Water Quality NGO Meeting 1

Focusing this meeting on:

- 1) The comments that center on the inflow of constituents of concern from source water (metals primarily) and the constituents that would enter via the inundation of the reservoir site (i.e., salts, metals...).
- 2) The accumulation, concentration and/or transformation of those constituents in the reservoir (but not the release of this water, that will be next meeting).

These are the specific topics we will cover in this meeting.

- Obtain additional metals data from source waters targeting high flows from which diversions would occur
- Provide information on the water quality impacts from other chemical contaminants that adversely affect water quality in the Sacramento River (including chlorpyrifos, diazinon, chlordane, DDT, mercury, PCBs, and dieldrin) and contaminants in sewer outfalls (such as pharmaceuticals) and other discharges (such as industrial discharges)
- Evaluate the contributions of metals from local tributaries (i.e., Funks Creek and Stone Corral Creek) to the proposed reservoir
- Provide information on the contribution from leaching of metals from the inundation area of the proposed reservoir
- Evaluate physical conditions expected in the reservoir, including thermal stratification and hypolimnetic anoxia,

Jerry Boles Abridged Comments- Effects of Upstream Water Quality

Quality of Analysis

Section 7 – Surface Water Quality does not disclose potential significant adverse issues which have serious ramifications for the viability of the proposed project, but rather <u>ignores or misconstrues</u> <u>available data and reports to incorrectly conclude that there are no significant water quality impacts</u> <u>associated with the proposed project</u>. The EIR claims to have evaluated post-project impacts to the Sacramento River, but there are no analyses provided that indicate that this was done. It is apparent that the preparers of the <u>EIR failed to examine or simply ignored the available data that would show</u> <u>potential significant adverse impacts from the proposed project</u>.

The analyses in Section 7 completely <u>left out any evaluation or projection of water quality that may</u> <u>result in Sites Reservoir from diverting high winter flows from the Sacramento River</u>. The EIR fails to point out that <u>due to metals loads in the various source waters</u>, <u>water in the proposed reservoir may not</u> <u>be suitable for the beneficial uses stated for the proposed project</u>, including enhanced water management flexibility, agricultural and urban water supply, water quality improvement, and ecosystem improvement for fish protection, habitat management, and other environmental needs.

A factual evaluation of the available data is presented below, which shows significant potential adverse impacts associated with the proposed project. Some comments on specific sections of Chapter 7 of the EIR are also presented.

Available Data

The EIR cites the DWR Water Data Library (WDL) online database as the source for water quality data

used to determine impacts from the proposed project. However, very limited data from the WDL are available for evaluating water quality in source waters for the proposed project. The major source water for the proposed project is the Sacramento River, with potential diversion occurring at the Tehama-Colusa Canal, Glenn-Colusa Irrigation District Main Canal, and at Moulton Weir.

The Sacramento River below the Red Bluff Diversion Dam monitoring station of DWR provides information on the quality of water that would be diverted to the proposed project through the Tehama-Colusa Canal. Metals data are available in the WDL for the Sacramento River below the Red Bluff Diversion Dam beginning in February 2006 (Table 1) [Exhibit 1]. However, only 33 samples have been collected since 2006, and only nine of these were from the months in which higher flows most typically occur (December through March) and from which diversions to the proposed project would occur.

Cottonwood Creek contributes the most significant input to the Sacramento River during high runoff events. The Chico-Enterprise Record in an editorial published December 28, 2016 underscored the impact of tributaries on water quality in the Sacramento River. The newspaper stated that of the 100,000 cfs flowing in the river earlier in the month, only 5,000 cfs was coming from Keswick Dam below Shasta Dam – the rest of the 100,000 cfs (95,000 cfs) was coming from tributaries downstream from Keswick Dam, of which Cottonwood Creek provides the dominant flows.

