CDFW - Sites 60 day Evaluation Meeting No. 8 (extended): Meeting Agenda and Action Items

Sites Reservoir Project

Date:	July 16, 2019	Location:	HDR Office: 2379 Gateway Oaks Drive, Suite 200 Fleming Conference Room, or Skype with conference call 1-866- 583-7984,,1977661									
Time:	8:00 am – 12:00 pm											
Purpose: Continue 60 day evaluation of Operational Scenarios.												
Invitees:												

Rob Thomson, Sites Authority Kevin Spesert, Sites Authority Ali Forsythe, Sites Authority Duane Linander, CDFW Kristal Davis Fadtke, CDFW

Ian Boyd, CDFW

Ken Kundargi- CDFW Johnathan Williams, CDFW Lenny Grimaldo, ICF Marin Greenwood, ICF Jim Lecky, ICF Mike Dietl, Reclamation Felipe La Luz – CDFW Chris Fitzer, ESA Associates Rob Tull, Jacobs Reed Thayer, Jacobs Chad Whittington, Jacobs John Spranza, HDR Jelica Arsenijevic, HDR

Actio	on Item	Owner	Deadline	Notes
1	Schedule presentation on CalSim and DSM2 and how Delta is performing.	CH2	TBD	Pending
2	Identify Region 2 concerns	CDFW	7/10/2019	Pending
3	Sutter Bypass Analysis	Authority/CH	7/10/2019	TBD
4	Initiate discussions with CDFW, River Partners and other NGO's to talk about possible effects of projects.	Authority	After July	Ongoing task item
5	Provide carcass/redd reports to ICF	Duane/Lenny	7/10/2019	Complete
6	Potential Sturgeon analysis	Jacobs/ICF	TBD	At RBDD and GCID
7	Send out Presentation	HDR	7/14/19	Complete
8				
9				

Agenda:

Discussion Topic	Topic Leader	Est Time
 Roll Call Opeing statements 	Ali Forsythe Kristal Davis Fadtke	5 min
2. Review of Action Items from Previous Meeting	Ali Forsythe	15 min
3. Nearfield Effects and Farfield Flow Survival	Marin Greenwood	60 min
4. Functional Flows and Operational Parameters	Chris Fitzer	60 min
5. Discuss CDFW-provided Operational Scenarios	Tull/Leaf	60 min
6. Next steps for 60 day schedule	Group discussion	10 min

Sites Workshop July 16, 2019 CDFW Operations Scenario - For Discussion Purposes Only

- Two runs:
 - o Sites diversions limited to November through March
 - Sites diversion in any month

Sacramento River:

- No monthly pulse protection based on Bend Bridge flow
- Sacramento River flow ramp down rate as per State Water Resources Control Board Order 90-5
 - > 6,000 cfs Sacramento River flow decrease in flow not to exceed 2.5% per hour and maximum of 15% per day
 - 4,000 cfs to 6,000 cfs Sacramento River flow decrease in flow not to exceed 100 cfs per hour and maximum of 200 cfs per day
 - < 4,000 cfs Sacramento River flow decrease in flow not to exceed 100 cfs per day
- Model flow volume, frequency and duration changes in Moulton Weir Bypass inundation
- Model flow volume, frequency and duration changes in Colusa Weir Bypass inundation
- Model flow volume, frequency and duration changes in Tisdale Weir Bypass inundation
- Bypass flow > 10,000 cfs at Wilkins Slough prior to Sites diversions functional fish flow (Matt Johnson CDFW in conjunction with NMFS SW Science Center pers. comm.)
- Fremont Weir notch diversion prioritization Preferred alternative 6,000 cfs starting at 15 feet to 29.5 feet elevation at Fremont Weir gauge from November 1 through March 15. After March 15th through April maintain 600 cfs fish passage flow through the Fremont Weir notch (Yolo Bypass Habitat Restoration and Fish Passage Project EIR/EIS 2019)
- Model flow volume, frequency and duration changes in Fremont Weir overtopping inundation

Delta:

