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Appendix 11F Smelt Analysis 

11F.1 Introduction 

This appendix describes quantitative methods and supplementary results used in the impact 
analyses of delta smelt and longfin smelt: the Eurytemora affinis–X2 analysis for smelt prey, 
upstream sediment entrainment, the Sacramento–San Joaquin Delta (Delta) outflow–longfin 
smelt abundance analysis, the Delta outflow–longfin smelt abundance analysis (based on 
Nobriga and Rosenfield 2016), the X2–longfin smelt abundance index analysis, and tidal habitat 
restoration mitigation calculations for longfin smelt. 

11F.2 Eurytemora affinis–X2 Analysis 

This analysis followed Kimmerer’s (2002) methods to conduct an analysis of the relationship 
between the smelt zooplankton prey Eurytemora affinis and spring (March–May) X2 for the 
period from 1980 to 2017, as described by Greenwood (2018). The main steps in preparing the 
data for analysis were as follows: 

1. Historical zooplankton data were obtained from California Department of Fish and 
Wildlife (2018). 

 Data were subset to only include surveys 3, 4, and 5 (March–May). 
 Specific conductance was converted to salinity by applying Schemel’s (2001) 

method, then only samples within the low salinity zone (salinity = 0.5–6) were 
selected. 

 A constant of 10 was added to E. affinis adult catch per unit effort (number per cubic 
meter) in each sample, then the resulting value was log10-transformed. 

 The log10-transformed values were averaged first by month, and then by year. 

2. Historical X2 data were obtained from DAYFLOW 
(https://www.water.ca.gov/Programs/Environmental-Services/Compliance-Monitoring-
And-Assessment/Dayflow-Data). 

 For years prior to water year 1997 (which is the year DAYFLOW X2 values began to 
be provided), the DAYFLOW daily predictive equation for X2 was used, based on a 
starting value from Anke Mueller-Solger (see Greenwood 2018 for details). 

 The mean March–May X2 was calculated for each year. 

Similar to Kimmerer (2002), a generalized linear model (GLM) was used to regress mean annual 
log10-transformed E. affinis catch per unit effort against mean March–May X2, including a step 
change between 1987 and 1988 to reflect the Potamocorbula amurensis clam invasion and a step 
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change between 2002 and 2003 to reflect the onset of the Pelagic Organism Decline (POD; 
Thomson et al. 2010). The interaction of X2 and the step change was included in a full model, 
but the interaction was not statistically significant, so the model was rerun with only X2 and the 
step changes included. These analyses were conducted in SAS 9.4 software.1 The statistical 
outputs indicate that there is little difference in the regression coefficients for the post-
Potamocorbula and POD step changes, whereas both regression coefficients were significantly 
less than the coefficient for the pre-Potamocorbula period. Regression coefficients from the 
model were stored for prediction of E. affinis relative abundance for the No Action Alternative 
(NAA)2 and Alternative 1–3 scenarios. 

The stored regression coefficients from the regression of historical E. affinis catch per unit effort 
vs. X2 and step changes were then applied to the NAA and Alternative 1–3 scenarios using 
PROC PLM in SAS 9.4 software. The basic regression model being applied was: 

where 3.9404 is the intercept and -0.7863 is the coefficient for the POD step change (the POD 
step change being chosen because it represents the most recent time period). Predictions were 
back-transformed to the original measurement scale (catch per unit effort, number per cubic 
meter) for summary of results. X2 inputs for the analysis came from the DSM2 modeling of 
water years 1922–2003 for the NAA and Alternative 1–3 scenarios. 

Results of the analysis are summarized in the main body of Chapter 11, Aquatic Biological 
Resources. Tables 11F-1 through 11F-5 provide supplemental information also discussed in the 
main body of Chapter 11. 

Table 11F-1. Eurytemora affinis–X2 Analysis: Mean and 95% Prediction Limits, NAA 

Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1922 176 25 967 
1923 125 16 695 
1924 68 5 410 
1925 145 20 797 
1926 127 16 706 
1927 192 28 1,061 
1928 159 22 878 
1929 75 6 441 

 
1 Copyright 2002–2012, SAS Institute Inc. SAS and all other SAS Institute Inc. product or service names are 
registered trademarks or trademarks of SAS Institute Inc., Cary, NC, USA 

2 The term NAA, which is identical to the No Project Alternative, is used throughout Chapter 11, Aquatic Biological 
Resources, and associated aquatic resources appendices in the presentation of modeled results and represents no 
material difference from the No Project Alternative, as discussed in Chapter 3, Environmental Analysis. 

log10(E. affinis catch per unit effort) = 3.9404 – 0.0152 (mean March–May X2) – 0.7863 

Author
CDFW finds it difficult to compare across Project alternatives with these extremely lengthy tables and recommends displaying these data in a figure so that direct comparisons can be made among Project alternatives on a year-by-year basis. 

Suggested figure: display E. affinis CPUE on the y-axis and Year on the x-axis. Confidence intervals can be shown as bands. If the confidence bands overlap and make the figure cumbersome to see, display the five time series (NAA and 4 Project alternatives) in separate panels, with a sixth panel showing all five trends without confidence bands, so the differences can be readily seen.
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1930 115 14 644 
1931 64 4 389 
1932 99 11 563 
1933 79 7 460 
1934 83 8 483 
1935 163 23 900 
1936 158 22 868 
1937 171 24 940 
1938 205 30 1,134 
1939 77 6 453 
1940 184 27 1,012 
1941 204 30 1,132 
1942 189 28 1,041 
1943 175 25 966 
1944 105 12 589 
1945 134 18 739 
1946 116 14 646 
1947 100 11 566 
1948 132 17 731 
1949 132 17 730 
1950 133 17 735 
1951 146 20 802 
1952 205 30 1,134 
1953 138 18 760 
1954 173 25 955 
1955 77 6 452 
1956 183 27 1,011 
1957 151 21 834 
1958 205 30 1,133 
1959 99 11 562 
1960 108 13 605 
1961 100 11 565 
1962 124 16 691 
1963 184 27 1,013 
1964 74 6 437 
1965 162 23 893 
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1966 122 15 676 
1967 205 30 1,133 
1968 118 15 660 
1969 205 30 1,134 
1970 132 17 728 
1971 174 25 957 
1972 121 15 672 
1973 160 22 882 
1974 188 27 1,037 
1975 183 27 1,011 
1976 70 5 417 
1977 61 3 377 
1978 189 28 1,041 
1979 149 20 821 
1980 162 23 893 
1981 115 14 644 
1982 204 30 1,128 
1983 205 30 1,134 
1984 146 20 807 
1985 95 10 538 
1986 164 23 905 
1987 101 11 573 
1988 74 6 439 
1989 143 19 791 
1990 72 5 427 
1991 104 12 587 
1992 101 11 573 
1993 197 29 1,090 
1994 75 6 442 
1995 205 30 1,134 
1996 205 30 1,134 
1997 136 18 754 
1998 205 30 1,134 
1999 175 25 963 
2000 165 23 908 
2001 111 13 620 



 Smelt Analysis 
 

 

Sites Reservoir Project Final EIR/EIS 11F-5 
 2023 

 

Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

2002 116 14 646 
2003 163 23 897 

Table 11F-2. Eurytemora affinis–X2 Analysis: Mean and 95% Prediction Limits, Alternative 
1A 

Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1922 175 25 965 
1923 125 16 695 
1924 69 5 412 
1925 145 20 799 
1926 127 16 705 
1927 191 28 1,053 
1928 159 22 877 
1929 75 6 441 
1930 114 14 638 
1931 64 4 389 
1932 99 11 563 
1933 79 7 460 
1934 83 8 480 
1935 162 23 891 
1936 158 22 868 
1937 170 24 935 
1938 205 30 1,134 
1939 77 6 452 
1940 183 27 1,011 
1941 204 30 1,132 
1942 189 28 1,041 
1943 175 25 966 
1944 105 12 589 
1945 134 18 739 
1946 116 14 646 
1947 100 11 566 
1948 132 17 732 
1949 130 17 721 
1950 133 17 734 
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1951 145 20 801 
1952 205 30 1,134 
1953 138 18 760 
1954 173 25 955 
1955 77 6 452 
1956 182 26 1,005 
1957 149 20 823 
1958 205 30 1,133 
1959 99 11 562 
1960 107 12 601 
1961 99 11 562 
1962 123 16 685 
1963 183 27 1,010 
1964 74 6 437 
1965 161 23 889 
1966 122 15 676 
1967 205 30 1,133 
1968 118 15 659 
1969 205 30 1,134 
1970 131 17 724 
1971 174 25 957 
1972 118 15 659 
1973 160 22 882 
1974 188 27 1,037 
1975 183 27 1,011 
1976 70 5 417 
1977 61 3 376 
1978 191 28 1,057 
1979 148 20 817 
1980 162 23 893 
1981 114 14 635 
1982 204 30 1,128 
1983 205 30 1,134 
1984 147 20 808 
1985 94 10 538 
1986 164 23 904 
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1987 100 11 566 
1988 74 6 438 
1989 142 19 784 
1990 72 5 427 
1991 102 11 576 
1992 101 11 571 
1993 197 29 1,087 
1994 74 6 440 
1995 205 30 1,134 
1996 205 30 1,134 
1997 136 18 754 
1998 205 30 1,134 
1999 175 25 963 
2000 165 23 908 
2001 109 13 612 
2002 116 14 645 
2003 162 23 891 

