Water Quality Group Discussion Agenda

Our Core Values – Safety, Trust and Integrity, Respect for Local Communities, Environmental Stewardship, Shared Responsibility and Shared Benefits, Accountability and Transparency, Proactive Innovation, Diversity and Inclusivity Our Commitment – To live up to these values in everything we do

Meeting Information:				
			Microsoft Teams	
Date:	April 29, 2021	Location:	Or call in (audio o	nly)
			(833) 255-2803,,1	.56125785#
Start Time:	2:00 p.m.	Finish Time:	3:00 p.m.	
Purpose:	Overview and discussion of the Sites Project's aquatic modeling and EIR/S analysis approach			
Meeting Invite	es:			
André Sanchez		Rebecca Wu	Laurie Warner Herson	
Dave Zelinski		Regina Chichizola	Jason Hassrick	
Debra Lucero		Ron Stork	Jim Lecky	
Doug Obegi		Stephanie Gordon	Marin Greenwood	
Greg Reis		Suzanne Manugian	Melissa Dekar	
Jerry Boles		Tom Stokely	Mike Hendrick	
Jim Brobeck		Ali Forsythe	Natalie Wolder	
Joe Morgan		Dan Deeds	Nicole Williams	
Rachel Zwillinger		Erin Heydinger	Steve Micko	
		John Spranza	Vanessa King	
Agenda:				
Discussion Topic			Topic Leader	Time Allotted
1. Introductions		John	5 mins	
2. Approach to Meetings			John	5 mins
3. Proposed Project			John	5 min
4. Overview of Operations			Ali	10 min
5. Modeling and Baseline		Steve Miko	25 mins	
a. Mo	odels used and how	w applied		
6. Schedule and Future Meeting Topics		eting Topics	John/Group	10 mins
7. Adjour	n			

Sites Project Fishery Group Discussion

April 29, 2021

Draft - Predecisional Working Document - For Discussion Purposes Only

Agenda

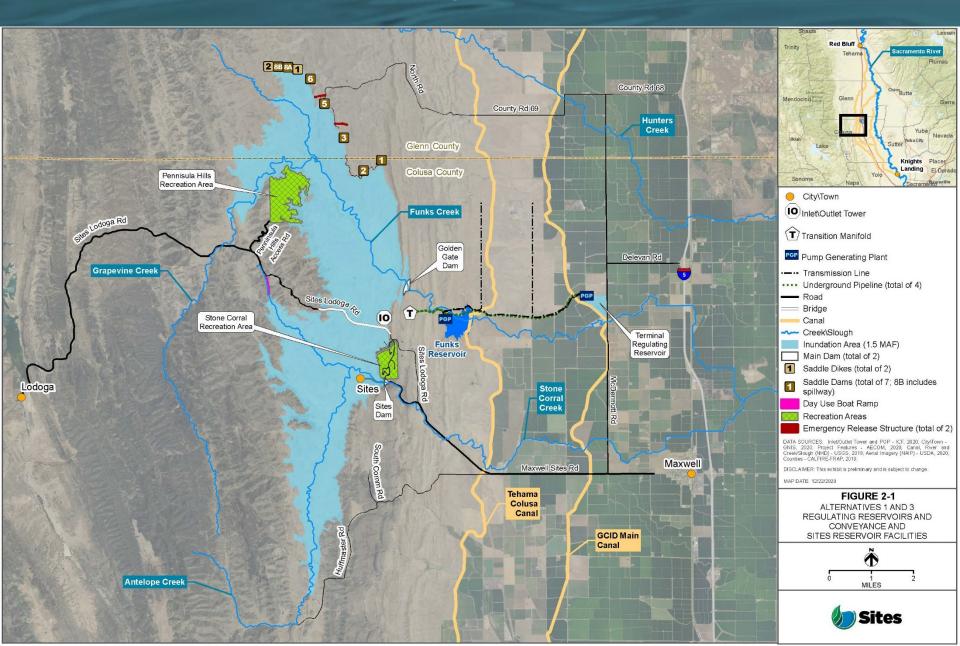
- 1. Introductions
- 2. Approach to Meetings
- 3. Group Norms
- 4. Preferred Project
- 5. Overview of Project Operations
- 6. Modeling and Baseline
 - 1. Baseline
 - 2. Models and how they were used
- 7. Schedule and Future Meeting Topics

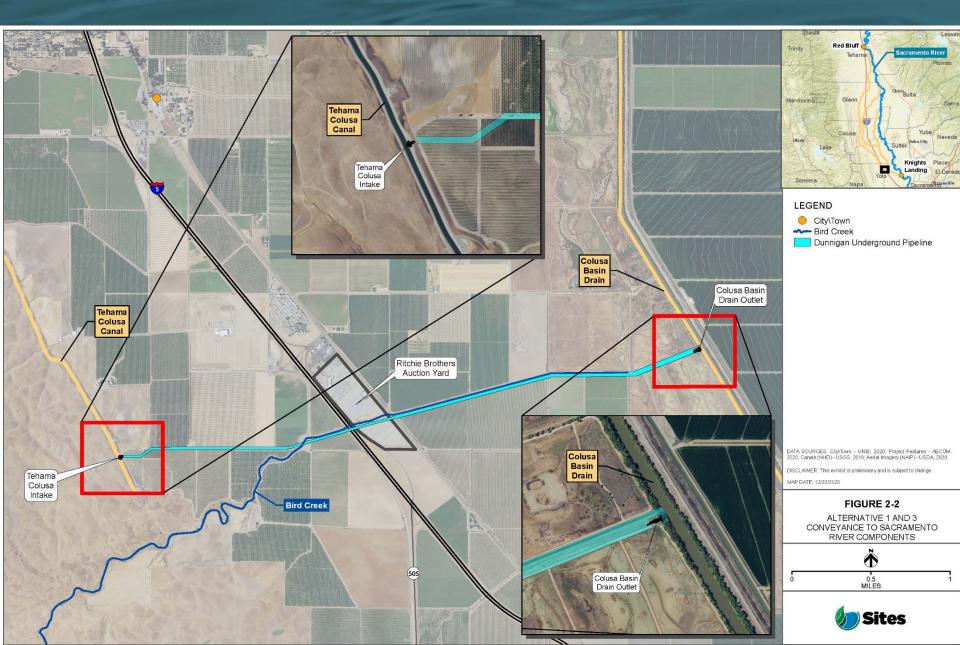
Approach to Fisheries Meetings

- Many diverse questions spanning aquatic system
- Sequential meetings
 - First meeting Operations, modeling and baseline
 - Second meeting Diversion effects above Delta
 - Third meeting Diversion effects in the Delta
- No effects today, but will take topics for future meetings not already provided
- As always, questions on today's material are welcome

Group Norms

- Encourage everyone to be on video
- Mute yourself when others are speaking
- Respectful, professional dialogue
- Ask questions throughout, lets have a dialogue
 - Let the speaker finish their point
 - Use the raise your hand function in Teams if needed
- Topics for next meeting will be recorded and discussed at that meeting


Preferred Project


Major Revisions to Project

- Reservoir size reduced from 1.8 MAF to 1.5 MAF
- No Delevan diversion, pipeline or outfall
 - Utilize existing facilities at Red Bluff and Hamilton City pumping plants
 - Releases to Tehama-Colusa Canal to the Colusa Basin Drain
 - New 1,000 cfs pipeline and release near Dunnigan
 - Alternative 2: a new 1,000 cfs outfall to Sacramento River near Tyndall Landing
- Max diversion rate reduced from 5,900 cfs to 3,900 cfs
- Releases reduced from 1,500 cfs to 1,000 cfs

Alt 1 – Preferred Project


Alt 1 – Preferred Project

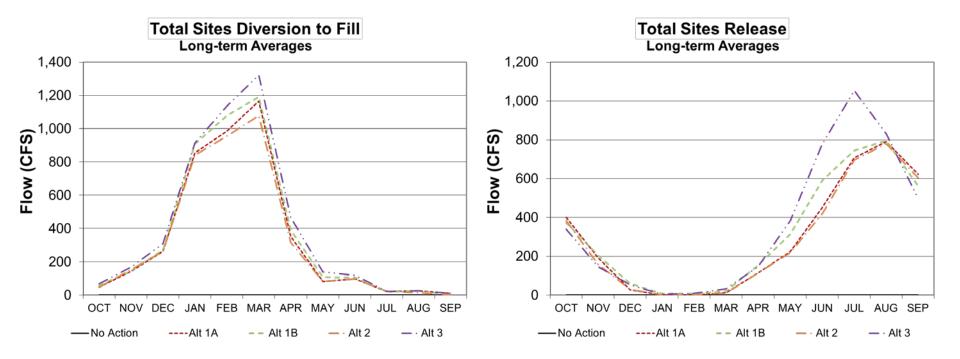
Overview of Project Operations

Project Water Operations

Draft - Predecisional Working Document - For Discussion Purposes Only

Operations Project Description

Operational Criteria


- Junior diverter Diverting after all senior water rights and water quality and flow requirement are met
- Diverting during "excess conditions" (as determined by Reclamation and DWR)
- Diversion locations in priority:
 - 1. Red Bluff Pumping Plant into the Tehama-Colusa Canal
 - Up to 2,100 cfs diversion for Sites (plus losses), subject to other uses
 - 2. Hamilton City Pump Station into the GCID Main Canal
 - Up to 1,800 cfs diversion for Sites (plus losses), subject to other uses
- Diversions when Sacramento River not fully appropriated (September 1 to June 15)

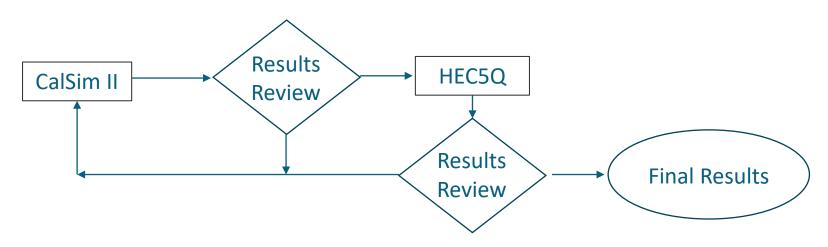
Operations Project Description (cont.)

• Diversion Criteria

- Pulse flow protection implemented at Bend Bridge:
 - Each pulse protected (previously protected one pulse per month)
 - Pulse "reset" to differentiate between pulses
- Wilkins Slough Bypass flow requirements:
 - 8,000 cfs April/May
 - 5,000 cfs all other months
- Fremont Weir Notch:
 - Objective is to limit changes to frequency and duration
 - Model:
 - First 600 cfs held to 1% change
 - 600 6,000 cfs held within 10%
 - No restriction above 6,000 cfs

Diversions and Releases

Modeling and Baseline



Baseline

- 2020 Benchmark CalSim II Model
 - Existing conditions
 - 2019 BiOps and 2020 SWP ITP
- Developed by Reclamation in coordination with DWR and CDFW
- All baseline actions preserved in alternatives evaluated in Revised Draft EIR/Supplemental Draft EIS

Modeling Framework

- Develop operations in CalSim II
- Inform secondary models with CalSim II results
- Update CalSim II based on analysis of:
 - CalSim II results
 - Secondary model results

CalSim II Model

- Monthly hydrologic operations model
- Developed and maintained by Reclamation and DWR
- Simulates operations of CVP and SWP over a range of hydrologic conditions
- Allows for specification and achievement of userspecified allocation targets

DSM2

- 1-Dimensional Hydrodynamic Model of the Sacramento – San Joaquin River Delta
- Developed by DWR
- Inputs are informed with CalSim II results
- DSM2 Modules:
 - HYDRO: Hydrodynamics
 - QUAL: Water Quality
- Informs aquatics models

- 1-Dimensional reservoir operation, routing and temperature model
- Sacramento and American Rivers
- Inputs are informed with CalSim II results
- Considers reservoir operations, temperature control devices (TCDs) and meteorology
- Informs aquatics models

Reclamation Temperature Model

- 1-Dimensional reservoir operation, routing and temperature model
- Feather River
- Inputs are informed with CalSim II results
- Considers reservoir operations and meteorology

Winter-Run Early Life Stage Mortality

- Two methods:
 - Martin model: Considers temperature throughout redd's lifespan
 - Anderson model: Considers a 5-day "critical period" before hatching
- Relied upon for real-time operations
- Informed with results of HEC5Q model



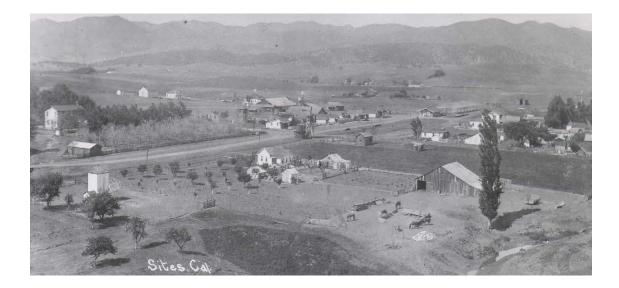
SALMOD

- Evaluates mortality as a function of flow and temperature
- Considers mortality at several stages of the life cycle
 - Spawning
 - Egg incubation
 - Alevins
- Not a life-cycle model
 - Assumes same number of female returning spawners each year
- Inputs are informed with results of HEC5Q model

Additional Models

- IOS, conducted by Cramer Fish Sciences
- OBAN, conducted by QEDA
- Juvenile Chinook salmon flow-survival threshold analysis (Michel et al. 2021), conducted by ICF
- Various in-river and Bay-Delta species- and effectspecific analyses, conducted by ICF

Schedule and Next Meeting


Schedule

- Summer 2021
 - Revised Draft EIR/Supplemental Draft EIS Released
- December 2021
 - Biological Assessment to Agencies
 - Submit State ITP Applications
- Spring 2022 – Final EIR/EIS
- Spring 2023
 - All permits obtained
- Spring 2024 Construction Begins

Additional Topics from the Group

- Any additional questions or thoughts?
- Topics for the next meeting?

Action Items and Next Steps

Thank you!

Trinity River Small Group

Follow up from Previous Meeting and Discussion of Possible Water Right Term

April 30, 2021

Agenda

- 1. Introductions
- 2. Action Items and Follow up from Last Meeting
 - a. AB 52 Reconsider scope
 - b. 1959 Contract "reasonably foreseeable"
 - c. Discussion on 1959 Water Contract use
- 3. Discussion of Possible Water Rights Term
- 4. Action Items and Next Steps

Action Items and Follow up from Last Meeting

- AB 52 Reconsider scope
- 1959 Contract "reasonably foreseeable"
- Discussion on 1959 Water Contract use

Water Right Approach and Possible Term

- Developing water right terms:
 - Implementable and under the control of the Sites Authority
 - Measurable, identifiable, reportable
 - Addresses the issue at hand
- Open to a term, but we believe that it should meet the criteria above

Discussion of Possible Water Rights Term

- Preliminary discussion
- Any term would need to be approved by the Sites Board prior to submittal in the application

Possible Water Rights Term

Trinity River water shall not be used to fill Sites Reservoir under this Permit unless the Trinity River Division of the Central Valley Project is releasing water to meet flood space regulatory requirements and all other diversion criteria in this Permit are met.

Furthermore, implementation of the Sites Project shall not change the Bureau of Reclamation's obligations in its Trinity River operations, including but not limited to the 1959 Contract Between the United States and Humboldt County, the Trinity River Mainstem Fishery Restoration Record of Decision, and the Long-Term Plan to Protect Adult Salmon in the Lower Klamath River Record of Decision.

Action Items and Next Steps

Thank you!

Proposed Water Right Term from Humboldt County

Trinity River water shall not be used to fill Sites Reservoir unless the Trinity River Division of the Central Valley Project is releasing water as a result of storage conditions requiring "Safety of Dams" releases beyond normal operating plans and concurrently when Shasta Reservoir is making flood control releases.

Furthermore, Humboldt County's 1959 water contract with the Bureau of Reclamation, Trinity River Record of Decision (ROD) flows, and releases to implement the Bureau of Reclamation's Long-Term Plan to Protect Adult Salmon in the Lower Klamath River shall not be reduced or negatively impacted in any way as a result of any Sites Reservoir decisions, modeling, operational plans, and water right petitions.

Group Norms

- Encourage everyone to be on video
- Mute yourself when others are speaking
- Respectful, professional dialogue
- Ask questions throughout, lets have a dialogue
 - Let the speaker finish their point
 - Use the raise your hand function in Teams if needed
- Focus is on the Sites Project

Water Quality Group Discussion Agenda

Our Core Values – Safety, Trust and Integrity, Respect for Local Communities, Environmental Stewardship, Shared Responsibility and Shared Benefits, Accountability and Transparency, Proactive Innovation, Diversity and Inclusivity Our Commitment – To live up to these values in everything we do

Meeting	Information:				
				Microsoft Teams	
Date:	April 7, 2	2021	Location:	Or call in (audio c	only)
				(833) 255-2803,,8	335461730#
Start Tim	ne: 11:00 a.r	n.	Finish Time:	12:00 p.m.	
Purpose		Overview and discussion of the Sites Project's v analysis approach		ater quality modeli	ng and EIR/S
Meeting	Invitees:				
André Sa	inchez	Rachel	Zwillinger	Erin Heydinger	
Dave Zelinski		Rebeco	cca Wu John Spranza		
Debra Lucero		Regina	Chichizola	Laurie Warner Herson	
Doug Obegi		Ron St	ork	Melissa Deka	r
Greg Reis		Stepha	nie Gordon	nie Gordon Nicole Williams	
Jerry Boles		Tom St	okely	Steve Micko	
Jim Brobeck			Ali Forsythe Vanessa King		
		Anne H	luber		
Agenda:					
Discussio	on Topic			Topic Leader	Time Allotted
1. I	ntroductions			John	5 mins
2. (Group Norms			John	5 mins
ā	a. Approach to	Meetings			
3. <i>A</i>	Approach to Anal	ysis		Steve, Anne,	15 min
ā	a. Quantitative			Nicole	
k	o. Qualitative				
4.	Source Water			Anne	20 mins
ā	a. Operations				
k	p. Data Sources				
c	c. Example Data	a			

6.	Action Items and Next Steps	All	5 mins

Sites Project Water Quality Group Discussion

April 7, 2021

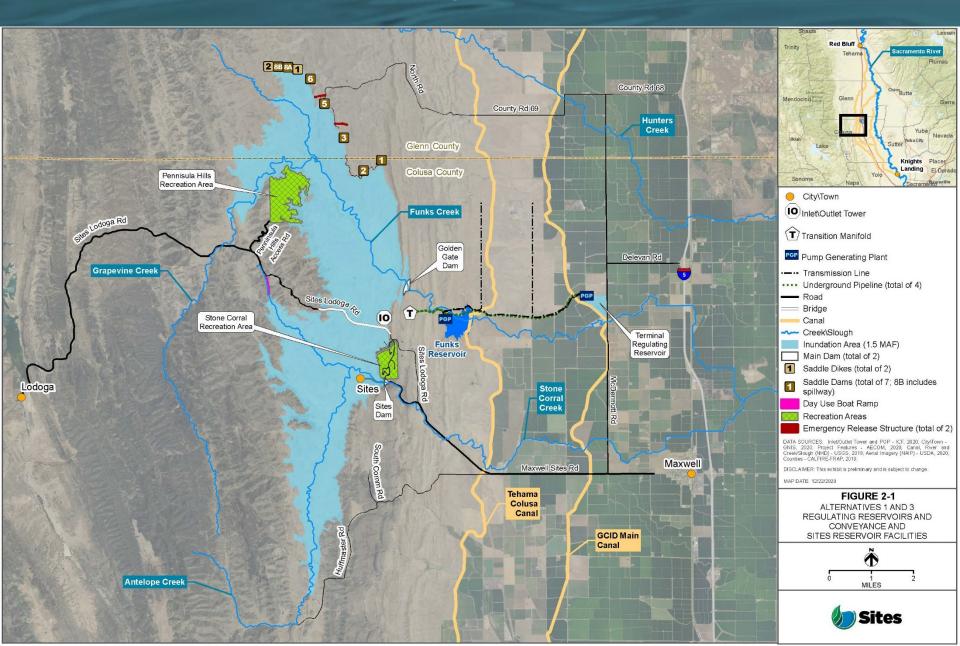
Draft - Predecisional Working Document - For Discussion Purposes Only

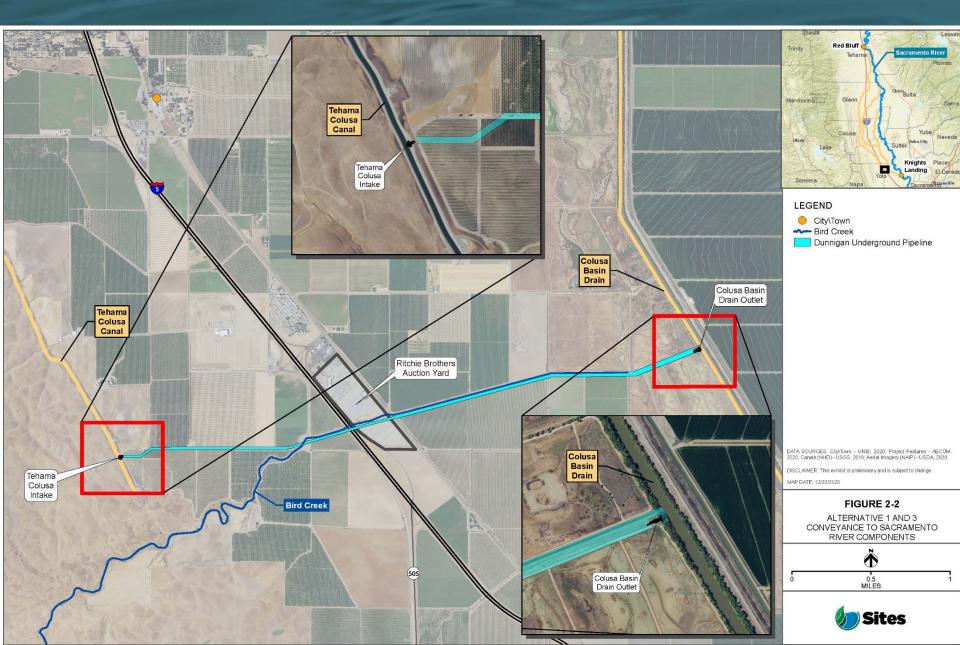
Agenda

- 1. Introductions
- 2. Group Norms
- 3. Preferred Project
- 4. Approach to Analysis
 - a. Qualitative
 - b. Quantitative
- 5. Source Water
 - a. Operations
 - b. Data Sources
 - c. Example Data
- 6. Schedule and Future Meeting Topics
- 7. Action Items and Next Steps

Group Norms

- Encourage everyone to be on video
- Mute yourself when others are speaking
- Respectful, professional dialogue
- Ask questions throughout, lets have a dialogue
 - Let the speaker finish their point
 - Use the raise your hand function in Teams if needed
- Topics for next meeting will be discussed and recorded


Sites'Preferred Project


Major Revisions to Project

- Reservoir size reduced from 1.8 MAF to 1.5 MAF
- No Delevan diversion, pipeline or outfall
 - Utilize existing at Red Bluff and Hamilton City pumping plants
 - Releases to Tehama-Colusa Canal to the Colusa Basin Drain
 - New 1,000 cfs pipeline and release near Dunnigan
 - Alternative 2: a new 1,000 cfs outfall near Tyndall Landing
- Max diversion rate reduced from 5,900 cfs to 3,900 cfs
- Releases reduced from 1,500 cfs to 1,000 cfs

Alt 1 – Preferred Project

Alt 1 – Preferred Project

Approach to Analysis

Method Analysis Overview

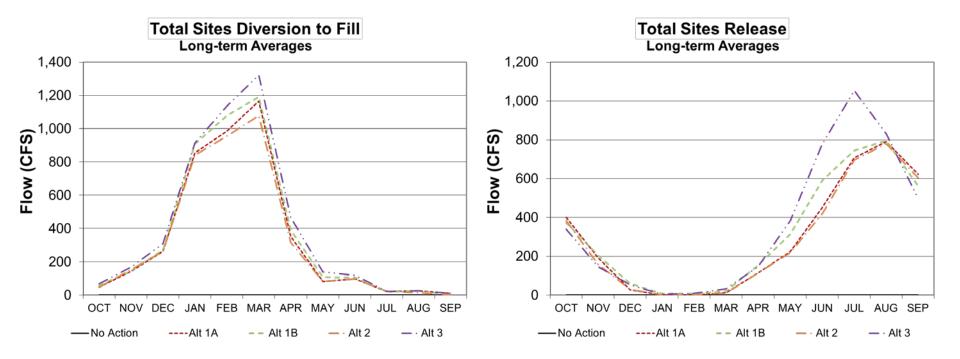
Mechanisms by which Sites Reservoir Operations Could Affect Water Quality	Main Constituents Considered	Qualitative	Quantitative	Model Results Considered
Temporal Shift	Metals Pesticides Salinity	X	X	CalSim
Evapoconcentration	Metals Salinity		Х	CalSim
In-Reservoir Processes	Mercury HABs Nutrients/OC/DO Temperature	X	X	Reservoir temperature modeling (CE QUAL W2)
Change in System Reservoir Operations	Temperature HABs Mercury	X	X	CalSim, HEC5Q and Reclamation temperature model
Change in Delta Operations	Salinity Chloride	Х	Х	CalSim and DSM2 QUAL
Redirection of CBD Flow to Yolo Bypass	Pesticides Nutrients/OC/DO HABs Mercury Temperature	X	X	CalSim

Draft - Predecisional Working Document - For Discussion Purposes Only

Quantitative Models

- CalSim II used for overall operations
 - Hydrological planning tool used to represent state-wide changes that would result from Sites
 - Monthly timestep
 - Results inform water quality models
 - Comparative analysis of results
- Water quality models
 - Reservoir Temperature: CE QUAL W2
 - River Temperature: HEC5Q, Reclamation Temperature Model
 - Delta salinity: DSM2 QUAL

Source Water

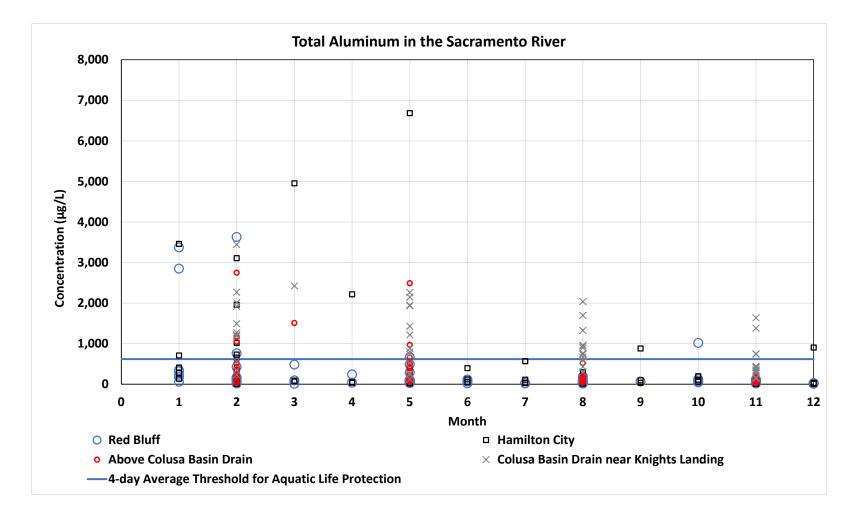


Project Water Operations

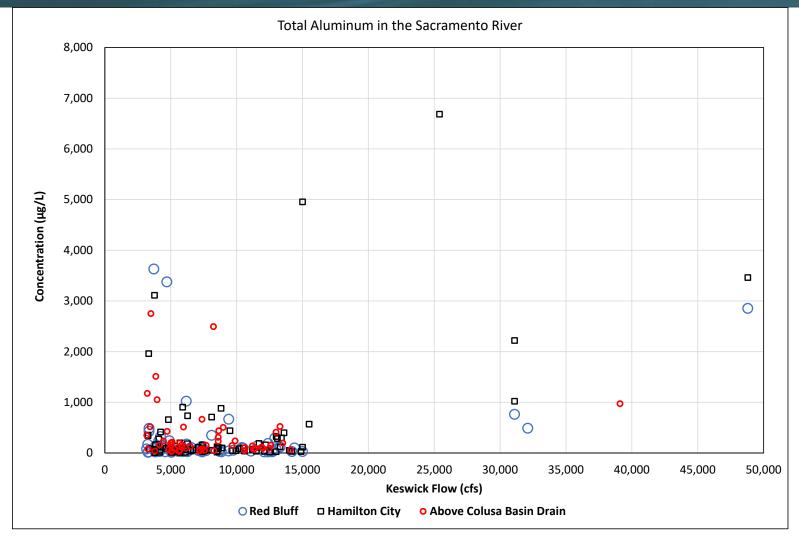
Draft - Predecisional Working Document - For Discussion Purposes Only

