CDFW - Sites 60 day Evaluation Meeting No. 2 Meeting Agenda

Sites Reservoir Project

Date: June 5, 2019

Location:

Jacobs Office: 2485 Natomas Park Drive, Suite 600

Time: 11:30 am – 2:00

Purpose: Continue 60 day evaluation of Operational Scenarios.

Invitees:

Kristal Davis Fadtke- CDFW Rob Thomson, Sites Authority Kevin Spesert, Sites Authority Ali Forsythe, Sites Authority Duane Linander- CDFW

Ken Kundargi- CDFW Lenny Grimaldo, ICF Marin Greenwood, ICF Jim Lecky, ICF Mike Dietl, Reclamation Filipe La Luz – CDFW Chris Fitzer, ESA Associates Rob Tull, Jacobs John Spranza, HDR

Agenda:

Discussion Topic	Topic Leader	Est Time
1. Role Call	Kristal Davis Fadtke Rob Thomson	5 min
2. Review of Action Items from Previous Meeting	John Spranza	15 min
3. Henderson et al discussion	Marin Greenwood	60 min
 4. Operations: Hydrology and Modeling a. Daily Model Discussion a. Assumptions b. Hydrology b. CalSim 	Rob Tull	60 min
5. Assumptions		
6. Next steps for 60 day schedule	Group discussion	10 min

Action items:

TABLE 1. ACTION ITEMS FROM PREVIOUS MEETING

Action Item		Owner	Deadline	Notes
1	Send 2018 Henderson Paper around	JJS	06/03/19	
2	Send hydrology presentation slides to CDFW and ESA	JJS	06/03/19	

Action Item		Owner	Deadline	Notes
3	CDFW to provide desired model years for next workshop	CDFW	06/04/19	
4	CDFW to provide contact for terrestrial discussions	CDFW	06/05/19	
5				
6				
7				

General Meeting Notes

CDFW - SITES 60 DAY EVALUATION

June 5, 2019

Agenda

- Introductions and Purpose
- Recap and Update
- OBAN and Flow-Mortality Approach
- USRDOM
- CalSim Details
- Next Steps

Purpose of the 60-day

Guide the Authority to increase the clarity of the Project Description and supporting analyses for an affordable project capable of providing meaningful water supply and dedicated ecosystem benefits looking toward

- Final EIR/EIS
- Permit applications

Action Items

- Distribution of Henderson
- Distribution of Presentation
- Definition of desired analysis years
- Coordination of other technical teams, contacts

Life-cycle and Flow Mortality Analyses

USRDOM and CalSim2 Details

Next Meeting Planning

This technical team

- Week of June 10
- Topics
- Action Items
- Other technical teams?

Anticipated Issues

- Diversion rate and timing
- Trigger values
- Floodplain and Bypass habitat
- Coldwater pool development and release
- Flow stability supply development and release effects
- Flow-mortality analysis and scientific basis
- Sites Reservoir water quality and release effects
- Sediment management
- Delta Outflow management and effects

Next Steps?

Topics, Date

Daily Analysis of Divertible Flow Available for Sites Reservoir

6-5-19

Daily Modeling for Sites Project

- A set of daily modeling tools has been developed to evaluate the quantity of flow available for potential diversions to the proposed Sites Reservoir under a range of hydrologic conditions and operations criteria
- These tools can be used to:
 - Support further understanding of the interactions of Sites Project with flow conditions in the Sacramento River
 - Evaluate the affect of various flow regulations, facility constraints, and operation criteria on flow availability for Sites Project

Daily Model - USRDOM

- Upper Sacramento River Daily Operations Model
- Simulates daily flow conditions in the Upper Sacramento River based on operations specified by CalSim II
- Can be used to evaluate Sites Reservoir benefits
- Original hydrology dataset included 82-year period from WY 1922 to WY 2003 using available historical gage records and operations data

Daily Modeling Application

USRDOM HindCast (2018)

- 1964 2018
- HEC5Q
- Calibrated with gage data (Sac R at Bend Bridge, Colusa, and Wilkins Slough)
- Simulates daily flows in the Upper Sacramento River based on CalSim outputs for WY 1964 - 2018

criteria

Flow Availability Tool

- 2009 2018
- Excel
- Inputs from USRDOM Hindcast (2018) model and gage data
- Determines daily flow availability for Sites diversions