 

Table 11F-3. Eurytemora affinis–X2 Analysis: Mean and 95% Prediction Limits, Alternative 
1B 

Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1922 175 25 965 
1923 126 16 697 
1924 69 5 412 
1925 144 20 797 
1926 127 16 706 
1927 191 28 1,053 
1928 159 22 877 
1929 75 6 441 
1930 114 14 638 
1931 64 4 389 
1932 99 11 563 
1933 79 7 460 
1934 83 8 480 
1935 162 23 891 
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1936 158 22 868 
1937 170 24 935 
1938 205 30 1,134 
1939 76 6 448 
1940 183 27 1,011 
1941 204 30 1,132 
1942 189 28 1,041 
1943 175 25 966 
1944 105 12 589 
1945 134 18 739 
1946 116 14 646 
1947 100 11 566 
1948 132 17 733 
1949 130 17 721 
1950 133 17 734 
1951 145 20 801 
1952 205 30 1,134 
1953 138 18 760 
1954 173 25 955 
1955 77 6 452 
1956 182 26 1,006 
1957 150 21 824 
1958 205 30 1,133 
1959 99 11 562 
1960 107 12 602 
1961 99 11 563 
1962 123 16 685 
1963 183 27 1,010 
1964 74 6 437 
1965 163 23 895 
1966 121 15 674 
1967 205 30 1,133 
1968 118 15 659 
1969 205 30 1,134 
1970 133 17 735 
1971 173 25 955 
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1972 118 15 659 
1973 160 22 882 
1974 188 27 1,037 
1975 183 27 1,011 
1976 70 5 417 
1977 61 3 376 
1978 191 28 1,057 
1979 148 20 817 
1980 162 23 893 
1981 114 14 636 
1982 204 30 1,130 
1983 205 30 1,134 
1984 148 20 817 
1985 94 10 536 
1986 164 23 904 
1987 100 11 566 
1988 74 6 438 
1989 142 19 785 
1990 72 5 427 
1991 102 11 575 
1992 101 11 570 
1993 197 29 1,088 
1994 74 6 440 
1995 205 30 1,134 
1996 205 30 1,134 
1997 135 18 747 
1998 205 30 1,134 
1999 175 25 963 
2000 165 23 908 
2001 109 13 612 
2002 115 14 642 
2003 162 23 891 
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Table 11F-4. Eurytemora affinis–X2 Analysis: Mean and 95% Prediction Limits, Alternative 
2 

Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1922 175 25 965 
1923 125 16 695 
1924 69 5 412 
1925 145 20 799 
1926 127 16 705 
1927 191 28 1,053 
1928 159 22 877 
1929 75 6 441 
1930 114 14 638 
1931 64 4 389 
1932 99 11 563 
1933 79 7 460 
1934 82 7 479 
1935 162 23 891 
1936 158 22 868 
1937 170 24 935 
1938 205 30 1,134 
1939 77 6 452 
1940 183 27 1,011 
1941 204 30 1,132 
1942 189 28 1,041 
1943 175 25 966 
1944 105 12 589 
1945 134 18 739 
1946 116 14 646 
1947 100 11 566 
1948 132 17 732 
1949 130 17 721 
1950 133 17 734 
1951 145 20 801 
1952 205 30 1,134 
1953 138 18 760 
1954 173 25 955 
1955 77 6 452 
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1956 182 26 1,005 
1957 149 21 824 
1958 205 30 1,133 
1959 99 11 562 
1960 107 12 601 
1961 99 11 562 
1962 123 16 685 
1963 183 27 1,010 
1964 74 6 437 
1965 161 23 889 
1966 122 15 676 
1967 205 30 1,133 
1968 118 15 659 
1969 205 30 1,134 
1970 131 17 724 
1971 174 25 957 
1972 118 15 659 
1973 160 22 882 
1974 188 27 1,037 
1975 183 27 1,011 
1976 70 5 417 
1977 61 3 376 
1978 191 28 1,056 
1979 148 20 817 
1980 162 23 893 
1981 114 14 635 
1982 204 30 1,128 
1983 205 30 1,134 
1984 147 20 808 
1985 94 10 538 
1986 164 23 904 
1987 100 11 566 
1988 74 6 438 
1989 142 19 785 
1990 72 5 427 
1991 102 11 577 
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1992 101 11 571 
1993 197 29 1,087 
1994 74 6 440 
1995 205 30 1,134 
1996 205 30 1,134 
1997 136 18 754 
1998 205 30 1,134 
1999 175 25 963 
2000 165 23 908 
2001 109 13 612 
2002 116 14 645 
2003 162 23 891 

 

Table 11F-5. Eurytemora affinis–X2 Analysis: Mean and 95% Prediction Limits, Alternative 
3 

Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1922 176 25 967 
1923 125 16 695 
1924 69 5 412 
1925 145 20 799 
1926 127 16 706 
1927 191 28 1,053 
1928 161 23 889 
1929 75 6 441 
1930 114 14 638 
1931 64 4 389 
1932 99 11 562 
1933 78 7 460 
1934 83 8 481 
1935 162 23 891 
1936 158 22 868 
1937 170 24 935 
1938 205 30 1,134 
1939 76 6 448 
1940 183 27 1,011 
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1941 204 30 1,132 
1942 189 28 1,041 
1943 175 25 966 
1944 105 12 589 
1945 134 18 739 
1946 116 14 646 
1947 100 11 566 
1948 132 17 729 
1949 129 17 716 
1950 133 17 735 
1951 145 20 798 
1952 205 30 1,134 
1953 138 18 760 
1954 173 25 955 
1955 77 6 453 
1956 183 27 1,009 
1957 148 20 817 
1958 205 30 1,133 
1959 99 11 562 
1960 108 13 608 
1961 99 11 562 
1962 124 16 686 
1963 183 27 1,010 
1964 74 6 437 
1965 161 23 889 
1966 118 14 655 
1967 205 30 1,133 
1968 118 15 659 
1969 205 30 1,134 
1970 131 17 724 
1971 173 25 955 
1972 118 15 659 
1973 160 22 882 
1974 188 27 1,037 
1975 183 27 1,011 
1976 70 5 417 
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1977 61 3 378 
1978 189 28 1,044 
1979 148 20 817 
1980 162 23 893 
1981 114 14 638 
1982 204 30 1,130 
1983 205 30 1,134 
1984 148 20 817 
1985 94 10 536 
1986 164 23 904 
1987 100 11 565 
1988 74 6 438 
1989 143 19 786 
1990 72 5 427 
1991 102 11 575 
1992 101 11 570 
1993 197 29 1,089 
1994 75 6 441 
1995 205 30 1,134 
1996 205 30 1,134 
1997 135 18 745 
1998 205 30 1,134 
1999 175 25 963 
2000 165 23 908 
2001 109 13 612 
2002 116 14 646 
2003 162 23 891 

11F.3 Upstream Sediment Entrainment 
Estimates of the percentage of suspended sediment in the Sacramento River that could be entrained by the 
Project intakes at Red Bluff and Hamilton City were made using previously developed rating curves 
(Huang and Greimann 2011) and USRDOM daily flow data for upstream and downstream at each intake. 

