529}$ | $\stackrel{-3}{2}$ | -0.4\% |
 | 50.6\% | ${ }_{5}^{516}$ | 520 | 4 | 0.8\% |
 | 51.9\% | 503 | 517 | 15 | 2.9\% |
 | 年 53.13% | ${ }_{493}$ | 508 503 | 15 | 3.0\% |
 | 55.6\% | ${ }_{483}^{493}$ | ${ }_{495}^{503}$ | 9 | |
 | 56.8\% | ${ }_{474}$ | ${ }_{482}^{495}$ | 8 | 1.7\% |
 | 58.0\% | 464 | 476 | 12 | |
 | 59.3\% | 461 | 475 | 14 | 0\% |
 | 60.5\% | 460 | 464 | 4 | 1.0\% |
 | 61.7\% | 447 | ${ }_{6} 63$ | 16 | 3.5\% |
 | 63.0\% | 434 | 463 | 29 | 6.7\% |
 | 64.2\% | 413 | 453 | 40 | 9.7\% |
 | ${ }^{65.4 \%}$ | 411 | 450 | 40 | 9.7\% |
 | 66.7\% | 405 | 418 | 13 | 3.1\% |
 | -67.9\% | 398 | 406 | 8 | 2.1\% |
 | 69.19\% | ${ }^{391}$ | ${ }^{403}$ | 12 | 3.2\% |
 | 70.4\% | ${ }^{387}$ | ${ }_{387}^{387}$ | 0 | -0.1\% |
 | 71.6\% | ${ }^{356}$ | 387 | ${ }^{31}$ | 8.8\% |
 | 72.1\% | ${ }_{335}^{335}$ | 387
 386 | ${ }_{51}^{51}$ | |
 | 75.3\% | ${ }_{326}$ | ${ }_{385}$ | 59 | 18.1\% |
 | 76.5\% | ${ }^{316}$ | 385 | 69 | 21.7\% |
 | 778.8\% | ${ }_{268}^{291}$ | 360 324 | 68 59 59 | 23.5\% |
 | -79.0\% | ${ }_{263}^{266}$ | ${ }_{320}^{324}$ | 59 | 22.1\% |
 | 81.5\% | ${ }_{256}^{2036}$ | ${ }_{284}$ | ${ }_{28}$ | 10.9\% |
 | 827\% | ${ }_{231}^{232}$ | 282 | 50 | 4\% |
 | 84.0\% | ${ }^{231}$ | ${ }^{281}$ | 50 | 7\% |
 | 85.2\% | ${ }^{220}$ | 266 | 46 | |
 | ${ }^{86.4 \%}$ | 219 | ${ }^{264}$ | ${ }^{45}$ | .4\% |
 | | 212 | 2235
 245 | 33 | |
 | 90.1\% | 212 | 235 | ${ }_{23}$ | 11.0\% |
 | 91.4\% | 210 | 227 | 17 | 8.2\% |
 | 92.6\% | ${ }^{205}$ | 226 225 | 21 | 10.4\% |
 | 93.8\% | 197 | ${ }^{215}$ | 18 | 9.0\% |
 | 95.1\% | 186 | ${ }^{210}$ | 25 | 13.4\% |
 | 96.3\% | 183 | 183 | 0 | -0.7\% |
 | 97.5\% | 177 | 163
 145
 1 | -14 | -7.7\% |
 | 100.0\% | 172 100 | ${ }_{100}^{145}$ | ${ }^{27}$ | -15.9\% |

 San Luis Reservoir (SWP and CVY) En

 | | | Nart | | | | | Aprit | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | ${ }_{\text {Precent }}^{\text {Pereance }}$ | $\begin{aligned} & \text { DCR } 2015 \text { Without } \\ & \hline \text { Proiet } \end{aligned}$ | DCR 2015 With Proje | Absolut | | Percent Exceedance | $\begin{aligned} & \text { DCR } 2015 \text { Without } \\ & \hline \text { Proiet } \\ & \hline \end{aligned}$ | OCR 2015 With Project | Absolute | Realive |
 | Probabily | End of Moorts Storage | End of Month Storage | Difiterence $\begin{gathered}\text { (TAF) }\end{gathered}$ | Difference (\%) | Probability | End of Month Storage | End of Month Storage | Difference (TAF) | Difference (\%) |
 | ${ }^{\text {0.0. }}$ (\%) | ${ }_{\text {(TAF) }}$ | ${ }_{\text {(TAF) }}$ | | | (\%) | ${ }_{\text {char }}$ | | | |
 | 0.0\% | | 2,039 | | | | | 2,039 | - | |
 | 1.2\% | 2,039 | 2,039 | 0 | 0.0\% | 1.2\% | 2.039 | 2,039 | 0 | |
 | 2.5\% | 2,039 | 2,039 | 0 | 0.0\% | 2.5\% | 2,026 | 2,039 | ${ }^{13}$ | \% |
 | 3.7\% | 2,039 | 2,039 | 0 | 0.0\% | 3.7\% | 1,994 | 1,994 | 0 | \% |
 | 4.9\% | 2,039 | 2,039 | 0 | 0.0\% | 4.9\% | 1,938 | 1,938 | 0 | \% |
 | ${ }^{6.2 \%}$ | 2,039 | 2,039 | 0 | 0.0\% | ${ }_{7}^{6.2 \%}$ | ${ }^{1,905}$ | ${ }^{1,889}$ | ${ }^{-12}$ | -0.6\% |
 | 7.4\% | 2,039 | 2,039 | 0 | 0.0\% | 7.4\% | ${ }^{1,888}$ | ${ }^{1,878}$ | 21 | 1.19\% |
 | 8.6\% | 2,039 | 2.039 | 0 | 0.0\% | 8.6\% | ${ }^{1,830}$ | ${ }_{1,828}^{1,888}$ | $\stackrel{-3}{5}$ | -0.19\% |
 | 9.9\% | 2,039 | 2,039 | 0 | 0.0\% | 9.9\% | ${ }_{1}^{1.817}$ | +1,806 | -5 | |
 | 11.1\% | 2,039 | 2,039 | | 0.0\% | 1.12\% | 1,779 | 1,786 | ${ }^{-3}$ | |
 | 12.3\% | 2,03 | ${ }_{2}^{2,039}$ | 14 | 0.0\%\% | ${ }^{12.35 \%}$ | 17797 | 1,771 | 8 | |
 | 13.6\% | ${ }_{2017}^{2,025}$ | 2,039 | ${ }_{8}$ | $0.7 \%^{\circ}$ | 13.48\% | 1,767 | 1,764 | 8 | \% |
 | ${ }_{\text {16.0\% }}$ | ${ }_{2,005}^{2,005}$ | ${ }_{2,023}^{2,025}$ | ${ }_{18}$ | 0.9\% | 16.0\% | ${ }^{1,749}$ | ${ }_{\text {1,763 }}$ | 14 | -0.8\% |
 | 17.3\% | 2,003 | 1,998 | -5 | 0.2\% | 17.3\% | 1,737 | 1,746 | 9 | 0.5\% |
 | 18.5\% | 1,989 | 1,995 | 6 | 0.3\% | 18.5\% | 1,736 | 1,745 | 9 | |
 | 19.8\% | 1,987 | 1,971 | 17 | 0.8\% | 19.8\% | 1,732 | 1,716 | 16 | -0.9\% |
 | 21.0\% | 1,984 | 1,967 | -17 | -0.8\% | 21.0\% | 1,725 | 1,714 | 11 | -0.6\% |
 | 22.2\% | 1,981 | 1,965 | 16 | 0.8\% | 22.2\% | 1,714 | 1,707 | -7 | -0.4\% |
 | 23.5\% | 1,922 | 1,954 | 32 | 1.6\% | 23.5\% | 1,712 | ${ }^{1,694}$ | -18 | -1.1\% |
 | 24.7\% | 1,917 | 1,917 | 0 | 0.0\% | 24.7\% | 1,711 | 1,683 | ${ }^{28}$ | -1.6\% |
 | 25.9\% | 1,914 | 1,889 | -25 | -1.3\% | 25.9\% | ${ }^{1,692}$ | 1,666 | ${ }^{26}$ | -1.5\% |
 | 27.2\% | 1,904 | ${ }^{1,885}$ | 19 | -1.0\% | 27.2\% | 1,639 | ${ }^{1,663}$ | ${ }^{25}$ | 1.5\% |
 | ${ }^{28.4 \%}$ | 1,865 | 1,871 | 6 | 0.3\% | 28.4\% | 1.629 | 1,648 | 18 | 1.1\% |
 | 29.6\% | 1,858 | ${ }^{1,867}$ | 9 | 0.5\% | 29.6\% | 1,629 | ${ }_{1}^{1,622}$ | ${ }^{-6}$ | -0.4\% |
 | 30.9\% | ${ }^{1,8855}$ | ${ }^{1,8855}$ | 0 | 0.0\% | 30.9\% | 1,615 | 1,617 | 2 | 0.1\% |
 | 32.1\% | 1,852 | 1,853 | | 0.1\% | 32.1\% | 1,615 | 1,596 | ${ }^{18}$ | (1\% |
 | 33.3\% | ${ }_{1}^{1,846}$ | ${ }^{1.839}$ | -7 | -0.4\% | 33.3\% | 1.603 | 1,595 | ${ }^{-8}$ | -0.5\% |
 | 33.6\% | ${ }_{1}^{1,812}$ | ${ }_{1}^{1,835}$ | ${ }^{24}$ | ${ }_{1} 1.3 \%$ | 34.6\% | 1,600 | 1,590 | 10 | -0.2\% |
 | 35.8\% | 1,785 | 1,817 | 32 | 1.8\% | 35.8\% | 1,599 | 1,579 | -23 | |
 | 38.3\% | 1772 | ${ }_{1}^{1,800}$ | ${ }_{23}^{24}$ | ${ }_{1}^{1.4 \%}$ | 37.0\% | +1,594 | 558 | -23 | |
 | 39.5\% | 1,737 | 1,779 | 43 | 2.5\% | 39.5\% | ${ }_{1.582}$ | 1.539 | ${ }_{-4}$ | 7\% |
 | 40.7\% | 1,720 | 1.779 | 59 | 3.4\% | 40.7\% | ${ }_{1,561}$ | ${ }_{1,538}^{10}$ | ${ }_{-22}$ | |
 | 42.0\% | 1,719 | 1,762 | ${ }^{43}$ | 2.5\% | 42.0\% | ${ }^{1,553}$ | 1,492 | -61 | |
 | 43.2\% | 1,716 | 1,700 | -16 | -0.9\% | 43.2\% | 1,545 | 1,478 | -67 | |
 | 44.4\% | 1,694 | 1,699 | 5 | 0.3\% | 44.4\% | ${ }^{1,542}$ | 1,458 | ${ }^{84}$ | .5\% |
 | 45.7\% | 1,693 | 1,655 | -38 | -2.3\% | 45.7\% | 1,530 | 1,435 | -95 | 5.2\% |
 | 46.9\% | 1,671 | 1,649 | -23 | -1.4\% | 46.9\% | 1,474 | 1,428 | ${ }^{46}$ | -3.1\% |
 | 48.1\% | 1,645 | 1.622 | -24 | -1.4\% | 48.1\% | 1,457 | ${ }^{1,416}$ | 41 | -2.8\% |
 | 49.4\% | 1,609 | 1,601 | ${ }^{-8}$ | -0.5\% | 49.4\% | 1,444 | 1,396 | ${ }^{48}$ | -3.4\% |
 | 50.6\% | 1,597 | ${ }^{1,601}$ | 3 | 0.2\% | 50.6\% | ${ }^{1,393}$ | 1,392 | -2 | -0.1\% |
 | 51.9\% | ${ }^{1,583}$ | 1,578 | -5 | -0.3\% | 51.9\% | ${ }^{1,384}$ | 1,390 | 6 | 0.4\% |
 | 53.1\% | 1,568 | 1,546 | -22 | -1.4\% | 53.1\% | 1,379 | 1,386 | 6 | 0.5\% |
 | 54.3\% | ${ }^{1,545}$ | ${ }^{1,546}$ | 1 | 0.1\% | 54.3\% | 1,369 | ${ }^{1,376}$ | 6 | 0.5\% |
 | 55.6\% | ${ }^{1.522}$ | 1,535 | ${ }_{12}^{13}$ | 0.8\% | 55.6\% | 1,358 | 1,357 | -1 | . 3 \% |
 | 56.8\% | 1,510 | 1,522 | 12 | 0.8\% | 56.8\% | +1,347 | 1,350
 1,342 | 4 | \% |
 | 55.0\% | ${ }_{1}^{1.502}$ | 1,505 | 2 | 0.2\% | 58.0\% | +1,334 | ${ }_{1}^{1,342}$ | 9 | 6\% |
 | 59.3\% | ${ }_{1}^{1,492}$ | 1,479 | -13 | -0.9\% | 59.3\% | ${ }_{1}^{1,323}$ | ${ }_{1}^{1,335}$ | 12 | \% |
 | 661.7\% | ${ }_{1,476}^{1,461}$ | 1,449 1 | ${ }_{-27}$ | -1.8\% | ${ }^{60.7 \%}$ | +1,291 | 1,330 1,326 | ${ }_{35}^{28}$ | ${ }_{2}^{2.1 \%}$ |
 | 63.0\% | 1.467 | 1.440 | -27 | -1.8\% | 63.0\% | 1.274 | 1.303 | 29 | 2.3\% |
 | 64.2\% | | | 19 | -1.3\% | 64.2\% | 1,271 | 1,279 | 8 | 0.6\% |
 | 6.4.\% | 1,452 | 1,437 | -12 | | 65.4\% | ${ }^{1,254}$ | ${ }_{1}^{1,265}$ | 11 | 0.9\% |
 | 67.9\% | ${ }_{1}^{1,435}$ | ${ }_{1,420}^{1,429}$ | ${ }_{-15}$ | -1.1\% | 6.7.9\% | ${ }_{1}^{1,244}$ | ${ }_{1}^{1,241}$ | ${ }^{-3}$ | ${ }_{-0.2 \%}$ |
 | 69.1\% | 1,417 | 1.414 | -3 | -0.2\% | 69.1\% | 1,228 | 1,232 | 4 | 0.4\% |
 | 70.4\% | 1,414 | 1,408 | -5 | 0.4\% | 70.4\% | 1,216 | 1,220 | 4 | 3\% |
 | 71.6\% | 1,413 | 1,405 | -8 | -0.6\% | 71.6\% | 1,212 | 1,212 | 0 | \% |
 | 72.8\% | 1,387 | 1,381 | -7 | -0.5\% | 72.8\% | 1,208 | 1,209 | 1 | 0.1\% |
 | 7 ${ }^{74.1 \%}$ | 1,355 | ${ }^{1,378}$ | ${ }^{23}$ | 1.7\% | 74.1\% | 1,206 | 1,180 | ${ }^{26}$ | -2.1\% |
 | 77.5\% | ${ }_{1}^{1,335}$ | ${ }_{1}^{1,336}$ | 1 | 0.1\% | 75.3\% | ${ }^{1,190}$ | ${ }_{1}^{1,178}$ | -12 | -1.0\% |
 | ${ }^{76.5 \%}$ | ${ }^{1,327}$ | ${ }^{1,324}$ | -3 | -0.3\% | 76.5\% | 1,185 | 1,159 | -26 | -2.2\% |
 | 77.0\% | ${ }_{1}^{1,320}$ | ${ }_{1}^{1,322}$ | 2 | 0.2\% | 77.8\% | ${ }^{1} 1.169$ | ${ }^{1.1,158}$ | ${ }^{-11}$ | 1.0\% |
 | 80.2\% | 1,298 | ${ }_{1,322}$ | ${ }^{24}$ | 1.8\% | 79.0\% | 1,160 | ${ }^{1,152}$ | -8 | -0.7\% |
 | ${ }^{88.5 \%}$ | ${ }^{1,278}$ | ${ }_{1}^{1,316}$ | ${ }_{51}^{38}$ | 3.0\% | 80.2\% | 1,160 | ${ }^{1} 11142$ | -18 | -1.5\% |
 | ${ }^{88.7 \%}$ | 1,260 | 1,311 | 51 | 4.0\% | ${ }^{81.5 \%}$ | 1,1599 | 1,130 | -29 | |
 | 884.0\% | 1,251 | ${ }^{1,263}$ | 12 | 1.0\% | 82.7\% | ${ }^{1,1093}$ | 1,108 | -45 | -3.9\% |
 | 855.2\% | ${ }_{1}^{1,246}$ | ${ }_{1}^{1,262}$ | 16 | 1.3\% | 84.0\%\% | ${ }_{1}^{1,078}$ | ${ }_{1}^{1,095}$ | ${ }_{17}$ | 0.2\% |
 | 88.4\% | ${ }_{1}^{1,244}$ | $\xrightarrow{1,235}$ | -7 | -0.6\% | 886.4\% | ${ }_{1,054}^{1,076}$ | ${ }_{1}^{1,093}$ | 39 | 1.7\%\% |
 | 87.7\% | 1,217 | ${ }_{1}^{1,232}$ | 16 | 1.3\% | 87.7\% | 1,050 | 1,087 | 37 | .6\% |
 | 88.9\% | 1,202 | 1,227 | ${ }^{25}$ | 2.1\% | | 1,040 | ,074 | ${ }^{35}$ | 3.3\% |
 | 99.4\% | 1,195 | 1,218 | 22 | +1.9\% | ${ }^{90.14 \%}$ | 1,039 10026 1 | ${ }^{1,071}$ | 32 | 3.1\% |
 | ${ }_{9} 92.46 \%$ | 1,161 | | 42 | 3.6\% | | | | | |
 | 993.8\% | ${ }_{1}^{1.098}$ | -1,175 | 76 16 | -1.5\% | ${ }^{92.26 \%}$ | ${ }_{950}^{998}$ | ${ }_{\text {1,015 }}^{1.015}$ | ${ }_{13}^{27}$ | ${ }_{1}^{2.7 \%}$ |
 | 995.1\% | ${ }_{1,018}^{1,078}$ | ${ }_{1}^{1,028}$ | 10 | -1.0\% | ${ }^{935.1 \%}$ | 995 | | ${ }^{137}$ | |
 | 96.3\% | 994 | 956 | -38 | -3.8\% | 96.3\% | 921 | 888 | -32 | -3.5\% |
 | 97.5\% | 944 | 923 | ${ }^{22}$ | -2.3\% | 97.5\% | 882 | 850 | ${ }^{32}$ | -3.7\% |
 | 98.8\% | 861 | 882 | ${ }^{21}$ | 2.5\% | 98.8\% | 761 | 780 | 19 | 2.5\% |
 | 100.0\% | 653 | 785 | 132 | 20.2\% | 100.0\% | 641 | 771 | 130 | 20.2\% |

 San Luis Reservoir (SWP and CVP), End of Month Elevation

 San Luis Reseerovir (shabe and CVP), End

 | | | November | | | | | December | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Percent Excesancer | DCR 2015 Without | DCR 2015 With Project | Absolute | | Percent | DCR 2015 Without | DCR 2015 With Project | ${ }^{\text {Absolute }}$ | Relative |
 | Probability | End of Month Elevation | End of Month Elevation | (iferet) | Difference (\%) | Proabability | End of Month Elevation | End of Month Elevation | | Difference (\%) |
 | 0.0\% | 541 | 540 | -1 | -0.2\% | 0.0\% | 541 | 541 | 0 | 0.0\% |
 | 1.2\% | 479 | 475 | -4 | -0.8\% | 1.2\% | 523 | 516 | -6 | -1.2\% |
 | 2.5\% | 478 | 472 | ${ }^{-6}$ | -1.3\% | 2.5\% | 509 | 507 | -2 | -0.4\% |
 | 3.7\% 4.9% | ${ }_{472}^{47}$ | ${ }_{471}^{472}$ | -6 | - ${ }_{\text {- }}^{\text {- }}$-2\% 2% | 3.7% 4.9% | 501 499 | 505 501 | ${ }^{3}$ | -0.7\% |
 | 4.9\% | 472 | 471 | -1 | -0.2\% | 4.9\% | 499 | 501 | ${ }^{2}$ | 0.4\% |
 | ${ }^{6.2 \%}$ | ${ }_{466}^{472}$ | 469 | 1 | -0.6\% | ${ }^{6.2 \%}$ | ${ }_{498}^{498}$ | ${ }_{491} 9$ | - -7 | -0.9\% |
 | 7.4\%\% | ${ }_{464}^{466}$ | ${ }_{464}^{466}$ | 1 | 0.0.1\% | 7.4\% | ${ }_{491}^{498}$ | 491 | -7 | |
 | 9.9\% | 464 | ${ }_{460} 6$ | -4 | -0.8\% | - | ${ }_{487}$ | 490 | -1 | |
 | 11.1\% | 460 | 460 | -1 | -0.1\% | 11.1\% | 484 | 487 | 3 | 0.6\% |
 | 12.3\% | 459 | 459 | 0 | 0.0\% | 12.3\% | 480 | 486 | 7 | 1.4\% |
 | 13.6\% | 452 | 457 | 5 | 1.2\% | 13.6\% | 479 | 482 | 3 | |
 | 14.8\% | 450 | 455 | 5 | 1.0\% | 14.8\% | 476 | 480 | 4 | |
 | 16.0\% | 450 | 453 | ${ }^{3}$ | 0.6\% | 16.0\% | 474 | 47 | | |
 | 17.3\% | 449 | 451 | 2 | 0.4\% | 17.3\% | 473 | 476 | ${ }^{3}$ | 0.6\% |
 | 18.5\% | 445 | 450 | 5 | 1.2\% | 18.5\% | 472 | 475 | ${ }^{3}$ | 0.7\% |
 | 19.8\% | 445 | 450 | 5 | 1.1\% | 19.8\% | 471 | 471 | 0 | 0.0\% |
 | 21.0\% | 444 | 440 | -4 | -0.8\% | 21.0\% | 470 | 470 | 0 | -0.1\% |
 | 22.2\% | ${ }^{441}$ | 439 | -2 | -0.4\% | ${ }^{22.2 \%}$ | 470 | 470 | 0 | 0.0\% |
 | 23.5\% | 439 | 437 | -2 | -0.6\% | 23.5\% | 468 | 469 | 1 | |
 | 24.7\% | ${ }^{437}$ | ${ }^{436}$ | -1 | -0.3\% | ${ }^{24.7 \%}$ | 467 | 469 | 1 | |
 | ${ }^{25.7 .2 \%}$ | ${ }_{435}^{435}$ | ${ }_{434}^{436}$ | 1 | - ${ }_{\text {- }}^{0.2 \%}$ | 25.9\% | ${ }_{463}^{464}$ | ${ }_{465} 6$ | ${ }^{3}$ | 0.7\% |
 | 28.4\% | ${ }_{433}$ | ${ }_{433}$ | 0 | 0.1\% | 28.4\% | ${ }_{462}$ | ${ }_{464}$ | ${ }_{2}$ | 0.5\% |
 | 29.6\% | 432 | ${ }^{433}$ | 1 | 0.3\% | 29.6\% | 460 | 464 | 3 | 0.8\% |
 | 30.9\% | 430 | ${ }^{432}$ | 2 | 0.5\% | 30.9\% | | | 1 | |
 | | | | | | | | 460 | | |
 | 34.6\% | ${ }_{428}^{428}$ | ${ }_{428}^{429}$ | 0 | 0.1\% | 334.6\% | ${ }_{457}^{457}$ | 460 | ${ }_{3}$ | \% |
 | 35.8\% | 425 | 426 | 0 | 0.1\% | 35.8\% | 457 | 460 | 3 | |
 | 37.\% | 425 | 425 | 0 | 0.0\% | 37.\% | 456 | 459 | 4 | |
 | 38.3\% | 425 | 425 | 0 | 0.1\% | 38.3\% | 455 | 456 | 1 | |
 | 39.5\% | 423 | 424 | 1 | 0.2\% | 39.5\% | 455 | 456 | 2 | 0.3\% |
 | 40.7\% | 422 | 424 | 2 | 0.4\% | 40.7\% | 454 | 455 | 2 | 3\% |
 | 42.0\% | 421 | 424 | 2 | 0.5\% | 42.0\% | 452 | 454 | 2 | 4\% |
 | 43.2\% | 420 | 422 | 1 | 0.3\% | 43.2\% | 451 | 452 | 2 | 0.4\% |
 | 44.4\% | 420 | ${ }^{421}$ | 1 | 0.3\% | 44.4\% | 450 | 452 | 1 | 0.3\% |
 | 45.7\% | 416 | ${ }^{421}$ | 4 | 1.1\% | 45.7\% | 450 | 451 | 1 | 0.3\% |
 | 46.9\% | 416 | 419 | 3 | 0.7\% | 46.9\% | 449 | 450 | 1 | 0.2\% |
 | 48.1\% 4 \% | 416 | 417 | 1 | 0.3\% | 48.19\% | 448 | 449 | | 0.3\% |
 | 50.6\% | ${ }_{413}^{413}$ | ${ }_{414}$ | ${ }_{1}$ | 0.2\% | 49.4\% | ${ }_{447}^{448}$ | ${ }_{448}^{449}$ | 1 | - ${ }_{\text {0.1\% }}^{0.3 \%}$ |
 | 51.9\% | 413 | 413 | 0 | 0.0\% | 51.9\% | 447 | 448 | 1 | 0.2\% |
 | 53.19\% | 409 | ${ }_{4}^{412}$ | | 0.8\% | 53.1\% | ${ }_{4} 47$ | 447 | 0 | 0.0\% |
 | 54.3\% | 407 | 411 | ${ }^{3}$ | 0.9\% | 54.3% 5.56% | ${ }_{442}^{442}$ | ${ }_{446}^{447}$ | 5 | |
 | 56.8\% | ${ }_{404}$ | 406 | 2 | 0.5\% | 56.8\% | ${ }_{440}^{442}$ | ${ }_{446}^{446}$ | 5 | 1.4\% |
 | 58.0\% | 403 | 406 | | 0.7\% | 58.0\% | 439 | 444 | 4 | |
 | 59.3\% | 402 | 405 | 3 | 0.8\% | 59.3\% | 438 | 440 | 2 | |
 | 60.5\% | 400 | 404 | 4 | 0.9\% | 60.5\% | 438 | 438 | | |
 | 61.7\% | 400 | 403 | 4 | 0.9\% | 61.7\% | 437 | 435 | -1 | 3\% |
 | 63.0\% | 400 | 403 | 3 | 0.8\% | 63.0\% | 432 | 434 | 2 | |
 | 64.2\% | ${ }^{399}$ | 402 | 3 | 0.7\% | 64.2\% | 431 | 433 | 2 | |
 | 65.4\% | 398 | 401 | 3 | 0.7\% | 65.4\% | 431 | 430 | -1 | |
 | 66.7\% 67.9% | 397 | 400 | ${ }^{3}$ | 0.7\% | 66.7\% | 427 | 426 | 0 | 1\% |
 | -67.9\% | 394 | 397 | 2 | 0.6\% | 67.9\% | 426 | 426 | 0 | 0\% |
 | 69.1\% 7 | ${ }^{393}$ | 395 | 2 | 0.5\% | 69.1\% | ${ }^{422}$ | ${ }^{426}$ | 4 | 0.9\% |
 | 70.4.6\% | 392 | 395 | 3 | 0.7\% | 70.4\% | 422 | 425 | 4 | 0.9\% |
 | 72.8\% | 387 | 395 | | 2.0\% | -72.8\% | ${ }_{420}^{422}$ | ${ }_{424}^{425}$ | 5 | |
 | 74.1\% | 387 | ${ }^{394}$ | 7 | 1.8\% | 74.1\% | 419 | 424 | 6 | 1.3\% |
 | 75.3\% | 387 | 391 | 4 | 1.0\% | 75.3\% | 419 | 424 | 5 | 1.2\% |
 | 76.5\% | 385 383 | 390 390 | 5 | ${ }^{1.2 \%}$ | 76.5\% | 418 | ${ }^{420}$ | ${ }^{2}$ | 0.5\% |
 | 77.0\% | 383
 383 | 390 399 | ${ }^{6}$ | ${ }_{\text {1 }}^{1.7 \% \%}$ | 77.8\% | ${ }_{417}^{418}$ | 419 | 1 | 退 |
 | 80.2\% | ${ }_{382}$ | 387
 89 | 5 | 1.3\% | 80.2\% | 414 | 415 | 1 | 0.4\% |
 | 81.5\% | 382 | 387 | 5 | 1.2\% | 81.5\% | 412 | 414 | 2 | 0.5\% |
 | 82.7\% | 381 | 387 | | 1.6\% | 82.7\% | 412 | 413 | 0 | \% |
 | 84.0\% | 381 | 387 | ${ }^{6}$ | ${ }_{1}^{1.7 \%}$ | 84.0\% | 412 | 410 | -1 | -0.3\% |
 | 85.2\% | 380 | 387 | 7 | | 85.2\% | 409 | 410 | 1 | 0.2\% |
 | 86.4\% | 378 | ${ }^{386}$ | 8 | ${ }_{2}^{2.1 \%}$ | - 86.4% | 407 | 408 | 1 | 0.3\% |
 | 88.9\% | 376 | ${ }_{386}^{386}$ | 10 | ${ }_{\text {2.5\% }}^{2.3 \%}$ | 887.9\% | ${ }_{404}^{407}$ | ${ }_{407}^{407}$ | ${ }_{3}$ | ${ }^{0.0 \% \%}$ |
 | 90.1\% | 374 | 384 | 10 | 2.5\% | 90.1\% | 399 | 405 | 6 | 1.4\% |
 | 91.4\% | 370 | 379 | 9 | 2.5\% | 91.4\% | 398 | 404 | 6 | 1.5\% |
 | 92.6\% | 368 | ${ }_{373} 37$ | 8 | 2.1\% | 92.6\% | 398 | 402 | 4 | 1.0\% |
 | ${ }^{93.85 \%}$ | ${ }^{367}$ | ${ }^{373}$ | 7 | 1.8\% | 93.8\% | 394 | 399 | 5 | 1.2\% |
 | ${ }^{956.3 \%}$ | 366 | 363 | -3 | -0.9\% | 95.1\% | 392 | 393 | 1 | 0.4\% |
 | -96.3\% ${ }^{96.5 \%}$ | 365 | ${ }^{358}$ | -7 | -1.9\% | ${ }^{96.3 \%}$ | 385 | 391 | 5 | ${ }^{1.4 \%}$ |
 | ${ }_{9}^{98.5 \%}$ | ${ }_{365}$ | 354 345 | -88 | -2.1\% | 97.5\% | $\begin{array}{r}379 \\ 378 \\ \hline\end{array}$ | 389 | 10 | |
 | -90.0\% | ${ }_{351}^{362}$ | ${ }_{340} 3$ | -11 | --5.1\% | 100.0\% | 373 | ${ }_{353}^{374}$ | ${ }_{-2}^{4}$ | -54\% |

 | | | Febraary | | |
 | :---: | :---: | :---: | :---: | :---: |
 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$ | DCR 2015 Without Proiect | DCR 2015 With Project | Absolute | Relative |
 | Probability | End of Month Elevation | End of Month Elevation | (eitierece | Difference (\%) |
 | 0.0\% | 541 | 541 | | 0.0\% |
 | 12\% | 541 | 541 | O | |
 | 2.5\% | 541 | 541 | 0 | |
 | 3.7\% | 541 | 541 | 0 | |
 | 4.9\% | 541 | 541 | 0 | |
 | 6.2\% | 541 | 541 | 0 | 0.0\% |
 | 7.4\% | 541 | 541 | 0 | |
 | 8.6\% | 541 | 541 | 0 | |
 | 9.9\% | 539 | 540 | 1 | |
 | 11.1\% | 527 | 531 | 4 | |
 | 12.3\% | 527 | 530 | 3 | |
 | 13.6\% | 526 | ${ }^{526}$ | 0 | 0.0\% |
 | 14.8\% | 522 | 526 | 4 | 0.7\% |
 | 16.0\% | 519 | ${ }_{5} 56$ | 7 | 1.3\% |
 | 17.3\% | 518 | ${ }_{523}^{523}$ | 5 | 0.9\% |
 | 18.5\% | 518 517 | 520 519 | 2 | 0.4\% |
 | 21.0\% | 515 | 519 | 3 | 0.7\% |
 | 22.2\% | 515 | 518 | 3 | 0.5\% |
 | 23.5\%\% | 514
 512 | 517 517 | 5 | 0.6\% |
 | 22.9\%\% | 5512 | ${ }_{516}^{517}$ | 5 | ${ }^{0.9 \%}$ |
 | 27.2\% | 509 50 | ${ }_{514}^{514}$ | ${ }_{5}$ | 1.2\%\% |
 | 28.4\% | 509 | 513 | 4 | |
 | 29.6\% | 509 | 513 | 5 | |
 | 30.9\% | 508 | 509 | 1 | |
 | 32.1\% | 508 | 509 | 1 | 0.1\% |
 | 33.3\%\% | 508 | 507 | -1 | -0.2\% |
 | 35.8\%\% | 508 507 | 506 | -1 | -0.3\% |
 | 37.0\% | 507 | 506 | -1 | -0.2\% |
 | 38.3\% | 5503 | 504 | 1 | 0.1\% |
 | 30.5\% | 500 | 500 | 0 | -0.1\% |
 | 40.7\% | 499 | 498 | -1 | -0.2\% |
 | 423.2\% | 498 | 498 | - | -0.1\% |
 | 44.4\% | ${ }_{497}$ | ${ }_{495}^{496}$ | -2 | -0.4\% |
 | 45.7\% | 496 | 493 | -3 | -0.6\% |
 | 46.9\% | 495 | 493 | -2 | -0.4\% |
 | - ${ }_{\text {4 }}^{4.19 \% \%}$ | ${ }_{493}^{493}$ | ${ }_{493}^{493}$ | -1 | -0.1\% |
 | 550.6\% | ${ }_{493}^{493}$ | ${ }_{492}^{493}$ | | -0.2\% |
 | 51.9\% | 491 | 492 | 1 | 0.2\% |
 | ${ }^{53.1 \%}$ | 490 | 491 | 1 | |
 | 年.3\%\% | 489 | 487 | 2 | -0.3\% |
 | 55.8\% | ${ }_{488}^{488}$ | ${ }_{484}^{487}$ | -3 | ${ }_{\text {- }}^{-0.7 \%}$ |
 | 58.0\% | 486 | 483 | -3 | -0.6\% |
 | 59.3\% | ${ }^{483}$ | ${ }^{483}$ | 0 | 0.0\% |
 | | 481 | 481 | 0 | 0.0\% |
 | 61.7\% ${ }^{63.0 \%}$ | 481 | 481 | 0 | 0.0\% |
 | 64.2\% | 488 | 488 | 0 | 0.1\% |
 | 65.4\% | ${ }_{474}^{48}$ | ${ }_{478}$ | 3 | ${ }_{0}^{-0.7 \%}$ |
 | 66.7\% | 474 | 476 | 2 | 0.5\% |
 | 67.9\% | ${ }_{472}^{473}$ | 476 | 3 | 0.7\% |
 | 69.4\% | 472 | ${ }_{47}^{475}$ | ${ }^{3}$ | 0.5\% |
 | 70.4\% ${ }^{70.6 \%}$ | ${ }_{471}$ | ${ }_{474}^{474}$ | ${ }^{2}$ | 0.5\% |
 | 77.8\% | ${ }_{467}^{471}$ | ${ }_{471}^{473}$ | ${ }_{3}$ | 0.7\% |
 | 74.1\% | 467 | 471 | 4 | 0.8\% |
 | 76.5\% | ${ }_{466}^{466}$ | ${ }_{469}^{469}$ | ${ }_{3}^{3}$ | 0.7\% |
 | 77.8\% | 466 | 468 | 3 | 6\% |
 | 79.0\% | 465 | 468 | 3 | 0.6\% |
 | 80.5\% | 464 | 468 | 4 | 0.9\% |
 | 82.7\% | ${ }_{460}$ | ${ }_{466}^{467}$ | ${ }_{6}^{4}$ | 1.4\% |
 | 84.0\% | 458 | 466 | 9 | 1.9\% |
 | 85.2\% | ${ }^{456}$ | 463 | 7 | 1.5\% |
 | 88.4\% | 454 | ${ }_{4}^{457}$ | 3 | 0.6\% |
 | 87.7\% ${ }^{88.9 \%}$ | 453 | 451 | -1 | -0.3\% |
 | 80.1\% | ${ }_{4}^{48}$ | ${ }_{4} 49$ | 2 | 0.4\% |
 | 99.14\% | ${ }_{447}^{447}$ | ${ }_{446}^{447}$ | -1 | 0.0\% |
 | 92.6\% | 441 | 446 | 5 | 1.1\% |
 | 93.8\% | 440 | ${ }^{436}$ | 4 | -0.9\% |
 | 99.3\% | ${ }_{4}^{440}$ | ${ }_{4}^{435}$ | - | - -1.2% \% |
 | 997.5\% | ${ }_{423}^{437}$ | ${ }_{427}^{427}$ | ${ }_{3}$ | -2.4\% |
 | 98.8\% | 420 | 426 | 6 | 1.3\% |
 | 100.0\% | 411 | 423 | 12 | 2.9\% |

 | | | | |
 | :--- | :--- | :--- | :--- |

 Figure SW-43-b
 San Luis Reservoir (SWP and CVP), End of Month Area

 | | | October | | |
 | :---: | :---: | :---: | :---: | :---: |
 | $\underset{\text { Exceedance }}{\text { Perent }}$ | ${ }_{\text {D }}^{\substack{\text { DCR 2015 Without } \\ \text { Proiect }}}$ | DCR 2015 With Project | ${ }^{\text {Absolute }}$ Differese | Relative |
 | Proabaility | End of Month | of Month A | Difference | Herence (\%) |
 | (\%) | (ACRE) | ${ }^{\text {ACRE }}$) | | |
 | 1.2\% | ${ }^{12,491}$ | ${ }^{12,254}$ | ${ }_{26} 23$ | -1.2\% |
 | 2.5\% | 10.440 | ${ }_{10,363}$ | -77 | -0.7\% |
 | 3.7\% | 10.406 | 9.945 | -461 | |
 | 4.9\% | 10,164 | 9,915 | -248 | -2.4\% |
 | 6.2\% | 10,023 | 9,897 | -126 | -1.3\% |
 | 7.4\% | 9,995 | 9,857 | 62 | 0.6\% |
 | | | 9,630 | -24 | -0.3\% |
 | 9.9\% | 9,560 | 9,614 | 54 | 0.6\% |
 | 11.1\% | 9,467 | 9,585 | 118 | 1.2\% |
 | ${ }^{12.3 \%}$ | ${ }_{9}^{9,402}$ | 9,416 | 15 | 0.2\% |
 | -14.8\% | ${ }_{9,322}^{9,364}$ | ${ }_{9,353}^{9,399}$ | 35
 31 | - 0.3% |
 | 16.0\% | ${ }_{9} 9316$ | ${ }_{9,286}$ | ${ }^{31}$ | |
 | 17.3\% | 9,300 | 9,186 | 114 | |
 | 18.5\% | 9,213 | 9,140 | 73 | -0.8\% |
 | 19.8\% | 9,191 | 9,105 | 85 | -0.9\% |
 | 21.0\% | 9,047 | 9,001 | -46 | -0.5\% |
 | ${ }^{22.2 \%}$ | 8,971 | ${ }^{8,986}$ | 15 | |
 | 23.5\% | 8,919 | 8,959 | 39 | 0.4\% |
 | 24.7\% | ${ }^{8.867}$ | ${ }^{8.876}$ | 10 | 0.1\% |
 | 25.9\% | ${ }^{8.820}$ | ${ }^{8,743}$ | ${ }^{78}$ | -0.9\% |
 | 27.2\% | 8,770 | 8.679 | -91 | -1.0\% |
 | 28.4\% | ${ }^{8,775}$ | 8.673 | ${ }^{-42}$ | -0.5\% |
 | | 8,709 | ${ }_{8}^{8,626}$ | -83 | -1.0\% |
 | - 3 30.9\% | 8,680 | 8,547 | -134 | -1.5\% |
 | 32.1\% | 8,662 | 8.507 | -161 | -1.9\% |
 | | ${ }^{8.648}$ | 8,473 | -175 | -2.10\% |
 | 34.6%
 3588% | ${ }^{8,583}$ | 8.459 | -124 | -1.20\% |
 | 375.0\% | -8,583 | 8,411 | -176 | |
 | 38.3\% | 8,433 | ${ }_{8,350}^{8,357}$ | -75 | -0.7\% |
 | 39.5\% | ${ }_{8,382}$ | ${ }_{8,346}$ | ${ }^{36}$ | -0.4\% |
 | 40.7\% | 8,198 | 8,281 | 83 | |
 | 42.0\% | 8,143 | ${ }_{8,213}$ | 71 | |
 | 43.2\% | 8,131 | ${ }_{8,203}$ | ${ }_{51}^{72}$ | 0.9\% |
 | 4.5.7\% | ${ }_{8,072}$ | 8,139 | ${ }_{66}$ | 0.8\% |
 | 46.9\% | 8,063 | 8,127 | 64 | 0.8\% |
 | 48.19\% | ${ }_{8}^{8.043}$ | ${ }^{8.029}$ | -15 | -0.2\% |
 | 49.4\% | 7,977 | 7,989 | 12 | 0.1\% |
 | 51.9\% | 7,879 | 7.964 | 85 | 1.1\% |
 | 53.1\% | 7.824 | 7,912 | 88 | 1.1\% |
 | 54.3\% 5.56% | $\begin{array}{r}7,824 \\ 7764 \\ \hline\end{array}$ | $\begin{array}{r}7,879 \\ 7836 \\ \hline 8.9\end{array}$ | ${ }_{72}^{55}$ | 0.7\% |
 | 55.6\% | 7,764
 7,708 | | ${ }_{49}^{72}$ | 0.9\% |
 | 56.0\% | 7,642 | ${ }_{\substack{\text { li,717 }}}^{\text {7, }}$ | 45 | 1.0\% |
 | 59.3\% | 7,624 | 7,713 | 89 | 1.2\% |
 | 60.5\% | 7,614 | $\begin{array}{r}7,642 \\ 7635 \\ \hline\end{array}$ | ${ }^{29}$ | 0.4\% |
 | - 61.7% | | 7,635 | | |
 | 64.2\% | 7,297 | 7,534 7,573 | ${ }_{276}^{192}$ | ${ }_{3.8 \%}^{2.6 \%}$ |
 | ${ }^{6.54 .4}$ | 7,279 | 7.553 | 274 | 3.8\% |
 | 66.7\% 67.9% | | | 92 | |
 | 69.1\% | 7,133 | 7,226 | ${ }_{93}$ | 1.3\% |
 | 70.4\% | 7,104 | 7.102 | -2 | 0.0\% |
 | 71.6\% | 6,854 | 7,101 | 247 | 3.6\% |
 | 72.8\% | | 7,099 7,094 | 416 | |
 | 75.3\% | 6,602 | 7,090 | 488 | 7.4\% |
 | 76.5\% | 6,512 | 7,086 | 575 | 8.8\% |
 | 77.8\% | 6,279 | | 608 564 | 9.7\% |
 | 79.0\% | 6,022 5 5 5 | | 564 550 | 9.4\% |
 | - | 5,994 5.927 | | 550
 284
 28 | ${ }_{\text {c }}^{\text {9,2\% }}$ |
 | 82.7\% | ${ }_{5}^{5,662}$ | ¢,188 | ${ }_{526}$ | ${ }_{9.3 \%}^{4.3 \%}$ |
 | 84.0\% | 5,651 | 6,182 | 531 | 9.4\% |
 | - | ${ }_{5}^{5.521}$ | ${ }^{6,026}$ | 506 | ${ }^{9.2 \%}$ |
 | ${ }^{80.47 \%}$ | ${ }_{5}^{5.5175}$ | ${ }^{6}$ | 490 | ${ }_{76} 8.9 \%$ |
 | 88.9\% | 5,475 | ${ }_{5}^{5.807}$ | ${ }_{3} 37$ | 7.6\% |
 | 90.1\% | 5,424 | ${ }_{5.694}^{5.607}$ | 269 | 5.0\% |
 | 91.4\% | 5,408 | 5.608 | 200 | 3.7\% |
 | 92.6\% | 5.343 | 5.593 | ${ }^{250}$ | 4.7\% |
 | ${ }^{955.1 \%}$ | 5.249
 5.105 | 5.4621 5.411 | 213 306 | |
 | 96.3\% | 5,075 | 5.072 | ${ }^{-3}$ | -0.1\% |
 | 97.5\% | 4,990 | 4.809 4.592 | -181 | -3.3\% |
 | 98.8\% 100.0\% | 4,934 3,889 | - $\begin{aligned} & 4.5682 \\ & 3.889\end{aligned}$ | ${ }_{0}^{372}$ | -7.5\% |
 | | | | | |

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[b]{4}{*}{\[
 \begin{gathered}
 \text { Percent } \\
 \left.\hline \begin{array}{c}
 \text { Execedance } \\
 \text { Probability } \\
 (\%)
 \end{array}\right)
 \end{gathered}
 \]} \& \multicolumn{4}{|c|}{February} \\
 \hline \& \& DCR 2015 With Project \& \& Relative \\
 \hline \& End of Month Area \& End of Month Area \& \& ference (\%) \\
 \hline \& \({ }^{\text {(ACRE }}\)) \& (ACRE) \& 0 \& \\
 \hline \& \& \& \& 0.0\% \\
 \hline 2.5\% \& 12,096 \& \({ }^{12,096}\) \& 0 \& \\
 \hline 3.7\% \& \({ }_{12,296}\) \& \({ }^{12,696}\) \& 0 \& \\
 \hline 4.9\% \& 12.696 \& \({ }_{12,696}\) \& 0 \& 0.0\% \\
 \hline 6.2\% \& 12.696 \& 12.696 \& 0 \& \% \\
 \hline 7.4\% \& 12,696 \& 12,696 \& 0 \& 0\% \\
 \hline 8.6\% \& 12,696 \& 12,696 \& 0 \& 0.0\% \\
 \hline 9.9\% \& 12,618 \& 12,655 \& 37 \& 0.3\% \\
 \hline 11.1\% \& 12,274 \& 12,393 \& 119 \& 1.0\% \\
 \hline \({ }^{12.3 \%}\) \& 12,274 \& 12,356 \& 82 \& 0.7\% \\
 \hline 13.6\% \& 12,260 \& 12,257 \& \({ }^{-3}\) \& \\
 \hline 14.8\% \& 12,150 \& 12,252 \& 102 \& \\
 \hline 14.0\%\% \& \({ }^{12,055}\) \& 12,245 \& 192 \& 1.6\% \\
 \hline 18.5\% \& 12,020 \& 12,081 \& 61 \& \\
 \hline 19.8\% \& 12,010 \& 12,067 \& 56 \& 0.5\% \\
 \hline 21.0\% \& 11,953 \& 12,051 \& 98 \& \\
 \hline 22.2\% \& 11,940 \& 12,012 \& 72 \& 0.6\% \\
 \hline 23.5\% \& \({ }^{11,896}\) \& 11,990 \& 94 \& 0.8\% \\
 \hline 24.7\% \& \({ }^{11,854}\) \& 11,989 \& 135 \& 1\% \\
 \hline 25.9\% \& \({ }^{111,782}\) \& \({ }^{11,962}\) \& 180 \& 1.5\% \\
 \hline 27.2\% \& \({ }^{11,775}\) \& 11,992 \& 137 \& 1.2\% \\
 \hline 28.4\% \& \({ }^{11,769}\) \& \({ }^{11,888}\) \& 119 \& 1.0\% \\
 \hline 29.6\% \& \({ }^{11,755}\) \& 11.887 \& \({ }^{132}\) \& 1.1\% \\
 \hline 30.9\% \& \({ }^{11,742}\) \& 11,779 \& \({ }^{37}\) \& 0.3\% \\
 \hline 32.1\% \& \({ }^{11,737}\) \& \({ }^{11,759}\) \& \({ }^{22}\) \& 0.2\% \\
 \hline 33.3\% \& \({ }^{11,733}\) \& \({ }^{11,701}\) \& \({ }^{-32}\) \& -0.3\% \\
 \hline 34.6\% \& \({ }^{11,71712}\) \& 11,693 \& -27 \& \% \\
 \hline \({ }^{35.78 \%}\) \& 11,712 \& 11,670 \& \({ }^{-41}\) \& \\
 \hline 37.0\% \& 111.699 \& \({ }^{11,666}\) \& \begin{tabular}{l}
 -33 \\
 \hline 15 \\
 1
 \end{tabular} \& \\
 \hline 38.3\% \& \({ }^{11,588}\) \& 11,604 \& 15 \& \\
 \hline 39.7\% \& 11,4968 \& 11,485 \& T1 \& \% \\
 \hline 42.0\% \& 11,446 \& 111,432 \& - 13 \& -0.1\% \\
 \hline 43.2\% \& \({ }^{11,403}\) \& \({ }^{11,368}\) \& \& \\
 \hline \& 11,388
 11380
 1 \& \({ }^{11,326}\) \& -62 \& -0.5\% \\
 \hline 46.9\% \& 11,342 \& 111,284 \& -58 \& -0.5\% \\
 \hline 48.1\% \& 11,296 \& 11,281 \& -14 \& -0.1\% \\
 \hline 49.4\% \& 11,291 \& 11,266 \& -25 \& \\
 \hline 50.6\% \& \({ }^{11,276}\) \& \({ }^{11,246}\) \& \({ }^{-31}\) \& -0.3\% \\
 \hline 51.9\% \& \({ }^{11,209}\) \& 11,237 \& \({ }^{28}\) \& 0.2\% \\
 \hline 年 \(53.19 \%\) \& \({ }^{111,177}\) \& 11,199 \& \({ }^{22}\) \& 0.2\% \\
 \hline 54.3\% \& \({ }^{11,144}\) \& 11,092 \& -51 \& -0.5\% \\
 \hline 55.6\% \& \({ }^{11,119}\) \& 11,078 \& -40 \& -0.4\% \\
 \hline \& \({ }^{11,104}\) \& 10,996 \& 108 \& \({ }^{-1.0 \%}\) \\
 \hline \({ }_{\text {c }}^{58.0 \%}\) \& \({ }^{11,053}\) \& 10,965 \& 87 \& -0.8\% \\
 \hline 59.3\% \& 10,944
 10.886
 1 \& 10,950
 10,893 \& \({ }^{6}\) \& 0.1\% \\
 \hline 60.5\% \& 10,886
 10.880

 1, \& 10,893
 10.879 \& -2 \&

 \hline 6.3.0\% \& 10,880
 10.849 \& ${ }^{10,8089}$ \& -2 \& \%

 \hline 64.2\% \& 10,810 \& 10,797 \& ${ }_{-13}$ \& -0.1\%

 \hline 65.4\% \& ${ }^{10,676}$ \& ${ }^{10,787}$ \& 111 \& 1.0\%

 \hline 66.7\% \& 10,661 \& 10,738 \& 77 \& 0.7\%

 \hline 69.1\% \& ${ }^{10,6061}$ \& 10,701 \& 100 \& 0.9\%

 \hline 70.4\% \& 10.586 \& 10.667 \& 82 \& 0.8\%

 \hline 71.6\% \& 10,565 \& 10,621 \& 56 \& 0.5\%

 \hline 72.8\% \& 10,453 \& 10.563 \& 110 \& 1.1\%

 \hline \& 10,434 \& 0.555 \& 121 \& 1.2\%

 \hline 76.5\% \& 10,402 \& ${ }_{10,511}$ \& 109 \& 1.0\%

 \hline 77.8\% \& 10,391 \& 10,482 \& 91 \& 0.9\%

 \hline 79.0\% \& 10,382 \& 10.478 \& 97 \& 0.9\%

 \hline 80.2\% \& 10,327 \& 10,458 \& 131 \& 1.3\%

 \hline 81.5\% \& (10,308 \& 10,433
 10.416 \& ${ }_{2}^{125}$ \& ${ }^{1.2 \%}$

 \hline 82.7%
 880% \& 10,207
 10,127 \& 10.416
 10.410 \& ${ }_{283}^{209}$ \& 迆

 \hline 85.2\% \& 10,071 \& ${ }^{10,305}$ \& ${ }_{234}$ \& ${ }_{\text {2.3\% }}^{2.3 \%}$

 \hline 86.4\% \& 10,014 \& 10,110 \& 96 \& 1.0\%

 \hline 87.7\% \& 9,966 \& 9,9919 \& ${ }^{48}$ \& ${ }^{0.5 \%}$

 \hline 88.9\% \& 9,794 \& 9,856 \& ${ }_{5}^{63}$ \& ${ }^{0.6 \%}$

 \hline 91.4\% \& ${ }_{9,782}^{9,785}$ \& ${ }_{\text {g,752 }}^{\text {g,780 }}$ \& -31 \& ${ }_{\text {- }}^{0.3 \%}$

 \hline 92.6\% \& 9,575 \& 9,737 \& 162 \& \%

 \hline 8\% \& 9,542 \& 9,408 \& 134 \& \%

 \hline 95.1\% \& 9,531 \& ${ }^{9,343}$ \& 189 \& 2.0\%

 \hline 96.3\% \& 9,435 \& 9,067 \& -369 \& 9\%

 \hline 998.5\%\% \& 8,937 \& 9,055 \& 117 \& - ${ }_{\text {1.3\% }}$

 \hline 100.0\% \& ${ }_{8,448}^{8,48}$ \& 8,909 \& ${ }_{461}$ \& 5.5\%

 \hline \& \& \& \&

 \hline
 \end{tabular}

 | $\begin{gathered} \text { Percent } \\ \text { Preedance } \\ \text { Probability } \end{gathered}$ | | June | | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: |
 | | Proriect | DCR 2015 With Project | $\begin{aligned} & \text { Absolute } \\ & \text { Differe } \\ & \text { (acke } \end{aligned}$ | |
 | | of Month | of Montit A | | |
 | 0.0\% | ${ }^{\text {(ACRE) }}$ | ${ }^{\text {(ACRE) }}$ | -215 | -1.7\% |
 | 1.2\% | 12,371 | 12,374 | 3 | 0.0\% |
 | 2.5\% | 12,165 | 12,158 | -7 | -0.1\% |
 | 3.7\% | ${ }^{112,285}$ | ${ }^{11,287}$ | 2 | 0.0\% |
 | 4.9\% | 11,207 | 11,185 | -22 | -0.2\% |
 | 6.2\% | ${ }^{111,202}$ | ${ }^{111,127}$ | -76 | -0.7\% |
 | 7.4\% | 11,197 | ${ }^{11,025}$ | -172 | -1.5\% |
 | 8.6\% | 10,549 | 10.811 | 262 | 2.5\% |
 | 9.9\% | 10,476 | 10,403 | -73 | -0.7\% |
 | 11.19\% | 10.442 | 10,265 | -177 | -1.7\% |
 | +12.3\% | (10,333 | 10,190 10142 | -142 | -1.4\% |
 | 13.6% 14.8% | 10,275 10,192 | 10,142 10.091 | -101 | - |
 | 16.0\% | 10,135 | 9.962 | -173 | -1.7\% |
 | 17.3\% | 10,047 | 9,915 | 132 | |
 | 18.5\% | 9,988 | 9,909 | -79 | 源 |
 | 19.8\% | 9,983 | 9,710 | -273 | 7\% |
 | 21.0\% | 9,844 | 9,547 | -297 | -3.0\% |
 | 22.2\% | 9,832 | 9,542 | -290 | -2.9\% |
 | 23.5\% | 9,816 | 9,471 | -345 | -3.5\% |
 | 24.7\% | 9,659 | 9,469 | -189 | -2.0\% |
 | 25.9\% | 9.614 | 9,464 | -151 | -1.6\% |
 | 27.2\% | ${ }_{9} 9596$ | 9,461 | -135 | -1.4\% |
 | 28.4\% | 9,521 | 9,435 | -86 | -0.9\% |
 | 29.6\% | 9,482 | ${ }^{9,420}$ | -62 | -0.7\% |
 | - 3 30.9\% | 9.474 | ${ }^{9.326}$ | -149 | -1.6\% |
 | 32.1\% | 9,434 | 9,284 | -150 | -1.2\% |
 | | 9,416 | 9,212 | -204 | -2.2\% |
 | 34.6\% | ${ }_{9}^{9,341}$ | ${ }^{9,208}$ | -134 | -1.7\% |
 | 37.0\% | 9,321 | ${ }_{9,157}^{9,168}$ | -164 | -1.8\% |
 | 38.3\% | 9,315 | 9,119 | -195 | -2.1\% |
 | 39.5\% | 9,292 | 9,116 | -176 | -1.9\% |
 | 42.0\% | ${ }_{9,177}^{9,202}$ | ${ }_{9,058}^{9,05}$ | -119 | -1.3\% |
 | 43.2\% | 9,155 | 8,961 | -193 | -2.1\% |
 | 44.4\% | 8,999 | 8,923 | -76 | -0.8\% |
 | 45.7\% | 8,997 | ${ }_{8,890}$ | -107 | -1.2\% |
 | 46.9\% | ${ }_{8,961}$ | ${ }^{8.878}$ | -82 | -0.9\% |
 | 48.1\% | 8,955 | ${ }^{8.873}$ | -82 | -0.9\% |
 | 49.4\% | ${ }^{8,937}$ | ${ }^{8.860}$ | -77 | -0.9\% |
 | 50.6\% | 8.921 | 8.675 | -247 | -2.8\% |
 | 51.9\% | 8,917 | ${ }^{8,626}$ | -291 | -3.3\% |
 | 年53.1\% | 8,847 | 8,607 | -240 | -2.7\% |
 | 54.3\% 5 5 5 | 8,790 | 8.590 | -200 | -2.3\% |
 | ${ }_{\text {c }}^{55.6 \% \%}$ | ${ }_{8}^{8,721}$ | 8,568 | -153 | -1.8\% |
 | ${ }_{\text {cken }}^{56.8 \%}$ | 8,747 8.650 | 8,535
 8.498 | -182 | - |
 | 59.3\% | ${ }_{8,623}$ | ${ }_{8,415}$ | -208 | -2.4\% |
 | -60.5\% | 8,604
 8.584
 8.64 | 8.321
 8.225 | -283 | |
 | ${ }^{61.7 \%}$ | ${ }_{8}^{8,584}$ | ${ }_{8}^{8,295}$ | -289 | -3.4\% |
 | 63.0\% | ${ }_{8,5182}$ | 8,282 | -237 | |
 | ${ }^{64.24 \%}$ | ${ }_{8}^{8,462}$ | 8,204 | -278 | |
 | ${ }^{6564 \%}$ | ${ }_{8}^{8,4422}$ | ${ }_{7} 1977$ | - 40 | -3.3\% |
 | 67.9\% | | | -506 | |
 | 69.1\% | 8,138 | 7,900 | ${ }_{-237}$ | -2.9\% |
 | 70.4\% | 8,082 | 7.853 | -229 | -2.8\% |
 | 71.6\% | 8,060 | 7,770 | -290 | -3.6\% |
 | 72.8\% | 7,968 | 7,746 | -222 | -2.8\% |
 | 74.1\% | 7,855 | 7,742 | -113 | -1.4\% |
 | 75.3\% | 7,849 7,781 | 7,729 7,635 | -146 | -1.5\% |
 | 77.8\% | 7,763 | 7.601 | -162 | -2.1\% |
 | 79.0\% | 7.687 | 7.533 | -154 | -2.0\% |
 | 80.2\% | 7.674 | 7,500 | -173 | -2.3\% |
 | 81.5\% | 7,605 | 7,407 | -198 | -2.6\% |
 | 82.7\% | 7,586 | 7,293 | -292 | -3.9\% |
 | 84.0\% | 7,523 | 7,267 | -256 | -3.4\% |
 | - | 7,279
 7,271 | 7,170 7,101 | -1088 | ${ }_{-2.3 \%}^{-1.5 \%}$ |
 | 877.7\% | 7,202 | 6,950 | -252 | -3.5\% |
 | - ${ }_{\text {80.9.9\% }}$ | 7,076 7,076 | ${ }_{\text {6,9920 }}^{6.911}$ | - | ${ }_{-2.3 \%}^{-3.2 \%}$ |
 | 91.4\% | 6,986 | 6.860 | -126 | -1.8\% |
 | 92.6\% | 6.937 | 6.572 | -365 | -5.3\% |
 | 933.9\% | 6,741 | | -395 | -..9\% |
 | ${ }_{9}^{95.1 .1 \%}$ | ¢,6,464
 6,184
 1 | | -139 | ${ }_{\text {- }}^{\text {-2.2\% }}$ - |
 | 97.5\% | 6,173 | 6,031 | -142 | -2.3\% |
 | 98.\% | 5.643 | 5.208 | 435 | -7.7\% |
 | 100.0\% | 5.568 | 4,785 | -783 | -14.1\% |

 San Luis Reservoir (CVP), End of Month Storage

 Table SW-44-b

 | | | Ociober | | |
 | :---: | :---: | :---: | :---: | :---: |
 | $\stackrel{\text { Percent }}{\stackrel{\text { Prceedance }}{ }}$ | DCR 2015 Without Proiect | DCR 2015 With Project | Absolute | Relative |
 | Probability | End of fontrit Storage | End of Month Storage (TAF) | Difference (TAF) | Difference (\%) |
 | 0.0\% | ${ }_{88}{ }_{8}$ | ${ }_{8}^{\text {850 }}$ | ${ }^{-33}$ | 3.7\% |
 | 1.2\% | 775 | 771 | -4 | -0.5\% |
 | 2.5\% | 580 | 667 | 87 | 15.0\% |
 | 3.7\% | 569 | 575 | 7 | 1.2\% |
 | 4.9\% | 564 | 561 | ${ }^{-3}$ | -0.5\% |
 | -6.2\% | 560 495 | ${ }_{468}^{551}$ | -99 | - -1.6% |
 | 7.4\% | ${ }_{491}^{495}$ | ${ }_{442}^{466}$ | -29 | |
 | 9.9\% | ${ }_{4}^{497}$ | ${ }_{406}$ | -71 | -14.9\% |
 | 11.1\% | 419 | 398 | ${ }^{21}$ | -5.1\% |
 | 12.3\% | 409 | 395 | 15 | |
 | 13.6\% | 381 | 393 | 12 | |
 | 14.8\% | 379 | 390 | 11 | 3.0\% |
 | 16.0\% | 364 | 370 | 6 | 1.5\% |
 | 17.3\% | 332 | 350 | 18 | 5.5\% |
 | 18.5\% | 310 | 330 | 20 | 6.4\% |
 | 19.8\% | 298 | 316 | 17 | 5.8\% |
 | 21.0\% | 289 | 294 | 5 | 1.8\% |
 | ${ }^{22.2 \%}$ | ${ }^{280}$ | 290 | 9 | 3.3\% |
 | 23.5\% | 279 | ${ }^{280}$ | 1 | 0.4\% |
 | 24.7\% | ${ }^{268}$ | 272 | 4 | ${ }^{1.7 \%}$ |
 | ${ }^{257.2 \%}$ | ${ }_{228}^{264}$ | ${ }_{2}^{272}$ | ${ }_{21}$ | 8.0\% |
 | 28.4\% | ${ }_{238}^{248}$ | ${ }_{266}^{269}$ | ${ }_{27}$ | ${ }^{\text {11.5\% }}$ |
 | 29.6\% | ${ }^{235}$ | 265 | 30 | 12.6\% |
 | 30.9\% | ${ }^{228}$ | ${ }^{264}$ | | |
 | ${ }^{32.15 \%}$ | | | | 5.0\% |
 | 34.6\% | 215 | ${ }_{235}^{239}$ | 19 | 9.0\% |
 | 35.8\% | 209 | 230 | 22 | 10.5\% |
 | 37.0\% | 205 | 225 | 20 | 9.9\% |
 | 边 38.3% | 205 | 213 | 8 | 3.8\% |
 | 39.5\% | ${ }^{201}$ | 209 | 7 | 3.6\% |
 | ${ }^{40.7 \%} 4$ | 201 | 208 | 7 | - ${ }_{3.4 \%}$ |
 | 43.2\% | 195 | ${ }_{205}$ | ${ }_{9}$ | 4.9\% |
 | 44.4\% | 194 | 198 | 3 | 1.7\% |
 | 45.7\% | 189 187 | ${ }_{188}^{198}$ | 4 | 2.0\% |
 | 46.9\% | 187 | 188 | 1 | - |
 | 49.4\% | ${ }_{183}^{183}$ | ${ }_{183}^{187}$ | ${ }_{0}$ | 1.9\% |
 | 50.6\% | 183 183 | 183 183 | 0 | 0.0\% |
 | 年 51.9% | 183 | 183 | 0 | 0.0\% |
 | ${ }_{5}^{53.3 \%}$ | 183 183 | 183
 182
 1 | -2 | -0.0\% |
 | 55.6\% | 183 | 180 | -3 | -1.8\% |
 | | 182 | 176 | | |
 | 59.3\% | 178 | 172 | ${ }_{-6}$ | -3.3\% |
 | ${ }^{60.5 \%}$ | 177 | 171 | -6 | -30\% |
 | 61.7\% | 172 | 170 | -2 | -1.2\% |
 | 63.0\% | 170 | 168 | -2 | -1.2\% |
 | | 169 | 166 | -3 | -1.8\% |
 | ${ }^{66.7 \%}$ | 167 | ${ }_{162}$ | ${ }_{-5}$ | -3.1\% |
 | 67.9\% | 165 | 160 | -5 | -2.9\% |
 | 69.1\% | 165 | 160 | -5 | -2.8\% |
 | 70.4\% | 164 | 158
 158 | ${ }_{4}^{-6}$ | -3.3\% |
 | 71.6\% | ${ }_{161}^{162}$ | 158
 158 | 4 | -2.3\% |
 | 72.8\% | ${ }_{161}^{161}$ | 158
 156 | - -6 | - |
 | 75.3\% | 161 | 155 | | -3.2\% |
 | 76.5\% | 159 | 154 | -5 | -3.1\% |
 | 77.8\% | 159
 157 | ${ }_{151}^{151}$ | | -5.0\% |
 | 79.0\% | 157 153 | 151 | ${ }^{-6}$ | -3.8\% |
 | 80.2\% | 153 149 | 1488
 148 | - -2 | -3.4\% |
 | 82.7\% | 148 | 144 | -5 | -3.0\% |
 | -84.0\% | 142
 136 | 143 143 148 | 1 | 4.8\% |
 | 86.4\% | 132 | 142 | 10 | 7.5\% |
 | 87.7\% | 131 | 140 | 9 | 7.2\% |
 | ${ }^{88.9 \%}$ | 128 128 128 | ${ }_{131}^{135}$ | 6 | 5.1\% |
 | 91.4\% | 128
 123
 1 | 130 | ${ }_{7}$ | ${ }_{5}^{2.9 \%}$ |
 | 92.6\% | 122 | 128 | | 5.2\% |
 | 93.8\% | 117 | 110 | -7 | -6.2\% |
 | 95.1\% | 116 | 108 | -8 | -7.0\% |
 | 96.3\% | ${ }^{115}$ | 104 | 11 | -9.3\% |
 | 97.5\% | 94 60 | ${ }_{90} 98$ | 4 30 | 39.5\% |
 | 100.0\% | 45 | 45 | ${ }_{0}$ | 0.0\% |

 | | | February | | |
 | :---: | :---: | :---: | :---: | :---: |
 | $\stackrel{\text { Percent }}{\stackrel{\text { Prceedance }}{ }}$ | DCC 2015 Without Proiect | DCR 2015 W With Project | Absolute | Relative |
 | Probability | End of Montt Storage | End of Month Storage | (exter | Difference (\%) |
 | (\%) | (TAF) | (TAF) | | |
 | 0.0\% | 972 | 972 | 0 | 0.0\% |
 | 1.2\% | 972 | 972 | 0 | ${ }^{0.0 \%}$ |
 | 2.5\% | 972 | ${ }_{972} 9$ | 0 | 0.0\% |
 | 3.7% 4.9% | ${ }_{972}^{972}$ | ${ }_{972}^{972}$ | 0 | 0.0.0\% |
 | 4.9\% | ${ }_{972}^{972}$ | ${ }_{972}^{972}$ | 0 | 0.0\% |
 | 7.4\% | 972 | 972 | 0 | 0.0.0\% |
 | 8.6\% | 972 | 972 | 0 | 0.0\% |
 | ${ }^{9.9 \% \%}$ | 972 | 972 | 0 | 0.0\% |
 | 12.3\% | ${ }_{972}^{972}$ | ${ }_{965}^{972}$ | ${ }_{-7}$ | -0.7\% |
 | 13.6\% | 972 | 962 | -10 | -1.1\% |
 | 14.8%
 16.0% | 972 | 959 | 13 | -1.3\% |
 | - 16.0% | ${ }_{918}^{926}$ | ${ }_{919}^{955}$ | 1 | 3.1\% 0.1% |
 | 18.5\% | 914 | 914 | | 0.0\% |
 | 19.8\% | 867 | 914 | 47 | 5.5\% |
 | 21.0\% | 859 | 910 | 51 | 5.9\% |
 | 22.2\% | 853 845 | ${ }_{887}^{882}$ | ${ }_{32}^{28}$ | 3.3\% |
 | 23.5\% | 845 838 | 877 875 | 32 | 3.8\% |
 | ${ }_{2}^{24.79 \%}$ | ${ }_{838} 83$ | ${ }_{8}^{875}$ | ${ }^{37}$ | ${ }_{2}^{4.5 \%}$ |
 | 25.9\% | ${ }_{831}^{834}$ | 853 | ${ }^{22}$ | 2.7\% |
 | ${ }^{27.2 \%}$ 28.4\% | ${ }_{815}^{824}$ | ${ }_{827}^{842}$ | ${ }_{18}^{18}$ | ${ }_{\text {l }}^{\text {2.4\% }}$ |
 | 29.4\% | 814 | 825 | 11 | 1.3\% |
 | - 30.9 \% | 811 | 820 | 9 | 1.19\% |
 | 32.1\% | | | | |
 | 33.6\% | ${ }_{792}$ | ${ }_{808}^{812}$ | 17 | ${ }_{2.0 \%}^{2.2 \%}$ |
 | 35.8\% | 785 | 783 | | -0.2\% |
 | 37.0\% | ${ }_{781}$ | 779 | -2 | -0.2\% |
 | | ${ }_{771}^{776}$ | 773 778 | ${ }_{-2}^{-3}$ | -0.4\% |
 | 40.7\% | 765 | ${ }_{762}$ | ${ }_{-3}$ | ${ }^{-0.5 \%}$ |
 | 42.0\% | 762 | 755 | -7 | -0.9\% |
 | 43.2\% | ${ }_{7} 70$ | ${ }^{754}$ | -7 | -0.9\% |
 | 44.4\% | ${ }_{751}$ | ${ }^{746}$ | -5 | -0.7\% |
 | ${ }_{4}^{45.7 \%}$ | 748 737 | 732 730 | -16 | -2.1\% |
 | 48.1\% | ${ }_{734}^{737}$ | ${ }_{730}^{770}$ | $\stackrel{-7}{-4}$ | -0.9\% |
 | 49.4\% | ${ }^{729}$ | ${ }_{729}$ | -1 | -0.1\% |
 | 50.6\% | ${ }_{725}^{729}$ | ${ }_{726} 72$ | -3 | -0.4\% |
 | | ${ }_{723}^{725}$ | ${ }_{723}^{726}$ | 1 | 0.2\% |
 | ${ }_{5}^{53.3 \%}$ | 720 723 | ${ }_{715}^{723}$ | -5 | -0.7\% |
 | ${ }^{55.6 \%}$ | 709 | 713 | 4 | 0.5\% |
 | 56.8\% | ${ }_{689} 7$ | ${ }_{7} 709$ | 16 | 0.6\% |
 | ${ }_{50.3 \%}$ | 687 | ${ }_{698}$ | 11 | 1.6\% |
 | ${ }^{60.5 \%}$ | 685 | 695 | 10 | 1.4\% |
 | - 61.7% | ${ }_{671}^{681}$ | 679 | -2 | -0.3\% |
 | ${ }_{64.2 \%}$ | 665 | 661 | -5 | -0.7\% |
 | 65.4\% | 659 | 659 | -1 | -0.1\% |
 | 66.7\% | 659 | ${ }_{658}^{658}$ | -1 | -0.1\% |
 | ${ }_{6}^{67.9 \%}$ | 649 | 653 | 4 | 0.6\% |
 | 69.1\% 70.4% | ${ }_{638}^{641}$ | 648 638 | ${ }^{6}$ | 0.0\% |
 | 71.6\% | 635 | 630 | -5 | -0.8\% |
 | 72.8\% | 631 | 629 | | -0.3\% |
 | 74.1\% | 630 | 627 | - -5 | -0.5\% |
 | 75.3\% | 630 628 | 625 614 | - 14 | -0.7\% |
 | 77.8\% | 615 | 597 | ${ }_{-18}$ | -2.9\% |
 | 79.0\% | 6^{612} | ${ }_{556}^{585}$ | -26 | -4.3\% |
 | - | 612 598 | ${ }_{585}^{585}$ | -27 | -4.4\% |
 | - ${ }^{81.5 \%}$ 82.7\% | 598 | ${ }_{5}^{582}$ | ${ }^{-16}$ | ${ }_{-1.7 \%}$ |
 | 824.0\% | 573 | 579 579 | $\stackrel{-1}{6}$ | - |
 | 85.2\% | 572 | 578 | 6 | 1.0\% |
 | 86.4\% | 565 | 547 | 18 | -3.2\% |
 | 877.7\% 88.9% | 562 | 540 | ${ }^{22}$ | -3.9\% |
 | | 555 | 522 | -34 | -6.1\% |
 | ${ }_{9}^{90.14 \%}$ | 年 $\begin{array}{r}538 \\ 535\end{array}$ | 517 515 | -20 | -3.3\% ${ }_{\text {- }}^{\text {- }}$ |
 | 92.6\% | 527 | 510 | -17 | -3.3\% |
 | 93.8\% | 497 | 493 | -5 | -0.9\% |
 | 95.1\% | 496 | 491 | - | -1.0\% |
 | - 96.3% | ${ }_{487}^{498}$ | ${ }_{477}^{483}$ | -12 | -2.4\% |
 | ${ }_{98.8}^{97.5 \%}$ | ${ }_{361}^{487}$ | ${ }_{3}^{4775}$ | -10 | - |
 | 100.0\% | ${ }_{24} 24$ | 321 | 77 | 31.8\% |

 Table SW-44-b

 \begin{tabular}{|c|c|c|c|c|}
 \hline \& \& June \& \& \\
 \hline Percent \& DCR 2015 Wethout \& DCR 2015 With Proiect \& \& \\
 \hline \& End of Moonetst Storage \& End of Month Storage \& Difference \& Difference (\%) \\
 \hline \({ }_{(0)}\) \& (TAF) \& (TAF) \& (TAF) \& \\
 \hline 0.0\% \& 946 \& 849 \& -97 \& -10.2\% \\
 \hline 1.2\% \& 851 \& 847 \& 4 \& -0.5\% \\
 \hline 2.5\% \& 838 \& \({ }_{83} 8\) \& -5 \& -0.6\% \\
 \hline 3.7\% \& \({ }^{829}\) \& \({ }^{826}\) \& \({ }^{-3}\) \& -0.4\% \\
 \hline 4.9\% \& 767 \& 752 \& -15 \& -2.0\% \\
 \hline 6.2\% \& 750 \& \({ }^{748}\) \& -2 \& -0.3\% \\
 \hline 7.4\% \& 698 \& 699 \& 1 \& 0.1\% \\
 \hline 8.9\% \& \({ }_{686} 68\) \& 679 \& -7 \& -1.0\% \\
 \hline 9.9\% \& 676 \& 679 \& 3 \& 0.5\% \\
 \hline - \(11.12 \%\) \& 657
 614 \& \({ }_{614}^{672}\) \& 16 \& 2.4\% \\
 \hline - \& \({ }_{612}^{614}\) \& \({ }_{600}^{614}\) \& -12 \& -1.9\% \\
 \hline 14.8\% \& 609 \& 550 \& -58 \& -9.6\% \\
 \hline 16.0\% \& \({ }_{603}^{603}\) \& 540 \& -63 \& 10.5 \\
 \hline - \(17.3 \%\) \& 601 \& 520 \& -81 \& 13.4\% \\
 \hline \(18.5 \%\)
 \(19.8 \%\) \& 539
 529 \& \begin{tabular}{l}
 518 \\
 \hline 87
 \end{tabular} \& -21 \& -3.9\% \\
 \hline 21.0\% \& \({ }_{494} 5\) \& \({ }_{481}^{487}\) \& -36
 -13 \& -6.8\%\% \\
 \hline 22.2\% \& 488 \& 465 \& -23 \& -4.8\% \\
 \hline 23.5\% \& 483 \& 460 \& -24 \& -4.9\% \\
 \hline 24.7\% \& 463 \& \({ }^{443}\) \& \(-20\) \& -4.4\% \\
 \hline 25.9\%
 \(272 \%\) \& 454 \& 436 \& -19 \& -4.1\% \\
 \hline 27.2\% \& \({ }_{4}^{47}\) \& 417 \& -30 \& -6.6\% \\
 \hline 28.4\% \& \({ }^{436}\) \& 415 \& -21 \& -4.8\% \\
 \hline 29.6\% \& \({ }_{410}^{428}\) \& \({ }_{392}\) \& -37 \& -8.5\% \\
 \hline 30.9\% \& 410 \& 386
 378 \& -24 \& -5.8\% \\
 \hline 32.19\% \& 405 \& \({ }^{378}\) \& -27 \& -6.7\% \\
 \hline 33.3\% \& \({ }_{400}\) \& 368
 363 \& -32 \& -8.0\% \\
 \hline \(34.6 \%\)
 \(35.8 \%\) \& 399
 393 \& \({ }_{361}^{363}\) \& -36 \& -9.0\% \\
 \hline 357.8\% \& \begin{tabular}{l}
 393 \\
 392 \\
 \hline
 \end{tabular} \& 361
 359 \& -32
 -33 \& -8.7\% \\
 \hline 38.3\% \& 381 \& 344 \& -36 \& -9.5\% \\
 \hline 39.5\% \& \({ }^{375}\) \& \({ }^{338}\) \& -37 \& -9.9\% \\
 \hline 42.0\% \& \begin{tabular}{l}
 369 \\
 \hline 35
 \end{tabular} \& \({ }_{336}\) \& -33 \& -8.9\% \\
 \hline 43.2\% \& \({ }^{361}\) \& \({ }_{334} 3\) \& \({ }^{-28}\) \& -7.7\% \\
 \hline \({ }^{44.4 \%}\) \& \({ }^{353}\) \& \({ }^{333}\) \& -20 \& -5.7\% \\
 \hline 4.5.7\% \& \begin{tabular}{l}
 352 \\
 346 \\
 \hline
 \end{tabular} \& \({ }_{329}^{330}\) \& \({ }^{-23}\) \& - \(-6.4 \%\) \\
 \hline 48.1\% \& 341 \& 329 \& -13 \& -3.8\% \\
 \hline 49.4\% \& \({ }^{335}\) \& \({ }_{3}^{323}\) \& -12 \& -3.5\% \\
 \hline \& \({ }_{329}^{329}\) \& \({ }_{311}^{318}\) \& -11 \& -3.3\% \\
 \hline 51.9\% \& \({ }^{326}\) \& \({ }^{311}\) \& -15 \& -4.7\% \\
 \hline \& \({ }^{321}\) \& 310 \& -11 \& -3.5\% \\
 \hline \(54.3 \%\)
 \(5.6 \%\) \& \({ }_{3}^{320}\) \& \({ }_{3}^{307}\) \& -12 \& -3.9\% \\
 \hline 55.6\% \& 319
 319 \& 305
 300 \& -19 \& -4.4\% \\
 \hline 58.0\% \& \({ }_{316}^{319}\) \& 300

 296 \& - \& ${ }_{-6.5 \%}^{-6.0 \%}$

 \hline 59.3\% \& 312 \& ${ }^{287}$ \& -25 \& -8.1\%

 \hline 60.5\% \& 304
 304 \& ${ }_{263}$ \& ${ }^{-32}$ \& -10.6\%

 \hline 61.7\%
 630% \& \& \& \&

 \hline -63.0\% \& 298

 298 \& | 256 |
 | :--- |
 | 256 | \& -34

 -31 \& -11.6\%

 \hline 65.4\% \& ${ }^{283}$ \& 249 \& -34 \& -12.1\%

 \hline - ${ }_{\text {cki.9\% }}^{66.7 \%}$ \& ${ }_{267}^{272}$ \& 2438 \& -30
 -29 \& -10.9\%

 \hline 69.1\% \& 263 \& ${ }^{237}$ \& -26 \& -10.0\%

 \hline 70.4\% \& ${ }^{262}$ \& ${ }_{231}^{231}$ \& -31 \& -11.9\%

 \hline 71.2\% 7 \& 261
 268 \& ${ }_{227}^{230}$ \& -32 \& - -12.2%

 \hline 74.1\% \& 243 \& ${ }^{227}$ \& -16 \& -6.6\%

 \hline 75.3\% \& 240 \& 219 \& -21 \& -8.8\%

 \hline 76.5\% \& ${ }^{233}$ \& 219 \& -14 \& -5.9\%

 \hline 778.8 \& | 228 |
 | :--- |
 | 26 | \& ${ }_{218}^{218}$ \& -9 \& -4.1\%

 \hline 79.0\% \& ${ }_{225}^{226}$ \& ${ }_{212}^{216}$ \& -10 \& -4.5\%

 \hline 80.2\% \& ${ }_{221}^{225}$ \& 211
 211 \& -10 \& -.$- .9 \%$

 \hline 82.7\% \& 213 \& 211 \& ${ }_{-}$ \& -1.2\%

 \hline 84.0\% \& 211 \& 198 \& -13 \& -6.3\%

 \hline - \& 200
 192 \& 196
 189 \& ${ }_{-}^{-4}$ \& -1.8\% -1.4

 \hline 87.7\% \& 192 \& 178 \& -14 \& -7.3\%

 \hline 88.9\% \& 185 \& 174 \& -11 \& -6.0\%

 \hline 90.4\% \& 181 \& 172 \& -9 \& -5.2\%

 \hline 92.6\% \& 166 \& ${ }_{159}$ \& -7 \& -4.1\%

 \hline 93.8\% \& 164 \& 158 \& -6 \& -.5\%

 \hline 95.1\% \& 162
 139 \& ${ }^{143}$ \& ${ }^{18}$ \& -11.4\%

 \hline -96.3\% ${ }_{\text {97.5\% }}$ \& 1139
 116 \& ${ }^{131}$ \& ${ }^{-8}$ \& -6.1\%

 \hline 98.8\% \& 111 \& 106 \& -5 \& -4.2\%

 \hline 100.0\% \& 90 \& 60 \& -30 \& .33.4\%

 \hline
 \end{tabular}

 Figure SW-45-b
 San Luis Reservoir (SWP), End of Month Storage

 | | | Octobe | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | $\xrightarrow[\substack{\text { DCR } 2015 \text { Without } \\ \text { Proiect }}]{\text { ．}}$ | DCR 2015 With Project | Absolute | |
 | Probability | End of Morth Storage | End of Montrs Storage | （ititerence | Difference（\％） |
 | $\xrightarrow{-10 \%}$ | ${ }_{1}^{\text {［1aF］}}$ | ${ }_{1}^{\text {［1aF］}}$ | | 0．0\％ |
 | 1．2\％ | ${ }_{792}$ | 810 | 18 | |
 | 2．5\％ | ${ }_{657}$ | 660 | 3 | 0．4\％ |
 | 3．7\％ | 655 | 640 | -15 | －2．3\％ |
 | 4．9\％ | 650 | 633 | -17 | －2．6\％ |
 | 6．2\％ | 634 | 590 | 44 | －7．0\％ |
 | 7．4\％ | 628 | 585 | －43 | －6．9\％ |
 | 8．6\％ | 601 | 582 | －19 | －3．2\％ |
 | 9．9\％ | 576 | 564 | -11 | －2．0\％ |
 | 11．1\％ | 555 | 561 | 7 | 1．2\％ |
 | 12．3\％ | 536 | 545 | 10 | 1．8\％ |
 | 13．6\％ | ${ }_{5}^{532}$ | ${ }_{542}$ | 10 | 1．8\％ |
 | 14．8\％ | 524 | 552 | 5 | 1．0\％ |
 | － 17.0% | 519 513 | 514 510 | ${ }^{-5}$ | －1．0\％ |
 | － 17.3% | 513 499 | 510 498 | －4 | －0．7\％ |
 | －18．9\％ | ${ }_{495}^{499}$ | ${ }_{492}^{498}$ | $\stackrel{-1}{-3}$ | ${ }^{-0.0 \% \%}$ |
 | 21．0\％ | 480 | 472 | －8 | －1．7\％ |
 | 22．2\％ | 479 | 464 | －15 | |
 | 23．5\％ | 475 | 461 | 14 | |
 | 24．7\％ | 469 | 460 | －9 | |
 | 25．9\％ | 468 | 460 | －8 | |
 | ${ }^{217.2 \%}$ | 462 | 455 | －6 | 1．3\％ |
 | ${ }^{28.4 .4}$ | 439 | 436 | 4 | －0．8\％ |
 | 29．9\％ | 435 | 421 | ${ }^{14}$ | －3．2\％ |
 | 30．9\％ | 418 | 416 | －2 | －0．5\％ |
 | 32．1\％ | 417 | 416 | －2 | －0．4\％ |
 | 333\％ | 411 | 415 | 4 | 0．9\％ |
 | 3．4．6\％ | 399 390 | 409 | 11 | 2．7\％ |
 | 33．8\％ | ${ }^{380}$ | 383 | 3 | 0．8\％ |
 | | 376 | ${ }^{378}$ | $\stackrel{2}{2}$ | 0．6\％ |
 | 38．3\％ | 371 368 | 349 347 | －22 | －5．9\％ |
 | 3．9．5\％ | 368 351 | ${ }_{346} 34$ | -21 | －5．8\％ |
 | 40．7\％ | 351 346 | 346
 345 | －-1 | －1．6\％ |
 | －${ }^{42.2 .2 \%}$ | 346
 343 | 345 334 | －1 | －0．2\％ |
 | 44．4\％ | 332 | 317 | －15 | －4．6\％ |
 | 45．7\％ | ${ }^{320}$ | ${ }^{312}$ | ${ }^{-8}$ | －2．6\％ |
 | ${ }^{46.9 \%}$ | 319 317 | 309 309 | －10 | －3．3\％ |
 | 49．4\％ | 293 | 308 | 16 | 5．4\％ |
 | 50．6\％ | 279 | 299 | 20 | 72\％ |
 | ${ }^{51.9 \%}$ | 276 | 296 | 19 | 7．0\％ |
 | 年53．1\％ | 263 | 291 | 28 | 10．5\％ |
 | 5．5．3\％ | 261 | 288 | 27 | 10．4\％ |
 | 55．5\％ | ${ }^{257}$ | 267 | 1 | 4．1\％ |
 | 年5．8\％\％ | 252 | 265 | 13 | 5．0\％ |
 | 58．0\％ | 247 | 263 | 17 | 6．7\％ |
 | come | ${ }_{235}^{236}$ | ${ }_{2}^{243}$ | 7 | ${ }^{3.2 \%}$ |
 | 60．5\％ | ${ }_{232}^{235}$ | 239 236 | 4 | 1．5\％ |
 | 61．7\％ | ${ }_{226}^{232}$ | $\begin{array}{r}231 \\ { }_{231} \\ \hline\end{array}$ | 4 | 年．8\％\％ |
 | 64．2\％ | 204 | ${ }_{231}$ | 27 | 13．4\％ |
 | ${ }^{65.4 \%}$ | ${ }^{200}$ | ${ }^{227}$ | ${ }^{27}$ | 13．3\％ |
 | 66.7% 679% | ${ }_{182}^{187}$ | 208
 187
 1 | ${ }^{21}$ | 11．1\％ |
 | ${ }_{6}^{67.1 \%}$ | 182 179 | 187 179 | ${ }_{0}^{6}$ | ${ }_{\text {en }}{ }_{\text {3．0\％}}$ |
 | 70．4\％ | 167 | 178 | 11 | 6．4\％ |
 | 71．6\％ | 155 | ${ }^{173}$ | 17 | 11．1\％ |
 | 74．1\％ | 150 137 | 151 129 | ${ }_{-8}^{18}$ | －5．7\％\％ |
 | 75．3\％ | 97 | 126 | 29 | 30．1\％ |
 | 76．5\％ | 89 | 120 | 31 | 34．4\％ |
 | 778\％ | 82 | 118 | ${ }^{36}$ | 44．4\％ |
 | 79．0\％ | 79 | 114 | ${ }^{35}$ | 44．5\％ |
 | － | 68 | 110 | ${ }^{43}$ | 62．9\％ |
 | － 8 81．5\％ | 62 | 96 | 34 | 54．6\％ |
 | 822．7\％ 84.0% | ${ }_{58}^{58}$ | 84 | ${ }^{26}$ | 4．5．9\％ |
 | 80．8．0\％ | 55 55 5 | 81 57 | ${ }_{2}^{25}$ | 45．6\％ |
 | 85．2\％ | 55 55 | 57 55 | ${ }_{0}^{2}$ | －${ }_{\text {4．0\％}}$ |
 | ${ }^{80} 87.7 \%$ | ${ }_{55}$ | ${ }_{55}^{55}$ | 0 | 0．0\％ |
 | 88．9\％ | 55 | 55 | 0 | 0．0\％ |
 | ${ }^{90.14 \%}$ | 55
 55
 5 | 55 55 55 | \bigcirc | －0．0\％ |
 | 92．6\％ | 55 | 55 | 0 | 0．0\％ |
 | ${ }_{\text {c }}^{93.85 \%}$ | 55 | ${ }_{55}^{55}$ | 0 | 0．0\％ |
 | ${ }_{9} 95.3 \%$ | 55 55 | ${ }_{55}^{55}$ | 0 | 0．0\％ |
 | 97．5\％ | 55 | 55 | 0 | 0．0\％ |
 | 98．8\％ | 55 | 55 | 0 | 0．0\％ |
 | 100．0\％ | 55 | 55 | 0 | 0．0\％ |

 Table SW-4-b-b

 | | | February | | |
 | :---: | :---: | :---: | :---: | :---: |
 | $\underset{\substack{\text { Percent } \\ \text { Exceadace }}}{ }$ | DCR 2015 Without Proiect | DCR 2015 With Project | Absolute | |
 | Probability | End of Morth Storage | End of Month Storage | (tiference | Difference (\%) |
 | 0.0\% | (TAF) | | | 0.0\% |
 | 0.0\% | ${ }_{1}^{1,067}$ | ${ }_{1}^{1,067}$ | 0 | 0.0\% |
 | - 1.2% | 1,067 1,067 | ${ }_{1}^{1,067}$ | 0 | |
 | - ${ }_{\text {2.7.7\% }}$ | 1,067 | 1.067 | 0 | |
 | 4.9\% | ${ }_{1}^{1,067}$ | ${ }_{1}^{1,067}$ | 0 | -0.0\% |
 | 6.2\% | 1.067 | 1,067 | 0 | .0\% |
 | 7.4\% | 1,067 | 1,067 | 0 | 0.0\% |
 | ${ }_{\text {9.9\% }}^{\text {8.9\% }}$ | ${ }_{1,067}^{1,067}$ | 1,067
 1,067
 10, | \bigcirc | -0.0\% |
 | 11.1\% | ${ }_{1}^{1,067}$ | ${ }_{1,067}$ | 0 | 0.0\% |
 | 12.3\% | 1,034 | 1.067 | ${ }^{33}$ | 3.2\% |
 | 13.6\% | 955 | 1.067 | 109 | $11.4{ }^{\circ}$ |
 | 14.8\% | ${ }^{955}$ | 1,029 | 73 | |
 | 16.0\% | 942 | 961 | 19 | 2.0\% |
 | 17.3\% | ${ }^{934}$ | ${ }^{931}$ | ${ }^{-3}$ | 0.4\% |
 | 18.5\% | 922 | 920 | - | -0.2\% |
 | 219.0\% | 911 | 916 | 5 | 0.5\% |
 | 222.2\% | ${ }_{0} 96$ | ${ }^{904}$ | -1 | -0.1\% |
 | 22.5\% | ${ }_{877}^{882}$ | ${ }_{866}^{874}$ | ${ }_{-11}^{-8}$ | -0.9\% |
 | 24.7\% | 876 | 860 | -17 | -1.9\% |
 | 22.9\%\% | ${ }_{860}^{869}$ | 855 888 | -14 | -1.6\% |
 | 228.4\% | 860 | 848 | 12 | -1.4\% |
 | ${ }^{229.6 \%}$ | 884 | ${ }_{847}^{848}$ | ${ }^{-13}$ | -1.7\% |
 | 30.9\% | ${ }_{820}$ | ${ }_{842}$ | ${ }_{22}$ | 2.6\% |
 | 32.1\% | 819 | 800 | -20 | -2.4\% |
 | 33.3\% | 818 | 786 | -32 | -3.9\% |
 | 35.8\%\% | ${ }_{791}^{793}$ | 782 775 | | |
 | 37.0\% | 765 | 774 | 9 | 1.1\% |
 | 38.3\% | 771 | 762 | 1 | |
 | 39.5\% | 740 | 761 | 21 | |
 | 40.7\% | ${ }^{723}$ | ${ }^{758}$ | 35 | 4.8\% |
 | 43.2\% | ${ }_{7}^{703}$ | ${ }_{7}^{756}$ | 52 | 7.4\% |
 | 43.4\% | 703 697 | 744
 745 | ${ }_{4}^{42}$ | |
 | 45.7\% | 693 | ${ }^{737}$ | 44 | 6.3\% |
 | 46.9\% | 685 | ${ }^{721}$ | ${ }^{36}$ | 5.2\% |
 | 48.1\% | 678 677 | ${ }_{7}^{720}$ | ${ }_{32}^{42}$ | ${ }^{6.2 \%}$ |
 | 4.9.4\% 50.6% | 677 | 709 | ${ }^{32}$ | 4.7\% |
 | 551.9\% | 662 655 | 697 | ${ }^{32}$ | ${ }_{3}^{4.8 \%}$ |
 | 53.1\% | 645 | 668 | ${ }_{23}^{22}$ | 3.5\% |
 | | 644 | ${ }^{662}$ | 18 | 2.7\% |
 | 55.8.8\% | ${ }_{643}^{644}$ | ${ }_{650}^{659}$ | 15 17 | ${ }_{\text {2 }}^{2.3 \% \%}$ |
 | 58.0\% | 630 | 642 | 12 | |
 | 59.3\% | ${ }_{625}^{626}$ | ${ }^{638}$ | 12 | |
 | 661.7\% | 625 624 | ${ }_{6}^{627}$ | ${ }^{2}$ | 0.3\% |
 | 63.0\% | 624 | 604 | -20 | -3.2\% |
 | 64.2\% | 614 | 591 | -23 | -3.8\% |
 | ${ }^{65.4 \%}$ | 587 | 583 | 4 | -0.7\% |
 | 66.7\% 67.9% | 567 | 576 | 9 | 1.6\% |
 | 69.9\%\% | 567 | 576 | 10 | 1.7\% |
 | 69.4\% | 552 | 570 | 8 | 1.4\%\% |
 | 71.6\% | 511 | ${ }_{553}$ | ${ }_{43}^{50}$ | 8.4\% |
 | 72.8\% | 505 | 543 | | 7.4\% |
 | 74.1\% | ${ }_{488}^{489}$ | 534 529 5 | ${ }_{4}^{45}$ | 9.1\% |
 | 76.5\% | ${ }_{477}^{488}$ | 529 529 | 41
 52 | 8.3\% |
 | 77.8\% | 474 | 529 | 52 | 10.9\% |
 | 79.0\% | ${ }_{456}^{474}$ | ${ }_{484}^{490}$ | ${ }_{28}^{17}$ | ${ }^{3.5 \%}$ |
 | 80.2\% | 445 | ${ }^{478}$ | 33 | 7.5\% |
 | 81.5\% | 430 | 456 | ${ }_{27}^{25}$ | 5.9\% |
 | 84.0\% | ${ }_{422}^{424}$ | ${ }_{449}$ | ${ }_{26}^{27}$ | 6.2\% |
 | ${ }^{85.2 \%}$ | 411 | 434 | ${ }^{23}$ | 5.5\% |
 | ${ }^{8.4 .4 \%}$ | ${ }^{406}$ | 431 | ${ }^{25}$ | 6.2\% |
 | 年 87.7% | 405 | 428 | ${ }^{23}$ | 5.6\% |
 | 80.1\% | 392 | 409 | 18 | 4.5\% |
 | 99.4\% | ${ }_{378}^{383}$ | ${ }_{374}^{385}$ | ${ }_{-3}^{2}$ | -0.9\% |
 | 92.6\% | 363 | 366 | 4 | 1.0\% |
 | 93.8\% | ${ }^{350}$ | 357 | 7 | 2.0\% |
 | | ${ }_{322} 32$ | 350 | ${ }_{7}^{21}$ | 6.3\% |
 | 99.3\% | ${ }^{322}$ | 329 | 7 | 2.1\% |
 | 998.8\% | 312 249 | 303

 265 | $\stackrel{-9}{16}$ | -2.9\% |
 | 100.0\% | ${ }_{196}$ | ${ }_{230}$ | 34 | 17.3\% |

 | | | June | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | DCR 2015 Without Proiect | DCR 2015 With Project | Absolute | |
 | Probability $(6) 0$ | End of Month Storage | End of Month Storage | Difference (TAF) | Difference $(\%)$ |
 | ${ }^{\text {0.0\% }}$ | ${ }^{\text {(TAF) }}$ | (tar) | | 0.0\% |
 | 1.2\% | 1,067 | 1.048 | 5 | ${ }^{0.05 \%}$ |
 | 2.5\% | ${ }_{959}^{1,042}$ | ${ }_{960}^{1.048}$ | 1 | ${ }^{0.5 \%}$ |
 | 3.7\% | 736 | 736 | 0 | |
 | 4.9\% | 720 | 699 | 22 | -3.0\% |
 | \%.2\% | ${ }_{646}^{655}$ | ${ }_{646}^{646}$ | -8 | -1.2\% |
 | 7.4\%\% | 646 644 | (${ }_{598}^{626}$ | -19 | -3.0\% |
 | 9.9\% | ${ }_{635} 6$ | 598 | -48 | -5.9\% |
 | 11.1\% | 628 | 595 | | -5.46 |
 | 12.3\% | 625 | 546 | | |
 | 13.6\% | 602 | 538 | -63 | |
 | 14.8\% | 576 | 523 | -53 | |
 | | 564 | 523 | 41 | -7.3\% |
 | 俍 ${ }^{17.3 \% \%}$ | ${ }_{5}^{59}$ | 502 | -57 | -10.2\% |
 | 19.8\% | ${ }_{533}^{554}$ | ${ }_{495}$ | -38 | -7.1\% |
 | 21.0\% | 527 | 483 | 44 | -8.4\% |
 | 22.2\% | 505 | 482 | -23 | -4.6\% |
 | 23.5\% | ${ }_{402}$ | ${ }_{468}^{468}$ | -34 -35 -35 | -6.8\% |
 | 24.7\% | ${ }_{485}^{495}$ | 460 | ${ }^{-33}$ | -7.7\% |
 | 257.2\% | 482 | 460 | ${ }^{-23}$ | -4.7\% |
 | 28.4\% | 471 | ${ }_{458}$ | -12 | ${ }_{-2.6 \%}$ |
 | 29.6\% | ${ }_{468}^{469}$ | ${ }_{452}^{455}$ | -15 | -3.2\% |
 | 32.1\% | 451 | ${ }_{444}^{442}$ | $\xrightarrow{-16}$ | -1.6\% |
 | ${ }^{33.3 \%}$ | 441 | 441 | 0 | 0.1\% |
 | 33.6\% ${ }^{34.8 \%}$ | ${ }_{416}^{429}$ | ${ }_{423}^{441}$ | ${ }_{7}^{12}$ | ${ }^{2.9 \%}$ |
 | 37.0\% | 413 | 422 | 9 | 2.2\% |
 | 38.3\%\% | ${ }_{408}^{411}$ | ${ }_{3} 404$ | -6 | -1.6\% |
 | ${ }_{40.7 \%}$ | ${ }_{406}$ | 398 394 | -10 | -2.4\% |
 | 42.0\% | 406 | 394 | -11 | -2.8\% |
 | 43.2\% | ${ }_{305} 0$ | 388 | -17 | -4.1\% |
 | 44.4\% | 398 397 | 387 | -11 | -2.7\% |
 | 45.7% 46.9% | ${ }_{396} 39$ | 386 | -11 | -2.7\% |
 | 46.9\% | 396 | 385 | -11 | -2.9\% |
 | ${ }^{48.19 \%}$ | ${ }_{3}^{389}$ | 372 | -16 | -4.2\% |
 | | ${ }^{385}$ | ${ }^{364}$ | -20 | -5.2\% |
 | | 379 372 | 354
 340 | -25 | -8.8.8\% |
 | 53.1\% | 358 | ${ }_{324}$ | -34 | -9.6\% |
 | 54.3\% | ${ }^{330}$ | 310 | -19 | -5.9\% |
 | | 328 325 | ${ }^{308}$ | -20 | -6.2\% |
 | 56.8\% | 325 317 | 303 291 | -22 -27 | -6.7\% |
 | 59.3\% | 300 | 289 | -12 | -3.9\% |
 | | ${ }^{299}$ | 284 | | -5.1\% |
 | 66.7\% 6 | ${ }_{289}^{291}$ | 263 263 | -11 | -3.9\% |
 | 64.2\% | 287 | 262 | -25 | -8.6\% |
 | | 285 284 | 260 257 | -25 | -8.7\% |
 | 66.7\% 67.9% | 284 | 257 | -27 | -9.4\% |
 | 67.9\% | ${ }_{2} 274$ | 246 | ${ }^{28}$ | -10.2\% |
 | 69.1\% | ${ }^{261}$ | ${ }^{241}$ | -20 | -7.5\% |
 | 70.4\% | 260 254 | 239 | -20 | -7.8\% |
 | 771.8\% | ${ }_{2}^{256}$ | ${ }^{238}$ | -18 | -7.0\% |
 | 72.8\% | ${ }_{241}^{244}$ | ${ }_{233}^{233}$ | ${ }^{-11}$ | -4.4\% |
 | 74.3\% | ${ }_{241}^{241}$ | ${ }_{232}^{233}$ | -9 | -3.5\% |
 | 76.5\% | ${ }^{237}$ | ${ }_{221}$ | -6 | ${ }_{-2.5 \%}$ |
 | 77.8\% | $\begin{array}{r}236 \\ \\ 234 \\ \hline\end{array}$ | ${ }^{228}$ | | -3.2\% |
 | 890.2\% | 234 230 | ${ }_{224}^{227}$ | -7 | -2.9\% |
 | ${ }^{81.5 \%}$ | 230 | ${ }_{213}^{224}$ | -17 | -7.3\% |
 | 82.7% 840% | ${ }_{2}^{226}$ | 197 | -21 | -12.7\% |
 | ${ }^{855.2 \%}$ | ${ }_{203}^{213}$ | 192 187 | -21 -16 | -10.1\% |
 | 86.4\% | 202 | 172 | -30 | -14.8\% |
 | 877\% | 188
 157
 157 | ${ }^{168}$ | ${ }^{-20}$ | -10, |
 | 80.1\% | 157 | ${ }^{138}$ | -19 | 12.3 |
 | ${ }^{90.14 \%}$ | 149 | ${ }^{133}$ | -16 | -10.7\% |
 | ${ }^{91.4 \%}$ | ${ }^{130}$ | ${ }^{120}$ | -10 | -7.3\% |
 | 93.8\% | 75 | 100 | ${ }_{25}^{26}$ | 31.3\% |
 | 95.1\% | 69 | 96 | 27 | 39.3\% |
 | 96.3\% | ${ }_{51}^{61}$ | 70 68 | 10 | 16.0\% |
 | ${ }_{98.8 \%}^{97.5 \%}$ | 58
 55 | 68 63 | ${ }_{8}^{10}$ | 16.7\% |
 | 100.0\% | ${ }_{55}^{55}$ | ${ }_{55}^{65}$ | 0 | 0.0\% |

 # Sacramento-San Joaquin Delta Operations Summary Tables and Bar Charts

 Table SW-31-a

 | Table SW-31-a Yolo Bypass, Monthly Flow | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | Monthly | low (CFS) | | | | | |
 | Analysis Period | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | $\mathrm{Full} \mathrm{S} \mathrm{Simulation} \mathrm{Period'}^{\text {d }}$ | | | | | | | | | | | | |
 | WSIP 2030 Without Proedt | 227 | 456 | 4,223 | 12,025 | 17,725 | 9,988 | 2,576 | 139 | 82 | 48 | 107 | 90 |
 | WSIP 2303 Wit Project | 457 | 444 | 4,010 | 11,463 | 17,043 | 9,495 | 2,471 | 130 | 82 | 53 | 273 | 331 |
 | Difference | 230 | -11 | -213 | -562 | -682 | -493 | -104 | -9 | 1 | 5 | 166 | 241 |
 | Percent Differences | | -2.5\% | -5.0\% | -4.7\% | -3.8\% | -4.9\% | -4.0\% | | | | | |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (3.5\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Proed | 88 | 531 | 4,276 | 33,937 | 46,143 | 25,531 | 7,055 | 240 | 117 | 48 | 150 | 135 |
 | WSIP 2330 With Project | 365 | 447 | 4,226 | 32,800 | 45,176 | 24,679 | 6,882 | 210 | 120 | 48 | 307 | 447 |
 | Difference | 277 | -84 | -50 | $-1,137$ | -967 | -852 | -173 | -31 | 3 | 0 | 156 | 312 |
 | Percent Difference | | | -1.2\% | -3.4\% | -2.1% | -3.3\% | -2.5\% | | | | | |
 | Above Normal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Proeet | 39 | 970 | 3,154 | 8,997 | 14,753 | 11,228 | 1,327 | 185 | 66 | 48 | 95 | 67 |
 | WSIP 2330 With Project | 345 | 965 | 2,622 | 7,910 | 13,569 | 10,755 | 1,120 | 185 | 66 | 80 | 355 | 423 |
 | Difference | 306 | -5 | -532 | -1,087 | -1,184 | -473 | -206 | 0 | 0 | 32 | 260 | 356 |
 | Percent Difference | | -0.6\% | -16.9\% | -12.1\% | -8.0\% | -4.2\% | -15.6\% | | | | | |
 | Below Normal (20.7\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Proeet | 41 | 138 | 3,398 | 1,274 | 5,193 | 1,403 | 756 | 76 | 66 | 48 | 103 | 80 |
 | WSIP 2 230 With Projet | 272 | 145 | 3,191 | 1,070 | 4,455 | 1,092 | 653 | 76 | 66 | 48 | 287 | 357 |
 | Difference | 230 | 7 | -207 | -204 | -738 | -311 | -103 | 0 | 0 | 0 | 184 | 276 |
 | Percent Difiterence | | 5.3\% | -6.1\% | -16.0\% | -14.2\% | -22.2\% | -13.6\% | | | | | |
 | Dry (19.5\%) | | | | | | | | | | | | |
 | wSIP 2030 Without Project | 923 | 614 | 8,664 | 258 | 1,886 | 1,162 | 299 | 67 | 67 | 48 | 63 | 65 |
 | WSIP 2330 With Project | 1,192 | 683 | 8,349 | 192 | 1,574 | 796 | 299 | 67 | 67 | 48 | 282 | 233 |
 | Difference | 269 | 70 | -315 | -66 | -312 | -366 | 0 | 0 | 0 | 0 | 220 | 168 |
 | Percent Difference | 29.1\% | 11.3\% | -3.6\% | -25.7\% | -16.5\% | -31.5\% | 0.0\% | | | | | |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 W Whtout Proed | 41 | 22 | 432 | 320 | 363 | 300 | 107 | 68 | 64 | 48 | 92 | 67 |
 | WSIP 2330 Wit Project | 45 | 22 | 327 | 314 | 364 | 108 | 107 | 68 | 64 | 48 | 87 | 96 |
 | Difference | 4 | 0 | -105 | -6 | 0 | -192 | 0 | 0 | 0 | 0 | -5 | 29 |
 | Percent Difference | 8.6\% | -1.0\% | -24.3\% | -1.8\% | 0.1\% | -64.1\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | -5.9\% | 43.6\% |