→	Divertible and St	orable Flow Tool
	• 2009 – 2018	Applications:
	• Excel & Power Bl	Education
	 Inputs from USRDOM Hindcast (2018) 	 Sensitivity Analysis
	model, Flow Availability Tool, and gage data	 Diversion strategy based on system conditions
	 Determines divertible and storable flow for Sites based on user specified 	

conveyance constraints and diversion

Upper Sacramento River Tributaries

- 11 tributaries along the Upper Sacramento River are used as inputs for USRDOM
- The first six historical datasets are used to estimate inflows for the remaining five datasets:
 - 1. Deer Creek near Vina
 - 2. Mill Creek near Los Molinos
 - 3. Battle Creek near Cottonwood
 - 4. Elder Creek near Paskenta
 - 5. Cottonwood Creek near Cottonwood
 - 6. Cow Creek near Millville
 - 7. Big Chico Creek
 - 8. Black Butte
 - 9. Paynes Creek
 - 10. Red Bank
 - 11. Thomes Creek

USRDOM HindCast Calibration

- "Closure Terms" (buffer flows) are used to account for ungaged tributaries and uncertainty between synthesized and observed flow data
- Two closure terms are used to account for all Sacramento River diversions, accretions, depletions, and inflows from tributaries that are not explicitly included in the model
 - Upper Segment Closure Term (UPPERSACRCLOSURE) Accounts for region between Keswick and Bend Bridge
 - Middle Segment Closure Term (MIDDLESACRCLOSURE) Accounts for region between Bend Bridge and Colusa Weir

USRDOM HindCast Calibration

- The closure terms were refined over a 5 step process:
 - Step 1 Upper Segment closure term is computed using a water balance estimate of all known inflows and diversions modeled upstream of Bend Bridge
 - Step 2 Upper Segment closure term is iteratively refined to match gage readings for the Sacramento River at Bend Bridge
 - Step 3 Upper Segment closure term is adjusted to account for potential gage error at Bend Bridge
 - Step 4 Middle Segment closure term is developed to match gage readings for the Sacramento River at Colusa Weir
 - Step 5 Middle Segment closure term is adjusted to account for potential gage error at Colusa Weir

Upper Segment Calibration

Middle Segment Calibration

• USRDOM simulated flow (blue) vs USGS gage readings (orange) for the Sacramento River at Bend Bridge after calibrating USRDOM's Upper Segment

• Upper Segment Closure Term

 USRDOM simulated flow (grey) vs USGS gage readings (yellow) for the Sacramento River at Colusa Weir after calibrating USRDOM's Middle Segment

• Middle Segment Closure Term

Flow Availability Tool

- Determines daily flow available for diversion to Sites Reservoir, subject to hydrology and regulations outside the scope of Sites Project operations for October 1st, 2008 – May 31st, 2018
 - Period consistent with implementation of NMFS's RPA from the 2009 BiOp
- Flow availability is computed using historical records and accounting for current flow requirements
 - Delta balance conditions from COA reports
 - Term 91 conditions
 - Delta outflow requirements
 - Export/Inflow ratio constraint
 - San Joaquin River exports
 - Health and safety requirements
 - Fall X2
 - Spring X2
 - Jersey Point, Emmaton, Rio Vista water quality standards

Historical Data Compilation for the Flow Availability Tool

- USGS Daily Flow
 - American River at Fair Oaks
 - Sacramento tributary flow (inputs for USRDOM)
- CDEC Daily Data
 - San Luis storage from WY 2007 through May 2018
 - Feather River flow
- Reclamation Data (inputs for USRDOM)
- Outputs from the USRDOM HindCast Model
- CVO COA Reports from WY 2008 through November 2017
- Dayflow from WY 2008 through WY 2017

Historical Data Compilation for the Flow Availability Tool

- Delta Operations for Salmonids and Sturgeon (DOSS) meeting summaries from January 2009 through June 15th 2018
- Smelt Working Group (SWG) meeting summaries from January 2009 through June 15th 2018
- Delta Assessment Team (DAT) Summaries from January 2009 through June 15th 2018
- Water Operations Management Team (WOMT) from January 2009 through June 15th 2018
- SWRCB Term 91 indicator data from January 2007 through May 2018