Daily suspended sediment concentration (milligrams per liter) in the Sacramento River immediately 
upstream of the Red Bluff and Hamilton City intakes was estimated from daily mean river flow (cubic 
feet per second [cfs]) with the following equations: 
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• Red Bluff (USRDOM flow output for Sacramento River flow upstream of Tehama-Colusa Canal, 
176-ABVRBDIVDA): 

o Flow < 10,000 cfs: Concentration = 0.0000368*Flow1.5 

o Flow 10,000–20,000 cfs: Concentration = 2.32E-10*Flow2.8 

o Flow > 20,000 cfs: Concentration = 0.34*Flow0.67 

• Hamilton City (USRDOM flow output for Sacramento River flow upstream of Glenn-Colusa 
Irrigation District Main Canal, 155-BLW-WOODSO): 

o Flow < 10,000 cfs: Concentration = 8E-11*Flow3 

o Flow ≥ 10,000 cfs: Concentration = 0.0002*Flow1.4 

For all scenarios, suspended sediment concentration at each intake was calculated based on the NAA 
scenario, to avoid estimating differing suspended sediment concentration because of differences in 
operations (e.g., reservoir releases, Project diversions). The daily suspended sediment load approaching 
each intake was calculated as the suspended sediment concentration (from equations above, converted to 
grams per cubic foot by multiplying by 28.316836) multiplied by the river flow from the USRDOM 
output locations shown above, multiplied by the number of seconds per day (i.e., 86,400). 

The daily amount of suspended sediment load entrained by the intakes was calculated using the above 
procedure, but instead of river flow being used to estimated suspended sediment load, the diverted water 
flow was represented as the difference in flow between upstream and downstream of each intake (in this 
case specific to each scenario, reflecting differences in diversions), where the downstream flow was from 
the following USRDOM outputs: 

• Red Bluff: Sacramento River flow downstream of Tehama-Colusa Canal (175-RDBLFDIVDA) 

• Hamilton City: Sacramento River flow downstream of Glenn-Colusa Irrigation District Main 
Canal (150-GCC-DIV) 

The results of the analysis showed the potential for greater sediment entrainment at the Red Bluff and 
Hamilton City intakes under Alternatives 1, 2, and 3 than the NAA (Tables 11F-6 and 11F-7). Because 
the greatest suspended sediment load occurs in wetter years, the overall total for the full simulation period 
(i.e., 1922–2003) was similar to values in wet years. Across all years, at Red Bluff 2.6%–2.7% of 
suspended sediment was estimated to be entrained under Alternatives 1, 2, and 3 compared to 1.2% under 
the NAA (Table 11F-6), whereas at Hamilton City 2.1% of suspended sediment was estimated to be 
entrained under Alternatives 1, 2, and 3 compared to 1.8% under the NAA (Table 11F-7). 
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Table 11F-6. Mean Percentage of Suspended Sediment Entrained by Water Year Type and 
Total Percentage Entrained Over Full 82-Year Simulation Period, Red Bluff Intake 

Water Year Type NAA Alt 1A Alt 1B Alt 2 Alt 3 
Wet 1.1% 2.2% 2.3% 2.1% 2.4% 

Above Normal 1.8% 3.9% 3.7% 3.9% 3.5% 
Below Normal 2.8% 5.1% 4.9% 5.1% 4.7% 

Dry 2.7% 4.8% 4.5% 4.8% 4.2% 
Critically Dry 1.2% 2.0% 2.0% 2.0% 2.0% 

Total 1.2% 2.7% 2.6% 2.6% 2.7% 
Note: Water year type values are the means of the annual percentage of suspended sediment load diverted. Total is the overall 
percentage of the sum of suspended sediment load diverted over the 82-year simulation period. 

Table 11F-7. Mean Percentage of Suspended Sediment Entrained by Water Year Type and 
Total Percentage Entrained Over Full 82-Year Simulation Period, Hamilton City Intake 

Water Year Type NAA Alt 1A Alt 1B Alt 2 Alt 3 
Wet 1.6% 2.0% 2.0% 1.9% 2.1% 

Above Normal 2.8% 3.3% 3.3% 3.3% 3.0% 
Below Normal 5.4% 6.0% 6.0% 6.0% 5.4% 

Dry 8.5% 8.2% 8.2% 8.3% 7.5% 
Critically Dry 12.9% 11.4% 11.2% 11.6% 11.3% 

Total 1.8% 2.1% 2.1% 2.1% 2.1% 
Note: Water year type values are the means of the annual percentage of suspended sediment load diverted. Total is the overall 
percentage of the sum of suspended sediment load diverted over the 82-year simulation period. 

11F.4 Delta Outflow–Longfin Smelt Abundance Index Analysis 

11F.4.1. Development of Statistical Relationship 
The potential effect of the Project on longfin smelt was investigated through development of a 
statistical model relating the longfin smelt fall midwater trawl (FMWT) abundance index to 
Delta outflow, the FMWT abundance index 2 years earlier (as a representation of parental stock 
size), and ecological regime (i.e., 1967–1987, pre-Potamocorbula amurensis invasion; 1988–
2002, post-P. amurensis invasion; and 2003–2020, POD; to represent major ecological 
changepoints in the Delta, e.g., Nobriga and Rosenfield 2016). Total Delta outflow (thousand 
acre-feet) was summed and examined for March through May and December through May, 
similar time periods to previous work by Mount et al. (2013:66–69) and Nobriga and Rosenfield 
(2016). 

Twelve log-linear regression models were considered in the analysis. The models were fit using 
a Bayesian approach implemented in the R statistical computing language (R Core Team 2021) 
via the brms package (Bürkner 2017) with model weights for averaging posterior predictive 
distributions calculated using the loo package (Vehtari et al. 2017): three Markov Chain Monte 
Carlo chains were run; flat priors were assumed; there was a 2,000-sample warm-up; 10,000 
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samples were retained from each chain (30,000 samples total from the posterior); and the R� 
<1.01 on estimated parameters indicated sampling converged on the posterior probability 
distributions for all models. 

Preliminary model comparison was performed using leave-one-out cross validation (LOO; 
Vehtari et al. 2017). Measures of model predictive accuracy using LOO are asymptotically equal 
to the widely applicable information criteria (WAIC; Watanabe 2010), but in the case of finite 
data LOO has been shown to be more robust to influential observations like outliers (Vehtari et 
al. 2017). The preliminary model comparisons indicated there was a relatively high degree of 
similarity in terms of predictive ability between the top scoring individual models. The extent of 
model overlap in predictive accuracy was measured by the differences (and the standard errors of 
the differences) in expected log pointwise predictive densities, i.e., the differences in out-of-
sample predictive accuracy between models. 

Therefore, rather than selecting a single model for inference, the posterior predictive probability 
distributions were combined as a weighted average across models. This process involved taking 
draws from the posterior of each single model in proportion to its model weight. For example, if 
a single model’s weight was 25% of the total model set, then 2,500 draws from its posterior were 
added to the averaged posterior predictive distribution, which again included 10,000 total draws 
across all models. The statistical approach used to calculate the model weights for averaging the 
posterior predictive distributions across models is known as “stacking” (Yao et al. 2018). 

Compared to more traditional model averaging approaches, stacking differs in terms of how 
model weights are assigned. Instead of calculating model weights based on the relative predictive 
ability for each individual model—where the best model for prediction would be given the 
highest weight —the model weights estimated through stacking minimize the LOO mean 
squared error of the resulting averaged posterior predictive distribution across models. In other 
words, stacking was used to estimate the optimal linear combination of model weights (Yao et al. 
2018). 

Hence, the model with the largest stacking weight does not necessarily have the highest 
predictive score compared to other models in the set. For example, the models in this case can be 
divided into two subsets: one subset includes a covariate for Delta outflow during December–
May and the other model subset includes a covariate for March–May Delta outflow (Table 11F-
8). Comparing the predictive ability of each individual model using LOO resulted in a model 
with December–May outflow (the model with the third highest stacking weight in Table 11F-8) 
having the highest individual predictive accuracy of any single model considered. In contrast, 
stacking resulted in a model with March–May having the highest single model weight (36% of 
the total stacking weight). Nevertheless, because stacking optimizes the linear combination of 
model weights, the next three models (~64% of the stacking weight) all include December–May 
instead of March–May. Therefore, in this case, even though the model with highest stacking 
weight included March–May Delta outflow, the averaged posterior predictive distribution was 
ultimately weighted more heavily with models that include December–May Delta outflow 
compared to models with March–May Delta outflow. Of the 12 models considered, the top four 

Author
CDFW recommends writing all equations, here and elsewhere, using the MS Word equation editor.