 1 Based on the 82 -year sinulation period
 3 Realive difference of the monthy veras

 | Table SW-32-a
 Sacramento River at Rio Vista, Monthly Flow Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | | | | | | Monthly | low (CFS) | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | $\overline{\text { Full Simulion Period' }}$ | | | | | | | | | | | | |
 | WSIP 2303 W Witout Projed | 6,965 | 12,054 | 23,666 | 40,883 | 53,054 | 39,355 | 20,195 | 10,000 | 6,921 | 11,159 | 7,599 | 10,669 |
 | WSIP 2030 With Projet | 7,733 | 12,394 | 22,720 | 39,229 | 51,362 | 37,742 | 19,944 | 9,885 | 7,165 | 11,506 | 8,194 | 11,685 |
 | Difference | 768 | 339 | -945 | -1,654 | -1,692 | -1,612 | -252 | -115 | 243 | 347 | 595 | 1,016 |
 | Percent Difference ${ }^{\text {a }}$ | 11.0\% | 2.8\% | -4.0\% | -4.0\% | -3.2\% | -4.1\% | -1.2\% | -1.2\% | 3.5\% | 3.1\% | 7.8\% | 9.5\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (30.5\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Projed | 8,664 | 16,284 | 26,646 | 82,489 | 100,991 | 69,664 | 37,460 | 14,454 | 7,855 | 12,226 | 8,863 | 19,413 |
 | WSIP 2030 With Proeet | 9,338 | 16,327 | 25,373 | 80,643 | 99,650 | 68,163 | 36,904 | 14,414 | 8,206 | 12,363 | 9,045 | 19,910 |
 | Difference | 674 | 43 | -1,273 | -1,846 | -1,341 | -1,500 | -556 | -41 | 351 | 136 | 182 | 497 |
 | Percent Difference | 7.8\% | 0.3\% | -4.8\% | -2.2\% | -1.3\% | -2.2\% | -1.5\% | -0.3\% | 4.5\% | 1.1\% | 2.1\% | 2.6\% |
 | Above Normal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 W Withot Projed | 7,567 | 14,332 | 21,282 | 46,023 | 58,321 | 49,712 | 19,131 | 11,177 | 7,160 | 13,108 | 9,223 | 11,378 |
 | WSIP 2030 With Proeet | 8,275 | 14,634 | 19,902 | 43,619 | 56,080 | 48,401 | 18,636 | 10,950 | 7,172 | 13,538 | 9,544 | 12,165 |
 | Difference | 708 | 302 | -1,380 | -2,404 | -2,240 | -1,312 | -495 | -227 | 12 | 430 | 320 | 787 |
 | Percent Difference | 9.4\% | 2.1\% | -6.5\% | -5.2\% | -3.8\% | -2.6\% | -2.6\% | -2.0\% | 0.2\% | 3.3\% | 3.5\% | 6.9\% |
 | Below Normal (20.7\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Projed | 5,715 | 9,112 | 21,800 | 20,996 | 32,460 | 25,438 | 14,912 | 8,640 | 6,958 | 13,170 | 8,633 | 6,647 |
 | WSIP 2030 With Projet | 7,005 | 9,688 | 21,982 | 19,088 | 30,938 | 23,502 | 14,654 | 8,378 | 7,110 | 13,248 | 9,351 | 8,161 |
 | Difference | 1,290 | 576 | 182 | -1,907 | -1,523 | -1,936 | -257 | -261 | 152 | 78 | 718 | 1,514 |
 | Percent Difiference | 22.6\% | 6.3\% | 0.8\% | -9.1\% | -4.7\% | -7.6\% | -1.7\% | -3.0\% | 2.2\% | 0.6\% | 8.3\% | 22.8\% |
 | Dry (19.5\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Projed | 8,109 | 12,531 | 32,562 | 14,650 | 25,065 | 19,882 | 9,144 | 7,189 | 6,716 | 9,527 | 5,999 | 5,893 |
 | WSIP 2030 Witit Projet | 8,880 | 13,200 | 31,620 | 13,469 | 22,612 | 17,755 | 9,206 | 7,108 | 6,924 | 10,253 | 7,162 | 7,379 |
 | Difference | 771 | 669 | -942 | -1,182 | -2,452 | -2,127 | 62 | -81 | 208 | 726 | 1,163 | 1,485 |
 | Percent Difference | 9.5\% | 5.3\% | -2.9\% | -8.1\% | -9.8\% | -10.7\% | 0.7\% | -1.1\% | 3.1\% | 7.6\% | 19.4\% | 25.2\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 W Whtout Prjeet | 3,072 | 4,498 | 10,620 | 12,214 | 14,409 | 11,531 | 7,511 | 5,217 | 4,961 | 6,313 | 4,013 | 3,809 |
 | WSIP 2030 With Priject | 3,352 | 4,716 | 9,190 | 11,441 | 13,311 | 10,530 | 7,727 | 5,220 | 5,387 | 6,891 | 4,813 | 4,803 |
 | Difference | 280 | 218 | -1,430 | -773 | -1,099 | -1,001 | 216 | 3 | 426 | 578 | 800 | 994 |
 | Percent Difference | 9.1\% | 4.8\% | -13.5\% | -6.3\% | -7.6\% | -8.7\% | 2.9\% | 0.1\% | 8.6\% | 9.1\% | 19.9\% | 26.1\% |

 2 As defined by yhe Sacamenent Valley $40.30-30$ Index Waier Year Hydrologic Classificition (SWRCB D-1641, 1999)
 3 Realive difference of the montily averge

 Table SW-33-a
 oaquin River Delta
 Sacramento/San Joaquin River Detta, Monthly Outilow
 Sacrament/ISan Joaquin River Delta, Monthly Outriow
 Long-term Average and Average by Water Year Type

 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly Outfiow (CFS) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | Full Simulatio Period' | | | | | | | | | | | | |
 | WSIP 2300 Without Prijet | 6,897 | 11,525 | 25,347 | 48,708 | 63,736 | 48,732 | 29,976 | 16,061 | 7,978 | 8,475 | 4,067 | 9,332 |
 | WSIP 2030 With Priject | 7,372 | 11,482 | 24,296 | 46,938 | 62,116 | 47,046 | 29,695 | 15,918 | 8,308 | 8,473 | 4,276 | 9,752 |
 | Difference | 475 | -43 | -1,051 | -1,770 | -1,620 | -1,686 | -281 | -143 | 329 | -1 | 209 | 420 |
 | Percent Difference ${ }^{\text {a }}$ | 6.9\% | -0.4\% | -4.1\% | -3.6\% | -2.5% | -3.5\% | -0.9\% | -0.9\% | 4.1\% | 0.0\% | 5.2\% | 4.5\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (30.5\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Proed | 9,646 | 17,082 | 28,927 | 101,465 | 121,221 | 88,368 | 55,531 | 26,691 | 10,581 | 11,013 | 4,127 | 19,384 |
 | WSIP 2030 With Project | 9,915 | 16,747 | 27,543 | 99,569 | 119,831 | 86,742 | 54,863 | 26,625 | 11,008 | 10,892 | 4,275 | 19,735 |
 | Difference | 269 | -335 | -1,384 | -1,896 | -1,390 | -1,626 | -668 | -65 | 426 | -121 | 148 | 351 |
 | Percent Difference | 2.8\% | -2.0\% | -4.8\% | -1.9\% | -1.1\% | -1.8\% | -1.2\% | -0.2\% | 4.0\% | -1.1\% | 3.6\% | 1.8\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Projed | 7,344 | 13,104 | 19,548 | 55,217 | 70,662 | 61,187 | 29,671 | 17,395 | 7,373 | 11,452 | 4,021 | 11,133 |
 | WSIP 2030 With Proeet | 7,671 | 13,208 | 18,032 | 52,802 | 68,726 | 59,805 | 29,125 | 17,103 | 7,294 | 11,682 | 4,271 | 11,536 |
 | Difference | 327 | 104 | $-1,516$ | -2,416 | -1,937 | -1,382 | -546 | -292 | -79 | 230 | 250 | 403 |
 | Percent Difference | 4.5\% | 0.8\% | -7.8\% | -4.4\% | -2.7% | -2.3\% | -1.8\% | -1.7\% | -1.1\% | 2.0\% | 6.2\% | 3.6\% |
 | Below Normal (20.7\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Project | 4,369 | 7,100 | 22,973 | 23,888 | 40,056 | 31,116 | 23,204 | 13,261 | 6,814 | 8,794 | 4,050 | 3,455 |
 | WSIP 2030 with Projet | 5,269 | 7,201 | 23,192 | 21,734 | 38,929 | 29,045 | 22,923 | 12,957 | 7,025 | 8,735 | 4,311 | 4,174 |
 | Difference | 899 | 101 | 220 | -2,155 | $-1,127$ | -2,071 | -281 | -305 | 211 | -59 | 260 | 718 |
 | Percent Difference | 20.6\% | 1.4\% | 1.0\% | -9.0\% | -2.8% | -6.7\% | -1.2\% | -2.3\% | 3.1\% | -0.7\% | 6.4\% | 20.8\% |
 | Dry (19.5\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Proed | 7,835 | 11,915 | 37,913 | 15,422 | 29,434 | 22,586 | 13,147 | 8,960 | 7,006 | 5,278 | 4,142 | 3,262 |
 | WSIP 2030 With Project | 8,403 | 12,269 | 36,559 | 14,086 | 26,700 | 20,500 | 13,240 | 8,856 | 7,301 | 5,255 | 4,502 | 3,663 |
 | Difference | 568 | 354 | $-1,354$ | -1,336 | -2,733 | $-2,086$ | 93 | -104 | 295 | -23 | 360 | 401 |
 | Percent Difference | 7.2\% | 3.0\% | -3.6\% | -8.7\% | -9.3\% | -9.2\% | 0.7\% | -1.2\% | 4.2\% | -0.4\% | 8.7\% | 12.3\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 W Whtout Proed | 3,054 | 4,116 | 10,299 | 11,834 | 16,331 | 13,518 | 9,070 | 6,014 | 6,106 | 4,020 | 3,908 | 3,010 |
 | WSIP 2030 With Project | 3,380 | 3,801 | 9,009 | 10,937 | 15,336 | 12,481 | 9,365 | 6,037 | 6,855 | 4,147 | 3,933 | 3,193 |
 | Difference | 326 | -316 | -1,290 | -897 | -995 | -1,037 | 295 | 23 | 749 | 127 | 25 | 183 |
 | Percent Difference | 10.7\% | -7.7\% | -12.5\% | -7.6\% | -6.1\% | -7.7\% | 3.3\% | 0.4\% | 12.3\% | 3.2\% | 0.6\% | 6.1\% | $\frac{\text { Percentifferenee }}{1 \text { Based on the } 82 \text { years simulution pericod }}$

 Reeative difference of the montily yverage

 | Table SW-34-a
 Delta Cross Channel, Monthly Flow | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | Monthly | ow (CFS) | | | | | |
 | Analysis Period | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | ${ }_{\text {Ful IS Simulion Period' }}$ | | | | | | | | | | | | |
 | WSIP 2030 Without Projed | 4,184 | 3,887 | 4,674 | 5,577 | 6,574 | 5,726 | 3,995 | 2,858 | 4,741 | 7,341 | 5,473 | 5,389 |
 | WSIP 2030 Wit Projet | 4,301 | 3,903 | 4,630 | 5,412 | 6,421 | 5,556 | 3,972 | 2,842 | 4,841 | 7,416 | 5,673 | 5,737 |
 | Difference | 117 | 16 | -44 | -165 | -153 | -170 | -22 | -16 | 100 | 75 | 201 | 349 |
 | Percent Difference | 2.8\% | 0.4\% | -0.9\% | -3.0\% | -2.3\% | -3.0\% | -0.6\% | -0.6\% | 2.1\% | 1.0\% | 3.7\% | 6.5\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (30.5\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Project | 4,493 | 4,126 | 5,148 | 8,487 | 9,503 | 7,937 | 5,916 | 3,515 | 4,904 | 7,845 | 6,051 | 6,245 |
 | WSIP 2330 With Project | 4,531 | 4,041 | 5,084 | 8,380 | 9,446 | 7,838 | 5,858 | 3,513 | 5,042 | 7,630 | 6,062 | 6,273 |
 | Difference | 38 | -85 | -64 | -107 | -57 | -98 | -58 | -2 | 138 | -215 | 12 | 28 |
 | Percent Difference | 0.8\% | -2.1\% | -1.3\% | -1.3\% | -0.6\% | -1.2\% | -1.0\% | 0.0\% | 2.8\% | -2.7\% | 0.2\% | 0.4\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Project | 4,731 | 4,308 | 4,574 | 6,789 | 7,791 | 7,117 | 4,028 | 3,031 | 4,940 | 8,258 | 6,230 | 7,161 |
 | WSIP 2330 With Project | 4,656 | 4,332 | 4,529 | 6,589 | 7,631 | 6,990 | 3,985 | 2,996 | 4,945 | 8,444 | 6,257 | 7,362 |
 | Difference | -75 | 25 | -45 | -200 | -160 | -127 | -44 | -34 | 5 | 186 | 27 | 202 |
 | Pereent Difference | -1.6\% | 0.6\% | -1.0\% | -2.9\% | -2.1\% | -1.8\% | -1.1\% | -1.1\% | 0.1\% | 2.3\% | 0.4\% | 2.8\% |
 | Below Norma (20.7\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Project | 4,271 | 3,731 | 4,553 | 4,230 | 5,369 | 4,924 | 3,476 | 2,661 | 4,858 | 8,291 | 5,951 | 4,922 |
 | WSIP 2330 With Project | 4,507 | 3,830 | 4,653 | 3,972 | 5,250 | 4,677 | 3,453 | 2,622 | 4,922 | 8,328 | 6,202 | 5,500 |
 | Difference | 236 | 100 | 100 | -258 | -119 | -246 | -23 | -40 | 64 | 37 | 251 | 579 |
 | Perean Difference | 5.5\% | 2.7\% | 2.2\% | -6.1\% | -2.2\% | -5.0\% | -0.7\% | -1.5\% | 1.3\% | 0.4\% | 4.2\% | 11.8\% |
 | Dry (19.5\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Project | 3,975 | 4,042 | 5,174 | 3,436 | 4,750 | 4,127 | 2,670 | 2,447 | 4,767 | 6,572 | 4,758 | 4,580 |
 | WSIP 2330 With Project | 4,211 | 4,063 | 5,072 | 3,267 | 4,427 | 3,860 | 2,680 | 2,434 | 4,856 | 6,911 | 5,199 | 5,205 |
 | Difference | 235 | 21 | -102 | -169 | -324 | -267 | 9 | -12 | 89 | 340 | 441 | 624 |
 | Percent Difference | 5.9\% | 0.5\% | -2.0\% | -4.9\% | -6.8\% | -6.5\% | 0.4\% | -0.5\% | 1.9\% | 5.2\% | 9.3\% | 13.6\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2330 W Withut Project | 3,149 | 2,984 | 3,292 | 3,066 | 3,392 | 2,998 | 2,460 | 2,144 | 4,000 | 5,053 | 3,786 | 3,573 |
 | WSIP 2330 With Project | 3,295 | 3,078 | 3,167 | 2,949 | 3,226 | 2,875 | 2,492 | 2,144 | 4,181 | 5,324 | 4,162 | 4,042 |
 | Difference | 146 | 94 | -125 | -116 | -166 | -123 | 33 | 0 | 181 | 271 | 376 | 469 |
 | Percent Difference | 4.6\% | 3.2\% | -3.8% | -3.8% | -4.9\% | -4.1\% | 1.3\% | 0.0\% | 4.5\% | 5.4\% | 9.9\% | 13.1\% |

 2 As defined by the Sacamenento Valley $40.30-30$ Index Waier Year Hydrologic Classificition (SWRCB D-1641, 1999)
 3 Realivive difference of the monthy average

 | Old and Middle River, Monthly Flow Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly Flow (CFS) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | $\stackrel{\text { Full Simulation Period }}{ }$ | | | | | | | | | | | | |
 | WSIP 2030 Without Project | -5,543 | -6,584 | -5,724 | -3,122 | -2,435 | -2,307 | 1,083 | 498 | -3,577 | -8,666 | -8,261 | -7,029 |
 | WSIP 2300 With Priject | -5,922 | -6,952 | -5,780 | -3,079 | $-2,225$ | -2,216 | 1,079 | 490 | $-3,585$ | -9,064 | -8,807 | -7,905 |
 | Difference | -379 | -367 | -56 | 43 | 209 | 91 | -4 | -8 | -8 | -398 | -546 | -876 |
 | Pereent Difference ${ }^{3}$ | | | | | | | -0.3\% | -1.5\% | | | | |
 | | | | | Water Y | Sear Types ${ }^{2}$ | | | | | | | |
 | Wet (3.5\%) | | | | | | | | | | | | |
 | WSIP 2330 Without Projet | -5,333 | -6,563 | -6,309 | -1,209 | -1,428 | -460 | 3,141 | 2,275 | -4,188 | -8,628 | -10,318 | -7,348 |
 | WSIP 2303 With Priject | $-5,736$ | -6,830 | -6,353 | -1,150 | -1,416 | -472 | 3,099 | 2,256 | -4,237 | -8,671 | -10,373 | -7,501 |
 | Difference | -402 | -267 | -44 | 59 | 12 | -12 | -43 | -19 | -48 | -43 | -55 | -154 |
 | Pereen Difference | | | | | | | -1.4\% | -0.8\% | | | | |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Projed | -6,364 | -7,229 | -7,609 | -3,503 | -2,998 | -3,154 | 1,404 | 739 | -4,335 | -8,481 | -10,506 | -7,277 |
 | WSIP 2330 With Project | -6,650 | -7,439 | $-7,688$ | -3,314 | $-2,541$ | -3,098 | 1,401 | 722 | -4,428 | -8,776 | -10,606 | -7,875 |
 | Difference | -286 | -209 | -79 | 189 | 457 | 56 | -3 | -17 | -93 | -295 | -100 | -598 |
 | Pereent Difference | | | | | | | -0.2\% | -2.2\% | | | | |
 | Below Norma (20.7\%) | | | | | | | | | | | | |
 | WSIP 2330 Without Project | -6,769 | -7,331 | -5,520 | -3,637 | -2,729 | -3,492 | 556 | 124 | -4,034 | -10,690 | -9,461 | -8,128 |
 | WSIP 2303 with Project | -7,348 | -7,858 | -5,579 | -3,637 | $-2,245$ | -3,390 | 554 | 122 | -4,039 | -10,855 | -10,119 | -9,390 |
 | Difference | -578 | -527 | -59 | 0 | 484 | 102 | -2 | -2 | -4 | -165 | -658 | -1,262 |
 | Pereent Difference | | | | | | | -0.4\% | -1.5\% | | | | |
 | Dry (19.5\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Proedt | -5,335 | -6,975 | -4,339 | -4,283 | -2,965 | -3,436 | -314 | -865 | -3,058 | -9,010 | -5,848 | -7,045 |
 | WSIP 2030 With Project | $-5,747$ | -7,282 | $-4,624$ | -4,283 | -2,926 | $-3,150$ | -295 | -875 | -3,059 | -10,050 | -6,994 | -8,618 |
 | Difference | -412 | -307 | -285 | 0 | 39 | 286 | 19 | -10 | -1 | -1,040 | ${ }^{-1,146}$ | -1,573 |
 | Percent Difference | | | | | | | | | | | | |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Pried | -3,910 | -4,322 | -4,577 | -4,346 | -2,677 | -1,970 | -918 | -1,008 | -1,542 | -5,705 | -3,213 | -4,274 |
 | WSIP 2 230 With Project | -4,019 | -4,918 | -4,335 | -4,352 | -2,427 | -1,901 | -873 | -990 | -1,398 | -6,357 | -4,279 | -5,507 |
 | Difference | -109 | -596 | 242 | -5 | 250 | 69 | 44 | 18 | 145 | -652 | -1,065 | $-1,233$ |

 1 Based on the 82 -vear simulition period
 .
 3 Realive difference of the monntly average

 Old and Middle River, Monthly Flow

 -WSIP 2030 Wrthout Project $\begin{aligned} & \text { Darer Year Types (22\%) WSIP } 2030 \text { With Project }\end{aligned}$

 Old and Middle River, Monthly Flo
 Critical Water Year Types (13

 Total Banks Pumping Plant (SWP and CVP) and Jones Pumping Plant (CVP), Monthly Diversion

 | Analysis Period | Monthly Diversion (CFS) | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | ${\text { Full Simulion Period }{ }^{\text {d }} \text { ' }}^{\text {a }}$ | | | | | | | | | | | | |
 | WSIP 2030 Without Proedt | 6,259 | 7,460 | 8,597 | 7,027 | 7,176 | 7,107 | 2,522 | 2,253 | 4,350 | 9,121 | 8,735 | 7,889 |
 | WSIP 2 230 With Project | 6,664 | 7,843 | 8,656 | 6,978 | 6,945 | 7,004 | 2,521 | 2,256 | 4,356 | 9,548 | 9,324 | 8,838 |
 | Difference | 405 | 382 | 59 | -49 | -231 | -103 | 0 | 3 | 7 | 426 | 588 | 948 |
 | Percent Differences | 6.5\% | 5.1\% | 0.7\% | -0.7\% | -3.2\% | -1.4\% | 0.0\% | 0.1\% | 0.2\% | 4.7\% | 6.7\% | 12.0\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (30.5\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Proed | 6,257 | 7,701 | 10,130 | 9,133 | 10,219 | 9,438 | 3,467 | 3,483 | 6,668 | 10,069 | 11,324 | 8,520 |
 | WSIP 2330 With Project | 6,686 | 7,981 | 10,173 | 9,067 | 10,195 | 9,445 | 3,498 | 3,482 | 6,712 | 10,125 | 11,370 | 8,694 |
 | Difference | 429 | 279 | 44 | -66 | -24 | 7 | 30 | -1 | 44 | 57 | 46 | 173 |
 | Percent Difference | 6.9\% | 3.6\% | 0.4\% | -0.7\% | -0.2\% | 0.1\% | 0.9\% | 0.0\% | 0.7\% | 0.6\% | 0.4\% | 2.0\% |
 | Above Normal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Proed | 7,004 | 8,219 | 9,807 | 7,425 | 8,266 | 9,155 | 2,321 | 1,728 | 5,043 | 8,920 | 11,245 | 8,337 |
 | WSIP 2330 Wit Project | 7,310 | 8,421 | 9,899 | 7,249 | 7,803 | 9,092 | 2,320 | 1,724 | 5,139 | 9,295 | 11,345 | 8,938 |
 | Difference | 306 | 202 | 92 | -176 | -463 | -63 | -2 | -4 | 96 | 376 | 99 | 602 |
 | Percent Difference | 4.4\% | 2.5\% | 0.9\% | -2.4\% | -5.6\% | -0.7\% | -0.1\% | -0.2\% | 1.9\% | 4.2\% | 0.9\% | 7.2\% |
 | Below Normal (20.7\%) | | | | | | | | | | | | |
 | WSIP 2030 W Withot Proeet | 7,523 | 8,143 | 7,968 | 5,601 | 6,306 | 6,682 | 2,491 | 1,851 | 4,189 | 10,826 | 9,889 | 9,027 |
 | WSIP 2330 Wit Project | 8,131 | 8,670 | 8,007 | 5,580 | 5,782 | 6,570 | 2,489 | 1,850 | 4,194 | 11,005 | 10,601 | 10,398 |
 | Difference | 608 | 527 | 39 | -21 | -524 | -112 | -3 | -1 | 5 | 179 | 712 | 1,371 |
 | Percent Difference | 8.1\% | 6.5\% | 0.5\% | -0.4\% | -8.3\% | -1.7\% | -0.1\% | 0.0\% | 0.1\% | 1.6\% | 7.2\% | 15.2\% |
 | Dry (19.5\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Proed | 5,900 | 7,851 | 8,111 | 5,949 | 4,922 | 5,401 | 1,914 | 1,689 | 2,873 | 8,938 | 5,927 | 7,786 |
 | WSIP 2330 Wit Project | 6,329 | 8,174 | 8,425 | 5,945 | 4,884 | 5,088 | 1,906 | 1,713 | 2,875 | 10,024 | 7,171 | 9,486 |
 | Difference | 429 | 322 | 314 | -3 | -39 | -314 | -8 | 24 | 2 | 1,086 | 1,244 | 1,700 |
 | Percent Difference | 7.3\% | 4.1\% | 3.9\% | -0.1\% | -0.8\% | -5.8\% | -0.4\% | 1.4\% | 0.1\% | 12.2\% | 21.0\% | 21.8\% |
 | Critical (14.0\%) | | | | | | | | | | | | |
 | WSIP 2030 W Whtout Proed | 4,205 | 4,711 | 5,735 | 5,700 | 3,983 | 3,079 | 1,604 | 1,537 | 1,021 | 5,178 | 2,944 | 4,652 |
 | WSIP 2030 Wit Project | 4,343 | 5,364 | 5,480 | 5,712 | 3,709 | 3,004 | 1,555 | 1,534 | 870 | 5,897 | 4,102 | 5,962 |
 | Difference | 137 | 653 | -254 | 13 | -274 | -76 | -49 | -3 | -151 | 718 | 1,157 | 1,310 |
 | Percent Difference | 3.3\% | 13.9\% | -4.4\% | 0.2\% | -6.9\% | -2.5\% | -3.1\% | -0.2\% | -14.8\% | 13.9\% | 39.3\% | 28.2\% |

 1 Based on the 82 -vear simulaion period
 3 Realive difference of the montly veras

 | Jones Pumping Plant (CVP), Monthly Diversion Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly Diversion (CFS) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simulation Period' | | | | | | | | | | | | |
 | WSIP 2030 Without Projed | 3,250 | 3,433 | 3,732 | 3,179 | 3,126 | 2,912 | 1,250 | 1,107 | 2,269 | 3,465 | 3,614 | 3,532 |
 | WSIP 2030 With Project | 3,221 | 3,576 | 3,722 | 3,146 | 2,828 | 2,897 | 1,258 | 1,088 | 2,181 | 3,545 | 3,958 | 3,923 |
 | Difference | -29 | 143 | -10 | -33 | -298 | -15 | 8 | -20 | -88 | 80 | 344 | 391 |
 | Percent Difference | -0.9\% | 4.2\% | -0.3\% | -1.0\% | -9.5\% | -0.5\% | 0.7\% | -1.8\% | -3.9\% | 2.3\% | 9.5\% | 11.1\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (3.55\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Projed | 3,052 | 3,356 | 4,080 | 3,690 | 4,016 | 3,552 | 1,553 | 1,591 | 3,407 | 3,643 | 4,496 | 3,704 |
 | WSIP 2030 With Projet | 3,399 | 3,631 | 4,117 | 3,708 | 3,861 | 3,581 | 1,586 | 1,590 | 3,320 | 3,662 | 4,542 | 3,833 |
 | Difference | 348 | 274 | 36 | 18 | -155 | 28 | 33 | -2 | -87 | 19 | 46 | 129 |
 | Percent Difference | 11.4\% | 8.2\% | 0.9\% | 0.5\% | -3.9\% | 0.8\% | 2.2\% | -0.1\% | -2.6\% | 0.5\% | 1.0\% | 3.5\% |
 | Above Normal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 W Withot Projed | 3,257 | 3,258 | 4,198 | 3,233 | 3,611 | 3,676 | 1,169 | 893 | 2,895 | 2,686 | 4,387 | 3,606 |
 | WSIP 2030 With Projet | 3,398 | 3,425 | 4,202 | 3,089 | 3,206 | 3,629 | 1,168 | 891 | 2,750 | 3,124 | 4,486 | 3,997 |
 | Difierence | 141 | 167 | 4 | -145 | -405 | -47 | -1 | -2 | -146 | 438 | 99 | 391 |
 | Percent Difference | 4.3\% | 5.1\% | 0.1\% | -4.5% | -11.2\% | -1.3% | -0.1\% | -0.2\% | -5.0\% | 16.3\% | 2.3\% | 10.8\% |
 | Below Normal (20.7\%) | | | | | | | | | | | | |
 | WSIP 2030 W Withot Prjeet | 3,675 | 3,900 | 3,643 | 2,800 | 2,825 | 2,760 | 1,245 | 943 | 2,101 | 4,104 | 3,552 | 3,797 |
 | WSIP 2030 Witit Proedt | 3,490 | 3,946 | 3,635 | 2,790 | 2,236 | 2,725 | 1,237 | 946 | 2,069 | 4,213 | 3,948 | 4,425 |
 | Difference | -185 | 46 | -8 | -10 | -589 | -36 | -8 | 4 | -32 | 109 | 396 | 628 |
 | Percent Difference | -5.0\% | 1.2\% | -0.2\% | -0.4\% | -20.9\% | -1.3% | -0.7\% | 0.4\% | -1.5\% | 2.7\% | 11.2\% | 16.5\% |
 | Dry (19.5\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Projed | 3,446 | 3,659 | 3,628 | 3,013 | 2,488 | 2,618 | 1,046 | 863 | 1,460 | 3,557 | 2,882 | 3,523 |
 | WSIP 2030 Witit Proect | 3,126 | 3,668 | 3,609 | 3,008 | 2,470 | 2,576 | 1,053 | 803 | 1,360 | 3,784 | 3,584 | 4,093 |
 | Difference | -320 | 9 | -19 | -5 | -18 | -42 | 7 | -60 | -100 | 227 | 702 | 570 |
 | Percent Difference | -9.3\% | 0.3\% | -0.5\% | -0.2\% | -0.7\% | -1.6\% | 0.6\% | -6.9\% | -6.8\% | 6.4\% | 24.4\% | 16.2\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 W Whtout Proed | 2,795 | 2,807 | 2,806 | 2,815 | 2,064 | 1,421 | 978 | 873 | 585 | 2,846 | 2,070 | 2,735 |
 | WSIP 2030 With Proeet | 2,418 | 2,969 | 2,697 | 2,720 | 1,614 | 1,415 | 969 | 819 | 492 | 2,456 | 2,728 | 3,101 |
 | Difference | -377 | 162 | -109 | -95 | -450 | -6 | -9 | -55 | -93 | -389 | 658 | 366 |
 | Percent Difference | -13.5\% | 5.8\% | -3.9\% | -3.4\% | -21.8\% | -0.4\% | -0.9\% | -6.3\% | -15.9\% | -13.7\% | 31.8\% | 13.4\% |

 asean on the 8 -2-var simulation perioc
 3 Realive difference of the montily veras

 Banks Pumping Plant (SWP and CVP), Monthly Diversion

 | Banks Pumping Plant (SWP and CVP), Monthly Diversion Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly Diversion (CFS) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simulition Period' | | | | | | | | | | | | |
 | WSIP 2303 W Witrout Projed | 3,008 | 4,027 | 4,865 | 3,848 | 4,050 | 4,195 | 1,272 | 1,146 | 2,081 | 5,656 | 5,121 | 4,357 |
 | WSIP 2030 With Project | 3,443 | 4,266 | 4,934 | 3,832 | 4,116 | 4,107 | 1,263 | 1,168 | 2,175 | 6,003 | 5,366 | 4,914 |
 | Difference | 435 | 239 | 69 | -16 | 67 | -88 | -9 | 23 | 94 | 347 | 244 | 557 |
 | Percent Difference? | 14.5\% | 5.9\% | 1.4\% | -0.4\% | 1.6\% | -2.1\% | -0.7\% | 2.0\% | 4.5\% | 6.1\% | 4.8\% | 12.8\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (30.5\%) | | | | | | | | | | | | |
 | WSIP 2303 Without Projed | 3,205 | 4,345 | 6,049 | 5,443 | 6,203 | 5,886 | 1,915 | 1,892 | 3,261 | 6,426 | 6,828 | 4,816 |
 | WSIP 2030 With Priject | 3,287 | 4,350 | 6,057 | 5,359 | 6,334 | 5,864 | 1,912 | 1,892 | 3,392 | 6,463 | 6,828 | 4,861 |
 | Diffeence | 81 | 5 | 7 | -84 | 131 | -22 | -3 | 0 | 131 | 37 | 0 | 45 |
 | Percent Difference | 2.5\% | 0.1\% | 0.1\% | -1.5\% | 2.1\% | -0.4\% | -0.2\% | 0.0\% | 4.0\% | 0.6\% | 0.0\% | 0.9\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2303 W Withot Projed | 3,747 | 4,961 | 5,609 | 4,191 | 4,655 | 5,479 | 1,152 | 835 | 2,148 | 6,234 | 6,859 | 4,731 |
 | WSIP 2030 With Projet | 3,912 | 4,996 | 5,698 | 4,160 | 4,596 | 5,463 | 1,151 | 833 | 2,389 | 6,172 | 6,859 | 4,941 |
 | Difference | 165 | 35 | 89 | -31 | -59 | -16 | -1 | -2 | 241 | -62 | 0 | 211 |
 | Percent Difference | 4.4\% | 0.7\% | 1.6\% | -0.7\% | -1.3\% | -0.3\% | -0.1\% | -0.2\% | 11.2\% | -1.0\% | 0.0\% | 4.5\% |
 | Below Norma (20.7%) | | | | | | | | | | | | |
 | WSIP 2030 Without Projed | 3,847 | 4,243 | 4,325 | 2,800 | 3,481 | 3,922 | 1,246 | 909 | 2,088 | 6,722 | 6,337 | 5,230 |
 | WSIP 2030 With Priject | 4,641 | 4,725 | 4,373 | 2,790 | 3,546 | 3,845 | 1,252 | 904 | 2,125 | 6,792 | 6,653 | 5,973 |
 | Difference | 794 | 481 | 48 | -10 | 65 | -77 | 6 | -4 | 36 | 70 | 316 | 743 |
 | Percent Difference | 20.6\% | 11.3\% | 1.1\% | -0.4\% | 1.9\% | -2.0\% | 0.5\% | -0.5\% | 1.7\% | 1.0\% | 5.0\% | 14.2\% |
 | Dry (19.5\%) | | | | | | | | | | | | |
 | WSIP 2303 W Witrout Proed | 2,454 | 4,192 | 4,483 | 2,936 | 2,434 | 2,784 | 868 | 826 | 1,413 | 5,381 | 3,045 | 4,263 |
 | WSIP 2330 Witit Project | 3,203 | 4,505 | 4,816 | 2,937 | 2,414 | 2,512 | 853 | 910 | 1,514 | 6,241 | 3,587 | 5,393 |
 | Difference | 749 | 313 | 333 | 2 | -20 | -272 | -15 | 83 | 102 | 860 | 542 | 1,130 |
 | Percent Difference | 30.5\% | 7.5\% | 7.4\% | 0.1\% | -0.8\% | -9.8\% | -1.7\% | 10.1\% | 7.2\% | 16.0\% | 17.8\% | 26.5\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSSIP 2030 W Whtout Proed | 1,410 | 1,904 | 2,928 | 2,885 | 1,920 | 1,659 | 625 | 663 | 436 | 2,333 | 875 | 1,917 |
 | WSIP 2030 With Projet | 1,925 | 2,395 | 2,783 | 2,992 | 2,095 | 1,589 | 585 | 715 | 378 | 3,440 | 1,374 | 2,861 |
 | Difference | 515 | 491 | -145 | 107 | 176 | -70 | -40 | 52 | -58 | 1,108 | 499 | 944 |
 | Percent Difference | 36.5\% | 25.8\% | -5.0\% | 3.7\% | 9.1\% | -4.2\% | -6.4\% | 7.8\% | -13.2\% | 47.5\% | 57.1\% | 49.3\% |

 $\frac{\text { Pecrentinternee }}{1 \text { Based on the } 82 \text { years simulution period }}$
 3 Reative difference of the monthy verage

 | Banks Pumping Plant (SWP), Monthly Diversion Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly Diversion (CFS) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | $\overline{\text { Full Simulion Period }{ }^{\prime}}$ | | | | | | | | | | | | |
 | WSIP 2030 Without Projed | 2,969 | 3,443 | 4,853 | 3,848 | 4,031 | 4,182 | 1,272 | 1,146 | 2,060 | 5,414 | 4,801 | 4,152 |
 | WSIP 2030 With Project | 3,384 | 3,722 | 4,919 | 3,832 | 4,102 | 4,106 | 1,263 | 1,168 | 2,173 | 5,785 | 5,015 | 4,752 |
 | Difference | 415 | 279 | 65 | -16 | 71 | -77 | -9 | 23 | 113 | 371 | 213 | 600 |
 | Percent Difference? | 14.0\% | 8.1\% | 1.3\% | -0.4\% | 1.8\% | -1.8\% | -0.7\% | 2.0\% | 5.5\% | 6.8\% | 4.4\% | 14.4\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (30.5\%) | | | | | | | | | | | | |
 | WSIP 2303 W Witrout Projed | 3,205 | 3,146 | 6,015 | 5,443 | 6,143 | 5,843 | 1,915 | 1,892 | 3,199 | 6,299 | 6,666 | 4,816 |
 | WSIP 2300 With Projet | 3,287 | 3,215 | 6,014 | 5,359 | 6,296 | 5,864 | 1,912 | 1,892 | 3,392 | 6,308 | 6,631 | 4,861 |
 | Difference | 81 | 69 | -1 | -84 | 154 | 21 | -3 | 0 | 193 | 9 | -35 | 45 |
 | Percent Difference | 2.5\% | 2.2\% | 0.0\% | -1.5\% | 2.5\% | 0.4\% | -0.2\% | 0.0\% | 6.0\% | 0.1\% | -0.5\% | 0.9\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2303 W Witout Projed | 3,747 | 3,511 | 5,600 | 4,191 | 4,655 | 5,479 | 1,152 | 835 | 2,148 | 6,167 | 6,623 | 4,731 |
 | WSIP 2030 Witit Proeat | 3,912 | 3,643 | 5,683 | 4,160 | 4,596 | 5,453 | 1,151 | 833 | 2,389 | 6,116 | 6,680 | 4,941 |
 | Difference | 165 | 131 | 83 | -31 | -59 | -26 | -1 | -2 | 241 | -51 | 57 | 211 |
 | Percent Difference | 4.4\% | 3.7\% | 1.5\% | -0.7\% | -1.3\% | -0.5\% | -0.1\% | -0.2\% | 11.2\% | -0.8\% | 0.9\% | 4.5\% |
 | Below Norma (20.7\%) | | | | | | | | | | | | |
 | WSIP 2030 W Witrout Proed | 3,705 | 4,212 | 4,325 | 2,800 | 3,481 | 3,922 | 1,246 | 909 | 2,078 | 6,515 | 5,847 | 4,507 |
 | WSIP 2030 Witit Projet | 4,388 | 4,725 | 4,373 | 2,790 | 3,533 | 3,845 | 1,252 | 904 | 2,115 | 6,529 | 6,204 | 5,445 |
 | Difference | 683 | 512 | 48 | -10 | 52 | -77 | 6 | -4 | 36 | 14 | 357 | 938 |
 | Percont Difference | 18.4\% | 12.2\% | 1.1\% | -0.4\% | 1.5\% | -2.0\% | 0.5\% | -0.5\% | 1.8\% | 0.2\% | 6.1\% | 20.8\% |
 | Dry (19.5\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Projed | 2,404 | 4,192 | 4,483 | 2,936 | 2,434 | 2,784 | 868 | 826 | 1,413 | 4,864 | 2,550 | 4,112 |
 | WSIP 2330 Witit Project | 3,177 | 4,505 | 4,816 | 2,937 | 2,413 | 2,512 | 853 | 910 | 1,514 | 5,919 | 2,865 | 5,278 |
 | Difference | 772 | 313 | 333 | 2 | -21 | -272 | -15 | 83 | 102 | 1,055 | 315 | 1,166 |
 | Percent Difference | 32.1\% | 7.5\% | 7.4\% | 0.1\% | -0.9\% | -9.8\% | -1.7\% | 10.1\% | 7.2\% | 21.7\% | 12.3\% | 28.4\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2303 W Whtout Projed | 1,410 | 1,904 | 2,928 | 2,885 | 1,920 | 1,659 | 625 | 663 | 436 | 1,992 | 616 | 1,741 |
 | WSIP 2330 Witit Proeet | 1,912 | 2,395 | 2,783 | 2,992 | 2,095 | 1,589 | 585 | 715 | 378 | 3,131 | 1,161 | 2,653 |
 | Difference | 501 | 491 | -145 | 107 | 176 | -70 | -40 | 52 | -58 | 1,139 | 545 | 912 |
 | Percent Difference | 35.6\% | 25.8\% | -5.0\% | 3.7\% | 9.1\% | -4.2\% | -6.4\% | 7.8\% | -13.2\% | 57.2\% | 88.5\% | 52.4\% |

 1 Based on the 82 -vear sinulation period
 3 Realive difference of the montily veras

 | Table SW-40-a
 Banks Pumping Plant (CVP), Monthly Diversion Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Monthly Diversion (CFS) | | | | | | | | | | | |
 | Analysis Period | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | $\stackrel{\square}{\text { Full Simulition Period }}$ ' | | | | | | | | | | | | |
 | WSIP 2030 Without Project | 33 | 518 | 7 | 0 | 18 | 13 | 0 | 0 | 19 | 95 | 107 | 102 |
 | WSIP 2030 With Proeet | 51 | 483 | 8 | 0 | 12 | 1 | 0 | 0 | 0 | 66 | 145 | 72 |
 | Difference | 18 | -35 | 1 | 0 | -7 | -12 | 0 | 0 | -19 | -29 | 38 | -30 |
 | Percent Difference? | 54.8\% | -6.8\% | | | -37.8\% | -88.8\% | | | -100.0\% | -30.9\% | 35.8\% | -29.3\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (30.5\%) | | | | | | | | | | | | |
 | WSSP 2030 Without Project | 0 | 1,084 | 24 | 0 | 61 | 43 | 0 | 0 | 62 | 59 | 14 | 0 |
 | WSIP 2330 With Project | 0 | 1,017 | 28 | 0 | 38 | 0 | 0 | 0 | 0 | 83 | 49 | 0 |
 | Difference | 0 | -67 | 4 | 0 | -23 | -43 | 0 | 0 | -62 | 24 | 35 | 0 |
 | Percent Difference | | -6.2\% | 18.1\% | | -37.8\% | -100.0\% | | | -100.0\% | 40.5\% | | |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Project | 0 | 1,236 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 56 | 0 |
 | WSIP 2330 With Project | 0 | 1,181 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 1 | 0 | 0 |
 | Difference | 0 | -56 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 1 | -56 | 0 |
 | Pereent Difference | | -4.5% | | | | | | | | | -100.0\% | |
 | Below Normal (20.7\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Project | 132 | 31 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 202 | 484 |
 | WSIP 2030 with Projet | 245 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 184 | 349 |
 | Difference | 113 | -31 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | -18 | -135 |
 | Percent Difference | 85.0\% | -100.0\% | | | | | | | | | -8.9\% | -28.0\% |
 | Dry (19.5\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Project | 27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 260 | 230 | 10 |
 | WSIP 2330 With Project | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 55 | 428 | 0 |
 | Difference | -27 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | -205 | 198 | -10 |
 | Pereent Difference | -100.0\% | | | | | | | | | -78.9\% | 86.1\% | -100.0\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 W Withut Project | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 183 | 53 | 0 |
 | WSIP 2330 With Project | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 181 | 59 | 0 |
 | Difference | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 6 | 0 |
 | Percent Difference | | | | | | | | | | -1.1\% | 11.5\% | |

 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | End of Month Storage (TAF) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | Full Simulition Period' | | | | | | | | | | | | |
 | WSIP 2030 Without Proed | 457 | 596 | 863 | 1,155 | 1,385 | 1,577 | 1,429 | 1,136 | 780 | 631 | 492 | 462 |
 | WSIP 2030 With Projet | 496 | 643 | 902 | 1,186 | 1,399 | 1,581 | 1,428 | 1,122 | 749 | 609 | 491 | 500 |
 | Difference | 39 | 47 | 39 | 31 | 14 | 4 | -2 | -14 | -31 | -21 | 0 | 37 |
 | Percent Difference | 8.6\% | 7.9\% | 4.5\% | 2.7\% | 1.0\% | 0.3\% | -0.1\% | -1.3\% | -4.0\% | -3.4\% | 0.0\% | 8.1\% |
 | Water Year Typess ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (30.5\%) | | | | | | | | | | | | |
 | WSIP 2030 W Withot Proed | 497 | 548 | 812 | 1,329 | 1,674 | 1,905 | 1,722 | 1,394 | 1,047 | 802 | 671 | 595 |
 | WSIP 2030 With Projet | 486 | 548 | 815 | 1,302 | 1,645 | 1,882 | 1,703 | 1,369 | 1,020 | 777 | 646 | 571 |
 | Difference | -11 | 1 | 4 | -27 | -29 | -23 | -20 | -24 | -27 | -25 | -24 | -24 |
 | Percent Difference | -2.2\% | 0.1\% | 0.4\% | -2.0\% | -1.7\% | -1.2\% | -1.1\% | -1.8\% | -2.5\% | -3.1\% | -3.6\% | -4.0\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Projed | 404 | 493 | 772 | 1,231 | 1,481 | 1,761 | 1,545 | 1,160 | 741 | 503 | 453 | 403 |
 | WSIP 2030 with Proeet | 406 | 503 | 788 | 1,254 | 1,472 | 1,738 | 1,523 | 1,128 | 707 | 478 | 425 | 399 |
 | Differene | 2 | 10 | 16 | 24 | -9 | -24 | -23 | -31 | -34 | -26 | -28 | -3 |
 | Percent Difference | 0.5\% | 2.1\% | 2.0\% | 1.9\% | -0.6\% | -1.3\% | -1.5\% | -2.7\% | -4.6\% | -5.2\% | -6.2\% | -0.9\% |
 | Below Normal (20.7\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Proeet | 611 | 810 | 1,053 | 1,122 | 1,319 | 1,508 | 1,370 | 1,072 | 700 | 648 | 557 | 556 |
 | WSIP 2030 Witit Proedt | 669 | 882 | 1,113 | 1,157 | 1,322 | 1,493 | 1,346 | 1,033 | 645 | 595 | 533 | 603 |
 | Difference | 58 | 72 | 60 | 34 | 2 | -14 | -24 | -39 | -55 | -53 | -24 | 47 |
 | Percent Difference | 9.6\% | 9.0\% | 5.7\% | 3.1\% | 0.2\% | -0.9\% | -1.7\% | -3.6\% | -7.9\% | -8.2\% | -4.2\% | 8.5\% |
 | Dry (19.5\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Priect | 391 | 642 | 952 | 981 | 1,131 | 1,304 | 1,191 | 939 | 600 | 542 | 329 | 356 |
 | WSIP 2030 With Priject | 461 | 698 | 992 | 1,013 | 1,155 | 1,307 | 1,175 | 901 | 529 | 506 | 340 | 431 |
 | Difference | 70 | 56 | 40 | 32 | 24 | 3 | -16 | -38 | -71 | -36 | 11 | 75 |
 | Percent Difference | 18.0\% | 8.7\% | 4.2\% | 3.3\% | 2.2\% | 0.3\% | -1.3\% | -4.0\% | -11.9\% | -6.6\% | 3.3\% | 21.1\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 W Whtout Proed | 297 | 436 | 671 | 996 | 1,116 | 1,168 | 1,103 | 930 | 618 | 495 | 281 | 256 |
 | WSIP 2330 With Project | 410 | 568 | 776 | 1,151 | 1,245 | 1,286 | 1,211 | 1,020 | 668 | 551 | 378 | 397 |
 | Difference | 113 | 132 | 105 | 154 | 129 | 117 | 108 | 90 | 50 | 55 | 96 | 141 |
 | Percent Difference | 38.2\% | 30.2\% | 15.6\% | 15.5\% | 11.5\% | 10.0\% | 9.8\% | 9.7\% | 8.1\% | 11.2\% | 34.2\% | 55.2\% |

 $\frac{9}{1 \text { Based on onte } 82 \text { 2.eear simulation period }}$
 3 Realive difference of the montily verage

 | Table SW-42-a
 San Luis Reservoir (SWP and CVP), End of Month Elevation Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | End of Month Elevation (FEET) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | Full Simulation Period' | | | | | | | | | | | | |
 | WSIP 2030 Wentrout Prjeet | 389 | 406 | 436 | 466 | 487 | 503 | 491 | 464 | 427 | 410 | 392 | 390 |
 | WSIP 2330 With Project | 394 | 411 | 440 | 469 | 488 | 504 | 491 | 463 | 423 | 407 | 392 | 395 |
 | Difference | 5 | 5 | 4 | 3 | 1 | 1 | 0 | -1 | -4 | -3 | 0 | 5 |
 | Percent Difference ${ }^{\text {a }}$ | 1.2\% | 1.2\% | 0.9\% | 0.6\% | 0.3\% | 0.1\% | 0.0\% | -0.3\% | -0.9\% | -0.7\% | 0.0\% | 1.3\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (3.55\%) | | | | | | | | | | | | |
 | WSIP 2030 W Without Prjed | 394 | 399 | 431 | 482 | 512 | 531 | 517 | 488 | 455 | 429 | 415 | 407 |
 | WSIP 2030 With Priject | 393 | 399 | 431 | 479 | 510 | 529 | 515 | 486 | 452 | 427 | 412 | 404 |
 | Difference | -1 | 0 | 0 | -3 | -2 | -2 | -2 | -2 | -3 | -3 | -3 | -3 |
 | Percent Diffeence | -0.3\% | 0.1\% | 0.1\% | -0.6\% | -0.5\% | -0.3\% | -0.3\% | -0.5\% | -0.6\% | -0.6\% | -0.6\% | -0.7\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Projed | 384 | 395 | 428 | 472 | 496 | 519 | 502 | 467 | 424 | 393 | 387 | 383 |
 | WSIP 2030 with Proeet | 383 | 396 | 430 | 474 | 494 | 518 | 500 | 464 | 420 | 390 | 383 | 382 |
 | Differene | 0 | 1 | 2 | 1 | -1 | -2 | -2 | -3 | -4 | -3 | -4 | -1 |
 | Percent iffiemee | -0.1\% | 0.3\% | 0.5\% | 0.2\% | -0.3\% | -0.4\% | -0.4\% | -0.6\% | -0.9\% | -0.8\% | -1.0\% | -0.2\% |
 | Below Normal (20.7\%) | | | | | | | | | | | | |
 | WSIP 2030 W Withot Prjeet | 410 | 432 | 456 | 464 | 481 | 498 | 486 | 458 | 418 | 412 | 402 | 404 |
 | WSIP 2030 Witit Proect | 415 | 439 | 462 | 466 | 481 | 497 | 484 | 454 | 411 | 405 | 398 | 408 |
 | Difference | 6 | 7 | 5 | 3 | 0 | -1 | -2 | -4 | -7 | -7 | -4 | 5 |
 | Percent Difference | 1.4\% | 1.7\% | 1.2\% | 0.6\% | 0.0\% | -0.3\% | -0.5\% | -0.9\% | -1.7\% | -1.7\% | -1.0\% | 1.2\% |
 | Dry (19.5\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Prjeed | 381 | 413 | 446 | 450 | 465 | 481 | 471 | 446 | 408 | 401 | 371 | 376 |
 | WSIP 2030 Witit Proect | 389 | 418 | 449 | 453 | 467 | 481 | 469 | 442 | 400 | 396 | 372 | 385 |
 | Difference | 8 | 5 | 3 | 3 | 2 | 0 | -1 | -4 | -9 | -5 | 1 | 9 |
 | Percent Diffeence | 2.2\% | 1.2\% | 0.6\% | 0.7\% | 0.5\% | 0.1\% | -0.3\% | -0.8\% | -2.1\% | -1.2\% | 0.2\% | 2.5\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 W Whtout Prjeed | 367 | 387 | 415 | 451 | 462 | 467 | 461 | 444 | 410 | 395 | 364 | 360 |
 | WSIP 2030 Witit Proeet | 383 | 403 | 428 | 466 | 475 | 479 | 472 | 453 | 415 | 402 | 378 | 381 |
 | Difference | 16 | 16 | 12 | 15 | 12 | 11 | 10 | 9 | 5 | 6 | 14 | 20 |
 | Percent Difference | 4.3\% | 4.1\% | 2.9\% | 3.4\% | 2.7\% | 2.4\% | 2.3\% | 2.0\% | 1.2\% | 1.6\% | 3.8\% | 5.7\% |

 3 Realive difference of the montily vereage

 San Luis Reservoir (SWP and CVP), End of Month Area

 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | End of Month Area (ACRE) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simulition Period' | | | | | | | | | | | | |
 | WSIP 2300 Without Project | 7,320 | 8,091 | 9,315 | 10,368 | 11,038 | 11,556 | 11,177 | 10,314 | 8,946 | 8,221 | 7,394 | 7,354 |
 | WSIP 2030 With Project | 7.517 | 8,282 | 9,453 | 10,459 | 11,084 | 11,580 | 11,182 | 10,272 | 8,779 | 8,090 | 7,386 | 7,586 |
 | Difference | 197 | 191 | 138 | 90 | 46 | 23 | 4 | -42 | -167 | -131 | -8 | 232 |
 | Percent Difference ${ }^{\text {a }}$ | 2.7\% | 2.4\% | 1.5\% | 0.9\% | 0.4\% | 0.2\% | 0.0\% | -0.4\% | -1.9\% | -1.6\% | -0.1\% | 3.1\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (3.55\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Proed | 7,554 | 7,736 | 9,125 | 10,880 | 11,837 | 12,391 | 11,973 | 11,096 | 9,993 | 9,015 | 8,463 | 8,165 |
 | WSIP 2330 Witit Project | 7,490 | 7,763 | 9,147 | 10,791 | 11,761 | 12,340 | 11,926 | 11,024 | 9,898 | 8,911 | 8,359 | 8,054 |
 | Difference | -64 | 27 | 22 | -89 | -76 | -50 | -48 | -72 | -95 | -104 | -104 | -111 |
 | Percent Difference | -0.8\% | 0.4\% | 0.2\% | -0.8\% | -0.6\% | -0.4\% | -0.4\% | -0.7\% | -0.9\% | -1.2\% | -1.2\% | -1.4\% |
 | Above Nomal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2300 Without Priject | 7,129 | 7,626 | 9,009 | 10,579 | 11,325 | 12,057 | 11,525 | 10,427 | 8,868 | 7,399 | 7,089 | 7,101 |
 | WSIP 2030 With Project | 7,079 | 7,684 | 9,115 | 10,584 | 11,277 | 12,002 | 11,467 | 10,329 | 8,719 | 7,256 | 6,881 | 7,033 |
 | Differene | -50 | 58 | 106 | 6 | -48 | -54 | -58 | -98 | -150 | -143 | -207 | -68 |
 | Percent Difference | -0.7\% | 0.8\% | 1.2\% | 0.1\% | -0.4\% | -0.4\% | -0.5\% | -0.9\% | -1.7\% | -1.9\% | -2.9\% | -1.0\% |
 | Below Normal (20.7\%) | | | | | | | | | | | | |
 | WSIP 2030 W Withot Project | 8,313 | 9,188 | 10,044 | 10,306 | 10,871 | 11,406 | 11,033 | 10,122 | 8,585 | 8,312 | 7,959 | 8,086 |
 | WSIP 2030 with Projet | 8.479 | 9,433 | 10,219 | 10,392 | 10,863 | 11,359 | 10,957 | 9,985 | 8,254 | 7,986 | 7,699 | 8,255 |
 | Difference | 166 | 245 | 175 | 86 | -8 | -47 | -75 | -137 | -331 | -326 | -260 | 169 |
 | Percent Difference | 2.0\% | 2.7\% | 1.7\% | 0.8\% | -0.1\% | -0.4\% | -0.7\% | -1.4\% | -3.9\% | -3.9\% | -3.3\% | 2.1\% |
 | Dry (19.5\%) | | | | | | | | | | | | |
 | WSIP 2303 Without Priject | 6,910 | 8,437 | 9,682 | 9,852 | 10,343 | 10,887 | 10,550 | 9,724 | 8,260 | 7,917 | 6,369 | 6,666 |
 | WSIP 2030 Witit Proect | 7,263 | 8,546 | 9,703 | 9,965 | 10,428 | 10,898 | 10,505 | 9,597 | 7,890 | 7,663 | 6,374 | 7,087 |
 | Difference | 353 | 109 | 21 | 112 | 85 | 12 | -45 | -127 | -370 | -253 | 5 | 421 |
 | Percent Difference | 5.1\% | 1.3\% | 0.2\% | 1.1\% | 0.8\% | 0.1\% | -0.4\% | -1.3\% | -4.5\% | -3.2\% | 0.1\% | 6.3\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 W Whtout Proed | 6,166 | 7,280 | 8,496 | 9,867 | 10,248 | 10,423 | 10,213 | 9,632 | 8,272 | 7,666 | 6,040 | 5,800 |
 | WSIP 2030 Witit Proeet | 6,987 | 7,980 | 9,011 | 10,394 | 10,667 | 10,793 | 10,566 | 9,953 | 8,439 | 7,927 | 6,771 | 6,880 |
 | Difference | 821 | 700 | 515 | 527 | 419 | 370 | 354 | 322 | 167 | 261 | 731 | 1,080 |
 | Percent Difference | 13.3\% | 9.6\% | 6.1\% | 5.3\% | 4.1\% | 3.6\% | 3.5\% | 3.3\% | 2.0\% | 3.4\% | 12.1\% | 18.6\% | Based on the 82 2year sinulation period

 3Realive differenco o ofte montily yevern

 | Table SW-44-a
 San Luis Reservoir (CVP), End of Month Storage Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | End of Month Storage (TAF) | | | | | | | | | | | |
 | Analysis Period | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | $\overline{\text { Full Simulion Period }{ }^{\prime}}$ | | | | | | | | | | | | |
 | WSIP 2303 W Witrout Projed | 214 | 328 | 490 | 614 | 706 | 774 | 708 | 573 | 398 | 255 | 166 | 175 |
 | WSIP 2030 With Priject | 235 | 355 | 515 | 636 | 711 | 777 | 709 | 569 | 384 | 244 | 176 | 202 |
 | Difference | 21 | 27 | 25 | 23 | 5 | 2 | 1 | -4 | -14 | -10 | 10 | 28 |
 | Percent Difference ${ }^{\text {a }}$ | 10.0\% | 8.2\% | 5.1\% | 3.7\% | 0.7\% | 0.3\% | 0.1\% | -0.8\% | -3.6\% | -4.0\% | 6.2\% | 15.9\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (30.5\%) | | | | | | | | | | | | |
 | WSIP 2030 Without Projed | 241 | 339 | 506 | 678 | 824 | 924 | 856 | 725 | 573 | 351 | 240 | 231 |
 | WSIP 2030 With Priject | 225 | 335 | 502 | 673 | 809 | 907 | 840 | 704 | 539 | 319 | 211 | 201 |
 | Difference | -17 | -4 | -4 | -5 | -15 | -17 | -16 | -21 | -34 | -32 | -29 | -30 |
 | Percent Difference | -6.9\% | -1.1\% | -0.7\% | -0.7\% | -1.8\% | -1.8\% | -1.9\% | -2.9\% | -6.0\% | -9.2\% | -12.0\% | -13.0\% |
 | Above Normal (14.6\%) | | | | | | | | | | | | |
 | WSIP 2030 W Withot Projed | 167 | 262 | 442 | 652 | 765 | 876 | 788 | 628 | 432 | 193 | 130 | 127 |
 | WSIP 2030 With Proeet | 172 | 273 | 451 | 667 | 756 | 862 | 772 | 605 | 396 | 179 | 116 | 129 |
 | Difference | 5 | 10 | 9 | 15 | -9 | -13 | -16 | -22 | -36 | -14 | -14 | 2 |
 | Percent Difference | 3.1\% | 3.9\% | 2.0\% | 2.3\% | -1.1\% | -1.5\% | -2.1\% | -3.5\% | -8.4\% | -7.4\% | -10.7\% | 1.6\% |
 | Below Norma (20.7\%) | | | | | | | | | | | | |
 | WSIP 2030 W Withot Prjeet | 275 | 418 | 579 | 623 | 699 | 756 | 694 | 558 | 369 | 271 | 184 | 213 |
 | WSIP 2030 With Proect | 313 | 453 | 613 | 649 | 691 | 745 | 683 | 543 | 350 | 266 | 204 | 265 |
 | Difference | 37 | 35 | 34 | 26 | -8 | -11 | -11 | -15 | -18 | -5 | 20 | 52 |
 | Percent Difference | 13.6\% | 8.4\% | 5.8\% | 4.2\% | -1.1\% | -1.4\% | -1.7\% | -2.7\% | -5.0\% | -1.9\% | 11.1\% | 24.4\% |
 | Dry (19.5\%) | | | | | | | | | | | | |
 | WSIP 2030 W Withot Priject | 180 | 316 | 487 | 528 | 576 | 630 | 567 | 424 | 245 | 179 | 97 | 121 |
 | WSIP 2030 With Proect | 223 | 359 | 528 | 541 | 588 | 637 | 572 | 420 | 230 | 170 | 133 | 188 |
 | Difference | 44 | 43 | 41 | 13 | 11 | 7 | 5 | -4 | -15 | -9 | 36 | 66 |
 | Percent Difference | 24.3\% | 13.5\% | 8.4\% | 2.4\% | 2.0\% | 1.2\% | 0.9\% | -0.9\% | -6.1\% | -5.0\% | 37.1\% | 54.6\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSSIP 2030 W Whtout Proed | 161 | 258 | 386 | 543 | 588 | 581 | 529 | 423 | 245 | 192 | 115 | 120 |
 | WSIP 2030 Witit Proeet | 225 | 332 | 454 | 637 | 657 | 649 | 596 | 486 | 301 | 223 | 182 | 208 |
 | Difference | 65 | 74 | 67 | 95 | 69 | 68 | 67 | 63 | 57 | 31 | 67 | 88 |
 | Percent Difference | 40.2\% | 28.8\% | 17.4\% | 17.5\% | 11.8\% | 11.8\% | 12.7\% | 15.0\% | 23.1\% | 16.2\% | 58.5\% | 73.3\% |

 # Sacramento-San Joaquin Delta Operations Exceedance Probability Charts and Tables

 ## Figure SW-30-b

 Sacramento River below Hood, Monthly Flow

 | $\begin{gathered} \text { Percent } \\ \substack{\text { Preeoance } \\ \text { Probabability }} \\ \hline \end{gathered}$ | WSIP 2030 WithoutProiectMonthly Flow (CFS) | WSIP 2030 With Project Monthly Flow (CFS) | $\begin{aligned} & \text { Absolute } \\ & \text { Difference } \end{aligned}$(CFS) | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | | | |
 | | | | | |
 | 1.2\% | 44,906 18309 | 46.56 | | . 9 \% |
 | 2.5\% | ${ }^{16,311}$ | ${ }_{\text {16,424 }} 1$ | 113 | |
 | 3.7\% | 15.483 | 15701 | 219 | |
 | 4.9\% | 15.429 | 15.352 | -77 | |
 | 6.2\% | 14,924 | 15,261 | 338 | |
 | 7.4\% | 14,812 | 14.933 | 121 | |
 | 8.6\% | 14,617 | 14,855 | 238 | 1.6\% |
 | 9.9\% | 14.583 | 14,852 | 270 | 1.8\% |
 | 11.1\% | -14,349 | - 14.6586 | 337 275 | ${ }_{1}^{2.4 \%}$ |
 | 13.6\% | ${ }^{144.228}$ | ${ }^{14,576}$ | 348 | ${ }^{2.4 \%}$ |
 | .8\% | 14,120 | 14,491 | 371 | 2.6\% |
 | 16.0\% | 退80 | 14,487 | 407 | |
 | 17.3\% | 14,042 | 14,313 | 271 | |
 | 18.5\% | 14,002 | 14,227 | 225 | |
 | 19.8\% | 13,550 | 14,226 | 676 | |
 | 210\% | ${ }_{\text {13,302 }}^{13,251}$ | 14,152 | 849 | 6.4\% |
 | ${ }^{22.2 \%}$ | ${ }^{13,235}$ | 14,149 | 914 | |
 | 23.5\% | 13,231 | ${ }_{\text {13,835 }}^{13,785}$ | 604 | 4.6\% |
 | 24.7\% | 13,147 | ${ }^{13,760}$ | 612 | 4.7\% |
 | 25.9\% | ${ }^{13,046}$ | ${ }^{13,726}$ | 680 | 5.2\% |
 | 27.2\% | ${ }^{13,037}$ | 13,407 | 370 | 2.8\% |
 | 28.4\% | ${ }^{13,222}$ | 13,2631 | ${ }^{241}$ | 1.7% |
 | 29.6\% | ${ }^{12,987}$ | 13,211
 13,204 | ${ }^{224}$ | 1.7\% |
 | 30.9\% | ${ }^{12,8286}$ | 13,204
 13,261 | 378 | 2.9\% |
 | 32.1\% | ${ }^{12,8281}$ | 13,161 | ${ }^{340}$ | ${ }_{2}^{2.7 \%}$ |
 | 34.6\% | 12,991 | 13,090 | ${ }_{4} 99$ | ${ }_{3}^{2.3 \% \%}$ |
 | 35.8\% | | ${ }^{13,059}$ | ${ }_{4} 89$ | 3.9.3\% |
 | 37.0\% | 12,444 | ${ }^{13,011}$ | 567 | \% |
 | 38.3\% | 12,438 | 12,832 | 395 | 3.2\% |
 | | ${ }^{12,234}$ | ${ }^{12,713}$ | 479 | 3.9\% |
 | 42.0\% | ${ }^{11,1,225}$ | ${ }^{12,2613}$ | 687 | 5.8\% |
 | 43.2\% | ${ }^{11,843}$ | 12.572 | 729 | 6.2\% |
 | 44.4\% | 11,755 | 12.501 | ${ }^{747}$ | 6.4\% |
 | 45.7\% | 11.541 | 12,250 | 709 | 6.1\% |
 | 46.9\% | 11.510 | 12,137 | ${ }_{6}^{626}$ | 5.4\% |
 | 49.4\% | ${ }^{111,349}$ | | ${ }_{652}$ | ${ }_{\text {5.7\% }}$ |
 | 50.6\% | 11,245 | ${ }^{11,994}$ | 749 | 6.7\% |
 | 51.9\% | 11,139 | ${ }^{11,878}$ | 739 | 6.6\% |
 | 54.3\% | 10,988 | ${ }^{111,664}$ | 676 | ${ }_{\text {c }}^{6.2 \%}$ |
 | 55.6\% | 10,595 | 11,532 | ${ }_{937}$ | ${ }_{8.8 \%}^{6.5 \%}$ |
 | 56.8\% | 10,558 | 11,495 | 937 | 8.9\% |
 | 59.3\% | 10.473 | 11,494 11,299 1129 | ${ }_{829}^{1,021}$ | 7.9\%\% |
 | 60.5\% | 10,444 | 11,280 | ${ }_{836}$ | 8.0\% |
 | ${ }^{61.7 \%}$ | 10,355 | ${ }^{11,226}$ | ${ }^{871}$ | 8.4\% |
 | 6.4.2\% | ${ }_{9.591}^{9.664}$ | $11, .903$ 10.940 | ${ }_{\substack{1,349}}^{1.336}$ | 14.1\% |
 | 65.4\% | 9,330 | 10.929 | 1,599 | |
 | 66.7\% | 9,309 | 10,796 | 1,487 | |
 | 67.9\% | 9,284 | 10,770 | ${ }^{1,486}$ | |
 | 69.1\% | 9,157 | 10,747 | ${ }^{1,591}$ | |
 | 70.4\% | ${ }^{8,349}$ | 10,683 | 2,334 | 28.0\% |
 | 71.6\% | 8,328 8167 | 10,469 | 2,141 | 25.7\% |
 | 74.1\% | 7,970 | 10,322 | 2,352 | 29.5\% |
 | 75.3\% | 7,968 | 9,515 | 1,547 | 19.4\% |
 | 76.5\% | 7,956 | 9,099 | 1,143 | 14.4\% |
 | 77.8\% | 7,955 | 9,062 | +1,107 | 13.9\% |
 | 79.0\% | 7,945
 7,942 | 8,851 | ${ }_{906}$ | -11.4\% |
 | 81.5\% | 7,920 | ${ }_{8,738}$ | 817 | 10.3\% |
 | - 82.7% | 7.912 7892 | 8,070 | 158 | 2.0\% |
 | - ${ }_{\text {84.0\% }}$ | 7,892 | ${ }_{8}^{8.036}$ | 144 | 1.8\% |
 | 86.4\% | 7,527 | ${ }_{7}^{7,945}$ | ${ }_{418}$ | 5.6\% |
 | 87.7\% | 6,602 | 7.861 | 1,259 | .1\% |
 | ${ }^{88.1 \%}$ | | 7.515 6.943 | ${ }^{989}$ | 15.2\% |
 | 91.4\% | 6,430 | 6,763 | 333 | 5.2\% |
 | 92.6\% | 6.402 | 6.694 | 292 | |
 | 93.8\% | ${ }^{6,374}$ | ${ }_{6}^{6,627}$ | 253 | |
 | ${ }_{96.1 \%} 9$ | ${ }_{6}^{6,357}$ | 6,470 | 113 | ${ }^{1.8 \%}$ |
 | 97.5\% ${ }_{\text {97. }}$ | 6,313 | ${ }^{6,456}$ | ${ }^{143}$ | 2.3\% |
 | 98.8\% | 6,123 | 6,403 | 280 | 4.6\% |
 | 100.0\% | 6.105 | 6,179 | 73 | 1.2\% |

 | 4.9\% | | | | -1\% | 4.\% | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 6.2\% 7.4% | | ${ }_{\text {29, }}^{29,164}$ | -1,709 | ${ }^{-5.5 \%}$ | - ${ }_{\text {7.2\% }}$ | | 61,299 56.083 | -1.044 | - |
 | 8.6\% | 22,145 | 21,996 | -150 | -0.7\% | 8.6\% | 56,114 | ${ }_{54,436}$ | ${ }_{-1,678}$ | -3.0\% |
 | 9.9\% | 21,734 | 21,577 | -158 | -0.7\% | 9.9\% | 55,503 | 54,123 | -1,380 | -2.5\% |
 | 11.1\% | 21,316 | 21,316 | 0 | 0.0\% | 11.1\% | 53,803 | 53,863 | 61 | 0.1\% |
 | 12.3\% | ${ }^{21,288}$ | 21,152 | -136 | -0.6\% | 12.3\% | 44,265 | 44,654 | ${ }^{388}$ | 0.9\% |
 | 13.6\% | 20,767 | 20,554 | -213 | -1.0\% | 13.6\% | 44,119 | 43.705 | -415 | -0.9\% |
 | 14.8\% | 19,592 | 19,540 | -52 | -0.3\% | 14.8\% | 39,239 | 38,421 | -817 | -2.1\% |
 | - 16.0% | 19,385 18.979 | 19,322 18929 | - -53 | -0.3\% | 16.0% 173% | 39,070 37104 | 36,930 35166 | -2.141 -1938 | -5.5\% |
 | (17.3\% | 18,979 18768 | 18,929 18992 | -50 | -0.3\% | 17.3% 18.5% | $\begin{array}{r}37,104 \\ 35156 \\ \hline\end{array}$ | 35,166
 33,998 | -1.938 $-1,159$ -1 | -5.2\% ${ }_{-3,3 \%}$ |
 | 18.5\% | 18,768 18.524 | 18,912 18,008 | 144 84 | 0.5\% | 18.5\% | 35,156 34,874 | 33,988 30,994 | $\begin{array}{r}-1,159 \\ -3880 \\ \hline\end{array}$ | - |
 | 21.0\% | 18,454 | 18,595 | 142 | 0.8\% | 21.0\% | 32,960 32347 | 30,914 | -2.046 | ${ }^{-6.2 \%}$ |
 | 22.2\% | 18,152 | 18,432 | ${ }^{280}$ | 1.5\% | 22.2\% | ${ }_{\text {32, }}^{32,377}$ | 30,068 | -2,279 | -7.0\% |
 | ${ }^{24.75 \%}$ | ${ }_{17,7855}$ | ${ }^{18,48282}$ | ${ }_{427}^{427}$ | 2.4\% | ${ }^{24.7 \%}$ | ${ }^{30,64}$ | ${ }_{26,890}^{21,62}$ | -3.478 | -11.5\% |
 | 25.9\% | 17,663 | 18,260 | 597 | 3.4\% | 25.9\% | 29,779 | 26,135 | -3.644 | -12.2\% |
 | 27.2\% | 17,578 | 17,827 | 249 | 1.4\% | 27.2\% | 26,517 | 24,718 | -1,798 | -6.8\% |
 | 28.4\% | 17,573 | 17,726 | 153 | 0.9\% | 28.4\% | 24,842 | 23.687 | -1,155 | -4.6\% |
 | 29.6\% | 17,542 17.495 | 17,676 $\begin{aligned} & 17469\end{aligned}$ 17489 | 104 | - | 29.6\% | 24,253 2,916 | 23,309 | -945 | -3.9\% |
 | 32.1\% | 17,288 | 17,380 | 92 | 0.5\% | 32.1\% | ${ }_{2}^{23,438}$ | ${ }_{21,363}$ | --, 075 | -8.9\% |
 | 33.3\% | 17,081 | 17,362 | 281 | 1.6\% | 33.3\% | 22,157 | 20,862 | -1,295 | -5.8\% |
 | 34.6\% | 16,742 | 17,317 | 575 | 3.4\% | 34.6\% | 21,187 | 19,673 | -1,514 | -7.1\% |
 | 35.9\% | 16,577 | 17,046 | ${ }_{269}^{469}$ | ${ }^{2.8 \%}$ | - 3 3.8\% | 20,687 $\substack{2,648}$ | 19,549 10,535 | -1,138 | -.5.5\% |
 | 37.0\% | 16,436 | 16,650 | 215 150 | 1.3\% | 37.0\% | 20,648 $\substack{9685}$ | 19,535 | ${ }_{-1,113}$ | ${ }^{-5.44 \%}$ |
 | 38.3\% | 16,418 | 16,567 16.405 | 150

 286 | ${ }^{0.9 \%}$ | 38.3\% | 19,685 19632 | 19,410 18.928 | -274 -704 | --1.4%
 -3.6% |
 | 39.5\% | 16,119 15898 | | ${ }_{471}^{286}$ | | 39.5\% | 19,632 19484 1984 | 18.928 18889 | ${ }_{-640}$ | -3.3\% |
 | 40.7\% | 15.988 15.897 | 16,368 16.277 | ${ }_{380}^{471}$ | 3.0\% | - 40.7% | 19,484 19464 194 | 18.819 18.514 | -665 | - -3.4% |
 | 43.2\% | ${ }^{15,838}$ | 16,128 | 290 | 1.8\% | 43.2\% | 19,382 | 18,254 | -1,128 | -5.8\% |
 | 44.4\% | 15.615 15.255 | 16,078 15.949 | 463 694 | 3.5\% | ${ }^{44.4 \%}$ | 19,348 188802 | 16.861 16.556 | $\begin{array}{r}-2.487 \\ -2.247 \\ \hline\end{array}$ | -12.9\% |
 | 46.9\% | 15,210 | 15.800 | 590 | 3.9\% | 46.9\% | 18,797 | 15.932 | -2.865 | -15.2\% |
 | 48.1\% | 14,666 | ${ }^{15,143}$ | 477 | 3.3\% | 48.19\% | 177448 | ${ }^{15.5933}$ | -1,755 | -10.1\% |
 | 49.4\% | 14,569 14.500 | 15,029 14.818 | 460 317 | ${ }_{2.2 \%}^{3.2 \%}$ | 49.4\% | 17,108 17,021 18 | 15,362 15,187 | -1,746 | - |
 | 51.9\% | 13,883 | 14.500 | 617 | 4.4\% | 51.9\% | 16,637 | 15,164 | -1,473 | -8.9\% |
 | 53.1\% | ${ }^{13,798}$ | 14,369 | 571 | 4.1\% | 53.1\% | 15,687 | 15,110 | -577 | -3.7\% |
 | 54.3\% | 13.617 | 14.025 | 408 | 3.0\% | 54.3\% | 15,639 | 15.074 | -564 | -3.6\% |
 | 55.6\% | 13,364 | 14,011 | 647 | 4.8\% | 55.6\% | 15,350 | 14,850 | -499 | -3.3\% |
 | 56.8\% | 13,139 | 13,798 1376 | ${ }_{6}^{659}$ | 5.0\% | - 5 5.8\% | 15,192 | ${ }^{14,781}$ | ${ }^{-411}$ | -2.7\% |
 | 59.3\% | ${ }_{12,627}^{13,19}$ | 13,294 | ${ }_{667} 69$ | 5.3\% | 59.3\% | 154,981 | 14,521 | ${ }_{-460}$ | --3.1\% |
 | 60.5\% | 12,144 | 13,238 | 1,093 | 9.0\% | 60.5\% | 14,969 | 14,465 | -504 | -3.4\% |
 | 61.7\% | 12,095 | 13,032 | ${ }^{937}$ | 7.7\% | 61.7\% | 14.815 | 14,399 | -416 | -2.8\% |
 | -63.0\% | ${ }^{12,014}$ | 12,878 12880 1280 | -883 | 7.2\% | | 14,647 | 14,377 14.306 | - 270 -388 | - |
 | 64.2\% | 11,993 111669 | 12,870 | ${ }_{863}^{877}$ | 7.3\% | 64.2% 65.4% | 14,634 14.585 | 14,306 | -328 ${ }_{-31}$ | -2.2\% |
 | ${ }_{66.7 \%}^{65.4 \%}$ | ${ }_{111,669}^{11,69}$ | 12,532 12,299 | ${ }_{638}^{863}$ | 5.5\% | ${ }_{66.7 \%}^{65.4 \%}$ | ${ }_{1}^{14,5857}$ | | --755 | - |
 | 67.9\% | ${ }^{111,595}$ | 12,085 | 490 | 4.2\% | 67.9\% | 14,457 | 13,688 | -769 | -5.3\% |
 | 69.1\% | 11,325 10.896 | 12,026 11,772 10 | 701 876 | 8.2\% | 69.1\% 7 | 14,442 14.410 | 13,421 13.000 | -1.021 | -7.1\% |
 | 71.6\% | 10,736 | 11,000 | 264 | 2.5\% | 71.6\% | 14,378 | ${ }_{13,000}$ | -1,378 | -9.6\% |
 | 72.8\% | 10,096 | 11,000 | 904 | 9.0\% | 72.8\% | 14,168 | 13,000 | -1,168 | 2\% |
 | 74.1\% | 10,072 | 10,317 | 245 | 2.4\% | 74.1\% | 13,542 | 13,000 | -542 | -4.0\% |
 | 75.3\% | 9,951 | 10,145 | 194 | 2.0\% | 75.3\% | 13,238 | 13,000 | -238 | -1.8\% |
 | 76.5\% ${ }^{778 \%}$ | 9,866 | 10,056 | 190 | 1.9\% | 76.5\% | ${ }^{12,268}$ | ${ }^{13,000}$ | 732 | 6.0\% |
 | 779.\% | ${ }_{9,065}^{9,97}$ | ${ }^{10,8065}$ | ${ }_{800}$ | 8.8\% | 79.0\% | ${ }_{\substack{12,007 \\ 11,205}}^{12020}$ | ${ }_{1}^{12,0,42}$ | ${ }_{860}^{405}$ | 7.7\% |
 | 80.2\% | ${ }_{8,720}$ | 9,720 | 999 | 11.5\% | | 10,849 | 12,048 | 1.199 | 11.1\% |
 | 815.5\% | ${ }_{8}^{8.500}$ | 9,513 | 1.014 | 11.9\% | 81.5\% | 10,475 | ${ }^{11,383}$ | ${ }_{4}^{908}$ | 8.7\% |
 | 822.7\% | 8.475
 7968 | 9,165 | ${ }_{1}^{690} 1061$ | 8.10% 13.3% | - 82.78% | 10,364 10.335 103 | 10.841 10.564 | ${ }_{2}^{477}$ | 4.6\% |
 | ${ }^{85.2 \%}$ | 7,952 | 8,880 | ${ }_{9} 9$ | 11.7\% | 85.2\% | 10,107 | 10,560 | ${ }_{452}$ | 4.5\% |
 | 86.4\% | 7,899 | 8.417 | 518 | 6.6\% | 86.4\% | 9,877 | 10,370 | 493 | 5.0\% |
 | - 88.7% | 7.846 7806 7 | - ${ }_{8}^{8,368}$ | | - | 87.7% 889% | ${ }_{\substack{9,826 \\ 9.564}}$ | 10,302 10,173 | 476 609 | - ${ }_{\text {4, }}^{6.4 \%}$ |
 | 90.1\% | 7,721 | 7,952 | ${ }_{231}^{231}$ | 3.0\% | 90.1\% | 9,560 | 10,060 | 499 | 5.2\% |
 | 91.4\% | 6,979 | 7,899 | 920 | 13.2\% | 91.4\% | 9,542 | 9,913 | 371 | 3.9\% |
 | ${ }_{93}^{92.8 \%}$ | ${ }_{6.564}^{6.683}$ | $7,1,34$ 7.197 | ${ }_{633}$ | -14.6\% | ${ }_{93.8 \%}^{92.6 \%}$ | ${ }_{9.039}$ | ${ }_{9,423}^{9,434}$ | ${ }_{383}^{86}$ | 4.2\% |
 | 95.1\% | ${ }_{6,562}$ | 7.065 | 503 | 7.7\% | 95.1\% | 8.694 | 9,399 | 705 | 8.1\% |
 | 96.3\% | 6,560 | 6,987 | ${ }_{4}^{427}$ | 6.5\% | | 8.050 | 9,193 | 1,143 | 14.2\% |
 | 998.8\% | ${ }_{6,547}^{6,551}$ | ${ }_{6}^{6,564}$ | 157 17 | 2.3\% | ${ }_{9}^{97.8 \%}$ | ${ }^{7,6515}$ | 7,968 7773 | 1351 271 | ${ }^{4.6 \%}$ |

 Table SW-30-b
 To Rive below Pood Monthly Fow
 Probability of Exceedance

 ## Table SW－30－b

 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
 \hline \multirow[t]{2}{*}{} \& \multicolumn{4}{|l|}{} \& \multicolumn{5}{|l|}{} \\
 \hline \& \begin{tabular}{l}
 WSIP 2 230 \\
 Proiect \\
 Withut \\
 \hline
 \end{tabular} \& WSIP 2030 With Project \& Absolute
 Difference \& \& Percent
 Exceedance \& \begin{tabular}{c}
 WSIP 2 230 \\
 Proiet \\
 Without \\
 \hline
 \end{tabular} \& WSIP 2030 With Project \& \[
 \begin{aligned}
 \& \text { Absoute } \\
 \& \text { Difference }
 \end{aligned}
 \] \& \\
 \hline Probabaily \& Monthly Foio（ 4 （cFs） \& Monthy Fow（CFS） \& \({ }_{\text {（ } 765)}\) \& Difference（\％） \& Probability \& Monthy Fow（cFs） \& Monthly Fiow（cFs） \& （cFs） \& Difference（\％） \\
 \hline \({ }^{0.0 \%}\) \& 24，664
 24，604 \& \({ }_{\text {20，4，}}^{25,431}\) \& \({ }_{48}\) \& \({ }^{3.1 \% \%}\) \& \({ }^{0.0 \%}\) \& 11,996
 17209 \& 17295 \& \& \\
 \hline \({ }_{\text {2．5\％}}^{\text {2．2\％}}\) \& \({ }_{\text {24，496 }}^{24,04}\) \& \({ }_{\text {24，651 }}^{24,052}\) \& \({ }_{154}^{48}\) \& \({ }_{0}^{0.6 \%}\) \& \({ }_{\text {2．5\％}}^{\text {2．2\％}}\) \& \({ }_{17,135}^{17,739}\) \& \({ }^{177,108}\) \& \({ }_{-27}^{86}\) \& －0．2\％ \\
 \hline 3．7\％ \& \({ }_{2}^{24,396}\) \& \({ }_{24,462}^{24,61}\) \& 65 \& 0．3\％ \& 3．7\％ \& 17.085 \& 177.086 \& 1 \& \\
 \hline 4．9\％ \& \({ }_{24,394}\) \& \({ }_{24,396}\) \& 2 \& 0．0\％ \& 4．9\％ \& 17，013 \& 17，007 \& － \& \\
 \hline 6．2\％ \& 24，383 \& 24，379 \& －4 \& 0．0\％ \& 6．2\％ \& 17．012 \& 17，003 \& 9 \& \\
 \hline 7．4\％ \& 24，321 \& 24，366 \& 45 \& 0．2\％ \& 7．4\％ \& 17，003 \& 16，999 \& 4 \& \\
 \hline 8．6\％ \& 24，312 \& 24，306 \& －6 \& 0．0\％ \& 8．6\％ \& 16，928 \& 16，978 \& 50 \& \\
 \hline 9．9\％ \& 24，306 \& 306 \& 0 \& 0．0\％ \& 9．9\％ \& 16，834 \& 16，950 \& 116 \& \\
 \hline 11．1\％ \& 24，306 \& 24，306 \& 0 \& 0．0\％ \& 11．1\％ \& 16,775 \& 16，929 \& 154 \& 0．9\％ \\
 \hline 12．3\％ \& 24，306 \& 24，306 \& 0 \& 0．0\％ \& 12．3\％ \& 16,753 \& 16，918 \& 165 \& 1．0\％ \\
 \hline 13．6\％ \& 24，266 \& 24，306 \& 40 \& 0．2\％ \& 13．6\％ \& \({ }^{16,620}\) \& \({ }^{16,775}\) \& 154 \& 0．9\％ \\
 \hline 14．8\％ \& 24，139 \& \({ }^{24,306}\) \& 167 \& 0．7\％ \& 14．8\％ \& \({ }^{16,596}\) \& 16,755 \& 159 \& 1．0\％ \\
 \hline 16．0\％ \& 24，103 \& \({ }^{24,306}\) \& 203 \& 0．8\％ \& 16．0\％ \& 16，590 \& 16，737 \& 147 \& \\
 \hline 17．3\％ \& \({ }_{\text {2，} 2,388}\) \& \({ }^{24,306}\) \& \({ }_{468}\) \& \({ }^{2.0 \%}\) \& 17．3\％ \& 16，590 \& \({ }^{16,596}\) \& \({ }^{6}\) \& \％ \\
 \hline 18．5\％ \& \({ }^{23,659}\) \& 24，306 \& 647 \& 2．7\％ \& 18．5\％ \& 16，570 \& 16，572 \& 2 \& \\
 \hline 19．8\％ \& \({ }^{23,667}\) \& 24，174 \& 556 \& \({ }^{2.4 \%}\) \& 19．8\％ \& 16．560 \& 16．560 \& 0 \& ．0\％ \\
 \hline 21．0\％ \& \({ }^{23,560}\) \& 24，013 \& 453 \& 1．9\％ \& 21．0\％ \& 16．479 \& 16，．334 \& 55 \& \\
 \hline \({ }^{22.25 \%}\) \& 23，556 \& \({ }^{23,971}\) \& 416 \& \({ }^{1.8 \%}\) \& \({ }^{22,22 \%}\) \& \({ }^{16,405}\) \& 16，458 \& 54 \& 3\％ \\
 \hline 23．7\％ \& 23，502 \& \({ }_{2}^{23,925}\) \& \({ }_{3} 23\) \& 1．8\％ \& 23．7\％ \& 10，263 \& \({ }^{10,405}\) \& 142 \& \\
 \hline 25．9\％ \& \({ }_{23,469}\) \& \({ }_{23,674}\) \& 205 \& 0．9\％ \& 25．9\％ \& \({ }_{\text {10，} 114}^{10.14}\) \& 16，282 \& 168 \& 1．0\％ \\
 \hline 27．2\％ \& 23，430 \& \({ }^{23,663}\) \& 233 \& 1．0\％ \& 27．2\％ \& 16，081 \& 16，280 \& 200 \& 12\％ \\
 \hline 28．4\％ \& 23，324 \& \& 316 \& 1．4\％ \& 28．4\％ \& 16，044 \& 222 \& 178 \& \\
 \hline 29．6\％ \& 23，230 \& \({ }^{23,612}\) \& 383 \& 1．6\％ \& 29．6\％ \& 16，005 \& 16，219 \& 214 \& \\
 \hline 30．9\％ \& \({ }^{23,125}\) \& 23，492 \& 367 \& 1．6\％ \& 30．9\％ \& 15.979 \& 16，044 \& 65 \& \\
 \hline 32．19\％ \& 22，648 \& 23，391 \& \({ }^{743}\) \& 3．3\％ \& 32．1\％ \& 15.944 \& \({ }^{15,946}\) \& 2 \& \％ \\
 \hline 33．3\％ \& \({ }^{22,405}\) \& \({ }^{23,309}\) \& 903 \& 4．0\％ \& 33．3\％ \& 15，854 \& 15，838 \& 16 \& \\
 \hline 34．6\％ \& 22，397 \& 22，990 \& 594 \& 2．7\％ \& 34．6\％ \& 15.689 \& 15，822 \& 133 \& 0.8 \\
 \hline 357．0\％ \& \({ }^{22,303}\) \& \({ }^{22,796}\) \& 493 \& 2．2\％ \& 35．8\％ \& \({ }^{15,681}\) \& \({ }^{15,781}\) \& 101 \& 0.6 \\
 \hline － \(\begin{aligned} \& 37.0 \% \\ \& 38.3 \%\end{aligned}\) \& 22，232 \& 22，754 \& 522 \& 2．3\％ \& 37．0\％ \& 15，670 \& \({ }^{15,756}\) \& 86 \& 0．5\％ \\
 \hline 38．3\％ \& 22，201 \& \({ }^{22,734}\) \& 533 \& 2．4\％ \& 38．3\％ \& 15，630 \& \({ }^{15,681}\) \& 51 \& 0．3\％ \\
 \hline \({ }^{39.5 \%}\) \& 22，170 \& \({ }^{22,650}\) \& 480 \& 2．2\％ \& 39．5\％ \& \({ }^{15,596}\) \& \({ }^{15,673}\) \& 77 \& 0．5\％ \\
 \hline 40．7\％ \& \({ }^{22,155}\) \& \({ }^{22,219}\) \& 64 \& 0．3\％ \& 40．7\％ \& \({ }^{15,581}\) \& 15，615 \& 34 \& 0．2\％ \\
 \hline \({ }^{42.2 .2 \%}\) \& 22，117 \& \({ }^{22,047}\) \& －70 \& －0．3\％ \& 42．0\％ \& 15，434 \& \({ }^{15,606}\) \& 173 \& 11\％ \\
 \hline 43．4．4\％ \& \({ }^{21,916}\) \& 21，737 \& －19 \& －0．8\％ \& 43．2\％ \& －15，355 \& 15．602 \& \({ }^{247}\) \& 1．6\％ \\
 \hline 45．7\％ \& \({ }^{21,733}\) \& \({ }^{21,1,988}\) \& －35 \& －0．2\％ \& 44．4．9 \& \({ }^{15,338}\) \& ＋15．597 \& 259 \& 17\％ \\
 \hline 45．9\％ \& \({ }^{21,1,40}\) \& 21，121 \& －560 \& －2．4\％ \& 45．7\％ \& 15，161 \& 115．580 \& 49 \& \({ }^{2.8 \%}\) \\
 \hline \({ }^{46.9 \%}\) \& 21，131 \& 21，056 \& \({ }^{-76}\) \& －0．4\％ \& \({ }^{46.9 \%}\) \& \({ }^{15,146}\) \& ＋15，455 \& 309
 350 \& \\
 \hline 49．4\％ \& \({ }^{21,009}\) \& \({ }^{20,960}\) \& －49 \& －0．2\％ \& 48．17\％ \& \({ }^{151.094}\) \& （15．444 \& 354 \& \({ }_{2}^{2.3 \% \%}\) \\
 \hline 50．6\％ \& \({ }^{20,603}\) \& 20,715 \& 112 \& 0．5\％ \& 50．6\％ \& \({ }_{15,075}\) \& 15，260 \& 185 \& \\
 \hline 51．9\％ \& 20，506 \& 20，486 \& －20 \& 0．1\％ \& \％ \& 14，945 \& 234 \& 289 \& \\
 \hline 年53．19\％ \& 20,487 \& 20,477 \& －10 \& 0．0\％ \& 53．1\％ \& 14，830 \& 15，233 \& 403 \& \\
 \hline \(54.3 \%\)
 \(556 \%\) \& 20，445 \& 20，457 \& 12 \& 0．1\％ \& 54．3\％ \& 14，810 \& 15.160 \& 350 \& \\
 \hline 㐌55．8\％ \& 20，353 \& 20,445 \& 92 \& 0．5\％ \& 55．6\％ \& 14，772 \& 15.145 \& 373 \& \\
 \hline 56．8\％ \& 20，097 \& 20，083 \& －14 \& －0．1\％ \& 56．8\％ \& 14，769 \& 15，085 \& 315 \& 2．1\％ \\
 \hline 58．0\％ \& 20，059 \& 19，994 \& －65 \& －0．3\％ \& 58．0\％ \& 14，559 \& \({ }^{15.028}\) \& 469 \& \％ \\
 \hline －\({ }^{59.3 \%}\) 6．5\％ \& 20，037 \& 19，956 \& －81 \& －0．4\％ \& 59．3\％ \& 14，487 \& 14，998 \& 511 \& 3．5\％ \\
 \hline 60．7\％ \& 19，984 \& 19，946 \& －39 \& －0．2\％ \& 60．5\％ \& 14，468 \& 14，943 \& 475 \& 3．3\％ \\
 \hline 617．7\％ \& 19，925
 19，751 \& 19,944

 19.686 \& －18 \& － 0.3% \& 61.7%
 630% \& 14,449
 14.400 \& （14，830 \& ${ }_{211} 29$ \& 2．9\％

 \hline 64．2\％ \& ${ }^{19,745}$ \& 19,597 \& －148 \& －0．7\％ \& 64．2\％ \& 14，246 \& 14，652 \& 406 \& 2．8\％

 \hline 65．4\％ \& 19，368 \& 19，572 \& 204 \& 1．1\％ \& 65．4\％ \& 14,115 \& 14.583 \& 467 \& 3．3\％

 \hline ${ }^{66.7 \%}$ \& 19，137 \& 19，492 \& 355 \& 1．9\％ \& 66．7\％ \& ${ }^{13,571}$ \& 14,468 \& 897 \& 6\％

 \hline 67．9\％ \& 18，945 \& ${ }^{19,372}$ \& ${ }^{41}$ \& ${ }^{2.3 \%}$ \& 67．9\％ \& | 13,453 |
 | :--- | :--- |
 | 13 |
 | 13 | \& －14419 \& 965 \& \％

 \hline 70．4\％ \& ${ }^{18,8999}$ \& ${ }^{118,838}$ \& －61 \& －0．3\％ \& 70．4\％ \& － \& ${ }_{\text {l }}^{14,4,370}$ \& ${ }_{1}^{1,122}$ \& ${ }_{8.5 \%}^{8.2 \%}$

 \hline 71．6\％ \& 18,815 \& 18，296 \& －519 \& －2．8\％ \& 71．6\％ \& ${ }^{12,627}$ \& 14，246 \& 19 \& 12．8\％

 \hline 72．8\％\％ \& 18，432 \& ${ }^{18,053}$ \& －379 \& －2．1\％ \& 72．8\％ \& ${ }^{12,421}$ \& 14，139 \& 1，718 \& 13．8\％

 \hline \& \& \& 212 \& ${ }^{\text {P12\％}}$ \& 74．1\％ \& 12，209 \& ${ }^{14,104}$ \& \&

 \hline 76．5\％ \& 15，475 \& 17，192 \& 1，069 \& \& 70．5\％ \& 10，041 \& 13，5699 \& 矿 \&

 \hline \& ${ }^{15,155}$ \& \& ${ }_{1}^{1835}$ \& ${ }^{12.410}$ \& \& 0，044 \& ${ }_{12,669}$ \& 231 \&

 \hline 79．0\％ \& 15，109 \& ${ }_{\text {10，622 }} 110.989$ \& ${ }_{1,514}^{1,565}$ \& 10．0\％ \& 79．0\％ \& ${ }_{9,253}^{9.045}$ \& ${ }^{12,3768}$ \& ${ }_{2,315}^{2,731}$ \& 25．0\％

 \hline 80．2\％ \& 14,589 \& 16.425 \& 1.836 \& 12．6\％ \& 80．2\％ \& 9，241 \& ${ }^{11,566}$ \& 2.325 \& 25．2\％

 \hline 81．5\％ \& ${ }^{13,643}$ \& 16，260 \& 2，617 \& 19．2\％ \& 81．5\％ \& 9，229 \& 11,512 \& 2,283 \&

 \hline 82．7\％ \& 13，615 \& 15，188 \& 1，572 \& 11．5\％ \& 82．7\％ \& 9，213 \& 11,377 \& 2，164 \& 5\％

 \hline 84．0\％ \& 13，505 \& 15，154 \& 1，648 \& 12．2\％ \& 84．0\％ \& 9，009 \& 11，189 \& 2，181 \& 24．2\％

 \hline 85．2\％ \& ${ }^{13,360}$ \& 14.571 \& 1，211 \& 9．1\％ \& 85．2\％ \& ${ }^{8.872}$ \& 10，280 \& ${ }^{1,408}$ \& 15．9\％

 \hline 86.4%
 877% \& ${ }_{13,002}$ \& 14，217 \& 1，215 \& 9．3\％ \& 86．4\％ \& 8，782 \& 10，231 \& ${ }^{1,449}$ \& ${ }^{16.5 \%}$

 \hline － 87.7 8．9\％ \& 12，947 \& \& 920 \& 7．1\％ \& 87．7\％ \& ${ }_{8}^{8,687}$ \& －10，135 \& ${ }^{1.447}$ \& ${ }_{\text {c }}^{16.7 \%}$

 \hline －${ }^{88.9 .9 \%}$ \& （12，856 \& － 13.464 \& 609

 657 \& ${ }_{5}^{4.7 \%}$ \& ${ }^{88.9 \%}$ \& | 8,491 |
 | :--- |
 | 8278 |
 | 8 | \& ¢，${ }_{\substack{9,332 \\ 9}}^{102}$ \& ${ }_{824} 84$ \& －10．0\％

 \hline 91．4\％ \& ${ }^{111,896}$ \& 12,980 \& 1，083 \& 9．1\％ \& 91．4\％ \& 8,990 \& 8.853 \& 763 \& 9．4\％

 \hline 92．6\％ \& ${ }^{111,157}$ \& 12，801 \& 1，644 \& 14．7\％ \& 92．6\％ \& ${ }_{8} 8.033$ \& ${ }_{8,834}$ \& 801 \& 10．0\％

 \hline 93．8\％ \& ${ }^{11,122}$ \& ${ }^{11,958}$ \& ${ }^{836}$ \& 7．5\％ \& ${ }^{93.8 \%}$ \& ${ }^{8.030}$ \& ${ }_{8}^{8.617}$ \& 587 \& 7．3\％

 \hline ${ }^{95.3 \%}$ \& ${ }_{9}^{9,672}$ \& ${ }_{\text {10，643 }}$ \& ${ }_{971} 92$ \& － \& ${ }^{96.3 \%}$ \& 7，623 \& ${ }_{8,585}^{8.602}$ \& ${ }_{962}$ \& －${ }^{8.6 \% \%}$

 \hline 97．5\％ \& 9，502 \& 9，703 \& 201 \& 2．1\％ \& 97．5\％ \& 7.424 \& ${ }_{8,387}$ \& 963 \& 13．0\％

 \hline 98．8\％ \& 9，364 \& 9，622 \& 257 \& 2．7\％ \& 98．8\％ \& 7，194 \& ${ }^{8,352}$ \& 1，157 \& 16．1\％

 \hline
 \end{tabular}

 Figure SW-31-b
 Yolo Bypass, Monthly Flow

 ##

 | Ociober | | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | WSIP 2330 Without | WSII 2330 With Project | | Relative |
 | Probability | Monthy flow (CFSS | Monthy flow (CFs) | | Difference (\%) |
 | 0.0\% | ${ }^{14.206}$ | ${ }^{16,283}$ | 2,076 | 14.6\% |
 | 1.2\% | 1201 | 1201 | | |
 | 2.5\% | 138 | 449 | 311 | 225.0\% |
 | 3.7\% | 93 | 391 | 297 | 318.7\% |
 | 4.9\% | 76 | 390 | 314 | 413.1\% |
 | ${ }^{6.2 \%}$ | 64 | 390 | 326 | 508.2\% |
 | 7.4\% | ${ }^{63}$ | 390 | ${ }_{327} 327$ | 515.8\% |
 | 9.9\% | 63 63 | 390 | 327 | ${ }_{\text {516.6\% }}^{516.6 \%}$ |
 | 11.1\% | 63 | 390 | 327 | 516.6\% |
 | 12.3\% | 63 | 390 | 327 | 51.6.6 |
 | 13.6\% | ${ }^{63}$ | 390 | 327 | 520.9\% |
 | 14.8\% | 63 | 390 | 327 | 520.9\% |
 | 16.0\% | ${ }^{63}$ | 390 | 328 | 523.1\% |
 | 17.3\% | 62 | | 329 | 532.0\% |
 | | 62 | 390 | 329 | ${ }_{534.3 \%}$ |
 | 19.8\% | 61 | 390 | 329 | 533.5\% |
 | 21.0\% | ${ }_{61}^{61}$ | 390 | 329 | 538.8\% |
 | ${ }^{22.2 \%}$ | 61 | | ${ }^{329}$ | |
 | ${ }_{24.7 \%}^{22.5 \%}$ | 60 | ${ }_{390}$ | ${ }_{330}^{330}$ | 545.9\% |
 | 25.9\% | 60 | 390 | 330 | 550.6\% |
 | 27.2\% | 59 | 390 | 331 | 557.9\% |
 | 28.4\% | 58 | 390 | 333 | 575.5\% |
 | 29.6\% | 58 | 390 | 333 | 577.9\% |
 | 30.9\% | 56 | 390 | 334 | 593.9\% |
 | 32.1\% | 54 | 390 | 336 | 617.1\% |
 | 33.3\% | 54 | 390 | ${ }^{336}$ | 619.4\% |
 | 34.5\% | 54 | 390 | ${ }^{336}$ | 622.3\% |
 | | 54 | 390 | ${ }^{337}$ | 625.2\% |
 | 37.0\% | 53 | 390 | ${ }_{3}^{337}$ | 631.2\% |
 | | 53 | 390 | ${ }_{3}^{37}$ | ${ }^{634.3 \%}$ |
 | 39.5\% | ${ }_{53}^{53}$ | 390 | ${ }^{337}$ | 637.2\% |
 | ${ }^{40.70 \%}$ | 53 | ${ }^{390}$ | ${ }^{338}$ | 643.3\% |
 | ${ }^{42.0 \%}$ | ${ }_{52}^{52}$ | 390 | 338 | 648.5\% |
 | 44.4\% | ${ }_{50}^{52}$ | 390 | 338 340 | 676.0\% |
 | 45.7\% | 49 | 390 | 342 | 702.6\% |
 | 46.9\% | 46 | 390 | 344 | |
 | 48.1\% | 45 | 390 | 345 | 759.1\% |
 | 49.4\% | 45 | 390 | 346 | |
 | 50.6\% | 45 | 390 | ${ }^{346}$ | |
 | 51.9\% | 44 | 390 | 346 | 789.1\% |
 | 53.19\% | ${ }^{43}$ | 390 | 347 | 798.5\% |
 | 54.3\% | ${ }^{43}$ | 390 | 347 | 803.1\% |
 | 年55.6\% | 42 | 390 | 348 | 821.7\% |
 | | 42 | 390 | ${ }^{348}$ | 824.4\% |
 | 年58.0\% | ${ }^{40}$ | 390 | ${ }^{350}$ | |
 | 59.3\% | 39 | 390 | ${ }^{351}$ | 888.4\% |
 | 61.7\% | ${ }_{38}^{38}$ | 180 100 | ${ }_{62}$ | 31.5\% |
 | 63.0\% | 37 | 94 | 56 | 151.4\% |
 | ${ }^{64.2 \%}$ | 37 | 80 | 44 | 119.5\% |
 | ${ }^{65.4 \%}$ | ${ }^{36}$ | 75 | 39 | 108.1\% |
 | 66.7\% 679% | 30 29 | ${ }_{63}^{63}$ | 34 34 | 112.5\% |
 | 67.9\% | 29 29 | ${ }_{63}^{63}$ | $\begin{array}{r}34 \\ 34 \\ \hline\end{array}$ | - 1177.4% |
 | 70.4\% | 26 | | 36 | 135.4\% |
 | 71.6\% | ${ }_{22}^{24}$ | 61 | 38 | 157.5\% |
 | 74.1\% | ${ }_{20}^{22}$ | ${ }_{61} 61$ | ${ }_{41}$ | 204.7\% |
 | 75.3\% | 18 | 60 | 42 | 229.9\% |
 | 76.5\% | 17 | 54 | 37 | |
 | 77.8\% | ${ }_{16}^{16}$ | ${ }_{53}^{53}$ | 37 | |
 | 79.0\% | 15 | 53 | ${ }^{38}$ | 263.6\% |
 | - | 14 | 50 | ${ }^{37}$ | 267.8\% |
 | - | ${ }^{12}$ | 46 | ${ }^{34}$ | 272.8\% |
 | 827\% | ${ }_{11}^{12}$ | 45 | ${ }^{33}$ | 275.9\% |
 | 85.2\% | 9 | | 31 | |
 | 86.4\% | 8 | 37 | 28 | |
 | 87.7\% | 6 | ${ }^{36}$ | 30 | |
 | 88.9\% | 5 | ${ }^{30}$ | ${ }^{25}$ | |
 | 90.19\% | 4 | ${ }_{26}^{29}$ | ${ }_{24}^{24}$ | |
 | 91.4\% | 3 | ${ }_{18}^{26}$ | 23 15 15 | |
 | 93.8\% | 3 | 11 | 8 | |
 | ${ }_{96.3 \%}^{95.1 \%}$ | ${ }_{1}$ | 8 | 7 | |
 | 97.5\% | 0 | 4 | ${ }_{4}^{4}$ | |
 | 98.8\% | 0 | 3 | ${ }^{3}$ | |