- Preferential CVP/SWP WIIN Act Flexibility up to full diversion capacity of 11,200 cfs during excess Delta conditions (USBR ROC LTO BA 2018)
- > 35,000 cfs inflow at Freeport prior to Sites diversions functional fish flow (NMFS CWF BO 2017 Appendix E, CDFW CWF ITP 2017, Flow-mediated effects on travel time, routing, and survival of juvenile Chinook salmon in a spatially complex, tidally forced river delta, Perry et al 2018)
- NDOI outflow index > 44,500 cfs functional fish flow longfin smelt (CDFW CWF ITP 2017, Population Dynamics of an Estuarine Forage Fish: Disaggregating Forces Driving Long-Term Decline of Longfin Smelt in California's San Francisco Estuary, Nobriga and Rosenfield 2016)

Sites Project Functional Flow and Operational Parameter Development and Evaluation

July 16, 2019

California Department of Fish and Wildlife

Outline of Discussion

- Functional Flows Approach
 - Conceptual model of functional flows
- Study Reach Characterization of Ecological/Biological Functions
- Operational Parameter Review and Evaluation

Functional Flow Approach

- Process-based approach that preserves the most important aspects of variability of a natural flow regime to which native species have adapted.
- Preservation of key aspects of the flow regime, or *functional flow components*.
- Important functional flow components in California rivers are:
 - Wet-season initiation flows: move nutrients downstream, initiate migration
 - Peak magnitude flows: transport sediment, restructure/maintain river corridors
 - Spring-recessional flows: migratory cues, activate off-channel habitat
 - Dry-Season low flows: favors native, anadromous species

Functional Flow Approach

- Provides alternative strategy from minimum instream flows for allocating water budgets.
- Functional flow components are targeted to support specific ecological processes, while minimum instream flow targets may not.
- The functional flow approach also offers flexibility during changing conditions (wet and dry years), which is critical to ensure most efficient allocation of water.

Draft – Subject to Change – For Discussion Purposes Only

Study reaches

- Reach-scale characterization
 - Species/life-stages/timing
 - Primary ecological functions
 - Drivers
- Operational influence and evaluation
 - Sites operational component/influence
 - Ecological/ biological functions
 - Species/life stages
 - Objectives
 - Parameters/drivers
 - Period of interest
 - Analytical tools and approach
 - Tools
 - Description/parameters
 - Evaluation criteria/metric
- Considerations for refinements
 - Refined operations development and analysis
 - Adaptive management

- Keswick Dam to Red Bluff Diversion Dam
 - Winter-run and Spring-run Chinook Salmon
 - Spawning
 - Egg incubation to fry emergence
 - Migration
 - Major tributaries
 - Clear, Cottonwood, and Battle creeks
 - Primary Functions
 - Coldwater management (migration, holding, spawning, egg to fry emergence)
 - Driver Shasta Reservoir coldwater pool

- Summer/Fall Temp Control
 - Winter-run spawning/egg incubation (Summer)
 - Spring-run spawning/egg incubation (Fall)

- Red Bluff Diversion Dam to Colusa (Delevan)
 - Winter-run and Spring-run Chinook Salmon
 - Migration (adult and juvenile)
 - Rearing
 - Major tributaries
 - Antelope, Mill, Deer, Big Chico, Stoney Cks
 - Bypasses/weirs
 - Sutter/ Moulton, Colusa
 - Primary Functions
 - Active geomorphic reach
 - Habitat complexity, refugia, turbidity, shaded riverine aquatic
 - Driver flow events

- Fall/Winter Initiation Release
 - Winter-run adult upmigration
 - Spring-run adult upmigration
- Flood Flow Protection
 - Winter-run emigration
 - Off-channel habitat activation/deactivation
- Spring snowmelt recession release
 - Spring-run rearing
 - Spring-run emigration
 - Off-channel habitat activation/deactivation

- Colusa (Delevan) to Knights Landing
 - Winter-run and Spring-run Chinook Salmon
 - Migration (adult and juvenile)
 - Rearing (limited)
 - Major tributaries
 - None
 - Bypasses/weirs
 - Sutter/Tisdale
 - Primary Functions
 - Limited ecological functions confined by levees, limited SRA
 - Driver Tisdale Weir spills