Diversions and Releases

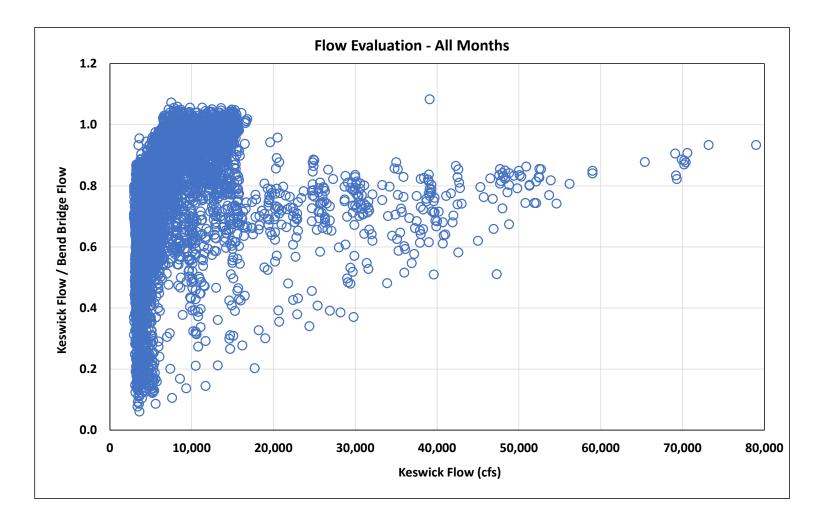
Main Data Sources

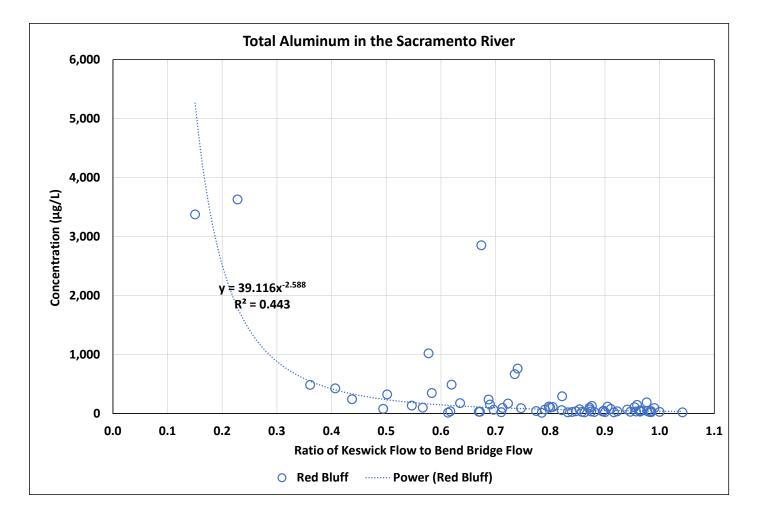

Constituent Group	Data Source	Location
Metals Electrical Conductivity Nutrients	DWR Water Data Library (WDL)	Sacramento River below Red Bluff Sacramento River at Hamilton City Sacramento River above CBD CBD near Knights Landing Stone Corral Creek near Sites
Flow	USGS WDL CA Data Exchange Center	Sacramento River at Keswick Sacramento River above Bend Bridge
Pesticides	CA Dept of Pesticide Regulation Surface Water Database (CDPR SURF)	Sacramento River near Hamilton City Sacramento River at Colusa CBD above Knights Landing Yolo Bypass Toe Drain near Babel Slough

Average Metal/Metalloid Concentrations

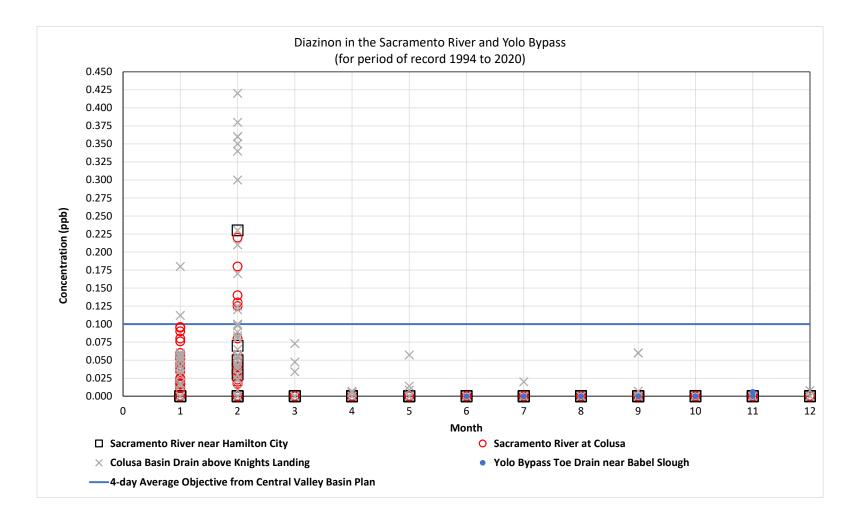

- Units are in micrograms per liter
- No available data for Funks Creek
- Source for Stone Corral Creek and Sacramento River = DWR Water Data Library. See Slide 14
- Source for groundwater is DWR NODOS study (2007)

	Stone Corral		River at Intake
	Creek		Locations
Dissolved Aluminum	149		94
Total Aluminum	562		
Dissolved Arsenic	2.8	0.7	
Total Arsenic	3.1	0.8	1.6
Dissolved Cadmium	0.05	0.02	0.04
Total Cadmium	0.06	0.05	0.04
Dissolved Chromium	2.9	2.6	0.7
Total Chromium	4.0	3.3	1.4
Dissolved Copper	2.8	2.7	1.3
Total Copper	3.9	3.4	2.3
Dissolved Iron	123	7	67
Total Iron	512	81	424
Dissolved Lead	0.08	0.12	0.03
Total Lead	0.31	0.27	0.20
Dissolved Manganese	12	18	2
Total Manganese	37	21	15
Dissolved Nickel	2.8	1.0	1.2
Total Nickel	4.0	1.3	2.2
Dissolved Selenium	6.1	4.6	1.2
Total Selenium	6.7	5.0	0.2
Dissolved Silver	0.03	0.00	0.01
Total Silver	0.05	0.01	0.03
Dissolved Zinc	1.4	112.5	0.9
Total Zinc	3.7	115.2	3.8


Metals – Aluminum Example


Compared to Flow

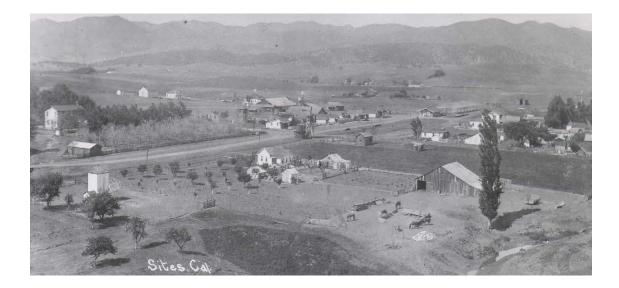

Sacramento River Indicator of Local Runoff vs Flow


Example Quantitative Approach

Thiobencarb – typical pesticide pattern

Diazinon – atypical pesticide pattern

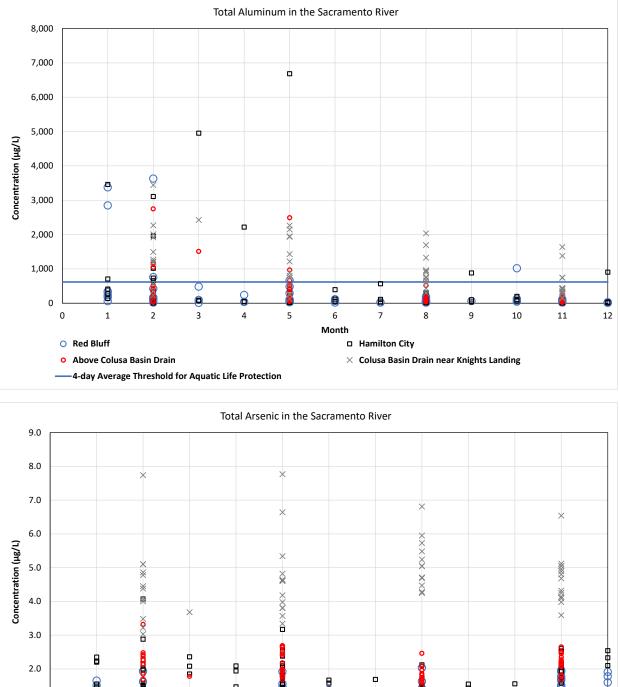
Schedule and Next Meeting

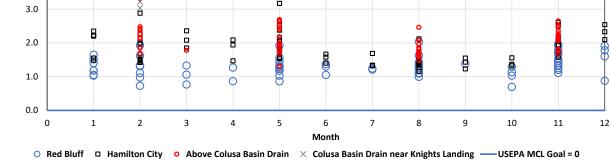

Schedule

- Summer 2021
 - Draft EIR and Supplemental EIS Released
- December 2021
 - Biological Assessment to Agencies
 - Submit State ITP Applications
- Spring 2022
 - Final EIR/Final EIS
- Spring 2023
 - All permits obtained
- Spring 2024 Construction Begins
- Topics for the next meeting?

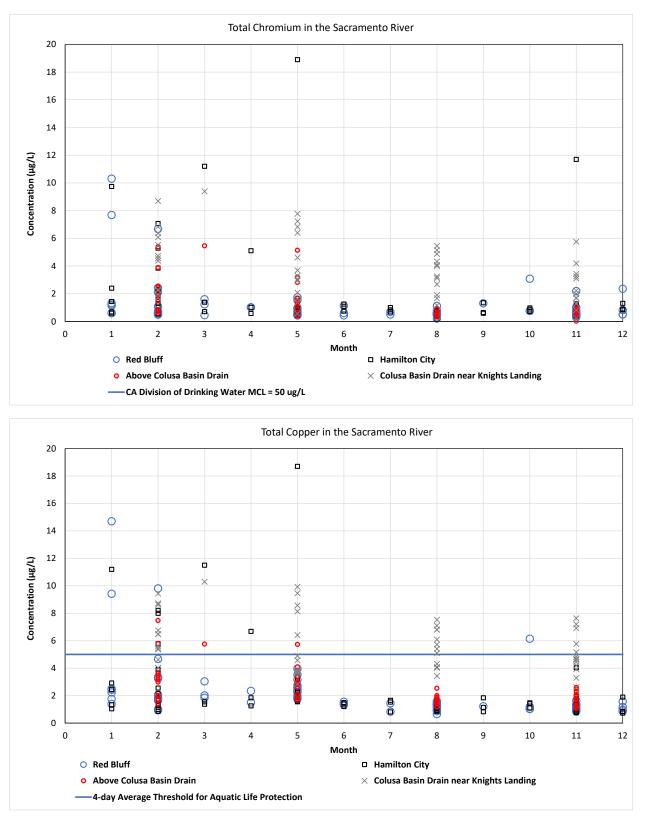
Additional Topics from the Group

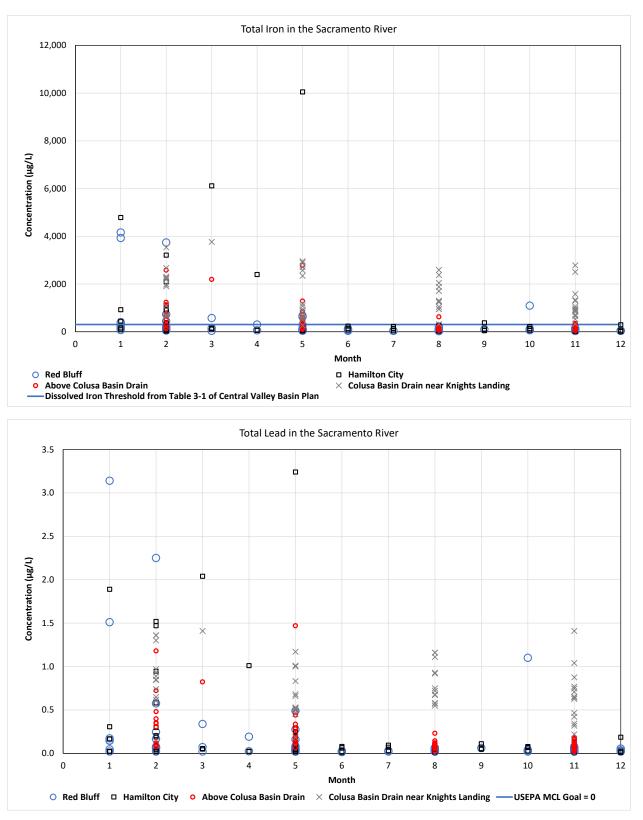
- Any additional questions or thoughts?
- Topics for the next meeting?

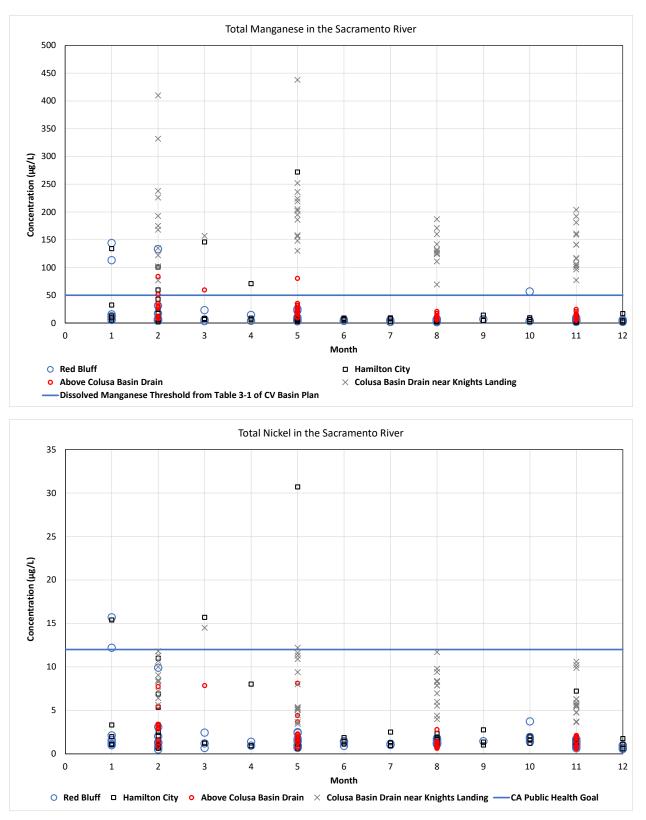

Action Items and Next Steps

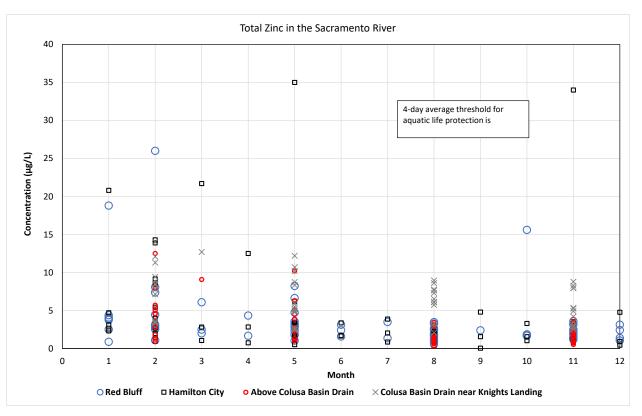


Thank you!

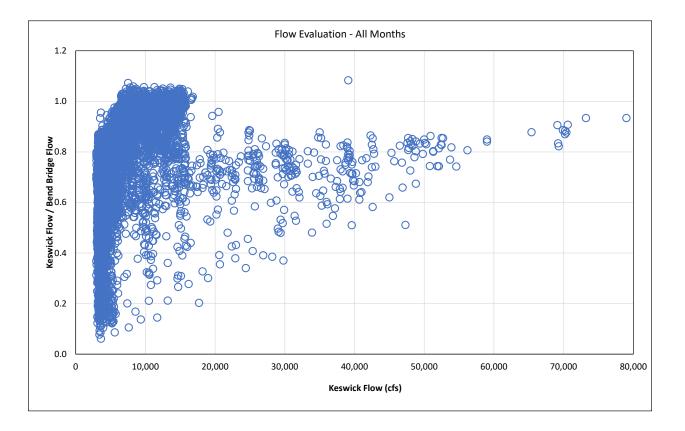


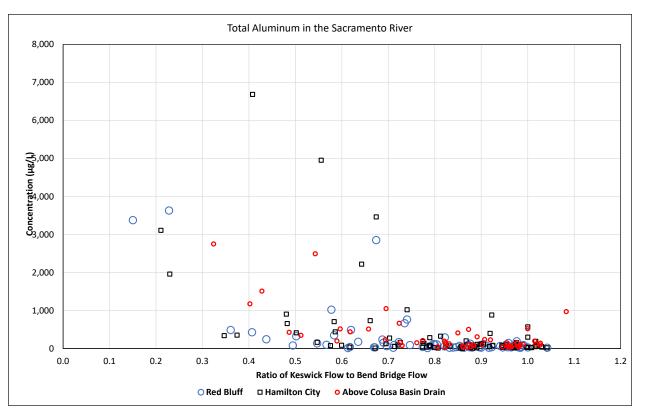

Metals Data by Month

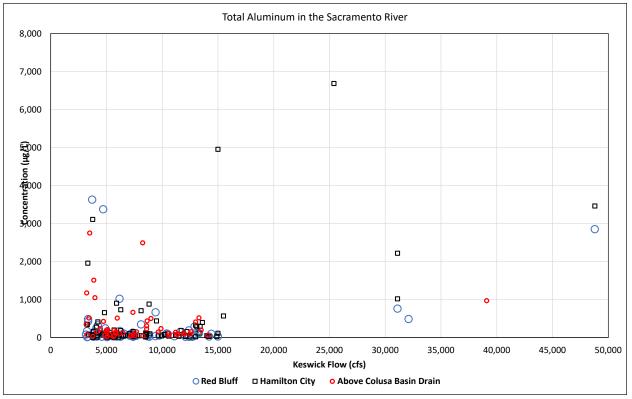


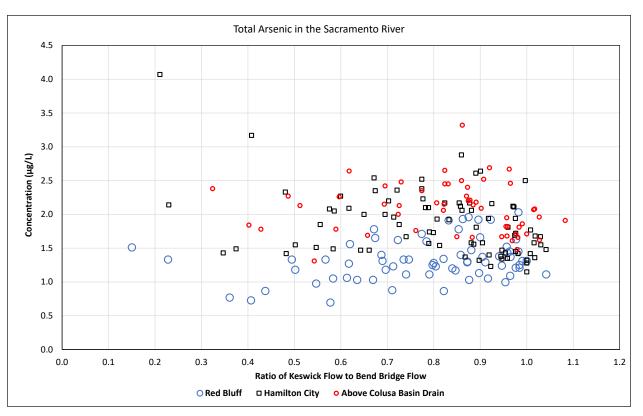


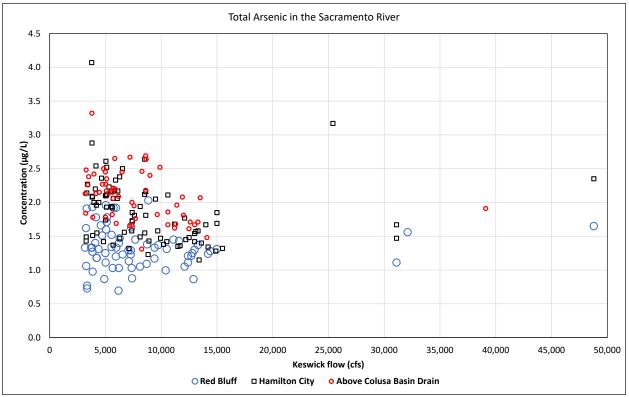
Draft - Predecisional Working Document - For Discussion Purposes Only