 ##

 | | | February | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | | WSIP 2030 With Project | Absolute Difference | Relative |
 | Probability | Monthy Fow (CFs) | Moontly Flow (CFS) | (CFS) | |
 | 0.0\% | 145,292 | 145,272 | -19 | 0.0\% |
 | 1.2\% | 119,219 | 117,190 | -2,030 | -1.7\% |
 | 2.5\% | 111,701 | 108,144 | -3,558 | -3.2\% |
 | 3.7\% | 107,343 | 107,297 | -46 | 0.0\% |
 | 4.9\% | 102,942 | 102,877 | -65 | -0.1\% |
 | ${ }^{6.2 \%}$ | 82,237 | 82,392 7829 | 154 | 0.2\% |
 | 7.4\% | ${ }^{81,705}$ | 78,249 | -3,456 | -4.2\% |
 | 9.9\% | ${ }_{\text {chen }}^{\text {59,071 }}$ | $\underset{\substack{58,486 \\ 56,757}}{ }$ | ${ }_{-2,1,34}^{-1,676}$ | - |
 | 11.1\% | 57,403 | 5,422 | ${ }_{-3,981}$ | -6.9 |
 | (12.3\% | ${ }_{4}^{47,208}$ | ${ }_{3}^{47,092}$ | - 116 | -0.2\% |
 | 14.8\% | ${ }_{35,958}^{42}$ | ${ }_{36,103}$ | 144 | 0.4\% |
 | 16.0\% | 34,180 | 34,194 | 14 | 0.0\% |
 | 17.3\% | 33,246 | 30,294 | -2,952 | -8.9\% |
 | 18.5\% | 32,625 | ${ }^{29,758}$ | -2,867 | -8.8\% |
 | 19.8\% | 31,694 | 28.002 | -3,691 | -11.6\% |
 | 21.0\% | ${ }^{26,337}$ | 26,947 | ${ }^{610}$ | 2.3\% |
 | 22.2\% | ${ }^{26,063}$ | 24,118 | -1,946 | ${ }_{-5.5 \%}^{-7.5 \%}$ |
 | ${ }_{24}^{23.5 \%}$ | ${ }_{\text {2 }}^{23,366}$ | ${ }^{22,082}$ | -1,284 | -5.5\% |
 | 24.7\% | 17,257 15,386 | 20.960 14.490 | 3,773 | 21.5\% |
 | 25.9\% | 15.386 15.070 | 14,490 | -836 | -5.8\% |
 | 28.4\% | ${ }^{14.4,560}$ | - | - | -17.3\% |
 | 29.6\% | 12,463 | 10,963 | ${ }^{-1,500}$ | -12.0\% |
 | 30.9\% | 10,473 | 9,139 | -1,334 | -12.7\% |
 | 32.19\% | ${ }^{9,875}$ | 8,557 | -1,319 | |
 | 34.6\% | ${ }_{8,388}^{8.493}$ | ${ }_{8,050}^{8.050}$ | -288 | -3.5\% |
 | 35.8\% | 8,260 | ${ }^{7}, 503$ | -757 | -9.2\% |
 | 隹 $\begin{aligned} & 37.0 \% \\ & 38.3 \%\end{aligned}$ | 8,050
 5880 | 7,200 5 5 | -850 | -10.6\% |
 | 30.5\% | 5.561 | 5,219 | -343 | -6.2\% |
 | 40.7\% | 5,361 | 4,319 | -1,042 | -19.4\% |
 | 42.0\% | 5,079 | 4,202 | -876 | -17.3\% |
 | 43.2\% | 4,243 | - 3 , 7800 | -543 | -12.8\% |
 | 44.4\% | 4,144 | 2,872 | -1,272 | -30.7\% |
 | 45.7\% | 4,049 | 2,842 | -1,207 | -29.8\% |
 | ${ }_{48}^{46.9 \%}$ | 3,766 | ${ }_{2}^{2,828}$ | -938 | -24.9\% |
 | 48.19\% | 3,203 | 2,418 | -785 | -24.5\% |
 | 49.4\% | ${ }_{2,883}^{2,887}$ | 2,398 1,890 | -489 -933 | - $\begin{aligned} & \text {-16.9\% } \\ & -33.1 \%\end{aligned}$ |
 | 51.9\% | ${ }_{2,410}^{2,12}$ | ${ }_{1}^{1,887}$ | -583 | -24.2\% |
 | 53.19\% | ${ }_{\text {2,175 }}$ | ${ }^{1,406}$ | -769 | -35.4\% |
 | 54.3\% | 2,122 | ${ }^{1,365}$ | -757 | -35.7\% |
 | 56.8\% | +1,936 | 879 | | |
 | 56.0\% | ${ }_{1,365}^{1,062}$ | ${ }_{671}$ | ${ }_{-624}$ | ${ }_{\text {- }}^{\text {-50.8\% }}$ |
 | 59.3\% | 909 | 629 | -279 | -30.8\% |
 | 60.5\% | 879 | 596 | -283 | |
 | 61.7\% | 629 | 468 | -161 | |
 | -63.0\% | ${ }_{4}^{468}$ | ${ }^{425}$ | ${ }^{-43}$ | |
 | 65.4\% | 389 | 389 | 0 | |
 | 66.7\% | 389 | 355 | -34 | |
 | 67.9\% | ${ }_{3}^{355}$ | ${ }^{303}$ | -52 | |
 | 69.1\% | 303 229 | ${ }_{227}^{229}$ | -74 | |
 | 70.4\% 7 | ${ }_{227}^{229}$ | ${ }_{219}^{227}$ | ${ }_{-8}^{-8}$ | |
 | 72.8\% | 219 | 193 | ${ }_{-26}$ | |
 | 74.1\% | 193 137 | 137 | -56 | |
 | 75.3\% | 137 | 112 | -25 | |
 | 76.5\% ${ }_{778 \%}$ | 112 110 | 110 85 8 | -25 -25 | |
 | 79.0\% | 85 | ${ }_{81}$ | ${ }_{4}^{25}$ | |
 | 80.2\% | 81 | 52 | -29 | |
 | - | 52 26 | 51 | -1 | |
 | 84.0\% | ${ }_{26}^{26}$ | ${ }_{26}^{26}$ | 0 | |
 | 85.2\% | 24 | 24 | 0 | |
 | 86.4\% | ${ }^{22}$ | ${ }^{22}$ | 0 | |
 | - ${ }^{877.7 \%}$ | 19 | 19 | ${ }_{4}$ | |
 | 90.1\% | 0 | 0 | 0 | |
 | 91.4\% | 0 | 0 | 0 | |
 | ${ }_{93.8 \%}^{92.6 \%}$ | 0 | 0 | 0 | |
 | 95.1\% | 0 | 0 | 0 | |
 | 96.3\% ${ }^{96.5 \%}$ | 0 | 0 | 0 | |
 | 998.8\% | 0 | 0 | 0 | |
 | 100.0\% | 0 | 0 | 0 | |

 ##

 Figure SW-32-b
 Sacramento River at Rio Vista, Monthly Flow

 | October | | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | WSIP 2330 Without | WSII 2330 With Project | Abssoute | Relative |
 | Probal | Monthly Fiow (CFS) | Monthy flow (CFs) | | Difference ${ }^{(\%)}$ |
 | 0.0\% | 52.043 | ${ }^{55.557}$ | 3.514 | 6.8\% |
 | 1.2\% | 14,437 | 12,483 | -1,954 | |
 | 2.5\% | 11,036 | 11,869 | 833 | |
 | 3.7\% | 11,009 | ${ }^{11,376}$ | 366 | |
 | 4.9\% | 10,770 | 11,353 | 583 | |
 | 6.2\% | 10,476 | 11,053 | 577 | 5.5\% |
 | 7.4\% | 9,934 | 10,808 | 874 | 8.8\% |
 | 8.6\% | 9,821 | 10,405 | 584 | 5.9\% |
 | 9.9\% | 9,704 | 10,340 | 636 | 6.5\% |
 | 11.1\% | 9,590 | 10,270 | 680 | 7.1\% |
 | ${ }^{12.3 \%}$ | 9,562 | 10,256 | 695 | 7.3\% |
 | 13.6\% | 9,521 | 10,215 | 694 | ${ }_{7}^{7.7 \%}$ |
 | 14.8\% | 9,444 | 10,167 | ${ }_{5} 723$ | ${ }^{7.75 \%}$ |
 | 16.0\% | 9,428 | 9,948 | 520 | 5.5\% |
 | 17.3\% | ${ }_{9}^{9,424}$ | 9,920 | 496 | 5.3\% |
 | 18.5\%\% | ${ }_{9} 9,422$ | 9,910 | 489 | ${ }^{5.2 \%}$ |
 | 21.0\% | ${ }_{8}^{9,399}$ | 9,804 | 420 | 8.0\% |
 | 22.2\% | ${ }_{8,550}$ | ${ }_{9,561}$ | 911 | 10.5\% |
 | 23.5\% | 8,399 | 9,255 | 856 | 10.2\% |
 | 24.7\% | ${ }^{8,273}$ | 9,218 | 945 | ${ }^{11.4 \%}$ |
 | ${ }^{25.7 .2 \%}$ | 8,012
 7963
 703 | 9,069 8099 | ${ }^{1,095}$ | ${ }^{13.2 \%}$ |
 | 28.4\% | 7.870 | ${ }_{8,948}$ | 1.078 | 132\% |
 | 29.6\% | 7,700 | ${ }_{8,657}^{8,57}$ | | |
 | 30.9\% | 7,670 | ${ }_{8,585}$ | 915 | 11.9\% |
 | 32.1\% | 7,605 | ${ }^{8.525}$ | 920 | 12.1 |
 | 33.3\% | 7,589 | ${ }_{8,444}$ | 855 | 11.3\% |
 | 34.6\% | 7,575 | 8,266 | 692 | 9.1\% |
 | 35.8\% | 7,532 | 8,134 | 602 | 8.0\% |
 | 37.0\% | 7,330 | ${ }^{8.076}$ | ${ }_{773} 77$ | ${ }^{10.2 \%}$ |
 | 38.3\% | 7,043 | 7,780 | ${ }_{7} 73$ | 10.5\% |
 | 39.5\% | ${ }^{6.870}$ | ${ }_{7}^{7,630}$ | 760 | 11.1\% |
 | ${ }_{4}^{40.70 \%}$ | 6,849 | ${ }_{7}^{7,463}$ | 614 | 9.0\%\% |
 | ${ }^{42.0 \%}$ | ${ }_{6}^{6,616}$ | ${ }_{7,471}^{7,489}$ | ${ }_{702}$ | |
 | 44.4\% | ${ }_{\text {c, }}^{6.989}$ | 7,389
 7368 | ${ }_{881} 898$ | ${ }_{\text {13,6\% }}^{12.15}$ |
 | 45.7\% | 6,413 | 7,363 | 950 | 14.8\% |
 | 46.9\% | 6,365 | 7,342 | 977 | 15.4\% |
 | 48.19\% | ${ }_{6}^{6,344}$ | 7,306 | 962 | ${ }^{15.2 \%}$ |
 | 49.4\% | | ${ }_{7}^{7,209}$ | 942 | |
 | 51.9\% | ¢, $\begin{gathered}6,190 \\ 6,190\end{gathered}$ | | | |
 | 53.1\% | ${ }_{6,148}$ | 7,045 | ${ }_{896}$ | ${ }^{14.46 \%}$ |
 | 54.3\% | 6,028 | 6.872 | 844 | 14.0\% |
 | 55.\% | 5,978 | 6,826 | 848 | 14.2\% |
 | 56.8\% | 5,838 | 6,775 | ${ }^{936}$ | 16.0\% |
 | 58.0\% | 5,807 | 6,705 | 899 | 15.5\% |
 | 59.3\% | ${ }_{5}^{5.806}$ | ${ }^{6.582}$ | ${ }_{776} 7$ | ${ }^{13.44 \%}$ |
 | - 60.5% | 5,681 | 6,477 | 777 | - ${ }_{\text {14.0\% }}^{13.7}$ |
 | 63.0\% | 5.114 | 6,345 | 1,231 | 24.1\% |
 | ${ }^{64.2 \%}$ | 5,110 | ${ }_{6}^{6,208}$ | 1,098 | 21.5\% |
 | 65.4\% | 4,962 | 6,161 | 1,199 | 24.2\% |
 | 66.7\% 679% | 4,956 4886 | 6,117
 6,035 | ${ }_{\substack{1,161 \\ 1,148}}^{1 / 2}$ | ${ }_{2}^{23.49 \%}$ |
 | ${ }_{6}^{67.9 \%}$ | ${ }_{4,782}^{4,886}$ | c,035
 5.992 | ${ }_{\substack{1,229 \\ 1,298}}$ | ${ }_{\text {cke }}^{23.58 \%}$ |
 | 70.4\% | 4,622 | ${ }_{5,977}^{5}$ | ${ }_{1}^{1,355}$ | 29.3\% |
 | 71.6\% | 4,234 | 5.891 | 1,657 | 39.1\% |
 | 72.8\% | ${ }_{4}^{4.212}$ | ¢, 5.884 | ${ }^{1,672}$ | 39.7\% |
 | 75.3\% | 4,016 | 5,409 | ${ }_{1}^{1,393}$ | ${ }^{43.7 \% \%}$ |
 | 76.5\% | 4,000 | 5,089 | 1,089 | 2\% |
 | 77.8\% | 4,000 | 5.050 | 1,050 | \% |
 | 79.0\% | 4,000 | 4,931 | 931 | 23.3\% |
 | 80.2\% | 4,000 | 4,786 | 786 | 19.6\% |
 | ${ }^{81.5 \%}$ | 4,000 | 4.616 | 616 | 15.4\% |
 | - 82.7% | 4,000 | 4,540 | 540 | ${ }^{13.5 \%}$ |
 | - 84.80% | 4,000 | 4,378 | ${ }^{378}$ | ${ }^{9.5 \%}$ |
 | - | 4,000 | 4,034 | ${ }^{34}$ | - |
 | 86.4% 87.7% | 3,772 | 4,000 | ${ }^{228}$ | ${ }^{6.0 \% \%}$ |
 | 88.9\% | - | 4,000 | 904 | ${ }_{25.5 \%}^{29.2 \%}$ |
 | ${ }_{90.1 \%}$ | 3,000 | ${ }_{3,315}^{\text {j, }}$ | 315 | ${ }_{\text {10.5\% }}^{2.5}$ |
 | 91.4\% | 3,000 | 3,218 | 218 | 7.3\% |
 | 92.6\% | ${ }^{3.000}$ | ${ }^{3.082}$ | 82 | 2.7\% |
 | 93.8\% | ${ }^{3.000}$ | 3,025 | ${ }^{25}$ | 0.8\% |
 | ${ }_{96.3 \%}$ | 3,000 | 3,000 | 0 | 0.0\% |
 | 97.5\% | 3,000 | 3,000 | | 0.0\% |
 | 98.8\% | 退3,000 | 3,000 3,000 | \bigcirc | - |

 | |
 | :--- | :--- | :--- | :--- |

 Table ew－
 to Rive at Rio
 Vista，Mo
 Mo

 | | | Fobruary | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | | WSIP 2030 With Project | Absolute
 Difference | Relative |
 | | Monthy Fow（CFS） | Monthly Fow（CFFS） | （CF5） | Difference $(\%)$ |
 | 0．0\％ | ${ }^{212,562}$ | 212，539 | ${ }^{-23}$ | 0．0\％ |
 | 1．2\％ | ${ }_{187,146}$ | 185,119 | -2.027 | －1．1\％ |
 | 2．5\％ | 182，361 | 178，137 | －4，223 | －2．3\％ |
 | 3．7\％ | 176，664 | 177.534 | 870 | 0．5\％ |
 | 4．9\％ | 165，279 | 165，212 | －68 | 0．0\％ |
 | 6．2\％ | 152，536 | 152，701 | 165 | 0．1\％ |
 | 7．4\％ | 149，328 | 145，883 | －3，515 | －2．4\％ |
 | 8．6\％ | ${ }^{123,218}$ | 119，721 | －3，497 | －2．8\％ |
 | 9．9\％ | ${ }^{1211,621}$ | 118，769 | －2，852 | －2．3\％ |
 | ${ }^{11.12 \%}$ | 120，778 112749 12， | 118,226 112619 | －2．552 | －2．1\％ |
 | 13．6\％ | 102,851 | 99，274 | －3，578 | －3．5\％ |
 | 14．8\％ | ${ }^{99,323}$ | 94.889 | －4，433 | \％ |
 | 16．0\％ | 94，637 | 94，809 | 72 | |
 | 17．3\％ | 93，822 | 93，705 | 117 | －0．1\％ |
 | 18．5\％ | ${ }_{93,690}$ | ${ }^{88,663}$ | －5，027 | \％ |
 | 19．8\％ | 87,85 | ${ }^{85,946}$ | －1，9 | |
 | 21．0\％ | 80，153 | 77，427 | $-2,7$ | －3．4\％ |
 | ${ }^{22.2 \%}$ | ${ }^{79,960}$ | ${ }^{77,038}$ | －2，923 | |
 | 23．5\％ | ${ }^{75,925}$ | 76，663 | 738 | 1．0\％ |
 | 24．7\％ | ${ }_{7}^{73,329}$ | ${ }^{76,594}$ | 3，265 | 4．5\％ |
 | 25．9\％ | 71,982 | ${ }^{72,630}$ | 648 | 0.9% |
 | 27．2\％ | ${ }^{65.544}$ | ${ }^{63,329}$ | －2，215 | －3．4\％ |
 | ${ }^{28.49 \%}$ | ${ }^{63,890}$ | 61，250 | －2，641 | －4．1\％ |
 | 29．6\％ | | | ${ }^{-3.725}$ | |
 | 30．9\％ | 56，717 | 53，985 | －2，733 | －4．88 |
 | 32．1\％ | ${ }_{5}^{56,013}$ | 53,947
 5×388 | －2．067 | －3．7\％ |
 | 334．6\％ | ${ }_{\substack{53,927 \\ 5 \\ 5 \\ \text { 236 }}}$ | ${ }^{53,388} 5$ | －540 | －1．06 |
 | 35．8\％ | $\begin{array}{r}\text { 51，} \\ 51,888 \\ \hline\end{array}$ | 5，
 50,890
 1,480 | ${ }_{-598}$ | －3．2\％ |
 | 37．0\％ | 49，986 | 47，786 | －2，201 | |
 | 38．3\％ | 4，9，861 | 46.462 | －3，384 | 8\％ |
 | | | | －3，655 | －7．4\％ |
 | 42．0\％ | ${ }_{43,622}$ | ${ }_{4}^{44,439}$ | ${ }_{817}$ | －9．9\％ |
 | 43．2\％ | 43，205 | 41,044 | －2，161 | －5．0\％ |
 | 44．4\％ | ${ }^{39,645}$ | 39，648 | 3 | |
 | 45．7\％ | 39，157 | 37，323 | 1，834 | －4．7\％ |
 | 46．9\％ | ${ }^{37,216}$ | 36，429 | 788 | |
 | 48．1\％ | 36.417 | ${ }^{35,570}$ | －847 | －2．3\％ |
 | 49．4\％ | 34，119 | ${ }^{31,005}$ | －3，113 | －9．1\％ |
 | 50．6\％ | 32，579 | 29，400 | －3，180 | －9．8\％ |
 | 51．9\％ | ${ }_{31,726}$ | 29，231 | －2，495 | －7．9\％ |
 | 53．1\％ | 31，424 | ${ }^{28,328}$ | －3，096 | －9．9\％ |
 | 54.3% 5.56% | ${ }^{29,564}$ | $\begin{array}{r}27,905 \\ \hline 2575 \\ \hline\end{array}$ | －1，659 | －5．6\％ |
 | 55．6\％ | ${ }_{26,823}^{29,071}$ | ${ }_{\text {24，}}^{236}$ | －－3，322 | －1．46 |
 | 56．8\％ 580% | ${ }^{26,823}$ | | －－2，877 | |
 | 59．3\％ | ${ }_{24,271}^{26,04}$ | ${ }_{\text {22，232 }}^{22,288}$ | ${ }_{-2,039}^{-3,73}$ | －8．4\％ |
 | 60．5\％ | 23，930 | ${ }^{21,674}$ | ${ }_{-2,256}$ | －9．4\％ |
 | 61．7\％ | ${ }^{23,740}$ | ${ }^{21,025}$ | －2，715 | －11．4\％ |
 | ${ }^{63.0 \%}$ | ${ }_{2}^{23,135}$ | ${ }_{20,748}$ | －2， 1734 | －10．7\％ |
 | ${ }^{64.4 .4 \%}$ | ${ }_{\text {22，324 }}^{22,482}$ | ${ }_{\text {co，}}$ | － | －13．2\％ |
 | 66．7\％ | ${ }_{21,827}$ | 19，198 | －2，629 | －12．0\％ |
 | 67．9\％ | 20,971 | 18,720 | －2，191 | －10．5\％ |
 | 69．1\％ | 20，778 | 18．561 | －2，217 | 7\％ |
 | 70．4\％ | 19，984 | 17，828 | －2，157 | －10．8\％ |
 | 71．2．8\％ | 19,316
 17858
 1858 | 17，489 | ${ }^{-1,1827}$ | －9．5\％ |
 | 74．1\％ | 17，765 | ${ }_{\text {10，465 }}^{10,64}$ | ${ }^{-1,300}$ | －7．3\％ |
 | 75．3\％ | 17，471 | 14，854 | －2，617 | －15．0\％ |
 | 76．5\％ | 16，866 | 14，402 | －2，463 | －14．6\％ |
 | 777．8\％ | ${ }_{\text {1 }}^{16.427}$ | ＋14，365 | －－1．071 | －12．6\％ |
 | － | ${ }^{16,274}$ | ${ }^{14,303}$ | －1，971 | －12．1\％ |
 | 815\％ | ${ }^{14,4,896}$ | ${ }_{\text {l }}^{13,586}$ | ${ }_{\text {－1，310 }}$ | ${ }_{-8.8 \%}^{-6.7 \%}$ |
 | ${ }^{82.7 \%}$ | ${ }^{14,531}$ | ${ }^{13,041}$ | －1，490 | －10．3\％ |
 | ${ }^{84.0 \%}$ | 14，161 | ${ }^{13,3,32}$ | －1，129 | －8．0\％ |
 | ${ }^{6.5 .4 \%}$ | ${ }^{14.4343}$ | | －735 | ${ }^{-5.5 \%}$ |
 | 87．7\％ | 13，165 | ${ }^{12,429}$ | 736 | 5．6\％ |
 | ${ }^{88.9 \%} 9$ | 13,061 12.939 | 12,136 11,811 | －1．128 | －7．7\％ |
 | 91．4\％ | 12,690 | 11，26 | ${ }^{-1,427}$ | |
 | 92．6\％ | 12，134 | 11,147 | －987 | |
 | 93．8\％ | 11，397 | 11，126 | －270 | |
 | 95．1\％ | 11，306 | 10，234 | －1，072 | －9．5\％ |
 | －96．3\％ 9 | 9，290 | 10，187 | ${ }^{897}$ | 9．7\％ |
 | 98．8\％ | ${ }_{8,335}$ | 7.845 | －490 | －5．9\％ |
 | 100．0\％ | 6，561 | 7，221 | 660 | 10．1\％ |

 | | | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | － $13.8 .8 \%$ | 68，870 | 69，199 | ${ }^{329}$ | 0．5\％ |
 | 14.8%
 16.0% | ${ }_{6}^{68,614}$ | ${ }^{68,566}$ | －47 | \％ |
 | 16．0\％ | ${ }^{63,037}$ | 63，037 | 0 | |
 | 17．3\％ | ${ }_{50,767}$ | －60，137 | ${ }^{630}$ | |
 | 18．9\％ | 57,676 | 57，645 | ${ }^{28}$ | 0．0\％ |
 | 19．8\％ | ${ }_{\text {cker }}^{56,746}$ | 56，755 | 9 | 0．0\％ |
 | 21．0\％ | ${ }_{5}^{56,018}$ | 555．89 | －200 | |
 | 23．5\％ | 54,901 | 50，354 | －4，547 | －8．3\％ |
 | 24．7\％ | 50，830 | 49，597 | －1，234 | －2．4\％ |
 | 25．9\％ | 50.529 | 48，334 | $-2,195$ | －4．3\％ |
 | 27．2\％ | 50，089 | 47,319 | －2，770 | －5．5\％ |
 | 28．4\％ | 49，962 | 45，865 | －4，097 | 2\％ |
 | 29．6\％ | 49，329 | 45，040 | －4，289 | 7\％ |
 | 30．9\％ | 42，397 | 41，600 | －796 | 9\％ |
 | 32．1\％ | 40，410 | 38，143 | －2，267 | －5．6\％ |
 | 33．3\％ | ${ }^{39,900}$ | 36，082 | －－．818 | ． 6% |
 | 34．6\％ | ${ }^{35,743}$ | 35，680 | －63 | －0．2\％ |
 | 35．8\％ | ${ }^{35,717}$ | 35，046 | －671 | －1．9\％ |
 | 37．0\％ | ${ }^{35,600}$ | 34，873 | －727 | －2．0\％ |
 | 38．3\％ | 35，464 | 33，106 | －2，358 | －6．6\％ |
 | 39．5\％ | 34，465 | 32，302 | －2，163 | －6．3\％ |
 | 40．79\％ | ${ }^{33,563}$ | 31，182 | －2，381 | －7．1\％ |
 | 42．0\％ | 33，161 | ${ }^{30,522}$ | －2，3099 | \％ |
 | 43．2\％ | 31，217 | ${ }^{27,316}$ | －3，901 | 源 |
 | 45．7\％ | ${ }_{228,634}$ | 26，207 | － | －8．5\％ |
 | 46．9\％ | 28，226 | 23，881 | －4，345 | －15．4\％ |
 | 48．19\％ | ${ }^{26,742}$ | ${ }_{2}^{22,813}$ | －3，929 | －14．7\％ |
 | 5．6．6 | ${ }_{\text {2 }}^{2 \times, 654}$ | 221299 | | 退 |
 | 50．6\％ | ${ }_{22,297}$ | 2， 20.59 | －1440 | 源 |
 | 53．1\％ | ${ }_{222,194}^{2,297}$ | ${ }^{20,911}$ | － | －10．3\％ |
 | 54．3\％ | 21，646 | 19，355 | $-2,291$ | －10．6\％ |
 | 55．\％ | 20,865 | 18，479 | －2，366 | －11．4\％ |
 | 56．8\％ | 20，836 | 18，453 | －2，383 | －11．4\％ |
 | 58．0\％ | ${ }^{20,425}$ | ${ }^{17,820}$ | －2，606 | －12．8\％ |
 | 59．3\％ | 19，884 | 17，362 | －2，522 | －12．7\％ |
 | 60．5\％ | 19，344 | 17，203 | －2，142 | －11．19\％ |
 | 617．7\％ | 19，336 | 16.846 | －2，490 | －12．9\％ |
 | 63．0\％ | 18，787 | 16，709 | －2，079 | －11．1\％ |
 | 64．2\％ | ${ }^{18,276}$ | 16，203 | －2，073 | －11．3\％ |
 | ${ }^{65.4 .9}$ | ${ }^{17,763}$ | 16，181 | －1，182 | －6．7\％ |
 | ${ }^{66.77 \%}$ | 17，657 | 15，913 | －1，254 | |
 | 67．9\％ | 10，951 | 15，992 | －1，159 | |
 | 69．11\％ | 10，891 | 14，407 | －2，484 | ${ }^{-14.7 \%}$ |
 | 71．6\％ | 15,816 | 13，821 | －1，995 | －12．6\％ |
 | 72．8\％ | 14，976 | 13，772 | 204 | \％ |
 | 74．1\％ | 14，818 | 13，414 | －1，403 | \％ |
 | 75．3\％ | 14，107 | 13，174 | －933 | －6．6\％ |
 | 76．5\％ | 13,799 | 172 | －627 | 5\％ |
 | 77．8\％ | 13，478 | 12.628 | －851 | \％ |
 | 79．0\％ | 13，205 | 12，199 | －1，006 | ．6\％ |
 | 80．2\％ | 12，913 | 12，027 | -886 | －6．9\％ |
 | 81．5\％ | 12，259 | 10，629 | －1，630 | －13．3\％ |
 | 82，7\％ | 12，024 | 10，303 | －1，721 | －14．3\％ |
 | 84．0\％ | 11.425 | 10，037 | －1，388 | －12．1\％ |
 | 85．2\％ | 10，992 | 9，975 | －1，018 | 9．3\％ |
 | ${ }^{86.47 \%}$ | 9，400 | 9，973 | 573 | 6．1\％ |
 | 87．7\％ | ${ }^{9,3822}$ | 9，901 | 519 | 5．5\％ |
 | 88．9\％ | 9，332 | ${ }^{9.504}$ | 172 | 1．8\％ |
 | 90．1\％ | 9，104 | 9，500 | 306 | 3．3\％ |
 | ${ }^{91.46 \%}$ | ${ }_{9}^{9,086}$ | ${ }_{\substack{\text { 9，303 } \\ 9,093}}$ | ${ }_{25}^{247}$ | 2．3\％ |
 | 93．8\％ | 9，004 | ${ }_{\text {9，093 }}$ | ${ }_{59}^{25}$ | |
 | 95．1\％ | 8.524 | ${ }_{8}, 596$ | 72 | 0．8\％ |
 | 96．3\％ | 7.963 | 7.892 | －70 | －0．9\％ |
 | 97．5\％ | 7，349 | 7，742 | ${ }_{5}$ | 5．3\％ |
 | | | | | ．8\％ |

 | ${ }^{\text {Prerecent }}$ | 2030 Without | WSIP 2030 With Project | | |
 | :---: | :---: | :---: | :---: | :---: |
 | $\xrightarrow[\substack{\text { Exceedance } \\ \text { Proability }}]{ }$ | Montiliect | ${ }_{\text {Wsip }}^{\text {Monthly Fiow（CFSS）}}$ | Difference （CFS） | Difference（\％） |
 | 0．0\％ | 106，176 | 106，138 | | 0．0\％ |
 | 1．2\％ | 94，412 | 94，420 | 9 | 0．0\％ |
 | 2．5\％ | 89，715 | ${ }^{86,244}$ | －3，471 | 3．9\％ |
 | 3．7\％ | 60，451 | 60，444 | ${ }^{-7}$ | 0．0\％ |
 | 4．9\％ | 53，314 | 53，622 | 309 | 0．6\％ |
 | 6．2\％ | ${ }_{5}^{52,823}$ | 55，320 | 497 | 0．9\％ |
 | 7．4\％ | 51，417 | 51，431 | 13 | |
 | 8．0\％ | 51，139 | 4，905 | －1．534 | |
 | 111\％ | ${ }_{45459}$ | ${ }^{46,642}$ | ${ }^{498}$ | |
 | 12．3\％ | ${ }_{44.566}$ | ${ }_{4}^{42,933}$ | ${ }_{10} 632$ | |
 | 13．6\％ | 35420 | ${ }^{44,397}$ | ， 1024 | |
 | 14．8\％ | ${ }_{3}^{34,419}$ | ${ }_{34,073}$ | －－347 | －2．0\％ |
 | 16．0\％ | ${ }_{34,077}$ | ${ }_{32,703}$ | －1373 | －4．0\％ |
 | 17．3\％ | 33，434 | 31，572 | ${ }_{-1,861}$ | －5．6\％ |
 | 18．5\％ | ${ }_{33,318}$ | 30，918 | ${ }_{-2,400}$ | －7．2\％ |
 | 19．8\％ | 30，711 | 30，696 | －75 | －0．2\％ |
 | 21．0\％ | 29，088 | 27，804 | －1，284 | －4．4\％ |
 | 22．2\％ | ${ }^{27,760}$ | ${ }^{26,253}$ | －1，507 | －5．4\％ |
 | 23．5\％ | ${ }_{25539}^{25.907}$ | ${ }^{24,784}$ | －1，124 | －4．3\％ |
 | 24．7\％ | 25.539 24.139 | 24，098 | －1，441 | －5．6\％ |
 | 25．9\％ | ${ }_{\text {21，}}^{24,139}$ | ${ }_{\text {2，}}^{22,367}$ | －－1．772 | －7．3\％ |
 | ${ }^{27.2 \%} \times$ | ${ }^{21,816}$ | ${ }_{2}^{21,711}$ | －-105 | ${ }_{-24 \%}^{-0.5 \%}$ |
 | ${ }_{\text {20．6\％}}^{28.4 \%}$ | ${ }_{\substack{21,804 \\ 21,370}}^{21,09}$ | ${ }_{\text {20，391 }}^{21,272}$ | －532 | ${ }_{-4.6 \%}^{-2.4 \%}$ |
 | 30．9\％ | 20.495 | ${ }^{19,242}$ | $-1,253$ | －6．1\％ |
 | 32．1\％ | ${ }^{18,842}$ | 18.779 | －63 | －0．3\％ |
 | － 3.45% | | | | |
 | 34．6\％ | ${ }_{1}^{16,528}$ | ${ }_{\text {16，488 }} 118.458$ | －40 | －0．2\％ |
 | 37．0\％ | 16，016 | 15，625 | －391 | －2．4\％ |
 | 38．3\％ | ${ }^{14,786}$ | ${ }^{14,593}$ | －193 | －1．3\％ |
 | 39．5\％ | 13，074 | 13，212 | 138 | 1．1\％ |
 | 40．7\％ | ${ }^{12,906}$ | ${ }^{12,927}$ | ${ }^{22}$ | 0．2\％ |
 | 42．0\％ | ${ }^{12,863}$ | ${ }^{12,743}$ | ${ }^{-121}$ | －0．9\％ |
 | 43．2\％ | 11，488 | ${ }^{11,566}$ | 78 | 0．7\％ |
 | 44．4．\％ | ${ }^{11,148}$ | ${ }^{11,534}$ | ${ }_{386}$ | 3．5\％ |
 | 45．7\％ | 11，068 | 11，175 | 107 | 1．0\％ |
 | 46．9\％ | 10．987 | ${ }^{11,029}$ | 42 | 0．4\％ |
 | 48．1\％${ }^{4.4 \%}$ | 10,745 10702 | 10.920 10.576 | 175 | ${ }^{1.6 \%}$ |
 | | － 10,702 | 10.576 10.541 | －127 | |
 | 50．1．\％ | 10，648 | 10．541 | 151 | －1．5\％ |
 | 53．1\％ | 10，034 | 10，114 | 80 | 0．8\％ |
 | | 10，005 | 9，974 | －31 | －0．3\％ |
 | 56．8\％ | ${ }_{9,600}^{9,693}$ | ${ }_{9,912}$ | 311 | 3．2\％ |
 | 58．0\％ | 9，480 | 9，834 | 354 | 3．7\％ |
 | 59．3\％ | 9.420 | 9，485 | 65 | 0．7\％ |
 | 60．5\％ | 9，249 | 9，350 | 102 | 1．1\％ |
 | 617\％\％ | 9，198 | 9，338 | 140 | ${ }^{1.5 \%}$ |
 | 63．0\％ | 9，137 | 9，249 | 111 | 1．2\％ |
 | ${ }^{64.2 \%}$ | 8，992 | 9，119 | 127 | 1．4\％ |
 | 65．4\％ | 8，978 | 8，977 | 58 | 0．7\％ |
 | ${ }^{66.7 \%}$ | 8.729 | 8.954 | ${ }^{225}$ | 2．6\％ |
 | 67．9\％ 69.1% | 8.564 | 8，947 | ${ }^{383}$ | 4．5\％ |
 | 79．1\％ | 8.530 | ${ }^{8.873}$ | ${ }^{343}$ | 4．0\％ |
 | 70．4\％ | －8，434 | | ${ }^{334}$ | \％ |
 | 71.6% 7728% | 8，421 | ${ }_{8,576}^{8,563}$ | 155 | 年．8\％ |
 | 774．1\％ | －8，399 | 8，5633 | 141 | ${ }_{\text {1．7\％}}^{2.0 \%}$ |
 | 75．3\％ | 8,387 | 8,450 | 63 | 0．8\％ |
 | 76．5\％ | ${ }_{8}^{8,321}$ | 8，430 | 108 | 1．3\％ |
 | 77．8\％ | 8，174 | 8．375 | 202 | 2．5\％ |
 | 79．0\％ | 8，139 | ${ }_{8}^{8,345}$ | 207 | \％ |
 | | ${ }^{8,1985}$ | ${ }_{8}^{8,292}$ | 142 | 2．1\％ |
 | ${ }^{812.7 \%}$ | ${ }_{\text {7，757 }}$ | ${ }_{7,626}^{8,135}$ | ${ }_{-130}$ | －1．7\％ |
 | 84．0\％ | 7，427 | 7.488 | 61 | 0．8\％ |
 | 85．2\％ | 7，329 | 7，393 | 64 | 0．9\％ |
 | 86．4\％ | 7，122 | 7，045 | 77 | 1．1\％ |
 | 87．7\％ | 6，866 | 6，928 | 62 | 0．9\％ |
 | 88．9\％ | ${ }_{6}^{6.863}$ | 6，897 | ${ }^{34}$ | 0．5\％ |
 | 90．1\％ | 6，712 | 6，789 | 77 | 1．1\％ |
 | 914\％ | 6，662 | 6，614 | ${ }^{-47}$ | －0．7\％ |
 | 92．6\％ | ${ }^{6,424}$ | ${ }^{6,408}$ | －16 | 0．3\％ |
 | 93．8\％ | 6，369 | ${ }^{6,385}$ | 15 | ${ }^{0.2 \%}$ |
 | 95．1\％ | c．e．359 | 年， 3.363 | 3
 147
 1 | 号．4\％ |
 | 97．5\％ | ¢，${ }_{5}^{6,842}$ | ${ }_{\substack{6,857}}^{6,359}$ | ${ }_{14}^{14}$ | 2．2\％ |
 | 98．8\％ | 5.124 | 5.126 | 2 | 0．0\％ |
 | 100．0\％ | 4，861 | 4，812 | ${ }_{-4}$ | －1．0\％ |

 | | | | | |
 | :--- | :--- | :--- | :--- | :---: |
 | | | | | |

 | | | June | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | WSIP 2 230
 Proiet
 Without | WSIP 2030 With Project | Abssolue Difference | Relative |
 | Probability | Monthly Fow (CFS) | Morthly Flow(CFS) | (cFs) | |
 | 0.0\% | 26,325 | 27,087 | 762 | 2.9\% |
 | 1.2\% | 11,158 | 12,999 | 1,840 | 16.5\% |
 | 2.5\% | 10,662 | 10,035 | -627 | -5.9\% |
 | 3.7\% | 9,686 | 9,491 | -195 | -2.0\% |
 | 4.9\% | 9,491 | ${ }^{9,4344}$ | ${ }^{-57}$ | ${ }^{-0.6 \%}$ |
 | ${ }_{\text {c }}^{\text {7.4\% }}$ | ${ }_{8,734}^{8,791}$ | ${ }_{8,843}^{9,187}$ | 396 109 | 4.5\% |
 | 8.6\% | 8.660 | ${ }_{8,763}$ | 103 | 1.2\% |
 | 9.9\% | 8,241 | ${ }_{8,668}$ | 428 | 52% |
 | 11.1\% | 8,217 | 8,305 | | |
 | 12.3\% | 8,216 | 8,265 | 49 | |
 | 13.6\% | 8.126 | 8.241 | 115 | |
 | 14.8\% | ${ }_{8,025}$ | 8,12 | 101 | |
 | 16.0\% | 7,980 | 8,117 | ${ }^{137}$ | 1.7\% |
 | 17.3\% | 7,780 | 8.034 | ${ }^{254}$ | 3.3\% |
 | 18.5\% | 7,760 | ${ }^{8.018}$ | ${ }^{258}$ | 3.3\% |
 | 19.8\% | 7,630 | 7,977 | ${ }^{347}$ | 4.5\% |
 | 21.0\% | ${ }_{7}^{7.526}$ | 7,780 | ${ }^{254}$ | 3.4\% |
 | 22.2\% | 7,474 | 7,630 | 156 | 2.1\% |
 | 23.5\% | 7,467 | 7,467 | 0 | |
 | 24.7\% | 7,454 | ${ }_{7}^{7,544}$ | 0 | |
 | 25.9\% | 7.444 | 7,405 | -39 | |
 | 27.2\% | ${ }_{7}^{7,416}$ | ${ }_{7} 7,402$ | -14 | |
 | ${ }^{28.49 \%}$ | 7,195 | 7,329 7,310 | 114 | - |
 | 30.9\% | 7.195 | 7,285 | 91 | 1.3\% |
 | 32.1\% | 7,186 | 7,274 | 88 | 1.2\% |
 | 34.6\% | ${ }_{7,1136}$ | ${ }_{7}^{7,196}$ | 60 | 0.8\% |
 | 35.8\% | 7,121 | 7,195 | 74 | |
 | 37.0% 38.3% | 7,107
 7,068 | 7,186
 7,167 | 79 98 | 1.4\% |
 | 39.5\% | 7,036 | 7,163 | ${ }_{127}$ | 1.8\% |
 | 40.7\% | 7,022 | 7.160 | 138 | 2.0\% |
 | 42.0\% | 6,986 | 7,150 | 164 | 2.4\% |
 | 43.2\% | ${ }^{6,984}$ | 7,140 | ${ }^{156}$ | 2.2\% |
 | 44.4.6 | 6,979 | 7,113 | ${ }^{134}$ | 1.9\% |
 | 45.7\% | ${ }^{6.867}$ | 7,106 | ${ }^{239}$ | 3.5\% |
 | ${ }^{46.9 \%}$ | 6.862 | 7.070 | ${ }_{2}^{208}$ | 3.0\% |
 | 49.4\% | ${ }_{6,696}$ | 7,054 | ${ }_{358}^{213}$ | 5.4\% |
 | 50.6\% | 6,678 | 7,050 | ${ }^{372}$ | 5.6\% |
 | 51.9\% | ${ }_{\text {6,6,68 }}$ | 7,016 | ${ }_{3}^{398}$ | 6.0\% |
 | 54.3\% | ${ }_{6,528}^{6,565}$ | ${ }_{\text {c, }}^{\substack{6,967}}$ | 339 | 5.2\% |
 | 55.6\% | ${ }_{6,483}$ | ${ }_{6.824}$ | | |
 | | | 6,785 | ${ }^{314}$ | 4.8\% |
 | 59.3\% | ${ }_{6,403}^{6,403}$ | ${ }_{\text {c,750 }}^{6.750}$ | ${ }_{346} 36$ | 5.4\% |
 | 60.5\% | ${ }_{6}^{6,378}$ | ${ }_{6}^{6,748}$ | 371 | |
 | 61.7\% | ${ }^{6,306}$ | 6,715 | 409 | 6.5\% |
 | 63.0\% | 6,305 | 6,665 | 360 | 5.7\% |
 | 64.2% 6.4% | ${ }_{6}^{6,223}$ | ${ }^{6.638}$ | 414 | ${ }^{6.7 \%}$ |
 | 66.7% | 6.115 | ${ }_{6,587}^{6.000}$ | 472 | 7.7\% |
 | 67.9\% | 6,071 | 6,456 | 386 | 6.4\% |
 | 69.1\% | ${ }_{6}^{6,068}$ | ${ }_{6}^{6,413}$ | ${ }_{3}^{345}$ | 5.7\% |
 | 70.4\% | 6,049 | 6.400 | ${ }_{331}^{351}$ | 5.8\% |
 | 71.2.8\% | 6,001 5 5099 | ¢, 6, 3 , | ${ }_{327}^{323}$ | ${ }_{5}^{5.4 \%}$ |
 | 74.1\% | ${ }_{5}^{5} 5$ | $\underbrace{6,305}_{6,305}$ | ${ }_{309}^{307}$ | 5.2\% |
 | 75.3\% | 5,965 | 6,288 | ${ }^{322}$ | 5.4\% |
 | 76.5\% ${ }_{778 \%}$ | 5.887 5.870 | | 276 276 | 4.7\%\% |
 | 79.0\% | ${ }_{5,860}^{5.870}$ | ${ }_{\text {c,12 }}^{6,145}$ | ${ }_{251}^{276}$ | 4.3\% |
 | 80.2\% | 5,850 | 6,019 | 169 | 2.9\% |
 | ${ }^{81.57 \%}$ | 5.563 | 5.995 | ${ }^{432}$ | 7.8\% |
 | 840\% | ${ }_{5.535}^{5}$ | ${ }_{5,796}$ | 260 | 4.7\% |
 | 85.2\% | | 5.698 | ${ }_{234}^{234}$ | 4.3\% |
 | ${ }^{86.4 \%}$ | 5.418 | 5.654 | 236 | 4.3\% |
 | 877.7\% | 5.398 | 5.537 | 139 | 2.7\% |
 | ${ }^{88.9 \%}$ | ${ }_{\substack{5,171 \\ 5,176}}$ | 5.418 5.412 | ${ }_{241}^{92}$ | 1.7\% |
 | 914\% | 5,162 | ${ }_{5,362}^{5,412}$ | 200 | 3.9\% |
 | 92.6\% | 4,776 | 4,968 | 192 | 4.0\% |
 | 93.8\% | 4,773 | ${ }_{4}^{4,975}$ | 182 | ${ }^{3.8 \%}$ |
 | 95.1\% | 4,240 | 4,773 | 533
 877 | ${ }^{12.56 \%}$ |
 | -96.3\% | -3,357
 3,37 | -4,334
 3,366 | 877
 29 | ${ }^{25.9 \%}$ |
 | 98.8\% | - | 3,350 | ${ }^{253}$ | 8.2\% |
 | 100.0\% | 2,983 | 3,327 | 343 | 11.5\% |

 Figure SW-33-b
 Sacramento/San Joaquin River Delta, Monthly Outflow

 | Percent
 $\begin{array}{c}\text { Exceedance } \\ \text { Probability }\end{array}$ | Ociober | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | Wsil 2030 With Project | Absolute | Relative |
 | | Monthly Outiow（CFS） | Monthy Outtiow（CFS） | Difference （CFS） | Difference（\％） |
 | 0．0\％ | 51，285 | 54，915 | ${ }^{3,630}$ | 7．1\％ |
 | 1．2\％ | 17，909 | 14.961 | $-2,948$ | －16．5\％ |
 | 2．5\％ | 13，281 | ${ }^{13,281}$ | 0 | 0．0\％ |
 | 3.7% 4.9% | 12,010 10.469 | 12,987
 10.938
 18 | ${ }_{469}^{986}$ | ${ }_{4.5 \%}^{8.2 \%}$ |
 | 4．9\％ | 10,469 10.469 | 10,938 10.923 | ${ }_{454}^{469}$ | 4．5\％${ }_{4}$ |
 | 6．2\％ | 10.469 10．313 | 10.923 10,703 | 454 | 4．3\％ |
 | 7．4\％\％ | 10,313 10.000 | 10，703 10.390 | 390 390 | 3．8\％ |
 | ${ }_{\text {9．9\％}}$ | ${ }_{0}^{10,922}$ | ${ }_{10,312}^{10,390}$ | 390 | 3．9\％ |
 | 11．1\％ | 9,844 | 10，234 | 390 | |
 | ${ }^{12.3 \%}$ | 9，692 | 10，234 | 542 | |
 | 13．6\％ | 9，688 | 10，078 | 390 | |
 | 14．8\％ | 9，688 | 10，078 | 390 | 4．0\％ |
 | 16．0\％ | 9，688 | 9，922 | 234 | 2.4 |
 | ${ }^{17.3 \%}$ 18．5\％ | 9，531 | ${ }^{9,922}$ | ${ }^{390}$ | ${ }^{4.19 \%}$ |
 | 18．5．8\％ | ${ }_{9,531}^{9.531}$ | ${ }_{9,765}^{9.765}$ | ${ }_{234}^{234}$ | ${ }_{2.5 \%}^{2.5 \%}$ |
 | 21．0\％ | ${ }_{9,375}$ | 9，765 | 390 | 4．2\％ |
 | 22．2\％ | 9，375 | 9，765 | 390 | 4．2\％ |
 | 23．5\％ | 9，375 | 9，765 | 390 | 4．2\％ |
 | 24．7\％ | ${ }_{9}^{9,375}$ | 9，765 | 390 | 4．2\％ |
 | 25．9\％ | ${ }_{9}^{9,375}$ | 9，765 | ${ }_{313}^{390}$ | ${ }_{3}^{4.2 \%}$ |
 | － 27.2% 2．4\％ | ${ }_{9}^{9,375}$ | 9，6881 | ${ }_{3}^{313}$ | 隹3\％ |
 | ${ }^{28.45 \%}$ | ${ }_{9}^{9,219}$ | 9，531 | 313 390 | |
 | 30．9\％ | ${ }_{9,063}^{9,063}$ | ${ }_{9,453}^{9,453}$ | 390 | 4．3\％ |
 | 32．1\％ | 9，063 | 9，453 | 390 | 4．3\％ |
 | － 33.3% | ${ }^{9.0753}$ | 9，140 | | 0．9\％ |
 | 34．8\％ | ${ }_{7,188}^{\text {8．730 }}$ | ${ }_{7,578}^{9,063}$ | 390 | 5．4\％ |
 | 37．0\％ | 7.031 | 7,422 | 390 | 5．6\％ |
 | | 6，875 | 7，265 | 390 | |
 | 39．5\％ | ${ }_{6}^{6.875}$ | 7，265 | 390 | 5．7\％ |
 | 40．7\％ | 6，875 | 7，265 | 390 | 5．7\％ |
 | 42．0\％ | 6．875 | 7，265 | 390 | 5．7\％ |
 | 43．2\％ | 6，719 | 7，109 | 390 | 5．8\％ |
 | ${ }^{44.4 .4 \%}$ | 6．719 | 7，055 | ${ }^{336}$ | 5．0\％ |
 | 45．7\％ | 6．719 | 6，953 | ${ }^{234}$ | ${ }_{3}^{3.5 \%}$ |
 | 46．9\％ | 6，719 | 6，953 | ${ }_{2} 234$ | 3．5\％ |
 | 48．1\％ 4.4 | 6，250 | 6．640 | 390 | ${ }^{6.2 \%}$ |
 | 49．4\％ | 4，285 | | ${ }^{1,606}$ | ${ }^{377.5 \%}$ |
 | 年 $50.0 .9 \%$ | ${ }^{4,230}$ | cis． | ${ }^{1,660}$ | 39．2\％ |
 | 53．1\％ | ${ }_{4}^{4,173}$ | 寺5．822 | ${ }^{1,649}$ | ${ }_{\text {395．5\％}}$ |
 | 54．3\％ | 4，000 | ${ }_{5}^{5.512}$ | 1.512 | 37．\％ |
 | 年55．6\％ | 4,000 4 4 | 年， 5.390 | ${ }_{1}^{1,390}$ | 34．8\％ |
 | 㐌5．8\％\％ | | ${ }_{\text {5，390 }}^{5}$ | | 34．8\％ |
 | 59．3\％ | 4,000 | ${ }_{5,350}^{\text {5．361 }}$ | ${ }_{1}^{1,350}$ | 343．7\％ |
 | 60．5\％ | 4，000 | 5，291 | 1，291 | 32．3\％ |
 | 61．7\％ 6 | 4,000 4,000 | 5,125 4,926 | ${ }_{\substack{1,125 \\ 926}}$ | ${ }_{2}^{28.1 \%}$ |
 | 64．2\％ | 4，000 | 4，668 | 668 | 16．7\％ |
 | 65．4\％ | 4，000 | 4.660 | 660 | 16．5\％ |
 | 66．7\％ | 4，000 | 4，527 | 527 | 13．2\％ |
 | －67．9\％ | 4，000 | 4，498 | 498 | ${ }^{12.5 \%}$ |
 | 69．1\％ 70.4% | 4,000 4.000 | 4，484 | 484 | ${ }^{12.19 \%}$ |
 | 71．6\％ | 4，000 | 4.390 | 390 | 9．8\％ |
 | 72．8\％ | 4，000 | 4，390 | | 9．8\％ |
 | 74．1\％ | 4，000 | 4，390 | 390 | 9．8\％ |
 | 75．3\％ | 4，000 | 4．270 | | ${ }_{\text {c }}^{6.8 \%}$ |
 | 76．5\％ | 4，000 | 4，134 | 134 | 3．4\％ |
 | 77．8\％ | 4,000 4,000 | 4.000 4.000 | 0 | 0．0\％ |
 | 79．0\％ | ${ }_{4,000}^{4,000}$ | 4，0000 | 0 | 0．0\％ |
 | 81．5\％ | 4，000 | 4.000 | 0 | 0．0\％ |
 | － | 4,000 4,000 | 4,000 4,000 | 0 | 0．0\％ |
 | 85．2\％ | 4，000 | 4，000 | 22 | 0．0\％ |
 | ${ }^{86.4 \%}$ | ${ }^{3,648}$ | 4，000 | ${ }^{352}$ | 9．6\％ |
 | －${ }^{87.7 \%}$ 88．9\％ | 3,000
 3,000 | 3,921
 3,731 | ${ }_{731}^{921}$ | ${ }^{30.7 \%}$ |
 | 90．1\％ | 3，000 | 3，703 | 703 | ${ }_{23.4 \%}^{24.4 \%}$ |
 | 91．4\％ | 3，000 | 3，082 | 82 | 2．7\％ |
 | 92．6\％ | 3，000 | 3，000 | 0 | 0．0\％ |
 | 93．8\％ | 3，000 | 3，000 | 0 | 0．0\％ |
 | ${ }_{96.3 \%}^{95.1 \%}$ | 3,000 3 3 | 3，000 | 0 | － |
 | 97．5\％ | 3，000 | 3，000 | 0 | 0．0\％ |
 | 98．8\％ | 3，000 | 3，000 | 0 | 0．0\％ |
 | 100．0\％ | 3，000 | 3，000 | 0 | 0．0\％ |

 ## Table SW-33-b

 | $\begin{gathered} \text { Percent } \\ \substack{\text { Erceance } \\ \text { Probability }} \\ \text { lef } \end{gathered}$ | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Without Proiect | WSII 2030 With Project | | |
 | | Monthy Outtow (CFS) | Monthly Outiow (c) | Difference (CFS) | |
 | | 244,993 | 244,921 | -72 | 0.0\% |
 | 1.2\% | 243,749 | 241,709 | 2.041 | |
 | 2.5\% | 225,272 | 219,940 | 5.32 | |
 | 3.7\% | 2068.805 | 207,015 | 210 | |
 | 4.9\% | 190,017 | 190,898 | 881 | |
 | 6.2\% | 187,438 | 187,322 | -116 | .1\% |
 | 7.4\% | 167,461 | 162,394 | -5,0 | |
 | 8.6\% | 163,137 | 159,603 | -3,533 | \% |
 | 9.9\% | 158,467 | 155.839 | -2,628 | \% |
 | 11.1\% | 146,685 | 144,705 | -1,979 | -1.3\% |
 | 12.3\% | 142,680 | 141,613 | -1,068 | -0.7\% |
 | 13.6\% | 135,069 | 134,935 | -134 | -0.1\% |
 | 14.8\% | 116,593 | 116,769 | 176 | |
 | 16.0\% | 115.670 | 113,109 | -2,561 | |
 | 17.3\% | 110,135 | 110,126 | -9 | |
 | 18.5\% | ${ }_{106610}^{108,366}$ | 1006,106 | ${ }_{\text {- }}$ | ${ }^{-0.5 \%}$ |
 | 21.0\% | 99,915 | 96,614 | -3,301 | |
 | 22.2\% | ${ }^{93,712}$ | 90,461 | -3,251 | 3.5\% |
 | 22.5\% | ${ }^{89,920}$ | 89,644 | -277 | |
 | 25.9\% | ${ }_{84,128}$ | 89046 | 4.918 | |
 | 27.2\% | 76,739 | 76,711 | -28 | 0.0\% |
 | 28.4\% | ${ }^{76,490}$ | 74,165 | -2,324 | -3.0\% |
 | 23.6\% | 76,117 | 73,277 | -2,841 | -3.7\% |
 | 30.9\% | ${ }^{70,327}$ | 66,436 | -3,892 | -5.5 |
 | 32.1\% | ${ }^{68,234}$ | 64,467 | -3,767 | -5.5\% |
 | 33.3\% | ${ }_{66,523}$ | ${ }^{64,302}$ | -2,222 | -3.3\% |
 | 34.6\% | ${ }^{64,993}$ | ${ }^{62,938}$ | -1,975 | -3.0\% |
 | 35.8\% | ${ }^{64,321}$ | ${ }^{61,265}$ | -3,055 | -4.7\% |
 | 37.0\% | 62,265 5 59 | 59,147 | -3,118 | -5.0\% |
 | | -59,953 | ${ }^{59,811}$ | -1,141 | 崖 |
 | 39.5\% | 58,699 | 57,168 5 5932 | -1,440 | 5\% |
 | ${ }^{42} 4.0$ \% | 57,813 51,133 | ${ }_{\text {cosem }}^{55,932}$ | -1,881 | -3.7\% |
 | - ${ }_{43.2 \%}^{42.0 \%}$ | 51,133 4.557 | ${ }^{50,276} \begin{aligned} & 48,773\end{aligned}$ | -887 | |
 | 44.4\% | 49,382 | 46,608 | -2,774 | -5.6\% |
 | 45.7\% | 46,188 | 46,161 | -27 | |
 | | 45,136 | 44,202 | -935 | |
 | 49.4\% | ${ }^{44,199}$ | ${ }_{4}^{43,423}$ | -771 | -1.8\% |
 | 50.6\% | ${ }_{40,383}$ | 36,843 | ${ }_{-3,540}$ | -8.8\% |
 | 51.9\% | 38.480 | 34,578 | -3,902 | -10.1\% |
 | 53.1\% | 36,454 | 34,382 | -2,072 | -5.7\% |
 | 54.3\% | ${ }^{36,294}$ | ${ }^{33,927}$ | -2,367 | -6.5\% |
 | 55.6\% | 33,303
 32,25 | ${ }^{33,213}$ | -90 | -0.3\% |
 | | 32,258 | ${ }^{30,288}$ | -1,970 | -6.1\% |
 | 55..3\% | 30,383 | ${ }_{\text {20,0,38 }}^{26,038}$ | -4,345 | -14.3\% |
 | 66.5\% | ${ }_{28,598}^{2,102}$ | ${ }_{\text {2, }}^{2,4,954}$ | ${ }_{-3,644}^{-3,49}$ | ${ }^{-12.0 \%}$ |
 | 61.7\% | 27,901 | 24,922 | -2,979 | -10.7\% |
 | 63.0\% | ${ }^{27,746}$ | 23,217 | -4,529 | -16.3\% |
 | 64.2\% | 26,120 24.450 | 23,207 ${ }_{22} 2955$ | -2,913 | -11.2\% |
 | 66.7\% | 24,450 | | -1,484 | -6.1\% |
 | 67.9\% | ${ }_{\text {23,384 }}^{24,420}$ | ${ }_{21,633}^{22,760}$ | -1,751 | -7.7. ${ }_{\text {- }}^{\text {- }}$ |
 | 69.1\% | 22,505 | ${ }^{21,457}$ | ${ }_{-1,049}$ | -4.7\% |
 | 70.4\% | ${ }^{21,612}$ | 20,397 | -1,214 | 年\% |
 | 72.8\% | $\underset{\substack{21,491 \\ 21,427}}{2,1802}$ | ${ }^{20,290} 10808$ | -1,619 | --7.6\% |
 | 74.1\% | 20,489 | 17,929 | -2,560 | -12.5\% |
 | 75.3\% | 20,326 | 17,728 | -2,598 | -12.8\% |
 | 77.5\% | 19,843 | 17,626 | -2,217 | 11.2\% |
 | 77.8\% | 19,7765 | 177489 | -2,276 | -11.5\% |
 | 79.0\% | 17,723 | 17,354 | -369 | -2.1\% |
 | - 8 80.2\%\% | 17,214 | 15.899 | -1,315 | -7.6\% |
 | 81.5\% | 17,214 | ${ }^{15,779}$ | -1,435 | -8.3\% |
 | 884.0\% | ${ }^{17.058}$ | ${ }^{115.524}$ | -1,534 | -9.0\% |
 | 85.2\% | ${ }^{16,442}$ | $14,4,24$ 14,290 | -2,152 | ${ }_{\text {- }}$ |
 | 86.4\% | 16,387 | 14,112 | -2,275 | -13.9\% |
 | ${ }^{87.7 \%}$ | 13,824 | 12,265 | -1,559 | -11.3\% |
 | 88.9\% | ${ }^{12,296}$ | ${ }^{11,762}$ | 1,234 | -9.5\% |
 | 91.4\% | 12,359 | 11,400 | -959 | -7.7\%\% |
 | 92.6\% | 11.879 | 11,400 | -479 | -4.0\% |
 | 93.8\% | 11.400 | ${ }^{11,400}$ | 0 | 0.0\% |
 | 99.3\% | ${ }_{111,145}^{11400}$ | ${ }^{111,145}$ | -879 | ${ }_{-7.9 \%}^{-2.2 \%}$ |
 | 97.5\% | 10,174 | 9,885 | -290 | -2.8\% |
 | | 9,215 | ${ }^{9.688}$ | 474 | 5.1\% |
 | 100.0\% | 8,049 | 9,281 | 1,233 | 15.3\% |

 | | | June | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | WSII 2 2303 Without
 Proiet | Wsip 2030 With Project | Absolute | Relative |
 | Probability | Monthly Outiow（CFS） | Monthy Outtiow（CFS） | （CFF） | Difference（\％） |
 | 0．0\％ | ${ }^{38,493}$ | 39，261 | 768 | 2．0\％ |
 | 1．2\％ | 27，087 | ${ }^{31,174}$ | 4，087 | 15．1\％ |
 | ${ }^{2.5 \%}$ | ${ }^{16,886}$ | ${ }^{17,324}$ | 438 | 2．6\％ |
 | 4．9\％ | ${ }^{14.51818}$ | ${ }^{115,500}$ | ${ }_{482}$ | 3．3\％ |
 | 6．2\％ | ${ }^{12,837}$ | ${ }^{12,534}$ | －303 | －2．4\％ |
 | 7．4\％ | 12，525 | 12,525 | | |
 | 8．6\％ | 11,840 | 10，261 | 1，579 | |
 | 9．9\％ | 9，224 | 9，998 | 774 | |
 | 11．1\％ | 8，979 | 9，707 | ${ }^{728}$ | 8．1\％ |
 | | 8，931 | 9，704 | 773 | 8．7\％ |
 | 13．4\％\％ | ${ }^{8.802}$ | 9，450 | 648 | 74\％ |
 | 14．8\％ | 8，740 | 9，448 | 709 | 8．1\％ |
 | 16．0\％ | 8，687 | ${ }_{9,278}$ | 592 | 6．8\％ |
 | 17．3\％ | ${ }_{8}^{8,483}$ | 9，172 | 690 | 8．1\％ |
 | 18．5\％ | ${ }_{8}^{8,126}$ | 9，032 | 906 | 11.2 |
 | 19．8\％ | 7，925 | ${ }^{8.870}$ | 945 | 11．9\％ |
 | 21．0\％ | 7，727 | ${ }^{8.838}$ | 1，110 | 14．4\％ |
 | ${ }_{2}^{22.2 \%}$ | 7，722 | ${ }^{8.813}$ | 1.097 | ${ }^{14.19 \%}$ |
 | 23．5\％ | 7.700 | 8.687 | 987 | 12.28 |
 | － $24.4 .79 \%$ | 7,545
 7.243 | ${ }_{8}^{8,165}$ | ${ }_{864}^{620}$ | 8．2\％ |
 | ${ }^{2} 27.2 \%$ | 7.243 7,243 | ${ }_{8,050}^{8,107}$ | ${ }_{807}^{804}$ | 111．\％ |
 | 28．4\％ | 7.100 | 7，958 | 858 | 12．1\％ |
 | 29．6\％ | 7，100 | 7.774 | 674 | |
 | 30．9\％ | 7，100 | 7，700 | 600 | 8．5\％ |
 | 32．1\％ | 7，100 | 7，642 | 542 | 7．6\％ |
 | 33．3\％ | 7，100 | 7．573 | 473 | 6．7\％ |
 | 34．6\％ | 7，100 | 7，522 | 422 | |
 | 年5．8\％ | 7，100 | 7，370 | 270 | 3．8\％ |
 | 37．0\％ | 7，100 | 7，342 | 242 | 3．4\％ |
 | | 7，100 | 7，243 | 143 | 2．0\％ |
 | 39．5\％ | 7，100 | 7，152 | 52 | 0．7\％ |
 | 40.7% 420% | 7，100 | 7，126 | ${ }^{26}$ | 0．4\％ |
 | 42．0\％ | 7，100 | 7，120 | ${ }^{20}$ | 0．3\％ |
 | ${ }^{43.2 \%}$ | 7,100 | 7.105 | 5 | 0．1\％ |
 | ${ }^{44.4 .7 \%}$ | 7,100 | 7,100 | 0 | 0．0\％ |
 | 46．9\％ | 7.100 | 7,100 | | 0．0\％\％ |
 | ${ }_{48.9 \%}^{46.9 \%}$ | 7,100 | 7，100 | 0 | 0．0\％ |
 | 48．4\％ | 7.100 | 7,100 | 0 | 0．0\％ |
 | 50．6\％ | 7,100 7100 | 7,100 7100 | \bigcirc | 0．0\％ |
 | 51．9\％ | 7，100 | 7，100 | 0 | 0．0\％ |
 | 年53．19\％ | 7，064 | 7.100 | 36 | |
 | 54．3\％ | ${ }_{7}^{7,057}$ | 7，100 | ${ }_{4}^{43}$ | 0．6\％ |
 | 年55．8\％ | 7,046 6.974 6.9 | 7，100 | 54 | 0．8\％ |
 | 58．0\％ | 6，938 | 7,100 | ${ }_{162}^{126}$ | ${ }_{\text {2．3\％}}$ |
 | 59．3\％ | 6，923 | 7，100 | 177 | 2．6\％ |
 | 60．5\％ | 6，906 | 7.094 | 188 | 2．7\％ |
 | ${ }^{61.7 \%}$ | ${ }_{6}^{6,875}$ | 7，070 | 195 | 2．8\％ |
 | 63．0\％ 64.2% | ${ }^{6.875}$ | 7,046 | 171 | 2．5\％ |
 | 64.2% 6.4% | ${ }^{6.875}$ | 7，004 | ${ }^{129}$ | 1．9\％ |
 | ${ }_{\text {c }}^{65.4 \%}$ 6．7\％ | ${ }_{\text {c }}^{6.780}$ | | ${ }_{131}^{125}$ | － 1.80% |
 | 67．9\％ | 6，719 | 6，878 | 159 | 2．4\％ |
 | 69．1\％ | 6，710 | ${ }^{6.875}$ | 165 | 2．5\％ |
 | 70．4\％ | 6，692 | ${ }^{6.811}$ | 119 | |
 | 71．6\％ | | | 10 69 | － |
 | 74．1\％ | 6，563 | ${ }_{6,575}^{6,566}$ | 13 | 0．2\％ |
 | 75．3\％ | 6，555 | 6.513 | －42 | －0．6\％ |
 | 76．7．8\％ | 6，492 | 6，463 | | ${ }^{-0.4 \%}$ |
 | 79．0\％ | 隹 6.374 | ${ }_{6}^{6,435}$ | 13 | ${ }^{1.14 \%}$ |
 | 80．2\％ | ${ }_{6,250}^{6,20}$ | ${ }_{6,315}^{6,356}$ | ${ }_{65}^{86}$ | 1．0\％ |
 | 81．5\％ | 6，094 | 6，258 | 164 | 2．7\％ |
 | 82．7\％ | 6，085 | 6，250 | 165 | 2．7\％ |
 | 84.0% 8.2% | ${ }_{5}^{5,921}$ | 6，233 | 312 | 5．3\％ |
 | －${ }_{\text {85．2\％}} 8.4 \%$ | 5.901
 5.887 | c．0，094 | 119 | －${ }_{\text {3．3\％\％}}$ |
 | 87．7\％ | 5.821 | 5.940 | 119 | 2．0\％ |
 | 88．9\％ | 5．818 | 5，917 | 100 | 1．7\％ |
 | 90．1\％ | 5．673 | ${ }_{5}^{5.818}$ | 145 | 2．6\％ |
 | 91．4\％ | 5.640 5 5 5 | 5,745 5 5 522 | 105 | 1．9\％\％ |
 | ${ }_{9}^{92.8 \%}$ | 5.571
 5054 | | 151 | 2．7\％ |
 | 95．1\％ | ${ }_{4,517}^{5,054}$ | ${ }_{5,327}^{5.683}$ | ${ }_{810}^{629}$ | ${ }^{12.49 \%}$ |
 | 96．3\％ | 4，248 | 4，585 | ${ }^{337}$ | 7．9\％ |
 | 97．5\％${ }^{98.8 \%}$ | 4，075 | 4，368 | 292 | 7．2\％ |
 | 98．8\％ | 4,000 | 4，000 | 0 | 0．0\％ |
 | 100．0\％ | 4，000 | 4，000 | | 0．0\％ |

 Figure SW-34-b
 Delta Cross Channel, Monthly Flow

 ## Table SW -34-b ross C Chanel, Monthy

 ## Table SW －34－b ross C Chanel，Monthy

 | | | Fobruary | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | WSIP 2030 Without | WSIP 2030 With Project | Absolute | Reative |
 | Probability | Monthy Fow（CFS） | Monthy flow（CFFS） | （CFS） | Difference ${ }^{(\%)}$ |
 | 0．0\％ | 11，753 | 11，755 | 2 | 0．0\％ |
 | 1．2\％ | ${ }^{11,673}$ | 11,700 | 27 | 0．2\％ |
 | 2．5\％ | ${ }^{11,600}$ | ${ }^{11,587}$ | -14 | －0．1\％ |
 | 3．7\％ | 11.520 | 11.531 | 10 | 0．1\％ |
 | 4．9\％ | 11,377 | ${ }^{11,368}$ | －9 | －0．1\％ |
 | 6．2\％ | 11,286 11095 1 | 11,286 111094 1 | －1 | 0．0\％ |
 | 7．4\％ | ${ }^{11,095}$ | 111094 | －1 | 0．0\％ |
 | 8．6\％ | ${ }^{11,077}$ | ${ }^{11,032}$ | －45 | －0．4\％ |
 | 9．9\％ | 111,034 | ${ }^{11,006}$ | －28 | －0．3\％ |
 | ${ }^{11.12 \%}$ | 10,674 10.447 | 10,673 10.413 | ${ }_{-34}$ | －0．0\％ |
 | 13．6\％ | 10，433 | 10，397 | ${ }^{-36}$ | －0．3\％ |
 | 14．8\％ | 10，410 | ${ }^{10,329}$ | －81 | －0．8\％ |
 | 16．0\％ | 10，302 | 10，302 | 0 | |
 | 17．3\％ | 10，096 | 10，100 | 4 | 0．0\％ |
 | 18．5\％ | 9，922 | 9.865 | －57 | －0．6\％ |
 | 19．8\％ | 9，883 | 9.851 | －32 | －0．3\％ |
 | ${ }^{21.0 \%}$ | ${ }^{9.836}$ | 9．690 | －146 | －1．5\％ |
 | ${ }_{2}^{22.5 \% \%}$ | ${ }_{9,575}^{9,619}$ | ${ }_{9,542}^{9,669}$ | 49 -33 | －0．3\％ |
 | 24．7\％ | 9，429 | 9，229 | －200 | －2．1\％ |
 | 25．9\％ | 9,361 | ${ }_{9}^{9,225}$ | －136 | －1．4\％ |
 | 27．2\％ | 9，315 | 9，207 | －108 | －1．2\％ |
 | 28．4\％ | －8，706 | | －22 | －0．3\％ |
 | 29．6\％ | －8．635 | 8，478 | －157 | －1．8\％ |
 | 30．9\％ | 8，357 | ${ }^{8,192}$ | －165 | －2．0\％ |
 | 32．1\％ | ${ }_{8,191}^{8,15}$ | 8,165
 7787 | －27 | －0．3\％ |
 | 33．3\％ | 8，115 | －7，787 | －329 | －4．0\％ |
 | 34．6\％ | 7,898 7834 | 7,742
 7737 | －155 | －2．0\％ |
 | ${ }^{35.8 \%}$ 37．0\％ | 7,834 7,808 | 7,537 7 | －962 | － |
 | 38．3\％ | 7.685 | 7,488 | －197 | |
 | 39．5\％ | 7，661 | 7,443 | －218 | |
 | 42．0\％ | 7，058 | 7，136 | 77 | － |
 | 43．2\％ | 6，946 | 6，945 | －1 | 0．0\％ |
 | 44．4\％ | 6，759 | 6,761 | 2 | 0， |
 | 45．7\％ | 6，569 | 6，269 | -301 | 4.6 |
 | 46．9\％ | ${ }_{6}^{6,467}$ | 6，236 | －232 | －3．6\％ |
 | 48．19\％ | 6，228 | 6，204 | －24 | －0．4\％ |
 | 49．4\％ | 5，768 | 5.621
 5435 | －147 | －2．5\％ |
 | 51．9\％ | ${ }_{5,663}^{5,64}$ | ${ }_{5,265}^{5,435}$ | －398 | －7．7．0\％ |
 | 53．1\％ | 5．588 | 5，228 | －360 | －6．4\％ |
 | 54．3\％ | $\stackrel{5,362}{ }$ | 5，068 | －295 | －5．5\％ |
 | 年55．9\％ | （5.235
 5.222 | 4,983 4.830 | －${ }_{-392}$ | －4．8\％ |
 | 年56．8\％ | （ ${ }_{\text {5，2，222 }}$ | ${ }_{4}^{4.830}$ | －${ }_{-154}$ | －7．5\％ |
 | 59．3\％ | ${ }_{4,820}^{5045}$ | ${ }_{4,518}^{4,591}$ | －${ }_{\text {－}}$ | －6．3\％ |
 | 60．5\％ | 4,724 | 4.473 | －251 | －5．3\％ |
 | 61．7\％ | 4，655 | 4，394 | －261 | －5．9\％ |
 | 6．4．2\％ | 4,542 | ${ }_{4,245}^{4,24}$ | －297 | －6．5\％ |
 | 65．4\％ | 4，530 | 4.229 | －300 | －6．6\％ |
 | 66．7\％ 67.9% | ${ }_{4}^{4.465}$ | 4，100 | －365 | －8．7\％ |
 | 69．1\％ | 4，289 | 3，990 | －300 | －7．0\％ |
 | 70．4\％ | 4，248 | 3，988 | －260 | －6．1\％ |
 | 71．6\％ | ${ }_{4}^{4,221}$ | 3，938 | －283 | ${ }^{-6.7 \%}$ |
 | 72．8\％ | － $\begin{aligned} & \text { 3，993 } \\ & 3\end{aligned}$ | 退， 8.823 | －170 | －4．3\％ |
 | 74．1\％ 7 | 3，935 | ${ }^{3,756}$ | －179 | －4．6\％ |
 | 75．3\％ | 3，880 | ${ }^{3.513}$ | －367 | －9．5\％ |
 | 76．5\％ | －3.827
 3,762 | 3，472 | －355 | －9．3\％ |
 | 77．8\％ | －3,762
 3.628 | 3.446 3 3 | －315 | －8．4\％ |
 | 80．2\％ | －${ }_{\text {j，511 }}$ | 3，356 | －256 | －4．4\％ |
 | 81．5\％ | 3，451 | 3，335 | －116 | －3．4\％ |
 | － 8 827\％ | ＋3，4263,408 | －3,242
 3,225 | －184 | －5．4\％ |
 | 85．2\％ | 3，374 | 3，202 | －172 | －5．1\％ |
 | ${ }^{86.4 \%}$ | －3，286 | 3，175 | －112 | －3．4\％ |
 | － $87.7 .7 \%$ | ${ }_{\substack{3,273 \\ 3,252}}$ | ${ }_{\text {3，107 }}^{3,161}$ | －111 | －3．4\％ |
 | 90．1\％ | ${ }_{\text {3，241 }}^{3,208}$ | 3，081 | －160 | －4．9\％ |
 | 914．4\％ | 3，208 | 2，987 | ${ }^{221}$ | |
 | 92．6\％ | 3，107 | 2，969 | －138 | －4．4\％ |
 | ${ }^{93.85 \%}$ | 3,024
 2,994 | 2,841 2,832 | －184 | ${ }_{-5.5 \%}^{-6.1 \%}$ |
 | 96．3\％ | ${ }_{2}^{2,691}$ | ${ }_{2,832}^{2,81}$ | 141 | 5．2\％ |
 | 975\％ | 2，582 | 2，619 | ${ }^{37}$ | 1．4\％ |
 | 98．8\％
 1000% | ${ }_{2}^{2,581}$ | ${ }_{2386}^{2,457}$ | －74 105 | －-2.9% |

 | $1.2 \% \%$ | 11,518 | 11,518 |
 | :--- | :--- | :--- |
 | 2.5% | 11,242 | 11,245 |

 | 2．5\％ | ${ }^{11,242}$ | 11.245 | 3 | 0．0\％ |
 | :---: | :---: | :---: | :---: | :---: |
 | 3．7\％ | 11，129 | 11，050 | －78 | －0．7\％ |
 | 4．9\％ | 10,815 10.541 | 10，815 | 79 | 0．0\％ |
 | | 10.541 10.366 | 10.462 10,293 | -79 -74 | －0．8\％ |
 | （7．4\％\％ | ${ }_{\substack{10,667}}^{10.61}$ | ${ }_{\text {9，678 }}$ | －74 | －0．7\％ |
 | 9．9\％ | 9,480 | ${ }_{9,320}$ | －160 | －1．7\％ |
 | 11．1\％ | 9，322 | 9，241 | 81 | －0．9\％ |
 | 12．3\％ | 9，213 | 9，214 | 1 | 0．0\％ |
 | 13．6\％ | 9，180 | 9，148 | ${ }^{33}$ | 4\％ |
 | 14．8\％ | 9，121 | 9，121 | 0 | 0．0\％ |
 | 16．0\％ | ${ }^{8,957}$ | 8，925 | ${ }^{32}$ | 4\％ |
 | 17．3\％ | 8，739 | 8.766 | 27 | 0．3\％ |
 | 18．5\％ | 8.710 | 8.711 | 1 | 0．0\％ |
 | 19．8\％ | 8.595 | 8,433 | -163 | －1．9\％ |
 | 21．0\％ | ${ }^{8.374}$ | 8，235 | -139 | －1．7\％ |
 | 22．2\％ | 8，274 | 8，231 | －43 | －0．5\％ |
 | ${ }^{23.5 \%}$ | ${ }_{8}^{8,248}$ | 8.196 | －51 | －0．6\％ |
 | 24．7\％ | 7，744 | 7，769 | 25 | 0．3\％ |
 | 25．9\％ | 7,715 | 7.535 | －180 | －2．3\％ |
 | 27．2\％ | 7,708 | 7，454 | －254 | 源 |
 | ${ }^{28.4 \%}$ | 7.641 | 7.184 | －456 | －0．3\％ |
 | 29．6\％ | ${ }_{7}^{7,396}$ | 7.116 | －287 | |
 | 32．1\％ | 6.985 | 6.632 | －－353 | －5．1\％ |
 | 33．3\％ | 6，711 | 6，487 | －223 | －3．3\％ |
 | 34．6\％ | 6，601 | 6，290 | －311 | －4．7\％ |
 | 35．8\％ | 6，297 | 6，206 | 91 | －1．4\％ |
 | 37．0\％ | 6，296 | 6，122 | －174 | －2．8\％ |
 | 38．3\％ | 6，168 | 6，084 | 84 | 1．4\％ |
 | 39．5\％ | 6，158 | 5，926 | －233 | －3．8\％ |
 | 40．7\％ | ${ }^{6.095}$ | 5．881 | －215 | －3．5\％ |
 | 42．0\％ | 5，931 | 5，713 | －219 | －3．7\％ |
 | 43．2\％ | 5．887 | 5，308 | －579 | －9．8\％ |
 | 44．4\％ | 5．881 | 5，231 | －650 | －11．1\％ |
 | 45．7\％ | 5．528 | 5，195 | －333 | －6．0\％ |
 | 46．9\％ | 5，118 | 4，904 | －215 | －4．2\％ |
 | 48．1\％ | 5.055 | 4．568 | －487 | －9．6\％ |
 | 49．4\％ | 4，965 | 4，519 | -446 | －9．0\％ |
 | 50．6\％ | 4．865 | 4，503 | －361 | －7．4\％ |
 | 51．9\％ | 4，670 | 4，251 | -419 | \％ |
 | 53．10\％ | 4，494 | 4，116 | －378 | －8．46 |
 | 55．6\％ | ${ }_{4}^{4.245}$ | 4.079 | －166 | －3．9\％ |
 | 56．8\％ | 4，235 | 4.046 | －189 | －4．5\％ |
 | 58．0\％ | 4，232 | 3，853 | 380 | 9．0\％ |
 | 59．3\％ | 4，159 | 3，819 | －340 | －8．2\％ |
 | 60．5\％ | 4，080 | 3，804 | 77 | 6．8\％ |
 | 61．7\％ | 4，044 | 3，769 | －275 | －6．8\％ |
 | 63．0\％ | 4，044 | 3，690 | －354 | －8．8\％ |
 | 64．2\％ | 3，958 | 3，687 | －271 | －6．9\％ |
 | 65．4\％ | 3，889 | 3，686 | －204 | 2\％ |
 | 66．7\％ | 3，880 | 3，679 | －201 | －5．2\％ |
 | 67．9\％ | 3，854 | 3，675 | －179 | －4．6\％ |
 | 69．1\％ | 3，823 | 3，462 | －361 | －9．5\％ |
 | 70．4\％\％ | 3，791 | 3，407 | －383 | －10．1\％ |
 | 71．6\％ | 3，689 | 3，391 | －299 | －8．1\％ |
 | 72．8\％ | －${ }_{\text {3，553 }}$ | －3，399 | －175 | －4．9\％ |
 | 74．1． | 3，552 | － | －266 | －7．5\％ |
 | 75．3\％ | ${ }^{3,413}$ | 3，278 | －135 | －4．0\％ |
 | 76．5\％ | ${ }_{\substack{3,432 \\ 3,33}}$ | 3，275 | －136 | － |
 | 79．0\％ | 3,280 3 | 3,142
 3,275 | -138 | －4．2\％ |
 | 80．2\％ | 3，265 | 3，081 | -184 | －5．6\％ |
 | 81．5\％ | 3，151 | 2，919 | －232 | 年\％ |
 | 84．0\％ | 3，023 | ${ }_{2,813}^{2,852}$ | ${ }_{-210}$ | －7．0\％ |
 | 85．2\％ | 2,978 | 2.813 | -165 | －5．6\％ |
 | 86．4\％ | 2，739 | 2，813 | 74 | 2．7\％ |
 | 877\％ | 2，724 | 2.813 | 88 | 3．2\％ |
 | 88．9\％ | 2，715 | 2，757 | ${ }^{42}$ | 1．5\％ |
 | 90．1\％ | 2，695 | 2.728 | 34 | 1．2\％ |
 | 91．4\％ | 2，677 | 2,706 | 29 | 1．1\％ |
 | 923．8\％ | 2,666 2,649 | ${ }_{2,652}^{2,673}$ | ${ }_{4}^{8}$ | 0．1\％ 0 |
 | 95．1\％ | 2.602 | 2.613 | 11 | 0．4\％ |
 | 96．3\％ | 2，510 | ${ }_{2}^{2,488}$ | ${ }^{22}$ | －0．9\％ |
 | 97．5\％ | 2，406 | 2，477 | $\stackrel{71}{2}$ | 3．0\％ |
 | | | | 2 | 0．1\％ |

 | 100．0\％ |
 | :--- |

 | Percent | | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Without Proiect | WSIP 2030 With Project | | Relative |
 | Probability | Montly Fow（C） | Monthl Fiow（CFS） | （CFS） | |
 | 1．2\％ | 11，131 | 11，131 | －1 | 0．0\％ |
 | 2．5\％ | 10，317 | 10，244 | ${ }^{73}$ | －0．7\％ |
 | 3．7\％ | 8.620 | 8.621 | 0 | 0．0\％ |
 | 4．9\％ | 8.164 | 8，253 | 89 | 1．1\％ |
 | 6．2\％ | 7.705 | 7，704 | －1 | 0．0\％ |
 | 7．4\％ | 7,647 | 7,631 | －15 | －0．2\％ |
 | 8．6\％ | 7,629 | 7，547 | －82 | －1．1\％ |
 | 9．9\％ | 7.540 | 7,459 | -81 | －1．1\％ |
 | 11．1．\％ | 7.488 | 7.387 | －101 | －1．3\％ |
 | ${ }^{12.36 \%}$ | 7，388 | 7，105 | －283 | －3．8\％ |
 | 13.6% 14.8% | | 6.041
 5.997 | －315 | －5．0\％ |
 | 14.8% 16.0% | c， $\begin{aligned} & 6,270 \\ & 6.044\end{aligned}$ | 5，997
 5.968
 1 | -763 -76 | －4．4\％ |
 | 17．3\％ | ${ }_{5,978}^{6,044}$ | ${ }_{5,861}^{5.968}$ | －117 | ${ }_{-2.0 \%}^{-1.3 \%}$ |
 | 18．5\％ | 5.786 | ${ }_{5}^{5,733}$ | －53 | |
 | 19．8\％ | ${ }^{5,733}$ | 5，507 | －227 | |
 | 21．0\％ | ${ }_{5}^{5.303}$ | 5，066 | －237 | －4．5\％ |
 | ${ }^{22.55 \%}$ | ${ }_{4,959}$ | 4.949 | －-20 | －0．2\％ |
 | 24．7\％ | 4，794 | 4，531 | －263 | －5．5\％ |
 | 25．9\％ | 4.464 | 4.471 | 7 | 0．2\％ |
 | 27．2\％ | 4，399 | 4,384 | －15 | －0．3\％ |
 | 28．4\％ | 4，290 | 4，274 | －16 | －0．4\％ |
 | 29．6\％ | 4,265 | 4.240 | －25 | －0．6\％ |
 | 30．9\％ | 4，235 | 4.219 | －16 | －0．4\％ |
 | 32．1\％ | 4,155 3 3,969 | 4,102 | －53 | －1．3\％ |
 | 33．3\％ | 3，969 | 3，9693786 | 0 | 0．0\％ |
 | 34．6\％ | －3,792
 3
 752 | | －6 | －0．2\％ |
 | | | －3.633
 3.537
 .5 | -119 -76 | －3．2\％ |
 | 37．3\％ | | －3,537
 3,421 | －768 | －2．24\％ |
 | 39．5\％ | 3，296 | ${ }_{3,327}$ | 32 | 1．0\％ |
 | ${ }^{40.7 \%}$ | ${ }_{\substack{3,275 \\ 3 \\ 3 \\ \text { 242 }}}$ | 3，271 | －4 | －0．1\％ |
 | ${ }^{42.2 \%}$ | 3,242
 3.030 | （ $\begin{aligned} & 3,220 \\ & 3.065\end{aligned}$ | ${ }_{34}$ | － |
 | 44．4\％ | 3.021 | 3，037 | 16 | 0．5\％ |
 | 45．7\％ | 3．019 | 3，015 | 4 | －0．1\％ |
 | ${ }^{46.9 \%}$ | 2,977
 2,954 | 3,015
 2.984
 1 | 37 30 | 1．3\％ |
 | 49．4\％ | 2，949 | 2，935 | －15 | －0．5\％ |
 | 50．6\％ | ${ }_{2,883}$ | 2，900 | 17 | 0．6\％ |
 | 51．9\％ | 2，856 | 2，859 | 3 | 0．1\％ |
 | 53．1\％ | 2，847 | 2，849 | 11 | 0．1\％ |
 | 54.3% 5.5% | ${ }_{2}^{2,828}$ | ${ }^{2,839}$ | 11 | 0．4\％ |
 | 55．6\％ | 2,824
 2764
 2 | 2，831 | 7 | 0．2\％ |
 | 58．\％ | | ${ }_{2}^{2,819}$ | 59 59 | ${ }_{2.1 \%}^{2.0 \%}$ |
 | 59．3\％ | 2，748 | 2，749 | 1 | 0．0\％ |
 | 60．5\％ | ${ }_{2}^{2,720}$ | 2，742 | ${ }^{22}$ | 0．8\％ |
 | 61.7%
 6.0% | 2.719 2.713 | 2.735
 2.720 | ${ }_{7}^{16}$ | ${ }_{0}^{0.6 \% \%}$ |
 | 64．2\％ | ${ }_{2,694}^{2,713}$ | ${ }_{2,710}^{2.720}$ | ${ }_{16}$ | 0．6．6\％ |
 | 65．4\％ | 2.691 | 2.699 | 8 | 0．3\％ |
 | －66．7\％${ }^{679 \%}$ | 2，629 | ${ }_{2}^{2,685}$ | $\stackrel{56}{51}$ | 2．1\％ |
 | －67．9\％ | ${ }_{2,617}^{2,624}$ | ${ }_{2,667}^{2,675}$ | 51 50 | 1．9\％ |
 | 70．4\％ | 2，604 | 2，638 | 34 | |
 | 71．6\％ | ${ }_{2}^{2,603}$ | 2，636 | ${ }^{33}$ | 1．3\％ |
 | 74．1\％ | ${ }_{2}^{2,5025}$ | 2，614 | 12 | 0．5\％ |
 | 75．3\％ | ${ }_{2,589}^{2,509}$ | 2,600 | 11 | 0．4\％ |
 | 76．5\％ | 2.585 | 2.595 | 10 | 0．4\％ |
 | 77．8\％ | 2，566 | ${ }_{2}^{2.592}$ | ${ }^{26}$ | 1．0\％ |
 | 79．0\％ | ${ }_{2}^{2,540}$ | ${ }_{2}^{2,588}$ | 48 | 1．9\％ |
 | － | 2，540 | ${ }_{2}^{2,582}$ | ${ }^{42}$ | 1．6\％ |
 | ${ }^{81.5 \%}$ 827\％ | ${ }_{2}^{2.516}$ | 2.539 2461 | ${ }^{23}$ | － |
 | 84．0\％ | ${ }_{2,452}^{2,51}$ | ${ }_{2,451}$ | ${ }_{-1}$ | －0．0\％ |
 | 85．2\％ | 2，427 | 2.446 | ${ }^{20}$ | 0．8\％ |
 | 86．4\％ | ${ }_{2}^{2.413}$ | ${ }_{2}^{2,402}$ | －12 | －0．5\％ |
 | 88．9\％ | ${ }_{2,366}^{2,378}$ | ${ }_{2,371}^{2,388}$ | 10 5 | －${ }_{0}^{0.4 \%}$ |
 | 90．1\％ | ${ }_{2}^{2,340}$ | 2,352 | 12 | 0．5\％ |
 | 914．4\％ | 2，330 | ${ }_{2}^{2,323}$ | －7 | －0．3\％ |
 | ${ }_{93,8 \%}^{92.6 \%}$ | ${ }_{2,283}^{2,303}$ | 2.304 2.302 | 1 | 0．9\％ |
 | 95．1\％ | 2，278 | ${ }^{2} 2883$ | 5 | 0．2\％ |
 | 997．5\％ | $2,2,70$ 208 208 | ${ }_{2}^{2,267}$ | －2 | －0．1\％ |
 | 98．8\％ | 2，098 | 2，099 | 1 | |
 | 100．0\％ | 2.054 | ${ }_{2,052}$ | －2 | ${ }_{-0.1 \%}$ |

 ## Table SW －34－b ross C Chanel，Monthy

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$ | $\begin{array}{\|c} \hline \text { WSIP } 2030 \text { Writhout } \\ \text { Proiect } \end{array}$ | WSIP 2030 With Project | Absolute | Relative Difference（\％） |
 | :---: | :---: | :---: | :---: | :---: |
 | Probability | Monthly Fow（CFS） | Monthly Fow（CFS） | （CF5） | |
 | 1．2\％ | 朗，830 | | | ${ }_{0}^{-4.4 \%}$ |
 | 2．5\％ | ${ }_{6.556}^{6.579}$ | ${ }_{6,547}^{6.607}$ | 27 | －0．1\％ |
 | 3．7\％ | 6．540 | 6，540 | 0 | 0．0\％ |
 | 4．9\％ | 6，517 | 6，515 | －2 | 0．0\％ |
 | 6．2\％ | ${ }_{6.516}$ | ${ }_{6.514}^{6.512}$ | －3 | 0．0\％ |
 | 7．4\％ | ${ }^{6.514}$ | ${ }_{6}^{6,512}$ | 16 | 0．0\％ |
 | 8．6\％ | 㐌，4900 | 㐌，5068 | 16
 37 | － $0.2 .2 \%$ |
 | 9．9\％ | 6．460 | 6，497 | 37 49 | 0．8．8\％ |
 | ${ }^{11.15 \%}$ 12．3\％ | $\underset{\substack{6,441 \\ 6,434}}{\text { c，}}$ | | ${ }_{53}$ | 0．8\％ |
 | 13．6\％ | 6，392 | 6.441 | 49 | |
 | 14．8\％ | 6，384 | 6，434 | 51 | |
 | 16．0\％ | ${ }_{6}^{6,382}$ | 6.429 | 47 | |
 | 17．3\％ | ${ }_{6}^{6,382}$ | 6，384 | 2 | |
 | 18．5\％ | ${ }^{6,376}$ | 6，376 | 1 | |
 | 19．8\％ | 6，372 | 6，372 | 0 | |
 | 21．0\％ | 6，346 | 6，364 | 17 | 0．3\％ |
 | ${ }^{22.2 \%}$ | ${ }_{6}^{6,323}$ | ${ }^{6,340}$ | 17 | 0．3\％ |
 | ${ }^{23.7 \%}$ | | | ${ }_{72}^{45}$ | ${ }^{0.7 \%}$ |
 | 25．9\％ | 6，230 | 6，284 | 54 | 0．9\％ |
 | 27．2\％ | 6，219 | 6，283 | 64 | 1．0\％ |
 | 28．4\％ | 6，208 | 6，265 | 57 | 0．9\％ |
 | 29．6\％ | ¢，6，195 | | ${ }_{68}^{68}$ | 1．1\％ |
 | 30．9\％ | 6，187 | ${ }^{6,2088}$ | 21 | 0．3\％ |
 | 32．1\％ | 㐌，1766 | | － | －0．0\％ |
 | 年 $\begin{aligned} & 33.3 \% \\ & 34.6 \%\end{aligned}$ | 㐌， 6.147 | ¢，1422 | ${ }_{42}^{-5}$ | ${ }^{-0.1 \%}$ |
 | 34.6% 35.8% | | ${ }_{6}^{6,12}$ | ${ }_{32}^{42}$ | 0．7\％\％ |
 | 37．\％ | 6,088 | 6，116 | ${ }_{27}$ | 0．5\％ |
 | 38．3\％ | ${ }_{6}^{6,076}$ | 6，092 | 16 | |
 | ${ }^{30.7 \%}$ | c，${ }_{6,065}^{6,065}$ | c，0，071 | 25 11 | 0．4．9\％ |
 | 42．0\％ | ${ }_{6}^{6,013}$ | 6,068 | 55 | 0．9\％ |
 | ${ }^{43.2 \%}$ | 5，988 | 6，067 | 79 | 1．3\％ |
 | ${ }^{44.4 \%}$ | | ${ }^{6,065}$ | ${ }^{82}$ | 1．4\％\％ |
 | 46．9\％ | 5.922 | 6，020 | 99 | 1．7\％ |
 | 48．1\％ | 5.905 | 6．017 | 111 | 1．9\％ |
 | 4．9．4\％ | 5，902 | ${ }_{\text {c，012 }}^{6.058}$ | 110 | 1．9\％ |
 | 50．6\％ | 5．899 | 5．958 | 59 | 1．0\％ |
 | 51．9\％ | ${ }_{5}^{5.858}$ | 5，950 | 92 | ${ }^{1.6 \%}$ |
 | ${ }^{53.15 \%}$ | ${ }_{\substack{5,821 \\ 5814}}$ | 5.949
 5929 | ${ }_{112}^{129}$ | ${ }_{\substack{2.2 \% \%}}^{1020}$ |
 | 55．6\％ | 5.83 | 5,921 | 119 | 2．0\％ |
 | 56．8\％ | ${ }_{5}^{5.802}$ | 5，902 | 101 | 1．7\％ |
 | 年58．0\％ | 5，734 5.712 | 5.884
 5.874 | 150 163 | 2．${ }_{2}^{2.9 \%}$ |
 | 60．5\％ | 5.706 | 5.857 | 151 | 2．7\％ |
 | ${ }^{61.7 \%}$ | 5，690 | 5．821 | ${ }^{131}$ | ${ }^{2.3 \%}$ |
 | 64．2\％ | ${ }_{5,635}^{5.684}$ | ${ }_{\text {cheme }}^{5.778}$ | 94 129 | ＋1．3\％ |
 | ${ }^{654.4 \%}$ | ${ }_{\text {5，593 }}^{5}$ | 5.742 | 149 | 2．7\％ |
 | －667．9\％ | ¢， $\begin{aligned} & 5,420 \\ & 5.382\end{aligned}$ | 5,706 5.690 | 286 308 | 5．3\％ |
 | 69．1\％ | ${ }_{5,337}^{5,362}$ | 5，685 | ${ }_{348}$ | ${ }_{6.5 \%}$ |
 | 70．4\％ | 5，317 | 5.674 | 357 | 6．7\％ |
 | 71．6\％ | 5，119 | 5，635 | 516 | 10．1\％ |
 | 72．8\％ | ¢，${ }_{4}^{5.953}$ | | ${ }_{6}^{547}$ | 10．8\％ |
 | 74.1% 753% | ${ }_{4}^{4.986}$ | 5，590 | ${ }_{9}^{604}$ | 12．1\％ |
 | 75．3\％ | 4，486 | | ${ }_{937}^{937}$ | 20．9\％ |
 | 76．7．8\％ | ${ }_{4}^{4,169}$ | 5,132 5.039 | 837 880 | 年 ${ }^{19.9 \% \%}$ |
 | 79．0\％ | 4.044 | 4.781 | 738 | 18．2\％ |
 | 80．2\％ | 4，040 | 4，781 | 741 | 18．3\％ |
 | 81．5\％ | 4.036 | 4，764 | ${ }^{728}$ | 18．0\％ |
 | ${ }^{824.0 \%}$ | ${ }_{3,966}^{4,031}$ | ${ }_{4.661}^{4.721}$ | 695 | 177．5\％ |
 | 85．2\％ | 3，922 | 4，371 | 449 | |
 | 86．4\％ | ${ }^{3,893}$ | 4，355 | 462 | 11．9\％ |
 | － | －3,863
 3,801 | 4.324 4.069 | 461 268 | 11．9\％ |
 | 90．1\％ | 3，733 | 3，995 | ${ }_{263}^{268}$ | 7．0\％ |
 | 91．4\％ | 3，673 | 3，916 | 243 | 6．6\％ |
 | 92．6\％ | ${ }^{3.655}$ | 3，910 | 255 | 7．0\％ |
 | 93．8\％ | 3，654 | 3，841 | 187 | 5．1\％ |
 | ${ }_{96.3 \%}^{95.1 \%}$ | 3,619
 3.524 | （e，3.836
 3.831 | ${ }_{307}^{217}$ | 8．0\％ |
 | 97．5\％ | 3，460 | 3，767 | 307 | 8．9\％ |
 | 98．\％ | 3，387 | 3，756 | 369 | 10．9\％ |
 | 100．0\％ | 3，320 | 3，652 | 332 | 10．0\％ |

 Old and Middle River, Monthly Flow

 Table SW- 3 -bb
 and Midde
 River,
 Wonthy
 Flo

 Table SW-35-b
 nd Midde River, Monthy Fow

 Table SW-35-b
 and Midele River, Wonthy Flo

 | 11.10 |
 | :--- |
 | 1.2.3, |

 21.0\%
 22.2%
 23.5%

 \begin{tabular}{l}
 -7.7

 \hline

 -45

 -43

 -37

 \hline
 \end{tabular}

 -458
 ${ }_{-434}$
 -373

 | | | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | $\begin{aligned} & \text { WSIP } 2030 \text { Without } \\ & \text { Proiect } \end{aligned}$ | WSIP 2030 With Project | Absolute Difference | |
 | Probability | Monthly Fow (CFFS) | Monthly Fow (CFSS) | (CFFS) | |
 | 1.2\% | ${ }_{-2173}$ | ${ }^{2}$ | | |
 | ${ }^{\text {2.5\% }}$ | ${ }_{-2,309}^{-2,17}$ | ${ }_{-3,217}^{-3.049}$ | -809 | |
 | 3.7\% | ${ }_{-2,400}$ | ${ }_{-3,576}$ | -1,176 | |
 | 4.9\% | -2,583 | -3.624 | -1,041 | |
 | 6.2\% | -2,623 | -3.708 | -1,086 | |
 | 7.4\% | -2,794 | -3,788 | -995 | |
 | 8.9\% | -2,940 | -3,799 | -859 | |
 | 9.9\% | -2,969 | -3,810 | -842 | |
 | 111.19\% | -3,074 | -4,125 | -1,051 | |
 | 12.3\% | -3,503 | -4,358 | -855 | |
 | 13.6\% | 年, -3.548 | -4,839 | -1,291 | |
 | 14.8\% | -3.642 | --4,997 | -1,356 | |
 | 16.0\% | -3.884 | --5.433 | -1,569 | |
 | (17.3\% | -3.899 | -5.633 | -1.735 | |
 | 18.5\% | -4, 4.140 | -5.987 | -1,963 | |
 | 21.0\% | - 4,480
 -4.54 | ${ }_{\text {- }}^{6.4,420}$ | ${ }_{-2,206}$ | |
 | ${ }^{22.2 \%}$ | -4.889 | -6,793 | -2,204 | |
 | ${ }^{23.4 .7 \%}$ | - $\begin{array}{r}\text { - } 5.393 \\ \hline \text {, }\end{array}$ | ${ }_{-7.613}^{-6.874}$ | -2.011
 -2.218 | |
 | 2.9\% | -6.011 | -7,897 | ${ }_{-1,886}$ | |
 | 27.2\% | -6,750 | -8,026 | -1,276 | |
 | | --7.064
 .7 .169 | -8,221 | -1,157 | |
 | 30.9\% | $-7,378$ | -8,738 | ${ }_{-1,360}$ | |
 | 32.1\% | -7,798 | -8,807 | -1,00 | |
 | 33.3\% | -8,332 | -8,854 | -522 | |
 | 34.6\% | -8,680 | -9,164 | -485 | |
 | 33.8\% | -8.854 | -9,226 | ${ }^{-372}$ | |
 | 37.0\% | -8,973 | -9,424 | -451 | |
 | 38.3\% | -9,070 | -9,540 | -471 | |
 | ${ }^{39.5 \%}$ | -9,088 | --9,599 | -471 | |
 | 42.0\% | $\xrightarrow[-9,395]{ }$ | $-9,832$ | ${ }_{-47}$ | |
 | 43.2\% | --9.685 | -9,938 | -253 | |
 | ${ }^{44.4 .7 \%}$ | | | | |
 | 46.9\% | -9,821 | --9,915 | -93 | |
 | 48.1\% | -9.832 | -9.984 | -152 | |
 | 4.9.4\% | -9,868 | -10,109 | -241 | |
 | 51.9\% | -9,939 | -10,159 | -220 | |
 | 53.1\% | -9,949 | -10,213 | -264 | |
 | 54.3\% | -10,036 | -10,232 | -195 | |
 | 55.6\% | --10,159 | -10,238 | -79 | |
 | | -10,195 | -10,273 | -78 | |
 | 58.0\% | - $\begin{aligned} & -10,213 \\ & -1023\end{aligned}$ | -10,292 | -79 | |
 | 60.5\% | -10,238 | -10,324 | -86 | |
 | 61.7\% | -10,265 | -10,336 | -71 | |
 | 63.0\% | --10,274 | -10,399 | -75 | |
 | 64.2% 654% | -10,292 -10295 | -10,378 -10397 | -86 | |
 | ${ }^{6.6 .7 \%}$ | -10,296 | -10,511 | -214 | |
 | 67.9\% | -10,349 | -10,522 | -173 | |
 | 69.1\% | -10,397 | -10,549 | -152 | |
 | 70.1.6\% | -10.549 | ${ }_{-10.678}$ | -129 | |
 | 72.8\% | -10,587 | -10,710 | -124 | |
 | 74.1\% | -10,651 | -10,739 | -88 | |
 | 75.3\% | -10,652 | -10,746 | 94 | |
 | 76.5\% | -10,679 | -10,752 | 74 | |
 | 77.8\% | -10,709 | -10,758 | 49 | |
 | 79.0\% | $-10,739$ -10752 | -10,796 | -57 | |
 | 81.5\% | -10,758 | -10,825 | -67 | |
 | 82.7\% | -10,795 | -10,847 | -52 | |
 | 84.0\% | -10,825 | -10,855 | -29 | |
 | 85.2\% | -10,847 | -10,898 | 51 | |
 | - 86.8 | -10,855 | -10,903 | -49 | |
 | 88.9\% | ${ }^{-10,9093}$ | ${ }^{-10,909}$ | ${ }_{16}$ | |
 | 90.1\% | -10,906 | -10,923 | -18 | |
 | 91.4\% | -10,919 | -10,925 | -6 | |
 | -92.6\% | -10,923 | -10.941 | -18 -24 | |
 | 95.1\% | -10,930 | -10,966 | -36 | |
 | 96.3\% ${ }_{\text {975\% }}$ | -10,966 -10,997 | -10,992 -10997 | ${ }^{27}$ | |
 | 98.8\% | ${ }_{-11,023}$ | -10,997 | 25 | |
 | 100.0\% | -11,119 | | | |

 Figure SW-36-b
 Total Banks Pumping Plant (SWP and CVP) and Jones Pumping Plant (CVP) , Monthly Diversion