- Fall/Winter Initiation Release
 - Winter-run adult upmigration
 - Spring-run adult upmigration
- Flood Flow Protection
 - Winter-run emigration
 - Bypass activation
- Spring snowmelt recession release
 - Spring-run emigration
 - Bypass activation

- Knights Landing to American River
 - Winter-run and Spring-run Chinook Salmon
 - Migration (adult and juvenile)
 - Rearing (limited)
 - Major tributaries
 - Feather River, Sutter Bypass, America River
 - Bypasses/weirs
 - Yolo/ Fremont, Sacramento
 - Primary Functions
 - Limited ecological functions confined by levees, limited SRA
 - Driver Fremont Weir spills

- Fall/Winter Initiation Release
 - Winter-run adult upmigration
 - Spring-run adult upmigration
- Flood Flow Protection
 - Winter-run emigration
 - Bypass activation
- Spring snowmelt recession release
 - Spring-run emigration
 - Bypass activation

- Delta
 - Winter-run and Spring-run Chinook Salmon
 - Migration (adult and juvenile)
 - Rearing (limited)
 - Delta and Longfin Smelt (all life stages)
 - Major tributaries
 - Multiple tributaries and distributaries
 - Primary Functions
 - Tidally-influence estuary, transport processes, low salinity zone
 - Driver Sac River inflows, CVP/SWP exports, net Delta outflow

Operational Comp	onent	Geography	Biological/ E	cological Func	tions	Period of Inte	erest		_										Analytical Tools / Ap	proach	
			Primary																		
			species/life	Ecological and		Life-stage															
	Quantity	Region or	stage of	Biological	Parameter/	(OBAN);														Description	Evaluation Criteria/
Type and location	(volume)	reach	concern	Objective(s)	driver	season	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept C	Oct	Nov	Dec	Tool	(parameters)	Metrics
	Conserved		WRCS,																		
	volume,		SRCS;			Eggs/alevins													CALSIM; CE-QUAL-		Change in flow-
Shasta Reservoir	coldwater		spawning,	Flow/temp															W2; USRDOM,	Daily flow and	survival (OBAN +
and Sacramento	pool,	Keswick to	eggs/alevins	control;															OBAN + Henderson;	temp, life-cycle,	Henderson);
River; FR, AR	variable	RBDD	to fry	survival	Flow, temp	Fry													SALMOD	survival	SALMOD

Considerations for Refined Opera	tions Development and Analysis		_	Considerations for	or Adaptive Mana	gement	
Sites Diversion Operational	Ecological Enhancement Water Account	Ecological	Performance				
Considerations	Considerations	Considerations	Considerations	Objective	Mechanism	Trigger	Contingency Measure/ Action
Trade-offs: EESA developed	EESA-1 (coldwater pool); EESA-2 (SR temp);						
through Sites diversions and	EESA-8 (SR augment); EESA-3,4	Flow/temp, variability,	Change in flow-		Flow, temp,	Flow, temp, redd/egg	
releases	(Feather/American)	pulse	survival in OBAN	Survival	turbidity	incubation, RB screw trap	SR augment

Operational	Component		Geography	Biological/ E	cological Functi	ions	Period of Inte	rest												Analytical Tools	/ Approach	
				Primary																		
		Bypasses/		species/life	Ecological and		Life-stage															
Type and	Quantity	Pulse Flow	Region or	stage of	Biological	Parameter/	(OBAN);														Description	Evaluation Criteria/
location	(volume)	Protection	reach	concern	Objective(s)	driver	season	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Tool	(parameters)	Metrics
Red Bluff PP	2100	3250			Geomorphic	Flow, temp,														USRDOM, HEC,	Daily flow and	Change in events,
Ham City PP	1800	4000		WRCS, SRCS,	processes;	turbidity,	Frv													OBAN +	temp, eco	flow-survival (OBAN
,			Red Bluff to	juvenile	overbank	refugia,	,													Henderson;	events, life-	+ Henderson);
Delevan PP	2000	5000	Colusa	outmigrants	flows; survival	predation	Juveniles													SALMOD	cycle, survival	SALMOD