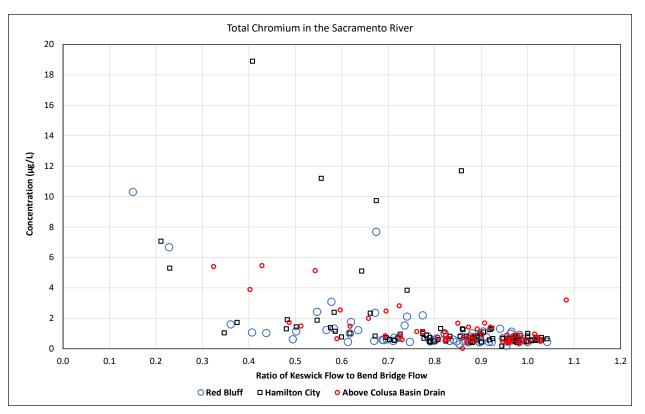


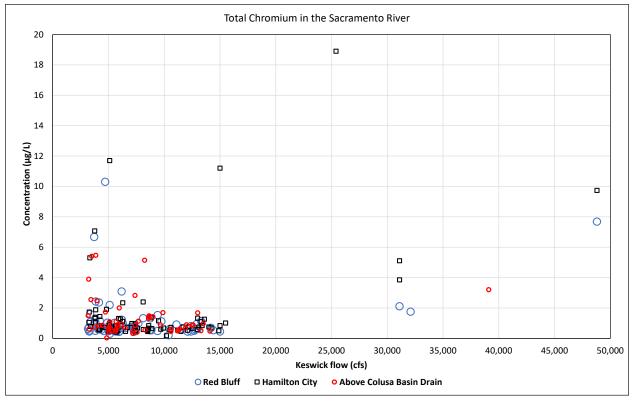


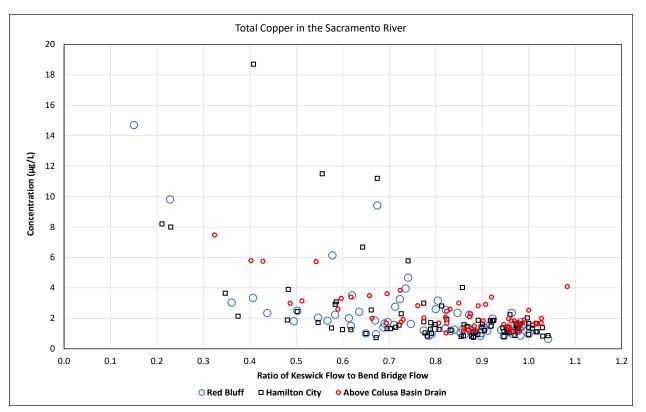


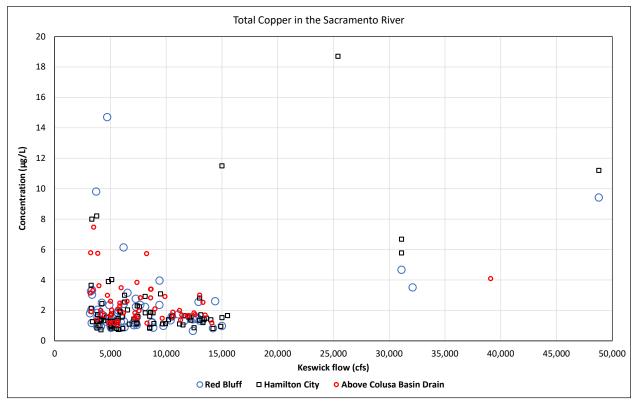


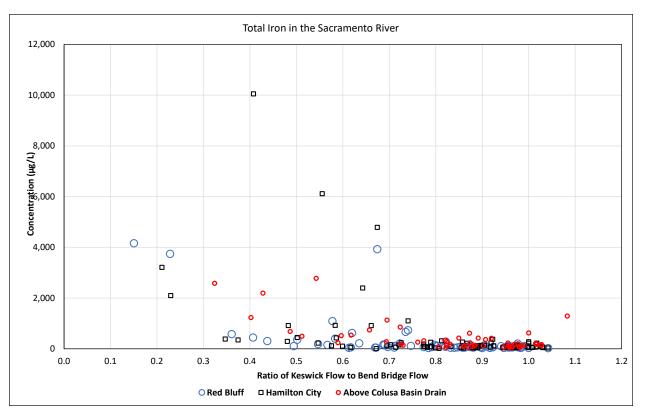

Metals Data Versus Flow

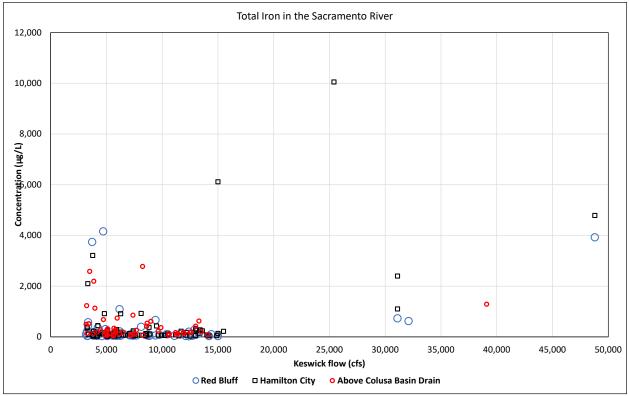


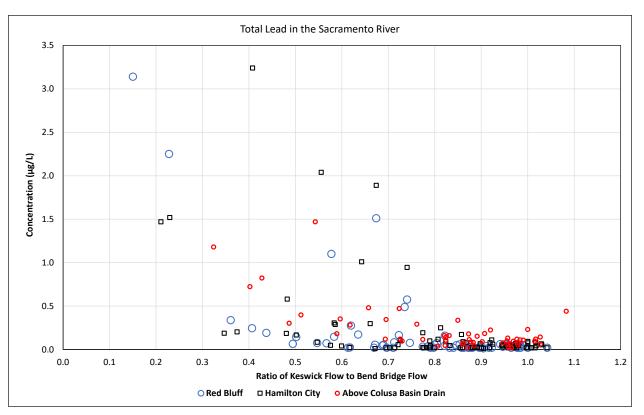


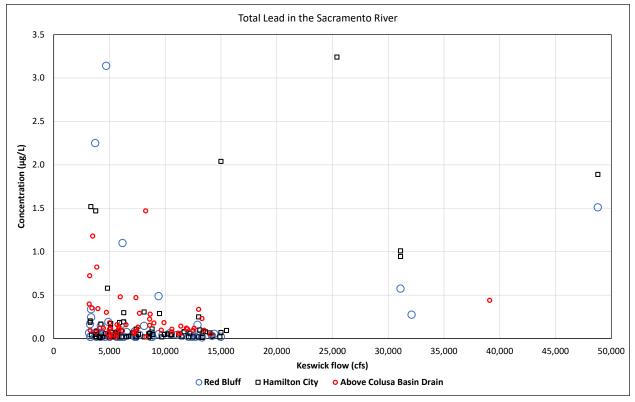


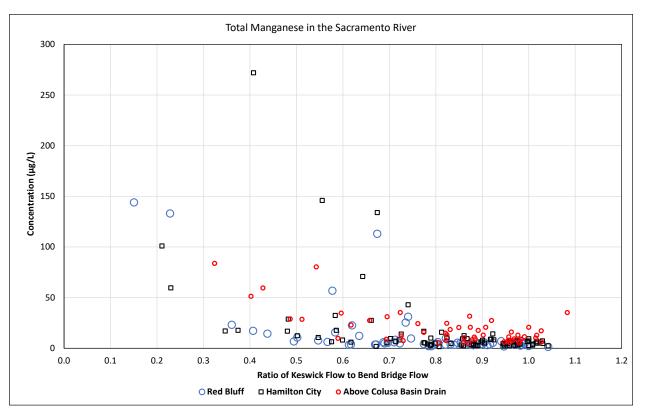


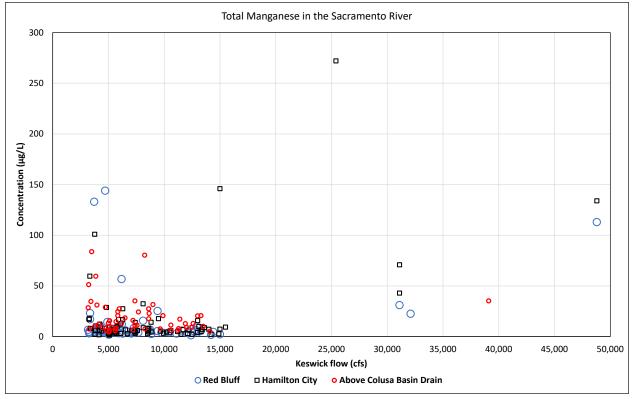


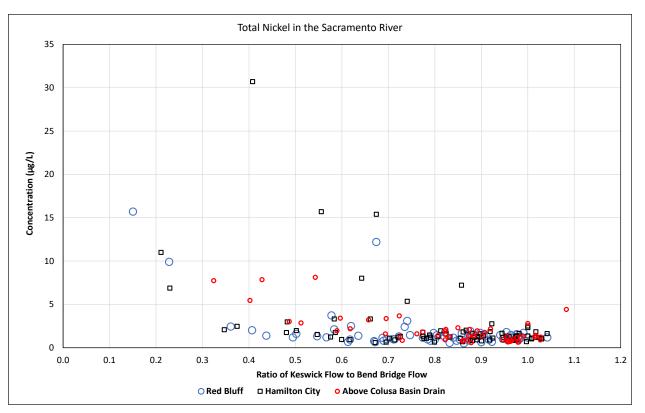


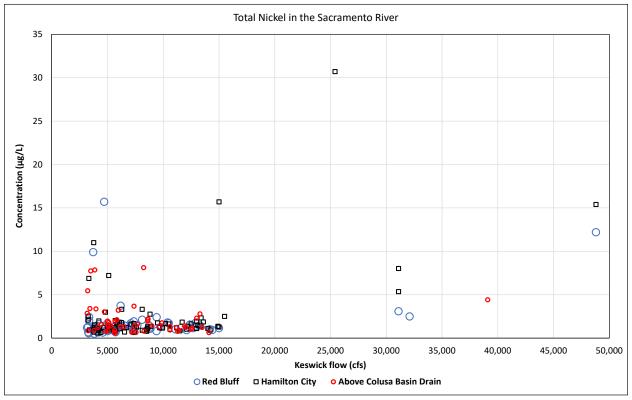


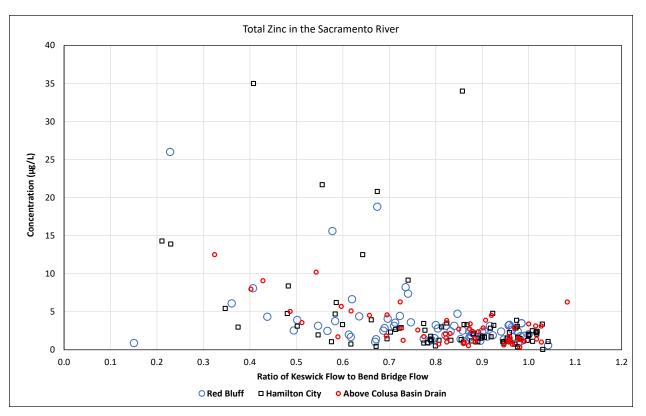


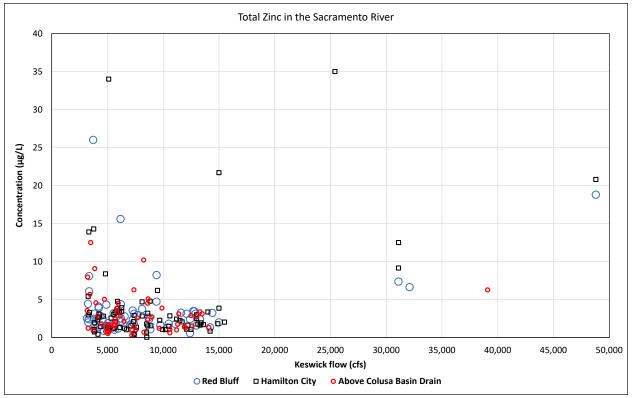


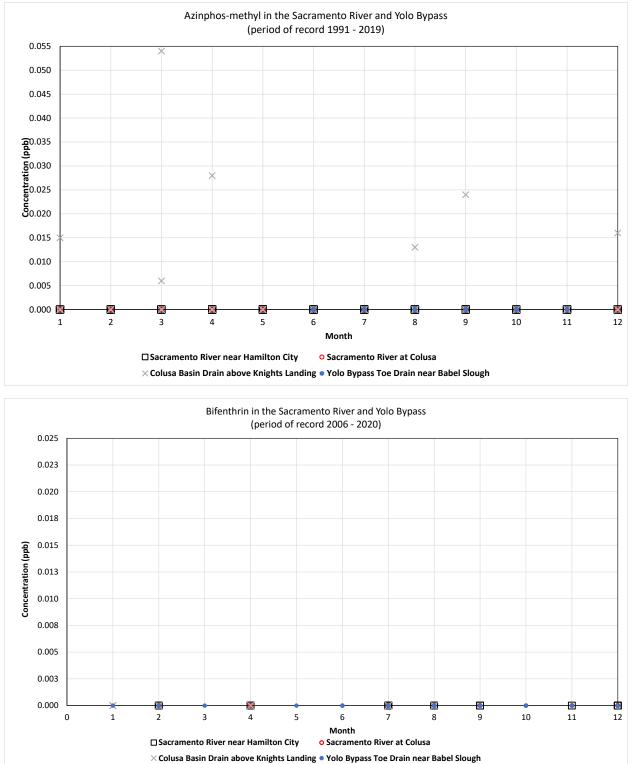


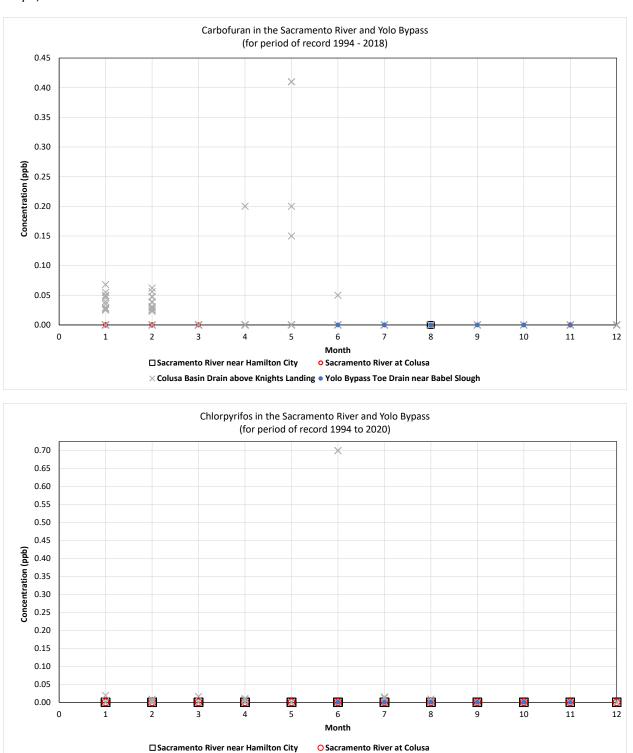


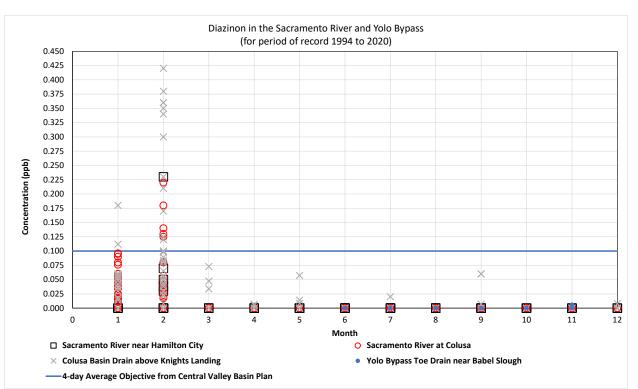


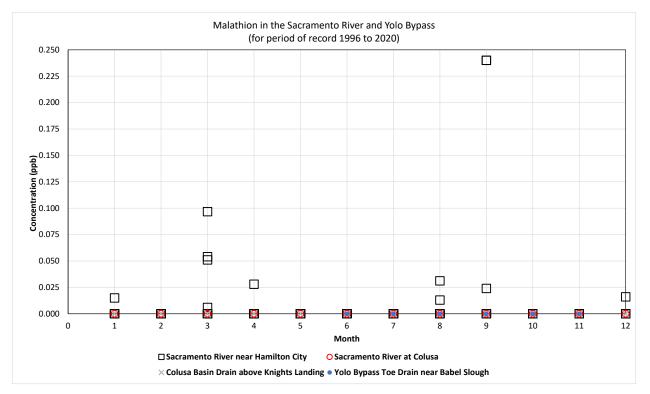


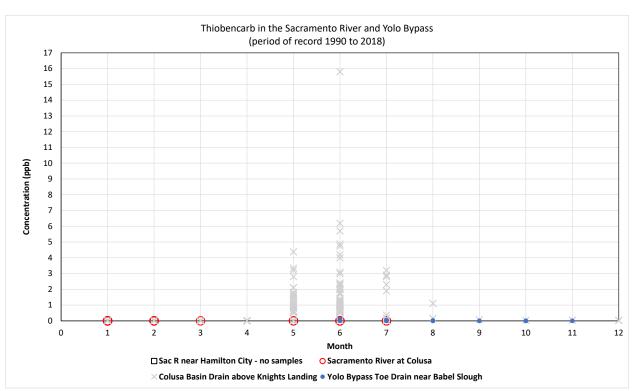


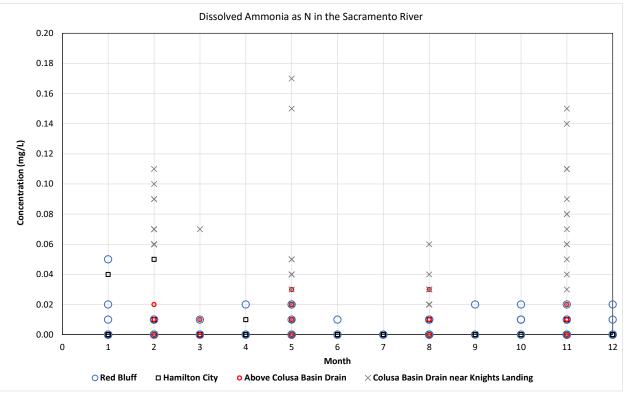


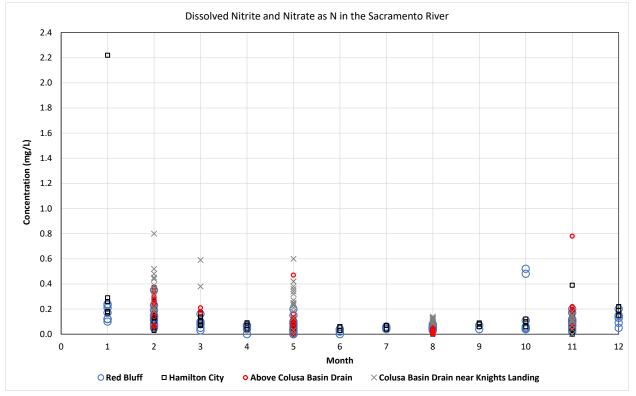


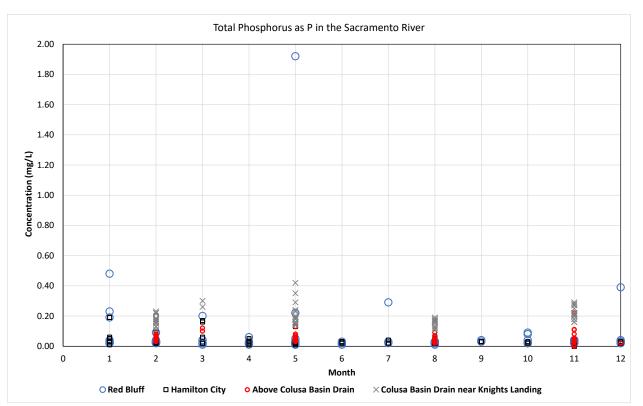


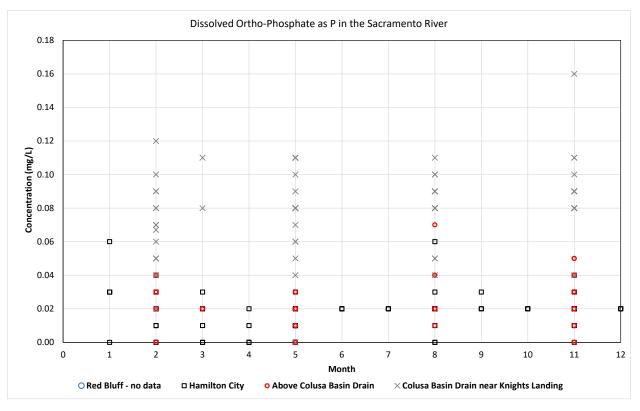

Pesticide Data by Month




× Colusa Basin Drain above Knights Landing
• Yolo Bypass Toe Drain near Babel Slough







Nutrients Data by Month

Water Rights Small Group Agenda

Our Core Values – Safety, Trust and Integrity, Respect for Local Communities, Environmental Stewardship, Shared Responsibility and Shared Benefits, Accountability and Transparency, Proactive Innovation, Diversity and Inclusivity Our Commitment – To live up to these values in everything we do

Meeting Information:					
Date:	February 23, 2021 Location		Microsoft Teams		
Start Time:	1:00 p.m.	Finish Time:	2:30 p.m.		
Purpose:	Overview and discussion of the	iter right approach			
Meeting Participants:					
Doug Obegi	Craig Tucker		Andy Hitchings		
<mark>Joe Polos</mark>	Ellen Wehr	Ellen Wehr		John Spranza	
Greg Reis	Rebecca Wu		Kelley Taber		
Anthony Sara	acino Ali Forsythe		Marc VanCamp		
Hank Seemar	nn Erin Heydinger		Anne Williams		
<mark>Tom Stokely</mark>			Laurie Warner Herson		
			<mark>Melissa Dekar</mark>		
Agenda:					
Discussion	Горіс		Topic Leader	Time Allotted	
1. Intr	oductions		Ali	5 mins	
2. Gro	up Norms		Ali / Group	10 mins	
3. Wa	8. Water Right Approach and Key Application Parameters		Ali	30 mins	
a.	a. New application or taking over prior application				
b.	b. Purpose of Use				
с.	Source				
d.	d. Diversion to Off-stream Storage				
e.	e. Points of Diversion and Season				
f.	f. Points of Rediversion				
g.	Place of Use				
4. Pro	Prop 1 Water		Ali	10 mins	
5. Wat	Water Right Schedule		Ali	10 mins	
6. Add	Additional Topics from the Group Group 15 mins				
7. Acti	Action Items and Next Steps Ali 10 mins				

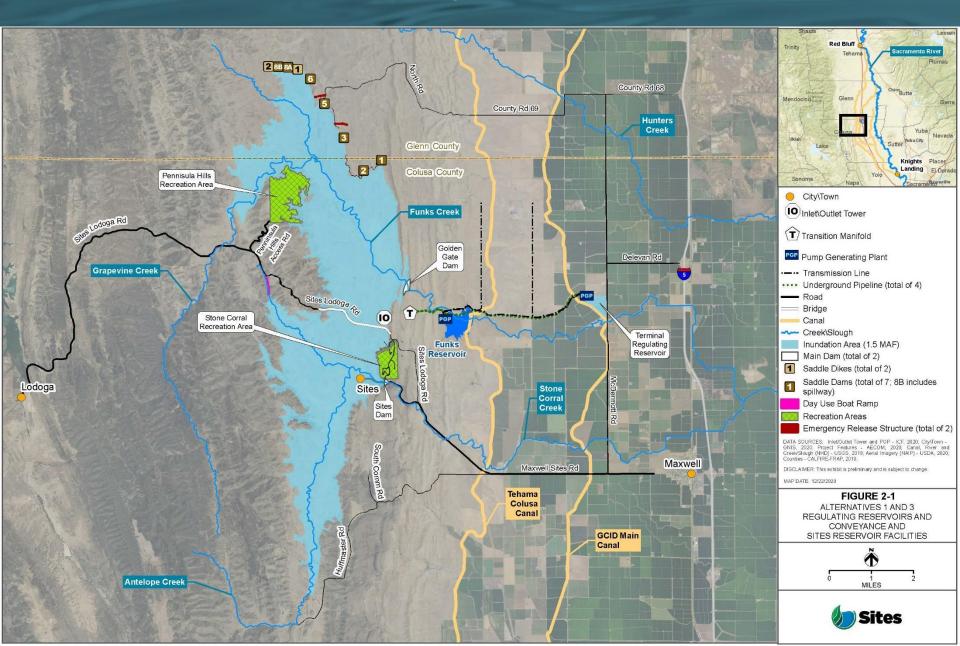
Water Rights Small Group

Overview and Discussion of the Sites Project's Water Right Approach

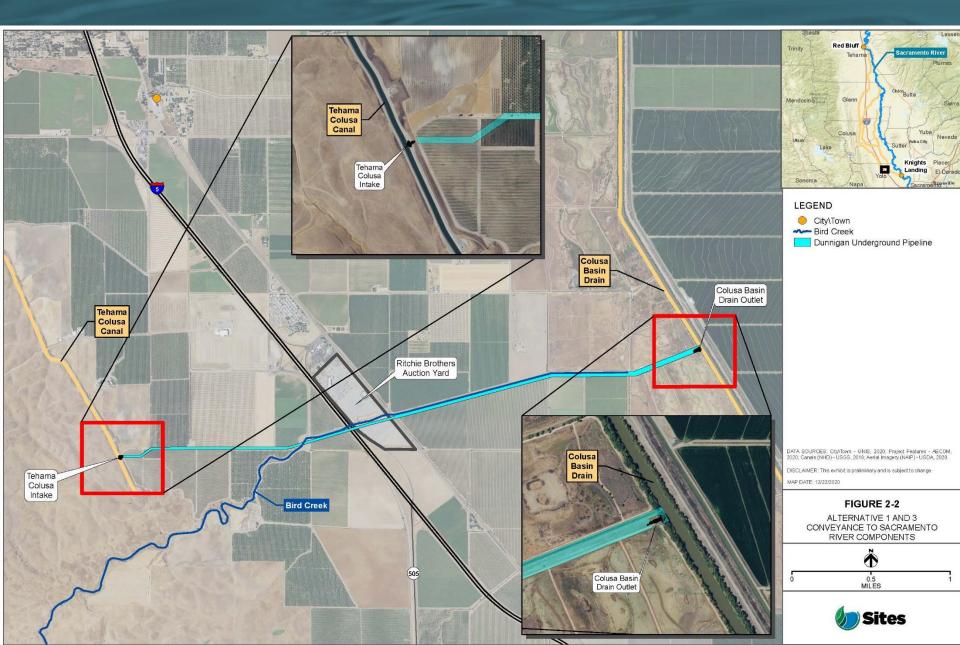
February 23, 2021

Agenda

- 1. Introductions
- 2. Group Norms
- 3. Water Right Approach and Key Application Parameters
- 4. Prop 1 Water
- 5. Water Right Schedule
- 6. Additional Topics from the Group
- 7. Action Items and Next Steps


Group Norms

- Encourage everyone to be on video
- Mute yourself when others are speaking
- Respectful, professional dialogue
- Ask questions throughout, lets have a dialogue
 - Let the speaker finish their point
 - Use the raise your hand function in Teams if needed


Alt 1 – Authority's Preferred Project

Facilities / Operations	Alternative 1		
Reservoir Size	1.5 MAF		
Diversion(s)	Diversion from Sacramento River into existing TC Canal at Red Bluff and the existing GCID Main Canal at Hamilton City		
Conveyance Release / Dunnigan Release	Release 1,000 cfs into new pipeline to the Colusa Basin Drain		
Releases into Funks and Stone Corral Creeks	Specific flow criteria to maintain flows to protect downstream water right holders and ecological function		
Reclamation Involvement	Funding Partner up to 7% Cost-ShareOperational exchanges		
DWR Involvement	Operational Exchanges with Oroville and use of SWP facilities South- of-Delta		
Hydropower	Incidental power generation up to 40 megawatts each at Funks PGP and TRR PGP		

Alt 1 – Preferred Project

Alt 1 – Preferred Project

Application Key Approaches

- Reinitiated efforts on water right application
- Developing key parameters for application
 - Informs and sets the foundation of our water right permit approach
 - Ensures these components are covered in the Revised EIR/Supplemental EIS

Purpose of Use

- How water diverted into Sites Reservoir would subsequently be used
- Generally follow the purposes of use in the SWP and CVP water right permits
- Purpose of Use:
 - Irrigation
 - Domestic
 - Municipal
 - Industrial
 - Water Quality
 - Recreational
 - Fish and Wildlife Preservation and Enhancement
 - Incidental Power Generation
- Working with State Board staff on how to address groundwater replenishment, contributing to the goals of SGMA

Source

- Sources:
 - Sacramento River
 - Stone Corral Creek
 - Funks Creek

Diversion to Off-stream Storage

- How much the project seeks to divert and store over what time period
- Request would be consistent with the available canal capacity and facilities to move water into Sites
- Season limited to the season when the Sacramento River is not fully appropriated
- Storage of up to 1.5 million acre-feet per year from all sources

Points of Diversion

- Locations where the project would divert water (or take "control" of water)
- Points of diversion:
 - Tehama-Colusa Canal (existing, screened facility)
 - Glenn-Colusa Irrigation District's Main Canal (existing, screened facility)
 - Sites Dam
 - Golden Gate Dam

Releases from Sites for Storage Partners

- Storage Partners
 - Those that have funded and received a Storage Allocation in Sites Reservoir and the resulting water supply or water supply related environmental benefits
 - Includes local agencies, the State of California, and the Federal Government
- Partners along the TC Canal and GCID Main Canal
- Partners along the Sacramento River
- Partners along the Colusa Basin Drain, Yolo Bypass, and North Bay Aqueduct
- Partners South-of-Delta

Points of Rediversion

- Waterways where water previously diverted for the project could be re-diverted
- Points of re-diversion:
 - North Bay Aqueduct
 - Contra Costa's facilities
 - Reclamation's Rock Slough Intake
 - SWP Delta and South-of-Delta facilities
 - CVP Delta and South-of-Delta facilities

Place of Use

- Area where water diverted to storage could subsequently be used
- Place of Use:
 - Sites Reservoir, associated facilities and recreation areas
 - CVP and SWP place of use upstream of the Delta where water from Sites Reservoir can physically be delivered
 - All areas of Colusa County where water from Sites Reservoir can physically be delivered
 - Entire CVP and SWP area of export
- Place of use includes Yolo Bypass

Prop 1 Water Considerations

- Cover Prop 1 Water Use in Place of Use and Points of Rediversion
 - Yolo Bypass Water
 - Yolo Bypass in Place of Use
 - Delta to Chipps Island in Place of Use
 - Refuge Water Supply
 - May need additional points of rediversion south-of-Delta (Mendota Dam and Sack Dam on San Joaquin River)
- 1707 not possible in a new application
- Working with State Board staff on best approach to protect Prop 1 water

Water Right Schedule

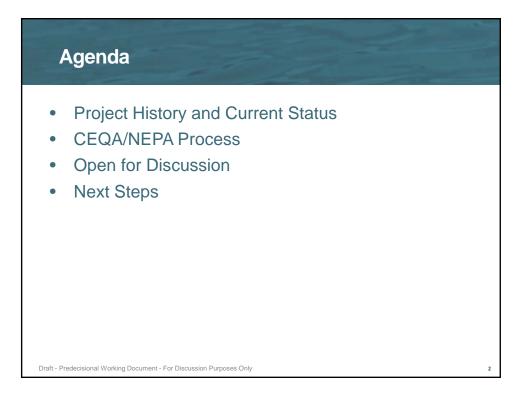
- Late Summer Revised Draft EIR/Supplemental Draft EIS
- December 2021 Submit Application
- Early 2022 State Board Notice
- Spring 2022 Final EIR/EIS
- Spring/Summer 2022 Formal Protest Resolution Period
- Winter 2022/Early 2023 Hearing (if needed)
- Spring 2023 State Board issues Order and water right

Additional Topics from the Group

• Any additional questions or thoughts?

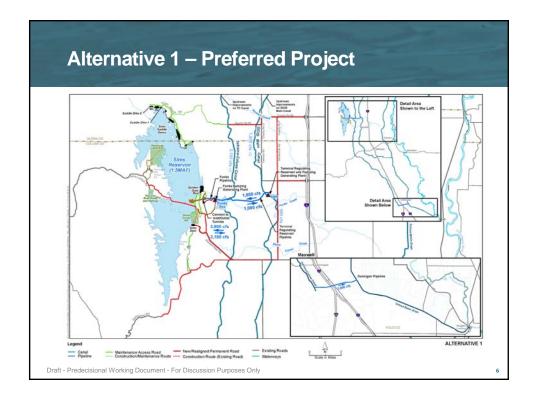
Action Items and Next Steps

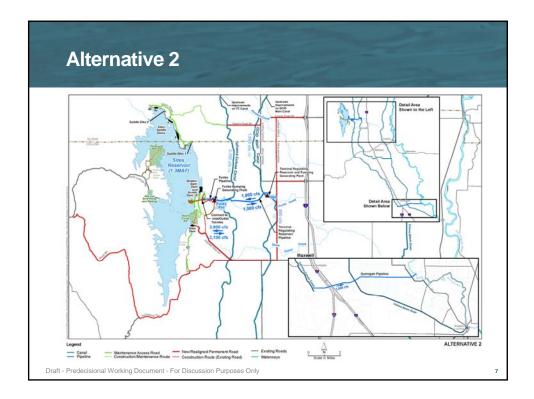
Thank you!