 ## Table SW－36－b

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[t]{3}{*}{\[
 \begin{gathered}
 \text { Percent } \\
 \begin{array}{c}
 \text { Exceenance } \\
 \text { Probobaility }
 \end{array} \\
 \hline
 \end{gathered}
 \]} \& \multirow[t]{3}{*}{} \& \multicolumn{3}{|l|}{Octo} \\
 \hline \& \& WSIP 2033 W With Project \& Absolute \& \\
 \hline \& \& Monthly Diversion \& Difference \& Ifference（\％） \\
 \hline 0．0\％ \& \({ }^{111,280}\) \& \({ }^{11,280}\) \& 0 \& 0．0\％ \\
 \hline 1．2\％ \& 11，280 \& 11,28 \& O \& 0．0\％ \\
 \hline 2．5\％ \& 10，374 \& 10，515 \& 141 \& 1．4\％ \\
 \hline 3．7\％ \& 10，304 \& 10，215 \& －88 \& \\
 \hline 4．9\％ \& 9，912 \& 9，881 \& \({ }^{31}\) \& \\
 \hline 6．2\％ \& 9，186 \& 9．516 \& 330 \& 3．6\％ \\
 \hline 7．4\％ \& \({ }^{8.888}\) \& 9，258 \& 370 \& \\
 \hline 8．6\％ \& 8.562 \& 9，228 \& 666 \& 7．8\％ \\
 \hline 9．9\％ \& 8，494 \& 9，134 \& 639 \& 7．5\％ \\
 \hline 11．1\％ \& \({ }_{8,486}\) \& 9，038 \& 552 \& 6．5\％ \\
 \hline \({ }^{12.3 \%}\) \& \({ }_{8}^{8,337}\) \& \({ }_{8}^{8.869}\) \& \({ }_{5}^{533}\) \& 6．4\％ \\
 \hline 13．6\％ \& \({ }_{8,276}\) \& 8，791 \& 515 \& \({ }^{6.2 \%}\) \\
 \hline 14．8\％\％ \& \({ }^{8,116}\) \& \({ }^{8.547}\) \& 431 \& 5．3\％ \\
 \hline 16．0\％ \& \({ }^{8.083}\) \& 8，454 \& 371 \& \\
 \hline 18．5\％ \& 7，925 \& \({ }_{8}^{8,345}\) \& 448 \& 退 \\
 \hline 19．8\％ \& 7，854 \& \({ }_{8,316}\) \& \({ }_{463}\) \& 5．9\％ \\
 \hline 21．0\％ \& \({ }_{7}^{7,825}\) \& 8，284 \& 459 \& 5．9\％ \\
 \hline \({ }^{22.2 \%}\) \& 7，795 \& 8，222 \& \({ }^{427}\) \& 5．5\％ \\
 \hline 24．7\％ \& 7，700 \& \({ }_{\substack{8.118 \\ 8.150}}\) \& 362
 418 \& \({ }_{5}^{4.4 \%}\) \\
 \hline 25．9\％ \& 7，307 \& 7，959 \& 652 \& 8．9\％ \\
 \hline 27．2\％ \& 7，080 \& 7.902 \& 822 \& 11．6\％ \\
 \hline 28．4\％ \& 7，023 \& 7.812 \& 789 \& 11.2 \\
 \hline 29．6\％ \& 7，020 \& 7.805 \& 785 \& 11．2\％ \\
 \hline 30．9\％ \& 6，913 \& 7，475 \& 562 \& 8．1\％ \\
 \hline 32．1\％ \& 6，903 \& 7，448 \& 545 \& 7．9\％ \\
 \hline 33．3\％ \& \({ }^{6.872}\) \& 7．388 \& 516 \& 7．5\％ \\
 \hline 34．6\％ \& 6．779 \& \({ }_{7} 7.305\) \& 526 \& 7．8\％ \\
 \hline 35．8\％ \& 6，732 \& 7，280 \& 548 \& 8．1\％ \\
 \hline 37．0\％ \& 6，731 \& \({ }_{7}^{7,248}\) \& 517 \& 7．7\％ \\
 \hline 38．3\％ \& 6，721 \& 7,246
 7,189 \& \({ }_{525} 5\) \& 7．8\％ \\
 \hline 39．5\％ \& 化，666 \& 7.189 \& 522 \& 7．8\％ \\
 \hline 40．7\％ \& 6，639 \& 7，110 \& 471 \& 7．1\％ \\
 \hline \({ }_{43.2 \%}^{42.2 \%}\) \& \({ }_{6}^{6,6,68}\) \& \({ }_{7}^{7} 7.048\) \& 435 \& \({ }_{\text {c }}^{6.5 \%}\) \\
 \hline 44．4\％ \& \({ }_{6,442}^{6,40}\) \& 6．960 \& 518 \& 8．0\％ \\
 \hline 45．7\％ \& 6，433 \& 6，890 \& 457 \& \\
 \hline \& 6，403 \& 6．875 \& 471 \& \\
 \hline 48．1\％ 49 \& 6，338 \& 6．864 \& 527 \& 8．3\％ \\
 \hline \& 6，261 \& 6，791 \& 530 \& 8．5\％ \\
 \hline 551．9\％ \& \begin{tabular}{l}
 c，220 \\
 5.955 \\
 \hline
 \end{tabular} \& 6，757 \& 537 \& 8．6\％ \\
 \hline 55．1\％ \& \& － \(\begin{aligned} \& 6.742 \\ \& 6.532\end{aligned}\) \& 787
 583 \& \({ }_{\text {c }}^{13.8 \%}\) \\
 \hline 54．3\％ \& \({ }_{5.897}\) \& 6，478 \& 581 \& 9．9\％ \\
 \hline 55．6\％ \& \({ }_{\text {5，832 }}\) \& 6，305 \& 473 \& 8．1\％ \\
 \hline \(56.8 \%\)
 \(580 \%\)
 50， \& 5，675 \& 6，086 \& 411 \& 7．3\％ \\
 \hline 年58．0\％ \& 5．503 \& \({ }^{6.048}\) \& 545 \& 9．9\％ \\
 \hline \& 5.474
 5
 5
 5 \& \({ }_{5}^{5.936}\) \& \({ }_{512}^{463}\) \& \({ }^{8.5 \% \%}\) \\
 \hline 61．7\％ \& ¢ \& \({ }_{5,982}^{5.904}\) \& 512
 560 \& \({ }^{9.50 \%}\) \\
 \hline 63．0\％ \& \({ }^{5.225}\) \& 5．889 \& 594 \& 11．2\％ \\
 \hline \(64.2 \%\)
 \(654 \%\) \& 5,228
 5
 5020 \& 5.873
 5844
 5 \& \({ }_{645}^{645}\) \& ＋12．3\％ \\
 \hline \(65.4 \%\)
 \(66.7 \%\) \& \begin{tabular}{l}
 5,206 \\
 5.166 \\
 \hline
 \end{tabular} \& 5.844
 5
 5
 5 \& 638
 610 \& \({ }^{12.2 \%}\) \\
 \hline 66．7\％
 \(67.9 \%\) \& 5.166
 5.145
 S， \& 5,776
 5
 5
 5 \& 610
 621 \& \({ }^{11.8 \%}\) \\
 \hline 69．1\％ \& 5.104 \& 5.739 \& 635 \& 12．4\％ \\
 \hline 70．4\％ \& 5．072 \& （5，483 \& 411 \& 8．1\％ \\
 \hline 71．2．8\％ \& 4，959 \& \(\xrightarrow{5.4474}\) \& \({ }_{506}\) \& \({ }^{\text {9，}} 10.2 \%\) \\
 \hline 74．1\％ \& 4，934 \& 5，410 \& 476 \& \({ }_{9.6 \%}\) \\
 \hline 75．3\％ \& 4，909 \& \({ }_{5}^{5,386}\) \& 477 \& 9．7\％ \\
 \hline 76．5\％ \& 4，831 \& 5，231 \& 400 \& 8．3\％ \\
 \hline 77．8\％ \& 4．602 \& 5，150 \& 548 \& 11．9\％ \\
 \hline 79．0\％ \& 4，583 \& 5，140 \& 557 \& \({ }^{12.2 \%}\) \\
 \hline 81．5\％ \& 4，488 \& 4，928 \& \({ }_{441}\) \& \({ }_{9}^{9.8 \%}\) \\
 \hline 82．7\％ \& 4.486 \& 4，928 \& 442 \& 9．9\％ \\
 \hline \(84.0 \%\)
 \(85 \%\) \& 4,380
 488 \& \({ }_{4}^{4,898}\) \& \begin{tabular}{l}
 518 \\
 526 \\
 \hline
 \end{tabular} \& \({ }^{11.2 \%}\) \\
 \hline \(85.2 \%\)
 \(86.4 \%\) \& 4,289
 4.269 \& 4.815
 4785 \& 526
 497 \& \({ }^{12.3 \%}\) \\
 \hline \({ }^{80} 87.7 \%\) \& \({ }_{4,204}^{4,269}\) \& \({ }_{4.453}^{4.65}\) \& 249 \& ＋1．1．6\％ \\
 \hline 88．9\％ \& 4，192 \& 4，237 \& 45 \& 1．1\％ \\
 \hline 90．14\％ \& 4，164 \& 4，170 \& 6 \& 0．2\％ \\
 \hline \({ }^{91.4 \%}\) \& 4，134 \& 4，042 \& －92 \& －2．2\％ \\
 \hline \({ }_{93,8 \%}^{92.6 \%}\) \& \({ }_{4,023}^{4,063}\) \& \({ }_{3,954}\) \& － 68 \& －1．7\％ \\
 \hline 95．1\％ \& 3，795 \& \({ }_{3}^{3.908}\) \& 113 \& ， \\
 \hline 96．3\％ \& 3，701 \& 3，782 \& 82 \& 2．2\％ \\
 \hline 998．8\％ \& 3.674

 270 \& 3，291 \& 383 \& 10．4\％

 \hline 100．0\％ \& 2，000 \& 2，599 \& －401 \& －

 \hline
 \end{tabular}

 ## Table SW-36-b

 | Peme June | | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Without | WSIP 2030 With Project | | Reatati |
 | Probability | Monthly Diversion | Monthy Diversion | citierence | Difference (\%) |
 | ${ }^{(0.0)}$ | (CFFS) | (CFSS) | | |
 | | | | \% | |
 | | | | -51 | |
 | 2.5\% | 10,711 | 10,664 | -46 | |
 | 3.7\% | 10,559 | 10,314 | -245 | -2.3\% |
 | 4.9\% | 10,055 | 9,719 | ${ }^{336}$ | -3.3\% |
 | 6.2\% | ${ }_{8}^{8,366}$ | ${ }_{8}^{8.322}$ | 44 | -0.5\% |
 | 7.4\% | 7,813 | 7,813 | 0 | 0.0\% |
 | 8.9\% | 7,076 | $\xrightarrow{7,390}$ | 314 | 4\% |
 | ${ }^{\text {9.9.9\% }}$ | ${ }^{6,904}$ | 7,254 | ${ }^{350}$ | \% |
 | 11.1\% | ${ }_{6}^{6,632}$ | ${ }^{6.876}$ | ${ }_{229}^{244}$ | ${ }^{3.7 \%}$ |
 | ${ }^{12.3 \%}$ | ${ }^{6,404}$ | ${ }^{6.632}$ | ${ }^{228}$ | ${ }^{3.6 \%}$ |
 | +13.48\% | c,6,341
 6,075 | c,6,403
 6,224 | 63 149 | +1.5\% |
 | 16.0\% | 6,036 | 6,104 | 67 | 1.1\% |
 | 17.3\% | 6,024 | 6,080 | 56 | |
 | 18.5\% | ${ }^{6.008}$ | 6.075 | 67 | |
 | 19.8\% | 5,945 | 5,945 | 0 | |
 | 21.0\% | 5,903 | 5.932 | 30 | 0.5\% |
 | 22.2\% | 5.823 | 5,852 | 29 | |
 | 23.5\% | 5,646 | 5,823 | 177 | 3.1\% |
 | 24.7\% | 5.599 | 5,646 | 47 | |
 | 25.9\% | 5.571 | 5.646 | 75 | 1.3\% |
 | 27.2\% | 5.549 | 5.599 | 49 | 0.9\% |
 | 28.4\% | 5,454 | 5.571 | 117 | 2.2\% |
 | 29.6\% | 5,350 | 5,454 | 104 | 1.9\% |
 | 30.9\% | 5,331 | 5,350 | 19 | 0.4\% |
 | 32.1\% | 5,185 | 5,315 | 130 | 2.5\% |
 | 33.3\% | ${ }_{\text {5, }}^{5} \mathbf{1 7 0}$ | ¢ 5 5,266 | ${ }^{96}$ | ${ }^{1.9 \%}$ |
 | 34.6\% | | 5,235 | ${ }^{127}$ | |
 | 35.8\% | 5,036 | 5,170 | ${ }^{133}$ | 2.7\% |
 | 38.3\% | ${ }_{4}^{50108}$ | 5,069 | ${ }_{43}$ | 1.0\%\% |
 | 39.5\% | 4.726 | ${ }_{5.018}^{50.018}$ | ${ }_{292}$ | 6.2\% |
 | 40.7\% | 4.654 | 4,726 | ${ }^{72}$ | 1.5\% |
 | | 4,621 | 4,654 | ${ }^{33}$ | 0.7\% |
 | 44.4\% | 4.481 | 4.621 | 140 | 3.1\% |
 | 45.7\% | 4,481 | 4,483 | 2 | 0.0\% |
 | 46.9\% | 4,480 | 4,481 | 1 | 0.0\% |
 | 48.1\% | 4.477 | 4.880 | 3 | 0.1\% |
 | 49.4\% | 4,443 | 4,462 | 19 | 0.4\% |
 | 50.6\% | 4,078 | 4,078 | 0 | 0.0\% |
 | 51.9\% | ${ }^{3,918}$ | 3,918 | 0 | 0.0\% |
 | 53.19\% | -3.819 | 3.819 | 0 | 0.0\% |
 | 54.3\% | - $\begin{aligned} & 3,747 \\ & 3 \\ & 3\end{aligned}$ | 3,747 | 0 | 0.0\% |
 | 年5.6\% | 3,710 3 3 | 3.710 3 3 | 0 | 0.0\% |
 | | 3,701
 3
 3 | 3,701
 3
 689 | 0 | 0\%\% |
 | | 3,668
 3,666 | | | 0\% |
 | 60.5\% | 3,666 3,600 | 3,666 | | ${ }^{0.00 \%}$ |
 | 61.7\% | 3,450 | ${ }_{\text {3,450 }}$ | $\stackrel{-1}{0}$ | 0.0\% |
 | 63.0\% | 3,443 | 3,444 | 0 | 0.0\% |
 | | ${ }^{3,386}$ | 3,386 | 0 | 0.0\% |
 | ${ }^{656.4 \%}$ | 3,335
 3,365 | | ${ }_{19}^{20}$ | 0.6\% |
 | 67.9\% | 3,334 | 3,336 | 3 | 0.1\% |
 | 69.1\% | 3,322 | 3,333 | 12 | .4\% |
 | 70.4\% | 3,306 | 3,322 | 15 | .5\% |
 | 71.6\% | 3,301 | 3,306 | 5 | 0.1\% |
 | 72.8\% | 3,269 | 3,301 | ${ }^{32}$ | 1.0\% |
 | 74.19\% | 3,236 | 3,269 | ${ }^{33}$ | 0\% |
 | -75.3\% | 3,180 | 3,235 | 55 | 1.7\% |
 | 76.5\% | 3,080 | 3,220 | 140 | 4.6\% |
 | 778\% | 3,040 | 3,212 | 172 | 5.7\% |
 | 79.0% 802% | ${ }^{2}, 985$ | 3,080 | 95 | ${ }^{3.2 \%}$ |
 | - | $\begin{array}{r}2,989 \\ \hline 282 \\ \hline\end{array}$ | 3.040 2,909 | ${ }_{27} 1$ | 4.5\% |
 | 82.7\% | ${ }_{2,221}^{2,21}$ | ${ }_{1,303}$ | -918 | -41.3\% |
 | 84.0\% | 2,139 | 1,044 | 1,095 | -51.2\% |
 | - | ${ }_{\text {1,044 }}^{1.014}$ | ${ }_{850} 9$ | -64 | - |
 | 87.7\% | 850 | 781 | -69 | -8.2\% |
 | 88.9\% | 788 | 735 | -52 | .6\% |
 | 90.1\% | ${ }_{727}^{735}$ | ${ }_{7} 727$ | -8 | -1.1\% |
 | 91.4\% | ${ }^{727}$ | 707 | 20 | \% |
 | 92.6\% | 707 | 654 | ${ }_{-53}$ | -7.5\% |
 | ${ }^{93.85 \%}$ | 654 | 579 | -75 | 11.5\% |
 | ${ }^{95.1 \%}$ 96.3\% | 575
 54 | 525 472 | -50 | -8.0\%\% |
 | 97.5\% | 453 | 453 | 0 | 0.0\% |
 | 98.8\% | 402 | 444 | 42 | 10.4\% |
 | 100.0\% | 135 | 135 | 0 | |

 Figure SW-37-b
 Jones Pumping Plant (CVP), Monthly Diversion

 | Percent Exceedance | WSIP 2030 Without Proiect | WSIP 2330 With Project | Absolute | Realive |
 | :---: | :---: | :---: | :---: | :---: |
 | Probability | Monthly （iversion | Montly Diversion | Difference | Difference（\％） |
 | （\％） | （CFS） | （CFSs） | | |
 | | 4，600 | 4，600 | 0 | 0．0\％ |
 | 1．2\％ | 4，600 | 4，600 | 0 | 0．0\％ |
 | ${ }^{2.5 \%}$ | 4，600 | 4，600 | 0 | 0．0\％ |
 | 3．7\％ | 4，600 | 4，600 | 0 | 0．0\％ |
 | 4．9\％ | 4，600 | 4，600 | 0 | 0．0\％ |
 | ${ }^{6.2 \%}$ | 4，600 | 4，600 | 0 | 0．0\％ |
 | 7．4\％ | 4，600 | 4，600 | 0 | 0．0\％ |
 | 8．6\％ | 4，600 | 4，600 | 0 | 0．0\％ |
 | 9．9\％ | 4，575 | 4，600 | ${ }^{25}$ | 0．5\％ |
 | 1．12\％ | 4，485 | 4，600 | 113 | 2．0\％ |
 | ${ }^{12.35 \%}$ | 4，4621 | 4,600 | 138 | |
 | 14．8\％ | 4.400 | 4.6500 | ${ }_{200}$ | 4．6\％ |
 | 16．0\％ | 4，313 | 4，600 | 287 | |
 | 17．3\％ | 4，309 | 4，600 | 291 | 6．8\％ |
 | 18．5\％ | 4，221 | 4，595 | 374 | |
 | 19．8\％ | 4，076 | 4，387 | 311 | 7．6\％ |
 | 21．0\％ | 4，057 | 4，299 | 242 | 6．0\％ |
 | ${ }^{22.2 \%}$ | 3，972 | 4.078 | 106 | 2．7\％ |
 | 23．5\％ | 3，971 | 4,039 | ${ }^{68}$ | 1．7\％ |
 | 24．7\％ | 3．832 | 4,035 | ${ }^{203}$ | 5．3\％ |
 | 25．9\％ | 3，779 | 3，951 | 172 | 4．5\％ |
 | 27．2\％ | 3，744 | 3，848 | 104 | 2．8\％ |
 | 28．4\％ | 3,720 | 3，796 | 76 | ${ }_{120 \%}^{2.0 \%}$ |
 | | 3，714 | 3，758 | 44 | ${ }^{1.27 \%}$ |
 | － 3 30．9\％ | 3，689 | 3，751 | 62 | －0．36 |
 | 32．1\％ | 3，670 | ${ }^{3,660}$ | －10 | －0．3\％ |
 | | ${ }^{3.670}$ | 3，606 | －64 | －1．7\％ |
 | 34.6%
 3588% | ${ }^{3,662}$ | $\begin{array}{r}3,585 \\ \hline\end{array}$ | －74 | ${ }_{-2.1 \%}^{-2.1 \%}$ |
 | － 37.80% | － | ${ }_{\text {c }}^{3,544}$ | －74 | |
 | 38．3\％ | ${ }_{3}$ | － | －44 | －－2．2\％ |
 | 39．5\％ | 3，546 | ${ }_{3,492}$ | －54 | －1．5\％ |
 | 40．7\％ | 3，518 | 3，479 | 39 | |
 | 42．0\％ | ${ }^{3,482}$ | 3，430 | －52 | |
 | 43．2\％ | 3，468 | 3，306 | －162 | －4．7\％ |
 | ${ }^{44.4 .4}$ | 3，432 | 3，298 | －134 | －3．9\％ |
 | 45．7\％ | 3，399 | 3，296 | －103 | －3．0\％ |
 | 46．9\％ | 3，395 | 3，290 | －105 | －3．1\％ |
 | 48．19\％ | 3，360 | ${ }^{3,248}$ | －111 | －3．3\％ |
 | 49．4\％ | 3，329 | 3，248 | －81 | －2．4\％ |
 | | 3，321 | 3，219 | －102 | －3．1\％ |
 | 51．9\％ | ${ }^{3,303}$ | 3，176 | －127 | －3．9\％ |
 | 年53．1\％ | 3，278 | 3，169 | －109 | －3．3\％ |
 | | 3，274 | 3，165 | －110 | －3．3\％ |
 | 55．6\％ | | 3,138
 3,130 | －136 | －4．2\％ |
 | 年56．8\％\％ | | 退，3,130
 3,053 | －198 | －4．2\％ |
 | 59．3\％ | （ | 3，053 | －199 | 迆 |
 | 60．5\％ | 3，191 | ${ }_{\text {2，967 }}$ | －224 | －7．0\％ |
 | 61．7\％ | 3，181 | 2，960 | －222 | ．0\％ |
 | 63．0\％ | 3，174 | 2，959 | 214 | |
 | 64.2% 654% | 3，084 | 2，955 | －129 | －4．2\％ |
 | ${ }^{6.7 .7 \%}$ | ${ }_{2,947}^{2,947}$ | ${ }_{2,885}^{2,926}$ | ${ }_{-62}$ | ${ }_{-2.1 \%}$ |
 | 67．9\％ | 2.943 | 2，882 | －62 | －2．1\％ |
 | 69．1\％ | 2，930 | 2，824 | －106 | －3．6\％ |
 | 70．4\％ | 2，894 | 2，817 | -77 | －2．7\％ |
 | 71．6\％ | ${ }^{2,825}$ | 2，801 | -24 | －0．8\％ |
 | 72．8．1\％ | ${ }_{2}^{2,775}$ | 2，792 | 17 | 0．6\％ |
 | 74．19\％ | ${ }^{2,743}$ | 2，636 | －106 | －3．9\％ |
 | 7．3．5\％ | ${ }_{2}^{2,734}$ | 2，628 | －107 | －3．9\％ |
 | －76．8\％ | ${ }^{2,728}$ | 2，616 | －112 | －4．7\％ |
 | 779．8\％ | 2，647 | 2.496 | －152 | －5．7\％ |
 | 80．2\％ | ${ }_{2}^{2,575}$ | ${ }_{2}^{2,410}$ | －165 | －6．4\％${ }_{-5,4 \%}$ |
 | 年 80.5% | ${ }_{2}^{2,542}$ | ${ }_{2}^{2,406}$ | －135 | － 5.3 .3 |
 | ${ }^{8} 8.5 .7 \%$ | 2,539
 2
 2
 109 | 2，268
 2.259 | －277 | －${ }_{\text {－}}^{\text {－10．7\％}}$ |
 | 84．0\％ | ${ }_{2,368}^{2,3}$ | ${ }_{2,133}^{2,125}$ | －235 | ， 9 |
 | 85．2\％ | 2，274 | 2,096 | －178 | －7．8\％ |
 | | 2，245 | 2，091 | －154 | －6．9\％ |
 | 877\％\％ | 2，224 | 2，069 | －154 | －6．9\％ |
 | 88．9\％ | 2，138 | 1，986 | －152 | |
 | ${ }^{90.14 \%}$ | 2,137 2084 | ${ }^{1,891}$ | －245 | －11．5\％ |
 | ${ }^{92.6 \%}$ | ， | ${ }_{\substack{1,855 \\ 1828}}^{1,89}$ | －290 | |
 | 93．8\％ | ${ }_{1}^{1,133}$ | ${ }_{1.674}^{1.628}$ | 543 | －6．\％ |
 | 95．1\％ | 1,092 | ${ }_{1}^{1,591}$ | 499 | 45．7\％ |
 | 9．3\％ | 1，001 | 1，000 | －1 | －0．1\％ |
 | 97．5\％ | 1，000 | 800 | －200 | 20.0 |
 | 988\％ | 800 | 800 | 0 | 0．0\％ |
 | 100．0\％ | 800 | 673 | －127 | －15．8\％ |

 | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 | |
 | :--- | :--- | :--- | :--- |

 | |
 | :--- | :--- | :--- | :--- | :--- |

 Figure SW-38-b
 Banks Pumping Plant (SWP and CVP), Monthly Diversion

 | $\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceenance } \\ \text { Probobaility } \end{array} \\ \hline \end{gathered}$ | | Octo | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | WSIP 2033 W With Project | Absolute | |
 | | | Monthly Diversion | Difference | Difference (\%) |
 | 0.0\% | ${ }_{6} 6.680$ | 6.680 | 0 | 0.0\% |
 | 1.2\% | ${ }_{6.680}$ | 6.680 | | 0.0\% |
 | 2.5\% | 5.799 | 5.915 | 116 | 2.0\% |
 | 3.7\% | 5,704 | 5.716 | 12 | 0.2\% |
 | 4.9\% | 5,461 | 5.615 | 155 | |
 | 6.2\% | 5,269 | 5,481 | 212 | 4.0\% |
 | 7.4\% | 5,189 | 5,283 | 94 | |
 | 8.6\% | 4,945 | 5,281 | ${ }^{336}$ | 6.8\% |
 | 9.9\% | 4,877 | 5.119 | ${ }^{242}$ | 5.0\% |
 | 11.1\% | 4,770 | 5.089 | 319 | ${ }^{6.7 \%}$ |
 | ${ }^{12.3 \%}$ | 4,635 | 4,987 | ${ }^{353}$ | \% |
 | 13.6\% | 4,623 | 4,959 | ${ }^{336}$ | 7.3\% |
 | 14.8\%\% | 4,458 | 4,941 | ${ }_{5}^{483}$ | ${ }^{10.3 \%}$ |
 | 16.0\% | 4,340 | 4,926 | 585 | 13.5 |
 | 18.5\% | ${ }_{4}$ | 4.860 | 596 | |
 | 19.8\% | 4,095 | ${ }_{4,534}^{4.54}$ | ${ }_{439}$ | 10.7\% |
 | 21.0\% | 4,040 | 4,527 | 487 | 12.0\% |
 | ${ }^{22.2 \%}$ | ${ }^{3,953}$ | 4,457 | 505 | |
 | ${ }^{224.7 \%}$ | ${ }_{\substack{3.898 \\ 3,886}}$ | ${ }_{4.420}^{4.438}$ | 5434 | |
 | 25.9\% | 3,785 | 4.318 | 533 | 14.19\% |
 | 27.2\% | 3,783 | 4,272 | 489 | 12.9\% |
 | 28.4\% | 3,676 | 4,231 | 555 | 15.1\% |
 | 29.6\% | 3,667 | 4,191 | 523 | 14.3 |
 | 30.9\% | 3,659 | 4,137 | 479 | 13.1\% |
 | 32.1\% | ${ }^{3.528}$ | 4,037 | 509 | 14.4\% |
 | 33.3\% | 3.501 | 3,958 | 457 | 13.0\% |
 | 34.6\% | ${ }^{3,364}$ | 3,854 | 490 | 14.6\% |
 | 35.8\% | 3,350 | 3,800 | 450 | 13.4\% |
 | 37.0\% | 3,333 | 3,792 | 459 | ${ }^{13.8 \%}$ |
 | 38.3\% | 3,297 | - ${ }_{3}^{3,775}$ | 477 | 14.5\% |
 | 39.5\% | - | -3,727 | ${ }^{438}$ | ${ }^{13.3 \%}$ |
 | 42.0\% | - ${ }_{\text {3,273 }}$ | ${ }_{\substack{3,716 \\ 3 \\ 3 \\ \hline 188}}$ | ${ }_{3}^{433}$ | ${ }^{13.6 \%}$ |
 | ${ }_{43.2 \%}^{42.2 \%}$ | - | - | 356 | 11.2\% |
 | 44.4\% | 3,174 | ${ }_{3,481}^{\text {5, }}$ | 306 | |
 | 45.7\% | 3,169 | 3,437 | 268 | |
 | 46.9\% | 3,062 | 3,327 | 266 | |
 | 48.1\% | 3,009 | 3,307 | 298 | 9.9\% |
 | 4.9.4\% | 3.008 | 3,305 | 297 | |
 | 50.6\% | 3,007 | 3,302 | 295 | |
 | 51.9\% | 3,004 | 3,278 | 275 | 9.1\% |
 | 53.1\% | 2,964 | 3,241 | ${ }^{277}$ | 9.4\% |
 | 54.3\% | 2,960 | 3,212 | ${ }^{252}$ | 8.5\% |
 | 55.6\% | 2,947 | 3,205 | ${ }^{258}$ | 8.7\% |
 | 56.8\% | 2,846 | 3,1770 | 324 | 11.4\% |
 | 58.0\% | 2,665 | 3.017 | ${ }^{352}$ | 13.2\% |
 | | 2,647 | 3,007 | 359 | 13.6\% |
 | 60.5\% 61.7% | ${ }_{2}^{2,562}$ | ${ }_{2}^{2,966}$ | 404 | ${ }^{15.5 \%}$ |
 | 61.7\% | ${ }_{2,523}$ | 2,952 | 429 | 17.77\% |
 | 63.0% 6420% | 2,506 | 2,949 | ${ }^{433}$ | 17.7\% |
 | -64.2\% | ${ }_{2}^{2,498}$ | ${ }_{2}^{2,880}$ | 382 | 15.3\% |
 | ${ }^{65.4 \%}$ | - | ${ }_{2}^{2.858}$ | ${ }_{5}^{435}$ | \% |
 | -6.7.9\% | 2,279 $\substack{2,260}$ | 2,846
 2788
 280 | 年 | 9\% |
 | 69.1\% | ${ }_{2,158}^{2,158}$ | ${ }_{2,660}$ | 502 | ${ }_{2}^{22.3 \%}$ |
 | 70.4\% | 2,131 | 2,625 | 494 | |
 | 71.6\% | 2,129 | ${ }^{2,575}$ | ${ }^{446}$ | 21.0\% |
 | - ${ }_{7}^{72.1 \% \text { \% }}$ | 2,045 | 2,556 | 511 | 5.0\% |
 | 75.3\% | ${ }_{1}^{1,999}$ | ${ }_{\text {2,527 }}^{\text {2,528 }}$ | ¢48 | ${ }^{27.7 \%}$ |
 | 76.5\% | 1,960 | 2.513 | 553 | 28.2\% |
 | 77.8\% | 1.930 | 2,432 | 501 | 26.0\% |
 | 79.0\% | ${ }^{1,891}$ | ${ }_{2}, 427$ | 536 | 28.3\% |
 | 80.2\% | 1,714 | 2.405 | 691 | 40.3\% |
 | - ${ }_{\text {812.5\% }}^{8.7 \%}$ | ${ }^{1,682}$ | ${ }_{2}^{2,360}$ | 679 | 40.4\% |
 | 822.7\% | 1.616
 1.352 | ¢, | ${ }_{790}^{648}$ | ${ }^{40.19 \%}$ |
 | 85.2\% | 1,349 | 2,080 | 731 | 54.2\% |
 | 86.4\% | 1,306 | 2,074 | 768 | 58.\% |
 | 87.7\% | 1,299 | ${ }^{2}, 047$ | 748 | 57.6\% |
 | ${ }^{88.9 \%}$ | +1,288 | 2,012 | ${ }_{9} 724$ | ${ }^{56.2 \%}$ |
 | ${ }^{90.4 \%}$ | ${ }_{1}^{1,019}$ | 1,951 | ${ }_{931}$ | 914\% |
 | 92.6\% | 1.011 | 1.891 | 880 | 87.0\% |
 | 93.8\% | 1.000 | 1,709 | 709 | .9\% |
 | 95.1\% | 997 | 1,221 | 224 | 22.4\% |
 | 96.3\% | 968 | 1,000 | 32 | 3.3\% |
 | 975\% | 931 | 969 | ${ }^{38}$ | 4.1\% |
 | 98.8\% | 474 | 926 | 452 | 95.2\% |
 | 100.0\% | 300 | 332 | 32 | 10.5\% |

 | |
 | :--- | :--- | :--- | :--- | :--- |

 Banks Pumping Plant SSWP and CVP）

 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
 \hline \& \& \& \& \& \& \& ， \& \& \\
 \hline Percent
 Exceedance \& WSII 2030 Without
 Proiet \& WSIP 2030 With Project \& \& \& Percent
 Exceedance \& WSIP 2030 Without
 Proiet \& WSIP 2330 With Project \& Absolute \& Realive \\
 \hline Probabily \& Monthly Diversion \& Monthy Diversion \& Difference
 （CFS） \& ifference（\％） \& Probability \& Monthly Diversion \& Monthly Diversison \& Difference
 （CFS） \& Difference（\％） \\
 \hline \({ }^{\text {（\％）}}\)（\％） \& （LFFS） \& （CFF） \& 0 \& 0 \％ \& （\％） \& （crs） \& \& \& \\
 \hline \({ }^{\text {1．2\％}}\) \& 7561 \& 751 \& \& 0．0\％ \& 1．2\％ \& \({ }_{6}^{6,125}\) \& \({ }^{6,125}\) \& \& 0．0\％ \\
 \hline \({ }^{1.25 \%}\) \& 7.561 \& 7.561 \& 0 \& 0．0\％ \& 1．2\％ \& \({ }_{3}^{6,135}\) \& 㐌，125 \& ， \& 0．0\％ \\
 \hline 3．7\％ \& 7.561 \& 7.561 \& \& 0．0\％ \& 2．5\％ \& \({ }_{\substack{3,367 \\ 2622}}\) \& \begin{tabular}{l}
 3，364 \\
 2，599 \\
 \hline 125
 \end{tabular} \& －23 \& －0．10\％ \\
 \hline 3．9\％ \& \({ }_{7}^{7.561}\) \& \({ }_{7}^{7.561}\) \& 0 \& － \& 3．9\％ \& \({ }_{\substack{2,489}}^{2,622}\) \& \({ }_{2,485}^{2.599}\) \& － \& －02\％ \\
 \hline 6．2\％ \& 7.561 \& 7.561 \& 0 \& 0．0\％ \& 6．2\％ \& 2,249

 2，489 \& ${ }_{2,250}^{2,250}$ \& 1 \& 0．0\％

 \hline 7．4\％ \& 7，561 \& 7,561 \& 0 \& 0．0\％ \& 7．4\％ \& 2，137 \& 2，129 \& －8 \& －0．4\％

 \hline 8．6\％ \& 7.561 \& 7.561 \& 0 \& 0．0\％ \& 8．6\％ \& 2，057 \& 2，049 \& －8 \& －0．4\％

 \hline 9．9\％ \& ${ }_{7}^{7,561}$ \& 7.561 \& 0 \& 0．0\％ \& 9．9\％ \& 1，973 \& 1，952 \& ${ }^{21}$ \& －1．19\％

 \hline \& ${ }_{7}^{7.561}$ \& | 7.561 |
 | :--- |
 | 7485 |
 | 185 | \& 0 \& 0．0\％ \& －11．1\％ \& （1，952 \& 1,902

 1.855
 1 \& ${ }_{-8}{ }^{-5}$ \& －2．8\％

 \hline 年 $\begin{aligned} & 12.3 \% \\ & 13.6 \%\end{aligned}$ \& 7，485 \& | 7,485 |
 | :--- |
 | 7318 |
 | 18 | \& ${ }^{0}$ \& － \& ＋1．3．3\％ \& （1，862 \& 000 \& ${ }_{33}^{-8}$ \&

 \hline 14．8\％ \& 7，318 \& ${ }_{7}^{7,122}$ \& －196 \& ${ }_{-2.7 \%}$ \& 14．8\％ \& ${ }_{\text {1，761 }}^{1,1,081}$ \& \& ${ }_{7}$ \&

 \hline 16．0\％ \& 6,766 \& 7,067 \& 301 \& 4．4\％ \& 16．0\％ \& ${ }_{1}^{1,744}$ \& 1，737 \& －8 \& －0．4\％

 \hline 17．3\％ \& 6.448 \& 6.448 \& 0 \& 0．0\％ \& 17．3\％ \& 1，639 \& 1，639 \& 0 \& 0．0\％

 \hline 18．5\％${ }^{\text {19．8\％}}$ \& \& ¢， $\begin{gathered}6,429 \\ 6,295\end{gathered}$ \& ${ }_{1}^{120}$ \& － \& | 18．5\％ |
 | :--- |
 | 19．8\％ | \& ＋1，637 ${ }_{1}^{1.624}$ \& 1,632

 1.624
 1 \& －5 \& -0.3%
 0.0%
 0

 \hline 21．0\％ \& 6，287 \& 6，288 \& 1 \& 0．0\％ \& 21．0\％ \& 1,485 \& 1,485 \& 0 \& 0．0\％

 \hline 22．2\％ \& 6，241 \& 6，242 \& 0 \& 0．0\％ \& 22．2\％ \& ${ }_{1,477}$ \& 1,477 \& 0 \& 0．0\％

 \hline 23．5\％ \& 6，234 \& ${ }^{6,235}$ \& 1 \& 0．0\％ \& 23．5\％ \& 1，456 \& 1，429 \& ${ }^{27}$ \& －1．9\％

 \hline 24．7\％ \& 6，233 \& 6，234 \& 1 \& 0．0\％ \& 24．7\％ \& 1，437 \& 1，411 \& ${ }^{27}$ \& －1．9\％

 \hline 25．9\％ \& 6，160 \& 6，160 \& 0 \& 0．0\％ \& 25．9\％ \& ${ }^{1,411}$ \& 1，395 \& －16 \& －1．

 \hline 27．2\％ \& 5，950 \& 5，964 \& 14 \& 0．2\％ \& 27．2\％ \& ${ }^{1,395}$ \& ${ }^{1,394}$ \& －1 \& －0．1\％

 \hline ${ }^{28.4 \%}$ \& ${ }_{5}^{5.820}$ \& ${ }_{5}^{5.820}$ \& 0 \& 0．0\％ \& 28．4\％ \& ${ }_{1}^{1,394}$ \& 1，391 \& －2 \& －0．2\％

 \hline 29．6\％ \& 5，795 \& 5，795 \& 0 \& 0．0\％ \& 29．6\％ \& 1，391 \& ${ }_{1}^{1,389}$ \& －3 \& －0．2\％

 \hline 30．9\％ \& ${ }_{\text {5，678 }}^{5.65}$ \& 5，634 \& ${ }^{-43}$ \& －0．8\％ \& 30．9\％ \& ${ }_{1}^{1,340}$ \& 1，340 \& 0 \& 0．0\％

 \hline 32．1\％ \& 5，505 \& 5，505 \& 0 \& 0．0\％ \& 32．1\％ \& ${ }^{1,335}$ \& 1，335 \& 0 \& 0．0\％

 \hline 33．3\％ \& 5．484 \& 5，202 \& －281 \& －5．1\％ \& 33．3\％ \& 1，329 \& 1，329 \& 0 \& 0．0\％

 \hline 33．6\％ \& 5，314 \& 5，055 \& －259 \& －4．9\％ \& 34．6\％ \& ${ }_{1}^{1,323}$ \& ＋1，220 \& －3 \& ， 3 \％

 \hline 35．8\％ \& 5，227 \& 4，852 \& －35 \& －12\％ \& 35．8\％ \& 1，254 \& 1，254 \& － \&

 \hline 37．0\％ \& 5，055 \& 4,499 \& －535 \& －17．0\％ \& 37．0\％ \& ${ }_{1}^{1,252}$ \& 退 238 \& －4 \&

 \hline ${ }^{33.5 \%}$ \& 4,080 \& ${ }_{3,961}^{4,9}$ \& －119 \& －2．9\％ \& 30．5\％ \& ${ }_{1,235}^{1,235}$ \& ${ }_{1}^{1,230}$ \& － 5 \& －0．4\％

 \hline 40．7\％ \& 3，961 \& 3，893 \& －69 \& －1．7\％ \& 40．7\％ \& 1，230 \& 1，218 \& 11 \&

 \hline 42．0\％ \& 3，893 \& 3，871 \& －22 \& －0．6\％ \& 42．0\％ \& 1，218 \& 201 \& 17 \&

 \hline 43．2\％ \& 3，871 \& 3，859 \& －12 \& －0．3\％ \& 43．2\％ \& 1，195 \& 1，195 \& 0 \&

 \hline ${ }^{4.4 .4 \%}$ \& 3，859 \& ${ }^{3,833}$ \& －26 \& －0．7\％ \& 44．4\％ \& 1，175 \& 1，175 \& 0 \& 0．0\％

 \hline 44．9\％ \& ${ }^{3,835}$ \& 3，825 \& －10 \& －0．2\％ \& 45．7\％ \& 1，130 \& 1，130 \& 0 \& 0．0\％

 \hline 48．1\％ \& ${ }_{3,777}$ \& ${ }_{3,757}$ \& －21 \& －0．5\％ \& 48．1\％ \& 1，104 \& 1,086 \& －18 \& －1．7\％

 \hline 49．4\％ \& 3，757 \& 3，623 \& －134 \& －3．6\％ \& 49．4\％ \& 1，086 \& 1，070 \& 16 \& －1．4\％

 \hline 50．6\％ \& 3，623 \& 3，595 \& －28 \& －0．8\％ \& 50．6\％ \& 1，070 \& 1，046 \& ${ }^{24}$ \& －2．3\％

 \hline 51．9\％ \& 3，577 \& ${ }^{3,577}$ \& 0 \& 0．0\％ \& 51．9\％ \& ${ }^{1,046}$ \& 1，038 \& －7 \& －0．7\％

 \hline 53．1\％ \& 3，548 \& ${ }^{3,548}$ \& 0 \& 0．0\％ \& 53．1\％ \& ${ }^{1,038}$ \& ${ }^{1,030}$ \& －9 \& －0．8\％

 \hline 55．．6\％ \& 3,479
 3
 3 \& 3,479
 3 \& 0 \& 0．0\％ \& 54．3\％ \& ${ }^{1,030}$ \& ${ }_{1}^{1,029}$ \& －1 \& 0．0\％\％

 \hline 56．8\％ \& 3，437 \& 3，406 \& －31 \& －0．9\％ \& 56．8\％ \& ${ }_{1}^{1,028}$ \& 1,014 \& －14 \& －1．4\％

 \hline 58．0\％ \& 3，417 \& 3，404 \& －13 \& －0．4\％ \& 58．0\％ \& 1，014 \& 999 \& －15 \& －1．4\％

 \hline ${ }_{\text {c }}^{59.3 \%}$ \& 3，406 \& 3，346 \& －61 \& －1．8\％ \& 59．3\％ \& 1，007 \& 980 \& ${ }^{27}$ \& －2．7\％

 \hline 661．7\％ \& 3，346 \& ${ }_{\substack{3,252 \\ 3,251}}$ \& －94 \& －2．8\％ \& －60．5\％ \& 974
 980 \& ${ }_{967}^{997}$ \& -6
 -7 \& －0．0．7\％

 \hline 63．0\％ \& 3，295 \& 3，217 \& －79 \& －2．4\％ \& 63．0\％ \& 967 \& 938 \& －29 \& －3．0\％

 \hline 64．2\％ \& 3，295 \& 3，108 \& －187 \& －5．7\％ \& 64．2\％ \& 938 \& 924 \& －14 \& －1．5\％

 \hline 66．7\％ \& ${ }_{\text {cose }}^{\substack{\text { 3，252 }}}$ \& ${ }_{2,844}^{2,088}$ \& －408 \& ${ }^{-12.6 \%}$ \& 6．6．7\％ \& ${ }_{923}^{924}$ \& 911 \& －12 \& ${ }^{-1.3 \%}$

 \hline 67．9\％ \& 3，108 \& 2,770 \& －339 \& －10．9\％ \& 67．9\％ \& 892 \& \& \&

 \hline 69．1\％ \& | 2,888 |
 | :--- |
 | 2844 |
 | 284 | \& | 2,758 |
 | :--- |
 | 2.725 |
 | 2 | \& -130

 -119 \& ${ }_{-4.5 \%}$ \& 69．19\％ \& ${ }_{881}^{892}$ \& ${ }_{872}^{892}$ \& ${ }_{-}^{-9}$ \& －${ }_{\text {－}}^{\text {－1，\％}}$

 \hline 71．6\％ \& 2，758 \& 2，715 \& －43 \& －1．6\％ \& 71．6\％ \& 872 \& \& －32 \& －3．7\％

 \hline 72．8\％ \& 2，715 \& 2.581 \& －134 \& －4．9\％ \& 72．8\％ \& 868 \& 792 \& －76 \& －8．7\％

 \hline 74．1\％ \& ${ }_{\text {2，583 }}^{2,581}$ \& 2，543 \& －41 \& ${ }^{-1.17 \%}$ \& 74．1\％ \& | 852 |
 | :--- |
 | 840 | \& ${ }_{757}^{773}$ \& －79 \& －9．3\％

 \hline ${ }^{75.5 \%}$ \& 2，581 \& ${ }_{\text {2，536 }}^{2,531}$ \& －45 \& －1．7\％ \& 75．3\％ \& 840 \& ${ }_{7} 75$ \& ${ }^{84}$ \& －9．9\％

 \hline 76．5\％ \& 2，551 \& 2，531 \& －20 \& －0．8\％ \& 76．5\％ \& 757 \& ${ }^{745}$ \& ${ }^{-12}$ \& －1．6\％

 \hline 779．0\％ \& ${ }_{2}^{2.536}$ \& ${ }_{2}^{2,438}$ \& －98 \& －3．9\％ \& 77．8\％ \& ${ }_{7} 745$ \& 700 \& ${ }^{45}$ \& －6．0\％

 \hline 80．2\％ \& 2，531 \& ${ }_{2}^{2,385}$ \& －146 \& －5．8\％ \& 79．0\％ \& 700 \& 7700 \& \bigcirc \& 0．0\％

 \hline 81．5\％ \& ${ }_{2,385}^{2,485}$ \& ${ }_{2,327}^{2,343}$ \& －58 \& －2．4\％ \& ${ }^{81.5 \%}$ \& 700 \& 700 \& 0 \& 0．0\％

 \hline 82．7\％ \& ${ }_{2,376}$ \& ${ }_{\text {2，283 }}$ \& －94 \& －3．9\％ \& 82．7\％ \& 700 \& 700 \& 0 \& 0．0\％

 \hline 84．0\％ \& ${ }_{2}^{2,343}$ \& 1，981 \& － 362 \& －15．4\％ \& 84．0\％ \& 700 \& 700 \& 0 \& 0．0\％

 \hline 85．2\％ \& $\underset{\substack{2,327 \\ 1,74}}{ }$ \& 1,774
 1,662 \& － \& －－6．3\％ \& － \& 700
 612 \& 682
 616 \& －18 \& －2．6\％

 \hline 877．7\％ \& 1,662 \& ${ }_{1,447}^{1,462}$ \& －215 \& －12．9\％ \& ${ }^{807.7 \%}$ \& 582 \& 500 \& ${ }^{-82}$ \& －14．1\％

 \hline 88．9\％ \& 1，447 \& 1，262 \& －185 \& －12．8\％ \& 88．9\％ \& 473 \& 489 \& 17 \& 5\％

 \hline 90．1\％ \& ${ }^{1,3259}$ \& ${ }^{1,235}$ \& －124 \& －9．1\％ \& 90．1\％ \& 300 \& ${ }^{421}$ \& 121 \&

 \hline 91．4\％ \& 1，235 \& 1，143 \& 92 \& －7．5\％ \& 91．4\％ \& 300 \& 300 \& \&

 \hline 92．6\％ \& 1，139 \& 1，139 \& 0 \& 0．0\％ \& 92．6\％ \& 300 \& 300 \& 0 \&

 \hline 99．8\％ \& 1，039 \& 1.039 \& 0 \& 0．0\％ \& 93．8\％ \& 300 \& 300 \& 0 \&

 \hline ${ }^{95.1 \%}$ \& 943 \& 943 \& 0 \& 0．0\％ \& 95．1\％ \& 300 \& 300 \& 0 \&

 \hline 997．5\％ \& 857 \& 852 \& -4 \& －0．5\％ \& 96．3\％ \& 300 \& 300 \& 0 \& 0．0\％

 \hline 998．8\％ \& ${ }^{852}$ \& 531 \& 321 \& \& 97．5\％ \& 300 \& 300 \& 0 \& 0．0\％

 \hline \& 300 \& 309 \& 9 \& － \& 98．8\％ \& 300
 300 \& 300 \& 0 \& 0．0\％

 \hline 100．0\％ \& \& \& \& 0．0\％ \& 100．0\％ \& 300 \& 300 \& \&

 \hline
 \end{tabular}

 | | | Way | | |
 | :---: | :---: | :---: | :---: | :---: |
 | $\underset{\substack{\text { Pereent } \\ \text { Exceadance }}}{\text { a }}$ | WSII 2030 Winthout Proiet | WSIP 2033 With Project | Absolute Difterence | |
 | Probability | Monthly Diversion | Monthy Diversion | ditierence | Difference（\％） |
 | （\％） | ［CFF） | （crs） | | |
 | | | | 0 | 0．0\％ |
 | 1．2\％ | 6，177 | 6，177 | 0 | |
 | 2．5\％ | 4，995 | 5，093 | 97 | 1．9\％ |
 | 3．7\％ | 4，049 | 4，046 | －3 | 0．1\％ |
 | 4．9\％ | 2，637 | 2，626 | 11 | 0．4\％ |
 | 6．2\％ | 2.439 | ${ }^{2,428}$ | 11 | －0．4\％ |
 | 7．4\％ | 2，316 | 2，304 | 11 | 5\％ |
 | 8．6\％ | ${ }^{1,901}$ | 1，896 | －5 | －0．3\％ |
 | 9．9\％ | 1，736 | ${ }^{1,863}$ | ${ }^{127}$ | 7．3\％ |
 | 11．1\％ | 1，634 | ${ }^{1,623}$ | －11 | －0．7\％ |
 | ${ }^{12.36 \%}$ | 1,602 | 1，591 | －11 | －0．7\％ |
 | 13．6\％\％ | 1,544 | ${ }^{1,533}$ | 11 | －0．7\％ |
 | 14．8\％ | 1,487 | ${ }_{1}^{1,476}$ | 11 | 0．7\％ |
 | 16．0\％ | 1，4200 | 1，4200 | | 0．0\％ |
 | 18．5\％ | ${ }_{1}^{1314}$ | ${ }_{1315}$ | | |
 | 19．8\％ | （1，298 | ＋1，298 | 0 | 0．0\％ |
 | 21．0\％ | 1，295 | 1，295 | 0 | 0．0\％ |
 | 22．2\％ | 1，256 | 1，245 | 12 | |
 | 23．5\％ | 1，249 | 1，238 | 11 | －0．9\％ |
 | 24．7\％ | 1，232 | 1，220 | 12 | 0．9\％ |
 | 25．9\％ | 1，126 | 1，140 | 15 | 1．3\％ |
 | 27．2\％ | 1，111 | 1，126 | 15 | 1．3\％ |
 | 28．4\％ | 1，041 | ${ }^{1,041}$ | 1 | 0．1\％ |
 | 29．6\％ | ${ }^{1.038}$ | ${ }^{1,041}$ | 4 | 0．4\％ |
 | 30．9\％ | ${ }^{1,022}$ | 1，037 | ${ }^{13}$ | 1．2\％ |
 | 32．1\％ | ${ }^{1.023}$ | ${ }^{1,025}$ | 2 | 0．2\％ |
 | 33．3\％ | 975 | ${ }^{1,024}$ | ${ }_{88}$ | 5．0\％ |
 | 34．6\％ | 968 | 975 | 7 | 0．8\％ |
 | 35．7\％ | 921 | 968 | 47 | 5．1\％ |
 | 37．0\％ | 909 | 921 | 12 | ${ }^{1.3 \% \%}$ |
 | 38．3\％ | 867 | 909 | 42 | 4．8\％ |
 | 39．5\％ | ${ }_{84} 84$ | 887 | 18 | 2．1\％ |
 | 4．7．7\％ | 887 | 849 | 8 | 1．0\％ |
 | 43．2\％ | ${ }_{832}$ | ${ }_{837}$ | 4 | 0．5\％ |
 | 44．4\％ | 831 | 831 | 0 | 0．0\％ |
 | 45．7\％ | 821 | 821 | 0 | |
 | 46．9\％ | 816 | 816 | 0 | 0．0\％ |
 | 48．1\％ | 782 | 782 | 0 | 0．0\％ |
 | 49．4\％ | 776 | 778 | 2 | 0．3\％ |
 | 50．6\％ | 754 | 755 | 1 | 1\％ |
 | 51．9\％ | 716 | 754 | ${ }^{38}$ | 5．2\％ |
 | 53．1\％ | 700 | 725 | 25 | 3．6\％ |
 | 54．3\％ | 700 | 711 | 11 | 1．6\％ |
 | | 700 | 700 | 0 | 0．0\％ |
 | 56．8\％ | 700 | 700 | 0 | 0．0\％ |
 | 58．0\％ | 7700 | 700 | 0 | 0．0\％ |
 | 59．3\％ | 7700 | 7700 | 0 | 0．0\％ |
 | － 60.5% | 7700 | 7700 | 0 | 0．0\％ |
 | 61．7\％ | 700 | 7700 | 0 | 0．0\％ |
 | 63．0\％ | 7700 | 7700 | | 0．0\％ |
 | 64．2\％ 6.54% | ${ }_{700}$ | ${ }_{700}$ | | 0．0\％ |
 | | 700 | ${ }_{700}$ | | \％ |
 | －66．9\％ | 700 | 700 | 0 | 0．0\％ |
 | 69．1\％ | 700 | 700 | 0 | 0．0\％ |
 | 70．4\％ | 700 | 700 | 0 | 0．0\％ |
 | 71．6\％ | 700 | 700 | 0 | 0．0\％ |
 | 72．8\％ | ${ }_{7}^{700}$ | 7700 | 0 | 0．0\％ |
 | 74．19\％ | 700 | 700 | 0 | 0．0\％ |
 | 75．3\％ | 700 | 700 | 0 | 0．0\％ |
 | 76．5\％ | 700 | 700 | 0 | 0．0\％ |
 | 77．8\％ | 700 | 700 | 0 | 0．0\％ |
 | 79.0% 80.2% | 700 | 700 | 0 | 0．0\％ |
 | － | 700 | 700 | 0 | 0．0\％ |
 | －${ }_{\text {815 }}^{81.5 \%}$ | 700 | 700 | 0 | 0．0\％ |
 | － | 7700 | 7700 | 0 | 0．0\％ |
 | －84．0\％ | 7700 | 7700 | 0 | 0．0\％ |
 | － | 7700 | 7700 | | 0．0\％ |
 | ${ }^{86.4 \%}$ 87．7\％ | 7700 | 700 | 0 | 0．0\％ |
 | 88．9\％ | 7700 | 700 | | 0．0\％ |
 | －${ }^{80.1 \%}$ | 7700 | 700 | 0 | \％ |
 | 91．4\％ | 700 | 700 | 0 | 0．0\％ |
 | 92．6\％ | 700 | 700 | 0 | 0．0\％ |
 | 93．\％ | 340 | 700 | 360 | 6．1\％ |
 | 95．1\％ | 300 | 700 | 400 | 133．3\％ |
 | 96．3\％ | 300 | 700 | 400 | 133．3\％ |
 | 97．5\％ | 300 | 578 | 278 | 92．7\％ |
 | | | | | |
 | 100．0\％ | 300 | 300 | 0 | 0．0\％ |

 Table SW-38-b

 | | | | | |
 | :--- | :--- | :--- | :--- | :--- |
 | | | | | |

 Banks Pumping Plant (SWP), Monthly Diversion

 | $\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceenance } \\ \text { Probobaility } \end{array} \\ \hline \end{gathered}$ | | Oct | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | WSIP 2033 W With Project | Absolute | |
 | | | Monthly Diversion | Difference | Difference (\%) |
 | 0.0\% | ${ }_{6} 6.680$ | 6.680 | 0 | 0.0\% |
 | 1.2\% | 6.680 | 6.680 | | 0.0\% |
 | 2.5\% | 5,704 | 5.915 | 211 | 3.7\% |
 | 3.7\% | 5.461 | 5.481 | 21 | |
 | 4.9\% | 5,269 | 5,283 | 14 | 0.3\% |
 | 6.2\% | 5,189 | 5,281 | 91 | 1.8\% |
 | 7.4\% | 5,039 | 5.119 | 80 | |
 | 8.6\% | 4,945 | 5,089 | 144 | 2.9\% |
 | 9.9\% | 4,877 | 4,989 | 112 | ${ }^{2.3 \%}$ |
 | 11.1\% | 4,635 | 4,987 | ${ }^{353}$ | 7.6 |
 | ${ }^{12.3 \%}$ | 4,458 | 4,959 | 501 | ${ }^{11.2 \%}$ |
 | 13.6\% | 4,331 | 4,941 | 610 | 14.1 |
 | 14.8\%\% | ${ }^{4.303}$ | 4,926 | 622 | ${ }^{14.5 \%}$ |
 | 16.0\% | 4,137 | 4,829 | ${ }_{7} 92$ | 16.7 |
 | 18.5\% | 4,095 | 4.8599 | ${ }_{5} 714$ | |
 | 19.8\% | ${ }_{3,953}^{4,025}$ | ${ }_{4,457}^{4.454}$ | 505 | ${ }^{12.8 \%}$ |
 | 21.0\% | 3,897 | 4,318 | 422 | 10.8\% |
 | ${ }^{22.2 \%}$ | ${ }^{3.886}$ | 4,272 | ${ }^{386}$ | 9.9\% |
 | ${ }^{224.7 \%}$ | ci. ${ }_{\substack{3.785 \\ 3,85}}$ | ${ }_{4,191}^{4.231}$ | ${ }_{405}$ | 10.7\% |
 | 25.9\% | 3,783 | 4,137 | 354 | 9.4\% |
 | 27.2\% | 3,676 | 4,093 | 417 | |
 | 28.4\% | 3,667 | 3,958 | 290 | 7.9\% |
 | 29.6\% | 3,659 | 3,921 | 262 | 7.2\% |
 | 30.9\% | ${ }^{3,528}$ | 3,879 | 351 | 9.9\% |
 | 32.1\% | 3,501 | 3,854 | 353 | 10.1\% |
 | 33.3\% | 3,404 | 3.800 | 395 | 11.6\% |
 | 34.5\% | 3,364 | 3,792 | ${ }^{428}$ | ${ }^{12.7 \%}$ |
 | 35.8\% | 3,350 | 3,763 | ${ }^{413}$ | 12,3\% |
 | 37.0\% | 3,333 | 3,727 | 394 | ${ }^{11.8 \%}$ |
 | 38.3\% | 3,297 | -3,776 | 419 | ${ }^{12.7 \%}$ |
 | 39.5\% | - | 3.708 3 3 | 419 | 12.8\% |
 | 40.7\% | - ${ }_{\text {3,273 }}$ | $\begin{array}{r}3.580 \\ \hline\end{array}$ | 307 | |
 | ${ }^{42.2 \%}$ | 3,195 | - 3 3,540 | ${ }^{345}$ | |
 | 4.4.4\% | ${ }_{\text {c }}$ | ${ }_{3,450}$ | ${ }_{276} 27$ | 8.7\% |
 | 45.7\% | 3,169 | 3,437 | 268 | |
 | 46.9\% | 3,062 | 3,327 | 266 | |
 | 48.1\% | 3,009 | 3,307 | 298 | 9.9\% |
 | 4.9.4\% | 3.008 | 3,305 | 297 | |
 | 55.6\% | 3,007 | 3,302 | 295 | |
 | 51.9\% | 3,004 | 3,278 | 275 | 9.1\% |
 | 53.1\% | 2,964 | 3,212 | ${ }^{248}$ | 8.4\% |
 | 54.3\% | 2,960 | 3,205 | ${ }^{245}$ | 8.3\% |
 | 55.6\% | 2,947 | 3,170 | ${ }^{223}$ | 7.6\% |
 | 56.8\% | 2,846 | 3,134 | 288 | 10.1\% |
 | 58.0\% | 2,665 | 3,017 | 352
 352 | 13,2\% |
 | | 2,647 | 3,007 | 359 | 13.6\% |
 | 60.5\% 61.7% | ${ }_{2}^{2,562}$ | ${ }_{2}^{2,966}$ | 404 | 15.8\% |
 | 61.7\% | ${ }_{2,523}$ | 2,952 | 429 | 17.77\% |
 | 63.0\% 64.2% | 2,506 | 2,949 | ${ }^{433}$ | 17.7\% |
 | 64.2\% 65.4% | ${ }_{2}^{2,498}$ | ${ }_{2}^{2,880}$ | 382 | 15.3\% |
 | ${ }^{65.4 \%}$ | - | ${ }_{2}^{2.858}$ | ${ }_{5}^{435}$ | \% |
 | -66.7\% | 2,279 $\substack{2,260}$ | 2,846
 2788
 280 | $\stackrel{567}{507}$ | 年9\% |
 | 69.1\% | ${ }_{2,158}^{2,158}$ | ${ }_{2,660}$ | 502 | ${ }_{\text {23,3\% }}^{22.4 \%}$ |
 | 70.4\% | 2,131 | 2,625 | 494 | |
 | 77.6\% | 2,045 | 2.575 | 530 | 9\% |
 | 72.8\% | 2,003 | 2,556 | 553 | |
 | 74.1\% | 1,996 | 2.528 | 532 | 7\% |
 | 75.3\% | 1,979 | 2,527 | 548 | \% |
 | 76.5\% | 1,960 | ${ }^{2.513}$ | 553 | 28.2\% |
 | 77.8\% | 1,930 | 2,432 | 501 | 26.0\% |
 | 79.0\% | ${ }_{1,714}^{1,891}$ | ${ }^{2}, 427$ | 536 | 28.3\% |
 | 80.2\% | 1,714 | 2.405 | 691 | 40.3\% |
 | ${ }^{81.5 \%}$ | ${ }^{1,682}$ | ${ }_{2}^{2,360}$ | 679 | 40.4\% |
 | ${ }^{82.7 \%}$ | +1,616 | 2,264 | 648 | 40.1\% |
 | 84.0% 852% | 1,352 | 2,142 | 770 | 58.4\% |
 | 85.2% 86.4% | ${ }_{1,306}$ | 2,080 | 774 | ${ }^{59.2 \%}$ |
 | -86.4\% | (1,299 | 2,074 | 775 | 59.7\% |
 | - ${ }_{8}^{87.7 \%}$ | ${ }_{\substack{1,288 \\ 1,154}}^{\substack{1 \\ 1}}$ | 2,047 2012 | 758
 88
 8 | 58.9\% |
 | 88.9\% 90.1% | ${ }^{\text {l }}$ | 2,012
 1,968 | 958 | ${ }^{74.3 \%}$ |
 | ${ }^{90.4 \%}$ | ${ }_{1}^{1,019}$ | ${ }_{\text {l, }}^{1,951}$ | ${ }_{931}^{945}$ | 9, ${ }_{\text {9,4.4\% }}$ |
 | 92.6\% | 1.011 | 1.891 | 880 | 87.0\% |
 | 93.8\% | 1.000 | 1,709 | 709 | .9\% |
 | 95.1\% | 997 | 1,221 | 224 | 22.4\% |
 | 96.3\% | 968 | 1,000 | 32 | 3.3\% |
 | 97.5\% | 931 | 969 | ${ }^{38}$ | 4.1\% |
 | 98.8\% | 474 | 926 | 452 | 95.2\% |
 | 100.0\% | 300 | 332 | 32 | 10.5\% |

 | |
 | :--- | :--- | :--- | :--- | :--- |

 Table SW-39-b

 | | | | | |
 | :--- | :--- | :--- | :--- | :--- |
 | | | | | |

 | $\begin{aligned} & \text { Percent } \\ & \begin{array}{c} \text { Excedenace } \\ \text { Probability } \end{array} \end{aligned}$ | September | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Without Proiect | WSIP 2030 With Project | Absoute | |
 | | Monthy Piversion | Monthly Diversion | (ics) | Difference (\%) |
 | (1) | (CFF) | (trs) | | |
 | 0.0\% | | 6,880 | | 0.0\% |
 | 1.25\% | ${ }_{6}^{6.6880}$ | ${ }_{6}^{6.6880}$ | | |
 | | 6,680 | 6,00 | | |
 | | ${ }_{6}^{6.680}$ | 6.680 | | |
 | 6\% | 6680 | 6680 | | 0% |
 | 7.4\% | 6,680 | 6.680 | | |
 | 8.6\% | 6.680 | 6680 | | 0.0\% |
 | 9.9\% | 6.680 | ${ }_{6,680}$ | 0 | 0.0\% |
 | 11.1\% | 6,680 | 6.680 | O | 0.0\% |
 | 12.3\% | 6,680 | ${ }_{6,680}$ | 0 | 0.0\% |
 | 13.6\% | 6,680 | 6,680 | 0 | 0.0\% |
 | 14.8\% | 6,680 | 6,680 | 0 | 0.0\% |
 | 16.0\% | 6,680 | 6,680 | 0 | 0.0\% |
 | 17.3\% | 6,680 | ${ }^{6,680}$ | 0 | 0.0\% |
 | -19.8\% | ${ }_{\text {c, }}^{6.6880}$ | ${ }_{6.680}^{6.680}$ | 0 | 0.0\% |
 | 21.0\% | 6.680 | 6.680 | 0 | 0.0\% |
 | ${ }^{22.2 \%}$ | ${ }^{6.656}$ | ${ }^{6.680}$ | ${ }^{24}$ | 0.4\% |
 | 24.7\% | ${ }_{6.524}^{6.542}$ | ${ }_{6.680}^{6.680}$ | 138
 156
 1 | 2.4\% |
 | 25.9\% | 6,475 | 6.680 | 205 | |
 | 27.2\% | 6,427 | 6.680 | 253 | 3.9\% |
 | 28.4\% | 6,286 | 6,680 | 394 | 6.3\% |
 | 29.6\% | 5,789 | 6,680 | 891 | 15.4\% |
 | 30.9\% | 5,737 | ${ }^{6.680}$ | 943 | 16.4 |
 | 32.1\% | 5,722 | ${ }^{6.613}$ | 890 | 15.6\% |
 | 33.3\% | 5.718 | ${ }^{6.558}$ | ${ }^{840}$ | 14.7\% |
 | 34.6\% | 5,715 | 6,488 | ${ }^{773}$ | 13.5\% |
 | 35.8\% | 5.650 | ${ }_{6}^{6,375}$ | 725 | ${ }^{12.8 \%}$ |
 | 37.0\% | 5.549 | ${ }_{6.311}$ | ${ }_{772} 7$ | ${ }^{13.7 \%}$ |
 | 38.3\% | 5,501 | ${ }_{6}^{6,278}$ | 778 | 14.1\% |
 | 39.5\% | ${ }_{\text {5,483 }}$ | ¢, 6.088 | 605 5 | 11.0\% |
 | 40.7\% | 5,234 | 5,792 | 558 | |
 | 42.0\% | 5.098 | ${ }_{\text {5,553 }}$ | 455 | 8.9\% |
 | ${ }_{4}^{43.4 \%}$ | 4,936 | ${ }_{\substack{5.4 .250}}^{5}$ | 657 | 14.3\% |
 | 45.7\% | | 5,056 | 675 | |
 | 46.9\% | 4,326 | 5,041 | 715 | |
 | 48.1\% | 4,229 | 4,977 | 749 | 17.7\% |
 | 49.4\% | 4,113 | 4,958 | 845 | |
 | 50.6\% | 4,102 | 4,950 | 847 | |
 | 51.9\% | 3,772 | 4,886 | 1,114 | 29.5\% |
 | 53.1\% | 3,721 | 4,697 | 976 | |
 | 54.3\% | 3,655 | 4.563 | 909 | 24.9\% |
 | 55.6\% | 3,380 | 4,544 | ${ }^{1,164}$ | 34.4\% |
 | 56.8\% | 3,333 | 4.538 | 1,205 | 36.1\% |
 | 58.0\% | ${ }_{\text {3,306 }}$ | 4,498 | 1,192 | 36.0\% |
 | 59.3\% | 3,279 | 4,477 | ${ }^{1,198}$ | 36.6\% |
 | ${ }^{60.5 \%}$ | | ${ }_{4}^{4,382}$ | +1,152 | 35.7\% |
 | ${ }^{61.7 \%}$ | 3,088 | 4,370 | ${ }_{1}^{1,282}$ | 41.5\% |
 | | ${ }^{3.081}$ | 4,290 | 1,229 | 39.3\% |
 | 64.2% 65.4% | 2,982 | ${ }^{4,2153}$ | 1,221 | 41.0\% |
 | - 6.54% | 2,839 2820 | 4,150 | +1,211 | 2\% |
 | -66.7\% 6 | | ${ }^{4,103}$ | ${ }_{\substack{1,282 \\ 1,252 \\ 1}}^{1,221}$ | ${ }_{4}^{45.5 \%}$ |
 | 69.1\% | ${ }_{2,733}$ | 3,849 | ${ }_{\substack{1,116}}^{1,232}$ | 40.8\% |
 | 70.4\% | 2,601 | 3,597 | 996 | |
 | 71.2\% | 2,557 | ${ }^{3.530}$ | 972 | 0\% |
 | 72.8\% | 2,520 | 3,414 | 895 | |
 | 74.1\% | 2,486 | 3,406 | 921 | . $\%$ |
 | 75.3\% | 2,341 | 3,272 | 931 | 7\% |
 | 76.5\% | 2,323 | 3,227 | 903 | 38.9\% |
 | 77.8\% | 2,286 | 3,199 | 913 | 39.9\% |
 | 79.0\% | ${ }_{\text {2,256 }}$ | 3,167 | 911 | 40.4\% |
 | 80.2\% | 2,203 | 3,091 | 888 | 40.3\% |
 | ${ }^{81.5 \%}$ | 2,125 | ${ }_{\text {2,633 }}^{2,693}$ | 508 | 23.9\% |
 | 82.7\% | 2,116 | ${ }_{2}^{2.568}$ | 451 | 21.3\% |
 | -84.0\% | +1.809 | ${ }_{2}^{2,443}$ | -634 | ${ }^{35.1 \%}$ |
 | 85.2\% | 1,807 | 2,396 | 589 | ${ }^{32.6 \%}$ |
 | ${ }^{86.4 \%}$ | ${ }^{1} 1.694$ | 2,390 | ${ }_{696} 929$ | 41.1\% |
 | 88.9\% | +1,433 | 2,280
 2264
 2 | 887 830 | 56.9\% |
 | ${ }^{\text {90. }}$.1\% | ${ }_{1}^{1057}$ | | ${ }_{1}^{8068}$ | 101.0\% |
 | 91.4\% | 980 | 2,106 | 1,126 | 14.8\% |
 | 92.6\% | 977 | 1,940 | 963 | \% |
 | 93.8\% | 898 | 1,267 | 370 | 41.2\% |
 | 95.1\% | 885 | ${ }_{1}^{1,143}$ | 259 | 2\% |
 | 96.3\% | 824 | 979 | 155 | 18.8\% |
 | 97.5\% | 785 | 834 | 49 | |
 | 98.8\% | 568 | 768 | 199 | 35.0\% |
 | 100.0\% | 418 | 626 | 208 | 49.8\% |

 Banks Pumping Plant (CVP), Monthly Diversion

 Table SW-40-b
 anks Pumping Plant (CVP), Monthly Diversion

 Table SW-40-b

 | $\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \\ \hline \end{gathered}$ | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Without | WSIP 2030 With Project | Absolute | Reative |
 | | Montly Diversion | Monthly Diversion | citiference | Difference (\%) |
 | (\%) | ${ }^{(C F 5 S)}$ | (CFS) | | |
 | 0.0\% | | | 5/3 | -37.8\% |
 | 1.2\%\% | 0 | 0 | O | |
 | 2.5\% | 0 | 0 | | |
 | 4.9\% | 0 | 0 | | |
 | 6.2\% | 0 | 0 | 0 | |
 | 7.4\% | 0 | 0 | 0 | |
 | 8.6\% | 0 | 0 | 0 | |
 | 9.9\% | 0 | 0 | 0 | |
 | 11.1\% | 0 | 0 | 0 | |
 | ${ }^{12.3 \%}$ | 0 | 0 | 0 | |
 | 13.6\% | 0 | 0 | 0 | |
 | 14.8\% | 0 | 0 | 0 | |
 | -16.0\% | 0 | 0 | 0 | |
 | -17.5\% | 0 | O | 0 | |
 | 19.8\% | 0 | 0 | 0 | |
 | 21.0\% | 0 | 0 | 0 | |
 | 22.2\% | 0 | 0 | 0 | |
 | 224.7\% | 0 | 0 | 0 | |
 | 25.9\% | 0 | 0 | 0 | |
 | 27.2\% | 0 | 0 | 0 | |
 | 28.4\% | 0 | 0 | 0 | |
 | 29.6\% | 0 | 0 | 0 | |
 | 30.9\% | 0 | 0 | 0 | |
 | 32.19\% | 0 | 0 | 0 | |
 | 33.3\% | 0 | 0 | 0 | |
 | 年34.6\% | 0 | 0 | 0 | |
 | - 35.8% | 0 | 0 | 0 | |
 | 37.0\% | 0 | 0 | 0 | |
 | 38.3\% | 0 | 0 | 0 | |
 | 39.7\% | 0 | 0 | 0 | |
 | 40.7. ${ }^{\text {4.2\% }}$ | 0 | 0 | 0 | |
 | 43.2\% | 0 | 0 | 0 | |
 | 44.5\% | 0 | 0 | 0 | |
 | 45.7\% | 0 | 0 | 0 | |
 | | | | | |
 | ${ }_{49.4 \%}^{48.4 \%}$ | 0 | 0 | 0 | |
 | 50.6\% | 0 | 0 | 0 | |
 | | 0 | 0 | 0 | |
 | | 0 | 0 | 0 | |
 | | 0 | 0 | 0 | |
 | 55.6\% | 0 | 0 | 0 | |
 | 56.8\% | 0 | 0 | 0 | |
 | 58.0\% | 0 | 0 | 0 | |
 | 59.3\% | 0 | 0 | 0 | |
 | - 60.5% | 0 | 0 | 0 | |
 | 61.7\% ${ }^{63.0 \%}$ | 0 | 0 | 0 | |
 | - 63.0% | 0 | 0 | 0 | |
 | 65.4\% ${ }^{64.2 \%}$ | 0 | 0 | 0 | |
 | ${ }_{\text {c }}^{65.4 \%}$ | 0 | 0 | 0 | |
 | 67.9\% | | | 0 | |
 | | 0 | 0 | 0 | |
 | 771.6\% | 0 | \bigcirc | 0 | |
 | 72.8\% | 0 | 0 | 0 | |
 | 74.19\% | 0 | 0 | 0 | |
 | 75.3\% | 0 | 0 | 0 | |
 | 76.5\% | 0 | 0 | 0 | |
 | 77.8\% | 0 | 0 | 0 | |
 | 79.0\% | 0 | 0 | 0 | |
 | 80. ${ }^{80.2 \%}$ | 0 | 0 | 0 | |
 | - ${ }^{81.5 \%}$ 82.7\% | 0 | 0 | 0 | |
 | -82.7\% | 0 | 0 | 0 | |
 | 84.0\% | 0 | 0 | 0 | |
 | - ${ }_{\text {85.2\% }} 8.4 \%$ | 0 | 0 | 0 | |
 | 86.4% 87.7% | 0 | 0 | 0 | |
 | - 87.7% | 0 | 0 | 0 | |
 | - 98.1% | 0 | 0 | 0 | |
 | ${ }^{90.14 \%}$ | 0 | 0 | | |
 | 92.4\% | 0 | 0 | 0 | |
 | | 0 | 0 | | |
 | 99.1\%\% | 0 | 0 | 0 | |
 | 997.5\% | 0 | 0 | 0 | |
 | 998.8\% | 0 | | 0 | |
 | 100.0\% | 0 | 0 | 0 | |

 Table SW-40-b

 Sank Pumping Plant C CVPV), (oonthy Piversion

 San Luis Reservoir (SWP and CVP), End of Month Storage

 | | | Ociober | | |
 | :---: | :---: | :---: | :---: | :---: |
 | ${ }_{\text {Percent }}^{\text {Exceadance }}$ | WSIP 2030 W.thout
 Proiet | WSIP 2030 With Project | Absolute | |
 | Probability | End of Month storage | End of Montrt Storage | (tar) | Difference (\%) |
 | \%\%) | (TAF) | (TAF) | | |
 | - | ${ }^{1,780}$ | ${ }^{1,651}$ | ${ }^{129}$ | - $\begin{gathered}\text { 7.3\% } \\ 54.6\end{gathered}$ |
 | ${ }^{1.2 \%}$ | ${ }^{1,075}$ | ${ }_{1}^{1,088}$ | 55 | 7.4\% |
 | 2.5\% ${ }^{\text {3.7\% }}$ | ${ }_{908}^{975}$ | 1,044 1,021 1 | ${ }_{112}^{69}$ | 7.1% 12.4% |
 | 4.9\% | 895 | 1.016 | 121 | 13.5\% |
 | 7.2\% | ${ }_{765} 78$ | ${ }_{995}^{940}$ | 146 | 18.3\% |
 | 7.4\%\% | 765 738 | ${ }_{910}^{935}$ | 170 171 | ${ }_{2}^{22.2 \%}$ |
 | 8.9\% | ${ }_{7} 700$ | 799 | ${ }_{99}$ | ${ }^{23.14 \%}$ |
 | 11.1\% | 688 | 764 | 76 | |
 | 12.3\% | 682 | 761 | 79 | |
 | +13.6\% | 676 | 749 | 73 | |
 | 14.8%
 16.0% | 661 | ${ }^{724}$ | ${ }^{63}$ | 9.6\% |
 | (16.3\% | ${ }_{639} 64$ | ${ }_{690}^{699}$ | ${ }_{51}^{58}$ | 7.9\% |
 | 18.5\% | 622 | 686 | 65 | 10.4\% |
 | 19.8\% | 549 | 678 | 129 | 23.5\% |
 | 21.0\% | ${ }_{5}^{539}$ | ${ }_{6}^{674}$ | 135 | 25.0\% |
 | ${ }^{22.2 \%}$ | 526 | ${ }_{649}^{653}$ | 128 | 24.3\% |
 | 23.5\% | 517 515 | ${ }_{649} 64$ | ${ }^{131}$ | 25.4\% |
 | 24.7\% | 515 514 | ${ }_{642}$ | ${ }^{127}$ | 24.7\% |
 | ${ }^{25.59 \%}$ | 514 496 | 618 599 | 103 104 | 20.1\% |
 | - 27.2 \% 2.4% | 496 | 599 | 104 | 20.9\% |
 | - ${ }_{\text {28.4. }}$ | 482 488 | 598
 584 | 104 102 | ${ }_{212}^{21.5}$ |
 | - ${ }^{29.9 \% \%}$ | ${ }_{470}^{482}$ | 548
 548 | 102 | |
 | 32.1\% | 467 | 539 | 72 | 15.4\% |
 | 33.3\% | 457 | 527 | 70 | 15.3\% |
 | 34.6% 35.8% | 446 446 | 524 512 | 70 65 | - ${ }_{\text {14.3\% }}$ |
 | 37.0\% | 445 | 502 | 57 | 12.8\% |
 | 38.3\% | 443 | 491 | 48 | 10.8 |
 | 39.5\% | 442 | 488 | 46 | 10.4 |
 | ${ }^{40.7 \%}$ | 440 | 475 | ${ }^{35}$ | 7.9\% |
 | ${ }_{4}^{42.2 \%}$ | ${ }_{437}$ | ${ }_{468}^{474}$ | 36
 31 | 7.1\% |
 | 44.4\% | 433 | 466 | 33 | 7.6\% |
 | 45.7\% | ${ }_{4}^{431}$ | ${ }_{4}^{458}$ | ${ }^{27}$ | |
 | 46.9\% | 424 | 443 | 19 | 4.5\% |
 | ${ }^{48.19 \%}$ | ${ }_{4}^{415}$ | ${ }_{441}^{441}$ | ${ }_{23}^{26}$ | 6.2\% |
 | 49.4\% | ${ }^{408}$ | ${ }_{4}^{441}$ | ${ }^{33}$ | 8.1\% |
 | 51.9\% | ${ }_{402}^{403}$ | ${ }_{430}^{435}$ | ${ }_{28}^{32}$ | 7.1\% |
 | 53.1\% | 395 | 428 | 33 | 8.3\% |
 | 54.3\% | 394 | ${ }^{425}$ | 31 | 7.8\% |
 | 55.6\% | 385 381 | ${ }_{412}^{421}$ | 36 32 | 9.2\%\% |
 | 58.0\% | 379 | 408 | | |
 | 59.3\% | ${ }^{376}$ | ${ }^{378}$ | 2 | 0.6\% |
 | | 374 374 | ${ }_{371}^{377}$ | ${ }_{-2}^{2}$ | -0.6\% |
 | 63.0\% | ${ }^{371}$ | ${ }^{366}$ | -5 | 3\% |
 | 64.2% 654% | 369 | 365 | 4 | |
 | ${ }^{65.4 \%}$ 66.7\% | ${ }^{368}$ | ${ }^{364}$ | 4 | -1.2\% |
 | 667.9\% | 366 356 | - ${ }_{363}^{364}$ | -2 | ${ }^{-0.9 \% \%}$ |
 | 69.1\% | 346 | 352 | 6 | 1.7\% |
 | 70.4\% | 340
 335 | 340 336 | -1 | -0.2\% |
 | 71.6\% | 335 334 | ${ }_{336}^{336}$ | 1 | 0.2\% |
 | 72.8\% | ${ }_{326}^{334}$ | ${ }_{317}^{326}$ | -8 | -2.5\% |
 | 74.3\% | ${ }_{324}^{326}$ | ${ }_{317}^{317}$ | ${ }_{-7}^{-8}$ | ${ }_{-2.3 \%}^{-2.26 \%}$ |
 | 76.5\% | 319 | ${ }^{314}$ | -5 | -1.5\% |
 | 77.8\% | 319 318 | 310 310 | ${ }_{-8}^{-9}$ | -2.8\% |
 | 79.0\% | 318 310 | 310 303 | -8 | ${ }_{-2.2 \%}^{-2.2 \%}$ |
 | 81.5\% | 298 | ${ }_{2} 290$ | -8 | -2.7\% |
 | - 82.78 | 292 290 | 286 283 | -6 -7 | -2.5\% |
 | 85.2\% | 290 | 279 | -11 | -3.8\% |
 | 86.4\% | 276 | 270 | -6 | -2.0\% |
 | 8777% 88.9% | 254 | 267 | 13 | 5.2\% |
 | ${ }^{88.9 \%}$ | ${ }^{237}$ | ${ }^{253}$ | 16 | 6.7\% |
 | ${ }_{9}^{90.14 \%}$ | 236 226 | ${ }_{2217}^{243}$ | ${ }_{-9}^{6}$ | ${ }_{-3.9 \%}^{2.7 \%}$ |
 | 92.6\% | 214 | 208 | -6 | -2.6\% |
 | 93.8\% | 212 | 201 | -11 | -5.2\% |
 | 95.1\% | 200 181 | 189 183 | ${ }^{-11}$ | -5.7\% |
 | 96.3\% ${ }_{\text {975 }}$ | 181 171 | 183
 174
 1 | 2 | 1.0\% |
 | 997.5\% | 171 162 | 174
 173 | 11 | 1.8\% |
 | 988.8\%
 100.0\% | 162 100 | 173 100 | 11 | - ${ }^{6.9 \%}$ |

 San Luis Reservoir (sowh and CCP), End of or Month Storage

 San Luis Reservoir (SWP and CVP), End of Month Elevation

 San Luis Reservoir (shwe and C.4P), End on Month Elevation

 Figure SW-43-b
 San Luis Reservoir (SWP and CVP), End of Month Area

 | $\begin{gathered} \text { Eerecent } \\ \text { Exreana } \\ \text { Probability } \end{gathered}$ | | Ocrober | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | WSIP 2030 With Project | $\begin{gathered} \text { Absolute } \\ \text { Difieferee } \\ \text { (ACRE) } \end{gathered}$ | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | | of Month | of Month A | | |
 | 0.0\% | ${ }^{(\text {ACRE }}$ (12,130 | ${ }^{(\text {ACRE }} 11,840$ | -290 | 2.4\% |
 | 1.2\% | 10,060 | 10,240 | 180 | 1.8\% |
 | 2.5\% | 9.870 | 10,098 | 228 | 2.3\% |
 | 3.7\% | 9,642 | 10,023 | 380 | 3.9\% |
 | 4.9\% | ${ }_{9,596}$ | 10,008 | 412 | 4.3\% |
 | 6.2\% | 9,230 | 9,752 | 521 | 5.6\% |
 | 7.4% 8.6% | ${ }_{\text {9,118 }}^{9}$ | 9,734 | ${ }_{616}^{616}$ | ${ }_{7}^{6.8 \%}$ |
 | 8.6\% | 9,013 | 9.647 | 635 | 7.0\% |
 | 9.9\% | ${ }_{8,856}$ | 9,247 | 391 | 4.4\% |
 | 11.19\% | 8.805
 8778 | 9,115 | 310 326 | 3.5\% |
 | +12.3\% | 8.778 885 8 | 9,103 | 326 302 | 3.7\% |
 | 14.8\% | ${ }_{8,685}^{8,785}$ | ${ }_{8,954}^{9,054}$ | 302 269 | 3.1\% |
 | 16.0\% | 8.594 | ${ }_{8,849}^{8,89}$ | 254 | |
 | 17.3\% | ${ }^{8.587}$ | 8.810 | 224 | |
 | 18.5\% | 8,506 | 8,797 | 290 | |
 | 19.8\% | 8,139 | ${ }^{8.761}$ | 621 | |
 | 21.0\% | 8,087 | 8,742 | 655 | 8.1\% |
 | 22.2\% | ${ }_{8,012}$ | ${ }_{8,652}$ | 640 | 8.0\% |
 | 23.5\% | 7,964 | ${ }_{8,630}$ | 666 | 8.4\% |
 | 24.7\% | 7,953 | 8.601 | 649 | 8.2\% |
 | 25.9\% | 7,948 | ${ }_{8}^{8,488}$ | 540 | 6.8\% |
 | 27.2\% | 7,837 | ${ }^{8,397}$ | 560 | 7.1\% |
 | 28.4\% | 7,777 | 8,353 | 576 | 7.4\% |
 | 29.6\% | 7,756 | ${ }_{8,324}$ | 567 | 7.3\% |
 | - 3 30.9\% | ${ }_{7}^{7,682}$ | 8,134 | 453 | 5.9\% |
 | 32.1\% | ${ }_{7}^{7,562}$ | 8,087 | ${ }^{425}$ | 5.5\% |
 | | 7,597 | 8.019 | 422 | ${ }_{5}^{5.6 \%}$ |
 | 34.6%
 3588% | 7,580 | ${ }^{8.003}$ | 425 | 5.6\% |
 | | ${ }_{7}^{7,527}$ | ${ }_{7}^{7,933}$ | ${ }^{405}$ | |
 | 37.3\% | ${ }_{7,506}^{7.517}$ | ${ }_{7}^{7.812}$ | 357 306 | |
 | 39.5\% | 7,497 | 7,791 | 294 | 3.9\% |
 | 40.7\% | 7,486 | 7,710 | ${ }^{225}$ | 3.0\% |
 | 42.0\% | 7,473 | 7,707 | ${ }^{234}$ | 3.1\% |
 | 44.4\%\% | 7,468 | ${ }_{7}^{7,669}$ | ${ }_{218}^{203}$ | 2, |
 | 45.7\% | 7,421 | 7.603 | ${ }_{182}$ | 25\% |
 | 46.9\% | 7,375 | 7.504 | 130 | 1.8\% |
 | 48.1\% | 7,313 | 7,491 | 179 | 2.4\% |
 | 49.4\% | 7,257 | 7,488 | 231 | 3.2\% |
 | 50.6\% | 7,223 | 7,452 | ${ }^{229}$ | 3.2\% |
 | 51.9\% | 7,213 | 7,417 | ${ }^{204}$ | 2.8\% |
 | 53.1\% | 7,167 | 7,403 | ${ }_{2}^{236}$ | ${ }_{3}^{3.3 \%}$ |
 | 54.3\% 5 5 5 | 7,155 | ${ }_{7}^{7,378}$ | ${ }^{223}$ | ${ }^{3.17 \%}$ |
 | ${ }_{\text {c }}^{55.6 \% \%}$ | 7.089 | 7,351 | ${ }_{236}^{262}$ | 3.7\%\% |
 | ${ }_{\text {cken }}^{56.8 \%}$ | 7,053 7 7 | 7,289
 $7+256$ | ${ }_{2}^{236}$ | ${ }^{3.4 \% \%}$ |
 | 59.3\% | 7,017 | 7.034 | 17 | 0.2\% |
 | -60.5\% | 7,009 6.908 | 7,027 | 18 | 0.3\% |
 | ${ }^{61.7 \%}$ | | | | |
 | 63.4.2\% | | ¢,9,930 | -30 | -0.4\% |
 | 65.4\% | 6,958 | ${ }_{6,923}$ | -35 | -0.5\% |
 | | | ¢,922 | -17 | ${ }^{-0.2 \%}$ |
 | 69.1\% | 6,771 | ${ }_{6,821}^{6,82}$ | 50 | 0.7\% |
 | 70.4\% | 6,726 | 6.719 | ${ }_{-7}$ | -0.1\% |
 | 71.6\% | 6,683 | 6,690 | 7 | 0.1\% |
 | 72.8\% | ${ }_{6}^{6.673}$ | 6.600 | -73 | -1.1\% |
 | 74.1\% | 6,597 | ${ }^{6.522}$ | ${ }^{-76}$ | -1.1\% |
 | -75.3\% | 6,587 | 6,520 | -67 | -1.0\% |
 | 76.5\% | 6,538 | 6,494 | 44 | -0.7\% |
 | 77.8\% | 6.537 | 6,457 | -80 | -1.2\% |
 | 79.0\% | ${ }^{6.529}$ | ${ }^{6,452}$ | -74 | 1.2\% |
 | - | 6,451 | 6,387 | -64 | -1.0\% |
 | ${ }^{81.75 \%}$ | ¢,6,344
 6.288 | c,6,267
 6.231
 1 | -78 | -1.9\% |
 | 84.0\% | ${ }_{6,267}$ | 6,195 | -72 | 1\% |
 | 85.2\% | 6.263 | 6,155 | 108 | 7\% |
 | 86.4\% | 6,127 | 6,070 | -57 | -0.9\% |
 | 87.7\% | 5,900 | ${ }^{6}, 038$ | 138 | 2.3\% |
 | 88.9\% | 5.720 | 5.893 | 174 | 3.0\% |
 | 90.1\% | 5,707 | 5,778 | 71 | ${ }^{1.2 \%}$ |
 | -91.4\% | 5,593 | 5,492 | 101 | 1.8\% |
 | - ${ }_{93}^{92.8 \%}$ | 5,443
 5.426 | | -66 | -1.2\% |
 | 95.1\% | ${ }_{5,288}^{5,428}$ | ${ }_{5}^{5,147}$ | -141 | -2.7\% |
 | 96.3\% | 5,042 | 5,065 | 23 | 0.5\% |
 | 97.5\% | 4.917 | 4,957 | 40 | 0.8\% |
 | 98.8\% | 4,793 | 4,942 | 149 | 3.1\% |
 | 100.0\% | 3,889 | 3,889 | 0 | 0.0\% |

 | $\begin{aligned} & \text { Percent } \\ & \text { Exceedance } \\ & \text { Probability } \end{aligned}$ | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Without | WSIP 2030 With Project | Absolute | Reala |
 | | of Month Ar | End of Month Area | ditierence | Difference (\%) |
 | (\%) | (ACRE) | (ACRE) | | |
 | 12\% | | 12,096 | , | |
 | 2.5\% | 12,096 | 12,096 | | |
 | 3.7\% | ${ }_{12296}$ | 12696 | 0 | |
 | 4.9\% | 12,696 | 12696 | 0 | 0.0\% |
 | 6.2\% | 12,696 | 12,696 | 0 | 0.0\% |
 | 7.4\% | 12,696 | 12,696 | 0 | 0.0\% |
 | 8.6\% | ${ }^{12,543}$ | ${ }^{12,696}$ | 152 | 1.2\% |
 | 9.9\% | ${ }^{12,440}$ | ${ }^{12,696}$ | ${ }^{255}$ | ${ }^{2.1 \%}$ |
 | 11.1\% | ${ }_{1}^{12,387}$ | ${ }^{12,696}$ | 308 | ${ }^{2.5 \%}$ |
 | ${ }^{12.3 \%}$ | ${ }^{12,363}$ | 12,609 | ${ }^{246}$ | 2.0\% |
 | 13.6\% | ${ }_{1}^{12,318}$ | 12,475 | 156 | 1.3\% |
 | 14.8\% | ${ }^{12,304}$ | ${ }^{12,380}$ | 77 | \% |
 | 16.0\% | ${ }^{12,272}$ | - 12,3244 | 72 | |
 | 17.3\% | 12,259 | ${ }^{12,254}$ | $\stackrel{-6}{5}$ | 0.0\% |
 | 19.8\% | 12,150 | ${ }_{12,197}$ | 47 | 0.4\% |
 | 21.0\% | 12,100 | 12,160 | 60 | 0.5\% |
 | ${ }^{22.2 \%}$ | ${ }^{12,088}$ | ${ }^{12,039}$ | -49 | -0.4\% |
 | ${ }^{24.7 \%}$ | ${ }^{12,003}$ | ${ }^{111,803}$ | -200 | -1.7\% |
 | 25.9\% | 11,738 | 11,732 | -6 | -0.1\% |
 | 27.2\% | 11,697 | ${ }^{11,716}$ | 19 | |
 | 28.4\% | 11,660 | ${ }^{11,683}$ | ${ }^{23}$ | 2\% |
 | 29.6\% | 11,642 | 11,674 | 32 | 0.3\% |
 | 30.9\% | 11,557 | ${ }^{11,544}$ | -13 | -0.1\% |
 | 32.1\% | ${ }^{11,546}$ | ${ }^{11,526}$ | -19 | -0.2\% |
 | 33.3\% | ${ }^{11,527}$ | ${ }^{11,525}$ | -1 | 0.0\% |
 | 34.6\% | 11,482 | 11,487 | 5 | 0.0\% |
 | ${ }^{35.8 \%}$ | 11,476 | 11,456 | -20 | -0.2\% |
 | 37.0\% | 11,431 | ${ }^{11,422}$ | -9 | -0.1\% |
 | 38.3\% | 11,405 | ${ }^{11,323}$ | -81 | -0.7\% |
 | 39.5\% | ${ }^{111,399}$ | ${ }^{11,301}$ | -98 | -0.9\% |
 | ${ }^{40.70 \%}$ | ${ }_{111,117}^{11276}$ | 11,279 111191 | -84 | |
 | 43.2\% | 11.224 | ${ }_{111,161}$ | -82 | -0.6\% |
 | 44.4\% | 11,191 | ${ }^{11,137}$ | -55 | -0.5\% |
 | 45.7\% | 111,153 | ${ }^{11,130}$ | -23 | ${ }^{-0.2 \%}$ |
 | | | | | |
 | 4.94\% | 111195 | ${ }_{11,1087}$ | 8 | -0,10 |
 | 50.6\% | ${ }^{111,045}$ | ${ }^{111,050}$ | 5 | 0.0\% |
 | 51.9\% | 11,023 | 11,050 | 27 | 0.2\% |
 | 53.1\% | 10,992 | ${ }^{11,005}$ | 13 | 0.1\% |
 | 54.3\% | 10,951 | 10,967 | 17 | 0.2\% |
 | 年55.6\% | 10,004 | 10,927 | ${ }_{32}^{23}$ | ${ }^{0.2 \% \%}$ |
 | 56.8.0\% | 10,887 | 10,919 | ${ }^{32}$ | 0.3\% |
 | 59.3\% | ${ }^{10,8468}$ | 10,907 | ${ }^{61}$ | - ${ }_{\text {0.6\% }}^{110 \%}$ |
 | 60.5\% | ${ }_{\text {10,687 }}^{10,785}$ | ${ }^{10,903}$ | 118 | 1.7\% |
 | 61.7\% | 10,672 | 10,846 | 174 | 1.6\% |
 | 63.0\% | 10,645 | 10.834 | 189 | 1.8\% |
 | 64.2\% | ${ }^{10,622}$ | 10.647 | ${ }^{25}$ | 0.2\% |
 | 65.4\% | ${ }^{10,0,622}$ | 10,625 | 3 | ${ }^{0.0 \% \%}$ |
 | -66.7\% | ${ }^{10,551}$ | 10,424 10.386 | -128 | -1.2\% |
 | ${ }^{679.9 \%}$ | ${ }^{10.533}{ }^{10,483}$ | 10,386 10,340 | -143 | -1.4\% |
 | 70.4\% | 10.483 | ${ }_{10,325}$ | -158 | 1.5\% |
 | 71.6\% | 10,469 | 10,294 | -175 | 1.7\% |
 | 72.8\% | 10,415 10,375 | 10,239 10.211 | -176 | -1.7\%\% |
 | 75.3\% | ${ }_{10,348}$ | 10,151 | -197 | 1.9\% |
 | 76.5\% | 10,228 | 10,148 | -80 | -0.8\% |
 | 77.8\% | 10,186 | 10,120 | -66 | -0.6\% |
 | 79.0\% | 10,154 | 10,080 | ${ }_{-74}$ | ${ }^{-0.7 \%}$ |
 | 80.2\% | 10,127 | 10,079 | 47 | -0.5\% |
 | ${ }^{81.5 \%}$ 827\% | - $\begin{aligned} & 10,012 \\ & 9,999\end{aligned}$ | 10,056 10.049 | 44 | - 0.5% |
 | 84.0\% | 9,930 | 10,026 | 96 | 1.0\% |
 | 85.2\% | 9,912 | 9,990 | 78 | 0.8\% |
 | 86.4\% | 9,9910 | 9,976 | 67 | 0.7\% |
 | 87.7\% | 9,807 9.699 | 9,960 9910 | ${ }_{211}^{153}$ | - ${ }_{2}^{1.6 \%}$ |
 | ${ }^{80.1 \%}$ | ${ }_{9,648}^{9.699}$ | ${ }_{9,870}^{9,970}$ | ${ }_{221}^{211}$ | ${ }_{2}^{2.3 \%}$ |
 | 91.4\% | 9,411 | 9.818 | 407 | 4.3\% |
 | - 92.6% | ${ }^{9.3,378}$ | ${ }_{9}^{9,765}$ | ${ }_{38}^{326}$ | 3.5\% |
 | 93.8\% | 9,279 | 9,659 | 380 451 | 4.1\% |
 | 96.3\% | ${ }_{9,116}$ | ${ }_{9,300}^{9,642}$ | 184 | 2.0\% |
 | 97.5\% | 9,052 | 9,275 | ${ }^{223}$ | 2.5\% |
 | 988.8\% | ${ }_{8,351}^{8,934}$ | ${ }_{\text {g, }}^{9,108}$ | 316 757 | ${ }_{9.1 \%}^{3.5 \%}$ |
 | | | | | |

 Table SW-43-b

 | | | June | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Exceedance | Prioect | WSIP 2030 With Project | Absolute | Relative |
 | Probability | Of Mont A | dof Month Are | (ACRE) | Herence (\%) |
 | 0.0\% | ${ }_{\text {12CRE }}{ }_{12,632}$ | ${ }^{(\text {ACRE }}$ (220 | -212 | -1.7\% |
 | 1.2\% | 11,983 | 11,971 | -12 | -0.1\% |
 | 2.5\% | 11,699 | 11,651 | -48 | -0.4\% |
 | 3.7\% | ${ }^{11,330}$ | ${ }^{11,323}$ | -7 | -0.1\% |
 | 4.9\% | 11,300 | 11,252 | -47 | -0.4\% |
 | 6.2\% | ${ }^{11,260}$ | ${ }^{111,187}$ | -72 | -0.6\% |
 | 7.4\% | 10,953 | 11,037 | 84 | 0.8\% |
 | 8.6\% | 10,842 | 10.882 | 40 | 0.4\% |
 | 9.9\% | 10,678 | 10,843 | 165 | 1.5\% |
 | 11.14\% | 10.567 10.561 | 10,637 10.403 | 70 -159 | - 0.7% |
 | +12.3\% | 10.561 10.317 | 10,403 10.148 10.4 | -159 -170 | -1.5\% |
 | - 13.48% | - 10,317 | 10,148 10,141 | - 35 | -1.0\% |
 | 16.0\% | 10,152 | 10,031 | -121 | -1.2\% |
 | - 17.3% | 10,079 | 9,951 | -129 | ${ }^{-1.3 \%}$ |
 | 19.8\% | 110,049 10.027 | ${ }_{9,827}^{9.928}$ | ${ }_{-200}$ | - |
 | 21.0\% | 9,937 | 9,822 | -115 | -1.2\% |
 | 22.2\% | 9,922 | 9.769 | -153 | -1.5\% |
 | 23.5\% | 9,917 | 9,755 | -162 | -1.6\% |
 | 24.7\% | 9,884 | 9,662 | -222 | -2.2\% |
 | 25.9\% | 9.842 | 9,652 | -189 | -1.9\% |
 | 27.2\% | 9,794 | 9.650 | -144 | -1.5\% |
 | 28.4\% | 9,673 | 9,607 | -66 | -0.7\% |
 | 29.6\% | 9,636 | 9,555 | -81 | -0.8\% |
 | - 32.9% | 9,629 | 9,5525 | -104 | -1.1\% |
 | 32.1\% | 9,579 | 9,420 | -159 | -1.7\% |
 | 33.3\% | 9,412 | ${ }^{9.3381}$ | -31 | -0.3\% |
 | 34.6% 35.8% | ${ }_{9}^{9,395}$ | ${ }_{9}^{9,366}$ | -28 | -0.3\% |
 | 35.8\% | ${ }_{9,3,391}^{9,395}$ | ${ }_{9}^{9,3432}$ | -39 -2 | -0.4\% |
 | 38.3\% | 9,345 | 9,309 | | -0.4\% |
 | 39.5\% | 9,275 | 9,270 | 4 | 0.0\% |
 | ${ }^{40.7 \%}$ | ${ }_{\substack{9,252 \\ 9,237}}^{\text {9, }}$ | 9,254 | ${ }_{12}$ | |
 | ${ }^{42.3 .2 \%}$ | $\stackrel{\text { g,157 }}{9,157}$ | $\stackrel{\text { g, }}{9,198}$ | ${ }_{41}^{12}$ | 0.4\% |
 | 44.4\% | 9,146 | 9,184 | 39 | 0.4\% |
 | 45.7\% | 9,119 | ${ }^{9,141}$ | ${ }^{22}$ | 0.2\% |
 | 46.9\% | 9,083 | 8.905 | -177 | -2.0\% |
 | 48.19\% | 9.049 | 8.844 | -206 | -2.3\% |
 | 49.4\% | 9,029 | ${ }^{8,775}$ | -253 | -2.8\% |
 | 50.9\% | -8,962 | ${ }_{\text {8, }}^{8,769}$ | - -234 | --2.6\% |
 | 53.1\% | ${ }_{8,878}^{8,88}$ | ${ }_{8,712}$ | -166 | -1.9\% |
 | 54.3\% | 8,839 | 8.690 | -149 | -1.7\% |
 | 55.6\% | ${ }^{8,825}$ | ${ }^{8.583}$ | -242 | -2.7\% |
 | 56.8\% | ${ }_{\text {8,806 }}^{8.793}$ | ${ }_{8,541}^{8.512}$ | -236 | -2.7\% |
 | | ¢, ${ }_{8,793}^{8,793}$ | ${ }_{8,343}^{8,442}$ | - 411 | -4.0\% -4.7% |
 | 60.5\% | ${ }_{8,732}$ | ${ }_{8,328}^{8}$ | -404 | -4.6\% |
 | 61.7\% | 8,732 | 8,325 | -407 | -4.7\% |
 | -63.0\% | ${ }_{8}^{8.524}$ | - 8,268 | -256 | -3.0\% |
 | | 8.497 | ${ }_{8,252}^{8,77}$ | -245 | -2.9\% |
 | ${ }_{66.7 \%}^{65.4 \%}$ | - ${ }_{8,450}^{8,464}$ | ${ }_{\substack{8,174}}^{8,177}$ | -276 | |
 | ${ }^{679 \%}$ | ${ }_{8}^{8,344}$ | ${ }_{8,173}$ | -171 | -2.1\% |
 | 70.4\% | 8,181 8,145 | 8,084 8,075 | -97 | -1.2\% |
 | 71.6\% | 8,134 | 8.064 | -71 | -0.9\% |
 | 72.8\% | 8.029 | 8.033 | | 0.1\% |
 | 74.1\% | 8.026 | 8.006 | -20 | -0.2\% |
 | 75.3\% | $7,7,953$ | ${ }_{7}^{7,795}$ | 13 | 0.2\% |
 | 76.5\% | 7,950 | 7,784 | -166 | -2.1\% |
 | 77.8\% | 7,909 | 7,678 | -231 | -2.9\% |
 | 79.0\% | $\begin{array}{r}7,767 \\ 7,750 \\ \hline\end{array}$ | 7,645 7,439 | - ${ }_{-111}$ | -1.6\% |
 | - ${ }_{\text {80.1.5\% }}$ | ${ }_{7,577}^{7,750}$ | 7,439 7,403 | - ${ }^{-311}$ | --2.3\% |
 | 82.7\% | 7.571 | ${ }_{7}^{7,350}$ | -220 | -2.9\% |
 | 84.0\% | ${ }^{7,420}$ | 7,272 | -147 | -2.0\% |
 | 85.2\% | 7,396 | 7,223 | -174 | -2.3\% |
 | ${ }^{864.4 \%}$ | 7,378 | 7,222 | -156 | -2.1\% |
 | 88.9\% | 7,302 | 6,984 | ${ }_{-318}$ | -4.4\% |
 | 90.1\% | 7,170 | 6,947 | -223 | -3.1\% |
 | ${ }_{\text {920\% }}^{91.4 \%}$ | ¢, $\begin{gathered}7,989 \\ 6,97\end{gathered}$ | ${ }_{\substack{6.8723}}^{6.852}$ | -218 | - -1.4% |
 | 93.8\% | 6,762 | 6,556 | -206 | -3.0\% |
 | 95.1\% | ${ }_{6,573}^{6,573}$ | ${ }_{\text {6,296 }}^{6.295}$ | -277 | -4.2\% |
 | | | | -692 | -10.6\% |
 | 98.\% | 6,116 | 5.111 | -1,005 | 16.4\% |
 | 100.0\% | 5.946 | 5.050 | -896 | -15.1\% |

 Figure SW-44-b
 San Luis Reservoir (CVP), End of Month Storage

 | | | | | |
 | :--- | :--- | :--- | :--- | :---: |
 | | | | | |

 | Percent | $\begin{array}{\|c} \text { WSIP 20330 Without } \\ \hline \text { Proiect } \end{array}$ | WSIP 2030 With Project | | Relative |
 | :---: | :---: | :---: | :---: | :---: |
 | Probability | End of Month Storage | End of Month Storage | Difference
 （TAF） | Difference（\％） |
 | ${ }^{0.0 \%}$ | ${ }_{\text {（TAF）}}$ | | | |
 | 12\％ | 972 | 972 | O | |
 | ${ }^{1.25 \%}$ | 972 | 972 | 0 | 0.0% |
 | ${ }^{2.5 \%}$ | 972 | 972 | | 0．0\％ |
 | 4．9\％ | 972 | 972 | 0 | 0．0\％ |
 | 6．2\％ | 972 | 972 | 0 | 0．0\％ |
 | 7．4\％ | 972 | 972 | 0 | 0．0\％ |
 | 8．9\％ | 972 | 972 | 0 | 0．0\％ |
 | ${ }^{\text {919．9\％}}$ | ${ }_{972}^{972}$ | ${ }_{972}^{972}$ | \bigcirc | ${ }^{0.0 \% \%}$ |
 | － $11.1{ }^{\text {123\％}}$ | ${ }_{972}^{972}$ | ${ }_{972}^{972}$ | \bigcirc | ${ }^{0.0 \% \%}$ |
 | 13．6\％ | 929 | 972 | 43 | 4．6\％ |
 | 14．8\％ | 914 | 972 | 58 | 6．3\％ |
 | 16.0% 17.3% | 906 | 972 | 66 | 7．2\％ |
 | （17．3\％ | 897 | 972 | 75 | 8．4\％ |
 | － | ${ }_{887}^{884}$ | ${ }_{899}$ | ${ }_{22}^{29}$ | ${ }^{3.5 \%}$ |
 | 21．0\％ | 874 | 894 | 21 | 2．4\％ |
 | 22．2\％ | 863 | 882 | 19 | 2．2\％ |
 | ${ }^{23.5 \%}$ | 850 | ${ }_{8}^{874}$ | 24 | 2．8\％ |
 | 22．7\％\％ | ${ }_{824} 84$ | 852 | 9 | 1．0\％ |
 | 25．9\％ | ${ }_{814} 82$ | 844 | ${ }^{23}$ | 2．8\％ |
 | 27．2\％ | 814 | ${ }_{835} 83$ | 21 | 2．6\％ |
 | 28．4\％ | 813 | 830 | 17 | 2．1\％ |
 | 29．6\％ | 802 801 | 827 | ${ }^{25}$ | 3．2\％ |
 | －30．9\％ | ${ }_{798}^{801}$ | 810 | 9 | ${ }^{1.11 \%}$ |
 | 32．19\％ | ${ }_{798} 7$ | ${ }_{7}^{805}$ | 8 | 1．0\％ |
 | 33．3\％ | ${ }_{793}^{796}$ | ${ }_{769} 7$ | －24 | －3．1\％ |
 | 34.6% 35.8% | ${ }_{799} 79$ | ${ }_{768} 76$ | －24 | －3．0\％ |
 | ${ }^{35.7 .0 \%}$ | 789 789 | 768 764 | －${ }_{\text {－}}$ | ${ }_{-2.3 \%}^{-2.0 \%}$ |
 | 38．3\％ | ${ }_{7} 78$ | 754 | －24 | 退 |
 | 39．5\％ | 762 | ${ }^{744}$ | －18 | |
 | 40．7\％ | 757 | ${ }_{7}^{739}$ | | －2．3\％ |
 | ${ }_{43.2 \%}^{42.0 \%}$ | ${ }_{755}^{757}$ | ${ }_{731}^{732}$ | －24 | ${ }_{\text {－}}^{-3.2 \%}$ |
 | 44．4\％ | 749 | 718 | －30 | －4．0\％ |
 | 4．7．7\％ | ${ }_{743}$ | 771 | －30 | －4．0\％ |
 | 46．9\％ | ${ }^{740}$ | 708 | －32 | －4．3\％ |
 | 48．19\％ | ${ }_{723} 72$ | 704 | －19 | －2．7\％ |
 | 49．4\％ | ${ }^{723}$ | 697 | －27 | －3．7\％ |
 | 50．9\％ | 770 | ${ }_{693}^{696}$ | －14 | －1．9\％ |
 | 55．1\％ | ${ }_{699}^{705}$ | ${ }_{660}^{673}$ | －39 | －5．5\％ |
 | 54．3\％ | 697 | 656 | ${ }^{-41}$ | －5．9\％ |
 | 55．6\％ | 681 | 650 | －30 | －4．5\％ |
 | 年56．8\％ | ${ }_{673}^{677}$ | ${ }_{644}^{649}$ | －28 | －4．2\％ |
 | 年58．0\％ | ${ }_{663}^{673}$ | 644 641 | -29 -29 | ${ }_{-3.3 \%}^{-4.3 \%}$ |
 | 60．5\％ | 642 | 639 | ${ }_{-3}$ | －0．4\％ |
 | 61．7\％ | ${ }_{633} 6$ | 631 | －2 | －0．3\％ |
 | －63．0\％ | 632 626 | 630 627 | 1 | －0．4\％ |
 | 65．4\％ | 620 | 615 | 4 | －0．7\％ |
 | －66．7\％ | ${ }_{6}^{614}$ | ${ }^{613}$ | －1 | －0．1\％ |
 | 69．1\％ | 602 | ${ }_{588}$ | －15 | ${ }_{-2.4 \%}$ |
 | 70．4\％ | 600 | 587 | －12 | －2．1\％ |
 | 71．6\％ | 559 | 573 569 | －16 | －2．7\％ |
 | 72．8\％ | 582
 581 | 569 599 | －11 | －2．2\％ |
 | 74．1\％${ }^{75.3 \%}$ | ${ }_{561}^{581}$ | 569 | －11 | －1．9\％ |
 | 75．3\％ | 563
 562 | 㐌 554 | 1 | 0．2\％ |
 | 76.5%
 778% | 562 | 558 | 4 | －0．7\％ |
 | 77．8\％ | 550 548 | 547 | 4 | －0．7\％ |
 | 79．0\％ 80.2% | 548 540 | $\begin{array}{r}543 \\ 543 \\ \hline\end{array}$ | －5 | －1．0\％ |
 | ${ }_{81.5 \%}^{80.2 \%}$ | 540 539 | 543
 537 | 3 -2 | －0．3\％ |
 | 82．7\％ | 534 | 534 | | －0．2\％ |
 | 84．0\％ | ${ }_{532}^{533}$ | ${ }_{522}^{523}$ | －9 | －1．8\％ |
 | － | ${ }_{531}^{532}$ | 522 519 | －10 | ${ }_{-2.8 \%}^{-1.8 \%}$ |
 | 87．7\％ | 512 | 519 | 7 | 4\％ |
 | ${ }^{88.9 \%}$ | 491 | 505 | 14 | 2．9\％ |
 | 90．4\％ | 475 | 501 | 13 27 | ${ }_{\text {5 }}^{\text {5．6\％}}$ |
 | 92．6\％ | 459 | 499 | ${ }^{40}$ | 8．6\％ |
 | 93．8\％ | 457 | 480 | ${ }^{23}$ | 5．1\％ |
 | | 452 | 477 | ${ }^{25}$ | ${ }^{5.5 \%}$ |
 | －97．5\％ | ${ }_{359}^{407}$ | ${ }_{450}^{453}$ | 45 91 | 11．1\％
 25.3% |
 | 98．8\％ | 314 | 448 | 134 | 42．6\％ |
 | 100．0\％ | 228 | 434 | 206 | 90．4\％ |