Author
CDFW recommends summarizing these coefficients in a single table, with a single equation shown in the caption or below the table. 
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models by stacking weight accounted for 99.9% of the averaged posterior predictive distribution 
(Table 11F-8). 

Several additional models were also examined, in addition to those in Table 11F-8, but they were 
ultimately not included in this analysis due to poor model fits and what would have been 
additional computational cost without an expected difference in results. The additional models 
included a squared term on Delta outflow and their examination was motivated by the modeling 
results of Nobriga and Rosenfield (2016). Those authors assessed the relationship between Delta 
outflow and the ratio of age-0 to age-2 longfin smelt abundance in the two-life-stage versions of 
the models included in their analyses. They found support for non-linearity in this relationship 
(i.e., there was a peak in productivity at more intermediate outflow values), which led to the 
inclusion of a second-order polynomial regression (i.e., a squared term) on Delta outflow 
(Nobriga and Rosenfield 2016:50). Given the approach taken here, which differs from the 
Nobriga and Rosenfield analysis in terms of: (1) the survey data used for longfin smelt 
abundance; (2) how Delta outflow values were included as covariates; and (3) the overall time 
periods for available data included in the regression models, there was little to no support found 
for a second-order polynomial regression on Delta outflow. The aforementioned factors that 
differed between the two analyses are briefly described in the next paragraph for completeness; 
however, given the poor predictive ability of the second-order polynomial regressions under the 
current approach, that subset of models was ultimately not included because the preliminary 
results indicated the stacked model weights would be near zero. Hence the averaged posterior 
predictive distributions would not be expected to be sensitive to the exclusion of those models in 
this case, but their inclusion would have increased the computational time necessary to run and 
perform the averaging over a larger set of models. 

As outlined above, there are several differences between these analyses and those of Nobriga and 
Rosenfield (2016) that might explain the discrepancy in terms of support (or lack thereof) found 
for dome-shaped longfin smelt productivity as a function of Delta outflow. Firstly, Nobriga and 
Rosenfield (2016) found support for this relationship fitting models to catch data from the San 
Francisco Bay Study. In these analyses, on the other hand, the regression models have been fit to 
the FMWT index of abundance instead. Second, Nobriga and Rosenfield (2016) incorporated 
covariate values for Delta outflow based on a principal component analysis (the first principal 
component values) of the z-scored monthly means from December to May. Here, the monthly 
total outflow (either from December to May, or March to May) were summed, resulting in a total 
outflow value during each time period each year, and the regression covariate values were 
calculated as the z-scores of the period-total outflow values taken across years. Third, in addition 
to examining indices of abundance from different surveys, the annual time periods that have 
been examined also differ. Nobriga and Rosenfield (2016) examined the relationship between 
annual indices of longfin smelt abundance-at-age and Delta outflow that were available from the 
Bay Study during 1980–2013. Whereas in these analyses this relationship was examined over a 
longer period, during 1967–2020, which includes 20 additional years in the comparison with 
Delta outflow. 

Author
Averaging across all 82 years obscures seasonal trends and extreme values. While these percentages are small, CDFW recommends against averaging across years and instead showing data in a tabular or figure form that shows the times of year in which the majority of sediment entrainment occurs.
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Table 11F-8. The Optimal Linear Combination of Model Weights Based on Stacking, Which 
Minimizes the Mean Squared Error of the Leave-One-Out Cross Validation for the 
Resulting Model Averaged Posterior Predictive Distribution across the Twelve Log-Linear 
Regressions of Longfin Smelt Fall Midwater Trawl Abundance Index. Models are a 
Function of Delta Outflow (December–May or March–May), Ecological Regime (1967–
1987, pre-Potamocorbula amurensis invasion; 1988–2002, post-P. amurensis invasion; and 
2003–2020, Pelagic Organism Decline), and Abundance Index 2 Years Earlier (Log10 
FMWT(yr – 2)) 

Log10FMWT Linear Regression Model 1 
Stacking 
Weight 

Mar–May + Regime + Log10 FMWT(yr – 2) 0.3583 
Dec–May + Regime  0.3154 
Dec–May + Regime + Log10 FMWT(yr – 2) 0.1995 
Dec–May + Log10 FMWT(yr – 2) 0.1260 
Dec–May + Regime + Dec–May * Regime  0.0006 
Dec–May + Regime + Dec–May * Regime + Log10 FMWT(yr – 
2) <0.0001 
Mar–May + Regime + Mar–May * Regime + Log10 FMWT(yr – 
2) <0.0001 
Mar–May + Log10 FMWT(yr – 2) <0.0001 
Mar–May + Regime  <0.0001 
Mar–May + Regime + Mar–May * Regime  <0.0001 
Dec–May <0.0001 
Mar–May <0.0001 

1 An asterisk “*” sign represents an interaction term between regime and Delta outflow. 

 

 

Author
CDFW recommends assessing the relationship between outflow and Longfin smelt abundance using the approach described in the 2020 Smelt Effects Analysis for the State Water Project Effects on Longfin Smelt and Delta Smelt. This approach is a modification of the “Kimmerer regression,” including a post-clam invasion era within the dataset. CDFW is interested in the percentage change between the project Alternatives and the No Project Alternative. For more details, please see the Effects Analysis document and Appendix E of the 2020 Final EIR for the State Water Project. CDFW prefers this approach over those presented here (both in this section and the subsequent involving a Nobriga and Rosenfield model-based approach) because of the precedence of use in evaluating the effects of changes in outflow on Longfin smelt abundance. Additionally, CDFW recommends amending details in Chapter 11, Table 11-F to reflect all the analyses considered. 
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11F.4.2. Assessment of Project Alternatives 
Predictions of the FMWT abundance index under the alternative modeled CALSIM outflow 
scenarios (1922–2003) were generated using the model stacking approach described above to 
generate a weighted average Bayesian posterior predictive distribution across the set of models 
considered. Dropping subscripts denoting individual models for simplicity, the general form of 
the models can be written as: 

𝐿𝐿𝐿𝐿𝐿𝐿10[𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑦𝑦𝑦𝑦]~𝑁𝑁(𝜇𝜇𝑦𝑦𝑦𝑦,𝜎𝜎2)    (1) 

 

𝜇𝜇𝑦𝑦𝑦𝑦 = 𝛽𝛽0,𝑖𝑖 + 𝛽𝛽1𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑦𝑦𝑦𝑦,𝑗𝑗 + 𝛽𝛽2𝐿𝐿𝐿𝐿𝐿𝐿10�𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑦𝑦𝑦𝑦−2�+ 𝛽𝛽3𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 ∗ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑜𝑜𝑜𝑜𝑦𝑦𝑦𝑦,𝑗𝑗  (2) 

 

Where: 

𝐿𝐿𝐿𝐿𝐿𝐿10[𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑦𝑦𝑦𝑦] is the model predicted Log10 value of the FMWT index in water year yr; 

𝜇𝜇𝑦𝑦𝑦𝑦  is the expected FMWT index in water year yr (the stacked posterior predictive distribution 
for 𝜇𝜇𝑦𝑦𝑦𝑦  is shown as the dark gray ribbon in Figure 11F-1); 

𝜎𝜎2 is the residual variance parameter (the stacked posterior predictive distribution including the 
residual variance is shown as the light gray ribbon in Figure 11F-1); 

𝛽𝛽0,𝑖𝑖 represents the intercept parameter estimated for each regime: Pre-Potamocorbula (i = 1); 
Potamocorbula (i = 2); and POD (i = 3). For models without a regime covariate, a single 
intercept is estimated across all years instead, i.e., 𝛽𝛽0 is substituted for 𝛽𝛽0,𝑖𝑖; 

𝛽𝛽1 represents the slope parameter estimated for the relationship between the FMWT index and 
Delta outflow; 

Outflowyr,j is the normalized3 outflow level during water year yr, and j denotes the outflow level 
during either the December through May, or the March through May period; 

𝛽𝛽2 represents the slope parameter estimated for the relationship between the expected FMWT 
index and the value of that index 2 years prior. For models without the parental stock 
covariate, 𝛽𝛽2 = 0, and; 

𝛽𝛽3 represents the interaction covariate (the difference in slopes) with respect to the estimated 
effect of outflow on the FMWT index of abundance during different regimes. For models 
without this interaction term, 𝛽𝛽3 = 0. 