Sites Reservoir Project Update Agenda

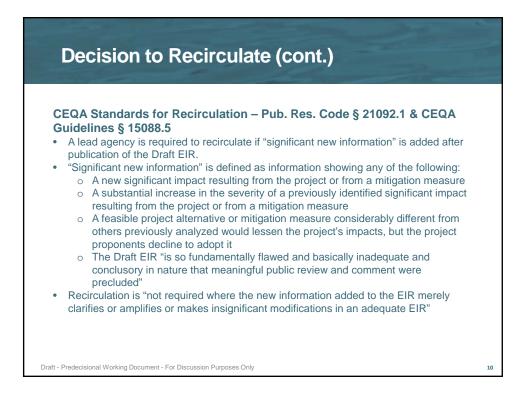

Our Core Values – Safety, Trust and Integrity, Respect for Local Communities, Environmental Stewardship, Shared Responsibility and Shared Benefits, Accountability and Transparency, Proactive Innovation, Diversity and Inclusivity Our Commitment – To live up to these values in everything we do

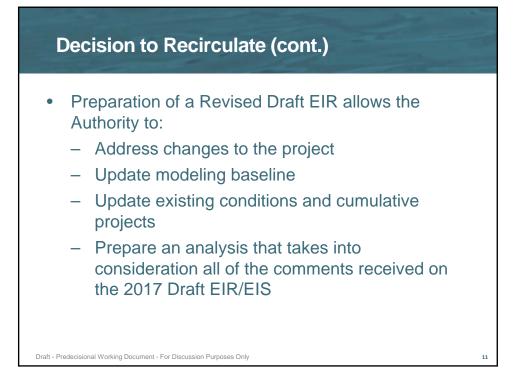
Meeting Information:							
Date:		December 14, 2020	Location:	Microsoft Teams			
Start Time:		3:00 p.m.	Finish Time:	4:00 p.m.			
Purpose:		Provide an Update and Opportu	Provide an Update and Opportunity for Questions on the Sites Reservoir Project				
Agenda:							
Discussion Topic			Topic Leader	Time Allotted			
1.	1. Welcome			Ali Forsythe	5 min		
2.	Project History and Current Status			Ali Forsythe	20 min		
	a.	Original Proposed Project and 2017 E Comments and Key Issues	IR/EIS —				
	b.	Ongoing Coordination with Wildlife A	gencies				
	c.	Value Planning Process – Finding the Project	"Right-Sized"				
	d.	Designation of the Authority's Prefer	rred Project				
3.	CEC	A/NEPA Process	Laurie Warner	15 min			
	a.	Decision to Recirculate the Draft EIR Herson / Kevin Spesert					
	b.	Coordination with Reclamation to Con Document – Revised Draft EIR/Supple EIS (RDEIR/SDEIS)		spesert			
	c.	Ongoing Consultation with Tribes					
	d.	Schedule for Release of the RDEIR/SI Opportunity to Provide Comments	DEIS and				
4.	Open Discussion / Questions from the Group		roup	All	15 min		
5.	Nex	Next Steps		Ali Forsythe	5 min		
	a.	Survey and Focused Technical Meeting	ngs				





Value Planning Report							
 October 2019 – Began Value Planning Efforts 16 new / modified alternatives considered April 2020 – Board adopted Value Planning Report and recommendations 							
Major Facilities	VP5	VP6	VP7 Recommended				
Reservoir Size	1.3 MAF	1.3 MAF	1.5 MAF				
Bridge Size (avoids future traffic Interruption)	1.5 MAF	1.5 MAF	1.5 MAF				
South Road to Local Residents	Included	Included	Included				
Misc. Local and Project Roads	Included	Included	Included				
Diversion Locations	Funks and TRR	Funks and TRR	Funks and TRR				
Dunnigan Release	1,000 cfs to CBD	1,000 cfs to River	1,000 cfs to CBD				

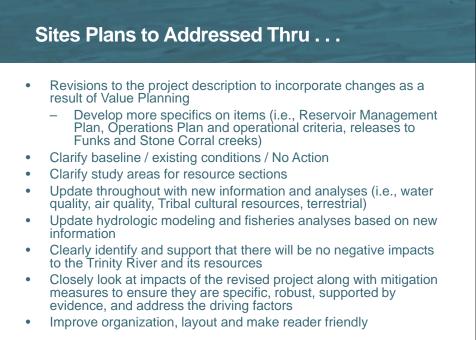


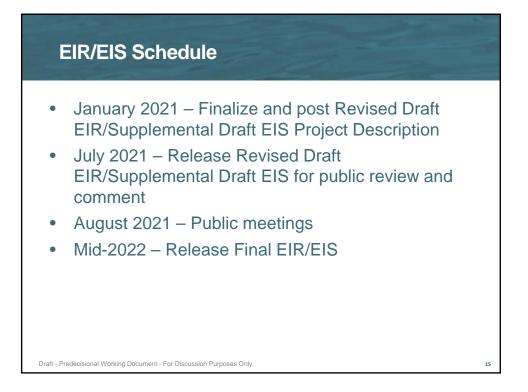


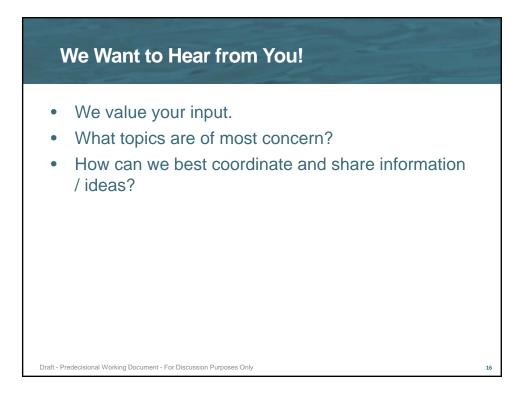

Decision to Recirculate Draft EIR

- Value Planning Process resulted in the identification of new alternatives not previously analyzed in the 2017 Draft EIR/EIS
- Key changes to the project include:
 - Changes in facility footprints and new footprint areas
 - Changes in operations
 - Changes in conveyance (Dunnigan pipeline)
 - Release to the Colusa Basin Drain

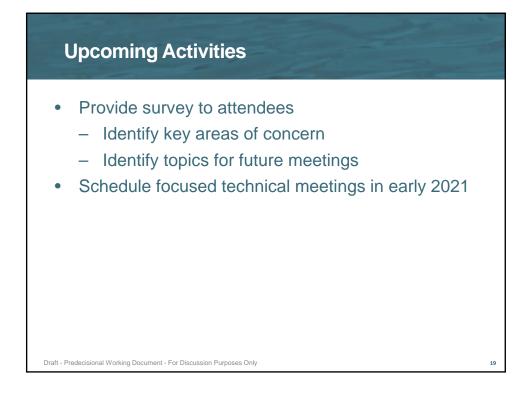
Draft - Predecisional Working Document - For Discussion Purposes Only




- Project description and range of alternatives
- Modeling approach, modeling baseline, and modeling analysis
- Operational impacts to fisheries
- Impacts to Trinity River resources
- Indian Trust Assets and impacts to Tribal Cultural Resources
- Impacts to terrestrial species
- Water quality
- Water rights
- Geotechnical and geological data and seismicity
- Cumulative impacts


Draft - Predecisional Working Document - For Discussion Purposes Only

13


Draft - Predecisional Working Document - For Discussion Purposes Only

Fishery Group Discussion #2 – Project Effects Agenda

Our Core Values – Safety, Trust and Integrity, Respect for Local Communities, Environmental Stewardship, Shared Responsibility and Shared Benefits, Accountability and Transparency, Proactive Innovation, Diversity and Inclusivity Our Commitment – To live up to these values in everything we do

Meeting Information:						
Date:	July 26, 2021	Location:	Microsoft Teams Or call in (audio o (833) 255-2803,,1			
Start Time:	11:00 p.m.	Finish Time:	12:30 p.m.			
Purpose:	Overview and d approach	and discussion of the Sites Project's aquatic modeling and EIR/S analysis				
Meeting Invit	ees:					
André Sanche	Z	Rebecca Wu	Laurie Warner Herson			
Dave Zelinski		Regina Chichizola	Jason Hassrick			
Debra Lucero		Ron Stork	Jim Lecky			
Doug Obegi		Stephanie Gordon	Marin Greenwood			
Greg Reis		Suzanne Manugian	Melissa Dekar			
Jerry Boles		Tom Stokely	Mike Hendrick			
Jim Brobeck		Ali Forsythe	Natalie Wolder			
Joe Morgan		Dan Deeds	Nicole Williams			
Rachel Zwillin	ger	Erin Heydinger	Steve Micko			
		John Spranza Vanessa King				
Agenda:						
Discussion To	pic		Topic Leader	Time Allotted		
1. Introc	ductions		John S	5 mins		
2. Meeting Norms			John S	5 mins		
3. Salmo	onid Effects		Mike H	30 min		
4. Sturge	eon Effects		Mike H	20 min		
5. Smelt	Effects		Mike H	20 mins		
6. Schec	lule		John S	5 mins		
7. Action Items Review and Adjourn			John S	5 mins		

Sites Project Fishery Group Discussion

July 26, 2021

Draft - Predecisional Working Document - For Discussion Purposes Only

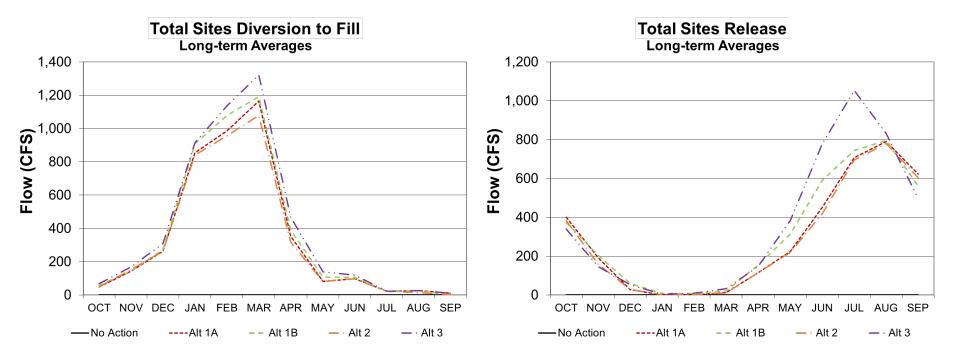
Agenda

- 1. Introductions
- 2. Group Norms
- 3. General Review of Project
- 4. Salmonid Effects
- 5. Sturgeon Effects
- 6. Delta Smelt Effects
- 7. Schedule
- 8. Action Items and Adjourn

Group Norms

- Encourage everyone to be on video
- Mute yourself when others are speaking
- Respectful, professional dialogue
- Ask questions throughout, lets have a dialogue
 - Let the speaker finish their point
 - Use the raise your hand function in Teams if needed
- Topics for next meeting will be recorded and discussed at that meeting

Overview of Project Operations



Project Water Operations

Draft - Predecisional Working Document - For Discussion Purposes Only

Diversions and Releases

Salmonid Effects Overview

Aquatic Biological Resources – Overview

- Evaluates 20 Impacts
 - Impact FISH-1: Construction
 - Impact FISH-2 through -19: Operation effects on listed species and special status species of concern, including Killer Whales
 - Impact FISH-20: Maintenance Effects
- Impact assessments rely primarily on modeled hydrologic changes in SWP and CVP operations that would occur as a result of Project operations. Depending on the species and location, the specifics of the assessment methodologies differ.

Aquatic Biological Resources – Species Evaluated

Listed Species	Other Species	
Delta smelt, Longfin Smelt	California Bay Shrimp	
Killer Whale	Starry Flounder, Northern Anchovy	
Green Sturgeon	Pacific Lamprey, River Lamprey	
Steelhead	Native Minnows	
Fall-run/Late Fall-run Chinook	Striped Bass, Black Bass	
Spring-run Chinook	American Shad, Threadfin Shad	
Winter-run Chinook	White Sturgeon	

Salmon Operations and Construction Effects Summary

- Impact FISH-1: Construction Effects on Special Status Fish
- Impact FISH-2: Operations Effects on Winter-Run
- Impact FISH-3: Operations Effects on Spring-Run
- Impact FISH-4: Operations Effects on Fall-Run and Late Fall-Run
- Impact FISH-5: Operations Effects on Steelhead

Impact FISH-1: Construction Effects on Special Status Fish

- Construction would result in:
 - Ground-disturbance activities
 - Use of heavy equipment and hazardous materials
 - In-water construction (including pile driving)
 - Stream diversion and dewatering
 - Removal of riparian and stream-side vegetation (including vegetation supporting SRA cover)
 - Filling of Sites Reservoir.
 - Alt 2 includes construction of the energy dissipation structure for the Sacramento River discharge
- These activities would result in temporary impacts on special-status fish during construction activities. However, these temporary and permanent impacts would not affect any ESA-listed fish species. Exception is Alternative 2 and the construction of the energy dissipation structure for the Sacramento River discharge.

Impact FISH-1: Construction Effects on Special Status Fish (Continued)

- Best Management Practices (BMPs) would be implemented during construction (examples include)
 - Stormwater Pollution Prevention Plan(s) (SWPPP)
 - Spill Prevention and Hazardous Materials Management / Accidental Spill Prevention, Containment, and Countermeasure Plans (SPCCPs)
 - Response Measures BMP
 - Requirements of Central Valley Regional Water Quality Control Board
 - In-water construction activities would be limited to allowable in-water work windows as part of the Construction BMPs
 - Underwater Sound Control, Abatement, and Monitoring Plan BMP

Impact FISH-1: Construction Effects on Special Status Fish (Continued)

- Mitigation Measures
 - Will compensate for the permanent loss of riparian habitat, including SRA cover.
 - Will compensate for permanent impacts on wetlands, including riparian and freshwater marsh.
 - Will compensate for temporary and permanent impacts on state or federally protected non-wetland waters by creating or acquiring and permanently protecting suitable open-water habitat
 - Conduct Surveys for Sensitive Natural Communities and Oak Woodlands in the Project Area Prior to Construction Activities
- Construction of Alternative 1, 2 or 3 would be less than significant with mitigation.

Impact FISH-2: Operations Effects on Winter-Run, Analysis Completed

- Fish Screen Entrainment and Impingement
- Stranding Behind Screens
- Predation at Intakes
- Temperature Effects
- Redd Dewatering and Redd Scour Entombment
- Habitat Weighted Usable Area (spawning, rearing)
- Juvenile Stranding
- Salmon Mortality and Production (via SALMOD)
- Floodplain Inundation and Access
- Delta Effects (Through Delta Survival, Juvenile Rearing, South Delta Entrainment)

Impact FISH-2: Operations Effects on Winter-Run, Conclusion Excerpts

- Migration flow-survival effects from diversions have the potential to cause negative effects but would be limited by diversion criteria and a fish monitoring program capable of detecting a fish migratory response during the beginning of a precipitationgenerated high flow event
- Mean monthly temperatures by water year type indicate that Alternatives 1, 2, and 3 and the NAA would be predominantly similar among during the period of presence of each life stage of winter-run Chinook salmon.
- Effects of proposed intakes on predation is limited. Effects of the diversions for Alternatives 1, 2, and 3 from the Red Bluff and Hamilton City intakes would be limited.
- Entrainment risk at Red Bluff and Hamilton City intakes would be expected to be similar between NAA and Alternatives 1, 2, and 3 for juvenile winter-run Chinook salmon.
- For winter-run Chinook salmon, operations impacts of Alternative 1, 2, or 3 would be less than significant.

Impact FISH-3: Operations Effects on Spring-Run, Conclusion Excerpts

- Mean monthly temperatures by water year type indicate that Alternatives 1, 2, and 3 and the NAA would be similar during the period of presence of each life stage of spring-run Chinook salmon.
- Redd dewatering analysis for spring-run show moderate increases in redd dewatering for eggs spawned in September of Above Normal Water Years under Alternatives 1 and 3, and reductions in redd dewatering for eggs spawned in August of Above Normal Water Years under Alternative 3.
- Weighted Usable Area (WUA) analysis, indicate that Alternatives 1, 2, and 3 would have minor effects on rearing habitat for spring-run juveniles in the Sacramento River.
- SALMOD results show a minimal beneficial effect of each alternative on spring-run Chinook salmon mortality and potential production in the Sacramento River.
- WUA results indicate that Alternatives 1, 2, and 3 would lead to some moderate reductions of spawning habitat WUA during September and October, primarily under Alternative 3. However, overall Alternatives 1, 2, and 3 are expected to have no adverse effect on spring-run spawning in the Sacramento River.
- Operations impacts of Alternative 1, 2, or 3 would be less than significant.

Sturgeon Effects Overview

Sturgeon Operations Effects Summary

- Impact FISH-6: Operations Effects on Green Sturgeon
- Impact FISH-7: Operations Effects on White Sturgeon

Impact FISH-6: Operations Effects on Green Sturgeon, Conclusion Excerpts

- Green sturgeon spawning habitat: Differences in mean flow between Alternatives are negligible. Similarly, for green sturgeon larvae rearing habitat in the Sacramento River, differences in mean monthly flows between Alternatives are minimal.
- Modeled results indicate that Alternatives would have a greater likelihood of having flows
 potentially low enough to create adverse passage conditions in the Sacramento River. This could
 potentially result in some delays in upstream migration; however, it is likely adults would hold
 and continue their migration and spawning after flow subsequently increased.
- Modeled results indicate that the Alternatives are not expected to have any substantial effect with regard to flow on spawning and egg incubation of green sturgeon in the Feather River.
- For the Feather River, modeling results indicate that Alternatives 1, 2, and 3 provide slightly improved Feather River flow conditions for upstream and downstream passage.
- In-Delta and upstream operations and their impacts associated with the Alternatives on green sturgeon and its spawning habitat would be negligible.
- Operations impacts of Alternative 1, 2, or 3 would be less than significant.

Smelt Effects Overview

Smelt Operations Effects Summary

- Impact FISH-8: Operations Effects on Delta Smelt
- Impact FISH-9: Operations Effects on Longfin Smelt

Impact FISH-9: Operations Effects on Longfin Smelt, Conclusion Excerpts

- Entrainment risk under Alternatives 1, 2, and 3 would be similar to entrainment risk under the NAA.
- The analyses of flow-related effects (differences in Delta outflow/X2) suggested the potential for small negative effects under the Alternatives
- In order to get to a less than significant impact, mitigation would be required for the small, uncertain negative outflow-related effect of Alternatives 1, 2, and 3 in consideration of longfin smelt's CESA-listed status.
- Implementation of Mitigation Measure FISH-9.1 would provide tidal habitat restoration mitigation. Tidal habitat restoration would expand the diversity, quantity, and quality of longfin smelt rearing and refuge habitat consistent with recent tidal habitat mitigation required for outflow impacts to the species. The mitigation requirement for each alternative varies between 11 and 15 acres.

Schedule

Schedule

- Late August 2021
 - Revised Draft EIR/Supplemental Draft EIS Released
- December 2021
 - Biological Assessment to Agencies
 - Submit State ITP Applications
- Spring 2022 – Final EIR/EIS
- Spring 2023
 - All permits obtained
- Spring 2024 Construction Begins

Action Items Review

Thank you!

Water Quality Group Discussion Agenda

Our Core Values – Safety, Trust and Integrity, Respect for Local Communities, Environmental Stewardship, Shared Responsibility and Shared Benefits, Accountability and Transparency, Proactive Innovation, Diversity and Inclusivity Our Commitment – To live up to these values in everything we do

Meeting Infor	mation:					
Date:	July 19, 2021	Location:	Microsoft Teams Or call in (audio only) (833) 255-2803,,808172876#			
Start Time:	1:00 p.m.	Finish Time:				
Purpose:	Overview and d EIR/S analysis a	iscussion of the Sites Project's in-lake water quality modeling and oproach				
Meeting Parti	cipants:					
André Sanchez	Z	Julie Zimmerman	Cam Irvine			
Anthony Sarac	cino	Rachel Zwillinger	Erin Heydinge	r		
Dave Zelinski		Rebecca Wu	John Spranza			
Debra Lucero		Regina Chichizola	Laurie Warne	r Herson		
Doug Obegi		Ron Stork	ork Lesa Erecius			
Greg Reis		Stephanie Gordon				
Jerry Boles		Tom Stokely	Nicole William	Nicole Williams		
Jay Ziegler		Ali Forsythe Steve Micko				
Jim Brobeck		Anne Huber	Vanessa King			
Agenda:						
Discussion To	pic		Topic Leader	Time Allotted		
1. Introducti	ons		John	5 min		
2. Action Iter	m follow-up		John	10 min		
3. Flow mech	nanisms		Anne	40 min		
a. M	ixing of Sites wate	r				
b. Co	olusa Basin Drain fl	ows to Yolo Bypass				
c. De	elta flows Key Cond	cepts				
4. Mercury/r	nethylmercury		Anne, Lesa, Steve	15 min		
5. Open Topi	ics Discussion		John	15 min		

6. Action Items and Adjourn	All	5 mins
-----------------------------	-----	--------

Sites Project Water Quality Group Discussion

July 19, 2021

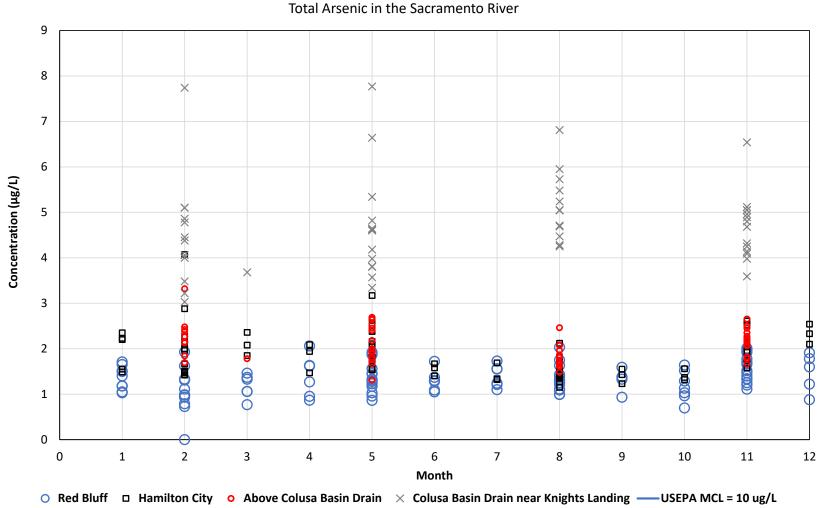
Draft - Predecisional Working Document - For Discussion Purposes Only

Agenda

- 1. Introductions
- 2. Group Norms
- 3. Action Item Follow-up
- 4. Flow Pathways and Discharge Effects
 - a) Local Agricultural
 - b) Colusa Basin Drain
 - c) Sacramento River
 - d) Stone Corral and Funks Creeks
 - e) Yolo and Bay Delta
- 5. Open Topics and Discussion
- 6. Action Items and Adjourn

Group Norms

- Encourage everyone to be on video
- Mute yourself when others are speaking
- Respectful, professional dialogue
- Ask questions throughout, lets have a dialogue
 - Let the speaker finish their point
 - Use the raise your hand function in Teams if needed
- Topics for follow up will be recorded and followed up on


Action Item Follow-up

Action Item	Addressed	Pending	Notes
Specificity on years for data	Х		
Distribute metals table	Х		
Effects of release temperature on rice	Х		
Effects of Hg and As on rice	Х		
Effects of reservoir operations on water quality of Stone Corral and Funks creeks.	X		
Anti-degradation policy and Sites	Х		
Synergistic effects of chemicals	Х		

Flow Pathways

Discharge to Local Agriculture - Arsenic

Discharge to Local Agriculture - Arsenic

Parameter	Arsenic Concentration (µg/L)
Average total arsenic concentration measured in the Sacramento River below Red Bluff and at Hamilton City during January – March (Sites primary period for diversion to storage)	1.59
Estimated average total mercury concentration in Sites Reservoir after evapoconcentration ^a	1.84
Estimated maximum total arsenic concentration in Sites Reservoir after evapoconcentration ^b	2.35
Average measured total arsenic concentration in the Sacramento River above the CBD during May – September (Sites primary period for releases to the Sacramento River)	1.98
Average measured total arsenic concentration in the Sacramento River at Hamilton City during May – September (representing water used by GCID for rice irrigation).	1.71
Average measured total arsenic concentration in the CBD during May – September	4.91
MCL for drinking water	10.0
Dissolved arsenic 4-day average threshold for freshwater aquatic life	150.0
FAO recommended maximum concentration in irrigation water (Ayers and Westcot 1985:96)	100, but noted that toxicity to rice may occur at less than 50.
Arsenic concentration associated with toxicity to rice in Taiwan (Murphy et al. 2018a)	40
Dutch concentration requiring intervention or remediation (Murphy et al. 2018a)	55
For reference purposes: arsenic concentrations measured in Cambodian groundwater used for rice irrigation (Murphy et al. 2018b:4)	Up to 1,200

^a 16% higher than inflow concentration based on the estimated average percent increases in concentration due to evapoconcentration (13%–16%, depending on alternative). ^b 48% higher than inflow concentration based on the estimated maximum percent increase in concentration (41%–48%, depending on alternative), which represents one month out of the 984 months simulated by CALSIM.

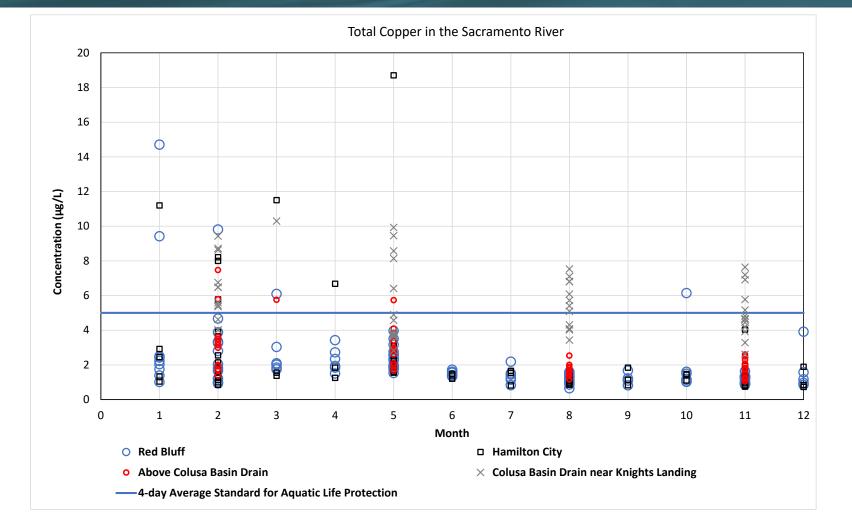
Estimated Aqueous Methylmercury in Sites Reservoir

Estimated Concentrations of Aqueous Methylmercury in Sites Reservoir Releases

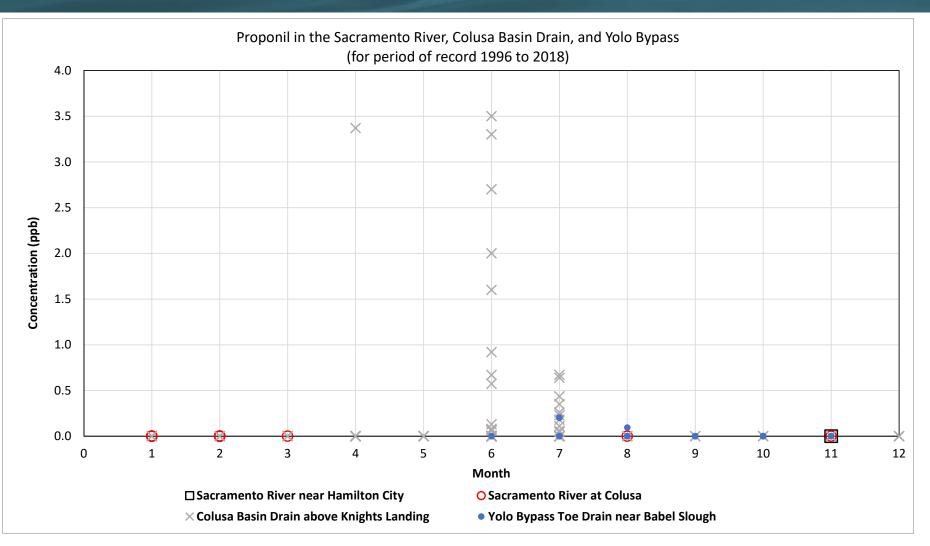
Estimated Methylmercury Concentration	Short-Term (1-10 y after filling) (ng/L)	Long-Term Average (>10 y after filling) (ng/L)
Expected	0.20	0.10
Reasonable Worst-Case	0.30	0.15

- Expected Concentrations
 - Long-term: aqueous methylmercury concentrations calculated by doubling estimated concentrations determined for imports from the Sacramento River (Red Bluff and Hamilton City fractions)
 - Short-term: Twice as high as long-term concentration
- Reasonable Worst-Case Concentrations:
 - "Reasonable worst-case" is not necessarily the maximum concentrations that could occur at Sites but instead is an estimated upper bound of expected average concentration based on published literature and site-specific conditions.
 - Long-term: Maximum measured concentration in Indian Valley Reservoir (2011)
 - Short-term: Twice as high as long-term concentration

Discharge to Colusa Basin Drain-Methylmercury


- Generally beneficial to CBD except for methylmercury
- Aqueous Methylmercury: All estimated concentrations in Sites Reservoir releases except expected long-term average (0.10 ng/L) would exceed average baseline concentrations in CBD (0.13 and 0.17 ng/L avg for 2 different data sets)
- Fish Tissue Methylmercury:
 - No long-term increases expected because releases would not occur year-round and the increase in aqueous methylmercury would be low.
 - Under short-term conditions, methylmercury in fish tissue may exceed the CA sport fish tissue objective (0.2 mg/kg, wet weight).