 Table SW-44-b

 | | | June | | |
 | :---: | :---: | :---: | :---: | :---: |
 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$ | WSII 2030 Without Proiect | WSII 2030 With Project | Absol | |
 | Probability $(\%)$ | End of Month Storage (TAF) | End of Month Storage (TAF) | (ifter) | Difference (\%) |
 | 0.0\% | ${ }_{945}$ | | ${ }^{-47}$ | -5.0\% |
 | 1.2\% | 908 | 850 | -58 | ${ }_{-6.4 \%}$ |
 | 2.5\% | 840 | 776 | -64 | |
 | 3.7\% | 785 | 770 | -15 | |
 | 4.9\% | 759 | 754 | 5 | |
 | 6.2\% | 749 | 744 | 5 | \%\% |
 | 7.4\% | 719 | 714 | 4 | |
 | 8.6\% | 710 | 689 | 21 | |
 | 9.9\% | 707 | 677 | -30 | |
 | 11.1\% | 695 | 667 | -28 | -4.0\% |
 | 12.3\% | 668 | 650 | -18 | -2.7\% |
 | 13.6\% | 667 | 649 | -18 | -2.7\% |
 | 14.8\% | 600 | 645 | 45 | 7.5\% |
 | 16.0\% | 581 | 640 | 59 | 10.1\% |
 | 17.3\% | 579 | 610 | ${ }^{30}$ | 5.3\% |
 | 18.5\% ${ }^{19.8 \%}$ | 574 574 | 560 560 | $\stackrel{2}{2}$ | - ${ }_{-25 \%}$ |
 | 21.0\% | 564 | 557 | ${ }^{-8}$ | -1.3\% |
 | 22.2\% | 563 | 556 | -7 | -1.3\% |
 | 23.5\% | 537 | 529 | -7 | -1.3\% |
 | 224.7\% | 536
 535 | (505 | -10 -30 | -1.8\% |
 | 27.2\% | ${ }_{529} 5$ | 500 | -29 | ${ }_{\text {-5.5\% }}$ |
 | 28.4\% | 510 | 498 | - | |
 | 29.6\% | 497 | 487 | 0 | |
 | 30.9\% | 494 | 480 | 14 | |
 | 32.1\% | 491 | 476 | -16 | -3.2\% |
 | 33.3\%\% | 487 | 458 | -29 | -6.0\% |
 | 35.8\%\% | ${ }_{483}^{484}$ | ${ }_{413}^{427}$ | -57 -70 | - $\begin{aligned} & -11.8 \% \\ & -1.5 \%\end{aligned}$ |
 | 37.0\% | 474 | 412 | -63 | 13.2\% |
 | 38.3\% | 441 | 408 | -34 | -7.6\% |
 | 39.5\% | 440 | ${ }^{403}$ | -37 | -8.4\% |
 | 42.0\% | 418 | ${ }^{402}$ | -15 | -3.7\% |
 | 43.2\% | ${ }_{402}^{415}$ | ${ }_{387}^{402}$ | -13 -15 | -3.3\% ${ }_{\text {- }}^{\text {-3\%\% }}$ |
 | 44.4\% | 394 | 368 | -26 | -6.5\% |
 | | ${ }_{387}^{392}$ | 363 359 | -29 | -7.4\% |
 | ${ }^{46.9 \%}$ | ${ }_{383}^{388}$ | 3599 | | -7.7\% |
 | 49.4\% | 373 | ${ }_{349}$ | -24 | -6.4\% |
 | | - $\begin{aligned} & 368 \\ & 357\end{aligned}$ | 334 | -24 | -6.5\% |
 | | | | | |
 | 54.3\% | ${ }_{344} 3$ | ${ }_{319}^{326}$ | -24 | -7.7\% |
 | 55.6\% | 328 | 304 | -24 | -7.4\% |
 | | 321 | 294 | -27 | -8.5\% |
 | 年.0\%\% | 301 | 291 | -11 | -3.6\% |
 | 59.3\% | ${ }^{300}$ | ${ }^{287}$ | -13 | -4.3\% |
 | 66.7\% | ${ }_{298}^{298}$ | ${ }_{273}^{277}$ | -23 -26 | --7.6\% |
 | | ${ }_{2}^{282}$ | 266 265 | -15 | -5.5\% |
 | 64.2\% | ${ }_{2}^{277}$ | ${ }^{265}$ | -11 | -4.1\% |
 | 66.7\% | ${ }^{274}$ | ${ }^{263}$ | -12 | -4.3\% |
 | | ${ }_{272}^{272}$ | ${ }^{253}$ | -18 | -6.7\% |
 | 67.9\%\% | ${ }^{268}$ | ${ }^{251}$ | -18 | -6.7\% |
 | 69.4\% | 268 251 | 245
 248 | -19 | -6.9\%\% |
 | 71.6\% | 249 | ${ }_{245}^{245}$ | 4 | -1.5\% |
 | 72.8\%\% | 248 240 | ${ }_{238}^{236}$ | -12 | -4.8\% |
 | 75.3\% | ${ }_{239}^{240}$ | ${ }_{231}^{232}$ | | -3.5\% |
 | 76.5\% | ${ }_{23}^{23}$ | ${ }_{226}$ | -7 | -2.8\% |
 | 77.8\% | ${ }^{231}$ | 212 | -19 | -8.2\% |
 | 89.0\% | 209 | ${ }^{208}$ | -1 | -0.4\% |
 | ${ }^{81.5 \%}$ | ${ }_{198}^{298}$ | 196 | -1 | -0.6\% |
 | 82.7\% | 187 | 187 | 0 | 0.1\% |
 | 84.0\% | 183 | 174 | -9 | -5.0\% |
 | 85.2\% | 188 | 170 | -10 | -5.4\% |
 | ${ }^{86.4 \%}$ | 175 | 167 | -8 | -4.6\% |
 | 888.9\% | ${ }_{1}^{173}$ | 160
 155
 1 | -14 | -8.0\% |
 | ${ }^{80.1 \%}$ | 164 | 155
 154 | ${ }_{-10}$ | ${ }_{-6.1 \%}^{-8.0 \%}$ |
 | 91.4\% | 157 | 153 | 4 | -2.6\% |
 | 92.6\% | ${ }_{143}^{149}$ | ${ }^{151}$ | 2 | 1.4\% |
 | 995.1\% | 143 | ${ }^{143}$ | 0 | 0.11\% |
 | ${ }_{99.3 \%}^{95.3 \%}$ | 127 109 | 142 125 10 | 15 | ${ }^{11.5 \%}$ |
 | 97.5\% | 87 | 117 | 31 | 35.6\% |
 | | ${ }_{63}^{80}$ | 106 | ${ }^{27}$ | 33.3\% |
 | 100.0\% | | 64 | 1 | 1.0\% |

 Figure SW-45-b
 San Luis Reservoir (SWP), End of Month Storage

 Table SW-45-b

 \begin{tabular}{|c|c|c|c|c|}
 \hline \& \& Ociober \& \& \\
 \hline Percent
 Exceedance \& WSIP 2030 W.thout
 Proiect \& WSII 2030 With Project \& \({ }_{\text {Absolute }}\) \& \\
 \hline ,obability \& End of Month storage \& End of Montt Storage \& \& Difference (\%) \\
 \hline (\%) \& (taF) \& \& \& \\
 \hline 0.0\% \& \& \& -23 \& -2.5\% \\
 \hline 1.2\% \& 507 \& 566 \& 59 \& \\
 \hline 2.5\% \& 499 \& 553 \& 55 \& 10.9\% \\
 \hline 3.7\% \& 487 \& 526 \& 39 \& 7.9\% \\
 \hline 4.9\% \& 478 \& 517 \& 39 \& 8.1\% \\
 \hline 6.2\% \& 471 \& 502 \& \({ }^{31}\) \& 6.7\% \\
 \hline 7.4\% \& 467 \& 500 \& 33 \& 7.1\% \\
 \hline 8.6\% \& 456 \& 463 \& 6 \& 1.4\% \\
 \hline 9.9\% \& 453 \& 457 \& 4 \& 0.9\% \\
 \hline 11.1\% \& 439 \& 455 \& 16 \& 3.7\% \\
 \hline 12.3\% \& 426 \& 454 \& \({ }^{28}\) \& 6.7\% \\
 \hline 13.6\% \& 419 \& 449 \& 31 \& 7.3\% \\
 \hline 14.8\% \& 414 \& \({ }^{441}\) \& \({ }_{71}^{27}\) \& 6.5\% \\
 \hline 16.0\% \& 367 \& \({ }^{439}\) \& 71 \& 19.4\% \\
 \hline 18.5\% \& \({ }_{356} 35\) \& \({ }_{387}^{409}\) \& \({ }_{31}^{45}\) \& \({ }_{\text {cke }}^{\text {8.8\% }}\) \\
 \hline 19.8\% \& 355 \& 366 \& 11 \& 3.2\% \\
 \hline 21.0\% \& \({ }^{354}\) \& 366 \& 12 \& 3.5\% \\
 \hline \({ }^{22.2 \%}\) \& \({ }^{342}\) \& \({ }^{366}\) \& \({ }^{24}\) \& 6.9\% \\
 \hline \({ }_{\text {24,7\% }}^{23.5 \%}\) \& 334
 330 \& \({ }_{347}^{354}\) \& \({ }_{17}^{21}\) \& \({ }_{5.2 \%}^{6.2 \%}\) \\
 \hline 25.9\% \& 326 \& 339 \& 14 \& 4.2\% \\
 \hline 27.2\% \& 323 \& 334 \& 11 \& 3.4\% \\
 \hline 28.4\% \& \({ }_{321}^{321}\) \& 325 \& 4 \& 1.4\% \\
 \hline 29.6\% \& \({ }^{312}\) \& \({ }^{325}\) \& \({ }^{13}\) \& 4.1\% \\
 \hline 30.9\% \& \({ }^{289}\) \& 319 \& 30 \& 10.3\% \\
 \hline 32.1\% \& \({ }^{282}\) \& 317 \& 34 \& \({ }^{12.2 \%}\) \\
 \hline 33.3\% \& 270 \& \({ }^{311}\) \& 41 \& 15.0\% \\
 \hline 34.6\% \& \({ }^{270}\) \& \({ }^{306}\) \& \({ }_{35}^{37}\) \& 13.5\% \\
 \hline 35.8\% \& \({ }^{268}\) \& \({ }^{302}\) \& \({ }^{35}\) \& 13.0\% \\
 \hline 37.0\% \& \({ }^{262}\) \& \begin{tabular}{l}
 300 \\
 \\
 283 \\
 \hline
 \end{tabular} \& 38 \& 14.6\% \\
 \hline 38.3\% \& 257

 257 \& ${ }_{2}^{283}$ \& $\begin{array}{r}26 \\ \hline 2\end{array}$ \& 10.0\%

 \hline 39.5\% \& $\begin{array}{r}257 \\ \hline 25\end{array}$ \& 278

 274 \& ${ }_{22}^{22}$ \& ${ }_{8.5 \%}^{8.4 \%}$

 \hline 42.7\% \& ${ }_{243}$ \& ${ }_{273}^{274}$ \& ${ }_{30}^{22}$ \& 12.3\%

 \hline ${ }^{43.2 \%}$ \& ${ }^{242}$ \& ${ }^{270}$ \& ${ }^{28}$ \& 115\%

 \hline ${ }_{45}^{44.4 \% \%}$ \& 231
 239 \& 267
 268 \& 35
 29 \&

 \hline 46.9\% \& 229 \& ${ }_{25}^{257}$ \& 28 \& 12.4\%

 \hline 48.1\% \& ${ }^{228}$ \& ${ }^{257}$ \& 29 \&

 \hline 4.9.4\% \& 219 \& 250 \& 32 \&

 \hline 年50.9\%\% \& 216 \& ${ }^{236}$ \& \& 9.3\%

 \hline 53.1\% \& 215
 213 \& ${ }_{228}^{231}$ \& 15
 15 \& \% ${ }_{\text {7.9\% }}$

 \hline 54.3\% \& 212 \& 227 \& 15 \& 7.0\%

 \hline 55.6\% \& 211 \& ${ }^{226}$ \& 15 \& 7.3\%

 \hline 56.8\% \& ${ }^{209}$ \& ${ }^{223}$ \& 14 \& 6.9\%

 \hline 58.0\% \& ${ }^{203}$ \& ${ }^{223}$ \& 19 \& 9.6\%

 \hline (59.3\% \& 203
 197 \& ${ }_{219}^{221}$ \& 18 \& 8.9\%

 \hline ¢ 60.5% \& 197
 197 \& 219
 216 \& ${ }_{18}^{22}$ \& -11.1\%

 \hline 61.7\% \& 197 \& ${ }^{216}$ \& 18 \& 9.3\%

 \hline 63.0\% \& 193
 180 \& 209
 189 \& ${ }_{9}^{17}$ \& ${ }_{4}^{8.9 \%}$

 \hline 65.4\% \& 172 \& 188 \& 17 \& 9.7\%

 \hline ${ }^{66.7 \%}$ \& 171 \& 188 \& 17 \& 9.6\%

 \hline -67.9\% \& 166
 162 \& 175
 172 \& 10
 10 \& 6.0\%

 \hline 70.4\% \& 161 \& 170 \& 9 \&

 \hline 71.2\% \& 161 \& ${ }^{163}$ \& 3 \& 1.8\%

 \hline 72.8\% \& 160
 144 \& 144
 149 \& -9 \& -5.5\%

 \hline 75.3\% \& 142 \& 143 \& 1 \& 0.6\%

 \hline 76.5\% \& 140 \& 138 \& -1 \& -1.0\%

 \hline 77.8\% \& 136 \& 130 \& -5 \& -4.0\%

 \hline 79.0\% \& 130
 119 \& 121 \& ${ }^{-8}$ \& -6.2\%

 \hline 80.2\% \& 119 \& 117
 108 \& - 2 \& -1.9\%

 \hline ${ }_{8}^{82.7 \%}$ \& 103 \& 106 \& ${ }_{4}$ \& 3.4\%

 \hline 84.0\% \& 86 \& 102 \& 15 \& 17.7\%

 \hline 85.2\% \& 58
 58
 58 \& 99
 95 \& 37 \& 70.6\%

 \hline - \& 58
 55 \& ${ }_{82}^{95}$ \& 37
 27 \& 633.7\%
 490\%

 \hline 88.9\% \& 55 \& ${ }_{59}^{82}$ \& 27 \& 6.8\%

 \hline ${ }^{90.14 \%}$ \& 55
 55
 55 \& 55
 55
 5 \& 0 \& 0.0\%

 \hline 921.4\% ${ }_{\text {92\% }}$ \& | 55 |
 | :--- |
 | 55 | \& | 55 |
 | :--- |
 | 55 | \& 0 \& ${ }^{0.0 \%}$

 \hline 93.8\% \& 55
 55
 55 \& 55
 55 \& \bigcirc \& 0.0\%

 \hline ${ }_{9}^{95.19 \%}$ \& 55
 55
 55 \& 55
 55
 55 \& 0 \& 0.0\%

 \hline ${ }^{96.75 \%}$ \& 55
 55 \& 55
 55 \& \bigcirc \& 0.0\%

 \hline 98.8\% \& 55 \& 55 \& 0 \& 0.0\%

 \hline 100.0\% \& 55 \& 55 \& 0 \& 0.0\%

 \hline
 \end{tabular}

 | | | February | | |
 | :---: | :---: | :---: | :---: | :---: |
 | ${ }_{\text {Perceant }}^{\text {Exceance }}$ | $\begin{aligned} & \text { WSIP } 2030 \text { Without } \\ & \text { Proiect } \end{aligned}$ | WSII 2033 With Project | ${ }_{\text {a }}^{\substack{\text { Absolute } \\ \text { Difference }}}$ | |
 | Probability | End of Moonth Storage | End of Monts Storage | (ifterence | Difference (\%) |
 | \%) | [TAF) | (TAF) | | |
 | 0.0\% | | | 0 | 0.0\% |
 | 1.2\% | 1,067 | 1,067 | | |
 | 2.5\% | 1,067 | 1,067 | 0 | |
 | 3.7\% | 1,067 | 1,067 | 0 | |
 | 4.9\% | 1,067 | 1,067 | 0 | |
 | 6.2\% | ${ }^{1,067}$ | ${ }^{1,067}$ | 0 | 0.0\% |
 | 7.4\% | 1,067 | 1,067 | 0 | 0.0\% |
 | 8.6\% | ${ }^{1,067}$ | ${ }^{1,067}$ | 0 | \% |
 | 9.9\% | ${ }^{1,067}$ | ${ }^{1,067}$ | 0 | 0.0\% |
 | 11.1\% | ${ }^{1,038}$ | ${ }^{1,067}$ | ${ }_{5}^{29}$ | 8\% |
 | ${ }^{12.3 \%}$ | ${ }^{1,012}$ | ${ }^{1}, 0067$ | 55 | 5.4\% |
 | 13.6\% | 1.012 | 1.061 | 49 | 4.8\% |
 | 14.8\% | ${ }_{1}^{1,012}$ | 1,030 | 18 | 18\% |
 | 17.3\% | ${ }_{930}$ | ${ }^{1}$ | ${ }_{41}^{42}$ | 4.2\% |
 | 18.5\% | 918 | ${ }_{926}$ | 8 | 9\%\% |
 | 19.8\% | 912 | 910 | 2 | |
 | 21.0\% | 911 | 909 | | |
 | 22.2\% | 904 | 900 | 3 | 4\% |
 | 23.5\% | 875 | 863 | 2 | -1.4\% |
 | 24.7\% | 869 | 847 | 2 | |
 | 25.7.2\% | 868 | 840 | ${ }^{-28}$ | -3.3\% |
 | | 849 | 839 | | -1.2\% |
 | 29.6\% | ${ }_{8}^{846} 8$ | 830 819 | $\stackrel{15}{4}$ | ${ }^{-1.5 \%}$ |
 | 30.9\% | 782 | 792 | 10 | 1.3\% |
 | 32.1\% | 771 | 791 | 20 | 2.6\% |
 | 33.3\% | ${ }_{7}^{764}$ | 771 | ${ }^{27}$ | 3.5\% |
 | 34.6\% | ${ }_{727} 7$ | ${ }_{772}^{776}$ | ${ }_{26}^{26}$ | 3.5\%\% |
 | 35.8\% | 727 | 772 | 45 | ${ }_{5}^{6.2 \%}$ |
 | 38.3\% | 722 | 729 | 7 | 1.0\% |
 | ${ }^{39.5 \%}$ | ${ }_{711}^{715}$ | 719 | 4 | 0.5\% |
 | 40.7\% | ${ }_{704}^{711}$ | 718 707 | 7 | 1.0\% |
 | ${ }^{4.32 \%}$ | ${ }_{696}$ | ${ }_{697}$ | | |
 | 44.4\% | 694 | 696 | 2 | 0.2\% |
 | 45.7\% | 691 | 694 | | |
 | 46.9\% | 690 | 686 | 4 | -0.6\% |
 | 48.1\% | 689 | 673 | -16 | , 3\% |
 | | 687 | 667 | -20 | -2.9\% |
 | 50.9\% | 677 675 | ${ }_{6}^{660}$ | -17 | -2.4\% |
 | 55.1\% | ${ }_{639}$ | 649 | ${ }_{4}^{25}$ | - |
 | 54.3\% | 610 | 627 | 17 | 2.7\% |
 | 55.6\% | ${ }_{605} 605$ | ${ }^{622}$ | 17 | 2.7\% |
 | | 保 69 | 610 | ${ }^{6}$ | 1.0\% |
 | | 597
 593 | 604 598 | 8 | 1.3\% |
 | 㐌 69.5% | ${ }_{593}^{593}$ | 598 | 5 | 0.9\% |
 | 60.5\% | 583 579 | 591 | 8 | ${ }^{1.4 \%}$ |
 | 61.7\% ${ }^{63.0 \%}$ | 579 551 | 559 | ${ }_{19}^{12}$ | 2.1\% |
 | 684.2\% | 561
 558 | 580 571 | | 3.4\% |
 | 64.2% 6.4% | 558 540 | 571 559 | 14 | 2.4\% |
 | ${ }_{6}^{65.7 \%}$ | 540 537 | 559
 558 | 19 20 | ${ }_{3}^{3.8 \% \%}$ |
 | 67.9\% | 536 | 535 | -1 | -0.2\% |
 | 69.1\% | 535 | 532 | -3 | -0.6\% |
 | 70.4\% | 528 527 | ${ }_{525}^{529}$ | - | 0.1\% |
 | 72.8\% | 521 | 514 | -7 | -1.4\% |
 | 74.19\% | 510 | 489 | 22 | 4.2\% |
 | 75.3\% | 503 | 479 | ${ }^{24}$ | -4.8\% |
 | 76.5\% | 496 | 477 | 19 | -3.8\% |
 | 778.8 | 491 | 469 | ${ }^{23}$ | 4.6\% |
 | 79.0\% | 489 | 469 | -20 | 4.1\% |
 | 80.2\% | 470 | 464 | -6 | -1.3\% |
 | - ${ }_{\text {815.5\% }}^{8.7 \%}$ | 454 | 464 | 9 | 2.1\% |
 | 827\% | 420 | 464 | 44 | 10.5\% |
 | 84.0% 85.2% | 406 | 460 | 54 | ${ }^{13.2 \%}$ |
 | 88.4\% | ${ }_{400}$ | ${ }_{457}^{457}$ | ${ }_{57}^{54}$ | +13.3\% |
 | 87,7\% | 392 | 406 | 14 | 3.5\% |
 | 88.9\% | 387 | 401 | 14 | 3.6\% |
 | 90.1\%\% | 375
 356 | 388
 387 | 13 31 | ${ }^{3.5 \%}$ |
 | 92.6\% | 341 | 374 | 33 | 8\% |
 | 93.8\% | ${ }^{337}$ | 362 | ${ }^{25}$ | 7.5\% |
 | -95.19\% | ${ }^{33}$ | 352 | 19 | 5.7\% |
 | 97.5\% | 328 309 | (338 | ${ }_{1}^{11}$ | - ${ }_{\text {a }}^{\text {3.3\% }}$ |
 | 98.8\% | 308 | 309 | 1 | 0.4\% |
 | 100.0\% | 230 | 305 | 74 | 32.3\% |

 | $\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Excedance } \\ \text { Probability } \end{array} \end{gathered}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2030 Without Proiet | WSIP 2030 With Project | Absolute | Relative |
 | | End of Month Storage | End of Montrs Storage | (ititerence | Difference (\%) |
 | (\%) | (TAF) | [TAF) | | |
 | 0.0\% | 1.067 | 1.067 | 0 | 0.0\% |
 | 1.2\% | 808 | 810 | 2 | 0.2\% |
 | 2.5\% | 806 | 804 | -2 | -0.2\% |
 | 3.7\% | ${ }_{703} 7$ | ${ }_{7} 785$ | 0 | -0.10 |
 | 年.9\%\% | 706 | 755 | ${ }^{48}$ | ${ }^{6.8 \%}$ |
 | 6.2\% | 685 | 694 | 14 | 2.0\% |
 | 8.6\% | 654 | 630 | ${ }_{-22}$ | -3.7\% |
 | 9.9\% | 626 | 604 | -22 | -3.0\% |
 | 19.1\% | 622 | ${ }_{5}^{602}$ | ${ }_{-48}$ | - |
 | 12.3\% | 595 | 549 | 46 | 7.8\% |
 | 13.6\% | 586 | 536 | -50 | -8.5\% |
 | 14.8\% | 568 | 530 | ${ }^{-38}$ | ${ }^{-6.7 \%}$ |
 | 17.3\% | ${ }_{523}^{538}$ | 522 518 | - -1 | -0.8\% |
 | 18.5\% | 519 | 511 | -9 | -1.7\% |
 | 19.8\% | 516 | 500 | -16 | -3.1\% |
 | ${ }^{21.0 \%}$ | 509 | 494 | -14 | -2.8\% |
 | ${ }^{22.55 \%}$ | ${ }_{479}^{485}$ | ${ }_{452}^{482}$ | -37 | -0.6.6\% |
 | 24.7\% | 478 | 450 | -29 | -6.0\% |
 | 25.9\% | 470 | 448 | -22 | -4.7\% |
 | 27.2\% | 452 | 442 | -10 | -2.2\% |
 | 28.4\% | ${ }_{448}^{451}$ | ${ }_{431}^{436}$ | -15 | -3.4\% |
 | 29.6\% | ${ }_{444}^{448}$ | ${ }_{422}^{431}$ | -17 | -3.8\% |
 | 30.3\% | ${ }_{443}$ | 422 | -22 | -5.0\% |
 | 32.19% 33.3% | ${ }^{43}$ | ${ }^{421}$ | -23 | -5.1\% |
 | 33.3\% | 430 | 412 | -18 | -4.2\% |
 | 34.5% 35.8% | ${ }_{4} 426$ | ${ }_{408}^{405}$ | -19 | -4.4\% |
 | 年35.8\% | ${ }_{425}^{425}$ | ${ }_{405}^{405}$ | -19 | -4.6\% |
 | 38.3\% | ${ }_{421}^{423}$ | ${ }_{398}^{403}$ | -23 | - -4.4% |
 | 39.5\% | 417 | 392 | -26 | -6.1\% |
 | 40.7\% | 407 | | -20 | -4.9\% |
 | ${ }^{42.2 \%}$ | 407 | ${ }^{385}$ | | -5.3\% |
 | 44.4\% | 396 | 382 | -14 | -3.5\% |
 | 45.7\% | 393 | 382 | -11 | -2.7\% |
 | 46.9\% | ${ }^{392}$ | 369 | -23 | -5.9\% |
 | 48.19\% | 391 | ${ }^{354}$ | -37 | -9.4\% |
 | 49.4\% | 367 | 344 | -23 | -6.3\% |
 | 50.9\% | 351 | ${ }^{343}$ | -8 | -2.2\% |
 | 531.9\% | 348 | 318 | ${ }^{-30}$ | -8.7\% |
 | - 53.1 \% | 342 | 311 | -31 | -9.0\% |
 | 55.6\% | 341 | 307 | -33 | -9.8\% |
 | | ${ }_{332}^{335}$ | 305 299 | -31 | - -9.20% |
 | 58.\% | 326 | ${ }_{299}$ | ${ }_{-27}$ | -8.2\% |
 | 59.3\% | 318 | 295 | ${ }^{23}$ | 7.1\% |
 | 60.5\% | 300 | 294 | -6 | -2.0\% |
 | 61.7\% 630% | 297 | 290 | -7 | -2.4\% |
 | 63.4.2\% | 290 289 | ${ }_{275}^{285}$ | - 14 | -4.9\% |
 | 65.4\% | 284 | 262 | -22 | |
 | ${ }^{66.7 \%}$ | 281 | 260 | ${ }^{22}$ | |
 | -67.9\% | 274 | 256 | -19 | 6.8\% |
 | 69.1\% | ${ }^{273}$ | ${ }^{254}$ | -19 | -6.9\% |
 | 71.6\% | 254 | ${ }_{243}$ | -10 | - 4.1% |
 | 72.8\% | 248 | ${ }^{236}$ | -12 | -4.8\% |
 | 74.1\% | 244 | ${ }^{236}$ | -9 | -3.5\% |
 | 75.3\% | ${ }_{227}^{232}$ | 233 230 | | 0.2\% |
 | 76.5% 77.8% | ${ }^{227}$ | ${ }^{230}$ | 3 | 1.3\% |
 | 77.8\% | ${ }^{227}$ | ${ }_{221}^{221}$ | -6 | -2.8\% |
 | 79.0\% | ${ }_{227}^{227}$ | ${ }_{214}^{216}$ | ${ }^{-10}$ | -4.6\% |
 | 80.2\% | 216 210 | ${ }_{212}^{214}$ | -2 | -0.0\% |
 | 82.7\% | 209 | 207 | ${ }_{-}$ | -1.3\% |
 | 84.0\% | 196 | 182 | -14 | -7.2\% |
 | - 85.2% | ${ }_{183}^{195}$ | 178
 178
 1 | -17 | -8.8\% |
 | 86.4\% | 183 | 178 | -5 | ${ }^{-2.5 \%}$ |
 | 88.9\% | 179 | 167 | -12 | -6.9\% |
 | 90.1\% | 176 | 166 | -11 | -6.0\% |
 | 91.4\% | 172 | 164 | -7 | 4.3\% |
 | -92.6\% ${ }_{93,8 \%}$ | 165 | 144 | ${ }^{21}$ | -12.9\% |
 | ${ }^{93.51 \%}$ | 152 | ${ }^{120}$ | ${ }^{33}$ | |
 | 96.3\% | 134 | 105 | ${ }_{28}^{28}$ | -21.0\% |
 | 97.5\% | ${ }^{131}$ | 94 | -38 | -28.8\% |
 | 98.8\%\% 100.0\% | ${ }_{124} 1$ | 81 | -43 | -35.0\% |
 | 100.0\% | 116 | 80 | -37 | -31.4\% |

 # Sacramento-San Joaquin Delta Operations Summary Tables and Bar Charts

 Table SW-31-a
 Byass, Monthly

 | Table SW-31-a Yolo Bypass, Monthly Flow | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | | | | | | | Monthly | How (CFS) | | | | | |
 | Analysis Period | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | $\overline{\text { Full Simulition Period }}$ ' | | | | | | | | | | | | |
 | WSIP 2070 W Witrout Projed | 145 | 198 | 4,415 | 16,387 | 21,977 | 11,678 | 2,512 | 110 | 83 | 48 | 111 | 102 |
 | WSIP 2070 With Project | 320 | 190 | 4,130 | 15,772 | 21,148 | 10,994 | 2,359 | 109 | 83 | 69 | 282 | 344 |
 | Difference | 176 | -8 | -285 | -615 | -830 | -684 | -153 | 0 | 0 | 21 | 171 | 242 |
 | Percent Difference ${ }^{\text {a }}$ | | | -6.5\% | -3.8\% | -3.8% | -5.9\% | -6.1\% | | | | | |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (31.7\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Projed | 87 | 229 | 5,255 | 45,154 | 51,837 | 31,217 | 6,942 | 140 | 120 | 48 | 147 | 167 |
 | WSIP 2070 with Priject | 394 | 198 | 5,194 | 43,694 | 50,604 | 29,750 | 6,545 | 139 | 120 | 48 | 357 | 522 |
 | Difference | 306 | -31 | -61 | -1,461 | -1,233 | -1,467 | -397 | -1 | 0 | 0 | 210 | 354 |
 | Percent Difference | | | -1.2\% | -3.2\% | -2.4% | -4.7\% | -5.7\% | | | | | |
 | Above Nomal (13.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Projed | 35 | 159 | 2,379 | 12,344 | 32,290 | 8,356 | 947 | 196 | 65 | 48 | 98 | 67 |
 | WSIP 2070 with Proeet | 265 | 139 | 1,951 | 11,580 | 30,562 | 7,847 | 750 | 196 | 65 | 174 | 240 | 345 |
 | Difference | 229 | -20 | -427 | -764 | -1,728 | -509 | -197 | 0 | 0 | 126 | 142 | 278 |
 | Percent Difference | | | -18.0\% | -6.2\% | -5.4\% | -6.1\% | -20.8\% | | | | | |
 | Below Norma (15.9\%) | | | | | | | | | | | | |
 | WSSP 2070 Without Project | 48 | 229 | 3,748 | 1,976 | 3,139 | 1,489 | 614 | 66 | 67 | 48 | 118 | 91 |
 | WSIP 2070 Witit Proeat | 282 | 233 | 3,284 | 1,761 | 2,210 | 1,392 | 610 | 66 | 67 | 76 | 268 | 379 |
 | Difference | 234 | 3 | -464 | -215 | -929 | -97 | -5 | 0 | 0 | 27 | 150 | 288 |
 | Percent Difference | | 1.4\% | -12.4\% | -10.9\% | -29.6\% | -6.5\% | -0.7\% | | | | 127.1\% | |
 | Dry (24.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Withot Project | 403 | 263 | 7,272 | 226 | 2,689 | 1,559 | 292 | 76 | 67 | 48 | 61 | 61 |
 | WSIP 2070 witit Proect | 440 | 280 | 6,789 | 161 | 2,455 | 1,097 | 292 | 76 | 67 | 48 | 274 | 225 |
 | Difference | 37 | 17 | -483 | -64 | -233 | -462 | 0 | 0 | - | 0 | 213 | 164 |
 | Percent Difference | 9.2\% | 6.5\% | -6.6\% | -28.5\% | -8.7\% | -29.6\% | 0.0\% | | | | | |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Proed | 41 | 24 | 425 | 310 | 384 | 291 | 107 | 68 | 64 | 48 | 120 | 75 |
 | WSIP 2070 witit Proeat | 53 | 24 | 305 | 312 | 366 | 135 | 107 | 68 | 64 | 48 | 185 | 121 |
 | Difference | 11 | 0 | -120 | 2 | -18 | -156 | 0 | 0 | 0 | 0 | 65 | 45 |
 | Percent Difference | 27.1\% | -0.6\% | -28.3\% | 0.8\% | -4.7\% | -53.7\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 54.3\% | 60.5\% |

 3 Realive difference of the monthly aerage

 | Table SW-32-a
 Sacramento River at Rio Vista, Monthly Flow Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | | | | | | Monthly | Fow (CFS) | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | $\overline{\text { Full Simulion Period' }}$ | | | | | | | | | | | | |
 | WSIP 2070 Without Projed | 6,473 | 10,681 | 23,503 | 46,796 | 58,829 | 41,974 | 19,091 | 8,633 | 7,128 | 10,446 | 7,194 | 11,099 |
 | WSIP 2070 With Projet | 6,999 | 10,758 | 22,538 | 45,035 | 57,074 | 40,261 | 18,734 | 8,647 | 7,441 | 10,870 | 7,768 | 11,988 |
 | Difference | 526 | 78 | -965 | -1,761 | -1,755 | -1,713 | -357 | 14 | 313 | 424 | 573 | 889 |
 | Percent Difference ${ }^{\text {a }}$ | 8.1\% | 0.7\% | -4.1\% | -3.8\% | -3.0\% | -4.1\% | -1.9\% | 0.2\% | 4.4\% | 4.1\% | 8.0\% | 8.0\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (3.7\%) | | | | | | | | | | | | |
 | WSSP 2070 Without Projed | 8,204 | 13,707 | 27,498 | 95,923 | 107,895 | 77,618 | 34,793 | 10,467 | 8,382 | 11,992 | 8,482 | 20,907 |
 | WSIP 2070 With Proeet | 9,229 | 13,269 | 25,992 | 93,733 | 106,256 | 75,640 | 34,212 | 10,344 | 8,708 | 12,038 | 8,951 | 21,041 |
 | Difference | 1,025 | -437 | -1,506 | -2,190 | -1,639 | -1,978 | -581 | -124 | 326 | 46 | 469 | 133 |
 | Percent Difference | 12.5\% | -3.2\% | -5.5\% | -2.3\% | -1.5\% | -2.5\% | -1.7\% | -1.2\% | 3.9\% | 0.4\% | 5.5\% | 0.6\% |
 | Above Norma (13.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Weithot Projed | 8,017 | 13,241 | 19,030 | 51,055 | 84,667 | 45,975 | 16,792 | 10,012 | 7,806 | 12,837 | 8,667 | 12,486 |
 | WSIP 2070 with Project | 8,740 | 13,372 | 18,202 | 48,915 | 82,183 | 44,157 | 16,066 | 9,911 | 7,870 | 13,928 | 9,192 | 12,605 |
 | Difference | 723 | 131 | -827 | -2,141 | -2,484 | -1,819 | -726 | -101 | 64 | 1,092 | 525 | 118 |
 | Percent Difference | 9.0\% | 1.0\% | -4.3\% | -4.2\% | -2.9\% | -4.0\% | -4.3\% | -1.0\% | 0.8\% | 8.5\% | 6.1\% | 0.9\% |
 | Below Norma (15.9\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Projed | 5,022 | 11,801 | 26,641 | 25,475 | 29,398 | 26,357 | 13,937 | 8,586 | 7,088 | 12,185 | 7,988 | 6,106 |
 | WSIP 2070 With Project | 5,844 | 12,161 | 26,638 | 23,125 | 27,536 | 24,546 | 13,831 | 8,446 | 7,379 | 12,461 | 8,513 | 7,724 |
 | Difference | 822 | 360 | -3 | -2,349 | -1,862 | -1,812 | -107 | -140 | 291 | 276 | 525 | 1,618 |
 | Percent Difiference | 16.4\% | 3.1\% | 0.0\% | -9.2\% | -6.3\% | -6.9\% | -0.8\% | -1.6\% | 4.1\% | 2.3\% | 6.6\% | 26.5\% |
 | Dry (24.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Projed | 6,030 | 8,492 | 26,342 | 15,000 | 26,655 | 21,925 | 10,081 | 7,557 | 6,465 | 8,814 | 5,510 | 5,282 |
 | WSIP 2070 witit Proect | 6,149 | 8,799 | 25,619 | 13,823 | 24,510 | 19,918 | 9,784 | 7,912 | 6,863 | 9,411 | 6,579 | 7,086 |
 | Difference | 119 | 307 | -723 | -1,177 | -2,145 | -2,007 | -297 | 355 | 398 | 597 | 1,069 | 1,804 |
 | Percent Difference | 2.0\% | 3.6\% | -2.7\% | -7.8\% | -8.0\% | -9.2\% | -2.9\% | 4.7\% | 6.2\% | 6.8\% | 19.4\% | 34.1\% |
 | Cinital (14.6\%) | | | | | | | | | | | | |
 | WSSP 2070 W Without Prject | 3,617 | 4,211 | 10,815 | 12,542 | 14,338 | 11,411 | 7,775 | 5,241 | 4,940 | 5,740 | 5,000 | 3,679 |
 | WSIP 2070 With Priject | 3,241 | 4,667 | 9,453 | 11,722 | 13,768 | 10,967 | 7,871 | 5,256 | 5,336 | 6,245 | 5,070 | 4,597 |
 | Difference | -376 | 456 | -1,362 | -820 | -570 | -444 | 96 | 15 | 396 | 505 | 71 | 918 |
 | Percent Difference | -10.4\% | 10.8\% | -12.6\% | -6.5\% | -4.0\% | -3.9\% | 1.2\% | 0.3\% | 8.0\% | 8.8\% | 1.4\% | 25.0\% |

 $\frac{\text { Percencifference }}{1 \text { Based on the } 82 \text { verar simulution period }}$
 3 Realive difference of the monthly verage

 Table SW-33-a
 oaquin River Delta
 Sacramento/San Joaquin River Detta, Monthly Outilow
 Sacramento/San Jooquin River Delta, Monthly Outtow
 Long-term Average and Average by Water Year Type

 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly Outiow (CFS) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | Full Simulatio Period' | | | | | | | | | | | | |
 | WSIP 2070 Without Proed | 7,754 | 10,742 | 25,856 | 56,001 | 71,602 | 53,124 | 28,858 | 14,055 | 8,169 | 9,249 | 4,369 | 10,125 |
 | WSIP 2070 with Project | 8,058 | 10,623 | 24,544 | 54,089 | 69,784 | 51,313 | 28,436 | 13,995 | 8,470 | 9,277 | 4,637 | 10,536 |
 | Difference | 304 | -119 | -1,312 | -1,912 | -1,818 | -1,812 | -422 | -60 | 301 | 28 | 268 | 411 |
 | Percent Difference | 3.9\% | -1.1\% | -5.1\% | -3.4\% | -2.5\% | -3.4\% | -1.5\% | -0.4\% | 3.7\% | 0.3\% | 6.1\% | 4.1\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (3.7\%\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Proed | 10,697 | 15,615 | 30,503 | 118,044 | 131,907 | 101,202 | 53,090 | 21,136 | 10,177 | 12,158 | 4,000 | 21,214 |
 | WSIP 2070 With Project | 11,064 | 15,181 | 28,660 | 115,794 | 130,392 | 99,021 | 52,458 | 20,910 | 10,374 | 12,119 | 4,213 | 21,451 |
 | Difference | 367 | -434 | -1,843 | -2,251 | -1,516 | -2,182 | -631 | -225 | 197 | -39 | 213 | 237 |
 | Percent Difference | 3.4\% | -2.8\% | -6.0\% | -1.9\% | -1.1\% | -2.2% | -1.2\% | -1.1\% | 1.9\% | -0.3\% | | 1.1\% |
 | Above Normal (13.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Proeet | 8,878 | 12,100 | 17,493 | 60,774 | 104,346 | 56,760 | 26,907 | 15,536 | 8,039 | 13,271 | 4,050 | 12,457 |
 | WSIP 2070 wit Project | 9,238 | 11,897 | 16,667 | 58,621 | 101,743 | 55,114 | 26,095 | 15,397 | 8,118 | 13,671 | 4,147 | 12,706 |
 | Difference | 360 | -203 | -826 | -2,152 | -2,603 | -1,646 | -812 | -139 | 79 | 400 | 97 | 248 |
 | Pereent Difference | 4.1\% | -1.7\% | -4.7\% | -3.5\% | -2.5\% | -2.9\% | -3.0\% | -0.9\% | 1.0\% | 3.0\% | 2.4\% | 2.0\% |
 | Below Normal (15.9\%) | | | | | | | | | | | | |
 | WSSP 2070 W Withot Project | 5,691 | 10,838 | 31,345 | 29,246 | 35,077 | 31,715 | 21,553 | 12,730 | 7,598 | 9,741 | 4,299 | 3,258 |
 | WSIP 2070 with Project | 6,450 | 10,946 | 30,413 | 26,612 | 33,158 | 29,942 | 21,444 | 12,460 | 7,820 | 9,765 | 4,430 | 3,963 |
 | Difference | 759 | 109 | -932 | $-2,633$ | -1,918 | -1,774 | -109 | -270 | 223 | 24 | 131 | 705 |
 | Percent Difference | 13.3\% | 1.0\% | -3.0\% | -9.0\% | -5.5\% | -5.6\% | -0.5\% | -2.1\% | 2.9\% | 0.2\% | 3.1\% | 21.6\% |
 | Dry $\left(24.44^{6} /\right)$ | | | | | | | | | | | | |
 | WSIP 2070 Without Proed | 6,665 | 7,274 | 29,616 | 15,807 | 32,236 | 26,374 | 14,807 | 9,608 | 7,134 | 5,937 | 4,858 | 3,105 |
 | WSIP 2070 With Project | 6,876 | 6,889 | 29,015 | 14,530 | 29,720 | 24,049 | 14,353 | 9,921 | 7,630 | 5,826 | 5,343 | 3,626 |
 | Difference | 212 | -385 | -602 | -1,277 | -2,515 | -2,325 | -454 | 313 | 496 | -111 | 485 | 522 |
 | Percent Difference | 3.2\% | -5.3\% | -2.0\% | -8.1\% | -7.8\% | -8.8\% | -3.1\% | 3.3\% | 6.9\% | -1.9\% | 10.0\% | 16.8\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Priject | 4,399 | 4,612 | 11,242 | 13,176 | 16,105 | 13,400 | 9,476 | 6,202 | 6,282 | 4,250 | 4,722 | 3,104 |
 | WSIP 2070 With Project | 4,175 | 5,454 | 9,037 | 11,942 | 15,621 | 13,053 | 9,580 | 6,180 | 6,773 | 4,317 | 5,053 | 3,535 |
 | Difference | -224 | 842 | -2,205 | -1,234 | -484 | -347 | 104 | -22 | 492 | 67 | 331 | 431 |
 | Percent Difference | -5.1\% | 18.2\% | -19.6\% | -9.4\% | -3.0\% | -2.6\% | 1.1\% | -0.4\% | 7.8\% | 1.6\% | 7.0\% | 13.9\% |

 1 Based on the 82 -year simulation period
 3 Realive difference of the monthly verage

 | Table SW-34-a
 Delta Cross Channel, Monthly Flow | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | Monthly | low (CFS) | | | | | |
 | Analysis Period | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simulation Period' | | | | | | | | | | | | |
 | WSIP 2070 without Project | 4,055 | 3,716 | 4,565 | 5,740 | 6,700 | 5,792 | 3,827 | 2,684 | 4,936 | 7,127 | 5,304 | 5,182 |
 | WSIP 2070 with Project | 4,111 | 3,776 | 4,539 | 5,572 | 6,565 | 5,642 | 3,797 | 2,687 | 4,999 | 7,236 | 5,503 | 5,591 |
 | Difference | 56 | 60 | -25 | -168 | -135 | -150 | -30 | 2 | 63 | 109 | 199 | 409 |
 | Percent Difference | 1.4\% | 1.6\% | -0.6\% | -2.9\% | -2.0\% | -2.6\% | -0.8\% | 0.1\% | 1.3\% | 1.5\% | 3.7\% | 7.9\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (31.7\%) | | | | | | | | | | | | |
 | WSSP 2070 Without Project | 4,463 | 3,902 | 5,049 | 8,653 | 9,491 | 8,126 | 5,467 | 2,948 | 5,460 | 7,894 | 5,929 | 5,843 |
 | WSIP 2070 with Proeet | 4,499 | 3,922 | 4,996 | 8,546 | 9,431 | 8,051 | 5,440 | 2,930 | 5,369 | 7,916 | 6,057 | 6,001 |
 | Difference | 36 | 20 | -53 | -107 | -60 | -75 | -27 | -18 | -92 | 22 | 128 | 158 |
 | Percent Difference | 0.8\% | 0.5\% | -1.0\% | -1.2\% | -0.6\% | -0.9\% | -0.5\% | -0.6\% | -1.7\% | 0.3\% | 2.2\% | 2.7\% |
 | Above Nomal (13.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Project | 4,528 | 3,963 | 4,326 | 6,936 | 8,924 | 6,885 | 3,724 | 2,874 | 5,233 | 8,315 | 6,026 | 7,830 |
 | WSIP 2070 With Project | 4,586 | 3,938 | 4,360 | 6,734 | 8,813 | 6,693 | 3,646 | 2,860 | 5,261 | 8,127 | 6,213 | 7,752 |
 | Difference | 59 | -25 | 34 | -202 | -111 | -192 | -78 | -15 | 28 | -188 | 187 | -79 |
 | Percent Difference | 1.3\% | -0.6\% | 0.8\% | -2.9\% | -1.2\% | -2.8\% | -2.1\% | -0.5\% | 0.5\% | -2.3\% | 3.1\% | -1.0\% |
 | Below Norma (15.9\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Project | 3,949 | 4,014 | 5,050 | 4,762 | 5,180 | 5,003 | 3,357 | 2,685 | 4,940 | 7,993 | 5,690 | 4,660 |
 | WSIP 2070 WitP Priject | 4,148 | 4,135 | 5,155 | 4,449 | 5,043 | 4,753 | 3,343 | 2,664 | 5,067 | 8,116 | 5,875 | 5,316 |
 | Difference | 199 | 120 | 105 | -313 | -137 | -251 | -14 | -21 | 127 | 123 | 185 | 656 |
 | Percent Difference | 5.0\% | 3.0\% | 2.1\% | -6.6\% | -2.6\% | -5.0\% | -0.4\% | -0.8\% | 2.6\% | 1.5\% | 3.2\% | 14.1\% |
 | Dry (24.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Priject | 3,832 | 3,642 | 4,507 | 3,497 | 4,829 | 4,345 | 2,832 | 2,534 | 4,669 | 6,318 | 4,506 | 4,257 |
 | WSIP 2070 with Proeet | 3,882 | 3,753 | 4,507 | 3,334 | 4,549 | 4,118 | 2,789 | 2,586 | 4,845 | 6,610 | 4,930 | 5,073 |
 | Difference | 50 | 111 | 0 | -163 | -280 | -227 | -43 | 53 | 175 | 292 | 423 | 816 |
 | Pereent Difference | 1.3\% | 3.0\% | 0.0\% | -4.7\% | -5.8\% | -5.2\% | -1.5\% | 2.1\% | 3.8\% | 4.6\% | 9.4\% | 19.2\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2070 W Withut Project | 3,223 | 2,888 | 3,305 | 3,130 | 3,383 | 3,000 | 2,533 | 2,191 | 3,970 | 4,785 | 4,200 | 3,431 |
 | WSIP 2070 with Project | 3,178 | 2,959 | 3,102 | 3,010 | 3,304 | 2,959 | 2,547 | 2,193 | 4,144 | 5,035 | 4,204 | 3,888 |
 | Difference | -45 | 71 | -203 | -121 | -78 | -41 | 14 | 2 | 175 | 250 | 4 | 456 |
 | Pereent Difference | -1.4\% | 2.5\% | -6.1\% | -3.9\% | -2.3\% | -1.4\% | 0.6\% | 0.1\% | 4.4\% | 5.2\% | 0.1\% | 13.3\% |

 3 Realivivedifference of the monthly werage

 1 Based on the 82 vever simulation period
 3 Reative difference of the monthy verage

 Id and Middle River, Monthly
 -WSIP 2070 Wrthout Project $\begin{aligned} & \text { Darer Year Types (22\%) WSIP } 2070 \text { With Project }\end{aligned}$

 Ild and Midale River, Monthly Flow

 Total Banks Pumping Plant (SWP and CVP) and Jones Pumping Plant (CVP), Monthly Diversion
 Long-term Average and Average by Water Year Type

 | Analysis Period | Monthly Diversion (CFS) | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | $\overline{\text { Full Simulation Period' }}$ | | | | | | | | | | | | |
 | WSIP 2070 Without Proedt | 4,636 | 6,355 | 7,939 | 6,942 | 7,362 | 6,854 | 2,631 | 2,256 | 3,858 | 7,111 | 7,647 | 7,154 |
 | WSIP 2070 with Project | 4,918 | 6,590 | 8,264 | 6,927 | 7,287 | 6,796 | 2,657 | 2,312 | 3,926 | 7,602 | 8,163 | 8,045 |
 | Difference | 281 | 236 | 325 | -14 | -74 | -57 | 26 | 56 | 68 | 492 | 517 | 891 |
 | Percent Differences | 6.1\% | 3.7\% | 4.1\% | -0.2\% | -1.0\% | -0.8\% | 1.0\% | 2.5\% | 1.8\% | 6.9\% | 6.8\% | 12.5\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (3.7\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Proed | 4,417 | 5,702 | 9,514 | 9,519 | 10,959 | 9,440 | 3,647 | 3,388 | 6,082 | 7,664 | 10,400 | 7,292 |
 | WSIP 2070 with Project | 5,094 | 5,713 | 9,793 | 9,463 | 10,762 | 9,552 | 3,636 | 3,424 | 6,098 | 7,770 | 10,791 | 7,351 |
 | Difference | 677 | 12 | 278 | -56 | -197 | 112 | -11 | 36 | 16 | 107 | 390 | 59 |
 | Percent Difference | 15.3\% | 0.2\% | 2.9\% | -0.6\% | -1.8\% | 1.2\% | -0.3\% | 1.1\% | 0.3\% | 1.4\% | 3.8\% | 0.8\% |
 | Above Nomal (13.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Project | 5,713 | 7,386 | 9,143 | 6,291 | 8,980 | 9,382 | 2,680 | 1,748 | 5,187 | 6,767 | 10,272 | 8,741 |
 | WSIP 2070 With Project | 6,132 | 7,695 | 9,167 | 6,101 | 8,986 | 9,007 | 2,677 | 1,746 | 5,200 | 7,216 | 10,899 | 8,534 |
 | Difference | 419 | 309 | 23 | -190 | 6 | -374 | -3 | -2 | 13 | 449 | 627 | -206 |
 | Percent ifiference | 7.3\% | 4.2\% | 0.3\% | -3.0\% | 0.1\% | -4.0\% | -0.1\% | -0.1\% | 0.3\% | 6.6\% | 6.1\% | -2.4\% |
 | Below Normal (15.9\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Proeet | 5,020 | 8,339 | 8,137 | 5,498 | 5,546 | 7,133 | 2,543 | 2,038 | 3,318 | 8,667 | 8,638 | 8,297 |
 | WSIP 2070 wit Project | 5,261 | 8,638 | 9,188 | 5,476 | 5,458 | 6,850 | 2,537 | 2,148 | 3,514 | 9,012 | 9,219 | 9,865 |
 | Difference | 240 | 299 | 1,051 | -22 | -88 | -283 | -6 | 110 | 196 | 345 | 581 | 1,568 |
 | Percent Difference | 4.8\% | 3.6\% | 12.9\% | -0.4\% | -1.6\% | -4.0\% | -0.2\% | 5.4\% | 5.9\% | 4.0\% | 6.7\% | 18.9\% |
 | Dry (24.4\%) | | | | | | | | | | | | |
 | WSIP 2070 W Witout Project | 4,808 | 6,906 | 6,899 | 6,173 | 4,929 | 4,246 | 2,066 | 1,752 | 2,464 | 7,393 | 4,457 | 7,111 |
 | Wsil 2070 With Project | 4,773 | 7,675 | 6,794 | 6,122 | 5,027 | 4,337 | 2,191 | 1,842 | 2,541 | 8,387 | 5,500 | 9,192 |
 | Difference | -35 | 768 | -106 | -51 | 98 | 91 | 125 | 90 | 78 | 994 | 1,043 | 2,081 |
 | Percent Difference | -0.7\% | 11.1\% | -1.5\% | -0.8\% | 2.0\% | 2.1\% | 6.0\% | 5.1\% | 3.2\% | 13.4\% | 23.4\% | 29.3\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Proeet | 3,422 | 3,754 | 4,941 | 4,799 | 4,105 | 2,976 | 1.422 | 1,346 | 729 | 4,072 | 3,516 | 4,232 |
 | WSIP 2070 with Project | 3,292 | 3,450 | 5,576 | 5,105 | 3,952 | 2,840 | 1,423 | 1,382 | 806 | 4,759 | 3,258 | 5,217 |
 | Difference | -130 | -303 | 635 | 306 | -153 | -137 | 1 | 36 | 77 | 687 | -259 | 985 |
 | Pereent Difference | -3.8\% | -8.1\% | 12.9\% | 6.4\% | -3.7\% | -4.6\% | 0.0\% | 2.7\% | 10.6\% | 16.9\% | -7.4\% | 23.3\% | $\frac{\text { Peccenn inference }}{1 \text { Based on the } 82 \text { year sinulation period }}$

 3 Realive difference of the monthly verage

 | Jones Pumping Plant (CVP), Monthly Diversion Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly Diversion (CFS) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | $\overline{\text { Full Simulaion Period }}$ ' $^{\prime}$ | | | | | | | | | | | | |
 | WSIP 2070 Without Proedt | 2,497 | 2,998 | 3,487 | 3,133 | 2,992 | 2,706 | 1,263 | 1,110 | 1,727 | 2,348 | 3,123 | 2,826 |
 | WSIP 2070 With Project | 2,262 | 2,848 | 3,566 | 3,080 | 2,928 | 2,686 | 1,284 | 1,094 | 1,771 | 2,654 | 3,352 | 3,243 |
 | Difference | -236 | -150 | 79 | -53 | -63 | -20 | 22 | -15 | 44 | 307 | 229 | 417 |
 | Percent Differences | -9.4\% | -5.0\% | 2.3\% | -1.7\% | -2.1\% | -0.7\% | 1.7\% | -1.4\% | 2.5\% | 13.1\% | 7.3\% | 14.7\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (31.7\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Proed | 2,028 | 2,351 | 4,050 | 3,792 | 3,896 | 3,320 | 1,557 | 1,518 | 2,658 | 2,198 | 3,776 | 2,581 |
 | WSIP 2070 with Project | 2,230 | 2,247 | 4,071 | 3,704 | 3,656 | 3,354 | 1,619 | 1,529 | 2,696 | 2,254 | 4,184 | 2,546 |
 | Difference | 202 | -104 | 21 | -87 | -240 | 34 | 63 | 11 | 38 | 56 | 408 | -35 |
 | Percent Difference | 9.9\% | -4.4\% | 0.5\% | -2.3\% | -6.2% | 1.0\% | 4.0\% | 0.7\% | 1.4\% | 2.6\% | 10.8\% | -1.4\% |
 | Above Normal (13.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Proeet | 2,733 | 3,418 | 3,892 | 2,903 | 3,737 | 3,914 | 1,341 | 879 | 2,276 | 1,640 | 3,425 | 2,749 |
 | WSIP 2070 wit Project | 2,347 | 3,450 | 3,985 | 2,700 | 3,696 | 3,454 | 1,315 | 889 | 2,327 | 2,425 | 4,051 | 2,391 |
 | Difference | -387 | 32 | 93 | -203 | -41 | -460 | -26 | 10 | 51 | 785 | 627 | -358 |
 | Percent Difference | -14.1\% | 0.9\% | 2.4\% | -7.0\% | -1.1\% | -11.8\% | -1.9\% | 1.1\% | 2.2\% | 47.9\% | 18.3\% | -13.0\% |
 | Below Normal (15.9\%) | | | | | | | | | | | | |
 | WSIP 2070 without Project | 2,556 | 4,081 | 3,690 | 2,749 | 2,411 | 3,015 | 1,188 | 968 | 1,427 | 2,735 | 3,040 | 3,145 |
 | WSIP 2070 with Projet | 2,366 | 3,770 | 4,037 | 2,738 | 2,410 | 3,098 | 1,180 | 978 | 1,544 | 3,264 | 3,574 | 4,184 |
 | Difference | -190 | -310 | 347 | -11 | -2 | 84 | -8 | 10 | 116 | 529 | 534 | 1,039 |
 | Percent Difference | -7.4\% | -7.6\% | 9.4\% | -0.4\% | -0.1\% | 2.8\% | -0.7\% | 1.0\% | 8.1\% | 19.4\% | 17.6\% | 33.0\% |
 | Dry (2.4.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Proeet | 2,948 | 3,401 | 3,104 | 3,108 | 2,307 | 1,985 | 1,107 | 961 | 1,160 | 2,904 | 2,429 | 3,113 |
 | WSIP 2070 Wit Project | 2,322 | 3,382 | 2,909 | 3,071 | 2,386 | 2,030 | 1,142 | 873 | 1,194 | 3,189 | 2,422 | 4,178 |
 | Difference | -627 | -19 | -195 | -37 | 79 | 45 | 35 | -88 | 33 | 284 | -7 | 1,064 |
 | Percent Difference | -21.3\% | -0.6\% | -6.3\% | -1.2\% | 3.4\% | 2.3\% | 3.1\% | -9.2\% | 2.9\% | 9.8\% | -0.3\% | 34.2\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2070 W Whtout Proed | 2,482 | 2,170 | 2,315 | 2,372 | 2,119 | 1,137 | 896 | 839 | 474 | 1,976 | 2,680 | 2,601 |
 | WSIP 2070 With Project | 2,039 | 1,707 | 2,672 | 2,459 | 2,114 | 1,183 | 882 | 837 | 465 | 2,182 | 2,219 | 2,953 |
 | Difference | -443 | -463 | 357 | 87 | -5 | 46 | -14 | -2 | -9 | 206 | -461 | 352 |
 | Percent Difference | -17.9\% | -21.3\% | 15.4\% | 3.7\% | -0.2\% | 4.1\% | -1.6\% | -0.2\% | -1.9\% | 10.4\% | -17.2\% | 13.5\% |

 1 Based on the 82 -year simulation period
 3 Realive difference of the montly veras

 | Banks Pumping Plant (SWP and CVP), Monthly Diversion Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly Diversion (CFS) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simulition Period' | | | | | | | | | | | | |
 | WSIP 2070 Without Projed | 2,139 | 3,357 | 4,452 | 3,809 | 4,370 | 4,147 | 1,368 | 1,147 | 2,131 | 4,763 | 4,523 | 4,328 |
 | WSIP 2070 With Project | 2,656 | 3,742 | 4,698 | 3,848 | 4,359 | 4,110 | 1,372 | 1,218 | 2,155 | 4,948 | 4,811 | 4,802 |
 | Difference | 517 | 386 | 246 | 39 | -11 | -38 | 4 | 71 | 24 | 185 | 288 | 475 |
 | Percent Difference? | 24.2\% | 11.5\% | 5.5\% | 1.0\% | -0.2\% | -0.9\% | 0.3\% | 6.2\% | 1.1\% | 3.9\% | 6.4\% | 11.0\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (3.7\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Projed | 2,389 | 3,350 | 5,465 | 5,727 | 7,063 | 6,120 | 2,091 | 1,871 | 3,424 | 5,466 | 6,625 | 4,711 |
 | WSIP 2070 With Priject | 2,864 | 3,466 | 5,722 | 5,759 | 7,106 | 6,197 | 2,017 | 1,895 | 3,402 | 5,516 | 6,607 | 4,805 |
 | Diffeence | 476 | 115 | 257 | 32 | 43 | 78 | -74 | 24 | -22 | 50 | -18 | 94 |
 | Percent Difference | 19.9\% | 3.4\% | 4.7\% | 0.6\% | 0.6\% | 1.3\% | -3.5\% | 1.3\% | -0.6\% | 0.9\% | -0.3\% | 2.0\% |
 | Above Nomal (13.4\%) | | | | | | | | | | | | |
 | WSIP 2070 W Withot Projed | 2,980 | 3,968 | 5,252 | 3,388 | 5,244 | 5,467 | 1,339 | 869 | 2,911 | 5,127 | 6,848 | 5,991 |
 | WSIP 2070 WitP Priject | 3,785 | 4,246 | 5,182 | 3,401 | 5,290 | 5,553 | 1,362 | 857 | 2,874 | 4,792 | 6,848 | 6,143 |
 | Difference | 805 | 277 | -70 | 13 | 47 | 86 | 23 | -12 | -38 | -335 | 0 | 152 |
 | Percent Difference | 27.0\% | 7.0\% | -1.3\% | 0.4\% | 0.9\% | 1.6\% | 1.7\% | -1.4\% | -1.3\% | -6.5\% | 0.0\% | 2.5\% |
 | Below Norma (15.9\%) | | | | | | | | | | | | |
 | WSSP 2070 W Withot Prject | 2,464 | 4,258 | 4,446 | 2,749 | 3,135 | 4,118 | 1,355 | 1,070 | 1,891 | 5,933 | 5,598 | 5,152 |
 | WSIP 2070 With Priject | 2,894 | 4,868 | 5,150 | 2,738 | 3,048 | 3,752 | 1,357 | 1,171 | 1,970 | 5,748 | 5,645 | 5,680 |
 | Difference | 430 | 610 | 704 | -11 | -86 | -367 | 2 | 100 | 80 | -184 | 46 | 528 |
 | Percent Difference | 17.5\% | 14.3\% | 15.8\% | -0.4\% | -2.8\% | -8.9\% | 0.2\% | 9.4\% | 4.2\% | -3.1\% | 0.8\% | 10.3\% |
 | Dry (24.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Prject | 1,860 | 3,505 | 3,795 | 3,065 | 2,621 | 2,261 | 959 | 791 | 1,303 | 4,489 | 2,027 | 3,998 |
 | WSIP 2070 Witit Project | 2,452 | 4,293 | 3,885 | 3,051 | 2,641 | 2,307 | 1,049 | 970 | 1,348 | 5,198 | 3,077 | 5,015 |
 | Difference | 592 | 787 | 90 | -14 | 19 | 46 | 90 | 178 | 44 | 709 | 1,050 | 1,017 |
 | Percent Difference | 31.8\% | 22.5\% | 2.4\% | -0.5\% | 0.7\% | 2.0\% | 9.4\% | 22.6\% | 3.4\% | 15.8\% | 51.8\% | 25.4\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSSIP 2070 W Whtout Proed | 940 | 1,584 | 2,626 | 2,427 | 1,986 | 1,839 | 526 | 507 | 255 | 2,096 | 836 | 1,630 |
 | WSIP 2070 witit Proeet | 1,253 | 1,743 | 2,904 | 2,646 | 1,837 | 1,656 | 541 | 545 | 341 | 2,576 | 1,039 | 2,264 |
 | Difference | 313 | 159 | 278 | 219 | -148 | -183 | 15 | 38 | 86 | 481 | 203 | 633 |
 | Percent Difference | 33.3\% | 10.1\% | 10.6\% | 9.0\% | -7.5\% | -10.0\% | 2.8\% | 7.5\% | 33.6\% | 22.9\% | 24.3\% | 38.9\% | $\frac{\text { Percentififiernee }}{1 \text { Basedo } 0 \text { n the } 82 \text { verar simulution period }}$

 3 Realive difference of the monthly verage

 | Banks Pumping Plant (SWP), Monthly Diversion Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Monthly Diversion (CFS) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simulation Period' | | | | | | | | | | | | |
 | WSIP 2070 Without Proed | 2,139 | 2,895 | 4,439 | 3,809 | 4,358 | 4,130 | 1,368 | 1,147 | 2,131 | 4,639 | 4,214 | 4,218 |
 | WSIP 2070 with Project | 2,646 | 3,302 | 4,671 | 3,847 | 4,348 | 4,104 | 1,372 | 1,218 | 2,150 | 4,797 | 4,495 | 4,722 |
 | Difference | 508 | 407 | 232 | 38 | -10 | -26 | 4 | 71 | 19 | 158 | 281 | 504 |
 | Percent Difference | 23.7\% | 14.1\% | 5.2\% | 1.0\% | -0.2\% | -0.6\% | 0.3\% | 6.2\% | 0.9\% | 3.4\% | 6.7\% | 11.9\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (3.7\%\%) | | | | | | | | | | | | |
 | WSSP 2070 Without Proed | 2,389 | 2,395 | 5,434 | 5,727 | 7,041 | 6,080 | 2,091 | 1,871 | 3,424 | 5,421 | 6,332 | 4,711 |
 | WSIP 2070 With Project | 2,864 | 2,582 | 5,707 | 5,759 | 7,090 | 6,196 | 2,017 | 1,895 | 3,385 | 5,449 | 6,270 | 4,786 |
 | Difference | 476 | 186 | 273 | 32 | 48 | 116 | -74 | 24 | -39 | 29 | -61 | 76 |
 | Percent Difference | 19.9\% | 7.8\% | 5.0\% | 0.6\% | 0.7\% | 1.9\% | -3.5% | 1.3\% | -1.1\% | 0.5\% | -1.0\% | 1.6\% |
 | Above Nomal (13.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Proeet | 2,980 | 2,935 | 5,242 | 3,388 | 5,244 | 5,467 | 1,339 | 869 | 2,911 | 5,094 | 6,674 | 5,991 |
 | WSIP 2070 With Project | 3,785 | 3,296 | 5,140 | 3,401 | 5,290 | 5,553 | 1,362 | 857 | 2,874 | 4,699 | 6,680 | 6,143 |
 | Difference | 805 | 362 | -102 | 13 | 47 | 86 | 23 | -12 | -38 | -395 | 6 | 152 |
 | Percent Difference | 27.0\% | 12.3\% | -1.9\% | 0.4\% | 0.9\% | 1.6\% | 1.7\% | -1.4\% | -1.3\% | -7.7\% | 0.1\% | 2.5\% |
 | Below Normal (15.9\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Prjeed | 2,464 | 4,130 | 4,446 | 2,749 | 3,135 | 4,103 | 1,355 | 1,070 | 1,891 | 5,795 | 5,069 | 4,831 |
 | WSIP 2070 With Project | 2,870 | 4,764 | 5,063 | 2,738 | 3,022 | 3,752 | 1,357 | 1,171 | 1,970 | 5,577 | 5,251 | 5,559 |
 | Difference | 406 | 635 | 617 | -11 | -113 | -352 | 2 | 100 | 80 | -218 | 182 | 728 |
 | Percent Difference | 16.5\% | 15.4\% | 13.9\% | -0.4\% | -3.6% | -8.6\% | 0.2\% | 9.4\% | 4.2\% | -3.8\% | 3.6\% | 15.1\% |
 | Dry (24.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Pried | 1,860 | 3,505 | 3,795 | 3,065 | 2,614 | 2,253 | 959 | 791 | 1,303 | 4,223 | 1,682 | 3,802 |
 | WSIP 2070 Wit Project | 2,427 | 4,230 | 3,873 | 3,051 | 2,634 | 2,297 | 1,049 | 970 | 1,348 | 4,929 | 2,650 | 4,847 |
 | Difference | 568 | 725 | 78 | -14 | 19 | 44 | 90 | 178 | 44 | 706 | 968 | 1,045 |
 | Percent Difference | 30.5\% | 20.7\% | 2.0\% | -0.5\% | 0.7\% | 1.9\% | 9.4\% | 22.6\% | 3.4\% | 16.7\% | 57.6\% | 27.5\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2070 W Whtout Projed | 938 | 1,584 | 2,616 | 2,427 | 1,963 | 1,838 | 526 | 507 | 251 | 1,967 | 663 | 1,553 |
 | Wsip 2070 With Project | 1,253 | 1,737 | 2,904 | 2,640 | 1,837 | 1,637 | 541 | 545 | 341 | 2,406 | 900 | 2,164 |
 | Difference | 315 | 153 | 288 | 213 | -126 | -201 | 15 | 38 | 90 | 439 | 237 | 611 |
 | Percent Difference | 33.6\% | 9.7\% | 11.0\% | 8.8\% | -6.4\% | -10.9\% | 2.8\% | 7.5\% | 35.8\% | 22.3\% | 35.8\% | 39.3\% |

 Based on the 82 -jear simulution period
 3 Reative difference of the monthy verage

 | Table SW-40-a
 Banks Pumping Plant (CVP), Monthly Diversion Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Monthly Diversion (CFS) | | | | | | | | | | | |
 | Analysis Period | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Ful Simulion Period' | | | | | | | | | | | | |
 | WSIP 2070 Withot Proed | 0 | 390 | 0 | 0 | 7 | 13 | 0 | 0 | 0 | 47 | 134 | 23 |
 | WSIP 2070 With Project | 3 | 367 | 17 | 0 | 5 | 0 | 0 | 0 | 5 | 48 | 134 | 6 |
 | Difference | 3 | -23 | 17 | 0 | -2 | -12 | 0 | 0 | 5 | 1 | 0 | -16 |
 | Percent Difference ${ }^{\text {a }}$ | | -5.8\% | | | -24.4\% | -97.0\% | | | | 2.1\% | 0.0\% | -72.5\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet(3.7\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Proed | 0 | 811 | 0 | 0 | 22 | 40 | 0 | 0 | 0 | 24 | 160 | 0 |
 | WSIP 2070 with Project | 0 | 758 | 0 | 0 | 16 | 1 | 0 | 0 | 17 | 52 | 195 | 7 |
 | Difference | 0 | -53 | 0 | 0 | -5 | -38 | 0 | 0 | 17 | 28 | 36 | 7 |
 | Percent Difference | | -6.5\% | | | -24.4\% | -97.0\% | | | | 119.1\% | 22.4\% | |
 | Above Normal (13.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Proeet | 0 | 841 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 4 | 0 |
 | WSIP 2070 with Proeet | 0 | 780 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 73 | 0 | 0 |
 | Difference | 0 | -60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 54 | -4 | 0 |
 | Percent Difference | | -7.2\% | | | | | | | | | | |
 | Below Norma (15.9\%) | | | | | | | | | | | | |
 | WSSP 2070 W Withot Project | 0 | 126 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 239 | 100 |
 | WSIP 2070 With Prijet | 2 | 73 | 87 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 141 | 9 |
 | Difference | 2 | -53 | 87 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | -98 | -90 |
 | Percent ifference | | -42.3\% | | | | | | | | 107.5\% | -40.8\% | -90.8\% |
 | Dry (24.4\%) | | | | | | | | | | | | |
 | WSIP 270 W Without Priedt | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 136 | 151 | ${ }^{28}$ |
 | WSIP 2070 Wit Project | 12 | 44 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 55 | 183 | 10 |
 | Difference | 12 | 44 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | -81 | 32 | -18 |
 | | | | | | | | | | | | | |
 | | | | | | | | | | | | | |
 | WSIP 2070 Without Proeet | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | 55 | 0 |
 | WSIP 2070 with Proeet | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 42 | 34 | 0 |
 | Difference | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | -21 | 0 |
 | Percent Difference | -100.0\% | | | | | | | | | 113.2\% | -38.4\% | |

 $\frac{1}{1 \text { Bassed on the } 82 \text { 2year simulation period }}$
 3 Realive difference of the monthly verage

 Table SW-41-a
 SWP and CVP),
 San Luis Reservoir (SWP and CVP), End of Month Storage

 | Analysis Period | End of Month Storage (TAF) | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | $\overline{F u l l ~ S ~ S i m u l a t i o n ~ P e r i o d ' ~}^{\text {d }}$ | | | | | | | | | | | | |
 | WSIP 2070 Without Proed | 427 | 528 | 782 | 1,092 | 1,357 | 1,549 | 1,450 | 1,198 | 877 | 681 | 535 | 500 |
 | WSIP 2070 with Projet | 449 | 549 | 806 | 1,109 | 1,367 | 1,547 | 1,440 | 1,179 | 843 | 658 | 525 | 522 |
 | Difference | 21 | 21 | 24 | 18 | 10 | -1 | -9 | -19 | -34 | -23 | -10 | 22 |
 | Percent Difference ${ }^{\text {a }}$ | 5.0\% | 3.9\% | 3.1\% | 1.6\% | 0.7\% | -0.1\% | -0.6\% | -1.6\% | -3.9\% | -3.4\% | -1.8\% | 4.4\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (3.7\%) | | | | | | | | | | | | |
 | WSSP 2070 Without Proed | 516 | 480 | 738 | 1,323 | 1,718 | 1,946 | 1,822 | 1,548 | 1,241 | 937 | 810 | 695 |
 | WSIP 2070 With Priject | 537 | 497 | 772 | 1,306 | 1,692 | 1,933 | 1,805 | 1,526 | 1,212 | 911 | 801 | 679 |
 | Difference | 21 | 17 | 34 | -17 | -26 | -13 | -18 | -22 | -28 | -26 | -9 | -16 |
 | Percent Difference | 4.0\% | 3.6\% | 4.6\% | -1.3\% | -1.5\% | -0.7\% | -1.0\% | -1.4\% | -2.3\% | -2.8\% | -1.1\% | -2.3\% |
 | Above Normal (13.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Project | 441 | 496 | 763 | 1,032 | 1,400 | 1,734 | 1,589 | 1,238 | 884 | 575 | 510 | 505 |
 | WSIP 2070 with Project | 440 | 514 | 774 | 1,095 | 1,444 | 1,736 | 1,584 | 1,222 | 855 | 555 | 520 | 489 |
 | Difference | 0 | 18 | 10 | 63 | 44 | 3 | -5 | -16 | -28 | -20 | 9 | -16 |
 | Percent Difference | -0.1\% | 3.6\% | 1.4\% | 6.1\% | 3.1\% | 0.2\% | -0.3\% | -1.3\% | -3.2\% | -3.5\% | 1.8\% | -3.2\% |
 | Below Normal (15.9\%) | | | | | | | | | | | | |
 | WSSP 2070 W Witrout Prjeet | 496 | 726 | 998 | 1,026 | 1,211 | 1,479 | 1,384 | 1,119 | 757 | 653 | 553 | 566 |
 | WSIP 2070 With Project | 545 | 776 | 1,097 | 1,051 | 1,222 | 1,453 | 1,353 | 1,088 | 721 | 619 | 535 | 621 |
 | Difference | 49 | 49 | 99 | 25 | 11 | -25 | -31 | -30 | -36 | -34 | -18 | 55 |
 | Percent Difference | 9.9\% | 6.8\% | 9.9\% | 2.4\% | 0.9\% | -1.7\% | -2.2\% | -2.7\% | -4.8\% | -5.2\% | -3.2\% | 9.7\% |
 | Dr ($24.4 \%^{*}$) | | | | | | | | | | | | |
 | WSIP 2070 Without Proed | 342 | 553 | 811 | 1,045 | 1,209 | 1,304 | 1,234 | 1,016 | 691 | 587 | 327 | 339 |
 | WSIP 2070 With Proect | 380 | 601 | 809 | 1,043 | 1,217 | 1,304 | 1,219 | 979 | 624 | 550 | 321 | 420 |
 | Difference | 38 | 48 | -2 | -2 | 8 | 1 | -14 | -36 | -66 | -37 | -6 | 81 |
 | Percent Difference | 11.2\% | 8.7\% | -0.2\% | -0.2\% | 0.7\% | 0.0\% | -1.1\% | -3.6\% | -9.6\% | -6.3\% | -1.8\% | 23.8\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Proedt | 291 | 404 | 615 | 793 | 942 | 1,001 | 944 | 793 | 522 | 411 | 288 | 273 |
 | WSIP 2070 With Project | 276 | 359 | 593 | 868 | 1,000 | 1,045 | 983 | 820 | 528 | 428 | 261 | 277 |
 | Difference | -15 | -45 | -22 | 76 | 57 | 44 | 38 | 27 | 7 | 17 | -28 | 5 |
 | Percent Difference | -5.2\% | -11.2\% | -3.6\% | 9.5\% | 6.1\% | 4.4\% | 4.0\% | 3.4\% | 1.3\% | 4.2\% | -9.6\% | 1.8\% |

 1 Based on the 82 yever simulation period
 3 Realive difference of the monthly verage

 | Table SW-42-a
 San Luis Reservoir (SWP and CVP), End of Month Elevation Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | End of Month Elevation (FEET) | | | | | | | | | | | |
 | Analysis Period | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | Full Simulation Period' | | | | | | | | | | | | |
 | WSIP 2070 without Project | 385 | 398 | 427 | 459 | 484 | 500 | 492 | 469 | 436 | 414 | 396 | 394 |
 | WSIP 2070 with Project | 387 | 400 | 430 | 461 | 485 | 500 | 491 | 468 | 433 | 412 | 394 | 397 |
 | Difference | 2 | 2 | 2 | 2 | 1 | 0 | -1 | -2 | -4 | -3 | -2 | 3 |
 | Percent Difference | 0.6\% | 0.5\% | 0.5\% | 0.3\% | 0.2\% | 0.0\% | -0.1\% | -0.4\% | -0.9\% | -0.7\% | -0.5\% | 0.8\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (3.7\%\%) | | | | | | | | | | | | |
 | WSSP 2070 Without Project | 397 | 391 | 423 | 481 | 516 | 534 | 524 | 502 | 473 | 443 | 430 | 418 |
 | WSIP 2070 with Project | 400 | 394 | 427 | 479 | 514 | 533 | 523 | 500 | 471 | 440 | 429 | 417 |
 | Difference | 3 | 2 | 4 | -2 | -2 | -1 | -1 | -2 | -3 | -3 | -1 | -2 |
 | Pereent Difference | 0.8\% | 0.6\% | 0.9\% | -0.4\% | -0.4\% | -0.2\% | -0.2\% | -0.4\% | -0.6\% | -0.6\% | -0.3\% | -0.4\% |
 | Above Nomal (13.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Project | 388 | 394 | 426 | 454 | 489 | 517 | 506 | 474 | 439 | 401 | 394 | 397 |
 | WSIP 2070 With Project | 387 | 396 | 427 | 459 | 492 | 517 | 505 | 473 | 436 | 398 | 394 | 394 |
 | Difference | -1 | 2 | 1 | 6 | 3 | 0 | 0 | -1 | -3 | -3 | 0 | -3 |
 | Pereent Difference | -0.3\% | 0.6\% | 0.3\% | 1.2\% | 0.7\% | 0.0\% | -0.1\% | -0.3\% | -0.7\% | -0.7\% | 0.0\% | -0.7\% |
 | Below Norma (15.9\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Project | 394 | 422 | 450 | 454 | 472 | 495 | 487 | 462 | 423 | 411 | 399 | 403 |
 | WSIP 2070 with Projet | 400 | 426 | 459 | 457 | 473 | 493 | 484 | 459 | 419 | 407 | 396 | 409 |
 | Difference | 6 | 4 | 9 | 3 | 1 | -2 | -3 | -3 | -4 | -4 | -3 | 6 |
 | Percent Difference | 1.4\% | 0.9\% | 2.0\% | 0.6\% | 0.2\% | -0.4\% | -0.6\% | -0.6\% | -0.8\% | -1.0\% | -0.7\% | 1.5\% |
 | Dry (24.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Priject | 373 | 402 | 430 | 456 | 471 | 480 | 474 | 453 | 418 | 406 | 370 | 373 |
 | WSIP 2070 with Proeet | 377 | 407 | 430 | 455 | 472 | 480 | 473 | 449 | 410 | 401 | 368 | 384 |
 | Difference | 4 | 6 | -1 | 0 | 1 | 0 | -1 | -4 | -8 | -5 | -2 | 11 |
 | Percent Difference | 1.0\% | 1.4\% | -0.1\% | -0.1\% | 0.1\% | 0.0\% | -0.3\% | -0.8\% | -2.0\% | -1.2\% | -0.5\% | 3.0\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2070 W Withut Project | 364 | 382 | 409 | 429 | 446 | 452 | 446 | 430 | 399 | 384 | 366 | 362 |
 | WSIP 2070 with Project | 363 | 376 | 406 | 437 | 451 | 456 | 450 | 433 | 399 | 387 | 361 | 364 |
 | Difference | -2 | -6 | -3 | 8 | 5 | 4 | 4 | 3 | 0 | 2 | -5 | 2 |
 | Pereent Difference | -0.5\% | -1.6\% | -0.7\% | 1.9\% | 1.1\% | 0.9\% | 0.8\% | 0.6\% | 0.1\% | 0.6\% | -1.3\% | 0.4\% |

 As definie 8 -vear simuation peeriod
 3 Realive difference of the monthly verage

 San Luis Reservoir (SWP and CVP), End of Month Area

 | Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | End of Month Area (ACRE) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | Full Simulion Period' | | | | | | | | | | | | |
 | WSIP 2070 Without Prijet | 7,070 | 7,699 | 8,956 | 10,143 | 10,954 | 11,454 | 11,199 | 10,471 | 9,250 | 8,363 | 7,511 | 7,484 |
 | WSIP 2070 with Prioet | 7,171 | 7,771 | 9,027 | 10,195 | 10,971 | 11,457 | 11,180 | 10,412 | 9,093 | 8,244 | 7,383 | 7,635 |
 | Difference | 101 | 73 | 72 | 52 | 18 | 3 | -19 | -59 | -157 | -118 | -127 | 151 |
 | Percent Difference | 1.4\% | 0.9\% | 0.8\% | 0.5\% | 0.2\% | 0.0\% | -0.2\% | -0.6\% | -1.7\% | -1.4\% | -1.7\% | 2.0\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (31.7\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Proed | 7,672 | 7,396 | 8,837 | 10,863 | 11,949 | 12,476 | 12,197 | 11,519 | 10,593 | 9,487 | 9,006 | 8,640 |
 | WSIP 2070 with Proeet | 7,853 | 7,519 | 8,976 | 10,787 | 11,881 | 12,452 | 12,164 | 11,464 | 10,514 | 9,388 | 8,951 | 8,563 |
 | Difference | 181 | 123 | 139 | -75 | -68 | -24 | -33 | -55 | -78 | -99 | -54 | -77 |
 | Percent Diffeence | 2.4\% | 1.7\% | 1.6\% | -0.7\% | -0.6\% | -0.2\% | -0.3\% | -0.5\% | -0.7\% | -1.0\% | -0.6\% | -0.9\% |
 | Above Nomal (13.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Proeet | 7,339 | 7,540 | 8,910 | 9,966 | 11,125 | 11,988 | 11,638 | 10,664 | 9,407 | 7,673 | 7,444 | 7,755 |
 | WSIP 2070 with Proeet | 7,240 | 7,639 | 8,980 | 10,140 | 11,226 | 11,991 | 11,625 | 10,616 | 9,296 | 7,535 | 7,396 | 7,571 |
 | Difference | -99 | 98 | 70 | 173 | 102 | 4 | -13 | -48 | -111 | -138 | -48 | -184 |
 | Percent Difference | -1.3\% | 1.3\% | 0.8\% | 1.7\% | 0.9\% | 0.0\% | -0.1\% | -0.4\% | -1.2\% | -1.8\% | -0.6\% | -2.4\% |
 | Below Normal (15.9\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Project | 7,570 | 8,788 | 9,788 | 10,007 | 10,582 | 11,304 | 11,050 | 10,225 | 8,661 | 8,173 | 7,691 | 7,991 |
 | WSIP 2070 with Project | 7,802 | 8,832 | 10,081 | 10,092 | 10,609 | 11,243 | 10,958 | 10,120 | 8,547 | 7,992 | 7,528 | 8,236 |
 | Difference | 232 | 44 | 293 | 85 | 26 | -61 | -92 | -105 | -114 | -181 | -163 | 244 |
 | Percent Difference | 3.1\% | 0.5\% | 3.0\% | 0.9\% | 0.2\% | -0.5\% | -0.8\% | -1.0\% | -1.3\% | -2.2\% | -2.1\% | 3.1\% |
 | Dry (24.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Proect | 6,480 | 7,922 | 9,035 | 10,045 | 10,556 | 10,852 | 10,646 | 9,953 | 8,661 | 8,127 | 6,317 | 6,455 |
 | WSIP 2070 Wit Project | 6,603 | 8,148 | 9,002 | 10,028 | 10,572 | 10,856 | 10,604 | 9,822 | 8,268 | 7,900 | 6,168 | 7,036 |
 | Difference | 123 | 226 | -32 | -16 | 16 | 4 | -42 | -132 | -393 | -227 | -149 | 581 |
 | Percent Difference | 1.9\% | 2.9\% | -0.4\% | -0.2\% | 0.1\% | 0.0\% | -0.4\% | -1.3\% | -4.5\% | -2.8\% | -2.4\% | 9.0\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2070 W Whtout Projed | 5,962 | 6,948 | 8,221 | 9,058 | 9,706 | 9,915 | 9,716 | 9,151 | 7,815 | 7,157 | 6,126 | 5,894 |
 | WSIP 2070 With Project | 5,892 | 6,663 | 8,083 | 9,350 | 9,825 | 10,044 | 9,840 | 9,244 | 7,795 | 7,265 | 5,843 | 6,028 |
 | Difference | -69 | -285 | -137 | 292 | 119 | 129 | 124 | 92 | -20 | 108 | -283 | 135 |
 | Percent Difference | -1.2\% | -4.1\% | -1.7\% | 3.2\% | 1.2\% | 1.3\% | 1.3\% | 1.0\% | -0.3\% | 1.5\% | -4.6\% | 2.3\% | Based on the 82 2year sinulation period

 3 Realive odtye
 3 Realive difference of the monthly average

 | Table SW.44-a
 San Luis Reservoir (CVP), End of Month Storage Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | End of Month Storage (TAF) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long.term | | | | | | | | | | | | |
 | $\overline{\text { Full Sinulition Period' }}$ | | | | | | | | | | | | |
 | WSIP 2070 without Project | 179 | 274 | 431 | 567 | 671 | 743 | 705 | 597 | 432 | 274 | 193 | 177 |
 | WSIP 2070 with Project | 188 | 272 | 432 | 564 | 664 | 732 | 694 | 580 | 414 | 271 | 202 | 204 |
 | Difference | 9 | -3 | 1 | -3 | -7 | -11 | -11 | -17 | -19 | -2 | 9 | 27 |
 | Percent Difference | 4.8\% | -1.1\% | 0.2\% | -0.5\% | -1.1\% | -1.4\% | -1.6\% | -2.8\% | -4.3\% | -0.9\% | 4.5\% | 15.2\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (31.7\%) | | | | | | | | | | | | |
 | WSIP 2070 without Prject | 224 | 271 | 449 | 657 | 815 | 925 | 891 | 801 | 656 | 418 | 316 | 265 |
 | WSIP 2070 with Project | 219 | 255 | 433 | 662 | 806 | 914 | 881 | 785 | 636 | 399 | 318 | 254 |
 | Difference | -6 | -16 | -16 | 5 | -10 | -11 | -10 | -15 | -19 | -19 | 2 | -11 |
 | Pereent Difference | -2.5\% | -5.9\% | -3.7\% | 0.8\% | -1.2\% | -1.2\% | -1.1\% | -1.9\% | -3.0\% | -4.6\% | 0.7\% | -4.0\% |
 | Above Nomal (13.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Project | 148 | 259 | 429 | 547 | 692 | 848 | 808 | 675 | 493 | 249 | 166 | 129 |
 | WSIP 2070 With Project | 149 | 258 | 432 | 578 | 719 | 846 | 802 | 662 | 476 | 272 | 224 | 158 |
 | Difference | 1 | -1 | 3 | 31 | 27 | -2 | -6 | -13 | -17 | 23 | 58 | 29 |
 | Pereent Difference | 0.5\% | -0.3\% | 0.8\% | 5.7\% | 3.9\% | -0.2\% | -0.7\% | -1.9\% | -3.5\% | 9.2\% | 35.0\% | 22.6\% |
 | Below Norma (15.9\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Project | 192 | 357 | 532 | 546 | 611 | 696 | 662 | 546 | 368 | 252 | 181 | 189 |
 | WSIP 2070 with Projet | 265 | 406 | 601 | 544 | 608 | 696 | 659 | 537 | 357 | 262 | 217 | 280 |
 | Difference | 73 | 49 | 69 | -2 | -3 | 0 | -3 | -9 | -11 | 11 | 35 | 91 |
 | Percent Difference | 38.1\% | 13.7\% | 12.9\% | -0.3\% | -0.5\% | 0.0\% | -0.4\% | -1.7\% | -3.1\% | 4.3\% | 19.4\% | 48.0\% |
 | Dry (24.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Priject | 151 | 274 | 415 | 547 | 610 | 630 | 589 | 468 | 290 | 203 | 110 | 119 |
 | WSIP 2070 Wit Project | 161 | 283 | 413 | 507 | 575 | 597 | 557 | 428 | 254 | 190 | 99 | 168 |
 | Difference | 9 | 9 | -3 | -39 | -35 | -34 | -33 | -40 | -36 | -13 | -11 | 49 |
 | Percent Difference | 6.1\% | 3.4\% | -0.6\% | -7.2\% | -5.8\% | -5.4\% | -5.5\% | -8.6\% | -12.6\% | -6.4\% | -10.1\% | 41.2\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2070 W Withut Project | 143 | 208 | 312 | 448 | 509 | 491 | 447 | 355 | 198 | 124 | 104 | 113 |
 | WSIP 2070 with Project | 119 | 154 | 280 | 456 | 516 | 501 | 456 | 363 | 202 | 139 | 87 | 113 |
 | Difference | -24 | -54 | -32 | 8 | 7 | 10 | 9 | 8 | 5 | 15 | -17 | 0 |
 | Pereent Difference | -17.0\% | -25.7\% | -10.1\% | 1.7\% | 1.4\% | 2.0\% | 2.0\% | 2.4\% | 2.3\% | 12.0\% | -16.5\% | 0.4\% |

 1 Basedon on the 82 vever simulution period
 3 Realive difference of the montly average

 | San Luis Reservoir (SWP), End of Month Storage Long-term Average and Average by Water Year Type | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | End of Month Storage (TAF) | | | | | | | | | | | |
 | | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
 | Long-term | | | | | | | | | | | | |
 | Full Simultion Period' | | | | | | | | | | | | |
 | WSIP 2070 Without Proed | 248 | 254 | 351 | 524 | 686 | 806 | 745 | 601 | 445 | 407 | 341 | 324 |
 | WSIP 2070 with Project | 261 | 277 | 374 | 545 | 703 | 815 | 746 | 599 | 429 | 387 | 323 | 319 |
 | Difference | 13 | 24 | 23 | 21 | 17 | 9 | 2 | -2 | -15 | -21 | -19 | -5 |
 | Percent Differences | 5.1\% | 9.4\% | 6.6\% | 3.9\% | 2.5\% | 1.2\% | 0.3\% | -0.4\% | -3.4\% | -5.0\% | -5.4\% | -1.5\% |
 | Water Year Types ${ }^{2}$ | | | | | | | | | | | | |
 | Wet (31.7\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Proed | 292 | 209 | 288 | 666 | 903 | 1,021 | 931 | 747 | 585 | 519 | 494 | 429 |
 | WSIP 2070 With Project | 318 | 242 | 339 | 644 | 887 | 1,019 | 924 | 740 | 576 | 512 | 483 | 424 |
 | Difference | 26 | 33 | 51 | -22 | -16 | -2 | -8 | -7 | -9 | -7 | -11 | -5 |
 | Percent Difference | 9.0\% | 15.8\% | 17.5\% | -3.3\% | -1.8\% | -0.2\% | -0.8\% | -0.9\% | -1.5\% | -1.3\% | -2.2\% | ${ }^{-1.2 \%}$ |
 | Above Norma (13.4% \% | | | | | | | | | | | | |
 | WSIP 2070 Without Proeet | 293 | 238 | 334 | 485 | 708 | 886 | 782 | 563 | 391 | 326 | 344 | 376 |
 | WSIP 2070 With Project | 291 | 256 | 341 | 517 | 725 | 890 | 783 | 560 | 380 | 283 | 295 | 331 |
 | Difference | -1 | 19 | 7 | 32 | 16 | 4 | 1 | -3 | -11 | -43 | -49 | -45 |
 | Percent Difference | -0.4\% | 7.8\% | 2.1\% | 6.6\% | 2.3\% | 0.5\% | 0.1\% | -0.5\% | -2.9\% | -13.3\% | -14.2\% | -12.0\% |
 | Below Normal (15.9\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Proeet | 304 | 369 | 466 | 480 | 600 | 783 | 722 | 572 | 389 | 401 | 371 | 377 |
 | WSIP 2070 with Projet | 279 | 369 | 496 | 507 | 614 | 757 | 694 | 551 | 364 | 357 | 319 | 341 |
 | Difference | -24 | 0 | 30 | 27 | 15 | -25 | -29 | -21 | -25 | -45 | -53 | -36 |
 | Percent Difference | -8.0\% | 0.1\% | 6.4\% | 5.6\% | 2.4\% | -3.2\% | -4.0\% | -3.7\% | -6.4\% | -11.1\% | -14.2\% | -9.5\% |
 | Dry (24.4\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Pried | 191 | 279 | 395 | 498 | 600 | 674 | 644 | 547 | 400 | 384 | 216 | 221 |
 | WSIP 2070 Wit Project | 220 | 318 | 396 | 536 | 643 | 708 | 663 | 551 | 371 | 360 | 222 | 253 |
 | Difference | 29 | 39 | 1 | 37 | 43 | 34 | 18 | 4 | -30 | -24 | 5 | 32 |
 | Percent Difference | 15.2\% | 14.0\% | 0.2\% | 7.5\% | 7.2\% | 5.1\% | 2.9\% | 0.7\% | -7.5\% | -6.3% | 2.4\% | 14.5\% |
 | Critical (14.6\%) | | | | | | | | | | | | |
 | WSIP 2070 Without Proed | 148 | 196 | 303 | 345 | 433 | 509 | 497 | 439 | 324 | 287 | 184 | 160 |
 | WSIP 2070 with Project | 157 | 205 | 313 | 413 | 483 | 544 | 527 | 458 | 326 | 289 | 174 | 164 |
 | Difference | 9 | 8 | 9 | 68 | 50 | 34 | 29 | 19 | 2 | 3 | -10 | 4 |
 | Percent Difference | 6.1\% | 4.3\% | 3.1\% | 19.7\% | 11.5\% | 6.7\% | 5.9\% | 4.3\% | 0.7\% | 0.9\% | -5.6\% | 2.7\% |

 As defined by tre Sescaranento valley 4 IT
 3 Realive difference of the monthly vereage

 # Sacramento-San Joaquin Delta Operations Exceedance Probability Charts and Tables

 Figure SW-30-b
 Sacramento River below Hood, Monthly Flow

 Table SW-30-b
 Sacramento Rive below Hood Monthly Fow
 Probability of Exceedance

 | Table |
 | :---: |
 | tow-30-b |

 | 1.2% | 77,434 | 77,211 | -223 | -0.3% |
 | :--- | :--- | :--- | :--- | :--- |
 | $\begin{array}{ll}1.25 \% \\ 2.5 \% & 77,25 \\ 3.7 \% & 77,047\end{array}$ | 76,975 | -240 | -0.3% | |
 | 6,826 | -221 | -0.3% | | |

 \begin{tabular}{|c|c|c|c|c|}
 \hline \& \& Way \& \& \\
 \hline Percent \& 2070 Without \& WSIP 2070 With Project \& \& Relative \\
 \hline (exroeabaility \& Montrilieat (Fow (cFs) \& Moonthy Fiow (CFS) \& (CFS) \& Difference (\%) \\
 \hline 0.0\% \& 40,442 \& 37,711 \& \({ }^{2,731}\) \& -6.8\% \\
 \hline 1.2\% \& 28,288 \& 26,485 \& -1,803 \& 6.4\% \\
 \hline 2.5\% \& 23,021 \& 24,300 \& 1,279 \& 5.6\% \\
 \hline 3.7\% \& 22,152 \& 22,195 \& 43 \& 0.2\% \\
 \hline 4.9\% \& 21,020 \& 17,741 \& -3,279 \& 15.6\% \\
 \hline 6.2\% \& \({ }^{18,167}\) \& 17.540 \& -627 \& -3.5\% \\
 \hline 7.4\% \& 17,799 \& \({ }^{15,947}\) \& 1,853 \& \\
 \hline 8.6\% \& 1 15,911 \& \({ }^{15,528}\) \& -39 \& \\
 \hline 9.9\%\% \& 15.571 \& 15,507 \& - \& \\
 \hline 12.3\% \& 15,258 \& 15,258 \& \(\bigcirc\) \& 0.0\% \\
 \hline 13.6\% \& 15.145 \& 14,983 \& -162 \& -1.1\% \\
 \hline 14.8\% \& 14,826 \& 14,982 \& 157 \& 1.1\% \\
 \hline 16.0\% \& 14,143 \& 14,756 \& 613 \& 4.3\% \\
 \hline 17.3\% \& \begin{tabular}{|l|}
 13,758 \\
 13753 \\
 \hline 1
 \end{tabular} \& 14,043 \& \({ }^{286}\) \& 2.1\% \\
 \hline 18.5\% \& \({ }^{13,703}\) \& \({ }^{13,758}\) \& 55 \& 0.4\% \\
 \hline 19.8\% \& 13,599
 13.378 \& \({ }^{13,587}\) \& 78 \& - \({ }_{\text {0.2\% }}^{1.2 \%}\) \\
 \hline 22.2\% \& 13,388
 12,929 \& \& \begin{tabular}{l}
 158 \\
 150 \\
 \hline 1
 \end{tabular} \& \({ }^{1.2 \%}\) \\
 \hline 23.5\% \& 12,798 \& 13,076 \& 278 \& 2.2\% \\
 \hline 24.7\% \& 12,638 \& 13,000 \& 362 \& 2.9\% \\
 \hline 25.9\% \& \begin{tabular}{l}
 12,459 \\
 12375 \\
 \hline 18
 \end{tabular} \& 13.000
 13.000 \& 541
 625 \& \\
 \hline - 27.2 2\% \& 12,375
 12,351
 12 \& 13,000
 13000 \& \({ }_{649}^{625}\) \& 5.0\% \\
 \hline 28.4.6\% \& 12,351
 12,249 \& 13,000
 13.000 \& \({ }_{751}^{649}\) \& 5.3\% \\
 \hline 30.9\% \& 12,141 \& 13,000 \& 859 \& 7.1\% \\
 \hline 32.1\% \& 12,090 \& 13,000 \& 910 \& 7.5\% \\
 \hline 3.3. \& \({ }_{111,887}\) \& 13.000 \& 1110 \& \\
 \hline 35.8\% \& \({ }_{\text {11,777 }}^{11.807}\) \& \({ }^{13,0619}\) \& \({ }_{842}\) \& 7.1\% \\
 \hline 37.0\% \& 11,691 \& 12.144 \& 453 \& 3.9\% \\
 \hline 38.3\% \& \({ }^{11,646}\) \& \({ }^{11,883}\) \& 237 \& \\
 \hline 39.5\% \& 11,598 \& \({ }^{11,693}\) \& 95 \& 0.8\% \\
 \hline 40.7\% \& \({ }^{11,421}\) \& 11,691 \& \({ }^{270}\) \& \\
 \hline \({ }^{42.0 \%}\) \& 11,419 \& 111,646 \& \({ }^{227}\) \& \({ }^{2.0 \%}\) \\
 \hline 4.4.4\% \& \({ }^{111,083}\) \& \({ }_{111,527}^{11,38}\) \& \({ }_{444}\) \& 4.0\% \\
 \hline 45.7\% \& 10,980 \& 11,378 \& 397 \& 3.6\% \\
 \hline 46.9\% \& 10,896 \& 11,282 \& 386 \& 3.5\% \\
 \hline 48.1\% \& 10,886 \& \({ }^{111,170}\) \& 284 \& 2.6\% \\
 \hline 49.4\% \& \({ }^{10,705}\) \& \({ }^{11,087}\) \& \({ }^{381}\) \& 3.6\% \\
 \hline \& 10,671
 10.663 \& 10,787
 10748
 1078 \& 117
 88 \& 1.1\% \\
 \hline 年 \(\begin{aligned} \& \text { 51.9\% } \\ \& 53.1 \%\end{aligned}\) \& 10,663
 10.510 \& (10,748 \& 86

 206 \&

 \hline 54.3\% \& ${ }^{10.510} 10,308$ \& ${ }^{10,716}{ }_{10,662}$ \& ${ }_{354}^{206}$ \& ${ }_{\text {3.4\% }}$

 \hline 55.6\% \& 10,296 \& 10,272 \& ${ }_{-23}$ \& -0.2\%

 \hline \& 10,282 \& -10,025 \& ${ }_{-283}^{-257}$ \& -2.5\%

 \hline 58.0\% \& 10,083
 10.028 \& ${ }_{9}^{9.8801}$ \& ${ }_{-241}$ \& -2.8\%

 \hline 60.5\% \& 9,849 \& 9,762 \& -87 \& -0.9\%

 \hline 61.7\% \& 9,807 \& 9.697 \& -110 \& -1.1\%

 \hline 63.0\% \& 9,710 \& ${ }^{9.5773}$ \& -137 \& 年\%

 \hline ${ }^{64.2 \%}$ \& 9,665 \& 9,572 \& -93 \& -1.0\%

 \hline ${ }^{65.4 \%}$ \& 9,662 \& 9.474 \& -187 \& -1.9\%

 \hline ${ }^{66.7 \%}$ \& 9,474 \& 9,347 \& -127 \& -1.3\%

 \hline - 67.9% \& 9,401 \& ${ }^{9,345}$ \& -56 \& -0.5\%

 \hline 69.1\% \& 9,347 \& 9,301 \& 46 \& -0.5\%

 \hline 70.4\% \& 9,346 \& 9,240 \& -106 \& -1.1\%

 \hline 71.2\% \& ${ }_{\substack{9,257}}^{9,201}$ \& ${ }_{\substack{9,145}}^{9,149}$ \& -152 \& ${ }_{\text {- }}^{\text {-1.2\% }}$

 \hline 74.1\% \& 9,159 \& ${ }_{9,125}$ \& -33 \& -0.4\%

 \hline 75.3\% \& 9,099 \& 9,093 \& -7 \& -0.1\%

 \hline 76.5\% \& 9,081 \& 9,043 \& -38 \& -0.4\%

 \hline 778.8\% \& ${ }_{9005}^{9,013}$ \& | 9,009 |
 | :--- |
 | 8.956 | \& - -4 \& -0.0\%

 \hline 80.2\% \& ${ }_{8,954}$ \& ${ }_{8,940}^{8,90}$ \& -14 \& -0.2\%

 \hline - $\begin{aligned} & 81.5 \% \\ & 887 \%\end{aligned}$ \& 8,889 \& ${ }^{8.844}$ \& ${ }^{45}$ \& -0.5\%