Data from Cottonwood Creek near Cottonwood are even more sporadic than those for the Sacramento River. Data are available for this station in WDL beginning in October 2004, with only seven samples collected from the Cottonwood Creek monitoring station since 2006, and only four of which were collected during the months of expected higher flows of December through March (Table 2) [Exhibit 2]. Data available in the WDL show that only one sample was collected (March 2006) during the same period from both Cottonwood Creek and the Sacramento River below the Red Bluff Diversion Dam since 2006. This one sample shows that metal loads in the Sacramento River are similar to those found in Cottonwood Creek, showing that Cottonwood Creek significantly affects water quality in the Sacramento River. Water quality in Cottonwood Creek will have a significant impact on diversions to the proposed reservoir and water quality data from Cottonwood Creek can be used to approximate and supplement data from the Sacramento River, though the total number of samples from both sites combined are still exceptionally low for a project of this magnitude and potential for adverse effects.

The water quality monitoring station on the Sacramento River at Hamilton City is just downstream from the GCID Main Canal. Data from the WDL is somewhat more extensive at the Hamilton City monitoring site, with metals data available in the WDL beginning in late 2003 to early 2017, though still sporadic with only 78 samples collected in the span of a little more than 13 years (159 months), and only 23 of those collected sometime during the months of expected higher flows of December through March (Table 3) [Exhibit 3]. Samples were collected in each of these months only twice, with the rest of the samples during these months only collected in February months each year since 2008.

The WDL shows that metals data are available for the Sacramento River opposite Moulton Weir monitoring station from mid 2003 to early 2011, for a total of 80 samples, with 27 of those from the expected higher flow months (Table 4) [Exhibit 4].

Water quality sampling during the expected months of higher flows of December through March did not target high flow periods (the periods during which diversions to the proposed project would occur) but were based on a rigid and fixed monthly or semimonthly schedule. Monitoring did not provide any

information on the variation in concentrations of metals over the runoff hydrograph. Even higher concentrations of metals would likely occur during the higher flow periods during these months but were not targeted by the limited monitoring. The relatively low number of samples and lack of samples targeting critical flows (i.e., high runoff events) are nonetheless sufficient to indicate potential significant adverse water quality impacts with the proposed project. These data illustrate the need to collect additional data during appropriate time periods (i.e., during the high flow periods when diversions from the Sacramento River would be occurring) and re-evaluate the potential adverse water quality impacts from the proposed project.

Water Quality

Some metals from both the Sacramento River and Cottonwood Creek, whose concentrations did not exceed criteria in the limited sampling effort, had concentrations that nearly exceed the criteria and standards. These and other metals whose concentrations did not exceed the criteria may have higher concentrations during the higher flow periods that the proposed project would be diverting. Again, these higher flow periods were not targeted during the limited sampling effort.

Even some of the minimum concentrations of metals found in the source waters exceed criteria and standards, which means that the source waters never meet these goals and standards – the criteria are always exceeded and the water is never suitable for the beneficial use or uses the criteria or standards were designed to protect. Water quality in the proposed reservoir for these parameters will exceed the criteria and standards all the time.

Since water quality in the proposed reservoir will reflect that of the source waters, the reservoir will have concentrations of numerous metals, including aluminum, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, selenium, silver, and zinc, that exceed a number of criteria and standards developed to protect beneficial uses. In addition, other metals that may not exceed criteria and standards in the source waters may adversely affect reservoir water quality due to synergistic effects. The State Water Resources Control Board (SWRCB 2011) states that "when multiple constituents have been found together in groundwater or surface waters, their combined toxicity should be evaluated" and that "theoretical risks from chemicals found together in a water body shall be considered additive for all chemicals having similar toxicologic effects or having carcinogenic effects." Thus, the adverse effects from the metals delivered to the proposed reservoir from the source waters may have an even greater adverse impact and pose an unacceptable level of risk. Beneficial uses potentially impacted by metals in the proposed reservoir include agricultural water supply (direct toxicity or uptake by crops making the crops unsuitable for use), wildlife (such as fisheating birds), fisheries, recreation (including sport fishing and water contact activities such as swimming), and drinking water supplies for communities that divert water from the Sacramento River.