Flow Availability Tool – Example Figures

Divertible & Storable Flow Tool

- Determines daily divertible and storable flow for Sites Project in October 1^{st,} 2008 – May 31st, 2018 based on water availability and user specified conveyance constraints and diversion criteria
- The tool includes a dashboard with options to toggle between various combinations of hydrographs, diversion criteria, and initial storage conditions
- Results can be viewed in Excel and Power BI
- Divertible Flow = "Available Flow" subject to flow requirements and conveyance constraints associated with Sites Project
- Storable Flow = "Divertible Flow" subject to storable capacity

Divertible & Storable Flow Tool Excel Dashboard

Jser Specifications Run C	urrent Setup	WY 2011 - Initial Sites Storage = 1000 TAF																
		Available Flow (TAF) Divertible Flo				ertible Flow (T/	low (TAF) Storable Flow (TAF) Accum			cumulative Stor	mulative Storable Flow (TAF)							
/ear:	2011 💌	Month	Red Bluff	Hamilton City	Delevan	Red Bluff	Hamilton City	Delevan	Red Bluff H	lamilton City	Delevan	Red Bluff	Hamilton City	Delevan	Total			
nitial Sites Storage (TAF):	1,000	10	6.13	6.13	6.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
		11	13.84	13.84	13.84	11.46	0.70	1.23	11.46	0.70	1.23	11.46	0.70	1.23	13.40			
Diversion Criteria:		12	777.43	767.18	712.63	89.91	69.55	79.52	89.91	69.55	79.52	101.38	70.25	80.76	252.39			
		1	626.22	533.40	417.34	108.76	100.78	98.33	108.76	100.78	98.33	210.14	171.03	179.08	560.25			
ites Storage Capacity (TAF)	1,810	2	202.34	168.63	81.03	51.66	54.84	29.78	51.66	54.84	29.78	261.80	225.87	208.86	696.53			
		3	872.93	855.47	783.45	116.75	105.58	116.91	39.64	34.18	39.65	301.44	260.05	248.51	810.00			
ntake Conveyance Capacities		4	823.63	801.42	651.46	0.00	0.00	0.00	0.00	0.00	0.00	301.44	260.05	248.51	810.00			
TCC	2,100	5	281.95	280.89	277.75	0.00	0.00	0.00	0.00	0.00	0.00	301.44	260.05	248.51	810.00			
SCC	1,800	6	453.06	436.01	424.89	0.00	0.00	0.00	0.00	0.00	0.00	301.44	260.05	248.51	810.00			
)elevan	2,000	7	226.33	226.33	226.33	0.00	0.00	0.00	0.00	0.00	0.00	301.44	260.05	248.51	810.00			
		8	209.55	209.55	209.55	0.00	0.00	0.00	0.00	0.00	0.00	301.44	260.05	248.51	810.00			
Sypass Requirements (cfs)		9	59.11	58.92	58.92	0.00	0.00	0.00	0.00	0.00	0.00	301.44	260.05	248.51	810.00			
ac R Below Red Bluff	3,250		WV 2011	In the I Change C	+ 10			14.0	0044	C11 C1	1000 74	r.		14/1/ 2/	044 1-14-1 64	C+	1000 TAF	
ac R Below Hamilton City	4,000		VVY ZUII -	Initial Sites s	torage = 10	UU TAF		VV Y	2011 - Initial	Sites Storag	ge = 1000 IA	ŀ		VV Y ZU	UTT - INICIAL 20	tes storage –	1000 IAF	
ac R Below Delevan Intake	5,000		- Sacramento Rive	r above Red Bluff —	Available at F	Red Bluff		Sacrament	o River above Hamilt	on City — Ava	ailable at Hamiltor	City		- Sacramento Rive	er above Delevan Inta	ke ——— Available	e at Delevan	
Vilkins Slough	5,000		Divertible at Red	Bluff -	Storable at R	ed Bluff		Divertible a	at Hamilton City	Sto	rable at Hamilton	Citv		 Divertible at Deli 	evan	Storable	at Delevan	
reeport (July-Nov)	11,000						10	0.000					100					
reeport (Dec, Feb-Jun)	13,000	- 70.00	0				10	0,000					100,0	000				
reeport (Jan)	15,000	60,00	0		1		8	0,000					80,0	000		N N		
Delta Outflow	0	<u>ନ୍</u> ଟି 50,00	D		IN .			0.000		N			- £ 0.0	000				
		2 40,00	D				>	,					0) ×					
Pulse Definition Controls		흔 30,00	0	he le			- 6 4	0,000						000	-1			
Beginning month (CY)	10	20,00	D	m.			2	0,000					20,0	000	~~~~	AAT		
nding month (CY)	5	10,00				mand					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			o –	And the			
nitiation Threshold (cfs)	15,000		Aug Sep N	lov Jan Feb	Apr Jun	Jul Sep	Nov	Aug Sej	p Nov Jan	Feb Aş	or Jun	Jul Sep	Nov	Aug Sep	Nov Jan	Feb Apr	Jun Jul	Sep Nov
Maintenance Threshold (cfs)	15,000			1	Date					Date						Date		
Removal of Restrictions (cfs)	25,000																	
Pulse Day Termination (days)) 7	_	WV 2011	Initial Citor C	torago = 10			14/1	2011 Initial	Citor Stores	1000 TA	F		WV 20		tor Storago -	1000 TAF	
			VV1 2011 ·	- Initial Sites 3	iorage – Io	OU IAF		VV 1	ZUII - IIIIIdi	SILES SLUI AB	3e - 1000 IA	F		VV I 20		les storage -	1000 IAF	
Diversion Season		_	—— Divert	ble at Red Bluff	– – • Storable a	t Red Bluff			Divertible at Hamilto	n City – – –	Storable at Hamilt	on City			Divertible at Deleva	n 🗕 — - Storal	ble at Delevan	
tarting Month (CY 7-12)	11	2 500					2	00					2 500					
nding Month (CY 1-6)	3	2,500					1,8	300		107 0								
		2,000	·				- 1,6	500		# !			2,000	0		M(* 10		
Vin Pumping Levels (cfs)		() 1 E00) 🛛 🕼			S 1,4	100					S 150					
Red Bluff	125	0 1,500					5 1,4	000					5 1,500			11		
lamilton City	100	<u>§</u> 1,000		- <u>71 \</u> ["]				300					<u>§</u> 1,000	o c				
Delevan	500						ш. (500	11				Ľ					
		500	· 📄 💧					100	P 11				500	0		1		
		0		N U I				0	N									