 \hline 84.0\% \& ${ }_{8,795}$ \& ${ }_{8,795}^{8.855}$ \& ${ }^{4}$ \& 0.0\%

 \hline 85.2\% \& 8.673 \& 8.675 \& 2 \& 0.0\%

 \hline 86.4\% \& 8,622 \& 8,579 \& 43 \& .5\%

 \hline 877\% \& ${ }^{8.575}$ \& ${ }^{8.570}$ \& -5 \& -0.1\%

 \hline \& ${ }^{8.565}$ \& ${ }^{8.537}$ \& ${ }^{28}$ \& -0.3\%

 \hline 90.19\% \& ${ }_{8}^{8,887}$ \& ${ }_{8}^{8,474}$ \& -13 \& -0.1\%

 \hline 91.4\% \& 7,987 \& 7,991 \& 5 \& 0.1\%

 \hline ${ }_{93.8 \%}^{92.6 \%}$ \& 7,969
 7.559 \& 7,990 \& 22 \& -0.3\%

 \hline 95.1\% \& 7.416 \& 7.196 \& ${ }_{22} 2$ \& -3.0\%

 \hline 96.3\% \& 6,703 \& 6,705 \& 2 \& 0.0\%

 \hline 97.5\% \& 6,693 \& 6,463 \& 230 \& 3.4\%

 \hline 98.8\%
 1000% \& \& 6,181
 5255 \& -19 \& -0.6\%

 \hline
 \end{tabular}

 ## Table SW－30－b

 | | | June | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | ${ }_{\substack{\text { WSPIP } \\ \text { Proiect }}}^{\text {Withut }}$ | WSIP 2070 With Project | Absolute Difference | e |
 | Probability | Monthy Fow（CFS） | Monthy Fiow（CFS） | （CFS） | |
 | 0．0\％ | 24，175 | 25，178 | 1.003 | 4．1\％ |
 | 1．2\％ | 19.589 | ${ }^{19,115}$ | －474 | －2．4\％ |
 | 2．5\％ | ${ }^{18,690}$ | ${ }^{18,730}$ | －261 | －1．4\％ |
 | 3．7\％ | 17，667 | ${ }^{17,731}$ | 64 | 0．4\％ |
 | 4．9\％ | －16，698 | 16,743 16.033 10.6 | ${ }_{38}^{45}$ | －${ }^{0.34 \%}$ |
 | ${ }_{\text {c }}^{\text {7．4\％}}$ | $\begin{array}{r}16,420 \\ 15.524 \\ \hline 1\end{array}$ | － 16.033 | ${ }_{322}$ | －${ }_{\text {－2．4\％}}$ |
 | 8．6\％ | 15.562 | ${ }^{15.561}$ | ， | |
 | 9．9\％ | 15.414 | 15，429 | 15 | |
 | ${ }^{19.12 \%}$ | － 15.312 | ${ }^{15,398}$ | ${ }_{72}^{86}$ | \％ |
 | ${ }^{13.6 \%}$ | 15，174 | ${ }^{15,095}$ | ${ }_{-80}$ | －0．5\％ |
 | 14．8\％ | 15，117 | 15.025 | －92 | －0．6\％ |
 | 16．0\％ | 15，032 | 14，889 | 143 | －1．0\％ |
 | 17．3\％ | 14.906 | 14，737 | 169 | －1．1\％ |
 | 18．5\％ | 14，834 | 14，734 | －99 | －0．7\％ |
 | 19．8\％ | 14，734 | 14，668 | ${ }_{-66}$ | －0．4\％ |
 | 21．0\％ | 14，661 | 14，433 | －228 | －1．6\％ |
 | 22．2\％ | 14，408 | ${ }^{14,432}$ | 24 | 0．2\％ |
 | 23．5\％ | 14，359 | ${ }^{14,402}$ | ${ }^{43}$ | 0．3\％ |
 | 24．7\％ | 14，274 | 14.377 | ${ }^{103}$ | 0．7\％ |
 | 25．9\％ | 14，103 | 14，374 | 271 | 1．9\％ |
 | 27．2\％${ }^{284 \%}$ | 14.019 13,975 | ${ }^{14,227}$ | 208 13 | ${ }^{1.5 \%}$ |
 | 28．4\％ | － $13.9,975$ | 13，988
 13.951
 1 | 13 280 | 0．1\％ |
 | 30．9\％ | 13，670 | ${ }_{13,925}$ | 254 | ${ }^{2.9 \%}$ |
 | 32．1\％ | 13，659 | 13.884 | 226 | 1．7\％ |
 | 33．3\％ | ${ }^{13,645}$ | ${ }^{13,861}$ | 216 | 1．6\％ |
 | 34.6% 35.8% | 13，640
 13.585
 1 | 13,732
 13.670
 1 | 93 86 | 0．6\％ |
 | 37．0\％ | 13.478 | ${ }_{13,661}$ | 183 | 1．4\％ |
 | 38．3\％ | 13，475 | 13，640 | 165 | 1．2\％ |
 | 39．5\％ | 13，425 | －13，339 | ${ }^{214}$ | |
 | 40．7\％ | 13,403
 1329 | ${ }^{13,627}$ | ${ }^{223}$ | 1．7\％ |
 | 42．0\％ | 13，249 | 13，480 | ${ }^{231}$ | 1．7\％ |
 | 43．2\％ | 13，180 | ${ }^{13,478}$ | 298 | 2．3\％ |
 | 44．4\％ | 13，1688 | ${ }^{13,472}$ | 304 | 2．3\％ |
 | 45．7\％ | ${ }^{13,058}$ | －13，336 | ${ }^{378}$ | 2．9\％ |
 | 48．19\％ | 13,047 13.023 1,025 | ${ }^{13,3,172}$ | ${ }_{156}^{295}$ | 2．2\％ |
 | 49．4\％ | ${ }^{13,015}$ | ${ }^{13,168}$ | 154 | 1．2\％ |
 | 50．6\％ | ${ }^{12,963}$ | 13，087 | ${ }^{124}$ | 1．0\％ |
 | 51．9\％ 53.1% | 12.991 12.949 12 | 13，058 13.056 1 | 97 107 107 | － 0.7% |
 | 54．3\％ | － | 13.056
 13.047
 何 | ${ }_{113}^{107}$ | 0．8\％ |
 | 55．6\％ | ${ }^{12,932}$ | ${ }^{13,015}$ | 83 | 0．6\％ |
 | | ${ }^{12,857}$ | 13，000 | ${ }^{143}$ | 1．1\％ |
 | 55．3\％ | －${ }_{\text {12，}}^{12,735}$ | 13,000 13,000 | ${ }_{465}^{224}$ | － |
 | 60．5\％ | 12，432 | 13，000 | 568 | 4．6\％ |
 | 61．7\％ | ${ }^{12,421}$ | ${ }^{13,000}$ | 579 | 4．7\％ |
 | －63．0\％ | 12，399 | 13，000 | 601 | |
 | ${ }^{64.2 \%}$ | 12，186 | ${ }^{13,000}$ | 814 | 6．7\％ |
 | 㐌54．4\％ | ${ }^{12,178}$ | 13，000 | 822 | 6．8\％ |
 | 66．7\％ 679.9% | ${ }^{12,078}$ | 13，000 | 922 | 7．6\％ |
 | 67．9\％ | 12，051 | ${ }^{13,000}$ | 949 | 7．9\％ |
 | 69．1\％ | 11.944 | ${ }^{12,963}$ | 1.019 | 8．5\％ |
 | 771．6\％ | 11,834 117796 | 12,955 12.934 12034 | ＋1，121 | 9．5\％ |
 | 72．8\％ | 11，572 | ${ }^{12,932}$ | 1，359 | 11．7\％ |
 | 74．1\％ | 11，561 | 12,857 | 1，296 | 11．2\％ |
 | 75．3\％ | 11，560 | 12，579 | 1，019 | 8．8\％ |
 | 76．5\％${ }_{778 \%}$ | 11,112 10.964 1 | 12,399 12186 1218 | 1,287
 1,223
 1 | 11．6\％ |
 | 79．0\％ | 110.964 10,897 | ${ }_{\substack{12,186 \\ 12,131}}^{12,}$ | ${ }_{\substack{1,223 \\ 1,23}}^{1,05}$ | 11．3\％ |
 | 80．2\％ | 10，875 | ${ }^{12,048}$ | ${ }^{1,173}$ | 10．8\％ |
 | ${ }^{81.5 \%}$ | 10.869 | ${ }^{11,1223}$ | ${ }^{1,054}$ | ${ }^{9.7 \%}$ |
 | 84．0\％ | 10，785 | ${ }^{11,634}$ | ${ }_{849}$ | 7．9\％ |
 | 85．2\％ | 10，681 | 11，559 | 878 | 8．2\％ |
 | 86．4\％ | 10，648 | ${ }^{11,548}$ | 900 | |
 | 87．7\％ | 10，472 | 11，365 | ${ }_{8} 93$ | 8．5\％ |
 | 98．9\％${ }^{88.1 \%}$ | 10.448 10.447 | 10，995 | ${ }_{547} 5$ | 5．2\％ |
 | 91．4\％ | 10，415 | 10.648 | ${ }^{233}$ | 2．2\％ |
 | 92．6\％ | 10，328 | ${ }^{10.548}$ | 219 | 2．1\％ |
 | 93．3\％ | 10，204 | （10，448 | 245 | 2．4\％ |
 | 95．19\％ | ${ }_{8}^{9,718}$ | 9，718 | 42 | 0．0\％ |
 | －97．5\％ | ${ }_{8}^{8,041}$ | ${ }^{8.583} 8$ | ${ }_{411}^{42}$ | ${ }_{5}^{0.1 \%}$ |
 | （98．8\％ | ${ }_{7}^{7,906}$ | 8,122 8049 | 216 | ${ }_{77 \%}^{2.7 \%}$ |
 | | 7，474 | 8，049 | 575 | 7．7\％ |

 | |
 | :--- | :--- | :--- | :--- |

 | Pereent | WSIP 2070 Wethout | WSIP 2070 With Project | Absolute | Reative |
 | :---: | :---: | :---: | :---: | :---: |
 | | | Monthy Fiow（CFS） | | Differen |
 | 0．0\％ | 31，900 | 31,864 | －36 | －0．1\％ |
 | 1．2\％ | 31,025 | 31，450 | 425 | 1．4\％ |
 | 2．5\％ | ${ }_{30,576}$ | 31，271 | 695 | 2．3\％ |
 | 3．7\％ | ${ }^{30,531}$ | ${ }^{30,820}$ | 289 | 0．9\％ |
 | 4．9\％ | 30,411 | ${ }^{30,267}$ | －143 | 0．5\％ |
 | 6．2\％ | ${ }^{29,340}$ | ${ }^{29,921}$ | 581 | 2．0\％ |
 | 7．4\％ | ${ }^{29,226}$ | ${ }^{29,005}$ | ${ }_{2} 21$ | －0．8\％ |
 | 8．6\％ | ${ }^{28,915}$ | ${ }^{28,842}$ | －73 | －0．3\％ |
 | 9．9\％ | ${ }^{28,720}$ | ${ }^{28,791}$ | 71 | 0．2\％ |
 | 11．1．\％ | ${ }^{27,992}$ | ${ }^{28,700}$ | 708 | 2．5\％ |
 | 12．3\％ | ${ }^{27,965}$ | ${ }^{28,329}$ | 364 | 1．3\％ |
 | 13.6% 14.8% | ${ }^{277,924}$ | 27,843 27725 | －81 | －0．3\％ |
 | 14.8% 16.0% 12， | 27,891 27,641 | 27,725 27.597 | －166 | －0．0\％${ }_{-0.2 \%}$ |
 | 17．3\％ | ${ }_{\text {27，}}^{27,598}$ | ${ }_{2}^{27,229}$ | －369 | －1．3\％ |
 | 18．5\％ | 27.565 | 27,066 | －500 | |
 | 19．8\％ | 26，954 | 26，861 | －93 | |
 | 21．0\％ | 26，021 | 26，140 | 119 | |
 | ${ }^{22.2 \%}$ | ${ }_{\text {24，}}^{24,568}$ | ${ }_{2}^{24,545}$ | －822 | － |
 | 24．7\％ | 24，706 | 23，874 | －832 | －3．4\％ |
 | 25．9\％ | 24.454 | ${ }^{23,841}$ | －613 | －2．5\％ |
 | 27．2\％ | 24，161 | 23，297 | －863 | －3．6\％ |
 | 28．4\％ | 23，600 | 23，285 | －315 | －1．3\％ |
 | 29．9\％ | 23，519 | 23，106 | -413 | －1．8\％ |
 | 30．9\％ | 23，441 | ${ }^{23,060}$ | －381 | －1．6\％ |
 | 32．1\％ | ${ }^{22,978}$ | 22.735 | －244 | －1．1\％ |
 | 33．3\％ | ${ }_{\text {2，}}^{22,752}$ | ${ }^{22,725}$ | ${ }^{-27}$ | －0．1\％ |
 | 34．6\％ | 22，264 | 21,872 21760 21， | －392 | －1．8\％ |
 | 35.8% 37.0% | ${ }_{\substack{21,715 \\ 21,159}}$ | ${ }_{\text {21，}}^{21,760}$ | 45 58 | 0．2\％ |
 | 38．3\％ | ${ }_{\substack{2,1,199 \\ 19,91}}^{22,295}$ | $\xrightarrow{\substack{21,270 \\ 19,760}}$ | ${ }_{-31}$ | ${ }^{0}$ |
 | 39．5\％ | 19，742 | 19,320 | －422 | －2．1\％ |
 | 40．7\％ | ${ }^{19,9,545}$ | ${ }^{188741}$ | －83 | －4．1\％ |
 | 42．0\％ | 19，376 | | －194 | |
 | 44．4\％ | ${ }^{18,096}{ }^{13,993}$ | ${ }^{15.6 .618}$ | 1，625 | －11．6\％ |
 | 45．7\％ | ${ }^{13,883}$ | 15，333 | 1，450 | 10.4 |
 | 46．9\％ | 13，100 | ${ }^{14,908}$ | 1，808 | |
 | 48．1\％ | ${ }^{13,043}$ | 14，883 | ${ }^{1,840}$ | 14．1\％ |
 | 49．4\％ | ${ }^{12,849}$ | 14，624 | 1,775 | 13．8\％ |
 | 51．9\％ | 12，335 | 14，559 | ${ }_{2,224}^{2,24}$ | 18．0\％ |
 | 53．1\％ | 12，181 | 14，351 | 2，170 | 17．8\％ |
 | 54．3\％ | 12，176 | 14，057 | 1，881 | 15．4\％ |
 | 55．6\％ | ＋12，129 | 13,897
 13788
 185 | ＋1，768 | 14．6\％ |
 | 56.8% 580% | 12,017 12003 1 | （13，768 | 1,751 1734 1 | 14．6\％ |
 | | ＋12，003 | 13,737
 13,700 | 1,734
 1,901
 1 | 14．4\％ |
 | ${ }^{50.5 \%}$ | －11，990 | 13,7800
 13,594
 1 | ＋1，904 | 16．3\％ |
 | 61．7\％ | 11.664 | ${ }^{13,3999}$ | 1，735 | 14．9\％ |
 | 63．0\％ | ${ }^{11,571}$ | ${ }^{13,358}$ | 1，787 | 15．4\％ |
 | 64.2% 654% | ${ }^{11,192}$ | ${ }^{13,313}$ | ${ }^{2,122}$ | 19．0\％ |
 | | 111,977 10.983 | ＋13，313 $\begin{aligned} & 13.169\end{aligned}$ | 2,216 $\substack{2,186}$ $\substack{\text { a }}$ | 20．0\％ |
 | 67．9\％ | 10，422 | 12，633 | ${ }_{2,211}$ | 21.2 |
 | 69．1\％ | 10，304 10178 | 12,416 11877 | 2，113 | ${ }^{20.5 \%}$ |
 | 71．6\％ | 9，789 | 11，866 | ${ }_{2,077}$ | 21．2\％ |
 | 72．8\％ | 9，5366 | ${ }^{111,1705}$ | ${ }^{2,269}$ | 23．3\％ |
 | 74．3\％ | ${ }_{8,993}^{\text {9，475 }}$ | ${ }^{111,568}$ | ${ }_{2,575}^{2,259}$ | 28．6\％ |
 | 76．5\％ | 8，798 | 11，540 | 2．742 | 31．2\％ |
 | 77．8\％ | 8.680 | 11，490 | 2.810 | 32．4\％ |
 | 79．0\％ | 8,664 | 11，489 | 2.826 | 32．6\％ |
 | 80．2\％ | | ${ }^{11,325}$ | 2,757 2，773 | 32．2\％ |
 | ${ }^{81.5 \%}$ 827\％ | － | 11,000 10,909 | 边， | 339．6\％ |
 | 84．0\％ | 7，634 | 10，697 | 3，064 | 40．1\％ |
 | 85．2\％ | 7，558 | 10，458 | 2，900 | 38．4\％ |
 | 86．4\％ | 7，494 | 10，353 | 2，859 | 38．2\％ |
 | － | 7,486
 7,334 | －10,170
 9.457 | 2,684 2，122 2， | |
 | 90．1\％ | 7.250 | 8.879 | ${ }_{1}^{1,629}$ | 22．5\％ |
 | 91．4\％ | 7，166 | 8.837 | 1，671 | 23．3\％ |
 | 993．8\％ | ${ }_{6.911}^{6.960}$ | ${ }_{8,216}^{8.249}$ | ${ }_{\substack{1,305}}^{1,284}$ | 188．9\％ |
 | 95．1\％ | ${ }_{6}^{6,556}$ | ${ }_{8,110}^{8,10}$ | 1，554 | ${ }^{23.7 \%}$ |
 | －97．5\％ | | （7，793 | （1，354 | |
 | 98．8\％ | 6，276 | 7，041 | 764 | |
 | 100．0\％ | 6，218 | 6.561 | 343 | 5．5\％ |

 Figure SW-31-b
 Yolo Bypass, Monthly Flow

 ##

 ##

 | | | February | | |
 | :---: | :---: | :---: | :---: | :---: |
 | $\stackrel{\text { Percent }}{\text { Exceedance }}$ | WSIP 2070 Without Proiet | WSIP 2070 With Project | Absolute Difference | ${ }_{\text {Relative }}^{\text {Rem }}$ |
 | Probability | Monthy flow (CFS) | Morthy Flow (CFS) | (CFS) | |
 | 0.0\% | 184,556 | ${ }^{186,555}$ | 1,998 | 1.1\% |
 | 1.2\% | 146,295 | 142,488 | -3.807 | -2.6\% |
 | 2.5\% | ${ }^{136,546}$ | ${ }^{134,388}$ | $-2,158$ | -1.6\% |
 | 3.7\% | 121,991 | 120,040 | -1,951 | -1.6\% |
 | 4.9\% | ${ }^{112,996}$ | 112,839 | -157 | -0.1\% |
 | ${ }^{6.2 \%}$ | 100,805 | 100,727 | -79 | -0.1\% |
 | 7.4\% | 97,758 | ${ }^{92,925}$ | 4.832 | -4.9\% |
 | - | 84,992 685514 | - 84.572 | ${ }_{522}$ | -0.5\% |
 | 11.1\% | 65.917 | ${ }_{63,577}$ | ${ }_{2}, 340$ | |
 | 12.3\% | 57,160 | 57,589 | 429 | 0.8\% |
 | 13.6\% | 50,471 | 50,594 | 123 | |
 | 14.8\% | 49,918 | 48,052 | -1,866 | -3.7\% |
 | 16.7\% | 49,844 | 44,802 | -5,043 | 9\% |
 | 17.3\% | 48,383 | ${ }^{43,953}$ | 4.430 | -9.2\% |
 | 18.5\% | 45,258 | ${ }^{42,330}$ | -2,928 | -6.5\% |
 | 19.8\% | ${ }^{43,944}$ | ${ }^{42,263}$ | -1,681 | -3.8\% |
 | 21.0\% | ${ }^{36,176}$ | 34,399 | -1,777 | -4.9\% |
 | 22.2\% | ${ }^{30,992}$ | ${ }^{27,920}$ | -3,072 | -9.9\% |
 | 23.5\% | 24,480 | ${ }^{22,181}$ | --2, 29 | -0.4\% |
 | 24.7\% | 19,332 | 19,248 19.214 19 | -84 | -0.4\% |
 | 25.9\% | 19,204 | 19,214 | ${ }_{-531}$ | - |
 | 27.2\% | 17,139 | ${ }^{16,609}$ | | -3.180 |
 | 28.4\% | ${ }_{\text {10,6053 }}^{16,017}$ | ${ }^{13,5518}$ | -2,999 | 隹 |
 | 30.9\% | 14,571 | 12.859 | ${ }_{-1,712}$ | -11.8\% |
 | 32.1\% | 14,224 | 12,607 | -1.618 | .4\% |
 | 33.3\% | 14,157 | ${ }^{12,036}$ | -2,121 | -15.0\% |
 | 34.5\% | ${ }^{11,382}$ | 9,745 | -1,636 | -14.4\% |
 | 37.0\% | ${ }_{9,193}$ | ${ }_{8,867}^{9,067}$ | ${ }_{-}^{1}$ | -3.5\% |
 | 38.3\% | 8.768 | 8,338 | -430 | -4.9\% |
 | 39.5\% | 8,389 | 7,794 | -596 | |
 | 40.7\% | ${ }_{8}^{8,351}$ | ${ }_{6}^{6,656}$ | -1,696 | -20.3\% |
 | 42.0\% | ${ }^{6,736}$ | 6,284 | -452 | -6.7\% |
 | 43.2\% | ${ }_{\text {6,367 }}^{6,367}$ | 5,177 | -1,190 | -18.7\% |
 | ${ }^{44.4 \%}$ | 5,271 | 4,866 | -405 | -7.7\% |
 | 45.7\% | 4,336 | 3,447 | -889 | -20.5\% |
 | ${ }^{46.9 \%}$ | 4,272 | 2,828 | ${ }^{-1,444}$ | -33.8\% |
 | ${ }^{48.19}$ | ${ }^{3.684}$ | 2,640 | -1.044 | -28.3\% |
 | 49.4\% | ${ }^{3,373}$ | 2,585 | -788 | -23.4 |
 | | ${ }_{2}^{2,946}$ | ${ }_{2}^{2.418}$ | -528 | |
 | | 2,887 2410 | ${ }_{1}^{1,890}$ | -997 | |
 | 54.13\% | ${ }_{2}^{2,415}$ | ${ }_{1}^{1,553}$ | -811 | -35.0\% |
 | 55.6\% | ${ }_{2,122}$ | 879 | -1.243 | |
 | 56.8\% | 1,882 | 744 | | |
 | 58.0\% | 1,365 | 671 | 694 | |
 | 59.3\% | 1,316 | 629 | 686 | 52.2\% |
 | ${ }_{6}^{6.17 \%}$ | 629 | ${ }_{468}$ | -161 | |
 | 63.0\% | 524 | 425 | -99 | |
 | 64.2\% | 468 | 389 | -79 | |
 | 65.4\% | 389 | 389 | 0 | |
 | 66.7\% | 389 | 355 | ${ }^{34}$ | |
 | 67.9\% | 355 | ${ }^{303}$ | -52 | |
 | 69.1\% 7 | ${ }^{303}$ | ${ }^{229}$ | ${ }^{-74}$ | |
 | 70.4\% | ${ }^{229}$ | ${ }_{2}^{227}$ | -2 | |
 | 72.8\% | ${ }_{223}^{227}$ | 219 193 | ${ }_{-81}^{-8}$ | |
 | 74.1\% | 219 | 137 | -82 | |
 | 75.3\% | ${ }^{137}$ | 125 | -12 | |
 | 76.5\% | ${ }^{125}$ | ${ }^{123}$ | -2 | |
 | 778.8\% | 112 110 | 112
 85
 85 | -25 | |
 | 80.2\% | 85 | 55 | ${ }_{30}$ | |
 | 81.5\% | 55 | 52 | -3 | |
 | 827\% | 52 | 41 | 11 | |
 | - 8 84.0\% | 41 | 26 | 15 | |
 | 80.4\% | ${ }_{26}^{26}$ | ${ }_{26}^{26}$ | 0 | |
 | 87.7\% | 26 | ${ }_{2} 2$ | 4 | |
 | 88.9\% | 22 | 22 | 0 | |
 | 90.1\% | 19 | 19 | 0 | |
 | 91.4\% | 0 | 0 | 0 | |
 | 92.6\% | 0 | | 0 | |
 | ${ }_{9}^{93.8 \%}$ | 0 | 0 | 0 | |
 | 96.3\% | 0 | 0 | 0 | |
 | 97.5\% | 0 | 0 | 0 | |
 | 988.8\% | 0 | \bigcirc | \bigcirc | |

 ##

 Figure SW-32-b
 Sacramento River at Rio Vista, Monthly Flow

 | October | | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | WSIP 2070 Without | WSIP 2070 With Project | Absolue | Relative |
 | Probability | Monthy fow (CFS) | Monthy Flow (CFS) | | Difference ${ }^{(\%)}$ |
 | 0.0\% | ${ }^{35,273}$ | 29,951 | -5,321 | -15.1\% |
 | 1.2\% | 17,851 | 18.011 | 159 | |
 | 2.5\% | 11,717 | 12,086 | 369 | 3.2\% |
 | 3.7\% | 10,365 | 11,785 | 1,420 | 7\% |
 | 4.9\% | 9,941 | 11,017 | 1,075 | |
 | 6.2\% | 9.912 | ${ }^{11,009}$ | 1,097 | \% |
 | 7.4\% | 9,705 | 10,970 | 1,265 | |
 | 8.6\% | 9,691 | 10,397 | 707 | 7.3\% |
 | 9.9\% | 9,606 | 10,233 | 626 | 6.5\% |
 | 11.1\% | 9,147 | 10,128 | 981 | 10.7\% |
 | ${ }^{12.3 \%}$ | ${ }^{9,125}$ | 9,945 | ${ }_{8} 82$ | 9.0\% |
 | 13.6\% | 8,977 | 9,831 | 854 | ${ }^{9.5 \%}$ |
 | 14.8\% | 8,666 | 9,731 | ${ }^{1,065}$ | ${ }^{12.3 \%}$ |
 | 16.0\% | 8,400 | 9,562 | 1,162 | ${ }^{13.38 \%}$ |
 | 17.3\% | ${ }_{8}^{8,352}$ | 9,503 | 1,151 | - |
 | 18.5\%\% | ${ }^{8,326}$ | ${ }_{\text {9,460 }}$ | ${ }^{1} 1023$ | |
 | 19.8\% | ${ }^{8,256}$ | ${ }^{9,285}$ | ${ }_{\text {1,029 }}$ | ${ }^{12.5 \%}$ |
 | ${ }_{2}^{22.2 \%}$ | ${ }_{8,139}^{8,215}$ | ${ }_{9,098}^{9,160}$ | 959 | 11.8\% |
 | 23.5\% | 7.896 | ${ }_{8,966}$ | 1,070 | 13.5\% |
 | 24.7\% | 7,859 | ${ }_{8,897}$ | 1,038 | |
 | 25.9\% | 7.614 | 8.540 | 926 | |
 | 27.2\% | 7,604 | ${ }_{8,406}$ | 802 | 10.5\% |
 | 28.4\% | 7,579 | ${ }_{8,404}$ | 825 | 10.9\% |
 | 29.6\% | 7,439 | 8,277 | 838 | |
 | 30.9\% | 7,380 7 7 | ${ }^{8,165}$ | 785 | 10.6\% |
 | 32.1\% | 7,295 | 8,154 | 859 | 11.8\% |
 | 33.3\% | -6,841 | ${ }_{8}^{8.042}$ | ${ }^{1,202}$ | 17.6\% |
 | 34.5\% | 6,652 | 7,967 | 1,315 | 19.8\% |
 | | 㐌,625 | 7,812 | ${ }_{1}^{1,187}$ | 17.9\% |
 | 37.0\% | 6,553 | 7,750 | 1,196 | ${ }^{18.37 \%}$ |
 | 38.3\% | 6,490 | 7,636 | ${ }^{1,146}$ | 17.7\% |
 | ${ }^{3}$ | 6,395 | 7,550 | ${ }^{1,155}$ | 18.1\% |
 | ${ }_{4}^{40.70 \%}$ | 6,359 | 7,735 | 1.076 | ${ }^{16.9 .9 \%}$ |
 | ${ }^{43.2 \%}$ | ${ }_{6}^{6,281}$ | ${ }_{7}^{7,341}$ | 1.060 | ${ }^{16.9 .9 \%}$ |
 | 44.4\% | ¢, ${ }_{\text {6,260 }}$ | ${ }_{6} 7.095$ | 829 | ${ }_{1}^{13.5 \%}$ |
 | 45.7\% | 6,021 | 6.814 | 793 | 13.2\% |
 | 46.9\% | 5,932 | 6,764 | 833 | .0\% |
 | 48.1\% | 5,910 | 6,655 | 744 | 12.6\% |
 | 49.4\% | 5,798 | 6,490 | 692 | 9\% |
 | | 5,597 | 6,462 | 865 | 15.5\% |
 | 53.1\% | 5.512 5.375 | 6,010
 5.908 | ${ }_{5} 98$ | 9.9.9\% |
 | 54.3\% | ${ }_{5,370}$ | ${ }_{5,817}^{5,908}$ | 447 | 8.3\% |
 | 55.6\% | 5,307 | 5.641 | 333 | 6.3\% |
 | 56.8\% | 5,116 | 5,492 | 377 | 7.4\% |
 | 年58.0\% | 4,940 | 5.438 5.416 5 | 498 | 10.1\% |
 | | 4,924 | ${ }_{5}^{5.416}$ | 491 | 10.0\% |
 | 60.17\% | 4,884 | 5,310 | ${ }^{426}$ | ${ }_{9.3}^{8.7 \%}$ |
 | 63.0\% | 4,787 | ${ }_{5.227}^{5.202}$ | 440 | 9.2\% |
 | ${ }^{64.2 \%}$ | 4,772 | 5,200 | ${ }^{428}$ | 9.0\% |
 | ${ }^{65.4 \%}$ | 4,756 | 4,919 | 163 | 3.4\% |
 | ${ }^{66.77 \%}$ | 4,750 | ${ }_{4}^{4,844}$ | ${ }^{94}$ | 2.70\% |
 | -67.9\% | ${ }_{4,467}^{4.516}$ | ${ }_{4,689}^{4.773}$ | ${ }_{222}^{257}$ | |
 | 70.4\% | 4,396 | 4,628 | 232 | 5.3\% |
 | 71.6\% | 4,285 | ${ }_{4}^{4.623}$ | 339 | 7.9\% |
 | 72.8\% | ${ }_{4}^{4,225}$ | 4,605 | 380 | ${ }^{\text {9,0\% }}$ |
 | 75.3\% | 4,000 | ${ }_{4,591}^{4.593}$ | 591 | ${ }^{1.4 .8 \%}$ |
 | 76.5\% | 4,000 | 4,500 | 500 | 12.5\% |
 | 77.8\% | 4,000 | 4.409 | 409 | 10.2\% |
 | 79.0\% | 4,000 | 4,378 | 378 | 9.4\% |
 | 80.2\% | 4,000 | 4,369 | 369 | 9.2\% |
 | 81.5\% | 4,000 | 4,361 | ${ }^{361}$ | ${ }_{7.0 \%}^{\text {9.0\% }}$ |
 | 82.7% 840% | 4,000 | 4,292 | 292 | 7.3\% |
 | - 84.80% | 4,000 | 4,000 | 0 | 0.0\% |
 | - | 4,000 | 4,000 | 0 | 0.0\% |
 | 86.4\% | 4,000 | -3,833
 3
 1610 | -167 | -4.2\% |
 | 88.9\% | 4,000 | 3,391 | -609 | -15.2\% |
 | 90.1\% | 3,331 | ${ }^{3,364}$ | 33 | 1.0\% |
 | 914\% | 3,000 | 3,272 | 272 | 9.1\% |
 | 92.6\% | 3,000 | 3,249 | 249 | 8.3\% |
 | ${ }^{955.1 \%}$ | 3.000 3,000 | | 175 | 5.8\% |
 | 96.3\% | 3,000 | 3,000 | 0 | 0.0\% |
 | 998.8\% | 3.000 3.000 | 3.000 3.000 | | |
 | 100.0\% | 3,000 | 3,000 | 0 | 0.0\% |

 Table ew－
 to Rive at Rio
 Vista，Mo
 Mo

 $\begin{array}{lllll}12.2 \% & 78.846 & 77,354 & -1.492 & -1.9 \% \\ 13.6 \% & 75.12 & 73.613 & -1.99 & -2.0 \% \\ 14.86 \% & 73917 & 73,451 & -466 & -0.6 \%\end{array}$ | 14.8% | 73,917 | 73,451 | -466 | -0.6% |
 | :---: | :---: | :---: | :---: | :---: |
 | 16.0% | 69102 | 69.17 | 16 | 0.0% |
 | 17.3% | 67,02 | 66,96 | -6 | 0.00% |
 | 18.5% | 63,285 | 60,985 | $-2,300$ | -3.6% |

 | April | | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | ${ }_{\substack{\text { Percent } \\ \text { Exceanace }}}^{\text {P }}$ | WSIP 2077 P Without | WSIP 2070 With Project | Absolute | Relative |
 | Probability | Phiol fow（CFS） | Montly Flow（（CFS） | （CFs） | |
 | | | | | 0．0\％ |
 | 1．2\％ | 97，289 | ${ }^{95,828}$ | －1．461 | |
 | 2．5\％ | 89，480 | ${ }^{86,433}$ | ${ }^{3}, 046$ | |
 | 3．7\％ | 58,778 | 58，732 | －47 | |
 | 4．9\％ | 54，137 | 53，761 | ${ }^{376}$ | －0．7\％ |
 | 6．2\％ | 52.984 | 52，928 | －56 | |
 | 7．4\％ | 52.525 | 50，786 | －1，739 | |
 | 8．6\％ | 50，980 | 49,819 | －1，161 | |
 | 9．9\％ | ${ }^{48,756}$ | ${ }^{48,750}$ | －6 | 0．0\％ |
 | 11．1\％\％ | ${ }^{42,362}$ | ${ }^{42,382}$ | 19 | |
 | ${ }^{12.36 \%}$ | 38，444 | ${ }^{35,846}$ | $-2,598$ | |
 | 13．4．\％ | ${ }^{29,779}$ | ${ }^{28,723}$ | －1，057 | |
 | 14．8\％ | ${ }_{2}^{29,723}$ | 27，868 | －1，855 | |
 | 117．0\％ | 29，24 | ${ }^{27,029}$ | －2，424 | －8．2\％ |
 | 18．5\％ | ${ }^{26,257}$ | ${ }^{26,259}$ | 2 | 0.0 |
 | 8\％ | 25，595 | 23，236 | 2，360 | －9．28 |
 | 21．0\％ | 25，528 | 22.723 | 通 | |
 | 22．2\％ | 24，563 | 21，742 | | |
 | 23．5\％ | 21，904 | 21，151 | －753 | |
 | 24．7\％ | 19.590 | 19，500 | －90 | |
 | 25．9\％ | 19,441 | 19，350 | －91 | |
 | 27．2\％ | ${ }^{19,345}$ | ${ }^{17,228}$ | 2.117 | |
 | 28．4\％ | ${ }^{16,712}$ | ${ }^{16,536}$ | －176 | －1．1\％ |
 | 29．6\％ | 16，313 | 16，130 | －183 | －1．18 |
 | 30．9\％ | ${ }^{15,993}$ | 15，458 | 535 | －3．3\％ |
 | 32．1\％ | ${ }^{15,712}$ | 15，430 | －282 | －1．8\％ |
 | 33．3\％ | 15．034 | 14.981 | －53 | －0．4\％ |
 | 34．6\％ | ${ }^{14,968}$ | 14，611 | ${ }^{358}$ | 2．4\％ |
 | 35．8\％ | 14，443 | 13,547
 13230 | －897 | －6．2\％ |
 | 37．0\％ | 11，2970 | ${ }^{13,230}$ | 260 | 2．0\％ |
 | 38．3\％ | ${ }^{12,935}$ | ＋12，892 | －42 | |
 | ${ }^{3} 5.75$ | ${ }^{12,885}$ | ${ }^{12,8888}$ | $1{ }^{17}$ | |
 | －40．7\％ | ${ }_{\text {l }}$ | 12，824 | －17 | ${ }^{-0.5 \%}$ |
 | 43．2\％ | 12，324 | 12，662 | 339 | 2．7\％ |
 | 44．4\％ | 12，269 | 12，178 | －91 | |
 | 45．7\％ | 12，061 | 12，170 | 109 | |
 | 46．9\％ | 11，414 | 17 | －97 | |
 | 48．1\％ | 10，687 | 10，436 | －252 | |
 | 4．9．4\％ | 10，509 | ${ }^{10,162}$ | 347 | |
 | 50．6\％ | 10，229 | 10，120 | －108 | －1．1\％ |
 | 51．9\％ | 10，216 | ${ }^{10,062}$ | 154 | |
 | 年53．1\％ | 10.126 | 10，037 | －89 | －0．9\％ |
 | 54．3\％ | 9，879 | ${ }^{9,822}$ | －57 | －0．6\％ |
 | 55．6\％ | ${ }^{9,841}$ | 9，773 | ${ }^{68}$ | －0．7\％ |
 | 56．8\％ | 9，717 | 9，766 | 49 | 0．5\％ |
 | 年58．0\％ | ${ }_{9,388}$ | 9，749 | 361 | 3．8\％ |
 | 年 59.3% | ${ }_{\substack{9,245 \\ 9 \\ 9 \\ \hline 186}}$ | ${ }_{9}^{9,711}$ | 465 | 5．0\％ |
 | ${ }^{60.5 \%}$ | 9，186 | 9，056 | －130 | 源 |
 | －61．7\％ | 9，101 | 9,052 | 49 | －0．5\％ |
 | － 63.0 \％ | 9.0021 8.961 | ${ }_{8,8,875}^{9.021}$ | ${ }_{87}$ | \％ |
 | ${ }^{64.2 \%}$ | ${ }_{8,928}^{8.961}$ | 8.8875 8.846 | ${ }_{-82}$ | |
 | 66．7\％ | 8.835
 8.85 | 8.846 8.835 | ${ }_{0}$ | －0．0\％ |
 | 67．9\％ | 8,710 | ${ }_{8,829}$ | 118 | 1．4\％ |
 | 69．1\％ | 8，458 | ${ }_{8,647}$ | 190 | 2．2\％ |
 | 70．4\％ | 8,415 | ${ }^{8.520}$ | 105 | |
 | 71．6\％ | ${ }_{8}^{8,405}$ | ${ }^{8,3588}$ | ${ }^{47}$ | ．6\％ |
 | 72．8\％ | ${ }^{8,293}$ | ${ }^{8,306}$ | 13 | \％$\%$ |
 | 74．1\％ | ${ }^{8,275}$ | 8，195 | 80 | ．0\％ |
 | 75．3\％ | 8.119 | 8，088 | ${ }^{31}$ | －0．4\％ |
 | 76．5\％ | ${ }_{7} 7.984$ | 8.009 | 25 | 3\％ |
 | 77．8\％ | 7，980 | ${ }^{7} 9.903$ | ${ }^{-77}$ | ．0\％ |
 | 79．0\％ | 7，927 | $\begin{array}{r}7,831 \\ 7.782 \\ \hline\end{array}$ | －96 | 1．2\％ |
 | － | 7，401 | 7，762 | 361 | 4．9\％ |
 | 81．5\％ | 7,259
 7175 | ${ }^{7,573}$ | 314 | 4．3\％ |
 | － $\begin{aligned} & 82.7 \% \\ & 840 \%\end{aligned}$ | 7，175 | 7,474
 7376
 7 | 376 | 4．2\％ |
 | － $\begin{aligned} & 84.0 \% \\ & 852 \%\end{aligned}$ | 7,099 7081 7 | $7, .376$ 7347 7 | ${ }_{266}^{276}$ | 3．9\％ |
 | － | 7,081 7,011 | 7,347
 7,065 | 206 | 3．8\％\％ |
 | ${ }^{86.4 \%}$ | ${ }_{7}^{7007}$ | 7，065 | ${ }^{53}$ | 0．8\％ |
 | 88．9\％ | 7.007 6.936 | 6，976 6.934 | －1 | － |
 | 90．1\％ | ${ }_{6,719}^{6,719}$ | 6，719 | \bigcirc | 0．0\％ |
 | 91．4\％ | ${ }_{6}^{6.528}$ | 6，472 | －56 | －0．9\％ |
 | 92．6\％ | 㐌，430 | | 40 | 0．6\％ |
 | 955．10 | ${ }_{6}$ | 5，399 | －25 | |
 | 96．3\％ | 6，013 | ${ }_{\text {c，967 }}$ | －46 | －0．8\％ |
 | ．5\％ | ${ }_{5.826}$ | 5．927 | 102 | ．7\％ |
 | 98．8\％ 100．0\％ | （5．485 | 5.700 5.577 | 215 300 | 5．7\％ |

 | |
 | :--- | :--- | :--- | :--- |

 Table SW-32-b
 ento Rive at Rio
 Pistan Monthly Fiow

 | June | | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | ${ }^{\text {WSIP } 2070}$ Proithout | WSIP 2070 With Project | Absolute Difference | Relative |
 | Probability | Monthy Fow (CFS) | Monthly Fow (CFFS) | (CFFS) | |
 | 0.0\% | 15,791 | 20,722 | 4.931 | 31.2\% |
 | 1.2\% | ${ }^{11,570}$ | ${ }^{11,240}$ | -330 | -2.9\% |
 | 2.5\% | ${ }^{11,082}$ | 10,900 | -182 | -1.6\% |
 | 3.7\% | 10,334 | 10,379 | ${ }^{45}$ | 0.4\% |
 | 4.9\% | 9,6438 | 9,679 | 31 | 0.3\% |
 | ${ }_{\text {c }}^{\text {7.4\% }}$ | $\stackrel{9,437}{8,881}$ | ${ }_{\text {9,105 }}^{9.167}$ | -224 | -2.5\% |
 | 8.6\% | 8,822 | 8.822 | 0 | 0.0\% |
 | 9.9\% | 8,738 | 8.820 | 82 | |
 | 11.1\% | 8,730 | ${ }_{8}^{8,715}$ | -15 | |
 | 12.3\% | 8,676 | ${ }_{8,687}$ | 11 | |
 | 13.6\% | 8,653 | 8,636 | -17 | |
 | 14.8\% | 8,632 | ${ }_{8,465}$ | -167 | |
 | 16.0\% | ${ }^{8.511}$ | ${ }_{8,403}$ | -108 | -1.3\% |
 | 17.3\% | 8,421 | ${ }^{8,367}$ | -54 | -0.6\% |
 | 18.5\% | ${ }^{8,364}$ | ${ }^{8,348}$ | -16 | -0.2\% |
 | 19.8\% | ${ }_{8,343}$ | 8.309 | -34 | -0.4\% |
 | 21.0\% | 8.309 | ${ }_{8,266}$ | 44 | -0.5\% |
 | 22.2\% | ${ }^{8,004}$ | 8,121 | 116 | 1.5\% |
 | 23.5\% | 7.974 | 8,043 | 69 | |
 | ${ }^{24.79 \%}$ | 7,971 | ${ }_{8}^{8.015}$ | 44 | |
 | - 2.5 | 7,955
 7946
 7 | $\begin{array}{r}7,979 \\ 7970 \\ \hline\end{array}$ | ${ }_{23}^{24}$ | 0.3\% |
 | 28.4\% | ${ }_{7}^{7,833}$ | ${ }_{7}^{7,965}$ | ${ }_{132}^{23}$ | - ${ }^{0.7 \% \%}$ |
 | 29.6\% | 7,556 | 7,831 | 275 | 3.6\% |
 | | 7,517 | 7,794 | ${ }^{277}$ | |
 | 32.10\% | 7.5170 | 7,786 | ${ }_{310}$ | |
 | 34.6\% | 7,457 | 7.648 | 191 | 2.6\% |
 | 35.8\% | 7,432 | 7,552 | 120 | |
 | 37.0\% | 7,407 | 7.510 | 103 | |
 | 38.3\% | 7,398 | 7.510 | 111 | |
 | 39.5\% | 7,383 | 7,464 | 81 | 1.1\% |
 | 40.7\% | 7,317 | 7,443 | ${ }^{126}$ | 1.7\% |
 | 42.0\% | 7,310 | 7,406 | 96 | 1.3\% |
 | 43.2\% | 7,282 | 7,382 | 100 | 1.4\% |
 | 44.4.6 | 7,243 | 7,316 | 73 | 1.0 |
 | 45.7\% | 7,155 | 7,310 | ${ }^{156}$ | 2.2\% |
 | ${ }^{46.9 \%}$ | ${ }^{7.096}$ | 7,284 | 187 | ${ }_{24}^{2.6 \%}$ |
 | 49.4% | 7,071 | 7,245 | 175 | 2.5\% |
 | 50.6\% | 7,062 | 7,243 | 181 | 2.6\% |
 | 51.9\% | 7,050 | 7,178 | 127 | 1.8\% |
 | 543\% | 7.0006 | ${ }_{7} 7162$ | 167
 156 | ${ }_{2}^{2} 2.46$ |
 | 55.6\% | 7.006 | 7.154 | 149 | |
 | | 7,001 | | 147 | 2.1\% |
 | 59.3\% | 6,805 | 7,096 | ${ }_{291}^{120}$ | 4.3\% |
 | 60.5\% | 6,701 | 7,091 | 390 | 5.8\% |
 | 61.7\% | 6.634 | 7,085 | 451 | 6.8\% |
 | 63.0\% | ${ }_{6}^{6.596}$ | 7,084 | 487 | 4\% |
 | 64.2\% | 6.572 | 7,071 | 499 | |
 | 65.4\% | ${ }_{6,521}$ | 7,055 | 534 | 8.2\% |
 | ${ }^{66.7 \%}$ | 6,466 | 7,050 | 584 | 9.0\% |
 | -67.9\% | 6.413 | 7,024 | 612 | 9.5\% |
 | 70.4\% | ${ }^{6,385}$ | 7,006 | ${ }^{621}$ | 9.7\% |
 | 71.6\% | ${ }_{6,240}^{6}$ | 6.990 | ${ }_{7} 71$ | 10.2\% |
 | 72.8\% | ${ }_{6}^{6,217}$ | 6,978 | | 12.2\% |
 | 74.1\% | 6,058 | ${ }_{6}^{6,922}$ | 864 | 14.3\% |
 | 75.3\% | 6,024 | 6.877 | ${ }_{768}^{853}$ | 14.2\% |
 | 76.5\% | 寺, 5.830 | 㐌,596 | ${ }_{848}^{766}$ | |
 | 79.0\% | ${ }_{5,665}^{5.673}$ | ${ }_{\text {c,40 }}^{6.4021}$ | ${ }_{7} 785$ | ${ }^{13.37 \%}$ |
 | 80.2\% | 5.605 | 6.404 | 798 | 14.2\% |
 | ${ }^{81.5 \%}$ | 5,602 | ${ }^{6,395}$ | 793 | ${ }^{14.2 \%}$ |
 | 84.0\% | ${ }_{5.524}^{5.545}$ | 6,239 | 715 | 12.9\% |
 | 85.2\% | 5.509 5 5 | 6.134 | 625 | 11.3\% |
 | ${ }^{86.4 \%}$ | 5,500 | 6,109 | 609 | 11.1\% |
 | 877.7\% | 5,494 | 5.861 | 367 | 6.7\% |
 | ${ }^{88.9 \%}$ | 5,451
 5.381 | 5.743 5 5 5 | ${ }^{293}$ | 5.4\%\% |
 | 91.4\% | 5,342 | ${ }_{5,545}^{5,568}$ | 204 | 3.8\% |
 | 92.6\% | 5,309 | 5.494 | 184 | 3.5\% |
 | 93.8\% | 5,263 5011 5011 | $\stackrel{5,342}{ }$ | 78 | 1.5\% |
 | 95.1\% | 5,011 | 5.011 | 0 | 0.0\% |
 | 99.5\% | - ${ }_{3,623}^{3,987}$ | 3,963
 3,941 | -24 318 | -0.8.8\% |
 | 98.\% | 3,491 | 3,775 | 283 | 8.1\% |
 | 100.0\% | 3,323 | 3,611 | 288 | 8.7\% |

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$ | | Spplember | | RelativeDifference (\%) |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2070 Without Proiect | WSIP 2070 With Project | $\begin{gathered} \text { Absolute } \\ \text { Difference } \end{gathered}$ | |
 | | Monthly Fow (cFs) | Monthly Fiow (CFFS) | (CFFS) | |
 | - ${ }_{\text {1.2\% }}^{0.2 \%}$ | | ${ }^{26,523}$ | 717 | ${ }^{1.4 \% \%}$ |
 | ${ }^{1.2 \% \%}$ | 25.379 25020 | | ${ }_{966}$ | |
 | 3.7\% | 24,954 | ${ }^{25,636}$ | 682 | 2.7\% |
 | 4.9\% | 24,845 | ${ }^{25,576}$ | 731 | |
 | 6.2\% | 24,157 | 24,783 | 627 | 2.6\% |
 | 7.4\% | 23,911 | 24,108 | 197 | |
 | 8.6\% | 23,626 | 23,952 | 326 | 1.4\% |
 | 9.9\% | ${ }_{\text {2, }}^{23,345}$ | ${ }^{23,778}$ | 433 | ${ }^{1.92 \%}$ |
 | 1.12\% | ${ }_{2}^{23,172}$ | ${ }^{23,672}$ | 500 | |
 | 13.6\% | ${ }^{22,719}$ | ${ }^{23,015}$ | 297 | 1.3\% |
 | 14.8\% | 665 | 22,908 | 243 | 1.1\% |
 | 16.0\% | 22,393 | 22,779 | 386 | |
 | 17.3\% | 22,363 | 22,758 | 395 | |
 | 18.5\% | 22,351 | 22,530 | 179 | 0.8\% |
 | 19.8\% | 21,843 | 22,201 | 357 | 1.6\% |
 | 21.0\% | 21,133 | 22,016 | 883 | |
 | 22.2\% | 21,064 | 15,611 | -5,454 | |
 | 23.5\% | ${ }^{15,365}$ | 15,311 | -54 | -0.4\% |
 | 24.7\% | 15,212 | 14,991 | 221 | ${ }^{-1.5 \%}$ |
 | 25.9\% | 14,914 | 14,832 | ${ }^{-82}$ | -0.5\% |
 | 27.2\% | ${ }^{14,706}$ | 14,731 | 25 | 0.2\% |
 | - 28.4 .9 | ${ }^{14,544}$ | 14,548 | 4 | 0.0\% |
 | - | 14,505 | ${ }^{14,532}$ | ${ }^{26}$ | 0.2\% |
 | 30.9\% | 14,306 | 14,487 | 181 | 1.3\% |
 | 32.1\% | 14,249 | ${ }^{14,377}$ | ${ }^{128}$ | 0.9\% |
 | 34.6\% | 14,074 | 14,991 | 118 | 1.2\% |
 | 35.8\% | 13,101 | ${ }^{13,131}$ | 30 | 02\% |
 | 37.0\% | 12,750 | ${ }^{13,068}$ | 318 | ${ }_{2.5 \%}^{2.5 \%}$ |
 | | ${ }_{111724}$ | | 298 | |
 | 40.7\% | 11.632 | 11,372 | -260 | -2.2\% |
 | 42.0\% | 11,506 | 11,121 | 385 | -3.3\% |
 | 43.2\% | 111,167 | ${ }^{11,028}$ | -139 | -1.2\% |
 | 44.4\% | 7,930 | 9,367 | 1,437 | 18.1\% |
 | 45.7\% | 7.857 | 9,232 | 1,375 | 17.5\% |
 | 46.9\% | 7,359 | 8,943 | 1,584 | 21.5\% |
 | 48.19\% | 7,271 | 8.755 | ${ }^{1,485}$ | 20.4\% |
 | 49.4\% | 7,266 | ${ }^{8.503}$ | 1,237 | 17.0\% |
 | 50.9\% | 6,912 | ${ }_{8}^{8.412}$ | 1,500 | ${ }^{217.7 \%}$ |
 | 53.1\% | ci,6,837
 6,83 | ${ }_{8,326}^{8,381}$ | - ${ }_{\text {1,544 }}^{1.591}$ | ${ }^{22.8 \% \%}$ |
 | 54.3\% | 6,744 | ${ }_{8,309}$ | ${ }_{1}^{1,565}$ | 23.2\% |
 | 55.6\% | 6,732 | 8.306 | 1.574 | 23.4\% |
 | 56.8\% | ${ }_{6}^{6,677}$ | 8,299 | ${ }^{1,622}$ | 24.3\% |
 | | 6,674
 6,438 | 7,902
 7855 | +1,228 | - |
 | 60.5\% | 6,437 | 7.851 | 1.414 | 22.0\% |
 | 61.7\% | 6,339 | ${ }_{7}^{7.843}$ | 1,504 | 23.7\% |
 | | co,6,366
 6.053 | $\begin{array}{r}7.621 \\ 7.501 \\ \hline\end{array}$ | ${ }^{1,295}$ | 20.5\% |
 | ${ }^{645.4 \%}$ | c.0.939 5.989 | 7,474 | ${ }_{1}^{1,485}$ | 24.8\% |
 | 66.7\% | 5,953 | 7,377 | ${ }^{1,425}$ | 23.9\% |
 | 67.9\% | ${ }_{5}^{5.673}$ | 6,951 | 1,278 | 22.5\% |
 | 69.1\% | 5.477 | 6,934 | 1,458 | ${ }^{26.6 \%}$ |
 | 70.1.6\% | 5,436 | ${ }^{6,9913}$ | ${ }^{1,476}$ | ${ }^{272 \%}$ |
 | 72.8\% | 5,125 | ${ }^{6.905}$ | 1,780 | ${ }^{34.7 \%}$ |
 | 74.1\% | 4,887 | ${ }_{6.852}^{6.05}$ | ${ }_{1}^{1,965}$ | 40.2\% |
 | 75.3\% | 4,672 | 6,580 | 1,909 | 40.9\% |
 | 76.5\% | ${ }_{4}^{4.533}$ | ${ }^{6.568}$ | 2,034 | 44.9\% |
 | 77.8\% | 4,493 | c.5.55 | 2,061 | 45.9\% |
 | 80.2\% | 4,399 | ${ }_{6,194}^{6}$ | ${ }_{1}^{1,795}$ | 40.8\% |
 | 81.5\% | ${ }_{4}^{4.090}$ | ${ }_{6}^{6,133}$ | ${ }^{2}, 043$ | 50.0\% |
 | 82.7\% | 3,781 | 6,127 | 2,346 | ${ }^{62.0 \%}$ |
 | - ${ }_{\text {84, }}^{8.0 \%}$ | | 6,093 6.060 6 | 2,436 2.433 | |
 | 86.4\% | 3,622 | 5,582 | 1,960 | 54.1\% |
 | 87.7\% | 3,554 | 5.347 | 1,793 | 50.5\% |
 | - ${ }^{88.9 \%} 9$ | | (5,225 | 1,739 1,054 | - ${ }_{\text {30.3.3\% }}$ |
 | 91.4\% | 3,418 | 4,517 | 1,099 | 32.2\% |
 | 92.6\% | 3,259 | 4.478 | 1.220 | 37.4\% |
 | 93.8\% | 3,232 | 4,122 | 890 | 27.5\% |
 | 95.1\% | 3,176 | 4,065 | 889 | 28.0\% |
 | 96.3\% | 3,000 | 3,994 | 994 | 33.1\% |
 | 97.5\% ${ }^{988 \%}$ | 3,000 | 3,844 | 844 | ${ }^{28.1 \%}$ |
 | 98.8% 1000% | 3,000 3,000 | 3,327 3.020 | ${ }_{20}^{327}$ | 10.9\% |

 Figure SW-33-b
 Sacramento/San Joaquin River Delta, Monthly Outflow

 | | October | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | ${ }_{\text {Psip }}^{\text {Priect }}$ | WSIP 2070 With Project | Absolute | Reatit |
 | | Monthy Outtow（CFS） | Monthly Outliow（CFS） | （CFS） | Difference（\％） |
 | 0．0\％ | ${ }^{31,928}$ | 26,174 | －5，754 | －18．0\％ |
 | 1．2\％ | 20，938 | ${ }^{20,938}$ | | 0．0\％ |
 | 2．5\％ | 10，938 | 11，484 | 547 | 5．0\％ |
 | 3．7\％ | 10，938 | 11，328 | 390 | 3．6\％ |
 | 4．9\％ | 10，938 | 11，328 | 390 | 3．6\％ |
 | 6．2\％ | 10，938 | ${ }^{11,328}$ | 390 | 3．6\％ |
 | 7．4\％ | 10，938 | ${ }^{11,328}$ | 390 | 3．6\％ |
 | 8．6\％ | 10，938 | ${ }^{11,328}$ | 390 | 3．6\％ |
 | 9．9\％ | 10，938 | ${ }^{11,328}$ | ${ }^{390}$ | 3．6\％ |
 | 11．19\％ | 10，938 | ${ }^{11,328}$ | 390 | 3．6\％ |
 | 12．3\％ | 10，938 | ${ }^{11,328}$ | 390 | 3．6\％ |
 | | 10，938 | ${ }^{11,328}$ | 390 547 | 3．6\％ |
 | 14．0\％ | ${ }^{10,6,625}$ | ${ }_{11,119}^{11,19}$ | 494 | 5．7\％ |
 | 17．3\％ | 10，625 | 11.015 | 390 | 3．7\％ |
 | 18．5\％ | 10，625 | 11，015 | 390 | 3．7\％ |
 | 19．8\％ | 10，625 | 11，015 | 390 | 3．7\％ |
 | 21．0\％ | ${ }^{10,625}$ | 11，015 | 390 | 3．7\％ |
 | ${ }_{2}^{22.5 \%}$ | 10,625 10.625 | 111，015 | 390 390 | 3．7\％ |
 | 24．7\％ | ${ }_{10.625}^{10.625}$ | ${ }^{11.015}$ | 390 | 3720 |
 | 24．9\％ | ${ }_{10,625}$ | 10,859 | ${ }_{234}$ | 2．2\％ |
 | 27．2\％ | 10，469 | 10，859 | 390 | 3．7\％ |
 | 28．4\％ | 10，469 | 10，859 | 390 | 3．7\％ |
 | 29．6\％ | 10．469 | 10，703 | 234 | 2．2\％ |
 | 30．9\％ | 10.469 | 10.625 | 156 | 1．5\％ |
 | 32．1\％ | 10，313 | 10,625 | 313 | 3．0\％ |
 | 33．3\％ | 10，313 | 10，313 | 0 | 0．0\％ |
 | 34．6\％ | 10，051 | 8,763 | 1，288 | －12．8\％ |
 | 35．8\％ | ${ }_{8}^{8,125}$ | 8.689 | 564 | 6．9\％ |
 | 37．0\％ | ${ }_{7}^{7,969}$ | 8.676 | 708 | 8．9\％ |
 | | 7,969 7 7 | ${ }_{8,598}^{8.515}$ | 年470 | 㐌．9\％\％ |
 | 40．7\％ | 7.969 | ${ }_{8,359}$ | 390 | 4．9\％ |
 | 42．0\％ | 7，656 | ${ }_{8}^{8,286}$ | ${ }^{630}$ | ${ }_{8}^{8.3 \%}$ |
 | ${ }_{4}^{43.2 \%}$ | 7,500
 7,34 | ¢ ${ }_{8,1205}^{8,047}$ | ${ }_{703}^{625}$ | 9．8．8\％ |
 | 45．7\％ | 7，188 | 8，047 | 859 | 12．0\％ |
 | 46．9\％ | 7，031 | 7，945 | 914 | 13．0\％ |
 | 48．19\％ | 6，969 | ${ }_{7}^{7.813}$ | 844 | 12．1\％ |
 | 49．4\％ | 6，468 | 7，701 | 1，233 | 19．1\％ |
 | 年50．9\％\％ | 㐌， 6.400 | 7，645 | 1，245 | ${ }_{\text {21．5\％}}^{19.5}$ |
 | 53．1\％ | ${ }_{6,128}^{6,08}$ | 7.578 | 1,450 | 23．7\％ |
 | 54．3\％ | 6，098 | 7，251 | 1，153 | 18．9\％ |
 | 55．6\％ | 6，056 | 7，037 | 982 | 16．2\％ |
 | 56．8\％ | 6，039 | 6，931 | 891 | 14．8\％ |
 | 58．0\％ | 6，019 | | ${ }_{416}^{406}$ | |
 | ${ }^{50.5 \%}$ | ${ }_{\text {c，}}^{6,989}$ | | ${ }_{412}^{416}$ | 6．9\％ |
 | 61．7\％ | 5.912 | 6,224 | 312 | 5．3\％ |
 | －63．0\％ | | 6,107 6.064 | ${ }_{248}^{282}$ | 4．8\％ |
 | 65．4\％ | 5.554 | 5，990 | ${ }_{436}$ | 7．9\％ |
 | ${ }^{66.7 \%}$ | 5，525 | 5．987 | 463 | 8．4\％ |
 | 67．9\％ | 5，478 | 5.986 5 5749 | 508
 328 | 9．3\％ |
 | 69．1\％ 70 | ${ }_{5}^{5,3,395}$ | ${ }_{\text {c }}^{5.749}$ | 328 346 | 6．4\％ |
 | 71．6\％ | 5，277 | 5.715 | 438 | 8．3\％ |
 | 72．8\％ | 5，256 | 5，650 | 394 | 7．5\％ |
 | 74．1\％ | 5，155 | 5．549 | 394 | 7．6\％ |
 | 75．3\％ | ${ }_{5}^{5,108}$ | ${ }_{5}^{5.545}$ | 437 | 8．6\％ |
 | 76．5\％ | 5，085 | ${ }_{5}^{5.526}$ | ${ }^{441}$ | 8．7\％ |
 | 77．8\％ | 4，975 | 5.099 5015 | 124 | 2．5\％ |
 | 79．0\％ | ${ }_{4}^{4.940}$ | 5.015 4.946 | 75
 34 | － 0.5% |
 | ${ }^{81.5 \%}$ | 4,688 | 4，887 | 34 119 | 2．5\％ |
 | 82．7\％ | 4，599 | 4.609 | | 0．2\％ |
 | 84．0\％ | － 4.554 | 4，594 | 9 | 0．2\％ |
 | － 8 85．2\％ | ${ }_{4}^{4.565}$ | ${ }_{4}^{4,572}$ | ${ }_{81}^{81}$ | － |
 | 87．7\％ | 4，288 | 4,390 | 103 | ${ }_{\text {2．4\％}}$ |
 | 88．9\％ | 4，000 | 4，301 | 301 | 7．5\％ |
 | 90．1\％ 914% | 4,000 4.000 | 4,000 4.000 | 0 | －0．0\％ |
 | 92．4\％ | 4,000 | ${ }_{3,886}$ | －114 | －2．8\％ |
 | 93．8\％ | 3.863 | 3.664 | －199 | －5．2\％ |
 | 95．1\％ | 3，757 | 3，663 | －94 | －2．5\％ |
 | 96．3\％ | 3，673 | ${ }^{3,600}$ | －74 | －2．0\％ |
 | 975\％ | 3，644 | ${ }^{3.585}$ | －59 | －1．6\％ |
 | 98．8\％ 100.0% | ${ }^{3,070} 3$ | ${ }_{3}^{3,0275}$ | 258 75 | 8．5\％ |

 ## Table SW－33－b

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2070 Without Proiect | WSIP 2070 With Project | | |
 | | Monthly Outtiow（FFS） | Monthly Outiow（CFS） | Difference （CFS） | |
 | －0．0\％ | 294，849 | 296，774 | ${ }^{1,925}$ | 0．7\％ |
 | 1．2\％ | 270，834 | 267，112 | －3，722 | －1．4\％ |
 | 2．5\％ | 265，999 | ${ }^{263,872}$ | －2，127 | －0．8\％ |
 | 4．9\％ | ${ }_{\text {coser }}$ | 206，423 | －1，657 | ${ }^{-0.8 \%}$ |
 | 6．2\％ | 205，912 | 206，077 | 164 | 0．1\％ |
 | 7．4\％ | 369 | 203，156 | －214 | |
 | 8．6\％ | 181，167 | 176，308 | －4，860 | |
 | 9．9\％ | | 175，730 | －2，5 | |
 | 11．1\％ | 175，700 | 173，929 | －1，771 | |
 | 12．3\％ | 164，505 | 165，282 | 777 | |
 | 13．6\％ | 164,166 | 165，033 | 867 | 0．5\％ |
 | 14．8\％ | 142，739 | 142,877 | 138 | 0．1\％ |
 | 16．0\％ | 136，423 | 129，407 | －7，016 | －5．1\％ |
 | 17．3\％ | 127，675 | 125，941 | －1，734 | －1．4\％ |
 | 18．5\％ | 127，002 | 123，550 | －3，412 | －2．7\％ |
 | 19．8\％ | ${ }^{125,660}$ | ${ }^{123,528}$ | －2，131 | |
 | 22．0\％ | ${ }^{123,664}$ | 121，809 | －1，855 | －1．5\％ |
 | ${ }^{22.2 \%}$ | 108,043 | 103.866 | －4，371 | |
 | 23．5\％ | 106，146 | 1028836 | －3，300 | |
 | 24．7\％ | 97，193 | ${ }^{93,733}$ | －3，460 | |
 | 227．2\％ | － | ${ }_{8}^{87,955}$ | －-605 | －0．0\％-0.7% |
 | 28．4\％ | 81.580 | 78，950 | －2，630 | |
 | 29．6\％ | 78，650 | 78，296 | | |
 | 30．9\％ | 78，449 | 77，064 | －1，385 | |
 | 32．1\％ | 78，024 | 76，219 | －1，805 | －2．3\％ |
 | 33．3\％ | ${ }^{72,797}$ | 70.812 | －1，984 | －2．7\％ |
 | 34．6\％ | 72，198 | ${ }^{69,565}$ | －2，633 | |
 | ${ }^{35.5 \%}$ | ${ }^{69,848}$ | ${ }^{66,081}$ | －3，767 | －5．4\％ |
 | 37．0\％ | ${ }^{64,212}$ | ${ }^{63,195}$ | －1，017 | －1．6\％ |
 | 38．3\％ | ${ }_{6}^{63,623}$ | ${ }^{60,991}$ | －2，632 | －4．1\％ |
 | 39．5\％ | ${ }^{60,931}$ | ${ }_{59,562}$ | －1，369 | －2．2\％ |
 | 40．7\％ | | 57，983 | －2，300 | －3．8\％ |
 | 42．0\％ | 59.851 58.382 | 56，102 | －3，749 | －6．3\％ |
 | 43．2\％\％ | 58，382
 57.584 | | －2，357 | －4．0\％ |
 | 44．4\％\％ | 57,584 55425 | 5，．383 55.555 | －2，201 | |
 | 46．9\％ | | ${ }_{48,239}^{53,555}$ | －1，869 | －3．4\％ |
 | 48．9\％ | ${ }^{48,038}$ | ${ }_{4}^{48,239}$ | 201 | |
 | ${ }_{\text {494．4\％}}^{48.1 \%}$ | ${ }_{47,332}^{47826}$ | ${ }^{45.447}$ | －2，409 | |
 | 50．6\％ | ${ }_{4}^{4} 4.964$ | 44.46 | －1， | ${ }_{-2.29 \%}^{-6.19 \%}$ |
 | 51．9\％ | 44,145 | 43，007 | －1，38 | |
 | 53．1\％ | ${ }^{43,822}$ | 41,179 | 淅3 | |
 | 54．3\％ | ${ }^{35,534}$ | 30，411 | 123 | |
 | 55．6\％ | ${ }^{33,876}$ | 30，399 | －3，478 | |
 | ${ }^{56.8 \%}$ | 31，034 | 27，581 | －3，453 | 11.1 |
 | 年．0\％\％ | 30，271 | 27，194 | －3，077 | －10．2\％ |
 | 59．3\％ | 29，515 | 25，314 | －4，201 | －14．2\％ |
 | 60．5\％ | 29，010 | 25，29 | －3，781 | －13．0\％ |
 | 61．7\％ | ${ }^{28,820}$ | 24，662 | －4，158 | －14．4\％ |
 | | ${ }^{28,045}$ | 24，634 | －3，412 | －12．2\％ |
 | 64．2\％ | ${ }^{26,733}$ | ${ }_{2}^{23,523}$ | －3，210 | －12．0\％ |
 | 65．4\％ | 25，031 | ${ }^{23,081}$ | －1，950 | －7．8\％ |
 | | ${ }^{23,979}$ | ${ }^{22,625}$ | －1，354 | 5．6\％ |
 | 67．9\％ | －${ }_{\text {23，956 }}^{23,166}$ | ${ }_{\substack{21,834 \\ 21759}}$ | －－1，122 | －8．9\％ |
 | 69．1\％ | ${ }^{23,166}$ | ${ }^{21,7,59}$ | －1，907 | －6．1\％ |
 | 710．6\％ | ${ }_{\text {22，} 22,68}^{2081}$ | ${ }_{\substack{21,675 \\ 20.495}}^{21085}$ | －993 | 迷 |
 | 72．8\％ | 22,281 22000 | 20，495 19.922 | ${ }_{-2,1788}^{-1,786}$ | －8．0\％\％ |
 | 74．1\％ | ${ }^{21,469}$ | ${ }^{18,826}$ | ${ }_{-2,643}$ | |
 | 75．3\％ | ${ }^{21,315}$ | 18，685 | －2，630 | |
 | 76．5\％ | ${ }^{21,026}$ | | | －11．6\％ |
 | 79．0\％ | ${ }^{20,425}$ | 18,083
 17,265 | － | －15．5\％ |
 | 80．2\％ | 18.088 | 16，290 | ${ }_{-1,798}$ | \％ |
 | 81．5\％ | 17.443 | 15，89 | ， 555 | －8．9\％ |
 | ${ }^{82.7 \%}$ | 16，680 | 15，273 | －1，407 | －8．4\％ |
 | 84．0\％ | ${ }_{\text {15，695 }}^{17}$ | 14，442 | 1，053 | －6．7\％ |
 | | 15，399 | 14，495 | －904 | －5．9\％ |
 | ${ }^{88.4 \%}$ | 15，372 | 14，412 | －960 | －6．2\％ |
 | 877．7\％ | ${ }^{14,975}$ | ${ }_{1}^{13,021}$ | －1，954 | －13．0\％ |
 | 88．9\％ | ${ }^{13,796}$ | 12，967 | 889 | ${ }^{-6.0 \%}$ |
 | 991．4\％ | 13，414
 13,183
 14.6 | 12,695
 12.564
 125 | －719 | ${ }_{5}^{-5.4 \%}$ |
 | 991．4\％ | －13，183 | ${ }^{12,564}$ | －619 | －4．7\％ |
 | ${ }_{\text {93，}}^{92.6 \%}$ | ${ }^{11,660}$ | ${ }^{12,147}$ | 488 | 4．2\％ |
 | 995．1\％ | 11,400 11400 | 11,400 11400 | \bigcirc | 0．0\％ |
 | 96．3\％ | 11.400 | 11，400 | 0 | 0．0\％ |
 | 97．5\％ | ${ }^{11,145}$ | ${ }^{11,400}$ | 255 | ${ }^{2.3 \%}$ |
 | （10．8\％ | 7,100 | 11,205 | ${ }_{3}^{4.105}$ | 5.8 |
 | 100．0\％ | 7，100 | 7，468 | 368 | 5．2\％ |

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2070 Without Proiect | WSIP 2070 With Project | Absolute | Rela |
 | | Morthy Outtiow (CFS) | Monthly Outiow (CFS) | (cFs) | Difference (1) |
 | 0.0\% | ${ }^{24,953}$ | 25,902 | 949 | 3.8\% |
 | 1.2\% | 12,371 | 14,507 | 2,138 | 17.3\% |
 | 2.5\% | 12,354 | ${ }^{12,811}$ | 456 | 3.7\% |
 | 3.7\% 4.9\% | 12,109 12.087 | ${ }^{11,668} 11.826$ | -241 | ${ }_{-2.2 \%}^{-2.0 \%}$ |
 | 6.2\% | 10,797 | 10,750 | -47 | \% |
 | 7.4\% | 10.886 | 10,65 | -33 | |
 | 8.6\% | 10,355 | 10,583 | 228 | |
 | 9.9\% | 10,302 | 10,453 | 151 | |
 | 11.1\% | 10,276 | 10,36 | 87 | 0.8\% |
 | 12.3\% | 10,198 | 10,353 | 155 | |
 | 13.6\% | 10,167 | 10,275 | 108 | 1.1\% |
 | 14.8\% | 10,125 | 10,274 | 149 | 15\% |
 | 16.0\% | 9,952 | 10,167 | 215 | 2.2\% |
 | 17.3\% | 9,935 | 9,914 | -21 | -0.2\% |
 | 18.5\% | 9,746 | 9,863 | 116 | 1.2\% |
 | 19.8\% | 9,445 | 9,761 | ${ }^{316}$ | 3.3\% |
 | 22.0\% | 8,731 | 9.651 | 920 | 10.5\% |
 | 22.5\% | ${ }_{8,593}^{8.579}$ | 9,624 | 1,031 | - |
 | 24.7\% | ${ }_{8,489}^{8.59}$ | ${ }_{9}^{9,405}$ | ${ }_{916}^{950}$ | +10.7\% |
 | 25.9\% | 8,483 | 9,377 | 895 | |
 | | -8,442 | ¢, $\begin{aligned} & 9,226 \\ & 9,103\end{aligned}$ | ${ }_{691}^{784}$ | |
 | 229.6\% | ${ }_{8.402}^{8.412}$ | ${ }_{8,836}^{9.103}$ | ${ }_{434}^{64}$ | 5 |
 | 30.9\% | 8,379 | 8.834 | 455 | |
 | 32.1\% | 8,350 | ${ }_{8,624}$ | 274 | |
 | 33.3\% | 8,332 | ${ }^{8.590}$ | ${ }^{258}$ | 3.1\% |
 | 34.6\% | ${ }^{8,327}$ | ${ }^{8,587}$ | | |
 | ${ }^{35.8 \%}$ | 8,255 | ${ }^{8.551}$ | ${ }^{296}$ | 3.6\% |
 | 38.3\% | 8,218 | ${ }^{8.547}$ | ${ }^{329}$ | 4.0\% |
 | 389.5\% | 8,163
 8,145
 8.85 | 8,427 ${ }_{8}^{8,401}$ | ${ }_{255}^{264}$ | ${ }^{3.2 \%}$ 3.1\% |
 | 40.7\% | ${ }_{8,115}$ | 8,350 | 235 | 2.9\% |
 | 42.0\% | 7,813 | 8,321 | 509 | 6.5\% |
 | 43.2\% | 7,803 | 8,174 | ${ }_{371}^{373}$ | 4.8\% |
 | 45.7\% | 7,766 | 8,139 | ${ }^{373}$ | ${ }_{4.5 \%}^{4.8 \%}$ |
 | 46.9\% | 7,695 | ${ }_{8,062}^{81}$ | 367 | 4.8\% |
 | 48.1\% | ${ }_{7}^{7.655}$ | 8.048 | ${ }^{423}$ | 5.5\% |
 | 450.6\% | 7,930 7,490 | 8,040 8035 8 | 510
 545 | ${ }_{\text {F3. }}^{6.8 \%}$ |
 | 51.9\% | 7.295 | ${ }_{8}^{8.023}$ | ${ }_{728}$ | 10.0\% |
 | ${ }^{53.1 \%}$ | 7,284 | 7.821 | | |
 | 54.3\% | 7,243 | ${ }_{7}^{7,813}$ | 569 | |
 | 55.8\%\% | 7,161 7 7 | 7,801 | ${ }_{640}$ | 8.9\% |
 | 58.0\% | 7,100 | 7.625 | 525 | 7.4\% |
 | 59.3\% | 7,100 | 7.625 | 525 | 7.4\% |
 | | 7,100 7100 | 7,530 | 430 | 6.1\% |
 | 61.7\% | 7,100 | 7,502 | 402 | 5.7\% |
 | 63.0\% | 7.100 | 7.422 | ${ }^{322}$ | 4.5\% |
 | | | 7,420 | ${ }^{320}$ | 4.5\% |
 | 65.4\%\% | 7,100 | 7,404 | 304 | 4.3\% |
 | 66.79\% | 7,100 7 7 | $\begin{array}{r}7,249 \\ 7,226 \\ \hline\end{array}$ | ${ }_{1}^{129}$ | ${ }_{1}^{2.1 \%}$ |
 | 69.1\% | 7.100 | 7,100 | 0 | 0.0\% |
 | 70.4\% | 7,100 | 7,100 | | 0.0\% |
 | 71.6\% | 7,100 7100 | 7,100 7100 7 | 0 | 0.0\% |
 | 74.1\% | 7.100 | 7,100 | 0 | 0.0\% |
 | ${ }^{75.5 \%}$ | 7,100 7100 | 7,100 7100 | 0 | 0.0\% |
 | 77.8\% | 7,100 | 7.100 | 0 | 0.0\% |
 | 79.0\% | 7,100 | 7,100 | 0 | 0.0\% |
 | 80.2\% | 7.100 | 7.100 | 0 | 0.0\% |
 | | 7,100 | 7,100 | 0 | 0.0\% |
 | 88.0\% | 7,100 | 7,100 7,100 | 0 | 0.0\% |
 | 85.2\% | 7.100 | 7.100 | 0 | 0.0\% |
 | 86.4\% | 7,100 | 7,100 | 0 | 0.0\% |
 | 87.7\%\% | 7,031 | 7,100 | 135 | 1.0\% |
 | 88.9\% | 6,965 | 7,100 | 135 | 1.9\% |
 | 99.14\% | $\underbrace{6,985}_{\substack{6.888 \\ 6,765}}$ | | 0 | 0.0\% |
 | 92.6\% | ${ }_{6}^{6,273}$ | ${ }^{6.273}$ | | 0.0\% |
 | 93.8\% | ${ }_{5}^{5.625}$ | ${ }_{5}^{5.625}$ | 0 | 0.0\% |
 | ${ }_{996.3 \%}^{99 \%}$ | +,9500 | 5,550
 5130 | ${ }_{148}^{0}$ | 0.0\% |
 | 97.5\% | 4,700 | 5,092 | ${ }_{392}$ | 8.4\% |
 | 98.8\% | 4,453 | 4,871 | 418 | 9.4\% |
 | 100.0\% | 4,444 | 4.683 | 239 | 5.4\% |

 Figure SW-34-b
 Delta Cross Channel, Monthly Flow

 ## Table SW-34-b Cross Chanel, Monthy

 | $\begin{gathered} \text { Percernt } \\ \text { Exceedance } \end{gathered}$ | $\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|cr:c} \hline \text { Provithout } \\ \text { Proiet } \end{array}$ | WSIP 2070 With Project | Absolute | Relative |
 | :---: | :---: | :---: | :---: | :---: |
 | Probabaility | Monthly Foiol (cFs) | Monthly Fow (CFS) | (CFF) | Difference (\%) |
 | - ${ }_{\text {1.2\% }}^{\text {1.2\% }}$ | ${ }^{11,570}$ | ${ }^{11,567}$ | -3 | |
 | | 11,229 10,598 | ${ }^{11,197}$ | ${ }^{-31}$ | 0.3\% |
 | ${ }^{2.5 \%}$ | 10.588 | ${ }^{10,545}$ | ${ }^{-43}$ | -0.5\% |
 | 3.9\% | -10,194 | 10,141 | -59 | -0.4\% |
 | 6.2\% | ${ }_{\substack{\text { g.214 }}}^{\text {9,744 }}$ | ${ }_{\text {g, }}^{\text {g, }}$ | -39 | - |
 | 7.4\% | 8.977 | 8,380 | -597 | -6.7\% |
 | 8.6\% | 8,411 | 8,249 | -162 | -1.9\% |
 | 9.9\% | 8,235 | ${ }^{8,186}$ | -49 | -0.6\% |
 | ${ }^{11.1 \%}$ | 8,184
 6,799 | 8,074
 6,746 | ${ }_{-53}$ | -1.4\% |
 | 13.6\% | 6,788 | 6.674 | -114 | |
 | 14.8\% | 6,110 | 5.990 | 120 | |
 | 16.0\% | 6,055 | 5.696 | 358 | |
 | 17.3\% | 5,919 | 5,378 | 541 | |
 | 18.5\% | 5.599 | 5,359 | -240 | |
 | 19.8\% | 5.530 | 5,059 | -471 | |
 | 21.0\% | 5.354 | 4,952 | -402 | |
 | 22.2\% | 5,287 | 4.875 | -412 | -7.8\% |
 | 23.5\% | 4,877 | 4,736 | -141 | |
 | 24.7\% | 4.859 | 4,723 | -136 | -2.8\% |
 | 25.9\% | 4,650 | 4,420 | -230 | -4.9\% |
 | 27.2\% | 4,452 | 4,266 | -186 | -4.2\% |
 | 28.4.\% | 4,360 | 4,260 | 101 | |
 | 29.6\% | ${ }^{4,246}$ | ${ }^{4,256}$ | 10 | |
 | 30.9\% | 4,1866 | 4,199 | 13 | 0.3\% |
 | 32.19\% | 4,162 | 4,169 | 7 | ${ }^{0.2 \%}$ |
 | 33.3\% | 4,043 | 4,145 | 102 | |
 | 34.6\% | 4,024 | 4,116 | 92 | , |
 | 37.0\% | 4.007 | 4,046 | ${ }_{39}$ | 1.0\% |
 | 38.3\% | 3,941 | 4,038 | 96 | |
 | 39.5\% | 3.899 | 4,030 | 131 | |
 | 40.7\% | 3,896 | 3,994 | 97 | |
 | 42.0\% | 3,885 | 3,933 | 48 | |
 | 43.2\% | 3,844 | 3,930 | ${ }^{87}$ | 2.3\% |
 | 44.4\% | 3,810 | ${ }^{3,920}$ | 111 | 2.9\% |
 | 45.7\% | ${ }^{3,785}$ | ${ }^{3,895}$ | 110 | 2.9\% |
 | 46.9\% | ${ }^{3,776}$ | 3,867 | 91 | 2.4\% |
 | 48.1\% | 3.741
 3.721 | | 170 | 2.8\% |
 | 49.4\% | 3,721 | 3,791 | 70 | 1.9\% |
 | 50.6\% | 3.679 3 3 | 3,779 3 | 100 | 2.7\% |
 | 51.9\% | $\begin{array}{r}3.659 \\ \hline\end{array}$ | 3,690 | 31 | 0.9\% |
 | - 53.10% | ${ }^{3,668}$ | 3,687 | 39 | 1.1\% |
 | 54.3\% | ${ }_{\text {3 }}$ 3,635 | - ${ }_{\text {3,678 }}^{3.677}$ | ${ }^{43}$ | 1.2\% |
 | | 3,614 | ${ }^{3,677}$ | ${ }^{63}$ | |
 | 55.0\% | ${ }_{3,544}^{3.598}$ | ${ }_{3,644}^{3.674}$ | 100 | 22\% |
 | 59.3\% | ${ }_{3,521}^{3.544}$ | ${ }_{\text {3,633 }}$ | ${ }_{112}$ | ${ }_{3.2 \%}^{2.2 \%}$ |
 | 60.5\% | 3,510 | 3,612 | 103 | \% |
 | 61.7\% | 3,462 | 3,612 | 150 | 4.3\% |
 | -63.0\% | 3.459 3 3 | - ${ }_{\text {3,590}}$ | 131 | 3.8\% |
 | 66.4\% | ci420 | ${ }_{\text {3,560 }}$ | ${ }_{141}$ | 4.1\% |
 | 66.7\% | 3.419 | 3,553 | 134 | 3.9\% |
 | 67.9\% | 3,416 | 3,443 | 27 | 0.8\% |
 | 69.1\% | 3,408 | 3,440 | 32 | 0.9\% |
 | 70.4\% | 3,405 | 3,432 | ${ }^{27}$ | 0.8\% |
 | 71.6\% | ${ }^{3,398}$ | 3,406 | 8 | 0.2\% |
 | 72.8\% | 3,397 | 3,405 | 8 | 0.2\% |
 | 74.19\% | 3,392
 3
 3 | 3,402
 3,395 | ${ }^{11}$ | 0.3\% |
 | 76.5\% | ${ }_{3}^{3,392}$ | ${ }_{\substack{3,395 \\ 3,367}}$ | ${ }^{3}$ | -0.1\% |
 | 77.8\% | ${ }_{\text {3,376 }}$ | - | ${ }_{-23}$ | ${ }_{\text {- }}^{\text {- }}$ |
 | 79.0\% | ${ }^{3,370}$ | ${ }^{3,347}$ | ${ }^{-23}$ | -0.7\% |
 | 80.2\% | 3,359 | 3,327 | -32 | -1.0\% |
 | ${ }^{81.5 \%}$ | 3,281 3 3 | 3,267 | -14 | 4\% |
 | 827.70 | - | ${ }_{\substack{3,225 \\ 3 \\ 3 \\ \hline 172}}$ | -25 | |
 | 84.0\% | ${ }^{3,203}$ | 3,172 | -26 | \% |
 | 86.4\% | ${ }_{\substack{3,166 \\ 3,163}}$ | 3.122
 3.084 | -79 | ${ }_{-2.5 \%}^{-2.0 \%}$ |
 | 87.7\% | 3,162 | 3,054 | 108 | -3.4\% |
 | 88.9\% | 3,088 | 3,054 | ${ }^{35}$ | 1.1\% |
 | 90.1\% | 3,065 | 2,966 | 99 | 3.2\% |
 | 91.4\% | 2,958 | 2,918 | 40 | 1.4\% |
 | 92.6\% | ${ }_{2}^{2,922}$ | 2,912 | -9 | -0.3\% |
 | 93.8\% | 2,884 | ${ }^{2,888}$ | 4 | 0.1\% |
 | 95.1\% | ${ }_{2}^{2,823}$ | 2,835 | 12 | 0.4\% |
 | 96.3\% | ${ }^{2,764}$ | ${ }_{2}^{2,835}$ | 71 | 2.6\% |
 | 97.5\% | 2,585 | 2,813 | ${ }^{228}$ | ${ }^{8.8 \%}$ |
 | 98.8\% | 2.578
 2.543 | ${ }_{2,634}^{2,654}$ | 77 91 | ${ }^{3.0 \%}$ |

 ## Table SW-34-b Tross C Chanel, Monthy Flo

 ## Table SW －34－b ross C Chanel，Monthy

 | $\begin{gathered} \text { Percent } \\ \text { Exceanance } \end{gathered}$ | $\begin{aligned} & \text { WSIP } 2070 \text { Without } \\ & \text { Proiect } \end{aligned}$ | WSIP 2070 With Project | Absolute Difference | |
 | :---: | :---: | :---: | :---: | :---: |
 | Probability | Monthly Flow（CFS） | Monthy Flow（CFS） | （cFs） | |
 | 0．0\％ | 7.520 | 7，225 | 295 | －3．9\％ |
 | 1．2\％ | ${ }_{6}^{6,720}$ | 6，561 | －160 | －2．4\％ |
 | 2．5\％ | | 6,547 6.533 | -13 37 | －0．2\％ |
 | 3．7\％ | 6,496 6.479 | －6．533 | 37 | 0．6\％ |
 | 4．9\％ | 6.479
 6.403 | 6,479
 6.434 | ${ }_{30}$ | 0．0\％ |
 | 6．2\％ 7 | | 㐌，4．434 | 30 24 | 0．5\％ |
 | 8．6\％ | 6,301 | 6.402 | 101 | 1．6\％ |
 | 9．9\％ | 6，232 | 6，401 | 169 | |
 | 11．1\％ | 6，231 | 6，374 | 143 | |
 | 12．3\％ | ${ }^{6,227}$ | 6，367 | 140 | |
 | 13．6\％ | 6，200 | 6，348 | 148 | |
 | 14．8\％ | 6，185 | 6，337 | 152 | |
 | 16．7\％ | 6，164 | ${ }^{6,333}$ | 170 | 8\％ |
 | 17．3\％ | 6.143 | 6，265 | 122 | \％ |
 | 18．5\％ | 6，124 | 6，264 | 140 | 2．3\％ |
 | 19．8\％ | 6，096 | 6，235 | 138 | 2．3\％ |
 | 21．0\％ | ${ }^{6,060}$ | 6，234 | 174 | 9\％ |
 | ${ }^{22.2 \%}$ | ${ }^{6,021}$ | 6，231 | 210 | |
 | 23．5\％ | 宛，009 | ¢，228 | 219 | |
 | ${ }^{24.79 \%}$ | ${ }_{5}^{5,983}$ | 6，185 | ${ }_{203}$ | ${ }^{3.4 \%}$ |
 | 25．9\％ | 5．963 | 6，164 | 201 | |
 | 27.2% 28.4% | ${ }_{5,923}^{5.940}$ | $\underset{\substack{6,144 \\ 6,135}}{\text { c，}}$ | ${ }_{213}^{204}$ | |
 | 29．6\％ | 5.922 | 6,051 | 129 | ， |
 | 30．9\％ | 5，910 | 6，041 | 131 | |
 | 32．1\％ | 5.876 | 6，037 | 161 | |
 | | 5．874 | ${ }^{6.035}$ | 161 | 2．7\％ |
 | 34．8\％ | ${ }_{5,835}^{5.047}$ | ${ }_{6,008}^{6,008}$ | ${ }_{173}$ | 3．0\％ |
 | 37．0\％ | 5.791 | 6.002 | 211 | 3．6\％ |
 | 38．3\％ | 5.728 | 6，000 | 272 | 4．8\％ |
 | 39．5\％ | 5，701 | 5，965 | 264 | |
 | 40．7\％ | 5，697 | 5，954 | 257 | 4．5\％ |
 | 42．0\％ | 5．622 | 5，949 | ${ }^{326}$ | 5．8\％ |
 | 43．2\％ | 5，602 | 5，932 | ${ }^{330}$ | 5．9\％ |
 | 44．4\％ | 5.562
 .561 | ${ }_{5}^{5,930}$ | ${ }^{367}$ | 6．6\％ |
 | 45．7\％ | 5，561 | 5.923 | ${ }^{362}$ | 6．5\％ |
 | ${ }^{46.9 \%}$ | －5．557 | 5.921 5 5 | ${ }_{3}^{363}$ | ${ }_{6}^{6.5 \%}$ |
 | 49．4\％ | ${ }_{5,514}^{5.535}$ | ${ }_{5,870}^{5.810}$ | 356 | 6．5\％ |
 | 50．6\％ | 5，492 | 5．866 | ${ }^{375}$ | 6．8\％ |
 | 51．9\％ | 5，491 | 5，791 | 300 | 5\％ |
 | ${ }^{53.13 \%}$ | ${ }_{\text {5，467 }}^{5}$ | ${ }_{5,699}^{5.784}$ | 332 232 | ${ }_{4}^{5.3 \%}$ |
 | 55．6\％ | 5.432 | 5.688 | 256 | |
 | 56．8\％ | 5，360 | 5．670 | 309 | 5．8\％ |
 | 58．0\％ | 5，214 | 5，592 | 378 | 2\％ |
 | ${ }^{59.3 \%}$ | 5．080 | 5．531 | 451 | 8．9\％ |
 | 60．5\％ | 5.066 | 5．491 | 424 | ．4\％ |
 | 617\％\％ | 5.002 | 5，488 | 486 | 9．7\％ |
 | 63．0\％ | 4，982 | 5.478 | ${ }_{4}^{496}$ | 10．0\％ |
 | ${ }^{64.2 \%}$ | 4，923 | 5，430 | 507 | 10．3\％ |
 | ${ }^{65.4 \%}$ | 4.849 482 | 5，346 | 497 | 10．3\％ |
 | 66．7\％ | 4．832 | 5，332 | 500 | 10．4\％ |
 | 67．9\％ | ${ }_{4}^{4.716}$ | ${ }_{5}^{5,282}$ | ${ }_{5}^{566}$ | 12．0\％ |
 | 70．4\％ | ${ }_{4}^{4,769}$ | 5，217 | $\begin{array}{r}505 \\ \hline 151 \\ \hline\end{array}$ | |
 | 71．6\％ | 4，647 | 4，803 | 156 | ${ }_{3.4 \%}$ |
 | 72．8\％ | 4，581 | 4.687 | 106 | 2．3\％ |
 | 74．19\％ | 4，547 | 4，645 | ${ }^{98}$ | 2\％\％ |
 | 77．5\％ | 4，542 | 4，571 | 28 | 6\％ |
 | 77．8\％ | ${ }_{4,460}^{4,505}$ | ${ }_{4,555}^{4,557}$ | ${ }_{95}^{52}$ | ${ }^{1.2 \%}$ |
 | 79．0\％ | 4.389 | 4，512 | ${ }^{123}$ | \％ |
 | 80．2\％ | 4，339 | 4.994 | 155 | |
 | ${ }^{82.7 \%}$ | 4,311 | ${ }_{4,485}^{4,485}$ | $\begin{array}{r}162 \\ 174 \\ \hline 1\end{array}$ | ${ }_{4.0 \%}^{3.7 \%}$ |
 | 84．0\％ | 4，278 | 4,481 | ${ }^{203}$ | 4．7\％ |
 | 85．2\％ | 4，259 | 4.421 | 162 | 3．8\％ |
 | 86．4\％ | 4，251 | 4．414 | 163 | 3．8\％ |
 | 877\％\％ | 4，184 | 4，373 | 189 | 4．5\％ |
 | ${ }^{88.9 \%}$ | 4，173 | 4，349 | 176 | ${ }^{4.2 \%}$ |
 | 91．4\％ | 4.016 | 4.224 | 208 | 5．2\％ |
 | 92．6\％ | 3，951 | 4，205 | 254 | 6．4\％ |
 | 93．8\％ | 3，941 | 4，1666 | ${ }^{225}$ | 5．7\％ |
 | ${ }_{96.3 \%}^{95.1 \%}$ | | 4，011 | 173 | －${ }_{0.2 \%}$ |
 | 97．5\％ | ${ }_{\substack{\text { j，778 }}}^{\text {j，7，}}$ | $\underset{\substack{3,713}}{\substack{\text { a }}}$ | ${ }_{-64}$ | |
 | 98．8\％ | 3，735 | ${ }_{3.686}$ | | |
 | 100．0\％ | 3，717 | 3，432 | | |

 | $\begin{gathered} \text { Percent } \\ \text { Exceedance } \end{gathered}$ | $\begin{aligned} & \text { WSIP P2070 Without } \\ & \text { Proiect } \end{aligned}$ | WSIP 2070 With Project | Absolute | Relative |
 | :---: | :---: | :---: | :---: | :---: |
 | | Monthy Flow（CFS） | Monthly Flow（CFS） | （cFs） | Difference（\％） |
 | 0．0\％ | ${ }^{9,123}$ | ${ }^{9,132}$ | 9 | 0．1\％ |
 | 1．2\％ | ${ }_{9,119}$ | 9,067 | －51 | －0．6\％ |
 | 2．5\％ | ${ }_{9}, 036$ | ${ }_{8,844}$ | －192 | －2．1\％ |
 | 3．7\％ | ${ }_{8,939}$ | ${ }_{8,833}$ | －106 | －1．2\％ |
 | 4．9\％ | ${ }_{8}^{8,753}$ | 8,653 | －100 | －1．1\％ |
 | 6．2\％ | ${ }_{8}^{8,727}$ | 8.649 | －77 | －0．9\％ |
 | 7．4\％ | 8.701 | ${ }^{8,590}$ | －111 | －1．3\％ |
 | － $\begin{aligned} & 8.6 \% \\ & .9 .9 \%\end{aligned}$ | 8.548 8473 | 8.575 8468 | ${ }_{-6}^{27}$ | －0．3\％ |
 | 9．9\％ | 8,473 8,312 | 8,468
 8.464 | $\stackrel{-6}{152}$ | －0．1\％ |
 | 12．3\％ | ${ }_{\substack{8,131 \\ 8,131}}^{\text {a }}$ | 8，8，464 ${ }_{8,183}$ | 152 52 | － |
 | 13．6\％ | 7.947 | ${ }_{8,146}$ | 199 | |
 | 14．8\％ | 7,495 | 7，966 | 471 | |
 | 16．0\％ | 7.479 | 7.485 | 6 | |
 | 17．3\％ | 7.414 | 7，339 | 74 | |
 | 18．5\％ | 7.358 | 7.148 | -210 | 8\％ |
 | 19．8\％ | 7，133 | 7，122 | －11 | －0．2\％ |
 | 21．0\％ | 5．579 | 7，035 | 1，456 | 26.18 |
 | 22．2\％ | 5，543 | 6，116 | 573 | 10. |
 | 23．5\％ | 5，284 | 6，022 | 738 | 14．0\％ |
 | 24．7\％ | 5，265 | 5．882 | 616 | 11.7 |
 | 25．9\％ | 5．252 | 5．873 | 622 | 11．8\％ |
 | 27．2\％ | 5，201 | ${ }^{5.788}$ | 587 | ${ }^{11.3}$ |
 | 28．4\％ | 5，140 | 5．783 | ${ }_{643}$ | 12．5\％ |
 | 29．6\％ | ${ }_{5}^{5.082}$ | 5，766 | 684 | ${ }^{12.5 \%}$ |
 | 30．9\％ | ${ }_{5}^{5} 007$ | 5，697 | 623 | 12．2\％ |
 | 32．1\％ | ${ }_{5}^{5.068}$ | 5．600 | 532 | 10．5\％ |
 | | ${ }_{5.031}^{5.061}$ | ${ }_{5.505}^{5.548}$ | ${ }_{474}^{486}$ | ${ }_{9.4 \%}^{9.6 \%}$ |
 | 35．8\％ | 4，981 | ${ }_{\text {c，}}^{\substack{5.495}}$ | 514 | |
 | 37．0\％ | 4，979 | 5，482 | 504 | |
 | 38．3\％ | | | | |
 | 39．5\％ | 4，926 | ${ }_{5}^{5,383}$ | 456 | 9．3\％ |
 | 42．0\％ | ${ }_{4,922}^{4,924}$ | ${ }_{5,355}^{5.369}$ | 433 | 8．8\％ |
 | 43．2\％ | 4，910 | 5，355 | 445 | 9．1\％ |
 | 44．4\％ | 4，870 | 5，307 | 437 | 9．0\％ |
 | 45．7\％ | 4，854 | 5，247 | 393 | 8．1\％ |
 | 46．9\％ | 4，845 | 5，194 | ${ }^{349}$ | 7．2\％ |
 | 49．4\％ | ${ }_{4,810}^{4.819}$ | ${ }_{5,130}$ | 320 | 6．7\％ |
 | 50．6\％ | 4，779 | 5，114 | 335 | 7．0\％ |
 | 51．9\％ | 4，752 | 5．058 | 306 | 6．4\％ |
 | 53．1\％ | 4．749 | 5，043 | 294 | ${ }^{6.2 \%}$ |
 | 54．3\％ | ${ }^{4.773}$ | 4，999 | ${ }^{255}$ | 5．4\％ |
 | 年5．8．8\％ | 4.739 4.707 | ${ }_{4}^{4,882}$ | ${ }_{1}^{173}$ | 3．0\％ |
 | 56．0\％ | ${ }_{4.702}$ | ${ }_{4,876}^{4.880}$ | ${ }^{173}$ | 3．7\％\％ |
 | 59．3\％ | 4，697 | 4.861 | 163 | 3．5\％ |
 | 60．5\％ | 4，654 | 4，856 | ${ }^{203}$ | 4．4\％ |
 | 61．7\％ | ${ }^{4,623}$ | 4，854 | ${ }^{232}$ | 5．0\％ |
 | 64．2\％ | 4.585 | ${ }_{4,833}^{4.843}$ | ${ }_{228}^{223}$ | ${ }_{5.4 \%}^{4.8 \%}$ |
 | 65．4\％ | 4，500 | 4，795 | 295 | |
 | 66．7\％ | 4，442 | 4，778 | 336 | 7．6\％ |
 | 67．9\％ | 4，399 | 4，769 | 369 | 8．4\％ |
 | 69．1\％ | 4，360 | 4，752 | 392 | 9．0\％ |
 | 70．4\％ | 4，319 | 4，752 | 433 | 10．0\％ |
 | 71．6\％ | 4，190 | 4，733 | 543 | 13．0\％ |
 | 72．8\％ | 4,107 | 4，7718 | 611 | 14．9\％ |
 | 74.1% 75.3% | 4，087 | 4，701 | 615 | 15．0\％ |
 | 75．3\％ | 3，927 | 4，698 | 770 | 19．6\％ |
 | 76．5\％ | 3，863 | 4，654 | 792 | |
 | 77．8\％ | 3.824
 3.818 | ${ }^{4.633}$ | 810 | 2\％ |
 | －79．0\％ | － | 4，607 | ${ }_{889} 8$ | |
 | － | $\underset{\substack{3,787 \\ 3,674}}{ }$ | 4.590 | 888 | 2\％\％ |
 | ${ }_{8}^{82.7 \%}$ | ${ }_{\substack{3,537}}^{3,674}$ | ${ }_{4.515}^{4.560}$ | 886 988 | 1\％ |
 | 84．0\％ | ${ }_{\text {3，478 }}$ | 4.490 | 1.012 | 29．1\％ |
 | 85．2\％ | 3，453 | 4.411 | 958 | |
 | 86．4\％ | 3，432 | 4，377 | 945 | \％ |
 | 87．7\％ | 3.429 3 3 | 4，316 | 887 | 9\％ |
 | 90．1\％ | 3，351 | ${ }_{3,890}$ | 538 | 16．1\％ |
 | 91．4\％ | 3，324 | 3，876 | 552 | |
 | 92．6\％ | 3，257 | 3，682 | 424 | |
 | 93．8\％ | 3，239 | 3，671 | 431 | 13．3\％ |
 | 95．19\％ | ${ }_{\text {3，122 }}^{3}$ | 3，635 | 513 | 16.4 |
 | 96．3\％ | 3，112 | 3，5600 | 447 | 14.4 |
 | 97．5\％ | 3，050 | 3，531 | 481 | 15．8\％ |
 | －${ }^{\text {98．8．0\％}}$ | 3,030 3,010 | （ $\begin{aligned} & 3,282 \\ & 3124\end{aligned}$ | ${ }_{113}^{251}$ | |

 Figure SW-35-b
 Old and Middle River, Monthly Flow

 Table SW-35-b
 nd Midde River, Monthy Fow

 | Exceedance | | WSIP 2070 With Project | Difference | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | Exceedance | Proiect | Wsip 2070 With Project | diferen | Relative Difference $(\%)$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Probability | Montly -9715 | ${ }_{\text {Monthl }}^{-1,212}$ | (C-597 | | Probability | Monthy Fow (CFS) | Monthly Fow (CFES) | ${ }_{-1,1,682}^{\text {(CFS) }}$ | -12.0\% |
 | 1.2\% | -1,194 | ${ }^{-1,473}$ | -279 | | 1.2\% | ${ }_{1}^{11,620}$ | ${ }^{11,620}$ | 0 | 0.0\% |
 | 2.5\% | ${ }_{1}^{1,362}$ | -1,637 | 275 | | 2.5\% | 7,739 | 7,695 | -44 | -0.6\% |
 | 3.7\% | -1,473 | -1,752 | -279 | | 3.7\% | 4.487 | 4.481 | ${ }^{-6}$ | -0.1\% |
 | 4.9\% | -1,707 | -1,833 | -125 | | 4.9\% | ${ }^{1,433}$ | 1,541 | 108 | 7.5\% |
 | -6.2\% | -1,820 | -2,271 | -451 | | ${ }^{6.2 \%}$ | -1,306 | -569 | 737 .499 | |
 | 7.4\% | -2,197 | ${ }_{2}^{-2,337}$ | -140 | | 7.4\% | ${ }_{2}^{-2,364}$ | -2,814 | -499 | |
 | 8.6\% | -2,223 | -2,338 | -115 | | 8.6\% | -2,445 | -2,993 | -5488 | |
 | 9.9\%\% | -2,419 | -2,469 | -51 | | 9.9\%\% | -2,573 | ${ }^{-3.410}$ | -837 | |
 | ${ }^{12.3 \%}$ | ${ }_{-2.755}$ | ${ }_{-2,860}^{-2,612}$ | -465 | | ${ }^{12.3 \%}$ | ${ }_{2.681}^{-2,654}$ | -3,592 | -910 | |
 | 13.6\% | ${ }_{-2,788}$ | ${ }_{-3.010}$ | -222 | | 13.6\% | ${ }_{-2,797}$ | -3,668 | -871 | |
 | 14.8\% | -2,798 | -3,065 | -267 | | 14.8\% | -2,946 | -3,670 | -724 | |
 | 16.0\% | 2,915 | 38 | ${ }^{223}$ | | 16.0\% | -3,288 | -3,685 | | |
 | 17.3\% | -3,032 | -3,205 | 173 | | 17.3\% | -3,351 | -4,046 | 695 | |
 | 18.5\% | -3,048 | -3,253 | 205 | | 18.5\% | -3,426 | -4,090 | 664 | |
 | 19.9\% | -3,286 | -3,269 | 18 | | 19.8\% | -3,457 | -4,123 | ${ }^{666}$ | |
 | 21.0\% | -3,403 | -3,398 | 5 | | 21.0\% | -3,793 | 4,247 | -453 | |
 | ${ }^{22.2 \%}$ | -3,427 | ${ }^{-3.580}$ | 152 | | 22.2\% | -3,836 | -4,312 | 476 | |
 | ${ }^{23.5 \%}$ | -3,488 | -3,584 | -97 | | 23.5\% | 4,072 | -4,346 | -274 | |
 | 24.7\% | ${ }^{-3,643}$ | -3,651 | -8 | | 24.7\% | -, 084 | -4,346 | 262 | |
 | ${ }^{25.7 .2 \%}$ | -3,655 | -3,778 | -123 | | 25.9\% | 4,225 | -4,541 | ${ }^{316}$ | |
 | ${ }^{27.2 \%}$ 2.4\% | -3,665 | -3,924 | -259 | | 27.2\% | 4.412 | -4,671 | -259 | |
 | ${ }^{28.4 \%}$ 29\%\% | ${ }^{-3,855}$ | ${ }^{-3,959}$ | -103 | | 28.4\% | 4,496 | -4,740 | ${ }^{245}$ | |
 | - ${ }^{29.9 \%}$ | -3,864 | ${ }^{-3,972}$ | -108 | | 29.6\% | -4,656 | -4,753 | -97 | |
 | 30.2.1\% | -3,948 | -4,162 | -214 | | 30.9\% | 4.672 | -4,82 | -150 | |
 | 32.1\% ${ }^{3}$ | -4,038 | -4,175 | -138 | | 32.1\% | 4.720 | -4,969 | -249 | |
 | 33.6\% | -4,175 | -4,187 | -12 | | 33.3\% | 4.734 | -4,982 | | |
 | 34.6\% | -4,183 | -4,291 | -108 | | 34.6\% | -4,749 | -5,170 | -362 | |
 | 37.0\% | -4,249 | -4,463 | -276 | | 35.8\% | -4,886 | -5,519 | ${ }_{-632}$ | |
 | 38.3\% | | -4,570 | 1 | | 38.3\% | -4,895 | -5,752 | ${ }_{857}$ | |
 | 39.5\% | -4,748 | -4,714 | 34 | | 39.5\% | -4,926 | -5,871 | -944 | |
 | ${ }^{40.7 \%}$ | | -4,773 | 236 | | 40.7\% | 4,969 | -5,871 | -902 | |
 | 42.0\% | -5,199 | -5,106 | 93 | | 42.0\% | -5,132 | -5,871 | 739 | |
 | ${ }^{43.2 \%}$ | -5,233 | 5,112 | 122 | | 43.2\% | -5,134 | -5.871 | -737 | |
 | ${ }^{44.4 \%}$ | -5,291 | 5,123 | 168 | | 44.4\% | -5,614 | -5,871 | ${ }^{257}$ | |
 | 45.7\% | -5,638 | -5,350 | 287 | | 45.7\% | -5,853 | -5,871 | -18 | |
 | ${ }^{46.9 \%}$ | -5,998 | -5,373 | 325 | | 46.9\% | 5,871 | -5,871 | 0 | |
 | 48.19\% | -5,756 | -5.672 | 84 | | 48.1\% | -5.871 | -5.871 | 0 | |
 | 49.4\% | -5,819 | -5,978 | -159 | | 49.4\% | -5,871 | -5.871 | 0 | |
 | 51.9\% | -5,901 | -5,993 | -93 | | 50.6\% | -5,871 | -5,871 | 0 | |
 | 531.9\% | -5,946 | -6,029 | -82 | | 51.9\% | -5,871 | -5,871 | 0 | |
 | ${ }^{53.1 .3 \%}$ | -6,028 | -6,029 | -1 | | 53.1\% | -5.871 | -5,871 | | |
 | 54.5\% | -6,031 | ${ }_{-6,207}$ | -175 | | 54.3\% | -5,871 | -5.871 | 0 | |
 | 55.8\% | -6,110 | ${ }_{-6,218}$ | -108 | | 55.6\% | -5,871 | -5,871 | | |
 | 568.8\% | -6,138 | ${ }_{-6,317}$ | -179 | | 56.8\% | -5,871 | -5,871 | O | |
 | 59.3\% | -6, 6209 | -6,424 | -140 | | 58.0\% | -5.871 | ${ }_{-5,871}^{-5.871}$ | 0 | |
 | 60.5\% | -6,391 | -6,462 | -71 | | 60.5\% | -5.871 | -5.871 | 0 | |
 | ${ }^{61.7 \%}$ | -6,445 | ${ }^{-6,516}$ | -72 | | ${ }^{61.7 \%}$ | -5.871 | -5.871 | 0 | |
 | - 63.0% | ${ }_{-6.477}$ | -6.525 | -48 | | 63.0\% | -5.871 | -5.871 | 0 | |
 | ${ }^{64.24 \%}$ | | ${ }_{-6,580}$ | -48 | | 64.2\% | -5,871 | -5,871 | | |
 | ${ }_{66.7 \%}$ | -6,644 | -6,771 | ${ }_{-128}$ | | ${ }_{66.7 \%}^{65.4 \%}$ | ${ }_{-5,871}^{-5,81}$ | ${ }_{-5,871}^{-5,81}$ | 0 | |
 | 67.9\% | -6,683 | -6.835 | -153 | | 67.9\% | -5,871 | -6,195 | 324 | |
 | 69.1\% | -6,794 | -6,867 | -73 | | 69.1\% | -5,871 | -6,261 | 390 | |
 | 70.4\% | -6.886 | -7,062 | -176 | | 70.4\% | -5.871 | ${ }^{6.638}$ | 767 | |
 | 71.2\% | -6.914 | -7,318 | -404 | | 71.6\% | -5.871 | -6,780 | 909 | |
 | 72.8\% | -6,955 | -7,743 | -788 | | 72.8\% | -5,875 | -6,792 | 918 | |
 | 74.3\% | -7,067 | -7,803 | -736 | | 74.1\% | -6,146 | ${ }^{-6,988}$ | ${ }^{-942}$ | |
 | 75.5\% | -7,082 | -8,213 | -1,131 | | 75.3\% | -6,655 | -7,090 | 435 | |
 | 76.5\% | 7,351 | -8,233 | -882 | | 76.5\% | -6.789 | -7,693 | 904 | |
 | 77.0\% | -7,489 | -8,291 | 802 | | 77.8\% | -6.897 | -7.882 | -985 | |
 | 79.0\% | -7,691 | -8,304 | -613 | | 79.0\% | -7,718 | -8,238 | ${ }^{520}$ | |
 | ${ }^{81.5 \%}$ | -8.149 | -8,637 | -487 | | 81.5\% | - | -8.496 | ${ }_{-133}$ | |
 | 827\% | -8,277 | ${ }^{-8,749}$ | -521 | | 82.7\% | ${ }^{-8,533}$ | -8,857 | ${ }^{-324}$ | |
 | 84.0\% | -8,274 | -8,828 | -554 | | 84.0\% | -9,109 | -8,994 | ${ }^{115}$ | |
 | 80.4\% | -8,304 | ${ }_{-8,018}$ | -614 | | | -9,297 | -9281 | ${ }^{56}$ | |
 | ${ }^{87.7 \%}$ | | -8,930 | -614 | | ${ }^{86.47 \%}$ | | | 16 | |
 | 88.9\% | -8,466 | -0,122 | -656 | | 88.9\% | -9,567 | ${ }_{-9,365}$ | ${ }_{202}^{27}$ | |
 | 90.1\% | -8,867 | 9,544 | 676 | | 90.1\% | 9,574 | -9,512 | 61 | |
 | 91.4\% | -9,036 | -9,981 | 945 | | 91.4\% | 9.620 | -9,567 | 53 | |
 | ${ }_{9}^{92.8 .8 \%}$ | ${ }_{-9,959}^{-9.070}$ | -10,026 | -956 | | 92.6\% | 9,681 | ${ }^{9.587}$ | 94 | |
 | 95.1\% | -10,156 | -10,298 | ${ }_{-142}$ | | ${ }^{955.1 \%}$ | -9,704 | ${ }_{-9,681}$ | ${ }_{22}^{64}$ | |
 | 96.3\% | 10,166 | -10,308 | 142 | | 96.3\% | 9.707 | 9.684 | ${ }^{23}$ | |
 | 97.5\% | -10,265 | -10,343 | -78 | | 97.5\% | -9,712 | -9,704 | 9 | |
 | 98.8\% | -10,311 | -10,371 | -60 | | 98.8\% | -9.879 | -9,777 | ${ }_{43}^{102}$ | |