Mercury Mitigation and Management


- RMP and Mitigation Measure WQ-1.1
 - Remove vegetation in inundation footprint prior to initial filling
 - Delay fish stocking- approx. 10 years after initial filling
 - Monitor reservoir fish tissue methylmercury
 - Post fish consumption warning signs if fish tissue methylmercury concentrations exceed CA sport fish objective
 - Implement methylmercury reduction actions for new reservoirs as identified in the implementation plan for Statewide Mercury Control Program for Reservoirs^a

^a SWRCB. 2017. Draft Staff Report for Scientific Peer Review for the Amendment to the Water Quality Control Plan for Inland Surface Waters, Enclosed Bays, and Estuaries of California, Mercury Reservoir Provisions – Mercury TMDL and Implementation Program for Reservoirs

Discharge to Colusa Basin Drain-Other Metals

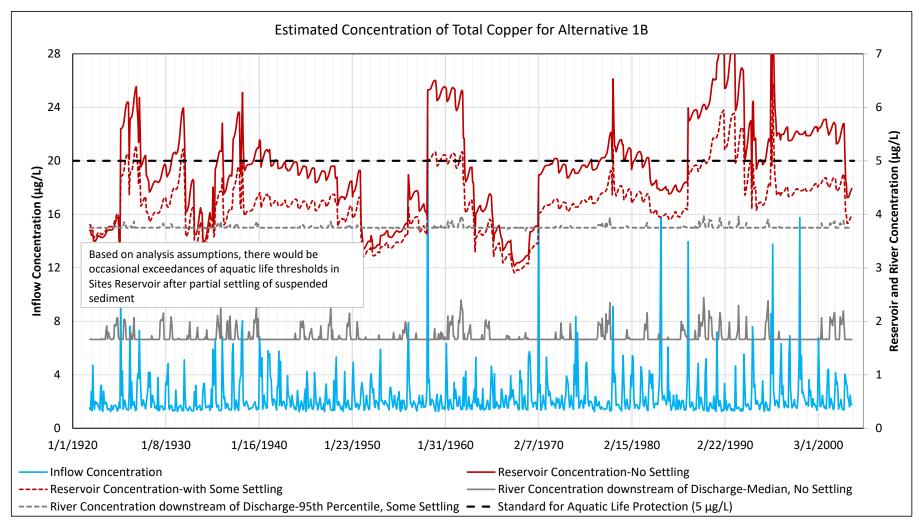
Discharge to Colusa Basin Drain - Pesticides

Discharge to Sacramento River

- Locations
 - Sacramento River at Knights Landing for Alts 1 and 3
 - Dunnigan Pipeline for Alt 2 (near Tyndall Landing)
- Substantial dilution of Sites water in Sacramento River
- Quantitative evaluation for salinity, mercury, and other metals

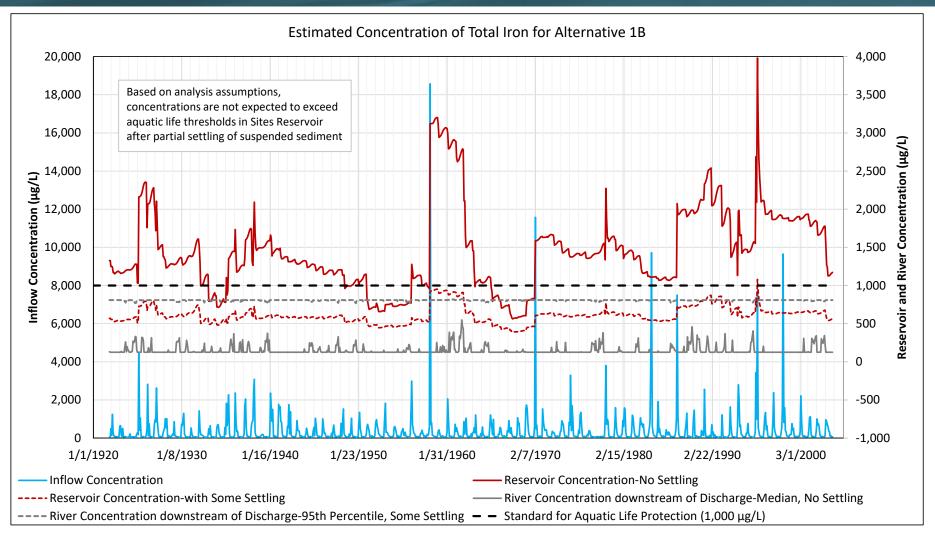
Discharge to Sacramento River-Dilution

• Simulated Sites Reservoir Release to Sacramento River (Release to Dunnigan Pipeline minus Release to Yolo Bypass) for All Alternatives (cfs)

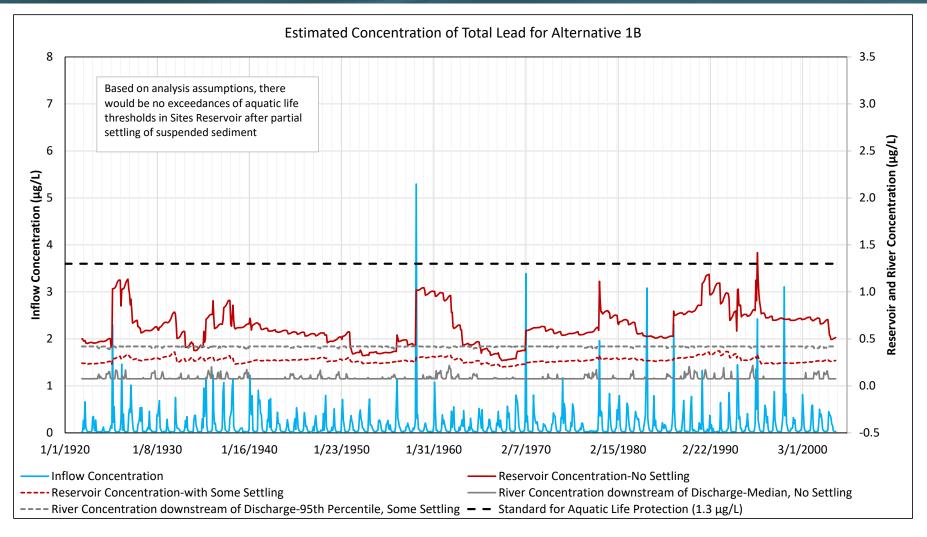

	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Average for Critically	Dry Wate	r Years										
NAA	0	0	0	0	0	0	0	0	0	0	0	0
Alt 1A	204	99	3	0	0	0	108	432	529	615	416	428
Alt 1B	127	96	10	15	0	13	123	417	520	621	435	373
Alt 2	131	100	3	0	0	0	109	425	497	605	346	319
Alt 3	80	83	10	19	21	78	148	396	464	593	379	179
Average for Dry Wat	er Years											
NAA	0	0	0	0	0	0	0	0	0	0	0	0
Alt 1A	325	364	23	0	0	0	58	111	794	970	609	572
Alt 1B	367	294	31	0	15	15	184	178	765	956	594	538
Alt 2	251	206	26	0	0	0	58	111	750	966	583	487
Alt 3	284	163	12	0	0	38	156	231	656	936	531	443
Average of All Water	Year Type	s										
NAA	0	0	0	0	0	0	0	0	0	0	0	0
Alt 1A	113	130	11	0	0	0	28	88	271	391	276	218
Alt 1B	107	139	43	5	5	7	60	100	314	385	275	191
Alt 2	87	102	13	0	0	0	29	87	257	388	254	184
Alt 3	99	91	39	3	8	21	57	109	307	397	271	147
Average for Wet Wa	ter Years											
NAA	0	0	0	0	0	0	0	0	0	0	0	0
Alt 1A	0	17	14	0	0	1	0	0	0	0	0	0
Alt 1B	0	93	102	0	3	6	0	0	0	0	0	0
Alt 2	0	15	17	0	0	1	0	0	0	0	0	0
Alt 3	0	81	102	0	4	5	0	0	0	0	0	0

 When Sites Reservoir would release water to the Sacramento River, it would constitute 6%– 7% of the Sacramento River flow on average and 12%–13% when discharges are relatively high compared to river flow (i.e., 90th percentile values), depending on Alternative

Discharge to Sacramento River-Total Aluminum



Discharge to Sacramento River-Total Copper



Draft - Predecisional Working Document - For Discussion Purposes Only

Discharge to Sacramento River-Total Iron

Discharge to Sacramento River-Total Lead

Discharge to Funks and Stone Corral Creeks

- Temperature studies part of Technical Studies Plan and Adaptive Management for Funks and Stone Corral Creeks – for fish
- Stone Corral Creek discharge from bottom of Sites Dam
- Funks Creek discharge from I/O Tower

Discharge to Funks and Stone Corral Creeks-Methylmercury

- Total mercury concentrations in Sites Reservoir releases > Funks and Stone Corral Creeks
 - Sites Reservoir
 - Estimated short-term total mercury: 3.8 4.5 ng/L
 - Estimated long-term total mercury: 1.9 2.3 ng/L
 - Funks and Stone Corral Creeks total mercury: 0.35 ng/L and 0.85 ng/L, respectively
- Because most of the flow in Funks and Stone Corral Creeks would originate from Sites Reservoir releases, mercury and methylmercury concentrations in these creeks would increase and this would be reflected in fish tissue.
 - Effect greater in short term vs. long term
 - Effect may be larger for Stone Corral because releases would be made from lower in the reservoir where oxygen would be lower and methylmercury may be higher

Discharge to Stone Corral Creeks – Metals Impact

- Potentially significant during dry season due to bottom release from Sites Reservoir
- Mitigation Measure WQ-2.1 possible actions:
 - Monitor metal concentrations to assess effect
 - Evaluate effect of modifying releases to Stone Corral Creek
 - Add vertical extension to reservoir at the withdrawal point
 - Pump water from the top of Sites Reservoir

Prop 1 Benefits Small Group Agenda

Our Core Values – Safety, Trust and Integrity, Respect for Local Communities, Environmental Stewardship, Shared Responsibility and Shared Benefits, Accountability and Transparency, Proactive Innovation, Diversity and Inclusivity Our Commitment – To live up to these values in everything we do

Meetir	ng Inforn	nation:			
Date:		March 11, 2021	Location:	Microsoft Teams	
Start T	ime:	1:00 p.m.	Finish Time:	2:30 p.m.	
Purpos	se:	Overview and disc	cussion of the Sites Project's Pro	oposition 1 Benefits	5
Meetir	ng Partici	pants:			
Joe Polo	OS		Rebecca Wu	Erin Heydinger	
Greg Re	eis		Rachel Zwillinger	John Spranza	
Anthon	y Saracino)	Ryan Davis	Laurie Warner H	lerson
Tom Stokely Ali Forsythe		Natalie Wolder			
Ellen W	'ehr				
Agenda	a:				
Discus	sion Top	ic		Topic Leader	Time Allotted
1.	Introdu	ctions		Ali	10 mins
2.	Group I	Norms	Ali / Group	5 mins	
3. Background		Erin	5 mins		
4. Recreation and Flood Control Benefits				Erin	10 mins
5. Ecosystem Benefits				John / Ali	35 mins
	a. Yol	o Bypass			
	b. Ref	uge Incremental Le			
	c. Ens	uring Benefits are F			
d. Storage Policy and Ecosystem Water Manager					
	e. Ada	aptively Changing E	cosystem Benefits in the Future	2	
6.	Contrac	ct Discussions and S	chedule	Ali	5 mins
		nal Tanica from the	Group	15 mins	
7.	Additio	nal Topics from the	Group	0.00.0	

Proposition 1 Benefits

Overview and Discussion of the Sites Project's Proposition 1 Benefits

March 11, 2021

Agenda

- 1. Introductions
- 2. Group Norms
- 3. Background
- 4. Recreation and Flood Control Benefits
- 5. Ecosystem Benefits
- 6. Contract Discussions
- 7. Schedule
- 8. Additional Topics from the Group
- 9. Action Items and Next Steps

Group Norms

- Encourage everyone to be on video
- Mute yourself when others are speaking
- Respectful, professional dialogue
- Ask questions throughout, lets have a dialogue
 - Let the speaker finish their point
 - Use the raise your hand function in Teams if needed

- Proposition 1 of 2014 dedicated \$2.7 billion for investments in water storage projects
- Administered by the California Water Commission (CWC) through the Water Storage Investment Program (WSIP)
- CWC completed rigorous review process of projects, open to the public
- July 2018, CWC made maximum conditional eligibility determinations (MCEDs) for 8 projects

- Amount of Proposition 1 funding available to a given project

• Dec 2020, CWC increased MCEDs for all remaining projects by 2.5% to account for some inflation

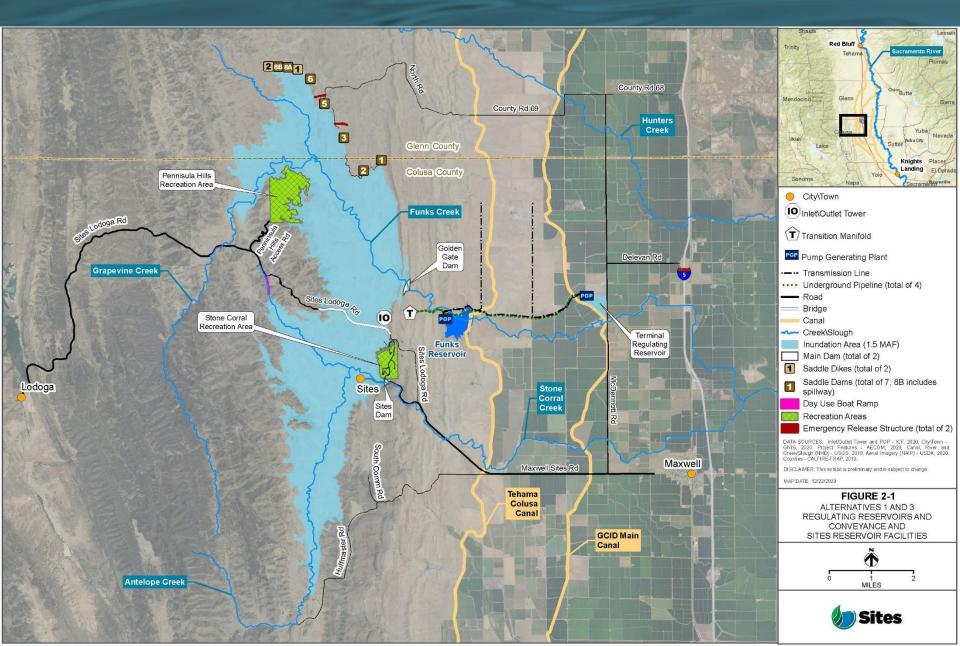
Prop 1 Benefits Awarded to Sites

- CWC Awarded the following benefits:
 - Ecosystem Improvement Refuge water supply
 - Ecosystem Improvement Yolo Bypass flows
 - Recreation
 - Flood Control

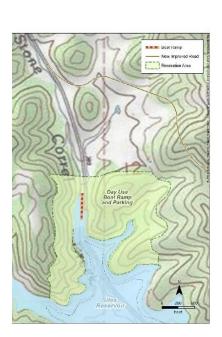
	2018 MCED	2021 MCED*	Early Funding**
Sites Project	\$816,377,686	\$836,787,128	\$40,818,884

*Additional MCED added in 2021 was to account for some inflation costs

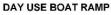
**Early funding amount included in the MCEDs

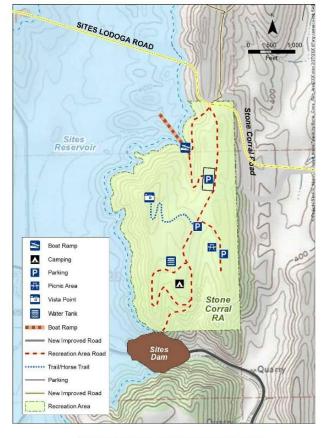

Prop 1 Benefits Cost Allocation

Benefit Category	Capital Cost Allocation		
Recreation	\$197.2 million		
Flood	\$44.6 million		
Ecosystem Improvement	\$574.5 million		
Total	\$816.3 million		


Recreation Benefits

- Water-related and water-based recreation at 3 new recreation areas
 - Stone Corral Recreation Area 235 acres, east side of Sites
 - 50 camp sites
 - 10 picnic sites
 - Hiking trails
 - Boat launch
 - Peninsula Hills Recreation Area 373 acres, west side of Sites
 - 200 camp sites, 1 group camp
 - 10 picnic sites
 - Hiking trails
 - Day Use Boat Ramp 10 acres, west side of Sites
- Phased approach to match interest Stone Corral and Day Use Boat Ramp constructed first
- Estimated 187,000 users per year
- Contract with DWR for management of benefits


Recreation Area Location


Recreation Area Schematics

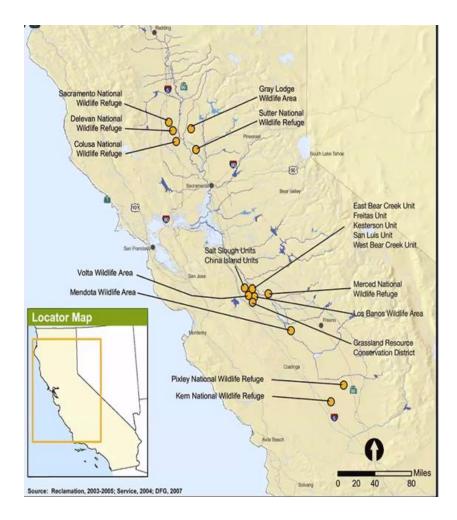
STONE CORRAL RECREATIONAL AREA

Flood Control Benefits

- Local flood control benefits to town of Maxwell and adjacent agricultural lands by controlling flows
 - Funks Creek
 - Stone Corral Creek
- Provides 100-year flood protection to most of Maxwell and about 4,025 acres of ag land
- Reduce flooding of Interstate 5 in 100-year flood event
- Contract with DWR for management of benefits

Ecosystem Improvement Benefits Overview

- Fundable ecosystem improvements must "contribute to restoration of aquatic ecosystems and native fish and wildlife"
- CDFW identified Ecosystem Priorities, physical changes and the anticipated ecosystem improvements (benefits) they could provide
 - A project affects a physical change (e.g., more river flow) and the physical change has a corresponding ecosystem improvement and benefit
- Project would contract with CDFW for management of identified ecosystem benefits – \$574.5M


Yolo Bypass Flows Benefits

- Ecosystem Priority 10: Enhance the frequency, magnitude, and duration of floodplain inundation to enhance primary and secondary productivity and the growth and survival of fish
- August through October water deliveries to benefit Delta smelt
- Long-term average flow of approximately 30-32 TAF/year
- After delivery to the Yolo Bypass could be used as Delta outflow should State choose to

Refuge Incremental Level 4 Benefits

- Ecosystem Priority 14 (water to wetland and refuges)
- Water to enhance seasonal wetlands, permanent wetlands, and riparian habitat for aquatic and terrestrial species
- Average annual refuge water supply of approximately 20 TAF/year

Ensuring Benefits are Realized

• Contracts with

- CDFW to administer the ecosystem benefits
- DWR to administer the recreation and flood control benefits
- Contracts shall contain (Regs, Section 6014)
 - Adaptive management plan
 - Public benefit monitoring metrics
 - Monitoring locations, frequencies and timing
 - Metric evaluation methodology and associated threshold or trigger levels
 - Decision making process when trigger is reached
 - Funding sources and financial commitments to implement adaptive management
 - Description of benefits being administered
 - Reporting requirements
 - Assurances regarding operations, maintenance, repair, replacement
 - Provision allowing the administrating agency to inspect during construction and operations
 - Actions administrating agency may take if project fails to comply with contract

Ensuring Benefits are Realized (cont)

- Contract process
 - Drafted between CDFW or DWR and Authority
 - Draft provided to CWC for review and public review
 - Comments incorporated
 - Execution of final contract
- Necessary for final encumbrance of funds by the CWC
- Supersede any preliminary operations, monitoring, and management commitments made in the application
- Once operational, CWC tracks public benefits and provides access to data and reports

Storage Policy and Ecosystem Water Manager

- Draft Revised Storage Policy identifies that Storage Partners (including the State) are purchasing storage in Sites Reservoir
 - Provides an asset to the environment for flexible use
 - Currently envisioning that the State would have all the same rights and obligations as all other members
- Envision a CDFW Ecosystem Water Manager to manage the Proposition 1 water
 - Make annual, monthly, weekly decisions on how to use ecosystem water for the environment
 - Work with Authority as conditions change or challenges arise

Adaptively Changing Ecosystem Benefits in the Future

- Considering how to adaptively change ecosystem benefits if
 - Find that outcomes aren't being met
 - Find that there is a different/modified/greater need that isn't anticipated today
- Trying to be flexible in the contract to allow for some minor changes without contract amendment
 - Shift water from Yolo to Refuge IL4 or the other way around
 - Shift water for same purposes but different geographic area
- Larger changes likely require contract amendment (as current envisioned)

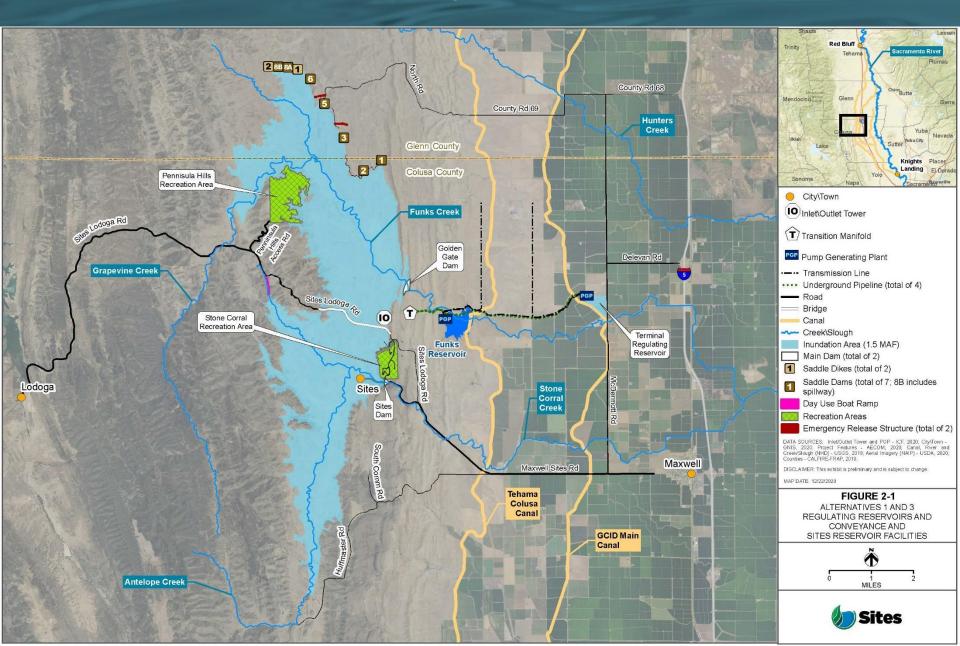
Schedule for Prop 1 Funding Activities

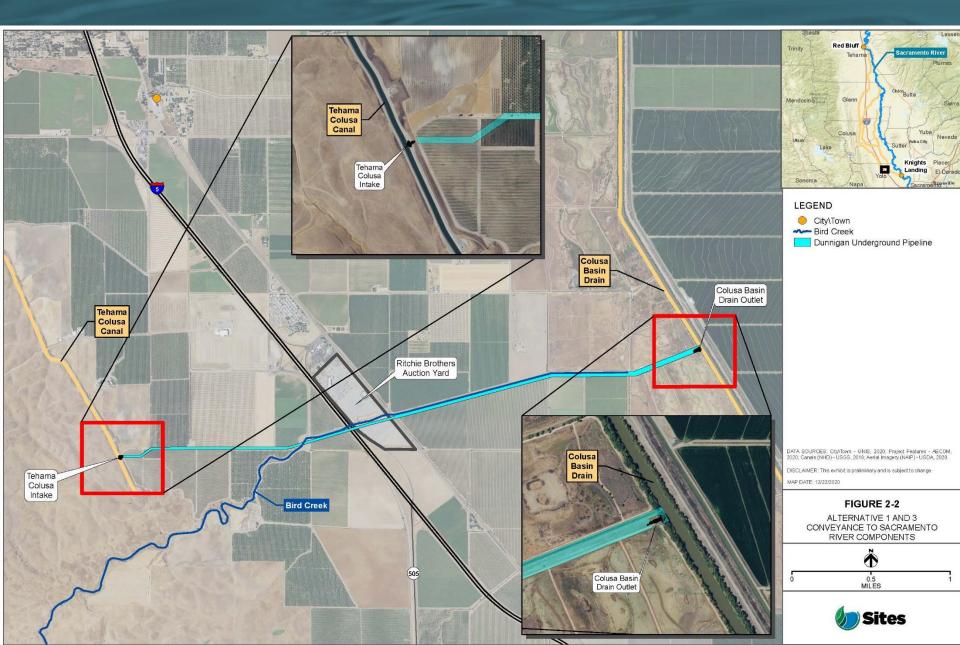
- Summer 2021
 - Benefits contracts "term sheets" with CDFW and DWR
- December 2021
 - Submit State ITP Applications
- By January 1, 2022
 - State Feasibility Study and CWC makes finding that project is feasible
 - Draft environmental documentation is available for public review (released scheduled for August 2021)
 - Commitment from not less than 75 percent of the non-public benefit cost shares of the project
- Late 2022
 - Draft contracts to CWC
- Spring 2023
 - All permits obtained
 - Final benefits contracts signed
- Summer 2023
 - Final funding agreement with CWC signed

Additional Topics from the Group

• Any additional questions or thoughts?

Action Items and Next Steps


Thank you!


Alt 1 – Authority's Preferred Project

Facilities / Operations	Alternative 1
Reservoir Size	1.5 MAF
Diversion(s)	Diversion from Sacramento River into existing TC Canal at Red Bluff and the existing GCID Main Canal at Hamilton City
Conveyance Release / Dunnigan Release	Release 1,000 cfs into new pipeline to the Colusa Basin Drain
Releases into Funks and Stone Corral Creeks	Specific flow criteria to maintain flows to protect downstream water right holders and ecological function
Reclamation Involvement	Funding Partner up to 7% Cost-ShareOperational exchanges
DWR Involvement	Operational Exchanges with Oroville and use of SWP facilities South- of-Delta
Hydropower	Incidental power generation up to 40 megawatts each at Funks PGP and TRR PGP

Alt 1 – Preferred Project

Alt 1 – Preferred Project

		Dol
	Sites Application Original Estimates (2017)	Sites Appeal Estimates (2018)
Ecosystem Benefits	\$3,176.3	\$2,921.1
Long-term Average Annual Refuge Water Supply	\$675.4	\$448.1
Long-term Average Annual Yolo Bypass Flows	\$268.5	\$259.2
Flood Benefits	\$138.3	\$44.6
Recreation Benefits	\$191.6	\$197.2
Eligible Benefit Amount		
Total Award **		

* No finer breakdown provided by CWC

** Amount awarded is less than amount eligible for funding. Therefore, the application included

*** Analysis currently underway.

Note - Estimates are as of 3/2021. The 2021 estimats may be refined as the Authority continues

lar Based Comparison			Volu			
CDFW/DWR Staff Estimates after Appeal Meetings (2018)	CWC Awarded (2018)*	Current Project Benefit Assumption (3/2021)	Sites Application Original Estimate TAF (2017)	Value of Ecosystem Benefit per WSIP Application Process	CWC Awarded	
\$766.4		\$574.5				
\$432.9			32.00	\$432.9	\$574.5**	
\$333.5			39.00	\$333.5	Ş574.5	
\$44.6		\$44.6	N/A			
\$197.2		\$197.2	N/A			
\$1,008.3						
	\$816.3	\$816.3				

benefits that were not funded by the CWC.

to develop its State Feasibility Report. Informaton is preliminary.

me Based Comparison					
Sites Current Estimate TAF (3/2021) - DRAFT	Current Project Benefit Estimates (2021)	Current Approximate Sum of Refuge and Yolo Flow Benefits (2021)			
21.00 33.00 N/A N/A	TBD*** TBD***	TBD***			
	Sites Current Estimate TAF (3/2021) - DRAFT 21.00 33.00 N/A	Sites Current Estimate TAFCurrent Project Benefit(3/2021) - DRAFTEstimates (2021)21.00TBD***33.00TBD***N/ATBD***			

Terrestrial Resources Group Discussion Agenda

Our Core Values – Safety, Trust and Integrity, Respect for Local Communities, Environmental Stewardship, Shared Responsibility and Shared Benefits, Accountability and Transparency, Proactive Innovation, Diversity and Inclusivity Our Commitment – To live up to these values in everything we do

Meeting Information:					
Date: Ma	arch 26, 2021	Location:	Microsoft Teams Or call in (audio on (833) 255-2803,,19		
Start Time: 9:0	00 a.m.	Finish Time:	10:00 a.m.		
Purpose: Ov	verview and disc	ussion of the Sites Project's ter	rrestrial biological re	sources approach	
Meeting Invitees:					
Rachel Zwillinger, De Rebecca Wu Regina Chichizola, Sa Ron Stork, Friends of	ive CA Salmon	Ali Forsythe, Sites Authority Dan Cordova, USBR Ellen Berryman, ICF Harry Oakes, ICF John Spranza, Sites Integration	Lisa Webber, ICF Melissa Dekar, U Monique Briard, Ryan Davis, USBF	SBR ICF	
Agenda:					
Discussion Topic			Topic Leader	Time Allotted	
1. Introductio	ons		John	5 mins	
2. Group Norr	ms		John	5 mins	
3. Species List	t		Ellen	10 min	
b. Access c. Landco	y Coordination and Survey Hist over Mapping s Models	ory	John/Ellen/Lisa	20 mins	
5. Mitigation	Approach		John/Harry	10 mins	
6. Schedule a	nd Future Meet	ing Topics	John/Group	5 mins	
7. Action Item	ns and Next Step	0S	Ali	5 mins	

Sites Project Terrestrial Resources Group Discussion

March 26, 2021

Draft - Predecisional Working Document - For Discussion Purposes Only

Agenda

- 1. Introductions
- 2. Group Norms
- 3. Species List
- 4. Approach to Analysis
 - a. Agency Coordination
 - b. Access and Survey History
 - c. Landcover Mapping
 - d. Species Models
 - e. Next Steps
- 5. Mitigation Approach
- 6. Schedule and Future Meeting Topics
- 7. Action Items and Next Steps