Considerations for Refined Operat	tions Development and Analysis			Considerations for Ad	laptive Manage	ment	
Sites Diversion Operational	Ecological Enhancement Water Account	Ecological	Performance				
Considerations	Considerations	Considerations	Considerations	Objective	Mechanism	Trigger	Contingency Measure/ Action
Bypasses, pulse protection,		Flow variability, pulse,	Change in events; flow-	Ecological processes			Floodplain restoration/
diversion prioritization	EESA-8 (SR augment)	turbidity	survival in OBAN	for improved survival	Flow events	Off-channel habitat activation.	enhancement (functional flow)

Operational	erational Component Geography Biological/Ecological Functions						rest											Analytical Tool	s / Approach	
			Primary																	
			species/life	Ecological and		Life-stage														
Region or		Region or	stage of	Biological		(OBAN);													Description	
Type and location reach concern Objective(s) Parameter			Parameter/ driver	season	Jan	Feb	Mar	Apr	May Jun	Jul	Aug	Sept 0	Oct	Nov [Dec [Tool	(parameters)	Evaluation Criteria/ Metrics		
			WRCS,																	
	Colusa,		SRCS,																Daily flow, weir	Change in spill/ inundation events
	Moulton,	Colusa to	juvenile	Floodplain,	Spill/innundation														spills (frequency,	(timing, frequency [spills per model
Weirs/	Tisdale	Knights	outmigrant	rearing,	frequency and	Winter-													duration,	period], duration [no. days],
Bypasses	weirs	Landing	S	growth	duration	spring flows												USRDOM	magnitude)	magnitude [area inundated])

Considerations for Refined Oper	ations Development and Analysis			Considerations for Ad	aptive Management		
Sites Diversion Operational	Ecological Enhancement Water Account	Ecological					Contingency Measure/
Considerations	Considerations	Considerations	Performance Considerations	Objective	Mechanism	Trigger	Action
		Surrogate floodplain	Spill event (frequency,				
Sites diversions and bypass flows		innundation	duration, magnitude)	Bypass inundation		Wier spills	Sites diversion bypass flows

Operational	Component	Geography	Biological/	Ecological Fun	ctions	Period of Inte	rest											Analytical Too	ols / Approach	
			Primary																	
			species/life	Ecological		Life-stage														
		Region or	stage of	and Biological		(OBAN);													Description	
Type and location reach		reach	concern	Objective(s)	Parameter/ driver	season	Jan	Feb	Mar	Apr	May Ju	ın Jul	A	ug Se	ept O	ct N	ov Dec	Tool	(parameters)	Evaluation Criteria/ Metrics
			WRCS,																	
			SRCS,																Daily flow, weir	Change in spill/ inundation events
	Fremont,	Knights	juvenile	Floodplain,	Spill/innundation														spills (frequency,	(timing, frequency [spills per model
Weirs/	Sacrament	Landing to	outmigrant	rearing,	frequency and	Winter-													duration,	period], duration [no. days],
Bypasses	oweirs	AR (Delta)	s	growth	duration	spring flows												USRDOM	magnitude)	magnitude [area inundated])

Considerations for Refined Ope	rations Development and Analysis			Considerations for Ac	laptive Management	t	
Sites Diversion Operational	Ecological Enhancement Water Account	Ecological					Contingency Measure/
Considerations	Considerations	Considerations	Performance Considerations	Objective	Mechanism	Trigger	Action
Sites diversions and bypass		Surrogate floodplain	Sill event (frequency,				
flows	EESA-5 Yolo Bypass Flow Enhancement	innundation	duration, magnitude)	Bypass innundation		Wier spills	Sites diversion bypass flows