 Table SW－35－b
 nd Midde River，Sonthy Flow

 | Probabilit | 隹 | 32484 | | 010 |
 | :---: | :---: | :---: | :---: | :---: |
 | 1．2\％ | ${ }_{24,456}$ | 2，4，385 | －72 | ${ }_{-0.3 \%}$ |
 | 2．5\％ | 14，603 | 14，591 | －12 | |
 | 3．7\％ | 12，423 | 11，983 | －440 | －3．5\％ |
 | 4．9\％ | 7，611 | 7，578 | ${ }^{33}$ | －0．4\％ |
 | 6．2\％ | 6.175 | 6，149 | －26 | \％ |
 | 7．4\％ | 5，006 | 6，134 | 1，128 | 5\％ |
 | 8．6\％ | 2，134 | 2，071 | －63 | |
 | 9．9\％ | 2，037 | 2，008 | 29 | －1．4\％ |
 | 11．1\％ | 1，436 | 1，230 | －206 | －14．4 |
 | 12．3\％ | 1，230 | 1，089 | －141 | －11．4\％ |
 | 13．6\％ | 698 | 540 | －158 | 这 |
 | 14．8\％ | 59 | 247 | 189 | 321．6\％ |
 | 16．0\％ | －108 | －346 | －237 | |
 | 17．3\％ | －116 | －641 | －524 | |
 | 18．5\％ | －346 | －1，016 | －671 | |
 | 19．8\％ | －1，070 | －1，150 | －80 | |
 | 22．0\％ | －1，150 | －1，150 | O | |
 | 22．2\％ | －1150 | －150 | 0 | |
 | 24．7\％ | ${ }^{-1,150}$ | ${ }_{-1,150}$ | 0 | |
 | 25．9\％ | －1，150 | －1，150 | 0 | |
 | 27．2\％ | －1，150 | －1，150 | 0 | |
 | － 28.4% | －1，150 | －1，150 | 0 | |
 | 30．9\％ | －1，150 | －1，150 | 0 | |
 | 32．1\％ | －1，226 | －1，150 | 75 | |
 | 33．3\％ | －1，301 | －1，152 | 149 | |
 | 34．6\％ | －1，320 | －1，325 | －5 | |
 | 35．8\％ | －1，359 | －1，736 | －377 | |
 | 37．0\％ | －1，473 | －1，830 | －356 | |
 | 38．3\％ | －1，759 | －1，903 | －144 | |
 | 39．5\％ | －1，903 | －1，916 | －13 | |
 | 40．7\％ | －2，223 | －2，237 | －14 | |
 | 4．3．2\％ | －2，315 | －2，581 | －275 | |
 | 44．4\％ | －2．652 | －2，592 | 60 | |
 | 45．7\％ | －2，669 | －2，669 | 0 | |
 | 46．9\％ | －2，87 | －2．713 | ${ }^{73}$ | |
 | 48．1\％ | －2，810 | －2，815 | －5 | |
 | 4．9．4\％ | －3，065 | －2，995 | 69 | |
 | 51．9\％ | －3．500 | －－．，067 | 433 | |
 | 53．1\％ | －3，500 | －3．500 | | |
 | 54．3\％ | －3，500 | －3，500 | 0 | |
 | 55．6\％ | －3，500 | －3，500 | 0 | |
 | 58．0\％ | ${ }_{-}^{-3.500}$ | －3，5500 | ： | |
 | 59．3\％ | －3，500 | －3，500 | 0 | |
 | 60．5\％ | －3，500 | －3，500 | 0 | |
 | 61．7\％ | －3，500 | －3，500 | 0 | |
 | 63．0\％ | －3，500 | －3，500 | 0 | |
 | 64．2\％ | －．，500 | －3，500 | 0 | |
 | 65．4\％ | －${ }_{-3,709}^{-3.52}$ | -3.5500 $-3,500$ | 52 209 | |
 | 67．9\％ | －3，887 | －3，500 | 387 | |
 | 69．1\％ | －3，894 | －3，500 | 394 | |
 | 70．4\％ | －－．985 | -.5568
 -.728 | ${ }_{683}^{417}$ | |
 | 72．8\％ | －5，000 | －－．，890 | ${ }_{1,110}$ | |
 | 74．1\％ | －5，000 | －3，933 | 1，067 | |
 | 75．3\％ | －5，000 | －4，341 | 659 | |
 | 76．5\％ | －5，000 | －4，469 | 531 | |
 | 77．8\％ | －5．000 | －5，000 | | |
 | 79．0\％ | ${ }_{-5,5000}^{-5.000}$ | ${ }_{-5,5000}-5$ | 0 | |
 | 81．5\％ | －5，000 | －5，000 | 0 | |
 | 82．7\％ | －5．000 | －5，000 | 0 | |
 | 84．0\％ | －5，000 | －5，000 | 0 | |
 | 85．2\％ | －5，000 | －5，000 | 0 | |
 | 86．4\％ | －5，000 | －5，000 | 0 | |
 | 887．9\％ | －5．000 | －5，000 | 0 | |
 | 90．1\％ | －5．000 | －5，000 | \bigcirc | |
 | 91．4\％ | －5，000 | －5，000 | 0 | |
 | 92．6\％ | －5．000 | －5．000 | 0 | |
 | 935．8\％ | －5．000 | －5．000 | 0 | |
 | 96．3\％ | －5．000 | －5，000 | 0 | |
 | 97．5\％ | －5．000 | －5．000 | 0 | |
 | | －5．000 | －5．000 | 0 | |

 | April | | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Pereent | WSIP 2070 Without | WSIP 2070 With Project | | ${ }_{\text {Relative }}^{\text {Riffernce }}$（\％） |
 | Probabality | Monthly Fow（CFS） | Monthy Fiow（CFS） | （CFF） | |
 | 0．0\％ | 13，332 | ${ }^{13,216}$ | －116 | －0．9\％ |
 | 1．2\％ | 12，710 | ${ }^{13,042}$ | 333 | 2．6\％ |
 | 2．5\％ | 6，458 | 6.421 | －36 | －0．6\％ |
 | 3．7\％ | 6，274 | 6，244 | －29 | －0．5\％ |
 | 4．9\％ | 5，218 | 5.063 | －155 | －3．0\％ |
 | 6．2\％ | 4.918 | 4.890 | －28 | －0．6\％ |
 | 7．4\％ | 3，956 | 3，926 | －29 | －0．7\％ |
 | 8．6\％ | | 3，424 | －5 | 0．0\％ |
 | 9．9\％ | ${ }^{3,280}$ | 3，276 | －5 | －0．1\％ |
 | － 11.14% | ¢， $\begin{aligned} & \text { 3，186 } \\ & \text { 2，951 }\end{aligned}$ | 3，186 | －26 | －0．0\％ |
 | 俍 $\begin{aligned} & 12.3 \% \\ & 13.6 \%\end{aligned}$ | 2，951 | 2.925
 2.920
 29 | －26 | －0．9\％ |
 | － $13.4 .8 \%$ | 2，935 2.817 | 2,920
 2.802 | -15 -15 | －0．0．6\％ |
 | 16．0\％ | 2,747 | ${ }_{2,747}^{2,78}$ | 0 | 0．0\％ |
 | 17．3\％ | 2,486 | 2,486 | 0 | \％ |
 | 18．5\％ | 2,445 | 2.445 | 0 | |
 | 19．8\％ | 2，372 | 2，356 | －15 | \％ |
 | ${ }_{2}^{21.0 \%}$ | 2，348 | 2，348 | 0 | 0．0\％ |
 | ${ }^{22.2 \%}$ | ${ }_{2,253}^{2,236}$ | 2,326 2,239 | －15 | 0．0\％ |
 | 24．7\％ | ${ }_{2,192}$ | ${ }_{2,192}^{2,129}$ | 0 | 0．0\％ |
 | 25．9\％ | 2,190 | 2，189 | 0 | 0．0\％ |
 | 27．2\％ | 2，187 | 2，187 | 0 | 0．0\％ |
 | 28．4\％ | 2，080 | 2，080 | 0 | 0．0\％ |
 | 29．6\％ | 1,961 | 1,961 | 0 | 0．0\％ |
 | 30．9\％ | 1，785 | 1,672 | -113 | －6．3\％ |
 | 32．1\％ | 1.672 | 1.620 | －52 | －3．1\％ |
 | 33．3\％ | ＋1，635 | $\begin{array}{r}1.594 \\ 1.485 \\ \hline\end{array}$ | － 41 | －2．5\％ |
 | 34．6\％ | （1．594 | （1，485 | －110 | － $\begin{aligned} & -6.9 \% \\ & -30 \%\end{aligned}$ |
 | 年35．8\％ | 1,485
 1.440 | 1,440
 1.272
 1.159 | －449 | － |
 | －${ }_{\text {37，}}^{38.0 \%}$ | ${ }_{1}^{1,440} 1.272$ | － 1.272 | －169 | －11．7\％ |
 | 38．5\％ | ${ }_{1}^{1,161}$ | 1，160 | －1 | －0．1\％ |
 | 40．7\％ | 1.160 | 1.154 | －6 | －0．5\％ |
 | 42．0\％ | | | 0 | 0．0\％ |
 | 44．4\％ | ${ }_{988}^{1,063}$ | ${ }_{988}^{1,064}$ | 0 | 0．0\％ |
 | 45．7\％ | 860 | 860 | 0 | 0．0\％ |
 | 46．9\％ | 840 | 840 | 0 | 0．0\％ |
 | 48．19\％ | 882 | 817 | －2 | －0．3\％ |
 | 49．4\％ | 817 | ${ }^{554}$ | －64 | －7．8\％ |
 | 50．6\％ | 785 | 635 | －150 | －19．1\％ |
 | 51．9\％ | 602 | 602 | 0 | 0．0\％ |
 | 年53．19\％ | 564 | 564 | 0 | － |
 | 54．3\％ | ${ }^{461}$ | ${ }^{279}$ | －183 | －39．6\％ |
 | ${ }^{55.6 \%}$ | ${ }_{2}^{27}$ | ${ }_{138}^{239}$ | － 118 | －-4.75% |
 | 58．0\％ | ${ }_{150}$ | ${ }_{135}$ | －15 | －－9．9\％ |
 | 59．3\％ | 135 | 77 | －59 | －43．5\％ |
 | 60．5\％ | 77 | ${ }^{24}$ | －53 | －68．7\％ |
 | 61.7% 630% | ${ }_{2}^{24}$ | -71 -72 | －95 | |
 | 6．4．2\％ | ${ }_{-4}$ | －132 | －78 | |
 | 65．4\％ | －110 | －189 | －79 | |
 | ${ }^{66.7 \%}$ | －132 | －197 | －65 | |
 | 69．1\％ | －197 | －235 | $\begin{array}{r}\text {－} \\ -63 \\ \hline 68\end{array}$ | |
 | 70．4\％ | －321 | | －1 | |
 | 71．6\％ | －349 | －350 | －1 | |
 | 72．8\％ | －414 | －414 | 0 | |
 | 74．1\％ | －463 | －432 | 31 | |
 | 75．3\％ | －521 | －463 | 5 | |
 | 76．5\％ | －529 | ${ }^{-521}$ | 8 | |
 | 77．8\％ | －552 | － 5.529 | ${ }_{20}^{23}$ | |
 | 79．0\％ | －573 | －552 | ${ }^{20}$ | |
 | 80．15\％ | －677 | －677 | 0 | |
 | 82．7\％ | －724 | -724 | 0 | |
 | 84．0\％ | －744 | －744 | 0 | |
 | － | -746 -765 | －772 | －-7 | |
 | 877\％ | －792 | －829 | －37 | |
 | 88．9\％ | －848 | －830 | 18 | |
 | 90．1\％ | －982 | －1，055 | －73 | |
 | 91．4\％\％ | －1，055 | －1，101 | －45 | |
 | 93．8\％ | ${ }^{-1,101}$ | －1，150 | －50 | |
 | 95．1\％ | －1，150 | －1，150 | 0 | |
 | 96．3\％ | －1，267 | －1，267 | 0 | |
 | 97．5\％ | －1，641 | －1，550 | 90 | |
 | | ${ }_{-2,353}^{-1,61}$ | ${ }_{-2,352}^{-1,899}$ | ${ }^{-208} 0$ | |

 Table SW－35－b
 and Midele River，Wonthy Flo

 | | | WSII 2070 With Project | Absolute Difference
 （CFS） | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ | Percent | | WSIP 2070 With Project | Absolute Difference
 Differenc | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Probabiliy | Monthly Flow（CFS） | Monthly Flow（CFS） | | | Probability | Monthly Fiow（CFF） | Monthly Flow（CFS） | （CFFS） | |
 | 1．2\％ | ${ }_{-852}^{\text {－633 }}$ | ${ }_{-852}$ | | | 12\％ | －116 | ，1855 | | |
 | ${ }^{\text {2．5\％}}$ | ${ }_{-1,370}$ | ${ }_{-1.378}$ | －7 | | 2．5\％ | ${ }_{-2,278}$ | －1．917 | 360 | |
 | | ${ }_{-1,378}$ | ${ }_{1,847}$ | －469 | | 37\％ | | －2036 | 258 | |
 | | －1．802 | －2，428 | －626 | | 4．9\％ | | －2．748 | －272 | |
 | 6．2\％ | －2．126 | －2．484 | －358 | | 6．2\％ | 2．522 | －3．143 | －621 | |
 | 7．4\％ | －2，296 | －2，512 | －217 | | 7．4\％ | 2．663 | －3．209 | 47 | |
 | 8．6\％ | 2，423 | －2，837 | －14 | | 8．6\％ | －2，815 | －3，532 | －717 | |
 | 9．9\％ | 2，481 | －3，024 | －543 | | 9．9\％ | －2，889 | －3，618 | 628 | |
 | 11．1\％ | －2，654 | －3，449 | －795 | | 11．1\％ | －3，294 | ${ }^{-3,840}$ | 545 | |
 | 12．3\％ | 2，703 | ${ }^{-3,555}$ | －852 | | 12．3\％ | －3，382 | －4，004 | 622 | |
 | 13．6\％ | －3，054 | －3，912 | －858 | | 13．6\％ | ${ }^{-3,411}$ | －4，172 | －761 | |
 | 14．8\％ | ${ }^{-3,230}$ | －4，270 | －1，039 | | 14．8\％ | －3，732 | －4，273 | －541 | |
 | 16．0\％ | －3，659 | －4，382 | －723 | | 16．0\％ | －3，949 | －4，285 | ${ }_{-335}$ | |
 | 17．3\％ | ${ }^{-3,830}$ | －4，426 | －596 | | 17．3\％ | －4，084 | －4，310 | 227 | |
 | 18．5\％ | ${ }^{-3,873}$ | －4，869 | －996 | | 18．5\％ | －4，131 | －4，399 | －268 | |
 | 19．8\％ | －4，004 | －4，928 | －923 | | 19．8\％ | －4，243 | －4，458 | －215 | |
 | 21．0\％ | －4．019 | －4．962 | －943 | | 21．0\％ | －4，344 | －4，468 | －124 | |
 | ${ }^{22.2 \%}$ | －4，288 | －5，281 | －993 | | ${ }^{22.25 \%}$ | 4，479 | －4，528 | －49 | |
 | 23．5\％ | －4，472 | －5，717 | －1，245 | | 23．5\％ | －4，663 | －4，612 | 51 | |
 | － | －4，675 | | ${ }^{-1,076}$ | | ${ }^{24.79 \%}$ | －4，838 | | | |
 | 27．2\％ | －5，083 | －5，834 | －751 | | ${ }_{2}^{27.2 \%}$ | －5，019 | －5．016 | 4 | |
 | 28．4\％ | －5，400 | －6，288 | －888 | | 28．4\％ | －5，058 | －5，036 | 22 | |
 | 29．6\％ | －5，810 | －6，382 | 572 | | 29．6\％ | －5，277 | －5，780 | | |
 | 30．9\％ | －5，965 | －6，596 | 631 | | 30．9\％ | －5，755 | －6，861 | 1，106 | |
 | 32．1\％ | －6，089 | －6，863 | －774 | | 32．1\％ | －5，839 | －7，010 | 1，172 | |
 | 退 33.3% | －6，089 | －6，872 | －783 | | 33．3\％ | －5．848 | －7，221 | 1，373 | |
 | 年34．6\％ | －6，195 | －6，902 | 707 | | 34．6\％ | －5，892 | －7，272 | 1，380 | |
 | 退35．7．9\％ | －6，439 | －7，128 | 689 | | 35．8\％ | －6，181 | －7，315 | 1，134 | |
 | 37．0\％ | －6．678 | －7，155 | －477 | | 37．0\％ | －6，244 | －7，339 | 1.095 | |
 | 38．3\％ | －6，770 | －7，167 | －397 | | 38．3\％ | －6，252 | －7，909 | 1，657 | |
 | ${ }^{39.5 \%}$ | －6，937 | －7，167 | ${ }^{230}$ | | 39．5\％ | －6，687 | －7，920 | 1，233 | |
 | 4．${ }_{4}^{40.7 \%}$ | －6，999 | －7，246 | ${ }^{247}$ | | 40．7\％ | －7，086 | －8，112 | 1，027 | |
 | ${ }^{4.32 \%}$ | －7，037 | －7，372 | ${ }_{-355}$ | | 42．0\％ | －7，388 | －8，342 | －955 | |
 | ${ }^{432.4 \%}$ | －7，121 | －7，573 | ${ }_{-42}$ | | 43．2\％ | －7，444 | －8，393 | －949 | |
 | 4．5．7\％ | －7，249 | －7，671 | － 52 | | 44．4\％ | －7，515 | ${ }_{-8,436}$ | 920 | |
 | 45．9\％ | －7，473 | －7，979 | －504 | | 45．7\％ | 7，961 | －8，537 | －576 | |
 | ${ }^{46.9 .1 \%}$ | －7，559 | －7，956 | －396 | | 46．9\％ | －7，990 | ${ }^{-8.595}$ | －05 | |
 | 49．4\％ | －7．602 | －8，137 | － 4.56 | | ${ }_{4}^{48.14 \%}$ | －8，061 | -8.709 -875 | ${ }_{-647}$ | |
 | | －7，856 | ${ }_{-8,255}^{-8,25}$ | －398 | | 50．6\％ | －8，117 | ${ }_{-8,767}$ | －650 | |
 | 51．9\％ | －7，971 | －8，271 | －300 | | \％ | －8，250 | 782 | 32 | |
 | | －8，071 | | 215 | | 53．1\％ | －8，487 | －8，844 | | |
 | 54．3\％ | －8，125 | －8，305 | 179 | | 54．3\％ | －8，539 | －8，852 | －313 | |
 | 55．6\％ | －8，137 | －8，507 | －370 | | 55．6\％ | －8，579 | －8，973 | 394 | |
 | 58．0\％ | ${ }_{-8,370}$ | ${ }_{-8,639}$ | －269 | | 58．0\％ | ${ }_{-8,605}$ | \bigcirc | －709 | |
 | 59．3\％ | －8，415 | －8，666 | －251 | | 59．3\％ | －8，768 | －9，454 | －687 | |
 | 60．5\％ | －8，456 | －8，693 | 237 | | 60．5\％ | －8，897 | －9，455 | －559 | |
 | 61．7\％ | －8，465 | －8，706 | ${ }^{241}$ | | 61．7\％ | －8，926 | －9，478 | －552 | |
 | － 63.0% | －8，490 | －8．857 | －366 | | 63．0\％ | －9，070 | －9．609 | －539 | |
 | 64．2\％ | －8，549 | －8，864 | ${ }^{314}$ | | 64．2\％ | －9，320 | －9，772 | －452 | |
 | 66．7\％ | ${ }_{-8,592}$ | －8，960 | ${ }^{-368}$ | | 65．4\％ | －9，414 | －9，864 | －450 | |
 | 667．9\％ | －8，639 | $\stackrel{-9,035}{-9,047}$ | －${ }_{\text {－}}^{\text {－}}$－4016 | | 6．9．9\％ | －9，451 | -9.868
 10.114
 -1.08 | －417 | |
 | 69．1\％ | －8，886 | $-9,076$ | －390 | | 69．1\％ | －9，530 | －10，145 | －614 | |
 | ${ }_{7} 77.4 \% \%$ | ${ }^{-8.705}$ | －9，092 | －387 | | 70．4\％ | －9，556 | －10，285 | －729 | |
 | 71．6\％ | ${ }^{-8,738}$ | －9，130 | －392 | | 71．6\％ | －9．567 | －10，308 | －741 | |
 | 77．1\％ | －8，842 | －9，281 | －338 | | 72．81\％ | －9，442 | －10，439 | －997 | |
 | 7．3．3\％ | ${ }_{-9134}$ | －－9，454 | ${ }_{-208}$ | | 75．3\％ | ${ }_{-9,985}$ | －10，455 | －730 | |
 | 76．5\％ | －9，159 | －9，486 | ${ }^{327}$ | | 5\％ | －9，925 | ，560 | 35 | |
 | 77．8\％ | －9，332 | －9，54 | －213 | | 77．8\％ | -9.968 | －10．589 | －620 | |
 | 79．0\％ 88.2% | －9，368 | －9，620 | －252 | | 79．0\％ | －10，218 | 0．599 | －381 | |
 | － | 9.402 | －9，676 | ${ }^{274}$ | | 80．2\％ | －10，285 | －10，615 | －330 | |
 | | －9，414 | －9，778 | 364 | | 81．5\％ | －10，308 | ，657 | 49 | |
 | 884．0\％ | －9，425 | －9，825 | 401 | | 82．7\％ | －10，422 | －10，666 | 44 | |
 | 84．0\％ | ${ }_{-9,762}^{-9,459}$ | －9，857 | －${ }_{-151}$ | | 84.0% 852% | －10，437 -10439 | －10，695 | －258 | |
 | 86．4\％ | －9．780 | －9，936 | －156 | | ${ }_{86.4 \%}$ | －10，455 | －10，790 | －335 | |
 | 87．7\％ | －9，825 | －10，039 | 214 | | 87．7\％ | －10，485 | －10，791 | 306 | |
 | ${ }^{88.9 \%} 9$ | －9，833 | －10，149 | ${ }^{316}$ | | 88．9\％ | 10，556 | －10，794 | 239 | |
 | 90．1\％ | －9，849 | －10，219 | －370 | | 90．1\％ | 10，588 | －10，827 | 239 | |
 | －9．4．4\％ | －10．008 | －10．505 | ${ }_{-4} 49$ | | 91．4\％ | －10．590 | －10，835 | －245 | |
 | 93．8\％ | －10．021 | －10．547 | －${ }_{-384}$ | | ${ }_{9}^{92.26 \%}$ | －10．720 | －10．857 | －137 | |
 | ${ }^{935.1 \%}$ | －10，453 | －10，837 | －384 | | ${ }^{93.8 \%}$ | －10，794 | －10，885 | 91 | |
 | ${ }^{956.13 \%}$ | $-10,617$ $-10,752$ | －11，${ }^{-1134}$ | －561 | | ${ }_{96.3 \%}^{95.1 \%}$ | －10，907 | －10，907 | 1 | |
 | 975\％ | －10，856 | －11，347 | 491 | | 97．5\％ | －10，923 | －10，923 | 0 | |
 | 988．8\％ | －${ }^{-11,568}$ | － | －25 | | | －10，924 | －10，924 -1098 | \bigcirc | |
 | | | | | | | | | | |

 Figure SW-36-b
 Total Banks Pumping Plant (SWP and CVP) and Jones Pumping Plant (CVP) , Monthly Diversion

 | October | | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | ${ }_{\text {Exceedance }}^{\text {Pere }}$ | ${ }_{\text {Wsin }}{ }_{\text {Proiect }}$ | WSIP 20 | ${ }^{\text {Absolute }}$ Oifference | Relative |
 | Soability | Montlil Diversion | Monthly Diversion | (ifterence | Difference (\%) |
 | | (CFFS) | (CFFS) | , | |
 | | | | | |
 | | | | | |
 | 2.5\% | 7,246 | ${ }_{8}^{8.667}$ | 1,421 | |
 | 3.7\% | 7,123 | 7.617 | 494 | 6.9\% |
 | 4.9\% | 6,888 | 7,522 | 634 | 9.2\% |
 | 6.2\% | 6.837 | 6,998 | 161 | 2.4\% |
 | 7.4\% | ${ }^{6.807}$ | 6,992 | 184 | 2.7\% |
 | 8.9\% | 6,550 | ${ }^{6.876}$ | ${ }^{326}$ | 5.0\% |
 | ${ }^{\text {9.9.9\% }}$ | 6,409 | 6,850 | 449 | 6.9\% |
 | 11.1\% | 6,401 | ${ }^{6,800}$ | 328 | 6.2\% |
 | ${ }^{12.3 \%}$ | ${ }_{6,3588}$ | 6,624 | 266 | 4.2\% |
 | 13.4\%\% | 6,327 | 6,596 | ${ }_{228}^{268}$ | ${ }^{4.2 \%}$ |
 | 14.5\% | ${ }^{6,284}$ | ${ }_{6}^{6,337}$ | ${ }^{247}$ | |
 | (1730\% | ${ }_{6}^{6,146}$ | ${ }_{6}^{6,352}$ | 1 | |
 | 18.5\% | 6,071 | 6,227 | 156 | 2.6\% |
 | 19.8\% | 5,973 | 6,211 | 238 | |
 | 21.0\% | 5.742 | 6,191 | 449 | 7.8\% |
 | 22.2\% | 5,721 | 6,128 | 407 | |
 | 23.5\% | 5.518 | 6,083 | 565 | |
 | 24.7\% | 5.448 | 5,956 | 508 | |
 | 25.9\% | 5,393 | 5.906 | 513 | |
 | 27.2\% | 5,363 | 5.871 | 509 | 9.5\% |
 | 28.4\% | 5,348 | 5.720 | 372 | 6.9\% |
 | 29.6\% | 5,317 | 5.615 | ${ }^{298}$ | 5.6\% |
 | 30.9\% | 5,052 | 5.564 | 512 | 10.1\% |
 | 32.1\% | 4,993 | 5,553 | 560 | ${ }^{1112 \%}$ |
 | 33.3\% | 4,928 | 5.545 | 618 | 12.5\% |
 | 34.6\% | 4,926 | 5,522 | 596 | ${ }^{12.19 \%}$ |
 | ${ }^{35.78 \%}$ | 4,913 | ${ }_{\text {c }}^{5}$ 5,398 | 485 | |
 | 37.0\% | 4,909 | ${ }_{\text {5 }}^{5} 5$ | 455 | ${ }^{9.3 \%}$ |
 | 38.3\% | 4,7789 | 5, 5.358 | 568
 503 | 11.5 |
 | 4.7.7\% | 4,776 | ¢, 5 5,280 | ${ }_{3}^{503}$ | |
 | ${ }_{4}{ }^{40.75 \%}$ | ${ }_{4}^{4.734}$ | ${ }_{4,922}^{5}$ | 328 187 | \% |
 | 43.2\% | 4,712 | 4,904 | 192 | 1\% |
 | 44.4\% | 4.614 | 4.896 | 282 | |
 | 45.7\% | 4,557 | 4,880 | | |
 | 46.9\% | 4,445 | 4,853 | 408 | 9.2\% |
 | 48.19\% | 4.407 | 4,788 | 381 | |
 | 49.4\% | 4,386 | 4,760 | 373 | |
 | 50.6\% | 4,369 | 4,696 | ${ }^{326}$ | 7.5\% |
 | 51.9\% | 4,329 | 4,596 | 267 | 6.2\% |
 | 53.19\% | ${ }_{4}^{4,327}$ | 4,540 | ${ }^{213}$ | 4.9\% |
 | 54.3\% | 4,274 | 4,522 | ${ }^{248}$ | 5.8\% |
 | 55.6\% | 4,240 | 4.514 | ${ }^{274}$ | 6.5\% |
 | 56.8\% | 4,202 | 4,484 | 282 | 6.7\% |
 | 58.0\% | 4,071 | 4,483 | 4 | 10.1\% |
 | 59.3\% | ${ }_{4}^{4,044}$ | ${ }_{4}^{4.402}$ | ${ }^{358}$ | \% |
 | ${ }^{60.5 \%}$ | 4,026 | ${ }_{4}^{4,397}$ | ${ }^{371}$ | 2\% |
 | ${ }^{61.750}$ | 4,007 | ${ }_{4}^{4,378}$ | 371 | \% |
 | | 4,006 | ${ }_{4}^{4.272}$ | ${ }_{2}^{266}$ | ${ }_{6}^{6.6 \%}$ |
 | ${ }^{64.24 \%}$ | $\xrightarrow{3,987}$ | ${ }_{4.159}^{4.170}$ | ${ }_{322}^{225}$ | 8.4\% |
 | ${ }^{66.7 \%}$ | 3,792 | 4.120 | ${ }^{328}$ | 8.7\% |
 | 67.9\% | 3,778 | 4,031 | 254 | 6.7\% |
 | | 3,758 | 3,958 | 200 | |
 | 71.6\% | 3,747 | - | 195 | |
 | 72.8\% | ${ }_{3,687}$ | ${ }_{3,750}$ | ${ }_{63}$ | 1.7\% |
 | 74.1\% | 3,593 | 3,736 | 143 | 4.0\% |
 | 75.3\% | ${ }^{3,571}$ | ${ }^{3,725}$ | 154 | 4.3\% |
 | 76.5\% | 3,558 | ${ }^{3,696}$ | ${ }^{138}$ | 3.9\% |
 | 77.8\% | ${ }^{3,538}$ | 3,667 | 128 | 3.6\% |
 | 79.0\% | 3,522 | 3,664 | 141 | 4.0\% |
 | 80.2\% | 3.504 3 3 | 3,439 | -65 | -1.9\% |
 | ${ }^{81.5 \%}$ | ${ }^{3,475}$ | ${ }^{3,345}$ | 130 | 7\% |
 | - | -3,461
 3.201 | | 140 89 | 4.0\% |
 | 84.0\% | 3,201 | 3,290 | 89 | 2.8\% |
 | | 3,184 | ${ }_{\substack{3,212 \\ 3 \\ 3}}$ | ${ }_{66}^{28}$ | 2.9\%\% |
 | 87,7\% | ${ }_{3,113}$ | -179 | ${ }_{66}$ | 2.1\% |
 | 88.9\% | 3,022 | 3,170 | 148 | .9\% |
 | 90.1\% | 2,841 | 3,016 | 175 | 6.1\% |
 | 91.4\% | ${ }_{2}^{2,572}$ | | 204 | 79\% |
 | 92380 | ${ }_{2}^{2,542}$ | | 183 | ${ }^{7.25 \%}$ |
 | 95.1\% | ${ }_{2,524}^{2,541}$ | ${ }_{2,685}^{2,106}$ | ${ }_{162}$ | 6.4\% |
 | 96.3\% | 2.372 | 2.502 | 130 | 5.5\% |
 | 97.5\% | 2,088 | 2,209 | ${ }^{121}$ | 5.8\% |
 | 100.0\% | ${ }_{\text {1,469 }}$ | ${ }_{1,516}^{2,067}$ | 131 47 | ${ }_{3.2 \%}^{6.8 \%}$ |
 | | | | | |

 ## Table SW－36－b

 | | | February | | |
 | :---: | :---: | :---: | :---: | :---: |
 | $\underset{\substack{\text { Percent } \\ \text { Exceadance }}}{ }$ | ${ }^{\text {WSIP } 2077 \text { without }}$ | WSIP 2070 With Project | ${ }^{\text {Absolute }}$ | Relative |
 | Probability | Monthly Diversion | Monthly Diversion | （cFs） | Difference（\％） |
 | ${ }^{\text {O．}}$（\％） | （crs） | | | |
 | 0．0\％ | ${ }^{13,100}$ | ${ }^{13,100}$ | 0 | 0．0\％ |
 | 2．5\％ | ${ }^{13,100}$ | ${ }^{13,100}$ | 0 | 0．0\％ |
 | －${ }_{\text {2．7．7\％}}$ | 13，100 | 13，100 | 0 | 0．0\％ |
 | 4．9\％ | 13,100
 13,100 | ${ }^{13,100}$ | 0 | 0．0\％ |
 | 6．2\％ | 13，100 | 13，100 | 0 | 0．0\％ |
 | 7．4\％ | 13，100 | 13，100 | 0 | 0．0\％ |
 | ${ }_{\text {9．9\％}}^{\text {8．9\％}}$ | 13，100 13,100 | 13,100 13.100 | 0 | 0．0\％ |
 | 11．1\％ | 13，100 | 13，100 | | 0．0\％ |
 | 12．3\％ | ${ }^{13,100}$ | 13，037 | ${ }^{63}$ | －0．5\％ |
 | 13．6\％ | 13，037 | 13，037 | 0 | |
 | 14．8\％ | 13，037 | 13，037 | 0 | |
 | 16．0\％ | 13，037 | 13，037 | 0 | 0．0\％ |
 | 17．3\％ | ${ }^{13,037}$ | ${ }^{12,628}$ | 409 | －3．1\％ |
 | 18．5\％ | 12，650 | ${ }^{12,163}$ | ${ }^{-486}$ | －3．8\％ |
 | 19．8\％ | 12，165 | 12，133 | －32 | －0．3\％ |
 | 21．0\％ | 12，080 | ${ }^{12,051}$ | －28 | －0．2\％ |
 | ${ }^{22.2 \%}$ | ${ }^{11,066}$ | 10，418 | －648 | －5．9 |
 | 23．5\％ | 10，418 | 10，101 | ${ }^{-317}$ | －3．0\％ |
 | 24．7\％ | 10，155 | 10，035 | －120 | －1．2\％ |
 | 25．9\％ | 10，127 | 9，823 | －304 | －3．0\％ |
 | 27．2\％ | 10，094 | 9，454 | －640 | |
 | 28．4\％ | ${ }^{9,9559}$ | 9，453 | －506 | －5．19 |
 | －${ }^{29.9 \% \%}$ | ${ }_{\text {g，}}^{9}$ 9，348 | ${ }_{9}^{9,329}$ | －524 | －－．1\％ |
 | 32．1\％ | 9,326 | ${ }_{9,129}$ | －196 | －2．1\％ |
 | 33．3\％ | 9,071 | 9，071 | 0 | |
 | 34．6\％ | 9,030 | 8.598 | 431 | |
 | 35．8\％ | ${ }^{8,561}$ | ${ }^{8,561}$ | 0 | 0．0\％ |
 | 37.0% 38.3% | 8.302 | ${ }^{8.302}$ | 0 | 0．0\％ |
 | 38．5\％ | －${ }_{\text {8，036 }}^{\text {7，973 }}$ | 7,932 7 | －63 | ${ }^{-0.5 \%}$ |
 | 40．7\％ | 7,930 | 7.899 | －31 | －0．4\％ |
 | 42．0\％ | 7.899 | 7，889 | －10 | －0．1\％ |
 | 43．2\％ | 7．889 | 7.677 | －212 | －2．7\％ |
 | 44．4\％ | 7，494 | 7,494 | 0 | 0．0\％ |
 | ${ }_{46.9 \%}^{45.7 \%}$ | 7,188 7170 7 | 7，188 | 0 | 0．0\％ |
 | 48．1\％ | 7，049 | 7.054 | 5 | 0．1\％ |
 | 49．4\％ | 6，800 | 6，800 | 0 | 0．0\％ |
 | 年 50.6% | 㐌，751 | 6，751 | 0 | 0．0\％ |
 | 年51．9\％ | 6，728 | 6，728 | 0 | 0．0\％ |
 | 54．3\％ | ${ }_{6}^{6,768}$ | | －．51 | －0．0．5\％ |
 | 55．6\％ | 㐌，4800 | 6，480 | － | 0．0\％ |
 | 56.8% 580% | ${ }^{6,235}$ | ${ }^{6,303}$ | ${ }^{68}$ | 1．1\％ |
 | 59．3\％ | ${ }_{5,816}$ | ${ }_{6,235}^{6,232}$ | ${ }_{419}$ | 7．2\％ |
 | ${ }^{60.5 \%}$ | 5.739 | 5.818 | 79 | |
 | 61．7\％ | 5，693 | 5，816 | 123 | |
 | 63．0\％ 64.2% | 5，251 | $\stackrel{5.579}{ }$ | 328 | 6．2\％ |
 | ${ }^{6.54 .4 \%}$ | ${ }_{5}^{5,091}$ | 4，998 | ${ }_{-93}$ | －1．8\％ |
 | 66．7\％ | 4，998 | 4.975 | －23 | －0．5\％ |
 | | 4，964 | 4.957 | －7 | －0．1\％ |
 | 69．1\％ | 4，957 | 4.919 | －38 | －0．8\％ |
 | 70．4\％ | 4，912 | 4，342 | －570 | －11．6\％ |
 | 72．8\％ | 4，522 | ${ }_{4}^{4,164}$ | －358 | －7．9\％ |
 | 74．19\％ | 4，342 | 3，875 | －467 | －10．8\％ |
 | 75．3\％ | 4，221 | ${ }^{3,826}$ | －395 | －9．4\％ |
 | 76．5\％ | 4,164
 3826 | （3，752 | －412 | －9．9\％ |
 | 77．8\％ | 3，392 | －3.725
 3,392 | －102 | －2．7\％ |
 | 79．0\％ | 3，175 | 3，241 | ${ }_{66}$ | 0．0\％ |
 | ${ }^{81.5 \%}$ | 3，121 | ${ }_{\substack{3,125}}^{\substack{3,245}}$ | 3 | 0．1\％ |
 | 82.7% 840% | 2，970 | 2,960 2942 | －11 | －0．4\％ |
 | 84．2\％ | ${ }_{2,898}^{2,942}$ | 2，898 | 0 | 0．0\％ |
 | 86．4\％ | ${ }_{2,898}^{2,88}$ | ${ }_{2,898}$ | 0 | 0．0\％ |
 | 877\％ | 2，860 | 2，860 | 0 | 0．0\％ |
 | | ${ }_{2}^{2,817}$ | ${ }^{2,817}$ | 0 | 0\％ |
 | ${ }^{90.14 \%}$ | ${ }_{2}^{2,781}$ | ${ }^{2}, 781$ | 0 | 0．0\％ |
 | 914．4\％ | 2，772 | 2，767 | －5 | 0．2\％ |
 | ${ }_{93.8 \%}^{92.6 \%}$ | 2,698
 2,437 | 2，698 | 0 | 0．0\％ |
 | 95．1\％ | 2，405 | ${ }_{2,405}$ | 0 | 0．0\％ |
 | 96．3\％ | 2，248 | 2，313 | 65 | 2．9\％ |
 | 97．5\％ | 1,738 1,100 1 | $\begin{array}{r}2,248 \\ 1100 \\ \hline\end{array}$ | 510 | 29．4\％ |
 | 100．0\％ | ${ }_{918}$ | 607 | －311 | －33．9\％ |

 | |
 | :--- | :--- | :--- | :--- | :--- |

 Figure SW-37-b
 Jones Pumping Plant (CVP), Monthly Diversion

 | | | Octo | | |
 | :---: | :---: | :---: | :---: | :---: |
 | $\begin{gathered} \text { Percent } \\ \substack{\text { Exceenace } \\ \text { Probabality } \\ \text { dold }} \end{gathered}$ | | WSIP 2070 With Project | Absolute | |
 | | | Monthly Diversion | Difference | Ifference (\%) |
 | 0.0\% | 4.600 | 4.600 | 0 | 0.0\% |
 | 1.2\% | 4.600 | 4.600 | | |
 | 2.5\% | 4,600 | 4,600 | 0 | |
 | 3.7\% | 4,600 | 4,338 | 262 | -5.7\% |
 | 4.9\% | 4,600 | 3.851 | 749 | -16.3\% |
 | 6.2\% | 4,523 | 3,684 | 839 | -18.6\% |
 | 7.4\% | 4,265 | ${ }^{3.643}$ | 623 | |
 | 8.6\% | 4,260 | 3,440 | 820 | -19.2\% |
 | 9.9\% | 4,259 | 3,430 | 830 | -19.5\% |
 | 11.1\% | 3,758 | 3,259 | -499 | -13.3\% |
 | ${ }^{12.3 \%}$ | 3,696 | ${ }^{3,221}$ | -476 | -12.9\% |
 | 13.6\% | 3,555 | 3,157 | -398 | |
 | 14.8\%\% | 3,459 | 3,156 | ${ }^{303}$ | ${ }^{-8.8 \%}$ |
 | 16.0\% | 3,447 | ${ }^{3,155}$ | -232 | |
 | 17.3\% | 3,430 | 3,107 | ${ }^{323}$ | -9.4\% |
 | 19.8\% | ${ }_{3,342}$ | ${ }_{2} .958$ | -384 | -11.5\% |
 | 21.0\% | ${ }^{3,313}$ | 2,943 | 371 | -11.2\% |
 | ${ }^{22.2 \%}$ | 3,220 | ${ }^{2} 2916$ | -303 | -9.4\% |
 | 22.5\% | 3,204 | ${ }_{2}^{2,847}$ | -277 | |
 | 25.9\% | 2,936 | ${ }_{2,844}$ | -92 | -3.1\% |
 | 27.2\% | 2,935 | ${ }^{2,767}$ | 168 | -5.7 |
 | 28.4\% | 2,884 | 2,752 | 132 | -4.6\% |
 | 29.6\% | ${ }^{2,848}$ | 2,750 | -98 | -3.4\% |
 | 30.9\% | 2,834 | 2,714 | 120 | -4.2\% |
 | 32.1\% | 2,818 | 2,704 | -114 | -4.0\% |
 | 33.3\% | ${ }^{2,797}$ | ${ }^{2} 2696$ | -101 | -3.6\% |
 | 34.6\% | ${ }^{2,768}$ | ${ }^{2,641}$ | 126 | -4.6\% |
 | 35.8\% | ${ }^{2,734}$ | 2,629 | 105 | -3.8\% |
 | 37.0\% | 2,720 | 2,599 | -121 | -4.4\% |
 | 年38.3\% | 2,708 2 2688 | - 2.545 | -163 | -6.0\% |
 | 39.5\% | - | 2,534 | -154 | -5.7\% |
 | 40.7\% | ${ }_{2}^{2,673}$ | ${ }_{2}^{2,487}$ | -185 | -6.9 |
 | ${ }^{42.0 \%}$ | ${ }_{2,633}^{2,672}$ | 2,436 2406 | ${ }_{-2}^{236}$ | -8.8\% |
 | 44.4\%\% | 2,638
 2.628 | - | ${ }_{-230}$ | -8.8\% |
 | 45.7\% | 2,598 | | | |
 | 46.9\% | 2,545 | 2,335 | 210 | -.3.3 |
 | 48.1\% | 2,541 | 2,282 | -259 | -10.2\% |
 | | 2.535 | 2,250 | -285 | 1.2\% |
 | 50.6\% | 2.533
 2.514
 | 2,245 2,208 208 | -288 | -11.4.9 |
 | 53.1\% | ${ }_{2,504}^{2,514}$ | ${ }_{2,207}^{2,207}$ | ${ }_{-297}$ | -11.9\% |
 | 54.3\% | 2.501 | 2,176 | -325 | -13.0\% |
 | 55.6\% | 2,480 | 2.146 | -334 | -13.5\% |
 | 56.8% 580% | ${ }_{2}^{2,445}$ | 2,135 2,134 | -309 | -12.7\% |
 | 年58.0\% | 2,382 | 2,134 | ${ }^{-248}$ | -10.4\% |
 | | 2,329 | ${ }^{2,116}$ | -213 | -9.1\% |
 | 61.7% | ${ }_{2,314}^{2,220}$ | ${ }_{1}^{2,979}$ | -336 | -14.5\% |
 | 63.0\% | 2,251 | 1.912 | -339 | -15.0\% |
 | ${ }^{64.2 \%}$ | ${ }^{2,250}$ | ${ }^{1,8896}$ | -354 | -15.8\% |
 | 65.4% 66.7% | 2,241
 2.224 | 1.878 1840 1.8 | - ${ }_{\text {- }}^{\text {-383 }}$ | - $\begin{aligned} & -16.2 \% \\ & -173 \%\end{aligned}$ |
 | - 6 6.7.9\% | 2,24
 ${ }_{2}^{2,211}$
 2 | ${ }_{\text {l }}^{1.840} 1$ | ${ }_{-420}$ | - $7.7 .3 \%$ |
 | 69.1\% | ${ }_{2,203}^{2,210}$ | ${ }_{1}^{1,783}$ | 420 | -19.1\% |
 | 70.4\% | 2,129 | 1,783 | -346 | -16.3\% |
 | 71.2.8\% | 2,098 2,076 | +1,7671 | ${ }_{-315}^{-331}$ | |
 | 74.1\% | 2,051 | ${ }_{1,691}$ | -360 | -17.6\% |
 | 75.3\% | ${ }^{1,788}$ | ${ }^{1,595}$ | 193 | -10.8\% |
 | 76.5\% | 1,765 | 1,526 | 239 | 13.5\% |
 | 77.8\% | 1,760 | 1,520 | 240 | -13.7\% |
 | 79.0\% | 1,731 | ${ }^{1,462}$ | 269 | 15.6\% |
 | 80.2\% | 1,567 | 1,408 | 159 | 10.2\% |
 | 81.5% 827% | 1,432 | 1,387 | 45 | -3.1\% |
 | ${ }^{82.7 \%}$ | +1,169 | 1,264 | 95 | 8.1\% |
 | 84.0% 852% | ${ }^{1,1,152}$ | ${ }^{1,033}$ | ${ }^{119}$ | -10.3\% |
 | 85.2% 86.4% | 992 | 998 | 7 | 0.7\% |
 | - 86 | 818 | 993 | 175 | ${ }_{\text {21.4\% }}^{\text {210 }}$ |
 | 88.9\% | ${ }_{800}$ | 800 | \bigcirc | 0.0\% |
 | 90.1\% | 800 | 800 | 0 | 0.0\% |
 | ${ }^{91.46}$ | 800 | 800 | 0 | 0.0\% |
 | 93.8\% | ${ }_{800}^{800}$ | ${ }_{800} 80$ | 0 | 0.0\% |
 | 95.1\% | 800 | 800 | 0 | 0.0\% |
 | 96.3\% | 800 | 800 | 0 | 0.0\% |
 | 97.5\% ${ }_{98}^{97.8 \%}$ | 800 | 800 | 0 | 0.0\% |
 | 988.8\% | 800 800 | 800 | \bigcirc | ${ }_{\text {a }}^{0.0 \%}$ |

 | |
 | :--- | :--- | :--- | :--- | :--- |

 | $\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Excedance } \\ \text { Probability } \end{array} \end{gathered}$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2 270 Wintrout Proiet | WSIP 207 W With Project | $\begin{gathered} \text { Absolute } \\ \text { Oifterence } \end{gathered}$ | Relative |
 | | Montlil Diversion | Montly Diversion | Difference (CFS) | Difference (\%) |
 | (\%) | (CFFS) | (CFF) | | |
 | 1.2\% | ${ }_{4}^{4,544}$ | ${ }_{4}^{4,600}$ | ${ }_{56}$ | ${ }_{12 \%}$ |
 | 2.5\% | 4,306 | 4.600 | 294 | |
 | 3.7\% | 4224 | 4108 | 115 | |
 | 4.9\% | 3,867 | 3,987 | 120 | 31\% |
 | 6.2\% | 3,621 | 3,734 | 113 | 3.1\% |
 | 7.4\% | 3,491 | 3,467 | ${ }^{24}$ | 0.7\% |
 | 8.6\% | 3,394 | 3,424 | 31 | 0.9\% |
 | 9.9\% | ${ }^{3,322}$ | ${ }^{3,334}$ | 72 | 2.2\% |
 | 19.1\%\% | 3,245 | ${ }^{3,314}$ | 69 | |
 | 13.6\% | 3,925 2,925 | 3,190 3,076 | 151 | 52\% |
 | 14.8\% | ${ }_{2}^{2,892}$ | ${ }_{2,910}$ | 18 | ${ }_{0.6 \%}^{5.2 \%}$ |
 | 16.0\% | ${ }^{2,833}$ | ${ }^{2,774}$ | 59 | -2.1 |
 | 17.3%
 185% | ${ }^{2,722}$ | 2,722 | 0 | 0.0\% |
 | - ${ }^{18.5 \%}$ 198\% | 2,675 2,639 | 2,639 2.613 | -36 -25 | - -1.3% |
 | 21.0\% | 2,613 | ${ }_{2,522}$ | -92 | -3.5\% |
 | 22.2\% | 2.471 | 2.473 | 3 | 0.1\% |
 | 23.5\% | 2,348 | 2.471 | 123 | 5.2\% |
 | 24.7\% | ${ }^{2,318}$ | ${ }^{2,423}$ | 104 | 4.5\% |
 | 25.9\% | 2,313 | 2,291 | -22 | -1.0\% |
 | 27.2\% | 2,154 | ${ }^{2,266}$ | 111 | 5.2\% |
 | 28.4\% | 2,139 | 2,196 | 58 | 2.7\% |
 | 29.6\% | 2,100 | ${ }_{2}^{2,148}$ | 47 | ${ }_{2}^{2.3 \%}$ |
 | 30.9\% | ${ }_{2}^{2,080}$ | ${ }_{2}^{2,123}$ | ${ }^{43}$ | 2.1\% |
 | 32.1\% | 2,072 | 2,109 | 29 | ${ }^{1.4 \%}$ |
 | | 2,044 2.025 | 2,095
 1006 | S0 | 2.5\% |
 | 35.8\% | ${ }_{1}^{2,906}$ | ${ }_{1}^{1,894}$ | ${ }_{-12}$ | - |
 | 37.0\% | 1,873 | ${ }^{1,8858}$ | -16 | -0.8\% |
 | 39.5\% | ${ }_{1}^{1,810}$ | ${ }_{\text {l }}^{1,799}$ | -11 | -0.6\% |
 | 40.7\% | 1,799 | 1,792 | | |
 | 42.0\% | 1,792 | 1,741 | 51 | |
 | 44.4% | 1,721 | 1,723
 1,721 | 18 | |
 | 45.7\% | 1,701 | 1,701 | 0 | 0.0\% |
 | 46.9\% | 1,697 | 1,700 | 3 | 0.2\% |
 | 48.1\% | 1,693 | 1.697 | 4 | 0.2\% |
 | 49.4\% | ${ }^{1,692}$ | ${ }^{1,692}$ | 0 | 0.0\% |
 | 50.6\% | ${ }^{1,632}$ | ${ }^{1,632}$ | 0 | 0.0\% |
 | ${ }^{51.9 \%}$ | 1,617 | ${ }^{1,631}$ | ${ }^{14}$ | 0.9\% |
 | 54.3\% | ${ }_{\text {1,549 }}^{1.57}$ | ${ }_{1}^{1,624}$ | 54 75 | 3.8.8\% |
 | 55.6\% | ${ }^{1,520}$ | 1,617 | 97 | 6.4\% |
 | 56.8% 58.0% | 1.517 1.501 1 | (1,613 $\begin{aligned} & 1,610 \\ & 1.610\end{aligned}$ | 96 110 | ${ }_{73 \%}^{6.3 \%}$ |
 | | 1.501 1.495 1 | 1.610 1 1 | ${ }_{6}^{110}$ | 7.3\% |
 | 59.3\% | 1,495 | $\begin{array}{r}1,559 \\ \hline 1549\end{array}$ | 64 55 5 | 4.3\% |
 | 61.7\% | ${ }_{1}^{1,452}$ | ${ }_{1,538}^{1,548}$ | ${ }_{86}^{55}$ | 6.0\% |
 | 63.0\%\% | 1,284 1.246 1 | 1.519 | ${ }_{234}^{235}$ | 18.3\% |
 | - ${ }_{\text {64.2\% }}^{6.4 \%}$ | +1,246 $\begin{aligned} & 1,186 \\ & 1,182\end{aligned}$ | 1,4899 ${ }_{1,414}^{1,48}$ | ${ }_{229}^{244}$ | +19.6\% |
 | 66.7\% | 1,150 | 1327 | 177 | |
 | 67.9\% | 1,138 | 1,314 | 176 | |
 | 69.1\% | 1,066 | 1,248 | 181 | |
 | 70.4\% | 800 | +1,212 | 412 | 51.5\% |
 | 72.8\% | ${ }_{800}$ | ${ }_{1,047}^{1,21}$ | 247 | 30.9\% |
 | 74.1\% | 800 | 800 | 0 | 0.0\% |
 | 75.3\% | 880 | 800 | 0 | 0.0\% |
 | 76.5% 778% | 800 | ${ }^{800}$ | 0 | 0.0\% |
 | 77.8\% | 702 | 702 | 0 | 0.0\% |
 | 79.0\% | 611 | ${ }_{6}^{612}$ | 0 | 0.0\% |
 | 81.5\% | 650 500 | 650 500 | 0 | 0.0\% |
 | 82.7\% | ${ }^{481}$ | 496 | | 3.1\% |
 | - ${ }^{84.0 \%}$ | ${ }_{464}^{466}$ | ${ }_{466}^{481}$ | 15 1 | 笛3.3\%\% |
 | ${ }^{85.4 .4 \%}$ | 460 | ${ }_{464}^{466}$ | 4 | - ${ }_{\text {0.9\% }}$ |
 | 87.7\% | 459 | 460 | 1 | 0.2\% |
 | 88.9\% 90.1% | 453 | 449 | $\stackrel{-3}{ }$ | -0.8\% |
 | 91.4\% | ${ }_{398}$ | 384 | ${ }_{-14}$ | ${ }_{\text {- }}^{\text {- }}$-.9\%\% |
 | 92.6\% | 384
 338 | ${ }^{338}$ | 46 | -11.9\% |
 | ${ }^{955.1 \%}$ | ${ }_{333}^{338}$ | ${ }_{261}^{333}$ | -5 | -1.4\% |
 | 96.3\% | 303 | 229 | ${ }_{-75}$ | -24.6\% |
 | 978.5\% | 261 200 | ${ }^{226}$ | ${ }^{-35}$ | -13.3\% |
 | - ${ }^{\text {930.0\% }}$ | 200 52 | ${ }_{9}^{200}$ | 0 | 0.0\% |

 Figure SW-38-b
 Banks Pumping Plant (SWP and CVP), Monthly Diversion

 | | WSIP 2070 WithoutProiet | October | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | Wsil 2070 With Project | Absolute | Relative |
 | | Monthly Piversion | Monthly Diversion | ((FFs) | Difference (\%) |
 | 0.0\% | (cFs) | 6 652 | | |
 | ${ }^{0.0 \% \%}$ | | ${ }^{6,6052}$ | ${ }^{26}$ | 0.4\% |
 | 2.5\% | ${ }_{5.271}^{5,997}$ | 6.009 5.731 | 460 | ${ }^{0.7 \%}$ |
 | 3.7\% | ${ }_{4.452}$ | | | 174\% |
 | 4.9\% | ${ }_{4,164}^{4.452}$ | 5,086 | ${ }_{922}$ | ${ }^{22.1 \%}$ |
 | 6.2\% | 4.122 | 4,687 | 565 | 13.7\% |
 | 7.4\% | 3,625 | 4.515 | 890 | |
 | 8.6\% | 3,454 | 4,448 | 995 | |
 | 9.9\% | 3,452 | 4,284 | 832 | |
 | 11.1\% | 3,438 | 4,158 | 720 | 20.9\% |
 | 12.3\% | 3,365 | 3,860 | 495 | 14.7\% |
 | 13.6\% | 3,361 | ${ }^{3,766}$ | 405 | 12.0 |
 | 14.8\% | 3,319 | 3,736 | 417 | 12.6\% |
 | 16.0\% | 3,244 | 3,707 | 463 | 14.3\% |
 | 17.3\% | 3,207 | 3,597 | 390 | ${ }^{12.19 \%}$ |
 | 18.5\% | 3,108 | 3,530 | ${ }^{422}$ | ${ }^{13.6}$ |
 | 19.8\% | 2,992 | 3,459 | 468 | 15.6\% |
 | 21.0\% | ${ }_{2}^{2,958}$ | 3,454 | 496 | 16.8\% |
 | ${ }_{2}^{22.2 .5 \%}$ | 2,890 2849 | 3,451 3430 | 561 | 19.4\% |
 | ${ }^{234.7 \%}$ | 2,849
 2807
 207 | - | 581 | ${ }_{20.3 \%}^{20.4 \%}$ |
 | 25.9\% | ${ }_{2,793}^{2,780}$ | ${ }_{3,315}^{\text {5,39 }}$ | 521 | 18.7\% |
 | 27.2\% | 2,713 | 3,309 | 596 | |
 | 28.4\% | ${ }^{2,676}$ | 3,269 | 593 | |
 | 29.0\% | ${ }_{2,673}$ | 3,231 | ${ }_{5} 58$ | 20.9\% |
 | 32.1\% | ${ }_{2,661}^{2,61}$ | ${ }_{3,158}$ | 497 | 18.7\% |
 | 33.3\% | 2.631 | 3,131 | 500 | 19.0\% |
 | 34.6\% | 2.513 | 3,073 | 560 | |
 | 35.8\% | 2,499 | 3,069 | 570 | 22.8\% |
 | 37.0\% | 2,460 | ${ }^{3}, 035$ | 575 | 23.4\% |
 | 38.3\% | ${ }_{2,383}$ | 2,925 | 542 | 22.8\% |
 | 39.5\% | ${ }_{2,313}$ | ${ }^{2,867}$ | ${ }^{553}$ | ${ }^{23.9 \%}$ |
 | 40.7\% | 2,300 | 2,864 | 564 | 24.5\% |
 | 42.0\% | 2,291 | 2,860 | 559 | 24.8\% |
 | ${ }^{43.2 \%}$ | 2,288
 2023
 203 | ${ }_{2}^{2,857}$ | 569 | 24.9\% |
 | ${ }^{44.4 .9}$ | 2,203 | 2,805 | 602 | 27.3\% |
 | ${ }^{45.79 \%}$ | 2,189
 2,141
 1280 | 2.801 2755 | 613 | 28.0\% |
 | 46.9\% | ${ }^{2,141}$ | 2,755 | 614 | ${ }^{28.7 \%}$ |
 | | ${ }_{2}^{2,126}$ | ${ }_{2}^{2,701}$ | 545 | 27.0\% |
 | 50.6\% | ${ }_{2,024}$ | ${ }_{2,654}^{2,609}$ | 630 | \%10 |
 | 51.9\% | ${ }^{2,023}$ | 2.653 | 630 | 31.1\% |
 | 53.1\% | ${ }^{1,922}$ | 2.651 | 729 | 37.9\% |
 | 54.3\% | ${ }^{1,838}$ | 2.639 | 801 | 6\% |
 | 55.6\% | ${ }^{1,836}$ | 2.441 | 605 | 32.9\% |
 | 56.8\% | ${ }^{1,8,866}$ | 2,432 | 597 | 32.5\% |
 | 58.0\% | 1,801 | 2,389 | 587 | 32.6\% |
 | 59.3\% | 1,772 | ${ }_{2}^{2,276}$ | 504 | 28.4\% |
 | 60.5\% | 1,756 | 2,232 | 476 | 27.1\% |
 | ${ }^{61.7 \%}$ | 1,744 | 2,224 | 480 | 27.6\% |
 | - 63.0% | ${ }^{1.696}$ | 2,194 2 2 | 498 | 29.4\% |
 | 64.4\% | ${ }_{1}^{1,663}$ | 2,150 2,062 | ${ }_{427}^{474}$ | ${ }^{26.1 \%}$ |
 | 66.7\% | 1,593 | 2,033 | 440 | 27.6\% |
 | 67.9\% | 1,592 | 2,022 | 430 | 27.0\% |
 | 69.1\% | 1,570
 1.523 | 2,014 | ${ }_{4}^{444}$ | ${ }^{28.3 \%}$ |
 | 70.4\% | ${ }^{1,553}$ | 1,996 | 473 | 31.0\% |
 | 71.2.8\% | 1.501
 1.358 | 1,923 1910 1 1090 | $\stackrel{422}{552}$ | 1\% |
 | 74.1\% | 1,346 | ${ }_{1}^{1,755}$ | 409 | 30.4\% |
 | 75.3\% | 1,271 | ${ }^{1.638}$ | 367 | 8\% |
 | 7.5\% | 1,244 | 1,628 | 384 | |
 | 77.8\% | 1,212 | 1,617 | 405 | 4\% |
 | 79.0\% 80.2% | +1,135 | 1,602 | 467 | ${ }^{41.2 \%}$ |
 | 81.5\% | ${ }_{1}^{1.058}$ | ${ }_{1}^{1.499}$ | 433 | 40.9\% |
 | 82.7\% | 940 | 1.411 | 471 | 50.1\% |
 | 84.0\% | 792 | 1,379 | 587 | 74.2\% |
 | 85.2\% | ${ }_{654} 6$ | 1,377 | 723 | 110.6\% |
 | ${ }^{86.4 \%}$ | ${ }_{640} 6$ | 1,342 | 702 | 109.8\% |
 | 87.7% 889% | 630 | ${ }_{1,326}$ | 696 | 110.4\% |
 | 88.9% 90.1% | 603 | 1,210 | 608 | 100.8\% |
 | ${ }^{9014 \%}$ | 339 | ${ }_{1}^{1.017}$ | 666 | 190.7\% |
 | ${ }^{91.46}$ | ${ }^{326}$ | 947 | 621 | 190.2\% |
 | ${ }_{93,8 \%}^{92.6 \%}$ | 300 | 902 | 602 | 200.6\% |
 | ${ }^{93.85 \%}$ | 300 | 719 | 419 | 139.6\% |
 | ${ }_{965 \%}^{951 / 1 \%}$ | 300 300 | 716 300 | 16 | 38.6\% |
 | ${ }_{97}^{96.5 \%}$ | 300 300 | 300 300 | 0 | 0.0\% |
 | 98.8\% | 300 | 300 | 0 | 0.0\% |
 | 100.0\% | 300 | 300 | 0 | 0.0\% |

 | | Februay | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | $\begin{aligned} & \text { WSIP } 2070 \text { Without } \\ & \text { Proiect } \end{aligned}$ | WSII 2070 With Project | ${ }_{\text {a }}^{\substack{\text { Absolute } \\ \text { Difference }}}$ | |
 | Soability | Montlil Diversion | Monthly Diversion | Difierence (cFs) ces | Difference (\%) |
 | \%) | (CFFS) | (CFS) | | |
 | ${ }^{\text {0.0\% }}$ | | | 0 | 0.0\% |
 | 1.2\% | 8,500 | 8.500 | | |
 | | 8,500 | 8,50 | 0 | 0.0\% |
 | | ${ }_{8,500}$ | 8.500 | | 0.0\% |
 | 6.2\% | 8.500 | ${ }^{8.500}$ | 0 | 0.0\% |
 | 7.4\% | 8,500 | 8.500 | 0 | 0.0\% |
 | 8.6\% | 8.500 | 8.500 | 0 | 0.0\% |
 | 9.9\%\% | 8,500 | ${ }^{8.500}$ | 0 | 0.0\% |
 | 11.1\% | 8,500 | 8,500 | 0 | \% |
 | ${ }^{12.36 \%}$ | 8,500 8.500 | 8.500 | 0 | 0.0\% |
 | 14.3\% | ${ }_{8,437}^{8.000}$ | ${ }_{8,437}^{8.500}$ | 0 | 0.0\% |
 | 16.0\% | 8,437 | 8,437 | 0 | 0.0\% |
 | 17.3% 18.5% | 8,437
 8,437 | 8,437 8,437 | \bigcirc | -0.0\% |
 | 19.8\% | $\underset{\substack{8.437 \\ 8.437}}{ }$ | ${ }_{\text {8, }}^{8.437}$ | 0 | 0.0\% |
 | 21.0\% | 8.050 | 8.028 | ${ }^{21}$ | -0.3\% |
 | ${ }^{22.2 .2 \%}$ | 7.565 | 7,563 | -2 | 0.0\% |
 | 24.7\% | 7,133 | 7,451 | 319 | 4.5\% |
 | 25.9\% | 6,703 | 6,751 | 48 | 0.7\% |
 | 27.2\% | 6,466 | 6,393 | ${ }^{74}$ | -1.1\% |
 | 28.4\% | ${ }_{6}^{6,231}$ | 6,226 | -5 | -0.1\% |
 | 29.6\% | 6,221 | ${ }_{6}^{6,221}$ | 0 | 0.0\% |
 | 30.9\% | 6,147 | 6,121 | ${ }^{25}$ | -0.4\% |
 | 32.1\% | ${ }^{5.818}$ | ${ }^{6.005}$ | 186 | 3.2\% |
 | 33.3\% | 5.527 | ${ }^{5.818}$ | 291 | 5.3\% |
 | 34.6\% | 4,960 | 5,462 | 502 | 10.1\% |
 | 357.0\% | 4,7388 | 4,729 | ${ }^{-8}$ | ${ }^{-0.2 \%}$ |
 | 38.3\% | ${ }_{4,515}^{4.515}$ | ${ }_{4,536}$ | ${ }_{21}^{29}$ | 0.5\% |
 | 39.5\% | 4,151 | 4,151 | 0 | 0.0\% |
 | 40.7\% | 4,104 3,986 | ${ }_{\text {4,111 }}^{4,987}$ | ${ }_{0}$ | ${ }_{\text {en }}^{0.2 \% \%}$ |
 | ${ }^{4.2 .2 \%}$ | 3,986 | | | |
 | 44.4\% | 3,950 | ${ }_{\text {3,950 }}$ | 0 | 0.0\% |
 | 45.7\% | 3,944 | 3,944 | 0 | 0.0\% |
 | 46.9\% | 3,747 | 3,747 | 0 | 0.0\% |
 | 48.1\% | ${ }^{3.594}$ | 3,702 | 108 | 3.0\% |
 | | ${ }^{3.585}$ | ${ }^{3,594}$ | 9 | 号.3\%\% |
 | 551.9\% | ${ }_{\substack{3,300}}^{3,360}$ | ${ }_{3,400}^{3.587}$ | 187 24 | 0.7\% |
 | 53.1\% | 3,364 | 3,376 | 12 | 0.3\% |
 | 54.3\% | 3,354 | ${ }^{3,364}$ | 10 | 0.3\% |
 | 55.6\% | ${ }_{3,328}$ | 3,313 | -15 | -0.5\% |
 | 56.8% 58.0% | 3,242 | 3,189 | -53 | ${ }^{-1.6 \%}$ |
 | 年58.0\%\% | ${ }^{3,240}$ | ${ }^{3.1118}$ | -122 | -3.8\% |
 | -59.3\% | ${ }^{3,238}$ | 3,117 | ${ }^{121}$ | -3.7\% |
 | - $\begin{aligned} & \text { 60.5\% } \\ & 61.7 \%\end{aligned}$ | 3,118 | ${ }^{3} \mathbf{3}, 075$ | ${ }^{-43}$ | -1.4\% |
 | - 61.79% | 2,909 | 2,909 | 0 | 0.0\% |
 | 63.0\% 64.2% | 2,908 | 2,908 | \bigcirc | 0.0\% |
 | 64.4\% 6.4% | 2,846
 2,578 | 2,648 | -729 | --7.0\% |
 | ${ }^{66.7 \%}$ | 2,568 | ${ }_{2,499}$ | -69 | ${ }_{-2.7 \%}$ |
 | 67.9\% | 2,499 2 2 | 2.479 2 2 | -20 | |
 | 69.1\% | | | | -0.8\% |
 | 71.6\% | ${ }_{2,375}^{2,456}$ | ${ }_{2,171}$ | -204 | -8.6\% |
 | 72.8\% | ${ }_{2}^{2,273}$ | 2,082 | -192 | -8.4\% |
 | 74.1\% | ${ }^{2,226}$ | 1,913 | 313 | 14.0\% |
 | 75.3\% | 2,171 | ${ }^{1,876}$ | 295 | -13.6\% |
 | 76.5\% | 2,082 | ${ }^{1,862}$ | 220 | 10.5\% |
 | 778.8\% | ${ }^{1,983}$ | 1,775 | 208 | -10.5\% |
 | 79.0\% | 1,913 | 1,696 | ${ }^{217}$ | 11.4 |
 | - 80.2% | ${ }^{1,696}$ | 1,649 | 47 | -2.7\% |
 | 81.5\% | 1,561 | ${ }^{1.562}$ | 2 | 0.1\% |
 | 82.7% 84.0% | ${ }^{1,4855}$ | 1,4880 | ${ }^{-5}$ | -0.4\% |
 | -84.0\% | (1,471 | ${ }_{1}^{1,471}$ | 0 | 0.0\% |
 | - ${ }_{\text {85.4\% }}$ | (1,449 | +1,449 | 0 | 0.0\% |
 | ${ }^{864.4 \%}$ | 1,449 | 1,449 | 0 | - |
 | 88.9\% | ${ }_{1}^{1}$ | ${ }_{1}^{1,408}$ | 0 | 0.0\% |
 | 90.19\% | 1,390
 1,386 | 1,390 | 0 | 0.0\% |
 | ${ }^{91.4 \%}$ | 1,386 | ${ }^{1,384}$ | 2 | -0.2\% |
 | ${ }_{\text {93.8\% }}^{92.0 \%}$ | +1,219 | - ${ }_{\text {1,219 }}^{1.349}$ | 0 | 0.0\% |
 | 95.1\% | 1,202 | 1,202 | 0 | 0.0\% |
 | ${ }^{96,3 \%}$ | ${ }_{1}^{1,124}$ | 1,156 | 32 | 2.9\% |
 | 98.8\% | 300 | ${ }^{1} 1.124$ | 24 | 27.\% |
 | 100.0\% | 300 | 7 | -293 | -97.5\% |

 Table SW-38-b

 | $\underset{\substack{\text { Pexceent } \\ \text { Probababe } \\ \text { Prity }}}{ }$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2070 W.thout Proiect | Wsil 2070 With Project | Absolute | Relative |
 | | Monthly Piversion | Monthly Diversion | ((FFs) | Difference (\%) |
 | 0.0\% | (CFS) | 5995 | | |
 | ${ }^{0.0 \% \%}$ | ${ }_{5}^{5.997}$ | 5.943 | -48 | |
 | ${ }^{1.25 \%}$ | ${ }_{4}^{5.619}$ | ${ }_{5.633}^{5.648}$ | ${ }^{-281}$ | ${ }^{-0.0 \%}$ |
 | 3.7\% | 4,597 | 4,952 | 355 | 7.7\% |
 | 4.9\% | 4.544 | 4,944 | 400 | |
 | 6.2\% | 4,489 | 4.516 | ${ }^{27}$ | 0.6\% |
 | 7.4\% | 4,339 | 4,390 | 52 | |
 | 8.6\% | 4,306 | 4,375 | 68 | 1.6\% |
 | 9.9\% | 4,050 | 3,987 | ${ }^{63}$ | -1.6\% |
 | 11.1\% | 3,996 | 3,963 | ${ }^{32}$ | -0.8\% |
 | 12.3\% | 3,953 | 3,913 | -40 | -1.0\% |
 | 13.6\% | 3,862 | 3,729 | 133 | -3.4\% |
 | 14.8\% | 3,748 | 3,647 | 101 | -2.7\% |
 | 16.0\% | 3,732 | 3,467 | -265 | 1\% |
 | 17.3\% | 3,731 | 3,394 | ${ }^{-337}$ | -9.0\% |
 | 18.5\% | 3,621 | ${ }_{3,314}$ | -307 | \% |
 | 19.8\% | 3,491 | 3,209 | -281 | 1\% |
 | 21.0\% | 3,394 | ${ }^{3.190}$ | -203 | ${ }^{-6.0 \%}$ |
 | ${ }^{22.2 .2 \%}$ | ${ }^{3,370}$ | ${ }^{3,185}$ | -186 | 50\% |
 | 23.5\% | 3,295 | ${ }_{3}^{3143}$ | 促 | -4.9\% |
 | 25.9\% | -3,240
 3,238 | -3,113
 3,076 | -127 | -3.9\% |
 | 27.2\% | ${ }_{3,190}$ | 2,973 | ${ }_{-218}$ | ${ }_{-6.8 \%}$ |
 | 28.4\% | 2,988 | 2.910 | | -2.6\% |
 | | ${ }^{2,925}$ | ${ }^{2}, 840$ | -84 | -2.9\% |
 | 32.1\% | (e859 | 2,783 | ${ }_{-76}$ | ${ }_{-2.7 \%}$ |
 | 33.3\% | 2,806 | 2.722 | -83 | -3.0\% |
 | 34.6\% | 2,722 | 2.685 | ${ }^{-37}$ | ${ }^{1.49}$ |
 | 35.8\% | 2,639 | 2,639 | 0 | 0.0\% |
 | 37.0\% | ${ }^{2.613}$ | ${ }^{2,620}$ | 7 | 0.3\% |
 | 38.3\% | 2,566 | 2.613 | 47 | 1.8\% |
 | 39.5\% | ${ }^{2,561}$ | 2,471 | -91 | -3.5\% |
 | 40.7\% | ${ }_{2}^{2,471}$ | ${ }_{2}^{2,425}$ | -45 | -1.8\% |
 | 42.0\% | ${ }_{2}^{2,426}$ | ${ }_{2,372}^{2,372}$ | -54 | -2.2\% |
 | ${ }^{43.2 \%}$ | - | ${ }_{2}^{2,293}$ | -38 | -1.7\% |
 | ${ }^{44.4 .9}$ | 2,319 | 2, 2,265 | -54 | -2.3\% |
 | ${ }^{45.79 \%}$ | 2,299
 2,278
 1 | - | -667 | -2.9\% |
 | 48.1\% | 2, 2,278 | , 1019 | | -7.8\% |
 | 4.4\% | 2,100 | ${ }_{1}^{1,906}$ | -194 | -9.2\% |
 | 50.6\% | 1.915 | 1,894 | -21 | -1.1\% |
 | | | | | |
 | 54.3\% | 1,799 | ${ }_{\text {1,799 }}^{1.1850}$ | 0 | 0.0\% |
 | 55.6\% | 1,792 | 1,792 | 0 | 0.0\% |
 | | 1,741 | 1,741 | 0 | 0.0\% |
 | 55.3\% | 1,721 1701 1 | 1,728
 1,723
 1723 | 8 | 0.4\% |
 | 60.5\% | ${ }^{1,697}$ | 1,723
 1,721
 1.74 | ${ }_{24}^{22}$ | +1.4\% |
 | 61.7\% | ${ }_{1,692}$ | 1,701 | 9 | 0.5\% |
 | 63.0\% | 1,692 | 1.697 | 5 | 0.3\% |
 | 64.2\% | 1,632 | ${ }^{1,692}$ | 60 | 3.7\% |
 | 65.4% 667% | 1.618 | ${ }^{1,635}$ | 16 | 1.0\% |
 | 66.7\% 679% | 1,617 | 1,632 | 14 | |
 | - $\begin{aligned} & 67.9 \% \\ & 69.1 \%\end{aligned}$ | 1,520 | ${ }_{1,624}$ | 104 | \%\% |
 | -69.1\% | 1,501 | ${ }^{1,667}$ | 117 | \% |
 | 70.1.6\% | ${ }_{8}^{1,307}$ | ${ }^{1,613}$ | 306 | 4\% |
 | 71.6\% | 826 676 | ${ }_{\text {l }}^{1,61010}$ | ${ }_{934} 934$ | 50\% |
 | 74.1\% | ${ }_{351}$ | ${ }_{1.519}^{1+610}$ | ${ }_{1}^{1,169}$ | ${ }_{333.3 \%}^{138.2 \%}$ |
 | 75.3\% | 348 | 1,296 | 948 | 272.5\% |
 | 76.5\% | 300 | 300 | 0 | 0.0\% |
 | 77.8\% | 300 | 300 | | 0\% |
 | 79.0\% | 300 | 300 | 0 | \% |
 | 80.2\% | 300 | 300 | 0 | |
 | ${ }^{81.5 \%}$ | 300 | 300 | 0 | 0.0\% |
 | 82.7\% | 300 | 300 | 0 | 0.0\% |
 | 84.0\% | 300 | 300 | 0 | 0.0\% |
 | 85.2% 864% | 300 | 300 | 0 | 0.0\% |
 | ${ }^{86.4 \%}$ | 300 | 300 | 0 | 0.0\% |
 | 87.7% 88.9% | 300 | 300 | 0 | 0.0\% |
 | 88.9% 90.1% | 300 | 300 | 0 | 0.0\% |
 | ${ }^{90.14 \%}$ | 300 300 | 300 300 | 0 | ${ }^{0.0 \% \%}$ |
 | 92.6\% | 300 | ${ }^{261}$ | ${ }^{-39}$ | -13.0\% |
 | 93.8\% | 300 | 229 | -71 | -23.7\% |
 | ${ }_{9}^{95.1 \%}$ | ${ }_{201}^{260}$ | ${ }_{226}^{220}$ | ${ }^{35}$ | 0.0\% |
 | 96.5\% | 200 79 | 200 100 | ${ }_{21}$ | |
 | 98.8\% | 0 | 79 | 79 | |
 | 100.0\% | 0 | 0 | 0 | |

 Banks Pumping Plant (SWP), Monthly Diversion

 | $\begin{gathered} \text { Percent } \\ \left.\begin{array}{c} \text { Exceedance } \\ \text { Probabaility } \\ \text { (a) } \end{array}\right] \end{gathered}$ | WSIP 2070 WithoutProiectMonthly Diversion | Oct | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | WSIP 2070 With Project | Absolute | |
 | | | Monthly Diversion | | Difference（\％） |
 | （10） | （cis） | （crs） | | |
 | 0．0\％ | | | | ${ }^{-0.4 \%}$ |
 | | | | | |
 | 2．5\％ | ${ }_{5,271}$ | ${ }_{5,731}$ | 460 | ${ }_{8.7 \%}$ |
 | 3．7\％ | 4，452 | 5，227 | 774 | |
 | 4．9\％ | 4，164 | 5．086 | 922 | |
 | 6．2\％ | 4，122 | 4．687 | 565 | 13．7\％ |
 | 7．4\％ | 3，625 | 4．515 | 890 | 24．6\％ |
 | 8．6\％ | 3，454 | 4，448 | 995 | 28．8\％ |
 | 9．9\％ | 3，452 | 4，284 | ${ }^{832}$ | 24．1\％ |
 | 11．1\％ | 3，438 | 4，158 | 720 | 20．9\％ |
 | ${ }^{12.3 \%}$ | ${ }^{3,365}$ | ${ }^{3.860}$ | 495 | ${ }^{14.7 \%}$ |
 | 13．6\％ | 3，361 | 3，766 | 405 | ${ }^{12.0 \%}$ |
 | 14．8\％\％ | ${ }^{3,319}$ | ${ }^{3,736}$ | 417 | ${ }^{12.6 \%}$ |
 | 16．0\％ | ${ }^{3,244}$ | 3，597 | ${ }^{353}$ | |
 | 17．3\％ | 3，207 | ${ }^{3.530}$ | ${ }^{323}$ | ， |
 | 18．5\％ | ${ }^{3,108}$ | 3，459 | 352 | 11．55\％ |
 | 21．0\％ | ${ }_{2,958}$ | 3，451 | 493 | 16．7\％ |
 | 22．2\％ | 2.890 | 3，430 | 540 | |
 | 23．5\％ | 2，849 | 3，428 | 579 | |
 | 24．7\％ | 2，807 | 3，378 | 571 | |
 | 25．9\％ | ${ }_{2}^{2,793}$ | 3，284 | 491 | |
 | 27．2\％ | ${ }^{2,713}$ | 3，269 | 556 | |
 | 28．4\％ | 2，676 | 3，231 | 555 | 20.8 |
 | 29．6\％ | ${ }^{2,673}$ | 3，192 | 519 | 19．4\％ |
 | 30．9\％ | 2，671 | ${ }^{3,158}$ | 487 | 18．3\％ |
 | 32．1\％ | 2，661 | 3，131 | 470 | 17．7\％ |
 | 33．3\％ | ${ }^{2}, 631$ | ${ }^{3.073}$ | ${ }^{441}$ | 16．8\％ |
 | 34．6\％ | ${ }^{2.513}$ | 3，069 | ${ }_{556}$ | ${ }^{22.1 \%}$ |
 | 35．8\％ | 2，499 | 3，067 | 567 | 22．7\％ |
 | 37．0\％ | 2，460 | ${ }^{3.035}$ | 575 | 23．4\％ |
 | 38．3\％ | ${ }_{2}^{2,383}$ | ${ }_{2}^{2,925}$ | 542 | 22．8\％ |
 | 39．5\％ | ${ }_{2}^{2,313}$ | ${ }_{2}^{2,867}$ | 553
 5 | ${ }^{23.9 \%}$ |
 | 40．7\％ | 2，300 | 2，864 | ${ }_{5}^{564}$ | 24．5\％ |
 | 42．0\％ | ${ }^{2,291}$ | 2，860 | 559 | |
 | 44．4\％ | $\substack { 2,288 \\ \begin{subarray}{c}{2,23{ 2 , 2 8 8 \\ \begin{subarray} { c } { 2 , 2 3 } } \\{\hline \text { 2，}} \end{subarray}$ | ${ }_{2.805}^{2.857}$ | 569 | 24．9\％ |
 | 45．7\％ | 2，189 | 2.801 | | |
 | 46．9\％ | 2，141 | 2，755 | 614 | |
 | 48．1\％ | ${ }^{2,126}$ | 2，701 | 575 | 0\％ |
 | 49．4\％ | 2，058 | 2.698 | 640 | |
 | 55．6\％ | 2，024 | 2，654 | 630 | ．1\％ |
 | 51．9\％ | 2，023 | 2,653 | 630 | \％ |
 | 53．1\％ | ${ }^{1,922}$ | 2.651 | 729 | 37．9\％ |
 | 54．3\％ | ${ }^{1,8388}$ | 2，639 | 801 | 43．\％ |
 | 55．6\％ | 1，836 | ${ }_{2}^{2,441}$ | 605 | 32．9\％ |
 | 56．8\％ | ${ }^{1,8836}$ | 2，432 | 597 | 32．5\％ |
 | 58．0\％ | ＋1，801 | 2，389 | 587 | 32．6\％ |
 | | 1，772 | ${ }_{2}^{2,276}$ | 504 | ${ }^{28.4 \%}$ |
 | 60．5\％ 61.7% | ${ }^{1,766}$ | ${ }_{2}^{2,232}$ | 476 | ${ }^{27.1 \%}$ |
 | 61．7\％ | 1，744 | ${ }^{2,224}$ | 480 | 27．9\％ |
 | 63．0\％ 64.2% | ${ }^{1} 1.696$ | 2，194 | 498 | 29．4\％ |
 | 64．2\％ 65.4% | ${ }^{1,676}$ | 2，150 | 474 | 28．3\％ |
 | ${ }^{65.4 \%}$ | 1，636 | ${ }^{2}, 0062$ | ${ }^{427}$ | 26．1\％ |
 | 66．7\％ 67.9% | 1，593
 1.592
 1.52 | ${ }_{2,023}^{2,023}$ | ${ }_{430}^{440}$ | |
 | 69．1\％ | ${ }_{1}^{1,590}$ | ${ }_{2,014}^{2,022}$ | 444 | 28．3\％ |
 | 70．4\％ | ${ }_{1}^{1,523}$ | 1，996 | 473 | \％ |
 | 71．6\％ | 1，501 | ${ }^{1,923}$ | 422 | 28．1\％ |
 | 72．8\％ | 1，358 | 1，910 | 552 | |
 | 74．19\％ | 1，346 | 1，755 | 409 | 4\％ |
 | 75．3\％ | 1，271 | 1，638 | 367 | 8\％ |
 | 76．5\％ | 1，244 | 1，628 | 384 | 309\％ |
 | 77．8\％ | 1，212 | 1.617 | 405 | 33．4\％ |
 | 79．0\％ | ${ }^{1,135}$ | ${ }^{1,602}$ | ${ }^{467}$ | 41．2\％ |
 | 80．2\％ | 1，067 | 1，554 | 487 | 45．7\％ |
 | 81．5\％ | 1，058 | 1，491 | 433 | 40．9\％ |
 | ${ }^{82.7 \%}$ | ${ }_{792} 9$ | 1，411 | 471 | 50．1\％ |
 | 84.0% 852% | 792 | 1，379 | ${ }_{587}$ | 74．2\％ |
 | 85．2\％ | ${ }_{644}^{654}$ | 1，377 | ${ }_{7} 723$ | 110．6\％ |
 | ${ }^{86.46}$ | 640 | ＋1，342 | 702 | 109．8\％ |
 | －${ }_{8}^{87.7 \%}$ | 630 603 | ＋1，326 | 6968 | 10．4．9\％ |
 | 88.9% 90.1% | 603 349 | ${ }_{\substack{1,210 \\ 1,015}}^{\substack{1 / 2}}$ | 608 | 100．8\％ |
 | 91．4\％ | 349 300 | ${ }_{947}^{1,015}$ | ${ }_{647}^{666}$ | 190．7\％， |
 | 92．6\％ | 300 | 719 | 419 | 139．6\％ |
 | 93．8\％ | 300 | 716 | 416 | 6\％ |
 | 95．1\％ | 300 | 661 | 361 | 12.4 |
 | 96．3\％ | 300 | 300 | 0 | 0．0\％ |
 | 97．5\％ | 300 | 300 | | \％ |
 | | 300 | 300 | 0 | 0．0\％ |
 | 100．0\％ | 300 | 300 | 0 | 0．0\％ |

 | | | November | | | | | December | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Percent Exceedance | $\xrightarrow{\text { WSIP } 2070 \text { W．Without }}$ Proiet | wsil 2070 With Project | Absolute | | Percent Exceedance | ${ }^{\text {WSIP } 2070 \text { Without }}$ Proiet | Wsip 2070 With Project | Absolute | Relative |
 | Proabability
 $(0,0)$ | $\begin{aligned} & \text { Monthly Diversion } \\ & \text { (CFS) } \end{aligned}$ | Monthly Diversion （CFS） | （cFs） | Difference（\％） | Probability | Montly Piversion | Monthy Diversion （Cfss | Difference | Difference（\％） |
 | 0．0\％ | ${ }_{6.680}$ | ${ }_{6.680}$ | 0 | 0．0\％ | 0．0\％ | ${ }_{7}^{7.678}$ | 7.678 | | 0．0\％ |
 | 12\％ | 6.680 | 6.680 | | 0．0\％ | 12\％ | 7678 | 7678 | 0 | |
 | 2．5\％ | ${ }_{6.680}$ | ${ }_{6,680}$ | 0 | 0．0\％ | 2．5\％ | 7.678 | 7.678 | 0 | 0．0\％ |
 | 3．7\％ | 6，680 | 6．680 | 0 | 0．0\％ | 3．7\％ | 7.678 | 7.678 | 0 | |
 | 4．9\％ | 6，680 | 6，680 | 0 | 0．0\％ | 4．9\％ | 7，678 | 7，678 | 0 | |
 | 6．2\％ | 6，680 | 6，680 | 0 | 0．0\％ | 6．2\％ | 7，678 | 7，678 | 0 | ．0\％ |
 | 7．4\％ | 6，680 | 6，680 | 0 | 0．0\％ | 7．4\％ | 7，224 | 7，148 | 76 | |
 | 8．6\％ | 6，555 | 6，680 | 125 | 1．9\％ | 8．6\％ | 7，148 | 7，112 | ${ }^{35}$ | －0．5\％ |
 | 9．9\％ | 6．537 | 6，680 | 143 | 2．2\％ | 9．9\％ | 7，117 | 7，096 | 21 | －0．3\％ |
 | 11．1\％ | 5，193 | 6，680 | 1，487 | 28．6\％ | 11．1\％ | 7．112 | 7，072 | 40 | |
 | 12．3\％ | 5．032 | ${ }^{6.533}$ | 1，501 | 9．8\％ | 12．3\％ | 7，089 | ${ }_{7} 7.063$ | ${ }^{25}$ | |
 | 13．6\％ | 4.918 | 5．882 | 964 | 19．6\％ | 13．6\％ | 7，086 | 7，059 | ${ }^{27}$ | －0．4\％ |
 | 14．8\％ | 4，894 | 5，623 | ${ }^{279}$ | 14．9\％ | 14．8\％ | ${ }_{7,072}$ | 7，057 | －15 | －0．2\％ |
 | 16．0\％ | 4，811 | 5，445 | 633 | 13．2\％ | 16．0\％ | 7，065 | 7，054 | －10 | －0．1\％ |
 | 17．3\％ | 4，780 | 5，331 | 551 | ${ }^{11.5 \%}$ | 17．3\％ | 7，063 | 7，048 | －15 | －0．2\％ |
 | ${ }^{18.5 \%}$ | ${ }_{4}^{4.6511}$ | | 527 | 11．3\％ | 18．5\％ | 7.058 | 7.042 | －16 | －0．2\％ |
 | 19．8\％ | 4，511 | 5.003 | 492 | 10．9\％ | 19．8\％ | 7.054 | 7.016 | －39 | －0．5\％ |
 | 21．0\％ | ${ }_{4}^{4.500}$ | 4，980 | 480 54 | 10．7\％ | 21．0\％ | 7，048 | ${ }_{6,853}$ | －195 | －2．8\％ |
 | ${ }^{22.2 \%}$ | 4，433 | ${ }_{4}^{4.978}$ | 544 | 12．3\％ | ${ }^{22.2 \%}$ | 7，042 | 6，643 | | |
 | － | ${ }_{4}^{4,409}$ | ${ }_{4}^{4,7593}$ | 3488 | 7．95\％ | 23．5\％ | 7.016 | 6.611 | ${ }_{4} 4$ | |
 | － | ${ }_{4,326}^{4,365}$ | ${ }_{4}^{4,695}$ | 327 200 20 | 7．5\％ | 24．7\％ | 6，311 | 㐌， 6,332 | 41 | |
 | 257．2\％ | ${ }_{3,955}^{4,326}$ | ${ }_{4.471}^{4.525}$ | 517 | ${ }^{4.6 \%}$ | 27．2\％ | 6，180 6.175 | 年， 6,1830 | ${ }_{5}$ | 0．1\％ |
 | 28．4\％ | 3，841 | 4，346 | 505 | 13．2\％ | 28．4\％ | 5．585 | 5，905 | 321 | ．7\％ |
 | 29．6 | 3，827 | 4，186 | 359 | 9．4\％ | 29．6\％ | 5，212 | 5．654 | 441 | |
 | 30．9\％ | ${ }^{3,824}$ | 4，055 | 231 | 6．0\％ | 30．9\％ | 4，597 | 5．647 | 1.049 | |
 | 32．1\％ | 3，809 | 3，962 | 153 | 4．0\％ | 32．1\％ | 4，523 | 5，407 | 884 | 19．5\％ |
 | 33．3\％ | 3，799 | 3，920 | 121 | 3．2\％ | 33．3\％ | 4，500 | 5，320 | 820 | 18．2\％ |
 | 34．6\％ | 3，709 | 3，891 | ${ }^{183}$ | 4．9\％ | 34．6\％ | 4，423 | 5，061 | 638 | 14．4\％ |
 | 35．8\％ | 3，491 | 3，789 | 298 | 8．5\％ | 35．8\％ | 4，404 | 4，850 | 446 | 10．1\％ |
 | 37．0\％ | 3，474 | 3，770 | 296 | 8．5\％ | 37．0\％ | 4，355 | 4，792 | 437 | 10．0\％ |
 | 38．3\％ | ${ }^{3,138}$ | －${ }_{\text {3，602 }}$ | 463 | 14．8\％ | 383\％ | 4，254 | 4，663 | 409 | 9．6\％ |
 | 39．5\％ | 3，061 | ${ }^{3.511}$ | 449 | 14．7\％ | 39．5\％ | 4，186 | 4，597 | 411 | 9．8\％ |
 | 40．7\％ | 2，951 | 3，419 | ${ }^{468}$ | 15．8\％ | 40．7\％ | 4，175 | 4，549 | 374 | 9．0\％ |
 | 42．0\％ | 2，761 | | 617 | ${ }^{223.3 \%}$ | 42．0\％ | 4，099 | 4．523 | ${ }^{423}$ | 10．3\％ |
 | ${ }^{43.2 \%}$ | ${ }_{2}^{2,725}$ | ${ }_{3}^{3,275}$ | 551 | 20．2\％ | 43．2\％ | 3，971 | 4，502 | 531 | 13．4\％ |
 | ${ }^{44.4 \%}$ | 2,701
 2683
 1 | 3,264
 3186 | 年 | ${ }^{20.8 \%}$ | ${ }^{44.45 \%}$ | 3,970 3 3 | 4，464 | ${ }_{494} 9$ | 12．4\％ |
 | ${ }^{45.79 \%}$ | 2，683 | 边， $\begin{aligned} & \text { 3，} 186 \\ & 3\end{aligned}$ | ${ }^{503}$ | 18．7\％ | ${ }^{45.79 \%}$ | 3，968 | 4，355 | 387 | 9．8\％ |
 | 46．9\％ | ${ }_{2540}^{2,670}$ | 3，062 | 392 | 14．7\％ | 46．9\％ | 3，946 | 4,301 | 356 | \％\％ |
 | 48．19\％ | ${ }_{2}^{2,540}$ | 3，041 | 501 | 19．7\％ | 48．1\％ | ${ }^{3,936}$ | 4，282 | 3476 | 8．8\％ |
 | 50．6\％ | ${ }_{\substack{2,495 \\ 2,4, \\ \hline \text { 2，}}}$ | ${ }_{\text {2，847 }}^{2,943}$ | 448
 380 | （18．0\％ | 4．4．4\％ 50.6% | 3,923 3,919 | ${ }_{4}^{4,099}$ | 176 | ${ }_{4}^{4.5 \%}$ |
 | 51．9\％ | ${ }_{\text {2，440 }}$ | ${ }_{2,793}^{2,047}$ | 352 | 14．4\％ | 51．9\％ | ${ }_{3,853}$ | 3，985 | 133 | 3．4\％ |
 | 53．1\％ | 2.406 | 2，764 | 358 | 14．9\％ | 53．1\％ | 3，844 | 3，983 | 139 | |
 | 54．3\％ | 2,404 | 2，758 | 354 | 14．7\％ | 54．3\％ | 3，831 | 3，971 | 140 | \％ |
 | 55．6\％ | 2，228
 $\substack{221}$
 1 | $\xrightarrow{2,755}$ | ${ }_{437}^{522}$ | $\underset{\substack{23.4 \% \\ 197 \%}}{ }$ | 55.6% 56.8% | － 3.803 | $\begin{array}{r}3,968 \\ \hline\end{array}$ | 165 | 4．3\％ |
 | 5．8．\％ | ${ }_{\text {2，184 }}^{2,121}$ | ${ }_{2,584}^{2,508}$ | ${ }_{401}$ | 18．3\％ | 58．0\％ | 3，739 | ${ }_{3,946}$ | ${ }_{207}$ | 5．5\％ |
 | 59．3\％ | 2，136 | 2.546 | 410 | 19．2\％ | 59．3\％ | 3，729 | ${ }_{3,923}$ | 195 | 5．2\％ |
 | 60．5\％ | 2，133 | 2.514 | 381 | 17．9\％ | 60．5\％ | 3，704 | 3，919 | 215 | 5．8\％ |
 | 61．7\％ | 2，074 | 2，493 | 419 | 20．2\％ | 61．7\％ | 3，688 | 3，853 | 165 | 4．5\％ |
 | 63．0\％ | 2，072 | 2，439 | ${ }^{368}$ | 17．7\％ | 63．0\％ | 3，577 | ${ }^{3.844}$ | 267 | 7．5\％ |
 | ${ }^{64.2 \%}$ | 2，046 | ${ }^{2,365}$ | 318 | 15．6\％ | 64．2\％ | 3，477 | ${ }^{3,822}$ | ${ }^{345}$ | ${ }^{\text {9．9\％\％}}$ |
 | －65．4\％ | 2，043 | ${ }^{2,225}$ | 182 | 8．9\％ | 65．4\％ | 3，415 | 3，780 | 365 | 10．7\％ |
 | 66．7\％ 679% | 1，955 | ${ }_{\text {2，218 }}$ | ${ }^{263}$ | ${ }^{13.55 \%}$ | ${ }^{66.7 \%}$ | ${ }^{3.364}$ | 3,779 3 | ${ }_{4} 15$ | ${ }_{12}^{12.3 \%}$ |
 | ${ }_{69} 6.1 \%$ | －1，833 | 2，131 | 308 | ${ }^{16.9 \%}$ | 679\％\％ | ${ }_{3}^{3,337}$ | － 3 3，744 | 407 | ${ }_{\text {c }}^{12.22 \%}$ |
 | 70．4\％ | ${ }_{1}^{1,648}$ | ${ }_{2,045}^{2,085}$ | 397 | ${ }_{24.1 \%}^{20.2 \%}$ | 70．4\％ | | | 408 | ${ }^{12.44 \%}$ |
 | 71．6\％ | ${ }^{1,557}$ | 2，000 | 444 | 28．5\％ | 71．2\％ | 3，207 | 3，711 | ${ }_{504}^{504}$ | 15．7\％ |
 | 72．8\％ | ${ }^{1,518}$ | ${ }^{1,973}$ | ${ }^{455}$ | 30．0\％ | 72．8\％ | 3，135 | 3，655 | 559 | |
 | 74．1．0 | ${ }_{1}^{1,388}$ | 1，920 | 577 | 38．3\％ | ${ }_{753 \%}$ | 3，057 | 3,623
 3459 | 566 | |
 | 76．5\％ | ${ }_{1}^{11355}$ | ${ }_{1}^{1,1762}$ | 587 | 50．0\％ | 765\％ | ${ }^{3} \mathbf{3} 0368$ | － | ${ }_{347}$ | 114．4\％ |
 | 7788\％ | 1，159 | 1，702 | 581 | 50．27\％ | 77．5\％ | | | 54 | |
 | 79．0\％ | ${ }_{1}^{1,0097}$ | ＋1，662 | 634 | ${ }^{6217 \%}$ | 790\％ | ${ }_{\text {3，}}$ | （3，364 | | \％ |
 | 80．2\％ | ${ }_{993}^{1,027}$ | ${ }_{1}^{1,620}$ | ${ }_{627} 64$ | 63．1\％ | 80．2\％ | ${ }_{2,946}$ | 3，234 | ${ }_{288}$ | 9．8\％ |
 | 81．5\％ | 866 | ${ }_{1,584}$ | 718 | 82．8\％ | 81．5\％ | 2.877 | 3，176 | 298 | \％ |
 | 82．7\％ | 852 | 1，466 | 614 | 72．1\％ | 82．7\％ | 2.826 | 3，002 | 176 | 6．2\％ |
 | 84．0\％ | 815 | 1，196 | 381 | 46．7\％ | 84．0\％ | 2.821 | 2，859 | 38 | 1．4\％ |
 | 85．2\％ | 810 | 1，190 | 380 | 46．9\％ | 85．2\％ | 2，798 | 2，808 | 10 | 0．4\％ |
 | 86．4\％ | 784 | 1，187 | 402 | 51．3\％ | 86．4\％ | 2，676 | 2，786 | 110 | 4．1\％ |
 | 87，7\％ | 772 | 1，130 | ${ }^{358}$ | 46．3\％ | 877\％ | 2.670 | 2，707 | ${ }^{37}$ | 1．4\％ |
 | － | ${ }_{5}^{670}$ | ${ }^{1,087}$ | 417 | ${ }^{62.3 \%}$ | 88．9\％ | 2，658 | 2，654 | $\stackrel{4}{4}$ | ${ }^{-0.1 \%}$ |
 | ${ }_{\text {914．4\％}}^{90.1 \%}$ | 552 | ${ }^{1.011}$ | 491 | 94．2\％ | 90．1\％ | 2，351 | 2，638 | ${ }_{388}^{288}$ | ${ }_{\text {a }}^{12.2 \%}$ |
 | 92．6\％ | ${ }_{478}$ | 990 | ${ }_{422}$ | ${ }_{88.4 \%}^{79.0}$ | ${ }_{9} 9.24 \%$ | ${ }_{2,185}^{2,222}$ | 2,604
 2.603 | ${ }_{4}^{382}$ | ${ }^{19.21 \%}$ |
 | 93．8\％ | 435 | 891 | ${ }^{456}$ | 104．9\％ | 93．8\％ | 2，169 | ${ }_{2}^{2,416}$ | ${ }^{246}$ | 11．3\％ |
 | 95．1\％ | ${ }^{429}$ | ${ }^{727}$ | 298 | 69．4\％ | 95．1\％ | 2，144 | 2，399 | ${ }^{255}$ | 11．9\％ |
 | 96．3\％ | 300 | ${ }_{564} 6$ | ${ }^{341}$ | 113．8\％ | ${ }^{96.3 \%}$ | 1，920 | ${ }_{2}^{2,183}$ | 263 | 13．7\％ |
 | 998．8\％ | 300 | 539 487 | 239 187 | | 998．8\％ | ${ }_{1}^{1, .628}$ | ${ }_{2,033}^{2,072}$ | 704 | －${ }_{5}^{24.2 \%}$ |
 | 100．0\％ | 300 | 300 | 0 | 0．0\％ | 100．0\％ | 736 | 518 | －219 | －29．7\％ |

 \begin{tabular}{|c|c|c|c|c|}
 \hline \multirow[b]{2}{*}{\({ }_{\text {Exceentance }}^{\text {Per }}\)} \& \multicolumn{4}{|c|}{February} \\
 \hline \& \[
 \begin{aligned}
 \& \text { WSIP } 2070 \text { Without } \\
 \& \text { Proiect }
 \end{aligned}
 \] \& WSII 2070 With Project \& \({ }_{\text {a }}^{\substack{\text { Absolute } \\ \text { Difference }}}\) \& \\
 \hline Soability \& Montlil Diversion \& Monthly Diversion \& Difierence
 (cFs)
 ces \& Difference (\%) \\
 \hline \%) \& (CFFS) \& (CFS) \& \& \\
 \hline \({ }^{\text {0.0\% }}\) \& \& \& 0 \& 0.0\% \\
 \hline 1.2\% \& 8,500 \& 8.500 \& \& \\
 \hline 2.5\%\% \& 8,500 \& 8,50 \& 0 \& 0.0\% \\
 \hline 4.9\% \& \({ }_{8,500}^{8.500}\) \& \({ }_{8,500}^{8.500}\) \& 0 \& \({ }^{0.0 \%}\) \\
 \hline 6.2\% \& 8,500 \& \({ }^{8.500}\) \& 0 \& 0.0\% \\
 \hline 7.4\% \& \({ }^{8.500}\) \& \({ }^{8.500}\) \& 0 \& 0.0\% \\
 \hline 8.6\% \& 8.500 \& 8.500 \& 0 \& \% \\
 \hline 9.9\% \& 8,500 \& \({ }^{8.500}\) \& 0 \& \% \\
 \hline 11.1\% \& 8,500 \& 8,500 \& 0 \& \% \\
 \hline \({ }^{12.3 \%}\) \& 8.500 \& \({ }^{8.500}\) \& 0 \& \% \\
 \hline 13.6\% \& 8,437 \& 8.500 \& 63 \& 0.7\% \\
 \hline 14.8\% \& \(\stackrel{8,437}{ }\) \& \({ }_{8}^{8,437}\) \& 0 \& \% \\
 \hline 17.3\% \& \({ }_{8,437}^{8,437}\) \& 8,437 \& 0 \& 0.0\% \\
 \hline 18.5\% \& 8,437 \& 8,437 \& 0 \& 0.0\% \\
 \hline 19.8\% \& 8,293 \& 8,437 \& 144 \& \\
 \hline 21.0\% \& 8,050 \& \({ }_{8}^{8.028}\) \& \({ }^{21}\) \& 3\% \\
 \hline \({ }^{22.2 .2 \%}\) \& 7.565 \& \({ }^{7,563}\) \& -2 \& 0.0\% \\
 \hline 24.7\% \& 7,133 \& 7,108 \& \({ }_{-25}\) \& -0.4\% \\
 \hline 25.9\% \& 6,703 \& 6,751 \& 48 \& 0.7\% \\
 \hline 27.2\% \& 6,231 \& \({ }_{6}^{6,393}\) \& 162 \& , \\
 \hline 20.6\% \& \({ }_{6}^{6,221}\) \& \({ }_{6}^{6,226}\) \& \& 0.1\% \\
 \hline 30.9\% \& ¢,110 \& c, \& \({ }_{11}\) \& \({ }_{\text {orem }}\) \\
 \hline 32.1\% \& 5.818 \& 6,005 \& 186 \& 3.2\% \\
 \hline 33.3\% \& 5.527 \& 寺.818 \& 291 \& 5.3\% \\
 \hline 34.5\% \& 4,960 \& 5,462 \& 502 \& 10.1\% \\
 \hline 35.8\% \& 4,738 \& 4,729 \& \({ }^{-8}\) \& -0.2\% \\
 \hline \& \({ }_{4}^{4,536}\) \& \({ }_{4}^{4.565}\) \& \({ }_{21}^{29}\) \& \({ }^{0.6 \% \%}\) \\
 \hline 39.5\% \& 4,151 \& 4,151 \& \({ }^{21}\) \& 0.0\% \\
 \hline 40.7\% \& 4,104 \& 4,111 \& 7 \& 0.2\% \\
 \hline \(42.0 \%\)
 \(43.2 \%\) \& \begin{tabular}{l}
 3,986 \\
 3,965 \\
 \hline
 \end{tabular} \& \begin{tabular}{l}
 3,987 \\
 3.966 \\
 \hline
 \end{tabular} \& 1 \& \({ }^{0.0 \%}\) \\
 \hline 44.4\% \& 3,950 \& \({ }_{\text {3,950 }}\) \& 0 \& 0.0\% \\
 \hline 45.7\% \& 3,944 \& 3,944 \& 0 \& 000 \\
 \hline 46.9\% \& 3,747 \& 3,747 \& 0 \& 0.0\% \\
 \hline 48.1\% 4.4 \& \({ }^{3.594}\) \& 3,702 \& 108 \& 3.0\% \\
 \hline 49.4\% \& 3,585 \& \({ }_{\text {3,594 }}\) \& 9 \& \({ }^{0.3 \%}\) \\
 \hline 551.9\% \& \({ }_{\text {3,376 }}\) \& \({ }_{3,400}\) \& \({ }_{24}\) \& \({ }_{0}^{\text {5.7\% }}\) \\
 \hline 53.1\% \& \& 3,376 \& 12 \& 0.3\% \\
 \hline \& 3,354 \& 3,364 \& 10 \& 0.3\% \\
 \hline 55.6\% \& \({ }_{3,328}\) \& 3,313 \& -15 \& -0.5\% \\
 \hline 58.0\% \& - \& \({ }_{\substack{3,117 \\ 3,17}}\) \& -123 \& \\
 \hline 59.3\% \& 3,118 \& 3,075 \& 43 \& -1.4\% \\
 \hline 6.5.5\% \& 3,096 \& 3,047 \& \& \\
 \hline \(61.7 \%\)
 \(630 \%\) \& \(\begin{array}{r}2.909 \\ 2008 \\ \hline 208\end{array}\) \& 2,909
 2908 \& \(\bigcirc\) \& 0.0\% \\
 \hline \(63.0 \%\)
 \(64.2 \%\) \& 2,908 \& 2,908 \& 0 \& 0.0\% \\
 \hline 64.2\%
 \(6.4 .4 \%\) \& 2,846