Date

Date

Date

Example 1 (2016	hydrolo	gy with
low initial Sites st	orage)	
Year:	2016	
Initial Sites Storage (TAF):	400	
		Нуа
Diversion Criteria:		avai
		dive
Sites Storage Capacity (TAF)	1,810	stor
		Ded
Intake Conveyance Capacities	S	Rea
TCC	2,100	
GCC	1,800	
Delevan	2,000	
Bypass Requirements (cfs)		
Sac R Below Red Bluff	3,250	
Sac R Below Hamilton City	4,000	
Sac R Below Delevan Intake	5,000	
Wilkins Slough	5,000	
Freeport (July-Nov)	11,000	
Freeport (Dec, Feb-Jun)	13,000	
Freeport (Jan)	15,000	700
Diversion Season		Dive
Starting Month (CY 7-12)	11	Stor
Ending Month (CY 1-6)	3	3101
Min Pumping Levels (cfs)		
Red Bluff	125	
Hamilton City	100	
Delevan	500	

higher Sites storage	ge)	0,
Year:	2011	•
Initial Sites Storage (TAF):	1,200	Ην
Diversion Criteria:		av
		div
Sites Storage Capacity (TAF)	1,810	un cto
Intake Conveyance Capacities		Ke
ТСС	2,100	
GCC	1,800	
Delevan	2,000	
Bypass Requirements (cfs)		
Sac R Below Red Bluff	3,250	
Sac R Below Hamilton City	4,000	
Sac R Below Delevan Intake	5,000	
Wilkins Slough	5,000	
Freeport (July-Nov)	11,000	
Freeport (Dec, Feb-Jun)	13,000	
Freeport (Jan)	15,000	Zo
Diversion Season		Div
Starting Month (CY 7-12)	11	Sta
Ending Month (CY 1-6)	3	
Min Pumping Levels (cfs)		
Red Bluff	125	
Hamilton City	100	
Delevan	500	