Operational																	
Component	Geography	Biological/	Ecological Function	S	Period of Int	erest								Analytic	al Toc	ls / Approach	
		Primary															
		species/life	Ecological and														
	Region or	stage of	Biological													Description	
Type and location	reach	concern	Objective(s)	Parameter/ driver	Life-stage	Jan Fe	eb M	1ar Apr	May J	un Jul	Aug	Sept Oct	Nov D	ec Tool		(parameters)	Evaluation Criteria/ Metrics
		WRCS,	Survival, food														Sac River inflow, NDO, posiiton of
Delta outflow; south		SRCS, DS,	production, larval	Transport,										CALSIM,	DSM,		X2/LSZ, QWEST, OMR, CVP/SWP
Delta exports	Delta	LFS	transport	position of LSZ										PTM		Outflow, LSZ	exports

Considerations for Refined Ope	rations Development and Analysis	Considerations for Adaptive Management					
Sites Diversion Operational Considerations	Ecological Enhancement Water Account Considerations	Ecological Considerations	Performance Considerations	Objective	Mechanism	Trigger	Contingency Measure/ Action
Sites diversions and bypass flows	EESA-5 Yolo Bypass Flow Enhancement						

Draft – Subject to Change – For Discussion Purposes Only

Sites Project: Near-Field Analyses and Far-Field Flow-Survival Analyses

California Department of Fish and Wildlife

July 16, 2019

Outline of Discussion

- Spatial distribution (screen exposure)
- Entrainment; impingement, screen contact, screen passage
- Predation
- Stranding behind screens during high flow
- Attraction to screens during reservoir discharge
- Far-field effects
 - Henderson et al. migration flow-survival
 - OBAN

- Spatial distribution (screen exposure)
 - Generally qualitative discussion based on observations at other locations (e.g., Clarksburg Bend)

- Spatial distribution (screen exposure)
 - Consideration of % flow entering GCID oxbow

Draft – Subject to Change – For Discussion Purposes Only

Stage Frequency Curve - Annual

Spatial distribution (screen exposure)

Vertical distribution in relation to screens

- Entrainment through screens
 - 1.75-mm screen opening
 - Theoretical ≥25-mm fork length (FL) exclusion (salmonids)
 - Freeport observations: one fish ~ 30-mm FL (may have been entrained at smaller size and reared within forebay)
 - Considered size distribution of fish from RBDD

- Entrainment through screens
- Very small % susceptible to entrainment based on size (e.g., Winter-Run Chinook Salmon)

Impingement

- Qualitative discussion based on UCD fish treadmill studies of juvenile Chinook Salmon (Swanson et al. 2004)
- Impingement and injury rates were not related to any velocity variables; injury rate was not different between test fish and control fish

- Screen contact rate
- Estimates based on UCD fish treadmill studies (Swanson et al. 2004)
- Approach velocity = 0.33 ft/s
- TCCA & GCID screens ~1,100 feet long; Delevan ~480 feet long
- Relevant only to fish passing close to the screen (test flume was 4 feet wide)

- Screen passage time
 - Estimates based on UCD fish treadmill studies (Swanson et al. 2004)
 - Approach velocity = 0.33 ft/s
 - Note: estimates longer than passive particle theoretical passage time (swimming against current)

Screen passage time

- GCID observations (Vogel & Marine 1995)
- PIT-tagged juvenile Chinook Salmon
 - Screen passage time similar to sweeping velocity

Predation

- GCID observations (Vogel 2008)
- Juvenile Chinook Salmon
- Survival past screens: mean = 95%
- However, recapture rates similar: 'test' to 'recapture' = 98% per 100 m); 'weir' to 'recapture' = 96%
- Uncertainty because of batch release and sequential release (downstream to upstream)

Predation

- Stranding behind screens
 - Overtopping of screens
 - Very rare events (100-year flood at TCCA; >100,000 cfs at GCID)

- Attraction to screens during reservoir discharge
 - Lift 1.75-mm screens during Delevan releases
- Lower 19-mm picket panel (adult salmonid & Pacific Lamprey size criterion)
- Discharge velocity \leq 1 ft/s (salmonid criterion)
- Initial calculations ~0.25 ft/s
- Uncertainty in juvenile salmonids entering structure during releases