 2,568 \& 2,648 \& -199 \& -7.0\%

 \hline ${ }_{\text {c }}^{65.4 \%}$ \& ${ }_{2,499}^{2.568}$ \& ${ }_{2}^{2.499}$ \& ${ }^{-61}$ \& -2.0\%

 \hline 67.9\% \& 2,479 \& 2.479 \& 0 \& 0.0\%

 \hline 69.1\% \& 2,456 \& 2,460 \& 3 \& ${ }^{0.11 \%}$

 \hline 71.6\% \& ${ }_{\text {2,310 }}^{2,375}$ \& 2,171 \& - \& -6.0\%

 \hline 728\% \& ${ }^{2,273}$ \& 2,082 \& 192 \& -8.4\%

 \hline 74.1\% \& 2,226 \& 1,913 \& 313 \&

 \hline 75.3\% \& 2,171 \& ${ }^{1,876}$ \& 295 \& -13.6\%

 \hline 76.5\% \& 2,082 \& ${ }^{1,862}$ \& 220 \& 10.5\%

 \hline 778\% \& ${ }^{1,983}$ \& ${ }^{1.696}$ \& 287 \& -14.5\%

 \hline 79.0\%
 80.2% \& 1,913 \& 1,649 \& 264 \& -13.8\%

 \hline - \& ${ }^{1,696}$ \& ${ }^{1,562}$ \& 134 \& -7.9\%

 \hline 81.5\%
 88.7% \& 1,561 \& ${ }^{1,488}$ \& -81 \& -5.2\%

 \hline 822.7\% \& ${ }_{1}^{1,485}$ \& 1,471 \& -14 \& -0.9\%

 \hline 84.0\% ${ }^{8.2 \%}$ \& 1.471 \& ${ }^{1,449}$ \& ${ }^{22}$ \& -1.5\%

 \hline 㐌85.4\% \& 1,449 \& 1,449 \& - \& 0.0\%

 \hline - 86 \& 1,449 \& ${ }_{1}^{1,430}$ \& -19 \& -1.3\%

 \hline 88.9\% \& 1,408 \& 1.408 \& 0 \& 0.0\%

 \hline 90.19\% \& | 1,390 |
 | :--- |
 | 1,386 | \& +1,390 \& 0 \& 0.0\%

 \hline ${ }^{91.46 \%}$ \& ${ }^{1,386}$ \& ${ }_{1}^{1,384}$ \& -2 \& -0.2\%

 \hline ${ }_{\text {93.8\% }}^{92.0 \%}$ \& 1,219 \& - ${ }_{\text {1,219 }}^{1.349}$ \& 0 \& 0.0\%

 \hline 95.1\% \& 1,202 \& 1,202 \& 0 \& 0.0\%

 \hline 96.3\% \& ${ }^{1,124}$ \& +1,156 \& ${ }_{22}^{32}$ \& ${ }^{2.9 \%}$

 \hline 98.8\% \& 300 \& ${ }^{1} 1.124$ \& 245
 0 \& 0.0\%

 \hline 100.0\% \& 300 \& 7 \& -293 \& -97.5\%

 \hline
 \end{tabular}

 Table SW-39-b

 | $\underset{\substack{\text { Pexceent } \\ \text { Probababe } \\ \text { Prity }}}{ }$ | June | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | WSIP 2070 W.thout Proiect | Wsil 2070 With Project | Absolute | Relative |
 | | Monthly Piversion | Monthly Diversion | ((FFs) | Difference (\%) |
 | 0.0\% | (CFS) | (lf) 5 | | |
 | ${ }^{0.0 \% \%}$ | ${ }_{5}^{5.997}$ | ${ }_{5}^{5.943}$ | 43 | -.7\% |
 | ${ }^{1.2 \%}$ | ${ }^{5.619}$ | ${ }_{5}^{5,033}$ | ${ }^{43}$ | ${ }^{-0.8 \%}$ |
 | 3.7\% | ${ }_{4,597}$ | ${ }_{4}^{5} 952$ | 355 | 7.7% |
 | 4.9\% | ${ }_{4.544}^{4.597}$ | ${ }_{4,944}^{4,952}$ | ${ }_{400}$ | ${ }_{8.8 \%}$ |
 | 6.2\% | 4,489 | 4.516 | 27 | 0.6\% |
 | 7.4\% | 4,339 | 4,390 | 52 | 1.2\% |
 | 8.6\% | 4,306 | 4,375 | 68 | 1.6\% |
 | 9.9\% | 4,050 | 3,987 | ${ }^{63}$ | -1.6\% |
 | 11.1\% | 3,996 | 3,963 | ${ }^{-32}$ | -0.8\% |
 | 12.3\% | 3,953 | 3,913 | -40 | -1.0\% |
 | 13.6\% | 3,862 | 3,729 | 133 | -3.4\% |
 | 14.8\% | 3,748 | 3,647 | 101 | -2.7\% |
 | 16.0\% | 3,732 | 3,467 | -265 | -7.1\% |
 | 17.3\% | 3,731 | ${ }^{3,394}$ | ${ }^{-337}$ | -9.0\% |
 | 18.5\% | 3,621 | ${ }_{3,314}$ | -307 | \% |
 | 19.8\% | 3,491 | 3,209 | -281 | -8.1\% |
 | 21.0\% | 3,394 | ${ }^{3.190}$ | -203 | ${ }^{-6.0 \%}$ |
 | ${ }_{2}^{22.2 \%}$ | - 3,370 | 3,185 | -186 | -5.5\% |
 | ${ }^{234.7 \%}$ | | 3,143 3113 | -122 | -4.9\% |
 | 25.9\% | ${ }_{3,238}$ | 3,076 | -162 | 50\% |
 | 27.2\% | 3,190 | 2,973 | -218 | -6.8\% |
 | 28.4\% | 2,988 | 2.910 | -78 | -2.6\% |
 | 29.6\% | ${ }^{2,925}$ | 2,840 | 84 | -2.9\% |
 | 30.9\% | 2,895 | 2,806 | -89 | -3.1\% |
 | 32.1\% | 2,859 | 2,783 | ${ }^{76}$ | -2.7\% |
 | 33.3\% | 2,806 | 2,722 | -83 | -3.0\% |
 | 34.6\% | 2,722 | 2,685 | -37 | -1.46 |
 | 35.8\% | 2,639 | 2,639 | 0 | 0.0\% |
 | 37.0\% | ${ }_{\text {2,613 }}$ | ${ }_{2}^{2,620}$ | 7 | 0.3\% |
 | 38.3\% | ${ }_{\text {2,566 }}^{2,561}$ | ${ }_{2}^{2.613}$ | 47 | 1.8\% |
 | 39.5\% | ${ }^{2,561}$ | 2,471 | -91 | -3.5\% |
 | 40.7\% | 2,471 | ${ }_{2}^{2,425}$ | -45 | -1.8\% |
 | 42.0\% | ${ }_{2}^{2,426}$ | ${ }_{2,372}^{2,372}$ | -54 | -2.2\% |
 | ${ }^{43.2 \%}$ | - | ${ }_{2}^{2,293}$ | -38 | -1.7\% |
 | ${ }^{44.4 .9}$ | 2,319 | ${ }_{\text {2, }}^{2,265}$ | -54 | -2.3\% |
 | ${ }^{45.79 \%}$ | 2,299
 2,278
 1 | - | -667 | -2.98 |
 | 46.9\% | 2, 2,278 | 2,101 1 1 | -177 | 8\% |
 | ${ }^{48.19 \%}$ | 2,214
 2,100
 $\substack{2, \\ \hline}$ | 1,979 | -194 | -10.6 |
 | 50.6\% | ${ }^{2} 1915$ | ${ }^{1,906}$ | -21 | -9.2\% |
 | 51.9\% | ${ }^{1,906}$ | ${ }_{1}^{1,886}$ | ${ }_{41}$ | -2.1\% |
 | 53.1\% | 1.858 | ${ }^{1.858}$ | 0 | |
 | 54.3\% | 1,799 | 1,799 | 0 | .0\% |
 | 55.6\% | 1,792 | 1,792 | 0 | 0.0\% |
 | 56.8\% | 1,741 | 1,741 | 0 | 0.0\% |
 | 58.0\% | 1,721 | 1,728 | 8 | 0.4\% |
 | 59.3\% | 1,701 | ${ }^{1,723}$ | ${ }^{22}$ | 1.3\% |
 | 60.5\% | 1,697 | 1,721 | ${ }^{24}$ | 1.4\% |
 | ${ }^{61.7 \%}$ | ${ }^{1,692}$ | 1,701 | 9 | 0.5\% |
 | - 63.0% | 1,692 | ${ }^{1,669}$ | 5 | 0.3\% |
 | 65.4\% | | ${ }_{1}^{1,685}$ | 60 16 | 3.7\%\% |
 | 66.7\% | 1,617 | ${ }^{1,632}$ | 14 | 0.9\% |
 | 67.9\% | +1,520 | ${ }^{1,624}$ | 104 | ${ }^{6.8 \%}$ |
 | 69.1\% | 1,501 | ${ }^{1,667}$ | 117 | \% |
 | 70.1.6\% | ${ }_{826}^{1,307}$ | ${ }^{1,613}$ | 306 | 4\% |
 | 71.6\% | 826 676 | ${ }_{\text {l }}^{1,61010}$ | ${ }_{934}^{784}$ | \% |
 | 74.1\% | ${ }_{351}$ | ${ }_{1.519}^{1+610}$ | ${ }_{1}^{1,169}$ | ${ }_{333.3 \%}^{138.2 \%}$ |
 | 75.3\% | 300 | 1,296 | 996 | 332. |
 | 76.5\% | 300 | 300 | 0 | 0.0\% |
 | 77.8\% | 300 | 300 | | 0\% |
 | 79.0\% | 300 | 300 | 0 | \% |
 | 80.2\% | 300 | 300 | | 0.0\% |
 | ${ }^{81.5 \%}$ | 300 | 300 | 0 | 0.0\% |
 | 82.7\% | 300 | 300 | 0 | 0.0\% |
 | 84.0\% | 300 | 300 | 0 | 0.0\% |
 | 85.2% 88.4% | 300 | 300 | 0 | 0.0\% |
 | ${ }^{86.4 \%}$ | 300 | 300 | 0 | 0.0\% |
 | 87.7% 889% | 300 | 300 | 0 | 0.0\% |
 | ${ }^{88.9 \%}$ | 300 | 300 | 0 | 0.0\% |
 | ${ }^{90.14 \%}$ | 300 300 | 300 300 | 0 | 0.0\% |
 | 92.6\% | 300 | ${ }^{261}$ | ${ }^{-39}$ | -13.0\% |
 | 93.8\% | 300 | 229 | -71 | -23.7\% |
 | ${ }_{9}^{95.1 \%}$ | ${ }_{201}^{260}$ | ${ }_{226}^{220}$ | ${ }^{35}$ | -13.3\% |
 | 96.5\% | 200 79 | 200 100 | ${ }_{21}$ | |
 | 98.8\% | 0 | 79 | 79 | |
 | 100.0\% | 0 | 0 | 0 | |

 Banks Pumping Plant (CVP), Monthly Diversion

 Table SW-40-b
 Sans Pumping Plant (CVP), Monthly Diversion

 Table SW-40-b

 Figure SW-41-b
 San Luis Reservoir (SWP and CVP), End of Month Storage

 | |
 | :--- | :--- | :--- | :--- |

 San Luis Reservoir (SWP and CVP), End of Month Elevation

 San Luis Reserevir Prom

 | Percent | February | | $\begin{gathered} \text { Absolute } \\ \text { Difference } \\ (\text { FFETET } \end{gathered}$ | Relative |
 | :---: | :---: | :---: | :---: | :---: |
 | | $\begin{aligned} & \text { WSIP } 2070 \text { Without } \\ & \text { Proiect } \end{aligned}$ | WSIP 2070 With Project | | |
 | Probability | End of Month Elevation | End of Month Elevation | | Difference (\%) |
 | 0.0\% | ${ }_{\text {(12ET) }}^{541}$ | (IEEE) 541 | | 0.0\% |
 | 1.2\% | 541 | 541 | 0 | 0.0 |
 | 2.5\% | 541 | 541 | 0 | |
 | 3.7\% | 541 | 541 | 0 | |
 | 4.9\% | 541 | 541 | 0 | |
 | 6.2\% | 541 | 541 | 0 | 0.0\% |
 | 7.4\% | 541 | 541 | 0 | |
 | 8.6\% | ${ }_{533}^{537}$ | 541 | 4 | 0.8\% |
 | 9.9\% | ${ }_{5}^{533}$ | ${ }_{5}^{539}$ | 6 | 1.1\% |
 | 11.19\% | ${ }_{531}^{531}$ | ${ }_{5}^{537}$ | 6 | 1.2\% |
 | ${ }^{12.3 \%}$ | ${ }_{5}^{530}$ | ${ }_{5}^{534}$ | 4 | 0.7\% |
 | 13.6% 14.80% | 526 525 5 | ${ }_{5}^{531}$ | ${ }^{5}$ | 0.9\% |
 | 14.8\% 16.0% | ${ }_{525}^{525}$ | - 524 | 1 | 0.1\% |
 | -17.3\% | ${ }_{520}$ | 520 | 0 | -0.1\% |
 | 18.5\% | 517 | 516 | -1 | -0.2\% |
 | 19.8\% | 516
 516
 15 | 514 | -2 | |
 | ${ }^{21.0 \%}$ | 516 515 | 514 512 | ${ }_{-3}^{-2}$ | -0.4\% |
 | 23.5\% | 514 | 512 | -2 | -0.3\% |
 | 24.7\% | 511 | 511 | 0 | -0.1\% |
 | 25.9\% | 510 | 510 | -1 | -0.1\% |
 | - ${ }_{\text {27.4.2\% }}^{24.2 \%}$ | 510 509 | 510 510 | $\stackrel{-1}{1}$ | -0.2\% |
 | 29.6\% | 508 | 509 | 2 | 0.3\% |
 | 30.9\% | 506 505 | 509 | 3 | 0.7\% |
 | 32.1\% | 505 | 504 | -1 | -0.2\% |
 | 33.3\% | 501 | 503 | 2 | 0.4\% |
 | 34.6\% | 499 | 501 | ${ }_{2}$ | 0.4\% |
 | 年35.9\% | 497 | 500 | 2 | 0.5\% |
 | 37.0\% | 497 | 499 | 2 | 0.4\% |
 | - 38.3% | ${ }_{495}^{496}$ | ${ }_{496}^{496}$ | 1 | 0.0\% |
 | 39.5\% | ${ }_{494} 99$ | ${ }_{495}^{496}$ | 1 | 0.3\% |
 | 40.7\% | 494 494 | ${ }_{494}^{495}$ | 1 | 0.1\% |
 | ${ }^{42.3 .2 \%}$ | ${ }_{493}^{494}$ | ${ }_{493}^{494}$ | \bigcirc | 0.1\% |
 | 44.4\% | 491 | 492 | 1 | 0.2\% |
 | 45.7% 469% | ${ }_{491}^{491}$ | ${ }_{4}^{492}$ | 1 | 0.2\% |
 | 46.9\% | ${ }_{491} 491$ | 488 488 | $\stackrel{-2}{-2}$ | -0.0.3\% |
 | 49.4\% | 490 | 485 | -4 | -0.9\% |
 | 50.6\% | 480 | 483 | 3 | 0.7\% |
 | 51.9\% | 480 | ${ }^{883}$ | 4 | 0.7\% |
 | | ${ }_{479}^{480}$ | ${ }_{480}^{481}$ | ${ }_{1}$ | 0.3\% |
 | 55.6\% | 479 | 480 | 1 | 0.2\% |
 | 56.8\% | 478 | 478 | -1 | -0.2\% |
 | 58.0\% | 478 | 477 | 1 | -0.2\% |
 | 59.3\% | ${ }_{475}^{4765}$ | ${ }_{476}^{476}$ | 1 | 0.1\% |
 | | ${ }_{474}^{475}$ | 476 474 | 1 | 0.1\% |
 | 63.0\% | 471 | 473 | 2 | 0.4\% |
 | 64.2\% | 471 | 473 | 2 | 0.5\% |
 | ${ }^{65.4 \%}$ 667\% | ${ }_{468}^{469}$ | ${ }_{472}^{473}$ | 4 | 0.9\% |
 | | ${ }_{464}^{468}$ | ${ }_{471}^{472}$ | ${ }_{7}^{4}$ | 1.9\% |
 | 69.1\% | 461 | 471 | 9 | 2.0\% |
 | 70.4\% | ${ }_{460}^{461}$ | | 8 | 1.7.7\% |
 | 72.8\% | 457 | 464 | ${ }_{7}$ | 1.5\% |
 | 74.1\% | 456 | ${ }^{461}$ | 4 | 0.9\% |
 | 75.3\% | ${ }_{4}^{455}$ | ${ }^{456}$ | 1 | 0.2\% |
 | 76.5\% | 455 | ${ }^{456}$ | 1 | 0.2\% |
 | 77.0\% | ${ }_{454}^{455}$ | ${ }_{454}^{455}$ | 0 | ${ }^{-0.1 \%}$ |
 | 80.2\% | 451 | 452 | 1 | 0.1\% |
 | 81.5\% | 448 | 451 | 3 | 0.6\% |
 | 827\% | ${ }_{4}^{48}$ | ${ }_{4}^{451}$ | 3 | 0.6\% |
 | 84.0\% | ${ }_{443}^{446}$ | ${ }_{445}^{446}$ | ${ }^{2}$ | 0.19\% |
 | - ${ }_{\text {85.2\% }} 8.4 \%$ | ${ }_{442}^{443}$ | 445 444 | ${ }_{1}$ | 0.4\%\% |
 | 87.7\% | 442 | 438 | 4 | -0.8\% |
 | 88.9\% | 442 | 438 | 4 | -0.9\% |
 | 90.1\% 9 | ${ }_{439}^{430}$ | 436 436 | -4 | - -1.0% |
 | 92.6\% | 437 | 434 | -3 | -0.7\% |
 | 93.8\% | 431 | ${ }_{4}^{430}$ | 0 | -0.1\% |
 | ${ }_{96.3 \%}$ | ${ }_{424}^{424}$ | ${ }_{428}^{429}$ | ${ }_{4}^{2}$ | 0.9\% |
 | 97.5\% | 415 | 426 | 11 | 2.5\% |
 | 98.8\% 100.0\% | ${ }_{412}^{413}$ | ${ }_{375}^{414}$ | ${ }^{36}$ | - |

 Figure SW-43-b
 San Luis Reservoir (SWP and CVP), End of Month Area

 | | | October | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | | WSIP 2070 With Project | Absolute | Reative |
 | Probability | fr moth A | of Month A | (ACRE) | Herence (\%) |
 | (.0\% | ${ }_{\text {(ACRE }}{ }_{\text {10,052 }}$ | | 192 | 1.9\% |
 | 1.2\% | 9,956 | 10,132 | 176 | 1.8\% |
 | 2.5\% | 9.680 | 10,045 | 366 | 3.8\% |
 | 3.7\% | 9,508 | 9,797 | 289 | 3.0\% |
 | 4.9\% | 9,150 | 9,225 | 76 | 0.8\% |
 | 6.2\% | 9,017 | 9,149 | ${ }^{132}$ | 1.5\% |
 | 7.4\% | 9,003 | 9,123 | ${ }^{120}$ | 1.3\% |
 | 8.9\% | 8,995 | ${ }_{\text {9,067 }}$ | ${ }^{72}$ | - |
 | 9.9\% | 8.672 | 8.953 | ${ }^{281}$ | 3.2\% |
 | 11.19\% | -8,639 | 8,942
 8995 | ${ }_{3}^{303}$ | 3.5\% |
 | 12.3\% 13.6% | 8,620 8.585 | 8,935 8909 | ${ }_{324}^{316}$ | 3.7\% |
 | 14.8\% | ${ }_{8,571}^{8.585}$ | ${ }_{8,884}^{8.909}$ | 312 | 3.6\% |
 | 16.0\% | ${ }_{8,563}$ | ${ }_{8,833}$ | 270 | |
 | 17.3\% | ${ }^{8.508}$ | 8,788 | 279 | |
 | - | ${ }_{8}^{8,465}$ | ${ }^{8,733}$ | 269 | ${ }^{3.2 \%}$ |
 | 21.0\% | ${ }_{8,434}$ | ${ }_{8,611}^{8.631}$ | 177 | 2.1\% |
 | 22.2\% | 8,381 | ${ }_{8,578}$ | 197 | 2.4\% |
 | 23.5\% | ${ }^{8,373}$ | ${ }_{8,367}^{8,}$ | -6 | -0.1\% |
 | 24.7\% | ${ }^{8,323}$ | ${ }^{8,363}$ | 40 | 0.5\% |
 | ${ }^{25.5 \%}$ | 8,258 | ${ }_{8,326}$ | 68 | 0.8\% |
 | ${ }^{2727.2 \%}$ | 8,169 | 8,296 | 127 | 1.6\% |
 | 28.4\% | 8.160 | 8,269 | 109 | 1.3\% |
 | 29.6\% | 8,109 | ${ }_{8,203}^{8,102}$ | 94 | 1.2\% |
 | 30.9\% | ${ }^{8,095}$ | -8,162 | 67 | 0.8\% |
 | 32.19% 33.3% | 7.976 | ${ }^{8,156}$ | 180 | 2.3\% |
 | 33.3\% | 7,972 | 8.076 8 8 | 111 | 1.3\% |
 | 34.6% 35.8% | 7,942 | ${ }_{8}^{8,054}$ | 111 | 1.4\% |
 | 35.8\% | 7,832 | ${ }^{8.013}$ | 181 | ${ }_{23 \%}^{2.3 \%}$ |
 | 38.3\% | 7,695 | ${ }_{7,941}^{7,943}$ | ${ }_{246}$ | 3.2\% |
 | 39.5\% | 7,681 | 7,931 | 251 | 3.3\% |
 | ${ }^{40.7 \%}$ | 7,597 | 7,851 | ${ }^{254}$ | 3.3\% |
 | ${ }^{42.3 .2 \%}$ | ${ }_{7}^{7,552}$ | 7,794 | ${ }_{242}^{253}$ | 3.2\% |
 | 44.4\% | 7,466 | 7,754 | ${ }_{289}$ | 3.9\% |
 | 45.7\% | 7,429 | ${ }_{7}^{7,694}$ | ${ }^{265}$ | 3.6\% |
 | 46.9\% | 7,426 | 7,595 | 169 | 2.3\% |
 | ${ }_{4}^{48.19 \%}$ | 7,339 | 7.440 | 100 | 1.4\% |
 | 49.4\% | (7,015 | ${ }_{7}^{7,221}$ | ${ }_{219}^{206}$ | ${ }_{3.10 \%}^{2.9 \%}$ |
 | 51.9\% | 6,991 | 7,205 | 214 | 3.1\% |
 | 53.1\% | 6,968 | 7.171 | 203 | 2.9\% |
 | 54.3\% | 6,968 | 7,115 | 147 | 2.1\% |
 | 55.6\% | 㐌,967 | 7,104 | ${ }^{137}$ | 2.0\% |
 | 56.8\% | 6,949
 6.909 | 7,027 | ${ }_{81}^{78}$ | 1.1\% |
 | 59.3\% | 6,797 | 6,909 | 112 | 1.6\% |
 | | ¢,711 | 6,846 | ${ }^{135}$ | 2.0\% |
 | ${ }^{6117 \%}$ | ${ }^{6,623}$ | 6.830 | ${ }^{207}$ | ${ }^{3.1 \%}$ |
 | -63.0\% | - ${ }_{6,552}^{6,576}$ | | 1167 113 | 2.5\% |
 | 65.4\% | 6,539 | 6.471 | -68 | -1.0\% |
 | 66.7\% 6 | ¢, 6,366 | ${ }_{6}^{6,344}$ | -21 | -0.3\% |
 | ${ }^{67.9 \%}$ | ¢, ${ }_{\text {6,267 }}^{6,193}$ | $\underset{\substack{6,267 \\ 6,197}}{\text { c, }}$ | ${ }_{4}$ | 0.1\% |
 | 70.4\% | 6,182 | 6,150 | -33 | -0.5\% |
 | 71.2\% | 6,159 | ${ }_{6}^{6,075}$ | -85 | -1.4\% |
 | 72.8\% | 6.112 | ${ }_{6}^{6.028}$ | -84 | -1.4\% |
 | 74.3\% | ${ }_{5.839}^{5.905}$ | 5.874 5.709 | -30 | ${ }_{-2.2 \%}^{-0.5 \%}$ |
 | 76.5\% | 5,837 | 5.688 | -148 | -2.5\% |
 | 77.8\% | 5.829 | 5.687 | -142 | -2.4\% |
 | 79.0\% | 5,765 | 5.684 | -81 | -1.4\% |
 | 80.2\% 81.5% | - ${ }_{\text {5,672 }}^{5.632}$ | 5.660
 5.653 | -111 | -0.2\% |
 | ${ }_{8}^{82.7 \%}$ | ${ }_{5,487}^{5,532}$ | 5.653 5.529 | ${ }_{42}^{121}$ | 2.8\% |
 | 84.0\% | ${ }_{5}^{5,385}$ | 5.507 | 122 | 2.3\% |
 | 85.2\% | ¢ | | 204 165 | 3.9\% |
 | ${ }^{86.4 \%}$ | 5,202 | ${ }_{5}^{5,368}$ | 165 | ${ }_{3}^{3.2 \%}$ |
 | 88.9\% | 5,021 | ${ }_{4,846}^{5,295}$ | ${ }_{-174}$ | -3.5\% |
 | 90.1\% 0 | 4,967 | 4.818 | -149 | -3.0\% |
 | ${ }_{9} 9.4 .4 \%$ | 4,906 | ${ }_{4}^{4,592}$ | -314 | -6.4\% |
 | 93.8\% | 4.745 | ${ }_{4,528}$ | -217 | -4.6\% |
 | 95.1\% | 4.745 | 4.478 | -266 | -5.6\% |
 | 96.3\% | 4,728 | 4.419 | -309 | -6.5\% |
 | 97.5\% | 4,488 | 4,261 | -227 | -5.1\% |
 | 98.8\%\% | 3,889 3.889 | 4,189 4,049 | 300 160 | 7.7\% |
 | | | | | |

 | $\begin{gathered} \text { Percent } \\ \hline \text { Excedance } \\ \text { Probability } \end{gathered}$ | February | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | Wsip Prowewthout | WSIP 2070 With Project | | Relative |
 | | of Month A Ar | End of Mont A | Difierence | Difference |
 | (\%) | (ACRE) | (ACRE) | | |
 | 0.0\% | ${ }^{12,696}$ | 12,696 | 0 | 0.0\% |
 | 1.2\% | 12,696 | 12,696 | 0 | |
 | 2.5\% | ${ }^{12,696}$ | ${ }^{12,696}$ | 0 | 0.0\% |
 | 3.7\% | ${ }^{12,696}$ | 12,696

 12,298 | 0 | 0.0\% |
 | 4.9\% | ${ }^{12,696}$ | ${ }^{12,696}$ | 0 | 0.0\% |
 | ${ }^{6.2 \%}$ | ${ }^{12,696}$ | 12,696
 12,89 | 0 | 0.0\% |
 | 7.4\% | ${ }^{12,682}$ | 12,696 | 14 | 0.1\% |
 | 8.6\% | ${ }^{12,555}$ | ${ }^{12,696}$ | 140 | 1.19\% |
 | 9.9\%\% | ${ }^{12,449}$ | ${ }^{12,624}$ | 175 | ${ }^{1.45 \%}$ |
 | 19.1\%\% | ${ }_{\text {12,385 }}^{12359}$ | ${ }^{12,565}$ | 185 | |
 | ${ }^{13.26 \%}$ | +12,399 | +12,654 | 1135 | 0.9\% |
 | 13.48\% | 112,299 | 12,394 | ${ }^{135}$ | 0.1\% |
 | 16.0\% | 12,129 | ${ }_{12,122}^{12,42}$ | -7 | -0.1\% |
 | 17.3\% | 12,094 | 12,080 | 14 | -0.1\% |
 | 18.5\% | 12,004 | ${ }^{11,978}$ | 26 | |
 | 19.8\% | 11.980 | ${ }^{11,924}$ | ${ }_{5} 5$ | -0.5\% |
 | 21.0\% | 11,966 | 11,900 | ${ }^{66}$ | -0.6\% |
 | 22.2\% | 11,941 | 11,865 | -76 | |
 | 23.5\% | ${ }^{11,905}$ | ${ }^{11,858}$ | 47 | -0.4\% |
 | 24.7\% | 11,832 | ${ }^{11,823}$ | -9 | -0.1\% |
 | 25.9\% | ${ }^{11,807}$ | ${ }^{11,791}$ | ${ }^{16}$ | -0.1\% |
 | 27.2\% | ${ }^{11,803}$ | ${ }^{11,781}$ | ${ }^{22}$ | -0.2\% |
 | 28.4\% | ${ }^{11,756}$ | ${ }^{11,779}$ | ${ }^{24}$ | 0.2\% |
 | 29.6\% | ${ }^{11,1723}$ | ${ }^{11,1768}$ | 45 | 0.4\% |
 | - 3 30.9\% | -11,665 | ${ }^{11,764}$ | 99 | |
 | 32.1\% | 11,655 | 11,625 | -29 | -0.3\% |
 | | ${ }^{11,1522}$ | ${ }^{11,588}$ | 67 | 0.6\% |
 | 34.6%
 358% | 11,464 | 11.520 | ${ }_{72}$ | 0.5\% |
 | - $\begin{aligned} & 35.8 \% \\ & 370 \%\end{aligned}$ | 11,409 | ${ }^{11,482}$ | 12 | |
 | 38.3\% | ${ }_{111383}^{11,399}$ | ${ }^{111,4888}$ | ${ }_{-3}$ | 0.6\% |
 | 39.5\% | ${ }^{11,1,329}$ | ${ }_{111,369}$ | 40 | 0.4\% |
 | 40.7\% | ${ }^{11,319}$ | 11,336 | 17 | |
 | 42.0\% | 11,296 | 11,308 | 11 | |
 | 43.2\% | 11,264 | 11,261 | ${ }^{-3}$ | |
 | 44.4\% | 11,218 | 11,255 | 37 | 0.3\% |
 | 45.7\% | 11,209 | 11,236 | 27 | 0.2\% |
 | 46.9\% | 11,209 | 11,160 | 48 | -0.4\% |
 | 48.19\% | ${ }^{11,186}$ | ${ }^{11,112}$ | 74 | -0.7\% |
 | 49.4\% | ${ }^{11,172}$ | 11,038 | 134 | -1.2\% |
 | | 10,857 | 10,964 | 106 | 1.0\% |
 | 年 51.9% | 10,847 | ${ }^{10,963}$ | 116 | ${ }^{1.19 \%}$ |
 | 53.1\% | ${ }^{10,846}$ | 10,898 | 52 | 0.5\% |
 | 54.3\% 5 5 5 | 10,831 | 10.876 | 45 | 0.4\% |
 | 55.6\% | 10,819 | 10,849 | 30 | 0.3\% |
 | 58.0\% | - ${ }_{\text {co, }}^{10,798}$ | 10,782
 0,774 | ${ }_{-24}^{26}$ | ${ }_{\text {- }}^{0.0 .2 \%}$ |
 | 59.3\% | 10,728 | 10,747 | 20 | 0.2\% |
 | 60.5\% | 10,702 | 10,723 | ${ }_{1}^{21}$ | 0.2\% |
 | 1.7\% | | | | |
 | 63.0\% | 10,580 | 10,034 | ${ }^{54}$ | 0.5\% |
 | ${ }^{64.2 \%}$ | | | 75 | |
 | ${ }^{65.47 \%}$ | 10,490 | 10,632 | 142 | |
 | 6.9.9\% | ${ }_{\text {10, }}^{10} 524$ | ${ }_{\text {10,568 }} 10.0081$ | ${ }_{244}$ | 2.4\% |
 | 69.1\% | 10,252 | 10,563 | 311 | 3.0\% |
 | 70.4\% | 10,249 | ${ }^{10,473}$ | ${ }^{224}$ | ${ }^{2.2 \%}$ |
 | 71.6\% | 10,201 | 10,459 | ${ }^{257}$ | 2.5\% |
 | 72.8. ${ }^{72.1 \%}$ | 10,095 | 10,324 | 229 | 2.3\% |
 | 74.1\% | 10,089 | ${ }^{10,223}$ | ${ }^{135}$ | 1.3\% |
 | 76.5\% | 10,055 | 10,082 | ${ }_{27} 27$ | 0.3\% |
 | 777.8\% | -10,054 | 10.082 10.037 | $\xrightarrow{27}$ | -0.1\% |
 | 79.0\% | 10,022 | 10,014 | -8 | -0.1\% |
 | 80.2\% | 9,908 | 9,927 | 20 | 0.2\% |
 | 81.5\% | 9,823 | 9,907 | 84 | 0.9\% |
 | -82.7\% | ${ }_{\text {9,805 }}^{9,734}$ | ${ }^{9.8971}$ | ${ }_{13}^{86}$ | 0.9\% |
 | 84.2\% | ${ }_{9,645}^{9,734}$ | ${ }_{9}^{9,702}$ | 13
 57 | 0.6\% |
 | 86.4\% | 9.614 | ${ }_{9,655}$ | | 0.4\% |
 | 87.7\% | 9,609 | 9,481 | -128 | -1.3\% |
 | 88.9\% | | ${ }_{9}^{9,448}$ | -150 | |
 | 91.4\% | ${ }_{9,505}^{9.545}$ | ${ }_{9,380}^{\text {9,303 }}$ | -126 | -1.3\% |
 | 92.6\% | 9,439 | 9,337 | 102 | -1.1\% |
 | 3.8\% | 9,209 | 9,192 | -18 | 0.2\% |
 | 95.1\% | 9,066 | 9,150 | ${ }_{84}$ | 0.9\% |
 | ¢.3\% | ${ }_{8,947}$ | 9,094 | 147 | |
 | 97.5\% | 8,634 | ${ }^{9} 9.0355$ | ${ }^{401}$ | 4.6\% |
 | 98.8\% 1000% | ${ }_{\text {8, }}^{8.474}$ | ${ }_{6.735}^{8.585}$ | -1,740 | |
 | 100.0\% | ${ }_{8,474}$ | 6,735 | 1,740 | -20.5\% |

 | $\begin{gathered} \text { Percent } \\ \text { Preedance } \\ \text { Probability } \end{gathered}$ | | June | | $\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: |
 | | Prioect | WSIP 2070 With Project | Absolute | |
 | | Of Morth | of Month A | Difierence | |
 | 0．0\％ | ${ }_{\text {（12CRE）}}^{12,35}$ | ${ }_{1}^{\text {（ACRE }}$（774 | 129 | 1．0\％ |
 | 1．2\％ | ${ }^{12,335}$ | 12,344 | 9 | 0．1\％ |
 | 2．5\％ | 12，335 | 12，288 | 46 | －0．4\％ |
 | 3．7\％ | 12，136 | ${ }^{12,137}$ | 2 | 0．0\％ |
 | 4．9\％ | 11,982 | ${ }^{11,961}$ | -21 | －0．2\％ |
 | 6．2\％ | ${ }^{11,928}$ | ${ }^{11,853}$ | －75 | －0．6\％ |
 | 7．4\％ | 11.574 | ${ }^{11,563}$ | －11 | －0．1\％ |
 | 8．9\％ | ${ }^{11,357}$ | ${ }^{11,1376}$ | 19 | 0．2\％ |
 | 9．9\％ | ${ }^{11,329}$ | ${ }^{11,131}$ | －198 | －1．7\％ |
 | 11．19\％ | 11，285 | 10,871 10880 | －-74 | －．7．7\％ |
 | ＋12．3\％ | ${ }^{10,939}$ | 10.860 10748 107 | －79 | －0．7\％ |
 | － 13.48% | ${ }^{10,923} 10,804$ | 10,748 10,727 | －77 | －1．7\％ |
 | 16．0\％ | 10，770 | 10.705 | －65 | －0．6\％ |
 | 17.3% 18.5% | ${ }^{10,742}$ | ${ }^{10,662}$ | 80 | －0．7\％ |
 | 19．8\％ | ${ }_{10,684}$ | 10,047 10.597 | ${ }_{-87}$ | 迆 |
 | 21．0\％ | 10.572 | 10.533 | － | － |
 | 22．2\％ | 10．532 | 10，286 | －246 | －2．3\％ |
 | 23．5\％ | 10.418 | 10.249 | －169 | －1．6\％ |
 | 24．7\％ | 10.413 | 10，222 | －191 | －1．8\％ |
 | 25．9\％ | 10，313 | 10，209 | －103 | －1．0\％ |
 | 27．2\％ | 10，291 | 10，075 | －216 | －2．1\％ |
 | 28．4\％ | 10，094 | 10，045 | －50 | －0．5\％ |
 | 29．6\％ | ${ }^{10,038}$ | 9，992 | －46 | －0．5\％ |
 | － 32.9% | 10，016 | 9，986 | －30 | －0．3\％ |
 | 32．1\％ | 9，986 | ${ }^{9,825}$ | －160 | －1．6\％ |
 | 33．3\％ | 9，978 | 9，823 | －155 | －1．6\％ |
 | 34.6% 35.8% | 9，995 | 9，798 | －157 | －1．6\％ |
 | 335．8\％ | 9，912 | 9，760 | －172 | －1．5\％ |
 | 37．3\％ | ${ }_{9,869}^{9,894}$ | ${ }_{9,713}^{9.723}$ | －172 | －1．6\％ |
 | 39．5\％ | 9，851 | 9，701 | －150 | －1．5\％ |
 | ${ }^{40.7 \%}$ | ${ }_{9,593}^{9,717}$ | ${ }_{9,566}^{9.567}$ | －${ }_{-151}$ | －1．3\％ |
 | 43．2\％ | 9，590 | 9,450 | －141 | －1．5\％ |
 | ${ }_{4}^{44.4 \%}$ | 9，564 | 9，377 | －187 | －2．0\％ |
 | ${ }_{46.9 \%}$ | ${ }^{9,5534}$ | 9，3600 | －174 | －1．8\％ |
 | 48．1\％ | 9，499 | ${ }_{9,326}$ | －173 | －1．8\％ |
 | 49．4\％ | 9，468 | 9，286 | －183 | －1．9\％ |
 | 50．6\％ | ${ }_{\text {9，353 }} 9$ | 9,221 | －132 | －1．4\％ |
 | 51．9\％ | 9，327 | 9,014 | －314 | －3．4\％ |
 | | 9，170 | 8，948 | －222 | －2．4\％ |
 | 54．3\％ | 9，066 | 8，867 | －198 | －2．2\％ |
 | 55．6\％ | ${ }_{8,893}^{9,030}$ | 8,848 8,801 | $\begin{array}{r}-183 \\ -92 \\ \hline\end{array}$ | － |
 | 58．0\％ | 8,844 | ${ }_{8}^{8,761}$ | -82 | －0．9\％ |
 | 59．3\％ | ${ }^{8.8800}$ | ${ }_{8,7675}^{8,755}$ | －45 | －0．5\％ |
 | 年6．5\％ | 8,789 8.773 | ${ }_{8}^{8,6677}$ | -113 -109 | －1．3\％ |
 | 63．0\％ | 8,753 | ${ }_{8,522}$ | －230 | －2．6\％ |
 | 64．2\％ | 8,748 | 8.417 | －331 | －3．8\％ |
 | | 8，722 | ${ }_{8}^{8,393}$ | －330 | －3．3\％ |
 | － 66.7% | | | ${ }^{-372}$ | －${ }_{-3.3 \%}$ |
 | 69．1\％ | ${ }_{8,487}^{8,687}$ | ¢，${ }_{8,250}^{8,284}$ | ${ }_{-237}$ | －－2．8\％ |
 | 70．4\％ | 8,364 | 8，198 | －166 | ${ }_{-2.0 \%}$ |
 | 71．2\％ | ${ }^{8,332}$ | 8，194 | －138 | －1．7\％ |
 | 72．8\％ | ${ }_{8,312}$ | ${ }^{8,193}$ | －119 | －1．4\％ |
 | 74．1\％ | － $\begin{aligned} & 8,292 \\ & 8,201\end{aligned}$ | ${ }^{8,176}$ | －${ }_{-16}$ | －1．4\％ |
 | 76．5\％ | 8，195 | 8.049 | －146 | －1．8\％ |
 | 77．8\％ | ${ }_{8,161}$ | 8.042 | －119 | －1．5\％ |
 | 79．0\％ | 8，151 | 8.035 | －116 | －1．4\％ |
 | － | 8,102
 7,868 | 8.018 7 7 | ${ }^{-84}$ | －1．0\％ |
 | ${ }_{8}^{82.7 \%}$ | ${ }_{7}^{7,886}$ | 7,7960 7,799 | ${ }_{-47}^{92}$ | 1．2\％ |
 | 84．0\％ | ${ }_{7}^{7,798}$ | 77.791 | －7 | －0．1\％ |
 | 85．2\％ | 7，764 | 7，684 | －80 | －1．0\％ |
 | 86.4% 87.7% | 7，755 | ${ }_{7}^{7,376}$ | －379 | －4．9\％ |
 | 88．9\％ | ${ }_{7,295}^{7,514}$ | ${ }_{7,304}^{7,373}$ | ${ }_{-141}$ | －1．1\％ |
 | 90．1\％ | 7，168 | 6.868 | －300 | －4．2\％ |
 | 914．4\％ | 6，962 | 6，756 | －206 | －3．0\％ |
 | 92．6\％ | 㐌， 6.850 | 6．614 | －267 | －3．9\％ |
 | ${ }^{935.8 \%}$ | | 㐌，605 | －152 | － $\begin{aligned} & -.3 .3 \% \\ & -5.0 \%\end{aligned}$ |
 | 96．3\％ | 6，436 | ${ }_{5,715}^{6.115}$ | －721 | －1．1．2\％ |
 | 97．5\％ | 5，959 | 5.132 | －827 | －13．9\％ |
 | 98．8\％ | 5，068 | ＋ 4.687 | ${ }_{-148}$ | －7．7\％ |
 | 100．0\％ | 4，086 | 3，939 | －147 | －3．6\％ |

 Figure SW-44-b
 San Luis Reservoir (CVP), End of Month Storage

 Table SW-44-b

 San Luis Reservoir (CVP), End of TMonth Storage

 Table SW-44-b

 | | | June | | |
 | :---: | :---: | :---: | :---: | :---: |
 | $\underset{\substack{\text { Percent } \\ \text { Exceadance }}}{ }$ | WSIP 2070 W.thout
 Proiet | WSIP 2070 With Project | Absolute | |
 | Probability | End of Morts Storage | End of Month Storage | Difierence ${ }_{\text {(TAF) }}$ | Difference (\%) |
 | ${ }_{\text {cos }}^{\text {(\%) }}$ | (TAF) | | | |
 | 1.2\% | 929 | ${ }_{9} 92$ | -8 | |
 | 2.5\% | 910 | 907 | $\stackrel{-4}{4}$ | -0.4\% |
 | 3.7\% | 864 | 875 | 11 | 1.2\% |
 | 4.9\% | 857 | ${ }^{875}$ | 18 | 2.1\% |
 | -6.4\% | 849 836 | 869 869 | ${ }_{33}^{20}$ | 2.4\% |
 | 8.6\% | ${ }_{832}$ | ${ }^{869}$ | ${ }^{33}$ | -8.6\% |
 | 9.9\% | 819 | ${ }_{7} 71$ | ${ }_{-88}$ | -10.8\% |
 | ${ }^{11.12 \%}$ | ${ }_{773} 77$ | ${ }^{727}$ | -47 | -6.19 |
 | ${ }^{12.3 \%}$ | ${ }^{737}$ | 719 | -18 | |
 | 13.6% 14.8% | 6997 | 702 | 3 | 0.4\% |
 | - $14.8 .8 \%$ | ${ }_{696}^{697}$ | ${ }_{662}^{675}$ | - ${ }_{-34}$ | - |
 | 17.3\% | 665 | 659 | -7 | -1.0\% |
 | 18.5\% | ${ }_{654}^{654}$ | ${ }_{6}^{657}$ | ${ }^{3}$ | 0.5\% |
 | 19.8\% | 651 | 654 | 2 | 0.3\% |
 | 21.0\% | ${ }_{6}^{634}$ | ${ }_{6}^{615}$ | -20 | -3.1\% |
 | ${ }^{22.2 \%}$ | ${ }_{633}^{633}$ | ${ }_{603}^{603}$ | -29 | -4.5\% |
 | - 23.5% | 632 625 | ${ }_{591}^{603}$ | -28 | -4.5\% |
 | 24.7\% | 625 | 591 | -35 | -.5.5\% |
 | ${ }^{25.59 \%}$ | 620 613 | 576 562 | -43 -51 | -7.0\% |
 | ${ }^{277.2 \%}$ | ${ }_{6} 613$ | 556 | -51 | -8.3\% |
 | 28.4\% | 595
 584 | 560 549 | -35 -35 | -5.8\% |
 | 29.6\% | | 549 548 | -35 -26 | ${ }_{-6.5 \%}^{50.5}$ |
 | 32.1\% | 574 | 538
 532 | - ${ }_{-26}$ | -7.0\% |
 | 33.3\% | 560 | 532 | -28 | -5.1\% |
 | 34.5\% | 541 | 525 | -16 | -3.0\% |
 | 退35.8\% | ${ }_{521}^{539}$ | 511 511 | -20 -10 | -3.7\%\% |
 | 38.3\% | 503 | 484 | -19 | -3.8\% |
 | 39.5\% | 489 | 462 | -27 | -5.5\% |
 | ${ }^{40.7 \%}$ | ${ }_{477} 87$ | ${ }_{441}^{456}$ | -32 | ${ }_{-6.6 \%}^{-6.6 \%}$ |
 | 43.2\% | 477 | 437 | -39 | -8.3\% |
 | 44.4\% | 466 | 419 | -47 | -10.0\% |
 | 45.7\% | 464 453 | ${ }_{415}^{417}$ | - ${ }_{-}$ | -10.1\% |
 | 46.9\% | 453 | 415 | -38 | -8.4\% |
 | 48.1\% 4.4% | 449 439 | ${ }_{4}^{410}$ | -39 | -8.7\% |
 | 50.6\% | ${ }_{416}$ | ${ }_{363}$ | - -53 | ${ }_{\text {- }}$ |
 | 51.9\% | ${ }^{373}$ | 362 | -11 | -3.0\% |
 | 53.1\% | 364 | ${ }^{359}$ | | -1.5\% |
 | | 349 349 | 348
 348 | $\stackrel{-1}{-1}$ | -2.2\% ${ }_{-0.3 \%}$ |
 | 56.8\% | 349 | ${ }_{347}^{348}$ | -1 | - 1.0% |
 | | ${ }_{3}^{345}$ | ${ }_{3}^{347}$ | 7 | 2.1\% |
 | ${ }^{50.5 \%}$ | ${ }_{335}^{335}$ | 345 301 | ${ }_{-34}$ | - |
 | 61.7\% | 328 | 297 | -31 | -9.4\% |
 | 63.0\% | 317 383 | ${ }_{273}^{278}$ | -38 | -12.0\% |
 | - ${ }^{64.2 \%}$ 6.4\% | ${ }^{283}$ | ${ }^{273}$ | -9 | -3.3\% |
 | ${ }^{654.7 \%}$ | ${ }_{274}^{275}$ | 260 250 | -16 -24 | -5.9\% |
 | 67.9\% | 268 | 249 | -18 | -6.8\% |
 | 69.1\% | ${ }^{267}$ | 247 | -20 | -7.4\% |
 | 70.4\% | ${ }^{256}$ | ${ }_{2}^{240}$ | -16 | -6.1\% |
 | 71.6\% ${ }^{72.8 \%}$ | 248 231 | ${ }_{214}^{232}$ | -16 | -6.6\% |
 | 72.8\% | ${ }_{230}^{231}$ | 214 213 | -17 -17 | -7.7.5\% |
 | 75.3\% | 218 | 204 | -14 | --.2\% |
 | 76.5\% | 217 | 196 | -21 | -9.6\% |
 | 778\% | 215 199 | 182 182 | --33 | -15.3\% |
 | 80.2\% | 199 191 | - 178 | -17 | -8.6\% |
 | 81.5\% | 180 | 177 | ${ }^{-3}$ | -1.6\% |
 | 82.7% 840% | 175 169 | 176 | 0 | 0.19\% |
 | 84.2\% | ${ }_{156}^{159}$ | ${ }_{164}^{168}$ | ${ }_{7}$ | ${ }_{\text {- }}$ |
 | 86.4\% | 140 | 146 | 6 | 3.9\% |
 | 877\% | 140 | 143 | -18 | 2.2\% |
 | ${ }^{88.9 \%}$ | 139 | ${ }_{114}^{121}$ | -18 | ${ }^{-13.3 \%}$ |
 | 91.4\% | 135 | 96 | - ${ }^{-23}$ | -28.5\% |
 | 92.6\% | 103 | 94 | -9 | -8.7\% |
 | 93.8\% | ${ }_{89}^{99}$ | 76 | -23 | -22.9\% |
 | ${ }_{9}^{95.1 \%}$ | 86 86 | 70 59 | - -27 | -18.8\% |
 | 96.3\% ${ }_{\text {97 }} 9$ | 86 45 | 59 53 | ${ }_{8}^{27}$ | -31.0\% |
 | 998.8\% | ${ }_{45}^{45}$ | 53 45 | 8 | - |
 | 100.0\% | 25 | 45 | 20 | 77.1\% |

 Figure SW-45-b
 San Luis Reservoir (SWP), End of Month Storage

 | | | February | | |
 | :---: | :---: | :---: | :---: | :---: |
 | ${ }_{\text {Percent }}^{\text {Preeances }}$ | WSIP 2070 Without Proiect | WSIP 2070 With Project | Absolute | Reatio |
 | Probability | End of Monts St | End of Month Storage | （taf） | Difference（\％） |
 | \％\％ | （TAF） | （TAF） | | |
 | | 1，067 | 1，067 | 0 | 0．0\％ |
 | 1．2\％ | 1，067 | 1，067 | | |
 | 2．5\％ | 1，067 | 1，067 | 0 | |
 | 3．7\％ | 1，067 | 1，067 | 0 | 0．0\％ |
 | 4．9\％ | 1，067 | 1，067 | 0 | 0．0\％ |
 | 6．2\％ | ${ }^{1,067}$ | ${ }^{1.067}$ | 0 | 0．0\％ |
 | 7．4\％ | 1，067 | ${ }^{1,067}$ | 0 | 0．0\％ |
 | 8．6\％ | ${ }^{1,067}$ | ${ }^{1,067}$ | 0 | 0．0\％ |
 | ${ }^{\text {9．9\％\％}}$ | ${ }^{1,067}$ | ${ }_{1,067}^{1,067}$ | 0 | 0．0\％ |
 | 11．1\％ | ${ }^{1,067}$ | 1,047 | －20 | －1．9\％ |
 | ${ }^{12.36 \%}$ | 1,061 | 1，040 | ${ }^{22}$ | 隹 |
 | 13．6\％ | 1,040 | 978 | －63 | \％ |
 | 14．8\％ | 981 | 958 | ${ }^{231}$ | 䢒 |
 | 14．0\％\％ | 979 | 998 | － | |
 | 18．5\％ | ${ }_{932}$ | ${ }_{937}$ | 5 | 0．6\％ |
 | 19．8\％ | ${ }^{931}$ | 933 | 2 | 0．2\％ |
 | 21．0\％ | 928 | 922 | －6 | －0．6\％ |
 | 22．2\％ | 898 | 908 | 9 | |
 | － 23.5 | 896 | 907 | 11 | ${ }_{\text {1．2\％}}^{1.2 \%}$ |
 | 24．7\％ | 894 | ${ }_{907} 90$ | ${ }_{12}^{13}$ | 1．5\％ |
 | ${ }^{27.2 \%}$ | 875 | ${ }_{888}$ | 13 | |
 | 28．4\％ | 873 | 854 | －20 | －2．3\％ |
 | 29．6\％ | 870 | 846 | -24 | －2．8\％ |
 | 30．9\％ | 857 | 844 | －13 | －1．6\％ |
 | 32．19\％ | ${ }_{837} 83$ | ${ }_{8}^{834}$ | －10 | ${ }^{-1.2 \%}$ |
 | 33．3\％ | 837 833 | 838 830 | 2 | 0．2\％ |
 | 34.6% 35.8% | ${ }^{833}$ | 830 | 4 | 0．5\％ |
 | 35．8．${ }^{3}$ | 820 | 882 | 9 | ${ }_{5}^{1.2 \%}$ |
 | 38．3\％ | 765 | ${ }_{819}^{820}$ | ${ }_{54}^{45}$ | 7．1\％ |
 | 39．5\％ | 765 | 798 | 33 | 4．3\％ |
 | 40．7\％ | ${ }_{7795} 7$ | 797 | 49 | 6．5\％ |
 | 42．0\％ | ${ }_{775} 73$ | 777 | 61 | ${ }^{8.3 \%}$ |
 | 44．4\％ | ${ }_{723}$ | 767 | ${ }_{44}^{48}$ | ${ }_{6.1 \%}^{6.5 \%}$ |
 | 45．7\％ | 716 | 763 | | |
 | 46．9\％ | 707 | 759 | 52 | 7．4\％ |
 | 48．1\％ | 700 | 740 | 40 | 5\％ |
 | 4．9．4\％ | 698 | ${ }^{734}$ | 35 | |
 | | 685 | 719 | ${ }^{34}$ | 5．0\％ |
 | 年 $\begin{aligned} & 51.9 \% \\ & 53.1 \%\end{aligned}$ | 680 | 716 | ${ }^{36}$ | 5．3\％ |
 | 㐌53．3\％ | 678 | 706 | ${ }^{28}$ | 4．1\％ |
 | 54．3\％ | 670 | 701 | 31 | 4．5\％ |
 | 㐌5．6\％ | 649 | 698 | 49 | 7．5\％ |
 | 56．8\％ | 609 | 684 | 75 | ${ }^{12.3 \%}$ |
 | 59．3\％ | 607 | 682 | 75 | ${ }^{12.3 \%}$ |
 | 59．3\％ | 603 | ${ }^{670}$ | ${ }_{58}^{68}$ | ${ }_{\text {c }}^{11.2 \%}$ |
 | 㐌 60.7% | 599 | ${ }_{648}^{658}$ | ${ }_{56}^{58}$ | ${ }_{9}^{9.75 \%}$ |
 | 6．3．7\％ | | 648 | ${ }_{48}^{56}$ | 9．5\％ |
 | 64．2\％ | 553 | ${ }_{633}^{635}$ | ${ }_{80}^{48}$ | 814．4\％ |
 | 65．4\％ | 552 | 601 | 49 | 8．9\％ |
 | 66．7\％ | 522 | 595 | 73 | ．0\％ |
 | 67．9\％ | 504 | 570 | 66 | 1\％ |
 | 69．1\％ | 492 | 562 | 70 | 14．2\％ |
 | 71．6\％ | 478 | 546 | ${ }_{68}$ | 5．1\％ |
 | 72．8\％ | 472 | 515 | ${ }^{68}$ | |
 | 74．1\％ | 462 | 505 | ${ }_{43}^{43}$ | ${ }^{9.3 \% \%}$ |
 | 75．3\％ | 454 | 486 | 32 | 7．1\％ |
 | 76．5\％ | 453 | 466 | 13 | 3．0\％ |
 | 778\％ | 448 | 457 | 9 | 2．1\％ |
 | 79．0\％ 80.2% | ${ }^{446}$ | 455 | 9 | 1．9\％ |
 | － | ${ }^{43}$ | 449 | 7 | 1．5\％ |
 | 815\％ 88.7% | 437 | ${ }^{424}$ | ${ }^{13}$ | －3．0\％ |
 | 827．7\％ | ${ }^{433}$ | 410 | －23 | 5．3\％ |
 | 84．0\％ | 385 | 402 | 17 | 4．4\％\％ |
 | － 85.2 \％ 8.4% | ${ }_{381}^{383}$ | ${ }^{383}$ | 0 | －0．15\％ |
 | － 8 84．7\％ | 381 | 355
 358 | ${ }_{-6}$ | ${ }_{\text {－}}^{\text {－}}$ |
 | 88．9\％ | 371 | 355 | ${ }_{-17}$ | －4．5\％ |
 | 90．1\％ | ${ }^{366}$ | ${ }^{347}$ | 18 | 5．0\％ |
 | 91．4\％ | 345 | 337 | －9 | 2．6\％ |
 | ${ }_{9}^{92.8 \%}$ | ${ }_{334}$ | ${ }_{339} 3$ | ${ }_{-8}$ | －2．3\％ |
 | 9．35\％ | 334 | 329 | －5 | ${ }^{-1.5 \%}$ |
 | 96．3\％ | 334 | 231 | －12 | －3．3\％ |
 | ${ }^{97.5 \%}$ | 302 | 312 | 10 | ${ }^{5} 36$ |
 | 98．8\％ | ${ }_{272}$ | 282 | 10 | \％ 5 \％ |
 | 100．0\％ | 237 | ${ }_{191}$ | ${ }_{46}$ | ${ }^{\text {－}}$－${ }^{\text {3．2\％}}$ |

 Table SW－45－b

 | | | June | | |
 | :---: | :---: | :---: | :---: | :---: |
 | $\xrightarrow{\text { Percent }}$ | WSIP 2070 Without Proiet | WSIP 2070 With Project | Absolute | |
 | Probability | End of Month Storage | End of Month Storage | Difference （TAF） | Difference（\％） |
 | 0．0\％ | ${ }_{1,027}$ | ${ }_{1,067}$ | 40 | 3．9\％ |
 | 1．2\％ | 953 | 973 | 20 | 2．1\％ |
 | 2．5\％ | 952 | 960 | | 0．8\％ |
 | 3.7% 4.9% | 948 ${ }_{947}$ | 9930 ${ }_{9}^{937}$ | －88 | －0．8\％${ }_{-10 \%}$ |
 | 4．9\％ | ${ }_{881}^{947}$ | ${ }_{909}^{937}$ | -10 28 | －1．0\％ |
 | 7．4\％ | ${ }_{770}^{881}$ | ${ }_{717}^{999}$ | 28 -53 | |
 | 8．6\％ | 764 | 676 | ${ }_{-88}$ | ${ }_{-1.15 \%}^{-6.5 \%}$ |
 | 9．9\％ | 696 | 669 | －27 | －3．9\％ |
 | 11．19\％ | 679 | 661 | 18 | －2．6\％ |
 | 12．3\％ | 676 | 656 | ${ }^{20}$ | |
 | | ${ }_{641}^{675}$ | ${ }_{635}^{655}$ | －－6 | － |
 | 16．0\％ | 626 | 609 | －17 | －2．8\％ |
 | 17．3\％ | 611 | 598 | -13 | －2．1\％ |
 | 18．5\％ | $\stackrel{594}{572}$ | 586
 578 | | －1．3\％ |
 | 19．8\％ | 572 | 578 | 6 | 1．0\％ |
 | 21．0\％ | 567 568 | 577 | 9 | 1．6\％ |
 | 22．2\％ | 566 | 558 | －8 | －1．5\％ |
 | 23．5\％ 247% | 563 559 | 546 | －17 | －3．0\％ |
 | 24．7\％ | $\begin{array}{r}559 \\ 552 \\ \hline 5\end{array}$ | ${ }_{532}$ | －27 | －4．8\％ |
 | ${ }^{25.59 \%}$ | $\begin{array}{r}552 \\ 542 \\ \hline\end{array}$ | 530 526 | ${ }^{-22}$ | －4．0\％ |
 | ${ }^{27.2 \%}$ 28．4\％ | ${ }_{532}^{542}$ | ${ }_{5}^{526}$ | －16 | －2．9\％ |
 | 28．4\％ | 年 $\begin{array}{r}538 \\ 528\end{array}$ | 509 509 | －24 | －4．5\％ |
 | 30．9\％ | 524 | 499 | －25 | －4．8\％ |
 | 32．1\％ | 514 | 498 | －16 | －3．1\％ |
 | 年33．3\％ | 501 495 | 480 480 | － 22 -15 | －${ }_{-}^{-3.3 \%}$ |
 | 35．8\％ | 487 | 479 | 8 | －1．7\％ |
 | 37．0\％ | 478 | 472 | －6 | －1．2\％ |
 | － $\begin{aligned} & 38.3 \% \\ & 39.5 \%\end{aligned}$ | 471 | 465 | －6 | －1．4\％ |
 | 30．7\％ | ${ }_{467}^{469}$ | ${ }_{463}^{464}$ | ${ }_{-6}^{-6}$ | －1．2\％ |
 | 42．0\％ | 457 | 459 | 1 | 0．3\％ |
 | 43．2\％ | 457 | 456 | －1 | －0．2\％ |
 | 44．4\％ | 439 | 449 | 10 | 2．4\％ |
 | 45.7% 469% | ${ }_{418}^{425}$ | ${ }_{414}^{439}$ | 14 | 3．3\％ |
 | 46．9\％ | 418 | 414 | 4 | －0．9\％ |
 | 48．19\％ | 415 | 393 | －21 | －5．1\％ |
 | 49．4\％ | 414 | ${ }_{3}^{388}$ | －26 | －6．2\％ |
 | 50．9\％ | ${ }_{406}^{411}$ | 385 383 | －26 | －5．7\％\％ |
 | | 402 | ${ }^{380}$ | －22 | －5．5\％ |
 | 54．3\％ | 399 | ${ }^{380}$ | －19 | －4．7\％ |
 | 㐌5．5．8\％ | 394
 382 | 375 371 | －19 | ${ }_{-3.9 \%}^{-4.9 \%}$ |
 | 58．0\％ | 362 | 364 | 2 | |
 | 59．3\％ | 359 357 | 358 | －1 | －0．3\％ |
 | 60．5\％ | － $\begin{array}{r}357 \\ 357 \\ \hline\end{array}$ | 349 | -7 -9 | －2．1\％ |
 | 63．0\％ | 348 | 345 | -3 | －0．9\％ |
 | 64．2\％ | 348 | 341 | －7 | －1．9\％ |
 | ${ }^{65.4 \%}$ | ${ }_{338}^{338}$ | ${ }_{338}^{338}$ | 0 | 0．0\％ |
 | 66．7\％ 67.9% | 332 330 | 334 | 3 | 0．8\％ |
 | 67．9\％ | 330 330 | ${ }_{329}^{329}$ | －1 | －0．3\％ |
 | 70．4\％ | 325 | 323 | －2 | －0．7\％ |
 | 71．6\％ | 322 | 312 | －10 | －3．1\％ |
 | 72．8\％ | 320 316 | 303 301 | －15 | －5．3\％ |
 | 74．1\％ 7 | ${ }_{311}^{316}$ | 301

 88 | －15 | －${ }_{-1.7 \%}$ |
 | 76．5\％ | 304 | 266 | －38 | －12．5\％ |
 | 778\％ | ${ }^{302}$ | ${ }^{256}$ | －45 | －15．0\％ |
 | 79．0\％ 80.2% | 267 260 | ${ }_{248}^{249}$ | －11 | ${ }^{-6.5 \%}$ |
 | 81．5\％ | ${ }_{257}^{250}$ | ${ }_{244}^{248}$ | ${ }^{-11}$ | ${ }^{-4.4 \%}$ |
 | － 8 82．7\％ | ${ }_{2}^{242}$ | ${ }_{2}^{240}$ | － | －1．1\％ |
 | 84．0\％ | ${ }_{233}^{239}$ | ${ }_{233}^{239}$ | －1 | －0．2\％ |
 | 86．4\％ | ${ }_{223}^{225}$ | ${ }^{221}$ | 4 | －2．0\％ |
 | 887\％ | ${ }^{223}$ | ${ }^{220}$ | －3 | －1．2\％ |
 | 88．9\％ | ${ }_{2} 214$ | 201 | －13 | －6．0\％ |
 | ${ }^{90.1 \%} 9$ | 209 | 196 | －13 | －6．3\％ |
 | 914．4\％ | 198 178 | 163 | －35 | －17．9\％ |
 | 93．8\％ | 169 | 101 | ${ }_{-68}$ | ${ }^{-20.30 \%}$ |
 | 95．1\％ | 165 | 98 | －67 | －40．7\％ |
 | 96．3\％ | 160 | ${ }_{61}^{94}$ | －67 | －41．6\％ |
 | ${ }_{9}^{97.5 \%}$ | 157 80 | 61
 58 | ${ }_{-92}$ | －61．3\％ |
 | 100．0\％ | 68 | ${ }_{55}^{50}$ | ${ }_{-13}$ | ${ }_{-18.7 \%}$ |

 1-State Water Project (SWP) Allocations
 Long-term Average and Average by Water Year Type

 1ward rid
 2 As defined by the Sacramentio Valley $40-30-30$ Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

 ## DCR 2015 Without Project

 3-State Water Project (SWP) Contract Deliveries
 Long-term Average and Average by Water Year Type

 | Long-term Average and Average by Water Year Type | | | |
 | :---: | :---: | :---: | :---: |
 | Analysis Period | Ag Service Deliveries (Jan-Dec, TAF) | M\&I Service Deliveries (Jan-Dec, TAF) | Total Ag and M\&I Service Deliveries (Jan-Dec, TAF) |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | 653 | 1,984 | 2,638 |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | 889 | 2,567 | 3,456 |
 | Above Normal | 805 | 2,334 | 3,140 |
 | Below Normal | 663 | 2,074 | 2,737 |
 | Dry | 462 | 1,560 | 2,023 |
 | Critical | 275 | 934 | 1,209 |

 Cased on the 82 -year simulation period
 2As defined by the Sacramentio Valley $40-30-30$ Index Water Year Hydrologic Classificaion (SWRCB D-1641, 199 ,

 | DCR 2015 Without Project 2-State Water Project (SWP) Delivery Operations Long-term Average and Average by Water Year Type | | | |
 | :---: | :---: | :---: | :---: |
 | Analysis Period | SWP Table A Delivery (wlo Art 56) (Jan-Dec, TAF) | SWP Article 56 Delive Dec, TAF) | ticle 21 Delivery (Jan Dec, TAF) |
 | Long-term | | | |
 | $\overline{\text { Full Simulation Period }{ }^{1}}$ | 2.499 | 82 | 57 |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | 3,269 | 106 | 82 |
 | Above Normal | 2,957 | 70 | 112 |
 | Below Normal | 2,593 | 99 | 44 |
 | Dry | 1,939 | 64 | 20 |
 | Critical | 1,140 | 46 | 23 |

 2-State Water Project (SWP) Delivery Operations
 Long-term Average and Average by Water Year Type

 2 As defined by the Sacramentio Valley $40-30-30$ Index Water Year Hydrologic Classification (SWRCCB $D-1641,1999$)

 | DCR 2015 Without Project
 4-State Water Project (SWP) Contract Deliveries | |
 | :---: | :---: |
 | | |
 | Long-term Average and Average by Water Year Type | |
 | Analysis Period | FRSA Settlement (Jan-Dec, TAF) |
 | Long-term | |
 | Full Simulation Period ${ }^{1}$ | 947 |
 | Water Year Types ${ }^{2}$ | |
 | Wet | 975 |
 | Above Normal | 983 |
 | Below Normal | 980 |
 | Dry | 986 |
 | Critical | 757 |
 | 1 Based on the 82 -year simulation period | |
 | 2 As defined by the Sacramento Valley $40.30-30$ Index Water Year Hydrologic Classific | |

 CR 2015 Without Projec
 5-State Water Project (SWP) Contract Deliveries

 ## 解-term Average and Average by Water Year Type

 | Long-term Average and Average by Water Year Type | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Sacramento River Hydrologic Region | San Joaquin River Hydrologic Region | San Francisco Bay Hydrologic Region | Central Coast Hydrologic Region | Tulare Lake | drologic Region | South Lahonton Hydrologic Region | South Coast | drologic Region |
 | | M\&l Service (Jan-Dec, TAF) | Ag Service (Jan-Dec, TAF) | M\&l Service (Jan-Dec, TAF) | M\&l Service (Jan-Dec, TAF) | Ag Service (Jan-Dec, TAF) | M\&l Service (Jan-Dec, TAF) | M\&l Service (Jan-Dec, TAF) | Ag Service (Jan-Dec, TAF) | M\&1 Service (Jan-Dec, TAF) |
 | | | | | | | | | | |
 | Long.term | | | | | | | | | |
 | Full Simulation Period ${ }^{1}$ | 31 | 4 | 212 | 43 | 641 | 83 | 275 | 8 | 1,340 |
 | Water Year Types ${ }^{2}$ | | | | | | | | | |
 | Wet | 37 | 5 | 274 | 59 | 874 | 112 | 362 | 11 | 1,723 |
 | Above Normal | 36 | 4 | 253 | 52 | 791 | 100 | 324 | 10 | 1,569 |
 | Below Normal | 34 | 4 | 222 | 45 | 651 | 85 | 285 | 8 | 1,403 |
 | Dry | 27 | 3 | 164 | 32 | 454 | 61 | 212 | 6 | 1,065 |
 | Critical | 16 | 1 | 97 | 18 | 271 | 36 | 126 | 3 | 640 |

 2As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999
 With Project deliveries and allocation to SWP would be similar to Without Project

 ## CVP Deliveries - Without Project (DCR 2015)

 DCR 2015 Without Projec
 1-Central Valley Project (CVP) Allocation
 Long-term Average and Average by Water Year Type

 | Analysis Period | Ag Service Allocation (EO May) | SOD Ag Service Allocation (EO May) | M\&I Service Allocation (EO May) | SOD M\&I Service Allocation (EO May) | Settlement Contract
 Allocation (EO May) | Exchange Contract Allocation (EO May) | Refuge Level 2 Contract Allocation (EO May) |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term | | | | | | | |
 | Full Simulation Period ${ }^{1}$ | 61\% | 50\% | 86\% | 80\% | 97\% | 97\% | 97\% |
 | Water Year Types ${ }^{2}$ | | | | | | | |
 | Wet | 93\% | 78\% | 99\% | 94\% | 100\% | 100\% | 100\% |
 | Above Normal | 85\% | 62\% | 97\% | 86\% | 100\% | 100\% | 100\% |
 | Below Normal | 56\% | 42\% | 85\% | 77\% | 100\% | 100\% | 100\% |
 | Dry | 38\% | 33\% | 78\% | 74\% | 99\% | 99\% | 99\% |
 | Critical | 13\% | 13\% | 61\% | 61\% | 83\% | 85\% | 83\% |

 1 Based on the 82 -year simulation period
 2As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

 DCR 2015 Without Project
 2-Central Valley Project (CVP) Contract Deliveries
 Long-term Average and Average by Water Year Type

 | Long-term Average and Average by Water Year Type | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Ag Service Deliveries (Mar-Feb, TAF) | M\&I Service Deliveries (Mar-Feb, TAF) | Total Ag and M\&l Service Deliveries (Mar-Feb, TAF) | Total Settlement and Exchange Deliveries (MarFeb, TAF) | Total Refuge Level 2 and 4 Supplies (Mar-Feb, TAF) |
 | Long-term | | | | | |
 | Full Simulation Period ${ }^{1}$ | 1,172 | 498 | 1,669 | 2,792 | 565 |
 | Water Year Types ${ }^{2}$ | | | | | |
 | Wet | 1,809 | 513 | 2,322 | 2,805 | 590 |
 | Above Normal | 1,484 | 509 | 1,993 | 2,819 | 586 |
 | Below Normal | 1,015 | 486 | 1,501 | 2,852 | 587 |
 | Dry | 772 | 494 | 1,266 | 2,841 | 567 |
 | Critical | 287 | 472 | 759 | 2,597 | 462 |
 | 1 Based on the 82 -year simulation period | | | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | | | |

 DCR 2015 Without Projec
 3-Refuge Water Supplies (CVP Contract, Sites and Acquisitions Supplies) Long-term Average and Average by Water Year Type

 | Analysis Period | Total Refuge Level 2 Supplies (Mar-Feb, TAF) | Total Refuge Level 4 Sites Supplies (Mar-Feb, TAF) |
 | :---: | :---: | :---: |
 | Long-term | | |
 | Full Simulation Period ${ }^{1}$ | 432 | 0 |
 | Water Year Types ${ }^{2}$ | | |
 | Wet | 453 | 0 |
 | Above Normal | 449 | 0 |
 | Below Normal | 450 | 0 |
 | Dry | 432 | 0 |
 | Critical | 348 | 0 |
 | period | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | |

 ## DCR 2015 Without Project

 ## 4-Central Valley Project (CVP) Contract Deliveries

 ## Long-term Average and Average by Water Year Type

 | Long-term Average and Average by Water Year Type | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Sacramento River Hydrologic Region | | | San Joaquin River Hydrologic Region | | | San Francisco Bay Hydrologic Region | | Tulare Lake Hydrologic Region |
 | Analysis Period | Ag Service (Mar-Feb, TAF) | $\begin{aligned} & \text { M\&l Service (Mar-Feb, } \\ & \text { TAF) } \end{aligned}$ | Settlement (Mar-Feb, TAF) | $\begin{gathered} \text { Ag Service (Mar-Feb, } \\ \text { TAF) } \end{gathered}$ | M\&l Service (Mar-Feb, TAF) | Exchange (Mar-Feb, TAF) | Ag Service (Mar-Feb, TAF) | M\&I Service (Mar-Feb, TAF) | Ag Service (Mar-Feb, TAF) |
 | Long-term | | | | | | | | | |
 | Full Simulation Period ${ }^{1}$ | 216 | 202 | 1,940 | 302 | 16 | 852 | 37 | 280 | 617 |
 | Water Year Types ${ }^{2}$ | | | | | | | | | |
 | Wet | 324 | 227 | 1,930 | 472 | 19 | 875 | 58 | 268 | 954 |
 | Above Normal | 301 | 227 | 1,944 | 373 | 17 | 875 | 46 | 265 | 764 |
 | Below Normal | 198 | 203 | 1,977 | 254 | 15 | 874 | 31 | 268 | 532 |
 | Dry | 135 | 185 | 1,977 | 199 | 15 | 864 | 24 | 294 | 413 |
 | Critical | 46 | 148 | 1,856 | 76 | 12 | 741 | 9 | 312 | 156 |

 1 Based on the 82 -year simulation period
 2 As defined by the Sacramento Valley $40-30-30$ Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

 DCR 2015 Without Project
 5 -Refuge Water Supplies (CVP Contract, Sites and Acquisitions Supplies) Long-term Average and Average by Water Year Type

 | Analysis Period | Sacramento River Hydrologic Region | | San Joaquin River Hydrologic Region | | Tulare Lake Hydrologic Region | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Refuge L2 (Mar-Feb, TAF) | Refuge L4-Sites (MarFeb, TAF) | Refuge L2 (Mar-Feb, TAF) | Refuge L4-Sites (MarFeb, TAF) | Refuge L2 (Mar-Feb, TAF) | Refuge L4-Sites (Mar-Feb, TAF) |
 | Long-term | | | | | | |
 | Full Simulation Period ${ }^{1}$ | 159 | 0 | 261 | 0 | 12 | 0 |
 | Water Year Types ${ }^{2}$ | | | | | | |
 | Wet | 172 | 0 | 269 | 0 | 12 | 0 |
 | Above Normal | 168 | 0 | 269 | 0 | 12 | 0 |
 | Below Normal | 170 | 0 | 268 | 0 | 12 | 0 |
 | Dry | 155 | 0 | 265 | 0 | 12 | 0 |
 | Critical | 114 | 0 | 224 | 0 | 10 | 0 |

 ## sed on the 82 -year simulation period

 2 As defined by the Sacramento Valley $40-30$-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

 ## DCR 2015 With Project

 1-Central Valley Project (CVP) Allocation
 Long-term Average and Average by Water Year Type

 | Long-term Average and Average by Water Year Type | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Ag Service Allocation (EO May) | SOD Ag Service Allocation (EO May) | M\&I Service Allocation (EO May) | SOD M\&I Service Allocation (EO May) | Settlement Contract Allocation (EO May) | Exchange Contract Allocation (EO May) | Refuge Level 2 Contract Allocation (EO May) |
 | Long-term | | | | | | | |
 | Full Simulation Period ${ }^{1}$ | 62\% | 50\% | 86\% | 81\% | 97\% | 97\% | 97\% |
 | Water Year Types ${ }^{2}$ | | | | | | | |
 | Wet | 93\% | 78\% | 99\% | 94\% | 100\% | 100\% | 100\% |
 | Above Normal | 87\% | 61\% | 97\% | 86\% | 100\% | 100\% | 100\% |
 | Below Normal | 57\% | 43\% | 85\% | 77\% | 100\% | 100\% | 100\% |
 | Dry | 39\% | 34\% | 79\% | 75\% | 99\% | 99\% | 99\% |
 | Critical | 13\% | 13\% | 61\% | 61\% | 83\% | 85\% | 83\% |

 1 Based on the 82 -year simulation period
 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

 DCR 2015 With Project
 2-Central Valley Project (CVP) Contract Deliveries Long-term Average and Average by Water Year Type

 | Analysis Period | Ag Service Deliveries (Mar-Feb, TAF) | M\&I Service Deliveries (Mar-Feb, TAF) | Total Ag and M\&l Service Deliveries (Mar-Feb, TAF) | Total Settlement and Exchange Deliveries (MarFeb, TAF) | Total Refuge Level 2 and 4 Supplies (Mar-Feb, TAF) |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term | | | | | |
 | Full Simulation Period 1 | 1,176 | 497 | 1,673 | 2,794 | 571 |
 | Water Year Types ${ }^{2}$ | | | | | |
 | Wet | 1,803 | 513 | 2,316 | 2,805 | 593 |
 | Above Normal | 1,486 | 509 | 1,995 | 2,821 | 590 |
 | Below Normal | 1,033 | 485 | 1,518 | 2,852 | 595 |
 | Dry | 787 | 494 | 1,281 | 2,839 | 577 |
 | Critical | 284 | 471 | 755 | 2,609 | 469 |

 1 Based on the 82 -year simulation period
 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

 DCR 2015 With Project
 3-Refuge Water Supplies (CVP Contract, Sites and Acquisitions Supplies) Long-term Average and Average by Water Year Type

 | Analysis Period | Total Refuge Level 2 Supplies (Mar-Feb, TAF) | Total Refuge Level 4 Sites Supplies (Mar-Feb, TAF) |
 | :---: | :---: | :---: |
 | Long-term | | |
 | Full Simulation Period ${ }^{1}$ | 438 | 37 |
 | Water Year Types ${ }^{2}$ | | |
 | Wet | 456 | 59 |
 | Above Normal | 452 | 48 |
 | Below Normal | 457 | 30 |
 | Dry | 442 | 24 |
 | Critical | 355 | 5 |
 | 1 Based on the 82-year simulation period | | |
 | 2 As defined by the Sacramento 1999) | -30-30 Index Water Year Hydrologic | Classification (SWRCB D-1641, |

 ## DCR 2015 With Project
 4-Central Valley Project (CVP) Contract Deliveries
 Long-term Average and Average by Water Year Type

 | Analysis Period | Sacramento River Hydrologic Region | | | San Joaquin River Hydrologic Region | | | San Francisco Bay Hydrologic Region | | Tulare Lake Hydrologic Region
 Ag Service (Mar-Feb, TAF) |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Ag Service (Mar-Feb, TAF) | M\&l Service (Mar-Feb, TAF) | Settlement (Mar-Feb, TAF) | Ag Service (Mar-Feb, TAF) | M\&l Service (Mar-Feb, TAF) | Exchange (Mar-Feb, TAF) | Ag Service (Mar-Feb, TAF) | M\& Service (Mar-Feb, TAF) | |
 | Long-term | | | | | | | | | |
 | Full Simulation Period ${ }^{1}$ | 219 | 201 | 1,941 | 303 | 16 | 852 | 37 | 280 | 617 |
 | Water Year Types ${ }^{2}$ | | | | | | | | | |
 | Wet | 323 | 226 | 1,930 | 473 | 19 | 875 | 58 | 268 | 949 |
 | Above Normal | 308 | 226 | 1,946 | 372 | 17 | 875 | 45 | 266 | 761 |
 | Below Normal | 203 | 202 | 1,977 | 259 | 15 | 875 | 32 | 268 | 538 |
 | Dry | 140 | 184 | 1,975 | 202 | 15 | 864 | 25 | 295 | 419 |
 | Critical | 48 | 147 | 1,869 | 77 | 12 | 741 | 9 | 311 | 151 |

 1 Based on the 82 -year simulation period
 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

 DCR 2015 With Project
 5-Refuge Water Supplies (CVP Contract, Sites and Acquisitions Supplies)
 Long-term Average and Average by Water Year Type

 | | Sacramento River Hydrologic Region | | San Joaquin River Hydrologic Region | | Tulare Lake Hydrologic Region | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Refuge L2 (Mar-Feb, TAF) | Refuge L4- Sites (MarFeb, TAF) | Refuge L2 (Mar-Feb, TAF) | Refuge L4-Sites (MarFeb, TAF) | Refuge L2 (Mar-Feb, TAF) | Refuge L4-Sites (Mar-Feb, TAF) |
 | Analysis Period | | | | | | |
 | Long-term | | | | | | |
 | Full Simulation Period ${ }^{1}$ | 165 | 1 | 261 | 29 | 12 | 7 |
 | Water Year Types ${ }^{2}$ | | | | | | |
 | Wet | 175 | 1 | 269 | 48 | 12 | 11 |
 | Above Normal | 171 | 1 | 269 | 38 | 12 | 9 |
 | Below Normal | 177 | 1 | 268 | 24 | 12 | 6 |
 | Dry | 165 | 0 | 264 | 19 | 12 | 4 |
 | Critical | 121 | 0 | 223 | 4 | 10 | 1 |
 | 1 Based on the 82 -year simulation period | | | | | | |
 | 2 As defined by the Sacran | 40-30-30 Index Water Year | gic Classification (SWRCB | 1999) | | | |

 # CVP Deliveries - Comparison

 Difference: DCR 2015 With Project minus DCR 2015 Without Projec

 Difference: DCR 2015 With Project minus DCR 2015 Without Projec}

 1-Central Valley Project (CVP) Allocation

 ## Long-term Average and Average by Water Year Type

 | Analysis Period | Ag Service Allocation (EO May) | SOD Ag Service Allocation (EO May) | M\&I Service Allocation (EO May) | SOD M\&I Service
 Allocation (EO May) | Settlement Contract
 Allocation (EO May) | Exchange Contract Allocation (EO May) | Refuge Level 2 Contract Allocation (EO May) |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term | | | | | | | |
 | Full Simulation Period ${ }^{1}$ | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |
 | Water Year Types ${ }^{2}$ | | | | | | | |
 | Wet | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |
 | Above Normal | 2\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |
 | Below Normal | 2\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% |
 | Dry | 1\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% |
 | Critical | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |

 1 Based on the 82 -year simulation period
 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

 | Difference: DCR 2015 With Project minus DCR 2015 Without Project 2-Central Valley Project (CVP) Contract Deliveries Long-term Average and Average by Water Year Type | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Ag Service Deliveries (Mar-Feb, TAF) | M\&I Service Deliveries (Mar-Feb, TAF) | Total Ag and M\&I Service Deliveries (Mar-Feb, TAF) | Total Settlement and Exchange Deliveries (MarFeb, TAF) | Total Refuge Level 2 and 4 Supplies (Mar-Feb, TAF) |
 | Long-term | | | | | |
 | Full Simulation Period ${ }^{1}$ | 4 | -1 | 4 | 2 | 6 |
 | Water Year Types ${ }^{2}$ | | | | | |
 | Wet | -5 | -1 | -6 | 0 | 3 |
 | Above Normal | 3 | 0 | 2 | 2 | 3 |
 | Below Normal | 18 | -1 | 17 | 0 | 7 |
 | Dry | 14 | 0 | 14 | -2 | 10 |
 | Critical | -3 | -1 | -4 | 12 | 7 |

 1 Based on the 82 -year simulation period
 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) DCR 2015 Without Project

 Difference: DCR 2015 With Project minus DCR 2015 Without Project
 3-Refuge Water Supplies (CVP Contract, Sites and Acquisitions Supplies)
 Long-term Average and Average by Water Year Type

 | | Total Refuge Level 2
 Analysis Period
 Supplies (Mar-Feb, TAF) | Total Refuge Level 4 Sites
 Supplies (Mar-Feb, TAF) |
 | :--- | :---: | :---: |
 | Long-term | | |
 | Full Simulation Period ${ }^{1}$ | 6 | 37 |
 | | Water Year Types ${ }^{2}$ | |
 | Wet | 3 | 59 |
 | Above Normal | 3 | 48 |
 | Below Normal | 7 | 30 |
 | Dry | 10 | 24 |
 | Critical | 7 | 5 |
 | period | | |
 | 2 As defined by the Sacramento Valley | | |
 | 100-30-30 | | |

 ## Difference: DCR 2015 With Project minus DCR 2015 Without Projec

 4-Central Valley Project (CVP) Contract Deliveries
 Long-term Average and Average by Water Year Type

 | Long-term Average and Average by Water Year Type | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Sacramento River Hydrologic Region | | | San Joaquin River Hydrologic Region | | | San Francisco Bay Hydrologic Region | | Tulare Lake Hydrologic Region
 Ag Service (Mar-Feb, TAF) |
 | Analysis Period | Ag Service (Mar-Feb, TAF) | M\&l Service (Mar-Feb, TAF) | Settlement (Mar-Feb, TAF) | Ag Service (Mar-Feb, TAF) | M\&l Service (Mar-Feb, TAF) | Exchange (Mar-Feb, TAF) | Ag Service (Mar-Feb, TAF) | M\&I Service (Mar-Feb, TAF) | |
 | Long-term | | | | | | | | | |
 | Full Simulation Period ${ }^{1}$ | 3 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 |
 | Water Year Types ${ }^{2}$ | | | | | | | | | |
 | Wet | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -5 |
 | Above Normal | 7 | 0 | 2 | -1 | 0 | 0 | 0 | 0 | -3 |
 | Below Normal | 5 | -1 | 0 | 5 | 0 | 0 | 1 | 0 | 7 |
 | Dry | 5 | -1 | -2 | 3 | 0 | 0 | 0 | 1 | 6 |
 | Critical | 1 | -1 | 12 | 1 | 0 | 0 | 0 | 0 | -5 |

 1 Based on the 82 -year simulation period
 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

 Difference: DCR 2015 With Project minus DCR 2015 Without Project
 5 -Refuge Water Supplies (CVP Contract, Sites and Acquisitions Supplies)
 Long-term Average and Average by Water Year Type

 | Analysis Period | Sacramento River Hydrologic Region | | San Joaquin River Hydrologic Region | | Tulare Lake Hydrologic Region | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Refuge L2 (Mar-Feb, TAF) | Refuge L4-Sites (Mar-
 Feb, TAF) | Refuge L2 (Mar-Feb, TAF) | Refuge L4-Sites (Mar-
 Feb, TAF) | Refuge L2 (Mar-Feb, TAF) | Refuge L4-Sites (Mar-Feb, TAF) |
 | Long-term | | | | | | |
 | Full Simulation Period ${ }^{1}$ | 6 | 1 | 0 | 29 | 0 | 7 |
 | Water Year Types ${ }^{2}$ | | | | | | |
 | Wet | 3 | 1 | 0 | 48 | 0 | 11 |
 | Above Normal | 3 | 1 | 0 | 38 | 0 | 9 |
 | Below Normal | 7 | 1 | 0 | 24 | 0 | 6 |
 | Dry | 10 | 0 | 0 | 19 | 0 | 4 |
 | Critical | 8 | 0 | -1 | 4 | 0 | 1 |

 1 Based on the 82 -year simulation period
 2 As defined by the Sacramento Valley $40-30$-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

 ## Sites Reservoir Benefits

 Difference: DCR 2015 With Project minus DCR 2015 Withou Project
 1-Sites Deliveries to Sacramento Valley Members
 Long-term Average and Average by Water Year Type

 | (Mar-Feb, TAF) | | |
 | :--- | :--- | :---: |
 | Analysis Period | Long-term | |
 | | | |
 | Full Simulation Period ${ }^{1}$ | | |
 | | Water Year Types 2 | |
 | Wet | 23 | |
 | Above Normal | 71 | |
 | Below Normal | 127 | |
 | Dry | 162 | |
 | Critical | 146 | |
 | | | |

 1 Based on the 82 -year simulation period
 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

 3 Includes Sites delivery to TCCA members, GCID, RD108, County of Colusa, and Western Canal WD

 Difference: DCR 2015 With Project minus DCR 2015 Without Project
 2-Sites Deliveries to South of Delta Members
 Long-term Average and Average by Water Year Type

 | Analysis Period | M\&l (Jan-Dec, TAF) | Ag (Jan-Dec, TAF) | Total (Jan-Dec, TAF) |
 | :---: | :---: | :---: | :---: |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | 66 | 20 | 86 |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet | 1 | 0 | 1 |
 | Above Normal | -6 | -2 | -8 |
 | Below Normal | 12 | 4 | 15 |
 | Dry | 204 | 62 | 266 |
 | Critical | 129 | 39 | 169 |

 1 Based on the 82 -year simulation period
 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

 3 Accounts for 18% deduction for carriage water for Delta Export

 Long-term Average and Average by Water Year Type
 Ag Service Table A Allocation (EO M\&I Service Table A Allocation (EO FRSA Settlement Contract

 Critical (15\%)
 2As defined by the Sacramentio Valley $40-30-30$ Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

 | Long-term Average and Average by Water Year Type | | | |
 | :---: | :---: | :---: | :---: |
 | Analysis Period | SWP Table A Delivery (w/o Art 56) (Jan-Dec, TAF) | SWP Article 56 Deliv Dec, TAF) | ticle 21 Delivery (JanDec, TAF) |
 | Long-term | | | |
 | Full Simulation Period ${ }^{\text {a }}$ | 2,443 | 65 | 65 |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet (30\%) | 3,315 | 65 | 120 |
 | Above Normal (15\%) | 2,912 | 70 | 87 |
 | Below Normal (21\%) | 2,434 | 91 | 54 |
 | Dry (20\%) | 1,819 | 47 | 15 |
 | Critical (15\%) | 1,044 | 49 | 12 |

 1ased on the 82 -year simulation neio
 2 As defined by the Sacramento Valley $40-30-30$ Index Water Year Hydrologic Classification (SWRCCB $D-1641,1999$)

 ## WSIP 2030 Without Project

 3-State Water Project (SWP) Contract Deliveries
 Long-term Average and Average by Water Year Type

 | Long-term Average and Average by Water Year Type | | | |
 | :---: | :---: | :---: | :---: |
 | Analysis Period | Ag Service Deliveries (Jan-Dec, TAF) | M\&l Service Deliveries (Jan-Dec, TAF) | Total Ag and M\&l Service Deliveries (Jan-Dec, TAF) |
 | Long-term | | | |
 | Full Simulation Period ${ }^{1}$ | 645 | 1,928 | 2,573 |
 | Water Year Types ${ }^{2}$ | | | |
 | Wet (30\%) | 923 | 2,577 | 3,500 |
 | Above Normal (15\%) | 766 | 2,302 | 3,068 |
 | Below Normal (21\%) | 625 | 1,954 | 2,579 |
 | Dry (20\%) | 443 | 1,438 | 1,881 |
 | Critical (15\%) | 252 | 853 | 1,105 |

 | WSIP 2030 Without Project |
 | :---: |
 | 4-State Water Project (SWP) Contract Deliveries |
 | Long-term Average and Average by Water Year Type |

 | | |
 | :---: | :---: |
 | Analysis Period | FRSA Settlement (Jan-Dec, TAF) |

 | | FRSA Settlement (Jan-Dec, TAF) |
 | :--- | :--- |
 | Full Simulation Period | |

 | Full Simulation Perioc ${ }^{1}$ | | |
 | :--- | :--- | :--- |
 | | Water Year Types 2 | |

 | Water Year Typess | |
 | :--- | :---: |

 WSIP 2030 Without Project
 5-State Water Project (SWP) Contract Deliveries

 ## Long-term Average and Average by Water Year Type

 | Analysis Period | Sacramento River Hydrologic Region | San Joaquin River Hydrologic Region | San Francisco Bay Hydrologic Region | Central Coast Hydrologic Region | Tulare Lake | drologic Region | South Lahonton Hydrologic Region | South Coast Hy | drologic Region |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | M\&l Service (Jan-Dec, TAF) | Ag Service (Jan-Dec, TAF) | M\&1 Service (Jan-Dec, TAF) | M\&l Service (Jan-Dec, TAF) | Ag Service (Jan-Dec, TAF) | M\&l Service (Jan-Dec, TAF) | M\&l Service (Jan-Dec, TAF) | Ag Service (Jan-Dec, TAF) | M\&1 Service (Jan-Dec, TAF) |
 | Long-term | | | | | | | | | |
 | Full Simulation Period ${ }^{\text {d }}$ | 31 | 3 | 209 | 43 | 633 | 82 | 269 | 8 | 1,296 |
 | Water Year Types ${ }^{2}$ | | | | | | | | | |
 | Wet (30\%) | 37 | 5 | 279 | 60 | 906 | 115 | 368 | 11 | 1,720 |
 | Above Normal (15\%) | 36 | 4 | 250 | 51 | 752 | 97 | 319 | 9 | 1,550 |
 | Below Normal (21\%) | 33 | 3 | 214 | 42 | 614 | 80 | 267 | 8 | 1,319 |
 | Dry (20\%) | 25 | 2 | 155 | 31 | 435 | 59 | 198 | 6 | 970 |
 | Critical (15\%) | 15 | 1 | 89 | 17 | 248 | 33 | 115 | 3 | 583 |

 With Project deliveries and allocation to SWP would be similar to Without Project

 ## CVP Deliveries - Without Project (WSIP 2030)

 WSIP 2030 Without Project
 1-Central Valley Project (CVP) Allocation
 Long-term Average and Average by Water Year Type

 | Analysis Period | Ag Service Allocation (EO May) | SOD Ag Service Allocation (EO May) | M\&I Service Allocation (EO May) | SOD M\&I Service Allocation (EO May) | Settlement Contract
 Allocation (EO May) | Exchange Contract Allocation (EO May) | Refuge Level 2 Contract Allocation (EO May) |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term | | | | | | | |
 | Full Simulation Period ${ }^{1}$ | 47\% | 44\% | 78\% | 77\% | 98\% | 98\% | 98\% |
 | Water Year Types ${ }^{2}$ | | | | | | | |
 | Wet (30\%) | 75\% | 71\% | 91\% | 90\% | 100\% | 100\% | 100\% |
 | Above Normal (15\%) | 65\% | 57\% | 90\% | 82\% | 100\% | 100\% | 100\% |
 | Below Normal (21\%) | 44\% | 39\% | 76\% | 74\% | 100\% | 100\% | 100\% |
 | Dry (20\%) | 24\% | 23\% | 68\% | 67\% | 100\% | 100\% | 100\% |
 | Critical (15\%) | 11\% | 11\% | 60\% | 60\% | 88\% | 88\% | 88\% |

 WSIP 2030 Without Project
 2-Central Valley Project (CVP) Contract Deliveries
 Long-term Average and Average by Water Year Type

 | Analysis Period | Ag Service Deliveries (Mar-Feb, TAF) | M\&l Service Deliveries (Mar-Feb, TAF) | Total Ag and M\&I Service Deliveries (Mar-Feb, TAF) | Total Settlement and Exchange Deliveries (MarFeb, TAF) | Total Refuge Level 2 and 4 Supplies (Mar-Feb, TAF) |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term | | | | | |
 | Full Simulation Period ${ }^{1}$ | 1,004 | 477 | 1,481 | 2,805 | 568 |
 | Water Year Types ${ }^{2}$ | | | | | |
 | Wet (30\%) | 1,617 | 491 | 2,108 | 2,800 | 588 |
 | Above Normal (15\%) | 1,300 | 488 | 1,788 | 2,831 | 584 |
 | Below Normal (21\%) | 898 | 463 | 1,361 | 2,836 | 585 |
 | Dry (20\%) | 517 | 469 | 986 | 2,869 | 572 |
 | Critical (15\%) | 258 | 468 | 726 | 2,659 | 485 |
 | 1 Based on the 82 -year simulation period | | | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | | | |

 ## WSIP 2030 Without Projec

 3-Refuge Water Supplies (CVP Contract, Sites and Acquisitions Supplies) Long-term Average and Average by Water Year Typ

 | Analysis Period | Total Refuge Level 2 Supplies (Mar-Feb, TAF) | Total Refuge Level 4 Sites Supplies (Mar-Feb, TAF) |
 | :---: | :---: | :---: |
 | Long-term | | |
 | Full Simulation Period ${ }^{1}$ | 433 | 0 |
 | Water Year Types ${ }^{2}$ | | |
 | Wet (30\%) | 450 | 0 |
 | Above Normal (15\%) | 447 | 0 |
 | Below Normal (21\%) | 447 | 0 |
 | Dry (20\%) | 434 | 0 |
 | Critical (15\%) | 365 | 0 |
 | period | | |
 | 2 As defined by the Sacramento 1999) | 0-30-30 Index Water Year Hydrologi | Classification (SWRCB D-1641, |

 ## WSIP 2030 Without Project

 ## 4-Central Valley Project (CVP) Contract Deliveries

 ## Long-term Average and Average by Water Year Type

 | Long-term Average and Average by Water Year Type | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Sacramento River Hydrologic Region | | | San Joaquin River Hydrologic Region | | | San Francisco Bay Hydrologic Region | | Tulare Lake Hydrologic Region
 Ag Service (Mar-Feb, TAF) |
 | Analysis Period | Ag Service (Mar-Feb, TAF) | M\&l Service (Mar-Feb, TAF) | Settlement (Mar-Feb, TAF) | Ag Service (Mar-Feb, TAF) | M\&1 Service (Mar-Feb, TAF) | Exchange (Mar-Feb, TAF) | Ag Service (Mar-Feb, TAF) | M\&I Service (Mar-Feb, TAF) | |
 | Long-term | | | | | | | | | |
 | Full Simulation Period ${ }^{1}$ | 168 | 187 | 1,945 | 265 | 15 | 859 | 32 | 274 | 539 |
 | Water Year Types ${ }^{2}$ | | | | | | | | | |
 | Wet (30\%) | 262 | 211 | 1,926 | 430 | 18 | 875 | 53 | 262 | 872 |
 | Above Normal (15\%) | 231 | 212 | 1,957 | 342 | 16 | 874 | 41 | 260 | 685 |
 | Below Normal (21\%) | 155 | 184 | 1,961 | 231 | 15 | 874 | 29 | 264 | 483 |
 | Dry (20\%) | 85 | 167 | 1,996 | 135 | 13 | 873 | 17 | 288 | 280 |
 | Critical (15\%) | 41 | 146 | 1,885 | 69 | 12 | 774 | 8 | 310 | 140 |

 1 Based on the 82 -year simulation period
 2 As defined by the Sacramento Valley $40-30$-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

 WSIP 2030 Without Project
 5 -Refuge Water Supplies (CVP Contract, Sites and Acquisitions Supplies) Long-term Average and Average by Water Year Type

 | Analysis Period | Sacramento River Hydrologic Region | | San Joaquin River Hydrologic Region | | Tulare Lake Hydrologic Region | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Refuge L2 (Mar-Feb, TAF) | Refuge L4 - Sites (MarFeb, TAF) | Refuge L2 (Mar-Feb, TAF) | Refuge L4-Sites (MarFeb, TAF) | Refuge L2 (Mar-Feb, TAF) | Refuge L4-Sites (Mar-Feb, TAF) |
 | Long-term | | | | | | |
 | Full Simulation Period ${ }^{1}$ | 158 | 0 | 263 | 0 | 12 | 0 |
 | Water Year Types ${ }^{2}$ | | | | | | |
 | Wet (30\%) | 170 | 0 | 268 | 0 | 12 | 0 |
 | Above Normal (15\%) | 166 | 0 | 268 | 0 | 12 | 0 |
 | Below Normal (21\%) | 167 | 0 | 268 | 0 | 12 | 0 |
 | Dry (20\%) | 155 | 0 | 267 | 0 | 12 | 0 |
 | Critical (15\%) | 120 | 0 | 234 | 0 | 11 | 0 |

 $\frac{\text { Critical }(15 \%)}{1 \text { Based on the } 82 \text {-year simulation period }}$
 2 As defined by the Sacramento Valley $40-30-30$ Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

 | Long-term Average and Average by Water Year Type | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Analysis Period | Ag Service Allocation (EO May) | SOD Ag Service Allocation (EO May) | M\&I Service Allocation (EO May) | SOD M\&I Service Allocation (EO May) | Settlement Contract
 Allocation (EO May) | Exchange Contract Allocation (EO May) | Refuge Level 2 Contract Allocation (EO May) |
 | Long-term | | | | | | | |
 | $\overline{\text { Full Simulation Period }}{ }^{1}$ | 48\% | 44\% | 78\% | 76\% | 98\% | 98\% | 98\% |
 | Water Year Types ${ }^{2}$ | | | | | | | |
 | Wet (30\%) | 75\% | 71\% | 91\% | 89\% | 100\% | 100\% | 100\% |
 | Above Normal (15\%) | 65\% | 55\% | 91\% | 82\% | 100\% | 100\% | 100\% |
 | Below Normal (21\%) | 44\% | 37\% | 75\% | 74\% | 100\% | 100\% | 100\% |
 | Dry (20\%) | 25\% | 23\% | 68\% | 68\% | 100\% | 100\% | 100\% |
 | Critical (15\%) | 12\% | 12\% | 59\% | 59\% | 88\% | 88\% | 88\% |
 | 1 Based on the 82 -year simula | | | | | | | |

 WSIP 2030 With Project
 2-Central Valley Project (CVP) Contract Deliveries Long-term Average and Average by Water Year Type

 | Analysis Period | Ag Service Deliveries (Mar-Feb, TAF) | M\&I Service Deliveries (Mar-Feb, TAF) | Total Ag and M\&l Service Deliveries (Mar-Feb, TAF) | Total Settlement and Exchange Deliveries (MarFeb, TAF) | Total Refuge Level 2 and 4 Supplies (Mar-Feb, TAF) |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Long-term | | | | | |
 | Full Simulation Period ${ }^{1}$ | 996 | 475 | 1,472 | 2,808 | 576 |
 | Water Year Types ${ }^{2}$ | | | | | |
 | Wet (30\%) | 1,608 | 490 | 2,098 | 2,799 | 591 |
 | Above Normal (15\%) | 1,280 | 488 | 1,768 | 2,833 | 587 |
 | Below Normal (21\%) | 871 | 461 | 1,331 | 2,837 | 593 |
 | Dry (20\%) | 529 | 468 | 997 | 2,867 | 586 |
 | Critical (15\%) | 263 | 464 | 727 | 2,685 | 498 |

 1 Based on the 82 -year simulation period
 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

 WSIP 2030 With Project
 3-Refuge Water Supplies (CVP Contract, Sites and Acquisitions Supplies) Long-term Average and Average by Water Year Type

 | Analysis Period | Total Refuge Level 2 Supplies (Mar-Feb, TAF) | Total Refuge Level 4 Sites Supplies (Mar-Feb, TAF) |
 | :---: | :---: | :---: |
 | Long-term | | |
 | Full Simulation Period ${ }^{1}$ | 441 | 35 |
 | Water Year Types ${ }^{2}$ | | |
 | Wet (30\%) | 454 | 53 |
 | Above Normal (15\%) | 450 | 47 |
 | Below Normal (21\%) | 456 | 38 |
 | Dry (20\%) | 448 | 21 |
 | Critical (15\%) | 377 | 1 |
 | period | | |
 | 2 As defined by the Sacramento 1999) | -30-30 Index Water Year Hydrologi | Classification (SWRCB D-1641, |

 ## WSIP 2030 With Project

 ## 4-Central Valley Project (CVP) Contract Deliveries

 ## Long-term Average and Average by Water Year Type

 | g-term Average and Average by Water Year | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Sacramento River Hydrologic Region | | | San Joaquin River Hydrologic Region | | | San Francisco Bay Hydrologic Region | | Tulare Lake Hydrologic Region |
 | Analysis Period | Ag Service (Mar-Feb, TAF) | M\&I Service (Mar-Feb, TAF) | Settlement (Mar-Feb, TAF) | Ag Service (Mar-Feb, TAF) | M\&l Service (Mar-Feb, TAF) | Exchange (Mar-Feb, TAF) | Ag Service (Mar-Feb, TAF) | M\&I Service (Mar-Feb, TAF) | Ag Service (Mar-Feb, TAF) |
 | Long-term | | | | | | | | | |
 | Full Simulation Period ${ }^{1}$ | 168 | 186 | 1,949 | 263 | 15 | 859 | 32 | 274 | 533 |
 | Water Year Types ${ }^{2}$ | | | | | | | | | |
 | Wet (30\%) | 261 | 210 | 1,925 | 428 | 18 | 875 | 53 | 262 | 865 |
 | Above Normal (15\%) | 231 | 212 | 1,958 | 335 | 16 | 875 | 41 | 260 | 673 |
 | Below Normal (21\%) | 154 | 183 | 1,962 | 225 | 15 | 875 | 28 | 263 | 464 |
 | Dry (20\%) | 88 | 166 | 1,994 | 139 | 13 | 873 | 17 | 288 | 285 |
 | Critical (15\%) | 41 | 142 | 1,910 | 70 | 12 | 774 | 8 | 310 | 144 |

 1 Based on the 8 -year simulation period
 2 As defined by the Sacramento Valley 40 -30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999)

 WSIP 2030 With Project
 5-Refuge Water Supplies (CVP Contract, Sites and Acquisitions Supplies)
 Long-term Average and Average by Water Year Type

 | | Sacramento River | Hydrologic Region | San Joaquin River | ydrologic Region | Tulare Lake H | rologic Region |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Refuge L2 (Mar-Feb, TAF) | Refuge L4-Sites (MarFeb, TAF) | Refuge L2 (Mar-Feb, TAF) | Refuge L4-Sites (MarFeb, TAF) | Refuge L2 (Mar-Feb, TAF) | Refuge L4-Sites (Mar-Feb, TAF) |
 | Analysis Period | | | | | | |
 | Long-term | | | | | | |
 | Full Simulation Period ${ }^{1}$ | 166 | 1 | 263 | 28 | 12 | 6 |
 | Water Year Types ${ }^{2}$ | | | | | | |
 | Wet (30\%) | 173 | 1 | 268 | 42 | 12 | 10 |
 | Above Normal (15\%) | 170 | 1 | 267 | 37 | 12 | 9 |
 | Below Normal (21\%) | 176 | 1 | 268 | 30 | 12 | 7 |
 | Dry (20\%) | 169 | 0 | 267 | 17 | 12 | 4 |
 | Critical (15\%) | 131 | 0 | 235 | 1 | 11 | 0 |
 | 1 Based on the 82 -year simulation period | | | | | | |
 | 2 As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999) | | | | | | |

 # CVP Deliveries - Comparison

 Difference: WSIP 2030 With Project minus WSIP 2030 Wihout Project

 Difference: WSIP 2030 With Project minus WSIP 2030 Wihout Project[^1]: *Letter, resolution or support card included as part of this submittal

[^2]: ${ }^{1}$ Based on a 100-year study period beginning at construction per WSIP guidance.

[^3]: ${ }^{2}$ Enet of any non-mitigated physical effects