Group Norms

- Encourage everyone to be on video
- Mute yourself when others are speaking
- Respectful, professional dialogue
- Ask questions throughout, lets have a dialogue
 - Let the speaker finish their point
 - Use the raise your hand function in Teams if needed

Species Analyzed and Approach

Land Cover Mapping Resources and Methods

- Previous vegetation and wetland mapping of reservoir and some roads and conveyance routes in 1998-2003 and 2011
- Fall/winter 2020-2021 vegetation and aquatic resource remote mapping of all project component impact areas plus a 300-foot buffer:
 - Aerial photograph interpretation (Google Earth 1998-2020; National Agriculture Imagery Program 2018; Digital Globe 2019)
 - Additional mapping resources include soils maps, USGS topographic maps, NWI maps, existing delineation mapping from 2000 and 2011
- On-going coordination with U.S. Army Corps of Engineers to obtain available delineation data and consensus on mapping methods, aquatic resources delineation verification approach, and permitting strategy

ESA and CESA Terrestrial Species List

Species	Federally Listed	State Listed	Operations	Construction
Keck's checker-mallow	Х			Х
Palmate-bracted bird's beak	Х	Х		Х
Vernal pool crustaceans	Х			Х
Valley elderberry longhorn beetle	Х			Х
California red-legged frog	Х			Х
Giant garter snake	Х	Х		Х
Tricolored blackbird		Х		Х
Swainson's hawk		Х		Х
Western yellow-billed cuckoo	Х	Х	Х*	
Bank swallow		Х	Χ*	

Notes: *Depending on downstream channel effects

Draft - Predecisional Working Document - For Discussion Purposes Only

CEQA Species List

Species Data Resources:

- Non-listed special-status species with potential to occur in study area include 20 wildlife and 12 botanical
- Non-listed special-status species include fully protected wildlife species; animal species of special concern; and California Rare Plant Rank species 1B.1, 1B.2, and 3.2 (no or low potential for other ranked plant species to occur)
- Wildlife surveys of parts of the study area in 1998-2004 and 2010/2011
- Botanical surveys of parts of study area in 1998-1999 and 2000-2003

Species Models

- Species habitat models developed in GIS using:
 - Land cover mapping
 - Species range data, CNDDB records
 - Elevations
 - Soil types
- For listed species, developed in coordination with CDFW and USFWS

Approach to Analysis

- Current impact acreages based on
 - Species models
 - Aerial imagery
 - No current field species surveys or habitat mapping
- Subsequent refinements needed
 - Project design changes
 - Land cover mapping
 - Species surveys

Preliminary Impacts on State and Federally Listed Species

Species	Federally Listed	State Listed	Acres Permanent*	Acres Temporary*
Keck's checker-mallow	Х		10,094	700
Palmate-bracted bird's beak	Х	Х	21	8
Vernal pool crustaceans	Х		330	37
Valley elderberry longhorn beetle	Х		13,535	983
California red-legged frog	Х		513 Aquatic/6,826 Upland	22 Aquatic/426 Upland
Giant garter snake	Х	Х	2 Aquatic/26 Upland	21 Aquatic/19 Upland
Tricolored blackbird		Х	13,487 Foraging/42 Nesting	1,043 Foraging/19 Nesting
Swainson's hawk		Х	14,170 Foraging/1,083 Nesting	1,035 Foraging/50 Nesting
Western yellow-billed cuckoo	Х	Х	TBD	TBD
Bank swallow		Х	TBD	TBD

Draft - Predecisional Working Document - For Discussion Purposes Only

*Based off mapped suitable habitat

Approach to Analysis: Next Steps

Challenge: Lack of Property Access

- How to address lack of property access
 - Impact assessment/mitigation measures in permits based on models and assumptions
 - Ground truthing and surveys when property access is granted
 - Amend permits based on refined mapping and species surveys
- The EIR/S, biological assessment and ITP application will outline this process and frontload it into the permits

Mitigation Approach

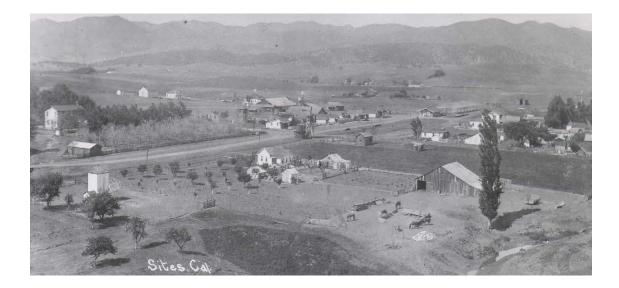
Mitigation Approach

- The mitigation options to be examined will include, but are not limited to, the following:
 - On-site mitigation/restoration opportunities
 - Existing habitat and listed-species mitigation and conservation banks
 - Establishment of turn-key banks
 - Purchasing offsite lands from willing landowners to create, enhance, restore or preserve mitigation habitats
 - Obtaining conservation easement and/or in lieu fees
 - Working with local refuges, preserves, resource agencies or municipalities to fund restoration and/or research projects

Mitigation Approach

- Ecosystem-level mitigation planning that will integrate wetland, riparian and upland communities for targeted species, other associated species & land cover types
 - Develop database of existing preserves, mitigation/conservation banks, federal/state/regional open space areas
 - Overlay CNDDB occurrences for the region; identify mitigation sites in proximity to existing populations
 - Maximize "patch" size
 - Maximize habitat connectivity benefits (provide migration corridors, promote genetic diversity)
 - Protect/enhance important habitat areas
 - Maintain/improve biodiversity

Schedule and Next Meeting

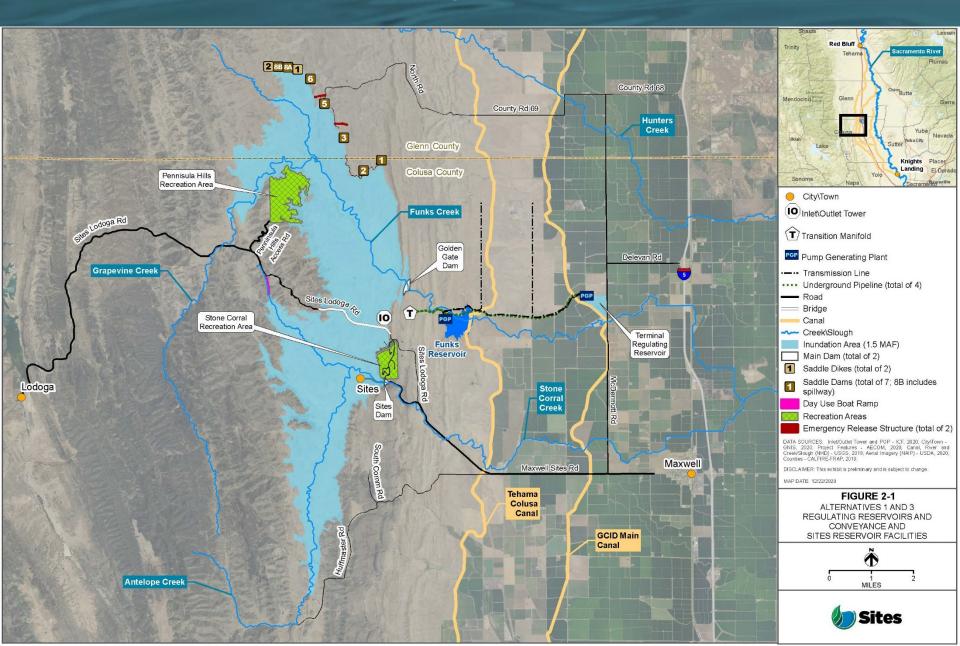

Schedule

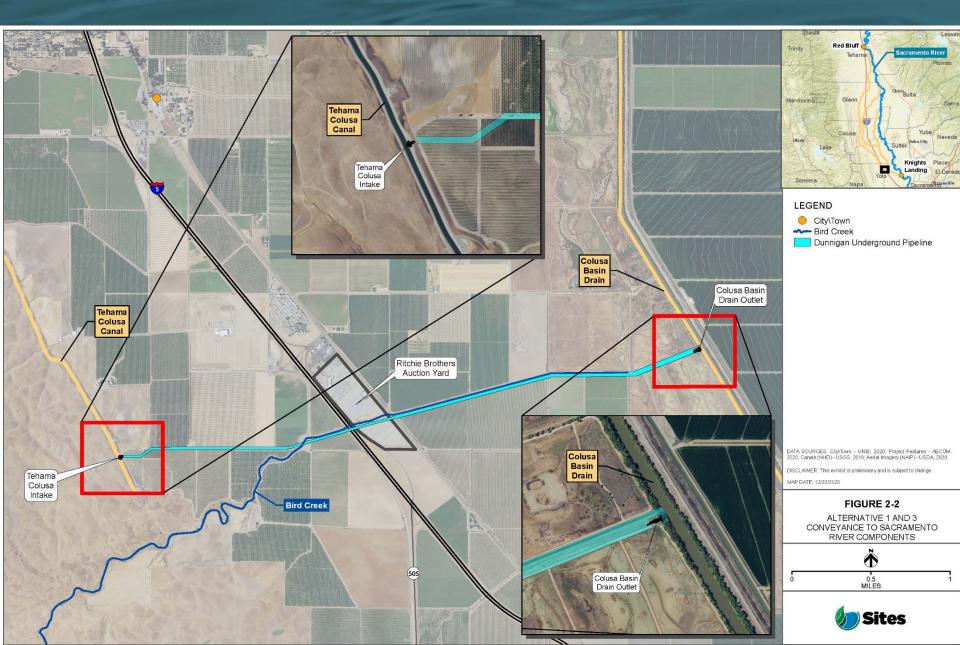
- Summer 2021
 - Draft EIR and Supplemental EIS Released
- December 2021
 - Biological Assessment to Agencies
 - Submit State ITP Applications
- Spring 2022
 - Final EIR/Final EIS
- Spring 2023
 - All permits obtained
- Spring 2024 Construction Begins
- Topics for the next meeting?

Additional Topics from the Group

- Any additional questions or thoughts?
- Topics for the next meeting?

Action Items and Next Steps


Thank you!


Alt 1 – Authority's Preferred Project

Facilities / Operations	Alternative 1
Reservoir Size	1.5 MAF
Diversion(s)	Diversion from Sacramento River into existing TC Canal at Red Bluff and the existing GCID Main Canal at Hamilton City
Conveyance Release / Dunnigan Release	Release 1,000 cfs into new pipeline to the Colusa Basin Drain
Releases into Funks and Stone Corral Creeks	Specific flow criteria to maintain flows to protect downstream water right holders and ecological function
Reclamation Involvement	Funding Partner up to 7% Cost-ShareOperational exchanges
DWR Involvement	Operational Exchanges with Oroville and use of SWP facilities South- of-Delta
Hydropower	Incidental power generation up to 40 megawatts each at Funks PGP and TRR PGP

Alt 1 – Preferred Project

Alt 1 – Preferred Project

Trinity River Small Group Agenda -- DRAFT

Our Core Values – Safety, Trust and Integrity, Respect for Local Communities, Environmental Stewardship, Shared Responsibility and Shared Benefits, Accountability and Transparency, Proactive Innovation, Diversity and Inclusivity Our Commitment – To live up to these values in everything we do

Meeting Information:					
Date:	March 22, 2021	Location:	Microsoft Teams		
Start Time:	10:00 a.m.	Finish Time:	11:30 a.m.		
Purpose:	Overview and discussio	n of the Sites Project's Tri	inity River effects		
Meeting Parti	cipants:				
Regina Chichizo	egina Chichizola Craig Tucker		Rob Leaf		
John McManus Re		cca Wu	Steve Micko		
Joe Polos	Ryan	Davis	John Spranza		
Hank SeemannMelissa DekarMarc VanCamp					
Tom Stokely	Ali Fo	orsythe	Laurie Warner Herson		
Ron Stork	Erin H	Heydinger	Natalie Wolder		
			Paul Zedonis		
Agenda:					
Discussion To	pic		Topic Leader	Time Allotted	
1. Introd	uctions		Ali	5 mins	
2. Group	Group Norms		Ali / Group	10 mins	
	Brief Overview of Project Description and Water Rights Approach		Ali	15 mins	
4. Trinity	rinity River CalSim Modeling Approach		Erin	15 mins	
5. Water	Water Right Approach and Possible Water Right Term		Ali	20 mins	
6. Additi	Additional Topics from the Group		Group	15 mins	
7. Actior	Items and Next Steps		Ali	10 mins	

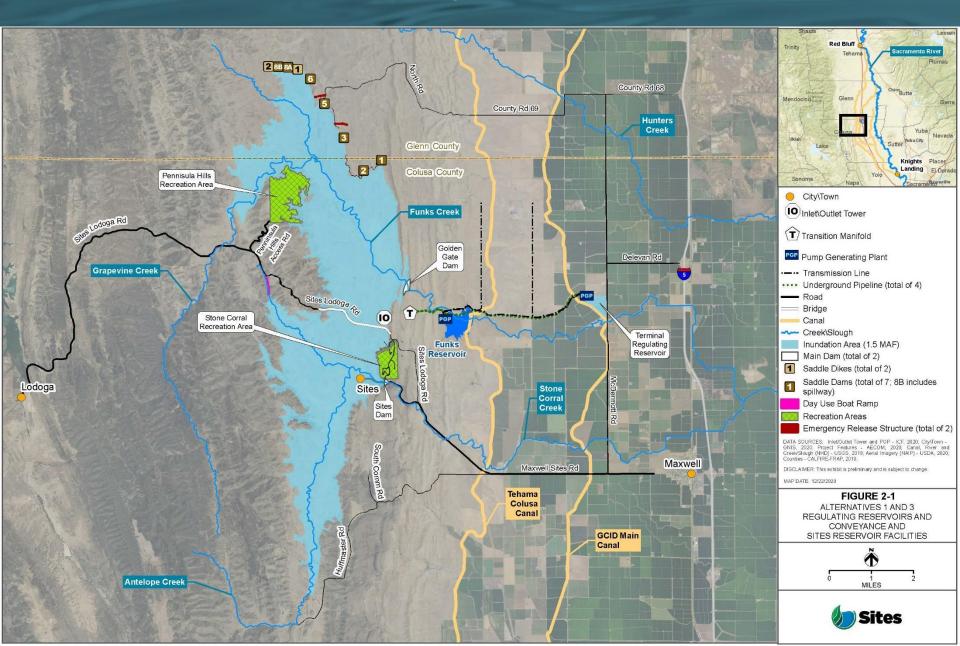
Trinity River Small Group

Overview and Discussion of the Sites Project's Trinity River Effects

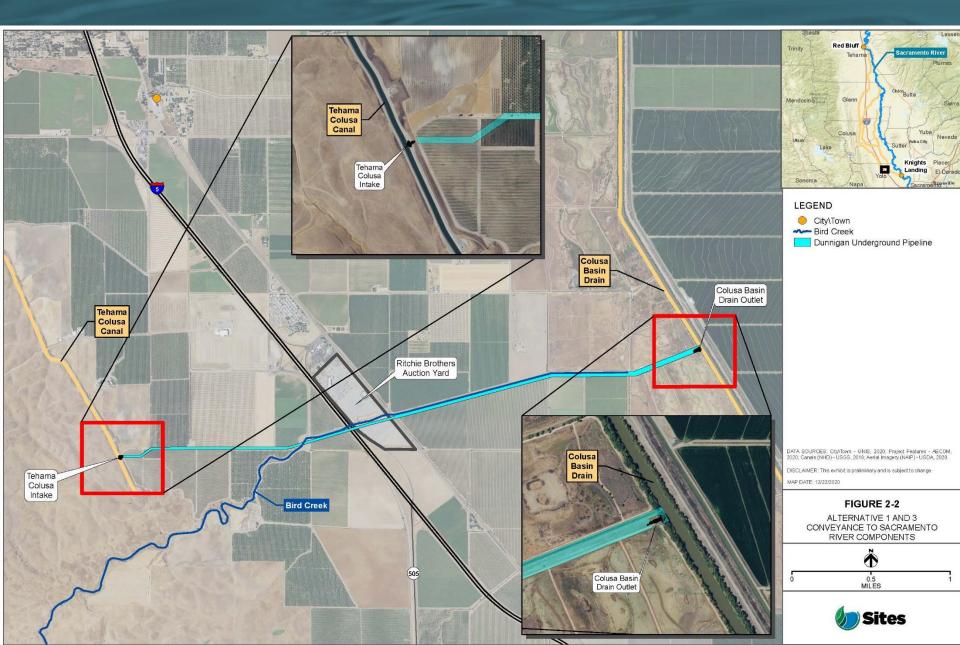
March 22, 2021

Agenda

- 1. Introductions
- 2. Group Norms
- 3. Brief Overview of Project Description and Water Rights Approach
- 4. Trinity River CalSim Modeling Approach
- 5. Water Right Approach and Possible Water Right Term
- 6. Additional Topics from the Group
- 7. Action Items and Next Steps


Group Norms

- Encourage everyone to be on video
- Mute yourself when others are speaking
- Respectful, professional dialogue
- Ask questions throughout, lets have a dialogue
 - Let the speaker finish their point
 - Use the raise your hand function in Teams if needed
- Focus is on the Sites Project


Alt 1 – Authority's Preferred Project

Facilities / Operations	Alternative 1
Reservoir Size	1.5 MAF
Diversion(s)	Diversion from Sacramento River into existing TC Canal at Red Bluff and the existing GCID Main Canal at Hamilton City
Conveyance Release / Dunnigan Release	Release 1,000 cfs into new pipeline to the Colusa Basin Drain
Releases into Funks and Stone Corral Creeks	Specific flow criteria to maintain flows to protect downstream water right holders and ecological function
Reclamation Involvement	Funding Partner up to 7% Cost-ShareOperational exchanges
DWR Involvement	Operational Exchanges with Oroville and use of SWP facilities South- of-Delta
Hydropower	Incidental power generation up to 40 megawatts each at Funks PGP and TRR PGP

Alt 1 – Preferred Project

Alt 1 – Preferred Project

Water Right Approach

• Sources:

- Sacramento River
- Stone Corral Creek
- Funks Creek
- Points of diversion:
 - Tehama-Colusa Canal (existing, screened facility)
 - Glenn-Colusa Irrigation District's Main Canal (existing, screened facility)
 - Sites Dam
 - Golden Gate Dam
- Seeking to appropriate unregulated flows that come into the Sacramento River below Keswick

Water Right Approach

- Sites seeking to divert Sacramento River flows when all of the following conditions are met:
 - Flow exceed minimum diversion criteria
 - Delta is in "excess" conditions
 - Senior downstream water rights and other more senior flow priorities have been satisfied
 - Flow are available above those needed to meet all applicable laws, regulations, BiOps and court orders in place at the time of diversion
- Sites would operate within all applicable laws, regulations, biological opinions and incidental take permits, and court orders in place at the time
- Sites is not applying for a water right to divert or redivert Trinity River water

Modeling Approach

- Calsim II used for overall operations of Sites
 - Hydrological planning tool used to represent state-wide changes that would result from Sites
 - Monthly timestep
 - Results are comparisons, not absolute values
- Updates made to Sites Calsim model baseline now contains actions within:
 - 2019 Reinitiation of Consultation on the CVP and SWP
 - 2020 SWP Incidental Take Permit

Trinity River CalSim Modeling Approach

- Modelled No Action Alternative
 - Includes:
 - Trinity ROD Flows
 - Lower Klamath Augmentation Flows
- Held Trinity River operations consistent with No Action Alternative when modelled the Project alternatives
- Reclamation has same obligations and operating principles in operating the Trinity River with and without Sites
- Sites is not limiting, constraining, changing, or affecting Reclamation's obligations in their Trinity River operations

Water Right Approach and Possible Term

- Developing water right terms:
 - Implementable and under the control of the Sites Authority
 - Measurable, identifiable, reportable
 - Addresses the issue at hand
- Open to a term, but we believe that it should meet the criteria above

Water Right Approach and Possible Term

- What are the key factors that the group is concerned about?
- How might we put those into a water right term?
- Could we address in a different way? For example, through a statement from Sites Board

Additional Topics from the Group

• Any additional questions or thoughts?

Action Items and Next Steps

Thank you!

Proposed Water Right Term from Humboldt County

Trinity River water shall not be used to fill Sites Reservoir unless the Trinity River Division of the Central Valley Project is releasing water as a result of storage conditions requiring "Safety of Dams" releases beyond normal operating plans and concurrently when Shasta Reservoir is making flood control releases. Furthermore, Humboldt County's 1959 water contract with the Bureau of Reclamation, Trinity River Record of Decision (ROD) flows, and releases to implement the Bureau of Reclamation's Long-Term Plan to Protect Adult Salmon in the Lower Klamath River shall not be reduced or negatively impacted in any way as a result of any Sites Reservoir decisions, modeling, operational plans, and water right petitions.

Water Quality Group Discussion Agenda

Our Core Values – Safety, Trust and Integrity, Respect for Local Communities, Environmental Stewardship, Shared Responsibility and Shared Benefits, Accountability and Transparency, Proactive Innovation, Diversity and Inclusivity Our Commitment – To live up to these values in everything we do

		•	, ,	
Meeting Infor	mation:			
			Microsoft Teams	
Date:	May 13, 2021	Location:	Or call in (audio on	ly)
			(833) 255-2803,,80	8172876#
Start Time:	1:00 p.m.	Finish Time:	1:30 p.m.	
Purpose:	Overview and d EIR/S analysis a	-	-lake water quality modeling and	
Meeting Parti	cipants:			
André Sanchez		Julie Zimmerman	Cam Irvine	
Anthony Saracino		Rachel Zwillinger	Erin Heydinger	
Dave Zelinski		Rebecca Wu	John Spranza	
Debra Lucero		Regina Chichizola	Laurie Warner Herson	
Doug Obegi		Ron Stork	Lesa Erecius	
Greg Reis		Stephanie Gordon	Melissa Dekar	
Jerry Boles		Tom Stokely	Nicole Williams	
Jay Ziegler		Ali Forsythe	Steve Micko	
Jim Brobeck		Anne Huber	Vanessa King	
Agenda:				
Discussion To	pic		Topic Leader	Time Allotted
1. Introd	luctions		John	5 mins
2. Group	Norms		John	5 mins
a. Ap	pproach to Meeting	gs		
3. Action	n Item follow-up		John	5 min
4. Key Co	oncepts		Ali, Steve, Anne	15 min
a. Re	eservoir Managem	ent Plan		

- a. Reservoir Management Plan
- b. Temperature Model
- c. Evapoconcentration

5.	In Lake Analyses	Cam, Anne, Lesa	50 mins
	a. Mercury		
	b. Metals (non-Hg)		
	c. HABs		
	d. Other Topics		
	i. Salt Pond		
	ii. Bank Erosion		
	iii. Metal Leaching		
6.	Action Items and Future Topics	All	10 mins

Sites Project Water Quality Group Discussion

May 13, 2021

Draft - Predecisional Working Document - For Discussion Purposes Only

Agenda

- 1. Introductions
- 2. Group Norms
- 3. Action Item Follow-up
- 4. Key Concepts
 - a) Reservoir Management Plan
 - b) Temperature Model
 - c) Evapoconcentration
- 5. In-Lake Analyses
- 6. Action Items and Next Steps

Group Norms

- Encourage everyone to be on video
- Mute yourself when others are speaking
- Respectful, professional dialogue
- Ask questions throughout, lets have a dialogue
 - Let the speaker finish their point
 - Use the raise your hand function in Teams if needed
- Topics for next meeting will be discussed and recorded

Action Item Follow-up

Action Item	Addressed	Pending	Notes
Specificity on years for data	Х		
Distribute metals table	Х		
Effects of release temperature on rice		Х	Email out to Tim Johnson
Effects of Hg and As on rice		Х	Email out to Tim Johnson
Effects of reservoir operations on water quality of Stone Corral and Funks creeks.		Х	Next meeting
Anti-degradation policy and Sites		Х	Next meeting
Synergistic effects of chemicals		Х	Next meeting

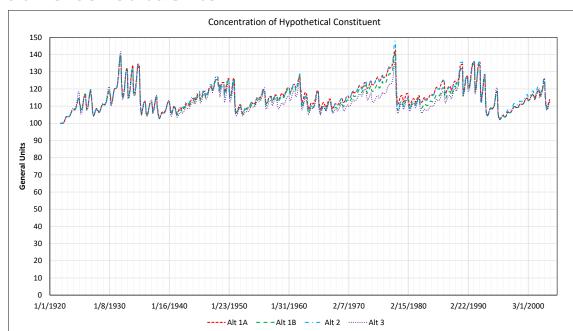
Key Concepts

Reservoir Management Plan

- Part of the Project
- Purpose: describe the management of water resources in Sites Reservoir
 - Water Quality: describe metrics, standards, testing and monitoring protocols, and outcomes
- Constituents currently included:
 - HABs
 - Methylmercury
 - Metals
 - Water Temperature
 - Salt and Minerals (Salt Pond)

Temperature Model: CE QUAL W2

- CE QUAL W2
 - 2D Reservoir Temperature Model
 - Daily timestep
 - Version 4.1
- Assumptions:
 - Reservoir size
 - Estimates surface area with storage volume
 - Considers I/O Tower


Temperature Model: CE QUAL W2

• Inputs

- Daily flows from operations model (USRDOM)
- Daily temperature from Sacramento River temperature model (HEC5Q)
- Daily net evaporation rate (consistent with CalSim II)
- Outputs
 - Surface water temperature
 - Release temperature

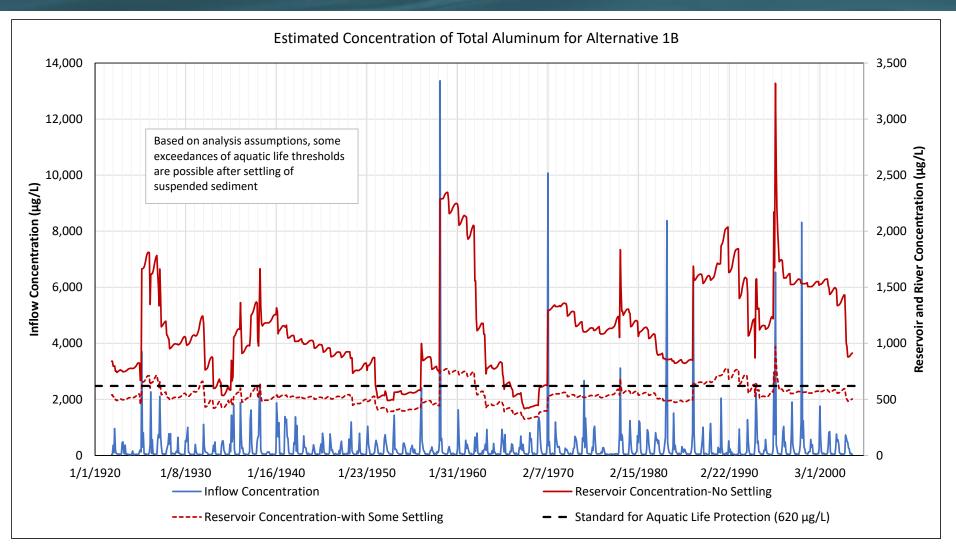
Evapoconcentration

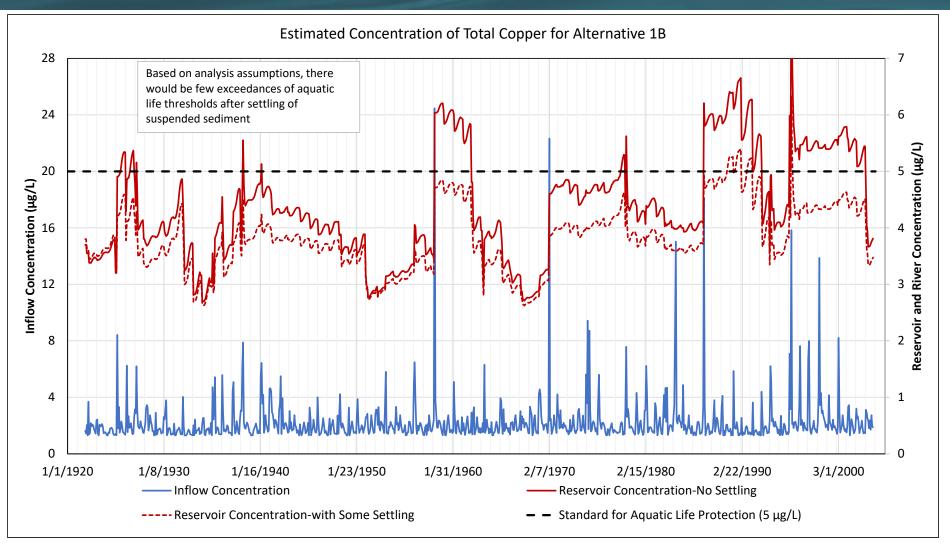
- Calculations using water balance information from CALSIM
- Increase in concentration limited by freshening due to release and refilling
- Most relevant to conservative constituents
- Average concentration approximately 13-16 percent higher than the inflow concentration
- Maximum of 41 48 percent depending on alternative