 
3 Normalized outflow values for each CALSIM scenario were calculated by subtracting the mean and dividing by 
the standard deviation of observed Delta outflow values (1967–2020). 
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Note: The circles represent the annual historical values of the fall midwater trawl abundance index. The solid lines connect the 
annual expected values from the stacked Bayesian posterior predictive distribution. Colors correspond to the three modeled 
regimes. The darker gray ribbon represents the averaged 95% probability interval for draws from the means (in log-space) of 
the posterior predictive distribution for the fall midwater trawl index value. The lighter gray ribbon with a dashed black outline 
represents the averaged 95% overall posterior predictive probability interval. The posterior predictive interval for the means 
has a smaller range than the overall posterior predictive interval because in addition to uncertainty in the estimated mean 
values, the overall posterior predictive distribution also incorporates uncertainty in the residual error of the model fits 
(Equations 1 and 2). 

Figure 11F-1. Stacked Posterior Predictive Distributions for the Log-Linear 
Regressions of Longfin Smelt Fall Midwater Trawl Abundance Index as a Function 
of Delta Outflow (December–May), Ecological Regime (1967–1987, pre-
Potamocorbula amurensis invasion; 1988–2002, post-Potamocorbula invasion 
[shown as Potamocorbula]; and 2003–2020, Pelagic Organism Decline), and 
Abundance Index 2 Years Earlier [Log10 FMWT(yr – 2)]) 
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For those models that included the Log10 FMWT(yr – 2) parental stock size covariate (Table 11F-
8), the starting parental stock size in 1922 and 1923 was set at a FMWT index value of 99.4, 
corresponding to the mean index value from 2011 through 2020. Given the starting values for the 
FMWT index (in the relevant models), the recursive nature of the regression formula was used to 
generate the expected FMWT index value in successive years from the posterior predictive 
distribution 2 years prior. For all models, predictions were conditional on the estimated 
relationship between the FMWT index and Delta outflow (in December–May, or March–May, 
depending on the model), and for those models that included a regime covariate, draws from the 
posterior predictive distributions were conditioned on estimates during the POD regime. 

As an example, starting in 1924, draws from the posterior predictive distribution for models 
including the parental stock size covariate were generated by first substituting the normalized 
1924 December through May (or March through May) CALSIM outflow value for each 
alternative. Draws from the posterior distributions for the regression parameters and the starting 
value for 𝐿𝐿𝐿𝐿𝐿𝐿10[𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1922] were then used to generate the posterior predictive distribution for 
the FMWT index in 1924 (𝜇𝜇1924). This value was then substituted into Equation 1, and the 
posterior distribution for the residual variance parameter was used to generate draws from the 
pointwise posterior predictive distributions for the FMWT index.4 This process was iterated over 
each successive year, substituting the derived 𝜇𝜇𝑦𝑦𝑦𝑦−2 values for 𝐿𝐿𝐿𝐿𝐿𝐿10[𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑦𝑦𝑦𝑦−2] to calculate 
𝜇𝜇𝑦𝑦𝑦𝑦, and to generate the annual posterior predictive distributions for the FMWT index under each 
alternative. For models that did not include the parental stock size covariate, the posterior 
predictive distributions were generated based on the corresponding CALSIM outflow values for 
the monthly period corresponding to the individual model estimates, and likewise conditioned on 
covariate estimates during the POD regime for models that included a regime covariate (or the 
constant intercept parameter 𝛽𝛽0, for models without the regime covariate). As noted above in the 
description of the model stacking approach, draws from the posterior predictive distribution for 
each model were sampled in proportion to the stacking model weights, to generate a weighted 
average posterior predictive distribution across the models considered. Summaries were then 
calculated by grouping the stacked annual posterior predictive distributions by water year type 
and calculating the means and credible intervals for each aggregated water year type posterior 
predictive distribution. 

11F.5 Delta Outflow–Longfin Smelt Abundance Analysis (Based 
on Nobriga and Rosenfield 2016) 

Nobriga and Rosenfield (2016) examined various formulations of a Ricker (1954) stock-
recruitment model to simulate FMWT indices through time. They found that December–May 
Delta outflow had a positive association with recruits per spawner and that juvenile recruitment 
from age 0 to age 2 was density dependent (lower survival with greater numbers of juveniles) but 

 
4 “~N” in Eqn. 1 denotes a normal (Gaussian) distribution.  
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cautioned that the density dependence in the model may be too strong.5 As described by 
California Department of Water Resources (2020:4-178), it should also be noted that analyses 
relying on surveys such as the FMWT index do not fully encompass the range of longfin smelt 
and do not reflect potential changes in catchability over time because of factors such as increased 
water clarity and gear avoidance (Latour 2016) that are the subject of ongoing investigations. 
The model has been retained for this Final EIR/EIS for continuity with the RDEIR/SDEIS, 
although to address comments on the RDEIR/SDEIS and comments on the analysis based on 
Nobriga and Rosenfield (2016), the analysis described above in Section 11F.4, Delta Outflow–
Longfin Smelt Abundance Index Analysis was added and receives greater weight in the 
consideration of potential impacts. 

11F.5.1. Reproduction of Nobriga and Rosenfield (2016) Model 
This analysis reproduced the methods described in Nobriga and Rosenfield (2016) for calculation 
of the two-life-stage model referred to as the “2abc” model, which includes the embedded 
hypotheses that understanding the trend in age-0 longfin smelt relative abundance requires 
explicit modeling of spawning and recruit relative abundance, that the production of age-0 fish is 
density dependent, and that juvenile survival from age 0 to age 2 has changed over time. For 
purposes of this effects analysis, the “2abc” model was selected because its median predictions 
visually fit recent years of empirical data better than the other model evaluated. 

Model input data used to reproduce the “2abc” model were as provided in Table 2 of Nobriga 
and Rosenfield (2016). The input data are provided in Appendix A of Greenwood and Phillis 
(2018). The analyses were run in R software (R Core Team 2021). 

Graphical comparison of the reproduction of the “2abc” model to the original Nobriga and 
Rosenfield (2016) “2abc” model (Figure 11F-2 and Figure 11F-3) suggests that the reproduced 
model was a reasonable approximation of the original model (i.e., the reproduction of the method 
was reasonably successful). It should be noted that the original “2abc” model 95% confidence 
intervals are wider than the reproduction utilized in this analysis. However, the model 
coefficients and standard errors are identical between the original and reproduced models. 
Therefore, the reproduced “2abc” model utilized in this analysis is considered appropriate, and 
the differences in 95% confidence intervals among the original and reproduced models do not 
affect the comparison of the scenarios discussed below. 

 
5 Comments on the draft Environmental Impact Report for Long-Term Operation of the California State Water 
Project suggested that a form of stock-recruitment function other than the Ricker method used by Nobriga and 
Rosenfield (2016) would be appropriate for exploration, such as the Beverton-Holt method (California Department 
of Water Resources 2020:4-178). The Beverton-Holt method was explored for the Final EIR but was found to be a 
poorer fit to the empirical data than the Ricker method, so the Ricker method consistent with Nobriga and 
Rosenfield (2016) was retained (California Department of Water Resources 2020:4-178). For the present impact 
analysis of Alternatives 1, 2, and 3 compared to the NAA, the Ricker method was also retained, consistent with 
California Department of Water Resources (2020) and Nobriga and Rosenfield (2016). 

Author
CDFW appreciates the use of the MS Word equation editor here. All equations should be displayed in this way.
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Source: California Department of Water Resources 2020:E-86. 
FMWT = fall midwater trawl. 

Figure 11F-2. Reproduction of Nobriga and Rosenfield (2016) 2abc Model Predictions 
Compared to Historical Fall Midwater Trawl Survey Longfin Smelt Abundance Index. 

 
Source: California Department of Water Resources 2020:E-86. 
Gray shading indicates 95% interval. 
FMWT = fall midwater trawl. 