The <u>contribution of additional metal loads from releases from the proposed Sites Reservoir during the</u> <u>summer could cause concentrations of metals in the Sacramento River to exceed criteria and standards</u> or at least be subject to the antidegradation policy due to an incremental increase in metals in the Sacramento River from the proposed project.

Thus, the proposed project <u>may face prohibition of releases if stored water does not meet water quality</u> <u>criteria or standards or if releases can cause criteria or standards to be exceeded by downstream inputs</u> (i.e., antidegradation policy). The <u>contribution of additional metal loads from releases from the proposed Sites Reservoir during the</u> <u>summer could cause concentrations of metals in the Sacramento River to exceed criteria and standards</u> <u>or at least be subject to the antidegradation policy due to an incremental increase in metals in the</u> <u>Sacramento River from the proposed project.</u> Thus, the proposed project may face prohibition of releases if stored water does not meet water quality criteria or standards or if releases can cause criteria or standards to be exceeded by downstream inputs (i.e., antidegradation policy).

During dry years, the adverse impacts associated with the project can be expected to be even greater. Flows in the Sacramento River from upstream reservoirs on the Sacramento River (i.e., Shasta Reservoir, Whiskeytown Reservoir) will be minimized during the winter months in an effort to restore water storage levels in those reservoirs. Likewise, during wet or even normal runoff years, releases from the upstream reservoirs during the winter will be curtailed during high runoff periods to prevent downstream flooding. In any of these scenarios, tributary influences, such as Cottonwood Creek, on water quality in the Sacramento River will be much greater. The proposed project would still attempt to capture as much runoff from the Sacramento River as possible, but the water diverted to the proposed project will have even greater concentrations of metals due to the majority of flow being from tributary streams (e.g., Cottonwood Creek) during dry and possibly even wet or normal runoff years.

Similarly, <u>during the summer in dry years, releases from upstream reservoirs (i.e., Shasta Reservoir,</u> Whiskeytown Reservoir) will be minimized. Releases to the Sacramento River from the proposed project will have a greater impact on water quality in the Sacramento River due to less dilution being available due to curtailed flows in the river from upstream reservoirs (i.e., Shasta and Whiskeytown reservoirs).

[also] Since mercury contamination in excess of criteria occurs in lakes that the EIR states are representative of conditions that could be expected in the proposed Sites Reservoir, the EIR should discuss the probability of mercury contamination in the proposed reservoir and ramifications to recreational fishing and wildlife that would consume fish from the reservoir.

Conclusion

The proposed project is, at best, premature. Little or no data have been collected to determine the metals loads in the higher flows of the Sacramento River that would be diverted to the proposed reservoir. An extremely small amount of data have been collected during the months in which higher flows can be expected (December through March), but higher flows during these months were not targeted in the water quality sampling. None the less, the limited data presented in the WDL show high concentrations of a number of metals which exceed numerous water quality criteria and standards in the source waters for the proposed reservoir. Extremely high concentrations of metals are present in the small streams in the reservoir footprint, which occur due to the nature of the soils in the area of the proposed reservoir. Sites Reservoir would inundate these soils resulting in leaching of metals and further incremental loading of metals to the proposed reservoir. There is no discussion in the EIR about the potential impacts of metals leaching from the soils that would be inundated by the proposed reservoir. Prior to moving forward with the project, much additional data are needed during the high flow periods in which diversions would occur from the Sacramento River, metals loading from the smaller tributaries that flow directly into the proposed reservoir, and effects from leaching of metals from soils inundated by the proposed reservoir.

The little analyses presented in the EIR misconstrues, misinterprets, and ignores water quality data that amply demonstrate significant potential adverse impacts from the proposed project. The water quality section (Chapter 7) must be completely rewritten with an objective analysis of the data and potential adverse impacts to water quality both within the reservoir and to downstream resources in the Sacramento River

Whether any of the projected beneficial uses from the proposed project can be realized, and its feasibility to meet project objectives, purpose, and need, also needs to be reconsidered in light of the potential significant adverse water quality impacts from metals.