WY 2011 - Initial Sites Storage = 1200 TAF Sacramento River above Red Bluff — Available at Red Bluff Divertible at Red Bluff - - - Storable at Red Bluff Hydrology, 80,000 availability, 70,000 divertibility, and 60,000 Flow (CFS) 50,000 storability at 40,000 Red Bluff intake: 30,000 20,000 10,000 0 Aug Nov Feb Apr Jun Jul Sep Nov Sep Jan Date WY 2011 - Initial Sites Storage = 1200 TAF Divertible at Red Bluff - - - Storable at Red Bluff 2,500 2,000 Zoomed in on (CFS) 1,200 MOI 1,000 Divertible and Storable Flow: 500 0 Nov Jan Feb Apr Jun Jul Sep Nov Aug Sep Date

20

Ability to Evaluate Multiple Scenarios

- A macro is built into the spreadsheet tool to iterate through multiple combinations of varying inputs and constraints
- The inputs and outputs from each scenario can be fed into Power BI to sift through the data and analyze relationships between the inputs (i.e., minimum pumping levels or bypass flow requirements) and outputs (i.e., Divertible and Storable flows)
 - Power BI is a business analytics service developed by Microsoft. It provides a platform for interactive visualizations of data

Supporting Slides

USRDOM HindCast Calibration – Step 1

 The Upper Segment closure term is computed by estimating the differences between observed (gaged) flows at Bend Bridge and all known inflows and diversions modeled in USRDOM upstream of that location

• UPPERSACRCLOSURE = BB - [WR + SR + Cow + Cot + Bat - ACID]

- Where:
 - BB = Sacramento River flow at Bend Bridge computed by USRDOM (182-BENDBR-GAG)
 - WR = Whiskeytown release (daily average from Reclamation's monthly data)
 - SR = Shasta release (difference between Keswick Dam and Whiskeytown release plus Clear Creek tunnel flow)
 - Cow = Cow Creek Inflow (USGS 11374000)
 - Cot = Cottonwood Creek Inflow (USGS 11376000)
 - Bat = Battle Creek Inflow (USGS 11376550)
 - ACID = ACID diversion (daily average from Reclamation's monthly data)

USRDOM HindCast Calibration – Step 1 Result

USRDOM HindCast Calibration – Step 2

- The Upper Segment closure term is refined by setting it equal to itself plus the difference between gaged flow at Bend Bridge and USRDOM's synthesized flow at Bend Bridge
- The model is re-run, resulting in a smaller discrepancy between Bend Bridge gaged flow and Bend Bridge synthesized flow
- This process was repeated 3 more times (4 iterations in total)

USRDOM HindCast Calibration – Step 2 Result

USRDOM HindCast Calibration – Step 2

• The model near perfectly replicates gaged records at Bend Bridge

USRDOM HindCast Calibration – Step 2 Issues

- The "Step 2" method assumes complete accuracy in gaged records and it does not account for gage error
- However, gage readings can become inaccurate for because of extreme weather conditions, damage to the gage, improper calibration, etc.
- The Upper Segment closure term often adds (positive values) and removes (negative values) a significant quantity of flow into and out of the river
 - In some of these instances, the magnitude of the closure term is too high to be attributed merely to unmodeled diversions, accretions, depletions, and tributary inflows
 - Gage error is assumed under these circumstances

USRDOM HindCast Calibration – Step 3

- The purpose of Step 3 is to account for potential gage error at Bend Bridge.
- The Upper Segment closure term is adjusted to reduce unreasonably large magnitudes of flow from being brought into the river or taken out of it

Upper Segment Closure Term Rules:

- 1. Closure >= Background Closure
- 2. If Total Flow Contribution ≤ Background Closure: (Closure Term) / (Total Flow Contribution) = 100%
- If Background Closure ≤ Total Flow Contribution ≤ Lower Threshold = 5,000 cfs

(Closure Term) / (Total Flow Contribution) $\leq 100\%$

 If Lower Threshold ≤ Total Flow Contribution ≤ Upper Threshold

```
(Closure Term) / (Total Flow Contribution) \leq [(Total Flow Contribution) * m_u + i_u] / 100
```

Where:

 m_u = slope of Upper Segment curve = -0.00179 i_u = y-intercept of Upper Segment curve = 109

5. If Total Flow Contribution \geq Upper Threshold

(Closure Term) / (Total Flow Contribution) $\leq U_{r,u}$

Where:

```
U_{r,u} = ungaged ratio of Upper Segment
```

120% 100% Closure/Contrib 80% 60% 40% 20% Lower Upper Threshold Threshold 0% 20,000 40,000 60,000 80,000 100,000 0 Contrib