Figure 11F-3. Original (Figure 6c of Nobriga and Rosenfield 2016) 2abc Model Predictions 
Compared to Historical Fall Midwater Trawl Survey Longfin Smelt Abundance Index. 
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11F.5.2. Calculation of Delta Outflow Model Inputs for Scenario Comparison 
To obtain the required first principal component (PC1) model inputs for comparison of the NAA 
and Alternative 1–3 scenarios, it was first necessary to reproduce the principal components 
analysis (PCA). Following Nobriga and Rosenfield (2016), historical daily Delta outflow data 
were acquired from the DAYFLOW database.6 Flow data were averaged for December to May 
by month and year and the principal component analysis was conducted using the ‘PCA’ 
function in the R package FactoMineR (Le et al. 2008) on water years 1956–2013. The resulting 
PC1 outputs were very similar to the original values computed by Nobriga and Rosenfield 
(2016), suggesting that the reported method had been successfully reproduced.7 The ‘predict 
PCA’ function was then used to predict PC1 values for the NAA and Alternative 1–3 scenarios 
for water years 1922–2003 based on the CALSIM modeling of the scenarios, on the same 
projection as the PCA. The resulting PC1 values were used as the input for the model simulation 
of the flow scenarios described in the next section. 

11F.5.3. Model Simulation to Compare Scenarios 
Model simulation to compare the NAA and Alternative 1–3 scenarios used the PC1 flow inputs. 
To produce a simulation for the 1922–2003 time series, and consistent with Nobriga and 
Rosenfield (2016), the model was initiated with 2 years (i.e., years 1922 and 1923) of FMWT 
indices equal to 798, which represents the median observed FMWT index from 1967 to 2013. 
The simulation was conducted for two juvenile survival functions: 

• ‘good,’ which used the pre-1991 relatively high survival for simulation over the full 
1922–2003 time series; 

• ‘poor,’ which used the post-1991 relatively low survival for simulation over the full 
1922–2003 simulation time series. 

Following Nobriga and Rosenfield (2016), 1,000 stochastic simulations were conducted in which 
random draws were made based on the mean and standard error of the model parameters. 
Consistent with Nobriga and Rosenfield (2016), the variability among the estimates was 
examined using the 95% intervals. Results of the analysis are summarized in the main body of 
Chapter 11, Aquatic Biological Resources. 

11F.6 X2–Longfin Smelt Abundance Index Analysis 

The method is the same as that used recently by California Department of Water Resources 
(2020). The methods described herein are the same as those used in that application; the methods 
description below was adapted from California Department of Water Resources (2020:E2-1). 

 
6 https://www.water.ca.gov/Programs/Environmental-Services/Compliance-Monitoring-And-Assessment/Dayflow-
Data 

7 The small differences may have arisen because of varying PCA algorithms in different statistical software 
packages, for example. 
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The analysis essentially updated previously described X2-abundance index regressions 
(Kimmerer et al. 2009, Mount et al. 2013) by adding additional years of data. Updating the 
analysis allowed full accounting of sources of error in the predictions, allowing calculation of 
prediction intervals from estimates of X2, as recommended by Simenstad et al. (2016), for the 
NAA and Alternative 1–3 scenarios. 

Longfin smelt FMWT index data were obtained 
(http://www.dfg.ca.gov/delta/data/fmwt/indices.asp?view=single), including indices for 1967–
2014 (excluding 1974 and 1979, when there was no sampling). For each index year, mean X2 
during January–June was calculated based on X2 from the DAYFLOW database 
(https://data.cnra.ca.gov/dataset/dayflow), in addition to calculated X2 for earlier years.8 

Similar to Mount et al. (2013), GLMs were run, predicting longfin smelt FMWT relative 
abundance index as a function of X2 and step changes in 1987/1988 and 2002/2003: 

Where y indicates year, a is the intercept, b is the coefficient applied to the mean Delta outflow, 
and c takes one of three values for period: 0 for the pre-Potamocorbula period (1967–1987), and 
values to be estimated for post-Potamocorbula (1988–2002) and POD (2003–2014) periods. 

Regarding the months used for mean X2, Mount et al. (2013:67) noted the following: 

The months selected in the original analysis [by Jassby et al. 1995] were based on the assumption 
that the (unknown) X2 mechanism operated during early life history of Longfin Smelt, which 
smelt experts linked to this period. Autocorrelation in the X2 values through months means that 
statistical analysis provides little guidance for improving the selection of months. A better 
understanding of the mechanism(s) underlying the relationship would probably allow this period 
to be narrowed and focused, but for now there is little basis for selecting a narrower period for 
averaging X2. 

Mount et al. (2013) compared the fit of X2 averaging periods for January–June (i.e., the original 
period used by Jassby et al. 1995, also used by Kimmerer et al. 2009) and March–May; they 
selected the former because the fit to the empirical data was slightly superior. In the present 
analysis, both the January–June and March–May averaging periods were compared for their 
adequacy of fit, using standard criteria (Akaike’s Information Criterion adjusted for small sample 
sizes, AICc; and variation explained, r2). This showed that the January–June X2 averaging period 
was better supported in terms of explaining variability in the FWMT index (Table 11F-9; Figure 
11F-4), so this averaging period was used in the subsequent comparison of the NAA and 
Alternative 1–3 scenarios based on DSM2 outputs of X2. 

 
8 DAYFLOW provides X2 estimates from water year 1997 onwards, so the DAYFLOW equation (X2(t) = 10.16 + 
0.945*X2(t-1) – 1.487log(QOUT(t))) was used to provide X2 for earlier years, based on a starting unpublished 
estimate of X2 (Mueller-Solger 2012 as cited by Greenwood [2018: 3]). 

Log10(FMWT indexy) = a + b·(mean X2y) + c·periody 
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Table 11F-9. Parameter Coefficients for General Linear Models Explaining Longfin Smelt 
Fall Midwater Trawl Index as a Function of Mean January–June and March–May X2 and 
Step Changes in 1987/1988 (Potamocorbula Invasion) and 2002/2003 (Pelagic Organism 
Decline). 

Parameter 
January–

June 
Estimate 

January–June 
Standard 

Error 

January–June 
P 

March–May 
Estimate 

March–May 
Standard Error 

March–May 
P 

a (Intercept) 7.3059 0.3299 < 0.0001 6.8100 0.3224 < 0.0001 
b (X2) -0.0542 0.0049 < 0.0001 -0.0475 0.0047 < 0.0001 

c (Period: Post-
Potamocorbula) -0.5704 0.1174 < 0.0001 -0.6368 0.1271 < 0.0001 

c (Period: POD) -1.4067 0.1244 < 0.0001 -1.4581 0.1351 < 0.0001 
Fit - - - - - - 

AICc1 -47.4904 -47.4904 -47.4904 -39.5492 -39.5492 -39.5492 
r2 0.8666 0.8666 0.8666 0.8414 0.8414 0.8414 

Note: 
1 The difference of ~8 AICc units between the two GLMs indicates that the January–June mean X2 GLM is better 

supported in terms of explaining the patterns in the data (Burnham et al. 2011). 

 
Source: California Department of Water Resources 2020:E2-3. 

Figure 11F-4. Fit to Empirical Data of General Linear Model Predicting Longfin Smelt Fall 
Midwater Trawl Relative Abundance Index as a Function of Mean January–June X2 and 
Step Changes for Potamocorbula and Pelagic Organism Decline.  
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Author
The resolution of this figure is quite low. Here and elsewhere, CDFW recommends replacing low-resolution figures with higher-resolution ones.
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For the comparison of the NAA and Alternative 1–3 scenarios, mean January–June X2 was 
calculated for each year of the 1922–2003 simulation based on DSM2 X2 outputs. The X2-
abundance index GLM calculated as above was used to estimate abundance index for the 
scenarios, based on the POD period coefficient in addition to the intercept and X2 slope terms. 
The basic equation used was (see also Table 11F-9): 

The log-transformed abundance indices were back-transformed to a linear scale for comparison 
of scenarios. In order to illustrate the variability in predictions from the X2-abundance index 
GLM, annual estimates were made for the mean and upper and lower 95% prediction limits of 
the abundance indices, as recommended by Simenstad et al. (2016). Statistical analyses were 
conducted with PROC GLM and PROC PLM in SAS/STAT software, Version 9.4 of the SAS 
System for Windows.9 

Results of the analysis are summarized in the main body of Chapter 11, Aquatic Biological 
Resources. Tables 11F-10 through 11F-14 provide supplemental information also discussed in 
the main body of Chapter 11. 