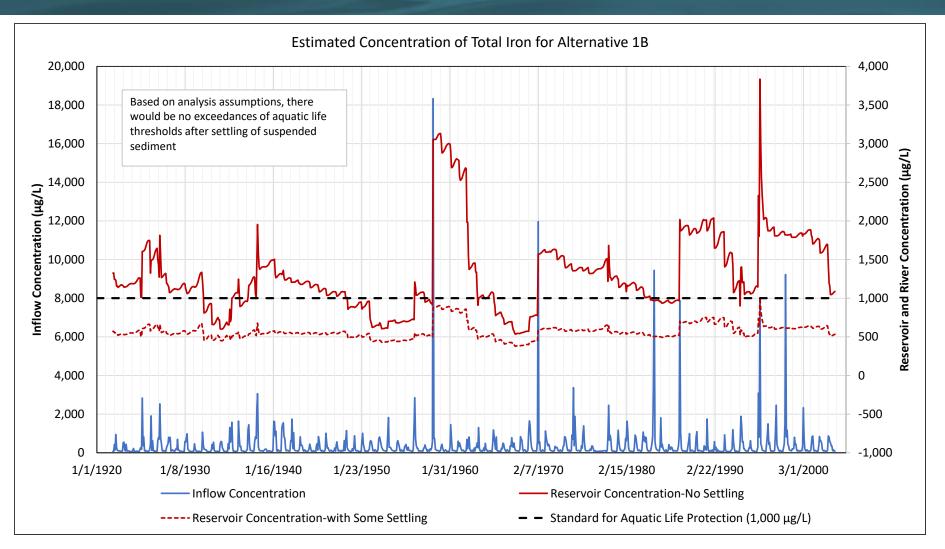
In-Lake Analyses

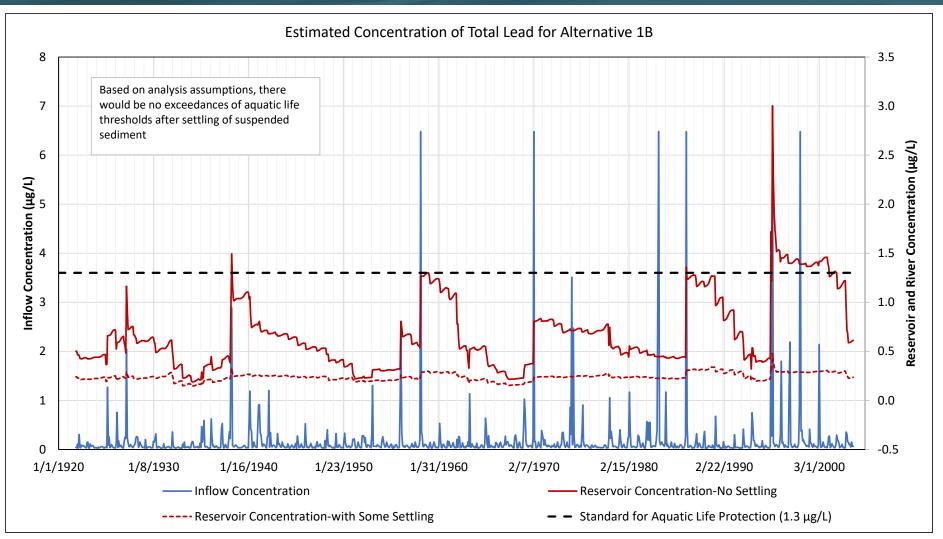
Mercury

- Approach
 - Input sources
 - Transformation processes
 - Comparison with similar/nearby reservoirs
 - Concentrations in surface waters and in fish tissues
 - Annual reservoir water level fluctuation
- Key Data Sources
 - California Environmental Data Exchange Network (CEDEN)
 - DWR Water Data Library
 - SWRCB 2017 Reservoir TMDL draft staff report


Mercury


- Long-term (~10 years after initial filling)
 - Comparable to existing reservoirs
 - 1.6 to 1.9 ng/L total mercury
 - 0.10 to 0.15 methylmercury
- Short-term (up to ~10 years after initial filling)
 - Conditions are conducive to mercury methylation
 - 3.2 to 3.8 ng/L total mercury
 - 0.2 to 0.3 ng/L methylmercury
- Total mercury concentrations would not exceed California Toxics Rule Objective (50 ng/L)
- Tissue concentrations among other reservoirs > CA sport fish objective (0.2 mg/kg ww in 350 mm largemouth bass)


Mercury


- Reservoir Management Plan
 - Remove vegetation in inundation footprint prior to initial filling
 - Monitor reservoir fish tissue methylmercury
 - Post fish consumption warning signs if fish tissue methylmercury concentrations exceed CA sport fish objective
 - Adhere to the State Water Board TMDL for mercury in reservoirs, once adopted

- Calculations include:
 - Improved estimation of inflow concentration (based on both flow at Keswick and Keswick/Bend Bridge)
 - Evapoconcentration
 - With and without settling of suspended sediment
- Reservoir Management Plan
 - Monitor concentrations of aluminum, copper, iron, and lead upstream of, in, and downstream of Sites Reservoir

HABs

- HABs occur in many reservoirs including Black Butte
- Sufficient nutrients and higher water temperatures (≥66 °F) in Sites Reservoir in May through September could create conditions conducive to formation and maintenance of HABs
- Reservoir Management Plan
 - Monitor for presence of HABs and, if found, cyanotoxins.
 Add warning signage if warranted
 - Coordinate with Water Board
 - Operate inlet/outlet tower to reduce likelihood of cyanotoxins in release

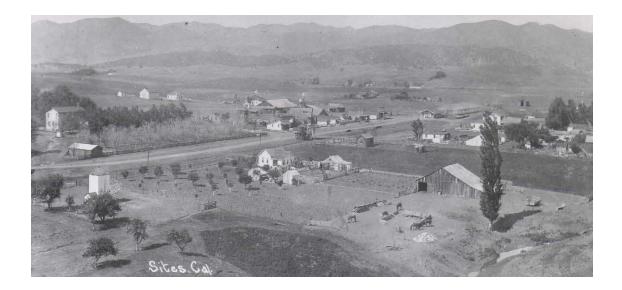
Other Topics: Salt Pond

- Salt Pond Information
 - August 1997 dry
 - September 1997 EC = 194,100 μS/cm
 - January 1998 EC = 7,200 μS/cm
 - Estimated flow = 0.1 cfs based on pond size and evaporation rate for region

Other Topics: Salt Pond

- Salt Pond Evaluation:
 - Not expected to have substantial water quality effects
 - Conservatively assumed no decrease in spring discharge
 - Fate of spring discharge:
 - Full mixing of 0.1 cfs for a year into a volume of 200 TAF would represent 0.04 percent of the total volume (EC increase from 130 μ S/cm to between 133 208 μ S/cm)
 - Accumulation at bottom of reservoir due to higher density (74 years to reach low-level intake)
- Reservoir Management Plan
 - Measure EC in springs before construction
 - Measure EC in reservoir after inundation

Other Topics Metals and Erosion

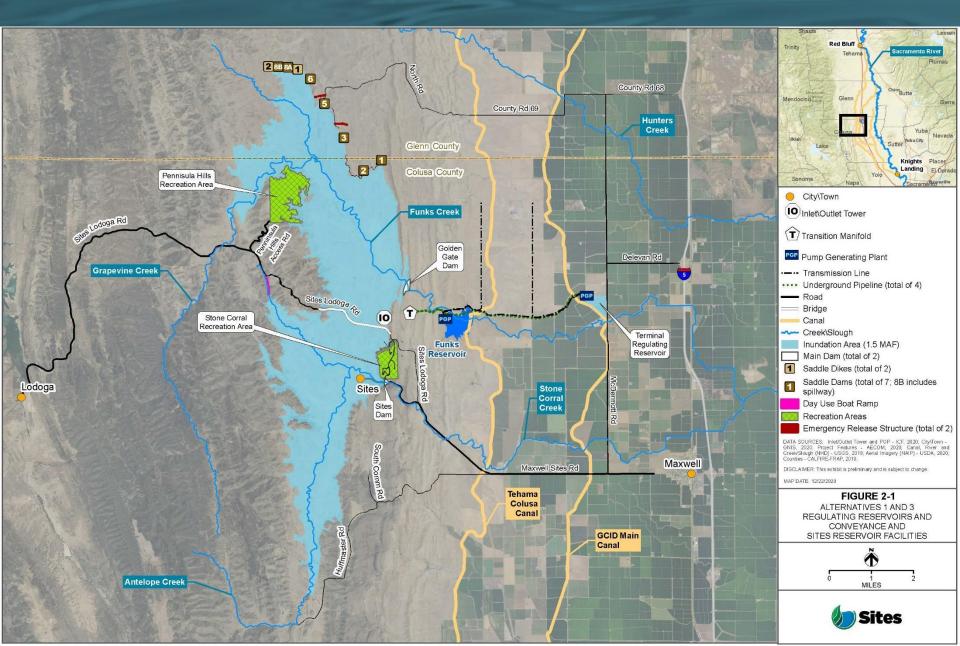

- Metal Leaching from Groundwater
 - Reservoir water expected to seep into ground
 - Groundwater does not have elevated metal concentrations
- Reservoir Bank Erosion
 - Temporary increase in turbidity common to many waterbodies
 - Activities in the reservoir footprint (ranching) unlikely to contaminate soil

Action Items and Future Topics

Additional Topics and Action Items

- Any additional questions, thoughts or topics for the next meeting?
- Action item review

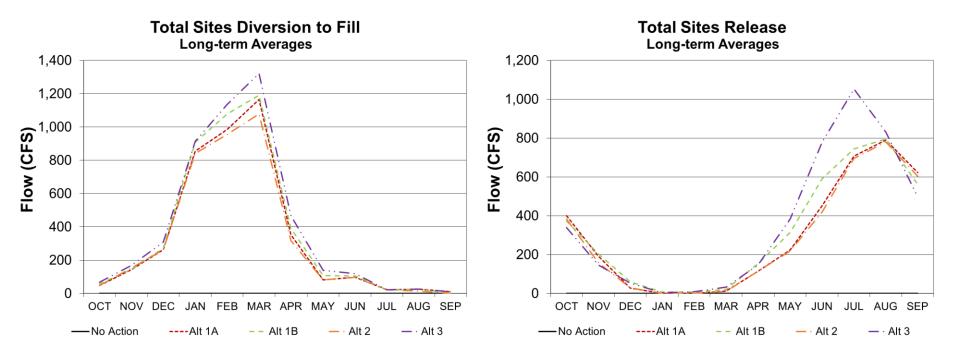
Thank you!



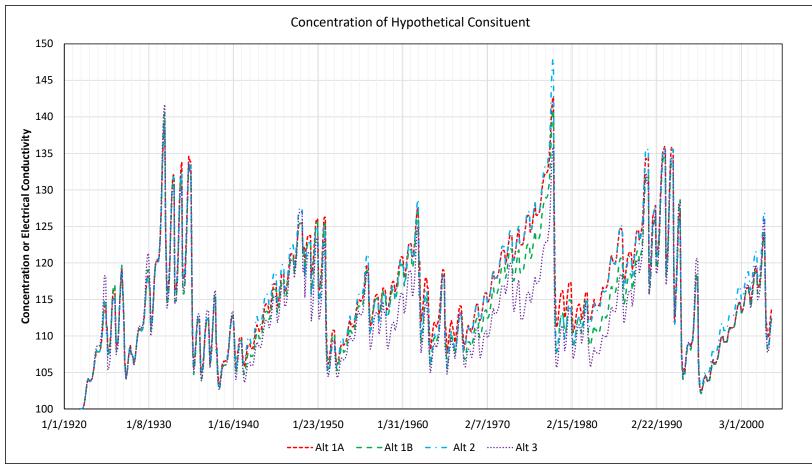
Method Analysis Overview

Mechanisms by which Sites Reservoir Operations Could Affect Water Quality	Main Constituents Considered	Qualitative	Quantitative	Model Results Considered
Temporal Shift	Metals Pesticides Salinity	X	X	CalSim
Evapoconcentration	Metals Salinity		Х	CalSim
In-Reservoir Processes	Mercury HABs Nutrients/OC/DO Temperature	X	X	Reservoir temperature modeling (CE QUAL W2)
Change in System Reservoir Operations	Temperature HABs Mercury	X	X	CalSim, HEC5Q and Reclamation temperature model
Change in Delta Operations	Salinity Chloride	Х	Х	CalSim and DSM2 QUAL
Redirection of CBD Flow to Yolo Bypass	Pesticides Nutrients/OC/DO HABs Mercury Temperature	X	X	CalSim

Draft - Predecisional Working Document - For Discussion Purposes Only


Alt 1 – Preferred Project

Total Mercury Concentrations (ug/L)


Location	Station	n	Mean Concentration	Maximum Concentration	75 [⊪] Percentile	Data Range (vears)	Source
Funks Creek	Golden Gate	2	0.35	1.2	0.93	2006- 2007	DWR Data Library
Stone Coral Creek	-	3	0.85	2.3	1.61	2007	DWR Data Library
Colusa Basin Drain	Knights Landing	26	8.6	19.3	10.8	1996- 1998	USGS 2000
Colusa Basin Drain	Knights Landing	66	4.5	75	5.9	1999- 2007	CEDEN
Sacramento River	Red Bluff	66	1.3	14.4	1.6	1999- 2007	CEDEN
Sacramento River	Hamilton City	66	2.2	54	2.6	1999- 2016	CEDEN
Sacramento River	Freeport	217	4.5	89	8.8	1994- 2015	CEDEN
Yolo Bypass	Prospect Slough	28	73.2	696	-	1995- 2003	Central Valley RWQCB 2010

Diversions and Releases

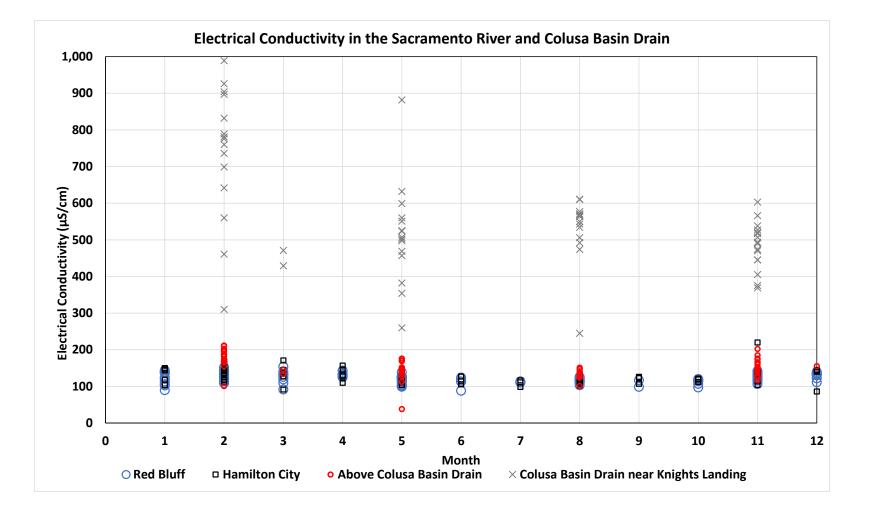
Evapoconcentration

Calculations using water balance information from CALSIM

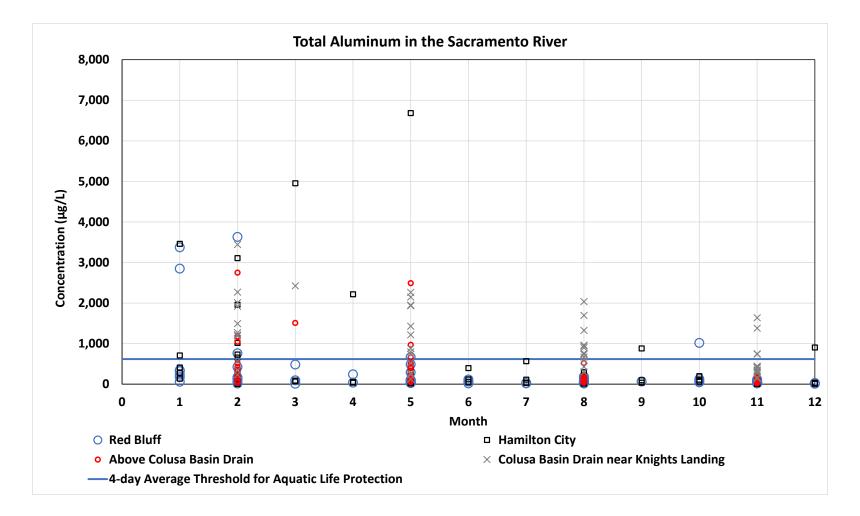
Project Water Operations

Draft - Predecisional Working Document - For Discussion Purposes Only

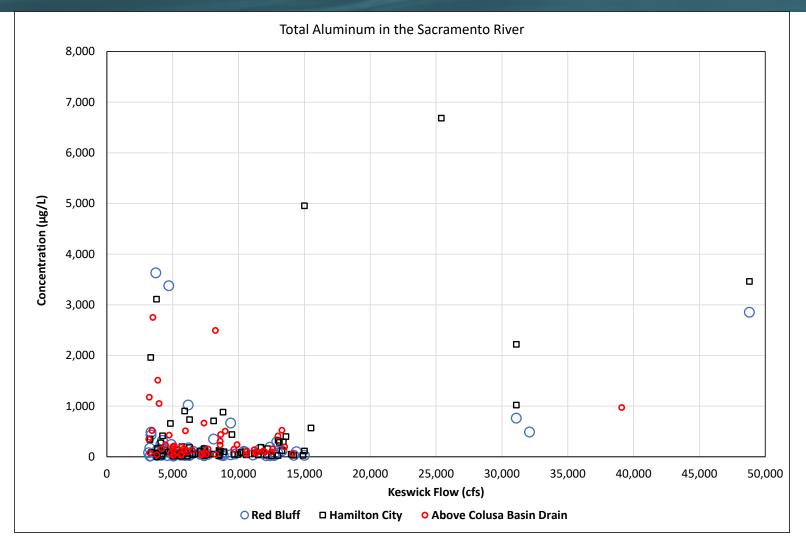
Main Data Sources

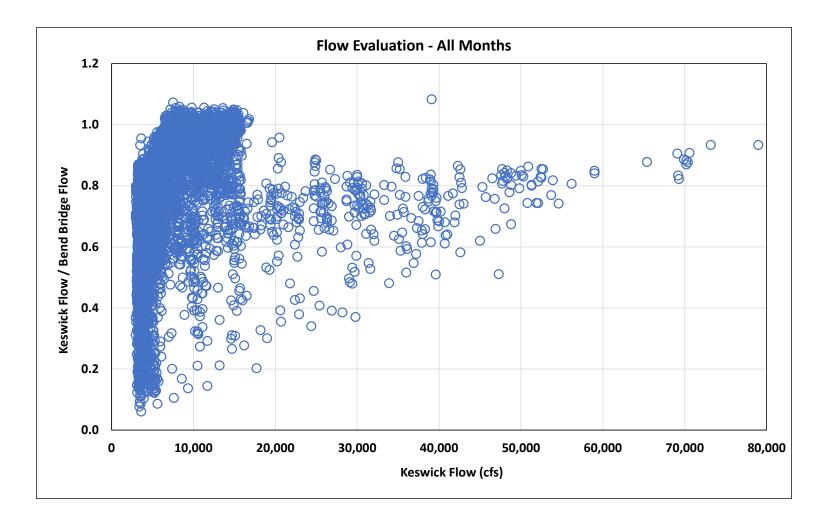

Constituent Group	Data Source	Location
Metals Electrical Conductivity Nutrients	DWR Water Data Library (WDL)	Sacramento River below Red Bluff Sacramento River at Hamilton City Sacramento River above CBD CBD near Knights Landing Stone Corral Creek near Sites
Flow	USGS WDL CA Data Exchange Center	Sacramento River at Keswick Sacramento River above Bend Bridge
Pesticides	CA Dept of Pesticide Regulation Surface Water Database (CDPR SURF)	Sacramento River near Hamilton City Sacramento River at Colusa CBD above Knights Landing Yolo Bypass Toe Drain near Babel Slough

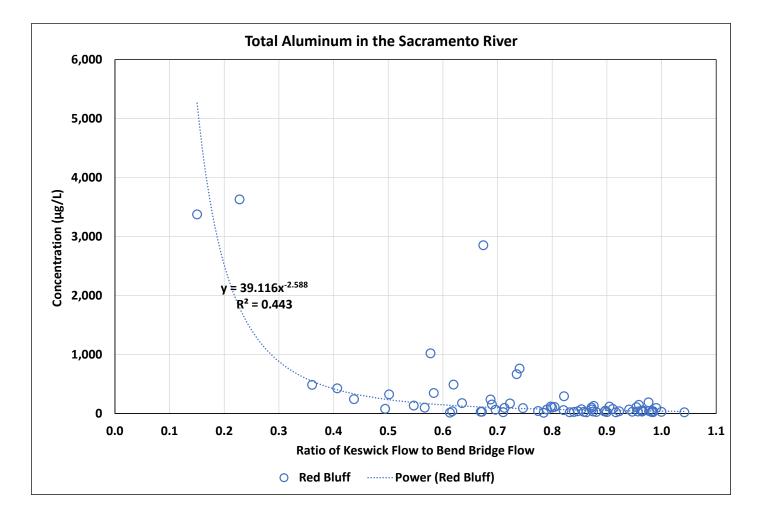
Average Metal/Metalloid Concentrations

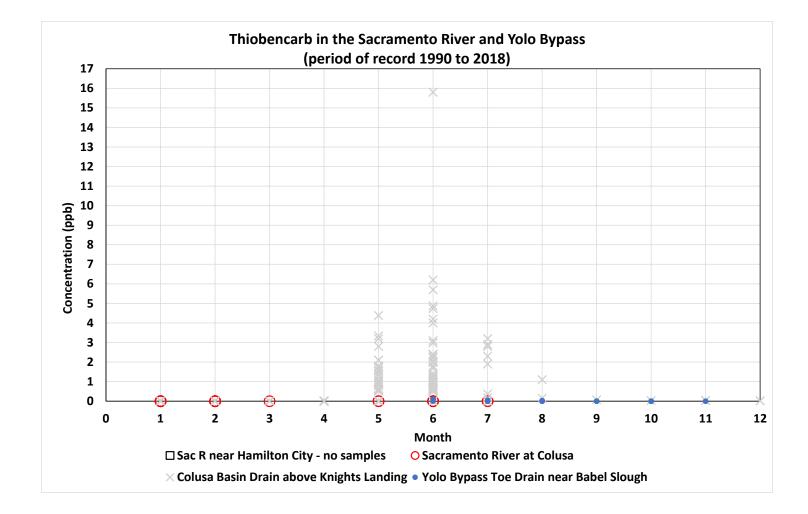

- Units are in micrograms per liter
- No available data for Funks Creek
- Source for Stone Corral Creek and Sacramento River = DWR Water Data Library. See Slide 14
- Source for groundwater is DWR NODOS study (2007)

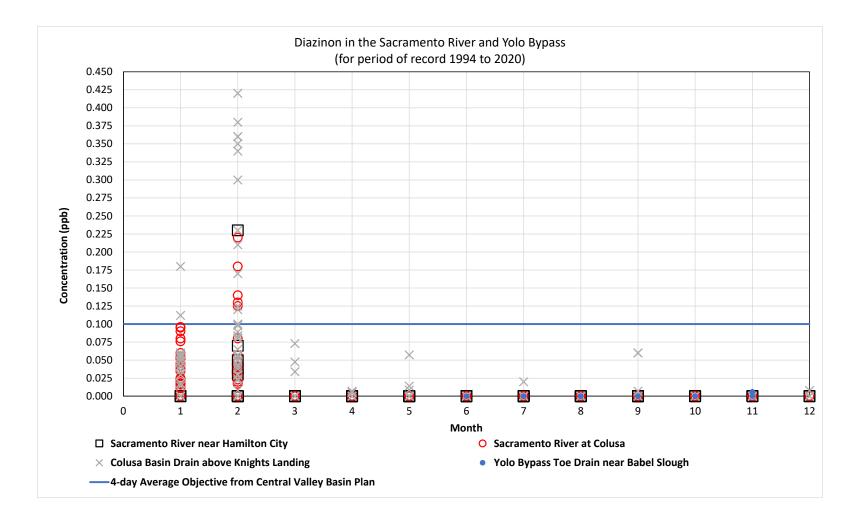
Metal/Metalloid	Stone Corral Creek	Groundwater in Sites Reservoir Footprint	Sacramento River at Intake Locations
Dissolved Aluminum	149		94
Total Aluminum	562	12	359
Dissolved Arsenic	2.8	0.7	1.5
Total Arsenic	3.1	0.8	1.6
Dissolved Cadmium	0.05	0.02	0.04
Total Cadmium	0.06	0.05	0.04
Dissolved Chromium	2.9	2.6	0.7
Total Chromium	4.0	3.3	1.4
Dissolved Copper	2.8	2.7	1.3
Total Copper	3.9	3.4	2.3
Dissolved Iron	123	7	67
Total Iron	512	81	424
Dissolved Lead	0.08	0.12	0.03
Total Lead	0.31	0.27	0.20
Dissolved Manganese	12	18	2
Total Manganese	37	21	. 15
Dissolved Nickel	2.8	1.0	1.2
Total Nickel	4.0	1.3	2.2
Dissolved Selenium	6.1	4.6	1.2
Total Selenium	6.7	5.0	0.2
Dissolved Silver	0.03	0.00	0.01
Total Silver	0.05	0.01	0.03
Dissolved Zinc	1.4	112.5	0.9
Total Zinc	3.7	115.2	3.8


Electrical Conductivity


Metals – Aluminum Example


Compared to Flow


Sacramento River Indicator of Local Runoff vs Flow


Example Quantitative Approach

Thiobencarb – typical pesticide pattern

Diazinon – atypical pesticide pattern

Other Topics: Salt Pond

• Salt Pond Evaluation:

Estimated Electrical Conductivity (EC in μS/cm) of reservoir release assuming 0.1 cfs salt spring flow is continually mixed with reservoir release and that Sacramento River EC is 130 μS/cm.

Spring EC	Reservoir Release (cfs)		
(µS/cm)ª	10 cfs	1,200 cfs	
7,200	201	131	
194,100	2,070	146	

^a Spring EC between these two values.