50,000 (Ungaged Area) / (Total Flow Contribution Area) = 19.8%

- **Closure** = Closure Term flow
- Total Flow Contribution (Upper Segment) = Bend Bridge flow (Keswick Dam flow + Clear Creek Flow + Background Closure)
- Background Closure = Background closure term for the Upper Segment (average July-October closure term computed in Step 2) = 196 cfs

5,000

- Lower Threshold = Flow at which storm event covers roughly the total flow contribution area = 5,000 cfs
- Upper Threshold = Flow at which storm event significantly exceeds total flow contribution area = 50,000 cfs

USRDOM HindCast Calibration – Step 3 Result

 The Upper Segment closure term no longer reaches magnitudes as high as it did in Step 2. In addition, the closure term never dips below zero since it is no longer permitted to remove flow from the system

Lower Segment Performance after Calibration

USGS Data

Location	Gage Number
ACID_Canal_at_Sharon	11370700
Antelope_Ck_nr_RedBluff	11379000
Battle_Ck_nr_Coleman	11376550
Battle_Ck_nr_Cottonwood	11376500
Bear_Ck_nr_Millville	11374100
BigChico_Ck_nr_Chico	11384000
Churn_Ck_blw_Newton_nr _Redding	11372060
Churn_Ck_nr_Redding	11372050
Clear_Ck_at_FrenchGulch	11371000
Clear_Ck_nr_lgo	11372000
ColusaWeir_Spill_to_Butte	11389470
Cottonwood_Ck_nr_Cotto nwood	11376000
Cow_Ck_nr_Millville	11374000
Deer_Ck_nr_Vina	11383500
Elder_Ck_nr_Paskenta	11379500

Location	Gage Number
Mcloud_R_at_Baird	10151
Mill_Ck_nr_LosMolinos	11381500
MoultonWeir_Spill_to_B utte	11389350
Paynes_Ck_nr_RedBluff	11377500
Pit_R_nr_Ydalpom	11366500
RedBank_Ck_nr_Rawson	11378860
RedBank_Ck_nr_RedBluf f	11378800
Sac_R_abv_BendBridge	11377100
Sac_R_at_Antler	10052
Sac_R_at_BendBridge	11377200
Sac_R_at_Butte	11389000
Sac_R_at_Colusa	11389500
Sac_R_at_Kennett	11369500
Sac_R_at_Keswick	11370500
Sac_R_at_KnightsLandin g	11391000

Location	Gage Number
JudgeFrancisCarr_nr_Fr	
enchGul	11525430
Sac_R_bl_WilkinsSloug	
h_nr_Grime	11390500
Sac_R_opp_MoultonW	
eir	11389390
Spring_Ck_a_Keswick	11371600
Stony_Ck_nr_HamCity	11388500
Thomas_Ck_at_Rawso	
n	11382090
Thomes_Ck_at_Pasken	
ta	11382000
TisdaleWeir_nr_Grimes	11390480
Trinity_R_abv_Coffee	11523200
Trinity_R_at_Lewiston	11525500
Sac_R_opp_MoultonW	
eir	11389390

Data from Reclamation

Location	Data (October 1, 2001 – May 31, 2018)
Carr Powerplant (JCR)	Generation Release
Keswick	Evaporation, Reservoir Storage, Computed Inflow, Total Release
Lewiston	Evaporation, Reservoir Storage, Computed Inflow, Total Release
Shasta	Evaporation, Reservoir Storage, Computed Inflow, Total Release
Trinity	Evaporation, Reservoir Storage, Computed Inflow, Total Release
Whiskeytown	Evaporation, Reservoir Storage, Computed Inflow, Clear Creek Natural Flow, Total Release
ACID	Diversion
GC Canal	Diversion
TC Canal	Diversion

ACID, TC Canal and GC Canal diversions are equal to the monthly average diversion

Flow Availability Tool – Preliminary Figures

 Preliminary figures from the Flow Availability Tool help demonstrate how much water can be diverted to Sites on a daily time-step

Flow Availability Tool – Preliminary Figures

Power BI Dashboard

Delevan FracFlow Average of RDLBF Storable Accu Average of Ham City Storable Accu Average of Delevan Storable Accu Average of Total Storable Accu