- Technical Studies and Monitoring
- Baseline and post-construction technical studies: fish distribution (e.g., spatial); juvenile salmonid survival; predator habitat, density, and distribution; refugia field and lab studies; hydraulic screen evaluations
- Monitoring: entrainment; impingement; stranding behind screens; attraction to screens during reservoir discharge
- Inform assessment of biological objectives and adaptive management

- Henderson et al. (2018) migration flow-survival
- OBAN model incorporating Henderson et al. adjustment

Henderson et al. (2018)

- Peer-reviewed (CJFAS)
- Multiple reaches from above Red Bluff down to Knights Landing
- Focus on Sites withdrawal period (winter/spring), daily timescale
- Incorporates flow and temperature effects
- Also includes other (nonoperations) covariates

				Hypothesized relationship with		Source/assumption for analysis of proposed
Category	Covariate	Range	Definition	survival	Notes/source	action
Individual	Transit speed	0.02–8.25 km/h	Reach-specific transit speed	Faster fish have less exposure to predators	Observed travel times and mixed effects model estimates	Assumed mean value from Henderson et al.
Release group	Batch release	Binary	Tagged fish released concurrently with large hatchery releases	Predator swamping	Observed travel times and mixed effects model estimates	Assumed fish not released with large hatchery releases
	Annual flow	179–499 cumecs (6,321–17,622 cfs)	Mean flow measured at Bend Bridge throughout outmigration (December– March)	Increased flows produce more habitat and predator refugia throughout the river	California Water Data Library	USRDOM
Reach- specific	Sinuosity	1.04–2.74	River distance divided by Euclidean distance	More natural habitats have more predator refugia	National Hydrography Dataset	Assumed same values as Henderson et al.
	Diversion density	0–1.05 diversions/km	No. of diversions per reach length	Increased predator densities near diversions	Passage Assessment Database—verified by field survey	Added one to reach 13 to account for Delevan intake; otherwise assumed same values as Henderson et al.
Time-varying	Temperature	6.2–12.9°C (42–55°F)	Mean water temperature per reach	Increased temperatures results in increased predation due to higher metabolic demands of predators	River Assessment for Forecasting Temperature (RAFT) model	USRWQM
	Intra-annual reach flow	129–902 cumecs (4,556–31,853 cfs)	Mean water flow per reach and year	Higher intra-annual flows (e.g., precipitation or dam releases) decrease predation due to increased turbidity and increased predator refugia	RAFT model	USRDOM

- Focused on Dec-Mar
 - Limited by Bend Bridge mean flow
 - DCR 2015 With and Without Project operations

Scenario 1

- Equal numbers of fish beginning migrating on each day, Dec-Mar
- All fish begin migration at Jellys Ferry (upstream of Red Bluff and all project intakes)

Scenario 1 results

- Generally similar or greater survival With Project
- Influence of Bend Bridge flows (flow stabilization)
 - Reach-specific flows less important

Draft – Subject to Change – For Discussion Purposes Only

Probability of Riverine Survival

Scenario 1 results

- Generally similar or greater survival With Project
- Influence of Bend Bridge flows (flow stabilization)
 - Reach-specific flows less important

Scenario 1 results

- Generally similar or greater survival With Project
- Influence of Bend Bridge flows (flow stabilization)
- Reach-specific flows less important

• Scenario 2

- Equal numbers of fish beginning migrating on each day, Dec-Mar
- Equal numbers of fish beginning migration at the upstream end of each Henderson et al. reach

• Scenario 3

- Equal numbers of fish beginning migration at the upstream end of each Henderson et al. reach
- Fish moving in proportion to daily proportion of flow

Scenario 1: Lowest absolute survival (longest migration); largest differences (Bend Bridge flows act for longer)