Table 11F-10. X2–Longfin Smelt Abundance Index Analysis: Mean and 95% Prediction 
Limits, NAA 

Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1922 351 61 1,824 
1923 168 25 886 
1924 12 -6 102 
1925 147 21 783 
1926 110 14 593 
1927 523 94 2,727 
1928 188 29 991 
1929 21 -4 150 
1930 92 10 504 
1931 9 -6 88 
1932 84 9 466 
1933 24 -3 164 
1934 42 0 254 
1935 218 35 1,140 
1936 306 52 1,596 

 
9 Copyright 2002–2012, SAS Institute Inc. SAS and all other SAS Institute Inc. product or service names are 
registered trademarks or trademarks of SAS Institute Inc., Cary, NC, USA 

log10(Longfin Smelt FMWT index) = 7.3059 - 0.0542*(January–June X2) - 1.4067 
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1937 217 35 1,136 
1938 798 145 4,190 
1939 18 -5 136 
1940 365 64 1,898 
1941 733 133 3,844 
1942 690 125 3,615 
1943 439 78 2,282 
1944 60 4 342 
1945 132 18 707 
1946 170 26 899 
1947 45 1 269 
1948 107 13 580 
1949 66 5 374 
1950 153 22 810 
1951 311 53 1,619 
1952 891 162 4,693 
1953 323 56 1,682 
1954 278 47 1,450 
1955 37 -1 229 
1956 635 115 3,322 
1957 116 15 626 
1958 744 135 3,902 
1959 96 11 526 
1960 58 3 333 
1961 58 3 334 
1962 102 12 555 
1963 368 64 1,915 
1964 35 -1 220 
1965 397 70 2,064 
1966 138 19 733 
1967 894 163 4,710 
1968 128 17 686 
1969 868 158 4,572 
1970 251 42 1,310 
1971 455 81 2,371 
1972 77 7 428 

Author
Unclear why this has not been updated beyond 2014? Population has continued to decline, why not include more recent years?
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1973 402 71 2,090 
1974 591 107 3,086 
1975 313 54 1,632 
1976 10 -6 96 
1977 6 -7 72 
1978 551 99 2,872 
1979 207 33 1,085 
1980 417 74 2,172 
1981 92 10 502 
1982 765 139 4,017 
1983 927 169 4,890 
1984 300 51 1,561 
1985 48 1 285 
1986 283 48 1,474 
1987 46 1 272 
1988 39 0 241 
1989 69 6 390 
1990 20 -4 144 
1991 26 -3 174 
1992 48 1 284 
1993 698 127 3,657 
1994 22 -4 156 
1995 879 160 4,632 
1996 670 121 3,504 
1997 281 47 1,465 
1998 863 157 4,543 
1999 447 79 2,326 
2000 267 45 1,395 
2001 68 5 384 
2002 155 23 821 
2003 385 68 2,003 
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Table 11F-11. X2–Longfin Smelt Abundance Index Analysis: Mean and 95% Prediction 
Limits, Alternative 1A 

Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1922 343 59 1,785 
1923 168 25 885 
1924 12 -6 104 
1925 148 21 788 
1926 108 13 584 
1927 496 89 2,586 
1928 183 28 965 
1929 21 -4 150 
1930 90 10 495 
1931 9 -6 88 
1932 82 8 452 
1933 24 -3 164 
1934 43 0 260 
1935 209 33 1,097 
1936 304 52 1,584 
1937 214 34 1,120 
1938 794 145 4,173 
1939 18 -5 135 
1940 359 63 1,867 
1941 733 133 3,841 
1942 690 125 3,615 
1943 438 78 2,279 
1944 59 4 341 
1945 143 20 760 
1946 168 25 889 
1947 45 1 270 
1948 108 13 585 
1949 63 5 361 
1950 152 22 807 
1951 311 53 1,617 
1952 891 163 4,694 
1953 323 56 1,681 
1954 265 44 1,382 
1955 37 -1 230 
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1956 629 114 3,287 
1957 112 14 606 
1958 732 133 3,839 
1959 93 10 509 
1960 56 3 324 
1961 55 3 320 
1962 100 12 545 
1963 362 63 1,881 
1964 35 -1 219 
1965 392 69 2,042 
1966 135 19 720 
1967 890 162 4,690 
1968 127 17 681 
1969 867 158 4,567 
1970 248 41 1,294 
1971 455 81 2,370 
1972 74 7 414 
1973 401 71 2,084 
1974 591 107 3,087 
1975 312 53 1,623 
1976 10 -6 96 
1977 5 -7 70 
1978 568 102 2,963 
1979 203 32 1,065 
1980 415 73 2,160 
1981 87 9 479 
1982 765 139 4,017 
1983 927 169 4,890 
1984 300 51 1,562 
1985 48 1 284 
1986 283 48 1,474 
1987 44 1 263 
1988 37 -1 228 
1989 67 5 381 
1990 20 -4 145 
1991 25 -3 169 

Author
As mentioned elsewhere, these extremely lengthy tables make direct comparison among Project alternatives almost impossible. CDFW requests that these data be displayed in a single figure so that Project alternative scenarios can be compared directly.
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1992 47 1 279 
1993 688 125 3,602 
1994 22 -4 152 
1995 870 159 4,583 
1996 661 120 3,459 
1997 281 47 1,465 
1998 856 156 4,504 
1999 446 79 2,324 
2000 263 44 1,373 
2001 65 5 372 
2002 151 22 804 
2003 379 66 1,972 

 

Table 11F-12. X2–Longfin Smelt Abundance Index Analysis: Mean and 95% Prediction 
Limits, Alternative 1B 

Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1922 343 59 1,785 
1923 168 25 888 
1924 12 -6 104 
1925 147 21 780 
1926 108 13 584 
1927 497 89 2,588 
1928 183 28 964 
1929 21 -4 150 
1930 90 10 495 
1931 9 -6 88 
1932 82 8 452 
1933 24 -3 164 
1934 43 0 260 
1935 209 33 1,097 
1936 304 52 1,584 
1937 213 34 1,118 
1938 794 145 4,173 
1939 17 -5 130 
1940 359 62 1,867 
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1941 733 133 3,842 
1942 690 125 3,615 
1943 438 78 2,279 
1944 59 4 341 
1945 132 18 705 
1946 168 25 889 
1947 45 1 271 
1948 108 13 585 
1949 63 5 361 
1950 152 22 806 
1951 310 53 1,616 
1952 891 163 4,694 
1953 323 56 1,681 
1954 265 44 1,381 
1955 37 -1 231 
1956 630 114 3,291 
1957 113 14 608 
1958 717 130 3,759 
1959 93 10 509 
1960 57 3 329 
1961 60 4 345 
1962 100 12 545 
1963 362 63 1,882 
1964 35 -1 218 
1965 401 71 2,084 
1966 127 17 681 
1967 889 162 4,686 
1968 127 17 681 
1969 868 158 4,570 
1970 257 43 1,342 
1971 457 81 2,379 
1972 74 7 413 
1973 400 70 2,079 
1974 591 107 3,087 
1975 312 53 1,623 
1976 10 -6 95 
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1977 5 -7 70 
1978 568 102 2,964 
1979 203 32 1,065 
1980 415 73 2,161 
1981 87 9 479 
1982 765 139 4,017 
1983 927 169 4,890 
1984 311 53 1,619 
1985 47 1 281 
1986 283 48 1,477 
1987 44 1 263 
1988 37 -1 227 
1989 67 5 377 
1990 20 -4 145 
1991 25 -3 168 
1992 47 1 277 
1993 689 125 3,607 
1994 22 -4 152 
1995 871 159 4,585 
1996 661 120 3,459 
1997 276 47 1,440 
1998 857 156 4,512 
1999 446 79 2,324 
2000 263 44 1,373 
2001 66 5 372 
2002 152 22 806 
2003 379 66 1,972 

 

Table 11F-13. X2–Longfin Smelt Abundance Index Analysis: Mean and 95% Prediction 
Limits, Alternative 2 

Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1922 343 59 1,785 
1923 168 25 885 
1924 12 -6 104 
1925 148 21 788 
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1926 108 13 584 
1927 496 89 2,586 
1928 183 28 965 
1929 21 -4 150 
1930 90 10 496 
1931 9 -6 88 
1932 81 8 452 
1933 24 -3 164 
1934 43 0 259 
1935 209 33 1,097 
1936 305 52 1,590 
1937 214 34 1,119 
1938 794 145 4,173 
1939 18 -5 135 
1940 359 63 1,867 
1941 733 133 3,842 
1942 690 125 3,615 
1943 438 78 2,279 
1944 59 4 341 
1945 143 20 760 
1946 168 25 889 
1947 45 1 270 
1948 108 13 585 
1949 63 5 361 
1950 152 22 805 
1951 311 53 1,617 
1952 891 163 4,694 
1953 323 56 1,681 
1954 265 44 1,383 
1955 37 -1 230 
1956 629 114 3,287 
1957 112 14 607 
1958 732 133 3,839 
1959 93 10 509 
1960 56 3 324 
1961 55 3 320 
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1962 100 12 545 
1963 362 63 1,881 
1964 35 -1 219 
1965 392 69 2,041 
1966 134 18 713 
1967 890 162 4,690 
1968 127 17 681 
1969 867 158 4,567 
1970 248 41 1,294 
1971 455 81 2,370 
1972 74 7 414 
1973 401 71 2,084 
1974 591 107 3,087 
1975 312 53 1,623 
1976 10 -6 96 
1977 5 -7 70 
1978 567 102 2,961 
1979 203 32 1,065 
1980 415 73 2,160 
1981 87 9 479 
1982 765 139 4,017 
1983 927 169 4,890 
1984 300 51 1,562 
1985 48 1 284 
1986 283 48 1,474 
1987 44 1 263 
1988 37 -1 228 
1989 69 6 388 
1990 20 -4 145 
1991 25 -3 170 
1992 47 1 278 
1993 688 125 3,604 
1994 22 -4 152 
1995 870 159 4,583 
1996 661 120 3,459 
1997 281 47 1,465 
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1998 856 156 4,504 
1999 446 79 2,324 
2000 263 44 1,374 
2001 65 5 372 
2002 151 22 804 
2003 379 66 1,971 

 

Table 11F-14. X2–Longfin Smelt Abundance Index Analysis: Mean and 95% Prediction 
Limits, Alternative 3 

Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1922 343 59 1,783 
1923 167 25 882 
1924 12 -6 104 
1925 148 21 785 
1926 108 13 585 
1927 498 89 2,594 
1928 190 30 999 
1929 21 -4 148 
1930 90 10 494 
1931 9 -6 89 
1932 81 8 449 
1933 24 -3 164 
1934 43 0 260 
1935 209 33 1,097 
1936 306 52 1,591 
1937 213 34 1,116 
1938 794 145 4,173 
1939 17 -5 131 
1940 358 62 1,861 
1941 733 133 3,842 
1942 690 125 3,615 
1943 438 78 2,279 
1944 59 4 341 
1945 145 21 771 
1946 168 25 890 
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1947 44 1 263 
1948 104 13 565 
1949 61 4 351 
1950 151 22 802 
1951 309 53 1,607 
1952 891 163 4,695 
1953 323 56 1,681 
1954 265 44 1,381 
1955 40 0 243 
1956 633 115 3,310 
1957 109 14 591 
1958 713 130 3,737 
1959 93 10 508 
1960 58 3 333 
1961 56 3 323 
1962 100 12 547 
1963 362 63 1,881 
1964 35 -1 218 
1965 393 69 2,042 
1966 121 16 648 
1967 885 161 4,660 
1968 127 17 680 
1969 870 159 4,580 
1970 250 41 1,306 
1971 457 81 2,380 
1972 74 7 413 
1973 400 70 2,079 
1974 591 107 3,083 
1975 312 53 1,624 
1976 10 -6 95 
1977 6 -7 73 
1978 551 99 2,875 
1979 202 32 1,061 
1980 416 73 2,162 
1981 88 9 482 
1982 765 139 4,017 
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Year Mean Estimate Lower 95% Prediction 
Limit 

Upper 95% Prediction 
Limit 

1983 927 169 4,890 
1984 311 53 1,619 
1985 47 1 281 
1986 299 51 1,559 
1987 44 1 262 
1988 37 -1 227 
1989 69 6 390 
1990 20 -4 144 
1991 25 -3 168 
1992 46 1 276 
1993 690 125 3,615 
1994 22 -4 153 
1995 871 159 4,584 
1996 661 120 3,460 
1997 275 46 1,434 
1998 858 156 4,515 
1999 446 79 2,324 
2000 263 44 1,372 
2001 65 5 372 
2002 153 22 811 
2003 380 67 1,976 

11F.7 Tidal Habitat Restoration Mitigation Calculations for 
Longfin Smelt 

Tidal habitat restoration mitigation for longfin smelt was calculated based on the same method 
recently applied by California Department of Water Resources (2019:5-5). The method applied 
is that of Kratville (2010), who combined statistical relationships between export:inflow (E:I) 
ratio and proportion of particles entrained from various particle injection locations included in 
DSM2-PTM runs by Kimmerer and Nobriga (2008) with areas of habitat represented by groups 
of particle injection locations. The logistic equations for these particle injection locations that 
were applied in the analysis to mean CALSIM-modeled E:I during February–June were as 
follows (Nobriga pers. comm.; see Kratville 2010 for further explanation of station codes): 

• Antioch: Proportional entrainment = 1-(1/(1+ 0.00271028300855596*e6.84578776491213*E:I)) 
• Bacon Island: Proportional entrainment = 1-(1/(1+ 

0.00360067831643248*e48.0279532945984*E:I)) 
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• Collinsville: Proportional entrainment = 1-(1/(1+ 
0.00122681735447479*e7.34600447344753*E:I)) 

• Franks Tract East: Proportional entrainment = 1-(1/(1+ 
0.0882721350895259*e6.51283857598075*E:I)) 

• Franks West: Proportional entrainment = 1-(1/(1+ 
0.0321221161869743*e5.5544157874989*E:I)) 

• Georgiana Slough: Proportional entrainment = 1-(1/(1+ 
0.0556193254426028*e7.53188118299606*E:I)) 

• Hood: Proportional entrainment = 1-(1/(1+ 0.0370940945312037*e6.00721899458561*E:I)) 
• Medford Island: Proportional entrainment = 1-(1/(1+ 

0.00592509281258315*e34.8002358833536*E:I)) 
• Mossdale: Proportional entrainment = 1-(1/(1+ 0.111111111111111*e26.6493233888825*E:I)) 
• North Fork Mokelumne: Proportional entrainment = 1-(1/(1+ 0.0610234435346189*e 

7.28620279196804*E:I)) 
• Potato Slough: Proportional entrainment = 1-(1/(1+ 

0.0163841512024925*e23.708308398635*E:I)) 
• Rio Vista: Proportional entrainment = 1-(1/(1+ 0.0076755045686138*e6.69498358561645*E:I)) 
• Ryde: Proportional entrainment = 1-(1/(1+ 0.0117017438595754*e6.7207341005591*E:I)) 
• South Fork Mokelumne: Proportional entrainment = 1-(1/(1+ 0.0389615268878375*e 

14.4737516748024*E:I)) 
• Stockton: Proportional entrainment = 1-(1/(1+ 0.00840706847099802*e32.6988703978096*E:I)) 
• Three Mile Slough: Proportional entrainment = 1-(1/(1+ 

0.0157935505682666*e6.10724605041376*E:I)) 
• Twitchell Island: Proportional entrainment = 1-(1/(1+ 

0.0342441647821108*e6.37831755748149*E:I)) 
• Vernalis: Proportional entrainment = 1-(1/(1+ 0.111111111111111*e27.3073879175582*E:I)) 
• Victoria Canal: Proportional entrainment = 1-(1/(1+ 

0.00000001283874368*e219.722457733622*E:I)) 

The mean estimate of particle proportional entrainment from application of these equations was 
calculated for four geographic zones, with this mean estimate of particle entrainment then being 
multiplied by the area of each zone: 

• Lower Sacramento (Antioch, Collinsville, Rio Vista, Ryde, Three Mile Slough): 
19,140.69 acres 

• Hood and West Dela San Joaquin (Hood, Twitchell Island): 6,080.929 acres 
• Georgiana Slough/North Fork Mokelumne (Georgiana Slough, North Fork Mokelumne): 

2,704.28 acres 
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• San Joaquin (Bacon Island, Franks Tract East, Franks Tract West, Medford Island, 
Mossdale, Potato Slough, South Fork Mokelumne, Stockton, Vernalis, Victoria Canal): 
21,124.31 acres 

The overall area of effect for each scenario was calculated as 10% of the area of the above 
calculations, consistent with calculations for the mitigation requirements used by California 
Department of Fish and Game (2009) and California Department of Water Resources (2019). 
Results of the mitigation calculations for the number of acres that Alternatives 1–3 were in 
excess of NAA are provided in the main body of Chapter 11, Aquatic Biological Resources. 
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