Total	65.56	32.41	47.06	40 145.03
 0.25	82.17	33.05	49.50	164.72
0.25	02.17	33.05	40.50	164.70
0.20	79.10	33.35	50.67	163.12
0.15	71.96	34.72	50.93	157.61
0.10	58.94	33.58	47.20	139.71
0.05	35.64	27.35	37.00	99.99

FIGURE 3.1 USRDOM CALIBRATION/VERIFICATION SCHEMATIC

Sites Project: Information on OBAN and Henderson et al. analysis

California Department of Fish and Wildlife

June 5, 2019

Life Cycle Modeling: OBAN

General Details:

- Winter-Run Chinook Salmon
- Egg/alevin temperature effects
- Fry rearing flow effects
- Juvenile Yolo flow effects
- Juvenile south Delta export effects
- Juvenile DCC effects

- Ocean conditions not affected by project but included in model (productivity and harvest)
- More specifics in California WaterFix BA methods: Section 5.D.3.2.5 of Appendix 5D, <u>https://www.waterboards.ca.gov/waterrights/water_issues/programs</u>/bay_delta/california_waterfix/exhibits/docs/petitioners_exhibit/dwr/p art2/dwr1142/App_5.D_Methods_update.pdf
- Use in WSIP: Section A.1.3 in https://cwc.ca.gov/-/media/CWC-Website/Files/Projects/Sites-Project/Appeal/AttachA.pdf

Life Cycle Modeling: OBAN

OBAN covariates:

- July-Sep temp. (eggs/alevins) USRWQM
- Aug-Nov flow (fry) USRDOM
- Dec-Mar Yolo flow (juveniles) CalSim
- Dec-Jun exports (juveniles) CalSim
- DCC (Dec-Mar) (juveniles) CalSim
- Harvest; wind stress curl index historical values
- Additional covariates considered but not included because of weak relationships: maximum monthly Bend Bridge flow (Aug-Nov); Delta bass catch per unit vessel; sea level height (Apr-Jun); Farallones upwelling (Apr-Jun); PDO (Oct-Mar); sea surface temp. (Jul-Feb)

Flow-Survival in OBAN

WISP - OBAN adjustment for flow-survival:

- WSIP: Survival downstream of RBDD adjusted for With Project
- Considered:
 - Michel (2016)
 - NMFS Winter-Run Life Cycle Model
 - Iglesias et al. (2017)
- Chose Iglesias et al. (2017):
 - Completed report (vs. preliminary analysis by Michel 2016)
 - Based on acoustic telemetry (vs. calibration to fitted data, i.e., WRLCM)

Flow-Survival in OBAN

BA - OBAN adjustment for flow-survival:

- For BA/ITP Application, use Henderson et al. (2018) model
- As with WSIP:
 - Adjust With Project scenario for relative change in survival compared to Without Project
 - Weighted annual survival difference
 - WRLCM monthly smolt timing: 0.269 (Jan.), 0.366 (Feb.), 0.348 (Mar.), 0.017 (Apr.)
 - Spatial variation in smolt starting location

Henderson et al. Flow-Survival Analysis

- Peer-reviewed (CJFAS)
- Multiple reaches from above Red Bluff down to Knights Landing
- Focus on Sites withdrawal period (winter/spring), daily timescale
- Incorporates flow and temperature effects
- Also includes other (nonoperations) covariates

Henderson et al. Flow-Survival Analysis

Table 1: A description of the covariates included in the mark recapture model.