	December			January			February			March		
	Without	With	With vs. Without	Without	With	With vs. Without	Without	With	With vs. Without	Without	With	With vs. Withou
Wet	0.75	0.75	0.01 (1%)	0.75	0.76	0.01 (1%)	0.74	0.75	0.01 (1%)	0.72	0.73	0.01 (1%)
Above Normal	0.58	0.59	0.01 (2%)	0.58	0.59	0.01 (1%)	0.59	0.60	0.01 (1%)	0.54	0.55	0.00 (1%)
Below Normal	0.34	0.36	0.02 (6%)	0.40	0.41	0.01 (2%)	0.41	0.42	0.01 (3%)	0.34	0.33	0.00 (-1%)
Dry	0.32	0.35	0.02 (8%)	0.33	0.34	0.01 (4%)	0.33	0.33	0.00 (-1%)	0.28	0.28	0.00 (0%)
Critical	0.24	0.25	0.02 (7%)	0.31	0.30	-0.01 (-4%)	0.28	0.25	-0.03 (-10%)	0.21	0.23	0.01 (6%)

Scenario 2: Similar relative differences to scenario 3 in wetter years (leveling off of flow-survival relationship)

	December			January			February			March		
	Without	With	With vs. Without	Without	With	With vs. Without	Without	With	With vs. Without	Without	With	With vs. Without
Wet	0.87	0.87	0.00 (1%)	0.87	0.87	0.00 (0%)	0.87	0.87	0.00 (0%)	0.85	0.86	0.00 (0%)
Above Normal	0.77	0.78	0.01 (1%)	0.77	0.78	0.01 (1%)	0.78	0.78	0.00 (0%)	0.75	0.75	0.00 (0%)
Below Normal	0.62	0.63	0.02 (3%)	0.66	0.67	0.01 (1%)	0.67	0.68	0.01 (1%)	0.61	0.60	0.00 (-1%)
Dry	0.60	0.62	0.02 (3%)	0.61	0.62	0.01 (2%)	0.61	0.61	0.00 (-1%)	0.56	0.56	0.00 (0%)
Critical	0.54	0.55	0.02 (3%)	0.60	0.59	-0.01 (-2%)	0.57	0.54	-0.03 (-5%)	0.51	0.53	0.02 (3%)

Note: Results are based on fish equal numbers of fish starting at the upstream end of each Henderson et al. (2018) reach with equal numbers of fish starting migration each day in December–March. This scenario is referred to Scenario 2 in the text.

Scenario 3: Flow-weighted migration generally increases survival With Project compared to Scenario 2

	December			January			February			March		
	Without	With	With vs. Without	Without	With	With vs. Without	Without	With	With vs. Without	Without	With	With vs. Without
Wet	0.87	0.87	0.00 (0%)	0.87	0.87	0.00 (0%)	0.87	0.87	0.00 (0%)	0.86	0.86	0.00 (0%)
Above Normal	0.71	0.71	0.01 (1%)	0.78	0.79	0.01 (1%)	0.79	0.79	0.00 (0%)	0.76	0.76	0.00 (0%)
Below Normal	0.61	0.63	0.02 (4%)	0.69	0.69	0.01 (1%)	0.70	0.71	0.01 (2%)	0.63	0.63	0.00 (-1%)
Dry	0.61	0.64	0.03 (4%)	0.62	0.63	0.01 (2%)	0.63	0.63	0.00 (0%)	0.58	0.59	0.00 (0%)
Critical	0.53	0.55	0.02 (4%)	0.61	0.61	0.00 (-1%)	0.59	0.56	-0.03 (-4%)	0.53	0.55	0.02 (5%)

Note: Results are based on fish equal numbers of fish starting at the upstream end of each Henderson et al. (2018) reach with fish starting migration each day in each month in proportion to flow occurring on each day. This scenario is referred to Scenario 3 in the text.

- Dominance of Bend Bridge flow effect
 - Reflecting wetter vs. drier years
 - Consider exploration of same Bend Bridge flow With and Without Project

- Dominance of Bend Bridge flow effect
- Reflecting wetter vs. drier years
 - No clear flow-survival relationship for Winter-Run (Hassrick et al.)

Far-field effects: OBAN

- Incorporated Scenario 1 Henderson et al. results
- Monthly weighting (Dec = 0; Jan = 0.28; Feb = 0.36; Mar = 0.36)
- Generally probability of greater escapement under With Project

1990

Year

2000