Fishery Group Discussion #3 – Project Effects Agenda

Our Core Values – Safety, Trust and Integrity, Respect for Local Communities, Environmental Stewardship, Shared Responsibility and Shared Benefits, Accountability and Transparency, Proactive Innovation, Diversity and Inclusivity Our Commitment – To live up to these values in everything we do

Date:	Microsoft Teams October 29, 2021 Location: Or call in (audio only) (833) 255-2803,,335745359#				
Start Time:	2:00 p.m.	Finish Time:	3:00 p.m.		
Purpose:	Overview and discussion of the updated Sites Project's aquatic modeling and EIR/S analysis				
Meeting Invitee	s:				
André Sanchez		Rebecca Wu	Laurie Warner Herson		
Dave Zelinski		Regina Chichizola	Jason Hassrick		
Debra Lucero	ro Ron Stork		Jim Lecky	Jim Lecky	
Doug Obegi	Stephanie Gordon		Marin Greenwood		
Greg Reis	Suzanne Manugian		Melissa Dekar		
Jerry Boles	Tom Stokely		Mike Hendrick		
Jim Brobeck	Ali Forsythe		Natalie Wolder		
Joe Morgan	Dan Deeds		Nicole Williams		
Rachel Zwillinger		Erin Heydinger	Steve Micko		
John Spranza		John Spranza	Vanessa King		
Agenda:					
Discussion Topic			Topic Leader	Time Allotted	
1. Meeting Goals and Objectives		ives	John S	5 mins	
2. Meeting Norms		John S	5 mins		
3. Updated Diversion Criteria in Draft REIR/SEIS		John S/Steve	15 min		
4. Updated Salmonid Effects		Mike H	10 min		
5. Updated Smelt Effects		Mike H	10 mins		
6. Updated Schedule		John S	5 mins		
7. Open Topics		Group	10 min		
8. Adjourn					

Sites Project Fishery Group Discussion No. 3

October 29, 2021

Draft - Predecisional Working Document - For Discussion Purposes Only

Agenda

- 1. Goals and Objectives
- 2. Group Norms
- 3. Update Diversion Criteria
- 4. Updated Salmonid Effects
- 5. Updated Smelt Effects
- 6. Updated Schedule
- 7. Adjourn

Group Norms

- Encourage everyone to be on video
- Mute yourself when others are speaking
- Respectful, professional dialogue
- Ask questions throughout, lets have a dialogue
 - Let the speaker finish their point
 - Use the raise your hand function in Teams if needed

Updated Diversion Criteria

John Spranza, Jim Lecky and Steve Micko

Project Water Operations

Draft - Predecisional Working Document - For Discussion Purposes Only

Operations Project Description

• Operational Criteria

- Junior diverter Diverting after all senior water rights and water quality and flow requirement are met
- Diverting during "excess conditions" (as determined by Reclamation and DWR)
- Diversion locations in priority:
 - 1. Red Bluff Pumping Plant into the Tehama-Colusa Canal
 - Up to 2,100 cfs diversion for Sites (plus losses), subject to other uses
 - 2. Hamilton City Pump Station into the GCID Main Canal
 - Up to 1,800 cfs diversion for Sites (plus losses), subject to other uses
- Diversions when Sacramento River not fully appropriated (September 1 to June 15)

Project Diversion Criteria – Pre-October

Criteria	Purpose	Description
Bend Bridge Pulse Protection	Survival of emigrating juvenile salmon	Each pulse protected"Reset" to differentiate between pulses
Scaled Diversions	Ensure proper screen function	 Rate of diversion controlled by screen design
Wilkins Slough Bypass Flow	Facilitate salmonid smolt outmigration	8,000 cfs in April and May;5,000 cfs all other times
Fremont Weir Notch Criteria	Protect project objectives	 First 600 cfs held to 1% change 600 - 6,000 cfs held within 10% No restriction above 6,000 cfs
Net Delta Outflow Index (NDOI)	Comply with existing regulations	 Operations consistent with 2019 BO, CA SWP ITP
Delta Water Quality	Comply with existing regulations	Operations consistent with Delta water quality requirements

*Diversions when Sacramento River not fully appropriated (September 1 to June 15)

Post-October Changes

- Continuing evolution of our understanding in the flow survival relationship in salmonids
- There isn't a good understanding that relates flow to survival through the rearing phase of the life cycle
 - Many are based on a comparison of smolt survival in wet years and dry years
 - Fish survive better in wet years, however, the application of these studies to within year operational decisions is limited
- Recent literature on the importance of variability in the hydrograph, particularly in drier year, in survival of emigrating smolts (Michel et al. 2021, Hassrick et al. in prep)
 - Combined with Agency discussions prompted a refinement of our analysis with a diversion criteria mitigation measure for seasonal bypass flows at Wilkins Slough

Updated Diversion Criteria in 2021 RDEIR/SDEIS

• Sacramento River at Wilkins Slough bypass flow requirements have been updated AS A MITIGATION MEASURE:

Prior Requirement	Revised Requirement
 8,000 cfs in April – May 5,000 cfs in all other months 	 8,000 cfs in April – May Mitigation Measure = 10,700 cfs in March – May 5,000 cfs in all other months

- Modeling framework and baseline model are same as prior meetings
 - Baseline: 2020 Benchmark CalSim II Model
 - Modeling framework: CalSim II results inform secondary models (e.g. water temperature)

Updated 2021 EIR/EIS Salmonid Effects Overview

Mike Hendrick

Aquatic Biological Resources – Overview

- Evaluates 20 Impacts
 - Impact FISH-1: Construction Effects
 - Impact FISH-2 through -19: Operation effects on listed species and special status species of concern, including Killer Whales
 - Impact FISH-20: Maintenance Effects
- Impact assessments rely primarily on modeled hydrologic changes in SWP and CVP operations that would occur as a result of Project operations. Depending on the species and location, the specifics of the assessment methodologies differ.
- Today's presentation will focus on changes / revisions since our last discussion

Salmon Operations and Construction Effects Summary

- Impact FISH-1: Construction Effects on Special Status Fish
- Impact FISH-2: Operations Effects on Winter-Run
- Impact FISH-3: Operations Effects on Spring-Run
- Impact FISH-4: Operations Effects on Fall-Run and Late Fall-Run
- Impact FISH-5: Operations Effects on Steelhead

Impact FISH-1: Construction Effects on Special Status Fish

- Construction would result in:
 - Ground-disturbance activities
 - Use of heavy equipment and hazardous materials
 - In-water construction (including pile driving)
 - Stream diversion and dewatering
 - Removal of riparian and stream-side vegetation (including vegetation supporting SRA cover)
 - Filling of Sites Reservoir.
 - Alt 2 includes construction of the energy dissipation structure for the Sacramento River discharge
- These activities would result in temporary impacts on special-status fish during construction activities. However, these temporary and permanent impacts would not affect any ESA-listed fish species. Exception is Alternative 2 and the construction of the energy dissipation structure for the Sacramento River discharge.

Impact FISH-1: Construction Effects on Special Status Fish (Continued)

- Construction of Alternative 1, 2 or 3 would be less than significant with mitigation and the inclusion of BMPs.
- Mitigation Measures:
 - Will compensate for the temporary and permanent loss of riparian habitat, including SRA cover.
 - Will compensate for permanent impacts on wetlands, including riparian and freshwater marsh.
 - Will compensate for temporary and permanent impacts on state or federally protected non-wetland waters by creating or acquiring and permanently protecting suitable open-water habitat
 - Conduct Surveys for Sensitive Natural Communities and Oak Woodlands in the Project Area Prior to Construction Activities
- Best Management Practices (BMPs) would be implemented during construction. Examples include Stormwater Pollution Prevention Plan (SWPPP), and Requirements of Central Valley Regional Water Quality Control Board

Impact FISH-2: Operations Effects on Winter-Run, Analysis Completed

- Fish Screen Entrainment and Impingement
- Stranding Behind Screens
- Predation at Intakes
- Temperature Effects
- Redd Dewatering and Redd Scour Entombment
- Habitat Weighted Usable Area (spawning, rearing)
- Juvenile Stranding
- Salmon Mortality and Production (via SALMOD)
- Floodplain Inundation and Access
- Delta Effects (Through Delta Survival, Juvenile Rearing, South Delta Entrainment)
- NOTE: THE ABOVE ARE RELEVANT TO ALL SALMONIDS ANALYZED

Impact FISH-2: Operations Effects on Winter-Run, Impact Conclusion and Mitigation

- With the inclusion of Mitigation Measure FISH-2.1, operation impacts would be less than significant with mitigation.
- Mitigation Measure FISH-2.1: Wilkins Slough Flow Protection Criteria: The Authority will not divert water from the Sacramento River for Project purposes during March through May of all water year types if the flows in the Sacramento River are below 10,700 cfs as measured at Wilkins Slough or if Project diversions would result in flows in the Sacramento River below 10,700 cfs as measured at Wilkins Slough.

Impact FISH-3: Operations Effects on Spring-Run, Impact Conclusion and Mitigation

- With the inclusion of Mitigation Measure FISH-2.1 below, operation impacts would be less than significant with mitigation.
- **Mitigation Measure FISH-2.1: Wilkins Slough Flow Protection Criteria:** The Authority will not divert water from the Sacramento River for Project purposes during March through May of all water year types if the flows in the Sacramento River are below 10,700 cfs as measured at Wilkins Slough or if Project diversions would result in flows in the Sacramento River below 10,700 cfs as measured at Wilkins Slough.

Impact FISH-4, FISH-5, FISH-6: Operations Effects on Spring-Run, Fall-Run/Late Fall-Run, Steelhead, Impact Conclusion and Mitigation

- Similar analysis, impact conclusion, and Mitigation Measure result in operation impacts of less than significant with mitigation with the inclusion of **Mitigation Measure FISH-2.1**.
- Mitigation Measure FISH-2.1: Wilkins Slough Flow Protection Criteria: The Authority will not divert water from the Sacramento River for Project purposes during March through May of all water year types if the flows in the Sacramento River are below 10,700 cfs as measured at Wilkins Slough or if Project diversions would result in flows in the Sacramento River below 10,700 cfs as measured at Wilkins Slough.

Updated 2021 EIR/EIS Smelt Effects Overview

Mike Hendrick

Smelt Operations Effects Summary

- Impact FISH-8: Operations Effects on Delta Smelt
- Impact FISH-9: Operations Effects on Longfin Smelt

Impact FISH-8: Operations Effects on Delta Smelt, Conclusion Excerpts

- No increase in south Delta entrainment risk because south Delta exports of Sites Reservoir water do not occur during times of the year when delta smelt are susceptible to entrainment.
- Small reductions in suspended sediment to the Delta. These are addressed by the Sediment Technical Studies Plan and Adaptive Management for Sacramento River
- The analyses of flow-related effects (differences in Delta outflow/X2) suggested the potential for small negative effects under the Alternatives
- Impacts on delta smelt would be significant due to uncertainty associated with Dissolved Oxygen (DO) and temperature effects from Sites Reservoir releases. HOWEVER...

Impact FISH-8: Operations Effects on Delta Smelt, Mitigation Measures

- **Mitigation Measure FISH-8.1** will reduce this significant impact by preventing detrimental DO and water temperature effects associated with moving Colusa Basin Drain (CBD) water through the Yolo Bypass.
- Existing DO and temperature levels suitable to delta smelt would be maintained and would not exceed recognized critical physiological thresholds through implementation of Mitigation Measure FISH-8.1; therefore, impacts would be reduced to less than significant.
- There is uncertainty in the potential for negative effects from Sites habitat flows redirecting CBD water relatively high in pesticides downstream to the lower Yolo Bypass where delta smelt occur. This potential effect would be addressed by **Mitigation Measure WQ-2.2**.

Impact FISH-9: Operations Effects on Longfin Smelt, Conclusion Excerpts

- No change from previous EIR/EIS version, however as a reminder ----
- Implementation of Mitigation Measure FISH-9.1 would provide tidal habitat restoration mitigation. Tidal habitat restoration would expand the diversity, quantity, and quality of longfin smelt rearing and refuge habitat consistent with recent tidal habitat mitigation required for outflow impacts to the species. The mitigation requirement for each alternative varies between 11 and 15 acres.

Updated Schedule

John Spranza

Permitting Schedule Milestones

• NEPA / CEQA

- 60-day Public Review Period
- CEQA Revised EIR release November 5, 2021
- NEPA Subsequential EIS release November 12, 2021
- Comment Period ends January 11, 2022
 - Analyses related to today's agenda are in Chapter 11 of the REIR/SEIS
- CDFW ITP
 - Submit construction in Dec 2021 and operations Mar 2022
- Revised Biological Assessment
 - Submittal to Reclamation late February/early March
- Water Right
 - Application complete in late January/early February

Open Topic Discussion

Thank you!

Fishery Group Discussion #4 Agenda

Our Core Values – Safety, Trust and Integrity, Respect for Local Communities, Environmental Stewardship, Shared Responsibility and Shared Benefits, Accountability and Transparency, Proactive Innovation, Diversity and Inclusivity Our Commitment – To live up to these values in everything we do

Meeting Information:					
Date:	September 1, 2022	Location:	Microsoft Teams Or call in (audio only) (833) 255-2803,,335745359#		
Start Time:	12:00 p.m.	Finish Time:	1:00 p.m.		
Purpose:	Overview and discussion of the changes to the diversion criteria and fisheries analysis since the release of the 2021 Revised Draft EIR/Supplemental Draft EIS				
Meeting Invite	ees:				
Sites Project staff, key consultants and interested NGO and community members Agenda:					
Discussion Top	Discussion Topic Leader Time Allotted				
1. Meeti	ng Norms		John Spranza	5 mins	
2. Updat	ed Diversion Criteria		John Spranza	15 min	
3. Updat	ed Exchanges		Steve Micko	10 min	
4. Updat	ed Modeling		Steve Micko	15 mins	
5. Open	Topics		Group	15 min	
6. Adjou	rn				

Sites Project Fishery Group Discussion No. 4

September 1, 2022

Draft - Predecisional Working Document - For Discussion Purposes Only

Agenda

- Group Norms
- Diversion Criteria Update
- Exchanges Update
- Modeling Update
- Schedule
- Open Topics
- Adjourn

Group Norms

- Encourage everyone to be on video
- Mute yourself when others are speaking
- Respectful, professional dialogue
- Ask questions throughout, lets have a dialogue
 - Let the speaker finish their point
 - Use the raise your hand function in Teams if needed

Diversion Criteria

John Spranza

Project Water Operations

Draft - Predecisional Working Document - For Discussion Purposes Only

Alternatives Considered in the Revised Draft EIR/Supplemental Draft EIS

Facilities / Operations	Alternative 1	Alternative 2	Alternative 3	
Reservoir Size	1.5 MAF	1.3 MAF	1.5 MAF	
Hydropower	Incidental upon release	Same as Alt 1	Same as Alt 1	
Diversion Locations	Red Bluff Pumping Plant and Hamilton City	Same as Alt 1	Same as Alt 1	
Conveyance Release / Dunnigan Release	1,000 cubic feet per second (cfs) into new Dunnigan Pipeline to Colusa Basin Drain	1,000 cfs into new Dunnigan Pipeline to Sacramento River. Partial release into the Colusa Basin Drain	Same as Alt 1	
Reclamation Involvement	 Funding Partner Operational Exchanges Within Year Exchanges Real-time Exchanges 	Operational Exchanges a. Within Year Exchanges b. Real-time Exchanges	Same as Alt 1, but up to 25% investment	
DWR Involvement	Operational Exchanges with Oroville and storage in SWP facilities South-of-Delta	Same as Alt 1	Same as Alt 1	
Route to West Side of Reservoir	Bridge across reservoir	Paved road around southern end of reservoir	Same as Alt 1	

Sites Diversion Criteria Evolution

	2017 Draft EIR/EIS	2021 RDEIR/SDEIS	2022 Final EIR/EIS		
Bend Bridge Pulse Protection	Protection of all qualified precipitation-generated pulse events (i.e., peaks in river flow rather than scheduled operational events) from October to May based on the detection of fish presence and migration during the beginning of the flow event. For each event where fish presence and migration is detected, diversions would cease for 7 days	Same as 2017 DEIR/EIS	Similar except the following: (1) a qualified precipitation-generated pulse event is determined based on forecasted flows and (2) pulse protection may cease earlier than 7 days if flows at Bend Bridge exceed 29,000 cfs and Project diversions subtracted from Bend Bridge flows continue to be at least 25,000 cfs.		
Minimum Bypass Flows at Wilkins Slough	Diversions allowed when flows below Wilkins Slough are above 5,000 cfs	10,700 cfs in March through May; 5,000 cfs all other times as mitigation measure	5,000 cfs September. Moved to		
Minimum Bypass Flows in the Sacramento River	3,250 at RBDD and 4,000 cfs at Hamilton City; rate of diversion controlled by fish screen designs	No change	No change		

Sites Diversion Criteria Evolution

	2017 Draft EIR/EIS	2021 RDEIR/SDEIS	2022 Final EIR/SEIR	
Fremont Weir Notch Protections	No specific criteria	No more than 1% reduction in flow over weir when spill over the weir are less than 600 cfs. No more than a 10% reduction in flow over weir when spills over the weir are between 600 cfs and 6,000 cfs.	Sacramento River at Wilkins Slough and Bend Bridge Pulse Protection provide protections	
Sacramento River Fully Appropriated Stream and Delta Conditions	No specific criteria	Diversions allowed only when the Sacramento River is not fully appropriated (September 1 through June 14) and when Delta is in excess conditions as determined by DWR	No change	
Freeport, Net Delta Outflow Index, X2, and Delta Water Quality	Diversions only be allowed when a Sacramento River flow of 15,000 cfs is present at Freeport in January; 13,000 cfs in December and February through June; and 11,000 cfs in other months.	Operations consistent with all applicable laws, regulations, biological opinions and incidental take permits, and court orders in place at the time that diversion occurs	No change	

Draft - Predecisional Working Document - For Discussion Purposes Only

Exchanges

Steve Micko

Operations Overview

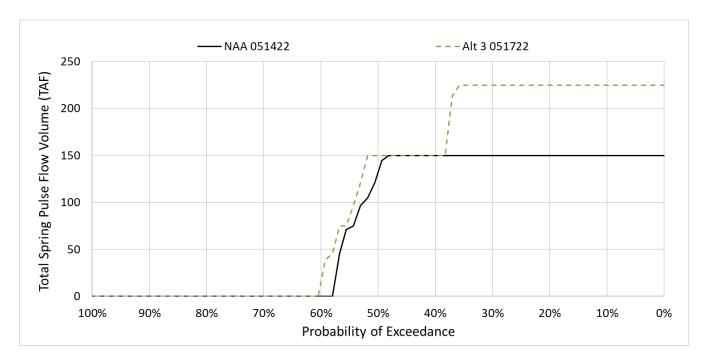
- Diversions
 - Red Bluff Pumping Plant
 - Hamilton City Pump Station
- Releases
 - TC Canal
 - GCID Canal
 - North Delta (Yolo Bypass)
 - South of Delta
- Exchanges
 - Reclamation
 - DWR
- Exports through the Delta

Shasta Exchanges

- Previous Modeling Focus:
 - Sites-Shasta exchanges focused on improving Shasta cold water pool management and incidentally improved Fall Flow Stability
- Revised Modeling Focus:
 - Shasta exchanges support Shasta cold water pool management, Fall Flow Stability and Spring Pulse Flow actions

Shasta Exchanges – Cold Water Pool Modeling Criteria

Criteria	RDEIR/SDEIS	Final EIR/EIS	
Period	Dry: Apr – Jun Critical: Apr – May	Dry: Apr – Jun Critical: Apr – Jun	
Water year types	Dry and Critical water years	Dry and Critical water years	
Temperature Management Tier	Tier 2, 3 and 4 years	Tier 3 and 4 years	
Min. flow at Sacramento River at Keswick	Apr – May: 6,000 cfs Jun: 10,000 cfs	No criteria	
Temperature Criteria	Apr – Jun: Tiers 2 and 3: 53.5 deg F Tier 4: 56 deg F	No criteria	
Sacramento Valley Conditions	Only occurs during Balanced conditions	Only occurs during Balanced conditions	


Shasta Exchanges – Fall Flow Stability Modeling Criteria

- Additional Fall Flow Stability may occur:
 - Between October through February
 - Sites storage is greater than 80% at the end of May
 - Previous month Shasta storage is greater than 3.2 MAF
 - Fall stability flows are already active

Shasta Exchanges – Spring Pulse Modeling Criteria

- Additional Spring Pulse may occur in May:
 - Sites storage is greater than 80% at the end of April
 - End of April Shasta storage is greater than 4.1 MAF

Modeling Update

Steve Micko

Modeling Update – Diversions and Releases

Parameter	Version	Alt 1 A		Alt 1B		Alt 2		Alt 3	
		Avg	D & C	Avg	D & C	Avg	D & C	Avg	D & C
Fills (TAF)	RDEIR/ SDEIS	240	101	255	104	229	99	279	105
	FEIR/EIS	236	98	246	96	229	98	276	103
Releases (TAF)	RDEIR/ SDEIS	217	402	234	404	209	374	260	383
	FEIR/EIS	208	361	221	372	205	345	256	369

D&C = Dry and critical years

Modeling Update – Change in End of September Storage

Change in Version		Alt 1 A		Alt 1B		Alt 2		Alt 3	
End of Sept Storage (TAF)		Avg	D & C	Avg	D & C	Avg	D & C	Avg	D & C
Shasta	RDEIR/ SDEIS	12	23	28	39	10	18	73	107
	FEIR/EIS	20	26	36	51	21	27	102	135
Oroville	RDEIR/ SDEIS	13	24	12	21	12	19	13	15
	FEIR/EIS	14	34	12	37	13	31	11	30
Folsom	RDEIR/ SDEIS	3	5	9	12	5	9	24	21
	FEIR/EIS	1	1	2	3	1	3	11	4

D&C = Dry and critical years

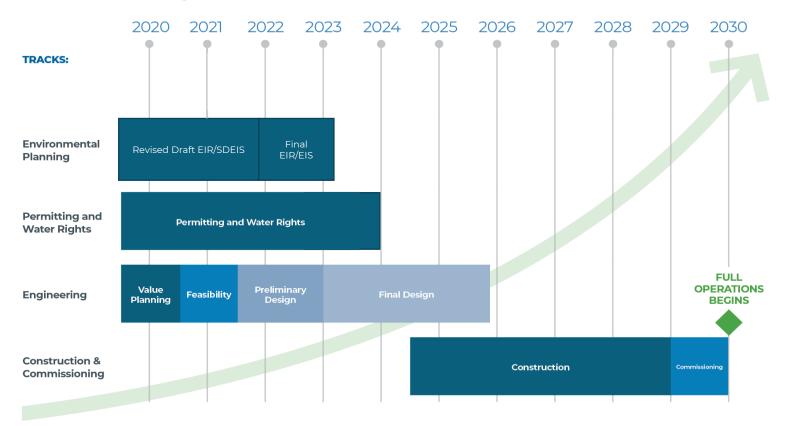
Draft - Predecisional Working Document - For Discussion Purposes Only

Modeling Update – NMFS Lifecycle Model

- Requests to run Winter-run Lifecycle Model
 - NMFS
 - RDEIR/SDEIS comments
 - Biological Opinion analysis
 - CDFW
 - RDEIR/SDEIS comments
 - Operations ITP analysis
 - USEPA
 - RDEIR/SDEIS comments

Winter-run Lifecycle Model

- Evaluates the effects of water operations on the population dynamics of Sacramento River winter-run Chinook salmon
 - Integrate effects across entire life-cycle and multiple environmental conditions
 - Sacramento River focused
- Will inform the Authority's state and federal ESA permits
 - Initial results expected in late September
- Includes the lifecycle model and a series of sub-models


Schedule

John Spranza

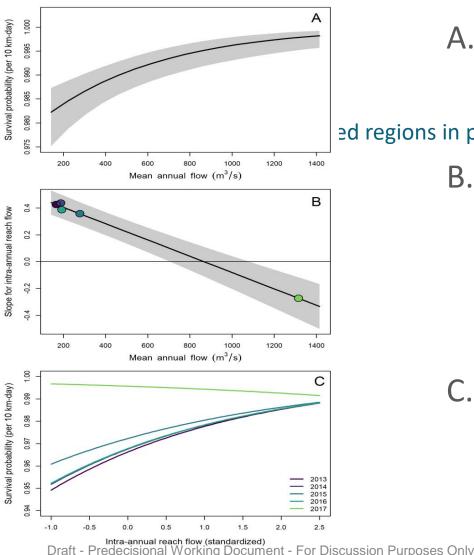
Project Schedule

Sites Reservoir Project Schedule

Permitting Schedule

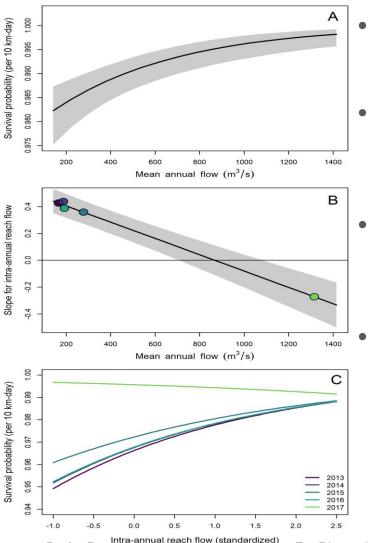
- State ESA Incidental Take Permit (ITP) Construction
 - Application submitted Jan 2022
- State ESA Incidental Take Permit (ITP) Operations
 - Application complete Q3 2022
- Biological Assessment
 - Expected to be submitted to agencies in October or November
- Water Right
 - Submitted Application in May 2022, accepted August 26
- Final EIR/EIS
 - February 2023

Open Topics and Agenda for Next Meeting



Thank you!

Riverscape Level – Hassrick et al. (2021)



A. Survival as a function of mean annual flow

ed regions in panels A and B show 95% confidence intervals

- B. Slope coefficient for intraannual reach flow as a function of mean annual flow.
- C. Combined mean annual flow and intra-annual reach flow on predicted survival

Riverscape Level – Hassrick et al. (2021)

- Figure 8b describes how the slope of the intra-annual reach flow-survival relationship changes with mean annual flow.
- This relationship can be used by managers to determine at a given level of annual flow, whether a flow pulse is likely to produce a measurable effect on survival.
- For example, when flow is less than about 700 m3 s-1, given the confidence interval, pulse flows will have a high probability of having a positive effect on survival.
- The relationship also indicates what the magnitude of the effect may be. For example, when mean annual flow is 600 m3 s-1, a pulse flow is going to have half the effect of a pulse event when mean annual flow is 200 m3 s-1.

Shaded regions show 95% confidence intervals

Intra-annual reach flow (standardized) Draft - Predecisional Working Document - For Discussion Purposes Only

Diversion Criteria Update – Wilkins Slough

- Continuing discussions with CDFW and aquatics team identified further refinement
 - Wilkins Slough Bypass Flows = 10,700 cfs Oct-June; 5,000 cfs September
- Provides increased protection for anadromous species, Delta outflow and water quality
- Criteria have not yet been "approved" by the Authority Board
 - Board will consider the diversion criteria when permit applications are brought before them in March
 - Want to see and consider comments on RDEIR/SDEIS before "approving"

Diversion Criteria Update – Fremont Weir

- Greater bypass flows and pulse protection contribute to minimal effects on the Big Notch goals
 - Sites' modeling
 - TUFLOW modeling from DWR/CDFW
- Further analysis will refine the understanding of the Project's interaction with Notch Project and weir
 - Updated CalSim
 - Revised TUFLOW

Diversion Criteria Update – Pulse Protect

The following criteria, together, define a qualified pulse event:

- An outmigration pulse of anadromous fish is detected based on the Project's fish monitoring program ; and
- If a 3-day forecasted average of Sacramento River flow at Bend Bridge is projected to exceed 8,000 cfs and the 3-day forecasted average combined tributary flow upstream of Bend Bridge (Cow Creek, Cottonwood Creek, and Battle Creek) is projected to exceed 2,500 cfs, then a pulse protection event is initiated and diversion restrictions would begin when the average hourly flows in the Sacramento River at Bend Bridge exceeds 8,000 cfs and the average hourly flows in the tributaries upstream of Bend Bridge (Cow Creek, Cottonwood Creek, and Battle Creek) cumulatively exceed 2,500 cfs, provided that the previous day was not already in a pulse protection event.

A pulse event terminates on either of the following:

- 7 days after initiation; or
- Earlier than 7 days after initiation if the average daily Sacramento River flow at Bend Bridge exceeds 29,000 cfs. In the event that Sacramento River flow at Bend Bridge exceeds 29,000 cfs during the 7-day pulse protection event, Project diversions may resume in such way that average daily diversions subtracted from Sacramento River flow at Bend Bridge continues to be at least 25,000 cfs during what would have been the 7-day pulse protection period.

After completion of a pulse protection event, the following conditions must occur before another pulse protection event is triggered: (1) 3-day trailing average of Sacramento River flow at Bend Bridge was less than 7,500 cfs for 7 consecutive days; and (2) 3-day trailing average of tributary flow upstream of Bend Bridge (Cow Creek, Cottonwood Creek, and Battle Creek) was less than 2,500 cfs for 7 consecutive days.

Diversions are otherwise unrestricted by the Bend Bridge Pulse Flow protection criteria

Draft - Predecisional Working Document - For Discussion Purposes Only

Proposed Revised Diversion Criteria

Criteria	Purpose	Description
Bend Bridge Pulse Protection	Survival of emigrating juvenile salmon	 Each pulse protected "Reset" to differentiate between pulses A focus point for Adaptive Management
Wilkins Slough Bypass Flow	Facilitate salmonid smolt outmigration	 10,700 cfs in Oct – June 5,000 cfs September
Fremont Weir Notch Criteria	Protect Notch project objectives	 No specific criteria. Protected through higher Wilkins Slough Bypass Flows and Pulse Protection A focus point for Adaptive Management considering what is learned through Big Notch Project

No changes to other criteria