Category	Covariate	Range	Definition	Hypothesized relationship with survival
Individual	Fish Length ¹	135 - 204 mm	Fork length	Larger fish may exceed gape width of predators
	Fish Condition ¹	0.59 - 1.32	Fulton's K	Increased condition improves predator escape capability
	Transit speed ²	0.02 - 8.25 km h ⁻¹	Reach specific transit speed	Faster moving fish have less exposure to predators
Release group	Batch release ²	Binary	Tagged fish released concurrently with large hatchery releases.	Predator swamping
	Release reach ¹	Binary	Difference in survival between newly released fish and those released upstream.	Newly released hatchery fish are naïve and susceptible to predation
	Annual flow ³	<mark>179 - 499 ems</mark>	Mean flow measured at Bend Bridge throughout outmigration (December-March).	Increased flows produce more habitat and predator refugia throughout the river
Reach specific	Sinuosity ⁴	1.04 - 2.74	River distance divided by Euclidean distance.	More natural habitats have more predator refugia
	Diversion density ⁵	0 - 1.05 num km ⁻¹	Number of diversions per reach length.	Increased predator densities near diversions
	Adjacent cover density ⁶	0.2 - 0.76 %	Percent of non-armored river bank with adjacent natural woody vegetation.	Increased cover produces more predator refugia
	Off-channel habitat density ⁶	0 - 1.62 %	Off-channel habitat within 50 m of river expressed as percentage of river area	Increased off-channel habitat produces more predator refugia
Time varying	Temperature ⁷	6.2 - 12.9 ℃	Mean water temperature per reach	Increased temperatures results in increased predation due to higher metabolic demands of predators
	Inter-annual Reach flow ⁷	215 – 447 cms	Mean water flow per reach	Higher flows within a reach will produce more habitat and predator refugia within that reach
	Intra-annual Reach flow ⁷	129 – 902 cms	Mean water flow per reach and year	Higher intra-annual flows (e.g., precipitation or dam releases) decreases predation due to increased turbidity and increased predator refugia.

¹Measured during tagging and release; ²Observed travel times and mixed effects model estimates; ³California Water Data Library; ⁴National Hydrography Dataset; ⁵Passage Assessment Database - verified by field survey; ⁶Department of Water Resources; ⁷River Assessment for Forecasting Temperature (RAFT) model

Henderso

- Flow translation complete
- Next step is temperature translation
- +1 diversion in Delevan reach

n reach (km)	USRDOM
518	185-BATTLECKINF
511	185-BATTLECKINF
504	182-BENDBRGAGE
492	180-PAYNESCKINF
480	180-PAYNESCKINF
475	175-RDBLFDIVDAM
456	165-MILLCKINF
421	150-GCC_DIV
412	150-GCC_DIV
389	142-STONYCKINF
380	140-ORDFERRY
363	135-BUTTE-CITY
349	132-ABV-MOULTONWEIR
325	125-COLUSA-WEIR
309	120-BUTTE-SL
287	117-ABV-TISDALE
259	110-LOW-SAC-DIV
239	105-KNIGHTSLNDG
227	Not in USRDOM

- Follows Henderson et al. approach: calculate time-varying covariates for individual fish based on temperatures and flows they experience
- Utilize flow and temperature effects on survival estimated from mark-recapture analysis by Henderson et al.
- Individual fish trajectories (which reach they're in at a given time) calculated based on initial time/location, reach lengths, and reach-specific average transit speeds
- Hourly time step to accommodate sub-daily reach transit times
- Flow and temperature data upsampled to hourly resolution using cubic spline interpolation

- "Superindividuals": each modeled individual represents multiple fish beginning migration at the same time
- Overall survival probability = average across all individuals weighted by the number of fish represented by each superindividual
- Annual survival rate integrates across all superindividuals
- Annual survival rates calculated for "With Project" and "Without Project"
- OBAN link:
 - Adjust With Project scenario for relative change in survival compared to Without Project
 - Run OBAN model over multiple cohorts representing multiple annual conditions

Initial Smolt Locations

 Many juveniles pass Red Bluff before Sites diversion period begins...

• Where do they go?

Migration Patterns of Juvenile Winter-run-sized Chinook Salmon (*Oncorhynchus tshawytscha*) through the Sacramento–San Joaquin Delta

Rosalie B. del Rosario¹, Yvette J. Redler², Ken Newman³, Patricia L. Brandes³, Ted Sommer⁴, Kevin Reece⁴, and Robert Vincik⁵

Initial Smolt Locations

Other considerations:

- Simplest case: all fish migrate from Jellys Ferry
- But...
 - Phillis et al. (2018) show diverse rearing habitat
 - Where are juveniles starting from, and when?
- Proposed approach: Analysis of beach seine data to estimate locations

Initial Smolt Locations

<u>Other</u> considerations:

 Johnson, R.R., D.C. Weigand, and F.W. Fisher. 1992. Use of Growth Data to Determine the Spatial and Temporal Distribution of Four Runs of Juvenile Chinook Salmon in the Sacramento River, California. November. 18 p.

Figure 31. Spatial and temporal distribution of winter-run Chinook captured by the USFWS during year-round monthly beach seining at 13 sites in the Sacramento River, 1981 - 1991 [(N = 10,778) from Johnson *et al.* 1992].